Copyright © 1997 American Welding Society (AWS) Retrieved from www.knovel.com

The Everyday Pocket Handbook for Gas Metal Arc Welding (GMAW) and Flux Cored Arc Welding (FCAW)

Number 4 in a series

Compiled as a useful tool for on-the-job welding personnel by the AWS Product Development Committee

1

Edited by L. W. Myers Sr., Welding Engineer, Turbo Products Division, Dresser-Rand, Inc., Olean, NY

© 1997 by American Welding Society. All rights reserved Printed in the United States of America

NOTE: Although care was taken in choosing and presenting the data in this guide, AWS cannot guarantee that it is error free. Further, this guide is not intended to be an exhaustive treatment of the topic and therefore may not include all available information, including with respect to safety and health issues. By publishing this guide, AWS does not insure anyone using the information it contains against any liability or injury to property or persons arising from that use.

Retrieved from www.knovel.com

Table of Contents

3

Basic Safety Precautions4
Gas Metal Arc Welding
Specifications and Classification System for
Solid and Composite Filler Metals
Shielding Gases—Spray Transfer7
Shielding Gases—Short Circuiting Transfer
Globular-to-Spray Transition Currents 10
Typical Arc Voltages 11
Typical Currents vs. Wire Feed Speeds—Carbon Steel 12
Typical Melting Rates—Carbon Steel
Typical Currents vs. Wire Feed Speeds-Carbon Steel
(Short Circuiting Arc)
Typical Melting Rates—Carbon Steel
(Short Circuiting Arc)15
Typical Currents vs. Wire Feed Speeds—Stainless
Steel
Typical Melting Rates—Stainless Steel
Typical Currents vs. Wire Feed Speeds—Aluminum 18
Typical Melting Rates—Aluminum
Typical Melting Rates—Aluminum

Specifications and Classification System
Typical Currents vs. Electrode Feed Rates—
Carbon Steel (CO ₂ Shielding)
Typical Deposition Rates—Carbon Steel
(CO ₂ Shielding)27
Typical Currents vs. Electrode Feed Rates—
Carbon Steel (Self-Shielding)
Typical Deposition Rates—Carbon Steel
(Self-Shielding)
Typical Deposition Rates—Stainless Steel
(Gas-Shielding)
Typical Currents vs. Electrode Feed Rates—Stainless
Steel (Gas-Shielding)
Typical Welding Procedures—Carbon and Low
Alloy Steels (Gas-Shielding)
Typical Welding Procedures—Carbon and Low
Alloy Steels (Self-Shielding)
Typical Welding Procedures—Stainless Steels
(Gas-Shielding)
Troubleshooting Mechanical Problems in GMAW
and FCAW
Troubleshooting Electrical Problems in GMAW
and FCAW
Welding Positions
Basic Welding Symbols

Basic Safety Precautions

Burn Protection. Molten metal, sparks, slag, and hot work surfaces are produced by welding, cutting, and allied processes. These can cause burns if precautionary measures are not used. Workers should wear protective clothing made of fire-resistant material. Pant cuffs, open pockets, or other places on clothing that can catch and retain molten metal or sparks should not be worn. High-top shoes or leather leggings and fire-resistant gloves should be worn. Pant legs should be worn over the outside of high-top shoes. Helmets or hand shields that provide protection for the face, neck, and ears, and a head covering to protect the head should be used. In addition, appropriate eye protection should be used.

Electrical Hazards. Electric shock can kill. However, it can be avoided. Live electrical parts should not be touched. The manufacturer's instructions and recommended safe practices should be read and understood. Faulty installation, improper grounding, and incorrect operation and maintenance of electrical equipment are all sources of danger.

All electrical equipment and the workpiece should be grounded. The workpiece lead is not a ground lead. It is used only to complete the welding circuit. A separate connection is required to ground the workpiece. The workpiece should not be mistaken for a ground connection. **Fumes and Gases.** Many welding, cutting, and allied processes produce fumes and gases which may be harmful to health. Avoid breathing the air in the fume plume directly above the arc. Do not weld in a confined area without a ventilation system. Use point-of-welding fume removal when welding galvanized steel, zinc, lead, cadmium, chromium, manganese, brass, or bronze. Do not weld on piping or containers that have held hazardous materials unless the containers have been inerted properly.

Compressed Gas Cylinders. Keep caps on cylinders when not in use. Make sure that gas

cylinders are chained to a wall or other structural support.

Radiation. Arc welding may produce ultraviolet, infrared, or light radiation. Always wear protective clothing and eye protection to protect the skin and eyes from radiation. Shield others from light radiation from your welding operation.

Refer to AWS/ANSI Z49.1, *Safety in Welding and Cutting*, for additional information.

GMAW Filler Metal Specifications and Classification System

	Fille	r Metal		
Material	AWS Spec.	AWS Class.*	X Designator Description	Example
Steel, carbon	A5.18	ERXXS-Y EXXC-Y	Tensile strength × 1000 (psi)	ER70S-3 E70C-3
Steel, low alloy	A5.28	ERXXS-Y EXXC-Y	Tensile strength × 1000 (psi)	ER80S-B2 E80C-B2
Stainless steel	A5.9	ERXXXY	Stainless alloy (308, 410, etc.)	ER308L EC308L
Aluminum	A5.10	ERXXXX-Y	Aluminum alloy (4043, 5083, etc.)	ER4043
Nickel	A5.14	ERNiXX-Y	Major alloying elements (Cr, Fe, Mo, etc.)	ERNiCr-3
Copper	A5.7	ERCuXX-Y	Major alloying elements (Al, Ni, Si, etc.)	ERCuAl-A2
Magnesium	A5.19	ERXXYYY	Major alloying elements (Al, Zn, etc.)	ERAZ92A
Titanium	A5.16	ERTi-Y		ERTi-5

*Legend

E — Filler metal may be used as an electrode

R — Filler metal may be used as a rod

S — Solid filler metal

C — Composite or stranded filler metal

Y — Designator (or combination of designators) that describe specific alloy, shielding gas to be used, diffusible hydrogen limit, etc. Refer to the appropriate AWS Filler Metal Specification shown in table for explanation.

GMAW Shielding Gases for Spray Transfer

Metal	Shielding Gas	Thickness	Advantages
Aluminum	100% Argon	0 to 1 in. (0 to 25 mm)	Best metal transfer and arc stability, least spatter
	65% Argon + 35% Helium	1 to 3 in. (27 to 76 mm)	Higher heat input than straight argon; improved fusion characteristics with 5XXX series Al-Mg alloys
	75% Helium + 25% Argon	Over 3 in. (76 mm)	Highest heat input; minimizes porosity
Magnesium	100% Argon	_	Excellent cleaning action
Steel carbon	Argon + 3 to 5% Oxygen	_	Improves arc stability; produces a more fluid and controllable weld puddle; good coalescence and bead contour; minimizes undercutting; permits higher speeds than pure argon
	Argon + 8 to 10% Carbon Dioxide	_	High-speed mechanized welding; low-cost manual welding
Steel low-alloy	98% Argon + 2% Oxygen	_	Minimizes undercutting; provides good toughness

GMAW Shielding Gases for Spray Transfer (Continued)

Metal	Shielding Gas	Thickness	Advantages
Steel stainless	99% Argon + 1% Oxygen	—	Improves arc stability; produces a more fluid and controllable weld puddle; good coalescence and bead contour; minimizes undercutting on heavier stainless steels
	98% Argon + 2% Oxygen	_	Provides better arc stability, coalescence, and welding speed than 1 percent oxygen mixture for thinner stainless steel materials
Nickel, copper, and their alloys	100% Argon	Up to 1/8 in. (3.2 mm)	Provides good wetting; decreases fluidity of weld material
	Argon + Helium mixtures	_	Higher heat inputs of 50 and 75 percent helium mixtures offset high heat dissipation of heavier gages
Titanium	100% Argon	—	Good arc stability; minimum weld contamination; inert gas backing is required to prevent air contamination on back of weld area

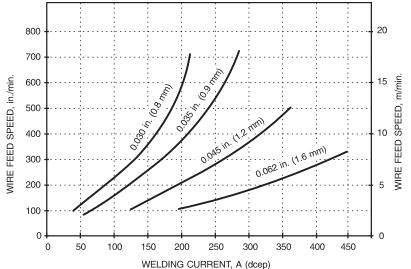
GMAW Shielding Gases for Short Circuiting Transfer

Metal	Shielding Gas	Thickness	Advantages		
Carbon steel	75% Argon + 25% Carbon Dioxide	Less than 1/8 in. (3.2 mm)	High welding speeds without burn-through; minimum distortion and spatter		
	75% Argon + 25% Carbon Dioxide	More than 1/8 in. (3.2 mm)	Minimum spatter; clean weld appearance; good puddle control in vertical and overhead positions		
	50% Argon + 50% Carbon Dioxide	_	Deeper penetration; faster welding speeds		
Stainless steel	90% Helium + 7.5% Argon + 2.5% Carbon Dioxide	_	No effect on corrosion resistance; small heat- affected zone; no undercutting; minimum distortion		
Low alloy steel	60 to 70% helium + 25 to 35% Argon + 4.5% Carbon Dioxide	_	Minimum reactivity; excellent toughness; excellent arc stability, wetting characteristics, and bead contour; little spatter		
	75% Argon + 25% Carbon Dioxide	_	Fair toughness; excellent arc stability, wetting characteristics, and bead contour; little spatter		
Aluminum, copper, magnesium, nickel, and their alloys	Argon and Argon + Helium mixtures	Over 1/8 in. (3.2 mm)	Argon satisfactory on sheet metal; argon-helium preferred base material		

Globular-to-Spray Transition Currents for a Variety of Electrodes

	Wire Electro	de Diameter		Minimum Spray	
Wire Electrode Type	in. mm		Shielding Gas	Arc Current, A	
Mild steel	0.030	0.8	98% Argon + 2% Oxygen	150	
	0.035	0.9	98% Argon + 2% Oxygen	165	
	0.045	1.1	98% Argon + 2% Oxygen	220	
	0.062	1.6	98% Argon + 2% Oxygen	275	
Stainless steel	0.035	0.9	98% Argon + 2% Oxygen	170	
	0.045	1.1	98% Argon + 2% Oxygen	225	
	0.062	1.6	98% Argon + 2% Oxygen	285	
Aluminum	0.030	0.8	Argon	95	
	0.045	1.1	Argon	135	
	0.062	1.6	Argon	180	
Deoxidized copper	0.035	0.9	Argon	180	
	0.045	1.1	Argon	210	
	0.062	1.6	Argon	310	
Silicon bronze	0.035	0.9	Argon	165	
	0.045	1.1	Argon	205	
	0.062	1.6	Argon	270	

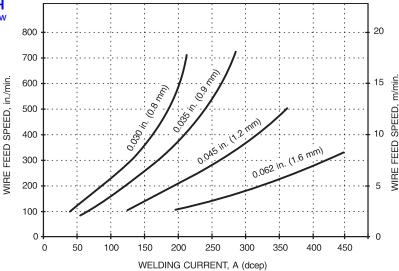
See page 11 for voltage settings.


	1/1		Globular T mm) Diame	ransfer ter Electroo	le	Short Circuiting Transfer .035 in (0.9 mm) Diameter Electrode					
Metal	Argon	Helium	25% Ar + 75% He	Ar + 1 to 5% O ₂	CO2	Argon	Ar + 1 to 5% O ₂	75% Ar + 25% CO ₂	CO ₂		
Aluminum Magnesium	25 26	30	29 28			19 16					
Carbon steel Low alloy steel Stainless steel	$\frac{-}{24}$			28 28 26	30 30 —	17 17 18	18 18 19	19 19 21	20 20 —		
Nickel Nickel-copper alloy Nickel-chromium- iron alloy	26 26 26	30 30 30	28 28 28			22 22 22					
Copper Copper-nickel alloy	30 28	36 32	33 30	_	_	24 23	22	_	_		
Silicon bronze Aluminum bronze Phosphor bronze	28 28 28	32 32 32	30 30 30	$\frac{28}{23}$		23 23 23					

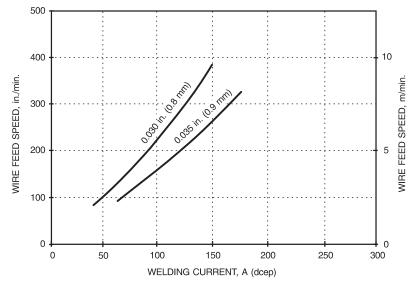
Typical Arc Voltages for GMAW of Various Metals^a

a. Plus or minus approximately ten percent. The lower voltages are normally used on light material and at low amperage; the higher voltages are used on heavy material at high amperage.

b. For the pulsed variation of spray transfer the arc voltage would be from 18 to 28 volts depending on the amperage range used.

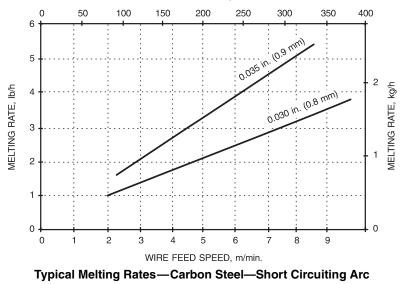


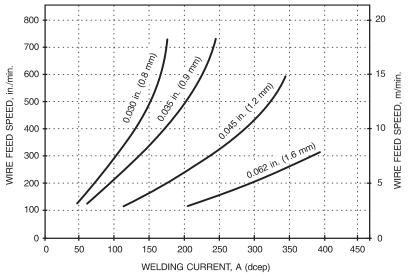
Typical Welding Currents vs. Wire Feed Speeds for Carbon Steel Electrodes


Example:

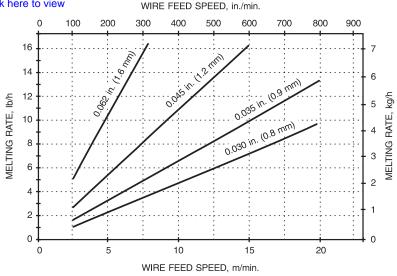
To find the melting rate for 0.045 in. carbon steel wire at a wire feed speed of 350 inches per minute, draw a line from 350 on the top scale down to the 0.045 in. curve (line); then draw a line from that intersection left to the Melting Rate scale and read 10.2 pounds per hour (lb/h).

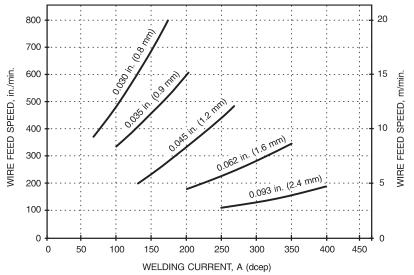
Typical Melting Rates for Carbon Steel Electrodes



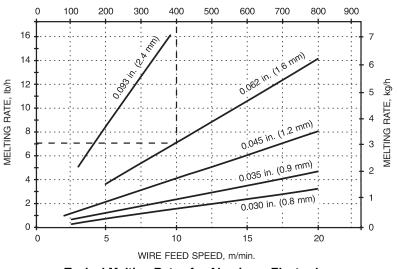

Typical Currents vs. Wire Feed Speeds Carbon Steel—Short Circuiting Arc

WIRE FEED SPEED, in./min.




Typical Welding Currents vs. Wire Feed Speeds for 300 Series Stainless Steel Electrodes

Typical Melting Rates for 300 Series Stainless Steel Electrodes



Welding Currents vs. Wire Feed Speeds for ER4043 Aluminum Electrodes

WIRE FEED SPEED, in./min.

Typical Melting Rates for Aluminum Electrodes

Typical Conditions for Short Circuit GMAW of Carbon and Low Alloy Steel

Mate Thick	erial mess			ameter	Current Voltage ¹		Wire Feed Speed			Gas	Flow
in.	mm	Weld	in.	mm	amps	volts	IPM	mm/s	Shielding Gas ²	CFM	LPM
.062	1.6	Butt ³	.035	0.9	95	18	150	64	75% Ar + 25% CO ₂	25	12
.125	3.2	Butt ³	.035	0.9	140	20	250	106	75% Ar + 25% CO ₂	25	12
.187	4.7	Butt ³	.035	0.9	150	20	265	112	75% Ar + 25% CO_2	25	12
.250	6.4	Butt ³	.035	0.9	150	21	265	112	75% Ar + 25% CO ₂	25	12
.250	6.4	Butt ⁴	.045	1.1	200	22	250	106	75% Ar + 25% CO ₂	25	12

1. Direct current electrode positive.

2. Welding grade CO2 may also be used.

3. Root opening of .03 in. (0.8 mm).

4. Root opening of .062 in. (1.6 mm).

Typical Conditions for GMAW of Austenitic Stainless Steel Using a Spray Arc in the Flat Position

	Material Thickness		Wire Diameter			Current Voltage ¹		Feed eed	Shielding	Gas Flow	
in.	mm	Type of Weld	in.	mm	amps	volts	IPM	mm/s	Gas	CFM	LPM
.125	3.2	Butt Joint with Backing	.062	1.6	225	24	130	55	98% Ar + 2% O ₂	30	14
.250 ²	6.4	V-butt Joint 60¢ Inc. Angle	.062	1.6	275	26	175	74	98% Ar + 2% O ₂	35	16
.375 ²	9.5	V-butt Joint 60¢ Inc. Angle	.062	1.6	300	28	240	102	98% Ar + 2% O ₂	35	16

1. Direct current electrode positive.

2. Two passes required.

Typical Conditions for GMAW of Austenitic Stainless Steel Using a Short Circuiting Arc

	erial mess	Type of	Wire Current Wire Feed Diameter Voltage ¹ Speed						Shielding	Gas Flow	
in.	mm	Weld	in.	mm	amps	volts	IPM	mm/s	Gas	CFM	LPM
.062	1.6	Butt Joint	.030	0.8	85	21	185	78	90% He +7.5% Ar +2.5% CO ₂	30	14
.093	2.4	Butt Joint	.030	0.8	105	23	230	97	90% He +7.5% Ar +2.5% CO ₂	30	14
.125	3.2	Butt Joint	.030	0.8	125	24	280	118	90% He +7.5% Ar +2.5% CO ₂	30	14

1. Direct current electrode positive.

	Material hickness Type of			Wire Current Wire Feed ameter Voltage ¹ Speed				Shielding	Gas	Flow	
in.	mm	Weld	in.	mm	amps	volts	IPM	mm/s	Gas	CFM	LPM
.062	1.6	Butt	.030	0.8	90	18	365	155	Argon	30	14
.125	3.2	Butt	.030	0.8	125	20	440	186	Argon	30	14
.187	4.8	Butt	.045	1.1	160	23	275	116	Argon	35	16
.250	6.4	Butt	.045	1.1	205	24	335	142	Argon	35	16
.375	9.5	Butt	.063	1.6	240	26	215	91	Argon	40	19

Typical Conditions for GMAW of Aluminum in the Flat Position

1. Direct current electrode positive.

Consumable Welding Wire—Inches per Pound of Wire

		1000	iivent iioi	ii inches	per pound		ci kg, illu	mpiy oy	11.52.					
Wire D	iameter		Material											
Decimal Inches	Fraction Inches	Mag.	Alum.	Alum. Bronze (10)%	Stainless Steel Ni + Cr.	Mild Steel	Stainless Steel Str. Chrome	Si. Bronze	Copper Nickel	Nickel	De-ox. Copper			
.020		50,500	32,400	11,600	11,350	11,100	10,950	10,300	9,950	9,990	9,800			
.025		34,700	22,300	7,960	7,820	7.680	7,550	7,100	6,850	6,820	6,750			
.030	1/32	22,400	14,420	5,150	5,050	4,960	4,880	4,600	4,430	4,400	4,360			
.035		16,500	10,600	3,780	3,720	3,650	3,590	3,380	3,260	3,240	3,200			
.040		12,600	8,120	2,900	2,840	2,790	2,750	2,580	2,490	2,480	2,450			
.045	3/64	9,990	6,410	2,290	2,240	2,210	2,170	2,040	1,970	1,960	1,940			
.062	1/16	5,270	3,382	1,220	1,180	1,160	1,140	1,070	1,040	1,030	1,020			
.078	5/64	3,300	2,120	756	742	730	718	675	650	647	640			
.093	3/32	2,350	1,510	538	528	519	510	480	462	460	455			
.125	1/8	1,280	825	295	289	284	279	263	253	252	249			

To convert from inches per pound to mm per kg, multiply by 11.52.

Melting rate (lbs/hr) = $\frac{\text{wire feed speed (in/min)} \times 60}{\text{inches per pound of wire}}$

Melting rate (kg/hr) = $\frac{\text{wire feed speed (mm/min)} \times 60}{\text{mm per kg of wire}}$

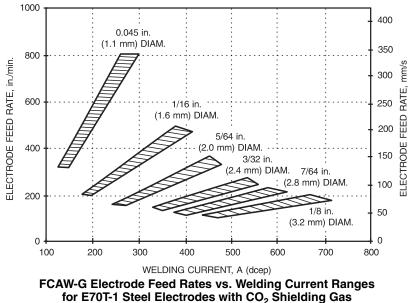
FCAW Filler Metal Specifications and Classification System

	Filler	r Metal		
Material	AWS Spec.	AWS Class.*	X Designator Description	Example
Steel, carbon	A5.20	EXZT-Y	Tensile strength \times 10,000 (psi)	E71T-1
Steel, low alloy	A5.29	EXZTY-Y	Tensile strength × 10,000 (psi)	E80T5-Ni2
Stainless steel	A5.22	EXXXTZ-Y	Stainless alloy (308, 410, etc.)	E308LT1-1

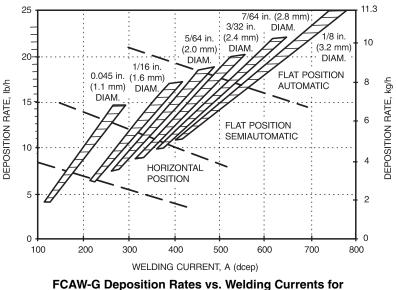
*Legend

E — Filler metal may be used as an electrode

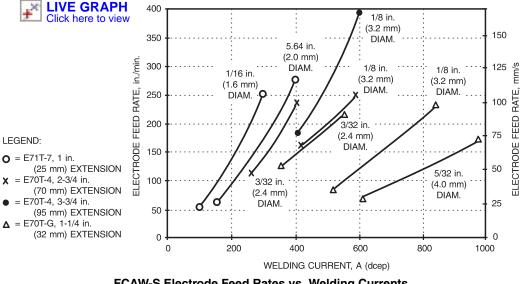
T — Filler metal is tubular

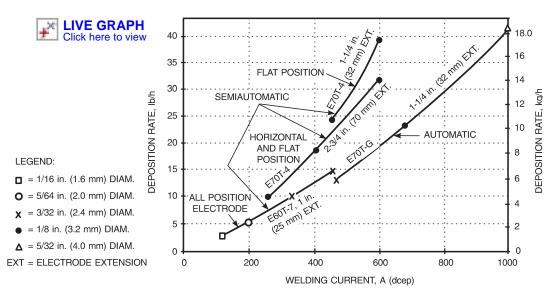

Z — Position usage

0 - Flat and horizontal positions

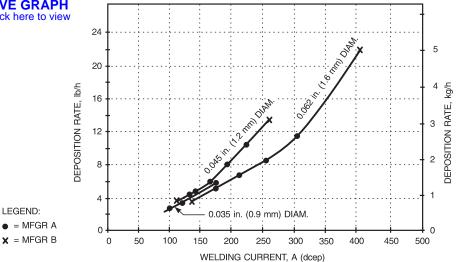

1 — All positions

Y — Designator (or combination of designators) for usability, composition of weld deposit, shielding gas (if any) to be used, diffusible hydrogen, etc. Refer to the appropriate AWS Filler Metal Specification shown in table for explanation.



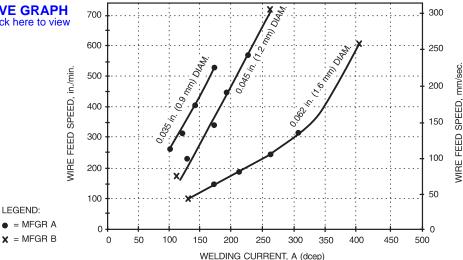


E70T-1 Mild Steel Electrodes with CO₂ Shlelding Gas



FCAW-S Electrode Feed Rates vs. Welding Currents for Self-Shielded Mild Steel Electrodes

FCAW-S Deposition Rates vs. Welding Currents for Self-Shielded Mild Steel Electrodes



Deposition Rates vs. Welding Currents for CO₂ Gas-Shielded E308LT-1 FCAW-G Electrodes*

*75% Ar + 25% CO₂ shielding gas may be used and will give slightly higher deposition rates.

Electrode Feed Rates vs. Welding Currents for CO₂ Gas-Shielded E308LT-1 FCAW-G Electrodes*

*75% Ar + 25% CO₂ shielding gas may be used and will give the same electrode feed rate.

Typical Gas-Shielded Flux Cored Arc Welding Procedures for Carbon and Low Alloy Steel Electrodes (EXXT-1 Types)

	Thickness, T		Root Opening, R		Total	Electrode Diameter		Welding Power, dcrp (ep)		Wire Feed Speed	
Joint Design	in.	mm	in.	mm	Passes	in.	mm	v	Α	in./min	mm/s
	-	Flat p	osition g	roove v	elds (semi	automat	ic)				
Square butt w/backup	1/4	6	1/8	3	1	5/64	2.0	30	425	275	116
	1/2	13	1/4	6	2	3/32	2.4	32	450	195	80
60° Single vee w/backup	1/2	13	0	0	2	3/32	2.4	30	480	225	95
	1	25	0	0	6	3/32	2.4	32	480	225	95
30° Single vee w/backup	5/8	16	3/16	5	3	3/32	2.4	32	480	225	95
	1	25	3/16	5	6	3.32	2.4	32	480	225	95
60° Double vee	1	25	0	0	6	3/32	2.4	32	450	195	80
	2	51	0	0	14	3/32	2.4	32	450	195	80
45° Double bevel	1	25	0	0	4	3/32	2.4	32	450	195	80
	2	51	0	0	10	3/32	2.4	32	450	195	80

Typical Gas-Shielded Flux Cored Arc Welding Procedures for Carbon and Low Alloy Steel Electrodes (EXXT-1 Types) (Continued)

	Thickness, T		Root Opening, R		Total	Electrode Diameter		Welding Power, dcrp (ep)		Wire Feed Speed		
Joint Design	in.	mm	in.	mm	Passes	in.	mm	v	Α	in./min	mm/s	
Horizontal position groove welds (semiautomatic)												
45° Single bevel w/backup	1/2 1	13 25	1/8 1/8	3 3	6 18	5/64 5/64	2.0 2.0	28 28	350 350	175 175	75 75	
Vertical position groove welds (semiautomatic)												
60° Single bevel w/backup	3/8 1/2	10 13	0 0	0 0	2 3	1/16 1/16	1.6 1.6	23 23	220 220	165 165	70 70	

Typical Self-Shielded Flux Cored Arc Welding Procedures for Carbon and Low Alloy Steel Electrodes

	Plate Thickness, T		s, Root Opening, R		Total	Electrode Diameter		Welding Power, dc		Wire Feed Speed		Electrode Extension	
Joint Design	in.	mm	in.	mm	Passes	in.	mm	Α	V(P) ^a	in./min	mm/s	in.	mm
Flat position groove welds (semiautomatic)													
Square butt	0.14	3.4	5/32	4	1	3/32 ^b	2.4	300	29+	150	65	2-3/4	70
w/backup	3/8	10	3/8	10	2	1/8 ^b	3.2	500	33+	200	85	2-3/4	70
60° Single vee	1/2	13	3/8	10	3	1/8 ^b	3.2	500	32+	200	85	2-3/4	70
w/backup	1	25	3/8	10	6	1/8 ^b	3.2	550	36+	300	125	3-3/4	95
60° Double vee	1/2	13	3/32	2	2	3/32 ^b	2.4	350	29+	190	80	2-3/4	70
	3	76	3/32	2	26	1/8 ^b	3.2	550	36+	300	125	2-3/4	95
Flat/horizontal	5/16	8	0	0	1	3/32 ^b	2.4	350	30+	190	80	2-3/4	70
fillet	1	25	0	0	4	1/8 ^b	3.2	580	27+	330	140	3-3/4	95

a. (P) - polarity: + electrode positive, - electrode negative

b. E70T-4 electrode

Typical Self-Shielded Flux Cored Arc Welding Procedures for Carbon and Low Alloy Steel Electrodes (Continued)

	Plate Thickness, T		Root Opening, R		Total	Electrode Diameter		Welding Power, dc		Wire Feed Speed		Electrode Extension		
Joint Design	in.	mm	in.	mm	Passes	in.	mm	Α	V(P) ^a	in./min	mm/s	in.	mm	
	Horizontal position groove weld (semiautomatic)													
45° Single bevel w/backup	5/16 1-1/4	8 32	3/16 3/16	5 5	3 16	3/32 ^b 1/8 ^b	2.4 3.2	300 400	28 ⁺ 29 ⁺	150 160	65 70	2-3/4 2-3/4	70 70	
	Vertical position groove welds (semiautomatic)													
60° Single vee w/backup	3/8 1	10 25	3/16 3/16	5 5	2 6	1/16 ^c 5/64 ^c	1.6 2.0	170 190	19- 19-	105 110	45 45	1 1	25 25	

a. (P) - polarity: + electrode positive, - electrode negative

b. E70T-4 electrode

c. E70T-7 electrode

Typical Gas-Shielded Flux Cored Arc Welding Procedures for Stainless Steels Using Stainless Steel Electrodes

Joint	Weld Size, T		Root Opening, R		Total	Electrode Diameter		Welding Power, dcrp (ep)		Wire Feed Speed		Electrode Extension						
Design	in.	mm	in.	mm	Passes	in.	mm	Α	v	in./min	mm/s	in.	mm					
				Flat	position g	oove we	elds (se	miauto	matic)									
45° Single vee w/ backup	1/4 3/8	6 10	1/8 1/8	3 3	1 2	1/16 1/16	1.6 1.6	300 300	27–29 27–29	320 320	140 140	1/2–3/4 1/2–3/4	12–18 12–18					
30° Single vee w/ backup	1/2 3/4	13 19	3/16 3/16	5 5	2 4	1/16 1/16	1.6 1.6	300 300	27–29 27–29	320 320	140 140	1/2–3/4 1/2–3/4	12–18 12–18					
20° Single vee w/ backup	7/8 1-1/4	22 32	3/8 3/8	10 10	6 8	1/16 1/16	1.6 1.6	300 300	27–29 27–29	320 320	140 140	1/2–3/4 1/2–3/4	12–18 12–18					
45° Double vee	1/2 3	13 76	1/8 1/8	3 3	2 25	1/16 1/16	1.6 1.6	300 300	27–29 27–29	320 320	140 140	1/2–3/4 1/2–3/4	12–18 12–18					

Typical Gas-Shielded Flux Cored Arc Welding Procedures for Stainless Steels Using Stainless Steel Electrodes (Continued)

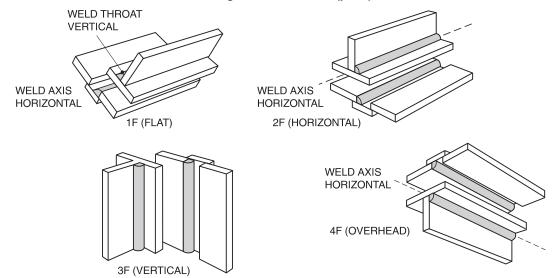
Joint	Weld Size, T		Root Opening, R		Total	Electrode Diameter		Welding Power, dcrp (ep)		Wire Feed Speed		Electrode Extension	
Design	in.	mm	in.	mm	Passes	in.	mm	Α	v	in./min	mm/s	in.	mm
30° Single bevel w/backup	3/8 1-1/4	10 32	3/8 3/8	10 10	3 8	1/16 1/16	1.6 1.6	300 300	27–29 27–29	320 320	140 140	1/2–3/4 1/2–3/4	12–18 12–18
Flat fillet weld	3/8 3/4	10 19	0 0	0 0	1 3	1/16 1/16	1.6 1.6	300 300	27–29 27–29	320 320	140 140	1/2–3/4 1/2–3/4	12–18 12–18
Horizontal fillet weld	1/8 3/8	3 10	0 0	0 0	1 1	.045 1/16	1.2 1.6	185 300	26–28 27–29	440 320	190 140	1/2 1/2–3/4	13 12–18

Troubleshooting Mechanical Problems Encountered in GMAW and FCAW-G

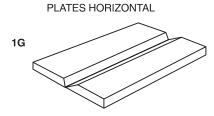
Problem	Possible Cause	Remedy
Irregular wire feed and burnback	Insufficient drive roll pressure Contact tube plugged or worn Kinked electrode wire Coiled gun cable Conduit liner dirty or worn Conduit too long	Adjust Clean or replace Cut out, replace spool Straighten cables, hang the wire feeder Clean or replace Shorten or use push-pull drive system
Electrode wire wraps around drive roll ("birdnesting")	Excessive feed roll pressure Incorrect conduit liner or contact tip Misaligned drive rolls or wire guides Restriction in gun or gun cable	Adjust Match liner and contact tip to electrode size Check and align properly Remove restriction
Heavily oxidized weld deposit	Air/water leaks in gun and cables Restricted shield gas flow	Check for leaks and repair or replace as necessary Check and clean nozzle
Electrode wire stops feeding while welding	Excess or insufficient drive roll pressure Wire drive rolls misaligned or worn Liner or contact tube plugged	Adjust Realign and/or replace Clean or replace
Wire feeds but no gas flows	Gas cylinder is empty Gas cylinder valve closed Flow meter not adjusted Restriction in gas line or nozzle	Replace and purge lines before welding Open cylinder valve Adjust to give flow specified in the procedure Check and clean

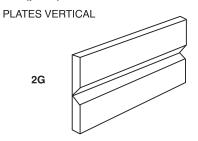
Troubleshooting Mechanical Problems Encountered in GMAW and FCAW-G (Continued)

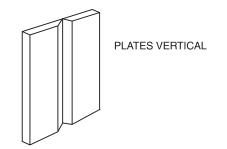
Problem	Possible Cause	Remedy
Porosity in the weld	Failed gas valve solenoid	Repair or replace
bead	Gas cylinder valve closed	Turn valve on
	Insufficient shielding gas flow	Check for restrictions in gas line or nozzle and correct
	Leaks in gas supply lines (including the gun)	Check for leaks (especially at connections) and correct
Wire feed motor	Insufficient drive roll pressure	Adjust
operates but wire	Incorrect wire feed rolls	Match feed rolls to wire size and type
does not feed	Excessive pressure on wire spool brake	Decrease brake pressure
	Restriction in the conduit liner or gun	Check liner and contact tip
	Incorrect liner or	Clean and/or replace
	contact tube	Check and replace with correct size
Welding gun overheats	Pinched or clogged coolant line	Check and correct
	Low coolant level in pump reservoir	Check and add coolant as necessary
	Water pump not functioning correctly	Check and repair or replace

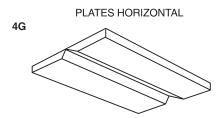

Troubleshooting Electrical Problems Encountered in GMAW and FCAW-G

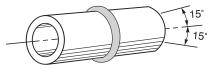
Problem	Possible Cause	Remedy
Difficult arc starting	Wrong polarity Poor work lead connection	Check polarity; reverse leads if necessary Secure work lead connection
Irregular wire feed and burnback	Power circuit fluctuations Polarity wrong	Check line voltage Check polarity; reverse leads if necessary
Welding cables overheating	Cables are too small or too long Cable connections loose	Check current carrying requirements—replace or shorten if necessary Tighten
No wire feed speed control	Broken or loose wires in control circuit Bad P.C. board in governor	Check and repair if necessary Replace P.C. board
Unstable arc	Cable connections are loose	Tighten connections
Electrode won't feed	Control circuit fuse blown Fuse blown in power source Defective gun trigger switch or broken wire leads Drive motor burned out	Replace fuse Replace fuse Check connections; replace switch Check and replace


Troubleshooting Electrical Problems Encountered in GMAW and FCAW-G (Continued)

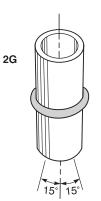

Problem	Possible Cause	Remedy
Wire feeds but no gas flows	Failure of gas valve solenoid Loose or broken wires to gas valve solenoid	Replace Check and repair if necessary
Electrode wire feeds but is not energized (no arc)	Poor workpiece connection Loose cable connections Primary contactor coil or points defective Contactor control leads broken	Tighten if loose; clean work of paint, rust, etc. Tighten Repair or replace Repair or replace
Porosity in weld	Loose or broken wires to gas solenoid valve	Repair or replace


Welding Positions—Fillet (plate)

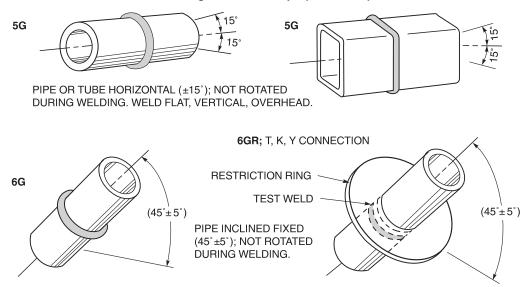

Welding Positions—Groove (plate)



3G


Welding Positions—Pipe

PIPE HORIZONTAL, ROTATED. WELD FLAT $(\pm 15^{\circ})$. DEPOSIT FILLER METAL AT OR NEAR THE TOP.

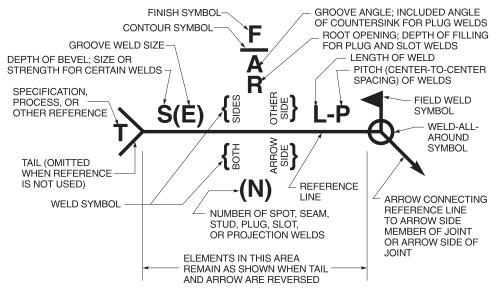

1G ROTATED

PIPE OR TUBE VERTICAL; NOT ROTATED DURING WELDING. WELD HORIZONTAL $(\pm 15^{\circ})$.

2G

Welding Positions—Pipe (Continued)

Basic Welding Symbols and Their Location Significance


Refer to AWS A2.4, Standard Symbols for Welding, Brazing, and Nondestructive Examination, for more information.

Location Significance	Fillet	Plug or Slot	Spot or Projection	Stud	Seam	Back or Backing	Surfacing	Flange Corner	Flange Edge
Arrow Side		*	× 0	* 8	× ŧ		*		
Other Side				Not Used	_ _	•	Not Used		
Both Sides	\leftarrow	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used
No Arrow Side or Other Side Significance	Not Used	Not Used	-0	Not Used	*	Not Used	Not Used	Not Used	Not Used

Basic Welding Symbols and Their Location Significance (Continued)

Location	Groove								
Significance	Square	v	Bevel	U	L	Flare-V	Flare-Bevel	Brazed Joint	
Arrow Side	•		× K		_F >			×	
Other Side				<u> </u>	_ <u></u> _ <u></u>			×//_	
Both Sides		-X-	×	Ť,	-ţ^	►)(
No Arrow Side or Other Side Significance	+	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	

Location of Elements of a Welding Symbol

