A\

TRIGONOMETRY

THE
EASY

SECOND EDITION
€SC cot

Your Key to Learning '

by Douglas Downing, Ph.D.

If you want to learn trigonometry...
If you want to learn it the easy way...
If you want to raise your grades...
Read this book!

It was written for you.

Barron’s Guarantee:
This book will improve your grades
in 30 days or you can return it
to Barron'’s for a full refund.

- degrees

Barron’s Educational Series, Inc. $10.95 $14.50 Canade

|
|

;fj









Dedication

This book is for Bill Trimble

Acknowledgments

I would like to thank my teacher Clint Charlson, my
mother Peggy Downing and my father Robert Downing
for their help. Dr. Jeffrey Clark and Mark Yoshimi
provided inspiration and Marlys Downing provided
creative assistance. Mickey Wagner at Barron's worked
hard to edit the book. Special thanks also to Susan
Detrich for the marvelous illustrations.

© Copyright 1990 by Barron’s Educational Series, Inc.
Prior © copyright 1984 by Barron’s Educational Series, Inc.

All rights reserved.

No part of this book may be reproduced in any form,
by photostat, microfilm, xerography, or any other
means, or incorporated into any information retrieval
system, electronic or mechanical, without the written
permission of the copyright owner.

All inquiries should be addressed to:
Barron’s Educational Series, Inc.

250 Wireless Boulevard

Hauppauge, New York 11788

Library of Congress Catalog Card No. 90-346

International Standard Book No. 0-8120-4389-8

Library of Congress Cataloging-in-Publication Data
Downing, Douglas.
Trigonometry the easy way / Douglas Downing. — 2nd ed.
p. cm

Summary: Explains the principles of trigonometry and
includes practice exercises with answers.
ISBN 0-8120-4389-8

1. Trigonometry. [1. Trigonometry.] I. Title.

QA531.D683 1990 90-346
516.24 — dc20 CIP
AC

PRINTED IN THE UNITED STATES OF AMERICA
45 00 9

Ilustrations by Susan Detrich




Contents

Introduction vii

1. Angles and Triangles 1
The Rainstorm 1
Measuring Angles 2
The Raging River Flood 6
Triangles to the Rescue 7
Complete Guide to Triangles 7
Notes to Chapter 1 11
Exercises 12

2. Solving Right Triangle Problems 14
The Height of the Tree 14
Calculating Heights with Similar Triangles 19
The New Ski Jump 20
The Shifting Star 22
The Distance to the Star 22
Notes to Chapter 2 25
Exercises 26

3. Trigonometric Functions: sin, cos, and tan 27
Too Many Triangles 27
The Gremlin’s Vile Threat 28
The Holiday Lighting Display 31
30-60-90 Triangles 32
The Decorative Adjustable Triangles 33
The Sine Ratio 35
The Tangent Ratio 35
Functions 36
Definition of Trigonometric Functions B
Notes to Chapter 3 38
Exercises 40

4. Applications of Trigonometric Functions 46
The Balloon Ride 46
Velocity Vectors 49
Component Vectors 49
The Off-Course River Boat 51
*The Message-Delivering System 53
*The Distance of Travel of the Capsule 55

i1l



*The Slippery Slope 56

*Friction 58
*The Maximum Angle of Tilt 59
*The Merry-go-round Streamers 59
*Centrifugal Force 60
Note to Chapter 4 62
Exercises 62
5. Radian Measure 65
Recordis Writes Out the Table 65
sin 90° 66
sin 0° 67
The Attack of the Killer Bees 68
Measuring Rotations 69
Radian Measure 70
The Special Number = 72
Converting Radians to Degrees 73
Coterminal Angles 73
The Shifting Sun 74
The Radius of the Earth 76
Trigonometric Functions 77
Cofunctions 80
Cotangent Function 81
Reciprocal Functions 81
The Secant and Cosecant Functions 81
Notes to Chapter 5 82
Exercises 83
6. Trigonometric Identities 87
Pythagorean Identities 88
Addition Rules 91
Double-Angle Rules 93
Trigonometric Identities 94
Note to Chapter 6 96
Exercises 78
7. Law of Cosines and Law of Sines 99
The Triangle with the Unknown Parts 99
Law of Cosines 102
Law of Sines 103
Exercises 107
8. Graphs of Trigonometric Functions 112
The Bouncing Wagon 1112
The Periodic Function 114
The Graph of the Sine Function 1417,
The Graph of the Cosine Function 120
Graphs of the Tangent and Cotangent Functions 121

iv Contents




9.

10.

11.

Graphs of the Secant and Cosecant Functions
Alternating Current

Amplitude

Frequency

Phase

Exercises

Waves

*The Waves on the Lake
*Wavelength

*Harmonic Waves
*Sound Waves

+*Adding Sine Functions of Different Frequencies

*Standing Waves in Guitar Strings
*Music
The Threat of the Terrible Flood
Note to Chapter 9
Exercises

Inverse Trigonometric Functions

Pal’s Pet Pigeons to the Rescue

Inverse Functions

The Arctan, Arcsin, and Arcos Functions
Principal Values

Graphs of Inverse Trigonometric Functions
Exercises

Polar Coordinates

The Pigeon Messenger Service
Rectangular Coordinates

Polar Coordinates

Equations in Polar Coordinates
Exercises

12. Complex Numbers

13.

*The Imaginary Number i
*Properties of Complex Numbers
*Polar Coordinate Form of Complex Numbers
*Multiplying Complex Numbers
*Powers of Complex Numbers
*Roots of Complex Numbers
Exercises

Coordinate Rotation and Conic Sections

*The Peaceful Bay Town Planning Problem
*Rotated Coordinate Systems

*The New Improved Pigeon Aiming System
+Rotations in Polar Coordinates

Contents

122
123
123
125
126
127

129

129
132
133
134
135
137
140
140
140
141

143

143
145
145
149
150
153

156

156
157
158
161
167

169

169
170
171
173
174
175
177

180

180
183
183
184

\'4



*14.

15.

*Rotations in Rectangular Coordinates
*The Two-Unknown Quadratic Equation
*Circles
*Ellipses
*Parabolas
*Hyperbolas
*Conic Sections
*Translation of Axes
*The Pesky xy Term
*The Perplexing Parabola with the Tilted Axis
*The Rotated Equation
*The Solution of a Second-Degree Two-Unknown Equation
*The Graph of the Tilted Ellipse
*The Discriminant
Exercises

Spherical Trigonometry

*Mysterious Triangles and Riddles
*Great Circles and Small Circles
*Latitude and Longitude

*Spherical Triangles

*Spherical Right Triangles

*Sailing Along the Shortest Course
*Law of Sines and Law of Cosines
*The Altitude of the Sun at the Beach
*The Celestial Sphere

*The Lost Assistant at the Unknown Latitude
*Solving Spherical Triangles

Notes to Chapter 14

Exercises

Polynomial Approximation for sin x and cos x

*The Quest for the Elusive Algebraic Expression

*The Infinite-Degree Polynomial

*The Factorial Function

*Series Representation of sin x and cos x
Exercises

Answers to Exercises

Glossary

Summary of Trigonometric Formulas

Tables of Trigonometric Functions

Index

Vi Contents

185
187
188
188
190
190
191
1Lk
194
195
197
198
199
201
202

204

204
210
211
213
218
223
224
228
230
234
237
238
242

248

248
249
251
251
252

253

297

300

304

308




’LM—AJN CONFERENCE RooM |

LIRS (i
iz
/// I

\

p— f,

(

Introductmn

\- ~

This book tells of adventures that occurred in a faraway fantasy kingdom
called Carmorra. During the course of these adventures, the people de-
veloped a brand-new subject, trigonometry. By reading this book vou
can learn trigonometry. The book covers material that is studied in a
high school or first year college trigonometry course.

Trigonometry started as the study of triangles. Many applications
of trigonometry involve solving triangles. Engineers, astronomers, nav-
igators, and physicists all need to know trigonometry. However, trigo-
nometry can also be used to solve many problems that are unrelated to
triangles. Oscillating motion, electric current, sound waves, and light
waves can all be described by trigonometric functions. You will also
find a knowledge of trigonometry essential if you study advanced math-
ematics, beginning with calculus.

To appreciate this book you should have a bit of knowledge of
algebra and geometry. You should be familiar with function notation,
such as y = f(x), because we spend most our time in trigonometry study-
ing a special kind of function. You also should know how to identify
points with an xy coordinate system. You should have studied enough
geometry to be familiar with the degree system for measuring the size
of angles, and vou should know some of the basic properties of triangles.
This material is reviewed in Chapter 1. If you know geometry well, you
may wish to skip over Chapter 1 to the beginning of the trigonometry
material in Chapter 2.

There are exercises at the end of each chapter to give you practice
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with the material. Understanding any mathematical material requires
work. The answers to the exercises are included at the back of the book
so you can check your work. There is no way to avoid some memori-
zation. You should memorize the definitions of the sine, cosine, and
tangent functions, and you should memorize the special values for these
functions. You should not try to memorize all the important formulas,
but you may look these up in the special section at the back of the book.

Stars * mark exercises that are more difficult or that require more
background knowledge.

In the old days trigonometry was a very tedious subject because
of the complexity of the calculations involved. In order to solve a trig-
onometry problem, you needed to look up the values of the trigonometric
functions in a bulky table. These days the work is much easier because
you can obtain a calculator that will calculate the values of trigonometric
functions at the touch of a button. Most of the exercises in the book are
designed to be done with calculators. You should learn how to enter a
number into your calculator and then how to calculate the sine, cosine,
or tangent of that number. If vou don’t have vour calculator with you,
look in the back of the book to find a table of trigonometric functions.

The computer programming exercises, marked with a box, have
been included to illustrate some of the ways in which computers can
be used to help solve trigopnometry problems. Many problems, such as
drawing graphs, are very difficult without the aid of computers. Sample
solution programs have been included at the back of the book. These
programs are written in Microsoft BASIC, which is the version of BASIC
commonly used on IBM Personal Computers and compatibles (where it
is known as BASICA or GWBASIC). The programs can be adapted for
other versions of BASIC or for other programming languages.

Computers are especially helpful with calculations that require
several stages, since the computer can store several decimal places dur-
ing intermediate steps. It is appropriate to round final answers to a
convenient number of decimal places, but errors can be introduced if
the intermediate results are rounded. This is particularly important in
trigonometry because, in almost all cases, the results of trigonometric
functions we are working with are decimal approximations.

Radian measure for angles is developed in Chapter 5. After that
both radian measure and degree measure are used. You should become
familiar with both measuring systems, and you should be able to convert
from one to the other. In general you will find that radian measure is
more convenient for mathematical purposes but degree measure is more
convenient for practical purposes when you are measuring angles.

There are a few Greek letters you will need to become familiar
with. You should already recognize the Greek letter pi () as the symbol
for the circumference of a circle that has diameter 1 (and you should
know 7 = 3.1416 . ..). The Greek letter theta (8) is often used to rep-
resent angles, but to avoid introducing too many new symbols, we do
not use 6 until Chapter 11. The other Greek letters we use are omega
(w) for angular frequency, lambda (A) for wavelength, and phi () for
angles.

The last half of Chapter 4 and all of Chapter 9 cover applications
of trigonometry to physics and music. Chapters 12 to 15 cover material
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that requires a deeper understanding of algebra topics, such as complex
numbers, polynomials, and conic sections. You may omit these chapters
if you like. The advanced sections are marked with stars *.

When vou first study trigonometry you are likely to find the sub-
ject baffling because of the new symbols used. At the beginning of the
story the characters are in the same position you are now. They don't
know trigonometry either. During the course of the book, they learn
trigonometry, just as you will. Once vou become familiar with the tri-
gonometric functions you will see that they make it possible to discover
concise, elegant solutions for many problems (although you probably
will not come to regard the trigonometric functions with the same degree
of devotion shown by Alexanderman Trigonometeris).

The chapter on spherical trigonometry is new in this edition, and
there have been several other smaller additions and improvements.

Good luck. You're now about to set out on the journey of learning
trigonometry.

Introduction 1X







It rained for days. Everybody in the entire
kingdom of Carmorra was forced to stay inside to avoid
the drenching downpour. I took refuge in the king’s

palace along with the other members of the Royal Th?
Court. (I had been residing in the palace since I had Rainstorm
been stranded in the strange faraway land of Carmorra —_—

by a shipwreck.)

Marcus Recordis, the Royal Keeper of the
Records, stared dolefully out the Main Conference
Room window. “Rain rain, go away; come again some
other day,” he sighed. He watched the rainwater slide
off the sloped roof of the palace. “I think we should
change the tilt of the roof,”” he remarked. “If we made
the roof steeper, then the water would run off the roof
more easily.”

Gerard Macinius Builder, the Royal Construction
Engineer, looked up from the drawings he was using to




Figure 1-1

Measuring
Angles

2 Angles and Triangles

plan his latest building project. “If you want to change
the steepness of the roof, you will have to be very
specific and tell me precisely how much tilt you
want.”

“I don't know how to measure the amount of tilt
of a roof,” Recordis complained. But Builder had other
problems. He was staring at his drawings in
puzzlement.

“Most of the walls in this building will meet to
form square corners,” Builder said. ‘‘However, at one
location two walls will meet but they will not form a
square corner. Before I can proceed I must have a way
to precisely measure the angle between two walls.”

Professor Stanislavsky, the country’s leading
pure scientist, was relaxing by practicing pool. She
prepared to take aim for a particularly tricky shot. (See
Figure 1-1.)

“I need to hit the cue ball against the wall and
have it bounce back to hit the eight ball,” she
explained to Recordis. I need to calculate my
direction of aim. I wish we had a more precise way to
measure directions.”

The King of Carmorra had been staring
thoughtfully out the window listening to the
conversation. His face was careworn from the pressures
of being a fair ruler. He had led the kingdom through
many exciting moments. Some of the most memorable
adventures had occurred while we were discovering the
subject of algebra. Finally, an idea struck him. “I know
how to find the solution to all these problems,” the
king announced. “We need a way to measure angles!”’

“First we had better define precisely what we
mean by the word angle,” Recordis said. He pulled out
one of his trusty notebooks. Since his job required him
to keep a written record of every significant event that
happened at the royal court, he always kept several
notebooks at his side and several pens and pencils
stuck behind his ear.

“That’s easy,” the professor said. “An angle is a
place where two lines cross each other.” She drew a
picture. (See Figure 1-2.)

“It looks to me as if a crossing place between
two lines forms four angles,” Recordis said.

“To avoid that problem we will say that an angle
is a place where the end points of two rays meet each
other,” the king said. “‘Remember that a ray is like half
a line. A line goes off to infinity in two directions, but
a ray has one ending point and then it goes off to
infinity in one direction.” (See Figure 1-3.)




Figure 1-2

Vertex Initial side

Figure 1-3

“The beam of light from Pal’s toy ray gun is like
a ray,”’ Recordis remembered. “The beam starts at the
gun and then goes off to infinity in a straight line.” (Pal
was a friendly giant who often helped the people of
Carmorra when they were in trouble.)

“We'll call the point where the two rays meet
the vertex of the angle,” the professor suggested. She
liked to make up new names for new things. “We will
call one of the rays the initial side and the other ray
the terminal side.”

We drew some angles. (See Figure 1-4.)

“Some angles are very sharp and other angles are
very blunt,” Recordis said.

Angles and Triangles 3




Figure 1-4
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Right angle N\ ! ¢

Obtuse angles

e

Acute angles

Straight angle

“We should call a square corner a right angle,
since that is the right type of angle to use. when you are
building a house,” Builder suggested. We also said that
two lines were perpendicular if they met to form a
right angle.

We decided to use the term acute angle for an
angle sharper than a right angle. We also coined the
term obtuse angle for an angle larger than a right angle.

“You get a very strange angle if the two rays
point in opposite directions,” the professor said. “In
that case the angle looks as if it is really a straight line,
so we should call it a straight angle.”

“We can measure angles by stating what fraction
of a straight angle the angle fills,” the king suggested.
“Then a straight angle would measure 1, a right angle
would measure 4, and so on.”

“That method will involve too many fractions!”
Recordis complained. “I would much prefer a system




in which the most commonly used angles, such as half
of a straight angle, one-third of a straight angle, and so
on, are all represented by whole numbers. Let's pick a
big number that is divisible by lots of other numbers to
represent a straight angle.” ‘Recordis decided that he
wanted to use a number divisible by all these numbers:
2,3,4,5,6,9, 10, 12, and 15. After some calculation
we found that 180 was the smallest number divisible
by all these numbers, so the king issued a Royal
Decree.

e -

2 2

)

A straight angle will have a measure of
180 degrees, which we will write as 180°. A
right angle measures 90°; an angle that is one-
quarter of a straight angle measures 45° an
angle that is one-sixth of a straight angle
measures 30°; and so on. (See Figure 1-5.)

i

N

V7% =

)

(The professor had pointed out that we needed a
name for the units we were using to measure angles, so

180°
Straight angle

\1 60°

120°

45°

90°

Right angle

30° "

Figure 1-5
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Figure 1-6

Recordis suggested the name degree because he liked
detective novels in which people were charged with
counts to the first degree and counts to the second
degree. We decided to use a little raised circle ° as the
symbol to represent degrees. We later found that it was
useful to develop another system for measuring angles,
called radian measure. According to radian measure, a
straight angle measures 7, where 7 is a symbol for a
special number that is about equal to 3.14159. See
Chapter 5. In radian measure a right angle measures
w/2.)

“Now we need to invent a device that we can
use to measure angles,” the professor said. “We use
rulers to measure distances, but we cannot use rulers to
measure angles.”” After some discussion, we designed a
device shaped like a semicircle with numbers running
from O to 180 along the edge. We called this device a
protractor. (See Figure 1-6.)

160°

170°

180°

100° 90° 80°

Protractor

T Sl e EET
The Raging
River Flood
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The professor wanted to try her new device, so
she quickly measured every angle in sight. Soon she
had measured every single angle in the Royal Palace, so
she had to wait for the end of the storm before she
could go outside and measure more angles.

However, as soon as the rain stopped,
catastrophe struck. The waters of the Raging River
started to rise, threatening to flood the distant town of
Peaceful Bay.

“We must build a dike to protect the people!”
the king exclaimed. Builder quickly sprang into action
and built a dike. However, the waters pushed against
the dike and the dike began to tilt dangerously.




I need a more rigid shape!”” Builder cried.
“What is the most rigid shape in the world?"

We quickly constructed several test shapes. We
constructed squares, pentagons, hexagons, decagons,
and many others. Each shape had unbending sides but
flexible hinges at each vertex. and Pal had no trouble
bending each one out of shape.

“There's only one shape we haven't tried vet,”
Recordis said breathlessly. “We haven't tried the
simplest shape of all—a triangle.”

“A triangle?” the professor exclaimed
skeptically. However, Builder quickly constructed a _—
triangle and Pal was unable to bend it out of shape. Triangles to
the Rescue

“The triangle is perfectly rigid!”” Builder said in
astonishment. “This is a fundamental fact that will
help with the design of many different construction
projects.”

Builder quickly constructed a triangularly
shaped support tower for the dike, and the waters were
brought under control. The town was saved.

In honor of the triangle, we constructed a new
park in the middle of Capital City called Central Plaza
Triangle. The professor suddenly became interested in
the entire subject of triangles. Previously she had
scorned triangles as being too simple to be worthy of
serious scientific investigation. However, during the
next week she conducted a very detailed investigation
of all types of triangles. “There are more different tvpes
of triangles than you might imagine,” she said. She
decided to write a book on triangles. The writing
process took a long time, since she told us that she
spent hours contemplating each word. Finally she was
finished, and we were all impressed when she gave us
the first copy of the book to put in the Royal Library.
She graciously gave me permission to reprint the book

here.
I e R SRR
Complete Guide to Everything Complete Guide to
. Triangles
Worth Knowing About e ——

Triangles
by Professor A. A. A. Stanislavsky. Ph.D.. etc.. etc.

A triangle consists of three line segments
joined together end to end. The three points where
the line segments meet are called the vertices. The
three line segments are called the three sides of
the triangle. A triangle contains three angles.

Angles and Triangles 7




8 Angles and Triangles

If you add together the three angles in any
triangle, the result will be 180°.

The area of a triangle is equal to 3 X base x
altitude. You may call one of the three sides the
base. Then the altitude is the perpendicular
distance from the base to the opposite vertex.

If the three sides of a triangle are equal, then
it is called an equilateral triangle. An equilateral
triangle contains three 60° angles.

If two sides of a triangle are equal, then it is
called an isosceles triangle. In an isosceles
triangle, the two angles opposite the two equal
sides will be equal to each other.

If the three sides of a triangle are all
unequal, then it is called a scalene triangle.

If a triangle contains one 90° angle, then it is
called a right triangle. The longest side of a right
triangle is called the hypotenuse. It is the side
opposite the right angle. The two other sides are
called the legs. The two other angles must add up
to 90°. (If two angles add up to 90°, then they are
said to be complementary angles.)

If ¢ is the length of the hypotenuse, and a
and b are the lengths of the two legs, then

c® =a*+ b?
(This result is known as the Pythagorean theorem.)

If all three angles of the triangle are less
than 90°, then it is called an acute triangle. If one
angle is greater than 90°, then it is called an obtuse
triangle. (See Figure 1-7.)

Two triangles are congruent if they have the
same shape and size. If you could pick up one of
the triangles and put it on top of the other, then
the two triangles would fit together perfectly. Let’s
call one of the triangles “triangle 1’ and the other
triangle “‘triangle 2.” Each side of triangle 1 is the
same length as its corresponding side on triangle
2. Each angle of triangle 1 is the same size as its
corresponding angle on triangle 2.

Two triangles with the same shape but
different sizes are said to be similar triangles. For
example, the real Central Plaza Triangle is exactly
the same shape as the picture of Central Plaza
Triangle on Recordis’s map of Capital City.
However, the real triangle is obviously much larger
than the triangle on the map. Or, suppose we put a
slide containing a picture of a triangle in a

/




/A\\ Q Isosceles triangles

Equilateral triangle

Right triangle
Acute triangle

e W

Obtuse triangle

projector. Then, the image of the triangle on the
screen is similar to the image of the triangle on the
slide. (See Figure 1-8.)

Let’s imagine that we are looking at any pair
of similar triangles. Each angle on the big triangle
is the same size as its corresponding angle on the
little triangle. Now, let’s compare the length of
each side of the big triangle with the length of its
corresponding side of the little triangle. Let’s
imagine that one side of the big triangle is 10
times longer than its corresponding side on the
little triangle. That means that all the sides of the
big triangle will be 10 times longer than their
corresponding sides on the little triangle. Or, if
one side is twice as long as its corresponding side,
then all the sides will be twice as long as their
corresponding sides. This means that the
corresponding sides of similar triangles have the
same proportion.

Figure 1-7

Angles and Triangles 9




Figure 1-8
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Congruent triangles

Cq
Triangle 1
Corresponding a
sides are
equal: b,

Cy

C
as b,
B, A
C2
Triangle 2
a Corresponding A = A;
angles are
b, equal: B =8
C2 G =0C

Little triangle

Corresponding
angles are
equal:

Corresponding
sides are in
proportion:

Similar triangles

c
Big triangle

A = A

B, =B,

G =G

& _b_¢

a b, Cy

(We used capital letters for angles and lower
case letters to represent the lengths of the sides.)

Triangles are very useful for construction
purposes because they are rigid. That means that a
triangle with rigid sides but flexible hinges cannot
be bent out of shape. Any other polygon with rigid
sides but flexible hinges can be bent out of shape.

Little did we suspect at the time that this was
just the beginning of a rather remarkable set of
adventures. We started out studying triangles, but along
the way we made many other discoveries that were
only slightly related to triangles.




® We gave a special name to an angle with a vertex at e
the center of a circle. This type of angle is called a Notes to
central angle. (See Figure 1-9.) Note that the two CHAPTER 1
sides cut across the circle. The piece of the circle
between the two sides is called an arc.

Figure 1-9

Central
angle

® Suppose we need to measure a very small angle.
For example, we might want to measure an angle
that measures 0.05°. In that case we can express the
angle in terms of minutes, where 1 minute = ¢ of a
degree. Therefore,

1 minute = 0.0167°
and

3 minutes = 0.05°

If we need to measure very, very small angles, then
we can express the angle in terms of seconds,
where 1 second = & of a minute. Therefore,

1
= = 0.0002778°
1 second 00 degree

When writing a very small number like that, it is
convenient to use scientific notation. In scientific
notation, the number 0.0002778 is written as
2.778 x 10~ % A number in scientific notation is
expressed as the product of a power of 10 (in this
case, 10~ %) multiplied by a number between 1 and
10 (in this case, 2.778).

Angles and Triangles 11










= Solvmg

Right Triangle

Problems

The Height of the
Tree
I N

Long before Christmas the members of the royal
court began making plans for the large Christmas tree
to be displayed in Central Plaza Triangle. We went into
the forest and found just the tree we wanted. Builder,
as usual, prepared to do the actual work involved with
cutting down the tree and setting it up. However, he
needed to know the height. of the tree before he could
begin. (Figure 2-1 illustrates the situation.)

“We're in real trouble now!" Recordis exclaimed.
“There is no way that I can climb that tree with my
tape measure! [ can easily measure flat things, but not
trees!”” To prove that he still could measure some
things, Recordis stretched out his tape measure and
determined that the shadow of the tree was exactly 50
feet long. “How ever, I don't see how this information is
going to help us,” he said glumly.




Tree

Shadow

Figure 2-1

“Do we have any other information?” the
professor asked. “‘I always say, ‘When confronted by a
difficult problem, the more information you have, the
better.’”

The king paced nervously back and forth. He did
not want to be the one to tell the townspeople that
there would be no tree this year. Recordis didn’t have
anything else to do, so he decided to measure the
length of the king’s shadow. “This is interesting,” he
said. “Your shadow is exactly as long as you are tall.”

“That means that the sun’s angle of elevation is

exactly 45°,” the king said.

“Therefore, the angle formed by the ground and
the line joining the tip of the shadow to the top of the
tree must measure 45°,”’ the professor observed. ““That
might be an important clue.” (See Figure 2-2.)

Tree

Vs
7
/ﬂ 45°
|

50 )
Shadow

Figure 2-2

“This situation looks familiar,”” Recordis said.

“I know!” the king said. “We know that the tree
trunk forms a right angle with the ground. Therefore,
the triangle formed by the tree, the ground, and the line

Solving Triangle Problems 15




Figure 2-3

45°

Tree

45°
i 50 — J
Shadow

connecting the top of the tree to the tip of the shadow
is a right triangle.” (See Figure 2-3.)

We marked a small square on the diagram to
show the location of the right angle.

“Since the sum of the angles of any triangle add
up to 180°, we know the other angle in the triangle
must also be 45°,” the professor said helpfully.

“This is a special tvpe of triangle,”” Recordis
said, quickly leafing through the book to look up the
special name (which he had forgotten again). “It has
two angles that are equal. Therefore, it must be an
isosceles triangle, and we know that two sides of an
isosceles triangle are equal. (I dare you to draw a
triangle that has two equal angles but with the sides
opposite those angles not equal.)” His eyes widened as
he suddenly realized the implications of what he had
just said. “Therefore, the height of the tree must be
equal to the length of the shadow—in other words, the
tree must be 50 feet high!” (See Figure 2-4.)

Figure 2-4
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“The problem has been solved!” the king said
gladly. “Now every town in the kingdom will be able
to have a tree. We can write down a general procedure
to find the height of any tree.”

1. Walk away from the tree until you reach the
point where the angle of elevation of the top
of the tree as seen from the ground is 45°.




2. Measure the distance from the tree to that
point.

3. The height of the tree is equal to that
distance.

“Let’s state this method in a bit more general
terms,” the professor said. While she was studying
algebra she had learned the value of writing the
solution to a problem as generally as possible. Then the
same solution method could often be used for many
different problems, thereby saving a lot of work. “In
any particular right triangle, we may choose one of the
nonright angles, which we will call the angle of
interest. As we have seen, the longest side of the right
triangle is called the hypotenuse. It is opposite the
right angle. The short side that touches the angle of
interest will be called the near side or the adjacent
side. The other side of the triangle will be called the
far side or the opposite side. (See Figure 2-5.)

Figure 2-5

Far side

Angle of interest

Near side

“Then we may state one general result that will
help us with triangle problems.”

@ )

~= ==
If the angle of interest in a right triangle
is 45°, then
Far side Opposite side _
Near side or Adjacent side 1
A 2

Q. )

Right triangles that contained two 45° angles
proved to be easy to analyze. However, just as the king
predicted, soon every town wanted its own tree. We
needed to calculate the heights of many different trees.
The problem was that we could not always go to a
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point where the angle of elevation of the top of the tree
was 45°. The very next day, we found we needed to
calculate the height of a tree given this information.
(See Figure 2-6.)

Figure 2-6

Tree

We found that there was a 40° angle formed by
the ground and the line joining the top of the tree to
our viewpoint 50 feet away from the tree. We called
this angle the angle of interest and quickly determined
that the opposite angle was 50°. Recordis drew a
picture of the situation on his sketchpad. (See Figure
2-7.)

Figure 2-7

0.41955

0.5
Sketch of tree

“This is hopeless!"” Recordis moaned. “A right
triangle with a 45° angle was easy, but there is no way
to find the length of the far side in this case.” Recordis
took great pride in being able to accurately measure
anything, so he began to worry that the others might
think he had lost his touch. “There is one thing I can
do, at least. I can measure the near side and the far side
of the triangle in the little picture I just drew.” He
pulled out his most accurate ruler and found that the
near side was 0.5 feet long and the far side was 0.41955
feet long.
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The professor had become intrigued by the ratio
of the far side over the near side in the previous
triangle we had investigated, so she suggested that we
calculate the same ratio for this triangle:

Angle of interest = 40°

Far side _ 0.41955
Near side 025

“It is easy to calculate a ratio like that for a little
triangle drawn on a piece of paper!” Recordis
exclaimed. “If only this same relationship would be
true for the big triangle formed by the tree and the
ground!”’ (See Figure 2-8.)

= 0.8391

Figure 2-8

Tree

A 0.41955 )
40° 40 E

0.5 50
Sketch of Real
triangle triangle

“When you think about it, those two triangles do
look the same,” the king said. “They both have exactly
the same shape, even though the tree triangle is much
bigger than the picture triangle.”

“We decided that triangles with the same shape
but different sizes would be called similar triangles. —— e =
You may read about them in my book if you don’t Calculating
remember them,” the professor told Recordis. Heights with
“Consider a pair of similar triangles. If one side of the Similar Triangles
big triangle is twice as long as its corresponding side
on the little triangle, then all sides of the big triangle
must be twice as long as their corresponding sides on
the little triangle. In general, the sides of a pair of
similar triangle will all be in the same proportion. We
can see that the near side in the little triangle is 0.5
feet, and the near side in the big triangle is 50 feet.
Therefore, each side in the big triangle is 100 times as
long as its corresponding side in the little triangle.”

Little Triangle Big Triangle

Near side 0.5 50
Far side 0.41955 41.955
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“We have found the height of the tree!” the
professor explained. “The tree is 41.955 feet high.”

“We have also discovered another useful result
that will help whenever we confront a right triangle
that contains a 40° angle,” the king said. “‘For the small
triangle, we can calculate that

Far side _ 0.41955
Near side 0.5

“We will get the same result if we perform the
same calculation for the big triangle:

Far side _ 41.955
Near side 50

“In fact, we would get the same result if we
perform this calculation for any right triangle that
contains a 40° angle. Every right triangle containing a
40° angle is similar to every other right triangle that
contains a 40° angle. Therefore, the ratio far side/near
side will be the same for all these triangles.” The king
made a formal proclamation. |

@ »

S ) ) ] =z
In a right triangle, if the angle of 7
interest is 40°, then

=889

= ;8301

Opposite side
Adjacent side
Ve

& )

(This result is only an approximation to the true
result. The true result is a decimal fraction consisting
of an endless list of digits that never repeat a pattern.)

= 0.8391

—————— As winter approached, there were many other

The New Ski preparations that needed to be made. Builder

Jump proceeded to make plans for the new ski jump. “The

e ———— ramp will be 25 yards long,” Builder explained. “We
have decided that we want the ramp to rise at a 10°
angle.” (See Figure 2-9.) “However, I need to know
how high the support tower must be.”

Figure 2-9
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“Another right triangle problem!” the professor
said excitedly. However, her excitement faded when
she suddenly realized that we had not solved a
problem like this before.

“In this problem we don't know either the near
side or the far side,” Recordis complained.

“We do know the hypotenuse, though,” the king
said encouragingly.

“And we know that the angle of interest is 10°,”
the professor said.

- 025
otenuse
Hyp y = 0.0434

We drew a little triangle similar to the ski jump
triangle on a paper. (See Figure 2-10.) We used the
letter y to represent the length of the far side. Our
triangle had a hypotenuse of length 0.25 yards, so each
side on the big triangle was 100 times longer than its
corresponding side on the little triangle. ‘“‘Now we have
to measure the length of y very accurately.”

We found that y measured 0.0434 yards.
Therefore, the height of the support tower on the big
triangle must be 100 times that height, or 4.34 yards.

“Now we have enough information to calculate
the ratio of the far side over the hypotenuse when the
angle of interest is 10°,” the professor noted. We
calculated

Far side  4.34

= = 0.1736
Hypotenuse 215

“We should save that result in case we confront
any more right triangles containing 10° angles,”
Recordis said.

Angle of interest = 10°

Opposite side

= 0.1736
Hypotenuse

We went to lunch at Joe's Cafe, where we
happened to see the Royal Astronomer sitting glumly at
a corner table. The astronomer had been up all night

Figure 2-10
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The Shifting Star

The Distance to
the Star

puzzling about a difficult problem. I have never been
able to measure the distance to a star!”” he sobbed. *'I
have found the distances to the moon and planets and
most other celestial objects, but the stars are so far
away that [ have not yet been able to figure out a way
to measure the distance. I fear that our knowledge of
the universe will remain quite limited unless we are
able to solve this very difficult problem.”

“I am sure you will discover something,”
. . y .
Recordis said encouragingly.

“Even worse, [ am now finding problems with
my equipment,” the astronomer continued mournfully.
“Just last night I was observing a star that [ had last
observed exactly 6 months ago. I remember the night
well . . . and I found that my equipment measured a
different position for the star! Mind you, the
discrepancy was very slight. It was only 0.8 seconds.
But I like to be exactly precise, and even that much of
an error is too large.”

“But 1 second = 1/3600° = 0.000278° = 2.78 X
10~ * degrees, so 0.8 seconds = 0.000222° = 2.22 X
10~ * degrees. When you say that the discrepancy is
small, you aren’t kidding,” the professor said.

Recordis tried to cheer up the despondent
astronomer by telling him of our success with triangles.
He described the problem with the trees and the ski
ramp, and concluded by saying, “Now, if you tell us
the size of just one of the angles and one of the sides,
we can calculate the length of the other sides. We need
to draw a little triangle and measure either this ratio,

Far side

Near side
or this ratio,
Far side

Hypotenuse

The astronomer listened politely while Recordis
began to draw a picture of a right triangle. Suddenly,
the astronomer leapt to his feet. “I have it!” he cried.
“It’s obvious now why the star shifted position! Not
only that, [ know how to calculate the distance to the
star!”” He excitedly drew a quick diagram. (See Figure
2-11.) “I had completely forgotten an obvious fact—
during the course of a year the Earth moves about the
sun!”

“Six months ago, the Earth was on one side of its
orbit. The star appeared to be in the direction shown
here. However, since then the Earth has moved to the
other side of its orbit. In that situation, then, of course
the position of the star as seen against the more distant
background stars must have changed slightly. And in
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Background stars Figure 2-11
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this case, we know that the total discrepancy was an
angle of 0.8 seconds = 0.000222°.”

The astronomer quickly drew the right triangle
formed by the sun, the star, and the position of the
Earth last night. (See Figure 2-12.)

“Look at matters from the point of view of the
star. Then our angle of interest is one half of 0.8
seconds, or 0.4 seconds = 0.000111°. That means that
the far side is the distance from the Earth to the sun,
which I call 1 astronomical unit (1 a.u.). The near side,
with a length we don't know, is the distance from our
sun to the star. Now, all you need to do is measure the
ratio far side/near side for a right triangle when the
angle of interest is 0.4 seconds, and then we shall have
our answer.”” We used the letter r to represent the
distance from the Earth to the sun and the letter d to
represent the distance from the sun to the star.

Builder looked aghast when the problem was
explained to him. “It will require extreme precision to

Solving Triangle Problems 23




Figure 2-12 Star

angle of interest

A = 0.4 seconds

A
Near side
d
Not to scale
Earth Far side Sun
r=1a.u.

draw a triangle with an angle that small,” he cried.
However, he pulled out his best etching equipment and
drew a right triangle with the angle of interest equal to
0.4 seconds, the opposite angle equal to 89° 59 minutes
59.6 seconds, and the near side equal to 1 mile. Then
he carefully measured the far side and found it equal to
0.0000019393 miles. (Drawing a diagram like this is not
an easy way to solve a right triangle problem, but we
later found an easier way.)

Recordis wrote down that result:
Angle of interest = 0.4 seconds

Le'y
Farside _ ;1000019393
Near side

“This ratio will hold for any right triangle with a
0.4 second angle, including the big triangle out in
space,” the professor said. Therefore,

é = 0.0000019393

From this formula we could calculate

24 Solving Triangle Problems




T,
~0.0000019393

Since r = 1 a.u., we could calculate
e 1
0.0000019393
The approximate result was
d = 516,000 a.u.

The astronomer jumped for joy. “We now have
the answer to the problem that has been eluding us for
years and years! We know that this star is 516,000
times farther away than the sun is. This method of
triangles will be very useful—we will be able to find
the distances to many different stars this way."”

The professor was beginning to see a pattern in
all these problems. It seems to me that the nature of
triangles is more subtle than we realize,” she said
thoughtfully.

® Recordis wanted the answer for the distance to the
star expressed in terms of a unit that he understood
better. So the astronomer told him that since 1 a.u.

= 93,000,000 miles, we could write the distance
like this:

d = 516,000 a.u. 48,000,000,000,000 miles
4.8

X 10'® miles

When Recordis saw the size of that number he was
sorry that he had asked. The astronomer told him
that he usually used light years to measure very
large distances. A light year is the distance light
can travel in 1 year. One light year eqzuals
5,900,000,000,000 miles = 5.9 x 10'¢ miles. Then
we could express the distance to the star in light
years:

_ 4.8 x 10"

g =" .
5.9 X 10%2

= 8.14 light years

® The distances to stars were first measured using the
method described in this chapter. Friedrich Bessel
measured the distance to a star known as 61 Cygni
in 1838. He found that the star had shifted by an
angle of 0.30 seconds, and he calculated that the
distance to the star must be 11 light years. This
method of finding the distance to stars is known as
trigonometric parallax. The distances to many other
stars have been found by trigonometric parallax.
The nearest star is a small companion of Alpha
Centauri, which has a parallax shift of about 0.8
seconds and a distance of 4.3 light years. Note that
closer stars have a larger parallax shift. However,
when stars are farther away than 150 light years, the
shifts are too small to be measured.

Notes to
CHAPTER 2
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Exercises
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For Exercises 1 to 11, fill in the missing values
in the table for right triangles. Use the values for the
ratios that are given in the chapter.

Angle of Adjacent  Opposite
interest side side Hypotenuse
1. 45° 16 — —
2. 45° — - V8
3. = 1 — V2
4. 40° 10 — —
5N 40° — 16.5 —
6. 40° — — 14.5
7. — 20 16.782 —
8. 10° 16.54 — —
9. 10° - — 0.1777
10. 10° - 17.633 —
11. — 567.13 100 —

12. Consider a right triangle with angle of interest A.
Suppose t = (opposite side)/(adjacent side) for this
triangle. Suppose we now look at things from the point
of view of the other acute angle in this triangle. Show
that t = (adjacent side)/(opposite side) when seen from

that angle.




Trigonometric
Functions:
sin, cos, and tan

We found many applications for our triangle-
solving methods in the next few days. We calculated
the heights of many more trees, and surveyors and
navigators found uses for the new methods. The
astronomer quickly made plans to measure the
distances to several important stars.

However, soon problems set in. A backlog e

developed of triangles waiting to be solved. It seemed Too Many
as if everybody in the city was coming to Builder’s Triangles
desk and telling him the known parts of a triangle that N

needed to be solved. Then, Builder carefully drew the
picture and measured the length of the unknown sides
and reported back to the customer. However, people
brought in triangles faster than Builder could draw
them. Finally, Builder pleaded for help before the royal
court. “There must be a better way,” he cried. “The
worst part is that sometimes people bring in triangles
that I have already drawn before, but I have to draw
them again each time.”
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The Gremlin’s
Vile Threat

“If you think you have problems now, just wait!”
an ominous voice cried. In the next instant there stood
before us a terrifying apparition in a deep black cape.

“The gremlin!” Recordis cried in terror. He
instantly recognized the archenemy of the people of
Carmorra—the Spirit of Hopelessness and
Impossibility! His goal was to disrupt the entire
learning process.

“We have defeated you each time we were
confronted by one of your previous challenges!” the
king said defiantly. “You claimed that we could not
learn algebra, but we succeeded anyway."”

The gremlin only laughed his cackling laugh. He
pointed behind him to a huge pile of unassembled steel
girders. ““I dare you to construct a bridge over Raging
River,” he challenged us. He held out his cape and we
saw a picture of a carefully crafted, arched bridge. In
spite of the danger we could not help marveling at the
graceful symmetry and balance of the bridge design.
Upon looking closer we could see that the bridge was
made up of many steel bars arranged to form hundreds
of triangles.

“This is what the finished product would look
like in the extremely unlikely event that you should
succeed. However, you will find that your inability to
solve triangles will be your downfall,” the gremlin
cackled. “When you fail, I shall take over and become
king of Carmorra!’’ The gremlin vanished from sight,
but his laughter still rang in our ears.

Recordis began to tremble, but Builder looked
confidently at the pile of steel parts. ““This job will be a
piece of cake,” he said. ‘“We only have one problem—
we must find a faster way to solve triangles.”

Recordis panicked. “We don’t know a faster- way
to solve triangles.”

We thought about this problem for hours, but we
had no success.

“Let’s pass a law making all triangles illegal
except for right triangles with 45° angles,” Recordis
suggested. “We know how to solve those.” He turned
to a page in his record book where he had recorded
this result:

45°

Angle of interest

Far side

Near side

“We can also calculate the ratio far side/
hypotenuse for this type of triangle,” the professor said.
She drew a diagram. (See Figure 3-1.)
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45°

45°

Figure 3-1

“If we let d represent the length of the two short
sides, then we know from the Pythagorean theorem that
the length of the hypotenuse must be VVd? + d? =
Vad = VIVE = Vad"

“Therefore,

FAR SIDE d 1

Hypotenuse  v2d V2

(We calculated a decimal approximation for this ratio:
1V2 = 0.7071.)

We added this result to the table:

Angle of Far side Far side
interest Near side Hypotenuse
45 1 0.7071

“That still doesn’t help much,” the professor
said sadly. “Most triangles that we must deal with are
not right triangles with two 45° angles.”

“But there are two more types of triangles that
we solved for,” the king said. “We know how to solve
a right triangle if it contains a 10° angle or a 40° angle.”

We added these results to our table (see
Chapter 2):

Angle of Far side Far side
interest Near side Hypotenuse
40 0.8391
10 0.1736

“By using the Pythagorean theorem we can fill in
the two missing elements in this table,” the professor
said. (See Exercises 62 and 63.)

We came up with these results.
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Angle of Far side Far Side

interest Near side Hypotenuse
40 0.8391 0.6428
10 0.1763 0.1736

“Let’s write down a general procedure for
solving for the length of the unknown side in a right
triangle when we know these ratios,” the professor said
systematically. ‘“First, let’s pick two letters, such as x
and y, to represent the two ratios.”

“We already use x and y to represent the x and y
axes,” Recordis objected.

“All right, we’ll use a couple of different
letters—let’s say, s and t,” the professor agreed. She
made these definitions.

Suppose A is the angle of interest in a right
triangle. Then we will define

far side far side
S =+ = —_—
hypotenuse near side

(Note that these ratios will be the same for all triangles
when the angle of interest is A, regardless of the size of
the triangle.)

“Now, here’s the general procedure,” the
professor said. “We'll use h to represent the length of
the hypotenuse, x to represent the length of the near
side, and y to represent the length of the far side. (See
Figure 3-1.) Then,

Figure 3-2

w

(]
Tlw<

iy

[}
x|

1. If you know the near side and you would
like to know the far side, use

y = ix
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2. If you know the far side and you would like
to know the near side, use

v
x ="
t
3. If you know the far side and you would like
to know the hypotenuse, use
v X
s
4. If you know the hypotenuse and you would
like to know the far side, use

y = sh

5. If you know the far side and the near side and
you would like to know the hypotenuse, use

h = Vit 2

(This is the Pythagorean theorem.)

“We now know these three types of triangles
backward and forward,” Builder said. ‘“However, there
are still many other types of triangles out there.”

“Let’s see if we can extend our table to cover
other types of triangles,” the professor said with
sudden inspiration.

We realized that a right triangle with a 40° angle
also contained a 50° angle. Likewise, a right triangle
with a 10° angle also contained an 80° angle. So we
were able to extend our table a little bit.

Angle of o Far side = Far side
interest Near side Hypotenuse
10 0.1763 0.1736
40 0.8391 0.6428
45 1.0000 0.7071
50 1.1918 0.7660
80 SE67Z18 0.9848

(See Exercise 64.)

Before we could make any more progress, we e = s e, )
were interrupted by a visit from Mrs. O'Reilly, the The Holiday
owner and manager of the Carmorra Beachfront Hotel, Lighting Display

who came to ask Builder’s help designing a holiday
lighting display. “We would like a frame of lights
forming a perfect equilateral triangle, supported by a
post in the middle.” (See Figure 3-3.)
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Figure 3-3

Figure 3-4

30°

60°

3
e ¥ U
30-60-90 Triangles
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“We would like each side of the equilateral
triangle to be exactly 1 unit long,” Mrs. O'Reilly
explained. “And make sure that the post forms a
perfect right angle with the base of the triangle.”

“That means that the post cuts the equilateral _
triangle into two right triangles!” the professor
suddenly realized. “We can tell that the hypotenuse of
each right triangle is 1 unit long and the shortest side
of each right triangle has length 3. And each right
triangle must contain a 60° angle.” (See Figure 3-4.)

“The other angle in the right triangle must
measure 30°%" the king added.

“And we can use the Pythagorean theorem to
calculate the length of the other side,” Recordis added
helpfully. We found that the length of the side opposite
the 60° angle must be

SR S
1-@=y3;=73
“Now we can calculate the two ratios when the
angle of interest is 60°,” the professor said.
_ far side
" near side
far side V3
5= hypotenuse 2

“We may as well calculate the two ratios when
the angle of interest is 30°,” Recordis said.

= V3 = 1.7321

far side 1

= ———— = — = 0.5774
near side V3

; far side il 85000
hypotenuse 2




’ “That’s a regular old rational number!”’ Recordis
said delightedly. I never did like irrational numbers.
very much—particularly irrational numbers involving
square root signs.”

We added these results to the table.

Angle of e Far side . b Far side
interest Near side Hypotenuse

10 0.1763 0.1736

30 0.5774 0.5000

40 0.8391 0.6428

45 1.0000 0.7071

50 1.1918 0.7660

60 1.7321 0.8660

80 5.6713 0.9848

“I'm beginning to get an idea,” the king mused
as he stared at that table. But, at that moment we were
interrupted by the arrival of a tall gentleman carrying a

strange large contraption.
R W= T

“Allow me to introduce myself,” he said. “My The Decorative
name is Alexanderman Trigonometeris, and I have just Adiustable
the item to help you solve all your holiday decorating T, J 1
needs—the Adjustable Triangle.”” (See Figure 3-5.) riangle

Trigonometeris' adjustable Flgure 3-5
triangle

Sliding
wire
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“I know him,” Builder whispered to me. ‘“‘He has
presented me with many unusual inventions before. He
tries very hard, but somehow his ideas never turn out
to be useful.”

Trigonometeris described his device.

“You may form whatever shape of right triangle
you like,” he said. “To do that, you adjust this bar that
represents the hypotenuse. The hypotenuse is designed
to rotate within a circle of radius 1—so all your right
triangles will have a hypotenuse of length 1. The
sliding wire that forms the vertical side is carefully
designed so that it is always at a right angle to the
horizontal side.” Trigonometeris demonstrated how his
device could form a triangle with a 30° angle. Then he
adjtllsted the bar and formed a new triangle with a 45°
angle.

We were all intrigued by his machine, but finally
the king told him sadly, “I am afraid we do not need
any more decorations this year.”

Trigonometeris blinked back a tear. ‘“Perhaps I
could interest you in one of my other devices. . . .” He
began to describe some of his other inventions.

Recordis cut him off. “We have serious business
to conduct,” he said. “The very survival of the
kingdom is at stake. There is no way you could help us
unless you could measure the ratios far side/near side
and far side/hypotenuse for all possible right triangles.”

“T'll find a way to do that,” Trigonometeris
bluffed, trying to conceal the fact that he did not
understand exactly what Recordis meant. Stalling for
time, he said, “Let’s form a right triangle with a 5°
angle.” (See Figure 3-6.)

Figure 3-6

. 1
/S‘T//‘;I 0.0872

0.9962

“We can measure the length of the near side and
the far side for that triangle,” the king said.

Near side = 0.9962
Far side = 0.0872

“Is that all you needed?"’ Trigonometeris
exclaimed when he saw this result. “My triangles can
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do this easily. Just set the triangle to whatever angle
you want, and then measure the sides!”

“We can use these triangles!’’ the professor said
excitedly. *“We can measure these ratios for all possible
right triangles. It will be tedious, but when we’re done,
we can write down the results, and then we won't have
to perform the same measurements again.”

The professor started a table.

Near Far side Far side
Angle side Far side Hypotenuse Near side
B 0.9962 0.0872 0.0872 0.0875

“Hold everything!” Recordis said. “We must
come up with names for these ratios before we go any
further! I'm not going to write ‘far side/hypotenuse’
each time!”” Recordis’s job involved a lot of writing, so
he frequently suffered from writer's cramp. He was
always looking for ways to reduce the amount of
writing that he must do. Indeed, one of our main
motivations for developing the entire subject of algebra
had been so we could express complicated
mathematical problems using concise notation.
Naturally, algebra became Recordis’s favorite subject.

There was a terrible argument over the names for
these ratios. Everyone wanted the ratios named after
themselves. We were finally interrupted when Pal
spilled four of his letter blocks on the Main Conference
Room floor. They spelled the word sine. The king took
decisive action to settle the argument. “We will call
this ratio the sine ratio,” he decreed.

opposite side

Sine = ratio of
hypotenuse

“The aerodynamic properties of letter blocks
would make a fascinating study,” the professor said.

“Will you stick to the subject!” Recordis cried.
“You always go off on tangents!”

“Very well,” the king declared. “We will call the
other ratio the tangent ratio.”

opposite side

= ratio of
Tangent = ratio o AEia0Ont J1G

“What strange names!” Recordis exclaimed.
Already he was becoming mistrustful of this new
subject. We later found that there was a very logical
explanation for the use of the name tangent, but we
never did find a reason for the use of the name sine.
“Also, the names are too long,” Recordis continued
complaining.

The Sine Ratio

The Tangent Ratio

I
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Functions

Figure 3-7

sin A

cos A

tan A

X I Iix Ik

“We will use three-letter abbreviations for each
ratio,”” Trigonometeris said. ““We will use ‘sin’ to stand
for sine, and we will use ‘tan’ to stand for tangent.”

opposite side

ratio of
hypotenuse

sin

opposite side

ratio of — p
adjacent side

tan

(Note that the use of the name sin does not mean that
this particular trigonometric ratio is morally
degenerate. In trigonometry, the word sin is
pronounced with a long i, as in sign.)

“But the word sin does not represent one
particular value,” the professor objected. “It could
represent many possible values, depending on the
value of the angle of interest. For example, we found
that the sin ratio is 0.6428 if the angle is 40°, but the
sin ratio is 0.1736 if the angle is 10°.”

“We will write the angle of interest after the sin
or the tan,” Trigonometeris said. He was desperately
trying to convince us that his triangles would be
valuable. “We can write it like this:”

sin 10° = 0.1736
sin 40° = 0.6428

“This is what we call a function,” the professor
said. “We learned about functions when we studied
algebra. A function converts one number into another
number according to a rule. In our case, the sin
function is a function that converts a number
representing an angle into the sine ratio itself.”

“Let’s use the letter A to represent the angle of
interest,” Trigonometeris said. ““Then we can calculate
the sin function like this (Figure 3-7):

; Y
A==
sin h

“The situation is even simpler with the triangles
formed by my Adjustable Triangle,” Trigonometeris
continued. “In all these triangles, the hypotenuse (h) is
1, so

sinA =y

“To find the sine of any angle, all we need to do
is form a right triangle containing that angle and then
measure the length of y.”

“While we're measuring the length of the far side
(v), we may as well measure the length of the near side
(x),” the king said. “Then we can calculate the tangent
function as well:

tanA=X
52
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“For completeness, we should think of a special
name for the ratio of the near side over the
hypotenuse,” the professor suggested.

“We'll call that the cosine,” Trigonometeris said.
(We later found out that he had a very good reason for
using this name.)

adjacent side

cos A =
hypotenuse

X

h

(We used cos as an abbreviation for cosine.)

The king issued a proclamation.

<<
I > >
~—= =
Definition of the Sine, Cosine, and Tangent
Functions =
) . : Definition of
Draw a right triangle. Pick one of the non- Trigonometric

right angles to be the angle of interest (call that Functions

angle A). Then,

ite sid
sin A = Opposite side

hypotenuse
adjacent side
9 /1 =B e
hypotenuse
- opposite side

adjacent side

Let x represent the length of the
adjacent side, y represent the length of the
opposite side, and h represent the length of
the hypotenuse. Then

¢ Y
o\ =k
sin h
X

JoE A = =
cos h
tanA=X
X

@//

“We have already found some values for these
functions,” the king said. ‘“‘For example, sin 30° = 1/2;

sin 60° = V/3/2, and sin 45° = 1/V/2."”
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Notes to
CHAPTER 3

“I see one obvious property,” the professor said.
“Since both y and x will always be less than h, it
follows that sin A and cos A must always be less than
1 no matter what the value of A.”

“But the value of the tangent function could be
just about anything,” the king said. “There is just as
good a chance that x will be greater than y as there is
that y will be greater than x.”

“I see two more useful formulas that we can
write,” Trigonometeris said.

Xx = hcos A
y = hsin A

“These formulas follow directly from the definition of
the functions.”

We set to work taking the measurements and
making the table. The results are included at the back
of the book.

“I think we're onto something big!’’ the professor
said excitedly. “I think that these formulas will be very
useful. We are starting a whole new subject.”

“We would be honored if you could stay with us
and work with us,” the king told Trigonometeris. “We
will call this new subject trigonometry in your honor.”

Tears of joy glistened in Trigonometeris’s eyes.
At last he had found his calling in life. “We will give
you the title of the Royal Keeper of the Triangles,” the
king continued.

“Don’t celebrate too quickly,”” Recordis
cautioned. He was not sure that he liked this new
subject very much because it involved so many strange
names. ‘It is now up to Builder to save the kingdom by
building the bridge.”

® In the old, precalculator days, the only way to find
the value of one of these trigonometric functions
was to look in a table. However, now it is possible
to obtain an inexpensive calculator that will
caiculate the values of trigonometric functions at
the touch of a button. Or, you may have access to a
computer that calculates trigonometric functions. (If
your computer requires you to use radian measure
when calculating trigonometric functions, then look
ahead to Chapter 5.)

® A function in mathematics converts one number
into another number according to a rule. For
example, the function f(x) = 2x means that the
output number will always be equal to the input
number multiplied by 2. The function g(x) = x?
means that the output number will be equal to the
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input number raised to the second power—in other
words, multiplied by itself. The input number to a
function is called the argument or the independent
variable. The output number from the function is
called the dependent variable. In function notation,
the name of the function is written first, followed
by the argument enclosed in parentheses. For
example, the expression

£(10) = 20

means that the name of the function is f, the
argument is 10, and the output number is 20. The
expression

sin (30°) = 3

means that the name of the function is sin, the
argument is 30°, and the output number is 3. If you
need to review function notation, see a book on
algebra.

® An integer is a whole number, such as 2 or 116 or
2117, or the negative of a whole number. We can
see that the results for trigonometric functions are
usually not integers. A rational number is a number
that can be expressed as the ratio of two integers,
such as % or % or {%. For example, sin (30°) = 3,
which is a rational number. A rational number can
be expressed as a decimal fraction that either has a
finite number of digits (such as # = 0.5, 1 = 0.25,
or § = 0.625) or else consists of digits that
endlessly repeat the same pattern (such as § =
0.3333...;% =10.142857142857142857 . . . ; or 13
= 1.36363636 . . .). However, we have found that
sin (45°) = 1/V/2, which is not a rational number. It
is impossible to find two integers a and b such that
a/b = 1/7/2. This type of number is called an
irrational number. An irrational number can be
represented as a decimal fraction with digits that
continue endlessly without ever repeating a pattern.
For example, 1/\/2 = 0.7071067812. . . . The values
of the trigonometric functions for most angles are
irrational numbers. However, it is even worse than
that. Even though sin (45°) is irrational, there is a
simple formula for this number using a square root
sign: sin (45°) = 1/V/2. The values of trigonometric
functions for most angles cannot even be
represented by a formula like this. The
trigonometric function values for most angles are
called transcendental numbers. A transcendental
number is a special type of irrational number. For
our purposes it is sufficient to know that you
cannot find an expression of the form y = p9
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Exercises

1.

(where p and g are both rational numbers) if y is a
transcendental number. Therefore, square roots and
cube roots are not transcendental even though they
are irrational. There are two very special
transcendental numbers in mathematics: = =
3.14159 .. .and e = 2.71828 . ... Also, if you have
studied logarithm functions you will have learned
that the values of logarithms are usually
transcendental numbers.

For practical purposes, the difference
between transcendental numbers, irrational
nontranscendental numbers, and rational, endlessly
repeating numbers does not matter much. In each
case you will represent the true value as a decimal
approximation. For example, in the table at the
back of the book, the values of the trigonometric
functions are expressed as decimal approximations
accurate to five digits.

You will need to memorize the definitions of the

sine, cosine, and tangent functions. You should do that
now.

28

You should know the exact values of the sine,

cosine, and tangent functions for these special angles:
30°, 45°, and 60°. Make a table listing the values of
those functions for those angles.

3.

The very first evening he was at the palace,

Trigonometeris discovered a very important relation.
He found

sin A
cos A

tan A =

for any value of A. Use the definition of these three
ratios to prove that this relation is true.

Find the values for the sine function, the cosine

function, and the tangent function for the angles in
Exercises 4 to 10. (Look in the table at the back of the
book or use a calculator.)

4.
5.
6.
11.

a2,

10° 7. 76.6° 9. 45°
15° 8. 16.4° 110 S 2
33.4°

Show that sin A = cos (90° — A).

Suppose that you lost the last half of the table of

trigonometric functions. In other words, suppose that
yvou only had values of the trigonometric functions
from 0 to 45°. How could you still calculate the values
of the functions for the other angles?

For Exercises 13 to 24, fill in the missing values

in the following table for right triangles.
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Angle of Adjacent  Opposite

interest side side Hypotenuse
11E)8 30° 50 — —
14. 30° = 16V3 _=
15 2107 — — 18
156~ 60° 12 — —
17. 60° — 24 —
116634 60° — — 1
19. 11(0) 16.34 — —_
20. 10° — 3.64 —_
21. 5N — —_— 15.846
225 42° 7.3 — —
213 47.5° — 10.913 —
24, 58.4° — — 31.508

Suppose that you need to calculate the value of
sin 34.5°. This value is not included in the table.
However, we can look up the value sin 34.4° =
0.56497 and sin 34.6° = 0.56784. It seems reasonable
to suppose that sin 34.5° is approximately halfway
between sin 34.4° and sin 34.6°. Therefore, we will
guess that sin 34.5° = 0.5664. This method of
calculating is called interpolation. Use interpolation to
calculate these values for trigonometric functions. Use
this formula:

A (sin B — sin A)

sinC=sinA+C_

B-A
25. 1.56° 29. 45.003°
26. 2.345° 30==u35263+
27. 16.785° 31. 19.888°

28. 0.003°

32. Show why the interpolation formula given above
is a reasonable formula.

The angle of elevation of an object is the angle
between the horizontal and the line connecting your
position to the object (assuming that the object is above
you). See Figure 3-8. Complete the following table for
Exercises 33 to 38.
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Figure 3-8

A = angle of depression

Object
You A
A
i A = angle of elevation Object

Angle of elevation Distance Height
&, 20° 100 —
5 20° — 100
35. 40° 65 -
36. 40° - 436
o L — 30
= 75° 900 =

If you are looking at an object that is below you,

you may calculate the angle of depression. See Figure
3-8. Complete the following table for Exercises 39 to 44.

Angle of depression Distance Depth
Gte)s 10° 36 —
40. 10° — 245
41. 30° 1.74 —
42. 300 — 26.45
43. 528 1182 —
44. 513 — 75.46
45. If you are given the size of an object and its

angular size, derive a formula that tells you its
distance. (See Figure 3-9.)

Figure 3-9

You

\

Object
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For Exercises 46 to 53, calculate the distance to

the objects.
Objects Size Angular size
46. Mt. Rainier, seen 2.7 miles 2.578°

from Seattle

47. Width of Central 3000 feet 21.239°
Park, seen from
Empire State

Building
48. Earth, seen from 12,750 kilometers 1.9°
moon
49. Moon 3500 kilometers 0.522°
50. Sun 864,000 miles 0.532°
51. Saturn 75,000 miles 0.00537°
52. Star Antares 5.5 X 10°® miles 1.37 x 10°°
degrees
53. Andromeda 130,000 light 3.38°
galaxy years

54. Suppose you are standing an unknown distance
away from a cliff of height h. You need to know the
height t of a tower located on top of the cliff. You
know that the angle of elevation of the bottom of the
“tower is B and the angle of elevation of the top of the
tower is A. Derive a formula for the height of the tower.
(See Figure 3-10.)

Figure 3-10
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55. Suppose you need to calculate the height of a
distant cliff. Unfortunately, you do not know the
distance to the cliff. However, you have found the
angle of elevation of the top of the cliff at one point is
A, and the angle of elevation at another point that is d
units farther away is A,. (See Figure 3-11.) Derive a
formula for the height of the cliff.

Figure 3-11

A2 Ay -

Figure 3-12

Suppose you need to calculate the height of a
tower that is at the top of a distant cliff. You don’t
know the height of the cliff or the distance to the cliff,
but you do know the angle of elevation of the top and
bottom of the tower from two different points that are a
distance d apart. (See Figure 3-12.) The following table
gives you the value for A,, A;, B;, B,, and d for
observations of several different towers on the tops of
several different cliffs. For Exercises 56 to 61, calculate
the height of each tower.
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Al Bl Az B2 d

56. 30° 28° 2451 23.2409° 30
57 45° 40° 30° 25.8481° 20
958, 20° 19.4° 19° 18.4255° 100
99, 23° 20° 20° 17.3326° 50
60. 65° 40° 20° 8.1052° 1000
61. 18.6° 18.2° 18.0° 17.6112° 20

62. Before we invented the trigonometric functions,
we found that (opposite side)/(adjacent side) = 0.8391
for a 40° angle contained in a right triangle. Use this
fact to calculate the ratio (opposite side)/(hypotenuse)
for a 40° angle. Do not look in the table of values for
the sine function.

63. We found that (opposite side)/(hypotenuse) =
0.1736 for a 10° angle contained in a right triangle. Use
this fact to calculate the ratio (opposite side)/(adjacent
side) for a 10° angle. Do not look in the table of values
for the tangent function.

64. Show how you can derive values for sin 80° and
tan 80° once you know the values for sin 10° and tan

10°. Show how you can derive the values for sin 50°
and tan 50° once you know the values for sin 40° and
tan 40°.
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The Balloon Ride

~.~Z Applications
of Trigonometric

Functions

Trigonometeris eagerly reported for work at 7 the
next morning. However, the rest of us did not arrive
until 8:30, as usual. Trigonometeris was anxious to
start work, but we had not decided exactly what duties
should be attached to the office of the Royal Keeper of
the Triangles.

“I'm sure we will find many applications for
these new functions,” Trigonometeris said excitedly.

However, our main business for the moment was
to travel to Raging River to observe Builder's progress
with building the new bridge. We decided to take our
propeller-driven helium-filled balloon. Recordis took
his position as pilot while the rest of us, including
Trigonometeris, climbed on board.

“Piloting a balloon requires careful navigation,”
Recordis said. “We must plot our course precisely. I




happen to know that, in order to get from Capital City
to the bridge site, we must travel in a perfectly straight
line in a direction that is 55° north of east.”” (See Figure
4-1)

Figure 4-1

Bridge site

Capital
City

Recordis carefully maneuvered the balloon along
our course. Fortunately, there was no wind, so it was
easy to maintain a straight-line course. The balloon was
carefully designed to travel at a constant speed of 15
miles per hour.

“I wonder when we shall cross over the Straight
Arrow River,” the professor said. “I like the view of
that river from the air.”

Recordis puzzled for a moment. “That is a very
hard question,’”” he said. “The Straight Arrow River
flows in a perfect straight line from south to north, and
we know that the river is 30 miles east of Capital City.”
(See Figure 4-2.) “If we were traveling directly east,
then the answer would be obvious: We would have to
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travel 30 miles until we reached the river. Since we
travel at 15 miles per hour, it would take us 2 hours.
But we're not traveling directly east. We're traveling
55° north of east. Of course, we will still cross the river
somewhere, but I have no idea how long it will take us
to get there.”

“It will take us longer than 2 hours,” the King
said helpfully. “We know that our position at any time
can be represented by two numbers: the distance we
have traveled east of Capital City, and the distance we
have traveled north of Capital City.” (See Figure 4-2.)
“Our total distance from Capital City is increasing at
the rate of 15 miles per hour, so the east distance must
be increasing by less than 15 miles per hour.”

Figure 4-2

Balloon
course
North 1
East Straight
distance Arrow
A River
o
[+]
(8
=
©
o
©
=
S
z
—
~— / East
Capital 30 miles
City

Recordis continued to concentrate on piloting.
He was constantly checking a small card he held in his
hand. “What is that little arrow on the card?”’ the
professor asked with interest.
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“I call that my velocity vector,” Recordis said
proudly. (See Figure 4-3.) “The velocity vector is an
arrow that tells me about the course. You must be very
careful when you draw a velocity vector. You must
make sure that you draw both the direction and the
magnitude correctly. The direction of the arrow points
in the direction we are going. The magnitude (that’s a
long word that means “length”) of the arrow is
proportional to the velocity. In this case I have used a
scale where a vector 1.5 inches long corresponds to a
speed of 15 miles per hour.”

Velocity Vectors

Velocity
vector

North

East

The professor suddenly became excited. “The
vector that you have drawn represents the real vector
formed by our course through the air. However, we can
pretend that the real velocity vector is made up of two
imaginary velocity vectors—one that points directly
east, and one that points directly north.”” (See Figure
4-4.)

“I have enough trouble keeping track of one real
vector,” Recordis complained. “How am I going to be
able to keep track of two imaginary vectors?”

“We’'ll call the vector that points east the east
component of our motion, and we’ll call the vector that
points north the north component,” the professor
decided. “Now, if we could only calculate the length of
the east component, we would know how fast we are
moving east, and then we could calculate how long it
will take us to reach the Straight Arrow River.”

Suddenly Trigonometeris brightened. “We can
use trigonometry!” he exclaimed. “We can see from the
diagram that

Figure 4-3

Component
Vectors
i oy Y =D
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Figure 4-4

North
component

v,= vsin 55°

East component
v, = vcos 55°

Ve/v = cos 55, SO V., = v cos 55

and

Vn/v = 8in 55, so v, = v sin 55

“where v, stands for the east component of our
velocity, v, stands for the north component of our
velocity, and v stands for the magnitude of

our total velocity (in this case, v = 15 miles per hour).”

We looked up the value of cos 55 in
Trigonometeris’s function table (which he kept in a
locked jeweled case about his neck):

cos 55 = 0.5736
Therefore,
Ve = v X 0.5736 = 15 X 0.5736 = 8.604

“Therefore, the east component of our velocity is
8.604 miles per hour,” Trigonometeris said. ‘“That
means that each hour we have traveled 8.604 miles
farther east. Since the Straight Arrow River is 30 miles
away, we will reach it in 30/8.604 hours = 3.49
hours.”

Just as we predicted, we crossed the river 3.49
hours after we had left, and the view was spectacular.

We decided that the method of breaking a
velocity vector up into component vectors might be
very useful for other types of problems as well.
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Velocity Components

Suppose you have decided on two
directions called the x direction and the y
direction. (For example, the x direction might
represent east and the y direction represent
north, or the y direction might represent up
and the x direction represent horizontal
motion in a particular direction. These two
directions must be at right angles to each
other.) Then, suppose that v represents a
velocity vector in a particular direction. (See
Figure 4-5.) Then you may find the x
component and the y component of the
velocity vector according to the formulas

Vx = vcos A

vy = vsin A

7%

e

It was only an hour later when we arrived at the
bridge site where Builder and Pal were already hard at TIfe Off-Course
work. “You are just in time to help me with some River Boat
tricky problems,” Builder said with relief. “I have a
small rowboat I use to ferry supplies to the opposite

Figure 4-5

v, = vsin A

A

—

Vx = VCOS A
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Figure 4-6

Planned course

Figure 4-7

shore. Pal always rows the boat straight across the
river, and he always rows at a constant speed of 7
miles per hour. However, the boat always ends up
traveling along a course that is off by 35°.” (See Figure
4-6.) “I just can’t figure it out.”

“It almost looks as though the river current is
pushing you off course,” Recordis suggested.

Builder slapped his forehead. “How could I have
been so stupid? It is the river current that makes the
boat go off course. I wonder how fast the river is
flowing?”

“Once again trigonometry will come to the
rescue just in the nick of time,” Trigonometeris said.
“We need to draw three vectors: one vector
representing the boat’s course relative to the river (v},
which points directly east; one vector representing the
river current v,, which points directly north; and one
vector representing the boat’s actual course.” (See
Figure 4-7.)

vV, = vptan 35°

River current

Vp = 7
Planned course

“We know that the length of the vector v, is 7
miles per hour,” the professor said. “Then,

Vr

— = tan 35
Vb

Vr

— = 0.7002
7

v, = 4.9

“So, the river is flowing at 4.9 miles per hour,”
Builder said. “That will be very useful to know.”
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We had three more interesting trigonometry
adventures that day. However, these applications
involve some tricky physics concepts. You may skip to
the end of the chapter if you wish.

We rode across the river in the boat. When we
reached the other side, Builder demonstrated his newest
invention, a message-delivering system. He showed us
several different slingshots constructed on the hillside.
Each slingshot was tilted at a different angle. “When I
need to send a message, I put the message inside a little
capsule. Then I put the capsule inside one of the
slingshots and send it in the direction it is supposed to
go. Each slingshot is designed so that it fires the
capsules at an initial velocity of precisely 35 meters per
second. However, I need to know the distance that the
capsule will travel before it hits the ground. The
distance traveled naturally depends upon the angle at
which the slingshot is aimed. If the slingshot is aimed
too steeply upward, then the capsule will not travel
very far because it wastes most of its motion going up.
On the other hand, if the slingshot is not aimed very
steeply, then the capsule will not travel very far
either.” (See Figure 4-8.)

*The Message-
Delivering System

~
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/ \
/ \
/ \
I \
| o
[ \
| A
|
|
Steep angle
7 =

- -——

Medium angle

Figure 4-8
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“So, you want us to calculate the distance the
capsule will travel as a function of the angle of tilt of
the slingshot,” the professor clarified the problem.

“To do that, we would need to know how gravity
works,”” Recordis said. “All I know about gravity is that
I get hit on the head if I fall asleep under an apple tree.”

“I have discovered two formulas that describe the
motion of the capsule in two special cases,” Builder
said helpfully. “If you aim the slingshot straight up, the
time in seconds until the capsule lands is given by this
formula:

tland —
g

“In this formula, g represents a special number whose
value is 9.8 and v, represents the initial velocity of the
capsule, which is 35 meters per second. (I use tj.,q to
represent the time until the object lands.) Although this
formula is interesting, it is of no practical value for
sending messages. If you shoot the capsule straight up
all it does is come straight down again.

“I have also discovered a formula that describes
what happens when you shoot the capsule off the cliff
at a zero degree angle—in other words, you shoot the
capsule horizontally. Then, the horizontal distance that
the capsule has traveled at time t is given by this
formula:

d = Vot

“So we can solve the problem if the capsule is
shot horizontally or vertically—but not if the capsule is
shot at any other angle,” the professor said.

“Let’s draw an initial velocity vector for the
capsule,” Trigonometeris said helpfully. “Then we can
figure out a horizontal and vertical component of the
initial velocity.” We used v, to represent the vector of
the initial velocity, A to represent the angle of tilt of
the slingshot, v}, to represent the horizontal component
of initial velocity, and v. to represent the vertical
component of initial velocity. (See Figure 4-9.)

Figure 4-9

. Vo
v, = VW Sin A

Vh = Vo COS A
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“] know how we can use trigonometry to
calculate the magnitude of the two components,” the
professor said.

Vo Sin A

Vy
Vk = Vg COS A

“We know that v, = 35. Then, for example, if A
= 25° we can find in the table that sin 25° = 0.4226
and cos 25° = 0.9063. Therefore, v, = 14.79 and v, =
31.72.”

“That doesn’t help us solve the problem,
though!” Recordis moaned. Try as we might, we could

not figure out how to calculate the distance the capsule

would travel. Finally, Recordis said, “I always say,
when you are faced with a difficult problem that you

can't solve, make up a new problem that you can solve.

For example, let’s suppose that we shot a capsule
straight up with a velocity 14.79 (which is the vertical
component of the velocity when the slingshot is tilted
at a 25° angle). Then we can calculate the time until it
hits the ground from the formula:

2v,
tiand = ? = 3.02 seconds

“I know another problem we could solve,” the

king said. “Suppose that we shot a capsule horizontally

with an initial speed of 31.72. Then we know from the
formula d = vt that the distance that it would travel
in 3.02 seconds would be 95.79 meters.”

While we were working on this problem Pal
came by playing with his beachball. He was throwing
the beachball up in the air at different angles. The
professor decided to carefully monitor the motion of
the beachball, and she discovered an amazing fact.

“The formula t)..q = 2v./g still gives you the
time until the object hits the ground, whether or not
the object is launched straight up! The only difference
is that you must use v,, the initial vertical velocity
component. And I discovered something else. The
formula d = vt still gives you the horizontal distance
that the object has traveled from the starting point,
whether or not the object is launched horizontally. All
you have to do is use v}, the initial horizontal velocity
component, in the formula.”

The king exclaimed, “Let’s put these two
formulas together!” The horizontal distance the object
will travel before it hits the ground:

d = Vhtiand
2v,
d = Vh
g

*The Distance of
Travel of the
Capsule
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*The Slippery
Slope

Then,
2VhV,
3] i
g
“Let’s use these trigonometry formulas,”
Trigonometeris suggested.
V, = Vg Sin A
Vp = Vg COS A
“Then we find
2(vo sin A)(vg cos A)
8

d =

2

d ?25inAcosA

“That'’s just the answer we want—it expresses
the horizontal distance that the object will travel
as a function of the angle of inclination.” (We later
found that we could write that formula like this:
d = (v3/g) sin 2A. See Chapter 6.)

“Let’s calculate some sample values,” Builder
said. He told us the angle of tilt for each slingshot.
Trigonometeris looked in his sine and cosine tables,
and Recordis carried out the calculations.

Assume that the initial velocity is 35
meters/second.

Distance traveled

Angle of launch (meters)
10 42.8
20 80.3
30 108.3
40 12841
45 125.0
50 [82/8% 1
60 108.3
70 80.3
80 42.8

“Aha! Just as I suspected,” Builder said. “The
capsule will travel the greatest distance if it is
launched at an angle of 45°. However, I still have a
problem with designing the approach road for the
bridge. The road must travel through steep mountains. I
need to figure out the steepest possible slope we can
allow. Obviously, if the road is too steep, then cars will
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slide down the hill. I need to know the steepest
allowable angle.”

“What makes the cars slide?” the professor
asked, intrigued.

“Everybody knows what makes something slide
down a hill!"” Recordis exclaimed.

“We understand that intuitively,” the professor
said. “But we should specify exactly what causes the
motion.”

“I use the term force to mean something that
causes (or restrains) motion. For example, let’s suppose
that we have a car parked on the road,” Builder said.
(See Figure 4-10.) “Then there are three forces acting
on the car: The force of gravity acts straight down,
there is a constraint force that keeps the car from
falling through the road, and there is a friction force
that keeps the car from sliding down the road.”

Figure 4-10

Parked car

Gravity
force

“We can represent each of these forces as a
vector!” Trigonometeris realized. “For each force, we
need to know the direction in which it points, and we
need to know how strong the force is—in other words,
the magnitude of the vector. (Although I personally

Figure 4-11
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have no idea what type of unit you use to measure the
size of a force.) Let’s use the letter A to represent the
angle of tilt of the road. Then we can divide the gravity
force into two components: the sideways component
that pulls the car down the ramp, and the pressing
component that keeps the car on the road.” (See Figure
4-11. Use geometry to show that the two angles labelled
A are equal.)

Trigonometeris let F, represent the magnitude of
the gravity force. Then we could calculate the
magnitude of the two components:

Fs = Fgsin A sliding component
Fy,

“The pressing component of the gravity force is
exactly equal to the constraint force of the road,”
Builder said helpfully, “although they point in
opposite directions. If the pressing component were
greater than the constraint force, the road would
collapse and the car would fall through.”

F, cos A pressing component

“I see how we can tell whether the car will slide
down the hill!”’ the professor said. “If the magnitude of
the sliding component is greater than the magnitude of
the frictional force, then the car will slide!”

“Everybody knows that!”” Recordis said.
“However, we don’t have the faintest idea how to
calculate the magnitude of the frictional force.”

“The magnitude of the frictional force is
proportional to the magnitude of the pressing force,”
Builder said helpfully.

F; = (some number) x F, = (some number) X F, cos A

“But how do we know what the value of that
‘some number’ is?’’ Recordis demanded.

“That obviously depends on the road
conditions,” Builder said. “I call that quantity the
friction coefficient (or f. for short). If the road is icy,
then the value of the friction coefficient is small, and
the cars are much more likely to slide. Under normal
circumstances, the value of the friction coefficient for
this type of road is about 0.4.”

We wrote out the equations:
Fs = Fgsin A sliding component of gravity
Fs = 0.4 F;cos A friction force

“So the car will slide if this inequality is true,”
the professor exclaimed.
F.>F;
or
Fgsin A > 0.4 Fgcos A
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“We can cancel out that F,, since it appears as a
factor on both sides,” Recordis said, cheering up a bit.
Recordis found trigonometry to be very confusing, but
he still loved to cancel things. The car will slide if

sin A > 0.4cos A

“We can divide both sides by cos A,” the
professor said. The car will slide if

sin A
> 04
cos A

“We know that sin A/cos A = tan A,”
Trigonometeris said, glad that one of the relations he
had discovered the day before had come in handy. The
car will slide if

tan A > 0.4

Trigonometeris had just happened to notice in
the trigonometric table that tan 21.8° was about equal *The Maximum
to 0.4. “Therefore, if A is greater than 21.8° then tan A Angle of Tilt
is greater than 0.4, and the car will slide.” (In Chapter
10 we found a more systematic way to determine the
size of an angle if you know its tangent.)

“Just what I needed to know!"" Builder said
gratefully. “I must be very careful to design the road so
that the steepest slope is not steeper than 21.8°.”

Recordis eyes were bleary from doing this much
work in one day. “‘Let’s work on something fun, like *The Merry-Go-
the design for the new carnival merry-go-round we will Round Streamers
build to celebrate the opening of the bridge,” he said.
“I would like the outer rim of the top to be decked
with streamers with small balls at their ends. The
radius of the outer rim is 10 meters. However, I still
have a problem. I would like the streamers designed so
that they hang outward, forming a 15° angle while the
merry-go-round turns. (See Figure 4-12.) I don’t know

what the turning speed of the merry-go-round should
be.”

Figure 4-12

Merry-go-round — Streamer

—
(6]
o
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*Centrifugal Force

“Why do the streamers hang outward when the
merry-go-round turns?”’ the professor asked. Like all
brilliant theoreticians, she did not always have an
intuitive understanding of practical matters.

“Everyone knows that when you turn something
it seems to be pulled outward!” Recordis exclaimed.
“Haven’t you ever ridden on a wagon around a sharp
curve? You feel like you are being pulled outward.
When the merry-go-round is stopped, the streamers
will hang straight down. When the merry-go-round
starts moving faster, then the streamers will hang
farther and farther out.”

“I have a name for that type of force,” Builder
said. “'I call it centrifugal force. It’s not a real force, so I
call it a fictitious force. Whenever something rides
inside an object moving around in circles, it will seem
to be feeling a centrifugal force pushing it outward. I
have calculated that if f is the frequency of rotation
(measured as the number of turns per second), r is the
radius of the ride, and m is the mass of the ball, then
the size of the centrifugal force is approximately

F. = 39.48mrf?

(The exact formula is F. = mr(2%f)?. Note that the
force is greater if the ride turns faster.)

“Now it is a trigonometry problem!”
Trigonometeris said. “We know that, while the merry-
go-round is turning, a ball at the end of a streamer is
acted upon by three forces: the force of gravity (F,)
pulling straight down, the centrifugal force pulling
straight out, and the force of the streamer itself, which
pulls the ball up at an angle.” (See Figure 4-13.)

Figure 4-13

Dg‘

FuD = Fs
Fs cos 15°

Fi = 7 centrifugal

Fs sin 15°
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“These three forces must exactly cancel each
other out, since we don’t want the ball to be moving,”
the king said. (‘*Actually, of course, the ball will be
moving if you stand on the ground to watch it. If you
are riding on the merry-go-round itself, then it will not
appear to you that the ball is moving.”)

“We can divide the force of the streamer into
two components: an upward component and an inward
component,” the professor said. Using A to stand for
the angle of tilt of the string, we found

Hesi=HEgcos] Al upward force
Fin = Fssin A inward force

We wrote one equation stating that the upward
force of the streamer was equal to the downward force
of gravity:

Fscos A = F,
and another equation stating that the inward force of
the streamer was equal to the outward centrifugal force:
F, sin A = F. = 39.48mrf*

“Now we’ve reduced it to an algebra program!”
Recordis said with relief. He rewrote the first equation
to give us an expression for Fy:

Fy
cos A

s =

Then he substituted this expression for F into the
second equation:

F, ,
in A = 39.48 Z
- sin mrf

Trigonometeris reminded us that sin A/cos A =
tan A:
F, tan A = 39.48mrf*
Builder told us that the magnitude of the gravity

force depended on the mass of the balls according to
the formula

Fy = mg

where g once again had the value g = 9.8.
Then we wrote
mg tan A = 39.48mrf*
Recordis gleefully canceled out the two m values:

g tan A = 39.48rf*

Then he filled in the values g = 9.8, A = 15°,
and r = 10:

9.8 tan 15 = (39.48)(10)f*
0.00665 = f*
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Note to
CHAPTER 4

Exercises

f = 0.082 turns per second
We calculated the equivalent:

f = 4.9 turns per minute

“This has been an historic day,” the king said.
“For the first time we have put the new trigonometric
functions to practical use. We'll call this new bridge
the Trigonometry Memorial Bridge. To commemorate
that fact, we will put a sign by the side of the road.”

Trigonometeris blushed. “Then we should put a
cosine on the other side of the road so as to give equal
honor to the two functions that helped us get this far.”

® The magnitude of a force can be measured by a unit
called the newton. One newton equals one
kilogram-meter per second squared. In other words,
a force of 1 newton will accelerate a mass of 1
kilogram at the rate of 1 meter per second per
second. For example, an object with a mass (m) of
20 kilograms will be pulled on by a force of gravity
mg. Since g = 9.8 meters per second squared, the
force will be 196 kilogram-meters per second
squared = 196 newtons.

For Exercises 1 to 7, calculate the east-west
component and the north-south component of velocity
for the velocity vectors.

1. 10 miles per hour 15° north of east
34 miles per hour 30° south of east

5 miles per hour 12.4° north of west

60 miles per hour 34° south of west

2

3

4. 1 mile per hour 87° north of east

5)

6. 200 miles per hour 17° north of west
7

80 miles per hour northwest

Consider an airplane that always flies directly
east (relative to the air). However, the wind always
blows directly north, which means that the plane’s
course relative to the ground does not point directly
east. The following table gives the plane’s airspeed (its
speed relative to the air) and the angle that tells how
much it is off course. For Exercises 8 to 13, calculate
the wind speed.

Airspeed Angle Airspeed Angle
50 45° 12. 400 4.3°
9. 100 20° 13. 180 5.4°
10. 490 20° 14. 540 8.8°
11. 600 5
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The following table lists the initial speed (in
meters per second) and the angle of launch for several
different objects. For Exercises 15 to 19, calculate the
distance that each object will travel until it hits the

ground.
Initial speed Angle of launch
11508 10 25°
16. 40 25°
7. 60 54°
18. 52 48°
19. 100 57

Suppose that a book is allowed to slide down a
frictionless table of length d meters that is tilted at an
angle A. Calculate the time for the book to reach the
end of the table. Use the formula: time =
V/2d/(g sin A) seconds. (Remember g = 9.8.)

d A d A
20. 1.4 10° 23. 1.35 60°
2. 1.8 1128 24. 10 90°
oo 5 20° 28, 10 0F

26. Consider a football player who runs at a speed of
7 yards per second on an open field. How long will it
take him to gain 10 yards if he runs straight downfield?
What if his course makes a 10° angle with the
sidelines? What about these courses: 20° angle; 30°
angle; 40° angle; 50° angle; 60° angle.

If you look at a stick protruding from a lake, it
will seem bent. The reason for this is refraction.
Refraction refers to the bending of light rays when they
travel from one medium (such as air) to another (such
as water or glass). The amount of bending can be
calculated from Snell’s law. Let A, represent the angle
of incidence in medium 1, and let A, represent the
angle of incidence in medium 2. (See Figure 4-14.) For
each medium we need to know the index of refraction.
Let n, be the index of refraction in medium 1, and n,
be the index of refraction in medium 2. Then Snell’s
law states

n, sin A; = n, sin A;

The index of refraction for air is n; = 1; the
index of refraction for water is n, = 1.33. The
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That night we camped at the bridge site.
Trigonometeris had enjoyed his first day as Royal
Keeper of the Triangles very much. The next day he
asked Recordis’s help in constructing a complete table
of values for the trigonometric functions.
Trigonometeris dearly loved his table of trigonometric
functions, and he wanted a new copy written in an
elegant calligraphic hand. Recordis was glad to know
he was still appreciated. He had been quite jealous the
day before when trigonometry seemed to be getting so
much attention. However, there was no doubt that
Recordis was by far the best person in the kingdom for
writing complicated reports involving long columns of
numbers. He painstakingly constructed a table, starting
at 1° then 2°, and so on. He wrote all the numbers in
his very best handwriting.

Trigonometeris waited patiently while Recordis
worked all morning. However, suddenly he heard a

Recordis Writes
Out the Table
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tremendous scream. Trigonometeris ran to Recordis and
saw him sobbing. “I've ruined it!”

Trigonometeris looked at the parchment.

’/@ ) — /D
~

Z
87° sin 87° = 0.9986 cos 87° = 0.0523 tan 87° = 19.0811
88° sin 88° = 0.9994 cos 88° = 0.0349 tan 88° = 28.6363
89° sin 89° = 0.9998 cos 89° = 0.0175 tan 89° = 57.2900
90°
722

/2

“What's the matter?”’ he asked Recordis.

“I should not have written that 90 down!”
Recordis sobbed. “I used indelible ink, so I need to
start all over again. Everybody knows that there is no
such thing as sin 90° or cos 90° or tan 90°.”

“Why not?” Trigonometeris asked.

p=__ ottt d wt ]

; 3 ““A right triangle can only have one right angle!”
sin 90 Recordis exploded. “Look at what happens to the Royal
by e —ay——— ! Triangles if we set the angle of interest at 90°.” (See

Figure 5-1.) “The length of the far side becomes the
Figure 5-1

[+}]
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3
5 @
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Almost
a 90°
angle
s
—
Near side

goes to zero
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same as the length of the hypotenuse, and the length of
the near side goes to zero! Then you don't have a
triangle any more!”

Recordis continued to sob over this
development, but Trigonometeris quickly became
excited. “This proves that trigonometric functions are
far more versatile than we had previously imagined!
When the angle of interest is 90°, then we will say that
the length of the near side is zero and the length of the
far side is the same as the length of the hypotenuse.
Therefore:

far side

Bl gl = —=——— 9= 1
hypotenuse
near side
GOSHO RN = —
hypotenuse

Recordis stared speechlessly at these results. He
was quite used to algebra taking totally unexpected
turns, but he had thought that trigonometry was a
completely straightforward, albeit hopelessly dull,
subject.

“But there is no way that you can define a value
of tan 90°,”’ Recordis finally said, realizing that
Trigonometeris had no way to weasel out of that
objection. “Since tan A = sin A/cos A, to calculate tan
90° we would have sin 90°/cos 90° = §. We know that
it is totally illegal to have a fraction with a zero on the
bottom.”

Trigonometeris had to agree with him there.
However, he had a new idea. “We can also calculate
the values of the trigonometric functions of a zero
degree angle,” he said. “If the angle of interest is zero,
then the length of the far side is zero and the length of
the near side is equal to the length of the hypotenuse.
Therefore,

opposite side _

o N -0

sin 0 hypotenuse

ans 00 = adjacent side _ "
hypotenuse
in 0

tan 0° = o =0
cos 0

“I bet some people still adhere to the old-
fashioned idea that trigonometry only applies to right
triangles,” Trigonometeris said. “We will prove that
they have never been more mistaken in their lives.”

Recordis was glad that he did not have to start
the table over again.

[72)
IS.'
[~
°
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tan 0° = 0

tan 90° = undefined

cos 0° =1

cos 90° = 0

sin0° = 0

sin 90° = 1

Y 77

The Attack of the
Killer Bees

Suddenly we were interrupted by an urgent
message from Builder. “The gremlin is trying to
sabotage the bridge-building process! He is attacking us
with a swarm of killer bees!”

By the time we reached Builder we found that he
had quickly constructed a solution to the problem. Pal
was operating a swiveling ray gun mounted on top of a
hill, and the attack of bees was soon under control.
Builder explained to us how the device works. ‘It was
no problem to build this,” Builder said. “The only
tricky part is figuring out how to aim the ray gun. But
we have worked out a very good system. The barrel of
the gun is 1 meter long. It is designed so that it can
rotate about its end. The gun always starts out in the
starting position, which points directly to the right.
Then I signal Pal to tell him how far the tip of the gun
needs to rotate. For example, if I tell Pal to rotate the
gun by 1 meter, then he rotates it like this.” (See Figure

Figure 5-2
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5-2.) Builder also illustrated what it meant to rotate the
gun by 0.5, 2, and 3 meters. (See Figure 5-3.)

Figure 5-3

Start

“Normally, we will always be rotating the gun in

a counterclockwise direction,” Builder explained.

“Therefore, whenever I give the rotation amount as a Measuring
positive number, then it means to rotate Rotations
counterclockwise. However, there may be times when [ = e ——————

we need to rotate the gun in a clockwise direction. In
those cases I give the rotation measurement as a
negative number.” Builder illustrated some negative
rotations. (See Figure 5-4.)

Figure 5-4
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“A totally new concept!”’ the professor said
excitedly. She always became excited when she
discovered a totally new concept. “We have never tried
to measure rotations before.”

“That is not a totally new concept,” Recordis
said. ‘“Measuring rotations is almost exactly the same as
measuring angles.”

The professor was crestfallen when she realized
the obvious similarity between measuring rotations and
measuring angles. However, Trigonometeris suddenly
became excited about the idea. “This is a totally new
way to measure angles!” he said excitedly. “Previously,
we have measured angles with degree measure. We
have only found a meaning for angles that were greater
than 0° and less than 180°. Now we have a new way to
measure angles, and we can even define negative
angles!”

“It took me a long time before I started believing
in negative numbers, so I'm not going to start believing
in negative angles!” Recordis fumed.

However, the professor quickly liked the idea.
“We will call this new type of measure for angles
radian measure,” she decided. “We are measuring the
size of an angle by measuring the distance we must
rotate around a circle, and we are expressing that
distance as a multiple of the radius of the circle.”

The king issued a proclamation.

<
7

Radian Measure

Draw a circle of radius r. Draw an angle
with the vertex at the center of the circle.
(This type of angle will be called a central
angle.) The two sides of the angle will cut
across the circle and form an arc. Let s
represent the length of the arc. Then the
radian (rad) measure of the angle is

Size of angle in radians =

twn

If the angle is formed by rotating
counterclockwise, then the angle is a positive
angle. If the angle if formed by rotating
clockwise, then the angle is a negative angle.
(See Figure 5-5.)
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Figure 5-5

S 1
Angle =— radians
r

r

(Note that the circle formed by Builder’s ray gun
has a radius of 1, so in that case the radian measure of
the angle is the same as the length of the arc.)

“We still should find a way to convert angles
measured in radian measure into familiar old degree
measure,” the king added.

“First we must establish exactly how many
radians there are in a complete turn,” the professor said
matter-of-factly.

Builder gave us a clue. ‘A rotation of 6 radians
is a bit less than a complete turn, but a rotation of 7
radians is a bit more than a complete turn. (See Figure
5-6.)

Figure 5-6

Start
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“We need to find a number between 6 and 7,”
the professor said thoughtfully.

“We were doing some work with circles a long
time ago,” Recordis said, leafing through his giant
record book. ““Aha! Here it is. We discovered a special
number called pie, symbolized by =, and we found that
the circumference of a circle of radius 1 was 2w. (In
general, the circumference of a circle of radius r is
27r.)"

“The name of that symbol is spelled pi, not
‘pie,”” the professor corrected. ““Pi is the sixteenth
letter of the Greek alphabet. Therefore, a complete turn
measures 27 radians.”

“Then a half-turn must measure = radians,” the
king said. ‘“And a half-turn is the same as a straight
angle, which measures 180°. Therefore,

o radians = 180°

We also calculated the radian measure for a
quarter-turn (in other words, a right angle) and a three-
quarter turn and made a table of results. However,
Recordis immediately complained about having to
write all the decimal points. We realized that we could
simply write radian measures in terms of w—in other
words, write 7 instead of 3.14159, 2« instead of 6.2832,
and 7/2 instead of 1.5708. We made a table of results.

Radians Degrees
2w = 6.2832 360 Complete turn
T = 3.1416 180 Half-turn or straight angle
s
7 = 1.5708 90 Quarter-turn or right angle
™
— = 1.0472 60
3
T = 07854 45
5 d
™
5 = 0.5236 30




“We can now state a general formula for

converting an angle measured in radians into an angle e ——
measured in degrees,” Trigonometeris said. Converting
D = angle measured in degrees Radians to
4 ! Degrees
R = angle measured in radians
R
D = 180 —
@
“We can also write the reverse formula:
_ 7D
180

By using the first formula we found that 1 radian
was about equal to 57.296°.

We experimented some more with angles. Pal
had fun spinning the ray gun in the direction we told
him. We played a game where Recordis told Pal how
much to spin while the rest of us hid our eyes. Then
we had to figure out the angle that had been formed.
One time we looked around and we found that the ray
gun was pointed in the starting direction.

“That’s easy!”’ Trigonometeris said. “That’s a 0
radian rotation.”

“Fooled you!” Recordis said. “It’s really a 2w
radian rotation.”

“How are we supposed to tell the difference
between a rotation of 27 (in other words, a complete
turn) and a rotation of 0 (in other words, no rotation at
all)?” Trigonometeris screamed.

“Those two types of rotations do seem to be
effectively identical,” the professor said.

“We had better make it illegal to rotate by more
than 2w,” Trigonometeris said. ‘“For example, a rotation
of (2m + m/2) would be impossible to distinguish from
a rotation of n/2.”

“What’s wrong with that?”’ the professor said.
“We’'ll just say that a (2w + m/2) angle is effectively 3
identical with a m/2 angle.” We decided to use the Coterminal Angles
word coterminal to describe the situation where two e I i S
angles were effectively identical—in other words, their
terminal sides were the same. We realized that there
were lots of possible angles that are coterminal with a
particular angle.

The king declared:
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Coterminal Angles

Consider any angle A. This angle is
coterminal with the angle (2w + A) and the
angle (4w + A) and the angle (67 + A) and
the angle (8w + A), and so on. In general, the
angle (2nm + A), where n can be any integer,
will be coterminal with A. The values of the
trigonometric functions for an angle will be
the same for all angles that are coterminal
with the original angle. In particular,

sin A = sin (2nw + A)
cos A = cos (2nm + A)
tan A = tan (2nw + A)

for any value of A.

//y/ %

S )

At that moment we were interrupted by the
arrival of the Royal Astronomer, who came floating on
a small boat down the river. He was carrying a worn
knapsack, indicating that he was returning from a long
journey. He was pleasantly surprised to see us waiting
along the river bank, but as soon as he docked his boat
we could see that he was deeply depressed again. I
have just returned from a long journey to distant
lands,” he explained. “I have been trying to measure
the radius of the Earth. I had a brilliant idea for an
experiment, but it was totally ruined. I was on South
Southsea Island. I was in radio contact with my
assistant on North Southsea Island, which is exactly
833 kilometers due north. Before doing the experiment
we planned to calibrate our instruments by measuring
the position of the sun. That’s when we found our
instruments were not aligned properly. I measured that
the sun was directly overhead (at the point I call the
zenith), but my assistant found that at that exact same
moment the sun was 7.5° away from the zenith. I can’t
imagine what could have caused an error that large! So
I am on my way home to fix the instruments. The
whole trip was wasted!” he sobbed.

“We have been having great success with
trigonometry,” Trigonometeris said. He explained what
we had accomplished so far. In an effort to cheer the




astronomer, he offered to convert the 7.5° angle into
radian measure.

“Whenever I see a 7.5° angle my mind is filled
with painful memories,’ the astronomer said, but
Trigonometeris proceeded anyway.

7.5 X 3.1
. 3.14159
180

“Here is what that means," the professor
explained. “Suppose you have an arc of length s cut
from a circle of radius r by a central angle of 7.5°.
Then, s/r = 0.1309.”

“That’s all very interesting, but I'm afraid that
this information does me no good,” the astronomer said
sadly. “It would only help to know this if I was dealing
with circles.” Suddenly he stopped. All traces of
despair vanished in an instant, and he became excited.
“That's it!"" he exclaimed. “How could I have been so
stupid! The Earth is round—and that causes the
apparent position of the sun to be different at different
locations!"” He drew a quick diagram. (See Figure 5-7.)

radians = 0.1309 radians

Sun

North Southsea
Island

South Southsea
Island

“At South Southsea Island, the sun was directly
overhead. But at North Southsea Island, the sun was 7.5°
south of the zenith. That means that the lines joining
these two islands to the center of the Earth meet to
form an angle of 7.5° or 0.1309 radians.”

His eyes suddenly grew even wider. “We can
now measure the radius of the Earth!”" he gasped. ‘“‘Let

Figure 5-7
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——————— 5 be the length of the arc from North Southsea Island to

The Radius South Southsea Island, and let r be the radius of the
of the Earth Earth. Then, as you have just said:
R T T R e T S
- = (0.1309
r
“Therefore,
_1us
0.1309
“We know s = 833. Therefore,
r= 883 o 6400 kilometers (approximately)
0.1309 PP y

The astronomer went home in a state of ecstasy.

“Now we can make general definitions of the
trigonometric functions,’”” Trigonometeris said. ‘‘Let’s
start by drawing a line pointing directly to the right.”

“That’s what we called an x axis,”” Recordis said,
trying to make the situation look more familiar.

“We may as well also add a y axis,” the
professor said. (See Figure 5-8.)

Figure 5-8

Then Trigonometeris suggested how we could
give a general definition for the trigonometric
functions. There were several quarrels between
Trigonometeris and the professor over the exact
wording, but here was the result that they finally
agreed upon.
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General Definition of Trigonometric - :
Functions Trigonometric
Functions

First, draw an xy coordinate system.
Then draw an angle in standard position.
Here is what we mean by standard position:
the vertex (point) of the angle is at the origin
[the point (0, 0)], and one side of the angle
points along the x axis in the positive
direction. [We call this side the initial side.
The other side of the angle is called the
terminal side. (See Figure 5-9.)

You may measure the size of the angle
using either degree measure or radian
measure. Here is how to measure the size of
the angle using radian measure. Draw a circle
with a radius of length 1 centered at the
origin. Then the radian measure of the angle
is the distance you must travel around the
circumference of the circle to get from the
initial side (the x axis) to the terminal side. If
you travel counterclockwise, then we say that
the angle is positive; if you travel clockwise,
then the angle is negative. Let’s suppose that
the angle measures A radians.

Pick any point along the terminal side
of the angle. Let’s say that the coordinates of
this point are (x, y). We will let r represent
the distance from the origin to this point.
From the Pythagorean theorem we know that
I =% el

Now we can make the definitions of the
trigonometric functions:

sinA=X
r
5
cos A = —
r
tanA=X
X

Note that these ratios will be the same no
matter what point along the terminal side you
pick. (Of course, the value of these ratios will
change if you change the angle A.)

/77 Z
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Figure 5-9
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A x d =
Initial side x
sin A = 4
r
COsS A = )—(
r
tan A = 4
X

“Now we can begin the systematic study of
trigonometric functions,” the professor said.

“I just realized something is very wrong with
these definitions!"’ Recordis said. ‘““Sometimes the value
of x or y might be negative, so sometimes the value of
the trigonometric functions themselves could be
negative.”

“What’s wrong with that?”’ Trigonometeris asked.

Recordis could not think of a reason why the
trigonometric functions could not be negative. We
investigated the possibilities. We found that it depends
on which quadrant the terminal side of the angle is in.
There are four possibilities. (See Figure 5-10.)

First quadrant
X, y both positive
Angles from 0 to /2 (0 to 90°)
sin A, cos A, and tan A are all positive

Second quadrant
X negative, y positive
Angles from 7/2 to = (90 to 180°)
sin A is positive, cos A is negative, and tan A is
negative

Third quadrant
x, y both negative
Angles from m to 37/2 (180 to 270°)
sin A, cos A are both negative; tan A is positive

——




Fourth quadrant

X positive, y negative

Angles from 3%/2 to 27 (270 to 360°)
sin A is negative, cos A is positive, and tan A is

negative
y Figure 5-10
Quadrant Il Quadrant |
X negative x, y both positive
y positive
sin, cos, tan
cos, tan negative all positive
sin positive
90° = 2
2
180° 0°
X
3w
P =
2
sin, cos negative sin, tan negative
tan positive cos positive
Quadrant Il Quadrant IV
X, y both negative X positive
y negative
We found some examples.
~
// )
&
First quadrant sin  30° 0.5000 cos 30° = 0.8660 tan 30° = 0.5774
Second quadrant sin 150° 0.5000 cos 150° = —0.8660 tan 150° = —0.5774
Third quadrant  sin 210° = —0.5000 cos 210° = —0.8660 tan 210° = 0.5774
Fourth quadrant sin 330° —0.5000 cos 330° = 0.8660 tan 330° = —0.5774
7%

2

“The value of the sine function can be negative,
but that doesn’t mean that it can take on any possible
value,” Trigonometeris pointed out. We found that
neither the sine function nor the cosine function could
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ever have a value greater than 1 or less than —1, so the
king made a decree.

— =
Z V_E ./ /)
7 — ///
' Z,

Law of Possible Values

-1 =si =
1= ilozfz}& . 11 for all possible values of A

Y 27% =

“It will help to make a list of equations that we
know will be true all the time,” the king said. ‘“Then,
no matter what particular angle we picked, we could
know that we could depend on those equations.”

“We gave a special name to an equation that is
always true,” the professor said. “We called it an
identity. (See the Notes at the end of the chapter.)

We started to make a list of identities. We were
able to find simple formulas for the sine, cosine, and
tangent of the negative of an angle:

cos (—A) = cos A

sin (—A) = —sin A

tan (—A) = —tan A
(See Exercise 107.)

We also had found that these two relations were

™
CcOos <E—A)
™
in(- - A
Sln<2 )

For example, cos (w/6) = sin (w/2 — 7w/6) = sin (w/3).

true:

sin A

cos A

“These two equations mean that the sine function
and the cosine function are complementary functions,
Cofunctions the professor said. ‘“‘In geometry we decided that the
T T a—— complement of the angle A was the angle 90° — A

(which is m/2 — A if A is measured in radians). These
equations mean that the sine of A is equal to the cosine
of the complement of A, and vice versa.”

“It almost looks as if the name cosine was set up
to mean the complementary function for the sine,”
Recordis said, looking at Trigonometeris suspiciously.
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“Let’s make up a new name,” the professor said.
“Let’s say that the cosine function is the cofunction for
the sine function. And, vice versa, we can say that the
sine function is the cofunction for the cosine function.”

“We should think of a cofunction for the tangent
function,” Trigonometeris said. “Otherwise it might
become lonely.”

We decided that we would use the term
cotangent (abbreviated as ctn or cot) to represent the
cofunction for the tangent function. Then we made the
definition:

ctn A = tan (g — A)

To our amazement, we found a very simple
expression for the cotangent:

tanA=X ctn A =
5%

<>

(See Exercise 108.)

“They are reciprocals of each other!"” the
professor said. “It is clear from these equations that
tan A = 1/ctn A and ctn A = 1/tan A.”

“But now that the tan function has a reciprocal
function, we must find reciprocal functions for the sine
and cosine functions,”” Trigonometeris said. “‘Otherwise
those two functions will become very jealous of the
tangent function.”

Trigonometeris made up a new strange name for
the reciprocal of the cosine function. He called it the
secant function (abbreviated sec):

sec A = sec A =

e

cos A

It turned out that the reciprocal function for the
sine function was also the cofunction for the secant
function, so we called it the cosecant function
(abbreviated csc):

1 T r
_— = _._A A=_
csc A sin sec (2 ) cscC 3

“We have discovered a lot of results today!”

Trigonometeris said excitedly as we set up camp for
the night.

“Look how much paper I have used!” Recordis
pointed to the piles of papers that contained the results
we had discovered that day. “I hope that all this paper
won’t weigh down the balloon too much. We need to
return to Capital City tomorrow.”

Cotangent
Function

Reciprocal
Functions

The Secant and
Cosecant
Functions
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Notes to
CHAPTER 5

When the size of an angle is written as a number
without a degree symbol, then it is understood that
the angle is being measured in radians. Therefore,
you can say that the size of an angle is “‘w/2"
instead of having to say ‘‘w/2 radians.’”’ Note that the
size of an angle in radians does not depend on
whether you are using meters or miles or any other
unit to measure distances.

The size of the Earth was calculated by Eratosthenes
of Cyrene in 270 B.c. using the method described
here. He observed the sun from Alexandria and
Syene on the Nile. Christopher Columbus would
have had a much better idea about the size of the
Earth if he had known about Eratosthenes’s
calculations.

Suppose a straight line crosses two parallel lines, as
shown in Figure 5-11. The two angles A and B are
said to be corresponding angles. In geometry, it can
be shown that these two angles are equal. An
example of this occurs in Figure 5-7. Because the
sun is so far away from the Earth, it can be assumed
that the two light rays from the sun are parallel.
Then the two angles labeled 7.5° are corresponding
angles.

Figure 5-11
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® Some special equations are true for all possible

values of the unknowns they contain. Equations of
this kind are called identities. Here are some
examples of identities from algebra.

S (Sl XX
3(a + b) = 3a + 3b
The equation

It

2x = 10




is not an identity because there is only one value of
x that makes the equation true.

The trigonometric equation
sin A = cos (g = A)

is an identity because it is true for any value of A.
The equation

. 1
sin A >
is not an identity because the only solutions are A
= /6 and A = 57/6 and the other angles
coterminal with those angles. In the next chapter
we will investigate many other trigonometric
identities.

The domain of a function is the set of all allowable
values for the input number for that function.
Because we have now defined values of
trigonometric functions for any real number, the
domain for each trigonometric function consists of
all real numbers. However, there are some
exceptions: tan (mw/2), tan (3w/2), ctn 0, ctn m,

sec (m/2), sec (3m/2), csc 0, and csc = are not
defined, so these values and their coterminal values
are not part of the domain for the functions listed.

The range of a function is the set of all possible

values of the output number. For the sine and cosine
function, the range is from —1 to 1. The ranges of the
tangent and cotangent function consist of all real
numbers. The ranges of the secant and cosecant
functions consist of all real numbers except those
between —1 and 1.

For Exercises 1 to 16, convert the angles —_—
measured in radians into degrees. Exercises
1. w3 7. 2m/5 13. 1.645 ——
2. 7/6 8. 1 14. 2.9875
3. m/4 9. 2 15. 3.645
4. 7/5 10. 3 16. 1.987
5. w/10 11. 4
6. w12 12. 5

For Exercises 17 to 31, convert the angles

measured in degrees into angles measured in radians.
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1%
18.
19.
20.
2518
&

40.
328
33.
34.

41.
42.
43.
44.

%

becomes small?

52.
53.
54.
558
56.
517

70.
7o
/2R
73
74.

30°
45°
270°
100°
216°
4.5°

23.
24.
25.
26.
27.
28.

1°
57"
58°
60°
80°
85°

29
30.
31.

1 minute
/
1 second

5° 12 minutes
16 seconds

Identify the angle between 0 and 2= that is
coterminal with each of the angles in Exercises 32 to

16w
187w
23.67

39.
36.
87/«

100w
—10:57
— IS

38. 12.45w
39. 16.457
40. 14.57

For Exercises 41 to 50, make a table listing A
(measured in radians) and sin A for the angles listed.

4°
3158
3°

2.5¢

45.
46.
47.
48.

20
1R
10
0.5°

49. 0.2°
50. 0.1°

Can you suggest an approximation for sin A as A

For Exercises 52 to 69, calculate sin A, cos A,

and tan A for these angles (in radians). Also calculate
the measure of these angles in degrees. (Do not use a
calculator for Exercises 52 to 62.)

T
3m/2
3n/4
5n/4
7T/4
2n/3

58.
59.
60.
61.
62.
63.

.57/6
77/6
47/3
57/3
117/6
1

64.
65.
66.
67.
68.
69.

N g e Ww N

In Exercises 70 to 74, you are given values for
sin A and cos A. Determine the value of A.

1/V2,cos A = —1\V/2
-4 cos A = V3/2
—1;co0s A =20
V3/2;cos A = —4
sin A = 4, cos A = V3/2

sin A
sin A
sin A

sin A




In Exercises 75 to 80, you are given values for
sin A and tan A. Determine the value of A.

75. sin A = —1/\V/2;tan A =

76. sin A = 1; tan A undefined
77. sinA = -4tanA = -1V3
78. sin A = V3/2;tan A = —V3
79. sin A = 1/V2;tanA = -1
80. sin A = -}tan A = 1/V3

* 81. Suppose you know the length s of an arc on a
circle of radius r. Calculate the length of the associated
chord—that is, find the distance between the two end
points of the arc. (See Figure 5-12.)

* 82. Consider a runner running around a perfectly
circular track of radius 25 meters. Suppose you
measure the central angle between the starting point
and the runner’s current position, and you find that
this angle is increasing at a constant speed of 0.2256
radians per second. (The rate of increase of this angle is
called the angular velocity.) How fast is the runner
running?

* 83. Derive a general formula that relates r (the radius
of the track), v (the runner’s speed), and o (the angular
velocity).

* 84. Let’s suppose that the planets orbit the sun at
constant speeds around perfectly circular orbits. (In
reality the planet’s orbits are ellipses, but they are close
to being circles.) Calculate the orbital velocity (in
kilometers per day) and the angular velocity (in radians
per day) for each planet, given the information in the
following table

Radius of orbit Period of orbit

Planet (million kilometers) (days)
Mercury 58 88
Venus 108 225
Earth 150 365
Mars 228 687
Jupiter 778 4,333
Saturn 1,427 10,759

In Exercises 85 to 88, you are given the distance
in kilometers between two points that are on the same
north/south line and the angular difference between the
sun’s position seen from these two positions. Calculate

Figure 5-12
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the radius of the planet that each pair of points is
located on.

85. 10°% 1113 87. 2°% 2492
86. 30°% 1275 88. 34° 3590

Write formulas for the exact values for the
trigonometric functions in Exercises 89 to 91.

89. sec 30°% csc 30°% ctn 30°
90. sec 45° csc 45°% ctn 45°
91. sec 60°% csc 60°% ctn 60°

Calculate values for the trigonometric functions
in Exercises 92 to 100. Look in the table at the back of

the book or else use a calculator.

92. sec 20° 95. sec 11.4° 98. sec 150°
93. ctn 35° 96. ctn 20.8° 99. csc 95°
94. csc 75° 97. csc 63° 100. ctn 170°

In Exercises 101 to 106, calculate an angle

between 0 and — 2w that is coterminal with each of the

given angles.

1016m g3 w2 103. 21w/11 105. 9m/10
102. 57/6 104. 17w/11 106. 12m/14

107. Show that sin (—=A) = —sin A. Show that
cos (—A) = cos A.

108. Show that ctn A = 1/tan A.

0 109. Write a program that prints a table of the sine,
cosine, and tangent functions for angles from 0° to 90°.
Most programming languages, such as BASIC or Pascal,

will automatically calculate these values for you.
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We received a letter from Builder two days after
our return. Construction on the bridge was going well,
but he did have some complaints. “There are still some
problems that take too long to solve,” he wrote. ““For
example, often I will know the value of sin A for a
particular angle A, but I need to know the value of
cos A. I wish there were a quick formula that would tell
me the value of cos A in that case, so I wouldn't have
to look it up in the table again.”

“No way!” Recordis exclaimed. ““Sines and
cosines are fundamentally different entities—there is
no way to find a connection between them.”

“We could write down the defining relations and
see if something hits us,”” the professor said
encouragingly.

; X
smA=X €k ol = —
r r

“All we need is to find a relation between x, y, and r.”
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“There is no relation between x, y, and r!”
Recordis exclaimed. “Except, of course, for the
Pythagorean theorem,” he reluctantly added. (Recordis
passionately disliked square root signs, so he was
reluctant to use the Pythagorean theorem because the
results often involved square root signs.)

“We will use the Pythagorean theorem!”’ the
professor exclaimed.

xX +y*=r?

“Divide both sides of that equation by r?,”
Trigonometeris suggested.

X2 S
—_ 4 = = —
I.2 r2 r2
“We know r?/r* = 1,” the king volunteered.
xZ yz
S+5=1
rr r

“Now, use the definition of sin A and cos A!”’
Trigonometeris said eagerly.

N
~N

_ X
T = sintddy’ g5 = deEtd

= L
“Therefore,
sin® A + cos? A = 1

“That is another identity—it will be true for any
possible value of A.”

“I should have known!"’ Recordis cried. “The old
finding-a-relation-between-the-sine-and-the-cosine-by-
using-the-Pythagorean-theorem trick!"

We wrote down two obvious equations that
followed directly from this first equation.

sin® A = 1 — cos? A cos? A =1 —sin* A
“We can also say
sin A = V1 — cos’ A
and

cos A = V1 — sin? A

but we must be careful when using these formulas
because the values of cos A and sin A are not always
positive,” the king said.

“This works in theory,” Recordis cautioned, ‘‘but
we should try an example to make sure it works in
practice.”

We considered an angle A = 35°. We found sin
A = 0.5736 and cos A = 0.8192. Then we calculated

sin? A + cos® A = 0.329 + 0.671
= 1.000




“See! It does work!" the professor said happily.

“We will also be able to find corresponding
equations relating the other trigonometric functions,”
Trigonometeris said. Starting from the equation x* +
y? = r* and dividing both sides by x?, we found

tan A + 1 = sec’ A
Dividing both sides by y* we found
ctn® A + 1 = csc? A

“These identities will be very useful,”
Trigonometeris said, “and the best part is that we know
that they will always be true, no matter what angles we
use. I think identities are far more dependable than
regular equations.”

“Builder has another problem,” Recordis said.
He continued reading from Builder’s letter. “‘There are
often times when I need to stack one triangle on top of
another triangle. In those circumstances it would be
nice to have a formula for the sine of the sum of two
angles; in other words, can you tell me how to
calculate sin (A + B) if I know the values of the
trigonometric functions for angle A and angle B?”

“Let’s make up a trigonometric addition rule,”
Recordis said. “I suggest that we make up this rule:

sin (A + B) = sin (A) + sin (B)
“I guarantee you that this rule will make life much
simpler in the long run.”

“But it does not work,” the king said. “We know
sin (30° + 60° = sin (90°) = 1

“But
0.5000 + 0.8660
1.366

“Therefore, sin (30° + 60°) does not equal sin (30°) +
sin (60°).”

“Besides, we can't just make up a rule like that,”
the professor said.

sin (30°) + sin (60°)

“1 thought we were making most of this up
anyway,” Recordis objected. Nevertheless, he agreed to
help with the search for a general formula for
sin (A + B).

“In cases such as this, the first thing to do is
draw a picture,” Trigonometeris suggested.

We drew two right triangles stacked on top of
each other, one containing the angle A and the other
containing the angle B. (See Figure 6-1.)

Trigonometric Identities 89




Figure 6-1

“I can see from the picture that these two
equations are true,” Recordis said.

y: = h;sin A
y2 = hz SiIlB

“But we can't find an expression for sin (A + B)
using these triangles. If only we had a right triangle
involving the angle A + B, like this,” he moaned. He
drew an addition to our original diagram. (See Figure
6-2.)

Figure 6-2
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“That’s exactly what we need to do!” the
professor said. “We can see that:

+ v
sin (A + B) = <2
2!

“We don’t know an expression for y;,” Recordis
pointed out. However, Trigonometeris had an idea. He
drew another line segment on the diagram and labeled
some of the angles. (See Figure 6-3.)




Figure 6-3

y 2 yJ

5

“We can see that y; = y, cos C,” he said. To our
surprise, we found that angle C was the same size as
angle A. To show this, we had to look in an old book
on geometry. We could tell that angle D was equal to
90 — A, since they were two angles in a right triangle.
Then we could see that angle E was equal to angle D,

_ since they are two opposite angles formed by the
intersection of two straight lines (these are called
vertical angles). Angle C equals 90 — E, since they are
two angles in a right triangle. Putting all these together,
we found A = C. Therefore.

ya = y2 cos A

We had already found y; = h; sin A, and Recordis
recognized that we could substitute these two
expressions into our formula for sin (A + B):

h,sin A + y, cos A

sin (A + B) = 3
Trigonometeris told us two more relations:
h, = h, cos B
y2 = h, sin B

Then we used the substitution principle again:
h, cos B sin A + h, sin B cos A

sin (A + B) =
h,
“We can cancel out all the h, terms!” Recordis e
said excitedly. Addition Rules

sin (A + B) = cos B sin A + sin B cos A —

We decided to change the order of the first term:
sin (A + B) = sin A cos B + sin B cos A

“What an elegant formula!”’ Trigonometeris said.
“The sines and the cosines work together so well.”
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“We should test some examples to make sure it
really works,” the professor cautioned.

sin (A + 0) = sin Acos 0 + sin0cos A = sin A

sin E+~‘rI = n-ﬂrI os-"I+sm-—cosE
3 6 3 6 3
VB \/§ 1 1
=— X — 4+ =— X =
2 2 2 2
3 1
4 4
—sinlr
2

sin 10° cos 20° + sin 20° cos 10°
(0.1736)(0.9397) + (0.3420)(0.9848)
0.16313 + 0.33680

= 0.49993

“That’s close enough to 0.5 for my purposes,”
Recordis said. “And we know that sin 30° = 0.5.
However, I bet the formula doesn’t work if A + B is
greater than 180°. For example, sin (150° + 40°) should
be sin 190°, which should be the same as
sin (180° — 190°) = sin (—10°) = —0.1736.”

The sweat built up on Trigonometeris’s brow
while we tried the formula

sin 150° cos 40° + sin 40° cos 150°
= (0.5)(0.7660) + (0.6428)(— 0.8660)
= 0.383 — 0.5567
= —0.1737

“It does work!” Trigonometeris breathed a sigh
of relief.

sin (10° + 20°)

Since sin (—q) = —sin q and cos (—q) = cos q
for any q, we found a formula for the sine of the
difference of two angles:

sin (A — B) = sin [A + (—B)]
sin A cos (—B) + sin (—B) cos A

sin A cos B — sin B cos A

“We can find another elegant formula for
cos (A + B),” Trigonometeris said. “‘We just have to
use the fact of nature that cos (q) = sin (90° — q) for
any value of q.”

cos (A + B)

sin [90° — (A + B)]
sin [(80° — A) — B]
sin (90° — A) cos B — sin B cos (90° — A)




= cos A cos B — sin B sin A
= cos A cos B — sin A sin B

“Now we really have momentum!”
Trigonometeris said. He suggested that we look for a
formula for tan (A + B):
sin (A + B)
cos (A + B)

_ sin A cos B + sin B cos A
cos A cos B — sin A sin B

tan (A + B) =

Recordis thought this formula was as simple
as possible, but Trigonometeris became obsessed
with the idea of finding a simpler form for it. He
tried several ideas that didn't work, but he finally
suggested multiplying both the top and the bottom by
1/(cos A cos B):

sin Acos B sin Bcos A
cos Acos B cos Bcos A
cos A cos B sin A sin B

cos A cos B cos A cos B

The result was

tan A + tan B
1 — tan A tan B
Recordis’s eyes were becoming bleary by now, e

but he thought of a simple idea before anyone else did. Double-Angle
“Suppose that A = B. Then we know that sin (A + B) Rules

tan (A + B) =

= sin (2A), so therefore —_———
sin (2A) = sin A cos A + sin A cos A
= 2 sin A cos A

“We'll call that a double-angle formula, since it
tells us how to calculate the sine of an angle after you
double it,” the professor said. We found double-angle
formulas for the cosine and tangent functions:

cos (2A) = cos? A — sin® A

1 — 2sin®* A

2cos*A — 1

(Note that we used the identity sin* A + cos?* A = 1 to
write this formula in three different forms. There was a
big argument about which form would be the simplest

form to use, so we decided we would use all three
forms.)

Il

2 tan A
1 — tan® A

“I see something else,” the professor realized.
She had become jealous when the others seemed to

tan (2A) =
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find ideas before she had. “Suppose we know sin? A,
but we would like a simpler formula with no exponent.
We can see from the formula for cos 2A that

sin? A = §(1 — cos 2A)
“Also
cos? A = (1 + cos 2A)

Trigonometeris gathered all our results together
in one list so we could send them to Builder. He
grouped them under different headings that described
where the identities had come from. (We discovered a
few more identities that are included at the end of the
list. See the exercises for derivations of these.)

These equations are true for every possible
value of the angles A and B.

Reciprocal functions

. 1 1
sin A = csc A =
csc A sin A
1 il
cos A = ec A =
sec A 0 cos A
1 1
tan A = A=
ctn A o tan A

Cofunctions (radian form)
sin A = cos (:21! = A) cos A = sin (g = A)

T
tan A = ctn (E - A) ctnA =

sec A = csc (g - A> CSCA = sec (-213 = A)

Negative angle relations
sin(—A) = —sin A

cos (—A) = cos A

|
I
=}
Ve
(S
|
>
.

tan (—A) = —tan A
Quotient relations .
e sin A
cos A
cos A
ctn A = —
sin A
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g é i (4 /l —Ccos A
AM\2) T NVN1+cosa
Product formulas

1
sinAcosB = -z-[sin(A + B) + sin (A — B)]

—

cosAsinB = E[sin(A + B) — sin (A — B)]

il
cosAcosB = E[cos (A + B) + cos(A — B)]

sinAsinB = —%[cos[A + B)i=cosi(A — B))

Sum formulas
+ B A-B

sin A + sin B = 2 sin cos
2 2
A+ B A - B
cos A + cos B = 2 cos > cos 2

Difference formulas

A+B .,  A-B
2 cos sin

sin A — sin B

. A+B . A-B
—2 sin sin
2 2

cos A — cos B

@ It is important to note that these identities are only
true provided that all the arguments for the
trigonometric functions have permissible values.
For example, any identity involving the tangent
function will be unusable if one of the angles has
the value 90°.

1. Suppose you know the value of sin A for an angle
in the first quadrant. Write equations for cos A, tan A,
ctn A, sec A, and csc A in terms of sin A.

If sin A = £ and cos A is negative, find the value
of the trigonometric expressions in Exercises 2 to 6.

2. cos A

3. sin 2A
4. tan 2A
5. cos 2A
6. sin (A/2)




7. lftan A = $ and cos B = —1, where A and B are
both third-quadrant angles, find sin (A + B).

8. If A is a first-quadrant angle with sin A = 43 and
B is a second-quadrant angle with cos B = —14, find
cos (A + B).

Find exact formulas for the trigonometric
expressions in Exercises 9 to 11.

9. sin 15°
10. sin 75°
= Sine7 5"

12. Find an exact formula for sin 195° by using
sin 195 = sin (150° + 45°).

13. Find an exact formula for sin 75° + sin 15°

Prove the identities in Exercises 14 to 21 using
the trigonometric addition formulas.

14. sin(—a) = —-sina

15. cos (—a) = cosa

16. tan (—a) = —tana

17. cos (w/2 — a) = sina

18. sin (w/2 — a) = cos a

19. tan (/2 — a) = 1/tan a

20. sec (A + B) = (sec A sec B)/(1 — tan A tan B)
21. csc (A + B) = (csc A csc B)/(ctn A + ctn B)

In general, to prove a trigonometric identity to be
true, you must manipulate one side of the identity until
it becomes the same as the other side. (Note that this
procedure is different from the procedure you use to
solve a conditional equation; there you perform
operations on both sides of the equation at the same
time.) For example, suppose we need to prove the
identity

sin? A = %(l — cos 2A)

In most cases the best strategy is to start with the
most complicated side and try to transform it to match
the simpler side. Here’s how to do our example:

1 1
5(1 — cos 2A) = o [1 — (cos®* A — sin? A)]

1
= E[l — cos? A + sin® A]

% [sin? A + sin? A]

= sin® A
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Prove the identities in Exercises 22 to 43.
22. cos® A = }1 + cos 2A)
*23. sin (A/2) = V(1 — cos A)/2
*24. (sin A)(cos B) = #[sin (A + B) + sin (A — B]]
*25. sin A + sin B = 2 sin [(A + B)/2] cos [(A — B)/2]
*26. cos A — cos B = —2sin[(A + B)/2] sin {(A — B)/2]
27. sec® A + csc® A = (sec? A)(csc?® A)

28. sin(A + B + C) = sin Acos Bcos C + cos AsinBcos C

+ cos A cos B sin C — sin A sin B sin C
29. cos (A + B + C) = cos A cos Bcos C — sin A sin Bcos C

— sin A cos B sin C — cos A sin B sin C

30. tan (2A) = (2 tan A)/(1 — tan® A)
*31. sin (4A) = cos A (4 sin A — 8 sin® A)
*32. sin (5A) = 5sin A — 20sin®* A + 16 sin® A
*33. cos (3A) =4 cos® A — 3cos A
*34. cos (4A) = 8cos* A — 8cos®A + 1
*35. sin® A = {[—sin (3A) + 3 sin A]
*36. V(1 + sin A)/(1 — sin A) = sec A + tan A
37. (sin A + cos A)® = sin (2A) + 1
38. sec* A — sec’ A = tan* A + tan®* A
39. [sin (2A)}/(sin A) — [cos (2A)]/(cos A) = sec A

*40. |[sin (3A) — sin A)/(cos®* A — sin* A) = 2sin A
(See Exercise 44.)

41. ctn Bsec B = csc B
42. cos A + sin Atan A = sec A
*43. (sin A + tan A)/(1 + sec A) = sin A

*44. Derive a formula for sin (3A) in terms of sin A
and sin® A.

[0 45. Write a program that reads in the value of sin A,
and reads in the quadrant containing A, and then
calculates cos A, tan A, ctn A, sec A, and csc A, using
the identities derived in the chapter.
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and Law of Sines

The next day we received an urgent letter from
the panic-stricken Royal Construction Engineer.
“Help!” Builder wrote. “The gremlin threatened us this
morning! He pointed out that triangles are still very
mysterious. If we know some parts of a triangle, we
can’t always calculate the other parts.”

“We can use the trigonometric functions!”
Trigonometeris exclaimed.

“I know Trigonometeris will say that we can use
the trigonometric functions, but it is not that simple.”
Recordis continued to read Builder’s letter. “We can
easily solve for the unknown parts of any right triangle.
However, just yesterday I was forced to deal with a
triangle that I know contains two sides, each 10 meters
long, and the angle between these two sides is a 100°
angle, but I need to know the length of the third side.”

“We must put a stop to the gremlin’s threats!”
the king cried.

“We should be able to find a general relationship
that works for all triangles,” Trigonometeris said. ‘I am

DT B I
The Triangle with
the Unknown
Parts
. N OO Y
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sure that the trigonometric functions will come to our
rescue once more.” Trigonometeris drew an arbitrary
triangle on the board. He used a, b, and ¢ to represent
the lengths of the three sides, and he used A to
represent the angle opposite side a, the letter B to
represent the angle opposite side b, and C to represent
the angle opposite side c.

Trigonometeris stared at the triangle all morning
and into the afternoon. However, he was unable to
come up with any ideas for a general formula that
would relate a, b, ¢, A, B, and C.

“I told you things would be much simpler if you
had a right triangle,” Recordis told him. “I know how
to break a nonright triangle into two right triangles. All
we need to do is draw the altitude of the triangle.” (An
altitude of a triangle is a line segment perpendicular to
one side of the triangle that connects that side to the
opposite vertex.) In this case we used the letter h to
represent the length of the altitude. (See Figure 7-1.)

Figure 7-1

S1

“We can use the pythagorean theorem for each of
those little triangles,” the king suggested.

h% + s = ¢?

“But Builder wants the answer for ¢ expressed in
terms of a, b, and C, not h and s,,” Trigonometeris
protested.

“We know these equations are true,” the
professor suggested:

h = asin C s, = b — s,
s; = acos C

“Therefore, s; =b —acosC

100 Law of Cosines and Law of Sines




“We can now use the substitution principle from
algebra,” Recordis said. “The substitution principle
says that if two quantities are equal, we have the right
to substitute one quantity for the other in any equation.
In our case we want to substitute the expressions we
have found for h and s, into the equation

h? + s3 = ¢?
The result was
¢? = (asin C)* + (b — a cos C)?
= a*sin* C + b* — 2ab cos C + a® cos* C
We rewrote that equation as
c? = a*(sin®* C + cos* C) + b* — 2abcos C

“We know sin® C + cos® C = 1, for any value of
C!” Trigonometeris exclaimed, elated that the identity
we had discovered just the day before had already
turned out to have a practical application. Therefore,

¢ = a* + b*> — 2abcos C

“That formula is much simpler than I thought it
could possibly be,” Recordis admitted. “And it is just
the formula Builder needs to solve his current
problem.” (See Figure 7-2.)

Figure 7-2

We inserted the valuesa = 10, b = 10, and C =
100° into the formula, and came up with the result

c? = 10% + 102 — 2 x 10 X 10 cos 100°
234.73
c = 15.3

“Every triangle in the world will have no choice
but to obey this law,” Trigonometeris said.

“We must think of a good name for it,” Recordis
said.

We decided to call it the law of cosines since it
contained a cosine.
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Law of Cosines
bl e e =

@ 0

%

N

The law of cosines is useful when you
know two sides of a triangle and the angle
between those two sides. Let a and b
represent the lengths of the two sides, and let
C represent the angle between these two sides.
Then the third side (c) can be found from the
formula

c? = a? + b?> — 2ab cos C

22 ]

@__ )

“Hold everything!”’ Recordis suddenly panicked.
“You said this rule holds for all triangles. But we know
it cannot hold for right triangles, because then the
Pythagorean theorem holds:

¢ —"a® + b?

For a few awful moments we were filled with
dread. However, the professor saw a way out of the
dilemma. “Look at what happens if C = 90°—in other
words, if the triangle is a right triangle. Then,
cos C = 0, and then the law of cosines becomes the
same as the regular Pythagorean theorem,

c? = a%? + b?

“We were lucky that time,”” Recordis breathed a
sigh of relief. “It would have been terrible if we
discovered a new rule that contradicted something we
had done before, especially something as vitally
important as the Pythagorean theorem.”

The king noticed another interesting feature. If C
is less than 90°, then cos C is positive and c¢* will be
less than a® + b? On the other hand, if C is greater
than 90° then cos C is negative and ¢? will be greater
than a* + b2

As we continued to read Builder’s letter we
found another problem. “I have another triangle for
which the three angles must be 80°, 60°, and 40°. I
know that the side opposite the 80° angle must be 10
meters long, but I need to know the lengths of the other
two sides.”

We found that we could not use the law of
cosines because we only knew the length of one side.
“Maybe we can discover a new law,” Trigonometeris
said confidently. We looked at the picture of the
triangle again. (See Figure 7-3.)
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Figure 7-3

“I'm sure you will say we should derive a law
called the law of sines, so the sine function won't feel
left out,” Recordis said. He tried to think of some
equations that involved some sines:

= sin A

sin B

=] ilsmer s

“We can solve both those equations for h,” the
professor suggested.

h
h

b sin A

a sin B

il

“Now we can say
bsin A = asin B

We rewrote that equation using the rules of
fractions:

bt W, 0
sin B sin A

“This equation will also be true for all triangles,”
the king said. We called this the law of sines.

@ )

Z i I ——

Law of Sines
I ey ek T ol BEENRTET

Let a, b, and c¢ be the lengths of the
sides of a triangle, and let A, B, and C be the
angles opposite those sides. Then,

o ML ey
sinA sinB sinC

V72

g )
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Note that we can include c/sin C in this equation since
the same argument would work in that case. See
Exercise 39.

(¥4
&S

)

Next, we solved Builder’s problem. We let a
represent the length of the side opposite the 40° angle
and we let b represent the length of the side opposite
IR the 60° angle. Then, according to the law of sines, these
/N two equations must be true:

10 1 a
sin 80°  sin 40°
10 b

sin 80°  sin 60°

We solved these equations and found a = 6.527 and
b = 8.794.

Builder described another problem: a triangle
had two sides equal to 49 and 40, and an angle of
35.256°. Before Recordis could finish reading,
Trigonometeris cried, ‘“We will use the law of cosines!”

“I'm afraid that won't work in this case,”
Recordis said. “Builder says that the 35.256° angle is
not between the two known sides. Remember that the
law of cosines works when you know the lengths of
two sides, and the angle that is between them. Builder
says that the 35.256° angle is next to the side of length
49.”

“We should be able to use the law of sines,
then,” Trigonometeris said. He drew a diagram. (See
Figure 7-4.) Then he wrote an equation:

Figure 7-4

49 40

35.256° c

49 X sin 35.256°
40

sin C =

= .7071

Trigonometeris happened to recall that
.7071 = 1/V/2 = sin 45° so he confidently announced
that C = 45°. (In Chapter 10 we develop a more
systematic way to determine the size of an angle if the
value of its sine is known.)

“That’s not right,” Recordis argued.
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“It has to be right!"" Trigonometeris exclaimed.
“We have proved that the law of sines works for all
triangles.”

“The triangle you have drawn (Figure 7-4) is an
acute triangle. However, if you had let me finish
Builder’s letter, I could have told you that Builder’s
triangle is an obtuse triangle.”

Trigonometeris and Recordis were about to have
a violent argument when the king realized something.
“We know sin C = .7071, which is true if C = 45°.
However, this is also true if C = 135°.”" So, he drew a
new triangle. (See Figure 7-5.)

Figure 7-5

49
40

35.256°

“This means that the original specifications we
were given were ambiguous,” the professor said. *“We
were given the lengths of two sides of the triangle, and
the size of one angle other than the angle between the
two given sides. There are two possible triangles that
meet those specifications, one obtuse and one acute. If
we had not been given the additional information that
we were looking for an obtuse triangle then we would
have been stuck.”

Recordis read the final part of Builder’s letter.
“The gremlin gave me one final challenge. He asked me
to draw a triangle with sides of 40 and 15, with a 35°
angle next to the side of length 40, but not between
that side and the side of length 15.”

We set up the equation from the law of sines,
using C to represent the angle opposite the side of
length 40:

40 X sin 35°
15

1.529

“No!” Recordis screamed. ‘“That violates the Law
of Possible Values for the sine function! We cannot
have sin C greater than 1.”

sin C

“The gremlin is trying to trick us,” the professor
guessed. “I bet there is no triangle in existence that
meets those conditions.”
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We drew a diagram and were able to convince

ourselves that it is impossible to draw a triangle with
a 35° angle next to a side of length 40 which also
contained a side of length 15 that was not adjacent to
the 35° angle. (See Figure 7-6.)

Figure 7-6

40 15

35°

The professor developed a summary of the rules

for solving triangle problems, depending on what
information you had been given:

Solving Triangles

1. If you know two angles of a triangle, then you
can easily find the third angle (since the sum of
the three angles must be 180°).

2. If you know the three angles of a triangle but
do not know the length of any of the sides, then
you can determine the shape of the triangle, but
you have no idea about its size.

3. If you know the length of two sides (a and b)
and the size of the angle between those two sides
(C), then you can solve for the third side (c) by
using the law of cosines:

¢? = a® + b? — 2abcos C

4. If you know the length of one side (a) and the
two angles next to that side (B and C), then you
can find the third angle (A = 180° — B — C) and
then use the law of sines to find the remaining two
sides:

b
c

5. If you know the length of the three sides, then
use the law of cosines to find the cosine of the
angles:

a sin B/sin A

a sin C/sin A

il

a® + b? - ¢*
2ab
You may find similar expressions for cos A

and cos B. (The professor was beginning to wonder
how you could solve for the value of C if you

e (C =
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knew the value of cos C. We investigate that
problem in Chapter 10.)

6. If you know the length of two sides (b and c¢)
and the size of one angle other than the one
between those two sides, then there are three
possibilities. Suppose you know angle B. Then use
the law of sines:

csin B
b

a. If ¢ sin B/b is less than 1, then there are two
possible values for C, one obtuse and one acute,
and there are two triangles that satisfy the given
specifications. This is called the ambiguous case.

Sy G =

b. If ¢ sin B/b = 1, then C is a right angle, and
there is only one triangle that satisfies the given
specifications.

c. If c sin B/b is greater than 1, there is no
triangle that satisfies the given specifications
(since sin C cannot be greater than 1).

“It can’t be too much longer before the bridge is

finished,” Recordis said. “There can’t be very many
more problems the gremlin could confront us with.”

In Exercises 1 to 10, you are given two sides of a

triangle and the angle between those two sides.
Calculate the length of the third side.

1. 12, 16, 20°
2. 100, 200, 150°
3. 1,100, 45°
4. 36,5, 23°
5. 17, 18, 60°
6. 105, 56, 25°
7. 20, 2,63°
8. 28,96, 67°
9. 61, 34,17°
IOANGERETISNGR
In Exercises 11 to 13, you are given the lengths
of the three sides of a triangle. Calculate the three
angles.
Tileml5 015, 0l 5
12. 10, 10, 10V2
13. 2,2,2V3

Exercises
LN AT S AT
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14. Consider a triangle that has a 30° angle opposite a
side of length 20. One of the sides adjacent to the 30°
angle has length 20V/3. Calculate the length of the third
side.

15-24. Calculate the missing parts of the triangles
shown in Figure 7-7.

Figure 7-7

21
70°
/\
50° 20°
5 6
23. 24,
5
3
36.87° 45°
4 j 5

25. Suppose you are piloting an airplane with an
airspeed of v in a direction of A north of east. The
wind is blowing with a velocity of w in a direction B
north of east. Let's put the tail of the wind vector on
the tip of the airspeed vector. Then we can draw a new
vector that starts at the base of the airspeed vector and
ends at the tip of the wind vector. This vector
represents the plane’s groundspeed—that is, its speed
relative to the ground. (See Figure 7-8.) Let s represent
the magnitude of the groundspeed vector. Write a
formula that expresses s in terms of v, w, A, and B.
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Figure 7-8

w Wind speed

East

In Exercises 26 to 34, you are given values for
the airspeed v, the wind speed w, and the two angles A
and B. Calculate the groundspeed (s).

w v A B
26. 20 600 10° 30°
2778 20 600 10° 120°
28. 20 600 10° 51
29, &) 400 45° 10°
30. 5 400 45° 40°
8l 5 400 45° 180°
32} 2 500 60° 70°
33. 2 500 60° 0°
34. 2 500 60° 200°

35. What does the formula say about s if the wind is
in the same direction as the plane is traveling (B = A)?

36. What does the formula say about s if the wind is
blowing in the opposite direction to that the plane is
traveling (B = 180° + A)?

37. What does the formula say about s if the wind is
blowing at right angles to the plane’s direction of travel
(B = 90° + A)?

38. Suppose the plane’s groundspeed equals its
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airspeed, but the windspeed is not zero. Find a formula
for cos (B — A).

39. Show that we may include c/sin C in the law of
sines:

a b ¢
sinA sinB sinC

Suppose that the planets move around the sun in
perfectly circular orbits. (See Chapter 5, Exercise 84 for
a table that lists the distance from each planet to the
sun.) In Exercises 40 to 50, you are given the angle
between the planet and the sun as seen from Earth at a
particular time. Calculate the distance from Earth to the
planet.

40. Mercury 5°  44. Mars 10° 48. Jupiter 160°

41. Mercury 20° 45. Mars 170°  49. Saturn 15°

42. Venus 10° 46. Jupiter 20° 50. Saturn 165°

43. Venus 40° 47. Jupiter 90°

51. Show that this formula is true for any triangle:
a=bcosC + ccos B

This is called a projection formula. You can find a
similar formula for b and c.

*52. Show that these formulas are true for any

triangle:
a+b cos[}A — B) a—bzsin[é(A—B)]
c sin (3C) G cos (3C)

These formulas are called Mollweide’s formulas. You
can find similar formulas for (b + c)/a, (b — ¢)/a,
(c + a)/b, and (c — a)/b.

*53. Show that for any triangle these formulas are

true:
@ =13 _ tan [3(A — B)]
a+b tan [3(A + B)]
b—-c tan[}{B - C)]

b+ c tan [§B + C)
c —a _ tan [$C
c+a tan [3(C + A)

|
e

These formulas are called the law of tangents.

*54. Derive Hero's formula. If you have a triangle
with sides of length @, b, and ¢, and we let s =

(@ + b + c¢)/2, then Hero’s formula says that the area of
the triangle can be found from this formula:

Area = V/s(s — a)(s — b)(s — ¢)
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Trigonometric
Functions

Builder returned to Capital City the next day
riding in his latest invention, a wagon with spring
suspension. ““The bridge is almost finished,” he said

— cheerfully.

The Bouncing
Wagon

“Then we must plan for the celebration!”
Recordis exclaimed.

That evening Builder took us for rides in the
wagon. The wagon had a large light on the top so we
could see the way. Trigonometeris decided to take a
picture of the wagon while the rest of us went for a
short ride.

“I have only one problem with the wagon,”
Builder explained. “As long as the wagon is traveling
on nearly level ground, or on ground with only small
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bumps, everything is fine. However, if the wagon ever
hits a large bump. . . ."" He was interrupted suddenly

when the wagon hit a large bump. The wagon started

bouncing smoothly up and down.

“I'm getting seasick,” Recordis complained. It
was several minutes before the wagon's up-and-down
motion began to slow.

“The springs cause the wagon to move up and
down like that,”” Builder explained. “I still need to
figure out a way to cause the spring’'s motion to damp
out and come to a stop much more quickly than it does
now."”’

Suddenly we heard an anguished cry from
Trigonometeris. ‘‘The shutter was stuck open!” he
cried. He stood next to the camera tripod and sobbed.
“The shutter was open the entire time you were riding
in front of the camera,” he said sadly.

The professor thought we should develop the
picture anyway. We were amazed when we got the
picture back from the darkroom. (See Figure 8-1.)

Figure 8-1

“What is that?”’ Recordis asked in awe.

“I know what happened,” the king said. “This is
a time-exposure photograph. We are seeing the pattern
of motion of the light at the top of the wagon. It was
too dark for anything but the light itself to show up in
the picture.”

“We should be able to think of a function that
describes that graph!" the professor said excitedly.
“When we did algebra we found we were able to
understand a curve better if we were able to find a
mathematical function that could be represented by the
curve.”

“We don't know of any function that goes up
and down like that!" Recordis complained.

‘“Let us state the problem more precisely,” the
professor said. ‘“Our graph always repeats the same
pattern. This is the part of the pattern that is always
repeated.” (See Figure 8-2.)
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Figure 8-2

The Periodic
Function
T T T R

Figure 8-3

114 Graphs of Trigonometric Functions

“The graph we are interested in could be formed
simply by drawing that one pattern over and over
again,” the king agreed.

“I have an ingenious idea,” the professor said as
modestly as she could. “When we have a function that
periodically repeats the same pattern, we will call it a
periodic function, and we will call the length of the
pattern the period of the function.”

The professor went on excitedly. “Let’s use f(q)
to represent our mysterious periodic function. To find
the identity of the mysterious function, we will need to
find some clues. Let’s say p is the period of the
function. Then, suppose we know the value of f(q,) for
some particular value q,. For example, suppose f(q:) =
3. Then, if we move along the function a distance equal
to one period length, we know that the value of the
function must be the same:

fla: + p) =1
“Or, in general,
fl@ + p) = flq)
for any value of q.” (See Figure 8-3.)

flgr) =
fla: + p)

|
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|
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“You would also get the same value for the function if
you move along the function a distance of two period
lengths,” the king said.

fl@ + 2p) = f(q)

“Or, the result would be the same if you move a
distance of 3p or 4p or 5p. . . ."” The professor got
carried away.

fl@ + 5p) = f(q + 4p)
= f(q + 3p)
= flg + 2p)
= fl@ + p)
= f(q)

“That is all interesting, but it does not give us a
clue to the identity of the mysterious function,”
Recordis interrupted. “We don’t know of any real
functions that are periodic.”

The professor spent hours trying to think of a
periodic function, but she had no success. Recordis
doubted that any periodic functions did in fact exist,
but he took some consolation from the fact they
were working on a problem that did not have anything
to do with trigonometry. Finally, he decided to needle
Trigonometeris by playing a game.

“I'm thinking of an angle expressed in radian
measure,” Recordis told Trigonometeris. “The sine of
this angle is equal to 1/\/2. Now, you tell me what
angle I am thinking of.”

“That’s easy as pi,”” Trigonometeris said. “‘“The
angle is w/4.”

“Wrong!” Recordis exclaimed.

“What?"’ Trigonometeris screamed. ‘“That-has to
be right!” But Recordis resolutely shook his head.

“I admit that sin (n/4) = 1/A/2,” he said. “But
that’s not the angle I am thinking about.”

“I see,” Trigonometeris suddenly realized. ‘““This
is a trick question. The angle is 3n/4.”

“Wrong again!”’ Recordis said. “I bet you’ll never
guess it!”

Trigonometeris started screaming that Recordis
still did not understand trigonometric functions, but
then he realized another possibility. “The angle could
be (2w + m/4).” Recordis shook his head. “It could be
(4w + m/4),” Trigonometeris guessed. Again Recordis
shook his head.

“This is impossible for me to guess!”
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Trigonometeris cried. “We know that an angle remains
exactly the same if you add 27 to it. Therefore,

sin T CHEE D)
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4
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= = ™
4

O
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4

“Or for any value of x, we know that
sin X = sin (x + 2m)

= sin (x + 4m)

sin (x + 67)

“I bet you never would have guessed my angle,”
Recordis said. “‘I was thinking of (2,316,978w + w/4).”

“Will you two be quiet!” the professor cried. “I
am trying to think of a periodic function.” She
suddenly noticed the string of equations that
Trigonometeris had written on the board.

“That’s it!"”’ she realized. “The sine function is a
periodic function! Whenever you increase x by 2,
then the value of the sine function remains the same.
Therefore, sin x = sin (x + 27) and therefore the sine
function is a periodic function with a period length of 2=.’

“Of course!”’ Trigonometeris realized. “Why
didn’t I think of that!”

“That still doesn’'t mean that the sine function is
the correct function to describe the motion of the
spring-driven wagon,” Recordis cautioned. (He was
miffed that this had turned into a trigonometry problem
after all.)

“There is only one way to proceed,”
Trigonometeris said. “We must make a graph of the
function y = sin x to see what it looks like.”

“It takes a lot of work to draw a graph of a
function!” Recordis complained, “‘and we know who
ends up doing most of the work around here. To draw
this graph I will need to look carefully at the table of
values and draw a lot of dots. Then I will need to see if
I can connect the dots with a smooth curve.”

“I will be extraspecial nice to you if you do this
for me,” Trigonometeris promised. “I can already tell
you one point on the graph: (x = 0, y = 0) will be a
point, since sin 0 = 0.”
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“Wait a minute,” Recordis said. ‘‘First we must
figure out the vertical scale and the horizontal scale of
the diagram.”

“The vertical scale will be easy.” Trigonometeris
said. ““We know that the sine function never reaches a
value greater than 1, and it never reaches a value
smaller than — 1. The horizontal scale will be harder,
since we will want the graph to cover all possible
values of x. Therefore, we must start at x equals minus
infinity and continue until x equals plus infinity.”

Recordis fainted.

“It will be much easier than that!"’ the king said.
“We only need to draw the graph for x = 0 to x = 2. The Graph of the
Because the function is periodic, we know it will Sine Function
always repeat the same pattern.”

Recordis revived and set to work. Trigonometeris
read off the first few entries from the sine table.

Degrees Radians Sin
1 0.01745 0.01745
2 0.03491 0.03490
3 0.05236 0.05234
4 0.06981 0.06976
5 0.08727 0.08716

Very carefully, Recordis put a dot on the diagram that
matched each of these points. (See Figure 8-4.) The whole

Figure 8-4
sin x
[ J
.08 +
[ ]
.06 +
[ ]
04 1
[ ]
.02 +
[ ]
0.05 0.10
X (radians)

Graphs of Trigonometric Functions 117




process took a long time. However, as he added more
and more dots, it became clear that the graph of the
sine function was a smooth, graceful curve.

“It’s beautiful!” Trigonometeris said in awe as
the picture grew.

Recordis labored over the diagram for hours. We
could see the curve was approaching a dramatic
plateau as x approached ©/2 and y approached 1. (See
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