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Introduction
This book tells of adventures that occurred in a faraway fantasy kingdom
called Carmorra. During the course of these adventures, the people de-

veloped a brand-new subject, trigonometry. By reading this book you
can learn trigonometry. The book covers material that is studied in a

high school or first year college trigonometry course.

Trigonometry started as the study of triangles. Many applications

of trigonometry involve solving triangles. Engineers, astronomers, nav-

igators, and physicists all need to know trigonometry. However, trigo-

nometry can also be used to solve many problems that are unrelated to

triangles. Oscillating motion, electric current, sound waves, and light

waves can all be described by trigonometric functions. You will also

find a knowledge of trigonometry essential if you study advanced math-

ematics, beginning with calculus.

To appreciate this book you should have a bit of knowledge of

algebra and geometry. You should be familiar with function notation,

such as y = /(x), because we spend most our time in trigonometry study-

ing a special kind of function. You also should know how to identify

points with an xv coordinate system. You should have studied enough
geometry to be familiar with the degree system for measuring the size

of angles, and you should know some of the basic properties of triangles.

This material is reviewed in Chapter 1. If you know geometry well, you
may wish to skip over Chapter 1 to the beginning of the trigonometry

material in Chapter 2.

There are exercises at the end of each chapter to give you practice

Introduction Vll
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with the material. Understanding any mathematical material requires

work. The answers to the exercises are included at the back of the book
so you can check your work. There is no way to avoid some memori-
zation. You should memorize the definitions of the sine, cosine, and
tangent functions, and you should memorize the special values for these

functions. You should not try to memorize all the important formulas,

but you may look these up in the special section at the back of the book.

Stars * mark exercises that are more difficult or that require more
background knowledge.

In the old days trigonometry was a very tedious subject because

of the complexity of the calculations involved. In order to solve a trig-

onometry problem, you needed to look up the values of the trigonometric

functions in a bulky table. These days the work is much easier because

you can obtain a calculator that will calculate the values of trigonometric

functions at the touch of a button. Most of the exercises in the book are

designed to be done with calculators. You should learn how to enter a

number into your calculator and then how to calculate the sine, cosine,

or tangent of that number. If you don't have your calculator with you,

look in the back of the book to find a table of trigonometric functions.

The computer programming exercises, marked with a box, have

been included to illustrate some of the ways in which computers can

be used to help solve trigonometry problems. Many problems, such as

drawing graphs, are very difficult without the aid of computers. Sample
solution programs have been included at the back of the book. These
programs are written in Microsoft BASIC, which is the version of BASIC
commonly used on IBM Personal Computers and compatibles (where it

is known as BASICA or GWBASIC). The programs can be adapted for

other versions of BASIC or for other programming languages.

Computers are especially helpful with calculations that require

several stages, since the computer can store several decimal places dur-

ing intermediate steps. It is appropriate to round final answers to a

convenient number of decimal places, but errors can be introduced if

the intermediate results are rounded. This is particularly important in

trigonometry because, in almost all cases, the results of trigonometric

functions we are working with are decimal approximations.

Radian measure for angles is developed in Chapter 5. After that

both radian measure and degree measure are used. You should become
familiar with both measuring systems, and you should be able to convert

from one to the other. In general you will find that radian measure is

more convenient for mathematical purposes but degree measure is more
convenient for practical purposes when you are measuring angles.

There are a few Greek letters you will need to become familiar

with. You should already recognize the Greek letter pi (tt) as the symbol
for the circumference of a circle that has diameter 1 (and you should
know tt = 3.1416 . . .). The Greek letter theta (8) is often used to rep-

resent angles, but to avoid introducing too many new symbols, we do
not use 6 until Chapter 11. The other Greek letters we use are omega
(a>) for angular frequency, lambda (\) for wavelength, and phi (<J>) for
angles.

The last half of Chapter 4 and all of Chapter 9 cover applications
of trigonometry to physics and music. Chapters 12 to 15 cover material

Vlii Introduction



that requires a deeper understanding of algebra topics, such as complex

numbers, polynomials, and conic sections. You may omit these chapters

if you like. The advanced sections are marked with stars *.

When you first study trigonometry you are likely to find the sub-

ject baffling because of the new symbols used. At the beginning of the

story the characters are in the same position you are now. They don't

know trigonometry either. During the course of the book, they learn

trigonometry, just as you will. Once you become familiar with the tri-

gonometric functions you will see that they make it possible to discover

concise, elegant solutions for many problems (although you probably

will not come to regard the trigonometric functions with the same degree

of devotion shown by Alexanderman Trigonometeris).

The chapter on spherical trigonometry is new in this edition, and

there have been several other smaller additions and improvements.

Good luck. You're now about to set out on the journey of learning

trigonometry.

Introduction IX





It rained for days. Everybody in the entire

kingdom of Carmorra was forced to stay inside to avoid
the drenching downpour. I took refuge in the king's

palace along with the other members of the Royal
Court. (I had been residing in the palace since I had
been stranded in the strange faraway land of Carmorra
by a shipwreck.)

Marcus Recordis, the Royal Keeper of the

Records, stared dolefully out the Main Conference
Room window. "Rain rain, go away; come again some
other day," he sighed. He watched the rainwater slide

off the sloped roof of the palace. "I think we should
change the tilt of the roof," he remarked. "If we made
the roof steeper, then the water would run off the roof

more easily."

Gerard Macinius Builder, the Royal Construction
Engineer, looked up from the drawings he was using to

The
Rainstorm



Figure 1-1
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Measuring
Angles

plan his latest building project. "If you want to change
the steepness of the roof, you will have to be very

specific and tell me precisely how much tilt you
want."

"I don't know how to measure the amount of tilt

of a roof," Recordis complained. But Builder had other

problems. He was staring at his drawings in

puzzlement.

"Most of the walls in this building will meet to

form square corners," Builder said. "However, at one
location two walls will meet but they will not form a

square corner. Before I can proceed I must have a way
to precisely measure the angle between two walls."

Professor Stanislavsky, the country's leading

pure scientist, was relaxing by practicing pool. She
prepared to take aim for a particularly tricky shot. (See

Figure 1-1.)

"I need to hit the cue ball against the wall and
have it bounce back to hit the eight ball," she

explained to Recordis. "I need to calculate my
direction of aim. I wish we had a more precise way to

measure directions."

The King of Carmorra had been staring

thoughtfully out the window listening to the

conversation. His face was careworn from the pressures

of being a fair ruler. He had led the kingdom through

many exciting moments. Some of the most memorable
adventures had occurred while we were discovering the

subject of algebra. Finally, an idea struck him. "I know
how to find the solution to all these problems," the

king announced. "We need a way to measure angles!"

"First we had better define precisely what we
mean by the word angle," Recordis said. He pulled out

one of his trusty notebooks. Since his job required him
to keep a written record of every significant event that

happened at the royal court, he always kept several

notebooks at his side and several pens and pencils

stuck behind his ear.

"That's easy," the professor said. "An angle is a

place where two lines cross each other." She drew a

picture. (See Figure 1-2.)

"It looks to me as if a crossing place between
two lines forms four angles," Recordis said.

"To avoid that problem we will say that an angle

is a place where the end points of two rays meet each
other," the king said. "Remember that a ray is like half

a line. A line goes off to infinity in two directions, but
a ray has one ending point and then it goes off to

infinity in one direction." (See Figure 1-3.)

2 Angles and Triangles



Figure 1-2
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"The beam of light from Pal's toy ray gun is like

a ray," Recordis remembered. "The beam starts at the

gun and then goes off to infinity in a straight line." (Pal

was a friendly giant who often helped the people of

Carmorra when they were in trouble.)

"We'll call the point where the two rays meet
the vertex of the angle," the professor suggested. She
liked to make up new names for new things. "We will

call one of the rays the initial side and the other ray

the terminal side."

We drew some angles. (See Figure 1-4.)

"Some angles are very sharp and other angles are

very blunt," Recordis said.

Angles and Triangles 3



Figure 1-4
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"We should call a square corner a right angle,

since that is the right type of angle to use when you are

building a house," Builder suggested. We also said that

two lines were perpendicular if they met to form a

right angle.

We decided to use the term acute angle for an
angle sharper than a right angle. We also coined the

term obtuse angle for an angle larger than a right angle.

"You get a very strange angle if the two rays

point in opposite directions," the professor said. "In

that case the angle looks as if it is really a straight line,

so we should call it a straight angle."

"We can measure angles by stating what fraction

of a straight angle the angle fills," the king suggested.
"Then a straight angle would measure 1, a right angle
would measure i and so on."

"That method will involve too many fractions!"
Recordis complained. "I would much prefer a system

4 Angles and Triangles



in which the most commonly used angles, such as half

of a straight angle, one-third of a straight angle, and so

on, are all represented by whole numbers. Let's pick a

big number that is divisible by lots of other numbers to

represent a straight angle." Recordis decided that he
wanted to use a number divisible by all these numbers:
2, 3, 4, 5, 6, 9, 10, 12, and 15. Arte/ some calculation

we found that 180 was the smallest number divisible

by all these numbers, so the king issued a Royal
Decree.

a£)

A straight angle will have a measure of

180 degrees, which we will write as 180°. A
right angle measures 90°; an angle that is one-

quarter of a straight angle measures 45°; an
angle that is one-sixth of a straight angle

measures 30°; and so on. (See Figure 1-5.)

^ ^^

%

(The professor had pointed out that we needed a

name for the units we were using to measure angles, so

y 120°

180°

Straight angle

90°

~l

/ 45°

Right angle

1 .

Figure 1-5
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Figure 1-6

Recordis suggested the name degree because he liked

detective novels in which people were charged with
counts to the first degree and counts to the second
degree. We decided to use a little raised circle ° as the

symbol to represent degrees. We later found that it was
useful to develop another system for measuring angles,

called radian measure. According to radian measure, a

straight angle measures tt, where it is a symbol for a

special number that is about equal to 3.14159. See
Chapter 5. In radian measure a right angle measures
Till.)

"Now we need to invent a device that we can
use to measure angles," the professor said. "We use
rulers to measure distances, but we cannot use rulers to

measure angles." After some discussion, we designed a

device shaped like a semicircle with numbers running
from to 180 along the edge. We called this device a

protractor. (See Figure 1-6.)

The Raging
River Flood

The professor wanted to try her new device, so

she quickly measured every angle in sight. Soon she

had measured every single angle in the Royal Palace, so

she had to wait for the end of the storm before she
could go outside and measure more angles.

However, as soon as the rain stopped,
catastrophe struck. The waters of the Raging River
started to rise, threatening to flood the distant town of

Peaceful Bay.

"We must build a dike to protect the people!"
the king exclaimed. Builder quickly sprang into action
and built a dike. However, the waters pushed against
the dike and the dike began to tilt dangerously.

6 Angles and Triangles



"I need a more rigid shape!" Builder cried.

"What is the most rigid shape in the world?"

We quickly constructed several test shapes. We
constructed squares, pentagons, hexagons, decagons,

and many others. Each shape had unbending sides but

flexible hinges at each vertex, and Pal had no trouble

bending each one out of shape.

"There's only one shape we haven't tried yet,"

Recordis said breathlessly. "We haven't tried the

simplest shape of all—a triangle."

"A triangle?" the professor exclaimed
skeptically. However, Builder quickly constructed a

triangle and Pal was unable to bend it out of shape.

"The triangle is perfectly rigid!" Builder said in

astonishment. "This is a fundamental fact that will

help with the design of many different construction

projects."

Builder quickly constructed a triangularly

shaped support tower for the dike, and the waters were
brought under control. The town was saved.

In honor of the triangle, we constructed a new
park in the middle of Capital City called Central Plaza

Triangle. The professor suddenly became interested in

the entire subject of triangles. Previously she had
scorned triangles as being too simple to be worthy of

serious scientific investigation. However, during the

next week she conducted a very detailed investigation

of all types of triangles. "There are more different types

of triangles than you might imagine," she said. She
decided to write a book on triangles. The writing

process took a long time, since she told us that she
spent hours contemplating each word. Finally she was
finished, and we were all impressed when she gave us
the first copy of the book to put in the Royal Library.

She graciously gave me permission to reprint the book
here.

Triangles to

the Rescue

Complete Guide to Everything

Worth Knowing About

Triangles

by Professor A. A. A. Stanislavsky. Ph.D.. etc.. etc.

A triangle consists of three line segments
joined together end to end. The three points where
the line segments meet are called the vertices. The
three line segments are called the three sides of

the triangle. A triangle contains three angles.

Complete Guide to

Triangles

Angles and Triangles 7



If you add together the three angles in any
triangle, the result will be 180°.

The area of a triangle is equal to | x base x

altitude. You may call one of the three sides the

base. Then the altitude is the perpendicular

distance from the base to the opposite vertex.

If the three sides of a triangle are equal, then
it is called an equilateral triangle. An equilateral

triangle contains three 60° angles.

If two sides of a triangle are equal, then it is

called an isosceles triangle. In an isosceles

triangle, the two angles opposite the two equal

sides will be equal to each other.

If the three sides of a triangle are all

unequal, then it is called a scalene triangle.

If a triangle contains one 90° angle, then it is

called a right triangle. The longest side of a right

triangle is called the hypotenuse. It is the side

opposite the right angle. The two other sides are

called the legs. The two other angles must add up
to 90°. (If two angles add up to 90°, then they are

said to be complementary angles.)

If c is the length of the hypotenuse, and a

and b are the lengths of the two legs, then

c
2 = a

2 + b
2

(This result is known as the Pythagorean theorem.)

If all three angles of the triangle are less

than 90°, then it is called an acute triangle. If one
angle is greater than 90°, then it is called an obtuse

triangle. (See Figure 1-7.)

Two triangles are congruent if they have the

same shape and size. If you could pick up one of

the triangles and put it on top of the other, then

the two triangles would fit together perfectly. Let's

call one of the triangles "triangle 1" and the other

triangle "triangle 2." Each side of triangle 1 is the

same length as its corresponding side on triangle

2. Each angle of triangle 1 is the same size as its

corresponding angle on triangle 2.

Two triangles with the same shape but

different sizes are said to be similar triangles. For

example, the real Central Plaza Triangle is exactly

the same shape as the picture of Central Plaza

Triangle on Recordis's map of Capital City.

However, the real triangle is obviously much larger

than the triangle on the map. Or, suppose we put a

slide containing a picture of a triangle in a

8 Angles and Triangles



Equilateral triangle

Isosceles triangles

Right triangle

Acute triangle

Obtuse triangle

Figure 1-7

projector. Then, the image of the triangle on the

screen is similar to the image of the triangle on the

slide. (See Figure 1-8.)

Let's imagine that we are looking at any pair

of similar triangles. Each angle on the big triangle

is the same size as its corresponding angle on the

little triangle. Now, let's compare the length of

each side of the big triangle with the length of its

corresponding side of the little triangle. Let's

imagine that one side of the big triangle is 10

times longer than its corresponding side on the

little triangle. That means that aJJ the sides of the

big triangle will be 10 times longer than their

corresponding sides on the little triangle. Or, if

one side is twice as long as its corresponding side,

then all the sides will be twice as long as their

corresponding sides. This means that the

corresponding sides of similar triangles have the

same proportion.

Angles and Triangles 9



Figure 1-8

Congruent triangles

Triangle 1

Corresponding a^ = a2

sides are

equal: &i = fc>

Cl = C2

c2

Triangle 2

Corresponding A, = A2

angles are

equal: Si = Sz

d = Cz

Similar triangles

Little triangle Big triangle

Corresponding

angles are

equal:

Corresponding

sides are in

proportion:

A, = A2

B, = &
d = Cz

3z toz Cz

ai Di Ci

(We used capital letters for angles and lower
case letters to represent the lengths of the sides.)

Triangles are very useful for construction

purposes because they are rigid. That means that a

triangle with rigid sides but flexible hinges cannot
be bent out of shape. Any other polygon with rigid

sides but flexible hinges can be bent out of shape.

Little did we suspect at the time that this was
just the beginning of a rather remarkable set of

adventures. We started out studying triangles, but along
the way we made many other discoveries that were
only slightly related to triangles.

1 Angles and Triangles



We gave a special name to an angle with a vertex at

the center of a circle. This type of angle is called a

central angle. (See Figure 1-9.) Note that the two
sides cut across the circle. The piece of the circle

between the two sides is called an arc.

Notes to

CHAPTER 1

Figure 1-9

Suppose we need to measure a very small angle.

For example, we might want to measure an angle

that measures 0.05°. In that case we can express the

angle in terms of minutes, where 1 minute = ik of a

degree. Therefore,

and

1 minute = 0.0167°

3 minutes = 0.05°

If we need to measure very, very small angles, then
we can express the angle in terms of seconds,
where 1 second = m of a minute. Therefore,

1 second
3600

degree = 0.0002778 c

When writing a very small number like that, it is

convenient to use scientific notation. In scientific

notation, the number 0.0002778 is written as

2.778 x 10

"

4
. A number in scientific notation is

expressed as the product of a power of 10 (in this

case, 10
-4

) multiplied by a number between 1 and
10 (in this case, 2.778).

Angles and Triangles 1

1



Exercises in the table for right triangles

For Exercises 1 to 8, fill in the missing elements

Short leg Long leg Hypotenuse

1. 3 — 5

2. 6 8 —
3. — 12 13

4. 7 24 —
5. 1 1 —
6. 1 3 —
7. 41.955 — 65.27

8. — 2.9544 3

Find the angle that is complementary to each of

the angles in Exercises 9 to 14.

9. 45°

10. 30°

11. 60°

12. 75°

13. 90°

14. 22.5°

For each of the triangles in Exercises 15 to 20,

two angles are given. Calculate the size of the third

angle.

15. 45°, 45°

16. 30°. 90°

17. 60°, 60°

18. 10°, 10°

19. 100
3

, 70

20. 20°, 90°

The angle between the two equal sides of an

isosceles triangle is given for Exercises 21 to 25.

Calculate the size of the other two angles.

21. 100'

22. 80°

23. 90°

24. 140

25. 40°

1 2 Angles and Triangles



*26. What will be the sum of the angles in a

quadrilateral?

*27. What will be the sum of the angles in a pentagon?

*28. What will be the sum of the angles in an n-sided

polygon?

*29. Prove that the sum of the angles in a triangle is

180°.

*30. Prove that, in an isosceles triangle, the two angles

opposite the two equal sides are equal to each other.

Convert the angles in Exercises 31 to 34 from
degrees to degrees-seconds-minutes.

31. 16.5°

32. 22.333°

33. 2.22 x 10" 3 degrees

34. 0.202°

Convert the angles in Exercises 35 to 38 from
degrees-seconds-minutes to decimal degrees.

35. 12° 15 minutes

36. 34° 50 minutes

37. 4 seconds

38. 5° 14 minutes 4.8 seconds

Angles and Triangles 1
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Solving
Right Triangle

Problems

The Height of the
Tree

Long before Christmas the members of the royal

court began making plans for the large Christmas tree

to be displayed in Central Plaza Triangle. We went into

the forest and found just the tree we wanted. Builder,

as usual, prepared to do the actual work involved with
cutting down the tree and setting it up. However, he
needed to know the height, of the tree before he could
begin. (Figure 2-1 illustrates the situation.)

"We're in real trouble now!" Recordis exclaimed.

"There is no way that I can climb that tree with my
tape measure! I can easily measure flat things, but not
trees!" To prove that he still could measure some
things, Recordis stretched out his tape measure and
determined that the shadow of the tree was exactly 50
feet long. "However, I don't see how this information is

going to help us." he said glumly.

14
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Shadow

Figure 2-1

"Do we have any other information?" the

professor asked. "I always say, 'When confronted by a

difficult problem, the more information you have, the

better."'

The king paced nervously back and forth. He did

not want to be the one to tell the townspeople that

there would be no tree this year. Recordis didn't have
anything else to do, so he decided to measure the

length of the king's shadow. "This is interesting," he
said. "Your shadow is exactly as long as you are tall."

"That means that the sun's angle of elevation is

exactly 45°," the king said.

"Therefore, the angle formed by the ground and
the line joining the tip of the shadow to the top of the

tree must measure 45°," the professor observed. "That
might be an important clue." (See Figure 2-2.)

A
/

/
/

/
/

/
/

/
/

/
/

/

Tree

1 m
Shadow

Figure 2-2

"This situation looks familiar," Recordis said.

"I know!" the king said. "We know that the tree

trunk forms a right angle with the ground. Therefore,

the triangle formed by the tree, the ground, and the line

Solving Triangle Problems 1
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Figure 2-3

Figure 2-4

/45°

Tree

/\45° r
I ^nOU

Shadow

connecting the top of the tree to the tip of the shadow
is a right triangle." (See Figure 2-3.)

We marked a small square on the diagram to

show the location of the right angle.

"Since the sum of the angles of any triangle add
up to 180°, we know the other angle in the triangle

must also be 45°," the professor said helpfully.

"This is a special type of triangle," Recordis

said, quickly leafing through the book to look up the

special name (which he had forgotten again). "It has

two angles that are equal. Therefore, it must be an
isosceles triangle, and we know that two sides of an
isosceles triangle are equal. (I dare you to draw a

triangle that has two equal angles but with the sides

opposite those angles not equal.)" His eyes widened as

he suddenly realized the implications of what he had
just said. "Therefore, the height of the tree must be
equal to the length of the shadow—in other words, the

tree must be 50 feet high!" (See Figure 2-4.)

50 Tree

Shadow

"The problem has been solved!" the king said

gladly. "Now every town in the kingdom will be able

to have a tree. We can write down a general procedure
to find the height of any tree."

1. Walk away from the tree until you reach the

point where the angle of elevation of the top

of the tree as seen from the ground is 45°.
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2. Measure the distance from the tree to that

point.

3. The height of the tree is equal to that

distance.

"Let's state this method in a bit more general

terms," the professor said. While she was studying
algebra she had learned the value of writing the

solution to a problem as generally as possible. Then the

same solution method could often be used for many
different problems, thereby saving a lot of work. "In

any particular right triangle, we may choose one of the

nonright angles, which we will call the cmgie of

interest. As we have seen, the longest side of the right

triangle is called the hypotenuse. It is opposite the

right angle. The short side that touches the angle of

interest will be called the near side or the adjacent

side. The other side of the triangle will be called the

far side or the opposite side. (See Figure 2-5.)

Angle of interest

Far side

Near side

Figure 2-5

"Then we may state one general result that will

help us with triangle problems."

t

If the angle of interest in a right triangle

is 45°, then

Far side

// Near side
= 1 or

Opposite side _
Adjacent side

^Z22Z

isys/s

Right triangles that contained two 45° angles

proved to be easy to analyze. However, just as the king

predicted, soon every town wanted its own tree. We
needed to calculate the heights of many different trees.

The problem was that we could not always go to a

Solving Triangle Problems 1 7



point where the angle of elevation of the top of the tree

was 45°. The very next day. we found we needed to

calculate the height of a tree given this information.

(See Figure 2-6.)

Figure 2-6

/\40 c

r

Tree

50

We found that there was a 40° angle formed by
the ground and the line joining the top of the tree to

our viewpoint 50 feet away from the tree. We called

this angle the angle of interest and quickly determined
that the opposite angle was 50°. Recordis drew a

picture of the situation on his sketchpad. (See Figure
2-7.)

Figure 2-7

/50°

0.41955

y\ 4°
c

r
0.5

Sketch of tree

"This is hopeless!" Recordis moaned. "A right

triangle with a 45° angle was easy, but there is no way
to find the length of the far side in this case." Recordis
took great pride in being able to accurately measure
anything, so he began to worry that the others might
think he had lost his touch. "There is one thing I can
do, at least. I can measure the near side and the far side

of the triangle in the little picture I just drew." He
pulled out his most accurate ruler and found that the

near side was 0.5 feet long and the far side was 0.41955
feet long.
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The professor had become intrigued by the ratio

of the far side over the near side in the previous

triangle we had investigated, so she suggested that we
calculate the same ratio for this triangle:

Angle of interest = 40°

Far side 0.41955

Near side 0.5
= 0.8391

"It is easy to calculate a ratio like that for a little

triangle drawn on a piece of paper!" Recordis
exclaimed. "If only this same relationship would be
true for the big triangle formed by the tree and the

ground!" (See Figure 2-8.)

Tree

/ 0.41955

X-MTr S\40° r
0.5 50

Sketch of Real

triangle triangle

"When you think about it, those two triangles do
look the same," the king said. "They both have exactly

the same shape, even though the tree triangle is much
bigger than the picture triangle."

"We decided that triangles with the same shape
but different sizes would be called similar triangJes.

You may read about them in my book if you don't

remember them," the professor told Recordis.

"Consider a pair of similar triangles. If one side of the

big triangle is twice as long as its corresponding side

on the little triangle, then aJJ sides of the big triangle

must be twice as long as their corresponding sides on
the little triangle. In general, the sides of a pair of

similar triangle will all be in the same proportion. We
can see that the near side in the little triangle is 0.5

feet, and the near side in the big triangle is 50 feet.

Therefore, each side in the big triangle is 100 times as

long as its corresponding side in the little triangle."

Little Triangle Big Triangle

Near side

Far side

0.5

0.41955

50

41.955

Figure 2-8

Calculating
Heights with
Similar Triangles

Solving Triangle Problems 1
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The New Ski
Jump

Figure 2-9

"We have found the height of the tree!" the
professor explained. "The tree is 41.955 feet high."

"We have also discovered another useful result

that will help whenever we confront a right triangle

that contains a 40° angle," the king said. "For the small

triangle, we can calculate that

Far side 0.41955

Near side 0.5
= 0.8391

"We will get the same result if we perform the

same calculation for the big triangle:

Far side 41.955

Near side 50
= 0.8391

"In fact, we would get the same result if we
perform this calculation for any right triangle that

contains a 40° angle. Every right triangle containing a

40° angle is similar to every other right triangle that

contains a 40° angle. Therefore, the ratio far side/near

side will be the same for all these triangles." The king

made a formal proclamation.

=^^

^//
In a right triangle, if the angle of

interest is 40°, then

2^

Opposite side

Adjacent side
= 0.8391

"^

^22Z
^/s/s

(This result is only an approximation to the true

result. The true result is a decimal fraction consisting

of an endless list of digits that never repeat a pattern.)

As winter approached, there were many other

preparations that needed to be made. Builder

proceeded to make plans for the new ski jump. "The
ramp will be 25 yards long," Builder explained. "We
have decided that we want the ramp to rise at a 10°

angle." (See Figure 2-9.) "However, I need to know
how high the support tower must be."

D

Support
tower
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"Another right triangle problem!" the professor

said excitedly. However, her excitement faded when
she suddenly realized that we had not solved a

problem like this before.

"In this problem we don't know either the near

side or the far side," Recordis complained.

"We do know the hypotenuse, though," the king

said encouragingly.

"And we know that the angle of interest is 10°,"

the professor said.

Figure 2-10

We drew a little triangle similar to the ski jump
triangle on a paper. (See Figure 2-10.) We used the

letter y to represent the length of the far side. Our
triangle had a hypotenuse of length 0.25 yards, so each
side on the big triangle was 100 times longer than its

corresponding side on the little triangle. "Now we have
to measure the length of y very accurately."

We found that y measured 0.0434 yards.

Therefore, the height of the support tower on the big

triangle must be 100 times that height, or 4.34 yards.

"Now we have enough information to calculate

the ratio of the far side over the hypotenuse when the

angle of interest is 10°," the professor noted. We
calculated

Far side 4.34
0.1736

Hypotenuse 25

"We should save that result in case we confront

any more right triangles containing 10° angles,"

Recordis said.

Angle of interest = 10°

Opposite side

Hypotenuse
= 0.1736

We went to lunch at Joe's Cafe, where we
happened to see the Royal Astronomer sitting glumly at

a corner table. The astronomer had been up all night

^D
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puzzling about a difficult problem. "I have never been

able to measure the distance to a star!" he sobbed. "I

have found the distances to the moon and planets and
most other celestial objects, but the stars are so far

away that I have not yet been able to figure out a way
to measure the distance. I fear that our knowledge of

the universe will remain quite limited unless we are

able to solve this very difficult problem."

"I am sure you will discover something,"

Recordis said encouragingly.

"Even worse, I am now finding problems with^—^—ii^— my equipment," the astronomer continued mournfully.

The Shifting Star "Just last night I was observing a star that I had last

„l^MIM^^^^j observed exactly 6 months ago. I remember the night

well . . . and I found that my equipment measured a

different position for the star! Mind you, the

discrepancy was very slight. It was only 0.8 seconds.

But I like to be exactly precise, and even that much of

an error is too large."

"But 1 second = 1/3600° = 0.000278° = 2.78 x
10" 4 degrees, so 0.8 seconds = 0.000222° = 2.22 x
10

~ 4
degrees. When you say that the discrepancy is

small, you aren't kidding," the professor said.

Recordis tried to cheer up the despondent
astronomer by telling him of our success with triangles.

He described the problem with the trees and the ski

ramp, and concluded by saying, "Now, if you tell us

the size of just one of the angles and one of the sides,

we can calculate the length of the other sides. We need

to draw a little triangle and measure either this ratio,

Far side

Near side

or this ratio,

Far side

Hypotenuse

^^^^^^^^^^^^^ The astronomer listened politely while Recordis—
; began to draw a picture of a right triangle. Suddenly,

The Distance to fae astronomer leapt to his feet. "I have it!" he cried.

the Star "it's obvious now why the star shifted position! Not
555fii^^™^^™sa only that, I know how to calculate the distance to the

star!" He excitedly drew a quick diagram. (See Figure

2-11.) "I had completely forgotten an obvious fact

—

during the course of a year the Earth moves about the

sun!"

"Six months ago, the Earth was on one side of its

orbit. The star appeared to be in the direction shown
here. However, since then the Earth has moved to the

other side of its orbit. In that situation, then, of course

the position of the star as seen against the more distant

background stars must have changed slightly. And in
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Background stars

Earth

6 months
ago

Sun
—v~
1 a.u.

Figure 2-11

this case, we know that the total discrepancy was an
angle of 0.8 seconds = 0.000222°."

The astronomer quickly drew the right triangle

formed by the sun, the star, and the position of the

Earth last night. (See Figure 2-12.)

"Look at matters from the point of view of the

star. Then our angle of interest is one half of 0.8

seconds, or 0.4 seconds = 0.000111°. That means that

the far side is the distance from the Earth to the sun,

which I call 1 astronomical unit (1 a.u.). The near side,

with a length we don't know, is the distance from our
sun to the star. Now, all you need to do is measure the

ratio far side/near side for a right triangle when the

angle of interest is 0.4 seconds, and then we shall have
our answer." We used the letter r to represent the

distance from the Earth to the sun and the letter d to

represent the distance from the sun to the star.

Builder looked aghast when the problem was
explained to him. "It will require extreme precision to
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Figure 2-12 Star

angle of interest

A = 0.4 seconds

Earth

Not to scale

draw a triangle with an angle that small," he cried.

However, he pulled out his best etching equipment and
drew a right triangle with the angle of interest equal to

0.4 seconds, the opposite angle equal to 89° 59 minutes
59.6 seconds, and the near side equal to 1 mile. Then
he carefully measured the far side and found it equal to

0.0000019393 miles. (Drawing a diagram like this is not

an easy way to solve a right triangle problem, but we
later found an easier way.)

Recordis wrote down that result:

Angle of interest = 0.4 seconds

Far side

Near side
= 0.0000019393

"This ratio will hold for any right triangle with a

0.4 second angle, including the big triangle out in

space," the professor said. Therefore,

3 = 0.0000019393
u

From this formula we could calculate
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d =
0.0000019393

Since r = 1 a.u.. we could calculate

d =
\
—

0.0000019393

The approximate result was

d = 516,000 a.u.

The astronomer jumped for joy. "We now have
the answer to the problem that has been eluding us for

years and years! We know that this star is 516,000
times farther away than the sun is. This method of

triangles will be very useful—we will be able to find

the distances to many different stars this way."

The professor was beginning to see a pattern in

all these problems. "It seems to me that the nature of

triangles is more subtle than we realize." she said

thoughtfully.

• Recordis wanted the answer for the distance to the
^^^^^mmmm

star expressed in terms of a unit that he understood Notes to

better. So the astronomer told him that since 1 a.u. CHAPTER 2
= 93,000,000 miles, we could write the distance l^SmSmm^mm
like this:

d = 516,000 a.u. = 48,000,000,000,000 miles
= 4.8 x 10 13 miles

When Recordis saw the size of that number he was
sorry that he had asked. The astronomer told him
that he usually used Jight years to measure very
large distances. A light year is the distance light

can travel in 1 year. One light year equals
5,900,000,000,000 miles = 5.9 x 10

ltj
miles. Then

we could express the distance to the star in light

years:

4.8 x 10 13
, ,

d =
5.9 x 10-

= 814 hght yeaPS

• The distances to stars were first measured using the

method described in this chapter. Friedrich Bessel

measured the distance to a star known as 61 Cygni
in 1838. He found that the star had shifted by an
angle of 0.30 seconds, and he calculated that the

distance to the star must be 11 light years. This

method of finding the distance to stars is known as

trigonometric parallax. The distances to many other

stars have been found by trigonometric parallax.

The nearest star is a small companion of Alpha
Centauri, which has a parallax shift of about 0.8

seconds and a distance of 4.3 light years. Note that

closer stars have a larger parallax shift. However,
when stars are farther away than 150 light years, the

shifts are too small to be measured.

Solving Triangle Problems 25



^^^^—^^—^^g" For Exercises 1 to 11, fill in the missing values

Exercises in the table for right triangles. Use the values for the

MJHiHfiMi ratios that are given in the chapter.

Angle of

interest

Adjacent

side

Opposite

side Hypotenuse

1. 45° 16 — —
2. 45° — — V8

3. — 1 — V2

4. 40° 10 — —
5. 40° — 16.5 —
6. 40° — — 14.5

7. — 20 16.782 —
8. 10° 16.54 — —
9. 10° — — 0.1777

10. 10° — 17.633 —
11. — 567.13 100 —

12. Consider a right triangle with angle of interest A.
Suppose t = (opposite side)/(adjacent side) for this

triangle. Suppose we now look at things from the point

of view of the other acute angle in this triangle. Show
that t = (adjacent side)/(opposite side) when seen from
that angle.
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Trigonometric
Functions:

shhcos, and tan

We found many applications for our triangle-

solving methods in the next few days. We calculated

the heights of many more trees, and surveyors and
navigators found uses for the new methods. The
astronomer quickly made plans to measure the

distances to several important stars.

However, soon problems set in. A backlog
developed of triangles waiting to be solved. It seemed
as if everybody in the city was coming to Builder's

desk and telling him the known parts of a triangle that

needed to be solved. Then, Builder carefully drew the

picture and measured the length of the unknown sides

and reported back to the customer. However, people
brought in triangles faster than Builder could draw
them. Finally, Builder pleaded for help before the royal

court. "There must be a better way," he cried. "The
worst part is that sometimes people bring in triangles

that I have already drawn before, but I have to draw
them again each time."

Too Many
Triangles
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"If you think you have problems now, just wait!"

an ominous voice cried. In the next instant there stood
before us a terrifying apparition in a deep black cape.

^^^^^M""'*''^^^g "The gremlin!" Recordis cried in terror. He
The Gremlin's instantly recognized the archenemy of the people of

Vile Threat Carmoira—the Spirit of Hopelessness and
^SmmmmmmmmSmmm Impossibility! His goal was to disrupt the entire

learning process.

"We have defeated you each time we were
confronted by one of your previous challenges!" the

king said defiantly. "You claimed that we could not

learn algebra, but we succeeded anyway."

The gremlin only laughed his cackling laugh. He
pointed behind him to a huge pile of unassembled steel

girders. "I dare you to construct a bridge over Raging
River," he challenged us. He held out his cape and we
saw a picture of a carefully crafted, arched bridge. In

spite of the danger we could not help marveling at the

graceful symmetry and balance of the bridge design.

Upon looking closer we could see that the bridge was
made up of many steel bars arranged to form hundreds
of triangles.

"This is what the finished product would look

like in the extremely unlikely event that you should
succeed. However, you will find that your inability to

solve triangles will be your downfall," the gremlin
cackled. "When you fail, I shall take over and become
king of Carmorra!" The gremlin vanished from sight,

but his laughter still rang in our ears.

Recordis began to tremble, but Builder looked

confidently at the pile of steel parts. "This job will be a

piece of cake," he said. "We only have one problem

—

we must find a faster way to solve triangles."

Recordis panicked. "We don't know a faster- way
to solve triangles."

We thought about this problem for hours, but we
had no success.

"Let's pass a law making all triangles illegal

except for right triangles with 45° angles," Recordis

suggested. "We know how to solve those." He turned

to a page in his record book where he had recorded

this result:

Angle of interest = 45°

Far side

Near side
= 1

"We can also calculate the ratio far side/

hypotenuse for this type of triangle," the professor said.

She drew a diagram. (See Figure 3-1.)
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*$/ d

/v45
°

r

d

Figure 3-1

"If we let d represent the length of the two short

sides, then we know from the Pythagorean theorem that

the length of the hypotenuse must be Vd 2 + d
2 =

y/ld 2 = VlVd 1 = V2d."

"Therefore,

FAR SIDE

Hypotenuse \r
2d

1

V2
(We calculated a decimal approximation for this ratio:

1/V2 = 0.7071.)

We added this result to the table:

Angle of

interest

Far side

Near side

Far side

Hypotenuse

45 1 0.7071

"That still doesn't help much," the professor

said sadly. "Most triangles that we must deal with are

not right triangles with two 45° angles."

"But there are two more types of triangles that

we solved for," the king said. "We know how to solve

a right triangle if it contains a 10° angle or a 40° angle.

We added these results to our table (see

Chapter 2):

Angle of

interest

Far side

Near side

Far side

Hypotenuse

40

10

0.8391

0.1736

"By using the Pythagorean theorem we can fill in

the two missing elements in this table," the professor

said. (See Exercises 62 and 63.)

We came up with these results.
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Angle of

interest

Far side

Near side

Far side

Hypotenuse

40

10

0.8391

0.1763

0.6428

0.1736

Figure 3-2

"Let's write down a general procedure for

solving for the length of the unknown side in a right

triangle when we know these ratios," the professor said

systematically. "First, let's pick two letters, such as x

and y, to represent the two ratios."

"We already use x and y to represent the x and y
axes," Recordis objected.

"All right, we'll use a couple of different

letters— let's say, s and t," the professor agreed. She

made these definitions.

Suppose A is the angle of interest in a right

triangle. Then we will define

far side far side
t =

near sidehypotenuse

(Note that these ratios will be the same for all triangles

when the angle of interest is A, regardless of the size of

the triangle.)

"Now, here's the general procedure," the

professor said. "We'll use h to represent the length of

the hypotenuse, x to represent the length of the near

side, and y to represent the length of the far side. (See

Figure 3-1.) Then,

/V* r

y

X

y , y
S = -7- t= —

h x

If you know the near side and you would
like to know the far side, use

y = tx
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2. If you know the far side and you would like

to know the near side, use

x =

3. If you know the far side and you would like

to know the hypotenuse, use

S

4. If you know the hypotenuse and you would
like to know the far side, use

y = sh

5. If you know the far side and the near side and
you would like to know the hypotenuse, use

h = Vx 2 + y
2

(This is the Pythagorean theorem.]

"We now know these three types of triangles

backward and forward," Builder said. "However, there

are still many other types of triangles out there."

"Let's see if we can extend our table to cover
other types of triangles," the professor said with
sudden inspiration.

We realized that a right triangle with a 40° angle

also contained a 50° angle. Likewise, a right triangle

with a 10° angle also contained an 80° angle. So we
were able to extend our table a little bit.

Angle of

interest

Far side

Near side

Far side

Hypotenuse

10 0.1763 0.1736

40 0.8391 0.6428

45 1.0000 0.7071

50 1.1918 0.7660

80 5.6713 0.9848

(See Exercise 64.)

Before we could make any more progress, we
were interrupted by a visit from Mrs. O'Reilly, the

owner and manager of the Carmorra Beachfront Hotel,

who came to ask Builder's help designing a holiday
lighting display. "We would like a frame of lights

forming a perfect equilateral triangle, supported by a

post in the middle." (See Figure 3-3.)

The Holiday
Lighting Display
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Figure 3-3

Figure 3-4

30-60-90 Triangles

"We would like each side of the equilateral

triangle to be exactly 1 unit long," Mrs. O'Reilly

explained. "And make sure that the post forms a

perfect right angle with the base of the triangle."

"That means that the post cuts the equilateral

.

triangle into two right triangles!" the professor

suddenly realized. "We can tell that the hypotenuse of

each right triangle is 1 unit long and the shortest side

of each right triangle has length |. And each right

triangle must contain a 60° angle." (See Figure 3-4.)

"The other angle in the right triangle must
measure 30°," the king added.

"And we can use the Pythagorean theorem to

calculate the length of the other side," Recordis added
helpfully. We found that the length of the side opposite

the 60° angle must be

V3
vi - a)

2 =

"Now we can calculate the two ratios when the

angle of interest is 60°," the professor said.

far side
t =

near side

far side

= V3 = 1.7321

V3
= 0.8660

hypotenuse 2

"We may as well calculate the two ratios when
the angle of interest is 30°

far side

near side

far side

t =

s =
hypotenuse

Recordis said.

1

V3
1

2

= 0.5774

= - = 0.5000
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"That's a regular old rational number!" Recordis

said delightedly. "I never did like irrational numbers
very much—particularly irrational numbers involving

square root signs."

We added these results to the table.

Angle of

interest

Far side

Near side

Far side
s = 77

Hypotenuse

10 0.1763 0.1736

30 0.5774 0.5000

40 0.8391 0.6428

45 1.0000 0.7071

50 1.1918 0.7660

60 1.7321 0.8660

80 5.6713 0.9848

"I'm beginning to get an idea," the king mused
as he stared at that table. But, at that moment we were
interrupted by the arrival of a tall gentleman carrying a

strange large contraption.

"Allow me to introduce myself," he said. "My
name is Alexanderman Trigonometeris, and I have just

the item to help you solve all your holiday decorating

needs—the Adjustable Triangle." (See Figure 3-5.)

The Decorative
Adjustable
Triangle

Figure 3-5
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"I know him," Builder whispered to me. "He has

presented me with many unusual inventions before. He
tries very hard, but somehow his ideas never turn out

to be useful."

Trigonometeris described his device.

"You may form whatever shape of right triangle

you like," he said. "To do that, you adjust this bar that

represents the hypotenuse. The hypotenuse is designed
to rotate within a circle of radius 1—so all your right

triangles will have a hypotenuse of length 1. The
sliding wire that forms the vertical side is carefully

designed so that it is always at a right angle to the

horizontal side." Trigonometeris demonstrated how his

device could form a triangle with a 30° angle. Then he
adjusted the bar and formed a new triangle with a 45°

angle.

We were all intrigued by his machine, but finally

the king told him sadly, "I am afraid we do not need
any more decorations this year."

Trigonometeris blinked back a tear. "Perhaps I

could interest you in one of my other devices. . .
." He

began to describe some of his other inventions.

Recordis cut him off. "We have serious business

to conduct," he said. "The very survival of the

kingdom is at stake. There is no way you could help us

unless you could measure the ratios far side/near side

and far side/hypotenuse for all possible right triangles."

"I'll find a way to do that," Trigonometeris

bluffed, trying to conceal the fact that he did not

understand exactly what Recordis meant. Stalling for

time, he said, "Let's form a right triangle with a 5°

angle." (See Figure 3-6.)

Figure 3-6

"We can measure the length of the near side and
the far side for that triangle," the king said.

Near side = 0.9962

Far side = 0.0872

"Is that all you needed?" Trigonometeris
exclaimed when he saw this result. "My triangles can

34 Trigonometric Functions: sin, cos, and tan



do this easily. Just set the triangle to whatever angle

you want, and then measure the sides!"

"We can use these triangles!" the professor said

excitedly. "We can measure these ratios for all possible

right triangles. It will be tedious, but when we're done,
we can write dowrn the results, and then we won't have
to perform the same measurements again."

The professor started a table.

Angle
Near
side Far side

Far side

Hypotenuse

Far side

Near side

5° 0.9962 0.0872 0.0872 0.0875

"Hold everything!" Recordis said. "We must
come up with names for these ratios before we go any
further! I'm not going to write 'far side/hypotenuse'

each time!" Recordis's job involved a lot of writing, so

he frequently suffered from writer's cramp. He was
always looking for ways to reduce the amount of

writing that he must do. Indeed, one of our main
motivations for developing the entire subject of algebra

had been so we could express complicated
mathematical problems using concise notation.

Naturally, algebra became Recordis's favorite subject.

There was a terrible argument over the names for

these ratios. Everyone wanted the ratios named after

themselves. We were finally interrupted when Pal

spilled four of his letter blocks on the Main Conference
Room floor. They spelled the word sine. The king took
decisive action to settle the argument. "We will call

this ratio the sine ratio," he decreed.

Sine = ratio of
opposite side

hypotenuse

"The aerodynamic properties of letter blocks
would make a fascinating study," the professor said.

"Will you stick to the subject!" Recordis cried.

"You always go off on tangents!"

"Very well," the king declared. "We will call the

other ratio the tangent ratio."

Tangent = ratio of
opposite side

adjacent side

"What strange names!" Recordis exclaimed.

Already he was becoming mistrustful of this new
subject. We later found that there was a very logical

explanation for the use of the name tangent, but we
never did find a reason for the use of the name sine.

"Also, the names are too long," Recordis continued
complaining.

The Sine Ratio

The Tangent Ratio
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Functions

Figure 3-7

y
sin A = f

cos A = -
n

tan A = ^

"We will use three-letter abbreviations for each
ratio," Trigonometeris said. "We will use 'sin' to stand

for sine, and we will use 'tan' to stand for tangent."

opposite side
sin = ratio of

tan = ratio of

hypotenuse

opposite side

adjacent side

(Note that the use of the name sin does not mean that

this particular trigonometric ratio is morally
degenerate. In trigonometry, the word sin is

pronounced with a long i, as in sign.)

"But the word sin does not represent one
particular value," the professor objected. "It could
represent many possible values, depending on the

value of the angle of interest. For example, we found
that the sin ratio is 0.6428 if the angle is 40°, but the

sin ratio is 0.1736 if the angle is 10°."

"We will write the angle of interest after the sin

or the tan," Trigonometeris said. He was desperately

trying to convince us that his triangles would be

valuable. "We can write it like this:"

sin 10° = 0.1736

sin 40° = 0.6428

"This is what we call a /unction," the professor

said. "We learned about functions when we studied

algebra. A function converts one number into another

number according to a rule. In our case, the sin

function is a function that converts a number
representing an angle into the sine ratio itself."

"Let's use the letter A to represent the angle of

interest," Trigonometeris said. "Then we can calculate

the sin function like this (Figure 3-7]:

y
sin A = -

h

"The situation is even simpler with the triangles

formed by my Adjustable Triangle," Trigonometeris

continued. "In all these triangles, the hypotenuse (h) is

1, so
sin A - y

"To find the sine of any angle, all we need to do
is form a right triangle containing that angle and then

measure the length of y."

"While we're measuring the length of the far side

(y), we may as well measure the length of the near side

(x)," the king said. "Then we can calculate the tangent

function as well:

V
tan A = -
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"For completeness, we should think of a special

name for the ratio of the near side over the

hypotenuse," the professor suggested.

"We'll call that the cosine," Trigonometeris said.

(We later found out that he had a very good reason for

using this name.)

adjacent side
cos A =

hypotenuse

(We used cos as an abbreviation for cosine.)

The king issued a proclamation.

=^^r

i^Z-

Definition of the Sine, Cosine, and Tangent
Functions

^f
Draw a right triangle. Pick one of the non-

right angles to be the angle of interest (call that

angle A). Then,

opposite side
sin A =

cos A =

tan A

hypotenuse

adjacent side

hypotenuse

opposite side

adjacent side

Let x represent the length of the

adjacent side, y represent the length of the

opposite side, and h represent the length of

the hypotenuse. Then

sin A = -
n

cos A = -r

n

tan A

<^ ^£^££

Definition of
Trigonometric
Functions

WsSS &j2&a&)

'We have already found some values for these

functions," the king said. "For example, sin 30° = 1/2;

sin 60° = V5/2, and sin 45° = 1/V2."
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"I see one obvious property," the professor said.

"Since both y and x will always be less than h, it

follows that sin A and cos A must always be less than

1 no matter what the value of A."

"But the value of the tangent function could be

just about anything," the king said. "There is just as

good a chance that x will be greater than y as there is

that y will be greater than x."

"I see two more useful formulas that we can
write," Trigonometeris said.

x = h cos A

y = h sin A

"These formulas follow directly from the definition of

the functions."

We set to work taking the measurements and
making the table. The results are included at the back

of the book.

"I think we're onto something big!" the professor

said excitedly. "I think that these formulas will be very

useful. We are starting a whole new subject."

"We would be honored if you could stay with us

and work with us," the king told Trigonometeris. "We
will call this new subject trigonometry in your honor."

Tears of joy glistened in Trigonometeris's eyes.

At last he had found his calling in life. "We will give

you the title of the Royal Keeper of the Triangles," the

king continued.

"Don't celebrate too quickly," Recordis

cautioned. He was not sure that he liked this new
subject very much because it involved so many strange

names. "It is now up to Builder to save the kingdom by
building the bridge."

^'^^"""^g • In the old, precalculator days, the only way to find

Notes to the value of one of these trigonometric functions

CHAPTER 3 was to look in a table. However, now it is possible

IBiiBggBi to obtain an inexpensive calculator that will

calculate the values of trigonometric functions at

the touch of a button. Or, you may have access to a

computer that calculates trigonometric functions. (If

your computer requires you to use radian measure
when calculating trigonometric functions, then look

ahead to Chapter 5.)

• A /unction in mathematics converts one number
into another number according to a rule. For
example, the function f[x) = 2x means that the

output number will always be equal to the input

number multiplied by 2. The function g(x) = x2

means that the output number will be equal to the
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input number raised to the second power— in other

words, multiplied by itself. The input number to a

function is called the argument or the independent
variable. The output number from the function is

called the dependent variable. In function notation,

the name of the function is written first, followed

by the argument enclosed in parentheses. For
example, the expression

f[lO) = 20

means that the name of the function is /, the

argument is 10. and the output number is 20. The
expression

sin (30°) = |

means that the name of the function is sin, the

argument is 30°, and the output number is 5. If you
need to review function notation, see a book on
algebra.

An integer is a whole number, such as 2 or 116 or

2117, or the negative of a whole number. We can
see that the results for trigonometric functions are

usually not integers. A rational number is a number
that can be expressed as the ratio of two integers,

such as k or § or ™. For example, sin (30°) = |,

which is a rational number. A rational number can
be expressed as a decimal fraction that either has a

finite number of digits (such as 1 = 0.5, \ = 0.25,

or § = 0.625) or else consists of digits that

endlessly repeat the same pattern (such as 3 =
0.3333 .".

.
; \ = 0.142857142857142857 . . . ; or jf

= 1.36363636 . . .). However, we have found that

sin (45°) = 1/V2, which is not a rational number. It

is impossible to find two integers a and b such that

alb - 1/V2. This type of number is called an
irrational number. An irrational number can be
represented as a decimal fraction with digits that

continue endlessly without ever repeating a pattern.

For example, \l\fl = 0.7071067812. . . . The values

of the trigonometric functions for most angles are

irrational numbers. However, it is even worse than
that. Even though sin (45°) is irrational, there is a

simple formula for this number using a square root

sign: sin (45°) = 1/V2. The values of trigonometric

functions for most angles cannot even be
represented by a formula like this. The
trigonometric function values for most angles are

called transcendental numbers. A transcendental

number is a special type of irrational number. For
our purposes it is sufficient to know that you
cannot find an expression of the form y = p

q
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(where p and q are both rational numbers) if y is a

transcendental number. Therefore, square roots and
cube roots are not transcendental even though they

are irrational. There are two very special

transcendental numbers in mathematics: it =

3.14159 . . . and e = 2.71828 .... Also, if you have
studied logarithm functions you will have learned

that the values of logarithms are usually

transcendental numbers.

For practical purposes, the difference

between transcendental numbers, irrational

nontranscendental numbers, and rational, endlessly

repeating numbers does not matter much. In each

case you will represent the true value as a decimal
approximation. For example, in the table at the

back of the book, the values of the trigonometric

functions are expressed as decimal approximations
accurate to five digits.

ggg—ggggg-*! 1. You will need to memorize the definitions of the

Exercises sine, cosine, and tangent functions. You should do that

MMMMMi^Hl nOW.

2. You should know the exact values of the sine,

cosine, and tangent functions for these special angles:

30°, 45°, and 60°. Make a table listing the values of

those functions for those angles.

3. The very first evening he was at the palace,

Trigonometeris discovered a very important relation.

He found

sin A
tan A =

cos A

for any value of A. Use the definition of these three

ratios to prove that this relation is true.

Find the values for the sine function, the cosine

function, and the tangent function for the angles in

Exercises 4 to 10. (Look in the table at the back of the

book or use a calculator.)

4. 10° 7. 76.6° 9. 45°

5. 15° 8. 16.4° 10. 12°

6. 33.4°

11. Show that sin A = cos (90° - A).

12. Suppose that you lost the last half of the table of

trigonometric functions. In other words, suppose that

you only had values of the trigonometric functions

from to 45°. How could you still calculate the values

of the functions for the other angles?

For Exercises 13 to 24, fill in the missing values
in the following table for right triangles.
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Angle of Adjacent Opposite

interest side side Hypotenuse

13. 30°

14. 30°

15. 30°

16. 60°

17. 60°

18. 60°

19. 10°

20. 10
c

21. 35°

22. 42°

23. 47.5°

24. 58.4°

50

12

16.34

7.3

lev^

24

3.64

10.913

18

15.846

31.508

Suppose that you need to calculate the value of

sin 34.5°. This value is not included in the table.

However, we can look up the value sin 34.4° =
0.56497 and sin 34.6° = 0.56784. It seems reasonable

to suppose that sin 34.5° is approximately halfway
between sin 34.4° and sin 34.6°. Therefore, we will

guess that sin 34.5° = 0.5664. This method of

calculating is called interpolation. Use interpolation to

calculate these values for trigonometric functions. Use
this formula:

C — A
sin C = sin A + (sin B - sin A)

B - A

29. 45.003°

30. 35.63°

31. 19.888°

32. Show why the interpolation formula given above
is a reasonable formula.

The angle of elevation of an object is the angle

between the horizontal and the line connecting your
position to the object (assuming that the object is above

you). See Figure 3-8. Complete the following table for

Exercises 33 to 38.

25. 1.56°

26. 2.345°

27. 16.785

28. 0.003°
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Figure 3-8

Figure 3-9

Object
A = angle of depression

n

You
n

You
A = angle of elevation

Object

Angle of elevation Distance Height

33. 20'

34. 20

35. 40'

36. 40

37. 75

38. 75

100

65

900

100

436

30

If you are looking at an object that is below you,

you may calculate the angle of depression. See Figure

3-8. Complete the following table for Exercises 39 to 44.

Angle of depression Distance Depth

39. 10

40. 10

41. 30

42. 30

43. 52

44. 53

36

1.74

1182

245

26.45

75.46

45. If you are given the size of an object and its

angular size, derive a formula that tells you its

distance. (See Figure 3-9.)
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For Exercises 46 to 53, calculate the distance to

the objects.

Objects Size Angular size

46. Mt. Rainier, seen

from Seattle

2.7 miles 2.578°

47. Width of Central

Park, seen from

Empire State

Building

3000 feet 21.239°

48. Earth, seen from
moon

12,750 kilometers 1.9°

49. Moon 3500 kilometers 0.522°

50. Sun 864,000 miles 0.532°

51. Saturn 75,000 miles 0.00537°

52. Star Antares 5.5 x 108 miles 1.37 x 10~ 5

degrees

53. Andromeda
galaxy

130,000 light

years

3.38°

54. Suppose you are standing an unknown distance

away from a cliff of height h. You need to know the

height t of a tower located on top of the cliff. You
know that the angle of elevation of the bottom of the

tower is B and the angle of elevation of the top of the

tower is A. Derive a formula for the height of the tower.

(See Figure 3-10.)

Figure 3-10
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55. Suppose you need to calculate the height of a

distant cliff. Unfortunately, you do not know the

distance to the cliff. However, you have found the

angle of elevation of the top of the cliff at one point is

A a and the angle of elevation at another point that is d

units farther away is A 2 . (See Figure 3-11.) Derive a

formula for the height of the cliff.

Figure 3-11

Figure 3-12

Suppose you need to calculate the height of a

tower that is at the top of a distant cliff. You don't

know the height of the cliff or the distance to the cliff,

but you do know the angle of elevation of the top and
bottom of the tower from two different points that are a

distance d apart. (See Figure 3-12.) The following table

gives you the value for A lf A 2 , B lt B 2 , and d for

observations of several different towers on the tops of

several different cliffs. For Exercises 56 to 61, calculate

the height of each tower.
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A, B, A 2 B 2 d

56. 30° 28° 25° 23.2409° 30

57. 45° 40° 30° 25.8481° 20

58. 20° 19.4° 19° 18.4255° 100

59. 23° 20° 20° 17.3326° 50

60. 65° 40° 20° 8.1052° 1000

61. 18.6° 18.2° 18.0° 17.6112° 20

62. Before we invented the trigonometric functions,

we found that (opposite side)/(adjacent side) = 0.8391

for a 40° angle contained in a right triangle. Use this

fact to calculate the ratio (opposite side)/(hypotenuse)

for a 40° angle. Do not look in the table of values for

the sine function.

63. We found that (opposite side)/(hypotenuse) =

0.1736 for a 10° angle contained in a right triangle. Use
this fact to calculate the ratio (opposite side)/(adjacent

side) for a 10° angle. Do not look in the table of values

for the tangent function.

64. Show how you can derive values for sin 80° and
tan 80° once you know the values for sin 10° and tan

10°. Show how you can derive the values for sin 50°

and tan 50° once you know the values for sin 40° and
tan 40°.
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Applications

of Trigonometric
Functions

The Balloon Ride

Trigonometeris eagerly reported for work at 7 the

next morning. However, the rest of us did not arrive

until 8:30, as usual. Trigonometeris was anxious to

start work, but we had not decided exactly what duties

should be attached to the office of the Royal Keeper of

the Triangles.

"I'm sure we will find many applications for

these new functions," Trigonometeris said excitedly.

However, our main business for the moment was
to travel to Raging River to observe Builder's progress

with building the new bridge. We decided to take our

propeller-driven helium-filled balloon. Recordis took
his position as pilot while the rest of us, including

Trigonometeris, climbed on board.

"Piloting a balloon requires careful navigation,"

Recordis said. "We must plot our course precisely. I
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happen to know that, in order to get from Capital City

to the bridge site, we must travel in a perfectly straight

line in a direction that is 55° north of east." (See Figure

4-1.)

Figure 4-1

Recordis carefully maneuvered the balloon along
our course. Fortunately, there was no wind, so it was
easy to maintain a straight-line course. The balloon was
carefully designed to travel at a constant speed of 15

miles per hour.

"I wonder when we shall cross over the Straight

Arrow River," the professor said. "I like the view of

that river from the air."

Recordis puzzled for a moment. "That is a very
hard question," he said. "The Straight Arrow River

flows in a perfect straight line from south to north, and
we know that the river is 30 miles east of Capital City."

(See Figure 4-2.) "If we were traveling directly east,

then the answer would be obvious: We would have to
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travel 30 miles until we reached the river. Since we
travel at 15 miles per hour, it would take us 2 hours.
But we're not traveling directly east. We're traveling
55° north of east. Of course, we will still cross the river

somewhere, but I have no idea how long it will take us
to get there."

"It will take us longer than 2 hours," the King
said helpfully. "We know that our position at any time
can be represented by two numbers: the distance we
have traveled east of Capital City, and the distance we
have traveled north of Capital City." (See Figure 4-2.)

"Our total distance from Capital City is increasing at

the rate of 15 miles per hour, so the east distance must
be increasing by less than 15 miles per hour."

Figure 4-2

/Balloon
/ course

•
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North '
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East Straight

distance Arrow

A River
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'

.c
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.55°

K j
EastY

Capital 30 miles

City

Recordis continued to concentrate on piloting.

He was constantly checking a small card he held in his

hand. "What is that little arrow on the card?" the
professor asked with interest.
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"I call that my velocity vector," Recordis said

proudly. (See Figure 4-3.) "The velocity vector is an
arrow that tells me about the course. You must be very
careful when you draw a velocity vector. You must
make sure that you draw both the direction and the

magnitude correctly. The direction of the arrow points

in the direction we are going. The magnitude (that's a

long word that means "length") of the arrow is

proportional to the velocity. In this case I have used a

scale where a vector 1.5 inches long corresponds to a

speed of 15 miles per hour."

Velocity Vectors

Figure 4-3

The professor suddenly became excited. "The
vector that you have drawn represents the real vector

formed by our course through the air. However, we can
pretend that the real velocity vector is made up of two
imaginary velocity vectors—one that points directly

east, and one that points directly north." (See Figure
4-4.)

"I have enough trouble keeping track of one real

vector," Recordis complained. "How am I going to be
able to keep track of two imaginary vectors?"

"We'll call the vector that points east the east

component of our motion, and we'll call the vector that

points north the north component," the professor

decided. "Now, if we could only calculate the length of

the east component, we would know how fast we are

moving east, and then we could calculate how long it

will take us to reach the Straight Arrow River."

Suddenly Trigonometeris brightened. "We can
use trigonometry!" he exclaimed. "We can see from the

diagram that

Component
Vectors
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Figure 4-4

North

x°°/ "

component

v
n
= v sin 55°

X 55°

East component

v = vcos 55°
e

and

vjv = cos 55, so ve = v cos 55

vjv = sin 55, so vn = v sin 55

"where ve stands for the east component of our
velocity, vn stands for the north component of our
velocity, and v stands for the magnitude of

our total velocity (in this case, v = 15 miles per hour)."

We looked up the value of cos 55 in

Trigonometeris's function table (which he kept in a

locked jeweled case about his neck):

cos 55 = 0.5736

Therefore,

ve = v x 0.5736 = 15 X 0.5736 = 8.604

"Therefore, the east component of our velocity is

8.604 miles per hour," Trigonometeris said. "That
means that each hour we have traveled 8.604 miles
farther east. Since the Straight Arrow River is 30 miles
away, we will reach it in 30/8.604 hours = 3.49

hours."

Just as we predicted, we crossed the river 3.49

hours after we had left, and the view was spectacular.

We decided that the method of breaking a

velocity vector up into component vectors might be
very useful for other types of problems as well.
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Velocity Components

Suppose you have decided on two
directions called the x direction and the y
direction. (For example, the x direction might
represent east and the y direction represent

north, or the y direction might represent up
and the x direction represent horizontal

motion in a particular direction. These two
directions must be at right angles to each
other.) Then, suppose that v represents a

velocity vector in a particular direction. (See

Figure 4-5.) Then you may find the x
component and the y component of the

velocity vector according to the formulas

vx = v cos A

*%)

vy = v sin A

2Z_ ^^^
*jsss// )

It was only an hour later when we arrived at the

bridge site where Builder and Pal were already hard at

work. "You are just in time to help me with some
tricky problems," Builder said with relief. "I have a

small rowboat I use to ferry supplies to the opposite

The Off-Course
River Boat

y

Xa

*

vy = v sin A

vx = v cos A

X

Figure 4-5
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Figure 4-6
shore. Pal always rows the boat straight across the

river, and he always rows at a constant speed of 7

miles per hour. However, the boat always ends up
traveling along a course that is off by 35°." (See Figure

4-6.) "I just can't figure it out."

"It almost looks as though the river current is

pushing you off course," Recordis suggested.

Builder slapped his forehead. "How could I have
been so stupid? It is the river current that makes the

boat go off course. I wonder how fast the river is

flowing?"

"Once again trigonometry will come to the

rescue just in the nick of time," Trigonometeris said.

"We need to draw three vectors: one vector

representing the boat's course relative to the river (vb ),

which points directly east; one vector representing the

river current vr , which points directly north; and one
vector representing the boat's actual course." (See

Figure 4-7.)

Figure 4-7
1 L

North

>/i i

East y/

vr = vb tan 35°

River current

/\ 35
°

vb = 7

Planned course

"We know that the length of the vector vb is 7

miles per hour," the professor said. "Then,

vb

= tan 35

— = 0.7002
7

v r = 4.9

"So, the river is flowing at 4.9 miles per hour,"

Builder said. "That will be very useful to know."
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We had three more interesting trigonometry

adventures that day. However, these applications

involve some tricky physics concepts. You may skip to

the end of the chapter if you wish.

We rode across the river in the boat. When we
reached the other side, Builder demonstrated his newest
invention, a message-delivering system. He showed us

several different slingshots constructed on the hillside.

Each slingshot was tilted at a different angle. "When I

need to send a message, I put the message inside a little

capsule. Then I put the capsule inside one of the

slingshots and send it in the direction it is supposed to

go. Each slingshot is designed so that it fires the

capsules at an initial velocity of precisely 35 meters per

second. However, I need to know the distance that the

capsule will travel before it hits the ground. The
distance traveled naturally depends upon the angle at

which the slingshot is aimed. If the slingshot is aimed
too steeply upward, then the capsule will not travel

very far because it wastes most of its motion going up.

On the other hand, if the -slingshot is not aimed very

steeply, then the capsule will not travel very far

either." (See Figure 4-8.)
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Delivering System
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"So, you want us to calculate the distance the

capsule will travel as a function of the angle of tilt of

the slingshot," the professor clarified the problem.

"To do that, we would need to know how gravity

works," Recordis said. "All I know about gravity is that

I get hit on the head if I fall asleep under an apple tree.'

"I have discovered two formulas that describe the

motion of the capsule in two special cases," Builder

said helpfully. "If you aim the slingshot straight up, the

time in seconds until the capsule lands is given by this

formula:
2v

Mand —
g

"In this formula, g represents a special number whose
value is 9.8 and v represents the initial velocity of the

capsule, which is 35 meters per second. (I use tiand to

represent the time until the object lands.) Although this

formula is interesting, it is of no practical value for

sending messages. If you shoot the capsule straight up
all it does is come straight down again.

"I have also discovered a formula that describes

what happens when you shoot the capsule off the cliff

at a zero degree angle—in other words, you shoot the

capsule horizontally. Then, the horizontal distance that

the capsule has traveled at time t is given by this

formula:

d = v t

"So we can solve the problem if the capsule is

shot horizontally or vertically—but not if the capsule is

shot at any other angle," the professor said.

"Let's draw an initial velocity vector for the

capsule," Trigonometeris said helpfully. "Then we can

figure out a horizontal and vertical component of the

initial velocity." We used v to represent the vector of

the initial velocity, A to represent the angle of tilt of

the slingshot, v h to represent the horizontal component
of initial velocity, and v v to represent the vertical

component of initial velocity. (See Figure 4-9.)

Figure 4-9
1

vv = v sin A

vh = v cos A
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"I know how we can use trigonometry to

calculate the magnitude of the two components," the

professor said.

vv = v sin A

Vh - ^0 cos A

"We know that v = 35. Then, for example, if A
= 25° we can find in the table that sin 25° = 0.4226

and cos 25° = 0.9063. Therefore, vv = 14.79 and vh =
31.72."

"That doesn't help us solve the problem,

though!" Recordis moaned. Try as we might, we could
not figure out how to calculate the distance the capsule

would travel. Finally, Recordis said, "I always say,

when you are faced with a difficult problem that you
can't solve, make up a new problem that you can solve.

For example, let's suppose that we shot a capsule

straight up with a velocity 14.79 (which is the vertical

component of the velocity when the slingshot is tilted

at a 25° angle). Then we can calculate the time until it

hits the ground from the formula:

2v v

land = 3.02 seconds

"I know another problem we could solve," the

king said. "Suppose that we shot a capsule horizontally

with an initial speed of 31.72. Then we know from the

formula d = v t that the distance that it would travel

in 3.02 seconds would be 95.79 meters."

While we were working on this problem Pal

came by playing with his beachball. He was throwing
the beachball up in the air at different angles. The
professor decided to carefully monitor the motion of

the beachball, and she discovered an amazing fact.

"The formula tiand = 2vv /g still gives you the

time until the object hits the ground, whether or not

the object is launched straight up! The only difference

is that you must use vv , the initial vertical velocity

component. And I discovered something else. The
formula d = vh t still gives you the horizontal distance

that the object has traveled from the starting point,

whether or not the object is launched horizontally. All

you have to do is use vh , the initial horizontal velocity

component, in the formula."

The king exclaimed, "Let's put these two

formulas together!" The horizontal distance the object

will travel before it hits the ground:

d = Vhtiand

The Distance of
Travel of the

Capsule

d = vh

2v v
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Then,

_ 2VhVy

g

"Let's use these trigonometry formulas,"

Trigonometeris suggested.

vv = v sin A

vh = v cos A

"Then we find

, 2(v sin A)(v cos A)
d =

8

d = — 2 sin A cos A
g

"That's just the answer we want— it expresses

the horizontal distance that the object will travel

as a function of the angle of inclination." (We later

found that we could write that formula like this:

d = (vg/g) sin 2A. See Chapter 6.)

"Let's calculate some sample values," Builder

said. He told us the angle of tilt for each slingshot.

Trigonometeris looked in his sine and cosine tables,

and Recordis carried out the calculations.

Assume that the initial velocity is 35

meters/second.

Distance traveled

Angle of launch (meters)

10 42.8

20 80.3

30 108.3

40 123.1

45 125.0

50 123.1

60 108.3

70 80.3

80 42.8

"^™"^^^^ "Aha! Just as I suspected," Builder said. "The
*The Slippery capsule will travel the greatest distance if it is

Slope launched at an angle of 45°. However, I still have a^ShhBS problem with designing the approach road for the

bridge. The road must travel through steep mountains. I

need to figure out the steepest possible slope we can
allow. Obviously, if the road is too steep, then cars will

56 Applications of Trigonometric Functions



slide down the hill. I need to know the steepest

allowable angle."

"What makes the cars slide?" the professor

asked, intrigued.

"Everybody knows what makes something slide

down a hill!" Recordis exclaimed.

"We understand that intuitively," the professor

said. "But we should specify exactly what causes the

motion."

"I use the term force to mean something that

causes (or restrains) motion. For example, let's suppose

that we have a car parked on the road," Builder said.

(See Figure 4-10.) "Then there are three forces acting

on the car: The force of gravity acts straight down,
there is a constraint force that keeps the car from
falling through the road, and there is a friction force

that keeps the car from sliding down the road."

Figure 4-10

"We can represent each of these forces as a

vector!" Trigonometeris realized. "For each force, we
need to know the direction in which it points, and we
need to know how strong the force is—in other words,

the magnitude of the vector. (Although I personally

Figure 4-11
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have no idea what type of unit you use to measure the

size of a force.) Let's use the letter A to represent the

angle of tilt of the road. Then we can divide the gravity

force into two components: the sideways component
that pulls the car down the ramp, and the pressing

component that keeps the car on the road." (See Figure
4-11. Use geometry to show that the two angles labelled

A are equal.)

Trigonometeris let Fg represent the magnitude of

the gravity force. Then we could calculate the

magnitude of the two components:

Fs = Fg sin A sliding component

Fp
= Fg cos A pressing component

"The pressing component of the gravity force is

exactly equal to the constraint force of the road,"

Builder said helpfully, "although they point in

opposite directions. If the pressing component were
greater than the constraint force, the road would
collapse and the car would fall through."

"I see how we can tell whether the car will slide

down the hill!" the professor said. "If the magnitude of

the sliding component is greater than the magnitude of

the frictional force, then the car will slide!"

"Everybody knows that!" Recordis said.

"However, we don't have the faintest idea how to

calculate the magnitude of the frictional force."

"The magnitude of the frictional force is

proportional to the magnitude of the pressing force,"

Builder said helpfully.

Ff = (some number) x F p
= (some number) x Fg cos A

"But how do we know what the value of that

'some number' is?" Recordis demanded.

^^^^^—^^^^^g "That obviously depends on the road

*Friction conditions," Builder said. "I call that quantity the

mmmSSmSSmmmmmmmm friction coefficient (or fc for short). If the road is icy,

then the value of the friction coefficient is small, and
the cars are much more likely to slide. Under normal
circumstances, the value of the friction coefficient for

this type of road is about 0.4."

We wrote out the equations:

F s = Fg sin A sliding component of gravity

Ff = 0.4 Fg cos A friction force

"So the car will slide if this inequality is true,"

the professor exclaimed.

Fs >Ff

or

Fg sin A > 0.4 Fg cos A
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"We can cancel out that Fg , since it appears as a

factor on both sides," Recordis said, cheering up a bit.

Recordis found trigonometry to be very confusing, but

he still loved to cancel things. The car will slide if

sin A > 0.4 cos A

"We can divide both sides by cos A," the

professor said. The car will slide if

sin A
cos A

> 0.4

"We know that sin A/cos A = tan A,"
Trigonometeris said, glad that one of the relations he
had discovered the day before had come in handy. The
car will slide if

tan A > 0.4

Trigonometeris had just happened to notice in

the trigonometric table that tan 21.8° was about equal

to 0.4. "Therefore, if A is greater than 21.8°, then tan A
is greater than 0.4, and the car will slide." (In Chapter
10 we found a more systematic way to determine the

size of an angle if you know its tangent.)

"Just what I needed to know!" Builder said

gratefully. "I must be very careful to design the road so

that the steepest slope is not steeper than 21.8°."

Recordis eyes were bleary from doing this much
work in one day. "Let's work on something fun, like

the design for the new carnival merry-go-round we will

build to celebrate the opening of the bridge," he said.

"I would like the outer rim of the top to be decked
with streamers with small balls at their ends. The
radius of the outer rim is 10 meters. However, I still

have a problem. I would like the streamers designed so

that they hang outward, forming a 15° angle while the

merry-go-round turns. (See Figure 4-12.) I don't know
what the turning speed of the merry-go-round should
be."

*The Maximum
Angle of Tilt

The Merry-Go-
Round Streamers

Figure 4-12
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Centrifugal Force

"Why do the streamers hang outward when the

merry-go-round turns?" the professor asked. Like all

brilliant theoreticians, she did not always have an
intuitive understanding of practical matters.

"Everyone knows that when you turn something
it seems to be pulled outward!" Recordis exclaimed.

"Haven't you ever ridden on a wagon around a sharp
curve? You feel like you are being pulled outward.
When the merry-go-round is stopped, the streamers

will hang straight down. When the merry-go-round
starts moving faster, then the streamers will hang
farther and farther out."

"I have a name for that type of force," Builder

said. "I call it centrifugal force. It's not a real force, so I

call it a fictitious force. Whenever something rides

inside an object moving around in circles, it will seem
to be feeling a centrifugal force pushing it outward. I

have calculated that if / is the frequency of rotation

(measured as the number of turns per second), r is the

radius of the ride, and m is the mass of the ball, then
the size of the centrifugal force is approximately

Fc = 39.48mrf
2

(The exact formula is Fc = mr(2-n\f)
2

. Note that the

force is greater if the ride turns faster.)

"Now it is a trigonometry problem!"

Trigonometeris said. "We know that, while the merry-

go-round is turning, a ball at the end of a streamer is

acted upon by three forces: the force of gravity (Fg )

pulling straight down, the centrifugal force pulling

straight out, and the force of the streamer itself, which
pulls the ball up at an angle." (See Figure 4-13.)

Figure 4-13
1
\

'up —

Fs cos 15° Vs

Fin = ' centrifugal

Fs sin 15°

F9

1 '
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"These three forces must exactly cancel each

other out, since we don't want the ball to be moving,"
the king said. ("Actually, of course, the ball will be

moving if you stand on the ground to watch it. If you
are riding on the merry-go-round itself, then it will not

appear to you that the ball is moving.")

"We can divide the force of the streamer into

two components: an upward component and an inward
component," the professor said. Using A to stand for

the angle of tilt of the string, we found

Pup = Fs cos A upward force

Fin = Fs sin A inward force

We wrote one equation stating that the upward
force of the streamer was equal to the downward force

of gravity:

Fs cos A = Fg

and another equation stating that the inward force of

the streamer was equal to the outward centrifugal force:

Fs sin A = Fc = 39.48mrf
2

"Now we've reduced it to an algebra program!"
Recordis said with relief. He rewrote the first equation
to give us an expression for Fs :

cos A

Then he substituted this expression for Fs into the

second equation:

F
- sin A = 39.48mrf

2

cos A

Trigonometeris reminded us that sin A/cos A =
tan A:

Fg tan A = 39.48mrf

Builder told us that the magnitude of the gravity

force depended on the mass of the balls according to

the formula

Fg
= mg

where g once again had the value g = 9.8.

Then we wrote

mg tan A = 39.48mr/2

Recordis gleefully canceled out the two m values:

g tan A = 39.48r/ 2

Then he filled in the values g = 9.8, A = 15°,

and r = 10:

9.8 tan 15 = (39.48)(10)/
2

0.00665 = j
2
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Note to

CHAPTER 4

Exercises

f - 0.082 turns per second

We calculated the equivalent:

/ = 4.9 turns per minute

"This has been an historic day," the king said.

"For the first time we have put the new trigonometric

functions to practical use. We'll call this new bridge

the Trigonometry Memorial Bridge. To commemorate
that fact, we will put a sign by the side of the road."

Trigonometeris blushed. "Then we should put a

cosine on the other side of the road so as to give equal

honor to the two functions that helped us get this far."

• The magnitude of a force can be measured by a unit

called the newton. One newton equals one
kilogram-meter per second squared. In other words,

a force of 1 newton will accelerate a mass of 1

kilogram at the rate of 1 meter per second per

second. For example, an object with a mass (m) of

20 kilograms will be pulled on by a force of gravity

mg. Since g = 9.8 meters per second squared, the

force will be 196 kilogram-meters per second
squared = 196 newtons.

For Exercises 1 to 7, calculate the east-west

component and the north-south component of velocity

for the velocity vectors.

1. 10 miles per hour 15° north of east

2. 34 miles per hour 30° south of east

3. 5 miles per hour 12.4° north of west

4. 1 mile per hour 87° north of east

5. 60 miles per hour 34° south of west

6. 200 miles per hour 17° north of west

7. 80 miles per hour northwest

Consider an airplane that always flies directly

east (relative to the air). However, the wind always
blows directly north, which means that the plane's

course relative to the ground does not point directly

east. The following table gives the plane's airspeed (its

speed relative to the air) and the angle that tells how
much it is off course. For Exercises 8 to 13, calculate

the wind speed.

Airspeed Angle Airspeed Angle

8. 50 45° 12. 400 4.3°

9. 100 20° 13. 180 5.4°

10. 490 20° 14. 540 8.8°

11. 600 5°
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The following table lists the initial speed (in

meters per second) and the angle of launch for several

different objects. For Exercises 15 to 19, calculate the

distance that each object will travel until it hits the

ground.

Initial speed Angle of launch

15. 10 25°

16. 40 25°

17. 60 54°

18. 52 48°

19. 100 5°

Suppose that a book is allowed to slide down a

frictionless table of length d meters that is tilted at an
angle A. Calculate the time for the book to reach the

end of the table. Use the formula: time =
V2d/(g sin A) seconds. (Remember g = 9.8.)

A

20. 1.4 10° 23. 1.35 60°

21. 1.8 12° 24. 10 90°

22. 5 20° 25. 10 0°

26. Consider a football player who runs at a speed of

7 yards per second on an open field. How long will it

take him to gain 10 yards if he runs straight downfield?
What if his course makes a 10° angle with the

sidelines? What about these courses: 20° angle; 30°

angle; 40° angle; 50° angle; 60° angle.

If you look at a stick protruding from a lake, it

will seem bent. The reason for this is refraction.

Refraction refers to the bending of light rays when they

travel from one medium (such as air) to another (such

as water or glass). The amount of bending can be
calculated from SneJJ's law. Let A l represent the angle

of incidence in medium 1, and let A 2 represent the

angle of incidence in medium 2. (See Figure 4-14.) For

each medium we need to know the index of refraction.

Let n a be the index of refraction in medium 1, and n 2

be the index of refraction in medium 2. Then Snell's

law states

n a sin Ai = n 2 sin A 2

The index of refraction for air is n u
= 1; the

index of refraction for water is n 2 = 1.33. The
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Figure 4-14

Light

ray \

\Al

Medium 1

(air)

r», = 1

\ Medium 2

\ (water)

\ n2 = 1.33

A2\

following table lists values of A a . For Exercises 27 to

34, calculate sin A 2 , and calculate A 2 if possible.

*27. 41.68° *28. 0° *29. 70.13° *30. 16

•31. 25° *32. 30° *33. 45° *34. 50

35. Calculate the value of Aj if A 2 = 40°.

36. What is the value of A a if A 2 = 48.75°?

37. What is the value of A 1 if A 2 > 48.75°?

r

38. Suppose a light ray passes from air to glass.

Suppose A a = 20° and A 2 = 12.34°. Calculate the

index of refraction for the glass.
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Radian
Measure

That night we camped at the bridge site.

Trigonometeris had enjoyed his first day as Royal
Keeper of the Triangles very much. The next day he
asked Recordis's help in constructing a complete table

of values for the trigonometric functions.

Trigonometeris dearly loved his table of trigonometric

functions, and he wanted a new copy written in an
elegant calligraphic hand. Recordis was glad to know
he was still appreciated. He had been quite jealous the

day before when trigonometry seemed to be getting so

much attention. However, there was no doubt that

Recordis was by far the best person in the kingdom for

writing complicated reports involving long columns of

numbers. He painstakingly constructed a table, starting

at 1°, then 2°, and so on. He wrote all the numbers in

his very best handwriting.

Trigonometeris waited patiently while Recordis
worked all morning. However, suddenly he heard a

Recordis Writes
Out the Table
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tremendous scream. Trigonometeris ran to Recordis and
saw him sobbing. "I've ruined it!"

Trigonometeris looked at the parchment.

-'^r

'*</

sin 90
c

Figure 5-1

^f
sin 87° = 0.9986

sin 88° = 0.9994

sin 89° = 0.9998

cos 87° = 0.0523

cos 88° = 0.0349

cos 89° = 0.0175

tan 87° = 19.0811

tan 88° = 28.6363

tan 89° = 57.2900

^zzzz

J
"What's the matter?" he asked Recordis.

"I should not have written that 90 down!"
Recordis sobbed. "I used indelible ink, so I need to

start all over again. Everybody knows that there is no
such thing as sin 90° or cos 90° or tan 90°."

"Why not?" Trigonometeris asked.

"A right triangle can only have one right angle!"

Recordis exploded. "Look at what happens to the Royal
Triangles if we set the angle of interest at 90°." (See

Figure 5-1.) "The length of the far side becomes the

0) 1

CO |

ZJ I

c I

a> I CD
"Do I

Q-
1

CO

>* 1
k»

X 1
(0

Almost —
a 90°

angle

I'r

Near side

goes to zero
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same as the length of the hypotenuse, and the length of

the near side goes to zero! Then you don't have a

triangle any more!"

Recordis continued to sob over this

development, but Trigonometeris quickly became
excited. "This proves that trigonometric functions are

far more versatile than we had previously imagined!
When the angle of interest is 90°, then we will say that

the length of the near side is zero and the length of the

far side is the same as the length of the hypotenuse.
Therefore:

. „ far side
sin 90° = - = 1

hypotenuse

near side
cos 90° = : =

hypotenuse

Recordis stared speechlessly at these results. He
was quite used to algebra taking totally unexpected
turns, but he had thought that trigonometry was a

completely straightforward, albeit hopelessly dull,

subject.

"But there is no way that you can define a value

of tan 90°," Recordis finally said, realizing that

Trigonometeris had no way to weasel out of that

objection. "Since tan A = sin A/cos A, to calculate tan
90° we would have sin 907cos 90° = J. We know that

it is totally illegal to have a fraction with a zero on the

bottom."

Trigonometeris had to agree with him there.

However, he had a new idea. "We can also calculate —

—

the values of the trigonometric functions of a zero sin 0°

degree angle," he said. "If the angle of interest is zero, mhm
then the length of the far side is zero and the length of

the near side is equal to the length of the hypotenuse.
Therefore,

opposite side
sin 0° = -P =

nypotenuse

adjacent side
cos 0° = -r1 = 1

hypotenuse

sin
tan 0° = =

cos

"I bet some people still adhere to the old-

fashioned idea that trigonometry only applies to right

triangles," Trigonometeris said. "We will prove that

they have never been more mistaken in their lives."

Recordis was glad that he did not have to start

the table over again.
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The Attack of the

Killer Bees

Z^/~

sin 0° =

sin 90° = 1

ZZ.

*%
cos 0° = 1

cos 90° =

tan 0° =

tan 90° = undefined

^<^A

)

fr-^W )

Suddenly we were interrupted by an urgent

message from Builder. "The gremlin is trying to

sabotage the bridge-building process! He is attacking us

with a swarm of killer bees!"

By the time we reached Builder we found that he
had quickly constructed a solution to the problem. Pal

was operating a swiveling ray gun mounted on top of a

hill, and the attack of bees was soon under control.

Builder explained to us how the device works. "It was
no problem to build this," Builder said. "The only

tricky part is figuring out how to aim the ray gun. But
we have worked out a very good system. The barrel of

the gun is 1 meter long. It is designed so that it can
rotate about its end. The gun always starts out in the

starting position, which points directly to the right.

Then I signal Pal to tell him how far the tip of the gun
needs to rotate. For example, if I tell Pal to rotate the

gun by 1 meter, then he rotates it like this." (See Figure

Figure 5-2
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5-2.) Builder also illustrated what it meant to rotate the

gun by 0.5, 2, and 3 meters. (See Figure 5-3.)

Figure 5-3

"Normally, we will always be rotating the gun in

a counterclockwise direction," Builder explained.

"Therefore, whenever I give the rotation amount as a

positive number, then it means to rotate

counterclockwise. However, there may be times when
we need to rotate the gun in a clockwise direction. In

those cases I give the rotation measurement as a

negative number." Builder illustrated some negative

Measuring
Rotations

rotations. (See Figure 5-4.)

J Start

\\-3 / \\ 1^S-0.5 7

\-1 //
NNv/-2

Figure 5-4
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Radian Measure

"A totally new concept!" the professor said

excitedly. She always became excited when she
discovered a totally new concept. "We have never tried

to measure rotations before."

"That is not a totally new concept," Recordis
said. "Measuring rotations is almost exactly the same as

measuring angles."

The professor was crestfallen when she realized

the obvious similarity between measuring rotations and
measuring angles. However, Trigonometeris suddenly
became excited about the idea. "This is a totally new
way to measure angles!" he said excitedly. "Previously,

we have measured angles with degree measure. We
have only found a meaning for angles that were greater

than 0° and less than 180°. Now we have a new way to

measure angles, and we can even define negative

angles!"

"It took me a long time before I started believing

in negative numbers, so I'm not going to start believing

in negative angles!" Recordis fumed.

However, the professor quickly liked the idea.

"We will call this new type of measure for angles

radian measure," she decided. "We are measuring the

size of an angle by measuring the distance we must
rotate around a circle, and we are expressing that

distance as a multiple of the radius of the circle."

The king issued a proclamation.

-ZP7-

Radian Measure
*%

Draw a circle of radius r. Draw an angle

with the vertex at the center of the circle.

(This type of angle will be called a central

angle.) The two sides of the angle will cut

across the circle and form an arc. Let s

represent the length of the arc. Then the

radian (rad) measure of the angle is

s
Size of angle in radians = -

r

If the angle is formed by rotating

counterclockwise, then the angle is a positive

angle. If the angle if formed by rotating

clockwise, then the angle is a negative angle.

(See Figure 5-5.)

22L ^ZZZl

srtrt'SS ^^^^y)
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Figure 5-5

(Note that the circle formed by Builder's ray gun
has a radius of 1, so in that case the radian measure of

the angle is the same as the length of the arc.)

"We still should find a way to convert angles

measured in radian measure into familiar old degree

measure," the king added.

"First we must establish exactly how many
radians there are in a complete turn," the professor said

matter-of-factly.

Builder gave us a clue. "A rotation of 6 radians

is a bit less than a complete turn, but a rotation of 7

radians is a bit more than a complete turn. (See Figure
5-6.)

Figure 5-6
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"We need to find a number between 6 and 7,"

the professor said thoughtfully.

"We were doing some work with circles a long^"^"^^^^^ time ago," Recordis said, leafing through his giant

The Special record book. "Aha! Here it is. We discovered a special

Number tt number called pie, symbolized by tt, and we found that

i^gBfigBi^ai the circumference of a circle of radius 1 was 2~. (In

general, the circumference of a circle of radius r is

2iTr.)"

"The name of that symbol is spelled pi, not

'pie,'" the professor corrected. "Pi is the sixteenth

letter of the Greek alphabet. Therefore, a complete turn

measures 2tt radians."

"Then a half-turn must measure tt radians," the

king said. "And a half-turn is the same as a straight

angle, which measures 180°. Therefore,

tt radians = 180°

We also calculated the radian measure for a

quarter-turn (in other words, a right angle) and a three-

quarter turn and made a table of results. However,
Recordis immediately complained about having to

write all the decimal points. We realized that we could

simply write radian measures in terms of tt—in other

words, write tt instead of 3.14159, 2tt instead of 6.2832,

and tt/2 instead of 1.5708. We made a table of results.

Radians Degrees

2tt = 6.2832 360 Complete turn

tt = 3.1416 180 Half-turn or straight angle

TT- = 1.5708
2

90 Quarter-turn or right angle

TT- = 1.0472
3

60

- = 0.7854
4

45

5 = 0.5236
6

30
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"We can now state a general formula for

converting an angle measured in radians into an angle

measured in degrees," Trigonometeris said.

D = angle measured in degrees

R = angle measured in radians

D = R
180-

TT

"We can also write the reverse formula:

R = ttD

180

By using the first formula we found that 1 radian
was about equal to 57.296°.

We experimented some more with angles. Pal

had fun spinning the ray gun in the direction we told

him. We played a game where Recordis told Pal how
much to spin while the rest of us hid our eyes. Then
we had to figure out the angle that had been formed.
One time we looked around and we found that the ray

gun was pointed in the starting direction.

"That's easy!" Trigonometeris said. "That's a

radian rotation."

"Fooled you!" Recordis said. "It's really a 2tt

radian rotation."

"How are we supposed to tell the difference

between a rotation of 2tt (in other words, a complete
turn) and a rotation of (in other words, no rotation at

all)?" Trigonometeris screamed.

"Those two types of rotations do seem to be
effectively identical," the professor said.

"We had better make it illegal to rotate by more
than 2tt," Trigonometeris said. "For example;, a rotation

of (2tt + tt/2) would be impossible to distinguish from
a rotation of tt/2."

"What's wrong with that?" the professor said.

"We'll just say that a (2tt + tt/2) angle is effectively

identical with a tt/2 angle." We decided to use the

word coterminal to describe the situation where two
angles were effectively identical—in other words, their

terminal sides were the same. We realized that there

were lots of possible angles that are coterminal with a

particular angle.

The king declared:

Converting
Radians to

Degrees

Coterminal Angles
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Coterminal Angles

Consider any angle A. This angle is

coterminal with the angle (2ir + A) and the

angle (4tt + A) and the angle (6tt + A) and
the angle (8tt + A), and so on. In general, the

angle (2mr + A), where n can be any integer,

will be coterminal with A. The values of the

trigonometric functions for an angle will be
the same for all angles that are coterminal

with the original angle. In particular,

sin A = sin (2niT + A)

cos A = cos (2n7T + A)

tan A = tan (2mr + A)

for any value of A.

2/. ^22&
S//SS r^w Ĵ

The Shifting Sun

At that moment we were interrupted by the

arrival of the Royal Astronomer, who came floating on
a small boat down the river. He was carrying a worn
knapsack, indicating that he was returning from a long

journey. He was pleasantly surprised to see us waiting

along the river bank, but as soon as he docked his boat

we could see that he was deeply depressed again. "I

have just returned from a long journey to distant

lands," he explained. "I have been trying to measure
the radius of the Earth. I had a brilliant idea for an
experiment, but it was totally ruined. I was on South
Southsea Island. I was in radio contact with my
assistant on North Southsea Island, which is exactly

833 kilometers due north. Before doing the experiment
we planned to calibrate our instruments by measuring
the position of the sun. That's when we found our

instruments were not aligned properly. I measured that

the sun was directly overhead (at the point I call the

zenith), but my assistant found that at that exact same
moment the sun was 7.5° away from the zenith. I can't

imagine what could have caused an error that large! So
I am on my way home to fix the instruments. The
whole trip was wasted!" he sobbed.

"We have been having great success with
trigonometry," Trigonometeris said. He explained what
we had accomplished so far. In an effort to cheer the
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astronomer, he offered to convert the 7.5° angle into

radian measure.

"Whenever I see a 7.5° angle my mind is filled

with painful memories," the astronomer said, but

Trigonometeris proceeded anyway.

7.5° =
7.5 x 3.14159

180
radians = 0.1309 radians

"Here is what that means," the professor

explained. "Suppose you have an arc of length s cut

from a circle of radius r by a central angle of 7.5°.

Then, s/r = 0.1309."

"That's all very interesting, but I'm afraid that

this information does me no good," the astronomer said

sadly. "It would only help to know this if I was dealing
with circles." Suddenly he stopped. All traces of

despair vanished in an instant, and he became excited.

"That's it!" he exclaimed. "How could I have been so

stupid! The Earth is round—and that causes the

apparent position of the sun to be different at different

locations!" He drewT a quick diagram. (See Figure 5-7.)

Sun

7.5° // /

North Southsea^Ovsouth Southsea
Island / TV |S | ancj

fy 7.5° = 0.1309 \

"At South Southsea Island, the sun was directly

overhead. But at North Southsea Island, the sun was 7.5'

south of the zenith. That means that the lines joining

these two islands to the center of the Earth meet to

form an angle of 7.5°, or 0.1309 radians."

His eyes suddenly grew even wider. "We can
now measure the radius of the Earth!" he gasped. "Let

Figure 5-7
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The Radius
of the Earth

Figure 5-8

s be the length of the arc from North Southsea Island to

South Southsea Island, and let r be the radius of the

Earth. Then, as you have just said:

0.1309

"Therefore,

r =
0.1309

"We know s = 833. Therefore,

oqq
r = = 6400 kilometers (approximately)

0.1309

The astronomer went home in a state of ecstasy.

"Now we can make general definitions of the

trigonometric functions," Trigonometeris said. "Let's

start by drawing a line pointing directly to the right."

"That's what we called an x axis," Recordis said,

trying to make the situation look more familiar.

"We may as well also add a y axis," the

professor said. (See Figure 5-8.)

y

x

Then Trigonometeris suggested how we could
give a general definition for the trigonometric
functions. There were several quarrels between
Trigonometeris and the professor over the exact

wording, but here was the result that they finally

agreed upon.
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General Definition of Trigonometric
Functions

First, draw an xy coordinate system.

Then draw an angle in standard position.

Here is what we mean by standard position:

the vertex (point) of the angle is at the origin

[the point (0, 0)], and one side of the angle

points along the x axis in the positive

direction. [We call this side the initial side.

The other side of the angle is called the
terminal side. (See Figure 5-9.)

You may measure the size of the angle

using either degree measure or radian

measure. Here is how to measure the size of

the angle using radian measure. Draw a circle

with a radius of length 1 centered at the

origin. Then the radian measure of the angle

is the distance you must travel around the

circumference of the circle to get from the

initial side (the x axis) to the terminal side. If

you travel counterclockwise, then we say that

the angle is positive; if you travel clockwise,

then the angle is negative. Let's suppose that

the angle measures A radians.

Pick any point along the terminal side

of the angle. Let's say that the coordinates of

this point are (x, y). We will let r represent

the distance from the origin to this point.

From the Pythagorean theorem we know that

r
2 = x 2 + y

2
.

Now we can make the definitions of the

trigonometric functions:

sin A = -
r

cos A

tan A = -
x

Note that these ratios will be the same no
matter what point along the terminal side you
pick. (Of course, the value of these ratios will

change if you change the angle A.)

2£- ^^
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Trigonometric
Functions

tyy^yy D
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Figure 5-9

y 4

f/'\

/
/

Initial side x

y
sin A = -

r

. x
cos A = -

r

tan A = -
X

"Now we can begin the systematic study of

trigonometric functions," the professor said.

"I just realized something is very wrong with
these definitions!" Recordis said. "Sometimes the value

of x or y might be negative, so sometimes the value of

the trigonometric functions themselves could be
negative."

"What's wrong with that?" Trigonometeris asked.

Recordis could not think of a reason why the

trigonometric functions could not be negative. We
investigated the possibilities. We found that it depends
on which quadrant the terminal side of the angle is in.

There are four possibilities. (See Figure 5-10.)

First quadrant
x, y both positive

Angles from to ir/2 (0 to 90°)

sin A, cos A, and tan A are all positive

Second quadrant
x negative, y positive

Angles from ir/2 to it (90 to 180°)

sin A is positive, cos A is negative, and tan A is

negative

Third quadrant
x, y both negative
Angles from it to 3ir/2 (180 to 270°)

sin A, cos A are both negative; tan A is positive
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Fourth quadrant
x positive, v negative

Angles from 3ir/2 to 2ir (270 to 360°)

sin A is negative, cos A is positive, and tan A is

negative

y

Quadrant II Quadrant 1

x negative x, y both positive

y positive

sin, cos, tan

cos, tan negative all positive

sin positive

90° =:

2

180° = ir 0°

X

270° _ 3tt

2

sin, cos negative sin, tan negative

tan positive cos positive

Quadrant III Quadrant IV

x, y both negative x positive

y negative

Figure 5-10

We found some examples.

-^s

zz?^
<*+

?

First quadrant sin 30° = 0.5000 cos 30° = 0.8660 tan 30° =

Second quadrant sin 150° = 0.5000 cos 150° = -0.8660 tan 150° =

Third quadrant sin 210° = -0.5000 cos 210° = -0.8660 tan 210° =

Fourth quadrant sin 330° = -0.5000 cos 330° = 0.8660 tan 330° =

ZZ-

0.5774

-0.5774

0.5774

-0.5774

)

asaa^

"The value of the sine function can be negative,

but that doesn't mean that it can take on any possible

value," Trigonometeris pointed out. We found that

neither the sine function nor the cosine function could

)
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ever have a value greater than 1 or less than
king made a decree.

1, so the

=-e^:r

's-S *%
Law of Possible Values

- 1 < sin A < 1

- 1 < cos A < 1

2>L

for all possible values of A

^^
fr-^vX Z)

Cofunctions

"It will help to make a list of equations that we
know will be true all the time," the king said. "Then,
no matter what particular angle we picked, we could
know that we could depend on those equations."

"We gave a special name to an equation that is

always true," the professor said. "We called it an
identity. (See the Notes at the end of the chapter.)

We started to make a list of identities. We were
able to find simple formulas for the sine, cosine, and
tangent of the negative of an angle:

cos (- A) = cos A

sin (- A) = -sin A

tan (-A) = -tan A

(See Exercise 107.)

We also had found that these two relations were

cos (
— - A )

= sin A

true:

I
— - A I = cos A

For example, cos (tt/6) = sin (tt/2 - tt/6) = sin (tt/3).

"These two equations mean that the sine function

and the cosine function are complementary functions,

the professor said. "In geometry we decided that the

complement of the angle A was the angle 90° - A
(which is tt/2 - A if A is measured in radians). These
equations mean that the sine of A is equal to the cosine

of the complement of A, and vice versa."

"It almost looks as if the name cosine was set up
to mean the complementary function for the sine,"

Recordis said, looking at Trigonometeris suspiciously.
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"Let's make up a new name." the professor said.

"Let's say that the cosine function is the co/unction for

the sine function. And, vice versa, we can say that the

sine function is the cofunction for the cosine function."

"We should think of a cofunction for the tangent

function," Trigonometeris said. "Otherwise it might
become lonely."

We decided that we would use the term
cotangent (abbreviated as ctn or cot) to represent the

cofunction for the tangent function. Then we made the

definition:

ctn A = tan (
— - A

To our amazement, we found a very simple
expression for the cotangent:

v
tan A = -

x
ctn A = -

y

(See Exercise 108.)

"They are reciprocals of each other!" the

professor said. "It is clear from these equations that

tan A = 1/ctn A and ctn A = 1/tan A."

"But now that the tan function has a reciprocal

function, we must find reciprocal functions for the sine

and cosine functions," Trigonometeris said. "Otherwise
those two functions will become very jealous of the

tangent function."

Trigonometeris made up a new strange name for

the reciprocal of the cosine function. He called it the

secant function (abbreviated sec):

A
1

A
T

sec A = - sec A = -
cos A x

It turned out that the reciprocal function for the

sine function was also the cofunction for the secant

function, so we called it the cosecant function
(abbreviated esc):

1 h aesc A = ——- = sec A
sin A V 2

esc A =

"We have discovered a lot of results today!"

Trigonometeris said excitedly as we set up camp for

the night.

"Look how much paper I have used!" Recordis
pointed to the piles of papers that contained the results

we had discovered that day. "I hope that all this paper

won't weigh down the balloon too much. We need to

return to Capital City tomorrow."

Cotangent
Function

Reciprocal
Functions

The Secant and
Cosecant
Functions

Radian Measure 81



Notes to

CHAPTER 5

When the size of an angle is written as a number
without a degree symbol, then it is understood that

the angle is being measured in radians. Therefore,

you can say that the size of an angle is "n72"
instead of having to say "it/2 radians." Note that the

size of an angle in radians does not depend on
whether you are using meters or miles or any other

unit to measure distances.

The size of the Earth was calculated by Eratosthenes
of Cyrene in 270 b.c. using the method described
here. He observed the sun from Alexandria and
Syene on the Nile. Christopher Columbus would
have had a much better idea about the size of the

Earth if he had known about Eratosthenes's

calculations.

Suppose a straight line crosses two parallel lines, as

shown in Figure 5-11. The two angles A and B are

said to be corresponding angles. In geometry, it can
be shown that these two angles are equal. An
example of this occurs in Figure 5-7. Because the

sun is so far away from the Earth, it can be assumed
that the two light rays from the sun are parallel.

Then the two angles labeled 7.5° are corresponding
angles.

Figure 5-11

Some special equations are true for all possible

values of the unknowns they contain. Equations of

this kind are called identities. Here are some
examples of identities from algebra.

3x = x + x + x

3(a + b) = 3a + 3b

The equation

2x 10
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is not an identity because there is only one value of

x that makes the equation true.

The trigonometric equation

sin A = cos (
- - A

\2

is an identity because it is true for any value of A.

The equation

sin A = -
2

is not an identity because the only solutions are A
= tt/6 and A = 5ir/6 and the other angles

coterminal with those angles. In the next chapter

we will investigate many other trigonometric

identities.

The domain of a function is the set of all allowable

values for the input number for that function.

Because we have now defined values of

trigonometric functions for any real number, the

domain for each trigonometric function consists of

all real numbers. However, there are some
exceptions: tan (tt/2), tan (3tt/2), ctn 0, ctn it,

sec (tt/2), sec (3tt/2), csc 0, and esc tt are not

defined, so these values and their coterminal values

are not part of the domain for the functions listed.

The range of a function is the set of all possible

values of the output number. For the sine and cosine

function, the range is from - 1 to 1. The ranges of the

tangent and cotangent function consist of all real

numbers. The ranges of the secant and cosecant

functions consist of all real numbers except those

between -1 and 1.

1. tt/3 7. 2tt/5 13. 1.645

2. tt/6 8. 1 14. 2.9875

3. tt/4 9. 2 15. 3.645

4. tt/5 10. 3 16. 1.987

5. it/10 11. 4

6. ir/12 12. 5

For Exercises 17 to 31, convert the angles

measured in degrees into angles measured in radians.

For Exercises 1 to 16, convert the angles 5^51S!
measured in radians into degrees. Exercises
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17. 30° 23. 1° 29. 1 minute

18. 45° 24. 57° 30. 1 second

19. 270° 25. 58° 31. 5° 12 minutes

20. 100° 26. 60° 16 seconds

21. 216° 27. 80°

22. 4.5° 28. 85°

Identify the angle between and 2-tt that is

coterminal with each of the angles in Exercises 32 to

40.

32. 16-TT 35. 100-rr 38. 12.45-jt

33. 181T 36. -0.57T 39. 16.45-iT

34. 23.6-rr 37. -1.5TT 40. 14.5ir

For Exercises 41 to 50, make a table listing A
(measured in radians) and sin A for the angles listed.

41. 4° 45. 2° 49. 0.2

42. 3.5° 46. 1.5° 50. 0.1

43. 3° 47. 1°

44. 2.5° 48. 0.5°

51. Can you suggest an approximation for sin A as A
becomes small?

For Exercises 52 to 69, calculate sin A, cos A,
and tan A for these angles (in radians). Also calculate

the measure of these angles in degrees. (Do not use a

calculator for Exercises 52 to 62.)

52. TT 58. 5tt/6 64. 2

53. 3it/2 59. 7tt/6 65. 3

54. 3tt/4 60. 4it/3 66. 4

55. 5tt/4 61. 5it/3 67. 5

56. 7ir/4 62. 11tt/6 68. 6

57. 2tt/3 63. 1 69. 7

In Exercises 70 to 74, you are given values for

sin A and cos A. Determine the value of A.

70. sin A = 1/V2; cos A = - 1/V2

71. sin A = -i; cos A = V3/2

72. sin A = -1; cos A =

73. sin A = V3/2; cos A = -h

74. sin A = h\ cos A = V3/2
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In Exercises 75 to 80, you are given values for

sin A and tan A. Determine the value of A.

75. sin A = - 1/V2; tan A = 1

76. sin A = 1; tan A undefined

77. sin A = - \\ tan A = - 1/V3

78. sin A = V3/2; tan A = -V3
79. sin A = 1/V2; tan A = -1

80. sin A = -£; tan A = 1/V3

* 81. Suppose you know the length s of an arc on a
\

circle of radius r. Calculate the length of the associated Figure 5-12

chord—that is, find the distance between the two end
points of the arc. (See Figure 5-12.)

* 82. Consider a runner running around a perfectly

circular track of radius 25 meters. Suppose you
measure the central angle between the starting point

and the runner's current position, and you find that

this angle is increasing at a constant speed of 0.2256

radians per second. (The rate of increase of this angle is

called the angular velocity.) How fast is the runner

running?

* 83. Derive a general formula that relates r (the radius

of the track), v (the runner's speed), and co (the angular

velocity).

* 84. Let's suppose that the planets orbit the sun at

constant speeds around perfectly circular orbits. (In

reality the planet's orbits are ellipses, but they are close

to being circles.) Calculate the orbital velocity (in

kilometers per day) and the angular velocity (in radians

per day) for each planet, given the information in the

following table

Radius of orbit Period of orbit

Planet (million kilometers) (days)

Mercury 58 88

Venus 108 225

Earth 150 365

Mars 228 687

Jupiter 778 4,333

Saturn 1,427 10,759

In Exercises 85 to 88, you are given the distance

in kilometers between two points that are on the same
north/south line and the angular difference between the

sun's position seen from these two positions. Calculate
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the radius of the planet that each pair of points is

located on.

85. 10°; 1113 87. 2°; 2492

86. 30°; 1275 88. 34°; 3590

Write formulas for the exact values for the

trigonometric functions in Exercises 89 to 91.

89. sec 30°; esc 30°; ctn 30°

90. sec 45°; esc 45°; ctn 45°

91. sec 60°; esc 60°; ctn 60°

Calculate values for the trigonometric functions

in Exercises 92 to 100. Look in the table at the back of

the book or else use a calculator.

92. sec 20° 95. sec 11.4° 98. sec 150°

93. ctn 35° 96. ctn 20.8° 99. esc 95°

94. esc 75° 97. esc 63° 100. ctn 170°

In Exercises 101 to 106, calculate an angle

between and - 2tt that is coterminal with each of the

given angles.

101. 3tt/2 103. 21tt/11 105. 9tt/10

102. 5ir/6 104. 17-rr/ll 106. 12ir/14

107. Show that sin (- A) = -sin A. Show that

cos (- A) = cos A.

108. Show that ctn A = 1/tan A.

109. Write a program that prints a table of the sine,

cosine, and tangent functions for angles from 0° to 90°.

Most programming languages, such as BASIC or Pascal,

will automatically calculate these values for you.
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We received a letter from Builder two days after

our return. Construction on the bridge was going well,

but he did have some complaints. "There are still some
problems that take too long to solve," he wrote. "For
example, often I will know the value of sin A for a

particular angle A, but I need to know the value of

cos A. I wish there were a quick formula that would tell

me the value of cos A in that case, so I wouldn't have
to look it up in the table again."

"No way!" Recordis exclaimed. "Sines and
cosines are fundamentally different entities—there is

no way to find a connection between them."

"We could write down the defining relations and
see if something hits us," the professor said

encouragingly.

• a y a
x

sin A = - cos A = -
r r

"All we need is to find a relation between x, y, and r."
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"There is no relation between x, y, and r!"

Recordis exclaimed. "Except, of course, for the

Pythagorean theorem," he reluctantly added. (Recordis

passionately disliked square root signs, so he was
reluctant to use the Pythagorean theorem because the

results often involved square root signs.)

"We will use the Pythagorean theorem!" the

professor exclaimed.

x 2 + y
2 = r

2

"Divide both sides of that equation by r
2 ,"

Trigonometeris suggested.

x2 y2 _ r
2

7 + 7 " 7
"We know rVr2 = 1," the king volunteered.

x 2 y2

— + — = 1
r r

Pythagorean "Now, use the definition of sin A and cos A!"

Identities Trigonometeris said eagerly.

2 „2
y-= = sin

2 A -= = cos 2 A
r r

"Therefore,

sin
2 A + cos 2 A = 1

"That is another identity— it will be true for any
possible value of A."

"I should have known!" Recordis cried. "The old

finding-a-relation-between-the-sine-and-the-cosine-by-

using-the-Pythagorean-theorem trick!"

We wrote down two obvious equations that

followed directly from this first equation.

sin
2 A = 1 - cos

2 A cos 2 A = 1 -sin2 A

"We can also say

sin A = Vl - cos
2

and

cos A = vT sin

but we must be careful when using these formulas
because the values of cos A and sin A are not always
positive," the king said.

"This works in theory," Recordis cautioned, "but
we should try an example to make sure it works in

practice."

We considered an angle A = 35°. We found sin

A = 0.5736 and cos A = 0.8192. Then we calculated

sin2 A + cos
2 A = 0.329 + 0.671

= 1.000
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"See! It does work!" the professor said happily.

"We will also be able to find corresponding
equations relating the other trigonometric functions,"

Trigonometeris said. Starting from the equation x 2 +

y
2 = r

2 and dividing both sides by x2
, we found

tan
2 A + 1 = sec

2 A

Dividing both sides by y
2 we found

ctn
2 A + 1 = esc

2 A

"These identities will be very useful,"

Trigonometeris said, "and the best part is that we know
that they will always be true, no matter what angles we
use. I think identities are far more dependable than
regular equations."

"Builder has another problem," Recordis said.

He continued reading from Builder's letter. "There are

often times when I need to stack one triangle on top of

another triangle. In those circumstances it would be
nice to have a formula for the sine of the sum of two
angles; in other words, can you tell me how to

calculate sin [A + B) if I know the values of the

trigonometric functions for angle A and angle B?"

"Let's make up a trigonometric addition rule,"

Recordis said. "I suggest that we make up this rule:

sin [A + B) = sin (A) + sin (B)

"I guarantee you that this rule will make life much
simpler in the long run."

"But it does not work," the king said. "We know
sin (30° + 60°) = sin (90°) = 1

"But

sin (30°) + sin (60°) = 0.5000 + 0.8660

= 1.366

"Therefore, sin (30° + 60°) does not equal sin (30°) +
sin (60°)."

"Besides, we can't just make up a rule like that,"

the professor said.

"I thought we were making most of this up
anyway," Recordis objected. Nevertheless, he agreed to

help with the search for a general formula for

sin (A + B).

"In cases such as this, the first thing to do is

draw a picture," Trigonometeris suggested.

We drew two right triangles stacked on top of

each other, one containing the angle A and the other

containing the angle B. (See Figure 6-1.)
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Figure 6-1

"I can see from the picture that these two
equations are true," Recordis said.

y a
= hi sin A

y2 = h 2 sin B

"But we can't find an expression for sin (A + B)

using these triangles. If only we had a right triangle

involving the angle A + B, like this," he moaned. He
drew an addition to our original diagram. (See Figure

6-2.)

Figure 6-2

"That's exactly what we need to do!" the

professor said. "We can see that:

sin [A + B) = yi + ya

"We don't know an expression for y3
," Recordis

pointed out. However, Trigonometeris had an idea. He
drew another line segment on the diagram and labeled

some of the angles. (See Figure 6-3.)
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Figure 6-3

"We can see that y3 = y2 cos C," he said. To our
surprise, we found that angle C was the same size as

angle A. To show this, we had to look in an old book
on geometry. We could tell that angle D was equal to

90 - A, since they were two angles in a right triangle.

Then we could see that angle E was equal to angle D,

since they are two opposite angles formed by the

intersection of two straight lines (these are called

vertical angles). Angle C equals 90 - E, since they are

two angles in a right triangle. Putting all these together,

we found A = C. Therefore.

y3 = y2 cos A

We had already found y1 = h t sin A, and Recordis
recognized that we could substitute these two
expressions into our formula for sin (A + B):

sin {A + B) = h a sin A + y2 cos A

Trigonometeris told us two more relations:

h a = h 2 cos B

y2 = h 2 sin B

Then we used the substitution principle again:

. , , „, h 2 cos B sin A + h 2 sin B cos A
sin [A + B) = — r

—

~

n 2

"We can cancel out all the h 2 terms!" Recordis

said excitedly.

sin {A + B) = cos B sin A + sin B cos A

We decided to change the order of the first term:

sin (A + B) = sin A cos B + sin B cos A
"What an elegant formula!" Trigonometeris said.

"The sines and the cosines work together so well."

Addition Rules
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"We should test some examples to make sure it

really works," the professor cautioned.

sin (A + 0) = sin A cos + sin cos A = sin A

(IT ITX TT TT 1T IT— + — = sin — cos — + sin — cos —
3 6/ 3 6 6 3

V3 V3 l l

2 2 2
X

2

3 1= - + - =1
4 4

TT
= sin —

2

sin (10° + 20°) = sin 10° cos 20° + sin 20° cos 10°

= (0.1736X0.9397) + (0.3420)(0.9848)

= 0.16313 + 0.33680

= 0.49993

"That's close enough to 0.5 for my purposes,"
Recordis said. "And we know that sin 30° = 0.5.

However, I bet the formula doesn't work if A + B is

greater than 180°. For example, sin (150° + 40°) should
be sin 190°, which should be the same as

sin (180° - 190°) = sin (-10°) = -0.1736."

The sweat built up on Trigonometeris's brow
while we tried the formula

sin 150° cos 40° + sin 40° cos 150°

= (0.5)(0.7660) + (0.6428H- 0.8660)

= 0.383 - 0.5567

= -0.1737

"It does work!" Trigonometeris breathed a sigh

of relief.

Since sin (-q) = -sin q and cos (-q) = cos q
for any q, we found a formula for the sine of the

difference of two angles:

sin [A - B) = sin [A + (-B)]

= sin A cos (-B) + sin (-B) cos A
= sin A cos B - sin B cos A

"We can find another elegant formula for

cos (A + B)," Trigonometeris said. "We just have to

use the fact of nature that cos (q) = sin (90° - q) for

any value of q."

cos (A + B) = sin [90° - (A + B)]

= sin [(90° - A) - B]

= sin (90° - A) cos B - sin B cos (90° - A)
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= cos A cos B

= cos A cos B

sin B sin A

sin A sin B

"Now we really have momentum!"
Trigonometeris said. He suggested that we look for a

formula for tan (A + B):

tan [A + B) = sin (A + B)

cos (A + B)

sin A cos B + sin B cos A
cos A cos B - sin A sin B

Recordis thought this formula was as simple
as possible, but Trigonometeris became obsessed
with the idea of finding a simpler form for it. He
tried several ideas that didn't work, but he finally

suggested multiplying both the top and the bottom by
l/(cos A cos B):

sin A cos B sin B cos A
cos A cos B cos B cos A
cos A cos B sin A sin B

cos A cos B cos A cos B

The result was

tan (A + B)
tan A + tan B

1 - tan A tan B

Recordis's eyes were becoming bleary by now,
but he thought of a simple idea before anyone else did.

"Suppose that A = B. Then we know that sin (A + B)
= sin (2A), so therefore

sin (2A) = sin A cos A + sin A cos A

= 2 sin A cos A

"We'll call that a double-angle formula, since it

tells us how to calculate the sine of an angle after you
double it," the professor said. We found double-angle

formulas for the cosine and tangent functions:

cos (2A) = cos
2 A - sin

2 A

= 1-2 sin
2 A

= 2 cos
2 A - 1

(Note that we used the identity sin
2 A + cos

2 A = 1 to

write this formula in three different forms. There was a

big argument about which form would be the simplest
form to use, so we decided we would use all three

forms.)

, A , 2 tan A
tan 2A = T—1

' 1 - tan 2 A

"I see something else," the professor realized.

She had become jealous when the others seemed to

Double-Angle
Rules
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find ideas before she had. "Suppose we know sin
2 A,

but we would like a simpler formula with no exponent.

We can see from the formula for cos 2A that

"Also

sin
2 A = i(l - cos 2A)

cos
2 A = |(1 + cos 2A)

Trigonometeris gathered all our results together

in one list so we could send them to Builder. He
grouped them under different headings that described

where the identities had come from. (We discovered a

few more identities that are included at the end of the

list. See the exercises for derivations of these.

1

These equations are true for every possible

value of the angles A and B.

Reciprocal functions

. A . 1 1
Mil /\ — "

CSC A
CSC f\ — .

sin A

1 1
COS /i —

sec A
sec A —

cos A

A
1

tail i\ —
ctn A

ctn A — •

tan A
Cofunctions (radian form)

*—d-') ~'--(H
tanA = ctn( ^ - A) ctnA = tan 1 A

)

secA = esc 1 A

)

...„(H
Negative angle relations

sin (- A) = -sin A

cos (-A) = cos A

tan (-A) = -tan A

Quotient relations
sin A

tan A =
cos A

cos A
ctn A = ——

-

sin A
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Supplementary angle relations

The angles A and B are supplementary angles if

A + B = it.

sin (ir - A) = sin A

cos (tt - A) = -cos A

tan (it - A) = -tan A

Pythagorean identities

sin
2 A + cos

2 A = 1

tan
2 A + 1 = sec

2 A

ctn
2 A + 1 = esc

2 A

Functions of the sum of two angles

sin (A + B) = sin A cos B + sin B cos A

cos (A + B) = cos A cos B - sin A sin B

tan A + tan B
tan A + B =

v

1 - tan A tan B

Functions of the difference of two angles

sin [A - B) = sin A cos B - sin B cos A
cos [A - B) - cos A cos B + sin A sin B

tan A - tan B
tan [A - B) = =:

' 1 + tan A tan B

Double-angle formulas

sin(2A) = 2 sin A cos A

cos(2A) = cos
2 A - sin

2 A
= 1 - 2 sin

2 A
= 2 cos

2 A - 1

2 tan A
tan(2A) =

1 - tan
2 A

Squared formulas

sin
2 A = - (1 - cos 2A)

cos
2 A = - (1 + cos 2A)

Half-angle formulas

f
A\ h- cos A

sin ± 1

\l 2

/
1 + cos A

cos
l)

— ± 1

V 2

Trigonometric Identities 95



/A\ /l - cos A
tan

(2J
_±

Vl+cosA

Product formulas

1
sinAcosB = -[sin(A + B) + sin(A - B)]

1
cosAsinB = -[sin(A + B) - sin(A - B)]

1
cos A cos B = -[cos (A + B) + cos (A - B)]

1
sinAsinB = --[cos(A + B) - cos(A - B)j

Sum formulas

A + B A - B
sin A + sin B = 2 sin cos

2 2

A + B A - B
cos A + cos B = 2 cos cos

2 2

Difference formulas

A + B . A - B
sin A - sin B = 2 cos sin

2 2

o •
A + B

•
A - B

cos A - cos B = -2 sin sin
2 2

Nofe to

CHAPTER 6

It is important to note that these identities are only
true provided that all the arguments for the

trigonometric functions have permissible values.

For example, any identity involving the tangent

function will be unusable if one of the angles has
the value 90°.

Exercises
1. Suppose you know the value of sin A for an angle

in the first quadrant. Write equations for cos A, tan A,

ctn A, sec A, and esc A in terms of sin A.

If sin A = f and cos A is negative, find the value

of the trigonometric expressions in Exercises 2 to 6.

2. cos A

3. sin 2A

4. tan 2A

5. cos 2A

6. sin (A/2)
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7. If tan A = i and cos B = -&, where A and B are

both third-quadrant angles, find sin (A + B).

8. If A is a first-quadrant angle with sin A = \§ and
B is a second-quadrant angle with cos B = -j|, find

cos (A + B).

Find exact formulas for the trigonometric

expressions in Exercises 9 to 11.

9. sin 15°

10. sin 75°

11. sin 7.5°

12. Find an exact formula for sin 195° by using
sin 195 = sin (150° + 45°).

13. Find an exact formula for sin 75° + sin 15°.

Prove the identities in Exercises 14 to 21 using

the trigonometric addition formulas.

-a) = -sin a

— aj = cos a

-a) = -tan a

[tt/2 — a) = sin a

(tt/2 - a) = cos a

(it/2 - a) = 1/tan a

(A + B) = (sec A sec B)/(l - tan A tan B)

(A + B) = (esc A esc B)/(ctn A + ctn B)

In general, to prove a trigonometric identity to be
true, you must manipulate one side of the identity until

it becomes the same as the other side. (Note that this

procedure is different from the procedure you use to

solve a conditional equation; there you perform
operations on both sides of the equation at the same
time.) For example, suppose we need to prove the

identity

1
sin

2 A = - (1 - cos 2A)

14. sin
(

15. cos
(

16. tan
(

17. cos (

18. sin (-

19. tan
(

20. sec (

21. CSC
(

In most cases the best strategy is to start with the

most complicated side and try to transform it to match
the simpler side. Here's how to do our example:

1 1
- (1 - cos 2A) = - [1 - (cos

2 A - sin
2
A)]

1
= - [1 - cos

2 A + sin
2 A]

1
= - [sin

2 A + sin
2 A]

= sin
2 A
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Prove the identities in Exercises 22 to 43.

22. cos
2 A = 1(1 + cos 2A)

29.

30.

r

31.

*23. sin (A/2) = V(l - cos A)/2

*24. (sin A)(cos B) = |[sin (A + B) + sin (A - B)]

*25. sin A + sin B = 2 sin [(A + B)/2] cos [(A - B)/2]

*26. cos A - cos B = - 2 sin [(A + B)/2] sin [(A - B)/2]

27. sec
2 A + esc

2 A = (sec
2 A)(csc 2 A)

28. sin (A + B + C) = sin A cos B cos C + cos A sin B cos C
+ cos A cos B sin C - sin A sin B sin C

cos (A + B + C) = cos A cos B cos C - sin A sin B cos C
- sin A cos B sin C - cos A sin B sin C

tan (2A) = (2 tan A)/(l - tan 2 A)

sin (4A) = cos A (4 sin A - 8 sin
3 A)

*32. sin (5A) = 5 sin A - 20 sin
3 A + 16 sin

5 A

*33. cos (3A) = 4 cos
3 A - 3 cos A

*34. cos (4A) = 8 cos
4 A - 8 cos 2 A + 1

*35. sin
3 A = }[-sin (3A) + 3 sin A]

*36. V(i + sin A)/(l - sin A) = sec A + tan A

37. (sin A + cos A) 2 = sin (2A) + 1

38. sec
4 A - sec

2 A = tan
4 A + tan 2 A

39. [sin (2A)]/(sin A) - [cos (2A)]/(cos A) = sec A

*40. [sin (3A) - sin A]/(cos
2 A - sin

2 A) = 2 sin A
(See Exercise 44.)

41. ctn B sec B = esc B

42. cos A + sin A tan A = sec A

*43. (sin A + tan A)/(l + sec A) = sin A

*44. Derive a formula for sin (3A) in terms of sin A
and sin 3 A.

45. Write a program that reads in the value of sin A,

and reads in the quadrant containing A, and then

calculates cos A, tan A, ctn A, sec A, and esc A, using
the identities derived in the chapter.
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Law ofCosines
andLaw of Sines

The next day we received an urgent letter from

the panic-stricken Royal Construction Engineer.

"Help!" Builder wrote. "The gremlin threatened us this

morning! He pointed out that triangles are still very

mysterious. If we know some parts of a triangle, we
can't always calculate the other parts."

"We can use the trigonometric functions!"

Trigonometeris exclaimed.

"I know Trigonometeris will say that we can use

the trigonometric functions, but it is not that simple."

Recordis continued to read Builder's letter. "We can

easily solve for the unknown parts of any right triangle.

However, just yesterday I was forced to deal with a

triangle that I know contains two sides, each 10 meters

long, and the angle between these two sides is a 100°

angle, but I need to know the length of the third side."

"We must put a stop to the gremlin's threats!"

the king cried.

"We should be able to find a general relationship

that works for all triangles," Trigonometeris said. "I am

The Triangle with

the Unknown
Parts

99



sure that the trigonometric functions will come to our
rescue once more." Trigonometeris drew an arbitrary

triangle on the board. He used a, b, and c to represent

the lengths of the three sides, and he used A to

represent the angle opposite side a, the letter B to

represent the angle opposite side b, and C to represent

the angle opposite side c.

Trigonometeris stared at the triangle all morning
and into the afternoon. However, he was unable to

come up with any ideas for a general formula that

would relate a, b, c, A, B, and C.

"I told you things would be much simpler if you
had a right triangle," Recordis told him. "I know how
to break a nonright triangle into two right triangles. All

we need to do is draw the altitude of the triangle." (An
altitude of a triangle is a line segment perpendicular to

one side of the triangle that connects that side to the

opposite vertex.) In this case we used the letter h to

represent the length of the altitude. (See Figure 7-1.)

Figure 7-1

/b

a /
h

\ c

Ac
1

a\

V
S^

f

s2
J

>

"We can use the pythagorean theorem for each of

those little triangles," the king suggested.

h 2 + si = c
2

"But Builder wants the answer for c expressed in

terms of a, b, and C, not h and s 2
," Trigonometeris

protested.

"We know these equations are true," the

professor suggested:

h = a sin C s 2 = b - s t

"Therefore,
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"We can now use the substitution principle from
algebra," Recordis said. "The substitution principle

says that if two quantities are equal, we have the right

to substitute one quantity for the other in any equation.

In our case we want to substitute the expressions we
have found for h and s 2 into the equation

h 2 + si =

The result was

,2 _
[a sin C)

2 + (b - a cos C)
;

= a
2
sin

2 C + b
2 - 2ab cos C + a

2
cos

2 C

We rewrote that equation as

c
2 = a

2
(sin

2 C + cos
2
C) + b

2 - 2ab cos C

"We know sin
2 C + cos

2 C = 1, for any value of

C!" Trigonometeris exclaimed, elated that the identity

we had discovered just the day before had already

turned out to have a practical application. Therefore,

c
2 = a

2 + b
2 - 2ab cos C

"That formula is much simpler than I thought it

could possibly be," Recordis admitted. "And it is just

the formula Builder needs to solve his current

problem." (See Figure 7-2.)

Figure 7-2

We inserted the values a = 10, b = 10, and C =
100° into the formula, and came up with the result

c
2 = 10 2 + 10 2 - 2 x 10 x 10 cos 100°

= 234.73

c = 15.3

"Every triangle in the world will have no choice

but to obey this law," Trigonometeris said.

"We must think of a good name for it," Recordis

said.

We decided to call it the law of cosines since it

contained a cosine.
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Law of Cosines

=^r

:^^- 's-S *%-77?

The law of cosines is useful when you
know two sides of a triangle and the angle

between those two sides. Let a and b

represent the lengths of the two sides, and let

C represent the angle between these two sides.

Then the third side (c) can be found from the

formula

,2 _ + b
2 - 2ab cos C

2*L ^Z22Z

i^//

"Hold everything!" Recordis suddenly panicked.

"You said this rule holds for all triangles. But we know
it cannot hold for right triangles, because then the

Pythagorean theorem holds:

c
2 = a

2 + b
2

For a few awful moments we were filled with
dread. However, the professor saw a way out of the

dilemma. "Look at what happens if C = 90°—in other

words, if the triangle is a right triangle. Then,
cos C = 0, and then the law of cosines becomes the

same as the regular Pythagorean theorem,

c
2 = a

2 + b
2

"We were lucky that time," Recordis breathed a

sigh of relief. "It would have been terrible if we
discovered a new rule that contradicted something we
had done before, especially something as vitally

important as the Pythagorean theorem."

The king noticed another interesting feature. If C
is less than 90°, then cos C is positive and c

2
will be

less than a
2 + b

2
. On the other hand, if C is greater

than 90°, then cos C is negative and c
2
will be greater

than a
2 + b

2
.

As we continued to read Builder's letter we
found another problem. "I have another triangle for

which the three angles must be 80°, 60°, and 40°. I

know that the side opposite the 80° angle must be 10

meters long, but I need to know the lengths of the other

two sides."

We found that we could not use the law of

cosines because we only knew the length of one side.

"Maybe we can discover a new law," Trigonometeris
said confidently. We looked at the picture of the

triangle again. (See Figure 7-3.)
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Figure 7-3

"I'm sure you will say we should derive a law
called the law of sines, so the sine function won't feel

left out," Recordis said. He tried to think of some
equations that involved some sines:

- = sin A
D

- = sin B
a

"We can solve both those equations for h," the

professor suggested.

h = b sin A

h = a sin B

"Now we can say

b sin A = a sin B

We rewrote that equation using the rules of

fractions:

sin B sin A

"This equation will also be true for all triangles,"

the king said. We called this the law of sines.

=^=r

^y

Let a, b, and c be the lengths of the

sides of a triangle, and let A, B, and C be the

angles opposite those sides. Then,

sin A sin B sin C

i^_

vyyy

^22Zk

Law of Sines

)
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Note that we can include c/sin C in this equation since

the same argument would work in that case. See
Exercise 39.

Next, we solved Builder's problem. We let a

represent the length of the side opposite the 40° angle

and we let b represent the length of the side opposite

the 60° angle. Then, according to the law of sines, these

two equations must be true:

10 a

sin 80
c

sin 40 c

10

sin 80° sin 60°

We solved these equations and found a = 6.527 and
b = 8.794.

Builder described another problem: a triangle

had two sides equal to 49 and 40, and an angle of

35.256°. Before Recordis could finish reading,

Trigonometeris cried, "We will use the law of cosines!"

"I'm afraid that won't work in this case,"

Recordis said. "Builder says that the 35.256° angle is

not between the two known sides. Remember that the

law of cosines works when you know the lengths of

two sides, and the angle that is between them. Builder

says that the 35.256° angle is next to the side of length
49."

"We should be able to use the law of sines,

then," Trigonometeris said. He drew a diagram. (See

Figure 7-4.) Then he wrote an equation:

Figure 7-4

sin C = 49 x sin 35.256 c

40

= .7071

Trigonometeris happened to recall that

.7071 = 1/V2 = sin 45°, so he confidently announced
that C = 45°. (In Chapter 10 we develop a more
systematic way to determine the size of an angle if the
value of its sine is known.)

"That's not right," Recordis argued.
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"It has to be right!" Trigonometeris exclaimed.
"We have proved that the law of sines works for all

triangles."

"The triangle you have drawn (Figure 7-4) is an
acute triangle. However, if you had let me finish

Builder's letter, I could have told you that Builder's

triangle is an obtuse triangle."

Trigonometeris and Recordis were about to have
a violent argument when the king realized something.

"We know sin C = .7071, which is true if C = 45°.

However, this is also true if C = 135°." So, he drew a

new triangle. (See Figure 7-5.)

"This means that the original specifications we
were given were ambiguous," the professor said. "We
were given the lengths of two sides of the triangle, and
the size of one angle other than the angle between the

two given sides. There are two possible triangles that

meet those specifications, one obtuse and one acute. If

we had not been given the additional information that

we were looking for an obtuse triangle then we would
have been stuck."

Recordis read the final part of Builder's letter.

"The gremlin gave me one final challenge. He asked me
to draw a triangle with sides of 40 and 15, with a 35°

angle next to the side of length 40, but not between
that side and the side of length 15."

We set up the equation from the law of sines,

using C to represent the angle opposite the side of

length 40:

sin C =
40 x sin 35°

15

= 1.529

"No!" Recordis screamed. "That violates the Law
of Possible Values for the sine function! We cannot
have sin C greater than 1."

"The gremlin is trying to trick us," the professor

guessed. "I bet there is no triangle in existence that

meets those conditions."

Figure 7-5
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We drew a diagram and were able to convince
ourselves that it is impossible to draw a triangle with

a 35° angle next to a side of length 40 which also

contained a side of length 15 that was not adjacent to

the 35° angle. (See Figure 7-6.)

Figure 7-6

The professor developed a summary of the rules

for solving triangle problems, depending on what
information you had been given:

Solving Triangles
1. If you know two angles of a triangle, then you
can easily find the third angle (since the sum of

the three angles must be 180°).

2. If you know the three angles of a triangle but

do not know the length of any of the sides, then
you can determine the shape of the triangle, but

you have no idea about its size.

3. If you know the length of two sides (a and b)

and the size of the angle between those two sides

(C), then you can solve for the third side (c) by
using the law of cosines:

c
2 = a

2 + b
2 - lab cos C

4. If you know the length of one side (a) and the

two angles next to that side (B and C), then you
can find the third angle (A = 180° - B - C) and
then use the law of sines to find the remaining two
sides:

b = a sin B/sin A

c = a sin C/sin A

5. If you know the length of the three sides, then

use the law of cosines to find the cosine of the

angles:

cos C = + b
2 - c

2

2ab

You may find similar expressions for cos A
and cos B. (The professor was beginning to wonder
how you could solve for the value of C if you
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knew the value of cos C. We investigate that

problem in Chapter 10.)

6. If you know the length of two sides (b and c)

and the size of one angle other than the one
between those two sides, then there are three

possibilities. Suppose you know angle B. Then use
the law of sines:

sin C
c sin B

a. If c sin B/b is less than 1, then there are two
possible values for C, one obtuse and one acute,

and there are two triangles that satisfy the given

specifications. This is called the ambiguous case.

b. If c sin B/b = 1, then C is a right angle, and
there is only one triangle that satisfies the given

specifications.

c. If c sin B/b is greater than 1, there is no
triangle that satisfies the given specifications

(since sin C cannot be greater than 1).

"It can't be too much longer before the bridge is

finished," Recordis said. "There can't be very many
more problems the gremlin could confront us with."

In Exercises 1 to 10, you are given two sides of a

triangle and the angle between those two sides.

Calculate the length of the third side.

1. 12, 16, 20°

2. 100, 200, 150

3. 1, 100, 45°

4. 36, 5, 23°

5. 17, 18, 60°

6. 105, 56, 25°

7. 20, 2, 63°

8. 28, 96, 67°

9. 61, 34, 17°

10. 66, 13, 6°

In Exercises 11 to 13, you are given the lengths

of the three sides of a triangle. Calculate the three

angles.

11. 15, 15, 15

12. 10, 10, 10V2

13. 2, 2, 2V3

Exercises
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Figure 7-7

14. Consider a triangle that has a 30° angle opposite a

side of length 20. One of the sides adjacent to the 30°

angle has length 20\/3. Calculate the length of the third

side.

15-24. Calculate the missing parts of the triangles

shown in Figure 1-1

.

25. Suppose you are piloting an airplane with an
airspeed of v in a direction of A north of east. The
wind is blowing with a velocity of w in a direction B
north of east. Let's put the tail of the wind vector on
the tip of the airspeed vector. Then we can draw a new
vector that starts at the base of the airspeed vector and
ends at the tip of the wind vector. This vector

represents the plane's groundspeed—that is, its speed
relative to the ground. (See Figure 7-8.) Let s represent

the magnitude of the groundspeed vector. Write a

formula that expresses s in terms of v, w, A, and B.
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Figure 7-8

In Exercises 26 to 34, you are given values for

the airspeed v, the wind speed w, and the two angles A
and B. Calculate the groundspeed (s).

w V A B

26. 20 600 10° 30°

27. 20 600 10° 120°

28. 20 600 10° 5°

29. 5 400 45° 10°

30. 5 400 45° 40°

31. 5 400 45° 180°

32. 2 500 60° 70°

33. 2 500 60° 0°

34. 2 500 60° 200°

35. What does the formula say about s if the wind is

in the same direction as the plane is traveling (B = A)?

36. What does the formula say about s if the wind is

blowing in the opposite direction to that the plane is

traveling (B = 180° + A)?

37. What does the formula say about s if the wind is

blowing at right angles to the plane's direction of travel

(B = 90° 4- A)?

38. Suppose the plane's groundspeed equals its
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airspeed, but the windspeed is not zero. Find a formula
for cos (B - A).

39. Show that we may include c/sin C in the law of

sines:

sin A sin B sin C

Suppose that the planets move around the sun in

perfectly circular orbits. (See Chapter 5, Exercise 84 for

a table that lists the distance from each planet to the
sun.) In Exercises 40 to 50, you are given the angle
between the planet and the sun as seen from Earth at a

particular time. Calculate the distance from Earth to the

planet.

40. Mercury 5° 44. Mars 10° 48. Jupiter 160°

41. Mercury 20° 45. Mars 170° 49. Saturn 15°

42. Venus 10° 46. Jupiter 20° 50. Saturn 165°

43. Venus 40° 47. Jupiter 90°

51. Show that this formula is true for any triangle:

a = b cos C + c cos B

This is called a projection formula. You can find a

similar formula for b and c.

*52. Show that these formulas are true for any
triangle:

a + b _ cos [HA - B)] a - b =
sin [£(A - B)]

c sin {hC) c cos (£C)

These formulas are called Moliweide's formulas. You
can find similar formulas for (b + c)/a, [b - c)/a,

[c + a)/b, and (c - a)/b.

*53. Show that for any triangle these formulas are

true:

a - b

a + b

b - c

b + c

c - a

c + a

tan [i(A - B)]

tan 1%A - B)]

tan [*(B - C)]

tan [i(B + C)]

tanm - A)]

tan [i(C + A)]

These formulas are called the law of tangents.

*54. Derive Hero's formula. If you have a triangle

with sides of length a, b, and c, and we let s =
(a + b + c)/2, then Hero's formula says that the area of

the triangle can be found from this formula:

Area = Vsis - a)[s - b)(s - c)
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55. Write a program that reads in values for the three

sides of a triangle, calculates the area of the triangle,

and then calculates the lengths of the three altitudes of

the triangle. (An altitude is a line segment perpendicular

to one side of a triangle and connecting that side to the

opposite vertex.)

56. Write a program that reads in the lengths of two
sides of a triangle and the size of the angle between
those sides, and then calculates the length of the third

side.

57. Write a program that reads in the size of two
angles of a triangle and the length of the side between
those two angles, and then calculates the lengths of the

other two sides.
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Graphs of
Trigonometric

Functions

The Bouncing
Wagon

Builder returned to Capital City the next day

riding in his latest invention, a wagon with spring

suspension. "The bridge is almost finished," he said

cheerfully.

"Then we must plan for the celebration!"

Recordis exclaimed.

That evening Builder took us for rides in the

wagon. The wagon had a large light on the top so we
could see the way. Trigonometeris decided to take a

picture of the wagon while the rest of us went for a

short ride.

"I have only one problem with the wagon,"
Builder explained. "As long as the wagon is traveling

on nearly level ground, or on ground with only small
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bumps, everything is fine. However, if the wagon ever

hits a large bump. . .
." He was interrupted suddenly

when the wagon hit a large bump. The wagon started

bouncing smoothly up and down.

"I'm getting seasick," Recordis complained. It

was several minutes before the wagon's up-and-down
motion began to slow.

"The springs cause the wagon to move up and
down like that," Builder explained. "I still need to

figure out a way to cause the spring's motion to damp
out and come to a stop much more quickly than it does
now."

Suddenly we heard an anguished cry from
Trigonometeris. "The shutter was stuck open!" he
cried. He stood next to the camera tripod and sobbed.
"The shutter was open the entire time you were riding

in front of the camera," he said sadly.

The professor thought we should develop the

picture anyway. We were amazed when we got the

picture back from the darkroom. (See Figure 8-1.)

Figure 8-1

"What is that?" Recordis asked in awe.

"I know what happened," the king said. "This is

a time-exposure photograph. We are seeing the pattern

of motion of the light at the top of the wagon. It was
too dark for anything but the light itself to show up in

the picture."

"We should be able to think of a function that

describes that graph!" the professor said excitedly.

"When we did algebra we found we were able to

understand a curve better if we were able to find a

mathematical function that could be represented by the

curve."

"We don't know of any function that goes up
and down like that!" Recordis complained.

"Let us state the problem more precisely," the

professor said. "Our graph always repeats the same
pattern. This is the part of the pattern that is always
repeated." (See Figure 8-2.)
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Figure 8-2

The Periodic
Function

"The graph we are interested in could be formed
simply by drawing that one pattern over and over

again," the king agreed.

"I have an ingenious idea," the professor said as

modestly as she could. "When we have a function that

periodically repeats the same pattern, we will call it a

periodic function, and we will call the length of the

pattern the period of the function."

The professor went on excitedly. "Let's use f[q)
to represent our mysterious periodic function. To find

the identity of the mysterious function, we will need to

find some clues. Let's say p is the period of the

function. Then, suppose we know the value of /(qO for

some particular value q^ For example, suppose f[qi) =
2. Then, if we move along the function a distance equal

to one period length, we know that the value of the

function must be the same:

/(qi + P) = 2

"Or, in general,

/(q + P) = M
for any value of q." (See Figure 8-3.)

Figure 8-3
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"You would also get the same value for the function if

you move along the function a distance of two period
lengths," the king said.

/(q + 2p) = f(q)

"Or, the result would be the same if you move a

distance of 3p or 4p or 5p. . .
." The professor got

carried away.

/(q + 5p) = /(q + 4p)

= /(q + 3p)

= /(q + 2p)

= /(q + P)

= /(q)

"That is all interesting, but it does not give us a

clue to the identity of the mysterious function,"

Recordis interrupted. "We don't know of any real

functions that are periodic."

The professor spent hours trying to think of a

periodic function, but she had no success. Recordis
doubted that any periodic functions did in fact exist,

but he took some consolation from the fact they

were working on a problem that did not have anything
to do with trigonometry. Finally, he decided to needle
Trigonometeris by playing a game.

"I'm thinking of an angle expressed in radian

measure," Recordis told Trigonometeris. "The sine of

this angle is equal to 1/V2. Now, you tell me what
angle I am thinking of."

"That's easy as pi," Trigonometeris said. "The
angle is it/4."

"Wrong!" Recordis exclaimed.

"What?" Trigonometeris screamed. "Thathas to

be right!" But Recordis resolutely shook his head.

"I admit that sin (tt/4) = 1/V2," he said. "But
that's not the angle I am thinking about."

"I see," Trigonometeris suddenly realized. "This
is a trick question. The angle is 3tt/4."

"Wrong again!" Recordis said. "I bet you'll never
guess it!"

Trigonometeris started screaming that Recordis

still did not understand trigonometric functions, but

then he realized another possibility. "The angle could
be (2tt + tt/4)." Recordis shook his head. "It could be
(4tt + tt/4)," Trigonometeris guessed. Again Recordis
shook his head.

"This is impossible for me to guess!"
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Trigonometeris cried. "We know that an angle remains
exactly the same if you add 2tt to it. Therefore,

sin — = sin
(-:

+ 2ir

= sin
(-:

+ 4tt

= sin r? + 6tt

"Or for any value of x, we know that

sin x = sin (x + 2tt)

= sin (x + 4tt)

= sin (x + 6-tt)

"I bet you never would have guessed my angle,"

Recordis said. "I was thinking of (2,316,978-rr + ir/4)."

"Will you two be quiet!" the professor cried. "I

am trying to think of a periodic function." She
suddenly noticed the string of equations that

Trigonometeris had written on the board.

"That's it!" she realized. "The sine function is a

periodic function! Whenever you increase x by 2tt,

then the value of the sine function remains the same.

Therefore, sin x = sin (x + 2-rr) and therefore the sine

function is a periodic function with a period length of 2it."

"Of course!" Trigonometeris realized. "Why
didn't I think of that!"

"That still doesn't mean that the sine function is

the correct function to describe the motion of the

spring-driven wagon," Recordis cautioned. (He was
miffed that this had turned into a trigonometry problem
after all.)

"There is only one way to proceed,"

Trigonometeris said. "We must make a graph of the

function y = sin x to see what it looks like."

"It takes a lot of work to draw a graph of a

function!" Recordis complained, "and we know who
ends up doing most of the work around here. To draw
this graph I will need to look carefully at the table of

values and draw a lot of dots. Then I will need to see if

I can connect the dots with a smooth curve."

"I will be extraspecial nice to you if you do this

for me," Trigonometeris promised. "I can already tell

you one point on the graph: (x = 0, y = 0) will be a

point, since sin = 0."
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"Wait a minute," Recordis said. "First we must
figure out the vertical scale and the horizontal scale of

the diagram."

"The vertical scale will be easy." Trigonometeris
said. "We know that the sine function never reaches a

value greater than 1, and it never reaches a value

smaller than - 1. The horizontal scale will be harder,

since we will want the graph to cover all possible

values of x. Therefore, we must start at x equals minus
infinity and continue until x equals plus infinity."

Recordis fainted.

"It will be much easier than that!" the king said.

"We only need to draw the graph for x = to x = 2tt.

Because the function is periodic, we know it will

always repeat the same pattern."

Recordis revived and set to work. Trigonometeris
read off the first few entries from the sine table.

The Graph of the

Sine Function

Degrees Radians Sin

0.01745 0.01745

0.03491 0.03490

0.05236 0.05234

0.06981 0.06976

0.08727 0.08716

Very carefully, Recordis put a dot on the diagram that

matched each of these points. (See Figure 8-4.) The whole

sin x

•

.08-

•

.06

•

.04-

•

.02-

•

i

0.05 0.10

x (radians)

Figure 8-4
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process took a long time. However, as he added more
and more dots, it became clear that the graph of the

sine function was a smooth, graceful curve.

"It's beautiful!" Trigonometeris said in awe as

the picture grew.

Recordis labored over the diagram for hours. We
could see the curve was approaching a dramatic

plateau as x approached tt/2 and y approached 1. (See

Figure 8-5.) Recordis collapsed with exhaustion after

reaching this far.

Figure 8-5

1.0
y

^ y = sin x
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0.52 1.04 1.57

TT
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TT

3

TT

2

"We must press on!" Trigonometeris cried.

"I have an idea," Recordis suddenly said

cheerfully. "I will not have to plot any more points at

all. Since

sin (it - x) = sin x

"that means the curve from x = tt/2 to x = it is just

the mirror image of the curve from x = to x = tt/2."

(See Figure 8-6.)
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Figure 8-6

Recordis quickly completed the curve from x =
ir/2 to x = tt. Then he announced his next idea. "The
curve from x = tt to x = 2ir will be the same as the

curve from x = to x = it, except it will be turned
upside down. We know that the angle 2tt - x is the

same as the angle -x, and since sin (-x) = - sin x, it

follows that sin (2tt - x) = - sin x." (See Figure 8-7.)

y

y = sin x
1 i

3tt

r
I

\. IT 2
I

2tt

1

TT

1

• X

2
-1 -

Figure 8-7

"We have completed the entire pattern!" the

professor said enthusiastically. "Now it will be easy to

draw the entire curve, since we merely need to repeat

that same pattern many times." (See Figure 8-8.) Note
that the appearance of the curve does change when the

scale of the diagram is changed.)

We all stared in admiration at the completed
graph of the curve y = sin x. "It's a very elegant

curve," Recordis agreed. "I had never realized that

trigonometry could be that artistic."

"And it is exactly the curve we need to describe

the motion of the bouncing wagon!" Trigonometeris
said. Upon close inspection, we could see that the
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Figure 8-8

The Graph of the

Cosine Function

Figure 8-9

shape of the curve in the time-exposure photograph of

the wagon was exactly the same as the shape of the

curve y = sin x.

"This result does indeed suggest that

trigonometry is much more versatile than we had
imagined," the professsor said. "It seems that the

function y = sin x can describe the motion of objects

that oscillate back and forth, such as objects driven by
springs. Originally we developed trigonometry to help

us solve problems relating to triangles, but this

particular problem doesn't have anything to do with
triangles."

"We should make graphs of the other

trigonometric functions," Trigonometeris said. "Let's

make a graph of the curve y = cos x."

Recordis panicked at the thought of having to

draw a whole curve again, but then he suddenly
realized an identity that would help. "Since cos x =
sin (it/2 - x), it seems to me that the cosine function

graph will have exactly the same shape as the graph
of the sine function—the only difference is that it

will be shifted a bit." We knew that cos = 1, and
cos (tt/2) = 0, so we guessed that the graph of the

cosine function looked like Figure 8-9.
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The graphs of the other trigonometric functions

did not seem to be as interesting. We made a graph of

the function y = tan x. That function was difficult to

draw because the value of tan x approached plus

infinity as x approached it/2, and it approached minus
infinity as x approached -tt/2. (See Figure 8-10.)

Graphs of the

Tangent and
Cotangent
Functions

Figure 8-10

The graph of the cotangent function was simply
a shifted version of the tangent function graph. (See

Figure 8-11.)

y 1 y = ctn x

2 ^V 2 ^\

Figure 8-11
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Graphs of the

Secant and
Cosecant
Functions

The graphs of the secant function and the

cosecant function were even stranger. (See Figures 8-12

and 8-13. Note that each function is drawn on the same
graph as its corresponding reciprocal function.)

Figure 8-12

Figure 8-13
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We were all exhausted by the close of the

evening, but we were all excited by the

accomplishments we had made that day. The next day
Builder showed us another invention he had developed
while he had been working on the bridge. "I call it

alternating current electricity, or AC for short," he said

proudly. He showed us a device consisting of a steam-

driven rotor inside a large magnet connected to a pair

of wires. "This is an electrical generator," he
explained. "When the rotor turns, the generator creates

electricity that flows through the wires." He turned the

generator on.

Recordis looked closely at the wires. "I don't see

any electricity flowing," he said.

"You can't see the electricity itself," Builder

said. "But it does help to be able to see the pattern of

the current. In alternating current, the electricity

sometimes flows one way, then it turns around and
flows in the opposite direction. Then it turns around
again. I have designed the generator so that each
complete turnaround takes <& of 1 second. To see the

pattern of the current, I invented a machine that I call

an osciJJoscope." He showed us a device that looked

like a television screen connected to a bunch of knobs.

He connected the oscilloscope to the wires coming
from the generator, and then he turned it on. We
received one of the biggest shocks of our entire lives.

(See Figure 8-14.)

Alternating
Current

Current

Time

S
55 second

"That's a sine curve!" we all gasped in

astonishment.

"You mean you recognize that curve?" Builder

asked us in surprise. "That curve describes alternating

current electricity. I can change the height of the curve

by increasing the amplitude of the current." Builder

turned a dial and the shape of the sine curve changed.

(See Figure 8-15.)

Figure 8-14

Amplitude
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Figure 8-15

Figure 8-16
"I guess this curve represents the function y =

2 sin t," the professor suggested. "You have taken the

entire sine curve and multiplied every value by 2." (We
used t to represent time because the electric current

was a function of time.)

Builder showed us that he could adjust the dial

to create sine curves of different heights. We decided
that the general form for the function describing the

current was

y - A sin t

where A represented the amplitude of the sine

function. We drew several different sine curves with

different amplitudes. (See Figure 8-16.)

"We have a problem," Recordis suddenly
realized. "We know that the sine function has a period

of 2tt. However, Builder told us that the alternating

current has a period of <k seconds. Therefore, the

function y = A sin t cannot represent the current."

We puzzled over this problem. "We need a way
to adjust the period of a sine function," the professor

said. She drew several sine functions with different

periods. (See Figure 8-17.) "We put the letter A in front

of the function A sin t to allow us to adjust the

amplitude," the professor said. "So there must be some
place in the function where we could put another letter

that would allow us to adjust the period."

The king had an idea. "The function sin t has a

period of 2tt, since the sine function runs through a

complete pattern every time t runs from t = to t =

2tt. Therefore, if we create the function y = sin (2-rrt),

we should see a period of 1."
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"I have an idea," Trigonometeris said. "Suppose
we want to have a sine function with a period of 3.

Then we could use the function

sin
2irt

We could verify that when t ran from to 3,

then 2i7t/3 ran from to 2ir, and therefore the function

sin (2tti/3) ran through a complete cycle.

"I see how to do it in general," the professor

said, pleased that she was the one who was always able

to see how to state a problem in general terms. "Let's

use the letter p to represent the length of the period.

Then the function

y = sin
2rrt

P

will have a period of length p."

"We can say that the function y = A sin (2iTt/p)

has a period of length p and an amplitude of A,"
Trigonometeris added.

"I also find it useful to measure the frequency of

the current," Builder said. "The frequency tells you the

number of cycles that occur each second. If the period

Frequency

Figure 8-17
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Phase

is p and the frequency is /, then / = 1/p. For example,
when the alternating current has a period of gk second,

then it has a frequency of 60 cycles per second." (One
cycle per second is called 1 hertz (Hz), so a frequency
of 60 cycles per second equals 60 hertz.)

"We can easily write a sine function that has a

period of /," the professor said.

y = A sin (2ir/t)

"Do we have to keep writing that 2tt all the

time?" Recordis asked.

"I have an idea," the professor said. "Let's define

something that I'll call the angular frequency,
represented by cu. We will define angular frequency as

CO 2tt/

"Then, a sine function with angular frequency co can be
written as

y = A sin (cat)

"Why do you use the letter w to represent

angular frequency?" Recordis asked.

"That's not a w!" the professor responded. It's a

Greek letter called omega. It just looks a bit like a w."

"I also have a knob that can shift the entire

curve," Builder said. "I refer to that as changing the

phase of the curve." Builder demonstrated two
different curves with the same amplitude and
frequency but different phases. (See Figure 8-18.)

Figure 8-18
y

y = sin cof

y

x = sin (cof + B)

CO

\ / \ / t
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"We can easily describe sine functions with
different phases," Trigonometeris said. "All we need to

do is include a letter that allows us to adjust the

starting point of the function." He suggested that we
write the function like

A = sin (cot + B)

"The term B co will measure the phase of the curve. In

the examples we have done so far, the phase B/co is

zero."

curve.

We wrote down the general formula for a sine

^-^r

iZ.-z^^

General Formula for a Sine Curve

y = A sin (cut + B)

where A = amplitude

co = angular frequency

(in radians per second)

/ = co/2tt, frequency (in cycles per second)

p = 1// = 2tt/co, period (in seconds)

B/co - phase

^
't

ZZ- ^2£Zl

ysrss )

That evening Trigonometeris dreamed about the

new uses he would find for sine curves. "At last we
have found the world's most beautiful shape," he
thought to himself.

Identify the amplitude, frequency, and angular

frequency of the curves in Exercises 1 to 6. Exercises

1. 9.8 sin (2x + 2)

2. sin (lOx + 5)

3. 5 cos (itx)

4. TT COS (x/ir)

5. 100 sin (x/100)

6. 4.5 cos (50x -l- 16)
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For Exercises 7 to 10, write the equation of a

sine function that has the period indicated.

7. h

8. 16

9. tt/2

10. tt/4

Draw graphs of the functions in Exercises 11

to 17.

11. y = sin x + sin (x + tt)

12. y = (sin x + |sin x|)/2

13. y = sin
2 x

14. y = x + sin x

15. y
2 = sin

2 x

16. y = (sin x)(sin x/10)

17. sin
2 x + cos 2 x

*18. Draw a careful sketch of one arch of the curve y
= sin x. Estimate the value of the area of the arch.

19. Write a program that draws a graph of a sine

curve. Design the program so that you may change the

amplitude, frequency, and phase of the curve, and
make it possible to change the scale of the diagram so

you may have either a close up view of one arch of the

curve or else a wide angle view of several arches. Once
you have written the program, you may modify it to

draw graphs of related curves, such as those given in

Exercises 11 to 17 or Figures 9-2 to 9-4.
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Waves
Builder sent us word that the long-awaited day

had at last arrived: The Raging River bridge was
completed! We hurriedly packed the balloon and sailed

to the bridge site. The triangular bridge supports
glistened in the sunlight.

"The gremlin will have no choice but to admit
defeat now!" Recordis said joyfully.

The big celebration was planned for the next

day. That afternoon we relaxed by renting a rowboat on
nearby Ripply Lake. For most of the afternoon the

water was very calm. However, our tranquility was
shattered when a noisy speedboat sped by. It left a

chain of rolling waves in its wake that struck our boat.

"I have a feeling I've gone up and down like this

before," Recordis said.

"Hold on tight!" the professor cried as the boat

bounced on top of the waves. However, Trigonometeris
did not heed her. He was leaning over the side of the

boat staring at the waves. Just as the professor feared,

*The Waves on
the Lake
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the boat suddenly lurched and he was thrown
overboard.

"Save him!" the king cried.

Recordis threw a life preserver to

Trigonometeris, and we managed to pull him back on
the boat. Trigonometeris was too excited to notice that

he was sopping wet. "Did you see the shape of those

waves?" he exclaimed. "They look like sine curves!"

We instantly realized the significance of what he
had said. "Let's investigate the properties of waves,"
the professor said quickly. "Let's use y to represent the

height of the water at a particular time t. Then I bet

y = sin t

"We felt the boat go up and down, just like the sine

function."

"We're forgetting something," the king said. "It

would help to be able to describe the nature of the

wave at every single location on the lake. The equation

y = sin t only describes the wave at one location."

"Suppose we look at the entire lake at one
particular time," Trigonometeris said. "Then it is clear

that

y = sin x

where y gives the height of the wave at a distance x
away from the shore."

"But that equation does not take into account
changes in the wave with time!" the professor

protested.

"Is there any way we could write one function

that could describe both the wave movement with time
and its variation at different points on the lake?" the

king asked in puzzlement.

"We could try to make a sine function that

includes both x to measure position and t to measure
time," Recordis suggested.

y = sin (x - t)

"If we look at that function from a fixed location (x =

x ), then we will see that the water at that location goes

up and down with time. Or, if we look at that function

at a fixed time (t = t ) then we will find that the

pattern of water at different locations looks like a sine

curve."

"Ingenious!" the professor realized. "Represent a

wave by a sine curve that is a function of both space x

and time t."

At that moment the boat was rocked by a new
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set of waves. However, these waves were much less

violent than the first set of waves.

"To make our wave function more general, we
must put a letter in front of the sine to represent the

amplitude," Trigonometeris said. "It is clear that not all

waves are created equally, so we should be able to

represent waves of different amplitudes."

We wrote down a new wave function, using A to

represent the amplitude of the wave:

y = A sin (x - t)

The king watched the waves move across the

water. "We must find a way to represent the velocity

(or speed) of the waves," he realized. We let v

represent the velocity of the wave. Then, after some
experimentation, we found that our new wave function

should look like

y = A sin (x - vt)

We will use the term crest for the point at the top of a

wave.

"A crest of this wave will move with velocity v,"

the professor realized with satisfaction. "If the x
coordinate of the crest is xcrest , then y must have its

maximum value—that is, y = A:

A = A sin (xcrest - vt)

1 = sin (xcres ,
- vt)

7T

Xcrest - Vt = -

Xcrest = - + Vt

From this equation we can clearly see that with every

increase in t by 1. the position of a crest (Xcres t) will

increase by v."

"There is one more thing we need to take into

account," Trigonometeris said. "With some waves,

there is a very long distance between each crest. Other
times the crests are very close together. We need to

include a way to adjust for that distance."

We put a k in the middle of the sine function:

y = A sin [k(x - vt)]

"I can see in principle how k allows us to adjust

the distance between crests," Recordis said, "but I

would feel more comfortable if we could translate it

into something more meaningful."
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* Wavelength
"We should measure the distance between the

crests and call that the wavelength," the professor said.

"I like the Greek letter lambda k, so let's use \ to

represent the wavelength." (See Figure 9-1.)

Figure 9-1

"Can we calculate an expression for the

wavelength in terms of k?" the king wondered.

"Let's suppose that one crest occurs at the point

Xi, and the next crest occurs at the point x 2
,"

Trigonometeris said. "Then, \ = x 2 - xt . During the

course of one wave, the argument of the sine function,

which is k(x - vt) in this case, must increase by 2-tt.

Therefore,

k(x a
- vt) + 2tt = k(x 2 - vt)

We rewrote that as

kx! - kvt + 2tt = kx 2 - kvt

The two -kvt's canceled out:

kxi + 2tt = kx2

2tt = kx 2 - kx-i

= k(x 2 - x,)

= kX

X = 2tt

"This formula tells us how to calculate X if we
know k!" the professor said, "and I just thought of an
interpretation for k. k will tell us the number of waves
in a distance of 2ir. We will call it the wave number."

"When I'm being tossed around on the boat, I'm

not that interested in the wavelength," Recordis said. "I

am really much more interested in the number of times
I am bounced up and down each second."
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"We can calculate the number of crests that pass

a given point in one unit of time," the professor said.

"We will call that quantity the frequency of the wave."

"I know how to calculate frequency,"

Trigonometeris said. "Each wave crest is a distance of \

apart, and each crest is moving with a speed v. If v = 1

meter per second, and \ = 1 meter, then we will be hit

by one wave each second. If \ = 2 meters, then we
will only be hit by one-half wave each second. In

general, the frequency will be

where / is the number of waves that hit us each
second."

We also found it convenient to define a quantity

called the angular frequency (again represented by co):

co = 2-nf. Then we summarized our results for waves.

(We called this type of wave a harmonic wave.)

A one-dimensional harmonic wave can
be represented by a function like

y = A sin (kx - cot + B)

where x = location

t = time

A = amplitude

k = wave number, the number of

waves in a distance of 2it units

\ = 2iT/k, wavelength (distance

between crests)

co = angular frequency

/ = co/2tt, frequency (number of waves
that pass a point per unit time)

p = 1// = 2tt/co, period (amount of

time it takes a wave to pass a

point)

v = co/k = A/, velocity of the wave

B = a parameter that allows you to

adjust the initial phase of the

wave

^ff

2^_ <£&2Z

*Harmonic Waves
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(Water waves are not the only examples of

harmonic waves. Sound and light are made up of

waves. The function just given works exactly for waves
that are one-dimensional, such as waves on a string.

Water waves occur on a two-dimensional surface, and
sound and light waves occur in three-dimensional
space. The equations for those types of waves are more
complicated, but the principles of wavelength and
frequency are the same.)

We rowed the boat back to shore and returned to

our camp. Some of the musicians were tuning their

instruments in preparation for the gala celebration the

following day.

"What's that sound?" the professor asked. A
piercing hum was coming from the pavilion. We went
inside and found a worker checking some tones by
tapping a fork-shaped metal device.

"I call this a tuning fork," the tuner explained.

"When I tap the fork, it makes a sound with a very
precise pitch."

The professor watched the tuning fork closely.

"It vibrates back and forth after you hit it!" she

exclaimed. "But I wonder why vibrations make
sound?"

"Whatever sound is, it must be able to travel

through air," the king said thoughtfully.

"We found that sine functions describe back-

and-forth motion," Trigonometeris said helpfully.

"Will you stop trying to get trigonometry

involved in everything!" Recordis protested.

m

t

^^mi^^^^^^^— "I bet I know what happens when the tuning

„ ~ » _!_ fork vibrates," the professor said. "The fork must push
bound Waves tne linle air mo iecu ies back and forth. Those molecules^ must push against some of the other air molecules. I

bet a chain reaction is started, until finally the little

molecules near our ears are pushed, and then our

eardrums start to vibrate." Her eyes widened. "I bet

sound travels as a wave! We saw how waves travel in

water. I bet that sound consists of invisible waves that

travel through air!"

We were skeptical, but we conducted several

experiments to see if sound behaved like waves. We
struck several tuning forks. We found that the forks

that vibrated faster emitted sounds of higher pitch. We
guessed this meant that a high-pitched sound wave has

a higher frequency than a low-pitched sound wave.
(The wave itself consists of regions of higher density

air alternating with regions of lower density air.) We
conducted a careful experiment to measure the speed

of sound and found that v equals about 339 meters per
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second (about 760 miles per hour). The professor's

wave theory received even more support when we
discovered that a tuning fork that emitted a standard A
tone had a frequency of 440 cycles per second (or 440
hertz).

"Now we can calculate the wavelength of a

sound wave corresponding to the A tone," the

professor said eagerly. "We know that v = 339 meters
per second, we know / = 440 cycles per second, and
we know that for any wave v = A./. Therefore,

v
X =

J

339 meters/second

440 cycles/second

= 0.77 meters

The professor set up a row of tuning forks and
found that she could make sounds of many different

pitches by tapping forks of different sizes.

"I hate to disillusion you, but none of these

sounds are very much like music," Recordis said.

"They have different pitches, just like musical notes

have different pitches. However, there is something
different about the quality of sound that comes from a

musical instrument— it just doesn't sound like the

sound that comes from a tuning fork."

The professor was crestfallen, but she realized

Recordis was right. "It will be more complicated to

analyze sound than I had thought," she said.

That evening we built a campfire. The professor

was still trying to figure out how to analyze sound.

Trigonometeris decided to amuse himself by drawing
different types of sine curves with different

frequencies. A playful idea occurred to him. "I wonder
what happens if you try to add together two sine

functions with different frequencies," he mused. He set

up a new function:

y = sin t + sin (2t)

"The first function has a frequency of l/2ir. The second
function has a frequency of 1/ir." He carefully sketched

the graph of this function. (See Figure 9-2.)

"That is an interesting graph," the professor

noted. "You can still see the effects of each individual

sine curve in the combined curve. I can't see that it is

good for anything, though."

Trigonometeris tried some more drawings where
he added together different sine curves. (See Figures

9-3 and 9-4.)

*Adding Sine
Functions of
Different
Frequencies
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Figure 9-2

Figure 9-3

Figure 9-4

The king took out his guitar to play some
campfire songs. The rest of us were gently lulled to

sleep by the relaxing melodies. However, the professor

was staring at the king's fingers. Whenever he plucked
a string, a musical tone sounded. The professor noticed
that each string vibrated after being plucked.
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"I wonder if we can mathematically describe the

vibration of a string," she thought. She drew a sketch

of a string of length L, fastened down at both ends. "I

bet the string would look like this if we could stop it

for one instant." (See Figure 9-5.) "We should be able

to represent this pattern as a sine curve, like

y = A sin kx

Standing Waves
in Guitar Strings

X=0^^ ^^y=L

Figure 9-5

"Now all we need to do is track down the value

of k," she continued thinking. "We know that y must
equal when x = 0. Fortunately, that will be true, no
matter what the value of k. We also know that y must
be when x = L, because the string is tied down at the

other end. That means

= A sin kL

= sin kL

"I bet that means that kL = ir. Therefore, k = tt/L. Now
we need to represent the fact that the string moves with

time." She decided to write the function for the string

with this formula:

y = A sin (kx) sin (cot)

where y represents the distance away from its resting

position at time t for a point on the string at a distance

x from the end (Figure 9-6). This function seemed to

the professor to have the desirable properties: at t = 0,

t = tt/co, t = 2-tt/co, and so on, the value of y was for

Figure 9-6
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all points on the string, meaning that the string was
momentarily back in its resting position. At t = tt/2o), t

= 2tt/co + tt/20), t = 4tt/(o + 7t/2o), and so on, the string

was at its maximum positive displacement; at t =
3tt/2o), t = 2-tt/co + 37t/2o), and so on, the string was at

its maximum negative displacement. At x = and
x = L, the value of y was at all times, because the

two ends were tied down.

She excitedly woke everyone else to announce
her discovery.

"That looks like a wave!" Trigonometeris said

when he saw her function. "Only this is not the same
as the moving waves we discussed earlier. This type of

wave remains standing in one place." We decided to

call this type of wave a standing wave.

"We can calculate the wavelength," the professor

said. "Since k = tt/L and X = 27r/k, therefore, \ = 2L."

"If we knew the velocity of the wave in the

string, we could find the frequency of the vibration,

using the formula

the king said. The string was L = 0.5 meters long, so

the wavelength was X. = 2L = 1 meter. We found that

the wave velocity in the string was 440 meters per

second. Therefore, we found that / = 440 cycles per

second = 440 hertz. We found that the string did

indeed generate a sound of frequency 440 hertz (which

is the musical note A above middle C) when it was
plucked.

The professor was glad for the chance to show
off, so she recounted every detail of her development of

the standing-wave formula.

"How did you calculate the value of k?"

Recordis asked.

"It was easy," the professor said. "I know that y
must be when x = L, so from the formula

= sin kx

"I could clearly see that kL = it."

"But we know that sin kx will also be zero when
kx = 2tt, kx = 3tt, kx = 4tt, and so on," Recordis

pointed out.

The professor suddenly stopped.

"That means there are many possible values for

k," the king said. "We know that any value of k such
that k = mr/L, where n is an integer, will be
allowable."

138 Waves



"That means there are many possible values for

the wavelength." Trigonometeris said. (See Figure 9-7.)

n

Figure 9-7

"And, there are many possible values for the

frequency," Recordis said.

J
2L

The professor was quite embarrassed. She had
thought she had waves figured out perfectly, but now it

turned out she could not even determine the frequency
of the vibration for certain. "But we already found that

the guitar string made a sound of frequency 440 hertz,"

she protested.

"I bet it also makes sounds at some of these

other frequencies," Trigonometeris said. Builder

quickly constructed a frequency detector, and we found
that the string also emitted sounds with frequencies of

880 hertz, 1320 hertz, 1760 hertz, and some higher

frequencies. All the frequencies were multiples of 440
hertz.

"This is getting very complicated," Recordis

said. "One guitar string generates sounds at so many
different frequencies. We can see from Builder's

frequency detector that each frequency has a different

amplitude."

"This is a bit like the drawings I was doing this

afternoon," Trigonometeris said. "I drew functions that
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'Music

The Threat of the

Terrible Flood

consisted of several sine functions of different

frequencies added together."

Suddenly the professor's jaw dropped open. "I

know what makes music!" she cried. "A tuning fork

generates a sound of one pitch, but it doesn't sound
like music. A guitar string generates sound of many
frequencies that are all multiples of one fundamental
frequency—and the guitar sounds like music!"

We conducted further investigations that

demonstrated the professor was right. A musical note

consists of a base frequency, the fundamental
frequency. The note also consists of a mixture of

sounds of higher frequencies that are multiples of the

fundamental frequency. These higher frequencies are

harmonics. The quality of a musical tone is determined
by the exact mixture of the harmonics involved. Two
notes of the same pitch coming from different musical
instruments will sound different because of a different

pattern of harmonics.

The celebration the next day was very festive.

The king cut the ribbon on the bridge, and Builder

drove his wagon across for the first time. The band
played triumphant marches. That evening we returned

to Capital City, where the Royal Symphony played a

special concert in honor of the new bridge. All during

the concert the professor was carefully observing every

corner of the concert hall thinking of ways to improve
the acoustics now that she understood about sound
waves. However, just as the concert was approaching
its dramatic conclusion, we were interrupted by a loud

thunder clap. Before us stood none other than the

gremlin!

"I'm surprised you dare show your face, you vile

creature!" the king said defiantly. "We built the bridge

over Raging River in spite of your threats!"

The gremlin just laughed. "So you did. However,
you will now face a more difficult challenge. I have
sent a large wave that will engulf the town of Peaceful

Bay."

"That is no problem!" Builder said. "I can design

a breakwater that will stop the flood!"

"Indeed you can," the gremlin laughed as he

vanished. "But how will your design reach Peaceful

Bay in time?"

Note to

CHAPTER 9
• Any periodic function can be expressed as the sum

of sine curves of different frequencies. This result is

known as the Fourier theorem.
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Identify the wavelength, frequency, and velocity
™"^M^g

of the waves given by the wave functions indicated in Exercises
Exercises 1 to 6. ^^BB
1. y = A sin (x - t)

2. y = A sin (2x - 3t)

3. y = A sin (2ttx - 2-irt)

4. y = A sin (1.14x - 3.48t)

5. y = A sin (2x - 2t)

6. y = A sin (8000x - 2400t)

The velocity of light (and all electromagnetic
waves) is 3 x 108 meters per second. Exercises 7 to 14
give frequencies in hertz of some electromagnetic

waves. Calculate the wavelength of each wave.

7. 1.4 x 10 20
(x-ray)

8. 3.8 x 10 18
(ultraviolet)

9. 1.2 x 10 15
(visible light)

10. 9.8 x 10 12
(infrared)

11. 1 x 10 11 (microwaves)

12. 9 x 10 8
(radar)

13. 92 mHz (92 million hertz) (FM radio station)

14. 660 kHz (660,000 hertz) (AM radio station)

Calculate the wavelength of sounds of the

frequencies in Exercises 15 to 19.

15. 256 hertz (middle C)

16. 128 hertz (C below middle C)

17. 512 hertz (C above middle C)

18. 2000 hertz (piccolo range sound)

19. 80 hertz (low bass voice)

*20. Suppose you have two waves with the same
frequency, amplitude, and velocity but slightly

different initial phases. In particular, assume wave 1 is

given by the function

y x = A sin (kx - wt)

and wave 2 is given by the function

y2 = A sin (kx — <at — B)

What will be the total wave [y x + y2 )? Will the

amplitude of the total wave be greater than A or less

than A?
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*21. Suppose that you have two waves with the same
amplitude and velocity but slightly different

frequencies. Let wave 1 be

y-i = A sin (k ax - o^t)

and let wave 2 be

y2 = A sin (k2x - <D2 t)

Calculate an approximate expression for the total

wave (y 1 + y2 ). Assume that u) 2 - W! is much smaller

than mi, and assume k 2 - k a is much smaller than k^

Sketch graphs of the curves for Exercises 22-26.

Use the program from Chapter 8, Exercise 19.

*22. y = sin x + sin (2x) + sin (3x)

*23. y = sin x + 0.5 sin (2x) + 0.25 sin (4x) +
0.125 sin (8x) + 0.062 sin (16x)

*24. y = 0.062 sin x + 0.125 sin (2x) + 0.25 sin (4x)

+ 0.5 sin (8x) + sin (16x)

*25. y = 1/4 sin x + 1/3 sin (2x) + 1/2 sin (3x) +
sin (4x) + 1/2 sin (6x) + 1/3 sin (7x) + 1/4 sin 8x

*26. y = sin x + 1/3 cos (3x) + 1/5 sin (5x) +
1/7 cos (7x) + 1/9 sin (9x)

*27. Add more terms to the series in Exercise 26,

following the same pattern, and see what the graph
looks like.

*28. Suppose an organ pipe of length L is open at one
end. Standing waves will form in the pipe when the

organ is played. Let y = A sin kx describe the wave
pattern when the wave is at its maximum. At x = 0,

y = 0; at x = L, y = A. Find the allowable values for

the wavelength.
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Inverse
Trigonometric

Functions
"There's no way we'll be able to send a message

explaining Builder's design to Peaceful Bay in time!"

Recordis moaned.

"We will not give up!" the king said.

At that moment Pal came skipping by playing
with his pet pigeons.

"Not now!" the professor said. "We do not have
time to play with pigeons!"

"The pigeons are fast flyers!" the king suddenly
realized. "Maybe one of them can reach Peaceful Bay in

time!"

"But those pigeons are totally scatterbrained!"

the professor said. "How will they know how to get

there?"

Pal's Pet Pigeons
to the Rescue
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"The pigeons are smarter than they look,"

Recordis said. "They know that whenever Pal releases

them from High Tower they are supposed to fly in a

perfectly straight line in the direction they are

pointed."

"Then this is a trigonometry problem!"

Trigonometeris said excitedly. "All we need to do is

figure out the proper direction and then point the

pigeons in that direction!"

"We know that Peaceful Bay is 400 miles north

of Capital City and 300 miles to the east," the king

said. (See Figure 10-1.)

Figure 10-1
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"All we need to do is set up a right triangle,"

Trigonometeris said. "Let's use the letter A to represent

the angle between the ray pointing to Peaceful Bay and
the ray pointing directly east. Then we can easily see

that

tan A = 400

300

_ 4
~

3

"From this information we can clearly see that A is

equal to .... " Suddenly Trigonometeris stopped and
broke into a cold, desperate sweat.

"What's the problem?" the professor asked.

We all stared at the equation tan A =
it and tried

to figure out the value of A. Then we all realized the

problem.
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"If we know the value of A, then we can easily

look in the table to find the value of tan A," Recordis
said. "However, if we don't know the value of A, but
we do know the value of tan A, then there is no way to

find the value of A. We can't use the table backward."

"Why not?" the professor asked excitedly. "All

we need to do is work the tangent function backward!
We faced this same problem many times before while
we were working on algebra. We found many times

that it was useful to develop an inverse function. An
inverse function does the exact opposite of the original

function. For example, the common logarithm function

y = log x is the inverse function for the exponential

function x = 10y ." She showed some examples:

2 = log 100

5 = log 100,000

1 = log 10

0.3010 = log 2

"I know another example of a function and its

inverse function," the king said. "If we have the

function y = x 3
, then the inverse function is x = "y3/y.

For example,

8 = 2
3

2 = ^8

100 = 10 2

00,000 = 10 s

10 = 10
1

2 = 10° 3010

27 = 3
;

64 = 4

3 = V27

Inverse Functions

4 = '64

"I know another example," the professor said.

"Suppose R = f{D) = ttD/180 is a function that

converts an angle measured in degrees (D) into the

same angle measured in radians. Then the inverse

function is the function D = g(R) = 180R/ir, which
converts an angle measured in radians into the same
angle measured in degrees."

"We know a lot of inverse functions," Recordis

said, "but we don't have the faintest clue what function

might be the inverse function for the tangent function."

Trigonometeris, looking as if we wanted to crawl in a

hole to hide his embarrassment, said nothing.

"Let's give a name to the inverse function first,"

the professor suggested. "Then we'll worry about how
to calculate it later." She suggested the name angletan,

but Recordis thought this name was too long. The
professor came up with a new idea. Since angles

reminded her of arcs of circles, she suggested the name
arctcm. We decided to accept that definition. The
inverse function for the tangent function is

If t = tan A, then A = arctan t.

"We can also use the name arcsin to represent

The Arctan,
Arcsin, and
Arccos Functions
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the inverse function for the sine function, and the

name arccos to represent the inverse function for the

cosine function," the professor continued, pleased that

her idea had turned out to be so versatile.

s^^r
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The inverse trigonometric functions are

as follows:

If s = sin A, then A = arcsin s.

If c = cos A, then A = arccos c.

If t = tan A, then A = arctan t.

We rewrote these relations in another
way:

sin [arcsin (s)] = s

cos [arccos (c)] = c

tan [arctan (t)] = t

yy _^22Z
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The results for inverse trigonometric functions

may be expressed in either degrees or radians,

depending upon which is most convenient.

(Inverse trigonometric functions can also be
represented by another notation:

arcsin s

arccos c

sin

cos

arctan t = tan t

The - 1 above each function stands for inverse

function. However, if you use this notation you must
be careful that you do not confuse the - 1 used to

represent inverse function with a - 1 used as an
exponent.)

"But we still don't know how to calculate values

for any of these inverse functions," Recordis pointed

out.

"We might turn out to be incredibly lucky and
know the values already," Trigonometeris said

hopefully. "For example, suppose we need to calculate

arctan (1). That means we need to find an angle whose
tangent is equal to 1, and I happen to know that

tan (45°) = tan (tt/4) = 1. Therefore, arctan (1) = 45°,

or 7t/4 rad."
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Trigonometeris made a list of all the values he
knew by memory. It was an impressive list, although
he had not yet succeeded in his original goal of

memorizing the entire trigonometric table.

arcsin =

. 1
arcsin - =

2 I (30°)
b

1
arcsin —7=

V2
=
i

(45°)

V3
arcsin

2
=
I

(60°)

arcsin 1 =
\ 00°)

arccos = - (90°)

arccos - = - (60°)
2 3

1 IT , ,

arccos —7= = — (45
V2 4

l

V J
arccos =

2 i'
30

°

arccos 1 =

arctan =

1
arctan —-= =

V3 i'
30

'

TT

arctan 1 = - (45°)

arctan V3 = - (60
c

since

since

since

since

since

since

since

since

since

since

since

since

since

since

sin

TT 1
sin -

6 2

TT 1
sin —

4 V2

TT V3
sin -

3 2

TT

sin —
2

— 1

TT

cos -
2
= U

TT 1
cos —

3 2

TT 1
cos —

4 V2

TT V3
cos —

6 2

cos = 1

tan =

TT

tan -
6
= 1

V3

TT

tan -
4

= 1

TT

tan -
3

= V3

"Those results are all obvious!" Recordis pointed

out. "However, there is no obvious result for arctan % =

arctan 1.3333."

"We could look in the table to see if we can find

an angle A such that tan A = 1.3333," the professor

suggested. We scanned through the table. We found

tan 53° = 1.3270

and tan 54° = 1.3764

"Looks like we're out of luck," Recordis said.

"We have at least learned one valuable fact," the
professor said. "Since arctan 1.3270 = 53° and arctan
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1.3764 = 54°, we know that arctan 1.3333 must be
somewhere between 53° and 54°."

We decided that we would use the method of

interpolation to calculate an approximate value for

arctan (1.3333). We came up with the value arctan

1.3333 = 53.13°. The method of interpolation is

described in the exercises. (See Chapter 3, Exercise 32.)

(If a trigonometric calculator is available, there is a

much easier way to calculate values for the inverse

trigonometric functions. You may obtain these results

at the touch of a button.)

"The problem is solved!" the king said excitedly.

"We must direct the pigeons to fly at an angle 53.13°

north of due east." (See Figure 10-2.)

Figure 10-2

/
]7] Peaceful Bay

/

/
/
/
/
/
/

400

/
/
/
/
/
/

/arctan —— = 53.13°

r^M 3°° _l

Capital

City

We quickly attached a little capsule containing

Builder's design to one of the pigeons. Then Pal took

them to the top of the tower and pointed them in the

right direction. He released them, and they all started

flying along a perfectly straight course in a direction

53.13° north of due east.

We all waited nervously. There was nothing
more we could do now to save Peaceful Bay. To give us

something to do while we waited, the professor

suggested that we investigate more properties of the

inverse trigonometric functions. "Let's find the domain
and range of the functions."

"The domain of the arctan function consists of

all real numbers," Trigonometeris said confidently.

"Since the value of tan A can be any number from
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minus infinity to plus infinity, it follows that arctan t

is defined for any value of t. The range of the function

must be from to 2tt, since we know that the value of

arctan t cannot be greater than 2tt, since. ..." He
stopped short.

"We have done something horribly wrong!"
Recordis screamed. "How do we know that the value of

the arctan function is never greater than 2tt? For

example, suppose we are looking for z = arctan 0. In

this case z could have the value 0, or it could have the

value 2tt, or the value 4tt, or 8tt, and so on. . . .

"

"This means that the arctan function isn't even a

true function!" the professor said in shock. "We know
that a function must always specify one unique value

of the dependent variable for every value of the

independent variable."

We puzzled over this problem for a long time.

"I don't think this will be a big problem,"
Trigonometeris said finally. "Normally, I am sure we
will only be interested in the most convenient values.

For example, we know arctan 1 could be equal to either

tt/4 or 2936-rr + ir/4, but normally it will be most
natural to use the value arctan 1 = tt/4."

"Let's specify principal values for each of the —

"

MMM——MMgi

inverse trigonometric functions," the professor said. Principal Values
"For example, we know that arctan (0) = 0, 2tt, 4tt, i^aMMiiiiiiMi
and so on. But we can say that normally we will use
the expression arctan to represent the principal value
0."

We decided that the principal values of the

arctan function would be between -ir/2 and it/2. In

other words, the expression arctan t would mean the

value of A between -tt/2 and tt/2 such that tan A = t.

For example, arctan V3 means tt/3 instead of 32tt +
it/3, and arctan 1 means tt/4 instead of 2 it + tt/4.

"Once we uniquely specify which value we wish
to use, the arctan function becomes a legitimate

function," Trigonometeris said with relief. (In some
books the inverse trigonometric functions are written

with capital letters if the principal values are meant. In

that notation, Arctan t means "the principal value of

arctan t.")

We also decided on principal values for the

arcsin and the arccos function. We decided that the

principal values of the arcsin function would also be

between -tt/2 and tt/2. For example,

1 IT on©arcsin - = — =30
2 6
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arcsin
-1

2

V3
arcsin

2

-V3

— IT

IT

3

—
TT

arcsin

= -30 c

= 60 c

= -60 c

Recordis suggested that the principal values of

the arccos function should also be between - tt/2 and
it/2. However, we realized we would have a problem if

we used that definition, because then the value of

arccos (x) would not be uniquely defined if x were
positive (Would arccos (1/V2) be tt/4 or -tt/4?) and
because the value of arccos x would not be within this

range at all if x was negative. Therefore, we decided

that the principal values of arccos x would be between
and it. For example,

arccos - = — =60
2 3

arccos

arccos

-1

2

V3
2

V3
arccos

2tt

3
= — = 120 c

5rr

6

= 30
c

= — = 150 c

Graphs of Inverse
Trigonometric
Functions

"Let's make a graph of the inverse trigonometric

functions," Trigonometeris said excitedly.

"Not another graph!" Recordis moaned.

"This will be no problem," the professor said.

"Once you have drawn the graph of a function, it is

easy to draw the graph of its inverse. You merely need
to interchange the x and y axes, which you can do by
drawing the graph on a transparent sheet, then turning

it over and rotating it 90°."

The graph of the arcsin function looked the same
as the graph of the sine function, except that it had
been turned on its side. (See Figure 10-3.)
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The graph of the arccos function looked the same
as the graph of the arcsin function, except that it had
been shifted down slightly. (See Figure 10-4.)

The graph of the arctan function consisted of a

bunch of disconnected curves that looked like "esses"

bent out of shape. (See Figure 10-5.)

Figure 10-5
y

it

2
'

y = arctan x

/

X

Trigonometeris decided that for completeness we
could use the name arcsec to represent the inverse of

the secant function, the name arccsc to represent the

inverse of the cosecant function, and the name arcctn

to represent the inverse of the cotangent function. (The
exercises provide more practice in dealing with the

inverse trigonometric functions.)

We concluded our investigations for the day, but

we still had to wait until we heard from Peaceful Bay.

Finally, as evening approached, Pal's pigeons returned
home. We quickly read the attached note, which told

us that the gremlin's plot had been foiled and the

people were safe!
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In Exercises 1 to 7, find the principal values for ^^!HHI
the inverse trigonometric function expression. (Give an Exercises
exact value when possible. If not, use a table or a mSSSSSSm
calculator.)

1. arcsin ( - £) 5. arcsin 0.4

2. arccos [(Vf + l)/4] 6. arcsin (-0.3)

3. arctan (-1) 7. arctan (5/12)

4. arcsin 0.6

In Exercises 8 to 15, you are given the lengths of

the three sides of a triangle. Calculate the three angles.

8. 5, 6, 7 12. 101, 101, 200

9. 12, 5, 13 13. 4.35, 8.64, 5.72

10. 16, 16, 20 14. 8.70, 17.28, 11.44

11. 19, 11, 29 15. 14, 18, 22

In Exercises 16 to 24 you are given the length of

two sides of a triangle and the size of the angle
between those two sides. Calculate the length of the

third side and the size of the other two angles.

16. 10, 15, 80°

17. 10, 15, 90°

18. 10, 15, 100°

19. 10, 15, 150°

20. 2.34, 6.18, 30°

21. 4.2, 11.8, 100

22. 116, 120, 75°

23. 55, 32, 35°

24. 18, 20, 65°

In Exercises 25 to 35, you are given the wind
speed w, the air speed of a plane v, the plane's

direction relative to the air A, and the wind's direction

B. (See Chapter 7, Exercise 25.) Calculate the plane's
groundspeed and direction relative to the ground.

w v A B

25. 25 500 15° 120°

26. 25 500 15° 250°

27. 25 500 15° 330°

28. 10 450 70° 10°

29. 10 450 70° 50°

30. 10 450 70° 85°

31. 10 450 70° 170°

32. 8 600 0° 40°

33. 8 600 0° 80°

34. 8 600 0° 110°

35. 8 600 0° 150°
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Evaluate the trigonometric expression in

Exercises 36 to 42.

36. tan (arcsin §)

37. sin (arctan ^)

38. sin (arccos A)

39. cos [arcsin (— I) + arccos f§]

40. sin (arccos a)

41. sin (arccos Vl - a
2

)

42. sin [arctan (bx/a)]

A trigonometric equation is an equation involv-

ing trigonometric functions. To solve the equation, you
must find the values of x that make the equation true.

For example, the equation sin x = cos x has two solu-

tions: it/4 and 5tt/4. Of course, any trigonometric equa-

tion that has at least one solution will also have an in-

finite number of solutions, but we will only be

interested in the solutions that are between and 2ir.

To solve these equations, make use of the trigonometric

identities in Chapter 6. (Remember that an identity is a

special type of equation that is true for all permissible

values of the unknown.) In Exercises 43 to 63, solve the

equations for x.

43. sin x = tan x

44. 2 cos x - 1 =

45. cos 2 x sin
2 x = 0.8

46. sin x -I- cos x = 1

*47. sin x + cos x = \

*48. sin
3 x = (1 - cos 2x)/4

*49. 16 sin
2 x - 16 sin

4 x = 3

*50. sin
2 x + [(V3 - l)/2] = V3/4

51. sin
2 x - (1/V2) sin x =

52. tan
2 x = 3

53. 2 tan
3 x + tan x =

*54. 4 sin x -I- 3 cos x = 2

*55. arcsin 2x + arcsin x = it/2

56. 2 ctn x cos x = ctn x

57. [2 sin (2x) + 1](2 cos x + V3) =

*58. 2 ctn x - tan x - 1 =

59. cos 2x = sin x
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60. tan x cos x - cos x =

61. 2 cos
2
x - 3 sin x = 3

62. 2 sin
2 x - V3 sin x =

*63. 3 cos 2 x + 5cosx-2 =

*64. Solve this system of equations for A and B:

3 sin A + cos B = 1

sin A - cos B = 1

*65. Show

. 4
arcsin - = ir — 2 arctan 2

5

66. Suppose you are given the coordinates of a point

(x, y) and you would like to calculate the angle be-

tween the x axis and the line connecting the origin to

that point. You will use the arctan function, but how
will you make sure that the resulting angle is in the

correct quadrant?

67. Suppose your programming language does not

have the arcsin or the arccos functions available, but it

does have the arctan function. Write a program that

you may use to calculate arcsin and arccos by using
arctan.
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The Pigeon
Messenger
Service

The next day we were still rejoicing about

having saved the kingdom. Recordis explained how Pal

had been able to make sure that the pigeons would stop

when they reached Peaceful Bay. "Pal can control the

distance the pigeons will fly by regulating the amount
of scientifically designed birdseed he feeds them. For

example, if he wants them to fly 50 miles he feeds

them twice as much birdseed as when he wants them
to fly 25 miles."

The king had a brilliant idea. "We should use

the pigeons to provide a regular messenger service," he
said. "That way we will be able to send messages all

over the kingdom!"

"The Royal Map marks the location of every
town in the kingdom," Recordis said. "We know how
far north and how far east of Capital City every town
is."

156



"Our system for identifying the locations of the

towns is like a rectangular coordinate system," the

professor said. "We have drawn a y axis that points

north and an x axis that point east." (See Figure 11-1.)

Rectangular
Coordinates

Northwest

Southwest

Northeast

(x, y)

r
E3-

x

">

Capital City

Southeast

"Capital City is at the origin, which is the point

(0, 0). If a town is northeast of Capital City, then both
the x coordinate and the y coordinate are positive. If a

town is northwest of Capital City, then the y coordinate
is positive and the x coordinate is negative. If the town
is southwest of Capital City, then both the x coordinate
and the y coordinate are negative, and if the town is

southeast of Capital City then the x coordinate is

positive and the y coordinate is negative." (A
rectangular coordinate system is also called a Cartesian

coordinate system, after Rene Descartes.)

"It doesn't do any good to tell the pigeons the

rectangular coordinates of a town!" Recordis pointed
out. "The pigeons can only find the town if they know
the direction to the town."

"That sets the stage for my latest idea," the

professor said. "I know of a totally new way to keep
track of the locations of the towns in the kingdom. The
rectangular xy system is fine for some purposes.

However, for giving directions to the pigeons, we can
use a new system. We can identify the location of each
town with two numbers: the distance from that town to

Capital City, and the direction you need to travel to get

to that town. We will measure directions like this: we
will say that east is 0°, north is 90°, west is 180°, and
south is 270°." (See Figure 11-2.)

Figure 11-1

Polar Coordinates 157



Figure 11-2

<o^g?

90°

180°

North

0°

West

270°

East

South

Polar Coordinates

"That is just the information we need to give to

the pigeons!" the king said excitedly. "If we point them
in the right direction and tell them the distance to the

town, they will be able to find it."

We decided to call the new method of locating

points the system of polar coordinates.

'-v.-vs

^>X r

Polar Coordinates
^1

Any point in a plane can be identified

by two numbers under the polar coordinate

system. First, pick a point to represent the

origin. Then, pick a direction to represent the
0° direction. We will always draw the 0°

direction as pointing directly right from the

origin. Then, any point in the plane can be
identified by two coordinates called r and 8.

(The symbol is a Greek letter called theta.

The letter 6 is another one of the professor's

favorite Greek letters.)

r = distance from the origin to the point

6 = angle between the 0° line and the line drawn
from the origin to the point (Figure 11-3)

asas^
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r /

Xe

Figure 11-3

"This still leaves us with one slight problem,"
Recordis said. "We know the rectangular coordinates

for each town. However, we don't know the polar

coordinates for the towns."

"I know how we can convert the rectangular

coordinates (x, y) to the polar coordinates (r, 8),"

Trigonometeris said. "We can calculate r from the

Pythagorean theorem:

r = Vx 2 + y
2

And, since tan 8 = y/x, we can calculate the value of

8 by using the arctan function

y
8 = arctan -

x

We calculated some examples of conversions:

X y r 8

15 15 21.2 45°

50 86.6 100 60°

10 10 90°

-17 17 24.04 135°

-111 -45 119.8 202°

1 -0.2679 1.035 -15°

Polar Coordinates 159



"What if we need to do the reverse calculation?'

Recordis demanded. "Suppose we know the polar

coordinates of a town but we need to know the

rectangular coordinates?"

Trigonometeris explained that we could use

these formulas

x = r cos 9

y = r sin

Here are some examples.

r 6 x y

12 45° 8.49 8.49

16 30° 13.86 8.00

96 60° 48.00 83.14

4.34 123.5° -2.40 3.62

0.075 218.9° -0.058 -0.047

19 300° 9.5 -16.45

The king issued a proclamation.

=^r

^fZ77~

To convert rectangular coordinates

(x, y) to polar coordinates (r, 8),

r = Vx 2 + r
y= arctan -
x

To convert polar coordinates (r, 8) to

rectangular coordinates (x, y),

x = r cos 8

y = r sin 8

2^ ^£2Z
*aaaa£4 S^fSSS)

[Note: You will need to use the rule described in

Chapter 10, Exercise 66, to make sure that your result

for 8 is in the correct quadrant.)

Recordis put himself to work on the task of

converting the rectangular coordinates of each town in
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the kingdom into polar coordinates. Builder started

work on a sign reading, "Pal's Pet Pigeon Messenger
Service—Fast Service to Any Town in Carmorra!" The
professor wanted to investigate some more properties of

the polar coordinate system.

"We have found it very useful to write equations

to represent different shapes," she said thoughtfully.

"We have written equations containing x and y and
then drawn the graphs of the equations in rectangular

coordinates. For example, we found that a circle with
center at the origin and radius a could be represented

by the equation

x2 + y
2 = a

2

I wonder if we can draw figures in polar coordinates

by finding equations containing r and 8."

"That will be easy," the king said. "All we need
to do is start with an equation containing x and y.

Then use the conversion equations

x = r cos 8

y = r sin 6

to convert the original xy equation into an equation

containing r and 8."

We tried to find the polar coordinate equation of ^^M—M^^^^^MM
a circle by substituting into the equation x 2 + y

2 = a
2

: Equations in Polar

(r cos 8)
2 + (r sin 8)

2 = a
2 Coordinates

r
2
cos

2
8 + r

2
sin

2
8 = a

2

r
2
(cos

2
8 + sin

2
8) = a

2

„2 _ „2

"That equation is obvious!" Trigonometeris said.

"We should have known that the polar coordinate
equation of a circle would be r = a. That equation
merely tells you to take all the points at a distance a

from the origin, and we know that the definition of a

circle is the set of all points a fixed distance from the

center."

The professor decided to investigate what other

kinds of curves we could draw in polar coordinates.

We found the equation for a horizontal line at a

distance d away from the origin:

d
. „— = sin 8

r

(See Figure 11-4.)

Then we found an equation for a line at a

distance d away from the origin that was tilted at an
angle 8 :
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Figure 11-4

d- = sin 9
r (r.6)

•{.

Figure 11-5

y<C\

fco^ '

- = sin (6 - 8
)

r

(See Figure 11-5.)

"Let's make up some equations and see what the

graphs look like," Trigonometeris suggested. He
suggested the equation

We found that the graph of this equation was an
interesting spiral pattern (Figure 11-6). Next
Trigonometeris suggested the equation

r = cos
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Figure 11-6

We had drawn part of the graph when suddenly
we ran into a problem. "When 9 is greater than it/2, the

value for cos 6 becomes negative," Recordis said. "We
can't draw a point with a negative value for r. We
know that a distance must always be positive, and r

represents the distance from the origin to the point."

"I have an idea of what it means to have a

negative value of r as a polar coordinate," the professor

said. "We know that the point (r, 9) means the point at

a distance r away from the origin in the direction given

by the angle 9. So, logically, the point (
— r, 9) should

represent a point a distance r away from the origin in

the opposite direction." (See Figure 11-7.)

Recordis, knowing that the professor usually got

her way in such matters, decided not to protest.

We completed the graph of the equation r =
cos 9 and found that it formed a circle. (See Figure 11-8.)

This time the center of the circle was not at the origin.

"I bet I know how we can draw a curve with
several loops," the professor guessed. She suggested we
draw the graph of the curve r = sin 29. We made a

table of values.
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Figure 11-7

/ (r, 6)

/ e

(-r. e)/

Figure 11-8

^ ^ r = cos 6

I
|

1 1

\
l r
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B

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300
c

330 c

0.866

0.866

-0.866

-0.866

0.866

0.866

-0.866

-0.866

Then we plotted the curve. (See Figure 11-9.)

9
so
o

r = sin 29

Figure 11-9

"Let's try one more curve," Trigonometeris sug-

gested.

r = 1 - cos 9

We made a table of values.

e

o°

30°

60°

90°

120°

150°

180°

210°

0.134

0.500

1.000

1.500

1.866

2.000

1.866

.
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240°

270°

300°

330 c

1.500

1.000

0.500

0.134

We started to plot the points. We stared in awe
as the curve took shape. (See Figure 11-10.)

Figure 11-10

c r — 1 - cos e

)u\

"A Valentine's Day heart!" Recordis cried with
delight. "I had always thought trigonometry was a

cruel, uncaring subject, but I see now that sometimes
trigonometry does have a heart." From that moment on
Recordis began to like trigonometry a little bit.

However, he never ceased to tease Trigonometeris

about his favorite subject.

We were all exhausted from our ordeals. Now
that the kingdom was safe we took a brief vacation

from our investigation of trigonometry. The gremlin did

not appear again for a long time. The pigeons provided
a swift, economical communication system that linked

the entire kingdom together. Many people found
applications for trigonometry, including surveyors,

navigators, physicists, musicians, engineers, and
astronomers.

This brings to a conclusion the main part of our

adventures. However, we did have four more
trigonometry adventures. I have included these in case

you feel that you have not yet satisfied your appetite

for trigonometry. To appreciate the remaining
adventures you will need to have a good understanding
of such algebraic topics as complex numbers, conic

sections, translations of coordinate axes, polynomials,
and multiple linear equation systems. (If you are

interested you may read the book Algebra the Easy
Way, which tells how the people of Carmorra became
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acquainted with these and other algebra topics. If you
would like to read about further adventures in the land

of Carmorra. you may read the book CalcuJus the Easy
Way. We found that a knowledge of trigonometry was
very helpful during the course of our investigations of

the subject of the calculus.)

Represent each of the points in Exercises 1 to 12

in polar coordinates.

1. 16 16

2. 7 26

3. -1 -2

4. -11 5

5. 4 -17

6. -3 4

7. 6 -8

8. 5 12

9. -7 -24

10. 11 -11

11. 14 7

12. 18 17

Represent each of the points in Exercises 13 to 24

in Cartesian (rectangular) coordinates.

13. 10 90°

14. 5 0°

15. 117 270°

16. 39 180°

17. 15 45°

18. 100 135°

19. 18 150°

20. 45 23°

21. 16 7°

22. 26 23°

23. 10 -9°

24. 18 -11°

Sketch graphs of the polar coordinate equations

in Exercises 25 to 33. You may find it helpful to obtain

special polar coordinate graph paper.

25. r = 2 30. r = sin 49

26. r = 29 31. r = 3(1 - cos 9)

27. r = sin 9 32. r = 2 + cos 9

28. r = sin
2 29 33. r cos (9 + it/6) = 3

29. r = sin 39

r

34. Change the equation r
2 = sec 29 to Cartesian

coordinates and sketch its graph.

35. Find all the points where these two curves inter-

sect:

r = 4(1 + cos 9)

r(l - cos 9) = 3

Exercises
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*36. In Cartesian coordinates the equation of a line is

usually given as y = mx + b, where m is the slope of

the line and b is the y intercept of the line. Show that

this form of the equation is equivalent to the equation

d/r = sin (8 - 8 )
given in the chapter by finding

expressions for m and b in terms of d and 6 .

37. Write a program to draw graphs of curves in

polar coordinates. Test it out on the example curves

given in the chapter. Also test it out on this curve:

r = sin (n9)

Test several values for n, both whole numbers and
fractions, and see if you can describe how the value

of n determines the pattern of the graph.
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12
Complex
Numbers

One day Trigonometeris was searching through
the Royal Archives. Recordis was out for the day, so it

was difficult to find anything. Trigonometeris was
looking at documents that told of our discovery of

algebra when he came across an interesting folder

labeled "Complex Numbers." "What are these?" he
asked the professor.

"That's a new type of number we invented," the

professor said. "We started with the real numbers.
Every real number corresponds to a point on a number
line, and a real number can be represented as a decimal
fraction that either terminates, repeats the same pattern,

or continues endlessly without ever repeating a pattern.

However, we found there was no real number equal to

the square root of - 1. In other words, the equation

x 2 = - 1 has no real-number solutions. So, we made
up a new number, called i, such that i

2 = - 1. Of
course, i cannot be a real number, but we decided to

make it up anyway to see how it behaved. The gremlin
dared us to do this. We called it an imaginary
number."

*The Imaginary
Number i
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'Properties of
Complex Numbers

"Then what is a complex number?"
Trigonometeris asked.

"A complex number is a number like

a + bi

"where a and b are both real numbers. We call a

number of the form bi a pure imaginery number. A
complex number is formed by adding a real number
and a pure imaginary number, although I should warn
you that addition in this sense is not exactly the same
as the ordinary addition you use when adding together

two real numbers. In the complex number a + bi, a is

the real part and b is the imaginary part. However, we
must be very careful we do not let Recordis hear us

talking about complex numbers, because he suffers

fainting spells at the mere mention of the phrase

'complex number.'"

The folder in the archives listed some properties.

<vvS "
'

^^
To add two complex numbers,

[a 1 + bii) + (a2 + b2 i) = [a-i + a 2 ) + (bi + b 2 )i

To subtract two complex numbers,

(a, + b a i)
- (a 2 + b 2 i) = (a t

- a 2 ) + (b a
- b 2 )i

To multiply two complex numbers,
treat each complex number as a binomial (and

remember that i
2 = - 1):

(a a
-(- b : i)(a 2 + b 2 i)

= a l a 2 + aib 2 i + a 2 bii + bib 2 i
2

= (aaOz - b a b 2 ) + (a a b 2 + azb^i

A complex number can be represented
on a two-dimensional diagram. The horizontal

axis is the reai axis and the vertical axis is the

imaginary axis. The number a + bi is

represented by a point drawn a units to the

right of the origin and b units up. (See Figure

12-1.)

The absolute vaJue of a complex
number is the distance from the origin to the

point representing that number. We will use r

to represent the absolute value. Then,

r = vV + r?

Here are some examples of complex
numbers. (See Figure 12-2. Note: Real numbers
are a special type of complex number.)
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Imaginary

axis f | a + bi

^ j Real

V axis
a

Figure 12-1

5/^-

-2 + 2/) •

.- .0 + 3/)

< •(!+')

•5 - /)

(-2 - 2/)

(-2 - 4/)

Imaginary

axis

H f-

Real

axis

(5 - 2/)

• (3 - 3/)

Figure 12-2

Trigonometeris stared at this diagram. "This
method for representing complex numbers looks very
much like a rectangular coordinate system," he said.

"We found it was useful to convert rectangular

coordinates into polar coordinates, so perhaps we can
find a way of representing complex numbers using
polar coordinates."

*Polar Coordinate
Form of Complex
Numbers
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The professor became intrigued by the idea. "We
know that a point in polar coordinates is represented

by two quantities: the distance from the point to the

origin, and the angle representing the direction you
must travel to reach that point. It seems we should be

able to represent a complex number by its absolute

value and the angle between the real axis and the line

connecting its point to the origin."

A complex number can be expressed in

polar coordinate form by listing two numbers:

the absolute value r and the angle 0. (See

Figure 12-3.)

2z ^3gfr

.fifXxyy D
Figure 12-3

c i + bi

Imaginary \~\
axis

r/

iX 9

>b

J
Real

axis
a

"We can use trigonometry to convert from the

polar form to the regular form," Trigonometeris said.

a = r cos

b = r sin

"We can also convert the regular form to the

polar form," the professor said.

r = VcFTT?

= arctan -
a

We decided that normally we would write polar-

form complex numbers like

r (cos + i sin 0)

"Let's make a list of some complex numbers
expressed in both forms," Trigonometeris suggested.
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5 = 5 (cos + i sin 0)

l

Zi

1 + i

1 -
i

3 + 3i

1 + V3i

3 - 4i

= 1 (cos 90° + i sin 90°)

= 7 (cos 90° + i sin 90°)

= V2(cos 45° + i sin 45°)

= \ 2[cos (-45°) + i sin (-45°)]

= 3\ 2 (cos 45° + i sin 45°)

= 2 (cos 60° + i sin 60°)

= 5 [cos (-53.13°) + i sin (-53.13'

-5 + 2i = V29 (cos 158.2° + i sin 158.2°)

"This is all very interesting, but we have yet to

find an advantage to writing complex numbers this

way," the professor pointed out.

Trigonometeris was sure there must be some
reason it would be more convenient to write complex
numbers in polar notation. We found an addition rule

for polar complex numbers, but it did not seem to be

much of an improvement over the regular addition

rule. (See Exercise 34.) However, some amazing results

happened when we tried to multiply two complex
numbers written in polar form:

[r^cos 0! + i sin 00] [r2 (cos 2 + i sin 8 2 )]

— rir2 [(cos t + i sin a )
(cos 2 + i sin 2 )]

= rir2 [cos0! cos 2 - sin 0i sin 2

+ i (sin 0! cos 2 + sin 2 cos a )]

"We can use the trigonometric addition rules!"

Trigonometeris said.

[r^cos a + i sin a )] [r2 (cos 2 + i sin 2 )]

= r^cos (0! + 2 ) + i sin (0 a + 2 )]

Therefore, we wrote the final rule.

^^VS

's-S

To multiply two complex numbers
written in polar form,

[ri(cos 0! 4- i sin Bt)] [r2 (cos 2 + i sin 2 )]

= r a r2 [cos (0! + 2 ) + i sin (0! + 2 )]

That is, to obtain the absolute value of

the product, multiply the two absolute values.

To obtain the angle of the result, add
the two angles

^1

^ZZk

'Multiplying

Complex Numbers

D
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We worked some examples.

[2 (cos 35° + i sin 35°)] [10 (cos 12° + i sin 12°)]

= 20 (cos 47° + i sin 47°)

[V2 (cos 45° + i sin 45°)] [V2 (cos 135° + i sin 135°)]

= 2 (cos 180° + i sin 180°)

= -2

[7 (cos 90° + i sin 90°)] [4 (cos 180° + i sin 180°)]

= 28 (cos 270° + i sin 270°)

(1 + i)(l + V3i)

= [V2 (cos 45° + i sin 45°)] [2 (cos 60° + i sin 60°)]

= 2V2 (cos 105° + i sin 105°)

We found that the rule even worked when multiplying
a real number by a complex number. For example,
suppose x is a positive real number. Then,

x = x (cos + i sin 0)

x[r (cos 8 + i sin 8)] = xr (cos 8 + i sin 8)

"I see," the professor said. "The absolute value
of the complex number is multiplied by x, but the

angle remains unchanged when you multiply by a

positive real number."

The professor also noticed an interesting effect if

you multiplied a complex number by i:

i[r(cos 8 + i sin 8)] = lr[cos (8 + 90°) + i sin (8 + 90°)]

"Note that the absolute value of the number stays the

same, but the angle has increased by 90°. This is the

same as rotating the point representing the number
counterclockwise by 90°. It seems to me that

multiplying by i is a signal to rotate by 90°."

"The same type of effect will occur if you
multiply by any complex number that has an absolute

value of 1," the king noticed. "The absolute value of

the original complex number will stay the same, but it

will be rotated a certain amount." The king used (cos

&! + i sin 81) to represent an arbitrary complex number
with absolute value 1 and r(cos 8 2 + i sin 8 2 ) to

represent another complex number. Then he calculated

(cos 81 + i sin 8i)r(cos 8 2 + i sin 8 2 )

= r [cos (8 a + 8 2 ) + i sin (8 a + 8 2 )]

ggj^|^^* "We can now find powers for complex
*Powers of numbers!" the professor realized. "I remember that

Complex Numbers calculating powers of complex numbers written in

agBBBaBBi regular form was very tedious, and since Recordis can't

stand complex numbers, I ended up doing all the work."
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To get the square of a complex number we found

[r (cos 6 + i sin 0)]
2 = r

2
(cos 26 + i sin 29)

There's no reason to stop at 2:

[r (cos 6 + i sin 6)]
3 = r

3
(cos 36 + i sin 36)

[r (cos 8 + i sin 8)]
4 = r

4
(cos 46 + i sin 46)

[r (cos 6 + i sin 8)]
5 = r

5
(cos 56 + i sin 56)

We found that, in general,

[r (cos 8 + i sin 8)]
n = r" (cos n8 + i sin n8)

We worked some examples.

(1 + i)
6 = [V2 (cos 45° + i sin 45 )]

6

= 8 [cos (6 x 45°) + i sin (6 x 45°)]

= 8 (cos 270° + i sin 270°)

5
3 = [5 (cos + i sin 0)]

3

= 125 (cos + i sin 0)

i
5 = [1 (cos 90° + i sin 90°)]

5

= 1 (cos 450° + i sin 450°)

= i

(1 - i)
10 = {V2 [cos (-45°) + i sin (-45 )]}

10

= 32[cos (-450°) + i sin (-450°)]

= -32i

(3 - 4i)
2 = {5 [cos (-53.13°) + i sin (-53.13°)]}

= 25 [cos (-106.26°) + i sin (-106.26°)]

"If we can do powers, then we also should be

able to do roots," the professor reasoned, "since taking

a root of a number is the opposite of raising it to a

power." She decided to look for the square root of i.

(She knew that i was the square root of - 1, but she

had not yet been able to find a number that was the

square root of i.)

"We'll write i in polar notation," she said,

i = cos 90° + i sin 90°

"To take the square root of a complex number in polar

form, I bet we need to take the square root of the

absolute value (which is 1 in this case) and divide the

angle by 2:

'Roots of Complex
Numbers

Vi = cos 45° + i sin 45
c

1 . J_
V2

1

V2

Complex Numbers 1 75



"This answer has the added advantage of being right!"

she said triumphantly after she checked to make sure

that (1/V2 + i/\2) squared was indeed equal to i. (See

Exercise 47.)

"Is that the only square root?" the king asked.

"We found that positive real numbers have two square

roots, one positive and one negative. For example,

(-3) 2 = 9 and 3
2 = 9. (We used the radical symbol

V" to always refer to the positive square root, but that

doesn't mean we can ignore the negative square root.)"

We found that - 1/V2 - \l\fl was also a square

root of i. The professor was puzzled about how this

could be until she wrote the number in polar notation:

cos 225° + i sin 225
c1 i

V2 V2
Then we squared that number by doubling its angle:

(cos 225° + i sin 225
)

2

= cos (2 x 225) + i sin (2 x 225)

= cos 450° + i sin 450°

"I see!" the professor said. "A 450° angle is

coterminal with a 90° angle, so (cos 450° + i sin 450°)

is the same as (cos 90° + i sin 90°), which is the same
as i."

The professor thought a moment and made a

shrewd guess. "I bet every complex number has two
square roots." She thought a bit more. "I wonder if this

means that every complex number also has three third

roots, four fourth roots, five fifth roots, and so on."

We decided to look for cube roots of i:

i = cos 90° + i sin 90°

But we can also write that like

i = cos 450° + i sin 450°

i = cos 810° + i sin 810°

By using these three polar forms for i, we found three

cube roots:

y\ = cos 30° + i sin 30°

i/1 = cos 150° + i sin 150°

"v
7
! = cos 270° + i sin 270°

We wrote a general rule.
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Roots of Complex Numbers

A complex number has a total of n

number of nth roots. For example, a complex
number has one first root (itself), two square

roots, three cube roots, four fourth roots, five

fifth roots, and so on. Consider the complex
number

r(cos 8 + i sin 6 )

The n roots all have absolute value r
1/n

.

The n values of the angle 9 can be found from
the formula

^f

=

360m + 8

2-rrm + O

degrees

radians

The factor m takes on the values of all

of the integers from to n - 1.

)

tsssss D
We were so excited by the polar coordinate

representation of complex numbers that we did not
notice when Recordis walked into the Main Conference
Room.

"Hi!" he said cheerfully. "What's new?"

The professor quickly covered the papers we had
been writing on. "You had better not look."

Recordis looked puzzled. "Not even one little

peek?" He caught a glimpse of a complex number on a

corner of a page. "No! Not those numbers again!" he
screamed and fainted.

Recordis never did overcome his fear of complex
numbers, but we found that polar coordinate
representation greatly enhanced our understanding of

this unusual type of number.

In Exercises 1 to 10, convert the complex
numbers to polar form. Exercises

1. 3 - 4i

2. -12 -

3. 7.5i

4. -11.45i

5. 2 + 2i

5i

6. 0.5 + O.86661'

7. -11.4 + 34i

8. 10 + 6i

9. -9 - 6i

10. 7 + 24i
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In Exercises 11 to 20, convert each of the

complex numbers expressed in polar form to regular

form.

11. 5 53.13'

12. 13 22.62'

13. 25 -73.74

14. 10 -36.87

15. 1 -90°

16. 1 225°

17. 1 150°

18. 23.4 34.5°

19. 11.56 190.54

20. 2.87 89.65

21. The complex conjugate of a complex number a +
bi is equal to a - bi. In other words, to find the

conjugate you reverse the sign of the imaginary part.

Write a rule that tells how to find the conjugate of a

complex number in polar form.

Perform the multiplications indicated in

Exercises 22 to 31. Then convert the product and the

two factors into regular form.

22. [13 (cos 22.62° + i sin 22.62°)] [5 (cos 53.13° +
i sin 53.13°)]

23. [10 (cos 36.87° + i sin 36.87°)] [25 (cos 16.26° +
i sin 16.26°)]

24. [50 (cos 83.74° + i sin 83.74°)] [10 (cos 143.13° +
i sin 143.13°)]

25. [2 (cos 60° + i sin 60°)] [2 (cos 150° + i sin 150°)]

26. [2 (cos 240° + i sin 240°)] [2 (cos 300° +
i sin 300°)]

27. (cos 45° + i sin 45°) (cos 135° + i sin 135°)

28. (cos 45° + i sin 45°) (cos 225° + i sin 225°)

29. (cos 45° -(- i sin 45°) (cos 315° + i sin 315°)

30. [16 (cos 59° + i sin 59°)] [97 (cos 26° + i sin 26°)]

31. [99 (cos 13° + i sin 13°)] [33 (cos 23° + i sin 23°)]

178 Complex Numbers



r

32. We found three cube roots of i in the chapter. Can
you find additional third roots of i by writing i in any
other coterminal forms?

r

33. Can you state a general rule about the location on
the real/imaginary diagram for the n nth roots of a

complex number?

'34. Derive a rule that tells how to add together two
complex numbers expressed in polar coordinate form.

'35. Derive a rule that tells how to divide two complex
numbers expressed in polar coordinate form.

Calculate the powers of the complex numbers in

Exercises 36 to 41.

36. (6 + 8i)
4

37. (24 + 7i)
5

38. (1/V2 + i/V2)
3

39. (1/V2 + i/V2)
4

40. (1/V2 + i/V2)
10

41. (1/V2 + i/V2)
63

Calculate the four fourth roots of the complex
numbers in Exercises 42 to 46.

42. 1/V2 + i/V2

43. i

44. 1

45. 3 + 4i

46. 16 (cos 80° + i sin 80°)

47. Perform the following multiplications without
using polar coordinates:

(a) (1/V2 + i/V2) 2

(b) (-1/V2 - i/V2) 2

(c) (V3/2 + i/2)
3

48. Write a program to calculate the n different nth
roots of a complex number.

49. Write a program to calculate (a + bi)
n

.
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13
Coordinate

Rotation
and Conic
Sections

*The Peaceful Bay
Town-Planning
Problem

The next week we received a visit from a tall,

elegantly dressed gentleman. "This is Count Q, an old

friend of the family," Recordis introduced him to us.

The count joined us for lunch. He told us about some
of his problems, and he explained how busy he was.

"I spent my last vacation at the town of Peaceful

Bay, and while I was there, the people asked me to help

with the Town Planning Commission. We are trying to

make a map of the town. It has been very confusing.

The center of the town is at the Town Triangle. We
have measured the location of each point in the town
by listing two numbers: the distance north from the

Town Triangle to that point, and the distance east from
the Town Triangle to that point."

"Ah!" the professor said. "Your system is just

like a system of rectangular coordinates, with the " -y axisluv-o a B^aicin ui iCLLauguim L-uuiUiiiaica, vvn

pointing north and the x axis pointing east.'

"Correct," the count agreed. "Unfortunately, due
to the unique geography of the town of Peaceful Bay,

that is not the best system to use in this case. The
harbor line is inclined at an angle 20° north of east, and

180



of course all the streets follow the harbor line. That is,

they are either parallel to or perpendicular to the

harbor." (See Figure 13-1.) "Therefore, the planning
commission has decided to use a new system. The new
system is a standard xy coordinate system. The only
difference is that now the x axis is parallel to the

harbor, and the y axis is perpendicular to the harbor.

Note that the origin of the new system is still at the

Town Triangle."

Peaceful Bay >

ro

->

^
CP o- <£ <fi

o •y ©
? 4. .v*>

o ^
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Figure 13-1
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"How do you tell the difference between the

coordinates measured in the old system and the

coordinates measured in the new system?" Recordis

asked.

"That was precisely the question I asked the

other commission members," the count told us. "To
keep from confusing the (x, y) coordinates in the new
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system with the (x, y) coordinates in the old system,

we put a little mark ' (called a prime symbol) next to

the letters. (That was my personal contribution to the

system.) Therefore, we refer to the coordinates in the

new system as (x', y'), as opposed to the (x, y)
coordinates in the old system. For practical purposes
the new system is more convenient because the

coordinate axes match the street pattern. For example,
we know that the point (x' = 4, y' = 5) is at the corner
of Fourth Avenue east and Fifth Street north." (See

Figure 13-2.) "The coordinates of this same point in the

old system are (x = 2.048, y = 6.066)."

Figure 13-2 y axis

axis

x axis

x axis

"The new system is much more convenient,"

Recordis agreed. "I like the numbers 4 and 5 much
more than I like the numbers 2.048 and 6.066."

"However, we never intended that the new
system would replace the old system," the count
continued. "We merely intend to use it as a

supplementary system. There are times when the old

system based on north and east is more convenient.

That leads us to our problem: we have measured the

locations of many points using the old system. We
would like a quick way to convert these old system
coordinates (with no primes) into new system
coordinates (with primes). Then we would not have to

measure all the new system coordinates."

We were all silent. The count's problem sounded
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difficult. The professor decided to state the problem in

more formal terms.

=^=^7

Coordinate Rotation Problem
*a-^

Draw an x axis and a y axis. Any point

in the plane can be identified by listing its

two coordinates (x, y). Now, draw new
coordinate axes called x' and y' (read "x
prime" and "y prime"). These new axes are

rotated by an angle O from the old x and y
axes. Note that the origin of both coordinate

systems is the same. Now, any point in the

plane can also be identified by giving its two
coordinates (x', y') in the new system.

The problem is, suppose you know the

coordinates (x, y) of a point in the old system.

How do you calculate the coordinates (x\ y')

of the same point in the new system?

22L ^zzz

*Rotated
Coordinate
Systems

i^//

"A very good restatement of the problem," the count
agreed.

The count left us in the afternoon while we
stayed in the Main Conference Room. Recordis told us

that the count was quite rich and he would be sure to

give us a generous present if we should be able to solve

this problem for him. However, we had no success.

Later in the afternoon Builder stopped by the

Main Conference Room. He told us that he had
suggested some improvements for our pigeon-aiming
system. "I'm sure you remember how the original

system works," he said. Recordis nodded, pretending

that he did. "We identify any location in the kingdom
by specifying two numbers: r, the distance the pigeon
must travel to reach the point, and 6, which is the

direction to aim the pigeon. In the old system, we
measured the angle as the angle north of east; in other

words, the direction directly east is 0°, the direction

directly north is 90°, west is 180°, and south is 270°.

For most purposes, it is easiest to identify locations by
the old system. However, for pigeon aiming, I find it is

best to use a new system. In the new system, the 0°

direction points to Distant Mountain." (See Figure 13-

3.) "For example, the location of the town of Shady

*The New
Improved Pigeon-

Aiming System
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Figure 13-3

*Rotations in Polar
Coordinates

Tree is (r = 40, = 50°) in the old system, but its

location is (r' = 40, 6' = 15°) in the new system."

"We've seen those little prime symbols before,"

Recordis said.

"I put primes after the coordinates in the new
system so I don't confuse the new system coordinates

with the old system coordinates," Builder explained.

"This is exactly the same as Count Q's

coordinate rotation problem!" Trigonometeris cried.

"Once again we are identifying points by using two
different systems. In each system the origin is at the

same location, but the axes have been rotated."

Recordis suddenly saw a big advantage to using

polar coordinates. "It is very easy to convert from one
coordinate system to a rotated coordinate system if you
are using polar coordinates!" he exclaimed. "The
distance from the origin to the point will be the same,
no matter how you rotate the axes, so r' = r. If 9 is the

angle in the old system, 0' is the angle in the new
system, and 6 is the angle of rotation, then

6' = - O
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The king decreed:

"-^S

-__Jy// -^"" ^
Rotation of Coordinates
When Using Polar Coordinates

Consider an original polar coordinate

system (r, 0). Then, create a new polar

coordinate system by rotating the 0° direction

by an angle O . Call the coordinates in the

new system (r\ 0'). Then, to convert from the

old system to the new system,

r' = r

^*
•

^£2Z
D

For example, if O (the angle of rotation) is 35°,

r 9 r' e'

16 12.5 16 -22.5

100 38 100 3

45.4 175 45.4 140

11.4 240 11.4 205

19 345 19 310

"Since we know how to handle a rotation when we
are dealing with polar coordinates, and we know how to

convert from polar coordinates to rectangular coordi-

nates, we should be able to solve Count Q's problem in-

volving rectangular coordinate rotation," the professor

said.

*Rotations in

Rectangular
Coordinates

Old (no prime) system New (prime) system

x = r cos

y = r sin

x' = r' cos 0'

y' = r' sin 0'
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"To convert from the old system to the new system,

r' = r

"Let's substitute 0' = 6 —
O and r' = r into the

equations x' = r' cos 0' and y' = r' sin 9'," the king

suggested.

x' = r cos (8 -0
O )

y' = v sin (9 - 9
)

"We can use the trigonometric subtraction

rules," Trigonometeris said helpfully.

x' = r (cos 9 cos 9 + sin 9 sin 9
)

y' = r (sin 9 cos 9 - sin 9 cos 8)

We rewrote those:

x' = r cos 9 cos 9 + r sin 9 sin 9

y' = r sin 9 cos 9 - r cos 9 sin 8

Using x = r cos 9 and y - r sin 9,

x' = x cos 9 + y sin 9

y' = y cos 9 - x sin 9

"That's the answer!" the professor exclaimed. "If

we know the old coordinates (x, y) and the angle of

rotation 9 we can calculate the new coordinates

[x',y')\"

"We should try some examples to make sure that

it works," the king cautioned.

"I see one obvious example," Recordis said.

"Suppose 9 = 0; in other words, suppose you are not

rotating the axes at all. In that case, x' = x and y' = y.

The new coordinates are exactly the same as the old

coordinates."

"I know of another example," the professor said.

"Suppose you rotate the axes by 90°. Then, since

cos 90° = and sin 90° = 1, it follows that x' = y
and y' = -x."

Count Q's problem involved a rotation of 20°, so

we found

x' = x cos 20° + y sin 20°

y' = y cos 20° - x sin 20°

x' = 0.9397x + 0.342y

y' = 0.9397y - 0.342x
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We wrote a general rule.

:;"<^r

's-S )

Coordinate Rotation

Suppose that a new coordinate system
(x\ y') is formed by rotating the axes of the

old coordinate system (x, y) by an angle O . If

you know the old coordinates and would like

to know the new coordinates, you may use
the formula

y

= x cos O + y sin 8

= y cos 8 - x sin 8

If you know the new coordinates and would
like to calculate the old coordinates, use the

formula

x = x' cos 8 - y' sin 8

y = y' cos 8 + x' sin 8

^2^A
)

(See Exercise 15 for a derivation of the reverse

transformation formulas.)

We gave these results to Count Q, and he
returned home after graciously promising us a generous
gift.

The next morning the professor came running
into the Main Conference Room triumphantly. "I have
finally completed my detailed investigations of a

quadratic equation with two variables!" she exclaimed.

"What?" Recordis asked blankly.

"You remember when we investigated the

solution to a quadratic equation with one unknown,
such as ax 2 + bx + c = 0? In general we found this

type of equation usually has two solutions. Now,
suppose we have an equation involving x values and y
values, but no term has a higher degree than 2. For
example,

x 2 + 5y
2 - lOx + 15y - 20 =

I call this type of equation a quadratic equation with
two variables. And I have found that in general there

will be many possible pairs of values (x, y) that are

solutions to the equation. If you make a graph of the

solution, then it will trace out a nice conic section,

*The Two-
Unknown
Quadratic
Equation
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* Circles

* Ellipses

such as a circle, an ellipse, a parabola, or a hyperbola.'

"We should review conic sections," Recordis

said. "There are a few minor details that seem to have
slipped my mind."

The professor leafed through the archives and
found a description of conic sections.

Figure 13-4

Conic Sections

The four curves—circles, ellipses, parabolas,

and hyperbolas—are the conic sections.

1. Circles

A circle is the set of points in a plane that

are all the same distance r from a fixed point

called the center. The equation of a circle with

center at the origin can be written

x 2 + y
2 = r

2

where r is the radius of the circle. (See Figure 13-4.)

2. Ellipses

An ellipse is the set of points in a plane
such that the sum of the distances to two fixed

points is constant. The two fixed points are the

focal points. The point halfway between the two
focal points is called the center. The longest
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distance across the ellipse is the major axis; half

this distance is the semimajor axis. The shortest

distance across the ellipse is the minor axis; half

this distance is the semiminor axis. The equation

of an ellipse with its center at the origin, a

semimajor axis of length a, and a semiminor axis

of length b is

+ ^
= 1

(See Figure 13-5.

Figure 13-5

The quantity e = Va 2 - b
2
/a is the

eccentricity of the ellipse. It is a number between
and 1 that measures the shape of the ellipse. An

ellipse with eccentricity is the same as a circle.

An ellipse with a higher eccentricity has a flatter

shape. (See Figure 13-6.)

e = o
e = 0.33

e = 0.9

e = 0.67

Figure 13-6
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*Parabolas

Figure 13-7

*Hyperbolas

3. Parabolas

A parabola is the set of all points in a plane
that are the same distance from a fixed line (the

directrix) and a fixed point (the focus). The point

on the parabola closest to the focus is the vertex. If

the focus of a parabola is the point (0, a) and the

directrix is the line y = -a, then the vertex is at

the point (0, 0) and the equation of the parabola is

y =
4a

(See Figure 13-7.

Directrix

Vertex

y = -a

4. Hyperbolas

A hvperboia is the set of all points in a

plane such that the difference between the

distances to two fixed points is a constant. A
hyperbola has two branches that are mirror images
of each other. Each branch looks like a misshapen
parabola. The general equation for a hyperbola
with center at the origin is

a
2

b
2 ~ 1

The meanings of a and b are shown in the

diagram. The two diagonal lines are asymptotes.
As x gets larger and larger, the positive branch of
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Figure 13-8

S^v Asymptote
\s/ line

y

a
// x 2 y2

r
j|
jS /

/b<
(
\

x

Negative yys
branch ^^

>v \ Positive

>s/\ branch

Hyperbola ns

the curve will come closer and closer to the

asymptotes, but it will never actually touch them.

(See Figure 13-8.)

5. Relation to cones

These four curves are called conic sections

because they can be formed by the intersection of

a plane with a right circular cone. (See Figure

13-9.) If the plane is perpendicular to the axis of

the cone, the intersection will be a circle. If the

plane is slightly tilted, the result will be an ellipse.

If the plane is parallel to one element of the cone,

the result will be a parabola. If the plane intersects

both nappes of the cone, the result will be a

hyperbola. (Note that a hyperbola has two
branches.)

Conic Sections
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Figure 13-9

6. General Definition of Conic Sections

It is possible to define ellipses, parabolas,

and hyperbolas by one equation. A conic section

can be defined as the set of points in a plane such
that the distance to a fixed point divided by the

distance to a fixed line is a constant. The fixed

point is called the focus, the fixed line is called

the directrix, and the constant ratio is called the

eccentricity of the conic section (abbreviated e).

When e = 1, this definition exactly matches the

definition of a parabola. If e is less than 1, then the

conic section is an ellipse. If e is greater than 1,

then the conic section is a hyperbola. If the focus

is at the point (0, p), the directrix is the line x =

0, and the eccentricity is e, then the equation of

the conic section can be written as

= 1
(x - h)

2 y 2

A B

where h =

A =

B =

= p/(l - e
2

)

= e
2
p

2
/(l - e

2
)

2

= e
2
p

2
/(l - e

2
)
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7. Translation of Axes

In the equations for ellipses, circles, and
hyperbolas, we assumed that the center was at the

origin. The equation for parabolas assumes that the

vertex is at the origin. However, it will often be
convenient to find equations for conic sections

located anywhere in the plane. To do that we use
the method of translation of axes. Let's suppose we
form a new coordinate system by shifting the x

axis h units to the right and by shifting the y axis

k units up. We will call the new x axis the x' axis

and the new y axis the y' axis. (See Figure 13-10.)

(Note the difference between a translation and a

rotation. With a rotation we kept the origin at the

same place but we changed the direction of the

coordinate axes. With a translation we keep the

axes pointing in the same direction but we move
the origin.) We can convert coordinates in the old

system into coordinates in the new system by
using the formulas

x' = x - h

y' = y - k

We can convert coordinates in the new
system into coordinates in the old system by usinj

the formulas

x = x + h

+ k

Now, suppose we would like to find the

equation for a circle with center at the point

"Translation of
Axes

Figure 13-10
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(15, 12) and radius 5. Then we perform a

coordinate translation like

x' = x - 15

y' = y - 12

In the new system the equation of the circle will

be very simple:

Now that we know the equation of the circle

in the new system, we can use the coordinate

translation formulas to calculate the equation of

the circle in the old system:

(x - 15)
2 + (y - 12)

2 - 5
2

In general, the equation of a circle with
center at the point (h, k) can be written as

(x - h)
2 + [y - k)

2 = r
2

The equation of an ellipse with center at the

point (h, k) can be written as

(x - h) 2
[Ljz_kl

a
2

b
2

The equation of a parabola with vertex at

the point (h, k), focus at the point (h, k + a), and
directrix at the line v = k - a can be written as

k = (x - hy

4a

The equation of a hyperbola with center at

the point (h, k) can be written as

(x - h)
2

[y - k)
:

= 1

The Pesky xy
Term

"Now, you give me a quadratic equation with
two unknowns and I will draw a graph of the solution

for you," the professor said confidently. "If the graph
of the solution is not immediately obvious from the

equation, then the trick is to use the right translation of

axes to convert the equation into a simple form."

Recordis wrote down the hardest equation he
could think of:

0.0474X 2 - 0.02114xy + 0.0551y
2 - 0.15344x

- 1.17562y + 6.0625 =

"No problem," the professor said. However, she
gulped when she looked closely at the equation. "I

can't solve that equation! It has that 0.021 14xy term. I

don't know how to solve an equation with an xy term
in it!"
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"But you said you could solve any equation
provided the degree of each term was 2 or less!"

Recordis said. "The way I look at it. the term
0.021 14xy consists of an x to the first power multiplied

by a y to the first power, so the term 0.021 14xy seems
to have degree 2."

The professor wrung her hands in deep
embarrassment. She had been so confident when she
had boasted about her ability to solve quadratic

equations that she felt determined to find a way to

solve this equation. However, try as she might, she
could not find a way. "The solution might or might not

be a conic section," she said.

"It's too bad this isn't a trigonometry problem,"
Trigonometeris said. "If it was, then I'm sure that the

trigonometric functions would help you solve it."

The professor struggled with this problem for

hours. She had trouble finding even one solution, let

alone finding the graph of the complete set of

solutions.

That evening Builder came by with a perplexing

problem. "I am trying to design a special scoreboard

lighting display for the upcoming big game. The
scoreboard is made up of lots of little lights. To make
different patterns appear, I must decide which lights to

light up. That is, I need to know the equations of

various curves, such as circles and parabolas. Once I

know the equation of a curve, I can calculate the

coordinates of the light bulbs I want to light up. You
have given me equations for circles, ellipses, parabolas,

and hyperbolas. However, all these equations describe

figures oriented either vertically or horizontally. You
have not told me the equation of a figure tilted with
respect to the coordinate axes. For example, I would
like to display a parabola tilted at an angle, like this."

(See Figure 13-11.)

The Perplexing
Parabola with the

Tilted Axis

\ \

\ v \\ \ *

\ \£

X

Figure 13-11
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"It makes me very disoriented to look at a

crooked parabola like that," Recordis said.

"We can use coordinate rotation,"

Trigonometeris said. "Let's set up a rotated coordinate
system like this." (See Figure 13-12.) "We will rotate

the axes by 30°. Then, the equation of the parabola in

the rotated coordinate system will be very simple: it

will be y' = x'
2 ."

Figure 13-12

\\1y = x 2 \ \ }

X'

L^\30° x

"Aha!" the professor said. "Once we know the

equation of the parabola in the new system, we can use
the rotation formulas

x' = x cos O + y sin 8

y' = y cos 8 - x sin 6

to calculate the equation of the parabola in the old

system:

y' = x'
2

(y cos 6 - x sin 8 )
= (x cos O + y sin 6

)

2

y cos O - x sin O = x 2
cos

2
O + 2xy cos O sin O

+ y
2
sin

2
0o

"In this case we know that the angle of rotation

is O = 30° = tt/6 rad," the king said. "Since cos 30° =

V3/2 and sin 30° = i we can fill in these results. The
equation of a parabola with its vertex at origin and the

axis tilted by 30° is

3 _ V3 1.1 V3
+ - x y =

2 2
yxy + - r

"Bummer!" Recordis complained. "That equation
contains one of those pesky xy terms."

"That doesn't hurt us now because we already
know the solution to this equation," Trigonometeris
said. "We know the graph of the solution is a parabola
tilted by 30°."
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The professor was suddenly struck with an idea.

'*I bet the solution to a two-unknown quadratic

equation containing an xy term will indeed be a conic
section—but the only difference will be that the conic
section's orientation will be rotated away from
normal!"

"An interesting guess," the king said. "Let's

investigate to see if it is right."

We set up a general second-degree equation
involving an xy term.

Ax 2 + Bxy + Cy 2 + Dx + Ey + F =

(A, B, C, D, E, and F are known.)

"Now, let's rotate the axes by an angle O and see

what the equation looks like in the new coordinate

system," said the king.

Write x and y in terms of the new coordinates x'

and y':

x = x' cos 6 - y' sin O

y = y' cos 80 + x' sin 6

Find expressions for xy, x 2
, and y

2
:

xy = x'y' cos
2
8 + x'

2
sin 8 cos 8

- y' 2
sin 8 cos 8 - y'x' sin

2
8

x2 = x'
2
cos

2
8 - 2x'y' cos 8 sin 8 + y' 2

sin
2

8

y
2 = y' 2

cos
2

8 + 2x'y' cos 8 sin 8 + x'
2
sin

2
8

Insert these expressions into the original equation:

A(x' 2
cos

2
8 - 2x'y' cos 8 sin 8 + y' 2

sin
2

8 )

+ B{x'y' cos
2
8 + x'

2
sin 8 cos 8 - y' 2

sin 8 cos 8

- y'x' sin
2
8 )

+ C[y'
2
cos

2
8 + 2x'y' cos 8 sin 8 + x'

2
sin

2
8 )

+ D(x' cos e - y' sin 8 )

+ E[y' cos 8 + x' sin 8 ) + F =

After combining all these terms, the equation became

x'
2(A cos

2
8 + C sin

2
8 + B sin 8 cos 8 )

+ y' 2{A sin
2
8 + C cos

2
8 - B sin 8 cos 8 )

+ x'(D cos 80 + E sin 8 ) + y'[-D sin 8 + E cos 8 )

+ x'y'(-2A cos 8 sin 8 + 2C cos 8 sin 8

+ B cos
2
8 - B sin

2
B ) + F =

Recordis's wrist was exhausted after writing that

equation. "I think things would be wonderful if we
could get rid of that x'y' term."

"We can get rid of the term if we can make this

complicated expression go to zero," the professor said.

-2A cos 8 sin 8 + 2C cos 8 sin O

+ B cos
2
8 - B sin

2
8 =

* The Rotated
Equation
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Trigonometeris recognized the formulas for

cos 28 and sin 26:

(C - A) sin 26 + B cos 26 =

sin 29 B

*The Solution of a
Second-Degree
Two-Unknown
Equation

cos 28 A - C

tan 28 = B

A - C

28 = ar
B

ctan .

A - C

8 = 1

2
arctan

B

A - C

"Perfect!" the professor said. "The entire x'y'

term will vanish if we rotate the axes by an angle

8 = - arctan—

-

Once we have gotten rid of that bothersome x'y' term,

we can use my methods to solve the equation." The
professor outlined her new complete method to solve

second-degree two-unknown equations.

To solve this equation,

Ax 2 + Bxy + Cy2 + Dx + Ey + F = (1)

1. Calculate the angle of rotation:

1 B
6o = _ arctan _____

(Note that, if B = 0, there is no xy term and
you will not need to rotate the axes at all.)

2. Let x', y' represent the new axes in

the rotated coordinate system. In

the new system the equation will be
of the form

A'x' 2 + Cy' 2 + D'x' + E'y' + F' = (2)

(We could write that equation as

A'x'
2 + B'x'y' + Cy' 2 + D'x' + E'y' + F

=

but we know that B' = if we have chosen
the angle of rotation correctly.)

You may calculate the new coefficients

A', C, D', E', and F' directly by substituting

these expressions in the original equation:

x' = x cos 9o + y sin O

y' = y cos 8 - x sin 8
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Or you may use the formulas

A' = A cos
2
8 + C sin

2
9 + B sin 6 cos 8

C = A sin
2
9 + C cos

2
8 - B sin 8 cos O

D' - D cos O + E sin 8

E' = -D sin 9 + E cos 8

F = F

If either A' or C is zero, then the graph
of this equation will be a parabola. Suppose
that C = (in other words, there is no term
containing y' 2

). Then, create a new system of

coordinates x", y" by the translation

x" = *' + £2A'
4A'F' - D'

2

y = y
' +y y

4A'E'

The equation will become

A'x"2 + E'y" = (3)

which can be graphed as a parabola.

If neither A' or C is zero in Equation

(2), then perform the translation

x" = x' + -^
2A'

E'
y" = y' + —y y 2C

Then the equation can be written as

A'x"2 + C'y"
2 + F" = (4)

If A' = C\ then this is the equation of

a circle. If A' and C have the same sign (in

other words, they are both positive or both
negative), then the equation will be the

equation of an ellipse. If A' and C have
opposite signs, then the equation will be the

equation of a hyperbola.

"It is a very complicated method," the king said,
*™^^^^^^^^^^

"but we should be able to execute the method if we *77ie Graph of the
follow it carefully, one step at a time." The professor Tilted Ellipse
was very proud of the result. h^hhum

Now we had to solve Recordis's equation:

0.0474X 2 - 0.02114xy + 0.0551y
2 - 0.15344x

- 1.17562y + 6.0625 =
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First, we needed to identify the coefficients with the

letters we had used in the standard formula: A =

0.0474; B = -0.02114; C = 0.0551; D = -0.15344;

E = -1.17562; and F = 6.0625. Then we calculated

the angle of rotation:

6 = - arctan—

-

= 35°

Then we formed the new equation in the rotated

coordinate system:

0.04x'
2 + 0.062499y' 2 - 0.8x' - 0.875y' + 6.0625 =

In this equation, we identified A' = 0.04 = A, C =
0.062499 = A, D' « -0.8 = -$, E' = -0.875 =

-H, and F' = 6.0625 = fj.

Then we used the translation formulas

D'

2A'

= x' - 10

2C
= y' - 7

and the new equation became

x"
2 y"2

+ =rr = 1

x" = x' +

y" = y' +

25 16

"That's an ellipse, with a semimajor axis equal to

5 and a semiminor axis equal to 4!" the professor said.

"That will be easy to draw." (See Figure 13-13.)

Figure 13-13 \<
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\ In xy system.

\ 0474x* - 02114xy + 0.0551y2

\ - 15344x - 1 17562/ + 6 0625 =

In x'/ system.

<x' - 10)' (y - 7)'

25 16
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+
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"There must be a way to tell in advance what
the graph of this type of equation will look like!"

Recordis said. He thought a bit and came up with an
idea. "When we worked with one-variable quadratic

equations, such as ax 2 + bx + c = 0, we found that

the quantity b
2 - 4ac gave us a clue about the nature

of the solutions. When we have the equation

Ax 2 + Bxy + Cy2 + Dx + Ey + F =

let's calculate the quantity B 2 - 4AC. We will call

B 2 - 4AC the discriminant of the quadratic equation
with two variables, just as we call b

2 - 4ac the

discriminant of the quadratic equation with one
variable. I bet this quantity will give us a clue to the

nature of the solution."

"That is total nonsense!" the professor

exclaimed. "There is no connection between the

quantity b
2 - 4ac for a one-variable equation and the

quantity B 2 - 4AC for a two-variable equation! It is

pure coincidence those quantities look the same."

However, to the professor's complete
astonishment, Recordis turned out to be right this time.

First, we found that the quantity B 2 - 4AC does not

change when you rotate the axes by any amount. (For a

proof of this rather remarkable fact, see Exercise 18.) In

other words, the quantity B 2 - 4AC in Equation (1)

will equal the quantity B'
2 - 4A'C in Equation (2).

[However, note that B' - because there is no x'y'

term in Equation (2).

Recordis explained his plan. "For this equation,

A'x' 2 + Cy' 2 + D'x' + E'y' + F' =

we will define the discriminant as

Discriminant = -4A'C

If A' or C is zero, then the discriminant = and the

curve is a parabola; if A' and C have the same sign,

then the discriminant is negative and the curve is an
ellipse; if A' and C have opposite signs, then the

discriminant is positive and the curve is a hyperbola.

Therefore, we can make this rule."

*The Discriminant

Consider the Equation

Ax 2 + Bxy + Cy 2 + Dx + Ey + F =

Calculate the quantity B 2 - 4AC. If B 2 - 4AC
is 0, then the graph of this equation will be
a parabola; if B 2 - 4AC is negative, then the

graph will be a circle or an ellipse; and if

B 2 - 4AC is positive, then the graph is a

hyperbola.
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"But this result must be blind luck!" the

professor still insisted. She could not figure out how
Recordis had become so lucky to be able to guess the
rule that would determine in advance the nature of the
solutions to the complicated quadratic equation with
two unknowns. She was sure that in general she was
the best person in the kingdom when it came to

discovering new scientific ideas, but she had to

concede that Recordis was the best person when it

came to discovering innovations designed to save work.

Exercises
In Exercises 1 to 14, you are given the

coordinates of some points in the initial xy system.

Calculate the new coordinates (x', y') in a coordinate

system formed by rotating the axes by an angle 6 :

6

1. 1

2.' 1

3. 1

4. 1

5. 1

6. 10

7. 12

8. 12

9. 12

10.

11.

12. 26

13. 10

14. 91

15

25

25

68

6

28

45°

90°

135°

180°

225°

12°

30°

80°

120°

25°

330°

78°

63°

57°

15. In the text we derived the formulas that tell how
to convert coordinates in the old xy system to the new
x'y' system. Derive the formulas that tell how to con-
vert the (x\ y') coordinates to the (x, y) coordinates.

*16. Use a translation of axes to convert this equation:

Ax2 + Cy2 + Dx + Ey + F =

into this form:

(x - h) 2
, (y - k)

2

+ = 1 or
x'

2 y' 2
„
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*17. Use a translation of axes to convert this equation:

Cy 2 + Dx + Ey + F =

into the equation of a parabola with vertex at the

origin.

*18. Show that the quantity B 2 - 4AC in the equation

Ax 2 + Bxy + Cy 2 + Dx + Ey + F =

is the same as the quantity B'
2 - 4A'C when you

rotate the axes of the coordinate system.

*19. Derive the polar coordinate equation for a general

conic section. Put the focus at the origin and put the

directrix at the line r cos 6 = -a.

Draw the graphs of the solutions to the equations

in Exercises 20 to 25.

20. 17.0528X2 + 23.9472y2 + 5.7851xy - 400 =

21. 19.7186x 2 + 21.'28142y2 + 8.863xy - 400 =

22. 95.25x2 + 85.75y2 - 16.454xy - 8100 =

23. 54.75x 2 - 35.75y2 - 156.75xy - 8100 =

24. 8.849x 2 + 4.1508y 2 - 1.710xy - 36 =

25. -8.608x 2 + 3.608y2 + 4.446xy - 36 =

26. Use a coordinate rotation to graph the equation

xy = 1.

27. Can you think of circumstances in which the

graph of the solutions to the equation Ax 2 + Bxy +
Cy2 + Dx + Ey + F = will not be a conic section?

Calculate the angle of rotation you would use if

you were to draw the graphs of the equations in

Exercises 28 to 33. Without actually drawing the

graph, determine the nature of the graph.

28. 16x 2 + 2xy - 18y
2 + 12x - 14y - 56 =

29. 33x2 + 53xy + 62y2 - 61x - 80y - 81 =

30. x2 + lOxy + y
2 - 5x - lOy - 44 =

31. 4x 2 - xy + 8y
2 - 2x - y - 45 =

32. x 2 + 6xy + 9y
2 + x + 2y - 81 =

33. 4x 2 + 16xy + 16y
2 + 3x + 6y - 144 =

*34. If you need to graph the equation

Ax 2 + Bxy + Cy2 + Dx + Ey + F =

it would be very difficult to perform all the

calculations by hand. Write a program that reads

in the values for the coefficients, prints a

message describing the nature of the graph of the

solution, and then draws the graph.
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Spherical
Trigonometry

Mysterious
Triangles and
Riddles

The Royal Astronomer, who also had the

responsibility of being Royal Navigator, asked Recordis

to draw a map to help him plan a new journey. "The
Southsea islanders have put lighthouses on three main
islands: North, South, and West Islands," he explained.

"They have carefully measured the distance between
the islands, and they have carefully noted the shortest

course between each pair of islands. South Island and
West Island are located exactly along the equator, and
North Island is directly north of South Island."

"It will be a piece of cake to draw the map,"
Recordis said. Even though he always complained
about work, he still appreciated the fact that people
turned to him for important graphing jobs because they

knew he was the best in the kingdom. "You have
described a right triangle."
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The astronomer told Recordis the distances

between the three pairs of islands and the sizes of the

other two angles in the right triangle. Recordis started

drawing the map. (See Figure 14-1.)

North Island

37.6°

1047.86/
833

\ 52.78°
r

West Island 637.5 South Island

Figure 14-1

However, when he started to double-check the

numbers, something puzzling happened. He applied the

Pythagorean theorem, but he found there was a slight

discrepancy:

V833 2 + 637.

5

2 = 1048.95

But the astronomer had supplied the figure 1047.86 for

the distance from West Island to North Island.

"Are you sure that these measurements are

accurate?" Recordis asked.

"Positive," the astronomer said. "I have carefully

double-checked, and in each case the measurements
provided by the islanders are extremely accurate."

Recordis was still puzzling over this problem
when he received an even bigger shock. He added
together the three angles provided by the astronomer:

37.6 + 52.78 + 90 = 180.38°.

"No! This cannot be!" Recordis screamed. "We
know that the three angles in a triangle must always
add up to 180°! That is true for any triangle!"

The astronomer insisted that the measurements
were accurate. Fortunately, the professor arrived at that

moment and she agreed to investigate the mystery.

Meanwhile, the astronomer described another one of

his long sea journeys to Recordis.

"I left Startingpoint Island, on the equator, and
sailed 2000 kilometers directly west. Then I turned at

an angle of 72.8° and sailed for 5304.6 kilometers, then
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I turned directly south and sailed for 5000 kilometers

until I returned to Startingpoint Island. During each leg

of the journey, my guide painstakingly made sure that

we were always following the shortest course between
the two points." (See Figure 14-2.)

Figure 14-2

"This makes another right triangle, which is nice

because right triangles are easier to deal with than
other types of triangles," Recordis said. However, his

relief quickly turned to despair when the same two
problems surfaced, only this time they were much
worse: the Pythagorean theorem did not work, and the

sum of the three angles was 187.5°, again greater than
180°.

"What is going on?" Recordis cried. "We have
never had these problems before!" Again, the

astronomer insisted that the measurements were
extremely accurate.

"The only clue we have is that the problem
becomes much worse with a much bigger triangle," the

professor said.

"But if the Pythagorean theorem is wrong, and
the three-angles-sum-to-180° rule is wrong, then we
have to throw out everything we have done!" Recordis

cried in anguish.

"That would be very distressing," the professor

agreed.

We all suffered a sleepless, disturbed night. To
make matters worse, the next morning Pal received a

little riddle book from an anonymous stranger.

Normally he liked riddles, but now he was crying

because the first riddle was very difficult.

"Let me try," said Recordis. He read the riddle:
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"A hunter left his home and walked two miles

directly south. Then he walked three miles directly

east. At that point he saw a bear. He then turned

directly north and walked two miles, until he reached

his home. What color was the bear?"

"There is no information about the color of the

bear at all!" Recordis complained.

For lack of anything better to do, the professor

tried to make a diagram of the hunter's course. "Aha!"
she said. "The course described is impossible. You
would not return to your starting point if you followed

the path described." (See Figure 14-3.)

Figure 14-3

"Did you like my little riddle?" a passing
stranger asked. He turned to us, and we recognized the

gremlin!

"You gave that riddle book to Pal!" the king
accused him.

"There is an answer to the riddle," he laughed,

"and the course described is possible." Then he
slipped away, but his scornful laughter rang in our
ears.

We all realized that our triangle problems from
yesterday, and this strange riddle, put into jeopardy all

of the work we had done with triangles. Trigonometeris,

naturally, took matters worse than anyone else.

"I thought we fully understood triangles by
now," he said.

Pal was crying so hard that the king went to

fetch his beachball to cheer him up. However, before

he tossed the ball to the giant, the king suddenly
stopped and stared at the ball.

"I think we are missing something," he said

slowly. "The Earth is round, like a ball. We have
looked at triangles drawn on flat pieces of paper, but I

suspect that a triangle drawn on a sphere will behave
differently."
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It took a moment for the significance of what he
had said to sink in. Then Trigonometeris became very

excited. "A new type of trigonometry! We will call it

spherical trigonometry, since it is about triangles on
spheres."

"We should use the term plane trigonometry for

the work we have done up to now," the professor said.

"Don't imply that trigonometry is plain and
ordinary!" Trigonometeris exclaimed.

"That's not the type of plane I meant," the

professor said. "A plane is a flat surface, like a table

top. All of the triangles we have looked at before

yesterday were plane triangles."

"Does this help us answer the riddle?" the king

asked.

"It still isn't possible to follow the path
described in the riddle and end up at the starting

point," Recordis said, "unless you do something
strange like start at the North Pole."

"That's it!" the king said. "If you start at the

North Pole, travel south, then east, and then turn due
north, you will come back to your starting point!" (See

Figure 14-4.)

Figure 14-4

"White bear!" Pal shouted happily, realizing that

if the hunter started at the North Pole, he must have

seen a white polar bear.

We set to work investigating the properties of

spherical triangles. "First, we need a system to keep

track of locations on a sphere, similar to the rectangular

(xy) coordinate system we use to identify locations on
a plane," the professor said.

"Since a sphere exists in three dimensions, we
will need a three-dimensional coordinate system,"
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Recordis said. "We used this type of system before

when we investigated equations with three variables in

algebra. We added the z axis to measure distances

above or below the origin. With the xyz system, we can
identify any point in three-dimensional space." (See

Figure 14-5.)

z axis

y axis

/
x axis

Figure 14-5

"At the moment we don't need to identify all

possible points in three-dimensional space," the

professor said. "We only need to identify those points

that are located along the sphere."

The astronomer explained, "Actually, I find that

I can keep track of my position by using just two
coordinates. As long as I stay on the equator, I just

need to keep track of how far I have travelled east from
the starting point. I call this distance the longitude. If I

then turn and sail north or south of the equator, then I

need to keep track of the distance north or south. I call

this the latitude." (See Figure 14-6.)

Figure 14-6

"What is the equator?" Trigonometeris asked.

SphericaJ Trigonometry 209



* Great Circles and
Small Circles

"The equator is the great circle that goes all the

way around the Earth, halfway between the North and
South Poles," the astronomer explained.

"What's so great about it?"

The astronomer tried to explain what a great

circle was, but Trigonometeris only became more
confused. Fortunately, at that moment the Royal Baker
happened to come by carrying a large ball of butter,

which had been made unusually large for an unusually
special occasion.

The astronomer took out a large knife. "Watch
what happens when I cut the ball of butter." As the

astonished baker watched, the astronomer cleanly

sliced part of the ball off. Then he took the slice and
put it on the table, asking Recordis to trace out the

shape formed by the cross section of the slice.

"It makes a circle!" Recordis said in

astonishment. (See Figure 14-7.)

Figure 14-7

"Whenever you cut a sphere with a straight cut,

as I have just done, then a circle is formed. However,
this type of circle is called a small circle, because the

diameter of the circle is less than the diameter of the

sphere. Watch this

The astronomer replaced the slice, and the ball

of butter again formed a perfect sphere. Then he sliced

the ball again, only this time he was careful to make
sure that his knife passed through the center of the

ball. The ball split into two equal hemispheres. Again
Recordis traced the pattern formed, and again he found
that it was a circle. This time the diameter of the circle

was the same as the diameter of the sphere.
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The professor suddenly realized what was
happening. "Whenever a plane crosses a sphere so that

the plane passes through the center of the sphere, then

the intersection of the plane and the sphere forms a

great circle. A great circle is bigger than any other

circle that you form by crossing the sphere with a

plane that does not cross the center of the sphere." (See

Figure 14-8.)

Figure 14-8

We all took turns slicing the ball of butter, and
we were able to convince ourselves that every time our
knife crossed the center of the ball, the great circle

formed had the same diameter as the sphere itself.

However, every time our knife did not cross the center

then the circle formed was smaller than a great circle.

The astronomer continued to explain how he
kept track of positions on the surface of the Earth. "I

have chosen an arbitrary point along the equator to

represent the starting point for measuring longitude."

"How do you measure the distances?" the king
asked.

"The distance can be measured in kilometers,

but I find it convenient to measure distance by giving

them in relation to circles. I have followed your
suggestion where a complete circle measures 360° or 2tt

radians. Therefore, 180° means to sail halfway around
the world, 90° means to sail one quarter of the way
around the world, and so on." He showed us an
example of how to reach the point with longitude 20°

and latitude 15°. (See Figure 14-9.)

*Latitude and
Longitude
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Figure 14-9

15° = .262 radians = 1669 km
North

Start

(longitude =

latitude = 0)

20° = .349 radians = 2225 km

"We need some symbols for latitude and
longitude," Recordis said. "It would be too confusing

to use L, because they both start with L."

"We will have to use Greek letters again," the

professor said. She suggested 6 (theta) for longitude,

and <t> (phi) for latitude.

The king issued a proclamation:

^s

~^p^- '^S

Any point on the surface of the Earth

can be identified by two coordinates. First,

choose a point along the equator to be the

starting point (latitude = 0, longitude = 0).

• The longitude of point X tells how far you
need to travel eastward along the equator

from the starting point to reach point E,

which is the point on the equator directly

north or south of the point X. If 6 is the

longitude in radians, then the distance of

travel is 8r, where r is the radius of the

Earth.

• The latitude of point X tells how far you
need to travel from point E to point X
(this trip will be directly north or directly

south). If 6 is the latitude, then the

distance of travel is 6r. (See Figure 14-10.)

It is customary to express latitude and
longitude in degrees, although they can be

measured in radians if it is more convenient

in a particular circumstance.

<*

^gas
fr^*W D
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North Pole

South Pole

Figure 14-10

We used the term circle of longitude to refer to

a great circle consisting of all points with the same
longitude (and, as you can see, the points on the

opposite side of the Earth whose longitude is 180°

greater). Half of such a great circle, consisting of points

with the same longitude, is called a meridian. We used
the term circle of Jatitude (or parallel of latitude) for a

circle consisting of all points with the same latitude.

Figure 14-11 shows a globe with several circles of

latitude and circles of longitude.

North Pole

vjatitude = 60° North

/ /
\ \

r-— I
A latitude = 30° North

1 1
__d equatork

;

I T
v V 7 latitude - 30° Southw /

**Hatitu<te = 60° South

South Pole

Figure 14-11

Note that a circle of latitude (other than the

equator) is not a great circle. A circle of latitude is

formed by cutting the Earth's sphere with a plane

parallel to the plane of the equator. Such a plane will

not pass through the center.
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"I would feel much more comfortable if we had
a way to convert latitude and longitude coordinates

into xyz coordinates," Recordis said. In order to

humor him, the professor agreed to help find the xyz
coordinates for a point on the Earth's surface with
latitude 6 and longitude 0.

"We should put the origin at the center of the

Earth," the professor said. "We will have the x axis

pointing to the starting point (latitude = 0, longitude
= 0), the y axis pointing toward latitude = 0,

longitude = 90°, and the z axis pointing to the North
Pole." (See Figure 14-12.)

Figure 14-12
z

North

Pole

center

axis

y axis

/ r ^^^
/ ^^ \

z

z—__^i --=»,-

Z^v——"*' /
x x axis

"We know that the distance from the origin to

any point on the surface is r, where r is the radius of

the Earth," Recordis said. "Everyone knows that the

Earth is a perfect sphere."

(The astronomer did not want to interrupt them,

but he did whisper to the rest of us, "Actually, the

Earth is not exactly a perfect sphere, but it is so close

to being a sphere that for practical purposes we can

treat it as if it is one.")

From the diagram we could see:

z/r = sin d>

k/r = cos <J>

y/k = sin 6

x/k = cos 8

Putting these together, we obtained three

formulas.
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<f
Formulas for converting latitude ((}>)

and longitude (6) into rectangular coordinates:

x = r cos <t> cos 6

y = r cos 4> sin

z = r sin <j>

D

2^

)Sgag^ <^wti^,

Note that these formulas are similar to the polar

coordinate transformation formulas in Chapter 11. If

you want to turn x, y, and z coordinates into latitude

and longitude, see Exercise 18.

"Now we need to return to our main business at

the moment: investigating the properties of spherical ^^^^^^5
triangles," the professor said. * Spherical

"We should make spherical triangles as much as
mangles

possible like ordinary plane triangles," Recordis said.
^^^^^^™

"Therefore, a spherical triangle will have three vertices

and three straight sides."

"I am afraid it is more complicated than that,"

the king realized. "The sides of a spherical triangle

cannot be straight lines. It is impossible to travel in a

straight line between two points on the surface of the

Earth without tunnelling or swimming under the

surface. Therefore, the sides of a spherical triangle must
be curved arcs."

"Then the side of a spherical triangle will be the

arc that connects the two vertices," Recordis said.

"Which arc?" the astronomer asked. "There are

many different arcs that connect two points on a

sphere." The astronomer needed to convince Recordis

of this fact, so he sent a message to the baker asking for

another ball of butter. He marked two points on the

ball, and then cut a slice out of the ball. He was careful

that the knife cut both of the marked points. He did

this several times, and each time the cut indicated a

different arc connecting the two marked points.

"We should choose the shortest arc," the king

decided. After considerable investigation, we found
that the shortest route between two points was the

route that was part of a great circle.

The professor decided that we should investigate

the spherical triangle representing the astronomer's

course, which had sides of 5000, 2000, and 5304.6
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kilometers. (See Figure 14-2.) She started to sketch the

triangle on the butter ball. She calculated that the

radius of the ball was 1.6 x 10
" 7 times the radius of

the Earth, so she told Recordis to divide 5000, 2000,

and 5304.6 by 1.6 x 10
" 7

so she would know how
long to make the sides of the triangle on the butter ball.

"We need a way to measure the length of the

sides of a spherical triangle that works for spheres of

all sizes, so we don't need to change all the numbers
like that," Recordis complained.

"I have an idea," the king said. "We will

measure the side by calculating the ratio of the length

of the side to the radius of the circle." The astronomer
told us that the radius of the Earth was 6375
kilometers, so we calculated:

Length of side

(in kilometers)

Length of side

(in radians)

5000.0 5000.0/6375 = .7843

2000.0 2000.0/6375 = .3137

5304.6 5304.6/6375 = .8321

"This is just like radian measure for angles,"

Trigonometeris realized. (See Figure 14-13.)

Figure 14-13

angle

= a radians

arc length

= ar

The professor carefully drew the graph on the

butter ball. However, it had become warmer in the

room, and by the time she finished the ball was
beginning to melt. "We will have to draw spherical

triangles on paper," Recordis said. "It is difficult to

draw a perspective diagram to create the illusion of

three-dimensional space on a two-dimensional piece of

paper, but we have no other choice."

We drew a graph of a spherical triangle, using a,

b, and c to represent the lengths of the sides, measured
in radian measure. "That means that the lengths of the
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sides are ar, br, and cr. expressed in kilometers, if r is

the radius of the sphere in kilometers," Recordis

reminded us.

"With plane triangles, we found it convenient to

use capital letters to represent the angles, with A being

the angle opposite side a, and so on," Trigonometeris

reminded us. (See Figure 14-14.)

Figure 14-14

"How do we measure the angles between two
curves?" Recordis asked.

The professor had an idea. "Remember that each
curve is a part of a great circle, which is formed by a

plane cutting the sphere and passing through the

center. Therefore, the angle between two sides is the

angle between the two planes." Builder quickly

constructed a device with a hinge to illustrate the angle

between two glass planes with circles painted on them.
(See Figure 14-15. Such an angle is called a dihedral

angJe.)

/\
\ xy \

s* = angle between

the two planes

Figure 14-15
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*
Spherical Right
Triangles

Figure 14-16

We realized that spherical triangles presented a

danger of confusion, because both the sides and angles

are measured in angular measure. (This problem does

not occur with plane triangles, since the lengths of the

sides are measured in linear measures such as inches or

kilometers.) Recordis convinced us that it would be a

little less confusing if we measured the angles of

spherical triangles in degrees, but then measured the

sides in radians. That way we could simply multiply

the radian measure of a side by r to obtain the length of

the arc for that side. We will follow this rule unless

there is a particularly compelling reason why it is more
convenient to measure the sides in degrees.

"Now we need some formulas that connect the

sides and the angles," the professor said.

"I suggest we make the problem simpler by first

looking at spherical triangles that contain a right

angle," Recordis suggested. "We found that it was
easier to investigate plane right triangles before we
looked at other types of plane triangles."

We drew a sketch of a spherical right triangle,

imagining that our sketch represented a big spherical

triangle on the surface of the Earth. Since the relations

between the sides and angles are the same no matter

where the triangle is located, Recordis insisted that we
figure out the most convenient location for the triangle

before we drew it. After a long discussion, we decided
that one side of the triangle (side b) should be along

the equator, and that side a should be along a circle of

longitude, which goes directly north from the equator.

That meant that the right angle was between sides a

and b, and that side c was the side opposite the right

angle. (See Figure 14-16.) Note that we drew the great

circle containing side b (the equator) and the great

circle containing side c. The dihedral angle between
the two planes containing these circles was angle A of

the triangle. We decided to put vertex A at the starting

point—that is, at the point on the equator with
longitude 0.
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We spent a long time trying to figure out what to

do next. Finally. Trigonometeris said, "As surprising as

it may seem, I think Recordis actually came up with
the correct idea a while back. We should find the

rectangular coordinates for the three vertices."

Because of the choice we had made for the

location of the triangle we could see that vertex A was
located at the point where latitude = and longitude
- 0. Vertex C had latitude 0, since it was on the

equator, b measured the distance (in radians) that you
must travel along the equator to reach vertex C, so we
realized that b was the longitude of vertex C. Since

vertex B was directly north of vertex C, it must have
the same longitude. Since a measured the distance (in

radians) by which vertex B was north of the equator,

that meant that a was the latitude of vertex B.

Now we could use the formulas we had derived

earlier (page 215) to find the three rectangular

coordinates of vertex B

:

x = r cos a cos b

y = r cos a sin b

z = r sin a

(See Figure 14-17. Recall that we put the origin at the

center of the Earth, with the x axis pointing to the

starting point and the z axis pointing to the North Pole.

The arrows show the direction of the x and y axes. The
arrows were not actually drawn at the origin because
that would have made the diagram too cluttered.)

Figure 14-17

"We still can't make much progress unless we
can somehow find some plane right triangles," the

professor said. Just as she was saying this, she realized
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that we could form some plane right triangles if we
drew more line segments on the diagram. First, we
drew line segments connecting the origin to the three

vertices of the triangle. Each of these line segments had
length r. Then we drew a vertical line segment from
vertex B down to the plane containing the equator; this

line segment represented the z coordinate of vertex B.

Then we drew two more line segments (labeled h and y
in Figure 14-17).

"Let's write the Pythagorean theorem for the

plane right triangle with legs y and z and hypotenuse
h," Trigonometeris said. (Note that Figure 14-17

contains a sketch of two plane right triangles separated

from the main part of the diagram for clarity.)

h 2 = y
2 + z

2

"We know expressions for y and z, but what
about h?"

"We need to stare at the diagram to see if we can
find any other right triangles containing h," the

professor said.

"I see one!" Trigonometeris said. "It has legs of

length x and h, and a hypotenuse of r. The angle

opposite side h measures c radians."

Therefore: h = r sin c

We substituted the expressions for y, z, and h
into the equation:

r
2
sin

2
c = r

2
cos

2
a sin

2
b + r

2
sin

2
a

We cancelled the r
2
's and then used some

trigonometric identities to simplify the equation:

1 - cos 2
c = cos

2
a(l - cos

2
b) + sin

2
a

1 - cos
2
c = cos

2
a - cos

2
a cos

2
b + sin

2
a

1 - cos
2
c = 1 - cos

2
a cos

2
b

cos
2
c = cos

2
a cos

2
b

cos c = cos a cos b

"This is an amazingly simple formula!"

Trigonometeris said. "It relates the three sides of a

spherical right triangle, just as the Pythagorean theorem
relates the three sides of a plane right triangle. We just

have to remember that we use radian measure to

measure the lengths of the sides, and that c is the side

opposite the right angle."

We tested out the formula on the astronomer's

triangle with sides of .8321, .7843, and .3137 radians:

cos .8321 = cos .7843 cos .3137

.6733 = .7079 x .9512
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"It works!" exclaimed the professor.

Trigonometeris then suggested that we should
look for a formula for sin A. "If we have a plane right

triangle, then we know that sin A = a/c, if c is the

hypotenuse and a is the side opposite angle A."

"Matters will be more complicated with
spherical triangles," Recordis warned. However, we
could quickly see from one of the plane right triangles

in Figure 14-17 that sin A = z/h. Since we already had
expressions for z and h we could substitute:

r sin a
sin A =

sin A =

r sin c

sin a

sin c

"Now let's find an expression for cos A,"
Trigonometeris continued. Again using the triangle in

Figure 14-17, we could see that cos A = y/h =
(r cos a sin b)/(r sin c). We decided to use the equation
cos c = cos a cos b to substitute. Then:

cos c sin b
COS A = : ;

cos b sin c

which we realized we could write like this:

tan b
cos A =

tan c

"Again, this is analogous to a plane right

triangle, where cos A = b/c," Trigonometeris suggested.

"We have lots of momentum now," the professor

said excitedly. We could easily find a formula for tan

A:
sin a

tan A = sin A sin c

cos A tan b

tan c

sin a tan c

sin c tan b

sin a sin c cos b

sin c cos c sin b

sin a cos b

tan A =

(cos a cos b) sin b

(using the equation cos c = cos a cos b)

sin a

cos a sin b

tan a

sin b
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The professor realized that we could use exactly

the same procedures to come up with corresponding
formulas for sin B, cos B, and tan B. We made a

summary of our results:

^^t

*tSzpt'

Spherical Right Triangles

Three-Sides Formula:

cos c = cos a cos b

Side/Two Adjacent Angles Formula:

cos c = ctn A ctn B

^f)

Formulas for

angle A

sin A =

cos A =

tan A =

sin A =

sin a

sin c

tan b

tan c

tan a

sin b

cos B

cos b

2^L

Corresponding
formulas

for angle B

sin B =

cos B =

tan B =

sin B =

sin b

sin c

tan

tan c

tan b

sin a

cos A
cos a

^^
WsSS )

"In these formulas it is imperative to recall that

the capital letters represent the angles in the triangle,

and the lower case letters represent the three sides of

the triangle, measured in radians," the professor

reminded us. "Also remember that the right angle is

opposite side c."

We called the first formula the three-sides

formula since it relates the lengths of the three sides.

The second formula is derived in Exercise 38. We
derived the last two formulas when the professor

asked, "I wonder if cos B is equal to sin A, since that is

the way it works for plane right triangles." Starting

from the equation cos B = tan a/tan c, she found:
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tan a
cos B =

tan c

sin a cos c

cos a sin c

sin a cos a cos b

sin c cos a

= sin A cos b

Therefore

:

sin A = cos B/cos b

We verified that these formulas worked for the

triangles that the astronomer had given us (See Exercise

16).

"Now we can finally put these equations to use,"

the astronomer said. "Suppose that I am at point 1 * Sailine alone the
(latitude = 4) 1; longitude 81) and I wish to sail to point

Shortest Course
2 (latitude (t> 2 , longitude 8 2 ). I wish to travel along the —
shortest course possible, which, as we have seen, is

the great circle path. However, it is very difficult to

determine specifically what that course is, since I

usually do not have a convenient spherical butter ball

available."

"The problem is easy if the two points are on
the equator," the professor said helpfully. "Since the

equator is a great circle, then the shortest path between
the two simply involves sailing along the equator."

"I know that," the astronomer said. "It is also

easy to sail between two points of the same longitude,

since you merely sail directly north (or south) until you
reach the point you wish. Recall that circles of longitude

are all great circles."

"It also should be easy to sail between two
points of the same latitude," Recordis suggested. "You
would then sail directly east or west until you reach
the destination."

"But that would not be the shortest course!" the

astronomer said. "Recall that circles of latitude are not

great circles (with the exception of the equator itself).

Therefore, if you follow a course of constant latitude,

you will not be sailing along the shortest possible

course between the two points."

"I see that this is a tricky problem," the

professor said. "Perhaps it would help if we could draw
a spherical triangle with these two points as vertices."

"Where will we put the other vertex?" Recordis

asked. "We need to choose some place very

convenient." As it turned out, the North Pole was the

most convenient place to put the third vertex of the

triangle. (See Figure 14-18.)

Spherical Trigonometry 223



Figure 14-18

North Pole
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Law of Sines and
Law of Cosines

"By 'convenient' I mean a point that is

convenient theoretically. I am not suggesting that we
actually travel to the North Pole," the professor said.

We used d to represent the unknown distance

between the two points along the great circle course,

and s t and s 2 , the complements of the latitude of the

two points, made up the other two sides of the

spherical triangle: s 1
= 90° - q> a ; s 2 = 90° - c)) 2 . The

angle D was the difference in longitude between the

two points: D = 8 2 - 8i.

"Since circles of longitude are great circles, and
the optimal path between points 1 and 2 is a great

circle, we know that he have drawn a spherical

triangle."

"It is not a right triangle, though, so we cannot
use our right triangle formulas. We need a more general

formula, like the law of sines and the law of cosines for

plane triangles," Trigonometeris said.

We looked back at Recordis's notes to see how
we had found the law of sines and the law of cosines.

We decided to try an analogous procedure for the case

of spherical triangles. We started with an arbitrary

spherical triangle (sides a, b, and c; angles A, B, and
C). Then we drew an arc from vertex B that was
perpendicular to side b; this formed two right spherical

triangles. (See Figure 14-19.) We let h represent the

length of this arc. Then, using the formulas from page

222, we wrote:

sin A = sin h

sin c
sin C = sin h

sin a
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Figure 14-19

(For the right triangle on the left, c is the side opposite

the right angle; for the right triangle on the right, a is

the side opposite the right angle.) We solved both of

these equations for sin h and then set them equal:

sin A sin c = sin C sin a

"This is almost exactly like the law of sines for

plane triangles!" Trigonometeris suggested. "Let's write

it down."

=^v

-^^)ZZ77'
Law of Sines for Spherical Triangles

sin a _ sin b _ sin c

sin A sin B sin C

?

y/ ^Z22Z

iszaa^ D
(Note that we can use a similar procedure to show that

we can include sin b/sin B in the formula.)

"Now we should look for the law of cosines for

spherical triangles," Recordis suggested.

From the three sides equation for spherical right

triangles, we knew these equations were true for the

two right spherical triangles in Figure 14-19:

cos c = cos h cos bi cos a = cos h cos b 2

Solving the second equation for cos h and then

substituting into the first equation:

cos a cos b a

cos c
cos b 2
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Since b-i = b — b 2 , we know:

cos (bO = cos (b - b 2 )
= cos b cos b 2 + sin b sin b 2

Substituting:

cos c
cos a (cos b cos b 2 + sin b sin b 2 )

cos b 2

cos c = cos a cos b + cos a sin b tan b 2

Using another equation from page 222, we could
substitute tan b 2 = cos C tan a = cos C sin a/cos a:

cos c = cos a cos b 4- cos a sin b cos C
sin a

cos a

cos c = cos a cos b + sin a sin b cos C

"How elegant!" Trigonometeris said. "We will

call this the law of cosines for sides of a spherical

triangle."

="^T

^^ 'SS **)
Law of Cosines for Sides of a Spherical
Triangle

cos c = cos a cos b + sin a sin b cos C

^^2^

js/s/s )

"It even works for spherical right triangles,"

the professor said. "Suppose C is a right angle. Then
cos C = 0, and we have:

cos c = cos a cos b

which is the same as the three sides equation for right

triangles."

"Now we can finally solve the problem," the

astronomer said. "Suppose that we are at point 1

(latitude 20°, longitude 205°), and we wish to sail to

point 2 (latitude 32°, longitude 239°). Then we set up
our spherical triangle." (See Figure 14-20.)
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Figure 14-20

"We can see that side s a is 90° - latitude of

point 1, if we measure it in degrees." the professor

said. "Likewise, side s 2 is 90° - latitude of point 2."

"Angle D is simply the difference between the

longitudes of the two points," the king contributed.

Then we had:

s, = 90 - 20 = 70° = 1.2217 radians

s 2 = 90 - 32 = 58° = 1.0123 radians

D = 239 - 205 = 34°

We used the law of cosines for spherical

triangles:

cos d = cos Si cos s 2 + sin s a sin s 2 cos D

cos d = cos (1.2217) cos (1.0123)

+ sin (1.2217) sin (1.0123) cos (34°)

cos d = .3420 x .5299 + .9397 x .8481 x .8290

cos d = .8419

d = arccos .8419 = .5700 radians

From this we could calculate the shortest (great

circle) distance between the two points:

distance = dr = .5700 x 6375 = 3634 kilometers

Next, we used the law of sines for spherical

triangles to find angle S 2 :

sin S 2 =
sin s 2 sin D sin (1.0123) sin (34°)

sin d

.8481 x .5592

.5396

sin (.5700)

= .8789

S 2 = arcsin .8789 = 61.51
c
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* The Altitude of
the Sun at the

Beach

"Just what I need to know," the astronomer said.

"When I leave point 1, I will set my course at an angle
61.5° east of north." (The professor had misgivings,

because she realized that sin 118.49° was also equal to

.8789, but in this case it was clear from the diagram
that the correct angle must be 61.51°. This ambiguity
inherent in the sine function caused us more grief

later.)

"I have just realized one very depressing fact,"

Recordis said. "All of the maps I have ever drawn are

wrong! I have drawn maps on flat pieces of paper,

containing plane triangles, but since the world is really

a sphere, I should have been drawing spherical

triangles."

We were very worried about this fact. However,
after examining several maps of cities it became clear

that there wasn't a practical problem. "If you have a

spherical triangle whose sides are very small, relative

to the entire sphere, then the spherical triangle is

almost exactly the same as a plane triangle," the king

said. "We do not need to worry about the spherical

Earth when we draw maps of small areas. However, I

can see that if we try to draw a map of a very large area

of the Earth, then we will not be able to ignore the fact

that the Earth is a sphere."

Early the next morning we received a letter from
Mrs. O'Reilly of the Carmorra Beachfront Hotel. The
hotel was so successful that she was planning to

expand to a new location, and she asked us for some
advice. "When planning a beach hotel, it is very

important to know about the angle of altitude of the

sun," she wrote. "Could you tell me how to calculate

the angle of altitude of the sun at noon on the first days
of winter, spring, summer, and fall?"

The astronomer told us that this was an easy

problem. "Let's calculate z, the angle between the sun
and the zenith (the point directly above the observer's

head). Once we know the zenith angle, we can easily

calculate the altitude:

altitude = 90° - z

"On both the first day of fall and the first day of

spring, the sun is directly overhead at the equator at

noon. If the hotel is at latitude 4>, then the zenith angle

at noon equals cj>. Because the Earth's axis is tilted by
i = 23.45°, on the first day of summer the sun is

overhead at points 23.45° north of the equator, so its

zenith angle at noon is cj> - i. On the first day of

winter, the sun is overhead at points 23.45° south of

the equator, so its zenith angle at noon is 4> + i." (See

Figure 14-21. Note that the sun is so far away that the

light rays from the sun that hit two different parts of

the Earth can be treated as if they are parallel.)
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observer's zenith

z = o + I

sun

equator

first day of winter

Z= - /

sun

equator

first day

of summer

sun

first day of spring and fall

z=

equator

Figure 14-21

However, the next problem that Mrs. O'Reilly

asked us to solve was not easy. She asked us to give

her a formula that would give the altitude of the sun at

various times of the day. This one had us stumped.

"If only this was a problem involving spherical

triangles!" Recordis moaned.

We worked on this problem all day and all night.

We watched the sun rise, move across the sky. and
then set. Builder built us a device (called a sextant)

that we could use to measure the altitude angle of the

sun at a particular time, but we did not know how to

write a formula that would allow us to calculate the

altitude. We watched the stars become visible, and we
saw stars rise and set throughout the night. "All of the

stars move, except for that one," Recordis noticed long
after midnight. He pointed to a bright star.
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*The Celestial

Sphere

"That is the North Star," the astronomer said. "It

would be directly overhead if you were at the North
Pole. All of the other stars move in circles around it."

"I see," Recordis said. "All of the stars are glued
to the inside of a giant ball that turns around the Earth.

The North Star is the pivot around which the ball

turns."

"That is not true at all!" the astronomer
blustered.

"Even so, I think it will help to imagine that the

stars are glued to the inside of a giant ball," the

professor said, beginning to get an idea. "We will call

this ball the celestial sphere. We can see the north

celestial pole, the point that is directly above the

Earth's North Pole. I suggest that we use the term
celestial equator for the great circle across the celestial

sphere that is above the Earth's equator." (See Figure
14-22.)

Figure 14-22 North Pole

celestial

sphere

celestial

equator

"We can measure positions along the celestial

sphere, just as we measure positions along the surface

of the Earth with latitude and longitude," the king
realized.

"We better not use the terms latitude and
longitude, or we will become confused with positions

on the Earth," Recordis warned.

The astronomer, who had more contact with

the rest of the world than the other members of the

royal court, suggested two terms that he had heard:

declination and right ascension. Declination is used
to measure the angular distance between a star and
the celestial equator. Stars on the equator have a

declination of 0, and the North Star has a declination

of approximately 90°. Declination is the celestial

equivalent of latitude. Right ascension is the celestial
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equivalent of longitude. The right ascension of a star

tells you how far you need to travel along the celestial

equator to reach the point directly south (or north) of

that star. Just as with longitude, we needed to decide
on an arbitrary starting point for right ascension. The
astronomer suggested the point that is the location of

the sun on the first day of spring. For example, to find

a star at right ascension 24° and declination 8°, you
need to travel 24° from the starting point along the

celestial equator, and then travel 8° directly north. Of
course, you cannot really travel along the celestial

sphere, but you could use these instructions to aim a

telescope at the star. (See Figure 14-23.)

star I to North Star

• (declination = 8° \
f right ascension = 24°) \

8 C /

24° _\^
celestial equator start

(right ascension == 0)

Figure 14-23

The astronomer quickly promised to measure the

positions of many bright stars and make a table

showing their right ascensions and declinations. He
even said that he could measure the right ascension

and declination of the sun, since we realized that the

sun also moved along the celestial sphere even if it was
so bright that none of the other stars were visible

during the day. Recordis then thought that the problem
was solved, but the astronomer sadly explained that

Mrs. O'Reilly was asking a different question.

"If we measure the declination of a star, then we
can subtract to find the angular distance between that

star and the North Star. That distance will not change
through the night. However, the angle between the star

and the horizon will change. That is what Mrs. O'Reilly

wants to know."

A while later Recordis became tired. He lay

down on his back on the patio, with his head pointing

north. He watched as a star passed the zenith directly

overhead and then continued moving to the west.

Recordis continued to watch the North Star, the

zenith, and the other star. He briefly fell asleep, and
then suddenly woke with a start.
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"I have been working with spherical triangles too

much," he complained. "I was having a dream where
the North Star, the zenith, and the other star formed a

spherical triangle." (See Figure 14-24. Remember that

this figure shows what you would see if you lie on
your back with your head pointing directly north.)

Figure 14-24

"Let's label the sides of this triangle to see what
they represent," Trigonometeris suggested. "Side z

represents the angular distance between the star and
the zenith. If we can calculate z, then we can find the

altitude of the object: altitude = 90° - z."

"Side d' represents the angular distance between
the North Star and the star," the professor said. "If we
know the declination (d) of the star, then d' = 90° - d."

"Side s represents the angular distance between
the North Star and the zenith," the astronomer said.

"Suppose ({> is your latitude. Then s = 90° - 6."

"I have been watching this triangle throughout

the night," the king said. "The zenith and the North
Star stay in the same place, but the star itself is always
moving. Side d' always has the same length, but the

angle H is always changing." (Note that we do not

always follow the tradition of naming an angle with the

capital form of the letter representing the opposite side,

since sometimes we can think of names that better help

us remember what the angle means.)

"I can calculate the angle H without too much
problem," the astronomer said. "I call it the hour angle

of the star. It depends on two things—the right

ascension of the star and what time it is (i.e., how
much the celestial sphere has turned)."

"That is everything we need to know," the

professor said. "We have a spherical triangle with two
known sides, and we know the angle between those
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two sides. To find the third side we use the law of

cosines:

cos z = cos s cos d' + sin s sin d' cos H

where

z = zenith angle = 90° - star's altitude

s = 90° - d>, where cj> = latitude of observer

d' = 90° - d, where d = declination of star

H = hour angle of star (see note at end of chapter)

M = direction to look to see star

(We didn't need to use angle M at the moment, but we
figured we might need it later.)

Since the cosine of an angle is equal to the sine

of its complement, we could rewrite this equation:

sin (altitude) = sin $ sin d + cos 4> cos d cos H

"That solves the problem!" Trigonometeris said.

"All the astronomer needs to do is come up with a

table showing the declination and the hour angle of the

sun at a particular time on a particular date, and then

we can use this formula to find the altitude."

We worked an example for the first day of

summer (where the sun's declination was 23°) during a

time in the late afternoon when the sun's hour angle

was 75°. If Mrs. O'Reilly built the hotel at latitude 20°,

the sun's altitude would be:

sin (altitude) = sin 20° sin 23°

+ cos 20° cos 23° cos 75°

= .3575

altitude = 20.9°

If she built the hotel at latitude 50°:

sin (altitude) = sin 50° sin 23°

+ cos 50° cos 23° cos 75°

= .4525

altitude = 26.9°

"This is interesting," the astronomer said.

"During the late afternoon during northern hemisphere
summer, the sun seems to be at a higher altitude if you
are farther north. At noon, of course, the sun would be
at a lower altitude if you were farther north." The
astronomer promised to do the necessary work to find

the altitude of the sun at other times. (See Exercise 33.)

"This formula works for all other stars as well," the

astronomer said. "This will help me very much in my
work."
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* The Lost Assistant

at the Unknown
Latitude

We were interrupted by a distress radio call. "It's

my assistant!" the astronomer cried. "He has just

radioed me that he is on a long sea voyage and he has

become lost! He does not know his latitude!"

"Can he see any stars?" the professor asked.

The astronomer spoke into the radio, and the

assistant reported that he could.

"No problem," the professor said. "As long as

you know the altitude and direction of a star of known
declination, we can solve this spherical triangle for the

unknown part to find the latitude. (See Figure 14-24.)

This time we know d', z, and M, and we are trying to

solve for s."

"This will be more difficult, though,"
Trigonometeris said worriedly. "We cannot use the law
of cosines, because the angle that we know is not

between the two sides that we know."

"We can solve for angle H, using the law of

sines," the king said.

sin d'

sin M

sin H =

sin z

sin H
sin z sin M

sin d'

"Now that we know two angles in the triangle,

we can solve for the third angle, can't we?"
Trigonometeris asked.

"For plane triangles the sum of the angles is

180°, but that is not true for spherical triangles,"

Recordis reminded him. "That is what started all of

this trouble in the first place."

This proved to be another difficult problem. We
continued working on it sleeplessly throughout the

night. Recordis decided to write down everything that

he did know. He wrote a formula and then double-

checked it to make sure that it worked:

Law of Cosines

cos C = -cos A cos B + sin A sin B cos c

"There is no minus sign in the law of cosines,"

the professor said.

"I needed to put the minus sign to make the

formula work," Recordis said. (See Exercise 40.)

The professor looked more closely at the formula
and realized that the sleepy record keeper had written

it backward. "You forgot that we use capital letters to

stand for angles, and lower case letters to represent the

sides!"
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The king took an interest in the discussion. "It

would be very helpful if this formula would work, even
if it was discovered by mistake," he said. We checked a

few more examples and found that the formula did

work. (Later we were able to prove the formula to be

true in general. See Exercise 42.) We called this the law
of cosines for angles, and the previous version of the

formula we called the law of cosines for sides.

^—

Formulas for Spherical Triangles

Law of Cosines for Sides:

cos c = cos a cos b + sin a sin b cos C

Law of Cosines for Angles:

cos C = -cos A cos B + sin A sin B cos c

***)

^zzzd

tUjZOeX&Z.)
The professor said we should investigate the

general case of a spherical triangle where a, A, b, and B
were known, and c and C were unknown. (See Figure

14-14.)

"The law of cosines for sides by itself won't help

us find cos c, since cos C is unknown. Likewise, the

law of cosines for angles by itself won't help to find

cos C, since cos c is unknown," Recordis reasoned.

"Maybe we can put the two together."

cos c = cos a cos b + sin a sin b

x (-cos A cos B + sin A sin B cos c)

cos c = cos a cos b - sin a sin b cos A cos B

+ sin a sin b sin A sin B cos c

cos c(l - sin a sin b sin A sin B)

= cos a cos b - sin a sin b cos A cos B

cos a cos b - sin a sin b cos A cos B
cos c =

sin a sin b sin A sin B

The astronomer's hapless assistant had radioed

us that he had observed the star Arcturus to have
an altitude of 52.33° (so the zenith angle was
z = 90 - 52.33 = 37.67°, and its direction was
M = 97.02° west of north.) The astronomer performed
some measurements to determine that the

declination of Arcturus was 19.33°, giving us
d' = 90 - 19.33 = 70.67°. (See Figure 14-25.)
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Figure 14-25
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"First, we use the law of sines to calculate angle
H," the professor said.

sin d' sin z

sin M sin H

H = sin 37.7° x sin 97.02°
sin

sin 70.67
c

= .6432

"This brings us to an annoying little problem,"
Trigonometeris said. "H could be either 40° or 140°."

"We had the same problem with plane triangles

when we knew two sides and one angle other than the

one between the two known sides," the professor said.

"We called that the ambiguous case, and we found we
needed additional information to identify the triangle."

(See Chapter 7.)

"There is a big difference between H = 40° and
H = 140°!" the astronomer said. "I am sure my
assistant is bright enough to tell the difference between
these two cases without even having to measure H."
The assistant radioed back that H could not be 140°, so

it must be 40°. Now we identified the correct parts to

use in the formula from page 235:
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COS s =
cos d' cos z - sin d' sin z cos H cos M

1 - sin d' sin z sin H sin M
cos 70.67° cos 37.67° - sin 70.67° x sin 37.67° cos 40° cos 97.02°

1 - sin 70.67° sin 37.67° sin 40° sin 97.02°

(.3310 x .7915) - [.9436 x .6111 x .7660 x (-.1222)]

1 - (.9436 x .6111 x .6428 x .9925]

= .500

= 60°

Therefore, we could radio to the assistant that his

latitude was 90 - 60 = 30°, and we were finally able

to get some sleep.

The next day the professor put together a

summary on how to solve for the unknown parts of a

spherical triangle. We had to do a little more work to

describe all of the possibilities:

Solving Spherical Triangles
1. You must know three parts of a spherical

triangle to solve for the other three parts. As
is traditional, we use capital letters (A, B, and
C) to represent the angles, and lower case

letters [a, b, and c) to represent the sides,

where side a is opposite angle A, and so on.

2. If you know the three angles, then you
may solve for the sides by using the law of

cosines for angles:

cos c
cos C + cos A cos B

sin A sin B

3. If you know the length of two sides (a and
b) and the size of the angle between these two
sides (C), then you can solve for the third side

(c) by using the law of cosines for sides:

cos c = cos a cos b + sin a sin b cos C

4. If you know the length of one side (c) and
the two angles next to that side (A and B),

then use the law of cosines for angles:

cos C = -cos A cos B + sin A sin B cos c

5. If you know the length of the three sides,

then use the law of cosines for sides:

cos C = cos c - cos a cos b

sin a sin b

6. Suppose you know two sides (a and b)

and the size of one angle other than the one
between those two sides (for example,

* Solving Spherical
Triangles
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Notes to

CHAPTER 14

suppose you know angle A). Then use the law
of sines to find angle B:

sin B = sin b sin A
sin a

This is the ambiguous case. In general,

there will be two possible values of B, one
greater than 90° and one less than 90°. You
will need additional information to determine
which possibility is correct for your situation.

Once you know the value of B, find side c

from this formula, which comes from
combining the law of cosines for sides with
the law of cosines for angles:

cos c
cos a cos b - sin a sin b cos A cos B

1 - sin a sin b sin A sin B

Then use the law of sines to find angle C.

7. Suppose you know two angles (A and B)

and a side other than the one between those

two angles (for example, suppose you know
side a). Then use the law of sines to find side

b:

. , sin B sin a
sin b = ;

—-

sin A

(However, this is another ambiguous case; in

general there are two possible values of b.)

Once a, b, A, and B are known, use the

formula from rule 6.

There are some other formulas that you may use
to solve for the parts of a spherical triangle. (See

Exercises 43-46.)

Note that these rules are similar to the rules

given for plane triangles in Chapter 7. Plane triangles

have no rule corresponding to rule 2, since knowing
the three angles of a plane triangle does not give you
any information about its size. They also have no rule

corresponding to rule 7, since it is easy to calculate the

third angle of a plane triangle if you know the other

two angles.
* * *

After that, every time we saw the stars we
thought with amazement how trigonometry had been
the crucial discovery that allowed us to predict their

positions.

• It is customary to measure latitude, longitude, and
declination in terms of degrees/minutes/seconds, as

described on page 11. However, for calculation

purposes it is more convenient to use decimal
degrees, as we have done in this chapter.

238 Spherical Trigonometry



The starting point for longitude measurements is

totally arbitrary. However, you must be consistent:

Once you have chosen a starting point, you need to

use the same starting point all the time. By custom,
the meridian that passes through the Greenwich
Observatory at London. England, has zero longitude.

There still is one more question: In which direction

should the longitude be measured? The formulas
given on page 215 work if longitude is measured to

the east; so, for example. Paris has longitude 2°,

Tokyo 140°, Los Angeles 242°, New York 286°, and
Dublin 354°. Mathematically this is most convenient,

because then the y axis points to 90° longitude.

However, according to custom, only longitudes from
to 180° are measured in this direction, with the

designation east included: Paris is at 2° east and
Tokyo is at 140° east. Longitudes in the other half of

the Earth are customarily given as degrees west of

Greenwich. For example, Dublin is 6° west, New
York is 74° west, and Los Angeles is 118° west. A
westward-measured longitude (W) can be converted

into an eastward-measured longitude (E) from the

formula: E = 360° - W.

This chapter has been written from the viewpoint of

a northern hemisphere observer, since most of the

people on Earth happen to live in the northern

hemisphere. (The exact location of Carmorra itself

remains a mystery). The same principles apply to

southern hemisphere observers. References to the

North Pole should be changed to read "South Pole,"

and references to the North Star should be changed
to read "south celestial pole," which is a location on
the celestial sphere although it is not marked by a

bright star. The formulas given in the chapter work if

latitudes and declinations north of the equator are

treated as positive numbers and latitudes and
declinations south of the equator are treated as

negative numbers.

The hour angle of an object can be found from this

formula: H = t - RA, where RA is the right

ascension of the object, and t is the local sidereal

time. Local sidereal time measures how much the

celestial sphere has turned. Suppose that the stars

with right ascension zero are currently lined up with
the circle that passes from your zenith to the point

on your horizon directly south. (Then these stars are

said to be on the meridian.) The time when this

occurs is called sidereal time zero. About one hour
later, the entire celestial sphere has rotated by 15° to

the west, and stars with right ascension 15° are now
on the meridian. This time is called sidereal time
15°. At this time, the stars at right ascension zero

have an hour angle of 15 - = 15°. The celestial
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sphere continues to rotate throughout the night

(and day), with the local sidereal time constantly

increasing until it returns to zero when the stars

with right ascension zero reappear on the meridian.

For our purposes, it is convenient to measure
right ascension and sidereal time in degrees.

However, customarily these are measured in units of

hours, where 24 hours = one complete circle =
360°, or 1 hour = 1/24 of a complete circle = 15°.

This type of hour is slightly different than the hour
we commonly use to represent time, since the

celestial sphere makes one complete rotation in 23

hours 56 minutes, measured in common (solar) hours.

Figure 14-26 shows the view if you were high

above the North Pole looking down. Suppose the

celestial equator had numbers painted along it,

giving the right ascension in hours. For the observer

shown, the figure shows sidereal time 165° =11
hours. (Note that the sidereal time is the same at all

points of the same longitude, but it is different at

points with other longitudes.) At this time, for

example, stars with right ascension 120° = 8 hours
have an hour angle of 165 - 120 = 45° = 3 hours,

and stars with right ascension 300° = 20 hours have
an hour angle of 165 - 300 = -135° = 225° = -9
hours = 15 hours. Note that negative hour angles

can be converted to positive numbers by adding 360°

or 24 hours. The diagram also indicates the location

of a few constellations that are located along the

celestial equator.

Figure 14-26 apparent rotation of celestial sphere
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Of course, the celestial sphere does not really

rotate at all; its apparent rotation occurs because of

the turning of the Earth.

Figure 14-27 contains a chart allowing you to

find the approximate local sidereal time at night by
finding the date along the left side of the chart, then

finding the local standard time at the top of the

chart, and reading the sideral time (in hours) from
the diagonal lines.

Figure 14-27

• Navigators can use observations of the sun or stars to

determine their latitude, as described here. However,
you cannot determine longitude by observing stars

unless you also have a clock set to a reference time

zone that allows you to determine how much the

celestial sphere has rotated. Celestial navigation

methods in practical use typically involve observing

the altitude of two or more stars; see a book on
navigation for more details.

• The azimuth of a star tells you in which direction to

look in order to see it. It is customary to measure
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Exercises

azimuth by defining north to be 0, east to be 90°,

south 180°, and west 270°. The angle M in the

triangle in Figure 14-24 gives the azimuth if the

object is in the eastern half of the sky; if the object is

in the western half of the sky, as shown in this

example, then the azimuth equals 360° - M.

For Exercises 1 to 15, solve for the missing parts

of the spherical triangles in Figure 14-28, if possible. In

each case the angles are measured in degrees and the

sides are measured in radians. (Write a computer
program to help if you wish.)

Figure 14-28
1. s

.6 .8214/1 .6

3.

.05 /\ .04

1.4
90= 90=

L .

53.15=

4. A 30.45= 5 - A 6. A

A- A 1.5 /\ 1.5

yo- 40"
.7 .6093

7 60 c

8. .^^ 9. 80=.

1.2

3467=
.7056

2969;
69.5° 54.7=

1.42

10. 90=A\ "• v/ 12 28=/1

90= C ^90= ^ / <r15
.38

67.25°

13

A* 14
942°

A-
15

»A*„ A / .117/ ^>
12

^^ \
36=^-

.2
20° .84°

16. Consider the two spherical right triangles

provided by the astronomer in Figures 14-1 and 14-2.

Verify that these triangles satisfy the ten equations for

spherical right triangles.

17. Calculate the distance between the origin and

the point with coordinates x = r cos 6 cos 0,

y = r cos 4) sin 8, z = r sin 6.

18. Suppose you are given the x, y, and z coordinates

of a point on the surface of the Earth. Find formulas for

the latitude and longitude.

For Exercises 19 to 23, find the rectangular
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coordinates for the points with given longitude and
latitude, (r = 6375)

Latitude Longitude

19.

20. 90

21. 90

22. 30 90

23. 270

For Exercises 24 to 28, find the latitude and
longitude of the points with the given rectangular

coordinates.

24. x = -1888.3 y = -5188 z = -3187.5

25. x = 553.5 y = 3139.1 z = -5520.9

26. x = -2441.8 y

27. x = -4229.3 y

4229.3 z 4097.8

2441.8 z = 4097.8

28. 1090.2 y = 1888.3 z = 5990.5

29. Suppose you travel between two points at the

same latitude (4>) separated by D in longitude, (a) Find
a formula for the distance if you travel along the great

circle course between the two points, (b) Find a

formula for the distance if you travel along a course at

a constant latitude, (c) Consider the course of the

hunter shown in Figure 14-4. Is the second leg of his

journey a great circle course or a constant latitude

course? (d) Suppose you are travelling between Chicago
and Rome, both at latitude 42° and separated by 100° of

longitude. Calculate the distance along both the great

circle course and the constant latitude course.

30. In the spherical triangle in Figure 14-29, suppose
Dl S 2 , and s a are all known. Describe a procedure to

calculate h.

Figure 14-29
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31. Write a program that reads in the longitude and
latitude of two points on the surface of the Earth,

calculates the distance between them along the great

circle course, the initial angle that the course makes
with the meridian of point 1, and then calculates the

latitudes and longitudes of several points along the

course. Use the result from Exercise 30 for the last part.

Note that planes flying from cities in the United States

to cities in Europe often fly over the Arctic Ocean,
because this allows them to take advantage of the

shortest possible course.

32. Calculate the distance between each of these pairs

of cities along the great circle course. (Use r = 6375
km for the radius of the Earth. Use the program from
the previous exercise.)

Latitude Longitude

London 51°N 0°

New York 41°N 74°W = 286°E

Los Angeles 34°N 118°W = 242°E

Honolulu 21°N 158°W = 202°E

Anchorage 61°N 150°W = 210°E

Tokyo 36°N 140°E

Sydney 34°S 151°E

Paris 49°N 2°E

D 33. The declination of the sun (in degrees) on a

particular date n is approximately

d = -23.45 cos [360(n + 10)/365]°

(where n = 1 on January 1, n = 2 on January 2, and so

on until n = 365 on December 31. Ignore leap years

and daylight savings time.) The hour angle of the sun
at a particular time is approximately

H = 360(T - 12)/24°

where T is the time measured by a 24 hour clock

(0 = midnight, 12 = noon). Write a program that reads

in the observer's latitude, and then prints a table giving

the altitude angle of the sun for 6am, 9am, 12noon,

3pm, and 6pm for each day of the year.

34. This formula gives the altitude of a star:

sin (altitude) = sin <t> sin d + cos 4> cos d cos (t - RA)

where <t>
= observer's latitude, d = declination of

object, RA = right ascension of object, and t = local

sidereal time. (See page 239). For given values of <j>, RA,
and d, find a formula for the values of t when the
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altitude of the star is zero (in other words, it is even
with the horizon).

35. The time between the rising and setting of a star

can be approximated by this formula:

T = 2 x 12/ir [it - arccos (tan 4> tan d)]

where 4> is the latitude of the observer and d is the

declination of the star. (All angles are measured in

radians. This formula follows from the result of the

previous exercise.)

(a) What happens if c|> = 0?

(b) What happens if d = 0?

(c) What happens if cf> and d have the same sign?

(d) What happens if 4> and d have opposite signs?

(e) What happens if <J> + d = tt/2?

(f) What happens if it > (<J> + d) > tt/2? (Assume <J>

and d are both positive).

(g) What happens if d =
<J>
— -tt/2? (Assume <$> > 0.)

36. (a) Write a program that reads in the observer's

latitude, the local sidereal time, the right ascension and
declination of a star, and then calculates the altitude of

that star.

(b) For an observer at latitude 40° at sidereal time 10
hours = 150° (corresponding to late evening in March),

find the altitude of these stars:

Right ascension Declination

Sirius (brightest star) 6h 44m = 101.0° -16.7°

Alpha Centauri

(closest star)

14h 38m = 219.5° -60.7°

Vega 18h 36m = 279.0° 38.8°

Rigel (in Orion) 5h 13m = 78.3° -8.2°

Alioth (in Big

Dipper)

12h 53m = 193.3° 56.1°

North Star (Polaris) 2h 3m = 30.8° 89.1°

(Note that the declination of the North Star is not

exactly 90°.)

37. Suppose you have observed the star Vega to have
an altitude of 80° and the direction angle is M = 70°.

What is your latitude? (You also know that the hour
angle H is an acute angle.)

38. Derive the formula cos c = ctn A ctn B for

spherical right triangles. (You may use any of the other
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formulas for spherical right triangles given in the box
on page 222.)

39. For small values of x (measured in radians), these

equations are approximately true: sin x = x; tan x = x;

cos x = 1 — x 2
/2. Rewrite the three sides formula and

the formulas for sin A, cos A, and tan A for spherical

right triangles for the case where the three sides a, b,

and c are all small.

40. Verify that the law of cosines for angles works for

the spherical triangle given in Figure 14-20.

41. Consider this spherical triangle:

A = 34°, B = 103.156°, C = 61.497°,

a = 32.66°, b = 70°, c = 58°

(In this case the sides have been expressed in degrees.)

Suppose you tried to form a new spherical triangle

whose angles were equal in measure to the sides of the

original triangle, and whose sides were equal in

measure to the angles of the original triangle. That
would not work, but you can form a spherical triangle

whose sides are equal to 180° minus the angles of the

original triangle, and whose angles are equal to 180°

minus the sides of the original triangle. Such a triangle

is called the polar triangle of the original triangle.

(a) Calculate the sides and angles for the polar

triangle for the triangle given above. (Call the sides a',

b', and c'; and call the angles A', B', and C.)

(b) Verify that the triangle from part (a) satisfies the

law of sines for spherical triangles and the law of

cosines for sides.

(c) What is the polar triangle to the polar triangle

from part (a)?

42. Prove the law of cosines for angles. Assume that

the law of cosines for sides has already been proven,

and then refer to the polar triangle.

*43. Start with this equation:

sin b sin c + cos b cos c - cos a
1 - cos A =

sin b sin c

(which comes from the law of cosines for sides) and
then show that this equation is true:

/sin (s - b) sin (s - c)
sin A/2) = a/ . / .

"

V sin b sin c

where s = (a + b + c)/2. This is called a half-angle

formula.

r

44. From the equation in the previous exercise it is

possible to derive this formula:
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/sin s sin (s - a]
cos (A/2) = -

sin b sin c

Find an expression for

sin (A/2) cos (B/2) - sin (B/2) cos (A/2)

and then show that this equation is true:

sin [(A - B)/2] = sin [(a - b)/2]

cos (C/2) sin (c/2)

This equation, and some similar ones, are known as

Gauss' or Delambre's analogies.

'45. Use the equation from the previous exercise,

along with this equation:

sin [(a + b)/2]

sin (c/2)

sin [(a - b)/2]

ctn (C/2) sin [(q + b)/2]

This equation, and similar ones, are known as

Napier's analogies.

cos [(A - B)/2]

sin (C/2)

derive this equati on:

tan [(A - B)/2]
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15
Polynomial

Approximation
for sin x and cos x

*The Quest for the
Elusive Algebraic
Expression

Recordis decided that Trigonometeris was very

good company during the occasional moments when he
was not talking about trigonometry. However, Recordis

still was bothered that there was no algebraic

expression for the trigonometric functions. "I would
sleep much more easily at night if I knew how to

calculate sin x without having to look in the table or

draw a triangle," he said. "Algebra is a much more
manageable subject— it doesn't rely on mysterious

functions."

Trigonometeris just laughed. "You will never

find an algebraic representation for trigonometric

functions! They are too special."

Recordis was determined to try. He made a list

of all the complicated algebraic expressions he could

think of, but none of them resembled the trigonometric

functions. Finally he turned to his favorite type of

expressions, polynomials.
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"There has to be a way to find a polynomial that

represents sin x," Recordis claimed. He made a list of

properties of polynomials.

A second-degree polynomial curve has one change of

direction.

A third-degree polynomial curve can have two changes
of direction.

A fourth-degree polynomial curve can have three

changes of direction.

A fifth-degree polynomial curve can have four changes
of direction.

"But the graph of the function y = sin x changes
directions an infinite number of times!" Trigonometeris
reminded him. "You will never find a polynomial to

represent it!"

"I'll use a polynomial of infinite degree if I have
to!" Recordis cried.

^^^^^^^^™^
*The

"There is no such thing!" Trigonometeris said.
Infinitp-npQrpp

However, the professor had been listening to the Polynomial
conversation and suddenly became interested. She mSSSmmSmmmmmmm
wrote what she thought an infinite-degree polynomial
must look like:

do + a ax + a 2x
2 + a 3x

3 + a4x
4 + a 5x

5 + •••

"That doesn't work!" Trigonometeris said. "If

you add together an infinite number of terms, then the

sum will be infinity. We know that the value of sin x is

always less than 1."

"But the sum of an infinite number of terms does
not always have to be infinity," the professor told him.
"When we were studying algebra we found that the

sum of an infinite geometric series can be a finite

number. For example,

1 + z + z
2

-I- z
3 + z

4 + z
5 + •••

"is equal to

"if |z| < 1."

"This is an old trick, but it just might work!"
Recordis said. "I bet sin x really can be represented by
an infinite polynomial! And I bet that for most
practical purposes we can find an approximate value

for sin x just by taking the first few terms of the infinite

polynomial

sin x = a + a xx + a 2x
2 + a 3x

3 + a4x
4

+ a 5x
5 + a6x

6
-(- a 7x

7
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"Now all we have to do is find a formula to tell

us what the coefficients should be." Recordis thought a

moment. "In fact, I just thought of one clue. If x = 0,

then we can ignore all the terms with an x and the

formula says sin x = a . Since we know that sin =
0, it follows that a = 0. Therefore,

sin x = cl-lX + a 2x
2 + a 3x

3 + a 4x
4

+ a 5x
5 + a 6x

6 + a 7x
7

The professor stared at this expression and came
up with a shrewd idea. "We know that the sine

function satisfies one very important property:

sin (— x) = -sin x

Suppose we have any polynomial that contains only
odd powers of x; for example, f[x) - 10x 7 + 7x 5 - x3

+ 23.4x. This polynomial will satisfy the same
property:

f[-x) = -f[x)

However, any polynomial that contains an even power
of x, such as g(x) = 12x3 + 4x4

, will not satisfy the

property

g(-x) = -g(x)

Therefore, I suggest that sin x must be represented by
a polynomial that contains only odd powers of x:

sin x = a ax + a 3x
3 + a 5x

5 + a 7x
7

Trigonometeris still thought the others were
trying to insult the trigonometric functions by
representing them as polynomials, but Recordis and the

professor enthusiastically set about finding formulas for

di, a 3 , a 5 , and a 7 . Since they had four unknowns, they

knew they needed four equations to solve for them.
Since the equation should be true for any value of x,

they picked four values of x: x = 1, x = 0.5, x = 1.5,

and x = 2. They used the values sin 1 = 0.84147,

sin 0.5 = 0.47943, sin 1.5 = 0.99749, and sin 2 =

0.90930. These values gave them four equations:

0.84147 a a + a 3 + a 5 + a 7

0.47943 = 0.5a! + 0.125a 3 + 0.03125a 5 + 0.0078125a 7

0.99749 = 1.5a! + 3.375a 3 + 7.59375a 5 + 17.08593a 7

0.90930 = 2^ + 8a 3 + 32a 5 + 128a-

"That is a regular four-equation linear system
with four unknowns!" the professor said

enthusiastically. Recordis was not quite so enthusiastic,

because he knew that solving this type of system was a

lot of hard work. However, he soon came up with some
results: a x = 1, a 3 = -.16667 = -& a 5 = 0.0082986
= tIo, and a 7 = -0.0001798. Therefore,
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xa
x°

sin x = x H •••

6 120

"Do you see any pattern that might tell us what
the rest of the coefficients are?" the professor asked.

Recordis searched through pages of tables in his

notebooks. Suddenly he found something interesting

under the heading "Factorial Function."

The factorial of a whole number n (symbolized
with an exclamation point: n!) is equal to

n! = n(n - 1) (n - 2) (n - 3) •• 5 x 4 x 3 x 2 x 1

For example,
1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

"Look!" Recordis said, "6 is 3!, and 120 is 5!. I

bet the next term will be -x 7
/7!, and I bet the term

after that will be x9
/9!, and then -x^/ll!, and so on."

We tried many more examples, and this formula

seemed to work each time. It still took a lot of

convincing before Trigonometeris was willing to accept

this result, but he finally began to appreciate the value
of an algebraic formula for calculating the sine

function. We also found a similar formula for the

cosine function. Since cos ( — x) = cos x, the professor

guessed that the polynomial representing cos x must
contain only even powers of x. Finally, after much
investigation, the king was able to decree:

— 8g«g«f-

Series Representations for sin x and cos x

sin x = x

cos x = 1

2Z

X

2!

x

5!

,4X

7 9X X

7!
+

9!

x^ x^

6!
+

8!

*!1

11!

10! _^^

*The Factorial

Function

* Series
Representation of
sin x and cos x

^////

(Note that the signs for the terms in each series

alternate between plus and minus. Also, be sure to use

radian measure for x.)

(These series are examples of a more general type
of series called a Taylor series. Derivations of Taylor
series require the calculus.)

)
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Exercises
1. How can you approximate sin x when x is small?

2. How can you approximate cos x when x is small?

3. Make a table that shows the series approximation
for sin x after two terms of the series, three terms, four

terms, and five terms for these values of x: x = 0.1; x
= 1; x = ir/2; x = ir/6, and x = tt/4.

4. Here is a series expression for arctan x:

x 3 x 5 x 7 x9

arctan x = x 1- \- •••

3 5 7 9

Use this expression to derive a series expression for it.
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Answers to

Exercises

Chapter 1

1. Use the Pythagorean theorem: V5 2 - 3
2 = 4

2. 10 5. V2 7. 50

3. 5
6 v^ 8. 0.52!

4. 25

9. Two complementary angles add to 90°. 90° - 45° = 45°.

10. 60° 12. 15° 14. 67.5°

11. 30
c

13.
C

15. The sum of the angles in any triangle is 180°.

180° - (45° + 45°) = 90°

16. 60° 20. 70° 23. 45
c

17. 60° 21. 40° 24. 20

18. 160° 22. 50° 25. 70

19. 10°

26. 360° (A quadrilateral can be broken up into two
triangles.)

27. 540° 28. [n - 2)180
c

29. Consider triangle ABC. (See Figure A-l.) Draw a

line parallel to side BC that passes through point A.

Then, angle 4 + angle 3 + angle 5 = 180° because we
have drawn a straight line. Also, angle 1 = angle 4 and
angle 2 = angle 5, because these pairs of angles are

both alternate interior angles between two parallel

lines. (See a book on geometry.) Then, by substitution:

angle 1 + angle 2 + angle 3 = 180°.

30. Consider a triangle ABC. (See Figure A-2.) Draw a

line perpendicular to side BC that passes through point

A. Then, triangle BAD is congruent to triangle CAD
because (1) angle 2 = angle 3 (they are both right

angles); (2) side AD in triangle BAD equals side AD in

triangle CAD (they are, in fact, the same side); and

(3) angle 1 = angle 4 (because it is given that this is an

isosceles triangle). Then, the length of side BA equals

the length of CA because they are corresponding sides

in two congruent triangles.

Figure A-l

Figure A-2
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31. 16° 30 minutes

32. 22° 20 minutes

33. 8 seconds

35. 12.25°

36. 34.83°

37. 0.0011

34. 12 minutes 7.2 seconds 38. 5.235
c

= 1.1 x 10

Chapter 2

Figure A-3 Angle of Adjacent Opposite
interest side side Hypotenuse

1. 45° 16 16 16V2

2. 45° 2 2 V8
" 3. 45° 1 1 V2

4. 40° 10 8.39 13.05

yv r 5.

6.

40°

40°

19.66

11.11

16.5

9.32

25.67
1

S*»" from jngu A
14.5

Oppos.it y

Ad|«c«nl i
7. 40° 20 16.782 26.11

S«tn from tngi* B

»Cl»c»nl x
8. 10° 16.54 2.92 16.80

OpDOJil* 1

9.

10.

10°

10°

0.1750

100

0.0309

17.633

0.1777

101.54

11. 10° 567.13 100 575.88

12. (See Figure

A-3.)

Chapter 3

2. Form a right triangle with two 45° angles, with two
legs of length 1. Then the hypotenuse has length V2.
From this information we can calculate sin 45°, cos 45°,

and tan 45°.

For a 30-60-90 triangle, if the shortest leg has length

1 then the longest leg has length V3 and the hypotenuse
has length 2. From this information we can calculate the

values of the trigonometric functions for 30 and 60°.

Here is the table you should memorize:

A sin A cos A tan A

30° \ V3/2 1/V3

45° 1/V2 1/V2 1

60° V3/2 h V3
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3. sin A = (opposite side)/hypotenuse and cos A =

(adjacent side)/hypotenuse. Therefore:

sin A _ (opposite side)/hypotenuse

cos A (adjacent side)/hypotenuse
= tan A

sin A cos A tan A

4. 10° 0.17365 0.98481 0.17633

5. 15° 0.25882 0.96593 0.26795

6. 33.4° 0.55048 0.83485 0.65938

7. 76.6° 0.97278 0.23175 4.19756

8. 16.4° 0.28234 0.95931 0.29432

9. 45° 0.70711 0.70711 1

10. 12° 0.20791 0.97815 0.21256

11. See Figure A-4.

12. Since sin A = cos (90° - A), we could find the

sines of angles greater than 45° by looking at the

cosines of their complements. For example, sin 75° =
cos (90° - 75°) = cos 15°, so we could find the value

of sin 75° by looking in the table for cos 15°. Suppose
we needed to find the tangent of an angle greater than
45°. Then we can do this:

tan A = sin A _ cos (90° - A) _ 1

cos A "
sin (90° - A) "

tan (90° - A)

For example, to find tan 75°, we could calculate

1/tan (90° - 15°) = 1/tan 15° = 1/0.26795 = 3.7320.

Angle of

interest

Adjacent
side

Opposite
side Hypotenuse

13. 30° 50

14. 30° 48

15. 30° 9V3

16. 60° 12

17. 60° 8V3

18. 60° J

19. 10° 16.34

20. 10° 20.64

21. 35° 12.98

22. 42° 7.3

23. 47.5° 10

24. 58.4° 16.51

50/V3

16V3

9

12V3

24

V3/2

2.88

3.64

9.09

6.57

10.913

26.84

100/V3

32\/3

18

24

16V3

1

16.59

20.96

15.846

9.82

14.80

31.508

Figure A-4

e - v a

eo» (W - >») = nn A
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Figure A-5

29. 0.707

30. 0.583

31. 0.340

32. See Figure A-5.

— y = sin x

sin C ~ h = sin A +

33. 36.4

34. 274.7

35. 54.5

36. 519.6

37. 8.0

38. 3359

39. 6.3

40. 1389

41. 1.0

42. 45.8

43. 1513

B x

C -
—

I (sin B - sin A)

44. 56.86

45. d = s/[2 tan (A/2)]

46. 60 miles

47. 8000 feet

48. 384,000 kilometers

49. 384,000 kilometers

50. 93 million miles

51. 800 million miles

52. 2.3 x 10
15 miles

53. 2.2 million light years

54. t = h(tan A/tan B - 1)

55. Let x be the distance from the base of the cliff to

the first point. Then h/x = tan A^ and h/(x + d) -

tan A 2 . From these equations we can derive

d tan A-l tan A 2
n = —

tan Ai - tan A 2

For Exercises 56 to 61, use the formula from
Exercise 55 for the top and bottom of the tower.

56. 5.7 59. 18.2

57. 4.4 60. 267

58. 20.7 61. 4.3

62. Set up a right triangle with a 40° angle, an
adjacent side of length 1, and an opposite side of

length 0.8391.
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63. Set up a right triangle with a 10° angle, a

hypotenuse of 1, and an opposite side of length 0.1736.

64. Set up the appropriate right triangle, and then
look at matters from the point of view of the other
angle.

Chapter 4

1. 2.59 north; 9.66 east

2. 17 south; 29.44 east

3. 1.07 north; 4.88 west

4. 0.999 north; 0.052 east

5. 33.55 south; 49.74 west

6. 58.47 north; 191.26 west

7. 56.57 north; 56.57 west

8. Let w be the speed of the wind and v be the
airspeed of the plane. Then tan A = w/v, where A is

the angle by which the plane is off course. Therefore:
w = v tan A. 50 tan 45 = 50.

9. 36.4

10. 178.3

11. 52.5

15. 7.82.

16. 125

17. 349

18. 274

19. 177

12. 30.1

13. 17.0

14. 83.6

7.82. Use the formula d = (v /g)(2 sin A cos A).

20. 1.28

21. 1.33

22. 1.73

23. 0.56

24. 1.43. (This situation is the same as if the book
were dropped freely.)

25. The book will not begin to slide if the table is not

tilted at all.

26. We can calculate the downfield component (d) of

the player's motion from the formula d = v cos A,

where A is the angle that the player's course makes
with the sideline and v is his total speed (which is 7

yards per second in this case). The time that it takes to

run 10 yards will be 10/d.

Straight downfield: 10/(7 cos 0°) = 1.429

10° 1.451 40° 1.865

20° 1.520 50° 2.222

30° 1.650 60° 2.857
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27.

28.

29.

30.

31.

32.

33.

34.

Use the formula sin A 2 = n a sin Ai/n 2 :

(l)(sin 41.68
c

1.33

sin A 2 = A =

= 0.5 A 2 = 30°

sin A2 = 0.7071

sin A 2 = 0.2072

sin A 2 = 0.3178

sin A 2 = 0.3759

sin A 2 = 0.5317

sin A 2 = 0.5760

A 2 = 45
c

A 2 = 12
c

A 2 = 19
c

A = 22°

A = 32°

A = 35°

35. sin Ai = n 2 sin A 2 /n a
= 1.33 sin 40° =

0.8549 A t
= 59°

36. In this case sin A t
= 1, so A a = 90.

37. If you tried to calculate sin A a from Snell's law,

you would get a value greater than 1, which is

impossible. In this case no light will be refracted from
the water to the air. Instead, all the light will be
reflected back into the water.

38. We know n a sin A a
= n 2 sin A 2 . In this case n 2 is

the index of refraction for the glass. We know n! = l,

so

n 2 =
sin Aj

sin A 2

sin 20°

sin 12.34°
= 1.6

Chapter 5

1. 60°

2. 30°

3. 45°

4. 36°

5. 18°

6. 15°

7. 72°

8. 57.30°

9. 114.59°

10. 171.89°

11. 229.18°

12. 286.48°

13. 94.25°

14. 171.17'

15. 208.84°

16. 113.85°

17. tt/6

18. it/4

19. 3tt/2

20. 1.745

21. 3.770

22. 0.079

23. 0.0174

24. 0.995

25. 1.012

26. 1.047

27. 1.396

28. 1.484

29. 0.00029

30. 4.85 x 10~ 6

31. 0.0908

32.

33.

34. 1.6tt

35.

36. 3tt/2

37. tt/2

38. 0.45-rr

39. 0.45-rr

40. tt/2
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A in degrees A in radians sin A

41. 4° 0.06981 0.06976

42. 3.5° 0.06109 0.06105

43. 3° 0.05236 0.05234

44. 2.5° 0.04363 0.04362

45. 2° 0.034907 0.034899

46. 1.5° 0.026180 0.026177

47. 1° 0.017453 0.017452

48. 0.5° 0.0087266 0.0087265

49. 0.2° 0.0034907 0.0034907

50. 0.1° 0.0017453 0.0017453

51. If A is in radians, then sin A is approximately
equal to A for small values of A.

A in degrees sin A cos A tan A

52. 180° -1

53. 270° -1 Undefined

54. 135° 1/V2 -1/V2 -1

55. 225° -I/V2 -1/V2 1

56. 315° -1/V2 1/V2 -1

57. 120° V3/2 -\ -V3
58. 150° 1

2 -V3/2 -1/V3

59. 210° 2 -V3/2 1/V3

60. 240° -V3/2 -\ V3

61. 300° -V3/2 \ -V3

62. 330° 2 V3/2 -1/V3

63. 57.30° 0.8415 0.5403 1.5574

64. 114.59° 0.9093 -0.4161 -2.1850

65. 171.89° 0.1411 -0.9900 -0.1425

66. 229.18° -0.7568 -0.6536 1.1578

67. 286.48° -0.9589 0.2837 -3.3805

68. 343.77° -0.2794 0.9602 -0.2910

69. 401.07° 0.6570 0.7539 0.8714
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70. 3tt/4 77. 5tt/6

71. 11 it/6 78. 5ir/3

72. 3tt/2 79. 3tt/4

73. 4tt/3 80. 7tt/6

74. tt/6 81. d = 2r sin (s/2r)

75. 5tt/4 82. 5.64 meters per second

76. tt/2 83. v = rw

84. First, calculate the circumference of the orbit:

C = 2irr. Then calculate the velocity: v = C/p, where
p is the period. Then calculate the angular velocity:

(u = v/r.

Mercury: v = 4.14 million kilometers per day; <o =
0.071 radians per day

Venus: v = 3.02; a> = 0.028

Earth: v = 2.58; w = 0.017

Mars: v = 2.09; o> = 0.009

Jupiter: v = 1.13; w = 0.0015

Saturn: v = 0.83; a) = 0.00058

85. 6377 (This planet must be Earth.)

86. 2435 (Mercury)

87. 71,390 (Jupiter)

88. 6050 (Venus)

89. sec 30° = 2V3/3; esc 30° = 2; ctn 30° = V3
90. sec 45° = V2; esc 45° = V2; ctn 45° = 1

91. sec 60° = 2; esc 60° = 2V3/3; ctn 60° = 1/V3

92. 1.064

93. 1.428

94. 1.035

95. 1.020

96. 2.633

107. Suppose (x, y) are the coordinates of the point

along a ray that makes an angle A with the x axis. Then
(x, —y) are the coordinates of a point along a ray that

makes an angle -A with the x axis. Therefore

— y
sin (-A) = —- = -sin A

r

cos (- A) = - = cos A
r

108. Consider a right triangle with legs of length x

and y, and two acute angles A and A'. (We know A' =

97. 1.122 102. -7-TT/6

98. -1.155 103. -it/11

99. 1.004 104. -5tt/11

100. -5.67 105. -Htt/10

101. -tt/2 106. -16tt/14
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90° - A.) If y is the side opposite angle A, then

tan A = y/x. Looking at the triangle from the point of

view of angle A', we know tan A' = x/y. Since ctn A =

tan (90° - A), it follows that

x 1
ctn A = tan A =

y tan A

This proof works for right triangles. It is also possible

to prove that ctn A = 1/tan A in general.

109. 1 REM THIS PROGRAM CALCULATES A TABLE OF THE SIN, COS, AND .

2 REM TAN FUNCTIONS PniltOUt 1
10 PI - 3.14159
15 PRINT " DEGREES RADIANS SIN COS TAN"
20 FOR D - TO 90
30 R - D*PI/180 'CONVERT TO RADIANS BECAUSE MANY COMPUTERS
31 'WILL ONLY CALCULATE TRIGONOMETRIC FUNCTIONS
32 'FOR ANGLES IN RADIAN MEASURE
40 S - SIN(R) : C - COS(R)
50 PRINT USING "#########- ;D;

60 PRINT USING "####.####" ;R; S ;C;

70 IF DO90 THEN PRINT USING "####.####"; S/C 'REMEMBER TAN(0) IS UNDEFINED
80 NEXT D
90 PRINT : END

Chapter 6

1. cos A = Vl - sin
2 A

tan A = sin A/Vl - sin
2 A

ctn A = Vl - sin
2 A/sin A

sec A = l/Vl - sin
2 A

esc A = 1/sin A
2.

3. 2 sin A cos A = — ft

4. 2 tan A/(l - tan
2 A) = -¥

5. cos
2 A - sin

2 A = A

6. sin (A/2) = V(l - cos A)/2 = 9^ 3Vl0

10
" 10

7. sin A = —
i; cos A = — $; sin B = -fi

sin (A + B) = (-i)(-YH) + (-M)(-i) = i

8. cos A = t%; sin B = s

cos (A + B) = (*)(-*) - (H)(1) = -M
9. Use the half-angle formula:

sin 15° = V(l - cos 30°)/2 = \fl - V3/2.

We can also find cos 15° = V2 + V3/2

10. sin 75° = sin (60° + 15°) = [V6+3vl +

V2 - V3]/4

V2 - V2 + V3
11. sin 7.5 =

12. - V2 - V3/2
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13. Use the formula

• o o A + B A - B
sin A + sin B = 2 sin—-— cos

2 2

= 2 sin 45° cos 30°

1 V3
" 2

V2 2

3

14. sin (0 - a) = sin cos a - sin a cos =
- sin a

15. cos (0 - a) = cos cos a + sin sin a = cos a

16. tan (0 - a) = (tan - tan a)/(l - tan tan a) =
- tan a

17. cos (it/2 - a) = cos (tt/2) cos a + sin (tt/2) sin a
= sin a

18. sin (ir/2 - a) = sin (tt/2) cos a - sin a cos (tt/2)

= cos a

19. tan (tt/2 - a) =
[tan (tt/2) - tan a]/[l + tan (tt/2) tan a]

This expression is not useful in this form, but we
can divide both top and bottom by tan (tt/2):

1 - (tan a)/tan (tt/2)

+ tan a
tan (tt/2)

The expressions with tan (tt/2) in the denominator can
be treated as being zero, so therefore tan (tt/2 - a) =

1/tan a.

20. sec [A + B)= 1/cos (A + B)

= l/(cos A cos B - sin A sin B)

1

cos A cos B sec A sec B
cos A cos B _ sin A sin B 1 - tan A tan B

cos A cos B cos A cos B

21. esc (A + B) = 1/sin (A + B)

= l/(sin A cos B + sin B cos A)

= esc A esc B/(ctn B + ctn A)

22. i(l + cos 2A) = Ml + cos 2 A - sin
2 A) =

i(2 cos 2 A)
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23. cos 2B = 1 - 2 sin
2
B; let A = 2B

cos A = 1 - 2 sin
2
(A/2)

sin
2
(A/2) = (1 - cos A)/2

sin (A/2) = V(l - cos A)/2

24. i[sin (A + B) + sin (A - B)]

= i(sin A cos B + sin B cos A + sin A cos B
- sin B cos A)

= (sin A)(cos B)

25. 2 sin [(A + B)/2] cos [(A - B)/2]

= 2 [sin (A/2) cos (B/2) + sin (B/2) cos (A/2)]

x [cos (A/2) cos (B/2) + sin (A/2) sin (B/2)

= 2 sin (A/2) cos (A/2) cos
2
(B/2)

+ 2 sin (B/2) cos (B/2) sin
2
(A/2)

+ 2 sin (B/2) cos (B/2) cos 2
(A/2)

+ 2 sin (A/2) cos (A/2) sin
2
(B/2)

= sin A cos
2
(B/2) + sin B sin

2
(A/2)

+ sin B cos2
(A/2) + sin A sin

2
(B/2)

= sin A + sin B

26. cos A - cos B = sin (it/2 - A) + sin (B - it/2)

Apply the last expression to the formula above.

27. sec
2 A + esc

2 A
= 1/cos

2 A + 1/sin
2 A

= sin
2
A/(sin

2 A cos
2 A) + cos

2
A/(sin

2 A cos
2 A)

= l/(sin
2 A cos 2 A)

= sec
2 A esc

2 A

28. sin [(A + B) + C]

= sin (A + B) cos C + sin C cos (A + B)

= sin A cos B cos C + sin B cos A cos C

+ sin C cos A cos B - sin C sin A sin B

29. cos [{A + B) + C]

= cos (A + B) cos C - sin (A + B) sin C

= cos A cos B cos C - sin A sin B cos C

- sin A cos B sin C - sin B cos A sin C

30. tan (2A) = tan (A -I- A) = 2 tan A/(l - tan 2 A)

Answers to Exercises 263



31. sin (4A) = sin [2(2A)] = 2 sin 2A cos 2A

= 2(2 sin A cos A)(cos 2 A - sin
2 A)

= cos A (4 sin A cos
2 A - 4 sin

3 A)

= cos A [4 sin A (1 - sin
2 A) - 4 sin

3 A]

= cos A (4 sin A - 8 sin
3 A)

32. sin (5A)

= sin (4A + A) = sin 4A cos A + sin A cos 4A

= cos2 A(4 sin A - 8 sin
3 A) + sin A (8 cos

4 A
- 8 cos2 A + 1)

= (1 - sin
2
A)(4 sin A - 8 sin

3 A)

+ sin A [8(1 - sin
2 A) 2 - 8(1 - sin

2 A) + 1]

= 5 sin A - 20 sin
3 A + 16 sin

5 A

33. cos (3A)

= cos (2A + A) = cos 2A cos A - sin 2A sin A
= (2 cos 2 A - 1) cos A - 2 sin

2 A cos A
= 2 cos 3 A - cos A - 2 sin

2 A cos A
= 2 cos 3 A - cos A - 2(1 - cos

2 A)(cos A)

= 4 cos 3 A - 3 cos A

34. cos (4A) = 2 cos
2 2A - 1

= 2(2 cos 2 A - l)
2 - 1

= 2(4 cos
4 A - 4 cos

2 A + 1) - 1

= 8 cos4 A - 8 cos 2 A + 1

35. sin 3A = 3 sin A - 4 sin
3 A (from Exercise 44.)

Then

-sin 3A + 3 sin A = 4 sin
3 A

36.
1 + sin A _ / (l + sin A)(l + sin A)

1 - sin A V (1 - sin A)(l + sin A)

1 + sin A
Vl - sin

2 A

1 + sin A
cos A

= sec A + tan A

37. (sin A + cos A) 2 = sin
2 A + 2 sin A cos A + cos 2 A

= sin 2A + 1

38. sec
4 A - sec

2 A = sec
2 A(sec 2 A - 1)

= (tan
2 A + l)(tan

2 A)

= tan4 A + tan
2 A
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39. (sin 2A)/(sin A) - (cos 2A)/(cos A)
= 2 sin A cos A/sin A - (2 cos 2 A - l)/cos A
= 2 cos A - 2 cos A + sec A

40. sin 3A - sin A
= 3 sin A - 4 sin

3 A - sin A
= 2 sin A - 4 sin A(i)(l - cos 2A)

= 2 sin A - 2 sin A + 2 sin A cos 2A

(sin 3A - sin A)/(cos 2A)

= 2 sin A cos 2A/cos 2A = 2 sin A
41. ctn B sec B = (cos A/sin A)(l/cos A)

= 1/sin A = esc B

42. cos A + sin A tan A = cos A + sin
2 A/cos A

= (cos
2 A + sin

2 A)/cos A
= 1/cos A = sec A

43. (sin A + tan A)/(l + sec A)
= (sin A + tan A)/(l + 1/cos A)
= (sin A + tan A)/[(cos A + l)/cos A]
= (cos A sin A + cos A tan A)/(cos A + 1)
= (cos A sin A + sin A)/(cos A + 1)
= sin A(cos A + l)/(cos A + 1) = sin A

44. sin 3A = sin (2A + A)

= sin 2A cos A + cos 2A sin A
= 2 sin A cos

2 A + (cos
2 A - sin

2 A) sin A
= cos

2 A(2 sin A + sin A) - sin
3 A

= (1 - sin
2 A) 3 sin A - sin

3 A

sin 3A = 3 sin A - 4 sin
3 A

45. 10 INPUT "SIN (A) :

n ;SINA
20 INPUT "QUADRANT (1,2, 3, OR 4):";Q
30 C0SA=SQR(1-SINA

A
2) 'COSINE OF A

40 IF (Q=2) OR (Q=3) THEN COSA=-COSA
50 TANA=SINA/COSA
60 CTNA=COSA/SINA
70 SECA=1/C0SA
80 CSCA=1/SINA

Printout 2

Chapter 7

1. 6.258

2. 290.93

3. 99.30

4. 31.458

5. 17.52

6. 59.18

7. 19.18

8. 88.88

9. 30.17

10. 53.09

11. 60°, 60°, 60°

12. 90°, 45°, 45°

13. 120°, 30°, 30°
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Figure A-6

14. Use the law of sines. However, you will find that

the length of the third side could be either 20 or 40. If

you specify two sides of a triangle and one of the
angles that is not between those two sides, then you
cannot always uniquely determine the parts of the
triangle. See Figure A-6.

15. 2.57, 48.62°, 91.38° (In order to calculate the two
angles, you need to work the trigonometric function
tables backwards. We will discuss this topic more in

Chapter 10.)

3.85, 70.33°, 44.93°

6.23, 31.73°, 23.23°

2.66, 2.38, 105°

2.57, 3.06, 90°

2.84, 4.26, 65°

From the law of cosines we can find

21. 4.08, 4.61, 60°

22. 2.08, 80°, 80°

23. 5, 53.13°, 90°

24. 3.83, 67.5°, 67.5

26. 618.8

27. 593.5

28. 619.9

29. 404.1

30. 405.0

s = Vv2 + w2 + 2vw cos (B - A)

31. 396.5

32. 502.0

33. 501.0

34. 498.5

35. s = Vv2 + w 2 + 2vw

= V + w

36. s = Vw2 + v2 + 2vw cos 180°

= Vw2 + v2 - 2vw

= v - w

37. s = Vw2 + v2 + 2vw cos 90
c

=. Vw2 + v 2

38. s
2 = w2 + v 2 + 2vw cos [B - A)

= w2 + 2vw cos (B - A)

cos (B - A) = -w 2/2vw = -w/2v

39. We originally derived the law of sines by drawing
the altitude from side c to angle C. If you draw one of

the other altitudes you will see that you can include

c/sin C in the formula.
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40-50. Let P be the distance from the planet to the
sun, R be the distance from the Earth to the sun, and A
be the angle between the sun and the planet as seen
from Earth. Define the two angles C and B as shown in

Figure A-7. Then
. _ R sin A
sinC =

Once we have found sin C, we must find the
value of C by using the sine table in reverse. Then

B

D =

180° - [C + A)

sin B

sin A
For Mercury and Venus (the planets that are

closer to the sun than Earth) we usually will not be

able to unambiguously determine the distance from
Earth given this information. This problem is the same
problem that is described in Exercise 14. Fortunately,

we do not have this problem when we are calculating

the distance to an outer planet.

40. 206 or 93 44. 374 48. 635

41. 168 or 114 45. 79 49. 1571

42. 253 or 43 46. 917 50. 1282

43. 164 or 66 47. 763

Figure A-7

Eerih

Planet is either at point t or point 2

Distance is either 0. or D,

51. See Figure A-8.

52. From the law of sines,

a + b _ sin A + sin B

c sin C

_ 2 sin [(A + B)/2] cos [(A - B)/2]

2 sin (C/2) cos (C/2)

Since A + B + C = 180°, we know

A + B = 180° - C

. A + B

Figure A-8

sin sin
C\ C

90° - - = cos -
2/ 2

Then

a + b cos [h[A - B)

c sin (£C)

The proof of the other formula is similar.
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53. Use the Mollweide's formulas:

a - b _ sin [(A - B)/2] sin (C/2)

a + b
~

cos (C/2) cos [(A - B)/2]

A - B C
= tan tan -

2 2

C 180 c

tan - = tan
2

(A + B)

= tan I 90° -

A + B
= ctn

A + B

Figure A-9

tan [(A + B)/2]

tan [i(A - B)]a - b

a + b
~

tan [£(A + B)]

54. See Figure A-9. Let A represent the area of the

triangle. Then

A = £bh

= hab sin C

= iab Vl - cos
2 C

A 2 = ia
2
b
2
(l - cos

2
C)

From the law of cosines,

a
2 + b

2 - c
2

cos C =
2ab

Then

A2 = ia
2
b
2

1 - + b
2 - &

4a 2
b
2

= rM4a
2
b
2 - (a

2 + b
2 - c

2
)

2
]

= A(2a 2
b
2 + 2a 2

c
2 + 2b 2

c
2 - a

4 - b
4 - c

4
)

= -^(a + b + c)(b + c - a)(c + a - b)(a + b - c)

(a + b + c) (b + c - a) (c + a - b) (a + b - c)

A 2 = s{s - a){s - b)(s - c)

A = Vs(s - a)(s - b)(s - c)

Printout 3
55. 10 INPUT A,B,C

20 S-(A+B+C)/2
30 AREA-SQR(S*(S-A)*(S-B)*(S-C)) 'AREA OF TRIANGLE FROM HERO'S FORMULA
40 ALT1-2*AREA/A : ALT2-2*AREA/B : ALT3-2*AREA/C
50 REM NOTE THAT THE THREE ALTITUDES CAN BE CALCULATED EASILY
51 REM ONCE THE AREA OF THE TRIANGLE IS KNOWN
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56. 10 INPUT "SIDE A:";SIDEA n .

20 INPUT "SIDE B:";SIDEB rTintOUl 4
30 INPUT "ANGLE BETWEEN THEM (IN DEGREES) :";C
40 C-C*3. 14159/180 'CONVERT TO RADIANS
50 SIDEC-SQR(SIDEA*2+SIDEB

A
2-2*SIDEA*SIDEB*C0S(C))

60 REM USE THE LAW OF COSINES

57. 10 INPUT "ANGLE A (IN DEGREES) :";A
.

20 INPUT "ANGLE B (IN DEGREES) :";B PrifltOUt 5
30 INPUT "SIDE BETWEEN THEM:";SIDEC
40 C-180-(A+B) 'THIRD ANGLE
50 PI-3. 14159
60 A-A*PI/180 : B-B*PI/180 : C-C*PI/180 'CONVERT TO RADIANS
70 SIDEA - SIN(A)*SIDEC/SIN(C) 'USE THE LAW OF SINES
80 SIDEB - SIN(B)*SIDEC/SIN(C)

Chapter 8

Amplitude Frequency Angular frequency

2

10

TT

1/tt

T8G

50

1. 9.8 1/tt

2. 1 5/tt

3. 5 h

4. TT h

5. 100 1/200TT

6. 4.5 25/tt

7. y = sin (4ttx)

8. y = sin (ttx/8)

9. y = sin (4x)

10. y = sin (8x)

11-17. See Figure A-10 and Figure A-ll.

18. With calculus you may prove that the area under
one arch of the sine function is exactly equal to 2.

19. 1 REM GENERAL CURVE DRAWING PROGRAM _- .

2 REM THIS PROGRAM WILL DRAW A GRAPH OF rTlYllOMl 6
3 REM A CURVE THAT REPRESENTS Y AS A
4 REM FUNCTION OF X. THE USER CAN CHOOSE
5 REM THE SCALE OF THE DRAWING AND THE
6 REM COORDINATES OF THE CENTER OF THE SCREEN.
14 SH - 160 : REM SCREEN HEIGHT
15 S2 - SH/2 : REM HALF OF SCREEN HEIGHT
20 SW - 280 : REM SCREEN WIDTH
30 PRINT "DO YOU WANT AXES SHOWN?"
40 INPUT "Y OR N ";QA$
50 REM SET INITIAL SPECIFICATIONS
60 XC - : YC -
61 REM THE CENTER IS AT (0,0)
70 W - 20 : H - 16
71 REM W IS WIDTH, H IS HEIGHT
99 REM ************************
100 REM INPUT SPECIFICATIONS
105 CLS
110 LOCATE 21,1
120 PRINT "W:";W;" H:";H;
130 PRINT " CENTER: ";XC;",";YC;
140 PRINT " ?"

150 X$-INKEY$: IF X$-"" THEN GOTO 150
160 IF X$-"G" THEN GOSUB 500 : GOTO 110
170 IF X$-"W" THEN GOTO 210
175 IF X$-"H" THEN GOTO 220
180 IF X$-"X" THEN GOTO 230
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185 IF X$-"Y" THEN GOTO 240
187 IF X$-"S" THEN END
190 GOTO 150
199 REM *** ******* * * ******** ***** **

200 REM CHANGE SPECIFICATIONS
210 INPUT "NEW WIDTH: ";W
215 GOTO 100
220 INPUT "NEW HEIGHT: ";H
225 GOTO 100
230 INPUT "NEW X CENTER: ";XC
235 GOTO 100
240 INPUT "NEW Y CENTER: ";YC
245 GOTO 100

500 REM DRAW DIAGRAM
505 SCREEN 1 : CLS
508 IF QA$ - "Y" THEN GOSUB 700 : REM PLOT AXES
510 XS - XC - W/2 : REM STARTING X VALUE
520 DX - W/SW : REM X INCREMENT
530 X2 -
540 FOR X - XS TO (XS+W) STEP DX
550 X2 - X2 + 1

560 GOSUB 1000 : REM CALCULATE Y
570 Y2 - INT(S2 - SH*(Y-YC)/H)
580 PSET (X2.Y2)
590 NEXT X
595 Q$-INKEY$ : IF Q$-"" THEN GOTO 595 'PAUSE UNTIL KEY IS PRESSED
600 RETURN
699 REM *+*++*+ ^jt'AMt'Anfr*+*+*+*++feMMMNMHHfc
700 REM PLOT AXES
710 XA - SW * (W/2 - XC)/W
715 XA - INT(XA + .5)
720 YA - SH - (SH * (H/2 - YC)/H)
725 YA - INT(YA + .5)
730 IF (XA<1) OR (XA>-SW) THEN GOTO 750
740 LINE (XA,0)-(XA,SH-1)
750 IF (YA<1) OR (YA >- SH) THEN GOTO 770
760 LINE (0,YA)-(SW-1,YA)
770 RETURN

991 REM LINE 1000 DETERMINES THE CURVE
992 REM THAT WILL BE DRAWN. TO CHANGE
993 REM THE CURVE, YOU MUST CHANGE LINE
994 REM 1000. IN THIS EXAMPLE, THE
995 REM CURVE DRAWN IS Y - SIN(X)
1000 Y - SIN(X)
1010 RETURN

Chapter 9

Wavelength Frequency Velocity

1/21T 1

3/2tt 3/2

1. 2ir

2. IT

3. 1

4. 5.51

5. TT

6. 0.00079

1 1

0.55 3.03

1/tt 1

382 0.3
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11. 12.
Figure A- 10

h q ^
» 2n 3« >

15.

ococxx

16.

17.

Figure A- 11
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7. 2.14 x 10

~

12
(in meters) 14. 454.5

8. 7.89 x 10
-11

15. 1.32

9. 2.5 x 10~ 7
16. 2.65

10. 3.06 x 10~ 5
17. 0.662

11. 0.003 18. 0.170

12. 0.333 19. 4.24

13. 3.26

20. Use the identity for the sum of two sines:

B
• /, B

Y\ + Yz = 2A cos — sin I kx - cot

We can see that the total wave will also be a

harmonic wave with the same wavelength and
frequency as the original two waves. However, now the

amplitude of the wave is given by the expression

B
2A cos -

2

The amplitude depends on B, the phase difference

between the two waves. If B = 0, then the two waves
are in phase and the amplitude of the total wave is

twice the amplitude of the original waves. If B = it,

then the waves are perfectly out of phase and they

cancel each other out, meaning that the total wave is

zero!

21. yi + y2 = 2A sin [(k a + k 2 )x/2
-

{(Mi + u>2 )t/2] cos [(k a
- k2 )x/2 - (a), - w2 )t/2]

Let k = (Ic, + k 2 )/2, go = (u, + tu2 )/2, Ak =

(ki - k2 ), and Ato = (oh - oo 2 ). Then

. • „ ,
/Ak* Awt\

Y\ + y-z = 2A sin (kx - at) cos I
— — 1

The result is called a modulated wave. The
underlying wave, given by the factor sin (kx - tot) has

a wavelength and frequency almost the same as the two
original waves. However, the amplitude of this wave
varies periodically with a frequency of Aoo/4tt, which is

much smaller than the frequency of the original waves.

If these were sound waves, you would notice periodic

increases and decreases in the intensity. This situation

is known as the beat phenomenon.

22. See Figure A-12.

23. See Figure A-13.
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28. kL = tt/2 + n-rr

k = (tt/2 + mr)/L

X - 2ttL/(tt/2 + nir) = 4ttL(tt + 2nir) = 4L/(1 + 2n)

y = sin x + sin 2x + sin 3x

y = sin x + 0.5 sin 2x + 25 sin 4x + 125 sin 8x + 0.062 sin 16x

5. 23.58°

6. -17.46°

7. 22.62°

a
2 + b

2 - c
2

lab

Chapter 10

1. -30°

2. 36°

3. -45°

4. 36.87°

8. Use the law of cosines:

C = arccos

44.4°, 57.1°, 78.5°

9. 67.4°, 22.6°, 90.0°

10. 51.3°, 51.3°, 77.4°

11. 19.6°, 11.2°, 149.2°

12. 8.1°, 8.1°, 163.8°

13. 117.54°, 26.5°, 35.9°

14. 117.54°, 26.5°, 35.9° (Note that the triangle in

Exercise 14 is similar to the triangle in Exercise 13.)

15. 39.4°, 54.7°, 85.9
e

16. 36.6°, 63.4°, 16.5

17. 33.7°, 56.3°, 18.0

18. 30.5°, 49.5°, 19.4

19. 11.9°, 18.1°, 24.2

20. 135°, 15°, 4.3

21. 18.3°, 61.7°, 13.2

22. 51.2°, 53.8°, 143.7

23. 112.5°, 32.5°, 34.1

24. 52.8°, 62.2°, 20.5

Figure A-12

Figure A-13
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Groundspeed Angle of course

17.8°

12.6°

13.0°

68.9°

69.6°

70.3°

71.3°

0.49°

0.75°

0.72°

0.39°

36. Draw right triangles to solve these problems: |.

37. {§ 41. a

25. 494.1

26. 486.1

27. 518.0

28. 455.1

29. 459.4

30. 460.0

31. 448.4

32. 606.2

33. 601.4

34. 597.3

35. 593.1

38. | 42. bx/Va 2 + b
2x 2

39. H 43. 0°, 180°

40. Vl - a
2

44. 60°, 300°

45. There are no solutions to this equation.

46. 0°, 90°

47. sin x + Vl - sin
2 x = h

After simplifying you will have a quadratic

equation in sin x. Use the quadratic formula. You will

have to discard one of the roots which is extraneous.

The result is

1 - \/7
sin x = x = -24.3°

4

48. Use the identity sin
2 x = (1 - cos 2x)/2.

x = 0°, 180°, 30°, 150°

49. Set up a quadratic equation in sin
2
x.

x = 30°, -30°, 150°, -150°, 60°, -60°, 120°, -120°

50. 15°, 165°

51. 0°, 180°, 45°, 135°

52. 60°, 240°, 120°, 300°

53. 0°, 180°

54. -13.29°, -119.55°

55. 1 = sin (arcsin 2x + arcsin x)
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Use the addition_rule for the sine function. The
final result is x = 1/V5.

56. 90°. 270°, 60°. -60°

57. -15°, -75°, 150°, 210°

58. 45°, 116.57°, 225°. 296.57°

59. 30°, 150°, 270°

60. 45°, 90°, 225°, 270°

61. 210°, 270°, 330°

62. 0°, 180°, 60°, 120°

63. 70.53°, -70.53°

64. A = 30°, 150°; B = 120°, 240°

65. sin (7T - 2 arctan 2) = sin (2 arctan 2)

= 2 sin (arctan 2) cos (arctan 2)

= 2(2/V5)(l/V5)

— A— 5

66. Calculate A = arctan (y/x). The result will be
correct if the point (x, y) is in the first or fourth

quadrants— in other words, if x is positive. If x is

negative, then add 180° to arctan (y/x) to get the final

result.

67. Consider a right triangle with hypotenuse 1, and
legs of length y and Vl - y

2
.

Then: sin A = y, A = arcsin y

tan A = y/Vl - y
2

, A = arctan (y/Vl - y
2

)

Then: arcsin y = arctan (y/Vl - y
2
). A similar

expression can be found for arccos. The best procedure
is to write these two equations as defined functions,

and then include these statements in any program that

needs to use arcsin or arccos:

10 DEF FNASN(Y) = ATN( Y/SQR( 1 - Y*Y) ) 'ARCSINE

11 DEF FNACS(Y) = ATN( SQR( 1 - Y*Y)/Y) +PI*( Y- ABS( Y) )/(2*Y)

The last part of the expression for arccosine is included
because, if Y is negative, then the result must be
between PI/2 and PI. To use this function, the variable

PI must have already been defined.

At any subsequent point in the program the

expression FNASN(X) will calculate the arcsine of X,

and FNACS(X) will calculate the arccos of X.
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Chapter 11

Figure A- 14

l.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

22.63

26.93

2.24

12.08

17.46

5

10

13

25

15.56

15.65

24.76

13.

14. 5

15.

16. -39

17. 10.61

18. -70.71

19. -15.59

20. 41.42

21. 15.88

22. 23.93

23. 9.88

24. 17.67

25-33. See Figures A-14 to A-16.

25. 26.

45°

74.9°

243.4°

155.6°

283.2°

126.9°

306.9°

67.4°

253.7°

315°

26.6°

43.4°

y

10

o

-117

10.61

70.71

9

17.58

1.95

10.16

-1.56

-3.43
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Figure A-15

Figure A- 16

34. r
2 = sec 26

r
2 = 1/cos 28

r
2 = l/(cos

2
6 - sin

2
0)

r
2
cos 2

6 - r
2
sin

2
8 = 1

x 2 - y
2 = l

See Figure A-17.

Figure A-17
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35. There are four points of intersection:

r = 6 6 = ±60°

r = 2 6 * ±120°

See Figure A-18.

Figure A-18 r(1 - cos 8) » 3

36. d = r sin (6 - 8 )

d = r sin 9 cos O - r sin 8 cos 8

d = y cos 8 - x sin 8

y = x tan 8 + d/cos 8

We can see that the slope of the line is m =
tan 8 and the y intercept of the line is d/cos 8 . See
Figure A-19.

Figure A-19
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37. 1 REM THIS PROGRAM DRAWS A CURVE IN D .

2 REM POLAR COORDINATES rTintOUt 7
8 INPUT "N:";N 'CHANGING N WILL CHANGE THE CURVE
9 INPUT "SCALE: (0 TO 1):";S: S - S * 90
10 SCREEN 1

20 SH - 200 : SW - 320 'SCREEN HEIGHT AND SCREEN WIDTH
30 FOR T - 1 TO 360
31 REM T IS THE ANGLE MEASURED IN DEGREES
40 RD - 3.14159*T/180
41 REM RD IS THE ANGLE MEASURED IN RADIANS
50 R - S * SIN(N * RD) 'CHANGE THIS STATEMENT TO DRAW
51 'A DIFFERENT TYPE OF CURVE
59 REM NOW CONVERT TO RECTANGULAR COORDINATES
60 X - (SW/2) + R*COS(RD)
70 Y - (SH/2) - R*SIN(RD)
80 PSET(X.Y) ' LIGHT UP THE POINT AT (X,Y)
90 NEXT T
100 END

Chapter 12

r e

1. 5 306.9°

2. 13 202.6°

3. 7.5 90°

4. 11.45 270°

5. 2.83 45°

6. 1 60°

7. 35.9 108.5°

8. 11.7 31.0°

9. 10.8 213.7°

10. 25 73.7°

11. 3 + 4i 16. -0.707 - 0.707i

12. 12 + 5i 17. -0.866 + 0.5i

13. 7 - 24i 18. 19.28 + 13.25i

14. 8 - 6i 19. -11.36 - 2.Hi

15. -i 20. 0.018 + 2.87i

21. To find the conjugate of a complex number, leave

the absolute value unchanged and reverse the sign of

the angle.

22. 65(cos 75.75° + i sin 75.75°)

(12 + 5i)(3 + 4i) = 16 + 63i

23. 250(cos 53.13° + i sin 53.13°)

(8 + 6i)(24 + 7i) = 150 + 200i
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24. 500(cos 226.87° + i sin 226.87°)

(5.45 + 49.7i)(-8 + 6i) = (-341.8 - 364.9i)

25. 4(cos 210° + i sin 210°)

(1 + 1.732i)(- 1.732 + i) = (-3.46 - 2i)

26. 4(cos 180° + i sin 180°)

(-1 - 1.732i)(l - 1.732i) = -4

27. cos 180° + i sin 180°

(1/V2 + i/V2)(-l/V2 + i/V2) = -1

28. cos 270° + i sin 270°

(1/V2 + i/V2)(-l/V2 - i/V2) = -i

29. cos 360° + i sin 360°

(1/V2 + i/V2)(l/V2 - i/V2) = 1

30. 1552(cos 85° + i sin 85°)

(8.24 + 13.71i)(87.18 + 42.52i) = 135.3 + 1546i

31. 3267(cos 36° + i sin 36°)

(96.46 + 22.27i) (30.38 + 12.89i) = 2643 +
1920i

32. There are only three cube roots of i. Suppose we
try to find an additional third root by writing i in this

form:

i = cos 1170° + i sin 1170°

We would find

^1 = cos 390° + i sin 390°

But this number can be written

N^i = cos 30° + i sin 30°

which is one of the cube roots that we found already.

33. The n nth roots of a complex number with
absolute value r will be evenly spaced around a circle

of radius r
1/n

.

34. We'll add ra (cos 8j + i sin 8 : ) + r2 (cos 8 2 +
i sin 9 2 ). Set up a triangle and use the law of cosines

and the law of sines. The absolute value of the result

will be

r = Vr? + ii + 2r a r2 cos (8 2 - 8^

The angle of the result can be found from either

of these two formulas:

.
(" sin(8 2 - 8,) !

8 = 81 + arcsin r2

q a l
• T

sin (8 1 - 8 2 ) 1
8 = 8 2 + arcsin r!
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i
-

! (cos 61 + i sin 81)
35. -LJ !

r2 (cos 8 2 + i sin 8 2 )

r! (cos 8, + i sin 8 2 )(cos 8 2 - i sin 8 2 )

r2 (cos 8 2 + i sin 8 2 )(cos 8 2 - i sin 8 2 )

r, (cos 81 cos 8 2 - i sin 8 2 cos 8, + i sin 8t cos 8 2 + sin 8, sin 8 2 )

r2 (cos
2
8 2 + sin

2
8 2 )

_ i-! [cos (8! - 8 2 ) + i sin (8, - 8 2 )]

In words: To divide two polar complex numbers,
divide the two absolute values and subtract the angle of

the denominator from the angle of the numerator.

36. (6 + 8i)
4 = [10(cos 53.13° + i sin 53.13 )]

4

= 10,000(cos 212.52° + i sin 212.52°)

= -8432.0 - 5375.9J

37. (24 + 7i)
5 = (25(cos 16.26° + i sin 16.26°)]

5

= 9,765,625(cos 81.3° + i sin 81.3°)]

- 1,477,156 + 9,653,260i

38. cos 135° + i sin 135°

39. cos 180° + i sin 180° = -1

40. cos 450° + i sin 450° - i

41. cos 2835° + i sin 2835° - 1/V2 - 1/V2

42. cos 11.25° + i sin 11.25°; cos 101.25° +
i sin 101.25°;

cos 191.25° + i sin 191.25°; cos 281.25° +
i sin 281.25°

43. cos 22.5° + i sin 22.5°; cos 112.5° + i sin 112.5°;

cos 202.5° + i sin 202.5°; cos 292.5° + i sin 292.5°

44. 1, i, -1, -i

45. 1.495 (cos 13.28° + i sin 13.28°);

1.495 (cos 103.28° + i sin 103.28°); 1.495 (cos 193.28°

+ i sin 193.28°); 1.495 (cos 283.28° + i sin 282.28°)

46. 2 (cos 20° + i sin 20°); 2 (cos 110° + i sin 110°);

2 (cos 200° + i sin 200°); 2 (cos 290° + i sin 290°)

47. (a) (1/V2)
2 + 2i/2 + (i/V2)

2 = 1/2 + i - 1/2 = i

(b) (-1/V2) 2 + 2i/2 + (-i/V2) 2 = 1/2 + i - 1/2 = i

(c) (V3/2 + i/2)(V3/2 + i/2)
2

= (V3/2 + i/2)[(V3/2)
2 + 2V3i/4 + i

2
/4)l

= (V3/2 + i/2)(3/4 + V3i/2 - 1/4)

= (V3/2 + i/2)(l/2 + V3i/2)

= V3/4 + 3i/4 + i/4 + V3i 2
/4

= i
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Printout 8

Printout 9

48. 1 REM THIS PROGRAM CALCULATES THE N DIFFERENT N'TH ROOTS
2 REM OF A COMPLEX NUMBER
5 PI - 3.14159
10 INPUT "REAL PART:";A
20 INPUT "IMAGINARY PART:";B
30 INPUT "LEVEL OF ROOTS DESIRED: ";N
40 R0 - SQR(A

A
2 + B

A
2)

50 THETAO - ATN(B/A)
60 IF A<0 THEN THETAO - THETAO + PI
70 R - R0

A
(1/N)

80 FOR M - TO (N-l)
90 THETA - (2*PI*M + THETAO )/N
100 Al - R * COS (THETA) : Bl - R * SIN(THETA)
110 PRINT Al;" + ";Bl;"i"
120 NEXT M
130 END

49. 1 REM THIS PROGRAM CALCULATES (A+BI)
A
N

5 PI - 3.14159
10 INPUT "REAL PART:";A
20 INPUT "IMAGINARY PART:";B
30 INPUT "N:";N
40 RO - SQR(A

A
2 + B

A
2)

50 THETAO - ATN(B/A)
60 IF A<0 THEN THETAO - THETAO + PI
70 R - R0

A
N

80 THETA - N * THETAO
90 Al - R * COS (THETA)
100 PRINT Al;
110 END

+ ";Bl;"i"
Bl - R * SIN(THETA)

Chapter 13

1. 1.414

2. 1 -1

3. -1.414

4. -1 -1

5. -1.414

6. 12.90 12.59

7. 10.39 -6

8. 2.08 -11.82

9. -6 -10.39

10. 10.57 22.66

11. -12.50 21.65

12. 71.92 -11.29

13. 9.89 -6.19

14. 73.04 -61.07

15. You may convert the new coordinates (x\ y') to

the old coordinates (x, y) by rotating the axes by an

angle -9.
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16. Let x' = X + D/2A; y' = y + E/2C. Then the

equation becomes

<*' - £)' + <>" - fC)
2

+ <« - S) '(' - fc) + F =

Ax ' 2

- Dx '
+ S + Cy ' 2

- Ey ' + I + Dx ' - TA
+ Ey ' ~ I + F " °

D 2 E 2

Ax" - - + Cy" -
jg + P =

Ax, + Cy, +
(
F _ g _ P)=

Let G = -A/(F - D2/4A - E 2
/4C) and let L =

-C/(F - D2/4A - E 2
/4C).

17. Let x' = x + (4CF - E2 )/4CD; y' = y + E/2C.

Then the equation becomes

Cy ' 2

- Ey '
+
Vc

+ DX ' - F +
Vc

+ Ey ' - 2%
+ F = °

Cy'
2 + Dx' =

This is the equation of a parabola with vertex at the origin.

18. Let's let c = cos and s = sin 0, where is the

angle of rotation. Then

A' = Ac 2 + Cs 2 + Bcs

B' = 2cs(C - A) + B{c 2 - s
2

)

C = As 2 + Cc 2 - Bcs

B'
2 - 4A'C = [2cs(C - A) + B{c 2 - s

2
)]

2

-4[Ac 2 + Cs 2 + Bcs][As 2 +
Cc 2 - Bcs)

= 4c 2
s
2(C - A) 2 + 4Bcs(C - A){c2 - s

2
)

+ B 2
{c

2 - s
2

)

2 - 4A 2
c
2
s
2 - 4ACc4

+ 4B 2
c
2
s
2 - 4ACs4 - 4C2

c
2
s
2

+ 4ABc 3
s - 4ABcs 3

- 4BCc3
s + 4BCcs 3

= 4C2
c
2
s
2 - 8ACc 2

s
2 + 4A 2

c
2
s
2 +

4BCc 3
s - 4BCcs 3 - 4ABc 3

s + AABcs 3

+ B 2
c
4 - 2B 2

c
2
s
2 + B 2

s
4 - 4A 2

c
2
s
2

- 4ACc4 + 4B 2
c
2
s
2 - 4ACs4

- 4C2
c
2
s
2 + 4ABc 3

s - 4ABcs 3

- 4BCc 3
s + 4BCcs 3
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= -8ACcV + B 2
c
4 + 2B 2cV + B2

s
4

4ACc4 - 4ACs4

= B 2
[c

4 + 2c
2
s
2 + s

4
]

-

4AC[2s2
c
2 + c

4 + s
4

]

= B 2
(c

2 + s
2

)

2 - 4AC(c 2 + s
2

)

2

= B 2 - 4AC

19. Let e represent the eccentricity of the conic

section. Then
r

a + r cos
= e

ea
r =

1 - e cos

20. Rotate by - 20°. The new equation becomes

16x'
2 + 25y' 2 - 400 =

x'
2

y'
2— + — = 1

25 16

The graph will be an ellipse with the axes rotated 20
c

See Figure A-20.

Figure A-20

21. Rotate by -40°. The new equation is

25 16

22. Rotate by -30°. The new equation is

x'
2

y'
2

,— + -— = l
81 100
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23. Rotate by -30°. The new equation is

*1! y'
2

81 " 100
"

This is the equation of a hyperbola.

24. Rotate by -10°. The new equation is

x'
2

y'
2— + — = 1

See Figure A-21.

23.
Figure A-21

25. Rotate by -10°. The new equation is

-x' 2
y'

2

—T~ + « = 1
4 9

26. In this equation we have B = 1, F = -1, and all

the other coefficients equal to zero. The angle of

rotation is 45°, and the new equation is

2 2 " a

This equation fits the standard form for a hyperbola.

(Of course, in this case we could have graphed the

curve without doing the rotation.) See Figure A-22.

27. In some cases the graph might consist of only a

single point (for example, x 2 + y
2 = 0). In other cases

the graph might consist of two lines (for example, x2 -

y
2 = 0). In other cases there will be no points that are

solutions to the equation (for example, x2 + y
2 + 1 =

0). These situations are called degenerate conic
sections.
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Figure A-22

Calculate B 2

the graph.

4AC to determine the nature of

Nature of graph Angle of rotation

28. Hyperbola

29. Ellipse

30. Hyperbola

31. Ellipse

32. Parabola

33. Parabola

1.7°

-30.7°

45°

7.0
C

-18.4 C

-26.6 C

Printout 10
34. 1 REM THIS PROGRAM READS IN THE COEFFICIENTS OF THE EQUATION

2 REM AX
A
2 + BXY + CY

A
2 +DX+EY+F-0

3 REM AND THEN DRAWS THE GRAPH OF THE SOLUTION.
10 PI-3. 14159
20 XYSWITCH-0 'IF XYSWITCH IS SET TO 1 THEN IT MEANS THAT
21 'THE GRAPH NEEDS TO BE DRAWN WITH THE X AND
22 'Y AXES SWITCHED
100 INPUT "COEFFICIENT OF X

A
2: ";A

101 INPUT "COEFFICIENT OF XY: ";B
102 INPUT "COEFFICIENT OF Y

A
2: ";C

103 INPUT "COEFFICIENT OF X: ";D
104 INPUT "COEFFICIENT OF Y: ";E
105 INPUT "CONSTANT TERM: ";F
110 DISOB A

2-4*A*C 'CALCULATE DISCRIMINANT
115 IF ABS(DISC)<. 00001 THEN DISC-0
120 IF DISC-0 THEN TYPE-1: PRINT "PARABOLA"
130 IF DISC<0 THEN TYPE-2: PRINT "ELLIPSE"
140 IF DISOO THEN TYPE-3: PRINT "HYPERBOLA"
150 IF B-0 THEN THETA-0:GOTO 160
152 IF A-C THEN THETA-PI/4 :GOTO 160
154 THETA-1/2 * ATN(B/(A-C)) 'ANGLE OF ROTATION
160 PRINT "ROTATION: ";THETA*180/PI
165 Q$-INKEY$:IF Q$-"" THEN GOTO 165 'PAUSE UNTIL KEY IS PRESSED
170 CS-COS(THETA) : SN-SIN(THETA)
175 GOSUB 2000 ' SET SCREEN FOR GRAPHICS AND DRAW AXES
179 REM CALCULATE COEFFICIENTS OF NEW EQUATION AFTER ROTATION
180 Al - A*CS

A
2 + C*SN

A
2 + B*SN*CS

190 CI - A*SN
A
2 + C*CS

A
2 - B*SN*CS

200 Dl - D*CS + E*SN
210 El - -D*SN + E*CS
220 Fl - F
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230 IF TYPE-1 THEN GOSUB 700 ELSE IF TYPE - 2 THEN GOSUB 800
235 IF TYPE-3 THEN GOSUB 900
240 END
699 •

700 REM DRAW GRAPH OF PARABOLA
710 GOSUB 1000 'DETERMINE TRANSLATION
720 FOR X2 - -20 TO 20 STEP .2

730 Y2 - -A1*X2
A
2/E1

740 GOSUB 2100 'PLOT POINT
750 NEXT X2
760 RETURN
799 '

800 REM DRAW GRAPH OF ELLIPSE OR CIRCLE
810 GOSUB 1100 'DETERMINE TRANSLATION
820 XMAX-SQR(-F2/A1)
830 FOR X2--XMAX TO XMAX STEP .2

840 Y2 - SQR((-F2-A1*X2
A
2)/C1)

850 GOSUB 2100 'PLOT POINT
860 Y2 - -Y2
870 GOSUB 2100
880 NEXT X2
890 RETURN
899 '

900 REM DRAW GRAPH OF HYPERBOLA
910 GOSUB 1100 'DETERMINE TRANSLATION
915 IF (Al*F2)>0 THEN XYSWITCH-1 : SWAP Al.Cl
920 XMIN-SQR(-F2/A1)
930 FOR X3-XMIN+.1 TO XMIN+20 STEP .2

935 X2-X3
940 Y2 - SQR((-F2-A1*X2

A
2)/C1)

950 GOSUB 2100 'PLOT POINT
GOSUB 2100
GOSUB 2100
GOSUB 2100

990 NEXT X3
995 RETURN
999 '

1000 REM DETERMINE TRANSLATION FOR PARABOLA
1010 IF Al-0 THEN XYSWITCH-1 : SWAP Al.Cl: SWAP D1.E1
1020 H-D1/(2*A1) :K-(4*A1*F1-D1

A
2)/(4*A1*E1)

1030 RETURN
1099 '

1100 REM DETERMINE TRANSLATION FOR ELLIPSE OR HYPERBOLA
1110 H-D1/(2*A1) : K-E1/(2*C1)
1115 F2-F1-(D1'2/(4*A1)+E1

A
2/(4*C1))

1120 RETURN
1999 '

REM SET SCREEN TO GRAPHICS AND DRAW AXES
SCREEN 2

960 Y2 - -Y2
970 X2 - -X3
980 Y2 - -Y2

2000
2010
2020
2030
2040
2045
2050
2051
2060
2099
2100
2110
2120
2130
2140
2150
2160
2170
2190

SH-200 : SW-500
YC-SH/2 : XC-SW/2
LINE(XC,1)-(XC,SH)
LINE(1,YC)-(SW,YC)
XSCALE-50 : YSCALE-50

RETURN

'SCREEN HEIGHT AND SCREEN WIDTH
'COORDINATES OF CENTER OF SCREEN
'Y AXIS
'X AXIS
'THESE CAN BE ADJUSTED TO CHANGE
'SCALE OF DIAGRAM

REM PLOT POINT
X4 - X2 : Y4 - Y2
IF XYSWITCH-1 THEN SWAP X4.Y4
XI - X4 - H : Yl - Y4 - K 'PERFORM TRANSLATION
X - X1*CS - Y1*SN
Y - Y1*CS + X1*SN
XLOC-SW*XASCALE+XC
PSET(XLOC,YLOC)
RETURN

'PERFORM ROTATION

YLOC-SH- (SH*Y/YSCALE+YC)

Chapter 14

1. third side = arccos [cos (.6) x cos (1.4)] = 1.43

angles: 34.8°; 84.4°

2. third side = .6 rad; angles: 50.5°; 50.5°

3. third side = .03 rad; angles: 90°; 36.9°

4. third angle = 60.7°; sides: .15 rad; .30 rad

5. third side = arccos [cos
2

(.7) + sin
2

(.7) cos (40°)]

= .444 rad angles: 74.4°; 74.4°
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6. Use the law of cosines for angles for the angle

opposite .6093:

cos C = (cos .6093 - cos 1.5 cos 1.5)/(sin 1.5 sin 1.5)

C = 35°

Find the other two angles with same procedure:

88.7°; 88.7°

7. To find the side opposite 60°:

cos c = (cos 60° + cos 69.5° cos 54.7°)/(sin 69.5° sin 54.7°)

= .9188

c = .406; other sides: .44, .38

8. To find the angle opposite .7056:

cos C = -cos 34.67° cos 29.69° + sin 34.67° sin 29.69° cos .7056

C = 120°; the two sides measure .38 and .44.

9. Use the law of sines for the angle opposite 1.2:

sin C = sin 1.2 sin 80°/sin 1.42 = .9284

C could be either 68.2° or 111.8°; the diagram indicates

that it is an acute angle. Use this formula to find the

third side:

cos 1.2 cos 1.42 - sin 1.2 sin 1.42 cos 80° cos 68.2°
cos b =

1 - sin 1.2 sin 1.42 sin 80° sin 68.2°

b = 1.6; other angle = 95.2°

10. The three sides are all it/2.

11. third side: .179; angles: 134° and 33°

12. third angle 91.4°; sides: .68 and .326

13. third side: .3; angles: 40.6°; 104.3°

14. third angle: 94.2°; sides: 2 and 2

15. third side: .08; angles: 17.2° and 150°

16. Convert each side to radians (using r = 6375).

Here are the calculations for the three-sides rule:

Figure 14-1: cos .16437 = .9865

= cos .1 cos .13067

= .995 x .9915

Figure 14-2: cos .83209 = .6733

= cos .78431 cos .31373

= .7079 x .9512

17. Vr 2
cos

2
cJ>cos

2
-I- r

2
cos

2
<t>sin

2 + r
2
sin

2
4>

= rVcos 2
cj)(cos

2 + sin
2

0) + sin
2

4>

= rVcos 2
<J) + sin

2
<$> = r
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18. latitude = arctan (z/Vx 2 + y
2
); longitude =

arctan (y/x) (Make sure that the longitude is in the

correct quadrant. See Chapter 10, Exercise 66.)

19. x = 6375 y Z =

20. x = y = 6375 z =

21. X = y z = 6375

22. X = y = 5520.9 z = 3187.5

23. X = y = -6375 z =

Latitude Longitude

24. -30 250

25. -60 80

26. 40 120

27. 40 150

28. 70 120

29. (a) cos d = sin
2

<}> + cos
2

cj> cos D

(d is the distance between the two points in radians)

(b) The radius (r 2 ) of the circle of latitude whose
latitude is equal to ct> can be found from this formula:

r2 = r cos (J)

Then the distance = rD cos cj>, where D, the difference

in longitude, is measured in radians.

(c) The hunter's course is a constant latitude course,

not a great circle course, but for a triangle this small,

the difference between the two is very small.

(d) distance along great circle course:

cos d = sin
2
(42°) + cos

2
(42°) cos (100°) = .3518

distance = r arccos .3518

= 6375 x (1.2113 rad)

= 7722 km

distance along constant latitude course:

6375 x (1.7453 radians) x cos 42° = 8268 km

30. From the law of cosines for angles:

cos K = —cos S 2 cos D] + sin S 2 sin D a cos s a

Once K is known, use the law of cosines again:

cos h = (cos S 2 + cos D a cos K)/(sin D a sin K)

31. 1 REM PROGRAM TO CALCULATE DISTANCE BETWEEN TWO CITIES
,

2 REM AND GIVE THE LONGITUDE AND LATITUDE OF SEVERAL POINTS PniltOUt 1 1
3 REM ALONG THE GREAT CIRCLE COURSE BETWEEN THE CITIES
10 PI-3.U159
20 DEF FNRAD(X)-PI*X/180
30 DEF FNDEG(X)-180*X/PI
U0 DEF FNASN(X)-ATN(X/SQR(1-X*X))
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50 DEF FNACS(X)=ATN(SQR(1-X*X)/X)+PI*(X-ABS(X))/(2*X)
60 R-6375
100 INPUT "LONGITUDE OF CITY 1:";L0N1
110 INPUT "LATITUDE OF CITY 1:";LAT1
115 S1=90-LAT1 'ANGULAR DISTANCE FROM NORTH POLE TO POINT 1

120 INPUT "LONGITUDE OF CITY 2:";LON2
130 INPUT "LATITUDE OF CITY 2:";LAT2
135 S2-90-LAT2 'ANGULAR DISTANCE FROM NORTH POLE TO POINT 2

140 LONIR-FNRAD(LONI) : SlR-FNRAD(Sl) 'THE R AT THE END INDICATES
150 LON2R-FNRAD(LON2):S2R=FNRAD(S2) 'THE QUANTITY IS MEASURED IN RADIANS
1000 REM CALCULATE DISTANCE BETWEEN THE CITIES
1010 COSD - C0S(S1R)*C0S(S2R)+SIN(S1R)*SIN(S2R)*C0S(L0N2R-L0N1R)
1015 D - FNACS(COSD) 'DISTANCE IN RADIANS
1020 DIST - R*D 'DISTANCE IN KILOMETERS
1025 PRINT "DISTANCE=";DIST
1030 CRC0S-(C0S(S2R)-C0S(S1R)*C0S(D))/(SIN(S1R)*SIN(D))
1033 CRSANG-FNACS(CRCOS) 'INITIAL COURSE ANGLE WITH NORTH POLE
1036 PRINT "INITIAL COURSE ANGLE: " ;FNDEG(CRSANG)
1039 REM DETERMINE POINTS ON GREAT CIRCLE COURSE
1040 FOR LON-LON1+1 TO LON2
1050 LONR-FNRAD(LON)
1060. LONDIFF-LONR-LON1R
1070 KC0S--C0S(CRSANG)*C0S(L0NDIFF)+SIN(CRSANG)*SIN(L0NDIFF)*C0S(S1R)
1080 K-FNACS(KCOS)
1085 HC0S-(C0S(CRSANG)+C0S(L0NDIFF)*C0S(K))/(SIN(L0NDIFF)*SIN(K)>
1090 LATR-PI/2-FNACS(HC0S)
1100 LAT-FNDEG(LATR)
1110 PRINT USING "#####.##" ;L0N;LAT; : PRINT " ";

1115 IF (LON/3)-INT(LON/3) THEN PRINT
1120 NEXT LON
1130 END

32.

Lond NY LA Hon Anch Tokyo Sydn Paris

London 5580 8798 8296 7282 9588 9875 264

New York 3919 8013 5399 9243 9532 5792

Los Angeles 04173 3773 8800 8067 9053

Honolulu 4494 6184 5182 8037

Anchorage 5518 5105 7534

Tokyo 1026 9700

Sydney 9732

Paris

33. 1 REM THIS PROGRAM CALCULATES THE ALTITUDE ANGLE OF THE SUN

Printout 12 10 PI - 3 - 1* 159
20 DEF FNASN(X) - ATN(X/SQR(1-X*X)

)

30 INPUT "ENTER YOUR LATITUDE IN DEGREES :"; LAT
40 LATR = PI*LAT/180 'CONVERT TO RADIANS
100 FOR N - 1 TO 365 : PRINT USING "#*##" ;N;

110 DEC - -23.45 * COS( (PI/180)*(360*(N+10)/365)

)

115 DECR - DEC*PI/180 'CONVERT TO RADIANS
120 FOR T - 6 TO 18 STEP 3

130 H - 360 * (T - 12)/24
140 SINALT - SIN(LATR)*SIN(DECR) + COS(LATR)*COS(DECR)*COS(PI*H/180)
150 ALT - 180*FNASN(SINALT)/PI
160 PRINT USING "#######.#"; ALT

;

170 NEXT T
180 PRINT
190 NEXT N

34. = sin c}) sin d + cos d> cos d cos (t - RA)

sin 4) sin d = -cos 6 cos d cos (t - RA)

cos (t - RA) - -tan <t> tan d

t - RA = ± arccos (tan 6 tan d)

t = RA ± arccos (tan 6 tan d)
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35. (a) If 4> = 0, then arccos (tan <}> tan d) is tt/2, and
the star will be visible for 12 hours. Therefore, if you
live on the equator, all stars will be in the sky for 12

hours, regardless of their location.

(b) If d = 0, then the star will again be visible for 12

hours (see the previous part), d = for stars along the

celestial equator. These stars will be visible for 12

hours, regardless of your latitude.

(c) tan 4> tan d will be positive, so the arccos will be
less than tt/2, and [it - arccos (tan (}> tan d) will be

greater than tt/2, and the star will be in the sky for

more than 12 hours. Note that, if the star is north of the

celestial equator, it will stay above the horizon longer

the farther north you go. For example, in the spring

and summer the sun is north of the celestial equator,

and it is above the horizon longer the farther north you
are.

(d) The result will be the opposite of the previous

part. The star will be above the horizon for less than 12

hours. For example, in the fall and winter the sun is

south of the celestial equator, and it is above the

horizon for a shorter time the farther north you are.

(e) tan (6 + d) = x

tan cj) + tan d

1 - tan 4> tan d

tan (J> tan d = 1

T = 2 x 12/ir [it - arccos 1]

T = 2 X 12/ir x 7T = 24

These stars are in the sky for 24 hours—that is, they

never set. They will just graze the northern horizon

(assuming our observer is in the northern hemisphere).

For example, if you are at latitude 40° north, all stars

with declination of 50° or greater will be above the

horizon all the time.

(f) tan ((t> + d) <

which means tan c}> tan d > 1

Then the formula requires you to take the arccosine of

a negative number. These stars never touch the horizon

at all. See part (e).

4> - d = -rr/2

(g) tan ft - d) = «

tan (J> tan d = - 1

T = 2 x 12/ir [it - arccos (-1)]

T = 2 x 12/ir x (it - it) =

These stars just touch the southern horizon at
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one time, but they never rise above it. If d = <±> — k,

where k > ir/2, you would have to take the arccosine of

a number less than negative 1. These stars never even
touch the horizon. For example, if you are at latitude

40°, you will never see a star at declination -51°.

_- . 36. 1 REM THIS PROGRAM READS IN THE LATITUDE OF THE OBSERVER,

rTiniOUt 13 2 REM THE LOCAL SIDEREAL TIME, AND THE RIGHT ASCENSION AND
3 REM DECLINATION OF A STAR, AND THEN CALCULATES THE ALTITUDE
4 REM OF THAT STAR
10 PI - 3.14159
20 DEF FNASN(X)-ATN(X/SQR(1-X*X))
30 INPUT "ENTER LATITUDE IN DEGREES :"; LAT
40 INPUT "ENTER LOCAL SIDEREAL TIME IN HOURS :";T
50 INPUT "ENTER RIGHT ASCENSION OF STAR IN HOURS :";RA
60 INPUT "DECLINATION OF STAR IN DEGREES :" ;DEC
70 REM CONVERT EACH MEASUREMENT TO RADIANS
80 LATR-LAT*PI/180
90 TR-T*PI/12
100 RAR-RA*PI/12
110 DECR-DEC*PI/180
120 HR - TR-RAR 'HOUR ANGLE IN RADIANS
130 ALT-FNASN(SIN(LATR)*SIN(DECR)+COS(LATR)*COS(DECR)*COS(HR))
140 ALT-180*ALT/PI 'CONVERT TO DEGREES
150 PRINT "ALTITUDE:"; : PRINT USING "####.#"; ALT
160 END

(b) Sirius 17.3°; Alpha Centauri -25.4° (this star is

not visible); Vega 1.6°; Rigel 8.4°; Alioth 57.6°; Polaris

39.6°.

37. sin H = sin z sin M/sin d'

= sin 10° sin 707sin 51.2°

= .20938

H = 12.086°

cos 51.2° cos 10° - sin 51.2° sin 10° cos 12.086° cos 70°
cos s =

1 - sin 51.2° sin 10° sin 12.086° sin 70°

s = 54°; latitude = 36°

38. ctn A ctn B = x
tan A tan B

sin b sin a

tan a tan b

(using the formulas for

tangents on page 222)

cos a sin b cos b sin a

sin a sin b

= cos a cos b

ctn A ctn B = cos c

(using the three-sides formula)

39. three sides formula:

1 - c
2
/2 = (1 - a

2
/2)(l - b

2
/2)

1 - c
2
/2 = 1 - a2/2 - b

2
/2 + a

2
b
2
/4

If a and b are very small, then a
2
b
2
will be so small

that it can be treated as if it were zero. Then the

292 Answers to Exercises



equation can be written c~ = a~ + b". which is the

same as the Pythagorean theorem.

sin A = a/c

cos A = b/c

tan A = a/b

This exercise shows that spherical triangles

whose sides are small (relative to the sphere) behave
approximately the same as plane triangles. This
matches our everyday experience; we are used to

treating a small portion of the surface of the Earth as if

it were a plane.

40. From Figure 14-20:

-cos Si cos S 2 + sin S a sin S 2 cos d

= -cos 61.51° cos 103.16°

+ sin 61.51° sin 103.16° cos .57

= -.4770 x (-.2277) + .8789 x .9737 x .8419

= .829

Since cos D = cos 34° = .829, the law of cosines for

angles works.

41. (a) a' = 146°; b' = 76.844°; c' = 118.503°;

A' = 147. 34°, B' = 110°; C = 122°

(b) sin 1467sin 147.34° = sin 76.844°/sin 110°

= sin 118.5037sin 122°

= 1.036

cos 118.503° = cos 146° cos 76.844°

+ sin 146 sin 76.844°

x cos 122°

= -.4772

(c) the original triangle

42. Write the law of cosines for sides for the polar

triangle from Exercise 41:

cos c' = cos a' cos b' + sin a' sin b' cos C
Since c' = 180 - C, and so on, we can rewrite the

equation in terms of the parts of the original triangle:

cos (180 - C) = cos (180 - A) cos (180 - B)

+ sin (180 - A) sin (180 - B) cos (180 - c)

Since cos (180 - x) = -cos x, and sin (180 - x) =

sin x, we have:

-cos C = (-cos A)(-cos B)

+ sin A sin B ( - cos c)
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cos C = - cos A cos B + sin A sin B cos c

cos (b - c) - cos a
43. 1 - cos A =

sin b sin c

From the identity sin
2 = (1 - cos 26)/2, we can find

that 1 - cos A = 2 sin
2
(A/2):

cos (b - c) - cos a
2 sin

2
(A/2) =

sin b sin c

From the identity cos - cos <J>
=

-2 sin [(0 + <J>)/2] sin [(0 -
<f>)/2] we can rewrite the

numerator of the right hand side:

2fA/ol -2 sin [(a + b - c)/2] x sin [(-a + b - c)/2]
2 sin

2
(A/2)

sin
2
(A/2)

sin b sin c

sin [(a + b - c)/2] sin [(a - b + c)/2]

sin b sin c

Since s = (a + b + c)/2, this can be rewritten:

,

sin (s - b) sin (s - c)
sin A/2) = y . .

v sin b sin c

From symmetry, these formulas also are true:

/sin (s - a) sin (s - c)
sin (B/2) = '

sin a sin c

,

sin (s - a) sin (s - b)
sin C/2 = \l : r—r

> sin a sin b

44. sin (A/2) cos (B/2)

sin (s - b) sin (s - c) sin s sin (s - b)

sin b sin c sin c sin a

sin (s - b) /sin s sin (s - c)

sin c V sin a sin b

sin (s - b) cos (C/2)

sin c

Following the same procedure we can find:

. ,„, , . , , sin (s - a) cos (C/2)
sin B/2 cos (A/2 = — s

sin c

Then:

sin (A/2) cos (B/2) - sin (B/2) cos (A/2)

[sin (s - b) - sin (s - a)] cos (C/2)

sin c

The right hand side can be rewritten using the

difference formula for sines:
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[sin (s - b) - sin (s - a)]cos (C/2)

sin c

_ 2 cos [(2s - a - b)/2] sin [(a - b)/2] cos (C/2)

sin c

Since 2s - a - b = c, and
sin c = 2 sin (c/2) cos (c/2), we have:

_ 2 cos (c/2) sin [(a - b)/2] cos (C/2)

2 sin (c/2) cos (c/2)

_ sin [(a - b)/2] cos (C/2)

sin (c/2)

The left hand side can be rewritten:

sin (A/2) cos (B/2) - sin (B/2) cos (A/2)

= sin [(A - B)/2]

Therefore:

sin [(A - B)/2] _ sin [(a - b)/2]

cos (C/2) sin (c/2)

There are other formulas that can be derived in a

similar manner:

cos [(A - B)/2J sin [(a + b)/2]

sin (C/2) sin (c/2)

sin [(A + B)/2] cos [(a - b}/2]

cos (C/2) cos (c/2)

cos [(A + B)/2] cos [(a + b)/2]

1^

sin (C/2) cos (c/2)

13.

tan KA - B)/2] =
sin [(A

cos [(A

- B)/2]

- b)/2]

=

sin [(a - b)/2] cos (C/2)

sin (c/2)

sin [(a + b)/2] sin (C/2)

sin (c/2)

= sin [(a - b)/2] ctn (C/2)

sin [(a + b)/2]

tan [(A - B)/2] sin [(a - b)/2]

ctn
(
C/2) sin [(a + b)/2]

Chaptei 15

1. For small x, sin x = X

2. For small x, cos x = 1 - x2
/2
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3.

Mnmhpr .

X

of terms 0.1 1 -ir/2 tt/6 tt/4

2 0.9983 0.8333 0.9248 0.4997 0.7047

3 0.9983 0.8417 1.0045 0.5000 0.7071

4 0.9983 0.8415 0.9998 0.5000 0.7071

5 0.9983 0.8415 1.0000 0.5000 0.7071

sin x 0.9983 0.8415 1.0000 0.5000 0.7071

As you can see, for small values of x this series

converges very rapidly to the true value for sin x.

4. Since tan (ir/4) = 1, it follows that n74 = arctan 1.

Therefore,

it 1111- = 1 + +
4 3 5 7 9
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Glossary
abscissa Abscissa means x coordinate.

absolute value The absolute value of a real

number a is

if a > 0: if a <

The absolute va lue of a complex number a +
bi is \ a

2 + b
2

.

acute angle An acute angle is an angle that

measures less than 90°.

acute triangle An acute triangle is a triangle that

contains three acute angles,

altitude An altitude of a triangle is a line

segment connecting one vertex of the triangle

to the line containing the opposite side; it is

perpendicular to the opposite side.

amplitude The amplitude of the periodic

function A sin t is A.

angle An angle is the union of two rays with a

common end point.

arc An arc is a curve that is part of a circle.

arccos. arccsc, arcctn. arcsec. arcsin,

arctan These are the inverse functions for the

six trigonometric functions.

argument The argument of a function is the

independent variable that is put into the

function,

asymptote An asymptote is a straight line that is

a close approximation to a particular curve as

the curve goes off to infinity in one direction.

The curve comes very close to the asymptote
line, but it never touches it.

axis (1) The x axis in cartesian coordinates is the

line y = 0. The y axis is the line x = 0. (2)

The axis of a figure is a line about which the

figure is symmetrical.

binomial A binomial is the sum of two terms.

such as 2a~ ~ lOxy.

Cartesian coordinates A Cartesian coordinate

system is a system in which each point on a

plane is identified by an ordered pair of

numbers representing its distances from two
perpendicular lines, or in which each point in

space is similarly identified by its distances

from three perpendicular planes.

central angle A central angle is an angle whose
vertex is at the center ot a circle.

circle A circle is a set of points in a plane that

are all the same distance from a given point.

circumference The circumference of a closed

curve (such as a circle) is the total distance

around the outer edge of the curve.

coefficient Coefficient is a technical term for

something that multiplies something else,

usually a fixed number multiplying a variable.

cofunction The cofunction of the sine function is

the cosine Junction: the cofunction of the

tangent function is the cotangent function: and

the cofunction of the secant function is the

cosecant function.

common logarithm A common logarithm is a

logarithm to the base 10.

complex number A complex number is formed
by adding a pure imaginary number to a real

number. The general form of a complex
number is a - bi. where a and b are real

numbers and i = \ -1.

congruent Two triangles are congruent if they

have the same shape and size.

conic sections The four curves—circle, ellipse.

parabola, and hyperbola—are called conic

sections because they can be formed by the

intersection of a plane with a right circular

cone,

conjugate The conjugate of a complex number is

formed by reversing the sign of the imaginary

part.

coordinates The coordinates of a point are a set

of numbers that identify the location of that

point.

cos This is the abbreviation for cosine.

cosecant The cosecant function is the reciprocal

of the sine function.

cosine Cosine is a trigonometric function. For an

acute angle in a right triangle, the cosine is the

length of the adjacent side divided by the

length of the hypotenuse. For the general

definition, see Chapter 5.

cotangent Cotangent is a trigonometric function

abbreviated ctn:

ctn x = tan (I-) tan x

degree A degree is a unit of measure for angles.

One degree is equal to ikrAh of a full rotation.

The symbol for degree is a little raised circle: °.

denominator The denominator is 'he bottom part

of a fraction.

dependent variable The dependent variable

stands for any of the set of output numbers of a

function. In the equation y = /(x). y is the

dependent variable and x is the independent
variable.

diameter The diameter of a circle is the length of

a line segment joining two points on the circle

and passing through the center.

discriminant See quadratic formula.

eccentricity The eccentricity of a conic section is

a number that indicates the shape of the conic
section.

equation An equation is a statement that says

two mathematical expressions have the same
value.

equilateral triangle An equilateral triangle is a
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triangle with three equal sides. An equilateral

triangle has three 60° angles.

even number An even number is a number that

is divisible evenly by 2, such as 2, 4, 6, 8, 10,

exponent An exponent is a number that

indicates the operation of repeated

multiplication.

factor A factor is one of two or more expressions

that can be multiplied together to get a given

expression; they are said to be factors of that

expression.

factorial The factorial of a positive integer is the

product of all the integers from 1 up to that

number. The exclamation point ! is used to

designate the factorial. For example, 4! = 4 x

3 x 2 x 1 = 24.

frequency The frequency of a wave is the

number of crests that pass a given point each
second.

function A function is a rule that turns one
number into another number.

geometric series A geometric series is a sum of

terms of the form a + ar + ar2 + ar3 + ••• +
ai-"-

1
.

graph The graph of an equation is the set of

points (with values given by coordinates) that

make the equation true.

hyperbola A hyperbola is the set of points in a

plane such that the difference between the

distances to two fixed points is a constant.

hypotenuse The hypotenuse is the side of a right

triangle that is opposite the right angle.

i i is the basic unit for imaginary numbers, i is

defined by the equation i

2 = — 1.

identity An identity is an equation that is true

for all possible values of the unknowns it

contains.

imaginary number An imaginary number (or a

pure imaginary number) is a number of the

form bi, where b is a real number and i
=

independent variable The independent variable

stands for any of the set of input numbers to a

function.

integers The set of integers contains zero, the

natural numbers, and the negatives of the

natural numbers:

6, -5, 4, -3,

5,6, .

1. 0, 1, 2, 3, 4,

inverse function The inverse function of a

function is the function that does exactly the

opposite of the original function. See Chapter 10

for a description of the inverse trigonometric

functions.

irrational number An irrational number is a real

number that cannot be expressed as the ratio of

two integers.

isosceles triangle An isosceles triangle has two
equal sides.

logarithm The equation y = a
x can be written x

= log,, y, which means "x is the logarithm of y
to the base a."

major axis The major axis of an ellipse is the
line segment joining two points on the ellipse

that passes through the two focus points.

minute A minute is a unit of measure for angles.

One minute = ik degree.

numerator The numerator is the top part of a

fraction.

obtuse angle An obtuse angle is an angle larger

than a 90° angle.

obtuse triangle An obtuse triangle is a triangle

that contains one obtuse angle.

odd number An odd number is a natural number
that is not divisible by 2, such as 1, 3, 5, 7, 9,

ordinate The ordinate of a point is another name
for y coordinate.

origin The origin is the point (0, 0) of a

Cartesian coordinate system.

parabola A parabola is the set of all points that

are equally distant from a fixed point (called

the focus) and a fixed line (called the

directrix).

periodic A periodic function is a function that

keeps repeating the same pattern of values.

Formally, a function f(x) is periodic if there

exists a number p such that /(x + p) = /(x)

for all x.

perpendicular Two lines are perpendicular if

they meet so as to form a right angle.

pi The Greek letter tt (pi) is used to represent the

ratio between the circumference of a circle and
its diameter:

_ circumference

diameter

This ratio is the same for any circle, tt is an
irrational number with the decimal

approximation 3.14159.

plane A plane is a flat surface (like a table top)

that stretches to infinity in all directions.

polar coordinates Any point in a plane can be
identified by listing its distance from a

specified origin and the angle between a

specified 0° direction and the line connecting
the point to the origin. This system is called

the polar coordinate system. See Chapter 11.

polynomial A polynomial in x is an algebraic

expression of the form a nx
n + a n -iX

n ' x + •
+ a 2x

2 + a,x + a where a n a are

constants that are the coefficients of the

polynomial. The degree of the polynomial is

the highest power of the variable that appears

(in this case n).

power A power of a number indicates repeated

multiplication. For example, the third power of

5 is 5
3 = 5x5x5 = 125.

Pythagorean theorem The Pythagorean theorem
relates the three sides of a right triangle: c

2 =

a
2 + b

2
, where c is the side opposite the right

angle (called the hypotenuse) and a and b are

the sides adjacent to the right angle.

quadrant The x and y axes in a Cartesian

coordinate system divide a plane into four

quadrants. The quadrant where x and y are

both positive is called the first quadrant; where
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x is negative and y is positive is called the

second quadrant; where x and y are both
negative is called the third quadrant; and
where x is positive and y is negative is called

the fourth quadrant.

quadratic equation A quadratic equation in one
variable, x, is an equation of the form

ax 2 + bx + c =

A quadratic equation in two variables, x and y,

is an equation of the form

Ax 2 + Bxy + Cy 2 + Dx + Ey + F =

The quantity B 2 - 4AC is called the

discriminant because its value determines the

nature of the solution. See Chapter 13.

quadratic formula The quadratic formula states

that the solutions to the equation ax 2 + bx +
c = are

-b ± Vb 2 - 4ac

2a

The quantity b
2 - 4ac is called the

discriminant.

radian measure Radian measure is a system for

measuring angles in which one complete
rotation measures 2tt radians.

radical The radical symbol V is used to

indicate a root of a number.
radius The radius of a circle is the distance from

the center of the circle to a point on the circle.

rational number A rational number is any
number that can be expressed as the ratio of

two integers.

ray A ray is like half of a line: it has one end
point, and then goes off forever in a straight

line.

real numbers The set of real numbers is the set

of all numbers that can be represented by a

point on a number line. The set of real

numbers includes all rational numbers and all

irrational numbers.
reciprocal The reciprocal of a number a is 1/a.

right angle A right angle is an angle that

measures 90°.

right triangle A right triangle is a triangle that

contains one right angle.

root The process of taking a root of a number is

the opposite of raising that number to a power.

scalene A scalene triangle is a triangle in which
no two sides have equal length.

scientific notation Scientific notation is a short

way of writing very large or very small

numbers. A number in scientific notation is

expressed as a number between 1 and 10

multiplied by a power of 10.

secant The secant function is the reciprocal of

the cosine function.

second A second is a unit of measure for angles.

One second = A minute = ^ihm degree,

semimajor axis The semimajor axis of an ellipse

is equal to one-half the longest distance across

the ellipse.

semiminor axis The semiminor axis of an ellipse

is equal to one-half the shortest distance across

the ellipse.

simultaneous equations A system of

simultaneous equations is a group of equations

that must all be true at the same time.

sin Abbreviation for sine.

sine A trigonometric function. In a right triangle

the sine of an acute angle is equal to the length

of the opposite side divided by the length of

the hypotenuse. For the general definition of

the sine function see Chapter 5.

slope The slope of a line is a number that

measures how steep the line is. A horizontal

line has a slope of zero. A vertical line has an
infinite slope.

solution The solution of an equation is the

value(s) of the variable(s) contained in that

equation that make(s) the equation true.

square The square of a number is found by

multiplying that number by itself.

square root The square root of a number a

(written Va) is a number that, when multiplied

by itself, gives a.

substitution property The substitution property

states that, if a = b, then you can replace the

expression a anywhere it appears by the

expression b if you want to.

sum The sum is the result when two or more
numbers are added.

tan This is the abbreviation for tangent.

tangent Tangent is a trigonometric function. The
tangent of an acute angle in a right triangle is

equal to the length of the opposite side divided

by the length of the adjacent side. For the

general definition of the tangent function see

Chapter 5.

triangle A triangle consists of three line

segments joined end to end.

wavelength The wavelength of a wave is the

distance between crests.
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Summary of
Trigonometric

Formulas

Trigonometric functions for right triangles

acute angles

opposite side

Let A be one of the acute angles in a right

triangle. Then,

sin A =

cos A =

tan A =

hypotenuse

adjacent side

hypotenuse

opposite side

adjacent side

Trigonometric functions: General definition

Consider a point (x, y) in a Cartesian coordinate

system. Let r be the distance from that point to the

origin, and let A be the angle between the x axis and
the line connecting the origin to that point. Then,

v
sin A = -

cos A = -
r

V
tan A = -

Radian measure

it rad = 180°
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Special values

Degrees Radians sin cos tan

0° 1

30°
TT

6

1

2

V3
2

1

V3

45°
7T

4

1 1

V2
1

60°
3

V3
2

1

2
V3

90°
TT

2
1 Undefined (infinite)

Trigonometric identities

These equatior

value of A and B.

Reciprocal functions

These equations are true for every allowable

value of A and B.

A
1

esc A = 1
sin A —

esc A sin A

1
sec A = 1

COS A —
sec A cos A

1
ctn A = 1

tan /! — .

ctn A tan A

Cofunctions (radian form)

sin A = cos 1
— - A

J

cos A = sin
(i-

- A

tan A = ctn ( A

)

ctn A = tan (!-- A

sec A = esc ( A
)

esc A = sec
(I-

- A

Negative angle relations

sin (-A) = -sin A

cos (- A) = cos A

tan (-A) = - tan A

Quotient relations

tan A
sin A
cos A

ctn A
cos A
sin A
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Supplementary angle relations

The angles A and B are supplementary angles if A + B
= tt.

sin (it - A) = sin A

cos [tt - A) = -cos A

tan (it - A) = -tan A

Pythagorean identities

sin
2 A + cos 2 A = 1

tan
2 A + 1 = sec

2 A

ctn
2 A + 1 = esc

2 A

Functions of the sum of two angles

sin [A + B) = sin A cos B + sin B cos A

cos [A + B) = cos A cos B - sin A sin B

tan A + tan B
tan {A + B) =

:1
' 1 - tan A tan B

Functions of the difference of two angles

sin [A - B) = sin A cos B - sin B cos A

cos [A - B) = cos A cos B + sin A sin B

tan A - tan B
tan [A - B) = : -

' 1 + tan A tan B

Double-angle formulas

sin (2A) = 2 sin A cos A

cos (2A) = cos 2 A - sin
2 A

= 1-2 sin
2 A

= 2 cos
2 A - 1

, .

,

2 tan A
tan (2A) " r^i^A

Squared formulas

1
sin

2 A = - (1 - cos 2A)

1
cos

2 A = - (1 + cos 2A)

Half-angle formulas

. A
sin —

2

=

+ i

± *

± -

£
- cos A

2

A
cos —

2 £ + cos A
2

tan —
2 A

- cos A
+ cos A
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Product formulas

sin A cos B = - [sin [A + B) + sin (A - B)]

cos A sin B = - [sin [A ^ B) - sin (A - B)]

cos A cos B = - [cos {A + B) + cos (A - B)]

sin A sin B = -- [cos [A + B) - cos (A - B)]

Sum formulas

. A + B A - B
sin A + sin B = 2 sin—-— cos —-

—

A + B A - B
cos A + cos B = 2 cos—-— cos—-

—

Difference formulas

A + B . A - B
sin A - sin B = 2 cos—-— sin—-

—

. A + B . A - B
cos A - cos B = - 2 sin—-— sin—-

—

Formulas for triangles

Let a be the side of a triangle opposite angle A,

let b be the side opposite angle B, and let c be the side

opposite angle C.

Law of cosines

c
2 = a

2 + b
2 - 2ab cos C

Law of sines

sin A sin B sin C
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Tables of
Trigonometric

Functions

Trigonometric Function Table

Degrees Sin Cos Tan Radians Degrees Sin Cos Tan Radians

0.0 0.00000 1.00000 0.00000 0.00000 9.0 0.15643 0.98769 0.15838 0.15708
0.2 0.00349 0.99999 0.00349 0.00349 9.2 0.15988 0.98714 0.16196 0.16057
0.4 0.00698 0.99998 0.00698 0.00698 9.4 0.16333 0.98657 0.16555 0.16406

0.6 0.01047 0.99995 0.01047 0.01047 9.6 0.16677 0.98600 0.16914 0.16755
0.8 0.01396 0.99990 0.01396 0.01396 9.8 0.17021" 0.98541 0.17273 0.17104

1.0 0.01745 0.99985 0.01746 0.01745 10.0 0.17365 0.98481 0.17633 0.17453
1.2 0.02094 0.99978 0.02095 0.02094 10.2 0.17708 0.98420 0.17993 0.17802

1.4 0.02443 0.99970 0.02444 0.02443 10.4 0.18052 0.98357 0.18353 0.18151
1.6 0.02792 0.99961 0.02793 0.02793 10.6 0.18395 0.98294 0.18714 0.18500
1.8 0.03141 0.99951 0.03143 0.03142 10.8 0.18738 0.98229 0.19076 0.18850

2.0 0.03490 0.99939 0.03492 0.03491 11.0 0.19081 0.98163 0.19438 0.19199

2.2 0.03839 0.99926 0.03842 0.03840 11.2 0.19423 0.98096 0.19801 0.19548
2.4 0.04188 0.99912 0.04191 0.04189 11.4 0.19766 0.98027 0.20164 0.19897

2.6 0.04536 0.99897 0.04541 0.04538 11.6 0.20108 0.97958 0.20527 0.20246
2.8 0.04885 0.99881 0.04891 0.04887 11.8 0.20450 0.97887 0.20891 0.20595

3.0 0.05234 0.99863 0.05241 0.05236 12.0 0.20791 0.97815 0.21256 0.20944

3.2 0.05582 0.99844 0.05591 0.05585 12.2 0.21132 0.97742 0.21621 0.21293

3.4 0.05931 0.99824 0.05941 0.05934 12.4 0.21474 0.97667 0.21986 0.21642

3.6 0.06279 0.99803 0.06291 0.06283 12.6 0.21814 0.97592 0.22353 0.21991

3.8 0.06627 0.99780 0.06642 0.06632 12.8 0.22155 0.97515 0.22719 0.22340

4.0 0.06976 0.99756 0.06993 0.06981 13.0 0.22495 0.97437 0.23087 0.22689
4.2 0.07324 0.99731 0.07344 0.07330 13.2 0.22835 0.97358 0.23455 0.23038
4.4 0.07672 0.99705 0.07695 0.07679 13.4 0.23175 0.97278 0.23823 0.23387

4.6 0.08020 0.99678 0.08046 0.08029 13.6 0.23514 0.97196 0.24193 0.23736
4.8 0.08368 0.99649 0.08397 0.08378 13.8 0.23853 0.97113 0.24562 0.24086

5.0 0.08716 0.99619 0.08749 0.08727 14.0 0.24192 0.97030 0.24933 0.24435

5.2 0.09063 0.99588 0.09101 0.09076 14.2 0.24531 0.96945 0.25304 0.24784

5.-4 0.09411 0.99556 0.09453 0.09425 14.4 0.24869 0.96858 0.25676 0.25133

5.6 0.09758 0.99523 0.09805 0.09774 14.6 0.25207 0.96771 0.26048 0.25482

5.8 0.10106 0.99488 0.10158 0.10123 14.8 0.25545 0.96682 0.26421 0.25831

6.0 0.10453 0.99452 0.10510 0.10472 15.0 0.25882 0.96593 0.26795 0.26180

6.2 0.10800 0.99415 0.10863 0.10821 15.2 0.26219 0.96502 0.27169 0.26529

6.4 0.11147 0.99377 0.11217 0.11170 15.4 0.26556 0.96410 0.27545 0.26878

6.6 0.11494 0.99337 0.11570 0.11519 15.6 0.26892 0.96316 0.27920 0.27227

6.8 0.11840 0.99297 0.11924 0.11868 15.8 0.27228 0.96222 0.28297 0.27576

7.0 0.12187 0.99255 0.12278 0.12217 16.0 0.27564 0.96126 0.28675 0.27925

7.2 0.12533 0.99211 0.12633 0.12566 16.2 0.27899 0.96029 0.29053 0.28274

7.4 0.12880 0.99167 0.12988 0.12915 16.4 0.28234 0.95931 0.29432 0.28623

7.6 0.13226 0.99122 0.13343 0.13264 16.6 0.28569 0.95832 0.29811 0.28972

7.8 0.13572 0.99075 0.13698 0.13614 16.8 0.28903 0.95732 0.30192 0.29322

8.0 0.13917 0.99027 0.14054 0.13963 17.0 0.29237 0.95631 0.30573 0.29671

8.2 0.14263 0.98978 0.14410 0.14312 17.2 0.29571 0.95523 0.30955 0.30020
8.4 0.14608 0.98927 0.14767 0.14661 17.4 0.29904 0.95424 0.31338 0.30369

8.6 0.14954 0.98876 0.15124 0.15010 17.6 0.30237 0.95319 0.31722 0.30718
8.8 0.15299 0.98823 0.15481 0.15359 17.8 0.30570 0.95213 0.32106 0.31067
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Degrees Sin Cos Tan Radians

18.0 0.30902 0.95106 0.32492 0.31416
18.2 0.31233 0.94997 0.32878 0.31765
18.4 0.31565 0.94888 0.33266 0.32114
18.6 0.31896 0.94777 0.33654 0.32463
18.8 0.32227 0.94665 0.34043 0.32812

19.0 0.32557 0.94552 0.34433 0.33161
19.2 0.32887 0.94438 0.34824 0.33510
19.4 0.33216 0.94322 0.35216 0.33859
19.6 0.33545 0.94206 0.35608 0.34208
19.8 0.33874 0.94088 0.36002 0.34557

20.0 0.34202 0.93969 0.36397 0.34907
20.2 0.34530 0.93849 0.36793 0.35256
20.4 0.34857 0.93728 0.37190 0.35605
20.6 0.35184 0.93606 0.37587 0.35954
20.8 0.35511 0.93483 0.37986 0.36303

21.0 0.35837 0.93358 0.38386 0.36652
21.2 0.36162 0.93232 0.38787 0.37001
21.4 0.36488 0.93106 0.39190 0.37350
21.6 0.36812 0.92978 0.39593 0.37699
21.8 0.37137 0.92849 0.39997 0.38048

22.0 0.37461 0.92718 0.40403 0.38397
22.2 0.37784 0.92587 0.40309 0.38746
22.4 0.38107 0.92455 0.41217 0.39095
22.6 0.38430 0.92321 0.41626 0.39444
22.8 0.38752 0.92186 0.42036 0.39793

23.0 0.39073 0.92051 0.42447 0.40143
23.2 0.39394 0.91914 0.42860 0.40492
23.4 0.39715 0.91775 0.43274 0.40841
23.6 0.40035 0.91636 0.43689 0.41190
23.8 0.40354 0.914% 0.44105 0.41539

24.0 0.40674 0.91355 0.44523 0.41888
24.2 0.40992 0.91212 0.44942 0.42237
24.4 0.41310 0.91068 0.45362 0.42586
24.6 0.41628 0.90924 0.45784 0.42935
24.8 0.41945 0.90778 0.46206 0.43284

25.0 0.42262 0.90631 0.46631 0.43633
25.2 0.42578 0.90483 0.47056 0.43982
25.4 0.42893 0.9033m 0.47483 0.44331
25.6 0.43209 0.90183 0.47912 0.44680
25.8 0.43523 0.90032 0.48342 0.45029

26.0 0.43837 0.89879 0.48773 0.45379
26.2 0.44151 0.89726 0.49206 0.45728
26.4 0.44463 0.89571 0.49640 0.46077
26.6 0.44776 0.89415 0.50076 0.46426
26.8 0.45088 0.89259 0.50514 0.46775

27.0 0.45399 0.89101 0.50952 0.47124
27.2 0.45710 0.88942 0.51393 0.47473
27.4 0.46020 0.83782 0.51835 0.47822
27.6 0.46330 0.88620 0.52279 0.48171
27.8 0.46639 0.88458 0.52724 0.48520

28.0 0.46947 0.88295 0.53171 0.48869
28.2 0.47255 0.88130 0.53619 0.49218
28.4 0.47562 0.87965 0.54070 0.49567
28.6 0.47869 0.87798 0.54522 0.49916
28.8 0.48175 0.87631 0.54975 0.50265

29.0 0.48481 0.37462 0.55431 0.50615
29.2 0.48786 0.87292 0.55888 0.50964
29.4 0.49090 0.87121 0.56347 0.51313
29.6 0.49394 0.86950 0.56808 0.51662
29.8 0.49697 0.86777 0.57270 0.52011

30.0 0.50000 0.86603 0.57735 0.52360
30.2 0.50302 0.86428 0.58201 0.52709
30.4 0.50603 0.86251 0.58670 0.53058
30.6 0.50904 0.86074 0.59140 0.53407
30.8 0.51204 0.85896 0.59612 0.53756

31.0 0.51504 0.85717 0.60086 0.54105
31.2 0.51803 0.85536 0.60562 0.54454
31.4 0.52101 0.35355 0.61040 0.54803
31.6 0.52399 0.85173 0.61520 0.55152
31.8 0.52696 0.84939 0.62003 0.55501

grees Sin Cos Tan Radians

32.0 0.52992 0.84805 0.62487 0.55850
32.2 0.53288 0.84619 0.62973 0.56200
32.4 0.53583 0.84433 0.63462 0.56549
32.6 0.53877 0.84245 0.63953 0.56898
32.8 0.54171 0.84057 0.64446 0.57247

33.0 0.54464 0.83867 0.64941 0.57596
33.2 0.54756 0.63676 0.65438 0.57945
33.4 0.55048 0.83485 0.65938 0.58294
33.6 0.55339 0.83292 0.66440 0.58643
33.8 0.55630 0.33098 0.66944 0.58992

34.0 0.55919 0.82904 0.67451 0.59341
34.2 0.56208 0.82708 0.67960 0.59690
34.4 0.56497 0.82511 0.68471 0.60039
34.6 0.56784 0.82314 0.68985 0.60388
34.3 0.57071 0.82115 0.69502 0.60737

35.0 0.57358 0.81915 0.70021 0.61086
35.2 0.57643 0.81715 0.70542 0.61436
35.4 0.57928 0.81513 0.71066 0.61785
35.6 0.58212 0.81310 0.71593 0.62134
35.8 0.58496 0.81106 0.72122 0.62483

36.0 0.53778 0.80902 0.72654 0.62332
36.2 0.590C1 0.80696 0.73189 0.63181
36.4 0.59342 0.80489 0.73726 0.63530
36.6 0.59622 0.80282 0.74266 0.63379
36.8 0.59902 0.80073 0.74809 0.64228

37.0 0.60181 0.79864 0.75355 0.64577
37.2 0.60460 0.79653 0.75904 0.64926
37.4 0.60738 0.79442 0.76456 0.65275
37.6 0.61014 0.79229 0.77010 0.65624
37.8 0.61291 0.79016 0.77568 0.65973

38.0 0.61566 0.78801 0.78128 0.66322
38.2 0.61841 0.78586 0.78692 0.66672
38.4 0.62115 0.78369 0.79259 0.67021
38.6 0.62338 0.78152 0.79829 0.67370
38.8 0.62660 0.77934 0.80402 0.67719

39.0 0.62932 0.77715 0.80978 0.68068
39.2 0.63203 0.77495 0.81558 0.68417
39.4 0.63473 0.77273 0.82141 0.63766
39.6 0.63742 0.77051 0.82727 0.69115
39.8 0.64011 0.76828 0.83317 0.69464

40.0 0.64279 0.76604 0.83910 0.69813
40.2 0.64546 0.76380 0.84506 0.70162
40.4 0.64812 0.76154 0.85107 0.70511

40.6 0.65077 0.75927 0.85710 0.70860
40.8 0.65342 0.75700 0.86318 0.71209

41.0 0.65606 0.75471 0.86929 0.71558
41.2 0.65869 0.75242 0.87543 0.71908
41.4 0.66131 0.75011 0.88162 0.72257
41.6 0.66393 0.74780 0.88784 0.72606
41.8 0.66653 0.74548 0.89410 0.72955

42.0 0.66913 0.74315 0.90040 0.73304
42.2 0.67172 0.74081 0.90674 0.73653
42.4 0.67430 0.73846 0.91312 0.74002
42.6 0.67688 0.73610 0.91955 0.74351
42.8 0.67944 0.73373 0.92601 0.74700

43.0 0.68200 0.73135 0.93251 0.75049
43.2 0.68455 0.72897 0.93906 0.75398
43.4 0.68709 0.72658 0.94565 0.75747
43.6 0.68962 0.72417 0.95229 0.76096
43.8 0.69214 0.72176 0.95896 0.76445

44.0 0.69466 0.71934 0.96569 0.76794
44.2 0.69716 0.71691 0.97246 0.77144
44.4 0.69966 0.71447 0.97927 0.77493
44.6 0.70215 0.71203 0.98613 0.77842
44.8 0.70463 0.70957 0.99304 0.78191

45.0 0.70711 0.70711 1.00000 0.78540
45.2 0.70957 0.70463 1.00700 0.78889
45.4 0.71203 0.70215 1.01406 0.79238
45.6 0.71447 0.69966 1.02116 0.79587
45.8 0.71691 0.69717 1.02832 0.79936
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Degrees

46.0
46.2
46.4
46.6
46.8

47.0
47.2
47.4
47.6
47.8

Sin

0.71934
0.72176
0.72417
0.72657
0.72897

0.73135
0.73373
0.73610
0.73845
0.74080

Cos

0.69466
0.69214
0.68962
0.68709
0.68455

0.68200
0.67944
0.67688
0.67430
0.67172

Tan

1.03553
1.04279
1.05010
1.05747
1.06489

1.07237
1.07990
1.08749
1.09514
1.10284

Radians

0.80285
0.80634
0.80983
0.81332
0.81681

0.82030
0.82379
0.82729
0.83078
0.83427

Degrees

60.0
60.2
60.4
60.6
60.8

61.0
61.2
61.4
61.6
61.8

Sin

0.86602
0.86777
0.86949
0.87121
0.87292

0.87462
0.87631
0.87798
0.87965
0.88130

Cos

0.50000
0.49697
0.49394
0.49090
0.48786

0.48481
0.48175
0.47869
0.47563
0.47255

Tan

1 . 73205
1.74610
1.76032
1.77471
1 . 78929

1.80404
1.81899
1.83413
1.84946
1.86499

Radians

1.04720
1.05069
1.05413
1.05767
1.06116

1.06465
1.06814
1.07163
1.07512
1.07861

48.0
48.2
48.4
48.6
48.8

0.74314
0.74548
0.74780
0.75011
0.75241

0.66913
0.66653
0.66393
0.66131
0.65869

1.11061
1.11844
1.12633
1.13428
1.14229

0.83776
0.84125
0.84474
0.84823
0.85172

62.0
62.2
62.4
62.6
62.8

0.88295
0.88458
0.88620
0.88781
0.88942

0.46947
0.46639
0.46330
0.46020
0.45710

1.88072
1.89666
1.91282
1.92919
1.94578

1.08210
1.08559
1.08908
1.09258
1.09607

49.0
49.2
49.4
49.6
49.8

50.0
50.2
50.4
50.6
50.8

0.75471
0.75699
0.75927
0.76154
0.76380

0.76604
0.76828
0.77051
0.77273
0.77494

0.65606
0.65342
0.65077
0.64812
0.64546

0.64279
0.64011
0.63742
0.63473
0.63203

1 . 15037
1.15851
1.16672
1.17499
1.18334

1.19175
1.20024
1 . 20879
1.21742
1.22612

0.85521
0.85870
0.86219
0.86568
0.86917

0.87266
0.87615
0.87965
0.88314
0.88663

63.0
63.2
63.4
63.6
63.8

64.0
64.2
64.4
64.6
64.8

0.89101
0.89259
0.89415
0.89571
0.89726

0.89879
0.90032
0.90133
0.90333
0.90483

0.45399
0.45088
0.44776
0.44464
0.44151

0.43837
0.43523
0.43209
0.42894
0.42578

1.96261
1.97966
1.99695
2.01448
2.03226

2.05030
2.06859
2.08716
2.10599
2.12510

1.09956
1.10305
1.10654

1.11003
1.11352

1.11701
1.12050
1.12399
1.12748
1.13097

51.0
51.2
51.4
51.6
51.8

0.77715
0.77934
0.73152
0.78369
0.73536

0.62932
0.62660
0.62388
0.62115
0.61841

1.23490
1.24375
1.25268
1.26168
1.27077

0.89012
0.89361
0.89710
0.90059
0.90408

65.0
65.2
65.4
65.6
65.8

0.90631
0.90773
0.90924
0.91068
0.91212

0.42262
0.41945
0.41628
0.41311
0.40992

14450
16419
18418
20448
22510

1.13446
1.13795
1.14144
1.14494
1.14843

52.0
52.2
52.4
52.6
52.8

0.78801
0.79015
0.79229
0.79441
0.79653

0.61566
0.61291
0.61015
0.60738
0.60460

1.27994
1.28919
1 . 29852
1.30794
1.31745

0.90757
0.91106
0.91455
0.91804
0.92153

66.0
66.2
66.4
66.6
66.8

0.91355
0.91496
0.91636
0.91775
0.91914

0.40674
0.40355
0.40035
0.39715
0.39394

2.24603
2.26730
2.28890
2.31086
2.33317

1.15192
1.15541

1.15890
1.16239
1.16588

53.0
53.2
53.4
53.6
53.8

0.79864
0.80073
0.80282
0.30489
0.80696

0.60182
0.59902
0.59623
0.59342
0.59061

1.32704
1.33673
1.34650

1.35636
1.36632

0.92502
0.92851
0.93201
0.93550
0.93899

67.0
67.2
67.4
67.6
67.8

0.92050
0.92186
0.92321
0.92455
0.92587

0.39073
0.38752
0.38430
0.38107
0.37784

2.35585
2.37890
2.40234
2.42617
2.45042

1.16937
1.17286
1.17635
1.17984
1.13333

54.0
54.2
54.4
54.6
54.8

0.80902
0.81106
0.81310
0.81513
0.81714

0.58779
0.58496
0.58212
0.57928
0.57643

1.37638
1.38653
1.39678
1.40713
1.41759

0.94248
0.94597
0.94946
0.95295
0.95644

68.0
68.2
63.4
68.6
68.8

0.92718
0.92849
0.92973
0.93106
0.93232

0.37461
0.37137
0.36813
0.36488
0.36163

2.47508
2.50017
2.52570
2.55169
2.57815

1.18682
1.19031
1.19380
1.19729
1 . 20079

55.0
55.2
55.4
55.6
55.8

0.81915
0.82115
0.82314
0.82511
0.32708

0.57358
0.57071
0.56784
0.56497
0.56208

1.42815
1.43881
1.44958
1.46046
1.47145

0.95993
0.96342
0.96691
0.97040
0.97389

69.0
69.2
69.4
69.6
69.8

0.93358
0.93483
0.93606
0.93728
0.93849

0.35837
0.35511
0.35184
0.34857
0.34530

2.60508
2.63251
2.66045
2.68891
2.71791

1 . 20428
1.20777
1.21126
1.21475
1.21824

56.8

0.82904
0.83098
0.83292
0.83485
0.83676

0.55919
0.55630
0.55339
0.55048
0.54756

1.48256
1.49378
1.50512
1.51658
1.52816

0.97738
0.98087
0.98436
0.98786
0.99135

70.0
70.2
70.4
70.6
70.8

0.93969
0.94088
0.94206
0.94322
0.94438

0.34202
0.33874
0.33545
0.33216
0.32887

2.74747
2.77760
2.80832
2.83964
2.87160

1.22173
1.22522
1.22871
1.23220
1.23569

57.0
57.2
57.4
57.6
57.8

0.83867
0.84057
0.84245
0.84433
0.84619

0.54464
0.54171
0.53877
0.53583
0.53288

1 . 53986
1.55169
1.56365
1.57574
1.58797

0.99484
0.99833
1.00182
1.00531
1.00880

71.0
71.2

71.4
71.6
71.8

0.94552
0.94665
0.94777
0.94888
0.94997

0.32557
0.32227
0.31896
0.31565
0.31234

2 . 90420
2.93747
2.97143
3.00610
3.04151

1.23918
1.24267
1.24616

1.24965
1.25315

58.0
58.2
58.4
58.6
58.8

0.84805
0.84989
0.85173
0.85355
0.85536

0.52992
0.52696
0.52399
0.52101
0.51803

1.60033
1.61283
1.62547
1.63826
1.65119

1.01229
1.01578
1.01927
1.02276
1.02625

72.0
72.2
72.4
72.6
72.8

0.95106
0.95213
0.95319
0.95424
0.95528

0.30902
0.30570
0.30237
0.29904
0.29571

3.07767
3.11462
3.15239
3.19099
3.23047

1 . 25664
1.26013
1.26362
1.26711
1.27060

59.0
59.2
59.4
59.6
59.8

0.85717
0.85896
0.86074
0.86251
0.86427

0.51504
0.51204
0.50904
0.50603
0.50302

1.66428
1.67751

1.69090
1.70446
1.71817

1.02974
1.03323
1.03672

1.04022
1.04371

73.0
73.2
73.4
73.6
73.8

0.95630
0.95732
0.95832
0.95931
0.96029

0.29237
0.28903
0.28569
0.23234
0.27899

3.27084
3.31215
3.35442
3.39769
3.44201

1.27409
1.27758
1.28107

1 . 28456
1 . 28805
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rees Sin Cos Tan Radians

74.0 0.96126 0.27564 3.48740 1.29154
74.2 0.96222 0.27228 3.53391 1 . 29503
74.4 0.96316 0.26892 3.58158 1.29852
74.6 0.96410 0.26556 3.63046 1.30201
74.8 0.96502 0.26219 3.68059 1.30551

75.0 0.96593 0.25882 3.73203 1.30900
75.2 0.96682 0.25545 3.78483 1.31249
75.4 0.96771 0.25207 3.83904 1.31598
75.6 0.96858 0.24869 3.89473 1.31947
75.8 0.96945 0.24531 3.95194 1.32296

76.0 0.97030 0.24192 4.01076 1.32645
76.2 0.97113 0.23853 4.07125 1 . 32994
76.4 0.97196 0.23514 4.13348 1.33343
76.6 0.97278 0.23175 4.19754 1.33692
76.8 0.97358 0.22835 4.26350 1.34041

77.0 0.97437 0.22495 4.33145 1.34390
77.2 0.97515 0.22155 4.40149 1.34739
77.4 0.97592 0.21814 4.47372 1.35088
77.6 0.97667 0.21474 4.54823 1.35437
77.8 0.97742 0.21133 4.62516 1.35787

78.0 0.97815 0.20791 4.70460 1.36136
78.2 0.97887 0.20450 4.78670 1.36485
78.4 0.97958 0.20108 4.87159 1.36834
78.6 0.98027 0.19766 4.95942 1.37183
78.8 0.98096 0.19424 5.05034 1.37532

79.0 0.98163 0.19081 5.14452 1.37881
79.2 0.98229 0.18738 5.24215 1.38230
79.4 0.98294 0.13395 5.34342 1.38579
79.6 0.98357 0.18052 5.44853 1.38928
79.8 0.98420 0.17709 5.55773 1.39277

80.0 0.98481 0.17365 5.67124 1.39626
80.2 0.98541 0.17021 5.78935 1.39975
80.4 0.93600 0.16677 5.91231 1.40324

80.6 0.98657 0.16333 6.04046 1.40673
80.8 0.98714 0.15988 6.17414 1.41023

81.0 0.98769 0.15644 6.31370 1.41372
81.2 0.98823 0.15299 6.45956 1.41721
81.4 0.98876 0.14954 6.61213 1.42070
81.6 0.98927 0.14608 6.77193 1.42419
81.8 0.98978 0.14263 6.93946 1.42768

Degrees

82.0
82.2
82.4

82.6
82.8

83.0
83.2
83.4
83.6
83.8

84.0
84.2
84.4
84.6
84.8

85.0
85.2
85.4
85.6
85.8

86.0
86.2
86.4
86.6
86.8

87.0
87.2
87.4
87.6
87.8

88.0
88.2
88.4

88.6
88.8

89.0
89.2
89.4
89.6
89.8

Sin

0.99027
0.99075
0.99122
0.99167
0.99211

0.99255
0.99297
0.99337
0.99377
0.99415

0.99452
0.99488
0.99523
0.99556
0.99588

0.99619
0.99649
0.99678
0.99705
0.99731

0.99756
0.99780
0.99803
0.99824
0.99844

0.99863
0.99881
0.99897
0.99912
0.99926

0.99939
0.99951
0.99961
0.99970
0.99978

0.99985
0.99990
0.99995
0.99998
0.99999

Cos

0.13917
0.13572
0.13226
0.12880
0.12533

0.12187
0.11841
0.11494
0.11147
0.10800

0.10453
0.10106
0.09758
0.09411
0.09063

0.08716
0.08368
0.08020
0.07672
0.07324

0.06976
0.06628
0.06279
0.05931
0.05582

0.05234
0.04885
0.04536
0.04188
0.03839

0.03490
0.03141
0.02792
0.02443
0.02094

0.01745
0.01396
0.01047
0.00698
0.00349

Tan

7.11531
7.30010
7.49458
7.69950
7.91574

8.14426
8.38617
8.64266
8.91509
9.20506

9.51424
9.84469
10.19860
10.57880
10.98800

11.42990
11.90850
12.42860
12.99590
13.61710

14.30040
15.05540
15.89420
16.83150
17.88590

19.08060
20.44590
22.02100
23.85860
26.02980

28.63530
31.81900
35.79910
40.91510
47.73610

57.28550
71.60780
95.47760
143.20900
286.37600

Radians

1.43117
1.43466
1.43815
1.44164
1.44513

1.44862
1.45211
1.45560
1.45909
1.46258

1.46608
1.46957
1.47306
1.47655
1.48004

1.48353
1.48702
1.49051
1.49400
1.49749

1.50098
1.50447
1 . 50796
1.51145
1.51494

1.51844
1.52193
1.52542
1.52891
1.53240

1 . 53589
1 . 53938
1.54287
1.54636
1.54985

1.55334
1.55683
1.56032
1.56381
1.56730
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Index
absolute value, of complex number, 170

acute angle, 4

acute triangle, 8, 105

addition rules, 91-93
adjacent side, 17, 29-37
airplane course, 62, 108-109, 153

alternating current, 123

altitude, 100, 228-233, 244 (see also

angle of elevation)

ambiguous case, 107, 238
amplitude, 124, 133

angle of depression, 42

angle of elevation, 15, 41-42 (see also

altitude)

angle of interest, 17

angles, 2-6, 11

on spherical triangles, 217

radian measure, 70

trigonometric functions of, 37

angular frequency, 126, 133

angular velocity, 85

arc, 11, 215

arccos, 145-151

arcsin, 145-151

arctan, 145-152,155
area of triangle, 8, 110

astronomical unit, 23

asymptote, 190

azimuth, 241-242

beat phenomenon, 272

Cartesian coordinates, 157 (see also

rectangular coordinates)

celestial sphere, 230, 239-240
central angle, 11, 70

centrifugal force, 60

chord, 85

circle. 11, 68-72,188,194
in polar coordinates, 161, 164

cofunction, 81, 94

complementary angles, 8, 80
complex conjugate, 178

complex number, 170-177
component of vector, 49-61
congruent triangle, 8, 10

conic sections, 188-194, 199
coordinates,

on sphere, 209-215
polar. 158-167
three dimensions, 209
two dimensions, 157

corresponding angles, 82

cos. 37,66-68
general definition, 77

graph of, 120

inverse, 145-151

possible values, 80

relation to sin, 88

series approximation for, 251

cosecant, 81

cosine, 37

cosines, law of, 100-102, 106

for spherical triangles, 225-226,

235, 237

cot, 81

cotangent, 81

coterminal angles, 73-74
crest, of wave, 131

esc, 81

graph of, 122

ctn, 81

graph of, 121

declination, 230, 233, 244
degenerate conic section, 285
degree measure, 5, 11, 72-73, 238
Delambre's analogies, 247
dependent variable, 39
dihedral angle, 217

discriminant, 201

distance, 42-43
to star, 22-25

domain, 83, 148

double angle rules, 93

Earth, radius of, 75-76, 82

eccentricity, 189

electricity, 123

electromagnetic waves, 141

ellipse, 188-189, 194, 199, 200

equator, 210, 213,230
equilateral triangle, 8, 32

factorial, 251

far side, 17, 29-37
fictitious force, 60

force, 57-62
Fourier theorem, 140

frequency, 125, 133. 135. 138-140
friction, 57

function, 36, 38-39, inverse function,

145, 149

fundamental frequency, 140
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Gauss* analogies, 247

graphs

in polar coordinates, 162-166

of trigonometric functions, 117-122

of inverse trigonometric functions,

150-152
gravity, 54-61

great circle, 210-211, 215, 224

half-angle formula, 95, 246
harmonic wave, 133

harmonics, 140

heart, in polar coordinates, 166

height, 43-45
of tree, 15-20

Hero's formula, 110

hertz, 126

hour. 240
hour angle, 232, 239-240
hyperbola, 190-191, 194, 199
hypotenuse, 8, 17, 29 (see also

Pythagorean theorem)

i, 170-177
identity, 82, 94-96
imaginary number, 169-177
independent variable, 39

initial side, 3, 77

integer, 39

interpolation, 41, 148

inverse function, 145

irrational number, 39

isosceles triangle, 8, 15

latitude, 209-215, 223-227, 230,

234-238
law of cosines, 100-102, 106

for spherical triangles, 225-226,
235, 237

law of sines, 103, 106-107
for spherical triangles, 225-226, 238

law of tangents, 110

light, 63, 141

light year, 25

longitude, 209-215, 223-227, 230,

238-239

meridian, 213, 239
merry-go-round, 59-61

minute, 11, 238, 240
modulated wave, 272
Mollweide's formulas, 110

multiplication of complex numbers,
polar form, 173

music, 140

obtuse angle, 4

obtuse triangle, 8, 105

opposite side, 17, 29-37
oscilloscope, 123

parabola, 190, 194-196, 199

parallax, 25

parallel, 82, 228-229
period, 126, 133

periodic function, 114, 125

perpendicular, 4

phase, 126-127, 133

pi, 40, 72,252
pitch, of sound, 134

plane trigonometry, 208

planets, 85, 110

polar coordinates, 158-167, 171—177,

183-185, 215

conversion to rectangular

coordinates, 160

polar triangle, 246
polynomial, 248-251
position, 48 (see also coordinates)

power, of complex number, 175

principal values, 149-151

projection formula, 110

protractor, 6

Pythagorean theorem, 8, 29-32, 88,

100-102,159,205,220

quadrant, 79, 155
quadratic equation, two unknown,

187-201
quotient relations, 94

radian measure, 70-73, 82, 216

range, 83,148
rational number, 39

ray, 2-3
real number, 169

reciprocal function, 81

rectangular coordinates, 157, 159-160,

180-183, 187
refraction, 63
right angle, 4

right ascension, 230, 239-240, 244
right triangle, 8, 15-24 (see also

Pythagorean theorem)
river current, 52

root, of complex number, 175-177
rotation, measurement of, 69-70
rotation, of coordinate system, 183

formula for, 187
graph of quadratic equation, using,

197

Napier's analogies, 247
near side, 17, 29-37
negative angles, 70, 78-79
Newton, 62

scalene triangle, 8

scientific notation, 11

sec, 81

graph of, 122
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secant, 81

second, 11, 22,238
sidereal time, 240-241
similar triangles, 8-10, 19

sin, 36-37, 66-68
general definition, 77

graph of, 117-120, 127

inverse, 145-151

possible values, 80
relation to cos, 88

series approximation for, 251

wave function, 130-133

sine, 35

sines, law of, 103, 106-107

for spherical triangles, 225-226, 238

slingshot, 53

Snell's law, 63

sound waves, 134-140
spherical right triangles, 218-223

spherical triangles of, 216-238
procedure for solving, 237-238

spherical trigonometry, 208-238
spiral, in polar coordinates, 163

standard position, 77

standing wave, 138

star, altitude of, 228-233
distance to, 22-25

straight angle, 4

string, vibration of, 137

substitution principle, 101

sun, 23, 75,229

supplementary angle relations, 95

tan, 36-37, 66-68
general definition, 77

graph of, 121

inverse, 145

tangent, 35

tangents, law of, 110

Taylor series, 251

terminal side, 3, 77

transcendental number, 39

translation of axes, 193-194
tree, height of, 15-20
triangles, 7-10, 15-24, 100-105

procedure for solving, 106-107 (see

also spherical triangles)

trigonometric equation, 154

vector, 49-61
velocity, of wave, 131, 133

velocity vector, 49-56
vertex, 3

vibration of string, 137

wave, 130-140
wave number, 132-133
wavelength, 132-133, 135-139

wind speed, 62, 108-109, 153

zenith, 74, 228-229, 232-233, 236
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