PAGES MISSING WITHIN THE BOOK ONLY TEXT CUT WITHIN THE BOOK ONLY

TIGHT BINDING BOOK

UNIVERSAL TASABARA ANA OU 158848 TASABARA

Osmania University Library Cell No. 514-5/724P Accession No. Tayloh, J. M. Author Plane and spherical trigo Title no motion

This book should be returned on or before the date last marked below

PLANE AND SPHERICAL TRIGONOMETRY

WITH

ANSWERS AND TABLES

BY

JAMES M. TAYLOR, A.M., LL.D.

ONE TIME PROFESSOR OF MATHEMATICS, COLGATE UNIVERSITY

NEW YORK BARNES & NOBLE, INC.

1946

BARNES & NOBLE, INC., 1943

PRINTED IN THE UNITED STATES OF AMERICA

PREFACE

This book is designed for those who wish to master the fundomental principles of Trigonometry and its most important a_1 plications. It is adapted to the use of colleges and high schools.

The proofs of formulas are simple but rigorous. The use of directed lines is consistent; the directions of such lines in the figures are usually indicated by arrowheads, and these lines are always read from origin to end. Both trigonometric atios and trigonometric lines are employed, but at first the atios are used exclusively until they have become fixed in he mind and have been made familiar by use in the solution f right triangles.

The distinction between identities and equations is recogized in definition, notation, and treatment. The solution of igonometric equations is scientific and complete. The trigometric ratios are defined in pairs as reciprocals of each her both to aid the memory and to emphasize one of the ost important of their fundamental relations. The addition formulas are proved for positive or negative angles of any quadrant, and from them are deduced the other formulas conærning the functions of two or more angles. When two or nore figures are used in a proof, the same phraseology always upplies to each figure.

In the first chapter, by means of the right triangle, the supil is taught some of the uses of Trigonometry before he is equired to master the broader ideas and relations of Analytic

PREFACE

Trigonometry; but at the same time the emphasis is so d[:] tributed that when the general ideas are taken up they easil, replace the special ones.

In Chapter VIII complex number is expressed as an arith metic multiple of a quality unit in its trigonometric type form, and the fundamental properties of such number are demonstrated. The proof of De Moivre's theorem is simple but complete, and its meaning and uses are illustrated by examples.

In Spherical Trigonometry the fundamental relations o spherical angles and triangles to diedral and triedral angle are illustrated by constructions. The complete solution o the right triangle is discussed by itself, but later the formula used are shown to be only special cases of the laws of sines and cosines for the oblique triangle. The most useful and interesting problems have been selected and special attention has been given to methods of solution and to arrangement of work.

It is believed that the order of the text is the best for beginners; but, with the exception of a few articles, Chapter I or Chapter X may be omitted by those who are prepared to take up at once the general treatment in Chapter II or Chapter XI. Too much stress cannot be laid on careful and accurate construction and measurement in the first chapters. Chapters VII and VIII and the latter part of Chapter VI may be omitted by those who wish a shorter course.

In writing this book the author has consulted the best authorities, both American and European. Many of the examples have been taken from these sources. The author takes this opportunity to express to many teachers and other friends his appreciation of their valuable suggestions in the course of the preparation of the book.

JAMES M. TAYLOB

PLANE TRIGONOMETRY

CHAPTER I

TRIGONOMETRIC RATIOS OF ACUTE ANGLES

SECTION		PAGE
1-3.	Trigonometric ratios defined, one-valued	1, 2
4.	Construction of angles having given ratios	3, 4
5, 6.	Approximate values, and changes from 0° to 90°	5-7
7-9.	Trigonometric ratios of angles of triangle and of co-angles	8, 9
10, 11.	Trigonometric ratios of 45°, 30°, 60°	0, 11
12, 13.	Solving right triangles	1–13
14, 15.	Definitions and problems	4-21

CHAPTER II

TRIGONOMETRIC RATIOS OF POSITIVE AND NEGATIVE ANGLES OF ANY SIZE

16.	Positive and negative angles of any size
17–19.	Coterminal angles. Quadrants
20, 21.	Trigonometric ratios of any angle
22, 23.	Laws of quality. $\sin^{-1}c, \cos^{-1}c, \cdots$
24, 25.	Fundamental identities. Proof of identities 31-35
26.	Changes in ratios as angle changes from 0° to 360° $36-38$
27.	Trigonometric ratios of 0°, 90°, 180°, 270°
28, 29.	Trigonometric ratios of $-A$ and $90^{\circ} + A$
80, 31.	Trigonometric ratios of $90^{\circ} - A$, $180^{\circ} - A$, $n 90^{\circ} \pm A$. 44, 45
82, 33.	Trigonometric lines representing the ratios

CHAPTER III

TRIGONOMETRIC RATIOS OF TWO ANGLES

SECTION		PAGE
34-37.	Trigonometric ratios of the sum and difference of two angles	52 - 56
88 , 39.	Trigonometric ratios of twice and half an angle	57-59
40.	Sums and differences of trigonometric ratios	60-63

CHAPTER IV

SOLUTION OF RIGHT TRIANGLES WITH LOGARITHMS

41-48.	Properties and computation of logarithms.	•	•	•	•	•	64-68
49.	Right-angled triangles	•	•		•	•	69-71
50, 51.	Isosceles triangles and regular polygons .	•	•	•	•	•	72, 73

CHAPTER V

SOLUTION OF TRIANGLES IN GENERAL

52.	Law of sines and law of cosines	•	•	•	•	•	•	74, ".
53 –55.	The four cases solved without logarithms				•			76, 77
56.	Law of tangents	•			•		•	78,'19
57-59.	First three cases solved with logarithms		•				•	80-87
60.	Trigonometric ratios of half angles and with logarithms			``'				88-91
61.	Areas of triangles			•				9:
62-64.	Circumscribed, inscribed, escribed circles							93, 94

CHAPTER VI

RADIAN MEASURE, GENERAL VALUES, TRIGONOMETRIC EQUATIONS, INVERSE FUNCTIONS

SECTION.		PAGE
65-67.	Radian measure of angles ,	95-97
68.	Principal values	98
69-71.	Angles having the same trigonometric ratio 99	9, 100
72, 73.	Solution of trigonometric equations 101	-104
74.	Trigonometric functions	105
75, 76.	Inverse trigonometric functions 106	3109

CHAPTER VII

PERIODS, GRAPHS, IMPORTANT LIMITS, COMPUTATION OF TABLE, HYPERBOLIC FUNCTIONS

77.	Periods of the trigonometric functions .		•			•	110
78-81.	Graphs of the trigonometric functions .		•	•	•	•	111-114
82.	Limit of the ratio of $\sin \theta$ or $\tan \theta$ to θ .				•		115
83, 84.	Computation of trigonometric functions	•	•	•	•		116, 117
85, 86.	Hyperbolic functions		•				118, 119

CHAPTER VIII

.

COMPLEX NUMBERS. DE MOIVRE'S THEOREM

87.	Quality units ± 1 , $\pm \sqrt{-1}$.	•	•		120
88, 89.	Directed lines and forces	•	•	•	121, 122
90.	Complex numbers	•		•	123, 124
91, 92.	General quality unit. Products of quality units		•		125, 126
93.	De Moivre's theorem. Quotients of quality unit	s	•		127, 128

SECTION		PAGE
94, 95.	Products and quotients of complex numbers	128, 129
96, 97.	The qth roots of $\cos \phi + i \sin \phi$ and $(\cos \phi + i \sin \phi) r$.	130, 131
97.	Exponential form for $\cos \phi + i \sin \phi$	132, 133

CHAPTER IX

MISCELLANEOUS EXAMPLES

Trigonometric identities .			•		•				•	134 -136
Trigonometric equations and	syst	tems		•	•	•				137-141
Problems involving triangles	•							•	•	142-146
Problems involving areas and	reg	gular	pol	yge	ons	•			•	146, 147

SPHERICAL TRIGONOMETRY

CHAPTER X

DEFINITIONS AND CONSTRUCTIONS

99, 100.	Angles formed by curves, plane sections	•	•	•		149
101.	Diedral and spherical angles	•	•	•	•	150
102.	Triedral angles and spherical triangles .				•	151-154
103-106.	Definitions and constructions	•				155 - 161

CHAPTER XI

RIGHT SPHERICAL TRIANGLES

107, 108.	Formulas for right spherical triangles	•	•	•	•	•	162 - 164
109, 110.	General proof, Napier's rules	•					165, 166
111–113.	Relations of parts to 90°, two solutions			•		•	167-170
114.	Quadrantal and isosceles triangles .						171

viii

CHAPTER XII

RELATIONS BETWEEN THE SIDES AND ANGLES OF SPHERICAL TRIANGLES

SECTION								PAGE
115.	Law of sines, laws of cosines .						•	172-175
116.	Half angles in terms of the sides							176178
117.	Half sides in terms of the angles					•		179
118, 119.	Napier's analogies, Delambre's an	nalo	ogie	86	•			180-182

CHAPTER XIII

SOLUTION OF SPHERICAL TRIANGLES

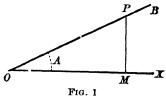
120-126.	Cases (i), (ii), (iii), (iv), (v), (vi)	•			•	•	•	183-1 89
127.	Spherical degree and radian	•	•			•		190
128.	Area of spherical triangle		•	•				1 91
129.	Formulas for spherical excess .			•	•	•	•	1 92
130.	Area of polygon of n sides					•		192
131.	Measure of a solid angle		•	•	•	•		1 93

CHAPTER XIV

PRACTICAL APPLICATIONS

132.	Geographic problems	•	•	•	194, 195
133.	Inclined angle reduced to a horizontal angle		•	•	196
134–136.	Geometric problems	•	•	•	197, 198
137, 138.	Astronomic definitions and problems		•		199 –203

FORMULAS	•	•	•	•	•						•		205-210
ANSWERS	•			•		•							211-234
LOGARITHM	IC	AND		TRIG	ON	IOM	ETI	RIC	ТА	BLE	S		1-116


CHAPTER I

TRIGONOMETRIC RATIOS OF ACUTE ANGLES

1. Let A denote the number of degrees in the acute angle XOB; then A is the numerical measure, or measure, of this angle, and we can write $\angle XOB = A$.

From any point in either side of the angle XOB, as P, draw PM perpendicular to the other side $P \longrightarrow B$

Observe that O is the vertex of the angle, and M is the foot of the perpendicular drawn from P. This lettering should be fixed in mind so that in the following defi-

nitions the lines MP, OM, and OP shall always mean the same lines as in fig. 1.

The six simple ratios (three ratios and their reciprocals) which can be formed with the three lines MP, OM, OP are called the *trigonometric ratios* of the angle XOB, or A.

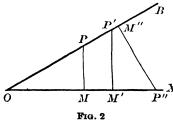
These ratios are named as follows:

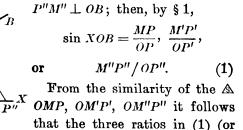
The ratio	MP/OP	is the sine of A;
and its reciprocal	OP/MP	is the cosecant of A.
The ratio	OM/OP	is the cosine of A;
and its reciprocal	OP/OM	is the secant of A.
The ratio	MP/OM	is the tangent of A;
and its reciprocal	OM/MP	is the cotangent of A.

For brevity the sine of A is written $\sin A$; the cosine of A, $\cos A$; the tangent of A, $\tan A$; the cotangent of A, $\cot A$; the secant of A, $\sec A$; and the cosecant of A, $\csc A$.

Observe that sin A is a compound symbol which, taken as a whole, denotes a *number*. The same is true of cos A, tan A, etc.

Ex. 1. What four trigonometric ratios of the angle A involve the line MP? the line OM? the line OP?


Ex. 2. What trigonometric ratios are reciprocals of each other ?


Ex. 3. Which is the greater, $\tan A$ or $\sec A$? $\cot A$ or $\csc A$? Why?

Ex. 4. Can sin A or cos A exceed 1? Why?

2. Any trigonometric ratio of a given angle has only one value.

Let XOB be any acute angle. Draw $PM \perp OX$, $P'M' \perp OX$,

their reciprocals) are all equal; hence $\sin XOB$ (or $\csc XOB$) has but one value.

Also, from the similarity of these \triangle , each of the other trigonometric ratios of $\angle XOB$ has only one value.

3. Two acute angles are equal if any trigonometric ratio of the one is equal to the same ratio of the other.

Take O_1P_1 in fig. 3 equal to OP in fig. 2, and draw $P_1M_1 \perp O_1X_1$. We are to prove that

if $\sin X_1 O_1 P_1 = \sin X O P$, i.e. if $M_1 P_1 / O_1 P_1 = M P / O P$, (1)

then $\angle X_1 O_1 P_1 = \angle X O P_1$. (2)

By construction, $O_1P_1 = OP$. Hence, from (1), $M_1P_1 = MP$.

Therefore, by Geometry, the right triangles $O_1P_1M_1$ and OPM are equal in all their parts.

Hence $\angle X_1 O_1 P_1 = \angle X O P$.

In like manner the student should prove the equality of two acute angles when any other trigonometric ratio of the one is equal to the same ratio of the other.

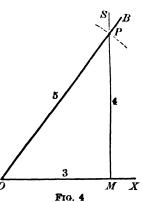
4. Having given the value of any trigonometric ratio of an acute angle, to construct the angle and obtain the values of its other trigonometric ratios.

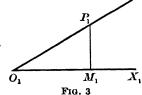
This problem will be illustrated by particular examples.

Ex. 1. If A is an acute angle and $\cos A = 3/5$, construct A and find the values of its other trigonometric ratios.

Here $\cos A = OM/OP = 3/5$.

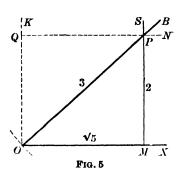
Hence, if OP = 5 units, OM = 3 units.


Let O, in fig. 4, be the vertex of the angle A, and OX one of its sides.


On OX, to some scale, lay off OM equal to 3 units, and at M draw $MS \perp OX$.

With O as a center and with a radius equal to 5 units, draw an arc cutting MS in some point as P. Draw OPB.

Then $\angle XOB = A.$ 3 М X For $\cos XOB = 3/5 = \cos A.$ F1G. 4 Hence, by § 3, $\angle XOB = A$. $MP = \sqrt{5^2 - 3^2}$ units = 4 units. Again, $\sin A = 4/5,$ $\csc A = 5/4;$ § 1 Hence $\cos A = 3/5$, $\sec A = 5/3$; $\tan A = 4/3,$ $\cot A = 3/4.$


Observe that 5 is the numerical measure of OP, 4 of MP, and 3 of OM.

8

Ex. 2. If A is an acute angle and $\sin A = 2/3$, construct A and find the values of its other trigonometric ratios.

Here $\sin A = MP/OP = 2/3$. Hence, if OP = 3 units, MP = 2 units.

At M, in fig. 5, draw $MS \perp OX$ and lay off MP equal to 2 units.

With P as a center and 3 units as a radius, strike an arc cutting OX in some point, as O. Draw OPB.

Then
$$\angle XOB = A$$
.
For $\sin XOB = 2/3 = \sin A$.
Hence, by § 3, $\angle XOB = A$.

Again, Hence $OM = \sqrt{3^2 - 2^2}$ units = $\sqrt{5}$ units. $\sin A = 2/3$, $\csc A = 3/2$; § 3 $\cos A = \sqrt{5}/3$, $\sec A = 3/\sqrt{5}$; $\tan A = 2/\sqrt{5}$, $\cot A = \sqrt{5}/2$.

If the vertex of the angle Λ were required to be at some fixed point on OX, as O, we would draw $OK \perp OX$, lay off OQ equal to 2 units, through Q draw QN parallel to OX, and with O as a center and 3 units as a radius, strike an arc cutting QN at P; then draw OPB as before.

By using a protractor, *i.e.* a graduated semicircle, we find that $\angle XOB$, or A, is an angle of about 42° .

NOTE. The use of polar coördinate paper in Exercise I and §5 would obviate the need of a protractor and save the student much time.

EXERCISE I

Construct the acute angle A, obtain the values of all its trigonometric ratios, and find its size in degrees, when :

1. $\sin A = 2$	2/5. 6.	$\tan A = 4/3.$	11.	$\csc A = 5/2.$
$2. \sin A = -$	4/5. 7.	$\cot A=5/2.$	12.	$\csc A = 3/2.$
3. $\cos A = 3$	3/4. 8.	$\cot A=1/3.$	13.	$\tan A = 4$, or $4/1$.
4. $\cos A = 1$	1/3. 9.	$\sec A = 5/3.$	14.	$\cot A = 7$, or $7/1$.
5. $\tan A = 1$	1/4. 10.	$\sec A = 4/3.$	15.	$\tan A=9.$

16. Express each of the trigonometric ratios of an acute angle A in terms of its sine, writing $(\sin A)^2$ in the form $\sin^2 A$.

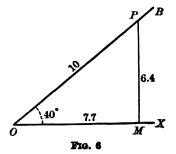
In fig. 1, let OP = 1. Then MP/OP = MP/1, *i.e.* sin A is the measure of MP. Whence $MP = \sin A$, and $OM = \sqrt{OP^2 - MP^2} = \sqrt{1 - \sin^2 A}$. Hence $\cos A = OM/OP = \sqrt{1 - \sin^2 A}$; $\therefore \sec A = 1/\sqrt{1 - \sin^2 A}$. $\tan A = MP/OM = \sin A/\sqrt{1 - \sin^2 A}$; $\therefore \cot A = \sqrt{1 - \sin^2 A}/\sin A$. $\csc A = OP/MP = 1/\sin A$.

17. Express each of the trigonometric ratios of an acute angle in terms of its cosine.

In fig. 1, let	OP = 1.
Then	$OM / OP = OM / 1$, i.e. $\cos A$ is the measure of OM.
Whence	$OM = \cos A$,
and	$MP = \sqrt{OP^2 - OM^2} = \sqrt{1 - \cos^2 A}$, etc.

18. Express each of the trigonometric ratios of an acute angle in terms of its tangent.

In fig. 1, let OM = 1. Then MP/OM = MP/1, *i.e.* tan A is the measure of MP. Whence $MP = \tan A$, and $OP = \sqrt{\overline{OM}^2 + MP^2} = \sqrt{1 + \tan^2 A}$, etc.


5. To find approximately by measurement the values of the trigonometric ratios of any given angle.

Ex. 1. Find by construction and measurement the values of the six trigonometric ratios of 40° .

With a protractor lay off $\angle XOB = 40^{\circ}$.

Take OP any convenient tength, say 10 units (the longer the better), and draw $PM \perp OX$. By careful measurement we find that

MP = 6.4 units, OM = 7.7 units, approximately.

5

Hence, as approximate values, we have

$\sin 40^\circ = 6.4/10 = 0.64,$	$\csc 40^\circ = 10/6.4 = 1.56;$
$\cos 40^\circ = 7.7/10 = 0.77,$	sec $40^\circ = 10/7.7 = 1.3$;
$\tan 40^{\circ} = 6.4 / 7.7 = 0.83,$	$\cot 40^\circ = 7.7/6.4 = 1.2.$

Observe that instead of taking OP equal to 10 units, we could take OM equal to 10 units.

Ex. 2. By construction and measurement find the approximate values of the sine, cosine, and tangent of 5°, 10°, 15°, 20°, 25°, 35°, and compare the results obtained with their values given in the table below.

On a scale of 20 to an inch take OM equal to 100 units and draw $MP \perp OM$. With O as their common vertex and OM as their common lower side, draw the angles 5°, 10°, etc.

Observe that the cosecant, the secant, and the cotangent of any angle can be obtained by taking the reciprocal of the sine, the cosine, and the tangent respectively of the same angle.

Angle	81 D	CBC	C08	sec	tan	cot
1°	0.0175	57.2987	0.9998	1.0002	0.0175	57.2900
5°	0.0872	11.4737	0.9962	1.0038	0.0875	11.4301
10°	0.1736	5.7588	0.9848	1.0154	0.1763	5.6713
15°	0.2588	3.8637	0.9659	1.0353	0.2679	3.7321
20°	0.3420	2.9238	0.9397	1.0642	0.3640	2.7475
25°	0.4226	2.3662	0.9063	1.1034	0.4663	2.1445
30°	0.5000	2.0000	0.8660	1.1547	0.5774	1.7321
3 5°	0.5736	1.7434	0.8192	1.2208	0.7002	1.4281
40°	0.6428	1.5557	0.7660	1.3054	0.8391	1.1918
45°	0.7071	1.4142	0.7071	1.4142	1.0000	1.0000
50°	0.7660	1.3054	0.6428	1.5557	1.1918	0.8391
55°	0.8192	1.2208	0.5736	1.7434	1.4281	0.7002
60°	0.8660	1.1547	0.5000	2.0000	1.7321	0.5774
6 5°	0.9063	1.1034	0.4226	2.3662	2.1445	0.4663
70°	0.9397	°1.0642	0.3420	2.9238	2.7475	0.3640
75°	0.9659	1.0353	0.2588	3.8637	3.7321	0.2679
80°	0.9848	1.0154	0.1736	5.7588	5.6713	0.1763
8 5°	0.9962	1.0038	0.0872	11.4737	11.4301	0.0875
89°	0.9998	1.0002	0.0175	57.2987	57.2900	0.0175

In the above table observe how each trigonometric ratio of A changes as A increases from 1° to 89°.

6. Changes of the trigonometric ratios of the angle A as A increases from 0° to 90° .

In fig. 7 conceive the line OP to revolve from OX to OB, *i.e.* suppose $\angle XOP$, or A, to increase from 0° to 90°.

When OP coincides with OX,

MP = 0, and OM = OP.

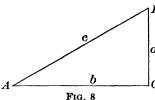
When OP coincides with OB,

MP = OP, and OM = 0.

Hence $\sin 0^{\circ} = 0$, $\sin 90^{\circ} = 1$, $\cos 0^{\circ} = 1$, and $\cos 90^{\circ} = 0$.

Therefore when A increases FIG. 7 from 0° to 90° sin A increases from 0 to 1 and cos A decreases from 1 to 0.

Example. What is the value of $\tan 0^\circ$? $\sec 0^\circ$? $\cot 90^\circ$? $\csc 90^\circ$?


When OP is very near to OB, OM is very small; hence MP/OM is very large, and the nearer OP is to OB, the larger is MP/OM, or tan A. So that as A approaches 90°, tan A increases rapidly and can exceed any constant number however great; that is, tan A becomes an infinite (denoted by ∞). Hence as A increases from 0° to 90°, tan A increases from 0 to ∞ ; likewise sec A increases from 1 to ∞ .

Similarly, when OP approaches nearer and nearer to OX, OM/MP, or cot A, and OP/MP, or csc A, become infinites.

Hence as the angle A increases from 0° to 90°,

sin A increases from 0 to 1, cos A decreases from 1 to 0, tan A increases from 0 to ∞ , cot A decreases from ∞ to 0, sec A increases from 1 to ∞ , csc A decreases from ∞ to 1. 7

7. Relations between the sides and angles of a right triangle.

Let A and B be the measures of ^B the acute angles of the right triangle ABC, a the measure of the a side opposite the angle A, b that of the side opposite B, and c that of C the hypotenuse; then, by § 1, we have

$\sin A = \frac{a}{c} = \frac{\text{side opposite}}{\text{hypotenuse}},$	$\csc A = \frac{c}{a};$
$\cos A = \frac{b}{c} = \frac{\text{side adjacent}}{\text{hypotenuse}},$	$\sec A = \frac{c}{b};$
$\tan A = \frac{a}{b} = \frac{\text{side opposite}}{\text{side adjacent}},$	$\cot A = \frac{b}{a}.$

Similarly we have

$\sin B = b/c,$	$\csc B = c/b;$
$\cos B = a/c,$	sec $B = c/a$;
$\tan B = b / a,$	$\cot B = a/b.$

8. Complementary angles. Two angles are said to be complementary when their sum is 90° .

E.g., the complement of 35° is $90^{\circ} - 35^{\circ}$, or 55° ; the complement of 70° is $90^{\circ} - 70^{\circ}$, or 20° ; the complement of *A* is $90^{\circ} - A$; and in any right triangle, as *ABC* fig. 8, the acute angles *A* and *B* are complementary angles.

9. Trigonometric ratios of complementary angles. If $\angle CAB = A$, then $\angle CBA = 90^{\circ} - A$. Hence, by § 7, we have

$$\sin (90^{\circ} - A) = b/c = \cos A, \\ \cos (90^{\circ} - A) = a/c = \sin A, \\ \tan (90^{\circ} - A) = b/a = \cot A, \\ \cot (90^{\circ} - A) = a/b = \tan A, \\ \sec (90^{\circ} - A) = c/a = \csc A, \\ \csc (90^{\circ} - A) = c/b = \sec A.$$

If we call the *cosine* the co-ratio of the *sine*, the *sine* the co-ratio of the *cosine*, the corangent the co-ratio of the tangent, the tangent the co-ratio of the co-tangent, etc., then the six identities above can be summed up as follows:

Any trigonometric ratio of an acute angle is equal to the co-ratio of its complementary angle.

E.g., since 60° and 30° are complementary angles, we have

 $\sin 60^\circ = \cos 30^\circ$, $\tan 60^\circ = \cot 30^\circ$, $\csc 60^\circ = \sec 30^\circ$. Again, since 45° is the complement of itself, we have

 $\sin 45^\circ = \cos 45^\circ$, $\tan 45^\circ = \cot 45^\circ$, $\csc 45^\circ = \sec 45^\circ$.

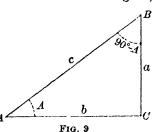
Ex. 1. From the upper half of the table in § 5 obtain the lower half.

Since	$50^{\circ} + 40^{\circ} = 90^{\circ},$	$\sin 50^\circ = \cos 40^\circ = 0.7660$;
since	$55^{\circ} + 35^{\circ} = 90^{\circ}$,	$\sin 55^{\circ} = \cos 35^{\circ} = 0.8192;$
since	$60^{\circ} + 30^{\circ} = 90^{\circ},$	$\sin 60^\circ = \cos 30^\circ = 0.8660$; etc.

Ex. 2. The angle A being acute, find the value of A in the equation $\sin A = \cos 2 A.$ (1)

If in equation (1) we substitute for $\cos 2A$ its * identical expression $\sin (90^\circ - 2A)$, by Algebra we obtain the equivalent equation (2).

* Algebraic definitions. Two numeral expressions which denote the same number, or any two mathematical expressions which denote equal numbers for all values of their letters, are called identical expressions. E.g., the numeral expressions 4×3 and 8 + 4 are identical, so also are the literal expressions (a + b)(a - b) and $a^2 - b^2$, or $\cos A$ and $\sin (90^\circ - A)$.


An equality is the statement that two mathematical expressions denote the same number.

An equality whose members are identical expressions is called an identity. An identity is to be *proved*.

An equality whose members are not identical expressions is called an equation. An equation is to be solved.

The sign of identity, \equiv , read "is identical with," is often used instead of the sign of equality = in writing an identity whose members involve one or more letters. *E.g.*, to indicate that the equality $\sin A = \cos (90^\circ - A)$ is an identity and not an equation we write $\sin A \equiv \cos (90^\circ - A)$.

Since we know that any equality which involves only numerals must be an identity, the sign of identity is used only in writing literal identities.

9

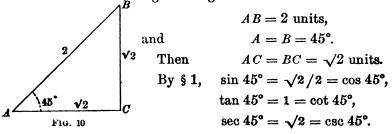
sin $A = \sin (90^\circ - 2A)$. (2) From (2), by § 3, $A = 90^\circ - 2A$, $\therefore A = 30^\circ$.

Equation (1) is a trigonometric equation, and the only value of the *acute* angle A which will satisfy it is 30°.

EXERCISE II

1. By § 9, cos 30° equals what? sin 60°? cot 35°? tan 15°? sec 85°? csc 76°? sin 73° 14'? cos 65° 43'?

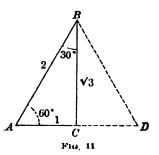
A being an acute angle, find its value in each of the following equations:


 2. $\sec A = \csc A$.
 6. $\sec (75^\circ + A) = \csc 2 A$.

 3. $\tan A = \cot 2 A$.
 7. $\cot (A + 50^\circ) = \tan 7 A$.

 4. $\sin 2 A = \cos 3 A$.
 8. $\sin nA = \cos mA$.

 5. $\tan (A/2) = \cot 2 A$.
 9. $\tan cA = \cot (30^\circ - A)$.


10. Trigonometric ratios of 45° . Let *ABC* be an isosceles right triangle in which

11. Trigonometric ratios of 30° and 60°. Let ABD be an equilateral triangle in which AB = 2 units. Draw $BC \perp AD$.

Then

AC = 1, $BC = \sqrt{3},$ $A = 60^{\circ},$ $\angle ABC = 30^{\circ}.$

By § 1, $\sin 30^\circ = 1/2$, $\csc 30^\circ = 2$; $\cos 30^\circ = \sqrt{3}/2$, $\sec 30^\circ = 2/\sqrt{3}$; $\tan 30^\circ = 1/\sqrt{3}$, $\cot 30^\circ = \sqrt{3}$.

Also, by 1,

$$\begin{aligned} \sin 60^{\circ} &= \sqrt{3}/2, & \csc 60^{\circ} &= 2/\sqrt{3}; \\ \cos 60^{\circ} &= 1/2, & \sec 60^{\circ} &= 2; \\ \tan 60^{\circ} &= \sqrt{3}, & \cot 60^{\circ} &= 1/\sqrt{3}, \text{ or } \sqrt{3}/3. \end{aligned}$$

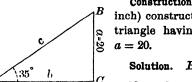
To aid the memory observe that sin 30°, sin 45°, and sin 60° are respectively equal to $\sqrt{1}$, $\sqrt{2}$, and $\sqrt{3}$, divided by 2.

It is easy to read off the trigonometric ratios of 30°, 45°, and 60°, when we keep in mind the figures 10 and 11.

Example. By § 9 obtain the values of the trigonometric ratios of 60° from those of 30° , and those of 30° from those of 60° .

12. Approximate measurements and computations. The student should remember that in all actual measurements the results are only approximate. It is impossible to measure any quantity with absolute accuracy. The degree of accuracy sought will depend upon the importance of the results. The degree of accuracy secured will depend upon the instruments, methods, and care which are used. Likewise, in practical computations, a sum, difference, product, or quotient of two approximate values will not have a greater degree of accuracy than that of the least accurate of the two values. E.g., if one numerical measure is accurate to two figures and another to three figures, their sum, product, or quotient will not in general be accurate to more than two figures. If each of two numerical measures has three-figure accuracy, or if one has four-figure accuracy and the other only three-figure accuracy, their product or quotient will not in general have more than three-figure accuracy. The values tabulated in § 5 have only four-figure accuracy.

13. Solving right triangles. Of the six parts (three sides and three angles) of a *right triangle*, one part (the right angle) is always known. If, of any right triangle, two other parts are given (one at least being a side), Geometry proves that the triangle is entirely *determined*, and shows how to *construct* it.


Trigonometry shows how to compute the numerical values of the unknown parts of a triangle when the known parts are sufficient to determine it.

This process is called solving the triangle.

Hence, in solving right triangles, we must consider the *two* following cases:

- (i) Given one side and one acute angle.
- (ii) Given any two sides.

Case (i). Ex. 1. In the right triangle ABC, $A = 35^{\circ}$ and BC = 20 feet; find the numerical values of the other parts.

3. 100

Construction. To some scale (as 30 ft. to an inch) construct as accurately as possible a right triangle having the given parts $A = 35^{\circ}$ and a = 20.

Solution. $B = 90^{\circ} - A = 90^{\circ} - 35^{\circ} = 55^{\circ}$.

Now, the ratio of either of the unknown sides to the known side a is a trigonometric ratio of

+ +a bla

35°, and any trigonometric ratio of 35° can be obtained from the table in § 5.

--+ 950

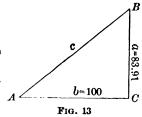
Thus,

FIG. 12

$$b/a = \cot A = \cot 35^{\circ}.$$
 § 1

$$\therefore b = 1.4281 \times 20 = 28.562.$$
by tableAgain, $c/20 = \csc 35^{\circ} = 1.7434.$ § 1, table $\therefore c = 1.7434 \times 20 = 34.868.$

If we regard 20 as exact, or at least accurate to four figures, the values of b and c are accurate to only four figures; for $\cot 35^\circ$ and $\csc 35^\circ$ are accurate to only four figures (§ 12).


Check. Measure AC and AB, and multiply the number of inches in each by the number of feet which an inch represents. We thus obtain

$$b = 28.6, c = 34.9.$$

As a numerical check we could use

$$a^2 = c^2 - b^2$$
, or $a^2 = (c + b)(c - b)$.

But for simplicity and to emphasize the importance of accurate construction, we shall, *in this chapter*, use only the *check* by construction and measurement.

Case (ii). Ex. 2. In the right triangle ABC, BC = 83.91 ft. and AC = 100 ft.; find the other parts.

Given
$$\begin{cases} a = 83.91, \\ b = 100; \end{cases}$$
 to find $\begin{cases} A = 40^{\circ}, \\ B = 50^{\circ}, \\ c = 130.54. \end{cases}$

Construct the triangle ABC having the given parts.

$$(\tan A = a/b. \tag{1}$$

Formulas
$$\begin{cases} B = 90^{\circ} - A. \qquad (2) \\ c/b = \sec A. \qquad (3) \end{cases}$$

Computation. From (1), $\tan A = 83.91/100$

	$= 0.8391 = \tan 40^{\circ}$.	by table
Hence, by § 3,	$A = 40^{\circ}$.	
From (2),	$B = 90^{\circ} - 40^{\circ} = 50^{\circ}$.	
From (3),	$c = 100 \cdot \sec 40^{\circ}$	
	$= 100 \times 1.3054 = 130.54.$	by table

Check. By measurement $A = 40^{\circ}$, $B = 50^{\circ}$, AB = 131 ft. nearly.

The solution above illustrates the five steps which, in the first solutions at least, should be kept separate and distinct.

- (i) Statement of the problem.
- (ii) Construction of the triangle.
- (iii) Writing the needed formulas.
- (iv) Making the computations.
- (v) Applying some check or test to answers.

EXERCISE III

Solve the right triangle ABC, when :

1.	$A = 25^{\circ}$,	a = 30.	9. $b = 93.97$,	c = 100.
2.	$B = 55^{\circ}$,	b = 10.	10. $a = 17.1$,	c = 50.
3.	$A = 65^{\circ},$	c = 70.	11. $B = 75^{\circ}$,	c = 40.
4 .	$B = 15^{\circ}$,	b = 20.	12. $A = 10^{\circ}$,	b = 30.
5.	$B = 35^{\circ}$,	a = 50.	13. $A = 20^{\circ}$,	c = 80.
6.	$B = 55^{\circ},$	c = 60.	14. $B = 25^{\circ}$,	a = 30.
7.	a = 36.4,	b = 100.	15. $a = 30.21$,	$c = 33\frac{1}{3}$.
8.	a = 23.315,	b = 50.	16. $a = 13.4$,	b = 50.

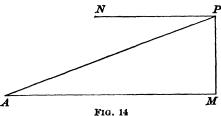
14. A vertical line at any point is the line determined by the plumb line at that point.

A horizontal line (or plane) at any point is the line (or plane) which is perpendicular to the vertical line at that point.

A horizontal angle is an angle whose sides are perpendicular to the vertical line at its vertex.

A vertical angle is an angle whose plane contains the vertical line at its vertex.

A vertical angle of which one side is *horizontal* is called an angle of elevation or an angle of depression, according as the second side is above or below the horizontal side.


Note. All vertical lines converge towards the center of the earth. But in the next two definitions any two vertical lines are regarded as parallel. This is approximately true for short distances and is always assumed as true for such distances unless very great accuracy is required.

The horizontal distance between two points is the distance from one of the two points to a vertical line through the other.

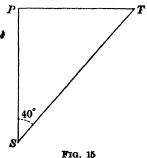
The vertical distance between two points is the distance from one of the two points to the horizontal plane through the other. PROBLEMS

E.g., let MP be the vertical line at P and let the horizontal plane at A cut this vertical line in M; then AM is called the *horizontal* distance,

and MP is called the vertical distance, between the points A and P. Moreover $\angle MAP$ is the angle of elevation of P, as seen from A. Also, if PNis horizontal at P and in the plane AMP, $\angle NPA$ is the Aangle of depression of A, as Aseen from P.

Now if we assume that the vertical lines at A and P are parallel, the lines AM and NP will be parallel also and the angles MAP and NPA will be equal.

15. Solving problems. The practical problems which follow will illustrate the utility of the trigonometric ratios of angles in *computing* heights, distances, angles, areas, etc.


In solving problems it will be helpful to observe the following general method of procedure.

First step. Construct accurately to some convenient scale a drawing which will show the relations of the given angles and lines to those which are required.

Second step. Draw any auxiliary lines which may be helpful in the trigonometric solution. By examining the drawing, fix upon the *simplest* steps which are *necessary* to solve the problem.

Third step. Write the needed formulas. Make the computations, and check the answers.

Ex. 1. A man, standing on the bank of a river at P, wishes to find how far he is from a tree at T on the opposite bank. He locates a staff at S so that $PS \perp PT$. By measurement he finds that the horizontal distance PS = 250 ft., and that the horizontal angle $PST = 40^{\circ}$. Find the distance PT.

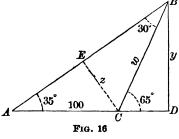
By § 1,
$$PT/PS = \tan 40^\circ = 0.8391$$
. by table
 $\therefore PT = 250 \text{ ft.} \times 0.8391 = 209.77 \text{ ft.}$

Check. By measurement PT = 210 ft. nearly, when PS = 250 ft.

Ex. 2. A vertical flagstaff stands on a horizontal plane. At a point 200 ft. from the foot of the staff the angle of elevation of its top is found to be 20°. Find the height of the flagstaff.

Let MP (fig. 14) represent the flagstaff, and A the point from which the angle of elevation is taken.

 Then
 AM = 200 ft.,


 and
 $\angle MAP = 20^{\circ}$.

 By § 1,
 $MP / AM = \tan 20^{\circ} = 0.364$.
 by table

 $\therefore MP = 200$ ft. $\times 0.364 = 72.8$ ft.

Check. By measurement MP = 73 ft. nearly, when AM = 200 ft.

Ex. 3. A man wishes to find the height of a tower DB which stands on a horizontal plane. From a point A on this plane he finds the angle

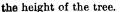
B of elevation of the top of the tower to be 35°. From a point C, which is in the horizontal plane at A and 100 ft. nearer the tower, he finds the angle of y elevation to be 65°. Find the height of the tower.

Solution 1. Let DB = y ft. Then $AD/y = \cot 35^\circ = 1.4281$, and $CD/y = \cot 65^\circ = 0.4663$.

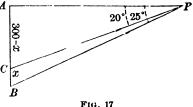
$$\therefore 100 = AD - CD \\= (1.4281 - 0.4663) y.$$

$$\therefore y = 103.97.$$

Solution 2. From C draw $CE \perp AB$, thus forming the right triangles ACE and CEB.


Now	$\angle CBE = \angle ABD - \angle CBD$	
	$= 55^{\circ} - 25^{\circ} = 30^{\circ}.$	
Let	CE = z ft. and $CB = w$ ft.	
Then	$z/100 = \sin 35^\circ = 0.5736$,	(1)
	$w/z = \csc 30^{\circ} = 2,$	(2)
and	$y/w = \sin 65^{\circ} = 0.9063.$	(8)

PROBLEMS


Multiplying together (1), (2), and (3), member by member, we obtain $y/100 = 1.1472 \times 0.9063$, or y = 103.97.

Check. By measurement DB = 104 ft. nearly, when AC = 100 ft.

Ex. 4. From the top of a hill 300 ft. higher than the foot of a tree, the angles of depression of the top and the foot of the tree are found to be 20° and 25° respectively. Find A

Let P be the top of the hill, Bthe foot of the tree, and C its top. In the plane PBC draw PA horizontal at P and prolong it until it intersects the vertical line BC produced in A.

Then

$$\angle APC = 20^{\circ} \text{ and } \angle APB = 25^{\circ}.$$

 Let
 $BC = x$ ft.

 Then
 $AC = (300 - x)$ ft.

 Hence
 $AP/300 = \cot 25^{\circ} = 2.1445,$
 (1)

 and
 $(300 - x)/AP = \tan 20^{\circ} = 0.3640.$
 (2)

Multiplying together (1) and (2), member by member, we obtain

$$(300 - x)/300 = 2.1445 \times 0.3640$$

 $\therefore x = 65.82$ nearly.

Check. By measurement BC = 66 ft. nearly, when BA = 300 ft.

Note. All the problems in the following exercise need not be solved before beginning Chapter II. The solution of a few problems at a time, while the student is pursuing the more abstract and theoretic portions of the science, will serve to keep before him its practical utility and maintain his interest.

EXERCISE IV

1. The length of a kite string is 250 yds. and the angle of elevation of the kite is 40° Find the height of the kite, supposing the line of the kite string to be straight. Ans. 160.7 yds.

2. A stick 10 ft. in length stands vertically in a horizontal area, and the length of its shadow is 8.391 ft. Find the angle of elevation of the sun. Ans. 50°. 3. A tree is broken by the wind so that its two parts form with the ground a right-angled triangle. The upper part makes an angle of 35° with the ground, and the distance on the ground from the trunk to the top of the tree is 50 ft. Find the length of the tree. Ans. 96.05 ft.

4. The distance between two towers on a horizontal plane is 60 ft., and the angle of depression of the top of the first as seen from the top of the second, which is 150 ft. high, is 25° . Find the height of the first tower.

5. At a point 200 ft. from the base of an unfinished tower, the angle of elevation of its top is 20° ; when completed, the angle of elevation of its top at this point will be 30° . How much higher is the tower to be built?

6. The angle of elevation of the sun is 65° and the length of a tree's shadow on a level plane is 50 ft. Find the height of the tree.

7. A chimney stands on a horizontal plane. At one point in this plane the angle of elevation of the top of the chimney is 30° , at another point 100 feet nearer the base of the chimney the angle of elevation of the top is 45° . Find the height of the chimney.

8. A person standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is 50° ; walking 40 ft. from the bank he finds the angle to be 30° . Find the height of the tree and the breadth of the river, if the two points of observation are in the same horizont² line at the base of the tree.

9. The shadow of a tower standing on a horizontal plane is found to be 60 ft. longer when the sun's altitude is 30° than when it is 45° . Find the height of the tower.

10. At a point midway between two towers on a horizontal plane the angles of elevations of their tops are 30° and 60° respectively. Show that one tower is three times as high as the other.

11. Two observers on the same horizontal line and in the same vertical plane with a balloon, on opposite sides of it and 2500 ft. apart, find its angles of elevation to be 35° and 55° respectively. Find the height of the balloon.

12. A man in a balloon observes that the bases of two towers, which are a mile apart on a horizontal plane, subtend an angle of 70° . If he is exactly above the middle point between the towers, find the height of the balloon.

PROBLEMS

13. From the foot of a tower the elevation of the top of a church spire is 55° , and from the top of the tower, which is 50 ft. high, the elevation is 35° . Find the height of the spire and the distance of the church from the tower, if both stand on the same horizontal plane.

14. From the top of a tower whose height is 108 ft. the angles of depression of the top and bottom of a vertical column standing on a level with the base of the tower are found to be 25° and 35° respectively. Find the height of the column and its distance from the tower.

15. Two pillars of equal height stand on opposite sides of a horizontal roadway which is 100 ft. wide. At a point in the roadway between the pillars the angles of elevation of their tops are 50° and 25° respectively. Find the height of the pillars and the position of the point of observation.

16. A house 50 ft, high and a tower stand on the same horizontal plane. The angle of elevation of the top of the tower at the top of the house is 25° , on the ground it is 55° . Find the height of the tower and its distance from the house.

17. On the top of a bluff is a tower 75 ft. high; from a boat on the bay the angles of elevation of the top and base of the tower are observed to be 25° and 15° respectively. Find the horizontal distance of the boat from the tower, also the distance of the boat from the top of the tower.

18. One of the equal sides of an isosceles triangle is 50 ft. and one of its equal angles is 40° . Find the base, the altitude, and the area of the triangle.

19. The base of an isosceles triangle is 68.4 ft. and each of its equal sides is 100 ft. Find the angles, the height, and the area.

20. The base of an isosceles triangle is 100 ft. and its height is 35.01 ft. Find its equal sides and the angles.

21. The base of an isosceles triangle is 88 ft. and its vertical angle is 70° . Find the height, the equal sides, and area.

22. The base of an isosceles triangle is 100 ft. and the equal angles are each 65°. Find the equal sides, the height, and the area.

23. The height of an isosceles triangle is 50 ft. and its vertical angle is 60° . Find the sides and the area.

24. A man's eye is on a level with and 100 ft. distant from the foot of a flag pole 36.4 ft. high. When he is looking at the top of the pole, what angle does his line of sight make with a line from his eye to the foot of the pole?

25. A circular pond has a pole standing vertically at its center and its top is 100 ft. above the surface. At a point in the circumference the angle subtended by the pole is 20° . Find the radius and the area of the pond.

26. A ladder $33\frac{1}{3}$ ft. long leans against a house and reaches to a point 30.21 ft. from the ground. Find the angle between the ladder and the house and the distance the foot of the ladder is from the house.

27. From the summit of a hill there are observed two consecutive milestones on a straight horizontal road running from the base of the hill. The angles of depression are found to be 10° and 5° respectively. Find the height of the hill.

28. At the foot of a hill the angle of elevation of its summit is observed to be 30° ; after ascending the hill 500 ft., up a slope of 20° inclination, the angle of elevation of its summit is found to be 40° . Find the height of the hill if the two points of observation and the summit are in the same vertical plane.

One method of solution is similar to that of the second solution of example 3 in § 15.

29. At the foot of a mountain the angle of elevation of its summit is 35° ; after ascending an opposite mountain 3000 ft., up a slope of 15° inclination, the angle of elevation of the summit is 15° . Find the height of the first mountain if the points of observation and the summit are in the same vertical plane.

30. From the extremities of a ship 500 ft. long the angles which the direction of a buoy makes with that of the ship are 60° and 75°. Find the distance of the buoy from the ship, having given that $\cot 75^\circ = 2 - \sqrt{3}$. Ans. 125 ($\sqrt{3} + 3$) ft.

31. There are two posts which are 240 and 80 ft. high respectively. From the foot of the second the elevation of the top of the first is found to be 60°. Find the elevation of the second from the foot of the first.

Ans. 30°.

PROBLEMS

32. A boy standing c feet behind and opposite the middle of a football goal sees that the angle of elevation of the nearer crossbar is A, and the angle of elevation of the farther one is B. Show that the length of the field is $c (\tan A \cot B - 1)$.

33. A valley is crossed by a horizontal bridge whose length is *l*. The sides of the valley make angles A and B with the horizon. Show that the height of the bridge above the bottom of the valley is $l/(\cot A + \cot B)$.

34. Two forces of a and b lbs. respectively act in the same direction. Find their resultant. Illustrate the problem geometrically.

35. Two forces of a and b lbs. respectively act in opposite directions. Find their resultant when a > b, when a = b, and when a < b. Illustrate each case geometrically.

36. By two or more experiments verify that, if in any triangle ABC the two sides AB and BC represent two forces (both in size and direction), the third side AC will represent their resultant, *i.e.* their sum in its simplest form.

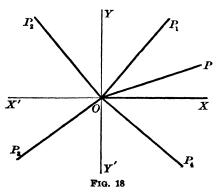
37. Two forces of 3 and 4 lbs. respectively act at right angles to each other. Show that their resultant is a force of 5 lbs. and that its line of action and that of the first force make an angle whose tangent is 4/3.

Suggestion. In fig. 4 let OM and MP respectively represent the two forces, then the line OP will represent the resultant.

38. Two forces of a and b lbs. respectively act at right angles. Show that their resultant is a force of $\sqrt{a^2 + b^2}$ lbs., and that its line of action and that of the first force make an angle whose tangent is b/a.

39. Two forces act at right angles. The first is a force of 3 lbs. and the resultant is one of 5 lbs. Show that the second force is one of 4 lbs., and that the lines of action of the first force and the resultant form an angle whose cosine is 3/5.

40. Two forces act at right angles. The first is a force of a lbs. and the resultant is one of c lbs. Show that the second force is one of $\sqrt{c^2-a^2}$ lbs. and that the lines of action of the first force and the resultant form an angle whose cosine is a/c.


41. Prove $\sin 6^\circ = \cos 84^\circ > 0.1$, $\tan 6^\circ = \cot 84^\circ > 0.1$, $\tan 84^\circ = \cot 6^\circ < 10$.

CHAPTER II

TRIGONOMETRIC RATIOS OF POSITIVE AND NEGATIVE ANGLES OF ANY SIZE

16. Positive and negative angles of any size. In the first chapter we studied *acute* angles and considered their *size* only. When, however, we conceive an angle as generated by a rotating line, we see that it can be either *positive* or *negative* and of *any size* whatever.

Thus, suppose a line OP to start from OX and to rotate

about O counter-clockwise; that is, in a direction opposite to that of the hands of a clock.

When OP reaches the position OP_1 it has generated the acute angle XOP_1 . When OP reaches the position OP_2 it has generated the obtuse angle XOP_2 . When OP reaches OP_3 it has gener-

ated the angle XOP_3 (i.e. $\angle XOP_2 + \angle P_2OP_3$). When OP reaches OP_4 it has generated the angle XOP_4 (i.e. $\angle XOP_3 + \angle P_3OP_4$). When OP reaches OX it has generated an angle of 360°.

If OP continues to rotate, when it reaches OP_1 the second time it has generated the angle 360° + the acute angle XOP_1 ; when OP reaches OP_1 the third time it has generated the angle 720° + the acute angle XOP_1 ; and so on for any number of revolutions.

When the rotation of OP is counter-clockwise, the angle generated is said to be positive; hence, when the rotation of OP is clockwise, the angle generated is negative.

E.g., in ten minutes the minute hand of a clock generates a *negative* angle of 60° ;

in	15	minutes	it	generates	an	angle	of		90°;
"	30	""	"	""	"	"	"	-	180°;
"	1	hour	"	"	"	"	"	-	360° ;
"	$3\frac{1}{2}$	hours	" "	"	""	"	"		$(3 \times 360^{\circ} + 180^{\circ});$

and so on. If the hands of a clock were to rotate in the *opposite* direction, *i.e. counter-clockwise*, they would generate *positive* angles.

The line OX which marks the *first* position of the rotating line OP is called the initial side of the angle XOP_3 ; and the line OP_3 which marks the *final* position of OP is called the terminal side of this angle.

The size of an angle gives the amount which its generating line has rotated, and its quality * gives the direction of this rotation.

The value of a *positive* or a *negative* angle includes both its *size* and its *quality* as positive or negative.

17. Coterminal angles. Any angle, positive or negative, which has the same initial side and the same terminal side as angle A is said to be coterminal with A. If any angle, as XOP_2 in fig. 18, is *increased* or *diminished* by 360° (or by any entire multiple of 360°), the resulting angle, whether positive or negative, will have the same initial and the same terminal side as XOP_2 .

* In Algebra the quality of a particular number as positive or negative is denoted by the sign + or -, and this *quality* is often called the *sign* of the number. It is unfortunate, however, to use the same word *sign* as the name both of a symbol and also of the property of number denoted by this symbol. Moreover the introduction of the word *sine* adds another reason for not calling the *quality* of a number its *sign* in Trigonometry.

Hence if n is any integer, positive or negative, then all the angles, and only those, which are or can be made *coterminal* with any angle A are denoted by $n 360^\circ + A$. E.g., $2 \cdot 360^\circ + 40^\circ$ is or can be made coterminal with 40° .

Evidently there are as many different angles coterminal with A as there are different entire values for n.

18. Quadrants. If, as in fig. 18, the initial side of the angle XOP_1 is produced through the vertex to X', and the perpendicular YOY' drawn through the vertex O, these lines will divide the plane of the angle into four equal parts called quadrants. These quadrants are numbered in the positive direction, reckoning from the initial side of the angle under consideration; that is, if OX is the initial side of the angle considered, then XOY will be the first quadrant; YOX' the second quadrant; X'OY' the third quadrant; and Y'OX the fourth quadrant.

If OY is the initial side of the angle considered, then YOX' will be the *first* quadrant; and so on.

For convenience, an angle is said to be in (or of) that quadrant in which its terminal side lies.

E.g., the angle XOP_2 (fig. 18) is said to be in the second quadrant, since its terminal side OP_2 lies in that quadrant; the angle XOP_4 is said to be in the fourth quadrant, since its terminal side OP_4 is in that quadrant. The angle YOP_2 is in the first quadrant, and YOP_8 is in the second quadrant, since here OY is the initial side and YOX' is the first quadrant.

Again, $200^{\circ} = 180^{\circ} + 20^{\circ}$, hence an angle of 200° is in the third quadrant; $880^{\circ} = 2(360^{\circ}) + 160^{\circ}$, hence an angle of 880° is in the second quadrant. An angle of -50° is in the fourth quadrant, and an angle of -330° is in the first quadrant. Since $-400^{\circ} = -360^{\circ} - 40^{\circ}$, an angle of -400° is in the fourth quadrant.

19. Two angles are said to be complementary when their sum is 90° (\S 8), and supplementary when their sum is 180°.

DIRECTED LINES

E.g.,	the	complement	of	110°	is	$90^{\circ} - 110^{\circ}$, or -20° ;
	" "	"	"	80°	"	$90^{\circ} - (-80^{\circ})$, or 170° ;
	"	"	"	A	"	$90^{\circ} - A;$
and	"	"	"	- A	"	$90^{\circ} - (-A)$, or $90^{\circ} + A$.
	"	supplement	"	135°	"	180° – 135°, or 45°;
	" "	"	"	2 35°	"	$180^{\circ} - 235^{\circ}$, or -55° ;
	""	"	"'	A	"	$180^{\circ} - A;$
and	""	""	"	-A	"	$180^{\circ} - (-A)$, or $180^{\circ} + A$.

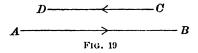
EXERCISE V

In which quadrant is each of the following angles?

1. 5/3 right angles ?	4.	150°? 317°?	7.	-225° ? -300° ?
2. 3 ² / ₈ right angles ?	5.	847°? 1111°?	8.	$-415^{\circ}? -842^{\circ}?$
3. 17 ¹ / ₇ right angles ?	6.	$-35^{\circ}? - 140^{\circ}?$	9.	942°? 1174°?

10. Construct the angles in examples 5, 7, 9.

11. Give two positive and two negative angles, each of which is coterminal with 45° ; 30° ; 100° ; 200° ; -10° ; -100° .


Find the complement and the supplement of :

12.	165°.	14.	295° 17′ 14″.	16.	-	32° 14′ 21″.
13.	228°.	15.	314° 22′ 17″.	17.	•	165° 28′ 42″.

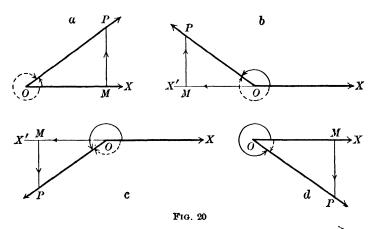
Find the smallest positive angle coterminal with:

18. 420°. **19.** 895°. **20.** -330°. **21.** -740°. -22. -1123°.

20. Positive and negative lines. If two lines extend in *opposite* directions and one of them is regarded as *positive*, the other will be *negative*. A positive or a negative line is called a *directed line*, and is *read in the direction in which it extends* or is supposed to be traced.

Of the directed line AB, A is called the origin and B the end.

E.g., as a directed line, AB extends from its origin A towards its end B, and CD extends from its origin C towards its end D.


If we call AB positive, BA or CD will be negative.

Hence AB = -BA, or AB + BA = 0.

The numerical measure of a positive or a negative line is a positive or a negative real number. E.g., if AB is four units in *length* and is regarded as positive in *direction*, then

AB = +4 units and BA = -4 units.

21. Trigonometric ratios of positive or negative angles of any size. In each of the four figures below, let A denote any angle, positive or negative, which is coterminal with the angle XOP. In each figure a curved arrow indicates the smallest positive value of A, and a dotted arrow the smallest in *size* of its negative values.

From any point in the *terminal* side OP, as P, draw MP perpendicular to the *initial* side OX or OX produced through O.

In each of the four figures we have three directed lines, OM, OP, and MP. The origin of the directed line OM or OP is at the vertex of the angle, and the origin of MP is in the initial side of the angle or in that side produced.

OM is regarded as *positive* when it extends in the direction of the initial side of the angle, OX; and hence it is *negative* when it extends in the opposite direction, OX'. Thus OM is positive in fig. *a* or *d*, and negative in fig. *b* or *c*.

MP is regarded as *positive* when it extends upward, or into the *first* or *second* quadrant; hence it is *negative* when it extends downward, or into the *third* or *fourth* quadrant. Thus MP is positive in fig. a or b, and negative in fig. c or d.

OP in every position extends in the direction of the terminal side of the angle and is regarded as *positive*.

Observe that in each figure P is a point in the *terminal* side; MP gives the *distance* and *direction* of P from the initial side OX, and OM gives the *distance* and *direction* of MP from the vertex O.

Ex. 1. What is the quality of MP and OM respectively when A is in the first quadrant? the second quadrant? the third quadrant? the fourth quadrant?

Ex. 2. The angle A is in one of which two quadrants when MP is positive? MP negative? OM positive? OM negative?

The six simple ratios (three ratios and their reciprocals) which can be formed with the three directed lines, MP, OM, and OP, are called the *trigonometric ratios* of the angle A.

The following definitions do not differ from those in §1 except in their *generality*, which follows from the use of positive and negative angles and lines.

The ratio	MP/OP	is	the	sine of A;
and its reciprocal	OP / MP	is	the	cosecant of A.
The ratio	OM / OP	is	the	cosine of A;
and its reciprocal	OP / OM	is	the	secant of A.
The ratio	MP/OM	is	the	tangent of A;
and its reciprocal	OM/MP	is	the	cotangent of A.

If two angles are or can be made coterminal, any trigonometric ratio of the one is evidently equal to the same trigonometric ratio of the other.

Since any angle denoted by $n \cdot 360^\circ + A$, where n is any real integer, can be made coterminal with A, it follows that

Any trigonometric ratio of $(n \cdot 360^\circ + A)$ is equal to the same trigonometric ratio of A.

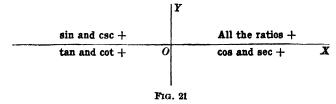
Example. Find a positive acute angle whose trigonometric ratios are equal to those of 420° ; 760° ; 1120° ; -340° ; -660° .

Since 1120° , or $3 \cdot 360^\circ + 40^\circ$, is coterminal with 40° , any trigonometric ratio of 1120° is equal to the same ratio of 40° .

22. Laws of quality of the trigonometric ratios. Two reciprocal trigonometric ratios must evidently have the same quality.

Since OP is always positive, the reciprocal ratios sin Λ and $\csc A$ have the same quality as MP.

Hence $\sin A$ or $\csc A$ is positive when A is in the first or the second quadrant, and negative when A is in the third or the fourth quadrant.


The reciprocal ratios $\cos A$ and $\sec A$ have the same quality as OM.

Hence cos A or sec A is positive when A is in the first or the fourth quadrant, and negative when A is in the second or the third quadrant.

The reciprocal ratios $\tan A$ and $\cot A$ are positive or negative according as MP and OM are like or opposite in quality.

Hence tan A or cot A is positive when A is in the first or the third quadrant, and negative when A is in the second or the fourth quadrant.

Observe that when A is in the first quadrant all its trigonometric ratios are positive, and when A is in any other quadrant *only two* of its six ratios are *positive*, and these two are reciprocals. The figure below, where XOY is the first quadrant, may help to fix in mind the very important laws of quality given above.

E.g., the angle 500° is in the second quadrant; hence all its trigonometric ratios are negative except its sine and cosecant. The angle -300° is in the first quadrant; hence all its ratios are positive.

Example. What is the quality of each trigonometric ratio of 103° ? -135° ? 235° ? -75° ? 325° ? -325° ? 660° ? 1100° ?

23. $\sin^{-1}c$, $\cos^{-1}c$, \cdots . If $\sin A = c$, then A = any angle whose sine is c.

The customary expression for any angle whose sine is c is $sin^{-1}c$, read any angle whose sine is c, or briefly, angle sine c.

Thus, if $\sin A = c$, $A = \sin^{-1}c$, and conversely.

A similar meaning is given to the expressions, $\cos^{-1}b$, $\tan^{-1}a$, $\cot^{-1}a$, $\sec^{-1}h$, $\csc^{-1}k$.

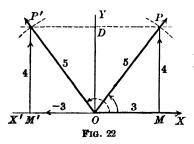
E.g., $\sin^{-1}(1/2)$ denotes any angle whose sine is 1/2; hence it denotes any angle which is coterminal with 30° or 150°; that is,

$$\sin^{-1}(1/2) = n \cdot 360^{\circ} + 30^{\circ} \text{ or } n \cdot 360^{\circ} + 150^{\circ},$$

where n is any integer, positive or negative, including 0.

Again, $\tan^{-1} 1 = n \cdot 360^{\circ} + 45^{\circ} \text{ or } n \cdot 360^{\circ} + 225^{\circ}.$

Ex. 1. If $A = \cot^{-1}(-1)$, what are the values of A?


Ex. 2. If $A = \cos^{-1}(-1/2)$, what are the values of A?

Ex. 3. Given $A = \sin^{-1}(4/5)$, to construct A and find its other trigonometric ratios.

Since $\sin A$ is +, the angle A is in the first or the second quadrant.

§ 17

Draw OX, at O draw $OY \perp OX$, and lay off OD equal to 4 units. Through D draw P'P parallel to OX. From O as a center and with

OM = +3

a radius equal to 5 units describe an arc cutting P'DP in some points, as P' and P. Draw OP and OP'. Then A, or $\sin^{-1}(4/5)$, is any angle which is coterminal with XOP or XOP'.

Hence A, or $\sin^{-1}(4/5)$, is the acute angle $XOP + n \cdot 360^{\circ}$, or the obtuse angle $XOP' + n \cdot 360^{\circ}$, where n is any integer, positive or negative, including zero.

§ 21

OM' = -3.

Here Hence

 $\sin A = 4/5,$ $\csc A = 5/4;$ $\cos A = \pm 3/5,$ $\sec A = \pm 5/3;$ $\tan A = \pm 4/3,$ $\cot A = \pm 3/4.$

and

and

When, as above, any trigonometric ratio of A has two values which are written together, we shall consider the *upper* sign as belonging to the trigonometric ratio of the *least positive value* of A. Thus, if A is in the first or the second quadrant, we shall write $\tan A = \pm 4/3$; while if Ais in the second or the third quadrant, we shall write $\tan A = \mp 4/3$; and so on.

EXERCISE VI

Construct A and find its other five trigonometric ratios when:

 1. $A = \sin^{-1}(-2/3)$.
 7. $A = \cos^{-1}(-3/7)$.

 2. $A = \tan^{-1}(5/2)$.
 8. $A = \cot^{-1}(5/3)$.

 3. $A = \tan^{-1}(-3)$.
 9. $A = \cos^{-1}(-4/5)$.

 4. $A = \cos^{-1}(2/3)$.
 10. $A = \sec^{-1}2$.

 5. $A = \sin^{-1}(-7/8)$.
 11. $A = \sec^{-1}(-3/2)$.

 6. $A = \tan^{-1}7$.
 12. $A = \csc^{-1}(-5/3)$.

13. Express each of the trigonometric ratios of A in terms of sin A. If sin A is positive, A is in the first or the second quadrant.

In fig. 22, let
$$OP = 1$$
.
Then sin A is the measure of MP or $M'P'$.

Whence

$$MP = M'P' = \sin A,$$

$$OM = \sqrt{1 - \sin^2 A}, \quad OM' = -\sqrt{1 - \sin^2 A}.$$

Hence
$$\cos A = \pm \sqrt{1 - \sin^2 A}$$
, $\sec A = \pm 1/\sqrt{1 - \sin^2 A}$;
 $\tan A = \pm \sin A/\sqrt{1 - \sin^2 A}$, $\cot A = \pm \sqrt{1 - \sin^2 A}/\sin A$.

If sin A is negative, A is in the third or the fourth quadrant, and $\cos A = \mp \sqrt{1 - \sin^2 A}$, $\sec A = \mp 1/\sqrt{1 - \sin^2 A}$.

24. Fundamental relations between the trigonometric ratios of any angle A.

From the definitions of the trigonometric ratios of A, we have

sin A csc A
$$\equiv$$
 1, cos A sec A \equiv 1, tan A cot A \equiv 1. [1]

$$\tan \mathbf{A} \equiv \frac{MP}{OM} \equiv \frac{MP/OP}{OM/OP} \equiv \frac{\sin \mathbf{A}}{\cos \mathbf{A}}.$$
 [2]

Taking the reciprocals of the members of $\lceil 2 \rceil$, we obtain

$$\cot \mathbf{A} \equiv \cos \mathbf{A} / \sin \mathbf{A}.$$
 [3]

In each of the figures in § 21, we have

$$\overline{MP}^2 + \overline{OM}^2 \equiv \overline{OP}^2.$$
 (1)

Dividing the members of (1) by \overline{OP}^2 , we obtain

$$(MP/OP)^2 + (OM/OP)^2 \equiv 1.$$
 (2)

If, for brevity, we write $(\sin A)^2$ and $(\cos A)^2$ in the form $\sin^2 A$ and $\cos^2 A$, from (2) we obtain

$$\sin^2 \mathbf{A} + \cos^2 \mathbf{A} \equiv 1.$$
 [4]

Dividing the members of (1) by \overline{OM}^2 , we obtain

$$(MP/OM)^{2} + 1 \equiv (OP/OM)^{2},$$
$$\tan^{2} \mathbf{A} + 1 \equiv \sec^{2} \mathbf{A}.$$
 [5]

or

Dividing the members of (1) by \overline{MP}^2 , we obtain

or
$$1 + (OM/MP)^2 \equiv (OP/MP)^2,$$
$$\cot^2 A + 1 \equiv \csc^2 A.$$
 [6]

The identities $[1] \cdots [6]$ express the more important of the numberless relations that exist between the trigonometric ratios of any angle A.

For brevity $(\sin A)^n$, $(\cos A)^n$, etc., are written in the form $\sin^n A$, $\cos^n A$, etc., as above, *except* when n = -1.

By § 23, $\sin^{-1}c$ is used to denote any angle whose sine is c; hence the reciprocal of $\sin A$ should never be written in the form $\sin^{-1}A$, but in the form $(\sin A)^{-1}$ or $1/\sin A$.

Ex. 1. State identities $[1] \cdots [6]$ in words.

Ex. 2. sec A = -4; find the values of the other ratios of A. Since sec A is -, A is in the second or the third quadrant.

sec A = -4; $\therefore \cos A = -1/4$. by [1]

§ 22

$$\sin A = \pm \sqrt{1 - \cos^2 A}$$
 by [4]

$$=\pm \sqrt{1-1/16}=\pm \sqrt{15/4}.$$

$$\therefore$$
 csc $A = \pm 4/\sqrt{15} = \pm 4\sqrt{15}/15.$ by [1]

$$\tan A = \sin A / \cos A = \pm \sqrt{15}.$$
 by [2]

$$\cot A = \mp 1/\sqrt{15} = \mp \sqrt{15}/15.$$
 by [1]

Check. Construct A from sec A = -4, and then find the other trigonometric ratios of A, as in § 23.

Ex. 3. Express the other trigonometric ratios of A in terms of sin A.

$$\csc A \equiv 1/\sin A. \qquad \qquad \text{by [1]}$$

$$\cos A \equiv \pm \sqrt{1 - \sin^2 A}. \qquad \text{by [4]}$$

$$\therefore \sec A \equiv \pm 1/\sqrt{1-\sin^2 A}. \qquad \text{by [1]}$$

$$\tan A \equiv \sin A / \cos A \qquad \qquad by [2]$$

$$\equiv \pm \sin A / \sqrt{1 - \sin^2 A}.$$

$$\therefore \cot A \equiv \pm \sqrt{1 - \sin^2 A} / \sin A. \qquad \text{by [1]}$$

When sin A is positive A is in the first or the second quadrant; when A is in the first quadrant all the trigonometric ratios of A are +; when A is in the second quadrant only sin A and csc A are +. The signs as written above are for sin A positive.

Check. Find these relations as in example 13 of Exercise VI.

PROOFS OF IDENTITIES

EXERCISE VII

By § 24, compute the other trigonometric ratios of A, having given :

1.	$\sin A = -2/3.$	- 5.	$\tan A = -4/3.$	9.	$\csc A = -\sqrt{3}.$
2.	$\cos A = 1/3.$	6.	$\cot A = -2.$	10.	$\sec A = 4.$
3.	$\sin A=0.2.$	7.	$\cot A = 3/2.$	11.	$\tan A = -\sqrt{7}.$
4.	$\cos A = -3/4.$	8.	$\tan A = 2.5.$	12.	$\cos A = m/c.$

Express each of the trigonometric ratios of A in terms of :

13. $\cos A$. **14.** $\tan A$. **15.** $\cot A$. **16.** $\sec A$. **17.** $\csc A$.

25. Proofs of identities. Of the different ways of proving an identity, the three following are the more common and important.

(i) Derive the required identity from one or more known identities.

Ex. 1. Prove that $\pm \sqrt{\sec^2 A + \csc^2 A} \equiv \tan A + \cot A$. (1) Adding identities [5] and [6] in § 24, we obtain

$$sec^{2} A + \csc^{2} A \equiv \tan^{2} A + 2 + \cot^{2} A$$
$$\equiv (\tan A + \cot A)^{2}. \qquad \text{by Algebra, [1]}$$

Extracting the square root of both members of the last identity, we obtain identity (1).

(ii) Reduce one member of the required identity to the form of the other member, using any known identities.

Ex. 2. Prove that
$$\sqrt{\frac{1-\cos A}{1+\cos A}} \equiv \csc A - \cot A$$
.
 $\csc A - \cot A \equiv \frac{1}{\sin A} - \frac{\cos A}{\sin A}$ by [1], [3]
 $\equiv \frac{1-\cos A}{\sqrt{1-\cos^2 A}}$ by Algebra, [4]
 $\equiv \sqrt{\frac{(1-\cos A)^2}{1-\cos^2 A}} \equiv \sqrt{\frac{1-\cos A}{1+\cos A}}$. by Algebra

(iii) Reduce one member to its simplest form, and then reduce the other member to the same form.

When an identity contains any other trigonometric ratios than the sine and cosine, it is usually best in this method to replace these other ratios by their values in terms of the sine and cosine.

Ex. 3. Prove that

 $\sin^2 A \tan A + \cos^2 A \cot A + 2 \sin A \cos A \equiv \tan A + \cot A.$ (1)

First member
$$\equiv \sin^2 A \frac{\sin A}{\cos A} + \cos^2 A \frac{\cos A}{\sin A} + 2 \sin A \cos A$$

 $\equiv \frac{\sin^4 A + \cos^4 A + 2 \sin^2 A \cos^2 A}{\sin A \cos A}$ by Algebra
 $\equiv \frac{(\sin^2 A + \cos^2 A)^2}{\sin A \cos A}$ by Algebra
 $\equiv 1/(\sin A \cos A).$ by [4]

Similarly show by [3], [4], and Algebra, that second member $\equiv 1/(\sin A \cos A)$.

From the last two identities we obtain identity (1).

EXERCISE VIII

Prove each of the following identities :

1. $\cos A \tan A \equiv \sin A$.	Obtain from [2]
2. $\sin A \sec A \equiv \tan A$.	From [2] by [1]
3. $\cos A \csc A \equiv \cot A$.	From [3] by [1]
4. $\sin A \cot A \equiv \cos A$.	
5. $\cos^2 A - \sin^2 A \equiv 1 - 2 \sin^2 A$.	From [4] by Algebra
6. $\cos^2 A - \sin^2 A \equiv 2 \cos^2 A - 1$.	
7. $\frac{\sin A}{1+\cos A} \equiv \frac{1-\cos A}{\sin A}.$	From [4] by Algebra
8. $\frac{1+\sin A}{\cos A} \equiv \frac{\cos A}{1-\sin A}.$	

IDENTITIES

9.
$$\frac{\sec A + 1}{\tan A} \equiv \frac{\tan A}{\sec A - 1}.$$
 From [5] by Algebra
10.
$$\sec A + \tan A \equiv 1/(\sec A - \tan A).$$

11.
$$(1 + \tan^2 A) \cos^2 A \equiv 1.$$
 From [5] by [1]
12.
$$(1 + \cot^2 A) \sin^2 A \equiv 1.$$

13.
$$\sin^2 A + \sin^2 A \tan^2 A \equiv \tan^2 A.$$
 From [2] by [1], [5]
14.
$$(\csc^2 A - 1) \sin^2 A \equiv \cos^2 A.$$

15.
$$\cos^4 A - \sin^4 A + 1 \equiv 2 \cos^2 A.$$

16.
$$\cos^4 A - \sin^4 A + 1 \equiv 2 \cos^2 A.$$

16.
$$\tan^2 A/(1 + \tan^2 A) \equiv \sin^2 A.$$

17.
$$\frac{\sqrt{1 - \sin^2 A}}{\sin A} \equiv \frac{\cos A}{\sqrt{1 - \cos^2 A}}.$$

18.
$$\cot^2 A - \cos^2 A \equiv \cot^2 A \cos^2 A.$$

19.
$$\sec^2 A + \csc^2 A \equiv \sec^2 A \csc^2 A.$$

20.
$$\tan A + \cot A \equiv \sec A \csc A.$$

21.
$$\frac{\cot A \cos A}{\cot A + \cos A} \equiv \frac{\cot A - \cos A}{\cot A \cos A}.$$

22.
$$\tan A + \cot A \equiv \frac{\sec^2 A + \csc^2 A}{\sec A \csc A}.$$

23.
$$1/\sqrt{\sec^2 A - 1} \equiv \sqrt{\csc^2 A - 1}.$$

24.
$$\frac{1 + \tan^2 A}{1 + \cot^2 A} \equiv \frac{\sin^2 A}{\cos^2 A}; \frac{\csc A}{\cot A + \tan A} \equiv \cos A.$$

25.
$$\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} \equiv \sin A \cos A$$

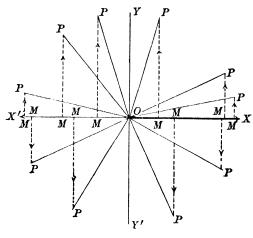
27.
$$\sin^2 A \cos^2 A + \cos^8 A \sin A \equiv \sin A \cos A$$

28.
$$\sqrt{\frac{1 - \sin A}{1 + \sin A}} \equiv \sec A - \tan A.$$

PLANE TRIGONOMETRY

29.
$$\frac{\sin A}{1+\cos A} + \frac{1+\cos A}{\sin A} \equiv 2 \csc A.$$

30.
$$1/(\cot A + \tan A) \equiv \sin A \cos A$$
.


31.
$$1/(\sec A - \tan A) \equiv \sec A + \tan A$$
.

32.
$$\frac{1 - \tan A}{1 + \tan A} \equiv \frac{\cot A - 1}{\cot A + 1}$$

- 33. $\frac{1-\tan^2 A}{1+\tan^2 A} \equiv \cos^2 A \sin^2 A.$
- 34. $\csc A / (\cot A + \tan A) \equiv \cos A$.
- 35. $\csc^4 A (1 \cos^4 A) 2 \cot^2 A \equiv 1$.

26. Changes of the trigonometric ratios of A as A increases from 0° to 360°. To simplify this discussion, let OP have the same length in all of its positions.

Changes of sin A. Let A = XOP, and let OP revolve counter-clockwise about O from the position OX.

F10. 23

A increases from 0° to 90° , While MP increases from 0 to OP: hence MP / OP, or sin A, increases from 0 to +1. A increases from 90° to 180°, While MP decreases from OP to 0; hence MP / OP, or sin A, decreases from +1 to 0. A increases from 180° to 270°, While MP decreases from 0 to -OP; hence MP / OP, or sin A, decreases from 0 to -1. A increases from 270° to 360°, While MP increases from -OP to 0; hence MP / OP, or sin A, increases from -1 to 0. Changes of cos A. A increases from 0° to 90°, While OM decreases from OP to 0; hence OM/OP, or $\cos A$, decreases from +1 to 0. A increases from 90° to 180°, While OM decreases from 0 to -OP; hence OM / OP, or $\cos A$, decreases from 0 to -1.

Similarly the pupil should obtain the other changes of $\cos A$ given in the table below.

Changes of tan A. Let XOP approach 90° or 270° (either from a less or a greater value) so that OM decreases in size to 1/2 its value the first second of time, to 1/2 its remaining value the next second, to 1/2 its second remaining value the third second, and so on indefinitely. Then, since *MP* increases slightly, *MP*/OM, or tan A, more than doubles its value the first second of time, more than doubles its new value the next second, more than doubles its last value the third second, and so on indefinitely. Thus tan A will exceed in arithmetic (or absolute) value any assignable constant number however great; that is, when A approaches very near 90° or 270°, tan $A = +\infty$ or $-\infty$. Also, when $A = 0^{\circ}$, 180°, or 360°, MP = 0, and therefore tan A = 0.

Hence we have the changes of tan A found in the table below. Changes of cot A. Let XOP approach 0°, 180°, or 360° (either from a less or greater value) so that MP decreases in size to 1/2 its value the first second of time, to 1/2 its new value the next second, and so on; then OM/MP, or cot A, becomes $+\infty$ or $-\infty$; that is, when A approaches near 0°, 180°, or 360°, cot $A = +\infty$ or $-\infty$.

Also, when $A = 90^{\circ}$ or 270° , OM = 0, and therefore $\cot A = 0$. Hence we have the changes of $\cot A$ given in the table below. Similarly the changes of $\sec A$ and $\csc A$, which are tabulated below, should be proved by the student.

By remembering that two reciprocal numbers are *like in quality*, that when the one increases the other decreases, and that their corresponding values are reciprocals of each other, the changes of $\csc A$, $\sec A$, and $\cot A$ are known from the changes of $\sin A$, $\cos A$, and $\tan A$ respectively.

A increases from	0° to 90°	90° to 180°	180° to 270°	270° to 360°
sin A varies from	0 to $+1$	+ 1 to 0	0 to -1	— 1 to 0
csc A " "	$+\infty$ to $+1$	$+1$ to $+\infty$	$-\infty$ to -1	-1 to $-\infty$
cos A "' "'	+1 to 0	0 to -1	- 1 to 0	0 to $+1$
sec A ······	$+1$ to $+\infty$	$-\infty$ to -1	-1 to $-\infty$	+ co to + 1
tan A increases from	$0 \text{ to } +\infty$	∞ to 0	0 to $+\infty$	— ∞ to 0
cot A decreases "	$+\infty$ to 0	$0 \text{ to } -\infty$	$+\infty$ to 0	0 to - ∞

From what precedes it follows that:

The tangent or the cotangent can have any real value.

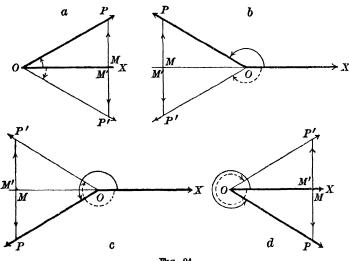
The sine or the cosine can have any value from -1 to +1 inclusive.

The secant or the cosecant can have any value from $-\infty$ to -1 or from +1 to $+\infty$ inclusive.

Observe that neither the sine nor the cosine can have a value greater than +1 or less than -1; and that neither the secant nor the cosecant can have any value between -1 and +1.

E.g., +3/4 is the sine of some angle, the cosine of some angle, the tangent of some angle, or the cotangent of some angle; but it can be neither the secant nor the cosecant of any angle. Again, -3/2 can be neither the sine nor the cosine of any angle.

27. Trigonometric ratios of 0°, 90°, 180°, 270°. When A = 90° or 270°, MP = + OP or -OP and OM = 0; hence $\tan A$ or sec A assumes the form $\pm OP/O$. Now the division of OP by zero is impossible; hence, strictly speaking, 90° or 270° has no tangent or secant. But when A approaches very near to 90° or 270°, by § 26 $\tan A$ or sec A is $+\infty$ or $-\infty$; hence it is customary to say that the tangent or secant of 90° or 270° is ∞ , meaning thereby that however near A approaches to 90° or 270°, $\tan A$ or sec A is $+\infty$ or $-\infty$.


Again, when $A = 0^{\circ}$ or 180° , MP = 0 and OM = + OP or -OP; hence $\cot A$ or $\csc A$ assumes the form $\pm OP/0$. Therefore, strictly speaking, 0° or 180° has no cotangent or cosecant. But when A approaches very near to 0° or 180° , by § 26 $\cot A$ or $\csc A$ is $+\infty$ or $-\infty$; hence it is customary to say that the cotangent or cosecant of 0° or 180° is ∞ .

The trigonometric ratios of 0°, 90°, 180°, and 270° are tabulated below. To aid the memory, the reciprocal ratios are grouped together.

Angle							0°	90°	180°	270°
sine	•	•	•	•	•	•	0	+ 1	0	- 1
cosecant							00	+1	œ	-1
cosine .						•	+1	0	-1	0
secant.						•	+1	œ	-1	œ
tangent		•					0	x 0	0	œ
cotangent	•		•		•		œ	0	x 0	0

Note. Putting OP = a, tan 90° assumes the form a/0, where $a \neq 0$. The form a/0 could be used as the tangent of 90°; then, whether we regarded a/0 as a symbol without numerical meaning, as a symbol of impossibility, or as a symbol of absolute infinity, when a/0 appeared as the tangent of A, the value of A would be known as definitely as when the tangent of A is any finite number.

28. The trigonometric ratios of -A in terms of the ratios of A.

F1G. 24

In each figure let A denote any angle, positive or negative, which is coterminal with XOP; then -A will be coterminal with XOP'. Angle A is in the first quadrant in fig. a, in the second quadrant in fig. b; and so on.

Take OP = OP', and draw $PM \perp OX$ and $P'M' \perp OX$.

Then in each figure the acute angles MOP and M'OP' will be equal in size. Hence any two corresponding sides of the $\triangle OMP$ and OM'P' will be equal in length. Therefore, as directed lines,

$$M'P'/OP' \equiv -MP/OP, i.e. \sin(-A) \equiv -\sin A, \quad (1)$$

and $OM'/OP' \equiv OM/OP, \quad i.e. \cos(-A) \equiv \cos A. \quad (2)$

Dividing (1) by (2), $\tan(-A) \equiv -\tan A$. Dividing (2) by (1), $\cot(-A) \equiv -\cot A$. From (2) by [1], $\sec(-A) \equiv \sec A$. From (1) by [1], $\csc(-A) \equiv -\csc A$.

Identity (1) states that $\sin(-A)$ and $\sin A$ are arithmetically equal but opposite in quality; that is, when $\sin(-A)$ is -, $\sin A$ is +; and when $\sin(-A)$ is +, $\sin A$ is -.

Identity (2) states that $\cos(-A)$ and $\cos A$ are arithmetically equal and like in quality.

The six identities just proved can be summed up as follows: Any trigonometric ratio of $-\mathbf{A}$ is equal arithmetically to the same ratio of \mathbf{A} ; but only the cosines (or the secants) of $-\mathbf{A}$ and \mathbf{A} are like in quality.

E.g., $\sin(-35^\circ) = -\sin 35^\circ$, $\cos(-98^\circ) = \cos 98^\circ$, $\tan(-212^\circ) = -\tan 212^\circ$, $\csc(-317^\circ) = -\csc 317^\circ$.

Ex. 1. Express each trigonometric ratio of -22° in terms of a ratio of 22°.

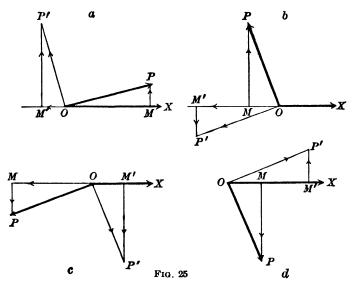
Ex. 2. Express each trigonometric ratio of 320° in terms of a ratio of a positive angle less than 45° .

An angle of 320° is coterminal with one of -40° ; hence any trigonometric ratio of 320° is equal to the same ratio of -40° (§ 21).

Whence	$\sin 320^\circ = \sin (-40^\circ) = -\sin 40^\circ$,
	$\cos 320^\circ = \cos (-40^\circ) = \cos 40^\circ$,
	$\tan 320^\circ = \tan (-40^\circ) = -\tan 40^\circ$, etc.

Similarly the trigonometric ratios of any angle in the fourth quadrant can be found in terms of those of some positive acute angle.

Ex. 3. Express each trigonometric ratio of -325° in terms of a ratio of a positive angle less than 45° .


An angle of -325° is coterminal with one of 35° ; hence

 $\sin(-325^\circ) = \sin 35^\circ$, $\cos(-325^\circ) = \cos 35^\circ$, etc.

Similarly the trigonometric ratios of any angle in the first quadrant can be found in terms of those of some positive acute angle.

29. The trigonometric ratios of $90^{\circ} + A$ in terms of the ratios of **A**. In each figure let A denote any angle, positive or

negative, which is coterminal with XOP, and let $POP' = 90^{\circ}$; then $A + 90^{\circ}$, or $90^{\circ} + A$, is coterminal with XOP'.

Take OP = OP', and draw $PM \perp OX$ and $P'M' \perp OX$. Then the acute angles MOP and M'P'O will be equal in size. Hence any two corresponding sides of the $\triangle MOP$ and M'OP' will be equal in length. Therefore, as directed lines,

 $M'P'/OP' \equiv OM/OP, \quad i.e. \sin (90^{\circ} + \mathbf{A}) \equiv \cos \mathbf{A}; \quad (1)$ and $OM'/OP' \equiv -MP/OP, i.e. \cos (90^{\circ} + \mathbf{A}) \equiv -\sin \mathbf{A}. \quad (2)$ $\therefore \tan (90^{\circ} + A) \equiv -\cot A, \qquad \cot (90^{\circ} + A) \equiv -\tan A,$ $\sec (90^{\circ} + A) \equiv -\csc A, \qquad \csc (90^{\circ} + A) \equiv \sec A.$

Since the angle A is 90° less than the angle $90^\circ + A$, the six identities just proved can be summed up as follows:

Any trigonometric ratio of an angle is equal arithmetically to the co-ratio of this angle less 90°, but only the sine (or the cosecant) of the first angle has the same quality as the co-ratio of the second angle. E.g., since $130^{\circ} - 90^{\circ} = 40^{\circ}$, we have

 $\sin 130^\circ = \cos 40^\circ, \quad \tan 130^\circ = -\cot 40^\circ; \\ \cos 130^\circ = -\sin 40^\circ, \quad \cot 130^\circ = -\tan 40^\circ.$

Ex. 1. Express in terms of a trigonometric ratio of some positive angle less than 45° each trigonometric ratio of 126° ; 492° ; -220° .

$$\sin 126^\circ = \cos 36^\circ$$
, $\cos 126^\circ = -\sin 36^\circ$, etc. § 29

An angle of 492° is coterminal with one of 132°; hence

An angle of -220° is coterminal with one of 140° ; hence

Similarly the trigonometric ratios of any angle in the second quadrant can be found in terms of those of some positive acute angle less than 45° .

Ex. 2. Express in terms of a trigonometric ratio of some positive angle less than 45° each trigonometric ratio of -130° ; 230°.

$$\begin{aligned} \sin (-130^\circ) &= -\sin 130^\circ = -\cos 40^\circ; \\ \cos (-130^\circ) &= \cos 130^\circ = -\sin 40^\circ; \\ \tan (-130^\circ) &= -\tan 130^\circ = \cot 40^\circ. \end{aligned}$$

Applying § 29 twice in succession and then § 9 once, we have

$$\sin 230^{\circ} = \cos 140^{\circ} = -\sin 50^{\circ} = -\cos 40^{\circ}; \\ \cos 230^{\circ} = -\sin 140^{\circ} = -\cos 50^{\circ} = -\sin 40^{\circ}; \\ \tan 230^{\circ} = -\cot 140^{\circ} = \tan 50^{\circ} = \cot 40^{\circ}; etc$$

Similarly we can find, in terms of the trigonometric ratios of a positive angle less than 45°, the ratios of any positive or negative angle in the *third* quadrant.

The principles in §§ 9, 28, 29 have an important bearing on the construction and use of trigonometric tables and on the solution of triangles. By them, as is seen above, the trigonometric ratios of any angle can be expressed in terms of the trigonometric ratios of some positive angle less than 45°. Hence, from a table which contains the trigonometric ratios of all angles between 0° and 45°, we can obtain the trigonometric ratios of any angle whatever. 30. Trigonometric ratios of complementary and supplementary angles. Applying § 29 twice and then § 28 once, we obtain $\sin (180^\circ - A) \equiv \cos (90^\circ - A) \equiv -\sin (-A) \equiv \sin A$; (1) $\cos (180^\circ - A) \equiv -\sin (90^\circ - A) \equiv -\cos (-A) \equiv -\cos A$; (2) $\tan (180^\circ - A) \equiv -\cot (90^\circ - A) \equiv \tan (-A) \equiv -\tan A$. (3)

Comparing the last members of (1), (2), (3) with their first members we have

(i) Any trigonometric ratio of an angle is equal arithmetically to the same ratio of its supplement; but only the sines (or the cosecants) of two supplementary angles have the same quality.

E.g., $\sin 150^\circ = \sin 30^\circ$, $\tan 165^\circ = -\tan 15^\circ$; $\cos 135^\circ = -\cos 45^\circ$, $\cot 155^\circ = -\cot 25^\circ$.

Ex. 1. Express in terms of a trigonometric ratio of its supplement each trigonometric ratio of 125°; 143°; 157°.

Comparing the last members of (1), (2), (3) with their second members we have § 9 generalized; that is,

(ii) Any trigonometric ratio of an angle is equal to the **co-ratio** of its complement.

Ex. 2. Applying § 29 three times in succession and § 28 once, we have $\sin (270^\circ \pm A) \equiv \cos (180^\circ \pm A) \equiv -\sin (90^\circ \pm A) \equiv -\cos (\pm A) \equiv -\cos A;$ $\cos (270^\circ \pm A) \equiv -\sin (180^\circ \pm A) \equiv -\cos (90^\circ \pm A) \equiv \sin (\pm A) \equiv \pm \sin A;$ $\tan (270^\circ \pm A) \equiv -\cot (180^\circ \pm A) \equiv \tan (90^\circ \pm A) \equiv -\cot (\pm A) \equiv \mp \cot A.$

Ex. 3. Prove (ii) by putting -A for A in (1) and (2) of § 29.

31. Trigonometric ratios of $n \cdot 90^{\circ} \pm A$, in terms of the ratios of A. To obtain in terms of a trigonometric ratio of A any trigonometric ratio of $n \cdot 90^{\circ} + A$ (where n is a positive integer), we apply § 29 n times in succession; and to obtain in terms of a ratio of A any ratio of $n \cdot 90^{\circ} - A$, we first apply § 29 n times and then § 28 once. In each case we change from ratio to co-ratio n times; hence (i) When **n** is even, any trigonometric ratio of $\mathbf{n} \cdot 90^\circ \pm \mathbf{A}$ is equal arithmetically to the same ratio of **A**.

(ii) When **n** is odd, any trigonometric ratio of $\mathbf{n} \cdot 90^\circ \pm \mathbf{A}$ is equal arithmetically to the co-ratio of **A**.

When A is a positive acute angle, any trigonometric ratio of A is positive; hence

(iii) The two trigonometric ratios in (i) or (ii) will be opposite in quality when, and only when, the ratio of $\mathbf{n} \cdot 90 \pm \mathbf{A}$ is negative for \mathbf{A} positive and acute.

Any positive angle can be written in the form $n \cdot 90^{\circ} \pm A$ where A has some positive value less than 45°.

 $E g., 580^{\circ} = 6 \cdot 90^{\circ} + 40^{\circ}$; here *n* is even, and the angle is in the third quadrant. Hence, by (i) and § 22, we have

 $\sin 580^{\circ} = \sin (6 \cdot 90^{\circ} + 40^{\circ}) = -\sin 40^{\circ};$ $\cos 580^{\circ} = \cos (6 \cdot 90^{\circ} + 40^{\circ}) = -\cos 40^{\circ};$ $\tan 580^{\circ} = \tan (6 \cdot 90^{\circ} + 40^{\circ}) = \tan 40^{\circ};$ etc.

Again, $270^{\circ} + A \equiv 3 \cdot 90^{\circ} + A$; here *n* is odd, and $270^{\circ} + A$ is in the fourth quadrant when $A < 90^{\circ}$. Hence, by (ii) and (iii), we have

$\sin(270^\circ + A) \equiv -\cos A,$	$\tan\left(270^\circ+A\right)\equiv-\cot A;$
$\cos\left(270^\circ + A\right) \equiv \sin A,$	$\cot (270^\circ + A) \equiv -\tan A$; etc.

Example. Express in terms of a trigonometric ratio of A each trigonometric ratio of $180^{\circ} + A$; $180^{\circ} - A$; $270^{\circ} - A$; $360^{\circ} \pm A$.

EXERCISE IX

Express each of the following trigonometric ratios in terms of the ratio of some positive acute angle less than 45°.

	sin (- 65°).		tan 1145°.		$\cot(-236^{\circ} 21').$
4	sin 884°.	9	cos 1410°.	14	tan (- 196° 54').
3.	cos 287°.	8.	$\cos{(-428^{\circ})}$.	13.	csc 756°.
2.	tan 187°.	7.	tan (- 246°).	12 .	sec 1327°.
1.	sin 168°.	6.	$\cos(-84^{\circ}).$	11.	cot 1054°.

16. Prove $\sin 420^\circ \cdot \cos 390^\circ + \cos (-300^\circ) \cdot \sin (-330^\circ) = 1$.

17. Prove $\cos 570^{\circ} \cdot \sin 510^{\circ} - \sin 330^{\circ} \cdot \cos 390^{\circ} = 0$.

32. Trigonometric lines representing the trigonometric ratios. Any trigonometric ratio is a positive or a negative *number*, but it can always be *represented* by a *directed line*, as below.

Let A denote any angle coterminal with $\angle XOP$ in each of the four figures. Take OP as a positive unit line, and draw $PM \perp OX$.

Then $\sin A = MP / OP =$ the numerical measure of MP; (1) hence sin A is represented by the directed line MP.

Also, $\cos A = OM / OP =$ the numerical measure of OM; (2) hence $\cos A$ is represented by the directed line OM.

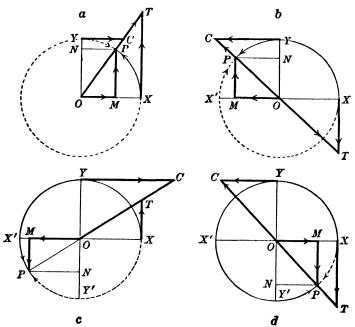


FIG. 26

To obtain directed lines which shall represent the four other trigonometric ratios, draw $OY \perp OX$ at O, and take

OX = OY = OP = a positive unit line.

At X draw $XT \perp OX$, at Y draw $YC \perp OY$, and prolong each until it meets the final side OP (produced through P or O) in some point as T or C.

According to the laws assumed in § 21 for the quality of MP, OM, and OP, the directed line XT is positive or negative according as it extends upward or downward from its origin X; YC is positive or negative according as it extends to the right or to the left from its origin Y; and OT or OC is positive or negative according as it extends from the origin O in the direction of the final side OP or in the opposite direction.

E.g., XT or YC is + in fig. a or c, and - in fig. b or d. OT is + in fig. a or d, and - in fig. b or c. OC is + in fig. a or b, and - in fig. c or d.

In each figure the triangles OMP, OXT, and OYC, being mutually equiangular, are similar.

In each of the four figures we find that $\tan A = MP/OM = XT/OX =$ the numerical measure of XT; (3) hence $\tan A$ is represented by the directed line XT. $\cot A = OM/MP = YC/OY =$ the numerical measure of YC; (4) hence $\cot A$ is represented by the directed line YC. $\sec A = OP/OM = OT/OX =$ the numerical measure of OT; (5) hence $\sec A$ is represented by the directed line OT. $\csc A = OP/MP = OC/OY =$ the numerical measure of OC; (6) hence $\csc A$ is represented by the directed line OC.

The directed lines which represent the trigonometric ratios of an angle are called the *trigonometric lines* of that angle.

The relations in (1) to (6) can be written briefly

 $\sin A = MP$, $\cos A = OM$, $\tan A = XT$, $\cot A = YC$, $\sec A = OT$, $\csc A = OC$. Since the trigonometric lines *represent* graphically the trigonometric ratios, or, in other words, the trigonometric ratios are the numbers which *measure* the trigonometric lines, it follows that if we prove any relation between the trigonometric lines, we know that the same relation exists between the corresponding trigonometric ratios, and *vice versa*.

33. Use of trigonometric lines in proofs and discussions. To fix in the pupil's mind the trigonometric lines which represent the trigonometric ratios, to help familiarize him with the use of directed lines to represent positive and negative real numbers, and to show him how the use of the trigonometric lines sometimes simplifies trigonometric proofs and discussions, we give below illustrative examples, which can be taken or omitted at the option of the teacher.

Ex. 1. Using trigonometric lines, prove the relations in § 24. In each of the four figures in § 32 we have

$\overline{MP}^2 + \overline{OM}^2 \equiv \overline{OP}^2, \therefore \sin^2 A + \cos^2 A \equiv 1;$	
$\overline{OX}^2 + \overline{XT}^2 \equiv \overline{OT}^2,$	$\therefore 1 + \tan^2 A \equiv \sec^2 A;$
$\overline{OY}^2 + \overline{YC}^2 \equiv \overline{OC}^2,$	$\therefore 1 + \cot^2 A \equiv \csc^2 A$;
$XT/OX \equiv MP/OM$,	$\therefore \tan A \equiv \sin A / \cos A;$
$YC/OY \equiv OM/MP$,	$\therefore \cot A \equiv \cos A / \sin A;$
$OT/OX \equiv OP/OM$,	$\therefore \sec A \equiv 1/\cos A$;
$OC/OY \equiv OP/ON,$	$\therefore \csc A \equiv 1/\sin A.$

Ex. 2. Using the trigonometric lines, determine the quality of each trigonometric ratio in each quadrant.

In the figures of § 32, the quality of MP, or $\sin A$, is easily determined. So also is the quality of OM, or $\cos A$.

XT, or tan A, is positive when A is in the first or the third quadrant, and negative when A is in the second or the fourth quadrant.

OT, or sec A, extends in the direction of OP, and is therefore positive when A is in the first or the fourth quadrant; and OT, or sec A, extends in the direction opposite to that of OP, and is therefore negative when Ais in the second or the third quadrant.

In like manner determine the quality of YC, or $\cot A$, and of OC, or $\csc A$.

Ex. 3. Using trigonometric lines, trace the changes of the trigonometric ratios of A while A increases from 0° to 360°.

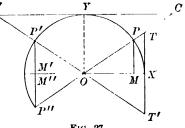
In the figures of § 32, the changes of MP, or sin A, and of OM, or cos A, are easily followed.

While A increases from 0° to 90° (fig. a), XT beginning at zero increases without limit as A approaches 90° ; *i.e.* tan A increases from 0 to $+\infty$.

While A increases from 90° to 180° (fig. b), XT is at first of infinite length and negative, and becomes 0 when $A = 180^{\circ}$; *i.e.* tan A increases from $-\infty$ to 0.

While A increases from 180° to 270° (fig. c), XT beginning at zero increases without limit as A approaches 270°; *i.e.* tan A increases from 0 to $+\infty$.

While A increases from 270° to 360° (fig. d), XT is at first of infinite length and negative, and becomes 0 when $A = 360^{\circ}$; *i.e.* tan A increases from $-\infty$ to 0.


In like manner the student should trace the changes of $\cot A$, $\sec A$, and $\csc A$.

Ex. 4. Using the trigonometric lines, find the trigonometric ratios of $180^{\circ} - A$ and $180^{\circ} + A$ in terms of

those of A, when A is in the first C'_{A} quadrant.

Let the angles XOP, M'OP', and M''OP'' be equal in size; then if A is coterminal with XOP, $180^{\circ} - A$ will be coterminal with XOP', and $180^{\circ} + A$ will be coterminal with XOP''.

Draw the trigonometric lines of A, $180^{\circ} - A$, and $180^{\circ} + A$.

Then $M'P' \equiv MP.$ $\therefore \sin (180^\circ - A) \equiv \sin A;$ $OM' \equiv -OM$, $\therefore \cos (180^\circ - A) \equiv -\cos A;$ $XT' \equiv -XT$ $\therefore \tan (180^\circ - A) \equiv -\tan A;$ $YC' \equiv -YC$ $\therefore \cot (180^\circ - A) \equiv -\cot A;$ \therefore sec $(180^\circ - A) \equiv - \sec A$; $OT' \equiv -OT$ $OC' \equiv OC$. $\therefore \csc (180^{\circ} - A) \equiv \csc A.$ Again, $M''P'' \equiv -MP$, $\therefore \sin (180^\circ + A) \equiv -\sin A;$ $OM'' \equiv -OM,$ $\therefore \cos (180^\circ + A) \equiv -\cos A;$ $\therefore \tan (180^\circ + A) \cong \tan A;$ $XT \equiv XT$ $YC \equiv YC$, $\therefore \cot (180^\circ + A) \equiv \cot A.$

OT and OC are both negative when the angle is XOP''.

Hence $\sec (180^\circ + A) \equiv -\sec A$, $\csc (180^\circ + A) \equiv -\csc A$.

A similar proof could be given when A is in any one of the other three quadrants.

Ex. 5. Using the trigonometric lines, find the trigonometric ratios of -A in terms of those of A.

In each figure of § 28, let

OP = OP' = a positive unit line.

Then

$$M'P' \equiv \sin(-A),$$
 $OM' \equiv \cos(-A).$

 $OM = \cos A$

But in each figure we have

 $MP = \sin A$

$$M'P' \equiv -MP, \qquad OM' \equiv OM.$$

Hence $\sin(-A) \equiv -\sin A, \quad \cos(-A) \equiv \cos A.$ (1)

From the identities (1) we can obtain the other relations as in § 28.

The student should draw the other trigonometric lines of A and -A in each of the four figures in § 28, and prove the last four identities by the use of these lines.

Ex. 6. Using the trigonometric lines, find the trigonometric ratios of $90^{\circ} + A$ in terms of those of A.

In each figure of § 29, let

OP = OP' = a positive unit line.

Then

$$MP \equiv \sin A, \qquad OM \equiv \cos A,$$

$$M'P' \equiv \sin (90^{\circ} + A), \qquad OM' \equiv \cos (90^{\circ} + A).$$

But in each figure we have

$$M'P' \equiv OM, \qquad OM' \equiv -MP.$$

Hence $\sin(90^\circ + A) \equiv \cos A, \ \cos(90^\circ + A) \equiv -\sin A.$ (1)

From the identities (1) we can obtain the other relations as in § 29.

But the student should draw the other trigonometric lines of A and $90^{\circ} + A$ in each of the four figures in § 29, and prove the last four identities by the use of these lines.

Ex. 7. Using the trigonometric lines, find the trigonometric ratios of $90^{\circ} - A$ in terms of those of A, when A is in the first quadrant.

If in figs. 26 we had taken

$$OX = OP = OY = r$$
 units,

then the lines MP, OM, XT, etc., would not be the trigonometric lines of the angle XOP, but r times these lines; that is, we would have

$$MP \equiv r \sin XOP, \qquad OM \equiv r \cos XOP, \\ XT \equiv r \tan XOP, \qquad YC \equiv r \cot XOP, \text{ etc}$$

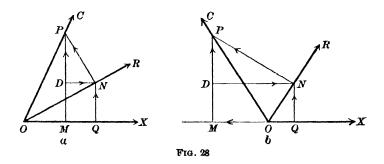
In figs. 26 let X be the origin of arcs, and let the arc XP be positive or negative according as its generating point P moves counter-clockwise or clockwise; then the arc XP in each figure will have the same numerical measure in *arc-degrees* as the angle *XOP*, which this arc subtends at the center, has in *angle-degrees*. Hence, when the measure of an arc is given in *arc-degrees*, we know the measure of its subtended angle at its center in *angle-degrees*, and vice versa.

When, for convenience, as in spherical trigonometry, we speak of the trigonometric ratios or lines of an arc, we mean the trigonometric ratios or lines of the angle which this arc subtends at its center.

E.g., $\sin(\operatorname{arc} XP)$, or $\sin XP$, means the sine of the angle XOP which the arc XP subtends at its center O;

 $\cos(\operatorname{arc} XP)$, or $\cos XP$, means $\cos(\angle XOP)$; tan (arc XP), or tan XP, means $\tan(\angle XOP)$; $\cot(\operatorname{arc} XP)$, or $\cot XP$, means $\cot(\angle XOP)$; etc.

CHAPTER III


TRIGONOMETRIC RATIOS OF TWO ANGLES

34. Sine and cosine of the sum of two angles. Let XOR and ROC be any two positive acute angles.

Then $\angle XOR + \angle ROC = \angle XOC$.

Let A denote any angle, positive or negative, coterminal with $\angle XOR$, and B any angle coterminal with $\angle ROC$.

Then the sum A + B will be coterminal with $\angle XOC$.

The sum A + B may be in the first quadrant, as in fig. a, or in the second quadrant, as in fig. b.

In each figure, from any point on OC, as P, draw $PN \perp OR$ and $PM \perp OX$; also draw $NQ \perp OX$, and $ND \perp MP$.

Then the triangles DPN and QON will be similar.

Now $MP \equiv QN + DP.$ By § 21, $QN \equiv \sin A \cdot ON.$ Again, $DP/NP \equiv OQ/ON \equiv \cos A;$ whence $DP \equiv \cos A \cdot NP.$

Hence
$$MP \equiv \sin A \cdot ON + \cos A \cdot NP$$
.
 $\therefore MP / OP \equiv \sin A \cdot ON / OP + \cos A \cdot NP / OP$. (1)
Substituting for the ratios in (1) their names, we have
 $\sin(\mathbf{A} + \mathbf{B}) \equiv \sin \mathbf{A} \cos \mathbf{B} + \cos \mathbf{A} \sin \mathbf{B}$. [7]
Again, $OM \equiv OQ - DN$

$$\equiv \cos A \cdot \partial N - \sin A \cdot NP.$$

$$\therefore \partial M / \partial P \equiv \cos A \cdot \partial N / \partial P - \sin A \cdot NP / \partial P.$$

$$\therefore \cos (\mathbf{A} + \mathbf{B}) \equiv \cos \mathbf{A} \cos \mathbf{B} - \sin \mathbf{A} \sin \mathbf{B}.$$
 [8]

Observe that thus far [7] and [8] are proved only when the angles A and B are both in the first quadrant. In §35 it will be shown that these relations hold true in whatever quadrant A or B is.

35. General proof of $\lceil 7 \rceil$ and $\lceil 8 \rceil$.

$$\equiv \sin\left(A + 90^{\circ}\right)\cos B + \cos\left(A + 90^{\circ}\right)\sin B. \quad (1)$$

Again, $\cos(\overline{A+90^\circ}+B) \equiv \cos(90^\circ + \overline{A+B})$

$$\equiv -\sin\left(A + B\right) \qquad \qquad \$ 29$$

 $\equiv (-\sin A)\cos B - \cos A \sin B \qquad by [7]$

$$\equiv \cos\left(A + 90^{\circ}\right)\cos B - \sin\left(A + 90^{\circ}\right)\sin B. \quad (2)$$

Now in whatever quadrant A is, $A + 90^{\circ}$ is in the next quadrant. Hence, from (1) and (2), it follows that if [7] and [8] are true when A is in any one quadrant, they are true also when A is in the next quadrant. But, by § 34, [7] and [8] are true when A is in the first quadrant; hence they are true when A is in the second quadrant; and so on. Hence [7] and [8] hold true in whatever quadrant A is.

The same reasoning applies to B. Hence [7] and [8] hold true for all values of A and B, positive or negative.

Formulas [7] and [8], often called the addition formulas, are very important and should be memorized.

So many theorems can be deduced from the formulas [7] and [8] that they are often called the *fundamental* formulas of trigonometry.

EXERCISE X

1. State in words identities [7] and [8], as generalized in § 35.

The sine of the sum ${
m of any two angles} \equiv \begin{cases} \sin first \cdot \cos second \\ + \cos first \cdot \sin second. \end{cases}$

2.
$$\sin 75^\circ = \sin (30^\circ + 45^\circ)$$

$$= \sin 30^{\circ} \cos 45^{\circ} + \cos 30^{\circ} \sin 45^{\circ} \qquad \text{by [7]}$$
$$= \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}.$$

3. Putting
$$75^{\circ} = 30^{\circ} + 45^{\circ}$$
 and using [8], find $\cos 75^{\circ}$.

4. Putting $15^{\circ} = 45^{\circ} + (-30^{\circ})$, find sin 15° and $\cos 15^{\circ}$

5. Putting $15^{\circ} = 60^{\circ} + (-45^{\circ})$, find sin 15° and $\cos 15^{\circ}$.

6. Putting $90^{\circ} = 60^{\circ} + 30^{\circ}$, find sin 90° and $\cos 90^{\circ}$.

7. Putting $0^{\circ} = 45^{\circ} + (-45^{\circ})$, find sin 0° and cos 0°

A and B being positive acute angles, find the values of $\sin(A + B)$ and $\cos{(A + B)}$, having given

8. $\sin A = 2/5$, $\cos B = 1/3$. 9. $\sin A = 2/3$, $\cos B = 1/4$.

10. Putting $90^{\circ} + A$ for A in [7], deduce [8].

11. Putting $90^{\circ} + A$ for A in [8], deduce [7].

12. Prove [7] and [8], using trigonometric lines, A and B being in the first quadrant.

Take

OP = +1. $MP = \sin (A + B),$ Then $ON = \cos B$, $NP = \sin B$. $\therefore DP = NP \cos DPN = \sin B \cos A.$ $QN = ON\sin A = \cos B\sin A.$ $\therefore \sin (A + B) = QN + DP = \sin A \cos B + \cos A \sin B.$ 36. Sine and cosine of the difference of two angles. Substituting -B for B in [7], we have

$$\sin (A - B) \equiv \sin A \cos (-B) + \cos A \sin (-B).$$

$$\therefore \sin (\mathbf{A} - \mathbf{B}) \equiv \sin \mathbf{A} \cos \mathbf{B} - \cos \mathbf{A} \sin \mathbf{B}.$$
 [9]

Substituting -B for B in [8], we have

$$\cos(A - B) \equiv \cos A \cos(-B) - \sin A \sin(-B).$$

 $\therefore \cos (\mathbf{A} - \mathbf{B}) \equiv \cos \mathbf{A} \cos \mathbf{B} + \sin \mathbf{A} \sin \mathbf{B}.$ [10]

Formulas [9] and [10] are often called the subtraction formulas.

EXERCISE XI

1. State in words identities [9] and [10].

The sine of the difference of any two angles $= \begin{cases} \sin first \cdot \cos second \\ -\cos first \cdot \sin second \end{cases}$

2. Putting $15^{\circ} = 45^{\circ} - 30^{\circ}$, find sin 15° by [9] and cos 15° by [10].

3. Putting $15^{\circ} = 60^{\circ} - 45^{\circ}$, find sin 15° and $\cos 15^{\circ}$.

A and B being positive acute angles, find the values of $\sin (A - B)$ and $\cos (A - B)$, having given

4. $\sin A = 1/4$, $\sin B = 1/3$. 5. $\cos A = 2/3$, $\cos B = 3/4$.

Prove each of the following identities:

6.
$$\sin (A + B) \sin (A - B) \equiv \sin^2 A \cos^2 B - \cos^2 A \sin^2 B$$

+ $(\sin^2 A \sin^2 B - \sin^2 A \sin^2 B)$
 $\equiv \sin^2 A (\cos^2 B + \sin^2 B) - \sin^2 B (\cos^2 A + \sin^2 A)$
 $\equiv \sin^2 A - \sin^2 B.$

Observe that $\sin^2 A \sin^2 B - \sin^2 A \sin^2 B$ is added above as one form of zero.

7.
$$\cos(A+B)\cos(A-B) \equiv \cos^2 A - \sin^2 B$$
.

8. $\sin(A + B) \cos B - \cos(A + B) \sin B \equiv \sin A$.

- 9. $\sin(A + B) + \cos(A B) \equiv (\sin A + \cos A) (\sin B + \cos B)$
- 10. $\sin A \cos (B-C) \sin B \cos (A-C) \equiv \sin (A-B) \cos C$.

11. $\tan A + \tan B \equiv \sin (A + B)/(\cos A \cos B)$.

12. $\cot B - \cot A \equiv \sin (A - B)/(\sin A \sin B)$.

13. Prove [9] and [10] geometrically, using trigonometric lines, when A, B, and A - B are in the first quadrant.

Let XOR and ROC be any two acute angles, $\angle ROC$ being negative and $\angle XOC$ being positive.

Then $\angle XOC = \angle XOR + \angle ROC.$ P_C Let A denote any angle coterminal with XOR, and -B any angle coterminal with ROC. Then A + (-B), or A - B, will be coterminal М with XOC. FIG. 29 Take OP equal to +1. **Draw** $PM \perp OX$, $PN \perp OR$, $NQ \perp OX$, and $PD \perp QN$. $NP = \sin (-B) = -\sin B$, $ON = \cos (-B) = \cos B$, Now $\sin \left(A - B \right) = MP = QN - DN.$ and $QN = ON \cdot \sin XOR = \cos B \sin A$, Also, $DN = (-NP) \cos DNP = \sin B \cos A.$ and $\therefore \sin (A - B) = QN - DN = \sin A \cos B - \cos A \sin B.$ $OQ = ON \cos XOR = \cos B \cos A$, Again.

and

 $\therefore \cos (A - B) = OM = OQ + DP = \cos A \cos B + \sin A \sin B.$

 $DP = (-NP) \sin DNP = \sin B \sin A.$

37. Tangent of the sum and difference of two angles. Divide the members of [7] by those of [8]; then by [2] we have

$$\tan (A + B) \equiv \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}.$$
 (1)

To express $\tan(A + B)$ in terms of $\tan A$ and $\tan B$ we divide the numerator and denominator of the fraction in (1) by $\cos A \cos B$; then by formula [2] we obtain

$$\tan(\mathbf{A} + \mathbf{B}) \equiv \frac{\tan \mathbf{A} + \tan \mathbf{B}}{1 - \tan \mathbf{A} \tan \mathbf{B}}.$$
 [11]

Substituting -B for B in [11], we obtain

$$\tan (\mathbf{A} - \mathbf{B}) \equiv \frac{\tan \mathbf{A} - \tan \mathbf{B}}{1 + \tan \mathbf{A} \tan \mathbf{B}}.$$
 [12]

EXERCISE X.I

- 1. State in words identities [11] and [12].
 - The tangent of the sum $= \left\{ \frac{\text{the sum of their tangents}}{1 product} \text{ of their tangents} \right\}$
- **2.** Putting $75^\circ = 45^\circ + 30^\circ$, find tan 75° by [11].
- 3 Putting $15^\circ = 60^\circ 45^\circ$, find tan 15° by [12].
- 4. If $\tan A = -1/2$ and $\tan B = 3$, find $\tan (A + B)$ and $\tan (A B)$.
- 5. If $\tan A = -2$ and $\tan B = -3$, find $\tan (A + B)$ and $\tan (A B)$.

Prove each of the following identities :

- 6. $\tan (45^\circ + A) \equiv \frac{1 + \tan A}{1 \tan A}$. 7. $\tan (45^\circ - A) \equiv \frac{1 - \tan A}{1 + \tan A}$. 8. $\cot (\mathbf{A} + \mathbf{B}) \equiv \frac{\cot \mathbf{A} \cot \mathbf{B} - 1}{\cot \mathbf{B} + \cot \mathbf{A}}$. 9. $\cot (\mathbf{A} - \mathbf{B}) \equiv \frac{\cot \mathbf{A} \cot \mathbf{B} + 1}{\cot \mathbf{B} - \cot \mathbf{A}}$.
- 10. Prove identity [12] by dividing [9] by [10].

11. Prove the identities in examples 8 and 9 by taking the reciprocals of the members of [11] and [12] respectively.

- 12. Find $\tan(A + B)$ and $\tan(A B)$ in terms of $\cot A$ and $\cot B$.
- 13. Find $\cot(A + B)$ and $\cot(A B)$ in terms of $\tan A$ and $\tan B$.

38. Trigonometric ratios of twice an angle in terms of the ratios of the angle. Substituting A for B in [7], we have

$$\sin(A + A) \equiv \sin A \cos A + \cos A \sin A;$$

that is $\sin 2 \mathbf{A} \equiv 2 \sin \mathbf{A} \cos \mathbf{A}$. [13]

Substituting A for B in [8], we obtain

$$\cos 2 \mathbf{A} \equiv \cos^2 \mathbf{A} - \sin^2 \mathbf{A} \quad (i) \\ \equiv 1 - 2 \sin^2 \mathbf{A} \quad (ii) \\ \equiv 2 \cos^2 \mathbf{A} - 1. \quad (iii)$$
 [14]

To derive (ii) or (iii) from (i), we use identity [4]. Substituting A for B in [11], we obtain

$$\tan 2 \mathbf{A} \equiv \frac{2 \tan \mathbf{A}}{1 - \tan^2 \mathbf{A}}.$$
 [15]

PLANE TRIGONOMETRY

EXERCISE XIII

1. State in words identities [13], [14], and [15].

sin twice an angle $\equiv 2 \sin angle \cdot \cos angle$. cos twice an angle $\equiv (\cos angle)^2 - (\sin angle)^2$.

2. From the trigonometric ratios of 30° , find $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$

3. From the trigonometric ratios of 60°, find sin 120°, cos 120°, tan 120°.

4. Express $\sin 6A$, $\cos 6A$, $\tan 6A$ in terms of the trigonometric ratios of 3A.

5. Express $\sin 3A$, $\cos 3A$, $\tan 3A$ in terms of the trigonometric ratios of 3A/2.

Prove each of the following identities :

- 6. $\cot 2A \equiv \frac{\cot^2 A 1}{2 \cot A}$. 8. $\sin^2 A \equiv \frac{1 - \cos 2A}{2}$.
- 7. $\csc 2 A \equiv (\sec A \csc A)/2$. 9. $\cos^2 A \equiv (1 + \cos 2 A)/2$.
- 10. $\sec 2A \equiv \frac{\sec^2 A}{2 \sec^2 A} \equiv \frac{1 + \tan^2 A}{1 \tan^2 A}$.
- 11. $\cos 4A \equiv 2\cos^2 2A 1 \equiv 2(1 2\sin^2 A)^2 1$ $\equiv 8\sin^4 A - 8\sin^2 A + 1.$
- 12. $\sin 4 A \equiv 4 \sin A \cos A 8 \sin^3 A \cos A$.

39. Trigonometric ratios of half an angle in terms of the cosine of the angle. Solving (ii) and (iii) of [14] for $\sin^2 A$ and $\cos^2 A$ respectively and putting A/2 for A, we obtain

$$\sin\frac{\mathbf{A}}{2} \equiv \sqrt{\frac{1-\cos\mathbf{A}}{2}},\qquad [16]$$

$$\cos\frac{\mathbf{A}}{2} \equiv \sqrt{\frac{1+\cos\mathbf{A}}{2}}.$$
 [17]

Divide [16] by [17],
$$\tan \frac{A}{2} \equiv \sqrt{\frac{1 - \cos A}{1 + \cos A}}$$
. [18]

and

EXERCISE XIV

1. State in words identities [16], [17], and [18].

sin half an angle
$$\equiv$$
 square root of $\frac{1 - \cos angle}{2}$ [16]

2. Find $\sin 22\frac{10}{2}$, $\cos 22\frac{10}{2}$, $\tan 22\frac{10}{2}$, from $\cos 45^{\circ}$.

$$\sin 22\frac{1}{2}^{\circ} = \sqrt{\frac{1 - \cos 45^{\circ}}{2}} = \sqrt{\frac{1 - \sqrt{2}/2}{2}} = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

- 3. Find sin 15°, cos 15°, tan 15°, from cos 30°.
- 4. $\cos A = 1/3$, find the sine, cosine, and tangent of A/2.
- 5. $\cos A = a$; find the sine, cosine, and tangent of A/2.
- 6. Express $\sin A$, $\cos A$, and $\tan A$ in terms of $\cos 2A$.
- 7. Express $\sin 2A$, $\cos 2A$, and $\tan 2A$ in terms of $\cos 4A$.
- 8. Express sin 3 A, cos 3 A, and tan 3 A in terms of cos 6 A. Prove each of the following identities :

9.
$$\cot^2 \frac{A}{2} \equiv \frac{1+\cos A}{1-\cos A} \equiv \left(\frac{\sin A}{1-\cos A}\right)^2 \equiv \left(\frac{1+\cos A}{\sin A}\right)^2.$$

10.
$$\tan^2 \frac{A}{2} \equiv \left(\frac{\sin A}{1+\cos A}\right)^2 \equiv \left(\frac{1-\cos A}{\sin A}\right)^2 \equiv (\csc A - \cot A)^2.$$

11.
$$\sec^2 \frac{A}{2} \equiv \frac{2 \sec A}{\sec A + 1}$$
. 12. $\csc^2 \frac{A}{2} \equiv \frac{2 \sec A}{\sec A - 1}$

13. Express $\cos^4 A$ in terms of $\cos 2 A$ and $\cos 4 A$.

$$(\cos^2 A)^2 \equiv (\frac{1}{2} + \frac{1}{2}\cos 2A)^2 \equiv \frac{1}{4} + \frac{1}{2}\cos 2A + \frac{1}{4}\cos^2 2A \equiv \frac{1}{4} + \frac{1}{2}\cos 2A + \frac{1}{4}(\frac{1}{2} + \frac{1}{2}\cos 4A). \therefore \cos^4 A \equiv \frac{3}{4} + \frac{1}{4}\cos 2A + \frac{1}{4}\cos 4A.$$

14. Prove $\sin^4 A \equiv \frac{3}{8} - \frac{1}{2}\cos 2A + \frac{1}{8}\cos 4A$.

15. Prove $\sin^2 A \cos^2 A \equiv \frac{1}{8} - \frac{1}{8} \cos 4 A$.

Suggestion. $\sin^2 A \cos^2 A \equiv (\sin A \cos A)^2 \equiv \frac{1}{4} \sin^2 2 A$.

16. Prove $\sin^2 A \cos^4 A \equiv \frac{1}{16} + \frac{1}{8} \sin^2 2 A \cdot \cos 2 A - \frac{1}{16} \cos 4 A$. Suggestion. $\sin^2 A \cos^4 A \equiv (\sin A \cos A)^2 \cdot \cos^2 A$.

PLANE TRIGONOMETRY

40. Sum and difference of sines and cosines. Adding and subtracting [7] and [9], and [8] and [10], we obtain

 $\sin (A + B) + \sin (A - B) \equiv 2 \sin A \cos B; \quad (1)$ $\sin (A + B) - \sin (A - B) \equiv 2 \cos A \sin B; \quad (2)$ $\cos (A + B) + \cos (A - B) \equiv 2 \cos A \cos B; \quad (3)$

$$\cos (A+B) - \cos (A-B) \equiv -2 \sin A \sin B.$$
 (4)

Let
$$A + B \equiv C$$
 and $A - B \equiv D$.
Then $A \equiv (C + D)/2$, $B \equiv (C - D)/2$. (5)

Substituting in $(1) \cdots (4)$ the values in (5), we obtain

- $\sin C + \sin D \equiv 2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}.$ [19]
- $\sin C \sin D \equiv 2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}.$ [20]

$$\cos C + \cos D \equiv 2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}.$$
 [21]

$$\cos C - \cos D \equiv -2 \sin \frac{C+D}{2} \sin \frac{C-D}{2}.$$
 [22]

By formulas $[19] \cdots [22]$, a sum or a difference of the sines or the cosines of two angles is transformed into a product. Hence these formulas, often called **product formulas**, are useful in adapting other formulas to the use of logarithms.

$$E.g., \quad \sin 7A + \sin 5A \equiv 2 \sin \frac{1}{2} (7A + 5A) \cos \frac{1}{2} (7A - 5A)$$
$$\equiv 2 \sin 6A \cos A.$$
$$\therefore \log (\sin 7A + \sin 5A) \equiv \log 2 + \log \sin 6A + \log \cos A.$$
Again, $\cos 8A - \cos 2A \equiv -2 \sin \frac{1}{2} (8A + 2A) \sin \frac{1}{2} (8A - 2A)$
$$\equiv -2 \sin 5A \sin 3A.$$

By the converses of formulas $(1) \cdots (4)$, a product involving sines or cosines or both is transformed into a sum or a difference of sines or cosines.

IDENTITIES

EXERCISE XV

1. State in words identities $[19] \cdots [22]$. The sum of the sines $= 2 \sin half \sin \cdot \cos half$ difference. Prove each of the following identities : 2 $\sin 60^\circ + \sin 30^\circ = 2 \sin 45^\circ \cos 15^\circ$. by [19] 3. $\sin 50^\circ + \sin 10^\circ = 2 \sin 30^\circ \cos 20^\circ$. 4. $\cos 75^\circ + \cos 15^\circ = 2 \cos 45^\circ \cos 30^\circ$. by [21] 5. $\cos 80^\circ - \cos 20^\circ = -2 \sin 50^\circ \sin 30^\circ$. 6. $\sin 7A - \sin 3A = 2\cos 5A\sin 2A$. 7. $\frac{\sin 7A - \sin 5A}{\cos 7A + \cos 5A} \equiv \frac{2\cos 6A\sin A}{2\cos 6A\cos A} \equiv \tan A.$ 8. $\frac{\sin A + \sin 3A}{\cos A + \cos 3A} \equiv \tan 2A.$ 9. $\frac{\sin C + \sin D}{\sin C - \sin D} \equiv \tan \frac{C + D}{2} \cdot \cot \frac{C - D}{2} \equiv \frac{\tan \frac{1}{2}(C + D)}{\tan \frac{1}{2}(C - D)}$ 10. $\frac{\sin C + \sin D}{\cos C + \cos D} \equiv \tan \frac{C + D}{2}$. 11. $\frac{\sin C + \sin D}{\cos C - \cos D} \equiv -\cot \frac{C-D}{2} \equiv \cot \frac{D-C}{2}.$ 12. $\frac{\sin C - \sin D}{\cos C + \cos D} \equiv \tan \frac{C - D}{2}.$ 13. $\frac{\sin C - \sin D}{\cos C - \cos D} \equiv -\cot \frac{C+D}{2}.$ 14. $\frac{\cos C + \cos D}{\cos C - \cos D} \equiv -\cot \frac{C+D}{2} \cdot \cot \frac{C-D}{2}$ $\equiv \cot \frac{1}{2}(C+D) \cot \frac{1}{2}(D-C).$

15. Given $\sin A = 1/2$, $\sin B = 1/3$, to find $\sin (A + B)$, $\sin (A - B)$, $\cos (A + B)$, $\cos (A - B)$, $\sin 2A$, $\sin 2B$, $\cos 2A$, $\cos 2B$: (1) when A and B are both in the first quadrant; (2) when A is in the first and B is in the second quadrant.

PLANE TRIGONOMETRY

16. From the answers to example 15, find in the simplest way $\tan (A + B)$, $\tan (A - B)$, $\cot (A + B)$, $\cot (A - B)$, $\sec (A + B)$, $\csc (A + B)$, $\csc (A + B)$, $\tan 2A$, $\cot 2A$, $\sec 2B$, $\csc 2B$, in cases (1) and (2).

EXERCISE XVI

EXAMPLES FOR REVIEW

Prove each of the following identities :

1.	$\frac{\sin (x+y)}{\sin (x-y)} \equiv \frac{\tan x + \tan y}{\tan x - \tan y}.$	5.	$\cos 2A \equiv \frac{2 - \sec^2 A}{\sec^2 A}.$
2.	$\frac{\cos{(x+y)}}{\cos{(x-y)}} = \frac{1-\tan{x}\tan{y}}{1+\tan{x}\tan{y}}.$	6.	$\sec 2 \Lambda \equiv \frac{\csc^2 A}{\csc^2 A - 2}.$
3.	$\frac{\cos{(x+y)}}{\sin{x}\cos{y}} \equiv \cot{x} - \tan{y}.$	7.	$\sin 2 \Lambda \equiv \frac{2 \tan A}{1 + \tan^2 A}.$
4.	$\frac{\cos{(x-y)}}{\cos{x}\sin{y}} \equiv \tan{x} + \cot{y}.$	8.	$\frac{\sin 3A - \sin A}{\cos 3A + \cos A} \equiv \tan A.$

9. Express $\sin(3x/4)$, $\cos(3x/4)$, and $\tan(3x/4)$ in terms of $\cos(3x/2)$.

10. Express $\sin(3x/4)$, $\cos(3x/4)$, and $\tan(3x/4)$ in terms of the trigonometric ratios of 3x/8.

Prove each of the following identities:

11. $(\sin A + \cos A)^2 \equiv 1 + \sin 2 A$.

12. $(\sin A - \cos A)^2 \equiv 1 - \sin 2 A$.

- 13. $\tan A + \cot A \equiv 2 \csc 2 A$.
- 14. $\cot A \tan A \equiv 2 \cot 2 A$.
- 15. $\frac{\tan A + \tan B}{\cot A + \cot B} \equiv \tan A \tan B.$

16. Given $\sin A = 2/3$, $\cos B = 1/2$, to find (1) $\sin (A + B)$, $\sin (A - B)$, $\cos (A + B)$, $\cos (A - B)$, $\sin 2A$, $\cos 2A$, $\sin 2B$, $\cos 2B$; (2) $\tan (A + B)$, $\cot (A + B)$, $\tan (A - B)$, $\cot (A - B)$, $\tan 2A$, $\cot 2A$, $\tan 2B$, $\cot 2B$.

Prove each of the following identities:

17. $\frac{\cot A + \cot B}{\cot A - \cot B} \equiv \csc (B - A) \sin (B + A).$

IDENTITIES

18.
$$\frac{\sin{(A + B)}\sin{(A - B)}}{\cos^2{A}\cos^2{B}} \equiv \tan^2{A} - \tan^2{B}.$$

19.
$$\frac{\tan^2{A} - \tan^2{B}}{1 - \tan^2{A}\tan^2{B}} \equiv \tan{(A + B)}\tan{(A - B)}.$$

20.
$$\sqrt{2}\sin{(A \pm 45^\circ)} \equiv \sin{A} \pm \cos{A}.$$

21.
$$2\sin{(45^\circ - A)}\cos{(45^\circ + B)} \equiv \cos{(A - B)} - \sin{(A + B)}.$$

22.
$$2\sin{(45^\circ + A)}\cos{(45^\circ + B)} \equiv \cos{(A - B)} + \sin{(A - B)}.$$

23.
$$2\sin{(45^\circ + A)}\cos{(45^\circ - B)} \equiv \cos{(A - B)} + \sin{(A + B)}.$$

24.
$$\cot{(A + 45^\circ)} \equiv \frac{\cot{A} - 1}{\cot{A} + 1} \equiv \sqrt{\frac{1 - \sin{2A}}{1 + \sin{2A}}} \equiv \frac{1 - \sin{2A}}{\cos{2A}}.$$

25.
$$\cot{(A - 45^\circ)} \equiv \frac{\cot{A} + 1}{1 - \cot{A}} \equiv \frac{\tan{A} + 1}{\tan{A} - 1}.$$

26.
$$\tan{(A \pm 45^\circ)} + \cot{(A \mp 45^\circ)} \equiv 0.$$

27.
$$\sin{9x} - \sin{7x} \equiv 2\cos{8x}\sin{x}.$$

28.
$$\cos{7x} + \cos{5x} \equiv 2\cos{6x}\cos{x}.$$

29.
$$\frac{\sin{3x} - \sin{x}}{\cos{2x} - \cos{3x}} \equiv \cot{2x}.$$

30.
$$\frac{\sin{5x} - \sin{2x}}{\cos{4x} - \cos{6x}} \equiv \cot{2x}.$$

31.
$$\frac{\sin{A} + \sin{B}}{\cos{A} - \cos{B}} \equiv \frac{\cos{A} + \cos{B}}{\sin{B} - \sin{A}}.$$

32.
$$\tan{(x/2 + 45^\circ)} \equiv \tan{x} + \sec{x}.$$

33. Find sin A and $\cos A$ when they are proportional to any two real numbers, as a and b.

$$\frac{\sin^2 A}{a^2} = \frac{\cos^2 A}{b^2} = \frac{\sin^2 A + \cos^2 A}{a^2 + b^2} = \frac{1}{a^2 + b^2}.$$

$$\therefore \sin A = \pm a/\sqrt{a^2 + b^2}, \ \cos A = \pm b/\sqrt{a^2 + b^2}.$$

34. Find $\sin A$ and $\cos A$ when they are proportional to 3 and 4.

35. Find $\cos A$, $\cos B$, and $\cos C$, when they are proportional to any three real numbers, as a, b, and c, and

$$\frac{\cos^2 A}{a^2} = \frac{\cos^2 B}{b^2} = \frac{\cos^2 C}{c^2} = \frac{\cos^2 A + \cos^2 B + \cos^2 C}{a^2 + b^2 + c^2} = \frac{1}{a^2 + b^2 + c^2}, \text{ etc.}$$

CHAPTER IV

SOLUTION OF RIGHT TRIANGLES WITH LOGARITHMS

41. In Chapter I, right triangles were solved without logarithms. In general, however, arithmetic computations are much abbreviated by using logarithms. It is assumed that the student is already familiar with the theory of logarithms from the study of Algebra; but to bring to mind those properties of logarithms which adapt them to shortening arithmetic computations, a brief review is given below.

42. Logarithms. If
$$a^r = N$$
, (1)

then x, the exponent of a, is called the logarithm of N to the base a, which is written in symbols

$$x = \log_a N. \tag{2}$$

Equations (1) and (2) are equivalent; (2) is the *logarithmic* form of writing the relation between a, x, and N given in (1).

E.g., since $3^{2^{\circ}} = 9$, 2 is the logarithm of 9 to the base 3 ; *i.e.* $+2 = \log_3 9$. Since $2^{-3} = 1/8$, $-3 = \log_2 (1/8)$. Since $4^{3/2} = 8$, $+3/2 = \log_4 8$.

Ex. 1. Express in the logarithmic form each of the following relations: $3^4 = 81, 4^8 = 64, 6^8 = 216, n^c = b, 5^{-8} = 1/125, 3^{-5} = 1/243.$

Ex. 2. Express in the exponential form each of the following relations:

$$\log_5 125 = 3$$
, $\log_2 32 = 5$, $\log_4 64 = 3$,
 $\log_c M = b$, $\log_2 (1/16) = -4$.

Ex. 3. When the base is 10, what is the logarithm of 1 ? 10 ? 100 ? 10000 ? 100000 ? 0.1 ? 0.01 ? 0.001 ? 0.0001 ? 0.00001 ?

Ex. 4. What is the number when the base is 10 and the logarithm is 0? 1? 2? 3? - 1? - 2? - 3? - 4?

43. Properties of logarithms. Since logarithms are exponents, from the general laws of exponents we obtain the following general properties of logarithms to any base.

(i) The logarithm of the product of two or more arithmetic numbers is equal to the sum of the logarithms of the factors.

Let $M = a^x, N = a^y.$ Then $M \times N = a^{x+y}.$ Hence $\log_a(M \times N) = x + y = \log_a M + \log_a N.$

(ii) The logarithm of the quotient of two arithmetic numbers is equal to the logarithm of the dividend minus the logarithm of the divisor.

Let
$$M = a^x$$
, $N = a^y$.
Then $M \div N = a^{x-y}$.
Hence $\log_a(M \div N) = x - y = \log_a M - \log_a N$

(iii) The logarithm of any power of an arithmetic number is equal to the logarithm of the number multiplied by the exponent of the power.

Let $M = a^x$.

Then, for all real values of p, we have

Hence

 $M^{p} = a^{px}.$ $\log_{a}(M^{p}) = px = p \log_{a} M.$ (1)

If p = 1/r, from (1) it follows that

(iv) The logarithm of any root of an arithmetic number is equal to the logarithm of the number divided by the index of the root.

An expression is said to be adapted to logarithmic computation when it involves only products, quotients, powers, or roots.

E.g.,
$$x^c y^{1/r} / z^8$$
 is adapted to logarithmic computation; for we have
 $\log_a (x^c y^{1/r} / z^8) = c \log_a x + (1/r) \log_a y - 8 \log_a z.$ (1)

Observe that only the *arithmetic* value of a product, quotient, power, or root is obtained by logarithms; the quality must be determined by the *laws of quality*.

Logarithms do not aid in the operation of addition or of subtraction. But when, as in formulas $[19] \cdots [22]$, a sum or a difference is identical with a product, the sum or difference can be obtained by computing the product.

 $E.g., \, \log_a (x^2 - y^2) = \log_a [(x + y) (x - y)] = \log_a (x + y) + \log_a (x - y).$

44. Common logarithms. The logarithms used for abridging arithmetic computations are those to the base 10; for this reason logarithms to the base 10 are called common logarithms.

Thus the common logarithm of a number answers the question, What power of 10 is the number?

Most numbers are incommensurable powers of 10; hence most common logarithms are incommensurable numbers, whose approximate values we usually express decimally.

E.g., the common logarithm

of any number between 10 and 100 lies between +1 and +2; of any number between 1 and 10 lies between 0 and +1; of any number between 0.1 and 1 lies between -1 and 0; of any number between 0.01 and 0.1 lies between -2 and -1; etc.

Hence the common logarithm

of any number between 10 and 100 is +1 + a positive decimal;

of any number between 1 and 10 is 0 + a positive decimal;

of any number between 0.1 and 1 is -1 + a positive decimal;

of any number between 0.01 and 0.1 is -2 + a positive decimal.

45. Characteristic and mantissa. A logarithm is said to be in the *type form* when it is expressed as the sum of an *integer*, positive or negative, and a *positive decimal fraction*; in this form the integer is called the **characteristic**, and the fraction the **mantissa**.

In the following pages, when no base is written the base 10 is understood.

A negative characteristic, as -1, is usually written in the form 1 or 9-10; -2 in the form $\overline{2}$ or 8-10; etc.

The second form, which is usually the more convenient for negative characteristics, is sometimes used even when the characteristic is positive.

E.g., $\log 434.1 = 2.63759$; +2 is the characteristic and +.63759 is the mantissa; $\log 0.0769 = \overline{2.88593}$, or 8.88593 - 10; -2, or 8 - 10, is the characteristic, and +.88593 is the mantissa.

In the first form of writing a negative characteristic, the sign - is written above the characteristic to show that this sign affects the characteristic only. One practical advantage of the second form is that we can make the *positive* part of any logarithm as large as we please, or the *negative* part any multiple of 10 we please.

E.g., $\log 0.0769 = \overline{2.88593} = 8.88593 - 10 = 18.88593 - 20 = \cdots$. Also, $\log 434.1 = 2.63759 = 12.63759 - 10 = 22.63759 - 20 = \cdots$.

46. The characteristic of the common logarithm of a number is found by the following simple rule:

Calling units' place the zeroth place, if the first significant figure in any number M is in the nth place, then the characteristic of log M is + n or - n, according as this first figure is to the left or to the right of units' place.

E.g., when the first significant figure of a number, as 5348, is in the third place to the left of units' place, then the number lies between 10^3 and 10^4 ; hence its common logarithm is +3 + a mantissa.

Again, when the first significant figure of a number, as 0.00071, is in the fourth place to the right of units' place, then the number lies between 10^{-4} and 10^{-3} ; hence its common logarithm is -4 + a mantissa.

Let the first significant figure in the number M be in the *n*th place to the left of units' place; then M lies between 10^n and 10^{n+1} ; that is,

 $M = 10^{n+a}$ positive decimal.

 $\therefore \log M = {}^{+}n + a$ mantissa.

Again, let the first significant figure in the number M be in the *n*th place to the right of units' place; then M lies between 10^{-n} and $10^{-(n-1)}$; that is,

> $M = 10^{-n + a \text{ positive decimal.}}$... $\log M = -n + a \text{ mantissa.}$

47. If the expressions of two numbers differ only in the position of the decimal point, the two numbers have the same mantissa.

When, in the expression of a number, a change is made in the position of the decimal point, the number is multiplied or divided by some entire power of 10; that is, an integer is added to or subtracted from its logarithm; therefore its mantissa is not changed.

E.g.,
$$34.271 \times 10^3 = 34271.$$

 $\therefore \log 34.271 + 3 = \log 34271.$ § 43, (i)

Hence the mantissa for 34.271 equals the mantissa for 34271.

48. A convenient formula for computing the common logarithms of whole numbers is

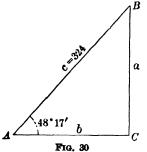
$$\log (z+1) \equiv \log z + 2m \left(\frac{1}{2z+1} + \frac{1}{3(2z+1)^{8}} + \cdots\right)$$
 (a)

where m = 0.434294, and z is any whole number.

For the proof of identity (a) see § 97 in Taylor's Calculus or § 322 in Taylor's College Algebra.

To compute $\log 2$, put z = 1 in (a); to compute $\log 3$, put z = 2; to compute log 4, we have log $4 = 2 \log 2$; to compute log 5, put z = 4; and so on.

The series in (a) converges more and more rapidly as zincreases.


Note. Before proceeding farther in this chapter, the student should familiarize himself with the use of logarithmic tables, both of natural

> numbers and of the trigonometric ratios of angles.

An explanation of the tables will be found in the introduction to them.

49. Right-angled triangles. Review § 13.

Case (i). Ex. 1. In the right triangle ABC, $A = 48^{\circ}$ 17', and AB = 324 ft.; solve the triangle.

Given
$$\begin{cases} A = 48^{\circ} 17', \\ c = 324; \end{cases}$$
 to find
$$\begin{cases} B = 41^{\circ} 43', \\ a = 241.85, \\ b = 215.6. \end{cases}$$

Construct the triangle ABC, having the given parts.

Formulas
$$\begin{cases} B = 90' - A = 41^{\circ} 43', \\ a = c \sin A, \\ b = c \cos A. \end{cases}$$

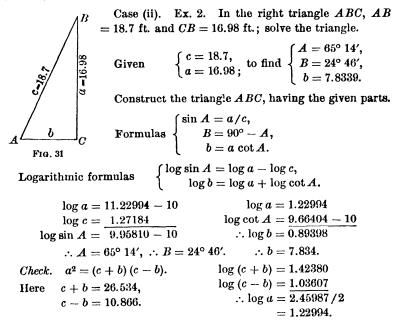
Logarithmic formulas $\begin{cases} \log a = \log c + \log \sin A, \\ \log b = \log c + \log \cos A. \end{cases}$

$\log c = 2.51055$	$\log c = 2.51055$
$\log \sin A = 9.87300 - 10$	$\log \cos A = 9.82311 - 10$
$\therefore \log a = 2.38355$	$\therefore \log b = 2.33366$
a = 241.85.	$\therefore b = 215.6.$

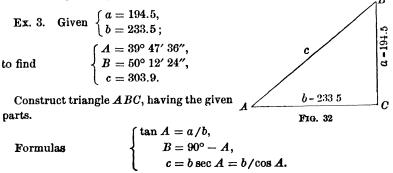
In Chapter I we *checked*, or *verified*, the calculated values by construction and measurement. But these values are more usually checked, or tested, by using some known relation between the sides and angles which has not been employed in solving the triangle. Thus, in the example above, we might use either the relation $a^2 = c^2 - b^2$ or $\tan A = a/b$ as a check; but the former is the better.

Check.	$a^2 = (c + b)(c - b).$	$\log (c + b) = 2.73207$
Here	c + b = 539.6,	$\log{(c-b)} = 2.03503$
	c - b = 108.4.	$\therefore \log a = \overline{4.76710}/2$
		= 2.38355.

As this value of $\log a$ is the same as that obtained in the solution above, the answers are probably correct to four figures.


Before using the tables the student should make a complete outline of the computation (such as he would have by erasing the second members of the equations following the logarithmic formulas).

NOTE 1. The direction above enables the student to save time by writing at once all the logarithms that are found at one place in the table. Thus we find $\log \sin A$ and $\log \cos A$ at the same time; then having both $\log a$ and $\log b$, we next find a and b.


Note 2. When the student has become familiar with logarithmic computations, he need not write the logarithmic formulas. By a glance

at the trigonometric formulas he will know how to combine the logarithms in the computation and can arrange his work accordingly.

NOTE 3. As a check formula, we use $a^2 = (c+b)(c-b)$ or $b^2 = (c+a)(c-a)$, according as c-b or c-a is the greater.

As this value of $\log a$ is the same as that obtained from the table, the answers are probably correct to four places.

 $\log a = 12.28892 - 10$ $\log b = 12.36829 - 10$ $\log b = 2.36829$ $\log c = 36829 - 10$ $\log tan A = 9.92063 - 10$ $\therefore \log c = 9.88557 - 10$ $\therefore A = 39^{\circ} 47' 36''.$ $\therefore c = 303.89.$ $\therefore B = 50^{\circ} 12' 24''.$ $\therefore c = 303.89.$

Observe that the subtraction above is simplified by writing the characteristic 2 of $\log a$ and $\log b$ in the form 12 - 10, and the characteristic - 1 of $\log \cos A$ in the form 9 - 10.

Check. $b^2 = (c + a) (c - a).$ $\log (c + a) = 2.69758$ Herec + a = 498.4, $\log (c - a) = 2.03902$ c - a = 109.4. $\therefore \log b = 4.73660/2$ = 2.36830.

As this computed value of $\log b$ differs by only .00001 from that found in the table, the computed parts are probably correct to four places.

EXERCISE XVII

Solve the triangle ABC, having given :

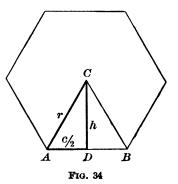
1. $B = 67^{\circ}, a = 5.$	9. $a = 3.414, b = 2.875.$
2. $A = 38^{\circ}, a = 8.09.$	10. $A = 46^{\circ} 23'$, c = 5278.6.
3 . $A = 15^{\circ}, c = 7$.	11. $a = 529.3, c = 902.7.$
4. $B = 50^{\circ}, b = 20.$	12. $B = 23^{\circ} 9', b = 75.48.$
5. $a = 0.35, c = 0.62.$	13. $B = 18^{\circ} 38', c = 2.5432.$
6. $a = 273, b = 418.$	14. $A = 31^{\circ} 45', a = 48.04.$
7. $b = 58.6, c = 76.3.$	15. $b = 617.57, c = 729.59.$
8. $A = 9^{\circ}, b = 937.$	16. $B = 82^{\circ} 6' 18'', a = 89.32.$

50. Isosceles triangles. In an isosceles triangle the perpendicular from the vertex to the base divides the isosceles triangle into two equal right triangles. Hence any two parts which determine one of these right triangles determine also the isosceles triangle.

In this and the next article we shall use the following notation in isosceles triangles: r =one of the equal sides, c = base, h =altitude, h A =one of the equal angles, C = angle at the vertex, Q = area of the triangle. R **Ex. 1.** Given r and c; to find A, C, h, D and Q. F1G. 33 $A = \cos^{-1}(c/2r), C = 180^{\circ} - 2A,$ $h = \sqrt{r^2 - (c/2)^2} = \sqrt{(r + c/2)(r - c/2)}.$ $h = r \sin A$ or $h = (c/2) \tan A$. Also, Q = ch/2.

51. Regular polygons. Lines drawn from the center of a regular polygon of n sides to the vertices divide the polygon into n equal isosceles triangles; and the perpendiculars from the center to the sides of the polygon divide these n equal isosceles triangles into 2n equal right triangles.

Hence any two parts which determine one of these equal right triangles determine also the regular polygon.


Using the notation given in fig. 34, we have

$$C/2 = 360^{\circ}/(2 n) = 180^{\circ}/n.$$

If p = the perimeter of the polygon and F = the area, we have

$$p = nc, F = ph/2.$$

CA, or r, is the radius of the circumscribed circle and CD, or h, is the radius of the inscribed circle.

EXERCISE XVIII

In an isosceles triangle, having given :

1. c and A; find C, r, h.

2. h and C; find A, r, c.

3. c and h; find A, C, r.

4. c = 2.352, $C = 69^{\circ} 49'$; find r, h, A, Q.

5. h = 7.4847, $A = 76^{\circ} 14'$; find r, c, C, Q.

6. A barn is 40×80 ft., the pitch of the roof is 45° ; find the length of the rafters and the area of both sides of the roof, the horizontal projection of the cornice being 1 ft.

7. One side of a regular decagon is 1; find r, h, F.

8. The perimeter of a regular dodecagon is 70; find r_{1} , h_{2} , F_{2} .

9. In a regular octagon h = 1; find r, c, F.

10. The area of a regular heptagon is 7; find r, h, p

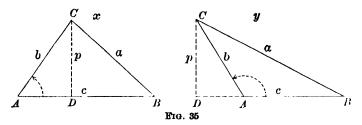
11. The side of a regular octagon is 24 ft.; find h and r; also find the difference between the areas of the octagon and the inscribed circle, and the difference between the areas of the octagon and the circumscribed circle.

12. The side of a regular heptagon is 14 ft.; find the magnitudes as in example 11.

13. Each side of a regular polygon of *n* sides is c; show that the radius of the circumscribed circle is equal to $(c/2) \csc(180^\circ/n)$, and the radius of the inscribed circle is equal to $(c/2) \cot(180^\circ/n)$.

14. The radius of a circle is k; show that each side of a regular inscribed polygon of n sides is $2k \sin(180^{\circ}/n)$, and that each side of a regular circumscribed polygon is $2k \tan(180^{\circ}/n)$.

15. The area of a regular polygon of sixteen sides inscribed in a circle is 100 sq. in.; find the area of a regular polygon of fifteen sides inscribed in the same circle.


16. The radius of a circle is 10; find the area between the perimeters of two regular polygons of thirty-six sides each, one circumscribing the circle and the other inscribed in it.

CHAPTER V

SOLUTION OF TRIANGLES IN GENERAL

52. The two following relations which the sides of any triangle bear to the sines and cosines of its angles are fundamental in the study and solution of triangles. They are called the *law of sines* and the *law of cosines* respectively.

Law of sines. The sides of a triangle are proportional to the sines of their opposite angles.

Let A, B, C denote the numerical measures of the angles of the triangle ABC, and a, b, c the numerical measures of its sides.

From C draw $CD \perp BA$, or BA produced.

In fig. x, A is acute; in fig. y, A is obtuse.

In each figure we have

by § 7,
$$\sin B = p/a$$
, (1)

by § 21,
$$\sin A = DC / AC = p / b.$$
 (2)

Dividing the members of (2) by those of (1), we obtain

$$\sin A / \sin B = a / b, \text{ or } a / \sin A = b / \sin B.$$
 (3)

Similarly, or by symmetry from (3), we obtain

 $a/\sin A = c/\sin C$, or $b/\sin B = c/\sin C$.

$$\frac{\mathbf{a}}{\sin \mathbf{A}} = \frac{\mathbf{b}}{\sin \mathbf{B}} = \frac{\mathbf{c}}{\sin \mathbf{C}}.$$
 [23]

Observe that if $C = 90^{\circ}$, sin C = 1 and [23] gives

 $a/c = \sin A$ and $b/c = \sin B$,

which are the known relations in the right-angled triangle.

In § 62 each ratio in [23] will be shown to be equal to the diameter of the circle circumscribed about the triangle ABC.

Law of cosines. In any triangle the square of any side is equal to the sum of the squares of the other two sides minus twice the product of these two sides into the cosine of their included angle.

In figures 35 regard AD, DB, and AB as directed lines. Then in each figure we have

$$AD + DB = AB; \quad \therefore DB = c - AD.$$
 (1)

Squaring both members of (1) and adding p^2 , we obtain

$$(\overline{DB}^2 + p^2) = c^2 + (\overline{A}\overline{D}^2 + p^2) - 2 c \cdot AD.$$
(2)

In each figure $DB^2 + p^2 = a^2$, $AD^2 + p^2 = b^2$, and $AD/AC = \cos A$.

Whence $AD = b \cos A$.

Substituting these values in (2), we obtain

$$a^2 = b^2 + c^2 - 2 bc \cos A.$$
 [24]

Similarly, or by symmetry from [24], we obtain

$$b^2 = a^2 + c^2 - 2 \, ac \, \cos B, \tag{1}$$

$$c^2 = a^2 + b^2 - 2 ab \cos C.$$
 (2)

Observe that if $A = 90^{\circ}$, [24] becomes $a^2 = b^2 + c^2$, which is the known relation between the sides when $A = 90^{\circ}$.

Solving [24] for $\cos A$, (1) for $\cos B$, etc., we obtain

$$\cos \mathbf{A} = \frac{\mathbf{b}^2 + \mathbf{c}^2 - \mathbf{a}^2}{2 \text{ bc}}, \ \cos \mathbf{B} = \frac{\mathbf{a}^2 + \mathbf{c}^2 - \mathbf{b}^2}{2 \text{ ac}}, \text{ etc.}$$
 [25]

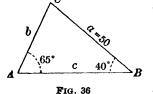
The form of the law of cosines in [25] is useful in finding any angle of a triangle from its sides.

53. If of the six parts of any triangle we have given any three (one, at least, being a side), the triangle, as we know by Geometry, is determined and can be constructed. Hence, in the numerical solution of triangles by Trigonometry, we must consider the following four cases, the given parts being:

- (i) One side and two angles.
- (ii) Two sides and the angle opposite one of them.
- (iii) Two sides and their included angle.
- (iv) Three sides.

In solving triangles we frequently use the two following geometric properties of triangles:

I. The sum of the three angles is equal to 180°.


The greater angle is opposite the greater side, and vice II. versa.

54. Cases (i) and (ii). If two of the three known parts of a triangle are a side and its opposite angle, a fourth part can evidently be found by the law of sines.

Hence cases (i) and (ii) can be solved by the properties I and II in § 53 and the law of sines.

Ex. 1. Given $\begin{cases} A = 65^{\circ}, \\ B = 40^{\circ}, \text{ to find} \\ a = 50 : \end{cases} \begin{cases} C = 75^{\circ}, \\ b = 35.46, \\ c = 53.29. \end{cases}$

Construct the triangle BAC having the given parts.

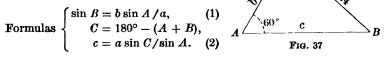
Formulas $\begin{cases} C = 180^{\circ} - (A + B) = 75^{\circ}, \\ b = a \sin B / \sin A, \quad (1) \\ c = a \sin C / \sin A. \qquad (2) \end{cases}$

Using the table in § 5, we obtain from (1)and (2),

$$b = 50 \sin 40^{\circ} / \sin 65^{\circ}$$

= 50 × 0.6428 / 0.9063 = 35.46,
$$c = 50 \times 0.9659 / 0.9063 = 53.29.$$

and


Check. By construction and measurement.

Ex. 2. Given
$$A = 50^{\circ}$$
, $C = 65^{\circ}$, $c = 30$; find B, a, b.

Ex. 3. Given
$$\begin{cases} A = 60^{\circ}, \\ a = 3\sqrt{2}, \text{ to find} \\ b = 2\sqrt{3} \end{cases} \begin{cases} B = 45^{\circ}, \\ C = 75^{\circ}, \\ c = 4.73 \end{cases}$$

Construct the triangle ABC, having the given parts.

Observe that only one such triangle can be constructed.

Since b < a, B < A, *i.e.* $B < 60^{\circ}$.

From (1),
$$\sin B = \frac{2\sqrt{3}}{3\sqrt{2}} \sin 60^\circ = \frac{\sqrt{2}}{2}$$
.
Hence, by § 10, $B = 45^\circ$, since $B < 60^\circ$.
 $C = 180^\circ - (A + B) = 180^\circ - 105^\circ = 75^\circ$.
From (2), $c = 3\sqrt{2} \times 0.9659 \div (\sqrt{3}/2) = 4.73$.
Check. By construction and measurement.
Ex. 4. If $C = 60^\circ$, $a = 2$, $c = \sqrt{6}$, find b, A, B.
Ex. 5. If $A = 30^\circ$, $a = 9$, $b = 6$, find B. C. c. having given

sin 19° 28' = 1/3 and sin 130° 32' = 0.76.

55. Cases (iii) and (iv). If two sides of a triangle and their included angle are known, the third side can be found by [24]; if the three sides are known, each angle can be found by [25]. Hence cases (iii) and (iv) can be solved by the law of cosines.

Ex. 1. Given
$$\begin{cases} A = 60^{\circ}, \\ b = 8, \\ c = 5; \end{cases}$$
 to find
$$\begin{cases} a = 7, \\ B = \cos^{-1}(1/7), \\ C = \cos^{-1}(11/14). \end{cases}$$

ſ	$a^2 = b^2 + c^2 - 2 bc \cos A$,	(1)
---	-----------------------------------	-----

Formulas
$$\begin{cases} \cos B = (a^2 + c^2 - b^2) / (2 a c), \\ \cos C = (a^2 + b^2 - c^2) / (2 a b). \end{cases}$$
 (2)

From (1),

$$a^2 = 8^2 + 5^2 - 2 \cdot 8 \cdot 5 \cdot (1/2) = 49.$$

From (2),
 $\cos B = (7^2 + 5^2 - 8^2) / (2 \cdot 7 \cdot 5) = 1/7.$
From (3),
 $\cos C = (7^2 + 8^2 - 5^2) / (2 \cdot 7 \cdot 8) = 11/14.$
 $\therefore a = 7, B = \cos^{-1}(1/7), C = \cos^{-1}(11/14).$

Check. By construction and measurement.

Ex. 2. If a = 7, b = 3, c = 5, find A, B, C, having given $11/14 = \cos 38^{\circ} 13'$, $13/14 = \cos 21^{\circ} 47'$.

$$\cos A = \frac{b^2 + c^2 - a^2}{2 b c} = \frac{3^2 + 5^2 - 7^2}{2 \cdot 3 \cdot 5} = -\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2 \cdot 3 \cdot 5} = \frac{1}{2} \cdot \frac{1}{2 \cdot 3 \cdot 5} = \frac{1}{2} \cdot \frac{1}{2 \cdot 2 \cdot 3 \cdot 5} = \frac{1}{2} \cdot \frac{1}{2 \cdot 7 \cdot 5} = \frac{1}{2} \cdot \frac{1}{2 \cdot 7 \cdot 5} = \frac{1}{2} \cdot \frac{1}{2 \cdot 7 \cdot 3} = \frac{1$$

Check. $A + B + C = 120^{\circ} + 21^{\circ} 47' + 38^{\circ} 13' = 180^{\circ}$.

Ex. 3. If a = 2, b = 3, c = 4, find A, B, C, having given $7/8 = \cos 28^{\circ} 57'$, $11/16 = \cos 46^{\circ} 34'$, $1/4 = \cos 75^{\circ} 31'$.

56. Since the law of cosines involves *sums*, it is not adapted to computation by logarithms. Hence, to solve cases (iii) and (iv) by logarithms, we must deduce other formulas, one of which is the law of tangents below.

Law of tangents. The sum of any two sides of a triangle is to their difference as the tangent of half the sum of their opposite angles is to the tangent of half their difference.

From the law of sines, we have

$$a/b = \sin A / \sin B. \tag{1}$$

By principles of proportion, from (1), we obtain

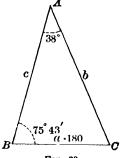
$$\frac{a + b}{a - b} = \frac{\sin A + \sin B}{\sin A - \sin B}$$

= $\frac{2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)}{2 \cos \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)}$ by [19], [20]
= $\tan \frac{1}{2} (A + B) / \tan \frac{1}{2} (A - B).$ [26]
Since $\tan \frac{1}{2} (A + B) = \tan \frac{1}{2} (180^\circ - C)$
= $\tan (90^\circ - C/2) = \cot (C/2),$

from [26] we obtain

$$\tan\frac{\mathbf{A}-\mathbf{B}}{2} = \frac{\mathbf{a}-\mathbf{b}}{\mathbf{a}+\mathbf{b}}\cot\frac{\mathbf{C}}{2}.$$
 [27]

As a check, [26] is the more convenient form, while for solving triangles, [27] is the preferable form of this law.


Example. If
$$a = \sqrt{3}$$
, $b = 1$, $C = 30^{\circ}$, find A, B, c, having given
 $\cot 15^{\circ} = (\sqrt{3} + 1)/(\sqrt{3} - 1)$.
By [27], $\tan \frac{A - B}{2} = \frac{a - b}{a + b} \cot \frac{C}{2}$
 $= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \cot 15^{\circ} = 1$.
Hence $\frac{1}{2}(A - B) = 45^{\circ}$. (1)
Also, $\frac{1}{2}(A + B) = \frac{1}{2}(180^{\circ} - C) = 75^{\circ}$. (2)
Adding (1) and (2), $A = 120^{\circ}$.
Subtracting (1) from (2), $B = 30^{\circ}$.
Since $C = B$, we have $c = b = 1$.

Check. By construction and measurement.

SOLUTION OF OBLIQUE TRIANGLES WITH LOGARITHMS

57. Case (i) Given one side and two angles. Ex. 1. Given $\begin{cases} a = 180, \\ A = 38^{\circ}, \\ B = 75^{\circ} 43'; \end{cases} \begin{cases} C = 66^{\circ} 17', \\ b = 283.38, \\ c = 267.68. \end{cases}$ Construct triangle ABC, having the given parts.

Formulas	$\begin{cases} C = 180^{\circ} - (A + B) = 66^{\circ} 17', \\ b = a \sin B / \sin A, \\ c = a \sin C / \sin A. \end{cases}$
Logarithmic formulas	$\begin{cases} \log b = \log a + \log \sin B - \log \sin A, \\ \log c = \log a + \log \sin C - \log \sin A, \end{cases}$

 $\log a = 2.25527$ $\log a = 2.25527$ $\log \sin C = 9.96168 - 10$ $\log \sin B = 9.98636 - 10$ $(1.1 \log (a \sin B) = \overline{12.24163 - 10}$ $\therefore \log (a \sin C) = \overline{12.21695 - 10}$ $\log \sin A = 9.78934 - 10$ $\log \sin A = -9.78934 - 10$ $\therefore \log b = 2.45229$ $\therefore \log c = 2.42761$ $\therefore b = 283.33$ $\therefore c = 267.68$ Check. $\frac{b+a}{b-a} = \frac{\tan \frac{1}{2}(B+A)}{\tan \frac{1}{2}(B-A)}$. (1) $(B + A)/2 = 56^{\circ} 51' 30''$. b + a = 463.33. $(B - A)/2 = 18^{\circ} 51' 30''.$ b - a = 103.33. $\log(b + a) = 2.66589$ $\log \tan \frac{1}{2}(B+A) = 10.18514 - 10$ $\log \tan \frac{1}{2} (B - A) = 9.53347 - 10$ $\log\left(b-a\right) = 2.01423$ $\log quotient = .65167$ $\log quotient = .65166$

As the logarithms of the two members of (1) differ by only 1 in the fifth place, the value of b is correct to four places.

Similarly we can check the value of c.

OBLIQUE TRIANGLES

EXERCISE XIX

Solve each of the following triangles:

1. Given $B = 60^{\circ} 15'$,	$C = 54^{\circ} 30',$	a = 100.
2. Given $A = 45^{\circ} 41'$,	$C = 62^{\circ} 5',$	b = 100.
3. Given $B = 70^{\circ} 30'$,	$C = 78^{\circ} \ 10',$	a = 102.
4 . Given $A = 55^{\circ}$,	$B = 65^{\circ},$	c = 270.
5. Given $a = 123$,	$B = 29^{\circ} 17'$,	$C = 135^{\circ}$.
6. Given $b = 1006.62$,	$A = 44^{\circ},$	$C = 70^{\circ}$.

7. A ship S can be seen from each of two points A and B on the shore. By measurement, AB = 800 ft., $\angle SAB = 67^{\circ}$ 43', and $\angle SBA = 74^{\circ}$ 21' 16". Find the distance of the ship from A.

8. A flag pole A is observed from two points B and C, 1863 ft. apart. Given $\angle BCA = 36^{\circ} 43'$ and $\angle CBA = 57^{\circ} 21'$, find the distance of the flag pole from the nearer point.

9. To determine the distance of a hostile fort A from a place B, a line BC and the angles ABC and BCA were measured and found to be 322.55 yd., 60° 34', and 56° 10' respectively. Find the distance AB.

10. A balloon is directly over a straight level road, and between two points on the road from which it is observed. The points are 15847 ft. apart, and the angles of elevation are found to be 49° 12' and 53° 29' respectively. Find the distance of the balloon from each point of observation.

11. To find the distance from a point A to a point B on the opposite side of a river, a line AC and the angles CAB and ACB were measured and found to be 315.32 ft., 58° 43′, and 57° 13′ respectively. Find the distance AB.

12. From points A and B, at the bow and stern of a ship respectively, the foremast, C, of another ship is observed. The points A and B are 300 ft. apart; the angles ABC and BAC are found to be 65° 31' and 110° 46' respectively. What is the distance between the points A and C of the two ships?

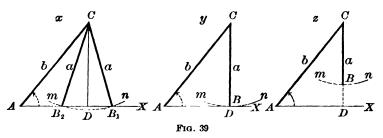
58. Case (ii). Given two sides and an angle opposite one of them. Let a, b, A be the given parts. Then, to find B, C, c, we have $\sin B = b \sin A / a$. (1)

$$\begin{array}{ll} \ln B = b \sin A / a, \\ C = 180^{\circ} - (A + B), \\ c = a \sin C / \sin A. \end{array}$$

Since two supplementary angles have the same sine (§ 30), the relation in (1) gives in general two values for B, both of which are to be taken unless one is excluded by some geometric property of triangles, as I or II in § 53.

We have to consider the three following cases:

I, when a > b; II, when a = b; III, when a < b.


I. When a > b and A is acute or obtuse, then A > B; hence B is acute, and there is but one triangle having the given parts.

II. When $\mathbf{a} = \mathbf{b}$ and A is acute, then $\mathbf{A} = \mathbf{B}$; hence B is acute and the triangle is isosceles.

In this case the triangle can be solved by the method in § 50 or by the law of sines and the relation $A + B + C = 180^{\circ}$.

If a = b and $A = or > 90^{\circ}$, the triangle is impossible. Why?

Nore. Example 1 below and the first three examples in Exercise XX may be solved before Case III is considered.

III. When a < b and A is acute, there are two triangles, one, or no triangle, having the given parts, according as a > =, or $< b \sin A$.

Geometric proof. In each figure, let $\angle XAC = A$ and AC = b

Draw $CD \perp AX$; then in each figure $CD = b \sin A$.

With C as a center and a as a radius, describe the arc mn.

If $a > b \sin A$ (*i.e.* if a > CD), the arc mn will cut AX (fig. x) in two points, B_1 and B_2 , on the side of A toward D, and there will be two unequal triangles having the parts a, b, A, viz., the triangles ACB_1 and ACB_2 . Hence B has the two values $\angle AB_1C$ and $\angle AB_2C$, which are supplementary.

If $u = b \sin A$, the arc mn will touch AX at D (fig. y); hence $B = 90^{\circ}$ and only the right-angled triangle ACD has the given parts.

If $a < b \sin A$, the arc mn will not meet AX (fig. z); hence no triangle can be constructed with the given parts.

E.g., if a = 5, b = 7, and $A = 30^{\circ}$, then a < b and $a > b \sin A$; hence there will be two triangles having these parts.

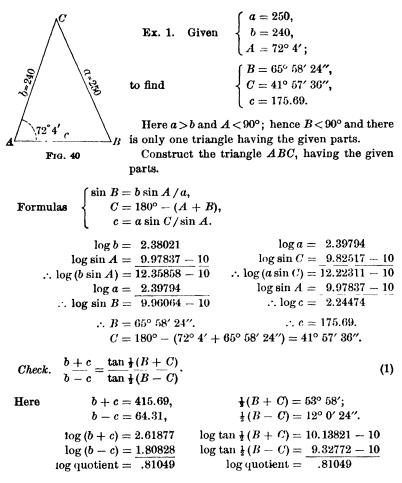
If a < b and $A = or > 90^{\circ}$, the triangle is *impossible*. Why?

Trigonometric proof. From the law of sines,

$$\sin B = b \sin A / a, \text{ or } (b/a) \sin A. \tag{1}$$

Also A < B and $A + B < 180^{\circ}$. (2)

If $a > b \sin A$, $b \sin A / a < 1$, whence from (1), $\sin B < 1$; hence B has two unequal values, which are supplementary.


Since a < b, b/a > 1, whence from (1), $\sin B > \sin A$; hence each of the two supplementary values of B will satisfy both the conditions in (2).

Therefore B has two values and there are two different triangles having the given parts (fig. x).

If $a = b \sin A$, $\sin B = 1$ in (1), whence $B = 90^{\circ}$; hence the required triangle is right angled at B (fig. y).

If $a < b \sin A$, $\sin B > 1$, which is impossible; hence the triangle is impossible (fig. z).

From the trigonometric proof, it follows that if a < b and A is acute, there are *two* triangles, *one*, or *no* triangle, according as log sin B is *negative*, zero, or *positive*. Why?

As the logarithms of the two members of (1) are equal, the values obtained above are correct.

Ex. 2. How many triangles are there which have the following parts?

(i) $a = 70$,	b = 90,	$A = 30^{\circ}$.
(ii) $a = 40$,	b = 80,	$A = 30^{\circ}$.
(iii) $a = 20$,	b = 50,	$A = 30^{\circ}$.
(iv) $a = 70$,	b = 75,	$\boldsymbol{A}=60^{\rm o}.$

Ex. 3. Given
$$\begin{cases} a = 732, \\ b = 1015, \text{ to find} \\ A = 40^{\circ}; \end{cases} \begin{cases} B = 63^{\circ} 2' 20'' \text{ or } 116^{\circ} 57' 40'', \\ C = 76^{\circ} 57' 40'' \text{ or } 23^{\circ} 2' 20'', \\ c = 1109.4 \text{ or } 445.66. \end{cases}$$

Here a < b and $a > b \sin A$; hence by III there are two solutions. Construct the two triangles ACB_1 and ACB_2 , having the given parts.

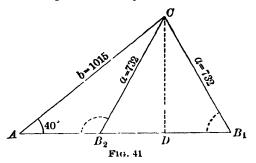
Formula for B.

$$\sin B = b \sin A/a.$$

$$\log b = 3.00647$$

$$\log \sin A = 9.80807 - 10$$

$$\therefore \log (b \sin A) = 12.81454 - 10$$


$$\log a = 2.86451$$

$$\therefore \log \sin B = 9.95003 - 10$$

$$\therefore B_1 = 63^\circ 2' 20'', \quad B_2 = 116^\circ 57' 40''$$

To find the unknown parts of ACB_1 , we have

 $\angle ACB_1 = 180^\circ - (A + B_1) = 76^\circ 57' 40''.$ $AB_1 = a \sin A CB_1 / \sin A.$

To find the unknown parts of ACB_2 , we have

 $\angle A CB_{2} = 180^{\circ} - (A + B_{2}) = 23^{\circ} 2' 20''.$ $AB_2 = a \sin A CB_2 / \sin A.$ $\log a = 2.86451$ $\log a = 2.86451$ $\log \sin A CB_2 = 9.59257 - 10$ $\log \sin A CB_1 = 9.98866 - 10$ $\therefore \log(a \sin B_2) = 12.45708 - 10$ $\therefore \log(a \sin B_1) = 12.85317 - 10$ $\log \sin A = 9.80807 - 10$ $\log \sin A = 9.80807 - 10$ $\therefore \log AB_2 = 2.64901$ $\therefore \log AB_1 = 3.04510$ $\therefore AB_1 = 1109.4.$ $\therefore AB_2 = 445.66.$ Check. $\frac{c+b}{c-b} = \frac{\tan \frac{1}{2}(C+B)}{\tan \frac{1}{2}(C-B)}$ (1)

Here	c + b = 2124.4,	$\frac{1}{2}(C+B)=70^{\circ};$
	c-b=94.4,	$\frac{1}{2}(C-B)=6^{\circ} 57' 40''.$
	$\log (c + b) = 3.32723$	$\log \tan \frac{1}{2}(C+B) = 10.43893 - 10$
	$\log (c - b) = 1.97497$	$\log \tan \frac{1}{2} (C - B) = 9.08670 - 10$
1	og quotient = $\overline{1.35226}$	$\log quotient = 1.35223$

The equality of these logarithms to five figures verifies the answers to four figures.

EXERCISE XX

Solve the following triangles:

Given $a = 145$,	b = 178,	B =	41° 10′.
Given $b = 573$,	c = 394,	B =	112° 4′.
Given $a = 5.98$,	b = 3.59,	A =	63° 50′.
Given $a = 140.5$,	b = 170.6,	A =	40°.
Given $b = 74.1$,	c = 64.2,	C =	27° 18′.
Given $a = 27.89$,	b = 22.71,	B =	65° 38′.
Given $b = 45.21$,	c = 50.3,	B =	40° 32′ 7″.
Given $a = 34$,	b = 22,	B =	3 0° 20′ .
Given $a = 55.55$,	b = 66.66,	B =	77° 44′ 40″.
Given $a = 309$,	b = 360,	A =	21° 14′ 25″.
Given $b = 19$,	c = 18,	C =	15° 49′.
	Given $b = 573$, Given $a = 5.98$, Given $a = 140.5$, Given $b = 74.1$, Given $a = 27.89$, Given $b = 45.21$, Given $a = 34$, Given $a = 55.55$, Given $a = 309$,	Given $b = 573$, $c = 394$,Given $a = 5.98$, $b = 3.59$,Given $a = 140.5$, $b = 170.6$,Given $b = 74.1$, $c = 64.2$,Given $a = 27.89$, $b = 22.71$,Given $b = 45.21$, $c = 50.3$,Given $a = 34$, $b = 22$,Given $a = 55.55$, $b = 66.66$,Given $a = 309$, $b = 360$,	Given $b = 573$, $c = 394$, $B =$ Given $a = 5.98$, $b = 3.59$, $A =$ Given $a = 140.5$, $b = 170.6$, $A =$ Given $b = 74.1$, $c = 64.2$, $C =$ Given $a = 27.89$, $b = 22.71$, $B =$ Given $b = 45.21$, $c = 50.3$, $B =$ Given $a = 34$, $b = 22$, $B =$ Given $a = 55.55$, $b = 66.66$, $B =$ Given $a = 309$, $b = 360$, $A =$

59. Case (iii). Given two sides and their included angle. Let a, b, C be the given parts. Then, to find A, B, c, we have

$$\tan\frac{A-B}{2} = \frac{a-b}{a+b}\cot\frac{C}{2},\tag{1}$$

$$(A + B)/2 = 90^{\circ} - C/2,$$
 (2)

$$c = a \sin C / \sin A. \tag{3}$$

From (1) we obtain (A - B)/2. Having given (A - B)/2and (A + B)/2, we readily obtain A and B.

Then c can be found by (3).

Example. Given
$$\begin{cases} a = 540, \\ b = 420, \\ C = 52^{\circ} 6'; \end{cases}$$
 to find
$$\begin{cases} A = 78^{\circ} 17' 40'', \\ B = 49^{\circ} 36' 20'', \\ c = 435.15. \end{cases}$$

Formulas
$$\begin{cases} \tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}, \\ (A+B)/2 = 90^{\circ} - C/2 = 63^{\circ} 57', \\ c = a \sin C/\sin A. \end{cases}$$
Here $a+b = 960, a-b = 120, C/2 = 26^{\circ} 3'.$
 $\log (a-o) = 2.07918$ $\log a = 2.73239$
 $\log \cot (C/2) = 0.31086$ $\log \sin C = 9.89712 - 10$
 $\therefore \log \text{ product} = 12.39004 - 10$ $\therefore \log \text{ product} = 12.62951 - 10$
 $\log (a+b) = 2.98227$ $\log \sin A = 9.90087 - 10$
 $\therefore \log \tan \frac{1}{2} (A-B) = 9.40777 - 10$ $\therefore \log c = 2.63864$
 $\therefore (A-B)/2 = 14^{\circ} 20' 40''.$ $\therefore c = 435.15$
Also $(A+B)/2 = 63^{\circ} 57'.$
 $\therefore A = 78^{\circ} 17' 40'',$
and $B = 49^{\circ} 36' 20''.$

To check A and B, use $\sin A/a = \sin B/b$. To check c we could use $c = b \sin C / \sin B$.

EXERCISE XXI

Solve each of the following triangles :

1.	Given $a = 266$,	b = 352,	$C = 73^{\circ}$.
2.	Given $b = 91.7$,	c = 31.2,	A = 33° 7′ 9″.
3.	Given $a = 960$,	b = 720,	$C = 25^{\circ} 40^{\circ}.$
4.	Given $a = 886$,	b = 747,	$C = 71^{\circ} 54'$.
5.	Given $b = 41.02$,	c = 45.49,	$A = 62^{\circ} 9' 38''$.

6. Two trees A and B are on opposite sides of a pond. The distance of A from a point C is 297.6 ft., the distance of B from C is 864.4 ft., the angle ACB is 87° 43′ 12″. Find the distance AB.

7. Two mountains A and B are respectively 9 and 13 miles from a town C, and the angle ACB is 71° 36′ 37″. Find the distance between the mountains.

8. Two points A and B are visible from a third point C, but not from each other. The distances AC, BC, and the angle ACB were measured and found to be 1321 ft., 1287 ft., and 61° 22' respectively. Find the distance AB.

9. From a point 3 mi. from one end of an island and 7 mi. from the other end, the island subtends an angle of 33° 55' 15". Find the length of the island.

10. Two stations A and B on opposite sides of a mountain are both visible from a third station C. The distance AC, BC, and the angle ACB were measured and found to be 11.5 mi., 9.4 mi., and 59° 31' respectively. Find the distance from A to B.

11. Two trains leave the same station at the same time on straight tracks that form an angle of $21^{\circ} 12'$. Their average speeds are 40 mi. and 50 mi. an hour respectively. How far apart will they be at the end of the first thirty minutes?

60. Case (iv). Given the three sides. To solve this case we first obtain formulas for the sine, cosine, and tangent of A/2, B/2, and C/2 in terms of the three sides a, b, c.

Let
$$2s = a + b + c.$$

Then $2(s - a) = b + c - a,$
 $2(s - b) = a + c - b,$
 $2(s - c) = a + b - c.$ (1)

By [16] and [17], we have

$$\sin^2(A/2) \equiv (1 - \cos A)/2,$$

 $\cos^2(A/2) \equiv (1 + \cos A)/2.$

Substituting for $\cos A$ its value given in [25], we obtain

$$\sin^{2} \frac{A}{2} = \frac{1}{2} \left(1 - \frac{b^{2} + c^{2} - a^{2}}{2 b c} \right) \quad \cos^{2} \frac{A}{2} = \frac{1}{2} \left(1 + \frac{b^{2} + c^{2} - a^{2}}{2 b c} \right)$$

$$= \frac{a^{2} - (b - c)^{2}}{4 b c} \qquad = \frac{(b + c)^{2} - a^{2}}{4 b c}$$

$$= \frac{(a - b + c)(a + b - c)}{4 b c} \qquad = \frac{(b + c + a)(b + c - a)}{4 b c}$$

$$= \frac{4 (s - b)(s - c)}{4 b c} \qquad = \frac{4 s (s - a)}{4 b c} \cdot \text{ by (1)}$$

$$\therefore \sin \frac{A}{2} = \sqrt{\frac{(s - b)(s - c)}{b c}} \quad \therefore \cos \frac{A}{2} = \sqrt{\frac{s(s - a)}{b c}} \cdot \text{ by (2)}$$
Dividing,
$$\tan \frac{A}{2} = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}} \cdot \text{ be (2)}$$

٠

Observe that s is the half-perimeter, a the side opposite, and b and c the sides including the angle A.

Ex. 1. State in words the relations in [28].

Ex. 2. Write the values of the sine, cosine, and tangent of B/2; C/2.

Since the trigonometric ratios of A/2, B/2, C/2 must all be positive (?), only the positive roots in [28] are taken.

Formulas [28] enable us to obtain any angle of a triangle from the sides, either through its sine, its cosine, or its tangent.

Ex. 3. If a = 13, b = 14, c = 15, find A, B, C, having given $1/2 = \tan 26^{\circ} 34'$, $4/7 = \tan 29^{\circ} 45'$, $2/3 = \tan 33^{\circ} 41'$.

Here s = (13 + 14 + 15)/2 = 21, s - a = 21 - 13 = 8, s - b = 21 - 14 = 7, s - c = 6. Hence $\tan \frac{A}{2} = \sqrt{\frac{7 \cdot 6}{21 \cdot 8}} = \frac{1}{2} = \tan 26^{\circ} 34'$. $\therefore A/2 = 26^{\circ} 34'$, or $A = 53^{\circ} 8'$. Again, $\tan \frac{B}{2} = \sqrt{\frac{8 \cdot 6}{21 \cdot 7}} = \frac{4}{7} = \tan 29^{\circ} 45'$. $\therefore B/2 = 29^{\circ} 45'$, or $B = 59^{\circ} 30'$. Similarly $C/2 = 33^{\circ} 41'$, or $C = 67^{\circ} 22'$.

Check. $A + B + C = 53^{\circ} 8' + 59^{\circ} 30' + 67^{\circ} 22' = 180^{\circ}$.

Ex. 4. If a = 35, b = 84, c = 91, find A, B, C, having given tan 11° 19' = 1/5, and tan 33° 41' = 2/3.

Ex. 5. If a = 13, b = 14, c = 15, find the sines of A/2, B/2, C/2.

If we multiply the value of $\tan(\Lambda/2)$ in [28] by 1 in the form $\sqrt{s-a}/\sqrt{s-a}$, the expression for $\tan(\Lambda/2)$ can be put in the more symmetrical form

$$\tan \frac{A}{2} = \frac{1}{s-a} \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} \cdot \frac{1}{s-a} \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} \cdot \frac{1}{s} \cdot \frac{1}{s-a} \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} \cdot \frac{1}{s} \cdot \frac{1}{s} \frac{1}{s} \cdot \frac{1$$

Letting we have Similarly When all the angles are required, the tangent formulas [30] are the best, as they involve the fewest logarithms.

In § 63 it will be proved that r in [29] is the radius of the circle inscribed in the triangle *ABC*.

Ex. 6. Given
$$\begin{cases} a = 130, \\ b = 123, \text{ to find} \\ c = 77; \end{cases} \begin{cases} A = 77^{\circ} 19' 9'', \\ B = 67^{\circ} 22' 49'', \\ C' = 35^{\circ} 18' 2''. \end{cases}$$

Formulas
$$\begin{cases} r = \sqrt{(s-a)(s-b)(s-c)/s}, \\ \tan(A/2) = r/(s-a), \\ \tan(B/2) = r/(s-b), \\ \tan(C/2) = r/(s-c). \end{cases}$$

Here $s = 165, s - a = 35, s - b = 42, s - c = 88.$
$$\log (s-a) = 1.54407 \qquad \therefore \log \tan (A/2) = 9.90309 - 10, \\ \log (s-b) = 1.62325 \qquad \log \tan (B/2) = 9.82391 - 10, \\ \log (s-c) = 1.94448 \qquad \log \tan (C/2) = 9.50268 - 10; \\ \therefore \log \operatorname{product} = 5.11180 \qquad \text{whence } A/2 = 38^{\circ} 39' 34.6'', \\ \log s = 2.21748 \qquad B/2 = 33^{\circ} 41' 24.4'', \\ \therefore \log r = 2.89432/2 \qquad C/2 = 17^{\circ} 39' 1''. \end{cases}$$

Check. $A + B + C = 77^{\circ} 19' 9'' + 67^{\circ} 22' 49'' + 35^{\circ} 18' 2'' = 180^{\circ}$.

EXERCISE XXII

Solve each of the following triangles:

1.	Given $a = 56$,	b = 43,	c = 49.
2 .	Given $a = 8.5$,	b = 9.2,	c = 7.8.
3 .	Given $a = 61.3$,	b = 84.7,	c = 47.6.
4.	Given $a = 705$,	b = 562,	c = 639.
5.	Given $a = .0291$,	b = .0184,	c = .0358.
6.	Given $a = 85$,	b = 127,	$A = 26^{\circ} ?6'.$
7.	Given $a = 5.953$,	b = 9.639,	$C = 134^{\circ}$.
8 .	Given $a = 3019$,	b = 6731,	c = 4228.
9.	Given $a = 60.935$,	c = 76.097,	$A = 133^{\circ} 41'$.

10 . Given $b = 74.806$,	c = 98.738,	$C = 81^{\circ} 47'$.
11. Given $b = 129.21$,	c = 28.63,	$A = 27^{\circ} 13'$.
12. Given $a = 2.51$,	b = 2.79,	c = 2.33.
13. Given $a = 32.163$,	c = 27.083,	$C = 52^{\circ} 24' 16''.$
14. Given $a = 74.8$,	c = 124.09,	$B = 83^{\circ} 26' 52''.$
15. Given a = 86.062,	c = 63.576,	$A = 19^{\circ} \ 12' \ 43''.$
16. Given $a = 93.272$,	b = 81.512,	$C = 58^{\circ}$.

17. The sides of a triangular field are 534 ft., 679.47 ft., and 474.5 ft. Find the angles.

18. A pole 13 ft. long is placed 6 ft. from the base of an embankment, and reaches 8 ft. up its face. Find the slope of the embankment.

19. A point P is 13581 in. from one end of a wall 12342 in. long, and 10025 in. from the other end. What angle does the wall subtend at the point P?

20. The distances between three cities A, B, and C are as follows: AB = 165 mi., AC = 72 mi., and BC = 185 mi. B is due east from A. In what direction is C from A?

21. Under what visual angle is an object 7 ft. long seen when the eye of the observer is 5 ft. from one end of the object and 8 ft. from the other end?

22. Prove $\sin A = 2\sqrt{s(s-a)(s-b)(s-c)}/(bc)$.

23. Prove $\cos A = s(s-a)/(bc) - (s-b)(s-c)/(bc)$.

24. If a = 18, b = 24, c = 30, show that $\sin A = 3/5$.

25. The sides of a triangle can be substituted for the sines of their opposite angles, and vice versa, when they are involved homogeneously in the numerator and denominator of a fraction, or in both members of an equation.

For this substitution is the multiplication of each term by the equal numbers, $a/\sin A$, $b/\sin B$, $c/\sin C$, or their reciprocals.

$$E.g., \qquad \sin A = \sin (180^\circ - A) = \sin (B + C).$$
$$\therefore \sin A = \sin B \cos C + \sin C \cos B. \qquad by [7]$$

Multiplying the first term by $a/\sin A$, the second by $b/\sin B$, and the third by $c/\sin C$, we obtain

PLANE TRIGONOMETRY

 $a = b \cos C + c \cos B.$ Similarly $b = a \cos C + c \cos A,$ and $c = a \cos B + b \cos A.$ (1)

26. Prove $\frac{2c^2 + a^2}{3abc} = \frac{2\sin^2 C + \sin^2 A}{3b\sin A \sin C}$.

27. Multiplying the equations in (1) of example 25 by -a, b, and c respectively, and adding, we obtain the law of cosines,

 $b^2 + c^2 - a^2 = 2 bc \cos A.$

28. Prove the relations in (1) of example 25 directly from a figure. Suggestion. See the figures in § 52.

61. Area of a triangle.

(i) In terms of two sides and the sine of their included angle. Let F denote the area of any triangle, as ABC in § 52.

Then $\mathbf{F} = BA \cdot DC/2 = \operatorname{bc} \sin \mathbf{A}/2.$ [31]

(ii) In terms of the three sides.

By [31] and [13], we have

$$F = bc \sin \left(\frac{A}{2}\right) \cos \left(\frac{A}{2}\right).$$

Hence, by [28], $\mathbf{F} = \sqrt{\mathbf{s}(\mathbf{s} - \mathbf{a})(\mathbf{s} - \mathbf{b})(\mathbf{s} - \mathbf{c})}.$ [32]

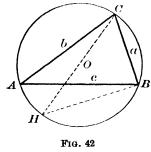
(iii) In terms of one side and the sines of the angles.

In [31], putting for c its value $b \sin C / \sin B$ (obtained from the law of sines), we have

$$\mathbf{F} = \frac{\mathbf{b}^2 \sin \mathbf{A} \sin \mathbf{C}}{2 \sin \mathbf{B}}$$
[33]

EXERCISE XXIII

- 1. State [31], [32], [33] in words.
- 2. Given $A = 75^{\circ}$, b = 10, c = 40; to find **F**.
- 3. Find the areas of the triangles in examples 1-4 in Exercise XXI.
- 4. Find the areas of the triangles in examples 1-4 in Exercise XX.
- 5. Find the areas of the triangles in examples 1-4 in Exercise XXII.
- 6. Find the areas of the triangles in examples 1-4 in Exercise XIX.

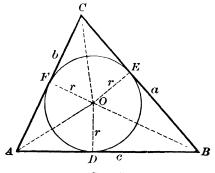

62. Circumscribed circle. Let D denote the diameter of the circle circumscribed about the triangle ABC.

Through C draw the diameter COH, and join HB.

Then

and

 $\angle A = \angle H,$ $\angle CBH = 90^{\circ},$ CH = D. $\therefore \sin A = \sin H = a/D.$ $\therefore a/\sin A = D.$



Compare (1) with $\lceil 23 \rceil$.

Example. Find the radii of the circles circumscribed about the triangles in examples 1-4 in Exercise XIX.

(1)

63. Inscribed circle. Let r denote the radius of the circle inscribed in the triangle *ABC*. Join the center *O* with the points of contact *D*, *E*, *F*. Draw *OA*, *OB*, *OC*.

F1G. 43

Then

$$OD = OE = OF = r.$$

$$\triangle ABC = \triangle BOC + \triangle COA + \triangle AOB.$$

$$\therefore F = ar/2 + br/2 + cr/2$$

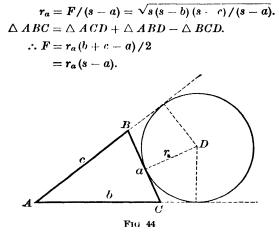
$$= r(a + b + c)/2 = rs.$$
 § 60

r = 1/s, $r = \sqrt{(s-a)(s-b)(s-c)/s}.$

(1)

r = F/s,

Hence


or by [32],

Compare (1) with [29].

Example. Find the radii of the inscribed circles of the triangles in examples 1-4 in Exercise XXII.

64. An escribed circle of a triangle is a circle which is tangent to one side of the triangle and to each of the other two sides produced.

Ex. 1. If r_a denotes the radius of the escribed circle tangent to the side a, prove that

Ex. 2. Find the radii of the three escribed circles of the triangles in examples 1-3 in Exercise XXII.

CHAPTER VI

RADIAN MEASURE, GENERAL VALUES, TRIGONOMETRIC EQUATIONS, INVERSE FUNCTIONS

65. A radian is an angle which, when placed at the center of a circle, intercepts between its sides an arc equal in length to the radius of the circle.

That is, if arc AB is equal to the radius OA, then

angle AOB = a radian.

66. Constant value of the radian. In fig. 45, let

arc AB = OA = r units.

Then, by Geometry, we have the following proportion:

 $\angle AOB: 180^\circ = \operatorname{arc} AB: \operatorname{semicircumference}$

i.e.

Hence

a radian: $180^{\circ} = r : \pi r$.

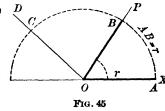
From this proportion, we have

$$\pi$$
 radians = 180° = 2 right angles. [34]

Formula [34] expresses the relation between radians, degrees, and right angles, and should be fixed in mind.

From [34], a radian =
$$(180/\pi)^{\circ}$$
, or $(180/3.1416)^{\circ}$ (1)

$$= 57^{\circ}.295779, \text{ or } 57^{\circ}.3, \text{ approximately}$$
 (2)


$$= 57^{\circ} 17' 44''.8$$
, approximately. (3)

From [34],
$$1^{\circ} = (\pi/180)$$
 radian, (4)

or a right angle =
$$90^{\circ} = (\pi/2)$$
 radians. (5)

 $270^{\circ} - (3 - 12)$ radiana

and
$$360^\circ = 2\pi$$
 radians. (6)

PLANE TRIGONOMETRY

Ex. 1. Express in radians the angle 8° 15'. $8^{\circ} 15' = (33/4)^{\circ} = (33/4) (\pi/180)$ radian by (4) = 0.144 radian, approximately.

Ex. 2. Express in radians the sum of the three angles of a triangle.

Ex. 3. Express in degrees the angle 5/8 radian.

 $5/8 \text{ radian} = (5/8) (57^{\circ} 17' 44''.8)$ by (3) = $35^{\circ} 48' 35''.5.$

67. Radian measure of angles. In fig. 45, by Geometry, we have

 $\angle AOC : \angle AOB = \operatorname{arc} ABC : \operatorname{arc} AB.$ (1) $\angle AOC = N \text{ radians,}$

arc
$$ABC = s$$
 units,

 \mathbf{and}

Let

arc
$$AB = OA = r$$
 units.

Substituting these values in proportion (1), we obtain

N radians: 1 radian = s: r.

$$\therefore \mathbf{N} = \mathbf{s}/\mathbf{r}.$$
 [35]

That is, the number of radians in an angle at the center of a circle is equal to the intercepted arc divided by the radius.

COR. If r=1, N=s.

The number of radians in an angle is called its radian (or *circular*) measure.

When the measure of an angle is given in terms of π or any other numeral or numerals and no angular unit is expressed, the radian is always understood as the unit.

E.g., the angle 2 is an angle of 2 radians, and the angle $\pi/2$ is an angle of $\pi/2$ radians.

The fraction 22/7 gives the correct value of π to two places of decimals, and for many purposes this value is sufficiently accurate.

Ex. 1. An angle at the center of a circle whose radius is 5 ft. intercepts an arc of 3 ft. Find the angle in degrees.

The angle = (3/5) radian § 67

 $= (3/5) (180/\pi)^{\circ} = 34^{\circ} \frac{4}{11}$. § 66

RADIANS

Ex. 2. An angle of $42^{\circ} 20'$ is at the center of a circle whose radius is 10 ft. Find the length of the arc intercepted between its sides.

Let x = the number of feet in the intercepted arc.Then $x/10 = \text{the number of radians in } 42^{\circ} 20', \text{ or } (127/3)^{\circ}$ $= (127/3) (\pi/180).$ by [34] $\therefore x = (127/54) (22/7) = 7\sqrt[7]{4}\pi$, approximately.

Hence the intercepted arc is approximately $7_{1\overline{8}\overline{9}}^{74}$ ft. long.

Ex. 3. From [35] find s in terms of N and r, and r in terms of s and N.

EXERCISE XXIV

1. Express in radians two positive and two negative angles each of which is coterminal with $\pi/4$; $5\pi/4$; $3\pi/2$; $5\pi/2$; $\pi/3$; $2\pi/3$; $\pi/6$; $5\pi/6$.

Express in degrees each of the following angles :

2.	$2\pi/3.$	3.	$5\pi/3.$	4.	5π .	5.	$3\pi/4.$
Exp	oress in radia	ans e	ach of the t	followin	g angles :		
6.	45°.	8.	90°.	10.	97° 25′.	12.	43° 25′ 36″.
7.	135°.	9.	270°.	11.	175° 13′.	13	38° 17′ 23″.
Fin	d the comple	emer	nt and the s	upplem	ent of :		
14.	$\pi/4.$	15.	$2\pi/3.$	16.	$3\pi/4.$	17.	5π/3.
Fin	d the trigono	met	ric ratios of	f each o	f the following	g ang	les :
18.	π/6.	1 9.	$\pi/4.$	20. π	/3. 21. :	π/2.	22. π .

 $\sqrt{23}$. Two angles of a triangle are 1/2 and 2/5. Find the third angle in radians, also in degrees.

24. The difference between the two acute angles of a right-angled triangle is $\pi/7$. Find the angles in radians, also in degrees.

25. Express in radians, also in degrees, the angle subtended at the center of a circle by an arc whose length is 15 ft., the radius of the circle being 20 ft.

26. The diameter of a graduated circle is 6 ft., and the graduations on its rim are 5' apart. Find the distance from one graduation to the next.

27. Find the radius of a globe which is such that the distance between two places on the same meridian whose latitudes differ by $1^{\circ} 10'$ may be half an inch.

28. The value of the divisions on the outer rim of a graduated circle is 5' and the distance between successive graduations is 0.1 in. Find the radius of the circle.

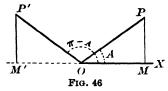
29. Assuming the earth to be a sphere and the distance between two points 1° apart to be $69\frac{1}{2}$ mi., find the radius of the earth.

68. Principal values. If $\sin \theta = -1/2$, we know that θ is any angle which is coterminal with $-\pi/6$ or $-5\pi/6$. Of this series of values the *smallest in size*, $-\pi/6$, is called the *principal* value of θ .

The *principal value* of an angle having a given trigonometric ratio is the angle, *smallest in size*, which has this ratio.

Hence, if $\sin \theta$ or $\csc \theta$ is positive, the principal value of θ lies between 0 and $\pi/2$; if $\sin \theta$ or $\csc \theta$ is negative, the principal value of θ lies between $-\pi/2$ and 0.

If $\tan \theta$ or $\cot \theta$ is +, the principal value of θ lies between 0 and $\pi/2$; if $\tan \theta$ or $\cot \theta$ is -, the principal value of θ lies between $-\pi/2$ and 0.


If $\cos \theta$ or $\sec \theta$ is +, the principal value of θ lies between 0 and $\pi/2$, preference being given to the positive value; if $\cos \theta$ or $\sec \theta$ is -, the principal value of θ lies between $\pi/2$ and π .

69. Values of θ in the equation $\sin \theta = \sin A$ or $\csc \theta = \csc A$.

Let $\angle XOP = A, \angle XOP' = \pi - A.$

Then $\sin XOP' = \sin XOP$, $\csc XOP' = \csc XOP$,

and any angle which has the same sine or cosecant as A is,

or can be made, coterminal with A or $\pi - A$.

In this chapter n will denote $M = \frac{1}{M} X$ any positive or negative integer, including zero. When n is even, $n\pi + A$ includes all the angles, and only those, which are coterminal with A.

Now, when n is even,

$$n\pi + A \equiv n\pi + (-1)^n A. \tag{1}$$

Again, when n is odd, n-1 is even, and $(n-1)\pi + (\pi - A)$ includes all the angles, and only those, which are coterminal with $\pi - A$.

But when n is odd,

$$(n-1)\pi + (\pi - A) \equiv n\pi - A \equiv n\pi + (-1)^{n}A.$$
 (2)

From (1) and (2) it follows that the expression $n\pi + (-1)^n A$ includes all the angles, and only those, which are coterminal with A or $\pi - A$.

Hence the general expression $n\pi + (-1)^n A$ includes all the angles, and only those, which have the same sine or cosecant as A.

That is, the general value of θ in the equation

$$\sin \theta = \sin A (or \csc \theta = \csc A) \text{ is } \mathbf{n}\pi + (-1)^{\mathbf{n}}\mathbf{A}.$$

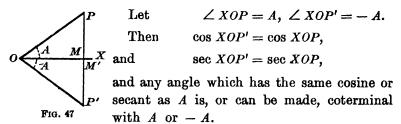
E.g., if $\sin \theta = \sin (\pi/3)$, then $\theta = n\pi + (-1)^n \pi/3$.

Example. Find the general value of θ , if $\sin \theta = -1/2$. (1) The principal value of θ in (1) is $-\pi/6$.

Substituting for -1/2 in (1) its identical expression $\sin(-\pi/6)$, we obtain the equivalent equation in type form,

$$\sin \theta = \sin (-\pi/6).$$
(2)
$$\therefore \theta = n\pi + (-1)^n (-\pi/6)$$

$$= n\pi - (-1)^n \cdot \pi/6.$$
(3)


By using the principal value of θ in (2), we obtain the simplest expression for θ in (3).

Sometimes, however, in solving an equation it is advantageous to use some other than the principal value of the unknown angle.

Observe that the unit understood with θ and A is the radian. If the degree were the unit, we would write $\theta = n \cdot 180^{\circ} + (-1)^n A$.

PLANE TRIGONOMETRY

70. Values of θ in the equation $\cos \theta = \cos A$ or $\sec \theta = \sec A$.

Now $2n\pi \pm A$ includes all the angles, and only those, which are coterminal with A or -A.

Hence $2 n\pi \pm A$ includes all the angles, and only those, which have the same cosine or secant as A.

That is, the general value of $\boldsymbol{\theta}$ in the equation

 $\cos \theta = \cos A$ (or $\sec \theta = \sec A$) is $2 \ n\pi \pm A$.

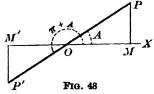
E.g., if $\cos \theta = \cos (\pi/9)$, then $\theta = 2 n\pi \pm \pi/9$, or $2 n \cdot 180^{\circ} \pm 20^{\circ}$.

Example. Find the general value of θ , if $\cos \theta = -\sqrt{3}/2$.

Substituting for $-\sqrt{3}/2$ its identical expression $\cos(5\pi/6)$, we obtain the equivalent equation in type form,

$$\cos \theta = \cos (5 \pi / 6).$$

$$\therefore \theta = 2n\pi \pm 5 \pi / 6, \text{ or } 2n \cdot 180^\circ \pm 150^\circ.$$


71. Values of θ in the equation $\tan \theta = \tan A$ or $\cot \theta = \cot A$.

Let $\angle XOP = A$, $\angle XOP' = \pi + A$.

Then $\tan XOP' = \tan XOP$, $\cot XOP' = \cot XOP$,

and any angle which has the same tangent or cotangent as A is, or can be made, coterminal with A or $\pi + A$.

When *n* is even, $n\pi + A$ includes M'all the angles, and only those, which are coterminal with A.

When n is odd, n-1 is even, and P FIG. 48 $(n-1)\pi + (\pi + A)$, *i.e.* $n\pi + A$, includes all the angles, and only those, which are coterminal with $\pi + A$. Hence $\mathbf{n}\pi + \mathbf{A}$ includes all the angles, and only those, which have the same tangent or cotangent as A.

That is, the general value of $\boldsymbol{\theta}$ in the equation

$$\tan \theta = \tan A \left(or \cot \theta = \cot A \right) \text{ is } \mathbf{n} \mathbf{\pi} + \mathbf{A}.$$

E.g., if $\cot \theta = \cot (-\pi/5)$, $\theta = n\pi + (-\pi/5)$, or $n\pi - \pi/5$.

Example. Find the general value of θ , if $\tan \theta = -\sqrt{3}$.

Substituting for $-\sqrt{3}$ its identical expression $\tan(-\pi/3)$, we obtain the equivalent equation in type form,

$$\tan \theta = \tan \left(-\frac{\pi}{3}\right).$$

$$\therefore \theta = n\pi - \frac{\pi}{3}, \text{ or } n \cdot 180^\circ - 60^\circ.$$

72. A trigonometric equation is an equation which involves one or more trigonometric ratios of one or more unknown angles, as $\tan \theta = 1$ or $2\sin^2 \theta + \sqrt{3}\cos \theta + 1 = 0$.

To solve a trigonometric equation is to obtain an expression for all the angles which will satisfy it.

The first step in solving a trigonometric equation is to solve it algebraically for some trigonometric ratio of the unknown angle; the second step is to apply one or more of the principles in §§ 69-71.

Some elementary types of trigonometric equations are solved below.

Ex. 1. Solve the equation
$$\sin^2 \theta = 1/4$$
.
First step. $\sin \theta = \pm 1/2$.
Second step. $\therefore \sin \theta = \sin(\pm \pi/6)$.
 $\therefore \theta = n\pi \pm (-1)^n (\pm \pi/6) = n\pi \pm \pi/6$. § 69

Ex. 2. Solve the equation $\cos^2\theta = 1/2$.

Denote the two values of $\cos\theta$ by $\cos\theta_1$ and $\cos\theta_2$.

Then	$\cos\theta_1 = \sqrt{2/2} = \cos(\pi/4),$	(1)
------	--	-----

and
$$\cos \theta_2 = -\sqrt{2/2} = \cos(5\pi/4).$$
 (2)

From (1), $\theta_1 = 2 n_1 \pi \pm \pi / 4.$ (3)

From (2), $\theta_2 = 2 n_2 \pi \pm 5 \pi / 4 = (2 n_2 \pm 1) \pi \pm \pi / 4.$ (4)

When n is even, $n\pi \pm \pi/4$ includes $2n_1\pi \pm \pi/4$ in (3); and when n is odd, $n\pi \pm \pi/4$ includes $(2n_2 \pm 1)\pi \pm \pi/4$ in (4).

Hence $\theta = n\pi \pm \pi/4.$

Observe that, by using $5\pi/4$ instead of the principal value of θ_2 in (2), the two expressions for θ in (3) and (4) are more readily combined into one expression.

Ex. 3. Solve the equation
$$2\sin^2\theta + \sqrt{3}\cos\theta + 1 = 0.$$
 (1)

Putting for $\sin^2 \theta$ its identical expression $1 - \cos^2 \theta$, we obtain the equivalent equation

$$2\cos^2\theta - \sqrt{3}\cos\theta - 3 = 0, \qquad (2)$$

which involves only one function of the unknown angle θ .

Factor,
$$(\cos \theta - \sqrt{3}) (2 \cos \theta + \sqrt{3}) = 0.$$
 (3)

By Algebra, (3) is equivalent to the two equations

	$\cos \theta = \sqrt{3}, \qquad \cos \theta = -\sqrt{3}/2.$	
Now, by § 26,	$\cos \theta = \sqrt{3}$ is impossible,	
and	$\cos\theta = -\sqrt{3}/2 = \cos\left(5\pi/6\right)$	
gives	$\theta = 2 n\pi \pm 5 \pi / 6.$	§ 70

Ex. 4. Solve the equation $\tan 5\theta = \cot 2\theta$.

Substituting for $\cot 2\theta$ its identical expression $\tan(\pi/2 - 2\theta)$, we obtain the equivalent equation

$$\tan 5 \theta = \tan (\pi/2 - 2 \theta).$$

$$\therefore 5 \theta = n\pi + (\pi/2 - 2 \theta).$$

$$\therefore \theta = (n\pi + \pi/2)/7.$$

§ 71

Ex. 5. Solve $\tan \theta \sec \theta = -\sqrt{2}$.

Square,

 $1 \theta \sec \theta = -\sqrt{2}.$ (1)

Putting for $\sec \theta$ its identical expression $\sqrt{\tan^2 \theta + 1}$, we obtain the equivalent equation

$$\tan \theta \sqrt{\tan^2 \theta + 1} = -\sqrt{2}.$$

$$\tan^4 \theta + \tan^2 \theta = 2.$$
(2)

Factor,
$$(\tan^2 \theta + 2) (\tan^2 \theta - 1) = 0.$$
Hence $\tan \theta = \pm \sqrt{-2}$ or $\pm 1.$ (3)Now $\tan \theta = \pm \sqrt{-2}$ is impossible.

Since $\tan \theta \sec \theta$ is negative in (1), $\tan \theta$ and $\sec \theta$ are opposite in quality, whence θ is in the third or fourth quadrant.

Hence
$$\tan \theta = +1$$
 gives $\theta = 2n\pi + 5\pi/4$,
and $\tan \theta = -1$ gives $\theta = 2n\pi - \pi/4$.

Observe that the solutions of (3) which do not satisfy (1) were introduced by squaring (2).

Ex. 6. Given $\sin \theta = -1/2$ and $\tan \theta = 1/\sqrt{3}$; to find the general value of θ .

Since $\sin \theta$ is -, and $\tan \theta$ is +, θ must be in the third quadrant.

The smallest positive angle in the third quadrant which will satisfy $\sin \theta = -1/2$ is $7\pi/6$, and this angle satisfies also $\tan \theta = 1/\sqrt{3}$.

Hence $\theta = 2 n\pi + 7 \pi / 6$, or $2 n \cdot 180^{\circ} + 210^{\circ}$.

EXERCISE XXV

Solve each of the following equations:

3. $\tan^2 \theta = 1$. 1. $\sin^2\theta = 1$. 5. $\cos^2 \theta = 1/4$. 2. $\csc^2 \theta = 2$. 4. $\cot^2 \theta = 3$. 6. $\sec^2 \theta = 4/3$. 7. $2\sin^2\theta + 3\cos\theta = 0$. 10. $\sin^2 \theta - 2 \cos \theta + 1/4 = 0$. 8. $\cos^2\theta - \sin\theta = 1/4$. 11. $\sin \theta + \cos \theta = \sqrt{2}$. 12. $4 \sec^2 \theta - 7 \tan^2 \theta = 3$. 9. $2\sqrt{3}\cos^2\theta = \sin\theta$. 13. $\tan \theta + \cot \theta = 2$. 14. $\tan^2 \theta - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 0.$ 15. $\cot^2 \theta + (\sqrt{3} + 1/\sqrt{3}) \cot \theta + 1 = 0.$ 16. $\tan^2 \theta + \cot^2 \theta = 2$. 22. $\sin 2\theta = \cos 3\theta$. 17. $\tan \theta + \sec \theta = 3$. 18. $2\sin\theta = 1 + \cos\theta$. 23. $\cos m \theta = \sin r \theta$. 19. $\sin 5\theta = 1/\sqrt{2}$. 24. $\sin\theta\cos\theta = 1/2$. 25. $\sin\theta\cos\theta = -\sqrt{3}/4$. 20. $\cos 5\theta = \cos 4\theta$. 21. $\cot \theta = \tan r \theta$. 26. $\sec\theta \csc\theta = -2$. 27. $\tan 2\theta \tan \theta = 1$.

Find the most general value of θ that satisfies :

28. $\cos \theta = -1/\sqrt{2}$ and $\tan \theta = 1$.

29. $\cot \theta = -\sqrt{3}$ and $\csc \theta = -2$.

30. If $\cos(A - B) = 1/2$ and $\sin(A + B) = 1/2$, find the smallest positive values of A and B and also their general values.

31. If $\tan(A - B) = 1$ and $\sec(A + B) = 2/\sqrt{3}$, find the smallest positive values of A and B and also their general values.

73. The addition and subtraction formulas and those for the sum and difference of sines or cosines are often useful in solving certain types of trigonometric equations.

E.g., take the equation
$$a \sin \theta + b \cos \theta = c$$
, where $b > 0$. (1)

Let A denote the principal value of $\tan^{-1}(a/b)$; then $\tan A \equiv a/b$, and from the fundamental relations in §24 we obtain

$$\sin A \equiv a / \sqrt{a^2 + b^2}, \qquad \cos A \equiv b / \sqrt{a^2 + b^2}.$$
 (2)

Dividing both members of (1) by $\sqrt{a^2 + b^2}$ and substituting for the resulting coefficients of $\sin \theta$ and $\cos \theta$ their values given in (2), we have

$$\sin A \sin \theta + \cos A \cos \theta = c / \sqrt{a^2 + b^2}.$$
 (3)

Let B denote the principal value of $\cos^{-1}(c/\sqrt{a^2+b^2})$; then $\cos B \equiv c/\sqrt{a^2+b^2}$, and by [10] from (3) we obtain

$$\cos (\theta - A) = \cos B.$$

$$\therefore \theta - A = 2 n\pi \pm B.$$

$$\therefore \theta = 2 n\pi + A \pm B, \text{ or } 2n \cdot 180 + A \pm B.$$
(4)

In (4) we have the solution of any equation of the type (1) when a and c are real and $c < \text{or} = \sqrt{a^2 + b^2}$, arithmetically, b being positive.

Ex. 1. Solve
$$4 \sin \theta + 3 \cos \theta = 5$$
, given $\tan 53^{\circ} 7' 45'' = 4/3$

Here $A \equiv \tan^{-1}(4/3) \equiv 53^{\circ} 7' 45'',$ and $B \equiv \cos^{-1}(5/\sqrt{4^2 + 3^2}) \equiv \cos^{-1}1 \equiv 0.$ $\therefore \theta = 2n \cdot 180^{\circ} + 53^{\circ} 7' 45''.$

Ex. 2. Solve
$$\sin \theta + \sin 5 \theta = \sin 3 \theta$$
. (1)

By [19], $\sin \theta + \sin 5 \theta \equiv 2 \sin 3 \theta \cos 2 \theta$. (2)

From (1) by (2), $2 \sin 3\theta \cos 2\theta = \sin 3\theta$.

$$\therefore \sin 3\theta (2\cos 2\theta - 1) = 0.$$

From $\sin 3\theta = 0$, $3\theta = n\pi$.
From $\cos 2\theta = 1/2$, $2\theta = 2n\pi \pm \pi/3$.
Hence $\theta = n\pi/3 \text{ or } n\pi \pm \pi/6.$

TRIGONOMETRIC EQUATIONS

EXERCISE XXVI

Solve each of the following equations :

- 1. $\sin \theta + \sin 7\theta = \sin 4\theta$.7. $\sin \theta + \sin 3\theta + \sin 5\theta = 0$.2. $\cos \theta + \cos 3\theta = \cos 2\theta$.8. $\cos \theta + \cos 2\theta + \cos 3\theta = 0$.3. $\sin \theta \sin 3\theta = \cos 2\theta$.9. $\sqrt{3}\cos \theta + \sin \theta = \sqrt{2}$.4. $\cos \theta + \cos 7\theta = \cos 4\theta$.10. $\sin \theta + \cos \theta = \sqrt{2}$.5. $\sin 4\theta \sin 2\theta = \cos 3\theta$.11. $\sqrt{3}\sin \theta \cos \theta = \sqrt{2}$.6. $\sin 7\theta = \sin \theta + \sin 3\theta$.12. $\sin \theta + \cos \theta = \sqrt{2}\cos(\pi/5)$.13. $5\sin \theta + 2\cos \theta = \sqrt{29}$, given $\tan 68^{\circ} 12' = 5/2$.
- 14. $2\sin\theta 3\cos\theta = \sqrt{13/2}$, given $\tan 33^\circ 41' 24'' = 2/3$.

74. Trigonometric functions. A quantity whose value depends upon one or more other quantities is called a function of these quantities.

E.g., the circumference or the area of a circle is a function of the 'radius; the area of a rectangle is a function of the base and the altitude; the volume of a rectangular parallelopiped is a function of the three dimensions.

Since the trigonometric ratios of an angle depend upon the size of the angle, they are often called the *trigonometric functions* of the angle.

Beside the six trigonometric functions defined in § 21, there are two others which are frequently used :

 $1 - \cos A$ is called the versed sine of A, written vers A.

1 sin A is called the coversed sine of A, written covers A.

As a ratio, $\operatorname{vers} A \equiv (OP - OM) / OP \equiv MX$ in figs. 26, and $\operatorname{covers} A \equiv (OP - MP) / OP \equiv NY$ in figs. 26.

NOTE. After the analogy of vers A and covers A many other trigonometric ratios, or functions, of A might be invented and named.

E.g., $1 + \cos A$, or (OP + OM) / OP, is sometimes called the suversed sine of A, and sec A - 1, or (OP - OM) / OM, the external secant of A.

105

Observe that the trigonometric lines defined in § 32 are also functions of the angle or of its measuring arc.

But by the trigonometric functions we usually mean the trigonometric ratios.

75. Inverse trigonometric functions.

By § 23, if $c = \sin \theta$, then $\theta = \sin^{-1} c$. (1)

As the value of $\sin \theta$ depends on the value of the angle θ , so the value of $\sin^{-1}c$ depends on the value of c.

Hence, on the one hand, the sine is a function of the angle, and, on the other hand, the angle is a function of the sine.

An angle is often called the *inverse function* of any one of its trigonometric ratios. Thus $\sin^{-1}c$ is often read *inverse* sine c; $\cos^{-1}c$, *inverse cosine* c; $\tan^{-1}c$, *inverse tangent* c, etc.

NOTE. If A denotes all the angles which have the same sine, then $\sin^{-1}(\sin A) \equiv A$ and $\sin(\sin^{-1}c) \equiv c$; hence, if we regard sin as denoting the operation of finding the sine of and \sin^{-1} as denoting the operation of finding the angle whose sine is, then \sin^{-1} and sin denote inverse operations, *i.e.* operations each of which undoes what the other does. For this reason $\sin^{-1}c$ is called the inverse sine of c.

 $\sin^{-1}c$ is read also anti-sine c, or arc sine c.

For each value of θ , sin θ has a single definite value.

For each value of c, $\sin^{-1}c$ has, by § 23, an *indefinite number* of values.

Thus the trigonometric functions are single-valued, while the inverse trigonometric functions are multiple-valued.

E.g., if $\tan \theta = 1$, $\theta = \tan^{-1} 1 = n\pi + \pi/4$, and the *principal* value of $\tan^{-1} 1$ is $\pi/4$.

If $\cos \theta = 1/2$, $\theta = \cos^{-1}(1/2) = 2 n\pi \pm \pi/3$, and the principal value of $\cos^{-1}(1/2)$ is $\pi/3$.

If $\sin \theta = \sqrt{2}/2$, $\theta = \sin^{-1}(\sqrt{2}/2) = n\pi + (-1)^n \pi/4$, and the principal value of $\sin^{-1}(\sqrt{2}/2)$ is $\pi/4$.

Example. If a and c are positive and c < 1, and the inverse functions are restricted to their principal values, show that

 $\sin^{-1}c + \cos^{-1}c = \pi/2$, $\tan^{-1}a + \cot^{-1}a = \pi/2$.

INVERSE FUNCTIONS 107

76. Sum and difference of two inverse tangents.

To prove
$$\tan^{-1} \mathbf{m} \pm \tan^{-1} \mathbf{n} \equiv \tan^{-1} \frac{\mathbf{m} \pm \mathbf{n}}{1 \mp \mathbf{mn}}$$
. [36]

Let
$$A \equiv \tan^{-1} m$$
, $B \equiv \tan^{-1} n$. (1)

Then
$$\tan A \equiv m$$
, $\tan B \equiv n$. (2)

Using the notation in (1), [36] becomes

$$A \pm B \equiv \tan^{-1} \frac{m \pm n}{1 \mp mn}, \text{ or } \tan \left(A \pm B\right) \equiv \frac{m \pm n}{1 \mp mn}.$$
 (3)

To prove (3), by § 37 we have

$$\tan (A \pm B) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\equiv (m \pm n) / (1 \mp mn). \qquad \text{by (2)}$$

The proof above illustrates the method of procedure in establishing relations between inverse functions.

Ex. 1. Prove that
$$\sin^{-1}(3/5) + \sin^{-1}(8/17) = \sin^{-1}(77/85)$$
. (1)

Let	$A \equiv \sin^{-1}(3/5),$	$B \equiv \sin^{-1}(8/17).$	(2)
Then	$\sin A \equiv 3/5,$	$\sin B \equiv 8/17.$	(3)
	$\therefore \cos A \equiv 4/5,$	$\cos B \equiv 15/17.$	(4)

Using the notation in (2), (1) becomes

$$A + B \equiv \sin^{-1}(77/85)$$
, or $\sin(A + B) \equiv 77/85$. (5)
To prove (5), by [7] we have

$$\sin (A + B) \equiv \sin A \cos B + \cos A \sin B$$
$$\equiv \frac{3}{5} \cdot \frac{15}{17} + \frac{4}{5} \cdot \frac{8}{17} \equiv \frac{77}{85}.$$
 by (3), (4)

Ex. 2. Prove that
$$\cos^{-1}(4/5) + \tan^{-1}(3/5) = \tan^{-1}(27/11)$$
. (1)

Let
$$A \equiv \cos^{-1}(4/5),$$
 $B \equiv \tan^{-1}(3/5).$ (2)

Then
$$\cos A \equiv 4/5$$
, $\tan A \equiv 3/4$, $\tan B \equiv 3/5$. (3)

Using the notation in (2), (1) becomes

$$A + B \equiv \tan^{-1}(27/11)$$
, or $\tan(A + B) \equiv 27/11$. (4)

To prove (4), by [11] and (3) we have

$$\tan (A + B) \equiv \frac{3/4 + 3/5}{1 - (3/4)(3/5)} \equiv \frac{27}{11}$$

Ex. 3. Prove that
$$2 \tan^{-1}(1/3) + \tan^{-1}(1/7) = \pi/4$$
. (1)

Let
$$A \equiv \tan^{-1}(1/3),$$
 $B \equiv \tan^{-1}(1/7).$ (2)

Then
$$\tan A \equiv 1/3$$
, $\tan B \equiv 1/7$. (3)

Using the notation in (2), (1) becomes

$$2A + B \equiv \pi/4$$
, or $\tan(2A + B) \equiv \tan(\pi/4) = 1$. (4)

By [15],
$$\tan 2A \equiv \frac{2 \tan A}{1 - \tan^2 A} \equiv \frac{2/3}{1 - 1/9} \equiv \frac{3}{4}$$
 (5)

To prove (4), by [11], (3), and (5) we have

$$\tan (2A + B) \equiv \frac{3/4 + 1/7}{1 - (3/4)(1/7)} \equiv 1.$$

Ex. 4. Solve the equation
$$\tan^{-1}2x + \tan^{-1}3x = \pi/4$$
. (1)

By §76,
$$\tan^{-1}2x + \tan^{-1}3x \equiv \tan^{-1}\frac{2x+3x}{1-6x^2}$$
. (2)

From (1) by (2),
$$\tan^{-1}\frac{2x+3x}{1-6x^2} = \frac{\pi}{4}$$
. (3)

From (3),
$$\frac{2x+3x}{1-6x^2} = \tan \frac{\pi}{4} = 1.$$
$$\therefore x = 1/6 \text{ or } -1.$$

x = 1/6 satisfies (1) for the principal values of $\tan^{-1}2x$ and $\tan^{-1}3x$. x = -1 satisfies (1) for the values

$$\tan^{-1}(-2) = 116^{\circ} 33' 55'',$$

 $\tan^{-1}(-3) = -71^{\circ} 33' 55''.$

Ex. 5. Solve the equation $\tan^{-1}\frac{x+1}{x-1} + \tan^{-1}\frac{x-1}{x} = \tan^{-1}(-7)$. (1)

$$\tan^{-1}\frac{x+1}{x-1} + \tan^{-1}\frac{x-1}{x} \equiv \tan^{-1}\frac{2x^2-x+1}{1-x}.$$
 (2)

From (1) by (2), $\frac{2x^2 - x + 1}{1 - x} = -7$, or x = 2.

x = 2 satisfies (1) when for $\tan^{-1}(-7)$ we take 98° 7′ 48″.

EXERCISE XXVII

1. Find the value of vers $(\pi/6)$, vers $(\pi/4)$, vers $(\pi/3)$, vers $(3\pi/4)$, vers 0, vers $(\pi/2)$, vers π , vers $(3\pi/2)$.

2. Find the value of covers $(\pi/6)$, covers $(\pi/4)$, covers $(\pi/3)$, covers $(3\pi/4)$, covers 0, covers $(\pi/2)$, covers π , covers $(3\pi/2)$.

3. Express in radians the general value of $\sin^{-1}(\sqrt{2}/2)$; $\sin^{-1}(-\sqrt{3}/2)$; $\cos^{-1}(\sqrt{3}/2)$; $\cos^{-1}(-1/2)$; $\tan^{-1}(\sqrt{3}/3)$; $\tan^{-1}(-\sqrt{3})$; $\cot^{-1}(-1)$; $\cot^{-1}(\sqrt{3}/3)$.

Prove each of the following relations for principal values :

4. $\tan^{-1}2 + \tan^{-1}0.5 = \pi/2$.

5.
$$\tan^{-1}7 + \tan^{-1}3 = 153^{\circ} 26' 6''.5$$
, given $0.5 = \tan 26^{\circ} 33' 53''.5$.

6. $\tan^{-1}\frac{m}{n} - \tan^{-1}\frac{m-n}{m+n} \equiv \frac{\pi}{4}.$

7.
$$\tan^{-1}(1/7) + \tan^{-1}(1/13) = \tan^{-1}(2/9)$$

8.
$$2 \tan^{-1}(2/3) = \tan^{-1}(2/3) + \tan^{-1}(2/3) = \tan^{-1}(12/5)$$
.

9.
$$\tan^{-1}(3/4) + \tan^{-1}(3/5) - \tan^{-1}(8/19) = \pi/4$$
.

Add $\tan^{-1}(3/5)$ to $\tan^{-1}(3/4)$ and then subtract $\tan^{-1}(8/19)$.

10.
$$\sin^{-1}(3/5) + \sin^{-1}(8/17) = \sin^{-1}(77/85)$$
.

11. $\cos^{-1}(4/5) + \cos^{-1}(12/13) = \cos^{-1}(33/65)$.

12.
$$\cos^{-1}(4/5) + \tan^{-1}(3/5) = \tan^{-1}(27/11)$$
.

Solve each of the following equations:

13.
$$\tan^{-1}x + \tan^{-1}(1-x) = \tan^{-1}(4/3)$$
.

14.
$$\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} = \frac{\pi}{4}$$

15. $\tan^{-1}x + 2 \cot^{-1}x = 2\pi/3$.

16.
$$\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}(8/31)$$
.

17.
$$\cos^{-1}\frac{x^2-1}{x^2+1} + \tan^{-1}\frac{2x}{x^2-1} = \frac{2\pi}{3}$$
.

18. $\sin^{-1}x + \sin^{-1}2x = \pi/3$.

19.
$$\sin^{-1}(5/x) + \sin^{-1}(12/x) = \pi/2$$
.

Suggestion. Observe that $\sin^{-1}(5/x)$ and $\sin^{-1}(12/x)$ are complementary angles.

CHAPTER VII

PERIODS, GRAPHS, IMPORTANT LIMITS, COMPUTATION OF TABLE, HYPERBOLIC FUNCTIONS

77. Periods of the trigonometric functions. As an angle increases from 0 to 2π radians, its sine first increases from 0 to 1, then decreases from 1 to -1, and finally increases from -1 to 0. As the angle increases from 2π to 4π radians, the sine again goes through this same series of changes. Thus the sine goes through all its changes while the angle increases by 2π radians. This is expressed by saying that the period of the sine is 2π .

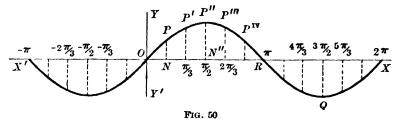
Similarly the cosine, secant, or cosecant goes through all its changes while the angle increases by 2π radians.

The tangent or cotangent, however, goes through all its changes while the angle increases from 0 to π radians.

Hence the period of the sine, cosine, secant, or cosecant is 2π radians; while the period of the tangent or cotangent is π radians.

Since, as the angle increases, each trigonometric function goes through again and again the same series of values, these functions are called **periodic** functions.

78. Curve of sines.	Let $OX = OP_1 = +1$,	$P_3 \xrightarrow{P} P_{2p}$
	$\angle XOP_1 = \pi/6,$	$P_{3} \xrightarrow{P}_{P_{2}P_{1}} T_{1}$ $O \xrightarrow{M_{2}} M_{1} \xrightarrow{M_{1}} X$
and	$\angle XOP_2 = \pi/3.$	$O M_2 M_1 X$
Then, if	$\theta = \angle XOP,$	Fig. 49


we have, when

 $\theta = 0, \pi/6, \pi/3, \pi/2, 2\pi/3, 5\pi/6, \pi, 7\pi/6, 4\pi/3, \cdots$ $\sin \theta = 0, M_1P_1, M_2P_2, OP_3, M_2P_2, M_1P_1, 0, -M_1P_1, -M_2P_2, \cdots$ The series of values through which $\sin \theta$ passes as the angle θ increases can be graphically represented by means of the points of a curve constructed as follows:

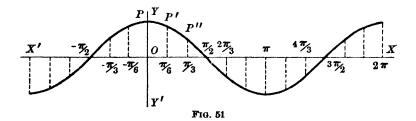
Let OX and OY in fig. 50 be two fixed straight lines at right angles to each other, and let the number of radians in θ be represented by directed lines along OX.

Take $OR = \pi$ units, *i.e.* about 31 units of length; also take $RX = \pi$ units, and $OX' = -\pi$ units.

Then OR will represent π ; OX will represent 2π ; and OX' will represent $-\pi$.

Lay off on OX the distances representing $0, \pi/6, \pi/3, \pi/2, 2\pi/3$, etc. At N, the end of $\pi/6$, draw $NP \perp OX$ and equal to M_1P_1 in fig. 49; at the end of $\pi/3$ draw a perpendicular equal to M_2P_2 ; and so on. Through the ends P, P', P'', \cdots of these perpendiculars draw a smooth curve.

Then if from any point in this curve, as P, we draw $PN \perp OX$, the directed line NP represents the sine of the angle whose radian measure is represented by the directed line ON.


This curve, called the *curve of sines*, or *sinusoid*, consists of portions similar to OP''RQX placed one after another.

This illustrates graphically that the *period* of the sine is 2π .

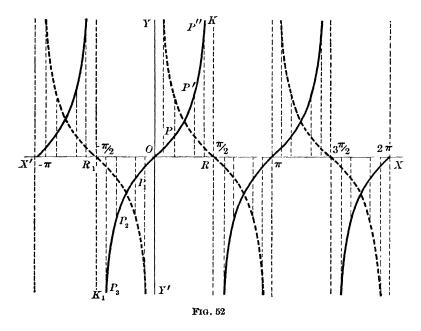
79. Curve of cosines. Using fig. 49, we obtain, when

 $\theta = 0, \pi/6, \pi/3, \pi/2, 2\pi/3, 5\pi/6, \pi, 7\pi/6, 4\pi/3, \cdots$ $\cos \theta = +1, OM_1, OM_2, 0, -OM_2, -OM_1, -1, -OM_1, -OM_2, \cdots$ Lay off on OX the distances representing $0, \pi/6, \pi/3, \pi/2, 2\pi/3$, etc. At the points thus determined erect perpendiculars equal to OX, OM_1 , OM_2 , $0, -OM_2$, etc., and trace a curve through the points P, P', P'', etc.

The curve thus obtained is called the curve of cosines.

Observe that the curve of cosines has the same form as the curve of sines. These two curves differ only in their position with reference to the origin O.

80. Curve of tangents. Using fig. 49, where $XOP = 2\pi/5$, we obtain, when

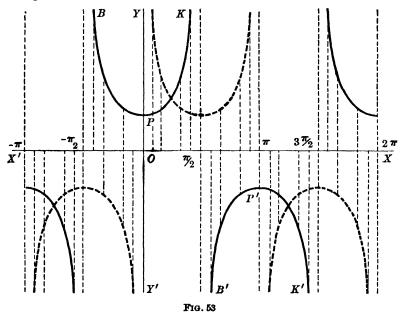

 $\theta = 0, \pi/6, \pi/3, 2\pi/5, \pi/2, -\pi/6, -\pi/3, -2\pi/5, -\pi/2, \cdots,$ tan $\theta = 0, XT_1, XT_2, XT, \infty, -XT_1, -XT_2, -XT, -\infty, \cdots$

Proceeding as in § 78, we obtain the curve represented by the continuous lines in fig. 52. This graph is called the *curve of tangents*.

Since $\tan (\pi/2) = \infty$, the curve of tangents will have no point on *RK*, but the infinite branch *P'P''* will approach indefinitely near to the line *RK* without ever touching it. The same is true of the infinite branch P_2P_3 with reference to the line R_1K_1 .

The curve of tangents will evidently consist of an unlimited number of similar but disconnected branches, any one of which is parallel to the branch $P_{a}OP''$.

Curve of cotangents. Using fig. 49, by § 30, we obtain, when $\theta = 0, \pi/10, \pi/6, \pi/3, \pi/2, 2\pi/3, 5\pi/6, 9\pi/10, \pi, \dots,$ $\cot \theta = \infty, XT, XT_2, XT_1, 0, -XT_1, -XT_2, -XT, -\infty, \dots$



Proceeding as above, we obtain the curve represented by the dotted lines in fig. 52 as three of the infinite number of disconnected branches of the *curve of cotangents*.

81. Curve of secants. Using fig. 49, we obtain, when

 $\theta = 0, \pi/6, \pi/3, 2\pi/5, \pi/2, -\pi/6, -\pi/3, -2\pi/5, -\pi/2, \cdots,$ sec $\theta = +1, OT_1, OT_2, OT, \infty, OT_1, OT_2, OT, \infty, \cdots$

Proceeding as above, we obtain BPK and B'P'K' as two branches of the *curve of secants*; repetitions of these two branches make up the rest of the curve. Similarly the *curve of cosecants* can be constructed, three branches of which are represented by the dotted curved lines in fig. 53.

82. *Lt $(\sin \theta / \theta) \equiv lt (\tan \theta / \theta) \equiv 1$, when $\theta \pm 0$, the unit of θ being the radian.

Let θ be the radian measure of any positive acute angle AOP. Draw the arc AP, the chord AP, $PM \perp OA$, $AT \perp OA$.

* When, according to its law of change, a variable will become and remain less in size than any assignable constant value but will never become zero, the variable is called an *infinitesimal*, or is said to approach zero as its limit.

When a variable approaches a constant so that their difference is an infinitesimol, the variable is said to approach the constant as its limit, or the constant is said to be the limit of the variable.

Lt (sin θ / θ) is read the limit of $\sin \theta / \theta$; $\theta \doteq 0$ is read θ approaches 0 as its limit or θ is an infinitesimal.

The reciprocal of an infinitesimal is an *infinite* and is denoted by ∞ .

Any number which is neither an infinitesimal nor an infinite is called a *finite* number

Then
$$\triangle OAP < \text{sector } OAP < \triangle OAT.$$
 (1)

By Geometry, the area of the sector OAP is $OA \cdot \operatorname{are} AP/2$. Hence, from (1), we have

$$OA \cdot MP < OA \cdot \operatorname{arc} AP < OA \cdot AT.$$
 (2)


Dividing each member of (2) by \overline{OA}^2 , we obtain

$$\frac{MP}{OP} < \operatorname{arc} AP / OA < AT / OA;$$

sin $\theta < \theta < \tan \theta$

that is,

$$\sin \theta < \theta < \tan \theta. \tag{3}$$

Dividing the members of (3) first by $\sin \theta$ and then by $\tan \theta$, we have

Hence the ratio $\theta/\sin\theta$ or the ratio $\theta/\tan\theta$ lies between 1 and a variable whose limit is 1; hence the limit of each of these ratios is 1.

Now
$$-\theta/\sin(-\theta) \equiv -\theta/(-\sin\theta) \equiv \theta/\sin\theta$$
.
Hence $\operatorname{lt} [-\theta/\sin(-\theta)] \equiv \operatorname{lt} (\theta/\sin\theta) \equiv 1$, when $\theta \doteq 0$.
Also, $\operatorname{lt} [-\theta/\tan(-\theta)] \equiv \operatorname{lt} (\theta/\tan\theta) \equiv 1$.

Hence the theorem holds true whether θ is positive or negative.

Example. To find sin 1' and cos 1'. By § 66, $1' = (0.00\ 029\ 088\ 821 +)$ radian. (1') By (3) and (1'), sin 1' < 1' in radians < 0.00\ 029\ 088\ 822. (2') Again, $\cos 1' = \sqrt{1 - \sin^2 1'} > \sqrt{1 - (.0003)^2} > .99\ 999\ 99.$ Hence, to seven places, $\cos 1' = 0.99\ 999\ 99 +.$ (3') By (4), $\sin \theta > \theta \cos \theta.$ $\therefore \sin 1' > (1' in radians) \cos 1'.$

PLANE TRIGONOMETRY

 $\therefore \sin 1' > 0.00\ 029\ 088\ 821 \times 0.99\ 999\ 99 \qquad \text{by (1'), (3')} \\ > 0.00\ 029\ 088\ 821 \times (1-0.00\ 000\ 01), \\ \sin 1' > 0.00\ 029\ 088\ 820+. \qquad (4') \label{eq:10}$

or

From (2') and (4') it follows that to ten places

$$\sin 1' = 0.00\ 029\ 088\ 82+, \tag{5'}$$

the eleventh figure being 0 or 1.

This example affords a good illustration of the use of corollary 1, below.

Two very important corollaries to the theorem above are the following:

COR. 1. If θ is very small, it can be substituted for either $\sin \theta$ or $\tan \theta$ in approximate calculations; or vice versa.

COR. 2. If $\boldsymbol{\theta}$ is an infinitesimal and it is substituted for either $\sin \boldsymbol{\theta}$ or $\tan \boldsymbol{\theta}$ in any function, the limit of the function will not be changed.

83. Convenient formulas for computing the sine and cosine of any angle are

$$\sin \phi \equiv \phi - \frac{\phi^{3}}{3} + \frac{\phi^{5}}{5} - \frac{\phi^{7}}{7} + \frac{\phi^{9}}{9} - \frac{\phi^{11}}{11} + \cdots, \qquad (b)$$

$$\cos \phi \equiv 1 - \frac{\phi^2}{2} + \frac{\phi^4}{4} - \frac{\phi^6}{6} + \frac{\phi^8}{8} - \frac{\phi^{10}}{10} + \cdots, \qquad (c)$$

where ϕ is the radian measure of the angle.

For the proof of (b) and (c), see § 94 in Taylor's Calculus.

The sine of any angle is arithmetically equal to the sine or cosine of some angle not greater than $\pi/4$; hence its value can be computed by taking ϕ in (b) or (c) not greater than $\pi/4$.

Likewise the cosine of any angle can be computed by taking ϕ in (c) or (b) not greater than $\pi/4$.

Observe that for $\phi < \pi/4$ the series in (b) or (c) converges rapidly, and only a few terms need to be computed.

Having found the value of the sine and the cosine, the logarithmic sine and cosine can be obtained from a table of logarithms of numbers. The logarithmic tangent can then be found by subtracting log cos from log sin, and log cot by subtracting log sin from log cos, or log tan from 0.

Example. Compute sin 11° 12′ 23″ and cos 11° 12′ 23″. By § 66,

 $\begin{array}{ll} 11^{\circ} = (0.01\ 745\ 329\ 252\ \times\ 11)\ \text{radian} = 0.19\ 198\ 621\ 772\ \text{radian}.\\ 12' = (0.00\ 029\ 088\ 821\ \times\ 12) & " & = 0.00\ 349\ 065\ 852 & "\\ 23'' = (0.00\ 000\ 484\ 814\ \times\ 23) & " & = 0.00\ 011\ 150\ 722 & "\\ \therefore \ \phi = 11^{\circ}\ 12'\ 23'' & = 0.19\ 558\ 838\ 346 & "\end{array}$

Substituting this value for ϕ in (b) and (c), from the first three terms we obtain

$\phi = 0.19\ 558\ 838$	$1 = 1.00\ 000\ 000$
$\phi^5/[5 = .00\ 000\ 238]$	$\phi^4/[4 = .00\ 006\ 098]$
.19 559 076	1.00 006 098
$\phi^8/[3 = .00\ 124\ 703]$	$\phi^2/2 = .01 912 741$
$\therefore \sin \phi = .19\ 434\ 373$	$\therefore \cos \phi = .98\ 093\ 357$

The sine is correct to five places and the cosine to four places.

84. Simpson's method of computing a trigonometric table is the following:

Suppose the table is to be at intervals of 1'.

Putting (n-1) 1' for A and 1' for B in (1) and (3) of § 40, we obtain

$$\sin n \, 1' \equiv 2 \cos 1' \sin (n-1) \, 1' - \sin (n-2) \, 1'. \tag{1}$$

$$\cos n \, 1' \equiv 2 \cos 1' \cos (n-1) \, 1' - \cos (n-2) \, 1'. \qquad (2)$$

Putting 30° for A in (1) and (4) of § 40, we obtain

$$\sin\left(30^\circ + B\right) \equiv \cos B - \sin\left(30^\circ - B\right). \tag{3}$$

$$\cos\left(30^\circ + B\right) \equiv \cos\left(30^\circ - B\right) - \sin B. \tag{4}$$

Calculate $\sin 1'$ and $\cos 1'$ as in § 82 or by the series in § 83.

Then giving to n in (1) and (2) the values 2, 3, 4, etc., successively, we obtain the sines and cosines of angles up to 30° at intervals of 1'.

E.g., when n = 2, (1) and (2) become $\sin 2' = 2 \cos 1' \sin 1' - \sin 0' = 2 \cos 1' \sin 1'$, and $\cos 2' = 2 \cos 1' \cos 1' - \cos 0' = 2 \cos^2 1' - 1$, To obtain the sines and cosines of angles from 30° to 45° , we give to B in (3) and (4) the values 1', 2', 3', etc., successively, making use of the results previously obtained by (1) and (2).

E.g., when B = 1', (3) and (4) become

 $\sin 30^{\circ} 1' = \cos 1' - \sin 29^{\circ} 59',$ $\cos 30^{\circ} 1' = \cos 29^{\circ} 59' - \sin 1', \cdots$

and

85. The hyperbolic functions. One form of the exponential series is

$$e^{x} \equiv 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \frac{x^{4}}{4} + \frac{x^{5}}{5} + \cdots,$$
 (d)

where e is the base of natural logarithms.

For the proof of (d), see § 95 in Taylor's Calculus, or § 326 in the College Algebra.

Putting x = 1, we obtain e = 2.718281.

The functions $(e^x - e^{-x})/2$ and $(e^x + e^{-x})/2$ are found to have properties analogous to those of $\sin x$ and $\cos x$, and to have to the hyperbola relations analogous to those which $\sin x$ and $\cos x$ have to the circle; for these reasons the first has been named the hyperbolic sine of x (sinh x), and the second the hyperbolic cosine of x (cosh x). Thus we have

$$sinh \mathbf{x} \equiv (\mathbf{e}^{\mathbf{x}} - \mathbf{e}^{-\mathbf{x}})/2, cosh \mathbf{x} \equiv (\mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{x}})/2.$$
[37]

Following the analogy of the trigonometric functions, we define the ratio of $\sinh x$ to $\cosh x$ as the hyperbolic tangent of **x** (tanh **x**).

Thus,
$$\tanh x \equiv \frac{\sinh x}{\cosh x} \equiv \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 [38]

The reciprocals of $\tanh x$, $\cosh x$, $\sinh x$ are called respectively the hyperbolic cotangent of x (coth x), the hyperbolic secant of x (sech x), and the hyperbolic cosecant of x (csch x). 86. The relations between the hyperbolic functions are in general analogous to, and sometimes the same as, the corresponding relations between the trigonometric functions.

E.g.,
$$(e^x + e^{-x})^2/4 - (e^x - e^{-x})^2/4 \equiv 1$$
.
 $\therefore \cosh^2 x - \sinh^2 x \equiv 1$.
Again, $\cosh(-x) \equiv \frac{e^{-x} + e^x}{2} \equiv \cosh x$,
and $\sinh(-x) \equiv \frac{e^{-x} - e^x}{2} \equiv -\sinh x$.
Also, $\sinh 2x \equiv \frac{e^{2x} - e^{-2x}}{2} \equiv 2\frac{e^x - e^{-x}}{2} \cdot \frac{e^x + e^{-x}}{2}$.
 $\therefore \sinh 2x \equiv 2 \sinh x \cosh x$.
Again, $\sinh x \cosh y \equiv (e^x - e^{-x}) (e^y + e^{-y})/4$
 $\equiv (e^{x+y} - e^{-x+y} + e^{x-y} - e^{-x-y})/4$, (1)
and $\cosh x \sinh y \equiv (e^x + e^{-x}) (e^y - e^{-y})/4$
 $\equiv (e^{x+y} + e^{-x+y} - e^{-x-y})/4$. (2)
Adding (1) and (2), we obtain
 $\sinh x \cosh y = (e^x + y - e^{-(x+y)})/2$

$$\sinh x \cosh y + \cosh x \sinh y \equiv [e^{x+y} - e^{-(x+y)}] / \\ \equiv \sinh (x+y).$$

Example. Prove $\sinh(x-y) \equiv \sinh x \cosh y - \cosh x \sinh y$.

 $\cosh(x + y) \equiv \cosh x \cosh y + \sinh x \sinh y.$

 $\cosh(x-y) \equiv \cosh x \cosh y - \sinh x \sinh y.$

The notation for the inverse hyperbolic functions is the same as that for the inverse trigonometric functions.

EXERCISE XXVIII

Prove each of the following identities:

2.
$$\operatorname{coth}^2 x - \operatorname{csch}^2 x \equiv 1$$
.

- 3. $\tanh(x+y) \equiv \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$.
- 4. $\sinh 3x \equiv 3 \sinh x + 4 \sinh^3 x$.

1. $\tanh^2 x + \operatorname{sech}^2 x \equiv 1$.

5. $\cosh 3x \equiv 4 \cosh^3 x - 3 \cosh x$.

6.
$$\sinh^{-1}x \equiv \cosh^{-1}\sqrt{1+x^2} \equiv \tanh^{-1}(x/\sqrt{1+x^2})$$
.

7. $\tanh^{-1}x + \tanh^{-1}y \equiv \tanh^{-1}\frac{x+y}{1+xy}$

CHAPTER VIII

COMPLEX NUMBERS. DE MOIVRE'S THEOREM

87. The quality units, ± 1 , $\pm \sqrt{-1}$. Let ABA'B' be a circle whose radius OA is 1 unit in length.

Then if OA =the unit +1, OA' =the unit -1.

Now $\overline{OA} \times (-1) = OA'$; that is, if \overline{OA} is multiplied by -1, \overline{OA} is reversed in direction and becomes $\overline{OA'}$. Suppose that \overline{OA} reverses its direction by revolving about O in the plane of the figure; then, as $-1 = (\sqrt[+]{\sqrt{-1}})^2$ +1 or $(\sqrt{-1})^2$, it follows that \overline{OA} G will be reversed in direction if it is multiplied twice in succession by either $\sqrt{-1}$ or $\sqrt{-1}$. Hence it may be assumed that L'the effect of $\sqrt{-1}$ or $\sqrt{-1}$ FIG. 55 as a multiplier will be to revolve

 \overline{OA} through $\pi/2$. Suppose that $\sqrt[+]{-1}$, as a multiplier, revolves \overline{OA} in the positive direction, or counter-clockwise; then $\sqrt{-1}$ will revolve \overline{OA} in the negative direction, or clockwise.

That is, $\overline{OA} \times \sqrt[+]{\sqrt{-1}} = \overline{OB}$, $\overline{OA} \times \sqrt[-]{\sqrt{-1}} = \overline{OB'}$.

Putting +1 for \overline{OA} and assuming the commutative law, we have $\overline{\Box}$

$$\overline{OB} = \sqrt{-1}, \qquad \overline{OB'} = \sqrt{-1}.$$

For brevity we shall denote $\sqrt{-1}$ by *i* and $\sqrt{-1}$ by -i. The quality units +1 and -1 are often called *real* units, and

arithmetic multiples of these units are called *real numbers*.

The quality units i and -i are called *imaginary* units, and arithmetic multiples of these units are called *imaginary* numbers.

Observe that +i and -i or +1 and -1 include both the idea of the arithmetic 1 and that of oppositeness to each other.

Since $+1 \times +1 = +1$ or $-1 \times -1 = +1$, +1 or -1 is its own reciprocal. Since $+i \times -i = +1$, +i and -i are reciprocals of each other.

Hence i and -i are both opposites and reciprocals of each other.

Since $(-i)^2 = i^2 = -1$, the square of either imaginary unit is -1.

Also, $(+i)^3 = -i$ and $(-i)^3 = i$; that is, the cube of either imaginary unit is equal to the other.

Again, $(-i)^4 = i^4 = +1$; that is, the fourth power of either imaginary unit is +1.

88. A directed line or a directed force is a line or force whose value includes not only its magnitude but also its direction. E.g., \overline{OA} , \overline{OB} , $\overline{OA'}$, $\overline{OB'}$, $\overline{A'A}$, $\overline{BB'}$, in fig. 55, are directed lines. A directed line is often called a vector.

Two directed lines or forces are equal when they have the same length or size and the same direction.

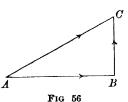
Hence, if two vectors are equal and their origins coincide, their ends also will coincide.

If a directed line or force is parallel to one of two perpendicular lines, as AOA' and BOB' in fig. 55, we can express both its magnitude and its direction by a real or an imaginary number. To enlarge our number concept so that we can, by the sum of a real and an imaginary number, express the magnitude and direction of any directed line or force which is parallel to any line whatever in a given plane, as AOB in fig. 55, we need the principle of vector addition given below.

89. In fig. 55, we have

$\overline{OA'} + \overline{A'A} \equiv$	\overline{OA} ,	\overline{OB} +	$\overline{BB'} \equiv$	$\overline{OB'},$
$\overline{OA} + \overline{AA'} \equiv$	$\overline{OA'}$,	$\overrightarrow{OB'}$ +	$\overline{B'B} \equiv$	\overline{OB} .

Each of these identities illustrates the following law of vector addition:


If the end of one vector is the origin of a second vector, the sum of these two vectors in its simplest form is the vector extending from the origin of the first vector to the end of the second vector.

Thus, in its simplest form, the sum of the vectors \overline{AB} and \overline{BC} in fig. 56 is the vector \overline{AC} .

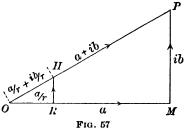
That is,

$$\overline{AB} + \overline{BC} \equiv \overline{AC}.$$
 (1)

The meaning of (1) is that transference from A to B fol-

lowed by transference from B to C is identical in result with transference from A to C.

Or, a point P moving from A to Calong AC goes the distance AB in the direction AB plus the distance BC in the direction BC.


Again, if two directed forces are represented by the vectors \overline{AB} and \overline{BC} , by the parallelogram of forces we know that their *resultant* (*i.e.* their *sum* in its simplest form) is represented by the vector \overline{AC} .

Identity (1) is absurd when, as in Geometry, we consider only the length of lines; it becomes true when, and only when, the *value* of each line includes both its *length* and its *direction*.

90. Complex numbers. If a and b are real numbers, then a + ib is called a *complex number*, *i.e.* a complex number in the *common form* is the sum of a real and an imaginary number.

To construct a + ib, lay off $\overline{OM} = a$ and $\overline{MP} = ib$; then $a + ib = \overline{OM} + MP = \overline{OP}$.

Thus the vector \overrightarrow{OP} repre- Osents the complex number

a + ib, or a + ib is the numerical measure of the vector \overline{OP} .

Take *OH* equal to 1 unit in length and draw $HR \perp OM$. Let $\mathbf{r} \equiv$ the *arithmetical value* of $\sqrt{a^2 + b^2}$. (1) Then, from the right triangle *OMP*, we know that

 $\mathbf{r} =$ the *number* of units in \overline{OP} .

From the similarity of the triangles ORH and OMP, we have

Hence $\overrightarrow{OR} = a/r$, $\overrightarrow{RH} = ib/r$. $\overrightarrow{OH} = \overrightarrow{OR} + \overrightarrow{RH} = a/r + ib/r$.

That is, a/r + ib/r denotes \overline{OH} , the unit vector of \overline{OP} .

r is called the arithmetic value, or modulus, of the complex number a + ib, and a/r + ib/r its quality unit.

If
$$\angle MOP = \phi$$
, then $a/r = \cos \phi$, $b/r = \sin \phi$. (2)

$$a/r + ib/r = \cos \phi + i \sin \phi.$$
 (3)

$$\therefore a + ib \equiv (a/r + ib/r) r = (\cos \phi + i \sin \phi) r.$$
 (4)

 $(\cos \phi + i \sin \phi) r$ is the trigonometric form of a complex number in which $\cos \phi + i \sin \phi$ is the quality unit and r the modulus.

Either (a/r + ib/r)r or $(\cos \phi + i \sin \phi)r$ in (4) is called the type form of the complex number a + ib.

Hence a complex number in the *type form* is an arithmetic multiple of a quality unit.

The angle ϕ is called the **angle**, or **amplitude**, of the complex number a + ib. Between $-\pi$ and $+\pi$ there is one, and only one, value of ϕ which will 'satisfy equations (2). This value of ϕ is called its *principal value*.

If ϕ' denotes the principal value of ϕ , the general value of ϕ is $2 n\pi + \phi'$, where *n* is any integer. Thus the angle, or amplitude, of a complex number is *many-valued*.

When b = 0, c + ib = a, a real number; when a = 0, a + ib = ib, an *imaginary* number.

Thus a + ib includes reals and imaginaries as particular cases.

Reduce the complex number $-1 - \sqrt{-3}$ to the trigonometric Ex. 1. type form.

Here

$$a = -1, \quad b = -\sqrt{3}.$$

 $\therefore r = \sqrt{1+3} = 2.$ by (1)

10 10

Hence

$$\cos \phi = -1/2$$
, $\sin \phi = -\sqrt{3}/2$. by (2)

Since $\cos \phi$ and $\sin \phi$ are both -, ϕ is in the third quadrant; hence its principal value is $-2\pi/3$.

$$\therefore -1 - \sqrt{-3} = [\cos(-2\pi/3) + i\sin(-2\pi/3)] \cdot 2.$$

Hence the arithmetic value, or modulus, of $-1 - \sqrt{-3}$ is 2, and its quality unit is represented by a unit vector which makes the angle $-2\pi/3$ with the vector representing +1.

Ex. 2. Reduce the complex number $2 - \sqrt{-5}$ to the algebraic type form.

Here

$$a = +2, \quad b = -\sqrt{5}; \quad \therefore r = 3.$$

 $\therefore 2 - \sqrt{-5} = [2/3 + i(-\sqrt{5}/3)] 3.$

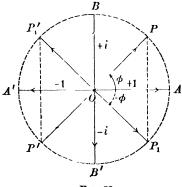
Ex. 3. Reduce the unit $\sin \phi - i \cos \phi$ to the trigonometric type form. $\sin\phi - i\cos\phi = \cos\left(\phi - 90^\circ\right) + i\sin\left(\phi - 90^\circ\right).$

Thus the angle of the quality unit $\sin \phi - i \cos \phi$ is $\phi - 90^\circ$.

EXERCISE XXIX

Represent graphically and reduce to the type form :

1. $1 + \sqrt{-1}$.	5. $-\sqrt{3}+i$.	9. $-6 - i8$.
2. $1 - \sqrt{-1}$.	6. $-\sqrt{3}-i$.	10. $-\sqrt{5} - i\sqrt{11}$.
3. $-1-i$.	7. $3 - i4$.	11. $\sin \phi + i \cos \phi$.
4 . $-1 + \sqrt{-3}$.	8. $-3+i2$.	12. $-\sin\theta + i\cos\theta$.


13. By constructing the sum in each member, show that

 $(a + ib) + (x + iy) \equiv (a + iy) + (x + ib) \equiv (a + x) + i(b + y),$

and thus prove geometrically that the commutative and associative laws of addition hold true for complex numbers.

91. General quality unit $\cos \phi + i \sin \phi$.

Let ABA' be a circle whose radius is 1, and let $\overline{OA} =$ the unit +1.

F1G. 58

Then	if $\phi \equiv AOP$,	$\cos\phi + i\sin\phi \equiv \bar{O}P;$
	if $\phi \equiv A OP_1'$,	$\cos\phi + i\sin\phi \equiv \overline{OP_1}';$
	if $\phi \equiv AOP_1$,	$\cos \phi + i \sin \phi \equiv O\overline{P}_1;$
	if $\phi \equiv AOP'$,	$\cos \phi + i \sin \phi \equiv \overline{OP'}.$

That is, the quality unit $\cos \phi + i \sin \phi$ is represented by the *unit vector* which makes the angle ϕ with the vector representing +1.

The following important particular cases of $\cos \phi + i \sin \phi$ should be carefully noted:

When $\phi = 0$, $\cos \phi + i \sin \phi = \cos 0 + i \sin 0 = +1$. When $\phi = \pm \pi/2$, $\cos \phi + i \sin \phi = \cos(\pm \pi/2) + i \sin(\pm \pi/2) = *i$. When $\phi = \pm \pi$, $\cos \phi + i \sin \phi = \cos(\pm \pi) + i \sin(\pm \pi) = -1$.

These results are evident also from the figure.

92. Product of quality units. By the distributive law of multiplication, we obtain

 $(\cos \phi_1 + i \sin \phi_1) (\cos \phi_2 + i \sin \phi_2)$ $\equiv \cos \phi_1 \cos \phi_2 + i \cos \phi_1 \sin \phi_2 + i \sin \phi_1 \cos \phi_2 + i^2 \sin \phi_1 \sin \phi_2$ $\equiv \cos \phi_1 \cos \phi_2 - \sin \phi_1 \sin \phi_2 + i (\sin \phi_1 \cos \phi_2 + \cos \phi_1 \sin \phi_2)$ $\equiv \cos (\phi_1 + \phi_2) + i \sin (\phi_1 + \phi_2).$ § 34

Hence, in general, we have

 $(\cos \phi_1 + i \sin \phi_1) (\cos \phi_2 + i \sin \phi_2) \cdots (\cos \phi_n + i \sin \phi_n)$ $\equiv \cos (\phi_1 + \phi_2 + \dots + \phi_n) + i \sin (\phi_1 + \phi_2 + \dots + \phi_n). [39]$

That is, the product of two or more quality units is a quality unit whose angle is the sum of the angles of the factors.

Observe that, to mult ply $\cos \phi_1 + i \sin \phi_1$ by $\cos \phi_2 + i \sin \phi_2$, we add the angle ϕ_2 of the multiplier to the angle ϕ_1 of the multiplicand.

Again, to obtain the multiplier $\cos \phi_2 + i \sin \phi_2$ from the primary unit $\cos 0 + i \sin 0$, we add the angle ϕ_2 of the multiplier to the angle 0 of the primary unit.

Hence the product is obtained by doing to the multiplicand just what is done to the *primary unit* to obtain the multiplier.

93. De Moivre's theorem.

(i) If $\phi = \phi_1 = \phi_2 = \cdots = \phi_n$

then, from [39] of § 92, we obtain

$$(\cos \phi + i \sin \phi)^n \equiv \cos n\phi + i \sin n\phi.$$
(1)

That is, the nth power of a quality unit is a quality unit whose angle is n times the angle of the base.

(ii) Taking the nth root of each member of (1), we obtain

 $(\cos n\phi + i \sin n\phi)^{1/n} \equiv \cos \phi + i \sin \phi.$

Putting ϕ for $n\phi$ and therefore ϕ/n for ϕ , we have

$$(\cos \phi + i \sin \phi)^{1/n} \equiv \cos (\phi/n) + i \sin (\phi/n).$$
(2)

Let s be a positive integer, then, from (2), we obtain

$$(\cos \phi + i \sin \phi)^{s/n} \equiv [\cos (\phi/n) + i \sin (\phi/n)]^s$$

$$\equiv \cos (s\phi/n) + i \sin (s\phi/n). \quad (3)$$
(iii) By § 92,

$$(\cos \phi + i \sin \phi) [\cos (-\phi) + i \sin (-\phi)] \equiv \cos 0 + i \sin 0 \equiv +1.$$

Hence

 $\cos(-\phi) + i \sin(-\phi)$ is the reciprocal of $\cos \phi + i \sin \phi$. That is, $(\cos \phi + i \sin \phi)^{-1} \equiv \cos(-\phi) + i \sin(-\phi)$. (4) Let p be any positive integer or fraction. Then, from (4),

$$(\cos \phi + i \sin \phi)^{-p} \equiv [\cos (-\phi) + i \sin (-\phi)]^{p}$$
$$\equiv \cos (-p\phi) + i \sin (-p\phi). (5)$$

From (1), (3), and (5) it follows that for any commensurable real value of n, we have

$$(\cos \phi + i \sin \phi)^n \equiv \cos n\phi + i \sin n\phi.$$
 [40]

Formula [40] is called De Moivre's theorem.

COR. 1. From (2), $\cos(\phi/n) + i \sin(\phi/n)$ is one of the nth roots of $\cos \phi + i \sin \phi$.

Cor. 2. By § 28,

 $\cos(-\phi) + i\sin(-\phi) \equiv \cos\phi - i\sin\phi.$

Hence, by (4), $\cos \phi - i \sin \phi$ is the reciprocal of $\cos \phi + i \sin \phi$.

That is, the conjugate quality units $\cos \phi + i \sin \phi$ and $\cos \phi - i \sin \phi$ are reciprocals of each other.

In fig. 58 observe that \overline{OP} and $\overline{OP_1}$ represent reciprocal, or conjugate, quality units, while \overline{OP} and $\overline{OP'}$ represent opposite quality units. When \overline{OP} coincides with \overline{OB} , $\overline{OP_1}$ and $\overline{OP'}$ both coincide with $\overline{OB'}$; this illustrates that the reciprocal, or conjugate, of *i* is also the opposite of *i*. When \overline{OP} coincides with \overline{OA} or $\overline{OA'}$, $\overline{OP_1}$ does also; that is, either +1 or -1 is its own reciprocal. 94. To divide by the quality unit $\cos \phi + i \sin \phi$, we multiply by its reciprocal $\cos (-\phi) + i \sin (-\phi)$, or $\cos \phi - i \sin \phi$.

Ex. 1.
$$\frac{\cos \phi_1 + i \sin \phi_1}{\cos \phi_2 + i \sin \phi_2} \equiv (\cos \phi_1 + i \sin \phi_1) [\cos (-\phi_2) + i \sin (-\phi_2)]$$
$$\equiv \cos (\phi_1 - \phi_2) + i \sin (\phi_1 - \phi_2).$$

Ex. 2.
$$\frac{(\cos \phi + i \sin \phi)^5}{(\cos \theta - i \sin \theta)^7} \equiv (\cos \phi + i \sin \phi)^5 (\cos \theta + i \sin \theta)^7$$
$$\equiv (\cos 5 \phi + i \sin 5 \phi) (\cos 7 \theta + i \sin 7 \theta)$$
$$\equiv \cos (5 \phi + 7 \theta) + i \sin (5 \phi + 7 \theta).$$

EXERCISE XXX

Prove each of the following identities :

1. $(\cos 0 + i \sin 0)^3 = +1$, $[\cos (2\pi/3) + i \sin (2\pi/3)]^3 = +1$, $[\cos (4\pi/3) + i \sin (4\pi/3)]^3 = +1$.

Hence each of these three quality units is a cube root of +1.

2. $[\cos(\pi/5) \pm i \sin(\pi/5)]^5 = -1, [\cos(3\pi/5) \pm i \sin(3\pi/5)]^5 = -1, (\cos \pi \pm i \sin \pi)^5 = -1.$

Observe that $\cos \pi + i \sin \pi \equiv \cos \pi - i \sin \pi$.

3. $[\cos(\pi/6) \pm i \sin(\pi/6)]^6 = [\cos(\pi/2) \pm i \sin(\pi/2)]^6$ = $[\cos(5\pi/6) \pm i \sin(5\pi/6)]^6 = -1.$

4. What is proved by examples 2 and 3? Illustrate the meaning of examples 1, 2, 3 by vectors.

Express as a quality unit each of the following:

5. $\frac{(\cos\theta + i\sin\theta)^6}{(\cos\phi - i\sin\phi)^5}$. 6. $\frac{(\cos\theta - i\sin\theta)^{3/2}}{(\cos\phi - i\sin\phi)^{5/3}}$. 7. $\frac{(\cos\theta + i\sin\theta)(\cos\phi + i\sin\phi)}{(\cos\beta + i\sin\beta)(\cos\gamma + i\sin\gamma)}$. 8. $\frac{[\cos(\pi/6) - i\sin(\pi/6)]^{11/2}}{[\cos(\pi/6) + i\sin(\pi/6)]^{1/2}}$. 9. $\frac{(\cos\phi + i\sin\phi)^4}{(\sin\theta + i\cos\theta)^5}$.

128

COMPLEX NUMBERS 129

10. By De Moivre's theorem prove identities (1) and (2).

$$\cos n\phi \equiv \cos^{n}\phi - \frac{n(n-1)}{2}\cos^{n-2}\phi \sin^{2}\phi + \frac{n(n-1)(n-2)(n-3)}{4}\cos^{n-4}\phi \sin^{4}\phi - \cdots$$
 (1)

 $\sin n\phi \equiv n\cos^{n-1}\phi\sin\phi - \frac{n(n-1)(n-2)}{3}\cos^{n-3}\phi\sin^{3}\phi$

+
$$\frac{n(n-1)(n-2)(n-3)(n-4)}{5}\cos^{n-5}\phi\sin^{5}\phi-\cdots$$
. (2)

 $\cos n\phi + i \sin n\phi \equiv (\cos \phi + i \sin \phi)^n$

$$\equiv \cos^{n}\phi + i\frac{n}{1}\cos^{n-1}\phi\sin\phi + i^{2}\frac{n(n-1)}{2}\cos^{n-2}\phi\sin^{2}\phi + i^{3}\frac{n(n-1)(n-2)}{3}\cos^{n-3}\phi\sin^{3}\phi + \cdots$$
(3)

Substituting for i^2 , i^3 , \cdots their values, and equating the real parts and the imaginary parts in (3), we obtain (1) and (2).

95. Products and quotients of complex numbers. Multiplying by a quality unit affects only the *quality* of the product, and multiplying by an arithmetic number, or modulus, affects only the *size* of the product; whence the result is evidently independent of the order of these operations. Therefore the commutative and associative laws of multiplication hold for the moduli and quality units of complex numbers.

Hence we have the following theorems:

(i) The product of two or more complex numbers is equal to the product of their quality units into the product of their moduli.

(ii) The quotient of two complex numbers is equal to the quotient of their quality units into the quotient of their moduli.

(iii) The mth power of any complex number is equal to the mth power of its quality unit into the mth power of its modulus, where m is any real number.

96. The quality unit $\cos \phi + i \sin \phi$ has \mathbf{q} , and only \mathbf{q} , unequal \mathbf{q} th roots.

If n is any integer, then, by § 21, we have

$$\cos \phi + i \sin \phi \equiv \cos \left(2 n\pi + \phi\right) + i \sin \left(2 n\pi + \phi\right).$$

$$\therefore (\cos \phi + i \sin \phi)^{1/q} \equiv \left[\cos \left(2 n\pi + \phi\right) + i \sin \left(2 n\pi + \phi\right)\right]^{1/q}$$

$$\equiv \cos \frac{2 n\pi + \phi}{q} + i \sin \frac{2 n\pi + \phi}{q}.$$
 (1)

If in (1) we give to n the values 0, 1, 2, 3, 4, \dots , q-1, in succession, we obtain the following q qth roots of $\cos \phi + i \sin \phi$:

The angles of any two of the roots in (2) differ by less than 2π ; hence no two of these angles can have equal cosines and equal sines. Therefore the q qth roots in (2) are unequal.

If we give to n the values $q, q + 1, q + 2, \dots$, or $-1, -2, -3, \dots$, we obtain qth roots equal to those in (2).

Hence $\cos \phi + i \sin \phi$ has q, and only q, unequal qth roots.

97. Any complex number has q, and only q, unequal qth roots.

 $\left[\left(\cos\phi + i\sin\phi\right)r\right]^{1/q} \equiv \left(\cos\phi + i\sin\phi\right)^{1/q}r^{1/q}.$ (1)

The quality unit $\cos \phi + i \sin \phi$ has q, and only q, unequal qth roots, and the arithmetic number r has only one qth root; whence the second member of (1) has q, and only q, unequal values.

Hence to find the q qth roots of any complex number, reduce the number to the type form, find the q qth roots of its quality unit, and multiply each by the qth root of the modulus.

130

Observe that an algebraic number has q unequal qth roots because its quality unit has q unequal qth roots.

Ex. 1. Find the three cube roots of -27. $-27 = (-1) \cdot 27 = (\cos \pi + i \sin \pi) \cdot 27$. $\therefore \sqrt[3]{-27} = (\cos \pi + i \sin \pi)^{1/3} \cdot 3$. $(\cos \pi + i \sin \pi)^{1/3} \equiv \cos \frac{2n\pi + \pi}{3} + i \sin \frac{2n\pi + \pi}{3}$; when n = 0, $\equiv \cos(\pi/3) + i \sin(\pi/3) = 1/2 + i \sqrt{3}/2$; when n = 1, $\equiv \cos \pi + i \sin \pi = -1$; when n = 2, $\equiv \cos(5\pi/3) + i \sin(5\pi/3) = 1/2 - i \sqrt{3}/2$. Hence $\sqrt[3]{-27} = -3$, $(1/2 \pm i \sqrt{3}/2)$ 3.

Ex. 2. Find the four fourth roots of $8 + 8\sqrt{-3}$.

$$8 + 8\sqrt{-3} = (1/2 + i\sqrt{3}/2) \cdot 16 = [\cos(\pi/3) + i\sin(\pi/3)] \cdot 16.$$

$$\therefore \sqrt[4]{8 + 8\sqrt{-3}} = [\cos(\pi/3) + i\sin(\pi/3)]^{1/4} 2.$$

$$\begin{bmatrix} \cos(\pi/3) + i\sin(\pi/3) \end{bmatrix}^{1/4} \equiv \cos\frac{2n\pi + \pi/3}{4} + i\sin\frac{2n\pi + \pi/3}{4};$$

when $n = 0$, $\equiv \cos(\pi/12) + i\sin(\pi/12);$
when $n = 1$, $\equiv \cos(7\pi/12) + i\sin(7\pi/12);$
when $n = 2$, $\equiv \cos(13\pi/12) + i\sin(13\pi/12);$
when $n = 3$, $\equiv \cos(19\pi/12) + i\sin(19\pi/12).$ (1)

Multiplying each of the four units in (1) by 2, we obtain the four required fourth roots.

EXERCISE XXXI

Find all the values of:

Mul	tiply by $(x + 1)$,		$x^5 + 1 = 0$, or	x = (-1)	1/5
13.	Solve the equation	x4 -	$-x^{8}+x^{2}-x+$	1 = 0.	(1)
4.	$(-1)^{1/6}$.	8.	$(-i)^{1/6}$.	12.	$(\sqrt{3}-\sqrt{-1})^{2/5}$.
3.	11/6.	7.	$(-243)^{1/5}$.	11.	$(1+\sqrt{-1})^{1/6}$.
2.	$(-1)^{1/3}$.	6.	321/8.	10.	$(1 - i\sqrt{3})^{1/4}$.
1.	11/8.	5.	16 ¹ /4.	9.	$(4\sqrt{3}+i4)^{1/3}$.

Multiplying by x + 1 introduces the root -1, the other four of the five fifth roots of -1 are the roots of equation (1).

14. Solve the equation $x^{12} - 1 = 0$. Factor, $(x^8 - 1)(x^3 + 1)(x^3 - i)(x^8 + i) = 0$.

The twelve roots, $1^{1/3}$, $(-1)^{1/3}$, $i^{1/3}$, $(-i)^{1/3}$, are readily found by De Moivre's theorem.

 15. Solve the equation
 $x^7 + x^4 + x^3 + 1 = 0.$

 Factor,
 $(x^4 + 1)(x^3 + 1) = 0.$

 16. Solve the equation
 $x^7 + 1 = 0.$

98. Exponential form for $\cos \phi + i \sin \phi$. If in series (d) of § 85 we replace x by $i\phi$, we obtain the series (1).

$$1 + i\phi + \frac{(i\phi)^2}{2} + \frac{(i\phi)^3}{3} + \frac{(i\phi)^4}{4} + \frac{(i\phi)^5}{5} + \cdots$$
 (1)

That is, series (1) is equal to a quality unit whose angle is ϕ . If, as is suggested by (d) in § 85, we define $e^{i\phi}$ as an exponential symbol for the series (1), we have

$$e^{i\phi} \equiv \cos\phi + i\sin\phi. \tag{2}$$

That is, $e^{i\phi}$ is an exponential symbol for a quality unit whose angle is ϕ .

Substituting $-\phi$ for ϕ in (2), we obtain

$$e^{-i\phi} \equiv \cos\phi - i\sin\phi.$$
 (3)

From (2) and (3), $e^{i\phi}$ and $e^{-i\phi}$ denote reciprocal quality units. From (2) and §§ 92 and 94, it follows that

$$e^{i\phi_1} \cdot e^{i\phi_2} \cdot e^{i\phi_3} \equiv e^{i(\phi_1 + \phi_2 + \phi_3)}, \qquad e^{i\theta} \cdot e^{-i\phi} \equiv e^{i(\theta - \phi)},$$

 $e^{i\phi} \div e^{i\theta} \equiv e^{i\phi} \cdot e^{-i\theta} \equiv e^{i(\phi - \theta)}, \quad (e^{i\phi})^2 \equiv e^{i2\phi}.$

That is, $e^{i\phi}$ obeys the fundamental laws of exponents. The unit of ϕ is the radian. Why? Putting 1 for ϕ in (2), we obtain

 $e^i \equiv \cos 1 + i \sin 1.$

That is, e' denotes a quality unit whose angle is a radian.

Example. What does e^{-i} denote? e^{0} ? Observe that for all values of ϕ the arithmetic value of $e^{i\phi}$ is 1. Hence, as ϕ varies from $-\infty$ to $+\infty$, $e^{i\phi}$ varies in quality only.

From (2) it follows that any complex number

 $(\cos \phi + i \sin \phi) r$

can be written in the form $e^{i\phi}r$, or $e^{i\phi}e^r$, where $e^r \equiv r$.

Defining $e^{i\phi + x}$ as denoting the series

$$1+\frac{i\phi+x}{1}+\frac{(i\phi+x)^2}{\underline{|2|}^2}+\frac{(i\phi+x)^3}{\underline{|3|}^3}+\cdots,$$

we can easily prove the law $e^{i\phi} \cdot e^r \equiv e^{i\phi + r}$.

That is, $e^{i\phi + x}$ denotes a complex number whose quality unit is $e^{i\phi}$ and whose modulus is e^{x} .

Since $a \equiv e^{\log_{\theta} a}$, $a^{x} \equiv e^{x \log_{\theta} a}$; hence $a^{i\phi} \equiv e^{i\phi \log_{\theta} a}$ will define $a^{i\phi}$.

That is, $a^{i\phi}$ denotes a quality unit whose angle is $\phi \log_e a$.

Again, $a^{i\phi} \cdot a^{j} \equiv e^{i\phi \log_e a} \cdot e^{r \log_e a} \equiv (e^{\log_e a})^{i\phi + j} \equiv a^{i\phi + r}$.

That is, $a^{i\phi} + x$ denotes a complex number whose quality unit is $a^{i\phi}$ and whose modulus is a^x .

From (2) and (3) by subtracting and adding we obtain

$$\sin \phi \equiv \frac{e^{i\phi} - e^{-i\phi}}{i2}, \qquad \cos \phi \equiv \frac{e^{i\phi} + e^{-i\phi}}{2}. \tag{4}$$

The values in (4) are known as Euler's exponential values of $\sin \phi$ and $\cos \phi$.

Compare (4) with [37] in § 85, and observe that if *i* is omitted in these values of $\sin \phi$ and $\cos \phi$ we have $\sinh \phi$ and $\cosh \phi$.

CHAPTER IX

MISCELLANEOUS EXAMPLES

EXERCISE XXXII

Express all the angles which are coterminal with: 1. 45°. 2. 132°. 3. -35°. 4. -100°. 5. $\pi/6$. Find all the other trigonometric ratios of A when: 6. $\sin A = 4/7$. 8. $\cos A = -3/8$. 10. $\sec A = 7/4$.

7. $\tan A = 3/2$. 9. $\cot A = -7/5$. 11. $\csc A = -5/4$.

12. In what quadrant is A in each of the examples 6-11 inclusive? Construct A in each.

In terms of a function of an angle less than 45° express :

13.	sin 94°.	16.	cot 320°.	19.	$\cos(-175^{\circ}).$
14.	cos 128°.	17.	sec 190°.	20.	tan (- 200°).
15.	tan 215°.	18.	$\sin(-75^{\circ}).$	21.	cot (- 300°).
In terms of each of the other functions of A find the value of :					
22.	$\sin A$.	24.	$\tan A$.	26 .	$\sec A$.
23.	$\cos A$.	2 5.	$\cot A$.	27.	$\csc A.$

Identities

Prove each of the following identities :

28. $(\tan A + \cot A) \sin A \cos A \equiv 1$. 29. $(\sec A - \tan A) (\sec A + \tan A) \equiv 1$. 30. $(\csc A - \cot A) (\csc A + \cot A) \equiv 1$. 31. $(\sin B - \cos B)^2 \equiv 1 - 2 \sin B \cos B$. 32. $\sin B + \cos B \equiv \sqrt{2} \cos (B - \pi/4)$. 33. $\sin B - \cos B \equiv -\sqrt{2} \cos (B + \pi/4)$.

IDENTITIES

- 34. $\sin(A + \pi/3) + \sin(A \pi/3) \equiv \sin A$.
- 35. $\cos(A + \pi/6) + \cos(A \pi/6) \equiv \sqrt{3} \cos A$.
- 36. $(\cot A + \tan B) / (\tan A + \cot B) \equiv \cot A \tan B$.
- 37. $1 \tan^4 A \equiv 2 \sec^2 A \sec^4 A$.
- 38. $\sec B/(1 + \cos B) \equiv (\tan B \sin B)/\sin^3 B$.
- 39. $\sec^2 A \csc^2 A \equiv \tan^2 A + \cot^2 A + 2$.
- **40.** $\tan B + \sec B \equiv \tan (B/2 + \pi/4)$.
- 41. $(1 + \tan B) / (1 \tan B) \equiv (\cot B + 1) / (\cot B 1).$
- 42. $\sin A / (1 + \cos A) + (1 + \cos A) / \sin A \equiv 2 \csc A$.
- **43**. $\sec^{-3} A \sin^{3} A \equiv (\cos A \sin A) (1 + \sin A \cos A).$
- 44. $(\sin A \cos B + \cos A \sin B)^2 + (\cos A \cos B \sin A \sin B)^2 \equiv 1.$
- 45. $\cot A \tan A \equiv 2 \cot 2 A$.
- 46. $\sec 2A \equiv \sec^2 A / (2 \sec^2 A)$.
- 47. $2 \sec 2A \equiv \sec (A + \pi/4) \sec (A \pi/4)$.
- 48. $\sin 2A \equiv 2 \tan A / (1 + \tan^2 A)$.
- 49. $2 \sin A + \sin 2A \equiv 2 \sin^3 A / (1 \cos A)$.

50. Find $\sin (A + B + C)$ in terms of the sine and cosine of A, B, C. Applying formula [7] twice and [8] once, we obtain

$$\sin (A + B + C) \equiv \sin (A + B) \cos C + \cos (A + B) \sin C$$

$$\equiv (\sin A \cos B + \cos A \sin B) \cos C$$

$$+ (\cos A \cos B - \sin A \sin B) \sin C$$

$$\equiv \sin A \cos B \cos C + \cos A \sin B \cos C$$

$$+ \cos A \cos B \sin C - \sin A \sin B \sin C. \quad (1)$$

If A, B, C are the angles of a triangle, $\sin (A + B + C) = \sin 180^\circ = 0$. Hence, from (1), we obtain

 $\sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C = \sin A \sin B \sin C$

51. Applying formula [8] twice and [7] once, prove $\cos (A + B + C) \equiv \cos A \cos B \cos C - \cos A \sin B \sin C$ $-\sin A \cos B \sin C - \sin A \sin B \cos C.$ (2) 52. Find $\tan (A + B + C)$ in terms of $\tan A$, $\tan B$, $\tan C$. Applying formula [11] three times, we obtain

$$\tan (A + B + C) \equiv \frac{\tan (A + B) + \tan C}{1 - \tan (A + B) \tan C}$$
$$\equiv \frac{\frac{\tan A + \tan B}{1 - \tan A \tan B} + \tan C}{1 - \frac{\tan A + \tan B}{1 - \tan A \tan B} \tan C}$$
$$\equiv \frac{\frac{\tan A + \tan B}{1 - \tan A \tan B} \tan C}{1 - \tan A \tan B - \tan A \tan C} - \tan B \tan C}.$$
(3)

If A, B, C are the angles of a triangle, $\tan (A + B + C) = \tan 180^\circ = 0$. Hence, from (3),

$$\tan A + \tan B + \tan C = \tan A \tan B \tan C$$

53. Putting $A \equiv B \equiv C$ in (1), (2), (3) of examples 50, 51, 52, prove

- $\sin 3A \equiv 3 \sin A \left(1 \sin^2 A\right) \sin^3 A$
 - $\equiv 3\sin A 4\sin^3 A, \qquad (4)$

$$\cos 3A \equiv 4\cos^3 A - 3\cos A,\tag{5}$$

$$\tan 3A \equiv \frac{3 \tan A - \tan^8 A}{1 - 3 \tan^2 A}.$$
 (6)

Identity (5) is useful in solving cubic equations. See example 112.

54. Writing $3A \equiv 2A + A$, prove (4), (5), (6) in example 53 by using [7], [8], [11], [13], [14], and [15].

55. Substituting θ for 3 A in (4) and (5) of example 53, we obtain

$$\sin \theta \equiv 3 \sin (\theta/3) - 4 \sin^3 (\theta/3), \\ \cos \theta \equiv 4 \cos^3 (\theta/3) - 3 \cos (\theta/3).$$

Prove each of the following identities :

56.
$$\sin 4A \equiv 4 \sin A \cos A - 8 \sin^8 A \cos A$$

 $\equiv 8 \cos^8 A \sin A - 4 \cos A \sin A.$

57.
$$\cos 4 A \equiv 1 - 8 \cos^2 A + 8 \cos^4 A$$

 $\equiv 1 - 8 \sin^2 A + 8 \sin^4 A.$

- **58.** $\cos 780^\circ = 1/2$. **60.** $\cos 2550^\circ = \sqrt{3}/2$.
- **59.** $\sin 1485^\circ = \sqrt{2}/2$. **61.** $\sin (-3000^\circ) = -\sqrt{3}/2$.

62. $\tan(-2190^\circ) = -\sqrt{3}/3$.

EQUATIONS

Equations

In what quadrant is A in each of the following equations?

63.	$\sin A \cos A = -2/3.$	65.	$\sec A \tan A = -3.$	
64.	$\sin A \tan A = 4.$	66.	$\cot A + 3\sin A = 0.$	
67.	Solve the equation $\sin 2 \theta = 2 \cos \theta$	вθ.		(1)

Substituting for sin 2 θ its identical expression 2 sin $\theta \cos \theta$, from (1) by Algebra we obtain the equivalent equation

$$2\sin\theta\cos\theta = 2\cos\theta$$
, or $\cos\theta(\sin\theta - 1) = 0$.

From $\cos \theta = 0$, $\theta = n\pi \pm \pi/2$. § 70

From
$$\sin \theta = 1$$
, $\theta = n\pi + (-1)^n \pi/2$. § 69

Hence $n\pi \pm \pi/2$ includes all the values of θ in (1).

Solve each of the following equations :

68.
$$\cos 2\theta = 2 \sin \theta$$
.
 82. $2 \sin^2 x - 2 = -\sqrt{2} \cos x$.

 69. $\cos \theta = \sin 2\theta$.
 83. $\cos^2 y + 2 \sin^2 y - \frac{5}{2} \sin y = 0$.

 70. $\sin \theta = \cos 2\theta$.
 84. $\sin \theta + \sin 2\theta = 1 - \cos 2\theta$.

 71. $\tan A \tan 2A = 2$.
 85. $\cos y - \cos 2y = 1$

 72. $\cos A + \cos 2A = 0$.
 86. $\sin (45^\circ + z) + \cos (45^\circ - 2) = 1$.

 73. $\cot A \tan 2A = 3$.
 87. $\sec 2z + 1 = 2\cos z$.

 74. $4\cos 2A + 3\cos A = 1$.
 88. $\cos 2z = a(1 - \cos z)$.

 75. $\sin \theta \sec 2\theta = 1$.
 89. $\tan 2y \tan y = 1$.

 76. $\cot \theta \tan 2\theta = \sec 2\theta$.
 90. $\sec \theta = 2\tan \theta + 1/4$.

 77. $\sin 2\theta = 3\sin^2 \theta - \cos^2 \theta$.
 91. $\sin^{-1}x + \sin^{-1}(x/2) = 120^\circ$.

 78. $\sin \theta + \cos 2\theta = 4\sin^2 \theta$.
 92. $\sin^{-1}z + 2\cos^{-1}z = 210^\circ$.

 79. $\sin 2\theta = \cos 4\theta$.
 93. $\tan^{-1}y + 2\cot^{-1}y = 135^\circ$.

 80. $\sec x + \tan x = \pm \sqrt{3}$.
 94. $\tan^{-1}\frac{2z}{1-z^2} = 60^\circ$.

 95. $\tan^{-1}z + \tan^{-1}2z = \tan^{-1}3\sqrt{3}$.

 96. $\tan x + \tan 2x = 0$.

PLANE TRIGONOMETRY

97.
$$\tan^2 x + \cot^2 x = 10/3.$$
99. $\sin A + \cos A = \sec A.$ 98. $4\cos 2\theta + 6\sin \theta = 5.$ 100. $\sin(\theta + 30^\circ)\sin(\theta - 30^\circ) = 1/2.$

SYSTEMS OF EQUATIONS

101. Solve for r and θ the system

$$\begin{array}{ccc} r\sin\theta = a, & (1) \\ r\cos\theta = b. & (2) \end{array}$$
 (a)

-

Divide (1) by (2), $\tan \theta = a/b$, or $\theta = \tan^{-1}(a/b)$.

Square (1) and (2) and add,

$$r^{2}(\sin^{2}\theta + \cos^{2}\theta) = a^{2} + b^{2}.$$
$$\therefore r = \sqrt{a^{2} + b^{2}}.$$

102. Solve for r, θ , and ϕ the system

$$r \cos \phi \sin \theta = a, \qquad (1) r \cos \phi \cos \theta = b, \qquad (2) r \sin \phi = c. \qquad (3)$$

Divide (1) by (2), $\tan \theta = a/b$, or $\theta = \tan^{-1}(a/b)$. (4) Square (1) and (2) and add,

$$r^2 \cos^2 \phi = a^2 + b^2.$$
 (5)

From (5),
$$r \cos \phi = \sqrt{a^2 + b^2}$$
. (6)

Divide (3) by (6), $\tan \phi = c / \sqrt{a^2 + b^2}$, or $\phi = \tan^{-1}(c / \sqrt{a^2 + b^2})$. Square (3) and add (5),

$$r = \sqrt{a^2 + b^2 + c^2}.$$
 (7)

103. Solve for x and y the system

$$\frac{\sin x + \sin y = a, \quad (1)}{\cos x + \cos y = b. \quad (2)}$$
(a)

By § 40 we obtain from system (a) the equivalent system (b).

$$2\sin\frac{1}{2}(x+y)\cos\frac{1}{2}(x-y) = a, \quad (3) \\ 2\cos\frac{1}{2}(x+y)\cos\frac{1}{2}(x-y) = b. \quad (4) \end{cases}$$
(b)

Divide (3) by (4), $\tan \frac{1}{2}(x+y) = a/b$. (5)

Hence
$$\sin \frac{1}{2}(x+y) = \pm a / \sqrt{a^2 + b^2}$$
. (6)

Substituting the value of $\sin \frac{1}{2}(x+y)$ in (3), we obtain

$$\cos \frac{1}{2}(x-y) = \pm \sqrt{a^2 + b^2/2}.$$
 (7)

From (5),
$$x + y = 2 \tan^{-1} (a/b).$$
 (8)From (7), $x - y = 2 \cos^{-1} (\pm \sqrt{a^2 + b^2}/2).$ (9)Hence $x = \tan^{-1} (a/b) + \cos^{-1} (\pm \sqrt{a^2 + b^2}/2),$ and $y = \tan^{-1} (a/b) - \cos^{-1} (\pm \sqrt{a^2 + b^2}/2).$

104. Solve the system

$$\left. \begin{array}{l} \sin x - \sin y = a, \\ \cos x - \cos y = b. \end{array} \right\}$$

105. Solve for x and y the system

$$x \sin A + y \sin B = a, \qquad (1) x \cos A + y \cos B = b. \qquad (2)$$

Since (1) and (2) are each linear algebraic equations in x and y, system (a) is solved as a linear algebraic system.

106. Solve for r and θ the system

$$r \sin (\theta + A) = a,$$

$$r \cos (\theta + B) = b.$$
(a)

By [7] and [8], from (a) we obtain the equivalent system (b).

Solve (b) as an algebraic linear system in $r \sin \theta$ and $r \cos \theta$ as the unknowns.

The resulting system can then be solved for r and θ as in example 101.

107. Solve the system

$$\begin{array}{c} \cos{(x+y)} + \cos{(x-y)} = 2, \quad (1) \\ \sin{(x/2)} + \sin{(y/2)} = 0, \quad (2) \end{array} \right\}$$
(a)

for values of x and y less than 2π .

By [8] and [10], from (1) we obtain the equivalent equation

$$\cos x \cos y - \sin x \sin y + \cos x \cos y + \sin x \sin y = 2,$$

 $\cos x \cos y = 1. \tag{3}$

or

From (3), $\cos x$ and $\cos y$ are both +1 or both -1. Why? Hence x and y are both coterminal with 0 or both coterminal with π . The solution x = 0, y = 0 of (3) satisfies (2); also the solution $x = \pi$, $y = -\pi$, or $x = -\pi$, $y = \pi$ of (3) satisfies (2).

Observe that either $x = \pi$, $y = \pi$, or $x = -\pi$, $y = -\pi$ is a solution of (3), but neither is a solution of (2).

108. Solve for R and F the system

 $W-F\sin h-R\cos h=0,\\W-F\cos h-R\sin h=0.$

Observe that this system is algebraic and linear in R and F.

109. Eliminate θ from the system

$$\begin{array}{l} x = r \left(\theta - \sin \theta \right), \quad (1) \\ y = r \left(1 - \cos \theta \right). \quad (2) \end{array} \}$$

From (2),
$$y = r \operatorname{vers} \theta$$
, or $\theta = \operatorname{vers}^{-1}(y/r)$. (3)

From (2),
$$\cos \theta = (r - y)/r$$
. $\therefore \sin \theta = \pm \sqrt{2ry - y^2/r}$. (4)

From (1), (3), (4),
$$x = r \operatorname{vers}^{-1}(y/r) \mp \sqrt{2ry - y^2}$$
. (5)

110. Eliminate θ from the system

$$a \cos \theta + b \sin \theta = c, \qquad (1) \\ d \cos \theta + e \sin \theta = f. \qquad (2)$$

Solving the system for $\cos \theta$ and $\sin \theta$, we obtain

$$\sin \theta = \frac{af - cd}{ae - bd}, \qquad \cos \theta = \frac{ce - bf}{ae - bd}.$$
(3)

Squaring the members of equations (3) and adding, we obtain

$$\frac{(af-cd)^2+(ce-bf)^2}{(ae-bd)^2}=\sin^2\theta+\cos^2\theta=1.$$

$$\therefore (ae-bd)^2=(af-cd)^2+(ce-bf)^2.$$

111. Eliminate θ from the system

or

 $a\cos\theta + b\sin\theta = c$, $b\cos\theta - a\sin\theta = d$.

112. Solve the cubic equation $x^8 - 3px + q = 0.$ (1) Putting x = z/n, we obtain

$$z^3 - 3 p n^2 z + q n^3 = 0. (2)$$

Now by (5) in example 53, we have the identity

$$\cos 3 A \equiv 4 \cos^3 A - 3 \cos A,$$

$$\cos^3 A - (3/4) \cos A - \cos (3A)/4 \equiv 0.$$
 (3)

140

Comparing identity (3) with equation (2), we see that $\cos A$ is a root of (2) when n and A satisfy the conditions

Hence
$$3 pn^2 = 3/4$$
, and $qn^3 = -\cos(3A)/4$.
Hence $n = 1/(2\sqrt{p})$,
and $\cos 3A = -4 qn^3 = -q/(2p^{3/2})$. (4)

Observe that (4) can always be solved when p is positive and $q/(2 p^{3/2})$ is arithmetically equal to or less than 1.

If A_1 is the principal value of A which satisfies (4), then the values $A_1 + 2\pi/3$ and $A_1 + 4\pi/3$ also satisfy it.

Hence the roots of equation (1) are

$$\cos A_1/n$$
, $\cos (A_1 + 2\pi/3)/n$, and $\cos (A_1 + 4\pi/3)/n$,

i.e.
$$2\sqrt{p} \cos A_1, 2\sqrt{p} \cos (A_1 + 2\pi/3), \text{ and } 2\sqrt{p} \cos (A_1 + 4\pi/3).$$

By Algebra, we know that the general cubic equation

$$y^3 + 3ay^2 + by + c = 0$$

can be transformed into one of the type (1) by putting y = x - a.

113. Solve $x^3 + 6x^2 + 9x + 3 = 0.$ Putting x = y - 2, we obtain $y^3 - 3y + 1 = 0.$ Putting y = z/n, we obtain $z^3 - 3z^2z + n^3 = 0.$ Now $\cos^3 A - (3/4)\cos A - (1/4)\cos 3A \equiv 0.$ Hence $z = \cos A$, when $n^2 = 1/4$ and $n^3 = -\cos 3A/4$, *i.e.* when n = 1/2, and $\cos 3A = -1/2 = \cos 120^\circ.$ $\therefore 3A_1 = 120^\circ$, or $A_1 = 40^\circ.$ Hence $z = \cos 40^\circ$, $\cos (40^\circ + 120^\circ)$, or $\cos (40^\circ + 240^\circ).$ $\therefore y = 2\cos 40^\circ, 2\cos 160^\circ, \text{ or } 2\cos 280^\circ.$ $\therefore x = -2 + 2\cos 40^\circ, -2 - 2\cos 20^\circ, \text{ or } -2 + 2\cos 80^\circ.$

Having given $\sin 15^\circ = (\sqrt{3} - 1)/(2\sqrt{2})$, and $\cos 15^\circ = (\sqrt{3} + 1)/(2\sqrt{2})$, solve each of the following equations:

114. $x^3 - 24x - 32 = 0$. 116. $2x^3 - 3x - 1 = 0$. 115. $x^3 - 6x^2 + 6x + 8 = 0$. 117. $x^3 + 3x^2 - 1 = 0$. 118. $x^3 + 4x^2 + 2x - 1 = 0$.

PLANE TRIGONOMETRY

EXERCISE XXXIII

TRIANGLES

1. Two towers are 3 mi. apart on a plain. The angle of depression of one, from a balloon directly above the other, is observed to be 8° 15'. How high is the balloon?

2. The shadow of a tree 101.3 ft. high is found to be 131.5 ft. long. Find the elevation of the sun.

3. A rock on the bank of a river is 130 ft. above the water level. From a point just opposite the rock on the other bank of the river the angle of elevation of the rock is $14^{\circ} 30' 21''$. Find the width of the river.

4. A rope 38 ft. long, when fastened to the top of a tree 29 ft. high, just reaches a point in the plane of the foot of the tree. Find the angle which the rope makes with the ground.

5. A window in a house is 24 ft. from the ground. Find the inclination of a ladder placed 8 ft. from the side of the building and reaching the window.

6. A ladder 40 ft. long reaches a window 33 ft. high, on one side of a street. Its foot being at the same point, it will reach a window 21 ft. high on the opposite side of the street. Find the width of the street.

7. A lighthouse 54 ft. high is situated on a rock. The angle of elevation of the top of the lighthouse, as observed from a ship, is 4° 52', and the angle of elevation of the top of the rock is 4° 2'. Find the height of the rock and its distance from the ship.

8. A man standing south of a tower, on the same horizontal plane, observes its angle of elevation to be 54° 16'; he goes east 100 yd., and then finds its angle of elevation to be 50° 8'. Find the height of the tower.

9. A pole is fixed on the top of a mound, and the angles of elevation of the top and the bottom of the pole are 60° and 30° respectively. Prove that the length of the pole is twice the height of the mound.

10. Given that the radius of the earth is 3963 mi., and that it subtends an angle of 57' 2'' at the moon. Find the distance of the moon from the earth.

TRIANGLES

11. Given that the radius of the earth is 3963 mi., and that it subtends an angle of $9^{\prime\prime}$ at the sun. Find the distance of the sun from the earth.

12. Solve example 1 in § 57 by the principles of right triangles.

The given parts are a side and two angles.

In fig. 38 draw $AH \perp BC$.

In the right triangle AHB, compute the sides c and BH. Then compute c in the right triangle HCA.

13. Solve the first four examples in Exercise XIX by the principles of right triangles.

14. Solve example 1 in § 58 by the principles of right triangles. The given parts are two sides and an angle opposite one of them. In fig. 39 draw $CH \perp AB$. Compute the sides CH and AH in $\triangle ABH$. Then compute B and HB in $\triangle HBC$.

15. Solve examples 1, 3, 5, and 7 in Exercise XX by the principles of right triangles.

16. Solve the example in § 59 by the principles of right triangles. The given parts are two sides and their included angle. In $\triangle ABC$ draw $BH \perp CA$. Compute CH and BH in $\triangle CHB$. Compute A and c in triangle BHA.

17. Solve the first four examples in Exercise XXI by the principles of right triangles.

18. Solve example 6 in § 60 by the principles of right triangles.

The given parts are the three sides. In the $\triangle ABC$ draw $AH \perp BC$ and let x = HC.

Then	$b^2 - x^2 = \overline{AH}^2 = c^2 - (a - x)^2.$
Hence	$b^2 - x^2 = c^2 - a^2 - x^2 + 2 ax.$
	$\therefore x = (a^2 + b^2 - c^2)/(2a).$

Whence HC and b are known in $\triangle HAC$, and c and BH in $\triangle BAH$.

19. Solve the first four examples in Exercise XXII by the principles of right triangles.

PLANE TRIGONOMETRY

20. A tree stands at a distance from a straight road and between two milestones. At one milestone the line to the tree is observed to make an angle of 25° 15' with the road, and at the other an angle of 45° 17'. Find the distance of the tree from the road.

21. From the decks of two ships at C and D, 880 yd. apart, a cloud A, in the same vertical plane as C and D and between them, is observed. Its angle of elevation at C is found to be 35° , and at D 64° . Find the height of the cloud above the surface of the sea, the height of the eye in each case being 21 ft.

22. To determine the distance between two ships at sea, an observer noted the interval between the flash and report of a gun fired on board each ship, and measured the angle which the two ships subtended. The intervals were 4 seconds and 6 seconds respectively, and the angle $48^{\circ} 42'$. Find the distance between the ships, the velocity of sound being 1142 ft. per second.

23. In order to find the breadth of a river a base line of 500 yd. was measured in a straight line close to one side of it, and at each extremity of the base the angle subtended by the other end and a tree upon the opposite bank was measured. These angles were 53° and 79° 12' respectively. Find the breadth of the river.

24. A straight road leads from a town A to a town B, 12 mi. distant; another road, making an angle of 77° with the first, goes from A to a town C, 7 mi. distant. Find the distance between the towns B and C.

25. Two lighthouses A and B are 11 mi. apart. A ship C is observed from them to make the angles $BAC = 31^{\circ} 13' 31''$ and $ABC = 21^{\circ} 46' 8''$. Find the distance of the ship from A.

26. Two posts A and B are separated by a swamp. To find the distance between them a point C is so taken that both posts are visible from it. By measurement, AC = 1272.5 ft., BC = 2012.4 ft., and $\angle ACB = 41^{\circ}$ 9' 11". Find the distance AB.

27. Two buoys A and B are one half mile apart. Find the distance from A to a point C on the shore if the angles ABC and BAC are 77°7' and 67° 17' respectively.

28. The elevation of the top of a spire at one station, A, was $23^{\circ} 50' 15''$, and the horizontal angle at this station between the spire and another

144

PROBLEMS

station, B, was $93^{\circ} 4' 15''$. The horizontal angle at B was $54^{\circ} 28' 30''$, and the distance between the stations 416 ft. Find the height of the spire.

29. In order to find the distance of a battery at B from a fort at F, distances BA and AC were measured to points A and C from which both the fort and the battery were visible, the former distance being 2000 and the latter 3000 yd. The following angles were then measured: $\angle BAF = 34^{\circ} 10'$, $\angle FAC = 74^{\circ} 42'$, and $\angle FCA = 80^{\circ} 10'$. Find the distance of the fort from the battery.

30. The distances of two islands from a buoy are 3 and 4 mi. respectively. The islands are 2 mi. apart. Find the angle subtended by the islands at the buoy.

31. Two rocks in a bay are c yd. apart, and from the top of a cliff in the same vertical plane with the rocks their respective angles of depression are A and 3 A. Show that the height of the cliff is $c \sin 3 A / (2 \cos A)$.

32. A person wishes to find the distance between two places A and B on opposite sides of a brook. He walks from B to a bridge 2 mi. away. Crossing this he continues his walk 6 mi. in the same direction to C, which he knows to be 3 mi. from A. If A is 4 mi. from the bridge, show that AB = 5.86 mi., nearly.

33. A person at the top of a mountain observes the angle of depression of an object in the horizontal plane beneath to be 45° ; turning through an angle of 30° he finds the depression of another object in the plane to be 30° . Show that the distance between the objects is equal to the height of the mountain.

34. From a window on a level with the bottom of a steeple the angle of elevation of the top of the steeple was 40° . At another window 18 ft. vertically above the former, the angle of elevation was 37° 30'. Find the height of the steeple.

35. Find what angle a tower will subtend at a distance equal to six times the height of the tower. Find where an observer must station himself that the angle of elevation may be double the former angle.

36. Two ships are a mile apart. The angular distance of the first ship from a fort on the shore, as observed from the second ship, is $35^{\circ} 14' 10''$; the angular distance of the second ship from the fort, observed from the first ship, is $42^{\circ} 11' 53''$. Find the distance in feet from each ship to the fort.

PLANE TRIGONOMETRY

37. The sides of a triangle are 17, 21, 28. Prove that the length of a line bisecting the greatest side and drawn from the vertex of the opposite angle is 13.

38. Along the bank of a river is drawn a base line of 500 ft. The angular distance of one end of this line from an object on the opposite side of the river, as observed from the other end of the line, is 53° ; the angular distance of the second extremity from the same object, observed from the first extremity, is 79° 12'. Find the breadth of the river.

39. Two forces, one of 410 lb. and the other of 320 lb., make an angle of 51° 37'. Find the size and direction of their resultant.

40. An unknown force combined with one of 128 lb. produces a resultant of 200 lb., and this resultant makes an angle of $18^{\circ} 24'$ with the known force. Find the size and direction of the unknown force.

AREAS AND REGULAR POLYGONS

41. Two sides of a parallelogram are 59.8 ch. and 37.05 ch., and the included angle is 72° 10′. Find the area.

42. The three sides of a triangle are 49 ch., 50.25 ch., and 25.69 ch. Find the area.

43. One side of a regular pentagon is 25. Find the area.

44. One side of a regular decagon is 46. Find the area.

45. In a circle with a diameter of 125 ft. find the area of a sector with an arc of 22° .

46. In a circle with a diameter of 50 ft. find the area of a segment with an arc of 280° .

47. A building is 37.54 ft. wide and the slope of the roof is 43° 36'. Find the length of the rafters.

48. What angle at the center of a circle does a chord which is 4/7 of the radius subtend ?

49. The side of a regular pentagon is 2. Find the radius of the inscribed circle.

50. The side of a regular decagon is 23.41 ft. Find the radius of the inscribed circle.

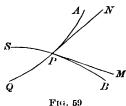
146

51. The perimeter of a regular polygon of 11 sides is 23.47 ft. Find the radius of the circumscribed circle.

52. The perimeter of a regular heptagon inscribed in a circle is 12. Find the radius of the circle.

53. Find the perimeter of a regular decagon circumscribed about a unit circle.

54. Find the perimeter of a polygon of 11 sides inscribed in a unit circ.


55. The perimeter of an equilateral triangle is 17.2 ft. Find the area of the inscribed circle.

SPHERICAL TRIGONOMETRY

CHAPTER X

DEFINITIONS AND CONSTRUCTIONS

99. Angles formed by curves. Let QA and SB be any two curves in space having the point P in common, and let PN be tangent to QA, and PM tangent to SB, at P; then the angle made by the arcs PB and PA at P Sis the angle MPN formed by their tangents at this point.

100. Plane sections of a sphere. Bv

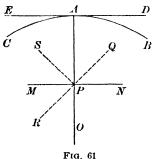
Geometry we know that every section of a sphere made by a plane is a circle. If the plane passes through the center of the sphere, the plane section is a great circle; if not, the section is a small circle.

101. Diedral and spherical angles. Of the diedral angle formed by the intersecting planes AODF and AOEG, the half planes AODF and AOEG are the faces and the intersection OA is the edge. If the lines PN and PM are drawn in the faces AOF and AOG respectively, perpendicular to the edge OA at the point P, then the plane

FIG. 60

angle NPM, which varies directly as the diedral angle E-AO-D,

is called the *plane angle of the diedral angle* and is taken as its *measure*.


A diedral angle is said to be *right, acute,* or *obtuse* according as its plane angle is right, acute, or obtuse.

About O, any point in the edge OA, as a center and with any radius OA let a sphere be described. Let the arcs ABand AC be the intersections of the faces of the diedral angle with the surface of this sphere; then the angle BAC is called a spherical angle. Hence, by § 100, the sides of a spherical angle are arcs of great circles.

NOTE. Since the shortest distance measured on the surface of a sphere between two points of that surface is an arc of a great circle, the arc of a great circle on a spherical surface corresponds to the straight line in a plane.

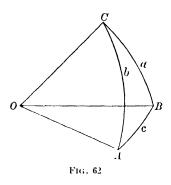
The tangents AD and AE to the arcs AB and AC respectively, at A, will lie in the planes BO.1 and COA respectively, and be perpendicular to OA at A. Hence, by § 99,

$$\angle BAC = \angle DAE = \angle NPM = D \cdot OA \cdot E.$$

That is, a spherical angle is equal to the plane angle of the diedral angle formed by the planes of its sides.

Example. Make a drawing on cardboard like fig. 61. Cut it partly through and bend it along the line OA, thus forming the diedral angle B-AO-C and the spherical angle BAC. Cause these angles to vary from 180° to 0°. What will $\angle NPM$

or $\angle DAE$ do? How will $\angle QPR$ or $\angle QPS$ vary?

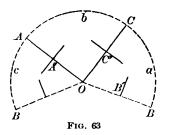

102. Triedral angles and spherical triangles. When three planes, as OAB, OBC, OCA, meet in a common point, as O, they are said to form a *triedral angle*. The common point O is called the *vertex*; the intersections OA, OB, OC are called

150

the edges; the portions of the planes between the edges, as OAB, OBC, OCA, are called the faces: the plane angles

COA, AOB, BOC are called the face angles; and the diedral angles whose edges are O.1, OB, OC are called the *diedral angles* of the triedral angle.

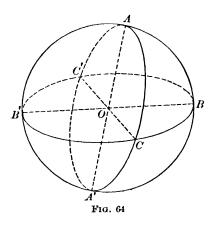
About the vertex O as a center and with any radius OC let a sphere be described. Let the arcs AB, BC, CA be the intersections of the faces of the triedral angle OABC with the surface of the


sphere; then the portion of this surface which is bounded by these arcs is called a *spherical triangle*.

Hence the sides of a spherical triangle, which by § 100 are arcs of great circles, measure the face angles of its triedral angle at the center of the sphere; and its angles, which by § 101 are spherical angles, measure the diedral angles of the triedral angle.

Observe that these relations are independent of the length of the radius of the sphere.

With the triedral angle O-ABC at the center of the sphere O, and the corresponding spherical triangle ABC, we shall use the following notation. Let A, B, C denote in *angle degrees* the plane angles of the diedral angles whose edges are OA, OB, OC respectively; then they will denote also in *angle degrees* the spherical angles whose vertices are A, B, C respectively. Let a, b, c denote in *angle degrees* the face angles BOC, COA,AOB respectively; then they will denote also in *arc degrees* the sides BC, CA, AB respectively.


NOTE. Before undertaking the study of Spherical Trigonometry the student should have reviewed those portions of Geometry which relate to triedral angles and spherical triangles.

Example. Make a drawing on cardboard like fig. 63, and cut it along the dotted lines. Cut it partly through and bend it along OA and OC, thus forming the triedral angle O-ABC and the sides and angles of the spherical triangle ABC. Observe that the plane angles A', B', C'will both measure the diedral angles OA, OB, OC respectively, and be equal to the

spherical angles A, B, C respectively.

103. Convex spherical triangles. Let ABA', ACA', BCB' be any three planes which have only the center of the sphere, O,

in common; then they will divide the entire surface of the sphere into *eight* spherical triangles. The surface of the hemisphere C-ABA'B' will be divided into four triangles, viz., *CAB*, *CBA'*, *CA'B'*, *CB'A*. Each part of any one of the last three will be equal to, or the supplement of, some part of the first, *CAB*. Any triangle on the other hemisphere C'-ABA'B' will be symmet-

rical with some one on the first hemisphere. Each part of any one of these triangles is less than 180°. Such triangles are called convex spherical triangles.

Any spherical triangle which has a side greater than 180° , as ABC'B'C, is made up of three or five of these eight convex triangles and has one or two reëntrant angles.

The parts of either one of these *reëntrant* triangles are easily found when we know those of the *convex* triangle *ABC*.

In elementary spherical trigonometry, therefore, we restrict our attention to *convex* spherical triangles. Hereafter by spherical triangles we shall mean *convex* spherical triangles, unless it is otherwise stated.

Example. Construct in cardboard the reëntrant spherical triangle ABC, having given $a = 300^{\circ}$, $b = 60^{\circ}$, $c = 50^{\circ}$.

Observe that in one of the two reentrant spherical triangles having these sides, A is a reentrant angle, and in the other B and C are reentrant angles. If either side of a reentrant angle is produced through the vertex it enters the triangle.

The common perimeter of these reëntrant triangles can be cut in *four* points by an arc of a great circle. Also b + c < a.

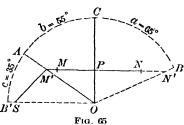
If the sides of these reentrant triangles are produced, one triangle will be divided into *three* and the other into *five convex* triangles.

Note. The following exercise is given to illustrate further and make more familiar the relations between spherical triangles and their corresponding triedrals at the center of the sphere. This exercise is not essential to the course and may be omitted at the option of the teacher.

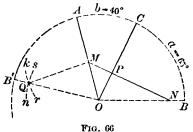
EXERCISE XXXIV

Construct in cardboard the six parts of a spherical triangle in each of the three following principal cases.

1. Given the three sides, $a = 65^{\circ}$, $b = 55^{\circ}$, $c = 35^{\circ}$.


Interchange the places of a and c in fig. 65 and construct a second triangle. Are the two triangles congruent or symmetrical?

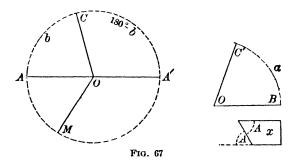
To measure any angle C of the spherical triangle ABC in fig. 65, at any point P on OC draw $MPN \perp$


OC, intersecting OA in M' and OB in N'. On OB' take OS equal to ON' and draw M'S. Construct a plane triangle with PM', PN', and M'S as sides; then the angle opposite the side equal to M'S will be equal to the spherical angle C.

When a and b are obtuse, MPNwill not intersect OA or OB. In

this case form the triedral angle O-ABC. Taking M and N, any convenient points on the perpendiculars to OC at P, construct a plane triangle with PM, PN, and MN as sides; then the angle opposite the side equal to MN will be equal to C.

2. Given two sides and their included angle, $a = 65^{\circ}$, $b = 40^{\circ}$, $C = 75^{\circ}$. Draw $NPM \perp OC$ at any point P on OC. With PM and PN as two sides and 75° as their included angle construct a triangle M'N'P'. With


M as a center and M'N' as a radius draw arc rk; with O as a center and ON as a radius draw arc ns cutting rk in Q. Draw the radius OQB'; then arc AB' will be the third side of the required triangle. How many triangles are possible? Are they congruent or symmetrical?

C are each less than 180°, there is one triangle having the given parts.

3. Given two sides and the angle opposite one of them, as a, b, A.

Construct in the two cases, when $A < 90^{\circ}$ and when $A > 90^{\circ}$.

When $A < 90^{\circ}$. Make a drawing on cardboard, like fig. 67, in which arc AC = b, OB = OA, and BC' = a. Cut out the sector and the circle;

and cut partly through and bend along the diameter AOA', thus forming a lune. Cut two small blocks at angle A, as x in fig. 67. Tack semicircle AMA' to a board, and tacking the blocks (x) back of ACA', form a lune whose angle is A. Let the plane through OC perpendicular to AMA' intersect AMA' in OM. Denote $\angle MOC$ in angle degrees or its measuring arc MC in arc degrees by p.

Placing OC' on OC and OB in the plane AMA', and varying the size of a, we reach the following conclusions.

(1) When the value of a lies between p and b, and also between p and $180^{\circ} - b$, there are *two* triangles having the given parts.

(2) When a = p, the $\triangle ABC$ is right angled at B.

(3) When the value of a lies between p and b and not between p and $180^{\circ} - b$, or between p and $180^{\circ} - b$ and not between p and b, there is one triangle having the given parts.

Observe that when $A < 90^{\circ}$ and a < p, no triangle is possible.

When $A > 90^{\circ}$. Make the construction and show that (1), (2), and (3) hold true, as when $A < 90^{\circ}$.

Observe that when $a > 90^{\circ}$ and a > p, no triangle is possible.

Note. For a permanent class-room model it is better to make the lune whose angle is A out of half-inch soft wood and paste on each face a semicircular protractor.

4. How many triangles are possible when

(i) $A = 60^{\circ}$, $a = 70^{\circ}$, $b = 80^{\circ}$, $p = 58^{\circ} 31'.5$? (ii) $A = 60^{\circ}$, $a = 58^{\circ} 31'.5$, $b = 80^{\circ}$, $p = 58^{\circ} 31'.5$? (iii) $A = 60^{\circ}$, $a = 80^{\circ}$, $b = 70^{\circ}$, $p = 54^{\circ} 28'.1$? (iv) $A = 60^{\circ}$, $a = 54^{\circ}$, $b = 80^{\circ}$, $p = 58^{\circ} 31'.5$?

5. By inspecting fig. 63 determine what are the limits of the sum of the sides of a convex spherical triangle, or of the sum of the face angles of a triedral angle; of the sum of the diedral angles of a triedral angle, or of the sum of the angles of a convex spherical triangle.

6. Construct in cardboard a spherical quadrilateral whose sides are 40°, 50°, 60°, 70° respectively. Are its angles determined?

104. Definitions and theorems. For the purpose of ready reference we give below certain definitions and theorems of Geometry upon which the proofs and discussions in Spherical Trigonometry depend.

(i) Theorem. A line drawn in one face of a right diedral angle perpendicular to the edge is perpendicular to the other face.

(ii) Theorem. If from the foot of a perpendicular to a plane a straight line is drawn at right angles to any line of the plane, and its intersection with that line is joined to any point of the perpendicular, this last line will be perpendicular to the line of the plane.

(iii) Theorem. A spherical angle is measured by the arc of a great circle described from its vertex as a pole and included between its sides, produced if necessary.

(iv) Definition. A quadrantal triangle is a spherical triangle one of whose sides is a quadrant.

(v) Definition. With the vertices of any spherical triangle ABC as poles let great circles be described, and let A' be that intersection of the circles described with B and C as poles which lies on the same side of BC as A does, and let B' and C' be similar intersections; then the spherical triangle A'B'C' is called the *polar triangle of ABC*.

Observe that, by § 103, there will be *eight* spherical triangles formed by the three great circles whose poles are A, B, and C respectively. Of these eight only the triangle A'B'C' is called the polar triangle of ABC.

(vi) Theorem. If one spherical triangle is the polar triangle of a second, then the second is also the polar triangle of the first.

(vii) Theorem. Let A'B'C' be the polar triangle of ABC; then

$A = 180^{\circ} - a',$	$A' = 180^{\circ} - a$,
$\mathbf{B} = \mathbf{180^{o}} - \mathbf{b'},$	$B' = 180^{\circ} - b$,
$C = 180^{\circ} - c',$	$C' = 180^{\circ} - c.$

(viii) Definition. A lune is a portion of a spherical surface bounded by the halves of two great circles.

(ix) Theorem. If from any point P on a hemisphere PN and PM are the two perpendiculars to the circumference of its base, and if PN > PM, then PN is the longest arc of a great circle which can be drawn from P to this base, and PM is the shortest.

105. As a review preparatory to the geometric constructions in § 106 we give the following problems on great circles.

(1) To draw a great circle through two given points.

About each of the two given points as a pole describe a great circle; about either of their intersections as a pole describe a great circle; this great circle will be the one required.

(2) To lay off on a great circle an arc of n°.

Separate the points of the dividers by a distance equal to the chord of an arc of n° , which is equal to $2r\sin(n^{\circ}/2)$. Place the points of the dividers on the great circle, and the intercepted arc will be the one required. (3) To construct a great circle making with a given great circle an angle of n°, the vertex being given.

About the given vertex as a pole describe a great circle. On this circle and measured from the given circle lay off an arc of n° . Through the end of this arc and the given vertex draw a great circle; this circle will be the one required.

(4) To find the poles of a given great circle.

About each of any two points of the given circle (not the ends of the same diameter) as a pole describe a great circle; the two intersections of these two circles will be the poles required.

(5) Through a given point to draw a great circle perpendicular to a given great circle.

Find a pole of the given circle by (4). Through this pole and the given point draw a great circle by (1); this circle will be the one required.

106. Construction of triangles. The actual construction of spherical triangles on a spherical blackboard in each of the following six cases will add much to the clearness of the student's concepts about spherical geometry, and will place him in an advantageous position with respect to the work which follows.

These constructions are not essential to the course, but they are strongly recommended if the student has the time and opportunity to make them.

To construct the spherical triangle ABC :

I. Given the three sides a, b, c.

On any great circle lay off an arc equal to one of the sides, as a. About one end of the arc a as a pole describe a circle with a *polar distance* equal to b; about the other end of arc aas a pole describe a circle with a polar distance equal to c. Join by arcs of great circles either of the two points of intersection of the last two circles with the ends of arc a; the triangle thus formed will be the required triangle. How many triangles are possible? Are these two triangles congruent or symmetrical?

Ex. 1. Given $a = 80^{\circ}$, $b = 75^{\circ}$, $c = 50^{\circ}$, construct the triangle ABC.

Ex. 2. Given $a = 100^\circ$, $b = 80^\circ$, $c = 125^\circ$; construct the triangle ABC.

Ex. 3. Measure the angles of the triangle ABC in example 2.

Ex. 4. Given $a = 130^{\circ}$, $b = 120^{\circ}$, $c = 140^{\circ}$; construct the triangle ABC.

II. Given the three angles A, B, C.

Compute the sides a', b', c' of the polar triangle A'B'C'; construct A'B'C' by the method in case I; draw ABC, the polar triangle of A'B'C'; then ABC will be the triangle required.

How many triangles are possible? Are they congruent or symmetrical?

Ex. 1. Given $A = 80^{\circ}$, $B = 75^{\circ}$, $C = 65^{\circ}$; construct the triangle ABC.

Ex. 2. Measure the sides of the triangle ABC in example 1.

Ex. 3. Compare this case with the corresponding case in plane triangles.

III. Given two sides and their included angle, as a, b, C.

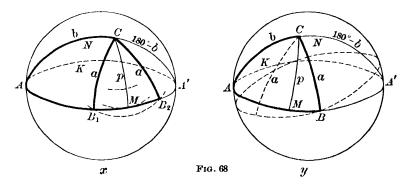
Recalling the corresponding case in plane triangles, the student will be able to construct the triangle ABC in this case.

How many triangles are possible? Are they congruent or symmetrical? Ex. 1. Given $a = 85^{\circ}$, $b = 115^{\circ}$, $C = 75^{\circ}$; construct the triangle ABC.

Ex. 2. Measure A, B, and c of the triangle ABC in example 1.

IV. Given two angles and their included side, as A, B, c.

Recalling the corresponding case in plane triangles, the student will be able to construct the triangle ABC in this case.


How many triangles are possible? Are they congruent or symmetrical? Ex. 1. Given $A = 85^{\circ}$, $B = 75^{\circ}$, $c = 65^{\circ}$; construct the triangle ABC. Ex. 2. Measure a, b, C of the triangle ABC in example 1.

V. Given two sides and an angle opposite one of them, as a, b, A.

In the figures on p. 159 $A < 90^{\circ}$. The student should draw two similar figures in which $A > 90^{\circ}$.

Construct the lune AMA'N whose angle is A (figs. 68).

On ANA' lay off are AC equal to b. About C as a pole and with a polar distance equal to a describe a circle. The intersection of this circle with the arc AMA' between A and A'

will be the third vertex B; join B and C with the arc of **a** great circle; then ABC will be the triangle required.

Review the corresponding case in plane triangles in § 58.

Discussion. From C draw an arc of a great circle perpendicular to the arc AMA', and denote its length in arc degrees by p.

The circle whose pole is C and whose polar distance is a will cut the great circle AMA'K in two points, be tangent to it at one point, or lie entirely above or entirely below it.

That a convex triangle may be possible, a point of intersection or a point of tangency must be on the semicircle AMA'between A and A'.

Four cases arise:

(i) When this circle intersects the arc AMA' (fig. x) in two points as B_1 and B_2 between A and A', there are two triangles AB_1C and AB_2C which have the given parts.

(ii) When this circle is tangent to AMA' (fig. x) at some point M between A and A', *i.e.* when a = p, the angle B of the required triangle is a right angle.

The two solutions in case (i) here become equal.

(iii) When this circle intersects the arc AMA' (fig. y) in one, and only one, point between A and A', there is one, and only one, convex triangle ABC which has the given parts.

(iv) When this circle does not intersect or touch the arc AMA' (fig. x) at any point between A and A', there is no convex triangle having the given parts.

These four cases may be stated otherwise as follows :

There are two convex triangles when the value of a lies between p and b and also between p and $180^{\circ} - b$.

There is one convex triangle when a = p, or when the value of a lies between p and b and not between p and $180^{\circ} - b$, or between p and $180^{\circ} - b$ and not between p and b.

No triangle (concave or convex) is possible when $A < 90^{\circ}$ and a < p, or when $A > 90^{\circ}$ and a > p [see (ix) in § 104].

Note. In case (i) or (ii) no reëntrant triangle is possible; in case (iii) there is always one reëntrant triangle having the given parts; in case (iv) there are two, one, or no reëntrant triangles having the given parts, according as the circle whose pole is C cuts or touches the arc AKA' between A and A' in two, one, or no points.

VI. Given two angles and the side opposite one of them, as A, B, a.

Compute the parts a', b', A' of the polar triangle A'B'C'; construct the triangle A'B'C' by the method in case V; draw the triangle ABC, the polar of A'B'C'; then the triangle ABC will be the one required.

Ex. 1. Given $a = 65^{\circ}$, $b = 85^{\circ}$, $A = 60^{\circ}$; construct the triangle ABC.

Ex. 2. Measure B, C, c of the triangle ABC in example 1.

Ex. 3. Given $A = 50^{\circ}$, $B = 40^{\circ}$, $a = 45^{\circ}$; construct the triangle ABC.

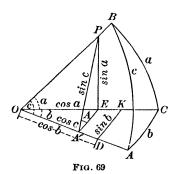
Ex. 4. Measure b, c, C of the triangle ABC in example 3.

Ex. 5. Given $a = 25^{\circ}$, $b = 65^{\circ}$, $A = 50^{\circ}$; construct the triangle ABC.

Ex. 6. Measure B, C, c of the triangle ABC in example 5.

Ex. 7. Given $A = 70^{\circ}$, $C = 85^{\circ}$, $b = 80^{\circ}$; construct the triangle ABC.

Ex. 8. If the angle A (figs. 68, x, and 68, y) were constructed on the other side of the arc AMA', would the triangles having the given parts be congruent or symmetrical with those in the figures?


CHAPTER XI

RIGHT SPHERICAL TRIANGLES

107. Spherical trigonometry treats of the relations between the six parts (three sides and three angles) of a spherical triangle and of its solution.

By § 102 these relations are the same as those between the six parts (three face and three diedral angles) of a triedral angle. Hence if we prove any relation between the parts of a triedral angle, we know that the same relation exists between the corresponding parts of a spherical triangle, and conversely.

108. Relations between the sides and angles of a right spherical triangle. Let ABC be a right spherical triangle, C the right

angle, and a and b each less than 90°. Draw the radii OA, OB, OC, thus forming the triedral angle O-ABC.

Take OP = OK = 1. From K draw $KD \perp OA$, from P draw PE $\perp OC$, from E draw $EA' \perp OA$, and join A'P.

Then, by (i) in § 104, PE is perpendicular to the plane OCA.

Hence

 $\angle PEA' = 90^{\circ}$.

By (ii) in § 104,

 $PA' \perp OA.$

Therefore, by § 101, we have

$$\angle EA'P = A.$$

RIGHT SPHERICAL TRIANGLE 163

In the two similar triangles OEA' and OKD, OE / OK = OA' / OD. $\therefore \cos a = \cos c / \cos b$, or $\cos c = \cos a \cos b$. (1) $\sin A = EP \,/\, A'P,$ In $\triangle A'EP$, $\frac{\sin A = \sin a / \sin c}{\sin B = \sin b / \sin c}$ or (2)By symmetry, $\cos A = \frac{A'E}{A'P} = \frac{A'E/OA'}{A'P/OA'} = \frac{\tan A'OE}{\tan A'OP},$ Again, $\cos A = \tan b / \tan c_{.}$ or (3) $\cos \mathbf{B} = \tan \mathbf{a} / \tan \mathbf{c}$. By symmetry, $\tan A = \frac{EP}{A'E} = \frac{EP/OE}{A'E/OE} = \frac{\tan EOP}{\sin A'OE},$ Also, $\tan A = \tan a / \sin b$. or (4) $\tan B = \tan b / \sin a$. By symmetry, § 24 Again, $\sin A \equiv \tan A \cos A$, $\tan A \cos A = \frac{\tan a}{\sin b} \cdot \frac{\tan b}{\tan c}$ by (3), (4) and $= (\tan a / \tan c) / \cos b$ § 24 $= \cos B / \cos b.$ by (3) Hence $\sin \mathbf{A} = \cos \mathbf{B} / \cos \mathbf{b}.$ (5) $\sin B = \cos A / \cos a$. By symmetry, From (1), (5), $\cos c = \cot A \cot B.$ (6)

Observe that since $a < 90^{\circ}$ and $b < 90^{\circ}$, $\cos c \cdot is$ positive in the figure; hence $c < 90^{\circ}$ when a and b are both less than 90° .

Example. Taking BC as the base, on OA taking OM = 1, from M drawing $MN \perp OB$, etc., deduce the value of sin B in (2), cos B in (3), and tan B in (4), geometrically.

Note 1. In § 109 it will be proved that these relations hold true when either a or b or both a and b are greater than 90°. This general proof may be omitted in the first reading at the option of the teacher.

NOTE 2. The student should memorize the ten formulas (1) to (6) above or their word statement (1) to (6) below, or use Napier's rules, which are found in §110. Opinions differ as to which is the better thing to do, but one must be done thoroughly. If Napier's rules are used, the exercise below may be omitted and the reproduction of the proofs of the formulas (1) to (6) may be deferred until these rules are learned.

The relations (1) to (6) may be stated in words as follows:

$$\cos hypotenuse = product of \cos of sides.$$
 (1)

sin angle	= sin side opposite / sin hypotenuse.	(2)
cos angle	= tan side adjacent / tan hypotenuse.	(3)
tan angle	= tan side opposite / sin side adjacent.	(4)
sin angle	$= \cos remaining \ angle / \cos side \ adjacent.$	(5)
cos hypotenuse	= product of cotangents of angles.	(6)

NOTE. Compare the relations (2), (3), (4) with the corresponding relations in plane triangles (§ 7). Observe that no one of these formulas involves the right angle.

EXERCISE XXXV

 Write the equations for finding A, a, and c from b and B.
 To find A, we select (5), which involves A, B, b, and obtain sin A = cos B/cos b.

To find a, we select (4), which involves a, b, B, and obtain $\sin a = \tan b / \tan B$.

To find c, we select (2), which involves c, b, B, and obtain $\sin c = \sin b / \sin B$.

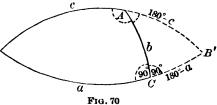
2. Write the equations for finding a, A, B from b and c.

3. Write the equations for finding a, b, B from A and c.

4. Write the equations for finding A, b, c from a and B.

164

109. General proof of relations (1) to (6) in § 108.


I. Both sides about the right angle less than 90°.

This case was proved in § 108.

II. One side about the right angle less than 90° and the other side greater than 90° .

In the spherical triangle ABC, let $C = 90^{\circ}$, $a > 90^{\circ}$, and $b < 90^{\circ}$.

Produce the arcs aand c to meet in some point, as B', thus forming the lune BB' and the right-angled triangle AB'C. The sides band 180° a will each h

and $180^{\circ} - a$ will each be less than 90° ; hence, by § 108, in the triangle ACB' we have

$$\cos(180^\circ - c) = \cos b \cos(180^\circ - a).$$

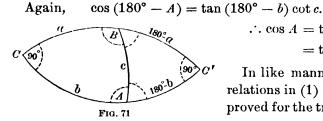
 $\therefore \cos c = \cos b \cos a.$

Again, $\cos(180^\circ - A) = \tan b \cot(180^\circ - c)$.

 $\therefore \cos A = \tan b \cot c = \tan b / \tan c.$

In like manner the other relations in (1) to (6) can be proved for the triangle ABC.

III. Both sides about the right angle greater than 90°.


In $\triangle ABC$ (fig. 71) let $C = 90^{\circ}$, $a > 90^{\circ}$, $b > 90^{\circ}$.

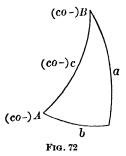
Produce the arcs a and b to meet in some point, as C', thus forming the lune CC' and the right-angled triangle ABC'.

The sides $180^\circ - a$ and $180^\circ - b$ will each be less than 90° ; hence, by § 108, in the triangle ABC' we have

$$\cos c = \cos (180^\circ - a) \cos (180^\circ - b).$$

 $\therefore \cos c = \cos a \cos b.$

 $= \tan b / \tan c$. In like manner the other relations in (1) to (6) can be proved for the triangle ABC.


 $\therefore \cos A = \tan b \cot c$

Denote the complement of A by co-A, etc. 110. Napier's rules.

If in the ten equations (1) to (6) in § 108 we substitute for each function of A, B, or c the equal co-function of co-A, co-B, or co-c, we obtain the ten following relations:

 $= \cos(co-c)\cos(co-A)$ or $\tan b \tan(co-B)$. sin a from (2), (4) $= \cos(co-c)\cos(co-B)$ or $\tan a \tan(co-A)$. sin b $\sin(co-A) = \cos a \cos(co-B)$ or $\tan b \tan(co-c)$. from (3), (5) $\sin(co-B) = \cos b \cos(co-A)$ or $\tan a \tan(co-c)$. $\sin(co-c) = \cos a \cos b$ or $\tan(co-A) \tan(co-B)$. from (1), (6)

The quantities a, b, co-A, co-B, co-c which appear in the equations above are called circular parts.

As in fig. 72, write (co-) before A, B, and c.

Choose any circular part, as a; then the two circular parts, b and co-B, which are next to a in the figure, are said to be adjacent to the middle part a; while the two circular parts, co-c and co-A, which are each separated from a by an intervening part in the figure, are said to be opposite to a.

Example. In each equation above, taking the circular part in the first member as the middle

part, show that the second member contains either the cosines of the two opposite parts or the tangents of the two adjacent parts.

The ten equations above can be stated in the two following simple rules, called Napier's rules of circular parts.

I. The sine of any circular part is equal to the product of the tangents of the two adjacent circular parts.

II. The sine of any circular part is equal to the product of the cosines of the two opposite circular parts.

EXERCISE XXXVI

1. By Napier's rules write each of the ten equations in § 110, and from them write the ten equations in § 108.

2. Write each of the ten equations in § 108 directly from Napier's rules.

3. Write the equations for finding b, B, and c from a and A.

To find b from a and A, we select b as the *middle* part, and from rule I we obtain

$$\sin b \left[= \tan a \tan \left(\operatorname{co-} A \right) \right] = \tan a \cot A. \tag{1}$$

To find B from a and A, we select co-A as the middle part, and from rule II we obtain

$$\sin(\operatorname{co-}A) [= \cos a \cos(\operatorname{co-}B)] = \cos a \sin B.$$

$$\therefore \sin B = \cos A / \cos a. \tag{2}$$

To find c from a and A, we select a as the middle part, and obtain

 $\sin \alpha [= \cos (\operatorname{co-} c) \cos (\operatorname{co-} A)] = \sin c \sin A.$ (3) $\therefore \sin c = \sin \alpha / \sin A.$

The bracketed work in (1), (2), (3) should be done mentally.

4. Solve examples 2, 3, and 4 in Exercise XXXV.

111. Relation of parts to 90°.

I. The hypotenuse is less than 90° when the sides about the right angle are in the same quadrant, and it is greater than 90° when these sides are in different quadrants; and conversely.

From $\cos c = \cos a \cos b$ § 108

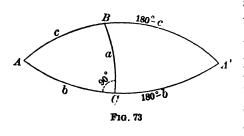
it follows that when a and b are in the same quadrant $\cos c$ is positive; hence c is less than 90°; and conversely.

When a and b are in different quadrants $\cos c$ is negative; hence c is greater than 90°; and conversely.

Example. If either a or b is 90°, c also is 90°; and conversely.

II. Either oblique angle and its opposite side are in the same quadrant.

From $\sin A = \cos B / \cos b$ § 108


it follows (since sin A is always positive) that $\cos B$ and $\cos b$ are both positive or both negative; hence B and b are both less than 90° or both greater than 90°.

Ex. 1. If $b = .90^{\circ}$, $B = 90^{\circ}$, and conversely. If $A = 90^{\circ}$, B = b. Ex. 2. If $b < 90^{\circ}$ and $c > 90^{\circ}$, show that $B < 90^{\circ}$, $a > 90^{\circ}$, $A > 90^{\circ}$. Ex. 3. If $b > 90^{\circ}$ and $a < 90^{\circ}$, show that $B > 90^{\circ}$, $A < 90^{\circ}$, $c > 90^{\circ}$. Ex. 4. If $B > 90^{\circ}$ and $a < 90^{\circ}$, show that $b > 90^{\circ}$, $A < 90^{\circ}$, $c > 90^{\circ}$.

Note. Observe that when two parts of a right triangle are given the two foregoing principles determine the relation of each of the other parts to 90°, except when the two parts are a side and its opposite angle. In this case, as will be shown in § 112, there are two solutions.

112. Case of two solutions. When the given parts are a side and its opposite angle, each required part is found through its sine (example 1 in Exercise XXXV or example 3 in Exercise XXXVI); hence the formulas give supplementary values for each required part, and we obtain two solutions.

That in this case there are two solutions is easily seen geometrically. For in $\triangle ABC$ (fig. 73) let $C = 90^{\circ}$ and let a and A be the given parts. Complete the lune AA'; then $\angle A' = \angle A$,

and the $\triangle A'BC$ also has the given parts *a* and *A*. Hence there are two $\triangle ABC$ and A'BC which have the given parts, and in which any two corresponding required parts are supplementary.

Ex. 1. When a = A, $\sin b = \sin B = \sin c = 1$; hence each required part is 90°, and the two solutions are equal.

Ex. 2. When $A < 90^{\circ}$ and a > A, or when $A > 90^{\circ}$ and a < A, $\sin b > 1$, $\sin b > 1$, $\sin c > 1$; hence the triangle is impossible.

168

113. In solving right triangles observe the following steps:

(1) Clearly state the problem.

(2) Write the equations for finding *each* of the required parts directly from the given parts.

(3) Solve these equations. To determine the relation of each equired part to 90°, use the principles in §111.

Or when the required part is found through its cosine, tangent, or cotangent, its relation to 90° can be determined by noting the quality of its function.

(4) As a *check*, use a relation involving the three required parts.

Example. What is the reason for finding each required part directly from the given parts?

EXERCISE XXXVII

 $\begin{cases} C = 90^{\circ}, \\ b = 40^{\circ}, \\ c = 63^{\circ} 56^{\circ}, \end{cases} \text{ to find } \begin{cases} \alpha = 54^{\circ} 59^{\circ} 47^{\prime\prime\prime}, \\ A = 65^{\circ} 45^{\circ} 58^{\prime\prime}, \\ B = 45^{\circ} 41^{\prime} 28^{\prime\prime}. \end{cases}$ 1. Given $a < 90^{\circ}, A = 90^{\circ}, B = 90^{\circ}.$ By §111, $\begin{cases} \cos a = \cos c / \cos b, \\ \cos A = c \operatorname{st} c \tan b, \\ \sin B = \sin b / \sin c. \end{cases}$ Formulas Logarithmic formulas $\begin{cases} \log \cos a = \log \cos c - \log \cos b, \\ \log \cos A = \log \cot c + \log \tan b, \\ \log \sin B = \log \sin b - \log \sin c. \end{cases}$ $\log \cos c = 19.64288 - 20$ $\log \sin b = 19.80807 - 20$ $\log \cos b = 9.88425 - 10$ $\log \sin c = 9.95341 - 10$ $\therefore \log \cos a = 9.75863 - 10$ $\dots \log \sin B = 9.85466 - 10$ $B = 45^{\circ} 41' 28''$. $a = 54^{\circ} 59' 47''$ Check. $\cos A = \cos a \sin B$. $\log \cot c = 9.68946 - 10$ $\log \cos a = 9.75863 - 10$ $\log \tan b = 9.92381 - 10$ $\log \sin B = 9.85466 - 10$ $\therefore \log \cos A = 9.61327 - 10$ $\therefore \log \cos A = 9.61329 - 10$ · A = 65° 45′ 58″.

2. Given $\begin{cases} C = 90^{\circ}, \\ a = 134^{\circ}, \text{ to find} \\ A = 105^{\circ}, \end{cases} \begin{cases} b_1 = 16^{\circ} 6' 33'', b_2 = 163^{\circ} 53' 27'', \\ B_1 = 21^{\circ} 52' 31'', B_2 = 158^{\circ} 7' 29'', \\ c_1 = 131^{\circ} 51' 55'', c_2 = 48^{\circ} 8' 5''. \end{cases}$ $\begin{cases} \sin b = \tan a \cot A, \\ \sin B = \cos A / \cos a, \\ \sin c = \sin a / \sin A. \end{cases}$ Formulas $\log \tan a = 0.01516$ $\log \sin a = 19.85693 - 20$ $\log \cot A = 9.42805 - 10$ $\log \sin A = -9.98494 - 10$ $\therefore \log \sin b = 9.44321 - 10$, $\log \sin c = 9.87199 - 10$ $\therefore b = 16^{\circ} 6' 33'' \text{ or } 163^{\circ} 53' 27'', \quad c = 48^{\circ} 8' 5'' \text{ or } 131^{\circ} 51' 55'',$ Check. $\sin b = \sin B \sin c$. $\log \cos A = 19.41300 - 20$ $\log \sin B = 9.57123 - 10$ $\log \cos a = 9.84177 - 10$ $\log \sin c = 9.87199 - 10$ $\log \sin B = 9.57123 - 10$ $\log \sin b = 9.44322 - 10$ $B = 21^{\circ} 52' 31'' \text{ or } 158^{\circ} 7' 29''.$

By § 111, when $b < 90^{\circ}$, $B < 90^{\circ}$ and $c > 90^{\circ}$; and when $b > 90^{\circ}$, $B > 90^{\circ}$ and $c < 90^{\circ}$. Hence the values of b, B, and c are grouped as above.

3. Show that the triangle ABC is impossible when $C = 90^{\circ}$, $a = 47^{\circ}$, $A = 93^{\circ}$; also when $C = 90^{\circ}$, $a = 52^{\circ}$, $A = 90^{\circ}$.

Solve the triangle ABC in which $C = 90^{\circ}$ and check the results, given :4 $a = 70^{\circ} 28'$, $c = 98^{\circ} 18'$ 5. $a = 36^{\circ} 25' 30''$, $b = 85^{\circ} 40'$.13 $a = 47^{\circ} 40'$, $A = 30^{\circ} 43'$.6 $c = 120^{\circ} 20' 30''$, $a = 47^{\circ} 30' 40''$.14. $a = 64^{\circ} 29'$, $A = 78^{\circ} 10'$.7. $c := 78^{\circ} 25'$, $A = 36^{\circ} 42' 30''$.15. $c = 78^{\circ} 20'$, $B = 47^{\circ} 50'$.8. $A = 53^{\circ} 23'$, $c = 108^{\circ}$.9. $a = 122^{\circ} 15'$, $B = 14^{\circ} 20'$.10. $a = 108^{\circ} 45'$, $B = 37^{\circ} 42'$.11. $A = 63^{\circ} 18'$, $B = 37^{\circ} 47'$.12. $A = 106^{\circ}$, $B = 106^{\circ}$.13. $a = 47^{\circ} 30' 40''$.14. $a = 64^{\circ} 29'$, $A = 78^{\circ} 10'$.15. $c = 78^{\circ} 20'$, $B = 47^{\circ} 50'$.16. $c = 84^{\circ} 47'$, $b = 39^{\circ} 43'$.17. $A = 124^{\circ} 30'$, $b = 25^{\circ} 40'$.18. $B = 100^{\circ}$, $b = 106^{\circ}$.19. $A = 76^{\circ} 15'$, $B = 49^{\circ} 3'$.

20. Write all the groups of three elements that can be formed from a, b, c, A, B, such as abc, abA, etc.

21. Write the formula which involves the elements of each group in example 20.

Observe that from examples 20 and 21 it follows that the ten formulas in § 108 are necessary and sufficient to express each unknown part of a right triangle in terms of any two known parts. 114. Solution of quadrantal and isosceles triangles. The polar triangle [(vii), 104] of a quadrantal spherical triangle is right angled. Hence to solve a quadrantal triangle we can solve its polar triangle and from this obtain the required parts of the quadrantal triangle.

If a spherical triangle is bi-quadrantal, two of its angles are right angles, and the vertical angle of this isosceles triangle is measured by its opposite side. If a triangle is tri-quadrantal, all its angles are right angles.

In an *isosceles spherical triangle* the arc drawn from the vertex at right angles to the base bisects the base and the vertical angle, thus forming two right spherical triangles of which two parts besides the right angle will be known when any two parts of the isosceles triangle are given.

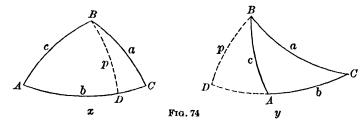
EXERCISE XXXVIII

1. Given $a = 66^{\circ} 32'$, $b = 59^{\circ} 43'$, $c = 90^{\circ}$; to find A, B, C.

2. Given $a = 123^{\circ} 48' 24''$, $C = 67^{\circ} 12'$, $c = 90^{\circ}$; to find A, B, b.

- **3.** Given $C = 136^{\circ} 4'$, $B = 140^{\circ}$, $c = 90^{\circ}$; to find a, b, A.
- 4. Given $b = c = 81^{\circ} 24'$, $A = 72^{\circ} 40'$; to find a, B, C.
- 5. Given $a = b = 54^{\circ} 20'$, $c = 72^{\circ} 54'$; to find A, B, C.
- 6. Given $a = b = 54^{\circ} 30'$, $C = 71^{\circ}$; to find A, B, c.
- 7. Given a = b, $c = 116^{\circ} 40'$, $C = 127^{\circ} 46'$; to find a, b, A, B.

CHAPTER XII


RELATIONS BETWEEN THE SIDES AND ANGLES OF SPHERICAL TRIANGLES

115. Law of sines and laws of cosines. Law of sines. Let ABC (fig. 74) be any spherical triangle. In fig. $x, A < 90^{\circ}$ and $C < 90^{\circ}$, or $A > 90^{\circ}$ and $C > 90^{\circ}$. In fig. $y, A > 90^{\circ}$ and $C < 90^{\circ}$. From B draw $BD \perp CA$ or CA produced.

In $\triangle BCD$, $\sin p = \sin a \sin C$. § 108

Since

$$\sin DAB = \sin A, \qquad \S 30$$

in $\triangle ABD$,

 $\sin p = \sin c \sin DAB = \sin c \sin A.$

Hence $\sin a \sin c = \sin c \sin A$.

 $\therefore \sin a / \sin A = \sin c / \sin C.$ (1)

Similarly, or by symmetry from (1), we obtain

 $\sin a / \sin A = \sin b / \sin B.$

Hence
$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$
 [41]

That is, the sines of the sides of a spherical triangle are proportional to the sines of the opposite angles. Ex. 1. Compare [41] with [23] in Plane Trigonometry.

Observe that when two of three known parts of a spherical triangle are a side and its opposite angle, a fourth part can always be obtained by the law of sines. Compare § 54.

Law of cosines for the sides.

In figures 74 regard AD, DC, and AC, or b, as directed arcs; then in each figure we have

$$b = AD + DC, \text{ or } DC = b - AD.$$
(1)

By §108,
$$\tan AD = \tan c \cos A$$
, (2)

and

$$\cos a = \cos DC \cos p$$

$$= \cos(b - AD) \cos p \qquad \qquad \text{by (1)}$$

$$= \cos b \cos A D \cos p + \sin b \sin A D \cos p. (3)$$

By § 108, $\cos AD \cos p = \cos c.$ (4) Whence $\cos p = \cos c / \cos AD.$

$$\therefore \sin AD \cos p = \cos c \tan AD$$

 $= \cos c \tan c \cos A$ by (2)

$$= \sin c \cos A. \tag{5}$$

Substituting in (3) for $\cos AD \cos p$ and $\sin AD \cos p$ their values in (4) and (5), we obtain

$$\cos a = \cos b \cos c + \sin b \sin c \cos A.$$
 [42]

Similarly, or by symmetry from [42], we have

$$\cos b = \cos c \cos a + \sin c \sin a \cos B,$$

$$\cos c = \cos a \cos b + \sin a \sin b \cos C.$$

That is, the cosine of any side of a spherical triangle is equal to the product of the cosines of the other two sides plus the product of the sines of these two sides and the cosine of their included angle.

Observe that (2) holds true in fig. y, since $\tan AD$ is negative and $\cos A = -\cos DAB$.

Ex. 2. Compare [42] with [24] in Plane Trigonometry. Law of cosines for the angles. Let A'B'C' be the polar triangle of ABC. By [42], $\cos a' = \cos b' \cos c' + \sin b' \sin c' \cos A'$. Substituting for a', b', c', A' their equals, $180^{\circ} - A, 180^{\circ} - B$, $180^{\circ} - C, 180^{\circ} - a$ respectively, we obtain $\cos (180^{\circ} - A) = \cos (180^{\circ} - B) \cos (180^{\circ} - C)$ $+ \sin (180^{\circ} - B) \sin (180^{\circ} - C) \cos (180^{\circ} - a)$. $\therefore \cos A = -\cos B \cos C + \sin B \sin C \cos a$. [43]

Similarly, or by symmetry from $\lceil 43 \rceil$, we have

$$\cos B = -\cos C \cos A + \sin C \sin A \cos b,$$

$$\cos C = -\cos A \cos B + \sin A \sin B \cos c.$$

Ex. 3. State formula [43] in words.

COR. From [42],
$$\cos A = (\cos a - \cos b \cos c) / (\sin b \sin c)$$
. (1)

The denominator $\sin b \sin c$ in (1) is always positive.

If a differs more from 90° than does b or c, then $\cos a > \cos b \cos c$, arithmetically; whence from (1) $\cos A$ and $\cos a$ have the same quality.

Hence A and a are in the same quadrant when a differs more from 90° than does b or c.

From [43],
$$\cos a = (\cos A + \cos B \cos C) / (\sin B \sin C).$$
 (2)

Hence a and A are in the same quadrant when A differs more from 90° than does B or C.

Nore The law of cosines for the sides is *fundamental* and *most important* in Spherical Trigonometry, for it can be proved directly (example 7, Exercise XXXIX), and from it the law of sines can be deduced; and from these two laws Napier's rules and all the other formulas of Spherical Trigonometry can be obtained. As the law of cosines is not adapted to logarithmic computation, we must deduce from it other formulas which are. Before doing so, however, we shall, in Exercise XXXIX, illustrate how oblique triangles can be solved by the laws above. This exercise is not essential to the course and may be

EXERCISE XXXIX

1. Write the equations for finding the three angles from the three ides. Compare § 55.

From [42], $\cos A = (\cos a - \cos b \cos c) / (\sin b \sin c)$.

From [41], $\sin B = \sin b \sin A / \sin a$,

 $\sin C = \sin c \sin A / \sin a$

2. Write the equations for finding the three sides from the three ingles.

From [43], $\cos a = (\cos A + \cos B \cos C) / (\sin B \sin C)$. From [41], $\sin b = \sin a \sin B / \sin A$, $\sin c = \sin a \sin C / \sin A$.

3. Write the equations for finding A, B, c from a, b, C.

Observe that when two sides and their included angle are known, the hird side can be found by [42] and the other two angles by [41]. Comnare § 55.

4. Write the equations for finding A, b, c from B, C, a.

Observe that when two angles and their included side are known, the hird angle can be found by [43] and the other two sides by [41].

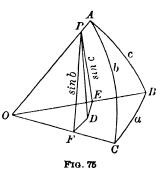
5. Write the equations for finding A, C, c from a, b, B.

Find A by [41]. To find c we use [42]; but as this equation involves oth sin c and $\cos c$, its solution for $\sin c$ would involve radicals. This llustrates the necessity of deducing from [42] other formulas that will be simpler for this case and its converse.

6. Prove the law of sines geometrically when each side is less than 90°.

Take OP = 1. Draw $PD \perp OCB$, $DE \perp OB$, and $DF \perp OC$, and join PE. nd PF; then $PE \perp OB$ and $PF \perp OC$.

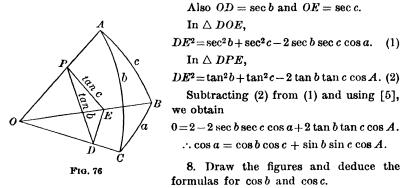
 $\therefore \angle DFP = C$, and $\angle DEP = B$.


Hence, in $\triangle DFP$,

$$\sin C = DP / \sin b$$

In \triangle DEP,

 $\sin B = DP / \sin c.$


 $\therefore \sin B / \sin C = \sin b / \sin c, \text{ or } \sin b / \sin B = \sin c / \sin C.$

175

7. Prove the law of cosines geometrically when each side is less than 90° .

Take OP = 1. In the face COA draw $PD \perp OA$ at P, and in the face BOA draw $PE \perp OA$ at P; then $\angle DPE = A$ and $\angle COB = a$.

9. By means of polar triangles derive the formulas for $\cos B$ and $\cos C$ from those for $\cos b$ and $\cos c$.

10. Putting $C = 90^{\circ}$ in the law of sines and the law of cosines, deduce the relations (1), (2), (5), (6) in § 108.

11. From [42] and (1) in § 108 deduce (3) in § 108.

12. Deduce (4) in § 108 by dividing (2) by (3) and then using (1).

116. Half angles in terms of the sides.

From [42],
$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$
 (1)

By [16],
$$\sin^2(A/2) \equiv (1 - \cos A)/2.$$
 (2)

From (1), (2), $\sin^2 \frac{A}{2} = \frac{\cos b \cos c + \sin b \sin c - \cos a}{2 \sin b \sin c}$

By [10],
$$= \frac{\cos{(b-c)} - \cos{a}}{2\sin{b}\sin{c}}$$

By [22],
$$= \frac{\sin \frac{1}{2}(a-b+c)\sin \frac{1}{2}(a+b-c)}{\sin b \sin c}$$
 (3)

Again, $\cos^2(A/2) \equiv (1 + \cos A)/2.$

Hence
$$\cos^{2} \frac{A}{2} = \frac{\cos a + \sin b \sin c - \cos b \cos c}{2 \sin b \sin c}$$
$$= \frac{\cos a - \cos (b + c)}{2 \sin b \sin c}$$
$$= \frac{\sin \frac{1}{2}(a + b + c) \sin \frac{1}{2}(b + c - a)}{\sin b \sin c}.$$
(4)

Let a + b + c = 2s; then b + c - a = 2(s - a),

$$a - b + c = 2(s - b),$$
 $a + b - c = 2(s - c).$

Substituting these values in (3) and (4), we obtain

$$\sin \frac{\mathbf{A}}{2} = \sqrt{\frac{\sin (\mathbf{s} - \mathbf{b}) \sin (\mathbf{s} - \mathbf{c})}{\sin \mathbf{b} \sin \mathbf{c}}},$$

$$\cos \frac{\mathbf{A}}{2} = \sqrt{\frac{\sin \mathbf{s} \sin \mathbf{s} \sin (\mathbf{s} - \mathbf{a})}{\sin \mathbf{b} \sin \mathbf{c}}}.$$
Dividing,
$$\tan \frac{\mathbf{A}}{2} = \sqrt{\frac{\sin (\mathbf{s} - \mathbf{b}) \sin (\mathbf{s} - \mathbf{c})}{\sin \mathbf{s} \sin (\mathbf{s} - \mathbf{a})}}.$$
[44]

Similarly, or by symmetry from [44], we have

$$\sin \frac{B}{2} = \sqrt{\frac{\sin(s-a)\sin(s-c)}{\sin a \sin c}}, \ \sin \frac{C}{2} = \sqrt{\frac{\sin(s-a)\sin(s-b)}{\sin a \sin b}};$$

$$\cos \frac{B}{2} = \sqrt{\frac{\sin s \sin(s-b)}{\sin a \sin c}}, \ \cos \frac{C}{2} = \sqrt{\frac{\sin s \sin(s-c)}{\sin a \sin b}};$$

$$\tan \frac{B}{2} = \sqrt{\frac{\sin(s-a)\sin(s-c)}{\sin s \sin(s-b)}}, \ \tan \frac{C}{2} = \sqrt{\frac{\sin(s-a)\sin(s-b)}{\sin s \sin(s-c)}}.$$
(5)

Compare [44] with [28] in Plane Trigonometry.

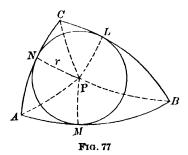
Observe that when the three sides are known, by the formulas above we can find the half of any angle of a triangle through its sine, cosine, or tangent.

NOTE. Since A, B, C are each less than 180°, the sines, cosines, and tangents of A/2, B/2, and C/2 are each positive; hence only the positive value of each radical is taken.

Multiplying the value of $\tan(A/2)$ in [44] by

$$\sqrt{\sin{(s-a)}}/\sqrt{\sin{(s-a)}},$$

we obtain the more symmetrical form


$$\tan\frac{A}{2} = \frac{1}{\sin(s-a)} \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}}.$$

Let $\tan r = \sqrt{\sin(s-a)\sin(s-b)\sin(s-c)/\sin s};$ then $\tan(A/2) = \tan r/\sin(s-a).$ [45]

Similarly, or by symmetry from [45], we obtain

$$\tan\frac{B}{2} = \frac{\tan r}{\sin(s-b)}, \qquad \tan\frac{C}{2} = \frac{\tan r}{\sin(s-c)}.$$
 (6)

Note 1. The pole of the circle inscribed in a spherical triangle ABC is the point of intersection P of the arcs of great circles which bisect

the angles A, B, C of the triangle. From P draw arcs of great circles to the points of contact L, M, N; then $PL \perp CB$, $PN \perp AC$, $PM \perp AB$, and PL = PM = PN.

 $\therefore AM = AN, MB = LB, NC = LC.$ $\therefore AM + MB + NC = s.$ $\therefore c + NC = s, \text{ or } NC = s - c.$ $\ln \triangle PNC,$

sin $NC = \tan PN \cot NCP$.

$$r. \tan PN = \sin NC \tan NCP = \sin (s-c) \tan (C/2)$$
$$= \sqrt{\sin (s-a) \sin (s-b) \sin (s-c)/\sin s}. \qquad \text{by (5)}$$

Hence $\tan r$ in [45] is equal to $\tan PN$ above; that is, r in [45] is the polar distance of the circle inscribed in the triangle ABC.

NOTE 2. If the teacher so desires, Chapter XIII may now be taken up and this chapter completed by mastering each principle as it is needed in the solution of triangles.

Example. State [44] and [45] in words.

117. Half sides in terms of the angles.

From [43], $\cos a = \frac{\cos A + \cos B \cos C}{\sin B \sin C}$.

Find $\sin^2(a/2)$ and $\cos^2(a/2)$ as we found $\sin^2(A/2)$ and $\cos^2(A/2)$ in § 116.

Then, putting A + B + C = 2S, etc., we obtain

$$\sin \frac{a}{2} = \sqrt{\frac{-\cos S \cos (S - A)}{\sin B \sin C}},$$

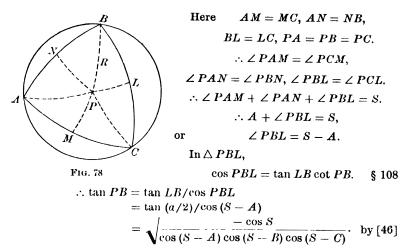
$$\cos \frac{a}{2} = \sqrt{\frac{\cos (S - B) \cos (S - C)}{\sin B \sin C}},$$

$$\tan \frac{a}{2} = \sqrt{\frac{-\cos S \cos (S - A)}{\cos (S - B) \cos (S - C)}}.$$
[46]

Similarly, or by symmetry from [46], we obtain

$$\sin \frac{b}{2} = \sqrt{\frac{-\cos S \cos (S-B)}{\sin A \sin C}}, \quad \sin \frac{c}{2} = \sqrt{\frac{-\cos S \cos (S-C)}{\sin A \sin B}};$$

$$\cos \frac{b}{2} = \sqrt{\frac{\cos (S-A)\cos(S-C)}{\sin A \sin C}}, \quad \cos \frac{c}{2} = \sqrt{\frac{\cos (S-A)\cos(S-B)}{\sin A \sin B}};$$


$$\tan \frac{b}{2} = \sqrt{\frac{-\cos S \cos (S-B)}{\cos (S-A)\cos (S-C)}}, \quad \tan \frac{c}{2} = \sqrt{\frac{-\cos S \cos (S-C)}{\cos (S-A)\cos (S-B)}}.$$
(1)

Let
$$\tan R = \sqrt{\frac{-\cos S}{\cos(S - A)\cos(S - B)\cos(S - C)}};$$
 [47]
then $\tan(a/2) = \tan R \cos(S - A).$

Similarly, or by symmetry from [47],

$$\tan(b/2) = \tan R \cos(S - B), \ \tan(c/2) = \tan R \cos(S - C).$$
 (2)

Note. The pole of the circle circumscribing a spherical triangle ABC (fig. 78) is the point of intersection P of the arcs of great circles perpendicular to the sides of the triangle at their middle points L, M, N.

Hence $\tan R$ in [47] is equal to $\tan PB$ above; hence **R** in [47] is the polar distance of the circle circumscribing the triangle ABC.

Observe that when the three angles are known, by the formulas above we can find the half of any side of a triangle through its sine, cosine, or tangent.

Example. State [46] and [47] in words.

118. Napier's analogies, or proportions.

Dividing $\tan(A/2)$ by $\tan(B/2)$ in [45], we obtain

$$\frac{\tan\left(\frac{.1/2}{B/2}\right)}{\tan\left(\frac{.1/2}{B/2}\right)} = \frac{\sin(s-b)}{\sin(s-a)}$$

Taking this proportion by composition and division, we have

$$\frac{\tan{(1/2)} + \tan{(B/2)}}{\tan{(A/2)} - \tan{(B/2)}} = \frac{\sin{(s-b)} + \sin{(s-a)}}{\sin{(s-b)} - \sin{(s-a)}}.$$

Transforming the first member by identity [2], and the second by [19] and [20], we obtain

$$\frac{\sin(A/2)\cos(B/2) + \cos(A/2)\sin(B/2)}{\sin(A/2)\cos(B/2) - \cos(A/2)\sin(B/2)} = \frac{\sin\frac{1}{2}(2s - a - b)\cos\frac{1}{2}(a - b)}{\cos\frac{1}{2}(2s - a - b)\sin\frac{1}{2}(a - b)}.$$

Transforming by identities [7], [9], [2], we obtain

$$\frac{\sin \frac{1}{2}(\mathbf{A} + \mathbf{B})}{\sin \frac{1}{2}(\mathbf{A} - \mathbf{B})} = \frac{\tan(c/2)}{\tan \frac{1}{2}(a - b)}.$$
 [48]

Multiplying
$$\tan (A/2)$$
 by $\tan (B/2)$ in [44], we obtain

$$\frac{\sin (A/2) \sin (B/2)}{\cos (A/2) \cos (B/2)} = \frac{\sin (s-c)}{\sin s} \cdot \frac{\cos (A/2) \cos (B/2) - \sin (A/2) \sin (B/2)}{\cos (A/2) \cos (B/2) + \sin (A/2) \sin (B/2)} = \frac{\sin s - \sin (s-c)}{\sin s + \sin (s-c)} = \frac{\cos \frac{1}{2} (2s-c) \sin (c/2)}{\sin \frac{1}{2} (2s-c) \cos (c/2)}$$

•

$$: \frac{\cos \frac{1}{2}(A + B)}{\cos \frac{1}{2}(A - B)} = \frac{\tan(c/2)}{\tan \frac{1}{2}(a + b)}.$$
 [49]

Proceeding in a similar manner with $\tan(a/2)$ and $\tan(b/2)$, we obtain

$$\frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}(a-b)} = \frac{\cot(C/2)}{\tan \frac{1}{2}(A-B)}.$$
 [50]

$$\frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}(a-b)} = \frac{\cot (C/2)}{\tan \frac{1}{2}(A+B)}.$$
 [51]

Proportions [48] to [51] are known as Napier's analogies.

Example. Deduce [50] and [51] by applying [48] and [49] to the polar triangle.

Observe that when two sides and their opposite angles are known, the third side can be obtained by [48] or [49], or the third angle by [50] or [51].

COR. Since $c/2 < 90^{\circ}$ and $(A-B)/2 < 90^{\circ}$, from [49] it follows that (A+B)/2 and (a+b)/2 are in the same quadrant.

EXERCISE XL

Write the formulas for finding the unknown parts of the triangle ABC by logarithmic computation, when there are given \cdot

1.	a, b, and c.	3.	a, b, and C.	5.	a, b, and A.
2.	A, B, and C.	4.	A, B, and c.	6.	A, B, and a.

SPHERICAL TRIGONOMETRY

- 7. State Napier's analogies in words.
- 8. Write the analogies involving $\tan(b/2)$; $\cot(A_2/2)$.
- 9. When $a + b > 180^{\circ}$ and $B < 90^{\circ}$, then $A > 90^{\circ}$.
- 10. When $A + C < 180^{\circ}$ and $a > 90^{\circ}$, then $c < 90^{\circ}$.

119. Delambre's analogies, or Gauss's formulas.

From the relations in § 116 we obtain

$$\sin\frac{A}{2}\cos\frac{B}{2} = \frac{\sin(s-b)}{\sin c}\sqrt{\frac{\sin s \sin(s-c)}{\sin a \sin b}}$$
$$= \frac{\sin(s-b)}{\sin c}\cos\frac{C}{2};$$
(1)

and

$$\cos\frac{A}{2}\sin\frac{B}{2} = \frac{\sin(s-a)}{\sin c} \sqrt{\frac{\sin s \sin(s-c)}{\sin a \sin b}}$$
$$= \frac{\sin(s-a)}{\sin c}\cos\frac{C}{2}.$$
 (2)

Adding (1) and (2), by [7] we obtain

$$\sin \frac{1+B}{2} = \frac{\sin (s-a) + \sin (s-b)}{\sin c} \cos \frac{C}{2}$$

$$= \frac{\sin \frac{1}{2}(2s-a-b)\cos \frac{1}{2}(a-b)}{\sin (c/2)\cos (c/2)}\cos \frac{C}{2}.$$

$$\therefore \sin \frac{A+B}{2} = \frac{\cos \frac{1}{2}(a-b)}{\cos (c/2)}\cos \frac{C}{2}.$$
Similarly
$$\sin \frac{A-B}{2} = \frac{\sin \frac{1}{2}(a-b)}{\sin (c/2)}\cos \frac{C}{2}.$$

$$\cos \frac{A+B}{2} = \frac{\cos \frac{1}{2}(a+b)}{\cos (c/2)}\sin \frac{C}{2}.$$

$$\cos \frac{A-B}{2} = \frac{\sin \frac{1}{2}(a+b)}{\sin (c/2)}\sin \frac{C}{2}.$$
[52]

The four equations or formulas in [52] are known as Delambre's analogies or Gauss's formulas.

CHAPTER XIII

SOLUTION OF SPHERICAL TRIANGLES

120. Six cases. If of the six parts (three sides and three angles) of any spherical triangle we have given any three parts, the triangle, as we know by Geometry, is *determined* and can be *constructed*. Hence in the *numerical* solution of spherical triangles by Trigonometry we must consider the following six cases, the given parts being:

- (1) Three sides.
- (ii) Three angles.
- (iii) Two sides and their included angle.
- (iv) Two angles and their included side.
- (v) Two sides and the angle opposite one of them.
- (vi) Two angles and the side opposite one of them.

The parts of a convex spherical triangle must satisfy each of the following conditions :

I. Each part is less than 180°.

II. If two angles are unequal, the side opposite the greater angle is the greater; and conversely.

If a = b, A = B; and conversely.

III. The sum of the sides is less than 360°, and the sum of the angles lies between 180° and 540°.

IV. The sum of any two sides is greater than the third side.

Note. The three following principles are often useful in determining the relation of an unknown part to 90° :

(1) A side which differs more from 90° than does another side is in the same quadrant as its opposite angle (Cor., \S 115).

(2) An angle which differs more from 90° than does another angle is in the same quadrant as its opposite side.

(3) The half sum of any two sides and the half sum of their opposite angles are in the same quadrant (Cor., 118).

From (1) or (2) it follows that each of at least two sides is in the same quadrant as its opposite angle.

E.g., if the three sides are acute, at least two angles are acute; if the three angles are obtuse, at least two sides are obtuse.

121. Case (i). Given the three sides. When all three angles are required it is best to obtain them through their tangents by [45]. If only one angle is required, we may use any one of the three formulas in $\lceil 44 \rceil$.

Ex. Given	$\begin{cases} a = 72^{\circ} \ 16', \\ b = 80^{\circ} \ 44', \text{ to find} \\ c = 41^{\circ} \ 18'; \end{cases} \begin{cases} A = 73^{\circ} \ 37' \ 42'', \\ B = 96^{\circ} \ 11' \ 52'', \\ C = 41^{\circ} \ 40' \ 10''. \end{cases}$
Formulas	$\begin{cases} \tan r = \sqrt{\sin (s-a)\sin (s-b)\sin (s-c)/\sin s},\\ \tan (A/2) = \tan r/\sin (s-a),\\ \tan (B/2) = \tan r/\sin (s-b),\\ \tan (C/2) = \tan r/\sin (s-c). \end{cases}$
Here	$2 s = 194^{\circ} 18'.$
∴ s = 97°	9', $s - a = 24^{\circ} 53'$, $s - b = 16^{\circ} 25'$, $s - c = 55^{\circ} 51'$.
log sin (s - log sin (s - ∴ log prod log s	$\begin{array}{lll} -a) &=& 9.62405 - 10 & \therefore \log \tan \left(A/2 \right) = 9.87418 - 10, \\ -b) &=& 9.45120 - 10 & \log \tan \left(B/2 \right) = 0.04703, \\ -c) &=& 9.91781 - 10 & \log \tan \left(C/2 \right) = 9.58042 - 10. \\ \operatorname{luct} &=& 18.99306 - 20 & \therefore A/2 = 36^{\circ} 48' 51'', \\ \operatorname{in} s &=& 9.99661 - 10 & B/2 = 48^{\circ} 5' 46'', \\ \operatorname{in} r &=& (18.99645 - 20)/2 & C/2 = 20^{\circ} 50' 5''. \\ &=& 19.49823 - 20 \end{array}$

Only the principal value of A/2, B/2, or C/2 satisfies condition I in § 120; hence there is only one triangle having the given parts.

Check. $\sin A / \sin a = \sin B / \sin b = \sin C / \sin c$.

 $\begin{array}{l} \log \sin A = 9.98202 - 10 \\ \log \sin a = 9.97886 - 10 \\ \log quotient = 0.00316 \\ \log sin \ C = 9.82271 - 10 \\ \log sin \ c = 9.81955 - 10 \\ \log quotient = 0.00316 \end{array}$

184

Note 1. Compare the arrangement of the logarithmic work with that in example 6 on page 90. Note that the check is so written as to make log quotient positive, since the angles are greater than the sides.

Note 2. When only one part is required and its half is less than 45° , it is better to obtain it through its sine or tangent; if its half is greater than 45° , it is better to obtain it through its cosine or tangent. Why?

122. Case (ii). Given the three angles. From the angles A, B, C obtain the sides a', b', c' of the polar triangle A'B'C' [(vii), § 104]. Solve the triangle A'B'C' by the method used in case (i), and from its angles A', B', C' obtain the sides a, b, c of the original triangle ABC.

Or, solve the triangle ABC directly by using formulas [47].

EXERCISE XLI

Solve the following triangles, checking the results :

1. Given $a = 58^{\circ} 18'$, $b = 62^{\circ} 40'$, $c = 78^{\circ} 24'$.

2. Given $a = 110^{\circ} 4'$, $b = 74^{\circ} 32'$, $c = 56^{\circ} 30'$.

3. Given $A = 53^{\circ} 50'$, $B = 96^{\circ} 18'$, $C = 64^{\circ} 20'$.

4. Given $A = 74^{\circ} 40'$, $B = 67^{\circ} 30'$, $C = 49^{\circ} 50'$.

5. Given $a = 43^{\circ} 30'$, $b = 72^{\circ} 24'$, $c = 87^{\circ} 50'$; to find C.

6. Given $a = 110^{\circ} 40'$, $b = 45^{\circ} 10'$, $c = 73^{\circ} 30'$; to find A.

7. Given $A = 80^{\circ} 40'$, $B = 116^{\circ} 20'$, $C = 92^{\circ} 20'$; to find b.

123. Case (iii). Given two sides and their included angle. Use Napier's analogies [50] and [51] to find the two unknown angles, and the law of sines to find the unknown side.

Ex. Given
$$\begin{cases} a = 47^{\circ} 39', \\ b = 123^{\circ} 56', \text{ to find} \\ C = 89^{\circ} 31'; \end{cases} \begin{cases} A = 52^{\circ} 43' 44'', \\ B = 116^{\circ} 41' 56'', \\ c = 111^{\circ} 46' 24''. \end{cases}$$
Formulas
$$\begin{cases} \tan \frac{1}{2} (B + A) = \cos \frac{1}{2} (b - a) \cot (C/2) / \cos \frac{1}{2} (b + a), \\ \tan \frac{1}{2} (B - A) = \sin \frac{1}{2} (b - a) \cot (C/2) / \sin \frac{1}{2} (b + a), \\ \sin c = \sin a \sin C / \sin A. \end{cases}$$
(1)

Here $(b + a)/2 = 85^{\circ} 47' 30''$, $(b - a)/2 = 38^{\circ} 8' 30''$, $C/2 = 44^{\circ} 45' 30''$. $\log \cos \frac{1}{2}(b-a) = 9.89569 - 10$ $\log \sin \frac{1}{2} (b - a) = 9.79071 - 10$ $\log \cot (C/2) = 0.00366$ $\log \cot (C/2) = 0.00366$ $.. \log \text{ product} = 9.89935 - 10$ \therefore log product = 19.79437 - 20 $\log \cos \frac{1}{2} (b + a) = 8.86559 - 10$ $\log \sin \frac{1}{2}(b+a) = 9.99883 - 10$ $\therefore \log \tan \frac{1}{2}(B-A) = 9.79554 - 10$ $\therefore \log \tan \frac{1}{2} (B+A) = 1.03376$ $\therefore (B + A)/2 = 84^{\circ} 42' 50''. (2)$ $(B-A)/2 = 31^{\circ} 59' 6''.$ (3) By (2), (3), $A = 52^{\circ} 43' 44''$, $B = 116^{\circ} 41' 56''$. $\log \sin a = 9.86867 - 10$ $\log \sin C = 9.99998 - 10$ $\therefore \log \text{ product} = 19\ 86865 - 20$ $\log \sin A = 9.90079 - 10$ $\therefore \log \sin c = -9.96786 - 10$ \therefore c = 111° 46′ 24″. Check. $\sin A / \sin a = \sin B / \sin b$ $\log \sin A = 9,90079 - 10$ $\log \sin B = 9.95103 - 10$ $\log \sin a = 9.86867 - 10$ $\log \sin b = 9.91891 - 10$ $\log quotient = 0.03212$ $\log quotient = 0.03212$

Of the two values of c in (1) which satisfy I in § 120, only the greater satisfies IV, by which a + c > b.

124. Case (iv). Given two angles and their included side. Use Napier's analogies [48] and [49] to find the two unknown sides, and the law of sines to find the unknown angle.

Or, solve the polar triangle by the method used in case (iii),

EXERCISE XLII

Solve the following triangles, checking the results :

- 1. Given $a = 64^{\circ} 24'$, $b = 42^{\circ} 30'$, $C = 58^{\circ} 40'$.
- 2. Given $c = 78^{\circ} 15'$, $b = 56^{\circ} 20'$, $A = 120^{\circ}$.
- **3.** Given $b = 52^{\circ} 12' 5''$, $c = 54^{\circ} 34'$, $A = 97^{\circ} 56' 28''$.
- 4. Given $B = 98^{\circ} 30'$, $C = 67^{\circ} 20'$, $a = 60^{\circ} 40'$.
- 5. Given $A = 125^{\circ} 20'$, $C = 48^{\circ} 30'$, $b = 83^{\circ} 13'$.
- 6. Given $A = 67^{\circ} 30'$, $B = 45^{\circ} 50'$, $c = 74^{\circ} 20'$.

, 125. Case (v). Given two sides and the angle opposite one of them. The formula for finding B from a, b, A is

$$\sin B = \sin b \sin A / \sin a. \tag{1}$$

If $\sin a < \sin b \sin A$, then from (1) $\sin B > 1$, which is impossible. Hence the triangle is impossible.

If $\sin a = \sin b \sin A$, $\sin B = 1$; whence $B = 90^{\circ}$. Hence the triangle is right angled at B.

If $\sin a > \sin b \sin A$, $\sin B < 1$; whence (1) gives two values for B, both of which satisfy I in § 120.

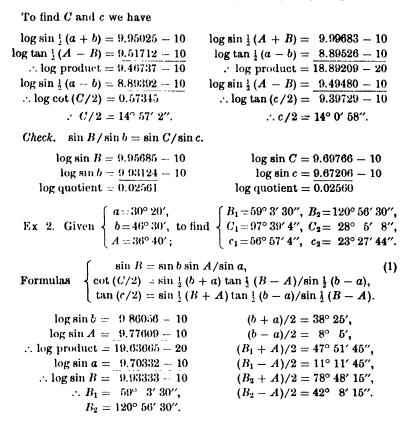
If each of these *two* values of B satisfies also II in § 120, there are **two** unequal triangles having the given parts.

If only one of these values of B satisfies II in § 120, there is only one triangle having the given parts.

Or, finding the value of p (fig. 68) by the formula

$$\sin p = \sin b \sin A, \qquad \S 108$$

we can determine the number of solutions by comparing a with p, b, and $180^{\circ} - b$, as in V of § 106.


The angle C can be found by [50], and the side c by [41] or [48].

Check by the law of sines or Napier's analogies.

Ex. 1. Given
$$\begin{cases} a = 67^{\circ} 35' 12'', \\ b = 58^{\circ} 36' 6'', \text{ to find} \\ A = 101^{\circ} 17' 48''; \end{cases} \begin{cases} B = 64^{\circ} 52' 50'', \\ C = 29^{\circ} 54' 4'', \\ c = 28^{\circ} 1' 56''. \end{cases}$$
Formulas
$$\begin{cases} \sin B = \sin b \sin A / \sin a, \\ \cot (C/2) = \sin \frac{1}{2} (a + b) \tan \frac{1}{2} (A - B) / \sin \frac{1}{2} (a - b), \\ \tan (c/2) = \sin \frac{1}{2} (A + B) \tan \frac{1}{2} (a - b) / \sin \frac{1}{2} (A - B). \end{cases}$$
Iog sin $b = 9.93124 - 10$ $(a + b)/2 = 63^{\circ} 5' 39''$

$$\log \sin a = \frac{9.99150 - 10}{19.92274 - 20} \qquad (a - b)/2 = 4^{\circ} 29' 33'', (a - b)/2 = 4^{\circ} 29' 33'', (a - b)/2 = 4^{\circ} 29' 33'', (a - b)/2 = 83^{\circ} 5' 19'', (a - b)/2 = 18^{\circ} 12' 29''. (b - b)/2 = 18^{\circ} 12' 29''. (b - b)/2 = 18^{\circ} 12' 29''. (b - b)/2 = 18^{\circ} 12' 5''.$$

Of the two values of B in (1) which satisfy I in § 120, only the less satisfies II. Hence there is but one triangle having the given parts.

Both the values of B in (1) which satisfy I in § 120 satisfy II also. Hence there are two triangles having the given parts.

To find C_1 and c_1 in triangle AB_1C_1 , we have

To find C_2 and c_2 in triangle AB_2C_2 , we have

$$\begin{array}{ll} \log \sin \frac{1}{2} \, (b + a) = 9.79335 - 10 \\ \log \tan \frac{1}{2} \, (B_2 - A) = 9.95653 - 10 \\ \therefore \log \ \text{product} = 9.74988 - 10 \\ \log \sin \frac{1}{2} \, (b - a) = 9.14803 - 10 \\ \therefore \log \ \text{cot} \, (C_2/2) = 0.60185 \\ \therefore C_2/2 = 14^{\circ} \, 2' \, 34''. \end{array} \qquad \begin{array}{ll} \log \sin \frac{1}{2} \, (B_2 + A) = 9.99165 - 10 \\ \log \ \tan \frac{1}{2} \, (B_2 - A) = 9.15236 - 10 \\ \therefore \log \ \text{product} = 19.14401 - 20 \\ \log \ \sin \frac{1}{2} \, (B_2 - A) = 9.82667 - 10 \\ \therefore \log \ \tan (c_2/2) = 9.31734 - 10 \\ \therefore c_2/2 = 11^{\circ} \, 2' \, 34''. \end{array}$$

Check. $\sin B/\sin b = \sin C_1/\sin c_1 = \sin C_2/\sin c_2$.

 $\begin{array}{l} \log\sin B = 9.93333 - 10 \quad \log\sin C_1 = 9.99612 - 10 \quad \log\sin C_2 = 9.67283 \\ \log\sin b = 9.86056 - 10 \quad \log\sin c_1 = 9.92335 - 10 \quad \log\sin c_2 = 9.60004 \\ \log\operatorname{quotient} = \ .07277 \quad \log\operatorname{quotient} = \ .07277 \quad \log\operatorname{quotient} = \ .07279 \end{array}$

126. Case (vi). Given two angles and the side opposite one of them. Find the second side by the law of sines, and the third side and third angle by Napier's analogies [48] and [50].

Or, solve the polar triangle by the method used in case (v). Check by the law of sines or Napier's proportions.

EXERCISE XLIII

Solve the following triangles, checking the results :

- 1. Given $a = 56^{\circ} 40'$, $b = 30^{\circ} 50'$, $A = 103^{\circ} 40'$.
- 2. Given $b = 100^{\circ}$, $c = 62^{\circ}$, $B = 95^{\circ}$.
- 3. Given $a = 43^{\circ} 20'$, $b = 48^{\circ} 30'$, $A = 58^{\circ} 40'$.
- 4. Given $a = 41^{\circ} 6'$, $c = 48^{\circ} 22'$, $A = 54^{\circ} 17'$.
- 5. Given $A = 108^{\circ} 40'$, $B = 134^{\circ} 20'$, $a = 145^{\circ} 36'$.
- 6. Given $C = 82^{\circ}$, $B = 116^{\circ}$, $c = 86^{\circ}$.
- 7. Given $A = 121^{\circ}$, $B = 108^{\circ}$, $a = 130^{\circ}$.
- 8. Given $B = 36^{\circ} 20'$, $C = 46^{\circ} 30'$, $b = 42^{\circ} 12'$.
- 9. Given $a = 90^{\circ}$, $b = 123^{\circ} 56'$, $A = 52^{\circ} 43' 44''$.

 $\cos a = 0 = \cos b \cos c + \sin b \sin c \cos A.$

 $\therefore \cot c = -\tan b \cos A = \cot 33^{\circ} 56' \cos 52^{\circ} 43' 44''$

10. Given $a = 49^{\circ} 14.6'$, $b = 41^{\circ} 9.8'$, $C = 76^{\circ} 18.6'$.

11. Given $b = 41^{\circ} 9.8'$, $C = 32^{\circ} 20.2'$, $A = 68^{\circ} 10' 29''$.

12. Given $a = 60^{\circ}$, $c = 73^{\circ}$, $B = 125^{\circ} 40'$.

13. Given $a = 150^{\circ} 57.1'$, $b = 134^{\circ} 15.2'$, $A = 144^{\circ} 22.8'$.

14. Given $A = 100^{\circ} 2.4'$, $B = 98^{\circ} 30.5'$, $a = 95^{\circ} 20.6'$.

15. Given $a = 131^{\circ} 35.7'$, $b = 108^{\circ} 30.9'$, $c = 84^{\circ} 40.8'$.

16. Given $A = 4^{\circ} 23.4'$, $B = 8^{\circ} 28.7'$, $C = 172^{\circ} 17.6'$.

In the following examples p denotes that perpendicular from the vertex C to the side AB whose foot is towards B from A.

17. If $b = 90^{\circ}$, then p = A.

18. If $b = 90^{\circ}$ and $A < 90^{\circ}$, discuss the case when a < A, a = A, a > A and < b, a = b, a > b. See Case V in § 106.

19. If $b = 90^{\circ}$ and $A > 90^{\circ}$, discuss the case when a > A, a = A, a < A and > b, a = b, a < b.

20. If $b = 90^{\circ}$ and $A = 90^{\circ}$, discuss the case when $a \neq A$, a = A.

21. If $A = 90^{\circ}$ and $b < 90^{\circ}$, discuss the case when a < b, a = b, a > b and $< 180^{\circ} - b$, $a = 180^{\circ} - b$, $a > 180^{\circ} - b$.

22. If $A < 90^{\circ}$ and $b < 90^{\circ}$, discuss the case when a < p, a = p, a > pand < b, a = b, a > b and $< 180^{\circ} - b$, $a = 180^{\circ} - b$, $a > 180^{\circ} - b$.

23. If $A > 90^{\circ}$ and $b < 90^{\circ}$, discuss the case when a > p, a = p, a < pand > b or $180^{\circ} - b$, a = b, a > b and $< 180^{\circ} - b$, $a > 180^{\circ} - b$ and < p.

127. Spherical degree and radian. The surface of a biquadrantal spherical triangle (§ 114) is called a *spherical degree* when its vertical angle is one degree, and a *spherical radian* when its vertical angle is one radian. Therefore a lune of angle 1° contains two spherical degrees, and a lune of angle 1 radian contains two spherical radians. Hence

A lune of angle A degrees contains 2 A spherical degrees. A lune of angle A radians contains 2 A spherical radians.

The surface of a sphere, therefore, contains 720 spherical degrees or 4π spherical radians.

Hence, on a sphere whose radius is r,

a spherical degree contains $4 \pi r^2/720$, *i.e.* $\pi r^2/180$ square units; a spherical radian contains $4 \pi r^2/4 \pi$, *i.e.* r^2 square units. *E.g.*, a lune of angle 10° contains 20 spherical degrees, and the radius being 3 feet, the area of the lune = $20 \pi 3^2/180 = \pi$ square feet.

A lune of angle 2 radians contains 4 spherical radians, and the radius being 5 yards, the area of the lune = $4.5^2 = 100$ square yards.

128. Area of a spherical triangle. The spherical excess of a spherical triangle is the excess of the sum of its three angles over 180° or π radians.

Let E denote the number of degrees and E_r the number of radians in the spherical excess of the triangle ABC; then

 $E_r = E\pi / 180.$

$$E^{\circ} = A^{\circ} + B^{\circ} + C^{\circ} - 180^{\circ}.$$
 (1)

By § 66,

$$\therefore E_r = (A + B + C - 180) \pi / 180.$$
(3)

By Geometry we know that

Area
$$ABC = \frac{1}{2}$$
 lune of angle $(A^{\circ} + B^{\circ} + C^{\circ} - 180^{\circ})$
 $= \frac{1}{2}$ lune of angle E°
 $= E$ spherical degrees. (4)

Hence, on a sphere whose radius is r,

Area ABC =
$$E\pi r^2 / 180 = (E\pi / 180) \cdot r^2$$
. (5)

By (2), (5), Area ABC = $\mathbf{E}_{\mathbf{r}}\mathbf{r}^2 = E_r$ spherical radians. (6)

That is, to find the area of a spherical triangle: Multiply its spherical excess in degrees by $\pi r^2/180$. Or multiply its spherical excess in radians by r^2 .

E.g., if $A = 95^{\circ}$, $B = 135^{\circ}$, $C = 110^{\circ}$, the spherical excess is 160°; hence

Area $ABC = 160 \cdot \pi r^2 / 180 = 8 \pi r^2 / 9$ square units.

Again, if $A = 2\pi/3$, $B = 3\pi/4$, $C = 5\pi/6$, the spherical excess is $5\pi/4$; hence

Area $ABC = 5 \pi r^2/4$ square units.

129. Formulas for the spherical excess of a triangle. The spherical excess of a spherical triangle can always be obtained by finding the sum of its angles in degrees or radians and from this sum subtracting 180° or π radians.

(2)

But several formulas have been deduced which express this excess in terms of the three sides or in terms of two sides and their included angle. Without their proof we give below the two most important and useful of these formulas.

L'Huillier's formula:

 $\tan \left(\frac{E^{\circ}}{4} \right) = \sqrt{\tan \frac{1}{2} s \tan \frac{1}{2} (s-a) \tan \frac{1}{2} (s-b) \tan \frac{1}{2} (s-c)}, \quad (1)$ which gives the spherical excess in terms of the three sides;

$$\tan\frac{E^{\circ}}{2} = \frac{\tan\frac{1}{2}a\tan\frac{1}{2}b\sin C}{1+\tan\frac{1}{2}a\tan\frac{1}{2}b\cos C},$$
(2)

which gives the spherical excess in terms of two sides and their included angle.

EXERCISE XLIV

1. Find the area of a spherical degree and of a lune of angle $43^{\circ} 30'$ on a sphere whose radius is 9 feet.

2. Find the area between the meridian 80° W. and 87° W., the radius of the earth being 3960 miles.

3. Find the area of the triangle ABC in examples 1, 2, 3, 4 of Exercise XLI, when the radius of the sphere is 10 yards.

Use L'Huillier's formula to find the spherical excess in examples 1 and 2 of Exercise XLI.

4. Find the area of the triangle ABC in examples 1, 2, 4, 5 of Exercise XLII, when the radius of the sphere is 100 feet.

5. Find the area of the triangle ABC in examples 1, 2, 5, 6 of Exercise XLIII, when the radius of the sphere is 3960 miles.

130. Area of a convex spherical polygon of n sides. Any convex polygon of n sides is divided into n-2 convex triangles by the n-3 diagonals from any vertex of the polygon. The sum of all the angles of these n-2 triangles is equal to the sum of the angles of the polygon. Hence the spherical excess of a polygon of n sides is the sum of its n angles less (n-2) 180° or (n-2) π radians.

192

Denoting this spherical excess by E° or E_r radians, and the radius of the sphere by r, we have

Area of polygon = E spherical degrees = $E\pi r^2/180$, (1)

Area of polygon =
$$E_r$$
 spherical radians = $E_r r^3$. (2)

Having given r and the area of a spherical polygon in square units, by (1) we can find its spherical excess in degrees or its area in spherical degrees, and by (2) we can find its spherical excess in radians or its area in spherical radians.

131. Measure of a solid angle. Just as the angle which an arc degree subtends at its center is called an angle degree, so the solid angle which a *spherical degree* subtends at the center of the sphere may be called a *degree of solid angle*, or a *solid-angle degree*.

E.g., the sum of all the solid angles about a point is 720 solid-angle degrees. The angle at the corner of a cube is 90 solid-angle degrees.

Similarly the solid angle which a spherical radian subtends at the center of the sphere may be called a radian of solid angle or a solid-angle radian.

Hence to find the measure of any solid angle in solid-angle degrees or solid-angle radians, find the number of spherical degrees or spherical radians in the spherical surface which subtends this angle when its vertex is at the center of some sphere.

Note. Observe that

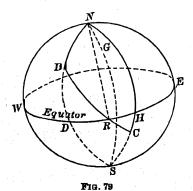
the arc degree or arc radian is a unit of circular arcs; the angle degree or radian is a unit of plane angles; the spherical degree or spherical radian is a unit of spherical surfaces; the solid-angle degree or solid-angle radian is a unit of solid angles.

360 arc degrees = an entire circumference = 2π arc radians; 360 angle degrees = 4 right angles = 2π radians;

720 spherical degrees = surface of sphere = 4π spherical radians; 720 solid-angle degrees = sum of all the solid angles about a point = 4π solid-angle radians.

CHAPTER XIV

PRACTICAL APPLICATIONS


132. An interesting application of Spherical Trigonometry is the solution of the following geographic problem :

To find the distance between two places and the bearing of each from the other, when their latitudes and longitudes are known.

In the following examples, which are given to illustrate the problem above, the earth will be regarded as a sphere with a radius of 3960 miles.

EXERCISE XLV

1. Find the shortest distance, measured on the earth's surface, between Boston (42° 21' N., 71° 3' W.) and Cape Town (33° 56' S., 18° 28' E.), and

the bearing of each city from the other.

In fig. 79, WRE is the earth's equator; NGS, NBS, NCS are the meridians through Greenwich G, Boston B, and Cape Town C respectively; there are required the arc BC, the $\angle SBC$, and the $\angle NCB$.

In the spherical triangle NBC we have

$$BN = DN - DB$$

= 90° - 42° 21′ = 47° 80′,
 $CN = CH + HN$

$$a = 0$$
 $a + 1$ a

 $= 33^{\circ} 56' + 90^{\circ} = 123^{\circ} 56',$

 $\angle BNC = \angle BNG + \angle GNC = 71^{\circ} 3' + 18^{\circ} 28' = 89^{\circ} 31'.$ Solving triangle *NBC*, we obtain (example in § 123)

194

Hence
$$BC = 111.77\frac{1}{3}^{\circ} = (111.77\frac{1}{3} \times 22 \pi)$$
 mi. = 7725.2 mi.
 $\angle SBC = 180^{\circ} - \angle NBC = 63^{\circ} 18' 4''.$

Therefore Cape Town is S. 63° 18' 4" E. from Boston, and Boston is N. 52° 43' 44" W. from Cape Town, and their distance apart is 7725.2 mi.

2. Find the longitude of R, or the place where BC in fig. 79 crosses the equator, the distance RC, and the bearing of Cape Town from R.

In the spherical triangle NRC we have

 $RN = 90^{\circ}$, $CN = 123^{\circ} 56'$, $\angle NCR = 52^{\circ} 43' 44''$.

By example 9 in Exercise XLIII we have

 $\angle CRN = 138^{\circ} 40' 56'', \quad RC = 48^{\circ} 0' 36'', \quad \angle RNC = 36^{\circ} 15' 42''.$

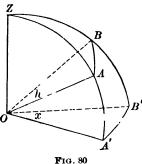
Thus a ship sailing on a great circle from Boston to Cape Town will set out from Boston on a course S. 63° 18' 4" E., cross the equator on a course S. 41° 19' 4" E., and approach Cape Town on a course S. 52° 43' 44" E.

3. Find the shortest distance between New York (40° 45.4' N., 73° 58.4' W.) and Paris (48° 50.2' N., 2° 20.2' E.), and the bearing of each city from the other (see example 10 in Exercise XLIII).

4. A ship is sailing westward on a great circle which passes through New York and Paris. Find its latitude when it crosses the meridian 30° W.; find also its course and its distance from Paris (see example 11 in Exercise XLIII).

5. From a place 17° N., 130° W., a ship, starting on a course S. 54° 20' W., sailed on a great circle. Find its latitude and longitude when it has sailed 60°, or 4146.9 miles; find also its course (see example 12 in Exercise XLIII).

6. A ship sails from San Francisco $(37^{\circ} 47' 55'' \text{ N.}, 122^{\circ} 24' 32'' \text{ W.})$ on a great circle to Yokohama $(35^{\circ} 26' \text{ N.}, 139^{\circ} 39' \text{ E.})$. Find the distance sailed and the course of the ship when leaving San Francisco and when approaching Yokohama (see example 3 in Exercise XLII).


7. In example 6 find the distance sailed and the latitude and course of the ship when it crosses the meridian 180°.

Thus a ship sailing on a great circle from San Francisco to Yokohama will set out from San Francisco on a course N. 56° 50′ 54″ W., cross the meridian 180° on a course S. 81° 57′ W., and approach Yokohama on a course S. 54° 17′ 6″ W.

8. A ship sailed on a great circle from San Francisco to Sydney (33° 52' S., 151° 13' E.). Find the distance sailed and the course of the ship when leaving San Francisco and when approaching Sydney.

9. In example 8 find the distance sailed and the longitude and course of the ship when it crosses the equator.

133. From O in the horizontal plane OA'B' there were measured (with a sextant) the angles of elevation of A and B and the

inclined angle AOB (= h); to find the horizontal angle A'OB' (= x) between the points A and B as seen from O.

Let $\angle A'OA = m$, $\angle B'OB = n$, and OZ be the vertical line of intersection of the vertical planes A'OA and B'OB. Conceive a sphere whose center is the vertex of the triedral angle O-ABZ, thus forming the spherical triangle ABZ.

F10. 50

Then in the triangle ABZ we know the three sides

 $AZ = 90^{\circ} - m$, $BZ = 90^{\circ} - n$, AB = h.

Hence the spherical angle AZB, which is equal to the required angle x, can be computed.

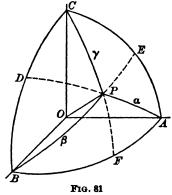
Ex. 1. Given $\angle A'OA = 17^{\circ} 36'$, $\angle B'OB = 46^{\circ} 30'$, $\angle AOB = 87^{\circ} 50'$; to find $\angle A'OB'$.

By example 5 in Exercise XLI, $\angle A'OB' = 106^{\circ} 3.6'$.

Ex. 2. Given $\angle A'OA = 44^{\circ} 50'$, $\angle B'OB = 16^{\circ} 30'$, $\angle AOB = 110^{\circ} 40'$; to find $\angle A'OB'$.

By example 6 in Exercise XLI, $\angle A'OB' = 144^{\circ} 26' 38''$.

134. If from any point P in a trirectangular spherical triangle ABC arcs of great circles α , β , γ are drawn to the vertices, then


$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.$$

196

Produce AP to D and BP to E; then in the right triangle PDC,

 $\sin DP = \sin \gamma \sin DCP.$ $\therefore \cos \alpha = \sin \gamma \sin DCP.$ (1) In the right triangle *PEC*, $\sin EP = \sin \gamma \sin ECP.$ $\therefore \cos \beta = \sin \gamma \cos DCP.$ (2) Squaring (1) and (2) and adding, we obtain

 $\cos^2 \alpha + \cos^2 \beta = \sin^2 \gamma,$
or $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$

Note. The arcs α , β , γ measure the angles which *OP* makes with the lines *OA*, *OB*, *OC* which are at right angles to each other. In Analytic Geometry the angles α , β , γ are called the *direction angles* of the line *OP* and the relation above is a fundamental one.

135. If from any two points P and P' in a trirectangular triangle ABC arcs of great circles are drawn to the three vertices, and v = arc PP', then $\cos v = \cos a \cos a' + \cos \beta \cos \beta'$ $+ \cos \gamma \cos \gamma'$. In triangle PBP', by [42], $\cos v = \cos \beta \cos \beta'$ $+ \sin \beta \sin \beta' \cos P'BP$. (1) Now P'BP = CBP - CBP'. Fig. 82

> $\therefore \cos P'BP = \cos CBP \cos CBP'$ $+ \sin CBP \sin CBP'.$ (2)

Since
$$a = b = c = 90^{\circ}$$
, by [42] we have
In $\triangle CBP$, $\cos \gamma = \sin \beta \cos CBP$;
In $\triangle CBP'$, $\cos \gamma' = \sin \beta' \cos CBP'$;
In $\triangle ABP$, $\cos \alpha = \sin \beta \cos ABP = \sin \beta \sin CBP$;
In $\triangle ABP'$, $\cos \alpha' = \sin \beta' \cos ABP' = \sin \beta' \sin CBP'$.
(3)

Finding from (2) and (3) the value of $\cos P'BP$ in terms of α , β , γ , and substituting in (1), we obtain

$$\cos v = \cos \alpha \cos \alpha' + \cos \beta \cos \beta' + \cos \gamma \cos \gamma'. \tag{4}$$

NOTE. Since v measures the $\angle POP'$, equation (4) is the formula for the cosine of the angle between two lines in space, OP and OP', in terms of the direction cosines of these lines.

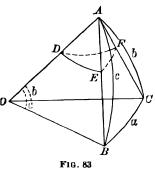
136. Having given the two sides **b** and **c** and their included angle A of the spherical triangle ABC, to find the angle A' formed by the chords of the sides **b** and **c**.

About the vertex A of the triedral angle A-OBC as a center describe a sphere, and let DEF be the spherical triangle formed.

Then

$$DE = \angle OAB = (180^{\circ} - c)/2 = 90^{\circ} - c/2,$$

 $DF = \angle OAC = 90^{\circ} - b/2,$


 $\angle EDF = A, EF = \angle EAF = A'.$

Now $\cos EF = \cos DF \cos DE + \sin DF \sin DE \cos EDF$.

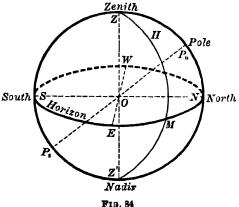
 $\therefore \cos A' = \sin \left(b/2 \right) \sin \left(c/2 \right) + \cos \left(b/2 \right) \cos \left(c/2 \right) \cos A.$

ASTRONOMIC APPLICATIONS

137. One of the most important applications of Spherical Trigonometry is to Astronomy. Trigonometry was invented and for centuries studied as an aid to Astronomy. In order to

anderstand the simple problems given below a clear conception of the following astronomic terms and principles is necessary.

An observer on the earth seems to be at the center of an immense sphere on the surface of which all the heavenly bodies appear to be. This sphere is called the celestial sphere. Owing to the rotation of the earth on its axis from west to east, this sphere with its innumerable stars apparently turns around from east to west once in about twenty-four hours.

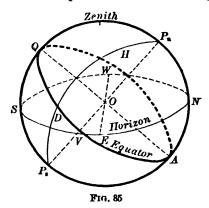

Let the sphere in fig. 84 denote the celestial sphere, the earth being at the center O.

The vertical line ΩZ at the point of the observer pierces the celestial sphere above in the zenith Z, and below in the nadir Z'.

The great circle SENW, in which the horizontal plane at the point of the ob-

server cuts the celestial sphere, is called the horizon.

Great circles through the zenith Z are called vertical circles. Hence vertical circles are perpendicular to the horizon. E.g., MHZ, the vertical circle of the star H, is perpendicular to NM.



The earth's axis produced is the axis of the celestial sphere. It cuts the celestial sphere in the north pole P_n and the south pole P_s . The vertical circle ZP_nNP_s , which passes through the poles, is the celestial meridian.

The altitude of a star is its distance from the horizon measured on the vertical circle of the star. E.g., MH is the altitude of the star H.

The azimuth of a star is the arc of the horizon between its south point S and the vertical circle of the star. It is reckoned from S around to the west. *E.g.*, the azimuth of H (fig. 84) is $180^{\circ} + NM$. The azimuth $180^{\circ} + NM$ and the altitude MH locate the star H.

The intersection of the plane of the earth's equator with the celestial sphere is the celestial equator. P_n and P_n are the poles

of the celestial equator QVA (fig. 85).

Great circles passing through the poles are hour circles. Hence hour circles are perpendicular to the celestial equator.

The hour angle of a star is the arc of the equator between its south point Q (fig. 85) and the hour circle of the star. It is reckoned from Q to the H is $180^\circ \pm 4D$

west. E.g., the hour angle of H is $180^\circ + AD$. The declination of a star is its distance from the equator

measured on its hour circle. Distances north are +, south -.

The hour angle $180^\circ + AD$ and the declination DH locate the star H.

It is proved in Astronomy that the latitude of the observer is equal to the altitude of the pole at the place of observation.

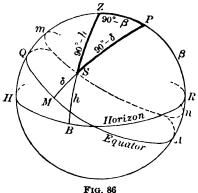
138. Let	β = the <i>latitude</i> of the observer,
	h = the altitude of a star,
	$\mathbf{A} = \mathrm{its} a zimuth,$
	$\boldsymbol{\delta} = \mathrm{its} \ declination,$
and	$\mathbf{t} = $ its hour angle in degrees.

Given any three of the five quantities β , h, A, δ , t; to find the other two.

In fig. 86 let S be the star, ZSB its vertical circle, and PSM its hour circle; then

$$BS = h, \quad MS = \delta, \quad RP = \beta,$$

$$180^{\circ} + RB = A,$$


$$180^{\circ} + AM = t.$$

Hence, in the triangle SZP, whose vertices are the star, the zenith, and the pole, we have

$$SZ = 90^{\circ} - h,$$

$$SP = 90^{\circ} - \delta,$$

$$PZ = 90^{\circ} - \beta,$$
(1)

$$\angle SPZ = MQ = 360^{\circ} - t, \qquad (2)$$

$$\angle PZS = RB = A - 180^{\circ}. \tag{3}$$

Hence if we have given any three of the five quantities β , h, A, δ , t, we know three parts of the triangle SZP; from these three parts we can compute the other parts.

Observe that the relations in (2) and (3) are those which exist when the star S is east of the meridian RPZQ. When the star S is west of this meridian, $\angle ZPS = t$ and $\angle SZP = 180^{\circ} - A$.

EXERCISE XLVI

1. At a place in latitude 42° N. the altitude of a star whose declination is $+60^{\circ}$ was measured and found to be 50° , the star being east of the meridian. How many hours afterward did the star cross the meridian?

In
$$\triangle SZP$$
, $SZ = 40^\circ$, $SP = 30^\circ$, $ZP = 48^\circ$.

By [44] we find $\angle SPZ = 59^{\circ} 51.8'$.

Since the star travels 15° in an hour, it reaches the meridian ZQH in (59° 51.8'/15°) hours, or in 3^h 59.5^m.

2. The declination of a star is $+10^{\circ}$. Find the length of time between its rising above the horizon and its passage across the meridian, the place of observation being in latitude 42° N.

Here S will be on the horizon ; hence

 $SZ = 90^{\circ}, ZP = 48^{\circ}, SP = 80^{\circ}.$

 $\therefore \cos SZ = 0 = \cos ZP \cos SP + \sin ZP \sin SP \cos ZPS.$

 $\therefore \cos ZPS = -\cot ZP \cot SP = -\cot 48^{\circ} \cot 80^{\circ}.$

 $\therefore \angle ZPS = 99^{\circ} 8.1'.$

Hence the time required is (99° 8.1'/15°) hours, or 8h 38.5m.

3. The declination of a star is $+20^{\circ}$. Find the interval between the instant when it is due east and when it is due west, the place of observation being in latitude 42° N.

Here $\angle PZS = 90^{\circ}$.

 $\therefore \cos ZPS = \tan ZP \cot SP = \tan 48^{\circ} \cot 70^{\circ}.$

 $\therefore 2 \angle ZPS = 132^{\circ} 18.8'.$

Hence the interval is (132° 18.8'/15°) hours, or 8^h 49.3^m.

4. In New York, 40° 43' N., at a forenoon observation the sun's altitude is 30° 40'. Given that the sun's declination is + 10°, find the time of day of the observation.

At noon the sun is on the meridian PZH; hence the time required is $(\angle ZPS/15^{\circ})$ hours before noon.

5. In Montreal, 45° 30' N., at an afternoon observation the sun's altitude is 26° 30'. Given that the sun's declination is 8° S., find the time of day of the observation.

Here $ZP = 44^{\circ} 30'$, $SP = 98^{\circ}$, $SZ = 38^{\circ} 30'$, and the time required is $(\angle ZPS/15^{\circ})$ hours after noon.

6. As in example 4, having given that the sun's declination is 10° S.

7. As in example 5, having given that the sun's declination is 18° N.

8. Find the approximate time of sunrise in New York, 40° 43' N., about April 1, when the declination of the sun is 4° 30' N.

Solution 1. The required time is $(\angle SPZ/15^{\circ})$ hours before noon. See example 2.

Solution 2. When S is on the horizon the triangle PSR is right angled at R, and the required time is $(\angle SPR/15^{\circ})$ hours after midnight.

202

9. Find the approximate time of sunrise in London, 51° 30' $48^{\prime\prime}$ N., about ()ctober 8, when the declination of the sun is 6° S.

10. Find the approximate time of sunrise in New Orleans, 29° 58' N, about September 10, when the declination of the sun is 5° N.

11. Given the latitude of the place of observation $52^{\circ} 30' 16''$, the declination of a star 38° , and its hour angle $331^{\circ} 42' 45''$, find its altitude

12. Given the latitude of the place of observation $51^{\circ} 19' 20''$, the declination of a star $22^{\circ} 0' 55''$, and its hour angle $344^{\circ} 51' 48''$; find its altitude and its azimuth.

13. Given the declination of a star 7° 54', its altitude $22^{\circ} 45' 12''$, and its azimuth 50° 14' 23''; find its hour angle and the latitude of the observer.

14. Given the latitude of the place of observation 44° 50' 14", the azimuth of a star 138° 58' 43", and its hour angle 20°; find its declination and its altitude.

ANSWERS

EXERCISE I

- 1. $\sin A = 2/5$, $\csc A = 5/2$, $\cos A = \sqrt{21/5}$, $\sec A = 5/\sqrt{21}$, $\tan A = 2/\sqrt{21}$, $\cot A = \sqrt{21/2}$; $A = 23^{\circ} 34' 40''$.
- 2. $\sin A = 4/5$, $\csc A = 5/4$, $\cos A = 3/5$, $\sec A = 5/3$, $\tan A = 4/3$, $\cot A = 3/4$; $A = 53^{\circ} 8'$.
- 3. $\sin A = \sqrt{7}/4$, $\csc A = 4/\sqrt{7}$, $\cos A = 3/4$, $\sec A = 4/3$, $\tan A = \sqrt{7}/3$, $\cot A = 3/\sqrt{7}$; $A = 41^{\circ} 24' 30''$.
- 4. $\sin A = \sqrt{8}/3$, $\csc A = 3/\sqrt{8}$, $\cos A = 1/3$, $\sec A = 3$, $\tan A = \sqrt{8}$, $\cot A = 1/\sqrt{8}$; $A = 70^{\circ} 32'$.
- 5. $\sin A = 1/\sqrt{17}$, $\csc A = \sqrt{17}$, $\cos A = 4/\sqrt{17}$, $\sec A = \sqrt{17}/4$, $\tan A = 1/4$, $\cot A = 4$; $A = 14^{\circ} 2' 15''$.
- 6. $\sin A = 4/5$, $\csc A = 5/4$, $\cos A = 3/5$, $\sec A = 5/3$, $\tan A = 4/3$, $\cot A = 3/4$; $A = 53^{\circ}$ 7'45".
- 7. $\sin A = 2/\sqrt{29}$, $\csc A = \sqrt{29}/2$, $\cos A = 5/\sqrt{29}$, $\sec A = \sqrt{29}/5$, $\tan A = 2/5$, $\cot A = 5/2$; $A = 21^{\circ} 48' 6''$.
- 8. $\sin A = 3/\sqrt{10}$, $\csc A = \sqrt{10/3}$, $\cos A = 1/\sqrt{10}$, $\sec A = \sqrt{10}$, $\tan A = 3$, $\cot A = 1/3$; $A = 71^{\circ} 34'$.
- 9. $\sin A = 4/5$, $\csc A = 5/4$, $\cos A = 3/5$, $\sec A = 5/3$, $\tan A = 4/3$, $\cot A = 3/4$; $A = 53^{\circ} 8'$.
- 10. $\sin A = \sqrt{7}/4$, $\csc A = 4/\sqrt{7}$, $\cos A = 3/4$, $\sec A = 4/3$, $\tan A = \sqrt{7}/3$, $\cot A = 3/\sqrt{7}$; $A = 41^{\circ} 24' 30''$.
- 11. $\sin A = 2/5$, $\csc A = 5/2$, $\cos A = \sqrt{21}/5$, $\sec A = 5/\sqrt{21}$, $\tan A = 2/\sqrt{21}$, $\cot A = \sqrt{21}/2$; $A = 23^{\circ} 35'$.
- 12. $\sin A = 2/3$, $\csc A = 3/2$, $\cos A = \sqrt{5}/3$, $\sec A = 3/\sqrt{5}$, $\tan A = 2/\sqrt{5}$, $\cot A = \sqrt{5}/2$; $A = 41^{\circ} 48' 30''$.

- 13. $\sin A = 4/\sqrt{17}$, $\csc A = \sqrt{17/4}$, $\cos A = 1/\sqrt{17}$, $\sec A = \sqrt{17}$, $\tan A = 4$, $\cot A = 1/4$; $A = 75^{\circ} 57' 49''$.
- 14. $\sin A = 1/\sqrt{50}$, $\csc A = \sqrt{50}$, $\cos A = 7/\sqrt{50}$, $\sec A = \sqrt{50}/7$, $\tan A = 1/7$, $\cot A = 7$; $A = 8^{\circ} 7' 48''$.
- 15. $\sin A = 9/\sqrt{82}$, $\csc A = \sqrt{82/9}$, $\cos A = 1/\sqrt{82}$, $\sec A = \sqrt{82}$, $\tan A = 9$, $\cot A = 1/9$; $A = 83^{\circ} 39' 35''$.
- 16-18. For answers see table on page 151.

EXERCISE II

- sin 60°; cos 30°; tan 55°; cot 75°; csc 5°; sec 14°; cos 16° 46'; sin 24° 17'.
- **2.** 45° .**4.** 18° .**6.** 5° .**8.** $90^{\circ}/(m+n)$.**3.** 30° .**5.** 36° .**7.** 5° .**9.** $60^{\circ}/(c-1)$.

EXERCISE III

1.	$B = 65^{\circ},$	b = 64.335,	c = 70.986.
2 .	$A = 35^{\circ},$	a = 7.002,	c = 12.208.
3.	$B = 25^{\circ},$	a = 63.441,	b = 29.582.
4 .	$A = 75^{\circ},$	a = 74.642,	c = 77.274.
5.	$A = 55^{\circ},$	b = 35.01,	c = 61.04.
6.	A = 35°,	b = 49.152,	a = 34.416.
7.	$A = 20^{\circ},$	$B = 70^{\circ},$	c = 106.4.
8.	$A = 25^{\circ},$	$B = 65^{\circ},$	c = 55.17.
9.	$A = 20^{\circ}$,	$B = 70^{\circ},$	a = 34.2.
10.	$A = 20^{\circ},$	$B = 70^{\circ},$	b = 46.985.
11.	$A = 15^{\circ},$	a = 10.352,	b = 38.636.
12.	$B = 80^{\circ},$	a = 5.289,	c = 30.462.
13.	$B = 70^{\circ},$	a = 27.36,	b = 75.176.

ANSWERS

14.	A = 65°,	b = 13.989,	c = 33.102.
15.	$A=65^{\circ},$	$B = 25^{\circ},$	b = 14.087.
16.	$A = 15^{\circ},$	$B = 75^{\circ},$	c = 51.77.

EXERCISE IV

1.	160.7 yd.	5.	42.68 ft.		9.	81.96 ft.
2 .	50°.	6.	107.22 ft.		11.	1174.6 ft.
3.	96.05 ft.	7.	136.6 ft.		12.	3770 ft.
4.	122.02 ft.	8.	44.79 ft., 37.58 ft.		13.	98.098 ft., 68.69 ft.
14.	36.08 ft., 154.	28	ft.			
15.	33.52 ft., 28.1	2 f	to nearest tower.			
16.	74.24 ft., 51.9	8 f	t. 1	17. 3	78.0	2 ft., 417.11 ft.
18.	h = altitude = Q = area = 12		c.14 ft., c = base = 'sq. ft.	76.6 f	t.,	
19 .	$\angle C = 40^{\circ}, \angle c$	A =	= 70°, $h = 93.97$ ft.,	Q = 3	321 3	3.8 sq. ft.
20 .	61.04 ft., ∠A	. =	35°, $\angle C = 110°$.			
21.	h = 62.836 ft.	, r	= 76.71 ft., $Q = 276$	64.8 s	q. f	t.
22 .	h = 107.23 ft.	, r	= 118.3, Q = 5361.4	5 sq. f	it.	
23.	c = r = 57.74	ft.,	Q = 1443.5 sq. ft.	28.	492	2.4 ft.
24.	20°.			29.	251	5 ft.
25.	R = 274.75 ft	., a	$rea = 237150 ext{ sq. ft.}$	30.	120	$5(\sqrt{3}+3)$ ft.
26 .	25°; 14.09 ft.			31.	30°	•
27.	916.86 ft.					

EXERCISE V

.

1.	2d qdt.	4.	2d qdt.; 4th qdt.	7.	2d qdt.; 1st qdt.
2.	4th qdt.	5.	2d qdt.; 1st qdt.	8.	4th qdt.; 3d qdt.
3.	2d qdt.	6.	4th qdt.; 8d qdt.	9.	3d qdt. ; 8d qdt.

- 10. 847° is coterminal with 127°; 1111° with 31°; -225° with 135°; - 300° with 60°; 942° with 222°; -1174° with -94° or 266°.
- 11. 405° and 1125°; 315° and 675°; 390° and 750°; 330° and 690°; 460° and 820°; 260° and 620°; 560° and 1280°; 160° and 520°; 350° and 710°; 370° and 730°; 260° and 620°; 460° and 820°.
- **12.** -75° ; 15°. **15.** $-224^{\circ}22'17''$; $-134^{\circ}22'17''$
- **13.** -138° ; -48° . **16.** $122^{\circ}14'21''$; $212^{\circ}14'21''$.
- 14. 205° 17' 14"; 115° 17' 14". 17. 255° 28' 42"; 345° 28' 42".
- **18.** 60°. **19.** 175°. **20.** 30°. **21.** 340°. **22.** 317°.

EXERCISE VI

- 1. MP = -2, OP = 3, $OM = \pm \sqrt{5}$; $\csc A = -3/2$, $\cos A = \pm \sqrt{5}/3$, $\sec A = \pm 3/\sqrt{5}$, $\tan A = \pm 2/\sqrt{5}$, $\cot A = \pm \sqrt{5}/2$.
- 2. $MP = \pm 5$, $OM = \pm 2$, $OP = \sqrt{29}$; $\cot A = 2/5$, $\sin A = \pm 5/\sqrt{29}$, $\csc A = \pm \sqrt{29}/5$, $\cos A = \pm 2/\sqrt{29}$, $\sec A = \pm \sqrt{29}/2$.
- 3. $MP = \pm 3$, $OM = \mp 1$, $OP = \sqrt{10}$; $\cot A = -1/3$, $\sin A = \pm 3/\sqrt{10}$, $\csc A = \pm \sqrt{10}/3$, $\cos A = \mp 1/\sqrt{10}$, $\sec A = \mp \sqrt{10}$.
- 4. OM = 2, OP = 3, $MP = \pm \sqrt{5}$; sec A = 3/2, sin $A = \pm \sqrt{5}/3$, $\csc A = \pm 3/\sqrt{5}$, $\tan A = \pm \sqrt{5}/2$, $\cot A = \pm 2/\sqrt{5}$.
- 5. $\csc A = -8/7$, $\cos A = \mp \sqrt{15}/8$, $\sec A = \mp 8/\sqrt{15}$, $\tan A = \pm 7/\sqrt{15}$, $\cot A = \pm \sqrt{15}/7$.
- 6. $\cot A = 1/7$, $\sin A = \pm 7/(5\sqrt{2})$, $\csc A = \pm 5\sqrt{2}/7$, $\cos A = \pm 1/(5\sqrt{2})$, $\sec A = \pm 5\sqrt{2}$.
- 7. sec A = -7/3, sin $A = \pm 2\sqrt{10}/7$, csc $A = \pm 7/(2\sqrt{10})$, tan $A = \pm 2\sqrt{10}/3$, cot $A = \pm 3/(2\sqrt{10})$.
- 8. $MP = \pm 3$, $OM = \pm 5$, $OP = \sqrt{34}$; $\tan A = 3/5$, $\sin A = \pm 3/\sqrt{34}$, $\csc A = \pm \sqrt{34}/3$, $\cos A = \pm 5/\sqrt{34}$, $\sec A = \pm \sqrt{34}/5$.
- 9. sec A = -5/4, sin $A = \pm 3/5$, csc $A = \pm 5/3$, tan $A = \mp 3/4$, cot $A = \mp 4/3$.
- 10. OM = 1, OP = 2, $MP = \pm \sqrt{3}$; $\cos A = 1/2$, $\sin A = \pm \sqrt{3}/2$, $\csc A = \pm 2/\sqrt{3}$, $\tan A = \pm \sqrt{3}$, $\cot A = \pm 1/\sqrt{3}$.

- 11. $\cos A = -2/3$, $\sin A = \pm \sqrt{5}/3$, $\csc A = \pm 3/\sqrt{5}$, $\tan A = \mp \sqrt{5}/2$, $\cot A = \mp 2/\sqrt{5}$.
- 12. $\sin A = -3/5$, $\cos A = \pm 4/5$, $\sec A = \pm 5/4$, $\tan A = \pm 3/4$, $\cot A = \pm 4/8$.

EXERCISE VII

- 1. $\csc A = -3/2$, $\cos A = \pm \sqrt{1-4/9} = \pm \sqrt{5}/3$, $\sec A = \pm 3/\sqrt{5}$, $\tan A = \pm 2/\sqrt{5}$, $\cot A = \pm \sqrt{5}/2$.
- 2. $\sec A = 3$, $\sin A = \pm 2\sqrt{2/8}$, $\csc A = \pm 3/(2\sqrt{2})$, $\tan A = \pm 2\sqrt{2}$, $\cot A = \pm 1/(2\sqrt{2})$.
- 3. $\csc A = 5$, $\cos A = \pm 2\sqrt{6}/5$, $\sec A = \pm 5/(2\sqrt{6})$, $\tan A = \pm 1/(2\sqrt{6})$, $\cot A = \pm 2\sqrt{6}$.
- 4. $\sec A = -\frac{4}{3}$, $\sin A = \pm \sqrt{7}/4$, $\csc A = \pm \frac{4}{\sqrt{7}}$, $\tan A = \pm \sqrt{7}/3$, $\cot A = \pm \frac{3}{\sqrt{7}}$.
- 5. $\cot A = -3/4$, $\sin A = \pm 4/5$, $\csc A = \pm 5/4$, $\cos A = \mp 3/5$, $\sec A = \mp 5/3$.
- 6. $\tan A = -\frac{1}{2}$, $\sin A = \pm \frac{1}{\sqrt{5}}$, $\csc A = \pm \sqrt{5}$, $\cos A = \pm \frac{2}{\sqrt{5}}$, $\sec A = \pm \frac{\sqrt{5}}{2}$.
- 7. $\tan A = 2/3$, $\sin A = \pm 2/\sqrt{13}$, $\csc A = \pm \sqrt{13}/2$, $\cos A = \pm 3/\sqrt{13}$, $\sec A = \pm \sqrt{13}/3$.
- 8. $\cot A = 2/5$, $\sin A = \pm 5/\sqrt{29}$, $\csc A = \pm \sqrt{29/5}$, $\cos A = \pm 2/\sqrt{29}$, $\sec A = \pm \sqrt{29/2}$.
- 9. $\sin A = -1/\sqrt{3}$, $\cos A = \mp \sqrt{2/3}$, $\sec A = \mp \sqrt{3/2}$, $\tan A = \pm 1/\sqrt{2}$, $\cot A = \pm \sqrt{2}$.
- 10. $\cos A = 1/4$, $\sin A = \pm \sqrt{15}/4$, $\csc A = \pm 4/\sqrt{15}$, $\tan A = \pm \sqrt{15}$, $\cot A = \pm 1/\sqrt{15}$.
- 11. $\cot A = -1/\sqrt{7}$, $\sin A = \pm \sqrt{14/4}$, $\csc A = \pm 4/\sqrt{14}$, $\cos A = \pm \sqrt{2/4}$, $\sec A = \pm 4/\sqrt{2}$.

12.
$$\sec A = \frac{c}{m}, \ \sin A = \pm \frac{\sqrt{c^2 - m^2}}{c}, \ \csc A = \pm \frac{c}{\sqrt{c^2 - m^2}}, \ \tan A = \pm \frac{\sqrt{c^2 - m^2}}{m}, \ \cot A = \pm \frac{m}{\sqrt{c^2 - m^2}}.$$

13-17. See table on page 151.

PLANE TRIGONOMETRY

EXERCISE IX

1.	sin 12°.	5.	— cos 25°.	9.	сов 30°.	13.	сас 36°.
2 .	- tan 43°.	6.	sin 6°.	10.	cot 25°.	14.	- tan 16° 54'.
3.	sin 17°.	7.	- cot 24°.	11.	- cot 26°.	15.	— tan 33° 39'.
4.	cos 24°.	8.	sin 22°.	12.	- csc 23°.		

EXERCISE X

1.	$ \begin{array}{c} \text{The cosine of the sum} \\ \text{of any two angles} \end{array} \right\} \equiv \bigg\{ \begin{array}{c} - \end{array} \right\}$	cos first · cos second sin first · sin second.
2 .	$(\sqrt{2} + \sqrt{6})/4.$	6. 1; 0.
3.	$(\sqrt{6}-\sqrt{2})/4.$	7. 0; 1.
4.	$(\sqrt{6} - \sqrt{2})/4$; $(\sqrt{6} + \sqrt{2})/4$.	8. $\frac{2}{15}(1+\sqrt{42}); \frac{1}{15}(\sqrt{21}-4\sqrt{2}).$
5.	$(\sqrt{6} - \sqrt{2})/4$; $(\sqrt{6} + \sqrt{2})/4$.	9. $\frac{1}{12}(2+5\sqrt{3}); \frac{1}{12}(\sqrt{5}-2\sqrt{15}).$

EXERCISE XI

- The cosine of the difference of any two angles } ≡ { cos first · cos second + sin first · sin second.
 (√6 - √2)/4; (√6 + √2)/4.
 (√6 - √2)/4; (√6 + √2)/4.
 (2 √2 - √15)/12; (2 √30 + 1)/12.
- 5. $(3\sqrt{5} 2\sqrt{7})/12$; $(6 + \sqrt{35})/12$.

EXERCISE XII

1.	The tangent of the difference of any two angles	$\equiv \left\{ \frac{\text{the difference of their tangents}}{1 + product \text{ of their tangents}} \right.$
2 .	$(\sqrt{3}+1)/(\sqrt{3}-1).$	4. 1; 7.
3.	$(\sqrt{3}-1)/(\sqrt{3}+1).$	5. 1; 1/7.
12 .	$\tan (A + B) \equiv \frac{\cot B + \cot A}{\cot A \cdot \cot B - 1}$; $\tan (A - B) \equiv \frac{\cot B - \cot A}{\cot A \cdot \cot B + 1}$.
13.	$\cot{(A + B)} \equiv \frac{1 - \tan{A} \cdot \tan{B}}{\tan{A} + \tan{B}}$	$\frac{B}{3}; \cot (A - B) \equiv \frac{1 + \tan A \cdot \tan B}{\tan A - \tan B}.$

EXERCISE XIII

- 1. The tangent of twice an angle $\equiv \frac{\text{twice the tangent of the angle}}{1 (\text{the tangent of the angle})^2}$
- **2.** $\sqrt{3}/2$; 1/2; $\sqrt{3}$.
- **3.** $\sqrt{3}/2$; -1/2; $-\sqrt{3}$.
- 4. $2\sin 3A \cos 3A$; $\cos^2 3A \sin^2 3A$, $1 2\sin^2 3A$, or $2\cos^2 3A 1$; $2\tan 3A/(1 \tan^2 3A)$.
- 5. $2 \sin (3A/2) \cos (3A/2)$; $\cos^2 (3A/2) \sin^2 (3A/2)$, or $1 2 \sin^2 (3A/2)$, or $2 \cos^2 (3A/2) 1$; $2 \tan (3A/2) / [1 - \tan^2 (3A/2)]$.

EXERCISE XIV

1. $\cos half$ an $angle \equiv square root of \frac{1 + \cos angle}{2};$ tan half an angle \equiv square root of $\frac{1 - \cos angle}{1 + \cos angle}.$

2.
$$\sqrt{2-\sqrt{2}}/2$$
; $\sqrt{2+\sqrt{2}}/2$; $\sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}} = \sqrt{3-2\sqrt{2}}$

3.
$$\sqrt{2-\sqrt{3}}/2; \sqrt{2+\sqrt{3}}/2; \sqrt{7-4\sqrt{3}}.$$

4. $\sqrt{3}/3$; $\sqrt{6}/3$; $\sqrt{2}/2$.

5.
$$\sqrt{\frac{1-a}{2}}; \sqrt{\frac{1+a}{2}}; \sqrt{\frac{1-a}{1+a}}$$

6. $\sqrt{\frac{1-\cos 2A}{2}}; \sqrt{\frac{1+\cos 2A}{2}}; \sqrt{\frac{1-\cos 2A}{1+\cos 2A}}$
7. $\sqrt{\frac{1-\cos 4A}{2}}; \sqrt{\frac{1+\cos 4A}{2}}; \sqrt{\frac{1-\cos 4A}{1+\cos 4A}}$
8. $\sqrt{\frac{1-\cos 6A}{2}}; \sqrt{\frac{1+\cos 6A}{2}}; \sqrt{\frac{1-\cos 6A}{1+\cos 6A}}$

PLANE TRIGONOMETRY

EXERCISE XV

1. The difference of the sines of any two angles $\equiv \begin{cases} \text{twice } \cos half \ sum \ into \\ \sin half \ difference. \end{cases}$ The sum of the cosines of any $B \equiv \begin{cases} twice \cos half sum into \\ \cos half difference. \end{cases}$ The difference of the cosines $= -\begin{cases} \text{twice sin half sum into} \\ \sin half \text{ difference.} \end{cases}$ **15.** (1) $\sin (A + B) = (2\sqrt{2} + \sqrt{3})/6$; $\sin (A - B) = (2\sqrt{2} - \sqrt{3})/6$ $\cos (A + B) = (2\sqrt{6} - 1)/6;$ $\cos (A - B) = (2\sqrt{6} + 1)/6;$ $\sin 2A = \sqrt{3}/2$: $\sin 2B = 4\sqrt{2}/9$; $\cos 2A = 1/2$: $\cos 2 B = 7/9$: (2) $\sin (A + B) = -(2\sqrt{2} - \sqrt{3})/6$; $\sin (A - B) = -(2\sqrt{2} + \sqrt{3})/6$ $\cos (A + B) = -(2\sqrt{6} + 1)/6$; $\cos (A - B) = -(2\sqrt{6} - 1)/6$ $\sin 2A = \sqrt{3}/2$: $\sin 2B = -4\sqrt{2}/9$; $\cos 2A = 1/2$; $\cos 2 B = 7/9.$ $\tan (A + B) = (2\sqrt{2} + \sqrt{3})/(2\sqrt{6} - 1);$ **16**. (1) $\tan (A - B) = (2\sqrt{2} - \sqrt{3})/(2\sqrt{6} + 1);$ $\cot (A + B) = (2\sqrt{6} - 1)/(2\sqrt{2} + \sqrt{3});$ $\cot (A - B) = (2\sqrt{6} + 1)/(2\sqrt{2} - \sqrt{3});$ sec $(A + B) = 6/(2\sqrt{6} - 1);$ $\csc (A + B) = 6/(2\sqrt{2} + \sqrt{3});$ $\tan 2 A = \sqrt{3}$: $\cot 2 A = 1/\sqrt{3};$ sec 2 B = 9/7; $\csc 2 B = 9/(4 \sqrt{2}).$ $\tan (A + B) = (2\sqrt{2} - \sqrt{3})/(2\sqrt{6} + 1);$ (2) $\tan (A - B) = (2\sqrt{2} + \sqrt{3})/(2\sqrt{6} - 1);$ $\cot (A + B) = (2\sqrt{6} + 1)/(2\sqrt{2} - \sqrt{3});$ $\cot (A - B) = (2\sqrt{6} - 1)/(2\sqrt{2} + \sqrt{3});$ sec $(A + B) = -6/(2\sqrt{6} + 1);$ $\csc (A + B) = -6/(2\sqrt{2} - \sqrt{3});$ $\tan 2A = \sqrt{3}$; $\cot 2A = 1/\sqrt{3};$ sec 2 B = 9/7; $\csc 2 B = -9/(4 \sqrt{2}).$

EXERCISE XVI

9.
$$\sin(3x/4) \equiv \sqrt{[1 - \cos(3x/2)]/2};$$

 $\cos(3x/4) \equiv \sqrt{[1 + \cos(3x/2)]/2};$
 $\tan(3x/4) \equiv \sqrt{1 - \cos(3x/2)}/\sqrt{1 + \cos(3x/2)}.$

10.
$$\sin (3x/4) \equiv 2 \sin (3x/8) \cos (3x/8);$$

 $\cos (3x/4) \equiv \cos^2 (3x/8) - \sin^2 (3x/8);$
 $\tan (3x/4) \equiv 2 \tan (3x/8) / [1 - \tan^2 (3x/8)].$

16. (1) $\sin(A+B) = (2+\sqrt{15})/6$; $\sin(A-B) = (2-\sqrt{15})/6$; $\cos(A+B) = (\sqrt{5}-2\sqrt{3})/6; \cos(A-B) = (\sqrt{5}+2\sqrt{3})/6;$ $\sin 2A = 4\sqrt{5}/9;$ $\cos 2A = 1/9;$ $\sin 2 B = \sqrt{3}/2;$ $\cos 2 B = -1/2.$

(2)
$$\tan (A + B) = \frac{2 + \sqrt{15}}{\sqrt{5 - 2\sqrt{3}}};$$
 $\cot (A + B) = \frac{\sqrt{5 - 2\sqrt{3}}}{2 + \sqrt{15}};$
 $\tan (A - B) = \frac{2 - \sqrt{15}}{\sqrt{5 + 2\sqrt{3}}};$ $\cot (A - B) = \frac{\sqrt{5 + 2\sqrt{3}}}{2 - \sqrt{15}}.$
 $\tan 2A = 4\sqrt{5};$ The answers above are for A tan $2B = -\sqrt{3};$ and B in the first quadrant.

EXERCISE XVII

1. $A = 23^{\circ}$,	b = 11.779,	c = 12.796.
2. $B = 52^{\circ}$,	b = 10.355,	c = 13.14.
3. $B = 75^{\circ}$,	b = 6.7614,	a = 1.8117.
4. $A = 40^{\circ}$,	a = 16.782,	c = 26.108.
5. A = 34° 22' 9",	$B = 55^{\circ} 37' 51'',$	b = 0.51176.
6. A = 33° 8′ 56″,	$B = 56^{\circ} 51' 4'',$	c = 499.26.
7. A = 39° 49′ 22″,	$B = 50^{\circ} \ 10' \ 38'',$	a = 48.863.
8. $B = 81^{\circ}$,	a = 148.41,	c = 948.68.
9. $A = 49^{\circ} 53' 53''$,	$B = 40^{\circ} 6' 7'',$	c = 4.4632.
10. $B = 43^{\circ} 37'$,	a = 3821.5,	b = 3641.3.
11. $A = 35^{\circ} 53' 56''.5$,	B = 54° 6′ 8″.5,	b = 731.23.
12. $A = 66^{\circ} 51'$,	a = 176.53,	c = 191.99.

 $\frac{\sqrt{5}+2\sqrt{3}}{2-\sqrt{15}}$

13. $A = 71^{\circ} 22'$,	a = 2.4099,	b = .81258.
14. $B = 58^{\circ} 15'$,	b = 77.632,	c = 91.294.
15. $A = 32^{\circ} 10' 15''$,	$B = 57^{\circ} 49' 45'',$	a = 388.46.
16. $A = 7^{\circ} 53' 42''$,	b = 644.11,	c = 650.27.

Ň

EXERCISE XVIII

1.	$C=180^{\circ}-2$	$A, \qquad r=c,$	$/(2 \cdot \cos A),$	$h=c\cdot \tan A/2.$
2 .	$A = 90^{\circ} - C_{/}$	r=h,	$/\cos{(C/2)},$	$c = 2 h \cdot \tan(C/2).$
3.	$A = \tan^{-1}(2)$	h/c), $C=2$	$\cdot \tan^{-1}(c/2h),$	$r=\sqrt{4h^2+c^2}/2.$
4.	r = 2.055,	h = 1.6853,	$A = 55^{\circ} 5' 30'',$	Q = 1.9819.
5.	r = 7.706,	c = 3.6676,	$C = 27^{\circ} 32',$	Q = 13.7253.

6. Let x =length of rafter and Q =area of roof; then, since the roof projects one foot over the side of the barn, we have:

-	$x=21/\sin 45^{\circ},$	$Q=2\cdot x\cdot 82;$	x = 29.698,	Q = 4870.44.
7.	r = 1.61804,	h = 1.53882	, $F =$	7.6941.
8.	r = 11.2692,	h = 10.8852	, $F =$	380 .99.
9.	r = 1.0824,	c = .8284,	F =	3.31 36.
10.	r = 1.5994,	h = 1.441,	p =	9.715.

- 11. h = 28.971, r = 31.357, $D_i =$ (difference between polygon and inscribed circle) = 144.45, $D_c = 307.9$.
- 12. h = 14.536, r = 16.134, $D_i = 48.48$, $D_c = 105.46$.15. 99.64 sq. ft.16. 2.393.

EXERCISE XIX

1. $A = 65^{\circ} 15'$,	b = 95.6025,	c = 89.648.
2 . $B = 72^{\circ} 14'$,	a = 75.132,	c = 92.788.
3 . $A = 31^{\circ} 20'$,	b = 184.896,	c = 191.978.
4. $C = 60^{\circ}$,	a = 255.38,	b = 282.56.
5. $A = 15^{\circ} 43'$,	b = 222.1,	c = 321.08.

6.	$B = 66^{\circ},$		a = 765.43,	c =	1035.4.
7.	1253.3 ft.	9.	300 yd.	11.	294.77 ft.
8.	1116.6 ft.	10.	12296 ft., 13055 ft.	12.	4211.8 ft.

EXERCISE XX

1.	$A = 32^{\circ} 25' 36'',$	$C = 106^{\circ} 24' 24'',$	c = 259.4.
2.	$A = 28^{\circ} 20' 48'',$	$C = 39^{\circ} 35' 12'',$	a = 293.56.
3.	$B = 32^{\circ} 36' 9'',$	$C = 83^{\circ} 33' 51'',$	c = 6.621.
4.	$B_1 = 51^\circ \ 18' \ 22'', \\ B_2 = 128^\circ \ 41' \ 38'',$	$C_1 = 88^\circ 41' 38'',$ $C_2 = 11^\circ 18' 22'',$	$c_1 = 218.53;$ $c_2 = 42.853.$
5.	$B_1 = 31^\circ 57' 46'',$ $B_2 = 148^\circ 2' 14'',$	$A_1 = 120^\circ 44' 14'',$ $A_2 = 4^\circ 39' 46'',$	$a_1 = 120.31$; $a_2 = 11.379$.
6 .	Impossible.		
7.	$C_1 = 46^{\circ} \ 18' \ 40'',$	$A_1 = 93^\circ 9' 13'',$	$a_1 = 69.457$;

8. $A_1 = 51^\circ 18'$ $A_2 = 128^{\circ} 41^{\circ}$ 9. $A = 54^{\circ} 31'$ 10. $B_1 = 24^\circ 57'$

 $B_3 = 155^{\circ} 2'$ 11. $B_1 = 16^{\circ} 43'$

$C_1 \equiv 40^{\circ} 18^{\circ} 40^{\circ},$ $C_2 = 133^{\circ} 41^{\prime} 20^{\prime\prime},$	$A_1 = 93^{\circ} 9^{\circ} 13^{\circ}, \\ A_2 = 5^{\circ} 46' 33'',$	$a_1 \equiv 09.437$, $a_2 = 7.0005$.
$A_1 = 51^\circ 18' 27'',$ $A_2 = 128^\circ 41' 33'',$	$\begin{array}{l} C_1 = 98^\circ \ 21' \ 33'', \\ C_2 = 20^\circ \ 58' \ 27'', \end{array}$	$c_1 = 43.098;$ $c_2 = 15.593.$
$A = 54^{\circ} 31' 13'',$	$C = 47^{\circ} 44' 7'',$	c = 50.481.
$B_1 = 24^\circ 57' 54'', B_2 = 155^\circ 2' 6'',$	$C_1 = 133^\circ 47' 41'',$ $C_2 = 3^\circ 43' 29'',$	$c_1 = 615.67;$ $c_2 = 55.41.$
$B_1 = 16^{\circ} 43' 13'', B_2 = 163^{\circ} 16' 47'',$	$A_1 = 147^\circ \ 27' \ 47'',$ $A_2 = 0^\circ \ 54' \ 13'',$	$a_1 = 35.519$; $a_2 = 1.0415$.

EXERCISE XXI

1. $A = 42^{\circ} 50' 57''$,	B = 64° 9′ 3″,	c = 374.05.
2. $B = 132^{\circ} 18' 27''$,	$C = 14^{\circ} 34' 23'',$	a = 67.75.
3. $A = 109^{\circ} 15' 30''$,	$B = 45^{\circ} 4' 30'',$	c = 440.45.
4. $A = 60^{\circ} 44' 39'',$	$B = 47^{\circ} 21' 21'',$	c = 965.28.
5. $B = 54^{\circ} 1' 13''$,	$C = 63^{\circ} 49' 9'',$	a = 44.824.
6. 902.94 ft.	8. 1331.2 ft.	10. 10.532 mi.
7. 18.27 mi.	9. 4.8111 mi.	11. 9.627 mi.

PLANE TRIGONOMETRY

EXERCISE XXII

1. $A = 74^{\circ} 40' 18''$,	$B = 47^{\circ} 46' 38'',$	$C = 57^{\circ} 33' 4''.$
2. $A = 59^{\circ} 19' 14'',$	$B = 68^{\circ} 34' 8'',$	$C = 52^{\circ} 6' 41''.$
3 . $A = 45^{\circ} 11' 48''$,	$B = 101^{\circ} 22' 16'',$	C = 33° 25′ 56″.
4. $A = 71^{\circ} 33' 53''$,	$B = 49^{\circ} 8' 5'',$	$C = 59^{\circ} 18' 6''.$
5. $A = 54^{\circ} 3' 10''$,	$B = 30^{\circ} 47' 22'',$	$C = 95^{\circ} 9' 24''.$
6. $B_1 = 41^{\circ} 41' 26'',$ $B_2 = 138^{\circ} 18' 84'',$	$\begin{array}{l} C_1 = 111^\circ \ 52' \ 34'', \\ C_2 = 15^\circ \ 15' \ 26'', \end{array}$	$c_1 = 177.2;$ $c_2 = 50.248.$
7. $A = 17^{\circ} 16' 11''$,	$B = 28^{\circ} 43' 49'',$	c = 14.424.
8. $A = 18^{\circ} 12' 22''$,	$B = 135^{\circ} 50' 46'',$	$C = 25^{\circ} 56' 52''.$

9. Since c > a, $C > A > 90^{\circ}$, which is impossible, as a triangle cannot have two obtuse angles.

10. $B = 48^{\circ} 34' 44''$,	$A = 49^{\circ} 38' 16'',$	a = 76.015.
11. $B = 145^{\circ} 35' 24''$,	$C = 7^{\circ} 11' 36'',$	a = 104.57.
12. $A = 57^{\circ} 52' 46''$,	$B = 70^{\circ} 17' 25'',$	$C = 51^{\circ} 49' 50''$
13. $A_1 = 70^\circ 12' 48'',$ $A_2 = 109^\circ 47' 12'',$	$B_1 = 57^\circ 22' 56'', B_2 = 17^\circ 48' 32'',$	$b_1 = 28.79;$ $b_2 = 10.454.$
14. $A = 32^{\circ} 44' 40''$,	$C = 68^{\circ} 48' 28'',$	b = 137.39.
15. $b = 148.52$,	$B = 146^{\circ} 43' 10'',$	$C = 14^{\circ} 4' 7''$
16 . A = 67° 55′ 15″,	$B = 54^{\circ} 4' 45'',$	c = 85.36.
17. 44° 2′ 18″, 51° 28′ 14″	′, 84° 29′ 36″.	

 18. 44° 2' 56".
 20. N. 4° 23' W., or S. 4° 23' W.

 19. 60° 51' 16".
 21. 60°.

EXERCISE XXIII

- **2.** 193.18.
 3. 44770; 781.6; 149689; 314543.
- 4. 12379; 53596; 10.666; $F_1 = 11981.7$, $F_2 = 2349.63$.
- **5.** 1016.02; 30.858; 1430.3; 170346.
- **6.** 3891.6; 3819.4; 9229.4; 31246.

ANSWERS

EXERCISE XXIV

1. $9\pi/4$, $17\pi/4$, $-7\pi/4$, $-15\pi/4$; $13\pi/4$, $21\pi/4$, $-3\pi/4$, $-11\pi/4$; $7\pi/2$, $11\pi/2$, $-\pi/2$, $-5\pi/2$; $9\pi/2$, $13\pi/2$, $-3\pi/2$, $-7\pi/2$; $7\pi/3$, $13\pi/3$, $-5\pi/3$, $-11\pi/3$; $8\pi/3$, $14\pi/3$, $-4\pi/8$, $-10\pi/3$; $13\pi/6$, $25\pi/6$, $-11\pi/6$, $-23\pi/6$; $17\pi/6$, $29\pi/6$, $-7\pi/6$, $-19\pi/6$.

- 2. 120° .
 4. 900° .
 6. $\pi/4$.
 8. $\pi/2$.

 3. 300° .
 5. 135° .
 7. $3\pi/4$.
 9. $3\pi/2$.

 10. 12859/7560, or 1.7.
 14. $\pi/4$, $3\pi/4$.

 11. 115643/37800, or 3.06.
 15. $-\pi/6$, $\pi/3$.

 12. 35827/47250, or 0.76.
 16. $-\pi/4$, $\pi/4$.
- 13. 1516273/2268000, or 0.67. 17. $-7\pi/6$, $-2\pi/3$.
- 18. $\sin(\pi/6) = 1/2$, $\cos(\pi/6) = \sqrt{3}/2$, $\tan(\pi/6) = \sqrt{3}/3$.
- 19. $\sin(\pi/4) = \sqrt{2}/2$, $\cos(\pi/4) = \sqrt{2}/2$, $\tan(\pi/4) = 1$.
- **20.** $\sin(\pi/3) = \sqrt{3}/2$, $\cos(\pi/3) = 1/2$, $\tan(\pi/3) = \sqrt{3}$.
- **21.** $\sin(\pi/2) = 1$, $\cos(\pi/2) = 0$, $\tan(\pi/2) = \infty$.
- 22. $\sin \pi = 0$, $\cos \pi = -1$, $\tan \pi = 0$.
- 23. 157/70 or 2.24; 157 (57° 17′ 44″.8)/70.
- **24.** 55/98; $55(57^{\circ}17'44''.8)/98$.**27.** 24_{11}° in.**25.** 3/4; $3(57^{\circ}17'44''.8)/4$.**28.** 68_{15}° in.
- **26.** 11/210 in. **29.** 3980⁵ mi.

EXERCISE XXV

1.	$\theta = n\pi + (-1)^n (\pm \pi/2) = n\pi \pm \pi/2.$					
2.	$n\pi \pm \pi/4.$	6.	$n\pi \pm \pi/6.$	10.	$2n\pi \pm \pi/3.$	
3.	$n\pi \pm \pi/4.$	7.	$2n\pi \pm 2\pi/3.$	11.	$2n\pi + \pi/4.$	
4.	$n\pi \pm \pi/6.$	8.	$n\pi + (-1)^n \cdot \pi/6.$	12.	$n\pi \pm \pi/6.$	
5.	$n\pi \pm \pi/3.$	9.	$n\pi + (-1)^n \cdot (\pi/3).$	13.	$n\pi + \pi/4.$	

PLANE TRIGONOMETRY

14.	$n\pi + \pi/4, \ n\pi + \pi/3.$	16.	$n\pi \pm \pi/4.$
15.	$n\pi + 5\pi/6, n\pi + 2\pi/3.$	17.	$2 n \cdot 180^\circ + 53^\circ 7' 45''$.
18.	$(2 n + 1) \cdot 180^{\circ}, 2 n \cdot 180^{\circ} + 53^{\circ} 8$	<i>s</i> ′.	
19.	$[n\pi + (-1)^n\pi/4]/5.$	22.	$(2n\pi + \pi/2)/5, 2n\pi - \pi/2.$
2 0.	2nπ/9 , 2nπ.	23.	$(2 n\pi \pm \pi/2)/(m \pm r).$
2 1.	$(n\pi + \pi/2)/(r+1).$	24.	$n\pi + \pi/4.$
	θ must be in the first or third qu	adra	nt. Why?
25 .	$n\pi - \pi/6, \ n\pi + 2\pi/3.$		
	θ must be in the second or fourt	h qu	adrant. Why?
26.	$n\pi - \pi/4.$	28.	$(2n+1)\pi + \pi/4.$
27.	$n\pi \pm \pi/6.$	29 .	$2n\pi-\pi/6.$
	$7\pi/12$ and $\pi/4$; $(2m+n)\pi$		
(1 - 2	$(2m)\pi/2 + (-1)^n\pi/12 \mp \pi/6, \gamma$	wner	e m and n are any integers.

31. $25 \pi/24$ and $19 \pi/24$; $(m+2n) \pi/2 + \pi/8 \pm \pi/12$ and $(2n-m)\pi/2 \pm \pi/12 - \pi/8$, where m and n are any integers.

EXERCISE XXVI

1	$n\pi/4$, $(2n\pi \pm \pi/3)/3$.	8.	$n\pi \pm \pi/4, 2n\pi \pm 2\pi/8.$
2	$n\pi \pm \pi/4, 2 n\pi \pm \pi/3.$	9.	$2n\pi + \pi/6 \pm \pi/4.$
3	$n\pi \pm \pi/4, n\pi - (-1)^n\pi/6.$	10.	$2n\pi + \pi/4.$
4	$n\pi/2 \pm \pi/8, 2n\pi/3 \pm \pi/9.$	11.	$2n\pi - \pi/3 \pm 3\pi/4.$
5	$2n\pi/3 \pm \pi/6, n\pi + (-1)^n \pi/6.$	12.	$2\eta\pi + \pi/4 \pm \pi/5.$
6	$n\pi/3$, $(2n \pm 1/3)\pi/4$.	13.	$2 n \cdot 180^\circ + 68^\circ 12'$.
7	$n\pi/3, n\pi \pm \pi/3.$	14.	$2 n \cdot 180^{\circ} \pm 120^{\circ} - 33^{\circ} 41' 24''$.

EXERCISE XXVII

1. $(2-\sqrt{3})/2$; $(2-\sqrt{2})/2$; 1/2; $(2+\sqrt{2})/2$; 0; 1; 2; 1. 9. 1/2; $(2-\sqrt{2})/2$; $(2-\sqrt{3})/2$; $(2-\sqrt{2})/2$; 1; 0; 1; 2.

ANSWERS

- 3. $n\pi + (-1)^n \cdot \pi/4$; $n\pi (-1)^n \cdot \pi/3$; $2n\pi \pm \pi/6$; $2n\pi \pm 2\pi/3$; $n\pi + \pi/6$; $n\pi - \pi/3$; $n\pi - \pi/4$; $n\pi + \pi/3$.
- 13. 1/2.
 15. $\sqrt{3}$.
 17. $\sqrt{3}$.
 19. 13.

 14. $\pm \sqrt{2}/2$.
 16. -8, 1/4.
 18. $\pm \sqrt{21}/14$.

EXERCISE XXIX

- 1. $(1/\sqrt{2} + i/\sqrt{2}) \cdot \sqrt{2}$, or $(\cos \pi/4 + i \sin \pi/4) \cdot \sqrt{2}$.
- 2. $[1/\sqrt{2} + i(-1/\sqrt{2})] \cdot \sqrt{2}$, or $[\cos(-\pi/4) + i\sin(-\pi/4)] \cdot \sqrt{2}$.
- 3. $[-1/\sqrt{2} + i(-1/\sqrt{2})] \cdot \sqrt{2},$ or $[\cos(-3\pi/4) + i\sin(-3\pi/4)] \cdot \sqrt{2}.$
- 4. $(-1/2 + i\sqrt{3}/2) \cdot 2$, or $(\cos 2\pi/3 + i\sin 2\pi/3) \cdot 2$.
- 5. $(-\sqrt{3}/2 + i/2) \cdot 2$, or $(\cos 5\pi/6 + i \sin 5\pi/6) \cdot 2$.
- 6. $\left[-\sqrt{3}/2 + i(-1/2)\right] \cdot 2$, or $\left[\cos\left(-5\pi/6\right) + i\sin\left(-5\pi/6\right)\right] \cdot 2$.
- 7. $[3/5 + i(-4/5)] \cdot 5$, or $[\cos(-53^{\circ}8') + i\sin(-53^{\circ}8')] \cdot 5$.
- 8. $(-3/\sqrt{13}+i\cdot 2/\sqrt{13})\cdot \sqrt{13}$, or $(\cos 146^{\circ} 19'+i\sin 146^{\circ} 19')\cdot \sqrt{13}$.
- 9. $[-3/5 + i(-4/5)] \cdot 10$, or $[\cos(-126^{\circ}52') + i\sin(-126^{\circ}52')] \cdot 10$.
- 10. $[-\sqrt{5}/4 + i(-\sqrt{11}/4)] \cdot 4$, or $[\cos(-123^{\circ}59') + i\sin(-123^{\circ}59')] \cdot 4$.
- 11. $\cos (90^\circ \phi) + i \sin (90^\circ \phi)$.
- 12. $\cos(90^{\circ} + \theta) + i \sin(90^{\circ} + \theta)$.

EXERCISE XXX

4. Each quality unit in example 2 is a fifth root of -1. Each quality unit in example 3 is a sixth root of -1.

- 5. $\cos(6\theta + 5\phi) + i\sin(6\theta + 5\phi)$.
- 6. $\cos(5\phi/3 3\theta/2) + i\sin(5\phi/3 3\theta/2)$.
- 7. $\cos(\theta + \phi \beta \gamma) + i\sin(\theta + \phi \beta \gamma)$.
- 8. $\cos(-\pi) + i\sin(-\pi)$, or -1.
- 9. $\cos(4\phi + 5\theta \pi/2) + i\sin(4\phi + 5\theta \pi/2)$, or $\sin(4\phi + 5\theta) - i\cos(4\phi + 5\theta)$.

EXERCISE XXXI

2. $-1, (1 \pm \sqrt{-3})/2$ 1. +1, $(-1 \pm i \sqrt{3})/2$. 3. ± 1 , $(1 \pm i\sqrt{3})/2$, $(-1 \pm i\sqrt{3})/2$. 4. $\pm i$, $(\sqrt{3} \pm i)/2$, $(-\sqrt{3} \pm i)/2$. 5. $+2, +i \cdot 2$. 6. 2, $2 \left[\cos \left(2 n \pi / 5 \right) \pm i \sin \left(2 n \pi / 5 \right) \right]$, where n = 1 or 2. Here two roots are the reciprocals of two others respectively. 7. -3, 3 $\left[\cos((2n+1)\pi/5) + i\sin((2n+1)\pi/5))\right]$, where n = 0, 1, 3, or 4. 8. $\pm \left[\cos\left(\frac{4n-1}{\pi}/12\right) + i\sin\left(\frac{4n-1}{\pi}/12\right)\right]$, where n = 0, 1, or 2. Here the roots are opposites in pairs. 9. $2 \left[\cos \left(\frac{12n+1}{\pi} / 18 \right) + i \sin \left(\frac{12n+1}{\pi} / 18 \right) \right]$, where n = 0, 1, or 2. 10. $\pm \left[\cos\left(\frac{6n-1}{\pi}\pi/12\right) + i\sin\left(\frac{6n-1}{\pi}\pi/12\right)\right]\sqrt[4]{2}$, where n = 0 or 1. Here the roots are opposites in pairs. 11. $\pm \left[\cos\left(\frac{8n+1}{\pi}/24\right) + i\sin\left(\frac{8n+1}{\pi}/24\right)\right]^{19}/2$, where n = 0, 1, or 2. Here the roots are opposites in pairs. 12. $\sqrt[5]{4} [\cos(r\pi/15) + i\sin(r\pi/15)]$, where r = -1, 5, 11, 17, or 23. 13. $\cos(\pi/5) \pm i \sin(\pi/5)$, $\cos(3\pi/5) \pm i \sin(3\pi/5)$. 14. $\pm 1, (1 \pm \sqrt{-3})/2, (-1 \pm i\sqrt{3})/2, \pm i, \cos(\pi/6) \pm i\sin(\pi/6),$ $\cos(5\pi/6) \pm i \sin(5\pi/6)$. 15. -1, $(1 \pm \sqrt{-3})/2$, $\pm [\cos(\pi/4) + i \sin(\pi/4)]$, $\pm [\cos((3\pi/4)) + i\sin((3\pi/4))].$ 16. -1, $\cos(n\pi/7) \pm i \sin(n\pi/7)$, where n = 1, 3, or 5. EXERCISE XXXII 1. $n \cdot 360^{\circ} + 45^{\circ}$, or $2n\pi + \pi/4$. 4. $n \cdot 360^{\circ} - 100^{\circ}$. **2.** $n \cdot 360^{\circ} + 132^{\circ}$. **3.** $n \cdot 360^{\circ} - 35^{\circ}$. 5. $2n\pi + \pi/6$. 6. $\cos A = \pm \sqrt{33}/7$, $\tan A = \pm 4/\sqrt{33}$, $\cot A = \pm \sqrt{33}/4$, sec $A = \pm 7 / \sqrt{33}$, esc A = 7 / 4.

- 7. $\cot A = 2/3$, $\sin A = \pm 3/\sqrt{13}$, $\cos A = \pm 2/\sqrt{13}$, sec $A = \pm \sqrt{13}/2$, $\csc A = \pm \sqrt{13}/3$.
- 8. $\sin A = \pm \sqrt{55}/8$, $\tan A = \mp \sqrt{55}/3$, $\cot A = \mp 3/\sqrt{55}$, sec A = -8/3, $\csc A = \pm 8/\sqrt{55}$.
- 9. $\tan A = -5/7$, $\sin A = \pm 5/\sqrt{74}$, $\cos A = \mp 7/\sqrt{74}$, sec $A = \mp \sqrt{74}/7$, $\csc A = \pm \sqrt{74}/5$.
- 10. $\sin A = \pm \sqrt{33}/7$, $\cos A = 4/7$, $\tan A = \pm \sqrt{33}/4$, $\cot A = \pm 4/\sqrt{33}$, $\csc A = \pm 7/\sqrt{33}$.
- 11. $\sin A = -4/5$, $\cos A = \mp 3/5$, $\tan A = \pm 4/3$, $\cot A = \pm 3/4$, sec $A = \mp 5/3$.
- 12. 1st or 2d; 1st or 3d; 2d or 3d; 2d or 4th; 1st or 4th; 3d or 4th.
- **13.** $\cos 4^{\circ}$. **16.** $-\cot 40^{\circ}$. **19.** $-\cos 5^{\circ}$.
- **14.** $-\sin 38^\circ$. **17.** $-\sec 10^\circ$. **20.** $-\tan 20^\circ$.
- **15.** $\tan 35^\circ$. **18.** $-\cos 15^\circ$. **21.** $\tan 30^\circ$.
- **22-27.** See table on page 151. 66. 2d or 3d.
- 63. 2d or 4th. 67. $n\pi \pm \pi/2$.
- 64. 1st or 4th. 68. $n \cdot 180^\circ + (-1)^n 21^\circ 28'$.
- **65.** 3d or 4th. **69.** $2n\pi \pm \pi/2, n\pi + (-1)^n \pi/6.$
- 70. $n\pi + (-1)^n \pi/6$, $n\pi (-1)^n \pi/2$.
- **71.** $n \cdot 180^{\circ} \pm 35^{\circ} 16'$. **72.** $2 n\pi \pm \pi/3$, $2 n\pi \pm \pi$. **73.** $n\pi \pm \pi/6$.
- 74. $n \cdot 360^{\circ} \pm 51^{\circ} 19', n \cdot 360^{\circ} \pm 180^{\circ}$.
- **75.** $n\pi + (-1)^n \pi/6$, $n\pi (-1)^n \pi/2$.
- **76.** $n\pi \pm \pi/4$.
- **77.** $n \cdot 180^{\circ} + 45^{\circ}$, $n \cdot 180^{\circ} 18^{\circ} 26'$.
- **78.** $n \cdot 180^{\circ} + (-1)^n 30^{\circ}, n \cdot 180^{\circ} (-1)^n 19^{\circ} 28'.$
- **79.** $n\pi/2 + (-1)^n \pi/12$, $n\pi/2 (-1)^n \pi/4$.
- **80.** $n\pi + (-1)^n \pi/6$. **82.** $2n\pi \pm \pi/4$, $2\pi n \pm \pi/2$.
- 81. $n\pi (-1)^n (\pi/3)$. 83. $n\pi + (-1)^n \pi/6$.

PLANE TRIGONOMETRY

84.
$$n \cdot 180^{\circ}$$
, $n \cdot 360^{\circ} + 65^{\circ} 42'$, $n \cdot 360^{\circ} + 204^{\circ} 18'$.
85. $2n\pi \pm \pi/3$, $2n\pi \pm \pi/2$.
86. $n \cdot 360^{\circ} + 105^{\circ}$, $n \cdot 360^{\circ} - 15^{\circ}$.
87. $2n\pi \pm \pi/2$, $2n\pi$, $2n\pi \pm 2\pi/3$.
88. $2n\pi \pm$ the principal value of $\cos^{-1} - \frac{a \pm \sqrt{a^2 + 8a + 8}}{4}$.
89. $n\pi \pm \pi/6$.
90. $n \cdot 180^{\circ} + 22^{\circ} 37'$, $n \cdot 180^{\circ} + 143^{\circ} 8'$.
91. ± 1 .
93. 1.
95. $\sqrt{3}/3$, $-\sqrt{3}/2$.
92. $-1/2$.
94. $\sqrt{3}/3$, $-\sqrt{3}$.
96. $n\pi$, $n\pi \pm \pi/3$.
97. $n\pi \pm \pi/6$, $n\pi \pm \pi/3$.
98. $n\pi + (-1)^n \pi/6$, $n \cdot 180^{\circ} + (-1)^n \cdot 14^{\circ} 26'$.
99. $n\pi$, $n\pi + \pi/4$.
100. $n\pi \pm \pi/3$.
101. $\theta = \tan^{-1}(a/b)$; $r = \sqrt{a^2 + b^2}$.
102. $\theta = \tan^{-1}(a/b)$; $\phi = \tan^{-1}(c/\sqrt{a^2 + b^2})$; $r = \sqrt{a^2 + b^2 + c^2}$.
103. $x = \tan^{-1}(a/b) + \cos^{-1}(\pm \sqrt{a^2 + b^2}/2)$;
 $y = \tan^{-1}(a/b) - \cos^{-1}(\pm \sqrt{a^2 + b^2}/2)$.
104. $x = \tan^{-1}(-b/a) + \sin^{-1}(\mp \sqrt{a^2 + b^2}/2)$.
105. $x = (b \sin B - a \cos B)/\sin (B - A)$;
 $y = (a \cos A - b \sin A)/\sin (B - A)$.
106. $\theta = \tan^{-1}\frac{a \cos B - b \sin A}{b \cos A + a \sin B}$; $r = \frac{\sqrt{a^2 + b^2 - 2ab \sin (A - B)}}{\cos (A - B)}$.
107. $x = 0$, $y = 0$; $x = \pi$, $y = -\pi$; $x = -\pi$, $y = \pi$.
108. $R = W/(\sin h + \cos h) = F$.
109. $x = r \operatorname{vers}^{-1}(y/r) \mp \sqrt{2ry - y^2}$.
110. $(ae - bd)^2 = (af - cd)^2 + (ce - bf)^2$.

ANSWERS

- 111. $a^2 + b^2 = c^2 + d^2$. 115. $4, 1 \pm \sqrt{3}$.
- 114. $-4, 2 \pm 2\sqrt{3}$. 116. $-1, (1 \pm \sqrt{3})/2$.
- 117. $-1 + 2\cos 40^\circ$, $-1 + 2\cos 160^\circ$, $-1 + 2\cos 280^\circ$.
- 118. $-4/3 + (2\sqrt{10}/3)\cos A$, where $A = 39^{\circ}5'51''$, 159°5'51'', or 279°5'51''.

EXERCISE XXXIII

1.	0.43498 mi.	3.	502.46 ft.	5.	71° 33′ 54″
2.	87° 36′ 30″.	4 .	49° 44′ 38″.	6.	56.649 ft.
7.	260.24 ft., 3690.7 ft		10. 2	238,8 <mark>80</mark> mi.	
8.	235.8 yd.		11. 9	0,824,000	mi.
20 .	0.32149 mi	24.	12.458 mi.	28.	278.7 ft.
21.	466.34 yd.	25.	5.1083 mi.	29.	5422 yd.
22.	5147.9 ft.	26.	1346.3 ft.	30.	28° 57′.
23.	529.4 yd.	27.	0.83732 mi.	34.	210.46 ft.
35.	9° 28'; 2.9152 time	s the	height of the t	ower.	
36 .	8121.1 ft., 3633.5 ft		38. (529.4 ft.	
	8121.1 ft., 3633.5 ft 658.36 lb., 22° 23' 4			529.4 ft.	
39.	,	7″ w	ith first force.		
39. 40.	658.36 lb., 22° 23′ 4	17″ w	ith first force.		7 sq. ch.
39. 40. 41.	658.36 lb., 22° 23′ 4 88.326 lb., 45° 37′ 1	17″ w 16″ w	ith first force.	ce. Lacres 4.97	7 sq. ch. 3.7865.
39. 40. 41. 43.	658.36 lb., 22° 23′ 4 88.326 lb., 45° 37′ 1 210 acres 9.1 sq. ch 1075.3.	27″₩ 16″₩ 1. 47.	ith first force. ith known forc 42. 61	ce. acres 4.97 51.	- 3.7865.
 39. 40. 41. 43. 44. 	658.36 lb., 22° 23′ 4 88.326 lb., 45° 37′ 1 210 acres 9.1 sq. ch 1075.3.	47″ w 6″ w 47. 48.	ith first force. ith known forc 42. fi 25.92 ft. 83° 12' 30".	ce. acres 4.97 51. 52.	3.7865. 1.9755.
 39. 40. 41. 43. 44. 45. 	658.36 lb., 22° 23′ 4 88.326 lb., 45° 37′ 1 210 acres 9.1 sq. ch 1075.3. 16,281.	27″ w 26″ w 47. 48. 49.	ith first force. ith known forc 42. fil 25.92 ft. 83° 12′ 30″. 1.3764.	ce. acres 4.97 51. 52. 53.	3.7865. 1.9755. 6.498.

SPHERICAL TRIGONOMETRY

EXERCISE XXXIV

In (i) the triangle is right angled at B.
In (ii) there is one triangle having the given parts.
In (iii) there are two triangles having the given parts.
In (iv) the triangle is impossible.

EXERCISE XXXV

1.
$$\sin A = \cos B / \cos b$$
, $\sin a = \tan b / \tan B$, $\sin c = \sin b / \sin B$.

- 2. $\cos a = \cos c / \cos b$, $\cos A = \tan b / \tan c$, $\sin B = \sin b / \sin c$.
- 3. $\sin a = \sin A \sin c$, $\tan b = \cos A \tan c$, $\cot B = \cos c \tan A$.
- 4. $\cos A = \sin B \cos a$, $\tan b = \tan B \sin a$, $\tan c = \tan a / \cos B$.

EXERCISE XXXVI

4. For answers see 2, 3, 4 in Exercise XXXV.

EXERCISE XXXVII

4.	$A = 72^{\circ} 15' 15'',$	$b = 115^{\circ} 34' 42'',$	$B = 114^{\circ} \ 16' \ 50''.$
5.	$c = 86^{\circ} 30' 52'',$	$A = 36^{\circ} 30' 12'',$	$B = 87^{\circ} 25' 26''.$
6.	$b = 138^{\circ} 24' 30'',$	$A = 58^{\circ} 41' 53'',$	$B = 129^{\circ} 43' 8''.$
7.	$a = 35^{\circ} 50' 37'',$	$b = 75^{\circ} 39' 31'',$	$B = 81^{\circ} 29' 6''$.
8.	$b = 118^{\circ} 34' 46'',$	$B = 112^{\circ} 34' 45'',$	$a = 49^{\circ} 45' 42''$.
9.	$b = 12^{\circ} 11' 38'',$	$c = 121^{\circ} 26' 19'',$	$A = 97^{\circ} 35' 28''.$
10.	$A = 101^{\circ} 20' 11'',$	$b = 36^{\circ} 11' 58'',$	$c = 105^{\circ} 2' 2''$.
11.	$a = 42^{\circ} 49' 50''$,	$b = 27^{\circ} 47' 20'',$	$c = 49^{\circ} 33'.$
12.	$a = 107^{\circ} 51' 32'',$	$b = 62^{\circ} 52' 5'',$	$c = 98^{\circ} 2' 22''.$
13.	The triangle is impo	ssible.	
14.	$b_1 = 26^\circ 2' 9'',$	$B_1 = 28^\circ \ 25' \ 37'',$	$c_1 = 67^{\circ} \ 13' \ 48'';$
	$b_2 = 153^\circ 57' 51'',$	$B_2 = 151^\circ 34' 23'',$	$c_2 = 112^\circ 46' 12''$.

-	•	-	•	-	
15. $A = 77^{\circ} 2$	4′ 50″,	$a = 72^{\circ} 54' 8$	3″,	$b = 46^{\circ} 3$	2′ 30″.
16. $a = 83^{\circ} 1$	2′42″,	$A = 85^{\circ} 39'$	l″,	$B = 39^{\circ} 5$	4′ 56′′.
17. $a = 147^{\circ}$	46′ 49″,	$B = 42^{\circ} 1' 49$	<i>»</i> ",	$c = 139^{\circ}$	41′ 17″.

18.	$a_1 = 37^\circ 56' 46'',$ $a_2 = 142^\circ 3' 14'',$	$A_1 = 39^\circ 2' 56'', \\ A_2 = 140^\circ 57' 4'',$	$c_1 = 103^\circ 33' 20'';$ $c_2 = 76^\circ 26' 40''.$
19.	$a = 71^{\circ} 39' 27'',$	$b = 47^{\circ} 33' 56'',$	$c = 77^{\circ} 44' 26''.$

20. abc, abA, abB, acA, acB, aAB, bcA, bcB, bAB, cAB.

21. The answers are the ten formulas in § 108.

EXERCISE XXXVIII

- **1.** $A = 62^{\circ} 32' 20'', B = 56^{\circ} 39' 3'', C = 104^{\circ} 41' 7''.$
- **2.** $A = 130^{\circ} 0' 12'', B = 52^{\circ} 55' 44'', b = 59^{\circ} 56' 28''.$
- **3.** $a = 150^{\circ} 34', b = 112^{\circ} 6' 48'', A = 160^{\circ} 4'.$
- 4. $a = 71^{\circ} 43' 25'', B = C = 83^{\circ} 43' 26''.$
- **5.** $A = B = 57^{\circ} 59' 15'', C = 93^{\circ} 59' 20''.$
- 6. $A = B = 67^{\circ} 30', c = 56^{\circ} 25' 40''$.
- 7. $A = B = 56^{\circ} 59'$ and $a = b = 71^{\circ} 25' 24''$, or $A = B = 123^{\circ} 1'$ and $a = b = 108^{\circ} 34' 36''$.

EXERCISE XXXIX

- 4. $\cos A = -\cos B \cos C + \sin B \sin C \cos a$, $\sin b = \sin a \sin B / \sin A$, $\sin c = \sin a \sin C / \sin A$.
- 5. $\sin A = \sin a \sin B / \sin b$, $\cos b = \cos c \cos a + \sin c \sin a \cos B$, $\sin C = \sin B \sin c / \sin b$.
- 10. Deduce (1) from [42], (2) from [41], and (5) and (6) from [43].

EXERCISE XL

1. The angles A, B, C can be found through their sines, cosines, or tangents.

7. The sine of half the sum of two angles is to the sine of half their difference as the tangent of half their included side is to the tangent of half the difference of their opposite sides.

8. The first is $\frac{\sin \frac{1}{2}(A+C)}{\sin \frac{1}{2}(A-C)} = \frac{\tan (b/2)}{\tan \frac{1}{2}(a-c)}$.

SPHERICAL TRIGONOMETRY

EXERCISE XLI

1.	$A = 60^{\circ} 8' 54'',$	$B = 64^{\circ} 54' 8'',$	$C = 93^{\circ} 2' 56''.$
2.	$A = 127^{\circ} 35' 42'',$	$B = 54^{\circ} \ 23' \ 30'',$	$C = 44^{\circ} 42' 14''.$
3.	$a = 52^{\circ} 43' 26'',$	$b = 78^{\circ} \ 26' \ 10'',$	$c = 62^{\circ} 40' 22''.$
4.	$a = 43^{\circ} 35' 56'',$	$b = 41^{\circ} \ 20' \ 54'',$	$c = 33^{\circ} 7' 22''.$
5.	$C = 106^{\circ} 3' 36''.$	6. $A = 144^{\circ} 26' 38''$.	7. $b = 117^{\circ} 10' 6''$.

EXERCISE XLII

1.	A = 93° 59′ 53″,	$B = 48^{\circ} \ 21' \ 29'',$	$c = 50^{\circ} 33' 6''.$
2.	$a = 107^{\circ} 8',$	$B = 48^{\circ} 57' 31'',$	$C = 62^{\circ} 31' 41''.$
3.	$B = 54^{\circ} 17' 6'',$	$C = 56^{\circ} 50' 54'',$	$a = 74^{\circ} 33'$.
4 .	$b = 86^{\circ} 39' 34'',$	$c = 68^{\circ} 39' 28'',$	$A = 59^{\circ} 43' 53''$.
5.	$B = 62^{\circ} 54' 34'',$	$a = 114^{\circ} 30' 26'',$	$c = 56^{\circ} 39' 10''.$
6.	$a = 63^{\circ} \ 15' \ 8'',$	$b = 43^{\circ} 53' 42'',$	$C = 95^{\circ} 1'.$

EXERCISE XLIII

1. $B = 36^{\circ} 35' 28''$,	$C = 51^{\circ} 59' 45'',$	$c = 42^{\circ} 38' 58''.$
2. $C = 63^{\circ} 16' 17''$,	$A = 98^{\circ} 28',$	$a = 102^{\circ} 5' 42''$.
3. $B_1 = 68^{\circ} 47',$ $B_2 = 111^{\circ} 13',$	$C_1 = 70^\circ \ 39' \ 50'',$ $C_2 = 14^\circ \ 29' \ 12'',$	$c_1 = 49^\circ \ 17' \ 46'';$ $c_2 = 11^\circ \ 35' \ 39''.$
4. $C_1 = 67^\circ 23' 12'',$ $C_2 = 112^\circ 36' 48'',$	$B_1 = 76^\circ 11' 32'',$ $B_2 = 18^\circ 19' 48'',$	$b_1 = 51^\circ 50' 15'';$ $b_2 = 14^\circ 45' 8''.$
5. $b = 154^{\circ} 45' 4''$,	$c = 34^{\circ} 9' 20'',$	$C = 70^{\circ} \ 18'$.
6. $A = 79^{\circ} 49' 14''$,	$a = 82^{\circ} 31' 40''$,	$b = 115^{\circ} 7' 10''$.
7. $b_1 = 58^\circ 12' 23'',$ $b_2 = 121^\circ 47' 37'',$	$c_1 = 160^\circ 29' 41'',$ $c_2 = 59^\circ 56' 12'',$	$C_1 = 158^\circ 3' 40''$ $C_2 = 75^\circ 34'.$
8. $A_1 = 164^{\circ} 43' 43'',$ $A_2 = 119^{\circ} 18' 33'',$	$a_1 = 162^\circ 37' 33'',$ $a_2 = 81^\circ 18' 32'',$	$c_1 = 124^\circ 40' 37''$ $c_2 = 55^\circ 19' 23''.$
9. $B = 138^{\circ} 40' 56''$,	$C = 36^{\circ} 15' 42'',$	$c = 48^{\circ} 0' 36''.$
10. $A = 68^{\circ} 10' 29''$,	$B = 53^{\circ} 46' 11'',$	$c = 52^{\circ} 26' 54''$.

11. $a = 37^{\circ} 44' 33''$,	$B = 86^{\circ} 34',$	$c = 20^{\circ} 39' 7''.$
12. $A = 48^{\circ} 20' 56''$,	$C = 55^{\circ} 35' 54'',$	$b = 109^{\circ} 40' 36''$.
13. $B_1 = 59^\circ 14' 30'',$ $B_2 = 120^\circ 45' 30'',$	$C_1 = 29^\circ 11',$ $C_2 = 97^\circ 40' 28'',$	$c_1 = 23^{\circ} 58' 48'';$ $c_2 = 55^{\circ} 41' 36''.$
14. $b = 90^{\circ}$,	$c = 147^{\circ} 37' 50'',$	$C = 148^{\circ} 1' 50''.$
15. $A = 132^{\circ} 15' 18''$,	$B = 110^{\circ} 12',$	$C = 99^{\circ} 43' 46''.$
16. $a = 31^{\circ} 6' 27''$,	$b = 84^{\circ} \ 20' \ 43''$,	$c = 115^{\circ} 9' 30''.$

EXERCISE XLIV

- 1. 1.414 sq ft.; 123 sq. ft.
- 2. 3831744 sq. mi.
- 3. 66.5 sq. yd.; 81.49 sq. yd.; 60.156 sq. yd.; 20.94 sq. yd.
- 4. 3705 sq. ft.; 8985.8 sq. ft.; 7952.6 sq. ft.; 9903.5 sq. ft.
- 5. 3354000 sq. mi.; 21003000 sq. mi.; 36484000 sq. mi.; 26773000 sq. mi.

EXERCISE XLV

- 2. $48.01 \times 22 \pi$ mi. = 3318.2 mi.; the longitude of R is 17° 47′ 42″ W.; Cape Town is S. 41° 19′ 4″ E. from R.
- 3. $52.45 \times 22 \pi$ mi. = 3625. mi.; Paris is N. 53° 46' 11" E. from New York; New York is N. 68° 10' 29" W. from Paris.
- 4. Latitude is 52° 15′ 27″; course is S. 86° 34′ W.; distance is $20.65\frac{1}{4} \times 22 \pi$ mi., or 1427.3 mi.
- Latitude is 19° 40′ 36″ S.; longitude is 178° 20′ 56″ W.; course is S. 55° 35′ 54″ W.
- 6. Distance = $74.55 \times 22 \pi$ mi. = 5152.5 mi. ; Yokohama is N. 56° 50′ 54″ W. from San Francisco ; San Francisco is N. 54° 17′ 6″ E. from Yokohama.
- 7. Distance = $42.35_3^2 \times 22 \pi$ mi. = 2927.5 mi. ; latitude is $48^{\circ}4'35''$ N ; course is S. 81° 57' W.
- 8. Distance = $107.461 \times 22 \pi$ mi. = 7427.3 mi.; courses are S. 60° 18' 30'' W. and S. 55° 45' 34'' W.
- **9.** Distance = $57.4\bar{4} \times 22 \pi$ mi. = 3969.8 mi. ; longitude is $169^{\circ} 28' 32''$ W.; course is S. $43^{\circ} 20' 51''$ W.

SPHERICAL TRIGONOMETRY

EXERCISE XLVI

- 4. 8:8.4 л.м. 7. 4:40.8 р.м. 10. 5:48.4 л.м.
- 5. 2:33 р.м. 8. 5:44.5 л.м. 11. 65° 37′ 24″.
- 6. 9:46.5 л.м. 9. 6:30.4 л.м.
- 12. $h = 58^{\circ} 25' 15''$, $A = 152^{\circ} 28' + 180^{\circ}$.
- 13. $t = 45^{\circ} 42', \beta = 67^{\circ} 58' 56''.$
- 14. $\delta = 56^{\circ} 6' 42'', h = 73^{\circ} 6' 34''.$

LOGARITHMIC AND OTHER TRIGONOMETRIC TABLES

LOGARITHMS OF NUMBERS

TABLE OF THE COMMON

WITH THE AUXILIARIES S AND T.

0---50

0—50											
N	L 0	1	2	3	4	5	6	7	8	9	
0	- 00	00 000	30 103	47 712	60 206	69 897	77 815	84 510	90 309	95 424	
I	00 000	04 1 39	07918	11 394	14 613	17 609	20 41 2	23 045	25 527	27 875	
2	30 103	32 222	34 242	36 1 73	38 021	39 794	41 497	43 136	44 716	46 240	
3	47 712	49 1 36	50 51 5	51 851	53 148	54 407	55 630	56 820	57 978	59 106	
4	60 206	61 278	62 323 71 600	63 347 72 428	64 345	65 321	66 276 74 819	67 210 75 587	68 124 76 343	69 020 77 085	
5	69 897 77 815	70 757 78 533	79 239	79 934	73 239 80 618	74 036 81 291	81 954	82 607	83 251	83 885	
7	84 510	85 126	85 733	86 332	86 923	87 506	88 081	88 649	89 209	89 763	
8	90 309	90 849	91 381	91 908	92 428	92 942	93 450	93 952	94 4 48	94 939	
9	95 424	95 904	96 379	96 848	97 313	97 772	98 227	98 677	99 123	99 564	
10	00 000	00 432	00 860	01 284	01 703	02 119	02 531	02 938	03 342	03 743	
11	04 139	04 532	04 922	05 308	05 690	06 070	06 446	06 819	07 188	07 553	
12	07 918	08 279	08 636	08 991	09 342	09 691	10 037	10 380	10 721	11 059	
13	11 394	11 727	12 057	12 385	12 710	13 033	13 354	13 672	13 988	14 301	
14	14 613	14 922	15 229	15 534	15 836	16137	16 435	16 732	17 026	17 319	
15 16	17609	17 898	18 184 20 952	18469 21219	18 752 21 484	19033 21 748	19312 22011	19 590 22 272	19 866 22 531	20 140 22 789	
17	23 045	23 300	23 553	23 805	24 055	24 304	24 551	24 797	25 042	25 285	
18	25 527	25 768	26 007	26 245	26 482	26 717	26 951	27 184	27 416	27 646	
19	27 875	28 103	28 330	28 556	28 780	29 003	29 226	29 447	29 667	29 885	
20	30 103	30 320	30 535	30 750	30 963	31 1 75	31 387	31 597	31 806	32 01 3	
21	32 222	32 4 28	32 634	32 838	33 041	33 244	33 445	33 646	33 846	34 044	
22	34 242	34 439	34 635	34 830	35 025	35 218	35 411	35 603	35 793	35 984	
23	36 173	36 361 38 202	36 549	36 736	36 922	37 107	37 291	37 475	37 658	37 840	
24 25	38 021 39 794	38 202	38 382	40 312	38 739	38 917 40 654	39 094 40 824	39 270 40 993	39 445	39 6 20 41 330	
26	41 497	41 664	41 830	41 996	42 160	42 325	42 488	42 651	42 813	42 975	
27	43 136	43 297	43 457	43 616	43 775	43 933	44 001	44 248	44 404	44 560	
28	44 716	44 871	45 025	45 179	45 332	45 484	45 637	45 788	45 939	46 090	
29	46 240	46 389	46 538	46 687	46 833	46 982	47 1 29	47 276	47 422	47 567	
30	47 712	47 857	48 001	48 144	48 287	48 430	48 572	48 714	48 855	48 996	
31	49 1 36	49 276	49 415	49 554	49 693	49 831	49 969	50 106	50 243	50 379	
32	50 515	50 651	50 786	50 920	51 055	51 188	51 322	51 453	51 587	51 720	
33	51 851 53 148	51 983	53 403	53 529	52 375 53 656	52 504 53 782	52 634 53 908	52 763	52 892 54 158	53 020 54 283	
34 35	54 407	53 275	54 654	53 529	54 900	55 023	55 145	54 033	55 388	55 509	
36	55 630	55 751	55 871	55 991	56 110	56 229	56 348	56 467	56 585	56 703	
37	56 820	56 937	57 054	57 171	57 287	57 403	57 519	57 634	57 749	57 864	
38	57 978	58 092	58 206	58 320	58 433	58 546	58 659	58 771	58 883	58 99 5	
39	59 106	59 218	59 329	59 439	59 550	59 660	59 770	59 879	59 988	60 097	
40	60 206	60 314	60 423	60 531	60 638	60 746	60 853	60 959	61 066	61 172	
41	61 278	61 384	61 490	61 595	61 700	61 803	61 909	62 014	62 118	62 221	
42	62 325	62 428	62 531	62 634	62 737	62 839 63 849	62 941	63 043	63 144	63 246	
43	63 347	63 448	63 548	63 649	63 749	64 836	63 949	64 048	64 147	64 246	
44	64 345 65 321	64 444 65 418	64 542 05 514	64 640	64 738	65 801	64 933	65 031	65 128	65 22 5 66 181	
46	66 276	66 370	66 464	66 558	66 652	66 745	66 839	66 932	67 025	67 117	
47	.67 210	67 302	67 394	67 486	67 578	67 669	67 761	67 852	67 943	68 034	
48	68 124	68 213	68 305	68 395	68 485	68 574	68 664	68 753	68 842	68 931	
49	69 020	69 108	69 197	69 285	69 373	69 461	69 548	69 636	69 723	69 810	
50 N	69 897 L 0	69.984	70 070	70 157	70 243	70 329	70 41 5	70 501	70 586	70 672	
		1	2	3	4	5	6	7	8	9	
60		1′S	4.68 55			-	= 0° 5′	S 4.68 5		.68 558	
120		8	4.68 55			5	= 0 6	4.68 5		.68 558	
180		3	4.68 55				= 0 7	4.68 5		.68 558	
240	= 0	4	4.68 55	7 4.0	8 558	480 =	= 0 8	4.68 5	57 4	.68 558	

50-100

N	LO	1	2	3	4	5	6	7	8	9
50	69 897	69 984	70 070	70 157	70 243	70 329	70 415	70 501	70 586	70 672
51		70 842	70 927	71 012	71 096	71 181	71 265	71 349	71 433	71 517
52	70 757 71 600	71 684	71 767	71 850	71 933	72 016	72 099	72 181	72 263	72 346
53	72 428	72 509	72 591	72 673	72 754	72 835	72 916	72 997	73 078	73 1 59
54 55	73 239 74 036	73 320	73 400	73 480	73 560 74 351	73 640 74 429	73 719 74 507	73 799 74 586	73 878 74 663	73 957 74 741
56	74 819	74 896	74 974	75 051	75 128	75 205	75 282	75 358	75 435	75 511
57 58	75 587 76 343	75 664 76 418	75 740 76 492	75 815 76 567	75 891 76 641	75 967 76 716	76 042 76 790	76 118 76 864	76 193 76 938	76 268 77 01 2
59	77 085	77 159	77 232	77 305	77 379	77 452	77 523	77 597	77 670	77 743
60	77 815	77 887	77960	78 032	78 104	78 1 76	78 247	78 319	78 390	78 462
61	78 533	78 604	78 675	78 746	78 817	78 888	78 958	79 029	79 099	79 169
62	79 2 39	79 309	79 379	79 449	79 518	79 588	79 657	79 727	79 796	79 865
63. 64	79 934 80 618	80 003 80 686	80 072 80 754	80 140 80 821	80 209 80 889	80 277 80 956	80 346 81 023	80 41 4 81 000	80 482 81 158	80 550 81 224
65	81 291	81 358	81 425	81 491	81 558	81 624	81 690	81 757	81 823	81 889
66	81 954 82 607	82 020	82 086	82 151 82 802	82 217 82 866	82 282	82 347	82 413	82 478	82 543
67 68	82 007 83 251	82 672 83 315	82 737 83 378	82 802 83 442	82 800 83 506	82 930 83 569	82 995 83 632	83 059 83 696	83 123 83 759	83 187 83 822
69	83 885	83 948	84 01 1	84 073	84 1 36	84 198	84 201	84 323	84 386	84 448
70	84 510	84 572	84 634	84 696	84 757	84 819	84 880	84 942	85 003	85 063
71	85 126	85 187	85 248	85 309	85 370	85 431	85 491	85 552	85 612	85 673
72	85 733 86 332	85 794 86 392	85 854 86 45 I	85 914 86 510	85 974 86 570	86 034 86 629	86 094 86 688	86 153 86 747	86 213 86 806	86 273 86 864
74	86 923	86 982	87 040	87 099	87 1 57	87 216	87 274	87 332	87 390	87 448
75	87 506 88 081	87 564 88 138	87 622 88 195	87 679 88 252	87 737 88 309	87 795 88 366	87 852 88 423	87 910 88 480	87 967 88 536	88 02.4 88 593
77	88 649	88 705	88 762	818 88	88 874	88 930	88 986	89 042	89 098	89 154
78	89 209	89 265	89 321	89 376	89 432	89 487	89 542	89 597	89 653	89 708
79	89 763	89 818	89 873	89 927	89 982	90 037	90 091	90 146	90 200	90 255
80	90 309	90 363	90 417	90 472	90 526	90 580	90 634	90 687	90 741	90 795
81 82	90 849 91 381	90 902 91 434	90 956 91 487	91 009 91 540	91 062 91 593	91 116 91 645	91 169 91 698	91 222 91 751	91 275	91 328 91 855
83	91 908	91 960	92 012	92 065	92 117	92 169	92 221	92 273	92 324	92 376
84 85	92 428 92 942	92 480	92 531 93 044	92 583 93 095	92 634 93 146	92 686 93 197	92 737 93 247	92 788 93 298	92 840	92 891 93 399
86	93 450	93 500	93 551	93 601	93 651	93 702	93 752	93 802	93 852	93 902
87	93 952	94 002	94 052	94 101	94 151	94 201	94 250	94 300	94 349	94 399
88 89	94 448	94 498	94 547	94 596	94 645 95 134	94 694 95 182	94 743	94 792 95 279	94 841 95 328	94 890 95 376
90	95 424	95 472	95 521	95 569	95 617	95 665	95 713	95 761	95 809	95 856
01	95 904	95 952	95 999	96 047	96 095	96 142	96 190	96 237	96 284	96 332
92	96 379	96 426	96 473	96 520	96 567	96 614	96 661	96 708	96 755	96 802
93	96 848 97 313	96 895 97 359	96 942	96 988 97 451	97 035	97 081 97 543	97 128	97 174	97 220 97 681	97 267
94 95	97 772	97 818	97 864	97 909	97 955	98 000	98 046	97 035	98 137	98 182
96	98 227	98 272	98 318	98 363	98 408	98 453	98 498	98 543	98 588	98 632
97	98 677 99 123	98 722	98 767	98 811	98 856 99 300	98 900 99 344	98 945	98 989	99 034	99 078 99 520
99	99 564	99 607	99 651	99 69 5	99 739	99 782	99 826	99 870	99 91 3	99 957
100	00 000	00 043	00 087	00 1 30	00 1 7 3	00 21 7	00 260	00 303	00 346	00 389
N	L0	1	2	3	4	5	6	7	8	9
540		-	4.68 55		8 558		= 0° 13'		557 T	4.68 558
600			4.68 55				= 0 14	4.68		4.68 558
660	-		4.68 55		8558 8558	900 = 960 =	= 0 15 = 0 16	4.68		4.68 558
L /20	0 1	-	4.00 55	/ 4.04	0 320	900 =	- 0 10	4.68	557	4.68 558

100-150

N	LO	1	2	3	4	5	6	7	8	9			<u>P P</u>	
100	00 000	043	087	130	173	217	260	303	346	389		44	43	42
101 102	432 860	475 903	518 945	561 988	604 #030	647 *072	689 #115	732 *157	775 +199	817 ±242	I	4.4	4.3	4.2
102	01 284	326	368	410	452	494	536	578	620	662	2	8.8	8.6	8.4
104	703	745	787	828	870	912	953	995	* 036	* 078	3	13.2	12.9	12.6
105	02 1 19	160	202	243	284	325	366	407	449	490	4	17.6 22.0	17.2 21.5	16.8 21.0
100	5,31	572	612	653	694	735	776	816	857	898	6	26.4	25.8	25.2
107 108	938	979 383	*019	*060	*100	+I4I	*181 583	* ²²² 623	*262 663	* 302	7	30.8	30.1	29.4
100	03 342 743	782	423 822	463 862	503 902	543 941	98I	*023	*060 *060	703 #100	8	35.2	34.4	33.6
110	04 139	179	218	258	297	336	376	415	454	493	9	39.6	38.7	37.8
111	532	571	610	630	689	727	766	805	844	883		41	40	39
112	922	961	999	. 038	+077	#115	¥154	#192	*231	* 269	12	4.I 8.2	4.0	3.9
113	05 308	346	383	423	461	<u></u> 500	538	576	614	652	3	12.3	8.0 12.0	7.8 11.7
114	690	729	767	805	843	881	918	956	994	* 032	4	16.4	16.0	15.6
115 116	06070 446	108 483	145 521	183	221	258 633	296 670	333	371	408 781	5	20.5	20.0	19.5
117	440 819	403 856	893	558 930	595 967	±004	*04I	*078	744 ∗ 113	701 #151	6	24.6	24.0	23.4
118	07 188	225	262	208	335	372	408	445	482	**51 518	7	28.7	28.0	27.3
119	555	591	628	664	700	737	773	809	846	882	8 9	32.8 36.9	32.0 36.0	31.2
120	918	954	990	*027	* 063	* 099	*13 5	¥171	# 207	# 243	9		-	35.1
121	08 279	314	350	386	422	458	493	529	565	600	I	38 3.8	37	36
122	636	672	707	743	778	814	849	884	920	955	2	7.6	3.7 7.4	3.6 7.2
123	991	* 026	#061	* 096	* 132	¥167	#202	* 237	*272	* 307	3	11.4	11.1	10.8
124 125	09 342	377 726	412	447	482	517 864	552	587	621 968	656	4	15.2	14.8	14.4
125	691 10037	072	106	795 140	830 175	200	899	934 278	312	+003 346	5	19.0	18.5	18.0
127	380	415	449	483	517	551	585	610	653	687	6	22.8	22.2	21.6
128	721	755	789	823	857	890	924	958	992	025	7 8	26.6 30.4	25.9 29.6	25.2 28.8
129	11059	093	126	160	193	227	261	294	327	361	ğ	34.2	33.3	32.4
130	394	428	461	494	528	561	594	628	661	694	-	35	34	33
131	727	760	793	826	860	893	926	959	992	#02.1	I	3.5	3.4	3.3
132	12057	000	123	156	189	222	254	287	320	352	2	7.0	6.8	6.6
133	385	418	450	483 808	516	548	581	613	646 969	678	3	10.5	10.2	9.9
134 135	710 13033	743 066	775	130	840 162	872 194	903 226	937 258	2909	#001 322	4	14.0	13.6 17.0	13.2
136	354	386	418	450	481	513	545	577	609	640	6	17.5 21.0	20.4	19.8
137	672	704	735	767	799	830	862	893	925	956	7	24.5	23.8	23.1
138	988	*010	#051	*082	*114	"I4Š	#176	*208	# ² 39	#270	8	28.0	27.2	26.4
139	14 301	333	364	395	426	457	489	520	551	582	9	31.5	30.6	29.7
140	613	644	675	706	737	768	799	829	860	891		32	31	30
141	922	953	983	* 014	* 045	4076	#106	#I37	#168	#198	I	3.2	3.1	3.0
142 143	15 229 534	259 564	290 594	320 623	351	381 685	412	442	473	503 806	23	6.4 9.6	6.2 9.3	6.0 9.0
143 144	836	866	897	927	957	087	017	a047	•077	107	4	12.8	9.5 12.4	12.0
145	16137	167	197	227	256	286	316	346	376	406	5	16.0	15.5	15.0
146	435	465	495	524	554	584	613	643	673	702	6	19.2	18.6	18.0
147	732	761	791	820	850	879	909	938	967	997	7	22.4	21.7	21.0
148	17026	056	085	114	143	173	202	231	260	289 580	8	25.6 28.8	24.8 27.9	24.0 27.0
149 150	319	348 638	377	696	435	<u>464</u> 754	493 782	522 811	551 840	860	9		-1.9	-,
N	LO	1	2	3	4	5	6	7	8	9	-		P P	
		_	-	1	_	· ·	<u> </u>	1	1		Ļ.,		Τ 4.(8
960 1020			4.68 4.68			58 558 58 558		60' = 20 =			. 68 . 68	221		08 558 08 558
1020			4.68			58 558		80 =		4	. 68	557	4.0	8 558
1140			4.68	557	4.	68 558	14	40 =		4	. 68	557		8 558
1200	=0 20	2	4.68	557	4.0	58 558	15	00 =	0 25	4	. 68	557	4.0	58 558

150-200

N	LO	1	2	3	4	5	6	7	.8	9	P P
150	17609	638	667	696	725	754	782	811	840	869	
151	898	926	955	984	#013	#041	+070	#099	#127	#156	29 28
152 153	18184 469	213 498	241 526	270 554	298 583	327 611	355	384	412	441 724	I 2.9 2.8 2 5.8 5.6
154	752	780	808	837	863	893	921	949	977	+005	3 8.7 8.4
155 156	19033 312	061 340	089 368	117 396	145 424	173 451	201	229	257 535	285 562	4 11.6 11.2 5 14.5 14.0
157	590	618	645	673	700	728	756	783	811	838	5 14.5 14.0 6 17.4 16.8
158	866	893	921	948 222	976	a003	#030	¥058	# 085	#112	7 20.3 19.6 8 23.2 22.4
159 160	20140	167	194		249	276	303	330	358	385	8 23.2 22.4 9 26.1 25.2
	412	439	466	493	520	548	575	602	629	656	27 26
161 162	683 952	710 978	737 #005	763 *032	790 *059	817 •085	844	871 #139	898 #165	923 *192	1 2.7 2.6
163	21 219	245	272	299	325	352	378	405	431	458	2 5.4 5.2 3 8.1 7.8
164 165	484 748	511 775	537 801	564 827	590 854	617 880	643 906	669 932	696 958	722 983	4 10.8 10.4
166	22 011	037	063	089	115	141	167	194	220	246	5 13.5 13.0 6 16.2 15.6
167 168	272 531	298 557	324 583	350 608	376 634	401 660	427 686	453	479	505 763	7 18.9 18.2
169	789	814	840	866	891	917	943	968	994	#019	8 21.6 20.8 9 24.3 23.4
170	23 045	070	096	121	147	172	198	223	249	274	9/ 24.3 23.4 25
171	300	325	350	376	401	426	452	477	502	528	I 2.5
172 173	553 805	578 830	603 853	629 880	654 905	679 930	704 955	729 980	754 •005	779 #030	2 5.0
174	24 055	080	103	130	153	180	204	229	254	279	3 7.5 4 10.0
175	304	329	353 601	378	403 650	428	452	477	502	527	5 12.5
176 177	551 797	576 822	846	625 871	895	674 920	699 944	724 969	748 993	773 #018	6 15.0 7 17.5
178	25 042	066	091	115	139	164	188	212	237	261	8 20.0
179	285	310	334	358	382	406	431	455	479	503	9 22.5
180	527	551	575	600	624	648	672	696	720	744	24 23
181 182	768 26 007	792 031	816 055	840 079	864 102	888 126	912 150	935 174	959 198	983 221	I 2.4 2.3 2 4.8 4.6
183	245	269	293	316	340	364	387	411	435	458	3 7.2 6.9
184 185	482 717	505 741	529 764	553 788	576 811	600 834	623 858	647 881	670 905	694 928	4 9.6 9.2 5 12.0 11.5
186	951	975	998	02I	#°43	a068	100 I	" 114	"1 <u>3</u> 8	"íói	5 12.0 11.5 6 14.4 13.8
187 188	27 184 416	207 439	231 462	254 485	277 508	300 531	323 554	346 577	370	393 623	7 16.8 16.1 8 19.2 18.4
189	646	669	692	715	738	761	784	807	830	852	8 19.2 18.4 9 21.6 20.7
190	875	898	921	944	967	989	+0I2	# 035	#058	•081	22 21
191	28 103	126	149	171	194	217	240	262	285	307	I 2.2 2.I
192 193	330 556	353 578	375 601	398 623	421 646	443 668	466 691	488 713	511 735	533 758	2 4.4 4.2 3 6.6 6.3
194	780	803	825	847	870	892	914	937	959	981	4 8.8 8.4
195 196	29 003 226	026 248	048 270	070 202	092 314	115 336	137 358	159 380	181	203 425	5 11.0 10.5
197	447	469	491	513	535	557	579	601	623	643	
198	667 885	688 907	710 929	732	754	776	798 016	820 038	842 060	863 081	8 17.6 16.8
199 200		125		951 168	973	994 211		255			9 19.8 18.9
N	30 103 L 0	125	146 2	3	190 4	5	2 <u>33</u> 6	255	276	298 9	РР
		_					-	 ∞' ≈		<u> </u>	
1500 1560	' =0° 25 =0 26		4.68	57		58 558 58 558	18	6o ==		. 4	68 557 4.68 559
1620 1680	=0 27 =0 28		4.68	57	4.0	58 558 58 558	19			4	. 68 557 4. 68 559 . 68 557 4. 68 559
1740	=0 29		4.68			58 559	20				4.68 557 4.68 559

6

200-250

					200-	-250						
N	LO	1	2	3	4	5	6	7	8	9	P P	
200	30 103	125	146	168	190	211	233	253	276	298	22 21	
201	320	341	363	384	406	428	449	471	492	514		
202 203	535 750	557 771	578 792	600 814	621 835	643 856	664 878	685 899	70 7 920	728 942	I 2.2 2.1 2 4.4 4.2	
2 04	963	984	a 006	.027	4048	±060	100	"II2	1 33	* 154	3 6.6 6.3	
205	31 175	197	218	239	260	281	302	323	345	366	4 8.8 8.4	
206	387	408	429	450	471 681	492	513	534	555	576	5 11.0 10.5 6 13.2 12.6	
207 208	597 806	618 827	639 848	660 869	890	702 911	723 931	744 952	763 973	785 994	7 15.4 14.7	
209	32 01 3	035	056	077	098	í18	í 39	160	181	201	8 17.6 16.8	
210	222	243	263	28.4	305	325	346	366	387	408	9 19.8 18.9 20	
211	428	449	469	490	510	531	552	572	593	613	20 I 2.0	
212 213	634 838	654 858	675 879	693 899	715 919	736 940	756 960	777 980	797 ±001	818 #021	2 4.0	
214	33 041	062	082	102	122	143	163	183	203	224	3 6.0	
215	244	264	284	304	325	345	365	385	405	425	4 8.0 5 10.0	
216	445	465	486	506	526	546	566	586	606	626	5 10.0 6 12.0	
217 218	646 846	666 866	686 885	706 905	726 925	746 945	766 965	786 983	8∩6 ⊾005	826 ≖025	7 14.0	
219	34 044	064	084	104	124	143	163	183	203	223	8 16.0 9 18.0	
220	2.12	262	282	301	321	341	361	380	400	420	9 18.0 19	
221	439	459	479	498	518	537	557	577	596	616	15 1 1.9	
222	635	653	674	694	713	733	753	772	792	811	2 3.8	
223 224	830	850 044	869 064	889 083	908 102	928 122	947 141	967	986 180	*005	3 5.7	
224	35 02 5 21 8	238	257	276	295	315	334	353	372	199 392	4 7.6 5 9.5	
226	411	430	449	468	488	507	526	545	564	583	6 11.4	
227 228	603	622 813	641	660	679 870	698 889	717	736	755	774	7 13.3 8 15.2	
220	793 984	+003	832 *021	851 #040	#059	+078	908 #097	927 #116	946 *135	965 *154	8 15.2 9 17.1	
230	36 173	192	211	229	248	267	286	305	324	342	18	
231	361	380	399	418	436	455	474	493	511	530	10 1 1.8	
232	549	568	586	603	624	642	661	680	698	717	2 3.6	
233	736 922	754 940	773	791	810 996	829 -014	847	866	884	903 "088	3 5.4	
234 235	37 107	125	959 144	977 162	181	199	*033 218	*051 236	*070 254	273	4 7.2 5 9.0	
236	291	310	328	346	365	383	401	420	438	457	6 10.8	
237	475	493	511	530	548	566	585	603	621	639	7 12.6	
238 239	658 840	676 858	694 876	712	731 912	749 931	767 949	967	803 985	822 #003	8 14.4 9 16.2	
240	38 021	039	057	075	093	112	130	148	166	184	17	
2.41	202	220	238	256	274	292	310	328	346	364	1 1.7	
242	382	399	417	435	453	471	489	507	523	543	2 3.4	
243 244	561	578	596 775	614 792	632 810	650 828	668 846	686 863	703 881	721	3 5.1	
244	739 917	757 934	952	970	987	*005	#023	#04I	+058	899	4 6.8 5 8.5	
246	39 094	iII	129	146	164	182	199	217	235	252	6 10.2	
247 248	270	287	305 480	322	340	358	375	393	410	428	7 11.9	
240	445 620	463	655	498	515	533 707	550 724	568	585	602 777	8 13.6 9 15.3	
250	794	811	829	846	863	881	898	915	933	950	9' *0'0	
N	L 0	1	2	3	4	5	6	7	8	9	РР	
2040 2100 2160	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											

250-300

	N	LO	1	2	3	4	300	6	7	8	9	РР
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	250	39 794	811	829	846	863	881	898	915	933	950	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	251	967	985	+002	*019		* ⁰⁵⁴	*07I	088		#123	
254 448 500 518 535 552 560 586 603 620 637 3 554 255 652 824 841 858 757 790 607 790 607 790 607 54 792 790 807 54 10.8				175					261		295	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-				-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	255	654			705							
288 259310347 303166 313212 303229 313226 307226 444264 464481 464 <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	-			-						-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	258	41 162	179	196	212	229	246	263	280	296	313	
		330	347		380			430				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				531	547	564	581		<u> </u>	631		\$1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												2 3.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		325 488						586				5 8.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	267	651	667	684	700	716	732			781	797	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											959	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· ·								[- · · · · ·			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					505							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	273	616	632	648	664		696	712	1	743		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												7 11.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										529 685		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	280	716	731		762	778	793	809	824	840	855	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		871	886	902	917	932	948	963	979	994	4 010	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												2 3.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		1 1	-	1 .			1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	285	484	500	515	530	545	561	576	591	606	621	5 7.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	1 .		1	- ·					6 9.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	288	939				*000	1015					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		46 090	103	120	135	150	165	180		210	225	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	290	240	255	270	285	300	315	330	345	359	374	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						449						I] I.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						746				805		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 94				879	894		923	938	953	967	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					#026 173	*041 188				#100 246	* ¹¹⁴ 261	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	297	-	290		319	334						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298		436	45 I	465	480	494	509	524	538	553	8 11.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								-			9 12.6
2520 =0 42 4.68 556 4.68 560 2820 =0 47 4.68 556 4.68 5(0									<u>`</u>	-	<u> </u>	Р Р
2520 =0 42 4.68 556 4.68 560 2820 =0 47 4.68 556 4.68 5(0	2460	" =0° 4	1' S	4.68	556 '		<u> </u>	1	60" =		· 8 .	
12580 = 0.42 4.68556 4.68560 $2880 = 0.18$ 4.68556 4.68560	2520	=0 4	2	4.68	556	4.0	58 560	28	20 =	0 47	• 4	.68 556 4.68 500
2640 = 0 44 4.68 556 4.68 560 2940 = 0 49 4.68 556 4.68 560	2580 2640											
2700 = 0.45 4.68 556 4.68 560 200 = 0.50 4.68 556 4.68 561												

300-350

					300-	-350					
N	LO	1	2	3	4	5	6	7	8	9	P P
300	47 712	727	74I	756	770	784	799	813	828	8.42	
301	857	871	885	900	914	929	943	958	972	986	
302 303	48 001 144	015 159	029 173	044 187	058 202	073 216	087 230	101 244	116 259	130 273	15
304	287	302	316	330	344	359	373	387	401	416	1 1.5
305	430	444	458	473	487	501	515	530	544	558	2 3.0
306	572	586	601	615	629	643	657	671	686	700	3 4.5 4 6.0
307 308	714 855	728 860	742 883	756 897	770 911	785 926	799 940	813 954	827 968	841 982	5 7.5
309	996	.010	024	• 038	*052	¥066	*080	4094	108	¥122	
810	49 136	150	164	178	192	206	220	234	248	262	8 12.0
311	276	290	304	318	332	346	360	374	388	402	9 13.5
312	415	429	443	457	471 610	485	499	513	527	541	
313	554	568 707	582 721	596 734	748	624 762	638 776	651 790	665 803	679 817	
314 315	693 831	845	859	872	886	900	914	927	941	955	. 14
316	969	982	996	*oio	* 024	*Ó37	#05I	*063	*079	*092	I I.4
317	50 106	120	133	147	161	174	188	202	215	229	2 2.8 3 4.2
318 319	243 379	256	270 406	284 420	297 433	311 447	325 461	338 474	352 488	365 501	4 5.6
319	515	529	542	556	569	583	596	610	623	637	5 7.0 6 8.4
321	651	664	678	601	705	718	732	745	759	772	7 9.8
322	786	799	813	826	840	853	866	880	893	907	8 11.2 9 12.6
323	920	934	947	961	974	987	*001	* 014	*028	* 041	91
324	51 055 188	068	081 215	095 228	108 242	121	135 268	148	162	175	
325 326	322	335	348	362	375	255 388	402	415	295 428	308 441	
327	455	468	481	495	508	521	534	548	561	574	13
328	587	601	614	627	640	654	667	680	693	706	I 1.3 2 2.6
329	-720	733	746	759	772	786	799	812	825	838	3 3.9
330	851	863	878	891	904	917	930	943	957	970	4 5.2 5 6.5 6 7.8
331 332	983 52 114	996	#009 140	*022 153	*035 166	+048	*061 192	+075 205	*088 218	+101 231	
333	244	257	270	284	297	310	323	336	349	362	7 9.1 8 10.4
334	375	388	401	414	427	440	453	466	479	492	9 11.7
335	504	517	530 660	543	556 686	569	582	595 724	608	621	
336 337	634 763	647 776	789	673 802	813	699 827	840	853	737 866	879	
338	892	903	917	930	943	956	969	982	994	*007	12
339	53 020	033	046	058	071	08 4	097	110	122	135	I I.2
34 0	148	161	173	186	199	212	224	237	250	263	2 2.4 3 3.6
341	275	288	301	314	326	339	352	364	377	390	4 4.8 5 6.0
342 343	403 529	415	428	441 567	453 580	466 593	479 605	491 618	504 631	517 643	5 6.0 6 7.2
344	656	668	681	694	706	595 719	732	744	757	769	7 8.4
345	782	794	807	820	832	845	857	870	882	895	8 9.6 9 10.8
346	908	920	933	945	958	970	983	995	*008	* ⁰²⁰	91.000
347 348	54 033 158	045	058	070 195	083 208	095 220	108 233	120	133	145	
349	283	295	307	320	332	345	357	370	382	394	
3 50	407	419	432	444	456	469	481	494	506	518	
N	LO	1	2	3	4	5	6	7	8	9	РР
300			4.68	556		68 561		00' =			4.68 556 T 4.68 561
306 312		1 2	4.08	556 556		68 561 68 561		60 = 20 =			4.68 556 4.68 561 4.68 555 4.68 561
318	o == o 5	3	4.68	556	4.	68 561	34				4.68 555 4.68 562
324	0 = 0 5	4	4.68	556	4	68 561	35	40 =	0 59		4.68 555 4.68 562

	TO			1 0	300		-		1 0		РР
N	LO	1	2	3	4	5	6	7	8	9	
350	54 407	419	432	444	456	469	481	494	506	518	
351	531	543	555	568	580	593	603	617	630	642	
352 353	654 777	667 790	679 802	691 814	704 827	716	728	741 864	753 876	765 888	10
354	900	913	925	937	949	062	974	986	998	110	13
355	55 023	035	047	060	072	ó84	096	108	121	133	I 1.3 2 2.6
356	143	157	169	182	194	206	218	230	242	255	3 3.9
357 358	267 388	279 400	291 413	303 423	315 437	328 449	340 461	352	364	376 497	4 5.2
359	500	522	534	546	558	570	582	594	606	810	5 6.5 6 7.8
360	630	642	654	666	678	691	703	713	727	739	6 7.8 7 9.1
361											8 10.4
362	751 871	763 883	775	787	799	811 931	823 943	83 <u>5</u> 955	847	859 979	9 11.7
363	991	.003	1015	#027	4 038	a050	+062	074	o 86	#098	
364	56 1 1 0	122	134	146	158	170	182	194	205	217	
365 366	229 348	241 360	253 372	265 384	277	289 407	301	312 431	324	336 453	12
367	467	478	490	502	396 514	526	538	549	561	573	I I.2
368	585	597	608	620	632	644	656	667	679	691	2 2.4
369	703	714	726	738	750	761	773	785	797	808	3 3.6
370	820	832	844	855	867	879	891	902	914	926	4 4.8 5 6.0
371	937	949	961	972	984	996	a008	*019	031	#043	5 6.0 6 7.2
372	57 054	066	Ó78	089	101	113	124	136	148	159	7 8.4 8 9.6
373	171	183	194	206	217	229	2.11	252	264	276	8 9.6 9 10.8
374 375	287 403	299 415	310 426	322 438	334 449	345 461	357	368	380 496	392 507	9 10.0
376	519	530	542	553	565	576	588	600	611	623	
377	634	646	657	669	680	692	703	713	726	738	
378	749	761	772	784	795	807	818	830	841	852	11 .
379	864	875	887	898	910	921	933	944	955	967	I 1.I 2 2.2
380	978	990	*001	÷013	*024	0 35	≄ 047	₽ 058	+070	*081	3 3.3
381	58 092	104	115	127	138	149	161	172	184	195	4 4-4
382 383	206 320	218 331	229	240	252	263	274 388	286	297 410	309	5 5.5 6 6.6
381	433	444	343 456	354	365 478	377 490	501	399 512	524	422 535	
385	546	557	569	580	591	602	614	625	636	647	7 7.7 8 8.8
386	659	670	681	692	704	71Š	726	737	749	760	9 9.9
387 388	771 883	782 894	794 906	803	816 928	827	838	850	861	872	
389	995	a 006	+017	917 *028	920 #040	9 39 •051	950 062	961 #073	973 •084	984 #095	10
390	59 100	118	129	* 1.10	151	162	173	184	195	207	10
										1	I I.O 2 2.0
391 392	218 329	229 340	240 351	251 362	262 373	273 384	284 395	295 406	306	318 428	3 3.0
393	439	450	461	472	483	494	506	517	528	539	4 4.0
394	550	561	572	583	594	605	616	627	638	649	5 5.0 6 6.0
395	660	671 780	682	693 802	704 813	71 5 824	726	737	748	759 868	7 7.0
396 397	770 879	890	791 901	012	923	824 934	835 945	846 956	857 966	808 977	8 8.0
398	988	999	1010	#021	923 #032	934 •043	945 #054	-065	* 076	9// •086	9 9.0
399	60 097	108	119	130	141	152	163	173	184	195	
400	206	217	228	239	249	260	271	282	293	304	
N·	LO	1	2	3	4	5	6	7	8	9	РР
3480	' ==0° 58	3' S	4.68		۲ <u>م.</u> (8 562	27	80" =	1° 3	84	. 68 555 T 4. 68 562
3540	=0 59	,	4.68	555	4.6	8 562	36		1 4		. 68 555 4. 68 563
3600			4.68			8 562	39			4	. 68 555 4. 68 563
3660 37 9 0			4.68			68 562 8 562	39				, 68 555 4. 68 563 , 68 555 4. 68 563
									- 1		

350-400

N	LO	1	2	3	4	5	6	7	8	9	РР
400	60 206	217	228	239	249	260	271	282	293	304	
401	314	325	336	347	358	369	379	390	401	412	
402	423	433	444	455	466	477	487	498	509	520	
403	531	541	552	563	574	584	595	606	617	627	
404 405	638 746	649 756	660 767	670 778	681 788	692 799	703 810	713 821	724 831	735 842	
406	853	863	874	885	895	906	917	927	938	949	11
407	959	970	981	991	* 002	4 013	* 023	* 034	# 043	* 055	1 1.1
408 409	61 066 172	077 183	087 194	098 204	109 215	119 225	130 236	140 247	151 257	162 268	2 2.2
4 10	278	289	300	310	321	331	342	352	363	374	3 3-3 4 4-4
	384	<u>´</u>		416	426		448				5 5.5 6 6.6
411 412	304 490	395 500	405 511	521	532	437 542	553	458 563	469 574	479 584	7 7.7
413	595	606	616	627	637	648	658	669	679	690	8 8.8
414	700	711	721	731	742	752	763	773	784	794	9 9.9
415 416	803 909	815 920	826 930	836 941	847 951	857 962	868 972	878 982	888 993	899 *003	
417	62 014	024	034	045	055	066	076	086	097	107	
418	118	128	138	1.49	159	170	180	190	201	211	
419	221	232	242	252	263	273	284	294	304	315	
42 0	325	335	346	356	366	377	387	397	408	418	10
421	428	439	449	459	469	480	490	500	511	521	10
422 423	531 634	542 644	552 653	562 665	572 675	583 685	593 696	603 706	613 716	624 726	I I.0 2 2.0
424	737	747	757	767	778	788	798	808	818	829	3 3.0
425	839	849	859	870	880	890	900	910	921	931	4 40 5 5.0
426	941	951	961	972	982	992	* ⁰⁰²	*012	*022	* ⁰³³	5 5.0 6 6.0
427 428	63 043 144	053 153	063 165	073	083 185	094 195	104	114	124 225	134 236	7 7.0
429	240	256	266	276	286	296	306	317	327	337	8 80 9 9.0
430	347	357	367	377	387	397	407	417	428	438	9190
431	448	458	468	478	488	498	508	518	528	538	
432	548	558 659	568 669	579	589 689	599	609	619	629	639	
433 434	649 749	759	769	679	789	699 799	709 800	719	729 829	739 839	
435	849	859	869	879	889	899	909	919	929	939	
436	949	959	969	979	988	998	* 008	*018	*028	* 038	9
437 438	64 048 147	058 157	068 167	078	088 187	098 197	108 207	118	128 227	137 237	1 0.9
439	246	256	266	276	286	296	306	316	326	335	2 1.8
440	345	355	365	375	385	395	404	414	424	434	3 2.7 4 3.6
44 T	444	454	464	473	483	493	503	513	523	532	5 4.5
442	542	552	562	572	582	59I	601	611	621	631	6 5.4 7 6.3
443 444	640	650	660	670 768	680	689 787	699	709 807	719 816	729 826	8 7.2
444	738 836	748 846	758 856	865	777 875	885	797	904	014	924	9 8.1
446	933	943	953	963	972	982	992	+002	*011	+021	
447	65 031 128	040	050	060	070	079	089	099	108	118	
448 449	128	137	147	157 254	167	176 273	283	196 292	205 302	312	
450	321	331	341	350	360	369	379	389	398	408	
N	LO	1	2	3	4	5	6	7	8	9	РР
3960"	= 1° 6	S	4.68		T 4.68	563			= 1 ° 1 1		4.68 554 T 4.68 564
4020	= 1 7 = 1 8		4.68	555	4.68	563			= 1 13		4.68 554 4.68 564 4.68 554 4.68 564
4080 4140	= 1 8 = 1 0		4.68 4.68		4.68 4.68				$= 1 1_{2}$ = 1 1_{2}		4.68 554 4.68 564
4200	⇒iú		4.68		4.68			500 =			4.68 554 4.68 564

400-450

PP N L 0 65 321 45 I 686 887 839 01 **.**068 **#**058 •⁰⁷⁷ ,049 66 687 I 1.0 2.0 3.0 4.0 5.0 6 6.o 7.0 66 I 68g 8.0 839 848 q **q.o _000** .015 94 I **ó**80 ó8g 67 023 486 I 0.9 1.Ś 65 I 2.7 88 3.6 4.5 5-4 .015 a006 02.1 6.3 68 ò34 ō52 **o**88 7.2 Ś.1 60 I 81 0.8 T 1.6 9 2.4 +002 110. 3.2 69 020 ogo 6 4.0 4.8 5.6 ŏ.4 o 7.2 880 836 śıõ P N LO P =1° 15' S т 4.68 564 $4800'' = 1^{\circ} 20$ 4500" 4.68 554 S 4.68 554 т 4.68 565 4.68 565 =1 ιÕ 4.68 554 4.68 553 4.68 566 = 1== I 4.68 554 **≕ 1** 4. 68 553 4.68 566 4.68 565 =1 тŚ 4.68 554 4.68 553 4.68 566 = 1 =1 4.68 554 4.68 565 4. 68 553 1.68 566 īQ = 1

450-500

12

500-550

					500-	-550					
N	LU	1	2	3	4	5	6	7	8	9	РР
500	69 897	906	914	923	932	940	949	958	966	975	
501	ŋ84	992	*00I	UI0	*018	*027	<u>+</u> 036	# 044	# 053	* 062	
502	70 070	079	088	000	105	114	122	131	140	148	
503	157	165	174	183	191	200	209	217	226	234	
504	243	252	260	269	278	286	293	303	312	321	9
505	329	338	346	355	364	372	381	389	398	406	I 0.9
506	415	424	432	441	449	45B	467	475	484	492	2 1.8
507	501	509	518	526	535	544	552	561	569	578	3 2.7
508	586	595	603	612	621	629	638	646	653	663	4 3.6
509	672	680	689	697_	706	714	723	73I	740	749	5 4-5 6 5-4
510	757	766	774	7 ⁸ 3	79I	800	508	817	825	634	7 6.3
511	842	851	859	868	876	883	893	902	910	919	8 7.2 g 8.1
512	927	935	944	952	961	969	978	986	995	#00 3	9 0.1
513	71 012	020	029	037	046	D54	obg	071	079	088	
514	096	107	113	122	130	139	147	155	164	172	
515	181	189	198	206	214	223	231	240	248	257	
516	265	273	282	290	299	307	315	324	332	341	
517	349	357	366	374	383	391	399	408	416	425	
518 519	433 517	441 525	450	458 542	466	475 559	483 567	492	500 584	508 592	
		-	533		550			575			
520	600	60g	617	625	634	642	650	659	667	675	8 I D.8
521	684	692	700	709	717	725	734	742	750	759	I 0.8 2 1.6
522 523	767	775 858	784	792	800 883	809	817	825 908	834	842	3 2.4
	850	-	867	875		992	900	-	917	925	4 3.2
524 525	933 72 016	941 024	950	958	966	975	983 066	99I	999 082	*008	5 4.0
526	72 010 099	024 107	032	04I 123	132	057 140	148	074 156	165	090 173	6 4.8
527	181	180	1.08	206	214	222	230	239	247	255	7 5.6 8 6.4
528	263	272	280	288	206	304	313	321	329	337	
529	346	354	362	370	378	387	395	403	411	419	9 7.2
530	428	436	414	452	460	-::- -469	477	485	493	501	
531	509	518	520	534	542	550	558	567	575	583	
532	591	599	607	616	624	63z	640	648	656	665	
533	673	681	689	697	705	713	722	730	738	740	
534	754	762	770	779	787	795	803	811	819	827	
535	835	813	852	810	868	876	884	892	ypo	908	
536	916	925	933	941	949	957	965	973	981 (989	
537 538		400 a	+014	*022	* 030	" 0 38	* 040	*054	* 062	↓ 070	. 7
539	73 078 159	167	175	102	111	119 199	127	135	143	151 231	I 0.7
540							288				2 1.4
	239	247	255	263	272	280		296	304	312	3 2.I 4 2.8
541 542	320	328	330	344	352	360	368	376	384	392	5 3-5
542	400 480	408 488	416 496	424	432	440 520	448 528	456 530	464	472	6 4.2
543					-	-	520 608	530	544	552	7 4-9
545	560 640	568 648	576 656	584 664	592 672	600 679	687	695	624 703	632 71.	8 <u>5</u> .b
546	719	727	735	743	751	759	767	775	783	791	9 6.3
547	799	807	815	823	830	838	846	854	862	870	1
548	878	886	804	9D2	910	918	926	933	941	949	
549	957	965	973	981	989	997	+005		+020	+D25	
550	74 036	o44	052	060	068	076	084	092	099	107	
Ν	LO	1	2	3	4	5	6	7	8	9	P P
	' = 1° 23		4.68			8 566		o" = :			4.68 553 T 4.68 567
5040	= I 24		4.68	553		8 5 6 6	534				4.68 553 4.68 567
5100	= 1 25		4.68	553		8 566	540				4.68 553 4.68 567
5160 5220	= 1 26 = 1 27		4.68 4.68			8 567	546		-		4.68 552 4.68 568 4.68 552 4.68 568
الفقر	-1 2/		4.00	222	4.0	0 207	552		I 32		4.00 532 4.00 508

N LO ы р Р 74 036 oto ogg 55I 24 I 96 35 I 5/12 ΰοι դին B <u>981</u> <u>9</u>89 , noŝ *020 **∗**028 ±043 .012 ¥¹⁷35 n.8 ı 75 051 ū59 L.b τ89 4.0 .127 b 5.6 6.4 b41 y 7.2 8ŋ t gob ցՑց ¥012 ±020 *027 *V35 76 042 υξυ U72 2(1) 35H I 5 3 7 1.1 51.7 port b71 2.8 73⁸ () ij16 QU I gub gbo <u>982</u> ցեց *004 77 012 **U2**Ú Dfug ŋ Thh 59I 2.10 51)8 Bub 810 | 8.14 85 L N L D ж Ð Р =1° 36' 5460" 31' s 68 552 Т 4 68 568 5760" =1" s 4 68 552 Έ 4 68 569 68 552 = 1=1 4.68 552 4.68 šíg 4.68 568 = 1 4 68 552 4 68 568 = 14. 68 552 4 68 560 4 68 552 4.68 551 4 68 569 = I4. 68 568 =1 4.65 552 =1 4. 68 551 1.68 570 4.68 560

550-600

14

600-650

					600-	-690					
N	ГO	1	2	3	4	5	6	7	8	9	<u> </u>
600	77 815	822	830	837	844	851	859	866	873	880	
601	887	895	902	909	916	924	931	938	945	952	
602 603	960 78 032	967 039	974 046	981 053	988 061	996 068	*003 075	+010 082	+017 089	+ 025 097	
603 604	104	111	118	125	132	140	147	154	161	168	
605	176	183	190	197	204	211	219	226	233	240	
606	247	254	262	269	276	283	290	297	305	312	8
607 608	319	326 398	333 403	340 412	347 419	355 426	362	369	376	383 455	1 0.8
609	390 462	469	405	483	419	420	504	512	519	520	2 1.6 3 2.4
610	533	540	547	554	561	569	576	583	590	597	4 3.2
611	604	611	618	625	633	640	647	654	661	668	5 4.0 6 48
612	675	682	689	696	704	711	718	725	732	739	7 5.6 8 6.4
613	746	753	760	767	774	781	789	796	803	810	8 6.4 9 7.2
614 615	817 888	82.4 895	831	838 909	845 916	852 923	859 930	866	873 944	880 951	9 1
616	958	905	972	979	986	993	*000	*007	*014	1021	
617	79 029	036	043	030	057	064	071	078	085	092	
618 619	099 169	106	113 183	120 190	127 197	134 204	141	148 218	155 225	162	
620	239	246	253	260	267	274	281	288	295	302	7
621 622	309 379	316 386	323 393	330 400	337 407	344	351	35 ⁸ 428	365 435	372	I 0.7
623	449	456	463	470	477	484	491	498	505	511	2 1.4
62.4	518	525	532	539	546	553	560	567	574	581	3 2.1
625	588 657	595 664	602 671	609 678	616 685	623	630	637	644	650	4 2.8 5 3.5
626 627	727	734	741	748	754	692 761	699 768	700	713 782	720	6 4.2
628	796	803	810	817	824	831	837	844	851	858	7 4.9 8 5.6
629	865	872	879	886	893	900	906	913	920	927	9 6.3
63 0	934	941	948	95 5	962	969	975	982	989	996	
631	80 003	010	017	024	030	037	044	051	058	06.5	
632 633	072 140	079	085 154	092 161	099 168	106 175	113	120	127	134	
634	200	216	223	229	236	243	250	257	264	271	
635	277	284	291	298	305	312	318	325	332	339	
636	340	353	359	366	373	380	387	393	400	407	6
637 638	414 482	421 480	428 496	434 502	441 509	448 516	455	462 530	468 536	475	I 0.6
639	550	557	564	570	577	584	591	598	604	611	2 1.2
640	618	625	632	638	645	652	659	665	672	679	3 I.8 4 2.4
64 r	686	693	699	706	713	720	726	733	740	747	5 30
642	754	760	767	774	781	787	794	801	808	814	6 3.6 7 4.2
643	821 889	828 895	835	841	848	855	862	868	875	882	8 4.8
644 645	956	963	902 969	909 976	916 983	922 990	929 996	936 #003	943 *010	949 *017	9 5-4
646	81 023	030	037	043	050	057	064	070	077	084	
647	090	097	104	111	117	124	131	137	144	151	
648 649	158 224	164 231	171 238	178 243	184	191 258	198 265	204	211 278	218 285	
650	291	298	305	311	318	325	331	338	345	351	
N	LO	1	2	3	4	5	6	7	8	9	РР
6000"	= 1° 40	s	4.68		r 4.68				= 1° 45	; 5	
6060 6120	= 1 41		4.68	551	4.68	570	6	360 =	= 1 46		4.68 551 4.68 571
6120	= I 42 - I 43		4.68		4.68 4.68				= 1 47 = 1 48		4.68 550 4.68 572 4.68 550 4.68 572
6240	= 1 44		4.68		4.68				= I 49		4.68 550 4.68 572

650-700

660 81 agi ag8 ag5 ag8 ag8<	N	LO	1	2	3	4	5	6	7	8	9	P P
655 358 365 377 378 388 405 471 418 485 653 491 495 431 445 451 458 445 478 485 654 494 555 654 571 578 584 591 598 604 671 677 673 770 773 773 773 773 773 774 756 770 775 773 773 773 774 756 770 775 773 773 774 750 775 777 775 773 774 750 775 7	650	81 291	298	305	311	318	325	331	338	345	351	
653 491 498 505 511 518 531 534 554 557 654 558 564 571 554 551 566 604 617 667 655 650 607 703 770 773 7737 737<		358	365	371	378	385		398				1
654 655 655 657 657 657 657 657 657 657 657												
\hat{e}_{55} \hat{e}_{56} \hat{e}_{56} \hat{e}_{57} \hat{e}_{54} \hat{e}_{57} \hat{e}_{57					1 -	-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	655	624	631	637	644	651	657	664	671	677	684	
658 659 659 659 659 659 659 659 650 650 650 651852 651 652 652852 652 652 653852 652 653852 652 653852 652 653852 652 653852 653852 653852 653852 653852 653852 653852 653852 653852 653852 653852 6541852 65377 65377 65477 65477 							-				1	
659 869 895 902 908 915 921 928 935 941 948 6600 924 904 960 937 994 900 900 901 901 901 900 900 901		823		836	842						882	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	659	889	895		908	913	921	928	935	941	948	
	660	954	961	968	974	981	987	994	000g	* 007	#014	
												1
665 282 289 295 302 308 315 321 328 334 341 3 2.1 666 347 754 360 307 373 380 387 393 400 406 42 2.8 667 413 410 427 504 510 517 523 530 536 64 4.2 4.2 669 543 549 555 </td <td>664</td> <td>217</td> <td></td> <td>1 ·</td> <td></td> <td></td> <td>249</td> <td></td> <td></td> <td></td> <td>276</td> <td></td>	664	217		1 ·			249				276	
												3 2.1
668 478 484 401 407 504 510 517 582 530 536 537 582 536 537 532 536 536 537 532 536 537 532 536 537 532 536 5				-	-							
	668	478	484	491	497	504	510	517	523	530	536	
0.100.110.200.110.130.110.130.120.130			549	556	562	569	575	582	588		601	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					627			<u> </u>			666	
6_{73} 8_{02} 8_{03} 8_{14} 8_{21} 8_{27} 8_{34} 8_{40} 8_{47} 8_{53} 8_{60} 6_{74} 8_{66} 8_{72} 8_{79} 8_{85} 8_{92} 8_{96} 9_{975} 8_{82} 9_{88} 6_{77} 8_{3059} 065 072 078 085 091 0975 962 988 6_{77} 8_{3059} 065 072 078 085 001 007 104 110 117 6_{78} 123 129 136 142 149 155 161 168 174 181 6_{79} 187 193 200 $2x06$ 213 219 225 232 238 245 680 251 257 264 270 276 283 289 296 302 308 681 3175 321 327 334 340 347 353 359 366 372 6 681 3155 321 327 334 340 347 353 359 366 372 6 684 505 575 582 581 537 543 557 565 563 31.8 685 569 575 582 588 594 601 607 673 63.69 53.06 684 759 765 711 778 784 790 797 803 809 816												
674 866 872 879 885 892 895 905 911 918 924 675 930 937 943 950 956 963 969 975 982 988 676 995 #005 words		802	808	814	821			840			860	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				879								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				(r.		-					1 · · ·	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	678	123	129	136	142	149	155	161	168			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
									<u>´</u>			a
	682		385									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-											2 1.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												6 3.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		759 822			778							
		883	891					923				
	601	948	954		967		970					
	692	84 011	017	023	ó29	036	042	048	055	061	067	
							- 1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	696	2Ó1	267	273	28 0	286	292	298	305	311	317	
		323										
700 510 516 522 528 535 541 547 553 559 566 N L 0 1 2 3 4 5 6 7 8 9 P P 6480' =1° 48' 8 4.68 550 T 4.68 572 6780' =1° 53'. S 4.68 573 6540 =1 54'. 6.68 573 6540 =1 54'. 4.68 550 T 4.68 572 6780'' =1° 53'. S 4.68 573 6540 =1 54'. 4.68 573 6540 =1 54'. 4.68 574'. 6560 =1 55'. 4.68 574'. 6560 =1 56'. 4.68 574'. 6560 =1 51'. 4.68 574'. 690'. =1 56'. 4.68 574'. 6660 =1 51'. 4.68												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					528							
65 40 = t 49 4.68 550 4.68 572 6640 = I 54 4.68 550 4.68 573 6660 = I 50 4.68 550 4.68 574 6660 = I 51 4.68 550 4.68 574 6660 = I 55 4.68 549 4.68 574 6660 = I 56 4.68 549 4.68 574 6660 = I 56 4.68 549 4.68 574 668 574 5660 = I 56 4.68 574 5660 = I 56 560 = I 560	N	LO	1	2	3	4	5	6	7	8	9	РР
65 40 = t 49 4.68 550 4.68 572 6640 = I 54 4.68 550 4.68 573 6660 = I 50 4.68 550 4.68 574 6660 = I 51 4.68 550 4.68 574 6660 = I 55 4.68 549 4.68 574 6660 = I 56 4.68 549 4.68 574 6660 = I 56 4.68 549 4.68 574 668 574 5660 = I 56 4.68 574 5660 = I 56 560 = I 560	6480	' == 1° 48	' S	4.68	50 I	4.6	8 572	678	3o" =	1° 53	84	. 68 550 T 4. 68 573
6660 = 151 4.68 550 4.68 573 6960 = 156 4.68 549 4.68 574	6540	=r 49	l i	4.68 5	50	4.6	8 572	664	10 =	1 54	4	. 68 550 4. 68 573
6720 = 152 4.68 550 4.68 573 7020 = 157 4.68 540 4.68 574												
	6720										4	. 68 549 4. 68 574

16

700-750

	N L 0 1 2 3 4 5 6 7 8 9 P P													
	L 0	1	2	3	4	5	6	7	8	9		Р	P	
700	84 510	516	522	528	535	541	547	553	559	566				
701	572	578	584	590	597	603	609	615	621	628				
702	634	640	646	652	658	665	671	677	683	689				
703	696	702	708	714	720	726	733	739	745	751				
704 705	757 819	763 825	770 831	776 837	782 844	788 850	794 856	800 862	807 868	813 874				
706	880	887	893	899	905	911	917	924	930	936				
707	942	948	954	960	967	973	979	985	991	997			7	
708	85 003	009	ó16	022	ú28	034	040	046	052	ó 58		- 1		
709	065	071	077	083	089	095	101	107	114	120		12	0.7 1.4	
710	126	132	138	144	150	156	163	169	175	181	•	3	2.1 2.8	
711	187	193	199	205	211	217	224	230	236	242			3.5	
712	248	254	260 321	266	272	278	285 345	291	297	303		5	4.2	
713 714	309 370	315 376	382	327 388	333	339 400	406	352	358 418	364 425		7	49	
715	431	437	443	449	394 455	400	467	473	410	425		8	5.6 6.3	
716	491	497	503	509	516	522	528	534	540	546		31	0.5	
717	552	558	564	570	576	582	588	594	600	606				
718	612	618	625	631	637	643	649	655	661	667				
719	673	679	685	691	697	703	709	715	721	727				
720	733	739	745	751	757	763	769	775	781	788				
721	794	800	806	812	818	824	830 890	836	842	848			6	
722 723	354 914	860 920	866 926	872 932	878 938	884	950	896	902 962	908 968		I	0.6	
724	974	980	986	992	930 998	944 ±004	*010	956 •016	022	*028		2 3	1.2 1.8	
725	86 034	040	046	052	058	+004 064	070	076	082	*028 088		4	2.4	
726	094	100	106	112	118	124	130	136	141	147		5	3.0	
727	153	159	165	171	177	183	189	195	201	207		6	3.6	
728	213	219	225	231	237	243	249	255	261	267		78	4.2 4.8	
729	273	279	285	291	297	303	308	314	320	326		9	5.4	
73 0	332	338	344	350	356	362	368	374	380	386				
731	392	398	404	410	415	421	427	433	439	445				
732 733	451 510	457 516	522	469 528	475	481 540	546	493 552	499 558	504 564				
734	570	576	581	587	534 593	599	605	611	617	623				
735	629	635	641	646	652	658	664	670	676	682			5	
736	688	694	700	705	711	717	723	729	735	741		- 1	-	
737	747	753	759	764	770	776	782	788	794	800		1 2	0.5 1.0	
738	806 864	812	817 876	823 882	829	835	841	8.47	853	859		3	1.5	
739		870			888	894	900	906	911	917		4	2.0	
740	923	929	935	941	947	953	958	964	970	976		5	2.5 3.0	
741 742	982 87 040	988 046	994 052	999 058	+005 064	011 070	+017 075	*023 081	*029 087	*035 093		78	3.5 4.0	
743	099	105	111	116	122	128	134	140	146	151		ő	4.0 4-5	
744	157	163	169	175	181	186	192	198	204	210		71		
745	216	22 I	227	233	239	245	251	256	262	268				
746	274	280	286	291	297	303	309	315	320	326	1			
747 748	332	338 396	344	349 408	355	361	367 425	373	379	384				
740 749	390 448	454	402	408	413 471	419 477	425	431 489	437 495	442 500				
750	506	512	518	523	529	535	541	547	552	558				
N	L O	1	2	3	4	5	6	7	8	9		Р	Р	
696 702		6' B	4.68 4.68		T 4.6	8 574	720	io' = 20 =			4.68 549 4.68 548	Т	4.68 575	
708		8	4.68		4.0	8 574	73				4.68 548		4.68 576	
714	o = i	9	4.68	549	4.0	58 575	74-	ю ==	24		4.68 548		4.68 576	
720	0 = 2	0	4.68	549	4.0	58 575	750	× =	2 5		4.68 548		4.68 577	

750-800

N	LO	1	2	3	4	5	6	7	8	9.	PP
750	87 506	512	518	523	529	535	541	547	552	558	
751				581	587			604	610	616	
752	564 622	570 628	576 633	639	645	593 651	599 656	662	668	674	l
753	679	685	691	697	703	708	714	720	726	731	
754	73 <u>7</u>	743	749	754	760	766	772	777	783	789	
755 756	795 852	800 858	806 864	812 860	818 875	823 881	829 887	835 892	841 898	846 904	
757	010	915	921	927	933	938	944	950	955	061	
758	967	973	978	984	990	996	*001	*007	* 013	*018	
759	88 024	030	036	041	047	053	058	064	070	076	
760	081	087	093	098	104	110	116	121	127	133	
761	138	144	150	156	161	167	173	178	184	190	
762 763	195 252	201 258	207 264	213 270	218 275	224 281	230 287	235	241 298	247 304	6
764	309	315	321	326	332	338	343	349	355	360	1 0.6
765	366	372	377	383	389	395	400	406	412	417	2 1.2 3 1.8
766	423	429	434	440	446	451	457	463	468	474	4 2.4
767 768	480 536	485 542	491 547	497 553	502	508 564	513 570	519 576	525 581	530 587	5 3.0 6 3.6
769	530	542 598	547 604	553 610	559 615	621	627	632	638	643	6 3.6 7 4.2
770	649	653	660	666	672	677	683	689	694	700	8 4.8 9 5-4
771	705	711	717	722	728	734	739	745	750	756	91 34
772 773	762	767	773	779	784	790	795	801	807	812	
774	818 874	824 880	829 885	835 891	840	846 002	852	857 913	863 919	868 925	
775	°/4 930	936	941	947	897 953	958	908 964	969	975	925	
776	986	99 2	997	* 003	*009	# 014	*020	*025	#031	* 037	
777 778	89 049	048	053	059	064	070	076	081	087	092	
779	098 154	104 159	109 165	115 170	120 176	126 182	131	137 193	143 198	148	
780	209	215	221	226	232	237	243	248	254	260	5 I 0.5
781	265	271	276	282	287	293	298	304	310	315	2 1.0
782 783	321	326 382	332 387	337	343	348	354	360	365	371	3 1.5 4 2.0
784	376 432	437	30/	393 448	398 454-	404 459	409 465	415 470	421	420	5 2.5
785	487	492	498	504	509	515	520	526	531	537	6 3.0 7 3.5
786	542	548	553	559	564	570	575	581	586	592	7 3.5 8 4.0
787 788	597	603	609	614	620	625	631	636	642	647	9 4.5
789	653 708	658 713	664 719	669 724	673 730	680 735	686 741	691 746	697 752	702 757	
790	763	768	774	779	783	790	796	801	807	812	
791	818	823	829	834	840	845	851	856	862	867	
79 2 793	873	878	883 938	889 944	894	900	905 960	911 966	916 971	922	
793 794	927 982	933 988	930 993	944 998	949 *004	953 2000	900 1013	900 ±020	971 #026	977 •031	
795	90 037	042	048	053	059	064	069	075	080	°086	
796	091	097	102	108	113	119	124	129	133	140	
797 798	146 200	151 206	157 211	162 217	168 222	173 227	179	184 238	189 244	195 249	
799	253	260	266	271	276	282	233 287	293	298	304	
800	309	314	320	325	331	336	342	347	352	358	
N	$\mathbf{L} 0$ = $2^{\circ} 5'$	1	2	3	4	5	6	7	8	9	P P
7500 " 7560	= 2°5'		4.68 54 4.68 54			577	7800	b' = 2			1.68 547 T 4.68 578 1.68 547 4.68 579
7620	= 2 7		4.68 54	18	4.68	577	7920) = 2	12	4	.68 547 4.68 579
7680	= 2 8		4.68 54		4.68	578	7980	> <i>≕</i> a		4	.68 547 4.68 579
7740	= 2 9		4.68 54	+/	4.08	578	8040	$\rangle = 2$	14	4	.68 546 4.68 579

800-850

					800-						
N	LO	1	2	3	4	5	6	7	8	9	PP
800	90 309	314	320	325	331	336	342	347	352	358	
801	363	369	374	380	383	390	396	401	407	412	
802 803	417 472	423 477	428	434 488	439 493	445 499	450 504	455 509	461 513	466 520	
804	526	531	536	542	547	553	558	563	569	574	
805	580	585	590	596	601	607	612	617	623	628	
806	634	639	644	630	655	660	666	671	677	682	
807 808	687 741	693 747	698 752	703 757	· 709 763	714 768	720 773	725 779	730	736 789	
809	795	800	806	811	816	822	827	832	838	843	
810	849	854	859	865	870	875	881	886	891	897	
811	902	907	913	918	924	929	934	940	945	950	6
812 813	956 91 009	961 014	966 020	972 025	977 030	982 036	988 041	993 046	998 052	*004 057	I 0.6
814	062	068	073	078	084	089	094	100	105	110	2 1.2 3 1.8
815	116	121	126	132	137	142	148	153	158	164	3 1.8 4 2.4
816	169	174 228	180	. 185	190	196	201	206	212	217	4 2.4 5 3.0 6 3.6
817 818	222 275	228 281	233 286	238 291	243 297	249 302	254 307	259 312	265 318	270 323	-
819	328	334	339	344	350	355	360	365	371	376	7 4.2 8 4.8
820	381	387	392	397	403	408	413	418	424	429	9 5.4
821	434	440	445	450	455	461	466	47I	477	482	
822 823	487 540	492 545	498 551	503 556	508 561	514 566	519 572	524 577	529 582	535 587	
824	593	598	603	600	614	619	624	630	635	640	
825	645	651	656	661	666	672	677	682	687	693	
826	698	703	709	714	719	724	730 782	735	740	745	
827 828	751 803	756 808	761 814	766 819	772 824	777 829	834	840	793 845	798 850	
829	855	861	866	871	876	882	887	892	897	903	
830	908	913	918	924	929	934	939	944	950	955	5
831	960	965	971	976	981	986	991	997	* 002	* 007	I 0.5
832 833	92 01 2 06 5	018 070	023 075	028	033 085	038 091	044 096	049	054 106	059 111	2 1.0
834	117	122	127	132	137	143	148	153	158	163	3 1.5
835	169	174	179	184	189	195	200	205	210	215	4 2.0 5 2.5
836 837	221	226 278	231 283	236 288	241	247 298	252 304	257 309	262	267 319	6 3.0
838	273 324	330	335	340	293 · 345	350	355	361	314 366	371	7 3.5
839	376	381	387	392	397	402	407	412	418	423	8 4.0 9 4.5
840	428	433	438	443	449	454	459	464	469	474	9 . 4 5
841	480	483	490	495	500	505	511	516	521	526	
842 843	531 583	536 588	542 593	547 598	552 603	557 600	562 614	567 619	572 624	578 629	
844	634	639	645	650	655	660	665	670	675	681	
845	686	691	696	701	706	711	716	722	727	732	
846 847	737 788	742	747	752 804	758 800	763 814	768 819	773 824	778	783 834	
848	840	793 845	799 850	855	860	865	870	875	881	886	
849	891	896	901	906	911	916	921	927	932	937	
850	942	947	952	957	962	967	973	978	983	988	
Ν	L 0	1	2	3	4	5	6	7	8	9	РР
7980			4.68			8 579		8o" =			. 68 546 T 4. 68 581
8040 8100			4.68			58 579 58 580				4	. 68 546 4. 68 581 . 68 545 4. 68 582
8160	=2 16		4.68	546	4.6	58 580	84	60 =	2 21	4	. 68 545 4. 68 582
8220	=2 1	7	4.68	546	4.6	58 580	85	20 =	2 22	4	. 68 545 4. 68 582

					890	-900					
N	LO	1	2	3	4	5	6	7	8	9	РР
850	92 942	947	952	957	962	967	973	978	983	988	
851	993	998	. 003	*0 0 8	•013	810	* 024	# 029	* 034	* 039	
852	93 04 <u>4</u>	049	054	059	*064	069	075	080	085	090	
853	095	100	105	110	115	120	125	131	136	141	
854 855	146 197	151 202	156 207	161 212	160	171 222	176 227	181 232	186	192 242	
856	247	252	258	263	268	273	278	283	237 288	293	
857	298	303	308	313	318	323	328	334	339	344	6
858	349	354	359	364	369	374	379	384	389	394	t 0.6
859	399	404	409	414	420	425	430	435	440	445	2 I.2 3 I.8
860	430	453	460	463	470	475	480	485	490	495	4 2.4
861	500	505	510	515	520	526	531	536	541	546	5 3.0 6 3.6
862	551	556	561	566	571	576	581	586	591	596	6 3.6 7 4.2
863	601	606	611	616	621	626	631	636	641	646	7 4.2 8 4.8
864 865	651 702	656,	661 712	666	671 722	676 727	682 732	687	692	697	9 5-4
866	752	707 757	762	767	772	777	782	737	742 792	747 797	
867	802	807	812	817	822	827	832	837	842	847	
868	852	857	862	867	872	877	882	887	892	897	
869	902	907	912	917	922	927	932	937	942	947	
870	952	957	962	967	972	977	982	987	992	997	-
871	94 002	007	012	017	022	027	032	037	042	047	5
872	052	057	062	067	072	077	082	086	091	096	1 0.5
873	101	106	111	116	121	126 176	131 181	136	141	146	2 I.O 3 I.5
874 875	151 201	156	161 211	166 216	171 221	226	231	186	191 240	196 245	4 2.0
876	250	255	260	265	270	275	260	285	290	295	5 2.5
877	300	305	310	313	320	325	330	335	340	345	
878	349	354	359	364	369	374	379	384	389	394	7 3-5 8 4.0
879	399	404	409	414	419	424	429	433	438	443	9 +-5
880	448	453	458	463	468	473	478	483	488	493	
881	,498	503	507	512	517	522	527	532	537	542	
882 883	547 596	552 601	557 606	562 611	567	57I 62I	576	581 630	586 635	591 640	
884	645	650	655	660	665	670	675	680	685	689	
885	694	699	704	709	714	719	724	729	734	738	
886	743	748	753	758	763	768	773	778	783	787	
887	792	797	802	807	812	817	822	827	832	836	4
888 889	841	846	851	856	861	866	871	876	880	885	I 0.4 2 0.8
	890	895	900	905	910	915	919	924	929	934	3 1.2
890	939	944	949	954	959	963	968	973	978	983	4 1.6
891 892	988 95 036	993 041	998 046	#002 051	*007 056	+012 061	*017 066	*022 071	*027 075	*032 080	6 2.4
893	085	000	095	100	105	109	114	119	124	129	7 2.8 8 3.2
894	134	139	143	148	153	158	163	168	173	177	8 3.2 9 3.6
895	182	187	192	197	202	207	211	216	221	226	71.5.2
896	231	236	240	245	250	255	260	265	270	274	
897 898	279 328	284 332	289 337	294 342	299 347	303	308	313	318	323	
899	376	381	386	390	395	352 400	357	410	413	371 419	
900	424	429	434	439	444	448	453	458	463	468	
N	L 0	1	2	3	4	5	6	7	8	9	РР
	= 2° 21'	S	4.68	545 '	Γ 4.68	582	8	760" =	= 2° 26	5' S	4.68 544 T 4.68 584
8520	= 2 22		4.68	545	4.68	582	8	820 =	= 2 27	,	4.68 544 4.68 584
8580 8640	= 2 23 = 2 24		4.68	545	4.68 4.68				= 2 28 = 2 20		4.68 544 4.68 584 4.68 544 4.68 585
	= 2 25		4.68		4.08				= 2 20		4.68 544 4.68 585
	- ,						1 9				

850----900

.

20

900---950

					900	-950	-				
N	L 0	1	2	3	4	5	6	7	8	9	РР
900	95 424	429	434	439	444	448	453	458	463	468	
901	472	477	482	487	492	497	501	506	511	516	
902	521	525	530	535	540	545	550	554	559	564	
903	569	574 622	578 626	583	588 636	593	598 646	602 650	607 655	612 660	
904 905	617 665	670	674	631 679	684	641 689	694	698	703	708	
906	713	718	722	727	732	737	742	746	751	756	
907	761	766	770	775	780	785	789	794	799	804	
908 909	809 856	813 861	818 866	823 871	828 875	832 880	837 885	842 890	847 895	852 899	
910	904	900	914	918	923	928	933	938	942	947	
911	952	957	961	966	971	976	980	985	990	995	
912	999	#004	+000	*014	+019	¥023	"Ó28	# 033	+038	#042	5
913	96047	052	057	061	066	071	076	080	085	090	I 1 0.5
914 915	095	099	104	100	114	118 166	123	128	133 180	137 185	2 1.0
915	142 190	147	152 199	156 204	161 209	213	171 218	175	227	232	3 1.5
917	237	242	246	251	256	261	265	270	275	280	4 2.0 5 2.5
918	284	289	294	298	303	308	313	317	322	327	6 3.0
919	332	336	341	346	350	355	360	365	369	374	7 3-5
920	379	384	388	393	398	402	407	412	417	421	8 4.0 9 4.5
921 922	426	431	435	440	445	450	454	459	464	468	
923	473 520	478	483 530	487 534	492 539	497 544	501 548	506 553	511 558	515 562	
924	567	572	577	581	586	591	595	600	605	609	
925	614	619	624	628	633	638	642	647	652	656	
926	661	666	670	675	680	685	689	694	699	703	
927 928	708 753	713	717	722	727 774	731 778	736	741 788	745	750 797	
929	802	806	811	816	820	823	830	834	839	844	
930	848	853	858	862	867	872	876	881	886	890	
931	895	900	904	909	914	918	923	928	932	937	4
932	942	946	951	956	960	965	970	974	979	984	I 0.4
933 934	988	993	997	*002	+007	4011 058	#016 063	#021 067	+025 072	*030 077	2 0.8
934	97 035 081	039 086	044	049 095	053	104	1003	114	118	123	3 I.2 4 I.6
936	128	132	137	142	146	151	155	160	163	169	4 1.6 5 2.0
937	174	179	183	188	192	197	202	206	211	216	6 2.4
938 939	220 267	225	230	234 280	239 285	243 290	248	253	257 304	262 308	7 2.8
940	313	317	322	327	331	336	340	345	330	354	8 3.2 9 3.6
941	359	364	368	373	377	382	387	391	396	400	
942	405	410	414	419	424	428	433	437	442	447	
943	451	456	460	465	470	474	479	483	488	493	
944	497	502	506	511	516	520	525	529	534 580	539 585	
945 946	543 589	548	552 598	557 603	562 607	566 612	571	575 621	626	5°5 630	
947	635	640	644	649	653	658	663	667	672	676	
948	681	685	690	693	699	704	708	713	717	722	
949	727	731	736	740	745	749	754	759	763	768	
950 N	772	777	782	786	791	795	800	804	809	813	P P
-	LO	1	2	3	4	5	6		8		
9000 9060		o' 8	4.68 4.68			58 585 58 585	93	,00" = ,60 =	= 2°35 = 236	' 8 4	1.68 543 T 4.68 587 1.68 543 4.68 587
9120			4.68	543	4.0	68 586	94	20 =	= 2 37	4	. 68 542 4. 68 588
9180	•		4.68			68 586			=2 38		4.68 542 4.68 588
9240	= 2 3	4	4.68	543	4.	68 587	1 95	640 =	=2 39		1.68 542 4.68 588

	TO	4			951	5		7	0	l n	P P
N	LO	1	2	3	4		6		8	9	<u> </u>
950	97 772	177	782	786	791	795	800	804	809	813	
951 952	818 864	823 868	827 873	832 877	836 852	841 886	845 891	850 896	853 900	859 903	
953	909	914	918	923	928	932	937	941	946	950	
954	955	959	964	968	973	978	982	9 ⁸ 7	99, 1	996	
955 956	98 000 046	003 050	009	014 059	019 064	023 D68	028 073	032 076	037 082	041 087	
957	0010	DQÓ	100	105	100	114	118	123	127	132	
958	137	141	146	150	155	159	164	168	173	177	
959	182	186 	191	195	200	204	209	214	218	223	
960	227	232	236	241	245	250	254	259	263	z68	_
gűi gőz	272 316	277 322	281 327	286 331	290 336	293 340	299 345	304 349	308 354	313 358	5
963	363	367	372	376	381	385	390	304	399	403	I 0.5 2 1.0
964	408	412	417	421	426	430	435	439	444	44 ⁸	3 1.5
965 966	453 498	457	462 507	400 511	471 510	475 520	480 525	484 529	489 534	493 538	4 2.0 5 2.5
907	543	547	552	556	561	565	570	574	579	583	5 2.5 6 3.0
965	588	592	597	()OI	605	610	614	619	623 668	628	7 3.5
969 970	632	637	641	646	650	655	659	664		673	8 4.0 9 4.5
	- 677	682	656	նցլ	695	700	704	709	713	717	
971 972	722 767	726 771	731 770	735 780	740 784	744 759	749	753 798	758 802	762 807	
973	811	816	820	825	829	834	838	843	847	851	
974	850 1,000	860 905	865	869	874	878	563	887	892	896	
975 97 ^b	945	949	909 954	914 958	918 963	923 967	927 972	932 976	936 981	941 985	
977	989	994	998	*003	¥007	*012	μ υι ύ	¥021	* 025	¥029	
978	99 034 078	038 083	043	047 092	052 006	05b 100	061 105	063 100	069	074 118	
980	123	127	$\frac{337}{131}$	136	140	145		154	158	162	
981		171	176	180	185	180	193	- 198	202	207	4
982	211	216	220	224	229	233	238	242	247	251	I 0.4
983	255	260	264	269	273	277	282	286	291	295	2 0.8
984 985	300 344	304 348	308 352	313	317 361	322 366	326 370	330 374	335 379	339 383	3 1.2 4 1.6
986	380	392	396	101	405	410	414	419	423	427	5 2.0
987 988	432 476	116 180	441	445 480	449	454	458 502	463 506	407 511	471	6 2.4
989	520	524	520	533	493 537	498 542	546	550	555	515	7 2.8 8 3.2
990	564	568	572	577	<u>ئ</u> 91	585	590	594	599	[103	9 3.6
991	607	612	616	621	625	629	634	638	642	647	
992	65 i	656	660	664	669	673	677	682	686	691	
993 994	695 739	699 743	704 747	708 752	712 756	717 760	721 765	7∡6 769	730	734 778	
995	782	787	791	795	800	804	808	813	817	822	
996	826	830	835	839	843	848	852	856	861	865	
997 91)8	870 913	874 917	878 922	883 926	887 930	891 915	896 939	900 944	904 948	909 952	
999	957	961	965	970	974	978	983	987	991	995 996	
1000	000 000	004	009	013	017	022	026	030	035	039	
N	LD	1	2	3	4	5	6	7	8	Ð	<u> </u>
9480 9540 9600 9660 9720	=2 40 =2 41)) (4.08 4.68 4.68 4.68 4.68	542 542 542	4. (4. (4.)	08 588 08 588 08 589 08 589 08 589	98. 99 99	40 = 00 = 60 =	2 45 2 46	4	. 68 541 T 4. 68 590 . 68 541 4. 68 590 . 68 541 4. 68 590 . 68 541 4. 68 591 . 68 541 4. 68 591 . 68 540 4. 68 592

950-1000

THE NATURAL LOGARITHMS

OF

WHOLE NUMBERS FROM 1 TO 200.

Common logarithms may be converted into natural logarithms by multiplying them by 2.3025850930.

Natural logarithms may be converted into common logarithms by multiplying them by 0.4342944819.

N	Nat Log	N	Nat Log	N	Nat Log	N	Nat Log	N	Nat Log
0	~~~∞	40	3.68 888	80	4.38 203	120	4.78 749	160	5.07 517
I	0.00 000	41	3.71 357	81	4.39 445	121	4.79 579	161	5.08 140
2	0.69 315	42	3.73 767	82	4.40 672	122	4.80 402	162	5.08 760
3	1.09 861	43	3.76 1 20	83	4.41 884	123	4.81 218	163	5.09 375
4	1.38 629	44	3.78 419	84	4.43 082	124	4.82 028	164	5.09 987
5 6	1.60 944 1.79 176	45 46	3.80 666 3.82 864	85 86	4.44 265 4.45 435	125 126	4.82 831 4.83 628	165 166	5.10 595
7	1.94 591	40	3.85 015	87	4.46 59I	127	4.84 419	167	5.II 199 5.II 799
8	2.07 944	47	3.87 120	88	4.40 591	128	4.85 203	168	5.12 396
9	2.19 722	49	3.89 182	89	4.48 864	129	4.85 981	169	5.12 990
10	2.30 259	50	3.91 202	90	4.49 981	130	4.86 753	170	5.13 580
11	2.39 790	51	3.93 183	91	4.51 086	131	4.87 520	171	5.14 166
12	2.48 491	52	3.95 124	92	4.52 179	132	4.88 280	172	5.14 749
3	2.56 495	53	3.97 029	93	4.53 260	133	4.89 035	173	5.15 329
14	2.63 906	54	3.98 898	94	4.54 329	134	4.89 784	174	5.15 906
15 16	2.70 805 2.77 259	55 56	4.00 733	95	4.55 388	135	4.90 527	175	5.16 479
17	2.83 321	_	4.02 535	96	4.56 435	136	4.91 265	176	5.17 048
18	2.89 037	57 58	4.04 305 4.06 044	.97 98	4.57 471 4.58 497	137 138	4.91 998 4.92 725	177 178	5.17 615 5.18 178
19	2.94 444	59	4.07 754	99	4.59 512	139	4.93 447	179	5.18 739
20	2.99 573	60	4.09 434	100	4.60 517	140	4.94 164	180	5.19 296
21	3.04 452	61	4.11 087	101	4.61 512	141	4.94 876	181	5.19 830
22	3.09 104	62	4.12 713	102	4.62 497	142	4.95 583	182	5.20 401
23	3.13 549	63	4.14 313	103	4.63 473	143	4.96 284	183	5.20 949
24	3.17 805	64	4.15 888	104	4.64 439	144	4.96 981	184	5.21 494
25 26	3.21 888 3.25 810	65 66	4.17 439	105	4.65 396	145	4.97 673	185	5.22 036
27	3.29 584	67	4.18 965	106	4.66 344	146	4.98 361	186 187	5.22 575
28	3.33 220	68	4.20 469 4.21 951	107 108	4.67 283 4.68 213	147 148	4.99 043 4.99 721	187	5.23 111 5.23 644
29	3.36 730	69	4.23 411	100	4.69 135	149	5.00 395	180	5.24 175
30	3.40 120	70	4.24 850	110	4.70 048	150	5.01 064	190	5.24 702
31	3.43 399	71	4.26 268	111	4.70 953	151	5.01 728	191	5.25 227
32	3.46 574	72	4.27 667	112	4.71 850	152	5.02 388	192	5.25 750
33	3.49 651	73	4.29 046	113	4.72 739	153	5.03 044	193	5.26 269
34	3.52 636	74	4.30 407	114	4.73 620	154	5.03 695	194	5.26 786
35	3.55 535	75	4.31 749	115	4.74 493	155	5.04 343	195	5.27 300
36	3.58 352	76	4.33 073	116	4.75 359	156	5.04 986	196	5.27 811
37 38	3.61 092 3.63 759	77 78	4.34 381	117	4.76 217	157	5.05 625	197	5.28 320
39	3.66 356	79	4.35 671 4.36 943*	118 119	4.77 068 4.77 912	158 159	5.06 260 5.06 890	198 199	5.28 827 5.29 330
40	3.68 888	80	4.38 203	120	4.78 749	160	5.07 517	200	5.29 832

TABLE OF THE LOGARITHMS

OF THE

TRIGONOMETRIC FUNCTIONS

FROM 0° TO 1° AND 89° TO 90° FOR EVERY SECOND,

AND

FROM 1° TO 6° AND 84° TO 89° FOR EVERY TEN SECONDS.

LС	os	*9 0		L Sir	1		0°		L	Tan		180°	* 270°
0.00		0,	1″	2*	3-	4*	5'	6"	7″	8″	9″	10"	
000	0 o	4	68557	98660	¥16270	* 28763	+38454	*46373	*53067	* 58866	+63982	+68557	50
000	10	⁵ . 68557	72697	76476	79952	83170	86167	88969	91602	94085	96433	9806c	40
000	20						* 08321	#10055	#11694	* 13273			
000		6. 16270		19072					25378				
000	40	28763	29836	30882						36682		38454	
000	50	38454	39315	40158	40985	41797	42594	43376	44145	44900	45643	46373	o 59
000	1 o	6.4 6373	7090	7797	8492	9175	9849	*0512	*1165	±1808	*2442	+3067	50
000	10	6.5 3067	3683	4291	4890	5481	6064		7207	7767	8320	8866	
000	20	8866	9406	9939	*0465				*2509	*3006	+3496	*3982	30
000	30	6.6 3982	4462	4936					7235	7680	8121		
000	40		8990	9418	9841	*0201	*067 6		*1 496		* 2300	*2697	10
000	50	6.7 2697	3090	3479	3865	4248	4627	5003	5376	5746	6112	6476	o 58
000	2 0	6476	6836	7193	7548	7900	8248	8595	8938	9278	9616	9952	50
000	10		±0285	+0615	# 0943				±2230				
000	20	6.8 3170	3479	3786		4394	4694		5289	5584	5876		
000	30		6455	6742	7027	7310	7591	7870	8147	8423	8697	8966	
000	40		9240	9509	9776	* 0042		*0568	+0829	*1088		1602	10
000	50	6.9 1602	1857	2110	2362	2612	2861	3109	3355	3599	3843	408	o 57
000	3 0	4085	4325	4565	4803	5039	5275	5509	5742	5973	6204	6433	50
000	10		6661	6888	7113	7338	7561	7783	8004	8224	8443		цo
000	20			9093	9307					* 0364			
000	30	7.0 0779			1395	1599		2003			2602	2800	20
000	40	2800	2997	3193	3388	3582	3776				454 I	4739	10
000	50	4730	4919	5106	5293	5479	5064	5849	6032	6215	6397	6579	o 56
000	4 0	6579	6759	6939	7118		7474	7651	7827	8003	8177	8351	50
000	10		8525			90.11			9551	9719			
000	20	7.1 0055	0222				0882		1200				
000	30	1694	1854	2014				2648		2962	3118		
000	40					3889							10
000	50	4797	4947	5096	5244	5392	5540	5687	5833	5979	6123	6270	0 55
0.00		10.	9.	8.	7.	6.	5'	4'	3'	2*	1'	0.	1
LS	in		LC	os			89°		LO	Cot	*179°	269°	*359

.

24 L Co	5				L	Sin			0°			•	'90°	180°	* 270°	,	
	144	11	43	142	1 14	1 14	10	139		138	13	7 1	36	135	134	133	
I	14.4	1	14.3	14.2			4.0	13.9	I	13.			3.6	13.5	13.4	13.3	
2 3	28.8 43.2		28.6 12.9	28.4 42.6	28 42		8.0	27.8 41.7	23	27.0			7.2 0.8	27.0	26.8 40.2	26.6 39.9	
4	57.6	1 5	57.2	56.8	56	4 5	6.0	55.6	4	55.			4.4	54.0	53.6	53.2	4
5	72.0 86.1		71.5 35.8	71.0 85.2	84		0.0 4.0	69.5 83.4	5	69.0 82.1			8.0	67.5 81.0	67.0 80.4	66.5 79.8	5
7 8	100.8	10	ю.1	99.4	- 98		9.o	97-3	78	96.6			5.2	94.5	93.8	93.1	78
8	115.2		(4.4 28.7	113.6 127.8	112			111.2 125.1	9	110.4				08.0	107.2 120.6	106.4 119.7	
	132	•	31	130	12		28	127		126	• •		••	123	122	121	
I	13.2		3.1	13.0	12	.9 I	2.8	12.7	I	12.			2.4	12.3	12.2	12.1	I
2	26.4 39.6		26.2	26.0 39.0	25 38	7 3	5.6 8.4	25.4 38.1	2 3	25. 37.			4.8	24.6	24.4 36.6	24.2 36.3	2 3
4	52.8		52.4	52.0	51	.6 5	1.2	50.8	4	50.4	4 50	.0 4	9.6	49.2	48.8	48.4	4
5	66.0 79.2		5.5 78.6	65.0 78.0	64		4.0 6.8	63.5 76.2	56	63.0 75.0			2.0	61.5 73.8	61.0 73.2	60.5 72.6	5
7	92.4	9	1.7	91.0	90	3 8	9.6	88.9	7	88.:	2 87	.5 8	6.8	86.1	85.4	84.7	78
8	105.6		04.8 7.9	104.0	103	2 10 1 11		101.6 114.3	8 9	100.8 113.			9.2 1.6 1	98.4 10.7	97.6 109.8	96.8 108.9	8
1	120		19	118	1117			115		114	11			111	110	109	.,
I	12.0		1.9	11.8	11		1.6	11.5	I	11.4				11.1	11.0	10.9	I
23	24.0 36.0		13.8 15.7	23.6 35.4	23.		3.2 4.8	23.0 34 5	2 3	22.8 34.2				22.2 33.3	22.0 33.0	21.8 32.7	23
4	48.0	4	7.6	47.2	46	.8 4	5.4	46.0	4	45.0	5 45	.2 4	4.8	44.4	44.0	43.6	4
5	60 0 72.0		9.5 71.4	59.0 70.8	58.		8.0 9.6	57.5 69.0	5 6	57.0 68.2				55-5 66.6	55.0 66.0	54.5 65.4	5
7	84 0	8	3.3	82.6	81.	9 8	1.2	80.5	7	79.8	8 79	.1 7	8.4	77.7	77.0 88.0	76.3	78
8	96.0 108.0		5.2 7.1	94.4 106.2	93 105		2.8	92.0 103.5	8	91.2 102.0			·	88.8 99-9	88.0 99.0	87.2 98.1	8
0.00			0		1.	2"	3		Ť	5″	6*	7"	8"	9"	10.	, <u> </u>	
0.00	-	0		6270	6414	6558	670			6987	7130	7271			+	50	
000		10	/	7694	7834	7973	811	2 825	o i	8389	8526	8663	8800	893	7 9072		
000		20 30	7.2	9072 0400	9208 0540	9343 0671	947 080			9746 1062	9879 1191	+0012 1320	+0145		7 <mark>+0409</mark> 7 1705	30 20	
000		40	/	1705	1833	1960	208	17 221	3	2339	2465	2590	2715	284	oj 2 964	10	
000	-	50		2964	3088	3212	333	-		3580	3702	3824	3946				54
000		0 10		4188 5378	4308 5495	4428 5612	454	8 466		4787 5961	4906 6076	5024 6192				50 40	
000		20		6536	66 <u>5</u> 0	6764	687	7 699	I	7104	7216		7441	755	2 7664	30	
000		30 40		7664 8763	7775 8872	7886 8980		7 810 8 919		8217 9303	8327 9410	8437 9517				20 10	
000		50		9836	9942		*015		7.	0362	*0467	+057I	+0675	*077	0882		53
000		0	7.3	0882	0986	1089	119			1396	1498	1600				50	
000		10 20		1904 2903	2005 3001	2106 3100	220			2406	2506 3491	2606 3588				40 30	
000		30		3879	3975	4071	416	426	3	3393 4359	4454	4549	4644	473	4833	20	
000		40 50		4833 5767	4928 5860	5022 5952	511 (0.			5303 6227	5396 6318	548g 640g				10 0	52
000		0		6682	6772	6862	695			7132	7221						
000		10		7577	7666	7754	784	2 704		8018	8106	7310 8193				50 40	
000		20 30		8454	8541 9400	8628	871	4 880	o	8887	8972 9822	9058 9906	9144	922	9314 4#0158	30	
000		40	7.4	9314 0158	0241	9484 0324		08 049	I	9738 9573	ó656	0739	0821	090	3 0985	10	
000		50		0985	1067	1149	123	0 131		1393	1474	1555	1636	171	-	0	51
000		0		1797	1877	1957	203			2197 2987	2277 3063	2356				50	
000		10 20		2594 3376	2673 3454	2751 3531	28 <u>3</u> 360		5	3762	3005	3143 3916	3992		9 4143		
000		30 40		4145	4221	4297	43	73 444	9	4524	4600	1674	1750	482	5 4900	20 10	
000		40 50		4900 5643	4975 5716	5030 5790				5273 6009	5347 6082	5421 615	5495 6228	556 630			50
0.0	5			10"	9"	8"	7.		T	5"	4'	3″	2"	1"	0"		,
LS	n		179	269	• *	359°				89°]	L Co	8	· · · · · · · · · ·		

L Tan

D°

				-			U			-90	- 150	z			_
	108	107	106	105	104	103	3	102	10	01	99	98	97	96	
1	10.8		10.6	10.5	10.4			10.2		D. I	9.9	9.8	9.7	9.6	
2 3	21.0 32.4		21.2 31.8	21.0 31.5	20.8			20.4 30.b		0.2 0.3	19.8 29.7	19.6 29.4	I 9.4 29.1	19.2 28.8	
4	43.2		42.4	42.0	41.6			40.8		5.4	39.6	39.2	38.5	38.4	
5	54.0	53-5	53.0	<u>5</u> 2.5	52.0			51.0		0.5	49-5	49.0	48.5	48.0	5
6	64.8 75.6		63.6 74 . 2	63.0 73.5	62.4 72.8			61.2 71.4		5.6 5.7	59-4 69.3	58.8 68.6	56,2 67.9	57.6	
78	86.4	85.6	84.8	84.0	83.2	82.		81.6	80	5.8	79.2	78.4	77.6	76.8	B.
9	97.2	96.3	95-4	94.5	93.6	92.	7 9	91.B	90	9.9	8g.t	88.2	87.3	86.4	9
	95	94	93	92	91	90		89	-	8	87	86	85	84	
1 2	9.5 19.0		9.3 18.6	9.2 18.4	9.1 18.2	9- 18.		8.g 17.8		8.8 7.6	8.7 17-4	8.6 17.2	8.5 17.0	8.4 16.8	
3	28.		27.9	27.6	27.3	27.	03	26.7		5.4	26.1	25.8	25.5	25.2	
4	38.0		37.2	36.8	36.4			35.6		5.Z	34.8	34-4	34.0	33.6	
5	47-5		46.5 55.8	46.0 55.2	45-5		.05 .06	44-5		4.0 2.8	43-5 52.2	43.0 51.0	42.5 51.0	42.0	
7	66.5	65.8	65.I	64.4	63.7	63.	07	62.3	61	r.6	6o.g	Ū0.2	59-5	58.8	7
8	76.0		74-4	73.6 82.8	72.8			71.2 80.1		2.4	69.6 78.3	68.8	68.0	67.2	
9	85.5 83	•	83.7 81	80	81.9 79	1 76		77		9.2 76	75	77.∔ 74	76.5 73	75.6 72	19
'τ	8.3		B.1	8.0	7.9			7.7	1 -	7.6	7.5	7-4	7-3	7.2] 1
2	16.0	5 16.4	16.2	16.0	15.8	15.	62	15.4	1 19	5.2	15.0	14.8	14.6	14.4	2
3	24.9		24.3	240	23 7			23.1 30.8		2.8	22.5	22.2	21.9	21.6	
4	33.2		32.4 40.5	32.0 40.0	39.5			38.5		5.4 8.0	30.0 37-5	29.6 37 0	29.2 36.5	36.0	
6	49.	49.2	48.6	48.0	47.4	40	8 6	46.2		5.6	45.0	44.4	43.8	43.2	6
7 8	58 1 66.4		56.7 64.8	56.0 64.0	55-3 63.2			53-9 61,6		3.2	52.5 60.0	51.8 59.2	51.1 58.4	50.4	
9	74-7		72.9	72.0						8.4	67.5	66.6	65.7		
•	"	0"	1.	2"	3″	4'	5″	T	6"	7"	8"	9″	10"		
5	0	7.1 6270	6414	b558	6702	68.45	698	8 7	130	7271	7413	7553	7694	50	
	10	7694	7834	7973	8112	8250	838	9 8		8663	8800	8937		40	
	20 30	9073 7.2 0409	920B 0540	9343 0671	947 ⁸ 0802	9612 0932	974 106:	D 90 2 I		0012 1321	+0145 1449	+0277 1577	#0409 1705	30 20	
	4D	1705	1833	1960	2087	2213	233	9 2	465	2590	2715	2840	2964	10	
—	50	2964	3088	3212	3335	3458	358	D 3'	703	3824	3946		4188	0	i4
6	D	4188	4308	4428 5612	4548	4668	478	7 4		5024	5142 6307	5260 6421	5378	50	
	10 20	5378 6536	5495 6650		5728 6877	5845 6991	596 710	4 7		6192 7329			6536 7664	40 30	
	30	7664	7775	7886	7997	Bio7	821	7 6	327	8437	8546	8655	8764	20	
	40 50	8764 9836			9088 #0153	9196	930 •036			9517 0571		9730 * ⁰ 779		10 0 5	53
7	-						_			1600			I		
۱ ۱	0 10	7.3 0882 1904		1089 2106	119 2 220б	1294 2307	139 240	6 2		2606	1702 2705	1803 2804	1904 2903	50 40	
	20	2903	3001	3100	3198	3296	339	4 3-	491 .	3588	3685	3782	3879	30	
1	30 40	3879 4833		4071 5022	4167 5116	4263 5209	435 530	9 4		4549 5489			4833 5767	20 I 0	
1	50	5767		5952	6044	6135	622	7 6		6409	6500		668z		52
8	0	6682			6952	7042	713			7310	7400		7577	50	
1	10	7577		7754	7842 8714	7930 8801	801 888		106	8193	8281	8368	8455	40	
	20 30	8.455 9315			9569	9654	973			9058 9907	9144 9991	9229 +0074	9315 #0158	30 20	
1	40	7.4 0158	0241	0325	0408	0491	057	4 Ó	656	0739	0821	0903	0985	10	
-	50	0985	· · · · · · · · · · · · · · · · · · ·		1230	1312	139			1555				0	
9	0 10	1797 2594			2038 2830	2117 2000	219 298			2356 3143			2594 3376	50 40	
	20	3376	3454	3531	3608	3686	376	2 3	839	3916	3992	4069	4145	30	
1	30	4145			4373 5124	4449	452			4675			49 0 0 5043	20 ID	
1	40 50	4900 5643				5199 5936	527 600		347 082	5421 6155			6373	0	50
1-		10'	9.	8"	7*	6″	5.		4'	3,	2"	1"	0'	•	
-		*179°	269°	+359	. <u> </u>		89	,		ւս	ot			_	

r ce	08		LS	Sin			0°				90°	180°	*270°	
0.00	• •	0"	1"	2.	3"	4"	51	6.	7.	8"	9.	10"		PP
000	10 o	7.46 373		517	589	661	733	803	876	948	*010	*090	50	72
000	10 20	7.47 090		233 936	303 a006	374 ••076	445 •145	515 213	586 284	656 •353	726	797 #191	40 30	1 7.8 2 14.4 3 21.0
000	30	7.48 491	560	629	698	766	835	903	971	1039	_108	#I75	20	4 28.8
000	40 50	7.49 175 849	243 916	311 982	379	446	513 182	581 248	648	715 #380	782	849	10 049	5 36.0
	11 0						F				100	163	50	7 50.4 8 57.6 9 64.8
000	11 0	7.50 512 7.51 16	578 230	643 294	709 359	774 423	840 488	903 552	970 616	* ⁰³⁵ 680	744	808	40	
000	20	808	872	936	999	#063	126	190	+253	#316	+379	+442	30	70 1 (7.0
000	30 40	7.52 442 7.53 067	505 129	568 191	631 253	693 315	756 376	818 438	881 499	943 561	#005 622	+067 683	20 10	8 14.0
000	50	683	744	805	866	927	988	049	#109	¥170	#2 30	¥291	o 48	4 28.0
000	12 o	7.54 291		411	471	531	59I	651	711	771	830	890	50	5 35.0 6 42.0
000	10 20	890	949	*000	#068	#127	186	-245	#304	*363	422	481	40 30	7 49.0 8 56.0 9 63.0
000	30	7.55 481 7.56 064	539	598 179	656 237	715	773 352	831 410	889 467	948 524	+006 582	+064 639	20	9 63.0 68
000	40	639	696	753	810	867	924	980	+037	1094	#150	#206	IO	1 6.8
000	50	7.57 200		319	375	43I	488	544	599	655	711	767	o 47	2 13.6 3 20.4
000	13 o 10	767	822	878	934 485	989	1044	100	+155	210	#265 812	#320 866	50 40	4 27.2 5 34.0
000	20	7.58 320	375	430	u029	539 083	594 137	649 191	703 #245	758 #299	+352	#406	30	6 40.8
000	30	7.59 400	459	513	566	620	673	726	780	833	886	939	20	7 47.6 8 54.4 9 01.9
000	40 50	939 7.60 465		+045 570	#097 622	#150 674	203 726	*255 778	#308 830	#360 882	#413 934	#465 985	10 046	66
000	14 0	98		"08g	#140	192	243	#294	#346	+397	#448	#199	50	1 6.6
000	10	7.61 499	550	601	652	703	754	805	855	906	957	***99	40	3 19.8
000	20	7.62 00	058	108	158	209	259	309 808	359	409	459	500	30	4 90.4 5 33.0 0 39.0
000	30 40	509 7.63 006		104	659 153	708	758 252	301	857 330	907 399	956 448	#000 496	20 10	7 40.8
000	50	496		594	642	691	740	788	837	885	933	982	o 45	8 52.8
000	15 o	982	030	078	126	#174	222	270	#318	#366	414	#461	50	64
000	10	7.64 461		557	604	652	699	747	794	842	889	936	40	1 6.4
000	20 30	936 7.65 406		+030 499	*078 546	+125 592	-172 638	*218 685	+265 731	#312 778	+359 824	#106 870	30 20	3 10.2
000	40	870	916	962	*000	+05Š	101	1 46	192	* 238	*284	+330	10	4 25.0 5 32.0 6 38.4
000	50	7.66 330		421	467	512	558	603	649	694	739	784	0 44	7 44.8
000	16 о то	784 7.67 233		875	920 369	965	010	+055	*100	*145	#190 636	*235 680	50 40	9 57.6
*000	20	680		768	813	857	458 901	5ó2 945	547 989	591 #033	+077	#121	30	62
#999	30	7.68 121	1	208	252	296	340	383	427	470	514	557	20	1 6.2 2 12.4 3 18.6
999 999	40 50	557 980		644 #075	687	731 #161	774 #204	817 #247	800 289	903 #332	946 #375	989	10 043	4 24.8
999	17 0	7.69 41		502	545	587	630	672	714			841	50	5 31.0 0 37.2
999	10	841	883	925	967	.000	051	+093	#135	757 #177	799 #219	261	40	7 43.4
999	20 30	7.70 261 676		344	386 800	427 841	469	510	552	593	635	676	30 20	9 55.8 61
999 999	40	7.71 088		759	211	251	883 292	924 333	965 374	#006 414	#047 455	#088 496	20 10	101 1 (6.1
999	50	496		577	617	658	698	739	779	819	859	900	o 42	2 12.2 3 18.3
999	18 o	900		980	* 020	* 060	, IOO	¥140	¥180	¥220	*260	+300	50	4 94.4
999 999	10 20	7.72 300		380	419 815	459 854	499 894	538	578	618 #011	657	697	40 30	5 30.5 0 36.6
999	30	7.73 090	129	168	207	246	285	933 324	972 363	401	#050 440	+090	20	7 42.7 8 48.8
999	40	479	518	557	595	634	673	711	750	788	827	865	10	9 54-9 60
999	<u>5C</u>	865		942	980	+019	* 057	+095	*133	¥171	*210	#248	o 41	I 6.0
999	19 o 10	7.74 248		324 703	362	400	438	476	514 891	551 928	589 966	627 +003	50	2 12.0 3 18.0
999	20	7.75 003		078	115	778	815	853	264	302	339	376	40 30	4 24.0
999	30	376	413	450	487	524	561	598	635	672	709	745	20	6 36,0
999 999	40 5 ປ	745 7.76 112		819	856	892	929 294	966 330	+002 307	+039 403	* ⁰⁷⁵	+112 475	10 040	7 42.0 8 48.0 9 54.0
9.99		10'	9"	8"	7.	6"	5	4'	3.	2'	1 439	0'		P P
L Si	l		1		<u> </u>	<u> </u>	89°	. *		<u> </u>		1		<u> </u>
- 101	**	*179°	269°	*359			NA.				LC	/015		

		L	Tan			I	0°			" 90°	180°	+270	,e 27.
	0'	1'	2"	3"	4"	5*	6.	7.	8"	9"	10″		РР
10 o	7.46 373	445	517	589	661	733	805	876	948	#D19	#09I	50	50 58 57
10	7.47 OG I	162	233	304	374	445	516	586	656	727	797	40	
30	797	867	937	#006	*07 6	#14 0	#215	#2 ⁸ 4	# 354	•423	#492	30	211.811.611.4 317.717.417.1
30	7.48 492	561	629 311	698	767	835 514	903	972 648	+040	108	#176 849	20 10	423.623.222.8
40 50	7.49 176 849	243 916	082	379 - 049	+46	182	581 248	314	715 #380	782 -446	-49 #512	049	3 17.7 17.4 17.1 4 73.6 23.2 22.8 5 29.5 29.0 28.5 6 35.4 34-8 34.2
			<u> </u>			F							741.340 639.0 847.245.445.6
1 1 o	7.50 51z	578	643	709	774	840	905	970	* ^D 35	+100	#I 65	50	953.152.251.3
10	7.51 165 BOQ	230 872	295 936	359	424	488	552	617	681	745	809	40 30	56 55 54
30	7.52 443	505	568	631	694	756	#190 819	±253 881	#316 943	+380 +005	#443 #067	20	1 5.6 5.5 5.4
40	7.53 067	120	191	253	315	377	438	500	561	622	683	10	211.211.010.8
50	683	745	806	867	927	968	"049	.10	#170	¥231	+29I	o 48	422.422.021.0
12 o	7.54 291	351	411	471	532	591	651	711	771	830	800	50	422.422.021.6 528.027.527.0 633.633.032.4
10	890	949	.000	.068	+127		-245	+304	-363	#422	481	40	7 39.2 38.5 37.8
20	7.55 481	539	598	657	715	773	832	Boo	948	*006	#064	30	844 844 043.2
30	7.56 064	122	179	237	295	352	410	467	525	582	639	20	63 52 51
40	639	696	753	810	867	924	981	* ⁰³⁷	*094	#I50	*207	10 /5	7 6 7 6 9 6 7
50	7.57 207	263	319	376	432	4B8	544	600	656	711	767	o 47	
1 3 o	767	823	878	934	989	"04 3	. 100	¥155	¥210	.265	#32 0	50	421.220.020.4
10	7.58 320	375	430	485	540	594	649	704	758	812	867	40	5 26.5 26 0 25.5 6 31.8 31.2 30.6
20	867	921	975	*029	#083	#137	*101	* 245	* ² 99	+353	#406	30	7 37.1 36.4 35.7 842.4 41.6 40.8
30	7.59 406	460	513	507	620	673	727	780	833	886	939	20	947.746.845.9
40 50	939 7.60 460	992 518	*045 570	* ^D 98	#150 674	#203 726	+256 778	+308 830	*36 882	′#⁄µ13 934	₩466 986	10 046	
	· · · · · · · · · · · · · · · · · · ·								·		<u> </u>		50 49 48 x 5-0 4-9 4-8
14 o	<u>9</u> 86	* ⁰ 37	-089	#140	¥192	* ²⁴³	#295	+346	+397	#119	# <u>5</u> 00	50	2 10.0 0.8 0.6
10	7.61 500	551	602 108	653	704 209	754	805	850 360	906	957	#008 510	40 30	3 15.0 14.7 14.4 4 20.0 19.6 19.2
20 30	7.62 008 510	058 560	609	159 659	709	259 759	310 808	658	410	957	#000	20	5 25.0 24.5 24.0 6 30.0 29.4 28.8
40	7.63 006	055	105	154	203	252	301	350	399	448	497	10	7 35.0 34.3 33.6 8 40.0 39.2 38.4
50	497	546	594	643	692	740	789	837	885	934	982	o 45	945.044.143.2
15 o	982	* 010	*07B	¥127	¥175	223	271	*318	#366	414	* 462	50	47 45 45
10	7.64 462	510	557	605	652	700	747	795	842	880	937	40	1 4.7 4.6 4.5
20	937	984	*031	∗ 07₿	¥125	¥172	1219	266	- 313	* 359	¥406	30	2 9.4 9.2 9.0
30	7.65 406	453	499	546	592	639	665	732	778	824	871	20	4 10.8 10.4 10.0
40	871	917	963	*009	* ⁰⁵⁵	+101	¥147	+193	* ² 39	*284	*330	10	5 23.5 23.0 22.5 6 28.2 27 6 27.0
50	7.66 330	376	421	467	513	558	604	649	694	740	783	o 44	7 32.9 32.2 31 5 8 37.6 36.8 36.0
16 o	783	830	875	920	966	110	+056	#100	*145	#I9D	*23 <u>5</u>	50	942.341.440.5
10	7.67 235	280	324	369	414	458	503	547	592	636	680	40	44 43 42
20	680	725	769	813	857	901	946	990	*°34	* ⁰⁷⁷	# I2I	30 20	1 4-4 4 3 4-2 2 8.8 8.0 8.4
3D 4D	7.68 121 558	165 601	209 643	253	296 731	340 774	384 818	427 861	471	514 947	55B 990	20 10	1 4.4 4 3 4.2 2 8.8 8.6 8.4 313.2 12.9 12.6
50	330 990	+033	#076	*II0	#162	*204	-247	+290	+333	+375	¥418	043	4 17.6 17.2 16.8
				-		-							522.021.521.0
17 o 10	7.69 418 842	460 460	503	545 968	588 #010	630	673	715	757	799	842 *201	50 40	522.021.521.0 626.425.825.2 730.830.120.4 835.234.433 939.638.737.8
20	042 7.70 261	303	92Ó 345	386	428	+052 460	* ⁰⁹⁴ 511	+136 553	*178 594	* ²¹⁹ 635	* ²⁰¹ 677	30	939.638.737.8
30	677	718	759	801	842	883	924	965	#00 6	-047	+088	20	41 40 30
40	7.71 088	129	170	211	252	293	334	374	415	456	496	10	1 4.1 4.0 3.g
50	496	537	577	618	658	699	739	779	820	860	900	o 42	318.312.011.7
18 0	900	940	981	a021	+061	101	*141	_1 81	#22I	-261	#30I	50	4115.4116.0115.6
10	7.72 301	340	380	420	460	499	539	579	618	65B	697	40	624 624.023.4
20	697	737	776	815	855	Boi	933	973	+ 0I2	*05I	*0 90	30	5 20.5 20.0 19 5 6 24 6 24.0 23.4 7 28.7 28.0 27.3 8 32.8 32.0 31.2
30	7.73 090	129	168	207	246	285	324	363	402	-44I	480	20	936.936.035.1
40	480 866	518	557	596	635	673	712	750	789	827	866	10 041	38 37 36
50		904	943	981	*01J	#058	. 096	*134	+ 172	¥210	* 248		1 3.8 3.7 3.6 2 7.6 7.4 7.2
10 o	7.74 24B	286	325	363	401	43 ^B	476	514	552	590	628	50	311.411.110.8
10	628	665	703	741	779	B16	854	891	929	966	+004	40	311.411.110.8 415.214.814.4 519.018.518.0 622.822.221.5
20	7.75 004	041	079	116	153	191	220	265	302	339	377	30 20	622.822.221.5
30 40	377 746	414 783	45 I 820	488 856	525 893	562 930	599 966	636 #003	672 	. 709 	746 ∎II3	20 10	7 25.6 25.9 25.8 B 30 4 29.6 28.8
50	7.76 113	703	186	222	258	293	331	367	4040	440	476	040	934-233-332-4
	10"	9	8"	7.	6'	5"	4"	3'	2'	1.	0"	. ,	l' P
			<u> </u>	I -	0.	9	1 *	9	<u> </u>				
	*11	79° 1	269°	*359		B	9°			\mathbf{L}	Cot		

28													
L Cos			L S	in			0°		•	90 °	180°	*27 0°	
9.99		0"	1*	2"	8"	4"	5"	6"	7.	8"	9.	10*	
999	20 o	7.76 475	512	548	584	620	656 015	692	728 *080	764 #122	800 #158	836	50
999 999	10 20	836 7.77 193	872 229	907 264	943 300	979 335	371	4051 406	+000	477	512	#193 548	40 30
999	30	548	583	618 969	654	689	724 •074	759	794	829	864	899	20 10
999 999	40 50	899 7.78 248	934 283	318	*004 352	*039 387	422	456	#144 491	#179 525	560	#248 594	o 89
999	21 o	594	629	663	698	732	766	801	835	869	903	938	50
999	10 20	938 7.79 278	972 312	#006 346	*040 380	*074 414	108 448	481	#176 515	"21Ó	+244 582	*278 616	40 30
999 999	30	616	630	683	717	751	784	818	851	549 883	918	952	20
999	40 50	952 7.80 284	985	₩018 351	*052 384	₩085	450	4152 483	#185 516	#218 549	#251 582	#284 613	10 038
999		613	647	680	713			812		877			
999 999	22 O 10	942	975	+008	+040	746 #073	779 * 105	138	844 #170	#203	910 *235	942 #268	50 40
999	20	7.81 268	300	332	363 687	397	429	462	494	526	558	591	30 20
999 999	30 40	591 911	623 943	653 975	+007	719 •039	751 #070	783 102	815	847 #166	879 #198	911 #229	10
999	50	7.82 229	261	293	324	356	387	419	451	482	514	545	o 37
999	23 o	545	577	608	639	671	702	733	765	796	827	859	50
999 999	10 20	859 7.83 170	890 201	921 232	952 263	983 294	+015 325	4046 356	+077 387	417	#139 448	#170 479	40 30
999	30	479	510	54I	571	602	633	663	694	725	755	786	20
999 999	40 50	786 7.84 091	817	847 151	878 182	908 212	939 · 242	969 273	#000 303	*030 333	+060 363	#091 393	10 0 36
999	24 o	393	424	454	484	514	544	574	604	634	664	694	50
999	10	694	724	754	784	814	843	873	903	933	963	992	40
999 999	20 30	992 7.85 280	+022 318	#052 348	*082 377	#111 407	436	466	#200	*230 525	* ²⁵⁹ 554	#289 583	30 20
999	40	583	613	642	671	701	730	759	495 788	817	847	876	10
999	50	876	905	934	963	992	+02I	#050	* ⁰⁷⁹	#108	# 137	*166	o 35
999	25 o 10	7.86 166	195 484	224 512	253 541	282 570	311 598	340 627	368 656	397 684	426	455 741	50 40
999 999	20	741	770	799	827	856	884	913	941	969	998	+026	30
999 999	30 40	7.87 026	055 337	083 366	111 394	140 422	168 450	196 478	224 506	253 534	281 562	309 590	20 10
999	50	590	618	646	674	702	730	758	786	814	842	870	o 34
999	26 o	870	897	925	953	981	" 009	0 36	# 064	#092	# 119	#147	50
999 999	10 20	7.88 147 423	175 450	202 478	230 505	258	285	313 587	340 613	368	395 669	423 697	40 30
999	30	697	724	751	779	533 806	833	860	888	915	942	969	20
999 999	40 50	969 7.89 240	996 267	+023 294	+050 320	+077	+105	+132 401	+159 428	#186 453	+213 482	*240 509	10 0 33
	27 0	500		562	589	347 616	374	660	606	722			
999 999	10	776	535 802	829	856	882	642 909	935	962	988	749 015	776 •041	50 40
999	20 30	7.90 041	068	094	121	147	174	200	226 480	253	279	305 568	30 20
999 999	40	305 568	332 594	358	646	411 672	437 698	463 725	751	515	542 803	829	10
999	50	829	594 855	881	907	933	958	984	+010	# 036	₩062	#08 8	o 32
999	28 o	7.91 088	114	140	165	191	217	243	269	294	320	346	50
999 999	10 20	346 602	371 627	397 653	423 678	448	474	300 755	525 780	551 806	576 831	602 857	40 30
999	30	857	882	907	933	958	983	4009	034	* 059	#08 <u>5</u>	#110	20
998 998	40 50	7.92 110 362	135	160	186	211 462	236 487	261 512	286 537	311	336	362 612	10 0 31
998	29 0	612	637	662	687	712	737	761	286	811	836	861	50
998	10	861	886	910	935	960	985	1000	1034	a059	#084	#108	40
998 998	20 30	7.93 108 354	133 379	158	182	207 452	23I 477	256 501	281 526	305	330 575	354 599	30 20
998	40	599	623	648	672	696	721	745	769	794	818	842	10
998	50	842	866	891	915	939	963	988	#012	w036	* 060	#084	o 9 0
9.99		10"	9.	8″	7'	6"	5"	4'	8"	2'	1'	0'	
L Sin		*179° 28	9° *	850°		9	IO.			L Co	B		

		L	Tan				0°			90°	180°	#27 0°			29
	0"	1"	2"	3"	4"	5"	6.	7*	8*	9"	10"	1	Γ	Р	P
20 o	7.76 476	512	548	583	621	657	693	729	765	801	837	50	Γ	. 37	36
10	837	872	908	944	980	# 016	+051	087	#123	* 158	* 194	μo	1	3.7	3.6
20	7.77 194	230	265	301	336	372	407	442	478	513	549	30	2	7-4	7.2 10.8
30 40	549 900	584 935	619 970	654 ±005	690 #040	725	760	795 *145	830	865 #214	900 *249	20 10	34	11 1 14.8	10.8
50	7.78 249	284	318	353	388	422	457	492	526	561	595	0 39		18.5	14.4
		·											6	22.2	21.6
21 o	595	630	664	698	733	767	801	836	870	904	938	50	78	25.9 29.6	25.2 28.8
10 20	938 7.79 279	973	+007 347	* 041 381	*075 415	448	+143 482	*177 516	*211 550	* ²⁴⁵ 583	*279 617	40 30	9	33.3	
30	617	313 651	684	718	751	785	810	852	886	919	952	20	Ľ	35	34
40	952	986	.019	+053	*086	110	152	186	#219	*252	*285	ĩõ	1	3.5	
50	7.80 285	318	351	385	418	451	[⁴⁸ 4	517	530	583	615	0 38	2	7.0	3.4 6.8
22 o	615	648	681	714	747	780	812	845	878	911	047		3	10.5	10.2
10	943	976	±000	+04I	*074	106	#139	171	204	#236	943 #269	50 40	45	14.0	13.6 17.0
20	7.81 269	301	333	366	398	430	463	495	527	559	591	30	6	21.0	20.4 23.8
30	591	624	656	688	720	752	784	816	848	880	012	20	7 8	24.5 28.0	23.8
40	912	944	976	*008	*040	+07I	103	* 135	#167	¥198	#230	10	~	28.0	27.2 30.6
50	7.82 230	262	294	325	357	388	420	452	483	513	546	0 37	ľ		
23 o	546	578	609	640	672	703	734	766	797	828	860	50	1	33	32 3.2
10	860	891	922	953	984	.016	+047	+078	*109	#140	-17I	40	2	3.3 6.6	64
20	7.83 171	202	233	264	295	326	357	388	418	449	480	30	3	9.9	6.4 9.6
30	480	511	542	572	603	634	664	695	726	756	787	20	4	13.2	12.8
40	787	818	848	879	909	940	970	+001	*031	#061	+092	10	5	16 5 19.8	19.2
50	7.84 092	122	152	183	213	243	274	304	334	364	394	o 36	78	231	22.4
24 o	394	425	455	483	515	545	575	605	635	665	095	50		20.4	25.6
10	695	425 725	755	785	815	845	874	904	934	964	993	μo	9	29.7	28.8
20	993	# 023	* 053	* 083	# 112	4 142	¥172	#201	*23I	#260	#290	30		31	30
30	7.85 290	319	349	378	408	437	467	496	526	555	584	20	12	3.1 6.2	3.0 6.0
40	584	614 906	643	672 964	702	731	760	789 *080	819	848	877	10 035	3	9.3	9.0
50	877	900	935	904	993	*022	* ⁰⁵¹	*000	*109	# 138	* 167	o 35	4	12.4	12.0
25 o	7.86 167	196	225	254	283	312	341	370	398	427	456	50	5 6	15.5 18.6	15.0 18.0
10	456	485	513	542	571	600	628	657	685	714	743	но		21.7	21.0
20	743	771 056	800	828	857	885	914	942 226	971 254	999 282	*027	30	7 8	24.8	24.0
30 40	7.87 027 310	339	367	395	141 423	169 451	197 479	507	535	563	310 591	20 10	9	27.9	27.0
50	591	610	647	675	703	731	759	787	815	843	871	o 34		29	28
								<u> </u>					1	2.9	2.8
26 o	871	899	926	954	982	-010	₽ 037	+005	+093	* 121	#148	50	2 3	5.8 8.7	5.6 8.4
10 20	7.88 148	176 452	204	231 506	259 534	286 561	314 589	342 616	369 643	397 671	424 698	μo	4	11.6	11.2
30	424 698	725	753	780	807	834	862	880	916	943	970	30 20	5 6	14.5	14.0
40	970	997	+025	+052	.079	.106	133	160	187	214	-241	10		17.4 20.3	16.8 19.6
50	7.89 241	268	295	322	349	376	403	429	456	483	510	o 33	7 8	23.2	22.4
27 0		527	160	100	617		6	697	724	-	-		9	26.1	25.2
21 O IO	510 777	537 804	563 830	590 857	884	644 910	670 937	963	990	750 #016	777 +043	50 40		27	26
20	7.90 043	060	096	122	149	175	201	228	254	280	307	30	I	2.7	2.6
30	307	333	359	386	412	438	464	491	517	543	569	20	23	5-4 8.1	5.2 7.8
40	569	595	622	648	674	700	726	752	778	804	830	10	4	10.8	7.8 10.4
50	830	856	882	908	934	960	986	* 012	# 038	* 064	* 089	o 32	5	13.5	13.0
28 o	7.91 089	115	141	167	193	218	244	270	296	321	347	50	0	16.2 18.9	15.6 18.2
10	347	373	398	424	450	475	501	527	552	578	603	40		18.9 21.6	18.2 20.8
20	603	629	654	680	705	731	756	782	807	833	858	30		24.3	234
30	858	883	909	934	960	985	010	* 036	*001	a 086	*III	20		25	24
40	7.92 111	137 388	162	187	212	237	263	288	313	338	363	10 91	II,	2.5	2.4 4.8
50	363	300	413	438	463	488	513	538	563	588	613	o 3 1	3	5.0	4.8
29 o	613	638	663	688	713	738	763	788	813	838	862	50	3	7.5	7.2 9.6
10	862	887	912	937	961	986	110	* 036	* 060	* 085	#I IO	40		12.5	12.0
20	7.93 110	134	159	184	208	233	258	282	307	331	356	30	5 6	15.0	14-4 16.8
30	356	380 623	405	429	454	478	503	527	552	576 820	601 844	2 0	78	17.5	
40 50	601 844	868	649 892	674 917	698 941	722 965	747 989	771 •013	795 *038	±062	+086	10 030	9	22.5	19.2 21.6
				-								. ,		-	
	10*	9'	8*	7*	6'	5"	4″	3"	2'	1"	0'	· · /		P :	P
	*17	90 2	:69°	*359°			89°		L	Cot					

30													
L Cos			L	Sin			<u>0°</u>			*90 。	180°	*270*	•
9.99	· •	0'	1"	2"	3"	4"	5″	6"	7.	8"	9"	10"	
998	30 o	7.94 084	108	132	157	181 421	205	229	253	277	301	325	50
998 998	10 20	323 564	349 588	373	397 636	659	445 683	469	49 2 731	516	540 778	564 802	40 30
998	30	802	826	849	873	897	921	944	968	991	*015	# 039	20
998 998	40 50	7.95 039 274	062 298	086 321	109 344	133 368	157	180 413	204 438	227 461	251 483	274 508	10 029
							391						
998 998	31 O 10	508 741	532 764	555 787	578 811	601 834	623 857	648 880	671 903	693 926	718 950	741 973	50 40
998	20	973	996	"OI9	#042	* 063	# 088	.111	# 134	157	#180	+203	30
998	30 40	7.96 203 432	226	249	272 501	295 524	318 546	341 569	364	386 613	409 637	432 660	20 10
998 998	50	660	455 683	478	728	751	774	796	592 819	842	864	887	o 28
998	32 o	887	910	932	955	977	1000 H	.022	+045	±068	+090	113	50
998	10	7.97 113	135	158	180	202	223	247	270	292	315	337	40
998	20	337	359 583	382 603	404	426	449	471	493	516	538	560 782	30 20
998 998	30 40	560 782	805	827	849	649 871	672 893	694 915	716 937	738	760 981	#003	10
998	50	7.98 003	025	048	070	092	114	136	157	179	201	223	o 27
998	33 o	223	245	267	289	311	333	355	377	398	420	442	50
998	01	442	464	486	508	529	551 768	573	595	616	638	660	40
998 998	20 30	660 876	682 898	703 920	725 941	747 963	768 984	790 006	812 #027	833 +049	855 #070	876 *092	30 20
998	40	7.99 092	113	135	156	178	199	221	242	264	285	300	10
998	50	306	328	349	371	392	413	435	456	477	499	520	o 26
998	34 o	520	541	562	584	603	626	647	669	690	711	732	50
998	10 20	732	753 965	775 986	. 796 *007	817 -028	838	859	880	901	922	943	40 30
998 998	30	943 8,00 154	175	196	217	238	*049 259	+070 279	*091 300	#112 321	#133 342	#154 363	20
998	40	363	384	405	426	447	467	488	509	530	551	571	10
998	50	571	592	613	634	654	675	696	717	737	758	779	o 25
998	35 o	779	799	820	841	861	882 -088	903	923	944	964	985	50
998 998	10 20	985 8,01 190	*000 211	* 020 231	* ⁰⁴⁷ 252	*067 272	#000 293	108 313	#129 333	* ¹⁴⁹ 354	#170 374	*190 393	40 30
998	30	395	415	435	456	476	496	517	537	557	578	598	20
998 998	40 50	598 801	618 821	639 841	659 861	679 881	699 901	720 922	740 942	760	780 982	801 #002	10 0 24
•	36 o												
998 998	10	8.02 002 203	022	042 243	062 263	082 283	102 303	123 323	143 343	163 362	183 382	203 402	50 40
998	20	402	422	442	462	482	502	522	542	561	581	601	30
998	30 40	601	621 819	641 838	661 858	680 878	700 898	720	740	759	779	799	20 10
998 998	50	799 .996	.016	+035	+055	+074	#094	917 114	937 #133	957 #153	976 #172	996 192	o 23
997	37 o	8.03 192	212	231	251	270	290	300	329	348	368	387	50
997	10	387	407	426	446	465	484	504	523	543	562	581	40
997	20 20	581	601	620	640	059	678	698	717	736	756	775	30 20
997 997	30 40	775 967	794 987	813 #006	833 #025	852 #044	871 •063	891 083	910 102	929 121	948 #140	967 #159	10
997	50	8.04 159	178	197	217	236	253	274	293	312	331	350	o 22
997	38 o	350	369	388	407	426	445	464	483	502	521	540	50
997	10	540	559	578	597	616	633	654	673	692	710	729	40
997 997	20. 30	729 918	748 937	767 955	974	805 993	824 012	843 030	861 +049	880 *068	899 •087	918 #105	30 20
997	40	8.05 105	124	143	161	180	199	218	236	255	274	292	10
997	50	292	311	329	348	367	385	404	422	441	460	478	o 21
997	39 o	478	497	515	534	552	571	589	608	626	645	663	50
997 997	10 20	663 848	682 866	700	903	737 921	756 940	774 958	792 976	811 995	829 #013	848 *031	40 30
997	30	8.06 031	050	068	ó86	105	123	141	159	178	196	214	20
997	40	214	232	251	269	287	305	324	342	360	378	396	10 0 20
997	50	396	414	433	451	469	487	505	523	541	560	578	o 20
9.99													
L Sin		*1	79° 1	26 9°	#359°		89	•		L	Cos		

		Ľ	Fa n				0°		•	90° :	180°	* 270°	31
	0'	1*	2"	3"	4"	5″	6.	7-	8"	9"	10"	1	РР
30 o	7.94 086	110	134	158	182	206	230	254	278	302	326	50	25
10	326	350	374	398	422	446 685	470	494	518	542	566	40	1 2.5
20	566 804	590 827	613 851	637 875	661 899	085	709 946	732	756	780 ±017	804	30 20	2 5.0
30 40	7.95 040	064	088	111	135	158	182	970 205	993	252	*040 276	10	3 7.5
50	276	299	323	346	370	393	416	440	463	487	510	o 29	4 10.0
31 o				580	603	627	650	673	606				5 12.5 6 15.0
10	510 743	533 766	557	812	836	859	882	905	028	720 951	743 974	50 40	7 17.5
20	974	998	+02I	+044	+U67	#0 <u>00</u>	.113	* 136	¥159	.182	*205	30	8 20.0
30	7.96 205	228	251	274	297	320	343	365	388	411	434	20	9 22.5
40	434	457	480	503	525	548	571	594	617	639	662	10	24 + 23
50	662	685	708	730	753	776	798	821	844	866	889	o 28	1 2.4 2.3
32 o	889	911	934	957	979	#002	*02 4	*047	-069	#0 92	#114	50	2 4.8 46
10	7.97 114	137	159	182	204	227	249	272	294	317	339	но	3 7.2 6.9
20	339	361	384	406	428 651	451	473	495	518	540	502	30 20	4 9.6 9.2
30 40	562 784	583 807	820	851	873	673 895	696 917	718 939	740 961	762 983	+005	10	5 12.0 11.5
50	7.98 005	027	050	072	094	116	138	159	181	203	225	0 27	6 14.4 13.8 7 16.8 16.1
													8 10.2 18.1
33 o 10	225 444	247 466	269 488	291 510	313 531	335 553	357 575	379 597	400 618	422	444 662	50 40	9 21.6 20.7
20	662	684	705	727	749	770	792	814	835	857	878	30	22
30	878	900	922	943	965	986	4008	+029	*051	*073	#094	20	1 1 1
40	7.99 094	116	137	158	180	201	223	244	266	287	308	10	I 22 2 4 4
50	308	330	351	373	394	415	+37	458	479	501	522	o 26	3 6.6
34 o	522	543	564	586	607	628	649	671	692	713	734	50	4 8.8
ю	734	755	777	798	819	840	861	882	903	925	946	μo	5 11.0
20	946	967	988	* 009	*030	#051	*072	* ⁰⁹³	* ¹¹⁴	¥135	*156	30	6 13 2
30 40	8.00 156 365	177 386	198	219 428	240	261 470	282 490	303	324 532	344	365	20 10	7 15.4 8 17.6
50	574	594	615	636	657	677	698	719	740	553	781	0 25	
								·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
345 O IO	781 987	802 #008	822 *028	843	964 #070	884	905	925	946	967 #172	987	50	, 21
20	8.01 193	213	234	*049 254	274	*090 295	*111 315	*131 336	*152 356	377	*193	40 30	1 2.1
30	397	417	438	458	478	499	519	539	560	580	600	20	2 4.2 3 6.3
40	600	621	641	661	682	702	722	742	762	783	803	10	4 8.1
50	803	823	843	863	884	904	924	944	964	984	*001	0 24	5 10.5
36 o	8.02 004	025	045	065	085	105	125	145	165	185	205	50	6 12.6
10	205	225	245	265	285	305	325	345	365	385	405	μo	7 14.7 8 16 8
20	403	425	445	464	484	504	524	544	564	584	604	30	9 18.9
30	604 801	623 821	643 841	663 861	683 880	703	722	742	762	782	801	20 10	
୍ୟ U 50	998	_018	038	+057	*077	#097	920 #116	939 *136	959 *155	¥175	*194	0 23	20 19
													I 20 I 9
37 o	8.03 194	214	234	253	273 468	292	312	331	351	370 565	390	50	2 40 3.8
10 20	390 584	409 603	429 623	448 642	408 661	487 681	506 700	526 720	545	758	584	40 30	3 60 5.7 4 8.0 7.6
30	777	797	816	835	853	874	893	912	932	951	970	20	5 100 9.5
40	970	989	±008	#028	+047	*0 66	* 085	*10 4	#124	*143	*162	10	6 120 11.4
50	8.04 162	181	200	219	238	257	276	296	315	334	353	o 22	
38 o	353	372	391	410	429	448	467	486	505	524	543	50	8 16.0 15.2 9 18 0 17.1
10	543	562	581	600	619	638	656	675	694	713	732	цо	
20	732	751	770	789	808	826	845	864	883	902	921	30	18
30	921 8.05 108	939 127	958	977	996	*014 202	*033 220	*052	*071 258	*089	*108	20 10	1 1.8
50	8.05 108 295	314	332	351	369	388	407	239 425	444	462	295 481	0 21	2 3.6
										· · · · · · · · · · · · · · · · · · ·			3 5.4 4 7.2
39 o 10	481 666	499 685	518	537	555	574	592	611	629	648 832	666 851	50	5 9.0
20	851	86g	703 887	722 906	740 924	758 943	777 961	795 979	814 998	±016	851 8034	40 30	6 10.8
30	8.06 034	053	071	080	107	126	144	162	181	199	217	20	7 12.6
40	217	235	254	272	290	308	326	345	363	381	399	10	8 14.4
50	399	417	436	454	472	490	508	526	544	562	581	o 20	9 16.2
	10'	9″	8"	7*	6"	5"	4"	3″	2"	1"	0"		P P
I'			-		1 - 1							•	
	*1'	79° 2	269°	* 359°			89°		L	Cot			

32			T 01				00						
L Co			L Si		<u></u>		<u>0°</u>			•90°	180°	*270	
9.99		0'	1'	2'	8.	4"	5'	6'	7.	8,	9.	10"	
997 997	40 o 10	8.06 578 758	596 776	614 794	632 812	630 830	668 848	686 866	704 884	722	740	758 938	50 40
997	20	938	956	974	992	1010	028	.046	.063	.081	.000		40 30
997	30	8.07 117	135	153	171	189	206	224	242	260	278	295	20
997 997	40 50	295 473	313 491	331 509	349 526	367	384 562	402	420	438 613	455 632	473 650	то о 19
	41 o	650	668	685	703	721	·					·	
997 997	10	826	844	861	879	896	738	756 932	949	791 967	809	826 =002	50 40
997	20	8.08 002	019	037	054	072	089	107	124	141	159	176	30
997 997	30 40	176 350	194 368	211 385	229 403	246 420	263 437	281 455	298	316	333 506	350	20
997	50	524	541	558	576	593	610	627	472 645	662	679	524 696	10 018
997	42 O	696	714	731	748	765	783	800	817	834	851	868	50
997	10	868	886	903	920	937	954	971	988	+006	023	#040	40
997	20 30	8.09 040 210	057 227	074 244	091 261	108 278	125	142 312	159	176	193	210	30
997 997	40	380	397	414	431	448	295 465	482	329	346 516	363	380 530	20 10
997	50	530	567	583	600	617	634	65 I	499 668	683	701	718	o 17
997	43 o	718	735	752	769	786	802	819	836	853	870	886	50
997	10	886	903	920	937	953	970	987	#004	#020	+037	+ 054	40
997 997	20 30	8.10 054	070 237	087 254	104 270	120 287	137 303	154 320	170	187	204 370	220 380	30 20
996	40	386	403	420	436	453	469	486	502	519	535	552	10
996	50	552	568	583	601	618	634	651	667	684	700	717	o 16
996	44 o	717	733	750	766	782	799	815	832	848	864	88r	50
996 996	10 20	881 8.11 044	897 061	914 077	930 093	946 110	963 126	979 142	995	-012	# 028	* 044	40
996	30	207	224	240	256	272	280	305	159	175	191 354	207 370	30 20
996	40	370	386	402	418	435	45Í	467	483	499	515	531	10
996	50	531	548	564	580	596	612	628	644	660	677	693	o 15
996	45 o	693	709	725	74 I	757	773	789	805	821	837	853	50
996 996	10 20	853 8.12 013	869 020	885 045	901 061	917 077	933 093	949 100	965 123	981 141	997	+013 172	40 30
996	30	172	188	204	220	236	252	268	284	300	315	331	20
996	40	331	347	363	379	393	410	426	442	458	474	489	10
996	50	489	505	521	537	553	568	584	600	616	631	647	o 14
996 996	46 o 10	647 804	663 820	679 836	694 851	710 867	726 882	741 898	757	773	788	804	50
996	20	961	976	992	+007	023	039	#054	914 •070	929 •085	945 101	961 #117	40 30
996	30	8.13 117	132	148	163	179	194	210	225	241	256	272	20
996 996	40 50	272 427	287 442	303 458	318	334 489	349 504	363 519	380 535	396 550	411	427 581	10 013
	47 o	581		612							·		
996 996	10	735	596 750	765	627 781	643 796	658 811	673 827	689 842	704 857	873	733 888	50 40
996	20	888	903	919	934	949	964	980	995	#010	+025	#041	30
996 996	30 40	8.14 041 193	056 208	071 223	086 238	101	117 269	132 284	147	162	178	193	20 10
996	50	344	359	375	390	253 405	420	435	299 450	314 465	329 480	344 495	o 12
996	48 o	495	510	525	541	556	571	586	601	616	631	646	50
1 996	10	646	661	676	691	706	721	736	751	766	781	796	40
000	20	796	811	826	841	856	871	886	901	915	930	945	30
996 996	30 40	945 8.15 094	960 109	975 124	990	#005 154	#020 169	•035 183	+030 198	#065 213	+079 228	* ⁰⁹⁴ 243	20 10
996	50	243	258	272	287	302	317	332	346	361	376	243 391	o 11
996	49 o	391	406	420	435	450	465	479	494	509	523	538	50
996	LU LU	538	553	568	582	597	612	626	641	656	670	685	40
996	20 30	685 832	700 846	714 861	729	744	758	773	788	802	817	832	30 20
995 995	40	978	992	#007	075'	890 #036	905 1050	919 065	934 •079	948 •094	963 #100	978 •123	10
995	50	8.16 123	138	152	167	181	196	210	225	239	254	268	o 10
9.99		10″	8.	8"	7*	6.	5'	4'	3"	2"	1"	0"	
L Sir	1	*179°	269°	*35	30		89°		LO	Cos			

]	L Ta	n			# {	90° 1	.80°	*2 70°				
	0'	1'	2"	3"	4'	5"	6'	7*	81	9 ″	10"		РР
40 o	8.06 581	599	617	633	653	671	689	707	725	743	761	50	
10	761	779	797	815	833	851	869	887	905	923	941	40	
20	941	959	977	995	* 013	# 031	* 049	000 g	* 084	102	# 120	30	18
30 40	8.07 120 298	138 316	156 334	174 352	192 370	209 387	227 405	245 423	263 441	281	298	20 10	
50	476	494	512	529	547	565	582	600	618	458 635	476 653	019	I I.8 2 3.6
		671	688										3 5.4
41 o 10	653 829	847	864	706 882	724 900	741 917	759 935	776 952	794 970	812 987	829 ≠005	50 40	4 7.2
20	8.08 005	022	040	057	075	092	110	127	145	162	180	30	5 9.0
30	180	197	214	232	249	267	284	301	319	336	354	20	6 10.8
40	354	371	388	406	423	440	458	475	492	510	527	10	7 12.6 8 14.4
50	527	544	562	579	596	613	631	648	665	682	700	o 18	9 16.2
42 o	700	717	734	751	769	786	803	820	837	855	872	50	
10	872	889	906	923	940	957	975	992	+009	#026	* ⁰⁴³	40	
20	8.09 043	060	077	094	111	128	146	163	180	197	214	30	17
30 40	214 384	231 401	248 418	265 435	282 452	299 468	316 485	333 502	350 519	367	384	20 10	1 1.7
50	553	570	587	435	454 621	637	654	671	688	536 705	553	017	2 3.4
													3 5.I 4 6.8
43 o	722	739	755	772	789	806	823	839	856	873	890	50	
10 20	890 8.10 057	907	923 091	940 107	957 124	974 141	990 157	*007 174	*024 191	*040 207	# ⁰⁵⁷ 224	40 30	5 8.5 6 10.2
30	224	240	257	274	290	307	324	340	357	373	390	20	7 11.9
40	390	407	423	440	456	473	489	506	522	539	555	10	8 13.6
50	555	572	588	605	621	638	654	671	687	704	720	o 16	9 15.3
44 o	720	737	753	770	786	802	819	835	852	868	884	50	
10	884	901	917	934	950	966	983	999	015	+032	.048	40	
20	8.11 048	064	081	097	113	130	146	162	178	195	211	30	16
30	211	227	244	260	276	292	309	325	341	357	373	20	1 1.6
40	373	390	406	422	438 600	454 616	471	487	503	519	535	10 015	2 3.2
50	535	551	567	504		010	632	648	664		696	- 010	3 4.8
45 o	696	712	729	745	761	777	793	809	823	841	857	50	4 6.4 5 8.0
10	857	873	889	905	921	937	953	969	985	100#	+017	40	6 9.6
20	8.12 017 176	033	049 208	065	081	097	113	129	144	160	176	30 20	7 11.2
30 40	335	192 351	367	383	240 398	256	272 430	446	303 462	319 478	335	10	8 12.8
50	493	509	525	541	556	572	588	604	620	635	651	014	9 14.4
46 o	651	667	682	698	714	730	745	761	777	792	808	50	
10	808	824	839	855	871	886	902	018	933	949	965	40	15
20	963	980	996	+011	+027	+043	.058	*Ó74	+08g	"íoś	¥121	30	
30	8.13 121	136	152	167	183	198	214	229	245	260	276	20	1 I.5 2 3.0
40	276	291	307	322	338	353	369	384	400	415	431	10	3 4.5
50	431	446	462	477	493	508	523	539	554	570	585	o 13	4 6.0
47 o	585	601	616	631	647	662	677	693	708	724	739	50	5 7.5
10	739	754	770	785	800	816	831	846	861	877	892	40	6 9.0
20 30	892 8.14 045	907	923 075	938	953	968 121	984 136	999 151	#014 166	*029 182	*045 197	30	7 10.5
40	197	212	227	242	258	273	288	303	318	333	348	10	9 13.5
50	348	364	379	394	409	424	439	454	469	484	500	012	91-5-5
48 o	500	515	530	543	560		590	605	620	635	650	50	
10	650	665	680	695	710	57Š 725	740	755	770	785	800	40	14
20	800	815	830	845	860	875	890	905	920	935	950	30	1 1.4
30	950	963	980	994	+000	#024	1 039	#054	*069	+80#	#099	20	2 2.8
40	8.15 099	114	128	143	158	173	188	203	218	232	247	10	3 4.3
50	247	262	277	292	306	321	336	351	366	380	395	011	4 5.6
49 o	395	410	425	439	454	469	484	498	513	528	543	50	5 7.0
10	543	557	572	587	602	616	631	646	660	675	690	40	7 9.8
20	690	704	719	734	748	763	778	792	807	822 968	836	30 20	8 11.2
30 40	836 982	851	865 •011	+026	893 040	909 #055	924 •070	938 084	953	908 #113	982 128	20	9 12.6
50	8.16 128	997 142	157	171	186	200	215	229	*099 244	258	273	010	
	10"	9"	8"	7.	6"	5"	4.	3"	2"	1.	0.		ΡP
	1.0												

.

34														
L Co			Sin				<u>0°</u>		*90					
9.99		0*	1"	2'	3′	4'	5"	6.	7"	8"	9,	10"		
995 995	50 o 10	8.16 268 413	283 427	297 441	311 456	326 470	340 485	355 499	309 513	384 528	398 542	413 557	50 40	
995	20	557	57I	585	600	614	628	643	657	672	686	700	30	
995 995	30 40	700 843	715 858	729 872	743 886	757 900	772 913	786 929	800 943	813 957	829 972	843 986	20 10	
995	50	986		* 014	# 029	# 043	+057	* 071	¥085	*100	* 114	# 128	0	9
995	51 o	8.17 128	142	156	171	185	199	213	227	241	256	270	50	
995 995	10	270 411	284 425	298 439	312 453	326	340 481	355 495	369	383 524	397 538	411 552	40 30	
995	30	552	566	580	594	608	622	636	650	664	678	692	20	
995 995	40 50	692 832	706 846	720 860	734 874	748 888	762 902	776 916	790 930	804	818 957	832 971	10	8
995	52 o	971	985	999	+013	¥027	#04I	¥055	+009	±082	* 096	#110	50	<u> </u>
995	10	8.18 110	124	138	152	166	180	193	207	221	235	249	40	
995 995	20 30	249 387	263 401	276	290 428	304 442	318 456	332 469	345 483	359	373 511	387 524	30 20	
995	40	524	538	552	566	579	593	607	621	634	648	662	10	-
995	50	662	675	689	703	716	730	744	757	771	785	798	0	7
99 <u>5</u>	53 o	798	812	826 962	839	853	867	880 016	894	908	921	935	50	
995 995	10 20	935 8.19 071	948 084	0902	976 111	989	139	152	#030 166	* ⁰⁴⁴ 179	*057 193	*071 206	40 30	
995	30	206	220	233	247	260	274	287	301	314	328	341	20	
995 995	40 50	341 476	355 489	368	382 516	395 530	409 543	422 557	436	449 583	463 597	476 610	10 0	6
995	54 o	610	624	637	650	664	677	691	704	717	731	744	50	
995	10	744	757	771	784	797	811	824	837	851	864	877	40	
995 995	20 30	877 8.20 010	891 024	904 037	917 050	931 064	944 077	957 000	971	984	997 130	*010 143	30 20	
995	40	143	156	170	183	196	200	222	230	249	202	275	10	-
994	50	275	288	302	313	328	341	354	368	381	394	407	0	5
994 994	55 O 10	407 538	420 552	433	446 578	460 591	473 604	486 617	499 630	512 643	525 656	538 669	50 40	
994	20	669	682	696	709	722	735 865	748	761	774	787	800	30	
994 994	30 40	800 930	813	826 956	839	852 982	865 995	878 #008	108 1204	904 #034	917 *047	930 •000	20 10	
994	50	8.21 000	073	086	099	112	125	138	151	164	177	189	ŏ	4
994	56 o	189	202	215	228	241	254	267	280	293	306	319	50	
994	10 20	319 447	331 460	344	357 486	370	383 511	396	409	422 530	434 563	447	40 30	
994 994	30	576	588	473 601	614	499 627	640	524 652	537 665	678	691	703	20	
994	40	703 831	716	729	742	754 882	767	780	793	805	818	831	01 0	3
994	50 57 0		8.44	856	869		893	907	920	933	945	958	_	
994 994	57 O 10	958 8.22 085	971 098	983 110	996 123	#009 136	+022 148	4034 161	* ⁰⁴⁷ 173	*060 186	*072 199	*085 211	50 40	
994	20	211	224	237	249	262	274	287	300	312	323	337	30 20	
994 994	30 40	337 463	350	363 488	375	388 513	400 526	413 538	425 551	438	451 576	463 588	10	
994	50	588	601	613	6 26	638	651	663	676	658	701	713	0	2
994	58 o	713	726	738	751	763	776	788	801	813	826	838	50	
994 994	10 20	838 962	850 973	863 987	875	\$\$8 #012	900 1024	913 #037	925 -049	937 061	950 *074	962 #086	40 30	
994	30	8.23 086	098	in	123	136	148	160	173	185	197	210	20	
994 994	40 50	210 333	222 345	234	247 370	259 382	271 394	284 407	296	308 431	321 443	333	01 0	1
994	59 o	456	468	480	492	505	517	529	541	554	506	578	50	
994	10	578	590	603	613	627	639	652	664	676	688	700	40	
994 993	20 30	700 822	713 834	725	737	749 871	761 883	773 895	786	798 919	810 931	822	30 20	
993	40	944	956	968	980	992	#004	"oić	* 028	+041	+053	1063	10	~
993	50	8.24 065	077	089	101	113	125	137	149	161	173	186	0	0
9.99		10'	9.	8"	7"	6"	5"	4'	3'	2.	1"	0.	l '	
L Si	n.	* 179°	269°	*359)		89°	•		L Co	08			

		LΊ	an				0	0		*90 °	180	• * 27	0°	35
	0.	1"	2"	3″	4"	5″	6.	7"	8"	9"	10'		Р	Р
50 0 10 20 30 40 50	8.16 273 417 561 705 848 991	287 432 576 719 862 *005	302 446 590 734 877 *019	316 460 604 748 891 *033	331 475 619 762 905 *048	345 489 633 776 919 •062	359 504 647 791 934 *076	374 518 662 805 948 *090	388 533 676 819 962 *104	403 547 691 834 976 *119	417 561 705 848 991 #133	50 40 30 20 10 0 9		15
51 o 10 20 30 40 50	8.17 133 275 416 557 697 837	147 289 430 571 711 851	161 303 444 585 725 865	175 317 458 599 739 879	190 331 472 613 753 893	204 345 486 627 767 907	218 359 500 641 781 921	232 373 514 655 795 934	246 388 528 669 809 948	260 402 543 683 823 962	275 416 557 697 837 976	50 40 30 20 10 0 8		1.5 3.0 4.5 6.0 7.5 9.0 10.5
52 0 10 20 30 40 50	976 8.18 115 254 392 530 667	990 129 268 406 543 681	#004 143 281 419 557 694	*018 157 295 433 571 708	*032 171 309 447 585 722	*046 185 323 461 598 735	*060 198 337 475 612 749	*074 212 351 488 626 763	*087 226 364 502 639 776	*101 240 378 516 653 790	*115 254 392 530 667 804	50 40 30 20 10 0 7		12.0 13.5
53 0 10 20 30 40 50	804 940 8.19 076 211 347 481	817 954 090 225 360 495	831 967 103 239 374 508	845 981 117 252 387 522	858 994 130 266 401 535	872 008 144 279 414 548	886 * ⁰²² 157 293 427 562	899 *035 171 306 441 575	913 *049 184 320 454 589	926 #062 198 333 468 602	940 *076 211 347 481 616	50 40 30 20 10 0 6	1 2 3 4 5	14 1.4 2.8 4.2 5.6 7.0
54 o 10 20 30 40 50	616 749 883 8.20 016 149 281	629 703 896 029 162 294	642 776 910 042 175 307	656 789 923 056 188 320	669 803 936 069 201 334	683 816 949 082 215 347	696 830 963 096 228 360	709 843 976 109 241 373	723 856 989 122 254 386	736 870 *003 135 268 399	749 883 *016 149 281 413	50 40 30 20 10 5	6 7 8	8.4 9.8 11.2 12.6
55 0 10 20 30 40 50	413 544 675 806 936 8.21 066	426 557 688 819 949 079	439 570 701 832 962 092	452 583 714 845 975 105	465 596 727 858 988 118	478 610 740 871 001 131	491 623 753 884 *014 144	505 636 767 897 *027 156	518 649 780 910 * 040 169	531 662 793 923 +053 182	544 675 806 936 *066 195	50 40 30 20 10 0 4	1 2 3	13 1.3 2.6 3 9
56 0 10 20 30 40 50	195 324 453 581 709 837	208 337 466 594 722 850	221 350 479 607 735 862	234 363 492 620 748 875	247 376 504 633 760 888	260 389 517 645 773 901	273 402 530 658 786 913	286 414 543 671 799 926	299 427 556 684 811 939	311 440 569 697 824 951	324 453 581 709 837 964	50 40 30 20 10 0 3	3 4 5 6 7 8 9	5.2 6.5 7.8 9.1 10.4 11.7
57 0 10 20 30 40 50	964 8.22 091 217 343 469 595	977 104 230 356 482 607	989 116 243 369 494 620	*002 129 255 381 507 632	*015 142 268 394 519 645	*028 154 280 406 532 657	*040 167 293 419 544 670	*053 179 306 431 557 682	*066 192 318 444 569 695	*078 205 331 457 582 707	*091 217 343 469 595 720	50 40 30 20 10 0 2	I	12 1.2
58 0 10 20 30 40 50	720 844 968 8.23 092 216 339	732 857 981 105 228 352	744 869 993 117 241 364	757 881 *006 130 253 376	769 894 *018 142 265 388	782 906 030 154 278 401	794 919 •043 167 290 413	807 931 *055 179 302 425	819 944 *068 191 315 438	832 956 *080 204 327 450	844 968 *092 216 339 462	50 40 30 20 10 0 1	2 3 4 5 6 7 8	2.4 3.6 4.8 6.0 7.2 8.4 9.6
59 0 10 20 30 40 50	462 585 707 829 950 8.24 071	474 597 719 841 962 083	487 609 731 853 974 096	499 621 743 865 987 108	511 634 756 877 999 120	523 646 768 889 *011 132	536 658 780 902 #023 144	548 670 792 914 *035 156	560 682 804 926 #047 168	572 695 816 938 #059 180	585 707 829 950 #071 192	50 40 30 20 10 0		10.8
	10*	9"	8″	7.	6"	5.	4'	3"	2"	1.	0″	• •	P	Р
		*179	° 26	9° #1	359°		89	°	L	Cot				

36														
L Cos			L	⊿ Sin			1°			*91 °	181	> *2	71°	
9,99	'	0″	10″	20"	30″	40"	50″	60″				ΡI	2	
993		8.24 186		426	546	665	785	903	59		120	11	9 11	8
993	1 2		*022	¥140	*258	*375	+493	* 609	58	I	12.0	11		
993 993		8.25 609 8.26 304	726 419	842 533	958 648	*074 761	*189 875	*304 988	57 56	2	24.0 36.0	23		
993	4	988	101	*214	+326	+438	+550	+661	55	3	48.0	35	7 35	
										5	60.0	59	5 59	.0
992 992	5	8.27 661 8.28 324	773 434	883 543	994 652	#104 761	*213 860	#324 977	54 53		72.0 84 0	71 83	.4 70	.8 6
992	7	977	*085	¥193	+300	#407	+514	+621	52	7 8	96.0	95	.2 94	
992		8.29 621	727	833	939	* 044	# 150	∗ 255	51 50	9	108.0	107	•	
9 91	9	8.30 255	359	464	568	672	776	879	50		117			15
991	10	879	983	086	#188	#29I	* 393	+495	49	1 2	11.7	11		-5
991	11	8.31 495	597	699	800	901	+002	# 103	48	3	23.4 35.1	23	.2 23	
990		8.32 103	203	303	403	503	602	702	47	4	40.8	46	4 40	ō.ō
990	13 14	702 8.33 292	801 390	899 488	998 585	*096 682	* ¹⁹⁵	* ²⁹² 875	46	56	58.5 70.2	58		-5
990							119		45	78	81.9	81	.2 80	5
990	15	875	972	+068	* 164	*260	*355	+450	44		936	92	.8 92	2.0
989 989	16 17	8.34 450 8.35 018	546 112	640 206	735	830 392	924 485	*018 578	43 42	9	105.3	104 113		
989	18	578	671	764	856	948	+040	#131	41				112	111
989	19	8.36 131	223	314	405	496	587	678	40		1.4	11.3	11.2 22.4	11.1
988	20	678	768	858	948	±038	#128	* 217	39	3 3	4.2	33.9	33.6	33-3
988		8.37 217	306	395	184	*038	662	750	39	4 4	5.6	45.2 56.5	44.8 56.0	44-4
988	22	730	838	926	.014	*10I	¥189	*276	37	5 5	7.0	67.8	67 2	55.5 66.6
987		8.38 276	363	450	537	624	710	796	36	7 7	9.8	79.1	784	77.7 88.8
987	24	796	882	968	* ⁰⁵⁴	* ¹ 39	* ²² 5	*310	35			904 01.7	89.6 100.8	88.8 99.9
987	25	8.39 310	395	480	565	649	734	818	34		10	109	108	107
986	26	818	902	986	* 070	* ¹⁵³	* 237	*320	33		1	100	10.8	107
986	27 28	8.40 320	403	486	569	651	734	816	32			21.8	21.6	21.4
986 985	20	816 8.41 307	898 388	980 469	*062 550	* ¹⁴⁴ 631	* ²²⁵ 711	*307 792	31 30	3 3	3.0	327	324	32.1
											40 5.0	4.3.6 34.5	43.2 54 0	42.8 53.5
985	30	792	872	952	*032	#112	*192	*272	29	6 6	6.0	654	64.8	64.2
983 984	31 32	8.42 272 746		430	510 982	589 #060	667 #138	746 *216	28 27	7 7	70	76.3 87.2	75.6 86.4	74-9 85.6
984	33	8.43 216		371	448	526	603	680	26		9.0	98.1	97.2	96.3
984	34	680	757	834	910	987	*063	# 139	25		06	105	104	103
983	35	8.44 139	216	292	367	443	519	594	24			10.5	10.4	10.3
983	36	594	669	745	820	895	969	*04 4	23			31.5	20.8	20.6 30.9
983	37 38	8.45 04.1	119	193	267	341	415	489	22 21			42.0	31.2 41.6	41.2
982 982	30 39	489 930	563 *003	637 *076	710 #149	784	857 *294	930 #366	$\frac{21}{20}$	5 5	3.0	52.5	520	51.5 61.8
982	40	8.46 366		511	different villages				10		3.6	63.0	62 4 72.8	01.8 72.1
981 981	41		-139 870	942	583 *013	655 #084	727 #155	799 *226	18	8 8	4.2 4.8	73-5 84.0	72.8 83 2	82.4
081	42	799 8.47 226	297	368	439	509	580	630	17			94.5	93.0	92.7
981	43	650	720	790	860	930	*000	+069	16		02	101	100	99
980	-44	8.48 069	139	208	278	347	416	485	15			10.1 20 2	10.0 20.0	9.9 19.8
980	45	485	554	622	691	760	828	896	14	3 3	0.6	30.3	30.0	29.7
979	46	896		*033	*101	1 69	*236	*304	13 12	4 4	.0.8	40.4	40.0	39.6
979 979	47 48	8.49 304 708	372 775	439 842	506 908	574 975	641 *042	708 #108	12		1.0	50.5 60.6	50.0 60.0	49-5 59-4
979	49	8.50 108	174	241	307	373	439	504	iô		1.4	70.7 Bo8	70.0	69.3
978	50	504	570	636	701	767	832	897	9			808 90.0	80.0 90.0	79.2 89.1
977	51	897	963	* 028	+092	* ¹⁵⁷	#222	¥287	8	'' '	98	97	96	95
977	52	8.51 287	351	416	480	544	609	673	7	11	9.8	9.7	9.6	9.5
977	53	673	737	801	864	928	992	*055	6	2 1	9.6	19.4	10.2	19.0
976	54	8.52 055	119	182	245	308	371	434	5		9.4 9.2	29.1 38.8	28.8 38.4	28.5 38.0
976	55 56	434 810	497	560	623	685	'/48	810	4	5 4	9.0	485	48.0	47.5
975 975	50	8.53 183		935	997 368	* ⁰⁵⁹ 429	*121 491	*183 552	3		8.8	58.2	57.6	57.0 66.5
974	58	552		675	736	797	858	919	1			67.9 77.6	67.2 76.8	76.0
974	59	919		* 040	¥101	* 161	* 222	* 282	0	9 8	8.2	77.6 873	76.8 86.4	76.0 85.5
9.99		60"	50"	40"	30"	20'	10'	0"	'			ΡF	>	
L Sin		*178°	268°	*358	· <u>·</u>	·	88°		·	L Co	29			
		-110-	600°	- 999,			00			10				

		L]	l'an		1	•		# 91°		37
'	0"	10"	20"	30'	40"	50″	60″		Р Р	
0 1 2 3	8.24 192 910 8.25 616 8.26 312	313 * ⁰²⁹ 733 426	433 #147 849 541	553 *265 965 655	072 ∗382 ∗081 769	791 *500 *196 882	910 #616 #312 996	59 58 57 56	D4 D3 92 D1 00 I 0.4 0.3 0.2 0.1 0.0 I 0.4 0.3 0.4 0.7 0.0 I 0.8 18.6 18.4 18.9 18.0	
3 4 5 6	996 8.27 069 8.28 332	*109 780 442	*221 891 551	+334 +002	#446 #112 769	*558 *223 877	*669 *332 986	55 54 53	3 38.2 27 9 27.6 27.3 27.0	
7 8 9	986 8.29 629 8.30 263	-094 736 368	#201 642 473	+3¤9 947 577	#416 #053 681	*523 *158 785	*629 *203 888	52 51 50	в 75 2 74-4 73-0 73-8 73-0 9 84-6 83.7 82-8 81-9 81-0	
10 11 12 13 14	888 8.31 505 8.32 112 711 8.33 302	992 606 213 810 400	*095 708 313 909 498	*198 809 413 *008 595	*300 911 513 *106 692	*-103 *012 612 *205 789	*505 *112 711 *302 886	49 48 47 40 45	89 88 87 86 83 x 8.0 8.8 8.7 8.6 8.5 x 17.6 17.6 17.4 17.0 17.0 3 26 7 6.1 17.4 17.0 17.0 3 35.6 35.4 34.8 34.4 34.0 35.6 35.7 35.6 5.2 55.6 51.0 24.5 54.5 51.0 25.2 55.6 51.0 25.2 51.0 51.0 25.2 51.0 5	
15 16 17 18	886 8.34 461 8.35 029 590	982 556 123 682	+078 651 217 775	#174 746 310 867	#270 840 403 959	*366 935 497 *051	#461 #029 590 #143	44 43 42 41	7 65 3 61.6 60.9 60 2 59.5 8 71 2 70.4 69.6 68.8 68.0 9 80.1 79.2 78.3 77.4 76.5	
19 2D 21 22	8.36 143 689 8.37 229 762	235 780 318 850	326 870 408 938	417 960 497 *026	508 * ⁰ 50 585 *114	599 *140 674 *202	689 *229 762 *289	40 39 38 37	I B B B C B D a 16.8 16.6 16.4 16.2 16.0 3 25.2 24.6 24.5 24.3 24.0 4 33.5 33.7 34.8 32.4 32.0 5 42.0 41.5 41.6 40.5 40.0 6 50.4 49.8 49.2 48.6 48.0	
23 24 25 20	8.38 289 809 8.39 323 832	370 895 408 916	463 981 493 #000	550 +067 578 + ⁰⁸ 3	636 +153 663 +167	723 *238 747 *250	809 *323 832 *334	36 35 34 33	8 b7.2 b5 4 55 5 54.8 54.0 9 75.5 74.7 73.8 73.9 72.0 79 78 77 76 75	
27 28 29	8.40 334 830 8.41 321	417 913 403	500 995 484	583 * ⁰ 77 565	նն5 +158 Ն40	748 *240 726	830 *321 807	33 32 31 30	1 7.0 7.8 7.7 7.6 7.5 2 15.8 15.6 15.4 15.0 15.2 15.0 3 23.7 23.4 23.1 29.8 27.2 5 4 31.6 31.2 30.8 30.4 30.0 30.4 30.5 5 9.5 43.0 30.7.5 38.0 30.0 30.5 38.0 37.5 38.0 37.5 38.0 37.5 38.0 37.5 37.5 30.0 30.0 30.5 <td></td>	
3U 31 32 33	807 8.42 267 762 8.43 232	887 366 840 309	967 446 919 387	*048 525 997 464	+127 604 + ⁰ 73 542	*207 683 *154 619	*287 762 *232 696	29 28 27 21	7 553 546 53.9 53.2 52.5 8 63.2 62.4 61.6 60.8 60.0 9 71.1 702 69.3 684 575	
34 35 36 37 38 39	696 8 44 156 611 8.45 061 507 948	773 232 686 136 581 *021	850 308 762 210 655 #094	927_ 384 537 285 728 *107	+003 460 912 359 802 +240	*080 536 987 433 875 *312	*156 611 *061 507 948 *385	25 24 23 22 21 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4D 41 42 43 44	8.46 385 817 8.47 245 669 8.48 089	457 889 316 740 159	529 960 387 810 228	602 *032 458 880 298	674 *103 528 950 367	745 *174 599 *020 -136	817 *245 ύ69 *089 505	19 18 17 16 15	9 bö.b 65 7 b4.8 63.9 63.0 660 68 57 646 655 1 69 68 6.7 66 65 7 18 146 146 177 136	
45 46 47 48	505 917 8.49 325 729	574 985 393 796	043 ≠053 460 803	711 *121 528 930	780 #189 595 997	849 +257 562 +053	917 *325 729 *[30	14 13 12 11	3 20.7 20.4 20 1 19.8 19.8 4 77 6 27 2 26 8 26 4 26.0 5 34 5 34.0 33.5 33 0 37 5 6 41 4 40 8 40.2 39 6 39.0 7 48.3 47 6 46.9 46.2 45 5 8 55 2 54.8 32.0 8 55 2 54.8 55.0 8 55 2 54.8 55.0 9 55.0 9 54.8 55.0 9 54.8 55.0 9 54.8 55.0 9 55.0 9 55.0 9 55.0 9 55.0 9 54.0 9 55.0 9 55	
49 50 51 52	8,50 130 527 920 8,51 310 606	196 593 985 374	263 658 *050 439 824	329 724 #115 503 838	395 789 #180 568	401 855 *245 632	527 920 #310 696	10 9 8 7 6	9 bat bt.a bu 3 594 58.5 64 63 62 61 50 1 5.4 63 5.2 6.1 5.0 2 12.8 12 6 12.4 12.2 12 0 3 19.2 18.9 18.0 18 18 0	
53 54 55 56	8.52 079 459 835	750 143 522 897	205 584 960	269 647 +022	952 332 710 *084	+015 390 772 +146	+079 +59 835 +208	5_ _4 _3	4 25.6 25.2 24.8 24.4 24.0 5 32.0 31 5 31 0 30 5 30.0 6 38.4 37.8 37.2 36.6 36.0 7 44.8 44 1 43.4 42.7 42.0 8 51.3 50 4 40.5 48.8 48.8	
57 58 59	8.53 208 578 945 60*	270 639 *005	332 700 *066	393 762 * ¹²⁷	455 823 * ¹⁸⁷ 20"	516 884 *248	578 945 *308	2 1 0 ,	9 57.6 56.7 55.8 54.9 54.0	
	*178°	268°	*3589	1		8 °	-	l I Cot		

38		т	Sin			2°		# 92	2° 18	2° *27	30	
L Cos	-	0.	10"	20"	30'	40"	50"	B0*			<u></u> Р	Р
9.99	D			402	462	522	582	642	59	973		
974 973	I	8.54 282 642	342 702	762	821	881	940	999	58	973	I	ы б.1
973	2	999	# ⁰⁵⁹	#II8	 ∎177	*236	# 205	* 354	57	972	2	12.2
972	3	8.55 354	413 764	471 822	530 880	5 ⁸ 9 938	647 996	705 +054	56 55	972 971	3	18.3
972	4	705									4	24.4
971	5	8.56 u54 400	112 457	170 515	227 572	285 629	342 686	400 7,43	54 53	971 970	5	30.5 36,6
971 970	7	743	800	857	914	970	#027	* 084	52	970	7	42.7
970	B	8.57 084	140	196	253	309	365	421	51	убg	8	48.8
969	9	421	477	533	589	645	701	757	50	969	9	54-9
969	10	757	812	868	92 <u>3</u>	979	# 034	* 089	49	968		60
968 968	11 12	8.58 o89 419	144 474	200 520	255 583	310 638	364 693	419 747	-18 -17	968 967	1 2	б.о 120
908 967	13	747	4/4 801	856	5°3 910	n64	018	+072	4/	967	3	12.0
967	14	8.59 072	126	180	234	288	34I	395	-45	967	4	24.0
967	15	393	448	502	555	600	662	715	44	y66	5	ვი.ი ვნ.ი
066	16	715	768	821	874	927	980	* ⁰ 33	-13	966	7	30.0 42.0
966 57	17 18	8.60 033	086	139	191	244	296 610	349 662	42	965 964	8	1 8.0
963 964	10	349 662	401 714	454 766	506 818	558 870	922	973	40 40	904 964	9	54.0
964	20	973	*D25	+077	+I28	#180	+23I	*282	39	963		59
963	21	8.61 282	334	385	436	487	538	589	38	963	1	5-9
963	22	589	640	691	742	792	843	894	37	962	2	11.8
962	23	8ŋ.j	944	995	₽ ₽45	# 096	#140	#196	36	962 a61	3	17.7
962	24	8.62 196	246	297	347	397		497	35	<u></u>	+ 5	23.6 29.5
gúi	25 20	497	546	590	646	696	745	795 ≠091	34	961 960	6	35-4
961 960	27	795 8.63 og i	844 140	894 189	943 238	993 288	* ⁰⁴² 336	385	33 32	900 900	7	41.3
960	2 6	385	434	483	532	580	ΰ2 9	678	31	959	9	47.2 53.1
<u>959</u>	29	678	726		823	<u>871</u>	<u></u>	968	30	959		58
959	30	968	#016	+064	#II2	*100	¥208	*256	29 28	958	- 1	08 5.8
958 958	31 32	8.64 256 543	304 590	352 638	400	448	-495 780	543 827	20	958 957	1 2	5.0
957	33	827	875	922	969	*010	#063	*110	zÓ	956	3	17.4
956	34	8.65 110	157	204	251	298	344	391	_25_	056	4	23.2
956	35	391	438	484	531	577	624	670	24	955	5 6	29.0 34.8
955 953	36 37	670 947	717 994	753 #040	809 #085	855 +131	901 #177	947 *223	23 22	955 954	7	40.6
954	38	8.66 223	269	314	360	406	451	497	21	954	8	46.4 52.2
<u>954</u>	39	<u> </u>	_542	588	633	678	724	_ 769	_20	953	9	-
953	40	769	814	859	904	949	994	*039	19 18	952		57
952 952	41 42	8.67 039 308	084 353	129 397	174 442	219 486	263 531	308 575	18	952 951	1 2	5-7 11.4
951	43	575	619	664	708	752	796	5/5 841	τĹ	951	2	11.4
951	44	841	885	929	973	<u>*017</u>	_#060	#104	15	930	4	22.8
950	45	8 68 104	3.4B	192	236	279	323	367	14	949	5 6	28.5
949 949	46	367 627	410 670	454	497 757	540 800	584 843	627 886	13 12	949 948	7	34.2 39.9
949	46	886	929	972	#015	+058	#101	- 380 +144	11	948	8	45.6
948	40	8.69 144	- 67	229	272	315	357	400	10	947	9	51.3
947	50	400	442	48 <u>5</u>	527	570	612	654	y	946		56
946	51 52	6 <u>54</u> 007	697	739	781	823	865	907	8	946 945	Т	5.6
946 945	52	9C7 B.70 159	949 201	991 242	* ^{D33} 284	*075 326	+117 367	* ¹ 59 409	6	945 944	2	11.2 16.8
944	54	400	451	492	534	575	616	658	5	044	3	22,4
944	55	658	699	740	781	823	864	903	+	943	5	28.0
943	56	905	946	987	+028	+ 06g	+110	#151	3	942	6	33.6
942 942	57 58	8.71 151 395	192 436	232 476	273	314 557	355 598	395 638	2	942 941	7 8	39.2 44.8
941	59	638	679	719	759	800	840	880	Ō	940	9	50.4
		60″	50″	40*	30*	20"	10'	0"	•	9 99	1	<u>, b</u>
	<u>.</u> *177	° 267°	*357°	•	·	87		LU	08	L Sm		

1	L L	'an

***92°** 182° *272°

		1	J Tai	n		2°			*92°	182° *272°
	0"	10″	20"	30"	40*	50"	60"			РР
0 1 2 3 4	8.54 308 669 8.55 027 382 734	369 729 086 441 792	429 789 145 499 850	489 848 205 558 909	549 908 264 617 967	609 967 323 675 *025	669 *027 382 734 *083	59 58 57 56 55		55 54 53 1 5.5 5.4 5.3 2 11.0 10.8 10.6 3 16.5 16.2 15.9
5 6 7 8 9	8.56 083 429 773 8.57 114 452	141 487 830 170 508	199 544 887 227 564	256 601 944 283 620	314 659 *000 340 676	372 716 * ⁰⁵⁷ 396 732	429 773 #114 452 788	54 53 52 51 50		4 22.0 21.6 21.2 5 27.5 27.0 26.5 6 33.0 32.4 31.8 7 38.5 37.8 37.1 8 44.0 43.2 42.4 9 49.5 48.6 47.7
10 11 12 13 14	788 8.58 121 451 779 8.59 105	843 176 506 834 159	899 231 561 888 213	955 286 616 943 267	*010 341 670 997 321	*065 396 725 *051 375	*121 451 779 *105 428	49 48 47 46 45		52 51 1 5.2 5.1 2 10.4 10.2 3 15.6 15.3
15 16 17 18 19	428 749 8.60 068 384 698	482 802 121 436 750	536 856 173 489 802	589 909 226 541 854	642 962 279 593 906	696 *015 331 646 958	749 *068 384 698 *009	44 43 42 41 40		4 20.8 20.4 5 26.0 25.5 6 31.2 30.6 7 36.4 35.7 8 41.6 40.8 9 46.8 45.9
20 21 22 23 24	8.61 009 319 626 931 8.62 234	061 370 677 982 285	113 422 728 *033 335	164 473 779 *083 385	216 524 830 #134 435	267 575 881 *184 485	319 626 931 #234 535	39 38 37 36 35		50 49 48 1 5.0 4.9 4.8 2 10.0 9.8 9.6 3 15.0 14.7 14.4 4 20.0 19.6 19.2
25 26 27 28 29	535 834 8.63 131 426 718	585 884 180 475 767	635 933 229 523 816	685 983 278 572 864	735 *032 328 621 913	784 *081 377 670 961	834 131 426 718 *009	34 33 32 31 3 0		5 25.0 24.5 24.0 6 30.0 29.4 28.8 7 35.0 34.3 33.6 8 40.0 39.2 38.4 9 45.0 44.1 43.2
30 31 32 33 34	8.64 009 298 585 870 8.65 154	058 346 633 918 201	100 394 681 965 248	154 442 728 *012 295	202 490 776 *060 342	250 538 823 #107 388	298 585 870 #154 435	29 28 27 26 25		47 46 45 1 4.7 4.6 4.5 2 9.4 9.2 9.0 3 14.1 13.8 13.5 4 18.8 18.4 18.0
35 36 37 38 39	435 715	482 761 *039 315 589	529 808 *085 361 634	575 854 #131 406 680	622 900 #177 452 725	668 947 * ²²³ 498 771	715 993 #269 543 816	24 23 22 21 20		5 23.5 23.0 22.5 6 28.2 27.6 27.0 7 32.9 32.2 31.5 8 37.6 36.8 36.0 9 42.3 41.4 40.5
40 41 42 43 44	816 8.67 087 356 624 890	861 132 401 668 934	906 177 446 713 978	952 222 490 757 *022	997 267 535 801 *066	*042 312 579 846 *110	*087 356 624 890 *154	19 18 17 16 15		44 43 1 4.4 4.3 2 8.8 8.6 3 13.2 12.9 4 17.6 17.2
45 46 47 48 49	8.68 154 417 678 938 8.69 196	198 461 722 981 239	242 504 765 #024 282	286 548 808 *067 325	330 592 852 #110 368	373 635 895 * ¹⁵³ 410	417 678 938 *196 453	14 13 12 11 10		5 22.0 21.5 6 26.4 25.8 7 30.8 30.1 8 35.2 34.4 9 39.6 38.7
50 51 52 53 54	453 708 962 8.70 214 465		538 793 *046 298 548	581 835 *088 339 589	623 877 #130 381 631	666 920 #172 423 673	708 962 *214 46 <u>5</u> 714	98 76 5		42 41 40 I 4.2 4.1 4.0 2 8.4 8.2 8.0 3 12.6 12.3 12.0 4 16.8 16.4 16.0
55 56 57 58 59	714 962 8.71 208 453 697	249 494	797 *044 290 535 778	838 * ⁰⁸⁵ 331 575 819	879 126 372 616 859	921 #167 413 657 899	962 *208 453 697 940	4 3 2 1 0		5 21.0 20.5 20.0 6 25.2 24.6 24.0 7 29.4 28.7 28.0 .8 33.6 32.8 32.0 9 37.8 36.9 36.0
	60″	50*	40"	30*	20"	10"	0.	•		РР
	*177	° 26	7° *	357°		87	·	LC	ot	

40											
L Cos		\mathbf{L}	Sin			3°		*	93° 1	.83° *2	73°
9.99	'	0*	10.	20*	30″	40"	50*	60*	1	1	PP
940	0	8.71 880	920	960	*000	+040	# 080	#120	59	940	40 39
940	I	8.72 120	160	200	240	280	320	359	58	939	
939	2	359	399	439	478	518	558	597	57	938	I 4.0 3.9 2 8.0 7.8
038	3	597	637	ύ76	716	753	794	834	56	938	3 12.0 11.7
938	4	834	873	912	951	99 I	+030	# 069	55	937	4 16.0 15.6
	e	8.73 069	108	147	186	225	264	303	54	936	5 20.0 19.5
937 936	5	303	342	380	419	458	497	535	53	936	6 24.0 23.4
936	7	535	574	613	651	690	728	767	52	935	7 28.0 27.3
935	8	767	805	844	882	920	959	997		934	8 32.0 31.2
934	9	997	035	# 073	*112	#150	"188	#226	51 50	934	9 36.0 35.1
											38 37
934	10	8.74 226	264	302	340	378	416	454 680	49	933	
933	11	454 680	491 718	529	567	603	642 868		48	932	1 3.8 3.7
932	12	906		755 980	793 #018	831		906	47	932	2 7.6 7.4
932	13	8.75 130	943 167	204	241	* ⁰⁵⁵ 279	#092 316	*130	46	931 930	3 11.4 11.1
931	14	0.75 130						353	45	930	4 15.2 14.8 5 19.0 18.5
930	15	353	390	427	464	501	538	575	44	929	5 19.0 18.5 6 22.8 22.2
929	16	575	612	648	685	722	759	795	43	929	7 26.6 25.9
929	17	795	832	869	905	942	979	# 015	42	928	8 30.4 29.6
928	18	8.76 015	052	088	125	161	197	234	41	927	9 34.2 33.3
927	19	234	270	306	343	379	415	451	40	926	9104-100-0
926	20	451	487	523	559	595	631	667	39	926	36
926	21	667	703	739	775	811	847	883	38	925	1 3.6
925	22	883	919	954	990	# 026	+061	+097	37	924	2 7.2
924	23	8.77 097	133	168	204	239	273	310	36	923	3 10.8
923	24	310	346	381	416	452	487	522	35	923	4 14.4
		522			628	663	6.9				5 18.0
923 922	25 26	733	558 768	593 803	838	873	698 908	733	34	922 921	6 21.6
921	27	943	978	+013	-048	# 083	.118	943 +152	33 32	920	7 25.2
920	28	8.78 152	187	222	257	201	326	360	21	020	8 28.8
920	29	360	395	430	464	499	533	568	31 30	919	9 32.4
919	30	568	602	636	671	705		774	20	918	35 34
919	31	774	808	842	876	910	739 945	979	28	917	1 35 34
917	32		.013	+047	#08I	*113	#149	# 183	27	917	2 7.0 6.8
917	33	979 8.79 183	217	251	28.1	318	352	386	26	916	3 10.5 10.2
916	34	386	420	453	487	521	553	588	25	915	4 14.0 13.6
915	35	588	622	655	689	722	756	789	24	914	5 17.5 17.0
914	36	789	823	856	800	923	956	990	23	913	6 21.0 20.4
913	37	990	+023	4 056	+090	+123	#156	#189	22	913	7 24.5 23.8
913	38	8.80 í Íg	222	255	289	322	355	388	21	912	8 28.0 27.2
912	39	388	421	454	487	519	552	585	20	<u>ģ</u> ri	9 31.5 30.6
911	40	585	618	651	684	716	749	782	19	910	33 32
910	41	782	813	847	880	913	945	978	18	909	
909	41	978	+010	+043	+075	+108	#140	+173	17	909	I 3.3 3.2 2 6.6 6.4
909	43	8.81 173	205	237	270	302	334	367	16	908	3 9.9 9.6
908	44	367	399	431	463	496	528	560	15	907	4 13.2 12.8
907	45	560	592	624	656	688	720		14	906	5 16.5 16.0
907	45 46	752	784	816	848	880	912	752 944	13	905	6 19.8 19.2
905	40	944	975	+007	+039	+07I	+103	944 #134	12	905	7 23.1 22.4
904	48	8.82 134	166	108	220	261	202	324	11	904	8 26.4 25.6
904	49	324	356	387	419	450	482	513	10	903	9 29.7 28.8
903	50	513	544	576	607	639	670	701	~	902	31 30
903	51	701	544 732	764	795	826	857	888	9 8	902 901	1.
901	52	888	020	951	082	+013	#044	*075	7	000	I 3.I 3.0 2 6.2 6.0
900	53	8.83 075	106	137	168	100	230	*075 26I	6	899	2 6.2 6.0 3 9.3 9.0
899	54	261	292	322	353	384	413	446	5	898	4 12.4 12.0
898	55	446	476	507	538	568	599	630	4	898	5 15.5 15.0
898	56	630	660	691	721	752	599 783	813	4	897	6 18.6 18.0
897	57	813	844	874	904	935	965	996	2	896	7 21.7 21.0
896	58	996	026	+056	.087	+117 ■	# 147	¥177	ī	893	8 24.8 24.0
895	59	8.84 177	208	238	268	208	328	358	Ô	894	9 27.9 27.0
		60″	50"	40"	30*	20"	10*	0"	- , · ·		РР
L			30		10-	-		9-99			
	*	176° 266°	• *35 6	0		86°		L Co	8	L Sin	

		L 1	Гаn		3	0		*93 °	183° *273°	41
'	0"	10*	20*	30*	40"	50″	60 *·		РР	
0	8.71 940	980	# 020	* 060	#100	"14I	#181	59	41 40	
1 2	8.72 181 420	221 460	261 300	301 540	341 579	380 619	420 659	58	I 4.I 4.0	
3	659	698	738	777	817	856	806	57 56	2 8.2 8.0	
4	896	935	975	#014	* 053	#093	#132	55	3 12.3 12.0	
56	8.73 132	171	210	249	288	327	366	54	4 16.4 16.0 5 20.5 20.0	
	366	405	444	483	522	561	600	53	6 24.6 24.0	
78	600 832	638 870	677 909	716	754 986	793	832	52	7 28.7 28.0	
ŏ	8.74 063	101	139	947 178	216	#024 254	*063 292	51 50	8 32.8 32.0 9 36.9 36.0	
10	202	330	369	407		483	521			
11	521	559	597	634	445 672	710	748	49 48	39 38	
12	748	786	823	861	899	936	974	47	I 3.9 3.8 2 7.8 7.6	
13	974	+012	# 049	,087	#124	#162	#I99	46	3 11.7 11.4	
14	8.75 199	236	274	311	348	385	423	45	4 15.6 15.2	
15 16	423	460	497	534	571	608	645	44	5 19.5 19.0	
10 17	645 867	682 904	719	756 977	793 01.1	830	867 •087	43	6 23.4 22.8 7 27.3 26.6	
18	8.76 087	124	160	197	233	*051 270	#007 306	42 41	8 31.2 30.4	
19	306	343	379	416	452	488	523	40	9 35.1 34.2	
20	523	561	597	633	660	706	742	39	37 36	
21	742	778	814	850	886	922	958	38	I 3.7 3.6	
22	958	994	#030	#065	*101	∗ 137	#173	37	2 7.4 72	
23 24	8.77 173 387	208 422	244 458	280 493	315 529	351	387 600	36	3 11.1 10.8 4 14.8 14.4	
								35	4 14.8 14.4 5 18.5 18.0	
25 26	600 811	635 847	670 882	706 917	741	776	811	34	6 22.2 21.6	
27	8.78 022	057	092	127	952 162	987 197	#022 232	33 32	7 25.9 25.2	
28	232	267	302	337	371	406	441	31 30	8 20.6 28.8 9 33.3 32.4	
29	44 I	475	510	545	579	614	649	30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
30	649	683	718	752	787	821	855	29		
31	855	890	924	958	993	+027	4061	28	I 3.5 3.4 2 7.0 6.8	
32 33	8.79 061 266	096 300	130 334	164 368	198 402	232 436	266	27 26	3 10.5 10.2	
34	470	504	538	572	606	639	470 673	25	4 14.0 13.6	
35	673	707	741	774	808	842	875	24	5 17.5 17.0 6 21.0 20.4	
36	875	909	942	976	,009	-043	076	23	7 24.5 23.8	
37	8.80 070	110	143	177	210	243	277	22	8 28.0 27.2	
38 39	277 476	310	343 542	376 575	409	443 641	476	21 20	9 31.5 30.6	
40	674	707	740	773	806	839	674 872	19	33 32	
41	872	905	937	970	+003	a39 a036	a072 ≥068	19	I 3.3 3.2	
42	8.81 068	101	134	166	199	232	264	17	2 6.6 6.4	
43	264	297	329	362	394	427	459	16	3 9.9 9.6 4 13.2 12.8	
44	459	491	524	556	588	621	653	15	5 16.5 16.0	
45 46	653 846	685 878	717	750 942	782 974	814 006	846 038	14 13	6 19.8 19.2	
47	8.82 038	070	102	134	166	198	230	12	7 23.1 22.4 8 26.4 25.6	
48	230	262	203	325	357	389	420	11	9 29.7 28.8	
49	420	452	484	515	547	579	610	10		
50	610	642	673 862	705	736	768	799	2	1	
51 52	799 987	831 019	802 050	893 •081	925	956 #144	987 #175	8	1 3.1 3.0 2 6.2 6.0	
53	8.83 175	200	237	268	299	330	361	76	3 9.3 9.0	
54	361	392	423	454	485	516	547	5	4 12.4 12.0	
55	547	578	609	640	671	701	732	4	5 15.5 15.0 6 18.6 18.0	
56	732	763	794	824	855	886	916	3	7 21.7 21.0	
57 58	916 8.84 100	947	978 161	4008 191	#039 222	+069 252	*100 282	2 1	. 8 24.8 24.0	
59	282	313	343	374	404	434	464	Ô	9 27.9 27.0	
	60*	50"	40*	30"	20*	10"	0"		P P	
	#176°	L	<u>.</u>	1	1	6°	L	Cot		

42 L Cos		L	Sin			4 °		*{	4° 1	84° *2	74 '
9.99	1	0.	10"	20"	30*	40'	50*	60*			РР
894	0	8.84 358	389	419	449	479	509	539	59	893	
893	I	539	569	599 778	629	659	688	718	58	892	
892 891	2	718	748	778	808	838	867	897	57	891	31 30
801	3	897 8.85 075	927 103	957 134	986 164	*016 193	*045 223	* ⁰⁷⁵ 252	56 55	891 890	1 3.1 3.0
800		252	282	311	<u>`</u>						2 6.2 6.0 3 9.3 9.0
880	5 6	429	458	488	341 517	370 546	400 576	429 603	54 53	889 888	4 12.4 12.0
888	7 8	603	634	663	603	722	751	780	52	887	5 15.5 15.0
887 886		780	809 984	838	867	896	926	955	51 50	886	6 18.6 18.0 7 21.7 21.0
	9	955		# 013	*042	* 070	*099	#128	- 00	885	7 21.7 21.0
885 884	10 11	8.86 128 301	157 330	186	215 388	244	273	301	49	88.4	9 27.9 27.0
883	12	474	502	359 531	560	416 588	445 617	474 645	48 47	883 882	
882	13	645	674	703	731	760	788	816	46	881	
881	14	816	845	873	902	930	958	987	45	880	29
88o	15	987	+015	# 043	# 072	#100	#I28	#156	44	879	I 2.9 2 5.8
879	16	8. 7 156	185	213	241	269	297	325	43	879	3 8.7
879 878	17 18	325 494	354 522	382	410	438	466	494	42	878	4 11.6
877	10	494 661	689	550 717	578 745	606 773	634 801	661 820	41 40	877 876	5 14.5
876	20	829	856	884				<u>-</u>			6 17.4 7 20.3
875	21	995	+023·	#050	912 •078	940 #106	967 #133	995 #161	39 38	875 874	8 23.2
874	22	8.88 161	188	216	243	271	298	326	37	873	9 26.1
873	23	326	353	381	408	436	463	490	36	872	
872	24	490	518	545	572	600	627	654	35	871	28 27
871	25	654	681	709	736	763	790	817	34	870	1 2.8 2.7
870 869	26 27	817 980	845 #007	872 #034	899 #061	926 #088	953	980	33	869 868	2 5.6 5.4
868	28	8.89 1.42	169	#034 196	223	250	* ¹¹⁵ 277	#142 304	32 31	867	3 8.4 8.1
867	29	304	330	357	384	411	438	464	ŠŌ.	866	4 11.2 10.8
866	30	464	491	518	545	571	598	625	29	865	5 14.0 13.5 6 16.8 16.2
863 864	31	623 784	651 811	678	704	731	758	784	28	864	7 19.6 18.9
863	32 33	/*4 943	970	837 996	864 a023	890 #049	917 #075	943 #102	27 26	863 862	8 22.4 21.6
862	34	8.90 102	128	154	181	207	233	260	25	861	9 25.2 24.3
861	35	260	286	312	338	364	391	417	24	860	1
860	36	417	443	469	495	521	548	574	23	859 858	26
859 858	37 38	574 730	600 756	626 782	652 808	678	704	730 585	22 21	858	1 2.6
857	39	885	911	937	963	834 989	859 •015	+040	20	857 856	2 5.2
856	40	8.91 040	066	002	118	143	160	195	19	855	3 7.8
853	11	195	221	246	372	298	323	349	18	854	4 10.4
854	42	349	374	400	426	451	477	502	17	853	5 13.0 6 15.6
853 852	43 44	502 055	528 680	553 706	579	604	630 782	655	16	852 851	7 18.2
851		807			731	757		807	15		8 20.8
830	45 46	807 9 5 9	833 984	858 *010	883 #035	909 #060	934 +085	959 #110	14 13	830 848	9 23.4
848	47 48	8.92 110	135	161	186	211	236	261	12	847	1
847 846		261		311	336	361	386	411	11	846	25 24
	49	411	436	461	486	511	536	561	10	845	1 2.5 2.4
845 844	50 51	561 710	586 733	611 760	636 784	6úo 80g	685 834	710 859	8	844 843	2 5.0 4.8
843	52	859	883	900	933	809 957	034	*007	8 7	843 842	3 7.5 7.2
842	53	8.93 007	031	ó 56	081	105	130	154	6	8.j.r	4 10.0 9.6 5 12.5 12.0
841	54	154	179	203	228	253	277	301	5	840	6 15.0 14.4
840 859	55	301	326	350	375	399	424	448	4	839	7 17.5 16.8
838	57 57	448 594	472 619	497 643	521 667	546 691	570 716	594 740	3	838 837	8 20.0 19.2 9 22.5 21.6
837	58	740	764	788	812	837	861	885	I	836	, <u></u> ,
836	59	885	909	933	.957	981	#006	# 030	0	834	l
		60"	50*	40"	30'	20"	10"	0"	'	9.99	РР
	*	175° 265	-	0		85°		L Co	8	L Sin	<u> </u>
				•		90					

	:	L Ta	n			₽°			*94° 184° *274°	43
'	0*	10"	20*	30*	40"	50"	60*		РР	
0	8.84 464	495	525	555	585	615	646	59 58		
1 2	646 826	676 856	706 886	736 916	766 946	796 976	826 #006	58 57	31 30	
3 4	8.85 006 185	036	065 244	095 274	125 304	155 333	185 363	56 55	I 3.1 3.0	
	363	392	122	452	481	511	540	 54	2 6.2 6.0 3 9.3 9.0	
6	540	570	599	629	658	688	717	53	4 12.4 12.0	
7 8	717 893	747	776 952	805 981	835 -010	864 #039	893 #069	52 51	6 18.6 18.0	
9	8.86 069	ó98	127	í 56	185	214	243	51 50	7 21.7 21.0 8 24.8 24.0	
10 11	243 417	272	301	330 504	359	388 502	417	49	9 27.9 27.0	
12	591	447 619	475 648	677	533 706	734	591 763	48 47		
13 14	763 935	792 964	821 992	849 •021	878 #049	907 •078	935 106	46 45	29	
15	8.87 106	135	163	192	220	240	277	43		
16	277	305	334	362	390	419	-147	43	2 5.8 3 8.7	
17 18	447 616	475	503 673	532 701	560 729	588 757	616 783	42 41	4 11.6 5 14.5	
19	785	813	841	869	897	925	953	40	6 17.4	
20	953	981	#00g	* 037	∗ 065	* 092	#I 20	39	7 20.3 8 23.2	
21 22	8.88 120 287	148 315	176	204 370	231 398	259	287 453	38 37	9 26.1	
23	453 618	481	508	536	563	591	618	36		
24 25	783	646 811	674 838	701	728	756 920	783 948	35 34	28 27	
26	948	973	# 002	¥029	* ⁰⁵⁷	+684	111	33	1 2.8 2.7	
27 28	8.89 III 274	138 301	166 328	193 355	220 383	247 410	274 437	32 31	2 56 5.4 3 8.4 8.1	
29	437	464	491	518	545	571	598	30	4 11.2 10.8	
30	598	625	652	679	706	733	760	29	5 14.0 13.5 6 16.8 16.2	
31 32	760 920	786 947	813 974	640 *000	867 +027	894 *054	920 #080	28 27	7 19.6 18.9 8 22.4 21.6	
33	8.90 080 240	107 206	134	160	187	213	240	26	9 25.2 24.3	
34	399	425	293	319 478	346 504	372	399	25		
35 36	557	583	451 610	636	662	531 688	557 715	24 23	26	
37 38	715 872	741 898	767 924	793 950	820 976	846 2002	872 * ⁰²⁹	22 21	1 2.6	
39	8.91 029	055	081	107	133	159	185	20	2 5 2 3 7.8	
40	185	211 366	236	262	288	314	340	19	4 10.4	
41 42	340 495	521	392 547	418 572	443 598	469	495 650	18 17	5 13.0 6 15.6	
43 44	650 803	675 820	701 855	727	752	778 931	803	16 15	7 18.2 8 20.8	
44	957	982	#008	+033	#059	¥084	957 110	15	9 23.4	
-46	8.92 110 262	135 287	160	186	211	237	262	13		
47 48	414	439	313 464	338 489	363 515	388 540	414 565	12 11	DF . 64	
49	565	590	615	640	665	691	716	10	25 24 1 2.5 2.4	
50 51	716 866	741 891	766 916	791 941	816 966	841 991	866 #010	9 8	2 5.0 4.8	
52	8.93 016	040	065	090	115	140	165	7	4 10.0 9.6	
53 54	165 313	190 338	214 363	239 388	264 412	289 437	313 462	6 5	5 12.5 12.0 6 15.0 14.4	
55	462	486	511	536	560	585	609	4	7 17.5 16.8	
56	609 756	634 781	658 805	683 830	707	732 879	756 903	3	8 20.0 19.2 9 22.5 21.6	
57 58	903	928	952	976	#001	* 025	* 049	ī		
59	8.94 049	074	098	122	147	171	195	0	D D	
	60"	50.	40*	30*	20*	10"	0"	1 '	P P	
	*175	° 26	5° *8	55°		- 8	5°		L Cot	

44 L Cos		т.	Sin			5°		*	95° 1	85° *2	76°	
	,		10'	20"	30"	40'	50"	60"	1			• P
9.99	0	<u> </u>										F
834 833	Ιŭ	8.94 030 174	054 198	078 222	102 240	126 270	130 294	174	59 58	833 832		
832		317	341	365	389	413	437	451	57	831		24
831	3	461	484	508	532	556	580	603	56	830		
830	Ĭ Ă	603	627	651	673	698	722	746	55	829	1 2	2.4
9.10		746	769	701	817	840	864	887		828	3	4.8 7.2
829 828	5	746 887	- 709 - 911	793 935	958	982	#005	+029	54 53	827	4	9.6
827		8.95 020	052	076	000	123	146	170	52	825	5	12.0
825	7 8	170	193	216	240	263	287	310		824	6	14.4
824	9	310	333	357	360	403	427	450	51 50	823	7	16.8
823	10	450	473	496	520	5.13	566	589	10	822	В	Ig.2
822	τī	589	613	636	659	543 682	705	728	49 48	821	9	21.6
821	12	728	752	775	798	821	844	867	47	820		
820	13	867	890	913	936	959	982	#005	46	819		00
819	14	8.96 005	028	051	074	97	120	143	45	817		23
817	15	143	166	180	212	234	257	280	44	816	1	2.3
816	16	280	303	320	349	371	394	417	44	815	23	4.6 6.9
815	17	417	440	462	485	508	53I	553	42	814	د +	9.2
814	18	553	576	599	621	644	667	689	41	813	5	11.5
813	19	689	712	735	757	780	802	825	40	812	6	13.8
812	20	825	847	870	892	915	937	960	39	810	7	16.1
810	21	960	982	+005	#027	+050	#072	+095	38	809	8	18.4
809	22	8.97 095	117	139	162	184	207	229	37	808	9	20.7
808	23	229	251	274	296	318	341	363	36	807		
807	24	363	385	407	430	452	474	496	35	806		
806	25	490	518	54I	563	585	607	629	34	804		22
804	26	629	651	674	նցն	718	740	762	33	803	I	2.2
803	27	762	784	806	828	850	872	894	32	802	2	4.4 6.6
6oz	28	894	916	938	960	982	+ 004	₽ 026	31 30	BOI	3	8.8
801	29	8.98 026	048	070	092		135	157	30	800	5	11.0
800	30	157	179	201	223	243	266	288	29	798	6	13.2
798	31	288	310	332	354 484	375	397	419	28	797	78	15.4
797 796	32 33	41g 549	441 571	462 592	404 614	506 636	527 657	549 679	27 26	796 795		17.6
795	34	679	701	722	744	765	787	808	25	793	9	19.8
793		808	830	851	873	894	916		24	792		
793	35 30	937	959	980	#002	*023	+045	937 *066	23	791		
79 ¹	37	8.99 066	087	109	130	152	173	194	22	790		21
790	38	194	216	237	258	280	301	322	21	788	I	2.I
788	39	322	343	365	386	407	428	450	20	787	2	4.2
787	40	450	471	492	513	534	556	577	Ig	786	3	6.3
786	41	577	598	619	640	661	682	704	18	785	4	8.4 10.5
7 ⁸ 5	42	704	725	74Ď	767	788	809	830	17	783	6	12.6
783	43	830	851	872	B93	914	935	956	16	782	7	14.7
	_44 _	950	<u>_977</u>	998	*019	#040	#061	0 62	15	781	8	16.8
781	45	9.00 oB2	103	123	144	165	186	207	14	780	9	18.g
780	46	207	228	249	26g	290	311	332	13	778		
77 ^B 777	47 48	332 456	353 477	373 498	394 518	415 539	436 560	450 581	12 11	777 776		
776	40	430 581	4// 601	498 622	64z	539	684	704	10	775		20
775	50	704	725		766	787	807	828			I	2.0
773	51	828	548 848	746 86g	889	910	930	95I	9	773 772	2	4.0
772	52	951	971	992	012	+033	=053	⇒D74	7	771	3	6.0 8.0
771	53	9.01 074	094	115	135	155	176	_196	6	769	45	5.0 ID.0
769	54	196	217	237	257	278	298	318	5	768	6	12.0
768	55	318	339	359	379	399	420	440	4	767	7	14.0
767	56	440	460	480	501	521	541	561	3	765	Ś.	16.0
765	57	561	582	602	622	642	662	682	2	704	9	t8.o
764	58	682	703	723	743	763	783	803	T D	763		
763	59	803	823	843	863	883	903	923	<u> </u>	761		
		60*	50"	40"	30*	20*	10*	D"	'	9.99	Ē	P
		174° 264°	*354	0		84°		L Cu	8	L Sin		

		LJ	lan		5	•		#9 5°	185°	* 275°		45
•	0"	10"	20*	30"	40*	50"	60*			Р	P	
0 1 2 3 4	8.94 195 340 485 630 773	219 365 509 654 797	244 389 533 678 821	268 413 557 702 845	292 437 581 725 869	316 461 606 749 893	340 485 630 773 917	59 58 57 56 55		1 2 3	25 2.5 5.0 7.5	
5 6 7 8 9	917 8.95 060 202 344 486	941 083 226 368 509	964 107 249 391 533	988 131 273 415 556	*012 155 297 439 580	*036 178 320 462 603	*060 202 344 486 627	54 53 52 51 50		4 5 6 7 8 9	10.0 12.5 15.0 17.5 20.0 22.5	
10 11 12 13 14	627 767 908 8.96 047 187	650 791 931 071 210	674 814 954 094 233	697 838 977 117 256	721 861 *001 140 279	744 884 *024 163 302	767 908 *047 187 325	49 48 47 46 45		1 2 3 4	24 2.4 4.8 7.2 9.6	
15 16 17 18 19	325 464 602 739 877	349 487 625 762 899	372 510 648 785 922	395 533 671 808 945	418 556 694 831 968	441 579 717 854 991	464 602 739 877 *013	44 43 42 41 40		56 78 9	12.0 14.4 16.8 19.2 21.6	
20 21 22 23 24	8.97 013 150 285 421 556	036 172 308 443 578	059 195 331 466 601	081 218 353 488 623	104 240 376 511 646	127 263 398 533 668	150 285 421 556 691	39 38 37 36 35		1 2 3 4 5	23 2.3 4.6 6.9 9.2 11.5	
25 26 27 28 29	591 825 959 8.98 092 225	713 847 981 114 247	735 869 *003 136 269	758 892 *025 159 291	780 914 *048 181 · 314	802 936 *070 203 336	825 959 * ⁰⁹² 225 358	34 33 32 31 30		6 7 8 9	13.8 16.1 18.4 20.7 22	
3 0 31 32 33 34	358 490 622 753 884	380 512 644 775 906	402 534 666 797 928	424 550 687 819 950	446 578 709 841 971	468 600 731 862 993	490 622 753 884 *015	29 28 27 26 25		1 2 3 4 5	2.2 4.4 6.6 8.8 11.0	
35 36 37 38 39	8.99 01 5 145 275 405 534	037 167 297 426 555	058 188 318 448 577	080 210 340 469 598	102 232 361 491 620	123 253 383 512 641	145 275 405 534 662	24 23 22 21 20		6 7 8 9	13.2 15.4 17.6 19.8 21	
40 41 42 43 44	662 791 919 9.00 046 174	68.4 812 940 068 195	705 834 961 089 216	727 855 983 110 237	748 876 #004 131 258	769 898 #025 153 280	791 919 *046 174 301	19 18 17 16 15		1 2 3 4 5	2.I 4.2 6.3 8.4 10.5	
45 46 47 48 49 50	301 427 553 679 805	322 448 574 700 826	343 469 595 721 346	364 490 616 742 867	385 511 637 763 888	406 532 658 784 909	427 553 679 805 930	14 13 12 11 10		6 7 8 9	12.6 14.7 16.8 18.9 20	
51 52 53 54	930 9.01 055 179 303 427	951 075 200 324 447	971 096 220 344 468	992 117 241 365 489	+013 138 262 386 509	*034 158 282 406 530	*055 179 303 427 550	9 8 7 6 5		1 2 3 4 5 6	2.0 4.0 6.0 8.0 10.0 12.0	
55 56 57 58 59	550 673 796 918 9.02 040 60*	571 694 816 939 061 50*	591 714 837 959 081 40″	612 735 857 979 101 30 ″	632 755 878 *000 121 20*	653 776 898 *020 142	673 796 918 #040 162	4 3 2 1 0		8 9 P	12.0 14.0 16.0 18.0	
		264°	*354°			4 °	-	Cot		r	L	

46 L Cos		L	Sin			6°		÷q	6° 1	86° *2	76°	
9.99	'	D'	10*	20'	30″	4D"	50"	60"			Р	Р
761 760 759 757 756	0 1 2 3 4	9.01 923 9.02 043 163 283 402	943 063 183 302 421	964 083 203 322 441	984 103 223 342 461	+004 123 243 362 481	#024 143 263 382 501	+043 163 283 402 520	59 58 57 56 55	760 759 757 756 755	I	21 2.1
755 753 752 751 749	5 5 7 8 9	520 639 757 874 992	540 658 776 894 *011	500 678 796 914 ¥031	579 698 816 933 *050	599 717 835 953 * υ7υ	619 737 855 972 #089	639 757 874 992 #109	54 53 52 51 50	753 752 751 749 748	2 3 4 5 6 7 8	4.2 6.3 8.4 10.5 12.6 14.7 16.8
748 747 745 744 742	10 11 12 13 14	9.03 109 226 342 458 574	128 245 361 478 593	148 265 381 497 613	167 284 400 516 632	187 303 420 535 651	206 323 439 555 670	226 342 458 574 690	49 48 47 46 45	747 745 744 742 741	9 1	18.g 20 2,0
741 740 738 737 736	15 16 17 18 19	690 805 920 9.04 034 1.49	709 824 939 053 168	728 843 958 072 187	747 862 977 091 206	766 881 996 110 225	780 901 #015 129 244	805 920 *034 149 262	44 43 42 41 40	740 738 737 736 734	2 3 4 5 6	4.0 6.0 8.0 10.0 12.0 14.0
734 733 731 730 728	20 21 22 23 24	262 376 490 603 715	281 395 508 621 734	300 414 527 640 753	319 433 546 659 772	338 452 565 678 790	357 471 584 697 809	376 400 603 715 828	39 38 37 36 35	733 731 730 728 727	7 8 9	14.0 16.0 18.0
727 726 724 723 721	25 20 27 28 29	828 940 9.05 052 164 275	847 959 071 182 293	865 977 089 201 312	884 996 108 219 330	903 *015 126 238 349	921 +033 145 256 367	940 *052 164 275 386	34 33 32 31 30	726 724 723 721 720	1 2 3 4 5	1.9 3.8 5.7 7.6 9.5
720 718 717 716 74	30 31 32 33 34	386 497 607 717 827	404 515 625 736 845	423 533 644 754 864	441 552 662 772 882	460 570 681 791 900	478 589 699 809 918	497 607 717 827 <u>9</u> 37	21) 28 27 20 25	718 717 716 714 713	6 7 8 9	11.4 13.3 15.2 17.1
713 711 710 708 	35 35 37 38 <u>39</u>	937 9.06 046 155 264 372	955 064 173 282 390	973 082 101 300 408	991 101 210 318 426	*D1D 1 I y 228 336 445	*D28 137 246 354 463	+046 155 264 372 481	24 23 22 21 20	711 710 708 707 705	1 2 3	18 1.8 3.6 5.4
705 704 702 701 699	40 41 42 43 44	481 589 696 804 911	499 506 714 821 929	517 624 732 839 946	535 642 750 857 964	553 660 768 875 982	571 678 786 893 *000	589 696 804 911 *018	19 18 17 16 15	704 702 701 699 698	4 5 7 8	7.2 9.0 10.8 126 14.4
698 696 695 693 692	45 46 47 48 49	9.07 018 124 231 337 442	035 142 248 354 400	053 160 266 372 478	071 177 284 390 495	089 195 301 407 513	106 213 319 425 530	124 231 337 442 548	14 13 12 11 10	695 693 692 690	9 []	16.2 17 1.7
690 689 687 686 684	50 51 52 53 54	548 653 758 863 968	566 671 776 881 985	583 688 793 898 + 002	601 706 811 915 #020	618 723 828 933 #037	636 741 846 950 #055	653 758 863 968 +072	9 8 7 5	689 687 686 684 683	2 3 4 5 5	3.4 5.1 6.8 8.5 10.2
683 681 680 678 677	55 56 57 58 59	9.08 072 176 280 383 486	089 193 297 400 504	107 211 314 418 521	124 228 331 435 538	141 245 349 452 555	159 262 366 469 572	176 280 383 486 589	4 3 2 1 0	681 680 678 677 675	7 8 9	11.9 13.6 15.3
	•	60″ 173° 263°	50″ *353	4D″	30*	20" 83"	10*	D [*] L Co	, 8	9.99 L Sin	P	Р

TABLE OF THE LOGARITHMS

OF THE

TRIGONOMETRIC FUNCTIONS

FROM MINUTE TO MINUTE

48		0° *90° 180° *270°								
•	'	L Sin	d	CS	СТ	L Tan	cd	L Cot	L Cos	
0	0		i i					80	0.00 000	60
60	I	6.46 373	30103	5.31 443	5.31 443	6.46 373	30103	3.53 627	0.00 000	59
120 180	2 3	6.76 476 6.94 085	17609	5.31 443 5.31 443	5.31 443 5.31 443	6.76 476 6.94 085	17609	3.23 524	0.00 000	58 57
240	4	7.06 579	12494	5.31 443	5.31 442	7.06 579	12494	3.05 91 5 2.93 421	0.00 000	57 56
300	5	7.16 270	9691 7918	5.31 443	5.31 442	7.16 270	9691 7918	2.83 730	0.00 000	55
360	6	7.24 188	6694	5.31 443	5.31 442	7.24 188	6694	2.75 812	0.00 000	54
420 480	78	7.30 882 7.30 682	5800	5.31 443	5.31 442	7.30 882	5800	2.69 118	0.00 000	53
540	9	7.41 797	5115	5.31 443 5.31 443	5.31 442 5.31 442	7.36 682 7.41 797	5115 4576	2.63 318 2.58 203	0.00 000	52 51
600	1Ó	7.46 373	4576 4139	5.31 443	5.31 442	7-46 373	4139	2.53 627	0.00 000	50
660	11	7.50 512	3779	5.31 443	5.31 442	7.50 512	3779	2.49 488	0.00 000	49
720 780	12 13	7.54 291 7.57 767	3476	5.31 443 5.31 443	5.31 442 5.31 442	7.54 291 7.57 767	3476	2.45 709 2.42 233	0.00 000	48
840	14	7.60 985	3218	5.31 443	5.31 442	7.60 986	3219	2.39 014	0.00 000	47 46
900	15	7.63 982	2997 2802	5.31 443	5.31 442	7.63 982	2996 2803	2.36 018	0.00 000	45
960	16	7.66 784	2633	5.31 443	5.31 442	7.66 785	2633	2.33 215	0.00 000	44
1020 1080	17 18	7.69 417	2483	5.31 443	5.31 442	7.69 418	2482	2.30 582	9.99 999	43
1140	10	7.71 900 7.7 4 2 48	2348	5.31 443 5.31 443	5.31 442 5.31 442	7.71 900 7.74 248	2348 2228	2.28 100 2.25 752	9-99 999 9-99 999	42 41
1200	20	7.76 475	2227	5.31 443	5.31 442	7.76 476	2228	2.23 524	9.99 999	40
1260	21	7.78 594	2119 2021	5.31 443	5.31 442	7.78 595	2020	2.21 405	9.99 999	39
1320	22	7.80 615	1930	5.31 443	5.31 442 5.31 442	7.80 615	1931	2.19 385	9.99 999	38
1380 1440	23	7.82 545 7.84 393	1848	5.31 443 5.31 443	5.31 442	7.82 546	1848	2.17 454 2.15 606	9.99 999	37
1500	24 25	7.86 166	1773	5.31 443	5.31 442	7.86 167	1773	2.13 833	9 .99 99 9 9 .99 99 9	36 35
1560	26	7.87 870	1704 1639	5.31 443	5.31 442	7.87 871	1639	2.12 129	9.99 999	34
1620	27	7.89 509	1579	5.31 443	5.31 442	7.89 510	1579	2.10 490	9.99 999	33
1680 1740	28 20	7.91 088 7.92 612	1524	5.31 443 5.31 443	5.31 442 5.31 441	7.91 089 7.92 613	1524	2.08 911 2.07 387	9.99 999 9.99 998	32 31
1800	30	7.94 084	1472	5.31 443	5.31 441	7.94 086	1473	2.05 914	9.99 998	30
1860	31	7.95 508	1424	5.31 443	5.31 441	7.95 510	1424	2.04 490	9.99 998	29
1920	32	7.96 887	1379 1336	5.31 443	5.31 441	7.96 889	1336	2.03 111	9.99 998	28
1980	33	7.98 223	1297	5.31 443	5.31 441	7.98 225	1297	2.01 775	9.99 998	27
2040 2100	34 35	7.99 520 8.00 779	1259	5.31 443 5.31 443	5.31 441 5.31 441	7.99 522 8.00 781	1259	2.00 478	9.99 998 9.99 998	26 25
2160	36	8.02 002	1223	5.31 443	5.31 441	8.02 004	1223	1.97 996	9.99 998	24
2220	37	8.03 192	1190	5.31 443	5.31 441	8.03 194	1159	1.96 806	9-99 997	23
2280	38	8.04 350	1128	5.31 443	5.31 441	8.04 353	1128	1.95 647	9.99 997	22
2340 2400	39 40	8.05 478 8.06 578	1100	5.31 443 5.31 443	5.31 441 5.31 441	8.05 481	1100	1.94 519	<u>9.99 997</u> 9.99 997	21 20
2460	41	8.07 650	1072	5.31 444	5.31 440	8.07 653	1072	1.92 347	9.99 997	10
2520	42	8.08 696	1046	5.31 444	5.31 440	8.08 700	1047	1.91 300	9-99 997	18
2580	43	8.09 718	999	5.31 444	5.31 440	8.09 722	998	1.90 278	9.99 997	17
2640 2700	44 45	8.10 717 8.11 693	976	5.31 444 5.31 444	5.31 440 5.31 440	8.10 720 8.11 696	976	1.89 280	9.99 996	16 15
2760	46	8.12 647	954	5.31 444	5.31 440	8.12 651	955 934	1.87 349	9.99 996	14
2820	47	8.13 581	934 914	5.31 444	5.31 440	8.13 585	015	1 86 413	9.99 996	13
2880	48	8.14 495 8.15 391	896	5.31 444 5.31 444	5.31 440	8.14 500	895	1.85 500	9.99 996	12
2940 3000	49 50	8.16 268	877	5.31 444	5.31 440	8.15 395	878	1.84 605	9.99 996 9.99 995	11
3060	51	8.17 128	860	5.31 444	5.31 439	8.17 133	860 843	1.82 867	9.99 995	
3120	52	8.17971	843 827	5.31 444	5.31 439	8.17 976	828	1.82 024	9.99 995	8
3180	53	8.18 798	812	5.31 444	5.31 439	8.18 804	812	1.81 196	9.99 995	7
3240 3300	54 55	8.19 610 8.20 407	797	5.31 444	5.31 439 5.31 439	8.19 616 8.20 413	797	1.80 384 1.79 587	9.99 995	65
3360	56	8.21 189	782	5.31 444	5.31 439	8.21 195	782	1.78 805	9.99 994	4
3420	57	8.21 958	769	5.31 445	5.31 439	8.21 964	756	1.78 036	9.99 994	3
3480	58	8.22 713 8.23 456	743	5.31 445	5 31 438	8.22 720	742	1.77 280	9.99 994	2
3540 3600	59 60	8.24 186	730	5.31 445 5.31 445	5.31 438 5.31 438	8.23 462	730	1.76 538 1.75 808	9-99 994 9-99 993	I 0
 	<u> </u>	L Cos	d	<u> </u>		L Cot	cd	L Tan	L Sin	ب ا
L			<u></u>	1	<u> </u>	11				1
		*179° 26	9· * 3t	. .	8	9°				

		T 1		0.0				T 101	-2/1-	
	'	L Sin	d	св	СТ	L Tan	e d	L Cot	L Cos	
3600	0	8.24 186	717	5.31 445	5.31 438	8.24 192	718	1.75 808	9.99 993	60
3660	1 2	8.24 903	706	5.31 445	5.31 438	8.24 910 8.25 616	706	1.75 090	9.99 993	59
3720 3780	3	8.25 609 8.26 304	695	5.31 445 5.31 445	5.31 438 5.31 438	8.25 312	696	1.74 384 1.73 688	9.99 993 9.99 993	58 57
3840	4	8.26 988	684	5.31 445	5.31 437	8.26 996	684	1.73 004	9.99 992	56
3900	5	8.27 661	673	5-31 445	5 31 437	8.27 669	673	1.72 331	9.99 992	55
3960	6	8.28 324	663 653	5.31 445	5.31 437	8.28 332	663 654	1.71 668	9.99 99 2	54
4020 4080	7	8.28 977	644	5.31 445	5.31 437	8.28 986 8 29 629	643	1.71 014	9.99 992	53
4140	9	8.29 621 8.30 255	634	5.31 445 5.31 445	5.31 437 5.31 137	8.30 263	634	1.70 371 1.69 737	9.99 992 9.99 991	52 51
4200	10	8.30 879	624	5.31 446	5.31 437	8.30 888	625	1.69 112	9.99 991	5 0
4260	11	8.31 495	616 608	5.31 446	5.31 436	8.31 505	617 607	1.68 495	9.99 991	49
4320 4380	12 13	8.32 103	599	5.31 446	5.31 436	8.32 112 8.32 711	599	1.67 888 1.67 280	9.99 990	48
4440	14	8.32 702 8.33 292	590	5.31 446 5.31 446	5.31 436 5.31 436	8.33 302	591	1.66 698	9.99 990 9.99 990	47 46
4500	15	8.33 875	583	5.31 440	5.31 430	8.33 886	584	1.66 114	9.99 990	45
4560	16	8.34 450	575 568	5.31 446	5.31 435	8.34 461	575 568	1.65 539	9.99 989	44
4620	17	8.35 018	560	5.31 446	5.31 435	8.35 029	500	1.64 971	9.99 989	43
4680 4740	19 19	8.35 578	553	5.31 446	5.31 435	8.35 590 8.36 143	553	1.64 410	9.99 989	42 41
4800	20	8.36 131 8.36 678	547	5.31 440	5.31 435 5.31 435	8.30 143	546	1.63 857 1.63 311	9.99 989 9.99 988	40
486c	21	8.37 217	539	5.31 447	5.31 434	8.37 229	540	1.62 771	9.99 988	39
4920	22	8.37 750	533	5-31 447	5.31 434	8.37 762	533	1.62 238	9 99 988	38
498c	23	8.38 276	526 520	5-31 447	5.31 434	8.38 289	527 520	1.61 711	9.99 987	37
5040 5100	24 25	8.38 796 8.39 310	514	5.31 447	5.31 434	8.38 809 8.39 323	514	1.61 191 1.60 677	9.99 987	36
5160	26	8.39 818	508	5.31 447 5.31 447	5.31 434 5.31 433	8.39 832	509	1.00 107	9.99 987 9.99 986	35 34
5220	27	8.40 320	502	5.31 447	5.31 433	8.40 334	502	1.59 666	9.99 986	33
528c	28	8.40 816	496	5.31 447	5.31 433	8.40 830	496	1.59 170	9.99.986	32
5340 5400	29 30	8.41 307	491 485	5.31 447	5.31 433	8.41 321	486	1.58 679	9.99 985	31
5460	31	8.41 792	480	5.31 447	5.31 433	8.41 807	480	1.58 193	9.99 985 9.99 985	30 29
5520	32	8.42 746	474	5.31 448 5.31 448	5.31 432 5.31 432	8.42 762	475	1.57 713 1.57 238	9.99 984	28
5580	33	8.43 216	470 464	5.31 448	5.31 432	8.43 232	470 464	1.56 768	9.99 984	27 .
56.40		8.43 680	459	5.31 448	5.31 432	8.43 696	404	1.56 304	9.99 984	26
5700 5760	35 36	8.44 139	459	5.31 448	5.31 431	8.44 156 8.44 611	455	1.55 844	9.99 983 9.99 983	25 24
5820		8.44 594	450	5.31 448	5.31 431 5.31 431	8.45 061	450	1.55 309	9.99.983	23
5880	38	8.45 489	445	5.31 448	5.31 431	8.45 507	446	1.54 4939	9.99 982	22
5940		8.45 930	441 436	5.31 449	5.31 431	8.45 948	441 437	1.54 052	9.99 982	21
6000 6060		8.46 366	433	5.31 449	5.31 430	8.46 385	432	1.53 615	9.99 982	20
6120	41 42	8.46 799 8.47 226	427	5.31 449	5.31 430	8.46 817 8.47 245	428	1.53 183	9 99 981 9.99 981	19
6180	43	8.47 650	424	5.31 449	5.31 430 5.31 430	8.47 669	424	1.52 331	9.999981	17
6240		8.48 060	419	5.31 449	5.31 429	8.48 089	420	1.51 911	9 99 980	16
6300 6360		8.48 485	416	5.31 449	5.31 429	8.48 505	416	1.51 495	9.99.980	15
6420	1 ·	8.48 896	408	5.31 449	5.31 429	8.48 917	408	1.51 083	9 99 979	14
6480		8.49 304 8 49 708	404	5.31 450 5.31 450	5.31 428	8.49 325	404	1.50 675	9.99 979	13 12
6540	49	8.50 108	400	5.31 450	5.31 428	8.50 1 30	401	1 49 870	9.99 978	11
6600		8.50 504	396	5.31 450	5.31 428	8.50 527	397 393	1.49 473	9.99 978	10
6660		8.50 897	393 390	5.31 450	5.31 427	8.50 920	390	1.49 080	9 99 977	9
6720 6780		8.51 287 8.51 673	386	5.31 450	5.31 427 5.31 427	8.51 310	386	1.48 090	9-99 977	7
6840		8.52 055	382	5.31 450	5.31 427	8.52 079	383	1.47 921	9.99 977	6
6900	55	8.52 434	379	5.31 451	5.31 426	8.52 459	380	1.47 541	9.99 976	5
6960		8.52 810	376 373	5.31 451	5.31 426	8.52 835	376	1.47 165	9.99 975	4
7020		8.53 183	373	5.31 451	5.31 426	8.53 208	370	1.46 792	9.99 975	3
7080		8.53 552 8.53 919	367	5.31 451 5.31 451	5.31 425 5.31 425	8.53 578	367	1.46 422	9.99 974 9.99 974	
7200		8.54 282	363	5.31 451	5.31 425	8.54 308	363	1.45 692	9.99 974	ō
<u> </u>	t	L Cos	d	Î	t	L Cot	cd	L Tan	L Sin	,
L			<u> </u>	1	<u> </u>	1	<u> </u>	1 22 2 2011		1
		* 178° 2	68° #3	358°	2	RR°				

1° *91° 181° *****271°

50	2° *9 2° 182° * 272°									
· 1	'	L Sin	d	CS	СТ	L Tan	cd	L Cot	L Cos	
7200	0	8.54 284		5.31 451	5.31 425	8.54 308		1.45 692	9.99 974	60
7260	I	8.54 642	360 357	5.31 451	5.31 425	8.54 604	361	1.45 331	9.99 973	59 58
7320 7380	2 3	8.54 999	355	5.31 452	5.31 424	8.55 027	358 355	1.44 973	9.99 973	
7440	4	8.55 354 8.55 705	351	5.31 452 5.31 452	5.31 424 5.31 424	8.55 382 8.55 734	352	1.44 618 1.44 266	9.99 972 9.99 972	57 56
7500	5	8.56 054	349 346	5.31 452	5 31 423	8.56 083	349	1.43 917	9.99 972	55
7560	6	8.56 400	343	5.31 452	5.31 423	8.56 429	346	1.43 571	9.99 971	54
7620 7680	7 8	8.56 743	341	5.31 452	5.31 423	8.56 773	344 341	1.43 227	9.99 970	53
7740	9	8.57 084 8.57 421	337	5 31 453 5.31 453	5.31 422 5.31 422	8.57 114 8.57 452	338	1.42 886 1.42 548	9.99 970 9.99 969	52 51
7800	10	8.57 757	336 332	5.31 453	5.31 422	8.57 788	336	1 42 212	9.99 969	50
7860	11	8.58 089	330	5.31 453	5.31 421	8.58 121	333	1.41 879	9.99 968	49
7920 7980	12 13	8.58 419	328	5.31 453	5.31 421	8.58 451	330 328	1.41 549	9.99 968	48
8040	14	8.58 747 8.59 072	325	5.31 453 5.31 454	5.31 421 5.31 421	8.58 779 8.59 105	326	1.41 221 1.40 805	9-99 967 9 99 967	47 46
8100	15	8.59 395	323 320	5.31 454	5.31 420	8.59 428	323	1.40 572	9 99 967	45
8160	16	8.59 715	318	5.31 454	5.31 420	8.59 749	321 319	1.40 251	9.99 966	44
8220 8280	17 18	8.60 033	316	5.31 454	5.31 420	8.60 068	310	1.39 932	9.99 966	43
8340	10	8.60 349 8.60 662	313	5.31 454 5.31 454	5.31 419 5.31 419	8.60 384 8.60 698	314	1.39 616 1.39 302	9.99 965 9.99 964	42 41
8400	2 Ó	8.60 973	311	5.31 455	5.31 418	8 61 000	311	1.38 991	9.99 964	40
8460	21	8.61 282	309 307	5.31 455	5.31 418	8.61 319	310	1.38 681	9.99 963	39
8520 8580	22 23	8.61 589	305	5.31 455	5.31 418	8.61 626	307 305	1.38 374	9.99 963	38
8640	23	8.61 894 8.62 196	302	5.31 455	5.31 417	8.61 931 8.62 234	303	1.38 069	9.99 962	37 36
8700	25	8.62 497	301 298	5.31 455 5.31 455	5.31 417 5.31 417	8.62 535	301	1.37 766 1.37 465	9.99 962 9.99 961	35
8760	26	8.62 795	296	3.31 456	5.31 416	8.62 834	299	1.37 166	9.99 961	34
8820	27	8.63 091	204	5.31 456	5.31 416	8.63 131	297 295	1.36 869	9.99 960	33
8880 8940	28 29	8.63 385 8.63 678	293	5.31 456 5.31 456	5.31 416 5.31 415	8.63 426 8.63 718	293	1.36 574 1.36 282	9.99 960 9.99 959	32 31
9000	30	8.63 968	290 288	5.31 450	5.31 415	8.64 000	291	1.35 991	9.99.959	30
9060	31	8.64 256	288 287	5.31 456	5.31 415	8.64 298	289	1.35 702	9.99.958	29
912G 9180	32	8 64 543	284	5.31 457	5.31 414	8.64 585	287 285	1.35 41 5	9.99 958	28
9130	33 34	8.64 827 8.65 110	283	5.31 457	5.31 414	8.64 870	284	1.35 130	9.99 957	27 26
9300	35	8.65 391	281	5.31 457 5.31 457	5.31 413 5.31 413	8.65 154 8.65 435	281	1.34 846	9.99 956 9.99 956	25
9360	36	8.65 670	279 277	5.31 457	5.31 413	8.65 715	280	1.34 285	9.99 955	24
9420	37	8.65 947	276	5.31 458	5.31 412	8.65 993	278	1.34 007	9.99 953	23
9480 9540	38 39	8.66 223 8.66 497	274	5.31 458	5.31 412	8.66 269 8.66 543	274	1.33 731	9.99 954	22 21
9600	40	8.66 769	272	5.31 458	5.31 412	8.66 816	273	1 33 457 1.33 184	<u>9.99 954</u> 9.99 953	20
9660	41	8.67 039	270 269	5.31 458	5.31 411	8.67 087	271	1.32 913	9 99 952	19
9720 9780	.42	8.67 308	209	5.31 459	5.31 410	8.67 356	269 268	1.32 644	9.99 952	18
9700	-43 -44	8.67 575 8.67 841	206	5.31 459	5.31 410	8 67 624	266	1.32 376	9.99 951	17 16
99000	45	8.68 104	263	5.31 459	5.31 410	8.67 890	264	1.32 110	9.99 951 9.99 950	15
9960	40	8.68 367	263 260	5.31 459	5.31 409	8.68 417	263	1.31 583	9.99 949	14
10020	47	8.68 627	259	5.31 460	5.31 408	8.68 678	261 260	1.31 322	9.99 949	13
10080	48 49	8 68 886	258	5.31 460	5.31 408	8.68 938	258	1.31 062	9.99 948	12
10200	50	8.69 144 8.69 400	256	5 31 460	5.31 408	8.69 196	257	1.30 804	9.99 948 9.99 947	10
10260	51	8.69 654	254	5.31 460	5.31 407	8.69 708	255	1.30 292	9 99 946	9 8
10320	52	8.69 907	253 252	5.31 461	5.31 406	8.69 962	254 252	1.30 038	9.99 946	
10380		8.70 159	250	5.31 461	5.31 406	8.70 214	251	1.29 786	9.99 945	7 6
10440	54	8.70 409 8.70 658	249	5.31 461 5.31 461	5.31 405 5.31 405	8.70 465	249	1.29 535	9.99 944	5
10560	56	8.70 903	247 246	5.31 461	5.31 405	8.70 962	248	1.29 038	9.99 943	4
10620	57	8.71 151	240	5.31 462	5.31 404	8.71 208	246 245	1.28 792	9.99 942	3
10680	58 59	8.71 395	243	5.31 462	5.31 404	8.71 453	245	1.28 547	9.99 942	2 1
10/40	60	8.71 638	242	5.31 462	5.31 403	8.71 697	2.13	1.28 303	9.99 941	1 6
1	<u> </u>	L Cos	d	" <u></u>	3.32 403		cd	L Tan	L Sin	- ,-
L	1	1	1	11	1	L Cot	1 cu	L Lall	1 <u>1 5 m</u>	1
	*1	.77° 267°	*357°	,	ł	87°				

	 l
- 21	

9**3° 183° **273°

51

					3°	-	93 °	183° *273° 51
<u> </u>	L Sin	d	L Tan	c d	L Cot	L Coa		P P
D	8.71 880	240	8.71 940	24 I	1.28 060	9.99 940	60	241 230 237 235 234 1 4.0 4.0 4.0 3.0 3.9 2 8.0 8.0 7.9 7.8 7.8
I	8.72 120	-	8.72 181		1.27 819	9.79 940	59	3 12.0 12.0 11.8 11.8 11.7
2	8.72 359	239 238	8.72 420	239 239	1.27 580	9.99 939	58	4 16 1 15.9 15 8 15 7 15.6 5 20.1 19.9 19.8 19 6 19.5
3	8.72 597	237	8.72 659	237	1.27 341	9.99 938	57	0 24.1 23.9 23.7 23.5 23.4
4	8.72 834	235	8.72 896	236	1.27 104	9.99 938	56	7 28 1 27.0 27.6 27 4 27 3 8 34 1 31 9 31 6 31.3 31.8
5 6	8.73 obg 8.73 303	234	8.73 132 8.73 356	234	1.26 868 1.26 634	9-99 937 9.99 936	55 54	0 16 2 135 8 35 6 15 2 35.1
7	8.73 535	232	8.73 600	234	1.26 400	9.99 936 9.99 936	53	20 80.1 79 7 79 0 78 1 78 0
8	8.73 767	232	8.73 832	232	1.26 168	9-99 935	53 52	30 120 5 119 5 118 5 117 5 117 0 40 160 7 159.3 158 0 156 7 150.0
9	8.73 997	230	8.74 063	231	1.25 937	9.99 934	51	50 (200) 8 19g 2 197 5 195 8 195 0
10	8.74 220	229	8.74 292	229	1.25 708	9.99 934	50	232 229 227 225 223 1 3 9 3 8 3 8 3 8 3 7
T1	8.74 454	228 226	8.74 521	229 227	1.25 479	9.99 933	49	2 77 70 70 75 74
12	8.74 680	226	8.74 748	320	1.25 252	9.99 932	48	4 15 5 15.2 15 1 15 0 14 0
13	8.74 906	224	8.74 974	225	1.25 026	9.99 932	47	5 193 191 189 188 186
14	8.75 130	223	8.75 199	224	1.24 801	9.99 931	46	7 27 1 26.7 26.5 26 2 26.0
15 16	8-75 353 8-75 575	222	8.75 423 8.75 645	222	1.24 577 1.24 355	9-99 930 9-99 929	45 44	8 30 9 30 5 30 3 30 0 29 7 9 34 8 34 4 34 0 33 8 33 4
17	8.75 795	220	8.75 867	222	1.24 133	9.99 929 9.99 929	43	10 36.7 36 2 37 6 37 5 47 2
18	8.76 015	220	8.76 087	220	1 23 913	9.99 928	42	20 77.3 70 3 75 7 75 0 74 3 30 116 0 114 5 113 5 112 5 111 5
19	8.76 234	219	8.76 306	219	1 23 694	9.99 927	41	40 154 7 152.7 151 3 150.0 148 7 50 193 3 190 8 189.2 187 5 185 8
20	8.76451	217 216	8 76 525	21) 217	1.23 475	9.99 926	40	232 220 217 215 213
21	8.76 667	210	8.70 742	21/ 210	1.23 258	9.99 926	39	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
22	8.76 883	214	8 76 958	215	1.23 042	9-99 925	38	3 11 1 10 10 8 10 8 10 6
23	8.77 097	213	8.77 173	214	1.22 827	9.99 9 2. 4	37	
24	8 77 310	212	8.77 387	213	1.22 613	9.99 923	36	6 2/2 //0 /17 215 21.3
25 20	8.77 522 8.77 733	211	8.77 boo 8.77 811	211	1.22 400 1.22 18g	9 99 923 9.99 922	35 34	7 25 4 25 7 25 3 25 1 24.8 B 24 6 29 3 28 4 28 7 28 4
27	8.77 943	210	8.78 022	211	1.21 978	9.99 9 9.99 921	33	9 33 3 33 0 32 6 32 2 32 0
28	8.78 152	209	S 78 232	210	1.21 708	9.99.920	32	20 74 0 74 3 72 3 71.7 71 0
29	8.78 360	208 208	876441	200 205	1.21 559	9.99 920	31	30 111 0 110 0 108 5 107 5 106 5 40 148.0 141 7 144 7 143 3 142 0
30	8.78 508	208 206	8.78 649	208 201	1.21 351	9.99 919	30	50 185 0 183 3 180 8 179.2 177 5 211 208 206 203 201
31	8.78 774		8 78 855		1.21 145	9.99.918	20	1 15 35 34 34 34 2 70 59 69 68 67
32	8.78 979	205 204	8.7y of I	20Ú 205	1.20 939	9.99 917	28	1 10 6 10 4 10 3 10 4 10.0
33	8.79 183	204	8 79 266	204	1.20 734	9.99 917	27	4 14 1 13 9 13 7 13 5 13 4 5 17 6 17 3 17 4 16 9 16 8
34	8.79 386	202	8.79 470	203	1.20 530	9.99 910	26	5 17 6 17 3 17 2 16 9 16 8 6 21 1 20 8 20 6 20 3 20,1 7 24 6 24 3 24 0 23 7 23 4
35 30	6 79 588	201	8.79 673 8.79 875	202	1.20 327 1.20 125	9 99 915	25 24	8 28 1 27 7 27 5 27 1 26 8
-	8.79 789	201	8.80 076	201	-	9.99914	23	1 31 6 31 2 30 9 30 4 30 2 10 35 2 34 7 34 3 33 8 33 5 20 70 1 69 3 68.7 67 7 67 0
37 38	8.79.990 8.80.189	199	8.80 277	201	1.19 924 1.19 723	9.99 913 9.99 913	22	10 35 7 34 7 34 3 33 8 33 5 20 70 1 69 3 68,7 67 7 67 0 30 105 5 104 6 103 0 101 5 100 5
39	8.80 388	199	8 80 476	199	1.19 524	9 99 912	21	40 140 7 128 7 127 2 125 2 124 0
40	8 80 585	197	5.80 674	198	. 1.19 326	0.09.911	20	50 175.8 173 3 171 7 109 2 167 5 199 107 193 193 193 192
41	8 80 782	197	8 80 872	198 190	1.19 128	9.99 910	19	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
42	8.80 978	190 195	8.81 068	190	1.18 932	<u>ე.ყე ყიე</u>	18	1 100 08 98 90 90
43	8.BI 173	195	8,81 264	195	1.18 736	9-99 909	17	4 13 7 13 1 13 0 12 0 12 8
44	8.81 367	193	8.81 459 8.81 653	194	1.18 541	9.99 908 0 00 007	16	6 199 197 145 193 197
45	8.81 560 8.81 752	192	8.81 846	193	1.18 347	9.99 907 9.99 900	15	7 23 2 23 7 22 8 22 5 22 4 8 25 5 25 3 25 7 25 5
47	8.81 944	192	8.82 038	192	1,17 962	9.99 900	13	n 20 8 20 6 20 2 24 0 28 8
48	8.82 134	190	8.82 230	192	1.17 770	9.99 903	12	20 66 3 65 7 65 0 64 3 64 0
49	8.82 324	190	8.82 420	1 yo 1 go	1.17 580	9.99 904	II	
50	8.82 513	189	8.82 610	190	1.17 390	9.99 903	10	50 165 8 164 2 162 5 100 8 100.0
51	8.82 701	187	8.82 799	185	1.17 201	9.99 902	2	
52	8.82 888	187	8.82 987	188	1.17 013	9.99 901	8	2 53 52 62 61 60
53	8.83 075	186	8.83 175	186	1.16825	9.99 900	76	3 94 94 92 92 90 4 12 b 12 5 12 3 12 2 12 1 5 15 8 15 6 15 4 15 2 15,1
54 55	8.83 261 8 83 446	185	8.83 361 8.83 547	186	1.16 639	9.99 899 9.99 898	5	5 15 8 15 6 15 4 15 2 15.1 6 18 9 18 7 18 5 18 3 18 1
56	8.83 630	184	8.83 732	185	1.16 268	9.99 898	4	7 220 218 210 21.4 21 1
57	8.33 813	183	8.83 916	184	1.16 084	9.99 897	3	B 25.2 24 9 24 7 24 4 24 1 9 28 4 28 0 27 B 27 4 27.2
58	8.83 996	183	8.84 100	164 182	1.15 900	9.99 896	2	10 31.5 31.2 30 0 30 5 30 2
59	8.84 177	181	8.84 28z	162	1.15 718	9.99 893	I	10 04 5 93 5 92 5 91.5 90 5
60	8.84 358		8.84 464		1.15 536	9.99 B94	0	50 157 5 155 8 154 2 152 5 150 8
	L Uos	d	L Cot	c d	L Tan	L Sin	1 '	РР
L	<u> </u>	-	·	_		<u> </u>	<u> </u>	

.....

~	c	ì

4°

*94° 184° *274°

52					4 °	+	94°	184° *274°
·	L Sin	d	L Tan	cd	L Cot	L Cos		P P
0	8.84 358		8.84 464		1.15 536	9.99 894	60	182 181 179 178 177 1 3.0 3.0 3.0 3.0 3.0 3.0 2 6.1 6.0 6.0 5.9 5.9
1	8.84 539	181	8.84 646	182	1.15 354	9.99 893	59	3 9.1 9.0 9.0 8.9 8.8
2	8.84 718	179	8.84 826	180 180	1.15 174	9.99 892	58	4 12.1 12.1 11.0 11.0 11.8
3	8.84 897	179 178	8.85 006	179	1.14 994	9.99 891	57	6 18.2 18.1 17.9 17.8 17.7
4	8.85 075	177	8.85 185	178	1.14 815	9.99 891	56	7 21.2 21.1 20.9 20.8 20.6 8 24.3 24.1 23.9 23 7 23 6
5	8.85 252 8.85 429	177	8.85 363 8.85 540	177	1.14 637 1.14 460	9.99 890 9.99 889	55 54	0 27.3 27.2 26.8 26.7 26.6
7	8.85 605	176	8.85 717	177	1.14 283	9.99 888	53	20 00.7 00.1 50.7 50.3 50.0
8	8.85 780	175	8.85 893	176	1.14 107	0.00 887	52	30 91.0 90.5 89.5 89 0 88.5 40 121.3 120.7 119.3 118.7 118.0
9	8.85 955	175	8.86 069	176	1.13 931	9.99 886	51	50 151 7 150.8 149.2 148.3 147.5
10	8.86 128	173	8.86 243	174 174	1.13 757	9.99 885	50	176 175 174 173 172 1 2.9 2.9 2.9 2.9 2.9 2.9
11	8.86 301	173 173	8.86 417	174	1.13 583	9.99 884	49	I 2.9
12 13	8.86 474 8,86 645	171	8.86 591 8.86 763	172	1.13 409 1.13 237	9.99 883 9.99 882	+8 +7	4 11 7 11.7 11.6 11.5 11.5 5 14.7 14.6 14.5 14.4 14.3
14	8.86 816	171	8.86 935	172	1.13 065	9.99 881	46	δ 17.6 17 5 17.4 J7.3 17.2
15	8.86 987	171	8.87 106	171	1.12 894	9.99 880	45	7 20.5 20.4 20.3 20.2 20.1
16	8.87 156	169	8.87 277	171	1.12 723	9.99 879	44	9 264 26.2 261 260 25.8
17	8.87 325	169	8.87 447	170	1.12 553	9.99 879	43	10 29.3 29 2 29.0 28.8 28.7 20 58.7 58.3 58.0 57.7 57.3 30 88.0 87 5 87.0 86.5 86.0
18	8.87 494 8.87 661	169 167	8.87 616	169 169	1.12 384	9.99 878	42	20 58.7 58.3 58.0 57.7 57.3 30 88.0 87 5 87.0 86.5 86.0 40 117.3 116.7 116.0 115.3 114.7
19		168	8.87 783	168	1.12 215	9.99 877	41	50 146.7 145.8 145 0 144.2 143.3
20	8.87 829	166	8.87 953	167	1.12 047	9.99 876	40	171 170 169 168 167 1 2.8 2.8 2.8 2.8 2.8 2.8
21 22	8.87 995 8.88 161	166	8.88 120 8.88 287	167	1.11 880	9.99 875 9.99 874	39 38	2 5.7 5.7 5.6 5.6 5.6
23	8.88 326	165	8.88 453	166	1.11 547	9.99 873	37	3 8.0 8.5 8.4 8.4 8.4 4 11.4 11.3 11.3 11.2 11 1
24	8,88 490	164	8.88 618	165	1.11 382	9.99 872	36	5 14 2 14.2 14.1 14.0 13.9
25	8.88 654	164	8.88 783	165	1.11 217	9.99 871	35	
26	8.88 817	163 163	8.88 948	165 163	1.11 052	9.99 870	34	8 22 8 22.7 22.5 22.4 22.3
27	8.88 980	162	8.89 111	163	1.10 889	9.99 869	33	9 25 6 25.5 25.4 25.2 25.0 10 28.5 28.3 28.2 28.0 27 8
28	8.89 142	162	8.89 274	163	1.10 726	9.99 868	32	20 57.0 56.7 56.3 56.0 55.7 30 85.5 85.0 84.5 84.0 83.5
29	8.89 304	160	8.89 437	161	1.10 563	9.99 867	31	40 114.0 113.3 112.7 112.0 111.3
30	8.89 464	161	8.89 598	162	1.10 402	9.99 866	30	166 165 164 163 162
31	8.89 625	159	8.89 760	160	1.10 240	9.99 863	29	2 5.5 55 55 54 5.4
32	8.89 784	159	8.89 920	160	1.10 080	9.99 864	28 27	4 11.1 11.0 10.0 10.0 10.8
33	8.89 943	159	8.90 080	160	1.09 920	9.99 863	26	5 138 138 137 13.6 13.5 6 16.6 16.5 16.4 16.3 16.2
34	8.90 102 8.90 260	158	8.90 240 8.90 399	159	1.09 760 1.09 601	9.99 862 9.99 861	25	7 10.4 10 2 10.1 10.0 18.0
35 36	8.90 417	157	8.90 557	158	1.09 443	9.99 860	24	8 22.1 22 0 21.9 21.7 21.6 9 24 9 24.8 24.6 24.4 24.3
37	8.90 574	157	8.90 715	158	1.09 285	9.99 859	23	10 27 7 27.5 27.3 27.2 27.0
38	8.90 730	156	8.90 872	157	1.09 128	9.99 858	22	20 55.3 55.0 54.7 54.3 54.0 30 83.0 82.5 82.0 81.5 81.C
39	8.90 885	155 155	8.91 029	157 156	1.08 971	9.99 857	21	40 11C 7 110.0 109.3 108.7 108.0 50 138.3 137.5 136.7 135.8 135.c
40	8.91 040	155	8.91 185	155	1.08 815	9.99 856	20	161 160 159 158 157
41	8.91 195	154	8.91 340	155	1.08 660	9.99 855	19 18	1 2.7 2.7 2.6 2.6 2.6 2 54 5.3 5.3 5.3 5.2
42 43	8.91 349 8.91 502	153	8.91 495 8.91 650	155	1.08 505 1.08 350	9.99 854 9.99 853	10	3 8.0 8.0 8.0 7.9 7.8
44	8.91 655	153	8.91 803	153	1.08 197	9.99 852	16	5 13.4 13.3 13.3 13.2 13.2
44	8.91 807	152	8.91 957	154	1.08 043	9.99 851	15	
46	8.91 959	152 151	8.92 110	153	1.07 890	9.99 830	14	8 21. 2 21. 3 21.2 21.1 20.0
47	8.92 110	151	8.92 262	152	1.07 738	9.99 848	13	0 24.2 24.0 23.8 23.7 23.6 10 26.8 26.7 26.5 26.3 26.2
48	8.92 261	150	8.92 414	151	1.07 586	9.99 847	12	20 53.7 53.3 53.0 52.7 52.3
49 60	8.92 411	150	8.92 565	151	1.07 435	9.99 846	11	40 107.3 106.7 106.0 105.3 104.7
50	8.92 561	149	8.92 710	150	1.07 284	9.99 845 9.99 844		50 134.2 133.3 132.5 131.7 130.8 156 155 154 153 152
51 52	8.92 710 8.92 859	149	8.92 866 8.93 016	150	1.07 134	0.00 843	8	11 2.6 2.6 2.6 2.6 2.5
53	8.93 007	148	8.93 165	149	1.06 835	9.99 8.42	7	2 5.2 5.2 5.1 5.1 5.1 3 78 7.8 7.7 7.6 7.6
54	8.93 154	147	8.93 313	148	1.06 687	0.00 841	6	
55	8.93 301	147 147	8.93 462	149	1.06 538	9.99 8.40	5	6 15.6 15.5 15.4 15.3 15.2
56	8.93 448	147	8.93 609	147	1.06 391	9.99 839	4	8 20.8 20.7 20.5 20.4 20.3
57	8.93 594	146	8.93 756	147	1.06 244	9.99 838	3	0 23.4 23.2 23.1 2 0 22.8
58 59	8.93 740 8.93 885	145	8.93 903	146	1.06 097	9.99 837 9.99 836	2	20 52.0 51.7 51.3 51.0 50.7
60	8.94 030	145	8.94 049	146	1.05 951	9.99 834	0	40 104.0 103.3 102.7 102.0 101.3
—	1.04 030	d	L Cot	cd	L Tan	L Sin	† Ť	<u>50 130.0 129.2 128.3 127.5 126.7</u> P P
L		1 - 1		1 <u> </u>	1	<u> </u>		I

					5°			*95° 185° *275° 53
•	L Sin	d	L Tan	c d	L Cot	L Cos		РР
0	8.94 030		8.94 195		1.05 805	9.99 834	60	151 149 148 147 146 1 2 5 2.5 2.5 2.4 2.4
I	8.94 174	144 143	8.94 340	145 145	1.05 660	9.99 833	59	2 50 5.0 4.9 4.9 4.9 3 7.6 7.4 7.4 7.4 7.3 4 10.1 9.9 9.9 9.8 9.7
2	8.94 317	144	8.94 485	145	1.05 515	9.99 832 9.99 831	58	5 12.6 12.4 12.3 12.2 12.2
3	8.94 461 8.94 603	142	8.94 630 8.94 773	143	1.05 370 1.05 227	9.99 830	57 56	6 15.1 14.9 14.8 14.7 14.6
5	8.94 746	143	8.94 917	144	1.05 083	9.99 829	55	8 20.1 19.0 19.7 19.6 19.5
ŏ	8.94 887	141 142	8.95 060	143 142	1.04 940	9.99 828	54	9 22.6 22.4 22.2 22.0 21.9 10 25.2 24.8 24.7 24.5 24.3 20 50.3 49.7 49.3 49.0 48 7
7	8.95 029	141	8.95 202	142	1.04 798	9.99 827	53	20 50.3 49.7 49.3 49.0 48 7 30 75.5 74.5 74.0 73.5 73.0
8	8.95 170	140	8.95 344	142	1.04 656	9.99 825	52	40 100.1 99.3 98.7 98.0 97.3
9 10	8.95 310	140	8.95 486	141	1.04 514	9.99 824	51 50	145 144 143 142 141
11	8.95 450 8.95 589	139	8.95 627 8.95 767	140	I.04 373 I.04 233	9.99 823 9.99 822	49	1 2.4 2.4 2.4 2.4 2.4 2.4
12	8.95 728	139	8.95 908	141	1.04 092	9.99 821	48	3 7.2 7.2 7.2 7.1 7.0
13	8.95 867	139 138	8.96 647	139 140	1.03 953	9.99 820	47	4 97 9.6 9.5 9.5 9.4 5 12.1 12.0 11.9 11.8 11.8
14	8.96 005	138	8.96 187	138	1.03 813	9.99 819	46	5 12.1 12.0 11.9 11.8 11.8 6 14.5 14.4 14.3 14.2 14.1 7 16.9 16.8 16.7 16.6 16.4 8 19.3 19.2 19.1 18.9 18.8
15	8.96 143 8.96 280	137	8.96 325	139	1.03 675	9.99 817	45	8 19.3 19.2 19.1 18.9 18.8
16 17	8.90 280 8.96 417	137	8.96 464 8.96 602	138	1.03 536	9.99 816 9.99 815	44	10 24.2 24.0 23.8 23.7 23.5
17	8.96 553	136	8.90 002 8.96 739	137	1.03 398 1.03 261	9.99 815 9.99 814	43 42	20 48.3 48.0 47.7 47.3 47.0
19	8.96 689	136	8.96 877	138	1.03 123	9.99 813	41	40 96.7 96.0 95.3 94.7 94.0
20	8.96 825	136 135	8.97 013	136 137	1.02 987	9.99 812	40	140 139 138 137 136
21	8.96 960	135	8.97 150	135	1.02 850	9.99 810	39	1 2.3 2.3 2.3 2.3 2.3
22 23	8.97 095 8.97 229	134	8.97 285	136	1.02 715	9.99 809	38	3 7.0 7.0 6.9 6.8 6.8
24	8.97 363	134	8.97 421	135	1.02 579 1.02 444	9.99 808 9.99 807	37 36	4 9.3 9.3 9.2 9.1 9.1 5 11 7 11.6 11.5 11.4 11.3 6 14.0 13.9 13.8 13.7 13.6
25	8.97 496	133	8.97 556 8.97 691	135	1.02 444	9.99 806	35	6 14.0 13.9 13.8 13.7 13.6
26	8.97 629	133	8.97 825	134	1.02 175	9.99 804	34	8 18.7 18.5 18.4 18.3 18.1
27	8.97 762	132	8.97 959	134	1.02 041	9.99 803	33	10 23.3 23.2 23.0 22.8 22.7
28	8.97 894	132	8.98 092	133 133	1.01 908	9.99 802	32	10 23.3 23.2 23.0 22.8 22.7 20 40.7 40.3 40.0 45.7 45.3 30 70.0 69.5 69.0 68.5 68.0
29	8.98 026	131	8.98 225	133	1.01 775	9.99 801	31	40 93.3 92.7 92.0 91.3 90.7
30	8.98 157	131	8.98 358	132	1.01 642	9.99 800	30	135 134 133 132 131
31	8.98 288	131	8.98 490	132	1.01 510	9.99 798	29	1 2.2 2.2 2.2 2.2 2.2 2 4.5 4.3 4.4 4.4 4.4 3 6.8 6.7 6.6 6.6 6.6
32 33	8.98 419 8.98 549	130	8.98 622	131	1.01 378	9.99 797	28	3 6.8 6.7 6.6 6.6 6.6 4 9.0 8.9 8.9 8.8 8.7
34	8.98 679	130	8.98 753 8.98 884	131	1.01 247	9.99 796	27 26	5 11.2 11.2 11.1 11.0 10.9
35	8.98 808	129	8.99 01 3	131	1.00 985	9.99 793	25	
36	8.98 937	129 129	8.99 145	130 130	1.00 855	9.99 792	24	9 20.2 20.1 20.0 10.8 10.6
37	8.99 066	128	8.99 275	130	1.00 725	9.99 791	23	10 22.5 22.3 22.2 22.0 21.8
38	8.99 194	128	8.99 403	129	1.00 595	9.99 790	22	30 67.5 67.0 66.5 66.0 65.5
39 40	8.99 322	128	8.99 534	128	1.00 466	9.99 788	21 20	40 90.0 89.3 88.7 88.0 87.3 50 112.5 111.7 110.8 110.0 109.2
41	8.99 577	127	8.99 662	129	1.00 338	9.99 787 9.99 786	10	130 129 128 127 126
42	8.99 704	127	8.99 919	128	1.00 081	9.99 785	18	
43	8.99 830	126 126	9.00 046	127	0.99 954	9.99 783	17	4 8.7 8.0 8.5 8.3 8.4
44	8.99 956	126	9.00 174	127	0.99 826	9.99 782	16	5 10.8 10.8 10.7 10.0 10.5
45 46	9.00 082 9.00 207	125	9.00 301	126	0.99 699	9.99 781	15	7 15.2 15.0 14.9 14.8 14.7
47	9.00 207	125	9.00 427	126	0.99 573	9.99 780	14 13	8 17.3 17.2 17.1 16.9 16.8 9 19.5 19.4 19.2 19.0 18.9 10 21.7 21.5 21.3 21.2 21.0
48	9.00 456	124	9.00 553	126	0.99 447 0.99 321	9.99 778	13	10 21.7 21.5 21.3 21.2 21.0
49	9.00 581	125	9.00 805	126	0.99 195	9.99 776	11	20 65.0 64.5 64.0 62.5 62.0
50	9.00 704	123	9.00 930	125	0.99 070	9.99 775	10	50 108.3 107.5 106.7 105.8 105.0
51	9.00 828	123	9.01 055	124	0.98 945	9.99 773	2	125 124 123 122 121 1 2.1 2.1 2.0 2.0 2.0
52 53	9.00 951 9.01 074	123	9.01 179	124	0.98 821	9.99 772 9.99 771	87	2 4.2 4.1 4.1 4.1 4.1 4.0
54	9.01 196	122	9.01 303 9.01 427	124	0.98 573	9.99 769	6	4 8.3 8.3 8.2 8.1 8.1
55	9.01 318	122	9.01 427	123	0.98 450	9.99 768	5	5 10.4 10.3 10.2 10.2 10.1 6 12.5 12.4 12.3 12.2 12.1
56	9.01 440	122 121	9.01 673	123	0.98 327	9.99 767	4	7 14.6 14.8 14.4 14.2 14.1
57	9.01 561	121	9.01 796	123	0.98 204	9.99 765	3	8 10.7 10.5 10.4 10.3 10.1 0 18.8 18.6 18.4 18.1 18.2
58	9.01 682	121	9.01 918	122	0.98 082	9.99 764	2	10 20.8 20.7 20.5 20.3 20.2
59	9.01 803	120	9.02 040	122	0.97 960	9.99 763	I	30 62.4 62.0 61.4 61.0 60.4
60	9.01 923	<u> </u>	9.02 162	<u> </u>	0.97 838	9.99 761	0	40 83.3 82.7 82.0 81.3 80.7 50 104.2 103.3 102.5 101.7 100.8
L	L Cos	d	L Cot	cd	L Tan	L Sin	Ľ '	РР

2	

*96° 186° *276°

					6°			*96° 186° *276°					
	L Sin	d	L Tan	շ վ	L Cot	L Cos				РJ	>		
D	9.01 923		9.02 162		0.97 8,38	9.99 761	60						
τ	9.02 043	120 120	9 02 283	121	0.97 717	9 99 760	59		121	120	119	118	
2	9.02 163	120	9.02.404	121	0.97 5 96	9 99 759	58	I	2.0	2.0	2.0	2.0	
3	9 02 253	119	9.02 525	120	V 97 475	9-99 757	57	2	4.0	4.0	4.0	3.9	
4	9.02 402 9.02 520	118	9 02 645 9.02 766	121	0.97 355	0.90 756	56	3	0.0 8.1	6.0	6.0	5.9	
5 6	9.02 520	110	9.02 700	119	097234 097115	9 99 755 9·99 753	55 54	45	101	8.0 100	7.9 99	7.y ŋ 8	
7	9.02 757	118	9 U3 00 <u>5</u>	120	0.96 995	9.99 752	53	ő	12 I	12.0	11.9	II B	
8	9 02 874	118	9 03 124	119 118	0.96 876	9 99 751	52	78	14.1	140	13.9	138	
9 10	9 02 992	117	003242	119	0.96 758	9- <u>99 749</u>	51	9	161 182	16 D 18 D	15 9 17.8	15.7 17.7	
10	9.03 109 9.03 226	117	9 03 361 9 03 479	118	0 96 63 9 0.96 52 1	9 99 748	50	10	20.2	20 D	19.8	197	
12	9 03 342	116 116	9 03 597	118	0.90 521	9-99 747 9 99 745	49 48	20	40.3	40.0	397	39-3	
13	0.03.458	116	9 03 714	117 118	0.96 286	9-99 744	47	30 40	60.5 80.7	60.0 80 D	595 79-3	59-0 787	
14	9 03 574	116	y ng 832	115	0.96 168	y 99 742	46			100.0			
15	9.03 690 9.03 805	115	9.03 948	117	0.96 052	9 99 74 r	45						
17	9.03 920	115	904065 901181	τī	0 95 935	0.99 740	44		117	116	115	114	
16	9.04.034	114	9.04 297	116	0 95 819 0.95 703	9 99 738 9 99 737	43 42	I	2.0	I g	19	1.9	
19	0 04 I 40	115 113	9.04.413	115 115	0 95 587	9.99 736	41	2	39 58	3-0) 5.8	3.8 5 8	3.8 5.7	
20	<u>9 04 262</u>	114	9 04 528	115	0 95 472	<u> 9 99 734</u>	40	4	7.8	77	77	76	
21 22	9 04 370 9.04 490	114	004043	115	D.95 357	9 99 733	32	5	y 8	97	յն	9-5	
23	9.04490	113	1).04 758 1).04 671	115	0 0 5 242	9 99 731 9.99 730	38 37	ն 7	117 13 fi	116 13.5	11.5	11:4 13 3	
24	9.04 715	112	9 04 987	114	0 95 013	9.99739	36	6	15.0	155	153	152	
25	ŋ.04 828	113 112	ý 05 INI	114 113	0.94 899	9 99 727	35	- 9	17.6	17.4	17.2	171	
26	9 04 940	112	9.05 214	114	094786	9.99 726	34	10	195 390	193 38.7	10 Z 38 3	19.0 18.0	
27 28	9.05 052 9.05 164	112	9.05 328	113	0.04 672	9.99 724	33	30	58 5	58 U	57 5	57 0	
29	1 05 275	111	9.05.441 9.05.553	112	10 94 559 10.94 447	9.99 723 9.99 721	32 31	40	78 0	77-3	76.7	76.U	
30	9.05 386	111	9.05.000	113	0.94 334	9.99 720	30	50	97 5	96.7	95 8	95.0	
31	9.05 497	110	9 05 778	112	0.04 222	9.99 718	29		113	112	111	110	
32	9.05 607	110	1) US 800	112	0.94 110	9.99 717	28	1 2	1.9 3.8	1.9 3.7	1.8 37	1.8 3.7	
33	9.05 717 9.05 827	110	9 ກໍບັນ02	JU	0.93 998	9.99 716	27	3	5.6	56	5.6	5-5	
34 35	9.05 937	110	9 06 113 9.06 224	111	0 13 887 0.93 776	9.99 714 9.99 713	26 25	4	7.5	7-5	7.4	7-3	
36	9 06 040	109 100	9.06 335	111 110	0.93 665	9.99 711	24	5 6	94 113	9.3 11.2	92 11.1	9.2 11.0	
37	9.06 1 55	100	ŋ D O 445	110	0.93 555	9.99 710	23	7	13.2	131	13.0	12.8	
3B 39	9.06 264 9.06 372	108	9 06 556	110	D.93 444	0 99 708	22	8	15.1	149	148	14.7	
40	9.00 372	109	ŋ uố 666 ŋ.ofi 775	109	0.93 334	9.99 707	21 20	9 10	17.0	16.8 18.7	10.0 18.5	16.5 183	
41	9.00 589	108	0 06 885	ITD	0.93 225	9.99 705	19	20	37.7	37.3	37.0	36.7	
42	9 06 696	107 108	9 D6 994	109 109	0.93 006	9.99 702	18	30	56.5	56.0	55.5	55.0	
43	9.06 804 	107	9 07 103	109	0.92 897	9.99 701	17	40 50	75-3 94-2	74-7 93-3	74.0 92.5	73-3 91.7	
44 45	9.06 911 9.07 018	107	9.07 211 9.07 320	109	0.92 789	9.99 699 8.00 608	16		,	ال-در		···	
45 40	9.07 124	100	9.07 320 9.07 428	1 DŚ	0.92 680 0.92 572	9.99 698 9.99 696	15 14		109	108	107	106	
47	9.07 231	107 106	9.07 536	108	0.92 464	9.99 695	13	I	1.8	1.8	1.8	1.8	
48	9.07337	105	9 07 643	107 108	0.92 357	9 99 693	12	23	3.6 5.4	3.6 5.4	36 5.4	3.5 5.3	
49 50	9.07 442 9.07 546	ίδα	9.07 751	107	0.92 249	9 99 692	11	4	7.3	7.2	7.I	7.1	
51	9.07 653	105	9-07 858 9-07 964	106	0.92 142 0.92 030	9.99 690 9.99 68g	10 9	5	9.I	9.0	8.9	8.8	
52	9.07 758	105	9.08 071	107	0.92 030 0.91 929	9.99 687	8	67	10.9 12.7	10.8 12.0	10.7 12.5	10.6 12.4	
53	9.07863	105 105	9.08 177	106 106	0.91 823	9.99 686	7	8	14.5	14.4	14.3	14.1	
54 55	9.07 968 9.08 072	104	9.08 283	106	0.91 717	9.99 684	6	9	16.4	16.2	16.0	15.9	
56	9.08 072 9.08 176	104	9.08 389 9.08 495	106	0.91 61 1 0.91 505	9.99 683 9.99 681	5 4	10 20	18.2 36.3	18.0 36.0	17.8 35.7	17.7 35-3	
57	9.08 280	104	g.08 600	105	0.gI 400	9.99 680 9.99 680	3	30	54-5	54.0	53.5	33-3 53.0	
58	9.08 383	103 103	9.08 705	105 705	0.91 295	9.99 678	2	40	72.7	72.0	71.3	70.7	
59	9.08 486	103	9.08 810	104	0.91 190	9-99 677	I	50	90.8	90.0	89.2	88.3	
60	9.08 58g	<u> </u>	9.08 914		0.91 086	9.99 675							
	L Cos	d	L Cot	c di	L Tan	L Sin	'			РР	,		

		LSIN	a	LIan	ca	L COL	L Cos				P	Ľ'	
	0	9.08 589	103	9.08 914	105	0.91 086	9.99 675	60	i	105	104	103	102
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-		-				II				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							9.99 672	58	2	3.5	3.5	34	3.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											52		5.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6				103				5				
									7				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	9.09 405		9.09 7.12		0.90 258	9.99 663	52	8	14.0	13.9	13.7	13.6
		9.09 500					9.99 661	51					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			101				9 99 659						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					101	0.80 820					520		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									40	70.0	69.3	68.7	68.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9.10 006		9.10 353		0.89 647			50	87.5	86.7	85.8	85.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	9.10 100		9.10 454		0.89 546	9.99 651	45	ļ	101	100	99.1	98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										17		1.6	1.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			- 98		100					34	3.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0.89 044							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	9 10 697		9.11 056		0.88 944	9 99 642	39					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0.88 845	9.99 640		'7	118	11.7	11.6	11.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			97		99								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					- 99								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	9.11 281		9.11 649		0.88 351	9.99 632			50 5	500		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	911377				0.88 253	9.99 630	32	40	67.3	66.7	66 0	65.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				the second se	98				50	84.2	83.3	82.5	81.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-						I	971	96	95 1	94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										1.6	1.6	1.6	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.87 705							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34						9 99 620	26					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									6	9.7	9.6		9.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			95						7	113	112	111	110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39		- 94			0 87 187	9 99 612						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40		-	9.12 909			9 99 610						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41						9 99 608				32 0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42								30	48 5	48.0	47.5	47.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					95								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0 86 616			501	00.0	30.0	/9.2	10.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							9.99 600		Ι.				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							9 99 598						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0.86 333							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			92						5				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0.85 959		8	6	9.3	92	9.1	9.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9.13 722		9.14 134		0.85 866	9 99 588	7	7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
57 9.14 985 91 9.14 92 0.85 9.99 57 3 20 31.0 30.7 30.3 30.0 57 9.14 96 9.14 50 9.14 50 3 30 46.5 46.0 45.5 45.0 58 9.14 75 90 9.14 597 93 0.85 493 995 579 20 46.5 46.0 45.5 45.0 59 9.14 266 91 9.14 688 91 0.85 312 9.99 579 40 62.0 61.3 60.7 60.0 60 9.14 356 92 0.85 220 9.99 575 0 50 77.5 76.7 75.8 75.0													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1 1					20	31.0	30.7	30.3	30.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58									46.5	46.0	45.5	
60 9.14 356 90 9.14 780 92 0.85 220 9.99 575 0 50 77.5 10.7 75.0 75.0	59	9.14 266		9.14 688		0.85 312		•1					
L Cos d L Cot c d L Tan L Sin P P						0.85 220	9.99 575	0	301	11.51			. /5.0
		L Cos	d	L Cot	c d	L Tan	L Sin		<u> </u>		ΡĪ	2	

7°

LSin d LTan cd LCot LCos

*172° 202° *352°

82°

55

*97° 187° *277°

ΡP

					8		~4	18° 18	38° *	278°		
·	L Sin d L Tan c d L Cot L Cos P P											
0	9.14 356	89	9.14 780	92	0.85 220	9.99 575	60		92	91	90	
I	9.14 445	-	9.14 872	-	0.85 128	9.99 574	59	I	1.5	1.5	1.5	
2	9.14 535	90 89	9.14 963	91 01	0.85 037	9.99 572	58	2	3.1	3.0	3.0	
3	9.14 624	90	9.15 054	91 91	0.84 940	9.99 570	57	3	4.6	4.6	4.5	
4	9.14 714	-	9.15 145		0.84 855	9.99 568	56	4	6.1	6.1	6.0	
5	9.14 803	89 88	9.15 236	91 01	0.84 764	9.99 566	55	5	7.7	7.6	7.5	
6	9.14 891	89	9.15 327	91 90	0.84 673	9.99 565	54	6	9.2	9.1	9.0	
7	9.14 980	89	9.15 417		0.84 583	9.99 563	53	7	10.7	10.6	10.5	
8	9.15 069	88	9.15 508	91 90	0.84 492	9.99 561	52	8	12.3	12.1	12.0	
9	9.15 157	88	9.15 598	90	0.84 402	9.99 559	51	9	13.8	13.6	13.5	
10	9.15 245	88	9.15 688	89	0.84 312	9.99 557	50	10	15.3	15.2	15.0	
11	9.15 333	88	9.15 777		0.84 223	9.99 556	49	20 30	30.7 46.0	30.3	30.0 45.0	
12	9.15 421	87	9.15 867	89	0.84 133	9.99 554	48	40	61.3	45.5 60.7	60.0	
13	9.15 508	88	9.15 956	90	0.84 044	9.99 552	47	50	76.7	75.8		
14	9.15 596	87	9.16 046	80	0.83 954	9.99 550	46	50 1				
15	9.15 683	87	9.16 135	80	0.83 865	9.99 548	45		89	88	87	
16	9.15 770	87	9.16 224	88	0.83 776	9.99 546	-44	I	1.5	1.3	1.4	
17	9.15 857	87	9.16 312	80	0.83 688	9.99 545	43	2	3.0	2.9	2.9	
18	9.15 944	86	9.16 401	88	0.83 599	9.99 543	42	3	4.4	4.4	4.4	
19	9.16 030	86	9.16 489	88	0.83 511	9.99 541	41	4	5.9	5.9	5.8	
20	0.16 116	87	9.16 577	88	0.83 423	9.99.539	40	5	74	7-3 8.8	7.2	
21	9.16 203	86	9.16 665	88	0.83 335	9.99 537	39	6	8.9		8.7	
22	9.16 289	85	9.16 753	88	0.83 247	9.99 535	38	7	10.4	10.3	10.2	
23	9.16 374	86	9.16 841	87	0.83 159	9.99 533	37	8	11.9	11.7	11.6	
24	9.16 460	85	9.16 928	88	0.83 072	9.99 532	36	9	13.4	13.2	13.0	
25 26	9.16 545 9.16 631	8Ğ	9.17 016 9.17 103	87	0.82 984 0.82 897	9.99 530 9.99 528	35 34	10	14.8	14.7	14.5	
	-	85		87				20 30	29.7	29.3	29.0	
27 28	9.16 716 9.16 801	85	9.17 190 9.17 277	87	0.82 810	9.99 526 9.99 524	33 32	40	44.5 59.3	44.0 58.7	43.5 58.0	
20	9.16 886	85	9.17 363	86	0.82 637	9.99 522	31	50	74.2	73.3	72.5	
30	9.16 970	84	0.17 480	87			30					
		85	9.17 450	86	0.82 550 0.82 464	9.99 520	29		86	85	84	
31 32	9.17 055 9.17 139	84	9.17 536	86	0.82 378	9.99 518 9.99 517	29	I	1 1.4	1.4	1.4	
33	9.17 223	84	9.17 708	86	0.82 292	9.99 51 5	27	2	2.9	2.8	2.8	
34	9.17 307	84	9.17 794	86	0 82 206	9.99 513	26	3	4.3	4.2	4.2	
35	9.17 391	84	9.17 880	86	0.82 120	9.99 511	25	4	5.7	5.7	5.6	
36	9.17 474	83	9.17 965	85	0.82 035	9.99 509	24	5	7.2 8.6	7.1	7.0	
37	9.17 558	84	9.18 051	86	0.81 040	9.99 507	23			8.5	8.4	
38	9.17 641	83	9.18 136	85	0.81 804	9.99 505	22	7	10.0	9.9	9.8	
39	9 17 724	83	9.18 221	85	0.81 779	9.99 503	21	-	11.5	11.3	11.2 12.6	
40	9.17 807	83	9.18 306	85	0.81 694	9 99 501	20	9	12.9	12.8		
41	9.17 890	83	9.18 391	85	0.81 600	9.99 499	19	10	14.3	14.2	14.0	
42	9.17 973	83	9.18 475	84	0.81 525	9.99 497	18	20 30	28.7 43.0	28.3	28.0 12.0	
43	9.18 055	82	9.18 560	85 84	0.81 440	9.99 495	17	- 30 - 40	57.3	56.7	56.0	
44	9.18 137		9.18 644		0.81 356	9.99 494	16	50	71.7	70.8	70.0	
45	9.18 220	83	9.18 728	84 84	0.81 272	9.99 492	15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
46	9.18 302	82 81	9.18 812	84	0.81 188	9.99 490	14		83	82	81	
47	9.18 383	1	9.18 896	83	0.81 104	9.99 488	13	I	1.4	1.4	1.4	
48	9.18 465	82 82	9.18 979	84	0.81 021	9.99 486	12	2	28	2.7	2.7	
49	9.18 547	81	9.19 063	83	0.80 937	9.99 484	11	3	4.2	4.1	4.0	
50	9.18 628	81	9.19 146	83	0.80 854	9.09 482	10	4	5.5	5.5 6.8	5.4 6.8	
51	9.18 709	81	9.19 229	83	0.80 771	9.99 480	9	5	6.9 8.3	0.8	0.8 8.1	
52	9.18 790	81	9.19 312	83	0.80 688	9.99 478	8			1		
53	9.18 871	81	9.19 395	83	0.80 605	9.99 476	7	78	9.7	9.6	9.4 10.8	
54	9.18 952	81	9.19 478	83	0.80 522	9.99 474	6		11.1	10.9	10.8	
55	9.19 033	80	9.19 561	82	0.80 439	9.99 472	5	9	1	-	1	
56	9.19 113	80	9.19 643	82	0.80 357	9.99 470	4	10	13.8	13.7	13.5	
57	9.19 193	80	9.19 725	82	0.80 275	9.99 468	3	20	27.7	27.3	27.0	
58	9:19 273	80	9.19 807	82	0.80 193	9.99 466	2	30 40	41.5	54-7	40.5	
59	9.19 353	80	9.19 889	82	0.80 111	9.99 464	I	50	69.2	68.3	67.5	
60	9.19 433		9.19 971		0.80 029	9.99 462	0					
1	L Cos	d	L Cot	cd	L Tan	L Sin	1		Р	Р		
L	L Cos d L Cot c d L Tan L Sin ' P P *171° 261° *351° 81°											

8°

*98° 188° *278°

					9°			*99 °	189°	*279	a	
'	L Sin	d	L Tan	c d	L Cot	L Cos				PP	•	
0	9.19 433	80	9.19 971	0.	0.80 029	9.99 462	60					
I	9.19 513		9.20 053	82	0.79 947	9.99 460	59		80	79	78	77
2	9.19 592	79 80	9.20 134	81 82	0.79 866	9.99 458	58	I	1.3	1.3	10	1.3
3	9.19 672	79	9.20 216	81	0.79 784	9.99 456	57	2	2.7	2.6	2.6	2.6
4	9.19 751	79	9.20 297	81	0.79 703	9-99 454	56	3	4.0	4.0	3.9	3.8
5	9.19 830 9.19 909	79	9.20 378 9.20 459	81	0.79 622 0.79 541	9.99 452	55	4	5.3	5.3	5.2	5.1
	9.19 989	79	9.20 459 9.20 540	81	0.79 460	9.99 450 9.99 448	54 53	5	6.7 8.0	6.6	6.5	6.4
7	9.20 067	79	9.20 540	81	0.79 379	9.99 446	52	7	9.3	7.9 9.2	7.8 9.1	7.7 9.0
9	9.20 145	78	9.20 701	80	0.79 299	9.99 444	51	8	10.7	10.5	10.4	10.3
10	9.20 223	78	9.20 782	81	0.79 218	9.99 442	50	9	12.0	11.8	11.7	11.6
11	9.20 302	79	9.20 862	80 0	0.79 138	9.99 440	49	10	13.3	13.2	13.0	12.8
12	9.20 380	78 78	9.20 942	80 80	0.79 058	9.99 438	48	20	26.7	26.3	26.0	25.7
13	9.20 458	77	9.21 022	80	0.78 978	9.99 436	47	30 40	40.0 53.3	39.5 52.7	39.0 52.0	38.5 51.3
14	9.20 535	78	9.21 102	80	0.78 898	9.99 434	46	50	66.7	65.8	65.0	
15	9.20 613 9.20 691	78	9.21 182 9.21 261	79	0.78 818 0.78 739	9.99 432 9.99 429	45 44			- • •	- 3. + 1	
16	9.20 768	77	-	Bó	0.78 659				76	75	74	73
17 18	9.20 708	77	9.21 341 9.21 420	79	0.78 580	9.99 427 9.99 425	43 42	I	1.3	1.2	1.2	1.2
19	9.20 922	77	9.21 499	79	0.78 501	9.99 423	41	2	2.5	2.5	2.5	2.4
20	9.20 999	77	9.21 578	79	0.78 422	9.99 421	40	3	3.8	3.8	3.7	3.6
21	9.21 076	77	9.21 657	79	0.78 343	914 99.9	39	4	5.1 6.3	5.0 6.2	4.9 6.2	4.9 6.1
22	9.21 153	77	9.21 736	79 78	0.78 264	9.99 417	38	6	7.6	7.5	7.4	7.3
23	9.21 229	76 77	9 21 814	79	0.78 186	9.99 41 5	37	7	8.9	8.8	8.6	8.5
24	9.21 306	76	9.21 893	78	0.78 107	9.99 413	36	8	10.1	10.0	9.9	9.7
25	9.21 382	76	9.21 971	78	0.78 029	9.99 411	35	9	11.4	11.2	11.1	11.0
26	9.21 458	76	9.22 049	78	0.77 951	9.99 409	34	10 20	12.7	12.5	12.3	12.2
27	9.21 534	76	9.22 127	78	0.77 873	9.99 407	33	30	25.3 38.0	25.0 37.5	24.7 37.0	24.3 36.5
28 29	9.21 610 9.21 685	75	9.22 205 9.22 283	78	0.77 795	9.99 404 9.99 402	32 31	40	50.7	50.0	49.3	48.7
30	9.21 761	76	9.22 361	78	0.77 639	9.99 400	30	50	63 3	62.5		60.8
31	9.21 836	75	9.22 438	77	0.77 562	9.99 398	20	1				
32	9.21 912	76	9.22 516	78	0.77 484	9.99 396	28	I	72	71 1.2	3	2
33	9.21 987	75	9.22 593	77	0.77 407	9.99 394	27	1 2	2.4	2.4	0.0 0.1	0.0 0.1
34	9.22 062	75	9.22 670	77	0.77 330	9.99 392	26	3	3.6	3.6	0.2	0.1
35	9.22 137	75 74	9.22 747	77	0.77 253	9.99 390	25	4	4.8	4.7	0.2	0.1
36	9.22 211	75	9.22 824	77	0.77 176	9.99 388	24	5	6.0	5.9	0.2	0.2
37	9.22 286	75	9.22 901	76	0.77 099	9.99 385	23	6	7.2 8.4	7.1	0.3	0.2
38	9.22 361	74	9.22 977	77	0.77 023	9-99 383	22 21	78	0.4 9.6	8.3 9.5	0.4 0.4	0.2 0.3
39 40	9.22 435	74	9.23 054	76	0.76 946	9.99 381	20	ŏ	10.8	10.6	0.4	0.3
	9.22 509	74	9.23 130	76	0.76 794	<u>9.99 379</u> 9.99 377	10	10	12.0	11.8	0.5	0.3
41 42	9.22 657	74	9.23 283	77	0.76 717	9.99 375	1 18	20	24.0	23.7	0.1	0.7
43	9.22 731	74	9.23 359	76	0.76 641	9.99 372	17	30	36.0	35.5	1.5	1.0
44	9.22 803	74	9.23 435	76	0.76 565	9.99 370	16	40 50	48.0 60.0	47·3 59.2	2.0 2.5	1.3
45	9.22 878	73 74	9.23 510	75 76	0.76 490	9.99 368	15	⁵⁰	0.00	39.4		1.7
46	9.22 952	74	9.23 586	75	0.76 414	9.99 366	14					
47	9.23 025	73	9.23 661	76	0.76 339	9.99 364	13	I	3	3	3	
48	9.23 098	73	9.23 737	75	0.76 263	9.99 362	12	1	75	78	77	
49	9.23 171	73	9.23 812	75	0.76 188	9.99 359	11 10	1	n 1			
50	9.23 244	73	9.23 887	75	0.76 113	9.99 357			1 13.			
51 52	9.23 317 9.23 390	73	9.23 962 9.24 037	75	0.70 038	9-99 355 9-99 353	8	1	2 39.	5 39.0 8 65.0	64.2	
53	9.23 462	72	9.24 112	75	0.75 888	9.99 353	1 7		3 35.		- 1 - 41	
54	9.23 535	73	9.24 186	74	0.75 814	9.99 348	6	1				
55	9 23 607	72	9.24 261	75	0.75 739	9.99 346	5	1	3		3	
56	9.23 679	72	9.24 335	74	0.75 665	9.99 344	4	1	70	3 75	74	
57	9.23 752	71	9.24 410	74	0.75 590	9.99 342	3	1	0 12	7 12.	5 12.3	
58	9.23 823	72	9.24 484	74	0.75 516	9.99 340	2	1	1 28			
59	9.23 895	72	9.24 558	74	0.75 442	9.99 337	I	1	× 62	3 62.	5 61.7	
60	9.23 967	L	9.24 632		0.75 368	9.99 335	· 0		3 3			
	L Cos	d	L Cot	cd	L Tan	L Sin	1 '			P 1	<u>ہ</u>	
	*170°	260	• * 350°		80°							
					00							

9°

***99° 189° *279°**

1	109	•

*100° 190° *280°

					10"			*100* 190* *280*				
	L Sin	d	L Tan	c d	L Cot	L Cos	d			I	P	
0	9.23 967		9.24 632		0.75 368	9 99 335		60				. 80
I	9.24 039	72	9.24 706	74	0.75 294	9 99 333	2	59		74	73	72
2	9.24 110	71	9-24 779	74	0.75 221	9-99 331	3	58 57	1 2	1:2	1.2 2.4	1.2 2.4
3	9.24 181	72	9.24 853	73	0.75 147	9.99 328 9.99 326	2	56	3	37	3.6	36
4 5	9.24 253 9.24 324	71	9.24 926 9.23 000	74	0.75 000	9.99 324	2	55	4	4.9	4.9	4 8
ŏ	9.24 395	71 71	9.25 073	73	0.74 927	9.99 322	23	54	5	6.2	6.1	6. 0
7	9.24 465	70	9.25 146	73	0.74 854	9.99 319	2	53	6	7-4	7-3 8.5	7.2 8.4
8	9.24 535	1 21	9.25 219	73	0.74 781	9.99 317	2	52	7	9.9	9.7	g.6
9 10	9.24 607	70	9.25 292	73	0.74 708	<u>9.99 315</u>	- 2	51 5D	9	11.1	11.0	10.8
	<u>9.24 677</u> 9.24 748	- 7I	9 25 365	- 72	0.74 635	9.99 313	3	49	ID	12.3	12.2	12.0
12	9.24 818	70	9.25 437 9.25 510	73	0.74 505	9.99 308	2	18	20	24.7	24.3	240
13	9.24 888	70	9.25 582	72	0.74 418	9.99 306	22	47	30		365 48.7	36.0 48.0
14	9.24 958	70	9.25 655	73	0.74 345	9.99 304		46	40	49.3		
15	0.25 02 B	70	9 25 727	72	D.74 273	9.99 301	3	-45	1			
16	9.25 098	70	9.25 799	72	0.74 201	9.99 299	2	44		71	70	69
17	9.25 168 9.25 237	69	9.25 871 9.25 943	72	0.74 129	9.99 297 9.99 294	3	43 42	I	1.2	1.2	I.2
19	9 25 307	70	9.26 013	72	0.73 985	9.99 292 9.99 292	2	41	23	2.4 3.6	2.3 3.5	2.3 3.4
2 0	9 25 376	бу ба	9.26 086	71	0.73 914	9.99 290	22	40		4.7	4.7	3.4 4.6
21	9.25 445	69	9.26 158	72	0.73 842	9.99 288		39	5	5.9	5.8	5.8
22	9 25 514	69	9.26 229	72	0.73 771	9.99 285	2	38	6	7.1	7.0	69
23 24	9.25 583 9.25 652	6ġ	9.20 301	71	0.73 699	999283	2	37	78	8.3	8.2	8.0
24	9.25 052	69	9.26 372	71	073 628	9.99 281 1) 99 278	3	30	ŷ	9.5 10.6	9-3 10.5	9.2 10.4
20	9.25 790	69 68	9.26 514	1 71	0.73 486	9.99 276	22	34	10	11.8	11.7	11.5
27	9.25 858	69	9.26 585	71	0.73 415	9.99 274		33	20	23.7	23.3	23.0
28	9.25 927	68	9.26 655	70	0.73 345	9.99 271	3	32	30	35-5	35.0	34 5
29 30	9.25 995	68	y.26 726	71	0.73 274	9 99 269	2	31	40	47.3	46-7	46.0
30 31	9.26 063 9.26 131	68	9 26 797	70	0.73 203	9.99 267	3	30	50	59.2	58.3	57-5
32	9.20 131 9.26 199	68	9.26 867 9.26 937	70	0.73 I 33 D.73 063	9.99 264 9.99 262	2	2y 28		68	67	66
33	9.26 267	68 68	9.27 008	71	0.72 992	9.99 260	2	27	r	т.т	1.1	I.I
34	9.26 335	68	9.27 078	70 70	0.72 922	9-99 257	3	26	2	23	2.2	2.2
35	9.26 403	67	9.27 148	70	0.72 852	9-99 255	3	25	3	3.4 4.5	3-4 4-5	3-3 4-4
36	y.26 470	68	9.27 218	70	0.72 782	9.99 252	2	24	5	5.7	5.6	5-5
37 38	9.26 538 9.26 605	67	9.27 288 9.27 357	69	0.72 712 0.72 643	9.99 250 9.99 248	2	23 22	6	68	6.7	6.6
39	9.25 672	67 67	9.27 427	70	0.72 573	9.99 245	3	21	7	79	7.8	7.7
4 0	9.26 739	67 67	9.27 496	69 70	0.72 504	9.99 243	22	20	8	9.1	8.9	8.8
41	9.26 806	67	9.27 566	70 ба	D.72 434	9.99 24I	3	19	9 10	10.2 11.3	10.0 11.2	99 11.0
42 43	9.26 873 9.26 940	67	9.27 635	69	0.72 365 0.72 296	9.99 238 0.00 236	2	18 17	20	22.7	22.3	22.0
43	9.20 940 9.27 007	67	9.27 704	6ġ	0.72 290	9.99 236 0.00 233	3	17	30	34.0	33.5	33.0
44	9.27 007 9.27 073	66	9-27 773 1) 27 842	69	0.72 158	9.99 233 9.99 231	2	15	40	45-3	44 7	44.0
40	9.27 140	67 66	9.27 91 1	69 69	0.72 089	9.99 229	2 3	14	50	56.7	55.8	55.0
47	9.27 206	67	9.27 9BD	6g	D.72 D20	9.99 226	2	13		9 '	7	
48	9.27 273	66	9.28 049	68	0.71 951	9.99 224	3	12		3	3	3
49 50	<u>9.27 339</u> 9.27 405	66	9 28 117 9 28 186	69	0.71 883	9.99 221	2	11 10	l	74	73	72
51	9.27 405	66	9 28 254	68	0.71 746	9.99 219 9.99 217	2		?	12.3	12.2	12.0
52	0 27 537	66	9.28 323	69 69	0.71 077	9.99 214	3	8	1 2	37.0	30.5	36.D
53	y.27 602	65 66	9.28 391	68 68	0.71 609	9.99 212	23	7		61.7	60.8	60.0
54	9.27 668	66	9.28 459	68	0.71 541	9.91) 209	2	6	_			
55 56	9.27 734	65	9.28 527	68	0.71 473	9.99 207	3	5	8	.	3	3
57	9-27 799 9-27 864	65	9.28 595 9.28 662	67	0.71 405 0.71 338	9.99 204 9.99 202	2	4	, 71	. 70	69	68
58	9.27 930	66	9.28 730	68	0.71 338	9.99 202	2	2	р Г 11.	8 11.	7 11.	5 11.3
59	9.27 995	65 65	9.28 798	68 67	0.71 202	9.99 197	3	I	, 35	5 35.	0 34.	5 34.0
60	9-28 060	5	9.28 865	~	0.71 135	9.99 195	1	D	3 59	2 58.	3 57-	5 56.7
-	L Cos	d	L Cot	cd	L Tan	L Sin	d	'		Ч	Р	
	*169°	259°	*349°		79°					_		
	100		010									

							*101	P 1919	*28	1°	59	
'	L Sin	d	L Tan	c d	L Cot	L l'os	d			Р	Р	
U	9.28 060	65	9.25 865	68	0.71 135	9 <u>.99</u> 195	3	60		65 I	64	63
I	9.28 125	65	9.28 933	67	0.71 067	9.99 192	л 2	59	I	1.T	1.1	1.D
2 3	9.28 190 9.28 254	64	9.29 000 9.29 067	67	0.71 000 0.70 133	9.99 190 9.99 187	3	5 ⁸ 57	2	2.2	2.1	2.1
4	9.26 319	65	9.29 134	67	0.70 800	9.99 185	2	50	3	3 2	3.2	3.2
5	9.28 384	65 64	9.29 201	67 67	0.70 799	9 99 182	3	55	4	43	4.3	4.2
6	9.28 448	64	g.29 268	67	0.70 732	9.99 I 80	3	54	5 6	5.4 6.5	5.3 6.4	5.2 6.3
78	9.28 512 1) 28 577	65	9.29 335 9.29 402	67	0.70 665 0.70 598	9 99 177 9-99 175	2	53 52	7	7.0	75	7.4
9	9.28 641	64 64	9.29 402 9.29 468	66 67	0.70 532	0 09 172	3	51	8	8.7	8.5	B.4
10	9 28 705	64	9 29 535	66	0.70 405	0.00 170	3	50	9 10	9.8 10.8	9.6 10 7	9.4 10.5
11	9.28 769	64	9.29 601	67	0 70 309	9.99 167	2	42	20	21.7	21 3	21.0
12 13	9.28 833 9.28 896	63	9.29.668 9.29.734	66	0.70 332 0.70 266	9.99 165 9.99 162	3	.∔8 -∔7	30	32.5	32.0	31.5
14	9.28 g/u	64 6.1	0.20 800	66	0.70 200	9.99 160	2	46	40 50	43 3	42.7	42.0 52.5
15	9 29 024	64 63	ý 29 866	66 66	0.70 134	9 99 157	3	45	501		53-3	33
16	9.29 067	63	9.29 932	66	0.70 006	9 JY I 55	3	44		62	61	60
17	1).21) I 50 D 20 21 1	64	9.29 998	66	0.70 002 0.09 936	9 99 152 9-99 150	2	43	I	1.0	10	1.0
10	9.29 214 9.29 277	63	1).30 064 1).30 130	66	0.09 930	9-99 147	3	42 41	2 3	2.1 3.1	20 3.0	2.0 3.0
20	9 29 340	63) 63	ŋ <u>30 195</u>	65 66	0 69 805	0 00 145	2	40	ر 4	3.1 4.1	0.0 4 T	4.0
21	9.29 403	03 03	9.30 201	65	0.69 739	9.99 142	2	39	5	52	5.1	5.0
22 23	9.29 466 9.29 529	63	1).30 326 13.30 391	65	0.09 674 0.09 609	9 99 140 9 99 137	3	38 37	Ō	Ŭ.2	6.1	6.0
ر م 24	9.29 529 9.29 59 f	62	9-30-391	66	0.09 543	9-99-137	2	36	7	7.2 8.3	7.1 8.1	7.0 8.0
25	9.29 b54	63 62	9.30 522	65 65	0.09 478	9 79 132	3	35	ÿ	9.3	92	y.o
20	9.29 710	63	9.30 587	65	0.69.413	9.99 130	3	34	10	103	10.2	IUD
27	9.29 779	62	9.30 652	05	0.69 348	9-99 127	3	33	20	20.7	20.3	20.0
28 20	9.29 841 9.29 903	Ú2	9.30 717 9.30 782	65	0.69 283 0.69 218	9-99 124 9-99 122	2	32 31	30 40	31.0 41.3	30 5 40.7	30.0 40.0
30	9.29.965	63 62	0.30 8 46	64	0.69154	9.99119	3	30	50		50.S	500
31	1) 30 025	02 62	9.30 91 1	65 64	o.by obg	9 99 117	3	29		ED		9
32	19.30 Ugo	61	9.30 975	65	0.69 025	9.99.1.1	2	28	-	59	3	2 0.0
33	J. 30 151	62	9.31 040	64	0.68 960 0.68 896	9.99 112	3	27 26	1 2	1.D 2.0	0.1	0.0 0.1
34 35	9.30213 930275	62	031104 031168	64	0.68.832	9.99 109 9 99 105	3	25	3	3.0	0.2	D.1
36	9.30 336	նք b2	ý. ji 233	64 64	U.68 767	9 99 104	23	24	4	3.9	0.2	0.1
37	9 30 398	61	9.3 1 2 97	61	0.68 703	9.99 101	2	23	5 6	-+-9 5-9	0.2 U.3	0.2 U.2
35 31)	9 30 459 9.30 521	62	9 31 361	64	0.68 639 0 68 575	9 99 099 9 99 096	3	22 21	7	5.9 6.9	0.1	0.2
40	9 30 582	61	931425 931459	64	0.68 511	ŋ.ŋŋ ōŋȝ	3	20	Ś	7.9	0.4	0.3
41	9 30 643	б і Бт	9.31 552	63	0.68 448	9 99 091	2	τŋ	ני	8.5	D.4	0.3
42	9.30 704	61 61	9.31 616	ն.լ 63	0.68 384	j jj u88	3	18	10	9.8 197	0.5	0.3 0.7
-+3	9.30 765	61	9 31 679	64	0.68 321	9.99 o86	3	17	30	29.5	1.5	I.D
-4-4 -45	9.30 826 9.30 887	61	9.31 743 9.31 So6	63	0.68 257 0.68 194	9 99 083 9.99 080	3	16 15	40	39-3	20	13
46	9.30 947	00 10	9.31 870	64 63	0.68 130	9.99 078	2	14	50	49.2	2.5	17
47	9.31.008	60	9.31 933	63	0.68 067	9.99 075	3	13		2		3
48 49	9.31 068	61	9.31 996	63	0.68 004	9.99 072	2	12 11		3	3	
19 50	<u>9.31 129</u> 9.31 189	60	1).32 059 1).32 122	63	0.67 941	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	iD		67	66	65
51	9.31 250	61	9.32 185	63	0.67 815	9.99 064	3	9	0	11.2	11.0	10.8
52	9.31 310	ίφ ίσι	9.32 248	63 63	0.67 752	9.99 062	2	5	1 2	33-5 55.8	33.0 55.0	32 5
53	9.31 370	60	9.32 311	62	0.67 689	9.99 059	3	7	3	33.0	J	74
54 55	9.31.430 9.31.490	60	9.32 373 9.32 436	63	0.67 627	9.99 056 9.99 054	2	65	- 1	3 1	3	3
50 50	9.31 549	59 60	9 32 498	62	0.07 502	9.99 051	3	14	1	64	63	62
57	9.31 609	60	9.32 561	63 62	0.67 439	9.99 048	2	3	0			
58	9.31 669	59	9.32 623	62	0.07 377	9.99 046	3.	2	1	10.7 32.0	10.5 31.5	10.3 31.0
59 60	9.31 728	6ó	9.32 685	62	0.67 315	9-97 043	3		2	53-3	52.5	51.7
<u> </u>	9.31 788	<u> </u>	9.32 747	+	0.67 253	9.99 040	<u> </u>	Ļ	<u></u> +	P	P	
L_	L Cos	d	L Cot	cd	L Tan	L Sin	d	1		T		
	*168°	258	*348°		78°							

ł

1	90
	\mathbf{Z}^{-}

*102° 192° *282°

	12° *102° 192° *282°											
'	L Sin	d	L Tan	c d	L Cot	L Cos	d			Р	Р	
0	9.31 788		9.32 747		0.67 253	9.99 040		60				
I	9.31 847	59 60	9.32 810	63 62	0.67 190	9.99 038	2 3	59		63	62	61
2	9.31 907	59	9.32 872	61	0.67 128	9.99 035	3	58	1 2	1.0 2.1	1.0 2.1	1.0 2.0
3	9.31 966	59	9.32 933	62	0.67 067	9.99 032	2	57	3	3.2	3.1	3.0
4 5	9.32 023 9.32 084	59	9.32 995 9.33 057	62	0.67 003 0.66 943	9.99 030 9.99 027	3	56	4	4.2	4.1	4.1
6	9.32 143	59	9.33 119	62	0.66 881	9.99 024	3	55 54	5	5.2	5.2	5.I
7	9.32 202	59	9.33 180	61	0.66 820	9.99 022	2	53	6	6.3	6.2	6.1
8	9.32 261	59 58	9.33 242	62 61	0.66 758	9.99 019	3	52	7	7-4 8.4	7.2 8.3	7.I 8.I
.9	9.32 319	59	9.33 303	62	0.66 697	9.99 016	3	51	9	9.4	9.3	9.2
10	9.32 378	59	9.33 365	61	0.66 635	9.99 013	2	50	10	10.5	10.3	10.2
11 12	9.32 437 9.32 495	58	9.33 426 9.33 487	61	0.66 574	9.99 01 I 9.99 008	3	49 48	20	21.0	20.7	20.3
13	9.32 553	58	9.33 548	61 61	0.66 452	9.99 005	3	47	30	31.5	31.0	30.5
14	9.32 612	59 58	9.33 609	61	0.66 391	9.99 002	3	46	40 50	42.0 52.5	41.3	40.7 50.8
15	9.32 670	58	9.33 670	61	0.66 330	9.99 000	23	45	501	52.51	51.73	50.0
16	9.32 728	58	9.33 731	61	0.66 269	9.98 997	3	44		60	59	58
17	9.32 786	58	9.33 792	61	0.66 208	9.98 994	3	43	I	1.0	1.0	1.0
18 19	9.32 844 9.32 902	58	9.33 853 9.33 913	60	0.66 J 47 0.66 087	9.98 991 9.98 989	2	42 41	2	2.0	2.0	1.9
20	9.32 902	58	9.33 974	61	0.66 026	9.98 986	3	40	3 4	3.0 4.0	3.0 3.9	2.9 3.9
21	9.33 018	58 57	9.34 034	60 61	0.65 966	9.98 983	3	39	4 5	4.0 5.0	4.9	3.9 4.8
22	9.33 075	57 58	9.34 095	60	0.65 905	9.98 980	3	38	5	6.0	5.9	5.8
23	9.33 133	57	9-34 155	60	0.65 845	9.98 978	3	37	7	7.0	6.9	6.8
24	9.33 190	58	9.34 215	61	0 65 785	9.98 975	3	36	8	8.0	7.9 8.8	7.7 8.7
25 26	9.33 248 9.33 305	57	9.34 270 9.34 336	60	0.65 724 0.65 664	9.98 972 9.98 969	3	35 34	9	9.0		
27	9.33 362	57	9.34 396	60	0.65 604	9.98 967	2	33	10 20	10.0 20.0	9.8 19.7	9.7 19.3
28	9.33 420	58 57	9.34 456	60 60	0.65 544	9.98 964	3	32	30	30.0	29.5	29.0
29	9.33 477	57	9.34 516	60	0.65 484	9.98 961	3	31	40	40.0	39.3	38.7
30	9.33 534	57	9 34 576	59	0.65 424	9.98 958	3	30	50	50.0	49.2	48.3
31	9.33 591	56	9.34 635	60	0.65 365	9.98 955	2	29 28		57	56	55
32 33	9.33 647 9.33 704	57	9.34 695 9.34 755	60	0.65 305	9.98 953 9.98 950	3	20	I	1.0	0.0	09
34	9.33 761	57	9.34 814	59	0.65 186	9.98 947	3	26	2	1.9	1.9	1.8
35	9.33 818	57 56	9.34 874	60	0.65 126	9.98 944	3	25	3	2.8	2.8	2.8
36	9.33 874	57	9.34 933	59 59	0.65 067	9.98 94 I	3	24	4	3.8	3.7	3.7
37	9.33 931	56	9.34 992	59	0.65 008	9.98 938	2	23	5	4.8 5-7	4.7 5.6	4.6 5.5
38 39	9.33 9 ⁸ 7 9.34 043	56	9.35 051	60	0.64 949 0.64 889	9.98 936 9.98 933	3	22 21	7	6.6	6.5	6.4
39 40	9.34 100	57	9.35 111	59	0.04 830	9.98 930	3	20	8	7.6	7.5	7.3
41	9.34 156	56	9.35 229	59	0.64 771	9.98 927	3	19	9	8.6	8.4	8.2
42	9.34 212	56 56	9.35 288	59 59	0.64 712	9.98 924	3 3	18	10	9.5	2.3	9.2
43	9.34 268	56	9.35 347	58	0.64 653	9.98 921	2	17	20 30	19.0 28.5	18.7 28.0	18.3 27.5
44	9.34 324	56	9.35 405	59	0.64 595	9.98 919 9.98 916	3	16	40	38.0	37.3	36.7
45 46	9.34 380 9.34 436	56	9.35 464 9.35 523	59	0.64 536	9.98 910	3	15 14	50	47.5	46.7	45.8
47	9.34 49I	55	9.35 523	58	0.64 419	9.98 910	3	13				
48	9.34 547	56	9.35 640	59	0.64 360	9.98 907	3	12		3	3	3
49	9.34 602	55 50	9.35 698	58 59	0.64 302	9.98 904	3	11		62	61	60
50	9.34 658	55	9.35 757	58	0.64 243	9.98 901	3	10	0	10.3	10.2	10.0
51 52	9.34 713	56	9.35 815	58	0.64 185	9.98 898 9.98 896	2	8	1	31.0	30.5	30.0
52 53	769 4ئ9. 9.34 824	55	9.35 873 9.35 931	58	0.64 069	9.98 893	3	7	23	51.7	50.8	50.0
54	9.34 879	55	9.35 989	58	0.64 011	9.98 890	3	6	,			
55	9.34 934	55 55	9.36 047	58 58	0.63 953	9.98 887	3	5		3	3	3
56	9.34 989	55	9.36 105	58	0.63 895	9.98 88.4	3	4		59	58	57
57	9.35 044	55	9.36 163	58	0.63 837	9.98 881	3	3	0	9.8	9.7	9.5
58 59	9.35 099 9.35 154	55	9.36 221 9.36 279	58	0.63 779	9.98 878 9.98 875	3	2 1	I	29.5	9.7 29.0	28.5
6 0	9.35 209	55	the state of the s	57	0.63 664		3	ō	2	49.2	48.3	47.5
		<u> </u>	9.36 336			9.98 872		,		P	P	
L	L Cos	d	L Cot	cd	L Tan	L Sin	d	1			r	
	*167°	257°	*347°		77°							

]	L3°
L	Cot

L Cos

d

L Sin

0

I

2

3

4

56

78

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

30

40

41

42

43

44

45

46

47

48

49

50

5 I

52

53

54

55 56

57

58

59

60

***166°**

256°

*346°

đ

L Tan

c d

*103° 198° *283°

PP

9.35 209 9.36 336 0.63 664 9.98 872 60 57 56 55 58 54 3 T 1.0 0.9 0.9 1.8 9.35 263 0.63 606 9.98 869 9.36 394 58 59 2 55 2 1.9 1.9 9.35 318 9.36 452 0.63 548 9.98 867 58 57 3 55 3 2.8 0.63 491 9.98 864 9.35 373 9.36 509 57 54 57 3 3.8 3.7 4.6 4 3.7 9.36 566 9.98 861 9.35 427 0.63 434 56 58 54 3 ă.8 9.35 481 56 9.36 624 0.63 376 g.g8 858 4.7 55 55 57 3 5.7 5.6 5.5 9.36 681 0.63 319 9.98 855 9.35 536 54 54 57 3 9.98 852 78 6.6 6.5 6.4 9.35 590 9.35 644 9.36 738 0.63 262 53 54 57 3 7.6 7.5 7.3 9.36 795 9.36 852 9.98 849 0.63 205 52 54 57 3 Ś.6 8.4 8.2 9 9.98 846 9.35 698 0.63 148 51 54 57 3 0.63 091 10 9-5 9.3 9.2 9.98 843 50 9.35 752 9.36 909 54 57 3 20 19.0 18.7 18.3 9.35 806 9.98 840 9.36 966 0.63 034 49 48 28.5 54 57 28.0 3 30 27.5 9.35 860 0.62 977 9.98 837 9.37 023 38.0 54 57 3 40 37-3 36.7 9.37 080 0.62 920 9.98 834 9.35 914 47 54 57 50 47.5 **a**6.7 45.8 3 9.35 968 0.62 863 9.98 831 9.37 137 46 56 54 3 9.36 022 9.98 828 0.62 807 9.37 193 54 53 52 45 53 57 3 9.36 075 9.37 250 0.62 750 9.98 825 44 I 0.9 1.8 0.9 1.8 0.9 54 56 3 9.98 822 9.36 129 9.37 306 0.62 604 2 1.7 43 57 53 9.98 819 3 2.6 9.37 363 0.62 637 3 2.7 2.6 9.36 182 42 56 54 3 9.36 236 9.98 816 0.62 581 9.37 419 3.5 3.5 4 I 4 3.6 53 57 3 9.36 289 9.37 476 0.62 524 9.98 813 40 4.5 4.3 5 6 4.4 53 56 3 9.98 810 9.36 342 9.37 532 0.62 468 5.4 5.3 5.2 39 56 53 3 9.98 807 38 9.36 395 9.37 588 0.62 412 6.x 78 6.3 6.2 56 54 9.98 804 3 9.36 449 9.37 644 0.62 356 37 7.2 7.1 6.9 <u>ś</u>6 53 3 **8.1 8**.o 7.8 9.98 801 9 9.36 502 9.37 700 0.62 300 36 56 53 3 9.36 555 9.37 756 9.37 812 0.62 244 9.98 798 8.8 8.7 35 10 9.0 53 56 3 9.36 608 0.62 188 9.98 795 20 18.0 17.7 17.3 34 52 56 3 9.36 660 9.37 868 9.98 792 0.62 132 30 27.0 26.5 26.0 33 53 56 3 9.98 789 40 36.0 35.3 34.7 9.36 713 9.37 924 0.62 076 32 56 53 <u>9.9</u>8 786 3 50 9.37 980 45.0 44.3 43.3 9.36 766 0.62 020 31 53 55 3 9.36 819 9.38 035 0.61 963 9.98 783 30 51 4 3 2 52 56 3 9.36 871 9.38 091 0.61 909 9.98 780 29 0.8 0.1 0.0 53 56 T 0.0 3 9.36 924 9.38 147 0.61 853 9.98 777 28 2 1.7 0.1 0.1 0.1 52 55 3 9.38 202 0.61 798 9.98 774 9.36 976 27 2.6 52 3 0.2 0.2 0.1 55 3 9.38 257 9.98 771 9.37 028 0.61 743 26 4 3.4 0.3 0.2 0.1 56 9.37 081 53 3 9.38 313 0.61 687 9.98 768 25 0.3 0.2 56 4.2 0.2 52 55 3 9.37 133 9.38 368 0.61 632 9.98 765 24 0.4 5.I 0.3 0.2 52 55 3 9.37 185 9.38 423 0.61 577 9.98 762 23 78 6.0 0.<u>5</u> 0.4 0.2 52 56 3 9.37 237 9.38 479 0.61 521 9.98 759 22 6.8 0.5 0.3 0.4 52 55 3 0.61 466 9.37 289 9.38 534 9.98 756 21 o.6 9 7.6 0.4 0.3 52 55 3 0.61 411 20 9.37 341 9.38 589 9.98 753 8.5 0.3 10 0.7 0.5 52 55 3 9.38 644 0.61 356 9.98 750 19 9.37 393 20 17.0 1.3 1.0 0.7 52 55 4 18 9.38 699 0.61 301 9.98 746 9.37 445 30 25.5 2.0 1.5 1.0 52 55 3 9.38 754 0.61 246 9.98 743 9.37 497 17 40 34.0 2.7 2.0 1.3 52 54 9.38 808 3 0.61 102 9.98 740 2.5 x.7 9.37 549 16 50 42.5 3.3 55 51 3 9.37 600 9.38 863 0.61 137 9.98 737 15 52 55 3 9.98 734 9.37 652 9.38 918 0.61 082 14 51 54 3 3 8 9.98 731 4 4 0.61 028 9.37 703 9.38 972 13 52 55 3 9.37 755 9.37 806 0.60 973 9.98 728 9.39 027 12 55 54 58 57 5 I 55 3 9.39 082 9.98 725 0.60 918 11 52 54 o 6.g 3 6.8 9-37 858 9.98 722 9.7 9.5 9.39 136 0.60 864 10 I 51 54 20.6 28.5 20.2 29.0 3 9-37 909 9.98 719 9.39 190 0.60 810 2 9 8 33.8 48.3 5 I 55 34.4 47.5 9.98 715 4 9.37 960 9.39 245 0.60 755 3 51 54 48.1 47.2 9.38 011 9.98 712 3 9.39 299 0.60 701 7 4 54 51 9.98 700 3 9.38 062 0.60 647 6 9.39 353 3 8 8 51 54 3 9.38 113 0.60 593 0.08 706 9.39 407 5 51 54 55 54 56 3 9.38 164 9.39 461 0.60 539 9.98 703 4 54 51 3 o 9.38 215 9.39 515 0.60 483 9.98 700 3 9.3 9.2 0.0 51 54 I 9.38 266 3 9.98 697 9.39 569 0.60 431 2 28.0 27.5 27.0 51 54 2 9.98 694 •3 45.8 9.38 317 9.39 623 0.60 377 ĩ 46.7 45.0 51 54 3 9.38 368 0.60 323 9.98 600 4 0 9.39 677 L Tan P P L Cos d L Cot c d L Sin d *

76°

14°

*104° 194° *284°

					17				
4	L Sin	d	L Tan	c d	LCot	L l'os	d		РР
<u> </u>	ŋ.3S 36S		9.39 677		0.60 323	9.98 69 0	_	60	
I	9.38 418	50 51	9 39 731	54	0.00 209	9 98 687	-3	59	54 53 52
2	9.38 409	50	9.39 785	54	0 00 215	ŋ.ŋ8 684	3	58	1 0.9 0.9 0.9
3	938519	51	9.39 838	54	0 00 102	9 98 681	3	57	2 1.8 18 17 3 2.7 2.6 2.6
4	9-38 570	50	9.39 892	53	0 00 108	9.98 678	3	56	3 2.7 2.6 2.6 1 3.6 3.5 3.5
5	9.38 020 9.38 070	50	9 39 945	54	0.00055 0.000000	9.98 675 9.98 671	4	55	5 4-5 4-4 4-3
		51	9 39 999	53			3	54	6 54 5.3 52
7	1).38 721 9.38 771	50	940052 940100	54	0 59 948 0.59 894	9 98 668 9 98 665	3	53 52	7 (1.3 6.2 6.1
ÿ	9 38 821	50	940150	53	0 50 841	9 98 662	3	51	8 7.2 71 69
10	1,35 871	50 50	9 40 212	53	0 59 788	0 98 659	3	50	9 8.1 8.0 7.8
11	9.38 921	50	9.40 260	5-4	U.59 734	9.98 656	3	49	10 9.0 8.8 87
12	9.38 971	50	940319	53 53	0.59 681	ŋŋ\$ 652	4	48	20 18.0 17.7 173 30 270 26.5 26.0
13	9-39 021	50	9 1 0 372	53	0 59 628	y 98 649	ž	47	40 360 35.3 34 7
14	9.39 071	50	9 40 425	53	0 59 575	9.98 646	3	46	50 45.0 44.2 43.3
15 16	939121 939170	49	940478 9.40531	53	0 59 522 0.59 409	9 98 643 9.98 640	3	45 44	51 + 50 + 49
17	9.39 170 9.30 220	50	9.40 531	53	0.59 416	յցցցեցը 1998 ը20	-+		1 0.8 0.8 0.8
16	9.39 220 9 39 270	50	9.40 584 9.40 636	52	0 59 364	9 98 633 9 98 633	3	43 42	2 1.7 1.7 1.6
19	9.39 319	49 50	ŋ 40 68ŋ	53 53	0 50 311	9 98 630	3 3	41	3 26 2.5 2.4
20	9 39 369	-19	9 40 742	53	0 59 258	ŋŋb b 27	3	40	4 34 33 33
21	9.39 418	49	9 49 795	52	0 59 205	9 98 623	4	39	5 4.2 4.2 4 1
22	9 39 467	50	9.40 547	53	0.59 153	9.9 8 620	3	38	6 5.1 5.0 4.9
23	9-39 517	49	9.40.000	52	0.59 100	9 98 br7	3	37	7 0.0 58 5.7 8 68 07 6.5
24 25	939566 939615	49	940952 941005	53	0 50 048 0 58 005	9 98 614 9 98 610	4	36 35	9 7.6 75 7.4
20	9.39.664	49	9.41.057	52	0.58 043	9 95 607	3	33 34	10 85 83 82
27	9-39 713	49	941109	52	0.58 801	9.98 604	3	33	20 170 167 163
28	9.39 762	49 49	9.41.161	52	0 58 839	9 98 601	3	32	30 25.5 25.0 24.5
29	9.39 811	49	9.41 21.4	53 52	0.58 786	ງໆ8597	43	31	40 34 0 33 3 32.7
30	9 39 560	49	9 41 266	52	₱ 28 234	9 98 594	3	30	50 42 5 41 7 40.8
31	9.39.909	49	9.41.318	52	0.58 682	9.98 59T	3	20	48 47 4 3
32	9.39 958 9.40 006	48	941370	52	0.58 630	9.98 558 998 584	+	28 27	I D.S OS DI U.D
34	9.40 055	49	9.41 422	52	0.58 526	9.98 581	3	26	2 1b 1.6 01 0.1
35	940103	48	941 526	52	0 56 474	9.98 578	3	25	3 24 24 02 02 4 32 31 03 02
36	9 40 152	49	9.41 578	52 51	0.58 422	998574	4	24	5 40 39 03 02
37	9 40 200	49	9.41 629	52	0.55 371	9.98 57I	3	23	6 48 4.7 04 0.3
38	9.40 249	48	9.41 681	52	0 58 319	9 95 568	3	22	7 56 55 05 04
39 40	9 40 297	49	9 11 733	51	່ບ 58 267_ ບ 58 216	0.08.563	4	21 20	8 64 63 05 04
41	940340	48	<u>1741 784</u> 941 836	52	0.58 164	_005501 008558	3	19	9 7.2 7.0 0.6 0.4
41	940394	48	9.41 887	5 I	0.58 113	9 98 555 9 98 555	3	18	10 80 7.8 0.7 0.5 20 160 15.7 13 10
43	9 40 490	48 48	9 41 939	52 51	0 58 001	9 98 551	4	17	30 24 0 23.5 20 1.5
44	ŋ 40 53B	48	9 41 990	51	0 58 010	9 98 54B	3	16	40 320 31.3 27 20
45	9.40 586	18	9.42 041	52	0.57 959	9.98 545	4	15	50 400 39.2 33 2.5
46	9 40 634	48	9.42 093	51	0.57 907	ŋ 98 541	3	14	
47	940682 940730	18	9 42 144	51	0 57 850 0.57 805	9 98 538 9 98 535	3	13 12	$\frac{4}{4}$ $\frac{4}{4}$ $\frac{4}{4}$ $\frac{4}{4}$
49	0 40 778	48	0.42 240	51	0.57 754	9.98 531	4	11	54 53 52 51
50	9 40 525	47) 12 297	51	0.57 703-	1.08 528	3	1D	⁹ 6.8 6.6 6.5 6.4
51	9.40 873	48 48	9 42 3 48	51 51	0 57 652	9 198 525	3	9	1 20.2 19.9 19 5 19 1
52	9.40 <u>921</u>	47	9.42 399	51	0.57 601	9.98 521	3	8	33.8 33 1 32.5 31.9
53	9.40 g68	48	9.42 450	51	0.57 550	9.98 518	3	7	⁵ 47.2 40.4 45 5 44.0
54 55	941016 941063	47	9.42 501	51	0.57 499 0.57 448	9.98513 998511	4	6 5	3 3 3 3
56	941111	48	9.42 552 9.42 603	51	0.57 397	9.98 508	3	4	
57	9.41 158	47	9.42 653	50	0.57 347	9.98 505	3	3	54 53 52 51
58	9 41 205	47	9.42 704	51	0.57 206	9.98 501	4	2	0 9.0 8 8 8.7 6.5
59	9 41 252	47 48	9-42 755	51 50	0.57 245	9 98 498	3 4	I	2 27 0 20.5 20.0 25 5
60	9-41 300		g.42 805	-	, D. 57 195	9.98 494		D	3 45.0 44.2 43.3 42.5
	L Cos	d	L Cot	c d	L Tan	L Sin	d	77	РР
	*165°	255	*345°		75°				
	100	200°	· 0-10		10				

1	5°

*105° 195° *285°

			1 *			•)	.		100-	199-	-200	
<u> </u>	L Sin	d	L Tan	ed	L Cot	L Cos	d			J	<u>P</u>	
0	9.41 300	47	9.42 805	51	0.57 195	9.98 494	3	60		51	50	49
I	9.41 347	47	9.42 856	50	0.57 144	9.98 491	3	59 58	т	1 0.8	0.8	0.8
2	9.41 394 9.41 441	47	9.42 900	51	0.57 094	9.98 488 9.98 484	4	50	2	1.7	1.7	1.6
4	9.41 488	47	9.43 007	50	0.56 993	9.98 481	3	56	3	2.6	2.5	2.4
5	9.41 535	47	9.43 057	50 51	0.56 943	9.98 477	4	55	4	3.4	3.3	3.3
0	9.41 582	47 46	9.43 108	50	0.56 892	9.98 474	3	54	6	5.1	5.0	4.I 4.9
7	9.41 628	47	9.43 158	50	0.56 842 0.56 792	9.98 471 9.98 467	4	53 52	7	6.0	5.8	5.7
9	9.41 675 9.41 722	47	9.43 208 9.43 258	50	0.56 742	9.98 464	3	51	8	6.8 7.6	6.7	6.5
10	9.41 768	46	9.43 308	50 50	0.56 692	9.98 400	+	50	10	8.5	7.5 8.3	7-4 8.2
II	9.41 815	47 46	9.43 358	50	0.56 642	9.98 457	4	49	20	17.0	16.7	16.3
12	9.41 861	47	9.43 408	50	0.56 592 0.56 542	9.98 453 9.98 450	3	48 47	30	25.5	25.0	24.5
13 14	9.41 908 9.41 954	46	9.43 458 9.43 508	50 J	0.56 492	9.98 447	3	46	40 50	34.0 42.5	33.3 41.7	32.7 40.8
15	9.42 001	47	9.43 558	50	0.56 442	9.98 443	4	45	30			
16	9.42 047	46 46	9.43 607	49 50	0.56 393	9.98 440	3	44		48 0.8	47 0.8	46
17	9.42 093	40	9.43 657	50	0.56 343	9.98 436	3	43	1 2	1.6	0.8 1.6	0.8 1.5
18 19	9.42 140 9.42 186	46	9.43 707	49	0.56 293 0.56 244	9.98 433 9.98 429	4	42 41	3	2.4	2.4	2.3
20	9.42 232	46	9.43 756 9.43 806	50	0.56 194	9.98 429	3	41	4	3.2	3.1	3.1
21	0.42 278	46	9.43 855	49 50	0.56 145	0.08 422	4	39	5	4.0	3.9	3.8
22	9.42 324	46 46	9.43 905	49	0.56 095	9.98 419	3	38	7	4.8 5.6	4.7 5.5	4.6 5.4
23	9.42 370	46	9.43 954	50	0.56 046	9.98 415	3	37	8	6.4	6.3	6.1
24 25	9.42 416 9.42 461	45	9.44 004	49	0.55 996	9.98 412 9.98 409	3	36 35	9	7.2	7.0	6.9
26	9 42 507	46	9.44 053 9.44 102	49	0.55 947 0.55 898	9.98 405	4	34	10 20	8.0	7.8	7.7
27	9.42 553	46	9.44 151	49 50	0.55 849	9.98 402	3	33	20 30	16.0 24.0	15.7 23.5	15.3 23.0
28	9.42 599	46 45	9.44 201	49	0.55 799	9.98 398	4	32	40	32.0	31.3	30.7
29 30	9.42 644	46	9.44 230	49	0.55 750	9.98 395	4	31 30	50	40.0	39.2	38.3
31	9.42 690 9.42 735	45	9.44 299	49	0.55 701	9.98 391 9.98 388	3	20	1		44 4	4 3
32	9.42 781 9.42 781	46	9.44 348 9.44 397	49 49	0.55 603	9.98 384	4	28	I		0.7 0.	
33	9.42 826	45 46	9.44 446	49	0.55 554	9.98 381	3	27	2 3		1.5 0.	
34	9.42 872	45	9.44 495	49	0.55 505	9.98 377	4	26	4			.3 0.2
35 36	9.42 917 9.42 962	45	9.44 544 9.44 592	48	0.55 456 0.55 408	9.98 373 9.98 370	3	25 24	5	3.8	3.7 0	.3 0.2
37	9.43 008	46	9.44 592	49	0.55 359	9.98 366	4	23	6	4.5		.4 0.3
38	9.43 053	45 45	9.44 690	49 48	0.55 310	9.98 363	3	22	7	5.2 6.0	5.I 0 5.9 0	.5 0.4 .5 0.4
39	9.43 098	45	9.44 738	49	0.55 262	9.98 359	3	21 20	9	6.8		.6 0.4
40	9.43 143	45	9.44 787	49	0.55 213	9.98 356	4	10	10	7.5	7.3 0.	.7 0.5
41 42	9.43 188 9.43 233	45	9.44 836 9.44 884	48	0.55 164 0.55 116	9.98 352 9.98 349	3	19				.3 1.0
43	9.43 278	45 45	9.44 933	49 48	0.55 067	9.98 345	43	17				.0 1.5
44	9.43 323	45 44	9.44 981	48	0.55 019	9.98 342	3	16				.3 2.5
45 46	9.43 367	45	9.45 029	49	0.54 971	9.98 338 9.98 334	4	15 14				
40	9.43 412	45	9.45 078 9.45 126	48	0.54 922	9.98 334 9.98 331	3	13		4	4 1 4	4 4
48	9.43 502	45	9.45 120	48 48	0.54 826	9.98 327	4	12		50	49 4	
49	9.43 546	44 45	9.45 222	49	0.54 778	9.98 324	3 4	11	0			~ -··
50	9.43 591	44	9.45 271	48	0.54 729	9.98 320	3	10	I	6.2 18.8 1	6.1 6 8.4 18	0 5.9
51 52	9.43 635 9.43 68 9	45	9.45 319 9.45 367	48	0.54 681 0.54 633	9.98 317 9.98 313	4	9 8		31.2 3	0.6 30	
53	9.43 724	44	9.45 307	48 48	0.54 585	9.98 309	4	7			2.9 42	.0 41.1
-54	9.43 769	45 44	9.45 463	48	0.54 537	9.98 306	3	6		8	8 1	8 3
55	9.43 813	44	9.45 511	48	0.54 489	9.98 302	43	5		51	50 4	9 48
56	9.43 857	44	9-45 559	47	0.54 441	9.98 299	4	4	0	8.5		.2 8.0
57 58	9.43 901 9.43 946	45	9.45 606 9.45 654	48	0.54 394 0.54 346	9.98 295 9.98 291	4	3	I	25.5 2	5.0 24	5 24.0
59	9.43 990	44 44	9.45 702	48 48	0.54 298	9.98 288	3.	I	23	42.5 4	1.7 40	.8 40.0
60	9.44 034	44	9.45 750		0.54 250	9.98 284	4	0	3 1			
	L Cos	d	L Cot	cd	L Tan	L Sin	d	•		F	P	
<u> </u>		*16	4° 254°	+344	0 7	4 °						
		~10	- 691	-011	• 1	12						

16° *106° 196° *286°

_					165	-1	06°	196°	- 2	86°			
	L Sin	ď	L Tan	c đ	L Cot	L Cos	d				ΓF	•	
0	9.44 034		9.45 750		0.54 250	9.98 284		60					
T	9.44 078	44	9.45 797	47	0.54 203	9 98 281	3	59	1	48 08	47		46 0.8
2	9.44 1 2 2	44	9.45 845	48	0.54 155	9.98 277	4	58	2	1.6			0.8 1.5
3	9.44 166	44	9.45 892	47 48	0.54 108	9.98 273	3	57	3	2.4			2.3
4	9.44 210	44	9.45 940		0.54 060	9.98 270	4	56	4	3.2			3.1
5	9.44 253	43 44	9.45 987	47 48	0.54 013	9.98 266	4	55	5	4.0	3.	0	3.8
6	9.44 297	44	9.46 035	47	0.53 965	9.98 262	3	54	ő	4.8	4		4.6
78	9.44 341	44	9.46 082	48	0.53 918	9.98 259	4	53	7	5.6			5.4
ŝ	9.44 385 9.44 428	43	9.46 130 9.46 177	47	0.53 870 0.53 823	9.98 255 9.98 251	4	52 51	8	6.4			6.1
10	9.44 472	44	9.46 224	47	0.53 776	9.98 248	3	50	9	7.2			6.9
11	9.44 516	44	9.46 271	47	0.53 729	9.98 244	4	49	10 20	8.c	1 1	1	7·7 5·3
12	9.44 559	43	9.46 319	48	0.53 681	9.98 240	4	48	30	24.0			3.0
13	9.44 602	43	9.46 366	47	0.53 634	9.98 237	3	47	40	32.0			0.7
14	9.44 646	44	9.46 413	47	0.53 587	9.98 233		46	50	40.0			8.3
15	9.44 689	43	9.46 460	47	0.53 540	9.98 229	4	45		45	44		43
16	9.44 733	44 43	9.46 507	47 47	0.53 493	9.98 226	4	44	r	1 0.8			0.7
17	9.44 776	43	9.46 554	47	0.53 446	9.98 222	4	43	2	1.5			1.4
18	944 819	43	9.46 601 9.46 648	47	0.53 399	9.98 218	3	42	3	2.2	2	.2	2.2
19 20	9.44 862	43	9.40 048	46	0.53 352	9.98 215 9.98 211	4	41 40	4	3.0		9	2.9
20	9.44 905	43	9.40 094	47	0.53 306	9.98 207	4		5	3.8	1 2		3.6
21 22	9.44 940	44	9.40 741	47	0.53 259	9.98 207 9.98 204	3	39 38	6	4.5			4.3
23	9.45 035	43	9.46 835	47	0.53 165	9.98 200	4	37	7	5.2		.I .9	5.0 5.7
24	9.45 077	42	9.46 881	46	0.53 119	9.98 196	4	36	ġ	6.8		6	6.4
25	9.45 120	43	9.46 928	47	0.53 072	9.98 192	4	35	10	7.9	; 7	.3	7.2
26	9.45 163	43	9-46 975	47	0.53 025	9.98 189	3	34	20	15.0			4.3
27	9.45 206	43	9.47 021	47	0.52 979	9.98 185	4	33	30		5 22	0 2	1.5
28	9.45 249	43 43	9.47 068	46	0.52 932	9.98 181	4	32	40				8.7
29 30	9.45 292	42	9.47 114	46	0.52 886	9.98 177	3	31 30	50	37.5	5 36	713	15.8
	9 45 334	43	9.47 160	47	0.52 840	9.98 174 9.98 170	4			42	41	4	3
31 32	9-45 377 9-45 419	42	9.47 253	46	0.52 793	9.98 1 /0	4	29 28	I	0.7	0.7	0.1	0.0
33	9.45 462	43	9.47 299	46	0.52 701	9.98 162	4	27	2	1.4	1.4	0.1	0.1
34	9.45 504	42	9.47 346	47	0.52 654	9.98 159	3	26	3 4	2.1	2.0	0.2	0.2
35	9.45 547	43	9.47 392	46	0.52 608	9.98 155	4	25			3.4	0.3	0.2
36	9.45 589	42	9.47 438	46	0.52 562	9.98 151	4	24	5	3-5	3.4 4.1	0.3	0.2
37	9.45 632	43	9.47 484	46	0.52 516	9.98 147	4	23		4.9	4.8	0.5	0.4
38	9.45 674	42 42	9.47 530	46 46	0.52 470	9.98 144	3	22	7 8	5.6	5.5	0.5	0.4
39	9.45 716	42	9.47 576	46	0.52 424	9.98 1.40	4	21	9	6.3	6.2	0.6	0.4
40	9.45 758	43	9.47 622	46	0.52 378	9.98 136	4	20	10	7.0	6.8	0.7	0.5
41 42	9.45 801 9.45 843	42	9.47 668 9.47 714	46	0.52 332	9.98 132 9.98 129	3	19 18			13.7	1.3	1.0
42	9.45 885	42	9.47 760	46	0.52 200	9.98 129	4	17			20.5 27.3	2.0 2.7	1.5
44	9.45 927	42	9.47 806	46	0.52 104	9.98 121	4	16		35.0		3.3	
45	9.45 969	42	9.47 852	46	0.52 148	9.98 117	4	15					
46	9.46 01 1	42	9.47 897	45	0.52 103	9.98 113	4	14					
47	9.46 053	42	9.47 943	46	0.52 057	9.98 110	3	13		4	4	4	4
48	9.46 095	42 41	9.47 989	46 46	0.52 011	9.98 106	4	12		48	47	46	45
49 50	9.46 136	41	9.48 035	45	0.51 965	9.98 102	4	11	0	6.0	5.9	5.8	5.6
50	9.46 178	42	9.48 080	46	0.51 920	9.98 098	4	10	II,		17.6	17.2	16.9
51 52	9.46 220	42	9.48 126 9.48 171	45	0.51 874	9.98 094	4	8	2	30.0	29.4	28.8	28.1
52	9.46 303	41	9.48 217	46	0.51 829	9.98 090	3	7	3	12.0	11.1	40.2	39.4
54	9.46 345	42	9.48 262	45	0.51 738	9.98 083	4	6	1 ''	3	3	3	3
55	9.46 386	41	9.48 307	45	0.51 693	9.98 079	4	5					
56	9.46 428	42	9.48 353	46	0.51 647	9.98 075	4	4	Ι,	48	47	46	45
57	9.46 469	41	9.48 398	45	0.51 602	9.98 071	4	3	0	8.0	7.8	7·7	7.5
58	9.46 511	42	9.48 443	45	0.51 557	9.98 067	4	2				23.0	22.5
59	9.46 552	41 42	9.48 489	40	0.51 511	9.98 063	4	I	3	to.o	39.2	38.3	37-5
60	9.46 594		9.48 534		0.51 466	9.98 060		0	<u> </u>				
1	L Cos	d	L Cot	c d	L Tan	L Sin	d	1	I		РI	-	
	*163°	253°	*343°		73°								
	100	200	010		10								

1	7	a

*107° 197° *287°

					17			*10	7° 1	at	287°	
•	L Sin	d	L Tan	c d	L Cot	L Cos	d			Р	Р	
0	9 .46 594	41	9.48 534	45	0.51 466	9.98 060	4	60		45	44	43
1	9.46 635	41	9.48 579		0.51 421	9.98 056		59	I	0.8	0.7	0.7
2	9.46 676	41	9.48 624	45 45	0.51 376	9.98 052	4	58	2	1.5	1.5	1.4
3	9.46 717	41	9.48 669	45	0.51 331	9.98 048	4	57	3	2.2	2.2	2.2
4	9.46 758	42	9.48 714	45	0.51 286	9.98 044	4	56	4	3.0	2.9	2.9
5	9.46 800	41	9.48 759	45	0.51 241	9.98 040	4	55	5	3.8	3.7	3.6
	9.46 841	41	9.48 804	45	0.51 196	9.98 036	4	54	7	-4-5 5.2	-4-4 5.1	4.3 5.0
7	9.46 882 9.46 923	41	9.48 849 9.48 894	45	0.51 151 0.51 106	9.98 032 9.98 029	3	53	ś	6.0	5.9	5.7
9	9.40 923	41	9.48 939	45	0.51 001	9.98 025	4	52 51	9	6.8	ő.ć	6.4
10	9.47 005	41	9.48 984	45	0.51 016	9.98 021	+	50	10	7.5	7.3	7.2
11	9.47 045	40	9.49 029	45	0.50 971	9.98 017	4	49	20	15.0	14.7	14.3
12	9.47 086	41	9.49 073	44	0.50 927	9.98 013	4	48	30	22.5	22.0	21.5
13	9.47 127	41 41	9.49 118	45 45	0.50 882	9.98 009	4	47	40	30.0	29.3	28.7
14	9.47 168	41	9.49 163	44	0.50 837	9.98 005	+	46	50	37.5	36.7	35.8
15	9.47 209	40	9.49 207	44	0.50 793	9.98 001	+	45		42	41	40
16	9.47 249	41	9.49 252	44	0.50 748	9-97 997	4	44	I	0.7	0.7	0.7
17	9.47 290	40	9.49 296	45	0.50 704	9.97 993		43	2	1.4	1.4	1.3
18	9.47 330	41	9.49 341	44	0.50 659	9.97 989	3	42	3	2.1	2.0	2.0
19	9.47 371	40	9.49 385	45	0.50 615	9.97 986	4	41	4	2.8	2.7	2.7
20	9.47 411	41	9.49 430	44	0.50 570	9.97 982	4	40	5	35	3.4	3.3
21 22	9-47 452 9-47 492	40	9-49-474 9-49-519	45	0.50 526	9.97 978 9.97 974	4	39	7	4.2	4.1	4.0 4.7
23	9.47 533	41	9.49 563	44	0.50 437	9.97 974	4	38 37	8	5.6	5.5	53
24	9.47 573	40	9.49 607	44	0.50 393	9.97 966	4		9	6.3	6.2	6.0
25	9.47 613	40	9.49 652	45	0.50 348	9.97 962	4	36	10	7.0	6.8	6.7
26	9.47 654	41	9.49 696	44	0.50 304	9.97.958	4	35 34	20	14.0	13.7	13.3
27	9.47 694	40	9-49 740	44	0.50 260	9-97 954	4	33	30	21.0	20.5	20.0
28	9-47 734	40	9.49 784	44	0.50 216	9.97 950	4	32	40	28.0	27.3	26 7
29	9-47 774	40 40	9.49 828	44 44	0.50 172	9.97 946	4	31	50	35.0	34.2	33.3
30	9.47 814	40	9.49 872	44	0.50 128	9.97 942	+	30		39	5	4 3
31	9.47 854	40	9.49 910	44	0.50 084	9.97 938	4	29	I	0.6	0.1 0	0.0
32	9.47 894	40	9.49 960	44	0.50 040	9-97 934	4	28	2	1.3		1.0 1
33	9.47 934	40	9.50 004	44	0.49 996	9.97 930	4	27	3	2.0		.2 0.2
34	9.47 974	40	9.50 048	44	0 49 952	9.97 926	4	26	4	2.6	-	.3 0.2
35	9.48 014 9.48 054	40	9 50 092	44	0.19 908	9.97 922	4	25	5	3.2		.3 0.2
36	9.48 094	40	9.50 136	44	0.49 864	9.97 918	4	24	6	3.9 4.6		10.3
37 38	9.48 094	39	9.50 180 9.50 223	43	0.49 820	9.97 914	4	23	7 S	5.2		.5 0.4
30	9.48 173	40	9.50 267	44	0.49 777	9.97 906	4	22 21	9	5.8		.6 0.4
40	9.48 213	40	9.50 311	44	0.49 689	9.97 902	4	20	10	6.5	0.8 0	.7 0.5
41	9.48 252	39	9.50 355	44	0.49 645	9.97 898	+	19	20	13.0		.3 1.0
42	9.48 292	40	9.50 398	43	0.49 602	9.97 894	4	iš	30	19.5	2.5 2	1.0 1.5
43	9.48 332	40	9.50 442	44	0.49 558	9.97 890	4	17	40	26.0		.7 2.0
44	9.48 371	39	9.50 485	43	0.49 51 5	9.97 886	4	16	50	32.5	4.2 3	.3 2.5
45	9.48 411	40 39	9.50 529	44 43	0.49 471	9.97 882	4	15		5	4	4
46	9.48.450	39 40	9.50 572	44	0.49 428	9.97 878	4	14		43	45	44
47	9.48 490	39	9.50 616	43	0.49 384	9.97 874	+	13		45	40	
48	9.48 529	39	9.50 659	43	0.49 341	9.97 870	4	12	0 I	4.3	5.6	5.5
49	9.45 568	39	9.50 703	43	0.49 297	9.97 866	5	11	2	12.9	16.9	16.5
50	9.48 607	40	9.50 7.16	43	0 49 254	9.97 861	4		3	21.5	28.1	27.5
51 52	9.48 686	39	9.50 789 9.50 833	44	0.49 211	9.97 857 9.97 853	4	8	4	30.1	39.4	38.5
52 53	9.48 725	39	9.50 876	43	0.49 107	9.97 849	4	7	5	1 .		
55 54	9.48 764	39	9.50 919	43	0.49 081	9.97 845	4	6		4	3	3
5 1 55	9.48 803	39	9.50 919	43	0.49 031	9.97 841	4	5	1	43	45	44
56	9.48 842	39	9.51 005	43	0.48 995	9.97 837	-4	4	0	1	1	
57	9.48 881	39	9.51 048	43	0.48 952	9.97 833	4	3	τ	5.4	7.5	7.3
58	9.48 920	39	9.51 092	44	0.48 908	9.97 829	4	2	2	26.9	37.5	36.7
59	9.48 959	39 39	9.51 135	43 43	0.48 865	9.97 825	. 4	I	3	37.6	1 - 1	-
60	9.48 998	39	9.51 178	43	0.48 822	9.97 821	4	0	4	1		
	L Cos	d	L Cot	c d	L Tan	L Sin	d			ŀ	P P	
	*162	20 07	2° *342°		72°							
	~162	- Z0	02- "342"		12*							

18° *108° 198° *288°

												
·	L Sin	d	L Tan	e d	L ('ot	L Cos	d			1	, b	
0	9.48 998		9.51 178		0 18 822	9.97 821	Γ.	60		43	42	1 41
1	9 49 037	39	9 51 221	43	0 48 779	997 817	45	59	1	0.7	0.7	0.7
2	9.49 076	3 9 39	9.51 264	42	0.48 730	9.97 812	1	58	2	I.4	1.4	1.4
. 3	9.49 115 9.49 153	38	9.51 300 9 51 349	43	0.48 694 0.48 651	9 97 808 9.97 804	4	57 56	3	2.2	2.1 2.8	2.0
45	9.49 192	39	9.51 392	43	0.43 0.51	9.97 804	4	55	5	36	3.5	3.4
ŏ	9.49 231	39 38	9.51 435	43 43	0.48 505	9.97 796	4	54	ů	4.3	4.2	4.1
7	9 49 269		9 51 478	42	0.48 522	9.97 792	4	53	7	5.0	4.9	4.5
8	9 49 308	39 39	9.51 520	43	0.48 480	9.97 788	4	52	8	5.7	5.6 6.3	5.5 6.2
1 0	_9 49 347 9 49 355	38	9.51 563 9.51 606	43	0.48 <u>437</u> 0.48 <u>394</u>	9 <u>97 784</u> 997 779	5	51 50	9 10	6.4 7.2	7.0	6.8
11	9 49 424	39	9.51 648	42	0.48 352	997775	+	49	20	14.3	14.0	13.7
12	9.49.462	38	9 51 691	43 43	0.48 309	9.97 771	4	Ţś	30	21.5	21.0	20.5
13	9.49 500	38 39	9.51 734	43	0.45 266	9.97 767	4	47	40	28.7	28.0	27.3
14	9-49 539	38	9 51 776	43	0 48 224	9.97 763	4	-46	50	35.8	35.0	34.2
15 16	9 49 577 9.49 615	38	9 51 819 9 51 861	42	0 48 181 0.48 139	9 97 759 9·97 754	5	45	r	39 0.6	38 0.6	37
17	9.49.654	39	9 51 903	42	0.48 097	9.97 754	4	43	2	1.3	1.3	1.2
18	9 49 692	38	951946	43 42	0.48 054	9.97 746	+	42	3	2.0	1.9	1.8
19	9 49 730	38 38	9.51 988	43	0.48 012	997 742	4	41	-4	2.6	25	2.5
20	9.49 768	38	9.52 031	43	0 47 909	y y7 738	4	40	5	3.2	3.2	3.1
21	9 49 806	38	9.52 073	42	0.47 927	9.97 734	5	32	67	3.9 4.6	3.8	3.7
22 23	9.49 844 9.49 882	38	9.52 115 9 52 157	42	0.47 885 0.47 843	9 97 729 9.97 725	4	38 37	8	5.2	5.1	4.9
24	9.49 920	38	0.52 200	43	0.47 800	9.97 721	4	36	9	5.8	5-7	5.6
25	9.49 958	38	9.52 242	42 42	0.47 758	9 97 717	4	35	10	6.5	6.3	6.2
20	9 49 996	38 38	9.52 284	42	0.47 716	9.97 713	+ 5	34	20	13.0	12.7	12.3
27	9 50 034	38	9.52 326	12	0.47 674	9.97 7 0 8	4	33	30 40	19.5 26.0	19.0 25.3	18.5
28	9.50 072	38	9 52 368	42	0.47 632	9.97 704	4	32	50	32.5	31.7	30.8
29 30	9.50 110	38	9 52 410	42	0.47 590	9.97 700 9.97 696	4	31 30		36	5	4
31	9.50 185	37	9.52 494	42	0.47 500	997691	5	20	I	06	0.1	0.1
32	9.50 223	38	9.52 536	42 42	0 47 464	9.97 687	4	28	2	1.2	0.2	10
33	9.50 261	38 37	9.52 578	42	0.47 422	9.97 683	+ + +	27	3	1.8 2.4	0.2	0.2 0.3
34	9.50 298	38	9.52 620	41	0.47 380	997679	5	26	4	3.0	0.3	0.3
35 36	9.50 336 9 50 374	38	9.52 661 9.52 703	42	0.47 339 0.47 297	9.97 674 9.97 670	4	25 24	6	3.6	0.5	0.1
37	9.50 411	37	9 52 745	42	0.47 255	9.97 666	+	23	7	4.2	0.6	0.5
38	9.50 449	38	9.52 757	42 42	0.47 213	9.97 662	4	22	8	48	0.7	0.5
39	9.50 486	37 37	9.52 829	42	0.47 171	9.97 657	5	21	9	54	0.8	0.6
40	9 50 523	38	9 52 870	42	0.47 130	9.97 653	4	20	10 20	6.0 12.0	0.8 1.7	0.7 1.3
41	9 50 561	37	9.52 912	41	0.47 088	9.97 649	4	19 18	30	18.0	2.5	2.0
42 43	9 50 598 9.50 635	37	9.52 953 9.52 995	42	0.47 047 0.47 005	9.97 645 9.97 640	5	17	40	24.0	3.3	2.7
43	9.50 673	30	9.53 037	42	0.46 963	9.97 646	4	16	50	30.0	4.2	3.3
45	9.50 710	37	9.53 078	41 42	0.46 022	9.97 632	4	15		5 (5	5
46	9.50 747	37 37	9.53 120	41	0.46 880	9.97 628	45	14		43	42	$\frac{1}{41}$
47	9.50 784	37	9.53 161	41	0.46 839	9.97 623	4	13	0			
48 49	9.50 821 9.50 858	37	9.53 202 9.53 244	42	0.46 798 0.46 756	9.97 619	4	12	I	4.3	4.2 12.0	4.1
50	9.50 806	38	9.53 285	41	0.46 715	9.97 615 9.97 610	5	10	2	12.9 21.5	12.0 21.0	12.3 20.5
51	9.50 933	37	9.53 327	42	0.46 673	9.97 606	4	9	3	30.1	29.4	28.7
52	9.50 970	37 37	9.53 368	41 41	0.46 632	9.97 602	45	8	4	38.7	37.8	36.9
53	9 51 007	37	9.53 409	41	0.46 591	9.97 597	3	7	31	4	4	4
54	9.51 0.13	37	9.53 450	42	0.46 550	9.97 593	4	6			$\frac{4}{42}$	$\frac{4}{41}$
55 56	9.51 080 9.51 117	37	9.53 492 9.53 533	41	0.46 508 0.46 467	9.97 589	5	5	01	43		
57	9.51 154	37	9.53 533	41	0.46 426	9.97 584 9.97 580	4	3	I	5.4	5.2	5.1
58	9.51 154 9.51 191	37	9.53 574	41	0.46 385	9.97 580	4	2	2	16.1	15.8 26.2	15.4 25.6
59	9.51 227	36 37	9.53 656	41 41	0.46 344	9.97 571	5 4	T	3	26.9 37.6	20.2 36.8	35.9
60	9.51 264	31	9.53 697	1	0.46 303	9.97 567	*	0	4	5,		
	L Cos	d.	·L Cot	cd	L Tan	L Sin	d	•		P	P	
L		*16	1° 251°	+341	0 7	'1°						
		~10	1 201	-341	1	T						

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						19-			*109	• 19)9° *	289°	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		L Sin	d	L Tan	c d	L Cot	L Cos	d			I	, h	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D	9 51 264		9.53 697		0.46 303	9.97 567	Î	БU				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	9.51 301		9.53 738									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
4 9		_							-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			36					5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			37		41			4		5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0.45 975	9 97 532			ś			
$ \begin{array}{ c c c c c c c c c c c c $							9.97 528			9	6.2	0.0	5.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9.51 666		9.54 147		0.45 853			42				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.51 228									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-		36					-4					
15 0.51 8.47 36 9.54 350 41 0.45 650 9.07 497 4 44 31 36 36 36 17 9.51 955 36 9.54 300 40 0.45 510 9.97 434 4 43 2 1.2				9-54 309	40								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16									- 1			
16 9,51 919 30 9,54 317 41 0.45 560 9,97 488 4 42 3 1.8 <td>17</td> <td>9.51 883</td> <td>-</td> <td>9.54 390</td> <td></td> <td></td> <td>9.97 492</td> <td></td> <td>43</td> <td></td> <td></td> <td></td> <td></td>	17	9.51 883	-	9.54 390			9.97 492		43				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18									-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19										2.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												3.0	2.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			36		41							3.6	
24 0.52 135 30 9.54 673 40 0.45 327 9.07 461 5 30 9 5.6 5.4 5.2 25 9.52 277 30 9.54 754 41 0.45 287 9.07 453 5 33 30 18.5 18.0 17.5 27 9.52 278 30 9.54 754 40 0.45 286 9.07 433 33 30 18.5 18.0 17.5 28 9.52 278 35 9.54 794 40 0.45 205 9.07 443 32 200 18.5 18.0 17.5 33 30 18.5 18.0 17.2 12.0 23.3 30 18.5 18.0 17.5 33 30 18.5 18.0 17.2 12.0 23.3 30 18.5 10.0 10.1 10.1 11.0 10.2 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0			36	9-54-593						8		4.3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					40			5					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25					0.45 286							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	26												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27	9.52 242		9-54 794		0.45 206	9.97 448		33				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	28			9-54 835									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29]¢1	, Joio	30.0	-9.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											31	5	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-				40								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								+					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35									-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36						9.97 408		24				0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	37			9.55 195			9.97 403		-3				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	9.52 634											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			35		40			5			11.3		1.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41												
44 0.52 846 35 9.55 474 40 0.44 526 9.97 372 5 16 45 0.52 881 35 9.55 514 40 0.44 426 9.97 363 5 15 47 0.52 881 35 9.55 514 40 0.44 446 9.97 363 5 13 -411 40 36 49 0.52 951 35 9.55 551 39 0.44 446 9.97 363 5 13 -411 40 36 49 0.53 021 35 9.55 633 40 0.44 367 9.97 353 5 13 -411 40 36 50 9.53 021 35 9.55 752 39 0.44 367 9.97 349 5 10 2 20.5 20.01 10.7 51 0.53 022 0.55 752 39 0.44 209 9.97 335 5 3 20.5 20.01 10.5 52 9.53 161 35 9.55 871 39 0.44 209 9.97 335 5 3 22.05 20.01 10.5 3 22.5 30.0 35	43												
45 0,52 881 35 0,55 514 40 0.44 446 0,97 367 5 15 40 9,52 916 35 9,55 554 30 0.44 446 9,97 363 5 13 41 40 36 7 9,52 951 35 9,55 503 40 0.44 4407 9,97 355 5 13 41 40 36 449 9,53 021 35 9,55 673 30 0.44 497 9,97 355 5 12 21 41 40 37 9,53 056 35 9,55 752 30 0.44 288 9,07 344 5 3 32 22,55 20.0 10.7 2 20,55 72.3 39 0.44 288 9,07 340 5 3 35 35 35 35 35 35 35 36 35 35 36 35 36 37 39 0.44 288 9,07 340 5 3 36 3 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.0 35.9 36.9 36.9 <	44				-	0.44 526				201			3.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	9.52 881		9.55 514		0.44 486	9.97 367	-					
47 9,52 951 35 9,55 933 40 0,44 407 9,97 355 5 13 41 40 36 48 9,52 935 9,55 633 40 0,44 367 9,97 353 5 13 41 40 36 49 9,53 035 9,55 673 39 0.44 367 9,97 349 4 11 10 2 12.3 12.0 11.7 7 37 39 0.44 248 9,97 344 5 10 2 12.3 12.0 11.7 7 35 35 9,55 73 39 0.44 248 9,97 344 5 10 2 12.3 12.0 11.7 7 5 36 3 28.7 28.0 10.5 35 13 36.9 35.9 35 15.1 36 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 35.9 35.9	46			-							5	5	Б
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47										41	40	36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48									O I			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49 50		35										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-		-					- 1		20.0	19.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52								ś		28.7	28.0	27.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53										36.9		
55 9.53 231 -35 9.53 9.51 9.53 9.53 9.53 9.53 9.55 9.59 9.59 9.90 9.90 0.44 051 9.97 317 5 5 4 0 89 57 9.53 35 9.55 9.63 39 0.44 051 9.97 317 5 3 0 5 1 5.0 4.99 9.54 40 0.43 9.73 37 5 3 0 5 1 5.0 4.99 9.97 30 5 2 1 15.4 15.0 4.40 9.97 9.73 37 5 3 1 5.5 5.0 4.99 9.97 9.97 307 5 3 1 15.4 15.0 14.60 3 9.97 307 34 3 35.9 35.0 34.1 40 3 9.97 307 -4 3 35.9 35.0 34.1 40 40 3 35.9 34.1 40 4 35.9 35.9 34.1 40 4	54										41	4	4
50 9.55 9.45 9.40 0.44 051 9.97 317 5 4 57 9.53 301 35 9.55 980 39 0.44 051 9.97 312 4 3 1 51 5.0 4.9 58 9.53 336 35 9.56 0.63 97 9.97 312 4 3 1 15.4 15.0 1.4.6 59 9.53 36 34 9.56 0.67 39 0.43 972 9.97 303 5 1 2 25.6 25.0 2.1.4 50 9.53 405 35 9.56 107 40 0.43 9.97 299 -4 0 4 35.9 35.0 34.1 80 9.53 405 55 6107 40 0.43 893 9.97 299 -4 0 4 35.9 35.0 34.1 1 L C08 d L Cot t d L Tan L Sin d ' P	55										41	40	39
57 9.53 301 35 9.55 969 39 0.44 011 9.97 312 4 3 1 5.1 3.0 4.9 58 9.53 336 34 9.56 0.63 97 9.97 308 5 1 1.5 1.5 4.9 59 9.53 370 34 9.56 0.67 39 0.43 972 9.97 308 5 1 2 25.6 25.0 21.4 50 9.53 405 35 9.56 0.7 40 0.43 933 9.97 303 5 1 3 2 25.6 25.0 21.4 80 9.53 405 35 9.56 107 40 0.43 893 9.97 299 -4 0 4 35.9 35.0 34.1 L C08 d L Cot c d L Tan L Sin d ' P	56									D			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57				-			4		I			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			34		39		9.9/308	5					
L Cos d L Cot c d L Tan L Sin d P P	60		35		40			-4		3			
			a		a d			đ		- 4	9	р	
*160° 250° *340° 70°					U UL	_		u					
		*160°	250'	° #340°		70°							

*109° 199° *280°

20°

*110° 200° *290°

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						20°	*1	105	200*	-2	90°		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· ·	L Sin	d	L Tan	c d	L Cot	L Cos	d			F	P	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	9.53 405	25	9.56 107	20	0.43 893	9.97 299	_	60				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							9.97 289						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-											2.6	
							9.97 280			5	33	3.2	3.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
	7									7			
9 9 9:3 710 7: 0:50 439 7: 0:43 541 9:97 257 5 13 10 6.7 6.5 6.5 7.1 10 9:57 78 34 9:56 57 39 0:43 443 9:97 238 5 47 50 200 133 13.00 12.7 7.1 10.53 78 34 9:56 57 6.3 9:0.43 346 9:97 238 5 47 50 33.3 32.5 31.7 14 9:53 88 34 9:56 654 39 0:43 346 9:97 234 5 47 50 33.3 32.5 31.7 15 9:53 922 34 9:56 654 39 0:43 346 9:97 224 5 44 12 1.2 1.2 1.1 7.1 7.9 53 90 14 9:56 77.1 9:0.43 249 9:97 224 5 44 12 1.2 5 2.3 2.3 1.7 9:55 93 49 9:56 733 9:0.43 346 9:97 224 5 44 12 1.2 5 2.3 2.3 1.7 9:55 93 49 9:56 73 9:0.43 346 9:97 224 5 44 12 1.2 5 2.3 2.3 1.9 9:54 025 34 9:56 840 39 0:43 346 9:97 224 5 44 12 1.2 5 2.3 2.3 2.9 9:54 029 34 9:56 840 39 0:43 315 9:97 225 5 42 1 4.2 5 2.3 2.3 2.9 9:54 029 34 9:56 840 39 0:43 315 9:97 226 5 44 10 5 3 1 2.9 2.8 19 9:54 029 34 9:56 840 39 0:43 315 9:97 226 5 43 8 4.0 4.7 4 5 3 11 2.9 2.8 19 9:54 029 34 9:56 840 39 0:43 035 9:07 116 5 3 36 4.0 4.7 4 5 3 12 2.9 2.8 19 9:54 029 34 9:57 064 39 0:43 035 9:07 116 5 3 36 4.0 4.7 4 5 3 12 2.9 2.8 19 9:54 029 34 9:57 064 39 0:42 906 9:97 119 2 5 30 0 6 3.7 3:55 3.4 1.2 9:51 0.2 9:57 024 39 0:42 906 9:97 119 5 30 0 1.6 2 2 5.8 5.7 5 1.7 0.5 39 0:42 9:50 9:71 12 36 0:42 9:69 9:71 18 2 5 31 1.7 11.3 36 0:42 9:69 9:71 18 2 5 31 0:6 2 2 5.8 5.7 1.2 0:1 33 0:42 0:56 39:71 39 0:42 206 9:97 119 5 30 0 1.6 2 2 5.8 5.7 1.2 0:1 32 9:54 399 34 9:57 084 39 0:42 106 9:71 178 5 33 0 1.6 2 1.7, 11.3 1.7 11.3 2.9 2.8 3 0:55 11.7 0:1.3 1.7 11.3 36 0:42 842 9:97 119 5 3 30 0:1 6 2 2 5.8 5.7 1.7 0:3 0:42 106 9:71 178 5 33 0 1.6 2 0:3 0:3 0:3 2.2 2 8.3 30 0:55 11 0:57 112 0:0 1.0 2.0 1.0 0:1.7 11.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.	8						9.97 262		52	-			
										-		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													12.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					39								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 1			9.56 654	-					50			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									45	,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							9.97 220			3	1.8	1.8	1.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					39		9.9/215	5			-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			34		38								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							9.97 201					3.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										9		5.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-		9.97 187						5.7
279.54 331349.57 15836 $0.42 842$ 9.97 1755334024.7723.322.7289.54 305349.57 19739 $0.42 803$ 9.97 1685313354299.54 333349.57 23538 $0.42 705$ 9.97 1535313354309.54 466319.57 31239 $0.42 726$ 9.97 15452921.10.20.1319.54 534349.57 35139 $0.42 19$ 9.97 14052831.60.20.2319.54 534349.57 38930 $0.42 572$ 9.97 14052652.80.40.3359.54 635349.57 42839 $0.42 4572$ 9.97 12552652.80.40.3369.57 504380.42 4579.97 1165211050.60.6369.54 702349.57 581380.42 4379.97 1165211050.80.7419.54 802339.57 619380.42 3429.97 1075184022.03.32.7439.54 860339.57 774380.42 23429.97 1075184022.03.32.7449.54 860339.57 887380.42 2389.97 097516		9.54 203											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					38								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29			9-57 235					31		-		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31				-					2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					39	1 1		5					-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.54 001	34										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											3.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										8	4.4		0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42	9.54 836				0.42 206						3.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	9.54 869		9.57 772			9.97 097		17	50	27.5	4.2	3-3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				9.57 810	-			1			5	5	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					38								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		38								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					38								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	9.55 102				0.41 961	9.97 063		10		28.0	27.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.55 136		9.58 077		0.41 923			2		36.0	35.1	34.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.55 109			38					21	5	4	4
54 9-55 25 33 9-56 29 38 0.41 760 9-97 94 5 7 9.57 33 9.58 36 0.41 713 9.97 9.35 4 4 11.1 14.6 14.2 23.8 5 5 5 3 2 18.5 24.4 23.8 5 5 9.97 5 5 3 2 3 25.9 34.1 33.2 3.9 5 5 0 5 3 3 2.5.9 34.1 3.3.2 3.9 3.9 5 3 3 2.5.9 34.1 3.3.2 3.3 - - -				• • • •	38								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								5					
57 9.55 334 33 9.58 304 37 0.41 696 9.97 030 5 3 2 11.1 14.0 14.2 58 9.55 307 33 9.58 342 38 0.41 658 9.97 035 5 2 3 18.5 24.4 23.8 59 9.55 400 33 9.58 346 38 0.41 658 9.97 025 5 2 3 25.9 34.1 33.2 60 9.55 433 33 9.58 418 38 0.41 582 9.97 015 5 0 4 33.3 - - - L Coss d L Cot c d L Tan L Sin d ' P P			33					4					
58 9.55 367 33 9.58 342 38 0.41 658 9.97 025 5 2 3 25.0 34.1 33.2 59 9.55 400 33 9.58 380 38 0.41 658 9.97 020 5 1 4 33.3 - - 60 9.55 433 33 9.58 418 38 0.41 582 9.97 015 5 0 5 1 4 33.3 - - - L Cos d L Cot c d L Tan L Sin d ' ' ' ' '						0.41 696		•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									2				
L Cos d L Cot c d L Tan L Sin d ' P P							the state of the s			4	33-3	-	
	- 00								۲, I		12	p	
*159° 249° *839° 69°					ea	1	Lon	a			r	r	
		*159°	249°	*339°		69°							

					21°			* 111°	2019	+29	1.	
·	L Sin	d	L Tan	cd	L Cot	L Cos	d			P	Р	
0	9-55 433	0.0	9.58 418		0.41 582	9.97 015		60		38	37	36
I	9.55 466	33 33	9.58 455	37 38	0.41 545	9.97 010	5	59	I	0.6	0.6	0.6
2	9.55 499	33	9.58 493	38	0.41 507 0.41 469	9.97 005 9.97 001	4	58 57	2	1.3	1.2	1.2
3	9.55 532	32	9.58 531 9.58 569	38	0.41 431	9.96 996	5	57 56	3 4	1.9 2.5	1.8 2.5	1.8 2.4
4	9.55 504 9.55 597	33	9.58 606	37	0.41 394	9.90 990 9.96 991	5	55	5	3.2	3.1	3.0
6	9.55 630	33	9.58 644	38 37	0.41 356	9.96 986	5	54	6	3.8	3.7	3.6
7	9.55 663	33	9.58 681	37	0.41 319	9.96 981	5	53	7	4.4	4.3	4.2
8	9.55 695	32 33	9.58 719	38	0.41 281	9.96 976	5	52	8	5.I 5.7	4.9 5.6	4.8 5.4
.2	9.55 728	33	9.58 757	37	0.41 243	9.96 971	5	51	10	6.3	6.2	6.0
10	9.55 761	32	9.58 794	38	0.41 200	9.96 966	4	50	20	12.7	12.3	12.0
11 12	9.55 793 9.55 826	33	9.58 832 9.58 869	37	0.41 168 0.41 131	9.96 962 9.96 957	5	49 48	30	19.0	18.5	18.0
13	9.55 858	32	9.58 907	38	0.41 093	9.96 952	5	47	40 50	25.3 31.7	24.7 30.8	24.0 30.0
14	9.55 891	33	9.58 944	37	0.41 056	9.96 947	5	46	- 50			-
15	9.55 923	32 33	9.58 981	37	0.41 019	9.96 942	5	45	T	33 0.6	32 0.5	31 0.5
16	9.55 956	32	9.59 019	37	0.40 981	9.96 937	5	44	2	1.1	1.1	1.0
17	9.55 988	33	9.59 056	38	0.40 944	9.96 932	5	43	3	1.6	1.6	1.6
18	9.56 021	32	9.59 094	37	0.40 906 0.40 869	9.96 927 9.96 922	5	42 41	4	2.2	2.I	2.1
19 20	9.56 053 9.56 085	32	9.59 131 9.59 168	37	0.40 832	9.90 922	5	40	5,	2.8	2.7	2.6
21	9.56 118	33	9.59 205	37	0.40 795	9.96 912	5	39	7	3.3 3.8	3.2 3.7	3.I 3.6
22	9.56 150	32	9.59 243	38	0.40 757	9.96 907	5	38	8	4.4	4.3	4.1
23	9.56 182	32 33	9.59 280	37	0.40 720	9.96 903	45	37	9	5. 0	4.8	4.6
24	9.56 215	32	9.59 317	37	0 40 683	9.96 898	5	36	10	5-5	5.3	5.2
25	9.56 2.47	32	9.59 354	37	0.40 646	9.96 893	5	35	20 30	11.0 16.5	10.7 16.0	10.3 15.5
26	9.56 279	32	9.59 391	38	0.40 609	9.96 888 9.96 883	5	34	40	22.0	21.3	20.7
27	9.56 311 9.56 343	32	9.59 429 9.59 466	37	0.40 571	9.90 883	5	33 32	50	27.5	26.7	25.8
20	9.56 375	32	9.59 503	37	0.40 497	9.96 873	5	31		6	5	4
30	9.56 408	33	9.59 540	37	0.10 460	9.96 868	5	30	I	0.I	0.1	0.1
31	9.56 440	32 32	9.59 577	37	0.40 423	9.96 863	5	29	2	0.2	0.2	0.1
32	9.56 472	32	9.59 614	37	0.40 386	9.96 858	5	28	3	0.3 0.4	0.2	0.2 0.3
33	9.56 504	32	9.59 651	37	0.40 349	9.96 853	5	27	5	0.5	0.4	0.3
34	9.56 536 9.56 568	32	9.59 688 9.59 725	37	0.40 312	9.96 848 9.96 843	5	26 25	ő	0.6	0.5	0.4
35 36	9.56 599	31	9.59 762	37	0.40 238	9.96 838	5	24	7	0.7	0.6	0.3
37	9.56 631	32	9.59 799	37	0.40 201	0.06 833	5	23	8	0.8	0.7 0.8	0.5 0.6
38	y.56 663	32 32	9.59 835	36	0.40 165	9.96 828	5	22	10	1.0	0.8	0.7
39	9.56 695	32	9.59 872	37	0.40 128	9.96 823	5	21	20	2.0	1.7	1.3
40	9.56 727	32	9.59 909	37	0.40 091	9.96 818	5	20	30	3.0	2.5	2.0
41	9.56 759	31	9.59 940	37	0.40 054	9.96 813 9.96 808	5	19 18	40 50	4.0 5.0	3.3 4.2	2.7
42 43	9.56 790 9.56 822	32	9.59 983 9.60 019	36	0.40 017 0.39 981	9.96 803 9.96 803	5	17			.4.2	3.3
44	9.56 854	32	9.60 056	37	0.39 944	9.90 798	5	16		6	5	5
45	9.56 886	32	9.60 093	37	0.39 907	9.96 793	5	15		37	38	37
46	9.56 917	31 32	9.60 1 30	37	0.39 870	9.96 788	5	14	0			
47	9.56 949	31	9.60 166	37	0.39 834	9.96 783	5	13	I	3.I 9.2	3.8 11.4	3.7 11.1
48	9.56 980	32	9.60 203	37	0.39 797	9.96 778 9.96 772	6	12 11	2	15.4	19.0	18.5
49 50	9.57 012	32	9.60 240 9.60 276	36	0.39 760	9.96 767	5	10	3	21.6	26.6	25.9
51	9.57 075	31	9.60 313	37	0.39 687	9.96 762	5	9	5	27.8	34.2	33.3
52	9.57 107	32	9.60 349	36	0.39 651	9.96 757	5	8	6	33.9		
53	9.57 138	31 31	9.60 386	37 36	0.39 614	9.96 752	5	7		5	4	4
54	9.57 169	32	9.60 422	37	0.39 578	9.96 747	5	6		36	38	37
55	9.57 201	31	9.60 459	36	0.39 541	9.96 742	5	5	0	3.6	4.8	4.6
56	9.57 232	32	9.60 495	37	0.39 505	9.96 737	5	4	1	10.8	14.2	13.9
57 58	9.57 264 9.57 295	31	9.60 532 9.60 568	36	0.39 408	9.90 732	5	3	23	18.0	23.8	23.1
59	9.57 326	31	9.60 605	37 36	0.39 395	9.96 722	5 5	ī	4	25.2	33.2	32.4
60	9.57 358	32	9.60 641	30	0.39 359	9.96 717	5	0	5	32.4	-	
	L Cos	d	L Cot	cd	L Tan	L Sin	d	1		Р	Р	
L	#1500	0400			68°							

68°

*158° 248° *338°

21°

*111° 201° *291°

22°

*112° 202° *292°

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, 1	L Sin	d	L Tan	cd	L Cot	L Cos	d		1	ŀ	p p	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<u>u</u>		cu			u			1	- J.	
$ \begin{bmatrix} 1 & 0.57 & 1.03 & 0.40 & 7.14 & 3.6 & 0.39 & 2.8 & 0.90 & 7.04 & 5.8 & 2 & 1.2 $			31		36			6				36	35
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0.39 323			58				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							9.90 700						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-							5					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					37								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ő									ő			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	9.57 576		9.60 895	_								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	9.57 607		9.60 931		0.39 069	9.96 676						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9.57 638											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									50				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-						49	30	18.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					36								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			31		36					50		30.0	29.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												31	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17		-	9.61 256									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				9.61 292		0.38 708							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9.57 947		9.61 328		0.38 672			4 I				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9.57 978						5	40	ő			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		30					7	3.7	3.6	3.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			30		36		9.96 593				5.3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			31		35	0.38 121		Ğ					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			30					5				20.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										50	26.7	25.8	25.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29	9.58 253				0.38 313					29	6	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	9.58 284		9.61 722		0.38 278	9.96 562		30				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								6					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0.38 000				7	3.4		0.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			30										0.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								5			4.4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40		-		-				20				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	9.62 114		0.37 880	9.96 501			40	19.3	4.0	3.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										50	24.2	5.0	4.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					36						-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											36	3 35	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								5				0 20	`
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1 0		5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											-) TE		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											A 21.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51								9				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.58 949		9.62 504			9.96 445		8		6 33.	0138.	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											5	5	5
55 9.59 039 30 9.62 609 36 0.37 391 9.96 129 5 5 0 3.7 3.6 3.5 56 9.59 069 29 9.62 645 35 0.37 355 9.96 124 5 4 1 3.7 3.6 3.5 57 9.59 098 30 9.62 680 35 0.37 320 9.96 419 6 3 2 11.1 10.8 10.5 59 9.59 128 30 9.62 715 35 0.37 285 9.96 419 6 3 2 18.5 18.0 17.5 59 9.59 158 30 9.62 750 35 0.37 250 9.96 408 5 1 3 25.9 12.2 24.5 60 9.59 168 30 9.62 785 35 0.37 215 9.96 403 5 1 3 33.3 32.4 31.5 60 9.59 168 30 9.62 785 35 0.37 215 9.96 403 5 0 5 3.3 32.4 31.5 L Cos d L Cot c d <td></td> <td>9.59 009</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>37</td> <td>36</td> <td>35</td>		9.59 009	-								37	36	35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.59 039								0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				• • •									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			30			0.37 320		6	3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.50 158	30		35						25.9	25.2	24.5
L Cos d' L Cot c d L Tan L Sin d ' P P		0.50 188	30		35			5					
										, ,	<u> </u>	D	
#1570 0470 #0070 (479					сa	L Tan	LSIN	a	<u> </u>		P	<u>г</u>	

*157° 247° *337°

ഹെ	
×	

*113° 203° *293°

						113~	2030	-293				
'	L Sin	d	L Tan	cd	L Cot	L Cos	d			F	Р	
0	9.59 188		9.62 785	35	0.37 21 5	9.96 403	6	60		36	35	34
I	9.59 218	30 20	9.62 820	35	0.37 180	9.96 397	5	59	12	0.6	0.6 1.2	0.6 1.1
23	9.59 247 9.59 277	30	9.62 855 9.62 890	35	0.37 145 0.37 110	9.96 392 9.96 387	5	58 57	3	1.2	1.2	1.7
4	9.59 277	30	9.62 996 9.62 926	36	0.37 074	9.90 307	6	56	4	2.4	2.3	2.3
5	9.59 336	29	9.62 961	35	0.37 039	9.96 376	5	55	5	3.0	2.9	2.8
ŏ	9.59 366	30	9.62 996	35 35	0.37 004	9.96 370	6 5	54	6	3.6	3.5	3.4
7	9.59 396	30	9.63 031	35	0.36 969	9.96 363	5	53	7	4.2 4.8	4.1	4.0
8	9.59 425	29 30	9.63 066	35	0.36 934	9.96 300	6	52	9	4.0 5.4	4.7 5.2	4.5 5.1
9 10	9.59 455	29	9.63 101	34	0.36 899	9.96 354	5	51 50	10	6.0	5.8	5.7
10	9-59 484	30	9.63 135	35	0.36 865	9.95 349	6	49	20	12.0	11.7	11.3
12	9.59 543	29	9.63 205	35	0.36 795	9.96 338	5	48	30	18.0	17.5	17.0
13	9-59 573	30	9.63 240	35 35	0.36 760	9.96 333	5	47	40 50	24.0 30.0	23.3 29.2	22.7 28.3
14	9.59 602	29 30	9.63 275	35	0.36 725	9.96 327	5	46	30	30	29	28
15	9.59 632	20	9.63 310	35	0.36 690	9.96 322	6	45	I	0.5	0.5	0.5
16	9.59 661	29	9.63 345	34	0.36 655	9.96 316	5	44	2	1.0	1.0	0.9
17 18	9.59 690 9.59 720	30	9.63 379 9.63 414	35	0.36 621 0.36 586	9.96 31 1 9.96 305	6	43 42	3	1.5	1.4	1.4
19	9.59 749	29	9.63 449	35	0.36 551	9.96 300	5	41	4	2.0	19	1.9
20	9.59 778	29	9.63 484	35	0.36 516	9.96 294	5	40	5 6	2.5 3.0	2.4 2.0	2.3 2.8
21	9.59 808	30 20	9.63 519	34	0.36 481	9.96 289	5	39	7	3.5	3.4	3.3
22	9.59 837	29	9.63 553	35	0.36 447	9.96 284	6	38	8	4.0	3.9	3.7
23	9.59 866	29	9.63 588 9.63 623	35	0.36 412	9.96 278 9.96 273	5	37 36	9	4.5	4.4	4.2
24 25	9.59 895 9.59 924	29	0.63 657	34	0.36 377 0.36 343	9.90 273 9.96 267	6	35	10 20	5.0 10.0	4.8	4.7
26	9.59 954	30	9.63 692	35	0.36 308	9.96 262	5	34	30	15.0	9.7 14.5	9.3 14.0
27	9.59 983	29	9.63 726	35	0.36 274	9.96 256	-	33	40	20.0	19.3	18.7
28	9.60 012	29 29	9.63 761	35	0.36 239	9.96 251	5	32	50	25.0	24.2	23.3
29 30	9.60 041	29	9.63 796	34	0.36 204	9.96 245	5	31 30			6	5
31	9.60 070	29	9.03 830	35	0.36 170	9.96 240 9.96 234	6	29		2		0.1 0.2
32	9.60 Ugg	29	9.63 899	34 35	0.30 135	9.90 234	5	28		3		0.2
33	9.60 157	29 20	9.63 934	35	0.36 066	9.96 223	6 5	27		4		0.3
34	9.60 186	20	9.63 968	35	0.36 032	9.96 218	6	26		5		0.4
35	9.60 21 5 9.60 244	29	9.64 003	34	0.35 997	9.96 212	5	25 24		6		0.5 0.6
36	9.00 244	29	9.64 037 9.64 072	35	0.35 963	9.96 207	6	23		8		0.0
37	9.00 273 9.60 302	29	9.64 072 9.64 106	34	0.35 928 0.35 894	9.96 201 9.96 196	5	23		9		0.8
39	9.60 331	29	9.64 140	34 35	0.35 860	9.96 190	65	21		10		0.8
40	9.60 359	20	9.64 175	34	0.35 825	9.96 185	6	20		20		1.7
41	9.60 388	29	9.64 209	34	0.35 791	9.96 1 79	5	19		30 40		2.5 3.3
42 43	9.60 417 9.60 446	29	9.64 243 9.64 278	35	0.35 757	9.90 174 9.96 168	6	18 17		50		3· <i>3</i> 4.2
43	9.60 474	28	9.64 312	34	0.35 722 0.35 688	9.90 108 9.96 162	6	16		6	6	6
44	9.60 503	29	9.64 346	34 35	0.35 654	9.96 157	5	15		36	35	34
46	9.60 532	29 20	9.64 381	35 34	0.35 619	9.96 151	6 5	14	0			
47	9.60 561	28	9.64 413	34	0.35 585	9.96 146	6	13	I	3.0	2.9 8.8	2.8
48	9.60 589	29	9.64 449	34	0.35 551	9.96 140	5	12 11	2	9.0 15.0	8.8 14.6	8.5 1.4.2
49 50	9.60 618	28	9.64 483 9.64 517	34	0.35 517	9.96 135 9.96 129	6	10	3	21.0	20.4	19.8
51	9.60 675	29	9.64 517	35	0.35 483	9.90 129	6	1	4	27.0	26.2	25.5
52	9.60 704	29 28	9.64 586	34 34	0.35 414	9.96 118	5	8	6	33.0	32.1	31.2
53	9.60 732	29	9.64 620	34	0.35 380	9.96 112	5	7		5	15	i
54	9.60 761	28	9.64 654	34	0.35 346	9.96 107	6	6		3	5 3	4
55 56	9.60 789 9.60 818	29	9.64 688	34	0.35 312	9.96 101	6	5 4		<u>0</u>	- -	-
50	9.60 818 9.60 846	28	9.64 722	34	0.35 278	9.96 095	5	3	l I	1 3		
57	9.00 840 9.60 875	29	9.64 756	34	0.35 244 0.35 210	9.96 090 9.96 084	6	2		2 1 17	5 17	0.
59	9.60 903	28 28	9.64 824	34 34	0.35 176	9.96 079	5	. I		3 24	5 23	
60	9.60 931	1.	9.64 858	77	0.35 142	9.96 073	Ů	0		5 31	5 30	.0
	L Cos	d	L Cot	cd	L Tar	L Sin	d	,		F	, P	
L				L.,	66°							
	*156	2 2	46° *336	•	00-							

71

24°

*114° 204° *294°

					21				114°	204°	*294	
•	L Sin	d	L Tan	c d	L Cot	L Cos	d			F	P P	
0	9.60 931		9.64 858		0.35 142	9.96 073	6	60				
τ	9.60 960	29	9.64 892	34 34	0.35 108	9.90 067	5	59		1	84 i 8	3
2	9.60 988	28 28	9.64 926	34	0.35 074	9.96 062	6	58				0.6
3	9.61 016	29	9.64 960	34	0.35 040	9.96 056	6	57				.1
4	9.61 045 9.61 073	28	9.64 994 9.65 028	34	0.35 006	9.96 050	5	56				.6
5	9.61 101	28	9.65 062	34	0.34 972 0.34 938	9.96 043 9.96 039	6	55 54				.2
7	9.61 129	28	9.65 096	34	0.34 904	9.96 034	5	53				1.8 1-3
8	9.61 158	29	9.65 130	34	0.34 870	9.96 028	6 6	52				.8
9	9.61 186	28 28	9.65 164	34	0.34 836	9.96 022	5	51		8 .	4.5 4	-4
10	9.61 214	28	9.65 197	34	0.34 803	9.96 017	6	50		- 1		.0
11 12	9.61 242 9.61 270	28	9.65 231	34	0.34 769	9.96 011	6	49 48				•5
12	9.61 298	28	9.65 209	34	0.34 735 0.34 701	9.96 005 9.96 000	5	40				.0 .5
14	0.61 326	28	9.65 333	34	0.34 667	9.95 994	6	46				.0
15	9.61 354	28	9.65 366	33 34	0.34 634	9.95 988	6 6	45		50 2	8.3 27	-5
16	9.61 382	28 29	9.65 400	34	0.34 600	9.95 982	5	44				
17	9.61 411	29	9.65 434	33	0.34 566	9.95 977	6	43		29	28	27
18	9.61 438	28	9.65 467	34	0.34 533	9.95 971	6	42 41	I	0.5	0.5	0.4
19 20	9.61 466 9.61 494	28	9.65 501	34	0.34 499	9.95 965 9.95 960	5	40	2	1.0	0.9	0.9
21	9.01 494 9.61 522	28	9.05 568	33	0.34 405	9.95 900	6	39	3	1.4 1.9	1.4 1.9	1.4 1.8
22	9.61 550	28	9.65 602	34	0.34 398	9.95 954	6 6	38	4 5	2.4	2.3	2.2
23	9.61 578	28 28	9.65 636	33	0.34 364	9.95 942	5	37	6	2.9	2.8	2.7
24	9.61 605	28	9.65 669	34	0.34 331	9.95 937	6	36	7	3.4	3.3	3.2
25	9.61 634	28	9.65 703	33	0.34 297	9.95 931	6	35	8	3.9	37	3.6
26 07	9.61 662 9.61 689	27	9.65 736	34	0.34 264	9.95 925	5	34	9 10	4.4	4.2	4.0
27 28	9.61 717	28	9.65 770 9.65 803	33	0.34 230 0.34 197	9.95 920 9.95 914	6	33 32	20	4.8 9.7	4.7 9.3	4.5 9.0
29	9.61 745	28	9.65 837	34	0.34 163	9.95 908	6	31	30	14.5	140	13.5
3 0	9.61 773	28 27	9.65 870	34	0.34 130	9.95 902		30	40	19.3	18.7	18.0
31	9.61 800	28	9.65 904	33	0.34 096	9.95 897	5	29	50	24.2	23.3	22.5
32	9.61 828	28	9.65 937	34	0.34 063	9.95 891	6	28				
33	9.61 856 9.61 883	27	9.65 971	33	0.34 029	9.95 885	6	27 26		1		5
34 35	9.01 883 9.61 911	28	9.66 038	34	0.33 996 0.33 962	9.95 879 9.95 873	6	25		1 2		0.1 0.2
36	9.61 939	28 27	9.66 071	33	0.33 929	9.95 868	5	24		3). 2
37	9.61 966	28	9.66 104	34	0.33 896	9.95 862	6	23		4		b. 3
38	9.61 994	27	9.66 138	33	0.33 862	9.95 856	6	22		5		 4
39	9.62 021	28	9.66 171	33	0.33 829	9.95 850	6	21 20		6		0.5
40	9.62 049	27	9.66 204	34	0.33 796	9.95 844	5	10		8		0.6 0.7
41 42	9.62 104	28	9.66 271	33	0.33 762	9.95 839 9.95 833	6	18		9		5.8
43	9.62 131	27	9.66 304	33	0.33 696	9.95 827	6	17		10	1.0	5.8
44	9.62 159	20	9.66 337	34	0.33 663	9.95 821	6	16		20		r.7
45	9.62 186	28	9.66 371	33	0.33 629	9.95 815	5	15		30		2.5
46	9.62 214	27	9.66 404	33	0.33 596	9.95 810	6	14		40 50		3.3 4.2
47	9.62 241 9.62 268	27	9.66 437 9.66 470	33	0.33 563	9.95 804	6	13 12		J- 1	J	•
40	9.62 208	28	9.66 503	33	0.33 530	9.95 798 9.95 792	6	11				
50	9.62 323	27	9.66 537	34	0.33 463	9.95 786	6	10		-		-
51	9.62 350	27	9.66 570	33	0.33 430	9.95 780	6	8		6	6	5
52	9.62 377	28	9.66 603	33	0.33 397	9.95 775	5			34	33	34
53	9.62 405	27	9.66 636	33	0.33 364	9.95 769	6	7	0	2.8	2.8	3.4
54	9.62 432 9.62 459	27	9.66 669	33	0.33 331	9.95 763	6	6 5	1 2	8.5	8.2	10.2
55 56	9.62 486	27	9.66 735	33	0.33 298	9-95 757 9-95 751	6	4	3	14.2	13.8	17.0
57	9.62 513	27	9.66 768	33	0.33 232	9.95 745	6	3	4	19.8 25.5	19.2 24.8	23.8 30.6
58	9.62 541	28	9.66 801	33	0.33 199	9.95 739	6	2	5	25.5 31.2	30.2	
59	9.62 568	27	9.66 834	33	0.33 166	9.95 733	5	I	0			
60	9.62 595		9.66 867		0.33 133	9.95 728	Ľ	0				
	L Cos	d	L Cot	cd	L Tan	L Sin	d	'		I	? P	
	+15		45° *335	0	65°							
	-100	- 2	GAG" VEN		60							

 ~~
 h~

*115° 205° *295°

					X а			*115	205°*295°
	L Sin	d	L Tan	c d	L Cot	L Cos .	d		PP
0	9.62 595		9.66 867		0.33 133	9.95 728		60	
I	9.62 622	27	9.66 900	33	0.33 100	9.95 722	6	59	83 32
2	9.62 649	27 27	9.66 933	33 33	0.33 067	9.95 716	6	58	1 0.6 0.5
3	9.62 676	27	9.66 966	33	0.33 034	9.95 710	6	57	2 1.1 1.1
4	9.62 703 9.62 730	27	9.66 999 9.67 032	33	0.33 001 0.32 968	9.95 704 9.95 698	6	56 55	3 1.6 1.6
5	9.62 757	27	9.67 063	33	0.32 935	9.95 692	6	54	4 2.2 2.1 5 2.8 2.7
7	9.62 784	27	9.67 098	33	0.32 902	9.95 686	6	53	5 2.8 2.7 6 3.3 3.2
8	9.62 811	27	9.67 131	33	0.32 869	9.95 680	6	52	7 3.8 3.7
9	9.62 838	27 27	9.67 163	32 33	0.32 837	9.95 674	6	51	8 4.4 4.3
10	9.62 865	27	9.67 196	33	0.32 804	9.95 668	5	50	9 5.0 4.8 10 5.5 5.3
11 12	9.62 892 9.62 918	26	9.67 229 9.67 262	33	0.32 771 0.32 738	9.95 663 9.95 657	6	49 48	10 5.5 5.3 20 11.0 10.7
13	9.62 945	27	9.67 295	33	0.32 705	9.95 651 9.95 651	6	47	30 16.5 16.0
14	9.62 972	27	9.67 327	32	0.32 673	9.95 645	6	46	40 22.0 21.3
15	9.62 999	27	9.67 360	33	0.32 640	9.95 639	6	45	50 27.5 26.7
16	9.63 026	27 26	9.67 393	33	0.32 607	9.95 633	6	44	
17	9.63 052	27	9.67 426	33 32	0.32 574	9.95 627	6	43	27 26
18	9.63 079	27	9.67 458	33	0.32 542	9.95 621	ŏ	42 41	I 0.4 0.4
19 20	9.63 196	27	9.67 491 9.67 524	33	0.32 509	9.95 615	6	40	2 0.9 0.9 3 I.4 I.3
20	9.03 133	26	9.67 550	32	0.32 4/0	9.95 603	6	39	4 1.8 1.7
22	0.63 186	27	9.67 589	33	0.32 411	9.95 597	6	38	5 2.2 2.2
23	9.63 213	27 26	9.67 622	33 32	0.32 378	9.95 591	6	37	6 2.7 2.6
24	9.63 239	27	9.67 654	33	0.32 346	9.95 583	6	36	7 3.2 3.0 8 3.6 3.5
25	9.63 266	26	9.67 687	32	0.32 313	9-95 579	6	35	9 4.0 3.9
26	9.63 292	27	9.67 719	33	0.32 281	9-95 573	6	34	10 4.5 4.3
27 28	9.63 319 9.63 345	26	9.67 752 9.67 785	33	0.32 248	9.95 567 9.95 561	6	33 32	20 9.0 8.7
20	9.63 372	27	9.67 817	32	0.32 183	9.95 555	6	31	30 13.5 13.0 40 18.0 17.3
30	9.63 398	26	9.67 830	33	0.32 150	9.95 549	6	80	50 22.5 21.7
31	9.63 425	27 26	9.67 882	32	0.32 118	9.95 543	6	29	
32	9.63 451	27	9.67 915	33	0.32 085	9-95 537	6	28	7 6 5
33	9.63 478	26	9.67 947	33	0.32 053	9.95 531	6	27	1 0.1 0.1 0.1
34	9.63 504 9.63 531	27	9.67 980 9.68 012	32	0.32 020 0.31 988	9.95 523 9.95 519	6	26 25	2 0.2 0.2 0.2
35 36	9.63 557	26	9.68 044	32	0.31 956	9.95 513	6	24	3 0.4 0.3 0.2
37	9.63 583	26	9.68 077	33	0.31 923	9.95 507	6	23	4 0.5 0.4 0.3 5 0.6 0.5 0.4
38	9.63 610	27 26	9.68 109	32 33	0.31 891	9.95 500	7	22	6 0.7 0.6 0.5
39	9.63 636	26	9.68 142	32	0.31 858	9.95 494	ŏ	21	7 0.8 0.7 0.6
40	9.63 662	27	9,68 174	32	0.31 826	9.95 488	6	20	8 0.9 0.8 0.7 9 1.9 0.9 0.8
41 42	9.63 689 9.63 715	26	9.68 206 9.68 239	33	0.31 794 0.31 761	9.95 482 9.95 476	6	19 18	9 I.O O.9 O.8 IO I.2 I.O O.8
42	9.63 741	26	9.68 271	32	0.31 729	9.95 470	6	17	20 2.3 2.0 1.7
44	9.63 767	26	9.68 303	32	0.31 697	9.95 464	6	16	30 3.5 3.0 2.5
45	9.63 794	27 26	9.68 336	33 32	0.31 664	9.95 458	6	15	40 4.7 4.0 3.3 50 5.8 5.0 4.2
46	9.63 820	26	9.68 368	32	0.31 632	9.95 452	6	14	50 5.8 5.0 4.2
47	9.63 846	26	9.68 400	32	0.31 600	9.95 446	6	13	
48 49	9.63 872 9.63 898	26	9.68 432 9.68 465	33	0.31 568 0.31 535	9.95 440 9.95 434	6	13 11	
50	9.63 924	26	9.68 497	32	0.31 503	9.95 427	7	10	7 1 6 1 5
51	9.63 950	26	9.68 529	32	0.31 471	9.95 421	6		32 32 33
52	9.63 976	26 26	9.68 561	32 32	0.31 439	9.95 415	6	8	0
53	9.64 002	20	9.68 593	32	0.31 407	9.95 409	ő	7	. 23 2.7 3.3
54	9.64 028	26	9.68 626	32	0.31 374	9.95 403	6	6	2 6.9 8.0 9.9 11.4 13.3 16.5
55	9.64 054 9.64 080	26	9.68 658	32	0.3T 342	9.95 397	6	5	3 16.0 18.7 23.1
56	9.64 106	26	9.68 690 9.68 722	32	0.31 310 0.31 278	9.95 391	7	4	4 20.6 24.0 29.7 5 25.1 20.3 -
57 58	9.64 132	26	9.08 722 9.68 754	32	0.31 278	9.95 384 9.95 378	6	3	6 20 7
59	9.64 158	26 26	9.68 786	32	0.31 214	9.95 372	6	ī	7 29.71 - 1 -
60	9.64 184	20	818 86.0	32	0.31 182	9.95 366	Ŭ	0	
	L Cos	d	L Cot	cd	L Tan	L Sin	d	•	P P
	#154°	244 °	*334 °		6 1 °				

26°	
2 n	

*116° 206° *296°

					26*			•11	6° 206° #296°
•	L Sin	d	L Tan	cd	L Cot	L Cos	d		РР
0	9.64 184		9.68 818		0.31 182	9.95 366		60	
T	9.64 210	26 26	9.68 850	32 32	0.31 150	9.95 360	6	59	20 1 21
2	9.64 236	26	9.68 882	32	0.31 118	9.95 354	6 6	58	32 31 I 0.5 0.5
3	9.64 262	26	9.68 914	32	0.31 086	9.95 348	7	57	2 1.1 1.0
4	9.64 288 9.64 319	25	9.68 946 9.68 978	32	0.31 054	9.95 341	6	56	3 1.6 1.6
5	9.64 339	26	9.69 010	32	0.30 990	9.95 335 9.95 329	6	55 54	4 2.1 2.1
7	9.64 365	26	9.69 042	32	0.30 958	9.95 323	6	53	5 2.7 2.6 6 3.2 3.1
8	9.64 391	26 26	9.69 074	32 32	0.30 926	9.95 317	6	52	7 3.7 3.6
9	9.64 417	25	9.69 106	32	0.30 894	9.95 310	7	51	8 4.3 4.1
10	n.64 442	26	9.69 138	32	0.30 862	9.95 304	6	50	9 4.8 4.6
11	9.64 468	26	9.69 170 9.69 202	32	0.30 830	9.95 298	6	49	IO 5.3 5.2 20 IO.7 IO.3
12 13	9.64 494 9.64 519	25	9.09 202 9.09 234	32	0.30 798 0.30 766	9.95 292 9.95 286	6	48 47	30 16.0 15.5
14	9.64 545	26	9.69 266	32	0.30 734	9.95 279	7	46	40 21.3 20.7
15	9.64 571	26	9.69 298	32	0.30 762	9.95 273	6	45	50 26.7 25.8
16	9.64 596	25 26	9.69 329	31 32	0.30 671	9.95 267	6	44	
17	9.64 622	25	9.69 361	32	0.30 639	9.95 261	6	43	26 25 24
18	9.64 647	20	9.69 393	32	0.30 607	9.95 254	76	42	I 0.4 0.4 0.4
19 20	9.64 673	25	9.69 423	32	0.30 575	9.95 248	6	41 40	2 0.9 0.8 0.8
20	9.64 724	26	9.69 457 9.69 488	31	0.30 543	9.95 242	6		3 1.3 1.2 1.2
22	9.64 749	25	9.69 520	32	0.30 480	9.95 229	7	39 38	4 1.7 1.7 1.6 5 2.2 2.1 2.0
23	9.64 775	26	9.69 552	32 32	0.30 448	9.95 223	6	37	6 2.6 2.5 2.4
24	9.64 800	26	9.69 584	31	0.30 416	9.95 217	6	36	7 30 2.9 2.8
25	9.64 826	25	9.69 615	32	0.30 385	9.95 211	6	35	8 3.5 3.3 3.2
26	9.64 851	26	9.69 647	32	0.30 353	9.95 204	7	34	9 3.9 3.8 3.6 10 4.3 4.2 4.0
27 28	9.64 877 9.64 902	25	9.69 679 9.69 710	31	0.30 321 0.30 290	9.95 198 9.95 192	6	33	10 4.3 4.2 4.0 20 8.7 8.3 8.0
20	9.64 902	25	9.69 742	32	0.30 290	9.95 192 9.95 185	7	32 31	30 13.0 12.5 12.0
30	9.64 953	26	9.69 774	32	0.30 220	9.95 179	6	30	40 17.3 16.7 16.0
31	9.64 978	25	9.69 805	31 32	0.30 195	9.95 173	6	29	50 21.7 20.8 20.0
32	9.65 003	26	9.69 837	31	0.30 163	9.95 167	6	28	
33	9.65 029	25	9.69 868	32	0.30 132	9.95 160	76	27	7 6
34	9.65 054 9.65 079	25	9.69 900 9.69 932	32	0.30 100	9.95 154 9.95 148	6	26 25	1.0 1.0 1
35 36	9.65 104	25	9.69 963	31	0.30 037	9.95 140	7	24	2 0.2 0.2
37	9.65 130	26	9.69 993	32	0.30 005	9.95 135	6	23	3 04 0.3 4 0.5 0.4
38	9.65 153	25 25	9.70 026	31 32	0.29 974	9.95 129	6	22	5 0.6 0.5
39	9.65 180	25	9.70 058	31	0.29 942	9.95 122	7	21	6 0.7 0.6
40	9.65,205	25	9.70 089	32	0 20 911	9.95 116	6	20	7 0.8 0.7 8 0.9 0.8
41 42	9.65 230 9.65 255	25	9.70 121 9.70 152	31	0.2) 879 0.29 848	9.95 110	7	19 18	8 0.9 0.8 9 1.0 0.9
43	9.65 281	26	9.70 184	32	0.20 816	9.95 103 9.95 097	6	17	10 1.2 1.0
44	9.65 306	25	9.70 215	31	0.20 785	9.95 090	7	16	20 2.3 2.0
45	9.65 331	25	9.70 247	32 31	0.29 753	9.95 08.4	6	15	30 3.5 3.0
46	9.65 356	25	9.70 278	31	0.29 722	9.95 078	67	14	40 4.7 4.0 50 5.8 5.0
47	9.65 381	25	9.70 309	32	0.29 691	9.95 071	6	13	J-, J-, J
48 49	9.65 406 9.65 431	25	9.70 341 9.70 372	31	0.29 659 0.29 628	9.95 063 9.95 059	6)2 11	
50	9.05 451	25	9.70 404	32	0.29 596	9.95 059	7	10	7 1 7 1 0
51	9.65 481	25	9.70 435	31	0.29 565	9.95 046	6	9	$\frac{7}{22}$ $\frac{7}{21}$ $\frac{6}{22}$
52	9.65 506	25	9.70 466	31	0.29 534	9.95 039	7	š	$\overline{32}$ $\overline{31}$ $\overline{32}$
53	9.65 531	25	9.70 498	31	0.29 502	9.95 033	6	7	0 2.3 2.2 2.7 I 2.3 2.2 2.7
54	9.65 556	24	9.70 529	31	0.29 471	9.95 027	7	6	2 0.9 0.0 0.0
55 56	9.65 580 9.65 605	25	9.70 560 9.70 592	32	0.29 440 0.29 408	9.95 020	6	5	3 11.4 11.1 13.3 3 16.0 15.5 18.7
57	9.65 630	25	9.70 592	31		9.95 014	7	4	4 206 100 24.0
58	9.65 655	25	9.70 654	31	0.29 377 0.29 346	9.95 007 9.95 001	6	3	5 25.1 24.4 29.3
59	9.65 680	25	9.70 685	31	0.29 315	9.94 995	6	ī	7 29.7 28.8
60	9.65 705	-3	9.70 717	32	0.29 283	9.94 988	7	0	
	L Cos	d	L Cot	c d	L Tan	L Sin	d	'	РР
	*153°	2439	*3330	·	63°		<u>.</u>		
	109 .	649).	-000		00				

റ	-	'n
\mathbf{z}	1	•

*117° 207° *297°

75

27° *117° 20									07° *	297°		
'	L Sin d L Tan c d L Cot L Cos d P P							Р				
0	9.65 705	24	9.70 717	31	0.29 283	9.94 988	6	60				
I	9.65 729	25	9.70 748	31	0.29 252	9.94 982	7	59		32	31	30
2	9.65 754	25	9.70 779	31	0.29 221	9-94 975	6	58	I	0.5	0.5	0.5
3	9.65 779	25	9.70 810	31	0.29 190	9.94 969	7	57	2 3	1.1 1.6	1.0 1.6	1.0 1.5
4	9.65 804 9.65 828	24	9.70 841 9.70 873	32	0.29 159 0.29 127	9.94 962 9.94 956	6	56	4	2.1	2,1	2.0
5	9.65 853	25	9.70 904	31	0.29 096	9.94 930	7	55 54	5	2.7	2.6	2.5
7	0.65 878	25	9.70 935	31	0.20 065	9.94 943	6	53	6	3.2	3.1	3.0
8	9.65 902	24 25	9.70 966	31 31	0.29 034	9.94 930	7 6	52	7	3.7	3.6	3.5
.9	9.65 927	25	9.70 997	31	0.29 003	9.94 930	7	51	9	4.3 4.8	4.1 4.6	4.0 4.5
10	9.65 952	24	9.71 028	31	0.28 972	9.94 923	6	50	10	5.3	5.2	5.0
11 12	9.65 976 9.66 001	25	9.71 059 9.71 090	31	0.28 941	9.94 917 9.94 911	6	49 48	20	10.7	10.3	10.0
13	9.66 025	24	9.71 121	31	0.28 879	9.94 904	7	17	30	16.0	15.5	15.0
14	9.66 050	25	9.71 153	32	0.28 847	9 94 898	6	46	40 50	21.3	20.7	20.0
15	9.66 075	25 24	9.71 184	31 31	0.28 816	9.94 891	7	45	50	26.7	25.8	25.0
16	9.66 099	25	9.71 215	31	0.28 785	9.94 885	7	-44		25	24	23
17	9.66 124 9.66 148	24	9.71 246	31	0.28 754 0.28 723	9.94 878	7	43	ſ	0.4	0.4	0.4
18 19	9.66 173	25	9.71 277 9.71 308	31	0.28 692	9.94 871 9.94 865	6	42 41	2	0.4	0.4	0.4
20	9.66 197	24	9.71 339	31	0.28 661	9.94 858	7	40	3	1.2	1.2	1.2
21	9.66 221	24	9.71 370	31	0.28 630	9.94 852	6	39	4	1.7	1.6	1.5
22	9.66 246	25 24	9.71 401	31 30	0.28 599	9.94 845	7	38	5	21	2.0	1.9
23	9.66 270	25	9.71 431	31	0.28 569	9.94 839	7	37	6	2.5 2.9	2.4 2.8	2.3
24	9.66 293 9.66 319	24	9.71 462	31	0.28 538	9.94 832	6	36	78	33	3.2	27 3.1
25 26	9.66 313	24	9.71 493 9.71 524	31	0.28 507	9.94 826 9.94 819	7	35	9	3.8	3.6	3.4
27	9.66 368	25	9.71 555	31	0.28 445	9.94 813	6	34	10	4.2	4.0	3.8
28	9.66 392	24 24	9.71 586	31 31	0.28 414	9.94 806	7	33 32	20	8.3	8.0	7.7
29	9.66 416	24	9.71 617	31	0.28 383	9 94 799	76	31	30 40	12.5	12.0 16.0	11.5
30	9.66 441	24	9.71 648	31	0.28 352	9 94 793	7	10	50	20.8	20.0	19.2
31	9.66 465 9.66 489	24	9.71 679	30	0.28 321 0.28 291	9.94 786	6	29	1	•		
32 33	9.00 489	24	9.71 709 9.71 740	31	0.28 201	9.94 780 9-94 773	7	28 27			7 6	
34	9.66 537	24	9.71 771	31	0 28 220	9.94 767	6	26		1 0	.1 0.1	I
35	9.66 562	25 24	9.71 802	31 31	0.28 198	9 94 760	2	25		2 0	.2 0.:	
36	9.66 586	24	9.71 833	30	0.28 167	9.94 753	7	24			.4 0.	
37	9.66 610	24	9.71 863	31	0.28 137	9-94 747	7	23			.5 O.	•
38	9.66 634 9.66 658	24	9.71 894 9.71 925	31	0.28 100	9.94 740	6	22	t i		.6 0. .7 0.	
39 40	9.66 682	24	9.71 925	30	0.28 045	9.94 734	7	$\frac{21}{20}$.8 0.	
41	9.06 700	24	9.71 986	31	0.29 014	9.94 720	7	19			.9 0.	-
42	9.66 731	25 24	9.72 017	31	0.27 983	9.94 714	6	18		-	.0 0.	
43	9.66 755	24	9.72 048	30	0.27 952	9.94 707	777	17			.2 I. .3 2.	
44	9.66 779 9.66 803	24	9.72 078	31	0.27 922	9.94 700	6	16			.5 3.0	
45	9.00 803	24	9.72 109 9.72 140	31	0.27 891	9.94 694 9.94 687	7	15 14	I	40 4	.7 4.0	o
40	9.66 851	24	9.72 170	30	0.27 830	9.94 680	7	13		50 5	.8 5.0	D
48	9.66 875	24	9.72 201	31	0.27 799	9.94 674	6	12				
49	9.66 899	24 23	9.72 231	30 31	0.27 769	9.94 667	777	11		-		
50	9.66 922	24	9.72 262	31	0 27 738	9 94 660	6	10	l I	7	6	6
51	9.66 946	24	9.72 293	30	0.27 707	9.94 654	7	8		30	31	30
52 53	9.66 994	24	9.72 323 9.72 354	31	0.27 677	9.94 647 9.94 640	1 7	7	0	2.1	2.6	2.5
54	9.67 018	24	9.72 384	30	0.27 616	9.94 634	6	6	12	6.4	7.8	7.5
55	9.67 042	24	9.72 415	31 30	0.27 585	9.94 627	7	5	3	10.7	12.9	12.5
56	9.67 066	24 24	9.72 445	31	0.27 553	9.94 620	6	4	4	15.0 19.3	18.1	17.5
57	9.67 090	23	9.72 476	30	0.27 524	9.94 614	7	3	5	23.6	28.4	27.5
58 59	9.67 113	24	9.72 506	31	0.27 494	9.94 607 9.94 600	1 7	2 1	67	27.9	I —	1 1
60	9.67 161	24	9-72 537	30	0.27 403	9.94 593	7	Ιô	11			
—	L Cos	d	L Cot	cd	L Tan	L Sin	d	۲Ť	t	Р	P	
L		1		1	1		<u> </u>	<u> </u>	1			
*152° 242° *332° 62°												

.

n	1	Π	۱	O
z	ſ		h	

*118° 208° *298*

I. Sin d. L. Tan i. L. Cos L. Cos d. P. P. P. 0 9.97 1.61 3.4 9.72 57 3.72 628 30 $0.277 32$ $9.94 503$ 7.5 8.7 1.5 0.55 <th></th> <th></th> <th></th> <th></th> <th></th> <th>28°</th> <th>#118°</th> <th>20</th> <th>6°</th> <th colspan="3">*298*</th>						28°	#118°	20	6°	*298*			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	'	L Sin	d	L Tan	c di	L Cot	L Cos	d		PP			
	D	9.67 161	-	9.72 567		0.27 433	9-94 593	6	60				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	r	9.67 185		9.72 598	-	0.27 402	9-94 587		59	Ι,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				9.72 628					58				
4 9.07 350 30 9.72 800 31 0.47 311 9.94 350 7 55 4 2.1 2.0 1.9 5 9.67 303 23 9.77 750 30 0.77 2850 9.94 350 7 55 5 4 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1	-							6					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-			7					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5							7			z.6		-
8 i p_1 p_7 y_3 i p_2 i p_2 i q_1 i q_2 j q_1 j q_1 j q_1 j q_2 j q_2 j q_1 j q_1 j q_1 j q_2 j q_2 j q_1 j q_1 j q_2 j q_1 j q_1 j q_2 j q_1 <	-		z 4		30						3.1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	9.67 374				0.27 159				-			
11 0, 0, 741 2 9, 72 932 30 0.27 060 9.94 \$19 6 49 20 10.3 0.0.7 0.67 13 9, 0, 744 24 9, 72 933 30 0.27 057 9.94 \$105 7 47 30 15.5 15.0 14.5 14 9, 0, 74 902 24 9, 72 903 30 0.27 057 9.94 \$107 7 45 50 25.0 24.2 25.0 24.2 25.0 24.2 25.0 24.2 24.2 25.0 24.2 25.0 24.2 25.0 24.2 25.0 24.2 24.2 23 22.2 24.2 25.0 24.2 23.0 24.0 0.4	10								50	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-							-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										50	25.0	25.0	2.4.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								7		L			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-		9-94 479		43				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9.67 586							42				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			24		30			6		5	2.0	I.0	1.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				9.73 205							2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		-										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0.26 674							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26					••			34	-	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											12.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			23		30		_						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			24		31			7	-	50	20.0	19.2	18.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9.67 936		9.73 567		0.26 433	9.94 369		27				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	34		-				9.94 362		26				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9 67 982											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			23		30			7			5	0.0	0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								7			6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9.68 098	-						20				
42 9.68 144 23 9.73 857 30 0.26 133 9.94 307 7 17 17 10 1.2 1.0 43 9.68 167 23 9.73 867 30 0.26 133 9.94 300 7 17 17 20 2.3 2.0 44 9.68 100 23 9.73 897 30 0.26 133 9.94 30 7 16 30 3.5 3.0 45 9.68 23 9.73 927 30 0.26 0.3 9.94 20 7 16 30 3.5 3.0 45 9.68 237 24 9.73 957 30 0.26 0.94 273 14 50 5.8 5.0 49 9.68 23 9.74 07 30 0.25 923 9.94 25 7 10 7 8 6 6 7 12 7 10 7 8 6 8 10 <td>41</td> <td></td> <td>-</td> <td></td> <td></td> <td>0.26 193</td> <td></td> <td></td> <td>19</td> <td></td> <td>-</td> <td></td> <td></td>	41		-			0.26 193			19		-		
43 968 100 23 973 807 30 0.26 13 9.94 20 2.3 2.0 45 9.68 23 973 927 30 0.26 103 9.94 20 7 16 30 3.5 3.0 45 9.68 23 973 927 30 0.26 073 9.94 20 7 16 30 3.5 3.0 45 9.68 23 24 973 957 30 0.26 073 9.94 20 13 30 3.5 3.0 46 9.68 237 24 973 957 30 0.26 033 9.94 20 13 48 9.68 23 29.74 0.71 30 0.25 933 9.94 266 7 12 50 9.68 325 23 9.74 0.71 30 0.25 93 9.94 25 7 10 7 8 6 16 6 7 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 1</td><td></td><td></td></t<>											- 1		
44 9 06 190 2 9.73 807 30 0.26 073 9.94 293 1 15 30 3.5 3.0 45 9.56 213 24 9.73 957 30 0.26 073 9.94 269 7 15 40 4.7 4.0 47 9.68 237 24 9.73 957 30 0.26 073 9.94 269 7 14 50 5.8 5.0 47 9.68 283 23 9.74 017 30 0.25 953 9.94 265 7 12 49 9.68 351 23 9.74 017 30 0.25 953 9.94 255 7 11 7 8 6 6 6 7 12 0.25 953 9.94 255 7 11 7 8 6 6 0.25 953 9.94 245 7 9 31 31 30 2.2 2.6 2.5 13 0.25 953 9.94 245 7 9 31 31 30 2.2 2.6 2.5 2.7 10 7 8 6 7 9 31 30 2.2										1			
43 9.68 24 9.73 9.73 9.73 9.73 9.73 9.73 9.73 9.94 279 7 14 50 4.7 4.0 4.7 4.0 47 9.68 23 9.73 9.73 9.73 9.73 9.94 279 7 14 50 5.8 5.0 48 9.68 23 9.74 0.73 0 0.26 0.3 9.94 279 6 13 9 0.68 305 22 9.74 0.74 0.73 0 0.25 933 9.94 259 7 11 50 9.68 305 22 9.74 107 30 0.25 933 9.94 257 7 10 7 8 6 6 7 12 7 10 7 8 6 6 13 30 0.25 933 9.94 231 7 7 10 7 8 6 6 7 831 31 30 0 2.25 833 9.94 </td <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>9.94 293</td> <td></td> <td></td> <td>1</td> <td>30</td> <td>3-5</td> <td>3.0</td>			-		-		9.94 293			1	30	3-5	3.0
47 9 (68 260) 23 9 (73 967) 30 0.26 013 9 (9.4 273) 6 13 48 9.68 263 23 9 (74 017) 30 0.25 013 9 (9.4 273) 11 49 9.68 305 22 9.74 017 30 0.25 953 9.94 259 7 10 7 8 6 9 (9.68 305 22 9.74 017 30 0.25 923 9.94 259 7 10 7 8 6 9 (9.68 305 23 9.74 107 30 0.25 823 9.94 259 7 10 7 8 6 51 9.68 374 23 9.74 107 30 0.25 833 9.94 238 7 9 31 31 30 52 9.68 397 23 9.74 106 30 0.25 833 9.94 231 7 7 1 6.6 7.8 7.5 54 9.68 420 23 9.74 256 30 0.25 774 9.94 231 7 5 3 15.5 18.1 17.5 55 9.68 480 23 9.7			24		30			7		1		4.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		-			6			50	5.01	5.0
49 9.68 305 22 9.74 0.47 30 0.25 953 9.94 259 7 11 50 9.68 328 23 0.74 0.77 30 0.25 923 0.94 252 7 10 7 8 81 30 51 9.68 351 23 9.74 107 30 0.25 833 9.94 23 7 9 31 31 30 52 9.68 374 23 9.74 107 30 0.25 833 9.94 23 7 1 6.6 7.8 7.5 53 9.68 374 23 9.74 106 29 0.25 834 9.94 23 7 1 6.6 7.8 7.5 54 9.68 420 23 9.74 26 30 0.25 74 9.94 217 7 5 3 15.5 15.1 17.5 15.5 15.1 17.5 15.5 15.1 17.5 15.5 15		9.68 283		9 74 017						<u> </u>			
000 9.4.6 328 23 0.4.2 523 1.0.4 252 1 0 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0.25 953</td><td>9.94 259</td><td></td><td></td><td>1</td><td></td><td></td><td></td></td<>						0.25 953	9.94 259			1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-		1	_	-	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-				2		31	31	9 0
53 9.68 420 23 9.74 196 30 0.25 804 9.94 24 7 6 2 11.1 12.9 12.5 55 9.68 443 23 9.74 256 30 0.25 774 9.94 21 7 5 3 11.1 12.9 12.5 56 9.68 466 23 9.74 256 30 0.25 774 9.94 217 7 5 3 15.5 18.1 17.5 57 9.68 460 23 9.74 216 30 0.25 774 9.94 210 7 4 19.9 12.2 22.5 58 9.68 512 23 9.74 216 30 0.25 654 9.94 105 18.4 27.5 58 9.68 534 22 9.74 315 30 0.25 654 9.94 190 7 2 2 24.4 28.4 27.5 2 9.74 30 0.25 655											2.2	2.6	2.5
55 9.68 443 23 9.74 226 30 0.25 774 9.94 217 7 5 3 11.1 12.9 12.5 56 9.68 446 23 9.74 256 30 0.25 774 9.94 217 7 5 3 11.5 18.1 17.5 57 9.68 466 23 9.74 256 30 0.25 774 9.94 210 7 4 4 19.9 23.2 22.5 57 9.68 480 23 9.74 286 30 0.25 574 9.94 203 7 3 5 24.4 28.4 27.5 59 9.68 512 23 9.74 316 30 0.25 584 9.94 190 7 2 6 28.8 -				-	30								7-5
56 9.68 466 23 9.74 256 30 r.25 744 9.94 210 7 4 4 19.9 12.3 22.2 25.7 10.1 17.5 10.2 12.2 22.5 15.5 10.5 10.1 17.5 10.5										-			
57 9.68 480 23 9.74 286 30 0.25 714 9.94 203 7 3 5 49.4 23.5 24.4 24.5 58 9.68 512 23 9.74 316 30 0.25 684 9.94 19b 7 2 6 28.8										4			17.5
59 9.68 53.4 22 9.74 345 29 0.25 65.5 9.94 189 7 1 7 25.6 1 60 9.68 557 23 9.74 375 30 0.25 9.94 182 7 0 L Cos d L Cot c d L Tan L Sin d P P			-	9.74 286	-		9.94 203	-					
59 9.10 33.4 9.74 345 30 0.25 0.34 10 7 1 7 60 9.168 557 23 9.74 30 0.25 624 182 7 0 L Cos d L Cot c d L Tan L Sin d P P									-		28.8	I —	
L Cos d L Cot c d L Tan L Sin d P P		9.00 534								1 7			
	<u> </u>		-		1 -				<u>ــــــــــــــــــــــــــــــــــــ</u>	+			
			0410	L LOL	COL	L'TEN Elo		a		rr			

*151° 241° *331°

		_							
0	9.68 557		9-74 375		0.25 62 <u>5</u>	9.94 182		60	
Т	0.68 580	23	9.74 405	30	0.25 595	9-94 175	7	59	
2	9.68 603	23	9-74 435	30	0.25 565	9.94 166	7	58	30 29 23
3	9.68 625	22	9.74 465	30	0.25 535	9.94 I 6T	2	57	I 0.5 0.5 0.4
4	g.68 648	23	9-74 494	29	0.25 506	9.94 1 54	7	56	2 1.0 1.0 0.8
5	9.68 671	23	9.74 524	30	0.25 476	9.94 147	2	55	3 1.5 1.4 1.2
6	g.68 694	23	9-7-1 554	30	0.25 446	9.94 140	7	54	4 2.0 1.9 1.5
7	9.68 716		9-74 5 ⁸ 3	29	0.25 417	9.94 133	7	53	5 2.5 2.4 1.9
6	9.68 739	23 23	9.74 613	30	D.25 387	9.94 126	7	52	6 3.0 2.9 2.3
9	9.68 762	22	9.74 643	30 30	0.25 357	9.94 119	1 7	51	7 3.5 3.4 2.7 8 4.0 3.0 3.1
10	9.68 78.4	23	9.74 673	-	D.25 327	9.94 112	1	50	8 4.0 3.9 3.1 9 4.5 4.4 3.4
II	9.68 Bo7	22	9.74 702	29	0.25 298	9.94 I 05	5	49	JD 5.0 4.8 3.8
12	9.68 829	23	9-74 732	30 30	0.25 268	9.94.098	6	48	20 10.0 9.7 7.7
13	9.58 852	23	9.74 762	20	0.25 238	9.94 090	7	47	30 15.0 14.5 11.5
14	9.68 875	22	9-74 79 ¹	30	0.25 209	9.94 083	7	46	40 20.0 19.3 15.3
15	9.68 897	23	9.74 821	30	0.25 179	9.94 076	7	45	50 25.D 24.2 19.2
16	g.68 g20	22	9.74 85I	20	0.25 149	9.94 069	ż	44	
17	9.68 942 9.68 965	23	9.74 880	30	D.25 12D	9.94 062	7	43	
10	9.68 987	22	9.74 910	20	0.25 090 0.25 061	9.94 055	Ż	42 41	22 8 7
20	9.69 010	23	9.74 939	30	0.25 031	9.94 048	7	40	J 0.4 0.1 0.1
21	9.69.032	22	9.74 969 9.74 998	29	0.25 002	9 74 041	7		2 0.7 0.3 0.2
22	9.09 032 9.09 055	23	9.74 998 9.75 028	30	0.25 002	9 94 034 9.94 027	7	39 38	3 1.1 0.4 0.4
23	9.69 077	22	9.75 058	30	0.24 942	9.94 020	7	37	4 1.5 05 0.5 5 1.8 07 0.6
24	9.69 100	23	9.75 087	29	0.24 913	9.94 012	8	36	5 1.8 0.7 0.6 6 2.2 0.8 0.7
25	9.69 122	22	0.75 117	30	0.24 883	9.94 005	7	35	7 2.6 0.9 0.8
25	9.69 144	22	9.75 146	20	0.24 854	9.93.998	2	34	6 2.0 I.I D.Q
27	9.69 167	23	9.75 176	30	0.24 B24	9.93 991	7	33	9 3.3 1.2 1.0
28	9.69 189	22 23	9.75 205	29	0.24 795	9.93.984	7	32	10 3.7 1.3 1.2
29	9.09 21 2	22	<u>9.75 235</u>	29	0.24 765	<u>9-93 977</u>	777	31	20 7.3 2 7 2.3
30	9.69 234	22	9.75 264	30	0.21 736	9-93 970	1 7	80	30 11.0 4.0 3.5 40 14.7 5.3 4.7
31	9.69 256	23	9.75 294	20	0.24 706	9.93 963	8	29	40 14.7 5.3 4.7 50 18.3 6.7 5.8
32	9.69 279	22	9.75 323	30	0.24 677	9.93 955	7	28	5-1 -0.5 0.7 1 3.8
33	9.69 301	22	9.75 353	29	0.24 647	9.93 948	l ż	27	
34	9.69 323 9.69 345	22	9.75 382	29	0.24 618	9.93 941	7	25	
35 36	9.69 345 9.69 368	23	9.75411 9.75441	30	0.24 589 0.24 559	9-93 934 9-93 927	7	25 24	
37	9.69 390	22	9.75 470	29	0.24 530	9.93 9-7 9.93 920	7	21	8 8
38	9.69 412	22	9.75 500	30	0.24 500	9.93 912	8	23 22	30 29
39	9.69 434	22	9.75 529	29	0.24 471	9.93 905	7	21	n , -
40	9.69 456	22	1.75 55B	29	0.24 442	9.93 898	7	20	1.0 1.0
41	9.69 479	23	9.75 588	30	0.24 412	9.93 B91	7	10	2 5.0 5.4
42	9.69 501	22	9.75 617	29	0.24 363	9 93 884	8	18	3 9.4 9.1 3 13.1 12.7
43	9.69 523	22	9.75 647	30 20	0.24 353	9.93 876	7	17	4 1 16 0 16 0
44	9.69 545	22	9.75 676	20	0.24 324	9.93 B69		16	5 20.6 19.9
45	9.69 567	22	9.75 705	30	0.24 295	9.93 862	777	35	7 24 4 23.6
46	9.69 589	22	9.75 735	29	0.24 205	9.93 855	8	14	8 28.I 27.2
47	9.69 611	22	9-75 764	20	0.24 236	9.93 847	7	13	- •
4B	9.69 633 9.69 655	22	9-75 793	20	0.24 207	9.93 840	5	12	
49		22	9.75 822	30	0.24 178	9 93 833	i ż	10	7 7
	9.69.677 9.69.699	22	9.75 852	29	D.24 148	9 93 826 9.93 819	7		30 29
51 52	9.09.099 9.09.721	22	9.75 881 9.75 910	29	0.24 I 19 0.24 D90	9.93 819 9.93 811	8	2	D 2.1 2.1
53	9.69 743	22	9.75 939	29	0.24 001	9.93 804	<u> </u>	7	1 61 62
54	g.6g 765	22	9.75 909	30	0.24 03I	9-93 797	2	6	² 10.7 10.4 3 16.0 14.5
55	9.69 787	22	9.75 998	29	0.24 002	9.93 780	8	5	A 15.0 149.9
56	9.69 80g	22	9.76 027	29	0.23 973	9.93 782	7	4	5
57	9.69 831		9.76 056	29	0.23 944	9-93 775	1 .	3	6 23.0 26.0
58	9.69 853	22	9.76 086	30	0.23 914	9.93 768	78	2	7 27.9 20.9
59	0.69 875	22	9.76 115	29 29	0.23 885	9.93 760-	2	I	
60	9.69 897		9.76 144	~9	0.23 856	9-93 753	'	0	
	TO			1 .			_	-	

29°

L Cot

L Cos

d

L Sin

,

L Tan

| c d

d

d L Cot cd L Tan

*150° 240° *330°

L Cos

60°

L Sin

d

РР

77

*119" 209" *299"

РР

30°

*120° 210° *300°

-

					3	0°		120°	210° *300 °	
']	L Sin	d	L Tan	c d	L Cot	L Cos	d		р 1	?
0	9.69 897		9.76 144		0.23 856	9.93 753		60		
I	9.69 919	22	9.76 173	29	0.23 827	9.93 746	7	59	. 30 (2	9 28
2	9.69 941	22 22	9.76 202	29 20	0.23 798	9.93 738	8	58		.5 0.5
3	9.69 963	21	9.76 231	30	0.23 769	9 93 731	17	57		.0 0.9
4	9.69 984	22	9.76 261 9.76 290	29	0.23 739 0.23 710	9.93 724	7	56 55		.4 1.4
5	9.70 006 9.70 028	22	9.76 319	29	0.23 681	9.93 717 9.93 709	8	55 54		.9 1.9
7	9.70 050	22	0.76 348	29	0.23 652	9.93 702	7	53		.9 2.8
8	9.70 072	22	9.76 377	29	0.23 623	9.93 695	7	52		4 3.3
9	9.70 093	21	9.76 406	29	0.23 594	9.93 687	8	51		.9 3.7
10	9.70 115	22 22	9.76 435	29	0.23 565	9.93 680	7	50		.4 4.2
11	9.70 1 37	22	9.76 464	29	0.23 536	9.93 673	8	49		.7 9.3
12	9.70 159 9.70 180	21	9.76 493 9.76 522	29	0 23 507	9.93 665 9.93 658	7	48 47	30 15.0 1.	.5 14.0
13 14	9.70 202	22	9.76 551	29	0.23 449	0 03 650	8	16	40 20.0 19	
14	9.70 202	22	9.76 580	29	0.23 420	9.93 643	7	45	50 25.0 24	.2 23.3
16	9.70 245	21	9.76 609	29	0.23 391	9.93 636	7	44		
17	9.70 267	22	9.76 639	30	0.23 361	9.93 628	8	43	22	21
18	9.70 288	21	9.76 668	29	0.23 332	9.93 621	7	42	I 0.4 2 0.7	0.4
19	9.70 310	22	9.76 697	28	0 23 303	9.93 614	8	41 40	3 1.1	1.0
20 21	9.70 332	21	9 76 725	29	0 23 275	9 93 606	7		4 1.5	1.4
21	9.70 353 9.70 373	22	9.76 754 9.76 783	29	0.23 246	9-93 599 9 93 591	8	39 38	5 I.8 6 2.2	1.8
23	9.70 396	21	9.76 812	29	0 23 188	9.93 584	7	37		2.1 2.4
24	9.70 418	22	9.76 841	29	0.23 159	9.93 577	7	36	7 2.6	2.4
25	9.70 439	21	9.76 870	29	0.23 130	9.93 569	8	35	9 3.3	3.2
26	9.70 461	22 21	9.76 899	29 29	0.23 101	9.93 562	8	34	10 37	3.5
27	9.70 482	22	9.76 928	20	0.23 072	9.93 554	7	33	20 7.3	7.0
28 29	9.70 504	21	9 76 957 9.76 986	29	0.23 043	9.93 547	8	32 31	30 II.0 40 I.1.7	10.5 14.0
30	9.70 525	22	9.77 015	29	0 22 985	9.93 539 9.93 532	7	30	50 18.3	17.5
31	9.70 568	21	9.77 044	29	0.22 956	9.93 525	7	20		
32	9.70 590	22	9.77 073	29	0.22 927	9.93 517	8	28	8	7
33	9.70 611	21	9.77 101	28	0.22 899	993510	78	27	1 0.1	0.1
34	9.70 633	21	9.77 130	29	0.22 870	9.93 502		26	2 0.3	0.2
35	9.70 654	21	9.77 159	29 29	0.22 841	9 93 495	8	25	3 0.4	0.4
36	9.70 675	22	9.77 188	29	0.22 812	9.93 487	7	24	4 0.5	0.5
37 38	9.70 697	21	9.77 217	20	0.22 783	9.93 480 9.93 472	8	23	5 0.7 6 0.8	0.0
39	9.70 739	21	9 77 274	28	0.22 726	9 93 465	7	21	7 0.9	0.8
40	9.70 761	22	9.77 303	29	0.22 697	9 93 457	8	20	8 I.I	0.9
41	9.70 782	21	9.77 332	29	0.22 668	9.93 450	7	19	9 1.2	1.0
42	9.70 803	21	9.77 361	29 29	0.22 639	9 93 442	8	18	10 1.3 20 2.7	1.2
43	9.70 824	22	9.77 390	28	0.22 610	9.93 435	8	17	30 4.0	3.5
44	9.70 846 9.70 867	21	9.77 418	29	0.22 582	9.93 427	7	16	40 53	4.7
45 46	9.70 888	21	9.77 447	29	0.22 553	9.93 420 9.93 412	8	15 14	50 6.7	5.8
47	9.70 909	21	9.77 505	29	0.22 495	9.93 405	7	13		
48	9.70 931	22	9.77 533	28	0.22 467	9.93 397	8	12	_	_
49	9.70 952	21	9.77 562	29	0.22 438	9.93 390	7	11	7 7	7
50	9 70 973	21	9.77 591	29	0.22 409	9.93 382	7	10	30 2	9 28
51	9.70 994	21	9.77 619	20	0.22 381	9.93 375	8	2	0	2.1 2.0
52 53	9.71 015	21	9.77 648 9.77 677	29	0.22 352	9 93 367 9.93 360	7	8 7		.2 6.0
55 54	9.71 058	22	9.77 706	29	0.22 204		8	6		0.4 10.0
55	9.71 079	21	9.77 734	28	0.22 204	9.93 352	8	5	4 13.0 14	.5 14.0
56	9.71 100	21	9.77 763	29	0.22 237	9.93 337	7	4		8.6 18.0 2.8 22.0
57	9.71 121	21	9.77 791	28	0.22 209	9.93 329	8	3		0.9 26.0
58	9.71 142	21 21	9.77 820	29 29	0.22 180	9.93 322	78	2	7 27.9 20	
59 60	9.71 163	21	9.77 849	28	0.22 151	9.93 314	7	I		
00	9.71 184		9.77 877		0.22 123	9.93 307	1	0		
	L Cos	d	L Cot 39° *329	c d	L Tan 59°	L Sin	d	1 '	P 1	

31°

*121° 211° *301°

					51				*121° 211° *301°
'	L Sin	d	L Tan	cd	L Cot	L Cos	d		P P
0	9.71 184	1	9.77 877	1	0.22 123	9.93 307	1	60	
I	9.71 205	21	9.77 906	29	0.22 004	9.93 299	- 8	59	29 1 28
2	9.71 226	21	9.77 935	29	0.22 065	9.93 291	8	58	I 0.5 0.5
3	9.71 247	21	9.77 963	20	0.22 037	9.93 284	18	57	2 1.0 0.0
4	9.71 268		9.77 992	28	0.22 008	9.93 276	7	56	3 1.4 1.4
5	9.71 289	21 21	9.78 020	20	0.21 980	9.93 269	18	55	4 1.9 1.9
6	9.71 310	21	9.78 049	28	0.21 951	9.93 261	8	54	5 2.4 2.3
7	9.71 331	21	9.78 077	29	0.21 923	9.93 253	7	53	6 2.9 2.8
8	9 71 352	21	9.78 106	29	0.21 894	9.93 246	8	52 51	7 3.4 3.3 8 3.9 3.7
9 10	9.71 373 9.71 393	20	9.78 135 9.78 163	28	0.21 805	9.93 238	8	50	8 3.9 3.7 9 4.4 4.2
10	9.71 414	21	9.78 192	29	0.21 808	9.93 223	7	49	
12	9.71 435	21	9.78 220	28	0.21 780	9.93 215	8	18	10 4.8 4.7 20 9.7 9.3
13	9.71 456	21	9.78 249	29	0.21 751	9.93 207	8	47	30 14.5 14.0
14	9.71 477	21	9.78 277	20	0.21 723	9.93 200	7	46	40 19.3 18.7
15	9.71 498	21	9.78 306	28	0.21 694	9.93 192	8	45	50 24.2 23.3
16	9.71 519	21	9.78 334	20	0.21 666	9.93 184	7	44	21 / 20
17	9.71 539	21	9.78 363	28	0.21 637	9.93 177	8	43	1 0.4 0.3
18	9.71 560	21	9.78 391	28	0.21 609	9.93 169	8	42	2 0.7 0.7
19	9.71 581	21	9.78 419	29	0.21 581	9.93 161	7	41 40	3 1.0 1.0
20	9.71 602	20	9.78 448	28	0 21 552	9.93 154	8		4 1.4 1.3
21 22	9.71 622	21	9.78 476 9.78 505	29	0.21 524 0.21 495	9.93 146	8	39 38	5 18 1.7
22	9.71 643 9.71 664	21	9.78 533	28	0.21 405	9.93 138 9.93 131	7	37	6 2.1 2.0
24	9.71 685	21	9.78 562	29	0.21 438	9.93 123	8	36	7 2.4 2.3 8 2.8 2.7
25	9.71 705	20	9.78 590	28 28	0.21 410	9.93 115	8	35	
26	9.71 726	21	9.78 618	20	0.21 382	9.93 108	8	34	
27	9.71 747	21	9.78 647	28	0.21 353	9.93 100	8	33	10 3.5 3.3 20 7.0 6.7
28	9.71 767	20 21	9.78 675	20	0.21 325	9.93 092	8	32	30 10.5 10.0
29	9.71 788	21	9.78 704	28	0.21 296	9.93 084	7	31	40 .14.0 13.3
30	9.71 809	20	9.78 732	28	0.21 268	9.93 077	8	30	50 17.5 16.7
31	9.71 829	21	9.78 760	29	0.21 240	9.93 069	8	29	
32 33	9.71 850 9.71 870	20	9.78 789 9.78 817	28	0.21 211 0.21 183	9.93 061	8	28 27	8 7
		21	9.78 845	28	0.21 103	9.93 053	7	26	I 0.I 0.I 2 0.3 0.2
34 35	9.71 891 9.71 911	20	9.78 874	29	0.21 126	9.93 046 9.93 038	8	25	3 0.4 0.4
36	9.71 932	21	9.78 902	28	0.21 098	9.93 030	8	24	4 0.5 0.5
37	9.71 952	20	9.78 930	20	0.21 070	9.93 022	8	23	5 0.7 0.6
38	9.71 973	21 21	9.78 959	29	0.21 041	9.93 014	8	22	6 0.8 0.7
39	9.71 994	20	9.78 987	28	0.21 013	9.93 007	7 8	21	7 0.9 0.8
40	9.72 014	20	9.79 015	28	0.20 985	9.92 999	8	20	8 1.1 0.9
41	9.72 034	21	9.79 043	29	0.20 957	9.92 991	8	19	9 1.2 1.0
42	9.72 055	20	9.79 072	28	0.20 928	9.92 983	7	18 17	10 1.3 1.2 20 2.7 2.3
43	9.72 075	21	9.79 100	28	0.20 900	9.92 976	8	16	20 2.7 2.3 30 4.0 3.5
44	9.72 096 9.72 116	20	9.79 128	28	0.20 872 0.20 844	9.92 968	8	15	40 5.3 4.7
45 46	9.72 137	21	9.79 156 9.79 185	29	0.20 844	9.92 960 9.92 952	8	14	50 6.7 5.8
47	9.72 157	20	9.79 213	28	0.20 787		8	13	•
48	9.72 177	20	9.79 213	28 28	0.20 759	9.92 944 9.92 936	8	12	
49	9.72 198	21 20	9.79 269	28	0.20 731	9.92 930	78	11	8 8 8 8
50	9.72 218	20	9.79 297	20	0.20 703	9.92 921	8	10	30 29 28
51	9.72 238	20	9.79 326	28	0.20 674	9.92 913	8	9	
52	9.72 259	20	9.79 354	28	0.20 646	9.92 905	8	8	- 1.9 1.0 1.0
53	9.72 279	20	9.79 382	28	0.20 618	9.92 897	8	7	2 5.6 5.4 5.2 9.4 9.1 8.8
54	9.72 299	21	9.79 410	28	0.20 590	9.92 889	8	6	3 121 127 122
55	9.72 320	20	9.79 438	28	0.20 562	9.92 881	7	5 4	4 760 760 788
56	9.72 340	20	9.79 466	29	0.20 534	9.92 874	8		2 20.6 19.9 19.2
57 58	9.72 360 9.72 381	21	9.79 495	28	0.20 505	9.92 866 9.92 858	8	3	
5° 59	9.72 301 9.72 401	20	9.79 523 9.79 551	28	0.20 477 0.20 449	9.92 858 9.92 850	8	ĩ	7 28.1 27.2 26.2
60	9.72 421	20	9.79 579	28	0.20 449	9.92 842	8	0	-
					and the second se	the state of the s	_	-,	РР
	L Cos	đ	L Cot	cd	L Tan	L Sin	d		PP
	*148	° 2	38° *328°	,	58°				

320	3	20	
-----	---	----	--

*122° 212° *802°

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_32°			*1229	° 212° *30 2°
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	'	L Sin	d	L Tan	c d	L Cot	L Cos	d		РР
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	9.72 421		9-79 579	- 0	0,20 421	9.92 842		60	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9.72 441					9.gz 834		59	29 29 29 29
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9.72 461					9.92 826			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_		20							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			20		28			7		3 1.4 1.4 1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					28					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			20		29			8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	0.72 002								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.70 860						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11							-	40	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	9.72 663				0.20 084			48	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	9.72 683		9-79 944		0.20 056				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14		20				9.92 731	-	46	40 19.3 10.7 10.0 50 24 2 23 - 27 5
	15									5- (-q - ; -3·3 - 3·3 - 3·3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			20	-	28					21 20 10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					2B			8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										3 1.0 1.0 1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										4 1.4 1.3 1.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	22									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	9.72 702	-	0.80 251				-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25						9.92 643		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	9.72 942		9.80 307		0.19 693	9.92 635		34	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27		20					-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ZD		28			8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			19		28					301 17:31 10:71 15:0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									29	0, 9, 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.73 081		0 80 502						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										3 0.4 0.4 0.4
37 9.73 160 20 9.80 614 28 0.19 358 9.25 58 23 5 0.6 0.7 0.10 38 9.73 20 9.80 642 27 0.19 58 9.92 538 8 22 7 1.0 0.9 0.8 0.7 0.19 30 9.92 538 8 22 7 1.0 0.9 0.8 0.7 0.19 303 9.92 538 8 22 7 1.0 0.9 0.8 0.7 0.19 303 9.92 538 8 22 7 1.0 0.9 0.8 0.7 0.19 303 9.92 528 8 20 9 1.4 1.2 1.0 1.5 1.3 1.2 1.0 1.5 1.3 1.2 1.0 3.0 2.7 2.3 8 10 1.5 1.6 0.5 3.0 2.7 2.7 2.3 8 15 50 7.5 6.7 5.8 1.2 1.6 4.0 5.0 7.5	36	9.73 140		9.80 586		0.19414	9.92 555		24	
38 9.73 180 20 9.80 6.42 27 0.19 9.19 9.92 538 8 22 7 1.0 0.7 0.0 0.7 40 9.73 20 19 9.80 669 28 0.19 9.92 530 8 21 7 1.0 0.9 0.8 41 9.73 29 0.80 725 28 0.19 247 9.92 506 8 18 1.2 1.1 0.9 42 9.73 29 0.80 725 28 0.19 247 9.92 506 8 18 20 3.0 2.7 2.3 43 9.73 29 9.80 781 27 0.19 19 9.92 490 8 16 40 6.0 5.3 4.7 3.0 4.5 4.0 3.5 4.0 3.5 4.7 5.5 7.5 6.7 5.8 12 44 9.73 377 19 9.80 813 16 50 7.5 6	37			9.80 614		0.19 386	9.92 546	-	23	
39 973 219 973 219 973 219 973 210 210 210 210 211 210 211 210 211 210 211 210 211 213 21										
40 9.73 9.73 20 9.80 9.25 1.14 1.2 1.0 41 9.73 9.29 9.80 753 28 0.19 275 9.29 214 8 10 1.5 1.3 1.2 42 9.73 29 9.80 753 28 0.19 247 9.92 514 8 18 20 3.0 2.7 2.3 43 9.73 276 20 9.80 731 28 0.19 9.24 98 16 40 0.3 2.7 2.7 2.3 44 9.73 318 20 9.80 816 28 0.19 9.22 427 8 15 50 7.5 6.7 5.8 45 9.73 377 20 9.80 80 19.02 9.24 8 13 12 49 9.73 397 20 9.80 27 0.170 9.92 4419 8 11 8 8 7 29 28 0.19 27 <			19					8		
42 9.73 259 20 9.80 753 28 0.19 247 9.92 506 8 16 10 1.3 1.3 1.3 43 9.73 276 20 9.80 781 27 0.19 9.92 290 8 16 20 3.0 2.7 2.3 44 9.73 278 20 9.80 80 179 9.92 490 8 17 3.0 4.5 4.0 3.5 45 9.73 318 19 9.80 80 16 9.02 48 15 50 7.5 6.7 5.8 47 9.73 377 20 9.80 86 16 9.92 473 8 13 49 9.73 377 19 9.80 9.17 28 0.17 0.92 449 8 11 8 8 7 51 9.73 345 19 9.81 0.18 9.02 433 8 9 1 1.8 1.8 2.0			20		28					9 1.4 1.2 1.0
43 9.73 276 29 9.80 781 27 0.19 219 9.92 498 8 17 30 4.5 4.0 3.5 44 9.73 298 20 9.80 808 28 0.19 192 9.92 498 8 17 30 4.5 4.0 3.5 45 9.73 318 19 9.80 806 28 0.19 192 9.92 492 9 15 50 7.5 6.7 5.8 40 9.73 337 20 9.80 892 28 0.19 136 9.92 455 8 13 49 9.73 395 20 9.80 975 28 0.19 025 9.92 457 8 11 8 8 7 50 9.73 416 19 9.80 975 28 0.19 025 9.92 4418 8 10 29 28 28 28 29 21 10 9051 9.92 457 8 11 8 8 7 29 8 9 28 0.18 970 9.92 433 8 9 29 28 28 0.18 970 9.92 433 8 7 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 1.5 1.3 1.2</td>										10 1.5 1.3 1.2
44 9.73 20 9.80 808 27 0.11 192 9.92 490 8 16 40 6.0 5.3 4.7 45 9.73 318 19 9.80 80 28 0.19 164 9.92 490 8 15 50 6.0 6.0 5.3 4.7 45 9.73 317 20 9.80 864 28 0.19 164 9.92 473 8 14 47 9.73 377 19 9.80 80 19 9.92 457 8 12 48 9.73 377 19 9.80 9.92 27 0.19 0.19 0.92 449 8 11 50 -9.73 415 19 9.80 9.97 28 0.19 0.92 449 8 11 50 -9.73 435 20 9.80 9.7 28 0.19 0.92 449 8 10 29 28 28 28 0.18 9.92 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
45 9.73 9.80 836 28 0.15 15 50 7.5 6.7 5.8 46 9.73 9.73 9.80 864 28 0.19 136 9.92 473 8 14 47 9.73 337 20 9.80 864 28 0.19 136 9.92 473 8 14 47 9.73 377 20 9.80 892 27 0.17 0.19 9.92 455 8 12 49 9.73 377 12 9.80 9.22 27 0.17 0.19 81 11 8 8 7 50 9.73 415 19 9.80 9.92 28 0.10 9.92 449 8 11 8 8 7 50 7.5 50 7.5 50 7.5 50 7.5 50 7.5 50 7.5 50 7.5 50 7.5 50 7.5 50 7.5 50 7.5 50 7.5 50			1 3							
40 9.73 337 20 9.80 864 28 0.19 136 9.92 473 9 14 47 9.73 357 20 9.80 892 27 0.19 108 9.92 465 8 13 48 9.73 357 20 9.80 919 28 0.19 108 9.92 457 8 12 49 9.73 396 20 9.80 919 28 0.19 053 9.92 449 8 11 8 8 7 50 9.73 416 19 9.80 975 28 0.19 025 9.92 418 8 10 29 28 28 29 51 9.73 435 20 9.81 032 27 0.18 907 9.92 433 8 9 0 1.8 1.8 2.0 53 9.73 474 20 9.81 058 28 0.18 970 9.92 4408 8 6 3 12.7 12.2 14.0 55 9.73 533 10 9.81 163 28 0.18 859 9.92 346 8 5 4 15.3 15.8 18.0 27.0 18.85 12.7										
47 9.73 357 20 9.80 892 27 0.10 708 9.92 465 8 13 48 9.73 377 19 9.80 919 28 0.10 981 9.92 457 8 12 50 9.73 395 20 9.80 919 28 0.19 053 9.92 449 8 11 50 9.73 451 10 9.80 975 28 0.19 025 9.92 441 8 10 29 28 28 29 28 29 28 29 28 29 28 29 28 29 28 29 2449 8 10 29 29 28 29 29 29 29 29 29 29 29 29 20 9.92 433 8 9 1 18 1.8 1.8 2.0 50 51 9.73 474 20 9.81 068 27 0.18 970 9.92 408 8 6 3 12.7 12.2 14.00 54 5.4 5.4 15.3 15.8 18.00 29 29 400 8 5 4 <td></td> <td></td> <td></td> <td>9.80 864</td> <td></td> <td></td> <td></td> <td> 2</td> <td></td> <td></td>				9.80 864				2		
48 9.73 377 10 9.80 917 28 0.19 081 9.02 457 8 11 49 9.73 396 19 9.80 947 28 0.19 053 9.92 449 8 11 51 9.73 435 19 9.80 947 28 0.19 053 9.92 449 8 10 29 28 28 51 9.73 435 19 9.81 030 27 0.18 970 9.92 423 9 8 1 1.8 1.8 2.0 52 9.73 455 19 9.81 030 27 0.18 970 9.92 423 9 8 1 1.8 1.8 2.0 53 9.73 474 20 9.81 086 27 0.18 942 9.92 408 8 5 3 12.7 18.8 10.0 55 9.73 513 19 9.81 164 27 0.18 857 9.92 308 8 5 12.7 18.8 10.0 56 9.73 551 19 9.81 169 27 0.18 857 9.92 304 8 4 15.3 15.8 18.0	47	9.73 357		9.80 892			9.92 465		13	
49 9.73 99 9.73 910 9.80 947 28 0.19 952 9.92 449 8 11 8 8 7 50 9.73 410 19 9.80 97 28 0.19 0.25 9.92 441 8 10 29 28 28 28 51 9.73 435 29 9.81 0.30 27 0.16 9.07 9.92 433 8 9 10 28 28 28 28 0.18 9.92 423 8 9 9 1.8 1.8 2.0 2.0 0.18 9.92 425 9 8 9 9.1 1.8 1.8 2.0 5.4 5.7 9.73 51 29 9.81 0.68 27 0.16 9.92 408 8 6 3 12.7 1.2.2 14.0 55 9.73 513 29 9.81 141 28 0.18 857 9.92 376 3 15.7 15.9 19.2 22.0 <td></td> <td></td> <td></td> <td>9.80 gig</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>				9.80 gig						_
51 9.73 435 19 9.81 0.32 9.92 433 8 9 29 28 28 52 9.73 435 20 9.81 0.30 27 0.16 997 9.92 433 8 9 0 1.8 1.8 2.0 1.8 1.8 2.0 1.8 1.8 2.0 1.8 1.8 2.0 1.8 1.8 1.8 1.8 2.0 2.0 2.8 2.8 2.8 2.0 1.8 1.8 1.0 2.0 2.9 2.8 2.8 2.0 1.8 1.8 1.0 2.0 2.0 8 8 9 1.8 1.8 1.0 2.0 2.0 8 6 3 9.1 8.8 10.0 2.0 8 5 4 1.6.3 1.5.8 1.8.0 1.5.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8 8 7</td></t<>										8 8 7
51 9.73 435 20 9.81<003			Ig.		28			8		29 28 28
52 9.73 9.73 19 9.61 030 28 0.16 9.73 9.92 416 8 7 1 1.8 1.8 2.0 53 9.73 474 20 9.81<030					27					
54 9.73 494 19 9.81 0.18 9.92 0.88 8 6 3 9.1 8.8 10.0 55 9.73 513 20 9.81 13 27 0.18 818 9.92 400 8 5 3 12.7 12.27 14.0 56 9.73 513 120 9.81 14 28 0.18 859 9.92 328 4 15.3 15.8 18.0 57 9.73 552 20 9.81 169 27 0.18 859 9.92 324 8 3 5 19.9 19.2 22.0 58 9.73 521 19.81 169 27 0.18 804 9.92 364 8 3 5 19.9 19.2 22.0 22.0 23.6 2.8 26.0 0.18 76 9.92 364 8 3 7 13.5 8.8 16.0 19.9 19.2 22.0 22.0 23.6 2.8 26.0 0.18 77 <td< td=""><td></td><td></td><td></td><td></td><td>28</td><td></td><td></td><td>9</td><td></td><td>1 1 1.0 1.0 2.0</td></td<>					28			9		1 1 1.0 1.0 2.0
34 973 973 973 973 973 973 19 968 12 7 12.2 14.0 55 973 53 20 9.81 141 28 0.18 85 9.92 400 8 5 4 15.3 15.4 18.0 56 973 533 19 9.81 141 28 0.18 859 9.92 302 8 4 5 19.9 19.2 22.2 14.0 57 9.73 552 20 9.81 160 27 0.18 831 9.92 364 8 5 4 15.9 19.2 22.2 22.0 8 4 5 19.9 19.2 22.2 20 8 16 5 9.35 10.9 19.2 22.2 20 8 16 5 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 24.8 60.0 6 0.18 76 9.92 367 9 1		-								2 01 88 100
56 9.73 53 120 9.81 141 28 0.18 859 9.92 392 8 4 16.3 15.8 18.0 57 9.73 532 19 9.81 141 28 0.18 859 9.92 392 8 4 16.3 15.8 18.0 57 9.73 552 19 9.81 169 27 0.18 837 9.92 384 8 3 5 19.0 19.2 22.0 58 9.73 571 19 9.81 127 0.18 804 9.92 376 9 2 7 23.5 22.8 26.0 59 9.73 591 20 0.18 876 9.92 367 9 2 7 23.5 22.8 26.0 59 9.73 512 20 0.18 776 9.92 367 9 1 8 1 8 1 1 1 2 0.18 77 2.12 26.2 - 60 9.73 511 9.81 252 0.18 748 9.92 359 0										3 12.7 12.2 14.0
57 9.73 552 19 9.81 169 27 0.18 831 9.92 384 8 3 5 19.9 19.2 22.0 58 9.73 572 20 9.81 190 27 0.18 831 9.92 364 8 3 5 19.9 19.2 22.0 59 9.73 591 20 9.81 190 28 0.18 864 9.92 376 9 2 7 23.6 22.8 26.0 26 0.18 77 9.92 367 8 1 8 7 27.2 26.2 — — 60 9.73 61 9.92 359 0 0 #<										4 15 2 76 8 180
58 9.73 572 10 9.81 196 27 0.18 804 9.92 376 9 2 7 23.0 22.8 20.0 59 9.73 591 20 9.81 224 28 0.18 776 9.92 367 9 1 8 7 27.2 25.2 - 60 9.73 501 9.81 252 0.18 776 9.92 359 0 0 - <	-							-		5 I9.9 I9.2 22.D
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			I			0.18 804		-	2	
60 9.73 611 9.81 252 0.18 748 9.92 359 0 L Cos d L Cot cd L Tan L Sin d ' P P		9.73 591				0.18 776		8		8 27.2 20.2
	60	9.73 61 1	<u> </u>	9.81 252	1 - 0	0.18 748	9.92 359	١	0	
		L Cos	d		cd	L Tan	L Sin	d		P P
					1				_	-

*147° 237° *327° 57°

33°

*123° 213° *303°

					33°			123°	213° *	*303°	
'	L Sin	d	L Tan	c d	L Cot	L Cos	d			РІ	2
D	9.73 61 1		9.81 252		0.18 748	9.92 359	8	60			_
1	9.73 630	19 20	9.81 279	27 28	D.18 721	9.1)2 351	8	52		28	27
2	g.73 650	20 19	9.81 307 9.81 335	28	0.18 693 0.18 665	9.92 343	8	58 57	1 2	0.5 0.9	0.g
3	9 73 669 9.73 689	20	9.81 362	27	0.18 638	9.92 335 9.92 326	9	50	3	1.4	1.4
5	9.73 708	19	9.81 390	25	0.18 610	9.92 318	8	55	4	1.g 2.3	1.8 2.2
6	9.73 727	19 20	9.81.418	28 27	0.18 582	9.92 310	B	54	5 6	2.8	27
78	9-73 747 9-73 766	19	9.81 445 9.81 473	28	D.18 555 0.18 527	9.92 302 9.92 293	9	53 52	7	3-3	3.2
9	9.73 785	Iġ	9 81 500	27	0.15 500	9.92 285	B	51	8	3.7 4.2	3.6 4.0
10	9.73 805	20 19	9.SI 528	28 28	0.18 472	9.02 277	8	50) ÓL	4.7	4-5
11 12	9.73 824	19	9.81 556 9.81 583	27	0.18 444 0.18 417	9.92 269 9.92 260	9	-49 -48	20 30	9.3 14.0	9.0 13.5
12	9-73 843 1)-73 863	20	9.81 50 5	28	0.18 389	9.92 252	é	47	40	16.7	18.0
14	9 73 882	Iŋ	9.81 638	27	0.18 362	y.92 244	8	46	50	23.3	22.5
15	9.73 901	19 20	9.81 666	28 27	0.18 334	9.92 235	8	45			
16 17	9.73 92 I 9.73 940	19	9.81 бე3 9.81 721	28	0.18 307	9.92 227 9.92 219	8	++ +3			9 18 •3 0.3
18	9-73 940	113	9.81 748	27	D.18 252	9.92 211	6	43	2 0	.7 o	.6 U.b
19	<u>9.73 97</u> 8	19 19	9.81 776	28 27	0.18 224	9.02 202	8	41			.0 0.0
20	<u>9 73 997</u>	20	9.81 803 9.81 831	28	0.18 197	<u>9.92 194</u> 9.92 186	8	40			.3 I.2 .6 I.5
21	9.74 017 9.74 036	19	9.81831 981856	27	0.18 1.12	9.92 180 9.92 177	9	39 38	6 2	. о і т	.9 1.8
23	9 74 055	19 19	9.81 886	28 27	0.18 114	9.92 169	8 8	37		.3 2 .7 2	.2 2.1
24	9.74 074	19	9.81 913	28	0 18 087	9.92 161	9	36		.0 2	
25 26	9.74 093 9.74 113	20	981941 9.81968	27	0 18 059 0.18 032	9.92 152 9.92 144	8	35 34			2 3.0
27	9.74 132	19	g.Bt 996	28	0,18 004	9.92 136	8	33	20 6. 30 10.	.7 6. .0 9.	
28	9 74 151	19 10	9.82 023	27 28	0.17 977	9.92 127	9 8	32	40 13	3 12	7 12.0
29 30	9-74 170 9-74 189	19	9.82 051 9.82 078	27	0.17 949	9.92 119 9.92 111	8	31 30	50 16	-7 15	8 15.0
31	9 74 208	19	9.82 10b	28	0.17 894	9.92 102	9	29		9	8
32	9.74 227	19	9.82 133	27 28	0.17 867	ŋ.g2 094	8	28	I	D.2	0.1
33	9.74 246	19 19	9.82 161	27	0.17 839	9.92 086	9	27	2	0.3	D.3
34 35	9-74 265 9 74 284	19	9.82 188 9.82 215	27	0.17 812 0.17 785	9.92 077 9.92 069	B	20	3	0.4	04 0.5
36	9.74 303	19	9.82 243	28 27	0.17 757	9.92 060	8	24	5	08	0.7
37	9.74 322	19 19	9.82 270	28	0.17 730	9.92 052	8	23	6	0.g 1.0	0.8 0.9
38 39	9-74 341 9-74 360	19	9.82 298 9.82 325	27	0.17 702 0.17 675	9.92 044 9.92 035	9	22 21	5	1.2	1.1
40	9.74 379	19	9.82 352	27	0.17 648	9.92 027	8	20	9	1.4	1.2
41	9.74 398	19 19	9.32 380	28 27	0.17 620	9.92 018	98	19	10 20	1.5 3.D	1.3 2 7
42 43	9-74417 9-74436	19	0,82,407 0,82,435	28	0.17 593	g.g2 010 y.g2 002	8	18 17	30	45	40
43	9 74 455	19	g.82.462	27	0.17 538	9.91 993	9	16	40 50	бо 7-5	5-3 67
45	9.74 474	19 19	9.82 489	27 28	0.17 511	0.91 985	8 9	15			
46	9-74 493	19	9.82 517	27	0.17 483 0.17 450	9.91 976 5 51 668	š	14			
47 48	9.74 512 9 74 531	Ig	9.82 544 9.82 571	27	D.17 429	9.91 968 9.91 959	2	13 12	9	9 9	8
49	9.74 549	18 19	9 82 599	28 27	0 17 401	9.91 951	8 9	11	28	8 2	7 27
50	9.74 568	19	9 B2 626	27	0.17 374	9.91 942	8	10			.5 1.7
51 52	9-74 587 9-74 606	19	9.82 653 9.82 681	25	0.17 347 0.17 319	9.91 934 9.91 925	2	8	2 4		.5 5.1 .5 8.4
53	9.74 625	19 19	ŋ.82 708	27	0.17 292	9.91 917	8	7	3 10	1.8 7 1.9 10	
54	9.74 644	19	9.82 735	27	0.17 265	9.91 908	8	6	4 14	.o I 13	.5 15.2
55 56	9.74 662 9.74 681	19	9.82 762 9.82 790	28	0.17 238	9.91900 9.91891	9	5	6 17		
57	9.74 700	19	9.82 817	27	0.17 183	9.91 BB3	8	3	8 23	.3 22	-5 25.3
58	9.74 719	19	9.82 844	27	0.17 156	9.91 B74	8	2	9 26	.4 25	-5
59 60	9.74 737 9.74 75 ⁶	19	9.82 871 9.82 899	28	0.17 120	9.91 866 9.91 857	9	I D	-		
	L Cos	đ	L Cot	cd	L Tan	L Sin	d	-		ΡI	3
					56°						
	*146 °	236	*326*		90°						

34°

*124° 214° *304°

					54			+124	4° 214° *304°
•	L Sin	d	L Tan	c d	L Cot	L Cos	d		PP
D	9-74 756		9.82 899		0.17 101	9.91 857		60	
I	9-74 775	19	9.82 925	27	0.17 374	9.91 649	8	59	28 27 28
2	9.74 794	19 18	9.82 953	27	0.17 047	9.91 840	9	58	I 0.5 0.4 0.4 2 0.9 0.9 n.9
3	9.74 812	19	9.82 980	28	0.17 020	9.91 832	ů	57	2 0.9 0.9 0.9 3 1.4 1.4 1.3
4	9.74 831 9.74 850	19	9.83 008 9.83 035	27	0.16992 0.16965	9.91 823 9.91 813	6	56	4 I.9 I.8 I.7
5	9.74 868	18	9.83 062	27	0.16 938	9.91 Bob	y	55 54	5 2.3 2.2 2.2 6 2.8 2.7 2.6
7	9.74 887	19	9.83 089	27	0.16 011	9.91 798	8	53	6 2.8 2.7 2.6 7 3.3 3.2 3.0
8	974906	19	9.83 117	20	0.16 883	9.91 789	8	52	8 3.7 3.6 3.5
9 10	9.74 924	19	9.83 144	27	0.16 856	9.91 781	9	51	9 4.2 4.0 3.9 10 4.7 4.5 4.3
10	9-74 943 9-74 961	18	9.83 171 9.81 108	27	0.10 829	9.91 772	9	5D	10 4.7 4.5 4.3 20 9.3 9.0 8.7
12	9.74 980	19	9 83 225	27	0.16 775	9-91 755	8	49 48	30 140 13.5 13.0
13	9-74 999	19 18	9.83 252	27	D.16 748	9.91 746	8	47	40 18.7 18 0 17.3 50 23.3 22.5 21.7
14	9.75 017	10	9.83 280	27	0.10 720	9.91 738	9	46	50 23.3 22.5 21.7
15 16	9.75 036 9.75 054	18	9.83 307 9.83 334	27	0.16 693	9.91 729 9.91 720	l ő	45	
17	9.75 073	19	9.83 361	27	0.16 630	9.91 /20 9.91 712	Ű.	44 43	19 19 1 0.3 0.3
18	9.75 091	18 19	9.83 388	27 27	0.16612	9 91 703	8	43	1 0.3 0.3 2 0.0 0.6
19	9.75 116	18	9.83 415	27	0.16 585	9.91 695	8	41	3 1.0 0.9
20	9 75 128	19	383442	28	0.16 558	9.91 686	9	40	4 1.3 1.2
21 22	9 75 147 9.75 165	18	9.83 470 9.83 407	27	0.16 530 0.16 503	9.91 677 9.91 669	8	39 38	5 1.6 1.5 6 1.9 1.8
23	9.75 184	19	9.83 524	27	0.16476	9.91 660	9	37	7 22 2.1
24	9 75 202	10	9.83 551	27	0 16 449	9.91 651	9	30	8 25 Z.L
25	9.75 221	18	9.83 578	27	0.16422	9.91 643	8	35	9 2.8 2.7 10 3.2 30
26	9.75 239	19	9.83 605 9.83 632	27	0.16395 0.16368	9.91 634 	ğ	34	20 5.3 6.0
27 28	9.75 258 9.75 270	18	9.83 032 9.83 059	27	0.10308	9.91 625 9.91 617	8	33 32	30 9.5 9.0
29	9 75 294	18 10	9.83 686	27 27	0.16 314	9.91 608	9	31	40 127 12.0 50 15.8 150
30	<u> </u>	18	y.63 713	27	016287	9.91 599	9	30	35 13.5 13.5
31	9.75 331	10	9.63 740	28	0.16 260	9.91 591	9	29	0 1 0
32 33	9 75 350 9.75 368	18	9.83 768 9 83 795	27	0.16 232 0.16 205	9.91 582 9.91 573	9	28 27	9 8 1 02 0.1
34	9.75 380	18	0.83 822	27	0.16178	9.91 505	8	26	2 0.3 0.3
35	9.75 405	19 18	9 83 849	27 27	0.16 151	9.91 550	9	25	3 0.4 0.4
36	9.75 423	18	9.83876	27	0.16124	9.91 547	9	24	4 D.Ú D.5 5 DB D7
37 38	9·75 441 9 75 459	18	9 83 903 9.83 930	27	0.16 097 0.16 070	9.91 538 9.91 530	ś	23 22	5 0.9 0.8
30	9 75 459	19 18	9.83 957	27 27	0.16 0.43	9.91 521	9	21	7 1.0 0.9
4Ó	9.75 496	18	9 83 984	27	010010	991 512	9	20	8 1.2 1.1 g 1.4 1.2
41	9.75 514	ru	9.84 011	27	0.15 989	9.91 504	9	19	10 1.5 1.3
44	9-75 533 9-75 551	18	9.84 038 9.84 065	27	0.15 902 0.15 935	9.91 495 9.91 486	9	18 17	20 3.0 2.7
43 44	9.75 569	18	9.84 092	27	0.15 908	9 91 477	9	16	30 45 4.0 40 6.0 5.3
45	9.75 587	т8- 18	9.84 119	27 27	0.15 881	9.91 469	8 9	15	50 75 6.7
46	9 75 605	19	9.84 146	27	0.15 854	9.91 460	9	14	
47	9.75 624 9-75 642	18	9 84 173 9 84 200	27	0.15 827 0.15 800	9.91 451	9	13	
48 49	9.75 642 9.75 660	18	9 84 200	27	0.15 800	9.91 442 9.91 433	9	12 11	9 8 8
50	9.75 678	18 18	9 84 254	27 26	0.15 746	9.91 425		10	28 28 27
51	9.75 696	18	9.54 280	20	0.15 720	9.91 416	9	9	0 1 1.6 1.8 1.7
52	9-75 714	19	9.64 307 9.84 334	27	0.15 693 0.15 666	9.91 407	9	8	2 4.7 5.2 5.1
53 54	9-75 733 9-75 751	ΙŚ	9.64334 9.84361	27	0.15 000 0.15 639	9.91 398 9.91 389	9	7 6	³
55	9-75 769	15 18	9.84 388	27	0.15 612	9.91 389 9.91 381	8	5	4 14.0 15.8 15.2
56	9-75 787	18	9.84 415	27 27	0.15 585	9-91 372	9	4	6 17.1 19.2 10.0
57	9.75 805	18	9.84 442	27	0.15 558	9.91 363	9	3	7 20.2 22.8 21.9
58 59	9.75 823 9.75 841	18	9.84 469 9.84 496	27	0.15 531 0.15 504	9.91 354 9 91 345	9	2 1	
60	9.75 850	18	9.84 523	27	0.15 504	991 345	9	Ô	9
	L Cos	d	L Cot	c dl	L Tan	L Sin	d	÷	РР
	₽145°	235		-	55°				
	-140,	69Q.	- 920-		99				

35°

*125° 215° *305°

					35°			*125°	° 215° *305°
'	L Sin	d	L Tan	c d	L Cot	L ('os	d		P P
0	9.75 859	18	9.84 523		0.15 477	9.91 336		60	
1	9.75 077	10	9.84 550	27 26	0.15 450	9.91 328	8 9	59	27 26 18
2	9.75 895	18	9.84 576	27	0.15 424	9.91 319	9	58	1 0.4 0.4 0.3
3	9.75 913	18	9.84 603	27	0.15 397	9.91 310	ģ	57	2 0.9 0.9 0.6
4	9.75 931	18	984630	27	0 15 370	9.91 301	9	56	3 1.4 1.3 0.9
5	9-75 949 9.75 967	18	9.84 657 9.84 684	27	0.15 343 0.15 316	9.91 292 9.91 283	9	55	4 1.8 1.7 1.2
7	9.75 985	18	9.84 711	27	0.15 289	9.91 274	9	54	5 2.2 2 2 1.5 6 2.7 2.6 1.8
8	9.76 003	18 18	9.84 738	27	0.15 262	.9.91 266	8	53 52	7 3.2 3.0 2.1
9	9.76 021	18	9 84 704	26 27	0.15 236	9 91 257	9	51	8 3.6 3.5 2.4
10	9.76 039	18	9 84 791	27	0.15 200	9.91 248	9	50	9 4.0 3.9 2.7
11	9.76 057	18	9.84 818	27	0.15 182	991 239	9	49	10 4.5 4.3 3.0 20 9.0 8.7 6.0
12	9.76 075	18	9.84 845	27	0.15 155	9.91 230	9	48	20 9.0 8.7 6.0 30 13.5 13.0 9.0
13	9.76 093	18	9 84 872	27	0.15 128	9.91 221	9	47	40 18.0 17.3 12.0
14 15	9.76 111 9.76 129	18	9.84 899 9.84 925	26	0.15 101 0 15 075	9.91 212 9.91 203	9	46	50 22.5 21.7 15.0
16	9.76 146	17	9.84 952	27	0.15 048	9.91 203	9	45 44	
17	9.76 164	18 18	9.84 979	27	0.15 021	9.91 185	9	43	17 10 9 8
18	9.76 182	18	9.85 000	27 27	0.14 994	9.91 176	9	42	1 0.3 0.2 0.2 0.1
19	9 76 200	18	9.85 033	20	0.14 967	9.91 167	9	41	2 0.6 0.3 0.3 0.3 3 0.8 0.5 0.1 0.1
20	9.76 218	18	9 85 059	27	0.14 941	991 158	9	40	3 08 0.5 0.1 0.4 4 1.1 0.7 0.6 0.5
21	9.76 236	17	9.85 086	27	0.14 914	9 91 149	ŝ	39	5 1.4 0.8 0.8 0.7
22 23	9.76 253 9.76 271	18	9.85 113 9 85 140	27	0.14887 014860	9.91 I41 991 I32	9	38	6 1.7 10 0.9 0.8
23	9.76 289	18	9.85 166	26	014 800		9	37	7 2.0 1.2 1.0 0.9
25	9.76 209	18	9.85 193	27	0.14 807	9.91 123 9.91 114	9	36 35	8 2.3 1.3 1.2 1.1 9 26 1.5 1.4 12
26	9.76 324	17	9 85 220	27	0 14 780	9.91 105	9	34	10 2.8 1.7 1.5 1.3
27	9.76 342	18	985247	26	0.14 753	9.91 096	9	33	20 5.7 3.3 3.0 2.7
28	9.76 300	18	9 85 273	27	014727	9.91 087	9	32	30 8.5 5.0 4.5 4.0
29	9.76 378	17	9 85 300	27	0 14 700	991 078	9	31	40 11.3 6.7 6.0 5.3 50 14.2 8.3 7.5 6.7
30	9.76 395	18	9.85 327	27	014673	991 069	9	30	50 14.2 8.3 7.5 6.7
31 32	9.76 413 9.76 431	18	9 85 354 9 85 380	20	0.14 646	9.91 060 9 91 051	9	29 28	
33	9.76 448	17	9 85 407	27	0.14 593	9.91 042	9	27	
34	9.76 466	18	9.85 434	27	0.14 566	9.91 033	9	26	10 10
35	9.76 484	17	9.85 460	20	0.14 540	9.91 023	10 9	25	27 26
36	9.76 501	18	9.85 487	27	0.14 513	991014	9	24	0 1.4 1.3
37	9.76 519	18	9.85 51.4	26	0.14 486	9.91 005	9	23	4.1 3.9
38 39	9.76 537 9 76 554	17	9.85 540 9.85 567	27	0 14 460 0 14 433	9 90 996 9 90 987	ģ	22 21	2 0.8 0.5
40	9.70 572	18	9.85 594	27	0 14 435	9 90 978	9	20	A 9.4 9.1
41	9.76 590	18	0.85 620	20	0.14 380	9.90 969	9	10	5
42	9.76 667	17 18	9.85 647	27 27	0.14 353	9.90 960	9	18	0 17.6 16.0
-43	9.76 625	17	9.85 674	26	0.14 320	9.90 951	9	17	7 20.2 19.5
44	9.76 642	18	9.85 700	27	0.14 300	9.90 942	9	16	0 22.9 22.1
45 46	9.76 660 9.76 677	17	9.85 727	27	0.14 273 0.14 246	9.90 933	9	15 14	10 25.6 24.7
	9.76 695	18	9 85 754 9.85 780	20	0.14 240	9.90 924	9	14	
47 48	9.76 712	17	9.85 807	27	0.14 220	9.90 91 5 9.90 906	9	13	
49	9.76 730	18	9.85 834	27	0.14 166	9.90 896	10	11	9 9
5 Ó	9.76 747	17	9.85 860	20	0.14 140	9.90 887	9	10	27 26
51	9.76 765	17	9.85 887	26	0.14 113	9.90 878	9	9 8	0 1.5 1.4
52	9.76 782	18	9.85 913	27	0.14 087	9.90 869	9		1 4.5 4.3
53	9.76 800 9.76 817	17	9.85 940	27	0.14 060	9.90 860	9	7	2 7.5 7.2
54 55	9.76 817	18	9.85 967 9.85 993	26	0.14 033	9.90 851 9.90 842	9	6 5	4 125 120
56	9.76 852	17	9.86 020	27	0.13 980	9.90 832	10	4	5 16 5 15.9
57	9.76 870	1	9.86 046	26	0.13 954	9.90 823	9	3	- 19.5 10.0
58	9.76 887	17	9.86 073	27 27	0.13 927	9.90 814	9	2	8 22.5 21.7
59	9.76 904	18	9.86 100	26	0.13 900	9.90 805	6	I	9 25.5 24.6
60	9.76 922		·9.86 126		0.13 874	9.90 796		0	
	L Cos	d	L Cot	cd	L Tan	L Sin	d	'	РР
·····	*144°	234°	*324°	<u></u>	54°		<u>.</u>		
	111	201	ULX		9 E				

9	4	re	0
5		n	-

*126° 216° *306°

					36°			*126	° 2169	*306	j°
1	L Sin	d	L Tan	c d	L Cot	L Cos	d			P 1	2
0	9.76 922	17	9.86 126	27	0.13 874	9.90 796	9	60		27	26
1	9.76 939	18	9.86 153	26	0.13 847	9.90 787	9 10	59	I	0.1	0.4
2	9.76 957	17	9.86 179	27	0.13 821	9 90 777	9	58	2	0.9	0.9
3	9.76 974	17	9.86 206	26	0.13 794	9 90 768	ģ	57	3	1.4	1.3
4	9.76 991	18	9.86 232	27	0.13 768	9 90 759	9	56	4	1.8	1.7
5	9.77 009 9.77 026	17	9.86 259 9.86 285	26	0.13 741 0.13 715	9.90 750 9 90 741	9	55 54	5	22	2.2
7	9.77 943	17	9.86 312	27	0.13 688	9.90 731	10	53	6	2.7 3.2	2.6 3.0
8	9.77 061	18	9.86 338	26	0.13 662	9.90 722	9	55 52	ś	3.6	3.5
9	9.77 078	17 17	9.86 365	27 27	0 13 635	9.90 713	9	51	9	4.0	3.9
10	9.77 095	17	.9.86 392	20	0.13 608	9 90 704	10	50	10	4.5	43
11	9.77 112	18	9.86 418	27	0.13 582	9.90 694	9	49	20	90	8.7
12	9.77 130	17	9.86 445	26	0.13 555	9.90 685	9	48	30	135	130
13	9.77 147	17	9.86 471 9.86 498	27	0.13 529	9.90 676	ģ	47	40 50	140 225	17.3
14	9.77 164 9.77 181	17	9.86 524	26	0.13 502	9.90 667 9.90 657	10	46	- 30		. 21 /
16	9.77 199	18	9.86 551	27	0.13 449	9.90 648	9	45 44		18 1	17 16
17	9.77 216	17	9.86 577	26	0.13 423	9 90 639	9	43	I	53 C	0.3 0.3
18	9.77 233	17 17	9.86 603	26 27	0.13 397	9.90 630	9	42			06 0.5
19	9.77 250	18	9.86 630	26	0.13 370	9.90 620	10 9	41	-		0.8 0.8
20	9.77 268	17	9.86 656	27	013344	9 90 611	9	40			1.1 1.1
21	9.77 285	17	9.86 683	26	0.13 317	9.90 602	10	39			1.4 I.3 1.7 I.6
22	9.77 302 9.77 319	17	9.86 709 9.86 736	27	0.13 291 0.13 264	9.90 592	9	38			1.7 I.6 2.0 I.9
23		17	9.80 730 9.86 762	26	0.13 238	9.90 583	9	37			2.3 2.1
24 25	9.77 336 9.77 353	17	9.86 789	27	0.13 238	9.90 574 9.90 563	9	36	9	2.7	2.6 2.4
26	9.77 370	17	9.86 815	26	0.13 185	9.90 555	10	35 34			2.8 2.7
27	9.77 387	17	9.86 842	27	0.13 158	9.90 546	9	33		50	57 5·3 3.5 8.0
28	9.77 405	18 17	9.86 868	26 26	0.13 132	9.90 537	9 10	32			8.5 8.0 1.3 10.7
29	9.77 422	17	9.86 894	27	0 13 106	9.90 527	9	31			1.2 13.3
30	9.77 439	17	9.86 921	26	0.13 079	9 90 518	9	30	,	,	
31	9.77 456	17	9.86 947	27	0.13 053	9.90 509	10	29		10	9
32	9-77 473 9-77 490	17	9.86 974 9.87 000	26	0.13 026	9.90 499 9.90 490	9	28	I	1 0 2	0.2
33 34	9.77 507	17	9.87 027	27	0 12 973	9.90 480	10	27 26	2		0.3
35	9.77 524	17	9.87 053	26	0.12 947	9.90 471	9	20	3		04
36	9.77 541	17 17	9.87 079	26 27	0.12 921	9.90 462	9	24	+		0.6
37	9.77 558	17	9.87 106	26	0.12 894	9.90 452		23	5	08	0.8
38	9.77 575	17	9.87 132	26	0.12 868	9.90 443	9	22	7	12	09 1.0
39	9.77 592	17	9.87 158	27	0.12 842	9.90 434	10	21	ี่ 8	1.3	1.2
40	9.77 609	17	9.87 185	26	0.12 815	9.90 424	9	20	9		1.4
41	9.77 643	17	9.87 211 9.87 238	27	0.12 789	9.90 415	10	19 18	10		1.5
43	9.77 660	17	0.37 264	26	0.12 736	9.90 390	9	17	20		3.0
44	9.77 677	17	9.87 290	26	0.12 710	9.90 386	10	16	30 40		4.5 6.0
45	9.77 694	17	9.87 317	27 26	0.12 683	9.90 377	9	15	50	8.3	7.5
46	9.77 711	17	9.87 343	20	0.12 657	9.90 368	9	14			
47	9.77 728	16	9.87 369	27	0.12 631	9.90 358	9	13		_	
48	9.77 744 9.77 761	17	9.87 396 9.87 422	26	0.12 604 0.12 578	9.90 349 9.90 339	10	12	l	9	9
49 50	9.77 778	17	9.87 448	26	0.12 578	9.90 339	9	11	1	27	26
51	9.77 795	17	9.87 475	27	0.12 525	9.90 330	10	9	0	1.5	1.4
52	9.77 812	17	9.87 501	26	0.12 499	9.90 311	9	8	1 2	4.5	4.3
53	9.77 829	17	9.87 527	20	0.12 473	9.90 301	10	7	3	7.5	7.2
54	9.77 846	16	9.87 554	26	0.12 446	9.90 292	9	6	4	10.5	10.1
55	9.77.862	17	9.87 580	26	0.12 420	9.90 282	10	5	5	13.5	13.0 15.9
56	9.77 879	17	9.87 606	27	0.12 394	9.90 273	10	4		19.5	18.8
57	9.77 896	17	9.87 633 9.87 659	26	0.12 367	9.90 263	9	3	78	22.5	21.7
59	9.77 930	17	9.87 685	26	0.12 341	9.90 254 9.90 244	10	2	ő	25.5	24.6
60	9.77 946	16	9.87 711	26	0.12 289	9.90 235	9	Ô	۲ I	•	
1	L Cos	d	L Cot	cd	L Tan	L Sin	d	· 1		РІ	2
	*14	3° 23	330 *3230	:	53°		·				
-											

- 3	7	0

*127° 217° *307°

					37°			+ 127	° 217°	+307	-
'	L Sin	đ	L Tan	c d	L Cot	L Cos	đ			Р	Ь
0	9.77 946	17	9.87 711		0,12 289	9.90 235		60			
I	9.77 963	17	9.87 738	27 26	0.12 262	9.90 225	10 9	59		27	26
2 3	9.77 980 9.77 997	17	9.87 764 9.87 790	26	0.12 236 0.12 210	9.90210 990206	10	58 57	12	0.4	D.4 D.g
4	9.78 013	16	9.87 817	27	0.12 18;	9.90 197	9	56	3	1.4	1.3
5	9.78.030	17	9.87 843	26 26	0.12 157	9.90 187	10 9	55	4		1.7 2.2
6	9.78 047	16	9.87 86g	26	0.12 131 0.12 105	9.90 178	тő	54	5	2.2	2.2
7 8	9.78 063 9.78 080	17	9.87 895 9.87 922	27	0.12 078	9.90 168 9.90 159	9	53 52	7	3.2	3.0
9	9.78 097	17	9.87 948	26 20	0.12 052	9.90 149	10 10	51	8	3.6	
10	9.78 113	17	<u>9.87 97</u> 4	26	0.12 026	9.90 139	9	50	10	4-5	4-3
11 12	9.78130 9.78147	17	9.88 000 9.88 027	27	0.12000 U 11 973	9.40130 9.40120	10	49 48	20		
13	9.78 163	16 17	9.88 053	26 26	0.11 947	9.90 111	9 10	47	30 40		13.0 17.3
14	9.78 190	17	9.88 079	26	0.11 921	9.90 101	10	46	50		
15 16	9.78 197 9.78 213	τĠ	988105 988131	26	0.11895 0.11809	19.90 09 I 19.90 082	9	45 44			
17	9.78 230	17 16	g.88 158	27	0.11 842	9.90 072	ID	43	г	17	16 0.3
18	9.78 246	17	<u>9.88 18</u> 4	26 2ύ	0.11 816	9.90 063	9 10	42	2		0.5
19 20	9.78 203 9.78 280	17	9.88 210 9.88 230	26	0.11 790	9.90 053 9.90 043	10	41 40	3	0.8	0.8
20 21	9.78 290	ΙÚ	9 88 262	26	0.11 738	9.90 043	9	30	45	1.1	1.I 1.3
22	9 78 313	17 16	y.88 289	27 20	0.11 711	9.90 024	10 10	38	6	1.7	1.6
23	9.78 329	17	9.88 313	26	0.11 685	9.90 01.4	9	37	78	2.0	1.9
24 25	9.78 346 9.78 362	16	9.88 341 9.88 367	26	0 II 659 0.11 633	9.90 003 9.89 995	IO	36 35	9	2.3	21 2.4
26	9.78 379	17 16	9.88 393	2Ú 27	0.11 607	9.89 985	10	35 34	10	2.8	2.7
27	9.78 395	17	9.88 420	-7 20	0.11 580	9.89 976	9 10	33	20 30	5.7	5.3 B.0
28 20	9.78 412 9.78 428	16	9.88 446 9.89 472	26	0.11 554 0.11 528	9.89 966 9.89 966	10	32	40		10.7
30	9.78 445	17	9.88 472 9.88 498	26	0.11 502	<u>9 89 956</u> 9.89 947	9	31 30	50	14.2	13.3
31	9 78 401	16 17	9.88 524	26 26	0.11 476	9.89 937	10 10	29		10	
32	9.78 478	16	9.88 550	27	0.11 450	9.89 927	9	28	I	10	9 D.2
33 34	9.78494 9.78510	16	9.88 577 9.88 603	20	0.11 423	9.89 918 9.89 908	10	27 20	2	0.3	0.3
35	9.78 527	17 16	9.88 b29	26 26	0.11 371	g.8g.8g8	10 10	25	3	0.5	0.4 U.5
36	9.78 543	17	9.58 655	26	0.11 345	y.8g 888	9	24	45	0.8	0.8
37	9 78 560 9.78 576	16	9 88 681 9.88 707	26	0.11 319 0.11 293	9 89 879 9.89 869	IU	23 22	6	1.0	0.9
38 39	9.78 592	10 17	9 88 733	26 26	0.11 267	9.89 859 9.89 859	10 ID	21	7 8	1.2	I.O I.2
40	9.78.609	16	9.88 759	27	0.11 241	9.89 849	9	20	9	1.5	1.4
41	9.78 625 9.78 642	17	9.88 786 9.88 812	26	0.11 214 0.11 188	9.89 840 9.89 830	10	19 18	10	3.3	1.5 3.0
42 43	9.78.658	16	9.88 838	2Ú	0.11 168	9.89 830 9.89 820	10	15	30	5.0	4.5
44	9.78 674	16 17	9.88 864	26 20	0.11 136	9.89 810	10 9	16	40	6.7	6.0
45	9.78 691	16	9.88 890 9.88 890	20	0.11 110 0.11 084	9.89 801	10	15	50	8.3	7-5
46 47	9.78 707 9.78 723	16	9.88 916 9.88 942	26	0.11058	9.89 791 9.89 781	10	14 13			
48	9 78 739	16 17	9.88 966	26 2Ú	0.11 032	9.89 771	IO IO	12		10	10
49	9.78 750	16	9.88 994	26	0.11 000	9.89 761	9	11		27	26
50	9.78 772 9.78 788	ıΰ	9.89 020 9.89 046	26	0.10 980	9.89 752 9.89 742	Io	10	0	1.4	1.3
51 52	9.78 805	17	9.89 073	27 26	0.10 934	9.89 732	10	8	I 2	4. i	3-9
53	9.78 821	16 16	9.89 D99	20	0.10 901	9.89 722	10 10	7	3	6.8 9-4	6.5 9.1
54	9.78 837	16	9.89 125	26	0.10 875 0.10 849	9.89 712	10	6	45	12.2	11.7
55 56	9.78853 9.78869	16	9.89 151 9.89 177	26	0.10 823	9.89 702 9.89 693	.9	5	5	14.8	14.3 16.9
57	9.78 886	17 16	9.89 203	26 26	0.10 797	9.89 683	10 10	3	78	17.6	19.5
58	9.78 902	16	9.89 229	26	0.10 771	9.89 673	10	2	9	22.g	22. I
59 80	9.78 918	16	9.89 255	26	0.10 745	9.89 663 9.89 653	10	I D	10	25.6	24.7
	9.78 934		9.89 281 T. Cat		D.10 719 L Tan	L Sin	đ	۲, H		Р	Р
	L Cos	d	L Cot	cd			u		_	r	I.
	* <u>142</u> °	<u>233</u> .	*322*		52°	•					

•••	ne
- ה	n –

*128° 218° *308°

					38-			*12	5 21	18° *	308°	
'	L Sin	d	L Tan	c d	L Cot	L Cos	d			F	P	
0	9.7 ⁸ 934		9.89 281		0.10 719	9.89 653		60				
I	9.78 950	16 17	9.89 307	26 26	0.10 693	9.89 643	ID	59				25
2	9.78 967	16	9.89 333	26	0.10 667	9.89 633	10 9	58				0.4 0.8
3	9.78 983	16	9.89 359	26	0.10 641	9.89 624	10	57				.2
4	9.78 999	16	9.89 385 9.89 41 1	26	0.10 613 0.10 58g	9.89 614 9.89 604	10	56 55				-7
5	9.79 015 9.79 031	16	9.89 437	26	0.10 503	9.89 594	ID	54				.1
7	9.79 047	16	9.89.403	26	0.10 537	0.80 584	10	53				1.5 1.g
Ű.	9.79 063	16 16	9.89 489	26 26	0.10 511	9.89 574	10	52				
9	<u>9-79 079</u>	16	9.89 515	26	0.10 485	9.89 564	10 10	51				.8
10	9.79 095	16	9.89 541	26	0.10 459	9.89 554	10	50				.2
11 12	9.79 III 9.79 I28	17	9.89 567 9.89 593	26	0.10 433 0.10 407	9.89 544 9.89 534	10	49 48			3.0 12	
13	9.79 144	16 16	g.8g 61g	26 26	0.10 381	g.89 524	10	47		40 1	7.3 16	.7
14	9.79 1 60	16	9.89 645	20	0.10 355	9.89 514	10	46		50 21	.7 20	.8
15	9.79 176	16	9.89 671	26	0.10 329	9.89 504	10 9	45				
хĠ	9.79 192	16	g.8g 6g7	26	0.10 303	9-89 495	10	44	-	17	16	15
17	9.79 208 9.79 224	16	9.89 723 9.89 749	26	0.10 277 0.10 251	9.89.48 <u>5</u> 9.89.475	10	43 42	1 2	0.3 0.0	0.3	0.2
10	9.79 224 9.79 24D	15	9.89749 9.89775	26	0.10 225	9.894/5 9.89465	10	41	3	0.8	0.8	0.5
2D	9.79 250	16 16	9.89 801	26 26	0.10 199	g.8g 453	τo	40	4	1.1	1.1	1.0
21	9.79 272	10	9.89 827	20	0.IO 173	9.89 445	10 10	39	5 6	1.4 I.7	I.3 I.6	I.2 I.5
22	9.79 288	16	9.89 853	26	0.10 147	9.89 435	10 10	38	7	2.0	1.0	1.5
23	9.79 304	15	9.89 879 9.89 905	26	D.10 121 D.10 095	9.89425 0.89415	10	37 36	8	2.3	2.1	2.0
24 25	9.79 319 9 79 335	16	9.89 931 9.89 931	26	0.10 095	9.89.405	10	35	9 10	2.6	2.4	2.2
26	9.79 35I	16 16	9.89 957	26 26	0.10 043	9.89 39 <u>3</u>	10	34	20	5.7	2.7 5·3	2.5 5.0
27	9.79 367	10	9.89 983	20	0.10 017	9.89 385	10	33	30	8.5	8.0	7.5
28	9.79 383	16	9.90 009	26	0.09 991	9.89 375	ID II	32	40	11.3	10.7	10.0
29 30	9 79 399	16	9.90 035 9.90 061	26	0.09 965 0.09 939	9.89 364 9.89 354	10	31 30	50	14.2	13.3	12.5
30 31	9.79.415 9.79.431	16	0.00 066	25	0.09 914	9.89 344	10	20		11	I 10	9
32	9 79 447	15 16	9.90 112	26 26	0.0g 888	9.B9 334	10	28	I	0,2	0.2	0.2
33	9.79 463	15	9 90 138	25	0.09 862	9.89 324	10	27	2	0.4	0.3	0.3
34	9-79 478	16	9 90 164	26	0.09 836	9.89 314	10	26	3	0.6	0.5	0.4
35 36	9·79 494 9.79 510	16	9.90 190 9.90 216	26	0.09 810 0.09 784	9.89 304 9.89 294	10	25 24	45	0.7	0.7	0.6
37	9.79 526	10	g.go 242	26	0.09 758	g.8g 284	10	23	6	I.I	1.0	0.9
38	9.79 542	16 16	9.90 268	26 26	0.09 732	9.89 274	IO	22	7	1.3	1.2	I.0
39	9.79 558	15	9.90 294	26	0.09 706	g.8g 264	10 10	21	8	I 5	1.3 1.5	1.2 1.Å
4D	9.79 573	16	9.90 320	26	0.09 680	9.89 254	ID	20	10	1.8	1.7	1.5
41 42	9.79 589 9.79 605	16	9.90 346 9.90 371	25	0.09 654 0.09 629	9.89 244 9.89 233	II	19 18	20	3.7	3.3	3.0
42	9.79 605 9.79 621	16	9.90 397	26 26	0.09 603	9.89 223	IQ	17	30	5.5	5.0 6.7	4:5 6.0
44	9.79 636	15 16	9.90 423	20	0.09 577	9.89 213	10 10	16	40 50	7.3 9.2	8.3	7.5
45	9.79 652	16	9.90 449	20	0.09 551	9.89 203	1D 10	15				
46	9.79 668	16	9.90 475	26	0.09 525	9.89 193	10	14				
47 48	9.79 684 9.79 699	15	9.90 501 9.90 527	26	0.09 499	9.89 183 9.89 173	10	13 12		10	1D	9
49	979715	16	9.90 553	26	0.09 447	9.89 I 62	11	11		26	25	26
6 Ó	9.79 73I	15	9.90 578	26	0.09 422	9.89 152	10 10	10	D	1.3	1.2	I.4
51	9.79 746	16	9.90 604	26	0.09 396	9.89 142	10	9 8	1 2	3.9	3.8	4.3
52 53	9.79 762 9.79 778	16	9.90 630 9.90 656	26	0.09 370	9.89 132 9.89 122	ID	7	3	6.5	5.2	7.2
53	9.79 778	15	9.90 682	26	0.00 318	9.89 112	10	6	4	9.1 11.7	8.8	10.1 13.0
55	9.79 809	16	9.90 708	26 26	0.09 292	9.89 101	11	5	5	14.3	13.8	15.9
56	9.79 B25	10	9.90 734	20	0.09 266	9.89 og1	10 10	4	7	16.g	16.2	18.8
57	9.79 840	16	9.90 759	26	0.09 241	9.89 081	10	3	6	19.5 22.1	18.8	21.7 24.6
58 59	9.79 856 9.79 872	r6	9.90 785 9.90 811	26	0.09 21 3 0.09 189	9.89 071 9.89 050	11	2 1	.9	22.1	23.8	
60	9-79 887	15	9.90 B37	26	0.09 109	9.89 050	10	ē	ΙΟ		-	
<u> </u>	L Cos	d	L Cot	c d	L Tan	L Sin	d				PP	
L .		_		1			<u> </u>	1				
	•141°	291	• * 321 •		51°							

39°
39°

*129° 219° *309°

	39 * 129° 219° * 309°											
'	L Sin	d	L Tan	c d	L Cot	L Cos	d			P	P	
0	9 79 887		9.90 837	26	0.09 163	9.89 050		60				
I	9.79 903	16	9.90 863	20	0.09 137	9 89 040	10 10	59		26	25	
2	9.79 918	15 16	9.90 889	25	0.09 111	9.89 030	10	58	1 2	0.4	0.4	
3	9.79 934	16	9.90 914	26	0.09 086	9.89 020	11	57	3	1.3	1.2	
4	9.79 950	15	9.90 940	26	0.09 060	9.89 009	10	56	4	1.7	1.7	
5	9.79 965	16	9.90 966	26	0.09 034	9.88 999	10	55	5	2.2	2.1	
6	9.79 981	15	9.90 992	26	0.09 008	9.86 989	11	54	6	2.6	2.5	
7 8	9 79 996 9.80 012	16	9.91 018 9 91 043	25	0 08 982	9.88 978 9 88 968	10	53	7	3.0	2.9	
9	9.80 027	15	9.91 069	26	0 08 957 0 08 931	9.88 958	10	52 51	8	3.5	3.3	
10	9.80 043	16	9.91 095	26	0.08 905	9.88 948	10	50	9	3.9	3.8	
11	9.80 058	15	9.91 121	26	0.08 879	9.88 937	11	49	10	4.3	42	
12	9.80 074	16	9.91 147	20 25	0.08 853	9.88 927	10	48	20 30	8.7	8.3	
13	9.80 089	15 16	9.91 172	26	0.08 828	9.88 917	10 11	47	40	17.3	16.7	
14	9.80 105	15	9.91 198	26	0.08 802	9 88 906	10	46	50	21.7	20.8	
15	9 80 120	16	9 91 224	26	0.08 776	9.88 896	10	45				
16	9.80 136	15	9.91 250	26	0.08 750	9.88 886	11	44		16	15	
17	9.80 151	15	9.91 276	25	0.08 724	9.88 875	10	43	1	0.3	02	
18 19	9.80 166 9.80 182	16	9.91 301 9.91 327	26	0.08 699 0.08 673	9.88 865 9.88 855	10	42 41	3	0.5	0.5	
20	9.80 197	15	9 91 353	26	0.08 073	9.88 844	11	40	4	1.1	1.0	
21	9.80 213	16	9.91 379	26	0 08 621	9.88 834	10	39	5	1.3	1.2	
22	9.80 228	15	9.91 379	25 20	0.08 596	9.88 824	10	38	6	1.6	1.5	
23	9.80 244	16 15	9.91 430	20	0.08 570	9.88 813	11 10	37	7	1.9	1.8	
24	9.80 259	-	9.91 456	26	0.08 544	9 88 803		36	8	2.1	2.0	
25	9.80 274	15 16	991 482	25	0.08 518	9.88 793	10	35	9	2.4	2.2	
26	9.80 290	15	9.91 507	26	0.08 493	9.88 782	10	34	10 20	2.7 5.3	2.5 5.0	
27	9.80 305	15	9.91 533	26	0.08 467	9.88 772	11	33	30	8.0	7.5	
28	9.80 320	16	9.91 559 9.91 585	26	0.08 441	9.88 761	10	32 31	40	10.7	10.0	
29 30	9.80 336 9 80 351	15	9.91 585	25	0 08 415	9.88 751	10	30	50	13.3	12.5	
31	9.80 366	15	9.91 030	26	0.08 390	9 88 741 9.88 730	11	20		11	10	
32	9.80 382	16	9.91 662	26 26	0.08 304	9.88 720	10	28	1) 0.2	0.2	
33	9.80 397	15 15	9.91 688	25	0.08 312	9.88 709	11 10	27	2	0.4	0.3	
34	9.80 412	16	9.91 713	26	0.08 287	9.88 699	11	26	3	0.6	0.5	
35	9.80 428	15	9.91 739	26	0.08 261	9.88 688	10	25	4	0.7	0.7	
36	9.80 443	15	9.91 765	26	0.06 235	9.88 678	10	24	5	0.9	0.8	
37	9.80 458	15	9.91 791	25	0.08 209	9.88 668	11	23 22	6	1.1	1.0	
38	9.80 473 9.80 489	16	9.91 816 9.91 842	26	0.08 184	9.88 657	10	22	78	13	1.2 1.3	
39 40	9.80 504	15	9.91 868	26	0.08 158	9.88 647 9.88 636	11	20	ÿ	1.6	1.5	
40	9.80 519	15	9.91 893	25	0.08 132	9.88 626	10	10	10	1.8	1.7	
42	9 80 534	15	9.91 919	26 26	0.08 081	9.88 615	11	18	20	3.7	3.3	
43	9.80 550	16 15	9.91 945	26	0.08 055	9.88 605	10 11	17	30	5.5	5.0	
44	9.80 565	15 15	9.91 971	25	0 08 029	9.88 594	10	16	40	7.3	6.7	
45	9.80 580	15	9 91 996	26	0.08 004	9.88 584	10	15	50	9.2	8.3	
46	9.80 595	15	9.92 022	26	0 07 978	9.88 573	10	14				
47	9.80 610	15	9.92 048	25	0.07 952	9.88 563	11	13 12		11	11	
48 49	9.80 625 9.80 641	16	9.92 073 9.92 099	26	0.07 927	9.88 552 9.88 542	10	11		26	25	
50	9.80 656	15	9.92 099	26	0.07 601	9.88 531	11	10	0	1.2	1.1	
51	9.80 671	15	9.92 125	25	0.07 850	9.88 531	10	9	1	3.5	3.4	
52	9.80 686	15	9.92 176	26 26	0.07 824	9.88 510	11	8	2	5.9	5.7	
53	9.80 701	15 15	9.92 202	25	0.07 798	9.88 409	11 10	7	4	8.3	7.9	
54	9.80 716	15	9.92 227	26	0.07 773	9.88 489	11	6	5	10.6 13.0	10.2 12.5	
55	9.80 731	15	9.92 253	26	0.07 747	9.88 478	10	5		15.4	12.5	
56	9.80 746	16	9.92 27 9	25	0.07 721	9.88 468	11	4	78	17.7	17.1	
57	9.80 762	15	9.92 304	26	0.07 696	9.88 457	10	3	9	20.I	19.3	
58 59	9.80 777 9.80 792	15	9.92 330 9.92 356	26	0.07 670 0.07 644	9.88 447 9.88 436	II	- 1	10	22.5	21.6	
60	9.80 807	15	9.92 350	25	0.07 619	9.88 425	11	0	11	24.8	23.9	
-00							Ļ	,		D 7	>	
	L Cos	d	L Cot	cd	L Tan	L Sin	d			PI		
	*140	° 2	30° *320'	D	50°	_						

40°

*130° 220° *310°

		_			40°	*13 0°	22	0°	*310*
'	L Sin	d	L Tan	c d	L Cot	L Cos	d		РР
0	9.80 807	15	9.92 381	26	0.07 619	9.88 425	10	60	26 25
T	9.80 822		9.92 407	26	0.07 593	9.88 415	11	59	1 04 0.4
2	9.80 837	15 15	9.92 433	20	0.07 567	9.88 404	10	58	2 0.9 0.8
3	9.80 852	15	9.92 458	26	0.07 542	9.88 394	11	57	3 1.3 1.2
4	9.80 867 9.80 882	15	9.92 484 9.92 510	26	0.07 510	9.88 383 9.88 372	11	56	4 1.7 1.7
5	9.80 802	15	9.92 510	25	0 07 490	9.88 362	10	55 54	5 2.2 2.I 6 2.6 2.5
	9.80 912	15	0.02 561	26	0.07 439	9 88 351	11	53	7 3.0 2.9
78	9.80 927	15	9.92 587	26	0.07 413	9.88 340	II	52	8 3.5 3.3
9	9.80 942	15	9.92 61 2	25	0.07 388	9.88 330	10 11	51	9 3.9 3.8
10	9.80 957	15	9.92 638	26	0.07 362	9.88 319	11	50	10 4.3 4.2
11	9.80 972	15	9.92 663	25 26	0.07 337	9.88 308	10	49	20 8.7 8.3
12	9.80 987	15 15	9.92 689	20	0.07 311	9.88 298	11	48	30 13.0 12.5 40 17.3 16.7
13	9.81 002	15	9.92 715	25	0.07 285	9.88 287	11	47	40 17.3 16.7 50 21.7 20.8
14	9.81 017	15	9.92 740	26	0.07 260	9.88 276 9.88 266	10	46	30, 11, (2010
15 16	9.81 032 9.81 047	15	9.92 766 9.92 792	26	0.07 234	9.88 255	11	45	15 14
17	9.81 047	14	9.92 792	25	0.07 183	9.88 244	11	43	I 0.2 0.2
18	9.81 076	15	9.92 843	26	0.07 157	9.88 234	10	43	2 0.5 0.5
19	9.81 091	15	9.92 868	25	0.07 132	9.88 223	11	41	3 0.8 0.7 4 1.0 0.9
20	9.81 106	15	9.92 894	26 26	0.07 106	9.88 212	11	40	5 1.2 1.2
21	981 121	15	9.92 920		0.07 080	9.88 201	10	39	6 I.5 I.4
22	9.81 136	15 15	9.92 945	25 26	0.07 055	9.88 191	11	38	7 1.8 1.6
23	9.81 151	15	9.92 971	25	0.07 029	9.88 180	11	37	8 2.0 1.9
24	9.81 166 9.81 180	14	9.92 996	26	0.07 004	9.88 169 9.88 158	11	36	9 2.2 2.I
25 26	9.81 195	15	9.93 022 9.93 048	26	0.06 978	0.88 148	10	35 34	10 2.5 2.3
27	9.81 210	15	9.93 073	25	0.06 927	9.88 137	11	33	20 5.0 4.7 30 7.5 7.0
28	9.81 225	15	9.93 099	26	0.06 901	9.88 126	II	32	30 7.5 7.0 40 10.0 9.3
29	9.81 240	15	9.93 124	25	0.06 876	9.88 115	11	31	50 12.5 11.7
30	9.81 254	14	9.93 150	26	0.06 850	9 88 105	10 11	30	
31	9.81 269	15	9.93 175	25 26	0.06 825	9.88 094	II	29	11 10
32	9.81 284	15 15	9.93 201	20	0.06 799	9.88 083	11	28	I 0.2 0.2 2 0.4 0.3
33	9.81 299	15	9.93 227	25	0.06 773	9.88 072	11	27	2 0.4 0.3 3 0.6 0.5
34	9.81 314 9.81 328	14	9.93 252 9.93 278	26	0.06 748	9.88 061 9.88 051	IO	26	4 0.7 0.7
35 36	9.81 343	15	9.93 303	25	0.06 697	9.88 040	11	25 24	5 0.9 0.8
37	9.81 358	15	9.93 329	26	0.06 671	0.88 020	11	23	6 1.1 1.0
38	9.81 372	14	9.93 354	25	0.06 646	9.88 018	II	22	7 1.3 1.2
39	9.81 387	15	9.93 380	26 26	0.06 620	9.88 007	11	21	8 1.5 1.3 9 1.6 1.5
40	9.81 402	15	9.93 406		0.06 594	9.87 996	II II	20	
41	9.81 417	15	9.93 431	25 26	0.06 569	9.87 985	10	19	10 1.8 1.7 20 3.7 3.3
42	9.81 431	14 15	9.93 457	25	0.05 543	9.87 975	10	18	30 5.5 5.0
43	9.81 446 9.81 461	15	9.93 482	26	0.06 518	9.87 964	11	17	40 7.3 6.7
44 45	9.81 401 9.81 475	14	-9.93 508 9.93 533	25	0.06 492	9.87 953 9.87 942	·11	16 15	50 9.2 8.3
45	9.81 490	15	9.93 533	26	0.06 441	9.87 942 9.87 931	II	15	
47	9.81 503	15	9.93 584	25	0.06 416	9.87 920	11	13	11 10 10-
48	9.81 519	14	9.93 610	26	0.06 390	9.87 909	11	12	26 26 25
49	9.81 534	15	9.93 636	26 25	0.06 364	9.87 898	11 11	11	0 1.2 1.3 1.2
50	9.81 549	15 14	0.93 661	25 26	0.06 339	9.87 887	10	10	I 3.5 3.0 28
51	9.81 563	14	9.93 687	25	0.06 313	9.87 877	10	8	2 5.0 65 62
52	9.81 578 9.81 592	15	9.93 712 0.02 728	26	0.06 288	9.87 866 9.87 855	11		3 8.3 9.1 8.8
53	9.81 592 9.81 607	15	9.93 738	25			11	• 7	10.0 11.7 11.2
54 55	9.81 007 9.81 622	15	9.93 763 9.93 789	26	0.06 237 0.06 211	9.87 844 9.87 833	11	65	5 13.0 14.3 13.8 6 15.4 16.9 16.2
56	9.81 636	14	9.93 814	25	0.06 186	9.87 822	11	4	
.57	9.81 651	15	9.93 840	26	0.06 160	9.87 811	11	3	0 20.1 22.1 21.2
58	9.81 665	14	9.93 865	25	0.06 133	9.87 800	II	2	9 22.5 24.7 23.8
59	9.81 680	15	9.93 891	26 25	0.06 109	9.87 789	11	I	10 24.8
60	9.81 694	14	9.93 916	25	0.06 084	9.87 778	11	0	· ·
	L Cos	d	L Cot	c d	L Tan	L Sin	d	'	РР
	*139°	229°	*319°		49°				

					-TI	*131	- 22	14	-311-
'	L Sin	d	L Tan	c d	L Cot	L Cos	d		РР
0	9.81 694		9.93 916		0.06 084	9.87 778		60	26 : 25
I	9.81 709	15	9.93 942	26	0.06 058	9.87 767	II	59	I 0.4 0.4
2	9.81 723	14	9.93 967	25	0.06 033	9.87 756	II	58	2 0.9 0.8
3	9.81 738	15 14	9.93 993	26 25	0.06 007	9.87 745	II	57	3 1.3 1.2
4	9.81 752	15	9.94 018	26	0.05 982	9.87 734	11	56	4 1.7 1.7
5	9.81 767 9.81 781	14	9.94 044	25	0 05 956	9.87 723	11	55	5 2.2 2.1
1 1	9.81 796	35	9.94 069	26	0.05 931	9.87 712	11	54	6 2.6 2.5
78	9.81 900	14	9.94 095	25	0.05 905	9.87 690	11	53 52	7 3.0 2.9 8 3.3 3.3
9	9.81 825	15	9.94 146	26	0.05 854	9.87 679	11	51	9 3.9 3.8
1Ó	9.81 839	14	9.94 171	25	0.05 829	9.87 668	11	50	IO 4.3 4.2
11	9.81 854	15	9.94 197	26	0.05 803	9.87 657	11	49	20 8.7 8.3
12	9.81 868	14	9.94 222	25	0.05 778	9.87 646	11	48	30 13.0 12.5
13	9.81 882	14 15	9.94 248	26 25	0 05 752	9.87 633	11	47	40 17.3 16.7
14	9.81 897	-	9.94 273	26	0.05 727	9.87 624	11	46	50 21.7 20.8
15	9.81 911	14 15	9.94 299	25	0.05 701	9.87 613	12	45	15 14
16	9.81 926	14	9.94 324	26	0.05 676	9.87 601	II	44	I 0.2 0.2
17 18	9.81 940	15	9.94 350	25	0.05 650	9.87 590 9.87 579	II	43	2 0.5 0.5
10	9.81 955 9.81 969	14	9.94 375 9.94 401	26	0.05 599	9.87 568	11	42 41	3 0.8 0.7 4 1.0 0.0
20	9.81 983	14	9.94 426	25	0.05 574	9.87 557	11	40	
21	9.81 998	15	9.94 452	26	0.05 548	9.87 546	11	39	5 1.2 1.2 6 1.5 1.4
22	9.82 012	14	9.94 477	25	0.05 523	9.87 535	11	38	7 1.8 1.6
23	9.82 026	14	9.94 503	26	0.05 497	9.87 524	II	37	8 2.0 1.9
24	9.82 041	15	9.94 528	25	0.05 472	9.87 513	11	36	9 2.2 2.1
25	9.82 055	14	9.94 554	26 25	0.05 446	9.87 501	12	35	10 2.5 2.3
26	9.82 069	14 15	9-94 579	25	0.05 421	9.87 490	11	34	20 5.0 4.7
27	9.82 084	14	9.94 604	26	0.05 396	9.87 479	11	33	30 7.5 7.0 40 10.0 0.3
28	9.82 098 9.82 112	14	9.94 630	25	0.05 370	9.87 468	11	32	40 10.0 9.3 50 12.5 11.7
29 30	9.82 112	14	9.94 655	26	0.05 345	9.87 457	11	31 30	
	9.82 120	15	9.94 681	25	0.05 319	9.87 446	12	20	12 11
31 32	4.82 155	14	9.94 732	26	0.05 268	9.87 423	11	28	I 0.2 0.2 2 0.4 0.4
33	9.82 169	14	9-94 757	25	0.05 243	9.87 412	11	27	2 0.4 0.4 3 0.6 0.6
34	9.82 184	15	9.94 783	26	0.05 217	9.87 401	11	26	4 0.8 0.7
35	9.82 198	14	9.94 808	25	0.05 192	9.87 390	II	25	
36	9.82 212	14	9.94 834	26 25	0.05 166	9.87 378	12 11	24	5 1.0 0.9 6 1.2 1.1
37	9.82 226	14	9.94 859	25	0.05 141	9.87 367	11	23	7 I.4 I.3 8 I.6 I.5
38	9.82 240	I.4 15	9 94 884	26	0.05 116	9.87 356	II	22	
39	9.82 255	14	9.94 910	25	0.05 090	9.87 345	II	21 20	9 1.8 1.6
40	9.82 269 9.82 283	14	9.94 935	26	0.05 063	9 87 334 9.87 322	12		10 2.0 1.8
41 42	9.82 203	14	9.94 961 9.94 986	25	0.05 039	9.87 322	11	19 18	20 4.0 3.7 30 6.0 5.5
42	9.82 311	14	9.95 012	26	0.04 988	9.87 300	11	17	40 8.0 7.3
44	9.82 326	15	9.95 037	25	0.04 963	9.87 288	12	16	50 10.0 9.2
45	9.82 340	14	9.95 062	25	0.04 938	9.87 277	11	15	
46	9.82 354	14	9.95 088	26	0.04 912	9.87 266	11	14	12 12 11
47	9.82 368	14	9.95 113	25 26	0.04 887	9.87 253	11	13	$\overline{26}$ $\overline{25}$ $\overline{25}$
48	9.82 382	14	9.95 139	20 25	0.04 861	9.87 243	12 11	12	
49	9.82 396	14 14	9.95 164	26	0.04 836	9.87 232	11	11	, I.I I.I I.I
50	9.82 410	14	9 95 190	25	0.04 810	9.87 221	12	10	3.2 3.1 3.4
51	9.82 424	15	9.95 215	25	0.04 785 0.04 700	9.87 209 9.87 198	11	8	3 7.6 7.3 7.0
52 53	9.82 439 9.82 453	14	9.95 240 9.95 266	26	0.04 700	9.87 198	11	7	4 0.8 0.4 10.2
	9.82 453	14	9.95 200 9.95 291	25	0.04 709	9.87 175	12	6	2 11.9 11.5 12.5
54 55	9.82 481	14	9.95 317	26	0.04 683	9.87 164	14	5	
56	9.82 495	14	9.95 342	25	0.04 658	9.87 153	11	4	7 16.2 15.6 17.1
57	9.82 509	14	9.95 368	26	0.04 632	9.87 141	12	3	9 20 6 10 8 21 6
58	9.82 523	14	9.95 393	25	0.04 607	9.87 130	II	2	10 22 8 21.0 23.0
59	9.82 537	14	9.95 418	25 26	0.04 582	9.87 119	11 12	I	II 24 0 23 0 -
60	9.82 551	14	9.95 444		0.04 556	9.87 107		0	12
	L Cos	d	L Cot	c d	L Tan	L Sin	d	1	РР

48°

*138° 228° *318°

41° *131° 221° *811•

42°

*132° 222° *312°

					42			*132	~~~~	52 1	312.	
'	L Sin	d	L Tan	c d	L Cot	L Cos	d			F	P	
0	9.82 551	14	9.95 444	25	0.04 556	9.87 107	11	60		-	26 1	25
I	9.82 565	•	9.95 469	25 26	0.04 531	9.87 096	11	59			5.4	0.4
2	9.82 579	14 14	9.95 495	20	0.04 505	9.57 085	11	58				0.8
3	9.82 593	14	9.95 520	25	0.04 480	9.87 073	11	57			1.3	1.2
4	9.82 607	14	9.95 545	26	0.04 455	9.87 062	12	56		4	1.7	1.7
5	9.82 621	14	9.95 571	25	0.04 429	9.87 050	11	55			2.2	2.1
6	9.82 635	14	9.95 596	2 ŏ	0.04 404	9.87 039	11	54			2.6	2.5
7	9.82 649	14	9.95 622	25	0.04 378	9.87 028	12	53			3.0 3.3	2.9
8	9.82 663 9.82 677	14	9.95 647 9.95 672	25	0.04 353 0.04 328	9.87 016 9.87 005	II	52			3.9	3.3 3.8
9 10	9.82 691	14	9.95 698	26	0.04 302	9.86 993	12	51 50		- 1	1.3	4.2
10	9.82 705	14	9.95 723	25	0.04 277	9.86 982	II	49			5.7	8.3
12	9.82 719	14	9.95 748	25	0.04 252	9.86 970	12	49			3.0	12.5
13	9.82 733	14 14	9.95 774	26 25	0.04 226	9.86 959	11 12	47	4		7.3	16.7
14	9.82 747		9.95 799	25 26	0.04 201	9.86 947		46	5	0 2	1.7	20.8
15	9.82 761	14 14	9.95 825	20	0.04 175	9.86 936	11	45			14 1	13
16	9.82 775	13	9.95 850	25	0.04 150	9.86 924	II	44		1	5.2	0.2
17	9.82 788	14	9.95 875	26	0.04 125	9.86 913	TT	43			5.5	0.2
18	9.82 802	14	9.95 901	25	0.04 099	9.86 902	12	42			5.7	0.6
19	9.82 816	14	9.95 926	26	0.04 074	9.86 890	II	41				0.9
20	9.82 830	14	9.95 952	25	0.04 048	9.86 879	12	40			12	I.I
21	9.82 844 9.82 858	14	9-95 977 9.96 002	25	0.04 023 0.03 998	9.86 867 9.86 855	12	39		6	1.4	1.3
22	9.82 872	14	9.90 002 9.96 028	26	0.03 998	9.80 855 9.86 844	11	38			1.6	1.5
23	9.82 885	13	9.96 053	25	0.03 947	9.86 832	12	37 36			2.1	1.7 2.0
24 25	9.82 899	14	9.96 078	25	0.03 947	9.86 821	11	30 35		- 1	1	
26	9.82 913	14	9.96 104	26	0.03 896	9.86 809	12	35			2.3	2.2
27	9.82 927	14	9.96 129	25	0.03 871	9.86 798	11	33			7.0	4.3 6.5
28	9.82 941	14	9.96 155	26	0.03 845	9.86 786	12	32			2.3	8.7
29	9.82 955	14 13	9.96 180	25 25	0.03 820	9.86 775	11	31			1.7	10.8
30	9.82 958	14	9.96 205	26	0.03 795	9.86 763	11	30			12	11
31	9.82 982	14	9.96 231	25	0.03 769	9.86 752	12	29				
32	9.82 996	14	9.96 256	25	0.03 744	9.86 740	12	28		-	0.2	0.2 0.4
33	9.83 010	13	9.96 281	20	0.03 719	9.86 728	11	27			0.6	0.6
34	9.83 023 9.83 037	14	9.96 307	25	0.03 693	9.86 717 9.86 705	12	26			0.8	0.7
35 36	9.83051 9.83051	14	9.96 332 9.96 357	25	0.03 668	9.86 694	11	25 24			1.0	0.0
	9.83 065	14	9.96 383	20	0.03 617	9.86 682	12			õ	1.2	1.1
37 38	9.83 005 9.83 078	13	9.96 408	25	0.03 592	9.86 670	12	23 22			1.4	1.3
30	9.83 092	14	9.96 433	25	0.03 507	9.86 659	11	21			1.6	1.3
40	9.83 106	14	9.96 459	26	0.03 541	9.86 647	12	20		- 1	1.8	1.6
41	9.83 120	14	9.96 484	25	0.03 516	9.86 635	12	19			2.0	1.8
42	9.83 133	13 14	9 96 510	26 25	0.03 490	9.86 624	11	18			4.0 6.0	3.7
43	9.83 147	14	9.96 535	25	0.03 465	9.86 612	12	17			8.0	5.5 7.3
44	9.83 161	13	9.96 560	26	0.03 440	9.86 600	11	16			0.0	9.2
45	9.83 174	14	9.96 586	25	0.03 114	9.86 589	12	15				
46	9.53 188	14	9.96 611	25	0.03 389	9.86 577	12	14		12	11	111
47	9.83 202 9.83 215	13	9.96 636 9.96 662	26	0.03 364	9.86 565 9.86 554	11	13		26	26	25
48	9.83 229	14	9.96 687	25	0.03 338	9.80 554	12	12	0		1	
49 50	9.83 242	13	9.96 712	25	0.03 288	9.86 530	12	11 10	I	1.1 3.2	1.	
51	0.83 250	14	9.96 738	26	0.03 202	9.86 518	12		2	3.2 5.4	3. 5.	
51	9.83 270	14	9.96 763	25	0.03 237	9.86 507	11	8	3	7.6	8.	3 7.9
53	9.83 283	13	9.96 788	25	0.03 212	9.86 495	12	7	4	9.8	10.	6 10.2
54	9.83 297	14	9.96 814	26	0.03 186	9.86 483	12	6	5 6	11.9	13.	0 12.5
55	9.83 310	13	9.96 839	25	0.03 161	9.86 472	II	5		14.1	15.	
56	9.83 324	14 14	9.96 864	25 26	0.03 136	9.86 460	12	4	7 8	16.2 18.4	17.	
57	9.83 338		9.96 890	25	0.03 110	9.86 448		3	9	20.0	20.	
58	9.83 351	13 14	9.96 91 5	25	0.03 085	9.86 436	12 11	2	TO	22.8	24.	
59	9.83 365	13	9.96 940	26	0.03 060	9.86 423	12	I	11	24.9	1 -	
60	9.83 378		9.96 966	<u> </u>	0.03 034	9.86 413	1	0	12			
	L Cos	d	L Cot	cd	L Tan	L Sin	d	1 '		1	, b	•
					470							

*137° 227° *317° 47°

4 3°	
-T**J	

*133° 223° *313°

' 0 1	L Sin	d	L Tan	c d	L Cot	L Cos	1.3.1		РР
					1000	11 000	d		r r
	9.83 378		9.96 966		0.03 034	9.86 413	12	60	26 25
	9.83 392	14	9.96 991	25	0.03 009	9.86 401		59	I 0.4 0.4
2	9.83 405	13 14	9.97 016	25 26	0.02 984	9.86 389	12 12	58	2 0.9 0.8
3	9.83 419	13	9.97 042	25	0.02 958	9.86 377	11	57	3 1.3 1.2
4	9.83 432 9.83 446	14	9.97 067 9.97 092	25	0.02 933 0.02 908	9.86 366 9.86 354	12	56	4 I.7 I.7 5 2.2 2.1
5	9.83 459	13	9.97 118	26	0.02 882	9.86 342	12	55 54	6 2.6 2.5
7	9.83 473	14	9.97 143	25	0.02 857	9.86 330	12	53	7 3.0 2.9
ś	9.83 486	13	9.97 168	25	0.02 832	9.86 318	12	52	8 3.5 3.3
9	9.83 500	14	9.97 193	25	0.02 807	9.86 306	12	51	9 3.9 3.8 IO 4.3 4.2
10	9.83 513	13 14	9 97 219	20	0.02 781	9 86 293	11 12	50	20 8.7 8.3
II	9.83 527	13	9.97 244	25	0.02 756	9.86 283	12	49	30 13.0 12.5
12 13	9.83 540 9.83 554	14	9.97 269 9.97 295	26	0.02 731 0.02 705	9.86 271 9.86 259	12	-48 -47	40 17.3 16.7
	9.83 567	13	9.97 293	25	0.02 680	9.86 247	12	46	50 21.7 20.8
14 15	9.83 581	14	9.97 345	25	0.02 655	9.86 235	12	45	14 13
16	9.83 594	13	9.97 371	26	0.02 629	9.86 223	12	44	I 0.2 0.2
17	9.83 608	14	9.97 396	25	0.02 604	9.86 211	12	43	2 0.5 0.4
18	9.83 621	13	9.97 421	25 26	0.02 579	9.86 200	11 12	42	3 0.7 0.6 4 0.9 0.9
19	0.83 634	13 14	9.97 447	20	0.02 553	9.86 188	12	41	5 1.2 1.1
20	9.83 648 9.83 661	13	9.97 472	25	0.02 528	9.86 176	12	40	6 1.4 1.3
21 22	9.83 674	13	9-97 497 9-97 523	26	0.02 503 0.02 477	9.86 164 9 86 152	12	39 38	7 1.6 1.5
23	9.83 688	14	9.97 548	25	0.02 477	0.86 140	12	30	8 I.9 I.7 9 2.1 2.0
24	9.83 701	13	9.97 573	25	0.02 427	9.86 128	12	36	10 2.3 2.2
25	9.83 715	14	9 97 598	25	0.02 402	9.86 116	12	35	20 4.7 43
26	9.83 728	13 13	9.97 624	26 25	0.02 370	9.86 104	12 12	34	30 7.0 6.5
27	9.83 741	14	9.97 649	-5 25	0.02 351	9.86 092	12	33	40 9.3 8.7 50 11.7 10.8
28	9.83 755 9.83 768	13	9.97 674	20	0.02 320 0.02 300	9.86 080 9.86 068	12	32	
29 30	9.83 781	13	<u>9 97 700</u> 9.97 723	25	0.02 300	9.86 056	12	31 30	12 11
31	9.83 795	14	9.97 750	25	0.02 250	9.86 044	12	20	I 0.2 0.2 2 0.4 0.4
32	9.83 808	13	9.97 776	26	0.02 224	0.86 032	12	28	2 0.4 0.4 3 0.6 0.6
33	9.83 821	13	9.97 801	25	0.02 199	9.86 020	12	27	4 0.5 0.7
34	9 83 834	13	9.97 826	25	0.02 174	9.86 008	12	26	5 1.0 0.9
35	983848	14 13	9.97 851	25 26	0.02 149	9.85 996	12 12	25	6 12 1.1
36	9.83 861	13	9.97 877	25	0.02 123	9.85 984	12	24	7 1.4 1.3 8 1.6 1.5
37	9.83 874 9.83 887	13	9.97 902	25	0.02 098	9.85 972	12	23 22	9 1.3 1.6
38 39	9.83 901	14	9.97 927 9.97 953	26	0.02 073	9.85 960 9.85 948	12	21	10 2.0 1.8
40	9.83 914	13	9.97 978	25	0.02 022	9.85 936	12	20	20 4.0 3.7
41	9.83 927	13	9.98 003	25	0.01 997	9.85 924	12	19	30 60 5.5 40 8.0 73
42	9.83 940	13	9.98 029	26	0.01 971	9.85 912	12	18	50 10.0 9.2
43	9.83 954	14	9.98 054	25 25	0.01 946	9.85 900	12 12	17	
44	9.83 967	13	9.98 079	25	0.01 921	9.85 888	12	16	13 13 12
45 46	9 83 980 9.83 993	13	9.98 104 9.98 130	26	0.01 896 0.01 870	9.85 876 9.85 864	12	15 14	26 25 25
40 47	9.83 993	13	9.98 155	25	0.01 845	9.85 851	13	13	
48	9.84 020	14	9.98 180	25	0.01 820	9.85 839	12	12	I I.O 0.9 I.I 3.0 2.9 3.I
49	9.84 033	13	9.08 206	26	0.01 794	9.85 827	12	11	2 50 18 52
50	9.84 046	13	9.98 231	25	0.01 769	9.85 815	12	10	3 7.0 6.7 7.3
51	9,84 059	13	9.98 256	25	0.01 744	9.85 803	12	2	4 9.0 8.7 9.4
52	9.84 072	13 13	9.98 281	25 26	0.01 719	9.85 791	12	8	6 11.0 10.0 11.5
53	9.84 085	13	9.98 307	25	0.01 693	9.85 779	13	7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
54 55	9.84 098 9.84 112	14	9.98 332 9.98 357	25	0.01 668 0.01 643	9.85 766 9.85 754	12	6	0 170 162 177
55 56	9.84 125	13	9.98 383	26	0.01 043 0.01 617	9.85 742	12	5	9 19.0 18.3 19.8
57	9.84 138	13	9.98 408	25	0.01 592	0.85 730	12	3	11 21.0 20.2 21.9
58	9.84 151	13	9.98 433	25	0.01 567	9.85 718	12	2	12 23.0 22.1 23.9
59	9.84 164	13	9.98 458	25 26	0.01 542	9.85 706	12	I	13 25.0 24.1 -
60	9.84 177	13	9.98 484		0.01 516	9.85 693	13	0	
	L Cos	d	L Cot	c d	L Tan	L Sin	d	'	РР
	*136°	226°	*316°		46°				

44°

***134° 224° ***314°

					44 °			*134	224° *314°
•	L Sin	d	L Tan	c d	L Cot	L Cos	d		РР
0	9.84 177		9.98 484		0.01 516	9.85 693		60	
I	9.84 190	13 13	9.98 509	25	0.01 491	9.85 681	12 12	59	26 25
2	9.84 203	13	9.98 534	25 26	0.01 466	9.85 669	12	58	I 0.4 0.4 2 0.9 0.8
3	9.84 216	13	9.98 560	25	0.01 440	9.85 657	12	57	3 1.3 1.2
4	9.84 229 9.84 242	13	9.98 583 9.98 610	25	0.01 415 0.01 390	9.85 645 9.85 632	13	56 55	4 1.7 1.7
6	9.84 255	13	9.98 635	25	0.01 365	9.85 620	12	55	5 2.2 2.I 6 2.6 2.5
7	0.84 260	14	100 80.0	26	0.01 330	9.85 608	12	53	6 2.6 2.5 7 3.0 2.9
8	9.84 282	13 13	9.98 686	25	0.01 314	9.85 596	12 13	52	8 3.5 3.3
.9	9.84 295	13	9.98 711	25 26	0.01 289	9.85 583	12	51	9 3.9 3.8
10	9.84 308	13	9.98 737	25	0.01 263	9.85 571	12	50	10 4.3 4.2 20 8.7 8.3
11 12	9.84 321 9.84 334	13	9.98 762 9.98 787	25	0.01 238 0.01 213	9.85 559 9.85 547	12	49 48	30 13.0 12.5
13	9.84 347	13	9.98 812	25	0.01 188	9.85 534	13	47	40 17.3 16.7
14	9.84 360	13	9.98 838	26	0.01 162	9.85 522	12	46	50 21.7 20.8
15	9.84 373	13 12	9.98 863	25	0.01 137	9.85 510	12	45	14 13 12
16	9.84 385	12	9.98 888	25 25	0.01 112	9. ⁸ 5 497	13	44	1 0.2 0.2 0.2
17	9.84 398	13	9.98 913	26	0.01 087	9.85 485	12	43	2 0.5 0.4 0.4
18	9.84 411	13	9.98 939	25	0.01 061	9.85 473	13	42 41	3 0.7 0.6 0.6
19 20	9.84 424 9.84 437	13	9.98 964 9.98 989	25	0.01 030	9.85 460 9.85 448	12	41 40	4 0.9 0.9 0.8 5 1.2 1.1 1.0
21	9.84 450	13	9.99 015	26	0.00 985	9.85 436	12	39	6 1.4 1.3 1.2
22	9.84 463	13	9.99 040	25	0.00 960	9.85 423	13	38	7 1.6 1.5 1.4
23	9.84 476	13 13	9.99 065	25 25	0.00 935	9.85 411	12 12	37	8 1.9 1.7 1.6
24	9.84 489	13	9.99 090	26	0.00 910	9.85 399	13	36	9 2.1 2.0 1.8 10 2.3 2.2 2.0
25	9.84 502	13	9.99 116	25	0.00 884	9.85 386	12	35	20 4.7 4 3 4.0
26	9.84 515	13	9.99 141	25	0.00 859	9.85 374	13	34	30 7.0 6.5 6.0
27	9.84 528 9.84 540	12	9.99 166 9.99 191	25	0.00 834	9.85 361 9.85 349	12	33 32	40 9.3 8.7 8.0
20	9.84 553	13	9.99 217	26	0.00 783	9.85 337	12	31	50 11.7 10.8 10.0
30	9.84 566	13	9.99 242	25	0.00 758	9.85 324	13	30	10 1 10
31	9.84 579	13	9.99 267	25 26	0.00 733	9.85 312	12	29	$\frac{13}{13}$ $\frac{13}{13}$
32	9.84 592	13 13	9.99 293	20	0.00 707	9.85 299	13	28	26 25
33	9.84 605	13	9.99 318	25	0.00 682	9.85 287	13	27	0 I.O 0.9
34	9.84 618	12	9-99 343	25	0.00 657	9.85 274	12	26	3.0 2.9
35	9.84 630 9.84 643	13	9.99 368 9.99 394	20	0.00 632	9.85 262 9.85 250	12	25 24	5.0 4.8
37	9.84 656	13	0.00 410	25	0.00 581	9.85 237	13	23	4 0.0 8.7
38	9.84 669	13	9.99 444	25	0.00 556	9.85 225	12	22	5 11.0 10.6
39	9.84 682	13 12	9.99 469	25 26	0.00 531	9.85 212	13	21	7 13.0 12.5
40	9.84 694	13	9-99 495	25	0.00 505	9.85 200	12 13	20	g 15.0 14.4
41	9.84 707	13	9.99 520	25	0.00 480	9 85 187	12	19	9 17.0 16.3 9 19.0 18.3
42	9.84 720	13	9.99 545	25	0.00 455	9.85 175	13	18	10 210 202
43	9.84 733 9.84 745	12	9.99 570	26	0.00 430	9.85 162 9.85 130	12	17 16	11 12 23.0 22.1
44 45	9.84 758	13	9.99 596 9.99 621	25	0.00 404	9.85 137 9.85 137	13	10	13 25.0 24.1
46	9.84 771	13	9.99 646	25 26	0.00 354	9.85 125	12	14	12 12
47	9.84 784	13 12	9.99 672		0.00 328	9.85 112	13	13	$\frac{15}{26}$ $\frac{15}{25}$
48	9.84 796	12 13	9.99 697	25 25	0.00 303	9.85 100	12 13	12	
49	9.84 809	13	9.99 722	25	0.00 278	9.85 087	13	II	- 1.1 1.1
50	9.84 822	13	9.99 747	26	0.00 253	9.85 074	12	10	2 3.2 3.1
51 52	9.84 835 9.84 847	12	9.99 773 9.99 798	25	0.00 227	9.85 062 9.85 049	13	8	3 76 73
53	0.84 860	13	9.99 823	25	0.00 202	9.85 049	12	7	4 9.8 9.4
54	9.84 873	13	9.99 848	25	0.00 152	9.85 024	13	6	6 11.9 11.9
55	9.84 885	12	9.99 874	26	0.00 126	9.85 012	12	5	7 14.1 13.5 7 16.2 15.6 8 16.2
56	9.84 898	13 13	9.99 899	25 25	0.00 101	9.84 999	13 13	4	
57	9.84 911	12	9.99 924	25	0.00 076	9.84 986	12	3	9 20.6 19.8
58	9.84 923	13	9.99 949	26	0.00 051	9.84 974	13	2	10 22.8 21.9
59 60	9.84 936	13	9.99 975	25	0.00 025	9.84 961	12	I 0	12 24.9 23.9
	9.84 949			<u>-</u>		9.84 949	<u> </u>	Ļ	
	L Cos	d	L Cot	cd	L Tan	L Sin	d		РР
	*135°	225	#815°		45°				
					10				

TABLE OF THE NATURAL

TRIGONOMETRIC FUNCTIONS

FROM MINUTE TO MINUTE.

94											
90	180* *	•270° ()°		NA	TURAL			1° +91•	181 •	+271
·	Sin	Tan	Cot	Cos		'	Sin	Tan	Cot	Cos	
0	0.0000	0.0000	8	1.0000	60	0	0.0175	0.0175	57.2900	0.9998	60
1 2	0.0003	0.0003	3437.75 1718.87	1.0000 1.0000	59 58	12	0.0177 0.0180	0.0177 0.0150	56.3506 55.4415	0.9998 0.9998	59 58
3	0.0000	0.0009	1145.92	1.0000	57	3	0.0183	0.0183	54.5613	0.9998	57
4	0.0012	0.0012	859.436	1.0000	56	4	0.0186	0.0186	53.7086	0.9998	56
5	0.0015 0.0017	0.0015	687.549 572.957	1.0000	55 54	5	0.0189	0.0189	52.8821 52.0807	0.9998 0.9998	55 54
7	0.0020	0.0020	491.106	1.0000	53	7	0.0195	0.0195	51.3032	0.9998	53
8	0.0023	0.0023 0.0026	429.718	1.0000 1.0000	52	8	0.0198	0.0198	50.5485	0.9998	52
10	0.0026	0.0020	<u>381.971</u> 343.774	1.0000	51 50	9 10	0.0201	0.0201	49.8157	0.9998 0.99998	51 50
11	0.0032	0.0032	312.521	1.0000	49	11	0.0207	0.0207	48.4121	0.9998	49
12	0.0035	0.0035 0.0038	286.478 264.441	1.0000 1.0000	48 47	12	0.0209	0.0209	47.7395 47.0853	0.99998 0.9998	48 47
14	0.0011	0.0011	245.552	1.0000	46	14	0.0215	0.0215	46:4489	0.9998	46
15	0.0011	0.0044	229.182	1.0000	45	15	0.0218	0.0218	45.8294	0.9998	45
16	0.0047 0.0049	0.0047	214.858	1.0000	44	16 17	0.0221	0.0221	45.2261 44.6386	0.9998 0.9997	44
18	0.0049	0.0052	190.984	1.0000	43 42	18	0.0224 0.0227	0.0224 0.0227	44.0380	0.9997	43 42
19 20	0.0055	0.0055	180.932	1.0000	41	19 20	0.0230	0.0230	43.5081	0.9997	41
21	0.0058	0.0058	171.885	1.0000	40 39	20	0.0233	0.0233	42.9641	0.9997	40 39
22	0.0064	0.0064	156.259	1.0000	38	22	0.0239	0.0239	41.9158	0.9997	38
23	0.0067	0.0067	149.465	1.0000	37	23	0.0241	0.02.11	41.4106	0.9997	37
24 25	0.0070 0.0073	0.0070 0.0073	143.237 137.507	1.0000	36 35	24 25	0.0244	0.02.44 0.02.47	40.9174 40.4358	0.9997 0.9997	36 35
26	0.0076	0.0076	132.219	1.0000	34	26	0.0250	0.0250	39.9655	0.9997	34
27 28	0.0079	0.0079	127.321	1.0000	33	27	0.0253	0.0253	39.5059	0.9997	33
20	0.0081	0.0081	122.774 118.540	1.0000 1.0000	32 31	28 29	0.0256 0.0259	0.0250 0.0259	39.0568 38.6177	0.9997 0.9997	32 31
3 Ó	0.0087	0.0067	114.580	1.0000	30	30	0.0262	0.0202	38.1885	0.9997	30
31	0.0090	0.0000	110.892		29	31	0.0265	0.0265	37.7686		29
32	0.0093	0.0093	107.426 104.171	1.0000	28 27	32	0.0268	0.0268	37-3579 36.9560	0.9996 0.9996	28 27
34	0.0099	0.0099	101.107	1.0000	26	34	0.0273	0.0274	36.5627	0.9996	26
35 36	0.0102 0.0105	0.0102 0.0105	08.2179	0.9999	25 24	35	0.0276	0.0276	36.1776	0.9996	25
37	0.0103	0.0108	95.4895 92.9083	0.9999	23	37	0.0279 0.0282	0.02/9	35.8006	0.9996 0.9996	24 23
38	0.0111	0.0111	90.4633	0.9999	22	38	0.0285	0.0285	35.0695	0.9996	22
39 40	0.0113	0.0113	88.1436		21 20	40	0.0288	0.0288	34.7151	0.9996	21 20
41	0.0110	0.0110	85.9398	0.9999	19	41	0.0291	0.0291	34.3678	0.9996	19
42	0.0122	0.0122	81.8.170	0.9999	18	42	0.0297	0.0297	33.6935	0.9996	18
43	0.0125	0.0125	79-9-13-1		17	43	0.0300	0.0300	33.3662	0.9996	17
44 45	0.0128	0.0128	78.1263		16 15	41	0.0302	0.0303	33.0452 32.7303	0.9995 0.9995	16 15
46	0.0134	0.0134	74.7292	0.9999	14	46	0.0308	0.0308	32.4213	0.9995	14
47	0.0137 0.0140	0.0137	73.1390	0.9999	13 12	47	0.0311	0.0311	32.1181 31.8205	0.9995	13 12
49	0.0143	0.0140	70.1533	0.9999 0.9999	12	49	0.0314 0.0317	0.0314 0.0317	31.8205	0.9995 0.999 5	11
50	0.0145	0.01.45	68.7501	0.9999	10	50	0.0320	0.0320	31.2416	0.9995	10
51 52	0.0148 0.0151	0.0148	67.4019 66.1055	0.9999 0.9999	8	51 52	0.0323 0.0326	0.0323 0.0326	30.9599 30.6833	0.9995 0.9995	8
53	0.0154	0.0154	64.8580		7	53	0.0329	0.0329	30.4116		7
54	0.0157	0.0157	63.6567	0.9999	6	54	0.0332	0.0332	30.1446	0.9993	6
55 56	0.0160	0.0160	62.4992 61.3829	0.9999 0.99999	54	55	0.0334	0.0335	29.8823 29.6245	0.9994	5
57	0.0166	0.0166	60.3058		3	57	0.0340	0.0340	29.3711	0.9994	3
58	0.0169	0.0169	59.2659	0.9999	2	58	0.0343	0.0343	29.1220	0.9994	2
59 60	0.0172	0.0172	58.2612	0.9999 0.9998	I 0	59 60	0.0346	0.0346	28.8771	0.9994	I O
	Cos	Cot	Tan	Sin	Ť		Cos	Cot	Tan	Sin	Ť
179	° 269°	*359° {	100		N.	J L TURAL		88	° #178°	268°	+3584
+10	200	. 908 C	コフ		TAV	TORAD		00	-119.	200-	-900.

+	92° 182°	* 272°	2°		Ňati	UR.	AL		3 °	*93° 1	83° * 273	95 °
· 1	Sin	Tan	Cot	Cos	1	11	'	Sin	Tan	Cot	Cos	1
0	0.0349	0.0349	28.6363	0.9994	6 0		0	0.0523	0.0524	19.0811	0.9986	60
I	0.0352	0.0352	28.3994	0.9994	59		I	0.0526	0.0527	18.9755	0.9986	59 58
2 3	0.0353 0.0358	0.0355 0.0358	28.1664 27.9372	0.9994	58 57		23	0.0529 0.0532	0.0530	18.8711 18.7678	0.9986 0.9986	50
4	0.0361	0.0361	27.7117	0.9993	56		4	0.0535	0.0536	18.6656		56
5	0.0364	0.0364	27.4899	0.9993	55		5	0.0538	0.0539	18.5645	0.9986	55
6	0.0366 0.0369	0.0367 0.0370	27.2715	0.9993 0.9993	54		6 7	0.0541 0.0544	0.0542 0.0544	18.4645 18.3655	0.9985 0.9985	54
78	0.0372	0.0370	26.8450		53 52		8	0.0544	0.0547	18.2677	0.9985	53 52
9	0.0375	0 0375	26.6367	0.9993	51		.9	0.0550	0.0550	18.1708		51
10	0.0378	0.0378	26.4310	0.9993	50		10	0 0552	0.0553	18.0750		50
11 12	0.0384	0,0381 0.0384	20.2290	0.9993 0.9993	49 48		12	0.0555 0.0558	0.0550 0.0559	17.9802 17.8863	0.9985 0.9984	49 18
13	0.0387	0.0387	25 8348	0.9993	47		13	0.0561	0.0562	17.7934	0.9984	47
14	0.0390	0.0390	25.6418	0.9992	46		14	0.0564	0.0565	17.7015	0.9984	-16
15 16	0.0393 0.0396	0.0393 0.0396	25.4517 25.2644		45		15 10	0.0507 0.0570	0.0568 0.0571	17.6106	0.9984 0.9984	45 44
17	0.0398	0.0399	25.0798	0.9992	43		17	0.0573	0.0574	17.4314	0.9984	43
18	0.0401	0.0402	24.8978	0.9992	42		18	0.0576	0.0577	17.3432	0.9983	42
19	0.0404	0.0405	24.7185	0.9992	41		19	0.0579	0.0580	17.2558	0.9983	14
20	0.0407	0.0407	24.5418	0.9992	40		20	0.0581	0.0582	17.1693	0.9983 0.9983	40
21 22	0.0410	0.0413	24.1957	0.9992 0.9991	39 38		21 22	0.0584 0.0587	0.0588	16.9990		39 38
23	0 0416	0.0416	24.0263		37		23	0.0590	0.0591	16.9150	0.9983	37
24	0.0419	0.0419	23.8593	0.9991	36		24	0.0593	0.0594	16.8319	0.9982	36
25 26	0.0422 0.0425	0.0422 0.0425	23.6945 23.5321	0.9991 0.9991	35 34		25 20	0.0596 0.05 99	0.0597	16.7496	0.9982	35 34
27	0.0427	0.0428	23.3718	0.9991	33		27	0.0602	0.0603	16.5874	0.9982	33
28	0.0430	0.0431	23.2137	0.9991	32		28	0.0605	0.0606	16.5075	0.9982	32
29	0.0433	0.0434	23.0577	0.9991	31		29	0.0608	0.0609	16.4283	0.9982	31
30 31	0.0430	0.0437	22.9038	0.9990	30		30	0.0610	0.0612	16.3499	0.9981	30
32	0.0439	0.0440	22.6020		29 28		31 32	0.0015	0.0617	16.1952	0.9981	29 28
33	0.0445	0.0445	22.4541	0.9990	27		33	0.0619	0.0620	16.1190	0.9981	27
34	0.0448	0.0448	22.3081	0.9990	26		34	0.0622	0.0623	16.0435	0.9981	26
35 36	0.0451 0.0454	0.0451 0.0454	22.1640 22.0217	0.9990	25 24		35 36	0.0625 0.0628	0.0626	15.9687 15.8945	0.9980 0.9980	25 24
37	0.0457	0.0457	21.8813	0.9990	23		37	0.0631	0.0632	15.8211	0.9980	23
38	0.0459	0.0460	21.7426	0.9989	22		38	0.0634	0.0635	15.7483	0.9980	22
39 40	0.0402	0.0463	21.6056	0.9989	21		39	0.0637	0.0638	15.6762		21 20
40	0.0465	0.0466	21.4704	0.9989	20 19		40	0.0640	0.0641	15.6048	0.9980 0.9979	10
42	0.0471	0.0472	21.2049	0.9989	18		41 42	0.0645	0.0647	15.4638	0.9979	18
43	0.0474	0.0475	21.0747	0.9989	17		43	0.0648	0.0650	15.3943	0.9979	17
44	0.0477 0.0480	0.0477	20.9460 20.8188	0.9989 0.9988	16		44	0.0651 0.0654	0.0653 0.0655	15.3254	0.9979	16
45 46	0.0480	0.0480 0.0483	20.6138	0.9988	15 14		45 46	0.0054	0.0055	15.2571 15.1893	0.9979 0.9978	15
47	0.0486	0.0486	20.5691	0.9988	13		40	0.0660	0.0661	15.1222	0.9978	13
48	0.0488	0.0489	20.4465	0.9988	12	11	48	0.0663	0.0664	15.0557	0.9978	12
49 50	0.0491	0.0492	20.3253	0.9988 0.9988	11		49 50	0.0666	0.0667	14.9898 14.9244		11 10
51	0.0494	0.0495	20.2050	0.9988	9	11	51	0.0009	0.0070	14.9244	0.9978	
52.	0.0500	0.0501	19.9702	0.9987	8		52	0.0674	0.0676	14.7954	0.9977	8
53	0.0503	0.0504	19.8546	0.9987	7		53	0.0677	0.0679	14.7317	0.9977	7
54 55	0.0506	0.0507 0.0509	19.7403 19.6273	0.9987 0.9987	6		54	0.0680	0.0682	14.6685 14.6059	0.9977 0.9977	6 5
56	0.0512	0.0512	19.5156	0.9987	5		55 56	0.0686	0.0688	14.5438	0.9976	4
57	0.0513	0.0515	19.4051	0.9987	3		57	0.0689	0.0690	14.4823	0.9976	3
58	0.0518	0.0518	19.2959	0.9987	2	11	58	0.0692	0.0093	14.4212	0.9976	2 1
59 60	0.0520	0.0521	19.1879	0.9986 0.9986	I 0		59 60	0.0695	0.0696	14.3607	0.9976 0.9976	ō
<u> </u>	Cos	Cot	Tan	Sin	ĻŤ					Tan	Sin	١÷
			1	5111	<u> </u>	i l		Cos	Cot			
*1	77° 267°	#357 °	87°		NAT	rue	LA L		86°	•176° :	266° *35	6°

96 94°	184°	•274° 4°			NAT	UR.	AL.		5	° *95°	185°	•275°
·	Sin	Tan	Cot	Cos		ſ	'	Sin	Tan	Cot	Cos	
0	0.0698	0.0699	14.3007	0.9976	60	ľ	0	0.0872	0.0875	11.4301	0.9962	60
T	0.0700	0.0702	14.2411	0.9975	59		r	0.0874	0.0878	11.3919		59
2	0.0703	0.0705		0.9975	58 57		2 3	0.0877	0.0881	11.3540	0.9961 0.99 61	58 57
3	0.0706	0.0708 0.0711	14.1235	0.9975 0.9975	56	1	4	0.0883	0.0887	11.2780		56
45	0.0709	0.0714	14.0079	0.9975	55		5	0.0886	0.0890	11.2417	0.9961	55
ŏ	0.0715	0.0717	13.9507	0.9974	54		6	0.0889	0.0892	11.2048		54
7	0.0718	0.0720	13.8940	0.9974	53		78	0.0892	0.0895 0.0898	11.1681 11.1316		53 52
8	0.0721 0.0724	0.0723	13.8378 13.7821	0.9974 0.9974	52 51		ő	0.0895	0.0001	11.0954	0.9960	51
10	0.0727	0.0729	13.7267	0.9974	50		ìÓ	0.0001	0.0904	11.0594	0.9959	50
11	0.0729	0.0731	13.6719	0.9973	49		11	0.0903	0.0907	11.0237	0.9959	49
12	0.0732	0.0734	13.6174	0.9973	48		12	0.0906	0.0910	10.9882		48
13	0.0735	0.0737	13.5634	0.9973	47		13	0.0909	0.0913	10.9529 10.9178		47
14	0.0738 0.0741	0.0740	13.5098 13.4566	0.9973 0.9973	46 45		14 15	0.0912	0.0910	10.8829		45
15 16	0.0744	0.0745	13.4039	0.9972	44		16	8100.0	0.0922	10.8483		44
17	0.0747	0.0749	13.3515	0.9972	43		17	0.0921	0.0925	10.8139		43
18	0.0750	0.0752	13.2996	0.9972	42		18	0.0924	0.0928	10.7797		42
19	0.0753	0.0755	13.2480	0.9972	40		19 20	0.0927	0.0931	10.7457		41 40
20	0.0750	0.0758	13.1969	0.9971	40 39		21	0.0029	0.0934	10.6783		20
21 22	0.0758	0.0761	13.0958	0.9971 0.9971	38		22	0.0935	0.0939	10.6450		38
23	0.0764	0.0767	13.0458	0.9971	37		23	0.0938	0.0942	10.6118	0.9956	37
24	0.0767	0.0769	12.9962	0.9971	36		24	0.0941	0.0945	10.5789		36
25	0.0770	0.0772	12.9469	0.9970	35		25 26	0.0944	0.0948	10.5462		35 34
26	0.0773	0.0775	12.8981	0.9970	34		20	0.0947 0.0950	0.0951	10.513		33
27 28	0.0776	0.0778	12.8496 12.8014	0.9970 0.9970	33 32	{	28	0.0950	0.0954	10.4491		32
29	0.0782	00784	12.7536	0.9969	31		29	0.0956	0.0960	10.4172	0.9954	31
3 Ó	0.0783	0.0787	12.7062	0.9909	30		30	0.0958	0.0963	10.385.		30
31	0.0787	0.0790	12.6591	0.9969	29 28	1	31	0.0961	0.0966	10.353		29 28
32	0.0790	0.0793	12.6124	0.9969 0.9968	28		32 33	0.0964	0.0909	10.322.		27
33 34	0.0795	0.0799	12.5199	0.9968	26		34	0.0970	0.0975	10.200		26
35	0.0799	0.0802	12.4742	0.9968	25		35	0.0973	0.0978	10.229.	4 0.9953	25
36	0,0802	0.0803	12.4288	0.9968	24		36	0.0976	0.0981	10,198		24
37	0.0805	0.0508	12.3838		23		37	0.0979	0.0983	10.168		23
38	8080.0 1180.0	0.0810	12.3390 12.2946		22		38 39	0.0982	0.0986	10.138		21
39 40	0.0814	0.0816	12.2940	0.9967	20		40	0.0987	0.0992	10.078		20
41	0.0816		12.2067	0.9967	10		41	0.0900	0.0995	10.018		19
42	0.0819	0.0822	12.1632	0.9966	18		42	0.0993	0.0998	10.018		18
43	0.0822		12,1201	0.9900	17	1	43	0.0996	0.1001	9.989		
44	0.0825	0.0828	12.0772		16		44	0.0999	0.1004	9.960		
45 46	0.0828	0.0831	12.0346		13		45	0.1003	0.1010	9.902		
47	0.0834		11.9504	0.9965	13		47	0.1008	0.1013	9.873	4 0.9949	13
48	0.0837	0.0840	11.9087		12	1	48	0.1011	0.1016	9.844	6 0.9949	
49	0.0840		11.8673		1		1 + 2	0.1013	0.1019	9.816		
50	0.0843		11.8262		10		50	0.1016	0.1022	9.788		-
51 52	0.0845		11.7853		8		51	0.1022	0,1028	9.732	2 0.9948	
53	0.0851		11.7045		7	1	53	0.1025	0.1030	9.704	+ 0.9947	
54	0.0854	0.0857	11.0645	0.9963	6	1	54	0.1028	0.1033			
55	0.0857				5	1	55	0.1031	0.1036			
56			11.5853		4	1	56	0.1034		-		
57	0.0863		11.5461		3		57 58	0.1037	0.1042	9.594		
58 59	0.0800		11.4685			1	59	0.1039	0.1048	9.541		I
60	0.0872		11.4301	0.9962	Ō		60	0.1045	0.1051	9.514		
	Cos	Cot	Tan	Sin	Ţ,	1	-	Cos	Cot	Tan	Sin	1.
	1	1					1	• • • • •	- t	1	1	

*96°	186° 4	•276° 6	°		NAT	TUR	AL		7	° *97°	187°	97 *277*
'	Sin	Tan	Cot	Cos		1 Г	'	Sin	Tan	Cot	Cos	1
0	0.1045	0.1051	9.5144	0.9945	60	[0	0.1219	0.1225	8.1443	0 9925	60
I	0.1048	0.1054	9.4878	0.9945	59		I	0.1222	0.1231	8 1248	0.9925	59
2 3	0.1051	0.1057	9.4614 9.4352	0.9945 0.9944	58 57		·2	0.1224	0.1234	8.1054 8.0860	0.9925	58
4	0.1057	0.1063	9.4952	0.9944	56		4	0.1230	0 1240	8 0667	0.9924	57 56
5	0.1060	0.1066	9.3831	0.9944	55		5	0.1233	0.1243	8.0476	0.0024	55
6	0.1063	0.1069	9.3572	0.9943	54		6	0.1230	0.1240	8.0285	0.9923	54
7 8	0.1066	0.1072	9.3315	0.9943	53		7	0.1239	0.1249	8.0095	0.9923	53
9	0.1068 0.1071	0.1075 0.1078	9.3060 9.2806	0.9943	52 51		9	0.1242	0.1251	7.9906 7.9718	0.9923	52 51
10	0.1074	0.1080	9.2553	0.9942	50		10	0.1248	0.1257	7 9530	0.9922	50
11	0.1077	0.1083	9.2302	0.9942	49		11	0.1250	0.1260	7.9344	0 9922	49
12	0.1080	0.1086	9.2052	0.9942	48		12	0.1253	0.1263	7.9158	0.9921	-48
13	0.1083 0.1086	0.1089 0.1092	9.1803	0.9941	47		13	0.1256	0.1266 0 1260	7.8973 7.8780	0.9921	47
14 15	0.1080	0.1092	9.1555 9.1309	0.9941 0.9941	46 45		14 15	0.1259	0.1272	7.8606	0.9920 0.9920	46 45
16	0.1092	0.1098	9.1065	0.9940	44		16	0.1265	0.1275	7.8424	0 9920	44
17	0.1094	0.1101	9.0821	0.9940	43		17	0.1268	0.1278	7 82.13	0 9919	43
18	0.1097	40110	9.0579	0.9940	42		18	0.1271	0.1281	7.8062	0.9919	42
19 20	0.1100	0.1107	9.0338 9.0098	0.9939 0.9939	41 40		19 20	0.1274	01284	7.7882	0.9919	41 40
21	0.1106	0.1113	8.9860	0.9939	39		21	0.1270	0.1290	7.7525	0.9918	39
22	0 1 109	0.1116	8.9623	0.9938	38		22	0.1282	0.1293	7.7348	0.9917	38
23	0.1112	0.1119	8.9387	0.9938	37		23	0.1285	0.1290	7.7171	0.9917	37
24	0.1115 0.1118	0.1122 0.1125	8.9152 8.8919	0.9938	36		24	0 1288	0.1299	7.6996	0.9917	36
25 26	0.1113	0.1125	8.8686	0.9937 0.9937	35 34		25 26	01291	0.1302 0.1305	7.6821 7.6647	0.9916	35 34
27	0.1123	0.1131	8.8455	0.9937	33		27	0.1297	0.1308	7.6473	0.9916	33
28	0.1120	0.1133	8.8225	0.9936	32		28	0.1209	0.1311	7.6301	0.9915	32
29	0.1129	0.1136	8.7996	0.9936	31		29	0.1302	0.1314	7.6129	0 9915	31
30 31	0 1132	0.1139	8.7769	0.9936	30		30	0.1305	0.1317	7.5058	0.9914	30
31 32	0.1135	0.1142	8.7317	0.9935	29 28		31 32	0.1308	0 1319 0.1323	7.5618	0.9914 0.9914	29 28
33	0.1141	0.1148	8.7093	0.9935	27		33	0.1314	0.1325	7.5449	0 9913	27
34	0.1144	0.1151	8.6870	0.9934	26		34	0.1317	0.1328	7.5281	0.9913	26
35 36	0.1146 0.1149	0.1154	8.6648 8.6427	0.9934	25		35	0.1320	0.1331	7.5113	0.9913	25 24
37	0.1149	0.1160	8.6208	0.9934 0.9933	24 23		36	0.1325	0.1334 0.1337	7.4947 7.4781	0.9912	23
38	0.1155	0.1163	8.5989	0.9933	22		37 38	0.1328	0.1340	7 4615	0.9911	22
39	0.1158	0.1166	8.5772	0.9933	21		39	0.1331	0 1343	7.4451	0.9911	21
40	0.1151	0.1169	8.5555	0.9932	20		40	0.1334	0.1340	7.4287	0.2911	20
41 42	0.1164	0.1172 0.1175	8.5340 8.5126	0.9932 0.9932	19 18		41	0.1337 0.1340	0.1349 0.1352	7.4124 7.3962	0.9910 0.9910	19 18
43	0.1170	0.1178	8.4913	0.9931	17		42 43	0.1340	0.1355	7.3800	0.9909	17
44	0.1172	0.1181	8.4701	0.9931	16		44	0.1346	0.1358	7.3639	0.9909	16
45	0.1175	0.1184	8.1190	0.9931	15		45	0.1349	0.1361	7.3479	0.9909	15
46	0.1178	0.1187	8.4280	0.9930	14		46	0.1351	0.1364	7.3319	0.9908	14
47 48	0.1181 0.1184	0.1189	8.4071 8.3863	0.9930 0.9930	13 12		47 48	0.1354	0.1367 0.1379	7.3160 7.3002	0.9908	13
49	0.1187	0.1195	8.3656	0.9930	11		49	0.1360	0.1373	7.2844	0 9907	11
50	0.1190	0.1198	8.3450	0.9929	10		50	0.1363	0.1376	7 2687	0.9907	10
51	0.1193	0.1201	8.3245	0.9929	2		57	0.1366	0.1377	7.2531	0.9906	8
52 53	0.1196 0.1198	0.1204	8.3041 8.2838	0.9928 0.9928	8 7		52 53	0.1369 0.1372	0.1382 0.1385	7.2375	0.9906	7
55	0.1201	0.1210	8.2636	0.9928	6		54	0.1374	0.1388	7.2066	0.9905	6
55	0.1204	0.1213	8.2434	0.9927	5		55	0.1377	0.1391	7.1912	0.9905	5
56	0.1207	0.1216	8.2234	0.9927	4		56	0.1380	0.1394	7.1759	0.9904	4
57	0.1210	0.1219	8.2035	0.9927	3	11	57	0.1383	0.1397	7.1607	0.9904	3
58 59	0.1213 0.1216	0.1222 0.1225	8.1837 8.1640	0.9926 0.9926	2 1		58 59	0.1386 0.1389	0.1399	7.1455 7.1304	0.9903	
60	0.1219	0.1228	8.1443	0.9925	ó		60	0.1392	0.1405	7.1154	0.9903	ō
	Cos	Cot	Tan	Sin	—	-		Cos	Cot	Tan	Sin	,
<u> </u>		1	1		1	ιL		000	1		1	1
·173°	263°	*353° 8	3°		NAT	TUR	AL		82	2 * +172*	263°	*352

98 98		*278°	8°		NA	TU	RAL		90	*990	189° *27	79°
ſ.	Sin	Tan	Cot	Cos	1	1		Sin	Tan	Cot	Cos	1
0	0.1392	0.1405	7.1154	0.9903	60	1	0	0.1564	0.1584	6.3138	0.9877	60
т	0.1395	0.1408	7.1004	0.9902	59		Т	0.1567	0.1587	6.3019	0.9876	59
2	0.1397	0.1411	7.0855	0.9902	58		2	0.1570	0.1590	6.2901	0.9876	58
3	0.1400	0.1414	7.0706	0.9901	57		3	0.1573 0.1576	0.1593	6.2783 6.2666	0 9876	57
4	0.1403	0.1417	7.0410	0.9901	56 55		45	0.1570	0.1590	6.2549	0.9875	56 55
5	0.1409	0.1423	7 0264	0.9900	54		ŏ	0.1582	0.1602	6.2432	0.9874	54
78	0.1412	0.1426	7.0117	0.9900	53		7	0 1 584	0.1605	6.2316	0.9874	53
	0.1415 0.1418	0.1429 0.1432	6 9972 6.9827	0.9899	52 51		8	0.1587	0.1608	6.2200	0.9873	52
9 10	01421	0.1435	6 9682	0.9899	50		9 10	0.1590	0.1011	6.1970	0 <u>9873</u> 09872	51 50
11	0.1423	0.1438	6 9538	0.9898	49		IT	0.1596	0.1617	6.1856	0.9872	49
12	0.1.426	0.1.441	6.9395	0.9898	48		12	0.1599	0.1620	6.1742	0 9871	48
13	0.1429	0.1444	6.9252	0 9897	47		13	0.1602	0.1623	6.1628	0.9871	+7
14	0.1.432 0.1.435	0.1447	6,8969	0.9897	46 45		14	0.1605 0.1607	0.1626	6.1515	0.9870	46 45
16	0.1438	0.1453	6.8828	0.9896	41		16	0.1610	0.1632	6.1290	0.9869	43
17	0.1441	0.1456	6 8687	0.9896	43		17	0.1613	0.1635	6.1178	0.9860	43
18	0.1444	0 1459	6 8548	0.9895	42		18	0.1616	0.1638	6.1066	0.9869	42
19 20	0,1,1,0	0.1462	6.8408	0.9895	41 40		19 20	0.1619	0.1641	6 0955	0.9868	40
20	0.1449	0.1465	6.8269 6.8131	0.9894	30		21	0.1022	0.1644	6.0844	0.9868	
22	0.1455	0.1471	6.7994	0.9894	38		22	0.1628	0.1650	6.0624	0.9867	39 38
23	0.1458	0.1474	6 7856	0.9893	37		23	0.1630	0.1653	6.0514	0.9866	37
24	0.1461	0.1477	6.7720	0.9893	36	1	24	0.1633	0.1655	6.0405	0.9866	36
25 26	0.1464 0.1467	0.1480	6.7584	0.9892	35		25 26	0.1636	0.1658	6.0296	0.9865	35
27	0.1469	0.1486	6.7313	0.9892	34 33		27	0.1642	0.1661	6.0080	0.9803	34 33
28	0.1472	0.1489	6.7179	0.9891	32		28	0.1645	0.1667	5.9972	0.9864	32
29	0.1475	0.1492	6.7045	0.9891	31		29	0.1648	0.1670	5.9865	0.9863	31
30	0.1478	0 1495	6 6912	0.9890	30		30	0.1650	0.1673	5.9758	0.9863	30
31 32	0.1481 0.1484	0.1497	6.6779 6.6646	0.9890 0.9889	29 28		31 32	0.1653 0.1656	0.1676	5.9651	0.9862	29 28
33	0.1487	0.1503	6.6514	0.9889	27		33	0.1659	0.1682	5.9439	0.9861	27
34	0.1490	0.1500	6.6383	0.9888	26		34	0.1662	0.1685	5.9333	0.9861	26
35	0.1492	0.1509	6.6252	0.9888	25		35	0.1665	0.1688	5.9228	0.9860	25
36	0.1495	0.1512	6.6122	0.9888	24		36	0.1668	0.1691	5.9124	0.9860	24
37 38	0.1498 0.1501	0.1515 0.1518	6.5992 6.5863	0.9887 0.9887	23 22		37 38	0.1671	0.1694	5.9019	0.9859 0.9859	23 22
39	0.1504	0.1521	6.573.1	0.9886	21		39	0.1676	0.1700	5.8811	0.9859	21
40	0.1507	0.1524	6.5606	0.9886	20		40	0.1679	0.1703	5.8708	0 9858	20
41	0.1510	0 1 5 2 7	6.5478	0.9885	19		41	0.1682	0.1706	5.8605	0.9858	19
42 43	0.1513 0.1515	0.1530 0.1533	6.5350 6.5223	0.9885 0.9884	18 17		42 43	0.1685 0.1688	0.1709	5.8502 5.8400	0.9857 0.9857	18 17
44	0.1518	0.1536	6.5097	0.9884	16		44	0.1691	0.1715	5.8298	0 9856	16
45	0.1521	0.1539	6.4971	0.988.	15		45	0.1693	0.1718	5.8197	0.9850	15
46	0.1524	0.1542	6.4846	0.9883	14		46	0.1696	0.1721	5.8095	0.9855	14
47 48	0.1527 0.1530	0.1545	6.4721 6.4596	0.9883 0.9882	13		47 48	0.1699	0.1724	5.7994 5.7894	0.9855 0.9854	13 12
40	0.1530	0.1548	6.44596	0.9882	12		49	0.1702	0.1727 0.1730	5.7894	0.9854	12
5 Ó	0.1536	0.1554	6.4348	0.9881	10		50	0.1708	0.1733	5.7694	0.9853	10
51	0.1538	0.1557	6.4225	0.9881	8		51	0.1711	0.1736	5.7594	0.9853	8
52 53	0.1541 0.1544	0.1500	6.4103 6.3980	0.9880 0.9880	8		52	0.1714 0.1716	0.1739	5·7495 5.7396	0.9852	8 7
53 54	0.1544	0.1503	6.3859	0.9880	6		53 54	0.1710	0.1742 0.1745	5.7297	0.9852 0.9851	6
55	0.1550	0.1569	6.3737	0.9879	5		54 55	0.1719	0.1745	5.7199	0.9851	5
56	0.1553	0.1572	6.3617	0.9879	4		56	0.1725	0.1751	5.7101	0.9850	4
57 58	0.1556	0.1575	6.3496	0.9878	3		57	0.1728	0.1754	5.7004	0.9850	3
50 59	0.1559	0.1578 0.1581	6.3376 6.3257	0.9878 0.9877	2 1		58 59	0.1731 0.1734	0.1757	5.6906 5.6809	0.9849 0.9849	2 1
бÓ	0.1564	0.1584	6.3138	0.9877	ò		60	0.1736	0.1763	5.6713	0.9848	ō
	Cos	Cot	Tan	Sin	,			Cos	Cot	Tan	Sin	•
	71° 261°		81°		NAT				1			
-1	11- 201.	-301-	01		TAL	UF	(AL		80°	*170* 3	260° *35	0.

*1	00° 190°	#280°	10°		NA	TUF	RAL		11°	*1 01°	191° *2 8	1º
· 1	Sin	Tan	Cot	Cos] [,	Sin	Tan	Cot	Cos	
0	0.1736	0.1763	5.6713	0.9848	60		0	0.1908	0.1944	5.1446	0.9816	60
I	0.1739	0.1766	5.6617	0.9848	59		I	0.1911	0.1947	5.1366	0.9816	59
2	0.1742	0.1769	5.6521 5.6425	0.9847 0.9847	58		2 3	0.1914	0.1950	5.1286 5.1207	0.9815 0.9815	58
3	0.1745 0.1748	0.1775	5.6320	0.9840	57 56		3 4	0.1917 0.1920	0.1953	5.1207	0.9815	57 56
5	0.1751	0.1778	5.6234	0.9846	55		5	0.1920	0.1950	5.1049	0.9813	55
6	0.1754	0.1781	5.6140	0.9845	54		6	0.1925	0.1962	5.0970	0.9813	54
7	0.1757	0.1784	5.6045	0.9845	53		7	0.1928	0.1965	5 0892	0.9812	53
9	0.1759 0.1762	0.1787 0.1 7 90	5.5951 5.5857	0.9844 0.9843	52		8	0.1931	0.1968	5.0814	0.9812	52
10	0.1765	0.1793	5.5764	0.9843	51 50		10	0.1934	0.1971	5.0730	0.9811	51 50
11	0.1768	C.1790	5.5671	0.9842	49		II	0.1939	0.1977	5.0581	0.80.0	49
12	0.1771	0.1799	5.5578	0.9812	-18		12	0.1942	0.1980	5.0504	0.9810	48
13	0.1774	0.1802	5.5485	0.9841	47		13	0.1945	0.1983	5.0427	0.9809	47
14	0.1777	0.1805	5-5393	0.9841	46 45		14	0.1948	0.1986	5.0350	0.9808	46
15 16	0.1779 0.1782	0.1808	5.5301 5.5200	0.9840	44		15 16	0.1951 0.1954	0.1989	5.0273 5 0197	0.9808 0.9807	45 44
17	0.1785	0.1814	5.5118	0.9839	43		17	0.1957	0.1992	5.0121	0.9807	44
18	0.1788	0.1817	5.5026	0.9839	42		18	0.1959	0.1998	5.0045	0.9806	42
19	0.1791	0.1820	5.4936	0 9838	41		19	0.1962	0.2001	4.9909	0.9806	41
20	0.1794	0.1823	5.4845	0.9838	40	11	20	0.1965	0 2004	4.9894	0.9805	40
21	0.1797	0.1820 0.1820	5-4755	0.9837	39 38	11	21 22	0.1968	0.2007	4.9819	0.9804	39
22 23	0.1799 0.1802	0.1829	5.466 <u>5</u> 5.4575	0.9830	37		23	0.1971 0.1974	0.2010	4.9744 4.9669	0.9804 0.9803	38 37
24	0.1805	0.1835	5.4486	0.9836	36		24	0.1977	0.2016	4.9594	0.9803	36
25	0.1808	0.1838	5.4397	0.9835	35		25	0.1979	0.2019	4.9520	0.9802	35
26	0.1811	0.1841	5.4308	0.9835	34		26	0.1982	0.2022	4.9446	0.9802	34
27	0.1814	0.1844	5.4219	0.9834	33		27	0.1985	0.2025	4 9372	0.9801	33
28	0.1817	0.1847	5.4131	0.9834 0.9833	32		28 20	0.1988	0.2028	4.9298	0.9800	32
30	0.1810	0.1853	5.4043 5.3955	0.9833	31 30		30	0.1991	0.2031	4.9225	0.9800	31 30
31	0.1825	0.1850	5.3868	0.9832	20		31	0.1997	0.2038	4.9078	0.9799	20
32	0.1828	0.1859	5.3781	0.9831	28		32	0 1999	0.2041	4.9006	0.9798	28
33	0.1831	0.1862	5.3694	0.9831	27	11	33	0.2002	0.2044	4.8933	0.9798	27
34	0.1834	0.1865	5.3607	0.9830	26		34	0.2005	0.2047	4.8860	0.9797	26
35	0.1837 0.1840	0.1868	5.3521	0.9830	25 24	11	35 36	0.2008	0.2050 0.2053	4.8788	0.9796	25 24
37	0.1842	0.1874	5.3349	0.9829	23		37	0.2014	0.2050	4.8644	0.9796	24
38	0.1845	0.1877	5.3263	0.9828	22		38	0.2016	0.2050	4.8573	0.9795 0.9795	22
39	0.1848	0.1880	5.3178	0.9828	21		39	0.2019	0.2062	4.8501	0.9794	21
40	0.1851	0.1883	5.3093	0.9827	20		40	0.2022	0.2065	4.8430	0.9793	20
41	0.1854	0.1887	5.3008	0.9827	19	11	41	0.2025	0.2068	4.8359	0.9793	19
42	0.1857	0.1890	5.2924 5.2839	0.9826	18 17		42 43	0.2028 0.2031	0.2071 0.2074	4.8288 4.8218	0.9792	18 17
44	0.1862	0.1895	5.2755	0.9825	16		44	0.2031	0.2074	4.8147	0.9792	16
45	0.1865	0.1899	5.2672	0.9825	15		45	0.2036	0.2080	4.8077	0.9790	15
46	0.1868	0.1902	5.2588	0.9824	14		46	0.2039	0.2083	4.8007	0.9790	14
47	0.1871	0.1905	5.2503	0.9823	13		47	0.2042	0.2086	4-7937	0.9789	13
48	0.1874 0.1877	0.1908 0.1911	5.2422 5.2339	0.9823 0.9822	12 11		48 49	0.2045 0.2048	0.2089	4.7867	0.9789 0.9788	12 11
50	0.1880	0.1914	5.2257	0.9822	10		50	0.2048	0.2092	4.7798	0.9787	10
51	0.1882	0.1917	5.2174	0.9821			51	0.2054	0.2008	4.7650	0.0787	
52	0.1885	0.1920	5.2092	0.9821	8		52	0.2056	0.2101	4.7591	0.9786	8
53	0.1888	0.1923	5.2011	0.9820	7		53	0.2059	0.2104	4.7522	0.9786	7
54	0.1891	0.1926	5.1929	0.9820	6		54	0.2062	0.2107	4.7453	0.9785	6
55 56	0.1894	0.1929	5.1848	0.9819	5		55 56	0.2065	0.2110	4.7385	0.9784	5 4
57	0.1900	0.1933	5.1686	0.9818	3		57	0.2071	0.2116	4.7249	0.9783	
58	0.1902	0.1938	5.1606	0.9817	2		58	0.2073	0.2110	4.7181	0.9783	3 2
59	0.1905	0.1941	5.1526	0.9817	1		59	0.2076	0.2123	4.7114	0.9782	I
60	0.1908	0.1944	5.1.446	0.9816	0		60	0.2079	0.2126	4.7046	0.9781	0
	Cos	Cot	Tan	Sin	1			Cos	Cot	Tan	Sin	1
*1	69° 259°	*349°	79°		NAT	TUR	AL		78°	*168°	258° *34	8°

100 #1	02° 192°	*282°	12°		NA	rui	RAL		13°	*103°	193° *28	3°
	Sin	Tan	Cot	Cos			'	Sin	Tan	Cot	Cos	1
0	0.2079	0.2126	4.7046	0.9781	60		0	0.2250	0.2309	4.3315	0.9744	60
I	0.2082	0.2129	4 6979	0.9781	59		I	0.2252	0.2312	4.3257	0.9743	59
2	0.2085 0.2088	0.2132	4.6912	0.9780	58		2	0.2255	0.2315	4.3200	0 9742	58
3	0.2000	0.2135	4.0045	0.9779	57 56		3	0.2258 0.2261	0.2318	4.3143	0.9742 0.9741	57 56
4 5	0.2090	0.2141	4 6712	0.9778	55		5	0.2201	0.2321	4.3020	0.9740	55
6	0.2096	0 21 44	4.6646	0.9778	54		6	0.2267	0.2327	4.2972	0.9740	54
7	0.2099	0.2147	4.6580	09777	53		78	0.2269	0.2330	4.2916	0 9739	53
8	0.2102	0.2150	4.6514	0.9777	52 51		9	0.2272	0.2333	4.2859 4 2803	0.9738 0.9738	52 51
10	0.2108	0 2156	4.6382	0.9775	50		10	0.2278	0 2339	4.27.17	0.0737	50
11	0 21 10	0.2159	4 6317	0.9775	49		ТТ	0.2281	0.2342	4.2691	0 9736	49
12	0.2113	0.2162	4.6252	0 9774	48		12	0.2284	0.2345	4 2635	0.9736	48
13	0.2110 0.2110	0.2165	4.6187	0.9774	+7		13 14	0.2286	0.2349	4 2580	0.9735	47
14 15	0.2119	0.2100	4.6057	09773	46 45		15	0.2289 0.2292	0.2352	4.2524	0.9734	46 45
16	0.2125	0.2174	4-5993	0.9772	44		16	0.2295	0.2358	4 2413	0.9733	44
17	0.2127	0.2177	4.5928	0.9771	43		17	0.2298	0.2361	4 2358	0.9732	43
18	0.2130	0 2180 0.2183	4 5864	0.9770	42		18 19	0.2300	0.2364	4.2303	0.9732	42
19 20	0 2136	0.2185	<u>4 5800</u> <u>4 5736</u>	0.9770	40		20	0.2303	0 2307	4 2248	0 9731	40
21	0.2139	0 2180	4 5673	0.9769	39		21	0.2300	0.2373	4.2193	0 9730	39
22	0.2142	0.2193	4 5609	0.9768	38		22	0.2312	0.2376	4 2084	0.9729	38
23	U 2145	0.2196	+ 5546	0 9767	37	1	23	0.2315	0.2379	4.2030	0.9728	37
24 25	0 2147	0.2199	4.5483	0.9767 0.9766	36		24 25	0.2317	0 2382	4 1976	0.9728	36
26	0 2153	0.2202	4 5420	0.9765	35 34		26	0.2320	0.2385	4.1922	0.9727	35 34
27	0.2156	0.2208	4.5204	0.9765	33		27	0.2326	0 2 3 9 2	4.1814	0.9726	33
28	0.2159	0.2211	4 52 32	0.976.	32		28	0.2329	0.2395	4 1760	0.9725	32
29 30	0.2162	0 2214	4.5169	0.9764	31	11	29 30	0 2332	0.2398	4 1706	0 9724	31
31 31	0 2164	0.2217	4.5107	0.9763	30		31	0 2334	0 2401	4 1653	09721	30
32	0 2170	0 2 2 2 2 3	4 4 983	0.9762	29 28		32	0.2337 0.2340	0.2404	4.1547	0 9723	20 28
33	0 21 73	0.2226	4.4922	0.9761	27		33	0 2343	0 2410	4.1493	0 9722	27
34	0.2176	0 2229	4 4860	0.9700	26		34	0.2346	0 241 3	4-1441	0 9721	26
35 36	0.2179 0.2181	0 2232	4-4799	0.9760	25 24		35 36	0 2349 0.2351	0.2416	4.1388	0.9720	25 24
37	0.218.	0.2238	4.4676	0.9759	23		37	0.2351	0.2422	41282	0.9719	23
38	0.2187	0.2241	4 4015	0.9758	22		38	0.2357	0.2425	4.1230	0.9718	22
39	0 2190	0.2241	4.4555	09757	21		30	0.2300	0 2.128	41178	0.9718	21
40	0.2193	0.2247	4-4494	0 9757	20		40	0.2363	0.2432	4 1126	09717	20
41 42	0 2198	0.2251 0 2254	4 4434	0.9756	19		41 42	0 2366 0.2368	0 2435 0.2438	4 1074	0.9716	19 18
43	0.2201	0.2257	4.4313	0.9755	17		43	0.2371	0.2441	4.0970	0.9715	17
44	0.2204	0.2260	4.4253	0.9754	16		44	0.2374	0.2444	4.0918	0.9714	16
45 46	0.2207	0.2263 0.2266	4-4194	0.9753	15		45 46	0.2377	0.2447	4 0867	0 9713	15
47	0.2213	0.2260	4.4134 4.4075	0.9753 0.9752	14		47	0.2380 0.2383	0.2450 0.2453	4.0815 4.0764	0.9713	14 13
48	0.2215	0.2272	4.4075	0.9751	13 12		48	0.2383	0.2453	4.0713	0.9712	13
49	0.2218	0.2275	4.3956	0.9751	п		49	0.2388	0.2459	4 0662	0.9711	11
50	0 2221	0.2278	4.3897	0 9750	10	11	50	0.2391	0 2462	4.0611	0 9710	10
51 52	0 2224 0.2227	0.2281 0.2284	4.3838 4.3779	0.9750 0.9749	9 8		51 52	0.2394 0.2397	0.2465	4.0560 4.0509	0.9709 0 9709	9 8
53	0.2230	0.2287	4.3721	0.9749	7		53	0.2397	0.2400	4.0459	0.9708	7
54	0.2233	0.2290	4.3662	0.9748	6		54	0.2402	0.2.175	4 0408	0.9707	6
55 56	0.2235 0.2238	0.2293	4.3004	0.9747	5		55 56	0.2405	0.2478	4.0358	0 9706	5
50	0.2238	0.2296	4.3546 4.3488	0.9746	4		57	0.2408	0.2481	4.0308	0.9706	4
58	0.2241	0.2299	4.3488	0.9746 0.9745	3		58	0.2411 0.2414	0.2484 0.2487	4.0257	0.9705 0.9704	3 2
59	0.2247	0 2300	4.3372	0.9744	I		59	0.2416	0.2.190	4 01 5 8	0.9704	r
60	0.2250	0.2309	4.3315	0.9744	0		60	0.2419	0.2493	4.0108	0.9703	0
	Cos	Cot	Tan	Sin	1			Cos	Cot	Tan	Sin	'
*1(67° 257°	*347°	77°		NAT	UR	AL		76°	*166°	256° *34	ß°

*1	04° 194	l° *284°	14°		Na	TUI	RAL		15°	*105°	195° *28	101 5°
'	Sin	Tan	Cot	Cos	l]	'	Sin	Tan	Cot	Cos	
0	0.2419	0 2493	4.0108	0.9703	60		0	0.2588	0.2679	3.7321	0.9659	60
1	0.2422	0.2196	4.0058	0.9702	59		1	0.2591	0.2083	3 7277	0 9659	59
2	0.2425	0.2499	4.0009	0.9702	58		2	0.2594	0.2686	3.7234	0.9658	58
3	0.2428	0.2503	3.9959	0.9701	57		3	0.2597	0.2689	3.7191	0.9657	57
4	0.2431	0.2500	3.9910	0.9700	56		4	0.2599	0.2692	3.71.48	0 9656	56
5	0.2433	0.2509	3.9861	0.9699	55 54	ł	5	0.2602	0 2695	3.7105	0.9655	55 54
	0.2439	0.2515	3.9763	0.0608	53		7	0.2008	0.2701	3.7019	0.9651	53
7	0.2442	0.2518	3.9714	0 9697	52		8	0.2611	0.2704	3.6976	0.9653	52
9	0.2445	0.2521	3 9665	0.9697	51		9	0.2613	0.2708	3.6933	0 9652	51
10	0.2447	0 2524	3.9617	0 9696	50		10	0.2016	0 2711	3 6891	0.9052	50
11	0.2450	0.2527	3.9568	0 9695	49		11	0.2019	0.2714	3 6848	0.9051	49
12	0.2453	0.2530	3.9520	0.9694	4Ś		12	0.2622	0.2717	3.6806	0 9650	48
13	0.2456	0.2533	3.9471	0.9694	47		13	0.2025	0.2720	3.6764	0.9649	47
14	0.2459	0.2537	3.9423	0.9693	46		14	0.2628	0.2723	3.6722	0.9649	46
15 16	0.2464	0.2540	3.9375	0.9692	-45		15	0.2630	0.2720	3.6638	0.9648	45
17	0.2467	0 2546	3.9279	0.9691	44	1	17	0.2636	0.2733	3.6596	0.9646	
18	0.2407	0 2540	3 9232	0.9091	43	1	18	0.2639	0.2736	3.6554	0.9646	43 42
19	0.2473	0.2552	3.9184	0.9689	41	1	19	0.2642	0.2739	3.6512	0 9645	41
2Ó	0.2476	0.2555	3.9136	0.9689	40		20	0 2644	0 2742	3 6470	0.9644	40
21	0.2478	0.2558	3.9089	0.9688	39		21	0 2647	0.2745	3.6429	0.9643	39
22	0.2481	0.2561	3 9042	0.9687	38		22	0.2650	0.2748	3 6387	0 9642	38
23	0.2484	0.2564	3.8995	0.9687	37		23	0.2653	0.2751	3.6346	0.9642	37
24	0.2487	0.2568	3.8947	0.9686	36	1	24	0.2056	0.2754	3.6305	0.9641	36
25 26	0.2490	0.2571	3.8900	0.9685 0.9684	35		25 26	0.2058 0.2061	0.2758	3.0204	0.9640	35
	0.2495	0.2577	3.8807	0.9684	34		27	0.2664	0.2764	3.6181	0.9639	34
27 28	0.2498	0.2580	3.8760	0.9083	33		28	0.2004	0.2767	3.6140	0.9039	33 32
20	0.2501	0.2583	3.8714	0.9082	32 31	1	29	0.2070	0 2770	3.6100	0.9637	31
3Ó	0.2504	0.2586	3.8067	0.9681	30		30	0.2672	0.2773	3 6059	0 9636	30
31	0.2507	0.2589	3 8021	0.9681	20		31	0.2675	0.2776	3.6018	0.9636	20
32	0.2509	0.2592	3.8575	0.9680	28		32	0.2678	0.2780	3.5978	0.9635	28
33	0.2512	0.2595	3.8528	0.9679	27		33	0.2681	0.2783	3.5937	0.9634	27
34	0.2515	0.2599	3.8482 3.8436	0.9679	26		34	0.2684	0.2786	3.5897 3.5856	0.9033	26
35 36	0.2510	0.2002	3.8391	0.9678 0.9677	25		35 36	0.2080	0.2792	3.5816	0.9632	25
37	0.2524	0.2008	3.8345	0.9676	24		37	0.2692	0.2795	3.5776	0.9631	24
38	0.2520	0.2011	3 8299	0.9676	23 22		38	0.2695	0.2798	3.5730	0.0030	23 22
39	0.2529	0.2614	3 8254	0.9675	21		39	0.2698	0.2801	3.5090	0.9629	21
40	0.2532	0,2617	3.8208	0.9674	20		40	0.2700	0 2805	3.5656	0.9628	20
41	0.2535	0.2020	3.8163	0.9673	19		41	0.2703	0.2808	3.5616	0.9628	19
42	0.2538	0.2623	3.8118	0.9673	18		42	0.2706	0.2811	3.5576	0.9627	18
43	0.2540	0.2627	3.8073	0.9672	17		43	0.2709	0.2814	3 5536	0.9626	17
44	0.2543 0.2540	0.2630 0.2633	3.8028 3.7983	0.9671	16		44	0.2712	0.2817 0.2820	3.5497	0.9025	16
45 46	0.2540	0.2033	3.7938	0.9670 0.9670	15		45 46	0.2714	0.2823	3.5457 3 5418	0.9625	15 14
47	0.2552	0,2639	3.7893	0.9669	13		47	0.2720	0.2827	3.5379	0.9623	14
48	0.2554	0.2642	3.7848	0.9009	12		48	0.2723	0.2830	3.5339	0.9622	12
49	0.2557	0.2645	3.7804	0 9667	iī	1	49	0.2726	0.2833	3.5300	0.9621	11
50	0.2560	0.2648	3.7760	0 9667	10		50	0.2728	0.2836	3.5201	0.9021	10
51	0.2563	0.2651	3.7715	0.9666	9		51	0.2731	0.2839	3.5222	0.9620	9 8
52	0.2566	0.2655	3.7671	0.9665	8		52 53	0.2734	0.2842	3.5183	0.9619	
53	0.2569	0,2658	3.7627	0.9665	7			0.2737	0.2845	3.5144	0.9618	7
54	0.2571 0.2574	0.2061	3.7583 3.7539	0.9664 0.9663	6		54 55	0.2740	0.2849 0.2852	3.5105 3.5067	0.9617	6
55 56	0.2577	0.2667	3.7495	0.9003	5 4		50	0.2742	0.2855	3.5028	0.9616	5 4
57	0.2580	0.2670	3.7451	0.9662	3		57	0.2748	0.2858	3.4989	0.9615	3
58	0.2583	0.2673	3.7408	0.9661	2		58	0.2751	0.2861	3.4951	0.9614	2
59	0.2585	0,2676	3.7364	0.9660	x		59	0.2754	0.2864	3.4912	0.9613	1
60	0.2588	0.2679	3.7321	0.9659	0		60	0.2756	0.2867	3.4874	0 9613	0
	Cos	Cot	Tan	·Sin	,			Cos	Cot	Tan	Sin	'
	65° 255°	-	75°		NAT		'		74°	#1640	254° *34	45
-1	00-200	~34D*	19		TAV	.01	2011		14	~104~	-04 "J4	

102 *1		° #286°	16°		NA	TUR	AL		1 7 °	*107°	197° * 28	37°
'	Sin	Tan	Cot	Cos	1	1	'	Sin	Tan	Cot	Cos	
0	0.2756	0 2867	3.4874	0.9613	60		0	0.2924	0.3057	3.2709	0.9563	60
I	0.2759	0.2571	3.4836	0.9612	59		I	0.2926	0.3060	3 2675	0.9562	59
2	0.2762	0.2874	3.4798 3.4700	0.9611	58 57		2 3	0.2929	0.3064 0.3067	3.2641 3.2607	0.9561	58 57
3	0.2768	0.2880	3.4700	0.9609	56		3 4	0.2932	0.3070	3.2573	0.9500	56
45	0.2770	0.2883	3.4684	0.9609	55		5	0.2938	0.3073	3.2539	0.9559	55
ŏ	0.2773	0.2886	3.4646	0.9608	54		ő	0.2940	0.3076	3.2506	0.9558	54
78	C.2776	0.2890	3.4608	0.9607	53		7	0.2943	0.3080	3.2472	0 9557	53
	0.2779	0.2893	3.4570	0.9606	52		8	0.2946	0.3083	3.2438	0.9556	52
10	0.2782	0.2896	3 4533	0.9605	51 50		9 10	0.2949	0.3086	3.2405	0.9555	51 50
11	0.2787	0.2000	3.4495	0.9005	49		11	0.2052	0.3092	3.2371	0.9555	49
12	0.2790	0.2905	3.4420	0.9003	48		12	0.2957	0.3096	3.2305	0.9553	18
13	0.2793	0.2908	3.4383	0.9602	47		13	0.2900	0.3099	3.2272	0.9552	47
14	0.2795	0.2912	3.4346	0.9601	46		14	0.2963	0.3102	3.2238	0.9551	46
15	0.2798	0.2915	3.4308	0.9600	45		15	0.2965	0.3105	3.2205	0.9550	45
16	0.2801	0.2918	3.4271	0.9600	44		16	0.2968	0.3108	3.2172	0.9549	44
17	0.2804 0.2807	0.2921	3.4234 3.4197	0.9599	43		17 18	0.2971	0.3111	3.2139	0.9548 0.9548	43
10	0.2809	0.2924	3.4197	0.9590	42		10	0.2974	0.3115	3.2073	0.9548	42
20	0.2812	0.2931	3 41 24	0.9590	40		20	0.2070	0.3121	3.2041	0.9546	40
21	0.2815	0.2934	3.4087	0.9596	39		21	0.2982	0.3124	3.2008	0.9545	30
22	0.2818	0.2937	3.4050	0.9595	38		22	0.2985	0.3127	3.1975	0 9544	38
23	0.2821	0.2940	3.4014	0.9594	37		23	0.2988	0.3131	3.1943	0.9543	37
24	0.2823	0.2943	3.3977	0.9593	36		24	0.2990	0.3134	3.1910	0.9542	36
25 26	0.2820 0.2829	0.2946	3.3941 3.3904	0.9592 0.9591	35		25 26	0.2993	0.3137	3.1878	0.9542 0.9541	35 34
27	0.2832	0.2953	3.3868	0.9591	34		27	0.2999	0.3143	3.1813	0.9540	
28	0.2835	0.2955	3.3832	0.9590	33 32		28	0.3002	0.3143	3.1780	0.9539	33
29	0.2837	0.2959	3.3796	0.9589	31		29	0.3004	0.3150	3.1748	0.9538	31
30	0.2840	0.2902	3.3759	0.9588	30		30	0.3007	0.3153	3.1716	0.9537	30
31	0.2843	0.2965	3.3723	0.9587	29		31	0.3010	0.3156	3.1684	0.9536	29
32	0.2846	0.2968	3.3687	0.9587	28		32	0.3013	0.3159	3.1652	0.9535	28
33	0.2849 0.2851	0.2972	3.3652 3.3616	0.9586	27		33	0.3015	0.3163	3.1620	0.9535	27
34 35	0.2854	0.2975 0.2978	3.3580	0.9585	26 25		34 35	0.3018 0.3021	0.3166	3.1588	0.9534	26 25
36	0.2857	0.2981	3.3544	0.9583	24		30	0.3024	0.3172	3 1 5 2 4	0 9532	24
37	0.2860	0.2984	3.3509	0.9582	23		37	0.3026	0.3175	3.1492	0.9531	23
38	0.2862	0.2987	3.3473	0.9582	22		38	0.3029	0.3179	3.1460	0.9530	22
39	0.2865	0.2991	3.3438	0.9581	21		39	0.3032	0.3182	3.1.429	0.9529	21
40	0.2868	0.2994	3.3402	0.9580	20		40	0.3035	0.3185	3.1397	0 9528	20
41	0.2871 0.2874	0.2997 0.3000	3.3367	0.9579	19		41 42	0.3038	0.3188	3.1366	0.9527	19
42 43	0.2876	0.3003	3.3332	0.9578 0.9577	18 17		43	0.3040 0.3043	0.3191 0.3193	3.1334 3.1303	0.9527 0.9526	18 17
44	0.2879	0.3006	3.3261	0.9577	16		44	0.3045	0.3198	3.1271	0.9525	16
45	0.2882	0.3010	3.3226	0.9576	15		45	0.3040	0.3201	3.1240	0.9524	15
46	0.2885	0.3013	3.3191	0.9575	14		46	0.3051	0.3204	3.1209	0.9523	14
47	0.2888	0.3016	3.3156	0.9574	13		47	0.3054	0.3207	3.1178	0.9522	13
48	0.2890 0.2893	0.3019	3.3122	0.9573	12		48 49	0.3057	0.3211	3.1146	0.9521	12
49 50	0.2893	0.3022	3.3087 3 3052	0.9572	11 10		50	0.3060	0.3214	3.1115 3.1084	0.9520	11 10
51	0.2899	0.3020	3.3017	0.9571			51	0.3002	0.3217	3.1053	0.9519	
52	0.2901	0.3032	3.2983	0.9570	8		52	0.3068	0.3223	3.1022	0.9519	8
53	0.2904	0.3035	3.2948	0.9569	7		53	0.3071	0.3227	3.0991	0.9517	7
54	0.2907	0.3038	3.2914	0.9568	6		54	0.3074	0.3230	3.0961	0.9516	6
55	0.2910	0.3041	3.2879	0.9567	5		55	0.3076	0.3233	3.0030	0.9515	5
56	0.2913	0.3045	3.2845	0.9566	4		50	0.3079	0.3236	3.0899	0.9514	4
57 58	0.2915	0.3048 0.3051	3.2811 3.2777	0.9566 0.956 3	3		57 58	0.3082	0.3240 0.3243	3.0868 3.0838	0.9513	32
59	0.2921	0.3054	3.2743	0.9564	1		59	0.3087	0.3243	3.0838	0.9512	ĩ
60	0 2924	0.3057	3.2709	0.9563	0		60	0.3090	0.3249	3.0777	0.9511	0
	Cos	Cot	Tan	Sin		ľ		Cos	Cot	Tan	Sin	· ·
	63° 253°	89490	73°		NT.	L			72°		252° *34	
1	va 203*	"010"	69		NAT	UR	AL		12	-102- 3	604° *34	4-

+1	08° 198°	*288°	18°		NAT	ເບາ	RAL		19°	*109°	ו 199° *2 8	03 Q°
'	Sin	Tan	Cot	Сов			'	Sin	Tan	Cot	Cos	
0	0.3090	0.3249	3.0777	0.9511	60		0	0.3256	0.3443	2.90.12	0.9455	60
1	0.3093	0.3252	3.0746	0.9510	59		I	0.3258	0.3447	2.9015	0.9454	59
2 3	0.3090	0.3250	3.0716 3.0686	0.9509	58		2	0.3261	0.3450	2.8987	0.9453	58
4	0.3090	0.3259	3.0655	0.9508 0.9507	57 56		3	0.3264	0.3453	2.8960 2.8933	0.9452 0.9451	57 56
5	0.3104	0.3265	3.0625	0.9506	55		Í 5 '	0.3260	0.3460	2.8905	0.9450	55
6	0.3107	0.3269	3.0595	0.9505	54		6	0.3272	0.3463	2.8878	0.9449	54
7 8	0.3110	0.3272	3.0565	0.9504	53		78	0.3275	0.3466	2.8851	0.9449	53
°	0.3112 0.3115	0.3275 0.3278	3.0535 3 0505	0.9503 0.9502	52 51			0.3278	0.3469	2.8824	0.9448	52 51
1Ó	0.3118	0.3281	3.0475	0.9502	50		10	0.3283	0.3476	2.8770	0.9446	50
11	0.3121	0.3285	3.0445	0.9501	49		11	0.3286	0.3479	2.87.13	0.9445	49
12	0.3123	0.3288	3.0415	0.9500	48		12	0.3289	0.3482	2.8716	0.9444	48
13	0.3126	0.3291	3.0385 3.0356	0.9499	47	ł	13	0.3291	0.3486	2.8689	0.9443	47
14 15	0.3132	0.3294	3.0350	0.9498 0.9497	46 45		14	0.3294	0.3489	2.8636	0.9442	46 45
16	0.3134	0.3301	3.0296	0.9496	44		16	0.3300	0.3495	2.8609	0.9140	44
17	0.3137	0.3304	3.0267	0.9495	43	1	17	0.3302	0.3499	2.8582	0.9439	43
18	0.3140	0.3307	3.0237	0.9494	42		18	0.3305	0.3502	2.8556	0.9438	42
19 20	0.3143	0.3310	3.0208	0.9493	41 40		19 20	0.3308	0.3505	2.8529	0.9437	41 40
21	0.3148	0.3317	3.0149	0.0492	39	ł	21	0.3311	0.3512	2.0470	0.9435	39
22	0.3151	0 3320	3.0120	0.9491	38		22	0.3310	0.3515	2.8449	0.9434	38
23	0.3154	0.3323	3.0090	0.9490	37	J	23	0.3319	0.3518	2.8423	0.9433	37
24	0 31 56	0.3327	3.00(1	0.9489	36		24	0.3322	0.3522	2.8397	0.9432	36
25 26	0 31 59 0.31 62	0.3330	3.0032	0.9488 0.9487	35 34	1	25	0.3324	0.3525 0.3528	2.8370 2.8344	0.9431 0.9430	35 34
27	0.3165	0.3336	2.9974	0.9486	34		27	0.3330	0.3531	2.8318	0.9430	34
28	0.3168	0.3339	2 9945	0.9485	32		28	0.3333	0.3535	2.8291	0.9428	32
29	0.3170	0.3343	2.9916	0 9484	31	[29	0.3335	0.3538	2.8265	0.9427	31
30	0.3173	0 3346	2.9887	0.9483	30		30	0.3338	0.3541	2.8239	0.9426	30
31 32	0.3176	0.3349	2.9858 2.9829	0.9482	29 28		31 32	0.3341	0.3544	2.8213	0.9425	29 28
33	0.3181	0.3350	2.9800	0.9480	27		33	0.3344 0.3346	0.3551	2.8161	0.9423	27
34	0.3184	0.3359	2.9772	0.9480	26		34	0.3349	0.3554	2.8135	0.9423	20
35	0.3187	0.3302	2.9743	0.9479	25	1	35	0.3352	0.3558	2.8109	0.9422	25
36	0.3190	0.3365	2.9714	0.9478	24		36	0.3355	0.3561	2.8083	0.9421	24
37 38	0.3192	0.3369	2.9680	0.9477	23		37 38	0.3357 0.3360	0.3564	2.8057 2.8032	0.9420	23
39	0.3198	0.3375	2.9629	0.9475	21		39	0.3363	0.3571	2.8006	0.9418	21
40	0.3201	0.3378	2.9600	0.9474	20		40	0.3365	0.3574	2.7980	0.9417	20
41	0.3203	0.3382	2.9572	0.9473	19		41	0.3368	0.3577	2.7955	0.9416	19
42 43	0.3206	0.3385 0.3388	2.9544 2.9515	0.9472	18 17		42	0.3371	0.3581	2.7929 2.7903	0.9415 0.9414	18 17
44	0.3212	0.3391	2.9487	0.9470	16		44	0.3376	0.3587	2.7878	0.9413	16
45	0.3214	0.3395	2.9459	0.9469	15		45	0.3379	0.3590	2.7852	0.9412	15
46	0.3217	0.3398	2.9431	0.9468	14		46	0.3382	0.3594	2.7827	0.9411	14
47 48	0.3220	0.3401	2.0403	0.9467	13		47 48	0.3385	0.3597	2,7801	0.9410	13
40	0.3225	0.3404 0.3408	2.9375 2.9347	0.9466 0.9466	12		40	0.3387 0.3390	0.3000 0.3004	2.7776 2.7751	0.9409 0.9409	12 11
50	0.3228	0.3411	2.9319	0.9465	10		50	0.3393	0.3007	2.7725	0.0407	10
51	0.3231	0.3414	2.9291	0.9464	9		51	0.3396	0.3610	2.7700	0.9406	
52	0.3234	0.3417	2.9263	0.9463	8		52	0.3398	0.3613	2.7675	0.9405	2 8
53	0.3236	0.3421	2.9235	0.9462	7		53 54	0.3401	0.3617	2.7650	0.9404	7
54 55	0.3239 0.3242	0.3424	2.9208	0.9461	65		54	0.3404	0.3620 0.3623	2,7625 2.7000	0.9403 0.9402	6 5
56	0.3245	0.3430	2.9152	0.9459	4		56	0.3409	0.3627	2.7575	0.9401	4
57	0.3247	0.3434	2.9123	0.9458	3		57	0.3412	0.3630	2.7550	0.9400	3
58	0.3250	0.3437	2.9097	0.9457	2		58 59	0.3415	0.3633	2.7525	0.9399	2
59 60	0.3253	0.3440	2.9070	0.9455	I 0		59 60	0.3417	0.3636 0.3640	2.7500	0.0308	1
—	Cos	Cot	Tan	Sin	١Ļ			0.3420 Cos	Cot	2 7475 Tan	0.9397 Sin	H
L			1	Sm	<u> </u>			08				
=1	61° 251°	*341°	71°		NAT	UI	RAL		70°	*160°	250° *34	0°

*1	10° 200°	*290°	20°]	NATI	URAI	L		21°	*111°	201° *29	1°
	Sin	Tan	Cot	Cos		\square	'	Sin	Tan	Cot	Cos	
0	0.3420	0.3640	2.7475	0.9397	60		0	0.3584	0.3839	2 6051	0.9336	60
I	0.3423	0.3643	2.7450	0 9396	59		1	0.3586	0.3842	2.0028	0.9335	59
23	0.3426 0.3428	0.3646 0.3650	2.7425 2.7400	0.9395 0.9394	58 57		2 3	0 3589 0.3592	0.3845 0.3849	2.6000 2.5983	0.9334 0.9333	58 57
4	0.3431	0.3653	2.7376	0 9393	56		4	0.3595	0.3852	2.5961	0.9332	56
5	0.3434	0 3050	2.7351	0.9392	55		5	0 3597	0 3855	2.5938	0.9331	55
6	0.3437	0.3659	2.7326	0.9391	54		6	0.3600	0.3859	2.5916	0.9330	54
7	0.3439	0.3663	2.7302	0.9390	53		7	0.3603	0.3862	2.5893	0.9328	53
8	0.3442	0.3666 0 3669	2.7277 2 7253	0.9389 0 9388	52		8	0.3605 0.3608	0.3865 0 3869	2 5871 2.5848	0.9327 0 9320	52 51
9 10	0.3445	0.3673	2 7228	0 9387	51 50		9 10	0.3011	0.3872	2.5826	0.9325	50
	0 3450	0 3076	2.7204	0.0380	49		11	0 3014	0.3575	2.5504	0.9324	49
12	0.3453	0.3679	2.7179	0 9385	48		12	0.3616	0.3879	2.5782	0.9323	48
13	0.3456	0.3683	2.7155	0.9384	47		13	0 3619	0.3882	2.5759	0.9322	47
14	0.3458	0.3686	2.7130	0 9383	46		14	0.3622	0.3885	2.5737	0.9321	46
15	0.3461 0 3464	0.3689 0.3693	2.7100 2.7082	0.9382 0.9381	-45		15 16	0.3024 0.3027	0.3889 0.3892	2.5715 2 5693	0.9320 0.9319	45
	0 3464	0.3695	2.7058	0.9380	44		17	0.3630	0.3892	2 5095	0.9318	44
17 18	0 3407	0.3699	2.7034	0.9379	-13 -12		18	0.3033	0.3899	2.5049	0.9317	43 42
19	0 3472	0 3702	2.7009	0 9378	41		19	0.3635	0.3902	2.5627	0.9316	41
20	0.3475	0.3706	2.0985	0.9377	40		20	0 3638	0 3906	2.5605	0 9315	40
21	o 3478	0.3709	2.0901	0.9376	39		21	0.3641	0.3909	2.5583	0.9314	39
22	0.3480 0 3483	0.3712	2.6937 2.6913	0.9375 0.9374	38		22	0.3643 0.3646	0.3912 0.3916	2 5501 2.5539	0.9313 0.9312	38
23 24	0.3486	0.3710	2.6880	0.9374	37		23	0.3640	0.3910	2.5517	0.9311	37 36
24	0.3488	0.3722	2.6865	0.9372	36 35		24 25	0.3049	0.3919	2.5495	0.9309	35
26	0 3491	0.3726	2.6841	0 9371	34		26	0.3654	0 3926	2.5473	0.9308	34
27	0.3494	0.3729	2.6818	0.9370	33		27	0 3657	0.3929	2.5452	0.9307	33
28	0 3497	0.3732	2.6794	0.9369	32		28	0.3660	0 3932	2.5430	0.9300	32
29	0.3499	0.3736	2 6770	0 9368	31		29	0.3062	0.3936	2.5408	0.9305	31 30
30	0.3502	0.3739	2.6746	0.9367	30	1 1	30	0 3665	0.3939	2.5386	0 9304	
31 32	0.3505 0.3508	0.3742	2.6099	0.9365	29 28		31 32	0.3000	0.3942 0.3946	2.5343	0 9302	29 28
33	0.3510	0.3749	2.6675	0.9364	27		33	0.3673	0.3949	2.5322	0.9301	27
34	0.3513	0.3752	2.6652	0.9363	26		34	0.3676	o 3953	2 5 300	0.9300	26
35	0.3516	0.3755	2.6628	0.9362	25		35	0 3679	0.3950	2.5279	0.9299	25
36	0.3518	0.3759	2.0003	0.9361	24		36	0.3681	0 3959	2.5257	0.9298	24
37 38	0.3521	0.3762	2.6581 2.6558	0.9360 0.9359	23 22		37 38	0.3684 0.3687	0.3963 0.3966	2 5236	0.9297 0 9296	23 22
39	0 3527	0.3769	2.6534	0.9358	21		30 39	0.3689	0.3969	2.5193	0.9295	21
40	0 3529	0.3772	2.0511	0.9356	20		40	0.3692	0.3973	2.5172	0 9293	20
41	0.3532	0 3775	2.6488	0.9355	19	.	41	0.3695	0.3976	2.5150	0.9292	19
42	0 3535	0.3779	2 6464	0.9354	18		42	0.3697	0.3979	2 51 29	0.9291	18
43	0.3537	0 3782	2.6441	0.9353	17		43	0.3700	0.3983	2.5108	0.9290	17
-44	0 3540	0.3785	2.6418	0.9352	16		44	0.3703	0.3986	2.5086 2.5065	0.9289 0.9255	16 15
45	0.3545	0.3792	2.6395	0.9350	15	11	45 46	0.3708	0.3990	2 5044	0.9287	14
47	0.3548	0 3795	2.6348	0 9349	13		47	0.3711	0.3996	2.5023	0.9280	13
48	0.3551	0.3799	2.6325	0.9348	12		48	0 3714	0.4000	2.5002	0.9285	12
49	<u>9</u> 3554_	0.3802	2.6302	0.9347	11		49	0.3710	0.4003	2.4951	0.9234	11
50	0.3557	0.3805	2.6279	0 9346	10		50	0.3719	0 4006	2 4960	0 9283	10
51 52	0.3559 0.3562	0.3809	2.6256	0.9345	9		51 52	0.3722 0.3724	0.4010	2.4939	0 9281	9 8
53	0 3565	0.3815	2.6210	0 9343	7		53	0 3727	0.4017	2.1897	0.9279	7
54	0.3567	0.3819	2.6187	0.9342	6		54	0.3730	0.4020	2.4876	0.9278	6
55	0.3570	0.3822	2.6165	0.9341	5		55	0.3733	0 4023	2.4855	0.9277	5
56	0.3573	0.3825	2.61.42	0.9340	4		56	0.3735	0.4027	2.4834	0.9276	4
57 58	0.3576 0.3578	0.3829 0.3832	2.6119	0.9339	3		57 58	0.3738 0.3741	0.4030	2.4813	0.9275	32
59	0.3581	0.3835	2.6074	0.9337	Ĩ		50 59	0.3743	0.4037	2.4772	0.9273	г
60	0.3584	0.3839	2.0051	0.9336	Ō		60	0.3746	0.1010	2.4751	0.9272	0
-	Cos	Cot	Tan	Sin	-	-		Cos	Cot	Tan	Sin	· 1
L	1	<u> </u>	1			ιL			1		248° *33	100
-1	1 59° 24 9'	- "998	69°		NAT	rur.	AL		68°	-199,	440° "JJ	0

*1	12° 202°	*292°	22°		NAT	rur	AL		23°	*113° :	1(203° *29	05 8°
· 1	Sin	Tan	Cot	Cos			'	Sin	Tan	Cot	Cos	
0	0.3746	0.4 04 0	2.4751	0.9272	60		0	0.3907	0.4245	2.3559	0 9205	60
I	0.3749	0.4044	2.1730	0.9271	59		I	0.3910	0.4248	2.3539	0.9204	59
2 3	0.3751	0.4047 0.4050	2.4709 2 4689	0.9270 0.9269	58 57		2 3	0.3913 0.3915	0.4252 0.4255	2.3520 2.3501	0.9203	58 57
4	0.3757	0.4054	2 1668	0.9267	56		4	0.3918	0.4258	2.3483	0.9200	56
5	0.3760	0.4057	2.4648	0.9266	55		5	0.3921	0.4262	2.3464	0.9199	55
6	0.3762	0.4061	2.4027	0.9265	54		6	0.3923	0.4265	2.3445	0.9198	54
78	0.3765 0.3768	0.4064 0.4067	2.4606 2.4586	0.9264 0.9263	53 52		7 8	0.3926 0.3929	0.4269 0.4272	2.3426 2.3407	0.9197 0.9196	53 52
9	0.3770	0.4071	2.4566	0.9262	51		9	0.3931	0.4276	2.3388	0.9195	51
10	0.3773	0.4074	2.4545	0.9261	50		10	0.3934	0.4279	2.3369	0.9194	50
11	0.3776	0.4078	2.4525	0.9200	42		11	0.3937	0.4283	2.3351	0.9192	49 48
12 13	0.3778 0.3781	0.4081 0.4084	2.4504 2.4484	0.9259 0.9258	48 47		12 13	0.3939 0.3942	0.4286 0.4289	2.3332 2.3313	0.9191 0.9190	40
14	0.3784	0.4088	2.4.464	0.9257	46		14	0.3945	0.4293	2.3204	0.9189	46
15	0.3786	0.4091	2.4443	0.9255	45		15	0.3947	0.4296	2.3276	0.9188	45
16	0.3789	0.4095	2.4423	0.9254	++		16	0.3950	0.4300	2.3257	0.9187	44
17 18	0.3792 0.3795	0.4098 0.4101	2.4403 2.4383	0.9253	43 42		17 18	0.3953	0.4303 0.4307	2.3238 2.3220	0.9186 0.9184	43 42
19	0.3797	0.4105	2.4362	0.9251	41		19	0.3958	0.4310	2.3201	0.9183	41
20	0.3800	0.4108	2 4342	0.9250	40		20	0.3961	0.4314	2.3183	0.9182	40
21	0.3803	0.4111	2 4322	0.9249	39		21	0.3963	0.4317	2.3164	0.9181	39
22 23	0.3805 0.3808	0.4115 0 4118	2.4302 2.4282	0.9248	38 37		22 23	0.3966 0.3969	0.4320 0.4324	2.3146 2.3127	0.9180 0.9179	38 37
24	0.3811	0.4112	2.4262	0.9245	36		24	0.3971	0.4327	2.3109	0.9178	36
25	0.3813	0.4125	2.42.42	0.9244	35		25	0.3974	0.4331	2.3090	0.9176	35
26	0.3816	0.4129	2.4222	0.9243	34		2 6	0.3977	0.4334	2.3072	0.9175	34
27 28	0.3819 0.3821	0.4132	2.4202 2.4182	0.9242	33 32		27 28	0.3979	0.4338	2.3053 2.3035	0.9174 0.9173	33 32
20	0.3824	0.4135 0.4139	2.4162	0.9241 0.9240	31		20	0.3982 0.3983	0.4341 0.4345	2.3035	0.9172	31
B Ó	0.3827	0.4142	2.4142	0.9239	30		3 Ó	0.3987	0.4348	2.2998	0.9171	30
31	0.3830	0.4146	2.4122	0.9238	29		31	0.3990	0.4352	2.2980	0.9169	29
32	0.3832 0.3835	0.4149	2.4102 2.4083	0.9237	28 27		32 33	0.3993	0.4355	2.2962	0.9168 0.9167	28 27
33 34	0.3838	0.4152	2.4063	0.9233	26		33 34	0.3995 0.3998	0.4362	2.2925	0.9166	26
35	0.3840	0.4159	2.4043	0.9233	25		35	0.4001	0.4365	2.2907	0.9165	25
36	0.3843	0.4163	2.4023	0.9232	24		36	0.4003	0.4369	2.2889	0.9164	24
37	0.3846 0.3848	0.4166	2.4004	0.9231	23		37	0.1000	0.4372	2.2871 2.2853	0.9162 0 9161	23 22
38 39	0.3851	0.4173	2.3984 2.396.1	0.9230	21		38 39	0.4009 0.4011	0.4376 0.4379	2 2835	0.9160	21
40	0.3854	0.4176	2.3945	0.9228	20		40	0.4014	0.4383	2 2817	0.9159	20
41	0.3856	0.4180	2.3925	0.9227	19		41	0.4017	0.4386	2.2799	0.9158	19
42	0.3859 0.3862	0.4183 0.4187	2.3906 2.3886	0.9225	18 17		42	0.4019	0.4390	2.2781 2.2763	0.9157 0.9155	18 17
43 44	0.3864	0.4107	2.3867	0.9224	16		43 44	0.4022	0.4393	2.2745	0.9155	16
45	0.3867	0.4193	2.3847	0.9222	15		45	0.4027	0.4400	2.2727	0.9153	15
46	0.3870	0.4197	2.3828	0.9221	14		46	0.4030	0.4404	2.2709	0.9152	14
47	0.3872 0.3875	0.4200	2.3808	0.9220	13		47	0.4033	0.4407	2.2691	0.9151 0.9150	13
48 49	0.3875 0.3878	0.4204	2.3789	0.9219 0.9218	12 11		48 49	0.4035 0.4038	0.4411	2.2673 2.2655	0.9150 0.9148	12
50	0.3881	0.4210	2.3750	0.9216	01		50	0.4041	0.417	2.2637	0.9147	10
51	0.3883	0.4214	2.3731	0.9215	9		51	0.4043	0.4.121	2.2620	0.9146	8
52	0.3886 0.3889	0.4217	2.3712	0.9214	8		52	0.4046	0.4424	2.2602	0.9145	8
53	0.3889	0.4221	2.3693	0.9213	76		53 54	0.4049 0.4051	0.4428	2.2564	0.9144 0.9143	6
54 55	0.3891	0.4224	2.3654	0.9212	5		54 55	0.4054	0.4435	2.2549	0.9143	5
56	0.3897	0.4231	2.3635	0.9210	4		56	0.4057	0.4438	2.2531	0.9140	4
57	0.3899	0.4234	2.3616	0.9208	3		57	0.4059	0.4442	2.2513	0.9139	32
58 59	0.3902	0.4238	2.3597 2.3578	0.9207	2		58 59	0.4062 0.4063	0.4445	2.2496 2.2478	0.9138 0.9137	Ĩ
60	0.3907	0.4245	2.3559	0.9205	Ō		60	0.1067	0.4452	2.2400	0.9135	Ō
	Cos	Cot	Tan	Sin	1			Cos	Cot	Tan	Sin	'
*1	57° 247°	1	67°	!	NAT	נסיו	RAL	.	66°	*156°	246° *33	6°

10	ю . 14° 204°	4-0114.0	24°		N				25°	#116J	205° *29	17.0
					NA	ru) 1	RAL					
	Sin	Tan	Cot	Cos			<u> </u>	Sin	Tan	Cot	Cos	
0	0.4067	0.4452	2.2460	0.0135	60		U	0.4226	0.4663	2.1445	0.9063	60
1 2	0.4070	0.4456	2.2443	0.9134	59 58		1 2	0.4229	0.1067	2.1429	0.9062	59 58
3	0.4073 0.4075	0.4459	2.2425	0.9133	50		3	0.4231	0.4670	2.1413	0.9061 0.9059	50
4	0.4078	0.4466	2,2390	0.9131	56		4	0.4237	0.4677	2.1380	0.9058	56
5	0.4081	0.4470	2.2373	0.9130	55		5	0.4239	0.4681	2.1364	0.9057	55
6	0.4083 0.4086	0.4473	2.2355	0.9128	54		6	0.4242	0.4684	2.1348	0.9056	54
7	0.4080	0.4477 0.4480	2.2338	0.9127 0.9126	53 52		7	0.4245 0.4247	0.4688 0.4691	2.1332 2.1315	0.9054	53 52
9	0.4001	0.4484	2.2303	0.9125	51		9	0.4250	0.4695	2.1200	0.9052	51
10	0.4004	0.4487	2.2286	0.9124	50		10	0.4253	0.4699	2.1233	0.9051	50
11 12	0.4097	0.4491	2.2268	0.9122	49 48		11	0.4255	0.4702	2.1267	0.9050	42
12	0.4099	0.4494	2.2251	0.9121	40		12 13	0.4258	0.4706	2.1251 2.1235	0.9048	48 47
14	0.4105	0.4501	2.2216	0.9119	46		14	0.4263	0.4713	2.1210	0.9046	46
15	0.1107	0.4505	2.2199	0.9118	45		15	0.4266	0.4716	2.1203	0.9043	45
16	0.4110	0.4508	2.2182	0.9116	44		16	0.4268	0.4720	2.1187	0.9043	44
17 18	0.4112	0.4512	2.2165 2.2148	0.9115	+3		17	0.4271	0.4723	2.1171 2.1155	0.9042	43
19	0.4118	0.4519	2.2130	0.9113	41		18 19	0.4276	0.4727	2.1130	0.9040	42 41
20	0.4120	0.4522	2.2113	09112	40		20	0.4279	0 4734	2.1123	0.9038	40
21	0.4123	0.4526	2.2096	0.9110	39		21	0.4281	0.4738	2.1107	0.9037	39
22 23	0.4126	0.4529 0 4533	2.2079	0.9109	38 37		22	0.4284 0.4287	0.4741	2.1092	0.9036	38 37
23 24	0.4120	0.4536	2.2002	0.9103	36		23	0.4280	0.4745	2.10/0	0.9033	36
25	0.4134	0.4530	2.2028	0.9107	35		24 25	0.4200	0.4752	2.1044	0.9032	35
26	0.4136	0.4543	2 201 1	0.9104	34		20	0.4293	0.4755	2.1028	0.9031	34
27	0.4139	0.4547	2.1994	0.9103	33		27	0.4297	0.4759	2.1013	0.9030	33
28 29	0.4142 0.4144	0.4550 0.4554	2.1977 2.1960	0.9102	32 31		28	0.4300	0.4763	2.0997 2.0981	0.9028	32 31
30	0.4147	0.4557	2.1943	0.9100	30		29 30	0.4305	0.4770	2.0005	0.9026	30
31	0.4150	0.4561	2 1926	0.9098	29		31	0.4308	0.4773	2.0950	0.9025	29
32	0.4152	0.4564	2.1909	0.9097	28		32	0.4310	0.4777	2.0934	0.9023	28
33	0.4155 0.4158	0.4568	2.1892	0.9096	27		33	0.4313	0.4780	2.0918	0.9022	27
34 35	0.4150	0.457I 0.4575	2.1876	0.9093	26 25		34	0 4316 0.4318	0.4784	2.0903 2.0887	0.9021	26 25
36	0.4163	0.4578	2.1842	0.9092	24		35 36	0.4321	0 4791	2.0872	0.9018	24
37	0.4165	0.4582	2.1825	0.9091	23		37	0.4323	0.4795	2.0856	0.9017	23
38	0.4168 0.4171	0.4585	2.1808	0.9090	22		38	0.4326	0.4798	2.0840 2.0825	0.9016	22 21
39 40	0.4173	0.4589 0.4592	2 1702	0.9089	21 20		39	0.4329	0.4802	2.0825	0.9015	20
41	0.4170	0.4596	2.1758	0.9086	10		40	0.4334	0.4500	2.0794	0.9012	19
42	0.4179	0.4599	2.1742	0.9085	18		41 42	0.4337	0.4813	2.0778	0.9011	18
43	0.4181	0.4603	2.1725	0.908.1	17		+3	0.4339	0.4816	2.0763	0.9010	17
44 45	0.4184 0.4187	0.4607 0.4610	2.1708	0.9083 0.9081	16 15		44	0.4342	0.4820 0.4823	2.0748 2.0732	0.900\$ 0.9007	16 15
45	0.4189	0.4614	2.1002	0.9081	15		45	0.4344 0.4347	0.4823	2.0732	0.9007	15
47	0.4192	0.4617	2.1659	0.9079	13		40	0.4350	0.4831	2.0701	0.9004	13
48	0.4195	0.4621	2.1642	0.9078	12		47 48	0.4352	0.4834	2.0686	0.9003	12
49 50	0.4197	0.4624	2.1625	0.9077	11 10		49	0 4355	0.4838	2.0071	0.9002	11 10
51	0.4200	0.4020	2.1009	0.9075	9		อัง	0.4358	0.4841	2.0055	0.9001	
52	0.4205	0.4635	2.1576	0.9073	8		51	0.4363	0.4849	2.0623	0.8998	9 8
53	0.4208	0.4638	2.1560	0.9072	7		52 53	0.4365	0.4852	2.0609	0.8997	7
54	0 4210	0.4642	2.1543	0.9070	6		54	0.4368	0.4856	2.0594	0.8996	6
55 56	0.4213 0.4216	0.4645 0.4649	2.1527 2.1510	0.9069 0.9068	5		55	0.4371 0.4373	0.4859	2.0579	0.8994 0.8993	5 4
57	0.4218	0.4652	2.1494	0.9067	3		56	0.4375	0.4867	2.0549	0.8992	3
58	0.4221	0.4656	2.1478	0.9.66	2		57	0.4378	0.4870	2.0533	0.8990	2
59 60	0.4224	0.4660	2.1461	0.0064	I		58 59	0.4381	0.4874	2.0518	0.8989	I
-00	0.4226	0.4663	2.1445	0.9063			60	0.4384	0.4877	2.0503	0.8988	0
	Cos	Cot	Tan	Sin	' '			Cos	Cot	Tan	Sin	<u>'</u>
*1	55° 245°	*335°	6.5°		NATI	UR.	AL		64 °	*154°	244° *33	4°

106 ·

*1	.16° 206°	• * 296°	26°		NAT	TURAI	•	27°	*117°	1 207° *2 9	07 7 °
'	Sin	Tan	Cot	Cos			Sin	Tan	Cot	Cos	1
0	0.4384	0.4877	2.0503	0.8988	60		0.4540	0.5095	1.9626	0.8910	60
I	0.4386	0 4881	2.0488	0.8987	59	1 1 1	0.4542	0.5099	1.9612	0.8909	59
2	0.4389	0.4883 0.4888	2.0473 2.0458	0.8985	58		1	0.5103	1.9598	0.8907	58
3	0.4392	0.4802	2.0453	0.8983	57 56			0.5110	1 9584	0.8900	57 56
5	0.4397	0.4895	2.0428	0.8982	55		0.4553	0.5114	1 9556	0.8903	55
6	0.4399	0.4899	2.0413	0.8980	54		0.4555	0.5117	1.9542	0.8902	54
78	0.4402	0.4903	2.0398	0.8979	53		0.4558	0.5121	1 9528	0.8901	53
9	0.4405	0.4906 0.4910	2.0383	0.8978 0.8976	52 51		0.4561	0.5125	1.9514	0.8899	52 51
10	0.4410	0.4913	2.0353	0.8975	50	110		0.5132	1.9486	0.8897	50
11	0.4412	0.4917	2.0338	0.8974	49	11	0.4568	0.5136	1 9472	0.8895	49
12	0.4415	0.4921	2.0323	0.8973	48	12	0.4571	0.5139	1 9458	0.8894	48
13 14	0.4418 0.4420	0.4924 0.4928	2.0308	0.8971	47	13	0.4574	0.5143	1.9444 1.9430	0.8893	47
14	0.4423	0.4931	2.0293	0.8969	45	14	0.4579	0.514/	1 9416	0.8800	40
ıŏ	0.4425	0.4935	2.0263	0.8967	44	Ī		0.5154	1.9402	0.8889	44
17	0.4428	0.4939	2.0248	0.8966	43	17	0.4584	0.5158	1.9388	0.8888	43
18	0.4431	0.4942	2.0233	0.8965	42	18	0.4586	0.5161	1.9375	0.8886 0.8885	42
19 20	0.4433	0.4946	2.0219	0.8964	41 40	19 20		0.5165	1.9361	0.8884	• 41 40
21	0.4439	0.4953	2.0189	0.8961	39	21	0.4594	0.5172	1.9333	0.8882	39
22	0.4441	0.4957	2.0174	0.8960	38	22	0.4597	0.5176	1.9319	0.8881	38
23	0.4444	0.1960	2.0160	0.8958	37	23	0.4599	0.5180	1.9306	0.8879	37
24	0.4446	0.4964	2.0145	0.8957	36	24	0.4602	0.5184	1.9292	0.8878	36
25 26	0.4449 0.4452	0.4968 0.4971	2.0130	0.8956 0.8955	35 34	25	0.4605	0.5187	1.9278	0.8877	35 34
27	0.4454	0.4975	2.0101	0.8953	33	27	0.4610	0.5195	1.9251	0.8874	33
28	0.4457	0.4979	2.0086	0.8952	32	28	0.4612	0.5108	1.9237	0.8873	32
29	0.4459	0.4982	2 00 7 2	0.8951	31	29		0.5202	1.9223	0.8871	31
30	0.4462	0.4986	2.0057	0.8949	30	30		0.5206	1.9210	0.8870	30
31 32	0.4405	0.4989 0.4993	2.0042	0.8948 0.8947	29 28	31	0.4620	0 5209	1.9196	0.8867	29 28
33	0.4470	0.4997	2.0013	0.8945	27	33	0.4625	0.5217	1.9169	0.8866	27
34	0.4472	0.5000	1.9999	0.8944	26	34	0.4628	0.5220	1.9155	0.8865	26
35	0.4475	0.5004	1.9984	0.8943	·25	35	0.4630	0.5224	1.9142	0.8863	25
36	0.4478 0.4480	0.5008 0.5011	1.9970	0.8942	24	36	0.4633	0.5228	1.9128	0.8862	24
37 38	0.4483	0.5013	1.9955 1.9941	0.8940 0.8939	23 22	37	0.4636	0.5232	1.9115 1.9101	0.8859	23 22
39	0.4485	0.5019	1.9926	0.8938	21	39	0.4641	0.5239	1.9088	0.8858	21
40	0.4488	0.5022	1.9912	0.8936	20	40	0.4643	0.5243	1.9074	0.8857	20
41	0.4491	0.5026	1.9897	0.8935	19	1 41	0.4646	0.5246	1.9061	0.8855	19
42 43	0.4493 0.4496	0.5029 0.5033	1.9883 1.9868	0.8934	18 17	42	0.4648 0.4651	0.5250	1.9047 1.9034	0.8854 0.8853	18 17
44	0.4498	0.5033	1.9854	0.8931	16	43	0.4654	0.5258	1.9020	0.8851	16
45	0.4501	0.5040	1.9840	0.8930	15	44	0.4656	0.5261	1.9007	0.88 <u>5</u> 0	15
46	0.4504	0.5044	1.9825	0.8928	14	46	0.4659	0.5265	1.8993	0.8849	14
47	0.4506	0.5048	1.9811	0.8927	13	47	0.4661	0.5269	1.8980	0.8847 0.8840	13 12
48 49	0.4509 0.4511	0.5051 0.5055	1.9797 1.9782	0.8926 0.8925	12 11	48	0.4664 0.4666	0.5272 0.5276	1.8967 1.8953	0.8844	12 11
50	0.4514	0.5059	1.9768	0.8923	10	50	0.4669	0.5280	1.8940	0.8843	10
51	0.4517	0.5062	1.9754	0.8922	9 8	51	0.4672	0.5284	1.8927	0.8842	8
52	0.4519	0.5066	1.9740	0.8921		52	0.4674	0.5287	1.8913	0,8840	
53	0.4522	0.5070	1.9725	0.8919	7	53	0.4677	0.5291	1.8900	0.8839 0.8838	7 6
54 55	0.4524 0.4527	0.5073 0.5077	1.9711 1.9697	0.8918	6 5	54 55	0.4679	0.5295	1.8887	0.8836	5
56	0.4530	0.5081	1.9683	0.8915	4	50	0.4684	0.5302	1.8860	0.8835	4
57	0.4532	0.5084	1.9669	0.8914	3	57	0.4687	0.5306	1.8847	0.8834	3
58	0.4535	0.5088	1.9654	0.8913	2	58	0.4690	0.5310	1.8834	0.8832	2 I
59 60	0.4537 0.4540	0.5092	1.9640 1.9626	0.8911	1 0	59 60	0.4692	0.5313	1.8820 1.8807	0.8831	0
										<u>_</u>	١, -
	Cos	Cot	Tan	Sin			Cos	Cot	Tan	Sin	
*1	53° 243°	*333°	63°		NATI	JRAL		62°	* 152°	242° *33	2°

108 *118° 208° *298° 28°]					Nat	UR	AI.		29°	*119° 209° *299°		
•	Sin	Tan	Cot	Сов			'	Sin	Tan	Cot	Cos	
0	0.4695	0.5317	1.8807	0.8829	60		0	0.4848	0.5543	1.8040	0.87.46	60
T	0.4697	0.5321	1.8794	0.8828	59		I	0.4851	0.5547	1.8028	0.8745	59
2	0.4700 0.4702	0.5325 0.5328	1.8781 1.8768	0.8827 0.8825	58 57		2 3	0.4853 0.4856	0.5551 0.5555	1.8016 1.8003	0.8743 0.8742	58 57
3	0.4702	0.5328	1.8755	0.8824	57 56		4	0.4858	0.5558	1.7991	0.8741	56
5	0.4708	0.5336	1.8741	0.8823	55		5	0.4861	0.5562	1.7979	0.8739	55
ő	0.4710	0.5340	1.8728	0.8821	54		6	0.4863	0.5566	1.7966	0.8738	54
7 8	0.4713	0.5343	1.8715	0.8820	53		78	0.4866 0.4868	0.5570	1.7954	0.8736	53
9	0.4715 0 4718	0.5347 0.5351	1.8702 1.8689	0.8819 0.8817	52 51		9	0.4808	0.5574 0.5577	1.7942 1.7930	0.8735 0.8733	52 51
10	0.4720	0.5354	1.8676	0.8816	50		10	0.4874	0.5581	1.7917	0.8732	50
11	0.4723	0.5358	1.8663	0.8814	49		п	0.4876	0.5585	1.7905	0.8731	49
12	0.4726	0.5362	1.8650	0.8813 0.8812	48		12	0.4879 0.4881	0.5589	1.7893 1.7881	0.8729	48
13 14	0.4728 0.4731	0.5366 0.5369	1.8637 1.8624	0.8812	47 46		13 14	0.4884	0.5593 0.5596	1.7868	0.8728 0.8726	47 46
15	0.4733	0.5373	1.8611	0.8800	45		15	0.4886	0.5600	1.7856	0.8725	45
16	0.4736	0.5377	1.8598	0.8808	44		16	0.4889	0.5604	1.7844	0.8724	-4-4
17	0.4738	0.5381	1.8585	0.8806	43		17 18	0.4891	0.5608	1.7832	0.8722	43
18 19	0.474I 0.4743	0.5384 0.5388	1.8572 1.8559	0.8805 0.8803	42 41		18 19	0.4894 0.4896	0.5612 0.5616	1.7820 1.7808	0.8721 0.8719	42 41
20	0.4746	0.5392	1.8546	0.8802	40		20	0.4899	0.5619	1.7790	0.8718	40
21	0.4749	0.5396	1.8533	0.8801	39		21	0.4901	0.5623	1.7783	0.8716	39
22	0.4751	0.5399	1.8520	0.8799	38		22	0.4904	0.5627	1.7771	0.8715	38
23	0.4754 0.4756	0.5403	1.8507 1.8493	0.8798 0.8796	37 36		23 24	0.4907 0.4909	0.5631	1.7759 1.7747	0.8714 0.8712	37 36
24 25	0.4759	0.5407 0.5411	1.5495	0.8795	35		25	0.4912	0.5639	1.7735	0.8711	35
26	0.4761	0.5415	1.8469	0.8794	34		20	0.4914	0.5642	1.7723	0.8709	34
27	0.4764	0.5418	1.8456	0.8792	33		27	0.4917	0.5646	1.7711	0.8708	33
28 29	0.4766	0.5422 0.5426	1.8443 1.8430	0.8791	32 31		28 20	0.4919 0.4922	0.5650 0.5654	1.7699 1.7687	0.8706 0.8705	32 31
30	0.4772	0.5430	1.8418	0.8788	30		30	0.4924	0.5658	1.7675	0.8704	30
31	0.4774	0.5433	1.8405	0.8787	29		31	0.4927	0.5062	1.7663	0.8702	29
32	0.4777	0.5437	1.8392	0.8785	28		32	0.4929	0.5665	1.7651	0.8701	28
33	0.4779 0.4782	0.5441	1.8379	0.8784	27 26		33	0.4932	0.5669	1.7639	0.8699	27
34 35	0.4784	0.5445	1.8354	0.8781	25		34 35	0.4934 0.4937	0.5673	1.7627	0.8698 0.8696	26 25
36	0.4787	0.5452	1.83.41	0.8780	24		36	0.4939	0.5681	1.7603	0.8695	24
37	0.4789	0.5456	1.8329	0.8778	23		37	0.4942	0.5685	1.7591	o 8694	23
38 39	0.4792 0.4795	0.5460 0.5464	1.8316	0.8777	22		38 39	0.4944	0.5688	1.7579 1.7567	0.8692 0.5691	22
40	0.4797	0.5467	1.8201	0.8774	20		40	0.4950	0.5096	1.7550	0.8059	20
41	0.4800	0.5471	1.8278	0.8773	19		41	0.4952	0.5700	1.7544	0.8688	19
42	0.4802	0.5475	1.8265	0.8771	18		42	0.4953	0.5704	1.7532	0.8686	18
43	0.4803	0.5479	1.8253	0.8770	17 16		43	0.4957	0.5708	1.7520	0.8683	-17 16
44	0.4810	0.5482	1.8240	0.8767	15		44	0.4960 0.4962	0.5712	1.7508 1.7496	0.8683 0.8682	10
46	0.4812	0.5490	1.8215	0.8766	14	1	46	0.4965	0.5719	1.7485	0.8681	14
47	0.4813	0.5494	1.8202	0.8764	13	1	+7	0.4967	0.5723	1.7473	0.8679	13
48	0.4818 0.4820	0.5498	1.8190	0.8763	12		48 49	0.4970 0.4972	0.5727 0.5731	1.7461	0.8678 0.8676	12 11
50	0.4823	0.5505	1.8165	0.8760	10	ł	50	0.4975	0.5735	1.7437	0.8675	10
51	0.4825	0.5509	1.8152	0.8759	9		51	0.4977	0.5739	1.7426	0.8673	
52	0.4828 0.4830	0.5513	1.8140	0.8757	8	1	52	0.4980	0.5743	1.7414	0.8672	9 8
53	0.4830	0.5517	1.8127	0.8756	7	1	53	0.4982	0.5746	1.7402	0.8670 0.8660	76
55	0.4835	0.5520	1.8103	0.8753	5	1	54 55	0.4985	0.5750	1.7391	0.8668	5
56	0.4838	0.5528	1.8090	0.8752	4		56	0.4990	0.5758	1.7367	0.8666	4
57	0.4840	0.5532	1.8078	0.8750	3	1	57	0.4992	0.5762	1.7355	0.8665	3
58	0.4843 0.4846	0.5535	1.8065 1.8053	0.8749	2 I	1	58 59	0.4995	0.5766	1.7344	0.8663	2
60	0.4848	0.5543	1.8040	0.8746	i o		60	0.4997	0.5774	1.7321	0.8660	ō
-	Сов	Cot	Tan	Sin	1	1		Cos	Cot	Tan	Sin	Ţ,
L		1			NA	1			<u> </u>		<u>.</u>	
-	*151° 241° *331° 61° NATURAL 60° *150° 240° *330°											

+1	20° 210°	*300°	30°		NA	rui	RAL		31°	*12 1°	10 211° *30	09)1°
'	Sin	Tan	Cot	Cos	1]	•	Sin	Tan	Cot	Cos	
0	0.5000	0.5774	1.7321	0.8660	60		0	0.5150	0.6000	1.6643	0.8572	60
I	0.5003	0.5777	1.7309	0.8659	59		I	0.5153	0.6013	1.6632	0.8570	59
23	0.5005	0.5781	1.7297	0.8657 0.8656	58 57		23	0.5155	0.6017	1.6621	0.8569	58
4	0.5010	0.5789	1.7274	0.8654	56		4	0.5158	0.0020	1.6599	0.8566	57 56
5	0.5013	0.5793	1.7262	0.8653	55		1 5	0.5163	0.6023	1.6588	0.8564	55
6	0.5015	0.5797	1.7251	0.8652	54		6	0.5165	0.6032	1.6577	0.8563	54
78	0.5018	0.5801	1.7239	0.8650	53		8	0.5168	0.0036	1.6566	0.8561	53
ő	0.5020	0.5803	1.7228	0.8649	52 51		°	0.5170	0.6040 0.6044	1.6555 1.6545	0.8560 0.8558	52 51
10	0.5025	0.5812	1.7205	0.8646	50		10	0.5175	0.6048	1.6534	0.8557	50
11	0.5028	0.5816	1.7193	0.8644	49		11	0.5178	0.6052	1.6523	0.8555	49
12	0.5030	0.5820	1.7182	0.8643	-18		12	0.5180	0.6056	1.6512	0.8554	48
13	0.5033	0.5824	1.7170	0.8641	47		13	0.5183	0.6060	1.6501	0.8552	47
15	0.5035	0.5832	1.7159	0.8640	46		14	0.5185 0.5188	0.6064	1.6490 1.6479	0.8551	46 45
16	0.5040	0.5836	1.7136	0.8637	44		16	0.5190	0.6072	1.6469	0.8548	44
17	0.5043	0.5840	1.7124	0.8635	43	[17	0.5193	0.6076	1.6458	0.8546	43
18 19	0.5045	0.5844	1.7113	0.8634	42		18	0.5195	0.6080	1.6447	0.8545	42
20	0.5048	0.5847	1.7102	0.8632	41 40		19 20	0.5198	0.6084	1.6436	0.8543	41
21	0.5053	0.5855	1.7079	0.8030	39		21	0.5200	0.6002	1.6415	0.8540	40 39
22	0.5055	0.5859	1.7067	0.8628	38		22	0.5205	0.6006	1.6404	0.8539	39
23	0.5058	0.5863	1.7056	0.8627	37		23	0.5208	0.6100	1.6393	0.8537	37
24	0.5060	0.5867	1.7045	0.8625	36		24	0.5210	0.6104	1.6383	0.8536	36
25 26	0.5063	0.5871 0.5875	1.7033	0.8624	35		25 26	0.5213	0.6108	1.6372	0.8534	35
27	0.5068	0.5879	1.7011	0.8621	34 33		27	0.5215	0.6112	1.6351	0.8531	34
28	0.5070	0.5883	1.6999	0.8619	32		28	0.5210	0.6120	1.6340	0.8529	33 32
29	0.5073	0.5887	1.6988	0.8618	31		29	0.5223	0.6124	1.6329	0.8528	31
30	0.5075	0.5890	1.6977	0.8616	30		30	0.5225	0.6128	1.6319	0.8520	30
31 32	0.5078	0.5894	1.6965 1.6954	0.8615	29		31 32	0.5227	0.6132	1.6308	0.8523	29
33	0.5083	0.5002	1.6943	0.8612	20		33	0.5230	0.6136	1.6297	0.8523	28
34	0.5085	0.5906	1.6932	0.8610	26		34	0.5235	0.6144	1.6276	0.8520	26
35	0.5088	0.5910	1.6920	0.8609	25		35	0.5237	0.61.48	1.6265	0.8519	25
36	0.5090	0.5914	1.6909	0.8607	24		36	0.52.40	0.6152	1.6255	0.8517	24
37 38	0.5093 0.5095	0.5918	1.6898	0.8606	23 22		37 38	0.5242	0.6156	1.6244	0.8516	23
39	0 5008	0.5926	1.6875	0.8603	21		39	0.5245 0.5247	0.0100	1.6234 1.6223	0.8514	22 21
40	0.5100	0.5930	1.6864	0.8601	20		40	0.5250	0.6168	1.6212	0.8511	20
41	0.5103	0.5934	1.6853	0.8600	19		41	0.5252	0.6172	1.6202	0.8510	19
42 43	0.5105	0.5938	1.6842	0.8599	18		42	0.5255	0.6176	1.6191	0.8508	18
44	0.5110	0.5942 0.5945	1.6831 1.6820	0.8597 0.8596	17 16		43 44	0.5257 0.5260	0.6180 0.6184	1:6181	0.8507	17
45	0.5113	0.5945	1.6808	0.8590	10		44	0.5200	0.0184	1.6170 1.6160	0.8505 0.8504	16 15
46	0.5115	0.5953	1.6797	0.8593	14		46	0.5265	0.6192	1.6149	0.8502	14
47	0.5118	0.5957	1.6786	0.8591	13		47	0.5267	0.6196	1.6139	0.8500	13
48 49	0.5120	0.5961 0.5965	1.6775 1.6764	0.8590	12 11		48 49	0.5270	0.6200	1.6128	0.8499	12
50	0.5125	0.5905	1.6753	0.8587	10		50	0.5272	0.6204	1.6118	0.8497	11 10
5=	C.5128	0.5973	1.6742	0.8585	9		51	0.5275	0.0208	1.0007	0.8494	
52	0.5130	0.5977	1.6731	0.8584	8		52	0.5279	0.6216	1.6087	0.8493	9 8
53	0.5133	0.5981	1.6720	0.8582	7		53	0.5282	0.6220	1.6076	0.8491	7
54 55	0.5135	0.5985 0.5989	1.6709 1.6608	0.8581 0.8579	6		54 55	0.5284	0.6224	1.6066	0.8490	6
56 56	0.5130	0.5989	1.6687	0.8579	54		56	0.5287 0.5289	0.6228 0.6233	1.6055 1.6045	0.8488 0.8487	5
57	0.5143	0.5997	1.6676	0.8576	3		57	0.5202	0.6237	1.6034	0.8485	4
58	0.5145	0.6001	1.6665	0.8575	2		58	0.5294	0.6241	1.6024	0.8484	2
59 60	0.5148	0.6003	1.6654	0.8573	I		59 60	0.5297	0.6245	1.6014	0.8482	I
	0.5150	0.6000	1.6643	0.8572	0			0.5299	0.6249	1.6003	0.8480	0
	Cos	Cot	Tan	Sin				Cos	Cot	Tan	Sin	<u> </u>
*1	49° 239°	* 329°	59°		NAT	UR	AL		58°	*148°	238° *32	8°

1) #1	10 22° 212°	*302°	32°		NAT	UR	AL		330	*123°	213° *3 0	3°
	Sin	Tan	Cot	Cos		11		Sin	Tan	Cot	Cos	
0	0.5299	0.6249	1.6003	0.8480	60	11	0	0.5446	0.6494	1.5399	0.8387	60
I	0.5302	0.6253	1.5993	0.8479	59		I	0.5449	0.6498	1.5389	0.8385	59 58
2	0.5304 0.5307	0.6257 0.6261	1.5983	0.8477 0.8476	58		2	0.5451	0.6502	1.5379	0.8384	
4	0.5307	0.6265	1.5972 1.5962	0.8470	57 56	ł ł	3 4	0.5454	0.6506	1.5369	0.8380	57 56
5	0.5312	0.6269	1.5952	0.8473	55		4 5 6	0.5456 0.5459	0.6513	1.5359 1.5350	0.8370	55
6	0.5314	0.6273	1.5941	0.8471	54		6	0.5461	0.6519	1.5340	0.8377	54
78	0.5316	0.6277	1.5931	0.8470	53		78	0.5463	0.0523	1.5330	0.8376	53
ŝ	0.5319 0.5321	0.6281	1.5921	0.8468 0.8467	52 51	11	9	0.5466 0.5468	0.6527 0.6531	1.5320 1.5311	0.8374 0.8372	52 51
1Ó	0.5324	0.6289	1.5900	0.8465	50		ıó	0.5471	0.6536	1.5301	0.8371	50
II	0.5326	0.6293	1.5890	0.8403	49		II	0.5473	0.6540	1.5291	0.8369	49
12 13	0.5329	0.6297	1.5880 1.5860	0.8462	48		12	0.5476	0.6544	1.5282	0.8368	48
14	0.5331 0.5334	0.6301 0.6305	1.5859	0.8460 0.8459	47		13 14	0.5478	0.6548	1.5272	0.8366 0.8364	47
15	0.5334	0.6310	1.5849	0.8459	46 45		1.4	0.5480 0.5483	0.6552 0.6556	1.5262	0.8363	40
16	0.5339	0.6314	1.5839	0.8456	44		ıĞ	0.5485	0.6560	1.5243	0.8361	44
17	0.5341	0.6318	1.5829	0.8454	43		17	0.5488	0.6565	1.5233	0.8360	43
18 19	0.5344 0.5346	0.6322 0.6326	1.5818 1.5808	0.8453 0.8451	42		18 19	0.5490	0.6569	1.5224	0.8358 0.8356	42 41
20	0.5348	0.6330	1.5798	0.8450	40	11	20	0.5493	0.6573	1.5214	0.8355	40
21	0.5351	0.6334	1.5788	0.8118	39	11	21	0.5408	0.6581	1.5195	0.8353	39
22	0.5353	0.6338	1.5778	0.8446	38		22	0.5500	0.6585	1.5185	0.8352	38
23	0.5356	0.6342	1.5768	0.8445	37	ļ ļ	23	0.5502	0.6590	1.5175	0.8350	37
24 25	0.5358 0.5361	0.6346 0.6350	1.5757 1.5747	0.8443 0.8442	36		24 25	0.5505	0.6594 0.6598	1.5160 1.5156	0.8348 0.8347	36
26	0.5363	0.6354	1.5737	0.8440	35 34		26	0.5507	0.6602	1.5147	0.8345	35 34
27	0.5366	0.6358	1.5727	0.8439	33	11	27	0.5512	0.6606	1.5137	0.8344	33
28	0.5368	0.6363	1.5717	0.8437	32		28	0.5513	0.6610	1.5127	0.8342	32
29 30	0.5371	0.6367	1.5707	0.8435	31 30		29 30	0.5517	0.6615	1.5118	0.8340	3≀ 30
31	0.5373	0.0375	1.5697	0.8434	29	łł	31	0.5519	0.6619	1.5108	0.8339	29
32	0.5378	0.6379	1.5677	0.8431	28		32	0.5522 0.5524	0.6627	1.5089	0.8336	28
33	0.5380	0.6383	1.5667	0.8429	27		33	0.5527	0.6631	1.5080	0.8334	27
34	0.5383	0.6387	1.5657	0.8428	26		34	0.5529	0.6636	1.5070	0.8332	26
35 30	0.5385 0.5388	0.6391 0.6395	1.5647	0.8426 0.8425	25 24		35 36	0.5531	0.6640 0.6644	1.5001 1.5051	0.8331 0.8329	25 24
37	0.5390	0.6399	1.5027	0.8423	23		37	0.5536	0.6648	1.5042	0.8328	23
38	0.5393	0.6403	1.5617	0.8421	22		38	0.5539	0.6652	1.5032	0.8326	22
39 40	0.5395	0.6408	1.5607	0.8420	21		39 40	0 5541	0.6657	1.5023	0.8324	21
41 41	0.5398	0.6412	1.5597	0.8418	20		40 41	0.5544	0.6661	1.5013	0.8323	20
42	0.5402	0.6410	1.5587 1.5577	0.8417	19		42	0.5546	0.6663 0.6669	1.5004	0.8321 0.8320	19 18
43	0.5405	0.6424	1.5567	0.8414	17]	43	0.5551	0.6673	1.4985	0.8318	17
44	0.5407	0.6428	1.5557	0.8112	16	[44	0.5553	0.6678	1.4975	0.8316	16
45 46	0.5410 0.54 2	0.6432 0.6430	1.5547 1.5537	0.8410	15		45 46	0.5556	0.6682 0.6686	1.4966	0.8315 0.8313	15 14
47	0.5442	0.6430	1.5537	0.8409	14		47	0.5558 0.5561	0.6600	I.4957 I.4947	0.8313	14
48	0.5417	0.6445	1.5517	0.8407	12		48	0.5563	0.0000	1.4938	0.8310	12
49 80	0.5420	0.6449	1.5507	0.8404	ń.		49	0.5565	0.6699	1.4928	0.8308	11
50	0.5422	0.6453	1.5497	0.8403	10	11	50	0.5568	0.6703	1.4919	0.8307	10
51 52	0.5424	0.6457 0.6461	1.5487 1.5477	0.8401 0.8399	8		51 52	0.5570	0.6707 0.6711	1.4910	0.8305 0.8303	2
53	0.5429	0.6465	1.5468	0.8398	7	11	53	0.5575	0.6715	1.4891	0.8302	Ť
54	0.5432	0.6469	1.5458	0.8396	6		54	0.5577	0.6720	1.4882	0.8300	6
55 56	0.5434	0.6473 0.6478	1.5448	0.8395	5	łĺ	55 56	0.5580	0.6724	1.4872	0.8298	5
50	0.5437 0.5439	0.6482	1.5438 1.5428	0.8393	4		57	0.5582 0.5583	0.6728	1.4863 1.4854	0.8297 0.8295	4
58	0.5439	0.6486	1.5418	0.8391	32		58	0.5585	0.6732	1.4844	0.8295	3 2
59	0.5444	0.6490	1.5408	0.8388	I	11	59	0.5590	0.6741	1.1835	0.8292	1
60	0.5446	0.6494	1.5399	0.8387	0		60	0.5592	0.6745	1.4826	0.8290	0
	Cos	Cot	Tan	Sin		11		Cos	Cot	Tan	Sin	l '
*1	47° 837	*827°	57°		NAT	rus	AL		56°	*146°.	236° *32	8°

* 1	124° 214	t° *3 04°	34°		NA	TUI	RAL		35°	*125°	I 215° *30	11)5°
ſ,	Sin	Tan	Cot	Cos	1		· 1	Sin	Tan	Cot	Cos	1
0	0.5592	0.6745	1.4826	0.8290	60		0	0.5736	0.7002	1.4281	0.8192	60
1	0.5594	0.6749	1.4816	0.8289	59	l	I	0.5738	0.7006	1.4273	0.8190	59
23	0.5597	0.6754	1.4807 1.4798	0.8287	58 57	1	23	0.574I 0.5743	0.7011	1.4204	0.8188	58 57
14	0.5602	0.6762	1.4788	0.9284	56		4	0.5745	0.7019	1.4246	0.8185	56
5	0.5604	0.6766	1.4779	0.8282	55	1	5	0.5748	0.7024	1.4237	0.8183	55
6	0.5606	0.6771	1.4770 1.4761	0.8281	54		6	0.5750	0.7028	1.4229	0.8181	54
7 5	0.5611	0.6779	1.4751	0.8279	53 52		8	0.5752	0.7032	1.4220 1.4211	0.8180	53 52
1.2	0.5614	0.6783	1.4742	0.8276	51		9	0.5757	0.7041	1.4202	0.8176	51
10	0.5616	0.6787	1.4733	0.8274 0.8272	50		10	0.5760	0.7046	1.4193	0.5175	50
112	0.5021	0.6796	1.4715	0.8271	49 48	1	12	0.5762	0.7050	1.4185 1.4176	0.8173	49
13	0.5623	0.6800	1.4705	0.8269	47		13	0.5767	0.7059	1.4167	0.8170	47
14	0.5626	0.6805	1.4696	0.8268	46		14	0.5769	0.7063	1.4158	0.8168	46
15 16	0.5630	0.6813	1.4678	0.8200	45		15	0.5771	0.7067	1.4150 1.4141	0.8166	45
17	0.5033	0.6817	1.4669	0.8263	+3	1	17	0.5776	0.7076	1.4132	0.8163	43
18	0.5635	0.6822	1.4659	0.8261	42		18	0.5779	0.7080	1.4124	0.8161	42
19 20	0.5638	0.6826	1.4650	0.8259	40		19 20	0.5781 0.5783	0.7083	1.4115	0.8160	40
21	0.5042	0.6834	1.4032	0.8250	39		21	0.5786	0.7004	1.4007	0.8156	39
22	0.5645	0.6839	1.4623	0.8254	38		22	0.5788	0.7098	1.4089	0.8155	38
23	0.5647	0.6843	1.4614	0.8253	37		23	0.5790	0.7102	1.4080	0.8153	37
24	0.5050	0.6847	1.4605	0.8251 0.8249	36 35		24 25	0.5793	0.7107	1.4071	0.8151	36 35
20	0.5654	0.6856	1.4586	0.8248	34		26	0.5798	0.7115	1.4054	0.8148	34
27	0.5657	0.6860	1.4577	0.8246	33		27	0.5800	0.7120	1.4045	0.8146	33
28	0.5659 0.5662	0.6864	1.4568	0.8245 0.8243	32 31		28 20	0.5802 0.5805	0.7124	1.4037 1.4028	0.8145	32
30	0.5064	0.6873	1.4550	0.8241	30		30	0.5807	0.7133	1.4019	0.8141	31 30
31	0.5006	0.6877	1.4541	0.8240	29		31	0.5800	0.7137	1.4011	0.8139	20
32	0.5669	0.6881	1.4532	0.8238	28		32	0.5812	0.7142	1.4002	0.5138	28
34	0.5674	0.6800	1.4514	0.8235	27 26		33 34	0.5814	0.7151	1.3994 1.3985	0.8130	27 26
35	0.5676	0.6894	1.4505	0.8233	25		35	0.5819	0.7155	1.3976	0.8133	20
36	0.5678	0.6899	1.4496	0.8231	24		36	0.5821	0.7159	1.3968	0.8131	24
37	0.5681 0.5683	0.6903	1.4487	0.8230 0 8228	23 22		37 38	0.5824	0.7164 0.7168	1.3959 1.3951	0.8129	23
39	0.5680	0.6911	1.4469	0.8226	21		39	0.5828	0.7173	1.3942	0.8126	22 21
40	0.5688	0.6916	1.4460	0.8225	20		40	0.5831	0.7177	1.3934	0.8124	20
41 42	0.5690 0.5693	0.6920	1.4451	0.8223	19		41	0.5833	0.7181	1.3925	0.8123	19
43	0.5695	0.6921	1.4442 1.4433	0.8221	18 17		42 43	0.5835 0.5838	0.7186	1.3916 1.3908	0.8121	18 17
44	0.5698	0.6933	1.4424	0.8218	16		44	0.58.40	0.7195	1.3899	0.8117	16
45	0.5700	0.6937	1.4415	0.8216	15		45	0.5842	0.7199	1.3891	0.8116	15
40	0.5702	0.0942	1.4406 1.4397	0.8215 0.8213	14		46	0.5845 0.5847	0.7203 0.7208	1.3882	0.8114 0.8112	14
48	0.5707	0.6950	1.4397	0.8213	13 12		47 48	0.5850	0.7208	1.3874 1.3865	0.8112	13
12	0.5710	0.6954	1.4379	0.8210	11		49	0.5852	0.7217	1.3857	0.8109	11
50 51	0.5712	0.6959	1.4370	0.8208	10		50	0.5854	0.7221	1.3848	0.8107	10
52	0.5714	0.6963 0.6967	1.4361 1.4352	0.8207 0.8205	8		51 52	0.5857 0.5859	0.7226 0.7230	1.3840 1.3831	0.8106 0.8104	9 8
53	0.5719	0.6972	1.4344	0.8203	7		53	0.5861	0.7234	1.3823	0.8102	7
54	0.5721	0.6976	1.4335	0.8202	6		54	0.5864	0.7239	1.3814	0.8100	6
55 56	0.5724 0.5726	0.6980 0.6985	1.4326	0.8200 0.8198	5 4		55 56	0.5866 0.5868	0.7243	1.3806 1.3798	0.8099 0.8097	5
57	0.5729	0.6989	1.4308	0.8197	4		57	0.5871	0.7252	1.3798	0.8097	43
58	0.5731	0.6993	1.4299	0.8195	2		58	0.5873	0.7257	1.3781	0.8094	2
59 60	0.5733	0.6998	1.4290 1.4281	0.8193	1 0		59 60	0.5875	0.7201	1.3772	0.8092	I
	Cos	Cot	Tan	5.8192 Sin	-÷		00	0.5878 Cos	0.7265	1.3764 Tan	0.8000	<u> </u>
<u> </u>				Sill		l		008	1		Sin	
-1	45° 235°	*325°	55°		NAT	UF	L AS		54°	*144° :	234° *32	4°

						UR.	AL		37°	*127° 217° *307		
'	Sin	Tan	Cot	Cos			,	Sin	Tan	Cot	Cos	
0	0.5878	0.7265	1.3764	0.8090	60		0	0.6018	0.7536	1.3270	0.7986	60
I	0.5880	0.7270	1.3755	0.8088	59		I	0.6020	0.7540	1.3262	0.7985	59
2	0.5883 0.5885	0.7274 0.7279	1.3747	0.8087	58		2	0.6023	0.7545	1.3254	0.7983	58
3	0.5887	0.7283	1.3739	0.8083	57		3	0.6025	0.7549	1.3246	0.7981	57
4	0.5890	0.7288	1.3730 1.3722	0.8082	56 55		4	0.6027 0.6030	0.7554 0.7558	1.3238 1.3230	0.7979 0.7978	56
6	0.5892	0.7292	1.3713	0.8080	54		6	0.6032	0.7563	1.3222	0.7970	55 54
7	0.5894	0.7297	1.3705	0.8078	53		7	0.6034	0.7568	1.3214	0.7974	53
8	0.5897	0.7301	1.3697	0.8076	52		8	0.6037	0.7572	1.3206	0.7972	52
.9	U.5899	0.7306	1.3688	0.8075	51		.9	0.6039	0.7577	1.3198	0.7971	51
10	0.5901	0.7310	1.3680	0.8073	50		10	0.6041	0.7581	1.3190	0.7969	50
11 12	0.5904 0.5906	0.7314 0.7319	1.3672 1.3663	0.8071 0.8070	49		11 12	0.6044	0.7586	1.3182	0.7967	49
13	0.5908	0.7323	1.3655	0.8068	48 47		13	0.6046 0.6048	0.7590 0.7593	1.3175	0.7965 0.7964	48
14	0.5011	0.7328	1.3647	0.8066	46	11	14	0.6051	0.7600	1.3159	0.7962	47
15	0.5913	0.7332	1.3638	0.8064	40		15	0.6053	0.7604	1.3159	0.7960	46 45
16	0.5915	0.7337	1.3630	0.8063	44		16	0.6055	0.7600	1.3143	0.7958	44
17	0.5918	0.7341	1.3622	0.8061	43	11	17	0.6058	0.7613	1.3135	0.7956	43
18	0.5920	0.7346	1.3613	0.8059	42		18	0.6060	0.7618	1.3127	0.7955	42
19	0.5922	0.7350	1.3605	0.8058	41		19	0.6062	0.7623	1.3119	0.7953	41
20	0.5925	0.7355	1.3597	0.8056	40		20	0.6065	0.7627	1.3111	0.7951	40
21	0.5927	0.7359	1.3588	0.8054	39		21	0.6067	0.7632	1.3103	0.7949	39
22 23	0.5930	0.7364 0.7368	1.3580 1.3572	0.8052 0.8051	38		22 23	0.6069 0.6071	0.7636 0.7641	1.3095 1.3087	0.7948 0.7946	38
24	0.5934	0.7373	1.3564	0.8049	37		43 24	0.6071	0.7646	1.3070		37
24	0.5937	0.7377	1.3555	0.8049	36 35		24	0.6076	0.7650	1.3079	0.7944 0.7942	36
26	0.5939	0.7382	1.3547	0.8045	34		20	0.6078	0.7655	1.3064	0.7941	35 34
27	0.5941	0.7386	1.3539	0.8044	33		27	0.6081	0.7659	1.3056	0.7939	33
28	0.5944	0.7391	1.3531	0.8042	32		28	0.6083	0.7664	1.3048	0.7937	32
29	0.5946	0.7395	1.3522	0.8040	31		29	0.6085	0.7669	1 3040	0.7935	31
30	0.5948	0.7.400	1.3514	0.8039	30		30	0.6088	0.7673	1.3032	0.7934	30
31	0.5951 0.5953	0.7404	1.3506	0.8037	29		31	0.0000	0.7678	1.3024	0.7932	29
32 33	0.5955	0.7413	1.3490	0.8033	28 27	$\{ \}$	32 33	0.6092	0.7683 0.7687	1.3017 1.3009	0.7930 0.7928	28 27
34	0.5958	0.7418	1.3481	0.8032	26		34	0.6097	0.7692	1.3001	0.7926	26
35	0.5960	0.7422	1.3473	0.8030	25		35	0.6000	0.7696	1.2993	0.7925	25
36	0.5962	0.7427	1.3465	0.8028	24		36	0.6101	0.7701	1.2985	0.7923	24
37	0.5965	0.7431	1.3457	0.8026	23		37	0.6104	0.7706	1.2977	0.7921	23
38	0.5967	0.7436	1.3449	0.8025	22		38	0.6106	0.7710	1.2970	0.7919	22
39	0.5969	0.7.140	1.3440	0.8023	21		39	0.6108	0.7715	1.2962	0.7918	21
40	0.5972	0.7445	1.3432	0.8021	20		40	0.0111	0.7720	1.2954	0.7916	20
41 42	0.5974 0.5976	0.7449	1.3424	0.8019	19		41	0.6113	0.7724	1.2946 1.2938	0.7914 0.7912	19
43	0.5979	0.7458	1.3408	0.8016	18		42 43	0.6118	0.7734	1.2930	0.7910	18
44	0.5981	0.7463	1.3400	0.8014	16		44	0.6120	0.7738	1.2923	0.7909	16
45	0.5983	0.7467	1.3392	0.8013	15		45	0.6122	0.7743	1.2915	0.7907	15
46	0.5986	0.7472	1.3384	0.8011	14		46	0.6124	0.7747	1.2907	0.7905	14
47	0.5988	0.7476	1.3375	0.8009	13		47	0.6127	0.7752	1.2900	0.7903	13
48	0.5990	0.7481	1.3367	0.8007	12		48	0.6129	0.7757	1.2892	0.7902	12
49	0.5993 0.5995	0.7485	1.3359	0.8000	11		49 50	0.6131	0.7761	1.2884	0.7900	11 10
51	0.5995	0.7495	1.3351	0.8004	10	11	51	0.6134	0.7766	1.2870	0.7898	
52	0.6000	0.7499	1.3343	0.80002	8		51	0.6138	0.7775	1.2800	0.7894	8
53	0.6002	0.7504	1.3327	0.7999	7		53	0.6141	0.7780	1.2853	0.7893	7
54	0.6004	0.7508	1.3319	0.7997	6		54	0.6143	0.7785	1.2846	0.7891	6
55	0.6007	0.7513	1.3311	0.7995	5		55	0.6145	0.7789	1.2838	0.7889	5
56	0.6009	0.7517	1.3303	0.7993	4		56	0.6147	0.7794	1.2830	0.7887	4
57	0.6011	0.7522	1.3295	0.7992	3		57	0.0150	0.7799	1.2822	0.7885	3
58	0.6014	0.7526	1.3287	0.7990	2		58	0.6152	0.7803	1.2815	0.7884	2
59 60	0.6018	0.7531	1.3278	0.7988	I O		59 60	0.6154	0.7808	1.2807	0.7882	10
					ĻĻ,						· · · · · · · · · · · · · · · · · · ·	Ľ
	Cos	Cot	Tan	Sin	I '			Cos	Cot	Tan	Sin	1 '
*1	43° 233	• *323°	53°		NA:	rui	RAL		52°	*142°	232° *32	20

•1	28° 218°	*308°	38°]	NATI	UR.	AL		39°	*129°	219° *3 0	9 °
1	Sin	Tan	Cot	Cos			,	Sin	Tan	Cot	Cos	
0	0.6167	0.7813	1.2799	0.7880	60		0	0.6293	0.8098	1.2349	0.7771	60
I	0.6159	0.7818	1.2792	0.7878	59		1	0.6295	0.8103	1.2342	0.7770	59 58
23	0.6161 0.6163	0.7822	1.2784 1.2776	0.7877 0.7875	58 57		2 3	0.6298 0.6300	0.8107	1.2334	0.7768 0.7766	58 57
4	0.6166	0.7832	1.2760	0.7873	56		4	0.6302	0.8117	1.2320	0.7764	56
5	0.6168	0.7836	1.2761	0.7871	55		5	0.6305	0.8122	1.2312	0.7762	55
6	0.6170	0.7841	1.2753	0.7869	54		6	0.6307	0.8127	1.2305	0.7760	54
7	0.6173 0.6175	0.7846 0.7850	1.2746 1.2738	0.7868 0.7866	53		7	0.6309	0.8132 0.8136	1.2298 1.2290	0.7759	53
9	0.6177	0.7855	1.2731	0.7864	52 51		9	0.6314	0.8141	1.2283	0.7757 0.775 5	52 51
10	0.6180	0.7860	1.2723	0.7862	50		1Ó	0.6316	0.8146	1.2276	0.7753	50
II	0.6182	0.7865	1.2715	0.7860	49		11	0.6318	0.8151	1.2268	0.7751	49
12 13	0.6184 0.6186	0.7869 0.7874	1.2708 1.2700	0.7859 0.7857	48 47		12 13	0.6320 0.6323	0.8156 0.8161	1.2261 1.2254	0.7749 0.7748	48 47
14	0.6180	0.7870	1.2093	0.7855	46		14	0.6325	0.8165	1.2247	0.7740	46
15	0.6191	0.7883	1.2685	0.7853	45		15	0.6327	0.8170.	1.2239	0.7744	45
16	0.6193	0.7888	1.2677	0.7851	44		16	0.6329	0.8175	1.2232	0.7742	44
17	0,010,0 8010,0	0.7893 0.7898	1.2670 1.2662	0.7850	43		17	0.6332	0.8180 0.8185	1.2225 1.2218	0.7740	43
18 10	0.0198	0.7902	1.2002	0.7848 0.7846	42 41		19 19	0.6 <u>334</u> 0.6 <u>3</u> 36	0.8190	1.2210	0.7738 0.7737	42
20	0.6202	0.7907	1.2647	0.7844	40		20	0.6338	0.8195	1.2203	0.7735	40
21	0.0205	0.7912	1.2640	0.7842	39		21	0.6341	0.8199	1.2196	0.7733	39
22	0.6207	0.7916	1.2632	0.7841	38		22	0.6343	0.8204	1.2189 1.2181	0.7731	38
23	0.6209 0.6211	0.7921 0.7926	1.2624	0.7839	37		23	0.6345	0.8209	1.2101	0.7729 0.7727	37
24 25	0.6214	0.7931	1.2017	0.7835	36 35		24 25	0.6347 0.6330	0.8214	1.21/4	0.7725	36 35
26	0.6216	0.7935	1.2602	0.7833	34		26	0.6352	0.8224	1.2160	0.7724	34
27	0.6218	0.7940	1.2594	0.7832	33		27	0.6354	0.8229	1.2153	0.7722	33
28	0.6221	0.7945	1.2587	0.7830	32		28	0.6356	0.8234	1.2145	0.7720	32
29 30	0.0225	0.7950	1.2579	0.7826	31 30	1	29 30	0.6359	0.8238	1 2138	0.7718	31 30
31	0.0227	0.7959	1.2564	0.7824	29		31	0.0301	0.8248	1.2121	0.7714	29
32	0.6230	0.7964	1.2557	0.7822	28		32	0.6365	0.8253	1.2117	0.7713	28
33	0.6232	0.7969	1.2549	0.7821	27		33	0.6368	0.8258	1.2109	0.7711	27
34	0.6234	0.7973	1.2542	0.7819	26		34	0.6370 0.6372	0.8263	1.2102	0.7709	26 25
35	0.6239	0.7983	1.2527	0.7815	25 24		35 36	0.6374	0.8273	1.2088	0.7705	24
37	0.6241	0.7988	1.2519	0.7813	23		37	0.6376	0.8278	1.2081	0.7703	23
38	0.6243	0.7992	1.2512	0.7812	22		38	0.6379	0.8283	1.2074	0.7701	22
39 40	0.6246	0.7997	1.2504	0.7810	21 20		39 40	0.6381	0.8287	1.2066	0.7700	21 20
41	0.0240	0.8007	1.2497	0.7806	19		40	0.0385	0.8292	1.2052	0.7696	10
42	0.6252	0.8012	1.2482	0.7804	18		41	0.6388	0.8302	1.2045	0.7694	18
43	0.6253	0.8016	1.2473	0.7802	17		43	0.6390	0.8307	1.2038	0.7692	17
44	0.6257	0.8021	1.2467	0.7801	16		44	0.6392	0.8312	1.2031	0.7690	16
46	0.6259	0.8026	1.2460	0.7799	15		45 46	0.6394	0.8317	1.2024	0.7688 0.7687	15 14
47	0.6264	0.8035	1.2445	0.7795	13		40	0.6300	0.8327	1.2000	0.7685	13
48	0.6266	0.8040	1.2437	0.7793	12		48	0.6401	0.8332	1.2002	0.7683	12
49	0.6268	0.8045	1.2430	0.7792	11		49	0.6403	0.8337	1.1995	0.7681	11
50	0.6271	0.8050	1.2.123	0.7790	10		50	0.6406	0.8342	1.1988	0.7679	10
51 52	0.6273 0.6275	0.8053	1.2415 1.2408	0.7788 0.7786	8		51 52	0.6408	0.8346	1.1981	0.7677 0.7675	8
53	0.6277	0.8064	1.2401	0.7784	7		53	0.6412	0.8356	1.1967	0.7674	7
54	0.6280	0.8069	1.2393	0.7782	6		54	0.6414	0.8361	1.1960	0.7672	6
55	0.6282	0.8074	1.2386	0.7781	5		55 56	0.6417	0.8366 0.8371	1.1953	0.7670	54
57	0.6286	0.8083	1.2378	0.7779	4		57	0.0419	0.8376	1.1940	0.7666	3
58	0.6289	0.8088	1.23/1	0.7775	3		58	0.6423	0.8381	1.1932	0.7664	2
59	0.6291	0.8093	1.2356	0.7773	I	1	59	0.6426	0.8386	1.1925	0.7662	I
60	0.6293	0.8098	1.2349	0.7771	0		60	0.6428	0.8391	1.1918	0.7660	0
L	Cos	Cot	Tan	Sin	1			Cos	Cot	Tan	Sin	I '
• *1	* *141° 231° *321° 51° NATURAL 50° *140° 230° *320°											

	4 1°	*131°	221° *31	1°
Sin	Tan	Cot	Cos	
0.6561	0.8693	1.1504	0.7547	60
0.6563	0.8698	1.1497	0.7545	59
0.6565	0.8703	1.1490	0.7543	58
0.6567	0.8708	1.1483	0.7541	57
0.6569	0.8713 0.8718	1.1477 1.1470	0.7539 0.7538	56
0.6574	0.8724	1.1463	0.7536	55 54
0.6576	0.8729	1.1456	0.7534	53
0.6578	o 8734	1.1450	0.7532	52
0.6580	0 8739	1.1443	0.7530	51
0.6583	0.8744	1.1436	0.7528	50
0.6587	0.8754	1.1430	0.7526	49 48
0.6589	0.8759	1.1416	0.7522	47
0.6591	0.8765	1.1410	0.7520	46
0.6593	0.8770	1.1403	0.7518	45
0.6596	0.8775	1.1396	0.7510	-44
0.6600	0.8780 0.8785	1.1389	0 7515	43
0.6602	0.8790	1.1383 1.1376	0.7513	42 41
0.6604	0 8796	1.1369	0.7509	40
0.6607	0.8501	1.1303	0 7507	39
0 6609	o 88 06	1.1356	0.7505	38
0.6611	0.8811	1.1349	0.7503	37
0.6613	0.8816	1.1343	0.7501	36
0.6615	0.8821 0 8827	1.1336	0.7499 0.7497	35 34
0.6620	0.8832	1.1323	0.7495	33
0.6622	0.8837	1.1316	0.7493	32
0.6624	0.8842	1.1310	0.7491	31
0.6626	0.8847	1.1303	0.7490	- 30
0.6628	0.8852 0 8858	1.1296	0.7488	29
0.6631	0.8563	1.1290	0.7486	28 27
0.6635	0.8868	1.1270	0.7482	26
0.6037	0.5873	1.1270	0.7480	25
0 6639	0.8878	1.1263	0.7478	24
0.6641	0.8884	1.1257	0.7476	23
0.6644 0.6646	0.8889 0.8894	1.1250	0.7474	22
0.6648	0.3394	I.1243 I.1237	0.7472	21 20
0.6650	0.8904	1.1230	0.7468	19
0.6652	0.8910	1.1224	0.7466	18
0.6654	0.8915	1.1217	0.7464	17
0.6657	0.8920	1.1211	0.7463	16
0.6659	0 8925	1.1204	0.7461	15
0.6663	0.8931	1.1197	0.7459	14
0.6665	0.8936 0.8941	1.1191	0.7457	13 12
0.6667	0.8946	1.1178	0.7453	11
0.6670	0 8952	1.1171	0.7451	10
0.6672	O 8957	1.1165	0.7449	8
0.6674	0.8962	1.1158	0.7447	8
0.6676	0.8967	1.1152	0.7445	7
0.6678	0 8972 0.8978.	1.1145 1.1139	0.7443	5
0.6683	0.8983	1.1132	0.7439	4
0.6683	0.8988	1.1126	0.7437	3
0.6687	0.8994	1.1119	0.7435	2
0.6689	0.8999	1.1113	0.7433	1
0.6691	0.0001	1.1106	0.7431	0
Cos	Cot	Tan	Sin	<u> </u>
-		48°	1 1	

*1	3 2° 222°	*3 12°	42°		NAT	ruB	LAS		43°	*133°	1 223° *31	15 8°
'	Sin	Tan	Cot	Cos)	۱ſ	,	Sin	Tan	Cot	Cos	
0	0.6691	0.9004	1.1106	0.7431	60		0	0.6820	0.9325	1.0724	0.7314	60
I	0.6693	0.9009	1.1100	0.7430	59		I	0.6822	0.9331	1.0717	0.7312	59
2	0.6696	0.9013	1.1093	0.7428	58		2	0.6824	0.9336	1.0711	0.7310	58
3	0.6698	0.9020	1.1087	0.7426	57		3	0.6826	0.9341	1.0705	0.7308	57
4	0.6700 0.6702	0.9025	1.1080	0.7424	56		4	0.6828	0.9347	1.0699	0.7306 0.7304	56
5	0.6704	0.9036	1.1067	0.7422	55 54		5 6	0.6831 0.6833	0.9352 0.9358	1.0686	0.7302	55 54
	0.6706	0.0041	1.1061	0.7418	53	11	7	0.6835	0.9363	1.0680	0.7300	53
7 8	0.6709	0.9046	1.1054	0.7416	52	11	8	0.6837	0.9369	1.0674	0.7298	52
9	0.6711	0.9052	1.1048	0.7414	51	11	9	0.6839	0.9374	1.0668	0.7296	51
10	0.6713	0.9057	1.1011	0.7412	50		10	0.6841	0.9380	1.0661	0.7294	50
11	0.6715	0.9062	1.1035	0.7410	42		11	0.6843	0.9385	1.0655	0.7292	49
12 13	0.6717	0.9067 0.9073	1.1028	0.7408 0.7406	48		12 13	0.6845 0.6848	0.9391 0.9396	1.0649 1.0643	0.7290 0.7288	48
13	0.0719	0.9073	1.1016	0.7404	47 46		14	0.0850	0.9390	1.0637	0.7286	47
14	0.6724	0.9083	1.1000	0.7404	40		15	0.0850	0.9407	1.0630	0.7284	46 45
16	0.6726	0.9089	1.1003	0.7400	14	11	16	0.6854	0.9413	1.0624	0.7282	44
17	0.6728	'0 9094	1.0996	0.7398	43		17	0.6856	0.9418	1.0618	0.7280	43
18	0.6730	0.9099	1.0990	0.7396	42		18	0.6858	0.9424	1.0612	0.7278	12
19	0.6732	0.0105	1.0983	0.7394	41		19	0.6860	0.9420	1.0606	0.7276	41
20	0.6734	0.9110	1.0977	0.7392	40		20	0.6862	0.9435	1.0599	0.7274	40
21	0.6737	0.9115	1.0971	0.7390	39		21 22	0.6865	0.9440	1.0593	0.7272	39
22 2	0.6739 0.6741	0.9121 0.9126	1.0964	0.7388	38 37		23	0.6867	0.9446	1.0587	0.7268	38 37
24	0.6743	0.9131	1.0951	0.7385	36	11	24	0.6871	0.9457	1.0575	0.7260	36
25	0.6745	0.9137	1.0945	0.7353	35		25	0.6873	0.9462	1.0569	0.7264	35
26	0.6747	0.9142	1.0939	0.7381	34		26	0.6875	0.9468	1.0562	0.7262	34
27	0.6749	0.9147	1.0932	0.7379	33		27	0.6877	0.9473	1.0556	0.7260	33
28	0.6752	0.9153	1.0926	0.7377	32		28	0.6879	0.9479	1.0550	0.7258	32
20	0.6754	0.9158	1.0919	0.7375	31		29 20	0.6881	0.9484	1.0544	0.7256	31
30	0.6756	0.9163	1.0913	0.7373	30		30	0.6884	0.9490	1.0538	0.7254	30
31	0.6758 0.6760	0.9169 0.9174	1.0907	0.7371	29 28		31 32	0.6886	0.9495	1.0532	0.7252	29 28
33	0.6762	0.9179	1.0894	0.7367	27		33	0.6890	0.9506	1.0519	0.7248	27
34	0.6761	0.0185	1.0888	0.7365	26		34	0.6892	0.0512	1.0513	0.7216	26
35	0.6767	0.9190	1.0881	0.7363	25		35	0.6894	0.9517	1.0507	0.7244	25
36	0.6769	0.9195	1.0875	0.7361	24	11	36	0.6896	0.9523	1.0501	0.7242	24
37	0.6771	0.9201	1.0869	0.7359	23		37	0.6898	0.9528	1.0495	0.7240	23
38 39	0.6773 0.6775	0.9206	1.0862	0.7357	22		38 39	0.6900	0.9534	1.0489	0.7238	22
40	0.6777	0.9212	1.0850	0.7355	21 20		40	0.6903	0.9540	1.0477	0.7234	21 20
41	0.6779	0.9217	1.0843	0.7351	10		41	0.6007	0.9551	1.0470	0.7232	10
42	0.6782	0.9228	1.0837	0.7349	18		42	0.6909	0.9556	1.0464	0.7230	18
43	0.6784	0.9233	1.0831	0.7347	17		43	0.6011	0.9562	1.0458	0.7228	17
44	0.6786	0.9239	1.0824	0.7345	16		44	0.6913	0.9567	1.0452	0 7226	16
45	0.6788	0.9244	1.0818	0.7343	15		45	0.6915	0.9573	1.0446	0 7224	15
46	0.6790	0.9249	1.0812	0.7341	14		46	0.6917	0.9578	1.0440	0.7222	14
47	0.6792	0.9255	1.0805	0.7339	13		47 48	0.6919	0.9584	1.0434	0.7220 0.7218	13
40	0.6794	0.9260	1.0799	0.7337	12 11		40	0.6921	0.9590	1.0428	0.7218	12 11
50	0.6799	0.9271	1.0786	0.7333	10		50	0.6924	0.9601	1.0416	0.7214	10
51	0.6801	0.9276	1.0780	0.7331		11	51	0.6928	0.9606	1.0410	0.7212	
52	0.6803	0.9282	1.0774	0.7329	8	11	52	0.6930	0.9612	1.0404	0.7210	8
53	0.6805	0.9287	1.0768	0.7327	7		53	0.6932	0.9618	1.0398	0.7208	7
54	0.6807	0.9293	1.0761	0.7325	6		54	0.6934	0.9623	1.0392	0.7206	6
55 56	0.6809 0.6811	0.9298	1.0755	0.7323	5	11	55 56	0.6936	0.9629	1.0385	0.7203	5
-	0.6811	0.9303	1.0749	0.7321	4		57	0.6938	0.9634	1.0379	0.7201	4
57 58	0.6814	0.9309	1.0742	0.7319	3	11	58	0.6940 0.6942	0.9640 0.9646	1.0373 1.0367	0.7199 0.7197	32
59	0.6818	0.9320	1.0730	0.7316	1		59	0.6942	0.9651	1.0361	0.7197	i
ĥÓ	0.6820	0.9325	1.0724	0.7314	Ō		60	0.6947	0.9657	1.0355	0.7193	ō
_	('os	Cot	Tan	Sin	· ·	11		Cos	Cot	Tan	Sin	· ·
<u>لي</u> ا					N	ιL			1		1	<u> </u>
*137° 227° *317° 47° NATURAL 46° *136° 226° *316°												

1	NATURA	ь 4	4 ° *13	4° 224°	*314°				
1	Sin	Tan	Cot	Cos					
0	0.6947	0.9657	1.0355	0.7193	60				
I	0.6949	0.9663	1.0349	0.7191	59				
2 3	0.6951	0.9668 0.9674	1.0343 1.0337	0.7189 0.7187	58 57				
4	0.6955	0.9679	1.0331	0.7185	56				
5	0.6957	0.9685	1.0325	0.7183	55				
ő	0.6959	0.9691 0.9696	1.0319 1.0313	0.7181 0.7179	54				
78	0.6963	0.9702	1.0307	0.7177	53 52				
.9	0.6965	0.9708	1.0301	_0.7175	51				
10	0.6967 0.6970	0.9713	1.0295	0.7173	50				
11	0.0970	0.9719 0.9723	1.0283	0.7169	49 48				
13	0.6974	0.9730	1.0277	0.7167	47				
14	0.6976	0.9736	1.0271	0.7165	46				
15 16	0.6978 0.6980	0.9742 0.9747	1.0205	0.7163 0.7161	45 44				
17	J.6982	0.9753	1.0253	0.7159	43				
18	0.6984	0.9759	1.0247	0.7157	42				
19 20	0.6986 0.6988	0.9764	1.0241	0.7155	41				
20	0.0990	0.9770 0.9770	1.0235	0.7153	40 39				
22	0.6992	0.9781	1.0224	0.7149	38				
23	0.6995	0.9787	1.0218	0.7147	37				
24	0 6997 0 6999	0.9793	1.0212 1.0200	0.7145	36				
25 26	0.7001	0.9804	1.0200	0.71.43 0.71.41	35 34				
27	0.7003	0.9810	1.0194	0.7139	33				
28	0.7003	0.9816	1.0188	0.7137	32				
29 30	0.7007 0.7009	0.9821	1.0182	0.7135	31 30				
31	0.7011	0.9833	1.0170	0.7130	20				
32	0.7013	0.9838	1.0104	0.7128	28				
33	0.7015	0.9844	1.0158	0.7126	27				
34 35	0.7017 0.7019	0.9850	1.0152	0.7124 0.7122	26 25				
36	0.7022	0.9861	1.01.11	0.7120	24				
37	0.7024	0.9867	1.0135	0.7118	23				
38 39	0.7026 0.7028	0.9873 0.9879	1.0129 1.0123	0.7116	22				
40	0.7030	0.9884	1.0117	0.7112	20				
41	0.7032	0.9890	1.0111	0.7110	19				
42 43	0.7034 0.7036	0.9896	1.0105	0.7108	18				
43	0.7038	0.9907	1.0004	C.7104	17 16				
45	0.7040	0.9913	1.0088	0.7102	15				
46	0.7042	0.9919	1.0082	0.7100	14				
47 48	0.7044	0.9925	1.0076	0.7098	13 12				
49	0.7048	0.9936	1.0064	0.7094	11				
50	0.7050	0.9942	1.0058	0.7092	10				
51 52	0.7053 0.7055	0.9948	1.0052	0.7090	8				
52 53	0.7055	0.9954	1.0047	0.7088	7				
54	0.7059	0.9965	1.0035	0.7083	6				
55	0.7061	0.9971	1.0029	0.7081	5				
56	0.7063 0.7063	0.9977	1.0023	0.7079	4				
57 58	0.7005	0.9988	1.0012	0.7077	32				
59	0.7069	0.9994	1.0006	0.7073	I				
60	0.7071	1.0000	1.0000	0.7071	0				
	Cos	Cot	Tan	Sin	<u> '</u>				
•135° 225° *315° 45° NATURAL									

116