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PREFACE

THE
purpose of this book is to present, in a single

volume, the essentials of Trigonometry and Analytic

Geometry that a student might need in preparing for a

study of Calculus, since such preparation is the main

objective in many of our freshman mathematics courses.

However, despite the connection between Trigonometry
and Analytic Geometry, the author believes in maintaining
a certain distinction between these subjects, and has

brought out that distinction in the arrangement of his

material. Hence, the second part of the book supple-
mented by the earlier sections on coordinate systems,

found in the first part would be suitable for a separate
course in Analytic Geometry, for which a previous knowl-

edge of Trigonometry is assumed.

The oblique triangle is handled by means of the law of

sines, the law of cosines, and the tables of squares and

square roots. However, the usual law of tangents and the r

formulas are included in an additional chapter,
"
Supple-

mentary Topics."

There is included in the text abundant problem material

on trigonometric identities for the student to solve.

The normal form of the equation of a straight line is

derived in as simple a manner as possible, and the per-

pendicular distance formula is similarly derived from it.

The conies are defined in terms of focus, directrix, and

eccentricity; and their equations are derived accordingly.

In the chapter
" Transformation of Coordinates

"
are

discussed the general equation of the second degree and

the types of conies arising therefrom. An attempt has been

made to present rigorously, but without too many details,

the material necessary for distinguishing between the types
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of conies by means of certain invariants, which enter

naturally into the discussion. Although this chapter may
be omitted from the course, it is well included if time

permits.
ATHERTON H. SPBAGUE

Amherst College
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CHAPTER I

LOGARITHMS

1. Exponents. Since a knowledge of the theory of

exponents is essential for a clear understanding of loga-

rithms, we shall review briefly that theory. By 5 3 we mean

5X5X5.
By a3 we mean

a X a X a.

By aw
, provided m is a positive integer, we mean

a X a X a ... to m factors.

We call a the base and m the exponent.

Consider the product of 5 3 X 5 4
.

By this we mean

(5 X 5 X 5) (5 X 5 X 5 X 5)

or

5 X 5 ... to seven factors

or

5 7
.

Similarly, am an equals

(a X a . . . to m factors) (a X a ... to n factors).

Or:

a X a . . . to m + n factors = am+n .

It is evident that this process gives the law:

The product of two or more quantities with a common base

equals a quantity with the same base and an exponent equal

to the sum of the exponents of the various quantities.
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Now consider

I
5

5 8
'

By this we mean

that is, the number 5 with an exponent equal to the differ-

ence of the exponent of the numerator and that of the

denominator:

5 5"" 3
.

Or, in general, if m is greater than n> then

am _ <ji X i . . . to m factors

an fi X j* . . . to n factors

= a X a . . . to w n factors

Hence we have the law:

The quotient of two quantities with a common base equals

a quantity with the same base and an exponent equal to the

difference of the exponent of the numerator and that of the

denominator.

Now consider

5!

5 6
'

Xft Xft ,

However, if the above law is to hold,

1 = 5- = 5-

It is quite apparent, therefore, that 5~2 does not imply

5 X 5 ... to 2 factors
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(which is meaningless), but is a symbol for

5*'

Similarly, if ra is less than n, then

is a symbol for

Hence we shall define a m
,
when m is greater than (that is,

m positive) to be equal to

J_
am

'

In particular, consider

^
an

'

where m equals n; that is,

aT

am
'

By the above law this equals

= 1.

But we know that

a*

am

Therefore, for consistency, we define a to be equal to 1.

Now let us see what we mean by a quantity with a

fractional exponent. First, what do we mean by the

symbol V? We mean that quantity which multiplied

by itself gives 3. Let \/3 =
3*, and determine x. We

have
3* 3* =

3,

or
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Then
2x = 1.

Therefore:

*-*.

Hence we define 3M to equal

vs.

In general, we define am/n as follows :

am/n = v^ = (V^)
m

.

One fundamental law of exponents remains to be con-

sidered. Take (5
3
)
2

. By our first law,

. (5
3
)
2 =

(5
3
)(5

3
)
= 5 6

.

Similarly,

(a
m

)

n = (a
m
)(a

m
) . . . to n factors

__
^m+m-4- ... to n term*

= anm

= amn .

From these computations we have the law:

// a quantity with a given base and exponent is raised to

a power, the result is a quantity with the same base and an

exponent equal to the product of the two exponents.

The application of all three laws is allowable for frac-

tional exponents, positive and negative, as well as for posi-

tive and negative integral exponents.

Problems

1. Find the value of: (243)-*; ^8*; (- T-b)
H

; (742);

(* + 8y - 3); 1~".

2. Express with positive exponents only:

3. Express without any denominator:

2x~Hy*x*
3-VoT 2

'
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4. Solve: (a) x* - 4; (6) ** - 1.

5. Solve:

(a) 7* = 49. (c) 27* = 3. (e) 27' -
4.

(6) 21 = 8. (d) 27Z = 9. (/) 27* = J.

6. Solve:

(a) 10* = 1000. (d) 10' = 1. (g) 10* = .001.

(6) 10* = 100. (e) 10* = .1 (h) 10' = .0001.

(c) 10* = 10. (/) 10* = .01. (t) 10- = .00001.

7. Solve: 2" - 6 -2* + 8 = 0.

8. Solve: 9 3 2x - 244 3X + 27 = 0. (Answer: x = -2
or 3.)

9. Simplify:

'

/ 5
+ 16-* +^ + (-2)-*.

10. Simplify: (3
n+ 2 + 3 3

n
) -s- (9

- 3n+ 2
).

2. Definition of a logarithm. Consider: 7 2
equals 49.

Observe that 2 is the exponent of the power to which 7

must be raised to give 49. We shall now, by means of a

definition, write this expression in another form. We define

the logarithm of 49 to the base 7 to be equal to 2. Or,

expressed in symbols,

Iog 7 49 = 2.

Similarly, since 8 2
equals 64, we have

logs 64 =
2;

and since 2 3
equals 8, we have

Iog 2 8 = 3.

In general, if 6* equals N, we have

log* N - x]

and the general definition:

The logarithm of a number N to the base b is the exponent
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of the power to which the base 6 must be raised to give

the number N.

Example

Find Iog2 64.

Let Iog2 64 = x.

Then 2* = 64,

2* = 2 6
,

.
x = 6.

Therefore: Iog2 64 = 6.

Problems

Find:

1. logs 27. 5. Iog4 64. 9. logio 1000. 13. log .1.

2. Iog27 3. 6. Iog 9 27. 10. logio 100. 14. logio .01.

3. logs ^. 7. Iog27 9. 11. logio 10. 16. logio .001.

4. logs 16. 8. Iogi25 5. 12. logio 1. 16. logio .0001.

3. Laws of logarithms. There are three important laws

of logarithms which are immediate consequences of the

three laws of exponents and the definition of a logarithm.
The first law is, given the numbers M and N:

(MN) = log& M + log*, N.

Proof

Let log& M =
x,

logb N =
y.

Then b* = M,
by = N.

(Since we are interested in the logarithm of the product MN, we
form that product.)

Hence: MN = b
x - by

;

or: MN = b*^.

In logarithmic form,

logb MN =*= x + y

=
Iog6 M + logb N.
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The second law is :

M
log*,

=
logb M -

logb JV.

Proof

As before, let logb M =
x,

logb N =
y.

Then

Hence:

or:

In logarithmic form,

b
x = M,
by = N.

M = 6^
N

~
W'

The third law is :

=
log& If log& N.

= p logb M

Proof

Let logb M = x.

Then b
x = M.

Hence: Mp = bpx .

In logarithmic form,

logb Mp
px

= p logb M.

We state these laws as follows :

Law 1. The logarithm of the product of two or more

numbers to the same base is the sum of the logarithms of the

respective numbers.
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Law 2. The logarithm of the quotient of two numbers to

the same base is the difference of the logarithm of the numerator

and the logarithm of the denominator.

Law 3. The logarithm of a number raised to a power is the

product of the exponent of the power and the logarithm of the

number.

It is quite apparent that law 3 handles the logarithm of

the root of a number.

Problems

1. Write in expanded form:

1

log&

2. Write in contracted form: 2 log& x + \ logfe y logft xy*.

3. Determine which of the following symbols equals 2 log& x:

(a) Iog6
2
z. (6) logbz

2
. (c)

4. Common logarithms. For numerical computation it

is desirable that a universal base be employed, and the

most convenient base to use is the base 10. Logarithms
with base 10 are called common, or Briggs, logarithms.

(It may be stated, however, that in higher mathematics

the base used is the irrational number e = 2.71828 . . . .)

It is understood that in this text the base is 10 unless other-

wise stated.

Let us construct a miniature table of logarithms by con-

sidering various powers of 10.
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1(T 2 =
.01; hence, log .01 = -2

10~3 =
.001; hence, log .001 = -3

10~ 4 = .0001; hence, log .0001 = -4

Now suppose we wish the logarithm of a number not

given here, say 386. Obviously since 386 is between 100

and 1000, the log of 386 is between 2 and 3
;
that is, 2 plus a

fraction less than 1. This fraction, in decimal form, is

given in the tables; it is found to be .5866. Hence:

log 386 = 2.5866.

Or:

JQ2.5866 ^

Now suppose we wish the log of 38.6. Since this number
is between 10 and 100, its log is 1 plus a fraction; from the

tables we find the fraction to be the same as that noted

above
;
that is, .5866. Hence :

log 38.6 = 1.5866.

From these computations we draw the following con-

clusions: The logarithm of a number is composed of two

parts, an integral part and a fractional or decimal part.

We call the integral part, the characteristic, and the frac-

tional part, the mantissa. For a given number, a shift in

the position of the decimal point changes the characteristic

but does not change the mantissa.

The characteristic of the log of 386 was found to be 2.

It is quite apparent that the characteristic of the log of

every number between 100 and 1000 is 2; that is, the

characteristic of the log of every number with three digits

to the left of the decimal point is 2. And it is not difficult

to see that the characteristic of the log of a number greater

than 1 is always numerically one less than the number of

digits to the left of the decimal point.

Now let us consider the logs of positive numbers less than

1. Consider log .00386. From our miniature table, since

.00386 is between .001 and .01, log .00386 is between -3
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and 2; that is, 3 plus a positive fraction less than 1,

or, 3 plus .5866 which we write as 3.5866. Hence:

log .00386 = 3.5866.

The characteristic is 3, a negative number and numeri-

cally one more than the number of zeros immediately to

the right of the decimal point. In general the character-

istic of the log of a positive number less than 1 is negative
and numerically one more than the number of zeros immedi-

ately to the right of the decimal point. In the latter

instance we may always, if we prefer, assume the decimal

point to be in a convenient position, compute the charac-

teristic of the log of that number, and then shift the decimal

point to its proper position and revise the characteristic

by counting.
6. Use of the logarithmic tables. Suppose we wish log

726. The line from our tables is

N|Q|l|2|3|4|5l6l7|8|9~
72

|

8573
|
8579 I 8585 I 8591 I 8597

|
8603

|
8609

|
8615 I 8621

|

8627

The characteristic is 2. The mantissa is found as follows :

Look under N for the first two digits, 72. Then, since our

third digit is 6, our mantissa is on the line of 72 and directly

under 6. It is .8609. Hence:

log 726 = 2.8609.

Or, suppose we know that the log of a number N is

1,8591 and we wish to find N. We look for the number

corresponding to the mantissa 8591 and observe it is 723.

Then, since the characteristic is 1, the number N must have

two digits to the left of the decimal point. Therefore:

N = 72.3.

The process of finding a number N when log N is given
is obviously the inverse process of finding a log. N we
call the antilogarithm. In the process of finding an anti-

logarithm, the characteristic simply indicates the position
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of the decimal point. And it is apparent that, for a positive

or zero characteristic, the resulting antilogarithm has one

more digit to the left of the decimal point than the numerical

value of the characteristic; and that, for a negative char-

acteristic, the antilogarithm has one less zero immediately
to the right of the decimal point than the numerical value

of the characteristic. Thus, if log N equals 3.8591, then

N = .00723.

Problems

1. Find the logarithms of the following:

(a) 382. (e) 382 X 10~ 6
. (i) 100.

(b) 3.82. (/) 4.61. (j) 10 8
.

(c) 38,200. (g) .000279. (fc) .0243.

(d) 382 X 10 6
. (h) .00963. (1) 10~ 2

.

2. Find the antilogarithms of the following :

(a) 2.4829. (d) 1.7050. (jr) 3.9624.

(6) 1.4829. (e) 2.8808. (h) .8306.

(c) 0.4829. (/) 1.9763. (i) 2.0000.

6. Interpolation. The logarithms of all numbers of

three digits, preceded or followed by any number of zeros,

can be found in our tables by the process described in

Section 5. We shall now show how, by interpolation, we

can find logarithms of numbers of four digits.

Consider log 72.63. The tables give us log 72.60 and

log 72.70. Hence we have:

log 72.60 = 1.8609

log 72.63 =
(?)

log 72.70 = 1.8615

We reason as follows: The number 72.63 is three-tenths of

the way from 72.60 to 72.70. Hence, log 72.63 is three-

tenths of the way from log 72.60 to log 72.70; that is,

three-tenths of the way from 1.8609 to 1.8615. Sub-

tracting 1.8609 from 1.8615, we find that the distance
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between the two is 6 units. The desired logarithm is

therefore :

1.8609 + .3X6 units = 1.8609 + 1.8 units

= 1.8609 + 2 (approx.) units

= 1.8611.

Hence :

log 72.63 = 1.8611.

Similarly,

log 726.3 = 2.8611,

and so on.

Find log 384.2.

log 384.0 = 2.5843

log 384.2 =
(?)

log 385.0 = 2.5855

Log 384.2 is two-tenths of the way from 2.5843 to 2.5855.

The distance between them is 12 units.

.2 X 12 = 2.4

= 2 (approx.).

Hence :

log 384.2 = 2.5845.

In like manner, interpolation is used in finding anti-

logarithms of numbers not given in the tables. Consider

antilog 2.7463. We look in the tables for the two mantissas

nearest to 7463, and find 7459 and 7466. Hence, disre-

garding temporarily the correct position of the decimal

point, we have :

antilog 7459 = 5570

antilog 7463 =
(?)

antilog 7466 = 5580

As before, antilog 7463 must be the same proportion of

the way between 5570 and 5580 as 7463 is between 7459
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and 7466. We first find what proportion this is. The
distance from 7459 to 7466 is 7 units. The distance from

7459 to 7463 is 4 units. Hence, 7463 is four-sevenths of

the way from 7459 to 7466. Hence, antilog 7463 is four-

sevenths of the way from 5570 to 5580. Therefore :

antilog 7463 = 5570 + f X 10 units

= 5570 + * units

= 5570 + 6 (approx.) units

- 5576.

Hence:

antilog 2.7463 557.6.

Problems

1. Find the logarithms of:

(a) 3.286. (d) .0003428. (g) .01111.

(fe) 729.4. (e) 82.37. (h) .3263.

(c) 68.43. (/) 42.94. (i) .02438.

2. Find the antilogarithms of:

(a) 2.8531. (d) 2.8906. (g) 2.2375.

(6) 1.9276. (e) 1.8660. (h) .3770.

(c) 4.6081. (/) 1.0200. (i) .0964.

7. Applications of the laws of logarithms, and a few

tricks.

Example 1

By logarithms, find :

(24.32)(6.431)

76.47

By our first two laws of logarithms, the log of the required

number N may be expressed as follows:

log N =
log 24.32 + log 6.431 -

log 76.47.

log 24.32 = 1.3860

log 6.431 0.8083
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Therefore: log numerator = 2.1943

log 76.47 1.8835

Subtracting, log N = .3108

Hence: N = 2.045.

No tricks are necessary in solving the above problem,
but suppose the problem reads:

Find:

(24.32) (6.431)

764.7

Then log numerator = 2.1943

log 764.7 = 2.8835

log N =
(?)

The solution will involve a negative number. Subtracting cor-

rectly, we have:

log N = T.3108.

However, there is an easier process for solving this

problem.

Write 2.1943 as: 12.1943 - 10.

Then log numerator = 12.1943 - 10

log 764.7 = 2.8835

Subtracting, log N = 9.3108 - 10

Or, as above, log N = T.3108.

Anticipating negative characteristics and writing them
in this manner will be found a very useful practice. From
this point in the text we shall write negative characteristics

thus.

Suppose we wish

when log N\ equals 9.3241 10, and log JVi equals
9.4762 10. In this case, the following is the solution:

Write log N l as: 19.3241 - 20.
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Then log NI - 19.3241 - 20

log #j = 9.4762 - 10

Subtracting, log
- = 9.8479 - 10.

Example 2

Find A^28.64 by logarithms.

By our third law of logarithms,

log ^28.64 =
log (28.64)

K

= f log 28.64

log 28.64

Again no tricks are necessary. But consider the fol-

lowing:

Find ^.0002864.

log .0002864 6.4570 - 10
Then _ . _

= 2.1523 - 3i

This answer is a bit confusing, however, since we are

left with a fractional characteristic. The trouble lies in

the fact that 10 is not exactly divisible by 3. Hence, the

following is a better solution, since the answer can be

handled more readily.*

* These two results may be shown to be the same, as follows:

2.1523 - 34 - 2.1523 - 3.3333

- 12.1523 - 10 - 3.3333

8.8190 - 10.
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_
ti log .0002864 26.4570 - 30

Wnte-_- as: -_--

Then
3

Similarly, consider the following:

Solve:

log JV _ 8.2869 - 10

4
~ "

4

Write 8.2869 - 10 as: 38.2869 -
40,

and so on.

Example 3

Find the amount to which $100 will grow in 10 years if the

interest is compounded semi-annually at 6 per cent.

If the interest were compounded annually, we should have at

the end of one year:

$100(1.06);

and at the end of 10 years:

$100(1.06)
10

.

If the interest is compounded semi-annually, we shall have at the

end of six months :

$100(1.03);

and at the end of one year:

$100(1.03)
2

;

that is,

/ .06\ 2

$100^1
+

)

Hence, at the end of 10 years we shall have:

110

or:

$100(1.03)
20

.
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Now, letting x equal the amount, we have the following :

log x =
log 100 + 20 log 1.03

= 2.0000 + 20(.0128)

= 2.2560.

19

Therefore:

Our answer is:

x = 180.3.

$180.30.

Example 4

Solve: 28.62* = 684.9.

Taking logs of each side, we have the following:

log 28.62* = log 684.9

x log 28.62 = log 684.9.

log 684.9
Therefore: x =

log 28.62

= 2 '8356
~~

1.4567

= 1.947.

Problems

1. Find:

(2.382) (69.84)
(a)

(4236) (.02438)
(/) (328.2) V.004691.

, N (1.286)
2
(91.34)'

?i

(c) (3.461)
8

.

3
(7-241) (62.86)

296.3

(1.246)
2

98.77
'

V 98857

(72.39)(1.006)
2

-V/STJTS
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2. Find the amount to which $6000 will grow in 5 years if the

interest is compounded quarterly at 4 per cent.

3. Solve: 4.287* 52.39.

4. Find: (12.48)^
5. Prove: Iog N = log& N -

Iog b.

6. Prove: loga b log& a = 1.



CHAPTER II

THE TRIGONOMETRIC FUNCTIONS

8. Angles. Suppose a line OX is revolved about the

point until it takes the position OP (Figure 1). An
angle XOP is then generated. We call OX the initial

side of the angle, and OP the terminal side. The angle

may be denoted by the single letter 0. For the moment
we shall consider as acute.

initial side

Figure 1. Figure 2

9. Trigonometric functions of an angle. Let us take

any point on the terminal side and drop a perpendicular

to the initial side (extended if necessary). A right triangle

is then formed containing d (Figure 2), with legs x and y,

and hypotenuse r. Obviously the lengths x, y, and r are

determined by the position of the point chosen, but the

ratios of any two of the quantities x, y, r are unique for a

given 0. There are six such ratios, called the six trig-

onometric functions of an angle 6] and they are defined as

follows :

sine 6

cosine 6

tangent 8

y opposite side
= sin B = - = ~

7
r hypotenuse

x adjacent side
= cos = - =

:
r hypotenuse

y opposite side

x adjacent side
tan

21
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cosecant

secant 6

CSC = ~

V

sec = -

hypotenuse

opposite side

hypotenuse

adjacent side

x adjacent side
cotangent = cot = - =

y opposite side

From these definitions and the law of Pythagoras, all

six functions of an acute angle 6 can be found if any one

function is known. For example, suppose we are given

. A 3
sm 6 = -

o

Since

construct a right triangle with y = 3 and r = 5, as in

Figure 3. Then
X * = r 2 _

y
2

= 25-9
= 16.

Therefore :

x = 4.

Then we have:

. , 3
sm = -

5

fl
4

cos = -

3

4'

3

3'

tan

esc

Figure 3. a
5

sec =
7-
4

4
cot -

o
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Problems

1. Given Figure 2 (see page 21) :

(a) Express x in terms of cos 6 and y 01; r.

(b) Express y in terms of cdt 6 and x or r.

(c) Express r in terms of sin 6 and x or y.

(d) Express r in terms of esc 6 and x or y.

2. Given a right triangle with hypotenuse c, opposite side 6,

adjacent side a; find all functions of 6 for the following:

(a) a =
3, 6 =

4, c = 5.

(6) a =
5, 6 =

12, c = 13.

(c) a =
1, 6 =

2, c = \/5.

(d) a =
2, 6 = 5, c = V29.

3. Given cos =
if; find sin 0.

4. Given esc =
;
find tan 0.

6. Given tan =
1; find cot 0.

6. Given cot = A/3; find sin 0.

7. Given sin =
-7=.; find sec 0.

V2

10. Functions of 30, 46, 60. The functions of 30,

45, and 60 can be found from geometric considerations.

We shall find first the functions of 45. If 6 = 45,

then, from plane geometry, the right triangle in Figure 2 is

isosceles, and x =
y. Hence we have immediately:

In the right triangle in Figure 4,

x = 1 and y = 1; and we have

r = \/2. Consequently we have:

1
sin 45 =

oos45

tan 45

\/2

1

X/2

1

1

Figure 4.
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csc 45 = \/2

sec 45 = \/2

cot 45 = 1

We shall next find the functions of 30. If = 30, as

in Figure 5, then, from plane geometry (Figure 2), r = 2y.

Hence :

and

In the right triangle in Figure 5, y = 1 and r = 2; and we
have x = \/3. Consequently we have:

sin 30 = -

cos 30
V3
2

1

VF

Figure 6.

tan 30

csc 30 = 2

sec 30 = -4^V3
V3cot 30

It is quite evident from the above explanations that the

functions of 60 can be computed from Figure 5; but since

the 60 angle may come at the base, we have added Figure 6.

Consequently we have:

V3
sin 60 =

cos 60
1

2
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/60

1

Figure 6.

tan 60

csc 60 =
p.Vs

sec 60 = 2

cot 60 =
-7=.Va

The above eighteen functions are im-

portant because, since the functions are

computed geometrically, no tables are

necessary for computations with them

and, hence, the functions furnish material for a host of

problems in many branches of science. We recommend
that the student memorize the two basic, simple relations

that follow :

(1) sin 30 = i

(2) tan 45 = 1

since from these two relations the remaining sixteen rela-

tions can be computed readily.

11. Functions of (90 8). In a comparison of the

functions of 30 and 60, it is observed that

sin 30 = cos 60

cos 30 = sin 60

csc 30 = sec 60

and so on; that is, the functions of 30 are the corresponding
co-functions of 60. This conclusion suggests a relation

between the functions of any acute angle 6 and the corre-

sponding co-functions of its complement.
We have, in Figure 7,

sin = - = cos (90
-

0)
c

cos 6 = - = sin (90
-

6)
c

and so on.
6

Figure 7.
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Hence we have:

Theorem. Any function of an acute angle 6 equals the

corresponding co-function of (90 0), and any function of

(90 0) equals the corresponding co-function of 6.

12. Tables of trigonometric functions. As illustrated in

Section 10, the trigonometric functions of 30, 45, and

60 can be computed geometrically. By more advanced

methods the trigonometric functions of other acute angles
have been computed and tables have been made, the use

of which is similar to that of logarithmic tables.- Let us

take two typical contiguous lines from our tables.

These two lines give us the sine, cosine, tangent, and

cotangent of 38, 38 10', 52, and 51 50', as well as the

logs of these functions, a characteristic 9 standing for

9 10, and so on. The tables are so arranged that, for

angles from to 45, we read from the left and from the

top, working down. For angles from 45 to 90, we read

from the right and from the bottom, working up. For

example, the sine of 38 is .6157, and the sine of 52 is

.7880. Observe that the cosine of 52 is .6157, and the

cosine of 38 is .7880. Sin 38 = cos 52 according to

Section 11, since 38 and 52 are complementary angles.

Similar results obtain for the tangent and the cotangent.
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There are tables of secants and cosecants, but we shall not

need them in our work.

The function tables in this book are so arranged, with

intervals of 10 minutes, that interpolation is practically

like interpolation in logarithms. Suppose, for example,
we wish sin 38 4'.

sin 38 = .6157

sin 38 4' =
(?)

sin 38 10' = .6180

Sin 38 4' is four-tenths of the way from .6157 to .6180.

Therefore :

sin 38 4' - .6157 + .4(23) units

= .6157 + 9 units

= .6166.

The tangent is similarly handled.

The cosine of an angle, however, decreases as the angle

increases, and so is handled a bit differently. Consider

cos 38 4'.

cos 38 = .7880

cos 38 4' =
(?)

cos 38 10' = ,7862

Cos 38 4' is four-tenths of the way from .7880 to .7862.

Therefore :

cos 38 4' = .7880 - .4(18) units

= .7880 - 7 units

= .7873.

Observe that we have subtracted instead of added.

The cotangent is handled similarly to the cosine.

Problems

1. Prove:

(a) sin 60 = 2 sin 30 cos 30.

(6) sin 30 = sin 60 cos 30 - cos 60 sin 30.



28 PLANE TRIGONOMETRY

'-=?
(d) cos 30 =

2

tan 60 - tan 30
(e) tan 30 - - ^ 6QO^^
2. Solve for 6 in the following equations:

(a) sin 6 cos 6.

(6) cos = \/3 sin 0.

(c) cos (90
-

S)
=

^.

3. Find:

(a) sin 29 36'. (c) sin 62 13'. (e) cos 71 33'.

(6) tan 53 27'. (d) cos 40 42'. (/) cot 42 26'.

4. Find:

(a) log sin 19 4'. (c) log tan 9 46'. (e) log sin 62 17'.

(6) log cos 40 17'. (d) log cot 48 4'. (/) log cos 72 8'.

5. Find the angle (a) whose sine is .5883; and (6) whose cosine

is .4072.

6. Find the angle (a) whose log tan is 9.7726 10; and (6)

whose log cot is 1.6000.



CHAPTER III

SOLUTION OF THE RIGHT TRIANGLE

13. Right triangle. If we are given a right triangle and
therefore know that one angle is 90 and we are given, in

addition, either of the other angles and any side, or any
two sides, the triangle is determined uniquely. It is the

purpose of this chapter to show how the trigonometric

functions enable one to find the missing parts of a right

triangle, when the above information is given. We call

this process solving the right triangle.

Example 1

Given the right triangle ABC (Figure 8), with c = 100 and

A = 26 14'; solve the triangle.

B = 90 - 26 14'

= 63 46'

- = sin A
c

.'. a = c sin A
= 100 sin 26 14'

= 100 X .4420

= 44.20

- = sin B
c

.". b c sin B
= 100 sin 63 46'

= 100 X .8970

= 89.70

Or, we might have used the following solution:

- = cos A
c

29
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.'.6 = cos A
- 100 cos 26 14'

= 100 X .8970

= 89.70

Logarithms might have been used in this problem;

however, having c = 100, as the multiplier, simplified the

problem.

Example 2

Given the right triangle ABC] find a when b = 382.6 and B =

70.
A = (90

- B)
= 20

- = tan A
b

.'. a = b tan A
With logarithms, log a =

log b + log tan A
= log 382.6 + log tan 20

log 382.6 = 2.5828

log tan 20 = 9.5611 - 10

Adding, log a = 12.1439 - 10

= 2.1439

/. a = 139.3

Example 3

Given the right triangle ABC] find A when c = 389 and a =

202.

sin A = -
c

log sin A = log a log c

= log 202 - log 389

log 202 = 12.3054 - 10

log 389 = 2.5899

Subtracting, log sin A = 9.7155 - 10

.'. A = 31 18
7

14. Angles of elevation and depression. The angle of

elevation of an object above the eye of an observer is defined
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as that angle which a line from the observer's eye to the

object makes with a horizontal line. Roughly it is the

angle through which the observer must elevate his eyes to

see the object. Thus, in Figure 9, if the observer's eye
is at E and the object is at 0, the angle of elevation is 9.

Figure 9. Figure 10.

If, on the other hand, the observer is above the object,

the corresponding angle that is, the angle through which

the observer must depress his eyes is called the angle of

depression of the object. Thus, in Figure 10, if the obser-

ver's eye is at E and the object is at

0, the angle of depression is 6.

Example

A tower stands on the shore of a river

207.2 feet wide (Figure 11). The angle

of elevation of the top of the tower

from the point on the other shore exactly

opposite the tower is 44 24'. Find

the height of the tower.

We are given (assuming the observer's eye on the ground)

E = 44 24', and EC = 207.2. We require h.

207.2

Figure 11.

h = tan 44 24'

Hence

Adding,

207.2

log h = log 207.2 + log tan 44 24'

log 207.2 = 2.3164

log tan 44 24' = 9.9909 - 10

log h = 12.3073 - 10

= 2.3073

.'. h = 202.9
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The height of the tower, therefore, is 202.9 feet.

Problems

1. Solve the following right triangles, where C = 90.

(a) a = 2234, A = 36 19'. (/) c = 149.3, a = 26.24.

(b) b = 126.3, A = 58 44'. (g) c = 60.23, B = 68 43'.

(c) a - 1406, b = 2173. (A) c = 3204, b = 2062.

(d) a = 72.09, B = 24 33'. (i) a = 1.263, A = 80 14'.

(e) c 2434, A = 42 26'. (j) b = 2.304, A = 22 46'.

2. A ladder 41.24 feet long is so placed that it will reach a

window 34.62 feet high on one side of a street. If it is turned over

without moving its foot, the ladder will reach a window 20.28 feet

high on the other side of the street. Find the width of the

street.

3. A tower stands on the shore of a river 210.6 feet wide. The

angle of elevation of the top of the tower from a point on the other

shore directly opposite to the tower is 40 52'. Find the height

of the tower.

4. A rope is stretched from the top of a building to the ground.

The rope makes an angle of 52 36' with the horizontal, and the

building is 70 feet high. Find the length of the rope.

6. The top of a ladder 60.34 feet long rests against a wall at a

point 46.23 feet from the ground. Find the angle the ladder

makes with the ground, and the distance of its foot from the wall.

6. From the top of a hill the angles of depression of two

successive milestones on a straight, level road leading to the hill

are 5 and 15. Find the height of the hill. (HINT: Let x =

height of the hill, and y = the distance from the bottom to the

nearer milestone; then eliminate y from the two equations repre-

senting the cotangent of 15 and 5, respectively.)

7. From a point on the ground the angles of elevation of the

bottom and the top of a tower on a building are 64 17' and

68 43'. If the tower is 200 feet high, find the height of the

building.

8. Two flag poles are known to be 60 and 40 feet high, respec-

tively. A person moves about until he/find^ a position such that

the tip of the nearer pole just hides thkt of the farther. At this

point the angle of elevation of the top of the nearer pole is found
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to be 35 10'. Find the distance between the poles, and the

distance from the observer to the nearer pole.

9. A tin roof rises 4f inches to the horizontal foot. Find the

angle the roof makes with the horizontal.

10. From the top of a mountain, 2800 feet above a hut in the

valley, the angle of depression of the hut is found to be 38.
Find the straight-line distance from the top of the mountain to

the hut.

11. Find the height of a tree which casts a shadow of 80 feet

when the angle of elevation of the sun is 40.
12. From a ship's masthead 160 feet high, the angle of depres-

sion of a boat is 30. Find the distance from the boat to

the ship.

13. From the top of a cliff 150 feet high, the angles of depres-

sion of two boats at sea, each due south of the observer, are 32

and 20, respectively. Find the distance between the boats.

14. A circle is inscribed in an equilateral triangle of perimeter
90 inches. Find the diameter of the circle.

16. Find the length of a chord which subtends a central angle

of 64 in a circle whose radius is 10 feet.

16. From the foot of a post 30 feet high, the angle of elevation

of the top of a steeple is 64; and from the top of the post, the

angle of depression of the base of the steeple is 50. Find the

height of the steeple.

17. From one end of a bridge the angle of depression of an

object 200 feet downstream from the bridge and at the water line

is 23. From the same point the angle of depression of an object

at the water line exactly under the opposite end of the bridge is

16. Find the length of the bridge, and its height above the

river.

18. From a point directly north of an inaccessible peak, the

angle of elevation of the top is found to be 28. From another

point on the same level and directly west of the peak, the angle

of elevation of the top is 40. Find the height of the peak if the

distance between the two points of observation is 6000 feet.

19. A tower stands on the bank of a river. The angle of eleva-

tion of the top of the tower from a point directly opposite on the

other bank is 55. From another point 100 feet beyond this

point, the angle of elevation of the top of the tower is 28. Find

the height of the tower, and the width of the river.
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20. A tree stands upon the same horizontal plane as a house

which is 60 feet high. The angles of elevation and depression of

the top and the base of the tree from the top of the house are

40 and 35, respectively. Find the height of the tree.

21. The slope of a mountain 4000 feet high makes on one side

an angle of 10 with the horizontal, and on the other side an angle

of 12. A man can walk up the steeper slope at the rate of 2 miles

per hour, and up the easier slope at 3 miles per hour. Find the

route by which he will reach the summit sooner. How many
minutes sooner will he arrive?



CHAPTER IV

TRIGONOMETRIC FUNCTIONS OF ALL ANGLES

15. Positive and negative angles. In Sections 8 and 9,

we discussed acute angles and defined the six trigonometric
functions of acute angles. In this chapter we shall be

concerned with angles of any magnitude, positive or nega-

tive, and the trigonometric functions of these angles. We
first distinguish between positive and negative angles.

If an angle 6 is generated by a counter-clockwise rotation,

as in Figure 12, we call angle 9 a positive angle.

initial side

initial side

Figure 12.

On the other hand, if an angle 6 is generated by a clock-

wise rotation, as in Figure 13, we call angle 6 a negative

angle.

By an angle of 390, then, we mean an angle generated

by OX revolving about in a counter-clockwise direction,

making one complete revolution of

360 and moving 30 in addition,

as indicated in Figure 14.

There is a similar understanding
for negative angles greater numeri-

cally than 360, the rotation being
clockwise.

Figure 14.

16. Directed distances. Just as in the previous section

we made a distinction between positive and negative angles,

so now we make a distinction between positive and negative
35
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distances. In general we call a line segment positive if it

is generated by a point moving from left to right, as AB
in Figure 15. We indicate such a line segment by AB.

Figure 16.

If the line segment is generated by a point moving from

right to left, we call the line segment negative, and indicate

it by BA. (Observe that AB means the segment generated
from A to B, and that BA means from B to A.) Thus,
in Figure 15,

BA = -AB.

But it is desirable often to distinguish between positive

and negative distances when the

direction is neither from left to right

nor from right to left. In that case,

we choose a given direction as posi-

tive, and consider the direction di-

lgure '

rectly opposite as negative. Thus,
in Figure 16, if the direction of the arrow indicates the

positive direction, we have:

BA = -AB,
or:

AB = -BA.

It is easy to prove that, if A, B, and C are three points on

a line, then, regardless of the positions of A, B, and C,

AB -4- BC = AC.

17. CoSrdinates. Let X'X and FT be two perpendicu-

lar lines intersecting at 0. Let P be any point in the plane

of these lines. For purposes of illustration, the point P is

taken as in Figure 17. Drop AP perpendicular to OX,
and draw OP. The length OA is denoted by x, and is

called the x, or abscissa, of P. The length AP is denoted
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II

o

by y, and is called the y, or ordinate, of P. The x and y
taken together, thus (x, y), are called the coordinates of P.

Z'JT and FF are called the y
azes of the coordinates.

is called the origin, and r

the radius vector, of P. If

x is measured from left to

right, we call it positive; if x ,

from right to left, negative.

If y is measured upwards,
it is positive ;

if downwards,

negative. For conven-
ience we assume r always
to be positive.

Y '

IB. Quadrants. The Figure 17.

axes divide the plane into four parts, called quadrants,

numbered as in Figure 17. It is quite apparent then that

the following arrangement holds for the signs of the x and

y of a point in the quadrants indicated.

III IV

Thus the point (-2, 3) lies in the second quadrant.

19. Trigonometric functions of all angles. We shall

define the trigonometric functions of angles greater numeri-

cally than 90 by a process exactly like the process used in

arriving at the definitions of the functions of acute angles.

Take the vertex of a given angle at (Figure 18), and the

initial side along the re-axis. Take any point P on the
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terminal side, and drop a perpendicular to the initial side,

extended if necessary. This forms a right triangle, called

the triangle of reference which, it should be noted, how-

ever, does not contain angle 6 unless it is acute.

We define the trigonometric functions of as follows :

II

Observe that, when 6 is acute and therefore in the first

quadrant, the above definitions reduce exactly to those

given in Section 9.

X X

IV

Y
Figure 19a.

Y'

Figure 196.

Figure 19a and Figure 196 illustrate the situation

when 6 is positive and in the third and fourth quadrants,

respectively.
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It is quite apparent that, except in the first quadrant
where x, y, and r are all positive quantities, some of the

above functions may at times be negative. The following
table gives the arrangement of the signs of the functions of

angle 6 in the quadrants indicated; the signs are derived

from the table in Section 18 and the definitions in Sec-

tion 19.

Example

The sine of angle is I, and the cosine of is negative. From

Figure 20, find the other five functions.

Since sin is negative and

cos is negative, lies in the

third quadrant.

Q

Then, since sin == -
5

we have:

Therefore:
20.

But, since lies in the third quadrant, x must be negative.

Therefore: x = -4.



40 PLANE TRIGONOMETRY

Hence we have the following:

sin = -
5

4
cos = -

o

3
tan 6 = 7

4

esc e =
-f
5

sec = 7
4

4
cot 8 = -

o

Problems

1. Find in what quadrants the following angles lie: 346;
214; -120; 750; -600; -423; 542; 6000.

In the following problems, consider positive and between

and 360.

2. Given cos f, tan negative; find all functions of 6.

3. Given sec = I ,
sin negative; find all functions of 0.

4. Given cot = T\, esc 6 negative; find cos 6.

5. Given tan 6 = ^, sin 6 positive; find cos 6.

6. Given sin =
^, tan 6 positive; find cot 6.

7. Given tan 6 = |, 6 not in the first quadrant; find cos 8.

8. Given sin 6 =
J, not in the fourth quadrant; find sec 0.

9. Given esc =4; find cos 0.

10. Given tan =
1; find sin 0.

20. Functions of 0, 90, 180, 270, 360. Consider an

angle very close to (Figure 21).

It is quite evident that, when = 0, point P coincides

with A, and hence x =
r, and y = 0. Therefore:

8in0

cos = - = - = 1
r r
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tan = * - -
x x

cseO

sect)

y
(Infinity*)

x

X X
Cot = ~ = - = oo

v

an
~iO

Similarly, consider

angle 6 very close to 90

(Figure 22). When 0= Figure 21.

90, point P coincides with J5, and we have r = y, and
# = 0. Therefore:

Figure 22.

sin 90 = - = 1
r

cos 90 = - = - =

tan 90 = - = - = oo

x

esc 90 - - = 1

y

sec 90
x

cot 90 = - = - =
y y

Similarly, consider an angle very close to 180 (Figure

23). When = 180, point P coincides with A. Hence

we have y =
0, and x =

r; for x and r are equal numeri-

cally, but x is directed to the left and is therefore negative,

and r is always positive. Therefore:

* By infinity we mean that, as approaches zero, y approaches zero, and

-, that is, esc 0, increases without limit.
y
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v
sin 180 - - - - =0

r r

*-=!.-!
r r

X X

r r
r= = 00

V

= -1
x r

Figure 23. COt 180 = - = = oo

y

Similar results obtain for the functions of 270, which

are tabulated below; and it may readily be seen that the

functions of 360 are the same as the corresponding func-

tions of 0.

21. Functions of as varies from to 360. Let us,

by means of the above table, study the development of

the various functions of an angle as the angle varies from

to 360.

First, consider sin 0. Sin 6 starts at when is 0.

Then, as 6 increases to 90, sin increases to +1, taking

all values between and 1. As increases from 90 to
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180, sin decreases from 1 to 0. As increases from 180

to 270, sin 6 decreases from to 1. Finally, as 6

increases from 270 to 360, sin increases from - 1 to 0.

This process repeats itself as d continues to increase.

Figure 24.

The process may be illustrated geometrically. Let us

consider a circle of radius 1, called a unit circle (Figure 24).

Then

sin =
^
= ^ =

y.

Sin 6 may be represented by the line AP. It is quite

apparent from Figure 24 that the development of sin 6 as 6

varies from to 360 is as stated above.

Cos 6 behaves similarly. When 6 is 0, cos 6 is 1. As

8 increases from to 90, cos decreases from 1 to 0.

As 6 increases from 90 to 180, cos 6 decreases from to

1. As 6 increases from 180 to 270, cos increases

from -1 to 0. As increases from 270 to 360, cos

increases from to 1.

When is 0, tan is 0. As increases from to 90,
tan increases from to <*> . Since the tangent function is

negative in the second quadrant and very large numerically

for angles slightly larger than 90, and since it increases
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As 6 increases

oo to 0.

without limit if we approach 90 through such angles, we

say tan 90 equals oo . Hence, as increases from 90 to

180, tan 6 increases from oo to 0. As 6 increases from
180 to 270, tan increases from to + oo .

from 270 to 360, tan 6 increases from
When 6 is 0, esc 6 is oo . As increases from to 90,

esc decreases from oo to 1. As increases from 90 to

180, esc increases from 1 to oo . As increases from 180

to 270, esc increases from oo to 1. As increases

from 270 to 360, esc decreases from 1 to oo .

When is 0, sec is 1. As increases from to 90,
sec increases from 1 to oo . As increases from 90 to

180, sec increases from oo to 1. As increases

from 180 to 270, sec decreases from 1 to oo . As
increases from 270 to 360

When is 0, cot is oo .

sec decreases from oo to 1.

As increases from to 90 ,

cot decreases from oo to 0. As increases from 90 to

180, cot decreases from to oo . As increases from

180 to 270, cot decreases from + < to 0. As increases

from 270 to 360, cot decreases from to - oo .

The statement tan 90 = <*> may be illustrated geometri-

cally by means of a unit circle (Figure 25a).

AP
1

tan 6 = AP

Figure 250. Figure
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P is determined as the intersection point of a tangent to

the circle at A and the terminal side of angle 6. It is

quite apparent that, as approaches 90, the terminal side

of approaches parallelism with the tangent at A, and P
recedes indefinitely (Figure 256).

From the above discussion we see that the sine and cosine

of an angle are always between 1 and +1, or equal to 1

or + 1
;
that the tangent and cotangent may take any values;

that the secant and cosecant are never between 1 and +1,
but may take all other values, including 1 and +1.

22. Functions of (180 8) and (360 e). In the

previous section, we observed that, as 6 varied from

to 90 to 180, sin varied from to 1 to 0. It is quite

evident, then, if we consider a number between and 1

say that there is an angle in the first quadrant whose
sine is f- and that there is, also, an angle in the second quad-
rant whose sine is f . What is the relation between these

two angles? Our answer is: they must be suplementary;
that is, the sum of the two angles must equal 180. We
shall prove a general theorem regarding such angles.

Theorem:

sin (180
-

0)
= sin 0.

Proof

Given the right triangle ABO (see Figure 26), with /.XOA =

(180 -
B). Construct Z.COX equal to 0. Take OP = r = r'.

Drop a perpendicular from P to OX at M . Then the right

triangles MOP and BOA are congruent. Letter as in Figure 26.

Hence we have:

y = y>

X - -X'.
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The sine of /.XOA = (180
-

0) is *y (see Figure 26). This

y y
equals -> since y'

= y and r' = r. But -
(see Figure 26) equals

r r

sine 0. Or, restated,

sin (180
-

6)
= ^ = - = sin 6.

r r

.

'

. sin (180
-

0)
= sin 0.

Figure 26.

Similarly,

cos (180
-

0)
=

-,
=

r r
-cos

Similarly,

/.cos (180
-

0)
= -cos 0.

tan (180
-

0)
=

-,
=

-j-
= --

/.tan (180
-

0)
= -tan0.

In like fashion,
esc (180

-
0)

= esc 0,

sec (180
-

0)
= -sec 0,

cot (180
-

0)
= -cot 0.

Example

Find: sin 150; cot 135.

sin 150 = sin (180
- 30) = sin 30 =

cot 135 = cot (180
- 45) = -cot 45

-tan 0.

1.
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Similar results obtain for the functions of (180 + 0), as

indicated in the following text:

Proof

In Figure 27, we have:

Figure 27.

Hence we have the following:

sin (180 + 0)
= ~ = =

cos (180 + 0)
= ~ =

= sin

= cos

tan (180 + 0)
= -_ = = -

x' x x

csc (180 + 6)
= -esc 6

sec (180 + 0)
= -sec 6

cot (180 + 6)
= cot 6

Similarly, we have these results:

sin (360
-

0)
= -sin

cos (360
-

6}
= cos 6

tan (360
-

0)
= -tan 6

tan $
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esc (360
-

6)
- -csc

sec (360
-

0)
- sec

cot (360
-

0) -cot

From the above discussions we may state the following
theorem.

Theorem. Any function of (180 0) or (360 0)

in fact, of (n!80 0), where n is a positive integer is equal

to the same function of 0, with the sign depending upon the

quadrant in which the angle lies.

Thus:

cos 240 - cos (180 + 60)
= -cos 60

(since 240 is in the third quadrant and cosine is negative

there)

In the above proofs, was taken as acute. The theorem

holds, however, regardless of the size of 0, as does also the

information about to be obtained regarding a negative

angle.

y

Figure 28.

23. Functions of ( 0) . What relations hold between the

functions of a negative angle and the functions of the

corresponding positive angle? Consider Figure 28,
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r - r'

x = x

y = -y'

I/ V H
sin (-0) *---- _ sin $

r' r r

x x
cos ( 0)

= - = - = +cos
r r

t/ v v
tan (~0) = - = -^ = -- = -tan

csc ( 0)
= esc

sec ( 0)
= sec

cot (-0) = -cot

Problems

Example 1

Find: sin - 300.

sin - 300 = -sin 300

- -sin (360
- 60)

= -(-sin 60)

sin 60

V3
as

"^'

Example 2

Find all angles between and 360 which satisfy the equation:

2 sin 2 - 3 sin + 1 = 0.

2 sin2 - 3 sin + 1 = (2 sin -
l)(sin

-
1)
= 0.

Hence: sin =
i,

or: sin 0=1.
If sin =

i,

then = 30 or 150.

If sin 0=1,
then = 90.

Hence: = 30, 150, or 90.

1. In Problems (a) to (I), the student is requested not to use

the tables. Find:
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2. Solve the following equations to find, for the unknown
letters, all values between and 360.

C08

(c) tan 6 -\
-- = 4.
tan 6

(d) sin x H-- = 3.
sin x

(e) tan x + \/3 = 0.

(/) 3 sin 2 x - 5 sin x + 2 = 0.

(g) sin 2x = 0.

(h) 2 sin 2 x + sin x - 1 = 0.

(i) (tan
2 6 - 3) (esc

-
2)

= 0.

C;) sin 2 x = sin x.

(fc) 2 sin 2 x = \/S sin x.

(1) sin 2 ^ - 5 sin d + 6 = 0.

(m) 6 cos 2 x 5 cos x + 1 = 0.



CHAPTER V

THE OBLIQUE TRIANGLE

24. Law of sines. In Chapter III we considered the

solution of the right triangle. In this chapter we shall be

concerned with the solution of the oblique triangle, for

which we use two important laws giving relations between
the sides and the angles of such a triangle. We proceed
to the derivation of the first of these laws, called the

law of sines:

Law of Sines. The sides of a

triangle are proportional to the

sines of the angles opposite.

Consider the triangle ABC in

Figure 29. We wish to prove :

a b c

sin A sin B sin C

Proof

From C, drop h perpendicular to AB.

Figure 29.

Then sin A = ->

and

Dividing,

sin B =
a

or:

sin A
sin 5
a

sin A

h/b

h/a

b

a

sin B

Similarly, it may be shown that

a

sin A sin C
51
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or

Hence:
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sin B sin C

L.

M

In Figure 29, all the angles were taken as acute. The

law holds, however, if an angle is obtuse, as A in Figure 30.

Proof

Drop h perpendicular to c, extended to M.

sin B = -
a

A
k

sin A =7
^"^

. by the definition of the sine of
lgure "

an angle in the second quadrant.

The rest of the proof is similar to the preceding proof.

25. Applications of the law of sines. By using the law

of sines, we are enabled to solve a triangle if we are given

any two angles and a side, as in the following :

Example

Given A = 52 13', B = 73 24', c = 6293. Solve the

triangle.

C = 180' - (A + B)
= 179 60' - 125 37'

.'.C - 54 23'

a c

sin A

a =

sin C
c sin A
sin C
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log a = log c + log sin A log sin C

log 6293 - 3.7989

log sin 52 13' - 9.8978 - 10

13.6967 - 10

log sin 54 23' = 9.9101 - 10

. '.log a = 3.7866

.'. a 6118

b = c

sin B sin C

log 6 = log c + log sin 5 log sin C
log 6293 = 3.7989

log sin 73 24' = 9.9815 - 10

13.7804 - 10

log sin 54 23' = 9.9101 - 10

. '.log c = 3.8703

.'.c = 7418

Hence: C - 54 23',

a = 6118,

c = 7418.

Problems

Solve the following triangles:

1. a = 26.32, A = 46 52', B = 64 43'.

2. a = 406.2, 5 = 19 36', C = 80 52'.

3. 6 = 6601, A = 50 32', C = 100.

4. c = 32.04, A = 25 42', 5 = 40 19'.

5. c = 530, A = 46 10', B = 63 50'.

26. Ambiguous case. The other type of triangle handled

by the law of sines is that for which there are given two

sides and one angle opposite one of the given sides. This

case presents slightly more difficulty, however, because,

with the above material, there may be no triangle possible,

there may be one and one only, or there may be two

triangles possible both of which contain the given material.
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This case is therefore known as the ambiguous case.

consider a concrete illustration :

Let us

Example

Given A = 30, a =
75, b = 100.

In Figure 31, we construct on AX at A an angle of 30, with

sides AX and AM. On AM we lay off 100 units (6) from A, say
AC. With C as center and (a = 75) as radius, we swing an arc.

The number of solutions

depends on whether or not

the arc cuts AX and, if so,

where. In this particular

case, the arc cuts AX at

-X two points B f and B, both

to the right of A. Since

both triangles, ACB and

contain the given material, there are consequently two

solutions.

Obviously there will always be two solutions when the

length of a is numerically less than 6 and greater than the

perpendicular h, dropped from C. Also, there will never

be a solution if a is less than h. There will be but one

solution, a right triangle, if a equals h\ and there will be

but one solution, an isosceles triangle, if a is greater than h

and equal to b. Finally, there will be but one solution if a

is greater than h and greater than b; for, although the arc

will cut AX at two points, one will be to the left of A and

the triangle thus formed will not include A.

The matter of finding h is very simple :

Since

In Figure 31,

- = sin A,
o

h

h

b sin A.

100

50.

The above proof and explanation obtain when A is

acute. If A is obtuse, there will be one and only one

solution provided a is greater than 6, and then only.
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We may summarize our findings as follows:

Case I. Given A, a, and 6, with A acute. There will be

two solutions if 6 sin A is less than a, and a is less than 6.

There will be one solution if 6 sin A equals a, or if a equals 6,

or if a is greater than 6. There will be no solution if a is less

than b sin A.

Case II. Given A, a, and 6, with A obtuse. There will

be one solution if a is greater than 6.

In solving a triangle, the student should realize that the

only possible chance for there being two solutions is in

the case when A is acute and a is less than b. If such is the

case, the student should then find the relation between

a and b sin A, and proceed accordingly.

Example

Solve the triangle; given a = 800, b = 1200, A = 34. (See

Figure 32. This is obviously a chance for two solutions.)

C

B' B
Figure 32.

Using logs, log b = log 1200 = 3.0792

log sin A =
log sin 34 = 9.7476 - 10

log 6 sin A = 12.8268 - 10

log a =
log 800 = 2.9031

(Since log a is greater than log 6 sin A, there will be two solutions.)

We first solve triangle ABC in Figure 32.

sin B sin A

sin B
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log sin B log 6 + log sin A -
log a = 9.9237 - 10

.'. B = 57 1'

C - 180 - (A + B) = 180 - 91 1'

:. C = 88 59'

sin C sin A

log c = log a + log sin C log sin A

log 800 = 2.9031

log sin 88 59' = 9.9999 - 10

= 12.9030 - 10

log sin 34 = 9.7476 - 10

log c = 3.1554

.'. c = 1430

We next solve triangle AJ5'C, in Figure 32. Let AB' =
c', and

ZACB' = C'.

B = 57 1'

.*. B' = 180 - 57 1' = 122 59'

/. C' = /ACS' = 180 -
(122 59' + 34) = 23 1'

c' a_
sin C' sin A

log c' = log a + log sin C' log sin A

log 800 = 2.9031

log sin 23 1' = 9.5922 - 10

= 12.4953 - 10

log sin 34 = 9.7476 - 10

log c
1 = 2.7477

/. c' = 559.4

Hence, for &ABC: B = 57 1',

C - 88 59',

c - 1430;
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and, for AAS'C: B' = 122 59',

C" = 23 1',

d = 559.4.

Problems

1. Find the number of solutions; given:

(a) A = 30, b = 200, a = 101.

(6) A = 30, b = 400, a = 100.

(c) A = 30, 6 ==
600, a = 300.

(d) A = 30, 6 =
500, a = 500.

(e) A = 30, 6 = 500, a = 600.

2. Find the number of solutions; given:

(a) A = 150, b = 200, a = 150.

(b) A = 150, 6 = 200, a = 300.

(c) A = 150, b = 200, a = 200.

(d) B = 150, b = 200, a = 300.

(e) B = 150, c = 400, 6 = 300.

3. Solve the following triangles:

(a) A = 59 26', a = 7072, b = 7836.

(6) A = 140 26', a = 40.34, b = 30.29.

(c) A = 32 14', a = 464.7, 6 = 600.8.

(d) B = 47 46', b = 3247, a = 3015.

(e) C = 62 34', c = 375, a = 400.

(/) A = 65 53', a = 20.43, b = 30.32.

27. Law of cosines, and applications. There are two

other types of triangles to be considered; that is, triangles

with three sides given, or triangles with two sides and the

included angle given. These two types are handled by the

law of cosines. We proceed to its derivation.

Law of Cosines. The square of any side of a triangle

equals the sum of the squares of the other two sides diminished

by twice the product of these sides and the cosine of the included

angle.

Given the triangle ABC, in Figure 33, We wish to

prove :
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a 2 52 + C
2 __ 26C cos A

52 = a 2 + c
2 - 2ac cos B

C
2 = a 2 + b 2 __ 2a& cos C

Let us prove the first relation :

a2 = 6 2 + c
2 - 26c cos A.

C

Figure 33.

Proof

Drop a perpendicular h from C to AB at M.

Then A2 = 6 2 - AM 2

,

and h2 = a2 - MS 2
.

Equating, we have:

a2 - MB 2 = 6 2 - AM 2
,

a 2 = 6 2 + MS 2 - AM 2

MB = c - AM
or:

Then, since

and M5 2 = c 2 -

substituting, we have:

Or:

But

or

Therefore:

+ AM\

a2 = b 2 + c 2 - 2c(AM).

AM
-7 = cos A,
o

AM = 6(cos A).

a 2 = & 2 + c 2 2&c cos A.

In Figure 33, angle A was taken as acute. We shall

now show that the law holds when A is obtuse, as in

Figure 34.
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C

59

Proof

Drop a perpendicular h (equal to CM) from C to BA, extended.

As before, h 2 = 6
2 - MZ 2

,

and A 2 = a 2 - M5 2
.

Then a 2 - MS 2 = 6 2 - Ml 2
.

Hence: a 2 = 6
2 + M 2 -

= 6 2 + (MA +
= 6

2 + c
2 + 2c(MA) + Ml 2 - MZ 2

But cos A = AM

from the definition of the cosine of an angle in the second quad-
rant. However, since

AM = -MA,
MA

cos A = r~
'

MA b cos A.

a 2 = 6 2 + c
2 - 26c cos

then

Therefore:

Hence, substituting,

The other two relations may be derived in similar fashion

We may apply the law of cosines as in the two examples
below.

Example 1

Given a =
4, 6 =

5, c = 6; solve the triangle.

Since a 2 = b
2 + c

2 - 26c cos A,
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+ c' - a 8

2bc

or

25 + 36-16 45 3 n-
60
- =

6-0

=
4
=

-7500-

/. A = 41 25'.

a 2 + C
2 __ 52

Similarly, cos B =---
>

2ac

16 + 36 - 25 ^ 27 = _9_

48
""

48
~

16*

log cos B = log 9 log 16

log 9 = 10.9542 - 10

log 16 = 1.2041

log cos B = 9.7501 - 10

/. B = 55 46'.

^2 i

Jj2
_ ^2

Similarly, cos C =
2ao

16 + 25-36 5 1 ^ Prt
or -1 -- = = - = .1250.

40 40 8

.'. C = 82 49'.

As a check: A + 5 + C = 180.

Of course, as soon as we had found A, we could have used

the law of sines to find B and subtracted (A + B) from

180 to find C. But with convenient numbers, as in this

example, it is fully as easy to proceed as above.

Example 2

Solve the triangle; given a =
20, 6 =

25, C = 60.

Solving, c 2 = a 2 + 6
2 - 2ab cos C

= 400 + 625 - 2 500 $

= 1025 - 500

- 525.

.'. c 22.91.
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We can now find A and B either by the law of cosines or

by the law of sines.

It is apparent from the above examples that the law of

cosines is not particularly well adapted for the use of

logarithms. There are formulas which are better fitted for

logarithmic use, but it is the author's feeling that an intelli-

gent use of the tables of squares and square roots combined

with the law of cosines is fully as easy and does not involve

remembering a set of formulas and their derivations,

which are not particularly essential. We shall illustrate

in the following:

Example 8

Solve the triangle; given a = 20.63, 6 = 34.21, c = 40.17.

6 2 + c
2 - a 2

We have: cos A =
2bc

By the table of squares, a 2 = 425.6,

fc
2 = 1171,

c 2 = 1614.

(The interpolation is exactly the same as in logarithms.)

2359.4

2X40.17X34.21

Now we can use logarithms:

log cos A = log 2359 -
log 2 - log 40.17 - log 34.21

log 2 = .3010

log 40.17 = 1.6039

log 34.21 = 1.5341

log denominator = 3.4390

log 2359 = 13.3727 - 10

log denominator = 3.4390

log cos A = 9.9337 - 10

.'. A = 30 51'.
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We may proceed similarly to find B and C; or we may use

the law of sines. The latter procedure would probably
be easier in this example.

Problems

1. Solve the following triangles:

(a) a =
5, b =

7, c = 10.

(6) a =
4, b - 6, C = 60.

(c) a =
5, 6 =

8, C = 120.

(d) a =
12, b = 20, c = 25.

(e) a * 19.62, 6 = 28.43, c = 22.06.

(/) a = 14.72, c 25.39, B - 22 17'.

(0) a = 2032, & = 2491, c = 3824.

(h) a =
1.32, 6 =

2.63, c = 1.91.

(t) b = 2.04, c =*
3.96, A = 135 27'.

0") a = 423.1, c = 500.2, 5 = 47 43'.

2. Show that the area of a triangle may be written as one-half

the product of any two sides and the sine of the included angle.

3. Show that the radius R of the circle circumscribed about a

triangle ABC is given by

2R
sin A sin B sin C

4. Show that the area of any quadrilateral equals one-half

the product of the diagonals and the sine of one of the included

angles.

6. In a parallelogram, the sides are 6 and 15, and the smaller

vertex angles are 50. Find the lengths of the diagonals.

6. A and B are points 300 feet apart on the edge of a river,

and C is a point on the opposite side. If the angles CAB and

CBA are 70 and 63, respectively, find the width of the river.

7. From a mountain top 3000 feet above sea level, two ships

are observed, one north and the other northeast. The angles of

depression are 1 1 and 15. Find the distance between the ships.

8. A tower stands on one bank of a river. From the opposite

bank, the angle of elevation of the tower is 61; and from a point

45 feet farther inland, the angle of elevation is 51. Find the

width of the river.
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9. A cliff 400 feet high is seen due south of a boat. The top
of the cliff is observed to be at an elevation of 30. After the

boat travels a certain distance southwest, the angle of elevation

is found to be 34. Find how far the boat has gone from the first

point of observation.

10. A vertical tower makes an angle of 120 with the inclined

plane on which it stands. At a distance of 80 feet from the base

of the tower measured down the plane the angle subtended by
the tower is 22. Find the height of the tower.

11. Two persons stand facing each other on opposite sides of

a pool. The eye of one is 4 feet 8 inches above the water, and
that of the other, 5 feet 4 inches. Each observes that the angle

of depression of the reflection in the pool of the eye of the other

is 50. Find the width of the pool.

12. A flag pole stands on a hill which is inclined 17 to the hori-

zontal. From a point 200 feet down the hill, the angle of eleva-

tion of the top of the pole is 25. Find the height of the pole.

13. A tower 100 feet high stands on a cliff beside a river. From
a point on the other side of the river and directly across from the

tower, the angle of elevation of the top of the tower is 35, and

that of the base of the tower is 24. Find the width of the

river.

14. A ladder leaning against a house makes an angle of 40 with

the horizontal. When its foot is moved 10 feet nearer the house,

the ladder makes an angle of 75 with the horizontal. Find the

length of the ladder.

15. Two forces one of 10 pounds and the other of 7 pounds
make an angle of 24 42'. Find the intensity and the direction of

their resultant.

16. Two men a mile apart on a horizontal road observe a

balloon directly over the road. The angles of elevation of the

balloon are estimated by the men to be 62 and 76. Find the

height of the balloon above the road.

17. Two points A and B are separated by a swamp. To find

the length of AB, a convenient point C is taken outside the

swamp; and AC, BC, and angle ACB are found as follows:

AC = 932 feet, BC = 1400 feet, and ACB = 120. Find AB.

18. An observer is on a cliff 200 feet above the surface of the

sea. A gull is hovering above him, and its reflection in the sea

can be seen by the observer. He estimates the angle of eleva-
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tion of the gull to be 30, and the angle of depression of its reflec-

tion in the water to be 55. Find the height of the gull above the

sea.

19. An electric sign 40 feet high is put on the top of a building.

From a point on the ground, the angles of elevation of the top
and the bottom of the sign are 40 and 32. Find the height of

the building.

20. A cliff with a lighthouse on its edge is observed from a boat
;

the angle of elevation of the top of the lighthouse is 25. After

the boat travels 900 feet directly toward the lighthouse, the

angles of elevation of the top and the base are found to be 50

and 40, respectively. Find the height of the lighthouse.

21. Two trains start at the same time from the same station

upon straight tracks making an angle of 60. If one train runs

45 miles an hour and the other 55 miles an hour, find how far

apart they are at the end of 2 hours.

22. From the top of a lighthouse, the angle of depression of a

buoy boat at sea is 50; and the angle of depression of a second

buoy 300 feet farther out to sea but in a straight line with the

first buoy from the top of the lighthouse is 28. Find the

height of the lighthouse.

23. A flag pole 50 feet high stands on the top of a tower.

From an observer's position near the base of the tower, the angles

of elevation of the top and the bottom of the pole are 36 and 20,

respectively. Find the distance from the observer's position to

the base of the tower.

24. A lighthouse sighted from a ship bears 70 east of north.

After the ship has sailed 6 miles due south, the lighthouse bears

40 east of north. Find the distance of the ship from the light-

house at each time of observation.

25. Two trees on a horizontal plane are 60 feet apart. A
person standing at the base of one tree observes the angle of

elevation of the top of the second. Then, standing at the base

of the second tree, he observes that the angle of elevation of one

tree is double that of the other. When the observer stands

half-way between the trees, the angles of elevation are com-

plementary. Find the height of each tree.

26. Two points are in a line, horizontally, with the base of a

tower. Let a be the angle of elevation of the top of the tower

from the nearer point, and the angle of elevation from the far-
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ther point. Show that, if d represents the distance between the

points, the height of the tower is

d sin a. sin

sin (a 0)

27. A man on a cliff, at a height of 1320 feet, looks out across

the ocean. (The radius of the earth is assumed to be 4000 miles.)

Find the distance from the man to the horizon seen by him.

28. Find how high an observer must be above the surface of

the ocean to see an object 30 miles distant on the surface.

29. From the top of a building at a distance d from a tower,
the angle of elevation of the top of the tower is a, and the angle
of depression of the base is /?. Show that the height of the tower

is

d sin (a + g)

cos a. cos

30. If r is the radius of the earth, h the height of an observer

above sea level, and a the angle of depression of the observer's

horizon, show that

tan a =

31. A balloon is overhead. An observer, due north, estimates

the angle of elevation to be a. Another observer, at a distance

d due west from the first observer, figures his angle of elevation

to be p. Show that the height of the balloon above the observers

is

d sin a sin

- sin 2
/?



CHAPTER VI

TRIGONOMETRIC RELATIONS

28. Fundamental identities. This chapter is concerned

with relations of the trigonometric functions of angles of

various size and formation. In the present section we
shall derive the so-called funda-
mental identities. Although, in

Figure 35, the angle under con-

sideration is acute, any angle

might have been used.

The following relations are

immediate consequences of the

definitions of the six trigono-

metric functions of an angle:

Figure 35.

(1) esc e =

(2) sec 6 =

(3) cot e =

sin

1

cos

1

tan

(4)

(5)

(6)

1

CSC

1

sec B

1

cot e

sin

cos

= tan 6

The first relation is proved as follows:

esc 6 = - = = -

y y/r sm 6

66
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The other relations are proved similarly.

We have also :

(7)
^ = tan
cos e

, ^ cos
(8)

= cot e
sin 6

To prove the first, we substitute and have :

sin 6 y/r y~ ~" tall (7.

cos 6 x/r x

The second is proved in similar fashion.

There remain to be discussed three other important
identities :

(9) sin 2 6 + cos 2 e = 1

(10) 1 + tan 2 6 = sec 2 6

(11) i + cot 2 e = esc 2 e

To prove these three relations, we apply the law of

Pythagoras to the triangle in Figure 35 :

Dividing both sides of this equation by r 2
,
we have:

0y +ey-
or:

sin 2 6 + cos 2 = 1.

Similarly, dividing by z 2
,
we obtain the second relation;

and dividing by y
2
,
we obtain the third.

Since these relations are of fundamental importance, the

student should memorize all of them.

NOTE : The object in proving an identity is to reduce both

sides of the given relation to the same quantity. This may
be done by working with the left-hand side alone, or with

the right-hand side alone, or by working with both sides.

In the last instance, we feel that the problem is aesthetically

a bit more nicely done if the two sides are not combined;
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moreover, the practice of combining the sides frequently
leads to errors in computation. Thus, suppose we wish
to prove the following:

-2 = 2.

Squaring, we have
4 =

4,

which is true. Hence, we reason, the original relation

-2-2
is true; but this conclusion is obviously absurd.

Example 1

Prove the following identity:

cos 6 sin 6---
1

-- = sec 8 esc 0.
sin cos 6

Since

cos 2 6 + sin 2 =
1,

the left-hand side becomes:

cos 8 sin 6 cos 2 6 + sin 2 6 I

sin cos 6 sin 6 cos 6 sin 6 cos

The right-hand side becomes:

_
cos sin sin cos

Example 2

Prove:

(1 + cot 2
0) cos 2 = cot 2

0.

Since

1 + cot 2 = esc 2
0,

the left-hand side becomes:

esc 2 cos 2 = - cos2

sm 2

_ COS 2

~
sin 2 6
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which the right-hand side also equals.

Example S

Prove:

1 + sin cos 6

cos 6 1 sin 6

We know
1 - sin 2 B = cos 2

6.

That suggests multiplying both numerator and denominator of

the left-hand side by (1 sin 0). We have then:

1 + sin 6 _ 1 - sin 2 6

cos 8 cos B (1 sin 6)

cos 2
B

cos 6 (1 sin 6)

_ cos 6
~~

1 - sin B

which the right-hand side also equals.

It is quite apparent from the above that there is no set

rule to follow in proving identities; but, in general, a safe

rule is :

Reduce everything to sines and cosines. Then, wherever

necessary, make use of the identity: sin 2 6 + cos 2 6 = 1.

In later sections of the text where we are considering

relations involving double-angles, half-angles, and so forth,

it will generally be found desirable to reduce our quantities

to functions of a single angle.

Of course, any time the quantity (1 + tan 2
0) appears,

we may substitute, first,

sec2 6

and, then,

1

cos2

If we forget that particular identity, the above method of

reducing everything to sines and cosines will still hold.
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Also, in general, if one side of an identity to be proved is

more complicated than the other, it is advisable to reduce

the more complicated side first.

Problems

Prove the following identities:

1. tan + cot 6 = sec esc 0.

2. cos 6 tan 6 = sin 6.

3. (sin A + cos A)
2 = 1 + 2 sin A cos A.

4. (sin A cos A)
2 = 1 2 sin A cos A.

6. (sin
2 A + cos 2

A)
2 = 1.

6. (1 + sec A) (I cos A) = tan 2 A cos A.

7. sec 8 - 1 = sec 8(1
- cos 6).

8. cos 6 + tan 8 sin = sec 0.

9. sin X(l + tan X) + cos X(l + cot X) = sec X + esc X.

10. cos X esc X tan X = sin X sec X cot X.

11. esc 4 A cot 4 A = esc 2 A + cot 2 A.

12. (1 + tan 0)(1 + cot 0)
=

(1 + tan 0) + (1 + cot 0).

13. (cos
2 -

l)(cot
2 + 1) + 1 = 0.

14. sin cos 0(sec + esc 0)
= sin + cos 0.

15. (tan
- sin 0)

2 + (1
- cos 0)

2 = (sec
-

I)
2
.

16. cot 2 X cos 2 X = cot 2 X - cos 2 X.

17. (sin A + esc A)
2 + (cos A + sec A)

2

- tan 2 A - cot 2 A = 7.

18. sin 4 cos 4 = sin 2 cos 2
0.

19. sin 3 + cos 3 =
(sin + cos 0)(1 sin cos 0).

20. cos 3 - sin 3 = (cos
- sin 0)(1 + sin cos 0).

21. 1 - tan 4 B = 2 sec 2 5 - sec 4 5.

22. (sin
2 A - cos 2

A)
2 = 1 - 4 cos 2 A + 4 cos 4 A.

rt
_ tan A + tan 5

23. -.-- = tan A tan B.
cot A + cot #

24.
] 5^4 = (sec A - tan A)

2
.

1 + sin A

25

2̂6.

1 + tan 2 A 1 + cot 2 A
sec esc tan 01- =--
sec + esc tan 0+1
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1 + 2 cos
27. = esc B + 2 cot 0.

sm 6

tan A 1 1 cot A

29.

tan A + 1 1 + cot A
1 sec 2 A

1 + cos 2 A tan 2 A + 2

1
,

30. - = sin A cos A.
tan A + cot A

sin A
,

1 + cos A
31. - + .

= 2 esc A
1 + cos A sm A

... sec A sin 3 A
32. tan A sm A =

1 + cos A
1 1

" *

33.
, .

. , , + r-7 +
1 + sin 2 A 1 + cos2 A 1 + sec 2 A

1

1 + esc 2 A

sin A + cos A.

,
..

- v . t
+ sec X.

tan A sec X + 1

^ tan & sin sec
40.

sin 3 1 + cos

29. Functions of (90 + 6). For future work we wish

the functions of (90 + 6) in terms of 0. We shall take

6 as acute; the results obtained, however, hold when is of

any magnitude.
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In Figure 36, the angle XOB equals (90 + 0); the tri-

angle with sides r', x', and j/' appears as in the figure.

From 0, take OP perpen-
dicular to OB, and of length
r = r

f
. Drop a perpendic-

ular from P to OX at A;
denote by r, x, and y the

sides of the right triangle

thus formed. Then, the

two triangles are congruent
and we have: r = r';# = y

r

;

and j/
= x'.

First we shall find: sin

Figure 36. (90 + 6).

sin (90 + 0)
=

-,
= - = cos 0.

r r

Similarly,

cos (90 = -- - -sin 0.

And:

tan (90 + 0)
= -cot 0,

esc (90 + 0)
= sec 6,

sec (90 + 0)
= -esc B,

cot (90 + 0)
= -tan 0.

Observe that, except for the signs, the above results are

exactly the same as those obtained in Section 11. Similar

results obtain for the functions of (270 0). Hence we

have:

Theorem. Any function of (n90 6) when n is an odd

positive integer is equal to the corresponding co-function of 0,

with the sign depending on the quadrant in which the angle lies.

We shall find particularly useful in Section 32 the fol-

lowing relation:

cos (90 + 8) -sin 0.
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Figure 37.

30. Principal angle between two lines. Consider the

two directed lines AB and CD, intersecting at (Figure 37).

There are various angles
from the positive direction of

one line to the positive di-

rection of the other, such as A~*^ \^ y ""

*D
those indicated by 1, 2, and 3

on the figure. Of all such

angles, there is one angle which is positive and less than 180.

We call this angle the principal angle. In Figure 37, it

is angle 2.

31. Projection. Consider the directed line segment AB
and the directed line CD in Figure 38. From A and B,

respectively, drop AM and BN perpendicular to CD. The
line segment MN is called

the projection of AB on CD,
and is written

proj<7z>AjB
=* MN.

Now, if AB is extended to

meet CD and the principal

angle is denoted by 0, and if

M
Figure 38.

N

AE is drawn perpendicular to BN, it is evident that angle

BAE = 6 and that AE = MN. Hence, since

cos = AE~ >

AB
then:

MN = AE = AB cos 0.

From the above explanation we derive the first theorem

on projection. The theorem is true regardless of the

direction of the lines and the magnitude of 6.

AB cos B

Theorem 1. The projection of a line segment on any line is

equal to the product of the length of the line segment and the

cosine of the principal angle between the lines.
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Consider the broken line OA, AB (Figure 39). Project

OA, AB, and OB on CD. Then

But

Hence:

= MN,
projc/>AJ5

= NQ (NOT: QN),

projcz>OJ5
= MQ.

MQ = MN -

+ tfQ.

proj Cz>OA

From this computation, we have the second theorem on

projection. This theorem may be extended for a broken

line of any finite number of parts.

proj OB =
proj OA + proj AB

Theorem 2. The projection on any line of the broken line

OA, AB is equal to the projection of OB.

32. Sine and cosine of the stun of two angles* In the

present section, we shall derive formulas for sin (a + {$)

and cos (a + ]8) ;
a and /3 may be any given angles. In

Figure 40, a and j8 are taken as acute, and are of such

magnitude that their sum is less than 90. It may be

proved, however, that the formulas hold for angles of any

magnitude.
Consider axes of coordinates with angles a and j3 at the

origin 0, as in Figure 40. From any pointP on the terminal
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side of angle /3, drop a perpendicular PA to the terminal

side of angle a. Extend PA to both axes to form angles as

in the figure.

The right triangle OAP
is the one upon which we
shall focus our attention.

The essence of our proof
is to project the sides of

this right triangle, first, on

the z-axis and, then, on the

?/-axis. The first projec-

tion will give us cos (a + /3) ;

the second, sin (a + /3).

Projecting the directed

sides of the right triangle

OAP on the z-axis, we

have, by the second theorem on projection:

projoxOP = projoxOA + projoxAP.

By the first projection theorem, this becomes:

OP cos (a + 0) = OA cos a + AP cos (90 + a).

(90+*)

Or, since

we have:

cos (90 + a) = -sin a,

OP cos (a + ft)
= OA cos a - AP sin a.

Dividing by OP, we have :

cos
/ , * ( A\ - /AP\
(a + ft)

= cos a(

J

- sin al V

Or, since

and

OP

AP
OP
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cos (a + g) = cos a cos ft sin a sin g

In like fashion, we project the sides of the right triangle

OAP on the y-axis and we have :

projorOP = projor&A + projorAP.

Substituting,

OP cos [90
-

(or + g)]
== OA cos (90

-
a) + AP cos a,

or

OP sin (a + 0) = OA sin a + AP cos a.

Dividing by OP, we have :

sin (<* + g)
= sin a

^ J
+ cos a

^
\

Or, finally,

sin (a + ft)
= sin a cos + cos a sin

33. Tan ( + (5). A formula for tan (a + |8) in terms

of tan a and tan /3 is derived as follows :

tan (a +
sin (a + g)

cos (a + g)

sin a cos g + cos a sin

cos a cos g sin a sin

Dividing each member of this last fraction by cos a cos /3,

we have:

tan (a +

sin a sin
(

cos a cos

sin a sin

cos a cos

Therefore :

tan (a + g)
tan a + tan g

1 tan a tan g



TRIGONOMETRIC RELATIONS 77

Problems

Example

Find, by using one of the addition formulas, sin 75.

sin 75 = sin (45 + 30)
= sin 45 cos 30 + cos 45 sin 30

= J_
V2
\/6 _= -T -T
V6+V2

4

1. By using (75 = 45 + 30), find cos 75.

2. Find tan 75.

3. Verify the relations for the functions of 90.

4. Verify the relations for the functions of 180.

5. Verify: cos (90 + 0)
= -sin 0.

6. Verify: sin (180 + 0)
= -sin 0.

7. Prove:

,^o , A\ cos A + sin A
tan (45 + A) =

:

~-

cos A sm A

8. If a + = 45, prove: (1 + tan )(! + tan 0) = 2.

9. Prove:

cot a cot ft
- 1

cot (a + 0)
=

cot a + cot ft

10. If tan = \ and tan =
J, prove: tan (a. + 0) = f .

11. If tana = and tan = A, prove: (a + j8)
= 45 or 225.

12. If tan a = m and tan = n (assuming a and acute),

prove :

1 mn
cos (a + 0) =

, =
V(l+m 2)(l+n 2

)

13. If tan a = f and tan = ^ (assuming a and ft acute),

find sin (a + 0).

14. With the material of Problem 13, find cos (a + 0).

m 1

16. If tan a = and tan ft
=

, prove:m + 1 2m + 1

tan (a + ft)
= 1.
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34. Functions of the difference of two angles. We wish

formulas for the sine, the cosine, and the tangent of

(a j8). Using Roman instead of Greek letters, we
rewrite

sin (x + y)
= sin x cos y + cos x sin y.

Let x = a, and y =
/?. Then, substituting, we have:

sin [a + ( ft)]
= sin a cos ( ft) + cos a sin ( ft).

Or, since

and

we have :

coscos ( ft)

sin ( ft)
= sin

sin (a j8)
= sin a cos + cos a ( sin 0)

= sin a cos cos a sin .

Similar results obtain for cos (a 0) and tan (a |8).

Hence we have:

sin (a 0) = sin a cos cos a sin

cos (a )
= cos a cos + sin a sin

tan a tan ft

tan (a
-

ft)
=

1 + tan a tan

Problems

1. Find:

(a) sin 15.

(6) cos 15.

(c) tan 15.

2. Verify:

(a) sin (180
-

6)
= sin 0.

(6) cos (360
-

0)
= cos 0.

(c) tan (360
-

0)
= -tan 0.

(d) cos (270
-

0)
- -sin 0.

3. If tan a = | and tan 3 =
J, find tan (a
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4. If tan a = if and tan ft
=

$ (assuming a and ft acute), find

cos (a 0).

5. If tan a =
(z + 1) and tan # = (z 1), prove:

cot (a- 0)

6. Prove:

(a) tan (A - 45) + cot (A + 45) = 0.

(6) cot (A - 45) + tan (A + 45) = 0.

(c) cos (A + 45) + sin (A - 45) = 0.

(d) cos (A - 45) - sin (A + 45) = 0.

/ x . / , . x sin A cos A
(a) sin (A - 45) =

36. Functions of a double-angle. We wish formulas

for the sine, the cosine, and the tangent of a double-angle,

say 2a. Hence, we proceed as follows: Replacing )8 by a
in our addition formula, we have :

sin 2a = sin (a + a)

= sin a cos a + cos a sin a.

Or:

Similarly,

cos 2a = cos (a + a)

= cos a cos a sin a sin a.

Or:

cos 2a cos 2 a sin
2 a

Then, since

we have also :

Or:

sin 2 a + cos 2 a =
1,
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Similarly,

tan 2a
2 tan a

1 tan 2 a

Example

Find sin 3A.

sin 3A = sin (2A + A)
= sin 2A cos A + cos 2A sin A
=

(2 sin A cos A) cos A + (1 2 sin 2
A) sin A

= 2 sin A cos 2 A + sin A 2 sin 3 A
= 2 sin A(l sin 2

A) + sin A 2 sin 8 A
= 3 sin A 4 sin3 A

The above example illustrates the extensive use that

may be made of the addition formulas: by this device

the functions of any integral multiple of an angle may be

found.

Problems

1. By using (60 = 2 -

30), verify values for sin 60, cos 60,

and tan 60.

2. Similarly, verify the values for the above functions of 90.

3. Prove: cos 3A = 4 cos 3 A 3 cos A.

4. By using the material in Problem 3, verify the value for

cos 90.
5. Given sin A = f,

cos A positive; find tan 2A.

6. Given cos A =
-^-,

tan A negative; find sin 2A.

7. Given tan A =
$, sin A negative; find cos 2A.

8. Prove:

,
.

. n . 2 tan A
(a) sin 2A =

cos 2A

1 + tan 2 A
1 - tan 2 A

to

1 + tan 2 A
tan (A + B) + tan (A - B)

1 - tan (A + B) tan (A - B)
1 + sin 26 cot 6 + 1

= tan 2A.

cos 20 cot B 1



(e) tan 2A + sec 2A

(/) esc 26

(g) cot A

TRIGONOMETRIC RELATIONS 81

cos A + sin A
cos A sin A

sec esc

2

sin 2A

1 cos X
sec 2 6

- cos 2A

= 2 sin X + sin 2JL

(i) sec 20w
2 - sec 2

0') 1 + sec 2A + tan 2A =

(A) 1 + sin 2X =

tan A
(1 + tanX) 2

1 + tan 2 X

9. Prove:

(a) 1 + tan 2A tan A = sec 2A.

(6) sin 2A(tan A + cot A) = 2.

(c) tan + cot = 2 esc 20.

(d) cot - tan = 2 cot 20.

(e) cos 4 sin 4 = cos 20.

(f) sin 2a sin a =
(1 cos 2a) cos a.

(g) cos 4X = 1 - 8 sin 2 X + 8 sin 4 X.

36. Functions of a half-angle. We wish first a formula

for the sine of a half angle. Let us take

sin
|

We rewrite one of our formulas for the cosine of 2X thus :

cos 2X = 1 - 2 sin 2
JC.

Now let

v-
a

Then
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Hence we have :

cos a = 1 2 sin 2 ->

or:

2 sin 2 - = 1 cos a,

or:

sin 2 - =a 1 cos a

2

Or, finally,

To find an expression for the cosine of a half-angle,

cos
i'

we rewrite one of the other formulas' for the cosine of 2X
thus:

cos 2X = 2 cos 2 X-l.
Again let

OLX =
2

Then
2X = a;

and we have:

cos a = 2 cos 2 -
1,

A

2 cos 2 - = 1 + cos a,

9 **

cos 2 - =a 1 + cos

2

Finally:
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Next,

sin -
,

a z
tan =

2 a

COS a

cos- + ,1 + cosa
2 \/ 2

Or:

I COS a

The formula just above may be simplified as follows:

1 cos a

cos a

\

1 cos a 1 + cos a

1 + cos a 1 + cos a

1 cos 2 a

(1 + cos a)
2

(1 + cos a)
2

sin a
xs

1 + cos a

Similarly, if we multiply both numerator and denomi-

nator of

by

we obtain:

Hence we have :

1 cos a

1 + cos a

1 cos a,

1 cos a

sin a

a sin a
tan ==

2 1 + cos a

1 cos a

sin a
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Example

Prove:

. * o .

sm A = 2 sin -~ cos
2 2

We might solve this problem as follows:

.
,

/I cos 4 /I + cos A
2 sm - cos - = 2 + '22 - V 2

~ V 2

o 8in

= sn .

However, at this point the skillful student will recognize

that the original relation is the formula (disguised a bit)

for the sine of a double-angle. If we let

A = 2X,
then

A
Y*

2= X
>

and the relation

, -
A A

sin A = 2 sin cos
2 2

becomes:

sin 2X = 2 sin X cos X.

Indeed,

.
A

rt
^. 4

sm ~ = 2 sin cos ~
2 44

is true for the same reason.

In other words, if an equation assumes the form of a

well-known formula and the angles have the proper relation,
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one to another, the equation is true, regardless of the form

in which the angles are expressed. Thus ,

a

cos 6 = 1 2 sin
2 -

will be recognized as one of our formulas for cos 2a.

The student should not be misled, however, into thinking
that all the problems below are solved in a similar manner.

They are not. The above fact was pointed out simply
as being of use in some instances only.

Problems

3 A
1. Given sin A = -> tan A positive; find sin

o 2t

2 A
2. Given cos A -> sin A negative; find tan

O 2

3. Given tan A = > A not in the second quadrant; find
12

A
cos--

5 A
4. Given esc A = -> A not in the fourth quadrant ;

find tan
4 2i

4 A
6. Given cot A = -> A not in the second quadrant; find sin

o 2

6. Prove the following identities:

A
(a) 1 + tan A tan = sec A.

2

(6) sin + cos = \/l + sin A.

1

esc A cot A
1 - tan 2

(0/2)

1 A
(c) T = cot'

csc A - cot A 2

1 + tan 2
(8/2)

A 2 sin A sin :

tan 2 -

2 sin 4 + sin 2

A sin A + sin 2A
C0t

2 cos A- cos 2A



86 PLANE TRIGONOMETRY

1 + tan (A/2)

(h) (cot tan
J
foot X 2 cot 2X

j
= 4 cot X.

(A\ A
1 + cot 2 -

)
sin A tan - = 2.

2/ 2

0/ 6 V
(j) sin

2 -( cot - 1
)
= 1 sin 0.

2\ 2 /

A A
(k) tan ~ tan A + 1 = tan A cot 1.

2i 2

(7) tan (45 + -) = cot (45
- -)

\ 2/ \ 2/
A A

(m) cot ~ tan = 2 cot A.
2 2

, x ,
A 1 cos A + sin A

(ft) tan - =
2 1 + cos A + sin A

(0) 1 - 2 cot X tan - - tan 2 - = 0.

37. Product formulas. We wish a formula for

sin P + sin Q

expressed as a product. We proceed as follows: Let

P = a + /3, and Q = a -
/3. Then:

sin P + sin Q = sin (a + ) + sin (a /3)

= sin a cos + cos a sin /3 + sin a cos # cos a sin #

= 2 sin a cos /3.

Here is our product; but it is in terms of functions of

a and ]8, and we wish it to involve P and Q. Solving the

original relations for a and /3 by addition and subtraction,

we have:

P + Q= __,

. P-Q
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Hence we have :

p -|- Q p _ Q
sin P + sin Q = 2 sin cos

2 2

In like manner, we derive the other three product formu-

las and collect the four below :

P + Q P - Q
(1) sin P + sin Q = 2 sin - cos -

2 2

P + Q P - Q
(2) sin P - sin Q = 2 cos - sin -

2 2

P + Q P Q
(3) cos P + cos Q = 2 cos - cos -

2 2

P + Q P Q
(4) cos P cos Q = 2 sin - sin -

The above formulas are particularly useful in the branch

of mathematics called calculus.

Prove :

Let

Then

and

Example 1

sin 3A sin A = 2 cos 2A sin A.

3A =P,
A = Q.

2 2

P - Q 3A - A

Then, substituting in the second of the product formulas, we have

immediately:

sin 3A sin A = 2 cos 2A sin A.

Prove:

Example 2

sin ZA + sin

cos 3A cos 5A
= cot A.
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Let

Then

and - - = A.

When we substitute the first product formula, the numerator

becomes:

sin 3A + sin 5A = 2 sin 4A cos (A)
= 2 sin 4A cos A.

When we substitute the fourth product formula, the denominator

becomes:

cos 3A cos 5A = 2 sin 4A sin (A)
= 2 sin 4A( sin A)
= 2 sin 4A sin A.

sin 3A + sin 5A
__

2 sin 4A cos -4

cos 3A cos 5A 2 sin 4A sin A

__
cos A
sin A

= cot A.

Problems

Prove the following identities :

1. sin 5A + sin 3A = 2 sin 4A cos A.

2. cos 4A cos 2A = 2 sin 3A sin A.

3. sin 2A + sin 4A + sin &A = 4 cos A cos 2A sin 3A .

4. cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos

4A.

sin 2A + sin A 3A
5.- = tan

cos 2A + cos A 2

cos 2A cos 3A A
sin 2A + sin 3A

~
2

sin A + sin B cos A + cos B
,
-,- SB-
COB A cos 5 sin B sin A
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cos 6A cos 4A = tan A.

cot 2A.

sin 6A + sin 4A

sin 7A + sin 3A

cos 7A cos 3A
,_ sin 5A sin A
10. = tan 2A.

cos 5A + cos A
sin 75 - sin 15 1

JLl. = _
cos 75 + cos 15

~
\/3

in 5A 2 sin 3A + sin----

cos 5A 2 cos 3A + cos

sin A + sin 3A + sin 5A + sin 7A-
r~;
-

^T~~;
-

rr~;
-

^rr
cos A + cos 3A + cos 5A + cos 7A

^ sin 5A 2 sin 3A + sin A
12.------ = tan 3A.

cos 5A 2 cos 3A + cos A

= tan

sin 8A sin 6A + sin 4A sin 2A
14. -- -- = cot 5A.

cos 8A cos 6A + cos 4A cos 2A

. _ sin 3A + sin 2A + sin A
16.- = tan 2A.

cos 3A + cos 2A + cos A
sin (A + 2fl)

- 2 sin (A + B) + sin A
"

cos (A + 25) - 2 cos (A + 5) + cos A
an V -t- ;.

sin (2A -
3jB) + sin 3

cos (2A - 3) + cos 3B
" an *

sin 47 + sin 73 _ /-

cos 47 + cos 73

sin 4A - sin 2A _ 1-3 tan2 A
sin 4A + sin 2A 3 tan 2 A

,
A +B

_ tan -
sin A + sin B 2

sin A sin B
.

A

Miscellaneous Problems

Prove the following identities:

1. sin 5A sin A = sin 2 3A sin 2 2A.

2. sin 9 + sin (e
- 120) + sin (60

-
0)

- 0.

3. cos4 sin4 = 2 cos 2
1.

4. (sec A tan A) (sec A + tan A) * 1.
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6. sin 6 8 + cos6 = 1 3 sin 2 6 cos 2
0.

6. sin (n + 1)0 = sin nO cos + cos nQ sin 6.

7. sin 4X = 8 cos3 X sin X 4 cos X sin X.
_ sin A + cos A
8. : T = tan 2A + sec 2A.

cos A sin A
A9 /sec - 1\

, 9 /sin 1\
9. cot 2

( r
~

) + sec 2
(9 (

)
= 0.

\1 + sin 0/ \1 + sec 07

10
tan3 .4 cot 3 A 1-2 sin 2 A cos 2

1 + tan 2 A 1 + cot 2 A sin A cos A
1 -f sin 2X + cos 2X

__
*

1 + sin 2X - cos 2X
~~ C0t *

sin (A -
) sin (B - C) sin (C - A) _

sin A sin B sin J5 sin C sin C sin A

13. cos 6 sin 6 = cos 20( 1 V

14. cos 4 X + sin 4 X = 1 -

15.

2

2 sin 20- =--
(1 + tan 0)(1 + cot 8) 1 + sin 20

sin (A C) + 2 sin A + sin (A + C) __
sin A

sin (B C) + 2 sin 5 + sin (B + C)
"""

sin B

17.
* + CQS A

A
= (esc A + cot A) 2

.

1 cos A
sin 30 cos 30

18.- - ==: 2.
sin cos

tan A cot A
1 Q _ _.

I _^- - - - 1

tan A tan 3A cot A cot 3A

^ 2 sin 2A sin 4A
20. : ; 77 = tan 2 A.

2 sm 2A + sm 4A

1 ~ cos X sin 2X
21.

22.

sin X 2 cos X + cos 2X + 1

2 sec 2 X sec 2
JST 6

2 tan X + 1 tan X + 2 4 + 5 sin 2X
3A A

23. cos = cos --(2 cos A 1).
2 2
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e
4 sin cos -

, 2
24. -

:

- = sec -
2sm 8 + sin 26 2

sin A + cos B
25. ~

sm A cos B



CHAPTER VII

SUPPLEMENTARY TOPICS*

38. Law of tangents. In Section 27 when we were

considering the solution of an oblique triangle by means
of the law of cosines, it was pointed out that there were

additional formulas better adapted to logarithmic use but

that we felt them to be unnecessary. However, since

some authorities prefer them, we shall derive such formulas

and include them in this chapter.

The first of these formulas is called the law of tangents.

We shall proceed to its derivation.

Given an oblique triangle ABC, we have, from the law

of sines,

a sin A
b sin B

By the theory of proportion, this becomes:

a b sin A sin B
a + b sin A + sin B

From the first two product formulas, the right-hand side

becomes :

Or, we have the law of tangents:

* This chapter may be omitted if the instructor does not wish to include

the material in his course.

92
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By use of the law of tangents, we can solve a triangle if

two sides and the included angle are given, as in the example
below.

Example

Solve the triangle ABC] given a = 2439, ft = 1036, C = 38 7'.

a - b = 1403

a + b = 3475

A + B = 180 - C = 180 - 38 8' = 141 52'

A+B

.

'

. tan
A -

= 70- 56'

(a 6) tan
A+B

2 a + b

Using logarithms, we continue :

log tan - = log (a
-

b) + log tan log (a + 6)
2i &

= log 1403 + log tan 70 56' - log 3475

log 1403 = 3.1470

log tan 70 56' = .4614

log numerator = 3.6084

log 3475 = 3.5410

A - B
log tan

But, since

by addition,

.0674

= 49 26'

= 70 56'
l

:.A = 120 22';

2

A - B
2

A+B
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and, by subtraction, .*. B = 21 30'.

Side c may now be found by the law of sines.

Problems

Using the law of tangents, solve the following triangles:

1. a = 28.43, b = 16.92, C = 40 9'.

2. b = 623.1, c = 420.3, A = 62 42'.

3. c = 53.28, a = 33.93, B = 63 24'.

4. a = 419.2, 6 = 300.3, C = 53 18'.

6. a = 60.66, b = 70.34, C = 46 26'.

39. Tangent of a half-angle in terms of the sides of a

given triangle. We shall now derive formulas to be used

in solving a triangle when three sides are given.

Given the triangle ABC. Let

a + b + c

then:

a
6 + c a

_ b =

s c =
a + b c

By the tan
-^

formula and the law of cosines:

tan
A

/T
2-Vf

cos A

+ cos A

c - a

1 +
26c
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Or, by substitution,

tan

95

A 121

;

=
\21

4,

4

4

!

2bc - 6 2 - c
2 + a 2

2bc + b 2 + c
2 - a 2

(6

(b + c)
2 - a 2

(a
- b + c)(a + b - c)

(b + c + a)(6 + c - a)

-
c).

(2s) (2) (s
-

a)

s(s a)

To make this expression more symmetrical, we write it :

^
A 1(8

-
a)(

-
6) (8 c)

tan T;
= \ / ^2

'

2 ^ s(s a)
2

or

Now let

tan
A 1 j(s

- a

2 -T^TV
a)(s 6)(s c)

-
a)(

-
&)(

-
c)

and we have:

Similarly,
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We shall next derive a formula for the area of the triangle

ABC in terms of the sides. From Problem 2 in Section 27,

we found:

Or:

area = - be sin A.

(area)
2 = 7 (be)

2 sin 2 A
4

l - cos 2
A)

(6c)
2
(l + cos 4)(1 - cos A).

Or:

area = - be \(1 + cos A)(l cos A)
2i

1 -
26c

1
bc j

*i \

(b a)(b + c - a) (a + 6 - c)(a
- 6 + c)

c).

Therefore :

area = \s(s a)(s 6)(s c)

Solve the triangle AfiC; given a = 100, 6 =
120, c = 140.

2s = 360

s = 180

s - a = 80

s - & = 60

s - c = 40

-<*)(
-

&)(
-

c)
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log r -
log (s

-
a) + log (s

-
6) + log (*

-
c)
-

log *
j

log (s
-

a) = log 80 = 1.9031

log (s
-

6)
= log 60 = 1.7782

log (s
-

c)
= log 40 = 1.6021

sum = 5.2834

log s = log 180 = 2.2553

2 log r = 3.0281

.'. log r = 1.5141

^
log tan = log r log (s a)

2i

= (11.5141
-

10)
- 1.9031

= 9.6110 - 10

^
= 22 13'

.'. A = 44 26'

D

log tan = log r log (s 6)

= (11.5141
-

10)
- 1.7782

= 9.7359 - 10

|
= 28 34'

.'. B = 57 8'

Q
log tan - = log r log (s c)

2i

= (11.5141
-

10)
- 1.6021

= 9.9120 - 10

^
= 39 14'

.*. C = 78 28'

Proof

A + B + C = 44 26' + 57 8' + 78 28'

- 179 62'

= 180 2'.
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log area = -
log (s

-
a) + log (s

-
6) + log (s

-
c) + log s

=
^(7.5387)

log area = 3.76985

.". area = 5887 square units

Problems

Solve the following triangles, and find the area of each:

1. a = 20.34, b = 16.48, c = 30.24.

2. a = 144, 6 = 266, c = 300.

3. a = 2743, 6 = 3201, c = 4002.

4. a = 200, & = 400, c = 500.

5. a = 42.81, & = 22.03, c = 30.22.

40. Radius of the inscribed circle. It is interesting to

note that the quantity

a)(s b)(s c)(s
- a

associated with the triangle ABC is actually the numerical

length of the radius of the circle inscribed in the given

triangle. We prove this result as follows:

Proof

From plane geometry, we know:

area of &ABC = ~r'-P,

where r
f
is the radius of the inscribed circle and P is the perimeter

of the triangle.

Since P =
2s,

we have: area = r' s.

From the formula for area derived in Section 39, we have:

area = \0 -
a)(s

-
b)(s

-
c)s

r

(s
-

a)(s
-

b)(s
-

c)s
2
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(s
-

a)(s
-

6)(*
-

c)

= s r.

/. r' = r.

We give below another proof that is independent of

area. Consider the triangle ABC with inscribed circle,

and with bisectors of the angles meeting at the center in

Figure 41.

C

Let r' be the radius of the circle. Then

,
A /

tan
2
=
AS

We wish to prove: AD = s a.

Proof

From plane geometry, we have: AD = AF, DB = BE, CF
CE.

Then AD + DB + CF - s.

Hence: AD = s - (DJ5 + CF)
= s- (BE + CE);

or by substitution, = s a.

A r
7

Therefore: tan -- =
2 s a

A r
But since we know tan = '

2 s a

/. r' - r.
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41. Circular measure of an angle. Frequently it is

desirable, particularly in calculus, to express angles in

units other than degrees. We do so by means of circular

measure, as illustrated by Figure 42.

Figure 42.

Consider angle ACB and circles (1) and (2), with center

at C and with radii r\ and r2 . Since

we have:

A'B'

AB

A'B' AB
7*2

In other words, the ratio

length of arc

radius of circle

is always the same for a given central angle. We call this

ratio the circular measure of an angle, and we call the unit a

radian. Hence we have:

number of radians

in central angle

length of arc

length of radius
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To find the size of one radian, we substitute in the above
formula and then have :

length of arc
1 =

length of radius

Hence :

length of arc = length of radius.

It is therefore evident that a radian is a central angle sub-

tended by an arc equal in length to the radius of a circle.

There are as many radians in 360 as there are arcs of

length r in a complete circumference. Since the cir-

cumference equals 2?rr, there are 2?r such arcs. Conse-

quently there are 2ir radians in 360
;
or :

Hence, to change degrees to radians, multiply the degrees

by
7T

180*

To change radians to degrees, multiply the radians by

180

7T

Thus:

Also:

60 = 60 radians = - radians.
180 3

27r ,. 2ir 180 , , rtrt0
radians = degrees = 120 .

3 3 ir

Since a radian is equivalent to

180

3.14159'

a radian equals approximately

57 17' 45".
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Similarly, one degree equals

.01745 . . . radian.

Problems

1. Change from degrees to radians:

(a) 60. (e) 270. (i) 150.

(6) 30. (/) 240. (j) 300.

(c) 120. fa) 360. (*) 180.

(d) 45. (h) 0. (/) 90.

2. Change from radians to degrees:

/ \
*

t \
* f\ %*

(a)
-

(e)
-

(.)
-

(&) v M ? ^ r334
3?r 5?r 4?r

W T
-

(a) T (*) V
(d) 27T. (A) 47T. (Z) STT.

42. Summary of trigonometric formulas. For con-

venience, we have collected in summary outline form the

trigonometric formulas developed in the preceding text.

1. Fundamental Identities.

esc A =

sec A =

cot A

tan A =

cot A =

sin A
1

cos A
1

tan A
sin A
cos A
cos A
sin A

sin 2 A + cos 2 A - 1

1 + tan 2 A = sec 2 A
1 + cot 2 A = esc 2 A
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2. Addition and Subtraction Formulas.

sin (a + ft)
= sin a cos 8 + cos a sin ft

cos (a + ft)
= cos a cos ft sin a sin ft

tan a + tan ft

sin (a ft)
= sin a cos cos a sin

cos (a ft)
= cos a cos j3 + sin a sin

__
tan a tan #

tan (-) =
x + tan a tan

3. Double-Angle Formulas.

sin 2a = 2 sin a cos a

cos 2a = cos 2 a sin 2 a

cos 2a = 2 cos 2 a 1

cos 2a = 1 2 sin 2 a

2 tan a
tan 2a = ---

1 tan'5 a

4. Half-Angle Formulas.

a
. 11 cos a

sin- =

+ cos a
cos - =

=.+
/^2 "\1

. . - cos a
tan .+ cos

a sin a
tan -

2 1 + cos a

a 1 cos a
tan - =

;

2' sin a
*

5. Product Formulas.

P + Q P - Q
sin P + sin Q = 2 sin - cos ~

2 &
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P + Q P Q
sin P sin Q = 2 cos - sin -

P + Q P - Q
cos P + cos Q = 2 cos - cos -

i u

P + Q P - Q
cos P cos Q = 2 sin r sin -

6. Law of Sines.

a

sin A sin B sin C

7. Lau> of Cosines.

a 2 = 6 2 + c 2 - 26c cos A
6 2 = a 2 + c 2 - 2ac cos J5

c 2 = a 2 + 6 2 - 2ab cos C

8. Law of Tangents.

A - B
tan -

a - 6 2

a + 6 A +
tan

9. Semi-Perimeter Formulas.

A ^ r
an

2
""

5 - a

B r
tan =--

2 s - 6

,
C

tan -
2 s c

a + 6 + c

-
a)(

-
&)(*

-
c)

area = ^s(s a) (s &)( c)
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10. Circular Measure.

The terms in this formula are interpreted: 6 = number of

radians in a central angle, I = length of intercepted arc,

r = length of radius.

TT radians = 180

11. Laws of Logarithms.

log& AB =
log& A + log& B

A
log*,

= Iog6 A -
log& BD

log& A n = n logb A

12. Projection Theorems.

proj AS + proj BC =
proj AC

projcz? AB = A5 cos 6

The second theorem holds where is the principal angle

between AB and CD.
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CHAPTER VIII

COORDINATES

43. Position of a point in a plane. In Sections 16-18 we
discussed directed distances, axes of coordinates, and

quadrants. The student is advised to review these three

sections immediately. From them it is quite evident

that, for every point in a given plane, there is a unique set

of two numbers called its coordinates; and that, conversely,
for every set of two numbers, there is a unique point in the

plane. In this chapter we shall be concerned with the

coordinates of various points and with the algebraic or

analytic quantities which will express, in terms of the

coordinates, certain geomet-
ric properties associated with

the points.

44. Distance between two

points. The first formula

that we shall derive is called

the distance formula; it ex-

presses the length of the line

segment joining two points,

in terms of their coordinates.

Given the two points PI
and P2 ,

with coordinates (#1,

1/1) and (x 2 , i/2), respectively

(Figure 43); we desire a formula that will express the

length PiP2 .

After completing the right triangle PiQP2 (Figure 43),

we see that

Figure 43.

Similarly,

PiQ = MiM2
= OM2

-

QP* =
2/2
-

2/1-

123

X* -
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Hence, by the law of Pythagoras,

I = M(x* -
*i)

2 + (2/2
-

Therefore we have the distance formula :

(1/2
-

Example

If Pi is (2, -3), andP 2 is (0, 4), then:

PaP2
= I = V[0 -

2]
2 + [4

-
(-3)]

2

= V(-2) 2 + 7 2

= V53 .

The points Pi and P2 were taken in Figure 43 in most

convenient positions. It is easy to show, however, that

the formula is true regardless of the positions of PI and P2 .

Problems

1. Plot the following points: (2, -3), (0, -4), (4, 0), (-6, 2).

2. What can be said regarding the coordinates of all points

(a) on the a>axis? (6) on the t/-axis? (c) on the line through the

origin bisecting the first and the third quadrants? (d) on the line

parallel to the x-axis and three units above it? and (e) on the line

parallel to the 2/-axis and four units to the left of it?

3. Find the lengths of the sides of the triangle with the

following points as vertices: (2, 1), (3, 4), (2, 3).

4. Do the same for the triangle with these vertices: (0, 4),

(3,0), (-1, -6).
5. Show that the points (3, 4), (1, -2), and (-3, 2) are the

vertices of an isosceles triangle.

6. Show that the points (3, 2), (5, -1), and (-3, -2) are the

vertices of a right triangle.

7. Find whether or not the following points are the vertices of

a right triangle: (-2, 0), (3, 5), (6, -2).
8. Show that the points (-2, -3), (5, -4), (4, 1), and (-3,

2) are the vertices of a parallelogram.



COORDINATES 125

9. Show that the following points are the vertices of a paral-

lelogram, and find whether or not the figure is a rectangle:

(-3, 8) (-7, 6), (-3, -2), (1, 0).

10. Show that the points (0, -3), (7, 2), (2, 9), and (-5, 4) are

the vertices of a square.

11. Show that the points (1, 4), (-2, 10), and (3, 0) lie in a

straight line.

12. Determine whether or

not the points (0, -4), (3, 0),

(5, 2) lie in a straight line.

46. Mid-point of a line

segment. Given the line

segment PiP2 ,
with P the

mid-point of this line seg-

ment (Figure 44); and the

coordinates of PI(XI, j/i), of

P2(*2, 2/2), of P(x, y). We
wish to find the coordinates Figure 44.

of P in terms of those of Pi and P2 .

As in Figure 44, drop perpendiculars PiA, PM, andP25.

Then, since

P XP = PP 2 ,

we have, from plane geometry,

AM = MB.
But

AM = x xi,

and

MB =
2
~ x.

Substituting,

X

or

2x

Hence:

_+_
2
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Similarly,

I/I + 2/2

Therefore we have the mid-point formula:

Example

Find the coordinates of the point midway between (1, 3)

and (6, 5).

x\ + #2 1 + 6 5

~2
=

2
=

2

+ 2/2 3 + 5

a; =

46. Point that divides a line segment in a given ratio,

y

Figure 45.

Let us consider a line segment P\Pi (Figure 45), with P
a point on this line segment such that

distance from PI to P _ m
distance from P to P 2 n
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where

m
n

is any given ratio. Let us use the same coordinates as in

Section 45. We wish to find the coordinates of P in terms

of (xij j/i), of (#2, 2/2), and of m and n.

In Figure 45, we know, by plane geometry,

PiP
PP2

AM
MB

Hence, by substitution,

Solving for z, we have :

Likewise:

+
m

The above constitute the ratio formula.

In Figure 45, the segment PiPi is divided internally.

If P lies on the segment extended, then we say the segment

PiP2 is divided externally. If the division is internal, the

ratio is positive; if the division is external, the ratio is

negative. The work will be simplified if the ratio is always

considered as

distance from PI to P
distance from P to P%

regardless of the position of P.

Example 1

Given the segment joining (2, -1) and (8, 5); find the point

of trisection nearer (2, I).
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Call (2, -l)Pi, and (8, 5)P2 ; hence, xi -
2, yi - -1, s 2

2
= 5. The ratio is -; hence, m =

1, n = 2.

Substituting in the ratio formula,

1-8 + 2-2 12

8,

1 + 2

y
1 + 2 3

Hence, the required point is the point (4, 1).

Example 2

The segment PiP 2 is extended half its length to P (Figure 46).

Show that the ratio equals 3; that is,

We have

m
n

Since P2P is a unit,

PiP

PiP
PP2

"

3 units,

Figure 46.

PP2
= - 1 unit.

Hence:

m
n PP 2

-
= -3.

Problems

1. A triangle has the following points as vertices: A(0, 2),

5(6, 0), and C(4, 6). Find:

(a) The coordinates of the mid-point of BC.

(6) The coordinates of the point two-thirds of the distance

from A to the mid-point of BC.

(c) The coordinates of the mid-point of AB.

(d) The coordinates of the point two-thirds of the distance

from C to the mid-point of AB.

(e) The length of the median through B.
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2. Given the parallelogram with vertices at A(2, 3),

JS(5, -4), C(4, 1), and D(-3, 2); show that the coordinates of

the mid-points of AC and BD are the same, and hence that the

diagonals bisect each other.

3. Prove by the mid-point formula that the points (4, 12),

(6, 2), (5, 10), and (3, 4) form a parallelogram,
4. Three consecutive vertices of a parallelogram are (3, 0),

(5, 2), and (-2, 6). Find the fourth vertex.

6. The segment from ( 1, 2) to (3, 4) is doubled. Find the

codrdinates of the new end point.

6. The center of a circle is (3, 4); one point of the circle is

(6, 8). Find the coordinates of the other end of the diameter

through this point.

7. Find the coordinates of the point that divides the segment
from (0,

-
1) to (6, 3) in the ratio 2:5.

8. Find the ratio in which the point (2, 1) divides the seg-

ment from (6, 1) to (0, 2).

9. Find the coordinates of the points that trisect the segment
from (1, -4) to (3, 5).

10. Find the coordinates of the points that divide the segment

joining (2, 3) and (4, 1) into four equal parts.

11. Find the coordinates of the points that divide the segment
from (1, 2) to (5, 8), internally and externally, in the numerical

ratio 3:2.

12. A is (-1, 3), and B is

(3, 6). If AB is prolonged to

C, a distance equal to three

times its length, find the coor-

dinates of C.

13. Find what point is

reached by trebling the seg-

ment from (2, 0) to (3, 4).

47. Slope of a line. The

slope of a line is defined as
/

the tangent of the angle
Y

between the line and the
gure

x-axis, the angle being measured in counter-clockwise sense

from the z-axis to the line. Thus, in Figure 47, tan 0i is

the slope of AB] tan 0*, the slope of CD.
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Let us now consider a line AB passing through two points

Pi and PI (Figure 48), the coordinates of which are (xi, y\)

and (x2 , 3/2), respectively. We wish to derive an expression
for the slope of the line in terms of the coordinates of the

two given points. Let us call the slope m. In Figure 48,

Figure 48.

Hence :

m = tan = tan ZCPiP2
= ~ =
PiC

Thus we have the slope formula:

Vl

48. Parallel and perpendicular lines. If two lines are

parallel, it is obvious that they have the same slope. Let

us consider what relation, if any, exists between the slopes

of two perpendicular lines.

Given two perpendicular lines AB and CD, making angles

6 1 and 2 , respectively, with the re-axis (Figure 49).

Let mi = tan 0i, and ra2
= tan 2 - Then:

0i - 90 + 2 .

Therefore :

tan 0i = tan (90 + 2 )
= -cot 2

= -
tan 2
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Hence, by substitution,

131

A
V
A

Figure 49.

That is, if two lines are perpendicular, the slope of one is the

negative reciprocal of the slope of the other. The converse

is true also. y
49. Angle between two

lines. Given two lines (1)

and (2) ,
in Figure 50

;
we may

define the angle which line

(1) makes with line (2) as

the angle through which (2)

must revolve in counter-

clockwise sense to coincide

with (1). In the figure, the

angle is a.

We wish to express the Figure 60.

tangent of a in terms of the slopes mi and m2 of the given

lines.

Since
a = 61

-
02,

hence:

tan a - tan (0i 02)
= tan 0i tan 02

1 + tan 0i tan 8
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Therefore, by substitution,

tan a =

Problems

1. Find the slopes of the lines through:

(a) (2, -1) and (3, 5).

(5) (-3, -4) and (0, 6).

(c) (1, 1) and (4, 4).

2. Find, by slopes, whether or not the following sets of

points lie in the same straight line:

(a) (4,2), (0, -6),and(l, -4).

(6) (0,3), (9,0), and (-3,4).

(c) (1,1), (2, -l),and(l, -3).

3. Find the tangent of the angle between the lines the slopes

of which are (a) 3 and ?, respectively; (6) 3 and f ; (c) 3 and 2.

4. Show, by slopes, that the points (7, 2), (0, 3), (2,9), and

( 5, 4) are the vertices of a rectangle.

6. Three vertices of a parallelogram are (4, 1), (3, 2), and

( 2, 3). Find the fourth vertex. (NOTE: The student is

expected to submit three possible solutions.)

6. Show, by slopes, that the following points form a parallelo-

gram: (3, 0), (7, 3), (8, 5), and (4, 2).

7. A circle has its center at (3, 4). Find the slope of the

tangent to the circle at (5, 2).

8. The base of a triangle passes through (2, 1) and (3, 2).

Find the slope of the altitude.

9. Show that the diagonals of the square with vertices at

(0, 3), (7, 2), (2, 9), and (5, 4) are perpendicular.

10. Find whether or not the rectangle of Problem 4 is a square.

50. Application of coordinates to plane geometry. An

interesting problem is that of proving theorems in plane

geometry by means of coordinates. Two examples will

illustrate the procedure.
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Before we proceed, however, four considerations should

be noted. First, to avoid a special case, we must use let-

ters not numbers for coordinates. Second, we must use

the most general type of figure for which the theorem is to

be proved. Third, since the geometric properties of the

figure are independent of its position, we can employ the

most advantageous position for our particular figure.

Hence, if our problem concerns a rectangle, we shall take

the rectangle with two sides along the coordinate axes and
with a vertex, therefore, at Y
the origin. Finally, the coor-

dinates and the relations

between them add whatever

further information is neces-

sary to determine the type
of figure.

Example 1

Prove that the diagonals of a

rectangle are equal. In the

present example, we shall use

the rectangle in Figure 51.

Observe that, having taken at (o, o), A at (a, o), and B at

(o, 6), and then having given C the coordinates (a, 6), we have

made the figure a rectangle. We wish to prove that OC = AB.
We use the distance formula:

0(o,o)

C(a,6)

Figure 61.

Hence :

OC = V(a -
o)

2 + (6
-

o)
2

AB = V(o -
a)

2 + (&
-

<?)
2

OC = AB.

Example 2

Prove that the diagonals of a parallelogram bisect each other.

We shall prove this theorem by showing that the mid-points of

the two diagonals have the same coordinates and, therefore,

coincide.

In Figure 52, we have taken one vertex at (o, o), A at (a, o),

and B at (6, c). Then, since the figure is a parallelogram, C will

have the coordinates (a + 6, c).
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We use the mid-point formula. The coordinates of the mid-

point of OC are:

(a + 6) + o a + b

2 2

+ C C
y

2
= -

The coordinates of the mid-point of AB are:

__
o + c

__
c

tf
=

2
*

5"

jg(6,c) Cat6,c) The two mid-points have the

.same coordinates; hence, they
coincide. Therefore, OC and

X AB bisect each other.
A(a,o)

Problems

Figure 62.
Prove, by means of coor-

dinates, the following geometric theorems:

1. The diagonals of a rectangle bisect each other.

2. The medians of a triangle meet in a point that is two-thirds

of the way from a vertex to the mid-point of the opposite side.

3. The line joining the vertex of any right triangle with the

mid-point of the hypotenuse is equal to half the hypotenuse.
4. The line joining the middle points of two sides of a triangle

is equal to half the third side.

6. If the lines joining two vertices of a triangle to the middle

points of the opposite sides are equal, the triangle is isosceles.

6. In any quadrilateral the lines joining the middle points of

the opposite sides and the line joining the middle points of the

diagonals meet in a point and bisect each other.

7. In any parallelogram ABCD, if M is the middle point of

the side AB, the line MD and the diagonal AC trisect each other.

8. The sum of the squares of the medians of any triangle

equals three-fourths of the sum of the squares of the sides.
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9. The area of any triangle is four times the area of the

triangle formed by joining the mid-points of the sides.

10. The lines joining the mid-points of adjacent sides of any
rectangle form a rhombus.

11. The diagonals of a square are perpendicular.
12. The lines joining the middle points of the sides of any

quadrilateral, taken in order, form a parallelogram.
13. The diagonals of a rhombus are perpendicular.
14. If the diagonals of a rectangle are perpendicular, the

rectangle is a square.
15. A quadrilateral whose diagonals bisect each other at right

angles is a rhombus.

16. The diagonals of an isosceles trapezoid are equal.
17. A trapezoid whose diagonals are equal is isosceles.

18. If the diagonals of a quadrilateral bisect each other, the

quadrilateral is a parallelogram.
19. The distance between the mid-points of the non-parallel

sides of a trapezoid is half the sum of the parallel sides.

20. The sum of the squares of the sides of a parallelogram

equals the sum of the squares of the diagonals.



CHAPTER IX

LOCUS

51. Definition and equation of locus. In the preceding

chapter we considered geometric figures in which we were

concerned with stationary points and their coordinates.

Now we shall consider also the path described by a moving
point. Let us call the path of a moving point a curve.

(NOTE: A straight line is one form of a curve.) Usually
the coordinates of any general point on a curve will be repre-

sented by (x, y} ;
for any particular point, subscripts will be

used: (xi, yO, (x2 , 2/2), and so on.

If a point moves in such a way that it is constantly sub-

ject to a given condition that has been imposed, the path
described by the point is defined as the locus of a point that

moves subject to the given condition. The locus contains

all those points, and only those points, that satisfy the given
condition.

The circle is a well-known locus; it is the locus of a point

moving so that its distance from a fixed point is always
constant. Likewise, the perpendicular bisector of a line

segment is the locus of a point moving so that it is always

equidistant from the extremities of the line segment.

By the equation of a locus, we mean the equation which is

satisfied by the coordinates of all those points, and only
those points, that lie on the locus. The equation of a curve

is defined similarly.

Thus it is evident that, if a point lies on a curve, its coordi-

nates must satisfy the equation of the curve; and conversely,

if the coordinates of a point satisfy the equation of a curve,

then the point must lie on the curve. This idea is of funda-

mental importance and is applied constantly.
136
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Furthermore, it is quite evident from the above that the

intersection points of two or more curves are found by solv-

ing simultaneously the equations of those curves.

Example 1

Find the equation of the locus of a point moving so that its

distance from the point (2, 3) is constantly equal to 6.

Call (x, y} the coordinates of the moving point. Then

distance of (x, y) from (2, 3) = 6.

Substituting in the distance formula,

-2) 2 + (t/ + 3)
2 =

6,

or: x 2 - 4x + 4 + y
2 + Qy + 9 = 36.

Therefore: x 2 + y*
- 4x + 6y - 23 = 0.

The last is the equation of the locus. It is evident that this

is the equation of a circle with center at (2, 3) and with radius 6.

Example 2

Find the equation of the locus of a point moving so that it is

always equidistant from (1, 4) and (3, 5).

As before, call (x, y) the coordinates of the moving point.

Then
distance of (x, y) from (1, 4)

= distance of (x, y) from ( 3, 5).

Substituting,

V(x -
I)

2 + (y
-

4)
2 = V(x + 3)

2 + (t/-5)
2

.

Therefore: 8x - 2y + 17 = 0.

This is the equation of the perpendicular bisector of the line

segment joining (1, 4) and (3, 5). The student may, by

applying the mid-point formula, verify the fact that the mid-

point of the given segment lies on the locus.

Example 8

Find the equation of the locus of a point moving so that its

distance from the y-axis always equals its distance from the

point ( 1, 4).
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Since

distance of (#, y) from t/-axis

= distance of (x, y) from ( 1, 4),

substituting, x = V(a? + I)
2 + (y

-
4)

2
.

Simplifying, therefore:

t/
2 - 8y + 2x + 17 - 0.

Example 4

A variable triangle has as vertices the moving point (x, y) t

the origin (0, 0), and the point (6, 0), as in Figure 53. The area

always equals 10. Find the equation of the locus of (x, y).

0(0,0) A (6,0)

Figure 63.

The area of triangle OPA (Figure 53) is equal to

--OA-h

Since OA =
6, and h =

y, hence: area = - 6 y =
10,

or: 3y = 10.

10
Therefore: y =

Problems

1. Find the equation of the locus of a point P moving as

indicated in the following:

(a) Distance from (2, 4) equals 5.

(6) Distance from (3, 5) equals distance from (1, -4).
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(c) Distance from y-axis equals distance from (2, 1).

(d) Distance from a>axis is three times distance from 2/-axis.

(e) Distance from y-axis is three times distance from x-axis.

(/) Distance from origin is 6.

(g) Distance from ( 2, 3) equals twice distance from (1, 1).

(h) Distance from (5, 3) equals distance from x-axis.

(i) Distance from t/-axis equals 3.

(j) Distance from o>axis equals 2.

(fc) Square of distance from origin is equal to sum of distance

from x-axis plus distance from ?/-axis.

(Z) Sum of distances from (3, 0) and (3, 0) equals 10.

(m) Difference of distances from (5, 0) and ( 5, 0) equals 8.

(ri) Product of distances from (2, 1) and ( 1, 3) equals 5.

(o) Sum of squares of distances from (4, 2) and (1, 1) equals
10.

(p) Ratio of distances from ( 3, 2) and (2, 7) equals f .

2. A variable triangle has as vertices the moving point (x, y),

the origin, and the point (4, 0) ;
the area always equals 6. Find

the equation of the locus of (x, T/).

3. The ends of a line of variable length are on two fixed per-

pendicular lines. Find the equation of the locus of the mid-point
of this line if the area of the triangle thus formed is 20.

4. The base of a triangle is AB, where A is ( 4, 0) and B is

(2, 0). Find the equation of the locus of the vertex P(x, y), if

the slope of AP is two units greater than the slope of BP.
5. The ends of the hypotenuse of a right triangle are (3, 4)

and ( 1, 6). Find the equation of the locus of the vertex of

the right angle.

6. The base of a triangle is AB, where A is (4, 0) and B is

(8, 0). Find the equation of the locus of the third vertex P
(x, I/), if the median from A to BP is always three units in length.



CHAPTER X

THE STRAIGHT LINE

52. Equations of lines parallel to the axes. In the pre-

ceding chapter we considered equations of various curves

derived from various loci conditions. In this chapter we
shall concentrate on the straight line, the simplest type of

locus. We shall first consider lines parallel to the coordi-

nate axes. Y
In Figure 54, the line AB

is parallel to the #-axis, and
at a constant distance k from
it. The equation of AB will

be:
A

since all points whose ordi-

nate is k will lie on the line

AB, and the ordinate of all

points on AB will be k.

Likewise, the equation of a

line parallel to the ?/-axis and
at a constant distance k from it will be :

Y'

Figure 64.

53. Point-slope form. Let us now consider a line passing

through a fixed point and having a fixed slope that is,

a fixed direction. We wish to find the equation of the line

in terms of the fixed slope and the coordinates of the fixed

point. By way of illustration, consider the line AB not

parallel to either axis, as in Figure 55.

140
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Call the fixed point (xi, j/0, and the slope m. Call

(x, y) any other point on the line. Then, substituting in

the slope formula (Section 47) ,

y
-

x

Therefore we have the point-

slope formula:

Conversely, we wish to

show that all points whose

coordinates satisfy the above

equation lie on the line AB
through (xi, t/i) and with

slope m.

Let (XD, 2/0) be the coordinates of any point satisfying the

above equation (Figure 55). Then, substituting,

A"
'

Figure 56.

2/o
-

2/i
^

Or:

m

But, by the slope formula, the expression

2/Q
~

XQ Xi

is the slope of the line CD through (x Qj t/ ) and (xi, y\).

Since m equals this expression, m is the slope of the line CD.

However, m is also the slope of the given line AB. Hence,

since both lines, AB and CD, pass through (rti, t/i)> and

since they each have the same slope w, they must coincide;

and thus, (X Q) y ) must lie on the given line AB. Therefore

the above point-slope formula is the equation of the line

passing through (xi, y\) and with slope m.
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This formula is called the point-slope form of the equation
of a straight line, and is very useful in finding the equation
of a line when its slope and a point on it are given.

Problems

Write the equations of the following lines, and draw the

figures:

1. Parallel to the y-axis, and at a distance of 3 units from it.

2. Parallel to the o>axis, and at a distance of 2 units from it.

3. Through (2, -3), and (a) parallel to OX; (6) parallel to

OF.
4. Through (4, 1), and (a) parallel to x =

3; (&) parallel to

2/
= 6.

6. Through (3, 4), and (a) parallel to x =
1; (6) perpendic-

ular to the same line.

6. (a) The x-axis; (6) the y-axis.

7. Through (2, 3), and with slope 2.

8. Through (1, 4), and with slope J.

9. Through (1,5), andmaking an angle of 30 with the y-axis.

10. Through (2, 0), and making an angle of 135 with the

z-axis.

11. Through (3, 1), and parallel to the line passing through

(2, 4) and (-1,3).
12. Through (1, 6), and perpendicular to the line passing

through (3, 2) and (4, -3).
13. Through (1, 1), and parallel to the line passing through

(4, 3) and (-1,3).
14. Through (3, 2), and parallel to the line passing through

(-2, 4) and (-2, 7).

16. Through (o, fc), and with slope m.

54. Slope-intercept form. The x-intercept of a line is

defined as the distance from the origin to the point where

the line cuts the x-axis. The y-intercept is defined similarly.

Consider a line with slope m }
and with t/-intercept 6.

The line then passes through (o, 6). Substituting in the

point-slope formula, we have:

y 6 = m(x o).
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Thus we have the slope-intercept formula:

143

This formula is called the slope-intercept form. The

particular advantage of this formula is that it enables us

to find the slope of a line immediately from its equation;

we do this by solving for y and taking the resulting coeffi-

cient of x as the slope. Thus, given: 3x + 2y 6 =
0,

*/
= ~fz + 3.

Thus, comparing the coefficients of x in the example and in

the formula, we see that

m =
f.

In this instance, the ^/-intercept is the resulting constant

term. This fact is not of great importance, however, for

we can always find the y-intercept by letting x equal zero

and solving for y. Similarly, we might find the z-intercept

by letting y equal zero and solving for x.

56. Two-point form. Given two points: (xi, yi) and

(#2, 2/2). We wish to find the equation of the line through
these points.

Call the slope m. From the slope formula, we know that

m = 2/2
~

Hence, substituting in the point-slope formula, we have:

2/2
-

2/i , x

y
_

y l
- _

{X _ XJ t

Thus we have the two-point formula:

56. Intercept form. Another formula interesting in this

connection is the one called the intercept form.
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We are given two intercepts: the ^-intercept, called a;

and the y-intercept, 6. Then, in the above formula,

(x\> yi) is (a, o), and (xa , 2/2) is (o, 6). Hence:
i

b oy o

o ax a

Thus we have the intercept formula:

57. General form of the equation of a straight line. In

the preceding paragraphs of this chapter, we found various

forms of the equation of a straight line; in every instance

the equation found was an equation of the first degree in

x and y. It is evident that such will always be the case.

Moreover, given conditions for a line such as two points,

two intercepts, or one point and slope may be reduced to

the case of a fixed point and slope, and then the point-slope

formula may be applied. This procedure holds for all

cases except when the line in question is parallel to the

y-axis, and its equation consequently is of the form (x = k).

We now wish to show the converse
;
that is, every equa-

tion of the first degree in x and y is a straight line.

Consider the most general form of an equation of the

first degree:

where A, B, and C are constants. If B is not zero, we may
divide by B, and, after transposing terms, we have:

This is of the form

y mx + b,

which we know represents a line with slope m and with
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^
y-intercept 6. Hence, we have a line with slope and

JD

C
with ^-intercept -5-

This solution, incidentally, tells us that the slope of the

line

Ax + By + C =

is:

coefficient of x

coefficient of y
j

and it gives us another method of finding the slope of a line

if its equation is in the form

Ax + By + C = 0.

If B equals zero and A is not equal to zero, dividing by A,
we have :

C

This equation is of the form

x =
fc,

which represents a line parallel to the t/-axis.

Hence we say: Every straight line is represented by an

equation of the first degree, and every first degree equation

represents a straight line.

Example 1

Find the equation of the line passing through ( 1, 2), and

parallel to 3x - 4y + 2 = 0.

By solving for y, we first find the slope m of the given line.

-4t/ = -3z - 2

3 1

3-
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The required line must have the same slope. Using the point-

slope formula, we have:

y
- 2 -

|(*
+ 1),

which reduces to:

3x - 4 + 11 = 0.

Example 2

Find the equation of the line passing through (3, 4), and

perpendicular to 2x + 3y 6 = 0.

The slope of the given line is

2m---

The slope of the required line is

1--
;

m
3

and therefore -
j

Again using the point-slope formula, we have:

or: 3x - 2y - 17 = 0.

Example 8

The or-intercept of a line is three times the ^/-intercept. The

line passes through ( 6, 3). Find its equation.

We use the intercept formula

- + ?- 1 -

a b

Since the ^-intercept is three times the ^-intercept,

a = 36.

Hence: + = 1.
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However, since the required line passes through (6, 3), (by
the fundamental principle derived in Section 51) the coordinates

( 6, 3) must satisfy the equation of the line. Hence, substitut-

ing, we have:

-63

b b
'

6 = 1.

Therefore: a = 36 = 3.

X If

Substituting further,
-

H = 1.
o 1

Therefore: x + 3y = 3.

Problems

1. Find the equations of the lines passing through:

(a) (2,0) and (-1,3).

(6) (3, 3) and (4, -5).

(c) (-2, 6) and (2, -1).

(d) (0, 0) and (7, -3).

(e) (2, 4) and (2, 6).

(/) (3, -2) and (5, -2).

2. Find the slopes of the following lines:

(a) 3x + 2y - 6 = 0.

(5) 2x - y - 3 = 0.

(c) x + y - 2 = 0.

3. Find the equations of the lines with:

(a) ^-intercept 3 and ^-intercept 7.

(6) re-intercept 2 and ^-intercept 1.

4. Find the equation of the line passing through ( 2, 4), and

parallel to y = 3x + 6.

6. Find the equation of the line passing through (2, 1), and

perpendicular to y = \x + 2.
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6. Find the equation of the line passing through (1, 1), and

parallel to 3x - 2y + 5 = 0.

7. Find the equation of the line passing through ( 1,3), and

perpendicular to x + y 6 = 0.

8. Given 2x - 3y - 6 = 0. Find: (a) the ^-intercept; (6)

the t/-intercept; (c) whether or not ( 1, 2) lies on the line.

9. A line passes through (3, 2), and its ^-intercept is 5.

Find the equation of the line.

10. A line passes through (2, 4), and its ^-intercept is 2.

Find the equation of the line.

11. A line passes through (2, 4), and its x-intercept is twice

its ^/-intercept. Find the equation of the line.

12. A line passes through ( 1, 3), and its ^-intercept is four

times its re-intercept. Find the equation of the line.

13. Find the equation of the line with slope ^ and with ^-inter-

cept 3.

14. Find the equation of the line with slope and with x-inter-

cept 2. Y
16. A circle is tangent to

3x - 2y
- 6 = at (2, 0). p

Find the equation of the locus

of its center.

68. Normal form. There

is one other form of the

equation of a straight line

that will prove valuable,

particularly in finding the

distance from a line to a

point. We proceed to its

derivation as follows. Figure 66.

The position of a straight line is completely determined

if we know its perpendicular distance from the origin, and

the angle this perpendicular makes with the x-axis. Thus,
in Figure 56, the line AB is determined by p and co. Let

the equation of AB be : y mx + & But since AB and OC
are perpendicular,

m =
tan

cot w
cos

sin
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Since tOEC =
Zco,

* - ^ET P P
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sin Z.OEC sin w

Hence, substituting,

cos w p
y =

: x + -r
sm co sin co

Therefore, we have the normal form:

x cos co + ?/ sin co p =

We shall call p the normal,
* and shall consider p as always

positive, its direction being

from the origin to the line

in question. If the line

passes through the origin

so that p =
0, we shall

consider the arrow repre-

senting the direction of p
as pointing in the first or

the second quadrant (Fig-

ure 57). Unless the line

passes through the origin,

co may vary from to 360
;

Y

if the line passes through
Figure 67 '

the origin, co varies only from to 180. For example, if the

line passes through the origin, co = 200 yields the same

line as co = 20.

Let us now consider the general form

(1) Ax + By + C =

and the normal form

(2) (cos co)x + (sin w)y - p =

*
Historically, normal means common or ordinary, but it is convenient

in this text to use the term in its geometric connection.
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to see what relation, if any, exists between the correspond-

ing coefficients of x and y and the constant terms in the two

equations. (We assume that the two equations represent
the same line.) It is evident that the equation of a line

is not affected by multiplying throughout by a constant.

Thus,

Qx + 4y + 14 =

represents the same line as

3x + 2y + 7 = 0.

Hence our problem may be stated: Find what constant,

if any, which, multiplying equation (1), reduces it identi-

cally to equation (2).

Let us call the constant k. Equation (1) becomes:

(kA)x + (kB)y + (k)C = 0.

Comparing this with

(cos co)x + (sin o>)y p =
0,

we have the following three equations:

kA = cos w,

kB = sin a?,

kC = -p.

Squaring and adding the first two equations, we have:

k 2
(A

2 + B 2
)
= cos 2

o> + sin 2
o> = 1.

Therefore :

i

k = -

We now use the third equation to determine the sign of k.

Since the quantity p must be positive, kC must be negative.

Hence k and C must have opposite signs.

If C =
0, we use the relation kB = sin o>; for, if C =

0,

the line passes through the origin, in which case o> varies

only from to 180 and sin w remains always positive.
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kB must then be positive. Hence k and B must have like

signs.

We may sum up this discussion as follows : To reduce the

equation

Ax + By + C =

to the normal form, multiply throughout by

1

and take the sign of the radical opposite to that of C. If

C =
0, take the same sign as that of B.

Example

Reduce to the normal form : 3x 4y 5 = 0.

A = 3

B = -4

C = -5
Zx - 4y - 5

5

Problems

Example

Find the distance between the parallel lines (1) 5* + 12y 13 =
and (2) bx + I2y

- 39 - 0.

Reducing the lines to the normal form, we have:

-89

The distance from the origin to the first line that is, p\ equals

1 unit; and the distance from the origin to the second line that

is, p z equals 3 units. Hence the distance between the lines is p 2

minus pi, or 2 units. (NOTE: These lines are on the same side of

the origin. If they had been on opposite sides, we should have added

Pi and p 2.)
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1. Reduce to the normal form, and give the distance from the

origin to the line in question:

(a) 3x - 4y - 10 * 0. (0) 2x + 3y - 4 = 0.

(6) 3x - 4y + 10 0. (h) x + y - 2 = 0.

(c) 5z + 12y - 26 = 0. (f) a?
- y = 0.

(d) 3x + 4y = 0. 0*) * - 5 - 0.

(e) 3x - by 0. (t) y + 6 = 0.

(/) 2* + y - 0. (Z) y =

2. Find the distance between the following parallel lines:

(a) 3x - 4y
- 10 = and 3z - 4y - 25 = 0.

(6) 2a; - 4y - 3 = and 4z - 8y - 1 = 0.

(c) 3x 4y 5 = and 3x - 4y + 10 == 0.

3. Find the equations of the following lines:

(a) Distance from origin, 6; angle made by normal and o>axis,

30.

(6) Distance from origin, 5; angle made by normal and x-axis,

60.

(c) Distance from origin, 5; angle made by normal and x-axis,

90.

(d) Distance from origin, 4; angle made by normal and re-axis,

150.

(e) Distance from origin, 4; angle made by normal and x-axis,

225.

(/) Distance from origin, 5; angle made by line and -axis, 45.

(g) Distance from origin, 5; angle made by line and x-axis, 60.

(h} Distance from origin, 6; slope, f .

(i) Distance from origin, 5; parallel to 2x 3y + 6 = 0.

(j) Distance from origin, 4; perpendicular to # + 2y 4 = 0.

69. Distance from a line to a point. We shall now

employ the normal form to find an expression for the per-

pendicular distance from a line to a point, when we are

given the equation of the line and the coordinates of the

point.

Let the equation of AB (Figure 58) be:

x cos o> + y sin w p 0,
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and the coordinates of P, (a?i, j/i). Let the perpendicular
distance from AB to P be represented by d. Draw CD
through (xi, t/i) and parallel to AB. Call the distance OE,
p'. Then, the equation of

CD is:

x cos co + y sin co p'
=

0,

or, since p' = p + d, >

Z cos co + 2/ sin co

-
(p + d)

= 0.

Then, since P lies on CD,
its coordinates (xi, yi) must

satisfy the equation of CD.

Hence : Figure 68.

Xi cos co + 2/1 sin co (p + d)
= 0.

Therefore we have the formula for the distance from a line

to a point :

d = Xi cos co + 2/1 sin co p

Thus, to find the perpendicular distance from a line to a

Y point, reduce the equation
of the line to the normal

form, and substitute for x

and y the coordinates of the

point. Taking the direction

of the normal as a standard,

we shall consider a distance

from a line to a point as posi-

tive if its direction is the

X same as that of the normal
s

(see
" Directed distances/'

Section 16); and we shall

consider the distance nega-
Figure 69.

tive if its direction is opposite to that of the normal.

Thus, in Figure 59, di is positive, and d2 and d 3 are negative.
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Example 1

Find the distance from the line 4x Zy + 4 = to the point

(2, -1).

Reducing the equation of the line to the normal form, we have :

4tx - 3y + 4

-5

Hence, substituting,

d =

= 0.

>

The negative sign indicates that the direction of the distance

from the line 4x 3y -f 4 = to the point (2, 1) is opposite

to the direction of the normal.

Example 2

Find the equations of the lines parallel to the line 3x + ty 5

=
0, and passing at a distance of 3 units from it. (NOTE: This

example may be treated as the following locus problem: "Find

the equation of the locus of a point moving so that its distance

from the line Sx + 4y 5 = always equals 3.")

Since the distance of (x, y) from 3x + ty 5 = equals 3,

hence we have :

(1)^^ -
3,

(2)
?iiLL_5 , _3.

5

Reducing the equations, we obtain the following two solutions:

(1) 3x + 4y - 20 =
0,

(2) 3x + y + 10 = 0.

Example 8

A point moves so that it is always equidistant from the lines

3x + ty
- 12 = and 5x - I2y

- 10 = 0. Find the equa-

tion of the locus.

Since the distance of (x, y) from 3x + 4y 12 = equals

the distance of (x, y) from 5x 12y 10 = 0, hence we have

the two solutions:



(1)

(2)

Or, simplifying,
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Zx + 4y - 12 _ 5x - 12y - 10

5
~

13

3a + 4y - 12 _ 5x - 12y - 10

5 13
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(1) 7x + 5&y - 53 =
0,

(2) 32x - y - 103 = 0.

In Figure 60, CD is 3s + 4y 12 =
0, and AB is 5:c I2y

- 10 = 0.

(2)

v
-<-~-

/ I

Let

Figure 60.

- 4v - 12

and
- 10

13
=

<*,.

Then, line (1) is the locus obtained by letting

equation is:

7x + 56i/
- 53 = 0.

= d 2 . Its

Likewise, line (2) is obtained by letting d\ = d%. Its equation is:

32* - 4y - 103 = 0.

These results are evident from the figure since, for points on

line (1), di and d2 have the same sign; and for points on line (2),

di and d% have opposite signs. The signs can be checked by com-
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paring the directions of d\ and dz with those of the normals

pi and 2>2. Hence, if we wish to distinguish between lines (1)

and (2), a fairly accurate figure is necessary.

From plane geopaetry, we know, also, that lines (1) and (2) are

bisectors of the angles formed by the lines AB and CD, or

3x + ty - 12 = and 5x - 12y - 10 = 0.

Problems

1. Find the distance from 3x 4y 10 = to each of the

following points: (3, -1); (2, 0); (-1, 3); (4, 2); and (0, |).

2. Find the distance from 2x + y + 6 = to each of the

following points: (1, 3); (-1, 2); (3, -1); (4, 0); and (0, -6).
3. Find the equations of the lines parallel to 2x 3y 6 =

0, and passing at a distance of 3 units from it.

4. Find the equations of the lines parallel to x y + 3 =
0,

and passing at a distance of 2 units from it.

6. Find the equations of the bisectors of the angles formed by
the lines 3x - 4?/

- 10 = and x + 2y
- 3 = 0.

6. Find the equations of the bisectors of the angles formed

by the lines x + y 6 = and 2x y 1 = 0.

7. A point moves so that its distance from the line x ty 2

= always equals 5. Find the equation of the locus.

8. A point moves so that its distance from the line 3x + 4y
15 = always equals its distance from (1, 2). Find the

equation of the locus.

9. Find the equation of the locus of a point moving so that its

distance from (2, 4) always equals three times its distance from

the line x - 2y + 3 = 0.

10. Find the equation of the locus of a point moving so that

its distance from (1, 3) always equals one-half its distance from

the line 3x - 4t/ + 5 = 0.

11. The vertices of a triangle are: A(0, -2), B(4, 6), and

C(l, 4). Find:

(a) The equation of the line joining B and C.

(b) The length of the side BC.

(c) The length of the altitude through A.

(d) The area of the triangle.

12. Find the area of a triangle with vertices at the following

points: (2, -1), (3, 0), and (-2, 4).
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13. The lines 2x y 4 =
0, x + y ~ 2 =

0, and x 2y
+ 4 = form a triangle. Find the area.

14. A circle of radius 4 is tangent to the line 2x Zy + 2 0.

Find the equation of the locus of its center.

15. Find the equations of the lines parallel to 4x 3y + 5
=

0, and twice as far as that line is from the origin.

16. Find the equations of the lines parallel to 2x 3g/ + 1

=
0, and 2 units farther from the origin.

17. Find the equations of the lines parallel to x + Sy 6 =
0,

and passing at a distance of 2 units from the point ( 1, 2).

18. Find the equations of the lines parallel to 2x + 5y 6
=

0, and passing at a distance of 3 units from (3, 4).

19. The base of a triangle is the line joining (2, 4) and ( 1,0).

The area is 10 square units. Find the locus of the third vertex.

20. In Problem 19, if the triangle is isosceles, find the coordi-

nates of the third vertex.

60. Lines through the point of intersection of two given
lines. Suppose we are given the equations of two inter-

secting lines :

(1) A& + B.y + d =
0,

(2) A 2x + B 2y + C 2
= 0.

Let us multiply the second equation by k, and add it

to the first equation. What does the resulting equation

represent?

We wish to show that this equation

Aix + B iy + Ci + k(A& + B 2y + C 2 )
=

represents for each value of &, a straight line through the

intersection of the two given lines.

First, the equation is obviously that of a straight line,

for the equation is of the first degree. Now, let us call

the coordinates of the intersection point (a?i, T/I). Then,

* " m 0" means equals zero identically, or vanishes identically that is,

all the terms cancel out.
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for the point (xi, yi) lies on line (1). Also,

C 2 = 0,

for the point (xi, y\) lies on line (2). Hence, substituting

in the equation

Aix + Biy + Ci + k(A*x + B2y + C2)
-

0,

we have:

+ & SE 0.

This solution proves that the point (x\ 9 y\) lies on the line

Aix + B iy + Ci + k(A 2x + B 2y + C 2 )
=

0,

for its coordinates satisfy the equation of that line.

Example 1

Find the equation of the line through the point of intersection

of the lines 2x y + 3 = and x + y 1 =
0, and the point

(1, -2).
Since the required line passes through the point of intersection

of 2x y + 3 = and x + y 1 = 0, the line has an equation

of the form

2x - y + 3 + k(x + y - 1)
= 0.

Since the required line passes through (1, 2), this equation

must be satisfied by x =
1, andi/ = 2. Hence, we have:

2(1) + 2 + 3 + *(1
- 2 - 1)

=
0,

or: 7 - 2k = 0.

Therefore: k = -

Thus, substituting the above value for fe, we have the required

equation:

2x - y + 3 + ~(z + y - 1)
=

0,
&

or: 4z - 2y + 6 + 7x + ly - 7 * 0.

Therefore: 11s + by - 1 = 0.
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Example 2

Find the equation of the line through the point of intersection

of x y 6 = and 2x + y 3 =
0, and perpendicular to

the line 3z - 2y + 5 = 0.

The required line has the form

x - y
- 6 + k(2x + y - 3) = 0.

Since this line is perpendicular to 3x 2y + 5 =
0, its slope m

must be the negative reciprocal of the slope of 3x 2y + 5 = 0.

Hence, its slope may be expressed :

We next find the slope of the required line in terms of k.

Rewriting, we have:

x(2k + 1) + y(k
-

1)
- 3fc - 6 = 0.

2k + 1

Then, since slope =

hence:

fc-1

2 2k + 1

3 *- 1

or: 2k - 2 = 6k + 3.

5
Therefore: k =

7-
4

Hence, substituting for fc, we have the required equation:

5
x - y

- 6 - -(2x + y
-

3) =
0,

4

or: 2x + 3y + 3 = 0.

Problems

1. Find the equation of the line passing through the inter-

section of x 2y + 3 = and 2x + 3y 1 =
0, and through

the point (2, -3).
2. Find the equation of the line passing through the inter-

section of z + y~2 = and 3z - y + 6 =
0, and through

the point (1, 2).
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3. Find the equation of the line passing through the inter-

section of x + 2y + 1 = and 2x y 2 =
0, and parallel to

3x - y + 2 0.

4. Find the equation of the line passing through the inter-

section of 2x + y 6 = and x 2y + 1 =
0, and having a

slope of f .

5. Find the equation of the line passing through the inter-

section ofz t/ + 2 = and 2x + y -~ 1 =
0, and perpendic-

ular to a line of slope f .

6. Find the equation of the line passing through the inter-

section ofx + t/ 3 = and x 2y 4 =
0, and perpendicu-

lar to 2x + 3y - 5 = 0.

7. Find the equation of the line passing through the inter-

section of 2x + y 1 = and x 3y + 5 =
0, and having

x-intercept 2.

8. Find the equation of the line passing through the. inter-

section of 3x y 6 = and x + y 2 =
0, and making an

angle of 135 with the x-axis.

9. Find the equation of the line passing through the inter-

section of x 2y + 1 = and Zx + y 4 =
0, and parallel to

the x-axis.

10. Find the equation of the line passing through the inter-

section ofx + 2/~2 = and 2x y 4 =
0, and parallel to

the 7/-axis.

11. Given two intersecting lines: (1) A\x + B\y + Ci ==
0,

and (2) A%x + B^y + C% = 0, Find the value of k that will

make
C2)

=

represent: (a) line (1); and (6) line (2).

12. Given the lines A ix + Biy + Ci = OandA 2z + B^y + C 2

= 0. What does

Aix + Biy + Ci + fc(A 2x + B#j + C2)
=

represent if the lines are: (a) parallel? and (b) coincident?

Miscellaneous Problems

1. Find the distance between the parallel lines 2x 4i/ 3

f= and 4z - 8y + 1 = 0.

2. Find the equations of the lines parallel to 4x 3y 2 =
0,

and passing at a distance of 3 units from it.
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3. The vertices of a triangle are: (1, 3), (2, 1), and (0, 5).

Find:

(a) The equations of the sides.

(&) The lengths of the altitudes.

(c) The angles of the triangle.

(d) The area of the triangle.

(e) The intersection of the medians.

(/) The intersection of the perpendicular bisectors of the sides.

(0) The intersection of the bisectors of the angles.

(h) The intersection of the altitudes.

4. Using the triangle in Problem 3, show that the points of

intersection of the medians, of the perpendicular bisectors of the

sides, and of the altitudes all lie in the same straight line.



CHAPTER XI

THE CIRCLE

61. Definition and equation of the circle. A circle is

defined as the locus of a point P moving so that its distance

from a fixed point is con-

stant. The fixed point is

called the ewter} and the con-

stant distance, the radius.

The coordinates of the

moving point P we shall call

(x, y) ;
the coordinates of the

center, (a, /3) ;
and the radius,

_x r, as indicated in Figure 61.

We desire the equation of the

circle.

Figure 61.

Since

hence :

or:

distance from (a, ft) to (x, y) =
r,

V(x -
a)

2 + (y
-

(x
-

a)
2 + (y

-
/3)

2

This equation is the equation of the circle with center at

(a, j8) and with radius r.

It is evident that, if the center is at the origin, the equa-
tion will be

Example

Find the center and the radius of the circle with the following

equation :

x 2 + y
2 - 2x + 4y - 3 = 0.

162
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We wish to reduce this equation to the form

(z-a) 2 +(2/-0) 2 = r 2
.

Completing the square, we have :

z 2 - 2x + 1 + y* + 4y + 4 = 3 + 1 + 4,

or: (x- 1)
2 + (</ + 2)

2 = 8.

Hence we have: a =
1,

/= -2,

r = \/8;

or: center: (1, 2),

radius: Vs.

Problems

1. Find the center and the radius of each of the following

circles, whose equations are:

(a) x 2 + y*
- 4z + 2y - 3 = 0.

(6) x 2 + y
2 + 6x - % - 5 = 0.

(c) a:
2 + z/

2 + x - 2y - 1 = 0.

(d) 3z 2 + Sy
2 + 60: - 4y + 2 = 0.

(e) 5z 2 + 5y
2 - 6x - 2y + * = 0.

2. Find the equations of the following circles: (a) with center

at (2, 1), and radius equal to 4; (6) with center at ( 3, 4), and

radius equal to \76-

3. Find the equation of the circle with center at (2, 1),

and tangent to the y-axisi

4. Find the equation of the circle having its center at ( 1, 4),

and passing through (3, 5).

5. Find the equation of the circle that has as a diameter the

line joining (3, 1) and (2, 5).

6. Find the equation of the circle having its center at ( 1, 3),

and passing through (2, 7).

7. Find the equation of the circle with center at (5, 5), and

tangent to the x-axis.

8. Find the equation of the circle with center at (1, 3), and

tangent to the line 3x 4t/ 10 = 0.

9. Find the equation of the circle with center at (1, 2), and

tangent to x + y 6 = 0.
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10. Find the equation of the circle with radius 5, and tangent
to the line x - 2y + 6 = at (-4, 1).

11. Prove by coordinates that an angle inscribed in a semi-circle

is a right angle.

62. General form of the equation of the circle. In

Section 57, we proved that a straight line is always repre-
sented by an equation of the first degree in x and y, and
that the converse of this theorem is also true. We shall

now discuss the corresponding theorem for the circle.

Expanding

(1) (x-a)*+(y-0)* = r

and collecting terms, we have :

x 2 + y
2 - 2ax - 2$y + a 2 + 2 - r 2 = 0.

This equation may be written:

(2) z 2 + t/
2 + Dx + Ey + F -

0,

where

D = -2,
E = -20,

F = a* + /3
2 - r 2

.

Moreover, D, E, and F are constants but not necessarily

integers. For example, the following is the equation of

the circle with center at (^, 1) and with radius 2:

or:

x 2 + y
2 - x + 2y

- V- = 0.

Here

Since every circle has a center and a radius, and since a

circle with a given center and a given radius has either the

unique equation (1) or the same equation in a different
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form (2), it follows that every circle is represented by an

equation of the form

x 2 + t/
2 + Dx + Ey + F =

That is, every circle is represented by an equation of the

second degree in x and y, with the coefficients of z 2 and j/
2

unity and with no xy term.

Conversely, every equation of the form

x 2 + y
2 + Dx + Ey + F =

represents a circle. For, completing the square, we have:

or:

This last equation is of the form

(x
-

)
2 + (y

-
$)* = r 2

.

Observe that, if the result is to be a real circle, the

quantity
D 2 + E 2 - 4F ,

4
="'

must be positive. For, if the quantity is negative, r is

imaginary that is, r is the square root of a negative

number; and if the quantity is zero, r is zero. Hence, for

consistency, we say that the equation with imaginary r

represents an imaginary circle
;
and that the equation with r

equal to zero represents a point circle.

The following example illustrates the principles given

above.

Example

Find the equation of the circle passing through the three

points (0, 2), (3, 3), and (-1, 1).
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The required equation will be of the form

(2) x 2 + i/
2 + Dx + Ey + F = 0.

Hence, since the three points lie on the circle, their coordinates

must satisfy the equation of the circle. Thus we have:

(3) + 4 + D + 2E + F =

(4) 9 + 9 + 3D + 3E + F =
0,

(5) 1 + 1 - D + E + F = 0.

Solving these three equations for D, E, and F, we obtain:

D = -6,

# =
4,

F = -12.

Therefore the required equation is:

x 2 + y
2 - 6x + 4y - 12 = 0.

There is another method of solution, which does not

depend on form (2). This method is illustrated in the

following:

Example

We shall first find the center. From plane geometry, we know
the center is the intersection of the perpendicular bisectors of the

line segments joining any two pairs of points. By the method of

Section 51, the equation of the perpendicular bisector of the line

segment joining (0, 2) and (3, 3) is:

+ (y
-

2)
2 = V(x -

3)
2 + (y

-
3)

2
,

or:

(6) 3x + y - 7 = 0.

Similarly, the equation of the perpendicular bisector of the line

segment joining (0, 2) and (1, 1) is:

V* 2 + (y
-

2)
2 - V(x + I)

2 + (y
-

I)
2
,

or:

(7) x + y - 1 - 0.
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Solving (6) and (7), we find:

x = 3,

y -2.

Hence the center is at the point (3, 2). The distance from

the center to any one of the three points is found to be 5. There-

fore the required equation is:

(z- 3)
2 + (i/ + 2)

2 =
25,

or:

x 2 + y
2 - 6x + 4y - 12 = 0.

Problems

1. Find the equations of the circles through the following

points :

(a) (2,1), (-1,3), (3, -2).

(6) (1, 1), (0, 6), (2, -3).

(c) (-2, 1), (1, -4), (3, -1).

2. Find the equation of the circle having its center on the line

x 2y + 3 =
0, and passing through the points (1, 1) and

(0, -3).
3. Find the equation of the circle with center at (3, 2), and

tangent to the line 3# ty 3 = 0.

4. Find the equation of the circle with radius 5, and tangent
to the line 2x - y + 4 = at (1, 6).

5. Find the equation of the circle tangent to the line x + y
2 = 0at(l,l), and passing through (2 ? 4).

6. Find the equation of the circle tangent to 2x + y 4 =

at (2, 0), and passing through (3, 4).

7. Find the equation of the circle passing through (2, 4) and

( 1, 3) and having its center on the line x 3y + 6 = 0.

8. Find the equation of the circle tangent to 2x y + 6 =

and 2x y + 10 =
0, and having its center on the line

x - 3y + 4 = 0.

9. Find the equation of the circle tangent toz + i/ 3 =

and x + y + 7 =
0, and having its center on the line

2x + y - 4 = 0.

10. Find the equation of the circle with center on the z-axis,

and tangent to the lines y = 4 and x = 2.
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11. Find the equation of the circle with center on the line

y =
2, and tangent to the lines 2x 3y 4 = and x y 6

= 0.

12. Find the equation of the circle that is tangent to the lines

x =
0, y =

0, and x = 5.

13. Find the equation of the circle inscribed in the triangle

whose sides are the lines 3x &y 19 ==
0, 4x + 3y 17 =

0,

and x 7 = 0.

14. Find the equation of the circle inscribed in the triangle

whose vertices are (0, 6), (8, 6), and (0, 0).

16. Find the equation of the circle which passes through

(1, 7) and (8, 8), and is tangent to the line 3x + 4y 6 = 0.

63. Circles through the points of intersection of two

given circles; radical axis. In Section 60, we considered

the equations of lines through the intersection point of

two given lines. We shall apply the same treatment to

the circle.

Given two circles:

(1) x^ + y^ + A lx + B ly + C l
=

0,

(2) x 2 + y* + Aix + B*y + C2
= 0.

We wish to show that the equation

(3) xt + yt + AiX + B^ + Ci

+ k(x
2 + y* + Aix + BM + C2)

=

represents, for all values of k (with one exception), a circle

through the intersection points (real or imaginary) of the

two given circles.

Collecting terms, we have:

(4) (x
2 + y

2
)(l + k) + x(A l + kAJ

+ y(B l + kB2) + d + fcC2 = 0.

This equation is of the second degree and assumes, for all

values of k except 1, the form of the circle equation

(Section 62). We shall discuss the exception later. Fur-

thermore, if (#1, yi) is an intersection point of the two cir-

cles, it lies on both circles, and equation (3) becomes:

+ k as o.
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Hence (xi, j/i) lies on the circle represented by equation (3).

If the given circles are non-concentric but do not inter-

sect in real points that is, there are no real values (x, y)

that satisfy the equations simultaneously there will still

be imaginary values that satisfy the equations simul-

taneously; hence, equation (3) will represent a circle

through the imaginary points of intersection of the given
circles.

If the given circles are concentric, there are no values

(x y y) real or imaginary that satisfy the equations simul-

taneously; hence, equation (3) will represent a circle con-

centric with the given circles.

An interesting case arises when k equals 1. Equation

(4) then becomes :

x(Ai - A 2) + y(B l
- 5 2) + d - C2

= 0.

This is a first degree equation and, therefore, represents

a straight line, which is called the radical axis of. the two

circles.

It is quite apparent that, if the equations of the circles

are in the form of (1) and (2), the equation of the radical

axis is obtained by subtracting one equation from the other.

Thus, if (1) is represented by

51 =
0,

and (2), by
5 2 = 0,

the equation of the radical axis is :

Si - S2
=

0,

or:

*Si = $2.

It is further apparent that, if the circles intersect in two

different real points, the radical axis is the common chord.

Now, consider the three circles: S\ =
0, $2 =

0, and

$3
= 0. We wish to show that the radical axes of the three

circles (taken in pairs) meet in a common point called the

radical center.
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The equation of the radical axis of circles Si and
52

= Ois:

(6) Si - S 2
= 0.

The equation of the radical axis of circles S2
= and

53
= Ois:

(6) S 2
- Ss

= 0.

The equation of the radical axis of circles Si = and
S 3

= Ois:

(7) Si - S3
= 0.

However, if we add equations (5) and (6), we have, by
Section 60, a line through the intersection of (6) and (6).

Hence, adding (6) and (6), we obtain:

Si - S3
= 0.

But this result is the same as equation (7).

Therefore, the line represented by (7) that is, Si Sa =

0, which is the third radical axis passes through the inter-

section of the other two. Or, in other words, the three

radical axes meet in a common point.

Problems

1. Find the equations of the following circles:

(a) Through the intersections of the circles x 2 + y
2 = 2x and

x 2 + y
2 = 2y, and (3, -4).

(6) Through the intersections of x 2 + y
2 = 25 and x 2 + y

2

- 2x + % - 6 =
0, and (1, 2).

(c) Through the intersections of the circle a:
2 + y

2 = 16 and

the line x + y 2, and (4, 3).

2. Find the radical axis of the circles x 2 + y
2 4# + 6y

- 12 = and x 2 + y
2 + 2x - y + 3 = 0.

3. Find the radical axis of the circles x* + y
2 x + y 2

- and 3x 2 + 3y
2 + 2x - 3y + 6 = 0.

4. Find the radical axis of the circles x 2 + y
2 Gx - 4y + 9

- and x 2 + t/
2 = 1.

6. Find the radical center of the circles x 2 + y
2 + 2x y

0, x 2 + y
2 + x - y - 1 = 0, and x 2 + y

2 - 4z + 6y - 3 0.
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6. Find the radical center of the circles x* + y
2 x + 3y 2

=
0, x 2 + y

2 + 4z - 2y - 3 =
0, and x 2 + y

2 - 2x - 4?/
- 6

= 0.

7. In what case do two circles have no radical axis?

8. In what case do three circles have no radical center?

9. Give a geometric construction for the radical axis of two

non-intersecting circles.

10. Prove analytically that the radical axis of two circles is

perpendicular to their line of centers.

11. Prove analytically that the radical axis of two circles of

equal radii is the perpendicular bisector of their line of centers.

12. What is the radical axis of two circles of zero radius?

13. Using the material in Problem 12, prove that the perpen-
dicular bisectors of the sides of a triangle meet in a point.

14. If P(x\j y\) is a point outside the circle

(x- )
2 + (2/-0)

2 -r 2 =0,

show that the length of the tangent from P to the circle is given

by the formula

t = V(*i-) 2 + (*/i-0)
2 -r 2

.

16. Using the result of Problem 14, show that the radical axis

of two circles, Si = and 2
=

0, may be defined as the locus of

a point P moving so that the tangents drawn from P to the

circles, Si = and 2
=

0, are always equal.



CHAPTER XII

THE PARABOLA

64. Definition of a conic. A conic is defined as the locus

of a point P moving so that its distance from a fixed point
divided by its distance from a fixed line is a constant ratio.

The fixed point is called the focus; and the fixed line, the

directrix. The constant
ratio is positive and is called

the eccentricity. There are

three types of conies:

(a) The parabola, when

eccentricity equals 1.

(b) The ellipse, when eccen-

tricity is less than 1.

(c) The hyperbola, when

eccentricity is greater than 1.

We shall first consider the

parabola.
65. Definition and equa-

tion of the parabola. A
parabola is defined as the

locus of a point P moving
so that its distance from the focus equals its distance from

the directrix. We now wish the equation of a parabola.
Let us take the focus F on the x-axis, and the directrix

DD r

perpendicular to the #-axis at A (to the left of the

focus), as in Figure 62. The point V half-way between A
and F, and equidistant from DD' and F lies on the

parabola. Let us call point V the vertex. Let us choose

our origin of coordinates at the vertex, and let us call

172

D'Y'

Figure 62.
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AF that is, the distance from the directrix to the focus

2a. Then,
AV - VF - a;

the coordinates of the focus are (a, o) ;
the equation of the

directrix is

x =
a;

and the coordinates of P are (x, y). We may now proceed
to the derivation of the equation.

Since

distance from (a, o) to (x, y)
= distance from DDr

to (x, y),

hence :

PF = CP,

or:

\(z~a) 2 +^ = a + .

After squaring the above equation and collecting terms, we
have:

This is the required equation of the parabola.

66. Shape of the parabola. To obtain an idea of the

general shape of the parabola, let us examine the resulting

equation

y = \4a#.

When x is zero, y is zero (counted twice). Also, since we
have chosen a as positive, it is evident that x must be zero

or positive; for, if x were negative, y would be imaginary.

Hence the curve passes through the origin where the curve

itself touches the y-axis, and all other points on the curve

lie to the right of the j/-axis. Also, for every such value of x,

there are two values of j/, equal numerically but with

opposite sign. Thus we say that the curve is symmetrical

with regard to the x-axis. We call the line through the

focus perpendicular to the directrix, the axis. Since x

and y may assume as large values as we wish, the curve
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may be said to extend indefinitely to the right of the y-axis,

and to extend indefinitely above and below the #-axis.

The general shape of the curve is given in Figure 63 (a).

In the above discussion, since the directrix was taken to

the left of the focus, a was considered positive. If, how-

ever, the directrix is taken to the right of the focus, a will

X'- -XX-

Y'

-XX

a+

(a)

Y'

4ax,

(W

o

r'

-4aj

(c)

-X X

r'
4a

(d)

Figure 63.

be negative, and the parabola will open to the left instead

of to the right. See Figure 63(6), on this page. The

equation of the parabola will still be

the coordinates of the focus, (a, o) ;
and the equation of the

directrix,

x = a.

If we choose the focus on the j/-axis, the directrix below

the focus, and the origin of the coordinates at the vertex,

the equation of the parabola will be :

and the parabola will open upward ,
as in Figure 63 (c).

If the directrix is above the focus, the parabola will

open downward, as in Figure 63 (d).

The line through the focus perpendicular to the axis of

the parabola and terminating on the parabola is called the
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lotus rectum. Its length equals 4a. To illustrate, the

coordinates of the ends of the latus rectum of the parabola

y
2 = lax

are (a, y). Hence, substituting a for x, we have:

y
2 = 4a 2

,

or:

y = 2a.

Thus the total length of the latus rectum is equal to 4a.

Example 1

Find the focus, the directrix, and the latus rectum of the pa-

rabola y
2 = 8x.

Since a is positive, this equation is in the form

y
2 lax.

Then la =
8,

or a = 2.

Hence we have the following:

focus: (2, 0)

directrix : line (x = 2)

latus rectum: 8

Example 2

Find the equation of the parabola with vertex at the origin

and with focus the point (0, 3).

Since the focus is on the y-axis, the equation is in the form

x 2 = lay.

Here a = 3.

Hence the equation is: x 2 =
12y.

Problems

1. In each of the following parabolas, find the coordinates of

the focus, the equation of the directrix, and the length of the

latus rectum:

(a) y
2 - 8z. (d) y

2 - -x. (g) x 2 - 8y.

(b) y
* = -16*. (e) x 2

-5y. (h) x 2 -

(c) y
2

2z, (/) lx 2 =
3$/. (t) x 2 =



176 ANALYTIC GEOMETRY

2. In the following, find the equation of the parabola,

vertex in each case is at the origin.

The

(a) Focus, the point (2, 0).

(6) Focus, the point (0, 4).

(c) Latus rectum 16; focus on the o>axis.

(d) Axis, the y-axis; and passing through (-4, 2).

(e) Directrix, the line x = 5.

(/) Latus rectum 8.

67. Equations of the parabola with vertex not at the

Y origin. We have derived

the equation of a parabola
with its axis the #-axis and

with its vertex at the origin,

as

We now wish to find the

equation of a parabola with

its axis parallel to the z-axis

and with its vertex at the

point (a, 0). To do this,

we must first derive a so-

called intrinsic property of

the parabola.

Consider any point P on
Figure 64.

tfce parabola t/
2 = 4az, as

indicated in Figure 64. Drop PA perpendicular to the axis

of the parabola. Call this distance di, and the distance VA
from the vertex V to the foot of the perpendicular, d2 .

The coordinates of P are (d2 , di). Since P lies on the pa-
rabola y

2 = 4az, the coordinates of the point that is,

(d2 > di) must satisfy the equation

Therefore we have :

This equation is termed the property of the parabola.
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(NOTE : This equation is true for any point on the parab-

ola, and it is true regardless of the position of the parabola.
The equation depends simply on the parabola itself not

on its position.)

Given the property equation

we shall now proceed to find the equation of the parabola

represented in Figure 65.

Figure 65.

Consider the parabola with its vertex V at (a, /3) and its

axis parallel to OX. Take any point P(x, y) on the parab-

ola, and drop a perpendicular to the axis. Then, since

and

== y
"~ P

= x - a,

therefore, substituting, we have:

(1)

This is the desired equation.

In like manner, if the axis is parallel to the y-axis, we
shall have :

(3) (x- -0).
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The reader will observe that, for a parabola of the type

(y
-

0)
2 - 4a(z

-
a),

we have the following results :

vertex: (a, (f)

focus: (a + a, 0)

directrix: x = a a

axis: y =
ft

latus rectum: 4a

Like results hold for the type

(3) (x
-

a)
2 =

4a(i/
-

0).

Expanding the equation

(1) (y
-

0)
2 = 4a(*

-
a),

we have :

2 - 4oz + 4a = 0.

This equation may be written in the form:

(2) i/
2 + Ay + Bx + C - 0;

this is the form always assumed if the axis is parallel to

OX. Similarly, the equation

(3) (x
-

a)
2 - 4a(y

-
0)

may be written

(4) x2 + Dx + Ey + F * 0.

The latter is the form always assumed if the axis is parallel

to OK
It will be quite evident, if we reverse the above steps,

that every second degree equation with only one squared
term and with no xy term may be reduced to form (1) or (3),

and hence represents a parabola with its axis parallel to,

or coincident with, one of the coordinate axes. We include

in this category such an equation as

2/

2 = 4.



THE PARABOLA 179

This equation represents the two parallel lines y 2 and

y =
2, but we call the result a degenerate form of parabola

as the equation is of the parabola type.

Example 1

Given: y
2 + 2y 4x + 9 = 0. Find vertex, focus, directrix,

axis, and latus rectum.

Y D

\

*' b'
Figure 66.

We wish to reduce the equation to the form

(1) (y
-

0)
2 - 4a(x - a).

Completing the square, we have:

y
2 + 2y + 1 - 4x - 9 + 1,

or: (y + I)
2 - 4(x - 2).

hence: a =
2,

/?= -1.

Hence: vertex: (2, 1)

4a =
4,

a - 1.

Therefore we have the following results:

focus: (3, 1)

directrix: x = +1
latus rectum: 4

axis: y 1
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The following procedure is a good check: Draw the figure for

the above results. First, plot the vertex; then, indicate, along
the axis to the focus, the distance a from the vertex; then, the

distance a from the vertex to the directrix.

Example 2

Find the equation of the parabola with its vertex at ( 2, 3)

and its focus at ( 2, 6).

Since the x'a of the two points are the same, the parabola is

of the type

(3) (x
-

a)
2 = 4a(y

-
0).

Since a =
3,

hence: (x + 2)
2 = I2(y

-
3).

Problems

1. In each of the following parabolas, find vertex, focus, direc-

trix, axis, and latus rectum:

(a) y
2 -

4t,
- 4z = 0.

(6) y
2 + 2y + Sx - 15 = 0.

(c) x 2 4z 3y + 6 = 0.

(d) x 2 - 2x + 2y - 5 = 0.

(e) 4*/
2 - 24y + x + 40 = 0.

(/) 2x 2 - Sx - y + 12 = 0.

2. Find the equation of the parabola, given the following:

(a) Focus (3, 1); directrix, x = 5.

(&) Focus (2, 4); vertex (2, -2).

(c) Vertex (3, 2) ; directrix, y = 7.

(d) Latus rectum 16; axis, y = 2; vertex (5, 2).

(e) Vertex ( 1, 3); axis, y = 3; passing through (3, 7).

(/) Axis parallel to the o>axis; and passing through (0, 0),

(2, -1), and (2, 2).

(g) Axis parallel to the y-axis; and passing through (2, 8),

(1, -l),and(-2, -4).



CHAPTER XIII

THE ELLIPSE

68. Definition and equation of the ellipse. An ellipse

is defined as the locus of a point P moving so that its

distance from a fixed point divided by its distance from a

fixed line is a constant less than 1. As in the case of the

parabola, the fixed point
is called the focus, and the

fixed line, the directrix.

The constant less than 1 we
call the eccentricity, denoted

bye.
In Figure 67, let us take

the focus F on the z-axis,

and the directrix DD f

per-

pendicular to the x-axis at

B and to the right of the

focus. It is evident geo-

metrically that the curve

will cut the a>axis in two

points, A' and A, called the vertices one to the left of the

focus, and the other between the focus and the directrix.

Let us take 0, the origin of the coordinates, midway
between A' and A. Let a represent the distance OA. We
wish to obtain expressions for OF and OB in terms of a

and e.

By definition, we have the two relations :

(1)

A'F

A'B

FA

181
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(3) A'F = 6 A'B,

(4) FA - 6 45.

Simplifying to obtain a, we have:

(5) a + OF 6(a + OJS),

(6) a - OF = e(05 - a).

Adding (6) and (6), we obtain:

2a * 2e OB,
or:

Subtracting, we have :

OB =-
e

OF = 06.

Then, the coordinates of the focus are (ae, o) ;
and the equa-

tion of the directrix is

a
x =

6

We may now proceed to find the equation of the ellipse.

D

A' F/A B
(aet o)

D'

Figure 68.

Let P(x, y) represent any point on the ellipse. Then

distance from F to P
distance from DD' to P

SB 6.
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V(x~ 06)
2

x a/e
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V(:r oe)
2 + y

2 ex a.

Squaring the equation and collecting terms, we have:

x*(l
-

e*) + y* - a 2 - aV.

For convenience, we let

(This assumption is justifiable since e is less than 1.)

dividing by b 2
,
we have :

Then,

This is the required equation of the ellipse.

69. Shape of the ellipse. Solving the above equation
for y ,

we obtain :

y = -

Since for every value of x there are two values of y, equal

numerically but with opposite sign, the ellipse is sym-
metrical with regard to the x-axis. If x is greater than a,

or if x is less than a, y is imaginary; hence x may assume

values (and all values) between and including a and +a.
If x equals a, y equals 0. We call A'A (as in Figure 69)

the major axis; it is of length 2a and always contains the

focus.

Likewise, solving for x, we have :

From this solution it follows that the ellipse is also sym-
metrical with regard to the y-axis; that y may assume all
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values between and including +b and 6, and that OE
equals E'Q and equals 6, as in Figure 69. From these

conclusions it follows that the curve is closed and of the

shape indicated. (NOTE : If a equals 6, the ellipse becomes

a circle.) We call E'E the minor axis; it is of length 26.

The intersection

of the major and

the minor axes we
call the center of

the ellipse.

As in the parab-

ola, the latus rec-

tum is defined as

the line through
the focus per-

pendicular to the

major axis and

terminating on

the ellipse. Its

length is

26*

a

To illustrate, the x coordinate of one end of the latus

rectum is ae. Now, to find the y coordinate, we proceed
as follows: For convenience we have taken the form indi-

cated by

In the above equation of the ellipse, we substitute ae for x.

Hence:

-
a

- aV
a

Therefore the entire length of the latus rectum UL is:

2*-'.
a
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It is easily apparent that the line joining the focus to

one end of the minor axis is of length a.

Y

A'

Y'

Figure 70.

Similarly, if, as in Figure 70, we choose the focus on the

7/-axis and the directrix perpendicular to the y-axis, and

then proceed as above, our equation will be

The coordinates of the focus in this case are (o, ae), and the

equation of the directrix is

The equation connecting the quantities a, ae, and b is

the same as in the previous case,

a 2 - aV = 6 2
.

Example

Given an ellipse of the form
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find focus, directrix, vertices, major and minor axes, latus rectum,

and eccentricity.

This ellipse is of the form

Hence: a =
5,

6 = 4.

From the relation a 2
e
2 = a 2 6 2

,

we have: ae = 3.

a a 2 25
Hence: - = = >

e ae 3

06 3
6 = 7

=
5

Therefore we have the following results:

focus: (3, 0)

vertices: (5, 0)

major axis: 10

minor axis: 8

j- . - 25
directnx: x =

3
eccentncity:

-
5

32
latus rectum:

5

Problems

In the following, find focus, directrix, eccentricity, major axis,

minor axis, latus rectum, and vertices.

x 2
t/
2 x 2

y
2

<
"

i tt \

"
-i

a;
2

3/
2

7. z 2 + 3y
2 - 4.

7 +
16

~ 1-
8. 2x* + 5y

2 - 10.

a-2 W2 9. 3x2 + y
2 - 6.

T + T " L 10- 2x 2 +V - 1.
O o
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70. Second focus and directrix. In the discussion in

Section 68, we chose the directrix to the right of the focus.

It is evident that, if we choose the directrix to the left of

the focus and choose the origin midway between A' and A,
as before, the coordinates of the focus will be ( ae, o),

and the equation of the directrix,

Then, applying the definition of the ellipse, we have:

x + a/e

or, finally,

The above equation is the same one that we derived before,

when the ellipse had its focus at (ae, o) and its directrix,

From these results it follows that every ellipse of the

form

has two foci with coordinates ( ae, o), and two directrices

with equations
a

x = -
e

Similar results follow for the ellipse of the form

y* x 2
y__i __ i

> I 7 <>

- *'

a 2 6 2

Problems

Find the equation of each of the following ellipses. In each

instance the center is at the origin.
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1. Foci at (3, 0) and (-3, 0); major axis 10.

2. Foci at (0, 4) and (0, 4); minor axis 6.

3. One focus at (2, 0); one directrix, x = 4.

4. Latus rectum -^; major axis 10; foci on z-axis.

5. Vertices at (0, 7) and (0, 7); minor axis 4.

6. One focus at (0, 3) ;
one directrix, y = 7.

7. Distance between foci, 6; minor axis 8.

8. Foci on #-axis; distance between foci, 6; latus rectum

Answer:

9. Foci on t/-axis; distance between foci, 4; eccentricity f.

Answer:

10. Foci on z-axis; eccentricity ;
latus rectum 6. Answer:

16 12

f" - ,_

1L Foci on x-axis; passing through (2, 4) and ( 4, 2v2).
12. Foci on ^-axis; passing through (1, 4) and (3, 2).

13. Foci (4, 0) and (-4, 0); latus rectum 3.6.

14. Foci on t/-axis; eccentricity f ;
latus rectum -J.

15. Directrices, x =
4; latus rectum 3.

71. Equations of the ellipse with center not at the

origin. In Chapter XII we derived a so-called intrinsic

property of the parabola and applied that property to find

the equation of a parabola with its vertex at (a, /8). We
proceed similarly to find the equation of such an ellipse.

Consider the ellipse (Figure 71) of the form

a 2
'

6 2
*'

From any point P, drop perpendiculars AP and BP to the

major and the minor axes, respectively. Let AP = d\,
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Figure 71.

and BP = d2 . Then the coordinates of P are (d*,

Substituting in the equation of the ellipse, we have:

a 2 + b 2
1

This equation is the required property of the ellipse.

Let us now consider an ellipse with its center at (a, /8)

and with its major axis parallel to the z-axis (Figure 72).

Take any point P and drop perpendiculars to the major

and the minor axes. Now, we already have the above

property equation:

But

dt a,
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Figure 72.

Therefore :

(1)
(*
-

<*)
2

,
(y
-

O I 7 O

This is the required equation.
From this equation we observe :

center: (, 0)

foci: (a ae, )

vertices: (a a, #)

a
directrices: x = a -

e

Similar results obtain if we take an ellipse with its major
axis parallel to the t/-axis. The equation of the ellipse then

is:

(2)
(- -

)
2



THE ELLIPSE 191

If we expand either (1) or (2), we shall have an equation
of the form

(3) Ax2 + % 2 + Cx + Dy + E = 0.

Here, A and B have the same sign.

By reversing our steps and completing the square of

(3), we may reduce this equation to either (2) or (1) except
that the right-hand side may possibly be or 1.

If we include point ellipses and imaginary ellipses in our

classification, then we can say that every equation of the

form (3), that is, every second degree equation, involving
both x 2 and t/

2
,
with coefficients of the same sign and no xy

term represents an ellipse with its major axis parallel to,

or coincident with, one of the coordinate axes. Of course,

if A equals J5, the ellipse becomes a circle.

Example

Find center, foci, directrices, vertices, axes, and latera recta of

the following ellipse:

4* 2 + 9y
2 - l&x + ISy

- 11 = 0.

Completing the square, we have:

4(z
2 - 4* + 4) + 9(2/

2 + 2y + 1)
= 11 + 16 + 9,

or: 4(x
-

2)
2 + 9Q/ + I)

2 =
36,

(x
-

2)
2

(y + I)
2__ + __,!.

This last equation is of the form

(x
-

a)
2

(y
-

ft* _

Hence we obtain the following:

a =
3,

b -
2,_

ae * Va 2 - 6 2 = V5;

!
9

e ae \/5'
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a 3

Therefore we have these results:

center: (2, 1)

foci: (2 -\/5, -1)
vertices: (2 3, -1)

major axis: 6

minor axis: 4

V5
eccentricity:

-
3

Q

latera recta: -
3

g
directrices: x = 2 7=V5

Problems

1. Find center, foci, directrices, vertices, latera recta, axes, and

eccentricity of the following:

(*
- 2>

- 64a; - 50y
- 311 - 0.

(g) 3s 2 + 5y
2 + 6z - 30y + 33 - 0.

(A) 13a;
2 + 4y

2 - 26a; + 16y
- 23 - 0.

(0 3z 2 +V - 1% + 15 = 0.

(j) a;
2 + 2j/

2 - 6x + 4y + 9 = 0.

(fc) a;
2 + y

2 - 2a; + 4y - 1 =0.
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2. Find the equation of the ellipse with:

(a) Foci at ( 2, 3) and (4, 3); major axis 10.

(6) Foci at (3, 5) and (3, 9) ;
minor axis 8.

(c) Foci at (2, 4) and (8, 4) ; equation of one directrix, x 24.

(d) Center at (5, 1); eccentricity -J; major axis 14.

(e) Latus rectum f; major axis 10; center at (3, 1).

(/) Center at (2, 4); one focus at (8, 4); eccentricity .

. (g) Axes parallel to coordinate axes; and passing through

(0, 0), (1, 2), (1, -1), and (2,1).

3. Given the circle z 2 + y
z = 64. From the circumference

of this circle, perpendiculars are dropped to the re-axis. Find the

equation of the locus of the mid-points of these perpendiculars.
4. Show that the distances to the foci from any point (x\ 9 y\)

on the ellipse

*- + -=!9 I r *>
*

a2 o 2

are: a + ex\, and a ex\, and therefore that their, sum is the

constant 2a.

6. From the result of Problem 4, form a new definition of the

ellipse. Then, with this definition, show how an ellipse may be

constructed by continuous motion. (NOTE: Use two thumb-
tacks at the foci, and a piece of string of length 2a.)



CHAPTER XIV

THE HYPERBOLA

72. Definition and equation of the hyperbola. An
hyperbola is defined as the locus of a point moving so that

its distance from a fixed point divided by its distance from

a fixed line is a constant greater than 1. As in the ellipse,

the fixed point is called the focus; the fixed line, the direc-

trix; and the constant greater than 1, the eccentricity.

O

Y'

Figure 73.

A F

D'

We proceed, as with the ellipse, to take the focus on the

re-axis, and the directrix perpendicular to the #-axis but

now to the left of the focus (Figure 73). Points A 1 and A
(the vertices) will exist as before, and we take the origin

midway between them.
194



THE HYPERBOLA 195

Now we have, as in the ellipse, the following relations:

OF = ae

coordinates of focus: (ae, o)

equation of directrix: x = -
e

Hence we have also:

-
ae)* + y

2

x a/e

and, finally,

x\l - e
2
) + y

2 = a 2 - a 2
e
2

.

But now, since e is greater than 1, the quantity (a
2 a 2e 2

)

is negative. Hence, we let

and we have:

This equation is the relation between ae and a and 6 for

the hyperbola. The final reduction gives us the equation

of the hyperbola:

73. Shape of the hyperbola. Solving the above equation

for i/, we obtain :

As in the case of the ellipse, the hyperbola is symmetrical
with regard to the #-axis (Figure 74). If x is less than a

but greater than a, y is imaginary. When x equals a,

y equals 0; hence, x may assume values (and all values)

only greater than or equal to a, or less than or equal to a.

This conclusion proves that there are no points of the curve
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between ( a, o) and (a, o). We call A'A, as in Figure 74,

the transverse axis. It is of length 2a and, extended, con-

tains the focus. As x increases positively, y increases both

positively and negatively. Likewise, as x increases nega-

tively, y increases both positively and negatively. Hence,
the hyperbola extends indefinitely to the right of the

j/-axis and above and below the o>axis; and it also extends

indefinitely to the left of the t/-axis and above and below

the x-axis.

Y D

Similarly, solving for x, we obtain:

x = -
o

From this equation it follows that the hyperbola is also

symmetrical with regard to the j/-axis, and that y may
assume all values from > to +00. The curve is of the

shape indicated in Figure 74.

In order to preserve symmetry, we call the line E'E

(Figure 74), joining (o, 6) and (o, 6), the conjugate axis.
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Its length is 26. The intersection of the transverse and
the conjugate axes we call the center of the hyperbola.
As in the ellipse, the latus rectum, perpendicular to the

transverse axis at the focus, is of length

26 2

It is evident that the line joining (a, o) and (o, 6) is of

length ae.

Figure 75.

In a similar manner, if we choose the focus on the y-axis

and the directrix perpendicular to the t/-axis (as in Figure

75), and proceed as above, our equation will be:

The coordinates of the focus are (o, ae), and the equation

of the directrix is

- !?

6
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Example

Find focus, directrix, vertices, eccentricity, latus rectum,
transverse axis, and conjugate axis of the hyperbola

9~

~
16

= *'

This is of the form

^
~

b*
= L

(NOTE: In the hyperbola, a may be less than b or equal to b or

greater than 6.)

Hence: a2 =
9,

6 2 =
16,

or: ae =
5,

a a2 9

e ae 5

O6
__

5
e = = ~.

a o

Hence we have the following results:

focus: (5, 0)

transverse axis: 6

conjugate axis: 8

vertices: (3,0)
32

latus rectum: -

o

Q
directrix: x = ~

5

5
eccentricity:

-
o

Problems

Find focus, directrix, eccentricity, vertices, latus rectum,

transverse axis, and conjugate axis of:
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1. x 2 -
y* - 6. 6. y

2 - x 2 - 1.

2. x 2 -
y* = -6. 7. 2x* - 3y

2 = 9.

3. x 2 -
2y

2 - 8. 8. z 2 -
3y

2 - 9.

4 ! Vl _ i o f
* ** _ i*'

3
~

6
~ l ' *'

25
~

24
~ *'

74. Second focus and directrix. As in the case of the

ellipse, it is evident that every hyperbola of the form

a

has two foci with coordinates (ae, o), and two directrices

with equations

a
x - ~

e

Similar results follow for the hyperbola

_
a 2

6
2

76. Asymptotes. With every hyperbola there are associ-

ated two lines of interest and importance called asymptotes.

We shall derive the equations of these lines.

Consider the hyperbola

-. i

a2 & 2

in the form

W 1
a-

2
'

Let a: increase indefinitely. As it does, the quantity
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approaches

Thus

approaches

y

x

Hence, as x increases indefinitely, the hyperbola

_
a 2 6 2

approaches the two straight lines

or, in simpler form,

y -x.
a
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We call these lines (Figure 76) the asymptotes of the

hyperbola

a 2
6 2

The equations of the asymptotes may be written:

Similarly, the equations of the asymptotes of the hyper-
bola

2/
2 X 2

^""ft 2
= 1

will be:

a
V-

l
x

or

V
2 x 2

a 2 6 2

Problems

1. In each of the following, find the equation of the hyperbola.

In each case, the center is at the origin.

(a) One focus at (5, 0); one vertex at (4, 0).

(6) One directrix, x = 2; one focus at ( 4, 0).

(c) Transverse axis 8; conjugate axis 10.

(d) One directrix, x = f ;
transverse axis 20.

(e) One directrix, y = V; conjugate axis 6.

(f) Foci on o>axis; distance between foci 8; latus rectum *.

(g) Foci (0, 6) ; eccentricity 2.

(h) Directrices parallel to 2/-axis; distance between directrices,

f; distance between foci, 6.

(i) Latus rectum 4; slope of asymptotes, J.

(f) Foci on t/-axis; passing through ( 1, 1) and (5, 3).

(jfc) One directrix, x =
i; latus rectum 6.

(I) Eccentricity \/2; slope of asymptotes, 1.
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(m) Foci on a>axis; passing through (3, 2) and ( \/6, 0).

0; foci on y-axis; conjugate axis 6.
x 2

y*
(ri) Asymptotes,

4 2

2. Prove analytically that an hyperbola cannot intersect its

asymptotes.

76. Equations of the hyperbola with center not at the

origin. Exactly as in the case of the ellipse, we shall

proceed to find the equation of the hyperbola with its center

at (a, ]8) and with its transverse axis parallel to the #-axis.

Y

Consider the hyperbola

From any point P, drop perpendiculars to the transverse

and the conjugate axes. Call them di and d2 , respectively.

Then the coordinates of P are (d2, di). Substituting, we
derive the property of the hyperbola:
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Now, consider the hyperbola with its center at (a, $)
and with its transverse axis parallel to the #-axis. From
any point P, drop perpendiculars to the transverse and the

conjugate axes.

Figure 78.

We already have the property equation:

But

Hence :

x

y
-

(1)
(x
-

a)
2

(y
-

ft) = 1

This is the required equation of the hyperbola.

From this equation we observe :

center: (<*,)

foci: (a ae
y ft)

vertices: (a a, ft)
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directrices: x = a -
e

asymptotes:

Similar results obtain if we take the transverse axis paral-

lel to the j/-axis. The equation of the hyperbola then is :

(2)
(y
-

)
2

(x
-

a)
2

a 2 6 2

If we expand either (1) or (2), we obtain an equation of

the form

(3) Ax 2 + By
2 + Cx + Dy + E = 0.

Here, A and B have opposite signs.

By reversing our steps, we may reduce equation (3) to

either (2) or (1) except that the right-hand side may
possibly be 0, If the side equals 0, equation (3) represents
two intersecting lines, or a degenerate hyperbola.

Including this case, we may say, then, that every equa-
tion of the form (3) that is, every second degree equation,

including both squared terms with opposite signs and no xy
term represents an hyperbola with its transverse axis

parallel to, or coincident with, one of the coordinate axes,

Example 1

Given an hyperbola of the form

3z 2 -
5*/

2 + 6z + 2Qy
- 32 = 0.

Find center, focus, directrix, eccentricity, vertices, transverse

axis, conjugate axis, latus rectum, and asymptotes.

Completing the square, we have:

3(z
2 + 2x + 1)

-
5(2/

2 -
4y + 4) 32 + 3 - 20,

or: 3(s + I)
2 -

6(2,
-

2)
2 -

15,

(x + I)
2

_ (y
-

2)
2
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This equation is in the form

^2 i
"" 1 -

Hence we have the following:

o2 =
5,

62 =
3,

oV - o2 + 6* = 5 + 3 = 8;

Q, ft 5

e ae \/g'

oe V^
6 =

r-
=

a V5
Therefore we have these results:

center: ( 1,2)

foci: (-1 V^, 2)

vertices: (1 Vo, 2)

transverse axis: 2V5

conjugate axis: 2V3
S

directrices: x = 1

eccentricity: /-

\ 5

6
latus rectum:

(x + I)
1

(y
-

2) .

asymptotes:
^ -----

5 o

Example 2

Find the equation of the hyperbola with foci at (1, 2) and (7, 2),

and with conjugate axis 4.

Since the foci are on the line y 2, the equation will be of

the form

(x
-

a)
2

_ (y~fl*
a2 5 2

"
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Hence: = - =
4,

AI

(3
= 2.

Since 2b =
4,

6 = 2;

and since ae =
3,

therefore: a2 = aV - 6 2 = 9 - 4 = 5.

, ,.

Problems

1. Find center, foci, directrices, eccentricity, vertices, trans-

verse and conjugate axes, latera recta, and asymptotes of the

following:

-1.

,
i.

(A) (x
-

l)
z -

(y
-

2)
2 = 1.

(t) 9x" - 16y
2 - 54a; - 64y - 127 = 0.

(j) 6i 2 - 9y
2 - 48x + 18y + 141 = 0.

(*) 20a;
2 -

16y
2 - 40X - 32y + 324 = 0.

(0 4 2 - 5y
2 - 16 + lOy

- 9 = 0.

(TO) x2 - y
2 + 2x + 6y

- 16 = 0.

(n) i 2 -
y* + 2x = 0.
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2. Find the equation of the hyperbola with:

(a) Foci at (3, 1) and (17, 1); transverse axis 10.

(b) Foci at (2, 2) and (2, 8); conjugate axis 8.

(c) Center at (2, 4) ;
one focus at (10, 4) ;

one directrix, x = 4.

(d) Vertices at (8, 6) and (8, 4) ;
latus rectum *-.

(e) Eccentricity 3
;
center at (2, 3) ;

one focus at (8, 3).

(/) Transverse axis 16; foci on line y =
1; asymptotes:

(x
-

2)
2

(y + 1)
2__ _ . o.

3. Find the equation of the hyperbola with axes parallel to

the coordinate axes, and passing through (1, 0), (0, 2), ( 1, 2),

and (3, -1).
4. Show that the distances to the foci from any point (x\, yi)

on the hyperbola

*!_,
a 2 6 2

are: ex\ + a, and ex\ a, and that therefore their difference is

the constant 2a.

6. From the result of Problem 4, form a new definition of the

hyperbola. Then, with this definition, show how an hyperbola

may be constructed by continuous motion. (NOTE: Use two

thumbtacks at the foci, and a piece of string.)

6. Two hyperbolas so related that the transverse axis of

each is the conjugate axis of the other are called conjugate hyper-

bolas. Find the equation of the hyperbola conjugate to

7. Prove that two conjugate hyperbolas have the same

asymptotes.
8. If e and e

1
are the eccentricities of two conjugate hyper-

bolas, prove:

^-i.
e
2

e'
2

9. Show that the foci of the hyperbola
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and those of its conjugate all lie on the circle whose equation is:

0;2 + y2 = a2 + b*.

10. Show that the circle of Problem 9 meets either of the two

hyperbolas on the directrix of the other.

11. Show that the line joining the focus of an hyperbola to

the focus of its conjugate, passes through the point of intersection

of the directrices of the two hyperbolas.
12. An hyperbola with a equal to b is called equilateral. Find

the eccentricity of such an hyperbola.
13. A latus rectum of the hyperbola

!_!_i
a 2

fe
2

is extended by the amount k so that it just reaches an asymptote.
Show that k is equal to the radius of a circle inscribed in the

triangle formed by the asymptotes and the line x = a.



CHAPTER XV

TRANSFORMATION OF COORDINATES

77. Translation of axes. In Chapter XI while discussing

the equations of circles, we saw that the equation of a circle

with its center at the origin was

x 2 + y
2 = r 2

;

whereas, for the circle with its center at (a, /3), the equation

was

(x-ar + (y~W = r\

It is quite evident that the equation of the circle with its

center at the origin assumes a simpler form than that

assumed when the center is not at the origin. Similar

conclusions obtain for the ellipse and the hyperbola, and

also for the parabola if we consider the vertex in place of a

center.

Therefore, given any curve with the center or some

other element not at the origin, it would be quite con-

venient if we could move the coordinate axes in such a way
that the origin would coincide with this point, and the coor-

dinate axes would coincide with the axes of the curve, if

such axes existed. This procedure is possible. There are

two motions involved : translation, or moving the coordinate

axes parallel to themselves; and rotation, or turning the

axes about a point.

We shall first consider translation, which involves chang-

ing the origin without changing the directions of the axes.

We are given two sets of axes (Figure 79) : the original

set, OX and OF, with origin at 0(0, o) ;
and a new set, CX f

and OF', with origin at C(h, k). We are given, also, a

point P, whose coordinates referred to the original axes

209
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are x OA and y = AP, and whose coordinates referred

to the new axes are x f = CB and y
f = BP. We wish to

find the relations between the primed and unprimed
quantities*

D A

We have :

or:

Also:

Figure 79.

OA = OD + DA,

x = h + x'.

AP = AB + BP,
or:

y = k + y'.

Hence we have the equations of translation:

It is quite evident, then, if we are given the equation of

a curve referred to any set of axes, that the equation of

the same curve referred to new axes parallel to the given

axes and with origin at (h, k) is obtained by replacing

x with x f + h and y with y' + k.

Example 1

Find the equation of the circle

x2 + y*
- 6x + 2y

- 6 -
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referred to parallel axes through (3, -1).

Since x = x' + 3

and y =
y'
-

1,

we substitute in the circle equation and obtain:

x'
2 + 6x' + 9 + y'

2 -
20' + 1 - ftr' - 18 + 2y'

- 2 - 6 - 0.

After simplifying this result, we have :

z'
2 + y

>* = 16.

Example 2

Remove the first degree terms from the following:

x 2 + y
2 - 2x + % - 4 = 0.

Since x = x' + h

and y =
y' + k,

then, substituting in the above equation, we obtain:

x'
2 + 2hx' + h 2 + y'* + 2ky

f + k 2

- 2x' - 2h + y
f + 4k - 4 = 0.

(NOTE: In order for the first degree terms to vanish, their coeffi-

cients must equal zero.)

Collecting the first degree terms, we have:

x'(2h
-

2),

y
f

(2k + 4).

Hence: 2ft - 2 =
0,

2k + 4 = 0;

or: h =
1,

k = -2.

Substituting again, we have:

flj'2 + y' + 1 + 4 - 2 - 8 - 4 0,

or, finally, x'
2 + y'

2 = 9.

We might have solved Example 2 by another procedure,

indicated in the succeeding text :
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Example S

Remove the first degree terms from the following:

x 2 + y*
- 2x + 4j/

- 4 = 0.

Completing the square, we have:

(*
-

I)
2 + (y + 2)

2 = 9.

Since x 1 = xr

and y + 2 = y
f

,

or x = x' + 1

and y =
y' 2,

hence, as before, h =
1,

fc - -2.

Problems

1. Find the coordinates of the points (1, 3), (2, 5), and

(3, 2) referred to parallel axes through (1, 3).

2. Find the coordinates of the points ( 1, 2), (3, 2), and

(x, y) referred to parallel axes through (3, 2).

3. Find the equation of the line x 2y 6 == referred to

parallel axes through (2, 2).

4. Find the equation of the curve x* + y
2 4z + &y 12

= referred to parallel axes through (2, 3).

5. Find the equation of the curve x 2 + 2y
2 + 2x - 12y + 17

= referred to parallel axes through ( 1, 3).

6. Find the equation of the curve 3z 2 % 2 6x l&y 25
= referred to parallel axes through (1, 2).

7. By translation of axes, remove the terms of first degree
from: z 2 + t/

2 - 2z + 4y - 3 = 0.

8. By translation of axes, remove the constant term and the

term in x from: x 2 + 4z Sy + 12 = 0.

9. Find values of h and k that will remove the constant term

from: 2x 3y 4 = 0. Are the values obtained unique?
10. By translation of axes, derive the following equations:

,+

(6) (x
-

a)
2 = 4a(y

-
|8).
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78. Rotation of axes. We now wish to change the direc-

tions of the axes without changing the origin. We do this

by a rotation of the axes through an angle <f>.

Let OX and OF be an original set of coordinate axes;

and OX' and OF', a new

set, with <f> the angle

through which the original

axes must be rotated,

about the common origin

0, to coincide with the

new axes (Figure 80) . Let

P be a point whose coor-

dinates referred to the

original axes are x = OA
and y = AP, and whose

coordinates referred to the

new axes are x' = OB and y
r = BP.

from B to AP and OX.

Then:

A E

Figure 80.

Drop perpendiculars

= OE - AE
= OE - DB
= OB cos <t>

BP sin </>

= x f
cos <t> y

r
sin <t>.

Similarly:

= AD + DP
= EB + DP
= OB sin < + BP cos <

= x f
sin <t> + y' cos <.

Hence we have the equations of rotation:
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Example 1

By a rotation of axes, remove the term in y from : 3x'+ 4y 10
= 0.

Substituting equations of rotation, we have:

3(x' cos $ y' sin <) + 4(s' sin <f> + y' cos <fi
- 10 0.

Or:

a;' (3 cos </> + 4 sin <) + #'(4 cos < 3 sin </>)
- 10 = 0.

(NOTE: For the term in y
f
to vanish, its coefficient must equal

zero.) Hence:

4 cos <f> 3 sin <t>
=

0,

sin <t>
4

or: *"

cos <t> 3

4
Then: tan < = -

o

4
Therefore: sin < = ->

5

3
cos <f>

= -
o

Hence, substituting further, we obtain:

or: 5x' - 10 =
0,

or: x' = 2.

Problems

1. By a rotation of axes, remove the term in x from: 3x

-6 = 0.

2. By a rotation of axes, remove the term in y from: 5x +
-7 = 0.

3. By a rotation of axes, remove the term in y from: x* + y
2

- 2z - 2y = 0.

4. After the axes are rotated through 30, find the equation

of the line 3x - 2y + 6 = 0.

6. After the axes are rotated through 45, find the equation

of the line 3x + 3y
- 10 = 0,
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6. After the axes are rotated through 90, find the equation
of the circle x 2 + y

2 = 25.

7. After the axes are rotated through 45, find the equation
of the circle x 2 + y

2 = 25.

8. After the axes are rotated through 45, find the equation
of the curve xy = 6.

9. After the axes are rotated through 45, find the equation
of the curve xy = 4.

10. Remove the xy term from : xy = 10,

79. Removal of the xy term. In the four preceding

chapters, we discussed the various types of second degree

equations containing no xy terms, and the curves arising

from these types. We propose to show here that there is

a transformation which will always remove the xy term

from the most general equation of the second degree; for

example :

Ax2 + Bxy + Cy
2 + Dx + Ey + F = 0.

Thus, having reduced the equation to one with which we
are familiar, the procedure enables us to handle completely

the general second degree equation. We now proceed to

the finding of this transformation.

We are given

Ax 2 + Bxy + Cy
2 + Dx + Ey + F = 0.

Substituting in the equation the following values:

x = x' cos $ y' sin <,

y = x' sin
<f> + y' cos <,

we have, after collecting terms,

x'\A cos 2
<t> + B sin < cos + C sin2

<)

-\"X
r

y'(B cos 2
<t>

B sin
2

<t> + 2C sin </> cos <j> 2A sin <t> cos <)

+y'
2
(A sin 2

< B sin <t> cos <t> + C cos 2
4>)

+x'(D cos <f> + E sin <)

+y'(E cos 4) D sin <)

+F = 0.
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(NOTE : In order for the x r

y
f term to vanish, its coefficient

must equal zero.) Hence:

B(cos
2

<t>
- sin 2

4>)
- (A - C)2 sin <t> cos <t> 0.

But, from Section 35,

cos2 4> sin2 <t>
= cos 20,

and
2 sin ^ cos < = sin 2<.

Therefore :

B cos 2< = (A -
C) sin 20,

or:

sin 20 _ B
cos 20

~~

A C

Hence we have the following transformation

In problems generally, we need the values for sin <t> and

cos <, in order to substitute them in the rotation formula.

Such values are easily found from a variation of the half-

angle formulas (Section 36) ;
that is :

/I
- cos

sin =

1 + cos 2<t>
cos <t>

Before proceeding to an example, let us make a few obser-

vations concerning the above material. In the first place,

the translation and the rotation formulas of Section 78 are

of the first degree; hence, when they are substituted in an

equation, the degree of the equation is certainly not raised.

Moreover, the degree is not lowered; for, if it were, then

substituting further to restore the original axes would yield
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an equation of lower degree than the original degree. Thus

the degree of an equation remains unchanged by a trans-

formation of coordinates.

Therefore it follows that, by the transformation

B
tan 2, . __,

the general equation of the second degree

Ax 2 + Bxy + Cy
2 + Dx + Ey+F = Q

may be reduced to the form

A'x'* + C'y'* + D'x' + E'y' + F' =
0,

where A' and C" cannot both be zero.

Y

X'

However, we have previously shown that this equation

always represents some type of conic, including degenerate,

imaginary, or point conies. Hence we say: Every second

degree equation represents a conic, and every conic is repre-

sented by an equation of the second degree.

A typical situation is illustrated by the ellipse in Figure

81.
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In Section 80, we shall show how the type of conic may
be determined by certain relations among the coefficients

A, B, and C.

Example 1

Remove the xy term from: 5z 2
4xz/ + 2y

2 = 6.

Here, A =
5, B = -4, and C = 2.

-4 4
Hence : tan 2

Therefore: sin 2

5-2 3

4

5
;

3
cos 20 =

5

(Since we assume to be acute in this example, 20 is thus in the

second quadrant.) Then:

sin =

Substituting in the original equation, we have:

or: x'* + 6*/'
2 = 6,

This equation is in the form of an ellipse.

Example 2

Remove the xy term from: xy = fc.

Here, A *
0, B =

1, and C = 0.

Hence: tan 20 = - = o.

Therefore: 20 = 90,
or: = 45.
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Substituting in the original equation, we have:

or: (*'
~

y')(x
r + y')

=
*,

or: x'
2 -

y
12 = 2k.

This equation is in the form of an equilateral hyperbola with

the coordinate axes as asymptotes.

Problems

Remove the xy terms, and determine the type of curve in each

of the following. Given:

1. xy = 4.

2. 2xy = -7.

3. x 2 + 3xy - 3y
2 - 4 = 0.

4. 5x 2 -
Gxy + 5y

2 - 8 = 0.

6. x 2 + 4xy + y
2 = 2.

6. 3x 2 - 3xy -y 2 = 10.

7. x 2 + xy
- 5x - 3y + 6 = 0.

8. x 2 - xy +V - 4z - 2y + 8 = 0.

9. x 2 - 2xy + 2y
2 - 2x = 0.

10. 7/
2 + zi/

- 2x 2 - 4 = 0.

11. t/
2 - 2xy + 2x = 0.

12. 8z 2 + 12xy + 17t/
2 - 20 = 0.

13. x 2 + 2xy + y
2 + 2x + 6y == 0.

14. 3x 2 + 4^ + 6z + 4y - 1 = 0.

15. x 2 + 24xy
-

6y
2 ~ 30 = 0.

80. Invariants; classifications of types of conies. In this

section we shall find how to determine at a glance, by cer-

tain relations among the three coefficients A, B, and C,

the type of conic represented by the equation

Ax 2 + Bxy + Cy
2 + Dx + Ey + F = 0.

Consider the above equation in connection with the

rotation formulas:

x x' cos <t> y
f

sin <,

y = x 1
sin <t> + y' cos <t>.
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Substituting in the original equation, we obtain:

AV 2 + B'x'y' + CV 2 + D'x' + E'y' + F' -
0,

where, as determined in Section 79,

(1) A r = A cos 2
<t> + B sin cos + C sin 2

(2) B' = 5 cos 2<^>
- (A -

C) sin 20

(3) C' = A sin 2 - B sin cos + C cos 2

and
D' = D cos + E sin

E" = E cos D sin

F' = F

(These last three relations are not necessary in our particu-

lar problem.)
We shall first find some interesting relations that exist

between A, B, C and A', ', C'.

Adding equations (1) and (3), we obtain:

A' + C' = A (cos
2 + sin

2
0) + C(cos

2 + sin 2
0),

or:

(4) A' + C 7 = A + C.

Observe that the relation between the primed quantities,

A' + C', is equal to the same relation between the unprimed

quantities, A + C. We call A + C an invariant.

We shall now derive two other invariants. Subtracting

(3) from (1), we have:

A' - C' = (A - C)(cos
2

<f>

- sin
2
0) + 2 sin cos 0,

or:

(6) A' - C" = (A
-

C) cos 20 + 5 sin 20.

Observe that (A C) is noi an invariant. But if we

square (5), add B' 2 to the left-hand side of the equation,

and then add the value of B"2 from (2) to the right side of

the equation, we obtain:

(A'
-

C')
2 + /2 =

(A
- C)

2 cos 2 20 + 2B(A - C) sin 20 cos 20 + J5
2 sin

2
20

+ (A -
C)

2 sin 2
20 - 2B(A - C) sin 20 cos 20 + 5 2 cos 2

20,
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or:

(6) (A
1 -

C')
2 + B/2 - (A - C)

2 + B\

Thus we have the invariant: (A - C)
2 + B 2

.

Finally, square (4), and then subtract from (6). The

resulting equation is

A' 2 - 2A'C r + C' 2 + B' 2 - A' 2 - 2A'C f - C' 2

= A 2 - 2AC + C 2 + B 2 - A 2 - 2AC - C 2
,

or:

(7) B' 2 - 4A'C' = 2 - 4AC.

Hence B 2 4^4C is an invariant.

Moreover, it is the invariant B 2 4AC that will deter-

mine the various types of conies. Consider the trans-

formation

B

applied to the general second degree equation. We know,
from Section 79, that B' = 0. Hence, the resulting equa-

tion of the second degree is :

(8) A'x' 2 + CV 2 + D'x' + E'y
f + F' = 0;

and (7) becomes:

(9) B 2 - 4AC = -44'C'.

Now, if either A' or C' is zero, (8) represents a parabola.

However, from (9), we know that B 2 - 4AC = 0. Again,

if A' and C' have the same sign, (8) represents an ellipse.

However, from (9), we know that JS
2 - 4AC is negative.

Finally, if A' and C" have opposite signs, (8) represents a

hyperbola. However, from (9), we know that B 2 4AC

is positive. The process is also reversible.

Hence we have:

Parabola: B 2 - 4AC =

Ellipse: B 2 - 4AC <

Hyperbola: B 2 - 4AC >



222 ANALYTIC GEOMETRY

In each of the above formulas, it should be understood that

degenerate and imaginary cases are included.

Example

Classify: 3z 2 - 4xy 2y
2 + x y - 3 = 0.

Here, A =
3, B = -4, and C = -2.

Hence: B 2 - 4AC - 16 - 4(3) (-2)
= 16+24
= 40.

Therefore the form is an hyperbola.

Problems

Classify:

1. 3z 2 - 2xy + 4y~
- 7x + 3y - 10 - 0.

2. x 2 + xy y
2 + x y 6 = 0.

3. 2x 2 + 4xy + 2y
2 = 9.

4. x 2 + 3xy - y
2 + 2x - y

- 4 = 0.

5. 2x 2 + 4xy + y
2 - 5 - 0.

6. 3xy - 2x + y - 6 = 0.

7. 3x 2 + 3i/
2 -

a:
- 2y - 4 = 0.

8. O + 2^/)
2 - 4z.

9. (x + 21/)
2 = 4.

10. xy + 3y
2 - 2x + y - 3 = 0.
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