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Preface

This textbook grew out of the lecture notes that were prepared for a topology
course developed at Valdosta State University, a primarily undergraduate teach-
ing institution, and so the text is intended for undergraduates in math and the
sciences. Topics are selected to appeal to a wide range of interests, with em-
phasis placed on breadth rather than depth. When possible, the mathematics is
first motivated by intuition and analogy; however, the full rigor of mathemati-
cal proof then follows afterward (except where indicated in the text). You may
find that some topics are not covered in as much detail as in a more traditional
topology text, while other themes are present in this book that may not be
found in the standard texts.

The basic flow of the text is inspired by the wonderfully readable textbook
by Sue Goodman, Beginning Topology [Goo05], especially in its coverage of
vector fields, graphs and maps, and knot theory, topics that usually do not
find themselves in a topology text; however, this treatment differs in its focus
and coverage. Among other topics, Understanding Topology also includes a short
introduction to algebraic topology, modeled loosely after Hatcher [Hat02]. Some
chapters contain additional sections marked with an asterisk (*) that may be
of interest but are not required for understanding subsequent material. These
additional sections can be used for student projects, covered in lecture as time
permits, or omitted altogether. Each section has associated Ezercises, and each
chapter ends with Supplementary Reading. Appendix A provides a brief review
of set theory and functions. Appendix B gives a terse review of essential topics
in group theory and linear algebra. Following these are selected solutions to
exercises and an extensive list of notations used.

Part I ~ EBuclidean Topology — begins with Chapter 1, Introduction to Topol-
ogy, with an informal taste of topological thinking via a hands-on (albeit not very
rigorous) treatment of continuous deformations. Chapter 2, Metric Topology in
Euclidean Space, is the main thrust of Part I, in which the terminology and tools
of metric topology are introduced in a familiar setting. The last section of this
chapter, §2.5 - Metric Spaces in General, serves to motivate the level of abstrac-
tion that will be explored later in the textbook. Some applications of Euclidean
topology to vector fields in R? are given in Chapter 3, culminating in an appli-
cation of topology to the analysis of autocatalytic chemical reactions in §3.3.

The material in Part II — Abstract Topology with Applications — especially
Chapter 4, Abstract Point-Set Topology, forms the heart of the textbook,

vii



viii PREFACE

introducing concepts and methods of elementary point-set topology, complete
with precise definitions in the language of set theory. Then in Chapter 5, Sur-
faces, we encounter the most basic manifolds (beyond trivial zero and one-
dimensional examples), which help to prepare the way toward an understanding
of manifolds in general. Surfaces are analyzed using plane models and combi-
natorics, giving a concrete method for studying unfamiliar spaces, and making
use of invariants such as Euler characteristic and orientability. Applications of
topology are found in Chapter 6, Applications in Graphs and Knots, which also
serves to reinforce combinatorial ideas in the study of topology.

Part III —~ Basic Algebraic Topology — introduces the the tools of algebraic
topology by building on the notion of topological invariant. The material in
this part moves quite a bit quicker than in the previous parts, and it is helpful
to have prior experience with abstract algebra and linear algebra, though all
necessary algebraic structures will be defined as needed. Chapter 7, The Fun-
damental Group, gives the basic idea of the first homotopy group along with a
careful computation of the first “interesting” case, the circle. Then a less formal
discussion shows how to use fundamental groups in the classification of compact
surfaces and to study knots via their complements in R3. The chapter ends with
a short discussion of higher homotopy groups, giving the necessary definitions
and methods to begin the study of homotopy theory; however, the treatment
here only scratches the surface. Chapter 8, Introduction to Homology, leads
the reader through some of the algebraic and topological machinery needed to
understand homology, with emphasis placed on combinatorial descriptions and
matrix methods readily available at the undergraduate level. In defining integral
homology, we take a different approach than most texts at this level. Instead of
defining homology in terms of abelian groups, we use the concept of Z-modules
(informally, at least). The reason is twofold: first, since module theory plays
such a large role in algebraic topology, it is advantageous to see the term early
on; second, the conceptual idea of a module is closely related to that of a vec-
tor space, and indeed many methods from linear algebra carry over, including
matrix reduction algorithms. Again, the treatment of these topics is woefully
incomplete. Nevertheless, it is important to get a taste of what might be next.

The appendices include a Review of Set Theory and Functions {Appendix A),
which provides a readable refresher on the essential notation and definitions used
throughout the text. While an appendix on set theory within a topology text-
book is usually nothing more than a list of definitions, notations, and properties,
this text hopes to attract a wider audience by explaining the concepts of sets
and functions at a lower, more accessible level. On the other hand, the next ap-
pendix, Group Theory and Linear Algebra (Appendix B), is intended as a quick
review alongside the more advanced material in Part IIT — there is no need to
reference Appendix B if only Parts I and II are covered. Both appendices include
comprehensive exercise sets.
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Definitions, Theorems, and Examples

The tools of topology include definitions and theorems, and examples are pro-
vided to illustrate the concepts. Each definition is highlighted by placing it in a
shadowbox, with the defined word in bold:

Definition 0.0.1. This is a definition.

Bach theorem is placed in a doublebox:

Theorem 0.0.2. This is a theorem.

Examples are set off from the main text as shown below:

1 Example 1. This is an example.

o2

A Note about the Style

What is mathematics? Is it a body of knowledge consisting of definitions, for-
mulas, lemmas, and theorems? Is it a method for solving problems? Sure, these
things are essential to mathematics. However, mathematics is also a conver-
sation. Mathematicians rarely work in isolation. Even when research is done
individually, the paper or book that comes as a result is typically shared with
peers and students, forming a literature and contributing to the culture of math-
ematics. I have endeavored to let this text speak more freely, less formally, and
in more varied tones than perhaps other textbooks might do. You'll see contrac-
tions (like that one). Maybe a sentence fragment for effect. On the other hand,
the language used in definitions, theorems, and proofs generally follows formal
conventions and is mathematically precise; there is always an indication in the
text whenever formal precision and rigor have not been achieved.

Acknowledgments

I would like to thank my students from the Spring 2014 Topology course, Geof-
frey Buie-Collard, Aaron Calvin, Daniel Drummond, and Nathaniel Jones, for
their helpful feedback about the material as well as advice and suggestions for
what to include in this textbook. Others whose careful reviewing helped to catch
my errors and shape my writing include Scott Campbell, Iwan Elstak, Robert
Everett, Christopher McClain, John McSweeney, and Arsalan Wares. A special
thanks goes out to Charles Kicey for contributing exercises and examples in
set theory and metric spaces, and to Robert Kane for contributing solutions to
some exercises and careful proofreading. Last but not least, this book would
not be possible without the love and support of my wife, Megan, who had to
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put up with my telling her “I can’t do that right now because I'm writing”
whenever she wanted me to do a chore around the house, and the inspiration of
our children, Joshua, Holley, Samuel, and our newest addition, Felix.

The text of this book was prepared using I#TEX2e.! The figures and other
illustrations in this book were obtained through a number of sources. Most were
created by the author using one or more of the following tools:

e Latex packages such as pstricks, pst-plot, pst-math, pst-knot, tikz-cd, and
skak.

o Image drawing and editing sofware, including GIMP? and inkscape.?

e Mathematical packages with image capabilities, such as Sagemath? and
pplane.®

Other images were used with permission of the artist or under Creative Com-
mons licenses.

Lhttp://wwv.latex-project.org/.

2https://www. gimp.org/.

Shttps://inkscape.org/en/.

4Sage Group (William Stein et al.) [Ste].

5Java program created by Professor John C. Polking of Rice University [Pol].
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Chapter 1

Introduction to Topology

What is topology, anyway? When I talk to people about what I do,
some say, “Oh, so you study maps?” To which I respond, “You may be thinking
of topography.” In retrospect, studying maps is not far from the mark; we do
study maps of a sort. Of course, the maps that topologists study are a lot
different than the one shown in Figure 1.1, though such topographical maps can
be studied from a topological point of view as well. To a topologist, a map is a
continuous function from one space to another.

o
19
20
3
¥

Figure 1.1: A topographical map of two small hills.
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From calculus, the term~ continuous function should remind us of an unbro-
ken graph, usually representing an equation in z and y, such as the rule y = 22,
which transforms real numbers z into their squares, 2. The square of z = 2
is 4, but notice also that if z is close to 2, say, z = 1.9 or z = 2.003152, then
2 is also close to 4 (1.9 = 3.61 and 2.0031522 = 4.012617935104). Thus all
points (z-values) in a small neighborhood remain relatively close together after
the function has been applied; hence we say that a continuous function preserves
closeness.

However, not every continuous map preserves the essential nature of a space.
Just think of the constant function f(z) = 0, which takes as input any point of
the number line, and gives the value 0 as output, so f(100) = 0, f(—11325.42) =
0, f(m +1) = 0, etc. The entire output set of f consists of a single point,
which is very much unlike the input set (the real number line). However, some
continuous maps do less damage. We say a function is invertible if there is
another continuous map (an inverse map) that reverses the effect of the map.
For example, the function f(z) = 3z + 1 is invertible. It has an inverse function

glz) = 2% If the two maps are composed in either order, they “cancel” each
other out: g(f(z)) = (—Bﬁ%l)—fi =z, and f(g(z)) = 3 (%) +1 = . The constant
map f(z) = 0 is not invertible.

Y

Figure 1.2: Graph of f(z) = 2° — 3z, where f is a continuous function from the
real number line (z-axis) to the real number line (y-axis), but f is not invertible.

Now consider f(z) = z® — 3z. This function takes as input any point of
the number line, and yields any real number as output — that is, the domain
and range are both R (see Figure 1.2). However, f is not invertible. The graph
doubles back and hits the same y-values more than once; for example, f(~+/3) =
f(0) = f(+/3) = 0. Suppose an inverse g(z) exists; what would g(0) be? If we
say g(0) = 0, then g(f(v/3)) = g(0) = 0 # V3. If we say g(0) = v/3, then
9(f(0)) = g(0) = v/3 # 0. In the language of set theory, we would say f is not
injective, and thus not invertible.!

1See Appendix A for a more thorough discussion of functions.



Topology

Ok, so what is topology? Before getting into the specific details, we can say
that topology is the study of the qualities of a space that are preserved under
invertible maps.? However, let’s back up and look at one word in particular.
The word space has a precise mathematical meaning that allows for myriad
beautiful, complex, and useful interpretations. The spaces that we consider are
not confined just to the familiar three-dimensional world we can perceive around
us. Some spaces, such as the torus and Klein bottle (see Figure 1.3), bend
and connect in strange ways. Others, such as the Cantor set, which we will
encounter in §1.2, display seemingly paradoxical qualities that challenge our
intuitive understanding of connectedness and size. Still others do not seem to
fit in this category because we are not used to thinking of them in this way; for
example, we may define the space of all integer sequences, or the space of all
polynomials, or the space of all differentiable functions f such that f(0) = 10.

Figure 1.3: Left, the surface of a doughnut is a topologist’s torus. Right, an “im-
possible” surface, the Klein bottle cannot exist in three-dimensional space; how-
ever, it can be modeled in higher-dimensional spaces with no self-intersection.
Images courtesy of Wikimedia Commons.

I sometimes have to field the question, What is topology gOOd fOT’ ¢
While topology is mainly used in service of other branches of mathematics such
as analysis, there are also a number of immediate applications. For example,
topological data analysis and topological structures in computational biology have
recently emerged as important fields of study. And there is one aspect of topol-
ogy that 'most of us in the information age use and rely on every day — network
topology. In a network of computers, routers, hubs, and servers, the physical lo-
cations of the devices are not as important as knowing which device is connected
to which others. Our standard notion of distance in terms of miles from one com-
puter to another is meaningless; two computers may be considered “close” in
a network if there are relatively few intermediate networking devices connect-
ing them, even if the two computers are separated by thousands of physical
miles. By this definition of the word close, we may visualize the Internet as in
Figure 1.4. .

2To be more precise, invertible continuous functions whose inverses are also continuous.
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Figure 1.4: A topological map of the Internet. Each node represents a particular
server. Nodes are connected to one another if they can communicate directly,
regardless of the physical distance between the servers. Image courtesy of Wiki-
media Commons.

Abstracting is an extremely important tool to a topologist. Complicated rela-
tionships may become much clearer when all the “unnecessary” detail is conven-
iently ignored. For example, Leonhard Euler used spatial abstraction in a 1735
. paper [Eul36] in what many consider to be the first explicit use of topology: solv-
ing the Seven Bridges of Kdnigsberg Problem. At that time in the eighteenth
century, Konigsberg, Prussia (now Kaliningrad, Russia) had seven bridges con-
necting two islands to the mainlands on both sides of the Pregel River. It was
a popular pastime to stroll through the city traversing all of the bridges, and
it was not known whether one could take a stroll that crossed each bridge only
once. Euler observed that the details of each land mass were unimportant; only
the data about which bridges connect which land masses would be necessary
to analyze the problem. Euler drew what we now call a graph (see Chapter 6



for details about graph theory), in which the vertices represent the four land
masses and the edges represent the bridges. Then the question could be recast
in terms of finding a path in the graph that traverses each edge exactly once,
as suggested by Figure 1.5. Such a path is now called Eulerian in honor of this
great mathematician. It is fairly easy to prove that no such path exists in the
Seven Bridges of Konigsberg Problem (see §6.1, Exercise 5).

Figure 1.5: The seven bridges of Kénigsberg, together with a graph representing
the landmasses and bridges. Image: public domain (modified).

Topology as a mathematical discipline developed in fits and starts as a series
of ad hoc results in support of other branches of mathematics, such as real and
complex analysis. In these applications, mathematicians needed more flexibility
than standard Euclidean geometry could afford. Although topologists often deal
with familiar geometric shapes such as triangles, disks, and spheres, we will see
that topology is not concerned with such geometric measures as length, angle,
area, volume, etc. In fact, to a topologist, the surface of a sphere is the same as
(topologically equivalent to) that of a football, a brick, and even a wine glass
(see Figure 1.6).

The torus is topologically equivalent to the surface of a coffee mug, as il-
lustrated in Figure 1.7. What could possibly be useful about a study in which
a coffee mug is indistinguishable from the doughnut being dunked into it? As
it turns out, quite a lot. Consider a myopic® ant crawling along the surface of
the doughnut, only able to see its immediate surroundings but not aware of the
overall structure of the doughnut in three-dimensional space. All that it knows
is that if it sets out in one direction, it will come back to the same spot after

3Nearsighted, only able to see a very small distance around itself.
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Figure 1.6: A sphere is a football is a brick is a wine glass (in the sense that their
surfaces are topologically equivalent). Images courtesy of Wikimedia Commons.

Figure 1.7: A doughnut is the “same” as a coffee mug. Image courtesy of Cyrus
Rua.

traveling some distance (as it travels around the center “hole,” for example).
Now imagine that this doughnut is made of soft clay and it gets deformed, bit by

+ bit, until it looks like a coffee mug, as shown in Figure 1.7. So long as the trans-
formation is continuous, then the little patch of the surface the ant is currently
residing on does not get distorted too much. After the transformation, ‘the ant
may still observe that when it sets out in a certain direction, it will arrive back
at the same spot after some time (perhaps by traveling along the “handle” of the
mug). The most basic nature of the ant’s world has not changed, and there may
be no way for it (as an extremely myopic ant) to realize that any tranformation
has occurred at all.

Now imagine the world we live in. Compared to the vast size of the universe,
we are myopic ants indeed. If we want to study certain general properties of our
universe, then we need a way to ignore any nonessential, overly specific quali-
ties, focusing instead on the properties of space that would remain unchanged
under small, continuous modifications. Topology provides a way to strip down
to the basics in order to answer questions such as Does the universe ever fold
back in on itself? or Are there paths through space that cause a mirror reversal
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in the traveler? Indeed, topology (along with a fair amount of geometry) tan
begin to answer the question What is the shape of our universe? We begin our
study with an informal introduction to topological equivalence of spaces through
malleability and deformations.

Onward, brave myopic ants!

1.1 Deformations

In geometry, two objects, A and B, are considered to be equivalent if they
are congruent (notated A = B), that is, if all the lengths, angles, etc. of one
object match those of the second object. Congruence may be thought of as the
quality of an object that remains unchanged as it undergoes rigid motion, such
as translation, rotation, or reflection. Thus geometry is the study of properties
of objects that remain unchanged by rigid motions (or, to use the technical
term, isometry). In topology, much more freedom is allowed.

Topological Equivalence

Two objects, X and Y, are considered to be topologically equivalent or
homeomorphic, notated in this text* by X ~ Y, if there is a continuous in-
vertible function from X toY, whose inverse is also continuous. It takes some
time to define the terms so that homeomorphism can be properly understood.
In this introductory section, let’s informally explore a particular type of home-
omorphism: invertible deformation.

Imagine an object made out of soft clay. The clay can be molded in various
ways: bending it, smoothing it out, pulling it into a long filament. The clay is
malleable. However, we want to avoid separating or tearing parts of the clay.
We also do not allow joining parts of the clay to itself or to other lumps of clay.
So if the lump of clay originally looks like the doughnut in Figure 1.7, then it can
be molded to any shape that also possesses a “hole,” such as the coffee mug. This
type of transformation is an example of a deformation.’ Going forward, we
will now use the more traditional term (topological) space instead of object.

In this section, we only consider invertible deformations, those that can be
reversed. A line segment may be deformed into a semicircle, because there is a
deformation that reverses it (unbending the semicircle into a straight segment).
The segment cannot be deformed into a circle because that involves bringing to-
gether two points that were originally separated (the endpoints of the segment).
The deformation that shrinks the segment to a single point seems to fit the
definition, but it is not invertible, for much the same reason that the constant
function f(z) = 0 is not invertible.

4The notation is not standard. Many authors use 2, while others use ~ or = for topological
equivalence.
5A more precise term would be ambient isotopy.
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-
.

Figure 1.8: Congruence vs. homeomorphism. Triangles A, B, and C are congru-

ent to each other but not to shapes D and E. However, all of the shapes are
homeomorphic to one another.

When one space can be transformed into the other by an invertible deforma-
tion, then we may consider those objects homeomorphic, that is, topologically
the same.® The line segment is homeomorphic to a semicircle but not homeo-
morphic to a point or a circle. Figure 1.8 illustrates the increased freedom we
have in topology as compared to geometry. The triangle and circle are topologi-
cally equivalent (homeomorphic) because the triangle can be deformed into the
shape of a circle, and vice versa. In fact, any polygon or simple closed curve is
a circle (topologically, that is), and we may label any one of these by S*, which
is the notation used in this text for the circle.” The superscript 1 on S! refers
to the dimension of the circle. It’s essentially one dimensional, even though we
typically draw it in two-dimensional space — a myopic ant living on the circle
may only see a small arc that looks like a part of a line — a geometrical object
that has only one dimension, length.

In a similar way, when we look outside, we see only a small portion of the
surface of the Earth. On a perfectly clear day, with an unobstructed view, a
person 2 meters tall can see the surface extending up to about 5 kilometers
away.® The small disk that can be experienced from your vantage point seems
to be flat and two dimensional, possessing no curvature at all. Based on this
myopic view alone, it would not be unreasonable to guess that the whole surface
of the Earth is flat — except that we know better.® Not only do we have the
local information based on what our eyes can see, but we also have access to

5The idea of deformation implies that there is a step-by-step process to transform one
space to another. This is actually too restrictive for topological equivalence, but it will take
some time to arrive at the precise definitions needed for topology.

7 A number of recent topology texts, such as Goodman [Goo05], use this “blackboard bold”
notation for common families of spaces. The more traditional notation for the circle is S?.

80f course, some tall features such as buildings and mountain peaks can be seen from even
greater distances.

9Well, most of us know better. There are some people living in the twenty-first century who
still insist that the Earth is flat. The convoluted logic required to entertain such a position
can be found at http://www.theflatearthsociety.org/home/.
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Figure 1.9: A clay block in the shape of A may be deformed into a D, but not
into a B or C.

D &

Figure 1.10: The trefoil knot deforms to S!. The upper right crossing changes
from over to under by allowing one strand to move into a fourth spatial dimen-
sion, then back again. Afterward, the knot can easily be unraveled.

global information. Photos taken from space and careful measurements made
from various points on the Earth show that the surface of Earth is essentially
a model for §2, the two-dimensional surface of a sphere. We will return to the
concept of dimension in later chapters.

Let us return to deformation and topological equivalence. Figure 1.9 demon-
strates equivalence through deformation. However, one major drawback to our
intuitive understanding of deformation is that it can lead us to the wrong con-
clusion. For example, the trefoil knot, pictured in Figure 1.10, is homeomorphic
to S!, even though there appears to be no way to untangle it. An ant on the
trefoil experiences the same kind of one-dimensional “universe” that an ant on
a circle would. From the point of view of the two ants, the spaces are equiva-
lent, regardless of the way the spaces happen to be positioned within a larger
three-dimensional space (which the ants connot physically interact with any-
way). The difference in viewpoint is that an ant can only experience intrinsic
properties of the space (one dimensionality, no self-intersections, ability to re-
turn to the same point after setting out in one direction), while the extrinsic
properties (how the space is situated within a larger space) are irrelevant in
topology. Certainly we cannot untangle the trefoil by deforming it within our
familiar three-dimensional world; however, if we are willing to entertain the no-
tion of four spatial dimensions, then the trefoil readily deforms into S!. (This
type of deformation is analogous to moving a point from within a circle in R?
by “lifting” the point up into a third dimension, carrying it some distance, then
dropping it back onto the plane on the outside of the circle.)

Another serious problem with the intuitive definition of deformation is that
it is unclear how to apply it to spaces with infinite extent. For example, the
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L J
real line R! - or, in interval notation, (—o0, c0) — extends infinitely in both the
positive and negative directions, and yet is topologically equivalent to the open
ray (0,00) as well as to the finite-length open interval (0,1). We shall need the
more precise definition of homeomorphism given in §2.2 to prove this.

Topological Invariants

Now that we have spent some time discussing topological equivalence, we should
say something about topological inequivalence. If any polygon is just the same
as a circle (topologically), then the natural question arises: What spaces are not
the same? It seems intuitively clear that S' cannot be continuously deformed
into the open interval (0,1), because we would have to “break” the circle in
order to straighten it out. On the other hand, our intuition often fails us, so
how can we be sure? In the coming chapters, we will develop certain properties
of spaces called topological invariants that help to distinguish one space from
another.

Definition 1.1.1. Suppose for every topological space there is a mea-
surable quantity or property 2. If the value of 2 on any space X is

the same as for all topological spaces Y homeomorphic to X, then 2 is
called a topological invariant.

Once you have proven that 2 is a topological invariant, then you can use 2
to distinguish nonhomeomorphic spaces. The following theorem is perhaps the
most important tool in topology.

Theorem 1.1.2. Suppose 2 is a topological invariant and X , Y are
two spaces. If the value of 2 on X differs from the value of 2 on 'Y,
then X andY are not homeomorphic.

On the other hand, invariants cannot generally be used to show that two
spaces are homeomorphic. In other words, if X and Y both have the same
value for some invariant 2, then it is not’ automatically true that X ~ Y. As a
small example, let’s assume that the quality of number of pieces is a topological
invariant (see §4.4 for a more formal treatment in terms of connectedness).
Notice that both R! and S! have the same number of pieces, namely, 1. However,
R! is not homeomorphic to S!. Indeed, suppose any point z is removed from R';
the result is a space having two pieces, (—c0,z) U (z, 00). On the other hand, if
any point is removed from S', the result still has only one piece. This argument
would be sufficient to prove R! % S!.

One very important topological invariant that has been around since before
topology was ever a full-fledged subject is the Euler characteristic.!® For

ONamed after the same Leonhard Euler that pondered the Seven Bridges of Konigsberg
Problem.
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now, we define the Euler characteristic only for surfaces of polyhedra.t' Recall
that a polyhedron is a three-dimensional solid consisting of flat faces joined at
straight edges, which meet at vertices. We assume that the polyhedron surface
is closed, in the sense that if the solid were filled with water, the water could not
escape. You may be aware of the five Platonic solids (shown in Figure 1.11).
These are the only completely regular polyhedra (in the sense that all faces
are congruent, and every vertex has the same number of edges, all meeting at
exactly the same angle).

Figure 1.11: The five Platonic solids. Across-the top, the tetrahedron, octahe-
dron, and icosahedron; across the bottom, the cube and dodecahedron. Image
courtesy of Wikimedia Commons.

Definition 1.1.3. Suppose P is a polyhedron with f faces, e edges, and
v vertices. The Euler characteristic of P, denoted x(P), is defined by

x(P)=v—e+ f.

l Example 2. Find x(P) for all the Platonic solids.

Solution:
P v | e

tetrahedron | 4 | 6
octahedron 6 |12
icosahedron | 12 | 30
cube 8 |12
dodecahedron | 20 | 30 | 12

Do
O = 00 s
=0
DN B R BN
~
g

i

11 There are generalizations of the Fuler characteristic to a wider class of spaces called cell
complezes (see §5.4), which in turn lead to the concept of homology groups (see Chapter 8).

o2




14 . CHAPTER 1. INTRODUCTION TO TOPOLOGY

L 3
If you find it difficult to count the vertices, edges, and faces of any of these
polyhedra, try “flattening out” the picture. Imagine the edges and faces are
infinitely flexible, and deform the solid so that all edges spread out on the page.
Be careful, though, as one face will be hidden as a result. Figure 1.12 shows a
“fattened” diagram of the dodecahedron.

f =12 (11 + 1 back face)

Figure 1.12: A dodecahedron that has been “fattened.”

The fact that all five Platonic solids can be deformed into the sphere §? and
the fact that x(P) is a topological invariant (which we haven’t proven yet) show
why the Euler characteristic is always 2. In fact, x(P) = 2 for any polyhedron
P, regular or not, just so long as the surface of P is topologically equivalent to
the sphere. On the other hand, consider the polyhedron shown in Figure 1.13,
which is a sort of “triangular doughnut,” or three-dimensional block form of the
capital Greek letter A (Delta). Carefully counting all faces, edges, and vertices,
we find

XT)=v—e+f=12—-24+12=0.

Thus the surface of 1" is not topologically equivalent to the surface of any
convez? polyhedron, or to S§2. By the way, T s homeomorphic to the torus
(surface of a doughnut), so although a topologist can’t tell the difference between
a doughnut and a coffee mug, there is no difficulty in distinguishing a doughnut
(torus) and a wine glass (sphere). Cheers!

Ho;notopy

Suppose now we lift part of the restrictions for reversible deformation. A con-
tinuous deformation still must preserve closeness. However, distinct points may
gradually be brought closer to one another and may merge together so long as
the process can be made continuous; that is, at some time ¢, the space must be

124 solid is convex if for any two points P and Q in the solid, the line segment PQ is
entirely contained in the solid. We shall discuss convexity again in §2.4.
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Figure 1.13: A polyhedron with a “hole.”

essentially the same'? as at a time t; + ¢ for small €. For now, let’s see an exam-
ple or two. We shall call two spaces homotopic if there is such a deformation
from one to the other. For example, see Figure 1.14; the line segment may be
continuously shrunk down to a point. This is not to say that the segment and
the point are topologically equivalent (they’re not), but they are homotopic.
On the other hand, the segment is not homotopic to St. Any deformation will
eventually involve bringing together the two endpoints.-If that happens at time
t = t;, then the space at time ¢; — € is essentially different than the space at
time ¢y, the former having no “loops,” while the latter does.

time time

Figure 1.14: The segment and point are homotopic spaces. The segment and
circle are not.

We shall find that if two spaces are homeomorphic, then they are also homo-
topic to one another, but as the example above shows, the reverse is not true in
general. So why bother with homotopy at all? It may not be clear at this point,
but the concept of homotopy is incredibly powerful and much easier to work
with in practice than homeomorphism. If our job is to classify all the spaces we
encounter in mathematics, then classification by homotopy seems to be more
tractable than by homeomorphism.

13We must be vague at this point, having not seen any formal definitions. However, one
intuitive criterion that helps to understand this new type of equivalence is that if a new
loop is created, then the spaces are no longer essentially the same. We defer the details and
precision until Chapter 7.
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To round out this section, 1 offer a practical application of homotopy: solving
mazes. Mazes hHave fascinated humans for ages,' and there are already a number
of efficient, effective maze-solving algorithms. What follows is not a particularly
efficient technique, but it is simple enough to implement by drawing on the maze
itself and is guaranteed to work so long as the maze has a solution. The method
relies on homotopy equivalence to progressively deform the walls of the maze
until a path emerges. Assume first that the maze walls are segments of a square
grid, as shown in Figure 1.15.

L:r——’l el

I C
— _.III_

—— ol ] -

Figure 1.15: A maze, created using http://wuw.mazegenerator.net/.

1. Anywhere in the maze, if there is a square that has three walls (a dead-
end), then fill the square. This reflects the topological fact that the three
wall configuration (L) is homotopic to the filled-in square (B) via a ho-
motopy that progressively thickens the segments and expands to fill the
area of the whole square.

2. Repeat step 1 until it becomes impossible to do so, at which point the
unfilled squares contain a solution path. If there is only one solution, then
that path goes through all of the unfilled squares.

That’s it — that’s the entirety of the algorithm. More general mazes, even
those with curving walls, can be tackled in the same way so long as the dead-ends
can be identified.

4

l Example 3. Let’s see how the method works on a small example maze.

14There is a short but very interesting article on symmetries in ancient mazes by Tony
Phillips, “Hidden Symmetries of Labyrinths from Antiquity and the Middle Ages,” currently
available online at http://www.ams.org/samplings/feature-column/fc-2015-10.
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heeles
Pt

(solution path)

Exercises

1.

Consider the capital letters of the alphabet written in block form and
thickened to three-dimensional objects (as in Figure 1.9). Group the letters
into sets based on topological equivalence.

Repeat Exercise 1 with the capital letters of the Greek alphabet'® (in
block form, as three-dimensional objects).

Let C be a (hollow) eylinder with no top or bottom. Let A be an annulus,
which is defined as a region in the plane between two concentric circles
(see below). Is A homeomorphic to C' via deformation? If so, show an
intermediate step. If not, explain why not.

Figure 1.16 shows two surfaces that are topologically equivalent. In fact,
one can be deformed to the other through a sequence of moves entirely
within R3. Draw a sequence of pictures demonstrating how one space
deforms into the other.

. Find the Euler characteristic of a solid cube with three holes drilled

through the middle, as shown in Figure 1.17. Be careful; you will have
to draw additional edges so that each face contains no hole.

. Use the homotopy algorithm to solve the maze in Figure 1.15.

15See https://en.wikipedia.org/wiki/Greek_alphabet#Letters.
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e As viewed from any side

Figure 1.17: Figure for Exerise 5.

1.2 Topological Spaces

* Now let’s explore a few topological spaces. This section is intended only to
introduce the spaces in a hands-on way without delving too deeply into their
topological structure. )

Intervals and the Cantor Set

The real line is a visualization of the set R of real numbers. What could be sim-
pler than an unbroken line? It turns out that there is a lot of deep mathematical
structure hidden within this line and its subsets. Beginning in Chapter 2, we
find that one of the key concepts in topology is understanding what it means
for a set to be open. An interval such as A = (a,b) is called open because every
point z in A can be surrounded by a small interval of the form (z—¢, z+¢€) con-
tained entirely within A. For example, if A = (0,1), and z = 0.9, then one could
choose € = 0.1 so that the interval (0.9 — 0.1,0.9 + 0.1) = (0.8,1) is contained
within A.
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Open intervals exhibit a curious property though: while the interval (a;b)
does not contain either a or b, the interval does contain every real number z,
a < z < b, that is arbitrarily close to a or b, respectively. For example, 1 is not
an element of A = (0,1). But 0.9 is, and so is 0.99, and so is 0.999, etc. In fact,
the number

0.999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999,

which is within 1076 of the value 1, is a member of the interval (0, 1). However,
note that the number z = 0.9 = 0.9999 ... (digit 9 repeating forever) is not in
(0,1), because z is actually equal to 1. Here’s a quick argument, but this strange
result can be proven more rigorously using geometric series (see Exercise 1).

z = 09
10z = 9.9
10z—z = 99-09
92 = 9.0=09
z = 9/9=1

By contrast, an interval such as B = [a,b] is called closed because any real
number that is arbitrarily close to A is actually contained in A. Intervals such as
[a,b) or (a, b] are considered neither open nor closed.'® The concepts of open and
closed will be explained more formally in later chapters, but one closed interval
in particular will be important in the coming chapters: the unit interval, I. By
definition,

I=[0,1]={zecR|0<z <1} (1.1)

The Cantor set is a particular subset of the unit interval, obtained by a
process of removing the “open middle third” intervals forever. To construct the
Cantor set, do the following:

Step 0: Begin with the unit interval I = [0, 1].

Step 1: Delete the open middle third, (1/3,2/3), leaving the two
disconnected closed intervals: [0,1/3] and [2/3,1].

Steg 2: Delete the open middle thirds from each segment, leaving
four disconnected closed intervals: [0,1/9], [2/9,1/3], [2/3,7/9], and
[8/9,1].

Step n: Delete the open middle thirds from each segment, leaving
2" disconnected closed intervals.

16Gome textbooks call intervals of this type half-open, which is something of & misnomer
that we avoid in this text.
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Figure 1.18: Starting with I, remove the middle third. Then remove the middle
third of the remaining segments iteratively forever. The end result is called the
Cantor set.

The Cantor set C' is what remains of I after infinitely many steps. Figure 1.18
illustrates the first few steps of the process. Leaving the technical details aside for
now, you can imagine that there is some ideal set C, which we can approzimate
to any desired accuracy by following n steps of the construction procedure; the
higher the n, the more accurate the picture. How large is the Cantor set? In
one sense, there’s barely anything there at all. The total length of the C is 0.
You can see this by adding up the lengths of the deleted middle thirds. In Step
1, exactly 1/3 has been removed. In Step 2, exactly 2 - (1/9) = 2/9 has been
removed. In Step 3, 4 - (1/27) = 4/27 has been removed. The total length L
removed is equal to

1 2 22 2n—1 1 & "
=242 4+2 4., = = 1.2
steEtE T 32() 12)

You may recognize (1.2) as a convergent geometric series. Recall that if |7’{ <1,

then
oo
S
n=0

Therefore the sum (1.2) works out to:

=33 (3) -5

But the length, of the unit interval is also 1, so the length of C must be1—L =
1 -1 = 0 units. Ok, so maybe that’s not so surprising, given the amount
of material that was taken out at each step. What is quite remarkable is the
amount of “stuff” that remains in C. There are more points in C than in the

(1.3)
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entire set Q of rational numbers, in the sense that C is uncountable, while Q'is
countably infinite.}”

Exploring Surfaces

We live on the surface of the Farth. The page you're reading right now is a
model of a surface. Surfaces are fairly easy to understand because we live in a
three-dimensional world that gives us the vantage point to look at a given surface
from “above” (though some topological surfaces, such as the Klein bottle, do not
actually admit a well-defined notion of what is “above” or “below” the surface).
As mentioned before, the surface of a doughnut is called a torus. To better
understand the torus, and surfaces in general, we may rely on what’s called
a plane model of the surface, which is a “cut and flattened” representation of
the space. The plane model of a torus, as shown in Figure 5.12 (Chapter 5),
is a square with identifications along its boundary, indicating that if an object
traveled to the right edge of the square, then it would reappear on the left edge,
and if it traveled to the top edge, then it would reappear on the bottom. An
equivalent model of the torus is as an infinite repeating grid of squares, as shown
in Figure 1.19. The Klein bottle can be defined analogously.

Figure 1.19: Representing the torus (left) and the Klein bottle (right) as an
infinite grid of identical squares. Sammy the Stick Figure is waving to show the
how the squares must fit together to make each surface.

Let’s have some fun. Imagine a game of tic-tac-toe, checkers, or chess in which
the board takes up the whole surface of the torus or Klein bottle. A “win” in
tic-tac-toe may involve connecting three in a row across an edge. Chess pieces
may exit one side of the board and reappear on the other.’® Let’s explore a few
examples together.

17VWe refer the reader to any standard text on mathematical analysis or set theory for more
information on countability. These terms will not be used significantly in this text.

18Check out www.geometrygames.org, by Jefirey Weeks, for computer versions of these and
other games on a variety of surfaces.
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1 Example 4. Determine whether the configuration below is a win for

either X or O if the game is being played on a (a) torus or (b) Klein bottle.

0

X
X010

Solution: It’s easy to verify using the infinite grid representations (torus
shown on left, and Klein bottle on right).

0O 0 0 X1010§0 X100
X X X X X X

X|{O]OIX|0|0OIX]|0|0 ) X|{0]0§0

O 0 0 X]0]0}0 X100
X X X X X X

X|{O0]O|X]|0|O|X][O]O 0 X|0J0f0

0 0 0 X101010 X{0]0
X X X X X X

X]O|OfX]0|0OX]|0]|0 0 X]0{0}10

(a) On the torus, neither X nor O has the win. (But the top center space would
be X’s next play for the win.)

(b) On the Klein bottle, O is the winner.

{

o2
O
I Example 5. On a traditional chessboard, a bishop must remain on its
own color throughout the game because it can only move diagonally. The same
is true on the torus, but not on the Klein bottle, as illustrated in Figure 1.20.

o

Connections to Calculus: Path Integrals

What does topology have to do with calculus? It turns out that much
of the motivation for the early development of topology stems from certain
observations and abstractions from calculus, and especially from the analysis of
vector fields. The domain set of a vector field may be thought of as a topological
space, and the vector field itself is something like a continuous map on the space.
A path through the vector field can also be thought of as a continuous map, as
we shall see’in Chapter 2. If you haven’t seen vector calculus yet, feel free to
skip this section.

In many cases, the domain space of a vector field is simply the familiar
Euclidean plane R?, but in other instances, the domain may be a subset of the
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Figure 1.20: Left, the bishop on a torus remains on its color, and can attack the
knight but not the rook. Right, the bishop on a Klein bottle may find itself on
the opposite color; this bishop can attack either the knight or the rook.

plane, a more general surface, or even more exotic higher-dimensional spaces
called manifolds. The topic of vector fields will return in Chapter 3. Recall that
a vector field V in R? is a vector-valued function of two variables,

Viz,y) = M(z,y)i+ N(z,y)j. (1.4)

Here, i and j are the unit vectors in the positive z- and y-directions, respectively.
The field V represents something like the direction and magnitude of force
around a bar magnet, or the specific direction and strength data of wind at
each point of a region. At any rate, V may be visualized as a collection of
arrows {vectors), one arrow attached to each point of the plane.

Now imagine that a particle takes a journey through this field. If it follows
the general direction of the arrows, then the journey will not take much effort
(the field will be doing positive work on the particle), but we want to consider
arbitrary paths that may not follow the arrows at all. We track the progress
of our particle mathematically by way of a parametrized curve. Recall that a
parametrized curve, C, in R? is specified by a vector-valued function r of one
variable, ¢ (for time).

r(t) =u(®)i+v(t)j, a<t<b (1.5)

See Figure 1.21 for an example of a path within a vector field. (Of course these
definitions may be extended to R™ for any natural number n.)

Now we may define a quantity called work that measures how the field
interacts with a particle moving along a given path.
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Figure 1.21: A parametrized curve within a vector field. The curve does not
necessarily follow the flow lines. Created using Sagemath.

Definition 1.2.1. If V is a vector field and r parametrizes a smooth |
curve, C, then the work, W, done by the field in moving an object from
the beginning of C to the end of C' is

VV———/V-dr.
c

In many important real-world applications, only the beginning point, A =
r(a), and ending point, B = r(b), matter to the value of W, while the shape
of the path C has no effect at all. A vector field having this quality of path
independence on an open domain set D is called conservative on D (see Fig-
ure 1.22). In fact, if V is conservative and A = B, so that C is a closed path,
then |, cV-dr=0.To use the language of topology, if C' is homeomorphic to
the circle S, then the work done along C is 0 in a conservative field.

It becomes important to be able to identify whether a field is conservative
in arder to apply path independence. Again, topology will come into play. If
the domain set of the vector field satisfies a certain topological property called
simply connectedness, then there is an easy criterion to check.

Theorem 1.2.2. Let V = u(z,y)i+v(z,y)j be a vector field on a simply
connected open domain set U, and suppose u and v have continuous first

partial derivatives. Then 'V is conservative if and only if 5% 5 = 0.
Y

du
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Figure 1.22: If V is conservative, then [, V-dr= [, V.dr= [, V-dr.

In R?, an open domain set U is called simply connected if U is homeomorphic
to the interior of a disk.!? Intuitively, a simply connected space does not have
any “holes.” Thus the entire plane R? is simply connected, as is any region in
the plane bounded by a simple closed curve; however, the annulus, {(z,y) | 1 <
2? + y? < 2}, is not simply connected, nor is the punctured disk, {(z,y) | 0 <
2? + y? < 1}. It turns out that simply connectedness is another example of a
quality that remains the same for homeomorphic spaces; in other words, it is a
topological invariant.

The proof of Theorem 1.2.2 may be found in many standard calculus text-
books. Observe that the result may be false if U is not simply connected.

0

l Example 6. (This example requires multivariable calculus.) Consider the
field

=Yy . Tz o,

V(:L',y) = $2+y21+ w2+y2.]7 (]‘6)
defined on the punctured plane U = {(z,y) € R? | (z,y) # (0,0)}. Note that V
cannot be extended continuously to include the origin (0, 0). We have gﬂ% - % =

0, as verified below.

QE_@ B —z? 42 B —z? + 12
dz Oy - (22 + 42)2 (22 +y2)2
= 0

Let C be the unit circle, traversed once counterclockwise from (1,0), which
may be parametrized by r(t) = (cos2mt)i + (sin 2#t)j, where 0 < ¢t < 1. Then
V(r(t)) = (—sin2nt)i+ (cos2xt)j and dr = [(—2m sin27t)i + (27 cos 27t)j] dt;
hence
b dr 1
/ Vedr = / Vr(t))  — dt = / 2 (sin® 27t 4 cos? 2wt) dt = 27.
C a dt 0
The integral is nonzero, so 'V fails to be conservative. On the other hand, it can
be shown that for an arbitrary piecewise smooth, closed curve C avoiding the

19This definition only works in R?. The general definition of simply connected involves the
fundamental group, 71(U) (see Chapter 7).
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L
origin, the value of 5177 J ¢ V + dr computes the net number of times C makes a
complete counterclockwise rotation about the origin. ;

e,

Exercises

1. Use (1.3) for the sum of a geometric series to prove that z = 09 = % -+

105 + 055 + -+ is indeed equal to 1.

2. There is an analog of the Cantor set in higher dimensions, called Cantor
dust. Read up on Cantor dust at http://www.2dcurves.com/ fractal/
fractald.html. Draw an approximate picture of Cantor dust in the plane,
and determine the “area” contained within Cantor dust.

3. Play a few games of tic-tac-toe on both the torus and the Klein bottle with
a classmate. Then try checkers, being careful to define precisely what you
mean by “forward” moves.

4. The usual starting position of chess will not work on a torus or Klein
bottle since the two opposing kings would begin the game in mutual check.
Consider the starting position shown in Figure 1.23 (from Jeffrey Weeks,
The Shape of Space [Wee02]).

" Figure 1.23: One possible initial position for torus chess.

(a) Play a few games of torus chess using this starting position. You'll
have to decide appropriate rules for the movement of the pawns.

(b) Try the variant of besiege chess played on a torus {(http://www.
chessvariants.com/shape.dir/toruschess.html). Then play be-
siege chess on the Klein bottle.

5. On a traditional chessboard, the knight always alternates between black
and white squares with each move.
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(a) Show, by drawing a few pictures, that a knight must alternate colors
on & torus chessboard.

(b) Provide a picture showing that the knight may remain on the same-
color square when moving on a Klein bottle chessboard.

. Consider the black knight, as shown in Figure 1.20. We say that a piece

controls a square if it could attack that square on its next move. Highlight
all of the squares that the black knight controls if the board is:

(a) Traditional (b) A torus (c) A Klein bottle

Let V be the vector field defined by (1.6) in Example 6. Fix an arbitrary
integer n, and consider the curve C,, parametrized by r(t) = (cos 2mnt)i+
(sin 27nt)j, where 0 <t < 1.

(a) Describe the curve C,, for n = 1,2,3 and n = —1, -2, 3. In words,
what does C,, do?

(b) Compute 5 [, ¢, Vv dr. How does this result relate to your answer to
part (a)?

Supplemental Reading

Barr [Bar64}, Chapter 1.
Bartle and Sherbert [BS11], §11.1. Cantor set.

Milnor [Mill5] provides a concise survey of important topological mile-
stones.

Prasolov [Pra95], Chapter 1. Discussion of malleability and deformations.

Thomas et al. [TWH10], Chapter 16. Review of path integrals and vector
fields in R.

Weeks [Wee02], Part 1. Understanding the properties of a topological sur-
face through “games” and other visualizations.



Chapter 2

Metric Topology in
Euclidean Space

Distance is a concept central to our life. It’s important to know the number
of miles to the next gas station, the shortest flight distance from New York to
Tokyo, or whether there might be a “shortcut” path through space and time that
would allow humans to travel to distant galaxies within a single lifetime. The
trouble is that our intuitive notion of distance (which is known as Buclidean
distance) may be fine for getting us to the nearest gas station, but fails us
in problems on a grander scale. For instance, the shortest distance from one
point to another on the surface of a sphere is along a great circle, which may
be defined as a circle that separates the sphere into two equal parts. When
we view the globe as a flat map, many great circles look like highly curved
paths (see Figure 2.1), challenging our understanding of Euclidean geometry, in
which the shortest path between two points is a straight line. What’s more, if
we want to answer questions about distance between locations in the universe,
we are further at a loss. It is not even clear what the shape of space is ~ for
example, does it curve around on itself so that two points that look far apart
are really next door to one another? In other words, are there wormholes (as in
Figure 2.2)? Being myopic ants, we can really only experience distances that are
quite small, and on this level, Euclidean geometry is an appropriate and useful
tool. Thus we begin in this chapter to understand the fundamentals of Euclidean
distance.

2.1 Distance

In this chapter, let n € N. We assume the reader has some familiarity with the
FEuclidean spaces R™, and certain properties of the real numbers R, namely, that
R is the set of all points on the number line, including all rational and irrational

28
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Figure 2.1: The shortest distance between New York and Tokyo lies along a
great circle. Image generated using Google Maps (note that even though the
picture shows a series of line segments, this is simply an artifact of how Google
Maps generates the path — the actual shortest path should be smooth.)

Figure 2.2: There may be “shortcuts” through space-time, called wormholes.
Our current understanding of the shape of the cosmos does not rule out these
structures. Image courtesy of Wikimedia Commons.

numbers.? Elements of R™ may be thought of as either points or vectors. Points
of R™ will typically be written in étalic type (e.g., 2, ¥, z, D, ¢, etc.) as opposed

IFor a deeper understanding of R, see any standard text on real analysis, e.g., [BS11].
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to the typical bold type (e.g’,'x, ¥, Z, P, 4, etc.), although the origin will always
be denoted 0 € R™ to distinguish it from the scalar value 0 € R. Points (vectors)
of R™ may also be identified by their coordinates; hence

R ={z = (21,Z2,...,Zn) | 2z; E Rforeach ¢ =1,2,...,n} (2.1)

Ty
z2
= c=1{ . zi € Rforeachi1=1,2,...,n . (2.2)

Tn

While a point z is (by definition) a dimensionless element, we may also regard z
as the vector from the origin 0 = (0,0, ...,0) to the point = = (z1,Z2,...,Tn).
As such, = has length. Recall that the standard dot product of two vectors is
defined by

Ty = (x17-7727---7-77n) ’ (y17y27"'7yn) = I1Y1 +$292 + +$n2/na

and the length (or magnitude, or norm} of z is defined by

lz|| = Vo -z = \/ﬂc%+x§+'-~+x%‘

Note that for n = 1, a vector or point in R = R is just a real number z.
The length of z simply boils down to its absolute value: ||z|| = V22 = |z|, and
so distance from z to y in R is defined by |z — y|. Distance between points
in Euclidean space R™ is defined by the following formula (and illustrated by
Figure 2.3).

Definition 2.1.1. The distance between points z = (z1,%2,...,%,)
and ¥y = (y1,¥2,...,Yn) in R™ is denoted d{x,y) and defined by the
formula

d(z,y) = /(21— 91)? + (22 = 92)? + - + (@0 — y)?,

or, in terms of vectors,

d(z,y) = llz =yl

Note that ||z|| = d(z, 0). If we need to know the angle 8 between two vectors
z and y, then we could use the relation z - y = ||z}|ly| cos 8.

Once we know how to compute distance, we may define spheres. For any
n > 0, define the unit sphere S” C R**! by

S" = {z € R"™ | d(z,0) = 1}.
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R?)

y = (y1,92,¥3)

($17$27$3)

Figure 2.3: The distance between points z and y (or vectors x and y) and the
angle 6 between the vectors in a Fuclidean space.

3
]R2 SZ R

\
SOR_ R \/ va

-1 1

Figure 2.4: Low-dimensional unit spheres in Euclidean spaces.

l Example 7. Figure 2.4 illustrates the unit sphere S™ for n = 0,1, 2.

e S° C R consists of just two points, —1 and 1, because |-1—-0] = |1-0| = 1,
and no other z € R satisfies |z — 0] = 1.

o S! is another name for the unit circle in R?; that is, S' = {(z,y) €
R? |-d((x,y), (0,0)) = 1} = {(z,y) € R? | 22 + y? = 1}. Only the points
on the circumference of the circle are part of S*.

e S? is the unit sphere in R®, {(z,y,2) € R? | 22 + y% + 2% = 1}, which is
the set of points on the surface of a “ball.”

e For n > 3, it is hard to visualize what §™ could look like because our
only experience is with three-dimensional space (even S® lives in R4, for
example). So we cannot quite “see” the so-called hyperspheres.? We

2See Edwin Abbott’s Flatland [Abb84] for an account of how one might “perceive” higher-
dimensional objects by their intersections with the lower-dimensional spaces. See also Dante’s
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only experience these mathematical constructs by their defining property
(distance from the origin is equal to 1), or all solutions to the equation
g} + a4 4al =1

{

<&
The distance function d satisfies four important properties:

Proposition 2.1.2. Let n > 1. The Buclidean distance function d :
R™ x R™ — R satisfies:

LY

. [Nonnegativity] d(z,y) > 0, Vz,y € R™.

2. [Zero-Distance Rule] d(z,y) = 0 if and only if z = y.

3. [Symmetry] d(z,y) = d(y,x), Vx,y € R™.

4. [Triangle Inequality] d(z,z) < d(z,y) +d(y,2), Yz, y,z € R™.

The proofs of 1-3 are quite easy, relying on properties of the real-valued
functions f(z) = z° and g(z) = /. The last part, the Triangle Inequality,
states that any side of a Euclidean triangle is no longer than the sum of the
other two sides. While this seems obvious to anyone with some knowledge of
geometry, it must be proven. The proof is taken up in greater generality in §2.5.

x

d(z,y)

d(z, z)

d(y, z)

Open Balls

In R™, if we want to talk about the immediate vicinity of a point, we usually

consider a small open set surrounding it. It is natural to consider points up to
a specified distance away from the point in question.

Definition 2.1.3. If z € R” and ¢ € R (i.e., € > 0), the e-ball around |
x is the set

Bo(z) = {y e R" | d(z,y) < €}.

Divine Comedy, in which the various spheres that make up the Earth, heaven, hell, and
purgatory can arguably be modeled within s8.
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An e-ball around z is a type of neighborhood of z. More generally, we define
a neighborhood as follows:

Definition 2.1.4. A set IV is called a neighborhood of a point z € R®

if there is a value of € € R™ such that B.(z) C N.

In this section we focus on the e-balls; however, the more general idea of
neighborhoods will become useful later on.

T
l Example 8. In R!, an e-ball is simply an open interval around a point

on the number line:
B(z)={yeR|lz-yl<e}={yeR|z—e<y<z+e},
or in interval notation, Be(z) = (z — €,z + €).

Be(z)

r—€ z T +e€

Rl

In R?, an e-ball is a disk of radius € with no boundary (we will call this an
open disk even though we haven’t formally defined open yet).

Be(x) = Be((w1,22)) = { (v2,92) € R? | /o1 —pn)? + (w2 — 10)” < ¢}

In R™ in general, an e-ball is the set of points interior to a (hyper-)sphere of
radius €, and not including the boundary (see Figure 2.5).

Figure 2.5: Left, an open e-ball (disk) in R?. Right, an open e-ball in RS,
7

&

Notice that each example e-ball above “takes up space,” in the_following
sense: The open interval in R has nonzero length; the open disk in R? has
nonzero area; and the open ball in R® has nonzero volume. Intuitively, we should
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consider an open set of R™ as one that takes up some nontrivial amount of space
in R™ and does not include its own boundary points. Every point of such a space
should have a (perhaps tiny) distance around it containing only its fellow points
in the set. To be most precise, we use the following definition.

Definition 2.1.5. A subset U C R” is open if for every = € U, there
is an € € RT such that Bc(z) C U. Equivalently, U C R™ is open if for

every @ € U there is a neighborhood N of z such that N C U.

O
I Example 9. Fix n € N. Two special subsets of R" are easily shown to
be open, the empty set and the entire set.

e By definition, the empty set, 0, is considered an open subset of R™. Because
there are no points z € (), there is nothing to check, and so Definition 2.1.5
is vacuously true for U = 0.

e The whole set R™ is open, since any point € R™ can be surrounded by
the e-ball B.(x) for any choice of e € R*.

{

o

O
1 Example 10. Let U = {(z,y) € R? | |z| < 1 and |y| < 1}, and let
V = {(z,y) € R? | |z| < 1 and |y| < 1}. Show that U is open and V' is not open.

Solution: Refer to Figure 2.6. First we prove that U is open.

Let (z,y) € U be arbitrary. We have to find an e-ball around (z,y) contained
entirely within U. Without loss of generality, assume that z,y > 0 (the other
cases may be proved separately, or we may rely on the symmetry of the square
to argue that the other cases are equivalent). Since |z| < 1 and ly| < 1, we have

L 0<z<land 0 <y <1 Let g =1-—x and e = 1 — y. Observe that both
0<e <1land0<e <1 Let e =min{ey, e}

(z,9)

Figure 2.6: Left, U is open in R2. Right, V is not open.
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Claim: B.((z,y)) C U. Proof of claim: Let (u,v) € B((z,v)) be arbitr‘ary.
Then by definition, d((z,v), (u,v)) = /(z — u)? + (y — v)? < e. Now using the
fact that (y — v)? > 0 and the fact that e < €1,

lz—ul =@ —-u)?2< V(@ -u?+y—v)?2<e<e.

This shows that x —e; < u < z + €;. But since z > 0 and ¢; < 1, we find
that £ —e; > 0 — ey > —1. Moreover, since ¢; = 1 — z, we have ¢ + ¢; = 1.
Substituting into the inequality produces —1 < u < 1, or |u| < 1.

Similarly, |v — y| < e implies that v € (—1,1). This proves that (u,v) € U
(since |u| < 1 and |v| < 1), and hence B¢((x,y)) € U. Thus U is open.

Now, to show that V is not open, we just have to find a point in V that cannot
be surrounded by any e-ball within V. Consider (1,0) € V. For any € € R™, if
B.((1,0)) C V, then (1 +¢/2,0) € V, but this is false since 1 +¢/2 > 1. This
contradiction shows that B.((1,0)) € V. Thus V is not open. .

[o,

What about the e-balls themselves? Is B.(z)} open? Notice that Defini-
tion 2.1.5 does not immediately imply that B.(z) is open — we need to establish
that every single point ¥ in the ball has its own ball centered at y, Bs(y), con-
tained within B.(z). If ¥ is near the boundary, then § may have to be very
small indeed, but the important thing is that an appropriate § > 0 can always
be found. The proof hinges on the triangle inequality.

Proposition 2.1.6. For every € € Rt and z € R™, B(x), is an open
subset of R™.

Proof. Let y € Bc(z); hence d(z,y) < €. Let § = € — d(z, y), which is a positive
number.

Claim: Bs(y) C Be(z) (as illustrated by Figure 2.7). Proof of claim: In order
to prove the set inclusion, choose an arbitrary element z € Bs(y), so d(y,z) < 6
by definition. Then by the triangle inequality,

d(z,2) < d(@,y) +d(y,2) < d(z,y) +6 = d(z,y) + e —d(z,y) = €.

This shows that z € B.(z); hence Bs(y) C B.(z) as required. By definition then,
B.(x) is open. O

Now suppose U and V are both open sets of R™. Then for every point in
their union, z € U UV, either z € U or € V (or both). So there is a value
€ > 0 such that Be(z) C U or Be(z) C V. In either case, x € Be(z) CUUYV,
proving that the union U UV of open sets is also open. It is also straightforward
to show that the intersection of open sets is open. By induction, then, the union
and intersection of any finite number of open sets must also be open. In fact,
arbitrary unions of open sets are open, but arbitrary intersections Iﬁay not be.
These essential properties, together with the fact that the whole space and the
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Figure 2.7: An e-ball is open because every point of the ball can be surrounded
by its own smaller ball contained within the set.

empty set are both open, form the basis of the abstraction of topological space
that we will encounter in Chapter 4.

Proposition 2.1.7.
(a) Suppose U and V are open subsets of R™. Then U NV is open.

(b) Suppose that for each k € I, Uy C R™ is open. Then ez Uk 15
open.

Proof. See Exercise 3. |

Closed Sets and Limit Points

Definition 2.1.8. A subset C € R™ is closed if its complement, R™\C,

is open.

3 O

1 Example 11. Since the set U from Example 10 is open, its complement
R2\U = {(z,y) € R? | |z| > 1 and |y| > 1} is closed. On the other hand, R*\ V
is not closed. 0

Caution: the terms open and closed are not opposites of one another.
A set that is not open may not necessarily be closed. For example, V from
Example 10 is neither open nor closed.

0
1 Example 12. In §1.2, we used the terms open and closed in reference to
the intervals (a, b) and [a, b], respectively, where a < b are real numbers. Indeed,
since (a,b) = Be(x) for e = 2% and z = 2+ the interval (a,b) C R is open by
Proposition 2.1.6. On the other hand, R\ (a,b) = (c0,a] U [b, 00) is not open,
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because neither of the points z = @ nor £ = b can be surrounded by an e-ball
within the set. Thus (a, b) is open but not closed. The interval [a, b] is not open
(no e-ball can surround & = a or z = b), but R\ [a,b] = (~c0,a) U (b,00) is
open. { Why?) Thus by definition [a, b] is closed but not open in R. 5

(o}

Subsets that are both open and closed are sometimes called clopen sub-
sets, though we rarely use the term in this text. For any n, R™ possesses only
two clopen sets, @ and R™ itself. However, we will soon explore more exotic
topological spaces that could contain many clopen sets.

]
l Example 13. For each ¢ € RT, define the e-disk (or closed ball of
radius €) centered at ¢ € R™ by:

De(z) = {y € R" | d(w,y) < €}

Show that the D.(z) is closed.

Solution: We must show that U = R™ \ D.(z) is open. Let y € U; so
y ¢ D¢(x), which implies d{z,y) > e. Let § = d(z,y) —e > 0, which is equivalent
to saying d{x,y) = § +e.

Claim: B;s(y) C U (see Figure 2.8). Proof of claim: Choose an arbitrary
element z € Bs(y) (so d(y,z) < §). Then by the triangle inequality,

dz,y) <d(z,z) +d(z,y) = dz,z)2d=zy)—d(zy) (2.3)
Using what we know about the distances,
d(z,y) —d(z,y) =0 +e—d(y,z) > +e—d =¢. (2.4)

Taken together, (2.3) and (2.4) imply that d(z, z) > ¢, and so z ¢ B.(z). Thus
Bs(y) € U, as required. Since y was arbitrary, we have U open, and thus by
definition, D.(z) is closed.

Figure 2.8: An e-disk is closed since its complement is open.
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Limit Points

You may have noticed that closed sets seem to include “boundary” points,
while open sets do not. Indeed, the term closed interval traditionally refers
to an interval of the number line that includes its boundary points, such as
[a,b], while an open interval is one that does not, such as (a,b). Consider the
open interval U = (0,00) = {z € R | & > 0} and the closed interval V' =
[0,00) = {z € R| z > 0}. Every e-ball around the point z = 0, B¢(0) = (—¢,¢),
intersects both U and V nontrivially, that is, intersects at a point other than
z itself. Specifically, for any choice of e € R*, we have €/2 € B.(0) N U and
€¢/2 € B.(0)NV. For this reason, we can say that z = 0 is a limit point of either
set U or V. Now 0 € V but 0 ¢ U. We shall see that a set is closed if and only
if it contains all of its limit points.

Definition 2.1.9. Let A C R™. A point z € R" is called a limit point
of A if for every € € RY, B.(z) meets A in at least one point other than

@. That is, Ve € RY, B(z) N (A \ {z}) # 0.

As the following example demonstrates, the limit points of a set may include
part or all of the set, as well as points not in the set. The set of limit points
may even be disjoint from the original set.

0

l Example 14. Determine the set of all limit points of the following.

(a) The unit disk, A = {z € R? | d(z,0) < 1} = D;(0).
(b) The unit disk without boundary, B = {z € R* | d(z,0) < 1} = B1(0).
(c) C=B1(0)U{(2,0)}.

)

@ D={}|keN} = {1551 J R

(a) Let z € A be arbitrary. For any € € RT, Be(z) N (A\ {z}) # 0. Therefore
every point of A is a limit point of A. Next, consider any point y ¢ 4. Then
d(y,0) > 1. Let § = d(y,0) — 1 > 0. The open ball Bs(y) does not intersect
A at all. So no points outside of A are limit points of A. Thus the set of all
limit points of A is A itself.

(b) As above, if z € B, then z is a limit point of B. Now if y ¢ B, then there
are two possibilities. First, if d(y,0) > 1, then the same argument as above
shows that 3 cannot be a limit point of B. However, if d(y, 0) = 1, then any
open ball B(y) will intersect B. Thus the set of limit points of B is the
(closed) unit disk, D-(0).

(¢) C is the set B together with the point P = (2,0). Observe that By (P)N(C'\
{P}) = 0. We call P an isolated point because it can be surrounded by an
open ball containing no other points of the subset. By definition, isolated
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points can never be limit points, so the set of all limit points of C' is again
the (closed) unit disk, D;(0).

(d) Consider any point & = § € D. Here z is separated from the other points
of D by at least H - ml—-l‘ = E(_kl?ﬁ units, so every point = € D is isolated.
This shows that no point of D is a limit point of D. However, we can see

that every open ball B¢(0) does intersect D: so long as k > 1, then § <,
implying that ¢ € Bc(0). Thus the set of limit points of D is the singleton

{0}
o {

The following theorem provides an important link connecting limit points
with the concept of closed set.

Theorem 2.1.10. C C R" is closed if and only if C' contains all of its
limit points.

Note that since the theorem statement is an equivalence ( <= ), both di-
rections (= and <= ) must be proved.

Proof. ( = ): Suppose C is closed. Let x € R™ be any limit point of C. We
want to show that z € C. Suppose to the contrary that z ¢ C. By definition
of closed, R™ \ C is open. Since z € R™ \ C, there is an e-ball B.(z) CR*\ C.
Therefore B.(z)NC = 0. But this shows that z cannot be a limit point of C,
because if it were, then B(z) N (C\ {z}) # 0. This contradiction implies that
zeC.

( <= ): Suppose that C contains all of its limit points. We want to show that
C is closed, or equivalently, R™\ C is open. Suppose to the contrary that R\ C
is not open. Then there exists a point € R™\ C such that for every € € RT,
the open ball B(z) is not entirely contained in R™ \ C. So for every e > 0,
B.(z)NC # 0. Now since z ¢ C, we could write Be(z) N (C\{z}) # 0. Thus by
definition, z is a limit point of C. However, it was assumed that C contains all
of its limit points, contradicting the fact that = ¢ C. The contradiction implies
R™\ C must be open, or C is closed. (i

Interior, Exterior, and Boundary Points

Given a subset A of R™, the question as to what is in A or not in A is a question
of set theory: z is in A if x € A (by definition). Consider the half-open interval
A = (0,1] € R. Clearly, points like 1/2, 0.814253, and In{2) are in A, while
points like —2, 1.1, and 7 are not in A. The point 1 is in A, while 0 is not.
However, there is something distinctive about the points 1 and 0. We might say
that 1 is just barely in the set A: any point z > 1 would not be in A no matter
how close z is to 1, so 1 is not interior to A but serves as a boundary point
between interior and exterior. Similarly, we might say that 0 is just barely not in
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A, so 0 is not really exterior to A but serves as a boundary point. The following
definitions make these concepts precise.

Definition 2.1.11. Let A CR™.

e A point z € R" is an interior point of A if there is an ¢ € R+ |
such that B.(z) € A.

o A point z € R™ is an exterior point of A if there is an € € RT
such that Be(z) C R™\ A. '

e A point z € R" is a boundary point of A if z is neither an|
interior nor exterior point of A.

If 2 is neither interior nor exterior, then no open ball surrounding z can
consist of only points in A or only points not in A. Equivalently,

a point € R™ is a boundary point of A if every neighborhood N
of z contains at least one point in A and at least one point not in A.

We note here that boundary points and limit points are distinct concepts. Not
every limit point is a boundary point, and not every boundary point is a limit
point in a given set (see Exercise 14).

Definition 2.1.12. Let A CR™
o The interior of A is the set int(A) of all interior points of A. .

o The exterior of A if the set ext(A) of all exterior points of A.

e The boundary of A is the set 9A of all boundary points of A.

Definition 2.1.11 implies that ext(4) = int(R™ \ A). In other words, the
exterior of a set is the interior of its complement. Because of this symmetry, it
follows that A4 = O(R™ \ A).

O

I Example 15. Let a < b be real numbers, and let W = (a,b), X = (a,b],
Y = [a,b), Z = |a,b]. Despite the fact that no pair of these sets is equal, they
share the same interior, exterior, and boundary.

int(W) = int(X) = int(Y) =int(2) = (a,b)
ext(W) = ext(X) = ext(Y) = ext(Z) = (—o0,a)U (b, 00)
OW =0X=0Y =0Z = {a,b}

i

[eg

]
I Example 16. Suppose X C R™ has an isolated point z. Show that
z € 0X.
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Solution: By definition, z is isolated if there is an € € R™ such that B.(z)N
X = {z}. Clearly, then, every neighborhood of x contains at least one point in
X (namely, z itself), and at least one point not in X (any point that is some
positive distance away from z in the neighborhood). Thus z € 0X.
7
G

Caution: the definitions of interior and exterior do not always coincide
with our notions of inside and outside.

O

I Example 17. Find the interior, exterior, and boundary of A = {(z,y) €
R? |y < 2%}

Solution: A is the set of points below the graph of y = z2. Here int(A4) = A,
ext(4) = {(z,y) € R? | y > 2%}, and A is the graph itself, that is, 0A =
{(z,y) € R? | y = 2?}. The three sets are illustrated in Figure 2.9.

g

e

Figure 2.9: The sets int(A), ext(A), and 9A, for the set A from Example 17.

Definition 2.1.13. Let A C R™. The closure of A is the set,

A=AUDA.

It is obvious (by definition) that int(4) C A € A. It may not be obvious
(though it is true) that int(A) is the largest open set contained in A, and Aisthe
smallest closed set containing A. The following proposition displays identities
that will become useful later in the text.
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Proposition 2.1.14. Fizn € N. Let ¢ € R™ and z € R™.

(a) int(De(x)) = Be(x) (c) &B1(0) = 8D, (0) =S"~}
(b) Be(z) = De(z) (d) D1(0)\ B1(0) =S"~*
Exercises

1. Prove Proposition 2.1.2, parts 1-3.

2. Let z,y € R™ be arbitrary distinct points. Determine the largest value of
€ € R such that B.(z) N Be(y) = 0.

3. Prove both parts of Proposition 2.1.7.

4. For each k € N, let Uy = (=1, ). Show that the infinite intersection,
(ken Uk, is neither open nor closed.

5. Use De Morgan’s Law (see Theorem A.1.15) and Exercise 3 to prove that
the union or intersection of two closed sets is closed. Then prove that
the arbitrary intersection of closed sets is closed (Hini: see Exercise 12 of
§A.1). What can be said of the arbitrary union of closed sets?

6. Let a < b be real numbers. Consider the following intervals in R: (a, ],
[a,b), (a,00), [a,00), (—o0,b), (—o0,b], and (—o0, c0).

(a) Which intervals are open?

(b) Which intervals are closed?

(¢) Determine the set of limit points for each interval.

7. What are the limit points of Z in R? What is the boundary of Z in R?

8. (a) Prove that every rational number z is a limit point of Q. (Hing: con-

sider points x + -71; Q)

(b) Prove that 7 is a limit point of @ in R (Hin¢: the hint for part (a) no
longer works. Use the decimal expansion m = 3.141592654 ... to find
rational numbers that approach =.)

(¢) Make a conjecture about the set of limit points of @ in R.

9. Find the interior, exterior, boundary, and closure of each interval men-
tioned in Exercise 6.

10. Let A C R™ be arbitrary. Prove the following.

(a) int(A), ext(A4), and A partition R™
(b) int(A) and ext(A) are open, while JA is closed in R™
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11. Prove that int(A) is the largest open subset of A. .
12. Prove that A is the smallest closed superset of A.
13. Prove all statements in Proposition 2.1.14.

14. (a) Prove that every interior point of a subset X C R™ is a limit point of
X (thus not every limit point is a boundary point).

(b) Prove that every boundary point of a subset X € R" is either a limit
point of X or an isolated point in X (thus not every boundary point
is a limit point).

2.2 Continuity and Homeomorphism

Consider the curve y = z? graphed in R?, as in Figure 2.10. More precisely, let
C = {(z,2?) | = € R} be the set of points of this graph. A myopic ant may
find that walking along C is not much different than taking a stroll along the
line RY; there are essentially two directions, backward and forward, and the end
can never be reached in either direction. Intuitively, R ~ C, but to be sure,
we should construct an explicit mapping that takes the points of R! to those
of C in a way that preserves all of the local structure. Consider the function
f:R! = C defined by f(z) = (z,2%) € C.

(i) All points sufficiently near a given point p on the the line are mapped to
points that are near its image f(p) = ¢ on the parabola.

(ii) The function f is a bijective correspondence between the points on the
z-axis and the points on the parabola. Because f is bijective, there is an
inverse mapping, namely, the mapping g : C — R! sending (z,2?%) — .

(iii) The inverse mapping g also preserves nearness.

Figure 2.10: The graph of y = z? is homeomorphic to R*.
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Such a mapping f will be called a homeomorphism. Note that if f is a home-
omorphism, then by definition so is its inverse function g = f~1.

The parabola defined by y = z? may also be regarded as a function in
and of itself. This time, the mapping is from R to R (see Figure 2.11). Using
the terminology of Chapter 2, we find that f(z) = 2? is neither injective nor
surjective, so it does not satisfy condition (ii) and thus cannot satisfy (iii) either.
However, [ still satisfies condition (i), a property we call continuity.

Figure 2.11: Here f(z) = 2? is a continuous function from R to R.

Continuous Functions

There is a standard definition for continuity of functions that appears in most

calculus textbooks, tied to the concept of limits. A function y = f(z) is contin-

uous at a point x = ¢ if im f(a) = f(c), and f is continuous on an interval if
T—rC

it is continuous on all points ¢ in that interval. Now, together with the standard

definition of a limit, we obtain:

Definition 2.2.1. Let f : D — R, where D C R is a subset of the
domain of f; f is continuous on D 1f

For every ¢ € D, and € > 0, there exists § > 0 (depending
on ¢ and ¢), such that if z € D with | — ¢| < 4§, then

[f (@) = fc)] <e

Let’s unpack this definition using some notation we have developed in §2.1.
To say that z € D with |z — ¢| < § means that z € Bs(c) N D. Similarly, to say
that |f(z) — f(¢)| < € means that f(z) € B(f(c)). Then, using the concepts
of forward and-inverse image (see Definition A.2.8), we can dispense with the
mention of “z” altogether, by observing that the statement “If z € Bs(c)n D,
then f(z) € Be(f(c))” is equivalent to “f[Bs{c)ND] C Be(f(c)),” which in turn
is equivalent to “Bs(c) N D C f~1B.(f(c))]” (see Figure 2.12). Moreover, this
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move to open balls allows us to generalize Definition 2.2.1 to functions from R™
to R™ for arbitrary m,n > 0.

Definition 2.2.2. Let f: D — R®, where D C R™ is a subset of the
domain of f; f is continuous on D if:

For every ¢ € D, and € > 0, there exists § > 0 (depending
on ¢ and €), such that Bs(c) N D € f[Be(f(c))].

Figure 2.12: A function f : D — R™ is continuous at = = c if and only if the
inverse image of every open ball B(f(c)) contains an open ball Bs(c).

O
I Example 18. Let n € N. Show that the norm function, z ~ ||z, is a
continuous function R™ — R.

Let f(z) = ||z||, and suppose ¢ € R™ and ¢ € R* are arbitrary. Then
B.(f(c)) = Be(|e|]) is an open interval (|lc|| — ¢, llcll +¢€) C R!. The inverse
image of this interval under the norm map is the set

A= fHBf(@)] = {y € R | el — e < [lyll < llell + ¢} (2.5)

Though it doesn’t matter to this proof, we note that A is an open annulus if
llc|l — € > 6, an open punctured disk if ||c]| — e = 0, or open disk if [l —e <0
(observe that ||c||+¢ must always be positive). The case in which A is an annulus
is shown in Figure 2.13. Consider § = €. Let y € Bs(c) = B.(c) be arbitrary. By
the triangle inequality, we have

lyll = d(y,0) < d(y,c) +d(c,0) < e+l
and

lle|l = d(c,0) < d(c,y) +d(y,0) < e+ |yl -
=yl > lidl—e
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Taken together, we have ||c|| —e < ||y|| < ||c||+¢, that is, y € A. Since y € Bs(c)
was arbitrary, we have found a ¢ > 0 such that Bs(c) is contained in the inverse
image of Be(||c||), as required. Finally, since ¢ € R™ was arbitrary, we find that
f(z) = ||z|| is continuous on all of R™.

Figure 2.13: The inverse image of B.(||c||) under the norm map, with the set
Bs(c) shown (6 = €). The annulus A has inner radius ||¢}| — ¢ and outer radius
llell + e

{
<
Compositions of continuous functions are continuous (see Exercise 1); how-
ever, we will find in Chapter 4 that the proof is more natural in the abstract
language of topology.

Standard Transformations

The following functions are examples of continuous functions. These standard
transformations often serve as building blocks for putting together more com-
plicated functions.

e Translation. Let » € R”. Translation by r is a function 7. : R* — R"
defined by T,.(z) = x + r (by vector addition when n > 2).

We will prove that 7 is contimuous. For any ¢ € R”®, and ¢ € RT,
B.(T-(c)) = Be{c+ r). Since translation preserves the size and shape of
geometric figures, the e-ball is preserved under forward and inverse images.
Thus 7,7} [B(c + )] = Bc(c), so Definition 2.2.2 is satisfied with 6 = e.

e Scaling. Let & € R*. Scaling by a factor of k is a function S : R® — R"
defined by Si(z) = kz (scalar multiplication). When k > 1, objects are
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expanded by a factor of k; when 0 < k < 1, objects are compressed. Since
k # 0, the inverse transformation can be defined by S M=) = +a; hence
the inverse image of an e-ball under the map Sy will be an £-ball. This
observation implies that Sy is continuous.

Sk

¢ Reflection. Suppose £ C R? is a line. Reflection in £ is a function pg :

R2 — R2? that maps any point a on one side of £ to its mirror image
" = py(a) on the other side of £. The figure below shows reflection across
the y-axis, which sends (z,y) — (~z,¥).

Pe

d c c
Reflections in R® are defined by choosing a plane with respect to which
points are reflected. All reflections are continuous because the size and
shape of geometric figures are preserved.

e Rotation. In R?, points may be rotated about any center point. Rotation
about the origin by an angle 8, Ry : R2 — R2, is easily expressed in matrix
notation:

R a1 _ [cos@ —sinf\ (z1) _ 1 cos8 — zosind
O\ \ 2o ~ \sinf® cosf x5  \zysinf 4 xzgcosl)’

b/

R27r/3

Rotations in R® are defined by choosing a line around which to rotate.
Again, since size and shape are preserved, all rotations are continuous.
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e Projection. Pro jecti(;n is typically defined from a space of higher dimen-
sion onto a space of lower dimension, for example, when a solid object
casts a flat shadow. The figure below illustrates projection onto the zy-
plane, which can be interpreted as a function Py, : R® — R? defined by
Pry(z,y,2) = (z,y). Projections are generally not injective; however, they
are continuous. (Can you see why?)

Ri&

e Inversion. Consider the function I : R™\ {0} — R™\ {0} defined by the

rule
T

=P

I(x)

Since I(z) is a positive scalar multiple of z, the map I preserves rays from
the origin. Now if ||z]] = 1, then I{z) = z. In other words, inversion leaves
every point on the unit sphere, S*~!, fixed. The map I takes points from
ext(B1(0)) to points in int(B1(0)), and vice versa. It can be shown that
inversion maps open balls into unbounded open sets — either exteriors of
open balls or open half-spaces — and I is self-inverse, =% = I. These facts
together imply that I is continuous.

O
l Example 19. Let £ be the line parametrized by © = 2t,y = t+1,t € R.
Describe the image I[¢], where I : R? \ {0} — R?\ {0} is inversion in the
circle.

I(w,y):l(zt,t+1)=< 2t t+1 )

(26)2 4+ (t+1)27 (26)2 + (t+ 1)2

Graphing the result shows that I[{] is a circle missing one point (the origin).
Though it is not obvious, it can be shown that I always maps circles to
circles, and lines not going through the origin to circles missing a point at
the origin.
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e Stereographic Projection. Have you ever noticed that on some world
maps familiar continents seem distorted? Certain regions look to be much
larger or smaller than they should. This is a side effect of projection.® One
simple type of projection from the sphere to the plane is called stereographic.
To visualize stereographic projection, imagine a sphere (S?) placed on the
zy-plane so that its south pole S is at the origin. For each point P € S?
except P = N, extend the line NP until it intersects the plane at a point
Q. The rule F(P) = Q defines a map F : §?\ {N} — R?. For example,
F(S) = (0,0). See Figure 2.14.

\Q:F@

Figure 2.14: Stereographic projection.

3There are many types of projections from the sphere to the plane, but each has distortions
of some type because it is impossible to preserve the curved geometry of the sphere when
mapping it to a flat plane. See, for example, http:// en.wikipedia.org/wiki/World _map.
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Homeomorphism

In this section we will extend our definition of continuity, Definition 2.2.2, to
include more general codomains. In particular, we want to consider functions
f: X =Y for which X C R™ and Y C R"™ are arbitrary. A consequence of
this, for example, is that we would be able to prove that a circle in the plane
is topologically equivalent to a knot in R® (recall Figure 1.10 from Chapter 1).
The key point in the following definition is to work with intersections of X and
Y with open balls in the ambient Euclidean space.

Definition 2.2.3. A function f: X — Y, where X CR™ and Y C R",
is continuous if:

For every = € X, and € € R™, there exists § > 0 (depending
on z and €), such that Bs(z) N X C f~1[B(f(z))NnY].

Definition 2.2.4. A function f: X — Y is called a homeomorphism
if all three of the following are true:

e f is continuous,

e f is bijective, and

e f~1:Y — X is continuous.

Note that bijectivity of f is required for the existence of the inverse function
f~'. A homeomorphism is a bijective, bicontinuous function, meaning that
both f and f~! must be continuous. This term homeomorphism is related to
the term homeomorphic used back in §1.1, but now we have a precise enough
definition to finally address the question, When are two spaces topologically the
same? (at least in the case that the spaces are part of our familiar Euclidean
space).

Definition 2.2.5. Two sets X and-Y are called homeomorphic or
topologically equivalent, and we write X = Y if there is a homeo- |
morphism f: X =Y.

0
I Example 20. The squaring function f : R — R, defined by f(z) = 22, is
continuous but not bijective — and therefore is not a homeomorphism. However,
if the domain and codomain are both restricted to [0,c0), then f becomes a
homeomorphism, with inverse f~!(z) = /z.
On the other hand, the cubing function f : R — R, defined by f(z) = 23, is
a homeomorphism on its natural domain. /

e
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1 Example 21. Consider the tangent function tan(z), restricted to the
interval I = (—m/2,7/2). On this interval, tan : [ — R* is continuous and has
continuous inverse tan™! : R — I. Therefore tan is a homeomorphism, which
shows that (—n/2,7/2) ~ R

y = tanx

[ R T

|
ol

o

O
l Example 22. Stereographic projection has a well-defined inverse func-
tion. Referring to Figure 2.14, for any point @ on the xy-plane, draw the
line NQ. Then the point of intersection of this line with the sphere defines
F~1(Q). It can be shown F~! is continuous, and so there is a homeomorphism
$?\ {N} =~ R?. Thus, while the sphere and plane have much different geometric
properties, the punctured sphere is topologically equivalent to the plane.

If we append one additional point to R?, called the point at infinity,
denoted by oo, then F' could be extended to a map F : §? — R?U{co}. In order
to make the map continuous, we define an open e-ball around oo by Be(oo) =
ext(B¢(0)). In fact, F becomes a homeomorphism §? ~ R? U {co}. This idea
works in higher dimensions as well. For each n € N, there are homeomorphisms
S =~ R™ U {oo} and S"™ \ {20} ~ R™, where zp € §" is any point.

' {

o

Typically, proving X =~ Y is quite difficult because it requires finding an
explicit bicontinuous function from X to Y. On the other hand, proving X # Y
generally amounts to finding a topological invariant that has differing values
on X and Y (recall Definition 1.1.1 and Theorem 1.1.2). So how do we find
topological invariants? By definition, any proposed invariant 2 must take the
same value on X and YV if X = Y. So if f : X — Y is any homeomorphism
(which is guaranteed to exist if X =~ Y"), and if f preserves the value of £, then
we know that 2 is an invariant. We will spend the next few sections discussing
a number of topological invariants.
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Exercises
1. Use Definition 2.2.2 to prove the following important composition the-
orem: Suppose f: D — R™ and g : E — RP, where D is an open subset
of R™, E is an open subset of R™, and f[D] C E. Then, if both f and g
are continuous, so is the composition go f: D — RP.
2. Prove that Definition 2.2.2 is equivalent to the following:
Let f: D — R™, where D C R™ is an open subset of the domain
of f; f is continuous on D if and only if the inverse image of
any open set (in R™) is again open (in D).
3. Prove that f : D — R"™ is continuous if and only if the inverse image of
any closed set (in R™) is again closed (in D).
4. Let n > 0 be arbitrary. How should reflections be defined in R™? How
should rotations be defined in R"?
5. Show that the inversion map satisfies (I o I){z) = z,Vz € R™\ {0}.
6. Which of the standard transformations are homeomorphisms? Justify your
responses by finding a continuous inverse in each case.
7. (a) Show that Definition 2.2.5 is symmetric. In other words, show that
X =Y ifand only if Y = X.
(b) Show that Definition 2.2.5 is transitive. In other words, show that if
X =Y and Y = Z, then X = Z (Hint: Use Exercise 1).
8. Prove that (0,00) ~ R!. Hint: Find a specific homeomorphism.
9. Using Example 21, Exercise 8, and standard transformations, prove that
R! = (a,b) ~ (a,00) & (—00,b) for any a < b.
10. Let zo € R™ be fixed, and define a function g : R® — R by g(z) = d(z0, z).

Prove that ¢ is continuous.

2.3 Compactness and Limits

You may have already encountered the term compact in an advanced calculus
or analysis course. If so, it may have been defined as closed and bounded. This
is sufficient for subsets of R™, but the concept of bounded requires measuring
distances. We eventually want to generalize to any topological space, even those
in which there is no well-defined concept of distance (see §4.4). Toward this goal,
we define compactness in terms of open sets.
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Open Covers and Compactness

What does the word compact bring to mind? Small and close together, perhaps?
As huge as Manhattan is, it still seems very compact to me, because there is not
a square inch of space wasted and yet everything is confined to a single island.
Every point of a compact set must be fairly “close” to all the others — if not in
the same neighborhood, then perhaps just a few neighborhoods away. Moreover,
the number of neighborhoods in a compact set should be limited in some way.
If infinitely many neighborhoods are required to cover a set, then some points
in that set could be arbitrarily “far” from one another. The precise definition
involves the concept of an open cover.

Definition 2.3.1. An open cover of a set X C R" is a collection %
of open sets such that

xc Ju
Ue%

The collection % may include infinitely many sets in general. However, a
set X is called compact if you never need infinitely many open sets to cover X.
Let’s make this more precise. Suppose % is an open cover of X. Any subset
%’ C % is called a subcover if %' also covers X. As a concrete example,
suppose you have a set % of ten blankets on your bed arranged in various ways
so that your body is entirely covered. Then suppose your roommate comes in
and takes away three of the blankets without disturbing the positions of the
rest. If the remaining set %’ of seven blankets still cover every part of your
body, then %' is a subcover of % . Figure 2.15 illustrates a simple cover and
subcover of a region of the plane.

Uy Uy Us Ug Us

Figure 2.15: In this diagram, each Uy is an open disk in the plane. % =
{U1,Us,Us,Uy, Us } is a cover of X (dark gray polygon). %' = {U,Us, Us} C %
is a subcover since X C U; U Uz U Us. What other subcovers can you find?
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Definition 2.3.2. A set X C R" is compact if every open cover %

has a finite subcover.

That is, X is compact if for any choice of open cover % one can find finitely
many open sets Uy, Us, ..., Uy € % such that X CU; UU U--- U Up.
O
! Example 23. Prove that the set X = {0,1,1,%,%,...,%,...} isa com-
pact subset of R,

Suppose % is any open cover of X. Then there is some open set Uy € % such
that 0 € Uy. Now since Uy is open, there is some open ball B.(0) C Up. So long
as n > —i—, we have % € B.(0), so there are only finitely many points possibly
not covered by Up, namely, 1, 3, %, ..., = where m < L. For each of these points
%, there is at least one open set U, € % such that % € Uy. Thus there exists a
finite subcover, Uy UU; UU; U ... U U,,. By definition, X is compact.

o 7

O

I Example 24. Unbounded and nonclosed sets in R™ fail to be compact.

e R! is not compact. To show this, we only need to find an infinite open
cover that cannot be reduced to a finite subcover. Consider % = {(n —
3. n+3)|n e Z} Clearly % covers R', and if any set is removed from
% , the remaining sets no longer cover R!.

e The open interval (0,1) is not compact. Consider % = {(£,1) | n € N}.
For any z € (0,1), we have z > 717 for some sufficiently large n € N,
so ¢ € (+,1). This shows that % covers (0,1). Now suppose there is a
finite subcover, {Uy,Us, Us, ..., Up}, where each Uy = (;1;,1), for some

z, € N. Let @ = min{;-, 1, ..., ;~}. The minimum of finitely many

positive numbers is again positive, so a € (0,1). But a ¢ Uy for any

k=1,2,...,m. Thus no finite subcover of % exists, proving (0,1) to be
noncompact.

: 7
o
Compactness is a powerful property, ensuring the existence of limit points
in Euclidean spaces.

1l Theorem 2.3.3. Any infinite subset of a compact subset X C R™ must
have a limit point in X .

Proof. Let X C R™ be compact and A C X be an infinite subset. Suppose to
the contrary that A has no limit points in X. For any z € X, since z is not
a limit point of A, there is an ¢(x) € R such that the open ball B(y)(z) has
no points in common with A except possibly z itself. Set U, = Be)(z). The
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collection % = {U, | x € X} is an open cover of X, and since X is compaét,
there is a finite subcover %’ = {Us,,Us,, ..., Us, }. However, by construction,
we know that at most n points of A could be contained in Uy, UU,, U---UU,,,.
But then the infinite set A C X cannot be covered by %', a contradiction.

The Heine-Borel Theorem

The fact that compact is equivalent to closed and bounded in Euclidean spaces is
extremely important and useful, a result known as the Heine-Borel Theorem.
First let’s define precisely what we mean by bounded.

Definition 2.3.4. A subset X C R” is bounded if there is a radius

r € R* such that X C B.(0).

*

l Example 25, For n € N, the Euclidean space R™ is not bounded since
no open ball B,(0) of any finite radius contains all of R™. Similarly, no line or
plane is bounded (as a subset of R™), since no finite radius ball can contain a
line or a plane. )

[+

O
l Example 26. Let n € N, e € R*, and & € R™. Prove that the open ball
Be(z) is bounded.

Solution: Let y € B.(z). So we have d(z,y) < e. By the triangle inequality,
d(0,y) < d(0,z) +d(z,y) < ||z|| + e This shows that y € Bjjz|4.(0). Since y
was chosen arbitrarily, Be(z) C Bjjz|j+¢(0), proving boundedness. ;

e

Theorem 2.3.5 (Heine-Borel). A subset X C R™ is compact if and
only if X s closed and bounded.

We must prove both “directions” of the statement. The proof of the Heine-
Borel theorem is quite technical, and we will not actually prove the reverse
direction ( <==) in full generality until Chapter 4.

Proof. ( = ): Suppose X is compact. Consider the open cover of X by unit-
radius balls centered at each 2 € X. That is, % = {B;(z) | z € X}. Since X is
compact, there exists a finite subcover,

X C_Z Bl({El) U Bl(flﬁg) U---u Bl(ﬂﬁn)

Let z € X be arbitrary. Then z € By(z;) for some i € {1,2,...,n}. Now by the
triangle inequality,

d(z,0) < d(z,z;) + d(24,0) <1+ ||z
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Thus X C B.(0), where r = max{||lz;|| +1|¢=1,2,...,n}, proving that X is
bounded.

To show that X is closed, it is equivalent to show that R™\ X is open.
Let y € R™\ X be arbitrary. For each z € X, let €(z) = 2d(z,y), and define
open balls U, = B)(z) and Vo = Be(z)(y), so that Uy NV, = 0 (see §2.1,
Exercise 2). Now the collection of sets % = {U, | « € X} is an open cover of X.
Since X is compact, there is a finite subcover, %’ = {Us,,Usy, ..., Us,, }- Let
V" = {Vzy, Vas, .., Vi, } be the corresponding collection of open balls around
y. Since there are only finitely many of these, their intersection, V = MNiee1 Ve
is also an open ball around y, whose radius r is the minimum of the radii of the
balls V;,. By construction, VN X = 0, and so V = B.(y) € R™\ X. Finally,
since y was arbitrary, we have shown that R™ \ X is open; hence X is closed.

( <= ): We want to show that if X € R" is closed and bounded, then X is
compact. We will only prove the result for a closed and bounded interval in R!,
referring the reader to §4.5, Example 83, for the general case. Let a,b € R with
a < b, and consider the interval [a,b] € R'. Suppose % is a cover of [a,b] by
open sets. Define a subset C by

C = {z € (a,b] | [a,z] has a finite subcover %' C % }.

First, C is nonempty. To verify this, let U € % be any set for which a € U.
(there’s guaranteed to be at least one such U since % covers [a, b]). By definition
of open, there exists an ¢ € R such that B.(a) C U. Let ¢ € (a,a + €). Then
[a,2] € (a = ¢,a+¢) C U; therefore %’ = {U} C % is a subcover for [a, ]
having only one open set. This implies z € C.

Note that for any y € C, it follows that z € C for every a < z < y. This
is because the finite open subcover of [a,y] would also cover [a,z]. Our goal
now is to show that b is a member of C (so that a finite subcover would exist
for the entire interval [a,b]). We will need the following useful completeness
property of R, which is typically discussed in a mathematical analysis course:

If a subset X C R is nonempty and bounded, then there is both a
supremum (or least upper bound) and an infimum (or greatest
lower bound) for X in R.

o We say b is a supremum for X if b > z, Vz € X, and if there is
any other y >z, Vz € X, then b < y.

o- We say a is an infimum for X if a < @, Vz € X, and if there is
any other w < z, Vz € X, then a > w.

The bounded nonempty set C has a supremum ¢ € R. Consider the subinterval
[a,c], and choose U € % containing c. As before, we can find ¢ > 0 such that
(c—¢ec+e) CU. Let y € (¢ —¢,¢), and since y < ¢, it follows that y € C
(otherwise, ¢ could not be the supremum of C). This implies that [a,y] has a
finite open subcover %’ C % . But since [y, ¢] C U, the finite collection %’ UU
covers [a,y] U [y, c] = [a,c]. This proves that c € C.

Now with this same c, if there is any z € (¢, c+ €) N [a,b] (implying z > ¢),
then there is a finite open subcover for [a, z|, which puts z € C, contradicting
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the fact that ¢ > z (since ¢ is the supremum of C). Thus the only option is that
(c,e+ €) Na,b] = 0, but since ¢ € [a,b], this means that ¢ = b, which is what
we needed to show. O

l Example 27.

e Consider I = [0,1] C R!. Since I is closed and bounded, I is compact.
Similarly, the unit square I C R? and unit cube I® C R3 are both closed
and bounded, and hence compact. In fact, for any n € N, the closed unit
hypercube I C R” is compact.

e Let n € N. The unit sphere S" of dimension n is compact because it is
closed and bounded.

e Consider the Cantor set C, as defined in §1.2. Since C C I, C is bounded.
We will show C is also closed. The easiest way to do this is to provide an
equivalent definition of C in terms of the sets that must be removed from
I to make the Cantor set:

Bl 3041 3042
( e ) (2.6)

C:H\UU’“ where U = U R

E>1 £=0

It is an instructive exercise to write out the first few sets Uy to compare
this construction with the “deleting middle thirds” construction.® Since
each Uy is a union of open sets, Uy, itself is open (see Proposition 2.1.7).
For the same reason, U = |J,~; Uy is an open set. Thus C = I\ U is
closed.

Since the Cantor set is both closed and bounded, it is compact by Heine-
Borel.

The Extreme Value Theorem

As mentioned above, every bounded subset X C R has both a supremum and
an infimum. According to the definitions, a supremum or infimum z may or may
not be part of the set X; however, if z ¢ X, then x must be a limit point of X (if
you have seen some mathematical analysis, try to prove this statement). Thus,
if X is also closed, it contains its limit points, so the supremum and infimum
must be in the set X. This implies that compact subsets of R must contain
their extreme values. For example, the extreme values of the interval [a, b] are
simply the endpoints a and b.

4Proof adapted from Munkres [Mun00). .
5The Uy’s are not disjoint, so some intervals seem to get removed “more than once.” Can
you see why this poses no problem?
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Recall the Extreme Value Theorem (EVT):

If a real-valued function f is continuous on a closed and bounded
interval [a,b], then f attains both an absolute maximum M and
absolute minimum value m for some values a7, T € [a, b].

The EVT is a direct result of the fact that the image of a compact space
under a continuous function is compact (see §4.4, Theorem 4.4.5). The idea is
that W = f [[a, b]] is compact in R, and so the supremum M and infimum m are
in W, which implies that there are values zpr, Tm € [a, b] such that f(zy) = M
and f(z,) = m are the extreme values of f on the interval.

Sequences and Limits

A (real) sequence is typically defined as an infinite ordered list of real numbers,
(1:1,.7)2,333, ooy Ty )

In other words, a sequence is an element of R™. Another way to define a sequence
is to say that it is a function z : N = R, defined by the rule z(k) = z;, for each
natural number % (see §4.5, Example 84). This definition may be extended to
sequences in higher-dimensional Euclidean spaces as well.

Definition 2.3.6. A sequence in R" is a function z : N — R"™.

A common notation used for a sequence z : N — R™ is (zj)ren, or just (zx)
when context allows. For example, the harmonic sequence is defined by

1 1111
(mk)_<?€->“<17§:§7275>>

The variable k is called the index variable, which could be given any letter
label without changing the sequence.® Thus the harmonic sequence could just

as well have been defined by (z,,) = (%) or (zg) = (%)

8For this reason the index variable is often called a dummy variable.
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Note that a sequence is not the same thing as a set. By definition, a sequence
has a particular ordering: z; first, then z2, then z3, etc. A set has no such
ordering. Moreover, the terms of a sequence could repeat, while a given element
is either in or not in a given set (repetition is irrelevent). When we want to
refer to the set of elements of a sequence (z)ren, We use the usual set-builder
notation, {zy | & € N}, or when context is clear, we may abbreviate to {zy}.

o

! Example 28. For each k € N, let z, = (—1)*. The sequence (zy) is the
infinite list, (—~1,1,—1,1,~1,...), which forever oscillates between the values
—1 and 1. The set {zx} has only two elements, {—1,1}.

{

A sequence (z) in R™ may or may not have a limit, that is, a point z € R™
to which z) gets arbitrarily close. As we have seen before, “close” ultimately
means “within an open e-ball.”

e

Definition 2.3.7. A point z € R" is a limit of a sequence (zj) if for
every € € Rt there is a number N € N such that xx € B(z) for all
k > N. If such a point exists, then we call the sequence convergent.

Figure 2.16: In this example, all terms z;, for k& > 4 are contained within the
lightest gray disk. All terms zy, for k > 5 are contained within the next smaller
disk. Eventually, all terms beyond a certain threshhold index are contained in
the smallest disk. No matter how small a radius given, there is a number N so
that every xy for k > N is contained in the disk of that given radius.

Figure 2.16 illustrates how Definition 2.3.7 might be visualized. Note that
the definition of limit does not in itself imply that a convergent sequence must
have only one limit. In §4.2 we shall see that there are topological ‘spaces in
which a sequence may converge to two or more distinct points. Fortunately, in
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L]
R", limits are indeed unique (which requires proof; see Exercise 6). If such a
point z exists (and is unique), then we write z = klim Tk.
~r00

Subsequences and the Bolzano-Weierstrass Theorem

While an arbitrary sequence (zr)reny may fail to have a limit, there are situations
in which a portion of the sequence must converge. As a trivial example, consider
the sequence defined by zj, = (—1)* (recall Example 28). This sequence has no
limit because when ¢ < 2, the numbers 1 and —1 cannot be in the same ball B.(x)
for any = € R. However, the subsequence of even indexed terms, ((—1)*™)men =
(1,1,1,...), is a constant sequence converging to 1. Similarly, the subsequence
of odd indexed terms, ((—1)*™ 1),,eny = (—1, -1, —1,...), converges to —1.

Definition 2.3.8. Suppose (z)ren is & sequence. A subsequence of
(zy) is any sequence of the form

(zkm)mGN = ($k1,$k2,$k3, <. ')7

where k1 < ks < ks <...in N.

It turns out that compactness plays a role in the existence of convergent
subsequences. In Euclidean spaces, the relationship is very straightforward.

Theorem 2.3.9 (Bolzano-Weierstrass). Fvery sequence in a compact
subset of R™ has a convergent subsequence.

Proof. Suppose that X C R™ is compact, and let (z)ren be a sequence in X.
If there is a constant subsequence, @, = xp, = 2, = -+ = L, then (z,,) is
a convergent subsequence in X (with limit L). Now suppose no subsequence
is constant. Then the set A = {z; | k-€ N} is an infinite subset of X. By
Theorem 2.3.3, A has a limit point © € X. We construct a convergent subse-
quence as follows. Let k; be the least integer such that zx, € Bi(z). Then let
ko be the least integer greater than k; such that zx, € By 2(z). In general, once
Thyse- Tk, , nave been chosen, let k,,, be the least integer greater than k,,_1
such that zy,, € By m(x). By construction, (zx,, )men is a subsequence of (x)
that converges to z € X. O

The Bolzano-Weierstrass Theorem also implies that if a sequence (zy)ien
in R™ is bounded, then it has a convergent subsequence. Boundedness implies
(zk) € B,(0) for some r € R*, and so (zy) is a sequence in the closed and
bounded — hence compact — set B.(0).
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0
l Example 29. Consider the sequence (cosk)ren in R. The first 10 terms
of the sequence are shown below.

cosl =~  0.540302305868140

cos2 =~ ~—0.416146836547142
cosd =~ —0.989992496600445
cosd ~ —0.653643620863612
cosd =~  0.283662185463226
cos6 =~  0.960170286650366
cos7 =~  0.7563902254343305
cos8 =~ —0.145500033808614
cos9 =~ -—0.911130261884677

cosl0 =~ ~—0.839071529076452

There is no apparent pattern to the values, and indeed the sequence has no limit,
in the sense that limy_, oo cos k does not exist. However, because ~1 < cosk < 1
for all k € N, Bolzano-Weierstrass guarantees that a convergent subsequence can
be found within this bounded sequence. In fact, it can be shown that every point
of [~1,1] is a limit point of the set {cosk | k € N}, so there is a subsequence
converging to any given point —1 < L < 1. For example, the first few terms of a
subsequence’ converging to 0 have k; = 1,ky = 11, ks = 344, ky = 40459, ks =
51109,..., as shown below.

0.540302305868140

%

cosk; = cosl

coske =cosll = 0.00442569798805079
cosks =cos344 =~ —0.00439555392789772
cos k4 = cos 40459 = 0.000989255990869298

cos ks = cos 51109

%

0.0000849255511978441

Exercises
1. Show that Definition 2.3.4 is equivalent to the following:

A subset X C R™ is bounded if there is a radius r € R and a
point € R™ such that X C B,(z).

2. Classify each of the various types of intervals of R!, listed here as com-
pact or not, and bounded or not: (a,b), (a,b], [a,b), [a,b], (a,c0), [a,c0),
(=00, b), (—00,b], (—o0, 00).

"These particular indices are such that the jth term is within 10~7%1 of 0. They were
found using a script written in Sage [Ste].
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. Determine whether each subset of Euclidean space is compact or not. If

not compact, state whether the subset is closed, bounded, or neither.

(a) Be(r) CR™ (d) {(z,y) eR?||z] <1, |y| < 1}
(b) De(z) CR™ () {(z,y) eR? | |z| < 1, |y| = 1}
() {y)eR?||z|<1, |yl <1} £ {1,353, }

. Consider the alternate definition of the Cantor set shown in (2.6). Deter-

mine Uy, Uy, and Uz explicitly.

. Prove: If f : D — R™ is continuous, and if lim z, =z, then lim f(z,) =
N—CC n—roeo

f(z). In other words, show that continuous functions commute with taking
limits.

Jim flo) = £ (Jim on) = 70

. Let (zx) be a sequence in R™. Suppose there are two points z,y € R™ that

are both limits for (xy) (i.e., both z and y satisfy Definition 2.3.7). Prove
that z = y.

. Let (x) be a sequence in R™.

(a) Show that if z = limy_, o zk, then either z = x;, for all k large enough,
or x is the only limit point of the set {zj | k € N}.

(b) Construct a sequence {z)ren such that the set {z) | & € N} has more
than one limit point (thus showing that limit points of a set are not
necessarily limits of the corresponding sequence).

2.4 Connectedness

You can’t get there f’f’ om here. Have you ever stopped for directions
in an unfamiliar place and heard these discouraging words? We know what is
meant: It’s not easy to get there from here, rather than It’s physically impossible
to get there from here. Every point on the surface of the Earth is connected to
every other point by some route — in some cases perhaps an extremely difficult
or dangerous one. Now if you had been asking directions to Mare Tranquillitatis
(the Sea of Tranquility on the moon), then you really can’t get there from here
since the surface of the Earth and surface of the moon are not connected.®

80f course, you could get to Mare Tranquillitatis by traveling through space, but let’s stick

to Earth-bound transportation for this illustration.
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Arc-Connectedness

Intuitively, a space is arc-connected® if an ant could walk from any point to
any other point in finite téme. The plane R? is certainly arc-connected because
any two points can be joined by a straight line of finite length. The sphere
and torus are both arc-connected. The plane excluding a point is arc-connected,
because the missing point can be avoided, but the plane excluding a line is not
arc-connected (see Figure 2.17).

e
a a //
7
‘ﬁ Q,
p Vs
7
b // b
R?\ {p} RZ\ ¢

Figure 2.17: Left, R?\ {p} is arc-connected. Right, R?\ ¢ is not arc-connected, as
no arc exists from a to b, since any such line would cross the line of “missing”
points.

As always, a good mathematical concept requires a precise definition. We
define an arc between two points in much the same way as a parametrized
curve (Equation (1.5) of Chapter 1 may be regarded as a continuous function
r : [a,b] = R?). In the following definition, recall that T = [0, 1] is the unit closed
interval.

Definition 2.4.1. An arc v in a set X is a continuous function,

v:I— X.

X is called arc-connected if for every pair of points z,y € X there
exists an arc 7y in X such that v(0) = z and v(1) = .

According to Definition 2.4.1, an arc is just a function v, but we often vi-
sualize v by its image in X, that is, v[I] = {y(t) | t € I} € X. However, it
is important to realize that an arc is not just a static set of points in X, but
more like a journey from a starting point v(0) to an ending point (1) (think
of the journey of an ant along the arc parametrized by the function 7). Some
arcs intersect themselves (i.e., y(t1) = ~y(t2) for some pair of values t; = t5, as

9We use the terms arc and arc-connected where many texts use path and path-connected.
There are two reasons for this. First, it frees up the term path for a more specific kind of arc in
graph theory (see §6.1). Second, the term (simple) arc is traditionally found in the literature
in connection with the Jordan Curve Theorem, and so using the term here seems appropriate.
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-
in Figure 2.18); some retrace the same set of points multiple times (see Exam-
ple 30); and some arcs, called trivial arcs, simply stay at the same point for all
t (i.e., v may be a constant function ¥(t) = zo so the image of v is the single
point {zo}).

e
I 82
to @
5
131
0

Figure 2.18: An arc -y : I — S? whose image crosses itself.

O

} Example 30. Let v :I — R? by y(¢) = (cos 2t, sin 27t), and 7 : I — R>

by n(t) = (cos4nt,sin4nt). As t ranges from 0 to 1, v traces out the unit

circle in a counterclockwise direction, while 1 traces out the unit circle twice
counterclockwise (see Figure 2.19).

o f

7(1/4) 1(1/8) = n(5/8)

7
//m\\’r(ﬂ) //\ 1(0) =n(1/2)
~(1/2) \\//= (1) n(1/4) = n(3/4) \\//= 7(1)

7(3/4) - n(3/8) =n(7/8)
Figure 2.19: Here v wraps once around the circle, while  maps twice.

~

0

l Example 31. Let’s introduce a third dimension. Define # : I — R3 by
8(t) = (cos4nt, sindnt, ).

The arc 0 is called a helix (with two complete turns), as shown in Figure 2.20.

o
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Figure 2.20: An arc in R® whose image is part of a helix.

Arc-connectedness is preserved under continuous maps. It is assumed in
this chapter that all spaces are subsets of Euclidean space, but the proof of
Theorem 2.4.2 does not use anything other than definitions and properties of
continuous functions.

Theorem 2.4.2. If X is arc-connected, and f: X — Y is continuous,
then the image f[X] CY is arc-connected.

Proof. Consider any two points y1,y2 € f[X]. Let z1 € f~[{y1}] and z3 €
F7 1 {y2}] in X (these preimage sets are nonempty — why?). Now by arc-
connectedness, there is an arc v : I — X such that v(0) = z; and v(1) = z».
Consider the composition f o« : I — Y. Since both f and v are continuous,
so is their composition. Thus f o~y is an arc in Y, with (f o v)(0) = f(v(0)) =
f(z1) =31 and (f o)(1) = ya, which proves that Y is arc-connected. g

Theorem 2.4.3. Arc-connectedness is a topological invariant.

Proof. To prove that something is a topological invariant, we just have to show
that it is preserved by homeomorphism. Suppose X = Y, andlet f : X — Y bea
homeomorphism. If X is arc-connected, then Theorem 2.4.2 implies that f[X] is
arc-connected, but since f is surjective, we have f[X] =Y is arc-connected. [

It is actually quite challenging to prove rigorously that a given set is or is not
arc-connected. Even a set that seems to be all “one piece” may nevertheless fail
to be arc-connected (see Exercise 1). On the other hand, if a set consists of pieces
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that are “clearly” separated from one another, then it is not arc-connected. Of
course, we require a precise definition for separated before we can use the term
in mathematical proofs. To that end we turn our attention to the related but
weaker topological invariant, connectedness.

Connectedness

Qur intuitive notion of connected may be something like not separated. But what
does it mean for two sets to be separated? Certainly we mean more than simply
disjoint. Consider four intervals in R': I = (=00, 0), J = [0,00), K = [1,00), and
L = (0,00). Even though I and J are disjoint, we would not consider them to be
separated because I and J touch at 0. Indeed, I U J = R*, which is clearly one
piece. On the other hand, I and K are clearly separated by a nonzero distance.
What about I and L? This time, there is no positive distance separating the two
intervals; however, I U L # R', and in fact, I U L = R! \ {0}. When we remove
a point from R!, we expect that the hole separates the number line into two
pieces. These distinctions make us realize the profound subtlety in our concepts
of connected vs. separated. The topological definition of connectedness begins
with a precise definition of separation.

Definition 2.4.4. A separation of a set X C R™ is a disjoint pair
of open sets U,V C R™, with U N X and V N X nonempty, such that
XCUUV.

Definition 2.4.5. If X has a separation, then X is called discon-
nected; otherwise, X is connected.

1 Example 32.

o R\ {a} has a separation U = (—00,a), V = (a,00). Therefore R\ {a} is
disconnected. :

e Let U.= (—o0,a],and V = (a, c0). Even though UNV = @ and UUV =R,
the sets U and V are not a separation of R! because U is not open. In
fact, we will take for granted that R' has no separation at all and so
is connected. Similarly, we may assume that every interval, (a,b), (a,b],
[a,b), [a,b], (a,00), [a,00), (—o0,b), (—00,b], is connected.

e The set of integers Z C R! is disconnected. Indeed, every pair of distinct
points, n;m € Z, n # m, are separated (a quality we call totally discon-
nected). What’s more, the open sets U, = (n —1/2,n+41/2) for alln € Z
are mutually disjoint while Z C |J,,cz Un- This makes Z a discrete set
(more about discrete sets in §2.5 and §4.1).
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e The set of rational numbers Q C R! is also disconnected. For any fixed z €
R\Q (an irrational number), the sets U = (—o0, z) and (z, 00) satisfy: UN
V =0, UNQ # 0 and VNQ # 0; and Q C UUV. Now from mathematical
analysis we learn that between any two rational numbers there exists an
irrational number. Thus any two points of Q can be separated by open
sets, showing that Q is totally disconnected, but Q is not discrete.

{

o

O

l Example 33. The graph of y = z2 is connected, while the graph of
y = 1/z? is disconnected. For example, the open sets U = {(z,y) | ¢ < 0} and
V = {(z,y) | = > 0} separate the graph of y = 1/x2.

¥ 1 i 1 ] ¥ 1 ] 1

y=1/2" +

§
O
Connectedness is a topological invariant (see §4.4), so it can be used to

distinguish topological spaces. Also, as the name suggests, there is a direct
relationship between the terms connected and arc-connected.

Theorem 2.4.6. If X is arc-connected, then X is connected.

Proof. Suppose X is not connected. Then there is a separation U,V for X.
Let z € UN X and y € VN X (which is possible since neither U N X nor
V N X is empty), and suppose an arc v : I — X exists from z to y. Consider
Uo = v~1[U] and Vp = y~}[V], both of which are open (why?). We have 0 € Uo
and 1 € Vp (since 7(0) = z € U and (1) = y € V). Moreover, I1CUyUWy
(since U UV contains all of X; hence 4[I] € X). Finally, Uy N Vo = @, since
otherwise there would be a point w € Up N Vp, implying that yw) e UNV
(contradicting U NV = (). These observations show that Uy, Vo is a separation
of the connected interval I, a contradiction. Thus no separation exists in X, and
so by definition, X is connected. 0

Caution: the converse of Theorem 2.4.6 does not hold in general, as we
shall see in Example 34. Before delving into that example, though, we should
first develop a few important properties of connectedness.
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Properties and Consequences of Connectedness

The following properties help to identify connected subsets. These properties
remain true in more general topological spaces.

Proposition 2.4.7. Suppose X CR™.

1. If U,V is a separation of X, and if A C X is connected, then
either ACU or ACYV.

2. If {Ax}rez is a collection of connected subsets of X, and if there
is a point xo common to every Ay, then the subset A = Ukez Ap,
is connected.

Proof. 1. See Exercise 4.

Qn

2. Suppose {Ax} and zy are as indicated in the proposition. Then zq €

Nikez Ak- Suppose (to the contrary) that there is a separation U,V for
A = Upez Ak Either 2o € U or zp € V. Without loss of generality,
assume zo € U. Since {zo} is a connected subset of each connected set
Ap, part (1) shows that A, C U for every k € Z. Thus all of A is contained
within U, leaving V'N A empty. Thus no separation can exist, and A must
be connected. : -

O
1 Example 34. Let X = {0} UlJ;2, PQ. C R? where P = (0,1) and
= (1/n,0) (pictured below). X is not arc-connected because there is no arc

from 0 to any other point in X (recall that an arc must lie entirely within the
set X).

However, X is connected. To see this, note first that the set | J o, PQ, is

arc-connected. If z € PQ,, and y € PQ,,, the arc connecting z and y is obtained
by traveling through the common point P. Thus, if a separation U UV of X
exists at all, we can assume 0 € U and | Joo.; PQ, C V. U is open, so there exists
€ € RT such that 0 € B.(0) C U. Let n > 1/e. Then Q,, = (1/n,0) € :B.(0),
contradicting U NV = 0. :
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Connected subsets of the real number line R must satisfy a certain complete-
ness condition. If C C R is connected, and if a,b € C such that a < b, then
every ¢ € R such that a < ¢ < b must also be in C (this is why R and intervals of
R are connected). We will have more to say about completeness in §2.5. Recall
the Intermediate Value Theorem (IVT) from calculus:

If a real-valued function f is continuous on a closed interval [a,b],
and L is any number between f(a) and f(b), then there is at least
one value z = ¢ between a and b such that f(c) = L.

The closed interval [a,b] is connected; hence the IVT can be interpreted as
saying the forward image f [[a, b}] is also connected. In general, the continuous
image of a connected space is connected, as we shall see in §4.4, Theorem 4.4.10.

‘We end this section with an important theorem that states what may seem
at first to be a self-evident truth.

Theorem 2.4.8 (Jordan Curve Theorem). IfC' C R? is a simple closed
curve (i.e., a loop with no self-intersections), then R2\ C has precisely
two arc-connected components, one that is bounded (the inside) and one
that is unbounded (the outside).

While the concept seems so simple and intuitively obvious, the proof is quite
technical.’0 Of course, the result is not really obvious and is flat-out false in
other surfaces such as the Mdbius strip, torus, etc. Here we provide a proof of
the Jordan Curve Theorem for the simplest of all Jordan curves, a circle.

Proof. Suppose C is a circle centered at 7o € R2, 50 C = {z € R? | d(zo,z) =7}
for some fixed r > 0. Consider the two sets defined below.

Y {z € R? | d(z0,) <}

Z = {zeR?|d(zo,x) >}

Clearly, C, Y, and Z partition R2. That is, these three sets are mutually disjoint,
and every point of R? is contained in one of the three (since for every z € R?, one

105ee Munkres [Mun00}, Chapter 10, or Armstrong [Arm10], §5.6, for proofs that employ
the fundamental group (which we will define in Chapter 7). See also [Cai51, Tho92] for more
“elementary” proofs.
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and only one of the three re'l.ations can hold, either d(zo,z) < r, d(zg,z) =7,
or d(zg,z) > r). Thus we have R2\ C = Y U Z with Y N Z = . Observe that
Y is bounded and Z is unbounded.

Now both Y and Z are arc-connected. Every point ¥ € Y can be joined to
the center zy by a radial segment; any two points in Z can be connected by
an arc of constant radius with respect to xg, followed by a radial segment (see
Figure 2.21).

Finally, we must establish that there is no arc connecting any point in Y to
a point in Z lying within Y U Z. Suppose y € Y and z € Z are joined by an
arc v : I — R2. Let g : R? — R be the function defined by g(z) = d(zo,z). The
composition g oy : I — R is continuous since both v and ¢ are continuous (see

Exercise 10 of §2.2).

(gom(©0) = g((0)
(gom(@) = g(»(1)

9(y) = d(zo,y) <7
g9(z) = d(zg,2) > r

p—
i

Hence, by the Intermediate Value Theorem, there must be a value ¢ € I such
that (g o ¥)(t) = r, but this implies g(y(t)) = d(zo,~(t)) = r. In other words,
the arc « must cross the curve C at v(¢) and so cannot be in Y U Z. This
contradiction proves that Y U Z is not arc-connected. O

Figure 2.21: If C is a circle, then C satisfies the Jordan Curve Theorem. Both
Y and Z are arc-connected, and any arc joining a point in Y to a point in Z
must intersect the circle C.

The above proof can easily be extended to the case in which C encloses a
conves region. A region X is call convex if for every pair of points z,y € X,
the line segment Z¥ lies in X. In fact, it is not difficult to prove the Jordan
Curve Theorem for curves that enclose so-called radially convex (or star-shaped)
regions. A region X is called radially convex if there is a point 5 € X such
that for any other point z € X, we have ZTgZT C X (in particular, every conver
region is radially convex). Figure 2.22 demonstrates a few such regions. The
proof of Jordan Curve Theorem in this situation relies on constructing a function
f : R? — R? that deforms the region X homeomorphically to a circular disk by
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Figure 2.22: Radially convex regions.

rescaling each z; € C along its “radial” line segment until every point on Cis
the same distance from zg.

Where the Jordan Curve Theorem becomes tricky is in situations in which
the “inside” of a region is not easy to identify (remember, the proof must work
for absolutely every simple curve, not just those that we can draw easily on
paper). For example, try to determine which points are inside the curve shown
in Figure 2.23.

Exercises

1. Define the topologist’s sine curve X C R? by:

X ={(0,9) |y € [~1, 1} U {(m,sini) o e (O,oo)}.

Draw the set X as accurately as you can. Be especially careful near the
origin. Explain why X is not arc-connected. Is X connected?

2. Using Example 30 as a guide, define an arc 7, : I — R? that traces out
the unit circle n times counterclockwise. Define a similar family of arcs
that trace out the unit circle n time clockwise.

3. Classify each unit sphere S™ (for n = 0,1,2,...) as connected or not
connected. If not connected, find a separation.

4. Prove Proposition 2.4.7(1).

5. Let C C R. Suppose a,b € C such that a < b, and let ¢ be a real number
between a and b. Show that if C is connected, then c € C.

6. Determine whether each of the following subsets of R™ is connected or not
connected. If not connected, find a separation. Be careful, as.sometimes
the outcome depends on 7.
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Figure 2.23: A Jordan curve. What is inside and outside? Image courtesy of
Wikimedia Commons (modified).

(a) {z} (d) D.(z), e € RT
() {z,y} ifz sy (e) ext(B.(z)), e € R*
(¢) Be(z), e € R (f) Be(x)\ {2}, e € R*

7. Determine whether each of the points 4, B, C, and D in Figure 2.23 lies
on the inside or outside of the curve.

2.5 DMetric Spaces in General

Distance is such a fundamental concept to Euclidean space that it deserves to be
studied in greater detail. We often think of distance as something concrete that
can be calculated once you know exactly where two points are in relation to one
another. However, there are other ways in which we use this term. We might say
that the string of letters “teh” is very close to “the.” Your computer may notice
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how close the two strings are and change your typo, “teh,” into a real word,
“the.” On the other hand, you wouldn’t want your computer changing “tho”
into “the” (maybe “tho” was a typo for “though”). How can we measure that
“the” is closer to “teh” than to “tho”? After all, strings of letters do not look
much like points or vectors in R™, so it is unclear how to measure the “distance”
between them. We need a more abstract concept of distance.

When abstracting away from the familiar realm of Euclidean space, it’s im-
portant to know what to keep and what to ignore. It makes sense to ignore
vector-like properties such as dot product, angles, coordinates, and even the
length of individual elements. Only distances between two elements should mat-
ter. But what should we keep? That’s a tricky question, but let’s agree that our
distance functions should still satisfy the fundamental properties of Euclidean
distance found in Proposition 2.1.2.

Metric Functions

A metric provides a way to measure abstract distance between elements of a
set. Metrics can be used to define how close elements should be to one another,
such as when two sequences or functions are considered “close” to each other,
or when a word is “close” to another.!!

Definition 2.5.1. A metric (or metric function) on a set X is a
function d: X x X — R satisfying the following axioms: "

et

. [Nonnegativity] d(z,y) > 0, Vz,y € X.

2. [Zero-Distance Rule] d(z,y) = 0 if and only if z = y.
3. [Symmetry] d(z,y) = d(y,z), Vz,y € X.
4

. [Triangle Inequality] d(z,z) < d(z,y) +d(y,2), Yz, y,z € X.

A set X that has a metric d defined on it is called a metric space and
is often denoted by (X, d) to indicate the metric function.

The Euclidean distance function, d(z,y) = ||z—y||, defined on the set R™ as in
Definition 2.1.1, is a metric function as a direct consequence of Proposition 2.1.2.
Parts 1-3 were part of your exercises. The hardest part to show is the triangle
inequality. In fact, we will show that the triangle inequality holds in spaces
called inner product spaces.

A (real) inner product space is a (real) vector space X together with a
function X x X — R called an inner product. The inner product of z,y € X
is typically denoted z +y or (z,y) and must satisfy:

o [Symmetry| z-y=y-z, Vz,y € X.

1 There is a surprisingly wide array of useful metric functions defined on various sets. For an
impressive list of metrics, see the Encyclopedia of Distances by Michel and Elena Deza [DD09].
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o [Linearity] Az +y) 2= Xz-2)+y-z Vr,y,2 € X, € R.
o [Positive-Definiteness] z -2 >0, Vz € X, and z-2=0 <= z =0.

Owing to symmetry, the inner product is also linear in the second component,
which implies that the inner product distributes over addition from the left
or from the right. Once an inner product is defined, then a norm and metric
function can be defined via [|lz| = vz -z, and d(z,y) = ||z — y||, which makes
every inner product space a metric space (but not vice versa).
Now in any inner product space, the famous Cauchy-Schwarz Inequality
holds:
oyl < lalllyl, e,y e X. (2.7)

For vectors z,y € R™, (2.7) follows easily from the formula z - y = ||z||||y|| cos 6,
where 6 is the angle between the vectors z and y. However, we shall prove the
Cauchy-Schwarz Inequality using only the properties of the inner product. This
result is the bedrock providing part of the foundation for analysis, linear algebra,
probability, and numerous other fields of mathematics; its importance cannot
be overstated.

Observe that if either z or y is equal to 0, then (2.7) is trivially satisfied. Fix
z,y € X, with y # 0, and consider the quantity below, which is nonnegative by

positive definiteness:
Ty .
z—{—=|y|l =0. 2.8

Squaring the lefthand side of (2.8), and using the fact that ||z||> = z - = together
with linearity of the inner product, we obtain:

-G - -G (-G)y)

y(y)(

It

= (z-rz)—2: y)y v T y-y)
N €2 s
= (z-2) e (2.9)
Combining (2.9) with (2.8),
(z-y)*
l)* - E > 0
Iz wl® > (z-9)2

Taking principle square roots on both sides, we arrive at (2.7).
Now we can show that the metric defined by d(z,y) = ||z — y|| in an inner
product space satisfies the triangle inequality. That is, we want to show that

o =2l < llz -yl + lly — 2|, Va,y,2 € X.
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Letting u = z —y and v =y — z, so that u-+v = x — 2, it is equivalent to show
that

lw + o] < fjull + ||v]], Yu,v € X. (2.10)

In what follows, note that u - v < |u - v| and use (2.7):

(u+v) - (u+v)

lull® + 2(u - v) + Jo]|®
lull® + 2ljell o] + flolf?
(Nusll + vl

llu + |

Il

IA

Inequality (2.10) follows by taking principle square roots.

Keep in mind that not all metric spaces are inner product spaces. We now
assume X is a general metric space with metric function d. From Definition 2.5.1
we can reconstruct the e-balls, which are so important in defining everything
else that follows, though B(z) may look very different with respect to different
metric functions.

Definition 2.5.2. Suppose (X,d) is a metric space. Let z € X and
¢ € R*. The e-ball around z is the set

Bd,e(x) = Be(x) = {y €X l d(:c,y) < 6}'

Once we have defined e-balls, then we immediately get definitions for neigh-
borhoods, open and closed sets, limit points, compact, bounded, and connected
subsets, and other terms that only depend on distance or on open sets (which
are defined in metric space in terms of open balls and so, ultimately, distance).
Note that the definition for bounded must be expressed without using the idea
of the origin, which may have no analog in an arbitrary metric space (see Ex-
ercise 1 in §2.3). We collect the general definitions here. These apply to any
metric space, including the familiar Euclidean spaces R™. Note that if (X, d) is
a metric space, then any subset A C X is automatically a metric space with the
restricted metric function d|4 : A X A — R. So every subset of R™ Is a metric
space under the Euclidean metric function.
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Suppose (X, d) is a metric space.

e N C X is a neighborhood of € X <= 3Je € R such that
B.(z) C N.

e UC X isopen <= VzxeU,JeecR", suchthat z € B.(z) C
X.

o CC Xisclosed <= X\CisopeninX.

o € X is a limit point of A C X <« Ve € RT, we have

Be(z) N (A\{z}) # 0.
o C C X is bounded if 3r > 0 such that C' C B,(z) for some z € X.

Proposition 2.1.7, concerning unions and intersections, also carries through
in metric spaces. We shall see in Chapter 4 that these properties are key in
defining general topological spaces.

Proposition 2.5.3. Suppose (X, d) is a metric space.

(a) The empty set, B C X, is open.

(b) The entire space X is open.

(¢) If U and V are open subsets of X, then UNV is open.

(d) Suppose for each k € I, Uy, C X is open. Then Jyez Ur is open.

Proof. See Exercise 2. O

We may even make sense out of continuous functions between two metric
spaces, in the sense of Definition 2.2.3.

Definition 2.5.4. Suppose (X, d) and (Y, d’') are metric spaces. A func-
tion f: X — Y is continuous if: ‘

Fof every z € X, and € € R, there exists § > 0, such that
Bas(z) C 71 [Bare(f(2))]-

O
1 Example 35. Let X be any set. Define a metric dgise : X x X —= R,
called the discrete metric, as follows:

’ 0, z=
d(mvy) = ddisc(xay) - {1 = % ZZ:/, .
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Before moving on, we should prove that daisc is in fact a metric. Axioms 1,2,
and 3 are immediate from the definition. Axiom 4 is proved in two cases.

Case L. Suppose 2 = z. Then d(z,z) = 0, which is certainly less than or
equal to the sum d(z,y) + d(y, z) for any choice of y.

Case II. Suppose x # z. Then d(z,z) = 1. Now let y € X be arbitrary.
Either z # y or y # 2, since if both z = y and y = z, then transitivity would
give = z. Thus either d(z,y) = 1 or d(y,z) = 1 (or both), which implies
1 < d(z,y) + dly, z), as required.

In the discrete metric, every single point is exactly one unit away from each
of its neighbors. If X has only three points, then they could be the vertices
of an equilateral triangle. Four such points may be the vertices of a regular
tetrahedron. If X is larger (perhaps infinite), then it may be impossible to
imagine what X “looks like,” though we can still use the properties of d to
describe the space. For example, every subset ¥ C X must be open; indeed,
every singleton set {z} C X is open, since {#} = Bj/y(z) (more precisely,
{z} = B(z) for any 0 < € < 1). Thus {z} is a neighborhood of z, and so we
may imagine the space X as consisting of entirely isolated points. We shall meet
this type of space again in Chapter 4. .
4

o

O

I Example 36. Define a function digq; on R2 x R? as follows:

diaxi (T,Y) = diasi (%1, T2), (Y1, ¥2)) = |21 — 22| + Y1 — Y2l

In the Exercises, you will show that diay is metric. It is called the taxicab met-
ric because it models how distance might be calculated by a taxicab negotiating
the streets of a city like New York City. The streets are laid out in something
like a grid pattern, so in order to travel from the Empire State Building to
the United Nations Headquarters, you go roughly 8 blocks east and 9 blocks
north, for a total distance of 17 blocks,'? rather than the shorter diagonal route
of length /82 + 92 ~ 12.04 “blocks.” In New York City, the buildings prevent
us from going diagonally. In R?, there are no “buildings” preventing us from
drawing a diagonal line; it’s just that when using the metric diaxi, we measure
distance as if the path were made up of only vertical and horizontal segments.
Thus there is no unique shortest path between two points. The two paths shown
in Figure 2.24 each represent a minimal path from a = (-3, -2) to b = (1,3),
each with length diaxi(a,b) = |(=3) — 1| +|(-=2) = 3| = 9.
Let’s see what a metric ball looks like with respect to the taxicab metric.

B((a,b)) = {(z,y) € R?| diaxi((z,¥), (a,])) < €}
{(z,9) eR? ||z —a| + |y —b| < e}

The graph of the metric circle |z — a| + |y — b| = € that bounds this ball has a
diamond shape. The ball is interior to the diamond, as shown below.

12We are ignoring the fact that blocks in New York have different lengths and widths.



78 'CHAPTER 2. METRIC TOPOLOGY IN EUCLIDEAN SPACE

.

Y

il

Figure 2.24: Two paths of minimal length from a to b in the taxicab metric.

O
The taxicab metric may be generalized to R™ in general by

diaxi (T, y) = |21 — 1| + |22 — 2| + -+ - + |20 — Ynl-

In fact, diax; is one of a whole family of metrics defined in a similar way. Let p > 1

be a real number. The p-norm is defined on vectors z = (z1,22,...,2,) € R"
by the formula
n 1/p
el = (St )
k=1

For example,

n 1/1 n
Izl = (ZimkP) = |zkl.
k=1 k=1

The associated p-norm metric, dp, is defined by dy(z, y) = [|z—yl,,. It is possible
to show that d,, is a metric, though it takes careful analysis outside the scope
of this text. Note that dy = diaxi, and ds is the standard Euclidean metric. In
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the limit as p — oo, we obtain the max norm, -

n 1/p
— D —
Il = lim @ | ) = max{|ax| | £ € {1,2,...,n}},

and associated maz norm metric, doo(z,y) = ||z — Yl oo

It turns out that the p-norms (p > 1) and the max norm on R™ are all
topologically equivalent, in the sense that for p, ¢ > 1, every open d,-ball contains
an open dg-ball and vice versa. However, differences do arise if we allow the
dimension 7 to increase to infinity.

Metrics on Sequences and Functions

The following examples require some experience in mathematical analysis; feel
free to skim or skip. Consider the set of real-number sequences,

R® = {(z1,%2,23,...) | zx € R}.

The p-norms as defined for finite-dimensional vectors (finite real-number se-
quences) may not be well defined in R*. Moreover, some sequences have finite
p-norms for some p but infinite for others.

O

I Example 37. Let z; = 1 for k € N, that is, () is the constant sequence
(1,1,1,1,...).

oo 1/1
l(ze)ll; = (ZHP) =1+4+1+14+14--=00

k=1

In fact, for any finite p > 1, we have

o0 i/p 1/p
)l = (Zmp) = (tim n)"" = oo
k=1

But the max norm of (zy) is finite:
l(@k)llo = max{1,1,1,1,...} = 1.

Let yp = % for k € N; that is, (yx) = (1,-12-,%,...), which we call the
harmonic sequence. It is well known that the associated harmonic series,
Zzozl 715, diverges to infinity (becomes unbounded); see also Example 40. So

1.1
el =1+ 5+ 3+ = oo

On the other hand, so long as p > 1, then the series Y o ; '};1; converges to a
finite value ((p) (where ( is called the Riemann zeta function), and so

=) p 1/p 0 i/p
@0, = (Z (3) ) - (Z 73—) (<o, i1
k=1

k=1

{

og
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For each p > 1 and p = oo: define the subset of sequences £7 C R* by
€7 = {(zx) € R | [|(zk)||, < oo}

There are certain relationships among the subsets: if p < g, then £ C £9 C £°°,
Moreover, each set £P is a metric space with metric function d, induced by the
p-norm; that is, dp((z), (Ux)) = [l(zr) = (yw)ll,-

The family of p-metrics can also be defined on certain classes of functions.
Suppose f : R — R is a function, not necessarily continuous, but such that the

integral
| i@ ds

-0

is well defined and finite.!®> Then we say f € LP(R), and the p-norm of the

function is: y
o'} 14
151, = ([ 1@ aa)

Now we may define a distance function,

o0

o) =17 =gl = ([ 1@ - st@lp dw) 7

— 00

However, d,, fails to be a metric in general because it fails the Zero-Distance
Rule. If two functions f and g differ in value at only a finite number of points,**
then dp,(f, g) = 0. In order to fix this “bug,” we say that two functions are equal
almost everywhere (with respect to the metric dp) if dp(f,g) = 0.

Metrics in Information Technology

Information is vital to a functioning society, and these days most of that in-
formation is digital. According to one study,® as of 2013 there were over 4.4
zetabytes'® of data in the digital universe, and that number roughly doubles
every two years, reaching an estimated 44 ZB by 2020. Thus analyzing digital
data is incredibly important. One way to analyze data is to introduce a notion
of distance between strings.

A string is a finite sequence of characters, typically bits. A bit is a single
binary digit, taking on one of the two values, 0 or 1. Thus a string is nothing
more than a finite sequence (ap)f_, in the space {0,1} or, equivalently, an
element of {0, 1}". When a string is transmitted over the Internet, errors could
be introduced. Perhaps one or two bits flip from O to 1 because of a random
power fluctuation; the error string in that case would would still be very close

18 Technically, we require that |f(z)|P is Lebesgue integrable over R.

14More generall&, if f and g differ on a set of measure 0. For more information, see an
advanced text on mathematical analysis, such as [Rud87].

15ECM Digital Universe Study; see http://www.emc.com/leadership/digital-universe/.

160ne zetabyte (ZB) is equal to 260 ~ 102! bytes; each byte is equal to 8 bits.
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to the original string. One way to measure this kind of closeness is by the
Hamming distance.

Define the XOR (exclusive OR) operation on two bits a and b by

0, a=b
b=1<¢ ' . 2.
a® {1’ 0 (2.11)

Let (ax)?_; and (bi)}_, be strings. The Hamming distance on binary strings
is a metric function defined by

dg((ar), (b)) Z ar P by. (2.12)

Note that the sum in (2.12) is to be done with respect to integer addition, not
binary digit addition. For example,

dp(01001,00101) =0+14+1+0+0=2

The fact that the Hamming distance is a metric function is not difficult to prove.
Axioms 1-3 are obvious. The triangle inequality (axiom 4) follows from a simple
argument. Consider three sequences, (ax), (bx), and (cx). Claim: For any fixed
index k, we have a; @ by < ar ® ¢ + ¢k ® bi. Proof of claim: If ap = by, then
there is nothing to prove, as ax @ by = 0 in that case, so let’s assume that
ay # by. This implies that ar @ by = 1. Now since ax and by are different, we
know that ¢, must be the same as one of them and different from the other.
Thus one of aj & ¢ or ¢x @ by is equal to 0 while the other is equal to 1. This
proves that ar @ by < ar ® ¢ + cx @ by, Therefore the sums have the same
relationship:

du((ar), (br) = D ar®b
Z(ak ® e + e D bi)

Zak@6k+zck®bk

du((ak), (cr)) + du((cx), (bk))-

IA

O

I Example 38. Consider the metric space ({0,1}®,dg), which has eight
points:

{0,1}3 = {000,001,010,011, 100, 101,110, 111}.
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Let’s build a model of the metric space. Staring at 000, connect this point to
its closest neighbors, and continue until all points are included. The result is
shown in the diagram below.

000 010

100 /////, ‘ '/////

I 110

001 011

7 7

101 111

Although the points seem to form the vertices of a unit cube, it’s important

to realize that the distances between points do not necessarily correspond to

Euclidean distances. For example, 110 is two units from 000 (not v/2), and

111 is three units from 000 (not v/3). In fact, the distances between vertices

coincides with the taxicab metric d; in RS. )
e,

An autocorrect algorithm is included in the texting and messaging apps
on most smartphones. In theory, autocorrect should detect a misspelling and
replace it with the word that the user most likely intended. Many autocorrect
algorithms work by defining a metric on strings similar to the Hamming dis-
tance. When the algorithm sees a string not in its dictionary (i.e., the user has
misspelled a word), the algorithm then finds the dictionary word that is closest
to the misspelled word with respect to its defined metric. This idea is explored
further in Exercise 14.

Cauchy Sequences and Completeness

In a metric space, if a sequence converges, then we expect the terms of the
sequence to be getting closer to one another. On the other hand, sometimes the
terms of a sequence get arbitrarily close to one another and yet do not approach
a limiting point in the space. For example, consider the space @ under the usual
Euclidean metric. The sequence (z) = (3,3.1,3.14,3.141, 3.1415, 3.14159, .. .)
of decimal approximations to 7 is a sequence in @, since any terminating decimal
number is rational. Every term past the Nth term is within 10~ of all terms
following it. And yet there is no point z € Q such that limg_,o0(z) = z. Of
course we know that limy_,co(2x) = 7 € R, but since © ¢ Q, the sequence (zy)
has no limit (in the space Q). We now define the term Cauchy sequence, which
captures the idea of terms getting arbitrarily close to one another.

Definition 2.5.5. Suppose (zx)ren is a sequence in a metric space
(X,d). The sequence is called Cauchy if, for every € € R, there is a

number N € N such that d(zy,z¢) < € for all k,£ > N.
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l Example 39. The sequence (gx), whose terms are g, = an_l s that

is, the partial sums of the geometric series ), , 5L, is a Cauchy sequence in
R (or in Q). To verify this, suppose € € R" is given. Let N = log,(1/e), and
suppose k, £ > N. Without loss of generality, assume k > £.

ko1 |
=D 2| =
m==1

m=1

k

=y 5117—1 (2.13)

m=f4-1

d(gka g[

By factoring out 1/2*!, reindexing the sum, and by using the well-known geo-
metric sum formula {Exercise 4 in §A.1), we obtain:

k k—t—1 m 1\ k=2
1 1 1 1 1-(2)
Yommwm 2 (3) mwmori e

1
m=£+1 m==0 2

Then, algebraic simplification and the fact that 1 —y < 1 when y > 0 yields:

1 1= 18 1
561 1-1 T ot 1= 2 <o (2.15)

Now since £ > N = log,(1/€), we have 2° > 1/¢, or 1/2¢ < e. Together with
(2.13)—(2.15), this proves that d(gk, g¢) < €, as required. ‘

©

The Cauchy property is stronger than simply requiring that adjacent terms
get arbitrarily close to each other. A sequence (z1) may fail to be Cauchy even
though d(zk, zr+1) = 0 as k — oo.

l Example 40. The sequence (hy) whose terms are hy = an_l =, that

is, the sequence of partial sums of the harmonic series, is not Cauchy. Suppose
k > £ are natural numbers, and mimic the steps shown in (2.13).

k 14 k
1 1
d(hg, h _5_ E — E — 2.1
* E) m=1 m=1 m me==f+ m ( 6)
One way to proceed is by a variant of the integral test.
k+1
dm k+1
nlk+1) -1 1) = —_— .
/ +1)—In(f+1) In(€+1> (2.17)

m—e-l-l

The last expression of (2.17) is unbounded as k ranges throughout N; therefore
(hi) is not Cauchy. However, note that the distance between consecutive terms
does tend toward zero.

k 1 k+1 1
IEEPIE
m=1

m=1

1
= ——=0,a8k >0 -

d(hi, he1) = )
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Cauchy sequences are exactly the ones that converge in R". However, some
spaces such as Q have points “missing,” which means that some Cauchy se-
quences may fail to converge. The following definition states exactly what we
mean to say that a metric space has “no points missing.”

Definition 2.5.6. A metric space X is called complete if every Cauchy

sequence has a limit in X.

O
l Example 41. Any closed ball D.(z) in R™ is complete owing to com-
pactness, while an open ball B(z) is not. ;

o

0
l Example 42. Q is not complete, but R is. The completeness of R follows
from the existence of a supremum and infimum for every bounded set (see, e.g.,
Bartle and Sherbert [BS11]). In fact, R™ is complete for any n € N. For trivial
reasons, Z is complete (every Cauchy sequence in Z is eventually constant).

o ]

£

l Example 43. It can be shown that £? is complete for every p > 1 and

p = oo. Since £? is also a normed vector space, we say that £7 is a Banach space.
The function spaces LP(R) are also Banach spaces, as are the the Euclidean
spaces R™. ;

<

Exercises

1. Suppose (X, d) is a metric space, and Y C X. Show that (¥, d') is also a
metric space, where d’ is the function d restricted to ¥ x Y.

2. Prove all parts of Proposition 2.5.3.

3. Suppose (X, dx) and (Y, dy) are metric spaces. An isometry is a function
f: X =Y that preserves the metrics, in the sense that

dy (f(z1), f(22)) = dx(x1,22), Vz1,22 € X.

(a) Prove that every isometry is continuous.

(b) Show that translation and rotation in R? are isometries with respect
to the Euclidean metric (recall §2.2, Standard Transformations).

(c) Is scaling Sk(z) = kz in R2 an isometry with respect to the Euclidean
metric? Note that your answer may depend on k. How does your
answer change if R? is given the discrete metric?
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. Let X be any set. Suppose d is the discrete metric on X, as defined in

Example 35.

(a) Show that every subset of (X,d) is both open and closed.
(b) Let z € X and € > 1. Describe B¢(z).

. Prove that the taxicab metric diax; is indeed a metric on R2.
. Show that all p-norm metrics d,, coincide in R'.
. Draw the max norm metric ball By s(—1,2) C R2.

. Show that d; and ds are equivalent norms on R™ by completing both of the

following steps. (Hint for both parts: Draw pictures and find a geometric
relationship.)

(a) For any z € R™ and € € RT, show that there is a § > 0 such that
Ba, 5(2) C B, ().

(b) For any z € R™ and ¢ € R", show that there is a 6 > 0 such that
Ba,,5(z) € By e()-

. Using a computer graphing utility, plot the unit metric circles in R? cen-

tered at the origin |z|? + |y|P = 1 for various values of p. What happens
as p gets larger?

Prove that di and do are equivalent in R”™.

Consider the function dj : R? x R? — R defined by

& (@1,22), (n,92) = (Vi ol + Ve~ ) -
(a) Draw the set {(z,y) € R? | dy ((z,9),(0,0)) < 1}.

(b) Show that dj is not a metric by finding three points z, y, and z that
fail to satisfy the triangle inequality. (Hint: The set in part (a) is
nonconvex. What direction seems shorter than it should be?)

Find a sequence (zj) € R* such that |[(zx)]|, = oo for every p > 1.

Let ({0,1}*,dg) be the metric space of binary strings of length 4 with
the Hamming distance. Determine all of the strings in the metric ball
B3(1001) in this space.

Suppose (a)"; and (by)7_, are strings of alphabetic letters. Define a
metric function by

min{m,n} max{m,n}

A o= Y, Z2%L S o

k=1 k=min{m,n}+1

where ay @ by, is the XOR, operation (2.11).
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15.

CHAPTER 2. METRIC TOPOLOGY IN EUCLIDEAN SPACE

»
(a) Compute the distance between each pair of words in the following list:
{CAUCHY COMPACT, CONNECTED, CONTINUITY, CUNTINUOUS}

(b) List at least five words that are within a distance of 1/8 from WORD.
(

¢) Find the distance between TEH and THE, and the distance between
TEH and TEN. Why would this metric not be the most ideal tool for an
autocorrect algorithm?

Show that the sequence (a:k)kem deﬁned by z = k2 is a Cauchy sequence
in R. (Hint: Use the fact that "g < k(k D for k > 1, and write 3 k(k 1)

as a telescoping sum.)

Supplemental Reading

Metric topology is a standard topic in many topology texts. The list below is
by no means exhaustive.

Bartle and Sherbert [BS11] for background in mathematical analysis.
Goodman [Goo05], Chapter 1.
Mendelson [Men90], Chapter 2.

Munkres [Mun00], Chapter 3 for general Euclidean topology, and §820-21
for metric spaces in general

Rudin [Rud76] for further background in mathematical analysis and metric
spaces.

Wall [Wal72], Chapters 1 and 3.



Chapter 3

Vector Fields in the Plane

Imagine being in a little raft out in the middle of the ocean. There is no way
to power the raft, so it simply follows the current. The path the raft follows is
completely determined by the direction and magnitude of the current at each
point (let’s assume the currents themselves never change with time). In fact,
if we had precise measurements of the direction and magnitude of the flow at
every point in the ocean, then we could predict exactly where the raft would end
up. These measurements would correspond to a vector field, and the particular
path the raft took would be a trajectory through the field.

This leads to what mathematicians call dynamical systems and differential
equations. However, our purpose is not to solve differential equations explicitly
or to provide detailed numerical analysis of dynamical systems. Instead, we find
in this chapter how topology may help us describe some aspects of a system. We
find where abstraction helps to determine qualitative information; for example,
where does a trajectory eventually end up if it begins in a certain region? We rely
on the language of continuous functions. We make use of the concept of closeness
from earlier chapters, as trajectories that begin close enough to one another seem
o0 behave about the same.’ Topology even allows us to ponder questions about
all vector fields at once. For example, we can be certain that in any vector field
on the surface of a sphere, there is at least one point at which nothing moves.

3.1 Tfajectories and Phase Portraits

The main objects of study in this chapter are vector fields in BEuclidean space
and, more specifically, those in R! and R?, since these spaces are “small” enough
so that the vector fields can easily be visualized. More general situations require
extra care. In this chapter we generally follow the convention that boldfaced
letters (such as x and y) refer to points or vectors in R™.

1An important exception is when the system experiences chaos, in which the slightest
changes to an initial condition may result in wildly different outcomes within a short period
of time.
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Vector Fields and Differential Equations

For now, we content ourselves to work within the familiar setting of Euclidean
space R™. Vector fields may be defined in more general spaces called differ-
entiable manifolds, but the mathematical machinery required falls outside the
scope of this elementary text.

Definition 3.1.1. A vector field on R" is a function V : R® — R"™.

In other words, to each point (vector) x = (z1,%2,...,%n) € R”, there is
assigned a vector V(x) = (vi,va,...,0,) € R®. When n = 2, for example, we
might use either of the following notations,

Vi) = am) o) = (U] = nle )i+ )

where i and j are unit vectors in the direction of the positive z- and y-axis,
respectively (recall (1.4) in §1.2). Now in order to apply topological reasoning
in a vector field, it is necessary to assume the function V is at least continuous,
so that all vectors in a small neighborhood of V have nearly the same length
and direction. At each point x € R”, consider the vector V(x) as indicating
the strength and direction of the flow through x. In other words, V is the
velocity field of the flow. This naturally introduces the dimension of time into
the picture. Then each component v;(x) of the vector V(x) represents the rate
of change of ; with respect to time ¢ at the particular point x. In fact, V defines
a system of n functions in n variables, which we will interpret as a system of
differential equations.?

dzi/dt =vi(z1,32,...,%n)
dae/dt = va(zy,22,...,Tn)

V: . (3.1)
dﬂ'}n/dt =’Un(m17w2;“'7$n)

A solution to the system (3.1) is commonly called a trajectory or orbit.? In
this text we often denote a trajectory through x by ¢(x,t), where t (representing
time) varies in R. The trajectory functions ¢(x,t) for various x must satisfy
certain conditions.

e Initial condition: ¢(x,0) = x, for any point x € R™.

o Consistency condition: ¢(P(x,t1),t2) = ¢(x,t1 + t2) for all x € R™ and
t1,t2 € R.

2The field of differential equations is vast. The treatment in this book is necessarily quite
incomplete. For instance, here we only work with so-called autonomous systems — those that
do not explicitly involve the time variable ¢.

30ther common names include flow line, streamline, and integral curve.
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The initial condition is straightforward enough, but the purpose of the consis-
tency condition may not be readily apparent. Basically this condition ensures
that the solutions found at two different times, ¢; and t; + t9, along the same
trajectory are related by a time shift in exactly the amount of the difference, 1.
This will be used later in the proof of the Poincaré-Bendixson Theorem (Theo-
rem 3.3.1). For simplicity, we also assume the following, which is guaranteed in
the case that each function vy in (3.1) has continuous partial derivatives with
respect to each of the variables z;:

e Eristence and Unigueness. Given any point x € R”, there exists a unique
trajectory ¢(x,t) solving (3.1) for ¢ in some open interval containing ¢ = 0.

Uniqueness of solutions implies that if two such curves intersect, then they
represent the same trajectory. The points at which the flow is 0 are particularly
important to analyzing the system.

Definition 3.1.2. Any point x € R™ such that V(x) = 0 is called
a critical point. Critical points are also known as singular points,

stationary points, equilibria, or nodes.

If a dimensionless particle is plopped into the field exactly at a critical point,
then it will not move over time. However, as we shall see, flows near a critical
point could behave in many different ways. Note that, in this text, all critical
points will be isolated, meaning that there is a neighborhood of the point in
which there is no other critical point.

l Example 44. Describe the vector field defined by:

de/dt =z+vy
dy/dt =y—z

Solution: Plot a few sample vectors. Figure 3.1 shows a few sample vectors
in the field. Although only finitely many vectors are shown, each and every point
of the plane actually has a vector associated to it. We have also scaled down the
length of each vector so that the picture is not too cluttered. There is a single
critical point {0, 0), found by solving the system

O=2+y
O=y—2a

Now imagine your raft is placed somewhere in this vector field and it moves
according to the direction and magnitude of the vectors. The raft would spiral
outward in a clockwise direction (iry tracing the path with your finger). Each
such path is a trajectory in the field. A more accurate representation of the
field along with a few representative trajectories (as shown in Figure 3.2) can
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Figure 3.1: Left, table of vectors corresponding to V(z,y) = (z+y,y—x). Right,
vectors of V plotted in R2.
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Figure 3.2: Vector field V = (z + y,y — z). The arrows have been rescaled to
a uniform length in this picture; however, it is important to realize that the
magnitudes are not constant. Each solid spiral curve is a distinct trajectory in
the system. Forward is clockwise; backward is counterclockwise.

‘be found using Sagemath [Ste], pplane [Pol], or other software designed for this
purpose. '
o ?
It is usually quite difficult or even impossible to find a closed-form expression
for a trajectory ¢(x,t) in a given vector fleld V, so we often estimate the
trajectories by sketching them on the vector field or by using numerical analysis




3.1. TRAJECTORIES AND PHASE PORTRAITS 91

techniques for more accurate results. For our purposes, we are more interested
in qualitative information about the trajectories, such as how ¢(x,t) behaves
in the future (¢ > 0) and the past (¢ < 0), and what happens in the limit when
t— oo ort— —co.

Definition 3.1.3. Let ¢(x,t) be the trajectory through x relative to a
vector fleld V.

o The positive semiorbit of x is the set

OT(x) = {¢(x,t) | t > 0}.

e The negative semiorbit of x is the set

O~ (x) = {o(x,1) | t <0}

O
1 Example 45. Let x € R?\ {0}. Describe the positive and negative
semiorbits of x with respect to the vector field of Example 44.

Solution: So long as x # 0, the positive semiorbit O (x) is a spiral emanat-
ing from x moving away from the origin forever. The negative semiorbit O~ (x)
is an arc of a spiral between x and the origin, but the origin is never actually
reached.

o f

Phase Portraits

Qualitative information about a vector field can be shown on a phase portrast.
Figure 3.2 shows a typical phase portrait for a two-dimensional system.

Definition 3.1.4. A phase portrait for a vector field is a sketch show- |

ing some representative trajectories.

Let us first consider a one-dimensional system, which is defined by a single
differential equation, dz/dt = V (z). The critical points are the root(s) of V (z),
and the flow can only be in one of two directions: forward or backward along
the z-axis. A phase portrait in this situation simply shows the critical point and
the direction of flow between the critical points.

l Example 46. Draw phase portraits for each of the following.

(a) dz/dt = 3z — 2° (b) dx/dt = (x — 1)? (¢) dz/dt = cosmz
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Solution:

(a) Here 0 = 3z — 2% = 2(3 —z) == 1z = 0,3 are critical points. The flow is
forward (to the right) when 3z — 22 > 0, which occurs for 0 < z < 3. The
flow is negative (to the left) when < 0 or z > 3.

(b) Here 0 = (z—1)> == gz = 1 is the only critical point. The flow is forward
everywhere else since (z — 1)2 > 0 for z # 1. However, it is important
to realize that the flow does not cross the point z = 1. If a < 1, then
O%(a) = (a,1), with the trajectory never actually reaching z = 1 in finite
time.

> £ . -
1
(c) Here 0 = cosmz = =z = ...,—%,—1 1 3 .. There are infinitely

many critical points. The flow alternates between forward and backward
depending on the sign of cos 7z in each interval.

[SIEE
rojo ¢
[SHE N
EENN ]

' {
Lo
There are essentially three types of critical point in a one-dimensional sys-

tem: sinks, sources, and semistable nodes. Sinks and sources are defined in more
generality for all systems.

Definition 3.1.5. Suppose xg is a critical point. If there is a neighbor-
hood, U 3 xq such that for every x € U,

o lim ¢(x,t) = xg, then xq is called a sink.
t—ro0

o lim ¢(x,t) = xq, then xq is called a source.
Loy 00

An intuitive way to think about these definitions is that the sink attracts all
nearby orbits while a source repels them. In the phase portrait, trajectories seem
to enter sinks and exit sources, though we must realize that the sink is never
actually reached in finite time, and the source is not the actual starting point
of any trajectory but is the limit point as we follow the trajectory in backward
time.
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Let’s get back to the one-dimensional phase portraits. The sign of V on
either side of a critical point determines whether it is a sink, source, or neither.
Suppose (¢ — 3, ¢+ d) is a neighborhood of a critical point ¢ containing no other
critical point.

e If v(z) >0 on (¢—4d,c¢) and v(z) < 0 on (¢, ¢+ 6), then ¢ is a sink.
o If v(z) <0 on (c—4d,c) and v(z) > 0 on (¢,c+ 6), then ¢ is a source.

o If v(z) has the same sign on both (¢ — §,¢) and (¢, ¢+ §), then c is called
a semistable node.

Flows in a neighborhood of a sink always flow toward it over time, so
we say that a sink is stable. The points z = 3 in Example 46(a) and z =
e, —T7/2,-3/2,1/2,5/2, ... in Example 46(c) are stable critical points. By con-
trast, flows in a neighborhood of a source always flow away from the source, so
we say that a source is unstable. The points z = 0 in Example 46(a) and
r=...,—5/2,-1/2,3/2,7/2,... in Example 46(c) are unstable. On one side of
a semistable node, flows tend toward the node, while on the other side they flow
away from the node, and so overall we say that the semistable node is unstable.

Critical Points in Two-Dimensional Systems

It is clear that the critical point at the origin in Figure 3.2 is a source (hence
unstable) since all nearby trajectories move away from it. There are many other
types of critical point in systems of two or more variables, but for our purposes
we will stick to a simple classification.

Definition 3.1.6.

e A critical point xg is called stable if there is a neighborhood ||
U > xg such that for every point x € U, the positive semiorbit |
O (x) is a subset of U. Otherwise, x is called unstable.

e A critical point xg is called rotational if every neighborhood of {
x contains a periodic orbit, and nonrotational otherwise.

A stable critical point may be rotational or nonrotational. According to Def-
inition 3.1.5, a sink is the same thing as a nonrotational stable critical point.
A source is an example of an unstable critical point, though the unstable crit-
ical points come in many others flavors too, as we shall see in later sections.
Figure 3.3 shows a sampling of critical points, though there are many more
possibilities than those shown here.

Although trajectories never actually reach critical points, those that limit
onto critical points (as ¢ — £00) are of special interest because they can serve
as the framework for building an accurate phase portrait.
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Figure 3.3: A and B are sinks; C is a source; D is called a dipole, and F is
called a saddle point, both of which are unstable. F' is a stable rotational
critical point, called an orbital center.

Definition 3.1.7. Suppose ¢(x,t) is a trajectory.

o If there is a critical point x¢ such that
Jim 60 = lim_9(x0) =0
then ¢ is called a homoclinic orbit.
e If there are two distinct critical points xg,x; such that
tli)nolo ¢(Xa t) = X1, t—lgr—noo ¢(X: t) = X0,

then ¢ is called a heteroclinic orbit.

O

1 Example 47. The first picture in Figure 3.4 shows the critical points
X1, X9, X3, and a few representative orbits of a vector field. According to the
picture, x; and x3 are unstable and nonrotational (but not sources), while xg
is stable and rotational. A and C are heteroclinic orbits (when occurring as
pair like this, it is often called a heteroclinic cycle). D is a homoclinic orbit.
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B is neither heteroclinic nor homoclinic. Note that in the fleshed-out phase
portrait (Figure 3.4, bottom), every trajectory drawn within the curve D is also
a homoclinic orbit. This is because no other critical points exist, so there cannot
be a closed trajectory lying entirely within the region.*

A

Figure 3.4: Top, beginnings of a phase portrait for Example 47. Bottom, possible
phase portrait for the system.

Exercises

1. Suppose a vector field has a critical point at xo. What will the trajectory
¢(x0,t) look like?

2. Consider the one-dimensional system V(z) = (z + 1)(z — 1)2.

(a) List all critical points for V, classifying each as a sink, source, or
semistable node.

(b) Determine the following semiorbits in V: O~ (-2), OT(-2), O~(0),
0*(0), 07(2), 07(2).

4This is a consquence of Hopf’s Theorem (Theorem 3.2.6).
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3. Carefully plot a few sample vectors in the field V(z,y) = (xy/4,1). Are
there any critical points in this system? Describe the positive and negative
semiorbit of each of the following points: (—1,0), (0,0), and (1,0).

4. Plot a phase portrait for each system below, either by plotting represen-
tative vectors by hand and estimating the flow lines or by using software.

de/dt = =z dz/dt = z(y—1)

@ { Gy 2 @ { G = o
de/dt = z+ de/dt =

(b) { dy/dt = i—z (e) { dz/dt = Zisinm
dz/dt = de/dt =

(e) { dga;/dt = :-g—r () { dZ/dt = ;g~1

5. For each system from Exercise 4, list all critical points and classify each
as stable or unstable, rotational or nonrotational.

6. While in general it is difficult or impossible to solve a system explicitly, it
is fairly easy to check whether a given parametrized curve is a solution,
simply by taking derivatives. Verify that (z,y) = (asint, acost), where
a € R is a constant, is a solution to (dz/dt,dy/dt) = (y, —x).

7. Consider the initial value problem dz/dt = +/z, z(0) = 0. Verify that
x = t2/4 is a solution for ¢ > 0. Then verify that for any fixed to > 0, the
following function is also a solution:®

0, 0 <t <y,
T = 2
(bl 1>t

3.2 Index of a Critical Point

A vector field V as in (3.1) is often called a dynamical system because it may
describe the motion of a dimensionless particle under the influence of the vectors
in the system. While it may be impossible to work out the precise trajectory a
particle follows, it is often quite easy to describe its path qualitatively. We expect
the particle to follow the flow lines of the phase portrait. For example, if we can
identify a sink in a system, then we know that a particle nearby will approach
the sink over time. In fact, the general behavior of a two-dimensional system
may be inferred from the kinds of critical points it has. First we introduce a
system of classifying critical points by their indez.

5This exercise shows that the differential equation dz/dt = 1/ fails the uniqueness condi-
tion.




3.2. INDEX OF A CRITICAL POINT 97

Index

The behavior of a two-dimensional vector field is largely determined by how
flow vectors turn near critical points. Consider a small loop in a vector field and
track how the flow changes as the loop is traversed once in the counterclockwise
sense. Note: By loop we mean a simple closed curve that is generally not a
trajectory.

o

Example 48. Consider the vector field V = (—z, —y) shown in Fig-
ure 3.5. There are two loops drawn in the field: loop A encircling the critical
point (0,0), and loop B containing no critical point at all. Note how the di-
rection of flow vectors change as each loop is traversed. As loop A is traversed
counterclockwise, the flow vectors on A make a complete counterclockwise turn;
while on loop B, the flow vectors vary direction somewhat but do not turn all
the way around.
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Figure 3.5: Two loops in a field.
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Definition 3.2.1. If C is any simple closed curve in a vector field V,
then the index or winding number of C, denoted Ind(C'), is the total

number of counterclockwise rotations made by the flow vectors on C as
C is traversed once counterclockwise.

The index of a curve can be defined more precisely using integrals, as Exer-
cise 3 indicates. For our purposes, the intuitive definition given above suffices.

O
\ Example 49. In Figure 3.5, Ind(A) = 1, and Ind(B) = 0. .

O
l Example 50. Suppose X C R? is a subset on which a vector field V is
constant, and let C' be any simple closed curve lying within X. Then, since there
is zero variation in the angle of vectors throughout X, we have Ind(C) = 0.
o
Taking Example 50 a step further, suppose a vector field V on X C R?
is not constant but varies only a small amount. Under the right conditions, it
follows that Ind(C) = 0 for any simple closed curve lying within X. Suppose
that V(x) # 0 for all x € X. Then for any x,y € X, one can define the absolute
difference in angle between the vectors V(x) and V(y) in the usual way,

V) -V(y)
IVEIIVEI

Now if there is a number € > 0 such that |Af(x,y)| <e < mforall x,y € X, no
pair of vectors can be pointing in opposite directions; hence vectors can never
turn completely around along any curve within X. Thus Ind(C) = 0 for any
simple closed curve within X under such conditions.

Now suppose two curves Sy and Sy are contained in this region X (on which
[Af] < e < =), both starting at a point x and ending at a point y, as in
Figure 3.6. Let Af; be the total angle swept out in the counterclockwise sense
by the flow vectors on Sy starting at x and ending at y. Define A8 analogously
with respect to Sa. Defining C' = Sy U (—S3), which is shorthand for the curve
traversing S; forward followed by Sy backward, and since Ind(C) = 0, it must
be the case that Af; = Afs. This implies that if C; and Cy are two loops in
the vector field V (defined on a larger region of R?) that are exactly the same,
except that C; contains S; and Cy contains Sp, then it must be the case that
Ind(C’l) = Ind(C’z)

This observation allows us to prove the following important theorem.

|AG(x,y)| = cos™*

Theorem 3.2.2. If €y and Cy are two simple closed curves such that
one curve lies within the other, and if there are no critical points of V

on either curve or in the region between the two curves, then Ind(Cy) =
Ind(C’g)
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Figure 3.6: Two curves C7 = 51 UT and Cy = SoUT that differ only in a region
X. So long as 'V # 0 and the variation of angles of the vector field is small in
X, the two curves have the same index.

Proof. Suppose Cs lies within the curve Cy. Since C is a simple closed curve, its
inside is bounded (by the Jordan Curve Theorem 2.4.8). Let A be region between
the two curves, including the curves themselves. Since A is closed and bounded,
A is compact. Now since V 3 0 on A (by hypothesis), the angle of each vector
(with respect to the positive z-axis, for example) is well defined throughout A.
Moreover, since V is assumed continuous, so is the function giving the angle of
V(x) at each x € A. Thus, for each point x € A, there is a small open disk
neighborhood Uy = B.(x) on which the angle of vectors can be made to vary
by as small a value as we please. In other words, any deformation of a curve
within a single Uy does not change the index of the curve.

The collection of sets {Uyx | x € A} covers A, and since A is compact, there is
a finite subcover, say, % = {U1,Us,...,U,}. We will deform C} to Cs in finitely
many steps. First, if there is any set Uy € % such that a segment S of C) passes
through Uy, but no segment of Cy passes through it, then deform S to S, where
S’ lies in the intersection of Uy with other open sets. If there are any other
segments of C in Uy, then repeat (there cannot be infinitely many such disjoint
segments owing to the compactness of the curve C7). At that point, Uy, can be
deleted from the set % . After finitely many such deformations of the curve and
deletions of open sets, % will contain only open sets containing a segment of Cs.
Figure. 3.7 illustrates this kind of deformation. Now once every open set in %
contains segments of both C7 and Cs, then each segment of C; can be deformed
onto the corresponding segment of Cs, entirely within the corresponding open
set Uy. Finally, since every deformation happened within a small open set Uy,
every intermediate curve has the same index as Ci, and because there could
only be finitely many such deformations, the process must terminate, proving
that Ind(C1) = Ind(Cy). O

This result implies that any simple, closed curve surrounding a critical point
x {and no other critical points) has the same index. So the value of the index
really only depends on the critical point itself.
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Figure 3.7: Deforming a curve C) by pushing a segment S to 8 lying entirely
within intersections of other open sets. After the deformation, the open set Uy
can be discarded, and Ind(C) = Ind(C"). After finitely many such deformations,
C; can eventually be deformed onto Ca, proving that Ind(Cy) = Ind(Ca).

Definition 3.2.3. If x € R? is a critical point in a vector field V, then |
the index of x, denoted Ind(x), is defined by Ind(x) = Ind(C) for any J
simple closed curve C that encloses x and no other critical points. -

O
I Example 51. Find the index of each of the following kinds of critical
points based on their phase portraits shown below.

(a) sink (point A) (b) source (point C) (c) saddle point (point E)

Solution: Draw a circle enclosing each critical point, and draw enough vec-
tors on the circle to determine how many complete counterclockwise turns would
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occur. A clockwise turn counts as negative. (a) Ind(A) = 1; (b) Ind(C) = 1;
(c) Ind(E) = —1. .

o

0
L Example 52. Find the index of each critical point in the phase por-

trait shown below for the system V = (—(z — y)(1 —z — y),z(2 + 3)) shown in
Figure 3.8.

X = ~{x=y)(1-x~y}
y = x(2 +y)
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Figure 3.8: Phase portrait for V= (=(z —y)(1 — 2z — y),z(2 + v)).

Solution: First solve V = 0 to find the critical points.
~{z—y)(l—2—-y)=0 = z=y,orz=-y+1

When z = y in the second equation, we find: y(24+y) =0 == y=10,-2. Thus
two of the critical points are (0,0) and (=2, —2). Similarly, when =z = —y + 1,
we find: (—y+1)(2+y) =0 == y=1,—2. This leads to (0,1) and (3,—2).
By inspection,
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0,1) is a spiral sink. Ind((0,1)) = 1.

(
(0,0) is a saddle point. Ind((0,0)) = —1.
(—2,—2) is a sink. Ind((-2, -2)) = 1.

e (3,-2) is a source. Ind((3,—2)) = 1.

&
As a corollary to Theorem 3.2.2,

Theorem 3.2.4. If C is a simple closed curve in a vector field V, and
if there are no critical points on or within C, then Ind(C) = 0.

Proof. The proof is left as an exercise. O

What can be said about the index of a curve C when there are critical points
contained within it? It turns out that there is a simple relationship between
Ind(C) and the index of each critical point within C.

Theorem 3.2.5. Suppose C is a simple closed curve with no critical
points on it, and Xy, Xa, ..., X, are the critical points within C. Then

Ind(C) = Zlnd(xk).
k=1

Proof. The proof is by induction on the number of critical points. If there are no
critical points, then Theorem 3.2.4 applies, giving Ind(C) = 0, which agrees with
the value of the empty sum, 3, .4 Ind(xg) = 0. If n = 1, then Theorem 3.2.2
and Definition 3.2.3 yield Ind(C) = 31 _, Ind(x) = Ind(x1).

Fix m > 1, and suppose the result is true in all situations for which n = m.
Consider a simple closed curve C' enclosing m + 1 critical points, x3,...,Xm,
Xma1, and let S7 and S3 be arcs within the region bounded by C such that 5;
encircles the points P = {x31,...,Xm} and Xp41, S2 encircles z,,41, and two
line segments £y and Es join the curves S; and Sz, as shown in Figure 3.9.
Let C’ by the union of Si, So, E1, and Es with compatible orientations. By
Theorem 3.2.2, we have Ind(C) = Ind(C").

To compute Ind(C"), we could add up the angle variations around each com-
ponent, S, By, Sz, and E,. Now so long as F; and Es are close enough to each
other, and since these segments are traversed in opposite directions along C’,
the contribution to angle variation along F; (almost) cancels the contribution
to angle variation along Fs. Since the vector field is assumed continuous, the
total angle variation contributed by E; U Ey limits to 0 as Fy approaches Fy.
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C

E Xm+1

Figure 3.9: Curves C and C’ = S; U E; U Ss U Es enclosing the critical points.
Moreover, in the limit when E; = E», the two curves 57 and S become closed,
and we obtain Ind(C’) = Ind(51) + Ind(S2). Thus

Ind(C) = Ind(C’) = Ind(Sy) + Ind(Ss2)

= {Z Ind(xk)} + Ind(xm+1)  (by inductive hypothesis)
k=1
m+1

= Z Ind(xg).
k=1
Thus, by induction, the result holds for all n € N. [

Finally, we state (without proof) Hopf’s Theorem, which applies to certain
kinds of closed curves: those that are trajectories for the field.

Theorem 3.2.6 (Hopf). If C is a closed trajectory (orbit) in a vector
field, then Ind(C) = 1.

Theorem 3.2.6 not only implies the existence of at least one critical point
within any orbit, but also limits the type of critical points that could be there.
For example, if there is only a single critical point x within the closed trajectory
C, then Ind(x) = 1, which indicates that x can only be a sink, source, or center
(never a saddle point or dipole, etc.). On the other hand, a closed curve C that is
not a trajectory can certainly go around any number of critical points of various
types.

<
l Example 53. Determine the index of a simple closed curve C in a vector

field if C encloses:

(a) Three saddle points. {c¢) Two sinks and and a saddle.
(b) A dipole and a saddle point.

In each case, could C possibly be an orbit?




104 CHAPTER 3. VECTOR FIELDS IN THE PLANE

Solution: Simply add the indices of the critical points within the curve. Use
Hopf’s Theorem to decide whether C could be an orbit.

(a) Ind(C) = (=1) + (—1) + (—1) = —3. C cannot be an orbit.
(b) Ind(C) = (2) + (—1) = 1. C could be an orbit.
(¢) Ind(C) = (1) + (1) + (=1) = 1. C could be an orbit.

Sectors

Let us now turn our attention back to trajectories that limit onto a critical
point either as ¢ — oo or t — —co. In a neighborhood of a critical point,
these trajectories define regions called sectors, which can be used to easily
determine the index of the critical point. There are three types of sector. Refer
to Figure 3.10.

e A parabolic sector is a region in which all trajectories either enter or
leave, approaching the critical point as t — co or ¢ — —o0, respectively.

e An elliptic sector is the interior of a homoclinic orbit that reaches the
boundary of the neighborhood (recall Definition 3.1.7).

e A hyperbolic sector is a region bounded by two trajectories, one ap-
proaching the critical point as ¢ — oo, and the other as ¢ — —oo, while
every other trajectory in the region enters and leaves the neighborhood in
finite time.

A critical point surrounded by only parabolic sectors is either a sink or source
node, and so the index must be 1. Imagine this is the “base case,” and let’s see
the effect of including an elliptic or hyperbolic sector. Both of these reverse

Figure 3.10: Left, parabolic sector. Center, elliptic sector. Right, hyperbolic sec-
tor.
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the direction of arrows, with the elliptic sector turning the vectors counter-
clockwise and the hyperbolic sector turning them clockwise. Thus an elliptic
sector contributes +—12— to the index, while a hyperbolic sector contributes ~%.
If we let e(x) be the number of elliptic sectors, and h(x) be the number of

hyperbolic sectors in a neighborhood of a critical point x, then

e(x) — h(x)

Ind(x) =1+ 5

(3.2)

O
1 Example 54. Referring to Figure 3.3, find the index of points A, C, and
D using sectors and (3.2).

(a) A is a source node, which has only parabolic sectors (e(A) = h(A) =0), so
Ind(A) = 1.

(b) C is a saddle point, which is surrounded by four hyperbolic sectors (e(C) =
0, h(C) =4), so nd(C) =1+ %2 = —1.

(¢) The dipole D has two elliptic sectors (and two parabolic sectors, which do
not contribute to the index), so Ind(D) =1+ %52 = 2.

o f

Exercises

1. Find the index of each of the following critical points from Figure 3.3.

(a) spiral sink (point B) (c) orbital center (point )
(b) dipole (point D)

2. Find the index of each critical point for the vector field V = (z, T+y2+y),
and sketch the phase portrait.

3. Definition 3.2.1 may be stated in more precise mathematical language.
Let V = (u(z,y),v(z,y)), and follow the steps outlined below to derive
an integral expression that calculates the index of a curve C. Assume
there are no critical points on C' itself. (Note: this exercise requires vector
calculus.)

(a) At each point x = (z,y) € C, let 6 = 0(x) represent the angle of the
vector V(x) (measured with respect to the positive z-axis). Express
6 in terms of u and v.

(b) Assume C is parametrized by a smooth function C: I — R?. Divide
I into n equally spaced subintervals, having endpoints 0 = tp <#; <
ty < +or < tpey < tn = 1. Let A8; = 0(C(t;)) — 0(C(ti-1)). Show that
the sum Y ., %%i - At gives the total angle change around C, so long
as At is small enough.
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(c) Using your expression for 8 from part (a), and taking the limit of the
Riemann sum from part (b), show that

1 1 u% —U%

where v = u(C(t)) and v = v(C(2)).

(d) Let a > 0 be a constant, and define C(t) = (a cos 27, asin 2nt), t € L.
Use the integral from part (c) to find the index of C(t) with respect
to the following vector fields.

N Jdz/dt ==z i) dz/dt =«
® dy/dt =y ( dy/dt = —y

4. Prove Theorem 3.2.4.

5. A quadripole is a critical point having four elliptic sectors (and no hy-
perbolic sectors). Compute the index of a quadripole. Then compute the
index of an 2n-pole in general.

6. Show why a monopole (one elliptic sector and no hyperbolic sectors) can-
not exist in a continuous vector field. What about a tripole? What about
an n-pole where n is an odd number in general?

7. Suppose Ind(x) = 5. What is the relationship between e(x) and h(x)?
What is the minimum number of elliptical sectors in any neighborhood
of x7

3.3 *Nullclines and Trapping Regions

Stable critical points are especially important in applications because these are
the points to which a system can be expected to settle down into a state of
motionless equilibrium. Consider a pendulum whose arm can turn around com-
pletely, as in Figure 3.11. If the arm is given enough velocity, it may spin around
many times before friction finally wins and causes the arm to swing only part-
way before it comes to a momentary stop, swinging the other way, and then
back and forth thereafter. Friction continues to work on the pendulum, caus-
ing the arm to swing in smaller and smaller arcs, until finally the swinging is
imperceptible, with the arm practically motionless in its lowest position. The
final state is a stable equilibrium because any small change made to the system
(ie., giving the pendulum a gentle push) will eventually evolve back into that
equilibrium state.

There is another equilibrium position, though. If the pendulum is positioned '
directly above the arm’s point of attachment with zero velocity (see Figure 3.12),
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Figure 3.11: Left, a pendulum with high velocity, making complete turns over
the top. Center, the pendulum has lower velocity, and so it swings back and
forth but not over the top. Right, pendulum in its stable equilibrium position.

Figure 3.12: Left, a pendulum in unstable equilibrium. Center and right, a small
perturbation of the system takes the pendulum out of this unstable state and
into the stable equilibrium state.

then in the absence of any external influences, the pendulum would remain
in that position forever. However, our experience in the “real world” reminds
us that there are always external influences, from the gentle breeze through
the office window, to the random motion of the atoms and molecules making
up the pendulum, to quantum fluctuations on the Planck scale, every system
must constantly contend with small perturbations. Thus the unstable equilibrium
position can never truly be realized for more than an instant.®

The Poincaré-Bendixson Theorem

Now suppose we have a system in which there are no stable equilibria. Then
under real-world conditions, the system would never come to rest. Some of
these systems, however, exhibit stable periodic behavior. In other words, there
could be a periodic orbit to which all nearby orbits tend over time. This section

SNotwithstanding the fact that friction can actually help to make an unstable equilibrium
stable with respect to very tiny perturbations.
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illustrates how to locate a stable periodic orbit in such a system. The idea is to
trap it.

Theorem 3.3.1 (Poincaré-Bendixson). Let V be a vector field in R2.
Suppose there is a compact subset X containing no critical points and
such that for every x € X, we have O (x) C X. Then there exists a
stable periodic orbit in X.

A compact set X as described in Theorem 3.3.1 is called a trapping region.
The proof below is adapted from [Goo05].

Proof. Let x € X be arbitrary. Let w(x) be the set of all points y € R? that are
limit points of sequences of the form (¢(x,t,)), where ¢, — oo (the so-called
omega limit set of x). You will show in Exercise 4 that w(x) is closed.

Claim: If there is a point y € w(x), then the entire orbit ¢(y,t) is also
contained in w(x). Proof of claim: Suppose yo = ¢(y,to) for some tg € R (so
that yo is on the orbit of ¥). Let (x,, = ¢(X,tn))nen be the sequence converging
toy, so we have lim,, o, X, = y. Consider a new sequence, (¢(X, t,+0))nen. By
definition, limy,— e ¢(X, iy + to) € w(x), but also by the consistency condition,
we have for each n € N, ¢(x,t,+tg) = ¢(P(X, 1), t0) = d(xn, to); by continuity,
Bmy, 00 @(Xn,to) = Gimy oo Xn,to) = @y, to) = yo. Thus yo € w(x), and
since yo was arbitrary in the orbit of y, we’ve shown that the entire orbit ¢(y,t)
is contained within w(x).

Compactness of X and the assumption that O%(x) C X guarantee that all
limit points of O (x) are contained within X. Moreover, there must be at least
one such limit point y € X (for any x € X, the sequence (¢(x,n))nen must
have a convergent subsequence by the Bolzano-Weierstrass Theorem, Theorem
2.3.9). This shows that w(x) C X, and w(x) is nonempty. Let y € w(x). By
what we have shown above, the entire orbit ¢(y,t) is also in w(x). This orbit is
attracting, hence stable, by definition of w(x).

Now this orbit ¢(y,t) cannot be a single point, because we have assumed
there are no critical points in X. We claim that the only possibility is that
¢(y,t) is a periodic orbit. Consider an arc A C X that is never tangent to
any vector in V. In particular, the flow across A must always be in the same
direction (recall that there are also no critical numbers in X). Suppose there
are times ¢, < fq such that the points yy = ¢(y, 1) and y2 = ¢(y,t2) are on A.
Let C be the simple closed curve consisting of the part of the trajectory ¢(y, )
for which t; < ¢t < t3 and the segment of the arc A between y; and yo, as
illustrated in Figure 3.13. By the Jordan Curve Theorem (Theorem 2.4.8), C
separates the plane into an inside and outside. In particular, either the positive
or negative semiorbit of y must eventually be contained inside of C; without
loss of generality, we may assume that O%(y3) is on the inside of C' (simply
“reverse time” to cover the other case).

However, now there is a huge problem: the trajectory can never cross A
again. If it did cross at a point ys = ¢(y,ts) for some time t3 > to, then the
flow would be in the opposite direction at y3 € A. This implies any arc A in
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o(y,t)

Figure 3.13: The simple closed curve C' is bounded by a segment of A and an arc
of the trajectory between y; and y». The positive semiorbit O (y2) is contained
in the shaded region bounded by C.

X that is never tangent to 'V can only intersect our trajectory ¢(y,t) at most
once, so that in fact y2 = y;1, and ¢(y,t) is periodic. O

As stated, the Poincaré-Bendixson Theorem only applies to vector fields in
R?. What about R? or higher-dimensional spaces? Everything in the proof above
applies to higher-dimensional fields except the Jordan Curve Theorem. In fact, if
V is a vector field in R™ for n > 3, and there is a trapping region X (compact,
with no critical points, and containing O (x) for every x € X), then there
is guaranteed to be an attractor in X (a subset to which nearby trajectories
approach over time) — it just might not be periodic.

Figure 3.14 shows the Lorenz attractor, which is a stable trajectory in the
three-dimensional system (for appropriate values of the parameters o, p, 8):

de/dt =o(y — ),
dy/dt =z(p—2) -y,
dz/dt =zy-— pz.

Just because the orbit is stable doesn’t mean it’s well behaved, though. This
strange orbit experiences chaos, meaning that a small perturbation in intial
conditions may cause a dramatic change in the orbit over time. This is commonly
called the butterfly effect.” Indeed, the Lorenz attractor comes from a model that
describes atmospheric air flow, a major component of weather prediction.

Nullclines

Tn order to find a trapping region, we must be able to construct a subset of the
plane from which no trajectory ever leaves. To do this, we will plot some useful
guides called the nullclines of the system.

7“The butterfly effect states that something as trivial as the movement of a butterfly wing
could ultimately cause a tornado halfway across the globe, and is not a reference to the but-
terfly shape of the Lorenz attractor. According to Lorenz [Lor63] himself, “One meteorologist
remarked that if the theory were correct, one flap of a sea gull’s wings would be enough to
alter the course of the weather forever. The controversy has not yet been settled, but the most
recent evidence seems to favor the sea gulls.”
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Figure 3.14: Lorenz attractor (o = 10, p = 28, 8 = 8/3).

Definition 3.3.2. A nulicline in a vector field V is the set of points
at which one component of the flow is 0: the z;-nullcline is the set of

points satisfying dz,;/dt = 0.

When V is two dimensional, there is an z-nullcline and a y-nullcline, each of
which consists of a curve or set of curve(s) in the plane. The intersection points
of the z- and y-nullclines are (by definition) the critical points of the system.

]

1 Example 55. Find and plot the nullclines of the system from Example 52:

V:{dx/dt =~(z~y)(1 -z ~y),
dy/dt ==x(2+7y).

Solution: The z-nullcline is found by setting —(z — y)(1 —z —y) = 0, which
yields two intersecting lines, y = # and y = —z + 1. Similarly, the y-nullcline is
found by setting «(2 + y) = 0, resulting in the pair of lines, z = 0 and y = —2.

o
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Autocatalytic Chemical Reactions

As a case study, we explore a class of chemical reactions, called autocatalytic
reactions, that exhibit spontaneous periodic, or oscillating, behavior. We assume
that the reaction is governed by a given system of differential equations. While
we cannot solve the system explicitly, we will see how index theory and the
concept of limit sets help to identify when there must be a periodic stable
solution, which corresponds to observable periodic behavior in the chemical
reaction.

An autocatalytic chemical reaction is one in which one or more of the re-
actants is also a product. The process forms a feedback loop, which causes the
reaction rates to oscillate, resulting in periodic changes to the amounts of chem-
icals in the reaction. If some of those chemicals are colored, then the oscillatory
behavior can be observed as periodic changes in color or even more complicated
ripple patterns.®

Boris Belousov [Bel85] discovered a mixture that exhibited stable oscillations
in reactant amounts in the 1950s. The ingredients were potassium bromate,
cerium(IV) sulfate, propanedioic acid, and citric acid. When mixed, the color of
the solution oscillated in regular time intervals between pale yellow and colorless.
Belousov could not publish the results because the editors believed this reaction
violated the laws of thermodynamics, but the same reaction was rediscovered by
Anatol Zhabotinsky [Zha64] in the early 1960s. Today, reactions of this type are
called Belousov-Zhabotinsky (BZ) reactions, and there have been many more
discovered or theorized to exist, including the Oregonator, Edelstein reaction,
Feinberg-Horn-Jackson reaction, and Briggs-Rauscher reaction. In what follows,
we will explore the Brusselator, which is a theoretic reaction that illustrates how
oscillatory behavior arises in complicated systems.

Using the theory of chemical kinetics, one can produce a system of differen-
tial equations describing the rates of change of all reactants and products in a
chemical reaction. It is not important to understand the details of the theory
in order to analyze the resulting system. In the Brusselator, we will be most
interested in two species of reactant, whose concentrations in the solution are
labeled x and y. Other species may be present in abundance, so their concen-
trations, q, b, etc., are effectively constant. After some simplifying assumptions,
the Brusselator may be described by the system of differential equations

=1- 1 2
da/dt ! (b: Je+ oy where b > 0 is constant. (3.3)
dy/dt = bz — z?y,
Set dx/dt = 0 to find the z-nullcline:
(b+1)z -1

0=1-(b+Dz+2’y = y= p

8 At the time of this writing, there are many videos of this phenomenon available online,
e.g., https://vww.youtube.com/watch?v=3JAqrRnKFHo.
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Set dy/dt = 0 to find the y-nullcline:
O=br—a?y=a(b—2y) = azy=0b or z=0.

The nullclines intersect in a single critical point (1,5). Let us choose a particular
value b = 2.5 (different values of b exhibit different behavior). Thus the system is:

-1 2
de/dt =1-35z+z%y (3.4)
dy/dt = z(2.5 — zy),
with z-nullcline y = 23%=1 and y-nullcline consisting of the vertical line z = 0

and the hyperbola y = %8—5 Determine the flow by sampling on the nullclines,
which in turn determines the general flow in each region. See Figure 3.15 for a
plot of the nullclines on the vector field.

The precise methods used to analyze the vector flow are beyond the scope
of this textbook; however, we will sketch a general idea. In courses such as
Differential Equations and Dynamics, you will discover a fuller set of tools used
to work with these systems.

First, we determine that the flow near the critical point (1,2.5) is repelling.
In practice, we use the Jacobian® of the system to determine this, but you
may verify that the flow is generally outward from the critical point in a small
neighborhood containing the point. Second, we build a trapping region Z con-
taining the critical point. Then the existence of a stable periodic orbit would be
guaranteed by the Poincaré-Bendixson Theorem (Theorem 3.3.1).

In may help to refer to Figure 3.16 as you read over the following construc-
tion. The line y = 0 is a natural choice for the bottom boundary of %, since the
flow is up/left there (Region IV). Following this line left to the z-nullcline, turn
at right angles at the z-intercept of the z-nullcline, which is z = 1/3.5 =~ 0.2857.
The line z = 1/3.5 forms the left boundary of %Z. Observe that the flow on this
line is up/right (Region I). Then turn at right angles when the line z = 1/3.5
intersects the y-nullicline; this happens at y = ﬁ;—fﬁ = 8.75. Now to the right,
on the line y = 8.75, we know the flow is down/right (since this is part of Region
II); however, there is not another nullcline to the right that we could use to make
another turn. Instead, we will make a 45° turn at some point. It matters a great
deal where that turn is made: the diagonal segment of the boundary, which we
will call L, must also be trapping. Careful analysis indicates that we could begin
turning at the point (2,8.75) — we just have to show that the flow, which is
generally down/right on L (since L is in Region II), has larger down component
than right component. In other words, we must show that every flow vector on
L has slope m < —1. This is an exercise left to the reader (see Exercise 2), but
graphical evidence may be found by carefully studying the phase plane. Finally,
the rightmost segment of the boundary is located where L meets the z-nullcline.

a ki P g N 2
9Specifically, we compute J(z,y) = é?l v;) = 2355 +22;;y mmz = z2
Z,Y A -

J(1,2.5) = 1 > 0, the critical point (1,2.5) is repelling.

. Since
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Figure 3.15: Nullclines and general flow. Region I: up/right. Region IL
down/right. Region III: down/left. Region IV: up/left.

If we parametrize the line L by (z,y) = (2 +¢,8.75 — ¢}, then we have to solve
the following equation for ¢:

— 2 —
_¥se -1 g, 352+ -1

Y

Therefore z = 2 + (8.4234) = 10.4234 forms the right boundary line. Flow on
the vertical line is always to the left (down/left in Region II; up/left in Region
IV), so the rightmost segment of the boundary is also trapping.

Now that we have shown that region £ is trapping, and the only critical
point in Z is a repellor, the Poincaré-Bendixson Theorem implies that the sys-
tem has a stable periodic solution. In other words, the Brusselator reaction
exhibits a self-sustaining oscillatory behavior. Using an ODE-solver, the orbit




114 CHAPTER 3. VECTOR FIELDS IN THE PLANE

10 +
9 4 (2,8.75) y=8.75
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z ~ 0.2857 x ~ 10.4234

Figure 3.16: Trapping region £ for the Brusselator system.

can be found, as shown in Figure 3.17. (ODE stands for ordinary differential
equations.) Trajectories beginning within the region will be bounded by the or-
bit spiral outward to approach it; trajectories starting on the exterior will spiral
in to approach it.

Exercises
1. For each system from §3.1, Exercise 4, find the z- and y-nullclines.

2. Finish the argument that the region # in Figure 3.16 is trapping, by
verifying that all flow vectors on line L have slope less than —1. The
following steps should help you do so.

(a) Find the equation of line L, in y = mz + b form, and then substitute
this expression for y into (3.4).

(b) Use your results from (a) to show that every vector on L has slope

less than —1. (Hint¢: Consider the sum i—f + %‘%, which will be less
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Figure 3.17: Phase portrait for the Brusselator system. All nearby trajectories
approach the stable periodic orbit (which is implied by the close grouping of
flows).

than 0 if the negative contribution from % is greater than the positive

contribution from %f—.

3. Analyze the Brusselator system (3.3) with the following values of the pa-
rameter b. Are there always periodic orbits?

(a) b=1 (b) b=5

4. Finish the details in Theorem 3.3.1 by showing that w(x) is a closed subset
of X. (Hint: Use the definition of limit point in terms of open sets to show
that there is an open neighborhood around any point y ¢ w(x)).
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Part 11

Abstract Topology with
Applications




Chapter 4

Abstract Point-Set
Topology

What is topology, anyway? In Chapter 1, we state that topology is the
study of the qualities of a space that are preserved under invertible continuous
maps, without clearly defining the terms “space” or “continuous map.” Then
in Chapter 2, we developed continuity (among other things) in the context of
familiar Euclidean spaces, and finally in general metric spaces. In this chapter,
we introduce a concept of space that not only encompasses metric spaces but
also allows us to talk about much more exotic structures. A topological space
is simply a set with additional structure (to be defined in §4.1). The elements
of the set are called the points of the space, so we often use the term point-
set for a topological space — hence the traditional moniker for the subject,
point-set topology. Using the language of point-set topology, the real power
and elegance of the theory become apparent in what topology abstracts from
Euclidean geometry and how it may be applied to unrelated — often very non-
geometric — problems.

4.1 The Definition of a Topology

The language of topology is based in the language of set theory. Let X be a set
~ not necessarily a subset of R™. We will call X a point-set if we want to alert
the reader that we consider the elements of X as individual points. Just as a set
of points in the plane may have a certain geometry (i.e., a particular geometric
structure defining distances and angles), X may have a topology. In what may
seem like a circular definition, a topology on a point-set X is a mathematical
description of the essential topological properties of X. But what properties of
X are most essential?

e A way to determine whether a subset U C X is open (or closed, or neither,
or both).

119
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-
e A way to define limit points, and thus to define ILm Ty
n o0

e Connectedness, compactness, etc.

e A criterion to determine whether a function f : X — Y is continuous or
not.

What is not important (fopologically speaking)?

o Any particular representation of the space (e.g., recall Figures 1.6, 1.7,
1.9, and 1.16).

o Length, area, volume, angle, and similar measures of geometric quantity.
Even the distinction between bounded and unbounded is meaningless. For
example, we have seen in §2.2 that there is a homeomorphism (a,b) =~
(=00, 00).

Indeed, the whole idea of a metric d and the e-balls defined in Chapter 2
are somehow irrelevant, vestigial concepts, convenient for defining certain topo-
logical concepts in R™ (and other metric spaces), but too restrictive to be of
general use in abstract topology. But then how could we hope to define the open
sets in a space X without referrence to a metric on X7 The trick is to make
openness part of the very structure of a topology on X. In fact, all that is es-
sential (topologically) is knowing which subsets of the point-set are considered
to be open, since the concepts of limit points, connectedness, compactness, and
continuity can be defined in relation to open sets.! On the other hand, we must
be careful not to allow too much freedom. The sets that we designate as open
should satisfy some general properties that we find useful. These defining prop-
erties are called the axioms for a topology, and over the years mathematicians
have a agreed upon a list of four.?

Definition 4.1.1. A topology 7 on a point-set X is a subset of the
power set P(X) satisfying the following four axioms:

1. e g.
2. XeJ.
3.0U Ve, thenUNVeT.

4. If {Ui}rez is a collection of sets Uy € 7, then U Uy,e Z.
kel

The notation (X,.7) means that X is a point-set with a particular
topology 7, and then we may call X a (topological) space.

1n fact, once you see the definitions in terms of open sets, you may realize that these
definitions are more natural and elegant than those found in Chapter 2.

2Felix Hausdorff’s original definition in 1914 included a fifth axiom that we call nowadays
the Hausdorff condition [Hauld] (see Definition 4.2.6).
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To say that J is a subset of P(X) means that every element of J is a
particular subset of X. That is, U € J = U C X (but not the converse).
Typically, not every subset of X is in a given topology & on X. So what does
Definition 4.1.1 have to do with open sets? Each set U € J is considered to be
open with respect to the topology & on X. Think of 7 as the master list of
absolutely every subset of X that we wish to label “open.”

Definition 4.1.2. Suppose (X,J) is a topological space. A subset

U C X is open (with respect to ) if and only if U € 7.

Axioms 1-4 of Definition 4.1.1 may be expressed roughly as follows:

1. The empty set is open.
2. The whole set X is open.
3. The intersection of two open sets is open.
4. The union of arbitrarily many open sets is again open.
Note that each of the four axioms is a property of open sets in any metric
space (recall Proposition 2.5.3 and Exercise 2 in §2.5), so every metric space

(X, d) is a topological space with topology .7 = x4y defined to be the set of
all open subsets of X, where “open” is defined in terms of metric balls.

Definition 4.1.3. If (X, d) is any metric space, then the metric topol-
ogy on X is the set Jx qy € P(X) defined by

Iix,a) ={U € X | V& € U,3e > 0 such that € By () C U}.

Since Euclidean space is a particular kind of metric space, R™ has a topology
Ir C P(R") called the Euclidean topology, in which 5 consists of all sets
U C R™ that are open according to Definition 2.1.5. Metric spaces are important
examples of topological spaces; however, not all topological spaces are metric
spaces.

| Example 56. Let X = N. For eachn € N, let U, = {z € N| z > n}. Let
T = {0} U{U, | n € N}. Show that 7 is a topology on X.

We must verify the four axioms. Before doing so, it helps to get a better
sense for the sets U,,. Observe that Uy DU, D U3 D -+ -.

Ui = {zeN|z>1}=1{1,2,3,4,5,6,...

U, {zeN|z>2}=1{23,45,6,7,...

Us {xeN|z>3}=1{3,4,56,7,8,...

Uy = {reN|z>4}={4,56,78,9,...

Il

L R N
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1. Clearly, 0 € 7.
2. Since U; = N, we see that N= X € J.

3. Let U,V € . If either of U or V is 0, then UNV = § € J. (Note
that in the future, we will not verify Axiom 3 when one of the two sets
is empty, as this check is trivial.) Now suppose U = U, and V = Uy, for
some n,m € N. If n < m, then U, NU,, = Uy, which proves UNV € J.
We need not check n > m, as UNV = V NU. Thus the intersection of
two open sets is open.

4. Let {U,, }rez be an arbitrary set of sets in . Let W = [,z Uy, For
any = € N, we see that z € W if and only if z > n;. for some k € Z.
That is, z € W if and only if z > min{ny | & € Z}. Now in any set of
natural numbers, there must be a least element, ng (by the well-ordering
principle). Thus x € W if and only if & > ng, which shows that W = U,,.
But Un, € ; hence the arbitrary union of open sets is open.

i

<

It is easy to show, using induction, that Axiom 3 of the definition of a
topology extends to finitely many intersections (see Exercise 2). But what about
infinite intersections? Nothing in the axioms implies that an intersection of
infinitely many open sets should be open, and for good reason — this property
does not hold with respect to Euclidean open sets in R”, as Exercise 4 of §2.1
illustrates.

Now that we have a topological definition for open sets, we may define closed
sets. Compare to the definition given in Definition 2.1.8.

Definition 4.1.4. Suppose .7 is a topology on X. A subset C C X is
closed if and only if X \ C € 7. In other words, C is closed if and only

if its complement in X is open with respect to the topology.

O
l Example 57. Describe the closed sets of N with respect to the topology
 defined in Example 56. .

The open sets are, by definition, the elements of 7:0,and U, ={z €N |z >
n}, for each n € N. Therefore the closed sets, which are the complements of
these, are:

e The whole space, N.

o The sets {z € N |z < n} = {1,2,3,...,n — 1} for each n € N (which
includes §, when n = 1).

i

o N
We say that N is an neighborhood of a point x € X if there is some U €
such that z € U C N.
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Discrete and Indiscrete Spaces

Consider the lattice points Z? in the plane (i.e., points (z,y) € R? such that both
z and y are integers), as shown in Figure 4.1. Each point is separated from all
others, in the sense that you could draw a circle around the point containing none
others. In fact, as a subset of R?, each singleton set {(z,y)} C Z? is considered
open in Z? (of course, {(z,y)} is not open in R?). Indeed, since arbitrary unions
of open sets are open, every subset of Z? is open. This is an example of a discrete
space. In a discrete space, every point belongs to a neighborhood consisting of
only that point.

© [} ® e o o L] -] (-4
& & Py Py & & &
k4 T A4 kg ki T

L] L] L] e © o (-] L] L]

Figure 4.1: Z? C R? is a discrete space.

Definition 4.1.5. The discrete topology on a point-set X is the

topology Ip defined by Ip = P(X). In other words, every subset of X |
is open.

Implicit in Definition 4.1.5 is the fact that 9 is indeed a topology on X. In
fact, Ip is the metric topology corresponding to the discrete metric, ddise, on X
(see Example 35 of §2.5). Of course the discrete topology represents something
of an extreme in the sense that no other topology on X can have more open sets
than the discrete topology does. The following two terms help us to compare
topologies in general.

Definition 4.1.6. Fix a point-set X, and let Z; and % be two topolo-
gies defined on X. If #; C %, then we say that .7} is coarser than % [
and that 95 is finer than ;.

Thus, according to Definition 4.1.6, the discrete topology Jp is the finest
topology that can be defined on a point-set X. Any other topology & on X
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must be coarser than Jp. What is the coarsest topology possible on X ? Looking
through the axioms, we see that at least X and @ must be included, and if no
other subset of X is included, then axioms 3 and 4 are automatically satisfied.
We call this extreme case the indiscrete topology on X it’s the coarsest topology
on X.

Definition 4.1.7. The indiscrete topology on a point-set X is the i
topology Fr defined by J1 = {0, X}.

In the space (X, 1), the only neighborhood of a given point z € X is the
whole space itself. Think of X as being completely amorphous ~ all of the points
are indistinguishable and even interchangeable (see Example 65).

Topologies on Finite Sets

In general, if X is an infinite set and  atopology on X, it may be impossible to
list all of the open sets of X (unless of course J is the indiscrete topology on X).
On the other hand, if X is finite, then & C P(X) must be finite, and it becomes
a straightforward exercise to list all the open and closed sets of X with respect
to 7. Though the study of finite topologies has very little practical application,
it can still be useful for sharpening our abstract topological reasoning.’

O

I Example 58. Let X = {a,b,c,d}, and let
T = {0,{a},{d}, {a,b},{a,d}, {a,b,d},{a,b,c,d}}.

(a) Show that .7 is a topology on X. (c) List all the closed sets of X.
(b) List all the open sets of X.

Solution:

(a) We find both § and X in 7. Next consider all intersections of pairs of sets
in 7. We may omit any situation in which U C V, since thenUNV =U.In
particular, we never have to check any intersection involving § or X itself.

{a}n{d} = 0eT
{d} n{a,b} e T
{a,b} n{a,d} = {a}€ T

Next consider all unions of two or more sets in 7 (omitting cases in which
one set is a subset of another; for example, we need not check whether

3William Thurston (1946-2012), a prominent and influential topologist, wrote that finite
topology is “an oddball topic that can lend good insight to a variety of questions” [Thu94j.
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{a} U{d} U {a,b} € 7 since {a} U {a,b} = {a,b}, and this reduces to
checking that {d} U {a,b} is in the topology).

{a}u{d} = {a,d}eT
{d} U{a,b} = {a,b,d}e T
{a,b} U{a,d} = {a,b,d}e T

Thus & is a topology on X.
(b) By definition, the open sets are all the elements of 7

0,{a},{d},{a,b},{a,d}, {a,b,d},{a,b,c,d}.
(c) By definition, the closed sets are the complements of open sets in X:
X\0, X\ {a}, X\ {d}, X \ {a,b}, X \ {a,d}, X \ {a,b,d}, X \ {a,b,c,d},
Thus the closed sets are: {a,b,¢,d}, {b,c,d}, {a,b,c}, {c,d}, {b,c}, {c}, 0.
i
o

For small sets X, a diagram in which the open sets are circled may help in
visualizing the topology.

1¢]
l Example 59. Below is a diagram for the topology 7 on {a,b,¢,d} from

Example 58.
2

e

Base of a Topology

In linear algebra, we learn about the space of all vectors in R™. Clearly there
are infinitely many such vectors,* all having the form

Ty
T2

Tn -

4Indeed, there are uncountably many vectors.
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for real numbers ;. On %he other hand, each vector x may be thought of as a
linear combination of a finite set of basis vectors

X =21€1 +22e9 + -+ 2,0,

where e; is the ith unit vector of R”. Thus the finite set B — {eili=1,2,...,n}
is sufficient to describe all of the vectors x € R™, using operations that are
essential to linear algebra, such as addition and scalar multiplication.?

In a similar way, a topology .7 on a point-set X may be described using a
much smaller subset & C .7, such that every open set U € J can be built up
from sets in % using operations that are essential to topology, such as unions.
The motivating observation is that every open set in a metric space is equal
to a union of (perhaps infinitely many) open metric balls. This idea can be
abstracted to any topological space.

Definition 4.1.8. A subset & C P(X) is a base on X if 2 satisfies:

1. For each & € X there is at least one B € % such that z € B.

2. If By, B> € % and By N B, # (), then for every x € By N By, there |
isasetBE%’suchthatxeBgBlﬂBg.

Condition 1 of Definition 4.1.8 ensures the sets of & cover all of X; in other
words, every point has an open neighborhood. Condition 2 specifies enough
structure so that the topology on X can be built up from Z by taking unions.
See Figure 4.2 for an illustration of the two conditions. The following lemma
shows how to build the topology 7 from a given base.

Figure 4.2: Left, condition 1: A base must cover X. Right, condition 2: Any point
in the intersection of base sets must be contained within a base set that is itself
a subset of the intersection.

5See §B.2 for further details about vector spaces.
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Lemma 4.1.9. If % is a base on X, then the collection I of arbitrary unions
of sets from % is a topology on X.

Proof. The empty union of base sets (i.e., the union of no sets at all) is , so
Axiom 1 is satisfied. Now for each 2 € X, let B, € % be a set containing z.
Clearly U ¢ x B. = X, satisfying Axiom 2. Let’s establish Axiom 4 next (since
we will need it to show Axiom 3). Suppose Uy € . for all k in some indexing
set Z. By definition, each Uy is an arbitrary union of sets from 2, so we may

write
U= |J B,
Be2,

where %}, is the collection of the open sets whose union is Uj. Let U be the

union of the sets Uy,.
v=Ju= U B
kel keI BB,

This shows that U is simply a union of all of the various base sets B from all of
the collections %, as k ranges throughout Z; by definition, U € .

Finally, to verify Axiom 3, consider two sets U,V € . Express U =
U Byes, B1and V = | Boca, D2, for some collections %, %, C B. Consider
W=UnV.

W=< U Bl)m< U Bz>: U BinBy)
Bie%, BacHBs B\€%B1,BeB

By Condition 2 of a base, for each x € By N By, we can find a set B, € % such
that x € B, C B; N By. Thus

By N By = U B,
z€B1NBy

which shows that By N By € J since it is an arbitrary union of base sets (which
is open by Axiom 4). Then, since W is an arbitrary union of open sets, we have
shown that W € J (again invoking Axiom 4). O

We say that .7 in Lemma 4.1.9 is the topology generated by 4.

O
l Example 60. Show that for any point-set X, the collection of singleton
sets, & = {{z} | € X}, is a base for the discrete topology on X.

Solution: First we verify that £ is a base. Clearly condition 1 is satisfied.
Condition 2 is vacously true, since there are no nonempty intersections. Now
let’s figure out the topology 7 generated by . By definition, every U € 7 is
an arbitrary union of base sets. In particular, if U C X is any subset, then we
have U = |J ey {2z} € . Thus # generates the topology 7 = P(X), which is
the discrete topology 9p on X. 5

o
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0
! Example 61. The collection & = {B.(z) | € > 0,2 € R"} is a base for
the metric topology on R™. In fact, there is a countable base for this topology:

By ={Bc(z) | ec Qt,z € Q"}. (4.1)

The details are left to the reader (see the Exercises). .
To say that a base Z is minimal we mean that no sets can be removed
from & without changing the topology generated.

O
l Example 62. Find a minimal base for the topology 7 on {a, b, c,d} from
Example 58.

Solution: Any open set that is the union of smaller open sets need not be a
part of the base (because such unions will be generated from the base sets). You
can verify that 2 = {{a}, {d}, {a, b}, {a,b,c,d}} is a base for 7, and no smaller
subset suffices. The diagram below shows only the base sets, but it is understood
that the topology generated by this diagram also includes the unions {a, d} and
{a,b,d}.

Exercises

1. Show that X and 0 are always both open and closed no matter what
topology 7 is defined on X.

2. Show that Axiom 3 of Definition 4.1.1 generalizes to finitely many intersec-
tions of open sets. That is, if .7 is a topology on X, and if Uy, Us, ..., U, €
T, then N, U, € 7.

3. Use the definition of a topology to prove that the union of two closed sets
is closed. Show by example that the union of arbitrarily many closed sets
may not be closed.

4. Show that an arbitrary intersection of closed sets is closed.

If X has the discrete topology, show that every subset is closed (hence
every subset is both open and closed in a discrete space).

(3
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10.

11.

12.

13.

14.
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- How many closed sets are there in an indiscrete space? What are they?

. Determine all topological spaces that are simultaneously discrete and in-

discrete.

- List all of the possible topologies that can be defined on the two-point set,

X ={a,b}.

. Let X = {a,b,c,d, e}, and let 7 be the following subset of P(X),

Ha,b,¢c,d,e}, {a,b,c,e}, {a,b,d,e}, {a,b,e}, {c,d, e}, {c, e}, {d, e}, {e}, 0}.

(a) Verify that 7 is a topology on X.

(b) List all open sets.

(c) List all closed sets.

(d) List all sets that are both closed and open.
(e) List all sets that are neither open nor closed.

Let X = {a,b,c,d,e, f}, and let B = {{a},{a,c},{a,d}, {b, e}, {b,e, f}}.

(a) Verify that £ is a base.
(b) List all open sets in the topology 7 generated by 4.
(c) List all closed sets.

(d) List all sets that are both closed and open.

(e) List all sets that are neither open nor closed.
Suppose that (X, d) is a metric space. Let & = {Be(z) | ¢ > 0,z € X}.

(a) Prove that 4 is a base.

(b) Show that the topology generated by % is the metric topology on X.
(Hint: show that a subset U C X is open in (X, d) if and only if U is
equal to a union of open metric balls.)

Show that the topology generated by % as defined in (4.1) is the metric
topology on R™.

Let # = {[a,b) | a,b € R, with a < b}.

(a) Show that 2 is a base.

(b) The topology generated by 2 is called the lower-limit topology on
R. Prove that the lower-limit topology is finer than the Euclidean
topology on R.

Suppose that %; and %, are bases on a set X, and suppose that B; C %s.
Prove that the topology &7 generated by %, is either the same or coarser
than than the topology Z generated by %,. -
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4.2 Continuity and Limits

This section shows how the definition of continuity from §2.2 may be abstracted
to functions of topological spaces.

Continuous Functions

When you first learned about graphing functions, y = f(z), perhaps you were
told that f is continuous if its graph can be drawn without lifting your pen-
cil. This “definition” leaves a lot to be desired. Then, in calculus, you finally
encountered a precise definition in terms of limits.

Let D C R be an open subset of the domain of f. A real-variable
function f : D — R is continuous on D if for every c € D, we have

lim (z) = £(e)

However, the definition is useless unless we know how to compute limits.
Limits are all about closeness: the notation lim,,. f(z) = L means, intuitively,
that “when z approaches a value ¢, then the values of f(z) approach a limit
value L.” But how does z approach c¢ anyway? And if the values of f{z) ap-
proach L but never actually reach L, then how can we claim the “limit” is L?
Certainly, for a limit to exist, we require the values of f to get closer and closer
to L, but how close is close enough? The quandary is quite deep. Not only do
these questions cause immeasurable grief to anyone studying calculus, but they
also gave mathematicians quite a headache in the past as they wrestled with
the foundational concepts behind what makes calculus tick. Over time, mathe-
maticians® refined the concept of limit, arriving at what we often call the “e-d
defintion.”

The limit equation lim f(z) = L means that for every ¢ > 0, there
T—C

exists a value § > 0 (whose value depends on €) such that if 0 <
|z — ] < &, then |f(z) — L] <e.

Putting this together with the definition of continuity above, we obtain
the precise definition of continuity that we have already encountered in Def-
inition 2.2.1, which is reproduced below in a more concise form.

Let f: D — R, where D C R is an open subset of the domain of f.
We say that f is continuous on D if:

Ve € D,Ve > 0,30 > 0 such that

(mEDapd{x~c]<5) == |f(z) — f(¢)] <.

6 Among them was Bernard Bolzano, who is often credited with formulating the -6 defini-
tion in 1817.
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Now this definition was generalized in Definitions 2.2.2 and 2.2.3 to arbitrary
functions in Euclidean spaces using the machinery of open balls. Recall that
underneath all of the details there was a simple nugget: a function is continuous
if and only if the inverse image of any open set (in the form of open e-balls) in
the codomain is an open set in the domain. Presently, we abstract the definition
even further.

Definition 4.2.1. Suppose f : X -+ Y is a function from one set to
another, and suppose X has a topology Jx, and Y has a topology Jy. |
Then f is continuous (with respect to the topologies on X and Y) if

FYV) € Ix for every V € Gy

Definition 4.2.1 states that for a function f to be continuous, all that is
required is that the preimage of every open set of Y is some open set of X.
Notice that there is no explicit mention of the individual points of X or Y.
Topologically, individual points are not as important as whole collections of
points that are close to one another (open sets).

f
X

Although the diagram shows “f~1” we cannot assume that the inverse function
for f exists. Just think of f~! as an operation that can be applied to a set,
yielding a-set as output (see Definition A.2.8 of §A.2). Another word of caution:
The definition for continuity does not imply that f[U] is open for all open
U C X. If a continuous function f does satisfy the condition U € Tx ==
flU] € %, then we call f an open map.

Q

1 Example 63. Let X and Y be nonempty topological spaces, and fix a

point yo € Y. Let f: X — Y be the map that sends z > 1 for every z € X

(this kind of map is called a constant map). Prove that f is continuous. Under
what conditions would f be an open map? )

Solution: We simply check that the preimage of every open set of ¥ is open

in X. Even though we do not explicitly know the open sets of X or Y in this
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example, we have just enough information to proceed. If V' € 5, then either
Yo €Voryy ¢ V.Ifyo € V, then f71[V] = X (since f(z) =yo forallz € X). If
yo ¢ V, then f~1[V] = 0. By the definition of a topology, we know both §§ € I
and X € Jx. Thus f~1[V] is open in all cases, proving that f is continuous.

Since f]U] = {yo} for every open set U, we find that f would be an open
map if and only if the singleton set {yo} is open in Y. (Here f would not be
open, for example, if ¥ = R™ for n > 1, since a single point is closed, and
not open, in Euclidean space. On the other hand, if Y = Z with the discrete
topology, then f must be an open map.) )

We shall see the real power of abstraction, as we can now prove the following
important composition theorem in a few lines (compare Exercise 1 from §2.2).

Theorem 4.2.2. The composition of continuous functions is continu-
ous. More precisely, if X, Y, and Z are topological spaces, and we have
continuous functions f : X =Y and g : Y —> Z, then the composite
function go f : X — Z is continuous.

Proof. Let V be any open set of Z. We must show that (gof)~![V] = f=* [¢g7*[V]]
is open in X. Since g is continuous, g~![V] is open in Y. Then, since f in con-
tinuous, f~! [g7![V]] is open in X. » O

Continuity may also be defined in terms of closed sets and closures of sets.

Theorem 4.2.3. Let X and Y be topological spaces, and let f : X = Y.
Then the following are equivalent:

(i) f is continuous (for every open set V. CY, f~V] C X is open).
(ii) for every closed set C CY, f~C] C X is closed.

(#1) | preserves closure; that is, for every A C X, f[A] C f[4].

Our plan for this this proof is to show that (i) <= (ii) and (il) <= (iii).

Proof. . ((i) == (ii)): Suppose f: X — Y is continuous, and let C C Y be
closed. Then, by definition, C = Y\ V for some open set V. There is a set
identity, f~1[C] = f7HY\ V] = f Y]\ f7[V] (see §A.2, Exercise 7(d)).
Observe that f~1[Y] = X, and U = f~![V] is an open set in X, and so
we have shown that f=1[C] = X \ U is closed.

The converse {(ii) == (i)) is left to the reader.

((i) == (iii)): Assume that the inverse image of any closed set is

closed. Let A C X be arbitrary. Since f[A] C f[A], we have f~![f[A]] C
1 [f{Aﬂ Moreover, since A C f~1 [f[A]] (see Proposition A.2.10), we
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have by transitivity 4 C f~* [ f [A}} Now since f[4] is closed, so is
ft [ I [A]J , but then the previous set inclusion implies that A C f~! [f {A]]

because the closure A is the smallest closed set containing the set 4
(Exercise 12, §2.1). Applying the forward image to both sides, we find

A £ 1 [FA)] < 7T

((i)) == (ii)): Assume that f[A] C f[A] for any subset 4 C X. Let
¢ C _5_/ be a closed set, and let A = f~[C]. Our goal is to show that
A = A, which would imply that A C X is closed. Observe that f [A] =
Il {C’]] C C. But by a,ssumptlon, we also have f[A] C f[A], so that
fA]CC=C.Now AC f~* [f[A]] C f}[C] = A. Finally, since A C A4
and A C A, we have A = 4, proving A = f~1[C] closed.
O
Homeomorphism

Suppose X and Y are two topological spaces. A function f: X — Y is called a
homeomorphism if it is both bijective and bicontinuous (recall Definition 2.2.4
of Chapter 2). Equivalently, f is a homeomorphism if it is a bijective continuous
open map, since first bijectivity implies that there exists a function f~!:Y —
X, and then openness of f implies that f~! is continuous since (f~1)~1[U] =
flU] is open in Y for every open U C X.

If a homeomorphism exists between X and Y, then we say that X and
Y are homeomorphic, or topologically equivalent, and we write X ~ Y.
To a topologist, the two spaces X and Y are indistinguishable, even if they
“look” very different on the page. For example, as discrete spaces, Z ~ Z2.
To prove this claim, we need to define a homeomorphism f : Z — Z2. First
note that every map f from one discrete space to another is both continuous
and open (see Exercise 1). So long as there is a bijection f : Z — Z2, then
[ 1s guaranteed to be a homeomorphism. The tricky part is to construct a
bijection.

The method shown here is a variant of that used by Georg Cantor” to
show that there is a bijection N — Q. All that we have to do is construct
an embedded copy of Z in Z? that hits every point. Figure 4.3 shows the
construction.?

"A more famous result, known as Cantor’s Diagonalization Argument, shows that there is
no bijection f:Z — R.

8You may be worried that we have not expressed the function f : Z — Z2 in a standard
or explicit way. This is a valid concern, as oftentimes a visual “proof” has subtle flaws that
invalidate it. But as you might imagine, the function f would be quite hard to write down in
terms of operations involving the input variable n, and even after writing it down'it would be
extremely tedious to verify that the expression deﬁnes an injective and surjective map anyway.
In this case, the “proof by picture” in Figure 4.3 is in fact explicit enough to prove the point.
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éa&i i3 14 15 16 17 18
-23 12 -5 -6 7 -8 19
-22 11 -4 1 2 -9 20
-21 10 -3 4] 3 -10 21
~20 9 -2 -1 4 -11 22
-19 8 7 6 5 -12 23
18 17 16 ~-15 14 13 24
A

Figure 4.3: A visual bijection f : Z — Z2. For each n € Z, f(n) is defined as
the point in Z* whose label is n. For example, f(0) = (0,0), f(5) = (1,—2),
F(—11) = (2, —1), etc.

l Example 64. Let n € N. Prove that R® ~ B.(0) for any ¢ > 0.

Solution: It suffices to prove the homeomorphism for a specific value of «,
since every e-ball (for various e > 0) is homeomorphic to the open unit ball via
scaling. The function (4.2) is a homeomorphism R™ — B /5(0).

0 x=0
f(x) = tanli'xlmxﬂx x # 0 (42)
The idea behind (4.2) is to extend Example 21 from Chapter 2 to higher di-
mensions. Every line through the origin is sent by f to a finite open segment
of length 7 centered at 0, just as the single-variable function y = tan™* z sends
the entire real number line (—o0, c0) to the open segment (—7/2,7/2).

We note that f is continuous away from 0 because it is the composition
of continuous functions, including the inverse tangent function and the norm
function. The fact that f is continuous at x = 0 can be established by analyzing
the norm of f(x) itself. We simply have to show that ||f(x)| can be made
arbitrarily small by taking x close enough to 0. When x # 0, we have

IFEN =

tan™1|x||
[
Now since tan™! z is a continuous function, and since tan=' 0 = 0, there exists

a small neighborhood U of 0 such that if x € U, then tan™!|x|| < ¢ for any
prescribed € > 0. Thus f is continuous on all of R™,

x| = tan™" |lx]. (4.3)
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Tt should be clear that f is injective and that the image is all of By 2(0).
We leave it to you to verify that [ is an open map, which is the final ingredient
needed to prove that f:R™ — B/3(0) is a homeomorphism. K

oo

Limits of Sequences

We've already encountered sequences and limits in R" (see §2.3). But to a
topologist, R™ is simply one out of an infinite variety of different spaces, and so
we extend Definition 2.3.6 to cover sequences of points in an arbitrary topological
space X.

Definition 4.2.4. A sequence in a topological space X is a function

z:N— X.

As in Chapter 2, the usual notation for a sequence is:
(:L‘;c) = («'L'k)lcEN = (ml,:l?g,l‘g, .. .), i € X, VEk.

Definition 2.3.7 also extends easily to arbitrary spaces X.

Definition 4.2.5. A point z € X is a limit of a sequence (zy) if for |
every open set U containing z, there is a number N € N such that |

zp € U for all k > N. If such a point exists, then we call the sequence
convergent.

We must be careful though, because in the most general case, we cannot
expect a convergent sequence to converge to a unique limit, as the next two
examples illustrate.

N

I Example 65. Let 7 be the indiscrete topology on R. If (a}) is any
sequence in R, then every point © € R is a limit of the sequence. Because the
only nonempty set in J7 is the whole space R, Definition 4.2.5 is automatically
satisfied, regardless of the sequence or the limit point. ;

o

-0

l Example 66. Let X be a point-set. The cofinite topology J¢ on X is
defined by
T = {0y U{U C X | X\ U is finite}.

Consider the real number line R* with cofinite topology. Let (z1) be a sequence
of distinct terms in R. Then the sequence (zj) converges to any point x € R.
This is because every nonempty open set U has the property that X\ U is finite,
and so only finitely many of the terms of (zx) can be in X\ U. If zg is the
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highest-index term in X \ U, then z; € U for all k > K + 1. Question: What
could happen if the terms of (x) were not required to be distinct?
f

<

On the other hand, if the topology on X is what is called Hausdorff, then
every sequence has at most one limit.

Definition 4.2.6. A space X is called Hausdorff if for each pair of
distinct points z,y € X there exist disjoint open sets U,V C X such ,

that ze U and ye V.

Definition 4.2.6 is an example of a separation condition® — any two points
of a Hausdorff space can be separated by a pair of open sets. Let’s see how this
leads to unique limits.

Suppose (zx)ken 18 a sequence in a Hausdorff space X, and suppose that
and y are both limits of (z). If x 5 y, then there are disjoint opensets U,V C X
such that z € U and y € V (see Figure 4.4). Since U is open containing the
limit 2, there is a number N € N such that if k > N, then z;, € U. But V is
also open containing a limit y, so there is a number M € N such that if k > M,
then z;, € V. Thus, for £ > max{M, N}, we have z € U NV, contradicting
unv =40. '

Figure 4.4: If = # y, then there are disjoint open sets U and V that separate z
and y. This leads to unique limits.

Intrinsic Definitions

At this point, we have adapted many of the definitions from Euclidean or metric
topology into the more abstract setting of point-set topology. The definitions

9There is a rich hierarchy of separation conditions for topological spaces. These conditions
are classified T, Ro, T, R1, T2, Ty, T3, etc., or by name, Kolmogorov, Fréchet, Hausdorf,
regular, normal, etc. See Schechter [Sch97] or Steen and Seebach [SS95] for more details.
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are intrinsic in that they depend only on the topology & on a given pg)int-
set X, not on any particular representation of the space. The following table
summarizes what we have defined so far as well as a few additional definitions.

©

-]

Suppose (X, Tx) and (Y, %) are topological spaces.

UCXisopen <= Ue€Ix
CC Xisclosed <= X\CeIx
f: X =Y is continuous <= VYV € %, fV]e Ix

z € X is a limit point of A C X <<= VU € Jx such that
z €U, wehave UN(A\ {z}) £ 0

x € X is an interior point of AC X <= IJU € Jx such that
relUCA

z € X is an exterior point of AC X <= U € x such that
zeUCX\A

The interior and closure of A C X have particularly nice interpretations
with respect to only open and closed sets (rather than individual points). The
interior of A is the union of all open sets contained in A, and the closure is the
intersection all all closed sets containing A. In the language of set theory,

int(4) = |(H{U|(U € Tx)and (U C A)}, and
A = ({C|(C=X\U for some U € Jx) and (C 2 A)}.
Exercises

1. Let X and Y be arbitrary topological spaces. Prove the following,.

If X is a discrete space, then every function f : X — Y is continuous.

If Y is a discrete space, then every function f : X — Y is an open

‘map.

If Y is an indiscrete space, then every surjective function f: X — Y
is continuous.

If X is an indiscrete space and Y is discrete, then the only continuous
functions f : X — Y are the constant functions.

2. Suppose that X is a discrete space. Show that the only convergent se-
quences are those that are eventually constant. By definition, a sequence
is eventually constant if there is a constant € X and an index K € N
such that xp =z for all k > K.
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3. Finish the proof of Theorem 4.2.3 by showing that (ii) == (i).

4. Suppose X = (R, Tower) Where Fower is the lower-limit topology as de-
fined in Exercise 13 of §4.1, and let ¥ = (R, 9z) be the real line with
standard Euclidean topology. Show why the step function f: X — Y
defined by f(z) =0if £ < 0, and f(z) = 1 if z > 0, is continuous.

5. Let X be any point-set, and let J¢ be the cofinite topology as defined in
Example 66.
(a) Prove that J5 is a topology on X.
(b) Describe the closed sets in the cofinite topology on X.
(¢) Prove that the cofinite topology on a space X is the same as the
discrete topology on X if and only if X is finite.
6. Prove that if A C B, then int(4) C int(B) and A C B.
7. Prove that every metric space is Hausdorff.

8. Determine which of the following spaces is Hausdorff.

(a) An indiscrete space having at least two points.
(b) The space N having topology Z given in Example 56.
(¢) The finite topological space from Example 58.

(d) (R, Aower), where Fiower is the lower-limit topology as defined in Ex-
ercise 13 of §4.1.

(e) (R, Jc), where I is the cofinite topology as defined in Example 66.

4.3 Subspace Topology and Quotient Topology

Suppose X is a topological space, and A _is a subset of X. It seems reasonable
to expect a topology on A related to that of X. In this section, we explore the
concept of the subspace topology on a subset A C X. We also consider a natural
way to define a topology on equivalence classes of a space, the so-called quotient

topology.

Subspace Topology

In any metric space X (including the Euclidean spaces), any subset A C X
inherits the metric by restriction of domain, and so has a topology induced
from the topology on X. In a similar way, if X is a point-set with topology
Z,and A C X, then there is a natural way to induce a topology on A by
“restricting” 7.
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Definition 4.3.1. A subset A of a topological space (X, J) may be|
given the subspace topology |4, defined by:

VeTla < V=ANU, forsomeU € J.

IfV € J|4, wesay V is open in A. Similarly, C is closed in A if
A\C € T|4.

Caution: A set Y may be open in A C X, but not open in X, and ¥’
may be closed in A, but not closed in X.

O

1 Example 67. For any m < n, the Euclidean topology on R™ is the
subspace topology induced from R™. Indeed, any open ball in R™,

B={yeR™|d(z,y) <e},

is simply the intersection of an open ball in R™ and the subspace R™ x 0 C R",
where 0 € R*™™ (see Example 141):

B={yeR"|d(z,vy) <e}N(R™ x0).
o {

O

1 Example 68. Consider the sphere §? € R? with respect to the subspace

topology. An open ball B.(x) that intersects the sphere does so in an open

“lens,” as shown in Figure 4.5. All open sets of S? are made up of unions of
these open lenses.

Figure 4.5: Open sets in the sphere S? with respect to the subspace topology.

o f

0
I Example 69. Let A be the z-axis considered as a subspace of R?, and
let U = {(x,0) | 1 <z < 3} C A, as illustrated in Figure 4.6. Note that U is not
open in the larger space R? (neither is U closed in R? — why?), but U is open
in A because U = AN B; ((2,0)). Intuitively, we may ignore the y-direction and
identify A ~ R, Then U ~ (1,3) = B1(2) is an open interval of the Teal line. |
I8

O
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L

R2

Figure 4.6: The set U is open in 4 ~ R, but not open in R2,

Theorem 4.3.2. Let A be o subspace of X
e IfU is open in A and A is open in X, then U is open in X.
o IfU is closed in A and A is closed in X, then U is closed in X.

Proof. Suppose U is open in A and A is open in X. Since U is open in A, and
A is a subspace of X ; there is an open set W C© X such that U = WnN A. But
since A is an open set of X » the intersection W A4 is also open in X. The proof
of the second point is left to the reader. [

One important implication of Definition 4.3.1 is that the inclusion map
from a subpace to its containing space is always continuous with respect to the
subspace topology. If A C X , define the following.

i A= X

ilz) = «

The inclusion map may seem quite trivial; after all, it’s a, map that seems to do
nothing (input and output are the same: z). But the importance of this map
is that it allows us to interpret the subset relationship (set theory) in terms of
a continuous function (topology). In fact, we could have defined the subspace
topology on A as the coarsest topology on A such that the inclusion 7 : A—X
is continuous.

Theorem 4.3.2 does not address the situations in which a subset U is open
in a closed subset C of X » Or vice versa. In fact, Example 69 demonstrates a
set U that is open in R!, but not open in R2, However, any closed subset of the
real number line, such ag [0,1] must be closed in R? as well, by Theorem 4.3.2.

o
l Example 70. Let X be the point-set with topology .7 from Examples 58
and 59. Let A = {b, c}. Determine Ta.



4.3. SUBSPACE TOPOLOGY AND QUOTIENT TOPOLOGY 141

Solution: Intersect each set in .7 with A to find the open sets of |4:

AN = 0
An{a} = 0
An{d} = 0

An{a,b} = {b}
An{a,d} = 0

An{a,b,d} = {b}
Anf{a,b,c,d} = {bc}.

Thus T |4 = {0, {b}, {b,c}}. Observe that {b} is open in A but not open in X.
Similarly, {c} is closed in A, since A\ {c} = {b} € F|4, and {c} happens to be
closed in X as well.

o {

Our work in Example 70 could have been reduced by only considering those
sets U € 7 that have elements in common with A (since we already know
€ T|a). Anothér way to be more efficient, especially when the topology is
not finite, is to work with the bases of the topologies. It turns out that a base
for the subspace topology can be found by taking intersections of a base of the
larger space.

Theorem 4.3.3. If B is a base for a topology F on X, and A C X,
then a base for T |4 is

Bla={BNA|Bec B}

I Example 71. Consider the unit square
P=IxI={(z,y)cR*|0<z<land0<y <1}

as a subspace of R?. We know that B = {B.(z,y) | € > 0, (z,y) € R?} is a base
for R?. By Theorem 4.3.3, the set of all intersections of these open balls with
the square forms a base for I2. To avoid trivial intersections, we may specify
that the center of each open ball must be a member of 12,

Bl = {B(z,y)N1* | e >0, z,y € I}

Notice that some sets in |z would not be considered open in R?. For example,
the semicircular region U = By ,4(0,1/2) N 1% shown below is open in I?, but U
is not an open subset of RZ.
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Note that since I? is not open in R?, Theorem 4.3.2 cannot be used to “prove”
U is open in R2. '

O

(e

1 Example 72. Describe the topologies on Z and Q as subspaces of R.

Solution: Z=1{...,-3,-2,-1,0,1,2,3,...} has the discrete topology as a
subspace of R, since each open ball Bi(k) = (k — 1,k + 1) C R intersects Z in
the single point {k}.

The subspace topology on Q is generated by the rational intervals {a, b) NQ.
In contrast to Z, the space topology on Q is not discrete. However, QQ is a
totally disconnected space, meaning that the only connected subsets of QQ
are the singleton sets {z} (see Example 78). ;

o

Suppose now that f: X — Y is a continuous function. Is the restriction f :
X — f[X] still continuous with respect to the subspace topology on f[X] C Y?
Consider an open set U C f[X]. By definition, there is an open set W C Y such
that U = W N f[X]. Then f~'{U] = f~1{W N f[X]]. The points in W \ f[X]
do not contribute to f~*[U], so we may write f~1{U] = f~![W]. Finally, since
[ is continuous X — Y, the inverse image f~*[W] (= f~1[U]) is open in X,
proving that f: X — f[X] is also continuous.

Quotient Topology

Consider a length of string, a good model for the interval I = [0, 1]. We know
I # S'; however, if the two ends of the string are tied or glued together, then
the resulting loop is a circle. The process of gluing together parts of one space
to make a new space is called identification, and it is more than just sticking
pieces together. To say that two points = and ¥ in a space X should be identified
or glued means that the points now act as a single point. That is, if we identify
the endpoints 0 and 1 of the interval I, then this means that 0 is the same
point as 1 in the result. We will use the concept of equivalence relations and
equivalence classes to make this precise (see §A.2). It’s important to realize
that the space may be topologically different after the identification is made
(identification is not a type of deformation). In the above example, the new
space, which we denote by I/{0 ~ 1}, is in fact homeomorphic!® to the circle
St (see Figure 4.7).

If X is a set with an equivalence relation ~ defined on it, then there is a
natural way to define a surjective function X — X/ ~ , sending each point to
its corresponding equivalence class. We call this function the quotient map ¢,
and it is defined as follows:

g X=X/~
g(z) = [a].

10Note that we haven't actually shown that the result is a topological space at all, let alone
a circle; read further for more details.
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[ —"] O 0=1

0 1
I 1/{0 ~ 1}

Figure 4.7: Identifying 0 ~ 1 in the interval I results in a space homeomorphic
to St

The quotient map is not injective, unless the equivalence relation is simply
equality. Indeed, if z,y € X are distinct elements and if z ~ y, then ¢(z) = q(y)
in X/ ~ . We define a topology on X/ ~ using the map ¢ and the topology of
X itself.

Definition 4.3.4. If X has a topology .7, then X/ ~ has an induced |
topology called the quotient topology 7/ ~ , defined by:

UceJ)~ = ¢ Ule 7.

Then X/ ~ is called a quotient space or identification space of X |
with respect to the relation ~.

You will be asked in the Exercises to prove that the quotient topology is
indeed a topology on the quotient set X/ ~ . By definition, the quotient map
q: X — X/ ~ is continuous (¢~ *[U] is open in X for every U open in X/ ~ ).
:*]

I Example 73. Let’s revisit the quotient space I/ ~ in which the equiv-
alence relation is defined!! by 0 ~ 1 (i.e., [0] = [1] in I/ ~ ). The points of I/ ~
are in fact certain subsets of I?: the equivalence classes of I under ~, which
are, in this case, the singleton sets, [t] = {t} for ¢ € (0,1), and the set of two
identified points, [0] = {0,1}.

I/ ~=A{t [t e (0, 1)} U {{0]}

What are the open sets of I/ ~ ? For any 0 < a < b < 1, define the sets
Vap = {tJ €I/ ~ Ja<t<b CI/~.Letqg:I =1/~ be the
projection map. Then ¢7[V,,] = (a,b) is open in I. Therefore Vg, is open
in I/ ~ . Now define a related set Wy, = {[t] € I/ ~ | ¢ < aort > b}.
Since ¢ W] = [0,a) U (b,1] C I, the sets W, are open in I/ ~ . These
two collections of open sets V, , and W, (for various a,b) form a base for the
topology on I/ ~ .

You may be wondering what happened to intervals containing just one end-
point. After all, [0,a) is open in I. However, the analgous set in I/ ~ is not

11'When we say an equivalence relation ~ on X is defined by a set of specific relations, we
mean that there is a minimal subset £ C X X X such that (z,y) € E for all given relations
z ~ y, and such that E satisfies Definition A.2.2. In particular, it is understood that @ ~ a
forall z € X.
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open. For 0 < a < 1, let Y, = {[t] €1/ ~ | 0<t<a}. Since [0] = [1], we have
q Y] = [0,a)U{1} C I, which is not open in I. This shows, by definition, that
Y, is not an open set of I/ ~ . In fact, any open set containing [0] must contain
points [¢] such that ¢ > 0 (near 0) and points [u] such that v < 1 (near 1).

Our next goal is to prove that I/ ~ =~ S!. The easiest way to do so is to set
up another map,

f : I-st
f(t) = (cos2mt,sin 2xt).

Here we are using a particular model for S*, namely, the unit circle,
St = {(z,y) € R? | = cos 27t,y = sin 27t,t € R}.

Note that f(0) = (cos0,sin0) = (cos 2w, sin27) = f(1), so we consider related
function g : I/ ~ — S! defined by g([t]) = f(¢) for all t € I. We have defined g
on equivalence classes, while f is defined on the actual points of I. Observe that
both f and g are injective when restricted to (0,1); only the behavior at the
endpoints is distinct. While f is not injective at the endpoints (f(0) = f(1) but
0+ 1in ), g is injective on I/ ~ , since even though g([0]) = g([1]), the classes
[0] and [1] are not distinct elements of I/ ~ . The map g is also surjective to St,
since every point of the unit circle corresponds to a particular angle § = 2xt.
Thus there is a bijection between S* and I/ ~ . All that remains is to prove
that the maps f and f~! are continuous, but we leave this for the reader to

verify.

{

o

22

l Example 74. Consider the unit square I?. We will make a number of

identification spaces from I?. In what follows, we often drop the equivalence

class notation.'? In other words, for z € X, we may write z instead of [z] for
the corresponding equivalence class in X/ ~ .

(a) If identifications are made along the left and right edges so that (0,y) ~
(1,y) for all y € I, then we get a cylinder (having no top or bottom surface).
You can easily construct it by bending a sheet of paper it until the two side
edges meet, and gluing or taping those two edges together, as shown below.

12This is what typically happens in practice, but it requires the reader to be extra vigilant in
using context to determine whether an element is simply a point or represents an equivalence
class.
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c D —— :

bend
and glue

A B

(b) Now suppose the identifications are made with a twist. That is, (0,y) ~
(1,1—y) for all y € I. What results is called a M&bius strip (see Figure 4.8).
The Mobius strip differs from a cylinder in that there is only one side and
one edge; we say it is one sided, while the cylinder is two sided. Suppose
an ant begins a journey at point (0,0) and moves with increasing z-value.
First the ant traverses the “bottom” edge, going through (1/2,0), (0.9,0),
etc. Now, arriving at (1,0), the ant suddenly finds itself on the “top” edge,
because (1,0) ~ (0,1) (note that on the M&bius strip, there is no “top” and
“bottom” edge, and as far as the ant is concerned there was no perceptible
change).

Figure 4.8: A representation of the Mdbius strip.

{

o

0

l Example 75. In the previous examples, identifications were only made
along two of the edges of the square I?. To define the next space, we will identify
points along the top and bottom as well. Define the torus as the quotient space,

T= Hz/{(()?y) ~ (1,9), (m70) ~ (337 1)}

In the above notation, we mean that ~ is the equivalence relation gerterated by
all pairwise identifications (0,y) ~ (1,y) for y € I, and (z,0) ~ (z,1) for z € L
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Figure 4.9: Open neighborhoods of various points in the torus. U, V, W, and
X are each connected open disk neighborhoods.

Note that these identifications produce some two-element equivalence classes,
[(z,0)] = {(2,0), (z, 1)} for @ # 0,1, [(0,9)] = {(0,9), (1,9)} for y # 0,1, and a
four-element class, ,

[(070)] = {(07 0), (1>O)7 (07 1)7 (17 1)}

We've already encountered the torus in Chapter 1 — see Figure 1.3 for a repre-
sentation of the torus as a subset of R3. What are the neighborhoods of points
of T?7 Since the identifications happen only on the edges of I?, the subspace,

T\ ({(0,9) [y e U {(2,0) |z €T}),

is topologically identical to the interior of I? (note that we must be careful not
to use the term “interior” of T, because what might at first seem like boundary
points have been identified to points on the opposite side, and so are no longer
really on the edges). Now suppose « # 0, 1. The point (z,0) € T represents two
identified points of I?, namely, (z,0) and (=, 1). Therefore any neighborhood of
(w,0) must contain points on both “sides,” as Figure 4.9 illustrates. A similar
remark applies to (0,y) € T for y % 0, 1. Finally, a neighborhood of (0,0) must
contain points near all four members of the equivalence class, (0,0), (1,0), (0,1),
and (1,1).

Now let’s see how the identified square can actually be formed into the
more familiar doughnut shape that we call a torus. Find a flexible rubber or
fabric square — paper won't quite work. Make some marks on the square as in
Figure 4.10. Now the identifications (0,y) ~ (1,y) imply that the left and right
sides of the square should be joined together, making sure to match the markings
correctly. This forms a cylinder. Then the identifications (z,0) ~ (x,1) imply
that the top circle must be matched to the bottom circle. In order to match the
markings in the correct order, you’ll have to bend the cylinder around and meet
the “top” to the “bottom” to form a doughnut shape. Note how all four of the
vertices of the square (point a) meet to form a single point in the torus.

o
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a d € a
C & p C
b9 P b
a Zl e a

Figure 4.10: A representation of a torus.

O

I Example 76. Consider (R?\ {0})/ ~ , where (@1, 22) ~ (y1,y2) if and

only if there is a nonzero A € R such that (y1,y2) = A1, 22) = (Az1, Azz). In

the exercises, you will prove that this is an equivalence relation. The equivalence

class of a point = = (z7,x2) is the set of points on a line through the origin and
z, but not including the origin itself. See Figure 4.11.

(2] = {(Az1, Az2) | A€ R\ {0}}

One may choose a representative in each equivalence class. Since each line hits
the unit circle in two points, let’s choose the point on the unit circle in the upper
half-plane, except when the line is horizontal: then choose (1,0). Topologically,
the representatives form what looks like a semicircle; however, since (—1,0) ~
(1,0), the space is actually homeomorphic to S'. This space, which may be
denoted by P, is an example of a projective space; higher-dimensional projective
spaces are defined analogously (see Exercise 11).

RQ
x
(_1>O> ~ (170)
I ¢ ? i
(1,0)
Yy~

Figure 4.11: Projective space P! = (R?\ {0})/ ~ . Choosing representatives on
the upper half of the unit circle, with the identification (—1,0) ~ (1,0), we see
that P! ~ S!.
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-

Exercises

1. Define a subset H C R? called the Hawaiian earring as follows:

o
H=|]Jc,
k=1

where C}, is the circle with center (3%,0) and radius r = 57 Let H have

the subspace topology F |z with respect to R2. Describe a base for T\
What does a small neighborhood of (0,0) look like?

2. Prove the second point of Theorem 4.3.2.

3. Let A = (0,00), considered as a subspace of R!. Classify the following
subsets of A as open, closed, or neither in A and open, closed, or neither
in RY. Assume that 0 < g < b are real numbers,

(a) [a,?] (¢) (a,0) (e) (0,%]
(b) [a,0) (d) {a,b} (f) {1/k| k e N}

4. Considering R? as a subspace of R? ag in Example 69, classify the following
subsets of R! as open, closed, or neither in R! and open, closed, or neither
in R?. Assume that a < b are real numbers.

(a) [a, 0] (¢) (a,b) (e) Z
(b) [a,0) (d) {a} () R

5. Show that every subspace of a discrete space is discrete, and every sub-
space of an indiscrete space is indiscrete.

6. Let (X, ) be a topological space, and suppose that ~ is an equivalence
relation on X. Prove that the quotient topology 7/ ~ as defined in
Definition 4.3.4 is indeed a topology on X/ ~ .

7. Consider the Mobius strip M as defined in Example 74(b). Determine
whether the following sets are open in M (note that sets are written in
terms of I?, but it should be understood that the points are representative
of equivalence classes in A).

(@) A={(@y) |3 <w<? I<y<?}
(b) B={(zy)[0<e <} t<y<?}
(© C={(my)|3<2<} 0<y<?}
@ D={zy)|0<e<d t<y<Hully|d<ae<i laye
1
3
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10.

11.

(e E={(zy|0<z<} t<y<itu{@my|i<z<l i<y<

i

Use a computer to graph the following embeddings of T in R3. Choose
various values of the parameters b > a > 0. (Note that b is the distance
from the center of the hole to the center of the torus tube, and a is the
radius of the tube.)

pOf

2
(a) As an implicitly defined equation, (b — /2% + y2> + 22 = g2,
(b) As parametric equations,
= (b+ acos s) cost,

x
y = (b+acoss)sint,
z

= @sins.

. Show how thie parametric equations from Exercise 8(b) provides a home-

omorphism from T = %/ ~ to the graph of the torus embedded in R3.
(Hint: Consider (s,t) as points in the square [0, 2n] x [0, 27], and examine
how the boundary edges of the square are identified.)

Define a space called the Klein bottle by

K =1?/{(z,0) ~ (z,1), (0,y) ~ (L1 -y}

(a) Find all elements in each of the following equivalence classes:
(3,5 [(3.0)], [(0,3)], [(0,0)].
(b) Draw neighborhoods around each point of K from part (a).

(¢) The torus can be constructed by physically identifying the edge points.
Try to construct the Klein bottle in a similar way, using a flexible
material, like a thin rubber sheet or fabric. What, if anything, prevents
you from making a model of the Klein bottle? (Note that the righthand
picture in Figure 1.3 represents what a Klein bottle might look like as
a subset of R3, except that there should be no self-intersection where
the “handle” enters the body of the bottle.)

Let n > 1 be a natural number. Projective space, P", is defined as a
quotient space by P = (R"*1\ {0})/ ~ , where x ~ y if and only if there
is a nonzero A € R such that y = Az.

(a) Prove that ~ is an equivalence relation.

(b) Draw a picture of P? as an identification space in R%. By choosing
representatives appropriately, explain how P? can be visualized as a
hemisphere with certain identifications along the boundary circle.
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»
12. Define a quotient space of the unit cube I? by

Tg = Hg/{(ovyvz) ~ (171/72)7‘ (CIZ,O,Z) ~ (:1’ 17Z)> (a:,y,O) ~ (337'97 1)}

The space T2 is called a three-dimensional torus. Taking the classroom
as a model for I®, explain how the walls, floor, and ceiling of the room
would be identified. What would you see if you looked straight ahead?
Up? Down? Into one corner of the room?

13. Consider the space X defined by
X=(Rx{0H)U(Rx{1}))/~, where(z,0)~ (z,1) <= z#0.

Since (z,0) ~ (z,1) for all nonzero x, we may identify the equivalence
class of [(x,0)] simply by z (for & # 0). Let 0 = (0,0) and 0’ = (0,1).
(a) Show that X is not Hausdorff.

(b) Consider the sequence (1,2, %, %,%,...) in X. Prove that both 0 and
0" are limits of the sequence.

(¢) List an open set containing 0 but not 0’. Then list an open set con-
taining 0’ but not 0. (This type of separation makes X into a so-called
T, space.)

4.4 Compactness and Connectedness

The topological definitions of compactness and connectedness are exactly the
same as in §2.3 and §2.4, since those definitions only refer to open sets. However,
there is no analog to the Heine-Borel Theorem (Theorem 2.3.5) in general. That
is, even if we have a notion of boundedness in a topological space (which we do
not in general), then it still does not follow that every bounded closed subset is
compact. First let’s recall the definition of open cover and compact.

Definition 4.4.1. An open cover of a topological space (or subspace) |
X is a collection of open sets % such that '

xc |Juw
Uea

Definition 4.4.2. A space (or subspace) X is compact if every open ||
cover % has a finite subcover.

Compact spaces are quite important in topology precisely because of the
finiteness condition on open covers. A typical mathematical argument involving
a compact space X usually goes something like this:
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Let % be an arbitrary open cover of the compact space X (per-
haps % consists of open sets satisfying some useful property). Let
%' C % be a finite subcover of X. Then perform some mathematical
procedure or check some property within each set U € %" (which is
possible to do because there are only finitely many such open sets).

For example, the proof of Theorem 2.3.3 follows this paradigm. In fact, since
the proof involves only open sets, the result generalizes to arbitrary topological
spaces.

Theorem 4.4.3. Any infinite subset of a compact space X must have
a limit point in X.

Proof. Exercise 3. [

Any topological space in which every infinite subset must have a limit point
is called limit point compact. So Theorem 4.4.3 states that every compact
space is also limit point compact. The converse is not true in general. '

! Example 77. Consider the set X = N x {0,1}, and let
B = {Up = {(n,0),(n,1)} | n € N}.

The topology 7 generated by the base % is non-Hausdorff (why?). We will
show that every nonempty subset of X has a limit point, not just the infinite
subsets. Let A C X be nonempty. Suppose (n,0) € A; then (n,1) € X is a
limit point of A since every open set U containing (n, 1) must contain the base
set Uy, which intersects A nontrivially. Similarly, if there is a point (n,1) in A,
then (n,0) € X is a limit point of A. This proves that X is limit point compact.
However, X is not compact. 0
O

Compactness is also important because it is one of those rare topological
properties that is passed down to (certain) subspaces and images of maps. Let’s
develop these ideas more rigorously.

Theorem 4.4.4. Suppose X is a compact topological space and Y C X
has the subspace topology. If Y is closed in X , then Y is also compact.

Proof. Let % be an arbitrary open cover of Y. Now since Y is closed in X , the
set X \'Y is open (in X). Hence the collection % U {X'\ Y} in an open cover
of X. Since X is compact, there is a finite subscover %’ C % U {X\Y}. If
X\Y € %', then remove X \ Y. The resulting collection is a finite subset of %
of open sets covering Y. Thus Y is compact. O

BHowever, if the space is a metric space, or if a metric function can be found that induces
the topology on the space, then limit point compactness is equivalent to compactness [Mun00].
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Theorem 4.4.5. If f: X — Y is a continuous function of topological
spaces, and if X is compact, then so is the image of f, fIX]CY.

Proof. Let {Va}acs be an open cover for f[X]. Let U, = f~1(V,) for each
o € J, and observe that by continuity of f, each U, is open. Note that for any
z € X, we have f(z) € f[X], so there is at least one « such that f(z) € V,
(since the sets V, cover f[X]), which implies ¢ € U, (for at least one o). This
shows that {U,}ue is an open cover for X. But now, since X is compact, there
must exist a finite subcover, X C U,, UU,, U---UU,,. Applying the function
f, we have

fiX]

N

JlUay UUqg, U+ U Uy,

f[Ual} U f[UCtz} U--u f[Uan]

f[f-l[va1]:| Uf[f_l[vcm]] U"'Uf [f—l[van]]
C Vo UV U UV, .

The last line shows that there exists a finite subcover for f[X] within the arbi-
trary open cover {Vy}aes; hence f[X] is compact. O

We cannot expect compact subspaces to be closed in general, unless the
space is Hausdorff.

Theorem 4.4.6. Fvery compact subspace of a Hausdorff space is closed.

Proof. Suppose X is a Hausdorff space, and let C € X be compact. To show
that C is closed, we show that X \ C is open. Let € X \ C. For each point
y € C, let Uy and V} be disjoint open sets such that 2 € V, and y € U,
(possible since X is Hausdorff). Now % = {U, | y € C} is an open cover of C,
so by compactness there exists a finite subcover %' = {Uy,,U,,,..., Uy, }. Let
V=V, NV, N---NV,, . Observe that V is open (being the intersection of only
finitely many open sets). We also have V NU,, for each k =1,2,...,n,s0 V is
disjoint from (J;;_, Uy, and since C is contained in this union, we also see that
V N C = (. Thus we have found an open set V 3 z within X \ C. Since z was
arbitrary, X \ C is open, and hence C is closed. [

Compact subsets of a given space are typically rare, but in some special cases
they may be incredibly common. If the point-set X is finite, then every subset
of X is automatically compact, since any topology Jx on X must necessarily
have only finitely many open sets. Similarly, any topological space (X, Ix) for
which Jx is finite has the property that every subset is compact. For example,
in the indiscrete topology, every open cover of any nonempty subset consists of
exactly one open set. At the other end of the extreme, the only compact subsets



4.4. COMPACTNESS AND CONNECTEDNESS 1563

of a discrete space are finite subsets. A good rule of thumb is: The finer ‘the
topology, the rarer the compact subsets.

Sequential Compactness

Compactness has a lot to do with the existence of limits. In Euclidean spaces,
a sequence (zx) within a compact space is guaranteed to have a convergent
subsequence (see Theorem 2.3.9); however, this is no longer true in more general
topological spaces. For this reason, we make a separate definition.

Definition 4.4.7. A topological space (or subspace) X is called se-
quentially compact if every sequence of points (z) in X has a con-

vergent subsequence.

It is challenging to produce a space that is compact but not sequentially
compact or a space that is sequentially compact but not compact, but such
exotic spaces do exist. For example, the uncountable product I! = [Tierl is
compact (since it’s the product of compact sets; see §4.5), but not sequentially
compact. Consider a sequence (zj)ren in I' defined as follows: Each z; € I! is
the function I — I that sends ¢ € I to the kth digit of the binary expansion of ¢
(see §4.5 for an explanation of how an element of a product can be interpreted
as a function). Thus we have a sequence of functions.

z1(t) = 1st digit of ¢
22(t) = 2nd digit of ¢
z3(t) = 3rd digit of ¢

The sequence (zx) cannot have a convergent subsequence, for suppose (z,,
Thy, Thy,---) converges to some z € I'. Then for every t € I, the sequence of
values (24, (1), T, (t), Tiy (¢), .. .) must converge (in I) to z(t). But consider a
real number ¢ € [ whose binary representation has k;h digit equal to 1 if j is
odd and 0 if j is even (with other digits being chosen at random). For this value
of ¢, the sequence (zy,(t)) does not converge. This argument is a variation on
Cantor’s Diagonalization argument.

Connectedness

The topological definitions of separation and connectedness are esserftially the
same as the ones given in Definitions 2.4.4 and 2.4.5 {recall §2.4).
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. 3

Definition 4.4.8.

o A separation of a topological space (X, ) is a disjoint pair of [
sets U,V € J, neither of which is empty, such that X =U U V. |

o If X has a separation, then X is called disconnected; otherwise,
X is connected.

e The connected components of X are the mazimally connected '
subspaces of X.

A couple of points should be addressed concerning these definitions. First,
even though the definition is given in terms of a space X , it applies equally
well to any subset A C X with the understanding that A has the subspace
topology inherited from X. In this way, Definition 4.4.8 coincides precisely with
the concepts of separation and connectedness already defined for subsets of
Euclidean space in §2.4. Second, we must be precise about that word mazimally.
We say that a subspace A C X is maximal with respect to a property 2 if,
whenever there is another subspace B O A having property 2, then it must be
the case that B = A. (Analogously, A is minimal with respect to 2 if, whenever
B C A has property 2, then B = A.) Moreover, the properties of separations
and connectedness given in Proposition 2.4.7 carry over to the general setting.
Some additional important results are given in the following proposition.

Proposition 4.4.9. Let X be a topological space.
1. The set of connected components of X forms a partition of X.

2. Each connected component of X is closed.

Proof. Suppose X has connected components {Xk}rez. For each point zeX,
the singleton set {z} is connected, and.so {z} C Xj for some k. Thus the
connected components cover X. Next, suppose X k, and Xy, are any two distincet
connected components. If Xy, N Xy, # 0, then X, U Xy, would be connected,
contradicting maximality of both X}, and X}, with respect to connectedness.
Thus all of the connected components are mutually disjoint. This proves that
the set of connected components forms a partition of X.

Let X}, be one of the connected components of X and consider its closure,
Xi. Suppose U,V is a separation of X}, (we'll arrive at a contradiction). Since
X is connected and X C X}, then either X, CU or X;, C V. Without
loss of generality, we may assume that X, C U. It follows that X, C U. Now
since U = U (see Exercise 2), this implies V' = ), a contradiction. Thus Xk
is connected, but since X}, is mazimally connected, it must be that X = X,
proving that X}, is closed. O
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When there are only finitely many connected components in a space X, then
each is also open; however, this may no longer hold when there are infinitely
many components, as the next example illustrates.

O
i Example 78. Describe the connected components of Q. Show that none
of the components is open in Q.

Solution: Let C C Q be a connected subset, and suppose z; < zo are
elements of C. It is well known that between any two rational numbers there
exists an irrational number z € R. Let U = (~00,2) C R, and V = (z,00) C R.
In the subspace topology on Q C R, the sets U = U N Qand V = Vn Q are
open. We have z; € U and 23 € V (so that UNC and V N C are nonempty ),
and UNV = 0, so U,V is a separation of C. This implies there can be no
two distinct points in C'; hence every connected component of Q is a singleton
set {z} where z € Q. Now in Q, points are not open, as no finite-length open
interval (a,b) contains just a single rational number. 0

C

Theorem 4.4.10. If f: X — Y is a continuous function of topological
spaces, and if X is connected, then so is the image of f, f[X]C Y.

Proof. Recall that the restriction f: X — f[X ] is also continuous, so we may
assume Y = f[X]. Suppose to the contrary that V is disconnected, and let U, V
be a separation of Y. Since U,V are both open, and since [ is continuous, we
have f~{U] and f~'[V], both open, nonempty, and disjoint; that is, these two
sets form a separation of X . This contradicts the hypothesis that X is connected
and implies that ¥ must be connected. O

Local Properties

A space may fail to be compact and yet a point in that space may have a
compact neighborhood. For example, Euclidean space R" (for a fixed n € N) is
ot compact, but every point x € R™ lies within a compact disk neighborhood.
Similarly, a space may fail to be connected (or arc-connected) and yet a point in
that space may have a connected (or arc-connected) neighborhood. These local
properties are especially useful in reducing certain arguments on more general
spaces to arguments about a compact or connected subspace.

Definition 4.4.11. Let X be a topological space and z € X. X is called [
locally compact, locally connected, or locally arc-connected at
z if = has, respectively, a compact, connected, or arc-connected neigh-
borhood. If every € X has this property, then the whole space X is
said to be locally compact, locally connected, or locally arc-connected, [
respectively.
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Every compact spaceQis automatically locally compact, and similarly for
connected and arc-connected spaces. Every discrete space X is locally compact,
connected, and arc-connected even though X fails to be compact if it has in-
finitely many points, and fails to be connected or arc-connected if it has more
than one point.

O
l Example 79. Q is neither locally compact, locally connected, nor locally
arc-connected at any point z. A neighborhood N of a point € Q must contain
some open rational interval, J = (a,b) N Q. We may take a,b to be irrational
(why?), so then J = J with respect to the subspace topology on Q. If N were
compact, then the closed set J € N would also be compact, but if J is compact,
so is i[J] C R, where ¢ : Q — R is the inclusion map. But as a subset of R, the
set 4[J] = J is not closed, and hence not compact.
J is also disconnected, as Example 78 shows, and a separation of J would
imply a separation of IV as well. Finally, since N is not connected, it cannot be
arc-connected. ;

o

Topological Invariants

Theorem 4.4.5 implies that compactness is a topological invariant, and Theo-
rem 4.4.10 does the same for connectedness. In fact, we have defined quite a
few properties of spaces that are invariants, which we state presently without
further proof.

Proposition 4.4.12. The properties of compactness, limit point com-
pactness, sequential compactness, connectedness, arc-connectedness, and
local versions of these properties are all topological invariants.

Exercises

1. Suppose X has the cofinite topology, as defined in Example 66. Prove that
every nonempty subset 4 C X is compact, and if X is infinite, then 4 is
also connected.

2. Let X have a separation U, V. Prove that both U and V are closed sets.
3. Prove Theorem 4.4.3.
4. Consider the space X = N x {0, 1} as defined in Example 77.

(a) Show that X is not Hausdorff.

(b) List a few open sets in X. Explain why we might say that X is a
“discrete” set of “indiscrete” subsets.

{c) Show that X is not compact.
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5. Suppose that C; and Cy are compact subspaces of X.

(a) Prove that C; U Cy is compact.
(b) Prove that if X is Hausdorff, then Cy N Cs is compact.

(c) Consider the space X = Z U {a,b}, whose topology is generated by
the base Z = {{n} | n € Z} U {U,,Up}, where U, = Z U {a} and
Up = Z U {b}. Show that both U, and U, are compact, but U, N U, is
not.

6. Prove that both the torus T and Klein bottle K (§4.3, Exercise 10) are
connected and compact. (Hint: Use the fact that each of these spaces is a
quotient of the unit square.)

7. Let n > 1. Prove that projective space P™ (as defined in §4.3, Exercise 11)
is connected and compact.

8. Suppose X is any point-set. Determine under what conditions X must be
compact, connected, locally compact, or locally connected if X has:

(a) the indiscrete topology 7.
(b) the discrete topology Jp.

4.5 Product and Function Spaces

In this section, we present a way to define a topology on the product of two
topological spaces. Then we explore spaces in which the “points” are functions.
Far from being useless oddities, the so-called function spaces play a major role
in the theory of partial differential equations, and hence are essential in under-
standing many complex phenomena in physics.

Product Topology

Recall that the Cartesian product of two sets, X and Y, is the set of all ordered
pairs,

XxY={(z,y)|zeX,yeY}.
What if X and Y are topological spaces? How could one define the open sets
of X x Y7 Perhaps the most obvious way to start is to insist that if U C X is
open, and V C Y is open, then U x V C X x Y should also be open.

Definition 4.5.1. If (X, Ix) and (Y, %) are topological spaces, then
the product X x Y may be given the box product topology Jox,
which has as its base the set of all products of open sets from X and Y-

Bxxy =Ixx F ={UxV|Ue Ix,VeKk} -
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It must be proven that thg set Bxxy in Definition 4.5.1 does indeed define
a base for a topology. Condition 1 of Definition 4.1.8 is trivially satisfied, since
X XY € By «y. Now suppose By, By € Bxxy and ByNBy # . Let z € B1NBs.
By definition of the box product topology, By = Uy x V1 and By = Us x V3
for open sets Uy, Us € X and Vy,Va € Y. Let U = Uy NUs (open in X), and
V = Vi NV, (open in Y). Note that z = (z,y) for some z € X and y € Y.
Moreover, since z € By, we have x € Uy and y € V;. Similarly, since z € By,
we have z € Uz and y € Vo. Thus z = (z,y) € U x V C B; N By, satisfying
condition 2 of Definition 4.1.8.

Now that we have shown that the box product topology is well defined, let’s
see an example of what it looks like.
O

I,, Example 80. Consider two open intervals of R*, X = (a,b) and ¥ =
(c,d) (where a < b and ¢ < d). The product X x Y is a rectangular region in
R? not including the boundary edges. A basic open set in X X Y containing a
point (z,y) is shown by the dotted box in the diagram below; this box is the
Cartesian product (z —d,z +8) x (y — €,y + €) for small positive ¢ and e. (This
is why the topology is called the boz product topology.)

The box product topology on X X Y is equivalent to the subspace topology
inherited from R?, because within each “box” neighborhood (z -8,z +9) X (y —
€,1 + €), there is an open ball (just take the radius to be the minimum of € and
§), and within each open ball B.((z,y)), there is a small box neighborhogd (try
to define the dimensions of an appropriate box in terms of ¢). ;

©

. O
I Example 81. Describe S! x1 as a topological space with the box product
topolegy.

Solution: A good model for S! is the unit circle, {(x,y) € R? | 22 +y% = 1},
while I = [0, 1] is the unit closed interval in R!. By embedding our picture in
R?, we find that S* x I = {(z,9,2) | 22 +y? =1, 0 < 2 < 1} is a cylinder. The
bottom edge, S* x {0}, and top edge, S* x {1}, are both copies of the circle;
indeed, for any z € I, the set S! x {z} is a circle. On the other hand, for every
point (z,y) € S, there is a copy of the unit segment, {(z,y)} x L In this way,
the cylinder is simultaneously a segment of circles and a circle of segments.
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Basic open subsets in S' x I are of the form W = C x (a, b), where C is an
open arc of the circle, and (a,b) € [0,1] is an open interval. It can be proven
that this model of cylinder is homeomorphic to the quotient space 12/{(0,y) ~
(1,9), y € I} given in Example 74(a).

St xI g
St x {1}
i
' y
(o)« S )

{

Given a product of sets, X x Y, there are two important set functions called
the projection maps, which send an ordered pair (z,y) € X x Y to each of its
components.

o2

X xY

N ” px(@y) = @
27N wlew) - v

X Y

The projection maps are continuous in the box topology (Exercise 3). Sup-
pose now that (X1, 71), (X2, %), ..., (Xm, Im) are topological spaces. The box
topology on [];-, X has as its base the product of the topologies, [T, %,
and there are associated projection maps,

m
pj HXk—)Xj, for each j € {1,2,...,m}

k=1

pj(aul,mg,...,:cj,...,:vm)::cj.

In fact, the box topology is the coarsest topology on H;":l X3, such that each
projection map p; is continuous. Unfortunately, this statement no longer holds
true in the box topology on arbitrary products, [Irer Xk, in which the index-
ing set 7 is infinite. There is another way to define a product topology, which
turns out to have more useful properties than the box topology. Because of its
importance, it is simply called the product topology.
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Definition 4.5.2. Let Z be an indexing set, and let (X}, %) be a|]
topological space for each k& € Z. The product topology Jped on |
X =Tl <7 Xk has as its base the set of all products of the form [] vez Uk 5}
such that

e Up€ 9, VkeI, and

e U, = X}, for all but finitely many k € Z.

The product topology is equivalent to the box product topology when 7 is
finite; however, only the product topology has the property that it is the coarsest
topology on an arbitrary product such that every projection map is continuous.

It is often useful to regard the component spaces X and Y as somehow
existing as subspaces within the product X x Y, just as the coordinate axes
are copies of R! that exist within the Euclidean plane R? = R x R!, but often
there is no natural choice for the identification of X or Y within the product.
Instead, if we choose ahead of time specific points 2y € X and yg € Y, then we
may define the injection maps, ix and ¢y according to the diagram below.

X Y

N2 e

XxY iv(y)

I

(SB, '!/0)
(zo,y)

I

If X = [[jez X is an arbitrary product with either the box or product
topology, then each injection map, iy : X3 — X, is continuous, and there is a
homeomorphism, Xy = i5[X;] € X. For example, in the case of two spaces, X
and YV, we have X 8 X x {yo} C X xY,and Y = {zo} x Y C X x Y.

Topological Properties of Products

Products preserve some important properties.

Theorem 4.5.3. If X and Y are both connected, then so is X x Y.

Proof. Suppose there is a separation U, V for the product X xY". Let (zg,y0) € U
{which is possible since U is supposed to be nonempty). Then the {z¢} x YV
must also be in U since ¥ &~ {xp} x ¥ is assumed to be connected. Now for
each y € Y, we have (xq,y) € U, but by connectedness of X, this implies the
entire set X x {y} is also in U. But this means that every point (z,y) € X x Y
is in U, leaving V completely empty. Thus U, V could not be a separation in
the first place, and X x Y must be connected. O
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Theorem 4.5.4. If X and Y are both compact, then so is X x Y.

Proof. Suppose % is an open cover of X x Y. Without loss of generality, we
may assume every open set in % is a basic open set U x V where U € Jx and
V € % (why?). Let 29 € X be arbitrary, and let % C % be a set of open sets
that cover {zo} x Y € X x Y and that contain no set disjoint from {zo} x Y.
Now % is an open cover of the compact set {xg} X Y = Y, so there is a finite
subcover, % C %,. Label the sets in this subcover:

Uy = {U1 x V1,Us x Va, ..., Up X Vi }.

Now consider the set Wy = ﬂz;l Up. Since each Uy, is an open set in X, and
since there are only finitely many of them, Wy € X is an open set containing
the point zg (see Figure 4.12).

Claim: % covers Wy x Y. Proof of claim: Let (z,y) € Wo XY be arbitrary.
The point (zg,y) € {70} x Y belongs to Uy x Vi, € % for some k € {1,2,...m},
5o y € V. On the other hand, since Wy C X, for every &, we also have o € Uy;
hence (z,y) € Uy X V.

Since zo € X was chosen arbitrarily, every x € X is contained in an open
neighborhood W C X such that the strip W x Y can be covered by finitely
many sets chosen from % . By compactness of X, only finitely many such sets
W cover all of X, say, Wi, Wa, ..., W,. Clearly X x Y is covered by the (finitely
many) strips, Wi x Y, Wa xY,..., W, x Y, each of which can in turn be covered
by finitely many open sets chosen {rom the original cover % . Thus a finite open
subcover for X x Y can be constructed. O

Y

- {zo} xY

Figure 4.12: X x Y. %, (dashed boxes) covers the strip Wo x Y.

MProof adapted from Munkres [Mun00].
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? O
I Example 82. The n-fold product of the unit interval, I" =IxIx .. -x1I

(also called an n-dimensional hypercube), is compact since I is compact.

o

O

I Example 83. Recall the Heine-Borel Theorem (Theorem 2.3.5 from §2.3).

We showed that every compact subset of R™ is both closed and bounded and

claimed that the converse also holds. However, we only proved that closed

bounded intervals in R! are compact. Now that we have more tools at our
disposal, it will be relatively easy to extend the proof.

If a subset X C R™ is closed and bounded (with respect to the
Euclidean metric), then X is compact.

Proof. Since X is bounded, there exists r € R* such that X C B,(0). The
coordinates of any point x = (z1,z3, ..., Z,) in the sphere of radius r must nec-
essarily satisfy —r < z; < r; therefore B,.(0) C [—r,7]™. Now [—r, r]"™ is compact
because the closed bounded interval [—r,7] C R! is compact. By Theorem 4.4.4,
since X is a closed subspace of a compact space [—r,7|", it follows that X is
compact. O

i

O

In fact, an arbitrary product of compact spaces is compact — a result known
as the Tychonoff Theorem - so long as the topology is the product topology
given in Definition 4.5.2. However, the proof of this important theorem is beyond
the scope of this textbook.

The following theorem shows that the product of subspaces is equivalent to
a subspace of the product. The proof of this key result boils down to an easy
exercise in set theory.

Theorem 4.5.5. If AC X and B CY are subspaces, then the product
topology on A x B is the same as the subspace topology that A x B
inherits from X x Y.

Proof. Let Ix and Fy be the topologies on X and Y, respectively. The subspace
topologies on A and B are, respectively, Ix|a = {UNA | U € Jx} and
Hlp={VNB|V e F}. So the product topology on A x B is generated by

y}(|Any[BI{(UﬂA)X(VﬂB)iUEyX andVEﬂy}. (4.4)

On the other hand, (UNA)x (VNB) = (UxV)N(Ax B) (see §A.1, Exercise 14),
and so {4.4) also constitutes a base for the subspace topology on Ax B C X x Y

93X><Y|A><B ={(U_><V)Q(A><B) ‘ Ue I¢yandV e yy}
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Function Spaces

What does it mean for a function to be “close” to another function? In calculus
and analysis, we learn that certain kinds of functions can be approximated
by polynomials ( Taylor polynomials), sums of trigonometric functions (Fourier
approzimation), and so on. What we really mean here is that there is some
topology & defined on a set of functions F, and under certain circumstances,
a sequence of functions (f,)nen in F may converge to another function f € F
with respect to that topology & .

Certain function spaces may be identified with set-theoretic products, and
vice versa. Suppose F is the set of all functions whose domain is X and codomain
Y (with no requirement for continuity). There is a bijection F — Y, where
Y X is the product of Y with itself over the indexing set X.

F={f:X-Y} — Y*
f = (f(x))a:EX

0O

1 Example 84. Fix n > N. Euclidean space R™ can be identified with the

n-fold product of R with itself or, in other words, with the product R{%:2--n},
This in turn can be identified with the set of all functions,

z:{L,2,...,n} = R.

Given any such function z, the n outputs are simply the n components of a
vector x € R™.

z = (z(1),z(2),...,z(n)) = (1,22, ..., Tn)

The space R™® = RY may be regarded as the space of functions N — R, for
example, sequences of real numbers (zy)ren. ;

o

With this identitification, we may give F = {f : X = Y} =~ YX the
product topology, giving JF the so-called point-wise convergence topology.
The reason.for this terminology is that a sequence (fx)ren of functions would
converge in Y if and only if for every z € X, the sequence (fx(2))ren converges
in Y. However, there are many different ways to define a topology on a function
space.

Often a function space F comes equipped with a norm or metric, as discussed
in §2.5. Thus we can define the L? spaces, for example. More generally, if there
is a topology on a set of functions F such that addition and multiplication by
scalars are both continuous operations, then we call 7 a topological vector
space. Unfortunately, these topics take us too far afield, and the interested
reader is encouraged to explore the vast field of functional analysis.
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Exercises

1.

Find an explicit homeomorphism I? — D;(0) (the closed unit disk cen-
tered at the origin).

- We often use the notation D™ for the closed unit disk D;(0) C R™. Prove

that D™ ~ I". (Hint: Consider a map f : I" — D" that scales the distance
of points from the origin so that the boundary 81" gets mapped onto the
boundary sphere S*~1 of D7.)15

. Prove that the projection maps px : X x ¥ — X and Py : X XY =Y

are continuous in the box topology.

- Describe the product §' x S§*. It may help to use S! =1/ ~ , where 0 ~ 1.

. Prove that a product X = H;::l X} is connected if and only if each space

X}, 1s connected.

. Consider spaces X and Y with chosen points zg € X and Y Y. Let py :

XXY — X andpy : X xY — Y be the projection maps, and let iy : X —
XxY and iy : Y — X XY be the injection maps defined by i y () = (z,90)
and iy (y) = (zo,y), respectively. Describe the compositions Px ©ix,
Py © iy, Px Oiy, and Py Oix.

Let px, and ix be as in Exercise 6. Show that iy o px is neither surjective
nor injective unless ¥ = {yo}.

. Let B = B.(x) C R? Describe the space B x I as a subset of R3. Note

that B x I is an example of a tubular neighborhood of I embedded into
R3. Describe a tubular neighborhood of the circle S* embedded into R3.

4.6

*The Infinitude of the Primes

As we may have learned in elementary school, a prime number is any whole
number that has exactly two distinct divisors, itself and 1. The first few such
numbers are 2,3,5,7,11,13,17,... (note that 1 is not considered prime because
1 has only one divisor). How many primes are there? It’s fairly easy to prove
there must be infinitely many of them ~ in fact, you may find six different proofs
in Proofs from the Book [AZ10)].

Theorem 4.6.1. The set P of prime numbers is infinite.

15You might think of this as “inflating” the hypercube into the shape of a hypersphere.
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Euclid’s Proof

Euclid (~300 BC), who is regarded as the father of geometry, did not rigorously
prove the infinitude of the primes. Euclid 1X:20 simply proves that there are
more than three primes, but it is clear what was intended.

Proof. Let @ = {p1,p2,...,p,} C P be any finite set of primes. Let n be a
whole number such that every p; is a divisor of n; for instance, n could be the
product of all elements of . Consider the whole number n + 1, and suppose
there is a prime p; € Q such that pi s a divisor of n 4+ 1. Now since p; divides
both n and n + 1, it must also divide 1. This is a contradiction, since the only
divisor of 1 is 1 ¢ Q.

By the Fundamental Theorem of Arithmetic (Buclid VIII:31), n + 1 must
have at least one prime divisor, but we have just shown that no prime in Q is
a divisor of n + 1. Thus any finite set of primes fails to contain all of the prime
numbers, and so the set of primes P must be infinite. O

Furstenberg’s Proof

Hillel (Harry) Furstenberg (b. 1935) found a curious topology on the set of
integers Z that leads to a topological proof of the infinitude of the primes. The
arguments here are also interesting for their applications in number theory.

As in Example 149, we define certain sets related to multiples and arithmetic
sequences. For @ € Z, b € N, define the set Nop ={a+nb|ne Z}. Define a
topology & on Z with base & = {Nap | a € Z,b € N}. Before we proceed, it is
important to verify that % does indeed satisfy Definition 4.1.8.

1. For each a € Z and for any choice of b > 0, we have q € Ngp. Thus &
covers Z.

2. Let Ny, N, q € % such that Nopy N Neyg # 0, and let z € Nop N Neg.

Claim: z € Nepa C Ny N Ng q. The first part of the claim is easy to show;
since x = x + 0(bd), we have z € Ny pa. The second part of the claim is
a set inclusion. Let y € N, 44 be arbitrary. Then y = x + k(bd) for some
keZ. Sincez € Nab, we may write £ = a+ nb for some n € 7. Similarly,
T = ¢+ md for some m € Z. Now we can rewrite y in two ways.

y = :c+k(bd):a+7zb+kbd:a+(n+kd)b (4.5)
Y T+ k(bd) = ¢+ md + kbd = ¢ + (m+kb)d (4.6)

Equation (4.5) demonstrates y € Nap (since n+kd € Z), and (4.6) demon-
strates y € N, g4 (since m + kb € Z). Thus y € Nop N Ne,q which proves
the claim Nz,bd C Na,b N Nc,d-

Thus we know that % generates a topology on Z, but what does this topology
look like? Intuitively, a nonempty subset U of Z is considered open in 7 if every
element is part of a complete arithmetic sequence contained in U. In fact, every



166 . CHAPTER 4. ABSTRACT POINT-SET TOPOLOGY

“»
nonempty open. set must be infinite, because arithmetic sequences are infinite.
Each N, ; is open (being a base set), but what may be surprising is that each
Ng p is also closed. You will be asked to prove this in the exercises.

Lemma 4.6.2. Fach set Ngp is closed in 7.

Now let’s prove (again) that there are infinitely many prime numbers.
Proof. Let P be the set of all prime numbers. For every n > 1, there is at
least one prime p € P such that p is a divisor of n (Fundamental Theorem of

Arithmetic). For this choice of p, we have n € Np,. Note that —n € Ny, as
well. Clearly 0 € Ng p, but &1 ¢ Ng, for any prime p. Thus we have:

Z\{-1,1} = | Nop. (4.7)
peEP
By DeMorgan’s Law for arbitrary unions, (4.7) may be written:
{-1,1} = ﬂ (Z\ Nop) . (4.8)
peP

Each Ny, is closed, by Lemma 4.6.2, so each complement Z\ Ny, is open. Now,
if P were finite, then the (finite) intersection in (4.8) would be an open set,
implying that {—1,1} is open. This contradicts the fact that every nontrivial
open set in the topology 7 is infinite. Thus P cannot be finite. 1

Exercises

1. Prove that N, ; is closed in Furstenberg’s topology 7. (Hint: Express Ny p
as a complement of a union of open sets.)

2. Show that {0} is a closed set in the topology .

3. Show that all points are closed in . In other words, for every z € Z, the
set {z} is closed.

4. Show that every finite subset of Z is closed in 7. (Hint: See Exercise 3.)

Supplemental Reading

e - Aigner and Ziegler [AZ10], Chapter 1, “Six Proofs of the Infinity of Primes,”
which inspired §4.6.

e Munkres [Mun00], Chapters 2-3, form the core of elementary point-set
topology. Further important topics that fall outside the scope of this text-
book are found in Munkres, Chapters 4-8.

e Steen and Seebach [SS95] provide an encyclopedia of topological spaces
that display certain properties and not others.



Chapter 5

Surfaces

On the surface of the Earth, there are two degrees of freedom. Simply fix a
direction to face; the line forward and backward relative to you is one degree of
freedom, while the line left and right through you determines another. Ignoring
the scenery, buildings, etc., there is no topological difference between the patch
of Earth you are standing on and the one near me; the Earth’s surface always
looks the same locally (see Figure 5.1). In fact, if we did not realize the Earth
is a sphere, we could mistake any particular patch of land or sea as part of a
plane,! or a cylinder, or even a torus. This property of indistinguishability is
key in defining what we mean by a surface. In this chapter we define surfaces;
introduce methods for combining, dissecting, and analyzing surfaces; and then
prove half of the important theorem that classifies all compact surfaces. Near the
end of the chapter we explore vector fields on surfaces other than the familiar
plane.

Figure 5.1: There are two degrees of freedom at any point on the surface of the
Farth.

1 As early as the sixth century BC, Pythagoras postulated that the Earth is a sphere, though
his reasons were more philosophical than empirical. In the fourth century BC, Eratosthenes
computed the circumference of the Earth using the observation that shadows were cast at
different angles in two distant places at the same time. Eratosthenes’s estimate was amazingly
accurate.

167
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5.1 Surfaces and Surfaces-with-Boundary

Let’s begin with a formal definition of surface. We assume that our surfaces are
connected and have no boundary edge.

Definition 5.1.1. A surface is a connected Hausdorff space S such [¢
that for each z € 9, there is an open set U C § with z € U, such that f
U =~ B1(0) C R?, |

An open set U = B;(0) as in Definition 5.1.1 is called a disk neighborhood
or patch, so we may think of a surface S as a patchwork of overlapping open
disks. In this chapter we primarily work with compact surfaces. Recall from §4.4
that a compact space is one in which every open cover has a finite subcover.
Thus, for a compact surface, it is always possible to fulfill Definition 5.1.1 with
a finite collection of patches. Moreover, surfaces that have punctures or open
edges, as illustrated in Figure 5.2, are not compact. On the other hand, there is
no requirement for “smoothness” — a surface may have corners or sharp edges,
as in the surface of a cube.

N
ST\ {N}

Figure 5.2: The punctured sphere, S? \ {N}, and open disk are noncompact
surfaces.

O
1 Example 85. Examples of compact surfaces include the sphere S?, the
torus T, and Klein bottle K, among many others. Note that K cannot be re-
alized in three-dimensional space without self-intersections (see, e.g., a typical
representation of K in Figure 1.3). A noncompact surface may extend infinitely,
such as the Euclidean plane R?, or the infinite cylinder, S! x R, or such a surface
may have a puncture and/or open boundary edge, as in the two spaces shown
in Figure 5.2.
The following examples are not surfaces at all, according to the definition
(see Figure 5.3).

e The circle S'. No open set of S' homeomorphic to an open disk. Indeed,
we may say S' is one dimensional, whereas surfaces are, by definition,
two dimensional. The higher-dimensional spheres S, §?, etc., are also not
surfaces.
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e The closed unit disk D? = D;(0) C R?. D? is not a surface because there
are boundary points in D? that cannot be surrounded by an open set U
homeomorphic to an open disk.

e A pair of intersecting planes. Suppose z is any point on the intersection
line. Any open set U containing x must contain points that are on both
planes, which implies that U is not homeomorphic to an open disk.

Figure 5.3: The circle, closed disk, and a pair of intersecting planes. None of
these spaces is a surface according to Definition 5.1.1.

2
o
Consider two related spaces: the open unit disk, U = B1(0) = {z € R? |
d(z,0) < 1}, and the closed unit disk, D?. According to Definition 5.1.1, U is
a noncompact surface, while D? is a compact set that is technically not a sur-
face. However, most points of D? do fit the conditions of the definition. Only
those points on the boundary edge fail to meet the requirement of belonging to
an open set homeomorphic to the open disk; instead, a typical open set con-
taining the boundary point is homeomorphic to the half-disk V = {(z,y) €
R? | d((z,),0) < 1, y > 0}, as illustrated in Figure 5.4.

Figure 5.4: An open neighborhood U 5 z, for 2 on the boundary of the closed
disk, is homeomorphic to a half-disk V.

Definition 5.1.2. A surface-with-boundary is a connected Haus-
dorff topological space S such that for each x € S, there is an open set |
U C S with z € U, such that either: '

e U=~ B1(0) CR? or
o UnV ={(z,9) € R? | d((z,y),0) < 1, y > 0}.
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The terminology surface-with-boundary is an unfortunate misnomer, as these
spaces are not actually surfaces according to the strict definition, unless the
boundary is empty. In the literature, the term is usually surface with boundary
(with no hyphens). While it is important to conform to the established termi-
nology, I compromise in this textbook, erring on the side of clarity, by always
writing surface-with-boundary (with hyphens).

0
l Example 86. The following are examples of surfaces-with-boundary
that are not surfaces.

e The closed cylinder, S! x I. The boundary consists of two disjoint circles.

e The Mobius strip. The boundary consists of only one circle (see Fig-
ure 4.8).

e Suppose S is a surface and U is any open disk neighborhood of a point
z € 5. Then S\ U is a surface-with-boundary.

o {

Throughout the remainder of the text, we use the notation S, to denote the
collection of all compact connected surfaces and surfaces-with-boundary.

Connected Sum Construction

Surfaces or surfaces-with-boundary may be combined by a process called con-
nected sum. Intuitively, the construction is simple: remove an open disk from
each of the two spaces, resulting in two surfaces with boundary; then glue the
two pieces together along the boundary. A precise definition of this construc-
tion is tricky, as is the proof that the construction does not depend on any of
the choices made along the way. (Which open disks? In what way should the
boundaries be identified?) The fact that the connected sum construction is well
defined for all compact surfaces is beyond the scope of this text,? and we shall
take it for granted.

Definition 5.1.3. Suppose 4,B € S,.. Choose U; C A and U, C B
open sets, each homeomorphic to an open disk, and let C; and Cy be
the boundary circles of Uy and Us, respectively. Let f: C; — Cs be a
homeomorphism. The connected sum of A and B (with respect to Uy,
U, and f) is the quotient space,

A#B = ((A\U1)U(B\ 1))/ ~,

where z ~ y if and only if z € Cy, y € Cy, and y = f(z).

2See Proposition 2.6.1 of Bloch [Blo97].
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The connected sum operation is commutative and associative, in the sense
that the resulting spaces are homeomorphic. That is:
o A#B ~ B#A, VA BeS,.

o (A#£B)#C ~ A#(B#C), VA,B,C€S..

O

1 Example 87. Let’s see what T#T looks like. As Figure 5.5 illustrates,
the result is a two-holed torus, 2T.

o g

T
1 Us

\ 2T
- 0
t 1
Cl CQ ClNC2

Figure 5.5: T#T = 2T.

Definition 5.1.4. The n-holed torus, nT, is the connected sum of n
tori. In general, if S is any surface, then nS is the connected sum of n

copies of S.

See Figure 5.6 for illustrations of the n-holed torus.

1 Example 88. Describe each of the following:
(a) T#S? (b) 48?2 (c) 3T#2T
Solution:

(a) T#S? =~ T, as illustrated below.

S? :

T
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Figure 5.6: Left, the two-holed torus, 2T. Right, the n-holed torus, nT. Images
courtesy of Wikimedia Commons (modified).

(b) Just as in example (a), it should be clear that S?#S? ~ S2. Then 4S? =
([S?487) #5%) #5? ~ (SPHS?) #S? ~ S74S” ~ §2)
() 3T#2T = (TATHT)#(THT) ~ 5T.

o 7

O

1 Example 89. Suppose P is a polyhedron in R3. Let P’ be the union of
the edges of P (think of this as a “wireframe”). Now suppose the edges in P’ are
thickened a bit, and let S be the surface of the “thickened wireframe.” (That is,
S is the boundary of a tubular neighborhood of P’; see §4.5, Exercise 8.) It can be
shown that S is always homeomorphic to a connected sum of tori (nT for some
n € N). Consider the tetrahedron 7. Its thickened wireframe can be deformed
to 3T, as illustrated in Figure 5.7. First flatten the wireframe and then arrange
the holes. For what value of n is the surface in Figure 5.8 homeomorphic to nT?

Figure 5.7: The thickened wireframe of a tetrahedron is homeomorphic to 3T.

{

In Example 88, we have shown that 3T#2T =~ 5T. It’s not too hard to see
that mT#nT ~ (m + n)T in general. It should also be clear that the sphere §°
acts as an identity for the connected sum operation. That is,

A#S? = SPH#A~ A, VYA BEeS..
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Figure 5.8: The thickened frame of a polyhedron (drawn by Leonardo da Vinci).
The surface is homeomorphic to a connected sum of tori. Image courtesy of
Wikimedia Commons.

Together with associativity, the existence of an identity makes S, into a monoid
under the connected sum operation. We shall have more to say about this in
the next section.

Manifolds

Surfaces are essentially two-dimensional spaces, but Definition 5.1.1 can easily
be extended to arbitrary dimensions. We call such spaces manifolds.

Definition 5.1.5. Let n € N. A manifold is a connected Hausdorff
space M such that for each x € M, there is an open set U C M with |

z € U, such that U ~ B;(0) € R™. The manifold is said to be n—
dimensional, or M is called an n-manifold. |

There is an analogous definition of manifold-with-boundary (try to for-
mulate a reasonable definition yourself, extending Definition 5.1.2).

]
I Example 90. Because manifolds (by our definition) must be connected,

the only zero-dimensional manifold is a single point. A one-dimensional manifold
must be locally homeomorphic to an open interval. The whole real line R and the
open interval (a,b) are examples of noncompact 1-manifolds. A closed interval

3Perhaps the better term here would be topological manifolds. In the literature, much more
attention is paid to the more restrictive smooth or differentiable manifold theory, which falls
outside the scope of this text.
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la, b] is compact, but not a manifold; instead, [a, b] is a manifold-with-boundary.
The only compact 1-manifold (according to Definition 5.1.5) is the circle S?.

o

3
l Example 91. Let’s explore a few interesting manifolds and manifolds-
with-boundary.

e Recall that I" = IxIx...xI C R"™ is the product of the unit interval with
itself n times. This space is not a manifold because it has a boundary whose
points cannot be surrounded by an open ball contained in I*. However, this
space, which is called a hypercube, is a compact manifold-with-boundary.
It is interesting to ponder what a 4-cube (I*) might look like. This object
is called a tesseract,* and we might visualize it as a cube that has been
extended through a fourth dimension (see Figure 5.9). What might I° or
1% look like?

Figure 5.9: Just as a solid cube may be thought of as a square that has been
extended through a third dimension, the tesseract is a cube extended through
a fourth dimension.

e The open balls B (z) for € R™ and ¢ € RT are noncompact manifolds.
Their closures D¢(z) ~ D" are compact manifolds-with-boundary (but
not manifolds). Note that I" = D" via a deformation that “inflates” the
hypercube until all points on the boundary are the same distance from
the center (recall Exercise 2 from §4.5).

e The n-sphere S", or hypersphere, was introduced in Chapter 2 by way
of a particular representation of the space, as a unit sphere:

" = {z € R | d(2,0) = 1} = {(z1,. .., @as1) | 23 +---22,, =1},

There are many other useful representations of the n-sphere. It should
not be hard to see that for any given x € R™! and ¢ > 0, we have
9B (z) = D™ ! ~ S"; that is, the boundary of any open ball or closed

4The tesseract has fascinated many science fiction authors, making an appearance in Robert
Heinlein’s short story “And He Built a Crooked House” [Hei41l] and Madeleine L’Engle’s
popular children’s novel A Wrinkle in Time [L’E62].
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disk in R™*! is an n-sphere. Thus we also get S ~ dI"*! by way of the
homeomorphism I* ~ D™.

Now suppose H* and H~ C S™ are the “northern” and “southern” hemi-
spheres of the unit n-sphere, respectively. That is,

HY = {(z1,..,Tn41) |23+ 22, = L and 3,41 > 0}
H™ = {(371’---733n+1)1$%+---mi+1=1and:vn+1§0}.

The quotient space Ht/H ™ that collapses the entire southern hemisphere
to a single point is also homeomorphic to S* (and, by symmetry, H~/H* ~
S™ as well). In fact, if we let E = H* N H~, which is the equatorial sphere
§»—1 C S™, then we have

HY/E~H |E~S"

Example 22 (in Chapter 2) explains how S™ can also be regarded as R" U
{oo}, where oo is the point at infinity. Consider now a variation on this
idea. Suppose F : S*\ {N} — R™ is stereographic projection. The image
F[H™] of the southern hemisphere is a closed disk D™ C R", as shown
in Figure 5.10 (for the two-dimensional case). When all points on the
boundary of that disk are identified to a single point, the resulting quotient
space is again the n-sphere. That is,

D" /8D" ~ I" /O™ ~ S™.

Figure 5.10: Stereographic projection to R? sends the southern hemisphere of
$? to a disk in the plane.

e The n-torus T" is an n-dimensional manifold defined by T = 1"/ ~, in
which the equivalence relation is generated by identifying corresponding
points on opposite facets of the hypercube. That is, (z1,...,0,...,%5) ~
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(z1,...,1,...,2,), with the understanding that the 0 and 1 occur in the
same position and all other entries agree. For n = 1, this reduces to the
usual definition of S' = I/{0 ~ 1}, and for n = 2, this space is the familiar
torus, T? = T.

The “n” in T™ is a little misleading. The n-torus is not the product of n
copies of T. In fact, the n-torus may be expressed better by (S!)?, since
T™ is actually the product of n copies of S.

e Projective space P" is defined as a certain quotient space of R"*1\ {0}
as in §4.3, Examplé 76, and Exercise 11). In essence, every point on a
line through the origin (except the origin itself) gets identified to a single
point. But P” can also be defined by identifying all pairs of antipodal
points on S™; that is, points on the sphere that differ only by the scalar
multiple —1. This means that P™* ~ §"/(z ~ —z), and so representatives
for the equivalence classes may be taken just from the upper hemisphere,
H™* C S™. There are still antipodal identifications on the equator, leading
to another useful way to write projective space:

P*"~ HY/(x ~ —2) ~D"/(z ~ —z,Vz € OD™). (5.1)

Looking ahead to Figure 5.24, we can see how these identifications work
in P? = P, the projective plane. Figure 5.11 shows a representation of P3.

7
fe

The connected sum of manifolds may be defined in a manner similar to
that of Definition 5.1.3, with S serving as an identity for the connected sums
of n-manifolds. However, care must be taken for n > 3; the orientation of
each manifold must be considered in order to have a well-defined operation.
It would take us too far afield to explore manifolds further in this textbook.
The interested reader may consult more advanced texts, such as Introduction to
Topological Manifolds by John Marshall Lee [Lee00].

Exercises

1. Classify each of the following as surface, surface-with-boundary, or not a
surface. If the space is a surface-with-boundary, describe the boundary. In
each case, indicate whether the space is compact or not.

(a) Closed square, I2.

(b) Annulus, {(z,y) € R? |1 < 2%+ 4% < 2}.
(
d

(e) Finite open cylinder S* x (0, 1).

)
)
c) T\ {p}, where p € T is any single point.
) The union of the xy-plane, xz-plane, and yz-plane in R3.
)
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Figure 5.11: Three-dimensional projective space P2 may be defined as the solid
sphere D® with antipodal points on the surface identified. If you lived within a
small model of P3, then you could look down the street and see yourself rotated
by one half-turn. Image courtesy of Cyrus Rua — used by permission.

2. Consider the capital letters of the alphabet written in block form and
thickened to three-dimensional objects (as in Exercise 1 in §1.1). For each
letter, identify the value of n such that the letter is homeomorphic to nT.

3. For each of the five Platonic solids (Figure 1.11) P, find the value n such
that P’ = nT, where P’ is the thickened wireframe of P (see Example 89).
What about the object in Figure 5.87

4. Recall that the Jordan Curve Theorem (Theorem 2.4.8) states that a sim-
ple closed curve C separates the plane R? into two arc-connected com-
ponents. Argue, with the help of stereographic projection, that the same
happens on the surface of a sphere §?. Give an example of a simple closed
curve on the torus T that does not separate it.

5. Write a reasonable definition for manifold-with-boundary, analogous to
Definition 5.1.2.

6. Show that the connected sum of two connected surfaces is arc-connected
(therefore also connected).
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7. Show that the connected sum of two compact surfaces is compact. What
if one or both of the surfaces are noncompact?

8. Write each connected sum below as nT for an appropriate value of n. In
part (b), assume k € N,

(a) TH3SZHITHTS? (b) TH2THITH - #kT

9. Let S € S, be arbitrary. Describe S#D?.

5.2 Plane Models and Words

In this section we develop a powerful combinatorial tool that enables us to
work with surfaces in an easier way, eventually allowing us to classify compact
surfaces and to understand subtle structures in the surface. Let’s revisit the
torus, defined as a quotient space as in §4.3.

T= ]12/{(03:9/) ~ (Ly)’ (33,0) ~ (:C, 1)}

We represent T as a square together with the appropriate identifications along
the edges as shown in Figure 5.12, with the convention that edges labeled with
the same letter should be identified in the direction indicated by the arrowheads.

Figure 5.12: Plane model for the torus T and its realization. After the identi-
fcation, all four vertices are identified to a single point, P~ Q ~ R~ S.

This type of diagram — a polygon showing certain pairs of edges identified — is
called a plane model for the surface or surface-with-boundary, and it exhibits
the space as a quotient space of a closed disk (recall I? ~ D?). Any pair of edges
marked with the same letter correspond to a single segment or loop in the space
itself. Any segments without a label or with a unique label correspond to edges
in the space, and in that case, the space may be a surface-with-boundary, but
not a surface.
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For each plane model, there is a way to describe the model using a sequence
of letters, or a word. Simply pick a starting vertex; choose a direction, clockwise
or counterclockwise; then list the letters in order, indicating the direction of the
edge by placing an “exponent” —1 on the letter if the arrow is backward with
respect to the direction you chose. There are many different words for the same
plane model. For instance, there are eight equivalent words for the torus in
Figure 5.12:

aba™1b71, ba~ b 1a, a b lab, b~ taba™?,

bab~ ta7!, ab ta"tb, b~ ta ba, a”tbab™? .

O

I Example 92. Describe the topological spaces represented by their plane

models below, and find a word for the model. Of the vertices in the original
diagram, indicate which ones are identified in the resulting space.

p a @ p a Q p

bY Yo . W ¢
(@) g b) g ) a 0
Solution:

(a) Only the left and right sides get glued together. The top and bottom remain
as boundaries. This is a surface-with-boundary homeomorphic to the cylin-
der S x I. One word for the model is abch™!. The vertices are identified in
pairs: P~ Q and R~ S.

(b) Again the left and right sides are glued, but this time with a twist. The
result is a Mdbius strip, as shown in Figure 4.8. One word for the model is

abeb. The vertices are again identified in pairs, but in the opposite sense:
P~Rand @~ S.

(c) The opposite sides are identified much like the the two edges of a purse
when they get zippered together. This plane model defines the sphere §?,
with corresponding word aa™!. Points P and @ are not identified and may
be associated with the north and south pole of the sphere, respectively.

o i

Plane Models and Connected Sum

Suppose we have two plane models representing spaces A, B € Sc. A plane
model for A#B can be found by the following procedure:

1. Choose a vertex in the plane model for A, and draw a loop at A within
the model. Label the loop with a letter not already used in the models for
A or B, let’s say g. Do the same in the plane model for B, labeling the
loop with the same letter, g.
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2. Remove the region inside each loop. Then separate each loop at the vertex,
thereby creating plane models for A\ U; and B\ U, (where U; and Uj are
as in Definition 5.1.3). Now ¢ labels a new edge of each plane model.

3. Join together the two plane models along the edge ¢. This edge ¢ is now
interior to the plane model and so can be erased.

]

l Example 93. Find a plane model and corresponding word for 2T.
Solution: The steps are illustrated below. Caution: It is important to
give distinct labels to the edges of each space.

ay az

Y T Yoo o Y T Vb

a a2
ai [£5/]
Step 1 O
q
by (o0 b2 ( b,
q
‘@ as
b
Step 2 ay : o ba
q q
b] ai b2 a2
b] a9
ai
Step 3 ' = 2T

ay g b2

Beginning at the leftmost vertex and going clockwise, a word for 2T is:
arbrasbeay tby a7 byt (there are many other equivalent words). ‘

O

It is interesting to see how a given representation of a surface relates to the
plane model for the surface. For example, how does Figure 5.6 correspond to
the octagonal plane model for 2T found in Example 937 The key idea is to
find nonseparating loops — loops that do not divide the space into disconnected
pieces. Some spaces like the sphere have no nonseparating loops, while on the
torus T, one can find two loops that can be cut simultaneously and not separate
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the space (e.g., the loops a and b in Figure 5.12). It turns out that the n-holed
torus has a set of 2n simultaneously nonseparating loops.

*
l Example 94. By cutting along nonseparating loops, a3, az, b1, and bs,
Figure 5.13 illustrates how the standard embedding of 2T within R? corresponds
to its plane model. Keep in mind that the cuts are not actually changing the
topology of the surface because we still keep track of the identifications.

Figure 5.13: Cutting 2T along nonseparating loops to obtain the plane model.
First cut along a; and ay to create a tube with a pair of holes near the middle.
Then cut lengthwise along by and by to unwrap the tube, finally opening up the
figure into an octagon plane model for 2T.

Word Arithmetic

The construction given above for the connected sum of two plane models natu-
rally suggests an operation on words themselves. If abc...isa word for a space A
and zyz . .. is a word for B having different letters than the word for A, then the
concatenation abc. .. zyx ... is a word for A#B. Furthermore, there are certain
rules for rearranging words to make equivalent words (i.e., representing the same
space). We will use the notation = to indicate that two words are equivalent.

o For convenience, we often write aa as a® and a *a™! as a™2,

e The letters in words do not commute (abcd # bacd); however, cyclic
permutations are permissible. A cyclic permutation of a word is the
result of moving one letter from the start of the word to the end, or vice
versa. Thus

aba~ Y =ba b ta=a b tab = b taba L.

This move is equivalent to picking a different starting vertex, or rotating
the plane figure.
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e If a letter and its inverse appear adjacent to one another, then they cancel
each other out, ezcept in the case of the sphere S?, whose smallest word
has only two letters, aa™!: canceling out these two would result in an

empty word, which cannot be drawn as a plane model. For example,

abe™ Y dd Yea ! = abetea b = aba T

o If X is a word, the inverse word X ! is obtained by reversing the order
and inverting each letter. For example,

(abc™rd)™r =d b~ e,

This has the effect of choosing to read the labels in the opposite direction,
or flipping over the plane model, so the resulting space is not affected:
X 1=X.

o There is a split-and-rejoin operation, which is a useful tool in the clas-
sification of surfaces. Choose a location in the word in which to insert
a new edge and its inverse, then split the word between the new letter
and its inverse to obtain two words (which together still describe a single
space). Any equivalence operation mentioned above may then be applied
to each subword separately. Join the words again by concatenating at a
letter-inverse pair.

XY =Xq 'Y= Xq, q'vV

Ua, a 'V =Uaa V=0V

This operation corresponds to a cut in the plane model represented by
XY by a curve that separates all edges in X from those in Y.

l Example 95. The Klein bottle is defined as a quotient space by

K=1/{(z,0) ~ (z,1), (0,) ~ (1,1 = )}.

Draw a plane model representing K, and then show that the Klein bottle has a
plane model whose word has the form z2y2.

Solution: According to the definition of K, the top and bottom edges are
identified in the same direction; however, the sides are identified with a twist.
A word corresponding to this plane model is aba™1b. Consider the following
sequence of moves, along with their depictions in the plane model. In each
picture, we have circled the starting vertex to make it easier to identify the
corresponding word. The direction of the word is clockwise in each diagram.
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a a
> > )
aba™tb " ba~"1ba "
b b by b
“a “a
a
> 7
()

a

Note that in the fifth diagram above, the triangle ba~1c™! has been flipped to
create cab™!, while the word cba has been cyclically permuted to bac, allowing
the sides labeled b to be joined together with matching arrow directions. The
result is cab™tbac = caac = aacc = a?c?, having the desired form.

o {

Correspondence between Plane Models and Surfaces

Not every plane model diagram corresponds to an element of S.. For example, if
there are three or more edges labeled by the same letter, then no neighborhood
of any point on the common edge would be homeomorphic to a disk. Figure 5.14
illustrates this issue in a space called the dunce cap. Any neighborhood of the
point x fails to be homeomorphic to a disk; the neighborhood could be described
as a “disk with flap.”

Figure 5.14: The dunce cap.

On the other hand, it can be shown that any plane model diagram in which
no letter appears more than twice does correspond to a surface or a surface-with-
boundary. For simplicity, we will prove the result when it applies to a surface;
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the necessary modifications in the case of a surface-with-boundary should be
clear.

Theorem 5.2.1. Suppose X is a plane model diagram in which each
letter appears ezactly twice. Then X represents a compact surface.

Proof. We must show that each point of the plane model has an open neighbor-
hood U homeomorphic to an open disk. There are three cases to consider. It may
be helpful to refer to Figures 5.15 and 5.16. In what follows, when we say inte-
rior to X, we mean interior to the plane model diagram before identifications
are made along the boundary.

Case 1. Suppose z € X is in the interior of the plane model. Then an open
neighborhood U of z may be chosen small enough to lie entirely interior to X,
and U is clearly homeomorphic to an open disk.

Case II. Suppose z € X is on a boundary edge of the plane model, but not
at a vertex. Let the edge have label a. Then, by assumption, there is exactly one
other edge labeled a. Since those two edges are identified in X, a disk neighbor-
hood U surrounding z exists. In terms of the plane model, it is equivalent to
cut and paste a small portion of the model to show how U connects across the
edge a.

Case ITI. Suppose z € X is a vertex of the plane model. This is the trickiest
case because z may be identified to many other vertices on the plane model, and
we must build up the disk neighborhood from portions of the model surrounding
all vertices equivalent to z. A priori, we do not know which other vertices belong
to the equivalence class [z], but the procedure below locates them all.

First suppose that the word for X contains no adjacent inverse pair (i.e.,
...aa”t...or...a"ta...). If it does, then X can be simplified by zippering
along the inverse pair. For each edge e, let e~ be a chosen point on that edge
near its tail vertex, and let e be on the edge near its head vertex. We shall take a

Figure 5.15: Open disk neighborhoods around an interior point and edge point
of a plane model. The diagram on the right shows how a portion of the plane
model can be cut and pasted to form a disk neighborhood around z.
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Figure 5.16: Open disk neighborhood U around a vertex z, assembled from re-
gions surrounding all equivalent vertices. This example shows that z is enclosed
by a curve containing (in order) atb~e~a~ fTat.

tour of some (or all) of these points that eventually bounds a disk neighborhood
of z.

For the purpose of this algorithm, let z; = z, and let a; and as be the two
edges meeting at x1. If = is the tail of a4, select a; if x is the head of a,, select
af’. Do the same with respect to as. Then draw a small arc in X connecting the
selected points. Since edge labels must come in pairs, there must be another edge
labeled ag. Let x5 be the vertex near to the head (a3 ) or tail (a3) in the other
edge, matching the sign of ao that was near z;. We now know that zs ~ ;.
Now let as be the label of the other edge meeting 5. As before, select either az
or a;’ depending on how x5 meets ag, and draw a small arc in X connecting the
selected points. Continue this process until reaching an edge a, that matches
the first edge a1 and meets z in the same way (as head or tail). This completes
the tour around vertex z. By cutting and pasting all of these regions together
according to the identifications in X, the union of all open regions within the
arcs forms an open disk neighborhood of z. [

Unfortunately, what we haven’t proven yet is that every space X € S, has
a plane model. This depends on the existence of a triangulation for X, which
is not a trivial thing to prove in general. We define triangulation in the next
section.

Toward Triangulation

Does every surface and surface-with-boundary have a plane model? The answer
is yes, because every space X € S, has a triangulation. Let’s first define the
term. Let X € S.. A triangulation of X consists of:
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o A finite set V = {v1,va,..., v} of points v; € X, called the vertices
of X.

o A finite set E = {ei1,es,...,¢e¢}, called the edges of X, such that each
¢; C X is homeomorphic to I, and the endpoints of each e; are two distinct
points from V. If i # j, then either e; Ne; = () or there is a unique v € V
such that e; Ne; = v. Each edge e € E may be described by its endpoints:
e = [vo, v1].

o A finite set F = {f1, f2,. .., fm}, called the faces or triangles of X, such
that each f; C X is homeomorphic to a closed disk, and the boundary of
f; consists of three distinct edges from E. Furthermore, if f; N f; # 0 for
some i # j, then f; N f; is either a unique edge e € E or a unique vertex
v € V. Morever, the triangles cover X in the sense that X = J F'. Each
f € F may be described by its vertices: f = [vo, v1,v2]-

Note that by Definition 5.1.2, every edge can belong to at most two triangles.
If X is a surface (rather than surface-with-boundary), then every edge belongs
to ezactly two distinct triangles. Figure 5.17 illustrates a few ways of cutting up
the torus that are not triangulations, while Figure 5.18 shows a triangulation of
the torus. In fact, many different triangulations exist for a given X € S.

v v v U v
f
Y { A {
\ ¢ ( w = w
g
h
v - v v M v

Figure 5.17: Nontriangulations of the torus. Left, every edge has both endpoints
the same: e = [v,v]. Right, some pairs of triangles have intersections that are

not a single edge or a single vertex. For example, f Ng = [w,z] U {v}, and
fnh={zv}

Theorem 5.2.2. Fvery X € S has a triangulation.

The proof of Theorem 5.2.2 is not easy. First proved rigorously in 1925 by
Radé [Rad25],° the result relies on the Jordan Curve Theorem (Theorem 2.4.8),
among other things. As a consequence of the theorem, every S € S, has a plane

5See also Ahlfors and Sario [AS60], Thomassen [Tho92], and Doyle and Moran [DMG68].
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V1 V2 U3 U1
S
v Vg (g vy
\ Y
vs - o vs
U1 (P U3 U1

Figure 5.18: A triangulation of the torus using nine vertices. Can you find one
that uses fewer vertices?

model. Given a triangulation T for S, with triangles {¢1,ts,...,t,}, build the
plane model as follows.

e For each triangle ¢;, label its edges and indicate the orientation of each
edge so that shared edges receive the same label and orientation.

o Start with P = ¢;.

e Choose a triangle ¢5 that shares an edge with ¢; (which we may do since
S is assumed to be a connected surface), and join these triangles at the
common edge to form Py = t; U ty. Label the unjoined edges.

e Having constructed P, = t; Uta U - Uy, for k < n, there must be at
least one such triangle {543 that shares an edge with an existing triangle
in . Join t4; to Py along that edge, but do not join any other edge of
tr+1 to Pj. This ensures that Py remains homeomorphic to a disk.

o Repeat the procedure until all triangles are used. Labels on internal edges
should be discarded.

At each step k, the model Py is a disk with edge labels. Since each edge belongs
to at most two triangles, there are no more than two edges in Py, having the
same label. Thus P, is a plane model.

Because of the rather strict rules defining a triangulation, a compact surface
can be described unambiguously by a finite set of combinatorial data, namely,
the list of triangles given in terms of their vertices. In fact, we need only identify
each vertex by a number, so a triangle f = [v1,v2, v3] could be represented as
[1,2, 3]. This makes it convenient to work with triangulations in computer code,
for example.
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Exercises

1.

Describe the surface or surface-with-boundary represented by each plane
model and find a corresponding word, reducing as much as possible. Indi-
cate which vertices are identified in the space.

P P ¢ Q
b b
a b U R
Q C
(2 =0 @ rTes
a Q P w @
C w
a) (b U R
> u b
®) 7 R @ s

Find a plane model and corresponding word representing each of the fol-
lowing spaces.

(a) I2 (b) 3T (c) T#K (d) 2K

Redo Example 93, choosing a different vertex so that the resulting word
for 2T is alblaflbflagbgaglbgl.

. Write a word for the n-holed torus, nT.

. Use words to show that there is no Q € S, such that T#Q = S?. This

demonstrates that S, is not a group with respect to connected sum.

Describe the result when any surface S is joined to the square I? by con-
nected sum. How is the word of S#I? related to the word of S?

Tllustrate the algebraic operations of cyclic permutation and cancellation
in a series of plane model pictures.

Write a word for the plane model shown in Figure 5.16. Show that the
vertices fall into two distinct equivalence classes, [z] and [y]. It was shown
that z is enclosed by a curve labeled a*b~e~a™ fta™. Determine a curve
bounding a disk neighborhood of y in this figure.

. Suppose a compact surface has a triangulation with v vertices, e edges,

and f faces. Show that 3f = 2e. Show by example that 3f < 2e in a
compact surface-with-boundary.
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10. Show that any given plane model of a compact surface is equivalent to one
in which all of the vertices belong to the same equivalence class. (Hint:
Suppose there is a vertex y not in the same equivalence class as another
vertex z, and suppose ¥ is the head vertex of edge a. Perform the split-and-
rejoin operation suggested by the picture below. Why can we assume there
is another edge labeled a? How does this procedure eventually eliminate
all vertices in the equivalence class of y? What happens if there is only a
single vertex in the class of y7)

5.3 Orientability

Suppose an ant walks around on the surface of the sphere S2. We're talking about
a three-dimensional ant whose legs touch the outside surface of the sphere as
it walks. No matter where the ant walks or for how long it walks, it will never
appear on the “inside” of the sphere. To be a little more precise, suppose that
the ant is trailing paint as it walks — that way, we can clearly track its path.
No matter how long the ant walks, or what kind of meandering path it takes,
at the end of the journey we observe that there is paint only on one “side” of
the surface (what we call the outside). But now consider an ant walking around
on a Mobius strip M. Do this experiment for yourself: Use your pencil or pen
to mark your path as you “walk” around on M. If your path is long enough,
and stays in roughly the same direction, you will find that you can eventually
return to your starting position, but there are now markings on both “sides” of
M. This means that M really has only one side. The two spaces differ in that
S? is orientable while M is not.

In order to define orientability more precisely, let’s first talk about what an
orientation is. On the real number line R*, there are of course only two directions
of travel, in order of increasing real numbers (right), or decreasing real numbers
(left). Similarly, there are only two directions of travel on the circle S!. Let’s
assume S! is represented in the zy-plane as a unit circle. Then at any point of
the circle, you may go in order of either increasing angle measure with respect to
the z-axis (counterclockwise), or decreasing angle measure (clockwise). Notice
that in each case, we may record the direction using only one bit of information,
say, 41 for right in R! and ~1 for left, or, in the circle, +1 for counterclockwise
and -1 for clockwise.

What about an orientation on R2? This time there are infinitely many dis-
tinct directions that a path could take from any given starting point. Suppose
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you live at the point (5,3) and you want to tell your friend how to get to your
house. Suppose the friend is currently standing at the origin and facing toward
the positive z-axis. Then you may tell your friend to go forward five units, turn
left, then go forward three units. So long as your friend knows his or her right
hand from the left, he or she will end up at your house as expected. On the other
hand, another friend who mistakes left for right would have ended up at some-
one else’s house at (5, —3). Even worse, if you and your friend lived on a M&bius
strip, then the concepts of left and right could no longer be consistently defined.

An orientation at a point on a surface (or surface-with-boundary) is a
specification of left vs. right with respect to forward — or, using the familiar
directions of north (N) and east (E) on a compass, we distinguish a positive
orientation from a negative one, as in Figure 5.19. If the smallest angle from E
to N is obtained by going counterclockwise, then the orientation is positive. If
the smallest angle from E to N is obtained by going clockwise, then negative.
But keep in mind that these concepts rely on the observer’s choice in how to look
“down” onto the surface, which may only make sense in a small neighborhood.
We will consider rotations of orientations as equivalent, but reflections are not
(see Figure 5.19). Reflecting a positively orientated diagram will result in a
negatively orientated diagram and vice versa.

positive orientations negative orientations

by |,

N AN
E N N E

Figure 5.19: Looking down on the page, identify positive and negative orienta-
tions as shown.

We are interested in defining orientations at each point in a way that gives
nearby points consistent orientations. In other words, close neighbors should
be able to agree about what is left and what is right. Sounds pretty straight-
forward, right? Just take a positively oriented compass throughout the surface
and declare each point to have the orientation implied by the compass; however,
there are surfaces for which this procedure fails every time.

Consider the Mébius strip M shown in Figure 5.20. Suppose we decide a
particular orientation for all points on the vertical segment denoted by L. Now
‘extend the orientation in a consistent manner along the arc indicated by the
gray arrows. In other words, take a compass with you and declare the orien-
tation in any small neighborhood along the arc to be the one shown on your
compass as you walk around M. By the time you reach L again, every neighbor-
hood of M will have received a consistent orientation ezcept any neighborhood
of a point on L itself. The key is that there is a loop <y in M such that consis-
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Figure 5.20: There is no way to define the orientation at every point of M such
that orientations are consistent throughout M.

tent choices of orientation along v end up becoming inconsistent (reversed) at
(1) = ¥(0).

Definition 5.3.1. Let X be a surface or surface-with-boundary.

e Aloop vin X is called an orientation-preserving loop if there
is a choice of orientations at each point of X so that the orien-
tation remains consistent throughout «y; otherwise, v is called an
orientation-reversing loop.

o A space X is called orientable if no orientation-reversing loops
exist in X; otherwise, X is called nonorientable.

Orientability is a topological invariant. Consider a homeomorphism f : X —
Y, and any loop v in X. If +y is orientation preserving, then the choice of orienta-
tions at each point of X can be transferred directly to Y via the map f, showing
that the loop f o« is orientation preserving. Now suppose « is orientation re-
versing in X. If f o~ were orientation preserving, then the homeomorphism f~!
would imply that f~! o (f o) = v is also orientation preserving, contradicting
our choice of . Thus f o must also be orientation reversing.

]

1 Example 96. Show that R? is orientable.

Solution: At every point (z,y), choose a positive orientation in which N is
in the direction of (z,y + 1), and E is in the direction of (z + 1,y). Every loop
in the plane is orientation preserving with respect to these orientations.

e

O
l Example 97. Determine whether the sphere S? is orientable or not.

Solution: It may be intuitively clear that no loop around a sphere could
possibly change the orientation, but to prove the statement carefully, we make
use of the orientability of the plane R2.

By removing small open neighborhoods of the north and south poles, the
sphere can be regarded as the union of a cylinder and two disks with identi-
fications along the boundaries. If the cylinder is cut (e.g., along segment a in
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the figure below) and flattened out, then an orientation may be chosen that
coincides with a rectangular patch of R? (this is how a Mercator projection of
the world map works). The disks themselves may be flattened and inherit ori-
entations from R2. Finally, because of the way that the disks are glued onto the
top or bottom of the cylinder to form the sphere, there are only rotations, and
never reflections, along any loop. Thus S? is orientable.

i

O

Caution: Just because a space decomposes into orientable pieces does
not imply that the space itself is orientable. The Mobius strip can be cut along
a single segment so that it becomes I2, which is orientable. It’s in the gluing
together, with a twist, that the space becomes nonorientable.

Orientability, Plane Models, and Words

An orientation-reversing loop may be found (or ruled out altogether) by ex-
amining a plane model for the space. Figure 5.21 shows a plane model for the
Mébius strip M, along with an arc in M. Note that any arc that crosses the edge
b must reverse orientation (from our perspective looking down on the square).
The orientation at z may begin as positive in the plane model and remain that
way as we traverse the arc to the right and arrive at y; however, the orientation
flips as we reappear on the left side on the way to z. The points z and z clearly
have opposite orientation. Thus it is quite easy to locate an orientation-reversing
loop in any plane model that has a pair of edges like those on M.

a
y
>
b M (b
z
Ly
Rl
C

Figure 5.21: The orientation reverses along the arc from z through y to z in M.
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Note that from the point of view of a myopic ant traveling along the curve,
there is no significant difference between points z and ¥, so the ant would not
experience dramatic change as it passes through point y — with the exception
that now the environment around z seems to be inverted by the end of the
journey.® By appending copies of M to each other along the identified side b, as
in Figure 5.22, we may get a better idea how the journey might look to a traveler.
Note how the orientation with respect to the traveler never actually changes on
the journey from x through y to z. However, because of the identification of b
with a twist, it seems that the whole world has been turned upside down.

a C
Yy xT
i
b) M Yo W bA
xT
C a

Figure 5.22: Orientation-reversing arc shown on a tiled representation of M.

A word for M is abeb. Note how b occurs twice in the same direction on the
plane model, and so b occurs twice in the word. Any surface or
surface-with-boundary whose word hastheform ...z...z...or...271.. .2~ . ..
is non-orientable, and a loop that crosses the edge z once is an orientation-
reversing loop. Conversely, if every letter of a word occurs only once or only
with its inverse, then the space is orientable.

O

I Example 98. The torus T is orientable because its word, aba~1b~!, has

only inverse pairs, a and a™', b and b~!. There is a well-defined orientation

on T such that the orientation is preserved along any loop, as illustrated in
Figure 5.23.

o {

The Projective Plane

Let’s consider a rather nonintuitive surface called the projective plane, P =
P2. You may recall seeing the pro jective spaces P™ in Exercise 11 of §4.3, defined

61t is interesting to ponder an orientation-reversing loop in our own three-dimensional
world. Suppose a one-armed traveler leaves Earth on such a trip. To us here on Earth, when
the traveler returns, he is still missing an arm, but now the other one. On the other hand
(pun intended), from the traveler’s perspective, his original arm has always been there; it’s
just that now, upon return to Earth, all the signs read backward.
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2 8
Y
Y < b
b A T \ b
z a

Figure 5.23: The torus is orientable. Orientation is preserved along any loop.

as quotient spaces, and how P may be regarded as a hemisphere such that
antipodal points along the equatorial boundary circle are identified as in (5.1), as
illustrated in Figure 5.24. The hemisphere itself may be flattened out into a plane
model: then the surface is defined by a simple word, a?, showing immediately
that P is nonorientable.

T P T~ —y x

Figure 5.24: Representations of the projective plane. Left, P is the quotient of
R3\ 0, in which every point on a line through the origin is identified. Right, by
taking representatives on a hemisphere, we find a simple plane model for P with
word a?.

Suppose A, B € S. are both orientable. Then so is A#B. The easiest way
to see this is to consider the words for A and B. If both are orientable, then
there are no same-pair letters in A or B; hence A#B has no same-pair letters
in its word (the concatenation of words for A and B). On the other hand, if
either one (or both) of A or B is nonorientable, then so is their connected
sum. For example, T#P is nonorientable — a word describing its plane model is
aba~1b71c2.

l Example 99. Describe 2P

Solution: The space 2P = P#P is a nonorientable surface whose word is
a2b? (recall that the letters in the words of each space must be distinct), which
is a word for the Klein bottle K (see Example 95). Therefore 2P ~ K. 5

(o)
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Exercises

1. Find a word representing nPP for arbitrary n > 0.

2. Determine whether the following spaces are orientable or not. If not, show
an orientation-reversing loop in a plane model for the space.
(a) S' x1I () K (e) THP
(b) 3T (d) nT (f) 3T#2P

3. Prove T#P =~ 3P.

4. Show that it is possible to classify every finite connected sum of T,P, K,
and S? as one (and only one) of the following.

o S2 e nT o nPP

(Hint: See Examples 88 and 99, and Exercise 3.) The number n > 1 in
the above is called the genus of the surface (S has genus 0). Find the
genus of each of the following, and state whether the surface is orientable
or nonorientable.
(a) 3T#2P (c) 13S2#5TH#6S2 (e) aP#bT,a>b>0
(b) mK, m >0 (d) KH#ATHP (f) k8%, k>0

5. Show that the connected sum of a nonorientable surface with any other
surface is nonorientable.

6. Starting with the plane model for as a
P, divide each edge @ into three seg- p
ments, a = ajasasz. Cut the model !
at the segments indicated in the fig- P ’
ure below to obtain three pieces, a2 2 a2
Py, Py, and P;. Glue pieces P; and
Ps along their common edge azaq, Py
and explain how the resulting fig- ay a3

ures demonstrate that P is a Mobius
strip whose boundary circle bounds
a disk. Can this space be realized
within R3?
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7. An n-twist strip is formed from a
strip of paper by twisting one end
n times before gluing the ends to-
gether. For example, the standard
Mobius strip is a one-twist strip,
and a two-twist strip is shown at
right.

(a) Show that the two-twist strip is
orientable. 4

(b) Determine the orientability of
the n-twist strips in general.

5.4 Euler Characteristic

Recall from Chapter 1 that the Euler characteristic of a polyhedron P is
defined by the formula x(P) = v — e + f, where v, ¢, and f are the numbers
of vertices, edges, and faces, respectively, of P. Each of the five Platonic solids
has Euler characteristic equal to 2. It’s no coincidence that the surface of each
of these solids deforms to the sphere. In fact, starting with S?, we may choose
any number of vertices on the sphere, connect them with nonintersecting arcs,
and by straightening the edges and flattening the faces, we could obtain a new
polyhedron P'. Is x(P’) = 2 as well? In other words, is the value of the Eu-
ler characteristic somehow intrinsic to the sphere itself, not depending on any
specific deformation of the sphere to a polyhedron? The answer is yes, but this
requires proof. What about the torus or projective plane? In order to address
this question, we first need to define explicitly what we mean by vertices, edges,
and faces in a topological space.

Cell Decomposition

Recall that a triangulation is a certain way of cutting up a space into more
manageable pieces (vertices, edges, and triangular faces). Typically, though, a
triangulation must include many faces in order to satisfy the strict requirements
about how triangles can meet. A cell decomposition is another way of cutting up
a space with fewer restrictions, reducing the amount of data required to accurate
“describe” the space. Moreover, this paves the way toward understanding a
wider class of spaces than just those in S.. Our purpose here is not to prove
that cell decompositions exist in general (they do not — a simple counterexample
is the Hawaiian earring shown in Exercise 1 of §4.3), but if a space has one, then
we can use it to calculate the Euler characteristic, among other things.

A cell is nothing more than a closed disk D™ for some dimension n, and a
cell complex is a way of building up a space X by attaching cells in a reasonable
way. By reasonable, we mean that cells should only be glued to each other along
their boundaries, not their interiors. For example, edges D! =~ I may be glued
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to other edges only at their endpoints, though we do allow multiple edges to
share the same endpoints and the endpoints of an edge to be the same point, as
shown in Figure 5.25.

Figure 5.25: Edges meet only at endpoints. The apparent intersections at the in-
teriors of some edges are only an artifact of drawing the figure in two dimensions
and are not actual intersections in the space.

Definition 5.4.1. A cell in a topological space X is either
e a single point « € X (called a O-cell) or

e for n > 1, a closed subspace C C X (called an n-cell) and a
continuous attaching map f : D™ — C such that f restricts to
a homeomorphism on int(D™).

The number n in n-cell is called the dimension of the cell.

In any given space X, we typically only care about finitely many cells of a
given dimension. Thus, while every single point z € X qualifies by definition as a
0-cell, we may only be interested in a small number of points z1,23,..., 2, € X.
For example, we may consider a polyhedron to consist of some number of vertices
(O-cells), edges (1-cells), and faces (2-cells). The entire solid polyhedron is a 3-
cell. (What might a 4-cell or 5-cell look like?) Just as a polyhedron is built up
from vertices, edges, and faces, many topological spaces may also be built up
from cells into what we call cell complexes. We must stick to finite-dimensional
cell complexes, as the more general case requires more machinery than we have
at our disposal.

Definition 5.4.2. A (finite-dimensional) cell complex (or simply
complex) is a topological space X built from cells in the following
way: '

e There is a sequence of closed subspaces,

Xcxtc...Ccx" =X,

where each X* is called the k-skeleton of X.
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e The O-skeleton X© is the disjoint union of finitely many O-cells
(vertices).

e For k > 1, X* is built from attaching finitely many k-cells to X*~1.
Each k-cell C is attached via its attaching map f : D* — C € X*
so that

1. f[oD"] € X*~1, and

2. f[int(D")] intersects neither X*~! nor the interior of any
other k-cell already attached.

At any given stage in the construction, it is possible that no k-cells are
added, so that X*~1 = X*. The largest n such that X™ is different from X"~
is called the dimension of X. A 0-dimensional complex, or 0-complex, is a finite
discrete set of points. A 1-complex is simply a finite graph (see §6.1). Surfaces
and surfaces-with-boundary are examples of 2-complexes, as a triangulation is
a type of cell decomposition.

O

I Example 100. Consider a solid cube C' with vertices a, b, ¢, d, €, f, and
g. Consider the cell decomposition on C according to vertices, edges, and faces.
Note that C is a three-dimensional cell complex because it includes its solid
interior.

e (0-skeleton) C° = {a,b,c,d,e, f,g,h}

g
e °f
©

c
*b
®

o >

[ o]
oo,

o (1-skeleton) C' = abUacUbdUcd UaeUbf UTgUdhUefUegU fRU gh

g h

e (2-skeleton) C? = F; U Fy U F3 U Fy U Fy U Fg, where each cell Fy, is one
of the six faces of the cube
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F5 (bottom)
o (3-skeleton) C® = C, the whole solid cube

§
<
The existence of triangulations implies that S, is a subset of the collection

of all 2-complexes, but not every 2-complex is in S.. For example, consider the
book of n pages, defined as follows.

0

I Example 101. The book of n pages is the quotient space of n disjoint

squares I2, each identified along one edge as shown in Figure 5.26. It is a two-

dimensional cell complex but not a surface or surface-with-boundary unless
n < 2.

Figure 5.26: The book of n pages is a 2-complex but not a surface or surface-
with-boundary when n > 2.

o i

]

1 Example 102. Every sphere S™ has a cell decomposition. The easiest
case, of course, is S°, which consists of two O-cells (0-dimensional complex).
Suppose now that n € N, and let z € S™ be any fixed point. Since S™ \ {2z} is
homeomorphic to R™, via stereographic projection, and R™ is homeomorphic to
an open disk, R™ = int(D?), S™ can be decomposed as a single n-cell attached
to a single O-cell {z} by way of an attaching map f : D* — S§" that identifies
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the entire boundary of D™ to z (l.e., f[@D"] = {z}). This construction implies
that each k-skeleton, for k =0,1,...,n—1, is identically the solitary point {z}.

If this seems like “cheating,” there is another natural way of building up
a cell complex structure on S™ such that the k-skeletons are all properly k-
dimensional. Let E C §™ be the equatorial sphere. That is,

E = {z = (z0,21,...,%p-1,0) € R"" | d(2,0) = 1} & S*1.

Now S™ may be built from S™~! by attaching two n-cells, (i.e., the northern
and southern hemispheres H™ and H™, as in Example 91; see Figure 5.27).
By induction, S™ has an n-complex structure with exactly two cells in every
dimension.

STL

Figure 5.27: The hypersphere S™ can be built from S*~! by attaching two n-cells.
In this diagram, attaching two disks to a circle S! produces the sphere S2.

o {

Euler Characteristic of a Cell Complex

Every finite-dimensional cell complex has a corresponding Euler characteristic.

Definition 5.4.3. Suppose X is an n-dimensional cell complex with
xy k-cells, for k = 0,1,...,n. The Euler characteristic of X (with
respect to the given cell decomposition) is defined by

n

X(X) = (1)

k=0

If X is a 2-complex, with zg = v, £; = e, and z9 = f, then Definition 5.4.3
reduces to the familiar Euler characteristic for polyhedra.
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=

I Example 103. Find x(C), where C is the solid cube from Example 100.
Solution: C has zo = 8 (0-cells), z; = 12 (I-cells), z = 6 (2-cells), and

23 =1 (3-cell), so x(C) =8 —-12+6—-1=1 ’

e

If S € S. has a plane diagram, then the diagram itself exhibits a cell de-
composition for S with exactly one 2-cell. However, since some of the edges and
vertices are identified, we must be careful in our counts of 0- and 1-cells for
computing x(5).

Q
l Example 104. Find x(T), x(P), and x(K) with respect to the cell de-
compositions shown below.

v 2 v v v g v
a
Y T Yo bA K Yo
a
v “a v v v “a v

Solution: Based on the plane diagrams, and a careful count of distinct
vertices, we find the following.

T) = 1-2+1=0
x(P) = 1-14+1=1
YEK) = 1-2+1=0

f

O

The Euler characteristic is a topological invariant for spaces that have a cell
decomposition. However, the proof relies on the theory of homology and so falls
outside the scope of this textbook.” But we can sketch a proof of the famous
formula y(P) = 2 for any polyhedron whose surface is homeomorphic to the
sphere (i.e., simply-connected polyhedra). In fact, we will prove something a bit
stronger. Instead of restricting to geometric polyhedra (figures in R3 made up
of flat faces joined at edges and vertices in a certain way), we prove the result
for an arbitrary cell decomposition of S2. See if you can spot a couple places in
the proof where we must rely on the Jordan Curve Theorem.

Proposition 5.4.4. x($?) =2.

Proof. Suppose S? has a cell decomposition (in the sense of Definition 5.4.2).
Let Fy be one of the faces, and let p € Fy. Now since §? \ {p} =~ R? (via

"We introduce homology in Chapter 8, but a proof that homology itself is a topological
invariant requires more machinery than we develop in this text.
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stereographic projection), we know that G = §?\ Fy admits a cell decomposition
for a (bounded) closed disk in R?. In other words, G is a connected plane figure
made up of vertices and noncrossing edges (also known as a planar graph; see
§6.1), together with the bounded faces determined by the graph. We do not
require the edges to be straight segments, nor even to have distinct endpoints
(loops are allowed). Note that the original cell complex structure on S? can
be recovered by the inverse stereographic projection and filling in the missing
point.

Now let ¢ denote the set of all cell complexes for closed disks (planar graphs
with their bounded regions). For any G € ¥, let |V(G)| be the number of
vertices, |F(G)| the number of edges, and |F(G)| the number of faces in G. Our
goal now is to show that x(G) = 1 for every G € ¥ (recall that G has one
less face relative to S?). Consider the graph Gy having a single vertex and one
loop (edge). The loop, being a simple and closed curve in the plane, bounds a
single disk region (face). In this case, we have |V(Go)| = 1, |E(Go)| = 1, and
|F(Go)| = 1, so that x(Gp) = 1 — 14 1= 1. An arbitrary G € 4 may be built
up from Gy by a finite sequence of the following moves.

{(a) Connect two existing vertices with an edge.
(b) Place a new vertex on an existing edge.

(¢) Deform any edges by stretching, bending, and so forth, but never allowing
one edge to cross over another.

For example, suppose we wanted to tack on a new triangle adjacent to edge AB
in Figure 5.28. First place a new edge that connects A to B, deforming it a bit,
and then place a vertex on the new edge.

new edge new vertex
A A A
move (a) move (b)
B B B

Figure 5.28: Move (a) produces a new edge and face; move (b) produces a new
vertex, splitting a single edge into two. Note that move (c¢) — which is not labeled
on the diagram but happened in conjunction with move (b) — is used just to
straighten out the edges, but has no effect on the number of cells.

Now suppose G’ is obtained from G by move (a). Then |[V(G')| = |[V(G)],
while |E(G")| = |E(G)| + 1. The only question is what happens to the number
of faces. Let e be the new edge. Either e is on the outside of the polygon, in
which case a new face has been created, or e is inside an existing face, which
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splits an existing face into two smaller faces. Either way, |F(G')| = |F(G)] + 1.
Thus

x(@) = V(&) ~I|EG+|F(G)
= V(@ -(EG]+1)+(F(E)]+1)
= V(&) -|E@G)|+|F(G)
x(G).

Suppose now that G is obtained from G by move (b). Then |V(G')| = |[V(G)]+1
and |E(G")| = |E(G)| + 1, while |[F(G")] = |F(G)|. Again, the net result is that
x(G") = x(G). Move (c) does not change the number of cells at all.

Thus, for any G € ¢, we have x(G) = --- = x(Go) = 1. Finally, adding back
in the contribution from the missing face Fy, x(S%) = x(G) +1 = 2. O

We will take for granted that the Euler characteristic is a topological in-
variant for spaces on which it is defined. Thus, for example, S* # T because
x(S?) = 2 # 0 = x(T). But x is not a complete invariant for surfaces — Ex-
ample 104 shows that x(T) = x(K) even though T % K (one is orientable; the
other is not). On the other hand, it turns out that the combination of Euler
characteristic and orientability serves to distinguish all compact surfaces. Note
that the Euler characteristic of a connected sum can be computed easily.

Proposition 5.4.5. Let A,B € S..

x(A#B) = x(A) + x(B) — 2

Proof. Suppose U; € A and Uy C B are the chosen disks to remove for the
connected sum construction. Give A and B triangulations. It can be arranged
so that U; is the interior of a triangular face and similarly for Us in B ~ possibly
by shrinking the open set U;, so that each is contained within a single triangular
face, then expanding U; to fill the triangle. Thus x(A4 \ U1) = x(A) — 1 and
x(B\Uz) = x(B) —1. When the two spaces are joined at the bounding triangles,
three pairs of vertices will be identified, which reduces the overall value of v—e-+f
by 3, but also three pairs of edges will be identified, which (because of the
negative sign on e) yields a compensating increase of 3. Taken together, this
shows that

x(A#B) = (x(4) = 1) + (x(B) — 1) = x(A) + x(B) — 2.

l Example 105.

o x(2T) = x(T) + x(T) —2= -2
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o x(3P) = x(2P) + x(P) ~ 2 = (x(P) + x(P) = 2) + x(P) =2 = -1
o X(X#8?) = x(X) +x(S%) -2 = x(X)

o

Classification of Compact Surfaces

We now take up a theme that showcases how certain topological invariants can
be used to completely classify a particular collection of spaces, the compact
surfaces. Results of this type are exceedingly rare; for example, there is not a
complete classification of compact manifolds in general.®

Theorem 5.4.6. Every compact surface S is homeomorphic to one and
only one of the following:

° §2,
o nT, for someneN, or

e nlP, for somen € N.

Proof. The proof is in two main parts. We first show that every space mentioned
in the theorem is indeed different. Then we will show how an arbitrary surface
can be identified with one of those spaces.

Claim: Each space S?, nT, and nP (for various n € N) is topologically
distinct. Proof of claim: First, since orientability is a topological invariant, we
know that nP # S? and nP % mT for any choices of n,m € N. Then the Euler
characteristic can be used to distinguish among the orientable spaces and among
the nonorientable ones (as Exercise 5 implies).

Now let’s tackle the harder part of the theorem. Suppose S is a compact
surface. Give S a triangulation (which is possible by Theorem 5.2.2). The tri-
angulation can be used to produce a plane model for the surface along with an
associated word, W = ajasz - - - a3, in which every letter of the word occurs twice
(counting inverses). We may assume that the plane model for S has all vertices
identified to a single point of S (see §5.2, Exercise 10). Now let’s do a little word
arithmetic.

LIW =aa"! or W = a"la, then we are done, and S ~ S2. Otherwise,
move on to step 2.

2. Eliminate all adjacent letter-inverse pairs, including any that arise after a
cyclic permutation of the letters. This “clean-up” step should occur after
each of the following steps as well.

8However, see Thurston’s Geometrization Conjecture and the Poincaré Conjecture, both
proved barely a decade ago by Grigori Perelman. To learn more about the enigmatic Perelman,
I suggest Perfect Rigor by Masha Gessen [Ges09).
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3. Suppose there is a same-letter pair separated by other letters. That is,
W=-aXa - or W=---a"'Xa ! -, where X is a nonempty string
of letters. In what follows, we work with a rather than a1, but the results
are the same. First use a cyclic permutation so that the first occurrence
of the letter is at the beginning of the word. Now if W = aXa, then, after
cyclic permutation, we have W = a?X, and hence may assume that W =
aXaY, where both X and Y are nonempty strings. Use a split-and-rejoin
operation, inverting the first subword and cyclically permuting the second:

aXaY = aXq 'qaY = ¢X ol aYq = ¢X'Yq = #XTY.

Note that after this operation there is one fewer separated same-letter
pair. Repeat step 3 until all same-letter pairs are of the form g

4. Now suppose there is an inverse pair within the word. If W = aX a” 1Y,
and if X and Y share no common letters, then W describes the con-
nected sum of two surfaces, one with word X and another with word
a~1Ya = Y. Thus we may assume X and Y have at least one letter
in common. However, since all same-letter pairs are together, we must as-
sume there is another inverse pair b- - - b~* alternating with a - - -a™*. That
is, W = aXbYa 1 Zb" U for some (possibly empty) words X,Y, Z, and
U. The following split-and-rejoin steps, together with cyclic permutations
and cancellations, eliminate a,a™*,b, and b~! at the expense of including

the adjacent pairs srs™tr—L.

e Split-and-rejoin 1:
aXbYa *Zb™'U

aXq ™t gbYa 1Zb7U
= Xq la, a”'Zb7UQY = Xq ' Zb7 UghY.

o Split-and-rejoin 2 (after a cyclic permutation):

WY Xq1Zb"WUq = bYXrTl rgTtZb7'Ug

= YXr W, b Werq 2 =Y Xr WUqrq™ ' Z.
e Split-and-rejoin 3 (after a cyclic permutation):
¢rZYXr WUgqr = g rZYXs, sTir Uqr

= ZYXsql, qrsTirTU = ZY Xsrs™ UL

Repeat step 4 until all inverse pairs occur as part of a substring like
—1,.—-1
srsTrrT

5. After completely reducing any remaining adjacent inverse pairs, the word
W must either be equivalent to aa™! (the sphere), or must be the con-
catenation of some number of pairs like bb = b* and/or substrings like
srs~ir~1. That is, if S is not a sphere, then S is the connected sum of
tori and projective planes. In that case, §5.3, Exercise 4 implies that S is
homeomorphic to one of the spaces nT or nlP for an appropriate n € N.

i
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Exercises

1. Let n > 1, and let B be a book of n pages, as defined in Example 101.
Find x(B).

2. Let T be a solid tetrahedron. Find a natural cell decomposition for T
and use it to compute x(7T'). Make a conjecture about x(P) for any solid
convex polyhedron P.

3. Let M be the Mébius strip. Find x(M).

4. Referring to Example 102, find x(S") for arbitrary n € NU {0},

(a) using the cell decomposition of S consisting of only two cells total.
(b) using the cell decomposition of S™ consisting of two cells in every
dimension.

5. Let n € N.

(a) Find x(nT). (b) Find x(nP).

6. Let v be the number of vertices, and e be the number of edges in a triangu-
lation of a surface M. Using §5.2, Exercise 9, prove that e = 3(v — x(M)).

7. Let n € N. Using the representation of projective space P" as a hemi-
sphere of S™ with antipodal identifications along the boundary (as in
Equation 5.1), use induction to build a cell complex structure on P” hav-
ing exactly one cell in each dimension. Use your cell decomposition to
compute x(IP"*) for arbitrary n € N.

8. Illustrate the operations outlined in steps 3 and 4 of the proof of Theo-

rem 5.4.6 on plane diagrams.

Supplemental Reading

Barr [Bar64], Chapters 2-6. Barr introduces the torus, Mdbius strip, Klein
bottle, and projective plane through hands-on constructions.

Goodman [Goo05], Chapters 2 and 3.
Henle [Hen79], Chapter 4.

Munkres [Mun00}, Chapter 12.
Weeks [Wee02], Part 1.




Chapter 6

Applications in Graphs
and Knots

Graphs and knots are particular kinds of topological spaces that play important
roles in numerous fields of study, including computer science, physics, and biol-
ogy. While it may be argued that the study of graphs and knots more properly
fits into the realm of combinatorics, the language of topology often helps to put
the combinatorics into clearer context. In the first two sections, we use cell com-
plexes, embeddings (i.e., injective continuous functions), the Euler characteristic
as a topological invariant, and other important topological ideas to study graphs
and graph coloring problems. In the remaining sections, we delve into topolog-
ical knot theory by defining a knot as an embedding S* into three-dimensional
space, and develop certain invariants to aid in classifying knots. Proofs of many
of the results in this chapter are adapted from Goodman [Goo05], but can also
be found in many other standard texts on graph theory or knot theory.

6.1 Graphs and Embeddings

Finite graphs are nothing more than one-dimensional cell complexes (recall Def-
inition 5.4.2). Nevertheless, their relatively simple structure conceals a wealth
of information. Applications of graphs abound not only in computer science (see
Figure 1.4, a graph representing Internet connections), but also in practically
every field of scientific study from sociology to psychology, biology, chemistry,
and physics. This short section and §6.2 discuss only two small (but important)
aspects of graph theory that relate most directly to topology: the problems of
embedding graphs in surfaces and associated coloring problems for embedded
graphs.!

1For a more comprehensive treatment of graph theory, we refer the reader to one of the
many wonderful textbooks on the subject, e.g., Bondy and Murty [BMO07] or Harris et al.
[HHMO8].

207
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Finite Graphs: Definitions

In this section, the term graph refers specifically to a (not necessarily con-
nected) 1-complex. That is, a graph G is a cell complex with finitely many
vertices V' and finitely many edges E such that edges may only intersect at
vertices. Our definition allows multiple edges to be attached to the same pair
of vertices (parallel edges) and edges whose two endpoints are attached to the
same vertex (loops). Write V(G) (or V) for the set of vertices, and E(G) (or E)
for the set of edges of a graph G. The number of vertices and edges are notated
[V(G)| (or [V]) and |E(G)| (or |E|), respectively.

In our graph diagrams, the vertices will be shown as thick dots. While two
edges may be drawn on the page in such a way that it seems their interiors might
intersect, no intersection is assumed except at the vertices. Figures 5.25 and 6.1
illustrate some example graphs.

G1 Gg G3 G4
Figure 6.1: |V(G1)| = 4; |E(G1)| = 6 (there is no vertex in the center of the
graph, so the edges do not actually meet there). |V (Ga)| = 3; |E(G2)| = 4.

[V(G3)| = 3; |E(G3)| = 5. |[V(Ga)| = 9; |E(G4)| = 8. Gs is not connected, but
the other graphs are. '

Note that there are many equivalent representations of the same graph; all
that matters is that the relationships among vertices and edges are the same.
More generally, we say that two graphs G and H are isomorphic? if there
are bijective functions V(G) — V(H) and E(G) — E(H) preserving all of the
vertex-edge relationships. If such a function exists (called an isomorphism)
from G to H, then we write G = H. For example, the three graphs shown in Fig-
ure 6.2 are all isomorphic. Isomorphic graphs are always homeomorphic, but two
graphs may be homeomorphic as topological spaces without being isomorphic.

Since a graph is a cell complex, it makes sense to talk about its Euler char-
acteristic: x(G) = |V(G)| — |E(G)].

O

I Example 106. Find the Euler characteristic of each graph shown in
Figure 6.1.

2In other words, equivalent in the realm of graph theory.
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G a
e b
d c
Figure 6.2: Isomorphic graphs: G = G' 2 G”".
Solution:
x(Gi) = V(G| - |E(G1)|=4-6=-2
X(Gg) = 3—-4=-1
X(G3) = J3—-5=-2
X(G4) = 0-8=1

Note that ¥(G1) = x(G3) even though the two graphs are not even topologically
equivalent (one is connected while the other is not), so x is not powerful enough
to distinguish all graphs. ’

o

A simple graph is a graph such that each edge is attached to a distinct
pair of distinct vertices. In other words, there are no parallel edges or loops.
Graphs G; and G4 in Figure 6.1 are simple. A complete graph is a simple
graph such that every pair of distinct vertices has an edge between them. The
complete graph on n vertices is notated K,. Graph G; in Figure 6.1 is a Kj.
Additional examples are shown in Figure 6.3.

K3 Kg

Figure 6.3: Complete graphs K3, Kg, and Kg.

A graph G is called bipartite if there is a grouping of the vertices into
sets V4 and V; such that each V; # 0, and no edge exists between two points
of V; or two points of Vz. The complete bipartite graph K, , refers to the
simple bipartite graph with |Vi| = m, |Va| = n, and every possible edge exists
connecting points of V4 to V5. In the examples shown below, H is bipartite with
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V(H) = Vy U Vs, where Vi = {a,b,c,d} and V5 = {e, f,g,h,i}. The graph on
the right is K3 », with vertices partitioned as Vi = {u,v,w} and Vo = {z,y}.

Kjo
u
Yy
v
z
w

l Example 107. Find formulas for x(K,) and x(K.») in general.

Solution: By definition, of K, we have |V(K,,)| = n. Since there is exactly

one edge between distinct pairs of vertices, we have |E(Ky,)| = (3) = Q(nz;l)
Therefore

n(n — n — n2
X(En) = [V (Kn)| = |E(K)| = n — (2 h_3 "

For the complete bipartite graph,
X(Kmn) =|V(Enn)| = |[E(Knn)l =m+n—mn.
° 7

Suppose v is a vertex of a graph G. The degree of v is the number of edges
incident to v. For example, every vertex of K, has degree n — 1, since there
must be an edge from each vertex to all other vertices. A cycle graph is a
connected graph such that every vertex has degree 2, which implies that the
graph must be homeomorphic to S (see K3, for example). What is the Euler
characteristic for a cycle graph? Suppose C,, is a cycle graph with n vertices.
Then |V(C,)| = |E(Cy)| = n, so that x(C,) = 0. (By the way, this implies
x(S') = 0, as expected.)

We say that H is a subgraph of a graph G if V(H) C V(G) and E(H) C
E(G) (or, more generally, if there is are injective functions V(H) — V(G) and
E(H) — E(G) such that all of the structure of H is preserved in the image). A
cycle in an arbitrary graph G is simply a subgraph of G that is a cycle graph.
Similarly, a path in G is a subgraph that is isomorphic to the path graph
P, having n edges connected in a row, and we say that path has length n.
Note that, by this definition, a path of length n in G must visit n + 1 distinct
vertices.® Thus there is a path of length 4 in K3, but no path of length 5.
What is the longest cycle you can find in K3 4?

O

I Example 108. Suppose a graph G’ is obtained from the graph G by
attaching a path graph P, to G, identifying the endpoints of P, to distinct
vertices in G as shown below. What is the the value of x(G’) in terms of x(G)?

3The graph-theoretic definitions used in this text generally follow those of Harris et al.
[HHMO8], but with further emphasis on topological properties.
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Before the identification, x(P,) = (n + 1) — n = 1. However, after identifying
the two endpoints of P, to two vertices of G, the contribution to the total Euler
characteristic of G’ is (n — 1) —n = —1. Thus x(G’) = x(G) — 1. )

O

In what follows, assume G is a graph. Two vertices in G are called adjacent
if there is an edge in G having those two vertices as endpoints. A walk in G
is a finite sequence of adjacent vertices, including the edges in between; neither
the vertices nor edges have to be distinct. Note that in a simple graph, a walk
is completely determined by the ordered list of vertices visited. Topologically,
a walk can be described by an arc v : I — G such that both v(0) and (1)
are vertices. If the edges of the walk are distinct, then the walk is called a
trail, and if the vertices are all distinct, then the walk is a path (thus every
path is a trail, and every trail is a walk, but not conversely). A graph-theoretic
path is equivalent to an embedding (i.e., an injective continuous function)
v : I — G such that v(0),v(1) € V(G). The notation X — Y is often used for
an embedding of a space X into another space Y, so we may write v : I — G.

A circuit in G is a trail that begins and ends at the same vertex (so every
cycle in a graph is a circuit, but a circuit may fail to be a cycle). A cycle in G is
equivalent to an embedding S! < G such that v(0),7(1) € V(G). For example,
referring to graph G in Figure 6.2, abcebedb is a walk (but not a circuit or trail);
debaecd is a circuit (but not a cycle); ecbde is a cycle, and decba is a path.

An Euler circuit is a circuit that visits every edge of G. Similarly, an
Euler trail is a trail that visits every edge of G. In Chapter 1, we discussed
the Seven Bridges of Konigsberg Problem, which asks whether there is a way to
take a walk that crosses each bridge exactly once. This question is equivalent to
finding an Euler trail in the graph shown in Figure 1.5, and, as we shall see in
the Exercises, the answer is no.

Planarity and Surface Embeddings

Some graphs can be drawn on a sheet of paper without edges crossing one
another. For example, Figure 6.4 illustrates how Ky may be drawn without
crossings. However, not every graph enjoys this distinction. No matter how you
twist and bend the edges and jostle the vertices, the graph Ky simply cannot
be drawn in the plane without crossing edges (¢ry it/). Graphs that can be
embedded in the plane (i.e., drawn with no edges crossing) are called planar;
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however, it would be equivalent to require that the graph can be embedded on
the surface of the sphere. The main reason we want to consider embeddings
on §? is that we would like to explore embeddings of graphs in other compact
surfaces as well.

A C A

1

Figure 6.4: K, is a planar graph. Every planar graph embeds in the sphere 2.

Definition 6.1.1. A graph G is called planar if G can be embedded

into S2.

l Example 109.

e Every complete bipartite graph of the form Kj , is planar. Simply move
one of the two points on the left to the right side.

= =7

e Of course, K3 o is planar since K3 2 = Ky 3, but what about K3 37 Suppose
there are three houses, A, B, and C, and each one must be connected to
three utilities, gas (G), electric (E), and water (W), as in Figure 6.5. If
this could be done without any utility lines crossing, then K3 3 would be
planar. However, no matter how hard we try, no solution to the problem
exists. There is no way to avoid crossing lines; that is, K3 3 is nonplanar.
(It’s a good thing we can take advantange of the third dimension to solve
this kind of dilemma in real life, e.g., bury the gas line deeper than the
water, or put the electric lines on poles above the surface.)

g

[

Of course, the fact that we failed to find a planar diagram for a graph does
not necessarily mean the graph is nonplanar (maybe we just weren’t persistent
enough). To see that K3 3 is nonplanar requires a bit of combinatorics and the
Euler characteristic. First let’s talk about embedding graphs on other surfaces
besides §2.
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Figure 6.5: Is it possible to get gas, electric, and water lines to each of three
houses without crossing lines?

Definition 6.1.2. A graph G is can be embedded in a surface S if
there is an injective map G — 9, and if so, then we say that G is
embeddable in §.

A graph may be embeddable in may different kinds of surfaces; in fact, a
planar graph embeds not only in S%, but also in any surface S. Every graph,
no matter how complicated, embeds into some surface (simply attach enough
handles to the sphere to serve as bridges that allow the segments to avoid
internal crossing, as shown in Figure 6.6). On the other hand, for each graph G,
there is a minimal n such that G embeds into nT; then we call n the genus of
G. Planar graphs have genus 0.

Figure 6.6: The graph G is embeddable into a sphere with one handle attached;
that is, a torus. It can be shown that this graph is nonplanar; hence its genus
is equal to 1.

Suppose G embeds in a surface S, via a map f : G — 5. If each component
of S\ f|G] is homeomorphic to a disk, then we may regard f[G] as a 1-skeleton
in a cell decomposition of §, and in that case we call the embedding proper, or
that G properly embeds in S. A proper embedding provides a ready tool for
calculating the Euler characteristic of a surface. Let F* be the set of all 2-cells
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attached to G to form S. Then the formula relating the Euler characteristic of
the graph to that of the surface is simply x(S) = x(G) + |F|. We now use this
observation to prove that two special graphs K5 and K33 (shown in Figure 6.7)
are nonplanar.

K
Ky 3,3

Figure 6.7: K5 and K3 3 are nonplanar graphs.

Theorem 6.1.3. The graphs K5 and K3 3 are nonplanar.

Assuming that the Euler characteristic is a well-defined topological invariant,
this proof is not very difficult. It relies on a trivial fact about simple graphs
embedded into surfaces. Let’s count the total number of edges in terms of the
number of regions. Since there are no loops or parallel edges, every region must
have at least three distinct edges; that is, each region in F' corresponds to at
least three elements of E. But since each edge occurs in exactly two regions,
we get

3|F| < 2|El (6.1)

Now let’s prove Theorem 6.1.3.

Proof. Suppose that K5 is planar. Then Kj embeds into S?, and let f be the
number of regions determined by the embedding. Let v = V(K5) = 5 and
e = E(K3) = 10. Then

x(§*) = x(Ks)+f
9 — 5—10+F
fo= T

But then 3f = 21 £ 2e = 20, contradicting (6.1). Therefore K3 is nonplanar.
The proof for showing K33 is nonplanar follows the same scheme, except
that we may assume 4|F| < 2|E| because K33 has no cycles of length less
" than 4. |

There are, of course, other graphs besides K5 and K33 that cannot be em-
bedded in S?, but it is known* that a graph is planar if and only if it does not
contain a subgraph homeomorphic to K5 or K33 (e.g., see Figure 6.8).

4Kuratowski [Kur30].
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Figure 6.8: The Petersen graph P is nonplanar because there is a subgraph H
homeomorphic to K3 3. Note that H is not isomorphic to K33 as graphs.

On the other hand, both K5 and K3 3 do embed into T. Figure 6.9 illustrates
this for K5 in the plane diagram for the torus. This embedding cuts up the torus
into five regions, each homeomorphic to a disk, and thus yields a consistent result
for the Euler characteristic of the torus: x(T) = 5 — 10+ 5 = 0. However, we
must be careful. An embedding of a graph G need not cut a surface S into disks,
and so may not provide a well-defined measure of x(S).

a
>

Q\

Figure 6.9: K5 embeds into the torus. This embedding shows four triangles and
one 8-gon (the region that “wraps around” the identified edges of T, meeting
itself in a number of edges and vertices).

O
I Example 110. Find the smallest n € N such that K, does not embed
into T.

Solution: We will find the largest n such that K, does embed into T (then
add 1 to answer the original question). If there is an n such that K, embeds into
a surface, than clearly K,, embeds for every m < n. Thus it suffices to assume
K, is a proper embedding. Let v = V(K,) = n, and e = E(K,) = 11—(—7%———1—)
Since K, C T is asssumed to be a proper embedding, the number of regions f
must be f = x(T) +e—v =e—v. Now, since f < —g—e in any embedding,

2 1 -1
e—v=f<-e = -e<v = M

< ~7)<0. (6.2
3 3 5 <n = n(n-7)<0. (6.2)
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The maximal n satisfying (6.2) is n = 7. Thus it is impossible for Kg to embed
into T. All that remains is to demonstrate an actual embedding K7 C T; this
you will do in Exercise 7.
{
o

Note that an embedding, even a proper one, may fail to be a triangulation
of a surface.

0

l Example 111. K3 embeds into S?, but not as a triangulation. The
two triangles formed share all three of their edges. On the other hand, Ky is
a triangulation of S? (in fact, it is minimal, in the sense that no triangulation
with fewer vertices exists for §?). .

e

Haewood’s Number

As you might expect, the more complicated a graph is, the higher genus a surface
must be in which to embed the graph. Conversely, the higher genus a surface
is, the more complicated a proper embedding must be. In Exercise 7, you will
show that K7 properly embeds into the torus (in fact, as a triangulation), but
is there a simpler graph that triangulates T? What about nT or nP in general?
Haewood’s number is a formula for finding the theoretical minimal number of
vertices that any triangulation of a surface could have.

Theorem 6.1.4. Suppose a graph G embeds properly as a triangulation
into a surface S. Let v =|V(G)| and x = x(S). Then

0> Hy = E (”\/49_-24—%)}

(where || is the floor of the number z, the largest integer k such that
k < xz). The number H, is called Haewood’s number, and it depends
only on the Euler characteristic of the surface.

Proof. Since G embeds as a triangulation, G is simple. Therefore e = |E(G)| <

(2) = 22U et f = |F(G)| (number of regions of the triangulation as deter-
mined by the embedding). In any triangulation, we have 3f = 2e. Then, since
f =2, we have e = 3(v — x(5)) (see §5.4, Exercise 6).

v(v—1)

2

’1)2—’(}

e=3(v—x(5) <

6v —6x(5) <
0 < v?—Tv+6x(S)
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Only the positive integer solutions make sense, and using the quadratic formula,
we recover Haewood’s number:

s THVAT 20X (S) | {7+ VA9 24X(S)J
= 2 = 2 ‘

O

The following table shows Haewood’s number for some surfaces, both ori-
entable and nonorientable.

S (orientable) [ S? T 2T 3T 4T
(nonorientable) P|2P=K |3P | 4P | 5P | 6P | TP | 8P
xS 7 |1 0 | 1|2 |3 |4]5]6

H, 416 7 7181919 11010

It is important to realize that Haewood’s number is just a theoretical lower
limit. It may not be possible to realize this minimum in any given surface.
Surprisingly, however, the only surface for which the Haewood number is not
realizable is the Klein bottle. Exercise 10 asks you to find minimal triangulations
of a few surfaces. In order to show that Haewood’s number is realizable in
general, you would have to find a procedure that builds a minimal triangulation
for each space nT, and this falls outside the scope of this elementary discussion.

Exercises

1. The graph G4 in Figure 6.1 is an example of a tree. A tree is a graph
that has no cycles. Determine a relationship between V(T') and E(T) for
any connected tree T'. What is x(T') for a connected tree 77 What about
a tree that consists of & connected components (commonly known as a
forest)?

2. Show that the graph below is bipartite by finding an appropriate partition
of the vertices.

3. A tripartite graph is one whose vertex set can be partitioned into three
nontrivial subsets, V1, V5, Vs, such that no edges exist between vertices
within each V;. If |Vi| = ki, |Va| = kg, and |V3| = ks, then find the
total number of edges in the complete tripartite graph, Ky, i, k- What is
X (K ey o k)7
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Let c € {0,~1,—2,—3,...}. Find a bipartite graph B, such that x(B.) = c.
(Hint: See Exercise 2 and Example 108.)
If a graph has an Euler circuit, then the graph is called Eulerian.

(a) The following graphs are Eulerian. Find a specific Euler circuit in
each.

(1) K5 (11) K2,4

(b} Prove that a connected but not necessarily simple graph is Eulerian
if and only if every vertex has even degree.

(c) Using the previous result, show that the following graphs are not Eu-

lerian.
(i) Kg (iii) G from Figure 6.2
(i) Kags (iv) P from Figure 6.8

(d) Find a criterion that decides whether K, is Eulerian. Do the same for
Komn.

(e} Prove that a connected but not necessarily simple graph G has an
Euler trail if and only if there are no more than two vertices in G
having odd degree. Use this criterion to prove that there is no walk
that traverses all seven of the Konigsberg bridges exactly once (see
Figure 1.5).

. Finish the proof of Theorem 6.1.3 by filling in the details to show K33 is

nonplanar.

Draw an embedding of each of the following graphs into T. (Hint: Use the
plane diagram of T.)

(a) Ky (b) Ka3 (c) Ksp

Draw an embedding of the Petersen graph (P from Figure 6.8) into the
projective plane P.

. Explain why the graph shown embedded into T below is not a proper

embedding.
a

o)
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10. According to Theorem 6.1.4, a triangulation of P, T, and K must have a
minimum of 6, 7, and 7 vertices, respectively. There are triangulations of
P and T that meet the theoretical minimum; find them (using their plane
diagrams). The Klein bottle does not have a triangulation with only seven
vertices; find one that has eight vertices.

11. The genus of a graph G, written g{G), is the smallest number n such that
G properly embeds into nT. Using the proof of Theorem 6.1.4 as a model,

show that 5 .
e » [2= 90 =)

where [z] is the ceiling of the number z, the smallest integer k such that
k>x.

3

6.2 Graphs, Maps, and Coloring Problems

How many colors does it take to color a map so that adjacent countries receive
different colors? It depends — some maps require only two colors, some three,
while many others require four. If countries are not connected,? then even more
colors may be necessary. It also depends on what surface the map is drawn on.
We are used to maps drawn on the plane and on the globe, like the map depicted
in Figure 6.10, but you might imagine a huge toroidal structure encircling a
star, built by an advanced civilization. How many colors would suffice to color
an arbitrary map on the torus?

In fact, map coloring and the equivalent problem of graph coloring play
a major role in some important applications, including conflict avoidance in
scheduling, creating efficient algorithms utilizing limited hardware resources,
certain pattern-matching problems, and many others.® Before we can answer
these questions, we must define precisely what we mean by maps and coloring.

Maps on Surfaces

Bounded maps drawn in the plane are equivalent to those drawn on the surface of
S2. A coloring of a map on S? corresponds to a coloring of the same (isomorphic)
map on R? via stereoscopic projection. Conversely, suppose all bounded maps
on R? can be colored with N colors; then, for any given map, include one more
country consisting of the entire region surrounding the original map (the ocean,
perhaps). Then the new map with one extra “country” can also be colored with
N colors, and by stereographic projection, the extra country becomes a bounded
region of S?. Henceforth we shall restrict to maps that are drawn on compact
surfaces.

5Countries may be enclaves of other countries and/or include exclaves within other coun-
tries; see https://en.wikipedia.org/wiki/Enclave_and_exclave.
6See, for example, http://mat.gsia.cmu.edu/COLOR/general/ccreview/node2. html.
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Figure 6.10: A coloring of the western United States using four colors. Note
that the “four corner” states, Arizona, New Mexico, Colorado, and Utah, only
require two colors. Image courtesy of Pixabay (modified).

Definition 6.2.1. A map on a surface is a decomposition of S into
finitely many O-cells (vertices), 1l-cells (edges), and connected two-
dimensional subsets that we will call regions. Regions do not have to
be homeomorphic to disks. Two regions are considered adjacent if they
share an edge, but not if they only share a vertex.

A coloring of a map is a selection of colors for each region such that
adjacent regions have distinct colors.

A map is N-colorable if N colors suffice to color the map. Of course, if a
map is N-colorable, then it is also (IV +k)-colorable for any k € N. Now consider
all maps that could possibly be drawn on a surface. It may seem impossible to
make any claims at all about the colorability of maps we have never seen (and
likely will never see), in all of their infinite variation, but this is precisely what
topology and graph theory can help us to do. It turns out that every surface §
has a finite number v(S) such that N = (S) colors are sufficient to color any
map drawn on S.

That four colors are sufficient for any map on S? was first conjectured by
Francis Guthrie in 1852. Many “proofs” followed shortly thereafter, but each
had fatal flaws in it. It wasn’t until 1976 that Kenneth Appel and Wolfgang
Haken announced a valid proof,” proving that v(S?) = 4. In this text, we
will only be able show that 4 < +($?) < 5. First note that v(S?) > 4 since
there are maps that require four colors. The simplest such map is shown in
Figure 6.11.

7See https://en.wikipedia.org/wiki/Four_color_theorem for more details on the fasci-
nating history of the four-color problem.
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Figure 6.11: Left, an embedding of K, into S?. The embedding requires four
colors. Right, plane model shown. The dashed line going behind the sphere is
the identified edge a in the plane model.

Let’s begin to address the question of finding ¥(S) for any given surface S.
We must first rule out certain pathological maps. If any region borders itself —
that is, there is an edge in the map that is internal to a single region ~ then
no amount of colors would suffice to color the map. However, by removing such
internal edges, we may alleviate this concern.

Next, an important combinatorial result that leads to the proof that v(.5)
is finite. In what follows, we let v, e, and f be the numbers of vertices, edges,
and regions determined by a graph G embedded into a surface S. The average
number of edges per region for the embedding is then equal to 2¢. We have seen
something like this before. For a triangulation, 2e = 3f, so the average number

2e 2e

of edges per region in a triangulation is T T = 3, as expected.

Theorem 6.2.2. Given a surface S, if there exists a number N > 0
such that %—? < N for all maps on S, then v(S) < N.

We will prove the result in the case that all regions are homeomorphic to
disks, but the result can be generalized to arbitrary maps.

Proof. Suppose zfg < N for all maps on S. Proceed by induction on the number
of regions in an arbitrary map. There are many base cases: If f < N, then
clearly N colors suffice to color the map. Now assume that any map with no
more than k (where k > N) regions is N-colorable, and suppose we have a map
with f = k + 1 regions. Since the average number of edges per region is strictly
less than IV, there must be at least one region Fp having less than N edges.
Create a new map by the following procedure:

1. Put a new vertex vy in the interior of Fyp.
2. Draw edges from vg to all vertices of Fy (nonoverlapping of course).

3. Delete the edges of Fy.
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Figure 6.12 illustrates the procedure. Note that the new map obtained this
way has one less region. Thus, by the inductive hypothesis, the new map is
N-colorable. Simply reverse the process to “inflate” Fy back into existence, and
color Fy with one of the colors not used in its adjacent regions (there must be
an unused color because Fy borders at most N — 1 regions). ]

Figure 6.12: Contracting a region. The new map can be N-colored by induction;
then the original map can also be N-colored. In this picture, suppose the average
edge count per region is 3f9 <5 =N.

Theorem 6.2.2 would remain useless if we could not also bound the average
number of edges per region universally for all maps on a surface S. Suppose
all vertices in the map are at least trivalent (i.e., degree 3). This is not a
stringent requirement, as we have already ruled out degree 1 vertices (since that
would cause an internal edge within a region). A degree 2 (bivalent) vertex
connects two edges together. Simply removing the vertex and joining the two
edges into one continuous edge gets rid of the bivalent vertex. Thus we may
assume all vertices in a map are at least trivalent, which leads to the inequality
v < %e = v—e< —%e. Then we have

X(S)=v-e+f < —Z+f
e < 3(f—x(5))
2e _ x5
< < 6(1 : ) (6.3)

Now if x(S) > 0 (as for the surfaces S?, P, T, and K), then we have bounded
the average number of edges per region by 6, and hence at most seven colors
are required to color any map on a compact surface having a nonnegative Euler
characteristic.

. O
l Example 112. Determine the theoretical upper bounds on v(S) for S =
S$?, T, and K.

o x($?) = 2, s0 3}% <6 (1 — %) < 6 for any map. That is, the average

number of edges per region is strictly less than 6, implying v(S?) < 6.
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e Since x(T) = x(K) = 0, we have 2¢ < 6, which implies that seven colors
are sufficient to color maps on either T or K. The result is sharp for the
torus: y(T) = 7, because there is a map on T that requires seven distinct
colors (see Exercise 7). However, it turns out that v(K) = 6. The Klein
bottle is simply an anomaly with respect to both graph embeddings and
map colorings.

!
o

On the other hand, if x(S) < 0, then (6.3) yields, with the help of the triangle
inequality,

<6+§B@S6+6

x(S)l; (6.4)

2 _ ( 6 GX(S)I
f f
which shows that there is a finite upper bound for v(S) depending only on x(5).
In fact, we can sharpen this bound substantially, by working with the so-called
dual graph of a map.

Dual Graphs

In order to analyze maps more efficiently, we construct a related graph called
the dual of the map. The dual is defined for proper embeddings of a graph into
a compact surface, so we must be careful when applying it to a map (which may
be regarded as an embedding of a graph, but not necessarily a proper one).

When a graph G embeds into a surface S, then GG determines a set of con-
nected regions covering S. A region does not have to be homeomorphic to a disk;
however, additional edges and vertices may be added to the embedded graph
to make it a proper embedding. For example, if a region is homeomorphic to
an annulus, then separate the annulus into two disks as shown in Figure 6.13.
The new map can be constructed so that if it is N-colorable, then so must the
original map be N-colorable; this is done by making sure one of the disks is
large enough to border every region that the original region bordered.

Figure 6.13: Cutting an annular region A to make an equivalent map.
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Definition 6.2.3. If a graph G properly embeds in a surface S, then
the dual graph of G in S is the graph G* defined by the following.

e There are bijections fy : V(G*) — F(G), fi : E(G*) — E(G),
and fo : F(G*) = V(G).

o Two vertices v7,vs € V(G*) are adjacent if and only if their cor-
responding regions in G, fo(v}) and fo(v) are adjacent.

Figure 6.14: A planar graph G in black, and its dual G* in gray. Note there is
also a vertex in G* corresponding to the outside region of G. Both G and G*
are properly embeddable into the sphere S?.

Implicit in Definition 6.2.3 is the fact that G* also properly embeds into S.
This fact is not too difficult to prove. To construct G*, begin by putting a new
vertex in the interior of each region. Then draw edges connecting vertices in
adjacent regions, crossing each edge of G transversely.® The result is a graph
embedded into S (no edge of G* crosses another edge of G*). The embedding is
proper because the cycle of edges of G* that surround any given vertex v € V(G)
defines a disk neighborhood of v (why?). Thus planar graphs have dual graphs
that are planar (see Figure 6.14, for example). Moreover, the dual graph actually
depends on the choice of embedding. Different embeddings of G into S may result
is distinet dual graphs. For this reason, we cannot simply talk about “the dual
graph of G” — we must always have a particular embedding in mind first.

Coloring Graphs

Now that we have discussed dual graphs, we return to coloring. Up until now
we have only been coloring maps, but now we color the graphs themselves. A

8Transverse, in this case, means that the edges must intersect in a way that forms an angle
strictly between 0° and 180°.
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graph G is N-colorable if colors can be assigned to each vertex in such a way
that:

e Any two vertices connected by an edge have distinct colors.

e No more than N colors are used.

Theorem 6.2.4. A map defined by a graph G properly embedded into
a surface is N-colorable if and only if the dual graph G* is N-colorable.

The best advantage to working in graph coloring (as opposed to map color-
ing) is that no particular embedding of the graph G* is necessary. There is no
need to have well-defined regions, since it’s the vertices that are getting colored.
Note that we may assume the dual graph G* is simple. (Why? Think about
what the map defined by G would look like if G* has a loop or pair of parallel
edges.)

l Example 113.

(a) K, is n-colorable but not {(n — 1)-colorable, since each of the n vertices is
adjacent to all of the others.

(b) Kj3 is 2-colorable, as shown in Figure 6.15. The corresponding map, embed-
ded in T, has what is known as a checkerboard coloring since only two colors
are needed, as shown in Figure 6.16. Note that the embedding K33 C T
defines three regions (verify this using x(T)), so the dual K33 has three
vertices and six regions.

. i
A D
B E
c F

Figure 6.15: A 2-coloring of K3 3.

The dual graph can help determine an upper bound on y(S) for surfaces .S,
which happens to be none other than Haewood’s number.

Theorem 6.2.5. Suppose S is a compact surface. If x(S) < 0, then

¥(S) £ Hy(s)-
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w2 u T w z Yy v

Figure 6.16: Top, K33 embeds into T, with K73 5 indicated in light gray. Bottom,
the checkerboard coloring associated to the coloring of K3 3 from Figure 6.15.

Proof. By inequality (6.4), there is an upper bound for v(S). Let N > ~(5)
be arbitrary. Clearly any map having f < N regions is N-colorable, so assume
that f > N + 1. Then, since x(S5) < 0, we have —X—(TS—) > 3‘1\—,(—_%, and together with
inequality (6.3), we obtain:

fae(i-82) (- 42).

Recall that if the average number of edges per region 2¢ in a map is less than

N € N, then the map is N colorable. So let’s find the smallest N that satisfies

the following inequality.
x(5)
1 il N .
6 ( N 1> < (6.5)

In what follows, some details are left to the reader in the Exercises. After some
algebraic manipulation, we find the positive values of N that satisfy (6.5): N >

% <5 + /49 — 24x(8)> . Now for any real number 2, the smallest integer solution
to the inequality N > z must be somewhere within the interval (z,z + 1]. That
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is, we can be sure that N < |z + 1|. This gives

N < [1+% <5+W)J _ [7%/492— 24X(S)J —Hyg,

In summary, we have found that the average number of edges per region in

an arbitrary map on S is strictly less than Haewood’s number, and so v(S) <

H, 5. O
x(8)

It is truly remarkable that Haewood’s number arose in two different com-
putations. This is more than a mere coincidence. In fact, Theorem 6.1.4 and
Exercise 11 from §6.1, about certain kinds of graph embeddings, suggest a link
via the dual graph. If it could be shown that there is an actual embedding of
K, — S, then the dual graph K defines a map that must use exactly n col-
ors, so that ¥(S) > n. Though it takes some work, such embeddings do exist
for n = H,g), except when S = K (the Klein bottle). Therefore, so long as
x(S) < 0, we have solved the coloring problem: y(S) = H,s). What about
compact surfaces S with x(S) > 07 Well it turns out that only K breaks the
mold: v(K) = 6, while H, ) = 7. Surprisingly, though, the most difficult case
to prove is the sphere, but it is true that v(S?) = H, sy = 4. In the next section
we will only prove that v(S$?) < 5.

The “Five-Color” Theorem

Recall that we have already shown that 4 < (S?) < 6. The rest of this section
is dedicated to showing that v(S?) < 5 (the proof that (S?) = 4 is well outside
the scope of this text).

Let M be a map on S?. We first assume that all vertices of M are all triva-
lent (which would ensure that the dual graph is a triangulation). The general
case then follows from a simple transformation of the map: replace every vertex
having degree more than 3 with a small region as shown in Figure 6.17, then
the theorem would provide a coloring, and finally shrink the region back down
to a vertex to obtain a valid coloring of the original map having no more col-
ors than the trivalent map. Furthermore, we may assume that M has at least
one region with fewer than six sides (recall Example 112; since y(S?) = 2, we
found that the average number of edges per region in any map is strictly less
than 6).

The proof is by induction on the number of regions. As a base case, any
map with five regions is 5-colorable. Now let n > 5, and suppose all maps on
the sphere with n or fewer regions can be 5-colored. Let M be a map with
n -+ 1 regions. If there is a region F' with three or four sides, then at most four
regions are adjacent to F. Remove any edge of F, thereby joining F' to one of
the adjacent regions, ignoring any bivalent vertices. Then, by induction, the new
map M’ (which has n regions) can be 5-colored. Now replace the missing edge,
and since at most four colors are used in adjacent regions, F' can be colored
using the fifth color (see Figure 6.18).
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Figure 6.17: Replacing a.nontrivalent vertex with a region. After coloring the
whole map, the region may be shrunk down to a vertex to give a coloring of the
original map.

Figure 6.18: By removing an edge from a region F having three or four sides,
the map can be reduced to a five-colorable map. Then the edge may be replaced
and F' receives a different color than its neighbors.

If M contains no regions having only three or four edges, then there must
be at least one region Fyy having five sides. We may label adjacent regions by
Fy,..., F5, but keep in mind that the regions need not be distinct. For example,
Fy and F3 could be the same region, as shown in Figure 6.19. In this case,
though, there would be at most four distinct colors in the regions surrounding
Fy, and so the same technique works as if Fp had only four edges (simply delete
an edge not belonging to any region that meets Fy more than once).

Figure 6.19: A region Fy having five edges may still be surrounded by only four
regions. Here I} = Fj represents the same region.

Finally, suppose Fj is a region surrounded by five distinct regions, Fi,. .. Fs.
Now it is possible that some region F; could adjoin another region F;; however,
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there still must be a pair of regions that do not share an edge. Otherwise, if all
of Fi,..., Fy share edges, then in the dual graph there would be a K5 subgraph,
but we know that K5 cannot embed into S?. Without loss of generality, suppose
Fy and F5 share no edge. Delete the edges separating Fy from F; and Fi.
The resulting map M’ has n — 1 regions, and so can be 5-colored by inductive
hypothesis. After replacing the two missing edges, both Fy and F3 can receive
the same color, leaving the fifth color available for Fy (see Figure 6.20).

Figure 6.20: Regions Fj and F3 do not share an edge.

Exercises

1. Prove that if every vertex of a graph G has at least degree n, then |V (G)| <
2
= E(G)].

2. Inequality (6.3) shows that the average edge per region in any map on
§? is strictly less than 6. However, as f — oo, the average approaches 6.
Use this to explain why the sphere cannot be tiled with a finite number
of hexagons, but the plane R? can be.

3. Prove that the dual of the dual of a graph is isomorphic to the original
graph, in the sense that if G C S is a proper embedding, then (G*)* = G
with respect to the embedding in S.

4. Draw the dual graphs of each of the following (note the surface into which
the graph embeds properly).

(a) G" from Figure 6.2 (c) K30 CS?
(b) K4 CS? ) KsCT
5. A tree T may be embedded properly into S2, if we consider §?\ T as the

single region.

(a) Draw dual graph G, where G4 is found in Figure 6.1.
(b) Describe the dual graph T for any tree 7'.
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6. Consider the graphs H; and H, shown below.

Hy H2

(a) Find the dual graphs of Hy; and Hs and show that H} 2 Hj, even
though H, = H,.

(b) Find a 3-coloring of Hy. Since Hy = H,, that 3-coloring transfers to
Hjy. Show that your coloring induces valid colorings of both H and
H}. (Even though we cannot expect the duals of isomorphic graphs
to be isomorphic, the associated maps must have the same coloring
properties.)

7. Find a map in the torus that requires seven colors. (Hint: Find the dual
graph of an embedding K7 C T.)

8. Determine the theoretical upper bounds on v(IP) as provided by inequal-
ity (6.3) and Theorem 6.2.2. Show that the bound is sharp by finding a
map on P that requires this many colors. (Hint: See Exercise 8 from §6.1.)

9. Determine the least number of colors that are needed to color an arbitrary
graph in the following graph families.
(a) Connected bipartite graphs (c¢) Path graphs, P,
(b) Connected trees (d) Cycle graphs, Cp,

10. Show that inequality (6.5) is equivalent to the quadratic inequality N? —
5N + (6x(S) —6) > 0. Then use the quadratic formula to find the roots
and solve the inequality.

6.3 Knots and Links

What is a knot? Scouts and sailors learn how to tie together ropes in many dif-
ferent ways (see Figure 6.21), but none of those configurations are what math-
ematicians would call a knot. When my son asks me to unravel a huge knot
that somehow made its way into his shoelaces, I am not practicing knot the-
ory — as we shall see, knot theory has more to do with identifying knots rather
than untying them. For a mathematician, a knot usually means a closed curve
in three-dimensional space. Like graphs, knots are essentially one-dimensional
objects. Nevertheless, knot theory is a rich field of study full of surprising twists
and tangles. This section and the next provides just a brief survey of some
important concepts in knot theory.

970 a mathematician, most everyday “knots” are in fact tangles, which are basically knots
or links with free ends.
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Figure 6.21: Various nautical knots, bends, and splices.

Knots

Why do we care about knots at all? Knots are more than just a fun diversion.
They play a fundamental role in our own biology. Long chains of proteins and
the strands of our DNA can and do knot in various ways that affect their func-
tion. In fact, knots could be the foundation of everything in the universe ~ some
models of string theory incorporate knotted strings, and other areas of theoret-
ical physics use topological quantum field theory (TQFT), which is a certain
abstraction of knot theory.1®

For our purposes, a knot is a smooth, closed curve in three-dimensional space.
The term smooth comes from differential topology, and it basically means that
there are no “sharp corners.” More precisely, smooth means that derivatives of
all orders exists, and so, in particular, a well-defined tangent line exists at every
point of the knot.

Definition 6.3.1. A knot K is a smooth embedding of the circle S* :
into R3. '

We typically regard the image of K as the knot itself. To say that K :
S! —» R® is an embedding implies that K[S'] ~ S, or, being sloppy, we may
state that K =~ S' — so every knot is homeomorphic to every other knot and
homeomorphic to a circle. Hardly an interesting place to start, topologically
speaking. However, what we study in knot theory is the way in which knots can
be deformed within the space they inhabit, a concept called ambient isotopy.

1011 the late 1800s, Lord Kelvin proposed that the elements themselves were simply distinct
knots within the ether. Now we know there is no such thing as an ether pervading all of space,
and atoms are made of even stranger components — electrons, quarks, gluons, etc.
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Figure 6.22: Knot diagrams for a few mathematical knots.
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P

Two knots are considered equivalent if one can be deformed to the other by
ambient isotopy. It turns out that there are infinitely many distinct knots that
are not equivalent by ambient isotopy, which is much more interesting.

All knots live in three-dimensional space, but they can easily be represented
on two-dimensional paper using a knot diagram (see Figure 6.22). You may
notice “breaks” in the curve where two parts of the knot seem to intersect.
These breaks are not part of the knot itself (the curve isn’t actually broken up
into separate pieces) but indicate how one part crosses over or under another.
We'll call these intersections the crossings of the knot diagram. Each crossing
of a knot diagram must correspond to no more than two arcs of the knot going
past one another transversely.*!

C

Figure 6.23: Invalid crossings in a knot diagram.

If a diagram has an isolated invalid crossing, it can be fixed by a small
motion, called a perturbation, of the knot in space. What valid knot diagrams
might result from perturbations of the digrams in Figure 6.237 A knot K will
have many different knot diagrams, but there must be a diagram for K having
the least number of (valid) crossings.

Definition 6.3.2. The crossing number of a knot K is the minimum
number of crossings in any knot diagram representing K. The crossing |

aumber of K is notated C(K).

Each connected component of the knot diagram is called a strand, so a
strand starts at an undercrossing and goes to the next undercrossing. Up to
three distinct strands are involved at each crossing. Keep in mind that the term
“strand” only makes sense for a knot diagram, not the knot itself. The simplest

11wo curves meet transversely if their tangent lines do not coincide at the point of inter-
section.
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kind of knot is called the unknot, U, which is characterized by having a knot
diagram with only one strand and no crossings, and so C'(U) = 0. However, a
given knot diagram with many strands and crossings may in fact be equivalent
to the unknot.

O
l Example 114. The knot K shown in Figure 6.24 is equivalent to U.
Verify this on your own by carefully re-creating the pattern of crossings of K in
an actual string (be sure to tie the ends of your string together).

Figure 6.24: An unknot.

. i

What about the knots shown in Figure 6.227 Are any of these equivalent to
the others? Convince yourself that they are in fact all distinct knots (though we
actually cannot prove it until we develop more tools).

1 Example 115. A torus knot is a knot that can be drawn on the surface
of T with no crossings. Torus knots T(p, ¢) are characterized by two relatively
prime numbers p and ¢, representing the number of complete turns around
the torus in the two independent directions. The requirement that p and ¢ be
relatively prime ensures that there is only one component. If ged(p, ¢) = d, then
T{p, q) is a torus link of d components (see below for more on links). An easy
way to construct torus knots (or links) is to start with the plane model for T,
and draw p points on the left/right edge and ¢ points on the top/bottom edge.
Then, beginning near one of the corners, connect points in a diagonal stripe
pattern; if p and ¢ have the same sign, then the segments should have positive
slope, while if the sign of p and g differ, then the segments should have negative
slope. Figure 6.25 shows the simplest nontrivial torus knot, T(3,2).

o {
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Figure 6.25: The torus knot T(3,2) is a trefoil. First identify the points a, ¢,
and e by connecting each to its counterpart with a segment that goes “behind”
the torus. Then identify b and d with connecting curves. After smoothing out
the resulting knot diagram, it becomes clear that this knot is a trefoil.

Oriented Knots

Up to this point all of our knots have been unoriented, meaning that there is no
preferred direction of travel along the strands of the knot. An oriented knot is a
knot K together with a specified orientation, often denoted by arrowheads on the
knot diagram. Two knots oriented K and L are equivalent if there is an ambient
isotopy (in R3) taking K to L while preserving the orientation. Reversing the
orientation of a knot may result in an inequivalent knot (as oriented knots),
but does not change the equivalence class of the underlying unoriented knot.
By convention, the torus knot T(p, ¢) has the orientation induced by traversing
the segments in plane diagram for T up and to the right, while T(~p, —¢) has
" the opposite orientation (see Figure 6.26). However, T(p,q) and T(—p, —q) are
equivalent as unoriented knots.

a «/&) a a 1&» a
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b d b d
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Figure 6.26: Torus knots T(p, ¢) and T(—p, —q) have opposite orientations.

One simple way to describe a knot diagram (oriented or not) is by its Gauss
code. First choose a starting point and an orientation (if the knot is unoriented).
Label the first crossing you encounter as “1,” and continue to label new crossings
by consecutive integers. When you encounter a crossing for the second time,
leave the label as it is. Now, once all of the labels are on the diagram, start
the journey over. The Gauss code is a sequence of integers determined in the
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following manner. For each crossing n you encounter, put n if the strand you
are on crosses over the other, or —n if it crosses under. By the time you get
back to the starting point, every crossing will have been visited exactly twice,
once as an over (n), and once as an under (—n) crossing.

l Example 116. Find a Gauss code for the trefoil.

Solution: Based on the starting point and orientation shown in the figure
below, the Gauss code is (1,-2,3,-1,2,-3).

start

i

[es

Unfortunately, owing to all of the choices made, there could be many different
Gauss codes for any given knot. Moreover, the Gauss code may not determine
the knot precisely (see Exercise 9). However, there’s an easy fix called the ex-
tended Gauss code, which takes into account the sign of the crossing. In an
oriented knot, every crossing is either positive (right-handed) or negative
(left-handed). Perhaps the easiest way to tell the sign (or handedness) of a
crossing is to rotate the diagram until the under strand is pointing up. Then
the crossing is negative if the over strand goes to the left, and positive if to the
right. See Figure 6.27.

I- [ -

<GSR s

Figure 6.27: Left to right, negative and positive crossings.

The extended Gauss code is determined by first labeling the crossings by
integers as you would for Gauss code. Now as you traverse the knot, when you
encounter crossing n for the first time, put n or —n if it’s an over or under
crossing, respectively, just as before. However, when you reach crossing n for
the second time, put n or —n based on the sign of the crossing. For example,
the extended Gauss code of the right trefoil labeled as in Example 116 would
be (1,-2,3,1,2,3), the last three terms being positive because every crossing
in the right trefoil is positive.




236 CHAPTER 6. APPLICATIONS IN GRAPHS AND KNOTS

D
l Example 117. Draw the oriented knot whose extended Gauss code is

(1,-2,3,—4,~2,—1,5,—6,4,3, —6, —5).

Solution: There will be six distinct crossings. Start with the four unique
crossings 1 over, 2 under, 3 over, 4 under.

1l 2] 3] 4|

The next number in the code is —2. This means we have to reenter crossing 2
in such a way as to make a negative crossing; in this case, we must come in
from the below. The next code number, —1, means that crossing 1 must also be

negative.
1l 2] 3l 4 ’
| | }

Next we encounter two new labels, 5 and 6. This means we should draw two
more crossings at this point, first an over- and then an under-crossing.

i

1l 21 3] 4

|

l

Finally, finish the diagram with crossings 4 and 3 being positive and 6 and 5

being negative.
g
2 31 4

Lo J
ol

t ,
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A knot K is called alternating if K has a knot diagram such that over-
crossings and under-crossings alternate throughout the knot. The Gauss code
of an alternating knot diagram alternates between positive and negative labels
(but the extended Gauss code will not in general). It’s important to realize that
even though a knot diagram may not be alternating, it still could be equivalent
to one that is. Alternating knots are important in knot theory because a reduced
alternating knot diagram is guaranteed to have the minimal number of cross-
ings,'? which gives a handy criterion for finding the crossing number C(K). A
knot diagram is reduced if there are no crossings that separate the diagram
into two components. An unreduced knot diagram can easily be reduced by
untwisting these kinds of crossings (see Figure 6.28).

[P
o d >

Figure 6.28: Reducing a knot diagram.

On the other hand, there are knots that simply have no alternating diagram
at all; those are the nonalternating knots. Figure 6.29 shows a nonalternating
knot.

"‘\\/""
~_

Figure 6.29: A nonalternating knot with eight crossings. Image courtesy of Wiki-
media Commons.

12This was one of three famous conjectures by Tait in the late nineteenth century. Two of
the Tait conjectures were proven in a series of papers in the late 1980s by Louis Kauffman
[Kau87], K. Murasugi [Mur87a, Mur87b], and Morwen Thistlethwaite [Thi87, Thi88|, while
the third conjecture was proven in 1991 by W. Menasco and Thistlethwaite [MT91].
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Links

A link is a particular embedding of one or more copies of S into R3. All
knots are links, but not all links are knots. Links may be oriented, which means
that an orientation is assigned to each component of the link. An unlink of
n components is an embedding of n completely separated unknots. Perhaps
the simplest link that cannot be separated is the Hopf link, consisting of two
unknots linked together. Other famous links include the Whitehead link and
the Borromean rings shown in Figure 6.30. Figure 6.31 shows a link in which
one component is a trefoil.-

Figure 6.30: Left to right, the Hopf link, Whitehead link, and Borromean rings.
The Borromean rings have the curious property that whenever any single com-
ponent is removed, the other two components are unlinked.

Figure 6.31: This Celtic design is an example of a two-component link whose
components are a trefoil and an unknot. Image courtesy of Pixabay.

O
l Example 118. Suppose ged(p,q) = d > 1. Then T(p,q) is a link of d
components. Figure 6.32 shows a (4, 2)-torus link.

o {

Chirality

Suppose all of the crossings in a given diagram for a knot (or link) K are reversed
- over-crossings become under-crossings, and vice versa. The resulting knot K’
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a 6
d ¢
C ¢

-
=] XX

Figure 6.32: The (4, 2)-torus link, also known as King Solomon’s knot, though
it is technically not a knot.

o
4]

is said to have the opposite chirality'® as K. The mirror image of an oriented
knot changes every positive crossing to a negative one, and vice versa.

Often the two knots K and K’ are not equivalent to one another, in which
case we say that K (or K’) is chiral. The trefoil is chiral, as the left and right
versions are not equivalent (see Figure 6.33). In fact, every nontrivial torus
knot T(p,q) is chiral, its mirror image being T(p, —¢q) (see Exercise 5). If K
is equivalent to K’, then K is called amphichiral. The figure-eight knot
(rightmost knot in Figure 6.33) is amphichiral (see Exercise 6). Note that the
right trefoil has only positive crossings (regardless of the orientation), while the
left trefoil has only negative crossings, while the figure-eight has two negative
and two positive crossings.

Figure 6.33: Left to right, left and right trefoil knots, figure-eight knot.

Knot Sums

Given two oriented knots K and Ky, represented by knot diagrams, the sum
or composition of Ky and K> is an oriented knot K,# K, formed as follows
(compare to the connected sum of surfaces, Definition 5.1.3):

1. Remove an open arc from the diagram for Ky, without removing any
crossings.

13The word “chirality” comes from the Greek root xeip for hand. Just as your two hands
are mirror images of one another, two knots with opposite chirality are mirror images.
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2. Remove an open arc from the diagram for Ky, without removing any
crossings.

3. Join the knot diagrams by identifying the endpoints in a way that is
consistent with the orientations and does not create any new crossings.

The knot sum is unique in the sense that if Hy and H; are oriented knots
equivalent to K7 and Ks, respectively, then Hy#Hy is equivalent to Ki#Kos.
In particular, this means that the construction does not depend on which arcs
were removed from either knot. The connected sum of unoriented knots may
depend on the choice of orientations, unless at least one of the knots has the
property that one orientation is equivalent to the other through ambient isotopy
(in which case we call the knot invertible). The sum of links is not well defined
in general, as there is a choice as to which component of the link from which to
remove the arc.

O
l Example 119. The diagram below illustrates a knot sum of oriented
knots Ky and Ks.

> Y
(c; %s R

Ki1#K,

7

The knot sum is commutative (K 1# Ky = Ka#K1,VK1, K») and associative
(K G#FK)# Ky = Ki#(Ko#K3), YKy, K, K3). There is also a unit element,
the unknot U, which makes the set of oriented knots into a commutative monoid
with respect to the operation #.

Exercises

1. Prove that 3 is the least crossing number possible for a nontrivial knot by
showing the following.

(a) There are essentially two knot diagrams that have only a single cross-
ing; four if you count mirror images. Draw them and convince yourself
that each is equivalent to U.

(b) How many knot diagrams have exactly two crossings (there may be
more than you think). Draw each one and show the moves that prove
each is equivalent to U.
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Figure 6.34: The Buddha knot.

2. The “Buddha knot,” shown in Figure 6.34, is equivalent to U. Verify this
either by drawing a series of moves or by creating the knot in a string and
manipulating it.

Sketch each of the following torus knots and/or links, and state the number
of components of each.
(a) T(3,4) (b) T(2,6)

(c) T(3,6) (d) T(5,7)

Draw a sequence of moves to show that the link on the left is equivalent to
the Borromean rings. Then show the link on the right, in which the bottom
pieces have been linked, is equivalent to the unknot and a Hopf link that
are not linked to each other. (Moral of the story: If you go mountain
climbing with Borromean rings, never link two of the rings together.)

N 2
|=b |55
4
8 {

5. Verify that the torus knot T(3, —2) illustrated below represents a left trefoil
knot.

<o
> Q.

Qa ¢
C €
[ -
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» C
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\90 < g
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10.

11.

12.

CHAPTER 6. APPLICATIONS IN GRAPHS AND KNOTS

. Draw a sequence of moves that show how the figure-eight knot is am-

phichiral.

Take a long, thin strip of paper and make a M&bius strip by making one
half-twist and taping the ends. Then cut down the center of the strip. The
result is a single unknotted loop of paper. Now, with a new strip of paper,
make three half-twists in the strip. After cutting down the middle, the
result is a knot. Which knot is it? Do the same for five half-twists and
seven half-twists (you may need a very long strip of paper to do this).

. Find a Gauss code fbr two knots on the right in Figure 6.22. Then find an

extended Gauss code for each of these knots.

. Label the crossings of a left trefoil in such a way that its Gauss code

is the same as the Gauss code for a right trefoil. (This shows that the
Gauss code may not distinguish between mirror images.) Next, keeping
the labels exactly the same, show that the extended Gauss codes for the
left and right trefoil are distinct.

Not all sequences of numbers can be realized as the Gauss or extended
Gauss code of a knot (or link). Attempt to draw each knot based on its
code, and explain why the knot diagram cannot exist.

(a) Extended Gauss code: (1,—2,1,~2).

(b) Gauss code: (1,-2,-1,2).

Draw a sequence of moves that takes the Whitehead link as pictured in
Figure 6.30 to the (equivalent) link shown below.

f)

Let T be the right trefoil and 7" be its mirror image. Draw the knot sums
THT' (square knot) and T#T (granny knot).

6.4 Knot Classification

The classification of knots began with the work of physicist Peter Guthrie Tait
and mathematician Charles Newton Little in the nineteenth century. The Tait-
Little knot table has been steadily expanding over the years, and errors have
been found and corrected. For example, a pair of 10-crossing knot diagrams
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called 10161 and 10162 were found to represent the same knot.'* Much more can
be found in standard knot theory texts or online.!®

Prime Knots

We are familiar with prime numbers. They form the building blocks out of which
every natural number can be formed with respect to multiplication. Primes
themselves are indecomposable, meaning that if a prime p € N has a factorization
p = mn, then either m =1 or n =1 (i.e., one factor must be the multiplicative
unit element of N). Moreover, there are infinitely many prime numbers (see
§4.6), and yet every composite number n € N is the product of prime numbers
is a unique way (up to rearrangement of the factors). The set of knots under
the operation of knot sum has much the same kind of structure.

Definition 6.4.1. A knot K is called prime if whenever K = K1 #Ko,
then either K1 = U or Ky = U. A knot K that is the sum of two
nontrivial knots, K3 and Ks, is called composite, and the knots K,
and Ko are factors of K.

Proposition 6.4.2.

(a) Ewvery composite knot K can be written uniquely as a finite knot sum
of prime knots (up to rearrangement of the factors).

(b) The unknot U is not composite.

(¢) There are infinitely many prime knots.

The proofs of these important results fall outside the scope of this brief
survey. Determining whether a given knot diagram represents a composite knot
is quite difficult. The key is to find a disk D such that there are nontrivial
knotted arcs on both the interior and exterior of D, and such that 8D contains
exactly two points of the the knot diagram. Often the composite knot must
be deformed to an equivalent diagram before such a separating disk D can be
found. For example, the knot shown in Figure 6.28 is composite, being the knot
sum of a five-crossing knot and a trefoil.

Reidemeister Moves and Knot Invariants

So far, we've taken it for granted that you know what kinds of moves on knot
or link diagrams correspond to ambient isotopies of R®. At first it may seem as
though there are many ways of moving the strands around. Some moves only

4This duplication was discovered by Kenneth Perko in 1973, almost 100 years after the
knots were first tabulated. The two diagrams are now known as the Perko pair.
158ee the Knot Atlas: http://katlas.org/wiki/Main_Page.
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stretch, compress, or move the strands of the diagram without changing the
crossings in any way; those kinds of moves are called planar isotopies. Other
moves change the crossings of the plane diagram without changing the knot or
link itself. It turns out that there are only three basic crossing-altering moves.
Every ambient isotopy of R? that deforms one knot or link into an equivalent
one can be described by a finite sequence of planar isotopies and the three basic
moves called Reidemeister moves.

o Reidemeister move R.I. Twist or untwist a kink.

Q=R

e Reidemeister move R.IL Slide a strand over or under an adjacent parallel

strand.
\< Rt > < R >/
/ N

o Reidemeister move R.III. Slide a strand past a crossing. (There are four
such moves: the one pictured below, the one in which the middle crossing
has the opposite sense, and the mirror images of these.)

\J //\ R.III /

/

While it is easy to see that the three Reidemeister moves do not change the
equivalence class of a link, it is quite difficult to prove that only these three
moves are sufficient — a fact we will take for granted in this text.*

Just as topological invariants can be used to distinguish topological spaces,
there are knot invariants that serve to distinguish knots (there are also many
interesting link invariants, but we will discuss only knots in this section).

Definition 6.4.3. Suppose that for every knot there is a measurable :
quantity or property 2. If the value of 2 is the same on all equivalent |

knots, then 2 is called a knot invariant.

16For a more thorough discussion and proof of the Reidemeister Theorem, see, e.g., Man-
turov [Man04] or Messer and Straffin [MS06].
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Typically a knot invariant is a combinatorial quantity defined on knot dia-
grams. Thus if two knot diagrams differ with respect to some knot invariant,
then they must represent different knots. However, as is generally the case with
topological invariants, if two knot diagrams share the same values with respect
to a knot invariant, then we still cannot conclude that the knots are the same.

Now suppose we have defined a function 2 on knot diagrams. How can
we know whether 2 is a knot invariant? Since the Reidemeister moves are
sufficient to change any diagram into an equivalent one, .2 is a knot invariant
if and only if it is invariant under each of the three Reidemeister moves and
planar isotopy. For example, the total number of crossings in a knot diagram is
not an invariant. Both R.I and R.II change the number of crossings. (However,
the crossing number C(K) is a knot invariant because it’s defined as the least
possible number of crossings over all diagrams representing K.)

Definition 6.4.4. A tricoloring of a knot diagram is a choice of one ,:
of three colors for each strand of the diagram such that,

1. at every crossing, either all three strands have different colors or f
all are the same color, and '

2. all three colors are used.

If a diagram has a tricoloring, then the diagram is called tricolorable. |

T
I Example 120. A tricoloring of a knot (using the “colors” solid, dashed,
and dotted):

Theorem 6.4.5. Tricolorability is a knot invariant.
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Proof. We must show that tricolorability is preserved by planar isotopy and the
Reidemeister moves. Planar isotopy does not affect the relative position of the
crossings, and hence does not affect tricolorability.

R.I. The only valid coloring of a kink uses only a single color, so R.I cannot
change the tricolorability of a knot.

not R.I
) valid
’ A /

R.IL If the two adjacent strands have the same color, then after applying
R.IL, the new strand created must be colored the same color. If the two adjacent
strands have different colors, then after applying R.II, the new strand must be
colored the third color.

’ ’
R /  RI \/,’
e ) “ B ‘\..

/ \ VA

Conversely, if two parallel adjacent strands overlap as shown above, then the
two strands can be consistently colored after pulling them apart. We must only
check that no other kind of coloring exists for overlapped strands that would
cause inconsistency after being pulled apart. No other combination of colors
forms part of a valid tricoloring.

- ) - £ \ ) none are

valid
4 4 '
V4 V4 V4

R.III. This is Exercise 4. J

O
l Example 121. The unknot is obviously not tricolorable, as there is only

one strand in the standard knot diagram for U. The trefoil knot is tricolorable
(simply color each of the three strands a different color). Since tricolorability is
a knot invariant, this proves that the trefoil is not equivalent to the unknot.

o

Knot Polynomials

Tricolorability is a very limited knot invariant, since its only possible values are
yes and no. Other knot invariants such as the crossing number are difficult to
compute because they are defined not in terms of a single given knot diagram,
but over the whole class of knot diagrams for a given knot. Over the years, more
powerful knot invariants have been developed based only on the combinatorics
of the knot diagram.
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For example, the sum of signs of the crossings of an oriented knot diagram
comes close to being an invariant. But even though this quantity, called the
writhe of the diagram, is not a true invariant, it will be useful in defining a
powerful invariant called the Jones polynomial later on in this section.

Definition 6.4.6. Let K be an oriented knot diagram. Let X (K) be
the set of all crossings of K and o(x) be the sign of a crossing ¥ € X (K).
The writhe of K is the sum,

Based on the definition, it may seem that the writhe of a knot depends on the
orientation of the knot diagram. However, reversing orientation of the diagram
does not change the sign of any crossing.

1—1 |—1 1+1 |+1
I } I }

Unfortunately, the writhe is not a knot invariant because its value changes
under R.I. On the other hand, the writhe is invariant under R.II because the
signs of the two crossings involved are always opposite and so together contribute
0 to w(K) — the same amount that an uncrossed pair of parallel strands would
contribute.

The writhe is also invariant under R.III. Only one diagram is shown be-
low, but you should carefully check that the various choices of orientations and
relative positions of the crossings also work.

w=~14+14+1=1 w=]1+1~-1=1

We now turn our attention to smoothings of crossings. A crossing x in the
diagram for a link L can be smoothed in one of two ways, positively or nega-
tively:
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X x* X~

Denote by L+ the diagram obtained from L by smoothing y to x*, and sim-
ilarly for L, -. Note that after the smoothings, L.+ and L,- are typically not
equivalent to L. Here’s an easy way to remember the two types of smoothing.
If L has an orientation in which x is a positive crossing, then x* preserves the
orientation while x~ does not, and vice versa: if an orientation on L makes x a
negative crossing, then x~ will preserve that orientation while x* does not. See
the bottom row of Figure 6.35 for the 23 = 8 distinct ways to smooth all three
crossings of a trefoil. In what follows, we use the notation Ly LI Ly to mean that
the diagrams L; and Ly are separated (no crossings between Ly and Ls).

Definition 6.4.7. The Kauffman bracket of a knot or link diagram
is a Laurent polynomial'” in the indeterminate A defined recursively as
follows:

1. (U) = 1.
2. (LUU) = (—A2 — A=2)(L).
3. (L) = AlLy+) + A" (Ly-)

Note that rules 1 and 2 of Definition 6.4.7 imply that (nU) = (—A% —
A==t where nU is the diagram with n separated copies of the unknot (the
unlink of n components). The recursion must terminate since L can have only
finitely many crossings and each application of rule 3 (called a skein relation)
reduces the total number of crossings by 1, and when there are no crossings at
all, then rules 1 and 2 can finish the job. However, the recursive definition may
lead to an algorithm that runs in ezponential time. At each step, the number of
partially smoothed diagrams doubles.

I Example 122. Find (T"), where T is the right trefoil knot.

~ Solution: Figure 6.35 illustrates the smoothings of T done recursively. It
may help to follow this diagram as we work out the Kauffman bracket below.

7Laurent polynomial is like a polynomial except that negative powers are permitted. In
other words, every Laurent polynomial can be written in the form f(t) = amt™ 1t 4
coodaittag a1t oo d aane1tT L 4 gyt for some nonnegative integers m,n
and constants ay, where —n < k < m.
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Figure 6.35: Smoothings in the right trefoil knot.

For convenience, we have notated Txki by T4, etc.

(T) = AlTy)+A™HT-)
= A(A(Teq) + ATHTL)) + A7 (A(T-y) + AHT_L))
= AHTyi) + (T )+ (T-q) + A™XT)
= A (A(Thpy) + ATy ) + AT ) + AT )
F AT ) F AT )+ A2 (AT )+ A7HT_L))
= ANThiq) + ATpo) + ATy 1) + ATy )
F AT )+ ATHT )+ AT )+ AT )
= A(-AT— AT+ AQ) + AQL) + A=A - A7) + A1)
AT (=A% = A7) 4 AN A - A7) 4 ATI(— A% — A72)2
= AP - A4 AT

PNy

{

[+

Of course, there are certain shortcuts to finding (L) in general. For exam-
ple, T, _ and T_, in Figure 6.35 are equivalent by planar isotopy, and since
the Kauffman bracket depends only on crossings, (I_) = (T_ ). What about
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different diagrams of the same knot? Unfortunately, the Kauffman bracket does
not preserve all three Reidemeister moves, so we cannot conclude that the poly-
nomials are the same. Fortunately, there is an easy fix to this problem: combine
the Kauffman bracket with the writhe.

Definition 6.4.8. Let L be a link diagram. The Jones polynomial
of L is defined as follows. Let

(L] = (=A%) ENL).

Then J(L) is found by replacing A by t=*/4 in [L].

While it is not obvious from the definition, the Jones polynomial is indeed
a Laurent polynomial, since it can be shown that every term in [L] has degree
4k for some k € Z.

I Example 123. Find the Jones polynomial of the right trefoil T".
Solution: We have (T') = —A® — A=3 + A~7 from Example 122. The writhe

of T'is w(T) = 3.
JT) = [acs = (4972 (~A° = 472+ A7) |

A=t~1/4

- (A~4+A_12‘A_16)‘A /=t+t3—t4
y—1/4

Theorem 6.4.9. The Jones polynomial is a knot invariant. If the ori-
entations i o link have been fized, then the Jones polynomial is an
oriented link invariant.

Proof. We must show that the value of J is preserved under planar isotopy
and the Reidemeister moves. Since J depends only on the crossings, it is cer-
tainly invariant under planar isotopy. We should also be careful concerning the
orientation of the diagram. If L is a link diagram, then w(L) depends on the
orientations chosen for each component; however, if L has only one component,
then w(L) is the same regardless of the orientation.

R.I. Suppose L is a diagram having a crossing x that is a kink. Suppose
further that o(x) = 1 (the negative crossing is handled analogously). Let L'
be the diagram resulting from L after R.I has been used to untwist the kink x.
Observe that L,+ = L'UU and L - = L’ Our goal is to show that J(L) = J(L").
It is equivalent to show that . Note that w(L) = 1 4+ w(L’).

O
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(Ly = AI'UU)+AYL)
= A(-A* - AT (L) + AL
—ANL)
= [L] = (—A%)™NL) = (—A%)7IvE) (a3(L)
= (=A%)
L]

R.IL. Suppose L and L’ are related by move R.II, and let x and 7 be the two
crossings that are removed by R.II. We know from above that w(L) = w(L'),
so it suffices to show that (L) = (L’). Perform the smoothings of x and % as
demonstrated in Figure 6.36. Note that Ly, = L__, Ly_ = L', and L_, =

X

(L) = AXLog) +(Ly )+ (L) + A™HL__)

= AHLyi) + (L) + Loy UU) + ALy )

= ALy + (L) + (=A% = A7) (Lyy) + A73(Lyy)
L’

!

Technically we are not done until we have checked the other version of R.II, but
the steps are similar.

AN

W\

/

Ly ( LN\

/ /
2 S
Y v X
7N\ 7N\ A

Figure 6.36: Smoothings for the crossed pair of adjacent strands.
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R.III. There are many versions of the R.III move, depending on whether
the moving strand is above or below the other two, and what type of crossing is
in the middle. We will prove the result for one specific R.III move and leave the
rest to the diligent reader. Again the writhe is invariant under this Reidemeister
move, so we only need to check that (L) = (L), where L' is obtained by applying
R.III to a link diagram L.

The diagrams involved in the R.III move have three crossings, so it may seem
as though we have a lot of work to do. But the great thing about mathematics
in general is that prior work can be used to solve later problems. We will use
the fact that the Kauffman bracket is invariant under R.II moves. Consider the
smoothings of the crossing x in Figure 6.37. Observe that L_ = L’ through
planar isotopy. Also note that (L) = (L/_) since L, can be obtained from L,
using two R.II moves. The rest of the argument follows easily.

(Ly = A(Ly) + A"YL_) = ALY + A~NLL) = (L))

Figure 6.37: Smoothings of crossing x. The Kauffman brackets are the same
before and after the R.III move.

Now that we have shown that the Jones polynomial is a knot/link invariant,
it can be used to distinguish knots. For example, it can distinguish between the
left and right trefoil, and can prove that the figure-eight knot is not equivalent
to the unknot or the trefoil (some things that tricolorability could not accom-
plish). The Jones polynomial is quite a powerful invariant, but not a complete
invariant. There are inequivalent knots whose Jones polynomials coincide. How-
ever, all prime knots up to nine crossings have distinct Jones polynomials. More
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powerful invariants are known, including the HOMFLY polynomial and Kho-
vanov homology,’® to name just a couple.

Exercises

1.

Suppose L is a link of two oriented components, and let B (L) be the set
of all crossings x that involve strands from both components. Let o(x) be
the sign of crossing . The absolute linking number of a two-component
link L is defined by

(=3 ¥ otv)|.

x€B(L)

(Note that £(L) is not necessarily equal to the writhe w(L) since the former
only depends on crossings involving both components of the link.)

(a) Find the linking number of the Hopf link and Whitehead link from
Figure 6.30 and the link shown in Figure 6.31. You must specify ori-
entations on each component first. Try this exercise with different
choices of orientations.

(b) Prove that £ is a link invariant. Note that move R.I does not need to
be checked — why?

(c) Based only on linking number, which of the links from part (a) are
not equivalent to the unlink of two components?

. Determine whether the following knots are tricolorable or not. If tricol-

orable, then show a tricoloring.

(a) Trefoil (left or right) (c) Knot in Figure 6.29
(b) Figure-eight knot (d) T(3,4)

Is the knot pictured in Example 114 tricolorable? Explain your reasoning.
(Hint: The argument should take no more than one line.)

Show that tricolorability is preserved by Reidemeister move R.III. Care-
fully show each case and argue why you have exhausted all the cases.

. Draw every possible case of an R.III move on an oriented knot diagram.

Verify that each one leaves the writhe invariant.

Show that the writhe of a link depends on the orientations chosen for each
component.

18The HOMFLY polynomial was named after its co-discoverers, Hoste, Ocneanu, Millett,
Freyd, Lickorish, and Yetter [FYH*85]. Khovanov homology is an abstraction of the Jones
polynomial into the language of category theory. Khovanov homology has connections to the-
oretical physics by way of topological quantum field theories ( TQFTs) [Kho00].
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Determine the writhe of each knot in Figure 6.22 and the figure-eight knot.

Find the Kauffman bracket (K) and Jones polynomial J(K) for the figure-
eight knot.

Given a link diagram L with n crossings, each of the 2™ ways of smoothing
the crossings is called a state of L. Let S(L) be the set of states of L. For
each s € S(L), let s be the number of positive smoothings and s~ the
number of negative smoothings required to arrive at state s, and let |s|
be the number of components of s. Prove the state sum formula for the
Kauffman bracket, -

(L) = Z As+—s_(_A2 _A—Z)]s|~—1.
s€S(L)

Let K = K[S'] be a knot embedded in R3. Prove that R® \ K is a 3-
manifold!® (recall Definition 5.1.5).

Supplemental Reading

Adams [Ada01], The Knot Book. An excellent introduction to knot theory.
Bondy and Murty [BMO7].

Goodman [Goo05], Chapter 4, for maps and graphs, and Chapter 7 for an
introduction to knots.

Harris, Hirst, and Mossinghoff [HHMO08]. This text serves as a source text
for elementary graph theory.

Kauffman [Kau87] for the original paper introducing the bracket polyno-
mial and Jones polynomial for knots.

Manturov [Man04].
Messer and Straffin [MS06].
Prasolov [Pra95], Chapter 2.

19Then the properties of these manifolds can be studied in order to distinguish and classify

knots.



Part III

Basic Algebraic Topology



Chapter 7

The Fundamental Group

In §1.1, we discussed two types of equivalence: homeomorphism and homotopy.
Point-set topology is primarily concerned with the former, while algebraic topol-
ogy is built upon the latter. It will be shown that if two spaces are homeomor-
phic, then they are also homotopic, but the converse is far from true. Indeed,
as we’ll see shortly, every Euclidean space R™ is homotopic to a single point.
Homotopy is a much rougher measure of sameness than even homeomorphism.
So what good is homotopy? It turns out that homotopy is easier to work with
than homeomorphism in general. This means that homotopy can be used as a
practical topological invariant, in the sense that if two spaces are not homo-
topic, then they cannot be homeomorphic. In this chapter, we develop the first
step toward classifying spaces by their homotopy type, the so-called fundamental
group. The reader who is unfamiliar with group theory should consult §B.1 or
a standard text such as Armstrong [Arm88] or Dummit and Foote [DF04].

7.1 Algebra of Loops

In topology, if a difficult problem can be rephrased in terms of well-understood
structures, then substantial progress can result. This idea underlies what we
call algebraic topology. Algebra is the study of mathematical structure arising
from operations defined on sets of elements. For example, the set of natural
numbers N has a rich structure with respect to the operations of addition and
multiplication.’ In general, the point-sets of topological spaces do not possess
algebraic structures themselves, but there are certain ways to induce a structure
from some features of the space. Our first foray into algebraic topology explores
the way in which the loops in a space can be regarded as elements in an algebraic
structure called a group.

I Technically, N is a monoid with respect to both addition and multiplication — in fact, it is
a commutative semiring. The integers Z have something called a ring structure with respect
to addition and multiplication, while the real numbers R form an algebraic field.
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Loops and Homotopy

Recall Definition 2.4.1 of an arc, which easily generalizes to any topological
space. An arc « in a topological space X is a continuous function, v : I — X.
The basepoint of the arc v is the point v(0) € X. We are most interested in
arcs that return to their basepoints; that is, v(0) = (1). Such an arc is called
a loop in X and can be regarded as a continuous function 7 : I/ ~ — X, where
0 ~ 1. The orientation (direction of travel) for the loop is in the direction of
increasing s € I. Because of the homeomorphism I/ ~ ~ S', a loop may be
defined as follows.

Definition 7.1.1. A loop 7 in a topological space X is a continuous
function, v : S* — X. The basepoint of the loop is the point zp =

~(0) € X.

]

I Example 124. Consider the unit circle defined by the parametric

equation, \)\V\r\"‘ (,lfCl?/ C ﬁZ

§1:{<C982ﬂ8> |0§s§1}.

sin 27s

In fact, this definition of S* may be interpreted as a specific loop 77 : S! — S!
such that y(s) = (cos2ws,sin2ws). This loop traverses the circle once coun-
terclockwise. A loop that traverses S! twice counterclockwise could be defined
by

Yo o Sl d Sl
v2(s) = (cos2m(2s),sin2m(2s)), 0 < s < 1.

Similarly, a loop traversing the circle clockwise could be defined by

V1 : Sl e Sl
v_1(s) = (cos2m(—s),sin2w(—s)), 0<s< 1.

In this way, one could define loops on S! that go around the circle in either
direction any number of times,

Tn : Sl — Sl
vn(s) = (cos2m(ns),sin2m(ns)), 0 <s <1
Note that when n = 0, we have y(s) = (cos2w(0s),sin27(0s)) = (1,0) for
all s € I. That is, v is the constant loop at the basepoint so = (1,0). In

rA
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practice, the constant loop at a point z is denoted 1,,. When the basepoint is
understood, the constant loop may be denoted simply by 1.
f

We say that two loops v and 7 in the same space X are homotopic, and
write v =~ n, if the image of v can be continuously deformed to the image
of n. Think of this as a video that begins with ¥[S!] and proceeds through time
showing how the loop changes, until by the end of the video we see n[S!]. It’s
important to realize that this morphing of one loop to another must always
occur within the same space X. So, for example, if X has a hole, then it may
be impossible to deform a loop surrounding that hole into a loop that avoids it.
Also, the orientation of a loop, which is determined by direction of increasing
t-value, is significant. If a loop encircles a hole in a counterclockwise direction,
then that loop may not be homotopic to the same loop traversed in the clockwise
direction (see Figure 7.1).

o

]
cl ocKwWIS€
Figure 7.1: Loops in an annulus. Here, v o~ 7, but v % @ and v # &.

But how can we describe the video showing v ~ n more precisely? What is a
video, after all? It’s a sequences of images, called frames, one for each tiny slice
of time.? Now imagine that there is an image for every real-number time ¢ € I.= L0, |J
The most important requirement is that if two images are close in time (i.e.,
t =a and t = a+ ¢, where € = 0), then the images at those times must also
be correspondingly close. This is the essence of continuity, and suggests how we
should define homotopy for loops.

2In films there are typically at least 24 frames per second so that the illusion of continuous
real time can be achieved; however, our movies have infinitely many frames in a finite time
period.
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Definition 7.1.2. Two loops 7 : ' — X and 7 : 8! — X are homo- |
topic (y =~ ) if there is a continuous function (called a homotopy),

h:S'x1— X, such that /_> Pb’n‘\'s on O
\
e h(s,0) =(s), for all s € §', and b\(‘I“' Cj A2

e h(s,1) =n(s), for all s € S*.
If in addition the basepoints of v and 7 are both zg € X, and

e 1(0,t) =z, for all t €I

then we say the homotopy is basepoint preserving.

A loop homotopy h from 7 to 7 is a continuous map of the cylinder S* x I
to X, satisfying certain requirements. For each fixed ¢ € 1, h(s,t) is simply a
loop, notated by h; : S' — X (i.e., hy(s) = h(s,t)). It may help to visualize h
as a map taking the unit square into X in such a way that the bottom edge
is mapped to the image of the loop v = hyg, top edge is mapped to the image
of 7 = hy, and if the homotopy is basepoint preserving, then both the left and
right edges of the square are mapped into the single point xy. Each horizontal
segment of the square, which corresponds to a constant t-value, is mapped to
the loop h; in X representing a particular frame of the video in which [S?]
morphs to n[S!] (see Figure 7.2).

teI={o1)x ¢

h

sel/~

Figure 7.2: A basepoint-preserving homotopy from v = hg to 7 = hy in a
space X.

Definition 7.1.2 provides a way to consider when two loops are essentially
doing the same thing. Since loops are defined by maps v : S* = X, a homotopy
is really a way to transform one map into another in a continuous way. This
idea can be generalized to any kinds of maps — not just loops.
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Definition 7.1.3. Two maps f and g from Z to X are homotopic
(f =~ g) if there is a continuous function (called a homotopy), h : [
Z x I — X, such that '

e h(z,0) = f(z), for all z € Z, and
o h{z,1)=g(z), forall z € Z.

If in addition there is a subset Zg C Z such that h(z,t) = f(2) = g(2)
for all 2 € Zy, and ¢ € I, then h is called a homotopy relative to Zg, ||
or h is said to preserve Z;.

A homotopy h : Z x I — X is like a video showing how the image f [Z]
morphs into the image g[Z] within the space X. The case Z = S! gives loop
homotopy, while the case Z = I defines arc (or path) homotopy. Figure 7.3
illustrates an arc homotopy relative to the endpoints of the arcs.

Figure 7.3: An endpoint-preserving homotopy between two arcs hg and A;.

If a map v : (Z,20) = (X, o) is homotopic to the constant map (sending
all points of Z to the basepoint zg), then we say 7 is nullhomotopic. Each
Euclidean space R™, for n > 0, has the property that every map v: Z — R™ is
nullhomotopic (regardless of the domain space Z).

Definition 7.1.4. A space X is called contractible if the identity map [

of X is nullhomotopic. That is, idx =~ 1.

Thus R™ is contractible. As we shall see, the sphere S” is not.

Homotopy Classes

For a given space X, we may consider the set Loop(X) of all loops in X. Unless
X consists of only a finite set of points, Loop(X) is an incredibly large set -
too large to be useful. However, Loop(X) can be partitioned into useful chunks
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called homotopy classes. First we need to show that homotopy equivalence is
an equivalence relation. Recall from Definition A.2.2 that an equivalence relation
must satisfy reflezivity (v =~ ~y), symmetry (v ~n = n ), and associativity
(y~nand n~0 = v ~40). You will prove these precisely in Exercise 3, but
let’s gain some intuitive understanding first.

e The statement v ~ - means that the image ¥[S'] should always be de-
formable to itself. In terms of a video, this could be accomplished by
having every frame be the same image of the loop.

e Given that v ~ 7, there is a video that begins with the image of v and
ends with the image of 7. Simply play the video backward to verify that

7oA.

e Given that v ~ n and 5 ~ 0, this means there are two videos, Video A
showing how ~ morphs into 5, and Video B showing how 7 morphs into
8. By simply splicing the two videos together, Video A+B shows how
transforms into 8. We can even make Video A+B have the same running
time as A or B by playing the spliced video at twice the speed (this point
becomes important when using the formal definitions of loops as functions
St=1/~— X).

Definition 7.1.5. The homotopy class of a loop v : S — X is the
set of all loops homotopic to v,

W ={n:$" =X |v=~n}

O
l Example 125. Let n € N. Prove that in R"”, there is only one homotopy
class.

Solution: Let [0] be the equivalence class of the constant loop at the origin
of R?, and let v : S* — R™ be an aribtrary loop. We will show that v € [0].
Define a map h (candidate for our homotopy from v to 0) by:

h : S'xI-R"
h(s,;t) = (L—=1t)y(s).

First note that h is well defined since y(s) € R™ for all s € §!, and (1 — t)y(s)
simply scales the vector v(s) by a real number. The function h is continuous
since 7y is continuous and « is being scaled by a continous function, 1 —¢.

o h(s,0) = (1L —0)v(s) =v(s), Vs € §*
o h(s,1)=(1-1)y(s) =0, Vs € S!

Thus a homotopy exists, proving v = 0 and hence v € [0].
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This type of homotopy is called a straight-line homotopy because for any
fixed s, h(s,t) follows a straight line as ¢ ranges from 0 to 1. Each loop h; is a
scaled copy of +.

h(s,0) =(s)

h(s,1)=0] <7

Operations on Loops

Now let’s suppose a basepoint zg € X has been fixed. Consider the set of
homotopy classes of loops in X based at . Two loops v,n € Loop{X, zg) may
be composed, forming a new loop, called the product loop 7. 7. Intuitively,
we may think of a loop as a journey from xzg back to zg in finite time. When
two loops -y and 71 are composed, this means that first we venture through X
via the loop -, and then after returning to the starting point, set back out on
another journey via 1. But if every loop must always take the same amount of
time (being parametrized by the same space S!), then we simply require the
speed of the journey to be twice as great in order to traverse both v and 7 in
the required time. This leads to a formal definition for the product of two loops.

Definition 7.1.6. Let v,n € Loop(X, zg). The product loop is a loop
v.n: St = X defined as follows:

v(2s), s €1]0,1/2};

(v-m)(s) = {n(gs_ 1), se(1/2,1).

First note that the product loop is always well defined. To verify this, we
must show that .7 is a continuous map S* — X. Both 7 and 7 are continuous;
the key is what happens at s = 1/2.

im (y.n)(s) = lm 7(2s) = (1) = xo

s—37 s—+4

lim (y.n)(s) = lim n(2s—1) =n(0) =z

1+ 1+
s—r5 s
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Thus lim,_,1 /(7. 7)(s) = wo, which agrees with the value (vy.7)(1/2) = v(1) =
Zg, proving continuity of <. 7. Moreover, v .7 is a loop based at zy since
(v+m(0) = 7(0) = 2o and (v.n)(1) = n(1) = 0.

Consider the constant loop at xg, which we denote by 1:

1(s) = 29, VseS.

Suppose v € Loop(X,zg). What is . 1? According to Definition 7.1.6, v.1 is
the loop that traverses v[S'] twice as fast, then stops and remains at the base-
point for the second half of the time interval. It seems reasonable to guess
that v .1 =~ ~, but in order to prove this claim, we must find a specific
homotopy.

The analogy of homotopy as a “video” seems to break down in this example,
because the image (7. 1)[S'] looks just like the image [S!]. This is because we
see the images are static. But, in fact, it’s better to think of each frame as a
little video in and of itself. There are really two independent time dimensions,
if you will — one parametrized by ¢ € I and the other by s € §' ~ 1/ ~. So if
we start the video and immediately hit the pause button, fixing ¢ = 0 constant,
then we could let s run from 0 to 1 to see how a point would progress along
the loop 7. At any point ¢ € I, if we hit pause, the frame shows another loop in
which we could let s run from 0 to 1 to track how a point progresses along the
loop, as Figure 7.4 illustrates.

s=0 5:% 52% s=1
o g g A
1
1
t:% B : :
i
i
I
1
t

Figure 7.4: A homotopy h(s,t) visualized as an array of frames with respect to
two parameters; ¢ € I parametrizes the sequence of loops transitioning from ~y
to 1 (bottom to top); and when ¢ is fixed, s € S! parametrizes the motion of a
point along a particular loop in the sequence (left to right).
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Thinking of a possible video that could illustrate v.1 = -, all of the frames
would seem to show the static image of ¥[S!]; however, at any fixed time ¢ € I,
the motion of the point along the loop will be different. When ¢ = 0, we need the
point to travel along v in double-time then rest at zo (this is v.1). By the end
of the video (¢ = 1), the motion of the point is normal speed along ~. Therefore
we expect that at intermediate times 0 < ¢ < 1, the loop h; : S — X should be
defined in such a way that a point travels along 7 at some speed between normal
and twice as fast, and then rests at xp when it is done traversing y. How can
we devise a homotopy h that accomplishes this task? Let’s begin by drawing a
square as in Figure 7.2. The bottom represents « . 1, while the top represents
~. From bottom to top (in order of increasing t), we need to “get rid” of the
1 contribution, and the easiest way to do this is by drawing a straight line as
shown in Figure 7.5.

tel

se st
Figure 7.5: Homotopy 7.1 =~ 1.

Now to build the function h(s,t). Let’s assume that at any fixed time ¢, there
are parameters m and k such that:

B(s,) = hu(s) = {Wms% '€ 0.}

Assuming that k varies linearly in ¢ (based on our choice to draw a line, rather
than a parabola or circular arc, e.g., in Figure 7.5), we find an expression for k
in terms of ¢ using simple algebra. Since k must start at ¥ = 1/2 when t = 0
and end at k = 1 when ¢ = 1, we have k£ = %’l Then we use this information
to determine m. Assuming ¢ is fixed, the loop h; should return to (1) when
s = -t”;—l; that is, ms = 1. This implies that m = t—fjl— and leads to our proposed
homotopy, which is defined for all s € S* and t € L.

h(s,t) = {,Y (?%)’ se
s €

0, &t
Zo, (5, 1]

(7.1)

We still must verify that (7.1) satisfies the conditions required to be a homotopy
from v.1 to .
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o First verify that h(s,0) = [y.1](s), Vs € S*. When ¢ = 0, (7.1) reduces to

h(s,0) = {7(23); se|

Zg, SE(,

o
ot BOI

% (7.2)

Since 1(s) = @ for all s, we see that (7.2) is exactly ~. 1.

DO

e Next verify that h(s,1) = v(s), Vs € S!. Simply observe what happens
to (7.1) when ¢ = 1 is substituted: h(s,1) = 7(%) = ~(s) for all
se [0, 4] =10,1].

e Verify the continuity of h. Since v and 1 are both continuous, it is sufficient
to show that the limits agree as s approaches ¢ = ‘—“5—1- from the left and

right.
2s 2 (1)
im A(s,t) = li —— ] =1 . =7(1) =: 7.3
Jim As, 1) 33157<t+1> ’< t+ 1 )=z (73)
lim h(s,t) = lim zp = z¢ (7.4)
s—rct s—yct

Equations (7.3-7.4) prove continuity of h.

In fact, the homotopy h is even basepoint preserving. Let’s verify this now.

s 231
h0,t) = {7(0)’ se 05 (7.5)
Zo, s €

Now since (0) = xo, we see that (7.5) is the constant function 1(s) = .

Through a similar though much more tedious computation, we can prove
that. (v.7) .0 =~ v.(n.0) for arbitrary ~,n,0 € Loop(X,zo). Note that in the
product (v.7) .6, loops v and 7 are traversed in a quarter of the original time,
while 6 is traversed in half the time; in the product . (17.6), v is traversed in
half the original time, while both 1 and @ are traversed in a quarter of the time.
The corresponding picture and homotopy are shown in Figure 7.6. We have yet
to show that % is a valid homotopy, but this is straightforward (see Exercise 5).

Now consider traversing a loop defined by -y, but in the opposite sense. The
result is called the inverse loop for .

Definition 7.1.7. Let v € Loop(X,xo). The inverse of v is a loop [

771 St = X defined by (v71)(s) = v(1 — ).

In this text, we have already encountered a notation like this, and it is very
important not to confuse the notations (especially since they look exactly the
same). For example, when talking about functions, we use f~! to denote an
inverse tmage or inverse function for f. Neither of these two interpretations is
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ve(n.0)

Figure 7.6: Here (v.n) .8 ~ . (n.8) via the homotopy h shown above.

valid for v~. Here the inverse loop v~ ! is not a function from X back to S!.

Instead, v~1, just like +, is also a function S* — X, so when we form the loop

product v .~~1 or 771 .7y, we do not mean function composition as in yo~y~!

or yoy L.

1

Figure 7.7: Here .+~ * =~ 1 via the homotopy h shown above.

1 1

Now it should come as no surprise that yv.v~ " ~ 1 and v~ .y ~ 1, but as
always, these kinds of statements require proof. We will prove the first one and
leave the second one to the reader. The idea for our homotopy is simple: How
does one transition from a journey along v and back again to a “journey” that
goes nowhere? By only taking the journey along vy partway. For example, h; /o
should be the loop defined by traversing v only halfway, then turning around
and returning home, thereby traversing the last half of v~! as well. Note that in
order to take each round-trip in the same time period, the traveler could simply
wait around a bit in the middle. For example, when ¢ = 1/2, traverse the first
half the loop 7, wait at the point v(1/2) for some time, and then traverse the
last half of the loop v~! (which is just the first half of v backward). By the time
the last frame of the video is reached (¢ = 1), the point travels no distance along
v and simply waits at ¥(0) = zg for the entire time period. See Figure 7.7 for
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the explicit homotopy and associated picture. You should verify on your own
that h is indeed a valid basepoint-preserving homotopy, proving v.7~! ~ 1 (see
Excercise 6).

Exercises

1. Modify the argument from Example 125 to show that R” is contractible.

(Hint: Consider an arbitrary map Z — R™.)

. Let r > 1. Prove that D" is contractible.

Using Definition 7.1.2, prove that homotopy is an equivalence relation on
the set Loop(X). Then show that basepoint-preserving homotopy is an
equivalence relation on the set Loop(X, zg).

. Prove that 1.+ =~ v, where 1 € Loop(X,zo) is the identity loop and

v € Loop(X, ) is arbitrary.

Verify that the function h in Figure 7.6 is a basepoint-preserving homotopy
from (v.n).0 to v.(n.0) by following the steps outlined below.

(a) Show that h(s,0) = [(v.n).0)(s), Vs € S'.
(b) Show that A(s,1) = [y.(n.0)](s), Vs € St

(¢) Verify the continuity of h. Since each component function +, 7, and 6

are assumed continuous, you just need to show that the limits agree

as s approaches from the left and right at each point s = % and

t+2
i

(d) Show that h(0,t) = zg,Vt € 1.

S =

Verify that the function A in Figure 7.7 is a basepoint-preserving homo-

" topy from .5 to the constant map 1 (follow similar steps as those in

Exercise 5).

The product defined in Definition 7.1.6 may be extended to arcs, so long as
the endpoint of the first arc coincides with the initial point of the second
arc. That is, if & : I — X and 8 : I — X such that a(1) = 8(0), then the
product

a(2s), s€[0,1/2]

B(2s—1), se€(1/2,1] (7.6)

(a.B)(s) = {
is an arc in X from «(0) to 5(1). We say that arcs o and 8 are homotopic
if a(0) = B(0), a(1) = B(1), and there is an endpoint-preserving homotopy
from a to S (recall Figure 7.3).

(a) Show that the arc product is associative up to homotopy. That is, if
o, B, 7 are three arcs such that (1) = 8(0) and B(1) = (0), then
(@.B) v =a.(B.7)
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(b) Give a precise description of an inverse arc for a given arc v : I — X
Note that an inverse arc o™ in this context should satisfy: o, o™t =~
1o and a7t o 1o

7.2 Fundamental Group
as Topological Invariant

In §7.1 we have shown that the set Loop(X,zo) has a well-defined product, a
special element called 1 so that .1 is homotopic to v, a type of associativity
property for the product in which the two ways of associating three loops in a
product may not yield equal loops but give homotopic loops, and the existence
of loops that act as inverses, at least up to homotopy. The operations seem to
indicate that individual loops are not as important as their homotopy classes.
In this section we define the fundamental group, which is a group structure on
the set of homotopy classes of loops in a space X. The fundamental group turns
out to be a particularly powerful topological invariant.

The Fundamental Group

We now introduce notation for the set of all homotopy classes of based loops in
a space.

Definition 7.2.1. Let X be a space and 29 € X a fixed basepoint. The
fundamental group of X, based at xg, is defined as a set by

m1 (X, zg) = Loop(X, zo)/ =,

where =~ is homotopy equivalence. In other words, each element [y] €
m1(X, xg) is the homotopy class of the loop 7.

Note that Definition 7.2.1 only defines m;(X,20) as a set. The following
theorem specifies a product structure that makes this set into a group. The
key is that the loop product given in Definition 7.1.6 remains well defined when
applied to homotopy classes of loops, and the induced product satisfies the three
axioms required for a group structure (see §B.1 for details).

Theorem 7.2.2. The set (X, 20) s a group whose product is induced
by the product of loops in Loop(X, zg).

W)l = [ven)
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Y1

4! m
A A

h k

Yo 0
Yo« To

Figure 7.8: Homotopies 4 and k may be combined to produce a piecewise ho-
motopy H, showing 7o .70 = 71 « 71.

Proof. First we must verify that the product is well defined on equivalence
classes. Let 70,71 € [7], and no, 71 € [5]. That is, Yo = 1, and 19 = 77. Suppose
h:S'x 1 — X is a homotopy from 7y to 71, and k : §' x T — X is a homotopy
from np to 7. Define a new homotopy H : S' x I — X by

H(s 1) = {h(Zs,t), s €[0,1/2];
k(2s —1,t), se€(1/2,1).

Note that H(s,0) = yo .79 and H(s,1) = ~, . n1. It is easy to verify that H is
a continuous (indeed, H(1/2,t) = h(1,t) = k(0,t) = z is constant), basepoint-
preserving map, a homotopy from o .79 to 71 .1 (see Figure 7.8). This shows
that [v9.7m0] = [v1 .71]; in other words, [y] - [n] = [v+n] is a well-defined product
on m (X, xg).

‘The three group axioms follow from our work in §7.1:

I (Associativity) For all v, 7,0 € Loop(X, ®o), (v.1n)+0 ~ . (1.0). Therefore
(] - 161) - (6] =[] - (] - [6)) for all [y, [1), [6] € m1 (X, o).

II. (Ezistence of identity) Let 1 be the constant loop at 2. Then [1]
m1(X, z0) is the identity element, since for all v € Loop(X,zg), v. 1
1.y >~ implies [y] - [1] = [1] - [v] = [4] for all [v] € m (X, zp).

€

IIL. (Emistence of inverses) For any [y] € m, (X, o), the homotopy class [y~!] is
an inverse. That is, [y]™* = [y~!]. This follows from the fact that Yoyl
1~~~y for all v € Loop(X, 2); hence [y] - I =[1]=[Nx"1 ] for
all {’)/] S 7T1(X, :L‘o).

(]

In general the product of homotopy classes is noncommataetive; in other
words, typically we have [y] - [n] # [n] - [y]. This should be expected since the
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order in which loops are traversed actually matters, and more to the point, we
cannot generally produce a homotopy from ~v.n to n.7y. Consequently, the group
71(X, zo) is usually not abelian.

We note without proof that the product structure defined in Theorem 7.2.2
is also well defined with respect to arc products (as defined in §7.1, Exercise 7).
However, this time the product «. 5 only makes sense when (1) = 5(0). When
the arcs are compatible, then the product of homotopy classes [a] - [8] = [« f]
satisfies associativity. Moreover, for any loop «, there is a kind of “inverse”
[@]~ =[], but there is no unique identity.*

At this point, we have defined m (X, zg) for a topological space X with
chosen basepoint zg. What happens if we decided to use a different basepoint
z1 € X7 So long as X is arc-connected, the choice of basepoint is immaterial in
the sense that the corresponding fundamental groups are isomorphic.

Theorem 7.2.3. If X is arc-connected, then m (X, x0) 2 71(X, z1) for
any two basepoints xg,x1 € X.

The idea behind the proof is to choose an arc connecting zy and zy, and use
that arc to set up a bijection between loops based at xy with those based at ;.
See Figure 7.9.

Figure 7.9: The loop « based at zy can be extended to a loop 671 .~.6 based at
x, which first traverses the arc 6! from x; to o, then traverses «, and finally
6 to arrive back at 1.

Proof. Let 6 :1 — X be an arc in X such that 8(0) = z and (1) = z;. Define
a function on fundamental groups:

[ m(X,m) = (X, z1)
) = [y

In other words, f([v]) is represented by a loop beginning at x1, traversing ¢
(in the reverse sense) to get to zg, then going around the loop v, and finally

3Recall that an abelian group is a group whose product is commutative.
4This kind of structure is called a groupoid. For more about how groupoids may be useful
in homotopy theory, see Ronald Brown’s Topology and Groupoids [Bro06].
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returning to z; via 6. First verify that f is a group homomorphism:

FOD- £ = [0y 01107 an. 0]
= [0 -1 ) [0
= 07 -[v]-[n)- [6)
= [07 . (v.m). 0]
= f(lv.n])

The fact that f is an isomorphism follows from the existence of an inverse
homomorphism,

g  m(X,z1) = m1(X, 20)
gl = [6.v.671
You will verify in Exercise 1 that ¢ is indeed the inverse for f. O

Theorem 7.2.3 shows that the choice of basepoint does not matter when X is
arc-connected. In this chapter, we only work with arc-connected spaces, and so
it makes sense to use the less cumbersome notation 71(X) for the fundamental
group of X. However, there is no natural way to make the choice of connecting
arc between different basepoints. Even though 71(X,z0) & 71(X, 1), there is
no canonical choice for the isomorphism f : m1(X, 29) — m1(X,z;). While this
may seem like a minor annoyance, it can actually cause serious trouble, and so
in this text we assume that whenever a space X is considered, we have in mind
a specific fized basepoint 2y € X.

Induced Homomorphisms

Now let’s get back to the fundamental group. Suppose X and Y are topological
spaces and there is a continuous map f: X — Y. Let v € Loop(X); so v : S! —
X. Simply by composing with f, we obtain a continuous function fovy:S! — Y,
in other words, foy € Loop(Y'). The situation may be expressed succinctly using
the following diagram.

st -1y x

fk} if (7.7)
Y

Diagram (7.7) is an example of a commutative diagram. In any given di-
agram, the objects (in this case, S!, X, and Y) can be sets, groups, spaces,
etc., and the arrows, called maps or morphisms, indicate specific relation-
ships among the objects, often by way of functions, homomorphisms, continuous
maps, etc. What makes the diagram commutative is that if there is more than
one way to get from one object to another, then the maps or compositions of
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maps must be equal.® Diagram (7.7) simply expresses the fact that the compo-
sition of f and ~y is a map from S* into Y. If, in addition, f takes the basepoint
2o € X to the basepoint yo € Y, then composition with f defines a function,

f« + Loop(X,zg) — Loop(Y, yo)
f(y) = for.

Now suppose Yo,71 € [7], where [y] € #1(X) (with basepoint 29 € X under-
stood). That is, o and v, are homotopic in X via some homotopy A : StxI— X.
Will f o~y and f o~ also be homotopic in Y7 Consider the composition f o h.

S!xT Ry X

S )l/f (7.8)

Since f and h are continuous, so is their composition, and that implies that foh
is a homotopy between some pair of loops, (f o h)(s,0) and (f o h)(s,1). But

(f o h)(5,0) = £(1(5,0)) = F(70(s)) = (f ©%0)(s), and

(foh)(s,1) = f(h(s,1) = fF(m(s)) = (fom)(s).

Thus f o~y =~ f o via the homotopy f o h. In particular, this proves that
every loop in the homotopy class [y] € m1(X) gets mapped via composition
with f to a member of the homotopy class [f o] € 71 (X). We now have a well-
defined function from one fundamental group to another induced by a given
continuous function between the spaces. In fact, we've hit the jackpot: this
function turns out to be a group homomorphism. In what follows, the notation
f:(X,zo) — (Y,yo) means that f: X — Y is a continuous map of topological
spaces such that f(xo) = yo.

Definition 7.2.4. Suppose f : (X,z0) = (Y,y0). The induced ho- ||
momorphism £, : 71 (X) — 71 (Y) is defined for all [] € m1(X) by:

fu(b]) = [f o] em(Y).

Exercise 2 asks you to prove that f, is indeed a group homomorphism. The
following properties are quite useful.

5Commutative diagrams are the bread and butter of category theory. The language of
category theory is incredibly useful in algebraic topology and related areas of mathematics,
even though when introduced in the first half of the twentieth century, some mathematicians
referred to it as the theory of general abstract nonsense [EML45, ML71].
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Theorem 7.2.5.

e Suppose f i (X,z0) = (Y,v0), and g : (Y,y0) — (Z,20). Then
(go s =guo fe

o Ifidx : (X,mg) — (X,x0) is the identity map, then (idx). =
id,, (x)-

In words, Theorem 7.2.5 states that the induced map of a composition is the
composition of the individual induced homomorphisms, and the induced map
of an identity map is the identity homomorphism.® What properties does f.
have if f: X — Y is a homeomorphism (i.e., bijective and bicontinuous)? There
would be a continuous map ¢ : ¥ — X such that go f and f o g are identi-
ties on X and Y, respectively. After inducing to maps of fundamental groups,
the resulting homomorphisms must also be inverse to one another (see also
Figure 7.10).

gzofe = (gof)=(idx)«= idm(X)
feoge = (fog) = (dy). =1ids,(v)
Y Y idy Y
x| | X
- v idg, (v i ‘L
m(Y) m (V) — y (YY)

N

D e
T e

=
=
>

2
2
2

Figure 7.10: The diagrams shown should be read from the top down. Dashed
arrows indicate the operation of sending each space to its fundamental group.
Each of the four triangles is a separate commutative diagram. The top left
triangle indicates g o f = idx, which gets induced to the bottom left triangle,
g © fy = idx, (x), and similarly the top right triangle, f o g = idy, gets induced
to the bottom right triangle, f. o g« = idy, (v).

6In the language of category theory, Theorem 7.2.5 implies that the fundamental group
is a functor from the category of based topological spaces to the category of groups, which
takes each based space (X, zo) to the group w1 (X), and each based map f : (X,z0) = (Y, v0)
to the induced map f« : 71 (X) — w1 (Y).
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Theorem 7.2.6. The fundamental group is a topological invariant.

Proof. If f : X - Y is a homeomorphism, then f, is invertible; hence f, :
m1(X) = m(Y) is a group isomorphism. O

The fact that the fundamental group is a topological invariant means that
we can use it to distinguish spaces. If m1(X) 2 m1(Y), then X % Y. However,
the fundamental group is not a complete invariant, in the sense that there are
spaces X 2 Y but with n1(X) & m(Y). In fact, m; cannot distinguish the
Euclidean spaces R™ for various n € N. Example 125 shows that =1 (R™) = {[0}}
for any n € N.

If 71 (X) consists of only one element (the homotopy class of the constant
loop), then we say m1(X) is trivial, which is typically denoted by 1 (or by 0
if all groups under consideration are abelian), and we call the space X simply
connected. For n > 2, 71 (S") is trivial, so every sphere of dimension at least
2 is simply connected. On the other hand, 7 (S!) is infinite, as we shall see in
§7.3.

Exercises

1. Suppose f and g are defined as in the proof of Theorem 7.2.3. Verify that
g o f is the identity on m1 (X, zg), and f o g is the identity on m1 (X, z1).

2. Let f: X — Y be a continuous map. Prove that the induced map f, :
w1 (X) — 7 (Y) is a group homomorphism.

3. Prove Theorem 7.2.5.
4. Let » > 1. Prove that = (D") = 1.

5. Suppose X is a radially convex subspace of R™ (recall §2.4). Prove that X
is simply connected.

7.3 Covering Spaces and the Circle

How many ways are there to draw a loop in the circle S*? This is actually not
a trivial question. Remember that a mathematical loop v : ' — X can wind
around the space X in any crazy way. However, we may intuitively understand
that the loops in S' should be classified by how many complete times they go
around the circle, ignoring any backtracking, so perhaps 71(S') is in one-to-
one correspondence with the set of integers Z = {...,~2,-1,0,1,2,3,...}. The
product of a loop going m times around S' and a loop going n times (in the
same direction) around S? is clearly a loop going m +n times around the circle,
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so there seems to be a correspondence with the group structure of the integers:
Z is a group whose “product” operation is simply addition. However, this all
takes a very careful argument. We will require more mathematical machinery,
including the idea of a covering space, which also becomes useful for other results
in algebraic topology.

Covering Spaces

Consider the definition of the torus T as a square with identifications along the
boundary. An equivalent way to define T would be as a quotient space of the
plane, T ~ R2/ ~ , where for any (z,y) € R?, we identify (z,y) ~ (z+m,y+n)
for arbitrary m,n € Z. Think of the plane as divided into infinitely many copies
of squares joined at their boundaries. When an arc starts in one square and
exits over the right boundary line, it enters the left side of the neighboring
square. On the other hand, since all of these squares are identified, the arc is
really reentering the same square from the left, as we would expect? in the
usual plane diagram for T. What we have defined is called a covering map,
p:R? — T, which takes (z,y) € R? to the equivalence class of (z,y) in R*/ ~ .
See Figure 7.11 for an illustration of the map p.

LR R
i e 2 hrJ e 2 B

Figure 7.11: The preimage of an arc in T with respect to the covering map
p: R? = T. Also shown: p~*[U], where U is a small, open disk neighborhood in
the torus. Note that p~*[U] (in gray) consists of infinitely many disjoint copies
of the open disk.

"Note that this is exactly the same idea as in Figure 1.19 from §1.2.



7.3. COVERING SPACES AND THE CIRCLE 277

Definition 7.3.1. A map of topological spaces, p : E — X, is a cov- "
ering map if for each x € X, there is an open neighborhood U € X |
containing 2 such that p~*[U] C E is the union of disjoint open sets,

p—liU} = UVa:

and such that p restricts to a homeomorphism Vq X U for each a.

While Definition 7.3.1 may seem esoteric at first, it can be summed up in an
intuitive way using the example p : R2 — T from above. A covering p: £ — X
looks locally like a stack of identitical patches of £ mapped onto a single patch
of X, just as the infinitely many open disks V4 in Figure 7.11 all get mapped by
p to a disk neighborhood U in the torus. The main reason to introduce covering
maps is that they serve as a way to talk about homotopy in a more familiar
context. For example, it may be very difficult to understand when two loops
are homotopic within a torus, but arcs in R? whose images are loops in T may
be analyzed quite easily. The key is to know how loop homotopies in the base
space X correspond to arc homotopies in the covering space E whenp: E — X
is a covering map.

Suppose p: £ — X is a covering map, and f : Z — X is any map. We say
that f: Z — Eisalift of fif po f= f. The relationship can be expressed by
the commutative diagram shown below.

B
I (7.9)
7z x
The main idea of the following Homotopy Lifting Property is that homotopies

defined on a space X can always be lifted to related homotopies on a covering
space for X.

Theorem 7.3.2 (Homotopy Lifting Property). Supposep: E — Xisa
covering map. Given any map h: Zx1— X and a lift ;L; 1 Zx{0} = FE
of hg : Z x {0} = X, there is a unique map h:Z x1— E lifting h,
and restricting to ho on Z x {0}.

Equivalently, the commutative diagram on the left can always be augmented
by the dashed arrow to form the commutative diagram on the right.

Zx {0} 2 E Z x {0} - E

g™ o= e 27 @o

Zxl -5 X Zxl —ts X
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The proof is a bit technical; however, it uses nothing more the definition of a
covering space and compactness of I to build up the required map. It may help
to refer to Figure 7.12 as you read through the following argument.

Figure 7.12: Building h:Zx1— E one neighborhood at a time. This diagram
shows four “box” neighborhoods covering {z} X I, but of course there could be
many more in general. As suggested by this figure, the covering map p could
be understood as “wrapping” the space E around X, and so p~! “unwraps” X
locally.

Proof. Let z € Z be arbitrary. Observe that for each ¢ € I, we have h(z,t) € X,
and since p : £ — X is a covering map, there is an open neighborhood Uy € X
with h(z,t) € U; such that p~}[U;] is the disjoint union of subsets of E each
homeomorphic to U;. Now h~ U] € Z x 1 is open (by continuity of k), so there
is are open neighborhoods N; € Z and I; C I'such that (z,t) € Nyx I, € h™U,]
(recall that the products of open sets form a base for the topology on a product
of two spaces). Furthermore, we may assume there is a number ¢, € R™T such
that I} = (t — e, t+¢)NL

At this point we have constructed an open set Ny x I; for every point ¢ € I,
and the collection of these sets covers the compact subset {z} x I C Z x T (why
is this subset compact?). By compactness, finitely many of the sets IN; x I; cover
{z} x I, say, {Wy = Ny, X I}, }k=o0,1,..r, Where 0 <tg <ty <tp <--- <t <1
We may assume that Ip,, € Iy, for any &' # k; otherwise, Wy = Ny, X Iy,
can be omitted from the cover. As a consequence, Iy, NIy, ,, # @ for each
k=0,1,...,r —1 (why?).
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The construction of & : Z x I — E is done inductively. An inductive con-
struction is much like a proof by induction. There is a base step, which defines
an initial part of the construction. Then we may assume the existence of a par-
tial construction satisfying whatever conditions are required. If it can be shown
that it is possible to extend this partial construction by one more step, and so
long as the number of such steps is finite, then the construction can be carried
out to completion.

As a base step, let Vo C p~*[Uy] C E be the open set homeomorphic to
U, such that ho(z) € Vp. There is only one choice for Vp, since if another such
set Vj existed, then ho(z) € Vo N V{, contradicting the fact that the open sets
comprising p~1{U,] must be disjoint. The homeomorphism Vo — Uy, is the
restriction ply, of the covering map p to the set Vo, which we will call pg. Define
h on Wy as the composition Do Lo h. This composition is well defined because
h[Wo] C Uy, and py't is a map Uy, = Vo.

At this point, the map h satisfies the CODdlthnS required in Theorem 7.3.2
on the subset Wy C Z x I. In particular, 1 is continuous (being the composition
of continuous functions), and we have

R(z,0) = (55} © h)(2,0) = py* (h(2,0)) = ho(2), (7.11)

where the equality pg ' (h(z,0)) = ho( ) follows from the fact that ho is a lift of
ho; more explicitly, since po% = hg, we obtain po(hg( )) = (ho( )) = ho(z) =
h{z,0). Moreover, the map h so far is uniquely determined (by properties of the
covering map).

Next we would like to extend the domain of definition of htoall of Z x I
Let £k € N, 1 < k < r, and suppose that we have constructed h so that it is
defined on Wo U Wy U - - - U Wy, satisfying the conditions of Theorem 7.3.2 on
its domain. We extend the domain of definition for h to include W, as follows.
Consider U;, € X. We have h(z,t;) € Uy, and h[Wi] = h[Ny, x I} C Uy,
Now Wi_1 N Wy # 0 (since I, _, NI, # O and both N,_; and Nj contain
at least the point 2). Let T = Wiy N Wj. Since T C Wj—1, the map h has
already been defined on T, and we have h[T] C U;,. Let Vi, C p~'[U;,] € E
be an open set homeomorphic to Uy, such that 2[T] C Vi (which is possible to
find because p[h[T]] = (p o h)[T] = h[T] C Uy,). Clearly, such V. is unique (for
the same reason Vp was unique) Let pr = p§vh, so that p; : Utk — Vi is a
homeomorphism. Extend h by defining h= D) Yo h on Wy. Thus % is the unique
map defined on WoUWyU---UWj such that h = po h and such that h restricts
to ho on the neighborhood of Z x {0} on which it is defined. After finitely many
steps, h can be extended to all of WoUWiU---UW,.

Finally, since z € Z was arbitary, we have in fact defined h on all of Z x
I. Continuity of h follows directly from the construction: h is continuous on
every neighborhood Ny x I, and the values of the function must agree on every
intersection of those neighborhoods owing to uniqueness of the construction. [

As a direct consequence, paths can be lifted uniquely to covering spaces.
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Proposition 7.3.3 (Path Lifting Property). Supposep: E — X is a
covering map.

(a) Supposey:1— X is a path with initial point v(0) = xo. Ifeg € E is
any fized preimage of o with respect to p (i.e., eg € p~{wo]), then
there is a unique path 7 : 1 — E lifting v and such that (0) = eg.

(b) If v =~ n are paths in X and 7,7 are their lifts in E such that
7(0) = 7(0) = eg, then ¥ =~ 7 in E via a homotopy relative to eg.

The proof of part (a) follows by letting Z = {zp} be any one-point space and
applying Theorem 7.3.2 to -y regarded as a map Z xI ~ I — X. Part (b) follows
by letting Z = I. We are now ready to work out our first nontrivial fundamental

group.

Fundamental Group of the Circle

For each integer n, consider the loop A, traversing the circle n times counter-
clockwise if n > 0, or |n| times clockwise if n < 0.

A I R?
Mn(8) = (cos2m(ns),sin 27w (ns)) (7.12)

Note that A\, (0) = A.(1) = (1,0) = s, which we take to be the basepoint of
S!. The circle S? itself can be thought of as the image of I under the map A;.
Now the homotopy classes of the loops A, defined by (7.12) for various n € Z
are elements of the fundamental group of S, so we can define another function,

¢ = Z—m(Sh
p(n) = [Al]. (7.13)

In fact, ¢ is a group homomorphism, as it can be verified directly that A, « A, =~
Antm for all n,m € Z. That is,

d)(ﬂ + m) = [)‘n-i—m] = [)‘m . /\n] = [)‘m] ' {)‘n] =¢(n)- B(m).

At this point we only know that there is a set of loops [Ay] in 71 (S*) indexed by
Z, but we do not know whether two loops A, and A, may in fact be the same
in 71 (SY) (ie., is ¢ injective?), nor can we be sure that every loop in 7 (S') is
represented by one of the loops A, (i.e., is ¢ surjective?). These two questions
will be addressed by finding an inverse function for ¢. As you might imagine,
this is the hard part of the argument, which will be taken up in the proof of
Theorem 7.3.4 below. But first consider the function

p : RS
p(z) = (cos2nz,sin2nz). (7.14)
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The map p has the property that p(n) = sy for every n € Z. It may help to
visualize p as taking the entire number line, coiling it up, and projecting all of
the coils onto the circle S!, as shown in Figure 7.13. This map p is a covering.
For example, if we let Uy = A{[(1/8,7/8)] and Uz = A\{[[0,3/8) U (5/8,1]], then
S' = Uy U Us, and we see that each of p~*[U;] and p~*[Us] is a disjoint union
of open intervals in R* (see Figure 7.14).

-2 -1 0 1 2 S0
/
P
R! St
Figure 7.13: The “coiling” map p: R! — St.

80

A
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-;— 0,

So

I
0 1

Figure 7.14: Uy is the image of (1/8,7/8) in §*, and Uy is the image of [0,3/8) U
(5/8,1] in S!, under the map A; : I — S'. The inverse images p~*[U;] and
p~1{Us] are each a disjoint union of (infinitely many) open intervals in R%.
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Theorem 7.3.4. m(SY) = {[\,] | n€Z} ¥ Z

Proof. Suppose v is a loop in S! with basepoint so. Here we are regarding v as a
path I — S with v(0) = y(1) = so. Let p : R! — S! be the covering map defined
by (7.14). Now using p, Proposition 7.3.3(a) can be used to lift v uniquely to a
path 5 : T — R! such that 5(0) = 0 € R. Since p~![{so}] = Z C R?, we know
that (1) is equal to some integer n(y), as illustrated in Figure 7.15.

The loop An(y) in S' also lifts uniquely to a path m in R! having initial
point 0 and terminal point n(7y). Recall from Example 125 that there is only
a single homotopy class of loops in any given Euclidean space R™. A similar
argument shows that all paths having the same initial and terminal points are
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I :“1_—> Sl LR .
q\\y Tp .............. S Rl
R? 0 1 2 3 n(7y)

Figure 7.15: There is a unique lift 5 of v such that ¥(0) = 0 € R*.

P

homotopic through an endpoint-preserving homotopy. Thus 7 =~ A, via a
homotopy A : I x I — R!. Composing with the map p, we find v = A,y via the

basepoint-preserving homotopy p o h.

Next we must prove that the value of n(y) is uniquely determined by the
homotopy class of 7. Suppose v =~ 71 via a homotopy h : T x I — St (again
veiwing the domain of the loops as I rather than S'). Then the lifts 7 and 7
are homotopic via a unique homotopy h:IxI— R!, preserving the initial
point 0 € R!, by Proposition 7.3.3(b). The map f(t) = h(1,t) identifies the
terminal points of each path he. In particular, f(0) = F(1) = n(y). Noting that
po b= h, and the fact that h is a basepoint-preserving homotopy, we find that
the codomain of f is the discrete space Z. The only continuous functions into a
discrete space are the constant functions; therefore f(1) = 7j(1) = n(y) as well.
This shows that n(n) = n(y), which is what we needed to prove. (Observe that
this argument also shows that [A,,] # [An] if n #m € Z.)

The preceding discussion shows that 71 (S*) = {[\,] n € Z}, and provides a
well-defined function, inverse to ¢, as defined by (7.13):

o=t . m(SH) =7,
o7 () = n
This proves that ¢ is bijective, and so must be a group isomorphism. O

Brouwer Fixed-Point Theorem

We end this section with an important application of the fundamental group.
Take two identical sheets of paper and place them on the table, one right on
top of the other. Imagine that both sheets represent the same rectangle of the
coordinate plane, so a point that is z centimeters from the left edge and y
centimeters from the bottom edge would correspond to the point (z,y) € R?
in both sheets. If the two sheets are aligned perfectly, then every point of the
top sheet is directly over its corresponding point on the bottom piece. Now shift
the top sheet 1 cm to the left (of course, this will cause a strip of the left side
of the top sheet to fall outside the region of the bottom sheet). Since every
z-value is decreased by 1, there are no points of the top sheet directly above
their corresponding point on the bottom.
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Now take the top sheet and fold it, twist it, and crumple it up in any way
you want, so long as you don’t tear it. Then drop it onto the bottom sheet, in
such a way so that no part of the crumpled paper falls outside of the bottom
sheet. Then there must be ot least one point on the top sheet that is directly
over its corresponding point on the bottom. Before we can prove this surprising
result, we must rephrase it in a precise mathematical way.

Figure 7.16: Any continuous map from a convex subset of the plane to itself
must have a fixed point.

The sheet of paper represents a space X (in the above case, X is a closed
rectangle subset of the plane). Folding, twisting, and crumpling are all opera-
tions that preserve closeness; in other words, the end result is the image® of a
continuous function. The next key ingredient is to require the codomain of f
to be X as well. This is what we meant when we required the crumpled sheet
to0 be placed completely within the confines of the bottom sheet. With these
requirements in place, we will argue that at least one point z € X has the prop-
erty that f(x) is “directly over” x. What we really mean here is that f(z) = =,
and if such a point z exists, then it is called a fixed point for the function
f (see Figure 7.16). Now we may state and prove a version of the Brouwer
Fixed-Point Theorem. There are many generalizations of the theorem, but
we will focus on the version for spaces that look like disks in the plane.

Theorem 7.3.5 (Brouwer Fixed-Point Theorem). Let D be any space
homeomorphic to a closed disk D? C R?. Every continuous map f: D —
D has a fized point.

Proof. The argument is based on a computation of fundamental groups. Since
is a topological invariant, it is sufficient to prove the result when D is the closed
unit disk centered at the origin. The boundary of D is the unit circle S'. Suppose
f: D — D is continuous but has no fixed points. That is, f(z) # x for every
z € D. Thinking of points in R? as vectors, the vector function v(z) = z — f(z)
must be nonzero for all x € D, and since f is continuous in z, so is v. Consider a

8Technically, after crumpling the paper, we mapped it down to the bottom sheet by a
projection function. Since projection is continuous, the composition is also continuous.
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function ¢ : D — S* defined as follows: For each 2 € D, construct a ray starting
at f(z) in the direction of v(z) (which is possible since v(z) # 0). The ray
must intersect the bounding circle in one point that is not the initial point f(z);
define g(z) to be that point of intersection, as shown in Figure 7.17. Note that
if 7 is already on the boundary circle, then x itself is the point of intersection,
and g(z) = z in that case.

We must establish that g is continuous. Let ¢ > 0 and consider all points
within € distance of g(z) as our target. For sufficiently small 6 > 0, both  + )
and f(z + 6) can be made arbitrarily close to = and f(z), respectively (again,
refering to Figure 7.17). Think of z as the tip of an archer’s arrow, and f (z) as
the tail. Owing to real-world conditions (unpredictable changes in wind, arrow
imperfections, slight jitters of the hands of the archer), the arrow may never be
positioned ezactly in line to hit the dead center of the target. But so long as the
arrow is positioned precisely enough, it will hit somewhere within the target.”
That is, 6 can be chosen small enough so that the ray drawn from f(z + §) to
z + § intersects S* within e distance of g(x).

Figure 7.17: Left, definition of the map g : D — S!. Right, verifying that g is
continuous.

- At this point we have defined a continuous function g : D — S! that has the
additional feature that g(z) = = for all z € S'. Let ¢ : S — D be the inclusion
map (which is also continuous). Then the composition g oi : 8" — S' is the
identity on S'. On the other hand, there is a big problem with the induced maps
on fundamental groups.

sl —ip m(SY) =7 —s m (D) =1
=
k lg k} g
Sl 771(81) =17

9This illustration breaks down if we follow it too far. For € on the order of a millimeter,
perhaps no human archer can reasonably keep 8 small enough to suffice. If ¢ is on the order of
about 10735 meters (the Planck distance), then no archer, human nor machine, could reduce
their § small enough to compensate for so-called quantum fluctuations that would perturb the
motion of the arrow unpredictably.
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According to the diagram, we should have g, 0, = (id). = id : Z — Z, the map
that sends every element of Z to itself. However, the only possible map from Z
to the trivial group 1 sends every element to the identity element 1 € 1. Hence
the composition g, o %, must send every element of Z to the identity element
0 € Z. This contradiction proves that no fixed point free map f: D — D could
possibly exist. [

Exercises
1. Flesh out the proof of Proposition 7.3.3.
2. Construct a homotopy Ay « Apy =~ Apay, for arbitrary n,m € Z.

3. Consider U; = A1[(1/8,7/8)] and Uy = A[[0,3/8) U (5/8,1]] as defined
above. Identify explicitly, as a disjoint union of open intervals, the preim-
age sets p~*[U;] and p~[Us).

4. Mimic the proof of Theorem 7.3.4 to show that m1(T) = Z x Z. (Hint: Use
the covering map illustrated in Figure 7.11.)

5. Show that the Brouwer Fixed-Point Theorem does not apply to the torus
by finding a fixed point free map f: T — T.

7.4 Compact Surfaces and Knot Complements

Theorem 7.2.6 implies that if m;(X) % m1(Y), then X and Y are not homeo-
morphic. That is, the fundamental group is a topological invariant. In fact, m
is a more powerful invariant than some of the others we have encountered so
far in this text. For example, some nonhomeomorphic surfaces have the same
Euler characteristic but may differ in their fundamental groups. We explore two
kinds of spaces in this section: compact surfaces (and surfaces-with-boundary)
and knot complements.

Fundamental Group for a Plane Model

Figure 7.18 illustrates a few (nonbased) loops in the plane model of the torus.
Since all four corners are identified as the same point of T, the “edges” a and
b are really loops. By deformation, we may verify that any loop in T is either
homotopic to a constant loop or homotopic to a product of the loops a and b,
but this verification is nontrivial.'® Now consider all loops based at the “corner”
point xg. Since every v € Loop(T, z¢) can be deformed to a loop involving only
a and b, we say that [a] and [b] are the generators of the fundamental group

10For example, how can we be sure that every loop can be deformed in this way? There are
strange pathologies to consider, such as space-filling curves — see Armstrong [Arm10], §2.3.
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71(T). By abuse of notation, we will use the letters a and b to stand for [a] and
[b], respectively; context will make it clear whether a and b are specific loops or
homotopy classes.

To a o Zo a To
n
b) Q 0 b
Y
T o To

Figure 7.18: A few loops in T: [y] = [1], [n] = [a], and [0] = [a] - [b].

We see that a commutes with b (i.e., ab = ba), as shown in Figure 7.19.
Thus every loop in Loop(T, x) is homotopic to a™b", for some m,n € Z. More-
over, the product of two such expressions is accomplished by simply adding
exponents: (a™b™) - (a™2b"2) = @™rt™m2pm N2 It turns out that there are
no further relations among the loops,'* so 1 (T) is isomorphic to the group Z?,
with “product” operation given by adding pairs of integers: (my,n1)-(ma,ng) =
(my 4+ ma,ny +ns) (see also §7.3, Exercise 4). Note that Z? is an abelian group,
though typically the fundamental group is nonabelian. We may write:

71 (T) = {a™b" | m,n € Z} = (Z%,+). (7.15)

Figure 7.19: Here ab = ba € m(T).

11 he fact that there are no other relations is a consequence of the Seifert-van Kampen
Theorem, which is beyond the scope of this elementary text.
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More precisely, we may give a presentation of the group (see §B.1 for more
details). The fundamental group of T has the presentation

w1(T) = {a,b | ab = ba). (7.16)
Note that ab = ba is equivalent to aba™'b~! = 1, so that we could have written
7 (T) = (a,b | aba™b~! = 1). (7.17)

It is no coincidence that the expression aba™'b~"' is simply a word (in the sense
of §5.2) describing the plane model for T. If all vertices of the plane model are
identified to a single point zg, then every letter a, b, ¢, ... labeling a particular
edge is a loop. By deforming any given loop so that it gets pushed to the edges,
there will always be some word in the letters that represents the homotopy
class of the loop. Furthermore, the loop that traverses the outer edge of the
plane model exactly once is homotopic to the constant loop by a homotopy that
“shrinks” the loop down to the basepoint (see Figure 7.20), and it turns out that
this defines the only relation in the fundamental group, while the distinct letters
of the plane model are the generators. For example, 71(T) has two generators,
a and b, representing the loops shown in Figure 5.12 (§5.2), while 71 (2T) has
four generators, a1, by, az, and by (recall Figure 5.13).

The same idea can be used to determine fundamental groups for any space
that has a plane model, including surfaces-with-boundary and other spaces like
the dunce cap (Figure 5.14), though more care must be taken if the vertices are
not all identified to a single point.

Zo ao Lo

Figure 7.20: In the double torus, arbiay by tagbgay byt = 1.

1 Example 126. Find the fundamental group of each space.

(a) P (b)S$?  (c) Mébius strip  (d) Dunce cap
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Solution:

(a) A word for P is a? (see Figure 5.24). Since both vertices of the plane model
represent the same point, we have 71 (P) = (a | ? = 1), which is isomorphic
to the cyclic group Z/2Z of two elements.

(b) The simplest plane model for $? has the word aa™'; however, a itself is not
a loop in S? because the two vertices of the plane model are distinct points
in the sphere. The only loop involving the edges of the model would be the
entire loop aa™!, and so we have a relation aa™! = 1, but by multiplying a
on the right, we end up with the tautology a = a. Thus there are no genera-
tors and no relations in the presentation for this group. In fact, m1(S?) = 1,
the trivial group.

(c) Take abch as the word for the Mébius strip M. The vertices of the plane
model are identified in pairs. Using vg as a basepoint, both ab and cb are
loops in M. The relation abch = (ab)(cb) = 1 implies that cb = (ab)™*, and
so there is really only one generator, w = ab, with no relations: 71 (M) =
(w) = Z.

Vo \El vy
M
b &
U1 c\ Vo

(d) The dunce cap has word a® (see Figure 5.14), and so its fundamental group
is the cyclic group (a | a® = 1) = Z/3Z.

Knot Complements

Suppose K : S' — R? is a knot in the sense of Definition 6.3.1. The complement
of K in R3 is a noncompact 3-manifold My = R\ K[S!] (see §6.4, Exercise 10).
Imagine a solid three-dimensional block of wood extending indefinitely in all di-
rections, but somewhere inside the block, a termite has eaten away a closed path
through the wood in the shape of a knot. If the termite actually has no length,
width, or height (zero dimensional), then the path would be one dimensional,
hence an embedding of S, and the remaining wood can be thought of as a knot
complement. What is the fundamental group of My? Of course the answer to
this question depends on the knot; if KX = U (the unknot), then it shouldn’t be
too difficult to see that m(My) = Z, generated by a single loop 7 that links
with U, as illustrated in Figure 7.21. Note that we may assume that all knots
avoid 0, and so we can take the origin to be the basepoint for all loops in M;
then 71 (Mg) = 71 (Mg, 0) is a knot invariant called the knot group of K. In
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>,

Figure 7.21: Here m;(My) & Z = (v).

0

fact, the knot group is an invariant of links as well, though the literature seems
to avoid the term “link group.”

Definition 7.4.1. The knot group of a knot or link K is the funda-

mental group of the complement My = R?\ K.

There is a procedure for constructing the knot group based only on a plane
diagram for the knot. We give the result here, called the Wirtinger presenta-
tion, without justifying all the details; for more information, see, for example,
Armstrong [Arm10] (Chapter 10), or the classic Introduction to Knot Theory
by Crowell and Fox [CF08].

e If not already specified, give orientations to all components of the link.

e Label each strand of the diagram by a unique letter (1'eca11, from §6.3, that
the strands are the connected components of the knot diagram). These
letters are the generators of the knot group.

e Each crossing corresponds to a relation. Positive and negative crossings
are handled a bit differently; see Figure 7.22.

c c
[T — s— )
a a
¢~ tbab™?! ¢ tab

Figure 7.22: Left to right, relations in the Wirtinger presentation arising from
negative and positive crossings.

Let’s see how this works in the case of the right trefoil knot.

]

I Example 127. An oriented right trefoil knot diagram is shown below
with labels @, b, and ¢ on the three strands. Labels are repeated near each
crossing so that it’s easier to see what goes into each relation.
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The upper left crossing contributes a~'c™'bc; upper right crossing, b™*a™'cq;

and lower crossing, ¢"*b~tab. Thus the knot group for the right trefoil has the
presentation (a,b,c | a”te7tbe = b7la"rea = ¢7*b7lab = 1). Note that this
presentation is not the most efficient way to describe the knot group. Let’s
explore the relations a bit more.

atcbe=1 = ¢ Yhe=a = be=co

Similarly, we obtain ca = ab and ab = bc. But notice that only two relations
are necessary, say, ab = bc and bc = ca, since then the remaining one would
follow from transitivity. Furthermore, if ca = ab, then ¢ = aba™!, which may
be substituted for ¢ in the other relations. After simplifying using the group
axioms, we find the following.

ab=bc == ab=0blaba™') = aba = bab
be=ca = blaba™!) = (aba"')a = baba"' =ab => bab = aba

Observe that we've reduced to the single relation, aba = bab. Thus the knot
group for the right trefoil is: {(a, b | aba = bab). ;
[

Now why does this procedure work? Let’s take our oriented knot diagram
and construct a certain model of the knot in R3. The diagram itself is two di-
mensional, and so all of the strands may embed into the plane z = 0 in R3.
Place the diagram in a way so that it avoids the origin. For each undercrossing,
connect the strands with an arc that goes below the plane (as illustrated in
Figure 7.23 for the trefoil). Now for each strand a, draw a loop <, based at O
encircling a — these are the generators of the knot group. For consistency, let
each loop consist of an arc 6, starting at the origin, leading to a small circle
enclosing the strand (and no others) oriented so that it satisfies the right-hand
rule!? with respect to the strand, and then the reverse arc 6, ! back to the
origin.

Fach relation is a statement about how these loops interact near a crossing.
For example, if we move the loop v, through an undercrossing, then the loop

12T his idea should be familiar to those who have seen some physics. On your right hand,
stick your thumb up and curl your fingers around. Then if your thumb points in the direction
of the strand, your fingers will curl according to the proper orientation for the loop encircling
the strand.
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z

Figure 7.23: Embedding a knot diagram into R® so that the strands embed into
the plane z = 0. Gray curves go below the plane. The knot group is generated
by loops that wind around each of the strands as shown.

now encircles another strand, say, strand ¢. There should be some relationship
between vy, and 7. involving the over-strand at that crossing. Suppose the over-
strand is b, and consider the loop ;. By carefully deforming the loops, it turns
out that v, is simply a conjugate® of vy, by 7p; depending on the orientations
involved, we have either v >~ v - Yo - 7} Lor e Yy, L 44 - Y. The case of a
positive crossing is illustrated in Figure 7.24. Now for brevity we simply use a,
b, ¢ in place of the homotopy classes [va], [), [V}, which leads to the relations
as displayed in Figure 7.22.

Ty

Ya

Figure 7.24: Moving a loop through a crossing results in a conjugate: . =
¥y b~ - . Gray curves go below the plane.

The knot group is a fairly powerful knot invariant, but it has two major
drawbacks. First, it cannot distinguish between mirror images. If K C R3,

1

131n group theory, an expression such as zyz™! or 27 yx is called a conjugate of y.
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then the homeomorphism f : (z,y,2) = (z,y,—2) reflects K to its mirror
image K*. Thus, since the fundamental group is a topological invariant, we
have 71 (R? \ K*) 2 71 (R?* \ K). Second, it is generally difficult to prove that
two groups are the same or different based only on presentations for the groups.

Exercises

1. Determine the homotopy class of a (p,q)-torus knot (see Example 115
from §6.3), viewed as a loop in T. Use a and b as generators for m(T) as
in (7.15).

2. Find the fundamental group of each swrface, writing it in terms of gener-
ators and relations as in (7.17).

(a) 3T (b) K (c) T#K (d) nP

3. Construct a space whose fundamental group is isomorphic to Z/4Z.

4. Compute the knot group of the left trefoil knot. Show that there is a
labeling of the strands so that its group matches the knot group of the
right trefoil, G = (a,b | aba = bab).

Find the Wirtinger presentation for the figure-eight knot (rightmost knot
in Figure 6.33).

(@33

6. Show that the knot group of the Hopf link is the abelian group (a,b | ab =
ba) = Z?. Demonstrate this using two key rings linked together and a
piece of string.

7.5 *Higher Homotopy Groups

You may have been wondering what the “1” signifies in the notation m;(X)
for the fundamental group. It turns out that m1(X) is one of an infinite family
of topological invariants. Thinking of 71 (X) as the set of homotopy classes of
maps S — X, it is natural to consider homotopy classes of maps S* — X for
any integer n > 0. Taken together, 7, (X) for n > 0 are called the homotopy
groups of X. Although the higher homotopy groups tend to be much harder to
compute, they are extremely important because, taken together, they come close
to being a complete invariant for homotopy equivalence, in a limited sense of the
term anyway. For a large class of spaces, those that are homotopy equivalent to a
CW complex'* if there is a map f : X — Y that induces isomorphisms on every
homotopy group (i.e., fi : T (X) = m,(Y) is an isomorphism 7, (X) = m,(Y)
for every integer n > 0), then it follows that X ~ Y. This important result is

MOW complexes include the cell complezes mentioned in Chapter 5 as well as infinite-
dimensional spaces that are built up from cell complexes in a certain way.
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known as Whitehead’s Theorem.'® Conversely, if two spaces X and Y differ
at even a single homotopy group (i.e., mp(X) 2 m,(Y) for some n), then X
cannot be homotopic to ¥ (hence X and Y cannot be homeomorphic either).

Maps of Spheres

Recall Definition 7.1.3; two maps o and ~v; from S" to X are homotopic (v =~
1) if there is a map h : S® x I — X such that vo = h(s,0) and y1 = h{s, 1)
for all s € S®. Suppose S" is represented by the unit sphere in R**!, and let
s0 = (1,0,...,0) be the chosen basepoint for §%; let zg be the chosen basepoint
for X. The homotopy h is basepoint preserving if h(sg,t) = xg for all t € 1.

Definition 7.5.1. For each integer n > 0, define the nth homotopy
group of X (with respect to a chosen basepoint z¢ € X) by

7o (X) = {[7] | 7+ (8", 50) = (X, 20)},

where the equivalence class [7] is defined by basepoint-preserving homo-
topy. :

Consider the simplest case, n = 0. Since SY = {~1,1} is nothing more than
a two-point discrete set, every function v : 8 — X is continuous, and may be
described by the pair of points v(1) = zg and y(—1) = 21 in X. Furthermore,
since (1) must be the basepoint xy, we only need to know z; to describe =
completely. In other words, the map 7 : (S% s9) — (X, zo) is equivalent to a
choice of a single point 21 € X. We defined 71(X) in §7.2 for arc-connected
spaces to avoid ambiguities with different choices of basepoints; however, when
X is arc-connected, wo(X) is trivial. This is because if there is an arcn: 1 — X
such that 7(0) = x1 = v(-1) and n(1) = xp, then the following homotopy
h:S%x T — X can be defined.

w0, s=1
h{s,t) = {U(ﬂ; oe 1

Note that h(sg,t) = h(1,t) = zo for all ¢t € I (so h is basepoint-preserving);
h(—=1,0} = n(0) = 21 (s0 h(s,0) = v(s)); and h(-1,1) = n(l) = z¢ (so h(s, 1)
is the constant map S° — X sending both points to the basepoint zg). Thus
v~ 1, and so mo(X) has only one element.

The situation is a little more interesting for spaces X that are not arc-
connected. Suppose X = X; U X, U ... U X,, where each subspace Xj is a
distinet arc-connected component of X. Then it’s not too difficult to prove that
79(X) has exactly r elements.'® Figure 7.25 may give a clue as to how to show
this.

5For a proof of Whitehead’s Theorem, see Hatcher [Hat02].

6The set mo(X), however, cannot generally be given a natural group structure unless the
space X itself carries a group structure.
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Figure 7.25: A map v : S — X, in which X has four connected components.

The second homotopy group of a space, m2(X), identifies nontrivial maps
of the sphere S? into X. For example, Figure 7.26 demonstrates a trivial and
nontrivial element of 7o (R*\{0}). It is often very challenging to imagine different
ways in which a sphere could “wrap” itself around within a given topological
space, but there are certain tools that can be used to compute the homotopy
groups.'”

R\ {0} g[$?)

Figure 7.26: Two maps f,g : S* — R3\ {0}. Here f =~ 1 because the image of
the sphere can be shrunk to a point, but since g[S?] encloses the missing point
at the origin, the image of ¢ cannot be shrunk continuously to a point. In fact,
[9] is a generator of ma(R3\ {0}) = Z.

For n > 2, when ,(X) is trivial (in other words, consists of a single homo-
topy class), we denote this by m,(X) = 0. Later we will show that m,(X) is an
abelian group for n > 2, and so you can think of 0 as the trivial abelian group
with a single element, the additive identity element: 0 = {0}.

O

l Example 128. For all integers 7 > 0, n > 2, it can be shown that
7o (R™) = 0. The proof is a straightforward extension of Example 125 (see §7.1,
Exercise 1).

i

<

17These kinds of tools fall well outside the scope of this elementary textbook.
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Group Structure

The homotopy groups are called groups because they all (except for mo(X))
possess a product function. It was relatively easy to define the product of two
loops, because we all have the intuitive understanding that a point can travel
along one loop for a finite time and then get on another loop and travel, as
easily as you can transfer from one subway line to another. There is a natural
idea. of time progression in a map 7 : [ — X; start at v(0) and end at (1), and
this time progression still makes sense when the endpoints of I are identified so
that  becomes a map S* — X. But what does it mean to “travel” along the
map 7 : S® — X when n > 27 The key is to flatten out S™ and then identify one
direction of travel as a time dimension. Recall that there is a homeomorphism
§™ ~ I"/01™. When n > 1, we may write I = I x 1" ! and identify the first
component I as time. In other words, if s = (s1,52,...,8,) € I", then regard
the first component s; as time; the components sa, ..., s, play no substantial
role in the product definition below. The product of two maps vo,71 : I" = X
can thus be defined.

Youy1 "=IxI""!'> X

(o e1)(s) = Y0(281, 82, -1 8n)s s1€10,1/2] (7.18)

11(281 — 1,89,...,8,), $1 € (1/2,1]
Any map 7 : S® — X can be regarded as a map from I" to X via the quotient
map I* — 1" /01" ~ S". Such a map would necessarily send all of the boundary
AI™ to the basepoint xo of X. We should verify that if 7o and ~; are maps whose
domains are both S”, then their product can be viewed!® as a map of S" too.
This is an easy exercise. Moreover, the proof that the product map actually
gives a valid group structure on 7,(X) is essentially the same as the proof of
Theorem 7.2.2 and discussion preceding that theorem.

Formula (7.18) reduces to Definition 7.1.6 when n = 1, since then I"™! = I°
is a single point. Figure 7.27 illustrates how the product works on maps from
S? to a space X. Regarding a map 7 : S = X as a map [? — X (whose value
on the boundary is x), we compose two such maps, v and 7y, by compressing
along the first component of the domain.

_ ) 0(2s1, 82), s1 €[0,1/2]
(o= m) (51, 52) = {’71(231 —1,82), s1€(1/2,1]

It turns out that for the n > 2, the group structure of m,(X) is commutative.
Essentially, there is enough room for maps to “slide past” one another when the
domain has dimension two or higher. The sequence of diagrams in Figure 7.28
suggests a homotopy yo.v1 = 7170 (for 71,72 : S = X in particular), although
a precise proof is not given here. The domain of each map ~; (¢ = 0,1) is shrunk
small enough so that those regions can interchange positions. The gray area

181n more precise language, we must verify that the map o .1 as defined in (7.18) factors
through 1™ /1™,
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s €1
so €1
7o g g 70
(shrink) (slide) (expand)

Figure 7.28: Shrinking and sliding the domain of o past that of 71, showing
how [vol + [vi] = [m] + [l

indicates regions of the domain that get sent to the basepoint zg € X. Since
the boundary of each domain for v; must map to xzy anyway, there is continuity
in each frame of the homotopy. It takes a more careful argument, though, to
ensure continuity of the homotopy on all of S x I (perhaps the diligent reader
can formalize the proof). The reason this same idea doesn’t work to show that
71 (X) is commutative is that the domain of the maps v; must be at least
two-dimensional to accommodate such an interchange. Two regions of the one-
dimensional segment I cannot be made to slide past one another, no matter how
much those regions are shrunk.

Because of commutativity, we typically use the notation + for the group
operation. If n > 2, and [v], [n] € 7, (X), then [y] + [n] = [n] + []-

An important property of fundamental groups that is shared by the higher
homotopy groups is the existence of induced homomorphisms. Suppose f : X —
Y. Then there is an induced group homomorphism f, : 7, {X) — m,(Y) for each
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integer n > 0. The homomorphism f, is defined in precisely the same way is
in Definition 7.2.4, by f.([7]) = [f o7}, and satisfies the same properties as in
Theorem 7.2.5. As a consequence, the homotopy groups m, for n € NU {0} are
topological invariants.

Homotopy Groups of the Spheres

We end this section with something of a mystery. While it is quite easy to
obtain complete information about 7, (S!), there’s no such iuck for m,(S") for
any r > 2. Here are some of the things we do know.19

e Ifn < 7, then 7,(S") = 0. Intuitively, this means that there is no nontrivial
way to map a lower-dimensional sphere into a higher-dimensional sphere.
Every such map is homotopic to the map sending all points of S* to the
basepoint of S”.

e We have 73(S?) = Z. It may come as a surprise that there are nontrivial
ways in which the three-dimensional sphere can “wrap around” a two-
dimensional sphere. There is a map 7 : S® — §? called the Hopf fibra-
tion.20 The preimage of any point z € S? is a circle in §%, and for this
reason we often represent the fibration as a sequence,

St — 8% — §°.

We leave further discussion of the Hopf fibration to more advanced texts.
Even visualizing n is quite a challenge.?!

e The vast majority of the groups 7,(S") are known to be finite, the only
exceptions being 7, (S™) and 74,_1(S*") for n € N.

e It’s known that m,(S®) = 7,(S?) for all n > 3. This curious result is
actually a by-product of the Hopf fibration and the fact that m,(S') is
trivial for n > 2.

e For all r > n <+ 2, it is known that 7,,(S") is stable, in the sense that
Try+n(ST) = Tpyin(S™2) for every pair of integers ri,7o > n + 2. This
is called the Freudenthal Suspension Theorem. For example, when
n = 0, we have m(S?) = 73(S?) = m4(S*) = ---. It can be shown that
72(S?) = Z; hence m,(S™) = Z for all n € Z. (Recall that in §7.3 we
proved the result for n = 1.) The so-called stable homotopy groups
of the spheres are defined for each n € N by n) = w4, (S") for r >
n+2. While determining the stable homotopy groups is generally regarded
as a more tractable problem than determining all the unstable groups

9For discussions and proof of these results, see Hatcher [Hat02], May [May99], etc.

20We say a map f : E — X is a fibration if f satisfies the Homotopy Lifting Property
(Theorem 7.3.2), and so all covering maps are examples of fibrations.

21Niles Johnson has done a remarkable job of this; see http://nilesjohnson.net/hopf.
himl.
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(the various groups m,(S") for n,r € N), topologists are still far from
a complete answer. As the following table suggests,?? no straightforward
pattern emerges for 3.

n 011234156 7 89|10} 11 |12
Sizeof 75 || 00 [212]2410]0]2]24014 |81 6 (504 0

Exercises

1. Suppose X = X;UXoU...UX,., where each X}, is a distinct arc-connected
component of X. Show that mq(X) has exactly r elements by giving an
explicit bijection between mp(X) and {X), | k=1,2,...7}.

2. Verify that for maps g, v1 : (8", s0) — (X, 2¢), the product map v « 71 :
I" — X defined in (7.18) sends all of 91" to zy; hence can be interpreted
as a map S” — X.

Supplemental Reading

e Crowell and Fox [CF08], Chapter VI for knot groups.

o Hatcher [Hat02], Chapter 1, for the fundamental group; Chapter 4 for
higher homotopy groups.

o Massey [Mas91], especially Chapter IV for methods for finding fundamen-
tal groups of plane models of surfaces.

o May [May99], various chapters, for a concise treatment of homotopy theory
using more advanced techniques.

e Munkres [Mun00], Chapters 9 and 12.

e Spanier [Spa94], Chapters 1, 2, and 7.

22Larger tables of unstable and stable homotopy groups can be found at https://en.
wikipedia.org/wiki/Homotopy_groups_of_spheres, for example.



Chapter 8

Introduction to Homology

Chapter 7 introduced us to an important and powerful set of invariants called
the fundamental group and the higher homotopy groups. Taken together, these
groups, m,(X) for n € N, provide detailed information about the topological
structure of a space X, but they are very difficult to compute in practice ~ at
the time of this writing, we don’t even know all of the homotopy groups of the
sphere S? (recall §7.5). However, there is a related family of invariants called
the homology groups that are typically easier to calculate and yet can carry a
wealth of information about the topological properties of the space.

When you think of a torus, what’s the first thing that comes to mind? It’s
the hole in the middle, right? In fact, the spaces nT for various n can eas-
ily be distinguished by the number of holes. Now let’s be careful though. The
hole is not really part of the torus any more than the space inside a room
is part of the material structure of the house containing that room (instead,
the room emerges as a feature of the house because of the way the walls, ceil-
ings, and floors are arranged). While we sometimes think of a hole as what’s
missing, a much better way of identifying it is to describe how the space sur-
rounds it. We call a hole n-dimensional if a sphere S" can surround it in a
nontrivial’ way.

Let’s take a motivating example. Consider the object shown in Figure 8.1.
It consists of the surface of a sphere together with a disk through the equator
and an arc attached at two points. We label the top hemisphere A, bottom
hemisphere B, the equatorial disk D, and the arc C. A circle S* surrounds the
empty space “within” the arc handle C, illustrating a one-dimensional hole.
The disk D partitions the interior of the sphere into two “chambers,” so there
are two enclosed regions: the upper chamber bounded by AU D, and the lower
chamber bounded by BU D. Indeed, AU D and BU D each represent nontrivial
embeddings of S* into the space. But what about the sphere itself? Clearly the
sphere A U B is nontrivial, but we say it is not independent of the two spheres
AU D and BUD. In some sense, there should be an addition operation such

1We are using the word nontrivial here to mean that the surrounding sphere is unable to
be deformed within the space to a single point.

299
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@ )

Figure 8.1: This space has ‘a one-dimensional hole (encircled partly by C and
partly by a path on the sphere) and two two-dimensional holes (enclosed by
AUD and BUD).

Figure 8.2: The point cloud on the left may be a noisy random sampling of the
" space on the right.

that sum of two chambers is itself a chamber (but we must be vague at this
point until introducing the required mathematical machinery).

So homology is basically about identifying “holes” of various dimensions in a
space (of course there’s much more to the story, as we shall see in this chapter).
Moreover, owing to the relative flexibility in how homology can be computed
and interpreted (relative to homotopy groups, that is), homology turns out to be
a surprisingly powerful tool in the field of data analysis. Take, for example, the
data set pictured on the left in Figure 8.2. It is clear that the data are clustered
in a pattern that has two “holes,” and the distribution of points reflects an
essentially one-dimensional skeleton, leading one to conjecture that the ideal
data set should look something like the figure-eight pictured on the right in the
figure. The data set, or point cloud, itself then would be interpreted as a finite
random sampling from the ideal space with noise or error in the sampling. While
the precise methods used in topological data analysis are beyond the scope of
this text, it is interesting to note that homology theory (in the form of so-called
persistence homology) plays a major role.?

2See the wonderfully readable article by Gunnar Carlsson posted online at http://www.
ayasdi.com/blog/bigdata/why-topological~data~analysis-works/. See also [Car09].
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8.1 Rational Homology

Before defining homology in this text, it is important to understand that there
is not just one theory of homology. Different homology theories® exist, apply-
ing to many different kinds of topological spaces. In this chapter we develop
the rational* homology of triangulated spaces, but let’s first try to understand
what homology should be measuring in the easy case of one-dimensional cell
complexes, or graphs (recall Chapter 6 for definitions).

Homology of Graphs

We start by defining a rational homology theory for graphs. This allows us to
introduce essential terminology and concepts without too much complication.
The only kinds of “holes” we see in graphs are those surrounded by closed walks.?
Such a closed walk is called a 1-cycle of the graph (though the terminology is
much broader than the graph-theoretic definition of cycle from Chapter 6).

How many 1-cycles could a graph have? This seems like an easy question to
answer in practice — simply look at the graph and count them, right? However,
this task is impossible in general since absolutely every closed walk swrrounding
a hole in the graph qualifies, including walks that circle around the same set of
edges an arbitrary number of times. Rather than attempting to list all the 1-
cycles (a fruitless task), homology presents the information in the most efficient
format — in terms of a cycle basis, a minimal set of 1-cycles such that every
1-cycle in the graph can be expressed unambiguously as a combination of those
basis cycles.

Thus far in this text, graphs have been undirected, in the sense that there is
no indicated orientation (direction) on any edge. To properly define the homol-
ogy of a graph, we need to specify the orientation of each edge; in other words,
to consider directed graphs. It turns out that the specification is immaterial;
different choices of orientations lead to isomorphic homology groups.

Let’s locate a few l-cycles in the graph G shown in Figure 8.3. We identify
the cycles in a peculiar way: by listing a sum of edges, where the sign of an
edge indicates the orientation, and allowing terms to commute and cancel when
appropriate (in contrast to loops as defined in §7.1). For example, let’s describe
the triangular cycle with vertices u, v, and w. Starting at vertex u and proceding
directly to v, the edge ¢ is traversed in the same direction as its arrow; this
contributes +c¢ to the sum. Then from v to w with the flow, another term +d
is added. Finally —b is added to the sum corresponding to the journey from w

3Just as a set J C P(X) must satisfy a certain set of axioms to be called a topology on X,
a homology theory must satisfy a specific list of conditions called the Eilenberg-Steenrod
axioms [ES45] on a specified class of topological spaces.

4Here rational refers to the rational numbers Q, not as a synonym for reasonable or sane —
though the case can be made, tongue-in-cheek of course, that there are some incredibly insane
homology theories out there.

5This includes loops (walks of length 1), pairs of parallel edges (length 2), circuits and
cycles (length > 3), as well as more general closed walks that may backtrack along some
edges.
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back to u, against the flow. Thus there is a cycle (4¢) + (+d) + (—=b) = —b+c+d
in the graph. Of course there are many more, including —a + b, f, —a + ¢ -+ d,
andeven b+ (—d)+e+ f+f+f+(—-e)+(—c)+a+(-b)=a—c—d+3f.

w

=
[S]

Figure 8.3: A directed graph G with vertex set {u,v,w,z} and edge set
{CL, ba c, d7 €, f}

What makes each of these expressions a l-cycle? FEach directed edge e €
E(G) has a tail and a head vertex - say, vg and vy, respectively — and we may
write ¢ = [vp, v1]. The term e represents a journey from vg to v;. Similarly, —e
is a journey from v to vy (equivalently, —[vo, v1] = [v1, vo]). Imagine each word
from is replaced by a minus sign, and each word to is replaced by a plus sign.
The key is that each vertex involved in the sum of edges shows up as both a tail
and a head, and so can “cancel” completely. For example, the 1-cycle —b+c+d
could be broken down as follows.

—b=—[u,w] =w,u] — fromw, tou — (—w)+u
+c=[u,v] — fromu, tov — (—u)+v
+d=[v,w] — fromv, tow — (—v)+w

When all six terms are combined, the result is 0. This is the essence of what it
means to be a 1-cycle.

Another feature of 1-cycles is the ability to add them to each other to produce
new l-cycles. For example, the 1-cycles @ = ~b+c+d and § = —a + b sum
to a4+ 8 = —a + c+d. Cycles can even be added to themselves (e.g., o +a =
2 = 2¢ + 2d — 2b) or negated (e.g., —f = a — b). Intuitively, a multiple of a
cycle should mean traversing it that many times, and the opposite of a cycle
should mean traversing it the opposite direction; however, in rational homology
we would also like to include more general coefficients (e.g., %oz - % 5 qualifies
as a rational 1-cycle), and so a 1-cycle may not always be realizable as a walk
in the graph.

At this point we must introduce tools and terminology from linear algebra.
Refer to §B.2 or any standard elementary text {e.g., Lay et al. [LLM15], Poole
and Lipsett [PL14]) for more information. Recall that if A = {a1,as,...,an} is
" a set, then a (formal) linear combination of A is any expression of the form

n
> ekt = c1a1 + c2az + -+ + Cran, (8.1)
k=1
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in which each coefficient ¢, is a scalar. In this section, we take all scalars to be
in the set of rational numbers, @, though the methods presented here work over
any field (R, C, etc.), but not the set of integers Z — more about this point in
§8.2. That is, we assume for now that for each & € {1,2,...,n}, we have ¢;, € Q
in (8.1).

Definition 8.1.1. Let GG be a directed graph.

e A (-chain in G is any linear combination of the vertices of the
graph. The set of all O-chains of G is denoted Co(G;Q).

e A l-chain in G is any linear combination of the edges of the graph.
The set of all I-chains of G is denoted C1(G; Q).

Recall the set of all linear combinations of elements from a set A is called
the span of A, and may be written Spang A, where R is the set of scalars over
which we are working. So Cy(G; Q) = Spang V' (G), and C1(G; Q) = Spang E(G).
If z € Cy(G; Q), then we say x has degree 0; similarly, z € C;(G; Q) has degree
1. (This use of the term degree is different than the graph-theoretic notion of
degree from §6.1.) Define two functions from the set of edges to the set of
vertices, called boundary functions.

do(e) = do([vo,v1]) = u (= head vertex)
ai(e) = 0i([vo,v1]) = wo (= tail vertex)

Then encode the ideas of to and from using signs. We define a function d; on
the set of edges by

dl(e) = dl([vo,vl}) == 80([’1)0,?)1]) — 81([1)0,’1)1]) = V1 — Vp- (82)

Extend d; to all of C1{G;Q) by lLnearity. That is, if E(G) = {e1,e2,...,€n},
then define

d : Ci(G;Q) = Co(G;Q)
dy (i /\i€i> = Z Aidy (e;).
=1 i=1

The map dy is an example of a boundary homomorphism, and it will be
used to determine the 1-cycles of a graph.

Definition 8.1.2. Let G be a directed graph. A 1l-cycle in G is any |

1-chain « such that di(a) = 0.

To develop a more intuitive feel for how Definition 8.1.2 works, refer to
Figure 8.4. Each edge in a given l-cycle contributes a positive and negative
boundary vertex, which cancel with one another, resulting in a sum of 0.
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+w
w
—W
a
“ b b
—U
” v . “+v

@
+u -1

Figure 8.4: Left, here « = a + b+ ¢ is a I-cycle in the graph. Right, verifying

that di(a) = 0, di(a+b+c) =di(a) + dy(b) + di(c) = Oo(a) — d1(a) + O (b) —
(b)) +0p(c)—O(c)=w—~u+v—w+u—v=0

Now we may define the degree-1 homology® of a graph.

Definition 8.1.3. The first homology group H;(G;Q) of a graph ||
G is defined as the set of all rational 1-cycles in G. The first Betti

number of G is the dimension of H;(G; Q).

O
l Example 129. Describe the homology group H;(G;Q) for the graph
_shown in Figure 8.3. What is the first Betti number?

Solution: We are looking for every 1-chain « that is a 1-cycle (i.e., di(a) =
0). Since a general 1-cycle is nothing more than a linear combination of the
edges, and the function dy is linear, we can set up a matriz to represent the
action of di. Each column of the matrix corresponds to an edge and each row
to a vertex. Now for an edge e; = [ug, u1], we have di(e;) = w3 — ug; encode
this in the matrix by adding 1 to the entry corresponding to u; and adding ~1
to the entry corresponding to ug in the column for e;. If ug = wuy, then the net
effect is to add 0.

a b c d e f
u -1 -1 -1 0 0 0
v 0 0 1 -1 -1 0
w 1 1 0 1 0 0
z 0 0 0 0 10

Solve to find the null space of the matrix. This can be done by hand, but there
are also numerous options for doing the work by computer.” We obtain three

SCaution: This particular definition of homology applies only to graphs.
“For example, in Sagemath, you can use the command right_kernel() on the matrix. The
result is a matrix whose rows represent a basis for the null space.
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independent basis 1-cycles, a — ¢ —d, b — ¢ — d, and f. All other l-cycles are
linear combinations of these three (e.g., (a —c—d)—(b—c—d) =a—bis also
a cycle). Thus the first Betti number is 3, and

Hl(G;Q):Sp&DQ{CL—C—d, b—C—d, f}%J(@:3

o g

Now that we’ve gotten our feet wet, let’s expand our definition of homology
to include some higher-dimensional spaces. In addition to vertices and edges,
we also now consider triangles and their higher-dimensional analogs called sim-
plices.

Simplices
Consider the triangle AABC defined by three points in the plane, say, A =

(-1,-1), B = (2,-3), and C = (1, 3). You might recall that the centroid (or
center of mass) M of the triangle is found by averaging the coordinates:

M

_A+B+C (14241 =1+(=3)+3\ (2 1

B 3 B ( 3 ’ 3 ) h (3’ 3) '

The point M could also have been expressed as M = %A—l— %B + %C , which is a
type of weighted average. A weighted average is simply a linear combination
in which the coefficients are nonnegative and sum to 1. It’s a fairly well-known
fact of analytic geometry that any point on the boundary or interior of AABC
is a weighted average of the vertices A, B, and C (see Figure 8.5):

AABC = {woA + w1 B +weC | wo + w1 +wp = 1; wy, >0, Vk}.

We call the triangle a 2-simplezr because it is essentially two dimensional (except
on its boundary, of course). Note that if the points A’, B, and C’ happened to
lie on a single line (as shown in Figure 8.5), then the “triangle” formed from
these points is not a triangle at all, but a line segment — in this situation, we
call the simplex degenerate.

An n-simplez (plural: simplices®) is the analog of a triangle in arbitrary di-
mensions. In the definition below, we use the term hyperplane. An r-dimensional
hyperplane H of a Euclidean space R™ is a subset H C R™ having the geometri-
cal properties of R” (flatness, infinite extent, etc.). For example, any line in R™
is a one-dimensional hyperplane of R™. Planes are two-dimensional hyperplanes,
and so on.

8 Simplices is the plural of simplez, just as vertices is the plural of vertez, matrices is the
plural of matriz, and indices is the plural of indez. Isn’t Latin fun?
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BI

A/

Figure 8.5: AABC is a 2-simplex defined as the set of weighted averages of
A,B,Cieg, M =3A+3B+3C=(2/3,-1/3), P = LA+ 2B+1C = (1,5/7),
Q = (0.13)A + (0.87)B + (0)C = (1.61,—2.74). On the other hand, points A,
B', and C" are collinear, and so A’C'B’ is a degenerate 2-simplex. Ignoring the

point ¢, we could say that A’B’ is a 1-simplex.

Definition 8.1.4. Let n > 0 be an integer. An n-dimensional simplex
(or n-simplex) A™ is a subset of a Euclidean space defined as the set
of weighted averages,

A" = {Zwkvk Zwk =1; w; >0, Vk} .
k=0 k=0 .

The simplex may be denoted by the bracket [vo,v1,vs,...,v,] of n +
1 points, called the vertices of the simplex. If the vertices all lie in
the same (n — 1)-dimensional hyperplane, then the simplex is called
degenerate; otherwise, nondegenerate.

The definition of simplex given above is equivalent to the following, which
you might encounter in other texts:

A™ is the conver hull of n + 1 points, vg,v1, ..., Vs, in a FEuclidean
space, and the simplex is nondegenerate if and only if the n + 1
points are in general position.

Just as the direction along an edge matters in defining homology for a graph,
the ordering of the vertices of a simplex matters. The order of vertices matters in

the bracket notation, and must be specified before any calculations are carried
" out. The 2-simplex AABC from Figure 8.5 may be represented in six different
permutations:

[4,B,C],[A,C, B],|B, A,C],[B,C, A}, [C, A, B, [C, B, A],
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but [A, B,C] # [A, C, B] as the order of vertices is not the same. The orienta-
tion of the simplex is implied by the order of its vertices — swapping the position
of any pair of vertices in the bracket notation changes the sign of the orienta-
tion. If we say that [A, B, C] has positive orientation, then so do [B, C, A] and
[C, A, B], while [A, C, B], [B, A, C], and [C, B, A] have negative orientations.

An n-simplex may be viewed as a cell complex (recall Definition 5.4.2 of
§5.4) whose cells are lower-dimensional simplices. For example, a 3-simplex is a
tetrahedron, which has four 0-cells, six 1-cells, four 2-cells, and a single 3-cell,
as shown in Figure 8.6. Note that each k-cell is simply a (k + 1)-element subset
of the set of vertices of the 3-simplex.

Figure 8.6: Cell structure of a 3-simplex. There are four vertices (0-cells),
vg, U1, V2, and vs, that serve as the endpoints for six edges (1-cells), labeled
€01 = [UO)vlL €o2 = [onv2]> €03 = {?/0>U3], €12 = {?/17712]7 €13 = [Ulav?;}-,
and egs = [vz,v3). The edges bound four faces (2-cells), foiz = [vo,v1,vs],
foiz = {'uo,vl,v?,], foes = {’1}0,1)2,7)3], and fio3 = {?)1,1)2,’03] (not labeled in the
figure), which comprise the boundary of the simplex o = [vg, v1,v2, va] (3-cell).

Boundaries

The boundary of an n-simplex A™ consists of the n + 1 distinct (n — 1)-
dimensional faces, which are in fact (n — 1)-simplices. Moreover, all of these
faces can be determined in a combinatorial manner by deleting each vertex in
turn from the bracket notation A™ = [uvg,...,v,]. Define a set of boundary
functions, 9; for 0 < k < n, that act on abstract brackets via:

80([1)077)171)277)37"'77)71,]) = ['Ul,’UQ,'Ug,...,’Un]
81([7-)07(013?12?@37“'7”71]) = {7}0,’1)2,7)3,...,'0”]
82([1)03’0170271}37"'7’071}) = [’UO,Ul,’U:ﬁ,...,'Un}

an([v(),’ljl,’l)g,'l)g,‘..,vn}) - [’UO,'Ul,’UQ,’U:g,.‘.,’Un_.l].
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It is convenient to use the “hat” notation: any element with a hat in the bracket
is meant to be omitted. So [G,v] = [v] and [u,?] = [u]. Thus we may write for
each 0 < k < mn,

Oe([vos -, vn]) = [Vos -+, Thy v v, Un). (8.3)

When n = 0, the formula seems to break down. A (-simplex is a single vertex,
[vg], and according to (8.3), do([vo]) = [] is an empty bracket. But a single
vertex should not have a “boundary,” so we will define the boundary function
on O-simplices by 9g([vg]) = 0. For n > 1, every boundary simplex of a given n-
simplex o is identified with 9y (o) for some 0 < k < n. We define the boundary
homomorphism as an alternating sum of boundary functions, d, for each
n € NU {0}, acting on abstract n-simplices (brackets) by:

dn = i(wl)kak. (8.4)

k=0

For example, when n = 1, we have d; = g — 01, in agreement with (8.2). For
n = 2, we have ds = 9y — 8y -+ 02 or, more explicitly,

da([vo,v1,v2]) = Oo([ve,v1,v2]) — 81 ([vo, v1,v2]) + Da([vo, v1, v2])
= [v1,v2] — [vo, va] + [vo,v1].

Now if a topological space X has a triangulation, then for each whole number

n the space of n-chains C,,(X;Q) will be defined as the (rational) span of the

- n-simplices in the triangulation. Since d, is defined on abstract brackets, d,

makes sense when applied to the particular n-simplices of X. Extend (8.4) to

all of C,,(X;Q) by linearity. Elements of the form d,(a) € Cr(X;Q) for some

a € Cpy1(X;Q) are called n-boundaries, since these are n-chains that bound

an (n + 1)-chain. Elements o € C,(X;Q) such that d,(a) = 0 are called n-

cycles. We shall prove that every boundary is a cycle. That is, if n > 1 and

if @ = dpt1(B) € Cu(X;Q) for some 8 € Cpya(X;Q), then dp(a) = 0 €
Cn-1(X; Q). First we prove the following useful identity.

Proposition 8.1.5. If k < £, then Oy 0 9g = 0y—1 0 O.

Proof. Suppose k < £ and consider an abstract bracket of the form
Q= [Ugy. ey VkyevnyUsennsUnl
Applying &), o 9y, we obtain:

6k (6g(a)) = é)k ({U07...,1}k,...,’l/}\g,...,Un})
[0, -+ Ty ooy 0t e Un) (8.5)

i




8.1. RATIONAL HOMOLOGY 309

Next, consider 9,1 o 9 applied to a. Since k < £, removing v first affects
the position of every entry following, so that v, would now be entry £ — 1.

Gg-l(ak(a)) = 8@..1([’UQ,...,@,...,’U@,...,’l)n])
= (V05 sDhyevey VtyennsUn) (8.6)

Clearly (8.6) is identical to (8.5); hence 8 0 ¢ = Og—1 © Ok 0

Theorem 8.1.6. For each n € NU{0}, we have (dy 0 dny1)() = 0 for
all a € Cpy1(X;Q).

This property of the boundary homomorphism, which is often abbreviated to
the expression d? = 0, is a launching point for the study of homological algebra.

Proof. We must show that if & = [vp, . . ., Unt1] is arbitrary, then dy, (dpt1(e)) =
0. The proof hinges on Proposition 8.1. 5 and a clever partition of a double sum.

n n-+1
dn (dpa(@) = Y (=1)"0k (Z(—l)‘z@e(a)>

k=0 =0
n n+l
— ZZ k+£ah8€ )
k=0 £=0
= S(-1)M0di(@) + Y (~1)H0p0u(0)

k<t k>4
= SO (-1FO10k(@) + Y (-1 0e(e)
k<t k>t

The first sum is over all k, £ such that 0 < k < £ < n+1, which is equivalent to:
0<k<t-1<n. The second sum, which is over all &, ¢ such that 0 < £ <k <,

has exactly the same number of terms. Reindex the first sum with ¥/ = £—1
and £ = k.

d, (dn+1(a)) — Z ( 1)k +£/+layagl +Z lm‘-ﬂa]hag )
j 5y,
= 0

Rational Homology of Triangulated Spaces

The main idea of homology is to locate those n-cycles that are not n-boundaries.
That is, we want to find the n-dimensional holes of X. As in graph homology,
we cannot simply count up all the n-cycles — instead we should determine a
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basis of independent cycles. Let Z,(X; Q) be the subset of Crn(X; Q) consisting
only of cycles. That is,

Zn(X;Q) = {a € Co(X;Q) | dn(a) = 0}. (8.7)

Now if @ € Z,(X;Q) is just the boundary of some chain in Cre1(X;Q), then
a is not really a hole and should not be counted in the homology of X. How
can we get rid of these kinds of cycles? In terms of set theory, we may set
up an equivalence relation that identifies every boundary f = dps1(a) with
the null chain 0. However, we also require that the equivalence relation (~) be
compatible with the vector space structure on Cn(X;Q), in the sense that if
B ~ 0, then a + B ~ a for all & € Z,(X;Q). The proper definition is given
below in Definition 8.1.7. Let B, (X;Q) be the subset of C(X;Q) consisting of
all the boundaries:

Bn(X;Q) = {dnt1(a) € Ca(X;Q) | @ € Crya (X;Q)} (8.8)

It follows from Theorem 8.1.6 that B,(X;Q) as defined above is actually a
subset of Z,(X;Q). Both Z,(X;Q) and B,(X;Q) are vector spaces over Q for
each n, and we assume that they are finite-dimensional spaces, since we are
working only with finitely triangulated spaces.

Definition 8.1.7. Two n-cycles, a, 8 € Z,(X;Q), are said to be ho-
mologous if their difference is a boundary, that is, if

a-pe€ Bn(XvQ)

Note that if & € B, (X;Q), then « is homologous to 0 since a — 0 = a €
Bn(X;Q). Finally, the rational homology of X is defined by:

Definition 8.1.8. H,(X;Q) = Z,(X;Q)/ ~ , where o ~ § if and only
if & and f are homologous.

It can be shown that H,(X;Q) thus defined also has a (finite-dimensional)
vector space structure over @, and so there is a basis. The number of basis
elements (dimension) of H,(X;Q) is called the nth Betti number, 8,(X), of
the space. That is, B,(X) is the whole number that satisfies:

Ho(X; Q) Q0.

For now, we will find out how to use the rank of matrices to determine the
Betti numbers of a triangulated space. More detailed computations of homology
must wait until §8.2. Consider a linear map f : Q¢ — QP. The map f can be
represented by a p x ¢ matrix F, whose columns record the action of f on each
basis element of the domain Q¢ in terms of the basis of the codomain QP. Thus
every boundary map d, can be encoded as a matrix (recall that we encoded
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the map di from Example 129 in this way). Now consider the chain groups in
degrees n — 1, n, and n + 1 for a space X, together with the boundary maps d,
and d,,.1 as shown below. Here we have identified the dimension of each space
Cn(X;Q) by r, and the representing matrix for each d, by Dn.

Crs(X3Q) 2 Co(X;Q) &2 0 (X3 Q)

|

@Tn—— 1 QTn y Do QT71+1

From linear algebra, it is known that the rank of a matrix is the same as the
dimension of the image of the map. Thus, with (8.8) in mind, we have

dim(B,(X;Q)) = rank(Dp41). (8.10)

(8.9)

D

Equation (8.7) defines the space Z,(X; Q) as the kernel of the boundary map dn
(more about that term in the next section), which corresponds to the null space
of the representing matrix D,,. Now using the Rank Theorem (Theorem B.2.11),

dim(Z,(X;Q)) = rn — rank(Dy). (8.11)

Finally, as a result of Definition 8.1.8 and well-known results about vector
spaces,’ we have dim(H,(X;Q)) = dim(Z,(X;Q)) — dim(B,(X;Q)), which
leads to a computational tool for computing Betti numbers:

Bn(X) = dim(H,(X;Q)) = r, — rank(Dy) — rank(Dny1). (8.12)

O
l Example 130. The boundary of a 3-cell serves as a triangulation for the

sphere S?. Use this triangulation to compute the Betti numbers of §2.
Solution: First let’s identify the chains in each dimension. Let A® = [vg,v1,
va,v3], but since we are only interested in the boundary of the simplex, there
are no 3-simplices.
CZ(SQ; Q) = Span@{{vh V2, ,U3}7 [UO) V2, 7)3], {’Uo, V1, ’03}7 {{UO) V1, U?]} ~ Q4
Cl (827 Q) Span@{{v()a Ul]v {U()a v2]7 {007 ’U3]7 {7)15 UZ]) [Ula /03}7 [’UQ: 7)3]} ~ QG
Co(S*;Q) = Spang{[vo], [v1], [va], [vs]} & Q*

We have a sequence of three nontrivial chain groups and two nontrival boundary
homomorphisms.

Il

Co(S%:Q) <2 C1(S%Q) +2— Ca(8%Q)

|
Q* - Q° : Q*

91n linear-algebraic terms, the homology Hn(X;Q) = Zn(X;Q)/Ba(X;Q) is a quotient
space. There is a well-known formula for the dimension of any quotient space: dim(V/W) =
dim (V) — dim(W).
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The representing matrices are as follows.

[vosva]  [vosva)  lvowwa]  [viwe]  [viws]  [v2val
[vo) -1 -1 —1 0 0 0
[l 1 0 0 -1 -1 0
D= 0 1 0 1 0 -1
[vs] 0 0 1 0 1 1
[v1,02,v8] [vo,v2,v3]  [vo,wiws)  [vo,v1,ve]
[11(),’1)1] . 0 0 1 1
[vo,v2] 0 1 0 -1
. [’UQ,’U;;] 0 ““1 ‘_‘1 0
D2— [’Ul,'uz] 1 O 0 1
[v1,v3] -1 0 1 0
[U2J~?3] 1 1 0 0

With the help of a computer algebra system, or by reducing the matrices by
hand, we find rank(D;) = rank(Ds) = 3.

Bo(S?) = 4-rank(D;)=4-3=1

B1(S?) 6 — rank(D;) — rank(Dg) =6 —-3—-3=10
Bo(S?) = 4—rank(Dy)=4-3=1
ﬂn(S2) = 0, ifn>3

{

o

Recall the definition of Euler characteristic given in §5.4, as the alternating
sum of the number of cells in each dimension for a particular cell decomposition
of the space. This definition leaves a lot to be desired. Does the definition depend
on the choice of cell decomposition? For compact surfaces, this question can be
answered by appealing to triangulations, but what about in higher dimensions,
or in spaces that are not manifolds? It turns out that the Euler characteristic is
nothing more than the alternating sum of the dimensions of homology groups,
and each homology group is a topological invariant.'®

Definition 8.1.9. The Euler characteristic of a triangulated space X
is equal to the alternating sum of its Betti numbers. |

X(X) =Y (=1)"Bn(X)

n>0

Theorem 8.1.10. Definition 8.1.9 coincides with Definition 5.4.3 when
X has a triangulation.

10Gee Hatcher [Hat02] for details. The proof requires the definition of singular homology,
which does not rely in any way on triangulations or cell decompositions of the space; however,
this powerful machinery falls outside the scope of this text.




8.1. RATIONAL HOMOLOGY 313

Proof. Suppose X has a triangulation with r,, n-simplices in dimension n, for
n=1,2,...,N. Using (8.12), and the fact that there are no simplices of dimen-
sion smaller than 0 or larger than NV,

S (=D"Ba(X) = D (=1)(rn — rank(Dy) — rank(Dp41))

n>0 n>0
= 79— rank(Dq)

—71 +rank(D;) + rank(Ds)

+ry — rank(Dg) — rank(Dj3)

;t-(—l)NrN — (—1)Nrank(DN)

= (=)
n==1l
= x(X).
Note how the sum above telescopes, yielding the Euler characteristic formula as
shown in Definition 5.4.3. 0

Exercises
1. Show that the property of being homologous is an equivalence relation.

2. Find a basis for H,(G;Q) and the first Betti number for each of the fol-
lowing graphs (see Chapter 6).

(a) K3 (d) G4 from Figure 6.1
(b) K¢ (e) P from Figure 6.8
(¢) G; from Figure 6.1 (f) C, forany n >3

3. Show that a properly embeded graph G and its dual G* have isomorphic
cycle spaces. (Hint: Both G and G* define a cell structure for the manifold
on which they are embedded.)

4. Let ¢,(n) be the number of r-cells in the simplex A™. For each fixed n > 0,
consider the sequence (c,(n));>0 of cell counts by dimension. For example,
Figure 8.6 illustrates that

(CT(3>)7-20 = (4, 6,4, 1, 0, 0, .. )

(a) Build a table of the nonzero values of ¢,.(n) for n =0,1,2,3,4.

(b) Use the combinatorial description of A® to find (¢;(5))r>0. Append
the nonzero values to your table from part (a).
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(¢) Do the numbers in your table look familiar? Conjecture a formula
for ¢,(n). Prove your formula. (Hint: Each k-cell is a (k + 1)-element
subset [vig, - ., Vi, ) Of the n-simplex [vo, . .., vn].)

5. Verify that (dz o d4)([ve,v1,v2,v3,v4]) = 0.

6. Compute the Betti numbers for each space. (Hint: First find a triangula-
tion for each surface, using the plane model.)

(a) T (b) K () P (d) S x I

7. Construct a triangulation of §? having more than four vertices. Use your
triangulation to compute the Betti numbers for the sphere, and verify that
you get the same answers as in Example 130.

8. Compute all of the nonzero Betti numbers for A", for n = 0,1,2,3. What
do you guess the answer would be for n € N in general?

9. Using the homeomorphism S™ a2 9A™ !, compute all of the nonzero Betti
numbers for §”, for arbitrary n € N.

8.2 Integral Homology

What makes rational homology easy to calculate is the ability to use linear alge-
" bra to analyze the boundary maps. But there is a trade-off. Rational homology
doesn’t see the difference between the closed disk D?, the projective plane P?,
and the dunce cap (see Figure 5.14 in Chapter 5), for example. It’s as if we are
trying to determine what object is under our living room chair just by reaching
down and poking it with our fingers. We might be able to tell it’s a coin (as
opposed to a key or cell phone), but have a hard time telling whether it’s a
penny or nickel. With another tool, a flashlight, we could look under the chair
and distinguish the coin by its color. In this section we will see how to com-
pute homology with different coefficients, specifically the integers Z, and with
tools from linear algebra we can develop powerful invariants that shed light on
features of topological spaces that may be missed by rational homology.

Modules and Torsion

Integral homology is defined in much the same way as rational homology, as the
equivalence classes of cycles with respect to the boundaries; however, certain
extra features emerge when working over Z rather than R or Q. Consider, for
example, all scalar multiples of the vector x = (2, 1), that is, the span of {x},
but with scalars restricted to Z. As Figure 8.7 illustrates, Spany{x} is a discrete
subset of R2. Vectors like (8,4) and (—6,—3) are in the span, but not (1,1/2)
or (2, ).
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Figure 8.7: Span;{(2,1)}.

From this point, we assume all vectors and matrices must have integer en-
tries, and the scalars are restricted to Z. In fact; it helps to think of Z" as
something like a vector space over Z, which we call a Z-module.!' The upshot
is that certain matrix methods can still be used.

At the same time, every Z-module is also an abelian group under vector
addition, which is commutative and associative, with the vector 0 as identity.
Conversely, every abelian group G may also be regarded as a Z-module, with
scalar multiplication defined for n € Z and g € G by:

g+g+---+g, n > 0;
R —
n
n = 0;

0)
(=9)+(=g)+-+(~g9), n<O.

In|

n-g=

One feature of Z-modules not enjoyed by vector spaces is the existence of
nontrivial torsion elements. An element m € M is a torsion element if there is
some nonzero n € Z such that n-m = 0. If n is the smallest positive number
such that n-m = 0, then m is said to have order n. For example, consider the
cyclic group Z/5Z = {0,1,2, 3,4} (see Examples 149 and 156 in the appendices).
Every nonzero element of Z/5Z is a torsion element with order 5.

A Z-module M is called free if M is isomorphic (as an abelian group)
to Z" for some 7 € N. If M is free as the span of an independent set A =
{a1,a2,...,a,}, then we say that A is a basis for M. The dimension or rank
of a free Z-module M is the number of basis elements. If M contains torsion,
then M cannot be free because there would be a nontrivial relation among any
set of spanning elements.

1 Although we do not formally define module in this text, we use the term because module
theory forms the bedrock of much of algebraic topology.
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A function f : M — N between Z-modules is called a homomorphism if f
is a group homomorphism. Briefly, every homomorphism f : M — N is a linear
map, in the sense that it satisfies both of the following properties.

1. f(my +mg) = f(m1) + f(mz), Ymi,me € M
2. f(n-m)=nf(m),Yne€zZ,meM

Definition 8.2.1. If f : M — N is a homomorphism, the image,
im(f), and kernel, ket(f), are defined as follows.

m(f) = {f(m)|meM}CN
{meM|fm)=0€eN}C M

il

ker(f)

Integral Homology of Delta Complexes

In §8.1, we defined the space Cr,(X; Q) of n-chains for a given triangulated space
X as the rational span of n-simplices in the triangulation. Similarly, one could
define integral n-chains as the integral span of n-simplices; however, there is a
more efficient way to proceed. A delta complex (or A-complex) structure on
a space X is a collection of maps o : A™E) 5 X where n(k) € NU {0} is the
dimension of the domain simplex, such that:

e The restriction o%|. ., xns is @ homeomorphism for all k.
int(An())

o If D C A™¥) ig a single face of the simplex, then Ukl p =0¢ for some map

op : AM®=1 5 X in the collection (recall that each face of an n-simplex
is an (n — 1)-simplex).

o Any subset Y C X is open (in X) if and only if oY) A™F) is open
for each k.

The maps o}, are nothing more than attaching maps for cells in a certain
kind of cell decomposition for X in which the n-skeleton is identified with the
images of oy, such that n(k) < n (compare Definitions 5.4.1 and 5.4.2). While
these conditions may seem esoteric at first, they imply that X has something like
a triangulation, except that the boundary faces of any given n-simplex may be
identified to other faces in less restrictive ways. The advantage to working with
A-complexes is that they are often much less cumbersome than triangulations
while at the same time admitting a straightforward boundary homomorphisn.
First we define the Z-module of n-chains as follows:

Cn(X;Z) = Spang{o | ¢ is an n-simplex in a delta decomposition of X}.

The boundary functions & and homomorphisms dy, : Cp(X;Z) — Cn1(X;2Z)
are defined in a similar way as in (8.3) and (8.4), though we must be careful as



8.2. INTEGRAL HOMOLOGY 317

simplices are now no longer uniquely identifiable by their list of vertices alone.
In order to work with a A-complex, first give all vertices, edges, and higher
k-simplices unique labels and then make the identifications when defining the
chain groups (via a quotient of modules - see below). The cycles and boundaries
can now be defined in module-theoretic terms:

Definition 8.2.2. For each n € NU {0},

n-cycles : Zn (X Z)
n-boundaries : B.(X;7Z)

As before, we have d® = 0, which implies that B, (X;Z) C Z,(X;Z). The
previous definition of homologous cycles still applies (see Definition 8.1.7) in
the more general setting. If N is any submodule of a module M, the quotient
module M/N may be defined by M/N = M/ ~, where my ~ my <= m; —
ma € N. Then M/N inherits an Z-module structure from M (see Exercise 2).
Each homology group is then defined to be the guotient modules of the cycles
with respect to the boundaries.

Definition 8.2.3. The integral homology of X is defined for each
n € NU {0} by:

Ho(X;Z) = ker(dn) /im(dn1) = Zn(X; Z)/Bn(X; Z).

Let’s see if we can make sense of all of these new definitions by finding the
homology of the projective plane. If the techniques displayed in the following
example seem a bit ad hoc, do not despair. There are more algorithmic methods
available in general.

O

I Example 131. The projective plane P has a plane model with word a2.

Let’s decompose P into a A-complex by putting an extra vertex in the center
along with two extra edges as shown in Figure 8.8.

v U2

v v

Figure 8.8: P as a A-complex with identified edges a = a; = a4 and vertices
V= V1 = V3.



318 CHAPTER 8 INTRODUCTION TO HOMOLOGY

We will begin the procedure for finding the integral homology for this space.
There are only two unique vertices (0-simplices), u and v (since v = v1 = v2), 50

Co(P; Z) = Spang{u,v} = 7%
The edges (1-simplices) are e1, e2, and a (since a = a1 = az).
C:1(P;Z) = Spang{e1, ez, a} = 73

There are two distinct “triangles” (2-simplices): Tt, having edges a1, —es and
eq; and T, having edges a2, —e; and e, in clockwise order.

Cy(P; Z) = Spang {Th, To} = Z*

There are no higher-dimensional chains, so Cp(P;Z) = 0 for n = 3, and in
particular, d3 = 0. For convenience, we introduce do as a map from Co(P;Z)
to C_1(P;Z) = 0, even though the concept of “(—1)-simplex” does not make
much geometric sense. The result is that do = 0, so that the kernel of dg is all
of Cy(P;Z). The chain groups and boundary homomorphisms are summarized
in the diagram below.

CA(B:Z) +2 Co(P,Z) <2 C1(PZ) « 2 Cu(P;Z) +— C3(P;Z)

i

Now let’s compute the integral homology, H,(P;Z), which involves find-
ing kernels and images of the boundary homomorphisms. We have di(e1) =
di([u,v1]) = vi —u = v — u and, similarly, di(ez) = v — u. To find di(a), use
either representative aj or ag, so di(a1) = v —wv2 =v—v = 0. This implies
that im(d; ) is spanned by a single boundary cycle, v —u. Thus, in degree n = 0,
we have

(S R

Ho(P; Z) = ker(dp)/im(d;) = Spang{u,v}/Spang{v — u}.

This means that Hy(P;Z) is the quotient module spanned by u and v but with
the relation that v —u ~ 0 or, equivalently, v ~ u. Since v and v are homologous,
either one may serve as a representative, and so we may write:

Hy(P;Z) = Z, generated by v.

Let’s move on to Hy(P;Z). Since di(e1) = di(ez), we have di(e; —ez) = 0,
implying e; — ez € ker(dy). Also, a € ker(dy), since di(a) = 0. There are no
other indepedent elements in the kernel since, otherwise, dy = 0 on Z3. What
about the image of d»? Using bracket notation, we may write 77 = [v1, vo, ul
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and Tp = [vz,v1,u]. Now using dy = 8y — 8; + O,, and identifying a = a1 = ag,
we have:

da(Th) = [vo,u] = [v1,4] + [v1,v2) = (—eg) — (—e1) +a1 =€ —es +a
dQ(TQ) = {vl,u} — [’Ug,’LL] -+ {'Uz,?)l} (—-61) — (-—-62) +as = —e; + e+ a.

I

Notice though that do(Ty + T3) = (e; — €3 + a) + (—e; + €3 + a) = 2a. So
2a € im(dy). It can be shown that a ¢ im(dy), so the element a becomes torsion
of order 2 in the homology group. Furthermore, since —e; + e + a € im(dy), it
follows that a ~ e; — eg in the quotient module. Thus

H1 (P, Z) = ker(dl)/lm(dg)
= Spang{e; —eg,a}/(2a ~0,a ~ e} — e3)
= Spang{a}/Spany{2a}

e

Z./2Z., generated by a.

Finally, we compute Hz(PP; Z). Note that im(ds) = 0, so it all comes down to
finding ker(dz). Suppose that do(mi Ty +mgTh) = 0 for some mq, ms € Z. Then

0 mldz(Tl) + mgdz(TQ)
0 = mie; —miea +mia — maoe; + maey -+ maa
0 = (m1—mao)er — (m1 —ma)es + (my + my)a.

This implies both m; —my = 0 and my +ms = 0. But the only solution to this
system is (m1,mg) = (0,0). Thus 0 is the only element in ker(dy). The degree
2 homology is therefore trivial.

HQ(]P; Z) =z kel’(dg)/lm(dg) =0
o {

O
l Example 132. Below is a delta complex structure for torus using only

two triangles. Simply draw a diagonal in the square plane model for T.

v a v
T
by (b
Ty
v a v

With respect to this decomposition, we have the following.
Co(T;Z) = Spang{v}=7Z
Cy(T;Z) Spang{a,b,c} = 7°
Ca(T; Z) Spang {11, Tp} = Z°

Il
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The boundary functions are defined as follows.

dQ(Tl) = b—a+tc
dy(Tp) = c—a+b
di(a) =di(b) =di(c) = v—v=0

Since d; = 0, we obtain Ho(T;Z) = Z with generator {v}. Furthermore,
H1(T; Z) = ker(dy)/im(d2) = Spanz{a, b, c}/(b—a+c~0,c—a+b~0).

Both relations imply that ¢ ~ a—b, but there are no further relations between a
and b, so we get H1(T;Z) = 72 on generators {a, b}. Finally, since do(Ty —To) =
(b—a+c)—(c—a+b) =0, cetainly T1 — Ty, € Z3(T;Z). There are no
other independent cycles, so Hy(T;Z) = Z. The higher-dimensional homology
is trivial.

i

Note that the procedure for finding homology of a delta complex can be
automated using advanced techniques from linear algebra, including the Smith
normal form. Unfortunately, we cannot explore the topic further in this text.

Exercises

1. Let w = (2,1) and v = (1,3). Find all elements of Spang{u,v} that are
within the region [—6,6] x [—6,6] in the plane. Plot each element as a
point.

2. Suppose N C M are both Z-modules. Show that the quotient M/N is a
Z-module, where [m1]+[ma] = [m1+my] and n-[m] = [nm] on equivalence
classes.

3. The notation Z/nZ used in this text for the cyclic groups suggests that
Z/nZ is really a quotient module. Explain how the group Z/5Z is a quo-
tient of Z by 5Z.

4. Let X be the dunce cap, which has a plane model with word @®. Find
H,(X;Z) for n € NU{0}.

5. Using Example 132 as a guide, find a simple delta complex structure on
the Klein bottle K and determine both H,(K;Q) and H,(K;Z) for all
n € NU{0}.

Supplemental Reading

e Hatcher [Hat02], Chapters 2-3.



Appendix A

Review of Set Theory
and Functions

Mathematicians typically use the language of set theory in order to make ab-
stract definitions precise. This appendix serves as a brief review of the concepts
and notations of set theory that will be used specifically in our study of topology,
as well as basic proof structure. It is not our purpose to delve into an axiomatic
treatment of sets, but rather to develop what is called naive set theory, in which
we define and reason about sets using everyday English language. The reader
is encouraged to explore the suggested readings at the end of this appendix if a
more detailed treatment of set theory is desired.

A.1 Sets and Operations on Sets

In this section, we define the basic constructions of set theory. We also infor-
mally introduce proof techniques, including proof by contradiction and proof by
induction.

Sets and Elements

We think of sets both as “containers” for objects and as “classifiers” of objects. A
set may contain specific objects, just as my desk drawer contains pens, pencils,
and coins, but a set may also define its elements; for example, the set of all
students who will receive a passing grade in next year’s calculus course (the
elements of this set are not known yet, but will be defined in a year).

Definition A.1.1. A set is a collection of objects, called elements,
with no regard to order or multiplicity. The notation A = {a,b,c,...} |

may be used to describe a set A as having elements a, b, ¢, etc.

321
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The elements of a set may be anything, including numbers, vectors, points,
functions, or even other sets.! For example, the set B = {4, 1, f(z) = =2, R?,
{2,3,4}} contains the number 4, the vector i, a function f defined by the rule
f(z) = 22, the Cartesian plane R2, and the set {2,3,4}. Note that by definition

all of the following are the exact same set, the set containing the elements a and
b and nothing else:

{a,b} = {b,a} = {a,a,0,0,0,0,0, b} = {b,a,b,a,...}.

We use the notation z € A (or A 3 z) to denote that = is an element of A, while
y ¢ A (or A # y) denotes that y is not an element of A. Thus we may write
1e{1,2},2€{1,2},3¢{1,2}.

A set may have any number of elements, even infinitely many. Consider the
set N = {1,2,3,4,...} (N stands for the set of natural numbers). Clearly
1 € N, 2 € N, and since the dots “...” indicate continuation of the pattern
forever, we can be sure that 1,000,000 € N and 10100 — 1 ¢ N. But what does
it mean to say that a pattern continues forever? Surely we cannot list or even
imagine an infinite number of elements.? Putting aside the discussion of whether
infinity makes philosophical sense, let us agree that it makes mathematical sense.
In practice, we usually deal with sets (infinite or not) by considering elements
only one at a time. Indeed, there is a definition for the set N that avoids those
pesky three dots altogether.

1. 1eN.
2. ¥neN, thenn+1€N.
3. There are no elements in N except those defined by rules 1 and 2.

This type of definition is called recursive or inductive. Now let’s prove that
N has an infinite number of elements. The proof is by contradiction.

o
I Example 133. Prove there is no largest integer. Solution: Assume to

the contrary that there is a largest integer N € Z. Consider K = N+ 1. K is
clearly an integer, by rule 2. Now since 1 > 0, we have N+1> N +0=N,
or K > N, contradicting the fact that N is largest. Thus there is no largest
integer.
o 7
The natural numbers have a property called well ordering, which we will
assume without proof.

1For technical reasons, in this text, we will never permit a set to be an element of itself.

2We may ask if there even is such a thing as infinity if we, as human beings, can only hold
finitely many things in our minds and have only finitely much time to ponder them. In fact, a
professor of mine once expressed this quandary to the class by asking, in a tone that I might
call mathematical sermonizing, “Do you believe in those dots? You have to believe in those
dots...” (The professor was Robert Young at Oberlin College. The class was Real Analysis.
The quote is reconstructed from memory, and so may not be verbatim.)
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Proposition A.1.2 (Well-Ordering Principle). Every nonempty set of
natural numbers contains a smallest element.

Suppose now that P(n) is a mathematical statement involving an arbitrary
natural number n, whose truth we want to determine. For example,

Pn)=>i= f‘-(ﬁzil_) (A1)

=1

For any given n € N, the statement P(n) may be verified. Thus P(3) is the

statement foli = 3(3; D and we can see that P(3) is true because Zf’:li =

1+2+3 =6 and 3—(32i1—) = 12 = 6. You might verify P(n) is true for other
values of n, but how can you tell whether it is always true? The proof technique
we require for this job is called mathematical induction.

Proposition A.1.3 (Principle of Mathematical Induction). Let ng € N
(typically, no = 1). Let P(n) be a mathematical statement, and suppose
the following:

e [Base case] P(ng) is true.

e [Inductive step] For any integer k > ng, if P(k) is true, then
P(k+1) 4s true.

Then the statement P(n) is true for all n > ny.

In fact, the principle of mathematical induction is equivalent to the well-
ordering principle (see Exercise 5), and we shall assume both without proof in
this text. In mathematical induction, the inductive step requires the truth of
P(k) to be assumed when proving P(k+1). We say that P(k) is the inductive
hypothesis. This may seem strange at first, because logically we are never
allowed to simply assume a statement is true before we have proven it, but this
is something different. We are saying that if P(k) is true, then P(k + 1) would
follow. It’s as if each statement P(n) is a domino in an infinite line of dominoes.3
There are two conditions that must be met if we expect all of the dominoes to
be knocked over.

o There is an initial domino that can easily be knocked over (base case).

o All of the other dominoes are close enough together that if any one domino
(k) is knocked over, then it is certain that the next domino (k + 1) will
also be knocked over (inductive step).

3By the way, there is an art and a science to domino toppling. Very impressive configura-
tions with hundreds of thousands of dominos have been created and knocked down with the
push of a single domino. See http://www.domino-play. com/TopplingBasic.htm.
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x4
l Example 134. Use mathematical induction to prove (A.1) for all n € N.

Solution: Base case. (n = 1) The statement P(1) is true, since

, (r+1) 2
E =1 == =1
1 , and 5 3

Inductive step. Let & > 1 and assume that P(k) is true. In other words,
assume the inductive hypothesis,

k
Z k+1) (A.2)

We want to show that P(k+ 1) is true; that is, we need to prove that ZH’; i=

M Start with the lefthand side (Caution: Never begin this part of
the proof with the full statement of P(k -+ 1), as this begs the question. We do
not yet know if P(k + 1) is true, so we cannot assume it.), so that

k41 k
i (Zz) +(k+1)

b+ 1
= ]—cgl—;‘—l + (k+1), (by inductive hypothesis)

B+3k+2  (k+1)(k+2) (k+1)([k+1]+1)'

Il

2 B 2 - 2
The last line shows that Zf+1lz (kH)(USH +1). in other words, P(k + 1) is
1
true. Thus, by induction, Zz = %i-) for all n € N.
=1 {

o

Now let’s get back to set theory. Another way to define a set is by using set-
builder notation. Set-builder notation has the form A = {& € S | P(z)}, where
S is a predefined set, and P(z) is some mathematical statement involving z. If
P(z) is true, then z € A; if P(y) is false, then y ¢ A. If the predefined set 5 is
omitted, then assume elements are taken from the largest set that makes sense
in that context.

O
I Example 135. Write the set C = {z | z < 10 and 2 is prime} by listing
all the elements.

Solution: Since prime may only refer to natural numbers in this context, we
have to assume C = {z € N | z < 10 and = is prime}. Therefore C' = {2,3,5, 7'}i

O

Certain sets, such as the integers and real numbers, are taken for granted in
this text, since it would be outside our scope to attempt to construct these from
the foundations. Below we list the notations and descriptions of five important
sets of numbers.
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Notation Name Description

N natural numbers | {1,2,3,4,...}

Z integers {..,-3,-2,-1,0,1,2,3,...}

Q rational numbers | {2 |m € Z, n € N}

R real numbers all points on the number line

C complex numbers | {a +bi | a,b € R}, where i2 = —1

Just as it is useful to have a concept of zero in arithmetic, it is useful to
define a set consisting of no elements at all.

Definition A.1.4. The empty set is a set having no elements, and it

is given the notation @ or {}.

Two sets are considered equal (equivalent in the realm of set theory) if they
have exactly the same elements. Therefore there is only one empty set.

Subsets

A subset is simply a collection of some (or all) of the elements of a given set.

Definition A.1.5. A set A is a subset of a set B, written A C B, if

every element of A is also an element of B; that is, if x € A, then z € B.

We may also write B 2 A to indicate that A is a subset of B or, equivalently,
B is a superset of A. Note that the statements A C A and A D A are true for
any set A. (We do not make use of the notations C and D in this text.) The
notation A ¢ B means A is not a subset of B, which would be the case if there
is at least one element x € A such that = ¢ B. It is essential to understand the
distinction between the notations € and C.

O

| Example 136. Suppose A = {1,2,{3},{4,5}}. A has four elements,
leA 2¢cA {3} € A and {4,5} € A, but it’s not correct to write 3 € A.
We have subsets {1} C A, {2} € A, {1,2} C A, but {3} € A (since {3} is
an element of A, not a subset of A); in fact, it is true that {{3}} C A and
{{4,5}} C A.

o {

In order to prove that A C B when the sets A and B are infinite, it is
typically necessary to frame the argument in terms of arbitrary elements — that
is, we show that any arbitrarily chosen element x € A also must be an element
of B, using only properties common to all elements of A and B.

a3
E Example 137. Let A = {n € Z | n = 6k + 4,for some k € Z}, and
B={neZ|n=3k+1,for some k € Z}. Prove that A C B.
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Solution: Let n € A be arbitrary. Then there exists an integer k such that
n = 6k + 4. Rewriting this expression, we find that n = 3(2k) + (3+ 1) =
3(2k + 1) + 1. Now since 2k + 1 € Z, the number n is in B. Thus A C B.

o {
Certain subsets of R called intervals play a significant role in analysis and

topology. Standard interval notation is used in this textbook, as illustrated in
the table below.

Notation Set Description Visualization on the Number Line
(a,b) {z]a<z<b} g g

[a, b) {z]a<z<b} z %—‘
(a,b] {z]a<z<b} ° z

la, b] {zla<z<b} e g
(a,00) {z]z>a} g

[a, 00) {z|z>a} o

(—o0,b) {z |z <b} g
(-0t {zlo <t} °
(—oo0,00) R (all real numbers)

The set of all subsets of a given set is called the power set.

Definition A.1.6. Given a set A, the power set of A, written P(A4), |

is the set of all subsets of A.

Caution: P(A) is, by definition, a set of sets. Note in particular that
0 € P(A) and A € P(A) for any set A.
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O

I Example 138. List all the elements in the power set of {1,2,3,4}.

Solution: There are 16 elements:

7)({1’ 2,3, 4}) = {®7 {1}7 {2}7 {3}7 {4}»
{17 2}7 {17 3}7 {1)4}7 {27 3}7 {274}7 {3)4})
{1,2,3},{1,2,4},{1,3,4},{2,3,4}, {1,2,3,4} }.

Logical Notations

As we look toward more formal proofs involving subsets and set equality, it
helps to introduce some useful notations from logic. A logical implication is a
statement of the form “if P, then @,” often notated more concisely by P = Q.
In order to prove the implication, we first assume the hypothesis P, and then
use this to derive the conclusion @. Looking back to Example 137, this is exactly
what we did to show the subset relationship, n € A == n € B.

A logical equivalence, or biconditional, is a statement of the form “P if
and only if .” This type of statement, often written P <= @, is equivalent
to the statement “P == @ and == P.” Thus the definitions for subset,
set equality, and power set may be compactly expressed using logical notation.

ACRB — t€A = z€B
A=RB = ACBand ADB
B e P(A) = BCA

Another useful pair of notations are the gquantifiers.

e Universal quantifier, V. “For all” or “for each.”

o Existential quantifier, 4. “There exists” or “for some.”
For example, the mathematical statement “vn € N,n? € N” means that for any
natural number at all, its square must also be a natural number. On the other

hand, “In € N such that n® = 4” means that there is (at least one) natural
number whose square is equal to 4. Both statements are true, of course.

Union, Intersection, and Difference Set

Given two sets, A and B, we define two operations, union and intersection.



328 APPENDIX A. REVIEW OF SET THEORY AND FUNCTIONS

Definition A.1.7. Let A and B be sets.

e The union of A and B, written AU B, is the set whose elements
are all of those from A or from B, that is,

AUB={z|z€ Aorz € B}.

e The intersection of A and B, written A N B, is the set whose
elements are all of those that are in both A and B, that is,

ANB={z|z€ Aand z € B}.

0
I Example 139. Let P = {n € N | n = 5k for some k € N}, and D =
{n € N| n = 2k for some k € N}. Describe PU D and PN D.

Solution: First, let’s write out some of the elements of each set to get a
better sense for what they are.

P = {5(1),5(2),5(3),5(4),5(5), 5(6), ...} = {5,10, 15,20, 25,30, ...}
D = {2(1),2(2),2(3),2(4),2(5),2(6),...} = {2,4,6,8,10,12,...}

It should be clear that P is the set of positive multiples of 5, and D is the set
of positive multiples of 2. The union will have all multiples of 5 or 2:

PUD ={2,4,5,6,8,10,12, 14,15, 16,18,20,...}.

The intersection will contain only numbers that are multiples of both 2 and 5,
which implies only multiples of 10:

PnD ={10,20,30,40,50,60,...} = {n € N| n = 10k for some k € N}.

It is interesting to note that P N D can be written in set-builder notation in a
similar way as P and D were given (as multiples of a single number), but PUD
does not have a similar description.

o {

Definition A.1.8. The difference between A and B, written A\ B, |
is the set of all elements of A that are not elements of B, that is,

A\B={z€A|z¢B}.

Note, by definition, A\ B C 4 and (A\ B) N B = (. For any sets S and T,
we say that S and T are disjoint if SNT = 0. Hence for any sets A and B, the
difference A\ B is disjoint from B. If the union of two or more pairwise-disjoint
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sets S1,9,...,5, is equal to a given set S, then we say S is partitioned by
51,852, ...,8,. (Unless otherwise specified, we do not insist that any Sy in a
partition be nonempty.) For example, A = (A\ B) U (AN B) is a partition of
the set A into two subsets based on whether the element is also in B or not.
There is also a useful partition of the union of A and B into three logical subsets:

AUB=(A\B)U(ANnB)U(B\ A).

Definition A.1.8 defines the difference A\ B as the set of elements of A that
are not in B. But what about the set of all elements that are not in BY It turns
out that this concept is not well defined. For example, if B = {1,2,3}, then
what is not in B? Well, certainly 4 ¢ B, 0 ¢ B, and 32 ¢ B. But also 1.5 ¢ B,
7¢ B,vV-1¢ B, (1,2) ¢ B, f(z) = 2* ¢ B, Tuesday ¢ B, and B ¢ B. The
concept of “everything that is not in B” is not well defined* because we have no
well-defined notion of “everything.” In practice, when we want to know what is
not in a set, we usually have some universal set U in mind already. For example,
if we consider U = N, then the set of elements not in B = {1,2,3} would be
the set {n € N | n > 4}. If instead we were working in U = R, then the set of
elements not in B would be {z € R | z # 1,2,3}. This leads to a definition for
the complement of a set.

Definition A.1.9. Suppose A C U, where U is a given universal set.
The complement of a set A (in U) is the set A€ defined as the difference
set,

A°=U\ A

The Venn diagram in Figure A.1 may help to visualize the relationships
between two sets A and B in a universal set U.

Cartesian Products

When you think of the zy-plane (also called the Cartesian plane), you may
think of all pairs of numbers (z,y) such that both = and y are real numbers. In
fact, this is a construction known as the Cartesian product of R with itself.

Definition A.1.10. The Cartesian product of two sets A and B is{
the set of ordered pairs,

Ax B={(z,y)|zeA, ye B}

Ordered pair means that the order matters. On the plane, (1,2) and (2,1)
are distinet points. The Cartesian product of any finite number of sets is the

4For more about this conundrum, see Russell’s Paradox: https://en.wikipedia.org/wiki/
Russell’s_paradox.
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(AU B)°

Figure A.1: Venn diagram for two sets, A and B, both subsets of a universal
set U. A and B are represented by the two disk regions, and U is the entire
rectangular region. AUB = (A\ B)U(ANB)U(B\ A).

set of all ordered n-tuples:

ArxAgx- - xAp = {(@1,22, ..., T,) | 2 € Ay for each k=1,2,...,n}. (A.3)

0

I Example 140. Describe the following sets.

(a) {4,5,6} x {1,5} (d) [4,6] x [1,5]

(b) N x {a,b}

(c) RxRx---xR
N et

n

(e) R* x R™

fHyRxZ

Solution:

(a) There are six elements in the product, choosing one from {4,5,6} and one
from {1,5} for each pair:

{4,5,6} x {1,5} = {(4,1),(5,1), (6,1), (4, 5),(5,5),(6,5)}.

(b) While we cannot list every element, we can describe the set in a nice way
as a union.

Nx {a,b} = {(n,a) | n € N} U {(n,b) | n € N}
(c) This is another way to interpret R":

RXxRx---xR=R"={(21,22,...,2,) | zx € R}.
LR —

n
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(d) The product of intervals is a rectangular region of the plane.

[4,6] x [1,5] = {(z,y) € R* |4 <2 <6, and 1 < y < 5}

—+—0
4 5 6

!
i
-
{

(e) Considering R* =R x --- xR (n times), and R™ =R x --- x R (m times),
we have a natural identification R™ x R™ = R™®*™_ Explicitly, the element
((xl,mg,...,xn),(yl,yz, .. ,ym)> € R™ x R™ may be identified with the

point (T, %2, .., Tn, Y1, Y25 - - - s Ym) € RPT™,

(f) Asaset, RxZ = {(z,n) | z € R, n € Z}. It may be useful to interpret this
set within R? as the union of all horizontal lines at integer heights.

R x {2}

R x {1}

R x {0}

R x {~1}

R x {~2}

o {

Sometimes we use the Cartesian product symbol x between a set X and a
single element a € Y. In such cases we interpret X x a = X x {a}.

O

l Example 141. Let m,n > 1. Then R™ x 0 C R™", where 0 € R™.

Moreover, 0 x R® C R™™" where 0 € R™. By abuse of notation, we typically

identify R™ = R™ x 0 and R™ = 0 x R™ so that we can say R™ C R™*" and

R™ C R™*", (These are particular embeddings of R™ and R™ into R™+". There
are many other ways to embed these spaces, though.)

o i
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Arbitrary Unions, Intersections, and Products

The definitions for union and intersection given above apply only to two sets at
a time. Using a recursive definition, we extend to n sets, for n > 2, as follows.

A1UA2U"'UAn=(A1UA2UA3U"'UAH_1)UA7L (A4)
AlﬂAgﬁ”'mAnz(AlﬂAgﬂAgﬂ--'ﬂAnwl)ﬂAn (A5)

Recall that when we want to abbreviate the notation for a sum of many terms,
a1 + ag + -+ + an, we might use sigma notation,

n
Zak:—:al +ag -+ Gy
k=1
An analogous notation exists for unions and intersections:

UJAk=4104U--UA,, and [|Ax=A1N4AsN- NA,
k=1 k=1

4
Example 142. Let Sy = {k,k + 1} for each k € N. Find | J S;.
k=1
Solution:

4

U Sk=51U8U85U8; =1{1,20U{2,3}U{3,4} U{4,5} = {1,2,3,4,5}.
k=1

7

Lo2

Both operations, N and U, are associative and commutative. That is, so
long as there is only one operation (only N or only U) in an expression, then the
order and grouping of the individual sets are not important.

0
| Example 143. Let A = {x € N | z is prime}, B = {z € N | z < 30},
and C = {z € N |z > 20}. Determine AN BNC.

Solution: Interpret ANBNC as (BNC)NA, since BNC is easy to determine
and is a finite set.

(BNC)N A

Il

{reN|z<30andz >20}nA
(teN|20<z<30}NA

{z € N|20 <z < 30 and z is prime}
= {23,209}

i

e
Thinking again back to sums of terms, it is useful to have a concept of the
sum of infinitely many terms. In sigma notation, this looks like:

=
Zak=a1+a2+a3—l—-~
k=1
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There is no guarantee that such a sum evaluates to a well-defined numeric value.
On the other hand, it is true that the union or intersection of infinitely many
sets is again a set.

Definition A.1.11. Suppose that for each k € N, there is a set Ay.
The union of the sets Ay, As, As, ... is the set whose elements are all of
those from any set Ag, that is,

UAk=UAk=A1UA2UA3U---={:1:|a;€-AkforsomekEN}.
keN k=1

The intersection of the sets A1, Ag, As, ... is the set whose elements are
all of those that are common to every set Ay, that is,

(VAe=[)Ar=A1NANA3N - = {z |z € A for all k € N},
keN k=1

I Example 144. For each k € N, let

My, = {n € N| n = km for some m € N such that m > 1}.

oo o0
Describe U My, and ﬂ My,.
k=2 k=2
Solution: Let’s first get an idea for what each set M}, looks like.

My ={neN|n=2-m for somem>1}={4,6,8,10,12,14,...}
Ms;={neN|n=23-m forsomem >1}={6,9,12,15,18,21,...}
My={neN|n=4-m for somem > 1} = {8,12,16,20,24,28,...}
So each M}, C N is the set of multiples of k greater than the number k itself. So
the union contains every natural number that can be written in the form km,

where both k& and m are at least 2. This is the set of all composite numbers,
that is, all natural numbers greater than 1 that are not prime:

oo
U M, =N\ {1,2,3,5,7,11,13,17,19,...}.
k=2

Any number in the intersection must be a multiple of every number greater than
1. However, no such number exists, since every natural number is the product
of only finitely many primes. In other words, the intersection is empty.

() M =0
k=2
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Definition A.1.12. Suppose that for each k& € N, there is a set Aj.
The product of the sets Aq, As, As ... is the set of infinite tuples:

HAk:HAk:Al X Ay X Ag x -+ = {(z1,22,T3,...) | Tk € Ax}.
kel k=1

If all of the sets are equal, say, Ay = A for all k¥ € N, then we write
Hi';l A= A>.

¢

I Example 145. Let C be any set. A sequence in C is an infinite ordered

tuple, (c1,co,¢s,...). The set of all sequences in C is the infinite product C°°.
In particular,

e Z is the set of all integer sequences.

e R is the set of all real number sequences (or “infinite-dimensional”
vectors).

o {

Finally, in topology we may encounter unions or intersections of sets Ay,
where k ranges over all of the elements of a given indez set rather than just N.

Definition A.1.13. Let 7 be a set (called the index set). Suppose
that for each k € Z, there is a set Ay. The union of A; over Z is:

UAk:{m|x€AkforsomekeI}‘
kel

The intersection of Ay over 7 is:

() Ax={z |2 € Ayforal k eI}
kel

O
I Example 146. Example 140(d) shows the set R x Z geometrically as a
union of lines. The indexing set is Z.

RxZ=J®Rx{n})
nel

Less obviously, we could break up the set over each real number and interpret
R x Z as a continuum of integer sets:

RxZ= U({x}xZ).

zeR
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Set Identities

Certain relationships exist among unions, intersections, and set differences, a
number of which are collected here for reference. Exercise 10 asks you to prove
each one.

Theorem A.1.14 (basic set identities). For all sets, A, B, and C, the
following identities hold.

(o) AUB=BUA, and ANB=BnA

(b) (AUB)UC = AU(BUC), and (ANB)NC = An(BNC)

(¢) AUA=A, and ANA=A

(d) AUD=A, and AND=10

(e) ANOD=A, and A\ A=0

(f) (AUB)NC = (ANC)U(BNC), and (ANB)UC = (AUC)N(BUC)

The following theorem, known as De Morgan’s Law, is of particular impor-
tance. It ties together all three of the basic operations of union, intersection,
and set difference.

Theorem A.1.15 (De Morgan’s Law). Let A, B, and C be sets.

A\(BUC) = (A\B)N(A\C)  and
AN(BNC)=(A\B)U(A\C)

We will prove the first half of the De Morgan Law, leaving the other for an
exercise. Let’s first develop a game plan. In order to prove two sets S and T are
equal, it is necessary to prove both set inclusions, S C T and T' C S. Thus the
proof below is separated into two parts. The parenthetical remarks are for the
benefit of the reader and may be omitted in a formal proof.

Proof. Part I. To show: A\ (BUC) C (A\ B)n(4\C).

Let z € A\ (B UC). Then (by definition of difference), z € Aand x ¢ BUC.
But if z ¢ BUC, then certainly ¢ B and = ¢ C (since if z were in either
set B or C, then by definition of union, x € BU (). Now we have z € A and
¢ B,soxe A\B,andz € Aand z ¢ C,so z € A\ C. Since z is in both
sets, we have z € (A\ B) N (A\ C) (by definition of intersection).

Part II. To show: (A\ B)n(A\C) C A\ (BUC).

Let x € (A\ B) N (A\ C). Then (by definition of intersection), x € A\ B
and z € A\ C. The former condition implies z € A and = ¢ B, while the latter
implies € A and ¢ ¢ C (by definition of difference). Since z ¢ B and = ¢ C,
then ¢ ¢ BUC (since if x were in BUC, then either z € B or z € C, by definition
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of union). Now we have z € A and z ¢ BU C, which gives z € A\ (BUC) (by
definition of difference).

Parts I and II imply that A\ (BUC) = (A\ B)n(4A\ ). O
Exercises
1. Prove there is no smallest positive rational number.

2.
3.

10.
11.

Prove that if r e Qand y € Q, thenz+ye Qand z —~y € Q.

Prove that if z € Q and y € R\Q, then z+y € R\ Q. (Hint: Use Exercise 2
and a proof by contradiction.

. Using induction, prove the formula for the sum of a finite geometric series:
n

1— T,n+1

If 7 # 1, then » k=—1——~—forallnEN
-7

Prove that the principle of mathematical induction is equivalent to the
well-ordering principle. (Hints: To show that induction implies well-ordering,
let S be a set of natural numbers having no minimum element, and arrive
at a contradiction. To show that well-ordering implies induction, let S be
the set of all n € N such that P(n) is not true, and show that S = .)

. Suppose A = {1,4,{1},{3},{1,3,4}}. Identify which of the following

statements are true or false.

(a) 1€ A (e) {1} C A () {1,3,4 € A
(b)3e A (f) {1te A (G {1,3,41cA
(c)4e A (g) 1C A (k) {3} c A
(d) {4} eA (h) {1,4} C A HocAa

Suppose A is a finite set. How many elements are in its power set, P(A)?
How many elements are in P(P(4))?

Consider the sets M, as defined in Example 144. Describe the following
sets:

(a) MQ U JVI?, (C) .[V[ﬁ N ./\/[15 (e) Mg e ]\/[3 X M4
(b) Mo N Ms (d) My x M3 (f) HZ.;Q M,

Show that if AN B # § and CND # 0, then (4 x C)N (B x D) # 0.
(Hint: Produce at least one element in (4 x C) N (B x D).)
Prove all of the set identities listed in Theorem A.1.14.

Prove the other half of De Morgan’s Law, A\ (BN C) = (A\ B)U(A\ O).
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12. Prove De Morgan’s Law for arbitrary unions and intersections:

A\|{JBr=[)(A\Bx)  and

kel keT
A\ Be=J (A\By).
kel kel

13. Prove a generalized distributive law for the intersection of two arbitrary

(U Ak> N (U Bg) = |J (4xnBy. (A.6)

keT Ledg keZteJ
14. Prove the following.

()IfACBanngC.,thenAgC(tmnsitz’vz’tyofg).
(b) (A%)° =

(C)IfACB thenA\B 0.
() TCCANB,then CC Aand C C B.
(e) (A\B)\C=A\(BUC).
(f) AC B, then AxCCBxC.

(g) Ax(BNC)=(AxB)Nn(AxC).

(h) (ANB)x (CND)=(AxC)n(Bx D).

A.2 Relations and Functions

In this section, we define relations and functions using set theory.

Relations

Definition A.2.1. Let X and Y be sets. A relation R between X and |
Y isasubset RC X xY.If (z,y) € R, then we may write Ry and say |

“z is related to y via R.”

I Example 147. The following are examples of relations.

e Define a relation S C N xR by S = {(z,y) € NxR |y =z} The
elements of S include (1,1), (2,v2), (3,v3), (4,2), etc.

e Define a relation L CR xR =R2 by L = {(z,y) € R? | z < y}. That is,
zLy <= z <y. The set L may be visualized as the region of the plane
R? above and including the line y = 2.
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o {

In this text we will mostly be concerned with two specific kinds of relation:
equivalence relations and functions.

Definition A.2.2. An equivalence relation on a set X is a subset [
E C X x X satisfying the three properties below. We use the notation |
x ~ y to indicate (z,y) € E.

(i) [Reflexivity] Vz € X,z ~ x.
(i) [Symmetry] Va,y € X, (z ~y) = (y ~ ).

(iti) [Transitivity] Vz,y,z € X, (z ~y) and (y ~ 2) = (z ~ 2).

O

I Example 148. Neither relation in Example 147 is an equivalence rela-

tion. For instance, S fails reflexivity since (2,2) ¢ S. The relation L does satisfy

reflexivity since 2 < z for all z € R, and transitivity follows from a well-known

property: if © < y and y < z, then z < z. However, L is not an equivalence
relation because symmetry does not hold: 3 < 5 but 5 £ 3, for example.

o {

When there is an equivalence relation on a set, then the set can be parti-
tioned into mutually disjount subsets called equivalence classes. We use the

notation [z] to stand for the equivalence class of X in which  is a member,
that is,

Zl={zeX|z~az}
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Clearly, z ~ y if and only if [z] = [y]. If X is a set with an equivalence relation
~ defined on its elements, then the quotient of X with respect to ~ is the set
of all equivalence classes:

X/ ~={z] |z € X}.

*
l Example 149. The following are examples of equivalence relations.

e For any set X, let £ = {(z,2) | x € X}. This is the most restrictive
equivalence relation that may be defined on a set: z ~ y <= z = y.
Certainly reflexivity is satisfied. Symmetry follows since if z = y, then
y = z. Transitivity is also trivial: If x = y and y = z, then © = 2. The
equivalence classes are the singleton sets, [x] = {z}. This relation is called
the equality relation.

e Fix a natural number d > 1. Define an equivalence relation on Z as fol-
lows: n ~m <= n-—m is a multiple of d. For example, if d = 5, then
we have 2 ~ 7 ~ 102 ~ =23 ~ ..., You will prove in an exercise that
this is indeed an equivalence relation, but let’s explore what the equiva-
lence classes look like. Each equivalence class is an arithmetic sequence,
extending infinitely negative and positive. We have chosen representatives,
0,1, 2, 3, 4, in each class, but any single element could have been chosen
as representative (e.g., [5] instead of [0]). The process of determining which
representative corresponds to a given number n € Z is called reduction

modulo d.
0 = {..,—15,-10,-5,0,5,10,15,20,...} = {bn | n € Z}
1 = {..,-14,-9,-4,1,6,11,16,21,...} = {1+ 5n |n € Z}
(2] {..,—13,-8,-3,2,7,12,17,22,...} = {2+ 5n | n € Z}
[3] {..,—-12,-7,-2,3,8,13,18,23,..} = {3+ 5n|ne Z}
4] = {...,-11,-6,-1,4,9,14,19,24,...} = {4+ 5n | n € Z}

In this way, we have partitioned the infinite set Z into five classes. The
standard notation for this set of equivalence classes is Z/5Z (and Z/dZ
in general), and we may write Z/5Z = {[0}, (1], [2], [3], [4]} or {0, 1,2,3,4}.
With a little more work, it is possible to define the operations of addition
and multiplication on these equivalence classes. These satisfy [a] + [b] =
la+b] and [a]-[b] = [ab], as one might expect, and define modular arithmetic
on the set Z/dZ.
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Functions

A function is a type of relation F C X x Y in which all pairs satisfy the
additional condition:

o For every x € X, there is ezactly one pair (z,y) € F.

This condition implies that every z € X is related to a uniquely determined
y € Y. In other words, F' defines a rule associating each x with a particular y.
From now on, we will write functions in a more traditional way that may be
familiar from calculus or algebra: f(z) =y.

Definition A.2.3. Let D and C be sets. A function f from D to C,
written symbolically as f : D — C, is a rule that assigns to each element

z € D, a single element y € C, and we may write y = f(z). The set D
is called the domain and C is called the codomain of f.

In algebra and calculus, the domain and codomain are usually not included
in the definition of the function itself. Instead the domain is assumed to be the
largest subset of R that makes sense for the function, while the codomain is
rarely mentioned at all but understood to be R. For example, when you see
f(z) = x2, it is usually understood that f : R — R, and the rule is: “square
the given real number.” By our definition, f must be defined for every z in
the domain set; however, we do not require all points of the codomain to be
outputs for the function. Indeed, negative values, such as y = —1, cannot be hit
by f(z) = 2z (and yet we still may say R is the codomain).

When speaking about individual elements, we may use the notation f : z
yor z +— y (read: “z maps to y”) when the function is clear by context. In fact,
we may even define the function by its rule, z — f(z), when the domain and
codomain are clear by context. Thus x = z? is another way to write f(z) = z2.
Note that in this small example we find multiple z-values that map to the same
f(x)-value, for instance, 2 — 4 and ~2 ~ 4. It is important to understand that
a function may have multiple inputs mapping to the same output, but may not
have an input mapping to multiple outputs.

It is often helpful to represent a function by a bubble diagram, especially when
the function has finite domain and codomain. Figure A.2 shows a few different
functions from D = {1,2,3} to C = {a, b, ¢,d}, while Figure A.3 demonstrates
bubble diagrams that do not correspond to functions.

"~ Suppose we are given a function f : D — C and A C D. Certainly f is
defined on A since it is defined on all of D — we say that f restricts to A, and
we write f ] 4 to denote the function whose domain is the subset A € D and
has the same rule as f (i.e., z = f(z)). The restricted function is technically
a different function because the domain is A rather than D; nevertheless, we
often abuse notation, writing f : A — C when we really mean f l 4 A= C
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Figure A.2: Three functions. The rule for f; is: f1(1) =0, f1(2) =d, f1i(3) =a
The rule for f2 is: fg( ) = ¢, f2(2) = d, f3(3) = c. The function fs is a constant
function, f3(1 = f3(3) = b.

B 0

Figure A.3: Three nonfunctions. The diagram for g; provides two outputs, b and
d, for the input value 2 (we say that g;(2) is not well defined). The diagram for
g2 lacks an output value corresponding to 3 {we say that g2(3) is undefined).
The diagram for gs shows both defects (g3(1) and g3(2) are undefined and g3(3)
is not well defined).

Injectivity, Surjectivity, and Bijectivity

Certain properties of functions will become important in this and later chapters
of this book.

Definition A.2.4. Let f: D — C be a function.

o f is called injective (or one-to-one) if whenever z;,2; € D |
and zy 3 zo, then f(z1) # f(x2). Equivalently, f is injective if |
f(z1) = f(z2) implies 1 = .

e f is called surjective (or onto) if for every y € C, there is at
least one x € D such that f{z) =y. '

e f is called bijective if f is both injective and surjective.

Figure A.4 illustrates injective, surjective, and bijective functions in terms
of bubble diagrams.

O
l Example 150. In this example, we consider the rule z + z? with respect
to different domains and codomains. Refer to Figure A.5.
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Figure A.4: Here f; is injective but not surjective, and fo is surjective but not
injective. On the other hand, f3 is both injective and surjective; hence it is a
bijection.

(a) The function f : R — R defined by f(z) = z? is neither injective nor
surjective. We see that f is not injective because f(—2) = 4 = f(2); that
is, with 1 = —2 and z3 = 2, we have z; # zo, but f(z1) = f(z2). We find
that f is not surjective because —1 € R (the codomain), but there is no
z € R (the domain) such that f(z) = —1.

(b) Next consider the restriction f f{o oo [0,00) — R. This function is injective

since now the inputs are restricted to nonnegative real numbers, but f | [0,00)

is not surjective, as there is still no = € [0, 00) such that f(z) = —1.

(c) Suppose we define g : [0,00) — [0,00) by g(z) = z2. Notice that g has the
same rule as f, but the domain and codomain of g are both restricted. Since
g is both injective and surjective, g is a bijection.

4 + 4+ 4
3+ 3+ 3
2 + 2+ 2
1+ 1+ 1
I i ——t 0 — 0
-2 114+ 1 2 141 2
—9 4 -9 4

Figure A.5: Left, graph of f. Center, graph of f . Right, graph of g.
[0,00)

Compositions and Inverses

The effect of applying one function followed by a second function is called com-
position. To be precise:
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=<

|

Figure A.6: Here f : A — B, and g : B — C. The composition go f is a function
from A to C. According to this diagram, (go f)(1) =y, (go f)(2) = z, and

(g0 f)(3) =y.

Definition A.2.5. Suppose f: A — B and g : B — C are functions.
The composition of f and g is a function go f : A — C defined by the
rule

(go lz)=g(f(z)), forevery z € A.

It is important to understand that composition of functions is not commu-
tative. Even when the domains and codomains are given so that both f o g and
go f are defined, we have in general fog # go f. Also note that the definition
of composition requires that the codomain of f be the same as the domain of
g; otherwise, the composition is not defined. We may represent the composition
of functions f: A — B and ¢ : B — C using bubble diagrams as in Figure A.6.

O
1 Example 151. Let R represent the set of positive real numbers, {z €
R |2 > 0}, and let R~ represent the set of negative real numbers, {z € R | z <
0}. Define function f: N — R* and g: R — R~ by the following rules:
. N 1
fn) =2, o) = ——.
Describe the composite function, g o f.

Solution: The domain of g o f is the domain of f — that is, N — and the
codomain is the codomain of g - that is, R™. To find the “rule” that defines

g o f, simply work out g(f(n)).
gof : N-—=R™
(gof)(n) = g(f(n) =g(2") = —(Qi)4 -
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f" f‘

»‘ '4

Figure A.7: Here f is bijective, so the inverse exists. Note that f~! may be
regarded as reversing all arrows of f. The third picture is f~! displayed with
domain on the left as normally depicted.

Whenever f : A — B is bijective, there is a way to “reverse” the direction
of the arrow to get a function we call the inverse. See Figure A.7 for a bubble
diagram interpretation of the inverse function.

Definition A.2.6. Suppose f : A — B is a bijective function. The [
inverse of f is a function f~! : B — A defined by

f7Hb) =a, ifandonlyif b= f(a).

If f is not bijective, then f~' does not exist.

Proposition A.2.7. Functions f: A— B and g: B — A are inverses
of one another if and only if (gof)(z) = z for allz € A and (fog)(y) =y
forally € B.

The phrase “f and g are inverses of one another” means both g = f~! and

f = g~'. We will only be concerned with the former, as the latter can be derived
analogously. In order to prove an “if and only if,” we must prove both directions.
That is, we must first assume the statement on the left of the “if and only if,”
using it to derive the statement on the right, and then we must assume the right
to derive the left. The proof given below may seem long at first, but it provides
a model for the kind of formal proof that you may see or write on your way
toward understanding topology.

Proof. Part 1. Suppose g = f~*.

Consider (g o f)(z). By definition of composition, (go f)(z) = g(f(z)). Now
with any b € B, and by definition of inverse functions, we have: g(b) = z if and
only if b = f(z). Choosing now b = f(z), we have

g(f(@)) =z = flz)=[f(a) (A7)
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The right side of (A.7) is true (for all z € A); therefore the left side is also true.
This proves that (go f)(z) = z.

Now consider (f o g)(y). Again by definition of composition, (f o g)(y) =
f(g(y)). For any a € A, we have g(y) = a if and only if y = f(a). Choosing
a = g(y), we have

flaw) =y <= g(y) =gy). (A.8)

The right side of (A.8) is true (for all y € B); therefore the left side is also true.
This proves that (f o g)(y) = v.

Part II. Suppose both (fog)(z) =z forallz € 4 and (go f)(y) = y for all
y € B. We have to prove that g = f~!. First, and most importantly, we have to
show that f~! exists, which is done by proving that f is bijective.

Injectivity of f: Consider two elements, z1,z2 € A. Suppose f(z1) = f(z2).

flz) = f(z2)
9(f(z1)) = g(f(z2))
(goflz) = (g0 f)(z2)
T = Ig by hypothesis

Thus f is shown to be injective.

Surjectivity of f: Now consider any y € B. We must show there is an z € A
such that f(z) =

(fog)ly) = y by hypothesis
flaly)) = vy

Therefore, for © = g(y), we have f(z) = y. Thus f is surjective.

Now that we see f is bijective, we know that f~! exists. All that remains is
to show that g fits the definition to be f~!. Let a € A and b € B. We have to
show both implications, g(b) =a == b= f(a) and b= f(a) = g(b)=a.

glb) = a, assumed
flg®) = fla)
(fog)d) = f(a)
b = fla), by hypothesis

This proves g(b) = a = b= f(a). The argument showing b = f(a) =
g(b) = a is similar and is left as an exercise. Thus we have g(b) = a if and only
if b= f(a), which shows that g = f~1. O

O

l Example 152. Suppose A = {0,1,2,3} and B = {2,3,5,7}, and let

f A — B be defined by the bubble diagram below. Determine the values of
F71), £743), £71(5), and £71(7),
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Solution: Simply follow the arrows backward to find f71(2) =2, f~1(3) =
L, f71(5) =3, (1) =0.
?

0

I Example 153. Let f : R — R be defined by f(z) = z2. Let g : [0,00) —
[0,00) be defined by the same rule, g(z) = 2. Determine the inverse function
of each, if it exists.

Solution: The function f is neither injective nor surjective (see Exam-
ple 150); therefore the inverse function f~! does not exist. On the other hand,
with restricted domain and codomain, g is bijective (see Example 150). To find
g~ 1, simply solve algebraically for z in y = g(z):

y=22 = Jy=z = g '=z)=7
Note that Proposition A.2.7 may be used to verify that g~!(z) = /.

(g7 og)z) = (22) =z, sincez >0
(gog () = (\/5)2 =z, sincez >0
Why doesn’t this algebraic method work to show that the inverse of f could

also be /z7
o {

Forward and Inverse Image

Even when a function f fails to be injective or surjective, we may still want to

find the z-values that solve f(z) = y. However, without an inverse function,
we cannot in general find a unique result of the form z = f~*(y). Just think
of f(z) = 22 defined over all real numbers. When we solve 2 = 4, we get
two answers, = £2. On the other hand, the solution to z? = —1 is empty.
The proper way to “reverse” a nonbijective function is to examine how f maps
subsets to subsets.
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Definition A.2.8. Suppose f: A — B is a function.

e Let Ag C A. The forward image (or simply image) of Ay under
f is a subset of B defined by '

flAo] ={be B|b= f(a) for some a € Ao} = {f(a) | a € Ap}.

e Let By C B. The inverse image (or preimage) of By under f
is a subset of A defined by

F Bol={a€ A| f(a) € Bo}.

There is an unfortunate ambiguity in notation in Definition A.2.8. When
working with the inverse image, f~![By], we cannot assume that an inverse
function f~! exists. In order to help alleviate this confusion, we place brackets
around the subset By to remind the reader that we are working with inverse
images of sets rather than inverse functions. The same notational convention
applies to foward images.

By our definition of function, if f : A — B, then f~![B] = A. That is, every
a € A must be mapped to something in B. On the other hand, f[A] may not
be all of B, unless f happens to be surjective. In fact, f[A] is by definition the
range of f.

Definition A.2.9. Suppose f : A — B is a function. The range of f E

is the forward image f[4] C B.

O
I Example 154. Let X = {1,2,3,4,5,6} and Y = {1,2,3,4,5,6,7,8}.
Suppose f: X — Y is a function defined on z € X by the table below.

P 1[2[3[4[5]6
f@) [4]5[1]7[5]4

Find the following values or subsets.
(a) fX] (b) f{1,2}] (@ fHH2,3 (@) L 2]

Solution:
(a) f[X] is the range of the function, {1,4,5,7}
(b) fl{1,2}] = {4,5}, since f(1) =4 and f(2) =5

(¢) [71{2,3}] =0, since there are no z-values such that f(z) =2 or f(z) =3



348 APPENDIX A. REVIEW OF SET THEORY AND FUNCTIONS

(d) from part (b), we have f[{1,2}] = {4,5}; therefore
f—l[f[{l’ 2}]] = f-l[{4’ 5}] = {1,2,5,6}
{

<

Part (d) of the above example demonstrates that f~[f[Ao]] # Ao in general.
However, the following relationships regarding forward and inverse images are
true.

Proposition A.2.10. Let f : A — B, Ag C A, and By C B. The
following relationships hold.

1. Ao C f [ f[Ao]], with equality if f is injective
2. f [f7*Bo)] € Bo, with equality if f is surjective
8. if Ao C A1 C A, then f[Aq) C f[Ai]

4. if Bg € By C B, then f"l[Bo} - f'l[Bl}

We shall prove part 1 of Proposition A.2.10, leaving the other parts as exer-
cises.

Proof. Let © € Ap be arbitrary. We must show that z € f~![f[Ag]]. Since
xz € Ap, f(z) € flAo], by definition of forward image. But by definition of
inverse image,

FHF Al = {a € A] f(a) € flAd]}-

Certainly the z we chose qualifies under this definition to be a member of
I~ [f[A4o]]. This proves the inclusion Ag C £~ [f[Ao]]. O

Exercises

1. Let d > 1 be a whole number, and define a relation on the set of integers
Z by n ~m <= n-—mis a multiple of d.

(a) Prove that ~ is an equivalence relation.
(b) Write out the equivalence classes defined on Z by the relation ~ when

d = 9. How many classes are there?

2. Let D = {1,2,3} and E = {a,b}. How many functions are there from D
to E7? List them all using bubble diagrams.

3. Decide whether each function below is injective, surjective, and/or bi-
jective on the indicated domain and range. If bijective, find the inverse
function.
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(@) F:R—R, flz)=8z+7 (d) f:(=00,0] = [0,00), f(z) = 32*
(b) f:R—=R, f(z) = 3z* (e) f:R—R, f(z) =sinx
(¢) f:R—[0,00), f(z) = 3z* (f) f:[0,2n] = [-1,1], f(z) = sinz

(g) f:l-n/2,7/2] = [-1,1], f(z) = sinx

() f R\ {0} > R\ {0}, f(2)= -
(1) f:R\{0} =R\ {0}, f<$>=;12_
(i) F:R\{-2/5} = R\ {3/5}, f(z) = gz;;

(k) f:R—RF, f(z) = 7e>®

. Suppose that f : A — B is a bijective function, and suppose that (g o

f)(@) = a for all z € A. Let a € A be arbitrary. Prove that if b = f(a),
then g(b) = a (completing the proof of Proposition A.2.7).

Let f: X — Y be defined as in Example 154. Find the following values
or subsets, or if the expression is undefined, explain why.

(a) f(1) (b) FI{1}] (e) f71() @ fH{Y

1
. Let f(z) = = Find the forward or inverse images.

(a) f1(1,3)] (b) fI(=3,-D] (o) F7HEL] () f7H(=9,9)]

. Let f: D — C. Assume that A, B C D and U,V C C. Prove the following

set identities involving forward or inverse images.

(a) fIAUB] = flA]U f[B] () fHUNV]=fUln fHV]
(b) fHUUVI=fHUIUSTHV] (d) fHUNV] = U SV

. Let f: D — C. Assume that A, B C D. Prove that f[ANB] C f[A]Nf[B].

Provide a specific counterexample showing that equality is not true in
general. Then show that if f is injective, there is equality fl4A N B] =

flAI0 f1B].

. Prove parts 2, 3, and 4 of Proposition A.2.10.

Suppose A has two elements and B has four elements. How many injective
functions are there from A to B? What if A has m elements and B has n
elements? (Hint: consider m < n and m > n separately.)

Assume f : A — B and g : B — C are functions. For each statement,
if it is true, then carefully prove it, or if it is false, then find a specific
counterexample.
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(a) If both f and ¢ are injective, then so is go f.
(b
(c
(
(
(

)

) If both f and g are surjective, then sois go f.
)
d) If g o f is injective, then so is g.
)
)

If g o f is injective, then so is f.

e) If go f is surjective, then so is f.

f) If g o f is surjective, then so is g.

Supplemental Reading

Epp [Eppl0], Chapters 5 and 7.
Halmos [Hal74]. Thorough treatment of set theory, a classic.

Munkres [Mun00], Chapter 1. Foundational topics of set theory from the
point of view of topology.

Mendelson [Men90], Chapter 1.

Smullyan [Smu94], Parts I-11. A rigorous source text for propositional and
first-order logic.



Appendix B

Group Theory and Linear
Algebra

In Chapter 7, we introduced the powerful topological invariant called the funda-
mental group. To properly understand how this tool works, we must be familiar
with the basics of group theory. It is also important to have some knowledge
of elementary linear algebra in order to understand and compute homology
in Chapter 8. In this appendix, we review only the essential concepts of group
theory and linear algebra that are useful for our purposes in this text. For more
detailed treatments of group theory or linear algebra, consult the suggested
reading list at the end of the appendix.

B.1 Groups

Definition of a Group

A group is a set together with a product operation defined on elements of that
set satisfying certain axioms.

Definition B.1.1. A group is a set G together with a function GxG — £
G called the product. The product of g, h € G is typically written g- h, |
g * h, or gh. The product must satisfy three axioms:

1. (Associativity) Vg, h,k € G, (g-h)-k=g-(h- k).

II. (Ezistence of identity) 3e € G such that Vg € G, g-e=e-g=g.|
Such an element e is called an identity element.

III. (Existence of inverses) Vg € G, 3h € G such that g-h=h-g =,

where ¢ is the identity element. The element h is called an inverse |

for g, and written h = g~1.

351
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The three group axioms imply that the identity element e of any given group
G must be unique (hence it’s justifiable to say “where e is the identity element”
in the statement of Axiom IIT). Let’s verify this important fact. Suppose e; and
e both meet the requirements of Axiom II. Then, since e; is an identity, we
know that ej - e = es. But since ey is also an identity, we know that e; -es = e;.
Thus by transitivity, e; = eg. Often we write the identity element as e = 1.

The product in a group is not exactly like the product of real numbers. We are
used to the ability to rearrange the order of a product. For example, in algebra we
know that 3-2-4-2° = 3-4-z-22 = 12-2% and zyz~ 'y =2z lyy t =11 = L.
However, in group theory; we cannot assume that g- h-g¢g~! - h~! simplifies in
any straightforward way. Group products are typically not commutative. In other
words, if g, h € G, then generally g-h # h-g. Of course sometimes two elements
may commute; for example, if e € G is the identity, then e g = g-eforall g € G.
If it turns out that all pairs of elements commute (g-h = h-g, Vg, h € G), then
the group is called commutative or abelian, and in that case we often use the
plus symbol + for the group operation and 0 for the identity.

0
l Example 155. The set of integers Z is a group under the addition op-
eration. The identity element is 0 € Z, and the inverse of g € Z is its opposite,
—g. Because addition is commutative (g + h = h + g), the group Z is abelian.
For an example of a nonabelian group, consider all of the possible ways to
rearrange three letters. There are six 3-letter permutations:

S3 = {ABC, ACB, BAC,BCA, CAB, CBA}.

Moreover, each permutation listed above may be thought of as an action.! For
instance, “ACB” may be interpreted as the action that leaves the first element
of a three-term sequence the same while swapping the second and third. Thus
we can compose permutations by applying the action of the first to the letters
of the second, for example, ACB - BAC = BCA. It is straightforward to verify that
83 is a group under the composition operation, with e = ABC as identity. Ss is
not abelian, though. Consider BAC - ACB = CAB = BCA.

In general, for any n € N, the symmetric group S5, is defined as the group
of all permutations on n letters under composition, which is nonabelian when
n > 3.

o {

The number of elements in a group G is called the order of G. A group of
order 1 is called a trivial group, and is often denoted by 1 (or 0 in the context
of abelian groups). According to the axioms, that single element must be the
identity, that is, 1 = {1}.

Group Homomorphisms

Suppose G and H are two groups. Since groups are also sets, we may consider
set functions f : G — H; however, not all such functions may be very useful

1The term “group action” has a precise mathematical definition, which falls beyond the
scope of this text.
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in group theory (just as not all functions f : R — R may be useful in calculus;
only the continuous, or differentiable, or some other subclass of functions may
be considered). We will require that our functions between groups also respect
the product structure of each group. To say that (G, ) is a group means that G
is a group with operation g - h.

Definition B.1.2. Suppose (G,-) and (H,#) are two groups. A set [
function ¢ : G — H is called a group homomorphism (or simply
homomorphism) if for all ¢1,¢92 € G,

B(g1 - g2) = d(g1) * #(g2)-

In particular, a homomorphism must always send the identity element of
one group to the identity of the other. To see why, let ¢ € G and u € H be
the identities of each group, and suppose ¢ : G — H is a homomorphism. Try
to track each group axiom or property of homomorphism as it is used in the
derivation of ¢(e) = u shown below.

For each group G there is a special homomorphism from G to itself called
the identity homomorphism,

idg G- G

A group homomorphism ¢ : G — H is called invertible if there is another
homomorphism 1 : H — G such that as set maps, Yo ¢ = idg and ¢po¢p = idy;
in this case, we call ¥ the inverse of ¢ and write ¢ = ¢~ 1.

Group homomorphisms are called injective, surjective, or bijective if
their underlying set functions are. It is useful to know that a group homomor-
phism is invertible if and only if it’s bijective. Recall from §A.2 that a function
& is bijective if and only if both ¢~1 o ¢ and ¢o ¢! are identity functions. Thus
if f is an invertible group homomorphism, then f is clearly bijective. On the
other hand, if ¢ is a homorphism that is bijective as a set function, then the
only question is whether the inverse function ¢! is a group homomorphism.
The proof is not difficult (see Exercise 6). Two groups are equivalent in the
realm of group theory whenever there is a bijective homomorphism from one to
the other; this type of equivalence is called a group isomorphism.
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Definition B.1.3. Two groups G and H are isomorphic if there is
an invertible group homomorphism ¢ : G — H. In this case, we write

G = H, and ¢ is called an isomorphism.

Generators, Relations, and Presentations

Consider a set of elements S = {g1,92,...,9,} of a group G. By the closure
property of groups, every possible finite product of elements of S and their
inverses are also elements of the group. If every element ¢ € G can be expressed
as a product of elements in S, then S is a set of generators for G. However,
some of these products may represent the same element g € G. For example, it
may be that g3 = g5 19192 or that g3 = 1. A presentation is a list of generators
and expressions or equations that define the relations among generators that
are sufficient to reconstruct the group G. The presentation is given using the
following notation:

G= <g17927'~-~,gn | 7’177‘27"~>7'm>-/

where g1,...,gn generate (G, and each 7, is an equation involving the genera-
tors. It is a challenging problem to decide how many and which generators and
relations might be sufficient to define any given group; vice versa, it is often dif-
ficult or impossible to decide whether a given presentation of a group actually
represents a group given in a different form.?

O
1 Example 156. Let n € N. Define the cyclic group Z/nZ by its
presentation:
Z/nZ=(g|g" =1).

This group has exactly n elements, {1,g,¢9%,¢%, ...,¢9" '}, and G is abelian
since gl . gj — gi+j o gj'f‘i — gj . gz

The cyclic group, presented below in an additive way, also occurs in the
context of modular arithmetic.

Z/nZ={1|n-1=0)

When written this way, the elements of Z/nZ are: {0,1,2,3,...,n — 1}, with

n =0 € Z/nZ (compare Example 149 in Appendix A). .
[o4

O
' I Example 157. Let G = (g9,h | g* = 1,h% = 1, ghg = hgh). Let’s explore
the elements of G. Certainly 1 € G (because every group has an identity), g € G,
and h € G, but what other distinct elements are there? Because ¢g? = h? = 1, we
do not list g% or h? as separate elements of the group. However, gh and hg have

In fact, there is not even an algorithm that can decide whether any given presentation
represents the trivial group. For more details on combinatorial group theory, see [CKC*13].
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not been listed yet. Now, from gh, we could multiply either g or h to obtain ghg
or gh?, respectively. But gh? = g1 = g is already listed. Doing the same starting
with hg, we get hg? = h and hgh. According to the presentation, ghg = hgh,
so we have so far found six elements, {1, g, h, gh, hg, ghg}, in the group G. All
other products of g or A can be reduced to one of these forms. What about the
inverses? From g2 = 1, or gg = 1, we get ¢~ = g. Similarly, A~! = h. Thus
G ={1,g,h,gh, hg, ghg}, a group of order 6. It can be shown that G = Ss.

[

Exercises

1. Explain why each set listed below is mot a group with respect to the
operation.

(a) (N,+) (b) (@, %) (¢) (Z,-)

2. Let G be a group and suppose g € G satisfies ¢" = 1 for some n € N.
Find ¢! in terms of g.

3. Let g,h € G, a group. Show that (gh)™! = h=1g71.

4. Let 7 € N. Show that Z" is an abelian group with respect to vector addi-
tion. What is the identity element?

5. Let S5 be the symmetric group on three letters as defined in Example 155.
Construct a multiplication table for S3, paying special attention to the
order of composition. Use your table to identify the inverse of each per-
mutation. Then show that the operation of S3 is associative by verifying
all possible equations of the form a - (b-¢) = (a - b) - ¢. (Hini: Look for
time-saving arguments so that you don’t have to write 6* = 216 distinct
equations.)

6. Let (G,-) and (H,*) be groups. Suppose ¢ : G — H is a bijective group
homomorphism. Prove that the inverse function ¢~ : H — G is a group
homomorphism by verifying that ¢=1(hy * ha) = ¢71(hy) - $7*(hg) for all
hi,hy € H.

cosf —sinf
sind  cosd ) Let Gy be the group

generated by Ry, that is, Go = {I, Rg, R}, R},...}.

7. Consider the rotation matrix Rg = (

(a) Write out all group elements and determine the order of Gar/3, G2,
and Ggﬂ- /5

(b) Find a group isomorphism Gg, /3 — Z/3Z.
(¢) Let n € N be arbitrary. Determine 6 so that Gg = Z/nZ.
(d) Under what condition on 8 would Gy be infinite?
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8. The cyclic group Z/nZ also admits a multiplication operation called mod-
ular multiplication, in which the product ab € Z/nZ is defined by first
multiplying ab as integers and then reducing modulo n. Write the multi-
plication tables for Z/7Z and Z/8Z. Show that (Z/7Z) \ {0} is a group
under multiplication, but (Z/8Z) \ {0} is not.

9. Find an explicit isomorphism to prove that S3 & G, where G is the group
from Example 157.

10. Let G be a group, and suppose that (gh)? = g2h? for all g, h € G. Prove
that ¢ is abelian. -

11. Let G = {a,b|a® = 1,b° = 1).

(a) Show that (ab)™! = ba.

(b) Show that every g € GG can be written as a product of only a and b
alternating, so that G = {...,bab, ba,b, 1,a,ab,aba,...}.

B.2 Linear Algebra

The topic of linear algebra comprises two interrelated themes: computational
techniques and a conceptual theory. The computations in linear algebra are typ-
ically matriz operations. Certain operations are used to solve systems of linear
equations or to describe how linear transformations act. Conceptually, linear
algebra can be used to show how diverse mathematical structures may be re-
garded as vectors in a suitable wector space. In this short section we only present
the computational and conceptual ideas that are needed for this textbook. We
assume a working knowledge of real numbers and integers.

Matrices

A matrix is nothing more than a table of numbers, but there are great advantages
in arranging numbers in a rectangular array. For example, a system of equations
is naturally represented by a matrix of coefficients and constants.

Definition B.2.1. Suppose m,n > 1 are integers. A (real, complex,
integer, etc.) matrix A of dimensions m X n is a rectangular array of |
(real, complex, integer, etc.) numbers, a;;, called entries, where '

ay; a2 - Qi
Q21 Qg2 -+ Qa2p
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The set of all m xn matrices with real-number entries is denoted M,,,x». The
set of matrices having entries in another set R may be denoted by My, «n(R).
If A= (a;;) and B = (b;;) are two matrices of the same dimensions (both in
Mnxn), then their sum A + B may be defined.

ayn +b1y -0 G+ bin
A+B=(aij+bij)= :

U1 +bm1 - Gmn +bmn

Moreover, if k is a number (real, complex, integer, etc., but matching the type
of numbers in the matrix), then the scalar product kA4 is defined by:

kain -+ kain
kA = (kaij) -

kaml e ka'mn

Then we may define matrix subtraction by A — B = 4 + (—1)B whenever the
dimensions of A and B are the same. Note that both A + B and kA are also in
men-

Matrix multiplication is not quite as straightforward as addition. Suppose
A€ Myyyn and B € Mpyy. Then the product AB is only defined when n = p,
in which case AB € M,,y, is defined by the formula

AB = (¢;;), where ¢ = Zaikbkj. (B.1)
k=1

]

| (4 -1 7 (1 -1
Example 158. If A = 0 2 _5> and B = (2 3 >, then the

product AB is undefined, while

o= o 3)6 5 )

2

_ ((1)(4)+(—1)(0) (D=1 + (=1)(2) (1)(7)+(—1)(—5)>
2@ +G)0)  @AED+E)2) @)+ B)(-5)

(4 =3 12

- (78

7
&
For each n € N, define the n x n identity matrix by the rule I, = (d;;),
where §;; = 1 if i = j, and 0 if ¢ # j. For instance,

100 0
0100
L=19 010
00 0 1



358 APPENDIX B. GROUP THEORY AND LINEAR ALGEBRA

The identity matrices act as multiplicative identities, in the following sense. If
A€ My, xn, then I, A = Al, = A (note that the proper size identity matrix
must be used). Now if A is a square matrix (n x n), then we say that A is
invertible if and only if there is a matrix B such that AB = BA = I,,. Such
a matrix B must also be n x n, and we use the notation A~! = B for the
inverse of the matrix A when it exists. Not all matrices have an inverse, but
the following tool is useful for determining when a matrix is invertible.

Definition B.2.2. The determinant of a matrix A = (a;;) € Muxn
is a real number defined recursively by

det(A) = det({au]) = a1, ifn=1.
Ifn>1, det(A) =a1dn —a2diz + -+ (=1)" a1 Ain,

where A;; is obtained from A by deleting row 1 and column j.

a b

Example 159. Let A = (c d>' Then Ay; = [d] and A2 = [d].

det(A) = adet([d]) — bdet([c]) = ad — b

o i

We often interpret a vector x € R™ as an n x 1 (column) matrix. Then
for an m x n matrix A, the product Ax is an m x 1 matrix, that is, a vector
y = Ax € R™.

A system of m equations in n unknowns may be represented by an aug-
mented matrix as follows:

ayTy + o+ apT, = b aj; v a1 | by
Am1T1 + -+ Gy, = by Am1 Oy | bm

If A = (a4;) is the matrix of coefficients and b € R™ is the column vector of
constants for the system (B.2), then the solution to the system consists of all
vectors x € R™ such that Ax =b. To solve a system Ax = b, it is usually most
efficient to use Gaussian elimination. Gaussian elimination is an algorithm
for reducing an augmented matrix into a form called RREF (reduced row
echelon form) using a series of row operations. In the following, we use the
notation R; for the ith row (a1 --- @) of a matrix A = (ay;).
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Proposition B.2.3. The following three row operations yield equiv-
alent systems.

L (R; +» R;) Swap the ith and jth rows.
II. (kR; v R;) If k # 0, replace row i with k times that row.

III. (kR;+R; — R;) For any scalar k and ifi # j, add k times row i to
row j (which replaces R; but leaves R; unchanged in the matriz).

Call the first nonzero entry in a given row the leading entry for that row.
A row consisting entirely of zeros has no leading entry.

Definition B.2.4. A matrix is said to be in RREF (reduced row |
echelon form) if all of the following conditions hold.

1. The leading entry of each row occurs strictly to the right of the |
leading entry of the previous row.

2. Each leading entry is equal to 1.

3. Every entry in the same column as a leading entry (except the |
leading entry itself) must be 0.

Note that condition 1 implies that any row above a row with a leading entry
must itself have a leading entry; hence all rows having no leading entry (zero or
null rows) must be at the bottom of the matrix.

O
1 Example 160. Interpret the system of equations as an augmented ma-
trix and reduce that matrix to RREF. Then interpret the reduced matrix as a
solution to the original system.

x—2y—z = 3
3 —6y—2z = 2

Solution:

1 -2 -1|3 1 -2 -1 3
(3 -6 —-212) “3Rit Ry By (0 0 1‘—7)

1 -2 0] —4
(1)R2+R1l—>R1 <O 0 1‘_7>

The final form of the matrix is interpreted as: © — 2y = —4, and z = —7. Solving
the first equation for z, we find = 2y —4, so in terms of a parameter y = t, the
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solution to the system is the set of all points of the form (z,y, 2) = (2t—4,¢, —7)
for arbitrary ¢t € R. .

The system from Example 160 does not have a unique solution; instead,
there are infinitely many solutions, one for each choice of the variable that we
did not isolate (the free variable(s)). The number of free variables is related to
the rank of the coefficient matrix. Note that we may determine which variables
are free without putting the matrix into RREF. All that is required is REF, or
row echelon form. A matrix is said to be in REF if it satisfies only condition
1 of Definition B.2.4.

Definition B.2.5. The rank of a matrix A € M,,,xn, is the number of |
leading entries in the REF of A, and is denoted rank(A4). '

Bquivalently, the rank of a matrix is the number of nonzero rows in the REF
of the matrix.

I 1 2 3
Example 161. Find therankof A= {4 5 6
7 8 9
Solution:
L2 3\ e mm (L0203
250 iR 4Ry R, |0 T3 6
78 9 LA T s 0 -6 —12
1 1 2 3 1 2 3
“"E‘))‘RQ’—)RQ 0 1 2 6Rs + R3 v R3 0 1 2
0 -6 —12 0 0 0

The REF form has two nonzero rows; hence rank(A) = 2.

Vector Spaces and Subspaces

You may be familiar with vectors in R? or R® as arrows that represent both
direction and magnitude. If u and v are vectors in the same space, then their
sum u + v is also a vector in that space. If ¢ is any real number (or scalar),
then cu is also a vector in that space. But there are other sets (besides R™)
whose elements seem to behave like vectors in that there might be an addition
operation and scalar multiplication. For example, two matrices A and B of the
same dimension can be added to obtain a matrix of the same size, 4 + B, and
the scalar multiple cA (for ¢ € R) is also a matrix of the same size. So the set
Minxn, for example, acts like a set of vectors — what we call a vector space.
Before defining vector spaces, we should talk about the kinds of numbers
that could serve as scalars. We are familiar with the set of real numbers R, but
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R is just one example of a field. The rational numbers (Q) and complex numbers
(C) are other important examples of fields. Briefly, a field is any set of numbers
R with addition and multiplication defined such that R is an abelian group with
respect to addition, R\ {0} is an abelian group with respect to multiplication,
and multiplication distributes over addition: a(b + ¢) = ab + ac,Va,b,¢c € R.
Perhaps the most important feature in a field is the existence of multiplicative
inverses for any nonzero number (which follows from the fact that R\ {0} is a

group).?

1.

10.

Definition B.2.6. A vector space over a field R is a set V satisfying
the following 10 axioms. '

There is an addition operation (+) such that V is closed under ||
addition: v, v € V = u+oveV. .

Addition is commutative: u+v =v +u, Vu,v € V.
Addition is associative: (1 +v) +w = u+ (v +w), Yu,v,w € V.

There is a zero element: 30 € V such that u + 0 =0+ u =
YueV.

Each element of V has an additive inverse: Vu € V, 3 —u €V
such that u + (—u) = —u+u=0.

. There is a scalar multiplication operation, and V is closed under

this operation: u € V,c € R = cu € V.

Scalar multiplication is distributive over vector addition:|
c{u+v) = cu+cv, Yu,v € V,c€ R.

Scalar multiplication is distributive over scalar addition:
(c+dyu=cu+du, Ve,d€ RueV.

Scalar multiplication satisfies an associative law: ¢(du) = (cd)
Ve,d € Ryue V.

Scalar multiplication is unital: 1u = u, Vu € V (where 1 € R is i
the unit).

Note that axioms 1-5 are equivalent to the statement that V is an abelian
group with respect to addition.

3For more details, see, e.g., Bartle and Sherbert {BS11] or Dummit and Foote [DF04].
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Definition B.2.7. A subspace of a vector space V is a subset H C V
satisfying the following three axioms.

1. The zero element 0 € V is also in H.

2. H is closed under addition: u,v € H == u-+v € H.

3. H is closed under scalar multiplication: u€ H,c€ R = cu €
H.

A subspace is just a vector space H within another vector space V. The
reason that we only have to check 3 of the 10 axioms is that H inherits the
addition and scalar multiplication operations of V', which already are supposed
to satisfy all 10 axioms in V.

O

! Example 162. Consider the set H = {(z,y,0) | z,y € R} C R

Geometrically, we see that H is the zy-plane within three-dimensional space. H
is a subspace of R3, as we verify below:

e The zero element 0 = (0,0,0) € V is also in H (just let z = 0 and y = 0).

e Suppose u,v € H, say, u = (21,y1,0) and v = (22,92,0). Then u +v =
(561 + Z2,Y1 +y2,0) € H.

e Suppose u = (x,y,0) € H and ¢ € R. Then cu = (cz,cy,0) € H.

{
< -
Suppose A = {v1,v2,...,v,} is a set of vectors in a vector space V. A linear
combination of A is any expression of the form
T
Z CkUk = C101 + CoU2 + - - + ¢V, (B.3)

k=1
in which each coefficient ¢, € R is a scalar. For example, let u = <_31> and

v = “;8> Since 4u + fv = (_83 , we can say that <_83> is a linear combi-

nation of B = {u,v}. For any set of vectors B = {v,vs,... ,Ur}, the trivial
combination is defined as: Ovy + Ovg + - - + Ov,.. Of course the trivial combi-
nation evaluates to the zero vector 0.

Definition B.2.8. A set of vectors B is called independent if the
only linear combination of B that equals 0 is the trivial combination. [
In other words, '

vyt vzt ou, =0 = ¢g=c=---=c¢ =0. (B.4)
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Definition B.2.8 may be tricky to use at first. There is an embedded “if-then”
statement in (B.4). If, for some unspecified scalars cj, we have > cpu, = 0,
then it must have been the case that every ¢ = 0. If a set of vectors B is not
independent, then it is called dependent.

O
1 Example 163. Let u = <_34>, v = <I§>, and w = <_25> be vectors
in R2. Determine whether each set below is independent or dependent.

(a) A= {u,v} (b) B ={u,w} (¢) C={v,w,0}

Solution: It should be easy to see that v = —3u; hence 3u+ v = 0. But this
shows that A is a dependent set since there is a nontrivial linear combination
evaluating to 0.

Next, consider B. Suppose ¢yu + cow = 0. Then:

o(&)ra(5)=0) = (& HE)-6)

We may solve the system to find (¢, ¢2), using Gaussian elimination.

3 210 -1 =31|0
(_4 ~5‘0> Ro+ Ry — Ry <_4 _5)()) (—I)Rll-)R}
1 3 |0 1 310
(_4 _5‘()) 4R, 4+ Ry — R, <0 7]())

The system need not be solved completely, as we can see there are leading entries
in every column to the left of the bar. This implies that the only solution to the
system is (¢1,c2) = (0,0). Hence the set B is independent.

The set C is dependent, since Qv + 0w + (1)0 = 0 is a nontrivial linear
combination of {v,w,0}. In fact, any set of vectors containing the zero vector
is dependent for much the same reason.

o 7
We extend the definition of linear combination to include more abstract sit-
uations. Suppose now that A = {vy,vs,...,v,} is simply a set (with no addition

operation defined a priori on A). Then a formal linear combination of A
with scalars in a field R is any expression of the form

T
Z CLUL = C1v1 + g + -+ - + ¢,  where each ¢, € R. (B.5)
k=1
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Definition B.2.9.

e Suppose A is a set of vectors in a vector space V (over a field R).
The span of A is the set of all linear combinations of A.

o Given an arbitrary finite set A, the span of A over a field R
is defined as the set of all formal linear combinations of A with |
scalars in R.

In either case, the span of A = {v1,vs,...,v,} over R is written:

SpanzA or Spang{vi,ve,...,vn}.

Regardless of whether A is a set of vectors or a general set, SpangA is a
vector space in its own right. The addition operation is given by

T T T

Z CrUg + z dpvy, = Z(Ck + dy ), (B.6)

k=1 k=1 k=1

and scalar multiplication by d € R by
T k
dz CLUp = Z(dck)vk. (B.7)
k=1 k=1

If a set of vectors A = {v1,vs,...,v,} is independent, then we call the set

A a basis for the span, and we say that Spanp A has dimension 7. If 4 is
simply a set, then it is by default independent when regarded as a set of vectors
in SpanpA. In other words, the only formal linear combination of a set A that
equals the zero vector is the trivial combination.

Moreover, in any vector space (or subspace) V, if we can determine a set of
independent vectors B whose span is equal to the entire space V, then we say
that B is a basis for V. If the basis set consists of r vectors, then the vector
space has dimension r, and we may identify V = R", where R is the field over
which V is defined.

0
& Example 164. Let u, v, w be as in Example 163, and let H = Span{u, v}
and K = Span{u,w}. Since {u,v} is dependent, the set is not a basis for H.
Instead, since v = —~3u, we have v € Span{u}, and since {u} is independent, we

find that H = Span{u} has dimension 1, and H = R'.
7

4If no finite set of vectors spans a given vector space, then we say the space is infinite
dimensional. Example of infinite-dimensional spaces include R® and the function spaces LP(R)
mentioned in §2.5.
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The Null Space of a Matrix

In a linear system (B.2), if all of the constants by, bz, ..., b, are zero, we say
the system is homogeneous. Homogeneous systems are especially important
in applications. Note that a homogeneous system is equivalent to the matrix

equation Ax = 0.

Definition B.2.10. The set of all solutions to the homogeneous system

Au = 0 is called the null space of A, which is denoted Nul(A4).

If the entries of an m x n matrix A are elements of a field R, then the Nul(4)
is a vector subspace of R™. This fact is easily verified. Clearly v = 0 € Nul(A),
since A0 = 0. If u,v € Nul(A), then Au = 0 and Av = 0. Then

Au+Av = 040

Alu+v) = 0.
Therefore u+ v € Nul(A), proving closure under addition. Closure under scalar
multiplication is left as an exercise to the reader. To find a null space, we use

the same methods as in solving a system of equations, typically Gaussian elim-
ination.

Z Example 165. Find a basis for the null space of the matrix,

1 2 -1 -2 -5

A=1 4 8§ -4 -7 16

-5 =10 5 13 37
Solution: We must solve the homogeneous system,
1 2 -1 -2 -510

4 8 —4 -7 -16]0

-5 =10 5 13 37 |0

Use the following row operations, —4Ry + Ro + Ra, 5Ri+ Rz R, 2Rs +
Ry + Ry, —3Ry+ R+ R, and then interpret the solution.

&1 Zo xrs T4 xrs

1 2 -1 0 3
0 0 0 1 4 — {3)1+25€2—£B3+3$5 = 0
00 0 0 0 Ty fdzs =0
Therefore 11 = —2z5 + 23 — 35, T4 = —4x5, and z9, 23, T5 are free variables.
Thus every solution to the system has the form
2z —2x9 + x3 — 325 -2 1 -3
To b 1 0 0
X=Xz} = T3 = I 0 +x3 1]+ 23 0
T4 —4%5 0 0 —4
Ts Ts 0 0 1
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We find that Nul(4) is spanned by three vectors, which can easily be shown
to be independent. Therefore {(-2,1,0,0,0), (1,0,1,0,0), (—3,0,0,—4,1)} is a
basis for Nul(4) = R3. .
o
The dimension of the null space of a matrix is called the nullity of the
matrix. The following important theorem can be used to determine the rank or
nullity of a matrix if one or the other is already known.

Theorem B.2.11 (Rank Theorem). For an m x n matriz A,

rank(A) + nullity(4) = n.

Proof. Here rank(A4) is equal to the number of leading entries, while nullity(A)
is equal to the number of free columns, in other words, columns that do not
have a leading entry in the REF of A. Therefore, since each column either has
or does not have a leading entry, the sum must be equal to the number of
columns, n. O

0

I Example 166. The nullity of the matrix A from Example 165 is equal
to 3. We have n = 5 (because A has five columns), and so the Rank Theorem
implies that rank(A) = 2. (Of course, once we have reduced A, the rank is clear
without using the Rank Theorem.)

o 7
Exercises
1 2 -3 6 —4 1 -4 0
l.ILet A=1{-1 0 7 1, =13 74, C=1{-2 0 1},
0 -2 5 -2 1 2 -7 3
and D = | —2 |. Evaluate the following expressions or explain why the
5
expression is undefined.
(a) 34—-2C (¢) BA (e) det(A).
(b) AB (d) AD (f) det(B)

‘2. Find det([,,) for arbitrary n € N,
3. Use Definition B.2.2 to show that

a b ¢
det {d e f| =uaei+bfg+cdh—bdi—afh— ceg.
g h 1



B.2.

LINEAR ALGEBRA 367

Solve the system of equations by Gaussian elimination.

r+2y+z = 0
-3r—y+2z = 1
by+3z = —1

13 5 7
Let A=13 5 7 9
5 7 9 1

(a) Put A into REF, using only type I operations.
(b) Find the nullity of A and a basis for Nul(A4).

. Let m,n € N be fixed. Show that M., «, is a vector space.

Let V be a vector space over a field R. Prove each of the following using
only Definition B.2.6.

(a) ou=0,Vu eV (¢) —u=(-lu,VueV
(b) c0=0,YceR

Equations (B.6) and (B.7) show that Spany A satisfies the closure axioms
1 and 6 of Definition B.2.6. Verify that Spanp A satisfies the other axioms,
thereby proving that a span is a vector space.

. Let A € Myxn. Show that Nul(A) is closed under scalar multiplication.

Supplemental Reading

Armstrong [Arm88] for group theory.

Dummit and Foote [DF04]; Part I for group theory, Part III for linear
algebra and modules.

Lay, Lay, and McDonald [LLM15] for linear algebra.

Lang [Lan05] for a thorough treatment of group theory, linear algebra,
and other aspects of abstract algebra.

Poole and Lipsett [PL14] for linear algebra.




Appendix C

Selected Solutions

Problems of Chapter 1
e §1.1

1. There are three sets, organized by the number of “holes” in the let-
ter. No holes: {C,E,F,G,H,1,J,K,L,M,N,S, T,U,V,W, X, Y, Z}. One hole:
{A,D,0,P,Q,R}. Two holes: {B}.

2. Three pieces, no holes: {=}. Two pieces, one with one hole and one with
no holes) {©}. One piece, no holes: {T,E,Z,H, |, K,A\M,N,T,X, T, T, X,
W, Q}. One piece, one hole: {A, A, O, P}. One piece, two holes: {B, ®}.

3. A = C via a deformation that
pushes the sides of the cylinder out-
ward and flattens it. Intermediate
step shown.

5. Add edges as shown in order to
ensure each face is simply connected.
There are v = 40 vertices, e = 96
edges, and f = 48 faces, so y = —8.

9 9 9 9 & /1\" 9 1
1, — f — 4= —— = . -
10+100+1000+ 1OZ<10> 10 1-2L1 L

n=0
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6. Left, (b) Torus. Right, (c) Klein bottle.

7. (a) C,, traces a circle |n| times, counterclockwise if n > 0, clockwise if
n < 0. (b) Here 5= |, o V-dr = n. The integral computes the number of
times the circle wraps around the origin.

Problems of Chapter 2

o §2.1
2. e = d(z,y)

3. (a) Let U,V be open sets of R™.
Forany x € UNV, we have x € U
and z € V. Since U is open, de; > 0
such that B, (z) C U. Similarly,
Jeg > 0 such that B, (z) C V. Let
¢ = min{e),ea}. Then B(z) € U
and B.(z) C V; therefore B.{x) C
U N V. This proves U NV open.

(b) Let {Ux}rez be a set of open sets of R™. For any z € Jyez Uk, We
know that x € U for some particular k¥ € Z. Thus there is an € > 0 such
that Be(z) C Uy. This implies that Be(z) C |z U; thus the arbitrary
union of open sets is open.

6. (a) Open intervals: (a,00), (—00,b), (—00,00). (b) Closed intervals:
[a,00), (—00,b], (—00,00). (c) The set of limit points for both (a,b] and
[a,b) is [a, b]; for both (a, 00), [a, 00) is [a, 00); for both (—o0, b) and (—c0, ]
is (—co, b]; and for (—o0,00) is (—o0, c0).

9. int((a,b]) = int([a,d)) = (a,b); ext((a,b]) = ext([a,b)) = (~o0,a) U
(b,00); O(a,b] = dla,b) = {a,b}; (a,b] = [a,b) = [a,b]. int((a,00)) =
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int([a,00)) = (a,00); ext((a,00)) = ext([a,00)) = (—00,a); d(a,00) =
a,00) = [a, o). Similar for (—oo, b) and (—c0, b].
(—00,00) = (—00, 00); ext((~o0, 00)) = d(—~0c0, c0) = (.

§2.2
2
5. Observe that ||ﬁ;||2 = HzH4 = ﬂ;ﬁp Hence (I o I)(z) = I (#) =

x
1

() / (@) ==

6. Translation T, has inverse T,-*(z) = x — r. Scaling S; has inverse
S '(z) = 1z (recall that k # 0). Rotation Ry has inverse R_g. Reflection
and inversion are their own inverses. Projection is not a homeomorphism
in general. Stereographic projection has inverse defined by F~(Q) = P if
and only if P € S2\ N such that P is on the segment NQ.

8. The map f : (0,00) — R! defined by f(x) = Inz is continuous, with
continuous inverse f~!(z) = e®.

§2.3

1. If X is bounded in the sense of Definition 2.3.4, then clearly X satisfies
X C By(z) for z = 0. Now suppose there is an 7 € Rt and z € R”
such that X C B.(z). Consider p = ||z|| + r, and suppose y € B,(z). By
the triangle inequality, d(y,0) < d(y,z) + d(z,0) < r + ||z| = p. Thus
y € By(0), proving that X C B,(0) (where p € R*) and so X is bounded.

2. (a,b), (a,b], and [a,b): noncompact and bounded. [a,b]: compact and
bounded. (a, 00), [a, c0), (—o0,b), (—00, b}, and (—oco, c0): noncompact and
unbounded.

3. (a) Not compact; bounded but not closed. (b) Compact. (c¢) Compact.
(d) Not compact; bounded but not closed. (e) Not compact; closed but
not bounded. (f) Not compact; bounded but not closed.

6. Suppose x # y and both z and y are limits of the sequence (k).
Let € = %d(m,y), which is positive because z # y. By §2.1, Exercise 2,
B(x) N Be(y) = 0. Because x is a limit of (x), there exists N; € N such
that x € Be(x) for all & > Nj. Similarly, there exists No € N such that
T € Be(y) for all k > Ny. This implies that zy € Be(z) N B.(y) for any
k > max{Ny, N2}, a contradiction.

§2.4

3. 8™ is connected for every n > 1. S° = {~1, 1} is not connected; there is
a separation U = (—2,0), V = (0,2), for example.

4. Let U,V be a separation of X, and suppose A C X is connected. X N A
is nonempty (Aisin XNA), and XNA = (UUV)NA = (UNA)U(VNA).
Thus at least one of U N A or V N A must be nonempty. If both U N A
and V' N A are nonempty, then since U, V are open and disjoint, these two
sets form a separation of A, contradicting the connectedness of A. So only
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one of UM A or VN A can be nonempty. f UNA =0, then A C V. If
VNA=( then ACU.

6. (a) Connected. (b) Not connected; separation: U = B(z) and V =
B.(y), where € = 3d(w,y). (¢) Connected. (d) Connected. (e) Connected
when n > 2. When n = 1, we have ext(B(z)) = ext((z — ¢,z + ¢€)),
and there is a separation, U = (—oo,z — ¢/2) and V = (x + ¢/2, c0). (f)
Connected when n > 2. When n = 1, we have B.(z) \ {z} C (~0,2z) U
(z,00), which defines the separation.

7. A and D are inside; B and C are outside.

e §2.5
3. (a) Let € X and ¢ > 0 be arbitrary. First show f[Ba,.(x)] C
By (f(z)). For any u € By, (z), we have dx(z,u) < e. Therefore,
since f is an isometry, we have dy (f(z), f(u)) < €, which shows f(u) €

de,e (f(m» Hence de&(x) - f-l [f [de&(m)” - f_l {de,e (f(.%‘))}
Thus f is continuous.

9. The image on the right shows

metric circles for p = 1,2,3,10, : ~
and 100 (from inner to outer). As p . f N

gets large, the metric circle approxi-

mates a square whose sides are par-
allel to the coordinate axes, which & /
illustrates how the max norm d. . A )

may be regarded as a limit of d, as

p — 0. e
14.
> w
[on] - ol
1 [ o
B B o] =
et & O =} =
o] < ] = —
O 2% = = |
= = = = =
<q o o o o
o O (] (] [
(a) “cavcey 0
COMPACT 0.49219 0
CONNECTED || 0.49805 | 0.22461 0
CONTINUITY || 0.49902 [ 0.24902 | 0.12402 0
CONTINUOUS || 0.49902 | 0.24902 | 0.12402 | 0.00684 | 0

(b) Answers will vary. WORDY (d = 1/32), WORK (d = 1/16)
1/16), WORTH (d = 3/32), WORRY (d = 3/32), etc.

(c) d(TEH,THE) = 3/8; d(TEH, TEN) = 1/8. TEH is most likely a misspelling
of THE, but this metric would imply that TEN is a closer word to it.
A better metric for autocorrect would give shorter distances between
words that differ only by the transposing of two letters.
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o 8§3.1

Problems of Chapter 3

4. Each phase portrait may be found by sampling the vector field at suf-

ficiently many (z,y) points. It may take many samples or the help of

computer software to accurately sketch each phase portrait.

N
N

SOWS w
>
N

B

pogn P,
- - R SR s~
P IR E] ~ Y
- Y ARATRN
s I v N
£ ¥ K
¢ IR A N
i b3 LI T

o
AP e

!Phase portraits created using pplane [Pol}.
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(a) Ind(B) =1 (b) Ind(D) =

3. (a) tanf = 2, or @ = arctan ;.

(b) So long as At is small enough so that the vectors do not make a com-
plete turn in any subinterval [t;—1,%;], then the total angle angle change
around C is the sum of the individual angle changes, Ag;:

n

{c) Since the sum from part (b) measures total change in angle, it must
be divided by 27 to yield the number of complete revolutions. Then as
n — oo, and At — 0, the Riemann sum may be interpreted as an integral:

Yd
) = ——/ 'dt 27_ @ {alctan ] dt
d du d du
— 1 UG — Vg di = 1 / Ug — Vg dt.
27r 0 1_;_(5)2 u? 21 u? + 0?2

5. Index of a quadripole is 3. If x is a 2n-pole, then Ind(x) =1+ -2—%?9 =
n+ 1.

7.8et 5 =1+ ig—’f)—;ﬁ(—x) = e(x) = h(x) + 8. Therefore, since h(x) > 0,
there must be at least eight elliptical sectors.

. §3.3

2. (a) The line L has slope —1 and passes through (2, 8.75), so the equation
of the line is y = —(z — 2) + 8.75 = —z + 10.75. Substituting into (3.4),

de/dt =1-35z+2%(—x+10.75) = 1 — 3.5z + 10.752% — 23,
dy/dt = 2(2.5 — z[~z + 10.75]) = 2.5z — 10.752% + 2®,
(C.1)
(b) From (C.1), we get %+ 5 -‘L’l = 1— 2, which is negative so long as z > 1.
Thus, since every pomt on L has & > 2, we find that every vector on L
has slope less than —1.
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Problems of Chapter 4

o §4.1

3. Suppose €, D € X are closed in a topological space X. Then by defi-
nition X \ C and X \ D are open. Consider the union £ = C U D. Now
X\E=X\(CUD)=(X\C)n(X\ D). Since the intersection of two
open sets is open, we find that E is closed.

On the other hand, J,¢(o1y{z} = (0,1) is not closed in the Euclidean
topology on R, even though each point set {z} is closed.

7. Only a one-point space X = {z}.
8. There are four topologies: 7 = {0, {a,b}}; o = {0,{a},{a,b}}; % =
{(b: {b} {a'? b}} and J = {(07 {a}v {b}’ {a7 b}}

§4.2

1. In what follows, assume f is a function f: X — Y.

(a) Suppose X is a discrete space. Then for every open set V C Y, we
have f~*[V] open in X. Thus every function f is continuous.

(b) Suppose Y is a discrete space. Then for every open set U C Y, we
have f[U] open in Y. Thus every function f is an open map.

(c) Suppose Y is an indiscrete space. Then there are only two open sets,
0 and Y. Now f~10] = 0 and f~'[Y] = X, both of which are guar-
anteed to be open. Thus every surjective function f is continuous.

(d) Suppose X is indiscrete and Y is discrete. If f is not constant, then
there are points x; # x3 in X such that f(z1) = y1 and f(xs) = y2
with y1 # y2. Now since Y is discrete, U = {y;} is open. Consider
Z = U] C X. Certainly 1 € Z, so Z # 0, but also 22 ¢ Z, so
Z # X. Since X is indiscrete, Z cannot be an open set. Thus any
nonconstant function f cannot be continuous. On the other hand,
every constant function is continuous with respect to any topology.
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o §4.3

1. Typical basic open sets of H in- many distinct circles C}, contained
clude: (A) open arcs of any cir- in the neighborhood B.
cle Cy so long as the origin is not

on the arc, and (B) the origin to- A
gether with all circles and arcs of B 0\
circles within a given distance from ‘//

the orgin. No matter how small a A

neighborhood around (0,0) is cho-
sen, there will always be infinitely

3. (a) Closed in both A and in R!. (b) Neither open nor closed in A or
in R!. (¢) Open in both A and in R!. (d) Closed in both A and in R!.
(e) Closed in A but neither open nor closed in R!. (f) Closed in A, since
ANA{1/k | k € N} = (1,00) U (1/2,1) U (1/3,1/2) U (1/4,1/3) U -- -, but
neither open nor closed in R!.

11. (a) For all x € R™"!, we have x = (1)x, 50 x ~ X (~ is reflezive).
For all x,y € R™"! if x ~ y, then there is X £ 0 such that y = Mx. It
follows that x = %y; hence y ~ x, since % # 0 (~ is symmetric). For all
X,y,z € R suppose x ~ y and y ~ z. Then there are nonzero scalars
A1, A2 such that y = Ax and z = \yy. Then z = A \1x, proving that
X ~ zZ, since A1 # 0 (~ is transitive).

o §4.4

1. Suppose X has the cofinite topology, and let A C X. Suppose % is an
open cover of A4, and choose a set Uy € % . By definition, since Uy is open,
we have Uy = X \ F for some finite set of points F = {z;,... , T t. Now
for every point z; € F'N A, there must be at least one open set Uy, € %
containing xy. Let 7 be the collection of those finitely many sets Uj. Thus
%' ={Up} U7 is a finite subcover, proving that A is compact.

If X is infinite, then no separation can possibly exist for A C X, since
every pair of open sets U, V must share all but finitely many points. This
proves A connected.

o §4.5

3. It suffices to show that p; : X x Y — X is continuous. Suppose that
U C X is open. Note that p7!{U] = {(z,y) e X xY |z € U} =U x Y.
But since U is open in X, and Y is open in Y, U x Y is open with respect
to the box topology, proving that p; is continuous.

6. px oix =idx. py oiy = idy. px o iy is the constant map sending all

of Y to the point 2y € X. py oix is the constant map sending all of X to
the point yg € Y.
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o §4.6

1. Note that Z is partitioned by No, N1,p, - - - » No—1,, and so Nop = Z\U,
where U = Nop U+ UNgo1,6 U Noy1pU -+ Np—1- U is open, being the
union of open sets, and so Ny p is closed.

3. Let z € Z, and consider the infinite intersection C' = Ny Na,p- We

have z € C since z € N, for all b. Now if y # x, then y & Ny 2jo—y), SO
y ¢ C; hence C = {z}. But since each Ny is closed, so must C' be.

Problems of Chapter 5

o §5.1

1. (a) Compact surface-with-boundary. The boundary consists of the four
edges of the square. (b) Compact surface-with-boundary. The boundary
has two components, an inner circle of radius 1, and an outer circle of
radius 2. (¢) Noncompact surface. (d) Neither a surface nor surface-with-
boundary; noncompact. (¢) Noncompact surface.

3. By “flattening” the wireframe, observe that n is always one less than
the number of faces of the original polyhedron. Tetrahedron: 3T. Cube:
5T. Octahedron: 7T. Dodecahedron: 117T. Icosahedron: 19T. Object in Fig-
ure 5.8: 25T.

5. A manifold-with-boundary of dimension 7 is a connected Hausdorff
topological space M such that for each € M, there is an open set
U C M with # € M, such that either U = B;{0) C R*or U = H =
{(z1,22,...,2s) € R" |z, > 0}.

8. (a) 3T (b) (1+2+3+---+ k)T = EEHT
§5.2

1. (a) Cone with no bottom surface, which is homeomorphic to a disc D2.
Word: aa™!b = b. P ~ Q. (b) Sphere. Word: abb™la™? =aa™t. Q ~ S.
(c) After identifying edges a together, we obtain a plane model for the
torus T. Word: a~tabeb~ ¢! = bcb™lel. U~ P ~Q ~ R~ §.(d)
After identifying edges a together, as well as edges w, the result is a plane
model for a disk D?. Word: ¢b=*. U ~ S and P ~ R.

—-17-1 ~1p-1 Cip—1
4. arbyay b7 Tagbaz by - anbratby

5. To perform a connected sum T#@Q), the letters in the word for @ must
be distinct from those of T. Therefore there is no @ € S, whose word can
cancel the letters aba™b7! in the word for T and arrive at the (reduced)
word ss~* for §2. -

8. abed™lcld~ e 'bfa~lef, or equivalent. Let y be any vertex not al-
ready labeled by z, in Figure 5.16. Consider b*c~dTctd™et fbt; since
this curve bounds all of the rest of the vertices, we find there are only two
equivalence classes, [z] and [y].
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e §5.3

2,2 2
1. afas---a;

2. (a) Orientable. (b) Orientable. (c) Nonorientable. (d) Orientable.
(e) Nonorientable. (f) Nonorientable. If a is an edge corresponding to a
same-direction pair ---a---a--- in the word, any loop crossing a once will
be orientation reversing (cases (c), (e), and (f)).

4. If there are only factors S?, then the resulting sum is S?, so assume now
that there are other factors and use A#S? = A to get rid of all factors S2.
Next, replace any factor K by the equivalent 2IP. Since the connected sum
is commutative, the result is homeomorphic to nT#mP for some n,m > 0
(but not both equal to 0). If m = 0, or if n = 0, then we are done (the
surface is nT or mP, respectively). If both m,n > 0, then replace pairs
using ’E#]P ~ 3P as necessary.

(a) 3']1‘#21? TH#6P ~ 3P#5P = 8P. Genus 8, nonorientable.
(b) mK ~ (2m)P. Genus 2m, nonorientable.

(c) 13S2#5'H‘#6S2 ~ 5T. Genus 5, orientable.

(d) K#THP = T#3P ~ 3P#2P ~ 5P. Genus 5, nonorientable.

(e) aP#bT ~ (a — b)PH#(BP#IT) = (a — b)P#3VP ~ (a + 2b)P. Genus
a+2b, nonorientable. (Note that this is also true for general a,b > 0.)

(f) kS? ~ S%. Genus 0, orientable.

o §5.4
Lv=24+2ne=143n,f=n,x=1,forallneN

4. (a) With a single fixed 0-cell and a single additional n-cell (note that
if n = 0, this implies a total of two disjoint O-cells), we have x(S*) =

+ (=)™
(b) With two cells in every dimension, x(S™) = Y"p_,(=1)" - 2.
In both (a) and (b), x(S™) = 2 if n is even and 0 if n is odd.
5.(a)2-2n(b)2—-n
6. Let f be the number of faces for the triangulation of M. Then x(M) =
v—e+f = v-x(M)=¢e¢-f. ByexerciseQ,f:%. Thus

—x(M)=e-2=¢ = e=3(v-x(M)).

Problems of Chapter 6

o §6.1

1. Every connected tree T has V(T') = E(T) +1; hence x(T) = 1. If T is
a forest of k components, then x(7) = k.

2. {a,c,e,g,i}, {b,d, f, h}
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3. E(Kkl,kg,k3) = kikg + k1ks + koks. Since V(Kkl,kz,ka) = ky + ko + ks,
X(Kkl,kz,ks) =k + ko + k3 — kiko — k1ks — koks.

6. Suppose that K33 is planar, and let f be the number of faces in an
embedding K33 — S?. Let v = V(K33) = 6, and e = E(K33) = 9. Then
x(S?) = x(K33) + f implies f = 5. Now, since the smallest cycle in K33
is length 4, we have 4f < 2e; however, 20 £ 18. This contradiction implies
that K3 3 is nonplanar.

8. Answers will vary. Vertex labels are based on those in Figure 6.8. The
cycle jhfigj of P is present along the identified edge A of the plane dia-
gram.

9. Of the two regions determined by the graph, one is not homeomorphic
to a disc.

10. From left to right, P (six vertices); T (seven vertices); K (eight vertices).

3 1 1 4 5 1 1 4 5 1
O ey O B, o
3¢ > 3 3 2
2 3 y 7
) \ 1 A 4
2 4 ] 5 2 2’ 3
8
o> e
1 3 1 4 5 1 1 4 5 1

e §6.2

1. For each vertex, there are at least n edges adjacent, for a total of at least
n|V(G)|. However, each edge is double counted, and so 2| E(G)| > n|V(G)],
or [V(G)| < 2E(G).

5. (a) Dual graph shown in black; original graph in light gray.
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8 x(P) =1, so 2f5 <6 (1 - %) < 6, which implies y(P) < 6. An em-

bedding of the Petersen graph yields a map requiring six colors; therefore
7(P) =6.
9. (a) 2 (b) 2 {c) 2 (d) 2if n is even; 3 if n is odd

e §6.3

7. Three half-twists: trefoil, or T(2, 3). Five half-twists: T(2,5). Seven half-
twists: T(2, 7).

8. Codes based on starting points and orientations as shown below.

@ &

— Gauss code:

Knot A: (1,-2,3,-4,2,~-5,6,-3,4,—1,5, —6)

Knot B: (-1,2,-3,4,-5,6,-7,3,-2,1,~4,7,—6,5)
— Extended Gauss code:

Knot A: (1,-2,3,-4,2,-5,6,3,4,—1, -5, —6)

Knot B: (-1,2,-3,4,-5,6,-7,3,2,1,4,7,6,5)

¢

®

9. Gauss code:
3 1 (1,-2,3,-1,2,-3)
Extended Gauss code:
(1,-2,3,—1,-2,-3)

e §6.4
1. (a) Hopf link: £ = 1. Whitehead link: £ = 0. Celtic design: £ = 3.

(b) Reidemeister move R.I involves only a single component knot and so
cannot contribute to the linking number. If move R.II involves strands
from the same component, then there is nothing to check; if it involves
strands from both components, then the linking number is still preserved
because the signs of the two crossings are always opposite. After move
R.III, the three crossings always keep their original sign (just their relative
positions are changed), and so the linking number remains the same.
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(c) Based only on linking number, the Hopf link and the Celtic design from
Figure 6.31 are not equivalent to the unlink. (Note that the Whitehead
link is also not an unlink, but we cannot prove that using the linking
number.)

3. No, because that knot is equivalent to U, which is not tricolorable.
7.0;3,0;7;0
8. (K) =A%~ A*+ 1~ A~*+ A~8 The writhe is w(K) = 0, so J(K) =

(—A3YK) =12 —t+1—t" 4172,

A=t—1/4 -
10. R3\ K is connected and Hausdorff. Since S! is compact, so is K =
K|S']. Any compact subset of R? is closed in the Euclidean topology, so
R3 \ K is open. Thus every point z € R3\ K can be surrounded by an
open ball U = B.(z) ~ R3? (for some ¢ € RT).

Problems of Chapter 7

e 87.1

1. For any map ~ : Z — R", there is a straight-line homotopy from = to
the constant map 0 defined by:

h : ZxI—R"
h(s,t) = (1—1th(s).

3. Reflezivity: Given any loop v : S' — X, we have v ~ « via the homotopy
h: S x 1 — X defined by h(s,t) = v(s) for all ¢ € I. Observe that h is
automatically basepoint preserving. Symmetry: If v ~ 5 for loops ~,7,
then by definition there is a homotopy h such that h{s,0) = ~(s) and
h(s,1) = n(s) for all s € S*. Define another function h'(s,t) = h(s,1 —t).
h' is continuous; hA'(s,0) = h(s,1) = n(s); and h'(s,1) = h(s,0) = v(s).
Thus &' is a homotopy verifying that n ~ «. If h is basepoint preserving,
then so will &’ be, since A'(0,t) = h(0,1 — t). Transitivity: Suppose v ~ 7
and n ~ 0 for loops «,n,68. Then there are homotopies h; and hy such
that hi(s,0) = v(s), hi(s,1) = ha(s,0) = n(s), and ha(s,1) = 6(s) for all
s € St. Define another function h(s,t) via:

P ha(s,28), te0,1/2);
1) = {hg(s,% —1), te(1/2,1).

Note that h(s,0) = hq(s,0) = v(s) and h(s,1) = ha(s,1) = 6(s), and that
h is continuous since lim;_,1 /0~ h(s,t) = lim;_,; 2+ h(s,t) = n(s). If both
hi and hg are basepoint preserving, then so will h be, since h(0, t) is either
equal to h1(0,2t) or ha(0,2t — 1).
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o §7.2
1. Let [y] € m1 (X, zg). Then

(o M =9 W) = g(67t.~.6])

Therefore g o f = id, (x,4,)- The argument is analogous to show that
f Og - id’ﬂ'l(X,:El)‘

o §7.3

1. Proof of (a). Take Z = {2} to be any one-point space. There is an
obvious homeomorphism I ~ {25} x I, and so v may be regarded as the
map Z X I — X that sends (29,t) = y(t). Let 7o : Z x {0} = X be the
map sending (zg, 0) — o, and consider the lift 5 : Z x {0} — E sending
(20,0) = eo. Then by Theorem 7.3.2, there is a unique lift 5 : ZxI ~ I —
E of « satisfying 7(0) = Y5(0) = eg.

Proof of (b). Take Z = 1. Then h may be regarded as a map Z x I — X.
Since h is a homotopy from 7 to 7, we have h(s,0) = ho(s) = v(s) (Vs € I).
Let Ea = 7 be the unique lift of v to E. By Theorem 7.3.2, there is a unique
lift h: Z x I — E of h satisfying h(s,0) = ho(s) = F(s) (Vs € I). Note
that p(h(s,1)) = h(s,1) = n(s) (Vs € 1), so h(—,1) is a lift of 7. By
uniqueness of path lifting, then i~z(—, 1) = 7, proving that ¥ ~ 7. Finally,
since h(0,t) = zo for all ¢ € I, and since p~*({zo}) is a discrete set, it
must be the case that TL(O,t) =g (Vt €l).

P =Uez (n+ 5,0+ §); p7 Vo] = Upez (n = &0+ §)
o §7.4

1. By deforming the loop within T so that the segments move toward either
a or b, the (p, g)-torus knot is homotopic to aPb? (note that the labeling
and orientation of the edges affect the form of the answer).

T T

L4

2. (a) {a1,a2,as,b1,b2,b3 | arbra; b7 tasbaay 1bs tagbsaz tbyt = 1)
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(b) {(a,b| abab™! = 1)
(C) <a'1’b17a'2:b2 ‘ alblazl_lbi_lagbza,zb;l = 1>

(d) {a1,...an | a2 - a2 =1)

5. The figure-eight knot is shown

with strands labeled a,b,¢,d, and a
positive and negative crossings in- b

dicated. Before any simplifications, + d

the knot group has the following

presentation:

(a,b,¢,d | a0 db = ¢ *d ™ 0d = b cac™ = d " taca! = 1).

Problems of Chapter 8

o §8.1
2. Betti numbers: (a) 1 (b) 10 (c) 3 (d) 0 (e) 6 (f) 1

6. (a) (Be(T))rz0 = (1,2,1,0,...)  (c) (Be(®))rz0 = (1,0,0,0,...)
(b) (ﬁk(K))kZO = (17 1,0,0,.. ) (d) (6R(S1 X H))k?_o = (l’ 1,0, 07 .. )

8. For every n > 0, Bo(A™) =1 and Bx(A™) = 0 when k > 0.
9.ForneN, B,(S")=1if k=0or k=mn, and §x(S™) =0 for k # 0, n.
o §8.2

1. There are 33 distinct elements within the square, as shown below.

$ .
© ©
© ©
© @
@ @
& © ©—
©
© © Q
[ ©
©
! unE
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3.5Z ={5n|neZ}={..,6-15-10,-5,0,5,10,15,...}. By definition
of quotient module, Z/5Z is equal to the set of equivalence classes [m] for
m € Z, with [m1] = [my] <= m; — my € 5Z. But this is equivalent to
my — ms being a multiple of 5.

5.
Q, k=0 z, k=0

H(KQ~{Q k=1 H(KZ) ~{ZxZ/2%, k=1

0, k>2 0, k>2

Problems of Appendix A

o §A.1

2. Suppose z € Q and y € Q. Then there are numbers a,c € Z and b,d € N
such that © = § and y = §. Using algebra, z +y = ¢ + ¢ = 9%9. But
since a, b, ¢,d € Z (noting that N C Z), we know that ad + bc € Z as well.
Furthermore, since b,d € N, we have bd € N. Thus 9—%%’39 =z+yeqQ.

Similarly, z —y = ¢ - § = “db:lbc, proving that z —y € Q.

3. Suppose z € Q and y € R\ Q, and let z = z + y. Assume (to the
contrary) that z ¢ R\ Q. That is, z € Q. Now z = z +y implies z — 2 = v,
and since both z and z are rational numbers, so is their difference z — z
(by Exercise 2). Thus y € Q, which contradicts the hypothesis (y ¢ Q).

6. (a) True. (b) False. (c) True. (d) False. (€) True. (f) True. (g) False.
(h) True. (i) True. (j) False. (k) False. (1) True.

7. Each subset B of A involves a choice for each element z, whether z
should be included in B or excluded. Thus, if A has n elements, then
P(A) has 2" elements. Similarly, P(P(A)) has 2(3") elements.

8.

(a) {n € N|n =2m or n = 3m for some m € N,m > 1}

(b) {6,12,18,---} = {6m | m € N}

(c) {30m | m e N}

(d) {(2my,3m2) | m1,mg € Nymy,mg > 1}

(e) {(2my,3ma,4ms3) | m1,ma, m3 € N,mq,ma, ms > 1}

() {(2m1,3ma,4ms,...) | M € Nymy > 1, Vk € {2,3,4,...})
13. Let z € (Upez Ax) N (Uge s Be)- Then @ € Uyer Ax and € Uye 7 Be.
Then there is some k& € T and £ € J such that z € Ay and z € By. Thus
* € A N Be, which implies € Uyer g 7(Ax N By). This proves that

(Urez 4x) N (UEEJ B) C Urez ee7(Ar N Br). Reverse the steps to show
the other inclusion.
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o §A.2

1. (a) Assume d > 1 is a fixed whole number. Reflexivity. For any n € Z,
we have n —n = 0 = 0 - d; thus n ~ n. Symmetry. Suppose n ~ m.
Then n — m = kd for some k € Z. But then m — n = —kd, which is also
a multiple of d; thus m ~ n. Transitivity. Suppose n ~ m and m ~ p.
Then there are integers k and £ such that n —m = kd and m — p = £d.
Consider n—p = (n—m)+(m—p) = kd+£d = (k+ ¢)d. Since k+ £ € Z,
we have n ~ p.

3.

(a) Bijective: f~(z) = L.
(b) Not injective since 3(—c)* = 3 = 3(c)* for any ¢ € R. Not surjective

since no negative value is in the range of f.

(c) Surjective, but not injective.

(d) Bijective: f~(z) = —¥/z/3.
(e) Not injective since sin(c+ 2n) = sinc for any ¢ € R. Not surjective;
the range is [—1,1].
(f) f(z) = sinz is surjective onto [—~1,1], but not injective in the do-
main [0, 27], since, for example, sin(7r/4) = sin(37/4).
(g) Bijective: f~!(z) = arcsinz.
.. s op— . 1
(h) Bijective: f~!(z) = f(z) = .
i) Not injective since —=3 = = for every ¢ # 0. Not surjective; the
(—¢) ¢
range is (0, 00).
-2z -7
i) Bijective: f~1(z) = —2L.
(3) Bijective: f~1(a) = o
" fe L pe 1
(k) Bijective: f~!(z) = 5In¥

4. Given that b = f(a), then g(b) = g(f(a)) = (gof)(a) = a by hypothesis.
5. (a) f(1) = 4. (b) fI{1}] = {4}. (c) F7*(1) means “plug in 1 into the
inverse function for f.” However, since f is not bijective, f~ does not
exist. So f~1(1) is undefined. (d) f71{{1}] = {3}.

6. (a) £1(1,3)] = (5, 1) (b) £I(=3,=1)] = (5, 1) () F7((1,9)]
(3,1) (@) £721(=9,9)) = (~00,~1) U (3, 00)

i
!
o
|
ol
S
C

‘Problems of Appendix B

o §B.1
1

2."=1 = gl-g"=9g""1 = (7" 9 g""=g" =
1-g"1 =gt Thus g7 = g™ L.

5. The identity element is boxed within the table.
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| ABC | ACB | BAC | BCA | cAB | CBA |
ABC || [ABC|| ACB | BAC | BCA | cAB | cBA
ACB || ACB | |ABC|| BCA | BAC | cBA | CAB
BAC || BAC | CAB |[ABC|| CBA | ACB | BCA
BCA || BCA | CBA | ACB | CAB |[ABC|| BAC
cAB | caB | BAC | cBA |[ABC]| BCA | ACB
CBA || CBA | BCA | CAB | ACB | BAC |[ABC]

According to the table, we have ABC™! = ABC, ACB~! = ACB, BAC™! = BAC,
BCA™! = CAB, CAB~! = BCA, and CBA~! = CBA.

6. Suppose hi, ks € H are arbitrary. Let g = ¢~ (hy) - 7 1(h2). Since ¢ is
a group homomorphism,

#(9) =0 (¢7 (h) -7 (ha)) = ¢ (47 (M) * 6 (07 (ha))
hl * h2
=  g=¢ () ¢ (ha) = ¢ (hyxho).

It

The last line proves that ¢! is a group homomorphism; hence ¢ is an
invertible homomorphism.

o §B.2
1 14 -9 8 7
L.a{ 1 0 19 (b) | —20 11 (c) Does not exist because B
(—4 8 9) (—16 ~9)
-16
has two columns while A has three rows. (d) ( 32 ) (e) 18 (f) Does
29

not exist because B is not square.
4. (3/5,-4/5,1)

1 3 5 7
5.(a) REF: |0 —4 -8 =12 |. (Row operations used: —3R; + Ry —
0 0 0 =10
Ry, =5R;+ R3 — R, —2Rs+ R3 — R3.) (b) Reduce to RREF, and inter-
pret the solution. (Continued from REF, row operations used: —-%Rz —
Ry, -—-11—0R3 — R3, —3Ro+ R; +» Ry, 2R3+ Ry w Ry, —3R3 + Ry Rs.)

1 0 -1 0 Ty — T3 = 0 il __32:‘3:

0 1 2 0 = To+223 = 0 = :132 — . 3

00 0 1 Ty = 0 8 3
Ty 0

Thus the nullity is 1, and a basis for Nul(4) is {(1,-2,1,0)}.

6. We must verify that M, y, satisfies the 10 axioms (Definition B.2.6).
Minxn is closed under addition and scalar multiplication (axioms 1, 6),
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because these operations do not change the dimensions of the matrices.
Matrix addition is commutative, associative, and the m X n zero matrix,

0 --- 0

0 --- 0

acts as additive identity (axioms 2, 3, 4). The additive inverse of a matrix A
is equal to —A = (—1)A (axiom 5). Now suppose A = (a;;), B = (bi;), and
let ¢,d € R. Then c(a;; +bsj) = cayj +cbyj proves that ¢c(A+B) = cA+cB
(axiom T7); (¢ + d)a;; = ca;j + dag; proves that (¢ + d)A = cA + dA
(axiom 8); ¢(dai;) = ((cd)as;) proves that c(dA) = (cd) A (axiom 9); finally,
1(as;) = (lai;) = (ai;) proves that 1A = A (axiom 10).

7. (a) Ou € V because of axiom 6. Thus, by axiom 5, there is an additive
inverse vector —(0u) € V' (which will be used in the third line below).

Ou = (04 0)u by real-number arithmetic
Ou = Ou + Ou by axiom 8
—(0u) + 0u = —(0u) + [Ou+0u]  adding —(0u) to both sides
—(0u) + Ou = [—(0u) + Ou] + Ou by axiom 3
0=0+0u by axiom 5
0=0u by axiom 4

Thus we have proven Ou = 0.
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Notations

The following table identifies notation introduced in each chapter and appendix.

Chapter 1

= congruence (geometric equivalence)
~ homeomorphism (topological equivalence)
(a,b) {z|a<z<b}

la,b) {z]a<z<b}

(a, b] {z]a<z<b}

[a, 8] {z]a<z<b}

(a,0) {z|z>a}

[a, o) {z|z2>a}

(—Oo)b) {CC I z < b}

(=00, b] {z ]z <t}

(—00,00) all real numbers

I unit closed interval, [0, 1]

i k unit vectors in R3

Chapter 2

R"™ n-dimensional Euclidean space
zy dot (inner) product of vectors z, y
vl length of a vector v

d(z,y) distance between points z and y
S n-dimensional sphere

Be(z) open e-ball around z

D.(z) closed e-ball around z

int(A4) interior of a subset

ext(A) exterior of a subset

0A boundary of a subset

A closure of A

limgs 00 Tk limit of a sequence (z)

(X,d) metric space on set X with metric d
lzll, p-norm of z

387
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dp p-norm metric

£r sequences converging under the p-norm
LP(R) real functions converging under the p-norm
Chapter 3

o(x,t) flow function

Ind(C) index or winding number of a curve C
Ind(x) index of a cricital point x

Ot (x), O~ (x) positive, negative semiorbit of x

w(x) omega, limit set of x

Chapter 4

Tr Fuclidean topology

Ip discrete topology

I indiscrete topology

T cofinite topology

Tla subspace topology

~ identification of points

[z] equivalence class of a point

X/ ~ quotient space

T/~ quotient topology

T torus

K Klein bottle

P projective space

Fhox box product topology

Forod product topology

Chapter 5

# connected sum operation

nT n-holed torus

Se compact surfaces, surfaces-with-boundary
= equivalence of plane model words

P projective plane

D” closed disk in R™; n-cell

Chapter 6

V(G) vertex set of a graph

E(G) edge set of a graph

F(G) regions determined by an embedding of a graph
V],v number of vertices

|El, e number of edges

|F|, f number of faces/regions

o isomorphism of graphs

K, complete graph

Kmn - complete bipartite graph

fm P
L<

cycle graph

path graph

an embedding of X into Y
Haewood’s number
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G* dual graph
) unknot
T(p, q) torus knot or link
C(K) crossing number of a knot
K’ mirror image of knot K
(L) Kauffman bracket of L
xT, x~ positive, negative smoothing of x
Ly, separated union of knot diagrams
J(L) Jones polynomial of L
Chapter 7
Loop(X) set of all loops in X
Loop(X, zg) set of all loops in X with basepoint zq
Y.n product loop; product of sphere maps
1z, constant loop at zq
1 constant loop (at zq)
1 inverse loop
m (X, zp), m(X) fundamental group of X
T (X) nth homotopy group of X
My knot complement
Chapter 8
Crn(X;Q), Co(X;Z) rational/integral n-chains of X
Zn(X;Q), Z,(X;Z) rational/integral n-cycles of X
B,(X;Q), B,(X;Z) rational/integral n-boundaries of X
H,(X;Q), H,(X;Z) rational/integral homology of X

kth boundary map

dn nth boundary homomorphism
A" n-simplex

[vo, -, Un) n-simplex on a set of vertices
Br(X) nth Betti number of X

g, omit vz from a bracket
im(f) image of f

ker(f) kernel of f

Appendix A

N set of natural numbers

Z set of integers

Q set of rational numbers

R set of real numbers

C set of complex numbers

Rt set of positive real numbers
R~ set of negative real numbers
0, {} empty set

€ element of a set

C subset of a set

{oo.]...} set-builder notation

P(A) power set of A



390 APPENDIX D. NOTATIONS

= implication

<= | iff biconditional (logical equivalence)
v universal quantifier

| existential quantifier

U union of sets

n intersection of sets

\ difference of sets

A complement of A

f:D—=C function from domain set D to codomain set C

c

> “ maps to (by a function)

fla function restricted to domain A
gof composition of functions

R ey ) inverse function

flAo] forward image (image) of a subset

2 [Bo) inverse image (preimage) of a subset
Appendix B

e, 1,0 identity element of a group

1 trivial group

0 trivial abelian group

idg identity group homomorphism

U I group with specified generators and relations
A= (as;) matrix A with entries ag;

Mimxn set of all m x n matrices

I, identity matrix

det A determinant of a matrix A4

rank(A) rank of a matrix A

Spangp A linear span of a set A over scalars R

Nul(A) null space of a matrix A
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arc-connected, 63
associative, 332
autocatalytic, 111
autocorrect, 82
axiom, 120

base, 126
basepoint, 258
basis, 126, 315, 364
Betti number, 304, 310
biconditional, 327
bicontinuous, 50
bijective, 341, 353
bit, 80
bivalent, 222
Bolzano-Weierstrass Theorem, 60
book of n pages, 199
Borromean rings, 238
boundary, 40
function, 303, 307
homomorphism, 303, 308
bounded, 55, 61
Brouwer Fixed-Point Theorem,
283
bubble diagram, 340
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dust, 26

set, 19
Cartesian

plane, 329

product, 329
Cauchy sequence, 82
Cauchy-Schwarz Inequality, 74
cell, 197

complex, 197
chain, 303
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chaos, 109
chiral, 239
chirality, 239
circuit, 211
Euler, 211
clopen, 37
closed, 36, 122
coarse, 123
codomain, 340
cofinite topology, 135
commutative, 332, 343
diagram, 272
compact, 54, 150
locally, 155
complement, 329
complete, 84
completeness, 56

complex. See cell complex

composition, 52, 343
congruent, 9
conjugate, 291
connected, 66
component, 154
locally, 155
sum, 170
conservative field, 24
constant map, 131
continuity, 44, 130, 131
contractible, 261
convergent, 59, 135
convex, 70
covering, 277
critical point, 89
isolated, 89
nonrotational, 93
rotational, 93
crossing, 232
handedness, 235
negative, 235
number, 232
positive, 235
smoothing, 247
cycle, 210, 301
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deformation, 9
degenerate, 306
degree, 210, 303
delta complex, 316
dependent, 363
determinant, 358
difference, 328
differential equations, 88
dimension, 197, 198, 315, 364
dipole, 94
disconnected, 66, 154
discrete topology, 123
disjoint, 328
disk, 37

neighborhood, 168
distance, Euclidean, 30
domain, 340

restricted, 340
dot product, 30
dunce cap, 183
dynamical system, 96

edge, 186
element, 321
embed, 213
embedding, 211, 331
proper, 213
empty set, 325
entry, 356
equilibrium. See critical point
equivalence
class, 338

relation, 338
equivalent, 9

topologically, 50, 133
Euclidean topology, 121

Euler characteristic, 12, 196, 200

Euler, Leonhard, 6

extreme value, 57

Extreme Value Theorem, 58
extrinsic, 11

face, 185
field, 361
figure-eight, 239
fine, 123
fixed point, 283
flow, 88
forest, 217
forward image, 347
free, 315
Freudenthal Suspension
Theorem, 297
function, 340
inverse, 344
fundamental group, 269
trivial, 275

Gauss code, 234
Gaussian elimination, 358
generator, 285
genus, 195, 213
graph, 6, 208
bipartite, 209
complete, 209
cycle, 210
directed, 301
dual, 224
Eulerian, 218
genus, 219
path, 210
planar, 212
simple, 209
great circle, 28

INDEX

greatest lower bound. See infimum

group, 351
abelian, 352
commutative, 352
cyclic, 354
generator, 354
isomorphism, 354
presentation, 354
relation, 354
trivial, 352

group theory, 351

Haewood’s number, 216
half-disk, 169

Hamming distance, 81
harmonic sequence, 79
Hausdorff, 136

Hawaiian earring, 148
Heine-Borel Theorem, 55
heteroclinic, 94

homeomorphism, 9, 44, 50, 133

homoclinic, 94
homologous, 310
homology, 304, 317
theory, 301
homomorphism, 316, 353
identity, 353
induced, 273
inverse, 353
invertible, 353
homotopy, 15, 260
basepoint preserving, 260
class, 262
groups, 292
Hopf
fibration, 297
link, 238
Hopf’s Theorem, 103
hypercube, 162, 174
hyperplane, 305
hypersphere, 31, 174
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identity, 351
image, 316, 347
implication, 327
inclusion, 140
independent, 362
index, 98, 100
set, 334
indiscrete typology, 124
induction, 323
infimum, 56
infinite, 322
injective, 341, 353
inner product, 73
space, 73
interior, 40
Intermediate Value Theorem, 69
intersection, 328
interval, 326
unit, 19
intrinsic, 11, 137
inverse, 4, 344, 351
image, 347
inversion, 48
invertible, 4, 9, 240
isolated, 38
isometry, 9, 84
isomorphism, 208, 353

Jones polynomial, 250

Kauffrnan bracket, 248
kernel, 316
Klein bottle, 149, 168, 182
knot, 231
alternating, 237
composite, 243
composition, 239
diagram, 232
factor, 243
group, 289
invariant, 244
invertible, 240
prime, 243
sum, 239

least upper bound. See supremum
lift, 277
limit, 59, 135
limit point, 38, 137
compact, 151
linear
algebra, 351
combination, 126, 302, 362
link, 238
linking number, 253
loop, 258
constant, 258
homotopy, 260
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inverse, 266

product, 263
Lorenz attractor, 109
lower-limit topology, 129

malleable, 9
manifold, 173
manifold-with-boundary,
173, 376
map, 3, 220, 272
coloring, 220
injection, 160
open, 131
projection, 159
matrix, 356
augmented, 358
identity, 357
inverse, 358
invertible, 358
metric, 73
discrete, 76
function, 73
space, 73
taxicab, 77
topology, 121
Mobius strip, 145
modular arithmetic, 339
module, 315
quotient, 317
monoid, 172, 240
morphism, 272

natural numbers, 322
neighborhood, 33, 122
network topology, 5
node, 89

semistable, 93
nondegenerate, 306
nonorientable, 191
norm, 30

max, 79

p-, 78
nullcline, 110
nullhomotopic, 261
nullity, 366
null space, 365

object, 272
omega limit set, 108
one-to-one. See injective
onto. See surjective
open, 34, 121, 137

ball, 32, 75

cover, 53, 150
orbital center, 94
order, 315, 352
ordered pair, 329
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orientable, 191
orientation, 190, 307

parametric equation, 258
parametrized curve, 23
partition, 329, 338
path, 210
perturbation, 232
phase portrait, 91
planar isotopy, 244
plane model, 178
Platonic solid, 13
point at infinity, 51
point-set, 119
polyhedron, 13
power set, 326
preimage, 347
prime, 164
product, 351
product topology, 160

box, 157
projection, 48
projective

plane, 193

space, 149, 176
proof by contradiction, 322

quadripole, 106

quantifier, 327

quotient, 339
map, 142

radially convex, 70
range, 347

rank, 315, 360

real line, 18

reflection, 47
reflexivity, 338

region, 220
Reidemeister move, 244
Reidemeister Theorem, 244
relation, 286, 337, 354
rigid motion, 9
rotation, 47

row operations, 358
RREF, 358

saddle point, 94

scalar, 303, 360, 362
scaling, 46

sector, 104

semiorbit, 91
separation, 66, 154
sequence, 58, 135, 334
sequentially compact, 153
set, 321

set-builder notation, 324
set theory, 321

INDEX

simplex, 306

simply connected, 25, 275

singular point. See critical point

sink, 92

skein relation, 248

skeleton, 197

source, 92

space, 3. See also topological space
Euclidean, 28, 121

span, 303, 364

stable, 93

stable homotopy, 297

star-shaped. See radially convex

stationary point. See critical point

stereographic projection, 49

strand, 232

string, 80

subcover, 53

subgraph, 210

subsequence, 60

subset, 325

subspace, 362

subspace topology, 139

superset, 325

supremmum, 56

surface, 168

surface-with-boundary, 169

surjective, 341, 353

symimetry, 338

system, homogeneous, 365

tesseract, 174

topological
invariant, 12
space, 9, 120

topologically equivalent, 9
topologist’s sine curve, 71
topology, 5, 119

point-set, 119
torsion, 315
torus, 145, 168, 178

knot, 233

n-holed, 171

three dimensional, 150
totally disconnected, 142
trail, 211
transformation, standard, 46
transitivity, 338
translation, 46
trapping region, 108
tree, 217
triangle inequality, 32, 73
triangulation, 185
tricolorability, 245
tricoloring, 245
trivalent, 222
tubular neighborhood, 164
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union, 328

unit circle, 31

unit sphere, 30

universal set, 329

unknot, 233

unlink, 238

unstable, 93
homotopy, 297

vector, 30, 88, 360
field, 23, 88
space, 361

vertex, 186, 306

walk, 211

weighted average, 305

well ordering, 322
Whitehead link, 238
‘Whitehead’s Theorem, 293
winding number, 98
Wirtinger presentation, 289
word, 178, 287

work, 24

wormbhole, 28

writhe, 247
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