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lntJifiductum 

This book is about topology. You may have read popular articles about 
"rubber-sheet geometry"; at this point it is difficult to say more precisely just 
what is studied in this branch of mathematics. We shall examine many 
mathematical objects, both familiar and strange: the real, complex, and 
quaternionic number systems, universal covering spaces and fundamental 
groups, spheres and projective spaces, deck transformations, and the com-
pact-open topology (to name a few you might already be curious about). At 
the end, you will be able to form your own partial answer to the question 
"what is topology?" 

But between here and the end lies hard work for you, as well as fun. 
Topology is a part of mathematics; this theory is applied in many fields, from 
quantum mechanics to sociology, and we shall point out some of these appli-
cations, But we must first build up the vocabulary of a theoretical structure. 
We shall construct our theory abstractly, with axioms, and our major effort 
will be the exploration of the theoretical consequences of those axioms. This 
contrasts with the calculus, where usually one strives mainly to acquire a 
competence in solving specific problems; a theorem is often regarded as a 
recipe for applying the formulas to special cases. Here you will strive to 
understand the theorems so thoroughly that you yourself can invent proofs 
for new theorems. In short, really study the proofs! 
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EXERCISES AND PROBLEMS 

You will get exercise, sometimes vigorous exercise, as you read this book. 
It requires work to fill in the detailed reasoning from one sentence to the 
next; when the jump is particularly large we shall sometimes signal this with 
such euphemisms as "it is easy to see that, , " and "it is obvious (or clear) 
that , , other times the word "why?" may be interjected in parentheses 
to remind you that a few details are missing. Fill in these details mentally 
as you read; you will find that you become better and better at this with 
practice. 

However, you want to learn to use mathematics, not just to read it. 
And you cannot learn that by osmosis, by watching someone else do it, any 
more than you could leam to play chess or football by close observation. 
There are EXERCISES at the end of each chapter; do them all, They are 
not repetitive drills; you can expect some of the joy of discovery and crea-
tion with each solution you construct. Furthermore, you will learn topology, 
chapter by chapter, through your exercises; we shall count on your efforts 
by presuming, as each new topic is presented, that you understand the results 
of those exercises that have appeared earlier. With experience, you will 
know which you can do in your head and which are difficult for you; write 
out detailed solutions for the harder ones. 

In each chapter, following the exercises, there is a set of PROBLEMS, 
You will need neither the results of the problems nor the exercise of working 
them to continue your reading of the book. Instead, they contain interesting 
applications and further theory, a sort of payoff for your work in the chapter, 

INTERNAL REFERENCES 

Throughout the book we have tried to minimize the number of formal 
references to previous material, preferring instead to refer to a theorem by 
name or a brief statement of the result. However, we have found it necessary 
to number some of the statements in Chaps. I, II, and IV, A reference in 
Chap, II, for instance, to Theorem 3 means Theorem 3 of that chapter, while 
a reference there to Theorem 1,3 means Theorem 3 of Chap. I. Similarly, 
a reference in Chap. II to Exercise A means Exercise A of Chap. II, while 
reference there to Exercise LB means the second exercise of Chap. I. Prob-
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lems are labeled with doubled letters to distinguish them from exercises; a 
reference to Prob. CC is to the third problem at the end of the chapter where 
the reference appears. 

Should you not recall the content of a theorem, such as the Quotient 
Theorem for Groups, when it is referred to, you will find it listed in the index. 

DEFINITIONS 

We shall define new words in two ways: A defined word in boldface 
(a thingamabob is an orange whatsit) is part of our minimal vocabulary; it 
will be used later and must be memorized. A word appearing in quotation 
marks in its definition (a set of three skeletons is called a "full closet") will 
not be required later in this book. It is provided for your reference use; it 
may appear in a parallel text you use, or may be preferred by your instructor. 
Quotation marks are also used to set off "suggestive" statements which are 
not part of a formal argument; this usage will be self-explanatory. 

SET-THEORETIC NOTATION 

The concept of a set and operations involving sets, along with logical 
arguments expressed in ordinary English, form the language of this book. A 
set (synonyms: class, family, collection) is, intuitively, a bunch, aggregate, 
flock, etc,f All statements about sets are to be made within some "large" 
set called the universe, which contains every set in view. The particular 
choice of universe may change from topic to topic, but either it will always 
be clearly understood or it will be made explicit just which universe is being 
used in the discussion at hand. For example, if S is defined to be the set 
of all positive real numbers in a context where the universe is understood to 
be the set R of all real numbers, then the complement of S is the set of real 
numbers which are either negative or zero. But if, in a different context, 
the real numbers are themselves considered to be a subset of the universe C of 
all complex numbers (that is, R is the x-axis),- then the complement of S in C is 
the set {x + iy: either y ^ 0 or x < 0}, that is, the whole plane except for S. 

The 'set-braces" notation of the sentence above will be used frequently. 

f A pod (of whales) or an exaltation (of larks)l 
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That is, let P(x) be a statement involving the variable x such that for each 
particular value a of the variable x either P(a) is true or P(a) is false. Then 
{x: P(x)} denotes the set of all those elements a of the universe for which P(a) 
is true. The braces are also used to contain implicit or explicit lists of the 
elements of a set. Self-explanatory examples of this in the universe R of real 
numbers are R = {1,3,10}, S = {1,2, 3 , . . . , 27}, and T = {1, % 

We now offer a condensed description of the elementary set-theoretic 
operations and their nomenclature. This is provided as a rapid review and 
reference list. If you are not quite familar with some of the ideas involved, 
consult the references listed at the end of Chap, I (on page 24) for more 
leisurely introductions. 

The membership of an object x in a set S is denoted by x € S. While 
the meaning of this symbol is fixed, you may read it (and many other mathe-
matical symbols) in various ways in English sentences, depending on con-
text; examples 

axe • •»which is a member of S,, ., " . . x is a member 
of S . • . . . (let) x be a member of S , . . e t c . If x 6 S, then x is a mem-
ber, element, or point of S; because of this nomenclature, sets are sometimes 
referred to as "point sets/' If every member of a set S is also a member of 

S C T 

the set T, then S is said to be contained (or included) in T, written S C T, 
or T contains (or includes) S, written T 3 S; S is then a subset (or subfamily) 
of T and T is a "superset" of S. Two sets S and T are defined to be equal, 
written S = T, if both S C T and T C S , This definition of equality of sets 
seems to subvert the usual convention that "A = B" means that "A" and 
"B" are two names for the same object. If you cleave to that meaning of 
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equality, this definition of equality of sets may be understood, in our intui-
tive set theory, to say exactly what a set is: the totality of its members and 
nothing else. 

Each of the above symbols may be negated by the addition of a slanted 
stroke: g , , J), The definitions of the resulting symbols are clear; for 
instance, S 7^T means that either S T or T (fi S* (In this last sentence 
and throughout mathematics, the word "or" is used in the nonexclusive 
sense; the words "or both" are understood.) If S ^ T and S C T, then S is 
a proper subset of T. The complement of S in T, T — S (read "T minus S"), 
is the set of elements of T which are not elements of S, 

T — S = {x: x e T and x £ S}. 

The complement S' of a set S is the set of nonelements of S; if U denotes 
the universe, then S' = V — S. 

The intersection of two sets S and T, S H T (read "S intersect !T"), is 
the set of all elements common to both S and T, 

S fl T= {x:x € Sand* € T). 

The union of S and T, S U T (read "S imion T"), is the set of all elements 
which belong to either S or T, 

S U T ={x:x € Sor x € T}. 

For any objects a and fo, let (ajb) denote the ordered pair, with a first and 
b second. Two ordered pairs (a,b) and (a\bf) are equal if and only if both 
a = a! and b = b\ The direct (or "cartesian") product of S and Tis the set 
S x T of all ordered pairs whose whose first element is a member of S and 
whose second element is a member of T, 
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S X T= {(9,t):s e Sand f e T}. 

The sets S and T are called the factors of S x T. 

LOGIC 

The word implies is used in this book in its mathematical sense: it is 
not intended to have its English-language meaning* Rather, if we say "P 
implies Q" where P is a mathematical statement which might be either true 
or false, and Q is another such statement, we mean "if P is true, then Q is 
true." The statement "P implies Q" is true unless both P is true and Q is 
false; that is, "P implies Q" is true if either Q is true or P is false. This pre-
cise definition results in some true statements being outrageous when read 
in the common language; "1 — 0 implies 1 = is an instance, as is "1 = 0 
implies 1 = 3." Notice that the statements "P implies Q," "if Q is false, 
then P is false," and "P is true only if Q is true" are logically equivalent. 

SPECIAL SYMBOLS 

We shall frequently use the symbol iff to stand for the words "if and 
only if"; thus "P iff Q** means both P implies Q and Q implies P. 

The shorthand symbol • has become more fashionable than Q.E.D. as 
a signal to the reader that a proof is concluded. We shall use it for that; 
however, its appearance immediately following the statement of a theorem 
will indicate either that the proof preceded the statement or that the proof 
is omitted. Whenever a proof is omitted, it is easy; construct it in your head 
at once. 
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A few particular sets will be discussed enough to make special symbols 
helpful for their recognition. Some of these are 

0 the empty ("void," "null") set, 0 = [x:x^ 
Z the set of all integers, Z — . . , X, 0 , 2 , 3 , » . <]} 
R the set of all real numbers, 
C the set of all complex numbers, 
I the closed interval of real numbers between 0 and 1, 

I = [0,1] = {x: x e R and 0 < * < 1}. 

A complete index of special symbols is given immediately in front of the 
index, along with a Greek alphabet, for your reference. 
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CHAPTER 1 

The concept of a function, together with its related ideas of quotient and 
inclusion, is perhaps the most important and pervasive idea in modern 
mathematics. However, the intuitive definition of a function as a rule or 
correspondence is not sufficiently precise for us to use in exploring the con-
cept. In this chapter, after broadening the notions of union and intersec-
tion to consider infinite families of sets, we shall define a function to be a 
special kind of relation. With this concise set-theoretic definition we shall 
be able to examine the structure of functions in general, not just the behav-
ior of a particular one. 

Our new knowledge will thenceforth be put to daily use as we study 
groups and topologies. 

UNIONS AND INTERSECTIONS 

It is easy to show that both the union and the intersection operations 
are both commutative and associative: for all sets JR, S, and T in a given 
universe U, 

B n s = s n n ) 

R U S = S U B, 
(R n s) n r = R n (S n r) , 
(R U S) U T = R U (S U T). 

8 
i f t 
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If S is a class whose members are sets in a given universe 17, 0 S denotes 
the intersection of all the members of S, 

flS = {*: X £ S for every S £ §}. 

Similarly, US, the union of S, is the set of all members of members of S, 

US = {x: x £ S for some S € S}, 

If S is a finite collection of sets, with at least two members in S, then the 
import of statements 1 is that these notions of intersection and union agree 
with the results of applying the earlier defined binary operations of intersec-
tion and union in any order whatsoever to the members of $. If S has ex-
actly one member S, then OS = US = S, Further, if S = 0 , then exami-
nation of the definitions shows that OS = 17, the universe, and US — 0 . 
A natural mnemonic for these extreme cases is that OS "grows larger" as S 
"grows smaller," and US grows smaller as S grows smaller. No other con-
vention is possible, but the case S = 0 will often be treated redundantly 
by itself in definitions and proofs, as a reminder of the null case. 

To form an example, let Sa = £ Rs x > a) for each real number a. 
(The set-braces notation for Sa has been slighdy abbreviated here; properly, 
it should be {x: x € R and x > a},) Define the family S to be {Sa: a £ R}, 
(This is another abbreviation; properly, S = (S: there exists a with a £ R 
and S = Sa},) If'3Fis & finite subfamily of S, then U^is a proper subset of 
R, and 0 (why?). Nevertheless, US = R and flS = 0 . 

2 THEOREM If S is a class of sets in a universe U and T is a fixed set 
in U; then 

r n u s 
r u n s 
r - u s 
T — n s 

u { r n S:S € S}, 
n {T U S:S £ S}, 
n { r - S;S € s}, 
U{T — S:S € S}. 

(distributive laws) 

(De Morgan formulas) 

Only formulas i and iii are proved here; ii and iv are left as exercises for the 
student. 

Proof of i Letx £ 71 Pi US;sincex € U S, there is some S £ Swithx £ S. 
But x £ T also, so x £ T n S C U {T n S: S £ S}. Thus 

r n u s c u { r n S:S £ s}. 

Now assume x £ U {T O S; S £ S}; there is then an element S £ S 
with x £ T n S . Hence x £ T and x £ S C US, so x £ T n US. There-
fore u { r n S:s £ s } c r n u s . • 
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Proof of iii Let x G T - US; thus x G T and x £ US, For each S G S, 
then, x i S, and so x 6 T- S. Therefore x G n {T - S: S € S}, and 
T — US C 0 { T - S:S G S}. 

On the other hand, if x € n (T - S: S G S}> then for every S € S, 
x G T - S, and thus x G T and (for every S) x £ S. Clearly, x t US, so 
x e T - u s . • 

Exercises A, B, C, and D 

RELATIONS 

If A and B are sets, a subset R C A X B will be called a relation (or 
"binary relation") in A to B. f For instance, the entire direct product A X B 
is a relation in A to B, as is its empty subset. If S is the set of all human 
females and T is the set of all human beings, then {(«?t): (s9t) € S X T9 s is 
a sister of f} is a relation in S to T. 

If K is a relation in A to A, then R will be called a relation in A. A 
relation R in A is reflexive if the "diagonal" set {(a,a): a € A) C jR. It is 

The shaded regions represent relations 

Symmetric and transitives but not Reflexive, bwf neither symmetric nor 
reflexive transitive 

symmetric if {(fo,fl): (ajb) € ft) = B, and it is transitive if {(a,c): for some 
b G A both (a,fc) and (b,c) G R} C B. You should verify the following 
statements. 

f Notice that, strictly speaking, the expression R C A X B should have parentheses inserted 
thus: R C (A x B). However, "(JR C A) X makes no sense at all, since (JR C A) is not a 
set and therefore has no direct product with B. Henceforth we shall write such an expression, 
which makes sense in only one way, without parentheses or further comment. 
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3 THEOREM Let R be a relation in the set A; R is reflexive iff (a,a) € R 
for every a € A, R is symmetric if (a,b) E R whenever £ /i, and 
R is transitive if whenever (a,b) and (b9c) are members of R, then 
(a,c) e f l . • 

If, for example, the set A is the set of all human beings (living or not), 
then {(a,fc): a and b are brothers} is symmetric; it is neither reflexive nor 
transitive (assuming that no man is his own brother). The relation {(a,b): a 
is not a descendent of b) is reflexive, but not symmetric and not transitive. 
Can you think of a transitive, nonreflexive, nonsymmetric relation between 
real numbers? 

A relation R in a set A which is reflexive, symmetric, and transitive is 
called an equivalence relation (or just an equivalence) on A, The relation 
fi = A X A is always one such, as is the diagonal relation A C A X A, 
A = {(a,c):a £ A} (check these examples in your mind). If A = Z, the 
integers, and n G Z, another equivalence on A is {(a,i/): n divides x — y}\ 
this relation is called congruence modulo n. If R is an equivalence relation 
on A and a £ A, let [a] denote the set of elements of A which are equivalent 
to a; [a] = {b: (a9b) € R} is called the equivalence class of a. 

4 THEOREM Let R be an equivalence relation on A and a, b € A. 
Then either [a] n [b\ = 0 or [a] = [Jb]. 

Proof Assume that [a] H [b]=£ 0 and choose an element c € [a] D [&]. 
Then (a9c) and (b9c) are members of R, so (a,c) and (c9b) are both in R; hence 
(a9b) £ fi. However, if d £ [b]9 then (b9d) £ K; since {ajb) £ R, so is (a9d)9 

and d £ [a]. This shows [b] C \a\. By the symmetry of the assumption, 
[a] C [fo], and [a] = \b\* • The last sentence of this proof means that if 
we interchange the symbols a and b in the hypothesis, the same statement 
results. That is, we assumed R was an equivalence relation, that a and b 
were in A, and then that [a] Pi [b]=£ 0 . We concluded that [b] C [a]. 
If we interchange the symbols a and b everywhere in the assumption, the 
proof, and the conclusion, then the assumption remains the same; yet the 
proof from that assumption now concludes that [a] C [fej. 

Therefore the equivalence classes constitute a division of A into non-
overlapping subsets. To be more specific, let a family S of sets be termed 
mutually disjoint if for every pair S and T of members of S, S ̂  T implies 
S fl T = 0. In particular, two sets are termed disjoint if they have an 
empty intersection. A partition of a set U is a mutually disjoint family S 
of subsets of U such that U S — £/. 

5 THEOREM IfR is an equivalence relation on A, then the family 5 



12 I: Sets and Functions 

of equivalence classes of elements of A, S = {[a]: a £ A), is a partition 
of A. Conversely, if$is a partition of a setAy then there exists a unique 
equivalence relation R on A for which l3~ is exactly the family of R-
equivalence classes* 

Proof Clearly, US = A, and S is mutually disjoint, by Theorem 4, so S is 
a partition. On the other hand, if ^partitions A, define the relation R on A 
by R = {(a,b): both a £ T and b £ T for some T £ 5). The verification 
that R is an equivalence relation and that the family of R-equivalence classes 
is indeed is relegated to the exercises. » 

It will often be convenient when we are discussing a particular equiva-
lence R on A to say that elements a and b of A are equivalent, or to write 
aRb, to indicate that (a,b) £ R, As an example, let R be the relation of 
congruence modulo 3: (x,y) £ R, or xRy, iff 3 divides x — i/, so that there 
exists an integer k with x — y = 3fc. Then x == y + 3fc; conversely, when-
ever a multiple 3/r of 3 is added to y the sum is equivalent to y. The equiva-
lence class of y is exactly [y] = {y + 3k: k £ Zj; it is infinite. The class 
[17], for instance, is the set 1 , 2 , 5 , . . . , 14 ,17 ,20 ,23 , . . . , 62,. . ,} • 
this is exactly the set of integers which leave a remainder of 2 when divided 
by 3. It is easy to see that the partition S defined'by JR is S = {10],[1],[2]}; 
it has exactly three members. 

Another example is given by the measurement of angles (in radians). 
Such statements as "the angle 0 is the same as the angle 2TT" mean that there 
is defined an equivalence relation on the real numbers R (the set of "meas-
urements" of angles) with xRy iff x and y are two measurements of the same 
angle. Thus the equivalence classes are like [0] = (2/CTT; k£ Z} and [TT/2] == 

_7T 
. 2 . 
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(| (4k + 1)/2]tt: k £ Z}. Each class is infinite (it has one member for each 
Integer k). Furthermore, the number of equivalence classes is itself infinite; 
ouch class corresponds to exactly one angle. The set S of equivalence classes 
run be corresponded one to one with the points on a circle (see Exercise L-) 

Exercises E and F 

FUNCTIONS 

The familiar function x2> the squaring function, which has real argu-
ments (x is real) and real values (x2 is real) has as its graph the set of points 
(x,y) in the plane for which y = x2, that is, the set {(x,x2): x £ R). There is 

y-axis 

y = 4 (2,4) 

x-axis 

exactly one point on the graph lying on each vertical line; there is exactly 
one pair (x9y) in the graph for each real x. We now draw a formal definition 
of function which says essentially that a function is its own graph, 

A function is a special kind of relation: a relation fi in A to B is a function 
(or transformation) if each member of A occurs as the first element of exactiy 
one member of R. Thus if a € A, then there exists an element b 6 B such 
that (a,b) £ R; and furthermore, if (a,b) € R and (a9bf) € R, then b = br. 
Then h is denoted R(a) and called the value of R at a or the image of a 
under R. The set A is the domain of R> B is the range of R, and 
{K(a): a £ A}, the set of second elements of members of R, is the image 
of R. The domain of R is denoted Dom (R) = A, the range B — Rng (R), 
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and the image Im (jR). This situation is sometimes denoted R: A —> B, and 
sometimes A ^ B; R is called a function on A into B or from A to J3, Ap-
plying this vocabulary to the squaring function f(x) — xwe see that 
/ = {(*,%«): x e R} C R X R, /(3) = 9 is the value of/at 3, or the image 
of 3, R is the domain set and also the range set of/, and the set of nonnega-
tive reals {x € R: x > 0} is the image of / With a transparent addition to 
our notation for functions, we write 

/:R -VR:/(x) = Jt2. 

The trivial relations A X B and 0 in A to B are not, in general, func-
tions. For each set A, the diagonal relation A C A X A is always a function 
from A to A; it is the identity function on A, and it is often denoted 

1 A(a) = a for each a 6 A. Among the relations between human beings 
(living or not), {(«,/?): j8 is the mother of a} is a function, but {(y,6): 8 is the 
nephew of y} is not. If A and B are any sets and then there is, for 
each member fe£fi>a constant function />: A —> B whose value is that fixed 
b for all a e A, fb = {{a>b): a € A} C A X B. Thus a function is constant 
iff its image is a set having exactly one element (such a set is called a single-
ton). Note that for each range set B there exists one function having domain 
0 , namely, the "empty function" 0 C 0 x B = 0. However, if 
A 0 , then there is no function at all with domain A and range 0 , since 
the set of image points could not be empty. 
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The power set 9(A) of a set A is the set of all subsets of A, 9(A) = 
{S: S C A}. A function /: A —> B defines (or induces) in a natural way a 
new function, usually denoted by the same symbol / from 9(A) to ^(B); if 
S C A, then/(S) = {f(a): a£ S} £9(B). Hence /(S) is just the set of image 
points of elements of S; we may write Im (/) = /(A), for example. The same 
function/: A B also induces a function, usually denoted/"1 (read "/in-
verse"), from 9(B) to 9(A); if T C B, then f^(T) = {a £ A:f(a) £ 71}. 
Thusf~ l(T), the inverse image of T, is the subset of A consisting of all those 
points which / carries into T. If, for example, / is our squaring function and 
T is the interval [4,9], then f~\T) = [ - 3 , - 2 ] U [2,3]; if T'= [ - 3 , - 2 ] , 
then / ^ ( r ' ) = 0 . If /: A B and b is a point of B, we shall write f-*(b) 
lor Similarly, if /"*(&) is a singleton set {a}, we shall say 
f~x(b) = a, (This common elision of notation is related to the function 
which sends a set S into its power set 9(S) by assigning to each s £ S the 
subset {s} C S.) 

Exercise M 

QUOTIENT FUNCTIONS 

Since all functions are relations, we may ask whether a given function 
/: A —> A is also an equivalence relation; certainly is (can you find some 
others?). However, there is another, deeper correspondence between func-
tions and equivalences. If R is a relation on a set A, let § be the partition 
of A associated with B; S is the set of B-equivalence classes of A (see Theorem 
5), The assignment of the class [a] to each element a in A defines a function 
q:A—> S: q(a) = [a]. 

The partition S is called the quotient (or "factor") set of A modulo B, 
and q is the quotient function. The set S is often denoted A/R, and then 
q:A-^A/R. 

If, for instance, B = A is the diagonal relation on A, then q assigns to 
each a£A the singleton {a} = [a] C A; it is a 1-1 correspondence, called 
the trivial quotient of A. We may also write q(a) = a, to emphasize this 
triviality. A nontrivial example of a quotient set was given in the above 
discussion of equivalence relations; if B is the relation of equivalence modulo 
3 between integers, then the quotient set is Z/B = {[0],[1],[2]} and the 
quotient function is q:X —> Z/B: q(z) = [z] = {z + 3k:k£Z). Another 
quotient example is also given there: a quotient set member is an equiva-
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lence class of all those real numbers which are measurements of a fixed 
angle; the quotient set is called "the reals modulo 277." 

COMPOSITION OF FUNCTIONS 

If f:A—>B and g: B C, then we may form a new function, the com-
posite g o /; A C of/and g> by setting (g o f)(a) = g[f(a)] for each a € A. 
This situation may be diagramed as follows: 

C 

If the domain of g is not the same set as the range of/, then g o / is not de-
fined. When g o /is defined, its domain is that of/and its range is that of g. 

For example, if/: A —» B is some function, and 1 :̂ A —> A is the identity 
function on the domain of/, then folA — f Similarly, 1 bq f = f 

6 THEOREM The composition of functions is an associative binary 
operation; that is, if A -U B C D> then (h o g) o / = h o (g o /). 

Proof By inspection, the two composite functions (ho g) o / and /to (go/) 
have the same domain and the same range. Therefore they are equal iff 
they have the same value at each point in the common domain. But for each 
a € A, [(h o g) o f](a) = (h o g)[/(«)] = ft(g[/(a)J), and [ k . ( g . /)](a) = 
M(g ° /)(«)] = /i(g[/(a)]). « Note that here and elsewhere the use of light-
face parentheses, ( ), and brackets, [ ], may aid your eye in sorting out their 
pairings. In these cases, the mathematical meaning of each enclosure is 
the same. Confusion should not result from the simultaneous use of set 
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braces, for example, with their special meaning, or the use of boldface brack-
ets, as in [a], to denote the equivalence class of a. 

A function /: A —» B is one to one (or 1-1) if for all pairs a, a? € A, 
/(a) = /(a') implies a = a'. That is, if then f(d)^f(af). We 
have many examples at hand of 1-1 functions: each inclusion S C T of a 
subset in a superset is one, and a special case of this is the identity function 
1T on a set T. We shall sometimes emphasize that a function/: S —» J1 is an f 
inclusion function, f(x) = x for each x £ S, by writing /: S C T or S C T. 
A nontrivial example is the cubing function on the real line: if x < j/, then 

< J/3; hence x y implies x3 ^ y3. Such functions may be character-
ized as follows. 

7 THEOREM A function f:A —» B, A ^ 0 , is 1-1 there exists a 
function g: B —» A wch tfiat g ° / = 

Proof Assume there exists g such that go f = 1 ,̂ and let a and a' be ele-
ments of A. If /(a) — /(a')> the n a = g 0 f(a) = g 0 /(a0 = a'> so/is 1-1. 

Conversely, assume that / is 1-1 • A function g\B^> A may be defined 
as follows: Since 0 , choose ao^A, and for all bzB — Im(f) let 
g(b) = a0* But for each beltn (/) there exists a*> £ A such that /(a&) = fo, 
and is unique, since / is 1-1. Define g(b) to be Now, given a € A, it 
is clear that g o f(a) = g[f (a)] is the unique element of A, namely, a, which 
/ carries to /(a); thus go f = 1a- m 

The function g above is called a left inverse for f ; so the theorem may 
be restated as "a function with nonempty domain is 1-1 iff it has a left in-
verse/* Do you see why the hypothesis A ^ 0 was made? 

It is worth noting that the equation g o / = is independent of the 
values of g for elements of B — Im (/), For example, if / is the square-root 
function, with domain the nonnegative reals and range the reals, then the 
squaring function g, with domain R and range the nonnegative real numbers, 
is a left inverse for / But consider the function g/ defined by 

f*2 i£ x> 0 
£(x) = (17 if x < 0. 
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It is clear that g' o / = yet g' ^ g. In fact, you can easily see that there 
is only one left-inverse function for a given 1-1 function / iff Irn (/) = 
Rng(f). ^ 

The "mirror image" of the above property of functions is the property 
of having a right inverse. Formally, if /: A By then g is a right-inverse 
function for / if / o g = 1B, Then g must be a function from B to A, since 

Dom(fo g) = Dom( 1B) = J5, and /o g is not defined unless -Rng(g) = 
Darn (/) = A. The characterization corresponding to Theorem 7 is as 
follows. 

8 THEOREM A function /: A —» B has a right inverse iff Im ( / ) = B, 
(Such a function f is called onto*, or "surjective*") 

Proof Assume / is onto; that is, f~~x(b) ^ 0 for all b £ B, It seems in-
tuitively reasonable that an element a& may be chosen from the nonempty 
set f~x(b) for every b; this defines the desired function g: g(b) = ab. The 
other part of the proof is left to the reader. • 

Our set theory is intuitive; had we begun with axioms for a set theory, 
the guarantee of the existence of a right-inverse function g for every onto 
function / would have been called "the axiom of choice." For discussions 
of a system of axioms for set theory, see the references at the end of this 
chapter (for example, Halmos). 

We can diagram the situation of Theorems 7 and 8 for 1-1 and onto 
functions, respectively, as follows: 

B A 

(The import of this and subsequent such diagrams is that the various possible 
composite routes obtained by following arrows forward from one set to 
another yield identical functions; the claimed existence of a function is 
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Indicated by a dotted arrow. Thus the left figure above says "given/: A B, 
there exists g: B —> A such that go f = which is true when / is 1-1. 
Such handy diagrams are suggestively called commutative.) 

An example of an onto function is given above. Let /be the squaring 
function, thought of as having the nonnegative reals as its range. 

One right-inverse function for / is the real-valued function g of a non-
negative real variable defined by 

g(x) = 

Another possible right inverse for / is defined by 

g ' f r H - V * -

Yet a third right inverse for / is given by 

"/ \ — f V * if x is an integer 
£ W — y _ ^ if x is not an integer. 

Note that each of these right-inverse functions, g, g', and g", is 1-1. This 
is no accident. 

It is clear that if / has a right inverse g, then g has a left inverse, /. 
Therefore, a right inverse g (for an onto function /) is always 1-1, and a 
left-inverse function is always onto. We now examine the happy event that 
a function is both 1-1 and onto. 

9 THEOREM A function f: A —» B is both 1-1 and onto iff there exists 
a function g which is both a right inverse and a left inverse for f 

Proof It is obvious that the existence of g shows that / is 1-1 (by Theorem 7) 
and onto (by Theorem 8). 

Assume now that / is 1-1 and onto; if A = 0, then B = 0, and the 
empty function 0 = 0 X 0 is a two-sided inverse for / (that is, both left 
and right). If A 0 , then there is a gi such that gi ° / = and a g2 such 
that/o g2 = 1 B (by Theorems 7 and 8), But then 

gl = gl o 1B = gl ° ( f o g2) = (gl ° /) ° g2 = 1a o g2 = g2, 
s o g = gi = g2 is the required two-sided inverse for / • 

The above proof shows more than was claimed. Each right inverse 
is the same function as every left inverse, so there is a unique inverse on 
either side; this justifies the notation/"1, read "/inverse," for g. But g has 
an inverse,/, so (/_ 1)_ 1 = /> and/ - 1 is always 1-1 and onto. Such a func-
tion is sometimes referred to as a one-to-one correspondence between its 
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domain and its range. It may also be called a set isomorphism of its domain 
with its range, or a "bijection." 

Examples of these 1-1 correspondences abound: For each set S the 
identity function Is is one, and (l^) -1 = 1®. The inverse of the cubing 
function /: R ^ R is the cube-root function g, g(x) = ^fx = x1/s, each real 
number has a real cube root, and (-ffic)3 = x — ffi?. The negation function 
function h with real (or complex) domain and range, h(x) = —x, is its own 
inverse, trivially, and hence is a set isomorphism. To count a set S of 23 
ducks is to make a set isomorphism between S and the set of the first 23 
positive integers. 

Certainly a set isomorphism does not "preserve" algebraic properties. 
This assertion means, for instance, that the cubing function does not preserve 
addition; (x + y)3 need not be x3 + y3; (1 + l)3 l3 + l3, Nevertheless, 
if we ignore such structures as addition and distance, the pairing off of mem-
bers of one set with those of another can be thought of as a "renaming" of 
elements of the first set using the second set as a source of names* This is 
the spirit of counting: there is a 1st duck, a 2nd duck, . . . , a 23d duck. 
Similarly, the negation function on the real line might be thought of as an 
interchange of left and right; the number named "3 units to the right of 
zero" becomes renamed "3 units to the left of zero," 

To emphasize this aspect of a set isomorphism f : A —» B, we may denote 
i t / : A s B o r - A i B . 

Exercises G, H, J, Q, and R 

FACTORING FUNCTIONS 

Each function /: A —» B may be expressed as the composite of (or 
factored into) an onto function g followed (in its action) by a 1-1 func-
tion L Take the onto function to be g: A —» Im (/): g(x) = f(x)9 and let 
i: Im ( / ) —» B: i{x) = x be the inclusion Im ( / ) C B. The diagram is 

% 
\ g\ 

lm(f) 

There is another such factorization of / into a composite of a 1-1 function 
with an onto function which is less obvious than this but just as natural. To 
describe it, we need the following facts. 
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10 THEOREM A function f: A —» B defines an equivalence relation R 
on its domain A by xRy iff f(x) = f( y). Further, / induces a function 
h from the quotient set S defined by R into B,h: S —» B: h([x]) = f(x). 

Proof That R is an equivalence is trivial (check it in your head). There 
remains only the question of whether h is well defined, that is, whether the 
recipe — f(x) indeed defines a function at all. It must be shown that 
if another name is chosen for the class [x], say y € (x], so that [x] = [yl, 
then h([x]) and h([y]) are not defined in a conflicting fashion. A glance at 
the definition verifies that if y € [x]> then f(y) = f(x) — f([x\) — f{[y])- • 
(Incidentally, it is worth noting that [x] = /_1[/(s)]•) 

Now it is clear that f = ho q, where q is the quotient function from 
A to S. And q is onto, as is every quotient function. But h is 1-1, for if 
|x] [y], then h([x\) = f(x)^f(y) = h([y]), Hence the diagram 

exhibits a factorization of the function f through a special sort of onto func-
tion (a quotient) followed by a 1-1 function. This is a "symmetric" result 
to the factorization of / through an onto function followed by a special sort 
of 1-1 function (an inclusion) which we saw earlier. 

You may have observed above that §> and Im (/) were very much alike. 
More specifically, the function r: S —» hn (/); r([x]) = f(x) is a set isomor-
phism, or "renaming"; it is simple to check that r is 1-1 and onto, and its 
inverse sends f(x) to [x], of course. The function r bridges the two fac-
torizations discussed above; in that notation, g = r ° q and h — i o r, so 
f = i o r o q. 

[a] f(4 

\q 

J m 

As an example, consider the squaring function / from R to R. First 
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the (piotient function q puts each real number x in its class {x, — x}, which 
It us two members unless x = 0. Geometrically, q might be described as a 
folding of the real line at zero. Then the set isomorphism r renames each 
class {xy — x} = [x] with the label x2; it might be said to stretch the folded 
line and then pin it down along a real half-line. Finally, i is the inclusion 
of the nonnegative reals in the reals, the half-line in the whole line. 

Returning to the general case, we collect the facts in a teaching state-
ment which systematizes several related results. 

11 THE QUOTIENT THEOREM FOR SETS Each function f: A 
unique factorization / — i o r o q, or 

B has a 

S = Im ( / ) 

where q is a quotient, ris a set isomorphism, and i is an inclusion. The 
function r o q: A —> Im ( / ) is onto, and to r:$—> Bis 1-1. • 

We omit the proof of the uniqueness of the factorization; it is easy. The 
other assertions have already been established. The fact that r o q is onto 
can be generalized: every composite of onto functions is onto (why?). Sim-
ilarly, the composite of 1-1 functions is always a 1-1 function. 

Exercises K and L 

RESTRICTIONS AND EXTENSIONS 

There is one glaring flaw in our definition of composite functions. If 
/: A B and g: C —> D, it is natural to be satisfied with a composite function 
defined only on /_1(B H C), yet we have offered no definition of go f if 
B C. This may be remedied by forming a new function F: f~x(B fl C)-> 
C, which has the same values as / at each point in its domain. Then g o F: 
/ - 1 (B O C) —> D is the hoped-for composite. Formally, if f:A—>B with 
X C A and/(X) C Y C B, then the restriction of/to X X YJ\XxY:X^Y, 
is / n X X Y. Usually the range will be clearly enough understood; we 
shall then speak simply of the restriction of / to X, f\ (Many writers under-
stand the range of/| ̂ to be B.) On the other hand, if g: X ^ Yand/: A B 
are functions, X C A, Y C B, and/|xxr = g> then/is said to extend (or be 
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an extension of) g. You can easily manufacture examples of these notions. 
Let /i: A1 Bx and /2: A2 —> B2 be functions, and let C C ft A2. 

If /i(x) — /2(x) for each x £ C, then /1 and /2 agree on C. If /1 and /2 agree 
onAi f! A2, they are said to be combinable. In that case, one may form 
the combined (or "union") function / : A± U A2 —> Bi U B2, which has 
values /« = f S * e 11 

J V 7 l/2(x) i f x e A 2 . 

That /1 and /2 are combinable it is necessary and sufficient that / be well 
defined. 

For an example of real-valued combinable functions, let /i(x) — x for 
each x > 0 and /2(x) = —x for each x < 0; the combined function / is the 
absolute-value function/(x) = |x| for all real x* 

The definition of combinable and the combined function for a finite 
family of functions is immediate; each pair of members of the family must 
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be combinable, and the combined function is defined on the union of the 
member's domains. This definition works as well for an arbitrary family of 
functions, but we shall not require that. 

REFERENCES AND FURTHER TOPICS 

There are many introductory texts for elementary set theory. Two of 
these, available in paperback, are 

R. R. Christian, Introduction to Logic and Sets, 2d ed. (New York: 
Blaisdell, 1965). 
R. R/Stoll, Sets, Logic and Axiomatic Theories (San Francisco: Freeman, 
1961). 

You will also find such material in texts introducing other subjects, T\vo of 
the many such are 

S. Feferman, The Number Systems, chap. 2 (Reading, Mass.: Addison-
Wesley, 1964). 
R. C. James, University Mathematics, chap, 2 (Belmont, Calif,: Wads-
worth, 1963). 

For a treatment very close in spirit to ours, see 

S. -T. Hu, Elements of General Topology, chap. 1 (San Francisco: 
Holden-Day, 1964). 
J. L. Kelley, General Topology, pp. 1-13 (Princeton: Van Nostrand, 
1955). 

The presentation of this chapter is work-a-day. We shall use the lan-
guage of set theory in every definition and argument ahead, but many fas-
cinating questions have been ignored here (remember, for example, the 
remarks we made concerning the equality of sets and the axiom of choice). 
Certainly this fundamental language of mathematics can be made more 
rigorous by introducing a system of axioms; there is a long history of the 
development of such systems. And of course, it is reasonable to ask what 
different set theories arise when the axioms are changed, or a certain axiom 
is not assumed at all. More sophisticated approaches to the theory of sets 
may be found in 
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A. A. Fraenkel, Abstract Set Theory (Amsterdam; North-Holland, 1953), 
P, R, Halmos, Naive Set Theory (Princeton: Van Nostrand, 1960). 
F. Hausdorff, Set Theory, 2d ed. (New York: Chelsea, 1962). 

Each of these books is quite readable, A very condensed, axiomatic pres-
entation may be found in the appendix of Kelley, cited above. 

EXERCISES 

A For each positive integer n = 1 , 2 ? . . , , let the subset Tn of R be de-
fined by 

!Tn = | y: 11/ — 11 < n and j y + 11 > ^ j . 

If {Tn:n = 1 , 2 , . . . } , find Upland HfT, 

B Show that for all sets A, B, and C in a given universe (7, 

i 0 ' = U; U' = 0 ; A C A; A fl A = A U A = A. 
ii 0 C A; A C U; 0 fl A = 0 , 0 U A = A, C7 H A = A; 

17 U A = 17. 
iii A C B and B C C implies A C C. 
iv A C Biff A 0 B = A iff A U B = B. 
V A N A9 = 0 ; A U A' = U. 

vi A C Biff A n B' = 0 iff B U A' = 17. 
vii A C C and B C C implies (A U B) C G 
viii A C B and A C C implies A C (B n C). 

ix A = (A - B) U (A n B), 

x ACBiSB' CA';A-B^ AH B'. 

C Prove Theorem 2,ii. 

D Prove Theorem 2.iv. 

E Finish the proof of Theorem 5, 
F Find the flaw in the following argument, which purports to show that 

if a relation is both symmetric and transitive, then it is reflexive: 

Since R is symmetric, if aRb, then bRa> Since R is transitive, aRb and 
bRa together imply aRa. Therefore B is reflexive. 
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G Give an example of a function with finite domain and range sets which 
has two different right inverses, and also a function with two left in-
verses, Can you find one function which will serve for both examples? 

H Show that if/o g is 1-1, then so is g, and i f/° g is onto, then so is/. 
What can be said if / o g is both 1-1 and onto? 

J Prove that if both / and g have two-sided inverses, then so has / o g (if 
it is defined, of course), and (/o g)_1 — g_ 1 o / _ 1 . 

K Supply a detailed proof of the uniqueness assertion of Theorem 11. 

L Let the function /: R C be defined by f(x) = cos x + i sin x for each 
real x. If a + ib is a complex number, then its absolute value is 
\a + ib\ = (a2 + b2)1/z; it is clear that \f(x)\ = 1 for each real x. 
Hence the image of /lies on the circle of unit radius which is centered 
at the origin in the plane. The function / may be visualized as assigning 
to each real number the point on that circle arrived at by going counter-
clockwise around the circle a distance x, starting at 1 = 1 + iO; x < 0 
requires going the distance | x | in the clockwise direction. This makes 
it clear that the image of / equals the unit circle; can you prove it 
rigorously? 

4 

/ 
/ 

/ 
/ 

/ 
/ 

(cos x, sin x) 

\ Angle x \ 
\ 

\ 

\ s 
/ 

/ 
/ 

Discuss the function/in the light of the Quotient Theorem (11); that 
is, find the equivalence relation that / defines on R r and define the 
quotient q, the set isomorphism r, and the inclusion i for which / — 
i o r o q. 
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M Draw a picture or graph of the relation which the squaring function 
defines on its domain R* The relation is, of course, a subset of R X R; 
depict that subset. 

N If A and B are finite sets with M and N members, respectively, how many 
members has A x B? What if M = 0? What if one factor set is 
infinite? 

P If A and B are sets, give a set isomorphism from A X B to B X A. An 
expression of this result is "formation of direct products is a commutative 
(binary) operation, up to set isomorphism," Show also that this opera-
tion is associative, up to isomorphism; in other words, that (A X B) X C 
is set isomorphic to A X (B X C). 

Q The usual identification of complex numbers with points in the plane 
regards x + iy as being the point having coordinates (x9y) in the plane. 
This may be rephrased as an identification of C with R2; we shall use 
these two systems of notation interchangeably, sometimes referring to 
the origin (0,0) of the plane as 0, to (1,0) as 1, etc. With this understand-
ing, the function Re: C —> R, which assigns to x + iy its real part xy 

goes from a direct product onto one of the factors of that product. Ex-
hibit two distinct right-inverse functions for Re. Also give two distinct 
left inverses for the inclusion of R in C as the real axis. 

R The function p±:A X B —» A: pi(a9b) = a is called the projection of 
the direct product on its first factor; similarly, p%\ A X B: p2(a,b) = 
b is the projection on the second factof. Show that projections are 
always onto functions, and give a right-inverse function for pi and also 
for p2 (assume here that When can two distinct right 
inverses for pi be found? 
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PROBLEMS 

AA Relations Generalize the notion of composition of functions to include 
all relations: For given relations R in A to B and S in B to C, define 
So R = {(a,c): a € A, c£C; there exists b G B such that (a,b) £ R and 
(b,c) £ S}, a relation in A to C. The "inverse" (or "converse'') of the 
relation R is R = {{b,a): (a,b)eR}y and if D C A, then R(D) = 
{,b: there exists dtD such that (d,b) £R). Show that (it - 1)"1 = R, 
{R O sy1 = S"1 O R-\ and (R o S) o T = R o (S o T) for all relations 
K, S, and T for which the composites are defined. If / is a function, 
f'1 is a relation; what is f ^ o f ? Is R o S(D) = R[S(D)]? Do 
relations preserve unions or intersections? That is, is R(D U Df) = 
R(D) U R(D'\ or is R(D n D') = R(D) n fl{LK)? 

Prove that a relation R is an equivalence iff (A U fi"1 U R o R) c R. 

BB Categorical Matters We defined an identity function by specifying 
that its domain and range sets were equal and that its value at each 
point x was x, for every x in its domain. An identity function has 
the property that if /: S T, then f o — / and also if g: 17—> S, 
then l s o g = g, However, an identity function can be "characterized" 
(or defined) without mention of its domain, range, or values. Suppose 
F is a function with the property that for each function f if / o F is 
defined, then f o F = / and if F o / is defined, then F o / = / We 
assert that F must be an identity, for if D = Dom (F), then Fo lD is 
defined, so Fo 1D = However, is an identity, so Fo 1D = F, 

Although the property of a function's being onto was defined in 
terms of the elements of its domain and range sets, we may, using 
Theorem 8, characterize the "ontoness" of a function by looking only 
at compositions of functions, and not at values. A function G is onto 
iff there exists a function g such that G o g is defined and G o g is an 
identity function. To establish another such description of onto func-
tions, a function / is onto iff for every pair of functions u o f — 
v o / implies u == v (so/is right-cancellable). Similarly, show that/is 
1-1 iff/o u = f o v implies u = v (or/is left-cancellable). 

In the same vein, assume that Ai, A2, and B are sets and that p±: 
B —> Ai and p2: B —> A2 are functions with the property that, given any 
set C and functions f\\ C A1 and f2: C —> A2, there exists a unique 
function /: C —» B such that f± = p\ o f and /2 = p^ 0 f Show that 
there is a set isomorphism of B with A1 x A2. Thus a direct-product 
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set can be characterized, up to set isomorphism, without referring to its 
elements. The diagram below illustrates the situation. The unique 
map/is usually denoted f\ X /2 and called the "direct product of/i and 
f2r If B = A2 x Az, then (ft X /2)(c) = [/i(c)/z(c)J. The functions 
pi and p2 are called the "projections" of the direct product; if B = 
Ai X A2, then pi(ai,a2) = a%; i = 1 and 2: 

B J V 
y 
1 ft \ f \ 1 y' 

\ i c 

CC Factoring through Quotients Suppose that R is an equivalence relation 
on the domain of a function /: A —» B, with q: A —» A/fl the quotient 
function defined by R, When is it possible to factor f through q? That 
is, what requirements need be placed on q and/to ensure the existence 
of a function g: A/R —» B with / = g o q? 

+ / A/R 

Use your result above to establish necessary and sufficient conditions 
that if, for i — 1 and 2, A» Ai/Ri is a quotient and /: Ai —> A2, 
there exists a function g which makes the following diagram com-
mutative: 

At/Rt—sr* A2/R2 



Gnoupi 
CHAPTER II 

Time after time, as you have studied each new set of mathematical objects, 
ways have arisen naturally to put together two set members to get a third 
one. Two numbers can be added to get a third number, whether the num-
ber system in question is the integers or the rational, real, or complex num-
bers. Multiplication is another operation pairing two numbers to get a third 
number. Similarly, a study of sets begins with the "binary operations" of 
intersection and union. The operation of composition yields a new func-
tion for some pairs of functions, though not every pair of functions can be 
composed. 

These operations are certainly objects of interest in their own right, 
and they may or may not have certain "properties" which can be defined 
for binary operations; for instance, each of the above operations has the 
property of associativity. Commutativity is another property of operations. 
While most of the above examples are commutative, we shall see that the 
composition of functions is not a commutative operation. We now begin 
the study of a new property of operations, the group property. The defi-
nition of the group property is more complex than that of the above prop-
erties; in fact, as part of the definition we shall require that a group 
operation be an associative operation. But the underlying idea is not a bit 
deeper; an operation either does or does not have the group property, and 
that can be decided by comparing the operation with the definition of the 
group property. 

30 
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THE GROUP PROPERTY 

The set R of real numbers has the algebraic "operation" of addition 
defined on it; if x and y are reals, then x + y is a uniquely determined real 
number, A restatement of this fact is that "there is a function called addi-
lion on R X R with range R; the value of this function at (x9y) is denoted 
x -f y* (see Chap- I for definitions of function, value, etc.). 

Similarly, if S — {a,Z?,c} is a set of three elements, and T is the set of 
Jill functions whose domain and range are S, then the composition of mem-
bers of T defines a function K: T X T - > T, with fc(/,g) = / « g- That is, the 
members of the set T are functions from S to S (how many members has 
7'?), and so members of T X T are ordered pairs (/,g) of functions in T. 
The image of each pair (/,g) under k is the composite f o g, which is also a 
member of T. 

In each of these examples the operation is associative; for instance, for 
rvery triple fg,h of members of T9 f o (g o h) = (/o g) o ft (see Theorem 
1,6). An equivalent statement is that K[ic(/,g),/i] = « [ / , « ( f o r all triples 
f\g,h. Also, in each example there is a unique element which acts as an 
'"identity" for the operation; the real number 0 has the property that for all 
real x, 0 + x = x ± 0 = x. The function has a similar property with 
respect to composition; for all /€ T, l S o / = / o l s = /, or equivalently, 
K(f\8) ^ K{Uj) = f 

It is also true that for each real x there exists another real number y 
such that x-\-y = y + x=:Q;y = — x will do nicely, and of course, no 
real other than — x has this property (for a given x). However, if / is the 
constant function from S to S which has the value a for each point in its 
domain, then there exists no function g £ T for which either / og = ls or 
g o f = In fact, Theorem 1.9 teaches that an element /6 T has an in-
verse / _ 1 if / is both 1-1 and onto, and then Z"1 is also a member of T, 
Thus the set V = {/£ T: / is 1-1 and onto) contains, for each of its elements 
f an element g such that/o g = g o f — and g is unique. Furthermore, 
Is £ V, and if/and g are members of V, so is/o g (see Exercise I. J). Again, 
the composition operation is associative on V, since the members of V are 
functions. Elements of V are called permutations of S; if A is any set, then 
a permutation of A is a 1-1 onto function from A to A. 

The set of real numbers together with the operation of addition, or the 
set V of permutations of S with the composition operation, forms an exam-
ple of a group ("group" is not a synonym of "set"). 
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A group (G,m) is a set G together with a function m:G X G such 
that if the value m(g7h) of m at a pair (g,/i) of elements of G is denoted 
simply by juxtaposition, m(gji) = g/i, then 

i /W = {f$h for all /, g, and in G, 
ii There exists an element e € G such that for all g G G, eg = ge = g; 

iii For each g £ G there exists an element h € G such that g/i = 
Ag = where e is the element of G guaranteed by property ii. 

An example of a set G with a function m such that (G,m) is not a group 
is given by ( 7 » above; it does not have property iii. Another example is 
the set R with the operation of real multiplication. 

The element e of property it of a group is unique, for if the elements e 
and ef of G both satisfy property ii, then eef is equal to e and also equal to 
e\ by property ii. • This unique element e of each group is called the 
identity. Furthermore, for each g € G the element h guaranteed by prop-
erty iii is unique, since, if hg = gh — e and also h'g = gh' = e, then 

h = he = h(gh') = (hg)W = ehf = h\ 

This unique element h is denoted g^1, read "g inverse/' It is now apparent 
that (g -1)"1 = g. These facts can be reinforced as follows. 

1 THEOREM If g and h are elements of a group (G,m), then 

i gh 
ii hg 
iii gh 
iv hg 

g implies h — e, 
g implies h = e, 
e implies h = g™1, 
e implies h = g"1. 

Proof of i and iii Let gh = g; then 

0 = g-ig = g-i(gfe) _ (g~ig)h ^ e h ~ h . 

Similarly, if gh = e, then 

h = eh = (g-tyh = g-^g/i) = g"^ = g"1. • 

The proofs of parts ii and iv are quite similar. Let us use the theorem to 
show that for all members gi and g2 of a group (G,m), 

k 

(gig2)-1 = g2_ 1gr1 ; 

note that 

(gig2)(g2~1gr1) = [gi(g2g2~1)]gr1 = (gie)gr1 ~ g i g r 1 = e. 
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Hut if we apply Theorem l.iii, with g = gig2 and h — g2^1gi~1? the result 
follows. • 

If (G,m) is a group, the function m is often called the group multipli-
cation, or product, in analogy to the group of nonzero reals under real 
multiplication (verify that this is a group). The value m(g,h) is usually 
called the product of g and h. The last result above may now be para-
phrased as "the inverse of a product is the product of the inverses, in the 
reverse order," When only one function m is being considered for a given 
set G, we shall often speak of "the group G " rather than "the group (G,m)," 
By this time it is scarcely apparent that the group property belongs to the 
operation at all. A group now seems to be the set G, called the underlying 
set of the group, which is the domain of the operation m. But this is inevi-
table; a glance at Theorem X shows that the group property of m is quite 
special, and many statements can be made about such an operation. These 
statements are phrased in terms of elements of G, however, and the func-
tion m has disappeared altogether from our notation. 

If, for every pair gji of members of a given group G, gh = hg, then 
G is an abelian, or commutative, group. In this case the notation g + h 
rather than gh is often used for the product of g and h; we then speak of 
the sum of g and h. This convention has no new meaning; it merely empha-
sizes that G is abelian. An example is the abelian group (R, + ) of real num-
bers under addition. The group ( V,K) of isomorphisms of the set S = {a,b,c} 
which was discussed at the beginning of the chapter is not abelian; the 
function which interchanges a and b and leaves c fixed does not commute 
(under composition) with the function interchanging b and c and leaving a 
fixed (check this yourself). Groups which are definitely not abelian are 
termed nonabelian, or "noncommutative." 

Exercises A, B, and D 

SUBGROUPS 

A subgroup H of a group G is a subset H of the set G with the property 
that the multiplication of G, considered only on if, makes H a group. More 
specifically, if (G,m) is a group, H C G , m(H x H ) C l / and m \ hxh is a 
group multiplication for H, then (H,YTI\HXH) is a subgroup of (G,m). Every 
group G has the two trivial subgroups G and {e}, A nontrivial example is 
the subset of positive real numbers in the group of all nonzero real numbers 
under real multiplication. The set of integers divisible by 4 is a subgroup 
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of the additive group of all integers (Z, + ). Is it clear that the identity of 
a subgroup H must be the identity of the group G ? 

If a subset H of a group G is closed under multiplication [that is, if 
m(H X H) C H], then m | H x H is necessarily an associative operation, since 
m is associative on all of G. In this case H is a subgroup iff e £ H and for 
every h £ H, h^1 6 H (that is, H is closed under inversion). Of course, if h 
and h'1 are in H and H is closed under multiplication, then hh= e is 
always in H. A new abbreviation will be handy for describing this state of 
affairs: if A and B are subsets of G and (G,rri) is a group, AB means the set 
m(A x B) C G; thus AB = {ab: aeA and b£B}. If A is a singleton set 
(that is, if A has exactly one member), write aB for {a)B. Further, let 
A - 1 = (a"1: a € A}. Some examples of this in the multiplicative group of 
nonzero real numbers are 

{ —1,2}{1,2,3} - { — I, — 2,—3,2,4,6), 
{3} { — 1,2} = 3{ —1,2} = ( — 3,6), and { - l , 2 } ~ i = 

In this notation a subset H^ 0 of G is a subgroup of G iff both HH C H 
(closure under multiplication) and H~l C H (closure under inversion). 

2 THEOREM A subset H of a group G is a subgroup of G iff H 0 
and HH'1 C H. 

Proof It is obvious that if if is a subgroup, then H contains e and 
HH 1 C H. Conversely, if H C G is nonempty and HH~1 C H, then there 
is an element heH and hh'1 = e €H. Therefore if is a subgroup if it is 
closed under multiplication and inversion. But = eH1 C HH^1 C H. 
Similarly, if hi and h2 are members of H, then h2~1 £ H, so h2 — 
(h2~i)-i 6 H-1 and hxh2 € HH~i C H; hence HH C H and H is a sub-
group. • 

A left coset of a subgroup H of G is a set gH for some g £ G. It is easy 
to see that if gj and g2 are members of G, with g2 G giH, then g2H C giH, 
since g2 is of the form g2 = gi/ii for some ht e H; thus each element 
g2&2 6 g2H is of the form g2h2 = gihth2, and hxh2 € H, so g2h2 € giH. 
(Notice that the use of parentheses to indicate the association of products 
has been abandoned; see Exercise C.) On the other hand, if g2 € giH, then 
gi £ g2H, since g2 = gih implies gx = g2h~1 e g2H. Putting these two re-
sults together, we see that g2 € giH implies that the two left cosets gxH and 
g2H are equal. This surprise leads immediately to a greater one: if gi and 
g2 are members of G and gxH n g2H 0 , then gxH = g2H! This follows 
from the existence of an element g3 in gxH D g2H\ g3 £ gxH implies 
g3H = gxH, and g3 € g2H implies g3H = g2H, so giH = g2//. Another way 
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to state this result is that the family S = {gff: g £ G} of left cosets of a sub-
group H of G is a family of mutually disjoint subsets of G. • 

Since every g € G is in gH, the family S = {gif: g € G} is a partition 
of G; S is called the left-coset family of G modulo H and is denoted S = G/H. 
Thus the left-coset family of a subgroup of G is a quotient set of G. (Here 
the word "family" means no more than "set.") The equivalence relation 
associated with this partition is that gi is related to g2 iff giH = g2H, But 
we have seen that giH — iff g2 £ giH> and this happens iff there exists 
h £ H with g2 = giK or g i " ^ = h. Hence gi is related to g2 iff gi_1g2 £ H. 

If the group G is abelian, then each left coset gH is also the set Hg; 
however, these sets may differ when G is nonabelian. It would have been 
possible to partition G into the "right-coset family" {Hg: g £ G) of the sub-
group H in G. In general, this partition of G is different; it gives rise to an 
equivalent theory, however. Henceforth we shall consider only left cosets; 
the word "left" will be suppressed, and we shall speak simply of "the cosets" 
and "the coset family" of H in G. 

An example of a coset family is now in order. Let G be the set of non-
zero complex numbers with multiplication as the operation. Each element 
x of G is an ordered pair (*i,X2) of veal numbers, and the product xy of two 
members of G is (xi,£2)(t/i,ay2) = (xiy± — x2y2, + *2*/i)- Clearly, (1,0) 
acts as an identity for this multiplication; it lies on the real axis and will 
usually be denoted 1. The associativity can be checked by brute force; use 
the product recipe to show that (xy)z and x(yz) are equal. The conjugate x 
of a complex number x = (xi,x2) is the complex number (*i,— x2), and the 
product xx = xi2 + X22 is always real; we write xx = \x\2. We denote the 
origin (0,0) by 0, and in general regard the real numbers as the subset of the 
complex numbers lying along the horizontal axis of the plane. If x ^ 0, then 
|x|2>0, so l/\x\2 is areal number, and xx(l/\x\2) = l, or x[x(l/\x\2)] = l. 
Hence ;r(l/|x|2) is an inverse for x, that is, x = [xx/(xi2 + x22\ x2/ 
(XI2+X22)]. This completes the verification that the set G of nonzero com-
plex numbers is a group under complex multiplication. 

The real number \x\ — (x±2 + x22)172 is called the absolute value of x 
(see Exercise I.L); it is just the distance from the point (xi,x2) to the origin, 
and > 0 iff x ^ O . It is easy to check that \xy\2 = \x\2\y\2 for all 
complex numbers x and y \ since absolute values are nonnegative, this implies 
that f = |x| |f/|. Thus, if \x\ = 1 and \y\ = 1 , then \xy \ = 1. Fur-
ther, if \x\ = 1, then \x\ = 1 and xx = \x\2 = 1, so — |x| = 1 
(note here that if \x\ = 1 , then x~1 ~ x). This shows that the subset 
H = {x £ G: \x\ = 1} of G is a subgroup; it is closed under multiplication 
and inversion. If x£G and y£H, then \xy\ = \x\\y\ = |x|, so each 
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element xy of the coset xH has absolute value the same as that of x. 
Conversely, suppose |*i| = [x2|; then |xi| |xi_1) = 1 — | X2 [ so 
|xr1! = l/|xi| = l/|x2j and jxx™^! = (l/|x2|)jx2[ = 1; x r ^ is 
therefore a member of H. This says that xiff = {x2 € G: |x2| = |xi|}. 
Since the absolute value of an element x of C is just the distance from x to 
the origin 0, we may picture H as the circle of radius 1 (the unit circle) in 
the plane; each coset xH of H in G is just the circle of radius | x|. The coset 
family is the family of all circles in the plane (of positive radius) centered 
at the origin. There is exactly one such circle passing through each point of 
the plane. There is an obvious 1-1 correspondence between the coset family 
and the set of positive real radii. 

Exercises E, G, and K 
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MORPHISMS 

The absolute-value function /: G —» R — (0}:/(x) = |x| described 
above has the interesting property that f{xy) = f(x)f(y), That is, first 
multiplying x by y in G and then applying/to the product xy gives the same 
i nsult f(xy) as finding the values f{x) and f{y) first and then multiplying in 
I he range group of nonzero reals to get f(x)f(y). This is reminiscent of the 
logarithm function, whose domain D is the group of positive real numbers 
mider real multiplication and whose range is the additive group of all real 
numbers. It is a fact that log (xy) = log (x) + log (y). In other words, we 
ĵ et the same result by first multiplying and then finding the logarithm as 
by finding logarithms first and then adding, (The usefulness of all this is 
due to another feature of the log function; it is a I-1 correspondence, and 
so has an inverse. The equation above may therefore be rewritten as xy = 
/og_1[fog (x) + log (y)], and the mechanics of real addition are easier than 
I hose of positive real multiplication.) This special property of these two 
f unctions—the absolute value and the logarithm—of "relating" the group 
operations of their domains and their ranges deserves a name of its own plus 
further study, 

A function f: G—> H from the underlying set of one group to that of 
another is called a morphism (or "homomorphism") of the group G into the 
group H if f preserves products, that is, if for all gi and g2 € G, /(gig2) = 
/(gi)/(g2). Note that the group operation on the left of the equality is in 
the domain and that on the right in the range of /. If m is the product of 
G and n is the product of H, then the requirement on / can be expressed by 
saying that the following diagram commutes: 

GxG-^HxH 

Here (/ X /)(gi,g2) = I/(gi)/(g2)Lt and the requirement that the diagram 
commute is that the function n o ( / x / ) = / 0 ^ You may wonder why 
a morphism is not required to preserve identities and inverses as well as 

f This definition of the product f x g of two functions f and g differs from that given in 
Prob. I.BB. What is the relationship of the two? 
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products. It turns out, however, that it is not necessary; if /: G H is 
morphism and e is the identity of G, then 

f(e) = f(ee) = f(e)f(e); 

by Theorem l.i, /(e) must be the identity of H; morphisms preserve iden-
tities. • Similarly, if g € G, then (if we denote the identity of H by the same 
symbol e as the identity for G) 

e = /(e) = /(gg_1) = f(g)f(g~1); 
by Theorem l.iii, then, fig'1) must be the inverse /(g)"1 of /(g); mor-
phisms preserve inverses. • There is another way of expressing this last 
result: for each group G let an inversion function iG be defined by 
iq\ G—>G; iG(g) ~ g"1. Then for each morphism f\G—>H we have 
<-n° f = f6 IG> or 

G — > H 

G — H 

We have mentioned the absolute value and logarithm functions as 
examples of morphisms. Another example is given in Exercise I.L: 
/: R —» C — {0}:/(*) = (cos x, sin x) is a function from the additive group 
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of reals to the multiplicative group of nonzero complex numbers. It is an 
easy exercise (see Exercise F) to show that for all real numbers x and y, 
f(x + y) — f(x)f(y)> where the addition x + y takes place in the domain 
group and the multiplication f(x)f(y) is carried out between complex num-
bers. You have often used the familiar fact that if the values of / which are 
the points on the unit circle in the plane, are thought of as angles, then the 
product/(x)/(y) is, geometrically, just the "sum" of the angles/(x) and f(y). 
Thus our fact can be restated as "the sum of the measurements of two angles 
is one measurement of the sum of those angles/' For instance, 
(3TT/2) + it — 5TT/2, which is the same angle as vr/2. In terms of the func-
tion/this becomes /(3ir/2)/(*r) = /(5*/2) = /(flr/2). 

If H is a subgroup of G, then the inclusion i: H C G is a morphism; in 
particular, the identity function It?: G —» G on a group is always a morphism. 
If G and H are groups, there always exists a unique constant morphism 
c: G —» H: c(g) = e whose only value is the identity of H. 

If/: G —» H is a morphism, then/_1(e) is a subgroup of G, the subgroup 
of elements of G which/carries to the identity. This is a simple consequence 
of Theorem 2; e € /_1(e) ^ 0 » and if /(gi) = /(g2) = e, then 

/(gig®-1) = /(gi)/(g2"1) = /(gi)/(g2)"1 = ee-i = 

so gig2_1 €f~"Ke)* The subgroup C G is called the kernel of /, 
Ker (/). The kernel of a morphism is a special sort of subgroup. If Ker ( / ) 
is denoted K> then for all gGG, g~xKg C K, since if f(k) = e, then 
/<g"1^) = /(g" W ) / ( g ) = /(g"1)/(g) = /(g^g) - = * A subgroup 
with this property is termed normal; a subset i f of a group G is normal if 
each conjugate g_1Hg of H by an element g 6 G is a subset of tf. Equiva-
lent^, for each g € G, g_1#g = H (why?). Every subgroup of an abelian 
group is normal, but it is not difficult to find nonnormal subgroups of the 
group ('V9K) of permutations of {a,b,c}. If fc interchanges a and b and fixes c, 
while r sends a to fo, fo to c3 and c to a, then a quick check shows that r"xfr is 
not equal to fe or to the identity function on {a,fo,c}, Hence the subgroup 
consisting of fc and the identity function is not normal in the group V of all 
permutations of 

The image Im (/) of a morphism / is also a subgroup (of its range), 
f(e) = eeltn (/) ^ 0, and if /(gx) and /(g2) are in Im (/), then 
/(gi)/^)-1 = /(gi)/(g2"1) = /(giga"1) € Im </). By Theorem 2, lm(/) is 
a subgroup. Can you give an example showing that the image of a morphism 
need not be a normal subgroup of the range? 

Exercises F, J, L, and M 
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A LITTLE NUMBER THEORY 

Suppose i f is a nontrivial subgroup of the additive group of integers. 
Since {0}, let x € H and x ^ 0, so either x or —x is positive. Then the 
nonempty set of positive elements of H has a least member n € H.f We 
claim that H is just the set of all multiples of n. It is clear that 
{nk; k € Z} C H> since n € H and H is a subgroup. But if m € then there 
is a least element nko of {nh k£ Z) which is larger than ra. The multiples 
of n are scattered along the real line n units apart, so the distance nko — rn 
is no greater than n — 1, But nko — rn is a nonnegative member of ff no 
bigger than n — 1; since n is the least positive member of H, nfco — ro = 0, 
and each element m of H is a multiple of n. We have just shown that every 
nontrivial subgroup of the integers is the set of all multiples of some fixed 
integer. • The trivial subgroups are {Oh k € Z j = {0} and {IhkeZ} ^ Z. 
If for each positive integer n we denote such a subgroup by nZ = 
{nfc:fc£Z}, then the coset of nZ which contains a £ Z is nZ -f a — 
{nk + a: k £ Z}, the set of integers which leave the same remainder as does 
a when divided by n. There are exactly n different possible remainders, 
0, 1, 2 , . . •, n — 1, so there are n different cosets nZ, nZ + nZ + 2 
nZ + (n — 1). The associated equivalence relation is that two integers are 
related (that is, in the same coset of nZ) iff their difference is in nZ. This 
happens iff n divides their difference. The equivalence classes (or cosets) 
are [0], [1J, [21, 

Now, let nkt + a and nk2 4- b be two integers (which are in the cosets 
[a] and [b] respectively); the integer (nfci -f a) + (nk2 + b) — n(kx -f k2) + 
(a + b) is clearly in the coset [a + b]. This suggests that we define an 
addition of cosets, [a] + [fr] = [a + b]; the argument above shows this addi-
tion to be well defined. That is, the coset of the sum is the same, regardless 
of which elements nfci + a and nk2 + b are chosen from the cosets [a] and 
[b] to find the coset [a + b] = [{nki + a) + (nk2 + b)]. With this addi-
tion, the family of cosets is a group, denoted Zn. If n > 0, then Zn has n 
elements, [01 is its identity, and the inverse — [a] of an element [fl] £ Zn is 
[ — a] = [n — aJ. This group Zn is called the cyclic group of order n, and 
Z is called the infinite cyclic group. (In general, the "order" of a finite 
group, a group with a finite number of elements, is the number of elements 
in the group. A group G is called "cyclic" if there is a single element g of G 
such that the set of all products g° = e, g1 = g, g2 — gg, . . . , gn, . . . and 

f This can be proved by use of mathematical induction. 
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g"1, g~2 = g^g - 1 , • - • > g n> - • • includes every element of G. In the case 
at hand, Zn = {[Oh [II, [1] + [1]> [1J + [1] + [11, . . J , and every element 
of Z is clearly a sum of Ts or of — l's.) 

For each integer n > 0, the quotient function qn: Z —» Zn: qrn(a) = [a] 
is a morphism. In fact, the requirement that qn be a morphism is just that 
\a + b] =r [a] + and this is the definition of addition in Zw which is 
the coset family Z/nZ. 

For instance, die cyclic group of order 2 is Z2, the arithmetic of pari-
ties- Let & stand for the set of even integers [0]; 6 = [11 is the set of odd 
numbers. The sum of two even numbers is even, or & -J- S = &; the sum 
of an odd number and an even number is odd, or 0 + £ = 0; the sum of 
two odd numbers is even, or 0 + 0 = S. The quotient function q\ Z —» Z2 
assigns to each integer n its "parity," & or 0, according to whether n is even 
or odd, 

THE ADDITION TABUS FOR Z 3 XI[o] [ii 121 
101 [0] 1 H I 1 [2] 
11] HI [21 [Q] 

[2] [2] [01 II] 

The entry in the a-th row 
and b-tk column is a 4- b> 

Exercise Y 

QUOTIENT GROUPS 

Perhaps the trick above can be generalized. If H is a subgroup of G, 
can we imitate the definition of addition in Zn to bestow a group product 
on the coset family G/H? The product of two cosets would then be de-
fined by (giif)(g2tf) = (gig2)H. But there is an immediate objection to 
this: if it were to work, so that G/H were a group, the quotient function 
q:G-~> G/H:q(g) — gff would be a morphism, Then the kernel of q, 
which would be H (why?), would be a normal subgroup of G. Since we 
know that there are nonnormal subgroups, our proposed "definition" of the 
multiplication of cosets must be faulty. On reflection, if if is not normal in 
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G, then there must be two cosets giH and g2H for which the product is not 
well defined [or, there exist /ii and h2 £H such that gih!g2h2 € (gig2)#]-
And there are. If H is not normal, then there is a member g of G with 
g~xHg H, so there is a member h of H with g_1/*g i H; then (g^h-Xge) t 
(g_1g)H — H. To put it another way, (g~lh)H = g b u t our "defini-
tUrn" says (g~TO)(gH) = (g^g)H and (g^H)(gH) = (g^g)H = H, yet 
(g ~ihg)H^H. 

However, if the subgroup H is normal in G, then the proposed defini-
tion does work, for then the product of the cosets giH and g2H, regarded 
as subsets of G, is 

(giH)(g2H) = {gihxg2h2\ ht and h2 € H}. 

Since H is normal, each conjugate g2~1Hg2 is contained in H, so for each 
element fit £ H there is J13 € H with g2_1frig2 = ft 3- If giftig2^2 is an ele-
ment of (giH)(g2H), then 

glftlg2^2 = glg2g2~1h1g2h2 = g1g2hSh2 e (glg2)H. 

This proves that g iHg^ C (gig2)# - Of course, if gig2h £ (gig2)H? then 
gxeg2h £ giHg.H, so giHg2H = gig2H. 

3 THEOREM If H is a normal subgroup of a group G, then the product 
(gitf)(g2#) = gi&H defines a group multiplication on the left-coset 
family G/H of G modulo H. The quotient function q: G —> G/H is a 
morphism onto G/H, and Ker (q) = H. 

Proof That the product on G/H is well defined is shown above, and prod-
ucts of cosets are again cosets. Clearly eH = H is an identity, and the 
product is associative, since G is a group. But (gH)(g"1H) = gg^H = H, 
s 0 (gfr)"1 — g" 1^ i s m inverse for gH £ G/H, which is therefore a group. 

The function q assigns to g € G its equivalence class gH = q(g) £ G/H, 
^ <?(gig2) = gig2# is the product (giH)(g2H) in G/H, so 9 preserves mul-
tiplication, By definition, q is onto, and Ker (q) = H, since g € H iflB gH — H 
(G/H is a partition of G). • 

One consequence of this theorem is that a subgroup H of G is normal 
in G iff it is the kernel of some morphism with domain G. • 

The group G/H is called the quotient (or factor) group of G modulo H, 
and q is the quotient (or "natural") morphism. 

Every morphism is a function, and as such, it may be 1-1 or onto, or 
neither, or both. Unfortunately, other terms are also commonly used for 
these properties of morphisms of groups. We shall say a morphism / is epic 
(or onto, or an epimorphism) if / is an onto function, that is if Im ( / ) = 
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(/)• ^ morphism is monic (or 1-1, or a monomorphism) if its kernel 
is e; this is equivalent to its being a 1-1 function, since the inverse image of 
each element of its image is a coset of the kernel. An isomorphism is a 
morphism which is both epic and monic. Every quotient morphism is epic, 
and every inclusion of a subgroup in a group is a monomoiphism. Observe 
that if f: G —» H is an isomorphism, then the inverse function / _ 1 is also an 
isomorphism. This will be clear if only preserves products, but if 
A:, y 6 H, then is the unique element of G which / carries to 

/ [ / - w - % ) ] = nnmu-Hy)] = = n n M i 

Exercises H and P 

FACTORING MORPHISMS 

If / and g are morphisms of groups, G -A H /, then the composite 
function g o /; G J is also a morphism, since 

g •/(«*) = g[/(*y)l = d f ( * ) f ( y ) ] = g [ / ( * M / ( y ) ] = [g°/Wl[g° m i 

Many facts about functions translate naturally to true statements about 
morphisms. For example, since composites of 1-1 functions are again 1-1 
functions, composites of monotnorphisms are monic. In the same way, 
composites of epimorphisms are epic, and thus composites of isomorphisms 
are isomorphisms. • 

4 THE QUOTIENT THEOREM FOR GROUPS Each morphism f: G —» H has 
a unique factorization f = i o r o or 

G/Ker (f) ss Im (f) 

where q is a quotient morphism, ris a group isomorphism9 and i is the inclu-
sion of a subgroup. 

Proof Since/is a function, Theorem 1.11, the Quotient Theorem for Sets, 
teaches that there is a unique factorization / = i o r o q into the composite 
of a quotient function, a set isomorphism, and a set inclusion. Hence the 
claimed factorization of / into morphisms will exist and be unique iff each 
of these functions is a morphism whenever/is a morphism. 
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The inclusion i of Im (/) is the inclusion of a subgroup into H when / 
is a morphism. 

The quotient q was defined in Theorem 1.11 by/; the associated equiva-
lence classes were, for each gi^G, [gij = {g2«/(g2) = / ( g i ) } . But if 
/ ( g i ) = f(&)>1116n 

/(gift"1) = /(gi)/(g2"1) - /feiiftea)-1 - /(gi)Z(gi)-1 = * 

8 0 gxg2_1 (/) and gi and g2 lie in the same coset of Ker (/) in G, 
Conversely, if gi and g2 are in the same coset, then there is an element k of 
the subgroup Ker (/) for which gj = g2fc (why?), so 

/(gl) - /(&*) = /&)/<*) = /<&)* = /(g2). 

This shows that the equivalence classes of the quotient q defined by the 
function f are exactly the cosets of the subgroup Ker (/); hence 9 is a quotient 
morphism. 

Now, the renaming function r is a set isomorphism. By definition, if 
[g] £ G/Ker(f) is the class (or coset) of an element g of G, then r([g]) = /(g), 
But is r a morphism? This is trivial: 

r([gi][g2l) = rlgigsl = /(gig2) 
a n d '[giMgsl = /(gi)/(g2); 

since / preserves products, so does r. Hence r is a group isomorphism. • 
This important statement fits together three facts: the image of a mor-

phism is a subgroup of its range, the inverse images under a morphism of 
the points in the image set are the cosets of the kernel, and the quotient 
group of the domain modulo the kernel is isomorphic in a natural way with 
the image subgroup. 

If H and K are normal subgroups of G and H C X, then the quotient 
morphism q\ G —> G/H carries K to a normal subgroup q(K) of G/H. That 
q(K) is a subgroup is clear; but if gH £ G/H, then the conjugate 

er'mmH = qig-'Hmg) = rtr^g) = 

so q(K) is normal in G/H, Conversely, if L is a normal subgroup of G/H, 
then qr*(L) is a normal subgroup of G and it contains H. Thus q sets up a 
1-1 correspondence between the set of (normal) subgroups of G which con-
tain H and the set of (normal) subgroups of G/H. (Here we mean that this 
sentence can be read with or without the two instances of the word "nor-
mal.") This fact yields the following consequence of the Quotient Theorem. 
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COROLLARY Let f: G G' be a morphism with kernel K, and let H be 
normalinG, Then there exists a factoring o f f through G/H iff K D H; 
that is, there exists a morphism <p: G/H G' such that f = <p o q iff 
KD H: 

G 

G/H > Gf 

I/K D ff, then the image o f f is isomorphic to the quotient of G/H 
modulo q(K); that is, 

G_ G/H 
K K/H 

Proof If <p exists, then K = /^(e) = hence <p~x(e) is a normal 
subgroup of G/H and it corresponds (via q^1) to K, which must then be a 
normal subgroup of G containing H. 

Conversely, if K D H we define <p by <p(gH) = /(g) £ G\ This works: 
(p is well defined, since h £ g/f implies h~xg £ if C K, so /(/r^g) = 
m ^ m = c and/(/i) = /(g). 

In this case, where iC D if, the Quotient Theorem says that Jm (/) is 
isomorphic to G//C. Since Im {/) = im (<p o q) = im (<p) and the kernel of <p 
is K/H = {kh: k £ X} , we have that /rn (<p) is isomorphic to G/K and also 
to the quotient of the domain G/H of (p modulo the kernel K/H of <p, • This 
corollary, in the case K Dff, is sometimes called the "first isomorphism 
theorem." 

As an example, let/: Z Xn be the quotient of the integers modulo n, 
and let q: Z —> Zw be the quotient of Z modulo m. Then / factors through 
Zm iff nZ D mZ, and this occurs just when m £ nZ, or w is a multiple of n. 
The final statement of the corollary says that, for instance, if m = 6 and 
n = 3, Z3 is isomorphic to the quotient of Z6 modulo the two-element sub-
group {[0],[3]} of which is the image of 3Z in Z6. 

S and Z UN1 ' V 

DIRECT PRODUCTS 

>x < K / A 
i v . - ' -

To add complex numbers we add real parts to real parts, imaginary to 
imaginary: (̂ 1,̂ 2) + (^1^2) = (*i + yi, x2 + y2). The identity of C is the 
pair (0,0) of coordinate identities (for addition). Addition in C is commu-
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tative and associative simply because addition in R has these properties; for 
instance, 

(XLJTO) + (yi,«/2) = (*1 + t/l5 *2 + t/2) 
- (yi + * i , t/2 + x2) = (1/1,1/2) + 

Since C = R X R, we might try to imitate the definition of addition in the 
plane to get a group operation for the direct product of an arbitrary pair of 
groups; this attempt turns out to be completely successful! 

If G and H are groups, then the set G x H has a natural group structure 
with the product (gi^i)(g2^2) = (gig^i^)- The identity is (e,e\ the 
paired identities of G and H (check in your head that this works). The in-
verse of (gJ%) is (g-1,?^1), where the inverses of the coordinates g and h 
are found in the groups G and H. For associativity in G X observe that 

( g i g ^ i M g s , ^ ) = [(gig2)g3,{hih2)hs] 
and (gi>hi)(g2gz>h2h3) = [gi(g2g3)^i(^2^3)]; 

the right-hand sides are equal, since G and H are groups. 
The group G X H is called the direct product of the groups G 

and H. The projections pG: G X H —> G: po(g,h) = g and p&, G X H H: 
PH{g,h) — h are epimorphisms. There is a natural monomorphism iG: 
G G X H which assigns to each g € G the pair (g+e); similarly, in*-
H —> G X H: in(h) = (e,h) is a monomorphism. These monomorphisms are 
right inverses for the projection functions; for example, pG* iG = The 
image of iG is exactly the kernel of pm thus the image ia(G) is a normal sub-
group of G X H, as is ij^ff). 

If /: / G and g: J H are morphisms on some group /, then f X g-
} -» G X H: (f X g)(/) — [/(/)5g(/)] is also a morphism, called the direct 
product of /and g. Clearly, pG o (/ x g) = /and p ^ ( / X g ) = g. 

The projections of the plane assign to a complex number its real or 
imaginary part, and the monomorphism corresponding to the first factor R 
of R X R = C is the familiar embedding of the real line in the plane as the 
horizontal axis. 

You should notice here that the direct-product group structure of the 
plane R2 is just that of the additive complex numbers C. However, the 
multiplicative structure of C is not a direct product of that of R, and the 
group C — (0) is not the same as R — {0} X R — {0} (be sure you under-
stand this). This difference is customarily reflected in the notation; C is not 
the same algebraic object as R2. With this made explicit, we shall continue 
to identify the two where convenient, using the symbol C sometimes to 
emphasize the multiplicative structure. 
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( -3 , 4) 
f | # f 

(3,4) 
f « • • 

f 1 « • « • • • 

(1,2) * « • « 

• » « » 

(0, 0) 

J - 1 , - 2 ) 

• • • « 

• * • « 

i | # t 

( -3 , —4) « • • « 

f 1 « i 

(3, - 4 ) • • t * 

The direct product of two copies of the familiar group of integers (under 
addition) is Z X Z, the group of gaussian integers. It may be thought of 
as a subgroup of C, the additive subgroup of those complex numbers with 
both coordinates integral (is this really a subgroup?) Its picture is a lattice 
of points in the plane. 

Another direct-product example is the torus. If S1 denotes the group 
of angles (the unit circle in C — {0}), then S1 X S1 is called the torus 
group. Its members are ordered pairs of angles (<p,0), where each angle is 
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a point on the circle. The word "torus" means a geometric shape like an 
inner tube. We picture our torus group as a circle of circles; through each 
point of a circle along the rim (of the absent wheel) goes a circle through 
the spokes (of the wheel), 

Exercise N 

REFERENCES AND FURTHER TOPICS 

The use of group theory as a language is widespread in modern mathe-
matics, perhaps second only to set theory. The study of the theory for its 
own sake is, of course, a large and important part of the work of today's 
mathematicians. The exposition of this chapter is only skeletal; it contains 
the minimum needed for our work in topology. For instance, no glimpse is 
provided of the rich theory of finite groups. A reference for further topics, 
as well as an elegant and extremely readable introduction, is 

A. G, Kurosh, The Theory of Groups (New York: Chelsea, 1956). 

The second edition of this book is in two volumes; vol, 1, part 1, contains 
the elementary material. You will enjoy Kurosh's technique of using as few 
symbols as possible; instead he achieves a verbal exposition like that of a 
good lecturer with a small blackboard. 

Another good reference on a high level is 

M. Hall, Jr., The Theory of Groups (New York: Macmillan, 1959). 

More elementary presentations abound, some with "group theory" in 
their titles and some embedded in discussions of "modem algebra" or "ab-
stract algebra/' A few are listed below. 

Birkhoff and Mac Lane, A Survey of Modern Algebray 3d ed*> chap. VI 
(New York: Macmillan, 1965). 
I N. Herstein, Topics in Algebra, chap. 2 (New York: Blaisdell, 1964). 
S, -T. Hu, Elements of Modern Algebra, chaps. II, III, and IV (San 
Francisco: Holden-Day, 1965). 
Mostow, Sampson, and Meyer, Fundamental Structures of Algebra, 
chaps. 1 and 10 (New York: McGraw-Hill, 1963). 
L. Pontrjagin, Topological Groups, chap. 1 (Princeton, N. J.: Princeton 
University Press, 1939). 

v j 
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In the introduction we advertised some applications of our theory to 
problems outside mathematics. The algebra of groups has many such ap-
plications; one which can be easily digested at this stage is crystallography. 
Crystals can be studied via their groups of "symmetries" (the word is used 
loosely here); differing crystal forms have different groups associated with 
them, A good introduction to all this is offered by 

M. Hamermesh, Group Theory and Its Application to Physical Prob-
lems, chaps, 1 and 2 (Reading, Mass.: Addison-Wesley, 1962), 

Another and very different presentation of crystallographic groups is of-
fered in 

Hilbert and Cohn-Vossen, Geometry and the Imagination, chap. II 
(New York: Chelsea, 1952), 

rrhis book presents the material of a series of lectures given by David Hilbert, 
one of this century's broadest and deepest mathematicians. Its object, as 
the title suggests, is to present geometric topics in their visual intuitive 
aspects, avoiding formal abstract structure. 

EXERCISES 

A The group V of permutations of the set S = {a,b,c} has exactly six 
members (3! = 6); let us give names to these functions by describing 
their values in a list. In the column labeled / appears the name of each 
permutation, and in the same row with its name appear the values of 
each member of V, 

THE MEMBERS OF V 

/ M m f(c) 

1 a b c 
fa a c b 

fi 
c b a 

fc b a c 
r b c a 
r2 c a b 

Do you remember the addition and multiplication tables of elemen-
tary school? The same scheme may be used to display the values of the 
multiplication function on a group: V has six members, so V X V has 
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THE MULTIPLICATION TABLE FOR V 

Left N 

factors 

Right 
factors 

thirty-six members (see Exercise I,N), one corresponding to each little^ 
box in the multiplication table above. If / and g are members of V, ! 
then the composite f o g [the value of the multiplication function 
m(/,g)] is given at the intersection box of the row of /with the column'; 
of g> A few entries have already been made in the table; check these 
for correctness. Then complete the table, filling in all the products of 
V. (Caution; The composite function / o gis computed by first applying 
g, then applying /) The existence of a left inverse for each /€ V is 
equivalent to the appearance of 1 in each column of die table, The 
fact that left inverses are also right inverses can be seen from the table, 
since the scattering of l?s in it is symmetric with respect to the diagonal 
line which goes downward from left to right. Unlike the multiplication 
table for the integers 1 through 12, each entry in the table is among the 
right factors listed across the top of this table; that is, products of pairs 
of members of V are again members of V. How does the table show 
the existence of right inverses, the nonabelian nature of V, and the fact 
that 1 is a left (or right) identity? A description of associativity in terms 
of the geometry of the table seems obscure to me; can you see a simple 
one? 

Do the following sets and operations form groups? If not, why not? 

i The set of complex numbers (0 -f yi:y£"R] with complex addition. 
ii The set of complex numbers (0 + yi: y £ R, and y 0} with com-

plex multiplication. 
iii The set of all functions / : C C which preserve distances, that is, 

such that | f(a) — f(b)\ = | a — b | for all pairs a and b of complex 
numbers, under composition. 
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iv The set of functions {/; R —» R such that / is of the form f(x) — 
rx + s, with r and s real numbers and r 0} (such a function is 
called affine, or sometimes, "linear")? with the operation of com-
position, 

v The set {1,2,3,4} with the multiplication given by the following 
table. The element in the box in the i-th row and in the /-th column 
is the product if. 

2 3 4 1 

3 4 1 2 

4 1 2 3 

1 2 3 4 

vt The same set as in v above, with the multiplication given in the 
following table, 

1 2 3 4 

2 4 3 1 

3 2 4 3 

4 3 1 2 

C Assume that a binary operation on a set S (that is, a multiplication func-
tion from S X S to S) satisfies the equation (ab)c = a(bc) for all triples 
(a,fo,c) of elements of S, Show that whenever au a%y..., an are all 
elements of S, the product a\a2 . . • an is the same, regardless of how 
parentheses are sprinkled in to indicate the order in which pairs of ob-
jects are to be multiplied. (Hint: Use mathematical induction on n.) 

D Prove parts ii and iv of Theorem 1 in detail. 

E Which of the following sets are subgroups of the indicated groups? If 
not, why not? 

i The set of nonnegative integers in the additive group of all integers 
(Z>+)> 

ii The set of even integers in ( Z , + ) , 
iii The set of odd integers in ( Z , + ) , 
iv The set of permutations which interchange just two elements (or 

none) in the group of permutations of {a,byc} (under composition), 
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v The positive real axis {(*,0): x > 0} in the group of nonzero com-
plex numbers under multiplication, 

F Show that the function /: R ^ C — {0}: f(x) = (cos x, sin x) is a mor-
phism from the group of additive reals to the group of nonzero complex 
numbers. 

G Verify for the multiplication of subsets of a group that 

(AB)C = A(BC) (AB)""1 = B^A" 1 A C B implies CA C CB. 

H Let § be a set whose elements are groups, and let B be the relation on 
§ such that (G,H) € B iff there exists an isomorphism /: G —» H. Show 
that B is an equivalence relation. Elements of the same equivalence 
class are said to be isomorphic; they are alike as far as group theory 
goes (that is, except for the names of the elements and the name for 
the product). 

J Show that if S is a family of subgroups of a group G, then fl S is a sub-
group of G. If each member of S is normal, so is fl S. Give an example 
of a family S of subgroups of a group G such that U S is not a subgroup. 

K Show that if A is a subset of a group G, the set of all products of ele-
ments chosen (with repetition allowed) from A U A"1, and taken in all 
the various permutations if G is nonabelian, is a subgroup of G. It is 
called the subgroup generated by A. Since intersections of subgroups 
are always subgroups, H (S: S is a subgroup of G and S 3 A} is a sub-
group; it is the smallest subgroup containing A. Show that this is 
exactly the subgroup that A generates. 

L Which functions from the integers Z into Z itself are morphisms of the 
additive group of integers? Similarly, what are the possible morphisms 
of the additive group of rationale into itself? 

M Describe the family of cosets of the subgroup {(x,0): x > 0} of positive 
reals in the multiplicative group of nonzero complex numbers (it may 
help to plot a few points of a coset on graph paper). Then construct 
a morphism of the group C — {0} into itself whose kernel is exactly 
the positive real axis. 

N Let G be the set {(a>b) € R2: a 0} of ordered pairs of real numbers 
with the first one nonzero, so that G = (R — {0}) X R, a direct prod-
uct of sets. Define a product between members of G by (01,^1X02,62) — 
(aido, a\b% 4- £>1). Show that this is a group product for G, and that G 
is not abelian. (This group is isomorphic to that of Exercise B.iv.) 
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There are projection functions pi: G—» R — {0}:pi(a,£>) — a and 
p2: G —» R: p2(a,b) = fo of the direct-product set G; is either px or p2 

a morphism? Show that both pi_ 1(l) and p2_1(0) are subgroups. Are 
they normal? What are the corresponding families of cosets like? 
Show that each g € G can be expressed uniquely as a product g = hk, 
where h € pi_ 1(l) and k € P2_1(0). 

P It was remarked in the text that the logarithm function is an isomor-
phism between the multiplicative positive reals and the additive reals. 
Does there exist an isomorphism from the additive reals to the group of 
all nonzero reals? 

Q Let us denote the unit circle in the plane by S1; it is also called the 
1-sphere. A rotation Re of S1 by an angle 6 is a "rigid motion" of the 
circle which carries it clockwise, each point moving a distance 8. Thus 

is a function from S1 to S1. Show that the set of all rotations of S1 

forms a group under composition, and give an isomorphism of this group 
with the circle subgroup {x: \x\ = 1 } of the multiplicative nonzero 
complex numbers. 

R Prove that if H is a subgroup of G and g € G, the conjugate gtfg -1 of a 
subgroup is always a subgroup. Then find that subgroup if, in the nota-
tion of Exercise A, g = r and H = {1 ,/a} in the group G of permutations 
of the set 

S Describe the functions i, r3 and q which are guaranteed by the Quotient 
Theorem for Groups to give i o r o q — f when /: R —> C — {0} is the 
morphism which takes x to f(x) — (cos sin x). 

T State why the intersection and union operations on the power set ^ of 
all subsets of a set S do not have the group property. Then show that 
the operation A on X A Y = X U Y - X n Y, does make of f a 
group. This group is abelian, trivially. Prove that if each element of 
a given group is its own inverse, then that group must be abelian, 

U Let C be the set of all continuous real-valued functions of a real variable. 
For g € C define (/ + g)(x) = f(x) + g(x); f + g is again a member 
of C, called the pointwise sum of/and g. Prove that with this addition 
F is a group. Then show that the function o:C—> R: o(f) = J^1 f(x) dx 
is a morphism to the additive reals, and also that the function 

rx 
T: C —» C: R(/) = f(x) dx is a morphism. Can you phrase similar J 0 
statements involving differentiation? 
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W Let G be a nonempty set of functions, each member of G having domain 
and range equal to a fixed set S, such that if gl5 g2 € G, then gi ° g2 £ G 
and also that gi € G implies that there is a left inverse g2 in G for 
gi; g2 0 gi = 1 ss Show that composition is a group operation for G, 

Y Prove that every subgroup of a cyclic group must itself be cyclic. Also 
show that each cyclic group is isomorphic to a quotient group of Z, that 
is, isomorphic to Zn for some integer n > 0. 

Z Let /:Ai—> A2 be a morphism of groups with kernel K> and let 
q±: Ai —> Ai/Kx and q2\ —> A2/K2 be quotients of the domain and 
range of /, with kernels K\ and K2, respectively. Show that f induces 
a morphism /# which makes the following diagram commutative iff 
f(K±) C K2 {Hint: First prove this for the special case 

At/K! —A2/K2 

where K2 = {e}9 so that the requirement f{K±) C K2 reduces to the 
condition that Ki CK. Compare Prob. I.CC.) 

PROBLEMSf 

AA Automorphisms An isomorphism /: G —» G of a group G with itself 
is called an "automorphism" of G. It can be thought of as a "sym-
metry" of the group. Show that if a eg, the function Ka: G G: 
^a(g) = a_1ga is an automorphism; it is called the "inner automor-
phism" of G determined by a, and its value crxga is the "conjugate 
of g by a." The set (£ of all automorphisms of a group G is a group 
(under composition) of permutations of G. The subset 3 of inner auto-
morphisms, $ = {Ka; a £ G), is a subgroup. The function K: G -» & 
K(a) = K a is a morphism having as kernel the set of elements of G 
which commute with each element of G; Ker (K) = {a £ G\ ag = ga 
for all gCG}. This normal subgroup Ker(K) of G is called the 
"center" of G. 

t In these and subsequent problems, verify each assertion. 
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The subgroup $ is normal in (J; the quotient group is the group 
of "outer automorphisms" of G (some authors call the elements of 
& — 5 the outer automorphisms). 

Now apply your work to compute the centers and groups of inner 
and outer automorphisms for the group of integers Z and for the group 
V of permutations of {a,b,c}. 

BB Categorical Matters Attempt to restate Prob, I.BB, replacing the 
words "set" by "group" and "function" by "morphism," (Warning; 
The characterization of epimorphisms between nonabelian groups is 
not reasonable without some study of free groups.) 

CC Groups of Morphisms If G and H are abelian groups, then the set 
"Horn (G,H)" of morphisms of G into H can be given an abelian group 
structure by the "pointwise" multiplication of functions, fif2(g) = 
ft(g)h(g\ where the latter product is of two elements of H. Of course, 
similar statements may be made for the set of all functions from a 
set S into a group H, for example, the set of real-valued real functions. 

If K is also abelian, a morphism k: H —» K induces a function 
fc*: Horn {GjH) —> Horn (G,K) by composition, K(f) = k o f and k* 
is a morphism. On the other side, a morphism m: F —» G induces a 
morphism TO*: Horn (G,H) —» Horn (F,H). (Do you see just why k* 
"goes in the same direction" as k9 while m# goes the reverse of m?) 

Furthermore, composition yields a natural morphism of 

Hom(G,H) X Horn (H,K) 
into Horn (G,K). 

DD Normal Products A group G is the "normal" (or "semidirect") prod-
uct of K by H if 

i H and K are subgroups of G, and K is normal, 
ii H n K = e, 
iii HK = G (this is the product of subsets). 

An example is given by the affine group of Exercises B,iv and N. Can 
you give some nonexamples? 

A group G is the normal product of K by H iff K is a normal sub-
group and the quotient epimorphism q:G—> G/K (which always has 
a right-inverse function) has a right-inverse morphism p, with 
hn (p) = H. 

Also, G is the normal product of K by H iff K is a normal subgroup 
and H is a subgroup which is a system of coset representatives for K. 



06 Hi Oroupi 

(A subset R of a group G is a "system of coset representatives" for a 
subgroup S of G if i? contains exactly one member from each coset of S.) 

Another characterization is that H and K be subgroups, with K 
normal, and that the multiplication function of G, when restricted to 
H X K, be a set isomorphism—that is, that each g € G have a unique 
representation g — hk as a product of an element of H with one of K 
(in that order), 

EE Cayley's Theorem A set isomorphism of a set S with itself is called a 
permutation of S; if S is infinite it is more usually termed a "transforma-
tion" of S. If G is any family of permutations, or transformations, of 
a given set S, and G forms a group under the operation of composition 
of functions, then G is a "permutation group" on S (or a "transformation 
group" on S), Such a group is often called a "concrete" group, because 
it seems more substantial and intuitive than an "abstract" group, which 
is merely a set with an operation abstractly defined on it (that is, a group 
satisfying our definition). 

Let G be a group, and for each g € G let Lg\ G —> G be the function 
which assigns to h e G the element gh [so that L^h) — gh], Show that 
the set t = {Lg\ g € G} is a group of permutations of the set G, and 
that the function L: G —» & L(g) = Lg is an isomorphism. Thus every 
abstract group is isomorphic to a group of permutations (with com-
position of functions as the group operation). Apply this conclusion 
to the group V of permutations of the set {a,b,c} (see Exercise A; note 
also the application suggested by Exercise Q). 

FF Exact Sequences A "sequence" of groups and morphisms is an array 
of the form 

j fi . fi+i. . fi+2 . • « • Ai^i —» Ai —» A i +i • AI+2 

which may or may not terminate at either end. The sequence is called 
"exact" at A i if the image of f is exactly the kernel of 1, Im (fi) = 
Ker (fi.fi). An example is 

{1} 4 Si 4 C - { 0 } ^ {x € R: x > 0} 4 {1}, 

where fx and f2 are the only possible morphisms from and to singleton 
groups, i is the inclusion of the unit circle in C — {0}, and ahs denotes 
the absolute-value function sending x to . This sequence is exact 
at SJ, at C — {0}, and at the positive reals. A sequence which is exact 
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at each group along it is termed an "exact sequence/' In general, 
prove that if 

{ e j ^ K i G i f l - ) {e} 

is exact, then f2 is monic, fs is epic, and H is isomorphic to G/Im (f2). 

Im </*) = Ker (/i+1) 

-At— i-1 4+1 

Show that if / is the function described in Exercise F, then the se-
quence of groups 

{ e } - + % i r Z U V i - U c - {0} { 3 c e R : x > 0 } ^ {e} 

is exact (here 2*rZ = {2irk\ k € Z) and i is the inclusion function). 

GG Lagrange's Theorem Let G be a group and H a subgroup of G, The 
"order" of G is the number of elements of G; if G is infinite it is said to 
have infinite order. The number of distinct cosets gH of H in G is the 
"index" of H in G; of course, H may have infinite index in G, 

Show that there is a natural 1-1 correspondence between H and each 
coset gH of H, and thus that every coset of H has exactly the same num-
ber of elements as has H, Since these cosets partition G, if H has finite 
order rn and finite index n in G, then the order of G is the product mn, 
Hence the order (and also the index) of each subgroup in G divides the 
order of G. 

Prove that every group whose order is a prime integer p has no non-
trivial subgroups, and that it is isomorphic to the cyclic group Zp of 
order p. If p is a prime which divides the integer n, find a subgroup 
H of order p in Zn, and also a subgroup K of index p in Zn. 

If g is a member of a group G, the "order" of g is the least positive 
integer k such that gk, the product of g with itself taken k times, is the 
identity; if for no positive integer k is gk = e, then g is said to have 
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HH 

infinite order. Show that if G is finite, then the order of each element 
g € G divides the order of G. 

The Second Isomorphism Theorem Let H and K be subgroups of a 
group G, with K normal in G. Observe that HK is a subgroup of G, 
K is normal in HK, and H fl K is normal in H; then prove that 

H 
H n K 

HK 
K 
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CHAPTER III 

The continuity of a real-valued function of a real variable is defined early 
in a course in calculus. In essence, such a function / is continuous at a real 
number r if its values f(s) are as close as you like to /(r), provided only that 
s be close enough to r. The functions which are continuous at every point r 
are a special class of "nicely behaved" functions whose values do not "jump 
suddenly"; their graphs may be drawn without lifting the pencil. 

The only property of the real numbers which is mentioned in the defini-
tion of continuity is the fact that there is defined a distance between each 
two real numbers; the notion of closeness depends on that of distance. 

We shall now examine those facts about the reals, and functions with real 
domain and range, which depend only on the idea of distance between num-
bers, If we are careful to use only this one property of the real numbers in our 
proofs, each conclusion we reach should apply not only to the reals, but also 
to every other set where distance between members is appropriately defined. 
The situation will parallel that of the previous chapter: if we prove a theorem 
about real addition using only the group property of that operation in the 
proof, say the theorem that (x + y) + (z + w) = x + [(y + z) + to], then 
that theorem applies as well to complex addition and to any other group. 

But just what is the notion of distance? If r and s are real numbers, then 
the distance from r to s is | r — s |; this involves both subtraction and the 
absolute-value function. Since subtraction is defined in terms of the additive 
group structure and the absolute value \x\ of a real x is defined in terms of 
theorderonR, = xiix > Oand \x\ = — xiix < 0, the recipe above for 

59 
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distance has not isolated the concept. That is, our intuitive understanding o 
distance in the three-dimensional world in which we live certainly is simpler; 
to state the distance from Los Angeles to Berlin does not require that either 
Los Angeles be less than Berlin or Berlin be less than Los Angeles. Just as fori 
the group property, we must characterize distance in terms of its properties, 
not in terms of specific methods of computation. Now, distances are real 
numbers, and the distance from a point to itself is zero, while distances be 
tween distinct points are positive. Furthermore, the distance from x to y is 
the same as that from y to x. While these statements apply to distance in 
general, we summarize them for the real line: There exists a function 
i ; R X R ^ R such that for all elements (r?s) of R X R 

i aM > o, 
ii A(rys) — 0 iff r = s, 
iii ct(r,s) = ct(s,r). 

Here, of course, a(r5s) — | r — s J, There is yet another property of distance 
in the world in which we live: the distance along one side of a triangle is no 
greater than the sum of the distances along the other two sides. On the real 
line this is called the "triangle inequality" for real numbers, 

iv a(r,s) < a(r,t) + a(t*). 

This has a more familiar form in the reals as 

l* + y\ < M + \y\-

A proof can be made by considering the four cases where x > 0 and y > 0 
x < 0 and y > 0, etc. Now let x = r — t and y = t — $ to get the triangl< 
inequality: 

\r - s\ = |(r — f) + (t — s)[ < \f-t\ + \t- s\. 

Our list of properties of distance is now complete. Notice that the 
distance between points on the earth's surface may be defined by an airline 
pilot to be "as the crow flies/' that is, lengths of arcs of great circles. But 
an astronomer may think of the distance between surface points as being 
the length of the straight fine, going through the body of the earth, which 
joins them. Each of these different definitions of distance on the earth's 
surface, as well as distance along the real line, has properties i through iv. 
Guided by these examples, let us now use these four properties as axioms 
to give a precise, mathematical definition of the notion of distance. 
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THE DEFINITION 

A metric space (M,<3) is a set M together with a function 3: M X M —» R 
such that for all x, and z £ M, 

• > 0, 

ii H(x,y) = 0 iff x = t/5 

iii = 
iv <J(%,£) < + &(y,z). 

We have discussed some examples: the usual distance functions on the 
line, in the plane, and in real three-dimensional space. Furthermore, we 
l»uve seen two different distance functions (which we shall call metrics) on 
the surface of the earth. Lest you suppose that somehow the definition of a 
metric space has captured all the qualities of our usual concept of distance, 
you should verify that if M is any set whatsoever, then the function <\: 
M X M R, which assigns &(x,y) = 1 to each pair (x>y) with x^y and 
i\ (x,x) — 0 for all x € M, is a metric on M. 

Just as we did in the case of groups, we shall often abuse our definition 
by referring to a metric space (M,cl) simply as "the metric space M," when 
the specific metric <1 on the underlying set M is clearly enough understood. 

We can now generalize the idea of the continuity of a function to metric 
spaces. If (M,<3) and (M',A') are metric spaces and/: M —» M' is a function 
from the set M to the set M\ then / is continuous at a point x € M iff for each 
positive real number e there exists a positive real S such that for every y £ Af, 
if d(x,f/) < S> then £'[/(*), /(y)] < The function/is said to be continuous, 
or continuous from (M,cl) to (M',4'), if it is continuous at each point x € M. 
Clearly, if M and M' are both the set of real numbers R, and <5 (.r,t/) — cl f(x9y) = 
| x — */ |, so that 3 and cl' are the usual metric for R, then this is exactly the 
usual definition for the continuity of /. You should realize here that the 
choice of different metrics in place of <3 and <3' for the same sets M and Mf will, 
in general, result in a different set of continuous functions / from (Af,d) to 

For instance, let M — M = R, as before, and let d' be the usual 
real metric* but define to be the peculiar metric mentioned earlier, 
cT(x,t/) = 1 if x ^ y and &"{x,x) — 0 for each real * and y. We assert that 
every function /: R —> R is continuous from (R,d") to (R,d'). For every 
point x £ R and every E > 0 the choice 8 — 1 will suffice, since {y G R: 
cl"(x,y) < 1 } = {x} (be sure to think this through). Can you tell which 
functions from (R,d') to (R,d") are continuous? 



62 III: Metric Spaces | 
• i 

Henceforth the usual metric will always be assumed present on R unless ! 
the contrary is made quite clear, ] 

Exercise A I 

f-BALLS 

J 

For convenience, we introduce the concept and notation of e-balls in 
metric spaces: if (M,3) is a metric space with x £ M, and e is a positive real, 
then the e-ball fi(e,x) centered at x is j&(e,x) = {y £ M\ ct(x,y) < e), the set of 
all points of M whose distance from x is less than e, On the real line b(e,x) 
is the open interval of length 2e and center x, in the plane f>(e,x) is an edgeless 
disc of radius e centered at x, and in real three-dimensional space £(e,x) is a 
solid skinless ball of radius e and center x. Observe that the set M and the 
function cl both enter into the definition of l>(£,x), although neither is visible 
in the notation; the context should make it clear just which metric space each 
e-ball lies in. In this spirit, then, we phrase the definition of continuity in 
terms of balls: "A function f: M —> M' from one metric space to another is 
continuous iff for each x £ M and for each real e > 0 there exists a S > 0 
such that/[J&(5,x)] C {>[e,/(x)]" Here the ball i>(S,x) is a subset of M, while 
f>[e,/(x)] lies in M'; the requirement that/[£(5,x)j C £[e,/{x)] is exacliy the 
requirement that if S(x,t/) < 5, then cl[/(x),/(y)] < e. 

Exercises B, C, D, and E 1 

•M 

SUBSPACES 

If M is a metric space and S is a subset of M, then the restriction cl' of 
the distance function M X Af —» R to the subset S X S o f M x M gives a 
function cl': S x S —* R; tT is always a metric for S. It is easy to check in 
your head that ct' satisfies the axioms because <3 does. An example is the 
aforementioned "astronomer's notion" of distance on the earth's surface; 
here M is the three-dimensional universe and S is the surface of our planet. 
(A nonexample in this setting is the pilot's notion of surface distance along 
arcs of great circles.) 

With this metric, the metric space (S,3') is called a subspace of (M>&). 
And now we have a method of manufacturing many metric subspaces in each 
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metric space. Is it clear that the relation of being a subspace, S is related to 
M if S is a subspace of M, is a transitive relation between metric spaces? 

One caution here: the unit interval I = [0,1] is a metric subspace of R; 
In the metric space I, however, if 0 < e < 1, then the e-ball centered at 0 
Is the half-open interval [0se), and not ( — e7e). The general statement is that 
II S is a subspace of the metric space M, the ball of radius e centered at x in S 
is the intersection of S with the ball of radius e centered at x in M. 

A METRIC SPACE OF FUNCTIONS 

The utility of this abstraction of metric spaces is best described by 
(ixample. Let C be the set of all continuous functions from the unit interval 
I = [0,1] into the reals R. A metric for C may be defined in a very intuitive 
way. Let the distance between two members / and g of C be the maximal 

(0,0) (1,0) 
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distance between their values, cl(/,g) = lub { |/(x) — g(x) |: x G I}? where the 
least upper bound of a nonempty set S of real numbersf is denoted lub S. 
This is a reasonable definition, since the function \f — g|: I R: 

§!(*) ^ \f(x) ~ g(*)l *s continuous whenever both f and g are con-
tinuous. Consequently, the continuous function \f — g| attains a maximal 
value, which we take for <!(/,g), on the closed interval L (These statements 
are usually proved in a calculus course. That a continuous function from I 
to R actually reaches a maximum value will be shown later in this chapter.) 
The facts, that a(/,g) > 0, that a(//) = 0, and that a(/,g) = a(g,/) for all 
pairs (/,g), are trivial. The triangle inequality can be proved as follows. For 
each x (and for all /, g, and h € C), 

|/(*) - />(*)! < I/(*) ~ g(»)l + lg(*) -

this is the triangle inequality for the real numbers/(x), g(x)> and h(x). But let 
\f—h\9 \f—g\> and \g — h\ be maximal at XQ9 xly and x2, respectively. 
Then, for all x, 

f We assume the axiom of completeness for R: each nonempty subset of R which is bounded 
above has a least upper bound. 

a</>g) 
Km 

(0,0) 
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I /•(*) - Hx) | < {/(x,) - g(xi) j 4- | g(.t) - h(x) | 
< l/(*l) - g(*l)\ + I g(^2> - h(x2) I 
- cl(/,g) + 

Hence 

a(/,fe) = !/{x0) - h(x0)i < a(/,g) + a(g,fc), 

and we do have a metric function defined for the set C. The distance <J(/,g) 
can be described as the maximal vertical distance between the graphs of/and 
g, or as the maximal height of the graph of | / — g |, 

That we have a reasonable notion of distance in C, that (C,d) is a metric 
space, is itself an accomplishment. The way is now open to apply much of 
our intuition about distance to the set C, which is a much more complex set 
than real 3-space; intuitively, it is infinite dimensional. For instance, 
an e-ball centered at a member / of C is the set of all members 
g of C such that, for all x, \f(x) — g(x)| < e. This requires that the 
graph of g lie inside the vermiform strip of height 2e whose center (in a 
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vertical sense) is the graph of /. The skin of an e-ball in real 3-space corre-
sponds in this example to a function whose graph lies inside this region of 
height 2e, except that its graph touches the boundary lines of the region, or 
perhaps runs along the boundary for a while. 

We can do more. With a metric defined on C, the definition of con-
tinuity applies to a function from a metric space into C or to a function from 
C to any metric space. For instance, there is a family of evaluation functions 
et: C R, one for each t€ I, each of which has values et(f ) = f(t). And 
it can now be shown that for each t € I, et is continuous. If b[e,et{f)] is an 
e-ball at et(f) = /(f) 6 R, then the ball B(e,f) centered at / and having that 
same diameter has the property that et[h(e,f)] C B[e,/(f)] [if g € L(e/), then 
for every t£ I, | g(f) - f(t)! < 4 Hence et is continuous at each point/of 
its domain. 

PYTHAGORAS1 THEOREM 

The celebrated theorem of the Greek Pythagoras states that the distance 
between two points x = (*i,x2) and y = (1/1,1/2) in the plane is a(x,t/) = 

(yi>y2) 
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l(xj — i/i)2 + (x2 — t /2) 2 ] 1 7 2 - Since the plane is the direct-product set 
R x R , and each factor set R is a metric space with the usual metric, this 
may be expressed as "the distance between points x and y in the plane is 
the square root of the sum j xi — yi |2 + | x2 — t/2 {2 of the squares of the 
distances between their respective (real) coordinates," Similarly, if we con-
sider real 3-space to be R3 X R, the product of the (xi,x2)-plane and the 
xu-axis, then the distance between points x = (xi,x29x3) and y = {yi^yz) is 

a M = (m*iM(yi>t/2)l2 + a^ya)2)1 '2 

- [(xi - yi)2 + (*l - t/2)2 + (*s - ?/3)2]172-

(This distance could have been calculated as well by the five other ways 
corresponding to diagonals of the various faces of the parallelepiped which 
has x and y at opposite vertices and edges parallel to coordinate axes.) 

y = (</i>t/2,!/3) 

^ I 
\\x\ 

/I 
I 

I (yi,y2,x3) 

= (xi,x2,x3) 

.J? 

xi-axis 

With these examples to guide us, we can easily construct a product 
metric A on the direct-product set Mi X M2 of the underlying sets of two 
metric spaces (Mi,4i) and (M2,52). If m = (m*,/^) and n = (^i>n2) are two 
points of Mi X M2, we define the distance between them to be 

a(m,n) rr [3i(mi,ni)2 + (m2,n2)2]1/2. 
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It is easy to see that <i is a nonnegative real-valued function, d(m,n) = 0 iff 
m = n, and d(m,n) = <3(n,m). We offer a proof of the triangle inequality 
based on familiar geometric facts in the plane. Let m — (mi,m2), n = 

and p — (pi>V2) be three points of Mi X Mo, Use the various dis-
tances in the two coordinate spaces to define three points a, and y in the 
plane: 

a = [^i(mi)ni)?a2(w2?n2)] 
P = [Hnl>Pl)Mn2>P2)] 
y = [di(mi,pi)>a2(m2>P2)] 

|a| = <l(m,n), 

Since distances are always nonnegative, each of these points is in the first 
quadrant, as is the sum a + (of complex numbers). Geometrically, a + /? 
is the corner opposite the origin on a parallelogram having 0, a, and for 
three corners. It is clear that | a + | < | a | + [/31; the length of the 
diagonal is no more than the sum of the lengths of two adjacent sides. But 

CL + P 

M a 
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the triangle inequality in Mi and M2 says that 0 < di(mi,pi) < di(tni,ni) + 
i)i(ni,pi) and 0 < a2(m2,p2) < £2(^2,^2) + <32(n2,p2); accordingly, 7 lies in 
the rectangle bounded by the coordinate axes and having a + /? for a corner. 
Clearly, 171 < | a -f /? |, and thus 171 < | a | + |j8|; but this is exactly 
what was to be shown, 

< d (m,n) + 3(n,p). 

If Mi, M2> and M3 are metric spaces, then there are product metrics on 
both (Mi X M2) X Ms and Mi X (M2 X M3). These two direct products 
are set isomorphic (see Exercise LP); such a set isomorphism can be con-
structed which preserves distances. (A function / preserves distances if 
il[/(x),/(t/)] = &(x,y) for every pair (x,y) in the domain of/; / is then called 
an "isometry.") 

This shduld be obvious from the example earlier in this section of the 
product metric in real 3-space; we shall not pause to prove it. More gener-
ally, if Mi, M 2 , . . . , Mfc are all metric spaces, we may (by Exercise I.P) think 
of "the" direct product M of the Mi's as being the set of ordered fc-tuples 
(mi, m 2 , . . . , m&), where each m* € Mit Further, there is a metric on M = 
iVfi x M2 X • • • X Mfc which has as its value 

a(m,n) = [ 2 3i(mi,ni)2j 
1/2 

where d* is the metric on Mu and m = (mi, m 2 , . . . , m*) and n = 
(ni, n2,,,., nk). 

In particular, if k = 2 and Mi = M2 = R, the real line with the usual 
metric, then the product-metric space R X R = R2 is just the plane with 
the usual metric. Similarly, R X R X R — R3 is the euclidean 3-space 
where we live, with its usual metric, and for each positive integer n we may 
build euclidean (or real) n-space R x R X - • - X R = Rn5 the set of n-tuples 
of real numbers, furnished with its product metric, f Our collection of ex-
amples of metric spaces thus now includes every subspace A of real n-space. 
Further, if A C R™ and B C R " are metric subspaces of euclidean spaces, 
we can now discuss the continuity of a function /: A B. 

\ Euclidean n-space is usually thought of as being furnished also with the structure of a vector 
space over the real field. We shall consider this additional structure, and its compatibility with 
the metric, later (but see Prob. EE). f 

•V ; ; . - ^ . / 

1 

J 
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PATH-CONNECTEDNESS 

A fundamental intuitive property of subsets of the plane or real 3-space 
is that of being all in one piece, one chunk. A circle, a disc, and a straight 
line all have that property, but the subset {1,2,3} of the real line has three 
pieces. We now set a definition based on the idea that a subset is in one 
piece if between each two points of the set a line (not necessarily straight) 
can be drawn connecting the points. A metric space M is path connected 
iff for each pair (m,n) of points of M there exists a continuous function /: 
I M from the unit interval [0,1] C R into M with/(0) — m and/(l) == n. 
Suggestively, the path / in M begins at m and ends at n, A subset N C Mis 
path connected iff the metric subspace N of M is path connected. 

Clearly, I itself, a metric subspace of R, is path connected; it is an exer-
cise to show that the family of intervals is exactly the family or path-con-
nected subsets of R. We content ourselves now with showing that R itself 
is path connected. Let r and s be real numbers and define /: I —» R by 
f(t) = r + t(s — r); /(0) = r and /(X) = s, and it is easy to see that / is 
continuous. 

A familiar theorem (the intermediate-value theorem) of the calculus 
states that a continuous function (real-valued, of a real variable) which has 
both positive and negative values must also have zero as a value. More 
generally, if f(r) and f(s) are values of a continuous function with/(r) < f($)> 
then for each x in between, f(r) < x < f(s)> there is a t with f(t) — x. This 
theorem enables us to show that if x is a real number, then the subset 
R — {x}, the line with x deleted, is not path connected. Indeed, x — 1 and 
x + 1 are both in R — {x}> and if /: I —» R — {x} were a path from x — 1 
to x + 1, then / would have to take on the value x somewhere in its domain 
I. But then the values of/could not all lie in R — {x}; hence no such func-
tion/exists, and R — {x} is not path connected. 

The plane R2 and 3-space R3 are path connected. In the plane a proof 
goes as follows: if (xi,ac2) and (t/i,t/2) £ R2> then /: I —> R2: f(t) = 
[(1 — t)xi + tyi, (1 — t)x2 + ft/2] is a path joining them; it is not hard to 
see that R2 - {(0,0)} and R3 - {(0,0,0)} are path connected. This con-
struction will work for most pairs of points, unless the path goes through the 
origin. In that case, a new path may easily be described which dodges 
around the origin. Do you see how the higher dimensionality permits this 
for R2 and R3, yet not for R? 

In our intuitive description of continuous functions we suggested that 
their graphs could be drawn '"without lifting the pencil"; that is, their values 
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do not suddenly "jump." The graph of a discontinuous function is pictured 
I >elow. It is clear that if this function is restricted to a small enough open 
Interval / centered at x0, then the image /(/) of the path-connected set J is 

*o 

in two pieces. We shall now show that this behavior is not possible for a 
continuous function; the continuous image of a path-connected set is always 
path connected. 

As a first step, we prove that the composite of two continuous functions 
is continuous. Assume that f: A ^ B and g: B C are continuous func-
tions, where A, B, and C are metric spaces. For each % € A and every positive 
real number e we must find a positive number 8 such that (g o /)[Jb(8,x)] C 
f>[e, g o f(x)]. Now, g is continuous, so there exists a positive number <p such 
that g(&[<p>/(*)]) C £>{£,g[/(*)]); since / is continuous, there exists a 8 with 
/[£(«,*)] C %,/(*)]. But then (g • /)[£(«,x)] Cg(£[?,/(*)]) C g o•/(*)], 
which was to be shown; go f is continuous. • 

Now let /: I B be a path in B, and let g: B ^ C be continuous; by 
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the preceding result, g o /: I ^ C is a (continuous) path in C. Suppose B to 
be path connected, and let g(x) and g(y) be any two points in g(B), the image 
of B under g. There is a path /: I B beginning at x and ending at y; hence 
g o / is a path beginning at g(x) and ending at g(y). This shows that g(B) is 
a path-connected set. • Do you see how this is a natural generalization of 
the intermediate-value theorem of calculus? 

Exercises H, J, and K 

COMPACTNESS 

Here we need to enlarge our vocabulary a bit. If S is a subset of a metric 
space My and x G S, then S is a neighborhood of x iff there is a positive e such 
that the e-ball at x in M lies in S, j&(e,a:) C S. For instance, a closed interval 
[a,b] C R is a neighborhood of each of its points except for the end points 
a and b. The subset S of M is called open if it is a neighborhood of each of its 
points; thus, in the real line, an open interval (a,b) is an open set, while a 
closed interval [a,b] is not an open set. 

More generally, in a metric space M each e-baH h(E,x) is an open set. 
This is easily proved. If y € £(e,x), then 3(x,i/) < e, so the number 8 = 
E — &(x>y) is positive. The triangle inequality says that if & £ so that 
&(y9z) < then 

< a(x,y) + a(t/,z) < + [e - d(x,i/)] = e. 

Hence f>(8,y) C £(e,x), which latter set must be open. 
The complement of an open set in M is called closed; closed intervals 

of R are closed sets in R (why?). Of course, a subset of R need be neither 
open nor closed; (0,1] is such a set. 

One more definition: a subset S of a metric space M is bounded iff it 
lies inside some e-ball; that is, S is bounded iff there exists an x £ M and a 
positive e such that S C An interval is a bounded set in R; the integers 
Z are not a bounded set. Now to the point: a subset of R (or Rw) which is 
both closed and bounded is defined in the calculus to be compact; [0,1] is 
compact, while (0,1) and Z are not compact. This notion of compactness 
is an extremely important tool of topology and of the applications of topology 
to analysis. For instance, a continuous real-valued function whose domain 
is a compact subset of Kn is bounded (its set of values is bounded) and also is 
uniformly continuous. We begin the study of this notion with a classic char- i 
acterization of the compact subsets of the real line. 
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HEINE-BOREL THEOREM A subset S of R is compact i f f , whenever 0 is a 
family of open sets of R and U 0 D S, there exists a finite subfamily 
°J= {Oi, 0 2 , - -., Oh} of members of e with S C 

Proof Assume that S is not compact; we shall exhibit a family 0 of open 
sots, with S C U 0, such that for no finite subfamily Wat 0 is S C U £ There 
tire two cases to consider; either S is not closed or S is not bounded. If S is 
not bounded, let 0 be the family of all e-balls centered at the origin 0 = 
(6{e, 0): e > 0). U O r R D S, yet the union U^of a finite subfamily ffof 
0 is just the largest ball in since S is not bounded, U S, In case S is 
not closed, its complement S' is not open, so there is a point x £ S' for which 
no ball 6(e,x) is contained in S'. That is, for each positive e, there is a point 
y of S with y € t/ is less than £ distant from x. It is clear that for each 
positive e the set Ot = (— oo, x — e} U (x + e, oo) is open, and that if 
0 = (0€: e > 0), then U0 — R — v D S. Again, however, the union 
of any finite subfamily of 0 is just the largest member of that subfamily; by 
the comments above, no member of 0 could contain S, 

For the second part of the proof we assume that S is compact, so S is 
closed and is contained in some bounded interval (a,b); also, S C [a,fo], and 
the set U == S' C] (a — 1, b + 1) is open in R. Now observe that it will 
suffice to prove the theorem for the compact set [a9b], Whenever 0 is a 
family of open sets with S C U 0, we may construct the family 0/ = 0 U { 17} 
of open sets such that [a,b] C US'. If is a finite subfamily of 0' with 
[a9b] C then {17} is the desired finite subfamdy of 05 

S C Uf, Hence we suppose S = [a,fo] and form the set T C [ayb] by this 
rule; if a < x < fo, then x £ Tiff [ayx] lies in the union of some finite subfamily 
of Certainly a € T and fo is an upper bound for T; let I = lub T, and let L 
be a member of 0 with I 6 L* Since L is open, there exists e > 0 such that 
(I — c, I + e) C L, and since I = lub X, there is a f £ Twith t > I — e. But 
when ^is a finite subfamily of 0 with [a,t] C U % then ff U {L} is a finite 
subfamily of 0 whose union contains [a, 1+8] for eveiy 8 6 [03e). Since I is 
an upper bound for T, Z + 5 £ T, and thus Z + 8 > fo for all 8 > 0, or I > fo. 
By definition, I < fo; this shows that I = b and concludes the proof, • The 
Heine-Borel theorem is true in each real n-space; a proof is sketched in 
Prob. FF, and a complete proof appears in Chap. VI, 

Exercises L and P 



74 III: Metric Spaces 

n-SPHERES 

We shall now construct a family of useful examples of metric spaces 
which are both compact and path connected. If x £ Rn+1, let ||x|J = <3(x,0) 
be the distance from x to the origin ("the length of the vector x"), \\x\\ = 
I n + l \ 
( 2 r 2' i f * = * • * > ^ i ) - T h e s e t = i x € Rn+1: 11*11 = 1} 

of elements of Rw+1 at distance exactly I from the origin is called the unit 
n-sphere in RB+1. It is, in suggestive language, the bounding skin of the ball 
£(1,0) of radius 1 centered at 0. The 0-sphere in R1 = R is thus the two-j 
point set { —1,1}, the 1-sphere is the unit circle in the plane, and the 2-sphere; 
is the surface of a balloon of radius 1 in real 3-space, 

The n-sphere is a closed subset of real (n + l)-space; if ||y|| 1, then 
it is an exercise (see Exercise Q) to show that a point £ whose coordinates are .'• 
sufficiently close to those of y will have \\z\\ 1. Consequently, there is an 
e-ball centered at y all of whose elements lie off the n-sphere; the complement 
of Sn is open, Sn is clearly contained in the ball £{2,0); it is closed and 
bounded, and thus compact. 

The n-sphere is also path connected if n > 0. To see this, recall that ] 
the set Rw+1 — {0} is path connected for n > 0. Further, the function g: j 
Rn+i _ {0} Sn which sends each x G \\x\\ ^ 0, to g(x) = x/\\x\\ isI 
continuous; more explicitly, g{x) = (%i/||x||? x2/||xjj?.,. ,%+i/||#||). A de- ^ 
tailed proof of this fact would observe that the values g(y) can be made as 
close as you please to g(x) by merely requiring that the coordinates of y be? 
close enough to those of x. The values of g lie on the n-sphere, since for all xy 

n-j-1 

Also, g is an onto function, since x £ Sn implies g(x) — x. But then, Sn is the 
continuous image of the path-connected space Ru + 1 — {0}; Sn itself is path 
connected. 

MORE ABOUT CONTINUITY 

An open subset of a metric space was defined as a subset which was a 
neighborhood of each of its points. That is, a subset S is open in the metric 



More About Continuity 75 

.space M iff for each member x of S there is an e > 0 such that £(e,x) C S. 
The notion of open set can be used to characterize continuous functions, 

THEOREM A function f M —> N from one metric space to another is 
continuous iff the set/"1( S) is open in M whenever S is open in N. 

Proof We first assume that / is continuous and that S is open in N; we must 
show that if * £ /_1(S), then there is a 8 > 0 such that h(8,x) lies inside/-*(S). 
But /(*) € S, and S is open; therefore there is an e > 0 with b[e,f(x)] C S. 
Since / is continuous, there exists a 8 > 0 such that if the distance &(x9y) 
(in M) is less than S, then a[/(*), f{y)] < e (in N); that is, f(y) € Jb[e/(x)]. 
This says clearly that /carries each member of b(89x) into S, or C /" 1(S), 
Since such a number 8 exists for each point x of/^1(S), that set is open. 

For the second half of the proof we assume that for each open set S of N9 

/_1(S) is open in M. Let x be an arbitrary point of M and let e be a positive 
number; we wish to find a 8 with f[i>(89x)] C b[etf(x)]. But balls are 
open sets, so f~1(b[e,f(x)]) is open and x is one of its points. Hence there 
is a ball h(8,x) centered at x and lying entirely inside /^(iifc,/(*)]), which 
was to be shown; / must be continuous. • 

An easily remembered, if imprecise, statement of this result is that "a 
function is continuous iff, under it, inverse images of open sets are open/' 
Notice that, even when this theorem is applied to a function whose domain 
and range are metric subspaces of the real line, continuity is determined by 
the open subsets of its domain and range as metric spaces, without reference 
to open subsets of the whole line. This is not deep. An £-ball in the sub-
space A of R is merely the intersection of A with the ball in R of the same 
radius; hence the open subsets of A are just the intersections of A with the 
open subsets of R, This observation can be used to characterize, by the 
Heine-Borel theorem, the compact subsets of R in terms of their own inter-
nal structure: a subset A of His compact iff every cover of the metric space 
A by a family of its open subsets has a finite subcover. • Let us im-
mediately use this idea to establish that continuous real functions preserve 
compactness. 

THEOREM If /; A—> B is a continuous real-valued function whose 
domain A is a compact subset of R, then its image f(A) is compact. 

Proof The Heine-Borel theorem will be used here. Assume that 0 is a 
family of open sets with/(A) C U0. Then the family^ = {f~\0)\ O e 6} 
of inverse images of members of 0 is a family of open subsets of A. Further, 
A C U ^ since x € A implies that there is a member O of 0 with f(x) € O, 
and then x €/-*(0). But A is compact, so there is a finite subfamily ^of 
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with A C U f ; thus the family § = {O:/^(O) € <$) has a finite number ofj 
members, and /(A) C U& We have shown that each family 0 contains 
finite subfamily <?; by the Heine-Borel theorem, f(A) is compact. • Yo 
should realize that a continuous function need preserve neither closedness 
nor boundedness by itself. For instance, the function f(x) = \/x inter 
changes the closed but unbounded set [l,oo] with the bounded but non 
closed set (0,1]. 

COROLLARY The function f of the theorem has a maximum value I 
A ^ 0; that is, there is a point x of A for which f(x) > f(y) for every 
yeA. 

Proof Since f(A) is nonempty and bounded, there is a least upper bound 
I = lub f (A). Suppose I i f (A); since / (A) is closed, its complement is open 
Thus there is an interval (I — e, I + e) lying outside / (A). But then I — e is 
an upper bound for /(A), a clear contradiction. Our supposition is thus 
impossible, and J 6/(A), which is exactly what was to be proved. • Is it 
implicit that / has a minimal value too? 

The function /: Z R whose value at an integer n is f(n) = n is one 
example which does not attain a maximum value; the function/: (0,1) R 
f(x) — 1/x is another. In neither case is the domain compact. 

The proof of this theorem depended crucially on the preceding result 
that a function is continuous iff all inverse images of open sets are open 
This simple statement deserves comparison with our earlier definition of 
continuity. That definition evolved only after hundreds of years; many great 
mathematicians did their work without benefit of our set-theoretic precision, 
relying instead on what we now call intuitive notions of what a continuous > 
function is. One reason for the long delay was that this was an exceedingly 
difficult problem; the logic of our definition was more complex than any but \ 
the most contorted of sentences in everyday language. If /: M N is a 
function from one metric space to another, "/is continuous i & for each x 6 M 
and for each real e > 0 there exists a real 5 > 0 such that for all y £ M, if • 
cl^y) < 6, then &[f(x)9f(y)] < e." Essential logical phrases are italicized 
here; can you construct an English sentence with logic this complicated? 
In contrast, we might as well have said, " f is continuous iff for all S C N, • 
if S is open, then/_1(S) is open/' Again, in this equivalent definition essen-
tial logic is italicized. An enormous simplification is afforded by the use of j 
the notion of an open set. You might reasonably respond, ''But the com-1 
plexity has merely been swept under the definition of open set/' True ] 
enough, but the use of this device has far-reaching consequences, some of I 
which we shall explore, beginning with the next chapter. 

i f 
Exercises M and N 
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REFERENCES AND FURTHER TOPICS 

A treatment of the continuity of functions on real n-space can be found 
in any textbook of advanced calculus. Much of the material presented here 
Is covered in elementary calculus texts as well. To find the discussion you 
want in a given book, look up key words (for example, "compact") in the 
Index, 

Our treatment of metric spaces is not complete, in any sense of the 
word. It is designed to provide motivation, introductory information, and 
examples for the study of topology to come, Two discussions in a similar 
spirit are 

B, Mendelson, Introduction to Topology, chap, 2 (Boston: Allyn and 
Bacon, 1962), 
G, F, Simmons, Topology and Modern Analysis, chap, 2 (New York: 
McGraw-Hill, 1963). 

A more thoroughgoing treatment of metric spaces, including many fur-
ther topics as well as an introduction, is given by 

M. H. A, Newman, Topology of Plane Sets of Points (New York: Cam-
bridge University Press, 1939). 

EXERCISES 

A Show that if (M,d) is a metric space, then the function x M ^ R 
is also a metric for M, where &'(x,y) = cl (:*,</) whenever cl(x,t/) < 1, and 
&\x,y) — 1 for those pairs (x,y) where i(x9y) > 1 , A metric such as A\ 
all of whose values form a bounded subset of R, is called a bounded 
metric, and (Af,a') is a bounded metric space. 

B Define a function d: C X C —> R by letting the value of 4 at a pair 
(z9w) 6 C X C, z = (ziJk) and w — (1̂ 1,1̂ 2), be their maximal coor-
dinate separation, 

A(z9w) — max {\zi — wt\9 — u>2|}-

Show that 5 is a metric for C. What do e-balls look like in (C,d)? 
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C Show that the projections p\ and p2 of the plane C onto the real and 
imaginary axes, pi fa jk) = and p2(#i>£2) = are continuous. 

D A function /: M — N between metric spaces is a homeomorphism iff it 
has a two-sided inverse function/_1} and both/and/""1 are continuous. 
When such a homeomorphism exists, the spaces M and N are said to; 
be homeomorphic to one another. Show (by constructing a homeo~: 

morphism) that any two open intervals, considered as subspaces of R 
(with the usual metric), are homeomorphic. Can you prove that (0,1) 
and [0,1] are not homeomorphic? 

E If d and d' are two metrics for the same set M, cl is equivalent to cl' iff 
the identity map is a homeomorphism of (Af,d) with (Af,d')* Show 
that the metrics & and d ' of Exercise A are equivalent (and hence that! 
each metric space is homeomorphic to a bounded metric space). 

F Prove that the metric d defined for C in Exercise B is equivalent to the 
usual product metric d ' for C. Can you generalize this example to 
arbitrary product spaces? (The sort of metric constructed in Exercise 
B is often defined to be the product metric.) 

G Show that if M X N is the product of two metric spaces, with the prod-
uct metric, then the projection p: M X N M: p(myn) = m of the 
product space onto one of its factors is continuous. Show also that the 
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diagonal function A from M into the direct product M x M of M with 
itself, A(w) = (m,m), is continuous. 

H Show that a subset of R is path connected iff it is an interval (perhaps 
infinite). Here an interval means a set of the form (a,fo), [a9b)9 (a9b]9 or 
[a9b]9 with the usual conventions if a or fo is ±00 (for example, [a, oc) = 
[a,00] — {x: a < x}). 

J A closed e-ball centered at x in a metric space M is a set of the form 
{y £ M: i(x9y) < e}9 that is, an e-ball with its skin added to it. Prove 
first that a subset S of M is path connected iff every point of S is the end 
of some path beginning at a fixed point x of S, Then show that if S is a 
subset of R*1 which contains Jb(e,x) and is contained in the closed e-ball 
at x, then S is path connected. 

K Let S be the subset of the plane which is the union of the segment A = 
{(x9y): x = 0 and — 1 < y < l } o f the i/-axis with the part B = {(*,!/): 
0<x<\ and y = sin (1/x)} of the graph of sin (l/x) which lies above 
(0,1]. Prove that S is not path connected. 
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L Show that the subset S described in Exercise K is closed in R2, and is! 
i 

thus compact. i 
*i 

<2 

i. 

M Show that two metrics 3 and <T on a set M are equivalent (see Exercise EJ 
iff the two classes of open subsets of M which they define are exactly thê  
same, that is, iff {S: S is open in (M,d)} = (S: S is open in (M,<3')}. ] 

I 

N Show that if S is a family of open subsets of a metric space M, then USj 
•<. 

is open. Further, if S has a finite number of members, then OS is open. 
Give an example of a family S (infinite, of course) of open sets for which 
OS is not open. Observe also that M is open. Can you see that M is 
closed as well, that is, that 0 is open? 

P A family §> of sets has the "finite intersection property" iff every finite 
subset of S has a nonempty intersection; 0 . Translate the 
Heine-Borel theorem into the language of closed sets by proving that a 
subset S of R is compact iff, whenever S is a family of closed subsets of 
S with the finite intersection property, then fl S ^ 0 , 

Q Assume the results of Exercise N and use the De Morgan formulas 
(Theorem II.2) to prove that if S is a family of closed sets, then flS is 
closed, and if S is a finite family, then US is also closed. Show that 
closed e-ball (see Exercise J) is a closed set; then show that Sn is an inter-
section of closed subsets of R714"1, and so is closed. 

i 

R Let f: M —> Nbe a continuous function between metric spaces, and let 
/1 s be the restriction of the function / to the subspace S of M. Show 
that /1 s is continuous. Then give an example of a function f: R R 
which is not continuous at 0, but whose restriction to [0,1] is continuous, 
(The restriction of your function / to an open interval containing 0 is 
discontinuous.) 

S Prove that each open subset of R is the union of a mutually disjoint 
family of open intervals. 

i 

Let S be a compact subset of R, and let 0 be a family of open sets of R 
with S C U0. Show that there exists a positive number e (called a 
"Lebesgue number") such that for every member x of S there is some • 
member Ox of 0 which contains the interval (x — e, x + e). It will be | 
helpful in your proof to show that the function g: S R is continuous, | 
where g(x) — lub {e: there exists an O £ 0 with h(a,x) C 0 } when thati 

f j 

least upper bound exists, or otherwise g(x) =1. 
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U Show that if (M,<1) is a metric space, then A: M X M —» R is continuous 
when M x Mis given the product metric, 

W Show that the set of all homeomorphisms (see Exercise D) of a fixed 
metric space with itself forms a group under the operation of compo-
sition. 

PROBLEMS 

AA Sequences An "infinite sequence" a in a set S is a function a from 
the set of positive integers to S. Customarily the value a(i) of the func-
tion at an integer i is denoted and called a ''term" of the sequence. 
A sequence ai, a2, 0 3 , . . . , a * , . . , of real numbers "converges" to fo, or 
lim — fo, if for every e > 0 there is an integer N such that if i > N> 

00 

then — fo | < e, More generally, a sequence a±9 a2,... of points 
in a metric space A converges to fo € A, Um Oi = fo, if for each real i—><x> 
e > 0 there is an N such that if i > N, then 3(a*,fo) < e, The sequence 
is said to "converge," or to "be convergent," if it converges to some fo; 
fo is called the "limit" of the sequence. Show that if au a 2 , . . . is a 
sequence converging to fo in Rn, then, and only then, for each integer / 
between 1 and n the sequence of ;-th coordinates of a2, - . . (which 
is a sequence of real numbers) converges to the j-th coordinate of fo. 

If ai, a 2 , . •. is a sequence in Rn, then a "subsequence" of that se-
quence is a sequence a\iy , . . whose terms are among those of 
the original sequence, and for which ii < i2 < • - • < ij < 1 < • • •. 
Use the Heine-Borel theorem to show that every sequence in a compact 
subset of R has some convergent subsequence. Use that result to prove 
that a subset A of Rn is compact iff every sequence in A has a con-
vergent subsequence. 

Characterize the continuous functions/: A By with A and B metric 
spaces, as exactly the set of functions /: A —» B such that for every 
convergent sequence a in A, lim a% = fo € A implies lim f(ai) = /(fo)< i^oo i-* oo 
Notice that this characterization differs from those previously offered 
in that it involves only properties of/, not those of/ - 1 . 

BB Fixed Points If /is a function from some set S to S itself, then a "fixed 
point" of/is a point s € S such that/(s) = Clearly, some functions 
have fixed points and some do not, but every continuous function /: 
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I I has a fixed point- Prove this by contradiction: assume /has n 
fixed point, and define a new function g: I —» {0,1} by having g(x) = 
if f(x) < x and g(x) = 1 if f(x) > x. The new function is well defined 
since there is no x for which f(x) = x. Show that g is continuous an<j 
argue that there exists no continuous onto function g: I —» {0,1}. Th 
either g(I) = 0 or g(I) = 1, and in either case a new contradictio 
arises. 

Now let S be the half-open interval [0,1), and construct a continuo 
function from S into itself which has no fixed point. 

Compact Connected Functions Each characterization offered excep 
that of Prob. AA for the continuity of a function involves a property o; 
the inverse of the function. But a continuous function always carrie 
compact sets to compact sets and path-connected sets to path-con 
nected sets. Does this property characterize continuous real function^ 
of a real variable? That is, is it true that if /: A —» B, where A and B 
he in R, if f(K) is compact for each compact set K C A, and also iff 
/(C) is path-connected for each path-connected set C C A, then/must 
be continuous? 

Composite Continuity Let / and g be functions whose domains and 
ranges are metric spaces, with / o g defined and continuous. Does the? 
continuity of either / or g imply continuity of the other? 

A function h: A —> B is called "open" if for each open set S of A> 
h(S) is an open set of B. Now assume that/o g is continuous and that 
one of the functions, / or g, is both continuous and open. Does that 
imply the continuity of the other? 

The Hilbert Space R* We shall call the members of R n "vectors": 
x is a vector, x = (x^ X2,. . *, Xn)> then xi is the "i-th coordinate of x 
If x and y are vectors, the sum x + y = z is the vector whose i-th coor 
dinate this sum is an abelian group operation for Rrt 

(the n-fold direct product of the additive reals). This group additiori 
is continuous from R7* X Rn to Rn, and negation (the group inversion^ 
function) is continuous from Rn to Rn, ; 

Real numbers will also be called "scalars"; if s is a scalar and x ai 
7 1 i j 

vector, then the product sx = (sxi, sx2,..., sxn) is defined; this yields) 
a continuous function from R X Rn to R\ Further, this multiplication] 
of vectors by a fixed scalar s ^ O defines an "automorphism" As of thel 
group Rn> and the assignment of As to $ gives a monomorphism of the j 
multiplicative group of nonzero reals into the automorphism group of j 
Rn (see Prob. ILAA). ; 
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For each pair x,y of vectors there is an "inner product" (x,y) = 

2 xiyu a scalar. Clearly, (x9y) = (y,x); if in (x,y) we fix x, the resulting 
i= 1 
function of y is a morphism to R* The inner products define a con-
tinuous function from RTO X Rn to R; algebraically, s(x,y) — (sx,y) = 
(x,$y). The "norm" of a vector x is the scalar ||xj| = (x7x)1/2; it is a 
continuous function of x and II 

II • We could have used this 
"norm on Rn" to define our metric in the first place: d(x,y) = ||x — y ||. 

FF The Heine-Borel Theorem in the Plane Prove that subset S of R2 is 
compact iff whenever © is a family of open sets of R2 and U0 D S 
there exists a finite subfamily = {0±y 02j.. . , O*} of members of 0 
with S C Uf, Do this by imitating the proof given in the text for the 
real case. In the first half of the proof, the only alteration you will need 
to make is the definition of the open sets Og; here note that Oc is just 
the complement of the closed €-ball in R {see Exercises J and Q). 

The second half of the proof needs more work. First observe that 
it will suffice to prove the theorem for sets S which are rectangles, S = 
{#,(/): a% < x < a2 and bi < y < b2}. Then form the subset T of I by 
the rule that t £ T iff there is a finite subfamily ^Ffor the set St = {(*></): 

< x < ai + t(a2 — 01) and b\ < y < b\ + t(b2 — bi)}. Then 
I zz lubT exists as before. The next step is hard; a hint is provided by 
the diagram. Suppose every dotted rectangle inside the small rectan-
gle corresponding to 1 € I has a finite subfamily 3F of 0, so that it lies 
inside U ̂  The union of the upper and right edges of the rectangle 

[ax + i(a2 — ai), bx] 
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corresponding to i is homeomorphic to a compact line segment, an 
intersections of members of 0 with that union correspond under th 
homeomorphism to open subsets of the line segment. Choose a finit 
family of these, and use that choice to find a strip of positive wid 
centered along the union of upper and right edges of the X-rectangle* 
which strip lies in the union of a finite number of members of 0. Then 
choose an appropriate dotted rectangle corresponding to a member of 
Tless than i and arrive at a contradiction (unless 1=1). 

Do you now see how to alter your proof further for the case R2 so 
as to get a proof of the theorem for R™ under the assumption that it is 
true for R^"1? This is the inductive step in a proof of the theorem for: 

< 

every euclidean n-space, It depends crucially on the fact that half 
the boundary of an n-dimensional rectangle is homeomorphic to an 
(n — l)-dimensional rectangle. And also, of course, an implicit proof'! 
is needed of the fact that compactness is invariant under homeomor 
phisms, that two homeomorphic metric subspaces of R™ are either both 
compact or both not compact. 

GG Integrals and Derivatives Let C be the metric space of all contin 
uous functions from I into R which was described in this chapter. Is 
the function continuous from C to R which has as its value for each 

function f the Reimann integral ^f(x)dx? How about the function 
px 

from C to C which assigns to / the (continuous?) function f(t) dt? 0 
Ask yourself a similar question concerning the differentiation operation 
(furnished with a suitable domain and range). 

HH R is Homeomorphic to an Open interval Show that the function 
/: R (—1,1):/(x) = x/(l +|*|) is a homeomorphism. It is imme 
diate, then, that if (Af,3) is a metric space, then (Af,<T) is an equivalent 
bounded metric space, where 

ct'(m,n) = d(m,n) 
1 + <3(m,n)" 

Continuous Group Operations Let C be the set of all continuous 
functions from I into R; there is an abelian group structure on C in-
duced by the addition of R. The sum of two elements / and g of C is 
defined by pointwise addition: / + g is the member of C which has 
the value (/ + g)(x) = f(x) + g(x) for each x £ I (the sum is known to 
be continuous from the calculus). If C is given the metric described 

Problems 8 5 

in the text, and C X C has the product metric, then the addition func-
tion is continuous from C X C into C, and the negation (or inversion) 
function is continuous from C to G In fact, negation is a homeomor-
phism of C. Does the pointwise product, where (/g)(x) = f{x)g(x), 
also define a continuous function from C X C to C? 



CHAPTER IV 

The study of those geometric problems originating in the concepts of limit 
and continuity is nearly as old as mathematics itself. The ancient Greeks 
worried about Zeno's paradox and the existence of irrational numbers. But 
only during the past few hundred years, as the number and complexity of 
such problems increased, has a clarification of these concepts evolved. The 
thoughts of many men culminated in the definitions by Frechet of metric 
spaces and by Hausdorff of topological spaces, both early in this century. 

Metric spaces are a broad generalisation of their examples, the euclidean 
n-spaces, and most of the arguments mathematicians make today about 
limits and continuity could be expressed in terms of metric spaces, However, 
there are important cases where this is not so, and frequent cases where the 
definition of a metric for a space would be laborious and unnecessary. For 
many discussions the exact values of the metric function, the distances, are 
not needed; for instance, we have seen that a function from one metric space 
to another is continuous iff the inverse image of each open set is open. 
Similarly, a sequence of real numbers converges to a limit number iff that 
sequence eventually becomes and remains inside each open set containing 
the limit (this statement readily generalizes to metric spaces; see Prob. 
IILAA). Hence, to discuss continuity and limits in metric spaces, it suffices 
to know the family of open sets in each metric space. That is, suppose you 
are told that M and N are metric spaces, and that / is a function from M to N. \ 
Suppose you are not told what the metrics are for M and N, but are merely > 
informed just which subsets of M and of N are the open sets. You can then ; 
decide whether or not f is continuous. -fi 

J - -1 

86 ! 
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This suggests a further question; given a set M and a family 9It of subsets 
nf M, is there any metric whatsoever for M in which 9His exactly the family 
of open sets? We shall not answer this question entirely; however, it was 
tin exercise (Exercise III.N) to show that the family of open subsets of a 
metric space is closed under unions and finite intersections. That is, if there 
Is a subset S of 9H with U S i 9R, or if there is a finite subset f of 9H with 
0 VI £ 9H, then there could exist no metric on M such that 911 is the class of 
oj)en sets. 

There are other properties, as we shall see, which the class 911 must 
have in order that it be the class of open sets under some metric, but we begin 
here by posing the following question: how much of the theory of metric 
.spaces developed in Chap. Ill can be discussed, and how much is true, if we 
ure given that 9IL is closed under unions and finite intersections, even if we 
are not sure there is any metric at all which gives rise to the family 911? 

THE DEFINITION 

Let T be a set; a topology R on T is a collection T of subsets of T which 
satisfies certain axioms. A family r of subsets of T is a topology on (or for) T if 

i if S C T, then U S € r , 
ii If S C R and % is finite, then fl S € T, 
iii 0 € T and T Ct. 

Then (T,r) is a topological space, or just a space, T is its underlying set, and 
the members of r are called the open sets of (T,r) or the r-open sets of T, 
A subset N G T is a neighborhood, or r-neighborhood, of a point t € T if 
there is a member S of r with t € S C JV. Can you see that a set S is r-open 
iff it is a r-neighborhood of each of its points? 

An example is, of course, given by the collection fin of all the subsets of 
real n-space Rn which are usually called "open." Exercise III.N says that 
tin is indeed a topology. It is termed the usual (or "euclidean") topology for 
Rn• Perhaps it should be pointed out right here that, in the definition of a 
topology, property iii is completely unneeded. Since 0 is a finite family of 
members of any class r of subsets of a set T, when properties i and ii are 
satisfied it is necessary that U 0 = 0 and fl 0 = T be members of t . 
Nonetheless, it is a good idea to check these special cases separately; one's 
mind sometimes plays the trick of ignoring the void case. With this danger 
understood, the definition of a topology can be rephrased as "a family of 
subsets closed under unions and finite intersections/' 



& t 

88 IV: Topologies 

In particular, the usual open subsets of the real line R form a topology 
for R. [Note here that 0 is a ju-open set of R; it is the open interval (0,0), 
you like,] But there are other topologies possible on R. One is the discre 
topology 8 which consists of every subset of R; clearly, 8 is closed und 
unions and finite intersections. This topology is exactly the class of ope 
subsets if R is given the peculiar metric mentioned in Chap, III, d(x,x) = 0* 
and if x^y, then i{x,y} — 1. To check this, observe that the ball b(l9x) 
{x} for each x € R; hence {x} is an open subset under this metric, and so 
every union of singleton sets, that is, every subset of R. 

Every topology for R is contained in 8 (that is, is a subfamily of 8); this 
is expressed by saying that 8 is the largest topology for R. The other extreme, 
e = { 0 ,R}, is the smallest topology for R. Yet a fourth topology <p for R is 
the family of all subsets S of R for which either the complement S' is finite 
or else S 0 ; check <p against the axioms to be sure it is a topology. Neither 
e nor <p could be the class of open sets under some metric for R; in the case 
of e we need merely note that 0 I, so the distance d from 0 to 1 is positive 
in any metric. Hence the open subsets of R under a metric always include 
an open set 0) which contains 0 and does not contain 1, whereas the only 
open set of e which contains 0 is R. A topology which is just the family of 
open sets for some metric is called metrizable; thus (i and 8 are metrizable, 
but e is not; it is an exercise to show that <p is not metrizable. 

Evidently, e C (p C ju, C 8. If a and T are two topologies with o CT, 
we shall say that a is the smaller topology and T the larger, (Other nomen 
clatures are "coarser-finer" and "weaker-stronger." Be warned that there 
is some confusion in their use; we shall stick to "smaller" and "larger.") 
However, such a linear ordering is not always possible. If x £ R, let vx 

{S C R: x £ S £ /x or else S = 0 }; this is yet another topology for R, and 
e C vx C jix, but <p neither contains nor is contained in vx (why?). This gives 
us five different topologies for the underlying set R—or, really, an infinite 
number, since vx vy if x ^ y. 

For each set T the collection 8 of all subsets of T is a topology for T, and 
it contains each other topology on T; this largest topology 8 is called the 
discrete topology for T, Also, the collection e = { 0 ,T } is always a smallest 
topology for T; it is called the indiscrete topology on T. It is an amusing 
combinatorial exercise to count the total number of topologies possible on 
a given finite set T (see Exercise C). 

Exercises A, B, and C 
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METRIZABLE SPACES AND CONTINUITY 

We have pointed out that when M is a metric space the family of all 
11 lose subsets of M which are open in the metric (that is, contain an e-ball 
about each of their points) is a topology called the metric topology, for 
M. It may happen that two different metrics on M define the same topology 
fi for M; in that case the two metrics are called equivalent- An example of 
this was given in Chap, III, where two different bounded metrics were de-
scribed for R? each of which defined the usual metric topology for R. 

Though it was defined in terms of the metrics, the continuity of a func-
tion between metric spaces can be described solely in terms of the metric 
topologies of its domain and range spaces. We now use this theorem to 
suggest our definition of the continuity of a function from one space to an-
other: a continuous function / from a topological space (S,o) into a space 
(T,T) is a function /: S —» T such that /_1(17) is an a-open set whenever U 
is r-open* We now adopt the word map as a synonym for "continuous func-
tion," That is, / is a map iff U € r implies /_1(U) € <*- By design, if a and r 
are metric topologies, this new and broader notion of continuity agrees with 
the metric definition. Recall that our definition of the product metric merely 
broadened the pythagorean theorem. Here again we have been led to a 
definition in a general setting from a theorem in a particular case. 

Each choice of topologies a and r for the fixed sets S and T selects a 
subset of the set of functions from S to T, the continuous ones, as those which 
are, in some sense, "nicely behaved/' In general, as the domain topology a 
"gets larger" (is replaced by a larger one), more and more functions on S 
become continuous, and as r gets smaller, more and more functions into T 
become continuous. It is easy to see that if a is the discrete topology for S, 
then every function on (S,a) is a map, since inverse images of sets must always 

4 

be open. Conversely, if the range topology r for T is chosen to be the in-
discrete one, r = {T, 0 ), then every function into (T,r) is continuous, since 
f-i(T) = S € a and/~x( 0 ) = 0 € a, no matter which topology a is chosen 
for S. Perhaps it is worth noting here that, for every choice of a and T, each 
constant function from S to T is continuous, since /_1(17) is either 0 or S, 
depending on whether or not the only value of / lies in U, 

Exercise D 
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CLOSURE, INTERIOR, AND BOUNDARY 
• \ 

\ 

Throughout this section let (T,r) be a fixed but arbitrary topological ! 
space. Since there is only one topology on T under consideration, we shall 1 
speak simply of the space T [instead of (T,T)], and "open" will mean "T-open," J 
etc. In fact, when confusion will not result, we shall henceforth use the | 
name of the underlying set for the space as well. J 

In real 3-space, the closure of a subset A is A together with all its skin, j 
whether that skin is part of A or not Alternatively, the closure is the set of j 
points arbitrarily close to the points of A. The interior of A is the set of all { 
points of A for which A is a neighborhood, that is, A minus any part of its 
skin which it contains. The boundary of A is its skin, the set of points ar- i 
bitrarily close to both A and its complement A', Each of these ideas may I 
readily be extended to topological spaces in general; we have only to phrase j 
their definitions in the topological language of open sets. 

SA 

it 
! J 

The complement of an open set is called closed The closure A" of a 
subset A of T is the intersection of the family of all closed sets which contain :!j 
A. The interior A0 of a set A is the union of the family of all open sets which 
are contained in A. The boundary of A is dA = A~ fl (A')". 

* ( 

1 THEOREM 

i Finite unions and arbitrary intersections of (families of) closed 
sets are again closed. 

ii For each set A, A~" is closed and contains A and (A")' = A". If ; 
A is closed, then A~ = A. 

iii For each set A, A0 is open and is contained in A and (A°)° — A V 
If A is open, then A0 = A. 

iv If A C B, then A0 C B° andA~ C B". 
v For each set A, dA is closed and dA = A~ — A0 — 3(A/). Further, 

A" = A0 U 9A. • 
vi A set A is open iff A fl dA = 0 and closed iff A D 3A. 
vii A0 = [(Af)-]f and A" = [(A')°]' for all sets A. • 
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The proofs of these statements are short and straightforward, and an 
understanding of them is essential. The proofs are asked for formally in 
Kxercise E, but a wise reader will construct them at once. 

In the examples of the metric spaces the above definitions specialize 
to the usual notions of the closure, boundary, and interior of a set. In any 
apace an intuitive feeling for the boundary of a set is given by the contention 
that a point of the space is in the boundary of a set iff every neighborhood 
of the point intersects both the set and its complement. This is true, since 
the point could then be in, the interior of neither the set nor its complement. 
Similarly, a point is in the closure of the set iff every neighborhood of the 
point intersects the set. A point is in the interior of the set iff the set itself 
is a neighborhood of the point. The closure of a set can also be characterized 
us the minimal (or smallest) closed set containing the given set; this makes 
sense, since intersections of closed sets are closed, Correspondingly, the 
interior of a set is just the maximal (or largest) open set contained in the 
given set. 

The continuity of a function, a property defined in terms of open sets, 
can be described by the behavior of the function with respect to closed sets 
and by the closure operation as well. 

2 THEOREM The following statements about a function f from a top-
ological space (S,a) to another space (Tj) are equivalent: 

i f is continuous, 
ii /~X(B) is o-closedfor each r-closed set B, 
iii /(.A") C /(A)" for every subset A of S, 
iv f^{B)- C f~HB-) for every subset B of T. 

Proof The proof proceeds by a circular sort of logic; with used to 
abbreviate the word "implies," our plan of attack is 
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Statement i implies statement ii: If B is r-closed, then B' is r-open; 
therefore/"^(B') is cr-open, since/is continuous. But/_1(B') = [/"^B)]', 
so/_1(B) is closed. 

Statement ii implies statement iii: If A C S, then /_1[/(A)~] is 
closed {by ii) and contains A, and so A" C/^[/(A)"]. Thus /(A") C 
/(/"1[/(A)™]) C/(A)". The latter set inclusion is a particular case of a 
more general statement: if C is a subset of the range of an arbitrary function/, 
then/[/-1(C)] C G 

Statement iii implies statement iv: Let A = /~1(B); then (by iii) 
/[/-i(B)-] C (f[f^(B)]y C B". But for all subsets C of the domain of 
/ /- i [/(0 ] 3 C, so /-1(B)- C n(f[f-\B)-]) C /-I(B-). 

Statement iv implies statement i: If C is open in T, then C is closed, 
and (by iv)/_1(C/) D /~1(C/)"" D /"1(C')3 so/""1(C) is closed. But/-i(C) =s 
[ / " W > so /"HG) is open, • 

Exercises E and F 

SUBSPACES 

If A is a subset of T and r is a topology on T, then {A Pi S; S £ r} = ok 
is a topology on A. The proof that a is closed under unions is an applications 
of the distributive law (Theorem I.2j); if {Ax: A € L] is a subfamily of a, so 
that for each index A e L, Ax — A H -Sx is a member of a, then 

U { A X : A G L } = U { A n S X : X € L } = A ' n U { S x : A e L } . 

The closure of a imder finite intersections is similarly proved. The spaqe 
(A,a) is called a subspace of the space (T,r); we shall often say simply that 
"A is a subspace of 27' The topology a is the relative topology on A. It is 
an exercise to show that if T is a metric space with metric topology r, the 
metric topology on a metric subspace A is the same as the relative topology 
on A. This will show that the definition of subspace of a topological space 
suitably generalizes the earlier notion of a metric subspace. 

As another example, if A C T and r is the discrete topology on T, then 
the relative topology on A is the discrete topology on A. If the topology r 
on T is indiscrete (so that r = { 0 , 7 } ) , then the relative topology { 0 , A) is 
also indiscrete. 

Notice that the inclusion A C T , when regarded as a function i: A —> T: 
i(a) = A, is continuous on a to r. This is obvious, since for each open set 
S € r, i~i(S) = S D A is, by definition, a member of Furthermore, all 

B-

y. 

I 

t 
4 
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I he members of a are obtained in just this fashion, so a is the smallest topology 
for A with which / is continuous. Now suppose A C B C T and that a and 
(i are the relative topologies on A and B, respectively, induced by a topology 
r on T. Since A C B, there is another relative topology a f for A induced 
by fi; is it true always that a = a ? Well, if i: A C T, /: A C B, and fc: B C T 
arc the inclusion functions, then i = k o j is continuous from a' to r, since / 
Is continuous on a' and fc is continuous on fi. Thus a ' D a (be sure you 
agree). But if U € cl\ then there exists V £ fi such that U = A n V, and 
there is W e T such that V = B N W, or 

u = An(Bnw) = {Ar\B)nw = A rvwea. 

I lence a' = a. This may be rephrased as every subspace of a subspace of 
T is a subspace of T, • An example is provided by the discrete relative 
topology of Z C R C C; another example is R C R2 C R3. 

Exercises G and H 

BASES AND SUBBASES 

The process that was used to define the metric topology on a metric 
space is useful in many othef situations as well. Remember that the family 
of all unions of e-balls is a topology. This fact motivates our next definition, 
which is rephrased in the language of arbitrary topological spaces: Let (T,r) 
be a space, and let fi C r; then fi is a base (or "basis") for r iff each S 6 r is 
the union of a subset of ft, that is, iff S € r implies that there exists y C ft 
such that U y = S. Clearly, if fi is a topology for T and £ C fi9 then r C fi, 
so r is the (unique) smallest topology containing fi. Not every subfamily 
fi of a topology T is a base for R; two sorts of trouble may appear. As 
an example, let 8 be the discrete topology on S = {a,fo,c} and define = 
{{a,b},{a>c}} C 8. The set of unions of subsets of fi does not contain {a} 
and so is not closed under finite intersections; this set of unions is not a to-
pology, and hence fi is not a base for 8, On the other hand, the set € = 
{ 0 ,S} C 8 is itself a topology on S, but it also is not a base for 6, 

3 THEOREM A collection fi of sets is a base for some topology r on 
T = U fi iff for each pair S,T of elements of fi, and for each t £ S H T, 
there is an element U of fi with i£U C S FL T. In that case, T = 
{ U 7 : y C j 8 } . 

Proof Suppose fi C r is a base for r, and let S, T £ fi. Since fi C r, S and 
T, and thus S Pi T, are members of r. Hence S D T is a union of members 
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of P, S n r = U{U: and U C S n T), and thus each member t 
S H T lies in some member 17 £ which is a subset of S H T. 

Conversely, if the intersection of each pair of members of ft is a unio 
of members of jS, then it is easy to see that T = { U y ; y C / ? } i s a topology fo 
U/J; we check only that r is closed under pairwise intersections. 
t £ Uyi O Uy2; each y\ C ft so there is an S* £/? such that t€ y* f 
i = 1 and 2. By assumption, there exists C7 € /? such that t £ U C Si Pi Sg 
hence U C Uyi Pi Uy2; therefore that latter set is a union of member^ 
of • 

Theorem 3 states clearly that if a is an arbitrary family of sets, then the 
family ft of all finite intersections of members of a is a base for a topology 
on U o. Then a is called a subbase (or "subbasis") for T. We may claim; 
now that a family a is a subbase for a topology r i f fa C r and each member 
of r is the union of finite intersections of elements of a. It is obvious that if fi 
is any topology and 0 C jut, then r C fi; r is the smallest topology containing 
a, and it is unique. An example of a subbase for the usual real topology is the 
family 0 of all open intervals of length 1, No member of 0 lies inside 
(0,1) n (%,%), but every open interval (a,b) of length less than 1 is (a,b) 
(a, a + 1) n (b — 1, b); the open intervals of length less than 1 form a base 
for the usual topology. This latter example should be amplified; every base 
for a topology is also a subbase for that topology. 

We have already used bases to construct topologies and will do so fre-
quently. However, for some purposes it is not necessary ever to mention 
the topology which a base or a subbase "generates." For instance, the metric 
definition of a continuous function involves e-balls and 6-balls, that is, mem 
bers of the base only. Perhaps the most important fact about subbases is the 
following. 

4 THEOREM Let f be a function from (A,a) to (B,/?), and let a be a 
subbase for /}. Then f is continuous iff for each member Sea , /~1(S) 
is open in A. 

Proof If/is continuous and S e a C j S , then certainly/™1(S) € a. To show 
the converse, we note that every member T € ft is the union of finite inter 
sections of members of 0. We assume/_1(S) is open for each S £ 0; if we can 
prove that / _ 1 preserves all unions and intersections, then we shall have 
shown/_1(r) to be a union of finite intersections of open sets, and thus open 
This proof is consequently completed by the following lemma, which is 
stated separately, since it applies to every function and holds interest inde-
pendent of the proposition at hand. 
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5 LEMMA If /: A —» B is a function, then /_1 preserves differences, 
intersections, and unions of sets in B, Precisely, if S, T C B, then 
f-^S — T) — /-i(S) - / _ 1 (r ) , and if % is a family of subsets of B, 
then f~1(C\(5)= fl{/~1(T): and = U {/-i(T): 

Proof First assume x C / ^ S - T), so that /(x) € S - T, f(x) £ S, and 
f(x)(T. Clearly, xef'HS) and xif-^T); hence * e / " 1 ^ ) - f-^T). 
This shows that/-1(S - T) C f ' ^ S ) - /"1(T). Conversely, if * e/" 1 ^) -
/ ~1(T), then f(x) € S; and if f(x)eT, then xe/"i(T), a contradiction. 
Therefore — T) = /-i(S) - /_1(r). 

To show that/"i(n!T) C n { / " 1 ( r ) : T e ^ } , let * € / - * ( n«T), so that 
f(x) € fl g"; that is, f(x) G T for each T € 9". Thus x ef'^T) for each T e % 
and x € f){f~'1(T): Te 5"}. To prove the other inclusion, assume x € 
n {/- i ( r ) : T G so that T e ®r implies * ef-HT) or f(x) 6 T. This says 
/(x)€ c\% so xef^my 

The proof that/ - 1 preserves unions is similar; it is left for an exercise. • 
Note that the above result does not suggest that the domain topology a 

may be replaced by a subbase(or even base) r so that continuity of / may be 
verified merely by checking inverse images / -1(S) for membership in r, no 
matter which class (of subsets of B) S is allowed to range over. Inspection of 
a random example will probably convince you of this. r 

•A ' 

Exercise L 
i 

PRODUCT SPACES 

If (A,a) and (Byfi) are spaces, then there is a natural way of defining a 
topology on A X B in terms of a and fi. Specifically, the product space 
(A X B, a X fi) is the cartesian-product set A X B furnished with the 
product topology a X fi which has for a base die family {S X T: S € a and 
T G By way of example, we investigate the case where A = B = R, with 
a and fi both the usual topology /x. A subset N of the plane R X R = R2 is 
open in the product topology jut X jw iff for each point (x,y) £ N there is a 
pair of open sets S,T in fi with x £ S, y £ T, and S X T C N. If, for in-
stance, N = i>[ei,(*,?/)], £i-disc at (x,y), then S and T may be taken to be 
the open intervals of length \/2ei centered at x and y, respectively. Since 
each set M which is open in the metric topology for R2 contains some e-disc 
about each of its points, each such set M must be in ju, X jti. On the other 
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hand, each base element S X T of jit X M must contain, for each of its points, 
a rectangular base element (that is, the product h X h of two open inter-
vals) centered at that point, and of course that rectangle contains a con-
centric e-disc. Thus each such S X T is open in the usual topology of the 
product metric; hence fi X ^ equals the metric topology. 

It is comforting to know that the product topology is exactly the usual 
metric topology on the most familiar of cartesian products. Another route 
to an understanding of product spaces goes by way of the two projections 
pi A X B - » A and q\ A X B —» B, where p(a>b) = a and q(ayb) = h If 
S e a , then p"1(S) = S X B is a base element in a X A and thus p is con-
tinuous. Similarly, T € fi implies qf-1(T) = A x T i s i n a x / ? ; thus q also 
is continuous. Furthermore, p_1(S) D q^(T) = (S X JB) n (A X T) = ] 
S X T. Hence, if 7 is a topology on A x B for which p and q are continuous, \ 
then the base {SxT:Se<* and Tefi) C y, and so a X fi C y. We may j 
now characterize the product topology as the smallest topology on the prod-
uct space for which the projections are continuous. 

Exercises J and K 
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QUOTIENT SPACES 

Recall from Chap. I that if i? is an equivalence relation on a set S, then 
the family of equivalence classes under R is a partition of S. The quotient 
function <7: S —> assigns to each x € S the class [x\ = q(x) of all elements 
of S which are fi-related to x. Now, if S has a topology a on it, we would 
like to construct a topology r for the quotient set 9" such that q is continuous 
from a to r. That much is easy, of course; the indiscrete topology on ?T is 
guaranteed to make q continuous, regardless of which topology a is chosen 
for S. But for a given a there is a unique largest topology to which q is con-
tinuous; the quotient topology for ?Tis defined to be 

r = {% C 9; q'x(%) € <r}. 

Lemma 5 assures us that r is indeed a topology for % the inverse image of a 
union (or intersection) of T-members is just the union (or intersection) of their 
individual inverse images, since q is a function. Since a is closed under 
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unions and finite intersections, so is r. Clearly, q is continuous to r, since the 
T-open sets have been chosen so that their inverse images are open. Equally 
clearly, r is the largest topology to which q is continuous, for if a topology 
t ' for 5 contains a subset Tof with r, then q~1(CV) is not open in S and 
thus q is not continuous to r\ 

An example is in order here. Let S be the unit interval I = [0,1], and 
define the relation R on I by R = {(x,x): x £ 1} U {(0,1),(1,0)}, that is, xRx 
for all x, and OKI: 

(0,1) 

R c l x l 

(1,0) 

The equivalence class for x £ (0,1) is [x] = {x}, a singleton. The other class 
is |0J = [11 — {0,1}. The quotient set ?T may be visualized as an interval 
which has been bent so that its two end points are glued together to become 
a single point of that is, a circle: 

The quotient topology r for ^contains a subset 9L of ?Tiff q 1(%) is open in I. 
Now 

<rW = = {x: [x] £ %} = {x: q(x) £ %}, 

and it is not hard to decide that in case {0,1} t%6li£r i = q(U) for 
some open subset U of (0,1). However, if {0,1} € % then U%canbe open 
only if it contains a set [0,e) U (1 — e, 1] for some e > 0, that is to say, only 
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If is a neighborhood in I of both 0 and 1. [To be open, must also 
contain a neighborhood in (0,1) of each of its other points, as well,] All this 
should convince you that (%T) is very much like S1, the unit circle in the 
plane. 

The general operation we have performed, the manufacture of a topol-
ogy on a quotient set, has fundamental importance and frequent use in 
topology. The space (%r) is said to be a quotient ("identification," "factor," 
or "decomposition") space of (S,a), and r may be called the "identification 
topology." In our example the quotient map q "collapsed (or identified) the 
subset {0,1} of I to a point." Some light was shed on the corresponding 
operation in the cases of sets (Chap. I) and groups (Chap. II) by a factoriza-
tion of functions. This is possible in the topological case as well. 

6 THE QUOTIENT THEOREM FOR SPACES I f f : S T is a map, there exist 
unique maps q, r, and i such that f = i o r ° q, where q is a quotient, 
r is a 1-1 correspondence, and i is an inclusion: 

g — 
! t 

i | 

Proof The diagram is familiar by now. The relation R on S has the prop-
erty that xRy iff f(x) = f(y). Our functions q, r, and i are defined by their 
values: q(x) = [x]9 r(\x1) = f(x) £lm (/), and i[f(x)] = f(x) £ T. These 
functions are known (from Chap. I) to be unique; hence we need only decide 
that they are continuous. But i is the inclusion of a subspace, and so is con-
tinuous. And q is a quotient map, and so is continuous. We need to show 
that if V is open in Im (/), then r_1( U) is open in % that is, that r is continuous. 
But an open set U of Im ( f ) must be the intersection U = Im (/) H V of that 
subspace with an open set V of T. Furthermore, /~1(t/) — f~x(V)<> since 
x£f-\V) implies f(x) € U; hence f~x(U) is open in S. We assert that 
qf~1[r~1(?7)] = / -1(17) [which makes r _ 1 (U) open in the quotient topology 
for ST]; clearly, for all x £ S, f(x) = r[q(x)]y so f(x) € U iff q(x) £ U). • 
The quotient space will sometimes be denoted S/fi 

As an example of the Quotient Theorem, consider the map /: I S1 
« 

which wraps the interval once around the unit circle in the plane, f(x) = 
(icos 2TTX, sin 2ATX). The functions cos and sin are known from the calculus 
to be continuous functions; if you assume that, it is not difficult to prove 
that / is continuous onto the circle (see Exercise Q for an easy proof). 
The factorization / = i © r o q yields the quotient q of I which we considered 
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earlier; since / is onto, i is the identity map on S1, and r is a continuous 1-: 
correspondence of the quotient space with the circle. 

Exercise 5 

HOMEOMORPHISMS 

Just as in the metric case, a map of spaces having a two-sided inverse^ 
which is also a map is called a homeomorphism. In the above example, the | 
1-1 correspondence r is a homeomorphism; this statement is implied by the) 
fact that r(%) is open in S1 for each open set % of the quotient space I//] 
(why?), since (r'1)"1^) = rfll). If/: S Tis a homeomorphism, then S is 
homeomorphic to T, and S and T are homeomorphs of one another, This \ 
is an equivalence relation on the class of all topological spaces, because i 
identity maps, inverses of homeomorphisms, and composites of homeomor- j 
phisms are always homeomorphisms. Since a homeomorphism / from S to"! 
T sets up a 1-1 correspondence between the topologies on S and T, the study j 
of topology may be fairly said to be the study of these equivalence classes, J 
rather than the study of individual spaces. We shall return to this matter 
later. 

_ 

A map/: S —> T is defined to be open (or "interior") iff the image f(U); 
of each open set U of S is open in T. Similarly, a closed map is one which | 
carries each closed set to a closed set. Clearly, a homeomorphism is just an 1 
open (or closed) map which is a 1-1 correspondence. Composites of open (or; 
closed) maps are again open (or closed) maps. The function / which wraps 
the interval around the circle is not open; [0,^) is open in I, but/[0,^) is not 
a neighborhood of /(0) = (1,0) in the circle. Since the factors r and i\ 
assigned to/by the Quotient Theorem are (in this particular case) both open ; 
maps, the quotient q defined by / must fail to be open, since / = i o r o q | 
cannot be the composite of open functions. The existence of a map (in fact, I 
a quotient map) which is not closed is the subject of an exercise. Neverthe- j 
less, we can add the following to the Quotient Theorem. j 

7 COROLLARY I f f is open (or closed), then each of the factors qy r, and i i 
is open (or closed). Hence r is a homeomorphism i f f is either open or 
closed. : •i 

Proof If U is open in S, then each of the sets f(U\ and ! 
r-1(t~"1[/(C/)]) = q(U) is open, so q is open. Similarly, if % is open in S / f , • 
then qf"1(%), f i q ' 1 ^ ) ] , and in turn, r ^ / f a " 1 ^ ) ] ) = K^) are all open, so r is 
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open. To vary the argument, i is open since Im(f) — f(S) is an open subset 
<>l T. 

The proof of the assertion for a closed map / can be had by replacing 
ouch instance of the word "open" in the proof above by the word "closed." 
And a 1-1 correspondence r is open iff it is closed. • The topological analog 
of an isomorphism of sets or groups is evidently a homeomorphism. How-
ever, the Quotient Theorem for Spaces is not strictly analogous to those 
similar theorems in the cases of sets and of groups, since r is not always a 
homeomorphism (see Chap, V), The corollary partially mends this defective 
analogy. 

Whenever r is a homeomorphism we shall say that Im ( f ) has the 
quotient topology. 

Now consider our example, the map / which wraps I around S1. If V 
is closed in I, then V is compact, as is / (V), which is therefore a closed (and 
hounded) subset of the plane. But then/(V) = f(V) PI S1 is a closed subset 
of S1. Hence / is closed, though we have shown it not to be open, and the 
quotient space I//is homeomorphic to the circle S1, We shall express this 
fact by saying that "I//is a circle." 

We now use the notion of direct product to manufacture a further ex-
ample from the above. The map fi I —» S1 defines a function f X fi I X 
I —> S1 X S1 by ( / X f)(*>y) = [f(x)>f(y)]i w e may use the diagram of con-
tinuous functions, 

i x i fxf > S1 X S1 

to argue that / x / is continuous (see Exercise Q). Geometrically, I X I 
may be thought of as its homeomorph, the square {(*,*/): 0 < x < 1 and 
0 < V < 1} tita plane; similarly, the torus S1 X S1 is homeomorphic to 
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the idealized surface of an innertube in 3-space (it is a "circle of circles") 
Consequently, we may think of the map / X / as having as domain the squar® 
in the plane and as range the torus in 3-space. It is not hard to show tha 
/ X / is a closed map in this case. Therefore the torus has the quotien 
topology; it may be regarded as a quotient of the square. The identification^ 
occurring in this quotient may be described geometrically as: sew the le 
and right edges of the square together (to get a cylinder), and then sew the; 
top and bottom edges together. 

> ) 

// 

The torus and the 2-sphere have in common the property that suffix 
ciently small patches of each look just like a disc in the plane; physically, a! 
disc-shaped tire patch could be applied to repair any puncture in either 
A space with this property is called a 2-manifold. Precisely, an n-manifold| 
(or just manifold) M is a topological space M which, about each of its points 
m, contains an open set N, m £ N, that is homeomorphic to euclidean^ 
n-space (the same space R" must work for every m € M). Obviously Rn 

itself is an n-manifold (with N = for every m). The circle S1 is a 1-manir 
fold. Furthermore, any space X homeomorphic to an n-manifold must also 
be an n-manifold. We shall not study manifolds as such, but they constitute 
a large class of interesting topological spaces which will frequently provide 
us with examples. 

Exercises Q and U 

FACTORING THROUGH QUOTIENTS 

Let p\ I —> X be a path in a space X with p(0) = p( 1); that is, p is ai 
"closed path," which begins and ends at the same place, a "loop" in X. Then 
p is constant on each equivalence class of the quotient map of the interval l-'j 
into the circle S1 which identifies the end points of I, and there obviously 
exists a unique function g: S1 X such that g o q = p; 
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S1 

It is natural to hope that g is continuous, that a closed path in X corresponds 
uniquely to a map of S1 into X. It does. In order to see this, we rephrase the 
problem in the greatest possible generality. 

Suppose q: S —» S/R is the quotient function on a set S modulo a relation 
ii on S and /; S —» T is a function, Can / be factored through S/R? That 
is, is there a function g: S/R —> T such that / = go q? Clearly, if there exist 
members x and y of S with xRt/, so that q(x) = q(y), and yet f(x) 
then g o q(x) = g o q(y) for every such function g. This is contradictory, and 
we conclude that no g exists with g o q = f On the other hand, if for every 
x, y € S, xRy implies f(x) — f(y) (that is, if the relation induced by / on S 
contains J?), then g may be uniquely defined: if [x] is the R-class of x, then 
g([x\) = f(x) (compare Prob. LCC). If /is a morphism of the group S into 

S — 

* / 
S/R 

the group T, it is easy to see that this requirement reduces to the demand 
that Ker ( / ) D Ker (q) (compare Exercise II.Z). How about the topological 
case, where/: S Tis a map from the space S to the space T? This question 
is settled by a proof of the fact that a function g: S/R —> T on a quotient 
space is continuous if and only if g o q: S T is continuous. It is clear that 
go q is continuous when g is. In the other direction, assume that g o q is 
continuous, and let U be an open subset of T. The subset g-1(t/) of S/R is 
necessarily open in the quotient topology, since q~1[g~1(^)] = (g ° <7)-1(t/) 
is open in S. • 

Now it is evident that a map /: S —> T has a factoring / = g ° q through 
S/R, where the factor g is a map, iff /can be factored through S/R as a func-
tion, that is, iff the relation induced by / contains R. This result means, for 
example, that there is a 1-1 correspondence between the set of all maps of 
S1 into a space X and the set of those maps of I into X which begin and end at 
the same point, the set of closed paths in X. Can you phrase a similar cor-
respondence between the set of maps from a torus into X and a certain subset 
of the set of maps of I2 into X? 

Exercises W and Z 
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REFERENCES AND FURTHER TOPICS 

Although this chapter began by proposing a discussion of "limits and! 
continuity," it delivered no comments on the definition of "limit" in a topo| 
logical space (Prob. III.AA examines sequences in metric spaces). The def-r 
inition is easy enough: a sequence si9 S2> . . . of points of a space T con-jj 
verges to a limit s, lim sn = $> iff for each neighborhood U of s there is artj 
integer N such that sn E U if n > N* Among metric spaces sequences suffice] 
to determine the topologies and the classes of continuous functions. Foil 
example, a subset S of a metric space M is open iff for each point 5 of S and| 
each sequence $1, $2, $3, - - • with limit s there exists an integer N such that) 
sn 6 S if n > N. However, this statement is not necessarily true for a non*j 
metrizable space M. This problem is solved by use of "nets," which are a| 
generalization of sequences; every topology can be completely described!! 
in terms of its convergent nets. A good account of this is given in 

J. Dugundji, Topology, chap. X (Boston; Allyn and Bacon, 1966), ':; 
5 

J. L. Kelley, General Topology, chap, 2 (Princeton, N. J,; Van Nostrand, j 
1955). 

Another question we have not answered is, "Which topological spaces; 
are metrizable?" While we have exhibited nonmetrizable spaces, and we 
shall later observe conditions on spaces which are necessary for metrizability,; 
for a full answer we suggest chap. 4 of Kelley, cited above. A partial answer*; 
which will satisfy our needs, is that subspaces of Rn are metrizable, and that) 
each manifold we shall see (and in fact every manifold) is homeomorphic to] 
a subset of some real n-space. 

The objects we defined to be manifolds are often called "topological 
manifolds." It is possible to build into a manifold a differential structure; 
the study of such structures and their interrelations constitutes the subjects 
of differential geometry and differential topology. Good introductions to 
these matters may be found in 

Auslander and MacKenzie, Introduction to Differentiable Manifolds 
(New York; McGraw-Hill, 1963), 
J, R, Munkres, Elementary Differential Topology, rev. ed. (Princeton, 
N.J.: Princeton University Press, 1966). 

The material presented in this chapter is quite standard; parallel dis-
cussions may be found in a number of recently published textbooks possessing 
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much titles as "Introduction to (or Elementary or Elements of) Point Set (or 
General) Topology/' Find die discussion you want by looking up key words 
(for example, "base") in the index. 

One excellent text, on a somewhat higher level than our discussion, is 

N. Bourbaki, General Topology, parts I and II (Reading, Mass.: 
Addison-Wesley, 1967). 

This is a translation of N. Bourbaki, Topologie Generale (Paris: Hermann, 
1953); if you do not yet read math in French, here is an excellent time and 
place to begin. Try it; using the translation as a pony, you will find it 
possible even if you have never studied that language. 

EXERCISES 

A Let <p — (S C R: S = 0 or S' is finite}; show in detail that <p is a to-
pology for R, and also that it is not metrizable. 

B Show that if % is a family of sets, each of which is a union of £-balls in a 
metric space M, then is itself a union of e-bails, 

C Count the number of distinct topologies there are for 0 , {a}9 {ajb}, 
{ayb9c}> and {a>b,c9d}. What may be said about the family a = {S; 
S' € T} of R-closed sets when r is a topology for a finite set? 

D Is the usual metric topology on the set of rational numbers discrete? 

E Give a detailed proof of each statement of Theorem 1. 

F If A C B, is 3A C 3B? Give examples of a nonopen intersection of open 
sets and a nonclosed union of closed sets. 

G A point x in a space T is an "accumulation," "cluster," or "limit" point 
of a subset A of T iff x is in the closure of A — {x}. A point x £ A is an 
"isolated point" of A iff {x} is open in the subspace A. Show that x is 
an isolated point of a subset A iff x £ yet x is not an accumulation 
point of A. 

H Prove that if A is a subset of a metric space Af, then the relative topology 
on A is exacdy the same as the metric topology for the metric subspace A. 



106 IV: Topologies 
i 

J Prove that if T± and T2 are spaces having bases /?i and then the; 
family (3 — {Bi X B2: Bi e fii and B2£($2} is a base for the product 
topology of Tt X IV 

K Generalize the example in the text (for R X R) to show that the topology 
of the product metric is equal to the product topology defined by the 
metric topologies for the direct product of two metric spaces, (Hint: 
Use Exercise J.) 

L Show that the set of balls with rational radii whose centers have all co-
ordinates rational forms a basis for the usual topology on Rw. A 
topology with a countablef (or denumerable) basis is said to be "sec-
ond countable" or to satisfy the "second axiom of countability." 

M Let rx be a topology on T for each index X in L, and show that r = 
H {Tx: X € L) is a topology on T, Also show that U {rx: A € L} need not; 
be a topology; is it a base for some topology? 

N If S C A and T C B , then is the product of the relative topologies the 
same as the relative topology on S X T in the product topology on 
A X B? What if S is a singleton? 

P Prove that the projections of a product space are open functions (and 
hence that each factor space has the quotient topology). 

Q Show that a function into a product space is continuous iff its composir 
Hon with each projection is continuous> • Then use this important 
result to establish that, if a € A, then the subspace a X B of A X B is 
homeomorphic to B. ] 

A subset A of a space T is "dense" in T if A" = T. The space T is 
"separable" if there exists a countablef dense subset A of T. Prove that ; 
every second-countable space (see Exercise L) is separable (and therefore| 
that Rn is separable), 

S Let p be the projection of the plane R X R onto the real axis R. Show 
that the range R has the quotient topology, but that p (and the quotient] 
function it defines) is not closed. [Hint: Consider the subset {(x,l/z):; 
x > 0} of R X R ] 

T Prove that every homeomorph of a metric space is metrizable. j 
f A set is "countable'' if it may be put in 1-1 correspondence with a subset of the natural j 

numbers N = {1 ,2 ,3 , . . . } . ] 
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U Separate the following alphabet into classes of homeomorphic letters: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

W Produce examples showing that in the factorization f = i q r o q of a 
function any pair of the factors may be open, yet the third factor may 
not be open, 

Y Show that every e-ball in Rn is homeomorphic to Rn itself. A homeo-
morph of Rn is called an "open n-cell"; show that if I = (0,1), then In is 
also an n-cell. (Homeomorphs of closed e-balls in Rn are called "closed 
n-cells*") 

Z Show that the quotient space of the n-cube ln resulting from identifica-
tion of all boundary points (here think of In C Rn) is homeomorphic 
to S", Then assert that the set of all maps from Sn into a space X is in 1-1 
correspondence with the set of all those maps from In into X which are 
constant on the boundary of ln. (Hint: Use the corollary to the Quotient 
Theorem, and draw pictures for the cases n = 1, 2, and maybe 3,) 

PROBLEMS 

AA Quotients of a Function Space Let C be the metric space of continuous 
functions from I into R which was described in Chap. III. The distance 
between two functions / and g is 

a(/,g) = lub {\f(x) - g(x) I : X € I}, 

and there is a continuous evaluation function et: C R defined for 
each f e Is = /(£)• Show that the quotient space C/et is homeo-
morphic to R for each t € I. [If you are familiar with ring theory, you 
may prove that the family { e f HO): t € 1} is exactly the family of maxi-
mal ideals in the ring C, when the operations in C are the usual point-
wise addition and multiplication of functions. Hence these quotients 
of the space C are just the ring quotients of C which are fields.] 

BB Quotients of the Plane From Exercise Z you may easily construct a 
map which exhibits the 2-sphere as a quotient of the plane. The dis-
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cussion in the text easily yields the torus as a quotient of the planejj 
another more regular construction is suggested by group theory (seefj 
Chap. II for hints). Armed with these examples, attempt to constructs 
a map which shows the "double torus" (see illustration) to be a quotient 
of the plane. The drawing of many sketches may help you wrap th 
plane around this object. 

A N$w Function Space Topology Let C be the set of maps from I into; 
R (see Prob. AA), and for each x £ I and each open (in the usual topol-
ogy) set S of R, let Sx = { f e C: f(x) € S}. Let the topology T be 
generated by the subbase a consisting of all the subsets S* of C. Is fj 
the same as the metric topology ju for C? Does either contain the other? 
Is the abelian group operation of pointwise addition continuous on! 
r x T to r? How about the inversion function (compare Prob. Ill J J)? 

Due lo Kuratowski If T is a set, then the power set <?(T) of T is th^ 
set { S; S C T } of all subsets of T. If T is a space, the closure and com* 
plementation operations define two functions from ^(T) into itself, 
Show that the set of all possible compositions of these two function^ 
with themselves or each other, in any order, has at most 14 members 
(one member, for example, of this set will send S to S"'~' ). Demon-
strate that there are exactly 14 of these functions if the space T is Rj 

•fi 

with the usual topology by exhibiting a single subset S of R for which; 
each of your 14 composite functions has a different value. You mights 
begin by observing that always S" = S and S = S™, and then show 
that composites of sufficiently many of these functions must be thg* 
same as some composite of fewer of them. 
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EE Categorical Matters Let p\\ B^> A\ and p2: B A2 be continuous 
functions with the property that, given any space C and continuous 
functions /i: C Ai and f2: C —> A23 there exists a unique continuous 
function f:C—>B such that /i = pi o / and f2 — p2° / Use Prob, 
LBB to show that such functions pi and p2always exist {for each pair 
of spaces Ai and A2) and that every such space B is homeomorphic to 
the space Ai X 

FF More Categorical Matters The "dual" problem to the preceding one 
is gotten by reversing the directions of all arrows. Let p±: A% B and 
p2\ A2 —» B be continuous functions with the property that, given any 
space C and continuous functions f±: Ai —> C and f2: A2 C, there 
exists a unique continuous function/: B C such that/ o pi = /1 and 
/o p2 

B 

Show that if two spaces B and Bf have this property for the same pair 
A i , A 2 and certain given functions pup2 and pLp'2, then there is a 
homeomorphism from B to BFind one such space B, assuming 
Ai n A 2 = 0 . 

GG Interior and Closure Operators Let be the power set of a set X 
(that is, $ is the set of all subsets of X; see Prob. DD), and let/: <eP 9 
be a function. Show that there exists a topology on X for which/is the 
interior operator, /(A) = A° for every subset A of X, iff/has the fol-
lowing properties: 

i /(*) = * 
ii /(A) C A for all A € % 
iii f[f(A)\ = /(A) for all A € % 
iv /(A n B ) = /(A) n /(B) for all A, B € ft 

Can you phrase similar axioms for closure operators? 
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CHAPTER V 

You may have already been struck by the realization that many of the familiar| 
geometric objects which we have used as examples of metric and topological] 
spaces were also used as examples of groups. The list includes the real line* 
R and R - {0}, the plane C and C - {0}, the circle S1, and the torus, 
S1 X S1, and we should add to the list real n-space Rn, which has the group , 
structure of a direct product of n copies of the real numbers. In each case; 
the underlying set supports a group structure and also a metric topological; 
structure (we intend here the usual topology for each space). Furthermore; 
there are some familiar interrelations of these structures; for instance, it wail 

V ' 

pointed out in Chap. I l l that real addition is a continuous function front; 
R X R to R [a pair (r,s) goes to r + s]9 and negation is continuous from? 
R to R (a real r goes to — r). One might say that the group structure and thê  
topology of R are "compatible"; the group operations are continuous. We 
shall see that a similar statement is true for each of the oilier groups-with*; 
topology which are listed above. • 

The properties of addition in these examples led us naturally to the ; 
concept of group; the properties of these metric examples were generalized1 

by our definition of metric spaces, and this led onward to the notion of top-i 
ological space. Each of these processes of abstraction has given us a broad- ; 
ened understanding of the motivating special instances by supplying us with 
many new examples which have the same abstract properties. And witft| 
each instance of abstraction (or generalization) has come a new concise? 
language in which to discuss mathematics. 

110 
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We now wish to abstract a fact of a higher order, the interrelation of the 
topological and group structures on the above examples. In this process we 
shall certainly be introducing new theory; however, in another sense we now 
embark on the exploration of an example of nearly all that has gone before it. 

THE DEFINITION 

A topological group (or "continuous group") is a triple (G,m,r), where 
(G,m) is a group and (G,r) is a topological space (so that G is a set, m is a 
product on G, and T is a topology on G). Further, the multiplication M: 
G x G —> G must be continuous from the product topology r x r to r, and 
the inversion function t: G G of the group (G,m) must be continuous 
from r to r. A final requirement (which is not made by some authors) is that 
the singleton subset {e} be closed in G; here e is the identity of the group G, 
and we are requiring that G — {e} € r. 

The underlying set of (G,m,r) is G, the underlying group is(G,m), and 
the underlying space is (G,r). Of course, when the choice of multiplication 
and topology is clearly enough understood in a particular case, we shall refer 
to (G,m,j) simply as "the topological group G." 

We have seen one example of a topological group, the additive reals. 
Another example of such compatibility is the group (R — {0}, •) of nonzero 
reals under real multiplication furnished with the usual (or relative) topology. 
Here again, the group multiplication, which sends an ordered pair (x,i/) to 
their product xy (as real numbers), is continuous, as is the inversion, t(x) = 
l/x. We shall check these last assertions. 

Let N be an open set of R — {0}, and let the product xy be an element 
of N. We shall find open sets S and T of R - {0}, with (x,y) e S X T, such 
that ST = {st: (s,t) € S X T } C AT, and thus prove that the set {(u,v): uv € N) 
is open in (R - {0}) X (R - {0}). This will show that multiplication is 
continuous. Now, N is a relative neighborhood of xy, so N U {0} is a neigh-
borhood of xy in R; therefore there is an e such that the interval 
(xy — e, xy + e) C N U {0}, and if 7} = rrtin {e,\xy\}, that is if 17 is the 
smaller of the two numbers e and \xy\, then (xy — TJ, xy + C N. Choose 
8 — rain {r}/3(17/3)1 /2} and define the open intervals S = (x — 5, 
x + 8) and T = (y — 5, y 4- 8). Let a and b be two numbers of absolute 
value less than 5, and let z — x + a and w — y + b; (zjv) is an element of 
S X T, and we compute that 
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zw xy| = |ay + bx + ab\ < \ay\ + \bx\ + 

Hence zw £ N, and consequently, ST C N. | 
To construct a proof that inversion is continuous, note first that it suffices 

to show this separately for the positive and for the negative half of the group) 
R — {0}. But inversion (on each half) is order reversing, x < y iff 1/x >1 
1/y. Thus the inverse of an open interval (a9b) is just the open interval 
(l/fc,l/a), so inversion carries open sets to open sets. But the functionaI 
inverse for the inversion function is the inversion function itself, t © t = 1| 
hence it is continuous and, in fact, a homeomorphism. | 

Thus the real numbers under addition and the nonzero reals und^ 
multiplication form topological groups. Other examples of topologi 
groups are provided by the sets R™ of real ra-tuples, with the usual met 
topology of Chap, III and the addition of real rn-vectors\ If p 
(pi> p2> •.. > Pm) and q = (qly q2>.. -, qm) are m-tuples, then p + q 
(pi + qi> P2 + ?2> • •.» Prn + qm) gives the group "product" (written add! 
tively). The identity is (0, 0, . . . , 0) = 0 and 

— p = ( - p i , P2s * * -pm) 

is the group inverse of p. It is a straightforward chore to verify that 
addition and negation of real m-vectors are continuous operations (s 
Exercise B). The addition of complex numbers, regarded as real pairs, 
just the case m = 2. 

We now establish that the nonzero complex numbers, with the us 
topology and complex multiplication, form a topological group, [Here th 
"complex number zero" means (0,0), which we shall usually denote 
It is the additive identity for C.] In terms of real coordinates, the produd 
on C = R2 is given by (x,y)(z,w) = (xz — yw> yz + xw). The (multiplied* 
five) identity for this product is (1,0); it will usually be denoted by " 1 ." Sin<* 
the usual topology for C = R X R is the product topology, and the product 
topology on C X C is just that of R4> this multiplication will be continuous 
iff its compositions with the two projections (of its range) are continuous 
(see Exercise IV.T). Hence we examine the function /: R4 —» Rt 
/(*,!/,£,w) = xz — yw; since real multiplication is continuous, as is real sub-* 
traction,/is continuous: -j 

i 

R4 = C x C C = R x R 
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A similar argument shows the continuity of g: R4 R; g(x>y9z,w) = 
yz + xw, The same treatment may be made for the inversion function 
t(x,y) = [x/(x2 + y2\ —y/(x2 + y2)] when one remembers that the quotient 
of continuous real-valued functions is continuous if the denominator is never 
zero (that is, if the quotient is defined at all). 

Another interesting topological group is the circle group, the subgroup 
[z: j z\ = 1} of the multiplicative nonzero complex numbers with the rela-
tive topology. This is an instance of the following generality. 

THEOREM If H is, in the algebraic sense, a subgroup of the group G, and 
G is a topological group, then H is a topological group with its relative 
topology as a subset of G. 

The proof is immediate to the following useful topological fact. 

LEMMA If f: X Y is continuous and A C X, /(A) C B C Y, then 
f | AXB is continuous from relative topology to relative topology. 

Proof Let T be B-open, so there is an open set U C Y with U fl B = T. 
Now, f^(U) is open in X; hence/" 1 ^) n A = A D f'^U) n /_1(B) = 
A n f~i(U n B) = A fl /-1(T) = ( / U x b ) " 1 ^ ) is an A-open set. • 

It is worth noting that the statement of the above theorem is made 
imprecise by the confusion of the sets G and H with groups, and also with 
topological spaces, having those underlying sets. You should understand how 
to rewrite the statement to obtain precision, though perhaps even more 
confusion is introduced by a multiplicity of symbols. 

Exercises A, B, and C 

HOMOGENEITY 

Each element g of a topological group G determines a left-multiplica-
tion, or left-translation, function Lg on G to G; its value at each h € G is 
Lg(h) ~ gh. If m: G X G ^ G is the product on G, and og:G—>GxG 
is the function assigning o(h) = (g,h)> then Lg = mo ag, But ag is readily 
seen to be continuous (you need only check its inverse image of a "rectan-
gular"-basis element of G X G; see Exercises IV.N, P, and Q); hence Lg is 
continuous for each g € G. Another way to say this is that g X G is a sub-
space of G X G which is homeomorphic to G, and Lg may be regarded as 
the restriction of m to g X G; since restrictions of continuous functions are 
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continuous, Lg is a map. But the corresponding function Lg-i, which left! 
multipHes elements of G by g^1, is also continuous, and LgLg-i(h) 
Lg(g~1h) = gg"1^ = h9 so LgLg-i = 1<?. Similarly, Lg-1 is a left-inversffl 
function for Lg; hence Lg~l = Lg-1, and Lg is a set isomorphism which i i 
continuous and which has a continuous inverse; that is, Lg is a homeomom 
phism ofG with G itself. • Similar statements hold for the right translatioij 
Rg determined by g € G, Rg(h) = hg; each Rg is a homeomorphism of (3 
onto G. These differ from the left translations only if G is nonabelian. 

As an example, if the topological group above were the additive re 
numbers and g were 17, then L n would be the real-valued real function^ 
which slides or "translates" the whole real line to the right by 17 units; 
LI7(X) = 17 + x for each real x, and L I 7 _ 1 = L_IY, of course. j 

A topological space T is said to be homogeneous if it has the property 
that for each pair t,u of points in T there exists a homeomorphism / of I-
onto itself such that /(f) = u, A homogeneous space is one which "loo 
the same when viewed from any one of its points." It is clear that ea 
topological group is homogeneous (considered as a topological space), be 
cause if g and h are members of the group, Lh o Lg-i = Lhg~i is a homeomor 
phism carrying g to h. This provides a fund of examples of homogeneo 
spaces, Rn for all n, etc. A nonexample is the closed unit interval I; it loo 
different when viewed from an end point than when viewed from an interio| 
point. Precisely, inside every neighborhood of 0 in I there is a neighborhoo 
of 0 which has just one point on its boundary; this is not true for the interior! 
point H, since every neighborhood N of lying inside must have th^ 
two points lub N and glb N in dN. Can you see why no homeomorphisr 
could take 0 to W? The space I is thus not homogeneous; it could not b 
a topological group under any multiplication whatsoever. 

A topological group whose underlying space is an n-manifold is calle 
a group manifold. Since a topological group G is homogeneous, it will suffi 
to show that G is a group manifold if only the point e of G has a neighborhoo 
N which is homeomorphic to R". This is enough to assume, since then eac 
point g € G has a neighborhood gAT = Lg(N) homeomorphic to Rn. Do yoi 
see that all our examples thus far of topological groups are group manifolds 

Neighborhoods of the identity of a topological group are importan 
enough to deserve a special name; they are called nuclei. If, in any topologi 
cal space X, 91 is a family of neighborhoods of a fixed point x such that eve 
neighborhood of x contains some member of % then % is called a local b 
(or "neighborhood base") at x. It is evident that if X is homogeneous, thei 
a local base at a single point x determines a local base at every other poin 
of X and so determines the entire topology of X. That is, if y is an arbitra 

£ 

m. 
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point of X and g is a homeomorphism of X with itself that takes y to x, then 
we know that a set N is a neighborhood of y iff g(N) contains a member of 
the local base at x. In particular, if % is the family of nuclei of the topo-
logical group G, and g € G, then the family of all neighborhoods of g is the 
family of translates of members of {Lg(N)\ N is a nucleus of G} . Of 
course, a nucleus is not necessarily open; however, a subset S of G is open 
iff for each point s £ S there is a nucleus N of G with LS(N) C S, that is, iff 
S is a neighborhood of each of its points. We may turn this around, too, to 
assert that S is open iff L 8 - I (S ) is a nucleus for each $ € S (how is this 
equivalent?). 

A translated nucleus in the additive plane. 

SEPARATION 

Since a topological group is homogeneous and has {e} as a closed set, 
each singleton subset {g} of the group must be a closed set (homeomorphisms 
carry closed sets to closed sets). A space which has the property that all its 



116 V: Topological Groups 

singleton subsets are closed ("points are closed") is called a Ti-space (or 
"Frechet space"). The requirement on a topological group (G,M,r) that 
{e} be closed could thus be replaced by the seemingly stronger requirement 
that (G,R) be a 7Vspace. 

There is another definition of Ti-ness (or the property of being a I r 
space); a space (T9r) is T\ iff\ given two distinct points t and u of T, there 
exists an open neighborhood N of t with u$N. That each T\ space has this 
property is trivial, since jV = T — {u} will do nicely. On the other hand, if 
we fix u in mind and assume we can find, for each ty^u, a neighborhood\ 
N of t with u £ N9 then T — {u} contains a neighborhood of each of its points; \ 
it is open, so {u} is closed. • This characterization of Ti-spaces suggests thel 
definition of a weaker property of spaces: (T,r) is a To-space iff, given a pair} 
t,u of distinct points of T, there exists an open set N such that N H {^u} is| 
a singleton; that is, there exists a neighborhood of one of the points whicty 
does not contain the other. Another way to put it is that either T — {w} isj 
a neighborhood of t, or else T — {£} is a neighborhood of u. Obviously, if! 
(T,t) is 2i, then it is To- The following example of a To-space which is not 
IY shows that this new property is really weaker than TI-ness, Let T ^ {1,2}, 
and r - {0 , (1 } , {1 ,2 } } . The singleton {1} is not closed, but {2} is, so 
Tis To but not Ti. Clearly T could not be the space of any topological group, | 

However, if the requirement that {e} be closed in the definition of â  
topological group is replaced by the demand that (G,R) be To (and the other; 
axioms are left unchanged), it must follow that (G,T) is This will be clea^ 
if G — {e) is a neighborhood of each point g^e. But let g=^e; since G 
is T0, either G — {e} is a neighborhood of g (and we are done), or else 
G — {g} is a neighborhood of e. In the second case, the homeomorphism^ 
Lg-1 carries G — {g} to G — {e} and shows the latter set to be a neighbor-
hood of g - 1 . But the inversion homeomorphism t carries G — {e} to itself] 
and shows it to be a neighborhood of g; therefore {e} is closed. To recapit-1 
ulate this proof, if G — {g} is a neighborhood of e> then t o Lg-t{G — {g}) =| 
G — {e} is a neighborhood of t o Lg-i(e) — g. Hence, in the presence ofj 
the other axioms for a topological group, To implies • 

If (T,T) is T0 (or Ti) and T C fx, then (Ttfi) is also T0 (or TI). These 
properties of a topology r say that there are enough open sets in r to "dis-
tinguish" points, in one or the other sense. They are often called separation 
axioms. A third such axiom for topological spaces (T,T), and an even stronger 
one, is the requirement that for each pair t,u of distinct points of T there 
exist neighborhoods M and N of t and u, respectively, with M C\ N = 0; 
A space satisfying this axiom is said to be a T2-space; more often it is called* 
a Hausdorff space, in honor of Felix Hausdorff, a pioneer of topology. 

i 
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Clearly, T2-spaces are TV An example of a IVspace which is not T2 has 
already been given: the topology on the set of real numbers which has as its 
members 0 and all complements of finite sets. If x then the comple-
ment of {x} is an open set containing y but not x, so this space is T±. How-
ever, every nonempty open set has a finite complement, and thus each pair 
of nonempty open sets must have a nonempty intersection (is this clear?). 
Hence this space is not T2; no two of its points possess disjoint neighborhoods. 

The space above is another example of one which cannot support a 
topological group structure; since, in the presence of the other axioms for a 
topological group, Ti implies T2, To show this we need to collect a few facts 
about topological groups. First, let a neighborhood V" of e be called sym-
metric if V = V"1 . Certainly not all neighborhoods of e are symmetric, but 
each contains a symmetric neighborhood, V D V" 1 C V. 

LEMMA If U is a neighborhood of e in a topological group, then there is 
a symmetric neighborhood V of e with W = W 1 C U. 

Proof The multiplication function m is continuous on G X G to G, so 
m_1(U) contains a neighborhood N (in the product topology) of (e,e). Now, 
N contains a base element S x T , where S and T are open at e, and therefore 
a "square" base element R X H, where R = S fl T. Choose V - fi PI R'1, 
Obviously, V is symmetric, and if g and h are elements of V, then (gJi) C 
V x V <Z $ X T C N, so gheU; thus W C U. • This proof uses the fact 
that m is continuous; do you see where the continuity of inversion was 
needed? As an example of the lemma, let U be a neighborhood of the origin 
in the plane; then U contains some £-ball at 0. Since the absolute-value 
function is a morphism of the multiplicative nonzero complex numbers to 
the positive reals (moduli multiply; \zw\ = | z | | w \), V may be taken to be 
the ball at 0 with radius 8 — min 

We now argue that each topological group is Hausdorjf. Let x and y 
be distinct elements of the group, so that x_1t/ e. The neighborhood 
G — {x^y} of e contains a symmetric neighborhood Vofe such that x^y £ 
W . Surely xV and yV are neighborhoods of x and yy respectively, but if 
xV Pi yV is not empty, then there exist v± and v2 in V with xv± = yv2, or 
x^y = V1V2'1 € W " 1 = W , This is contradictory, so xV fl y V = 0 ; G 
is a HausdorfE space. • 

Exercises E and F 
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TOPOLOGICAL PROPERTIES 

A property of topological spaces, such as Ti-ness or homogeneity, is 
' > 

topological property iff whenever a space X has the property and Y is homeo-j 
morphic to X, Y also has the property. For example, the property of beingj 
Ti is topological. If/: X Ŷ  IS E homeomorphism and each singleton subset | 
of X is closed, then each singleton subset of Y, being the image under /of a 
singleton of X, is also closed. Topological properties are sometimes called 
topological invariants; they may be described as those properties of spaces 
which are "preserved by homeomorphisms." 

We have seen several examples of topological invariants: metrizability 
(see Exercise IV.T) and homogeneity are readily shown to be such, as are 
the separation axioms To, Ti, and TV We have shown this to be so for T\\ 
it is an exercise (see Exercise J) to establish it for To and T2. We shall only 
prove that homogeneity is a topological property. Let X be homogeneous* 
and let /: X —» Y be a homeomorphism. If y and z are points of Y, choose 
a homeomorphism h: X X which carries /_1(t/) to /_1(^); is it not clear 
that the homeomorphism /o ft o / _ 1 : Y ̂  Y carries y to z? 

Other topological properties (trivial ones) are those of having an infinite 
number of points or of having exactly n points and of being discrete or of 
having an infinite number of open sets. A nonexample is the property of 
being a bounded metric space. We have seen that there is a bounded metric 
for R, equivalent to the usual metric, which induces the usual topology; hence 
a bounded metric space may be homeomorphic to an unbounded metric 
space. 

Exercises D, J, and T 

COSET SPACES 

Let (G,m,r) be a topological group; we adopt the adjective algebraic to 
signify that our discussion is, for the moment, about only die group (G,rn) 
and does not involve the topology on G. If H is an algebraic subgroup of G 
(but not necessarily normal), then the family G/H of cosets of H is defined; 
this family is a quotient set of the space (G,r), and there is a quotient topology 
defined for it. The quotient space G/H is called a coset space of G. Since 
the inverse image of each point of the coset space G/H is a coset of H, and 
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each coset gH = Lff(H) is closed iff H is closed, we find immediately that 
G/H is Tx iff H is closed. 

A more startling fact is that the quotient map q\ G —> G/H is always 
open! To prove this we need only observe that if U is an open set of G, then 
q(U) = {uH: u<=U] and q'^qiU)] = U {uH: u € U) = UH, the product 
of the sets U and H in G. But we claim that the product of an open set U 
with any subset S of G must be open, for L7S = U { Us: s £ S} is the union of 
the right translates Us — R«(17), and each of these sets is open in G. Hence 
for every subgroup H and every open set C7, q( U) is a set whose inverse image 
under q is open; q(U) is thus open in the quotient topology on G/H. • 

We know that G/H has an algebraic group structure when H is normal 
in G; if H is closed in G as well, then G/Hhas a Ti quotient topology on it. Is 
G/H then a topological group? To see that it is, it will suffice to prove that 
for each pair /oH, fiH of elements of G/H and for each neighborhood % of 
their product (foH)(fiH) — fofiH there exist neighborhoods ô and of 
foH and f±H> respectively, with the product contained in But the 
multiplication of G is continuous, so there are neighborhoods Fo and Fi of fo 
and/i in G such that the product set FQFI lies inside the neighborhood <7_1(9i) 
of/o/i; take % = q(Fo) and = q(Fi) (remember that q is open), A simi-
lar computation shows that inversion is continuous (or rather, open); = 

fafrrW])-1 = tffrrwr1)is °P e n i f ^ i s ° P e n ^ s i n c e < r W and its 
inverse are open in G, and q is open. To recapitulate, the quotient of a 
topological group modulo a closed normal subgroup is a topological group 
under the quotient topology and product • 

Exercise H 

MORPHISMS 

It is natural to single out those functions from one topological group to 
another which suitably preserve both the topological and the group struc-
tures. If G and G' are topological groups and / is a function from G to G', 
then /is called a morphism (of topological groups) iff/is both a map (on the 
underlying spaces) and an algebraic morphism (on the underlying groups). 
Each inclusion function on a subgroup G of G' is an example, as is each 
quotient function from a group G to a quotient Gf of G. A more specific 
example is given by the absolute-value function abs\ C — {0} R — {0} 
from the multiplicative group of nonzero complex numbers to the group of 
nonzero reals; it is continuous and preserves products. 
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The definitions of epimorphisms and monomorphisms are just as in the 
algebraic case; they are, respectively, the onto and the 1-1 morphisms- All 
isomorphism of topological groups is required to be an algebraic isomor-
phism and also a homeomorphism, t A word of caution: if the domain and 
range of a function are both topological groups, then that function must be 
continuous to be a "morphism"; however, when the domain and range are 
thought of as having only the algebraic structure of groups, that function 
need only preserve products to be called a "morphism." The context should 
make it clear which is meant; we shall henceforth use the words "group" 
and "morphism" in both cases, occasionally inserting the words "topological" 
or "algebraic" when confusion might otherwise occur. 

The topological requirement that a morphism of topological groups be ; 
continuous and the algebraic requirement that it preserve products affect 
each other in interesting ways. We illustrate this by showing next that f/ 
/: G —> G' is an algebraic morphism from one topological group to another 
which is continuous at the single point e of its domain, then f is continuous 
at every point of G, and so is a topological morphism. We are assuming, 
then, that/preserves products and that/~1(Ar) is a nucleus (or neighborhood 
of e) of G whenever N is a nucleus of G\ Suppose S is open in Gf; we wish 
to show that/_1(S) is open; that is, that/_1(S) is a neighborhood of each of its 
points. This will be so iff for each y € S and each x € G with f(x)yy 

x~1[/"1(S)] is a nucleus in G. But t/"1S is a nucleus in G\ mdf(x"1S) ss 
/(*)~1S = so C /"1(y"1S). To complete our proof we need only; 
show x~1S D /~1(?/"1S). Assume f(z) = t/™1̂  for some s € S; then f(xz) =s 
f(x)y^1s = yy^s = s9 and thus e / ^ S ) , or* €ar1[/-1(S)], • The plan 
of this proof is that to find the inverse image of S we may translate S back 
to the identity in G\ find the inverse image of this translate of S, and then 
translate forward in G to get /_1(S). The translations in G and G' are 
homeomorphisms, so continuity at e suffices to guarantee the continuity of 
/ over all of G. 

This theorem is quite handy; it allows us to check the continuity of a 
morphism by considering only nuclei, and this often simplifies arithmetic 
considerably. 

r I 

Exercise Q 

t Some authors require epimorphisms to be open maps; in their language (but not ours) & 
monic epimorphism is an isomorphism. Still others define all morphisms to be open; in that cast-
our merely continuous morphisms are called "representations." 
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FACTORING MORPHISMS 

Now suppose that /: G —> G' is a morphism of topological groups. 
Since / is an algebraic morphism, there exists a unique factorization / = 
i o r o q of / through the (algebraic) quotient group G/Ker (/) of G and the 
subgroup Im (/) of G': 

G L >Gf 

G/Ker ( / ) Im(f) 

Furthermore, if we consider / as a map, with domain and range the under-
lying spaces of G and G\ there exist a unique factorization of / into the 
composite of a quotient, a 1-1 correspondence, and a subspace inclusion. 
In the case at hand, the quotient group G/Ker (/) and the subgroup Im ( / ) 
are both topological groups, and q and i are topological morphisms. Hence 
these two factorizations, the algebraic and the topological, are the same, and 
each of the factors q, r, and i of /is a topological morphism. This proves the 
first statement of the following theorem. The remainder of the conclusion 
has been previously established. 

THE QUOTIENT THEOREM FOR TOPOLOGICAL GROUPS Each morphism /: 
Gf of topological groups possesses a unique factorization f = 

i o r o q into topological morphisms, where q is a quotient, r is an alge-
braic isomorphism, and i is an inclusion. The quotient q is always open, 
i is open iff Im ( / ) is open in Gf, and r is a topological isomorphism iff f 
is open onto its image. • 

COROLLARY The morphism f factors through a quotient q;G^> G/K 
of its domain, 

G—^G 

v / 
G/K 

iffKer(f)DK. 

Proof Though this statement is called a corollary to the quotient theorem, 
its proof merely pastes together the relevant facts about factoring / through 
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a quotient when/is regarded first as an algebraic morphism (see Chap- II) S 
and then as a map (see Chap, IV), • 

• I 

Exercise K 
•y 

A QUOTIENT EXAMPLE 
h 

) 

One example of the quotient theorem is offered by the morphism abs: J 
C — {0} —> R — {0}, which has the value \z\ for each nonzero complex i 
number z. The factorization r o q of abs yields the quotient qi ) 
C — {0} (C — {0})/S1y whose cosets are circles centered at the origin in j 
the plane; jr is an isomorphism (why is it open?) of the quotient group with j 
the positive reals, and i includes that image set in the range. j 

A less intuitive example is afforded by the group C of all real-valued J 
continuous functions on I. We studied the metric structure of C in Chap. HI J 
(see also Prob. IV.AA); now we claim that C is a topological group when I 
addition is defined by (/ + g)(f) = f(t) + g(t) and negation is defined by | 
(—/)(*) = —/(*)• It is trivial to verify that this addition gives C a group J 
structure. We first check that negation is continuous. If f>(e,/) is a ball at I 
/ in C, then - b(ej) = JB(e,-/)f since |/(x) - g(x)\ < e iff |(-/)(x) — j 
( — g)(x) | < e. Therefore the negatives of open sets, which are unions of j 
balls, are themselves unions of balls; negation is thus an open function, and { 

(i 

since it is its own functional inverse, it is continuous. | 
As for the continuity of addition, let / + g) be given; we must find J 

two positive numbers St and S2 such that the set of sums + £(<52>g) c I 
£(e, / + g). Take 8t = S2 = e/2, and let (/',g') £ h(e/2f) X J^/2,g), a | 
basic open set in the product-metric topology of C X C, Now, for each \ 
t € I> \f'(t) -f(t)\ < e/2 and |g(t) - g(t) | < e/2; hence \ 

•I 

i (/' + g ')(*) - (f+g)(t)\ = \m - m + g>(t) - g(t) i 
< \f'(t)-m\ + \g'(t)-g(t)\ 

JL + JL 
^ 2 + 2 ' 

so £(/' + g\ f + g) < e. This completes the proof that C is a topological j 
group (Exercise G shows it to be Hausdorff). Since the evaluation e%\ C —> R: 
et(f) = fit) is continuous, St = ef^O) is a closed set in C, But St is a sub-
group of the abelian group C; hence St is a closed normal subgroup for each | 
16 I. In fact, et is a morphism, and its kernel is St; thus the image group R 
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of additive reals will be isomorphic to C/ St for every t £ I if only et is an open 
map. To argue this, we define, for each real u7 the constant map ku: I —» R: 
ku(t) = u for each t. Now consider the image under et of f>(e,/). It contains 
(/+ ku)(t) = f(t) + u for each u for which |tt| < e, and thus et[b(e9f)] 
contains the interval ( f ( t ) — e,/(i) + e) (equality holds, in fact) and e% is 
open. 

Thus we behold an uncountably infinite collection of quotient groups 
C/Sf, one for each t € L All are distinct, since the subgroups St are different 
for differing values of t, yet they are all (topologically) isomorphic to the 
additive reals, and thus to each other. 

DIRECT PRODUCTS 

We have noted (in Chap. II) with satisfaction that the additive plane 
C = R x R was the (algebraic) direct product of two copies of the additive 
reals R. Later we saw (in Chap. IV) that the plane was the (topological) 
direct product of the space R with itself. But R is a topological group; the 
above facts may be summed up by saying that the direct-product set R X R> 
furnished with the product group structure and the product topology, is a 
topological group. This is a completely general phenomenon. 

If G and H are topological groups, then G x H has a product topology 
and also a product group structure. We shall show that with these structures 
the direct product of two topological groups is a topological group, and the 
projections onto the factors are open topological epimorphisms. Let m, n, 
and p be the multiplications on G, H, and G x H , respectively, and define 
a "shuffling map5 5: (G X H) X (G X H) (G X G) X (H X H) by 

'^Ol = [(g>g)>(W)l The11 P factors through m X n, p = 
(m X 0 s: 

(G X G) X (H X H) 

(GxH)x(Gx H) 5 >G X H 

It is now routine to check the continuity of s; that of m X n is guaranteed. 
Do you see an even simpler statement about the inversion of G X H? • 

Since the kernel of the open epimorphism which projects G X H onto 
its factor H is the closed normal subgroup G X e, the quotient G X H/G X e 
is isomorphic to H; similarly, G X H/e X H ^ G. This gives us a number 
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of examples of quotient groups: the circle is the torus modulo one of its 
factors, the real line is the plane modulo the pure imaginaries, etc. A slightly 
more general situation is suggested by the absolute-value morphism abs on 
C — {0}, which we regard here as having range the multiplicative group R+ 

of positive reals, abs (afi) = (a2 + b2)1/2y with its kernel S1 = {(a,b) £ C: 
(a2 + b2)1'2 = 1}. Now, C - {0} is not the direct product R+ X S1. Its 
elements are ordered pairs of reals, but every element z of C — {0} has a 
unique factorization z = \z\(z/\z\) into the product of an element \z\ £ R+ 
with an element^/\z\ whose absolute value is \z/\z\ \ — = 1. This 
factorization is called the 'polar form" of z; the element z/\z\ of S1 is called 
the "argument" of z9 z/\z\ — arg (z). Evidently, the function h: 
C — {0} R+ X S1, which has values h(z) = [\z\9 arg (z)], is a homeo-
morphism and a morphism of groups, since abs is an open morphism. 
Hence, if p is the projection of the product R+ X S1 onto its first factor, the 
following diagram is commutative; 

C - [0} — R + X S1 

All this may be expressed by saying that "abs is homeomorphic to the • 
projection of a direct product." However, mathematicians customarily 
abbreviate their description of such a situation by saying something like "abs 
is a direct-product projection/' 

So that you are not led to believe that, at least in the above sense, every 
morphism of topological groups is the projection of a direct product, we 
announce that this is not the case for the morphism exp of R onto S1 which 
wraps the line around the circle, exp (r) — (cos 2TTT, sin 2AT). Each factor 
of a direct product is isomorphic to a subgroup of the direct product; G X e 
is a subgroup of G X H which is isomorphic (via the projection onto G) to 
G, and = However, there is a purely algebraic proof that S1 is 
not isomorphic to a subgroup of R; we need only observe that the square of 
— 1 in S1 is the identity 1, yet no nonzero element of R exists which when 
added to itself gives zero. A topological proof is requested in Exercise R. 

Exercises P, R, and U 
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REFERENCES AND FURTHER TOPICS 

We shall continue the study of topological groups in subsequent chap-
ters; numerous facets of the subject will be explored, and we shall develop 
In detail the interplay of covering groups and the fundamental, or Poincar6, 
group associated with a topological group. However, many questions will 
remain untouched; one such is the matter of differentiability. In the previ-
ous chapter we gave reference to the notion of a differential structure on a 
manifold. It turns out that every group manifold can be given a differential 
structure; furnished with such a structure, it is called a "Lie (or analytic) 
group," You will find a complete introduction to the large and important 
theory of Lie groups in 

Montgomery and Zippen, Topological Transformation Groups (New 
York: Interscience, 1955), 

Another question concerns integration. On the real line, the fact that 
the length of the interval (a9b) is the same as the length of its translate (r + a, 
r + b) for each real r and its negation (— b9 — a) may be expressed by saying 
that the measure of length of R is invariant under the group operations. 
This is responsible for the equality, for each re R, 

Joo poo /*00 
f(x)dx~ f(x+r)dx = f( — x)dx. -co J—00 J—oo 

That is, there is an "invariant integration" on R. An appropriate notion of 
abstract integration which is invariant in the above sense may be defined for 
a large class of topological groups. An exposition of this is offered in 

L. Pontrjagin, Topological Groups, chap. IV (Princeton, N.J.: Princeton 
University Press, 1939). 

This reference also contains an excellent discussion of the possible "repre-
sentations" (or morphisms) of a topological group into a topological group 
of matrices. In a particular case of this, the group of all morphisms of a 
topological group into S1 is called the "character group" of the group. 

Three other references touching the above topics, the first of which also 
contains a detailed discussion of the classical groups of matrices, are 

C. Chevalley, Theory of Lie Groups (Princeton, N.J.: Princeton Univer-
sity Press, 1946). 
P. M. Cohn, Lie Groups (New York: Cambridge University Press, 1957). 
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T. Husain, Introduction to Topological Groups (Philadelphia: Saunde 
1966). 

Each of the references mentioned provides an introductory treatmen 
which parallels this chapter. Another such is 

N, Bourbaki, General Topology, part I, chap. 3 (Reading, Mass.) 
Addison-Wesley, 1967). 

There is also a set of lecture notes, entitled Topological Groups, by D, Mont* 
gomery (Haverford College). 

Of course, for the purely topological notions of this chapter, consult 
the references of Chap. IV, several of which contain some facts about topo 
logical groups as well. 

An understanding of topological groups is essential to a study of several 
topics of modern physical theory. For an introduction addressed to physi 
cists see 

M. Hamermesh, Group Theory and Its Application to Physical Prob 
lems> chap. 8 (Reading, Mass.: Addison-Wesley, 1962). 

This text presumes that the reader is familiar with quantum mechanics 
It offers applications of the theory to the splitting of atomic levels in crystal 
line fields, to atomic spectra, and to nuclear structure. 

Two other references for physical applications, the first of which covers 
the elements of quantum mechanics as well as its relation to group theory, are 

H. Weyl, The Theory of Groups and Quantum Mechanics, 2d ed. (New 
York: Dover, undated). 
E. Wigner, Group Theory and Its Application to the Quantum Me-
chanics of Atomic Spectra (New York: Academic Press, 1959). 

EXERCISES 

Give a detailed proof that the real numbers, with the usual topology 
and the additive group structure, form a topological group. That is 
show that addition and negation are continuous functions and that {0} 
is a closed set. 

Verify that real n-space, with the usual euclidean metric topology and 
the coordinatewise addition of real n-vectors, is a topological group. 
(Hint: Use the projections onto coordinate spaces.) 
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Show that quotients of continuous real-valued functions are continuous 
if they are defined at all. That is, given two continuous functions / and 
g from some space X to R (with the usual topology), where g(x) is never 
zero, show that the function 

£:X-> R:£(x) 
g g g(») 

is continuous. 

Prove in detail that the union of the two axes is a nonhomogeneous sub-
space of the plane, and hence that this space, just as I, could be the 
underlying space of no topological group. In performing this exercise 
be careful not to use a concept (such as boundedness) which is not a 
topological property of the set in question, and be sure you understand 
why you must take this care. 

Prove that every finite IVspace is also T2. 

Show that if n > 0 is an integer and U is a neighborhood of e in a topo-
logical group, there is a symmetric neighborhood W of e such that 
Wn C U (here Wn means WW . - • W, n factors). 

Euclidean n-space is Hausdorff. Show that, in fact, every metric space 
is Hausdorff. 

Show that an open subgroup of a topological group must be closed as 
well. 

Give a proof that 7o-ness and TVness are topological properties. Also, 
exhibit a homeomorphism of the unit circle in the plane with its cir-
cumscribed square; this proves that roundness and straightness are not 
topological invariants. Be sure you make precise your function and 
show that it and its inverse are continuous. 

Prove that the group R/Z of additive reals modulo the integers is (topo-
logically) isomorphic to S1. 

To define the topological group G of affine transformations of the line 
(see Exercise II.N), take the underlying space of G to be the plane 
R X R with the t/-axis deleted and the product on G to be 

— (ai<22, + Show that G is a topological group 
and that projection onto the nonzero real first-coordinate space is a 
morphism. Show also that if H = {(19b): b € R}, then the coset space 
G/H is homeomorphic to R, although this quotient map is not a 
morphism. 
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M Let (G,m) be a (algebraic) group, and let r be a Hausdorff topology ori| 
the underlying set G. Show that the function on G X G sending 
(gi>g2) to gig2~J in G is continuous on r X r to r if and only if (G7m5r) 
is a topological group. Thus you have proved that the two requirements 
for a topological group, continuity of both multiplication and inversion, 
may be replaced by the equivalent single requirement that the above 
function be a map. 

N Show that every coset space is a homogeneous space. Do this by show-
ing first that each element of G defines, by left multiplication, a homeo-
morphism of a coset space G/H of G. 

P Prove that the evaluation morphism et: C R from the group of real-
valued functions on I to R is homeomorphic to a direct-product projec-
tion for each t £ L That is, for each t£ ly define a homeomorphism 
ht: C —> St X R, where St — Ker {et\ so that if pt is the projection of 
St X R onto its second factor, then the following diagram is commu-
tative: 

S* X R 

Q Show that an algebraic morphism /: G —» G' of topological groups is 
open iff it is open at e £ G (that is, carries neighborhoods of the identity 
in G to neighborhoods of the identity in G'). This important conse-
quence of the continuity of the group operations means that we need 
only check openness at one point, which often simplifies arithmetic, 

R An embedding of a space X in a space Y is a function /: X Y which 
defines a homeomorphism of X with Im (/) (by restriction of the range 
of /), where Im (/) is given its relative topology in Y. Show that there 
is no embedding of S1 in R. Then argue that this gives a purely topo-
logical proof that the map exp: R S1 is not homeomorphic to a direct-
product projection. 

S Show that the torus S1 x S1 is a 2-dimensional group manifold. That 
is, exhibit an embedding of the plane in the torus whose image is a 
nucleus of the torus. 

T Prove that the property of being the underlying space for some topo-
logical group is a topological invariant. (This property, for a space X, 
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is sometimes expressed by saying that X is a group space.) Exhibit a 
topological group structure for the interval (0,1), 

Since Z C R , the gaussian integers Z X Z form a subgroup of the plane 
R X R , the subgroup of all ordered pairs of integers. Exhibit an iso-
morphism of the torus with the quotient of the plane modulo the gaus-
sian integers, 

R R _ R X K 
z x z ~ z x z* 

(Be sure to show that the inverse of your isomorphism is continuous.) 

Prove that the closure of a subgroup is always a subgroup, and that the 
closure of a normal subgroup is normal. Then give an example of a 
subgroup which is neither open nor closed. 

The interior of a subgroup need not be a subgroup; for example, the 
interior of the singleton subgroup {0} of R is empty. Is it true that 
the nonempty interior of a (normal) subgroup is also a (normal) 
subgroup? 

PROBLEMS 

Quaternions Consider Q = C X C, with the coordinatewise addi-
tion of complex pairs, (01,02) + (^1^2) = (ci + di, c<i + 2̂)- Under 
this operation, Q is an abelian group; the identity is (0,0), which we 
shall usually denote by "0." There is also a multiplication possible in 
Q: a pair of complex pairs has product (01,^2)^1,^2) — (cidi — ctfL^ 

4- where the operations on coordinates are those of the 
complex numbers, and the bar denotes complex conjugation. Ele-
ments of Q are called quaternions; the complex numbers (and there-
fore the reals) may be thought of as quaternions by the identification of 
c € C with (c,0) € Q; on this subset of Q the sums and products defined 
in Q agree with those of C (or R). The quaternion (1,0) is a multipli-
cative identity for all of Q; we shall usually denote this element by 
"1." But the multiplication in Q differs from that of C or R in that 
it is not commutative; (0,l)(i,0) ^ (i,0)(0,l). 

There is a conjugation in Q? (ci,c2) = (ci, — c2), and it has algebraic 
properties like those of complex conjugation; for all members q\ and 
92 of Q, 

f i = O! and (9192) = qiqi* 
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fi-
(Note, however, that conjugation in Q "preserves" products bu 

reverses their order.) Furthermore, qq is always a nonnegative real 
It is called the "norm" of q, N(q), and N(q) = 0 iff = 0. If 9 # 
then q([l/N(q)]q) == (1,0), so there exist multiplicative inverses for th 
nonzero quaternions which form a group under this product. 

Hence the quaternions, with these operations, have the followi 
algebraic properties of the real and complex fields: (Q, + ) is an abelian 
group, Q — {0} is a group under the multiplication, and the distribu 
tive laws hold (but the multiplicative group is not abelian). A set 
having sums and products which satisfy these requirements is called 
a "division ring/' or "skew field/' 

Now, Q = C X C has a product topology, and with this topology it 
is homeomorphic to R4; the additive and multiplicative groups are both 
topological groups. The nonzero reals are a closed, normal, multi 
plicative subgroup; in fact, they constitute the center of Q. The non 
zero complex numbers are a closed subgroup which is not normal 
Conjugation is continuous, and the norm is an open epimorphism of 
the nonzero quaternions onto the multiplicative group of positive reals 
The kernel of the norm morphism is homeomorphic to the 3-sphere S3 

of unit vectors in real 4-space, S3 = { ( x i ^ ^ x * ) € R4 : S = i * i 2 = 1} 
Hence S3 possesses a topological group structure which is nonabelian 
Summing this up, the group Q — {0} is (topologically) isomorphic to 
S3 X R. 

Nuclei A neighborhood of the identity in a topological group is called 
a nucleus. The family 91 of nuclei of a topological group G has the 
following properties: 

i M, iV e 91 implies M O N£% 
ii MCN CG and M € % implies N € % 
iii implies that there exists M € 91 such that MM"""1 C N, 
iv N € % implies that for all g £ G, g^Ng £ % 
v n9L={e}. 

Since a topological group is homogeneous, we might expect that a 
knowledge of its topology at one point would define it everywhere 
This is true in the following strong sense: given a (algebraic) group G 
and a family 91 of subsets of G having the above five properties, there 
exists a unique topology for G under which G is a topological group 
and 91 is exactly the family of nuclei. 
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Affine Groups The (real) affine group (defined in Exercise L) has an 
obvious topology under which it is homeomorphic to (R — {0}) X R* 
With this it becomes a topological group, and the quotient functions 
p and q become open maps (and p is a morphism)- Discuss the cor-
responding groups obtained by using the complex or quaternionic 
division rings (see Prob. AA) in place of R. Be sure to consider the 
new subgroups whose definitions follow from R C C C Q. 

A Homeomorphism Group The set G of homeomorphisms of (0,1) 
onto itself is a group (of transformations) under the operation of com-
position. There is a metric 3 on G, cl(g9h) = lub {| g(x) — h(x) |: 
x 6 (0,1)}, and G is a topological group with the metric topology. For 
each element x of (0,1) there is an open map px of G onto (0,1), pw(g) — 
g(x). The subgroup PsT^ix) = Hx of homeomorphisms that "fix" x is 
called the "isotropy subgroup" of G at x; G/H a. is homeomorphic to 
(0,1). In fact, G is homeomorphic to Hx X (0,1) for each x £ (0,1). 
To show this you will need a "cross section" ax to the projection pw; 
that is, a continuous map ox\ (0,1) —> G such that px ° os is the identity 
on (0,1). 

The group G' of homeomorphisms of the closed unit interval I (when 
furnished with a similar metric) is (topologically) isomorphic to G. 

Isometries of Sn An isometry g of a metric space M is a function g of 
M onto M which preserves distances; for all x, y CM, d(x,t/) = 
d[g(x),g(i/)], where A is the metric on Af. Every isometry is a homeo-
morphism. The set I of all isometries of M is clearly a group. Now 
let M be an n-sphere Sn (and so compact); a metric on I is defined 
by ^(gji) = lub {d[g(3c),h(x)]: x £ M), and / is a topological group un-
der the metric topology, the group of "rigid motions" and "reflections" 
of S* 

Think of Sn as the subset of unit vectors of Rn+1, (xl9..., xn) € Sn 

iS^lt\xi 2 = 1. An isometry of Sn extends to a unique isometry of 
Rw+1, and this yields an algebraic isomorphism of I with the group 
On+1 of all isometries of Rn + 1 which fix the origin. This isomorphism 
endows On+1 with a topological group structure: it is called the "or-
thogonal group" on Rn+K 

Compute (that is, completely describe) the group On for n = 0, 
1, and 2. 

We may regard each group On as a subgroup of On+i in the 
following way: if g 6 On and x = (x%9..., then g(x) is to be 
the point of Rn + 1 whose first n coordinates are the n coordinates of 
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g(xi$ and whose last coordinate is xn+i* Put more arithme 
cally, if g(xi, . . . , xn) = (yu y2, . . . , t/n), then g(*i, . , , , xn+1) 

tf2, • - - , n̂, The subgroup On is not normal in 
n>2. 

Let iV = (0,0,. . . , 1) be the "north pole" of S» and let the m« 
On+1 Sn be the evaluation at N: pn(g) = g(iV) for each g 6 On+t 

The equivalence relation on On+i induced by pn is exactly the relatio 
of belonging to the same coset of On in On+i. (In the illustration below 
On acts on Sn by doing the "same thing" to each '"horizontal" slice, 
homeomorph of that it does to the "equatorial" Sn-1. Each ele 
ment of On leaves both N and the "south pole" — N fixed) Use thil 
to show that the coset space On+i/On is homeomorphic to Sn. 

The Lorentz Group The "one-dimensional Lorentz group" L is the 
topological group of homeomorphisms of the plane {(x9t): x and t £ R} 
which leave invariant the form x2 — t2 and do not interchange up 
(future) with down (past). That is, a homeomorphism h of the plane 
is in L iff g(x,£) = [gi(x,t),g2(x?t)] implies a2 - t2 = gi(x9t)2 ~ g2(x9t) 
and t < u implies g2(xft) < g2(x,u) for all real xyt, and w. (The mem 
bers of L connect the various "normal" coordinate systems for the 
space-time of special relativity theory when the space involved is one 
dimensional; x is the space variable, t is time, and the speed of light 
is 1.) The "restricted Lorentz group" is the subgroup L0 of those 
members g of L for which x < y implies gi(x,t) < gi(yj) for all real 
x, y> and t; hence right and left, as well as past and future, are invari 
ant under members of Lo. 

The members of Lo are just the transformations which send (x9t) to 
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(x cosh 9 - t sinh 9, x sinh 6 + t cosh 9) 

for the various real numbers 9. If we denote the above transformation 
by g„ then 

& M = (1 - tariff (x + t tank 9, x tanh 9 + f). 

The assignment of g* to each real 6 defines an algebraic isomorphism 
of the additive group of real numbers onto Lo; clearly, this may be used 
to visit the structure of a topological group on Lo- To get L from Lo, 
adjoin the transform h\ h(x,i) = (— 

(For a discussion of the three-dimensional Lorentz group, see pp. 
146-149 of the reference to Weyl in this chapter,) 

Mechanics: HooIce's Law The "state" of a set of n bodies, thought of 
as point masses which move about in an otherwise empty three-dimen-
sional real world, is given by the momentary positions and velocities of 
the n points, all with respect to the fixed defining coordinate system 
of R3. Each position is an ordered triple of reals, and so is each veloc-
ity; hence a state of our n-body system is just a point of real 6n-space* 
The set S of all states of the system is called state space; it is thus a subset 
of R6tt. Of course, there are points of R6n which do not correspond to 
allowable states of the system; for instance, no two bodies are allowed 
to be in the same place at a given moment, (Physical intuition suggests 
that S is an open subset of R6n.) If the laws of physics dictate the 
state Pt(s) in which the system will be after the elapse of an amount 
of time t when it is in a state s at time t = 0, then Pt is a well-defined 
function from S to S for each t > 0. We further suppose that for each 
state s and each t > 0 there exists a unique state s' such that Pt(s') = s; 
that is, we assume Pt has an inverse, which we denote by P~t, P-t(s) — 
s\ Lastly, we assume that physical happenings are continuous in time 
and in state; that is, Pt is a homeomorphism of state space and Pt(s) is 
a continuous function of argument pairs (t,s)* 

It is easy to see from the definition that Pt+U($) = Pt° Pw(̂ ); ac-
cordingly, there is an algebraic morphism of the additive reals which 
carries t to Pt; its range is the group H of homeomorphisms of state 
space, and its image is called a "one-parameter subgroup of H," a "one-
parameter group of transformations/' If the quotient topology in-
duced by this morphism from the reals is used in the one-parameter 
group, it becomes a topological group. 

For an example of this situation, think of a body free to move in 
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only one dimension, that is, along a real line, and let denote the] 
real coordinate of (the center of mass of) the body at time t We adoptj if, 
the notation x for the first derivative dx/dt of the function x, so x is thft| 
velocity of the body, and x is then the acceleration d2x/dt2. For somê  
positive integer k, Newton's k-th law claims that F = mx> where F isJ 

• ^ 

(the measurement of) a force on the body and M is (the measurement of)̂  
the mass of the body, M > 0. If one end of a relaxed spring is attached'; 
to our body at x — 0 and the other end is fixed, Hooke's law says that 
when the spring is distended by movement of the body to a point x, 
the force the spring exerts on the body is F = — Kx, where K > 0 is a 
constant depending on the particular spring used. 

HH 
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is partitioned by its orbits; what are they like for Hooke's law? How 
would you describe the quotient space of state space which this equiva-
lence defines? 

The Second Isomorphism Theorem State and prove an analog for top-
ological groups of Prob. II.HH; make the assumption that every sub-
group in sight is closed. 

Spring 
Spring 

x(t) 

Rest position Moving with 
velocity £(f) at 
position x(t) 

Ui 
A ' 

Ii 

Putting this all together, we find that a body in a state (a9b) at time 
zero will be in the state (x,x) at time t9 where if / — \/K/M, then 

h x — a cos Jt + — sin 

x = — a} sin Jt + b cos Jt 

The homeomorphism Pt is given by Pt(a,b) = It is easy to verify 
that Pt+u = Pt o Pu; accordingly, we have defined a one-parameter 
group of transformations of the state space R2; this group is isomorphic 
toS1. 

The "orbit" or "trajectory" of a state s is the set ^ R } , an 
equivalence class of states under the action of the group. State space 

A 



CHAPTER VI 

C s m p o d i m a n d 

In our study of metric spaces (Chap, III) the two important notions of com-
pactness and path-connectedness were defined. These were properties of 
spaces that were preserved by continuous functions; if a subset S of the do-
main of a map/was compact or path connected, then so was/(S). But these 
definitions were too narrow for our present purposes; compactness, for 
instance, was defined only for subsets of when the latter was given the 
usual metric. If an equivalent bounded metric were given Rn (and that is 
always possible), then every subset would be bounded, and since the topol-
ogies are identical for equivalent metrics, every closed set would be closed 
and bounded. In particular, Rn itself would be closed and bounded; clearly 
the Heine-Borel theorem would no longer be true if compact subsets of an 
arbitrary metric space were defined to be the closed bounded subsets. 
Hence the definition we borrowed from the calculus for compactness will not 
generalize even to metric spaces. We shall remedy this in the present 
chapter. 

On the other hand, the definition of path-connectedness can be applied 
without change to any topological space; X is path connected iff whenever 
x and y are points of X there exists a map /: I ^ X with /(0) = x and/(l) 
y. But there is another important concept, that of "connectedness," which 
also corresponds roughly to the everyday idea of being in one piece. Each 
path-connected space is connected, so the newer concept is the more 
general; nevertheless connectedness, like path-connectedness, is still pre-
served by every map, 

136 
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CONNECTEDNESS 

Recall that a partition of a set X is a family S of subsets of X which is 
mutually disjoint and whose union is X. This may be translated to say that 
mch element x of X is in exactly one member of S, An open partition of a 
space X is, then, a partition of X whose members are open subsets of X. In 
these terms, a space X is defined to be connected iff every open partition of 
X contains X as a member. This means that the only open partitions of X 
are the trivial ones, {X} and { X , 0 }. Suppose X is not connected, so that 
there is a partition S with X £ S; clearly, S contains a nonempty subset A of X. 
Then B = U(S — {A}) is open and {A,B} is also an open partition of X; 
hence a space X is connected iff it cannot be expressed as the union of two 
disjoint, proper, open subsets. • Furthermore, A and B are complements of 
one another, so they are both closed in X; we could have said that X is con-
nected iff it cannot be expressed as the union of two disjoint, proper, closed 
subsets. A space which is not connected is called disconnected, and a two-
member open partition of a space X is a separation of X. Hence X is dis-
connected iff there exists a nontrivial separation of X. Still another char-
acterization is that X is connected iff the only subsets of X which are both 
open and closed are 0 and X. • 

An example of a disconnected subspace of the plane is the complement 
X of the two axes; the four quadrants of X form a nontrivial open partition 
of X. We shall now prove that the unit interval I = [0,1] is connected. Let 
S be a separation of I, and let A be the member of S with 0 6 A. Form the 
set / = {x € I: [0,x] C A}; the goal is to show / = I. Let b = lub J, so that 
if y < fo, then [0,iy] C A. Clearly, b £ A, since A is closed and every neigh-
borhood of b contains members of A. But if b < 1, then, since A is open, 
there is a 8 > 0 with (b — 5, b + 8) C A, and this is contradictory, since 
[0, b - 8] C A implies [0, b + 8/2] C A, or b + 8/2 e I Hence b = 1, 
since fo > 1 is impossible. But if fo = 1, then A = I, because A D / D [0,1) 
and the complement of A in I must be an open subset of {1}. This guaran-
tees that each separation of I is trivial, so I is connected. We shall say that I 
is a connected subset of R; more generally, a subset S of a space X is called 
connected if S as a subspace is a connected space. 

Our next result is suggested by the fact that two boards are connected 
if they are nailed together somewhere. The union of two overlapping con-
nected sets is connected. More precisely, if S and Tare connected (as subsets 
of some universal space U), and S Pi T ^ 0, then S U T is connected. To 
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see this, assume A is both open and closed in S U T; if A fl S = S, thi 
A HTD sn T 0 , so A D T and A = S U 2\ On the other hand* 
A Pi S S, then AC1 S = 0 , since S is connected; a similar argum 
shows A fl T = 0 , and A must be empty. Hence S U T is connected, 
immediate corollary is the more general statement that if a family § ofc 
nected sets has the property that every pair S,T of its members over 
then US is connected. For, if A is open and closed in U S and A 0, thej 
there is some connected member S of S lying entirely in A (why?). Th 
if T E 8, then T C A, and A = US is connected. • 

The relation between points of a space T of belonging together to 
connected subset, xRy iff there is a connected S C T with {x,yj C S, is a 
equivalence relation. A member C of the associated partition Q(T) of T 
called a component of T. A component C of T is clearly a maximal coti 
nected subset of T. If Tis connected, then Q(T) = {T }, or Tis disconnect© 
iff G(T) has more than one member. If t £ T, then the component of t in 
is the member of (2(T) in which t lies. Let S be a connected subset of th 
space T, and let A be both open and closed in the closure S" of S. Now; 
A H S is either 0 or S; assume A D S = S (or apply this argument t 
S~ — A). A is closed in S~ and A D S, so A D and therefore A = S 
Thus S" is connected if S is; the closure of a connected set is connected| 
Components are always closed, since they are maximal connected sets. 

The continuous image of a connected set is connected, because th; 
inverse image of an open partition of the image set is an open partition o| 
the domain set. • In fact, we may see here a guiding motivation for thej 
definition of connectedness: a space is connected iff every map from it to & 
discrete space is constant. Put another way, the two-element set {0,1} 
with discrete topology is a land of minimal disconnected set, and if / is 4; 
map from T to (0,1), then /_1(0) and 1) are both open and closed in T\ 
if neither of these sets is empty, then T is disconnected. 

Exercise A 

COMPONENTS OF GROUPS 

Let G be a topological group, and for each g £ G let CQ be the com-1 
ponent of g in G. We assert that Cg is the translate Lg(Ce) of the component ! 
of e by Lg; Lg(Ce) is a continuous image of Ce, so it is connected, and ! 
g € Lg(C€)9 so Cg D Lg(Ce). Similarly, Lg-\(Cg) is a connected set containing! 
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so Ce D Lrx(Cg); the left translation Lg preserves set inclusion, so Lg(Ce) D 
o Lg-i(Cg) = Q; thus = Q. 
We now show that Ce is a closed normal subgroup. It is clearly closed 

Nluce all components are closed, but Ce 1 is connected and contains ey so 
(V"1 C Ce. Since inversion preserves set inclusion, we have (Cg-1)"1 C 
Ctr\ so C e = Ce* Also, if g and h are both in then gC0 is a connected 
Net containing g and gh9 so gh e Ce. This shows that Ce is a subgroup. 
(,'„g = is connected, so g_1(Ceg) is connected and contains e; Ce is normal. 
The quotient group C/C€ is called the group of components of G, denoted 
hy (3(G). We shall regard it as a group without topology, though G does 
bestow one on it (see Prob, AA). 

A continuous function must carry components into components, so a 
morphism /: G G' of topological groups must define a morphism <3(/) of 
the group of components of G to the group of components of G'; G(f){gCe) 
Is the component of /(g) in G'. Further, if f is another morphism and 
the composite /' o / is defined, then <3(/' o f ) = <2(ff) o <2(/), and surely 
Cil(lG) — le(G). Thus the "function" 6 may be described as assigning to each 
topological group a group, and to each morphism a morphism, such that 
composites are preserved and identities go to identities (or "identities are 
preserved"): 

G L—>G' —> G" 

e(G) e(f) fi(G') e(f') e(G") 

This sounds very much like a morphism of some structure; and indeed it is, 
with the proper language—that of "categories." We shall not formalize 
this idea, but several other "functions'5 like & will be seen as we go along. 

Exercises B and P 

PATH COMPONENTS 

If T is a space, a path in T is a map a: I T from [0,1] into T. The 
path a is said to begin at a(0) and end at a( 1), or to be a path from a(0) to 
a( 1), or to be a path connecting a(0) and a( 1). If a is a path from s to t in T, 
then there is an inverse path b from t to s in T: b(u) = a(l — u). Hence 
the relation on T of being connected by a path, sKf iff there is a path be-
ginning at s and ending at t, is symmetric. The constant path at 
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a(I) = {s}> shows site. This relation is also transitive. Let a be a 
from r to s, and b a path from $ to t, in T; then there is a product path a 
from r to t with a • b(u) = a(2u) if 0 < u < Vi and a • b(u) = b(2u — 1) 
% < u < 1. This construction depends on the simple homeomorphii 
h\ [0,1] [0,2]: h(u) = 2u, the homeomorphism of [0,1] with [1,2] whlj 
adds 1 to everything, and the gluing together of continuous functions whit 
agree on the overlap of their closed domains. Draw a picture of it. 

Hence R is an equivalence; for each t € T the class of elements p 
connected to t is called the path component of t in T, denoted by [f]. Sin 
a(I) is connected for each path ay [t] is the union of a family of connect 
sets which overlap at t; [t] is connected. The path components of T m 
not be the same as the components (see Exercise D); probably the pa 
components correspond more closely to the intuitive notion of "the pie 
of T." Obviously, in many cases they are the same. 

For each space T let 7r0(T) denote the set of path components of T 
/: U is continuous, then /([*]) is path connected for each t € T. 
is so because if a is a path from t to s, then f 0 a: I —> t/isa path from /( 
to /($). Hence / induces a function TTO(/): —> ^o(f)([t]) 
[f(t)]> a path component of U (the vertical arrows in the diagram represes 
the respective quotient functions): 

Just as does the component "function" <2, the path-component "function" 
preserves both compositions of maps and identities. Clearly, if/is a hom 
morphism of T with 17, then ^o(/)^o(/_1) = ^o(/° /_ 1) = no(lu)> etc., s 
7To(/): M T ) = MU) . Hence the isomorphism class of 7 T Q ( T ) is a topo-i 
logical invariant of T, and with this algebraic invariant of topological spaces* 
we may hope to distinguish between nonhomeomorphic spaces. Explicitly, 
T is not homeomorphic to U if one has fewer pieces than the other. These 
comments may, of course, be made for 6 ( T ) as well. 

If G is a topological group, then the path component Go of e in G is a 
normal subgroup; If a and b are paths beginning at e, then a" 1 :1 
G: a~x(u) = a(u)~x ends at a(l)"1 and the path aby ab(u) = a(u)b(u), ends at 
a(l)b(l); the path g~xag, which has values g_1a(w)g for each u£ I, ends at 
g_1a(l)g. • It is an exercise to check that cr0(G) = G/Go; it has a "quotient0 

group structure and is called the group of path components of G. Just as 
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before, the "function" TTO sends morphisms of topological groups to mor-
phisms of the (algebraic) groups of components, and identities go to identities. 

Exercises C, D, and E 

COMPACTNESS 

A closed bounded subset of is called compact. The Heine-Borel 
theorem (see Chap, III; see Prob. IILFF for the general case) states that the 
compactness of a subset T of Rn is equivalent to the property that each 
cover of T by open sets contains a finite subcover. This latter property is 
stated in purely topological terms; it does not mention boundedness, which 
is a metric concept. Hence we may use this theorem to generalize the 
notion of compactness to apply to an arbitrary topological space. 

If (T,r) is a space, then S is an open cover of T iff S C r and U S = T. 
A finite open cover of T is an open cover with only a finite number of 
members. (Warning: The members of may well be infinite sets!) The 
space (T,r) is compact (or "bicompact") iff for each open cover S of T there 
exists a finite cover 91 of T with 91 C S; then 91 is called a subcover of T in S, 
A subset A of T is compact if A is compact (as a space) with the relative 
topology. The Heine-Borel theorem now assures us that if A C Rn this 
broader definition of compactness agrees with our former one. Of course, 
there are immediately many examples of compact and noncompact subsets 
of Rw. For another example, consider any infinite set, say R, with its dis-
crete topology (every subset is open); the family of all singleton subsets is 
an open cover in which there is no finite subcover. Conversely, every finite 
space is compact, as is every indiscrete space. 

The continuous image of a compact space is compact The proof is 
quite the same as for the special case of subspaces of Rn (see Chap. III). 
That is, an open cover of the image defines an open cover of the domain, 
and a finite open subcover of that domain cover yields a finite subcover in 
the cover of the image. • 

Exercises H and Q 

ONE-POINT COMPACTIFICATION 

The real line R is not compact (with the usual topology). However, 
we may manufacture a compact space R* which contains R as a (proper) 
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subspace by "adjoining the point at infinity." Specifically, let oo stand 
an object which is not in R, and let the set R* — R U {00} include all 
real numbers and oo. Give R* the topology jit* which contains all the 0 
sets of the usual topology (X for R, plus all subsets M of R* which are 
plements (in R*) of compact subsets of Rs ju* = \I U {M: R* — M isco 
pact in R}, 

Rather than checking directly that is a topology for R* and that 
is compact (R is clearly a subspace of R*), we resort to a picture which glv 
an intuitive feeling for this construction. Let S1 be the unit circle in ti 
plane, with the usual relative topology. Define the map m: S1 —» R* 
m(0,1) = 00 and if x (0,1), m(x) is the unique point at the intersection 
the real axis R C C and the fine through x and (0,1). That m is a home 

IR 

(0.1) 

\ 
/ \ 

m(x) 
m(x') 

morphism when restricted to S1 — {(0,1)} is geometrically clear. But m 
makes a set whose complement in R* is compact correspond to an open set 
at (0,1), and conversely. Thus m is a homeomorphism of R* with S1. 

This construction is an instance of a general method of building from 
a space T a compact space T* which has T as a subspace. The one-point 
compactification (T*,T*) of a topological space (T,R) is the set T * = 

T U {00}, where 00 denotes an object not in T, with the topology defined 
as follows: all members of r are in r* and each set U C T* is in T* if U ' = 
T* - 17 is a closed compact subset of T 
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Let us first check that this does give a topology r* for T*. Clearly, 
t 0 and (since 0 is trivially compact) T* are in T*. If U, r* and both U 
| mid V are in r, then U D V e r C r * , Also, if U € r and V is closed and 
j compact, then V n Tis open in T, so U D V C T C T * . But if both U' and 
I V' are closed and compact in T, then so is C7' U V' = (17 n V)\ since the 

union of two compact sets is always compact (why?). • Hence r* is closed 
under finite intersections. Now we examine the union of a family T C T * . 

If oo i UT, so that T c r, then UT€T C T*, But if oo € 1 7 € % then 
(UT)' is a closed subset of the compact set U' C T, and every closed subset 
of a compact set is compact This is true because an open cover So of 
(UT)' can be augmented to an open cover Si = So U [Uf — (UT)'], and 
u finite subcover in Si surely yields a finite subfamily of S0 which covers 
(UT)'. • Thus UThas a complement which is closed and compact in T, 
UTe T*, and r* is a topology for T*. 

Obviously, T is a subspace of T*, and T* is compact. To see this, let 
S be an open cover of T*; oo € U S, so there is an S0 € S with oo G S0, and 
So' is compact. But S is an open cover of So', so there are members 
SI, S 2 , . . , , S n o f S with S0; C Si U S2 U • • • U Sn; hence T* C S0 U Si U 
• • • U Sn, and S contains a finite subcover. Now let U be a compact 
Hausdorff space with u £ U and /: 17 — {u} a homeomorphism. 
Then/extends to a map F: T* U (why?). By Exercise Q, F is closed 
and thus is a homeomorphism. The example given above could have been 

2-axis 
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abbreviated, then, by observing that S1 — {(0,1)} is a homeomorph of R, J 
A very similar construction shows that the "Riemann sphere" S2 C R3 1| | 
(a homeomorph of) the one-point compactification C* of the complex plane | 
C = R2. The added point oo of C* corresponds to the "north pole" | 
(0,0,1) of S2, and the projection m is defined analogously to the lower- .J 
dimensional case of S1, Conversely, a 2-sphere "becomes" a 2-plane when 
a single point is deleted. You may visualize the process by starting with ft f 
rubber plane, molding its edge (which it does not have) upward to form ft | 
cup, and then, finally, S2 — {(0,0,1)}; the "point at infinity" now will just j 
fill the hole, A surprise in this example is that both S1 and S2 are homo|| 
geneous. This is not always the case; examine in your mind, for instance*! 
the one-point compactification of a subspace of the plane which is the f 
union of two parallel fines. 
Exercise J 

REGULARITY AND T3-SPACES 

Suppose K is a compact subset of a Hausdorff space T, and let t £ K. 
The compact set K is necessarily closed in T, We now argue that disjoint 
open sets U and V may be found in T with t£U and K C V; thus the de-
fining property of TV-spaces, the ability to separate points with open sets, 
still is valid when one point is replaced by a compact set. For each k € K 
choose open sets 17* and Vk with 16 C7fc, k £ Vfc, and Uk H Vk — 0; then 
{Vk: k e K] is an open cover of K. Choose a finite subcover V^, . . , , Vfcn 

and define V — U {Vki: i =: 1? 2 , . . . , n}; V is open and K C V. Similarly, 
if U — fl {Uki: i — 1, 2 , . . . , n}, then U is open and t € U. But if x € Ut 

then x can be a member of no Vfc4, since it is in every [7^; hence x £ V, 
This implies U D V = 0 and ends our argument. 

Now we wish to turn this property of compact subsets of T2-spaces into 
a new separation axiom, which will require that the property be held by 
every closed subset of a space. 

A space T is regular iff, given a point t of T and a closed subset S of T 
with t £ S, there are disjoint open sets U and V of T with t £ U and S C V, 
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This definition may be rephrased: a space T is regular iff for each t € T and 
neighborhoodMoffthereisaclosedneighborhoodNoftwithiV C Af. The 
equivalence of these definitions is immediate if we let S' correspond to Af, 
V' to 2V, and U to N° (the interior of N); do the proof in your head. 

Since singletons are closed sets in a Ti-space, every regular 7Vspace 
is Hausdorff (or T2), but a discrete space having two members is a regular 
space which is not To (or or T2). However, we can now add a new sepa-
ration axiom to our list: a T3-space is one which is both T\ and regular. As 
observed above, each IVspace is T2 (and Ti and To). 

A topological property is called hereditary if it holds for every subspace 
of a space X when it holds for X. An example is 7\-ness: if each singleton 
is closed in X, then each singleton of a subset A of X is the intersection of 
a closed subset of X with A, and so is closed. Regularity and T^-ness are 
hereditary properties; since Ti-ness is hereditary, we need only prove this 
statement for regularity. If X0 is a subspace of a regular space Xi, and So 
is closed in Xo with x € X0 — So, then there is a closed subset Si of Xi 
with Si n Xo = So. Because x cannot be a member of Si, we may find 
open disjoint sets Ui and Vi in Xi with x £ Ur and Si C Vi. Thus there 
are open disjoint subsets (7o = U± H Xo and V0 = Vi D Xo in Xo with 
x £ Uo and So C Vo- Hence Xo is regular when Xi is regular, • 

Examples of regular and T3-spaces abound. Every metric space is T3. 
One has only to find a ball h(e9x) disjoint from a closed set S; then the closed 
ball of radius t/2 at x is a closed neighborhood of x which is disjoint from S. • 
Also, every compact Hausdorff space is a T^-space. This is easy to see; a 
closed subset of such a space is always compact, and we showed above that 
compact subsets of Hausdorff spaces could be separated from points with 
disjoint open sets. • Hence our list of examples of T3-spaces includes all 
the metric spaces and all subspaces of compact Hausdorff spaces. 

The above fact is worth inspection. It says that, for Hausdorff spaces, 
compactness implies regularity. But the conclusion, regularity, is a "local" 
property in the sense that a space T is regular iff, for each point t € T and 
neighborhood M of f, t has a closed neighborhood N lying in M, The same 
closed neighborhood N would do for all larger neighborhoods M' D M, so 
we can decide if a space T is regular or not by examining its character in 
some neighborhood (perhaps quite small) of each of its points. Compact-
ness, on the other hand, cannot be established by merely looking at some 
region about each point; it is a property of the whole space, viewed all at 
once. Such a property as compactness is called "global/' We shall not 
give a formal definition of the terms "local" and "global," but they will be 
useful notions, even if they are imprecise. 

Now, our fact at hand has a global hypothesis, but a local conclusion. 
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You may suspect, then, that the statement can be generalized or stren 
ened. To do that, we need a new definition: a space T is called locall 
compact iff there is at least one compact neighborhood of each point of 
Clearly, if T is compact, then T is locally compact. However, Rn is loc 
compact yet not compact. Every closed subspace (that is, closed subs 
with relative topology) of a locally compact space is also locally compao 
because the intersection of a closed set with a compact set must be compact 

An example of a subspace T of the plane which is not locally compa< 
is the union of the right half-plane {{x,y)\ x > 0} with the origin {0}. Everj| 
neighborhood of the origin in this space must fail to be compact by bein 
too close to points of the y-axis. More specifically, if N is a neighborhood^ 
of 0 in T, then there is an e > 0 with JF>(E,0) D T C N. Let the sequence 
Si, S 2 , . . . of open subsets of The defined by the rule Si = [j&(e/2,0) n T] U 

x > 1/i}; obviously, U{Si, S 2 , . . . } = T. However, the union of 
any finite subfamily {S^, Si2 S i7J of this open cover of N is simply the 
largest member of the subfamily; since for no index i is N C Si, there exists 
no finite subcover for N. This shows that there is no compact neighborhood 
of 0 in T, 

There is the following connection between the notions of compactness 
and local compactness: a Hausdorff space T is locally compact iff its one' 
point compactification T* is Hausdorff\ If T * is Hausdorff and xeT, let U 
and Vbe disjoint open sets containing x and oo, respectively; the comple-
ment of V in T* is a closed, and so compact, neighborhood of x which lies 
inside T. Conversely, if T is locally compact and Hausdorff, then to show 
T * to be Hausdorff we need only find disjoint open sets U and V separating 
the added point oo from an arbitrary point x of T, But if K is a compact 
neighborhood of x in T, then K is closed (since T is T2), so U — K° and 
V = K' will do very well. • 

But look: a locally compact Hausdorff space T is regular, since it is a 
subspace of die compact Hausdorff space 71*. • This is the strengthened 
statement we wished; its hypothesis is now a local requirement. 

There is another remark possible here: at each point of a locally com-
pact Hausdorff space the closed compact neighborhoods form a local base. 
That is, for each point t of a locally compact Hausdorff space T, and each 
neighborhood U of there is a closed compact neighborhood V of ty V C U* 
The proof is trivial. Let C be a compact neighborhood of and choose a 
neighborhood V of / with V~ C U fl C (we can always find V, since T is 
regular). The closed subset V~ of the compact set C must be compact. • 

Exercise M 
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TWO APPLICATIONS TO TOPOLOGICAL GROUPS 

As a final example of regularity, we show that every group space is T3. 
Since left multiplications are homeomorphisms, it need only be shown that 
if U is a nucleus (a neighborhood of e) in a topological group G, then there 
is a closed nucleus V~ lying in U. But recall that there is a nucleus V in-
side U9 with W _ 1 C U. We assert V " C C7, for if g £ then every 
neighborhood of g intersects V, and so gV fl V ̂  0 , Choose a point 
£Vt = v2 in this intersection. Clearly, g = vzoi"1 € W " 1 C U, so 
v- C U. • 

We have observed (in Chap. V) that every quotient map of a group 
onto its coset space is an open map. The proof of this amounts to the fact 
that if A and B are subsets of a group and A is open, then AB is open; 
hence, when if is a subgroup and A is open, q(A) is open in G/H, since 

= AH is open in G* But such quotient maps are not necessarily 
closed. Consider C/R, the quotient of the plane obtained by projection 
onto the real factor. The closed subset A = {(x>l/x): x € R} is carried to 
the positive reals; this is equivalent to the fact that the product of A with 
the kernel of q9 the imaginary axis, in the additive group C is the open right 
half-plane {(x>y): x > 0} (can you see why?), and this half-plane is not 
closed in C. This is thus an example of two closed subsets of C whose 
product in C is not closed. We can assert, however, that the product of a 
closed set with a compact set is closed (but not necessarily compact) in any 
topological group. We shall need some notation for a fairly complex proof. 
Let A be closed and B compact, and let y £ AB, so e £ y^AB. For each 
b£B, then, the complement of the closed set y~xAb is a nucleus, and we 
may find an open nucleus V6 such that V&ViT1 C (j/_1Afo)', Obviously, the 
family (&V&: b £ B) is an open cover of B, Choose a finite subcover 
{hiVbi: i = 1 , . . . , n}, and let V = H{V&i: i = 1 , , . , , n}. We claim yVis a 
neighborhood of y which is disjoint from AB, Otherwise suppose there are 
elements v £ V, a £ A, and b £ B with yv = ab, and let b — biVi € biVbi, an 
element of the finite cover for B. Then yv — abiViy ywc1 = aband 
vvc1 = y~xabi. This is contradictory, since v v c V ^ V ^ ) - 1 , which is 
disjoint from y~xAb\. Therefore each element y of the complement of AB 
has a neighborhood y V lying in that complement, so AB is closed, • 

Now we can claim that q: G —» G/H is a closed map whenever H is 
compact, for q(A) is closed for a closed set A iff q_1[(/(A)] = AH is closed, 
which is the case when H is compact. • Note that this result is valid even 
when H is not normal and G/H is merely a coset space. 
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PRODUCTS 

The cartesian product of two sets, Ai X A2, was defined (in Chap. I) 
to be a set of ordered pairs Ai X A2 = {{clx^Y ai £ € A2}, This 
is set isomorphic to the set of all functions / from {1,2} into A\ U A2 with 
/(1) 6 Ai and /(2) in A2. There is an isomorphism which assigns to each 
such function/the pair [/(l),/(2)]; the inverse isomorphism defines a func-
tion g for each ordered pair (ai,a2) in Ai X A2> where g has the values 
g(l) = a\ and g(2) — a2. This suggests that we may regard each complex^ 
number as a function from {1,2} into R, for example. To continue, if A\f 

A2, and A3 are sets, and S is the set of all functions / from {1,2,3} into? 
Ai U A2 U A3 for which f(i) £ Aj> i = 1, 2, and 3, then there are set iso-
morphisms (A1 X A2) X A3 s S s A± X (A2 X A3) given by the corre-
spondences I 

[(ai,a2),a3] <H>/<H> [ai,(a2,a3)] 
> 

where /(f) = a* for f = 1, 2, and 3. This shows the "associativity up toj 
isomorphism" of our definition of products of sets. It also suggests the fol-? 
lowing generalization of the product of a family of sets; here the family may! 
be infinite. 4 

An indexed family of sets is a function A whose values are sets. The? 
domain L of A is called the indexing set, or set of indices; if A £ L, then the! 
value A (A) is usually denoted by Ax. (This agrees with the standard notation; 
for a sequence of sets, Ai, A2? A3 , . . . ; here L is the positive integers.) Itf 
A is an indexed family of sets with indexing set L, the direct (or "cartesian") 
product of A is XA = {/: / is a function from L into U {Ax: A £ L} witfy 
/(A) £ Ax for each A € L}; that is, a member of the direct product is a func-j 

FI 

tion / which chooses one member /(A) from each indexed set Ax. If, for 
instance, L = {1,2}, then the direct product of A is just the set of functio 
described above whose domain is {1,2} and whose range is Ai U A2; / £ XM 
implies /(1) £ Ai and /(2) £ A2. As we argued above, our new definition 
of the direct product of A yields, in case L = {1,2}, a set isomorphic to 
Ai X A2. In fact, this new definition agrees (up to isomorphism) with the! 
previously defined product of a finite number of sets Ai, A2 , . . . , An, wher 
any association whatsoever may be used. Associativity is "built into" th 
new definition. Henceforth, all direct products will be understood in thif 
new sense. We shall, however, continue to use such notation as Ai x Aj 
and we shall often substitute " X {Ax: A € L } " for " XA" in order to displa; 
the function A by giving its values Ax. Each set Ax is called the A-th factor 
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or coordinate set, of the direct product, and the values /(A) of an element / 
of the product will frequently be written asfx and called the A-th coordinate 
of/ 

The space R", for example, though it was defined as a set of ordered 
n-tuples of reals, may now be thought of as the set of all functions from 
(1, 2 , . . . , n} to R; an n-tuple (xi, x2 , . . . , xn) = x corresponds to the func-
tion/with/^) = xiioxi = Thus f(i) is the i-th coordinate of 
the n-tuple x, which we henceforth confuse with the function / Put another 
way, an ordered n-tuple is neither more nor less than a finite sequence of 
length n, and of course, sequences are functions. 

An example with an infinite index set is X{R*: i — 1, 2, 3 , . . . } , the 
set of all infinite sequences of real numbers; each Rj is the same set R. A 
direct product each of whose factors is the same set A, taken over the index 
set L, is often written AL, with exponential notation. Is it clear that if both 
A and L are finite sets of cardinality A and L, then the number of elements 
in the direct product is A£? Thus the set of all real sequences is called R*, 
where N denotes the natural numbers 1, 2, 3 , . . . . 

We remark that if each factor of a direct product over a nonempty 
indexing set is a nonempty set, then the product is nonempty. This is simply 
a restatement of the axiom of choice (see Chap. I). For each index A £ L 
there is a projection, or evaluation, px of the direct product XA, when 
A = {Ax: A € into its factor Ax, px: XA -> Ax: px(f) = /(A), That each 
of these projection functions is onto is clear, at least when XA 0 . 

i r ••• - ' \ 
; t i ' 

PRODUCTS OF GROUPS 
\ 
t 

If each factor AX of a direct product XA over L is a group,itlteii -yi'A 
is a group with the pointwise multiplication of functions, (/g)(A) = /(A)g(A), 
the latter multiplication taking place in AX. The identity of X A is the func-
tion e with e(X) = e^ the identity of AX; the inverse in the group XA of / 
is f ' 1 , /_1(A) = /(A)"1, where the latter inversion is in Aa. (Notice here the 
conflict of this notation with that for the relational inverse to the function / 
as well as that for a functional inverse of/) The associativity of the point-
wise multiplication is trivial. Each projection XA AX is an epi-
morphism. 

A familiar example of this is the set F of all real-valued functions of a 
real variable. Clearly, F is just the direct product X {Rr: r € R}, the set of 
all functions on the indexing set R whose value at each index r lies in the 
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r-th factor Rr = R. Since each factor is the group of additive reals, F 
an abelian group with the familiar pointwise addition of functions whi 
you first saw defined in the calculus. 

PRODUCTS OF SPACES 

Now consider the problem of building an appropriate topology for 
X{AK: \ £ L}, given a topology rx for each Ax. A natural expectation is 
that the projections px all be continuous. Hence, if r is a topology for the 
product such that each px is continuous> then the set (p^-^S): S £ rx} must 
be contained in r. The product topology p for the direct product is gen 
erated by the subbase {px^1(S):\£L and S £ r x } consisting of all the 
inverse images (under projection) of the open sets of the factors. It is, by 
construction, the smallest topology for the product on which each projeo 
tion is continuous. Recall that a base for p is offered by the family of finite 
intersections of members of the subbase. Each subbase member is, for 
particular X0 and some open set SXo £ AXo, of the form {/: /(Xo) £ SXo}, a 
subset of the direct product. Therefore a finite intersection of subbase 
elements is a product X {Sx: X £ L] of open sets Sx C Ax, one for each X, 
where Sx = Ax except for a finite subset of indices X, This makes it clear 
that the projections px are open maps, with the product topology, because 
the projection pevaluated on a base element X { S x : X £ L } , gives 
which is open in Â  (by the definition of the base). But if a function car 
ries each member of a base (for the domain topology) to an open set of the 
range, then it is an open function (why?). • 

Again the set F of real-valued functions of a real variable provides us 
with an example. A subbasic element of the product topology p for Fis 
depicted in the diagram; it corresponds to an open set W of Rr = R for 
some index r and consists of all / £ F for which f(r) £ W. We denote this 
member of the subbase by (f,W); thus (r,W) is the set of all those func 
tions in F whose graphs go through the "slot" r X W of vertical width W 
which lies above the point r of the domain axis. The intersection of a 
finite collection {(fj, Wj): i = 1, 2 , . . . , n) of these subbasic sets is, of course 
the set of functions whose graphs go through each of the slots (r*,Wi); this 
is the general picture of an element of the base for the product topology 
on F. Notice that in the diagrams the horizontal axis is the indexing set, 
and the vertical line through an index r is the r-th coordinate space Rr. Do 
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not be confused by these diagrams; the plane is not the direct product in 
question, and the pictures are not of F, merely of a few elements of that 
huge set. 

Exercises K, I, and N 

CROSS SECTIONS 

If p: X —> Y is a map, a cross section s to p is a map s: Y X which 
is a right inverse for p, p o s = 1 y. Clearly, if s exists, then p is onto 
(Theorem 1.8). The cross section s is said to be at a point x £ X if x is a 
value of s; then x = s ° p(x), since x — s(y) implies p(x) = p o s(y) = y. 
Since restrictions of continuous functions are always continuous, the 
restriction of a map p to the image of its cross section s must be continu-
ous, and therefore a homeomorphism (why?); s(Y) is a homeomorph of Y. 
If, for example, p is the absolute-value function on the plane, p(z) = \z\9 

then one cross section s, defined on the nonnegative real numbers, assigns 
(r,0) £ R2 to each r > 0. 

Now consider the projection pM of a direct-product space XA onto a 
factor space AM, and let / be an arbitrary member of the product. We 
shall construct a cross section s^ for pM at/, with the image B of s, a homeo-
morph of lying in XA. Consider the subset B — {g: g(A) = /(A) if 
A ji) of the direct product. Clearly, /£ J3; and if g and h are members 
of B with p^g) = g(ft) = h(n) = pjh)> then g = h> Hence p^ restricted 
to B, is 1-1. Further, if a £ A ,̂ there is a member g of B with g(fi) = a 
[and g(A) = /(A) for all A p], so p^B) = AM. Hence there is a two-
sided inverse function 5 for the restriction | £. Now, s is continuous if 
the inverse image ^ ( S ) is open for every element S of a base for B. But 
it is obvious that the intersections with B of elements of a base for the 
product form a base for B. Hence, let X {Sx: A £ L) be a base element 
for XA, so that each Sx is open in Ax. A quick calculation shows that j 
s ^ ( x { S x : X e L } ) =pM(B n X{SX: XeL}) = S^(or 0) , an open set of A,. 
This construction of a cross section to the projection of a direct product * 
onto one of its factors is of general usefulness and should be well under- j 
stood. An intuitive grasp of it is offered by a picture drawn in the product \ 
Ai X A2 of two real intervals. The process described yields, for each ! 
point / of the product, a homeomorph Bi of A%9 with / € B{9 i = 1 and 2. { 
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M X A2 

Ai X a2 

(at,a2) 

ai X A2 

PRODUCTIVE PROPERTIES 

A property of topological spaces is called productive if whenever each 
factor of a direct product has the property, so does the product. Exam-
ples of productive properties are provided by the separation axioms TQ, TI, 
and T2. This is easy to see. Suppose / and g are distinct elements of the 
product, so that there exists an index Xo with /(Xo) g(Xo)- If the factor 
AXQ is, for instance, T\, then there is a neighborhood N of /(Xo) with 
g(Xo) € N; hence Px^iN) is a neighborhood of /which does not contain g. 
The change of wording necessary for a proof in case AXo is T0 or T2 is 
obvious: if each factor AX is T^ then the product must also be TU for 
i = 0, 1, or 2. • 

An example of a topological property which is not productive is the 
property of finiteness. If, for instance, each factor of a product is 
Ai = {0,1}, a two-member set, and the indexing set is the set N of natural 
numbers (or positive integers), then the direct product {0,1}^ is the set of 
sequences each of whose terms is 0 or 1, These sequences are, in an 
obvious way, in 1-1 correspondence with the set of all infinite binary 
decimal expressions for numbers between 0 and 1, an infinite set. 

Exercise Y 
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CONNECTED PRODUCTS 

# Connectedness is a productive property of spaces; in fact, the direc 
product space X A of an indexed family of nonempty spaces is connecte 
iff each member of the family is a connected space. It is easy to see thai 
if is disconnected, then so is X A. Let be a nonempty, proper, ope 
and closed subset of A„. Since pM is continuous, p^'HS^) is a nonempty, 
proper, open and closed subset of XA, which is thus disconnected (supply 
the arguments in your mind). 

Conversely, let each factor space be connected, and suppose S is a 
nonempty open and closed subset of XA. We shall show that S = xA 
Choose a point /€ S, Since S is open, there must be a member T of the 
base for the product topology w i t h / e T c S , Hence T = X {Tx; A £ L} 
where each Tx is open in the factor Ax, and for all but a finite number of 
indices A, Tx = Ax; by renaming indices if necessary, we assume that only 
for X - 1, 2, . . . , n is Tx ^ Ax, Now define U = X { Ux: X £ L}, where 
Ux = Tx if X ^ n, and Un - An; thus T C U. 

We shall show that U C S, and hence, by induction (that is, after n 
such steps), XA C S, which means that XA is connected because S was 
an arbitrary nonempty open and closed subset of XA, Let g £ [/, so 
g(X) € Tx if X n. Define g by g(X) = g(\) if A n, and g(n) = f(n) 
Clearly, g £ T, so g £ S. Let Bn be the image of a cross section to pn at g; 
Bn is a homeomorph of An and thus is connected (in the relative topology) 
Since g £ Bn fl S and B n O S is both open and closed, Bn C S; therefor© 
g £ S. But g was an arbitrary point of [J, so U C S. • 

We recapitulate this proof: it was shown that if g differed from some 
member of S by only one coordinate (that is, one value), then g was in Sj 
hence all points of the product differing by a finite number of coordinates 
were in S. But every element of the product differed by at most a finite 
number of coordinates from some member of S. Draw a picture of this 
proof in R3! 

TYCHONOFF FOR TWO 

Suppose that the direct product X {Ax: X £ L} has one factor Â  
which is not compact. Then there is an open cover S of A^ which con-
tains no finite subcover. Therefore the family (pM"1(S): S £ $} of subbasic 
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open sets covers the direct product, and it certainly has no finite subcover. 
This shows that when a single factor of a direct product is not compact the 
product also fails to be compact. 

We shall now prove that the product of a finite number of compact 
spaces is itself a compact space. It will suffice to prove this for every 
product A X B of two compact spaces, since then the direct product 
Ai x A2 X * • * X Aw of a finite collection of compact spaces would be 
homeomorphic to a direct product (Ai X A2 X • • • X An„i) X An of just 
two compact spaces. (This is an inductive assertion; could you prove it?) 
Suppose we are given an open cover § of A X B, and that both factor 
spaces are compact. For each a £ A the homeomorph a X B of B in 
A X Bis compact, and for each b £ B there is a member of S with 
(a,b) £ S(ttjw- Since S(a,&) is open, it contains a rectangular element 

X V(atb) of the base for the product topology such that a £ U(a,b) and 
b £ V(a>b). Fixing a for the moment, choose a finite subcover (V^^^: / = 
1, 2 , . . . , na} of the open cover { V(a,&): b £ B) of the compact set a X B, 
and let Ua = fl / = 1, 2, . . . , na). When this has been done for 
each a £ A, choose a finite subcover { Uai, Ua2,,,. 3 Uam) of the open cover 
{ Ua: a £ A} of A. We now claim that {S(ai^): 1 < i < m and 1 < j < nai) 
is a finite subcover of S for A X B. Finite it is, and a subset of S as well; 
we need only show that each point (a,b) of the direct product is in some 
set S{aiibjy But if a £ A, then a £ Uak for some fc, 1 < k < m, and then 
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A x B 

p n i f l n t r i r 

li1 
I" c M ii 

In | | | | j | | 

\ ill Hf! r V* i*1 9 mm* ill 

(ak,b) is a member of U{akM) X V(afc>6j) for an integer I between 1 and n 
This says b e V{akMh so 

(a,b) € Uak X V(a*,&t> C ^ , 6 ; ) x V(ajtji)j) C S(afc>bz); 

sets of the latter type therefore cover A X B. • 
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f 
j The plan of the proof is this: an open neighborhood Ua is constructed 

inr each a £ A with the property that a finite subset of § covers Ua X B> 
Hnd then a finite number of the sets {t/a} are found to cover A; the con-
clusion follows immediately. 

| This theorem is called the Tychonoff theorem; it is valid for arbitrary 
I direct products, but the proof in the general case is more difficult. We 
[ shall use it only in applications where there are a finite number of factors. 
[ As an example of its use, we belatedly show that the Heine-Borel 
I theorem is valid in that a closed and bounded (in the usual metric) 
i 

subset of R™ is compact in our newer, topological sense (this was proved 
In Chap. Ill for the case n = 1; see also Prob. III.FF). Let K be a closed 
subset of the ball of radius e at the origin of Rn. Clearly, K is a closed 
subset of the cube C, centered at the origin and with sides of length 2e; 
since closed subsets of compact spaces are compact, it will suffice to 
prove C compact. But C is (homeomorphic to) the direct product of n copies 
of the closed interval [— C R, and that interval has been shown (in 
Chap. Ill) to be compact-
Exercise Z 

REFERENCES AND FURTHER TOPICS 

The material of this chapter is discussed in any introductory text for 
topology, and the references for Chap. IV apply here as well. 

Our most glaring omission is a proof of the Tychonoff theorem for 
arbitrary indexing sets, that compactness is a productive property. This 
has been called the most important theorem of point-set topology and has 
many uses in analysis as well as in topology. Two differing proofs of it are 
offered by 

J. L, Kelley, General Topology, chap. 5 (Princeton, N.J.: Van Nostrand, 
1955). 

Every proof of the Tychonoff theorem must use the axiom of choice, since 
the theorem implies that axiom. A new proof of the Tychonoff theorem 
which makes this use explicit, and does not require the axiom at all in 
some special cases (such as a countable product of real compact sets), is 
given by 

P. A. Loeb, A new proof of the Tychonoff theorem^ Amer. Math. 
Monthly 72 (1965)? 711-717. 
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Incidentally, this reference is the first in this book to a journal article, 
is given in the form usually used by mathematicians; author, Title, abb 
viated name of journal followed by the volume number (date of volum 
first-last page numbers. 

For a delightful discussion of compactness, which argues that th 
notion generalizes that of finiteness, see 

E. Hewitt, The rdle of compactness in analysis, Amer. Math, Month]; 
67 (1960), 499-516, 

Another important omission from this chapter is the topic of sequent 
tial compactness: a space is "sequentially compact" if every sequence i 
it has a convergent subsequence- Reminiscent of this, the Bolzano 
Weierstrass theorem states that every infinite subset of a compact set 0 
real numbers has a limit point in the compact set. In general, a space ii 
said to have the "Bolzano-Weierstrass property" if every infinite subset hai 
a limit point. It is a theorem that for metric spaces the three notions o£i 
compactness, sequential compactness, and the Bolzano-Weierstrass property 
are equivalent. An excellent exposition of these matters is 

G. Simmons, Introduction to Topology and Modern Analysis, pp. 120*1 

128 (New York: McGraw-Hill, 1963). 

Any compact space in which a given space is dense is called a "com 
pactification" of the given space; the one-point compactification is one 
such, and it is minimal in some sense of the word. But there are many 
other useful constructions of compactifications; the texts of Kelley and 
Simmons, cited above, both discuss the "Stone-Cech compactification." 

It is not difficult to see that if a space has the property that for each 
point x and each neighborhood N of that point there is a map from the 
space to the unit interval which is zero at x and identically 1 outside Nt 

then that space is regular. This suggests the definition of a new separation 
axiom; the space above is called "completely regular." Still another and 
stronger separation axiom, that of "normality," demands that for each pair 
of disjoint closed subsets of a space there exist a pair of disjoint open sets, 
each containing one of the closed sets. Urysohn's lemma implies that nor 
mal 7\-spaces are completely regular; they are obviously regular. It is a 
theorem that every Hausdorff topological group is completely regular, yet 
there are examples of nonnormal groups. You can consult the references 
offered in Chap. IV for these new topological ideas. For the complete 
regularity of groups, see 

Montgomery and Zippin, Topological Transformation Groups, pp. 
29-30 (New York: Interscience, 1955). 
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EXERCISES 

Show that every indiscrete space is connected. The components of a 
discrete space are points (that is, singleton subsets); what are the com-
ponents of the space of rational numbers (with the usual relative 
topology)? Is this space discrete? 

Verify in detail that a morphism of topological groups induces a well-
defined algebraic morphism of their component groups. 

Prove that the path component of a point x in a space X is contained 
wholly within the component of %. Do this by showing that a path-
connected set must be connected. 

Show that the subset of the plane consisting of the graph of sin (1/x) 
for x € (0,1] together with the part of the y-axis from (0, — 1) to (0,1) is 
connected. (It is not path connected, by Exercise III.K.) 

(0,-1) 
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E Verify in detail that <n0(f) is well defined and that 770 preserves compo 
sitions and identities, 

F If G is a topological group, show that 770(G) = G/Go. 

G Show that the product of two path-connected spaces is path connected. 
Then show, in general, that for any spaces A and B, 7r0(A X B) is set 
isomorphic to tto(A) X (B). (The "function" 7r0 may thus be said to 
preserve direct products.) 

H Invent an infinite open cover S for the open unit disc in the plane such 
that S contains no finite subcover. Then do the same for the closed 
upper half-plane. 

J Show that {00} is a component of X*, the one-point compactification 
of T, if T is compact. If T is not compact but is connected, is 
T * necessarily connected? 

K Prove that the following theorem, which is valid for finite direct 
products, is true in general; a function f whose range is the direct 
product X {Ax: A £ L) is continuous if and only if the composite px o / 
is continuous for each X £ L, where px is the projection of the product 
onto its A~th factor. • 

L The set F = X { r e R } can be metrized as follows: let each factor 
space Rr be given the same bounded metric <lr (as in Exercise III.A), 
and define the metric <1 on F by 

Hf,g) = lub {a,[^r),g(r)]:r€R}. 
You may presume that A is a metric; draw a picture (like those of this 
chapter) to illustrate the relation of an element of the base for the 
product topology p on F with an element of the base for the metric 
topology jlt. Then prove that p C fx and p ft. 

M Show that the set R of rational numbers, with its usual topology, is not 
locally compact. Since R is T2, R* must not be T2. Prove directly 
that R* is not T2; is it T0 or Tx? 

N Let A = {Ax: X £ L} be an indexed family of spaces, and for each 
X £ L let ax be a subbase (or base) for the topology of Ax. Show that 
sets of the type X { S x : A £ L } , where Sx = Ax for all X ^ [i and 
S, £ form a subbase for the product topology on XA. 

P Show that every nucleus of a connected group generates the whole 
group (see Exercise ILK for a definition of "generates"). 
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Q Prove that each compact subset of a Hausdorff space is closed. Then 
construct an example of a space (non-Hausdorff, of course) with a com-
pact subset which is not closed. 

Now let /: X —» T be a map from a compact space X to a Hausdorff 
space Y; show that / is necessarily closed. Combine this result with 
Corollary IV.7 to show that Im (/) must have the quotient topology. 
Do you see how this result could have saved you labor, for instance, 
in your proof that 1/(0,1} is homeomorphic to S1? 

R Use Exercise Q to give a proof of the theorem that a continuous one-
to-one correspondence from a compact space to a Hausdorff space is a 
homeomorphism, • Then show by example that this statement be-
comes false if the domain is only assumed to be locally compact or the 
range only assumed to be 

S A "Lindelof space" is one on which every open cover contains a count-
able subcover. Evidently, every compact space is Lindelof; show that 
every second-countable space (see Exercise L) is Lindelof. 

T A sequence $±9 s2} \ . . in a space X is said to converge to x £ X if for 
every neighborhood W of x there exists an integer N such that i > N 
implies $i £ W, A space is said to satisfy the "first axiom of count-
ability," or to be "first countable," if at each point of the space there 
is a countable (finite or denumerably infinite) local base. That is, X is 
first countable if for each x £ X there exists a sequence Wi, W2,... of 
neighborhoods of x such that if N is an arbitrary neighborhood of 
x, there is some integer i with Wi C W. Metric spaces are first 
countable. 

Show that if X is a first-countable space and x is a point in the clo-
sure A~ of a subset A of X, then there is a sequence in A which 
converges to x. 

U A subsequence of a sequence si, s2> - • . is a subset $n%, sn2> . . . of that 
sequence, arranged in increasing order; i < / implies n* < n$. Show 
that every sequence in a compact first-countable space (see Exercise T) 
has a convergent subsequence. Hence such a space is "sequentially 
compact." (Hint: Assume that a sequence in a space has no convergent 
subsequence and prove that the space is not compact. The open cover 
you construct should contain, for each term of the sequence, an open 
set which includes only finitely many terms; the complement of the set 
of all terms of the sequence also ought to belong to the cover, but is it 
open?) 
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W Show that the metric topology fx (defined in Exercise L) on F make! 
into a topological group. 

Y Prove that regularity and ^-ness are productive properties. 

Z Prove that the product of a finite collection of spaces is locally compi 
if and only if each factor space is locally compact. 

PROBLEMS 

Spaces of Components Prove that if T is a space and (2 is the colle 
tion of components of T, then 6 is totally disconnected in the q 
tient topology; that is, the components of & are just its points ( 
rather, singleton subsets) (note Exercise A). This seemingly natur 
statement is tricky to prove. Do not make the false assumption th 
if x and y lie in different components of a space, then there exists 
both open and closed subset of the space with x in that subset and 
in its complement. What condition on T will force S to be discrete1 

Relations of Planes with Spheres Generalize the textual examples tQl 
show in detail that for all n, (Rn)* is homeomorphic to Sn (and there-
fore "Sn minus a point is Complete this picture by observing! 
that by deleting a point from R™ you get a space homeomorphic tOJ 

S * " 1 X R. 

Products of Topological Groups Let A = {Ax: X £ L] and B 
{Bx\X £L) be two indexed families of spaces, indexed by the same 
set L. Use Exercise N to show that the correspondence of (/,g) 
with / X g defines a natural homeomorphism between XA X XB 
and X{Ax X Bx: X £ L}. 

Now employ Exercise M to show that if Gx is a topological group 
for each X £ L, then X (Gx: X £ L] is a topological group (with the 
multiplication and the topology of a direct product). This, together 
with Exercise W, exhibits two distinct and nontrivial topologies with 
each of which the group F is a topological group. 

Show that p is not a locally compact topology for F. Since it is a 
group, this provides us with an example to show that the T3 property 
does not imply local compactness. 

Normality A space is "normal" if for each two disjoint closed sub-
sets A and B there exist disjoint open sets U and V with A C U and 
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B C V. Show that every compact Hausdorff space is normal, (This 
is another instance of compact sets' enjoying a property of finite sets.) 

IE Compact Groups Show that G is compact if both H and G/H are 
compact (H need not be normal). 

FF r/V$paces Make a direct argument, without the use of compactifi-
cations, that a locally compact ^-space is T3. 

OG Pointwise Convergence Let Yx be the set of all functions from X 
to Y; show that a sequence fi, f2, f3> • • • of elements of Yx converges 
to a function / in the product topology iff for each x € X the sequence 

f2(^)9 /sO*")* • - points of Y converges to f(x). The conver-
gence of the values of a sequence of functions for each point of their 
common domain is called the "pointwise convergence" of the 
sequence of functions. It is the familiar definition of convergence of 
functions from the calculus. Thus you have shown that a sequence 
of functions of Yx converges in the product topology iff it converges 
pointwise. Because of this fact, the product topology is often called 
the "topology of pointwise (or coordinate wise) convergence." 

HH Completeness A sequence 52, • •. of points in a metric space 
(M,cI) is a "Cauchy sequence" iff for each positive real e there exists 
an integer N such that i(susj) < e whenever both i and / are greater 
than N< The metric space M is called "complete" iff every Cauchy 
sequence in M converges to a limit point in M. For examples, I, Z, 
and R are complete, while the rationals and the open interval (0,1) 
are not. 

Every compact metric space is complete, and a subset of a com-
plete metric space is complete (as a subspace) iff it is closed. 

JJ Path Components of Products Show that the set 770( X {Ax: A € L}) 
of path components of a direct product of spaces is set isomorphic to 
the direct product X (^o(Ax): A € L} of the sets of path components 
of the factors. 

Is a similar theorem true for components? 

KK Product Functions We denote by XL a direct product over the index-
ing set L, each factor of which is X, Let L, X, and Y be sets and 
/: X —> Y a function. The function XL —> YL is defined by its 
values: for each element h of XL (so h: L —* X), fL{h) = /* h. Show 
that if / is continuous, then fL is continuous when the product sets 
are given the product topologies. Furthermore, if X Y -H Z, then 
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(g 0 f)L = (gL) ° (fL)> al s o *s the identity function on XL. Thus 
a set L assigns to each set a product set and to each function a 
"product" function, so that compositions and identities are preserved, 
If one is dealing with spaces instead of sets, and continuous functions 
between them, L assigns spaces and continuous functions to these. 
What can be said if X and Y are groups and / is a morphism? 
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CHAPTER VII 

You have seen several situations already in which a set of functions was the 
object under scrutiny. One instance was the group of all permutations of 
some set, and another was the metric space C of all real-valued maps on I. 
Yet a third was our definition of a direct product as a family of functions 
on an indexing set. Further examples abound: the set of all linear trans-
formations from one vector space to another, or morphisms from one 
group to another, is a mathematical example; physicists are often interested 
in the group of all "symmetries" of space-time which leave invariant a par-
ticular physical quantity or expression. 

We now focus our attention on a quite general sort of family of func-
tions, a family of functions whose common domain is one topological 
space and whose common range is another space. Our interest lies in the 
construction of topologies for such a set of functions, topologies which 
relate in natural ways with the topologies of the common domain and range 
spaces. Although some of our definitions and statements will apply in this 
generality, we shall have little interest in discontinuous functions; accord-
ingly, we restrict our entire discussion to families of continuous functions. 

We wish to examine a set F of maps from a fixed domain space X to a 
fixed range space Y. Clearly, F is a subset of the direct product 
X{Y^: x 6 X}, where each factor Y* = Y; F inherits its pointwise or 
product topology p as a subspace of this direct product. However, the 
definition of p does not depend on the topology of X, but only on that of Y. 
The defining subbase for p consists of sets of the form 

165 
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(x,S) = { / € * / ( * ) € S), 

where x £ X and S is an open subset of Y, and the definition of neither this 
subbasic set nor the class of all such sets (the subbase) involves the topology 
on the domain X of the members of F. Such a topology for the set F of 
functions is bound to have ridiculous properties when a familiar topology 
on X forces on us a strong intuition of ''nearness" in F. 

THE DEFINITION 

Now, every singleton subset {x} of X is compact, as is every finite 
subset {x±9 X2, • > •» xn) C X (why?). And Edwin Hewitt has suggested that, 
in many ways, compact sets are a natural generalization of finite sets (see 
the references for Chap. VI). If, in place of the singleton subsets used in 
the defining subbase for the product topology, we use compact sets, a new 
sort of topology for F arises. The compact-open topology (abbreviated 
c-o topology) on F is the unique topology generated by the subbase of all 
sets of the form (K,S) = {/: f € F and f(K) C S}, where K is compact in X 
and S is open in Y. Since the compact sets of X are determined by their 
possible open covers, the topology on X helps determine the family of sub-
base elements, and hence the c-o topology, on F, If we abbreviate a sub-
base element as (K,S) = { f £ F: f(K) C S}, then a basic set for the c-o 
topology is of the form H {(Ki?Si): i = 1, 2, . . . , n; each Ki is compact in X 
and each Sj is open in Y}, a finite intersection of elements of the defining 
subbase. Is it clear that this topology for F is exactly the relative topology 
which F inherits from the c-o-topologized space of all continuous functions 
from X to Y? 

The c-o topology has, among the members of its defining subbase, 
every element of the defining subbase for the pointwise, or product, 
topology on F; hence the product topology is contained in the c-o topology 
(p is sometimes called the "point-open topology"). • Usually the product 
topology is strictly smaller. As an example, we examine the set F of con-
tinuous functions from R to R, furnished with three topologies: the point-
wise topology p, the c-o topology K, and also the metric topology /A which is 
defined as follows. If f and g are members of F, and there is an x 6 R with 
| f(x) - g{x)\ > 1, let &(f9g) - 1; otherwise let 

Hf>g) = fab{\f(x)-g(x)\:xeK}. 

The function cl is well defined; that it is a metric on F is perhaps intuitively 
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clear (it was described in Exercise VI. L as the metric induced on F by the 
bounded metric defined in Exercise III.A for R). 

As was observed above, p C K; we shall show that p C /c C fi, and 
that each inclusion is strict (that is, these topologies are unequal). First, 
p D K. An illustration of the c-o subbasic element 

{ / e F : / ( [ l , 2 ] ) C ( 3 , 4 ) } = C 

shows that / £ C iff the part of the graph of / which lies above [1,2] is in 

the open strip between y ~ 3 and y = 4. But no base element 
P = H {(Xi,Sj): i — 1, 2, , , . , n) of p could lie inside C; for if %i and Xi+i 
are adjacent among the x's, then it is easy to construct a function in P 
which has values greater than 4 between x\ and (See illustration on 
the next page and also those on page 151.) Such a function is not in C, so 
P (£ C if P is any base element of p whatsoever, and hence p K. 

Now, to show k C fx, let (K,S) be an element of the subbase for K, 
f£(K9S), and define a function g: K —> R: let g{fc) equal the distance 
from f(k) to the (closed) complement S' of S (in R). It is easy (see Exer-
cise B) to show that g is a well-defined continuous function from K into R, 
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md g is always nonnegative. Since K is compact, g takes on a minimal 
value e; and e > 0, because if g(fc) = 0, then f(k) £ S (remember that S is 
open). The number e is called the distance from f(K) to S'. But then for 
nil k£K the distance from f(k) to S' is at least e, Therefore the ball f>(e9f) 
lies inside (K,S), since all functions whose values are within e of the corre-
sponding values of / must map K into S, This shows that (K,S) is a 
/i-neighborhood of each of its elements, so (iC,S) £ ju, Clearly, then, K C jut. 
To show that K fi fi is Exercise C. 

Each of these topologies for F is constructed in a more or less "natu-
ral" way. Each will be useful when it expresses a particular situation at 
hand better than the others; but K, even though its definition may seem 
unmotivated and complicated, is often the most useful of the three. For 
instance, for each real number r the multiplication function Mr determined 
by r, Mr(t) rt, is continuous. We might expect that as r gets close to s 
the function Mr should "get close to" Ms, but in the metric topology jtt, the 
ball £(l,Afa) contains no function Mr with r ^ s. That is, if r ^ s then the 
distance from Mr to Ms is always 1. This will be clear if, given 
there is always some t € R for which \rt — st\ > 1, or 11| > 1/1r — s\; 
t ~ l/(r — $) will do nicely. Thus /x is too large a topology to adequately 
describe the "nearness" of Mr to Ms, when r is near s. However, given a 
c-o base element C which contains Ms> there is a 8 > 0 such that 
\r — sj < 5 implies Mr £ C. We shall assume that C is in the defining 
subbase for K; for a finite intersection of these we can take the smallest of 
the corresponding numbers 6. Thus let K be compact and S open in R, 
with sK C S, or Ms 6 (K,S), If b > 0 is an upper bound for the set 
{ | k |: k £ K}, and e is the distance from sK to S', then j r — s \ < 8 = e/b 
means that \tk — sh\ < jr — s|b < e for all k £ K< But, if for every k, 
\rk — sk\ < then rK C S, and so Mr £ (K,S). This shows that K is a 
small enough topology that every neighborhood of Ms contains all the 
functions Mr for which r is sufficiently close to s, 

On the other hand, the pointwise topology is perhaps too small. For 
instance, inside every p-neighborhood of the identity function are functions 
which are zero except on a finite family of intervals of total length 1 (or 
total length as small as you like). For instance, let f(x) = x for all x> and 
let f£ 0 {(Xi,Si): i = I, 2, 3}, so that Xi £ Si for each i. The function g 
depicted below is zero except on three intervals, centered at the points Xi, 
each interval of length te. On these intervals the graph of g rises so that 
g(^) = then falls sharply back to zero, as one goes from left to right (see 
Chap. VI for the interpretation of this diagram). The c-o topology has no 
such failing. For instance, let K = [100,200] and S = (99,201) be inter-



vals defining the subbasic element (K9S) of K. Then/e(K,S)5 and every 
function g in (K>S) must be nonzero on K9 an interval of length 100* 
Hence the c-o topology is able to "separate" the identity function from the 
set W of all continuous functions which are nonzero only on a set of total 
length 1. To put it more precisely, the closure of Win K does not contain/, 
but the closure of Win p does, since every p-neighborhood of/intersects W* 

The sets of functions we shall be dealing with henceforth are all sets 
of continuous functions, and we have just argued that the c-o topology is 
usually the most natural for such a set. Accordingly, we adopt the nota-
tion Yx for the set of all continuous functions from a space X into a 
space Y, furnished with the c-o topology. Such a space Yx is often called 
a mapping space. This "exponential" notation has been previously intro-
duced (in Chap. VI) to describe a direct product, Yx = x{Yx-x£X}t 

where each factor space is Yx = Y, and X is merely a set, without topology. 
But this is really a special application of our new definition, since the set X 
may always be given the discrete topology. This causes every function 
from X to Y (that is, every element of the direct product) to be continu-
ous; furthermore, the c-o topology is here the same as the product topology, 
because X is discrete and its only compact sets are the finite sets. 

Exercises A, B, and C 
E i 

t 

B5' .v 
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ADMISSIBLE TOPOLOGIES 

Let F be a set of continuous functions from X to Y. The evaluation 
function e: F X X —> Y carries each pair (fx) to e(fx) = f(x) £ Y. Since 
(lie topologies for X and Y are thought of as fixed for this discussion, the 
continuity of the evaluation function depends solely on the topology chosen 
lor the set F, A given topology for F is called admissible iff e is continuous. 
In the language of the calculus, this means the joint continuity of ey 

simultaneously in both its variables, / and x. To fix this idea, we consider 
I he weaker requirement that e be separately continuous in each of its vari-
ables; of course, if the argument /is held fast at a point fo of F, then the 
continuity of e(fo,x) = fo(x) in the variable x is equivalent to the continuity 
of fo itself, which we have assumed. But if the second argument of e is held 
l ast at a point Xo of X, the continuity of e(fxo) as a function of its first varia-
ble / is established if each inverse image of an open set of Y is open in F. 
If S is open in Y, this inverse image is the set {/: e(fxo) £ S} = 
{ f f (xo) £ S}, which is exactly the subbase element (xo,S) of the product 
topology on F. Hence e is separately continuous iff (xo,S) is open in F for 
each Xo £ X and each open set S of Y; that is, iff the topology of F contains 
the product topology. We might even have defined the product topology 
tor F as the smallest topology for which e is separately continuous; it exists 
and is unique. 

The more stringent requirement that e be jointly continuous in both 
its arguments, that F be admissibly topologized, is not so easily character-
ized in general. But when X has a plentiful supply of compact sets, so that 
there are enough c-o subbasic sets, we get a concise answer: if X is locally 
compact and Hausdorff then the c-o topology is the smallest admissible 
topology. 

We first show that the c-o topology is always smaller than any admis-
sible topology for F, whether X is locally compact Hausdorff or not (remem-
ber that "smaller than" here means "contained in"; this does not imply 
inequality). Suppose T is an admissible topology for F, and let K be the c-o 
topology on F, with (/C,S) a member of the defining subbase for K. If 
f£ (K,S) and k£ K, then ( f k ) £ e~x(S); hence there is a r-open set Uk and 
an open set Vk of X with (fk) £UkxVk C ^ ( S ) . The family {Vk : k £ K} 
is an open cover of the compact set K\ let V±9 V2, . .. , Vn be a finite sub-
cover. Define U = I7i D U2 H * < • fl Un; U is r-open in F, and we claim 
U C (ICS). That is nearly obvious. Let g£ U and k £ Ky say k £ Vn then 
g e Uu so g(Jk) C e(UiX Vi) C S. Thus f£ U C (K,S), (K,S) is a r-
neighborhood of each of its points, (K,S) £ t, and finally, K C t. • 
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Of course, this does not show that there need exist any admissiU 
topology for F; it shows only that if there is one, then it contains K (but nfll 
Exercise G). However, we now prove that if X is a locally compact Hatfl 
dorff space then K is admissible. Let S be open in Y and let ( f x ) 6 ^ ( i 
so that f(x) 6 S. Since / is continuous, S) is a neighborhood of 1 
furthermore, whenever X is locally compact and Hausdorff, there Is J 
closed compact neighborhood K of x with K C /~1(S). Suppose g € (KM 
or g(K) C S; clearly, g(x) € S, so (g,*) € e"l(S). Let KQ be the interior J 
K; (/,x) £ (JSC,S) X C <r *(S), and ^ ( S ) must be a neighborhood of e&J 
of its points. Thus e~1(S) is open and e is continuous. We have jujj 
shown that if X is a locally compact Hausdorff space and F is a set of cOfj 
tinuous functions from X to a space Y, there exists a unique smallti 
admissible topology K for F; this is exactly the relative topology for j 
in Y* • 

Exercises D, E, and G 

GROUPS OF MATRICES 

A real n X n matrix M is, for some positive integer n, an arrangemenl 
of n2 real numbers in a square array: 

(ms) 

mn W12 
m21 m22 

m ln 

m2n 

nini mn2 

This may be regarded, in an obvious way, as an element of real n2-space,| 
Thus the set rmn of all n x n matrices has a metric topology under| 
which it is homeomorphic to real n2-space. 1 

Each n X ti matrix M defines a linear transformation, a function on 
to Rn, in the following fashion. If x = (xx, . .., xn) is a real n-vector,̂  
then the value of M at x is the real n-vector whose i-th coordinate is 

X V 

[M(x)]i = 2 m^. 

This function M: Rn —» Rn is continuous iff each projection of it into a fac-
tor space R of its range is continuous; that is, iff [Af(*)]i is continuous in x, 
which it clearly is (more details are given below). Therefore rmn, as a set 
of continuous functions with common domain and range, may be given the 
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product topology p or the c-o topology /c. One warning here: The metric 
lupology jLt is also a product topology, that of the product of n2 copies of R. 
Ihil that "product" topology ju for regards each matrix as a function 
from a finite set of n2 elements into R, whereas the product topology p for 
<mw regards matrices as functions from Rn to 

As always, p C K. And if [JL is admissible, then K C jut, since K is 
ni nailer than any admissible topology for <mn* Now, }i is admissible iff e is 
continuous; that is, iff M(x) is continuous simultaneously in M and in x, 
when the domain of e has the product metric topology of real (n2 4- «)-
npace. We may check this separately for each coordinate [M(x)]i of the 
vulues M(x). But the i-th coordinate of the value of e is 

[M(x)\ 
r • 

^ TTiijXji 
l 

and this is a continuous function simultaneously of the real numbers m^ and 
Xj, since real multiplication and addition are continuous, and each my or Xj 
is a (value of a) continuous function on (n2 n)-space, namely, the projec-
tion onto one of the coordinate spaces of the domain of e. We are claim-
ing, then, that, given £ > 0, we can find a 5 > 0 such that if each coordi-
nate m/ of Mf is within 8 of my, and each | x/ — xy j < 5, then 

2 w-i/'x/ — 2 < 

Of course, a complete description of 8 as a function of 1 + n2 + n varia-
bles (e3 each my, and each x̂ ) would be tedious. We have argued, rather, 
that e is a composite of continuous functions. 

There is a surprise in this example: all three of these topologies are the 
same! We prove this by showing that C p. Recall first that if xl = 
(0, 0, , , , , 0, 1, 0, . , , , 0) denotes the vector of Rn whose coordinates are 
zero except for the i-th coordinate, which is 1, x/ = then M(xi) is the 
vector whose coordinates are just the entries of the i-th column of M. Thus 
let Sel denote the neighborhood of the i-th column vector of M which con-
sists of all vectors whose entries are within t > 0 of those of that column 

i 

of M. Then fV^x^S^): i = 1, 2, . . . , n} is the member of the defining 
subbase for p which contains all the matrices of Mn whose entries are within 
e of their corresponding entries in M. It is obvious now that there is a p~ 
neighborhood of M inside any given //-neighborhood of M, or fi C p. The 

f The symbol 5/* denotes the Kronecker delta function of two variables i and / whose value 
is 1 if i = / and 0 if i /. 
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trick of this proof is the use of the fact that, when the image of a (finite!) 
basis is known for a linear transformation, the matrix of that transform is 
determined. 

A glance at the definition of the product of two n X n matrices—, 
(mjj)(niij) has as its (i,/)-th entry —convinces us that the multi-
plication of matrices defines a continuous function from <mn X <mn to nm*̂  
Of course, some matrices do not have inverses, but the ones with nonzero 
determinant are exactly the invertible ones. Again, the recipe for the de-
terminant of a matrix is a sum of products of real numbers, each of which 
real numbers is the projection of the matrix (regarded as a real n2-vector) on 
one factor of the product space Rw2. Since projections of product spaces, 
are continuous functions, as are real addition and multiplication, the deter-; 
minant function is a map from to R. Now, R — {0} is an open subset 
of R, and the set GL{n,R) = {M £ cm^: \ M\ 7^0} of invertible n X « 
matrices is thus an open subset of rr%. A rephrasing of this argument to ) 
that if | M | ^ 0, then there exists an e > 0 such that, if the entries of N are i 
within e of those of M, then \N\ 0, The set GL(n,R) is called the full J 
(or general) linear group on R"; it is clearly a group, and its multiplication: 
is continuous. Furthermore, an argument similar to that for matrix multi- i 
plication shows that the inversion function is continuous from GL(n,R) to ̂  
itself (see Exercise H). Since every metric space is Hausdorff (see Exercise 
V.G), the full linear group is a topological group; in fact, it is a group;; 
manifold. 

Since the determinant function preserves products, | MN\ = \M\ j N\, 
and is an open map (see Exercise J), it is a morphism of GL{n,R) onto R( i 
Its kernel, SL(n,R) = |Mj = 1), is called the special linear; 
group; it is a closed normal subgroup of the full linear group. By the 
Quotient Theorem for Topological Groups, the quotient group GL(n,R)/ ] 
SL(n,R) is topologically isomorphic to the multiplicative group of nonzero J 
reals. "J 

Exercises H and K 

TOPOLOGICAL TRANSFORMATION GROUPS 

In Chap. II a group whose elements were functions on some set S and 
whose group operation was composition was called a permutation group, 
In a sense, such groups were less abstract, although Cayley's theorem (see 
Prob. II.EE) asserted that every group was isomorphic to some permutation 
group. By analogy, we define a topological transformation group (or group 



Topological Transformation Groups 175 

of transformations), abbreviated ttg, to be an admissible group G of func-
tions on a fixed Hausdorf space X with composition as the group operation. 
It is clear that the members of G must all be homeomorphisms of X onto 
itself, since the group contains the products and inverses of its elements. 
Notice that the definition of a ttg involves G, X, and the evaluation function. 
A more formal definition is that a ttg is a pair (G,X), where G is a topological 
group whose elements are permutations of X, X is a Hausdorff space, 

i For all / and g in G? and for all x e X, (fg)(x) = /[g(x)]> 
ii Each / € G is a homeomorphism of X onto X, and 

iii The evaluation function is continuous on G X X to X. (See also 
Prob, CC.) 

& 

I 
| The group G is said to act on X; the evaluation is called the action of G on 

X. Notice that every ttg G on X must contain the identity on X, which 
is the identity element of G. 

We have already studied examples of groups of transformations; the 
action of GL(n,R) on R™ is admissible, and the groups SL(n,R), together 
with all other subgroups of GL(n,R), provide further examples. One sub-
group of GL(n,R) of considerable interest is the orthogonal group On = 

SJ {M £ m\n: MT = M^1}, the set of n X n matrices for which the transposed 
matrix is the inverse matrix. [The transposed matrix MT of M has as its 
(<>/)-th entry the number m .̂ Using the equations (MN)T = NTMT and 
(MN)"1 = N~1M"1> we may quickly verify that On is indeed a subgroup of 
the full linear group.] It is a familiar fact of linear algebra that the ortho-
gonal matrices are just those corresponding to linear transformations which 
preserve lengths of vectors, just the isometries of Rw which fix the origin. 
The determinant of each orthogonal matrix is ± 1 (although not all matrices 
having determinant 1 are orthogonal). The special orthogonal group 
SOn = On Pi SL(n,R) is the subgroup of On of those matrices of determi-
nant +1, It is sometimes called the group of "rotations of Rw about the 
origin," or the group of "rigid motions of Rw which fix the origin." 

A ttg G on X is called transitive if for each two points x and y 
of X there is an element g 6 G which carries x to g(x) — y< Since every 
linear transformation in rmn leaves the origin fixed, no group of matrices is 
transitive on Rn* However, each member of GL(n,R) is invertible, and 
hence is 1-1; if we regard GL(n,R) as a ttg on Rw — {0}, then it is indeed 
transitive. A proof of this begins with the observation that if y is a non-
zero real multiple of x, y — Xx, then the matrix (my) = AS/ will do. If no 
such A exists, then the two nonzero vectors x and y may be interchanged by 
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some member of the group. We need the theorem that, if {a\, . . . , an} 
and {bit b2,. .. > bn} are two bases for the vector space Rw, then there exis 
a unique matrix M (corresponding to a unique linear transformation) sue 
that M(di) = bi for i = 1, 2, . - . , n. Furthermore, the independent setj 
{x = ai, y = a2} may be extended to a basis {x, y, . . . , an}, which can 
be carried to the basis {y3 x, . . . , a^} by some member of GL(n,R), 
Thus the full linear group is transitive on Rn — {0}, 

Certainly On is not transitive on R^ — {0}, for an orthogonal matrix 
cannot carry x to y if these vectors have differing norms, ||x|| |jt/||; hera 
||x|| = (S?= iXi2)1/2 is the norm, or "length," of the vector x. However, Ort; 

and SOn are both transitive on the unit sphere Sn"1 C ~Rn — {0} ; a proof 
of this may proceed quite as the above treatment of the full linear group, 
Geometrically, you may visualize an appropriate orthogonal transform as ft 
rotation of Rn about an axis perpendicular to x and to y. 

Let G be a transitive ttg on X, and let XQ be a point of X. There is it 
projection p: G » X of G into X defined by p(g) = g(xo); p is clearly con*! 
tinuous, since the topology of G is admissible; and p is onto, since 0! 
is transitive. The closed subset p^x0) = H is a subgroup of G called th» 
isotropy group of G at Xo; it is the subgroup of elements of G which fix 
Each inverse image p^1(y) of a point of X is a coset of H, because g(xo) a. 
y = h(x0) implies g o h~1(x0) = Xo. This subgroup is not usually normalj 
nevertheless, the map p always factors through the quotient map q of 0 
onto its coset space G/H: 

G/H --»--> X 

That is, there exists a map r: G/H —> X with r o q = p; r is always 1-1 and 
onto. The map r will be open, and will thus be a homeomorphism, if p is 
open, since then r{%) = p[qf-1(%)] is open for each open set % of G/H, 
Another hypothesis guaranteeing that r is a homeomorphism is that G 
be compact, for then G/H is also compact, and we know that a 1-1 mftp of 
a compact space onto a Hausdorff space is a homeomorphism. A direct 
proof that t is a closed map when G is compact merely observes that when 
%is closed in G/H, then is closed in G, and so is compact; there* 
fore = r(%) is compact in X, and thus is closed (since X if 
Hausdorff). We collect these facts in a formal pronouncement. 

QUOTIENT THEOREM FOR TRANSFORMATION GROUPS Let G be A ttg OTL X , 

xo € X, and let H = (g 6 G: g(*0) = Then His a closed subgroup 
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of G, and the function r; G/H —> X which assigns r(gH) — g(xo) to 
each coset gH ofHin G is a well-defined 1-1 onto map. The spaces 
X and G/H are homeomorphic if G is compact or if the projection 
p: G —» X is open, where p(g) = • 

As an example, we examine the ttg On on the space S""1 C Rw. We 
choose the special point N € Sn~\ N = (0, 0, , , , s 0, 1). It is easy to com-
pute that a matrix M of On which fixes N must have a 1 in its lower right-
hand corner, Mnn = 1. Some equally easy matrix arithmetic shows that the 
balance of the right-hand column and of the bottom row of M must be all 
zeroes, M\n = Mn\ = 0 if i ^ n . This in turn implies that the (n — 1) X 
(n — 1) matrix M resulting from the deletion of the bottom row and right-
hand column from M is a member of On-ii this may be converted into a 
proof that the isotropy subgroup {M € On: M(N) = N} of On at N 6 S i s 
topologically isomorphic to 0Tl_i, and we identify On_i with this subgroup 
of On, O n-i CI On. Hence we have a 1-1 onto map r; On/On-i —> Sn 

Now let the map /: GL<n,R) rm̂  be defined by f(M) = MT - M'1; 
On = 0) (0 denotes the matrix with entries all zeroes) is a closed sub-
set of the open subspace GL(n,R) of rm ,̂ so that On is closed in mi 
Furthermore, if xl 6 Rw is the vector with entries x/ = 6/, so that xl has a 
1 as its i-th coordinate and zeroes elsewhere, then Ĥ H = 1; the value 
M(xi) of a matrix is just the i-th column of M. If M € On, so that M 
preserves norms, then ||M(xi)|| = \\x?\\ = 1 for i — 1, 2,« . . , n; hence no 
entry of M can be greater than 1, and On is a closed bounded subset 
of ann. Since rmn is a homeomorph of real n2-space, On is compact, and 
we infer that On/On_i "is" an (n — l)-sphere. 

Exercises L and P 

THE EXPONENTIAL LAW ( Z Y ) X ^ Z X X F 

A real-valued function /: R2 —* R of two real variables defines, for each 
fixed real number xo, a function go: R —> R of one real variable by go(y) = 
/(xo,t/)4 This natural construction is often used; for example, in the calcu-
lus, the derivative of g defines a partial derivative of f Of course, choice 
of a different value xx ^ x0 for the first variable of / yields, in general, a 
different function gl9 gi(y) = f{x\9y). Hence the function g constructed 
from / by fixing its first variable is itself a function of the "fixed" value of 
that first variable. More specifically, the construction may best be regarded 
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as a function $ which assigns to each function /: R2 R a new functioft 
€>(/): R —> RR : ®(f)(r) is the real-valued function on R which sends s £B 
t o / M - *(/)(r)(s). 

This may seem a needless complication of a really simple situation, but 
we are searching for an appropriate generality. Let X, Y, and Z be topo-
logical spaces, and let ZY and ZXXY be the spaces of maps from Y and X X V 
into Z, each with the c-o topology. Now build the space (Z5^ of continue 
ous functions from X into Zr , again with the c-o topology. Using the above, 
outline, construct the function <I>; ZXXY(Z*7)*; $ is called an association!1 

and if/is a function from X X Yto Z5 then $(/) is the associated function 
of/; we shall denote <$(/) by/for simplicity. Thus/(x) is a function from 
Y to Z, / (x)(</) = / (xst/). It is not obvious that / is a member of ( Z a t 
all; that is, is /(x) continuous for each x, and is / continuous? 

THE EXPONENTIAL LAW FOR MAPPING SPACES If X, Y, and Z are spaces, i 
and Y is bcally compact and Hausdorff\ then the association <&: Zx x y-+ j 
( .Z^ is a isomorp/ifem (that is, a 1-1 correspondence), S 

i1 

£ 
ii-

Proof Since the proof is rather long, we shall break it into four pieces. 

i f(x) is continuous The function/(x) may be thought of as the re*i 
striction of the continuous function / to x X Y, f(x)(y) — f(%>y)i sindê  
x X Y is a homeomorph of Y, /(x) is continuous. j 

ii / i s continuous It will suffice to show that if (K,S) is a member of} 
the defining subbase for the c-o topology on ZY> then /~1{JK,S) is open ins 
X. By the definition of /, f-^K.S) = {x£X:f(x)(K) C S } = { *€Xl| 
f(x X K) C S}. Suppose Xo £f~~1(K>S); since / is continuous, /_1(S) is 
open and /_1{S) D Xo X K- Thus for each k£K there is an open set; 
Uk C X and an open set Vk C Y with (x0?&) £Ukx Vk C S). Thfl 
family { f c 6 K} covers the compact set K. Let Vi, V2,. . . , Vn be a 
finite subcover. Define U = U± D U2 D * - - fl Un and V = Vi U V2 U: 
• • U (This step looks familiar; can you close the book now and finish^ 
the proof that/is continuous?) It is easy to check that (xo,-K) C U X V Ci 
/"!(S), and thus that x0 e U C / " ^ S ) . H e n c e / ' ^ S ) is a neighborhood 
of each of its elements x0> and so it is open; / is continuous. i 

iii O is 1-1 Trivially, if / and g are distinct members of Z**1^ 
so that there is a point (x0,t/o) with f(xa9y0) g(*o,t/o), then /(*o)(yo) 
g(*o)(yo); hence /(x0) ^ g(*o) a n d / ^ g. 

iv <J> is onto Suppose <p £ (Z7)*. Define a function/from X X Yto 
Z by /(x,t/) = <p(x)(i/). We must show / to be continuous. But / is thfe 
composite function e ° where X X Y —> Z F X Y is defined by 

ft. jĵ  

l" 

I 

w I. 

I 
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<p(x,t/) = [cp(x),t/3 e: ZY X Y Z is the evaluation, e[<p(x),t/] = <p(x)(i/)-
Since <p is clearly continuous in each coordinate, it is continuous into the 
product ZY X Y; and because Y is locally compact and Hausdorff, the c-o 
topology is admissible for ZY« Hence e is continuous, and so is /, Obvi-
ously, / = 9 is a value of and <3> is therefore onto. » 

Our motivating example for the exponential law is now clear: a r e -
valued function / of two real variables is an element / e RRXR, and we now 
know that, for each f(x) is continuous in y; and, furthermore, / is con-
tinuous from R to RR. To check the continuity of any function /: R —* RR, 

_ ^ 

we need only check the function/; R X R —> Rs f(x>y) = f(*)(y)l /*s con-
tinuous iff / is continuous. We postpone further examples until the next 
chapter, where they will be abundant. 

One corollary statement to the exponential law should be made now, 
though. The natural homeomorphism ofX X Y with Y X X defines the 
central set isomorphism in the chain 

which is valid when both X and Y are locally compact Hausdorff spaces. 

REFERENCES AND FURTHER TOPICS 

Our exponential law claimed only a set isomorphism of ( Z w i t h 
ZXXY, under the condition that Y be Hausdorff and locally compact. But 
if X is also Hausdorff these assumptions suffice to conclude that these two 
mapping spaces are homeomorphic. We shall not need this stronger state-
ment in our work, and the proof that the association <& is continuous and 
open is long. Perhaps the most accessible proof is offered in 

S. -T, Hu, Elements of General Topology, chap, V (San Francisco: 
Holden-Day, 1964). 

Three other sources for a general development of the theory of mapping 
spaces, each more difficult than the one above, are 

J. Dugundji, Topology, chap. XII (Boston: Allyn and Bacon, 1966). 
S. -T. Hu, Homotopy Theory, pp. 73-77 (New York: Academic Press, 
1959). 
J. L. Kelley, General Topology9 chap. 7 (Princeton, N.J.: Van Nostrand, 
1955). 
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For excellent and thorough discussions of groups of matrices and 
ttg's, see 

C, Chevalley, Theory of Lie Groups (Princeton, N.J.: Princeton Uni-
versity Press, 1946). 
Montgomery and Zippin, Topological Transformation Groups (New 
York: Interscience, 1955). 
L. Pontrjagin, Topological Groups (Princeton, N.J,: Princeton Uni-
versity Press, 1939). 

(Both the Princeton University Press books have been published in paper-
back editions, as well as cloth.) 

If X is a compact Hausdorff space, the set of all continuous complex-
valued functions on X becomes, with the c-o topology, an additive topologi-
cal group. Moreover, it has a ring multiplication and the scalar multiplica-
tion of a complex vector space (both pointwise), and these multiplications 
are continuous simultaneously in their factors; such a space is called a 
topological algebra. In fact, this algebra contains complete information 
about X9 and X may even be recovered from it. To give details of this would 
carry us far afield; a very digestible account is given in 

G. F. Simmons, Topology and Modern Analysisf part three (New 
York: McGraw-Hill, 1963). 

EXERCISES 

A Prove that the c-o topology on the set C of continuous functions from 
I = [0,1] into R is the same as the metric topology for C described in 
detail in an example of Chap. III. The metric on C is given by 

Z(fg) = lub{\f(x)-g(x)\:xtl}. 

(Hint: Show that a subbase or base for each topology is contained in 
the other topology.) 

B Show in detail that the function g defined in the first example of this 
chapter (on page 167) is well defined, continuous, and positive. 

C Show that the c-o topology K on the set F of continuous functions from 
R to R does not contain the metric topology jU for F. Do this by show-
ing first that the ball 6 jtx contains no member of the defining 
base for tc. 
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D Cayley's theorem (see Prob, II.EE) asserts that if G is a group and L 
is the set of left multiplications of G, L = {Lg: g € G ) , then L is 
a group of functions with composition as the group operation, and 
L s G. Prove that the set of left-multiplication functions of the circle 
group S1, furnished with the c-o topology, is homeomorphic to the 
space S1; this, together with Cayley's theorem, shows that L is a 
topological group and that it is (topologically) isomorphic to S1. 

E Prove that the product topology p is not admissible on the set C of all 
maps from I into R. (Hint: Show first that under the evaluation func-
tion the inverse image in C X I of an e-ball in R could contain no set 
of the form [ H {(xi9S*): i = 1, 2 , . « . , n}] X B, where Xi € I and Si is 
open in R for each index t, and B is an open ball in I. Then observe 
that every subset of C X I which is open in its product topology must 
contain a subset of the above form.) 

F Prove that if F is a set of maps from a compact space X into a metric 
space (Y£o), then the c-o topology for F is the same as the metric 
topology defined by 

= lub {a0[/(x),g(*)]:*€X}. 

(A model for this proof is given by Exercise A.) 

G Show that the discrete topology on a set F of maps from X to Y 
is always admissible. 

H Give a complete argument that multiplication of matrices defines a 
continuous function on X ot^ to <mn. Then sketch a proof that 
inversion of matrices is continuous from GL(n,R) into itself 

J Prove that the determinant function det: cm^ -h> R is open, 

K Define a right-inverse map s: R —» rm^ for the determinant function 
such that 5, when restricted to the positive reals R+, is a monomorphism 
from the multiplicative group of positive reals onto a normal subgroup 
of the group G = {M £ GL(n,R): det (M) > 0}, Conclude from your 
work that G is topologically isomorphic to R+ X SL(n,R). 

L Show that whenever G is a ttg on X and H is the set of all homeomor-
phisms of X, the inclusion of G in H is continuous if H is given the c-o 
topology. 

M Let G be a topological group, and let H be the set of all homeomor-
phisms of the space G, furnished with the c-o topology. Use Exercise L 
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to show that the left multiplications of G define a map s: G 
into its own set of homeomorphisms. 

HoiQ 

Now prove that a group G is topologically isomorphic to a ttg (on G) 
which has the c-o topology. This is a generalization of Cayley'a 
theorem (see Exercise D and Prob. ILEE) to topological groups, (In 
the same sense, the topology of G is the pointwise topology, too.) 

Argue in detail that the coset space SO„/SOn_i is homeomorphic 
to the sphere Sn_1. 

Let G be a transitive ttg on X and x0 £ X, and let p: G X be the 
evaluation at xo, p(g) = g(̂ o)- A "local cross section" to p at xo is a 
map s: S —> G whose domain is a neighborhood S of xo in X and whose 
composite p o s with p is the identity on S, p o s(x) = x for every x € S, 
Show that if a local cross section to p exists, then G/H is homeomor-
phic to X, where H is the isotropy subgroup at xo* 

Establish that the group G of all homeomorphisms of the open interval 
(0,1) is a ttg on (0,1) when it is given the metric topology defined by 

a(/,g) = / ^ { l / ( x ) - g ( x ) | : 0 < x < l } . 

(See Prob. V.DD.) 

If G is the ttg of Exercise R and p is the evaluation at € (0,1), there 
exists a "global7' cross section s: (0,1) —> G to p. Hence show that G 
is homeomorphic to if X (0,1)> where H = p_1(^s) (but note that G is 
not isomorphic to this direct product). 

Exhibit isomorphisms of the transformation 
GL(2,R) with more familiar topological groups, 
phisms are both continuous and open.) 

groups GL(1,R) and 
(Be sure your isomor-

PROBLEMS 

AA A Product on Xx Show that if X is a locally compact Hausdorff 
space, K is compact, and W is open in X, with K C Wy then there 
exists a compact subset L of W such that K lies in the interior of L (in 
other words, L is a compact neighborhood of K). Use this result to 
show that composition defines a continuous product on Xx. 
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Now suppose that X is a locally compact group, and let Y — 
{/€ X*: f(e) = e). Show that the function h: X X Y -> X* defined 
by h(x,f) = hx o / is a homeomorphism (it does not, however, preserve 
the group operation). 

Metrics for On Show that the metric topology on Om considered as 
a subset of real n2-space, is the same as the metric topology built for 
On in Problem V.EE. Are the metrics themselves the same? 

Noneffective Transformation Groups A somewhat broader definition 
is often given for a ttg G on X. It differs by allowing the elements of 
G to be homeomorphisms of a larger space Y D X, provided that the 
restriction of g € G to X is a homeomorphism of X onto X, This dif-
ference amounts to allowing a nontrivial subgroup S of elements 
which fix each point of X; that is, there may be g £ G with g(z) = x 
for all x £ X, yet g e. When this definition is used, a group satisfy-
ing our earlier definition is called an "effective" ttg. The connection 
of the two definitions will be clear if S is shown to be a closed normal 
subgroup whenever G is a ttg in the broader sense; then G/S is 
an effective ttg on X. But if Sx = {g € G: g(x) = x}9 then S = 

and each Ŝ  is a subgroup, so S is a subgroup. If 
x and y are distinct points of X, then there is a neighborhood U of y 
with x i U; the set (g £ G: g(x) £ £/} is open, since evaluation at x is 
continuous. This shows G — Ŝ  to be a neighborhood of each of its 
points (why?); hence Sx is closed and S is closed. That S is normal 
is obvious. Show that G/S is an effective ttg on X. 

Unitory Geometry Our discussion for m\n may be applied to the set 
rmn(C) of all n X n matrices with complex entries. The metric, 
product, and c-o topologies are identical for rmn(C), which is homeo-
morphic to the direct product of n2 copies of C, [The "length" 
or "norm" of x — (xi, . . . , xk) £ Ck is \\x\\ = (2?=i \xi | 2)1/2, and the 
distance from x to y in Ck is ||x — y||.] The group GI>(n,C) of 
invertible members of rmn(C) is a topological group, A new operation, 
conjugation, is possible on mn(C): if M is a matrix with complex 
entries, M — (my), then M = Conjugation yields an automor-
phism of GL(n,C) with itself; since R C C, we have GL(n,R) C 
GL(n,C), and a complex matrix M is a member of GL(n,R) iff M = M. 
A matrix M in GL(n,C) is called "complex orthogonal" if M"1 — MT, 
and the subgroup of all such matrices is the "complex orthogonal 
group" 0(n,C). Clearly, On = GL(n,R) n 0(n,C). The kernel of 
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the determinant morphism on GL(n, C) is the "special linear group" 
SL(n,C). 

A "unitary matrix" M is one for which MT = M"1; the "unitary 
group" of all such matrices is denoted by XJn\ Un fl 0(n,C) = On. It 
is an easy exercise of complex linear algebra to show that each unitary 
matrix defines an isometry of O ; members of Un correspond exactly 
to the "unitary transformations/' those which preserve the norm of 
( X Hence the members of Un all send the unit sphere in O onto 
itself. Since O may be regarded as a 2n-dimensional vector space 
over the reals, that unit sphere is of dimension 2n — 1. The "special 
unitary group" is SUn = Un n SL(n,C), and SOn = SUn D 0(n,C), 
Each of the subgroups we have defined in GL(n,C) is closed there* 
Furthermore, Un is bounded in rm f̂C), and so is compact; hence SUn 

is also compact. 
The coset spaces Un/Un„ 1 and SUn/$Un-i are homeomorphic to 

the unit sphere S2 n _ 1 in O , a space homeomorphic to R2n. 

EE Connected Groups Prove that if the subgroup H of G and the coset 
space G/H are both connected, then G must be connected. Then 
show that the groups SOn, SUn> and Un are all connected and that On 

has exactly two components, n > 1 (St/n and Un are discussed in 
Prob. DD above). 

FF Operator Norms If M G m^, let the "norm'* of M be 

||M|| = lub {IIM^IMeS^1}, 

and define £(M,M') = ||M — M||. This defines a metric on is it 
the same as, or equivalent to, the metric rm̂  inherits from real 
n2-space? (Compare Prob, BB.) 

GO Character Groups Let G be an abelian topological group and let G* 
be the set of all (continuous) morphisms of G into S1. Then the point-
wise product in G*, (/ + /')(g) = /(g) +/'(&)> a n abelian group 
operation on G*. Furthermore, G* is a topological group when it is 
given the c-o topology; it is called the "character group" of G. 

If G is compact, then G* is discrete; in fact, an appropriate subbasic 
set can be found to contain just the identity of G*. 

A surprising duality lies here: if G is discrete, then G* is compact; 
this is true since G* may be regarded as a closed subset of a direct 
product of circles, one for each element of G; the Tychonoff theorem 
implies G* is compact. 
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Calculate the character groups of the integers, the reals, and 
the circle. 

HH Homeomorphisms of the Circle Let G be the group of all homeomor-
phisms of the circle, / the interval (0,1), and H the group of all 
homeomorphisms of / which fix the point (note Exercise S). 
When each group of homeomorphisms is given the c-o topology, G is 
homeomorphic (but not isomorphic) to S1 X / X H. 

JJ A Subbase for the c-o Topology If X is Hausdorff and a is a subbase 
for the topology of Y then {(K,S): K is compact in X and S € o} is a 
subbase for the c-o topology on Y* 
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CHAPTER VIII 

There is a fundamental difference between an inner tube and a balloon, 
Both hold air, yet there is a hole in the air in an inner tube; one could 
never chain a balloon to a tree. As idealized topological subspaces of real 
3-space, these two surfaces are not homeomorphic; no amount of stretch-
ing and reforming, without tearing, will deform a balloon into an inner 
tube. Yet you will find this highly intuitive fact equally difficult to prove, 
Many methods we have used thus far to show two spaces to be topologi-
cally distinct have involved only local properties, such as Ti-ness, regularity, 
or local compactness; but the torus and the sphere are both 2-manifolds, 
and they are locally alike. Global properties, such as compactness, con-
nectedness, or the group-space property, might be useful; in fact, the torus 
is a group space, while the sphere is not, but this too is very difficult to prove. 

You may now be impatiently thinking, "But the hole! Why not 
define 'hole5 and then count the holes in the balloon and the inner tube?" 
Of course, each surface has a hole through which it can be filled with air, 
but these are supposed to be sealed off. And also, each surface has an 
"inside," a "hole" in it which holds the air, but this is not the difference you 
had in mind. On the face of it, the remark that we could chain an inner 
tube to a tree is not pertinent either, for it involves not the torus alone, but 
rather how it fits into real 3-space; the tree and the chain ought not be used 
to define an intrinsic property of the surface of the torus itself. 

If a rubber band is laid on the surface of the torus so that it "goes 
around the hole once," it is intuitive that after the band is rearranged by 

186 
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sliding it around arbitrarily on the surface, with stretching, shrinking, kink-
ing, and doubling it back on itself allowed (but not breaking the band), in its 
new position it will still go around the hole exactly once. This is the physical 
picture that guides our next project. We shall first make precise mathe-
matics of the notion of a loop in a space and a continuous deformation of 
that loop. Then loops which cannot be deformed into one another will be 
regarded as essentially different. These different loops will be seen to form 
a group; hence we shall be able to assign to each topological space a group 
which "counts" the number of essentially distinct ways in which loops can 
"encircle holes" in the space, and this abstract group will be a topological 
invariant of the space, called its "fundamental group." For instance, to 
the 2-sphere we shall assign the singleton group; each two loops on the 
sphere can be deformed into one another. To the torus we assign the group 
2 x Z of gaussian integers; the pair (a,b) of integers corresponds to a loop 
which goes around the rim a times and then through the spokes b times. 
This will solve our problem; since their fundamental groups differ, the torus 
and the 2-sphere are not homeomorphic. 

THE LOOP SPACE Q 

Let X be a space and xo an arbitrary but fixed point of X. A loop at 
XQ in X is a map a: I —> X such that a(0) = a(l) = xo; that is, a loop at xo 
is a path which begins and ends at XQ. The set £1 of all loops at XQ in X is 
a subset of the space X1 of all paths in X, and Q inherits the relative 
c-o topology from X1. With this topology, 12 is the loop space of X at x0. 

In our discussion of path components (in Chap. VI) we introduced a 
product between paths: if a and b are paths in X and a(l) = b(0), then the 
product path a • b of a and b is the map (a *b): I ^ X defined as a 
combined function (see Chap. I), 

if o < t < a 
if % < t < 1. 

When both a and b are loops at xo, a • b is clearly also a loop at xo. 
A physical picture is in order. If images of loops are thought of as wires 
and t represents time, then the loop a describes the position at various times 
of a bead which travels along the wire. At time t the bead is at the point 
a(t) on the wire (in the space X). Then the product path a • b describes 
the position at various times of a bead which first goes around the wire 
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a(l) = b( 0) 

a{ 0) 
6(1) 

corresponding to a at twice the speed appropriate to the loop a; the (a • b)-
bead thus completes its circuit of the a-wire by time t — Vi* Then it 
travels along the fo-wire at double the speed of the fc-bead, until at time 
t = 1 it has completed its entire trip and is back at XQ. 

If T is any space and m\ T x T —> T is a map, then m is called a 
multiplication on T. The above formation of product paths yields a func-
tion m: fi X fi —> fi; we shall show that this function is continuous. Sup-
pose (K9 W) is a subbasic element of the c-o topology on Q; that is, K is a 
compact subset of Wis open in X, and (K, W) consists of all loops a such 
that a(K) C W. Define L = 2(K D [0M}) and M = 2(K fl [%,1]) - 1; 
these sets are compact subsets of I since K is. You can easily check that 
m_1(iC,W) = (L9W) X (M,W)P that is, (a - b)(K) C Wiff both a(L) C W 
and b(M) C W. Hence m_ 1 carries subbasic sets in fi to basic open sets 
in fi X fi5 and m is therefore continuous (and open, too); it is a multiplica-
tion on fi. This multiplication is certainly not a group operation on fi. 
There is no identity, and therefore there are no inverse elements, and the 
associative law does not hold. A check of these facts, though, leaves us with 
the feeling that m is "nearly" a group product. For example, the difference 
between (a • b) • c and a • (b • c) is entirely one of differing speeds along the 
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(a • b) • c 

a • (b' c) 

same route. In (a • b)4 c, the loop a is gone around at quadruple speed; in 
a • (fo • c) it is gone around at double speed. To make this analogy explicit, 
we use the definition of the multiplication on 12 to write out a description 
of (a * b) * c. By definition, this combined function is 

and 

( - ^ = { 5 - 1 ) 

Substituting s = 21, we get 

' a(4t) 
[(a • b) • c](t) = b(4t - 1) 

c(2t - 1) 

This may be restated as 

[(a • b) • c](t) 
a(4t) 
b(4t - 1) 
c(2t - 1) 

if 0 < t < % 
if fc < t < 1; 

if 0 < 5 < Vz, 
if % < s < 1. 

if 0 < 2t < 
if % < < 1, 
if % < t < 1. 

if 0 < t < V4, 
if y4 < * < tt, 
if Vi < t < 1. 

You are asked in Exercise A to write out a similar description of the loop 
a - (b' c). 

Exercises A and B 
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THE GROUP 770(fi) 

The space fi of loops at a point x0 in a space X is a topological sp 
in its own right; thus it now makes sense to speak of a path p: I —> fi in 
It helps to think of p as a parameterized family pu of loops at xo in X, wh 
the loop pu = p(u) in X changes continuously as u varies in I. The path 
represents a "continuous deformation7' of the loop p0 into the loop 
hence a path component of fi is a set of loops in X, each of which may 
continuously deformed into each other in that set. 

We now examine the set TTO(fi) of path components of fi. The map 
fi X fi —> fi induces a function wo(m): 770(fi X fi) —» flo(fi)- Since t 
continuous image of a path-connected space is path connected, each pa 
component of fi X fi is carried by m into some single element of 7r0(fi). 
\{a,b)\ is the path component of (a9b) £ fi X fi> then 7To{m)[(a,fo)] 
[m(a,Z?)J = [a *b] is the path component of a • b in fi. Since the "functio 
TTO preserves direct products (see Exercise VLG), there is a set isomorphism 
of 7T0(fi) X 7T0(fi) with 7T0(fi X fi); it is defined by <p([aUb]) = [(<?,&)J 
Therefore the composite function m* = <p o 7r0(m) is a product on 7To(fij! 

MQ) x M®) TTo(fi) 
<Tr0(m) 

7T0(fi X fi) 

We now claim that m* is a group operation on the set Tro(fi)! Thej 
identity for m* is the component [e] of the constant map e: I —» X: e(t) 
xo for all t To show that this works, we shall define a path in fi beginning; 
at a*e and ending at a; thus m*([a],[e]) = [a*e\ = [a]. Let the path 
p: I —> fi be defined by letting the loop p(u)t for each u £ I, have values 
p(u)(t) = a[2t/{\ + «)]ifO < t < (1 + «)/2 and p(u)(«) = XQX (1 + u)/2 < 
t < 1. Clearly, for each it, p(u) goes along a at speed 2/(1 + u) until time 
(1 + u)f2 and then stands still until time 1, each path p(u) is a loop at xo 
p(0) = a " e and p(I) = a. But is p continuous (in its argument u)? By 
the exponential law (Chap. VII), p is a continuous function from I into 
X1 iff it is the associated function p = f of a map / £ X I X I . 

In that case, of course,/(*/,£) = p(u)(t); the continuity of p is equivalent 
to that of /. The combined function / is continuous iff it is continuous on 
each of the two closed subsets of its domain described by t < (1 + u)/2 and 

• i i 
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(1.1) 

pp) 

(«o.O) 

u-axis 

Domain square of f 

t > (1 + w)/2. On the latter set, / is constant, and so is continuous. On 
the former,/is a composite function f(u9t) = a[2t/(l + u)]; the argument 
of the map a is the quotient of continuous real-valued functions (with de-
nominator never zero), It was an exercise (see Exercise V.C) to show that 
such a function is continuous from I2 = I X I to I. Thus / is continuous, 
/ = p is continuous, and p is a path in 12 from e • a to a. A similar 
construction yields a path from a * e to a, hence [e] is an identity for 
the product m* on 7ro(12), 

The trick used to prove p continuous is of general efficacy, A map 
/: I2 X which defines a path p from one loop a at x0 to another loop b 
is called a homotopy of a with b5 and a and b are said to be homotopic loops. 
Two loops a and b are homotopic iff they are connected by a path in 12, by 
the exponential law. The relation between loops of being homotopic 
is thus the same equivalence relation as that of their belonging to the same 
path component of 12. 

The associativity of m* will thus be demonstrated if, given three loops 
a, b3 and c at :*o» a homotopy g: I2 —> X is constructed such that g(09t) = 
[(a • b) • c](t) and g(l,/) = [a • (b • c)](t) for each tel. Then the associated 
function g € 121 will be a path in 12 from (a • &) • c to a • (fo * c). 
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Formally, we now define g by 

4t 
+ u if 0 < t < 1 + u 

g(u,t) = Jb(4t - u - 1) 

J41-u - 2' 
\ 2 - u j 

if L ± J i < t < l ± ± 
4 ~ ~ 4 

if A ± « < f < L 
4 ~ 

However, the definition of g may be understood better from the diagram of 
its domain square. The continuity of g on each of the three salient closed 
subspaces of its domain (pictured in the diagram) is clear. And a simple 

g(u, 1) = Xo 

g(u,0) = xo 

u-axis 
Domain square of g 

check shows that the three seemingly different definitions for g do agree 
where they overlap; therefore g is continuous, and thus is a homotopy of 
(a • b) • c with a • (b • c). 
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(0,1) (1=1) 

h(u,t) - a{2 - 2t) 

h(u,t) - a(2t) 

(0,0) (1,0) 

u-axis 

We merely sketch the diagram for the domain square of a homotopy 
h which, for a given loop a, exhibits an inverse [a] for [a] £ 77-o(fi). The 
loop a "goes around a backwards"; d(t) = a( 1 — t) for each £ £ I, Can you 
complete the diagram and provide the discussion which proves the existence 
of [a]^1 for each a £ fi? 

Exercises C, D, a n d E 

THE FUNDAMENTAL GROUP Wi(X) 

We have shown that m* is a group operation for 7r0(fi)< This group is 
defined when a space X and a base point (or distinguished point) Xo of X 
are given; it is denoted iri(Xtxo). Clearly, if [x0] is the path component of 
x0 in X, then ITt(X9%o) = fl"i(frol,£o), since every loop at xo in X must have 
its image in fro]. It is less obvious, but equally true, that if x± £ fro I, then 
it^X.xq) is isomorphic to fli(X,xi), We shall prove that an isomorphism 8 
is obtained from an arbitrary path p from x± to XQ as follows: if [a] £ 
771(X,x0), so that a is a loop at Xo in X, let 0[a\ = [p * (a • p)\9 where 
p(t) = p{ 1 — t) gives the path backwards along p from X q to x±. 

The class 9\a\ of loops at xi is thus the component of the loop space 
of X at xi which contains p * (a • p), that loop which first goes from x\ to xo 
along p (at double speed), then around the loop a at xo, then back along p 
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to The loop p • (a • p) is called the translate of a along p. To verify that 0 
is well defined we must show that if a loop b £ [a], then p • (a * p) is homo-
topic to p * (fc • p). We sketch the values of a homotopy H of p * (a * p) with 
p • (b • p), which is defined by a given homotopy ft of a with fo. As you 

h(u> 4t 

U-&X13 

provide the details for this diagram, keep in mind that H is a homotopy "in 
wi(X,3Ci)>" that is, a homotopy between loops at X\Y not at XQ. 

The next diagram is a beginning of a description of a homotopy which 
shows that 6 is a morphism; that is, for loops a and b at xo, it shows a homot-

j/ 
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opy of [p • (a * p)] • [p • (b • p)] with p*[(a*b)9 p]. Most of tlie details 
of this should be clear; the definition of the homotopy on the triangular re-
gion of its domain is left as an exercise. 

It is obvious that if the roles of *o and p are interchanged with those 
of and p, a morphism <p: iri(X9xi) —> * r i ( X , x o ) is defined just as 0 was 
constructed. It is not hard to see that <p is a two-sided inverse for 0; by the 
symmetry of the constructions, it need only be shown that (p o 0 is the iden-
tity on The needed homotopy between the loops p - (\p • (a • p)] • p) 
and a at Xo is suggested by a homotopy of p • p with the constant loop at 
Xo< Make a diagram of this for yourself. 

We have just shown that if x'o and x\ are in the same path component 
of X, then 77i(X,xo) is isomorphic to tti(X3xi). If X is path connected, this 
means that 7Ti(X,x) is independent (up to isomorphism) of the choice of the 
base point x. Hence, for a path-connected space X we shall denote by 
tti(X) any group isomorphic to some group ITI(X,X), where x EX. A group 
TTI(X) is spoken of as the fundamental group (or "first homotopy group/' or 
"Poincare group") of X. This is, of course, an abuse of our language; 
7Ti(X) is really an isomorphism class of groups—all those groups isomorphic 
to fli(X,x) for some x 6 X. But it will be convenient to say, for instance, 
when tti(X,X) is isomorphic teethe integers, that fl"i(X) equals Z. 

Thus to each path-connected space X we attach a group 77I(X). 

Further, a map /: X —> Y from one such space to another induces a map 
fl: X1 —» Y1, and/1 surely carries a loop at x in X to a loop at y — f(x) in 
Y, Accordingly, a restriction, say/, of the map f l carries the loop space 
at x in X into the loop space at y in Y, and thereby induces the function 
TTO(/) from the path components of one loop space to those of the other. 



196 VIII: The Fundamental Group 

The latter function is usually denoted /*; it is a function from 7Ti(X,%) 
to 7T\(Y,y), If a is a loop at x in X, then fl(a) — f o a is a loop at y in Y, 
and so [ fo a] = /*[aj is the homotopy class of the loop f o a. 

It is obvious that/1 preserves products of loops:/I(a • fo) =f° (a-b) = 
(f 0 a) * ( f ° b). Consequently, /* is a morphism: if we denote the prod-
uct in tti(X,x) by juxtaposition, [« * = [a][b], then/*([a][fo]) = /*[a • foj = 
[ f o (a . fo)] = E(/o a)• (/o fo)J = fM fAbl 

Moreover, if / and g are maps, X -U Y Z, /(x) = t/ and g(t/) = 
then g° f: X Z and (g ° Z)*: tti(X,x) —> tti(Z,z), But (g o /)*[a] = 
[go f o a] = g»[/o 0] = g* o Z*M> SO (g o /)* = g* o /*. Also, it is obvious 
that (1 )̂* is the identity morphism of TTI(X,X). 

Finally, it should be clear what we mean by/*: TTX(X) —* ^i(Y) when 
X and Y are both path connected. Each of the above statements may be 
interpreted in terms of fundamental groups. If /: X Y is a homeomor-
phism, then (Z"1)* o /* = (/-1 o /)* = (lx)+ is the identity morphism on 
TTI(X), and by a similar argument, so IS/* o (/_1)*. Hence/*: TTI(X) —> TTI(Y) 
has a two-sided inverse (Z™1)* — (Z*)"1* and/* is an isomorphism. With 
our earlier abuse of language, then, wi(X) = ^i(Y), Thus to each path-
connected topological space X we have attached an algebraic object TTI(X); 
TTI(X) is a topological invariant, and maps of spaces induce morphisms 
of the attached invariant groups. [We remark that 7Ti(X) is not a topologi-
cal group; it has only algebraic structure.] 

Exercises F and G 

77i(Rn ) , A TRIVIAL EXAMPLE 

Consider a loop a: I R™ at the origin 0 in the path-connected space 
R™. There is a homotopy h of a with the constant loop e at 0, defined by 
h f a j ) = (1 — u)a(t). Since h is the product (scalar multiplication, point-
wise) of maps, it is a map; h(0,t) = a(t) and h(l9t) = e(t) = 0 for all 
t, and for each fixed u € I? h(u,t) defines a loop at 0. Hence the loop space 
of R™ at 0 has just one path component, [e]y and 77I(RW,0) S TTI(Rtc) = {1} 
(the singleton group). 

Since each open ball in is homeomorphic to Rn itself, the funda-
mental group of an open ball is trivial too. Furthermore, if the loop a 
above had its image in the closed unit ball centered at 0, then the image of 
the homotopy h also lay in that ball; this implies that every loop in the closed 
ball is trivial (that is, homotopic to the constant loop), and the fundamental 
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s: 

h(u,t) = (1 - u) a(t) 

a(to) 

h(%,t0) • 
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group of the closed ball is trivial. The same may be said for every closed 
ball in R™, as well as the n-cube In? since these are homeomorphic to 
the closed unit ball. 

Exercise H 

FURTHER EXAMPLES 

A connected space X such that ^(X) =r {1} is called simply connected} 
hence we have just shown that for all positive integers n> Rn is simply con-
nected. On the other hand, we asserted in the remarks introducing this 
chapter that the torus S1 X S1 has as its fundamental group the gaussian 
integers; it is certainly not simply connected. The circle is perhaps an even 
more intuitive example of a not-simply connected space; its fundamental 
group will be seen in the next chapter to be the integers, tt^S1) = Z, 
The proof of this fact is hard, however, despite its appeal to the imagina-
tion. Each nonnegative integer n of Z corresponds to a loop which winds 
itself counterclockwise around the circle n times, and — n corresponds to a 
loop running clockwise n times around S1. While this correspondence may 
require some thought, you will more readily agree that a loop going once 
around the circle is not homotopic to the constant loop e. (The proof of 
this is called for by Exercise J.) 

Consider, in general, a loop a at a point xo in a space X. If a 
is homotopic to the constant loop e at xo, then there exists a homotopy h: 
I2 —> X of a with e, where /i(w,0) = h(u, 1) = = x0 and h(0,t) = a(t) 
for every t and u in I. Now, a is a loop, a(0) = a(l) = Xo, so it factors 
through the quotient space S1 of I which results from the identification of 

I — X 

* / 
S1 

the end points of I? to define a map a: S1 —> X such that a ~ a ° q. 
Thus every loop in X may be regarded as a "based" map of S1 into X, one 
which carries 1 e S1 to xo € X. Further, the homotopy h is at each stage a 
loop, so h factors through the cylinder I X S1, which is the quotient of I X I 
defined by identifying the point (u> 0) with (w,l) for every u el; this quotient 
map merely sews together two opposing edges of I X I- On this cylinder, 
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the appropriate factor of h takes each point of the top rim to the point 
xo = h(l,t); hence we can further factor h through the quotient map 
on I X S1 which identifies the circular top rim of the cyUnder to a point. 
The quotient space is now a cone, which is clearly homeomorphic (by pro-
jection onto the plane of its base) to a closed disc D, Adding up these fac-

i x i 
I X Si 

M ) 
M ) W D 

The cone The 
disc 
D 

— i 

torizations and quotients, we get a factorization h = Ho Qy where Q: 
I2 D is a quotient map and H: D X, During all this, the bottom rim 
of the cylinder, which may be taken as the domain of the "loop" a that is 
like a, has become the outer circular edge of the disc. We conclude that 
if a map a: S1 —> X represents a loop a which is homotopic to the constant 
loop at Xo, then there exists a continuous extension H of a to the entire 
closed disc bounded by the circular domain of a. Conversely, if a: 
S1 —» X is a based map for which an extension H to the disc exists, then 
h = H o Q is a homotopy of the loop a = a o q with the constant loop. 
Thus the loops homotopic to the constant loop are characterized as those 
loops represented by maps of the circle which can be extended to maps of 
the closed disc. 

To return to our question about ^(S1), do you think that the identity 
map on S1 can be extended to the closed disc? That is, does there exist a 
map H: D —> S1 with H(x) = x for all x € S1? If not, then S1 is not simply 
connected. 
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[In general, if A C X and the identity map on A can be extended to a 
map r: X —» A defined on all of X, then A is said to be a "retract" of X, and 
r is a retraction, r(a) = a for each a^A, Thus, if S1 is simply connected, 
then S1 is a retract of D.j 

Exercises J and K 

HOMOTOPIES OF MAPS 

For convenience, we shall refer to a pair (X,xo), where X is a space and 
xo a point of X, as a based space. The notation /: (X,x0) (Y,t/0) b® 
used for a map of based spaces; / is to be a continuous function from X to 
y with f(x o) = t/o (it may occasionally be called a based map). If/and g 
are two based maps from (X,x0) to (Y,t/o)> a homotopy of /with g (or from 
/ to g) is a map H: I X X -> Y such that for all x 6 X, if(0,x) - f(x) 
and H(l,x) = g(x); further, for each u £ I, H(u,xo) = t/o- If the Exponen-
tial Law applies (that is, if X is locally compact and Hausdorff), then (Y*)1 

is set isomorphic to Y1 and two based maps / and g are homotopic iif 
their associated functions / and g both lie in the same path component of 
Y* The way in which this definition of homotopy generalizes that of loops 
will be clear from Exercise K; each loop is there corresponded to a based 
map on (S1,].). 

As an example, we show that the identity map on (R™,0) is homotopic 
to the constant map (which has zero as its only value)- The homotopy is 
already familiar. Let H(u,x) = (1 — u)x> the multiple of the vector x 
by the scalar 1 - w, Any space with this property, a based space (Y,y0) 
such that its identity map is homotopic to its constant map, is called 
contractible to the point y0 (and the homotopy of ly is a "contraction"). 
A contractible space is clearly path connected; if y £ Y, then "the track left 
by y" under the homotopy of I f with e is a path from y to t/o- Moreover, 
a contractible space is always simply connected; we shall show that, in fact, 
every two based maps / and g from a based space (X,xo) into (Y>t/o) 
are homotopic if (Y,t/0) is contractible. Suppose H\ I X Y —> Y is a homo-
topy of 1 Y with e; we define a homotopy G of/with g by 

G { U 'X ) - lH[2 - 2«, 
if 0 < u < £ 
if i < " < 1-

As before, since the definitions of G agree on the intersection of the two 
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closed domains of definition, on each of which G is a composite of contin-
uous functions, the combined function G is continuous. But G(0,x) = 
H[Q,f(x)] = /(x), G(l,x) = H[0,g(x)] = g(x), and for all u, G(u,xo) = 
H(v,yo) = yo, where v is either 2u or 2 — Hence, in particular, each 
pair of maps from (S1 ,1) into (Y,^Q), which may be considered as loops (see 
Exercise K), are homotopic; TTI(Y) — (1). 

(If a based map is homotopic to a constant map, it is called "inessen-
tial." Thus we have shown that every map into a contractible space 
is inessential,) 

The importance of homotopies of maps is suggested by the fact that if 
/and g are homotopic maps from (X,x0) to (Y>yo), then/* = g*: 7ri(X,x0) 
iri(Y,yo)- To see this, remember that/*[aj — [ f o a] and g#[a] = lg ° a]. 
If H is a homotopy of/with g, then the map H o ( l j x a)> which sends (u,t) 
to ff[«,a(t)], is easily seen to be a homotopy of fo a with go a. Hence we 
could have said above that for contractible spaces X, (ljr)#> an isomorphism 
of vri(X), is equal to the constant morphism whose only value is the iden-
tity {1} = fli{xo} (why?); therefore ir%(X) = {1}. 

Exercise L 

HOMOTOPY TYPES 

A map /: (X,XQ) —» (Y,t/o) of based spaces is a homotopy equivalence 
iff there exists a based map g: (Y,yo) ( X , x o ) such that fo g is homotopic 
to ly and g o / is homotopic to lx< Clearly, in this case g is also a homo-
topy equivalence; then (X,xo) and (Y,t/o) are said to be homotopy equiva-
lent, or of the same homotopy type. As an example, a contractible 
space (Y,yo) is of the same homotopy type as its one-point subspace 
( X , x o ) = (yo>J/o)* Here we take / to be the inclusion map of (yo,yo) into 
(Y,*/0) and g to be the constant map of (Y,i/o) onto (t/o^o); g ° / thus equals 
lx, and fo g is homotopic to ly, since (Y}t/0) is contractible. 

Another example is provided by the plane minus the origin, (Y,t/0) = 
(C — {0}, 1), and its subspace (X,x0) = (S1,!), the unit circle. The based 
map / is to be the inclusion map of the subspace S1 in the "deleted" 
plane. Since each nonzero complex number z has \z\ ^ 0, we may define 
g: C - {0} S1 by g(z) = z/\z\. Clearly, g * / = lx- The m a p / o g 
carries ztoz/\z\ 6 C — {0}; we must find a homotopy H of /o g with 1Y. 
Let H(w,z) = (1 — u)z + uz/\z\; as you check that H works, be sure 
to verify that its range is correct. That is, H must not take on the value 0. 

L 
? 
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\ 
\ 

9 
Granting this, we have shown that (S1,!.) and (C — {0}, 1) are homotopy ; 
equivalent. The picture you should have in mind of this homotopy is that/j 
under it, each point z of C — {0} moves along the ray from 0 to z toward s 
the unit circle; if \z\ < 1 the image of £ moves outward, if \z\ > X its| 
image moves in toward the circle, and if \z\ — 1 then z remains fixed dur-} 
ing the entire homotopy. 

Whenever two based spaces (X,xo) and (Y,t/o) are of the same homo-l 
topy type, then T T I ( X , X Q ) ^ TTI(Y,I/O) and their fundamental groups arê  
equal. This is trivial; (g o /)* = g* <> /* is the identity on 7Ti(X5xo), and < 
/# o g* is the identity on tfi(Y,t/o)> so/* is an isomorphism. This implies,^ 
for instance, that TTI(C — {0}) = tfr^S1) is a nontrivial group (see Exercises 5 
J and K). -

Any property of spaces which, if held by a space, is held by each other 
space of the same homotopy type is called a homotopy invariant. Thus the 
cardinality (that is, the number of elements) of fl"o(X), or the fact that ] 
TTI(X) = Z, for example, are homotopy invariants. 

Exercises N and P 
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7Ti(Sn), A MORE DIFFICULT EXAMPLE 

We shall now show that if n > 2 each loop a: I —> in the n-sphere 
is homotopic to the constant loop at the distinguished point 

JV = (0,. . . , 0,1) e S» 

This is another strongly intuitive result. Visualize Sn as S2 and imagine x 
to be a point of Sn which is not in the image a(I) of the loop a; since 
Sn — {x} is homeomorphic to R71, which is contractible, the loop a is 
homotopic to the constant loop in Sn — {x}, and therefore to the constant 
loop in Sw, However, this reasoning is falacious; there exist loops a in Sn 

for which a(I) = Sn9 for which there is no member x of Sn — a(I) upon 
which to base this construction. Such "space-filling curves" were first dis-
covered by Peano; often one is described in a course on real-variable theory. 

There is a way around this problem, a device which breaks up the 
image of a into a finite number of pieces, each of which is a proper subset 
of Sn. For each point x of Sn let Sx be the open hemisphere centered at 
x, Sx — {y £ Sn: \\x — y|| < y/2). The family S = ( S ^ : t £ 1} is an open 
cover of a(I), so is a neighborhood of t in I. Let Tt be the com-
ponent of t in a"1(Sa(j>); Tt is open, so {Tt: f €1} is an open cover of L 
Let Ttis Tt29. . . , Tt} be a finite subcover. We may choose an element T\ 
of this subcover with 0 £ T±, then successively choose 7*2, T 3 , . . . , 7* so 
that, having determined Tu we choose such that 1 n Ti^= 0 and 
lub (Ti+1) > lub (Ti). This process of choice stops when 1 € Tk and 
{Ti, T2, •. . , Tjc} is a finite subcover of I. Hence we can choose an increas-
ing sequence UQ < u± < - * • <Cuk of points of I such that UQ — 0, 
Ui^Ti fl Tj+i for i = X, 2 , , . . , k — 1, and uk = 1; then the interval 
[Ui-i,Ui] lies inside T% for i = 1, 2, . . . , k. This is the desired situation; the 
domain I of a has been divided into pieces each of which a carries into a 
proper subset, a hemisphere, of Sn, It is now no trick at all to smooth out 
the image of a, piece by piece. 

Let 1 < i < k\ we propose to show now that a is homotopic to a loop 
a? in Sn such that a' = a on I — and is a great circle 
arc from a(u\-1) to a(ui). The case where a(ui„ 1) = a(ui) is trivial, since 
Sa(ui) is contractible; hence suppose a(u^ 1) a{u\). Then {a(ui-.\),a(ui)} is 
an independent set of vectors in Rn + 1 and so determines a 2-dimensional 
subspace which is homeomorphic to R2; in this plane the two points a(u{_ 1) 
and a(ui) lie in some open semicircle in the unit circle, and there is a unique 
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shorter arc of that circle from one to the other. This is the arc of a great 
circle on Sn which we meant; it is an exercise (see Exercise U) to exhibit a 
homotopy of a with an appropriate loop a'; the homotopy can be chosen so 
that the images of and Ui are held fixed throughout. 

By induction and the transitivity of the relation of homotopy, a is 
homotopic to a loop b whose image is the union of a finite set of arcs of 
great circles on Sn. Each of these axes may be enclosed in an open subset 

2V, the "pole" of S» is a{0) = a( 1) 
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A C S " whose area is as small as we please; the area of a finite set of arcs 
is therefore zero, and the image of b is not all of $n. But as we pointed out 
early in this example, b must be homotopic to the constant loop; this 
implies that a is also homotopic to a constant. Since a was an arbitrary 
loop in Sw, we conclude that tti(S") = (1). 

It is an exercise (see Exercise W) to show that Rw+1 — {0} is of 
the same homotopy type as Sn; hence 7Ti(Rn+1 — {0}) = { ! } , n > 2. 

Exercises U and W 

X Y) 

The direct product of two based spaces (X,x0) and (Y,t/0) is defined to 
be the based space [X X Y, (xo?j/o)]3 where X X Y means the direct prod-
uct of topological spaces, of course. Let us denote the loop spaces by 
£2(X), and 12(X X Y), respectively, and let p and q be the projections 
of X X Y onto its factors X and Y. If a € £2(X X Y), then p o a € Q(X) 
and qo a£ Q(Y); this defines a function /: Q(X X Y) -> Q(X) X 
/(a) = (p o a,q o a). In the other direction, if (b,c) € Q(X) X &(Y), then 
there is a loop a in X X Y with = [&(£),c(t)]; let a — so that g is 
a function from Q(X) X £2(Y) to S2(X X Y). Clearly, the composites/o g 
and go / are both identity maps; it is an exercise (Exercise S) in the 
product of c-o topologies to show that / and g are homeomorphisms. 
Further, both / and g preserve products of loops; that is, f(a * ar) = 
f(a) mf(d% etc., where the product in Q ( X ) X is defined just as for 
the direct product of groups, (In other words, if (b9c) and are 
elements of Q(X) X Q(Y)9 then (b9c) • {b\cf) ^(b*b\c* c'). The proof of 
continuity of multiplication which was given for the direct product of 
groups works quite as well here,) 

Now, / induces a function from 7r0[fl(X X Y)] to tR0[C(X) X 0(Y)], 
which latter set is isomorphic to tto[£2(X)] X flo[£2(Y)J; putting this all 
together, we have a function from T T \ [ X X Y, (xo>*/o)] to TTI(X,XO) X *RI( Yayo). 
It is clear, moreover, that the inverse of this function is the corresponding 
function induced by g, and that both of these induced functions are 
morphisms, since / and g preserve the loop product. Hence we have 
an isomorphism 

TTI[X x y, (xo,yo)] = WI(X^O) X 7RI(Y,YO); I , 
I 

or more succinctly, 
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1Ti(X X Y) — 77t(X) X 77t(Y) 

(if X and Y are path connected). 
For an example, notice that C — {0} is homeomorphic to S1 X R; a 

homeomorphism might carry each nonzero complex number z to (zj \ z \ ,x), 
where x = \z\ — 1 if \z\ > 1, and x — (\z\ — l)/\z\ if 0 < \z\ < 1, 
But we have seen that ?ri(R) = {1), since R is contractible, so 7Ti(C — {0}) = 
771(S1) s 7Ti(S1) X {1}> This is a new derivation of this result; we have 
already seen that it is a consequence of the homotopy equivalence of 
C - {0} and S K 

Another example is the 2-torus T2 = S1 X S1 (the surface of an inner 
tube): assuming that TTI(S1) = Z, we have TTI(T2) = Z X Z. 

Exercise S 

REFERENCES 

There are several treatments of the fundamental group which are at the 
same level as this chapter. You should find the following quite digestible; 

Crowell and Fox, Introduction to Knot Theory, chap, II (Boston: 
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Although the only fundamental groups we have actually calculated thus 
far have all been trivial, the groups for the circle and the torus were 
announced to be Z and Z x Z , respectively. You may by now surmise that 
fundamental groups are always abelian. This is false; as an example, the 
fundamental group of a pretzel having two or more holes is not abelian. In 
fact, if G is any group whatsoever, there exists a space X for which 
IT i(X) = G. Thorough treatments of these and broader questions are 
embedded in: 

Hilton and Wylie, Homology Theory (New York: Cambridge Univer-
sity Press, 1960). 
S. -T. Hu, Homotopy Theory (New York: Academic Press, 1959). 
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EXERCISES 

A Give a complete description of the loop a • (b * c), where a, b, and c are 
loops at Xo in a space X. 

B Let X and X' be spaces with loop spaces 12 and 12' at the distinguished 
points xo and xo, respectively. If h: X —> X' is a homeomorphism and 
h(xo) = Xo, show that there is a homeomorphism of 12 with 12' which 
preserves the products of loops. 

C Let a be the loop at 1 in the circle S1 given by a(t) = {cos 2vrt> sin 2^rt). 
Define an inverse [a] for [a], the component of a in the space of loops 
at 1 in S1, and give a detailed proof that your inverse works. 

D Complete the discussion and the diagram in the text to show that for 
each loop a 6 12 there exists a loop a such that both a * a and a • a are 
loops homotopic to the constant loop. 

E Exhibit in detail a homotopy between the loops a and a of Exercise C 
when they are both regarded as loops at 1 in the plane C, 

F Complete the discussion and the diagram in the text to show that the 
isomorphism 0: 7ri(X5x0) = 7Ti(X,Xi) is well defined by a path p from xi 
to xo. That is, if a and b are homotopic loops at xo> prove that 
p * (a • p) is homotopic to p - (b • p), where p(t) = p(l — t); thus it 
makes sense to say 8{a\ — {p * (a • p)\. 

G Prove in detail that the function 9y defined in the text and Exercise F 
above, is a morphism. [Hint: A modification of the homotopy in 
77i(X,xo) of p * p with e is what is needed.] 

H Give a proof that scalar multiplication of vectors is a continuous func-
tion from R X R" into Then explain why the pointwise scalar 
multiple fg of two maps f: S —» R and g: S —* Rn, where fg(s) = 
f(s)g(s), is necessarily continuous. 

J Attempt to prove that the loop a at I in S1 which has values a(t) = 
(cos 27rt, sin 2Trt) is not homotopic to the constant loop at 1. The les-
son here is that this is intuitively obvious yet quite difficult to prove; do 
not give up without a struggle. 

K Argue that the result of Exercise J is equivalent to the fact that the 
identity map on the circle S1 is not homotopic to the constant map 
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sending all of S1 to its base point 1 (both are maps of based spaces). 
This means that for S1 contractibility is equivalent to the triviality of 
the fundamental group. Does this equivalence hold for every space? 

L Prove that homotopy of based maps defines an equivalence relation on 
the set of all based maps from one given based space to another. 

M Show that if ( X , X Q ) is contractible, then its loop space ( Q > e ) is contract-
ible, How does this show that X is simply connected? 

N Divide the following alphabet into sets of letters of the same homotopy 
type: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z * 

Discuss the relation of the result to that of Exercise IV.U (division of 
the alphabet into homeomorphism classes). 

P Prove that a homotopy equivalence /: X —> Y induces a set isomorphism 
7 T O ( / ) : T T O ( X ) — > 7 T Q ( Y ) ; in other words, the cardinality of N O ( X ) is 
a homotopy invariant. 

Q A subspace S of R™ is called a "star about a point x £ S" iff for every 
y £ S the straight-line segment from x to y lies in S, Show that if S is 
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a star about x, then (S,x) is contractible. (A subspace S of Rn is 
"convex" iff it is a star about each of its points; convex spaces are 
therefore contractible.) 

R Assume the results of Exercises J and K and show that, even if a based 
map / is 1-1 (or onto), /* need not be 1-1 (or onto). 

S Show that the map/: S2(X X Y) —» Q(X) X &(Y), which projects loops 
onto their "factor loops/' is a homeomorphism. The text argues that/ 
is a set isomorphism; you need only show that it is continuous and open. 

T Prove that the property of contractibility is a homotopy invariant. Is 
every homotopy invariant also a topological invariant? Is eveiy 
topological invariant also a homotopy invariant? 

U Prove that if a is a path whose image lies in an open hemisphere D of 
Sn, and A C D is the unique arc of a great circle which lies between 

a(0) and a( 1), then there is a homotopy of a with a path whose image 
is A, each stage of which homotopy is a path from a(0) to a(l). More 
arithmetically, the problem is to find a map H: I2 —> Sn such that 
H(0yt) = a(t)9 H( 1 X I) C A and H(l x 0 ) = a(0), H(I X 1) = a{ 1). 

W Prove that if Y is contractible, then the projection of X X Y onto X is 
a homotopy equivalence. Next establish the fact that Rw+1 — {0} is 
homeomorphic to Sn X R; then show that Rn + 1 — {0} is simply 
connected, n > 1. 
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PROBLEMS 

Automorphisms of *ri(X) In the definition of the isomorphism 9\ 
7Ti(X,3Co) = by a path p from x1 to x0, let a different path p' 
from x1 to x0 be used to define an isomorphism 9f: TTI(X9XQ) ̂  
TTI(X5XI). Show that 6 — Qf iff pf • p lies in the center of the group 
7Ti(X,xi), Here, of course, p'(l) = p(0) p( 1), so pf *p is defined; its 
values are given by 

^ m ) lp(2t - 1) = P<2 - 2t) 
if 0 < t < \ 
if ^ < f < L 

Hence (p' * p)(0) — (p' • p)(l) = Xi, so this is a loop at Xi. 
In the special case where Xo = xi, each loop p at xo is a path from 

Xo to Xo; thus p defines an automorphism 6 of the group 7ri(X,x0) with 
itself (see Prob. II.AA). It is obvious that the constant loop e at 
xo yields the identity automorphism by this construction; hence the 
loop p defines the identity automorphism of TTI(X,XO) with itself iff [p] 
lies in the center of ^(X^o). Is it clear that translation along p con-
structs the same (inner) automorphism of TTI(X,XO) as does conjugation 
by Ipl? 

A Fixed-point Theorem You have seen that the results of Exercises 
J and K are equivalent to the fact that S1 is not a retract of the disc 
D. Show that the "fixed-point theorem" for D is another equivalent 
statement: if g: D D is a map, then there is a point d £ D with 
g(d) = d. A clue to the trick needed here is contained in Prob. 
III.BB; the analogy is that the 0-sphere S° is the set of unit vectors 
in R? { —1,1}, with the relative (that is, discrete) topology. Thus a 
space X is path connected iff every map from S° to X can be extended 
to the "1-disc" [ — 1,1]; X is simply connected iff every map from S1 

to X can be extended to the t£2-disc" D. 
The Brouwer fixed-point theorem, which we shall not prove, states 

more generally that every map from the closed ball Dn of unit radius 
centered at the origin in Rrt into Dn itself has a fixed point. Using a 
technique quite like the one used in this problem, we can show that 
this theorem is equivalent to the fact that there is no map on Dn to 
Sn~i which extends the identity map on Can you state some 
other equivalent facts, and prove that they are equivalent? 
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CC T h e Mdbius Strip Let S be the strip {(x,y) G R 2 : 0 < x < 1 and 
0 < y < 1} in the plane, and let an equivalence relation be defined 
on S with equivalence classes of the form, for each (x,y) e S, {(z,w) £ S: 
(z,w) — (x,y) or (z,u>) = (x ± 1, 1 — y)}. Thus the equivalence 
classes are singletons except for points along the left and right edges 
of S, and there the classes are doubletons, one member from each edge. 

(0,1) (14) 

(z,w) 

(x9y) - (z + 1, 1 - w) 

(0,0) (1,0) 

The two edges are identified with a twist. The quotient space M so 
defined is called a "Mobius strip/' 

It is intuitively clear that M is not homeomorphic to a cylinder; that 
is, M is not a homeomorph of the product Sl X I- Show that M is of 
the same homotopy type as S1 (and, therefore, as S1 X I). 

The C o n e Construct ion Let X be a space; the "cone K(X) on X" is 
constructed by the identification of the subset X X 1 of the "cylinder" 
X X I to a point, 

K(X) x X I 
X x 1 

Show that if X is a compact subset of Rn> where 

R n - { ( * ! , X 2 , " . , X N , X N + I ) : x n + 1 = 0} 

is regarded as a subset of Rw+1, then K(X) is homeomorphic to the set 
of points in Rw+1 which lie on the line segment between z = 
(0, 0 , . . . 5 0, 1) and some point x of X; K(X) ~ {y £ R*+1: there exist 
t CI and x eX such that y = tz + (1 - f)x}. (This subset of R"+1 is 
sometimes called the "euclidean cone on X/') The space X is homeo-
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morphic to the subset X X 0 of X X I? and the quotient map q\ 
X X I £(X), when restricted to X X 0, defines a homeomorphism 
of X X 0 with a subspace (the "base") of the cone. Thus X may be 
regarded as a subspace of K(X). However, if A C X, it is not neces-
sarily true that K(A) is a subspace of K(X); that is, the map K(i)\ 
K(A) —> K(X) which the inclusion i: A X induces is not necessarily 
open, [Hint: Try the noncompact subspace (0,1) of I = X.] 

If (X,xo) is a based space, the cone construction is customarily 
altered to define K(X,xo) as the quotient space of K(X) resulting from 
the identification of q(x0 X I) to a point; if S = X X 1 U x0 X I? then 

K(X,x0) = X x l 

often called the "reduced cone on ( X 9 X Q ) . " The point S of this 
quotient is the base point of K(X,XO). A map /: (X ,X q ) (Y,YO) 
is "inessential" (that is, homotopic to the constant map) iff there 
exists a map F: K(X,X0) (Y,YO) whose restriction to (X,x0) is the 
map /. In particular, X is contractible to the point xo iff / extends to 
all of [K(X,XO)>S]. 

Higher H o m o t o p y Groups The "n-th homotopy group" 7rn(X,x0) of 
a based space (X,Xo) may be defined inductively by 

(where e is the constant loop). A map a representing an element [a] 
of 7rn(X,Xo) defines a unique map a from the n-cube I™ into X which 
is constant on the set of those points of I™ which have at least one 
coordinate equal to 0 or 1; this is exactly the topological boundary of 
ln in Hence the members of <nn(X,x0) are in a natural 1-1 cor-
respondence with the equivalence classes of maps from an n-sphere 
(Sn,N) into (X,x0) under the equivalence relation of homotopy. [The 
base point of SN is N = ( 0 , . . . , 0,1) £ Rn+1.] Under this correspond-
ence the product of two elements [a] and [b] of 7Tw(X,XG) goes over to 
the homotopy class of a map on Sn described as follows. Let a and 
b be maps of Sn into X whose homotopy classes correspond to the 
elements [A] and [i>l of ir»(X,xo). Form a quotient of SN by identify-
ing points on the "equator" E = {(xi, . . . , xn+x) £ Sn: XI = 0 } ; this 
quotient is, topologically, the union of two n-spheres with a single 
distinguished point in common. The map on SN corresponding to the 
product of [a] and [b] in 7 R N ( X Y X 0 ) is the homotopy class of the map 
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N 

obtained by composing the above quotient map on Sn with a map on 
Sn/E which "looks like" a on one of the two n-spheres which compose 
Sn/E and looks like b on the other rc-sphere. 

[If n is at least 2, a path of rotations of (Sn,N) can be used to define 
a homotopy of the map described above with another map on Sn 

which, when factored through Sn/£, interchanges the roles of a and 
b on the two n-spheres of Sn/E. This yields a proof that 7rn(Xyxo) is 
abelian when n > 2.] 

The group 7rn(X)xo) is a homotopy invariant of (X,*o) for each 
integer n, and if X is contractible to x0, then 7Tn(X>xo) = {1} for each 
n. [A feeling for the n-th homotopy group may be obtained from the 
fact that for each n5 irn(Sn) = Z, but this is difficult to prove now.] 
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FF Products of Loop S p a c e s For every indexed family {Xx: X £ L] of 

spaces, Q( X {Xx: X 6 L}) is homeomorphic to X X 6 L}. (Here 
notation fails to reflect our choice of a distinguished point xx for each 
Xx> and of the distinguished point X € L} of the product,) 

G G Homotopy E q u i v a l e n c e Let A -U B C ^ D be a sequence of 
maps, with g o f and ho g both homotopy equivalences. Then/, g, 
and h are all homotopy equivalences. 



II 

7k FwukmeiUo£ Gwup 4 ̂  Gbtek 
CHAPTER IX 

In the last chapter we computed the fundamental groups of a few types of 
spaces. For instance, the contractible spaces, which include all euclidean 
n-spaces and their starlike subsets, were shown to have trivial fundamental 
groups. The n-spheres for n > 2 were also found to be simply connected. 
In fact, we have not yet proved that any space whatsoever has a nontrivial 
fundamental group. This is surprising; an intuitive grasp of the definition 
convinces us immediately that there are lots of loops in spaces which can-
not be deformed continuously into constant loops, but up to this point, we 
have no firm reason to believe that this notion of fundamental group is not 
empty of significance, that not every space is assigned the group (1). 

We have seen that a loop in a space may be regarded as a map of 
a circle into the space; accordingly, loops are in some sense generalized 
circles. This suggests that the crucial test space for the usefulness of this 
notion is the circle. We have seen that if the identity map on the circle is 
homotopically trivial, then its domain can be extended to the whole closed 
unit disc in the plane. Then each given map from the circle into an 
arbitrary space may be composed with this extension of the identity map 
on the circle to yield an extension of the given map to the whole disc; this 
in turn implies that the given map is homotopic to a constant map. There-
fore the triviality of the fundamental group of the circle would imply the 
triviality of every fundamental group. 

We shall now show, as advertised in the previous chapter, that 
7Ti(S1) = Z, the integers. Our proof will begin with the construction of a 

215 
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topological group called the universal covering group of the circle, and A 
morphism of this group onto the circle; the kernel of this morphism will b e 
the fundamental group of the circle! We shall then discover that there is 
an isomorphism of the universal covering group of the circle with the real 
line, and that this isomorphism carries the fundamental group of the circle 
onto the integers. 

THE PATH GROUP OF A TOPOLOGICAL GROUP 

The first part of our program to compute ^(S1) is a construction 
which is valid for a broad class of topological groups. For a group G of this 
class there are special techniques available for the study of the fundamental 
group TTI(G) of the underlying topological space of G (for which we use the 
same symbol "G"). Accordingly, we base the constructions of the path 
group and the universal covering group upon a group G which has the 
following three properties: 

i G is path connected. 
ii G is locally path connected. This means that if g is a point of an 

open set V" of G, then the path component Vo of g in V is 
also open, 

iii G is semilocally simply connected. This means there is at least 
one neighborhood N of each point g of G such that every loop at 
g in G whose image lies in N is homotopic, via loops at g in G, to 
the constant loop at g. 

The new definitions in properties ii and iii apply to an arbitrary 
space; since G is a group, it is clear that the demands need be met only at 
the single point e9 the identity of G. Thus, for a group, property ii is 
equivalent to the demand that inside each nucleus there he a path-connected 
nucleus; property iii is equivalent to the demand that there exist a nucleus 
N such that the c-o subbasic set is contained in £2o(G,e), the set 
of trivial loops at e in G (why?). The circle has these three properties; in 
fact, every group manifold has the latter two properties, since inside each 
nucleus lies a nucleus which is a homeomorph of an e-ball in some R% and 
every such e-ball is both path connected and simply connected. Hence 
each path-connected group manifold satisfies our conditions. 

A comment about the definitions of "local" properties in topology is in 
order here. Our statement of condition ii may be immediately rephrased 
to demand that there exist at each point a local base of path-connected sets, 
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V 

v- • 

they are all tangent at the origin. Every neighborhood of the origin 
contains loops around little circles which are not homotopically trivial (this 
is not a formal proof; see Exercise VIII ,J). To find a space which is 
not locally path connected is an exercise. 

It is henceforth assumed, then, that the topological group G which we 
shall consider has properties i, ii, and iii. We begin our study of the funda-
mental group of the group G by constructing the path group E of (G,e): 
E is the set of based maps of (1,0) into (G,e), that is, the set of paths in G 
which begin at e, with the c-o topology. If a and b are members of 

This latter statement resembles the requirement, at least in Hausdorff 
spaces, of local compactness: a r2-space is locally compact iff there exists 
at each point a local base of compact sets. But a more usual definition says 
that a space is locally path connected iff for each open set V and each point 
g 6 V there is a neighborhood N of g such that for every point x € N there 
exists a path in V from x to g. This seems more complicated than condi-
tion ii, but a moment's reflection will show the two definitions to be 
equivalent. The latter definition of local path-connectedness has a form 
resembling statement iii; the precise relation of the two is examined in 
Exercise E, which may justify the bizarre definition of semilocal simple 
connectivity. 

An example of a space which is not semilocally simply connected is 
the subspace of the plane which is the union of the countable collection of 
circles { S i : i = l , 2 , , , , } , where each Sj has center (l/i,0) and radius 1/i; 
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there is a pointwise-product path ah in E, defined by ab(t) — a(t)b(t) for all 
t £ I, the latter product being in the group G, (Note that this product "ah" 
is denoted by juxtaposition, as opposed to a product "a • fe/" previously de-
fined for some pairs of paths,) This pointwise product of paths is a group 
operation for E; a - 1 is the path with values tf_1(t) — [a(f)]^1, the constant 
path e is the identity of E (which explains that choice of notation), and 
associativity in E is equivalent to that of G itself. We assert that E is a 
topological group; inversion is continuous, since each c-o-subbasis element 
(K,W) has as its inverse ( K , W ' 1 ) (here recall that W ~ L = [ W 1 : W £ W ) 

is open in G). The set E — { e } is open, since if a £ E — {e}y say a(t0) ^ 
e £ G, then the set of paths which map the compact set {f0} into the open 
set G — {e} is a neighborhood of a which does not contain the constant 
path. The proof that the product on E is continuous will use only the fact 
that I is regular; we shall show that if (K, W) is a subbase element for E and 
ab £ (K,W), then there are basic neighborhoods A and B of a and b with 
the product AB C (K>W). For each t £ K choose a neighborhood Ut X Vf 
of [a(t),b(t)] in G X G so that UtVt C W (remember that multiplication in 
G is continuous), and thereby get the neighborhood a-1(t7() n fo_1(Vi) of t 
in I. Since I is regular, there is an open neighborhood Tt of t with its 
closure Tf C a^(Ut) n b"1(Vf), and Tt~ n K is a closed subset of the 
compact set K, and is thus compact. Now, {T :̂ t £ iC) is an open cover of 
K; select a finite subcover Ti, T2, . . . , Tn, Take A to be fl {(?i~ n K> Ui)\ 
i = 1, 2 , . . . , n} and B to be Ci {{Tc n 1C, V*): i = 1, 2, . . . , n), where Ui 
and Vi correspond to the chosen set T* for each I It is easy to check that 
(a9b) £ A X B and AB C (K,W); hence £ is a topological group. We have 
shown, in fact, that if X is regular, then GF is a topological group with the 
pointioise multiplication. • 

There is a projection p: E —» G: p(a) = a(l) which sends each path to 
its end point, pis continuous (why?), and it preserves products: p(ab) — 

p(a)p(b). Since G is locally path connected, p is also open; we need only 
check this at e £ E. Let (.K, W) be a subbasic element for the c-o topology 
of E with e(K) C W. If K =£ 0, then W is a nucleus of G, and so the path 
component W0 of e in W is also open in G, and e £ (I,Wo) C (K,W). 
But p(IjWo) = Wo is contained in p(K,W)9 which is therefore a nucleus; p 
is an open map and a morphism of topological groups. It is an epimor-
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phism, since G is path connected. Taken together, these facts mean that G 
is (isomorphic to) a quotient group of £, 

Exercises Br C, and D 

THE UNIVERSAL COVERING GROUP 

The kernel of p is 12, the loop space of (G,e), and thus G ^ E/Q; £2 is 
a closed normal subgroup of E, Now consider the path component 12o of 
e in 12, As we saw in Chap. VI, it is normal in 12, Further, since G is semi-
locally simply connected, there is a nucleus (I,iV), a subbasic element of 12, 
which lies entirely in 120« Because the subgroup 12o contains a nucleus, it 
is open, and thus closed, in 12. Being a closed subset of the closed subset 
12 of E, 120 is a closed subgroup of E, But if a £ 120 with P a path in 12 from a 
to e, and h € E, then for each u G I the conjugate bP^b"1 of the loop P(u) 
is in 12 (since 12 is normal in E). This yields a path (why?) in 13 from 
bP^b-1 = bob-1 to feP(l)fe-1 = M " 1 = so fcafo"1 € 120 and 120 is 
normal in E: 

E 

p ^(3 = E/Q0 

G 

The quotient C — E/120 is called the universal covering group f of G; 
it is a topological group, and if q: E —» (3 is the quotient morphism, then 
p factors through q; that is, there is an epimorphism p: G —» G such that 
p = p o q (see Chap. V). The kernel of the covering mapf p is 12/120, since 
12 is the kernel of p, and 12/12o is just the group of path components of the 
topological group 12, which has the pointwise multiplication of its member 
loops. Of course, the elements of 12/12o are exactly the elements of 7Ti(G,e). 
We claim that the group operations are the same, as well; that is, the point-
wise product ab of two loops is homotopic to the loop product a * b, 
Since a • e is in the same path component [a] as is a (a* e goes around a at 
double speed and then stands still at e) and e • b e [b], we have [ab] = 
[(a • e)(e • b)\. But clearly, (a • e)(e • fo) is exactly the loop a*b; it goes first 
around a and then around b. Hence [ab] — [a • b] and 12/120 — *ri(G,e). 

f Covering groups and covering maps have no direct connection with the earlier defined 
noUon of a cover of a space. Naturally enough, there is some grammatical confusion of these 
words in the literature, but the context usually prevents mathematical confusion. 
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Incidentally, [ab] — [(e • a)(b • e)] = [b • a] as well; this shows that th§ 
fundamental group of a topological group is abelian. • 

As another corollary, we have the result that G is simply connected iff 
p is an isomorphism of G with G. • 

Exercise F 

THE PATH GROUP OP THE CIRCLE 

What is the interpretation of all this theoretical structure in case the 
group G involved is our old friend the circle? The theory suggests that one 
way we can compute the fundamental group of the circle is first to consider 
the group E of all paths at 1 6 S1; then we must decide which paths are loops 
and which loops are trivial. The universal covering group S1 must be con-
structed next, and the covering morphism p; finally, we realize 7Ti(S1) 
as the kernel of p. This may at first blush seem to be a needless complica-
tion of our problem; why not just compute the fundamental group directly? 
But exactly what does this entail? A direct attack must consider the set 12 
of loops. Since these are paths, we may as well admit that we look first at 
the set of paths on the circle and decide next which paths are loops and then 
which loops are trivial. Finally, the relation of homotopy between loops 
must be clarified in order to establish the group TT^S1). This is easily seen 
to be a restatement of the theoretical program, except that the theory offers a 
simplification: the group structure of E and S1 can be used to simplify our 
examination of the relationship of homotopy. That is, we need only find 
the subgroup 12o of trivial loops; the equivalence classes of mutually homo-
topic loops which are the members of tti(S1) are then the cosets of 12o in 12. 
Thus the path group and the universal covering group are not new con-
structs, but are entirely implicit in the definition of the fundamental group 
itself (for topological groups). They are intimately bound up in any com-
putation or theoretical discussion of the fundamental group. 

We shall now exploit this structure to compute TTI(S1). Our first 
result, the theorem of which this section constitutes a proof, is as follows. 

THEOREM The exponential map exp: R —» S1 induces an isomorphism 
exp1 of the path group E' of the real line with the path group E 
of the circle, 

exp1: E's; E. 

Specifically, the map exp: R ^ S1 wraps the line around the circle; its 
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values are exp (r) = (cos r, sin r) £ S1. It is a morphism of topological 
groups, but we have seen that it is not 1-1, although it is onto; in fact, it is 
not even homeomorphic to a direct-product projection (see Chap. V), 

exp1. t - . 

Nevertheless, the induced map exply which carries R1 into (S1)1 by compo-
sition, exp1 (a) = exp © a, has a restriction to the path group E' of R 
(we use the symbol exp1 for this restriction, too) which is an isomorphism 
of Ef with E, Picture exp1 as projecting a path at the origin of the line by 
wrapping that path around the circle. The function exp1 is trivially 
a morphism of topological groups, since exp is (Exercise J asks for details), 

LEMMA There exists an inverse function for exp1; that is, exp1 is 
an algebraic isomorphism. 

Proof We begin the construction of the inverse of exp1 by showing that 
for each path a of E there exists a unique path a' in R which begins at 0 
and for which exp o a' = a< The path a' will be built a piece at a time; 
note that exp is 1-1 on each open interval of length TT in R. Thus exp, re-
stricted to an open interval of length TT, is a homeomorphism onto an open 
arc of length TT (exp is a "local homeomorphism"). For each t £ I, the do-

7T + 1 
exp 

main of a, let Nt be the component of t in the open set which is the 
inverse image under a of the open arc of length TT centered at a(t)\ Nt is an 
open set containing t (why?). Select a finite subcover {Ni, N2,.•.> A^} of 
the cover {Nt: t £ 1} of I; reindex these if need be, so that their left end 
points Uu «2> • - . > Uk form an increasing sequence. Clearly, u\ = 0, 
Ui £ Ni-i for i = 2, 3, . . . , fc, and a(Ni) is a connected subset (an "arc") of 
S1 of length no greater than TT. The path af is first defined on Nlt There 
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is a unique interval H of length TT which contains 0 and which exp maps 
homeomorphically onto the arc Ai of length 77 which is centered at h (£1 is 
the point of I corresponding to ATi = Ntl); Ai contains a(ATi). If /1: 
Ai —> /1 is the inverse of the homeomorphism defined by exp of Ji with Ai, 
let a'(f) =/i[a(t)] for Inductively, if a' has been defined on 
N± U N2 U • • • U Nu find the unique interval ]\+1 of length m which con-
tains o!{u\) and which exp maps onto the arc Aj+i centered at a(U+1); use 
the homeomorphism/i+i: A^+i —> to define a'(t) = fi+i[a(t)] on Ni+i, 
This extension of the definition of af to Ni+1 can be made to agree with the 
definition at the previous stage on Ni fl A/i+i. Our ability to "paste 

• • < .• 

Interval 
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together" the homeomorphisms fi and /i+i depends crucially on the fact 
that two overlapping open arcs, each of length TT, do not together cover S1. 
This explains the choice of the length TT for our homeomorphic intervals and 
arcs. Since {Ni, N2,. . . , N^} forms a cover of I, d is defined and contin-
uous on all of I, and exp o a' = a. 

Picture a path in the circle as a string laid on the circle; the real line 
is the helix which exp projects downward onto the circle. We have shown 
that if the string a is laid down gradually, starting at 1 £ S1, we can follow 
with another string o! up above on the helix, starting at 0 £ R, so that at all 
times t the shadow on the circle (via exp) of the point af(t) being laid onto 
the helix is exactly the point of string a(t) being at that moment laid down 
on the circle. 

We have shown the existence of a lift a! of a path a in S1 to a path 
in R; now suppose that both a' and a": I —* R are lifts of a which begin at 
0 (so that exp ° af = exp Q a" = a). Consider the subset L of I on which 
af = a": 0 6 L, and L is open, since if t £ Ni (the choice of Ni depended 
only on a) and af(t) — a"(t) lies in a set Ju then the homeomorphism f : 
M Ji guarantees that af = a" on all of Ni (f is the functional inverse of 
the restriction of exp to Jj), But the difference a! — a" is a continuous 
function, and L = (a' — a//)"1(0) is therefore closed. Hence L is a non-
empty open and closed subset of I; so L = I, a' — a", and the lift of a is 
uniquely defined, • A reader who understands the definition of the 
multiple-valued natural logarithmic "function" on the complex plane will 
realize that we have just shown that it is possible to make a unique contin-
uous choice of values of the loge function on the values of a: a' = 
(1/0 loge 0 a. 

The assignment of af to a is a function t: E —> E' such that exp1 o t — 
1 e and to exp1 = [We might well have used the notation (loge)1 

instead of t] The group operation in E is the pointwise addition of angles 
and in Ef the pointwise addition of reals. The function exp is a morphism, 
so exp o (a' + bf) — (exp o a!)(exp * bf) = ab9 and af + b' must be the 
unique path (ab)7 which "lifts" ab; thus (preserves products. (More gen-
erally, the functional inverse of a morphism is always an algebraic morphism.) 

Now, exp1 is continuous because exp is, and it is an algebraic isomor-
phism. The following lemma will conclude the proof of our theorem that 
exp1 is a topological isomorphism. 

LEMMA The map exp1 is open. 

Proof Let (K,W) be a subbasic nucleus of E'; clearly, O f W C R , and K 
is compact in I. The map exp is a homeomorphism, which we shall 
denote by/, when restricted to (-77/2,77/2) n W = V,and(I,V) C (K,W). 
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The map exp1 carries (I,V) into [I, exp (V)], the set of paths in S1 whose 
images lie entirely inside exp (V), and each member a of [I, exp (V)] has a 
lift a! which is a member of (I,V); hence exp1 (K,W) D /^V) ~ 
[I, exp (V)], which is a nucleus of E. Thus e ^ 1 (K,W) is a nucleus and 
exp1 is open at the identity e of E'. This implies (see Exercise V.Q) that 
exp1 is open, and £ ' is isomorphic to E, • 

Exercises G ond J 

THE UNIVERSAL COVERING GROUP OF THE CIRCLE 

Now that we have the somewhat surprising result that the circle and 
the line have isomorphic path groups, we can sketch our plan of attack on 
77i(S1). It amounts to this: The subgroup S2q of Ef consisting of all trivial 
loops in the line (so 12o = 12') is carried by the isomorphism exp1 onto 120> 
the subgroup of £ of all loops in the circle which are homotopically trivial. 
This immediately implies that £'/126 is isomorphic to _E/S30; that is, the 
universal covering groups for the line and the circle are isomorphic. Be-
cause we already know that the simply connected group R is isomorphic 
to its universal covering group, R s E'/12' = E'/12o> this means that there 
is an isomorphism of S1 with R! This section, then, is devoted to a proof 
of the following theorem, 

S1 such that p ° h = THEOREM There exists an isomorphism h: R 
exp: 

h/ 

R - ^ S 1 

We begin with the construction of an isomorphism of R with a certain 
subgroup of the real path space E\ For each r £ R let o(r) be the path in 
R at 0 which has the value tr for each f € I so that o(r) is a line from 0 to r. 
Thus a is a function from R to Ef; it is an easy exercise to check that it is 
an isomorphism of R with or(R) C E'. Thus the subgroup exp1 o a(R) of E 
is isomorphic to R; it is the subgroup of all those paths beginning at 1 in 
S1 which "have constant speed." Furthermore, if a is a member of this sub-
group, say a — exp1 [a(r)]? then it is clear from the step-by-step construc-
tion of af 6 Ef that a' also has constant speed, and a'( 1) = r. 

We can now define the isomorphism h of R with S1 which was prom-

i 
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ised above: set h = q ° exp1 o a. That h is a morphism is clear; it is a 
composite of morphisms. Specifically, h assigns to each real number r the 
coset of determined by the path in S1 with constant counterclock-
wise speed r. The definition of h satisfies the requirement we set that the 
diagram 

Si 

exp 

be commutative: 

p o h(r) = = p o q o exp1 ° a(r) 

= po exp1 o a(r) 
= exp [a(r)(l)] 

exp (r). 

exp1 

s1
 P 

exp 

It is an exercise to show that h is open. The problem now is to show 
that h is 1-1 and onto, or equivalently, to show that each coset of Qo in E 
contains exactly one path in S1 of constant speed, 

LEMMA The morphism h is onto. 

Proof If a £ then there is a lift of a to a path af at 0 £ R. There is a loop 
a at 0 £ R which measures the deviation of a' from a constant-speed path, 
a = o[a'( 1)] — a\ so a(t) — ta'(l) — a'(t). Since R is simply connected, 
there is a path A' in £2' which begins at the constant loop and ends at a; for 
each u 6 I we define A'(u) to be the loop in R which has values for 
each t £ I: A'(u)(t) = u[tar( 1) — The composite exp1 o A' = A is a 
path in E which begins at the constant path in S1; each of its values 
exp1 o A'(ti) is a path in S1 beginning at exp («[0a'(l) — a'(0)]) — exp (0) = 1 
and ends at exp [ua\ 1) — ua\ 1)] = 1. Hence exp1 o Af is a path of loops 
in S1, that is, a path in Q. It begins at the constant loop e and ends at 

exp1 [A'(l)] = exp* (a) 
= exp1 [o o a'( 1) — af] 
— [exp1 o o o a'(l)](expl © a'Y1 

= [exp1 o o o a^iyja"1 
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The multiplication and inversion in the last line above are those of the group 
E; thus exp1 o a o a'(l) and a are two paths which lie together in the same 
coset of fio in E. Since exp1 o a o a'( 1) is just the path in S1 with constant 
speed a'{ 1), we have shown that each coset of £2o in 12 contains at 
least one path of constant speed; h is onto. • 

LEMMA The morphism h is one-to-one. 

Proof That h is monic is equivalent to the fact that the kernel of q con-
tains only one member, e7 of exp1 <> <r(R). That is, the only path in S20(S1) 
having constant speed is the constant path (with speed 0). To see this, as-
sume a e £20, and let H be a homotopy of a with e; H is a map from I2 to 
S1 with H(0,t) = a(t) and H(l,t) — 1 for each t€ I. Suppose for a moment 
that there exists a map Hf: I2 R such that exp ° Hf = H and ff'(I X 0) = 
0. Then, as the diagram indicates, along the right edge of its domain B! is 
the unique lift of a, so H'(l,t) = a'(t). On the other three edges of its do-
main Hf is the constant path, so #'(!,£) = H'(u,0) = H'(M) = 0 for all t 

H(u, 1) = e Hf(u> 1} = 0 

II Domain of H 

H(u, 0) = e 

! | | Domain of H/ 

H'(u, 0) = 0 

and u. However, af begins and ends at 0; if a is a constant speed path in 
S1, then a! has constant speed, which must be zero, and a = 
exp1 o a o a'( 1) = e, the constant path in S1. This will show that h is 
a monomorphism, and therefore an isomorphism. 

All that remains is to show the existence of a lift ET of a homotopy H 
in Bo- The following lemma will substantiate our supposition. 

LEMMA There exists a lift H': I2 R of the homotopy H: I2 S1 

such that exp o H' = /f. Tftat is, a path at e in S20 can fee lifted to a 
unique path at e in UQ. 

Proof This construction is quite similar to our previous lifting of a path in 
S1. In fact, die exponential law states that for each fixed u the function 
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H(uyt) of t defines a path au in S1, and we may get a lifted path afu at 0 in 
R. If we define H\u,t) = aUt), then 

exp o H'(uyt) — exp [oi(t)] = au(t) — H(u,t). 

But is H' continuous on I2? Well, fix an element UQ of I in mind, and for 
each t € I choose a rectangular subbasic neighborhood Mt X Nt of in 
I X I such that H(Mt X Nt) lies in the arc of length u centered at H(uo,t). 
Just as before, choose a finite set Mi X Ni, M2 X A ,̂ . • . , Mk X Nk with 
uq X I C U (Mi X Nil i = 1, . •. , k}; clearly, I = U {Ni: i = 1, . . . , fc). 
Define Mo = 0{M*: i — 1, . . . , fe}; M0 is a neighborhood of u0 in I, 
so Mo X I is a neighborhood of u0 X I in I2 . As before, on each succes-
sive set Mo X Ni, Mo X N2, • « . we may define inductively a unique con-
tinuous lift of H which maps Mo X 0 to 0; this lift obviously must agree 
with (that is, have the same values as) the H' defined above on Mo X I, since 
for each fixed u € Mo it lifts the path H(u,t). 

However, Hf is continuous on a neighborhood of the line UQ X I for 
each UQ £ I; Hf is the unique map of I2 into R for which H'(I X 0) = 0 and 
exp o H' = H, This concludes the proof that h is monic; thus h is an iso-
morphism. • 

The inverse morphism to h assigns to each coset afto € S1 the real 
number tf'(l). We have seen that this is a well-defined function [that is, if 
b € afto, then £'(1) = a'( 1)] which is also an isomorphism. Further, the 
commutativity requirement is satisfied; exp ° h"1(aQo) = exp o a'( 1) = 
a(l) = p(tffto), so exp ° hr1 = p. 

Exercises H and L 

SOME NONTRIVIAL FUNDAMENTAL GROUPS 

Now, the kernel of p is Q/QQ, the fundamental group of S1; since hr1 

is an isomorphism, ^i(S1,l) is isomorphic to the kernel of exp (see Exercise 
K). This isomorphism is determined by h"1; the coset afto is in the kernel 
of p iff p(a) = a( 1) = 1, the identity of S1. This happens iff exp[a\ 1)] = 1, 
that is, iff a'(l) is an integral multiple 2kir of 2IT. The integer k is called the 
degree of a, denoted deg (a); it is, suggestively, the "net number of times" 
the loop a wraps itself around the circle S in a counterclockwise direction 
(if k is negative, the "net" wrapping is in the clockwise direction). The 
loop products ab and a * b in ft clearly both correspond to the addition of 
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degrees; that is, deg: 77i(Sl,l) Z is an isomorphism onto the additive group 
of integers. We have proved that 

^(S1) = Z. 

Another immediate result is that the fundamental group of the 2-torus 
T2 = S1 X S1 is the direct product of two copies of Z, 

7n(r2) - z x z . 
Also, 7nfS1 x R ) = 77i(C - {0}) = z. 

Of course, this last statement should be generalized: any space having 
the same homotopy type as the circle has the integers as its fundamental 
group. An "annulus," for instance, which is the set (closed or open) 
of plane points lying between two concentric circles of differing radii, 
is homotopy equivalent to the circle, as is the Mobius strip (see Prob, 

VIII.CC). 

Exercise K 

THE FUNDAMENTAL THEOREM OF ALGEBRA 

Since you first met the quadratic formula in high school, you have been 
convinced that a quadratic polynomial which has real or complex coefficients 
must always have a complex "zero" or "root"; that is, if the polynomial is 
ax2 + bx + <?, a ^ 0, then there exists a complex number z. with az2 + 
bz + c = 0. There are always exactly two such roots, in fact, if you agree 
to count z a double root in case ax2 + bx + c = a(x — z)2. There are 
similar but more complicated formulas which give roots for arbitrary cubic 
or quartic polynomials; you may not have seen these, since it is not fashion-
able nowadays to include them in elementary courses. But it is a theorem 
of abstract algebra that such formulas do not exist to find roots for poly-
nomials of degree 5 or more. To be sure, you might be lucky or skillful 
enough to factor such a polynomial and thereby find a root for it; this is easy 
for the polynomial (x ~ 3)17 of degree 17. But there is no guarantee 
of eventual success in such an endeavor, unless the polynomial is a made-up 
problem in a textbook. Hence you have no algebraic reason to believe that 
a polynomial of, say, degree 1429 necessarily has any roots at all. 

The fundamental theorem of algebra states that each nonconstant 
polynomial with complex coefficients has at least one complex root 
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Curiously, there is no known proof of this fact which uses only algebraic 
manipulations; we now offer a topological proof. 

To better understand this proof, you will find it helpful to consider first 
a simple example in some detail The polynomial p ~ x2 — 4x + 15A = 
(x — %)(x — %) has two real roots, at x = % and x — Its constant term 
l% is its value at the origin 0 of the plane. Since pi C —> C is continuous, 
the image under p of the unit circle of its domain is a closed curve in the 
range, and that curve does not encircle the origin (it is the curve labeled 
r = 1 in the diagram). Since % is a root of p, the domain circle of radius 
% must be carried by p to an image curve which goes through the origin 
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(this curve is not shown). If we think of the domain circle centered at 0 
as expanding, the image curve also swells outward; at radius 2 in the 
domain, the image curve (labeled r — 2) encircles the origin. This latter 
curve has a sharp cusp on it; as the radius of the domain circle grows still 
more, the cusp becomes a crossing point and there is a second little loop of 
the image curve which just touches the origin when r reaches % (not 
shown). When the domain circle has radius 3 the image curve (r = 3) 
loops around the origin twice. It is easy to imagine that as the domain circle 
gets still larger without limit, the image curve gets larger and larger, 
always looping twice around the origin. 

The arithmetic of this proof is carried out on the circle and in TT^S1), 
It depends heavily on the continuity of division in the group of nonzero 
complex numbers, but an informal sketch of it is better presented in the 
plane. There we think of a polynomial p of degree n as a function which 
carries each circle of radius r and center 0 to a closed path in C; there is a 
continuous deformation of such a path as r varies. When r — 0 the path is 
constant, and when r is very large the path winds around the origin n times. 
At no stage does the path go through the origin if p has no complex root; 
in that case every one of these paths must lie in the same element of 
*i(C — {0}). Since the path is constant when r = 0, this means n — 0, 
and the polynomial p with no complex roots must be a constant polynomial. 

Now for the proof of the theorem. Suppose p is a polynomial of 
degree n with complex coefficients, say p = anxn + a^-i*™"1 + • • • + 
d\X + do; since we presume an ^ 0, we can divide through by an to get a 
new polynomial whose leading coefficient an is 1, and we suppose this done, 
We shall denote the "value" of p at a complex number z by p(z), p(z) 
zn + an_ i ^ " 1 + • • • + Now, we assume that p has no complex roots, 
that is, that there is no complex number z such that p(z) = 0. For each real 
number r > 0 let P(r) be the loop at 1 in S1 whose value at t £ I is 

P(r)(t) - | p(r) | p[r exp (2nt)] 
p(r) | p[r exp (2Trt)] | 

Since p has no roots, each of the two complex fractions on the right-hand 
side is well defined and has absolute value 1. Therefore P(r)(t) £ S1 for each 
r > 0 and each t £ I, and it is clear that P(0) is the constant loop in S1. 
The first fraction in the definition of P(r) is there to adjust the starting point 
of the loop; the second fraction corresponds to a projection into S1 of the 
loop p[rexp (2wt)] in C — {0}, an adjustment of absolute values. In gen-
eral, the degree of the loop P(r) is called the "winding number" of the closed 
path in the plane with values p[r exp (2T7£)]. 
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Since the values P(r)(t) are obviously continuous simultaneously in r and 
t, P(0) is homotopic to each loop P(r); a homotopy Hr is defined by 

Hr(u,t) = P(u,r)(t). 

This says that each loop P(r) has degree 0, since P(0) does. We propose 
to show that there is a positive real r0 with deg [P(ro)] = n. This will finish 
our proof, since then n = 0 and this polynomial p of degree n without roots 
has degree 0; it is a constant polynomial. 

Take TQ to be (n + 1 )a, where a is the largest of the numbers 1, 
| an_i |,. . . , | ao I > a nd let A(t) = ro exp (2trt) be the closed path in the 
plane describing the circle of radius ro centered at the origin. If q is the 
polynomial then q o A is a closed path with values q ° A(t) = rtf1 

exp (27rat); you may see that its winding number is n. We now claim that 
for each t 6 I, p o A(t) lies inside the ball of radius fon centered at q o A(t), 
since 

q o A(t) poA(t)\ 
= | A(t)n - [A(t)» + fln-iA^)"-1 + • • - -
< j an^iA(t)n~x j + | an-2A(t)*-2\ + . . . 
< \an-i\\A(t)^\ + \an-2\\A{t)»-*\ + 
< \an_1\r0n-1 + | <zn_21 ?on~2 + ••• + |oo 

+ oo]| 
+ |flo 

. ro < ~-ro 
n + 1 

< ?Qn' 

n-l TO + • , / 0 n + 1 
n-2 + - J L < - J L ^ . 

n + 1 n + 1 

This result implies that the line segment lying between q o A(f) and 
p o A(t) does not cross the origin; that is, if 0 < u < 1, then the point 
H(u,t) = u[q o A(t)] 4- (1 — u)[p o A(t)] is not zero for any t £ I. In an 
informal sense, the function if is a deformation of the closed path q o A(t) 
into p o A(t), Formally, let 

/ is a map from I2 into S1, 

J(0,f) = 

J(U) = 

p 6 A(t) 
|poA(f)| 
q o A(f) 

Iflfo A<t)| 

= 

r0n ron exp (2wnt) _ exp (27mt). 
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This map / is a homotopy in S1 between the loops J(0,t) and J(l,f), since 
at each stage u 

1 H(u,0) | H(u,0) _ 

and J(u, 1) = J(u30) = 1, since A( 1) = A{0). Thus / is a homotopy of 
P(r0) with the loop whose values are exp (2nut). This latter loop clearly 
has degree n; it wraps the interval around the circle counterclockwise n 
times. • 

Exercises M and N 
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In the next chapter we shall continue our study of the fundamental 
groups of topological groups in general; suggestions of further topics are 
postponed until then. 

EXERCISES 

A Supply complete details for the argument (sketched in the introduc-
tion to this chapter) that if the fundamental group of the circle were 
trivial, then the fundamental group of every space would be trivial. 

B Show that a connected and locally path-connected space is necessarily 
path connected. This means that these two global notions of con-
nectivity coincide for locally path-connected spaces (but not for their 
subsets, to be sure). 

C Exhibit a space which fails to be locally path connected. 

D Show that the path space E = {/: (1,0) —» (X,x0)} of a space (X̂ XQ) is 
always contractible. 

E Argue that the openness of QQ in £2 is equivalent to the semilocal 
simple connectivity of G. A stronger condition is that U be locally 
path connected; phrase an equivalent condition on G. (A group is 
called "locally simply connected" or "locally 1-connected" if its loop 
space is locally path connected-) 

F An identity e for a space X with a multiplication m\ X X X —» X is a 
point e of X such that m(e,x) — m(x>e) = x for all x € X. If X has a 
multiplication and an identity e, then (X,e) is called an "#-space" (or 
"Hopf space"). All topological groups are H-spaces; an example 
which is not a group is the complement of the open-unit disc in the 
plane, with complex multiplication. 

Show that the fundamental group of an ff-space is necessarily 
abelian. 

G The example of the circle in this chapter contains an argument that 
the set of points on which two real-valued maps agree is closed. 
Prove that, more generally, if / and g are maps from X to Y and Y is 
Hausdorff, then {x:f(x) = g(x)} is a closed subset of X (sometimes 
called the "equalizer" of/and g). \ U 
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H Show in detail that the function a: R —» Ef which is described in the 
example of the circle, o(r)(t) = tr, is a topological isomorphism of R 
with o(R). In fact, a is a cross section to the map pf: E' —> R and also a 
morphism; it is called a "cross section to the morphism" pr of topo-
logical groups, 

J Prove in detail that exp1: Ef —» E is a morphism of topological groups. 

K Let/: Gi ^ G2 be an algebraic isomorphism of groups and m*: G\ —> H 
be a morphism for i = 1 and 2, so that mj = r«2 ° /• 

G i — ^ G 2 

H 

Show that the restriction of/to Xer (mi) is an isomorphism of (mi) j 
with Ker (m2). 

L Prove that the morphism h = q ° exp1 © a: R —» S1 (described in the 
text) is an open function. 

i 

M Supply the missing details to show that the function H used in the 
proof of the fundamental theorem of algebra is continuous simultane-
ously in t and u. 

N Use the division algorithm for polynomials to show that if po is a 
polynomial and po(*i) = 0, then there is a polynomial pi such that 
p0 = (x — %i}pi. Use this fact to make an inductive proof that 
p0 = (x — Zi)(x — Z2) * • • (x — where n is the degree of po and 
each a* is a root of po; this says that p0 has exactly n roots (some may 
be multiple roots, counted several times). 

PROBLEMS 

AA Free Homotopy Two loops ao and a\ at the points *o and xi in X 
are "freely homotopic" if they are connected by a ''free homotopy*' 
H: I2 X; that is, there exists a map H such that ff(0,f) = ao(t) and 
H(U) = ai(f) for all t and tf(u,0) = H(uy 1) for all u. This means 
that ao and ax are joined together by a path of loops, but that the 
base point of these loops is allowed to wander around in X during 
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/ V 

) 

/ ' P a t h of 
\/ the basepoint 

„--'/ under the i 

( homotopy 

\ « \ / * * 

the homotopy. Show that if X is the circle, or any other group 
space, then two loops at e are freely homotopic iff they are homotopic. 

Can you see a free homotopy lurking inside our proof of the 
fundamental theorem of algebra? 

O n l y S e p a r a t e l y Cont inuous Homotopies Exhibit a function 
ft: I2 —> S1 which satisfies the requirements for a homotopy of the 
loop a, a(i) = exp (27rt)> with the constant loop, except that K is to be 
continuous only separately in each variable. That is, fi(uj) is to be 
continuous in u for each fixed t and continuous in t for each fixed u. 
Then show that the equivalence relation between loops which is 
defined by this notion of separately continuous homotopy makes 
every loop trivial in an arbitrary space X, 

The Figure 8 Let X be the figure 8? two circles tangent at a single 
point, and let a be a loop at the crossover point x in X which goes 
once around one circle, while b loops once around the other. Show 
that a and b together generate 7Ti(X,x), that is, that the only sub-
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group containing both a and b is 7ri(X,x) itself. Then use the quo-
tient maps which collapse just one of the circles to a point to define 
an epimorphism of onto Z x Z . The existence of such a 
morphism implies that TTI(X3X) is not isomorphic to the integers, 
[In fact, TTI(XjX) is not abelian. It is the "free group" generated by a 
and b; we have not defined this concept.] 

DD The Homotopy Group 772(S1) The second homotopy group of the cir-
cle, TT2( S1), is the group of homotopy classes of maps of I2 into S1, 
where each map and each stage of a homotopy are required to send 
the whole boundary 3I2 to 1 £ S1 (see Prob. VIILEE). Put another 
way, it is the group of path components of S2[(2(S1,1), the group of 
path components of the subspace of (S1)^2' consisting of those based 
maps which are constant on 312. 

Use the technique developed in this chapter for lifting homotopies : 
to show that 7T2(S1) is trivial. Can you generalize this result to prove j 
that for all n > 1, *rn(S*) = { ! } ? 



CHAPTER X 

Armed with an intimate knowledge of the relationship expressed by exp 
between the line and the fundamental group of the circle, we return now 
to the investigation of topological groups in general which we began in the 
last chapter. We discovered there that, at least in the case of the circle, 
the covering map from its universal covering group to a given group has a 
restriction which is a homeomorphism from one nucleus to another. This 
turns out to be true in general. That the universal covering group is 
simply connected is also always true. 

We begin our work by isolating those properties of the morphism exp 
which enabled us to show that R ^ S1. Although in our proofs of the last 
chapter we did use some special properties of R, we shall soon see that the 
construction of this isomorphism need depend only on the following facets 
of the situation: R is simply connected and there exists a homeomorphism 
from a nucleus of R to a nucleus of S1 which preserves the group opera-
tion in so far as that operation can be carried out in the domain nucleus. 

THE DEFINITION 

If N and N' are nuclei of two topological groups G and G\ respec-
tively, for which there exists a homeomorphism f:N-±N' such that 

i If g, hy and gh are all in N, then /(g)f(h) = f{gh), 
ii If g\ and g'/i' are all in N\ then /"MgO/"1^') = 

237 
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then G and G' are said to be locally isomorphic. We have just observed 
an example of this: R and S1 are locally isomorphic. The restriction of the 
exponential map to the nucleus (— 77/2,7t/2) of R is the local isomorphism/. 

This example may be generalized considerably. Suppose G is a 
topological group with S a normal subgroup which is discrete in its rela-
tive topology. Then there is a nucleus M of G with M D S = {e}. 
Choose a nucleus N such that NN ^ C Af, and let / be the restriction of 
the quotient map <p: G G/S to the nucleus N. The map / is an open 
1-1 map onto the nucleus <p(iV); since if /(g) = f(h), then ^(g/i"1) = e, so 
gh™1 £ S, But g, h £ N implies gh~l £ M, and because M fl S = {e} , g = h. 
Thus / is a homeomorphism, and it surely satisfies condition i above. That 
it also satisfies ii is the result of an exercise (see Exercise £). Hence G and 
its quotient, modulo a discrete normal subgroup, are locally isomorphic. 
In our example of the circle, the subgroup is S = (27rk: k £ Z} C R . (The 
discrete normal subgroup S is necessarily closed; since this is an intuitive 
truth, we defer its proof to Exercise C.) 

Another example is provided by a group G and its universal cover-
ing group G. The kernel Q/Q0 of the covering map p: G —> G is, of 
course, normal; we claim that it is discrete. It is assumed, as in Chap. IX, 
that G is semilocally simply connected; therefore there is a nucleus M of G 
with every loop in M homotopically trivial. Thus there exists a nucleus JV 
with NNC M. Let a and h be elements of E, the path group of G, 
which map I into N7 and suppose p(a!2o) = Then p(a) — p(b)9 

and the path ab_1 is a loop at e which lies in M. It is thus homotopic to 
the constant loop; that is, ab^1 £ £2o> or aS20 = o- But q(I9N) is a 
nucleus of G; we have shown that p is 1-1 on </(I,JV), so the kernel of p is 
discrete. Hence G and G are locally isomorphic. 

An alternative way of describing this situation lies in the definition 
that an epimorphism which restricts to a local isomorphism is called a 
covering morphism. Such a morphism is obviously open at the identity, 
and therefore open. If f: G G' is a covering morphism, then its ker-
nel K is a discrete normal subgroup of G, and G/K is isomorphic to G\ 
Conversely? the quotient map of a group, modulo a discrete normal sub-
group? is a covering morphism. • 

The relation between groups of being locally isomorphic is an equiva-
lence relation, since inverses and composites of local isomorphisms are 
again local isomorphisms. This makes it clear that a given local isomor-
phism from G to G' may not be extendible to any covering morphism at 
all. An example is the local inverse / for exp, which maps the set of 
angles of "absolute value" less than TT onto the set of reals ( —7r,7r); since R 
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is not compact it is not a quotient of S1, so there can be no covering mor-
phism from S1 to R. 

We shall continue the assumption throughout this chapter that the 
group G under discussion satisfies the requirements i, ii, and iii which were 
set at the beginning of the previous chapter. The universal covering 
group G of G is connected, since it is the continuous image of the con-
tractible space E. Since G and G are locally isomorphic, G is locally path 
connected because G is. The simple connectivity of G is established in 
the next section; thus & will always satisfy our requirements when G does. 

Exercises A, B r C , and F 

THE SIMPLE CONNECTIVITY OF G 

We shall now prove that the universal covering group G of a topo-
logical group G is always simply connected. This is certainly the case 
with S1; its universal covering group is contractible. In general, let 
a: I —* G be a loop at e in G; we use the loop p o a in G to define a path d 
at e in E, d(u)(t) = p o a(tu), For each u, then, d(u) is the path in G 
which goes along the path p o a from e to p o a(u): 

G 

We assert that the image q o a = a of d in C is exactly the loop a with 
which we began. Clearly, a(0) = a(0) = e, so the subset L — {uCh 
a(u) = d(u)} of I is not empty. But the function ad"1: I —» C is continu-
ous and {e } is closed in G; the inverse image of {e} under this function, 
which is L, is therefore closed. Furthermore, 

p o d(u) — p o q o a(u) 
= po d(u) 

= d(«)(i) 
= po a(u) 

so 
pod — p o a. 
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Since p is a covering morphism, if a(uo) = then there is a neighbor-
hood N of a(uo) on which the restriction of p is a homeomorphism; it is 
easy to see that a agrees with a on the neighborhood a^(N) fl a-1(iV) of 

and thus L is open as well. The interval I is connected, so L = I and 
a = a. 

Now, a is a loop, so a( 1) = a( 1) = € G, And a( 1) = d(l)il0; there-
fore d( 1) € S2o. A summary of the argument thus far is that if a is an 
arbitrary loop in (5, then p o a is a trivial loop in G. But we are done: if H 
is a homotopy of p ° a with e, then 

H: I2 E: H(uyt)(s) = H(u,st) 

is a homotopy of d with e (why?) and hence q o fl is a homotopy of 
q o d = a = a with e. This is true for each loop a in G; thus G is simply 
connected. • 

THE UNIQUENESS OF G 

We continue our study of universal covering groups with a funda-
mental lemma. It generalizes the fact that the path spaces of S1 and of R 
are isomorphic via exp1. Its proof, while rather long, should be easy to 
follow when the example (S1 and R) is well understood; while reading it, 
keep before you a mental picture of what the proof is saying in terms of 
that example. 

LEMMA Suppose that G and G' are locally isomorphic via the homeo-
morphism f of a nucleus N of G with a nucleus N' of G'. Then there 
exists a unique isomorphism 6 of the path space E of G with the path 
space Ef of Gf which agrees with f1 on some nucleus of E. (Hence 
f l is a local isomorphism with the global extension 0.) 

Proof Let o e £ ; we shall construct a path a' in G' and define 6(a) to be 
the element a' £ £'. The path a' is to begin at e in G' and to be an image 
under / of a in the sense that there exists an integer n, depending on a, 
such that if | fo — ti | < 1/n, then ^(foMti)'1 £ # and 

/wtoK^i)-1] = a ' ^ o K ^ r 1 . 

Choose a symmetric nucleus M of G with M3 C N (see Exercise V.F). By 
the compactness of I, it is possible to find a finite set of open intervals 
Ti, T2, . . . , T* which cover I, with a(Ti)a(Ti)-1 C M for i = 1, 2, . . . , h 
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If 8 is the length of the shortest of the nonempty intersections T* n I), 
and n is an integer with 1 /n < 8/2, then |t0 — fi] < 1/n implies 
a(f0)a(ti)"1 € M for each pair (fo,fi) in I (why?). It is clear that we can 
begin a definition of d on the interval [0,1 /n] which satisfies the above 
requirement; d(t) — f[a(t)] must work if t £ [0,1 /n]. Inductively, pre-
sume d is defined on [0,m/n] so as to satisfy the requirement, with 
1 < m < n — 1. 

For each t £ [m/n, (m + 1 )/n] use the following trick to define 
aa'(£) = /[a(f)a(m/n)~1]a/(m/n). This extension of the definition of d 
clearly agrees with the definition of the previous step at m/n £ I, and it is 
continuous on [0, (m + l)/nj. If £0 £ [m/n, (m + 1 )/n] and | to — h | < 
1/n, then 

\ 

i | i i j l 

for i = 0 and 1. This is evident for i = 0, and also for i — 1 in case ii 
h > m/n. But if h < m/n, this is just the inductive assumption. . i 

Accordingly, i 
• i =/hKf rn^Hf r r 

= K 1 ] 
= /[affoMfi)-1]-

Inductively, such a path a' does exist. But if there are two paths d 
and a" which satisfy our requirement, then d(0) = a"(0) = e, so that the 
set L — t £ I: d(t) = a"(£) is nonvoid; L is closed by the usual argument j 
And if t\ £ L and | to — h | < 1/n, then ! 

of (to) = fiafowhywih) 
= f[<to)a( hYWih) 
- d'(to), 

so to £ L and L is open. As before, L must be all of I, d =• a'\ and our 
path d is unique. Hence 6: E Ef is a well-defined function. Further-
more, if a is a path lying in M and a £ (I,M), then the composite path, 
d(t) = f[a(t)]> will do for 6(a). Thus, on the nucleus (I,M), 6 agrees with 
f 1 , which is clearly a homeomorphism of Nl with (N')1. Therefore 6 is 
continuous and open at e; it is a morphism if it preserves products. 

Now, is dbf = (ab)f for all a and b in E? We first show that 
(aby — db' whenever the image of a hes inside A/, so that d(t) = f[a(t)]. 
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As usual, the two maps agree on a closed set L containing 0. Suppose 
that ti € L and that \t0 - h I < 1/w, where TO is the greater of the two 
integers no and ni used, respectively, to construct bf and (ab)\ Then 
b(t0)b(ti)"1 € M and 

(abY(t0) = /[(^(^(^{f^^Kab)^!) 

= (a'fo')Co). 

Thus 6 L and L is open, L = I and (afc)' = a'b\ Here we have used 
the facts that M = M^1 and M3 C JV; they imply that if mi, m2, m3, € M, 
then/(mim2m3"1) — /(wi)/(m2)/(m3)~1. Since £ is contractible, it is con-
nected; the nucleus (I,M) generates E, and every element a of £ may be 
expressed as a product a = atOz • • • dp with the image of each a\ lying 
in M. A simple induction now shows that if each a\ lies in (I>A/), then 
(ai<i2 • • • Ojby — aifl2 • • - Taking b to be e, we have a' = a±af2 * • • 
and then for any path b = • • • ^ (afc)' = a± — - ajfci • = afb\ 

We have proved that our function 8 is a morphism. If 8: E —> E' also 
agrees with f J on some nucleus, then 8 = 0, since every nucleus gener-
ates £. Therefore 6 is unique. Furthermore, by the symmetry of the 
local isomorphism relation, there is a morphism 0': E/ —> E which agrees 
with (Z^1)1 on some nucleus of E'. The unique morphism 8 o 8' : E-+ E 
must also agree with (f'1)1 ° f l = (Z^1 ° f)1 on some nucleus. But so 
does hence 8 • 8' = 1̂ ?; similarly, 0' ° 8 = This shows $ to be an 
isomorphism. « 

There may or may not exist a morphism cp: G G' such that 8 = <p*. 
For instance, there can be no nonconstant morphism of S1 into R; if 
q>: S1 ^ R and <p(s) = r 0, then <p"1(R — {0}) is a neighborhood of s. 
But every neighborhood of s contains a rational multiple (2k/l)ir of 
and = <P(2&TT) = 0, a contradiction. (Why? Does this not 
prove that no definition exists for the logarithmic function on all of S1?) 

In general, <p exists iff the kernel of pf o 8 contains the kernel of p, 
and then pf o 8 = <p o p. The kernel of pf o 8 is 0™1(£2'), the set of paths a P' od 

G' 
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in G for which a' is a loop in G'. The kernel of p is the set of loops in G; 
thus <p exists iff 0(8) C Q', that is, iff a' is a loop whenever a is a loop. In 
the example of the circle, the loop a, a(t) = exp (2irt), lifts to the path 
a', a'(t) ~ 2irt, which is not a loop in R. We now show that a € fi!0 iff 
a' € hence the restriction of $ to S20 is an isomorphism with Qo, and 6 
defines an isomorphism of the universal covering groups. 

THEOREM If G is locally isomorphic to G' and 9; E —» E' is the iso-
morphism of our lemma, then 9(Q0) = S2o- Consequently, 6 induces 
an isomorphism $ of the universal covering groups, ip: G s G\ 

G' 

G' 

Proof Let a € ^o; by the symmetry of the assumption, we need only 
show that a' £ so 0(S20) C S26- Let h: I E be a homotopy of e 
with a; the ontinuity of h and the compactness of I may, in a familiar 
fashion, be used to find a finite set of points 0 = u\ < «2 < • • • < «* = 1 
of I such that if < u < ui+u then h(ui)~xh(u) € (I»M). Each value h(u) 
is a loop and thus ends at e € G. Inductively, let h(ui)' end at e in G\ and 
let Ui < u < ui+1; then b = 7i(Mi)-1fc(u) is a loop lying entirely inside Af, 
so b'(t) = f[b(t)] for all t in I. In particular, 6(1) = e, so 

« = 1/(1) = [A(«i)-^«)3'(i) 

- e[h'(u)( 1)] 
= h'(u)(l) 

and h'(u) is a loop, and so is h(ui+1). Thus each value h(u)f of 6 o h is a 
loop, 0 o h is a path in £ ' from e to a\ and a' £ 

The isomorphism of universal covering groups is now clear: the ker-
nel of q' o 0 is 6) = the kernel of q. Hence there is an isomorphism 

~ G = G' ~ q' o 6(E); 
Wo 

•ty carries ailo to a'Qo- • 
If, in particular, G is simply connected, then p: G ^ G, and the local 

isomorphism / agrees on some nucleus of G with the covering morphism 
<p = p' o o p~i of G onto G\ Of course, two locally isomorphic groups 
which are both simply connected must be globally isomorphic. We now 
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collect our results, stating them in seemingly greater generality and adding 
a few remarks which are immediate to them. 

THEOREM Let § be an equivalence class of mutually locally isomor-
phic groups (remember that the groups of this chapter are all path 
connected> locally path connected, and semilocally simply connected). 
There is, up to isomorphism, exactly one simply connected member & 
of and for each G £ % there is a covering morphism p<?: G —» G. 
The kernel of pa is isomorphic to 7Ti(G,e); we denote it fli(G), It is a 
discrete normal subgroup of G, and G s G/7Ti(G), 

The following statements are equivalent: 

i There exists a morphism <p: G —* G' with pq* = <p o pG, 
ii flri(G) C tti(G'). 

iii Every loop of G' is corresponded, via the local isomorphism deter-
mined by po' and pa, to a loop of G, 

G—-—> Gf 

If these statements are truey then the kernel of cp is isomorphic to 
9n(G')M(G). • 

Exercises G and N 

THE CLASS OF R 

We could now prove that R was (isomorphic to) the universal covering 
group of S1 by simply observing that exp is a local isomorphism and R is 
simply connected. Consider the class § of all groups locally isomorphic 
to R* For each member G of $ there is a corresponding discrete subgroup 
TTi(G) of R> Clearly, if 771(G) = 0, then G is globally isomorphic to R. 
Now assume that TTI(G) has a nonzero member and therefore a positive 
member. If d is the greatest lower bound of the set of positive members 
of TTI(G), then d £ tfi(G), since this is a discrete set. We claim that 
flri(G) = {kd: k £ Z}, the subgroup generated by d. For if r £ *ri(G), then 
let k0 be such that | k0d — r\ is minimal; then both kod — r and r — k0d 
are in TTI(G), SO \kGd — r| £ TTI(G); 0 < \kod — r\ < d implies k$d = r. 

Hence each nontrivial discrete subgroup TTI(G) of R is isomorphic 
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to Z, and each quotient of R, modulo such a subgroup, is isomorphic to S1. 
This means that § has, up to isomorphism, just two members, R and S1. 

Let G = R/{2JCTT: fceZ) and G' = R/{kv;keZ}; then ffi(G') D 
wi(G), and there is a morphism G —> Gf with tp o = tt^, The value 
of <p at 7rG(r) = r + {2/ctt: fc € Z} is r + {kn: k € Z} = 7r<?'(r), and the ker-
nel of <p is a two-element group. In fact, when both G and G' are thought 

of as feeing S1, in the obvious way, <p 
circle, <p(s) = $2, with kernel { ± 1 } . 
for <p is very clear in this context; it 
wraps the circle twice around itself. 

Exercises K a n d L 

G 

becomes the squaring function on the 
The nonexistence of a global inverse 
is a two-to-one covering map which 
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All the results and the entire theoretical structure of this chapter have 
been based on the idea of local isomorphism. There is a more general 
notion; a "local homomorphism" / from a group G to G' is a map /, 
defined on a nucleus of G and having values in G', which preserves prod-
ucts in the same sense as does a local isomorphism; that is, if a, b5 and ab 
are in the domain of / then f(a)f(b) = f(ab). The techniques of our 
proofs apply to this situation in the appropriate way to yield the statement 
that if G is a connected, locally path-connected, and simply connected 
group (and G' is arbitrary), then there exists a unique morphism <p: G —> G' 
which extend s/. If/is open (in the obvious sense), then q> is open. For 
a discussion of such matters, see Pontrjagin, cited above. 

While we have defined the fundamental group for an arbitrary space, 
our emphasis has been on group spaces, where the construction of the 
path group and the universal covering group provided us with machinery 
for the computation of the fundamental group. However, a space of paths 
may be defined for any based space (X,xo). The analogous construction 
of a "universal covering space" for spaces satisfying requirements i, ii> and 
iii may be carried out but is not as simply described without a group 
structure on X. We may define two paths pi and p% at Xo to be equivalent 
if pi • p2 is a trivial loop; if X is a group space this is exactly equivalence 
modulo The quotient space of the path space modulo this equivalence 
relation is a simply connected space, and there is a "covering map" of this 
space onto X which is very like a covering morphism. Specifically, a map 
p: Y X is a "covering map/' and Y is a "covering space" of X, if p is 
onto and for each x 6 X there is a connected open neighborhood N of x 
such that every component of p'~1(N) is an open subset of E on which the 
restriction of p is a homeomorphism with N. Results for covering spaces 
are only a little weaker than those for covering groups; for instance it is 
still true that every simply connected covering space of a given space is 
homeomorphic to the universal covering space of the given space. The 
two references cited above have introductions to this theory; a more com-
plete discussion of covering spaces is given by 

W. S. Massey, Algebraic Topology, chap. 5 (New York: Harcourt, 
Brace & World, 1967). 

Let tp: H G be a covering morphism of topological groups; the ker-
nel K of cp is discrete, so there exists a nucleus M with M fl Ker (<p) = {e}, 
and we can find an open nucleus N with NN~X C M. It is easy to show 
that q>(N) = N' is an open nucleus of G with the property that there exists 
a homeomorphism/: N' x K —> g)"1(iV/) with o f(n\k) — nr for all pairs 
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£ N' X -K- As usual, there is an appropriate translation of this situa-
tion to any point g € G; it is usually described by saying that (p is a "local 
product projection" and that Hhas a "local product structure" over G. The 
same statements may be made for a covering map from one space to 
another. There is a fixed discrete space D such that every point of the 
range has a neighborhood N whose inverse image under the covering map 
is homeomorphic toiV X A as above. More generally, if it is not required 
that D be discrete, then the map in question is said to have the "bundle 
property" or to be a "bundle space." An example you know is the pro-
jection of the Mobius strip onto its median circle; locally it is like the pro-
jection of the direct product of an interval with a neighborhood on the 
circle, but globally it is not. This gives a good intuitive feel for bundle 
spaces (and a special sort of bundle space called a "fiber bundle"); they 
are twisted direct products. This situation is not rare; for instance, every 
quotient map of a group manifold modulo a closed subgroup is a bundle 
space. The study of these matters is a natural next step for you as you 
finish this text; a well-written introduction is 

N, E. Steenrod, The Topology of Fiber Bundles (Princeton, N.J.: 
Princeton University Press, 1951). 

A somewhat more general presentation is given in the text of S, -T. Hu 
cited at the bottom of page 206. Another treatment on a high level is 

D. Husemoller, Fiber Bundles (New York: McGraw-Hill, 1966). 

EXERCISES 

A Prove that if G and G' are locally isomorphic and G is a group mani-
fold, then so is G\ In particular, the universal covering group of a 
group manifold must also be a group manifold. 

B Prove that condition ii in the definition of a local isomorphism may 
be deleted. That is, show that if G and G satisfy the definition with 
condition ii deleted, then G and G are locally isomorphic. 

C Show that a discrete normal subgroup of G must be a closed subset 
of G. 

D Let s be a fixed element of the topological group G, and argue that 
the function K: G G: K(g) = gsg"1 is continuous. Use this argu-
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ment to show that a discrete normal subgroup S of a connected (or 
path-connected) group G must lie in the center of G; that is, each ele-
ment of S must commute with every element of G, (Hint; The 
components of S are singletons.) 

Now use this result to make a new proof that, at least if G satisfies 
the conditions set forth at the beginning of this chapter, the funda-
mental group of G is abelian. (Note the more general result for 
H-spaces in Exercise IX.F.) 

Prove that each contractible group is locally path connected. (Hint: 
You will need to use the continuity of the contracting map and the 
topology of its domain.) In particular, every path group must be 
locally path connected. 

Prove the fact that no nontrivial subgroup of R is compact, and use it 
to show that there exists no nontrivial morphism of S1 into R* 

Let G be a connected, locally path-connected, and semilocally simply 
connected group, and let S be a subgroup of *ri(G), Show that there 
exists a group H and a morphism /: H —> G whose induced morphism 
/*• tfi(H) -» wi(G) is an isomorphism of TTI(H) with S. 

Imagine three cylinders arranged one inside the other, as in the dia-
gram, where they have been bent somewhat If the left edges A, B, 
and C and the right edges A', B\ and C' are all thought of as closed 
(in 3-space), then all six edges are homeomorphic to one another. In 
the obvious way, let the points of A be identified with their corre-
sponding points in A\ the points of B with those of C', and the points 
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of C with those of B\ The resulting quotient space is clearly two 
disjoint tori; the quotient map may be visualized as a sewing together 
of A with A' to get one torus, and a sewing of B to C' and C to Bf to 
get the second. (Of course, this latter sewing operation could not 
easily be done by a seamstress working in real 3-space.) 

Intuitively, projection of the "inner," second torus onto the outer 
torus is a covering morphism when appropriate group structures are 
defined for these tori. Make this statement precise; that is, define Ti 
and T2 to be two disjoint copies of S1 X S1 and give morphisms 
R2 Ti A where 9 arithmetically realizes the geometric picture 
we have offered. Discuss the relationship of the subgroups Ker (cp) 
and Ker (0 o <p) of R2? both to each other and to the geometric picture. 

J If /: G —» H is a covering morphism (of topological groups) with ker-
nel Ks show in detail that each element h £ H possesses a connected 
open neighborhood N such that/_1(iV) is homeomorphic to N x 
and furthermore, that each component of /_1(AT) is a homeomorph 
of Af, The picture is that locally the map/is the projection of a direct 
product which collapses onto N a laminated deck of copies of N. 
Draw this picture for the covering morphism exp: R —» S1; arrange R 
as a helix being projected onto a circle. 

K Let S be a discrete subgroup of the abelian group R2 such that the 
span of S in the real vector space R2 is not all of R2. Show that R2/S 
is isomorphic to either R2 or S1 x R-

L Let S be a discrete subgroup of R2 such that the span of S is all of the 
real vector space R2, and choose two linearly independent elements $1 
and 52 of S. For i — 1 or % let Ri be the one-dimensional subspace 
containing $i; Pi S is a discrete subgroup of Ri, and ft* is isomor-
phic to R. Therefore Ri D S is isomorphic to Z, Let si be a gen-
erator of Ri H S. 

Prove that every element of S is of the form n^si + rt2S2 for some 
integers and no; then show that R2/S is topologically isomorphic to 
the torus S1 x S1. This result, together with that of Exercise K, 
shows that the local isomorphism class of R2 has exactly three mem-
bers (up to isomorphism): the plane R2, the cylinder S1 X R? and the 
torus S1 X S1. 

M Generalize Exercises K and L to find the class of all groups which are 
locally isomorphic to real n-space, n > 0. (Hint: Your proof will be 
inductive.) 
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N Prove that the universal covering group of the product G X H of two 
groups is isomorphic to G X H; thus make a simple proof that 
77a(G X H) = tti(G) X ffi(H). 

PROBLEMS 

AA Deck Transforms If G —> G' is a covering morphism and h is a 
homeomorphism of G such that qo o /* — qp, then h is a "deck trans-
form" for Show that the deck transforms form a group (under 
composition) which is isomorphic to the kernel of <p. 

BB Project ive 3 - s p a c e Consider the quotient Pn of the n-sphere Sn 

which you define by identifying the end points of each diameter, 
P71 = {{*> — * € It can be thought of as the set of fines 
through the origin in Rn + 1 and is named the "projective n-space/' 
Now, the space Sn is a topological group if n = 0, 1, or 3, and we 
have examined this quotient if n = 1; P1 is a homeomorph of S1 (and 
n = 0 is trivial). 

The 3-sphere has a group structure as (a homeomorph of) the sub-
group Qi in the group of quaternions (see Prob. V.AA) of all those 
elements of norm 1. And { 1 , - 1 } is a closed normal subgroup of Qi 
[where 1 is the identity (1,0,0,0) of Qi C R4], so Qi/{1? — 1} = P3 

is a topological group, and the quotient map is a covering morphism. 
A covering morphism with a two-element kernel is often called a 
"double covering/' You may think of this quotient map as wrapping 
Qi twice around P3. 

Recall (from chap. VIII) that S3 is simply connected, and use this 
fact to show that the class of all groups locally isomorphic to S3 con-
sists of just S3 and P3 (up to isomorphism). Furthermore, 77i(P3) = Z2; 
this is our first glimpse of a space with a finite fundamental group! 
The nontrivial element of (P3) is the homotopy class of the image 
in P3 of any path in S3 which goes from 1 to — 1. For instance, let a' 
be the path in S3 whose values are a'(t) = (cos (*rt)3 sin (77f), 0, 0], 
where a'(t) is a unit quaternion presented by its four real coordinates. 
If q: S3 —» P3 is the covering morphism, then a = q ° a! is a non-
trivial loop in P3; can you see why a • a is trivial? 
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CC The Special O r t h o g o n a l Group SO3 The norm morphism (see Prob, 
V.AA) from the group Q of quaternions to the reals preserves prod-
ucts; thus if qo £ Qi, so that N{qo) = 15 then for each q £ Q the norm 
of the conjugate q0qq0is NiqoqqQ-1) = N(qo)N(q)N(qo)-1 = AT(g). 
We denote the conjugation function which go determines by 

Q —» Q* = 90990™1- Regarded as a transformation 
on R4, K(qfo) is orthogonal. A quaternion q is called a "pure 
imaginary" if its first coordinate in R4 is zero, or equivalently, if 
q = (cuc2) £ C* and the real part of ci is zero. The transform K(qo) 
carries each pure imaginary to another such, and accordingly, K(qo) 
may be regarded as a member of O3 C 04- It is easy to check that K 
is continuous from the connected set Qi to O3; hence K is a function 
from Qi to SO3 (the group of rotations of real 3-space). 

The kernel of K is (1, - 1 } . If q0 = [cos (0/2), sin (0/2), 0, 0] in 
R4? then K(qo) is a rotation about the (l,0,0)-axis in R3. Similarly, 
there are elements of Qi which K carries to the rotations about the 
other two axes, and these rotations generate SO3; hence K is onto SO3. 

Finally, K is open. Let N be an open symmetric nucleus small 
enough that - U N 3 . The family % - {N U (-N) U U is 
open in SO3 and its complement U' is a nucleus} is an open cover of 
Qi; furthermore, the union of a finite subcover of % is itself a mem-
ber of Hence there is a nucleus U' of S03 for which t/') CIV, 
and K(N) must therefore be a nucleus. This implies that K is open, 
and is thus a covering morphism which is two-to-one (a "double 
covering"). The kernel of K is isomorphic to Z2, SO3 is homeomor-
phic to P3, and 77I(S03) - Z2. 

DD Spinor Groups , and M o r e a b o u t Orthogonal Groups The special 
orthogonal group SO4 is a transitive ttg on S3. If p: SO4 —» S3 is the 
map which evaluates members of S04 at the "pole" N = (0,0,0,1) £ S3, 
so that p(M) = M(N)9 then p has a global cross section a: S3 —» S04, 
p" a = 1̂ 3, Obtain the value of a at an element s of S3 by consider-
ing s to be a unit quaternion; o(s) acts on R4 as the left-multiplication 
function Ls acts on Q. The existence of o implies that SO4 is 
homeomorphic to SO3 X S3; hence = Z2. 

The universal covering groups of the special orthogonal groups are 
called "spinor groups"; the n-th spinor group is 

Spin (n) — SOn. ^ 
\ : -
? 

K 
I 
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Thus we have that 

Spin (1) 
Spin (2) 
Spin (3) 

R, 
Qi, a 3-sphere, 

and Spin (4) is homeomorphic to the direct product S3 X S3. 
Recall (from Prob. VII.EE) that On has two components, each of 

which is a coset of SOn; hence ITQ(On) = Z2 and 7r1(On) = (SOn). 
[It may easily be shown by the techniques of fiber-bundle theory, 

discussed in the references for this chapter, that the inclusion of SO3 
in S On induces an isomorphism of fundamental groups for all n; thus 
7Ti(SOn) = Z2- Each spinor group is thus a double covering of the 
corresponding orthogonal group.] 

S o m e Unitary Groups Show that the special unitary group SU2 (see 
Prob, VII.DD for a definition) is simply connected, and is, in fact, a 
3-sphere. 

The unitary group Ui is isomorphic to S1. 
We have seen that the coset space U2/U\ is homeomorphic to S3, 

Because there exists a cross section to the quotient map q: U2 —> 
U2/U1, the space U2 is homeomorphic to S1 X S3, and 

ni{U2) = Z. 

[Again, fiber-bundle techniques quickly show that the inclusion of 
U2 in Un induces an isomorphism of fundamental groups; hence, for 
all n, 7Tx(Un) = Z.] 

Relat ive Homotopy Groups a n d an Exac t S e q u e n c e L e t S b e a sub-

group of the path-connected group G; the group of loops in (G,S) is 
S2(G,S) - [a: I G: a(0) = e and a( 1) € S}; it is a subgroup of the 
path space of G. The group of path components of £2(G,S) is 

*i(G,S) - Q(G, S) 
00(G,S) * 

the fundamental group of (G,S). 
The inclusion map i: S G induces morphisms i*: TTO(S) —» 

TT0(G) = {1} andi*: ^I(S) ^ FLI(G). Furthermore, the inclusion / of e 
into S, or of (G,e) into (G,S), induces a morphism /#: 771(G) —» 7TI(G,S); 
here /*[aflo(G)] = a£2o(G,S). There is also a morphism d: 7TI(G,S) 
^o(S) which carries the class [a] to d\a], the path component of a( 1) 
in S. Each morphism in the sequence 
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*i(S) ^ Tn(G) Wl(G,S) A *0(S) ^ *o(G) ^ {1} 

has as its image exactly the kernel of the subsequent morphism (such 
a sequence is called "exact 7). 

The proof of this requires some ingenuity; it will be helpful to 
imagine that (G,S) is (R3,R2); though homotopically trivial, this is a 
good context in which to visualize paths. An easy consequence of 
the exactness of the sequence is that if S is contractible, then is an 
isomorphism. 

If S is discrete and normal, then q: G —> G/S induces a morphism 
ql: £2(G,S) £2(G/S), which in turn induces an isomorphism q* of 
wi(G,S) onto the fundamental group iri(G/S) of the quotient group. 
Thus the sequence 

7Tl(S) 7Ti(G) % ff! ( f ) W o ( S ) i r 0 ( G ) - > {1} 

is exact if k* = q* © /* and A = 3 o ^ In that case, we have that 
k* is monic and 

_ 7T1(G/S) 
" Km(G) ' 

a result not made explicit in the text. This formula reduces to 
S s ?ri(G/S) when G is simply connected. 

Let G be the universal covering group of G; we have seen that there 
is an isomorphism of the path space of G with that of G and that this 
isomorphism carries the subgroup of (trivial) loops in G onto the sub-
group of trivial loops in G. This implies that 7rn(G,e) ^ 7rn(G,e) for 
all n > 2. [The group TTw(G,#) is defined in Prob. VIII.EE.] 





C>mk Afykabet 

Alpha A a 
Beta B 
Gamma r y 
Delta A 8 
Epsilon E e 
Zeta Z s 
Eta H 
Theta 0 6 
Iota I t 
Kappa K K 
Lambda A X 
Mu M V 
Nu N V 
Xi m a 
Omicron 0 0 
Pi n 7T 
Rho p P 
Sigma 2 a 
Tau T T 

Upsilon T V 
Phi $ <P 
Chi X X 
Psi * * 
Omega CO 
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Absolute value function, 56, 122 
e-ball centered at xy 62 
Complex numbers, 46 
Component function, 138™139 
Distance from r to s, 61 
Degree function, 227-228 
Determinant function, 181 
Domain of R, 13 
Evaluation function, 66 
Path group of group G, 217 
Exponential function, 124, 220 
Full linear group, 174, 183 
Unit interval [0,1] 
n-cube, 107 
If and only if 
Image of Jt, 14 
Cone on X, 211 
Kernel of /, 39 
Left multiplication function, 56, 113 
Least upper bound, 64n. 
Set of n X ti matrices, 172, 183 
Orthogonal group, 131, 175 
Complex orthogonal group, 183 
Power set of A, 15, 108-109 
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pn 

Q 
Qi 
R 
R» 
Rng (R) 
S1 

Sm 

SL(n,R) 
s on 

Spin (n) 
SUn 

T0 

Ti 
T2 

T3 

ttg 
Un 
z 

{*: P(x)} 
x £ S, x £ S 
S c ^ S ^ T j 
r D S, T $ S) 
T- S 
S' 
s n r 
s u r 

s X T 

B, A 

Projective n-space, 250 
Quaternionic numbers, 129 
Group of unit quaternions, 250 
Real numbers 
Real n-space, 69, 82 
Range of R> 13 
Circle, 1-sphere, 47 
n-sphere, 74 
Special linear group, 174, 184 
Special orthogonal group, 175 
nth spinor group, 251 
Special unitary group, 184 
Separation axiom, 116 
Points are closed, 116 
Hausdorff space, 116 
Regular and T\> 145 
Topological transformation group, 175 
Unitary group, 184 
Integers 
Integers modulo n, 40 
Set of x having property P, 3-4 
x is (or is not) a member of S, 4-5 

S is (or is not) contained in T, 4-5 

Complement of S in T, 5 
Complement of S, 5 
S intersect 
S union T, 5 
Ordered pair, 5 
Direct product of S and T, 5, 29, 46, 67, 95 
End of proof, 6 
Empty set, 7 
Intersection of family S, 9 
Union of family S, 9 
Equivalence class of a, 11 
Value of R at a, 13 
Notation for functions, 14 
Identity function on A, 14 
/inverse, 15, 28, 32, 34 
Quotient of A modulo R, 15, 35, 42, 97 
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g ° / , Composite of g and /, 16 
f : A ^B,A^B /is an isomorphism, 20, 43, 120 
f\x,f\ XxY Restriction of /, 22 
e Identity element, 32, 233 
AB {ab: a€Aandfce f i } , 34 
A- Closure of A, 90 
A° Interior of A, 90 
dA Boundary of A, 90 
7To Path component function, 140 
a' b Product of paths a and Z?, 140, 187 
ab Pointwise product of paths a and b, 140, 218 
T* One-point compactification of T, 142 

Direct product of indexed family A, 148 
Exponential notation for direct product, 149, 170 

(r,W) {f:f(r)e W}, 150 
fL Exponential notation for direct product function, 

163 
(K,S) { / : f(K) C S}, 166 

Kronecker delta function, 173n. 
Q(X) Loop space of X, 187 
P Reversed path of path p, 193 

1st homotopy group of X at x, 193 
vi(X) Fundamental group of X, 195, 244 
f* Morphism induced by map /, 196 
Vn(X,x) nth homotopy group of X, 212 
G Universal covering group of G, 219 
Qc(X) Space of inessential loops in X, 219 
Q(G,S) Group of loops in a group pair, 252 
iri(G,S) Fundamental group of a group pair, 252 
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Abelian group, 33 
Absolute value, of a complex number, 35 
Absolute-value function, 119, 122, 124 
Abstract group, 56 
Accumulation point, 105 
Action of a group, 175 
Affine group, 51, 127, 131 
Agreement of functions, 23 
Algebra, topological, 180 
Algebraic morphism, 118-120 
Annulus, 228 
Association, 178 
Associativity, of direct products, 27, 69, 148 

of groups, 30-32, 50-51 
of unions, 8 

Automorphism, of fundamental group, 210 
inner, 54 
outer, 55 

Axiom, of choice, 18 
of countability, first, 161 

second, 106 
separation, 116, 145 

Base (or basis), for a topology, 93 
local (or neighborhood), 114 

Bicompact, 141 
Bijection, 20 
Boundary of a set, 90 
Bounded function, 72 
Bounded metric space, 77 
Brouwer fixed-point theorem, 210 

Cartesian product, 5 
Cayley s theorem, 56 

for topological groups, 181-182 
Center of a group, 54, 130 
Circle, 13, 26, 36, 38 

embedding of, 128 
fundamental group of, 215-236 
homeomorphisms of, 56, 142, 185 
homotopy type of, 201, 207, 215-236 
as a quotient, 98-102, 127 

Circle group, 53, 113, 124 
Class, 3 
Closed c-ball, 79 
Closed map, 100 
Closed path, 102 
Closed set, 90 
Closure, under inversion, 34 

under multiplication, 34 
of a set, 90 

Closure operator, 109 
Cluster point, 105 
Collapse a subset to a point, 99 
Collection, 3 
Commutative diagram, 19 
Commutative group, 33 
Compact-open topology, 166 
Compactification, orie-point, 142 
Compactness, 141, 146 

local, 146 
of metric spaces, 72 
sequential, 158, 161 

Compactum = compact, metrizable space 
Complement, 5 
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Completeness, 163 
Complex number(s), 27 

absolute value of, 35, 119, 122, 124 
addition and multiplication of, 45-46, 

112-113 
argument of, 124 
conjugate of, 35 
polar form of, 124 

Component(s), 138 
group of, 139 
path, 140 
space of, 162 

Composite function, 16 
Cone, 211 

euclidean, 211 
reduced, 212 

Congruence modulo n, 11 
Conjugate, of a complex number, 35 

in a group, 39, 54 
of a matrix, 183 
of a quaternion, 129 

Connectivity, 137 
simple, 198 

semilocal, 216 
Constant function, 14 
Construction, cone, 211 
Containment of sets, 4 
Continuity, 61 

joint, 171 
at a point, 61, 120 

Continuum = compact, connected space 
Contraction, 200 
Convergence, pointwise, 163 

of a sequence, 81, 161 
Coordinate set of a direct product, 149 
Coordinatewise addition = pointwise addition 
Correspondence, one-to-one, 19 
Coset, left, 34 
Coset family, 35 
Coset space, 118 
Cover, open, 141 
Covering, double, 250 
Cross section, 131, 152 

global, 182 
local, 182 
to a morphism, 234 

Crystallographic group, 49 

Deck transformation, 250 
Decomposition space, 99 
Degree of a loop, 227 

De Morgan formulas, 9 
Dense subset, 106 
Determinant, 174, 181 
Diagram, 18 

commutative, 19 
Differential geometry, 104 
Differential topology, 104 
Differentiation, 53, 84 
Direct product, {see Product, direct, cartesian, 

or pointwise) 
Disjoint sets, 11 

mutually, 11 
Distributive laws, 9 
Domain, 13 

e-ball, 62 
closed, 79 

Element, 4 
order of, 57 

Embedding of a space, 128 
Empty set, 7 
Epic homomorphism, 42, 120 
Epimorphism, 42, 120 
Equality of sets, 4 
Equalizer, 233 
Equivalence, 11 

homotopy, 201 
relation, 11 

Equivalence class, 11 
Equivalent elements, 12 
Equivalent metrics, 78 
Euclidean n-space, 69 
Evaluation function, 66, 107, 128, 171 

of a direct product, 149 
Exact sequence, 56, 252 
Exponential function, 124, 220 
Exponential law for mapping spaces, 178 
Exponential notation, 149 
Extension of a function, 23 
Exterior of a set = interior of its complement 

Factor, of a direct product, 6, 148 
space, 99 

Factorization of functions, 20-22, 29, 43, 
99-102 

Family, 3 
of sets, indexed, 148 

Fiber bundle, 247 
Field, 107 

skew, 130 
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Figure eight, 235 
First isomorphism theorem, 45 
Fixed point, 81 
Function(s), 13, 28, 29 

agreement of, 23 
associated, 178 
bounded, 72 
combined, 23 
composite, 16 
constant, 14 
continuous, 89 {See also Map) 
direct product of, 29, 163 
evaluation, 66, 107, 128, 171 
exponential, 124, 220 
identity, 14, 28 
inversion, 38 
Kronecker delta, 173ti. 
left-inverse, 17 
left-multiplication, 113 
left-translation, 113 
logarithmic, 37, 223 
one-to-one, 17 
onto 18, 28 
product, 29, 163 
quotient, 15 
right-inverse, 18 
suijective, 18 
two-sided inverse, 19 

Gaussian integers, 47, 129 
Geometry, unitary, 183 
Group(s), 30-58 

abelian, 33 
abstract, 56 
action of, 175 
affine, 51, 127, 131 
associativity of, 30-32, 50-51 
center of, 54 
character, 125, 184 
commutative, 33 
compactness of, 163 
complex orthogonal, 183 
of components, 139 
concrete, 56 
crystallographies 49 
cyclic, 40 
continuous, 111 
direct-product, 46 
full (or general) linear, 174 
fundamental (or first homotopy or Poincar£), 

195 

Group(s), of a pair of groups, 252 
relative, 252 

homeomorphism, 131 
nth (or higher) homotopy, 212, 253 

second, 236 
identity of, 32 
isomorphism of, 43 
isotropy, 176 
Lie (or analytic), 125 
locally isomorphic, 238 
Lorentz, 132 
of matrices, 125, 180 
multiplication of, 33 
nonabelian, 33 
one-parameter, 133 
order of, 40, 57 
orthogonal, 131, 175 
path, 217 
of path components, 140 
permutation, 56 
product in, 33 
quotient (or factor), 42 
quotient theorem for, 43 
restricted Lorentz, 132 
special linear, 174, 184 
special orthogonal, 175, 251 
special unitary, 184 
spinor, 251 
topological, 110-135 

direct products of, 123 
morphism of, 119 
quotient theorem for, 121 
underlying group of, 111 
underlying space of, 111 

topological transformation, 175 

(non~) effective, 183 
torus, 47 
transformation, 56, 175 

quotient theorem for, 176 
transitive, 175 

underlying, of a topological group„ 111 
underlying set of, 33 
unitary, 184 
universal covering, 219 

Group manifold, 114, 125 
Group representation, 120 
Group space, 129 

i i 
i 

H-space, 233 
Hausdorff space, 116 
Heine-Borel theorem, 73 
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Hilbert space, 82 
Homeomorph, 100 
Homeomorphism, 78, 100-102 

local, 221 
Homeomorphism group, 131 
Homomorphism, 37 

local, 246 
Homotopy, 191, 200 

free, 234 
Hookes law, 133-135 

Identification space, 99 
Identification topology, 99 
Identity, additive, 112 

group, 32 
multiplicative, 112, 233 

Identity function, 14, 28 
Iff = if and only if 
Image, 13 

inverse, 15 
Implies, 6 
Inclusion, set, 4, 22 
Indices, set of, 148 
Induce, 15 
Integers, 7 

gaussian, 47 
modulo n, 12-13, 40^1, 45 
morphisms of, 52 

Integration, 53, 84 
invariant, 125 

Interior of a set, 90 
Interior map, 100 
Interior operator, 109 
Intersection, 5, 9 
Invariant, homotopy, 202 

topological, 118 
Inverse image, 15 
Inverse path, 139 
Isolated point, 105 
Isometry, 131, 175 
Isomorphism, of groups, 43 

local, 238 
of sets, 20 

of topological groups, 120 

Kernel, 39 

Kronecker delta function, 173n 
Kuratowski problem, 108 
Lagrange's theorem, 57 
Left-inverse function, 17 

Lemma, Urysohn's, 158 
Lie (or analytic) group, 125 
Lift of a path, 223 
Limit, 104 

of a sequence, 81 
Limit point, 105 
Lindelof space, 161 
Logarithm function, 37, 223 
Loop(s), 102, 187 

degree of, 227 
group of, in a pair of groups, 252 
homotopic, 191 
translate of, 194 
trivial, 196 

Loop space of a topological space, 187 
Lorentz group, 132 

Map, 89 
based, 200 
closed, 100 
covering, 219, 246 
exponential, 124, 220 
inessential, 201 
interior, 100 
null-homotopic = inessential 
open, 100 
shuffling, 123 

Mapping spaces, exponential law for, 178 
Matrix, 172-174 

complex, 183 
complex orthogonal, 183 
group of, 175-176, 180, 183-184 
orthogonal, 175 
unitary, 184 

Mechanics, Hooke's law, 133-135 
quantum, 126 

Member, 4 
Metric(s), 61 

equivalent, 78 
usual, 61 

Metric space, bounded, 77 
compact, 72 

Metric topology, 89 
Metrizable space, 104, 118 
Mobius strip, 211 
Modulo, 15 
Monic homomorphism, 43, 120 
Monomorphism, 43, 120 
Morphism, 37 

algebraic, 118-120 
covering, 238 
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Morphism, cross section to, 234 
quotient (or natural), 42 
right-inverse, 55 
of topological groups, 119 

Multiplication, of a group, 33 
pointwise, 149 
on a topological space, 188 

Mutually disjoint, 11 

n-cell, 107 
n-cube, 107, 198 
ra-disc, 210 
ra-manifold, 102, 104 

closed = compact 
group, 114, 125 

n-sphere, 74, 144 
isometries of, 131 
as a quotient, 182, 184 
relations of planes with, 162 
Riemann, 144 
simple connectivity of, 203-205 
unit, 74 

Neighborhood, 72, 87 
symmetric, 117 

Net, 104 
Nonabelian group, 33 
Norm, 183 

operator, 184 
of a quaternion, 130 
of a vector, 83 

Normal (or semidirect) product, 55 
Normal subgroup, 39 
Normality of a topological space, 158, 162 
Notation, exponential, 170 
Nucleus, 114, 130 
Null set, 7 
Number(s), complex, 35, 112 

natural, 149 
quaternionic, 129-131 
winding, 230 

One-point compactification, 142 
One-to-one correspondence, 19 
One-to-one function, 17 
Onto function, 18, 28 
Open cover, 141 
Open map, 100 
Open set, 87 
Operator, interior, 109 
Operator norm, 184 

Orbit, 134 
Order of a group, 40, 57 
Orthogonal group, 131-132, 175-177 

complex, 183-184 

Pair, ordered, 5 
Path, 70, 139 

beginning of, 139 
closed, 102 
end of, 139 
inverse, 139 
lift of, 223 
product, 140 

pointwise-, 218 
Path components), 140 

group of, 140 
Path connectedness, local, 216 

of a metric space, 70 
of a space, 136 

Permutation, 31 
Permutation group, 56 
Point, 4 

accumulation, 105 
base (or distinguished), 193 
cluster, 105 
fixed, 81 
at infinity, 142, 144 
isolated, 105 
limit, 105 

Pointwise-convergence, 163 
Pointwise multiplication, 149 
Pointwise sum, 53, 84 
Pointwise topology, 165 
Pole, north, 132 
Power set, 15, 108 
Product, direct (cartesian, or pointwise), 5, 

27-29, 148 
of based spaces, 205 
coordinate set of, 149 
evaluation of, 149 
factor of, 6, 148 
projection of, 27, 149 
of topological groups, 123 

group, 33 
inner, 83 
normal (or semidirect), 55 

Product function, 29 
Product group, 46 
Product path, 140 

pointwise, 218 
Product structure, local, 247 
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Product topology, 95, 150, 165 
Projection, of a direct product, 27, 149 

of a ttg, 176 
Property, Bolzano-Weierstrass, 158 

hereditary, 145 
productive, 153 
topological, 118 

Pythagoras' theorem, 66 

Quantum mechanics, 126 
Quaternion, 129-131 

unit, 250-251 
Quotients), factorization through, 29, 45, 102 

trivial, 15 
Quotient function, 15 
Quotient (or factor) group, 42 
Quotient set* 15 
Quotient space, 99 
Quotient theorem, for groups, 43 

for sets, 22 
for spaces, 99 
for topological groups, 121 
for transformation groups, 176 

Quotient topology, 101 

Range, 13 
Real numbers, local isomorphism class of, 

244-245 
Real n-space, 69, 74, 106-107 

Heine-Borel theorem for, 84, 157 
homotopy type of, 196 
isometries of, 131-132 
local isomorphism class of, 249 
relation with spheres, 162 
as a vector space, 82-83, 112, 126 

Reference style for articles, 158 
Regularity, 144 

complete, 158 
Relation, 10, 28 

converse, 28 
diagonal, 11 
equivalence, 11 
inverse, 28 
reflexive, 10 
symmetric, 10 
transitive, 10 

Relative topology, 92 
Representation of groups, 121n.? 125 
Retract, '200 
Retraction, 200 

Riemann sphere, 144 
Right-inverse function, 18 
Ring, division, 130 

quotient, 107 

Scalar, 82 
Second axiom of countability, 106 
Second isomorphism theorem, 58, 135 
Semidirect product, 55 
Separable space, 106 
Separation axioms, 116, 145, 158, 162 
Separation of a space, 137 
Sequence, Cauchy, 163 

convergent, 81, 161 
exact, 56, 253 
infinite, 81 
limit of, 81 

Set(s), 3, 8-29 
boundary of, 90 
bounded, 72 
closed, 72, 90 
containment of, 4 
coordinate, of a direct product, 149 
distributive laws for, 9 
empty, 7 
equality of, 4 
factor, 15 
inclusion of, 4 
indexed, family of, 148 
interior of, 90 
null, 7 
open, 72, 87 
power, 15, 108 
quotient, 15 
quotient theorem for, 22 
underlying, of a group, 33 

of a metric space, 61 
of a topological group, 111 
of a topological space, 87 

Set isomorphism, 20 
Set-braces notation, 3 
Singleton, 14 
Space(s)J 87 

based, 200 
bounded metric, 77 
bundle, 247 
compact, 141 
complete metric, 163 
completely regular, 158 
connected, 137 
contractible to a point, 200 
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Space(s), convex, 209 
coset, 118 
covering, 246 
decomposition, 99 
disconnected, 137 
embedding of, 128 
factor, 99 
first countable, 161 
Frechet, 116 
group, 129 
Hausdorff, 116 
Hilbert, 82 
homogeneous, 114, 118 
Hopf (or H-space), 233 
identification, 99 
lindelof, 161 
locally compact, 146 
loop, 187 
mapping, 170 
metric, 59-85 
metrizable, 104, 118 
normal, 158, 162 
path-connected, 136 
product, 95 
projective, 250-251 
quotient, 99 
quotient theorem for, 99 
regular, 144 
second countable, 106 
separable, 106 
separation of, 137 
sequentially compact, 161 
semilocally simply connected, 216 
simply connected, 198 
state, 133 
To, 116 
Ti, 116 
T2, 116 
Ta, 145 
topological, 86-109 
underlying, of a topological group, 111 

Spinor group, 251 
Star about a point, 208 
Strip, Mobius, 211 
Subbase (or subbasis) for a topology, 94 
Subcover, 141 
Subfamily, 4 
Subgroup, 33, 39 

generated by a subset, 52 
index of, 57 
isotropy, 131 
normal, 39 

i i 

Subgroup, smallest, 52 
Subsequence, 81, 161 
Subset, 4 

connected, 137 
dense, 106 
proper, 5 

Subspace, 92 
metric, 62 

Sum, pointwise, 53, 84, 107, 122 
Superset, 4 
Symmetric neighborhood, 117 
System of coset representatives, 56 

Theorem, Brouwer fixed-point, 210 
Cayley's, 56 

for topological groups, 181-182 
first isomorphism, 45 
Heine-Bo rel, 73 • 
Lagrange's, 57 
Pythagoras', 66 
quotient, for groups, 43 

for sets, 22 
for spaces, 99 
for topological groups, 121 
for transformation groups, 176 

second isomorphism, 58, 135 
Tychonoff, 154, 157 

Topological group (see Group, topological) 
Topological property (or invariant), 118 
Topological space, 86-109 
Topology, 87 

admissible, 171 
base for, 93 
compact-open, 166 
discrete, 88 
identification, 99 
indiscrete, 88 
larger, 88 
metric, 89 
metrizable, 88 

of pointwise convergence, 163, 165 
product, 95, 150, 165 
quotient, 101 
relative, 92 
smaller, 88 
subbase for, 94 
usual, 87 

Torus, 101, 248-249 
double, 108 

Torus group, 47 
Trajectory, 134 
Transformation, 13 
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Transformation, deck, 250 
unitary, 184 

Transformation group, 56, 175 
Translate of a loop, 194 
ttg (topological transformation group), 175 
Tychonoff theorem, 154, 157 
Type, homotopy* of a topological space, 201 

Union(s), 5, 9 
associativity of, 8 

Unit circle, 36, 142 
(See also Circle) 

Unit n-sphere, 74 
(See also n-sphere) 

Universe, 3 
Usual metric, 61 
Usual topology, 87 

Value, 13 
Vector, 82-83, 112, 172-176 

complex, 183-184 
Void set, 7 

Winding number, 230 
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i TOPOLOGY An Introduction with Application 
toTopolosical Groups 

George M^Carty 
p 

"Admirably meets the topology requirements for the pregraduate training ol 
research mathematicians."—American Mathematical Monthly 

Topology, sometimes described as "rubber-sheet geometry," is crucial to modern 
mathematics and to many other disciplines—from quantum mechanics to sociol 
ogy. This stimulating introduction to the field will give the student a familiarity with 
elementary point set topology, including an easy acquaintance with the line and the 
plane, knowledge often useful in graduate mathematics programs. 

The book is not a collection of topics, rather it early employs the language of point 
set topology to define and discuss topological groups. These geometric objects in 
turn motivate a further discussion of set-theoretic topology and of its applications in 
function spaces. An introduction to homotopy and the fundamental group then 
brings the student's new theoretical knowledge to bear on very concrete problems: 
the calculation of the fundamental group of the circle and a proof of the 
fundamental theorem of algebra. Finally, the abstract development is brought to 
satisfying fruition with the classification of topological groups by equivalence 
under local isomorphism. Throughout the book there is a sustained geometric 
development—a single thread of reasoning which unifies the topological course 

One of the special features of this work is its well-chosen exercises, along with a 
selection of problems in each chapter that contain interesting applications ;m<l 
further theory. Careful study of the text and diligent performance of the exercises 
will enable the student to achieve an excellent working knowledge of topology and 
a useful understanding of its applications. Moreover, the author's unique teaehiny, 
approach lends an extra dimension of effectiveness to the book: "Of partieulai 
interest is the remarkable pedagogy evident in this work. The author converses with 
the reader on a personal basis. He speaks with him, questions him, challenges him. 
and—best of all—occasionally leaves him to his own devices" (American Scientist). 

Contents Include: 

Introduction. Sets and Functions. Groups. Metric Spaces. Topologies. Topological 
Groups. Compactness and Connectedness. Function Spaces. The Fundamental 
Group. The Fundamental Group of the Circle. Locally Isomorphic Groups. Greek 
Alphabet. Symbol Index. Author Index. Subject Index. 

Unabridged Dover (1988) republication of the edition published by McGraw-11 ill 
Book Company, New York, 1967. Preface. Introduction. 99 illustrations. Chapter 
Bibliographies. Indexes. 288pp. 5% x 8/2. Paperbound. 
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