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Preface 

This is not a treatise on functional analysis. It is a set of lecture 
notes aimed at acquainting the graduate student with that section of 
functional analysis which reaches beyond the boundaries of Hilbert 
spaces and Banach spaces theory and whose influence is now deeply 
felt in analysis, particularly in the field of partial differential equations. 
I t  is admittedly with an eye on this kind of application that the material 
has been selected. T o  the student who works his way through Part I 
(Topological Vector Spaces-Spaces of Functions) and Part I1 (Duality 
-Spaces of Distributions), all the essential information on these subjects 
has been made available. Part I starts at a very elementary level by 
recalling the definitions of a vector space and of a topological space; 
later, the completion of a topological vector space is described in 
detail. Inevitably, the difficulty of the reading increases, but I have 
tried to make this increase very gradual, at the risk of irritating some 
readers with my overexplanations. The  student who has gone as far 
as Chapters 31 and 32 should jump, at this point, to Part I11 and 
read the first three or four chapters there-so as to learn some- 
thing, if he has not done so yet, about tensor products and bilinear 
mappings. Further progress, through the remainder of Part I11 
(Tensor Products-Kernels), as well as the end of Part 11, although 
not difficult in any sense, presupposes a good assimilation of the exposi- 
tion that precedes. 

For Parts I and 11, the prerequisites are a standard course in point-set 
topology, a decent undergraduate course on the theory of functions of 
one complex variable, and a standard course on the theory of functions 
of real variables and Lebesgue integration. Some knowledge of measure 
theory is assumed here and there. No serious result of linear algebra 
(such as the reduction to Jordan canonical form) is ever used, but it is 
clear that the student who has never heard of linear spaces or linear 
mappings should be deterred from opening this book. 

Pedagogical considerations have been given dominant weight, some- 
times at the expense of systematic exposition. I have made a special 

ix 



X PREFACE 

point of breaking the monotony of the text by alternating topics-from 
functional analysis to analysis proper and back again. In  teaching this 
material, I have found that such tactics were successful. The  book 
concentrates on what, in the author’s opinion, are key notions and key 
results (quotient spaces, transposes, the open mapping theorem, and the 
theorems of Hahn-Banach, Banach-Steinhaus, and Mackey, to mention 
only a few examples in functional analysis and not to speak of Part 111). 
Other concepts have seemed to be of less crucial importance, or else easier 
to reconstruct from the context, and are learned only by use, without 
any formal definition (this applies, for instance, to product spaces, to 
linear subspaces, and to induced topologies). Many important concepts 
are missing. There are various reasons for this. Sometimes these concepts 
partake of a degree of specialization higher than the surrounding 
material (e.g., bornological spaces versus barreled spaces, Laplace 
transform versus Fourier transform). In  other instances, they have 
seemed somewhat alien to the general trend of the book (I think mainly 
here of ordered topological vector spaces and of extremal points of 
compact sets). But the most compelling factor, at the root of those 
omissions, has been the lack of space. Some standard notions are not 
defined until the very moment they are needed: such is the case of 
general inductive and projective limits and topological direct sums, 
whose definitions will not be found before Chapter 49! All this is based 
on the belief that, once the main strongholds are secured, the conquest 
of larger territory should not prove difficult. It does however require 
further reading and recourse to the true treatises on the subject (see 
General Bibliography at the end of the book). 

The  advanced theory of Hilbert spaces and Banach spaces, and of 
their linear operators, constitutes, in a sense, the other wing of functional 
analysis. Its importance and depth cannot be overestimated. But there 
is no reason why I should have embarked on a description, even frag- 
mentary, of this theory. Its ramifications toward C* and von Neumann 
algebras, its applications to harmonic analysis and to group representa- 
tion, give it a highly distinctive character that sets it aside. Furthermore, 
there are excellent books on the subject. Most graduate schools offer a 
course on spectral theory-which is more than they do for the brand 
of functional analysis upheld here! This is not to say, of course, that 
the basic facts about Hilbert and Banach spaces are not to be found 
in this book. They are duly presented and, because of their great 
importance, the applications of the general theorems to these spaces 
are carefully pointed out. The  spaces L p  and B are looked at from 
a variety of viewpoints, and much of the “illustrating” material 
originates with them. 



PREFACE xi 

The  contents of Parts I and I1 correspond, more or less, to a one- 
year course given at Purdue University. Some additions are aimed 
at making the book self-contained. The  subdivision of Part 111 is 
more fictitious, as I have never taught a course on topological tensor 
products. Part I11 has been added because I firmly believe that analysts 
should have some familiarity with tensor products, their natural topol- 
ogies, and their completions. 

I wish to thank Mrs. Judy Snider who typed, with great competence, 
the manuscript of Parts I and 11. 

FRANCOIS TREVES 
April 1967 
Paris 
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Topological 
Vector Spaces. 

Spaces of Functions 



Part I is devoted to the basic definitions and properties about 
topological vector spaces, with no detailed reference to duality. We use 
filters quite systematically, after having introduced them in Chapter 1 
(which is devoted to recalling what a topological space is, with emphasis 
on the filter of neighborhoods of a point). Chapter 2 recalls what a 
vector space is, without going into any algebraic subtlety, as we shall 
never need any in what follows. The scalars are always complex 
numbers; no other field is ever considered (we shall switch to the field 
of real numbers for a very short moment, when talking about the theorem 
of Hahn-Banach, in Part 11, and switch quickly back to complex 
numbers). Chapter 3 makes the synthesis, in a sense, combining the 
topology with the linear structure, under the natural compatibility 
conditions. In relation to this, I have thought that the students might 
like to see a meaningful example of a topology on an algebra A which 
does not turn A into a topological vector space. Such an example is 
provided by the algebra C [ [ X ] ]  of formal power series, equipped with 
the topology defined by the powers of the maximal ideal. I t  is instructive 
to compare it with the topology of simple convergence of the coefficients, 
noting that C[[q] is metrizable and complete for both topologies. 
Chapter 4 is devoted essentially to quotient topological vector spaces; 
quotient spaces will be much needed in Part 11, when they will be 
carrying many a different topology, and it is the experience of the 
author that this is what students find most difficult: to visualize and 
manipulate correctly the various useful topologies, related to weak 
duality, on quotients of duals and on duals of quotients, and this is 
unfortunately inevitable. 

Chapter 5 is devoted to the completion of a (Hausdod) topological 
vector space; the theorem on completion is proved in all details. Although 
it is by no means a deep theorem, I have chosen to devote an entire 
Chapter to it so as to familiarize the reader with Cauchy filters, and also 
because I have too often been faced with audiences who simply did not 
know what a complete (nonmetric) uniform space is. 

Chapter 6 is devoted to compact subsets of a topological vector space. 
Chapter 7 introduces locally convex spaces and seminorms. Needless to 
say we shall not be dealing with any TVS that is not locally convex. 
In Chapter 8 we look at metrizable TVS, that is to say TVS whose 
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topology can be defined by a metric. We construct a metric when the 
underlying space is locally convex; we do this out of a sense of duty, 
because people in a nondistant past liked to think in terms of metrics. 
Inspection of the reasoning shows quickly that, most of the time, the 
consideration of a metric is unnecessary, that countable bases of neigh- 
borhoods would do. Furthermore, metrics have generally the drawback 
that the balls are not convex; and outside of local convexity there is little 
hope for salvation! There is no doubt that the proof of the open mapping 
theorem would be quite awkward without a metric, but the actual form 
of the latter is irrelevant (provided that it is translation invariant). The 
criteria about continuity, compactness, and completeness in metrizable 
spaces are given, together with the proof of the fact that every complete 
metrizable space is a Baire space. In Chapter 9 we study rapidly the 
most primitive examples of metrizable and complete TVS: the finite 
dimensional HausdorfF spaces! Linear subspaces of finite codimension 
are considered, as they will be useful later, and the correspondence 
between closed hyperplanes and kernels of continuous linear functionals 
is shown. The next three chapters are devoted to examples of locally 
convex metrizable spaces. These are (in decreasing order of generality): 
Frtchet spaces, normed and Banach spaces, Hilbert spaces. Frtchet 
spaces will be the most important topological vector spaces for our 
purposes. About Banach and Hilbert spaces, the student should expect 
to find in this book only the most basic and elementary information: 
for instance, in the chapter devoted to Hilbert spaces we prove the 
projection theorem and its consequence, the fundamental theorem of 
Hilbert space theory: the canonical isomorphy between a Hilbert space 
and its antidual. After this we describe rapidly (finite) Hilbert sums and 
orthonormal bases. The basic examples of F-spaces, B-spaces, and 
Hilbert spaces are introduced: 

gk(52), L p ( 5 2 )  (52, open subset of R"; 0 < K < 00, 1 < p < co); 
H(52), space of holomorphic functions in an open subset 52 of C"; 
%O(K), V k ( 0 )  (K, compact subset of R"; 51, bounded open subset 
of R"); 
9, space of ern functions in R", rapidly decaying at infinity. 

Chapter 13 is devoted to a class of locally convex spaces which are not 
metrizable (in general) but which are of great importance to us: the 
spaces LF (strict inductive limits of a sequence of F-spaces); as examples, 
we present the space of polynomials C[X] (as inductive limit of the finite 
dimensional spaces of polynomials of bounded degree) and the spaces 
of functions with compact support, 9?:(51), LF(51). The space %:(SZ) will 
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be the space of test functions on which distributions in SZ will be defined: 
the distributions in SZ are the continuous linear functionals on V:(SZ), 
i.e., the elements of the dual of VF(SZ). 

After this string of examples of spaces of functions, we return to the 
general theory and introduce bounded subsets of topological vector 
spaces. Bounded sets will be much used in relation with duality. By using 
Ascoli's theorem we prove that many of the spaces used in the theory 
of distributions (namely Vm(SZ), 9, V:(SZ)) have the property that closed 
bounded sets are compact (this property never holds in infinite 
dimensional normed spaces). In  the infinite dimension situation, this 
property was first encountered by Monte1 in the study of normal 
family of holomorphic functions. We prove also Montel's theorem which 
states that in H(S2) any closed bounded set is compact (H(SZ): space of 
holomorphic functions in the open set SZ C 0). 

Chapter 15 is devoted to approximation techniques in the standard 
spaces of functions, W(SZ), L P ( S Z ) ,  H(SZ), Ut(SZ). We study approximation 
by entire functions, by polynomials, and by V" functions with compact 
support (in the cases where this makes sense!). In  Chapter 16 we apply 
some of these approximation results to showing that, given an arbitrary 
locally finite covering of an open subset SZ of Rn, there is a partition of 
unity in V"(S2) subordinated to it. The last chapter of Part I, Chapter 17, 
is devoted to the statement and the proof of the open mapping theorem. 



1 
Filters. Topological Spaces. 

Continuous Mappings 

A topological vector space E is, roughly speaking, a set which carries 
two structures: a structure of topological space; a structure of vector 
space. Furthermore, some kind of compatibility condition must relate 
these two structures on E. We begin by recalling briefly what each one of 
them is, in the absence of any relation between the two. 

One defines usually a topology on a set E by specifying what the open 
subsets of E are going to be, However, in dealing with topological vector 
spaces, as we are going to do in this book, it is more convenient to define 
a topology by specifying what the neighborhoods of each point are going 
to be. It is well known that the two approaches are equivalent: an open 
set will be a set which, whenever it contains a point, contains a neighbor- 
hood of this point; one can also say that an open set is a set which isa 
neighborhood of each one of its points; on the other hand, a neighborhood 
of a point x of E is simply a set which contains some open set containing x. 

In  order to define a topology by the system of the neighborhoods of 
the points, it is convenient to use the notion of Jilter. This is a very 
primitive notion, and the student should find it easy to become familiar 
with it, and to learn how to use filters, just as he learned how to use 
sequences. The notion of filter is perfectly independent of topology. 
A filter is given on a set which need not carry any other structure. Let 
E be the set. A filter 9 is a family of subsets of E, submitted to three 
conditions: 

(F,) The empty set 0 should not belong to the family 9. 
(F,) The intersection of any two sets, belonging to the family, also 

belongs to the family 9. 
(Fa) A n y  set, which contains a set belonging to 9, should also belong 

to 9. 

The simplest example of a filter on a set E is the family of all subsets of 
E which contain a given subset A, provided the latter is nonempty. 

6 



FILTERS. TOPOLOGICAL SPACES 7 

With every inJinite sequence of points of E is associated a filter. Let 
x ,  , x2 ,... be the sequence under consideration. T h e  associated filter is 
the family of all subsets of E which have the following property: 

The subset of E contains all elements x ,  , x2 ,... except possibly a 
Jinite number of them. 

(AF) 

A family 99 of subsets of E is a basis of a filter 9 on E if the following 

(BF,) 99 C 9, i.e., any subset which belongs to 39 must belong to 2F. 

(BF,) Every subset of E belonging to  9 contains some subset of E which 
belongs to 39. 

two conditions are satisfied: 

A familiar example of a basis of filter on the straight line is given by the 
family of all intervals ( - a ,  a)  with a > 0: it is a basis of the filter of 
the neighborhoods of zero in the usual topology on the real line. Another 
useful example is the following one: let F be the filter associated with a 
sequence S = { x l ,  x2 ,..., x ,  ,... }. For each n = 1, 2 ,..., let us set 

and view S, as a subset of E.  Then the sequence of subsets S = 
S, 3 S, 3 0 . .  S, 3 ... is a basis of 9. 

Let A? be some family of subsets of our set E. We may ask the question: 
is there a filter 9 having d as a basis (note that a filter can have several 
different bases) ? In  view of the filters axioms, (Fl), (F2), (F3), that filter 
9, if it exists, is completely and uniquely determined: it is the family 
of subsets of E which contains some subset belonging to d. Observe 
that the latter property defines perfectly well a certain family, which we 
have called 9, of subsets of E. Then our question can be rephrased as 
follows: is 9 a filter ? Obviously 9 satisfies (F3); it also satisfies (F,) 
if we take care of requiring that no set belonging to d be the empty set. 
As for (F,) it is equivalent, as we see easily, with the following property 
of d: 

The intersection of any two sets, belonging to d, contains a set 
which belongs to d. 

(BF) 

The  difference with Condition (F,) is that the intersection of two subsets 
which belong to d is not requested to belong to d, but only to contain 
some set belonging to d. Thus we may state: a basis offilter on E is a 
family of nonempty subsets of E satisfying Condition (BF). The  filter 
generated by the basis is uniquely determined: by Condition (BF,). 
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Next step: comparison of filters. We want to be able to say: this filter 
is finer than this other filter. Keep in mind that filters are sets of sets, 
or rather of subsets. In other words, filters are subsets of the set of subsets 
of E, usually denoted by P(E).  As filters are subsets (of some set, in 
this case P(E) ) ,  there is a natural order relation among them: the 
inclusion relation. We can write F C F’ if F and 5‘ are two filters on 
the same set E. It  means that every subset of E which belongs to .F also 
belongs to 9’ (the converse being in general false). Instead of saying 
that F is contained in W ,  one usually says that 9’ is finer than 5, or 
that 9 is less fine than 9‘. Let F (resp. 9’) be the family of all subsets 
of E which contain a given subset A (resp. A’) of E; .F is finer than 9 
if and only if A’ C A. 

A topology on the set E is the assignment, to each point x of E, of a 
filter F(x)  on E, with the additional requirement that the following two 
conditions be satisfied: 

(N,) If a set belongs to .F(x), it contains the point x. 

(N,) If a set U belongs to F(x), there is another set V belonging also 
to F(x)  such that, given any point y of V,  U belongs to 9 ( y ) .  

When these conditions are satisfied we say that we have a topology on E 
and we call 9 ( x )  thefilter of neighborhoods of the point x. At first sight 
Condition (N,) may seem involved. I t  expresses, however, a very intuitive 
fact. Roughly speaking, it says that given any point z near x (i.e., z is a 
generic element of U), if a third point y lies sufficiently near to x (the 
sufficiently near is made precise by the neighborhood of x, V, of which y 
is an element), then z lies near to y (i.e., z E U E F ( y ) ) ,  In the language 
of open sets, (N,) becomes evident: since U is a neighborhood of x, 
U contains an open set containing x; let V be such an open set. Since V 
is open, and V C U, U is obviously a neighborhood of each point of V. 
A basis of the filter F(x)  is called a basis of naghborhoods of x. This 
simple notion will play an important role in the forthcoming definitions. 

Once we have the notion of filter of neighborhoods of a point, hence 
of neighborhood of a point (any subset of E belonging to the filter of 
neighborhoods), we can review quickly the concepts that are used to 
describe a topology. As we have already said, an open set is a set which is 
a neighborhood of each one of its points. A subset of E is closed if its 
complement is open. The closure of a set A C E is the smallest closed set 
containing A. It will be denoted by A. The following is easy to check: 
a point belongs to A if and only if everyone of its neighborhoods meets 
A (that is to say, has a nonempty intersection with A). The interior of 
a set is the largest open set contained in it; if A is the set,its interior 
will be denoted by 8. 
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A very important notion is the one of a set A dense in another set B; 
both A and B are subsets of the same topological space E. Then, one 
says that A is dense in B if the closure A of A contains B. In particular, 
A is said to be dense in E (or everywhere dense) if A = E. To say that 
A is dense in B means that, given any neighborhood of any point x of B, 
U(x), there is a pointy of A which belongs to U(x),  i.e., A n U(x) # 0. 
A standard example of a set everywhere dense is the set of rational 
numbers Q, when regarded as a subset of the real line R (with the usual 
topology); note that the complement R - Q of Q is also dense in R. 
Examples of sets which are dense and open are given by the complement 
of a straight line in the plane or in space, by the complements of a plane 
in space, etc. Easy to check are the basic intersection and union properties 
about open or closed sets: that the intersection of a finite number of 
open sets is open (this follows immediately from the fact, itself obvious 
in virtue of Axiom (F2), that the intersection of a finite number of 
neighborhoods of a point is again a neighborhood of that point); that the 
union of any number of open sets, be that number finite or infinite, is 
open (this follows from the fact that the union of a neighborhood of a 
point with an arbitrary set is a neighborhood of the same point: 
Axiom (Fa)). By going to the complements, one concludes that finite 
unions of closed sets are closed, arbitrary intersections of closed sets are 
also closed, etc. 

Observe that a set E may very well carry several different topologies. 
When dealing with topological vector spaces, we shall very often 
encounter this situation of a set, in fact a vector space, carrying several 
topologies (all compatible with the linear structure, in a sense that is 
going to be specified soon). For instance, any set may carry the following 
two topologies (which, in practice, are almost never used): 

the trivial topology: every point of E has only one neighborhood, 
the set E itself; 
the discrete topology: given any point x of E, every subset of E is 
a neighborhood of x provided that it contains x; in particular, 
{x} is a neighborhood of x, and constitutes in fact a basis of the 
filter of neighborhoods of x. 

We may compare topologies, in analogy with the way we have compared 
filters. Let Y, Y’ be two topologies on the same set E. We say that 
Y isfiner than Y’ if every subset of E which is open for 9‘ is also open 
for F, or equivalent, if every subset of E which is a neighborhood of a 
point for F’ is also a neighborhood of that same point for the topology Y. 
Let F ( x )  (resp. %’(x)) be the filter of neighborhoods of an arbitrary 
point x of E in the topology Y (resp. Y’): Y is finer than Y’, which we 

(1) 

(2) 
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shorten into F 2 F’, if, for every x E E, 9 ( x )  is finer than 9 ’ ( x ) .  
Given two topologies on the same set, it may very well happen that 
none is finer than the other. If one is finer than the other, one says 
sometimes that they are comparable. The discrete topology is finer, on 
a set E, than any other topology on E; the trivial topology is less fine 
than all the others. Topologies on a set form thus a partially ordered set, 
having a maximal and a minimal element, respectively the discrete and 
the trivial topology. 

The notion of a topology has been introduced in order to provide a 
solid ground for the notions of convergence and of continuity. Of course, 
the latter were correctly manipulated (or most of the time, at least) well 
before anybody thought of topology. We proceed now to give their 
general definition. 

Convergence. This concerns filters: filters are the “objects” which 
may (or may not) converge. When do we say that a filter 9 on a 
topological space E converges ? We should recall that 9 is a family of 
subsets of E. If 9 is to converge to a point x of E, it means that elements 
of 9, which, we repeat again, are subsets of E, get “smaller and smaller” 
about x, and that the points of these subsets get “nearer and nearer” to x. 
This can be made precise in terms of the neighborhoods of x, which 
we have at our disposal, since E is a topological space: we must express 
the fact that, however small a neighborhood of x is, it should contain 
some subset of E belonging to the filter 9 and, consequently, all the 
elements of 9 which are contained in that particular one. But in view 
of Axiom (FJ, this means that the neighborhood of x under consideration 
must itself belong to the filter 9, since it must contain some element of 
9. The phrase “however small a neighborhood of x is” has to be made 
mathematically meaningful: it simply means “whatever is the neighbor- 
hood of x.” In  brief, we see that the filter 9 converges to the point x if 
every neighborhood of x belongs to S, in other words if9 is finer than the 
filter of neighborhoods of x, F(x). This is what the convergence to a point 
of a filter means. 

We recall how the convergence of a sequence to a point is defined. Let 
S = {xl , x, ,...} be the sequence. We say that S converges to x if, given 
an arbitrary neighborhood U of x, there is an integer n ( U )  such that 
n > n ( U )  implies x, E U. Let S = S,  3 S ,  3 -.. 3 S, * - -  be the 
subsequences introduced on p. 7: S converges to x if to every U E F(x) 
there is an integer n( U )  such that S,,,, C U. As the subsets S,  of E 
form a basis of the filter associated with the sequence S, we see immedi- 
ately that a sequence S converges to x if and only if the associated filter 
converges to x. 

Note that a filter may converge to several different points. Suppose, 
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for instance, that E carries the trivial topology (p. 9): then every filter 
on E converges to every point of E. Note also that a filter may not 
converge: for instance, if it is the filter associated with some sequence and 
if this sequence does not converge. Another example is given by a filter 
on E which is not the filter of all subsets of E which contain a given 
point x-when E carries the discrete topology: in this topology, the 
only converging filters are the filters of neighborhoods of the points. 
So much for convergence in general topological spaces. 

This concerns mappings. In  point set topology, a map 
f : E -+ F, this is to say a map from a topological space E into another 
topological space F, is said to be continuous if any one of the following 
two conditions is satisfied: 

Continuity. 

(a) given any point x of E and any neighborhood V of the image 
f(x) E F of x, the preimage of V ,  that is to say the set 

f-’( V )  = {X E E ;  f(x) E V } ,  

is a neighborhood of x. In short, 

Vx E E,  V E F( f ( x ) )  implies f-l( V )  .E F ( x ) ;  

(b) the preimage of any open subset 0 of F, 

f-’(O) = {X E E ;  f ( ~ )  E U } ,  

is an open subset of E. 

The  student will easily check the equivalence of (a) and (b). As for the 
intuitive meaning of these conditions, we may say the following. If the 
mapping f is to be continuous at the point x, it should mean that if XI E E 

converges to x,” then f(x’) should converge to f(x). Note that “ f(x’) 
converges tof(x)” can be made precise in the following way: given an 
arbitrary neighborhood of f ( x ) ,  f(x’) should eventually belong to it; and 
the “eventually” means here: provided that x’ is sufficiently near to x. 
Thus given an arbitrary neighborhood V of f(x), if x’ belongs to a 
sufficiently small neighborhood of x, then f(x‘) E V. The “sufficiently 
small” can only be determined by the existence of a certain neighborhood 
U of x, such that, as soon as x’ E U, then f(x‘)E V. This is exactly 
Property (a): to every neighborhood V of f(x) there is a neighborhood U 
of x such that 

c <  

x’ E U implies f ( x ’ )  E V .  
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I t  is immediately seen that, if a sequence { x l ,  xt ,...} converges in E to 
a point x,  and i f f  is a continuous function from E into F, then the 
sequence ( f ( x l ) , f ( x z ) ,  ...} converges to f ( x )  in F. Convergence of filters is 
also easily related to continuity of mappings. Let 

f :  E - t F  

be a mapping from a set E into a set F. Let 9 be a filter on E. The image 
f 9  of F under f is defined as being the filter having the basis 

( f - q o  = { f ( W E C  U E W .  
Observe that, in general, ( f F ) o  is not itself a filter; it is always the 
basis of a filter (the student may check this point as an exercise). Now, 
i f  the filter F converges to a point x in E and i f f  is a continuous function, 
then fF converges to f ( x )  in F.  Indeed, the continuity off  implies that 
f 9 ( x )  is finer than 9( f (x) ) ;  this is simply a restatement of Property (a) 
above. If then 9 is finer than F ( x )  (which means that F converges to x).  
f F  is finer than f F ( x )  and a fortiori finer than F( f ( x ) ) .  

We have only considered continuous functions, which is to say 
functions defined everywhere and continuous everywhere. Of course, 
one may prefer to talk about functions continuous at a point. This is 
defined by the condition (where x is the point under consideration): 

for every I/ E S( f(x)), f -l( V )  belongs to P(x),  

or, equivalently, 

Let us insist on the fact that all the functions or mapping which will be 
considered in this book are defined everywhere. 

As a last remark, let us consider the case where F is identical with 
E as a set, but carries a different topology from the one given on E, and 
where f is the identity mapping of E onto F, I .  The following two 
properties are obviously equivalent: 

f F ( x )  2 F(f (4 ) .  

(i) 
(ii) 

I : E -+ F is continuous; 
the topology of E is finer than the topology of F (these two 
topologies are defined on the same set). 

Exercises 

1.1. 
we have 

Let X be a topological space, A ,  B two subsets of X. Prove that if A is open 

A n B C A n B .  

Give an example of sets A and B such that A is not open and that the preceding 
inclusion is not true. 
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1.2. Prove that the image of a dense set under a map, which is continuous and surjective 

Let X ,  Y be two topological spaces,f : X --f Y a continuous function, B a subset 
(i.e., onto), is dense. 

of Y, and B its closure. Do we always have 
1.3. 

closure of f-’(B) = f - ’ (B)  ? 

1.4. Give an example of the following situation: X and Y are topological spaces, 
f : X -+ Y is a continuous mapping, A is a closed subset of X ,  andf(A) is not closed in Y. 

Consider a straight line L in the plane R2. The filter of neighborhoods o f L  in R2 
is the filter formed by the sets which contain an open set containing L. Prove that there 
is no basis of this filter which is rountable. 

Let f be a real-valued, continuous function on the closed interval [0, 11. Show 
that there is a “natural” filter .F on the real line, defined by means of the Riemann sums 

1.5. 

1.6. 

i = O  

where 0 = to < tl < ... < t, < ... < t,+, = 1 and t j  < T, < 
that the filter 9 converges to the integral 

for each j .  Show 

J a  

1.7. Prove that the filter of neighborhoods of the closed unit disk { ( x , y )  E R2; 

1.8. Let Xu (a E A) be a family of topological spaces. Consider their product set 
x2 + yz < l}  in the plane has a countable basis (cf. Exercise 1.5). 

Let us denote by pa the projection mapping on the ath coordinate axis X, : 

p ,  : x = (xu) + xa . 
The product topology on X is defined in the following way: a subset U of X is a neighbor- 
hood of one of its points x = (x,) if, for every a, p,( U )  is a neighborhood of x, and if, 
for all a except possibly afinite number of them, p, (U)  = X ,  . Prove that this is the least 
fine topology on X such that all the mappings p ,  be continuous. 

Let 9 be a filter on the product space X of Exercise 1.8. Let us denote by gU 
the image of .F under the projection p ,  . Show that ga is the family of subsets of & of 
the form pu(M) as M ranges over 9, and that .F converges if and only if every s”, does. 

Let us say that a set A is predirected if there is a preorder relation a < b on A 
and if, for any pair of elements a,  b of A, there is c E A such that a < c, b < c (the 
relation a < b is a preorder relation if it is reflexive, i.e., a < a for all a,  and transitive, 
i.e., a < b and b < c imply a < c ;  it is an order relation if, furthermore, a < b and 
b < a imply a = b). Let @ be the set of all filters on X ,  @’ the set of all mappings of 
predirected sets into X. Prove that there is a canonical mapping of @’ onto @ (this mapping 
is not one-to-one ). Under this mapping, the image of a functionf on the “predirected” 
set of positive integers into X is the filter associated with a sequence in X. 

1.9. 

1.10. 



2 
Vector Spaces. Linear Mappings 

We recall first what a vector space is. The vector spaces we shall 
consider will be defined only on one of the two “classical” fields: the 
field of real numbers, R, or the field of complex numbers, C. As a rule, 
we shall suppose that the field is C. When we specifically need the field 
to be R, we shall always say so. In other words, we deal always with 
complex vector spaces. A vector space E over C is a system of three 
objects (E, A, ) M,) consisting of a set E and of two mappings: 

& : E X  E-+E, (x,Y)-x+Y, 

M ,  : C x E -+ E, (A, X) -Ax. 

Of course, there are conditions to be satisfied by these objects. The 
mapping A,, called vector addition, must be a commutative group 
composition law, i.e., it must have the following properties: 

(associativity): 
(commutativity): XSY’Y f x ;  

(x + Y )  + z = x + ( y  + z); 
(existence of a 

neutral element): There exists an element, denoted by 0, in E such 
that Vx, x + 0 = x; 

To every x E E there is a unique element of E, 
denoted by -x, such that x + (-x) = 0. 

(existence of an 
inverse): 

Of course, we write x - y instead of x + ( -y ) .  The mapping M, is 
called scalar multiplication, or multiplication by scalars, and should 
satisfy the following conditions: 

(i) A ( p )  = (A&; 

(ii) 
(iii) 
(iv) 

( A  + p)x = hx + px;  
1 - x = x ;  
0 - x = 0; 

(v) A(x + y )  = Ax + Ay. 
14 
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We do not recall the meaning of such notions as linear independence, 
basis, vector (or linear) subspace, etc. A mapping f : E + F of a vector 
space E into another, F, is called linear if for all x, y E E, A, p E C ,  

f(Xx + PY) = Xf(4 + PfW. 
Let us recall that a linear mapping f : E 4 F is one-to-one if and only if 

f ( x )  = 0 implies x = 0. Indeed, iff is one-to-one, f ( x )  = 0 must imply 
x = 0. Conversely, suppose that f ( x )  = 0 implies x = 0, and let x, 
y E E be such that f ( x )  =f(y). This equation can be written f(x -y )  = 0, 

A notion with which the student may not be so familiar is the one 
of quotient space. As it will play a crucial role in the sequel, we shall 
recall its definition. 

Let E be a vector space (over C )  and M a linear subspace of E. For 
two arbitrary elements x and y of E, the property 

implying then x - y = 0. Q.E.D. 

X - Y E M  

defines an equivalence relation: it is reflexive, since x - x = 0 E M  
(every linear subspace contains the origin); it is symmetric, since 
x - y E M implies -(x - y )  = y - x E M (if a linear subspace contains 
an element, it contains its inverse); it is transitive, since 

x - y E M ,  y - z E M implies x - z = (x - y )  + ( y  - z)  E M 

(when a linear subspace contains two vectors, it also contains their sum). 
Then we may define the quotient set EIM: it is the set of equivalence 
classes for the relation x - y E M. There is a “canonical” mapping of E 
onto EIM: the mapping which, to each x E E, assigns its class modulo 
the relation x - y E M .  I t  helps the intuition to visualize the class of 
elements equivalent to x modulo M ,  that is to say the y’s such that 
x - y E M ,  as a linear subvariety: indeed, they constitute the set 

M + x = {x‘ + x I x’ E M } ,  

which is the translation of M by x. Observe the following, which is easy 
to check (using the fact that M is a linear subspace): 

(2.1) if x - y  mod M ,  and if h E C ,  then Ax N Ay mod M ;  

(2.2) if x - y  mod M ,  and if z E E ,  then x + z - y  + z mod M .  

Thus we define vector addition and scalar multiplication in EIM: if 
+(x) is the class of x mod M ,  A+(x) = +(Ax) and +(x) + +(y) = +(x + y).  
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These definitions are unambiguous by virtue of (2.1) and (2.2); they turn 
E/M into a vector space, and 4 : E +  E/M, the canonical mapping, is 
then a linear map. It is, of course, onto. 

Now let E, F be two linear spaces (over C), and f a  linear map E -+ F. 
We define the image off, and denote it by Im f, as the subset of F: 

Imf = { y  E F; there exists x E E such that y =f(x)). 

We define the kernel off, and denote it by Kerf, as the subset of E: 

Kerf = {x E E ;  f ( x )  = 0). 

Both Im f and Kerf are linear subspaces (of F and E resp.). We have then 
the diagram 

i 
E f + ~ r n f - + ~  

E/Ker f 

where i is the natural injection of Im f into F, that is to say the mapping 
which to each element y of Im f assigns that same element y, regarded 
as an element of F; $ 3s the canonical map of E onto its quotient, E/Ker f. 
The mappingfis defined so as to make the diagram commutative, which 
means that the image of x E E under f is identical with the image of 
$(x) (i.e., the class of x modulo K e r f )  under 3. The mapping 3 is well 
defined by the equation 

Indeed, if $(x) = $(y), in other words if x. - y E Kerf, then f(x) = f(y). 
It is an immediate consequence of the linearity off  and of the linear 
structure of the quotient space E/Ker f that f is also linear. Now, f is a 
one-to-one linear map of E/Ker f onto Im f. The onto property is evident 
from the definition of Im f and off. As for the one-to-one property, 
observe that, iff($(x)) =f($(y)), it means by definition that f(x) = f(y), 
hence f(x - y) = 0 or x - y E Kerf, which means that$(x) = $(y). Q.E.D. 

Let E be an arbitrary set (not necessarily a vector space) and F a 
vector space. Let us denote by F ( E ; F )  the set of all mappings of E 
into F. It  can be equipped with a natural structure of vector space. 
We must first define the sum of two mappings f, g : E +- F. I t  must be 
a function of the same kind, and we must therefore say what its value 
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should be at an arbitrary point x of E. Naturally, we take this value to 
be equal to the sum of the values of the factors, f ( x ) ,  g (x) :  

(this is a definition). (f + g)(x) = f ( ~ )  + g(x) 

Similarly, to define Af, where h is an arbitrary scalar, we define its value 
at an arbitrary point x of E. We set (this is again a definition): 

( A f ) ( X )  = A f ( X > .  

When E also is a vector space (over the same scalar field as F, for us 
the field of complex numbers C), we will be particularly interested in 
the linear mappings of E into F. They form a linear subspace of F ( E ;  F), 
as immediately checked, which we shall denote by 9 ( E ;  F). 

When F = C, 9 ( E ;  F) is denoted by E* and called the algebraic dual 
of E. When E is a topological vector space (see next chapter) we shall 
be interested in a “smaller” dual of E, namely the linear subspace of E* 
consisting of the linear mappings E + C which are continuous; this will 
be called the dual of E and denoted by E .  One should always be careful 
to distinguish between E* and E‘ (except in exceptional cases, e.g., when 
E is finite dimensionalt). The elements of E* are most of the time 
referred to as the linear functionals, or the linear forms on E. 

If E, F, G are three vector spaces over C, and u : E + F, v : F + G 
two linear mappings, it is clear that the compose v o u, defined by 

(W o u) (x )  = o(u(x)), x E E ,  

is a linear map of E into G. If G = C, v is a linear functional on F, 
i.e., v is an element x* of the algebraic dual F* of F; the compose x* o u 
is a linear functional on E. We obtain thus a mapping x* - x* o u of 
F* into E* for each given U E  Y ( E ;  F). This mapping is obviously 
linear. I t  is called the algebraic transpose of u; we shall denote it by u*. 
As is readily seen, u - u* is a linear mapping of Y ( E ;  F) into Y ( F * ;  E*). 

Exercises 

2.1. Give an example of a linear space E and of two linear mappings u, w of E into 
itself with the following properties: 

(i) 
(ii) 

u is injective (i.e., one-to-one) but not surjective (i.e., onto); 
w is surjective but not injective. 

t Also Hausdorff, see Chapter 9. 
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2.2. Let E be a vector space, M a linear subspace of E, and u a linear map of M into 
a vector space F. Prove that there is a linear map w : E + F which extends u, i.e., such 
that u(x) = w(x) for all x E M .  

Let E, F be two vector spaces, u : E +. F a linear map, and u* : F* + E* the 
algebraic transpose of u. Prove that the following properties are equivalent: 

2.3. 

(a) u is surjective; 
(b) u* is injective. 
2.4. Let E, F be two vector spaces, and u : E -+ F a linear map. Let M (resp. N )  be 

a linear subspace of E (resp. F),  and + (resp. 4) the canonical mapping of E (resp. F )  onto 
E/M (resp. FIN). Prove the equivalence of the following two properties: 

(a) u(M) C N ;  
(b) there exists a linear map w such that the following diagram is commutative: 

U 
E - F  

V 
E/M - FIN. 

Prove that, if (a) holds, the mapping w above is unique. 

canonical map of E onto E/M. Let us set 
2.5. Let M be a linear subspace of E, j the natural injection of M into E, and + the 

M-L = {x* E E*; for all x E M, x*(x) = 0). 

(i) Prove that there is a linear map k such that the following diagram is commutative: 

i* E * -  M* 

**1 / k 
E*/M', 

where $* is the canonical mapping onto the quotient vector space. Moreover, 
prove that k is an isomorphism onto. 
Prove that +* : (E/M)* --* E* is one-to-one and that the image of +*, +*((E/M)*), 
is equal to M-L. 
Let (E,) (a E A) be an arbitrary family of vector spaces over the complex numbers. 

(ii) 

2.6. 
Consider the product set 

it carries a vector space structure where vector addition and scalar multiplication are 
performed componentwise. The direct sum of the E, is the linear subspace of E consisting 
of those elements x = (x,),,~ for which all the components xa are equal to zero with the 
possible exception of a finite number of them; we shall denote by Eo this direct sum. 
Prove that there is a canonical isomorphism between the algebraic dual of the direct sum 
Eo and the product of the algebraic duals E,* of the E, . 

Let us keep the notation of Exercise 2.6. Let a E A. We denote byj, the (linear) 
mapping of E, into E defined as follows: if z E E, , j,(z) is the element x = (xB)BE~ of 
E such that xa = 0 if # a and xu = Z. It is evident thatj, is one-to-one; if p ,  is the 
coordinate projection x = (xe) - x, , we havep, o j, = identity of E, . Let j,* : E* + E,* 

2.7. 
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be the algebraic transpose of j ,  . We may define the following linear map of E* into the 
product E* = naEA E,*, j * :  

E* 3 x* ct j * ( x * )  = ( j,*(x*)),,A E E*. 

Prove the equivalence of the following properties: 
(a) 
(b) j *  is one-to-one; 
(c) 
2.8. 

the set of indices A is finite; 

j *  is an isomorphism of E* onto E*. 
Prove that every vector space E is isomorphic to the direct sum of a family of 

one-dimensional vector spaces. Then, by making use of the results stated in Exercises 2.6 
and 2.7, prove that the following properties are equivalent: 

(a) E is finite dimensional; 
(b) the canonical mapping 

x - (x* - x*(x)) 

is an isomorphism of E onto the algebraic dual E** of its own algebraic dual E*. 



3 

Topological Vector Spaces. Definition 

Let E be a vector space over the field of complex numbers C (in short, 
a vector space). Let 

A , : E x E - t E ,  (x,JJ)-+x+JJ, 

M ,  : C x E -t E,  ( A ,  X) -AX,  

be the vector addition and the scalar multiplication in E. A topology F in E 
is said to be compatible with the linear structure of E if A, and M, are 
continuous when we provide E with the topology F, E x E with the 
product topology 9- x F, and C x E with the product topology 
V x F, where V is the usual topology in the complex plane C. We 
recall the meaning of a “product topology.” Consider two topological 
spaces E, F. In order to say what the product topology on E x F is, it 
suffices to exhibit a basis of the filter of neighborhoods of each point 
(x, y) of E x F. Such a basis is provided by the rectangles 

U x V = {(x’, y’)  E E x F ;  X‘ E U ,  y‘ E V > ,  

where U (resp. V) is a neighborhood of x (resp. y) in E (resp. F). That 
these rectangles form a basis of filter is trivial; they obviously do not 
form a filter (except in trivial cases), since a set which contains a 
rectangle does not have to be a rectangle. I t  remains to check that the 
filters thus defined, for each pair (x, y ) ,  indeed can be taken as filters of 
neighborhoods of ( x , y )  in a topology on E x F (Axiom (N2), p. 8, 
has to be verified). We leave this point to the student. The topology V 
assigns to each point h of the complex plane a remarkable basis of 
neighborhoods, the disks, open or closed, with center at this point (and 
with positive radius p ) .  When provided with a topology compatible with 
its linear structure, E becomes a topological vector space, which we shall 
abbreviate into TVS. 

Suppose that E is a TVS. Then its topology is “translation invariant,’’ 
which, roughly speaking, means that, topologically, E looks about any 

20 
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point as it does about any other point. More precisely: the filter of 
neighborhoods S ( x )  of the point x is the family of sets V + x ,  where V 
varies over the filter of nezghborhoods of the neutral element, F(0). Proof of 
this statement: Let U be an arbitrary neighborhood of x. As the mapping 
y - y + x from E into (as a matter of fact, onto) itself is continuous, 
which follows immediately from the continuity of the mapping 
A,, : (x ,  y )  - x + y ,  the inverse image of U under this mapping must 
be a neighborhood of the preimage of x under this mapping; this pre- 
image is obviously the neutral element 0. Let V be the inverse image of U. 
We have U = V + x. Conversely, given an arbitrary neighborhood V 
of 0, V + x is a neighborhood of x by virtue of symmetry, or by virtue 
of the continuity of the mapping y - y - x. Thus: in order to study the 
topology of a topological vector space E, it su.ces to study the filter of 
neighborhoods of the origin. 

In practice, one always begins by giving the filter of neighborhoods of 
the origin, or (more frequently) a basis of this filter. I t  follows from 
there that we need some criteria on a filter which would insure that it is 
the filter of neighborhoods of the origin in a topology compatible with 
the linear structure of E. 

THEOREM 3.1. A filter 9 on a vector space E is the filter of neighborhoods 
of the origin in a topology compatible with the linear structure of E if and 
only if it has the following properties: 

(3.1) 
(3.2) 
(3.3) 
(3.4) 
(3.5) 

The origin belongs to every subset U belonging to F. 
To every .U E F there is V E F such that V + V C U. 
For every U E 9 and for every X E C,  X # 0, we have XU E 9. 
Every U E 9 is absorbing. 
Every U E F contains some V E 9t which is balanced. 

We have used two words, absorbing and balanced, which have not yet 
been defined. 

Definition 3.1. A subset A of a vector space E is said to be absorbing if to 
every x E E there is a number c, > 0 such that, for all h E C ,  I h I < c, , 
we have hx E A. 

In more colorful but less precise language, we may say that A is 
absorbing if it can be made, by dilation, to swallow any single point of 
the space. 

Definition 3.2. 
e v e r y x E A a n d e v e r y h E C ,  Ihl < 1 , w e h a v e h x E A .  

A subset A of a vector space E is said to be balanced if for 
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The only balanced subsets of the complex plane are the open or the 
closed disks centered at the origin. 

Proof of Theorem 3.1. We begin by proving the necessity of Properties 
(3.1)-(3.5). The necessity of (3.1) goes without saying. 

Necessity of (3.2). By V + V we mean the set of points x + y ,  
where x and y run over V. Let U be an arbitrary neighborhood of the 
origin. Its preimage under the mapping (x, y )  - x + y of U must be a 
neighborhood of 0, therefore must contain a rectangular neighborhood 
W x W', where W and W are neighborhoods of 0 in E. But then it 
contains a "square," namely ( W n  W') x ( W n  W'). If we take 
V = W n W', this means precisely that V + V C U. 

By AU we mean the set of vectors Ax, where x 
varies over U. Because of the continuity of the mapping (A, x )  +. Ax 
from C x E into E, if we fix X E C, A # 0, the map x -+ A-lx of E into 
itself must be continuous. The preimage of any neighborhood U of the 
origin in E must be such a neighborhood; this preimage is obviously AU. 

Again we use the continuity of the mapping 
(A, x) ---f Ax, this time at a point (0, x) where x is an arbitrary point of E. 
The preimage of a neighborhood U of 0 in E must be a neighborhood 
of (O,x), since (0,x) is mapped into 0. Hence that preimage must 
contain a rectangle N x W where N (resp. W) is a neighborhood of 0 
(resp. of x) in C (resp. in E). By definition of the topology of a TVS, 
W is of the form W + x, where W' is a neighborhood of 0 in E 
(see p. 21). On the other hand, N contains a disk of the complex plane, 
centered at the origin, D, = {A E C ;  I A I < p}, p > 0. Thus we see that, 
for all y E W' + x and all complex numbers A such that 1 X I < p, we 
have Ay E U. In particular, we may take y = x. 

We duplicate the proof of the necessity of (3.4) 
but taking this time x = 0, hence W'=  W. We have seen that the 
preimage of U contains a rectangle D, x W, which means that the set 

Necessity of (3.3). 

Necessity of (3.4). 

Necessity of (3.5). 

v =  u hW 
I ~ < P  

is contained in U. This set V is obviously balanced. It is a neighborhood 
of zero, since each A W, A # 0, is one (in view of (3.3)). 

We must first of all show that, 
if we define the filter of the neighborhoods of an arbitrary point x of E 
as the image of the given filter 3 under the translation y - x + y ,  
we have indeed a topology on the set E. Once we have proved this, we 

Suficiency of Conditions (3.1)-(3.5). 
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must show that this topology is compatible with the linear structure of E. 
Let us call F(x)  the image of 9 under y - x + y, that is to say the 
family of subsets U + x, where U varies over S. Since 0 E U ,  x belongs 
to U + x. Thus Axiom (NJ, p. 8, is satisfied. Let V E S be such that 
V + V E  U. Take an arbitrary point y of the set V + x; then U + x 
contains V + (V  + x), hence V + y. But V + y belongs to $(y), and 
therefore so does U + x. Thus Axiom (N.J, p. 8, is satisfied when we 
take U + x and V + x, respectively, in the place of U and V in the 
statement of p. 8. We conclude that we have indeed a topology on E. 
The last two steps consist in proving that the mappings A, and M, are 
continuous. The continuity of A, follows immediately from (3.2). 
Indeed, let (x, y) be an arbitrary element of E x E; let W be a neighbor- 
hood of its image, x + y. We know that W = U + x + y ,  U E 9. 
Choose V E F s u c h t h a t  V +  V C U .  T h e n ( V + x ) + ( V + y ) C W ,  
which means that the image of the neighborhood of (x, y), 

( V  + .) x ( V  +r), 
is contained in W. Then the preimage of W contains that same neighbor- 
hood of (x, y) and, consequently, is a neighborhood of (x, y). 

Last step: continuity of 

M ,  : (A, x) - Ax. 

Let U be a neighborhood of Aoxo; U' is of the form U + A,x, , where U 
is a neighborhood of zero in E. Let us select another neighborhood of 
0, W, such that 

(1) W +  W +  W C  u; 
(2) W is balanced. 

Such a neighborhood of zero, W, exists in view of Properties (3.2) and 
(3.5). In  view of (3.4), W is absorbing. In other words, there is a number 
p > 0, which we may as well take < 1, such that 

AEC, I A I G p ,  implies AX,E W 

Let D, be the disk centered at the origin, in the complex plane, with 
radius p .  Suppose first that A, = 0, which implies A,x, = 0 and u' = U. 
Then we look at the image under M, of the set D, x ( W  + x,); it is 
the set 

(3.6) {AY + h l ; / A I  < P , Y E W ) .  

As I h I < p < 1 and as W is balanced, y E W implies Aye W. As 
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I h I < p, we have also Axo E W. We conclude that the set (3.6) is 
contained in W + W, hence in U .  Thus the preimage of U contains 
D, x ( W  + x,), which is a neighborhood of (0, x,); the preimage of U 
is a neighborhood of (0, xo). Let us suppose finally that A, # 0. In this 
case we look at the image under M, of the set 

(3.7) 

where o = inf(p, I X, I), the smallest of the two numbers p, I X, I. The 
image of (3.7) is the set 

(3.8) 

Since the complex numbers XI & I-l, A,/ A, 1--l both have absolute value 
< 1, and since W is balanced, the sum 

(0, + A,) x ( I  A0 I-lW + X0)r 

01 A0 I-'r + AX, + XOI A0 I-ly + Qo; I I < u, y E W>. 

A /  A0 1-9 + %I A0 1-9 

belongs to W + W. Since I A [ < o < p, Ax, E W, so that the set (3.8) 
is contained in 

w+ W +  W + ~ o x o C U + & x o .  

In other words, the preimage of U + )bx0 contains (3.7) and, therefore, 

The following property of the filter of neighborhoods of zero in a 
it is a neighborhood of (A,, x,). Q.E.D. 

TVS E is important: 

PROPOSITION 3.1. 
which consists of closed sets. 

Proof. It suffices to show that an arbitrary neighborhood of zero U in E 
contains a closed neighborhood of 0. Let V be another neighborhood of 
0 such that V - VC U. I contend that Y C  U. Indeed, let X E  P, which 
means that every neighborhood of x, in particular V + x, meets V. 
Thus, there are elements y, x E V such that x = x + y-in other words, 

x = Z - y € V -  v c  u. 

There is a basis of neighborhoods of zero in a TVS E 

COROLLARY. 
closed balanced sets. 

There is a basis of neighborhoods of 0 in E consisting of 

Indeed, every neighborhood U of 0 in E contains a closed neighbor- 
hood of 0, V, which in turn (Theorem 3.1) contains a balanced neighbor- 
hood of 0, W. Then w is closed and balanced; W C  V C  U. Q.E.D. 
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The student will easily see that, whatever may be the vector space E, 
the trivial topology (p. 9) is always compatible with the linear structure of 
E, and the discrete topology (p. 9) never is-unless E consists of a 
single element (the origin). We proceed now to discuss a less trivial 
example. 

Example. Let us denote by C[[Xl]  the ring of formal power series in 
one variable, X, with complex coefficients. Such a formal power series 
is written 

m 
u = u ( X )  = c unxn, 

n=O 

where the coefficients u, are complex numbers. It is the same thing as a 
power series as encountered in the theory of analytic functions, except 
that one does not care if it converges or not. Essentially, it is a sequence 
of complex numbers (u,, , u1 , u2 ,..., u, ,... ). Addition and multiplication 
are immediately defined, by just extending what one does with 
polynomials or with Taylor expansions of analytic functions about the 
origin. If 

m 

v = c vnxn, 
n=O 

we have 

uv = c u,v,X"+* = c (c un-,0,) X". 
n,p=O n=O p=O 

Multiplication by scalars is defined in the obvious way: 

m 
hu = c (Xun)Xn. 

n=O 

Addition and multiplication by scalars turn C[[Xl ]  into a vector space; 
multiplication of formal power series turn it then into an algebra. There 
is a unit element in this algebra: the formal power series 1, that is to say 
the series u having all its coefficients u, equal to zero if n 1, and 
such that uo = 1. The following fact is not difficult to prove: 

For a formalpower series u to have an inverse, i t  is necessary and suficient 
that itsfirst coefficient, uo , be da3erent from zero. 

Let us denote by the set of elements which do not have an inverse, 
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that is to say the set of formal power series u such that uo = 0. The 
set m is an ideal of the algebra C[[Xl], which means that 

(1) 
(2) 

ID1 is a vector subspace of C[[Xl]; 
for all u E m and all z, E C[[xJ] we have uv E m. 

Both properties are evident. The student may easily check that m is the 
largest proper (i.e., different from the whole algebra C[[Xl]) ideal of 
C[[X]]. It  suffices to observe that any ideal which is not contained in m 
must contain an invertible element, hence must contain the series 1, in 
view of (2), and hence must be identical with the whole algebra. 

For n > 1, let us denote by mn the set of formal power series u such 
that up = 0 if p < n. Any element of mn can be written 

u ( X )  = Xn-lu,(X), 

with ul E W. As the series X (i.e., all coefficients except the one of X1 
are equal to zero, and the coefficient of X1 is equal to 1) belongs 
obviously to m, we see that every element of mn is the product of n 
elements of W, which justifies the notation. It is also easily checked 
that each W n  is an ideal of C[[Xl]. The intersection of the mn, as 
n -+ + co, is obviously the zero power series (i.e., the power series 
having all its coefficients equal to zero). As the sequence of sets 

WO = C"X]] 3 W1 = W 3 W2 3 - * *  3 Wn 3 * ' *  

is totally ordered for inclusion, it certainly satisfies Axiom (BF), p. 7, 
for bases of filters. Let 9 be the filter it generates: a set U of formal 
power series belongs to 9 if it contains 1151" for large enough n. Let u 
be an arbitrary formal power series, and let W n  + u be the set of formal 
power series v + u, where v E mn. Let us denote by F ( u )  the filter 
generated by the basis W n  + u, n = 0, 1, 2, .... Observe that F satisfies 
Condition (3.2) in Theorem 3.1. Indeed, each W n  being a vector subspace, 
we have 

(3.9) !Jnn + Wn c YIP. 

This implies immediately that the filters 9 ( u )  are the filters of neighbor- 
hoods of the points u in a topology on C[[xJ]:  if v E mn + u, mn + u 
contains mn + v and hence is a neighborhood of v. In other words, 
mn + u is a neighborhood of each one of its points, i.e., mn + u is open. 
But (3.9) also implies that the preimage of 

Pn + 24 + v ;  21, E C"XIl), 
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under the addition mapping, viewed as a map from the topological space 
C[[XJ] x C[[X]] into the topological space C[[X]], contains 

( 9 P  + u )  x ( 9 P  + o), 
and hence is a neighborhood of the pair (u,  v) .  This proves the continuity 
of addition. 

The continuity of multiplication, 

C"X1l x C"X1l - C"X1l : (u, 4 - uv, 

follows from the obvious inclusion 

91tP . %11* c 9 1 P + P ,  

where the left-hand side is the set of products uv where u E W P  and 
V E mq. 

These continuity properties turn C[[X]] into what is called a topological 
ring. 

However they do not turn C[[X]] into a topological oector space. The 
reason for this fact is that there are neighborhoods of the origin which 
are not absorbing. Indeed, %Rn is not absorbing as soon as n > 0: for 
there is no complex number h # 0 such that h 1 E mn. Thus the 
multiplication by scalars (A, u )  - hu, viewed as a map from C x C[[q] 
into C[[Xl], is not continuous (although it is continuous if we identify h 
with the formal power series u such that uo = A, up = 0 for p > 0, and 
if we view the multiplication by scalars as a mapping f-qm [C[q]  x 

Observe furthermore that the mn are open. They are also linear 
C"4l into C"X1l). 

subspaces. Now the following is easy to check: 

PROPOSITION 3.2. In a T V S  E, ;f a vector subspace M is open, we have 

Indeed, M being open is a neighborhood of each one of its points, in 
particular of the origin, hence must be absorbing (Property (3.4) of 
Theorem 3.1). But if Ax E M with h # 0, then x = h-'(hx) E M. 

One sees easily that every ideal mm (m = 0, 1 ,  2, ...) is closed, so that 
the basis of neighborhoods of zero mrn consists of sets which are both 
closed and open (cf. Exercise 3.4). 

The topology which we have just described is actually used in algebra. 
Note that every point has a countable basis of neighborhoods in that 

There is another topology which is used on C[[XJ], and which is 

M = E.  

topology. 
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compatible with the linear structure of C[[Xl] .  It is the topology of 
simple convergence of the coeficients. A formal power series u = 

Cs=ou,Xn is said to converge to another formal power series v = 
Z;=o v,Xn if, for each n separately, the complex number u, converges to 
0,. Note that in the first topology described, u did converge to v if the 
numbersp = 0, 1, ..., such that u, = v, for n < p  converged to infinity. 
The latter convergence therefore obviously implies the simple conver- 
gence of the coefficients. In other words, the topology defined by the 
ideals %Rn is finer than the topology of simple convergence of the 
coefficients which we are now going to define in a precise way. (Obviously 
a topology F is finer than another topology, F’, on the same set, if 
any filter which converges for 2T also converges for F’.) 

As we shall always do in these chapters, we define a topology on a 
vector space, compatible with its linear structure, by exhibiting a basis 
of neighborhoods of zero. In our case, the basis will be the collection 
of the following sets of formal power series: 

m 

V m , n  - - ] u  = c u,xp E C [ [ X ] ] ;  v p  < n, I I Q l/m/.  
p=o 

Here m and n are integers, n = 0, 1 ,..., m = I ,  2 ,.... We leave to the 
student, as an exercise, the task of checking that the filter 9 generated 
by the basis {‘Vm,,} (m = 1, 2 ,..., n = 0, 1 ,...) satisfies Conditions (3.1)- 
(3.5) in Theorem 3.1. That the Vm,, indeed form a basis of a filter is an 
obvious consequence of the fact that 

V m , n  n Vrn,,n, 2 Vsup(m.m’).sup(n.n’)  7 

where sup(a, b) means the greatest of the two numbers a, b. Let {dY)} 
(V = 1, 2, ...) be a sequence of formal power series. It converges to a 
series u if and only if, to every pair of integers m 3 1, n 3 0, there is 
another u(m, n) 3 1 such that 

Y 2 ~ ( m ,  n) implies u(”) E V m , n  + u. 

This means, roughly speaking, that u(y) converges to u if more and more 
coefficients of dY) get nearer and nearer to the coefficients with the same 
index of u. This is precisely what expresses the name: “topology of 
simple convergence of the coefficients.” For this topology, the ideals 

are closed, as is immediately seen (if a formal power series u is a limit 
of formal power series v such that vp  = 0 for p < n, in the sense that 
the coefficients of u are the limits of the corresponding coefficients of 
the v’s, we must have up = 0 for p < n). They are not open in view of 
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Proposition 3.2. It should also be noted that in the topology of simple 
convergence of the coefficients, the origin, and therefore each point, has 
a countable basis of neighborhoods. This property was also valid for the 
first topology we have defined on C[[XJ] .  

Exercises 

3.1. Let X be a set. Let us assign, to each x E X ,  a topological vector space E, ; let 
us denote by E the disjoint union of the spaces E, as x varies over X and by r(X; E) 
the set of mappings f of X into E such that, for every x E X ,  f ( x )  E E, . Show that there 
is a “natural” structure of vector space over r ( X ;  E). Next, consider a finite subset S 
of X and, for every x E S, a neighborhood of zero, U, , in E, . We may then consider the 
following subset of r(X; E): 

{f E r(X, E); for all x E S, f ( x )  E UJ. 

Show that, when S varies in all possible ways and so do also the neighborhoods of zero Us 
in each E m ,  the above sets form a basis of a neighborhood of zero in T(X; E) for a topology 
compatible with the linear structure of r(X; E) (called topology of pointwise convergence 
in X). 

3.2. Prove that, in a topological vector space E over the field of complex numbers, 
a set different from o and from E cannot be both open and closed. 

3.3. Let E be a vector space, { E m }  (a E A) a family of topological vector space and, 
for each a, H, a set of linear mappings of E into E, . Prove that there is at least one topology 
on E, compatible with the linear structure of E, such that, for every a, all the mappings 
belonging to the sets Ha are continuous. Describe the least fine topology with these 
properties (it is called projective limit of the topologies of the E, with respect to the sets 
of mappings H,). 

Suppose that E is the product vector space of the E, and that each one of the sets H, 
consists of only one map, the projection pa on the “coordinate axis” E, (cf. Exercise 2.6). 
Prove that the projective limit topology on E and the product topology are identical. 

Let N” be the set of n-tuples p = ( p 1  , ..., p.) of n integers pi > 0 (1  < j < n). 
Show that the following vector spaces are naturally isomorphic: 

3.4. 

(a) 
(b) the product space 

the space 9 ( N “ ;  C )  of complex-valued functions defined in N”; 

c”’ = n C, (c, c for all p ) ;  
p € N ”  

(c) 
(d) 

the space of complex sequences depending on n indices u = (a,)(pENn,; 

the space C[[Xl  ,..., X,]] of formal power series. 

Prove that the “natural” isomorphisms extend to the topologies when (a) carries the 
topology of pointwise convergence in N” (cf. Exercise 3.1), (b) carries the product topology, 
(c) carries the topology of convergence of each term u, , and (d) carries the topology of 
simple convergence of the coefficients (cf. p. 28). Show that the isomorphism between 
(a) and (d) does not extend to the ring (or multiplicative) structure when 9(Nn;  C) 
carries the usual multiplication of complex functions and C[[X,  ,..., X.]] carries the 
multiplication of formal power series (see p. 25). 
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3.5. Let us denote by Pc(N; C) the vector space of complex-valued functions in the 
set N of integers > 0 which vanish outside a finite subset of N. Let { E ~ }  (n = 0, 1, 2, ... ) 
be a sequence of numbers > 0 such that E, > E , + ~  ---+ 0. The subsets of Fc(N; C), 

*({%I) = {f; P 2 n * I f ( @ )  I < ."I, 
form, when the sequence {E,,} varies in all possible ways, a basis of neighborhoods of zero 
for a topology compatible with the linear structure of Fc(N; C). Prove this statement. 
Prove also that there is no basis of neighborhoods of zero in this topology which 
is countable. 

3.6. We keep the notation of Exercise 3.5. We denote by Fc(n) the linear subspace of 
Sc(N; C) consisting of the functionsf such thatf( p) = 0 for allp > n. Prove the following 
assertions: (i) Sc(n)  is a linear space of dimension n + 1; (ii) Fc(n) is closed in the T V S  
gC(N; C) (equipped with the topology defined in Exercise 3.5); (iii) the topology induced 
by Fc(N; C) on Fc(n) is identical with the topology carried over from C"+' by using any 
isomorphism Pc(n)  g C"+'. 

3.7. Let E be a vector space, and U a subset of E which is convex (i.e., if x, y E U, 
ts  + (1 - t)y E U for all t, 0 < t < l), balanced, and absorbing. Prove that the sets 
( l /n )U (n = 1 ,  2, ...) form a basis of neighborhoods of zero in a topology on E which is 
compatible with the linear structure of E. 

Is this always true when we drop the assumption that U is convex ? 
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HausdorfT Topological Vector Spaces. 
Quotient Topological Vector Spaces. 

Continuous Linear Mappings 

Throughout this chapter, we denote by E a TVS over the field of 
complex numbers. 

Hausdorff Topological Vector Spaces 

A topological space X is said to be Hausdorff if, given any two distinct 
points x and y of X, there is a neighborhood U of x and a neighborhood 
V of y which do not intersect, i.e., such that U n V = 0. A very 
important property of HausdorfT topological spaces is the so-called 
uniqueness of the limit: 

A filter on a Hausdog  topological space X converges to at most one point. 

Indeed,suppose that a filter 9 on X would converge to twodistinct 
points x and y .  Let U (resp. V) be a neighborhood of x (resp. y )  such 
that U n V = 0. But both U and V must belong to 9, which demands 
that their intersection be nonempty! 

In  a Hausdorff space, any set consisting of a single point is closed (there 
are topological spaces with the same property which are not Hausdorff; 
but such spaces are not TVS, as will be seen). A TVS E is Hausdorff 
if, given any two distinct points x and y ,  there is a neighborhood Uof x 
which does not containy. As a matter of fact, we have the following result: 

PROPOSITION 4.1. A TVS E is Hausdorfl if and only if to every point 
x # 0 there is a neighborhood U of 0 such that x $ U. 

The necessity of the condition is trivial. Suppose it is satisfied. Let 
x, y be two distinct points of E, which means that x - y + 0.  Then 
there is a neighborhood U of 0 such that x - y 6 U. Choose a balanced 

31 
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neighborhood of 0, V, such that V + V C U (Theorem 3.1, p. 21). 
Since V is balanced, we have - V = V, hence V - V C U. Suppose that 
the intersection 

is nonempty, and let z be one of its points: z = x + XI, z = y + y’ ,  
with x’, y’ E V. We have 

x - y = y’ - x‘ E V - V €  u, 

which contradicts our choice of U. Thus (4.1) must be empty. 

PROPOSITION 4.2. In a TVS E, the intersection of all neighborhoods of 
the origin is a vector subspace of E, which is the closure of the set (0). 

Let us first prove that the intersection of all the neighborhoods of the 
origin, which we denote temporarily by N, is a vector subspace of E. 
Let U be an arbitrary neighborhood of the origin, x, y two elements of 
N, and a, /3 two complex numbers, which are not both equal to zero. 
Let V be a neighborhood of 0 such that V + V C U, assume furthermore 
that V is balanced (Definition 3.2, Theorem 3.1, p. 21). As x, y EN, 
we have 

x, y € (2  + p y v ;  

hence, ax + /3y E .(a2 + p2)-l V + /3(a2 + p2)-l V C V + V C U. This 
implies that ax + /3y E N since U is arbitrary. 

Let x belong to N. Then every neighborhood U of 0 contains x, 
which can also be written 

O € ( - U )  f x .  

But (- U )  + x is an arbitrary neighborhood of x (since multiplication of 
vectors by -1 is a homeomorphism, that is to say a bicontinuous 
one-to-one mapping onto). Thus every neighborhood of x contains the 
origin, which means that XE{O) (see p. 8). Conversely, suppose that 
an arbitrary neighborhood of x contains 0; such an arbitrary neighbor- 
hood can be written - U + x, where U is an arbitrary neighborhood of 
0; and 0 E - U + x is equivalent to x E U,  which means that x E N. 

Q.E.D. 

COROLLARY. For a TVS E to be Hausdor-, it is necessary and su#cient 
that the set (0) be closed in E ,  or that the complement of the origin be open 
in E. 
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Indeed, to say that {0} is closed in E is equivalent to saying that 
N = {0} or that no point x # 0 may belong to all the neighborhoods of 0. 

An important consequence of the corollary of Proposition 4.2 is the 
next result: 

PROPOSITION 4.3. Let f, g, be two continuous mappings of a topological 
space X into a HausdorfJ TVS E. The set A in which f and g coincide, 

Indeed, A is the preimage of the closed set {0} C E under the 
continuous mapping x -+ f ( x )  - g(x).  

PROPOSITION 4.4. Let X, E,  f, g be as in Proposition 4.3. Iff and g are 
equal on a dense subset Y of X ,  they are equal everywhere in X .  

Indeed, f = g on a closed subset of X (Proposition 4.3) containing Y. 

Quotient Topological Vector Spaces 

Let M be a vector subspace of E, and let us consider the quotient 
vector space (p. 15) EIM and the canonical map : E -+ E/M which 
assigns to every x E E its class $(x) modulo M. We know that the mapping 
4 is linear. On E we have a topology (since E is a TVS). We may define 
then, in a canonical way, a topology on EIM which is called the quotient 
topology on EIM. As always, we say what the filter of neighborhoods of 
the origin in EIM is going to be: it is simply the image under C# of the 
filter of neighborhoods of the origin in E. This is the same as saying 
the following: a subset 0 of EIM is a neighborhood of zero for the quotient 
topology if and only if there is a neighborhood U of zero in E whose image 
under C# is equal to 0, i.e., 0 = $(U). The neighborhoods of zero in 
EIM are the direct images under 4 of the neighborhoods of 0 in E. 

Note that C#J transforms neighborhoods of a point into neighborhoods 
of a point. This is not true in general about continuous functions: the 
preimage of a neighborhood under a continuous function is a neighbor- 
hood, but nothing is said about the image. On the other hand, we 
do not know a priori if 4 is continuous. But it is easy to see that this is 
indeed so: let 0 be a neighborhood of the origin in EIM; there is a 
neighborhood U of zero in E such that 4(U) = 0, hence UC+-l (0) ,  
which proves that +-l( 0) is a neighborhood of zero in E. 

Going to open sets, we see that 4 transforms open sets into open sets 
and the preimages of open sets under 4 are open sets. 



34 TOPOLOGICAL VECTOR SPACES [Part I 

I t  is not true, in general, that the direct images of closed sets, under 4, 
are closed sets. 

A familiar counterexample is the following one. Consider in the plane 
R2 the hyperbola {(xl , x2) E R2; xlx2 = l}. Take for M one of the 
coordinate axes. Then EIM can be identified with the other coordinate 
axis and rp with the orthogonal projection on it; all these identifications 
are also valid for the topologies. The hyperbola above is closed in R2 
but its image under 4 is the complement of the origin on a straight line, 
which is open. 

The student may easily verify the following point: the quotient topology 
on EIM is thejnest  topology on EIM such that 4 is continuous. 

From our definition it follows immediately that the quotient topology 
on E/M is compatible with the linear structure of E/M (see p. 20). 

PROPOSITION 4.5. 
two following properties are equivalent: 

Let E be a TVS, and M a vector subspace of E. The 

(a) M is closed; 
(b) EIM is Hausdo$ 

In view of the corollary of Proposition 4.2, (b) can be restated as saying 
that the complement of the origin is open in E/M.  But the complement 
of the origin is exactly the image under 4 of the complement of M, and 
4 maps open sets into open sets, and is continuous, whence the equiv- 
alence of (a) and (b). 

COROLLARY. 
The TVS El{@ is said to be the HausdorjJ topological vector space 

associated with the TVS E.  When E itself is Hausdod, 4 : E + 

(canonical mapping) is one-to-one onto, since then {q = {0}, and E/{@ 
is identified with E. 

The TVS El@) is Hausdor-. 

Continuous Linear Mappings 

Let E, F be two TVS, and f a linear map of E into F. We suppose that 
F is HausdorfT and that f is continuous, in the usual sense (see p. 11 
et seq.). Then the kernel (p. 16) of f is closed. Indeed, Kerf is the 
preimage of the set {0} C F, which is closed when F is Hausdod. Of 
course, Kerf might be closed also when F is not HausdorfT (Example 1, 
f = 0; Example 2, f is one-to-one and E is Hausdofi; in this case, 
Kerf = {0} is closed in E).  
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Let us consider the usual diagram (p. 16): 
E * *Imf’-F a 

I 
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where i is the natural injection, 4 the canonical map, and f the unique 
linear map which makes the diagram commutative. 

PROPOSITION 4.6. The map f is continuous if and only if the map f is 
continuous. 

Suppose f continuous and let SZ be an open subset in F or in Im f 
(an open set in Im f is the intersection of an open set in F with Imf).  
The preimage of D underfis equal to the image, under 4, of the preimage 
of SZ under f. By hypothesis, f-’(SZ) is open, and 4 transforms open sets 
into open sets; therefore the preimage of SZ under 3 is open. 

When both 4 andf are continuous, so is f = f o  4. Q.E.D. 

In general, the inverse of 3, which is well defined on Im f ,  since 3 is 
one-to-one, will not be continuous; in other words, f will not be 
bicontinuous. 

Dejinition 4.1. I f f  is continuous and if the inverse o f f ,  dejined on Im f 
(this subspace of F being equipped with the topology induced by F) ,  is also 
continuous, we say that f is a homomorphism. If furthermore f is one-to-one, 
we say that f is an isomorphism of E into F or onto Im f .  

The set of continuous linear maps of a TVS E into another TVS F 
will be denoted by L(E; F). Of course, it is a subset of Y ( E ;  F), the 
vector space of linear maps, continuous or not, from E into F. It  is 
evident that L(E; F) is a vector subspace of Y ( E ;  F), hence is a vector 
space, for the natural addition and multiplication by scalars, of functions. 
When E = C, one denotes usually L(E; F) by E’ and calls this vector 
the dual of E (sometimes, the topological dual of E, in order to underline 
the difference between E’ and E*, the algebraic dual of E; see p. 17). 
Naturally, E’ is a vector subspace of E*; E’ is the vector space of the 
continuous linear functionals, or continuous linear forms, on F. Elements 
of E’ will usually be denoted by x’, y’,  etc. The vector spaces E’ and 
L(E; F) will play an important role in the forthcoming and will be 
equipped with various topologies. 

We conclude this section with a property of continuous linear 
mappings which is well known, and reflects the “homogeneity” of the 
topology in a TVS: 
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PROPOSITION 4.7. Let E,  F be two TVS, u a linear map of E into F. 
The mapping u is continuous i f  (and only if!) u is continuous at the origin. 

Indeed, an arbitrary neighborhood of u(x)  (x E E )  in F is of the form 
V + u(x), where V is a neighborhood of 0 in F. Since u is linear, we have 

u-1( v + u(x))  3 u-I( V )  + x. 

If u is continuous at the origin, rl( V) is a neighborhood of zero in E. 

Exercises 

4.1. Consider the topological vector space T(X; E) defined in Exercise 3.1. Prove 
that it is Hausdoff if and only if the spaces Em are Hausdoff for all x. 

4.2. Prove that the product of a family of TVS E, (a E A) is Hausdoff if and only 
if every E, is Hausdorff. 

Let M be a linear subspace of a TVS E. Another linear subspace, N, of E is 
called an algebraic supplementary of M in E if the mapping (x, y )  - x + y of M x N 
into E is an isomorphism onto E for the vector space structure; N is called a topological 
supplementary of M if (x, y )  ...+ x + y is an isomorphism of M x N onto E for the TVS 
structure. One says then that E is the topological direct sum of M and N. 

4.3. 

Prove the equivalence of the following two properties: 
(a) N is a topological supplementary of M; 
(b) the restriction to N of the canonical mapping of E onto E/M is an isomorphism 

(for the TVS structure) of N onto E/M. 
Prove that M has at least one topological supplementary in E if there is a continuous 

linear map p of E onto M such that p op = p (then p(x) = x is equivalent with x E M). 

Let f be a continuous linear map of a TVS E onto another one, F. Prove the 4.4. 

(a) 
(b) 
4.5. 

equivalence of the following properties: 
Kerf has a topological supplementary in E (cf. Exercise 4.3); 
there is a continuous linear map g o f F  into E such thatf o g = identity ofF. 
Let E be a TVS, and M a  linear subspace of E. For every TVS G, the restriction 

to M of the continuous linear mappings f : E 4 G defines a linear mapping of L(E, G)  
into L(M, G). Prove that this mapping is onto for every TVS G if and only if M has a 
topological supplementary in E. 
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Cauchy Filters. Complete Subsets. 

Completion 

The definition of a Cauchy sequence in a TVS E is simple enough. 
Let S = {xl, xg ,...} be the sequence; S is a Cauchy sequence if to 
every neighborhood U of the origin in E, there is an integer n( 27) such that 

(5.1) n, m 2 n(U)  implies x,,, - x,, E U. 

This definition obviously agrees with the usual one when the TVS E is 
the complex plane (it suffices then to take for U a disk of radius E > 0, 
centered at the origin). Let us introduce the usual subsequences 

sn = { x n + l ,  Xn+a ,*-*>. 

We see that (5.1) simply means 

Observing that the S, form a basis of the filter associated with the 
sequence S, this suggests what the definition of a Cauchy filter should be: 

Definition 5.1. A filter 9 on a subset A of the TVS E is said to be a 
Cauchy filter if to every neighborhood U of 0 in E there is a subset M of 
A, belonging to 9, such that 

M - M C U .  

It  may help to illustrate this definition by an example in a metric 
space. Suppose that there is a metric d(x, y )  on E x E defining the 
topology of E. Choose U such that, for some number E > 0, the relation 
x - y E U means exactly that d(x, y)  < E. If M is any subset of E, the 
diameter of M is defined as being the supremum of the positive numbers 
d(x,y)  when both x and y vary over M .  Now M - M C U simply 
means that the diameter of M is <E. Definition 5.1 can then be rephrased 

37 
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as follows in the case of a metric TVS E: a filter 9 on A C E is a Cauchy 
filter if it contains subsets of A of arbitrarily small diameter. 

Going back to the general case, the following statement is obvious: 

PROPOSITION 5.1. The filter associated with a Cauchy sequence is a 
Cauchy filter. 

Also obvious are the following statements: 

PROPOSITION 5.2. (a) The filter of neighborhoods of a point x E E is a 
Cauchy filter. 

A filter finer than a Cauchy filter is a Cauchy filter. 

Every convergingfilter is a Cauchy filter. 
(b) 
(c) 
(a) follows from the fact that if U is a neighborhood of zero there 

is another neighborhood of 0, V, such that V - V C U, hence such that 

(V  + .) - (V + x)C u. 
(b) is evident; (c) follows from (a) and (b), since a filter converges 

to a point x if it is finer than the filter of neighborhoods of that point. 

I t  is well known that the converse of (c)  is false, in other words that 
not every Cauchy filter converges. 

Definition 5.2. A subset A of E is said to be complete if every Cauchy 
filter on A converges to a point x of A. 

It makes sense to ask if E itself is complete. We also use the term 
sequentially complete for any set A C E such that any Cauchy sequence in 
A converges to a limit in A. Complete always implies sequentially 
complete, the converse being in general false. We shall encounter an 
important class of TVS, the so-called metrixable spaces, for which the 
converse is true. 

As an exercise, the student may attempt to prove the next two 
propositions: 

PROPOSITION 5.3. In a Hausdog  TVS E, any complete subset is closed. 

PROPOSITION 5.4. In a complete TVS E, any closed subset is complete. 

We must now describe an abstract procedure which, to an arbitrary 
Hausdog  TVS E, associates-in a canonical way-a complete (and 
Hausdorfi) TVS 8, called its completion. 

But before doing this, we must establish a certain number of 
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properties of uniformly continuous functions, defined in a subset A of a 
TVS E and valued in a TVS F. Here is the definition of these functions: 

DeJinition 5.3. A mapping f : A -+ F is said to be uniformly continuous 
i f  to every neighborhood of zero, V ,  in F ,  there is a neighborhood of zero, 
U,  in E,  such that for all pairs of elements x1 , x2 E A, 

x1 - x2 E U implies f ( x l )  - f ( x 2 )  E V 

The student may compare this definition with the usual one, when 
E = F = R or C. Any. uniformly continuous map is continuous at 
every point; the converse is false. The following two statements have 
easy proofs, left to the reader: 

PROPOSITION 5.5. 
TVS E into a TVS F is uniformly continuous. 

Every continuous linearmap of a linear subspace A of 

PROPOSITION 5.6. 
The image under f of a Cauchy jilter on A is a Cauchy jilter on F. 

about uniformly continuous functions: 

Let f be a uniformly continuous map of A C E into F. 

From there follows (as will be shown now) the main extension result 

THEOREM 5.1. 
and f a uniformly continuous mapping of A into F. 

extends f, i.e., such that for all x E A, 

Let E, F be two Hausdog TVS, A a dense subset of E, 

If F is complete, there is a unique continuous mapping3 of E into F which 

= f ( x ) .  

Moreover, 3 is uniformly continuous, and f is linear i f  A is a linear 
subspace and i f  f is linear. 

Proof. As we have said, it is essentially based on Proposition 5.6. The 
uniqueness of the extension f follows immediately from Proposition 4.4. 
We shall therefore prove its existence. 

Let x be an arbitrary point of E, S ( x )  the filter of its neighborhoods. 
Each neighborhood of x intersects A, since A is everywhere dense, 
therefore none of the sets V n A is empty, when V E 9 ( x ) ,  and therefore 
they form the basis of a filter on A. The filter generated by this basis 
on A is called the trace of F ( x )  on A. I t  is obviously a Cauchy filter; 
let us denote it by F ( x )  n A. Thus its image in F is a Cauchy filter, 
because of Proposition 5.6. As F is complete and HausdorfT, this Cauchy 
filter has a unique limit in F, which we callf(x). If x E A, then F ( x )  n A 
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is the filter of neighborhoods of x in A for the topology induced by E, 
and since f is continuous f ( x )  = f ( x ) .  

Let us prove, now, that f is continuous. Let x be a point in E, and V 
a closed neighborhood of f ( x ) .  By definition off(x), V belongs to the 
image of S ( x )  n A, i.e., there is U, neighborhood of x, such that 

U n A C f ' (  V ) .  

Let y then belong to the closure of U n A; this means that none of the 
sets U' n U n A is empty, when U' varies over F(y) ;  hence these sets 
form the basis of a filter on A, which is obviously a Cauchy filter, finer 
than F(y)  n A; hence its image is a filter 9 on F which converges to 
3(y). This means that every neighborhood of f(y) contains a set of 
the formf( U' n U n A), hence some point belonging to f( U n A) C V. 
As I/ is closed, this implies thatf(y) belongs to V.  Thus, 

But now observe that we may take U open. Let, then, Y E  0. Every 
neighborhood of y intersects U ;  choose an open neighborhood of y, U. 
Since U n U' is open and A is dense, U n U' intersects A, hence U 
intersects U n A, which means that y E U n A. This proves that 

fr = u n A c~-'(v). 

This implies that the preimage of V under 3 is a neighborhood of x, 
which is what we wanted to prove. 

We shall leave the proof of the uniform continuity of 3 as an exercise 
to the student. 

Suppose now that f is linear. Consider the following two mappings: 

defined on E x E and valued in F. Since addition is continuous in E and 
in F, and sincefis continuous, these mappings are continuous in E x E. 
But they coincide on A x A, which is a dense subset of E x E. Hence 
they coincide everywhere, by Proposition 4.4. This proves that 

I(. + Y )  = 3(x> +3w. 

A similar argument holds for proving that ~ ( X X )  = Xf(x) for all x E E, 
X E C. This proves the last part in the statement of Theorem 5.1. 
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We proceed now to state and prove the theorem on completion of 
topological vector spaces: 

THEOREM 5.2. Let E be a TVS. I f  E is Hausdorff, there exists a complete 
Hausdorff TVS 8 and a mapping i of E into 8 with the following properties: 

The mapping i is an isomorphism (for the TVS structure) of E 
into 8. 
The image of E under i is dense in 8. 
To every complete Hausdog TVS F and to every continuous linear 
map f : E +F,  there is a continuous linear map f : 8+F such 
that the following diagram is commutative: 

(a) 

(b) 
(c) 

Furthermore: 

(I) Any other pair (g1 , il), consisting of a complete Hausdorff TVS El 
and of a mapping il : E -+ El such that Properties (a) and (b) hold 
with 8, substituted for 8 and il substituted for i, is isomorphic to 
( E ,  z], which means that there is an isomorphism j of 8 onto such 
that the following diagram is commutative: 

(5.3) 

(11) Given F and f as in Property (c), the continuous linear map f is 
unique. 

Proof of Theorem 5.2 

We prove the existence of 8 by constructing it. First we construct the 
set that is going to be E,  next we define vector addition and multiplication 
by scalars on this set, definitions which turn 8 into a vector space, then 
we define the topology of I? (this topology is going to be compatible 
with the linear structure). This gives us the TVS 8. We prove that 8 is 
Hausdofi. Then we construct the isomorphism i of E into 8 (called the 
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natural injection of E into 8): we define it first as a mapping, show that 
it is linear (this will be quite evident), and show that it is an homeo- 
morphism, i.e., bicontinuous and one-to-one. We prove next that Im i is 
dense in 8, then that I? is complete, and finally that Property (c) holds. 
This will conclude the existence part of the proof. The second and last 
part will be the uniqueness (up to isomorphisms), that is to say the 
proofs of Properties (I) and (11). 

(1)  The Set 8 

on E modulo the equivalence relation: 
The set 8 is going to be the quotient of the set of all Cauchy filters 

(R) Fy9 if to every neighborhood U of 0 in E there is an element 
A of 9 and an element B of 9 such that A - B C U .  

If the topology of E is defined by a metric d, we may take as U the 
neighborhood of 0 such that x - y E U means exactly d(x ,  y )  < E .  Then 
A - B C U means that A is contained in the open neighborhood of 
order E of B and that B is contained in the open neighborhood of order 
E of A (the open neighborhood of order E of a set S is the set of points 
x E E such that 

${ 4% Y )  -=c &I. 

Whether this indeed defines an equivalence relation has to be checked. If 
9 is a Cauchy filter, given any neighborhood of 0, U, there is A E 9 
such that A - A C U (reflexivity of R). The symmetry of R comes from 
the fact that A - B C U implies B - A C - U, and that - U is a 
generic neighborhood of 0 in the same right as U. As for the transitivity 
of R, let V be a neighborhood of 0 such that V + V C U .  Let 9, 9, 
2 be three Cauchy filters and suppose that we have 

Then there exist A E 9, B, B’ E 9, and C E 2 such that 

A - B C V ,  B ‘ - C C V .  

This immediately implies 

A - B n B’C V ,  B n B’ - C C  V .  

By adding we obtain 

A - C C ( A  - B n  B’) + ( B n  B’ - C ) C  V + V C  U .  
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This proves that R is an equivalence relation. Then I? is the set of 
equivalence classes modulo R. 

(2) 
From now on, elements of I? will be denoted by 2, 3, etc. As 4 is an 

equivalence class of Cauchy filters we may talk about its elements or 
representatives. 

If h is a scalar # 0, the element h i  of I? will be the equivalence class 
mod R of the filter 

Vector Addition and Multiplication by Scalars in I? 

A ~ = { A A ; A E P } ,  

where 9 is any representative of f .  That this definition does not depend 
on a specific choice of a representative 9 is easy to see. Indeed, if 9' 
is another representative of i and if U is an arbitrary neighborhood of 0, 
there must exist subsets of E, A E 9, A' E 7, such that 

A - A' C A-IU, whence XA - AA' C U ,  

which proves that W and h 9 '  are equivalent mod R. 
If h = 0, we have h - f = 6 ,  where 6 is the equivalence class mod R 

of the filter of neighborhoods of the origin (or, which is the same, of 
the Cauchy filter consisting of all the subsets of E which contain 0). 

Let now f ,  9 be two arbitrary elements of E, and 9 (resp. 3) a 
representative o f f  (resp. 3). Let us denote by 9 + 3 the filter generated 
by the basis of filter 

(9 + 9)" = { A  + B; A E P ,  B E  g}. 

That  (9 + 3),, is indeed the basis of a filter is easy to check. None of its 
elements is the empty set, and if A, A' E 9, B, E 3, then 

( A  n A') + ( R  n B') C ( A  + B) n (A' + B'), 
which shows that Axiom (BF) (p. 7) is satisfied. Also easy to check is 
the fact that 

9y9', 9-9' 
R 

implies 
(9 + 9) y (F + 9'). 

Indeed, let U be two neighborhoods of 0 in E such that V + V C U. 
There are sets A E 9, A' E 9', B E 3, and B' E 9' such that 

A - A ' C V ,  B - B ' C V ,  
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whence 
( A  + B )  - (A' + B') c v + v c u. 

The sum f + 9 will thus be the equivalence class mod R of 9 + $9, 
(3) Topology on I? 

Let U be an arbitrary neighborhood of zero in E. We shall set 

(5.4) 0 = {i E 8; U belongs to some representative of a}. 

If V is another neighborhood of 0 in E, the following inclusion is 
obvious : 

A - u n  vc  O n  P. 

This shows that the sets 0 form the basis of a filter 9 on I? as U varies 
over the filter of neighborhoods of 0 in E. We leave it to the student to 
check that all properties in Theorem 3.1, (3.1)-(3.5), are satisfied when 
we replace, in Theorem 3.1, E by 8 and 9 by & 

(4) I? Is Hawdorff 

Let f be an element of E, k # 0. This means that given any represent- 
ative .F of f and any representative So of 6, these two Cauchy filters are 
not equivalent modulo R. We may take as filter 9, the filter of all subsets 
of E which contain 0. Then the fact that 9 is not equivalent to 9, mod R 
means that there is some neighborhood Uof 0 in E such that we cannot 
find A €9, A , E ~ ,  such that A - A, C U. In particular, since 
(0) E 9, , we have A $ U for all A E F, which simply means that U 
does not belong to 5. Let, then, V be another neighborhood of 0 such 
that V + V C U, and let 9' be a Cauchy filter, equivalent to 9 modulo 
R (hence another representative of 3). I claim that Vcannot belong to 9'. 
For otherwise, let A E 9, A' E 9' be such that A - A' C V. We would 
have A' n V E F', in particular A' n V # 0, and we would have 

A - ( A ' n V ) C V ,  

A C V + (A' n v) C V + V C  U, 

hence 

which is contrary to the fact U $9. Thus the neighborhood of 0, V, 
does not belong to any representative of 9, which means, in view of 
definition (5.4), that k 4 P. This proves Statement (4). 
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(5) 
The image of x E E into l? is the equivalence class moduIo R of the 

filter of neighborhoods of x ;  we shall denote it by i(x),  at least for the 
time being. Note that we have the following properties: 

There Is a Natural Injection of E into 8 

LEMMA 5.1. (a) Two jilters on E which converge to one and the same 
point are equivalent modulo R.  

(b) If a jilter F is equivalent modulo R to a Jilter which converges to x,  
then also 9 converges to x .  

The proofs are easy, and left to the student. Lemma 5.1 implies that 
the equivalence class modulo R of the filter of neighborhoods of x 
consists exactly of the filters which converge to x.  

That the mapping x - i (x)  is linear is also very easy to check. 

(6)  The Mapping i Is One-to-one, Bicontinuous, and Its Image Is Dense 

Suppose that i (x)  = i ( y ) :  this means that the filter of neighborhoods of 
x in E and the filter of neighborhoods of y in E are equivalent modulo R, 
therefore, in view of Lemma 5.l(b), they both converge to both points x 
and y .  But this is impossible, unless x = y, in view of the uniqueness of 
the limit in a Hausdo& space (see p. 31). Let us now prove that i is a 
homeomorphism (i.e., i is continuous, and its inverse i-l : i (E)  ---t E is 
continuous). This means that i transforms every neighborhood U of 0 
in E into a neighborhood of zero in i (E) ,  for the topology induced by 8, 
and that the preimage of such a neighborhood of zero in i ( E )  must be a 
neighborhood of zero in E .  Thus, first of all, we must show that if U 
is a neighborhood of 0 in E, i( U )  contains a set of the form 0, n i (E) ,  
where U,  is another neighborhood of zero in E and where 

0, = {a E 8; U, belongs to some representative of a}. 

Indeed, the sets 0, n i (E)  form a basis of neighborhoods in the topology 
induced by 8 on i (E)  and the inclusion 

(5 .5)  i (U)  2 0, n i (E)  

would imply that i( U )  is a neighborhood of zero in the induced topology. 
Conversely, we must also show that, given a neighborhood of zero, 
U, , in E, there is another neighborhood of 0, U, in E,  such that 
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This would mean that the topology induced on i (E)  by l? is less fine than 
the one carried over i (E)  from E by means of the one-to-one mapping i. 
I n  other words, (5.6) proves the continuity of i : E + i ( E )  C 8, and (5 .5 )  
proves the continuity of i-' : i (E)  +. E. 

In  order to prove these facts, we shall prove the following: 

(5.7) 

We recall that 0 is the interior of U ;  it is, of course, a neighborhood of 0, 
and if x E 8, U is a neighborhood of x, which means that U belongs to 
a representative of i (x )  i.e., i ( x )  E 0. Suppose then that i ( x )  E 0; this 
means that U belongs to some representative of i (x) ,  in other words that 
U belongs to some filter converging to x. Let, then, V be an arbitrary 
neighborhood of 0; V + x belongs to all the filters which converge to x, 
hence U n (V + x) # a ,  which means precisely that x E 0. 

(5.7) implies immediately (5.6) since 8 is a neighborhood of zero. I t  
also implies (5 .9,  in view of the fact (Proposition 3.1) that the closed 
neighborhoods of the origin in a TVS E form a basis of neighborhoods of 
zero in E. 

This completes the proof that i is a homeomorphism, hence an 
isomorphism for the TVS structure. Next, we prove that the image of i, 
i (E) ,  is dense in I?. 

Let 4, be an arbitrary point of I?; we must show that any neighborhood 
of 4, contains some point i (x) ,  with x E E. It  suffices to consider the 
neighborhoods of the form 0 + So,  where U is defined by (5.4). The 
relation i (x )  - 4, E 6 means that U belongs to some representative of 
i (x )  - 4,, i.e., that there is a filter 9 converging to x and a filter 9, , 
representing go , some set A E 9 and a set A, E 9, such that 

i( 6) C 0 n i ( E )  C i( 0) for all neighborhoods U of 0 in E. 

A - A,C u. 

Let us then prove that such a point x exists. We select a neighborhood V 
of 0 in E such that V + V C U .  Let S,, be any Cauchy filter representing 
x, and let A, be an element of So such that 

A, - A, C V (remember that 9, is a Cauchy filter!). 

We choose, as point x, an arbitrary point of the set A,. We have 

( V  + x) - A, c v + (A,  - A,) c v + V c u. 

But V + x belongs to any filter 9 converging to x. 
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(7) E Is Complete 
Let 4 be a Cauchy filter on E.  We consider the family of subsets of E, 

M + 0, M E  4, 0, neighborhood of zero in i?. 

They form the basis of a filter; indeed, none of them is zero, and 

( M +  0)n(8'+ 0 ) 3 M n M ' +  O n  0'. 

(The filter $' generated by this basis is less fine than 4, since any 
element of the basis belongs to 4.) The filter 4' is a Cauchy filter. 
Indeed, let 0 be any neighborhood of zero in l?. Select another neighbor- 
hood of 0 in I?, P, such that 

P +  P -  PC 0 
(for instance take Po balanced, Po C 0, and P = *Po). Let A?? be an 
element of 4 such that M - MC P. This implies (&+ P) - 

Now, let 9' be the family of subsets of i ( E )  of the form A n i (E) ,  
( M +  P ) C P +  0 -  P c 0 .  

with A  ̂ E 9. These intersections contain intersections of the form 

(A + 0) n i ( E ) ,  with M,. @, 0, neighborhood of 0 in I?. 

As M cannot be empty, they contain intersections of the form 

( j  + 0) n i ( E ) ,  with 3 E I?. 

As i (E)  is dense in E,  these intersections are never empty. From there on, 
is is quite obvious that 9' is a filter on i (E) ,  and in fact a Cauchy filter 
on i (E) .  Using the fact that i is an isomorphism of E onto i (E) ,  we 
conclude that i - l (9 ' )  is a Cauchy filter on E .  Its equivalence class 
modulo R, 3, is the limit of 4. The student might try to prove this 
point as an exercise. 

(8) Proof of Property (c) 

I t  suffices to apply Theorem 5.1 with E replaced by I? and A by E. 
We also obtain the uniqueness of the extensionf, stated in Property (11). 

(9) 
We prove now Property (I) of Theorem 5.2. In  Diagram (5.3), we may 

definej as t1 with the notation of Property (c). Let, on the other hand, 
f be the mapping from i , (E) into E defined by 

il(X) - i ( X ) .  

Proof of the Uniqueness (up to Isomorphisms) of 8 
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Let us apply Theorem 5.1 with i l (E)  instead of A,  I?, instead of E, 
and I? instead of F. Then f has a unique extension,f : 3 I?. It is easy 
to check, using the density of i ( E ) C  and of i l (E )C  E l ,  and the 
continuity of the mappings involved, that 

f(j(2)) = i for all 4 E 8; 
j(f(i,)) = i, for all 2, E 8, . 

This means that j and f are the inverse of each other and that both are 
isomorphisms. 

The proof of Theorem 5.2 is complete. 
In  the sequel, we shall always identify E with i ( E )  and regard E as a 

(dense) vector subspace of L?. 

Exercises 

5.1. Let E,F be two TVS. Show that there is a canonical isomorphism between 
I? x # and (E x F)". 

Let V'(R') be the vector space of functions with complex values, defined and 
once continuously differentiable on the real line, and V:(R') the space of functions f E V1(R') 
which vanish outside some finite interval [u, b] (-a, < u < b < + a,). For e > 0 
and n = 1, 2, ..., we set 

5.2. 

W.n = { f e  V'(R'); {If(t)l + lf'(t)ll Q 4. 

Show that the sets We,- form a basis of neighborhoods of zero for a Hausdorff topology on 
W(R1) compatible with the linear structure. 

Prove that the TVS Q'(R') is complete. 
Prove that the linear subspace VA(R') is dense in W(R1). Does that mean that Q1(R1) 

is isomorphic to the completion of Qi(R1) ? 

5.3. We suppose that Q'(R') and Vi(R1) carry the topology defined in Exercise 5.2. 
Let Vo(R1) be the space of continuous complex functions in R1 equipped with the topology 
where a basis of neighborhoods of zero is made up by the sets 

{ f ~ % ' ( R ' ) ; , y $ ~  1 f(t) I < E } ,  E > 0, n = 1, 2 ,... . 

Consider the mapping f .- f ', which we denote by D. Prove that D is continuous as a map 
of V1(R1) (resp. Vi(R')) into V0(R1). Make use of the properties of the operator D in the 
spaces V1(R1) and V;(R') to prove the following fact: if E and F are two TVS, u : E + F 
a continuous linear injection (i.e., one-to-one mapping), and ti : I? +# the continuous 
extension of u to the completions, then ti is not necessarily one-to-one. Prove that ti is 
one-to-one whenever u is an isomorphism into. 

Let E be a TVS and E* its algebraic dual. Provide E* with the topology of 
pointwise convergence in E. A basis of neighborhoods of zero in this topology is provided 
by the sets 

W(S, E )  = {x* E E*; SUP I x*(x)~ < E )  

as S ranges over the family of finite subsets of E and e over the set of numbers > 0. 
Prove that E* is complete. 

5.4. 

%€S 
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5.5. Let {E,} be an arbitrary family of TVS, E their product, and p ,  the coordinate 
projection of E onto E, . Prove that a filter F on E is a Cauchy filter if and only if every 
P, , image of F under p ,  , is a Cauchy filter in E, and that E is complete if and only if 
every E, is complete (cf. Exercise 1.9). 

Indicate, in the list below, which ones are the TVS that are complete and which 
ones are the TVS that are not complete: 

the space C [ [ X ] ]  of formal power series in one indeterminate, equipped with the 
topology of simple convergence of the coefficients (see p. 25 et seq.); 
the space of finite sequences of complex numbers s = (sl ,..., s,) (v < co but 
depending on s!), with the topology defined by the basis of neighborhoods of 
zero consisting of the sets 

5.6. 

(1) 

(2) 

a(&) = {s = (s,); sup 1 sj I < &}, E > 0;  

(3) the space of continuous (complex) functions f on the real line, which converge 
to zero at infinity (i.e., I f ( t ) /  -+ 0 as I t I + CO), equipped with the topology of 
uniform convergence, i.e., the topology defined by the basis of neighborhoods 
of zero 

@I(&) = If; SYP If(0 < 4, e > 0;  

(4) the space of continuous complex functionsf on the closed interval [0, 11, equipped 
with the topology defined by the basis of neighborhoods of zero 

5.7. ?rove that the TVS Fo(N, C), defined in Exercise 3.5, is complete. 
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Compact Sets 

A topological space X (not necessarily the subset of a TVS) is said 
to be compact if X is HausdorfT and if every open covering {Q,} of X 
contains a finite subcovering. The fact that {Q,} is an open covering of X 
means that each Q, is an open subset of X and the union of the sets Q, 
is equal to X. By a finite subcovering of the covering {QJ we mean a 
finite collection Q,, ,..., QiV of sets Q, whose union is still equal to X. 
By going to the complements of the open sets Q, we obtain an equivalent 
definition of compactness: a HausdorfT space X is compact if every 
family of closed sets {Fi} whose intersection is empty contains a finite 
subfamily whose intersection is empty. 

In the sequel, we shall almost always be concerned with compact 
spaces which are subsets of a TVS and which carry the topology induced 
by the TVS in question; we shall then refer to them as compact sets. 
Let Y be a subset of a HausdorfT topological space X ;  a subset of Y, B, 
is open in the sense of the topology induced by X if and only if there is 
an open subset A of X such that B = A n Y. In view of this, open 
coverings of Y are “induced” by families of open subsets of X whose 
union contains Y. Thus a subset K of X is compact if every family {Q,} 
of open subsets of X, whose union contains K, contains a finite subfamily 
whose union contains K. It should be pointed out that compactness is 
such that many properties of compact sets are independent, to a large 
extent, of the surrounding space. This will become apparent soon. 

We begin by stating without proof a few well-known properties of 
compact spaces (no linear structure is considered). If the student is not 
familiar with these properties, we strongly suggest that he proceed no 
further without having proved them by himself. 

PROPOSITION 6.1. A closed subset of a compact space is compact. 

PROPOSITION 6.2. Let f be a continuous mapping of a compact space X 
into a Hausdor -  topological space Y .  Then f ( X )  is a compact subset of Y. 
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PROPOSITION 6.3. Let f be a one-to-one-continuous mapping of a compact 
space X onto a compact space Y .  Then f is a homeomorphism (i.e., f -l is 
also continuous). 

PROPOSITION 6.4. Let F, 7 be two Hausdorff topologies on a set X .  
Suppose that F isjiner than F’ and that X ,  equipped with 9, is compact. 
Then F = F’. 

Finite unions and arbitrary intersections of compact sets are compact. 
In a HausdorfT space X, every point is compact; every converging 
sequence is compact-provided that we include in it its limit point! 

The student should keep in mind that compact sets can be very 
complicated sets. Take for instance the real line R1. The Borel- 
Lebesgue-Heine theorem says that the compact subsets of R1 are exactly 
the sets which are both closed and bounded. Note also that the Lebesgue 
measure of a sequence is equal to zero, and that if a set A is measurable, 
given any E > 0, there is a compact set K C A such that the measure of 
A n CK is <&. Take then the points x, with 0 < x < 1 ,  which are 
nonrational; they form a set of measure 1 ,  since the rationals, which 
form a sequence, form a set of measure zero. This means that there are 
compact sets, contained in the interval [0, 11, which do not contain any 
rational number and whose Lebesgue measure is arbitrarily close to 1. 
Try to draw one of them! 

As the Weierstrass-Bolzano theorem shows, compact sets have 
interesting properties in relation with sequences of points. This extends 
to filters, as we are now going to see. In the immediate sequel, E is a 
HausdorfT topological space; when it is expressly mentioned, E is a TVS. 

Definition 6.1. A point x of E is called an accumulation point of a filter 9 
if x belongs to the closure of every set which belongs to 9. 

Let S = {xo , x1 ,...} be a sequence; a point x of E is often called an 
accumulation point of S if every neighborhood of x contains a point of 
S different from x. This terminology coincides with the one introduced 
by Definition 6.1 if we apply the latter to the filter Fs associated with 
S (see p. 7). Let M e s s  be arbitrary; M contains a subsequence of 
the form 

s, = {% , %l+l ,...I. 

The  following terminology is useful: 

If, then, x is an accumulation point of S,  any neighborhood U of x 
contains some point xk with k arbitrarily large, in particular k 2 n. Thus 
U has a nonempty intersection with M, which means that x E i@. In 
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other words, any accumulation point of the sequence S is an accumulation 
point of the filter YS. Conversely, if x is an accumulation point of the 
filter SS, x belongs to the closure of all the sets belonging to Fs , in 
particular to the closures of the sets S, , n = 0, 1, .... This means that 
given any neighborhood U of x and any integer n, there is k 3 n such 
that X ~ E  U. 

PROPOSITION 6.5. If afilter 9 converges to apoint x ,  x is an accumulation 
point of 9. 

Indeed, suppose that x were not an accumulation point of 9. There 
would be a set M E  F such that x 4 A?l. Hence the complement U of @, 
which is open, would be a neighborhood of x, and hence should belong 
to 9. But then we ought to have U n M # 0, vhence a contradiction. 

Of course, a filter might have more than one accumulation point. For 
instance, let 9 be the filter of all subsets of E containing a given subset 
A of E. Then every point of A is an accumulation point of 9. 

PROPOSITION 6.6. The following two conditions are equivalent: 

(a) 
(b) 

x is an accumulation point of 9; 
there is a jilter F’ which is finer than both 9 and the jilter of 
neighborhoods of x, 9 ( x ) ,  in other words: there is a filter 9‘ 
converging to x, which isfiner than 9. 

(a) => (b). Indeed, consider the family of subsets of E of the form 
U n M, where U varies over F ( x )  and M varies over F. These sets 
are never empty if x is an accumulation point of 9, and they obviously 
have Property (BF) of p. 7, hence they generate a filter 9’ which is 
obviously finer than 9 and 9 ( x ) .  

If a filter 9 is less fine than another filter 9’ and if x’ is 
an accumulation point of F’, then x is also an accumulation point of 9. 
Thus it suffices to combine (b) with Proposition 6.5. 

(b) 3 (a). 

PROPOSITION 6.7. If a CauchyJilter 9 on the TVS E has an accumulation 
point x ,  it converges to x. 

Let U be an arbitrary neighborhood of the origin and V another 
neighborhood of zero such that V + V C U. There is a set M E 9 such 
that M - M C  V. On the other hand, V + x intersects M ,  hence 
M -  M n  ( V  + x)C V, or 

M C V + M n (V + x) C V + V + x C U + x. Q.E.D. 
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PROPOSITION 6.8. 
properties are equivalent: 

(a) K is compact; 

(b) every filter on K has at least one accumulation point. 

(a) s (b). 

Let K be a Hausdoe  topological space. The following 

Let F be any filter on K, and consider the family of 
closed sets fi when M varies over F. As no finite intersection of sets fi 
can be empty, neither can that be true of the intersection of all of them. 

(b) 3 (a). Let @ be a family of closed sets whose total intersection 
is empty. Suppose that @ does not contain any finite subfamily whose 
intersection is empty. Then take the family 0' of all the finite inter- 
sections of subsets belonging to @: it obviously forms a basis of a filter. 
This filter has an accumulation point, say x: thus x belongs to the closure 
of any subset belonging to the filter, in particular to any set belonging 
to @ I ,  for these are closed. In  other words, x belongs to the intersection 
of all the sets belonging to @ I ,  which is the same as the intersection of 
all the sets belonging to @. But the latter was supposed to be empty! 

COROLLARY 1. A compact subset K of a Hausdorf topological space E is 
closed. 

Proof. Let x E R; let S(x)IK be the filter on K generated by the sets 
U n K when U ranges over the filter of neighborhoods of x in E; that 
the sets U n K form the basis of a filter means precisely that x belongs 
to the closure of K. In view of Proposition 6.8, $(x)(K must have an 
accumulation point x1 E K. Necessarily x1 = x: otherwise we could 
find a neighborhood U of x whose complement in E is a neighborhood 
of x1 and we could certainly not have x1 E 0, even less x1 E U n K. 
Thus x belongs to K. 

COROLLARY 2. 

Q.E.D. 

A compact subset of a Hausdog TVS is complete. 
It suffices to combine Propositions 6.7 and 6.8. 

COROLLARY 3. I n  a compact topological space K ,  every sequence has an 
accumulation point. 

Definition 6.2. A subset A of a topological space X i s  said to be relatively 
compact if the closure A of A is compact. 

A converging sequence (without the limit point) is a relatively 
compact set. 
Dejinition 6.3. A subset A of a Hausdoe  TVS E is said to be precompact 
if A is relatively compact when viewed as a subset of the completion I? of E. 
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A Cauchy sequence in E is precompact; it is not necessarily relatively 
compact! For this would mean that it converges (Proposition 6.7). 
Another example illustrating the difference between relatively compact 
sets and precompact sets is the following one: let SZ be an open subset 
of R”, different from R”. In virtue of the Heine-Borel-Lebesgue 
theorem, every bounded open subset of Q is precompact; but an open 
subset Q‘ of SZ is relatively compact, in Q, if and only if at the same time 
52’ is bounded and its closure is contained in SZ. 

A subset K of the Hausdorff TVS E is compact if and only if K is 
both complete and precompact. Indeed, if K is compact when viewed 
as subset of E, K is still compact when viewed as subset of 8: therefore, 
by Corollaries I and 2 of Proposition 6.8, we know that K is closed in E, 
hence complete; of course its closure in I?, identical to K itself, is compact. 
Conversely, if K is complete, we have I? = K and therefore, if I? is 
compact, K is also compact. 

Our purpose is to prove a criterion of precompactness which is to 
be used later. The  proof of it is made very easy if we use the notion of 
ultrafilter: 

Definition 6.4. 
on A which isfiner than U is identical to U. 

LEMMA 6.1. Let 9 be a filter on a set A;  there is at least one ultrafilter 
on A which isfiner than 9. 

Proof. Let @ be the family of all filters on A finer than 9, ordered by 
the relation “to be finer than,” and 0’ a subfamily of @ totally ordered 
for this relation. The elements of @’ are filters, that is to say subsets of 
the set ofsubsets V ( A )  of A; we may therefore consider their union 9’. 
I t  is immediately seen that 9‘ is a filter on A, obviously finer than 9. 
We may therefore apply Zorn’s lemma to the family @, whence 
Lemma 6.1. 

A filter U on a set A is  called an ultrafilter ;f every filter 

LEMMA 6.2. Let A be a topological space; ;f an ultrafilter U on A has an 
accumulation point in A, U converges to x. 

Proof. We apply Proposition 6.6: if x is an accumulation point of LI, 
there is a filter 9 which is finer than U and converges to x .  As U is an 
ultrafilter, we must have S = U. 

LEMMA 6.3. A Hausdor- topological space K is compact ;f and only ;f 
every ultrajilter on K converges. 

Proof. If K is compact, every filter on K has an accumulation point 
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(Proposition 6.8) ,  therefore every ultrafilter converges, by Lemma 6.2. 
Conversely, suppose that every ultrafilter converges in K and let 9 be 
some filter on K. By Lemma 6.1, there is an ultrafilter U on K which is 
finer than 9; u converges to some point x. By Proposition 6.6, x is an 

We may now state and prove the announced criterion of pre- 
accumulation point of 9. Q.E.D. 

compactness: 

PROPOSITION 6.9. 
TVS E are equivalent: 

The following properties of a subset K of a H a u s d o g  

(a) K is precompact; 

(b) given any neighborhood of the origin V in E ,  there is aJinite family 
of points of K ,  x1 ,..., x, , such that the sets xi + V form a covering 
of K,  i.e., such that 

K C ( x , +  V ) u . - u ( x , +  V ) .  

Proof. (a) implies (b). Let U be an open neighborhood of zero in E, 
contained in V. There exists an open neighborhood of zero in 8, 0, 
such that U = tf n E. Consider the family of sets x + 0 when x 
varies over K. They form an open covering of the closure R of K in E. 
Indeed, let 9 be an arbitrary point of R and let W be a neighborhood of 
of zero in E such that @ = - W C tf. Then there is x E K such that 
x E 9 + p, i.e., 9 E x + W C x + 0. This open covering of the compact 
set I? contains a finite subcovering, x1 + tf, ..., x, + 0. We have: 

K = R n  E C  [(xl + 0) n E ]  n .-. n [(x, 10) n E]  

c (XI + V)u ... u (x, + V ) .  

(b) implies (a). If K possesses Property (b), its closure Iz  in I? 
possesses the same property in 8. Indeed, let P be an arbitrary neighbor- 
hood of zero in 8; let W be a closed neighborhood of zero in 8, contained 
in P. There is a finite number of points of K,  x1 ,..., x,, such that 

K C ( x ,  + m) u * * .  u (x, + @). 

But as the right-hand side is a closed subset of 8, it also contains the 
closure of K in 8, whence our assertion. In  view of this, it will suffice 
to prove that if a closed subset K of a complete Hausdorif TVS E has 
Property (b), it is compact. We shall apply Lemma 6.3 and show that an 
arbitrary ultrafilter U on K converges to a point of K. 
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Let V be an arbitrary neighborhood of zero in E, and x1 ,..., xr a finite 
family of points of K such that the sets (xj + V) form a covering of K. 
We contend that at least one of these sets xi + V belongs to the filter U. 
First of all, we show that at least one of these sets intersects every set 
belonging to U. If this were not true, for each j = 1, ..., r, we would be 
able to find a set Mi E U which does not intersect xj + V; then the 
intersection M I  n n M, would be empty, contrary to the fact that U 
is a filter, since it would not intersect any one of the sets xi + V and 
since these form a covering of K. Thus one of the sets xi + V, say xi + V, 
intersects all the sets which belong to U. This means that, if we consider 
the family of subsets of K of the form M n (xi + V),  where M runs 
over U, it is the basis of a filter on K. This filter is obviously finer than, 
therefore equal to, the ultrafilter U. In other words, the set (xi  + V) 
belongs to U. If y ,  z are two elements of this set, we have y - z E V. In 
other words, we have proved that, given any neighborhood of zero V in 
E, there is a set MEU such that M - M C  V :  U is a Cauchy filter. 
But as E is complete, U must converge to some point x E E; as K is 
closed, x E K. Q.E.D. 

Exercises 

6.1. By using the compactness criterion provided by Lemma 6.3, prove the following 
version of Tychonoff’s theorem: 

THEOREM 6.1. Let {Ei} ( i  E I )  be a famiry of Hausdorff TVS, and E = ni,, Ei their 
product (equipped with the product TVS structure). Let Ai be a subset of Eifor each index i, 
and A = niE~ Ai  the product of the Ails, regarded as a subset of E. 

Then A is compact in E ;f and only $,for every i E I ,  A‘ is compact in Ei . 
6.2. Prove that the balanced hull of a compact subset K of a Hausdorff TVS E 

(i.e., the smallest balanced set containing K) is compact. 
6.3. 

6.4. 

Prove that a TVS E is compact if and only if it consists of a single element, 0. 

Consider the TVS Fc(N; C) of complex functions on the set N of nonnegative 
integers with the topology defined in Exercise 3.5. Prove that every converging sequence 
in Sc(N; C) must be contained in some space Sc(n) (see Exercise 3.6). Derive from this 
the fact that every compact subset of Sc(N, C) is contained in a finite dimensional linear 
subspace. 

6.5. Let E be any one of the TVS, (a)-(d), of Exercise 3.4. Prove that any infinite 
dimensional linear subspace M of E contains a sequence which converges in E and which 
is not contained in any finite dimensional linear subspace of M .  
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Locally Convex Spaces. Seminorms 

A subset K of a vector space E is convex if, whenever K contains two 
points x and y, K also contains the segment of straight line joining them: 
if x ,  y E K and if 01, = 1, 
then 

a x  + Py E K .  

Let S be any subset of E. Let us call the convex hull of S the set of all 
finite linear combinations of elements of S with nonnegative coefficients 
and such, furthermore, that the sum of the coeficients be equal to one. 
Thus a set is convex if it is equal to its own convex hull. And the convex 
hull of a set S is the smallest convex set containing S. 

Arbitrary intersections of convex sets are convex sets. Unions of 
convex sets are generally not convex. The vector sum of two convex 
sets is convex. The image and the preimage of a convex set under a 
linear map is convex. 

PROPOSITION 7.1. Let E be a TVS. The closure and the interior of 
convex sets are convex sets. 

The statement relative to the closvre is evident. Not so the one about 
the interioz. Let K be a convex set, Ki ts  interior, and let x ,  y be any two 
points of K, z a point in the 2egment joining X to y. We know that x E K 
and we must show that z E K. We have 

are two numbers 2 0  and such that 01 + 

z = t x  + (1 - t)y for some number 0 < t < 1. 
On the other hand, there exists a neighborhood U of 0 in E such that 
x + U C  K and y + U C  K. Then, of course, the claim is that 
z + U C K. This is indeed so, since any element z + u of z + U can be 
written in the form 

t x  + (1 - t)y + tu + (1 - t)u = t ( x  + u)  + (1 - t ) ( y  + u), 

and since both vectors x + u and y + u belong to K, so does z + u. 

57 



58 TOPOLOGICAL VECTOR SPACES [Part I 

Definition 7.1. 
following four properties: 

A subset T of a TVS E is called a barrel ;f T has the 

(1) 
(2) 
( 3 )  T is closed; 
(4) T is conoex. 

Let U be any neighborhood of 0 in E. Let us denote by T ( U )  the 

T is absorbing (Definition 3.1); 
T is balanced (Definition 3.2); 

closed convex hull (i.e., the closure of the convex hull) of the set 

Then T ( U )  is a barrel. Properties (3) and (4) are evident; Property (1) 
holds since U C T(U).  It remains to show that T( U )  is balanced. It 
suffices to prove that the convex hull of the set (7.1) is balanced (the 
closure of a balanced set is obviously balanced). Any point of the convex 
hull can be written 

z = t x + ( l  - t ) y ,  

with x E AU, y E yU, for some t, A,  y ,  0 6 t 6 1, I A I 6 1, I y I < 1. 
If 5 E C, I 5 I 6 1, we have 

5z = t (5x)  + ( 1  - t ) ( 5 ~ )  and 5x E Y E SPU. 

Thus, every neighborhood of 0 in a TVS is contained in a neighbor- 
hood of 0 which is a barrel. But, of course, not every neighborhood of 0 
contains another one which is a barrel, nor is any barrel a neighborhood 
of zero. 

Dejnition 7.2. 
basis of neighborhoods in E consisting of convex sets. 

A T V S  E is said to be a locally convex space if there is a 

Locally convex spaces are by far the most important class of TVS. 

PROPOSITION 7.2. In a locally convex space E, there is a basis of neighbor- 
hoods of zero consisting of barrels. 

Let Ul be an arbitrary neighborhood of zero in E. Since E is a TVS, 
Ul contains a closed neighborhood of 0, say V (Proposition 3.1). But since, 
on the other hand, E is locally convex, V contains a convex neighborhood 
of zero, W, and finally, W contains a balanced neighborhood of 0, say U. 
As U is balanced, the set (7.1) associated with U is identical with U. 
Its convex hull is contained in W, and the closure of this convex hull, 
which is a barrel, is contained in V ,  hence in U,  . Q.E.D. 
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When we deal with a family 9l of convex balanced absorbing subsets 
of a vector space E, it is very simple to ascertain that it constitutes a 
basis of neighborhoods of zero in a topology on E compatible with the 
linear structure of E (and necessarily locally convex!). Indeed, it is 
enough that 93 possess the following two properties: 

(*) For every pair U, Y E g, there exists W E  B such that 

W C  U n  V.  

(*  *) For every U E g and every p > 0, there is W E such that 

wcpu. 

It suffices to check that the filter generated by 3Y satisfies Conditions 
(3.1)-(3.5) of Theorem 3.1. In particular, the set of all multiples pU of 
a convex balanced absorbing subset U of E form a basis of neighborhoods 
of 0 in a locally convex topology on E (this ceases to be true, in general, 
if we relax the conditions on U). 

Definition 7.3. 
called a seminorm if it satisjies the following conditions: 

A nonnegative function x - p ( x )  on a vector space E is 

(1) p is subadditive, i.e., for all x, y E E, p ( x  + y )  < p ( x )  + p(y ) ;  
(2) p is positively homogeneous of degree 1, i .e.,  for all x E E und all 

( 3 )  p (0)  = 0 (implied by Property (2)). 
E c, p(hx) = I I p(x ) ;  

Definition 7.4. A seminorm on a vector space E is called a norm if 

x E E , p ( x )  = 0 implies x = 0. 

Example (1). Suppose E = Cn and let M be a vector subspace of E. 
Setp,(x) = distance from x to M, in the usual sense of the distance in C". 
If dim M 2 1, then p ,  is a seminorm and not a norm (M is exactly 
the kernel of p M ) .  When M = {0}, p ,  is the Euclidean norm. 

Examples of norms in Cn (cf. Theorem 11.1 and Chapter 11, 
Example IV): 

5 = (51 ,.**, 5n)+ I 5 I D  = (I 51 l p  + ... + I 5n (p)l'n, 1 < p < +a, 

Observe that I 5 l2 is the Euclidean, or Hermitian norm; it will always be 



60 TOPOLOGICAL VECTOR SPACES [Part I 

denoted by 1 5 I in this text. Later on, when studying differential 
operators, we shall use the norm 1 I l  on vectors whose coordinates 
are nonnegative integers. 

Example (2) .  Let E be a vector space on which is defined a sesquilinear 
form B(e, f )  (sesquilinear means that 

B(e1 + e2 ,f) = B(e, ,f) + w e ,  A; 
B(e9 fl + fz) = B(e, fl) + R e ,  fd; 

B ( k f )  = B ( e , f ) ;  

B(e, v”) = W e , f  ); 

and B(e, f) is complex valued). Suppose that B(e, f )  is Hermitian, which 
means that 

W , f )  = B ( f ,  e). 

Observe then that, for all e E E, B(e, e) is a real number. Let us say that 
B is nonnegative if this number is never negative. Then it can be proved, 
by using the Schwarz inequality (cf. Chapter 12, Proposition 12.1 and 
Corollary) that 

( 7 . 4  e - (B(e, e))lI2 

is a seminorm on E. It  is a norm on E if and only if B is definite positive, 
which means that B(e, e) > 0 for all e # 0. 
Definition 7.5.  A vector space E over the field of complex numbers, 
provided with a Hermitian nonnegative form, is called a complex pre-Hilbert 
space. 

Example ( 3 ) .  Let VO(R1) be the vector space (over the field of complex 
numbers) of complex-valued continuous functions on the real line. For 
any bounded interval [a, b] (-a < a < b < +m), and any function 
f E Vo(R1), we set 

% , b l ( f  1 = SUP If(t)l* 
Q$t<iJ 

Then f - P L ~ , ~ ~ (  f) is a seminorm. It is never a norm, since f may 
very well vanish in the interval [a, b] without being identically zero. 
Other seminorms are the following ones: 

f - If(0)l; 
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The  fact that (7.3) is a seminorm is not absolutely obvious: one has to 
prove the triangular inequality, that is to say the subadditivity of the 
function (7.3). When p < 1, (7.3) is not subadditive, and therefore it 
cannot be a seminorm. 

Example (4). 
of complex sequences {co, c1 ,..., c, ,... } such that 

Let us denote by 1P (1 < p < +a) the vector space of 

(7.4) 

Then the left-hand side of (7.4) can be regarded as the value of a norm 
on P. Here again, the fact that the subadditivity holds depends on p 
being 31.  One also defines I" as the vector space of bounded complex 
sequences, that is to say of sequences {c,, , c1 ,..., c, ,... } such that 

(7.5) 

then the left-hand side of (7.5) defines a norm on I". 

DeJinition 7.6. Let E be a vector space, and p a seminorm on E. The sets 

U ,  = {X E E ;  p ( ~ )  Q l}, O, = {X E E ;  P(X) < l}, 

will be called, respectively, the closed and the open unit semiball of p .  

PROPOSITION 7.3. Let E be a topological vector space, and p a seminorm 
on E. Then the following conditions are equivalent: 

(a) the open unit semiball of p is an open set; 
(b) p is continuous at the origin; 
(c) p is continuous at every point. 

(a) implies (b) since c o p ,  for E > 0 arbitrary, is the preimage under 
p of the open interval] - E ,  E [  C R1. Because of (a), e s p  is an open set, 
hence a neighborhood of zero. 

(b) implies (c), since p(x)  - p ( y )  < p ( x  - y) (subadditivity of p) .  
(c) implies (a) since the preimage of an open set under a continuous 

mapping is open. 

PROPOSITION 7.4. 
unit semiball is a barrel. 

If p is a continuous seminorm on a TVS E, its closed 

This is obvious in view of the definitions. 
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PROPOSITION 7.5. Let E be a topological vector space, and T a barrel in E. 
There exists a unique seminorm p on E such that T is the closed unit semiball 
of p .  The seminorm p is continuous if  and only if T is a neighborhood of 0. 

The last part follows immediately from the fact that T is the closed 
unit semiball of p ,  and from Proposition 7.3. Let us therefore prove the 
first part of the statement. 

We set 
inf A. ’(.) = A>O,rcAT 

First of all, p is indeed a nonnegative function; that is to say p is every- 
where finite, because T is absorbing. That p(5x) = [ [ [ p(x )  is pretty 
obvious. What has to be checked is the subadditivity of p .  Let x, y E E 
be arbitrary. Given any E > 0, there are two numbers, A, p 0, such that 

(p(x)<)h < ~ ( x )  + E, and x E A T ;  

( P ( Y ) < ) P  < P(Y) + E ,  and Y E PT* 

Since T is convex, we have 

T C T ,  
x 

x+CL T+h+r 
whence x + y E ( A  + p ) T ,  which means that 

P(. + Y )  < + P < P W  + P ( A  + 2.5. 
As E is arbitrary, it shows that p is subadditive. Let us show that T is 
the closed unit semiball of p .  If p ( x )  < 1, it means that, for all E > 0, 
there exists y E  E T such that x = (1 + e)y,; but when E -+ 0, ye  = 
(1 + E)-’x converges to x in E (continuity of the scalar multiplication 
in a TVS), hence x belongs to the closure of T. But T is closed. Con- 
versely, any vector x E T is obviously such that p ( x )  < 1.  This proves 
that T is indeed the closed unit semiball of p .  

It remains to prove the uniqueness of the seminorm p .  Let p’ be 
another seminorm on E whose closed unit semiball is identical with T. 
This means that p ( x )  < 1 if and only if p’(x)  < 1. Taking in succession 

= Y/ (P(Y)  + 4, x = Y/(P’(Y)  + 
with y E E and E > 0 arbitrary, we see that 

PYY) < P(Y)  + &> P(Y)  < PYY)  + 6. 

As E is arbitrary, this means that p ( y )  = p’(y).  
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COROLLARY. Let E be a locally convex space. The closed unit semiballs 
of the continuous seminorms on E form a basis of neighborhoods of the origin. 

Combine Proposition 7.5 with Proposition 7.2. 

De$nition 7.7. A family of continuous B seminorms on a locally convex 
space E will be called a basis of continuous seminorms on E if to any 
continuous seminorm p on E there is  a seminorm q belonging to B and a 
constant C > 0 suck that, for all x E E, 

(7.6) P(4 G c 44. 
Let us denote by U,, (resp. U,) the closed unit semiball of p (resp. q). 

Then (7.6) means 

(7.7) C-lU*C Up .  

We leave the proof of the following result to the student: 

PROPOSITION 7.6. Let B be a basis of continuous seminorms on the locally 
convex space E. Then the sets h Up , where U, is the closed unit semiball of p 
and where p varies over 9 and h on the set of numbers >0, form a basis of 
netghborhoods of zero. Conversely, given any family of neighborhoods of 
zero, a, consisting of barrels and suck that the set hU when U E a and 
h > 0 form a basis of neighborhoods of 0 in E, then the seminorms whose 
closed unit semiballs are the barrels belonging to i29 form a basis of continuous 
seminorms in E. 

We shall often say that a basis of continuous seminorms on a locally 
convex space E dejines the topology (or the TVS structure) of E. Thus, 
for instance, the seminorms BLa,bl on YO(R1) (Example 3) define the 
topology of uniform convergence of continuous functions on the bounded 
intervals of the real line. 

We shall also use the expression “a family of seminorms on E deJining 
the topology of E,” in which the family under consideration, say {pa} 
( & € A ) ,  need not be a basis of continuous seminorm. The meaning of 
it is the following: first, every seminorm pa is continuous; second, the 
family obtained by forming the supremums of finite numbers of semi- 
norms pa is a basis of continuous seminorms on E. This family consists 
of the seminorms 

- P ( B ) ( x )  = sup Pa.(x),  
01 EB 

where B ranges over all the finite subsets of the set of indices A of the 
family {pa}. Forming the supremum of a finite number of seminorms is 
the equivalent of forming the intersection of their closed unit semiballs 
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and taking the "gauge" of this intersection (a seminorm p is the gauge 
of a set U if U is the closed unit semiball of p) .  

The following statements are obvious: 

PROPOSITION 7.7. Let E, F be two locally convex spaces. A linear map 
f : E + F is continuous if and only if to every continuous seminorm q on F 
there is a continuous seminorm p on E such that, for  all x E E, 

COROLLARY. A linear form f on a locally convex space E is continuous if 
and only if there is a continuous seminorm p on E such that, for all x E E, 

Proposition 7.7 and its corollary are very often used in the following 
form: we are given a basis of continuous seminorms B (resp. 2) on E 
(resp. F); then the mapping f is continuous if to every seminorm q E 22 
there is a seminorm p E B and a constant C > 0 such that, for all x E E, 

q ( f ( 4 )  < CP(X>* 

For instance, suppose that both topologies of E and F can be defined by a 
single (continuous) seminorm which we denote, in both spaces, by 1 )  11 
(this notation is usual when the seminorms are norms, but this 1s of no 
importance here). Then a linear map f : E --f F is continuous if and only 
if there is a constant C > 0 such that, for all x E E, 

Similarly, in this case, a linear functional f on E is continuous if and 
only if there is a constant C such that 

Of course, the absolute value in C1 defines a continuous norm on C1(for the 
usual topology) and constitutes, by itself, a basis of continuous seminorms 
in C1, in other words defines the topology of C1. The Euclidean (or 
Hermitian,as one prefers) norm on C" (or on R" if we deal with real 
vector spaces) defines the topology of C" (or Rn). 

PROPOSITION 7.8. Let E be a locally convex space. Let B be a basis of 
continuous seminorms on E. A filter 9 on E converges to a point x if  and 
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only i f  to every E > 0 and to every seminorm p E 9 there is a subset M of E 
belonging to 9 such that, for a l l y  E M ,  

p ( x  - Y )  < E .  

COROLLARY. A sequence {xl ,..., x,  ,... } in E converges to x if and only if 
to every E > 0 and to every seminorm p E 9 there is an integer n(p, e )  
such that n 2 n(p, E )  implies 

p ( x  - x,) < E .  

Both statements are obvious. 

PROPOSITION 7.9. Let E be a locally convex space, and M a linear subspace 
of E. Let + be the canonical mapping of E onto EIM. Then the following 
facts are true: 

(1) 
(2) 

the topology of the quotient TVS EIM is locally convex: 
if 9 is a basis of continuous seminorms on E, let us denote by @ 
the family of seminorms on EIM consisting of the seminorms 

E/M 3 x - i ) ($)  = inf p ( x ) .  
Q(X)-S 

Then @ is a basis of continuous seminorms of EIM. 

The proof consists of routine checking. That p ,  defined by (7.8), is a 
seminorm follows from the subadditivity of p and of the fact that + is 
linear. In relation with (7.8), let us consider the complex two-dimensional 
space C2, playing the role of E, and its subspace 

M = ((5, , 4 2 )  E c2 I 51 = 01. 

The quotient EIM can be identified with 

M0 = ((51 , 52) I 52 = 0) 

and the canonical mapping E + E/M with the projection 

(51 1 5 2 )  - (51 9 0). 

The Euclidean norm on C2 (resp. MO) defines the topology of C2 
(resp. MO). If for one moment we call p the Euclidean norm in C2 and 
view it as a seminorm, which it actually is, we see that 

= I51  I. 
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This shows that we find as associated seminorm p exactly what we would 
expect to find. 

The student should be very careful not to think that if a family of 
continuous seminorms defines the topology of E, without being a basis 
of continuous seminorms on E, then the family of continuous seminorms 
on EIM obtained by Formula (7.8) necessarily defines the topology 
of EIM. A counterexample to this is provided by E = C2, M = 

((zl, x,) E C2; z1 = zz}, when we take the pair of seminorms on E, 
pl : x = (xl , 2,) - I x1 I and p ,  : z - I z2 I. This pair obviously defines 
the topology of E, but 

j&) = inf p,(z) 
&Z+M 

is equal to zero for i = 
class z + M intersects 

1, 2, and all f E E/M. Indeed, every equivalence 
both subspaces x1 = 0 and zz = 0: 

Let us go back to the general case. We call kernel of a seminorm p on 
E the set of vectors x such that p ( x )  = 0, and denote this set by Ker p .  
In  view of the subadditivity of p and of the positive homogeneity of p ,  
one sees immediately that Kerp is a vector subspace of E. If p is con- 
tinuous, it is closed, since it is the preimage of zero when we view p as a 
mapping of E into the real line. In a locally convex space E, the closure 
of the origin is exactly the intersection 

n K ~ ~ P ,  
B 

when p runs over the family of all continuous seminorms on E. This is 
pretty obvious, just as the next statement is obvious: 

PROPOSITION 7.10. In  a locally convex space E,  the closure of {0} is the 
intersection of the (closed) linear subspace Ker p ,  when p varies over a basis 
of continuous seminorms on E. 

Thus the Hausdorff space associated with an E(see the remark following 
corollary to Proposition 4.5) is locally convex (Proposition 7.9); it is 
the quotient space 

E / (  n ~ e r  P), 
D ) E B  

where 9 is any basis of continuous seminorms on E. 
In particular, suppose that E has a basis of continuous seminorms 

consisting of a single seminorm p, . Then E/Ker p ,  is the HausdorfT space 
associated with E, and its topology can be defined by the seminorm 
5 - $,(A?) = po(x) for some x E E such that +(x) = 5. Indeed, it should 
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be noted that the seminorm p ,  is constant along the submanifolds 
x + Ker p ,  : if x - y E Ker po  , we have (by virtue of the triangular 
inequality) 

Now, it is evident that, if a seminorm is going to define the topology 
of a locally convex space, all by itself, and if this topology is HausdorfT, 
then the seminorm must be a norm. Thus $,, is a norm. In this context, 
EIKerp, is called the normed space associated with E.  

We shall need, later on, the following result: 

PROPOSITION 7.1 1. 
precompact subset of E .  The convex hull r ( K )  of K is precompact. 

Proof. This consists in applying Proposition 6.9 several times. Let V 
be an arbitrary neighborhood of zero in E, and U a convex balanced 
neighborhood of zero such that U + U C V. As K is precompact, 
Proposition 6.9 implies that there is a finite set of points of K, x1 ,..., x, , 
such that K C ( U  + X J U  U( U + x,). If we denote by S the convex 
hull of the finite set of points x1 ,..., x, , we see that r ( K )  C S + U .  
Observe that S is a bounded subset of a finite dimensional subspace 
M of E; as the topology induced by E on M is HausdorfT, this induced 
topology is the usual one, as we shall see in Chapter 9 (Theorem 9.1); 
S is bounded and closed, hence compact in view of the Borel-Lebesgue 
theorem. Since S is compact in E, we may apply again Proposition 6.9: 
there is finite set of points y1 ,..., ys  in S such that S C (yl + U)U -.. 
u ( y s  + U), whence 

Let E be a locally convex Hausdorff TVS, and K a 

Since V is arbitrary, we see, by taking into account the implication 
(b) * (a) in Proposition 6.9, that I'(K) is precompact. 

COROLLARY. 
of E is compact. 

If E is complete, the closed convex hull of a compact subset 

The convex hull of a compact set is not necessarily compact, even 

If the surrounding space E is not complete, the closed convex hull of 
not closed. 

a compact set is not necessarily compact. 
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Exercises 

7.1. Prove that a seminorm on a locally convex space E is continuous if and only if 

Prove that the product TVS of an arbitrary family of locally convex spaces is 

there is a continuous seminorm on E which is at least equal to it (at every point of E). 
7.2. 

locally convex. 

7.3. Prove that if a locally convex space E has at least one continuous norm it has a 

Let 9 be a family of continuous seminorms on a locally convex space E, not 

basis of continuous seminorms consisting of norms. 

7.4. 
necessarily finite. Suppose that, for every x E E, 

is finite. Prove that p ,  is a seminorm on E and that its closed unit semiball {x E E, po(x) < l} 
is a closed subset of E, i.e., is a barrel. 

7.5. Prove that if 0 < p < 1 the function 
5 = ( 5 ,  ,..., 5,) - I 5 I11 = (I 51 I P  + '.. -c I 1, IP)l'P 

is not a seminorm on C". 

7.6. Prove that, for any vector 5 E C", 

lim I 5 I,, = 1 5 lm (see p. 59). 
w-) m 

7.7. Let C [ [ X ] ]  be the space of formal power series in one variable X ,  with complex 
coefficients. Construct a basis of continuous seminorms for the topology of simple con- 
vergence of the coefficients, on C [ [ X ] ]  (see p. 25). 

7.8. The convex balanced hull of a subset A of a vector space E is the smallest balanced 

Prove that the convex balanced hull of A is the convex hull of the balanced hull 
of A (the latter is the smallest balanced set containing the set A). 
Give an example of a set A whose convex balanced hull is different from the 
balanced hull of its convex hull. 

convex set containing A. 

(a) 

(b) 

7.9. Let F be the space of complex valued continuous functions defined in the interval 
{t;  0 < t < 1 )  of the real line; let E be the space of all mappings of F into the complex 
plane C .  Let us set, for each real number t, 0 < t < 1, St  : f - f(t), mapping from F 
into C (thus the St belong to E); let us also set dt : f - J i f ( t )  dt, also a mapping of F 
into C ,  hence an element of E. We provide the space E with the locally convex topology 
defined by the basis of seminorms 

P - ;;; I P ( , f ) l ,  

where S runs over the family of all finite subsets of F. 

(a) Prove that when t varies over the interval 0 < t < 1 the elements S, form a 
compact subset of E (hint: identify E to the product space 

C F  = n C ,  , C f  : copy of the complex plane C; 
f € F  

show that the topology of E is identical to the product topology on cF, then apply 
Tychonoff's theorem (Exercise 6.1, Theorem 6.1)). 
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(b) Prove that the mapping dt belongs to the closure of the convex hull of the set 
formed by the st but not to the convex hull of this set (approximate the integral 
over (0, 1)  by the Riemann sums). 

7.10 
closed. 

Give an example of a closed subset of the plane R2 whose convex hull is not 



Metrizable Topological Vector Spaces 

A TVS E is said to be metrizable if it is Hausdorff and if there is a 
countable basis of neighborhoods of zero in E. The  motivation for the 
name metrizable lies in the following fact (which we shall not prove in 
such a general form): 

The topology of a TVS E can be defined by a metric if and only if E is 
Hausdorff and has a countable basis of neighborhoods of 0. 

We recall that a metric d on E is a mapping ( x ,  y )  - d(x, y )  from 
E x E into the nonnegative half real line R, with the following 
properties: 

( 1 )  d(x, y )  = 0 if and only if x = y (two points with zero distance are 
identical) ; 

(2)  d(x, y )  = d(y, x )  for all x ,  y E E (the distance is a symmetric 
function) ; 

(3 )  d(x, z )  < d(x, y )  + d(y ,  z )  for all x ,  y ,  z E E (triangular in- 
equality). 

T o  say then that the topology of E is defined by the metric d means that, 
for every x E E, the sets 

B, (4  = { y  E E;  4% r) < PI, P > 0, 

form a basis of neighborhoods of x. The  metric d is said to be translation 
invariant if the following condition is verified: 

(4) 

Property (4) is equivalent with saying that, for all x E E and all p > 0, 

d(x, y )  = d(x + x, y + x) for all x, y ,  z E E. 

B, (4  = B,(O) + x, 

or that, for all pairs of points x,  y E El 

4% r) = d(x - y ,  0). 
70 
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The  following can be proved: in any metrizable TVS E, there is a 
translation invariant metric which dejnes the topology of E. 

Note that a norm on a vector space E defines a metric on E. If we 
denote the norm by 1 1  (I, the metric is simply ( x ,  y )  - 1 1  x - y 11. But, as 
we shall see, it is not true that the topology of a metrizable .space can 
always be defined by a norm. 

PROPOSITION 8.1. Let E be a locally convex metrizable TVS, and 
{ p ,  , p ,  ,...} a nondecreasing countable basis of continuous seminorms on E. 
Let {al , a, ,....} be a sequence of numbers > 0, such that 

+m c a, < +a. 
j=1 

Then the following function on E x E, 

+W 

(x, Y )  - 4 x 9  Y )  = c aj P& - r>m + P A X  - Y>l? 
j=1 

is a translation invariant metric on E which defines the topology of E. 

Proof. Let us first observe that, if E is a locally convex metrizable TVS, 
then there certainly exists a countable basis of continuous seminorms 
which is nondecreasing, meaning by this that, for all n = 1 ,  2, ..., and 
all x E E, 

P&> G P n + 1 ( 4 .  

Indeed, there is a countable basis of neighborhoods of 0 in E, Ul , U, ,..., 
U, ,... . Since E is locally convex, each U, contains a barrel, and we may 
therefore assume that each U, is itself a barrel. We may then take 

V, = U, n O-, n ... n U, ,... , V ,  = U, , V ,  = U ,  n U, ,... 

as a basis of neighborhoods of zero. Each V,  is a barrel, and we have 
V,,, C V ,  . If we call p ,  the seminorm whose closed unit semiball is 
V,, we obtain a basis of continuous seminorms on E such that 

p ,  < pnfl .  Furthermore, as the space E is HausdorfT, we must have 
+m n Kerp, = 0. 

This implies immediately that d(x, y )  = 0 if and only if x = y .  That 
d(x, y )  = d(y,  x )  is evident. We must therefore check the triangular 
inequality: 

n=0 

d (x ,  z)  < d(x ,  y )  + d(y ,  z)  for all x, y ,  z E E.  
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This will follow if we prove, for eachj ,  that 

Taking then u = x - y ,  ZI = y - z yields easily the desired result. As 
we know that 

P , ( U  + .) < P , ( 4  + PA.), 

what we have really to prove is that if a, b, c are three nonnegative 
numbers and if 

then 

If c or a + b are equal to zero, there is nothing to prove so that we may 
assume that none of these two numbers is equal to zero. Then (8.1) is 
equivalent with 

(a  + b)-l < l/c, 

which implies 

(1 + l/c)-1 < (1 + l/(a + b))-l = ./(l + a + b) + b/(l  + a + b).  

The  left-hand side is c/(  1 + c); the right-hand side is obviously at most 
equal to 

4 1  + a) + b/( l  + b),  

whence (8.2). This proves that d is indeed a metric. That  it is translation 
invariant is obvious on the definition. What is left to prove is that the 
topology defined by the metric d is identical with the topology initially 
given on E or, which is the same, the topology defined by the seminorms 
p, . We must show that every set 

contains some set of the form x + hVn , where h is > 0 and V ,  is the 
closed unit semiball of the seminorm p ,  , and conversely that every set 
x + V,  contains some B,(x). Because of the translation invariant 
character of d, we may of course assume x = 0. 
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Since the series of positive numbers, x:j’=”1 aj , converges, we may find 
an integerj(p) 2 1 such that 

aj < p/2. 
i=i ( D )  

As the sequence (p, , p ,  ,..., p ,  ,... } is nondecreasing, we have 

Let us denote by A the sum of the series CJ=y aj , If the point x belongs 
to the set 

we have 
(P/24vi(p) = (Y E E;  Pi(p)(Y) d P / 2 4  

i ( p )  +m 

j=1 i=j (p)+l  
4 x 9  0) = c %P,(.)/(1 + P j ( X ) )  + c %Pi(x) / (1  +Ph% < P 

by combining (8.3) and (8.4). This shows that (p/2A)Vj(,) C B,(O). 

every number a, is > 0. In view of this fact, we have 
In order to prove the result in the other direction, we use the fact that 

pi(.) < a i l  d(x ,  0) (1 + pi(.)) for all j = 1,2, ... and all x E E.  

If we therefore impose upon x the condition 

4% 0) < 4, 

Pi(%) < 1- 

&j,2(o) c vi * 

we see that 

In other words, 

The proof of Proposition 8.1 is complete. 

Exercises 

Let d(x, y )  be the metric on E defined in Proposition 8.1. 

8.1. Prove that, for all x, y E E, 

4 x  + Y ,  0) < 4% 0) + 4 Y ,  0). 

Is that true of any translation invariant metric ? 

8.2. Prove that the nonnegative function x -.., d(x, 0) is not a seminorm on E. 
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We go back now to the general case of a metrizable, not necessarily 
locally convex, TVS E. We shall prove three well-known results in the 
theory of metric spaces. 

PROPOSITION 8.2. A subset K of a metrizable space E is complete i f  and 
only i f  every Cauchy sequence in K converges to a point of K. 

In  other words, in metrizable spaces, sequentially complete implies 
complete. 

Proof. That every Cauchy sequence should converge in a complete set, 
we already know. We must prove that, if E has a countable basis of 
neighborhoods of zero, U ,  , U2 ,..., U,  ,..., and if K is sequentially 
complete, any Cauchy filter 9- in K converges in K. T o  every 
n = 1,2, ..., there is a subset M ,  of K which belongs to .% and which is 
such that M ,  - M ,  C U, . Noting that no finite intersection of the sets 
M, can be empty, since these sets belong to the same filter 9, we may 
choose for each n a point x, in the set M ,  n M2 n n M ,  . I t  is 
obvious that the sequence of points xl, x2 ,..., x, ,... is a Cauchy 
sequence and therefore converges to some point x of K. Let us show 
that the filter .F converges also to  x. Let n be any integer 2 1, and choose 
k such that uk + uk c u,; then choose h 2 k so that xh E uk + x. 
As we have xh E Mk , we may write 

M ,  c u, + xh c u, + u, + x c u, + x. Q.E.D. 

PROPOSITION 8.3. 
has the property: 

A complete metrizable TVS E is a Baire space, i.e., 

(B) The union of any countable family of closed sets, none of which has 
interior points, has no interior points. 

Remarks. 1. The  union of a sequence of closed sets is not a closed set, 
in general. 

T h e  closure of the union of a sequence of closed sets may have 
interior points even if the space E is a Bake space: take for E the real 
line, with its usual topology; every point is closed, The  set of rational 
numbers Q is the union of a countable family of closed sets without 
interior points (the rational numbers); it has no interior point, but its 
closure is the entire real line. 

By going to the complements, Property (B) can be stated in the 
following equivalent manner: 

The intersection of any countable family of everywhere dense open 
sets is  an everywhere dense set. 

2. 

3. 

(B') 
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Indeed, the complement of a closed set without interior points is an 
everywhere dense open set. 

There exist complete TVS which are not Baire spaces. The  
so-called LF-spaces will provide us with examples of such TVS. 

There exist Baire spaces which are not metrizable, and metrizable 
spaces (of course, noncomplete) which are not Baire spaces. There exist 
noncomplete metrizable spaces which are Baire spaces. 

Proof of Proposition 8.3. We shall prove that Property (B') holds in a 
complete metrizable space. Let 52, , 52, ,..., 52, ,... be a sequence of dense 
open subsets of E. We must show that their intersection, which we 
denote by A,  intersects every open subset of E (this means indeed that 
A is dense, since every neighborhood of every point contains some open 
set, hence some point of A). Let 52 be an arbitrary open subset of E. 
We are going to show that A n 52 # 0. Let U , ,  U ,  ,..., u k  ,... be a 
(countable) basis of neighborhoods of 0 in E; we may take all the sets 
U, closed. Observe that 52 n 52, is nonempty. As it is open, it contains 
some set of the form x1 + Ukl ;  let us call G, the interior of the latter set. 
As Q, is an everywhere dense set and as GI is a nonempty open set, 
G, n Q, contains some set of the form x, + u k ,  . Choosing k, > k, , 
we call G, the interior of the set x, + U,, . Proceeding in the indicated 
way, we define step by step a sequence G, , G, ,..., G, of open sets such 
that, for each I ,  G, C 52 n 52,; furthermore, GI+,  C G ,  and G, C x, + uk,, 
which implies G, - G, C Uk, - Uk, (we have also k, 3 I ) .  Thus the 
family of sets G,, G, ,..., G, ,... forms the basis of a Cauchy filter, 
which has a limit point x. Of course, we have then x E G, for all I ,  
which implies 

4. 

5.  

oc m 

E n Cl  c a n n a, = A n a. Q.E.D. 
1=1 1=1 

The  third statement is the following well-known criterion of 
compactness in metrizable spaces. In  the general case, we know that a 
set K is compact if and only if every filter on K has an accumulation point 
(Proposition 6.4). By making use of the criterion of precompactness 
already proved (Proposition 6.9), we may prove the following: 

PROPOSITION 8.4. In a metrizable TVS E,  a set K is compact if and only 
;f every sequence in K has an accumulation point (in K ) .  

Proof. The  necessity of the condition is true even in the absence of 
metrizability (Corollary 3 of Proposition 6.8). We must prove the 
sufficiency. In  view of the general properties of precompact sets (see 
Definition 6.3), it is enough to show that it implies that K is complete 
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and precompact. The completeness follows from Proposition 8.2 and 
from the fact that, if a Cauchy sequence has an accumulation point, it 
converges to it (Proposition 5.1, Proposition 6.7). As for the precom- 
pactness, we show that, if every sequence in K has an accumulation 
point, then Property (b) in Proposition 6.9 holds. Suppose it did not 
hold. Then there would exist a neighborhood V of 0 such that there is 
no finite covering of K by sets of the form x + V, x E K. Choose then 
any point x1 of K; since x1 + V does not cover K, there is some point 
x2 E K,  x2 4 x1 + V. Since K 6 (xl + V) u (x2 + V), there is a third 
point X ~ E  K which does not belong to this union, etc. We construct 
thus, by induction, a sequence xl, x2 ,..., x, ,... such that, given any 
integers n, m, we have x, - x,+ V (supposing, which we might, that 
V = - V). The sequence {xn> could certainly not have an accumulation 

Another useful property of metrizable spaces is the equivalence of 
continuity with sequential continuity. In the statements below, the 
mappings f are not supposed to be linear. 
Dejnition 8.1. A mapping f of zz topological space E into a topological 
space F is said to be sequentially continuous i f ,  for every sequence (x,} 
which converges to a point x in E, the sequence { f (xn)}  converges to f (x) in F.  

PROPOSITION 8.5. A mapping f (not necessarily linear) of a metrizable 
TVS E into a TVS F (not necessarily metrizable) is continuous if and 
only if it is sequentially continuous. 

Proof. If f is continuous, it is obviously sequentially continuous. 
Suppose, then, E to be metrizable. We show that a function f : E -P F 
which is not continuous cannot be sequentially continuous. As f is not 
continuous, there is a point xo of E and a neighborhood V off (xo) in F 
such that f -l(V) is not a neighborhood of xo in E. Let U, 3 U2 3 * * -  

3 U ,  . e m  be a countable basis of neighborhoods of zero in E. For each 
n = 1, 2, ..., we can find a point x, E U, + xo which does not belong to 
f-'(V); if we could not find such a point it would mean that U, + 
xo C f-'(V), and therefore that f-l( V) is a neighborhood of xo . As we 
have f ( x n )  4 V for all n, the sequence { f ( x n ) )  does not converge to f ( x o )  
in F. But the sequence {xn} does converge to xo in E. Therefore f is not 

point. Q.E.D. 

sequentially continuous. Q.E.D. 

Exercises 

Let d be a metric on a TVS E defining the topology of E. One defines the distance of 
a point x to a subset A of E as the nonnegative number 

d(x, A) = inf d(s, y). 
YEA 
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8.3. 

8.4. 

Prove that d(x, A) = 0 if and only if x belongs to the closure of A. 

Let N be a closed vector subspace of E, and .# the canonical mapping of E onto 
E / N .  Prove that the function on (EIN) x (EIN), 

d( i ,  j) = inf . d(x, +-1(j)), 
#ptxl=x 

is a metric on E,”. 

8.5. By using Theorem 5.1 and Exercise 5.1 prove that there is a unique metric d 
on the completion B of E which extends the metric d. 

8.6. W’e use the same notation as in Exercise 8.4. Let 4 : 8 + (E/N)^ be the canonical 
extension of the mapping 4 (Theorem 5.1). Let fi be the closure of N in l?. 

Prove that &$) = 0 if and only if d($, 8) = 0. Derive from this that there is a canonical 
isomorphism of B/fi onto (.!?IN)^ and that this isomorphism transforms the quotient 
metric constructed out of d(Exercise 8.4) into the extension (Exercise 8.5)  of the quotient 
metric don  E / N  (Exercise 8.4). 

8.7. Prove the following statements: 

PROPOSITION 8.6. 
S if and only ;f S contains a subsequence which converges to x. 

COROLLARY. 
in K contains a subsequence which converges in K .  

In a metrizable TVS E a point x is an accumulation point of a sequence 

A subset K of a metrizable TVS E is compact ;f and only if every sequence 



9 
Finite Dimensional Hausdorff 

Topological Vector Spaces. 
Linear Subspaces with Finite 

Codimension. Hyperplanes 

Let E be a vector space over the field of complex numbers, C. There 
is equivalence between the following two properties: 

(a) E is finite dimensional; 

(b) there is an integer n 3 0 such that there exists a one-to-one linear 
map of E onto Cn. 

Indeed, (a) means that there is some integer n’ 0 such that there does 
not exist, in E, any linearly independent set of n’ + 1 vectors. The 
number n in (b) can then be taken as the smallest of those numbers n’. 
There exist then, in E, linearly independent sets consisting of exactly n 
vectors; any such set spans the whole space E, hence constitutes a basis. 
Let (el, e2 ,..., en) be a basis of E. Given any vector x E E we can write 

where the “components” xi of x are uniquely determined complex 
numbers. This can be precisely expressed by saying that the mapping 
x - (XI ,..., xn) is an isomorphism (in the linear sense) of E onto C”. 
Then n is called the dimension of E; we shall denote it by dim E. If E is 
not finite dimensional, we say that it is infinite dimensional. 

We are going to show that if a finite dimensional TVS E is HausdorfT, 
then its structure is the usual one, meaning by this that there exists an 
isomorphism (for the TVS structure) of E onto CdimE. The isomorphism 
is in fact any one of the mappings x - (XI ,..., xn) considered above. 

78 
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THEOREM 9.1. Let E be a finite dimensional Hausdorff TVS.  Then: 

(a) E is isomorphic, as a TVS,  t.0 Cd, where d = dim E. Moreprecisely, 
given any basis (el ,..., e,) in E, the mapping 

Cd 3 (xl, ..., x d )  -- xle, + ... + xded 

is an isomorphism, for the T V S  structure, of Cd onto E. 
Every linear functional on E is continuous. 

Every linear map of E into any T V S  F is continuoas. 
(b) 
(c) 

Proof. Observe that (9.1) is always continuous. Indeed, if all the 
“coordinates” xi converge to zero, then each vector xjej must converge 
to zero and also the sum of these vectors must converge to zero (continuity 
of multiplication by scalars and of vector addition). What has therefore 
to be proven is the continuity of the inverse of (9.1). 

As a first step, we prove this in dimension one, that is to say for d = 1. 
Let V be a balanced neighborhood of zero in E which does not contain 
Be,, where 0 is an arbitrary number >O. Such a neighborhood of zero 
V exists because E is Hausdofi. Let x be any vector in V; we have 
x = (el for some complex number 5. Suppose we have 1 6 I 3 8; then, 
since V is balanced and since I 015 I < 1, we would have 

(e/()x = Be, E V ,  contrary to our choice of V .  

Thus, for all x E V ,  we have I 5 I < 0 (if x = [e,). This means precisely 
that the linear functional x = (el - [ is continuous. So the bicontinuity 
of (9.1) is proved when d = 1. 

Property (b) is now trivial when d = 1. Indeed, i f f  is a linear form 
on the one-dimensional space E, let us select a vector xo in E such that 
f (xo )  = 1. This is always possible when f is nonidentically zero; if 
f = 0 there is nothing to prove. Then, if we write any vector x of E 
in the form x = f x o ,  we know that x - 5 is continuous. But 5 = f ( x ) .  

The next step is to prove (b) in dimension d > 1. We assume that we 
have proved both (a) and (b) in all dimensions <d - 1. Let J be an 
arbitrary linear functional on E (we assume dim E = d ) ,  nonidentically 
zero. Choose xo E E such that f ( x o )  = 1. Then, given any vector x E E, 
x - f (x)xo  belongs to Kerf. If we denote by 4 the canonical map of E 
onto its quotient E/Ker f, we see that 4(x) = f ( x )  4(x0),  in other words 
that 4(xo) spans E/Ker f. This simply means that E/Ker f is one- 
dimensional. Then the dimension of Kerf is <d (in fact, it is exactly 
d - 1). Since we suppose that we have proved (a) in all dimensions t d ,  
we conclude that Kerf is isomorphic to some space C”. In  particular, 
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Kerf is complete, hence closed in the HausdorfT TVS E. This implies 
that E/Ker f is Hausdorff (Proposition 4.5). Now let us look at the 
commutative diagram: 

E 

E/Ker f , 

The mapping 3 is a linear functional on the one-dimensional HausdorfT 
TVS EIKer f, therefore it is continuous. The canonical map q5 is always 
continuous, therefore f = f o q5 is continuous. 

We have proved (b) in dimension d.  I t  immediately implies (a) in 
dimension d.  Indeed, we know already that the mapping (9.1) is 
continuous. If x converges to zero in E, each one of its components 
converges to zero in C1 since they are linear functionals on E, therefore 
they are continuous. Thus (x’ ,..., xd) -+ 0 in Cd; this proves that the 
inverse of (9.1) is continuous. 

Property (c) is a trivial consequence of (b). Let el ,..., ed be a basis of 
E, and u a linear map of E into a TVS F. If bj = u(ej), j = 1 ,..., d,  the 
mapping u is the mapping 

d .  d 

x = xjej -. xib, 
i=l j=1 

As the forms x - xj are continuous, u is also continuous. Q.E.D. 

COROLLARY 1. Every finite dimensional Hausdor- TVS is complete. 

Indeed, a HausdorfF TVS E of dimension d < ,+a is a “copy” of Cd. 

COROLLARY 2. 
TVS is closed. 

Every finite dimensional linear subspace of a Hausdog 

I t  suffices to combine Corollary I with Proposition 5.3. 

Exercise 9.1. 
cpntinuous. 

Show that every seminorm on a finite dimensional Hausdorff TVS is 

In virtue of the Heine-Borel-Lebesgue theorem, the closures of 
bounded open subsets of Cd are compact; thus the origin, and con- 
sequently every point of a finite dimensional TVS, has a basis of 
neighborhoods consisting of compact sets. A topological space with 
such a property is said to be locally compact (this, for us, implies 
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Hausdo@. Locally compact spaces have remarkable properties. Locally 
compact groups have been the object of thorough and fruitful study and 
have provided a sound basis for a general theory of the Fourier trans- 
formation. One should like to know if locally compact TVS are also the 
receptacle of astounding properties. Indeed, they are! But these properties 
are nothing new to us, in view of the following theorem, due to F. Riesz: 

THEOREM 9.2. 

Proof. Let E be a locally compact TVS, and K a compact neighborhood 
of 0 in E. Since K contains a closed balanced neighborhood of zero and 
since a closed subset of a compact set is compact, we may assume that K 
is balanced. On the other hand, as K is compact and as &K is a neighbor- 
hood of zero, there is a finite family of points x, ,..., x, such that 
K C (x, + +K) u u (x, + +K). Let M be the linear subspace 
spanned by x, ,..., x,; dim M is finite, hence M is closed in E. The 
quotient space is Hausdorff; let + be the canonical homomorphism 
E + E / M ;  as we have K C  M + #K, we have $(K)  C &5(K), i.e., 
2+(K) C $(K).  By iteration, we see that 

4(2nw c W). 
As K is balanced, we have E = (J:=02nK. Thus +(E) = E / M C $ ( K ) .  
But + being continuous and E/M being HausdorfT (Proposition 4.3, 
$(K)  is compact. Thus E/M is a Hausdorff TVS which is compact; it 
must be of zero dimension, i.e., reduced to one point. Otherwise E / M  
would contain a subset of the form Re with e E EIM, e # 0; such a 
subset, necessarily closed, would be compact. But the real line is 
certainly not compact! 

We shall now take a look at linear subspaces of a TVS E which are of 
finite codimension. We recall that the codimension of a linear subspace M 
of a vector space E is the dimension of the quotient space EIM. We also 
recall the following definition: 

Definition 9.1. A linear subspace of codimension one is called a hyperplane. 

Let M be a linear subspace of a vector space E of codimension 
n < +a. Consider the canonical map $ : E + E/M.  If b, ,..., b, is a 
basis of the quotient space E/M,  we can lift it into a linear independent 
set of n vectors in E, e, ,..., en . Let N be the linear subspace of E spanned 
by e, ,..., en . We claim that 

A locally compact TVS is finite dimensional. 

(9.2) E = M @ N ,  

where the symbol 0 stand for direct sum: (9.2) means that every vector x 
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of E can be written x = y + x with y E M, x E N, and that this decom- 
position is unique, in other words that the intersection of M and N is 
the set consisting of a single point, the origin. Let us prove that (9.2) 
indeed holds. If x = 2 xie, E N belongs also to M, we have 

which is possible only if every xi is equal to zero. This means that 

M n N = (0). 

Let x E E be arbitrary. We have, for some numbers x1 )...) xn , 

+(x) = c xibi , 
hence 

+ (x - c = 0, i.e., x - c xiei E M .  

This shows that 
E C M + N (vector addition). Q.E.D. 

From what we have just said, it follows that, if H is a hyperplane of 
a vector space E, we have 

(9.3) E = H @ N ,  

where dim N = 1, i.e., N is a "line" (in a complex vector space, one 
should rather say that N is a plane, since it is a copy of the complex 
plane; but the general agreement is that one-dimensional linear subspaces 
are called lines). 

Of course, (9.2) implies that E / M  is isomorphic to N, as the student 
can easily check (isomorphic means here isomorphic for the vector space 
structure: there is no topology!). Thus if E is the direct sum of its 
subspace M and of a subspace N of finite dimension, M is of finite 
codimension, exactly equal to the dimension of N. In particular, if we 
have (9.3) and if we know that dim N = 1, we know that H is a hyper- 
plane. 

PROPOSITION 9.1. 
proper linear subspace of E. 

A hyperplane H in a vector space E is a maximal 

Trivial (that H is proper means that H # E) .  

PROPOSITION 9.2. 
dense or it is closed. 

A hyperplane H in a TVS E either is everywhere 
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Indeed, the closure I? of H is a linear subspace of E (the closure of 
any linear subspace is a linear subspace), and, according to Propo- 
sition 9.1, we must have either R = E or R = H. 

PROPOSITION 9.3. Let E be a TVS, and M a closed linear subspace of E 
of finite codimension. Then there is a homomorphism p of E.onto M such 
that p 2  = p .  W e  have E = M 0 Ker p .  

A linear mapping p of a vector space E into itself such that p 2  = p ,  
i.e., such that p(p (x ) )  = p ( x )  for all x E E, is called a projection. As 
immediately seen, usual projection in finite dimensional vector spaces 
enters in that category. The important part, in the statement above, is 
that p be a homomorphism, which means both continuous and open. 

Proof of Proposition 9.3. Let b, ,..., b, be a basis of E/M,  which is 
Hausdod since M is closed. Choose n vectors e, ,..., en in E such that 
4(ei)  = bi for eachj = 1, ..., n (4 is the canonical map of E onto EIM).  This 
defines a mapping of EIM onto the vector subspace N of E spanned by 
the ei’s: 

(9.4) 

We know that this mapping is continuous (Theorem 9.1(c)). It is open 
for we know that its inverse is continuous: its inverse is the restriction 
of 4 to N. As the ei’s must obviously be linearly independent, (9.4) is an 
isomorphism of E/M onto N. Let us call q the compose of 4 by (9.4): 
it is a homomorphism of E onto N. The student may check that the 
mapping 

p = I  - q, I: identity map of E, 

from E into itself, is a homomorphism of E onto M such that p 2  = p .  
We have N = Ker p ,  whence Proposition 9.3. 

Exercises 

9.2. Let E be a vector space, and p a linear map of E into itself such that p2 = p .  Let I 
be the identity mapping of E. Prove that I - p is also a projection (i.e., ( I  - p)* = I - p) 
and that 

E = Kerp @ Ker(I - p )  = Imp @ Im(I - p) 
(where @ means the algebraic direct sum). 

9.3. 
is open. 

Let E be a HausdorfT TVS, and p a continuous projection of E. Prove that p 

Remarks. 1. Let E be a TVS, and M a linear subspace of E. Even 
assuming that M is closed, it is not true, in general, that there is a 
continuous projection p of E onto M. 
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2. Let E be a TVS, and A, B two closed linear subspaces of E. 
Suppose that E is the direct sum of A and B, in the algebraic sense: 
that E = A + B and that A n B = (O}, which we have denoted by 
E = A @ B. It is not true in general that there is a continuous projection 
p of E onto A. One says that E is the topological direct sum of A and B if 
the mapping 

( % Y )  - X  f r  
from A x B into E, is one-to-one, onto and continuous both ways. 
Because of the continuity of vector addition, if x and y converge to 
zero in A and B, respectively (for the topologies induced by E), their 
sum x + y also converges to zero. I t  is the converse, in the above 
definition, that is the nontrivial part: if x + y converges to zero, both x 
and y must converge to zero. If E (supposed to be Hausdorf€) is the 
topological direct sum of two linear subspaces A and B, they are 
automatically closed in E. Then, of course, E / A  is isomorphic (for the 
TVS structures) with B. 

Exercises 

9.4. Prove the following proposition: 

PROPOSITION 9.4. Let E be a vector space, and f a linear functional on E nonidentically zero. 
Then Kerf is a hyperplane of E. 

Conversely, given any hyperplane H of E, there is a linear form on E, f ,  such that H = Kerf. 
Any other linear form g on E such that H = Kerg is of the form hf, where h is a complex 
number. 

Let E be a Hausdorff TVS, H a  hyperplane of E, f a linear form on E having H a s  kernel. 
Then the following properties are equivalent: 

(a) H is closed; 
(b) f is continuous. 

9.5. Let E be a Hausdorff TVS, and A *  a subset of the algebraic dual E* of E with 
the property that, for every x E E, x # 0, there is a* E A *  such that <a*, x> # 0. Prove 
that, if there is a finite number of elements of A * ,  a: ,..., a:, such that the hyperplanes 

{x E E;  <a:, x> = O}, j = 1 ,..., r, 

have an intersection reduced to {0}, then dim E < r. 

9.6. Let E be a normed space (the norm in E is denoted by [I 11). Let S be the unit 
sphere of E, S = {x E E; / I  x I /  = 1). Let E' be the dual of E, that is to say the vector 
space of continuous linear forms on E. The student is asked to admit the following result 
(which is a consequence of the Hahn-Banach theorem to be proved later on; see Theorem 
17. 1): for every x E E, x # 0, there is x' E E' such that <x', x> # 0. 

Prove that the intersection of all the closed sets S n H, where H ranges over the family 
of all closed hyperplanes of E, is empty. Derive from this the fact that, if E is locally 
compact, it must be finite dimensional (use Exercise 9.5). 



Frkchet Spaces. Examples 

A Frkchet space (or, in short, an F-space) is a TVS with the following 

(a) it is metrizable (in particular, it is HausdorfT); 
(b) it is complete (hence a Baire space, in view of Proposition 8.3); 
(c) it is locally convex (hence it carries a metric d of the type con- 

sidered in Proposition 8.1). 
Any closed subspace of an F-space is an F-space(for the induced topology). 
Any  product of two F-spaces is an F-space. 
Thequotient of an F-space modulo a closed subspace isan F-space. (Combine 

Proposition 7.9 with Exercise 8.6). HausdorfT finite dimensional TVS 
(cf. Chapter 9), Hilbert spaces, and Banach spaces (see later on) are 
F-spaces. We shall now look at some other examples of F-spaces which 
are very important in Analysis and which do not enter in any of the 
latter categories (i.e., which are not Banach spaces). 

three properties: 

Example I. 
The Space of Vk Functions in an Open Subset SZ of Rn 

We must list the notations which we are going to  use. The  variable 
in R” will be denoted by x = (x, ,..., x,), f = (t1 ,..., f n ) ,  etc. The  
first-order partial differentiations with respect to the variables xi’s, will 
be denoted by alax, , j = 1, ..., n. We shall use, as differentiation indices, 
vectors p = ( p ,  ,..., pm),  with nonnegative integers as components, 
p ,  ,..., p ,  , what we shall systematically call n-tuples, and thus we shall 

We shall denote by I p I the “length” of the n-tuple p ,  i.e., 
IP I = P I +  --. +P,. 

(This length I p I is the norm denoted by I p 1, in p. 59.) The  length 
I p I is the order of the differentiation operator (a laxp .  

85 
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We shall be dealing with complex-valued functions 4 ( x )  of the variables 
x = (xl ,..., x,J, defined in some open subset 52 of R"; f2 will remain 
fixed throughout the forthcoming description. A complex function f, 
defined in f2, is said to be a V k  function, k being a nonnegative integer, 
if it is continuous and, when k >, 1, if all the derivatives off of order <k 
exist (at every point of Q) and are continuous functions in Q. One also 
says that f is a k-times continuously dzrerentiable function. Any V k  
function is a Vk-I function (for k >, 1). A function f in SZ is said to be a 
V" function if it is a V k  function for all integers k = 0, 1, 2, ... . A Vm 
function is also called an infinitely dzjferentiable function. The V k  
functions in 52 (0 < k < +a) form a vector space over the field of 
complex numbers, which we shall denote by Vk(f2). We shall now put a 
structure of topological space on Wk(52) which will turn it into a F-space. 
As it is going to be a locally convex space, it suffices to define a basis of 
continuous seminorms (Definition 7.7). We shall choose the following 
seminorms: 

We must say what m and K are. First of all, K is any compact subset of 52 
(we recall that a compact set in R" is a closed and bounded subset of R"; 
a compact subset of 52 is a compact subset of Rn contained in 52). Observe 
that a continuous function is always bounded on a compact set. Thus, 
i f f  is a V k  function and if m is an integer <k,  the quantities I f  I m , K  
are finite. Thus, if k is finite, we take m = k ;  if k is infinite, we take m 
varying over the sequence of positive integers. 

We shall provide Uk(f2) with the topology defined by the seminorms 

f- 1 f l m . K .  

This topology is often referred to as the V k  topology, or as the topology 
of uniform convergence on compact subsets of the functions and of their 
derivatives of order <k (of order \<k is dropped when k = +a). The 
last phrase obviously describes the kind of convergence which is defined 
by the seminorms 1 I n L , K .  The Vk topology turns Vk(In) into a locally 
convex space. (This LC-space is evidently Hausdo& since 1 f = 0 
for all compact subsets K of SZ means in particular that I f  l o , { x )  = 
I f(x)l  = 0 for all points x of In.) The next step consists of showing that 
the topology just defined on Uk(f2) is metrizable or, what amounts to 
the same, that there is a basis of continuous seminorms which is countable. 
In  order to show this, let us first observe that, if m' >, m, K' 3 K, we have 

I f  Im8.K' t I f 1m.K * 
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It will therefore suffice to show that there is a sequence of compact subsets 
of Q, K,, K,  ,..., K,  ,..., such that to every compact subset of Q there 
is an integer j such that K C K j  . For then we will have 

l f I m . K <  l f l m , K ,  

for all Vm functions f .  As the I I n , , K  formed a basis of continuous semi- 
norms in Vk(Q) when m = k < +co and when k = +m for m = I ?  2, ..., 
the same will be true of the j I m , K , ,  and the latter form a countable 
family. 

LEMMA 10.1. Let Q be an open subset of Rn. There is a sequence of 
comjact subsets K ,  , K, ,..., K, ,... of Q with the following two properties: 

(a) 
(b) 

Proof. 

For each j = 1, 2, ..., K, is contained in the interior of K,+l . 
The union of the sets K j  is equal to Q. 

If Q = Rn, we take 

K j  = B j  = { X  E R"; 1 x 1 < j } ,  

where I x I is the Euclidean norm on Rn. If Q # Rn, let us call A j  the 
set of points of Q at a distance from the boundary of Q which is 210. 
The  set A, is a closed set, and A, is contained in the interior of A,+l . 
But of course the A j  are not bounded, in general, therefore they will 
not be compact. We take K, = Aj n Bj . I t  is easily seen that the K, 
have all the properties which we require from them. 

Thus the space Vk(SZ) is metrizable; we must now show that it is 
complete. It suffices to show that it is sequentially complete (Proposi- 
tion 8.2). Let f i  , f, ,..., f v  ,... be a Cauchy sequence in Vk(Q). In  order 
to prove that the functions f j ' s  converge to a function f E Vk(Q), we 
use the following three facts: 

(10.1) 
(10.2) 

The complex plane is complete. 
Let A be a subset of R", and g, ,g, ,..., g, ,... a sequence of 
continuous functions in A,  converging uniformly to a function 
g on A. Then g is continuous in A. 

Let A be an open subset of Rn, and g, , g, ,..., gv ,... a sequence of 
El functions in A. We assume that the g, converge uniformly in A 
to a function g, and that their first derivatives afv/axj (which are 
continuous functions in A )  converge uniformly to a function g( j )  
( j  = 1 ,..., n). Then we have, for all j ,  

(10.3) 

g(J) = aglaxj; 
in particular, g is W. 
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We suppose that the student is familiar with (10.1) (observe that 
complete, in this statement, is equivalent with sequentially complete!). 
He should also be familiar with Facts (10.2) and (10.3), but we shall 
nevertheless recall rapidly how they are proved. 

Proof of (10.2). Let xo be an arbitrary point of A. We should prove 
that to every E > 0 there is 7 > 0 such that I x - xo I < q (x E A) 
implies I f ( x )  - f(xo)I < E .  We have now the "three-epsilon" argument: 

(10.4) If(.) -f(xo)I < If(.) -fn(x)l + lfn(x) -fn(xo)l + Ifn(x0) -f(xo)I- 

We use the uniform convergence in choosing n large enough so as to 
have, for ally  E A ,  1 f ( y )  - f,(y)I < E .  Once n is chosen, and kept fixed, 
we use the continuity off,: it enables us to choose 6 > 0 so that 
I x - xo 1 < 6 implies I f,(x) - fn(xo)l < E .  The point y ,  above, is then 
taken to be any point in the set 

{X E A ;  I x - XO 1 < S}. 

Taking all the properties into account in (10.4), we obtain 

If(.) -f(xo)I < 3~ if I x - xo 1 < S. 

Proof of (10.3). We shall do the reasoning in the case of one variable 
x = xl. The extension to n variables, quite automatic, is left to the 
student. We may then assume that A is some open interval and we pick 
up any point of this interval, say a. We have then 

where g:  is the first derivative of g., and where 
taken in the usual way, which is to say that, if x 

Z"(4 - g , ( 4  = -Ia gXt) dt- 

the integral has to be 
< a, then 

At any event, the g: converge uniformly in A to the function gel), hence 
J,"g:(t) dt converges to J,"g( l ) ( t )  dt (observe that g ( l )  is a continuous 
function in view of (10.2)). On the other hand, the g, converge uniformly 
in A. Therefore, because of (l0.5), we must have 

g(x) - g(.) = SZg"'(t) dt. 
a 

But this simply means that g ( l )  is the derivative of g. 
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We return then to the completeness of Uk(Q). Because of the definition 
of the topology of Uk(Q), for each x EQ, the numbers f v ( x )  form a 
Cauchy sequence in the complex plane. Indeed, we know that, given 
any integer m ,< k and any compact subset K of Q, to every E > 0 
there is an N ( E )  such that 

v, P 2 N(E)  implies I f v  -f, L.K < E. 

It suffices to take m = 0 and K = {x} to draw the conclusion which we 
stated. From (lO.l), it follows that the complex numbers fy(x) have a 
limit, which we denote byf(x). Obviously x - f ( x )  is a function in Q, 
and it is immediately seen that the functions f y ( x )  converge uniformly 
to f in every compact subset of Q. By taking this subset identical with a 
suitable neighborhood of any point of Q, we conclude (by (10.2)) that f 
is a continuous function in 52. If k = 0, this finishes the argument. If 
k > 0, observe that since the f v  form a Cauchy sequence in Vk(sZ), the 
first derivatives 

af,lax, (1 < j < n) 
form, for each j, a Cauchy sequence in Vk-l(Q). Suppose k < +m. 
Then induction on k allows us to conclude that, for each j, the afJax,. 
converge to a Vk-l function, which, by (10.3), must be the derivative off 
with respect to xi . If k = +co, we have just shown that thef, converge 
in "(Q) to the element f of Uh(Q), whatever be the integer h, which 
means precisely that the fv converge to f in Um(sZ). 

The last phrase is related to the fact that the topology of Vm(Q) is 
exactly the superior limit of the topologies induced by the Uk(sZ): a 
subset U of Vm(Q) is a neighborhood of zero for the Vm topology if and 
only if there exists someJinite integer k such that U be a neighborhood 
of zero for the topology induced on Vm(Q) by Vk(Q) (in other words, 
for the V k  topology on Vm(Q)). 

Example 11. 
The Space of Holomorphic Functions in an Open Subset 52 of C" 

Let now 52 be an open subset of the complex space C". The variable 
in C" will be denoted by z = (zl ,..., zn). For each j = 1 ,..., n, we have 
zi = xi + iyj , i = (- 1)ll2. We denote by H(Q) the vector space of 
holomorphic functions in 52. Let h be a V1 function in Q (Vl in the sense 
discussed in Example I, which has a meaning if we identify C" to the 
real vector space R2% by way of the mapping 

z = (z1 ,-.., z,) - (X,Y) = (x1 >*.., ,Y1 ,.-, m). 
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Then Q becomes an open subset of R2n; thus V1 means that h has first 
continuous derivatives with respect to the xi's and the yk's).. We say that 
h is holomorphic if it satisfies the Cauchy-Riemann equations 

ah . ah -++-=o,  j =  1 ,..., n, ax$ ay, 

in Q (i.e., at every point of 9). We remind the reader that this definition 
implies that the function h is infinitely differentiable in Q, and not 
just W. Let us write 

( a / a z ) p  = ( a / a z , ) p l  -.. (alaz,).., p = ( p ,  ,..., pn),  

where each differential operator alazj is defined by 

a f ( x , y ) = -  - ( X , Y ) - t - ( % Y ) ) .  . af 
az, 2 Y a f  ax, aY, 

We recall how the Cauchy formulas read. Let z0 be any point of Q, 
XO = (2; ,..., 2:). Consider the polydisk: 

D(Y, ,..., I,) = {z E C"; I zj - z; I < Y, , j = 1 ,...) n}. 

Suppose that it is contained in Q. Then, if h is holomorphic in 9, for 
each p = (p, ,..., p,) we have 

where each integral represents usual complex integration (in the complex 
plane). Cauchy's formula has the immediate consequence that if a sequence 
of holomorphic functions in Q converges uniformly on every compact 
subset of Q, then their derivatives of any order also converge uniformly 
on every compact subset of Q. From the Cauchy-Riemann equations 
it follows that, if a function h is holomorphic in 52, 

Thus, if we view H(Q) as a vector subspace of any one of the spaces 
P(Q), which we may since its elements are Vm, we see that the induced 
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topologies all coincide. Indeed, this is true for the least fine and for the 
finest of them, the Vo and the V“ topologies, respectively: as far as 
holomorphic functions are concerned, it amounts to the same to say that 
a sequence of functions converges uniformly on every compact subset of 
52 or that the functions and all their derivatives converge uniformly on the 
compact subsets of 52. 

We shall provide H(52) with this topology. Observe that H(Q) is a 
linear subspace of W“(Q), and carries the induced topology. It is obvious 
that H(Q) is a closed subspace of V“(52). Indeed, if a sequence of 
holomorphic functions converges in Ww(52) or, for that matter, in V1(Q), 
to a function f, the latter is, needless to say, a V“ function in 52 and 
satisfies the Cauchy-Riemann equations since its first derivatives are 
limits (for the uniform convergence on compact subsets) of the cor- 
responding derivatives of functions which do satisfy those equations. 
As a closed subspace of a F-space, H(Q) is itself an F-space. 

Example 111. 
The Space of Formal Power Series in n Indeterminates 

Let us denote by C [ [ X ,  ,..., X,] ] ,  or shortly by C [ [ X ] ] ,  the vector 
space of formal power series in n letters X I  ,..., X , ,  with complex 
coefficients, that is to say the series 

(10.6) u = c U,X”, 

where the summation is performed over all the vectors p = ( p ,  ,..., pn) 
whose components are nonnegative integers (the set of all these vectors p 
will be denoted by Nn from now on). The coefficients up are complex 
numbers and Xp stands for the “monomial” 

No condition of convergence is imposed upon the series (10.6). One can 
view u as a sequence depending on n indices, p, ,...,p, , {up},  with no 
condition whatsoever on the complex numbers which constitute it. 

We provide C [ [ a ]  with the topology defined by the seminorms 

IuI , ,=sup  I u J ,  m = 0 , 1 ,  .... 

When n = 1, we have already considered this topology (Chapter 3, 
p. 28). Whatever n is, it is sometimes referred to as the topology of 

IPI C m  
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simple convergence of the coefficients. Provided with it, C[[XJ] is a 
locally convex metrizable space. We leave to the student the proof of its 
completeness (one has only to use Statement (10.1) above). Thus C[[XJ] 
is an F-space. 

We may put on the set N" of n-tuples p = ( p ,  ,..., pn) the discrete 
topology: a basis of neighborhoods of a point in N" consists of the 
point itself. A subset of N" is then compact if and only if it is finite 
(indeed, observe that every point is both open and closed and, for every 
subset of N", we have an open covering just by taking the family of its 
points, regarded as sets). A formal power series u may then be viewed as 
a function on Nn: to each p E Nn it assigns its pth coefficient, up . On a 
discrete space, every function is continuous and thus C[[XJ] may be 
regarded as the space of all functions, or of all continuous functions on 
N". The topology of simple convergence of the coefficients is then 
nothing else but the topology of pointwise convergence in N" or the 
one of uniform (!) convergence on the compact subsets of N". 

Example IV. 
The Space Y of WW Functions in R" Rapidly Decreasing at 

Infinity 

Our last example will be an important space in the theory of distri- 
butions, in connection with Fourier transformation. It is a space of V" 
functions in the whole of the Euclidean space Rn. The functional space in 
question is denoted by 9: its elements are the complex-valued functionsf, 
which are defined and infinitely differentiable in Rn, and which have the 
additional property, regulating their growth (or rather, their decrease) at 
infinity, that all their derivatives tend to zero at infinity, faster than any 
power of 1/1 x I. We use here the notation 

I x I = (xi + + x y ' z .  

This means that, given any element f of 9, any n-tuple p = 
( p ,  ,..., p,) E N", and any integer k 2 0, 

lim I x I k  I(a/ax)"f(x)l = 0. 
I X l + ~  

We equip Y with the topology defined by the seminorms 

m , k = 0 , 1 , 2  ,.... 

Of course, Y is metrizable. Observe that 9 is a vector subspace of 
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%“(R”) (for the linear structure), but that its topology is strictly finer 
than the one induced by V“. A sequence of functions fv E Y converges 
to zero in Y if and only if the functions 

(1 + I * I)k(a/a*)pf”(*) 

converge uniformly, in the whole of Rn, to zero-for every k = 0, 1, ... 
and every p E N”. In  particular, for each p ,  the derivatives 

( a/a*Pf” 
must converge uniformly in Rn to zero. It implies immediately that the fv 

must converge to zero in V“ . This enables us to show without difficulty 
that Y is complete. For a Cauchy sequence { f,,} in 9’ is a fortiori a 
Cauchy sequence in V”, hence converges (in V“) to a certain V“ 
function f. Choose then arbitrarily k and m. There is a constant Mm,k 
such that, for all v, 

(10.7) I f ”  1m.k < M m . k  * 

(This fact will soon be generalized when we prove that a Cauchy 
sequence in aTVS is a bounded set; the proof of this general statement 
duplicates the proof that we are about to give.) Indeed, we know that 
there is an integer N (depending on m and k) such that, for all v >, N, 

I f ”  - fN I7la.k < 1. 

This comes simply from the fact that we are dealing with a Cauchy 
sequence. We conclude that, for all v, 

I f ”  1rn.k < 1 + SUP If, 1rn.k 9 

1.. . ..N 

which proves exactly what we want. 
Now, observe that (10.7) can be expressed as follows: 

For every x E Rn, 

But we know that the derivatives (a /ax)P f,,(x) converge uniformly in 
Rn (therefore also pointwise in R”) to the corresponding derivative off, 
(a/&)pf. It follows that we must have, for all x E Rn, 
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This proves that f belongs indeed to Y (until now we only knew that f 
was a Vm function). The last step consists in proving that f v  converges 
to f in Y, and not just in V". We might as well exchange our initial 
sequence { f v }  with the sequence {fy -f}, which is obviously also a 
Cauchy sequence in 9, and suppose therefore that the limit function f 
is zero. We are reduced to proving the following fact: 

(10.8) If a Cauchy sequence { f v }  in .4p converges to zero in Vm(Rn), then 
it also converges to zero in 9. 

I think it is a good exercise for the student to try to prove (10.8). 
Thus Y is complete; it is therefore a Frechet space. The elements of 

9' are sometimes called V" functions rapidly decreasing at in.nity. 
(This implicitly means that also their derivatives are rapidly decreasing 
at infinity!) When we have to avoid confusion, we shall write Y(Rn) 
instead of 9'. 

Exercises 

10.1. Let {E-} (n = 1, 2, ...) be a sequence of Frichet spaces. Prove that the product 
TVS E = nz=, E,, is a FrCchet space. 

Let K be a compact subset of R", and Vz(K)  the space of complex functions, 
infinitely differentiable in R", having their support contained in K we consider on Q:(K) 
the topology in which a basis of neighborhoods of zero is formed by the sets 

10.2. 

as m = 1, 2, ... and e > 0 vary in all possible ways. 
Prove that V z ( K )  is a FrCchet space. 
10.3. Consider the dual E' of the space E = Fc(N; C) defined in Exercise 3.5. Let 

us denote by B, the subset of .Fc(n) (Exercise 3.6) defined by the condition 

If(0)l' + ..' + If(n)l' Q 1. 
Set then, for all n = 0, I ,... and all E > 0, 

Prove that the sets V ( n ,  e) form a basis of neighborhoods of zero for a structure of FrCchet 
space on E .  



11 
Normable Spaces. Banach Spaces. 

Examples 

We shall say that a TVS E is normable if its topology can be defined by 
a norm, i.e., if there is a norm ( 1  ( 1  on E such that the balls 

B, = {x E E ;  II x 1 1  < r } ,  r > 0, 

form a basis of neighborhoods of the origin. Finite-dimensional Hausdo& 
spaces are normable. Infinite dimensional metrizable TVS are not-in 
general. In this chapter and in the next one, we shall study two very 
important classes of normable spaces. The topology of a normable space E 
can be defined by many different norms. For instance, the topology of C" 
can be defined by any one of the norms I I p  (1 < p S +a; see Chapter 7, 
Example (1)). 

Definition 11.1. Let p ,  q be two seminorms on a vector space E. W e  say 
that p is stronger than q when there exists a constant C > 0 such that, for 
all x E E, 

44 G c P ( x ) -  

We say that p and q are equivalent ;f each one is stronger than the other. 

I f  p is stronger than q, the topology defined by p on E is finer than 
the one induced by q. If, then, q is a norm, so is p .  

PROPOSITION 1 1.1. 
they are equivalent. 

unit ball of the other, q, which means that q is stronger than p .  

If two norms define the topology of a normable space E,  

Indeed, the unit ball of one of them, say p, contains a multiple of the 

COROLLARY. 
equivalent. 

Any  two norms on a finite dimensional vector space are 

Indeed, a norm on a finite dimensional space E turns E into a HausdoriT 
95 
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space, therefore into a TVS homeomorphic with CdimE, which means 
that all the norms on E define the same topology on E. 

Let us denote by 9 y  the 
vector space of polynomials with complex coefficients, in one indeter- 
minate X, of degree <m. Let P(X)  be such a polynomial: 

A n  application of the above corollary. 

P ( X )  = a,Xm + um-,X,-l + . ' *  + a, , a, ,... , Um-1 , a, € C'. 

Consider the following two seminorms on 9 y :  

P - sup I P(t)l, & > 0. 
treal, i t l i e  

They are both norms; it is evident as far as the first one is concerned. 
As for the second one, it suffices to observe that a polynomial cannot 
vanish in a nonempty interval of the real line without vanishing 
identically. We conclude that there is a constant C, > 0, depending only 
on m and E ,  such that, for all polynomials P E 9?, 

I t  is obvious that we could have replaced the interval I t I < E of the real 
line by any subset of the complex plane containing at least (m + 1) 
points. 

A normed space is something different from a normable space. A 
normed space is a pair consisting of a vector space E and a norm on E. 
Of course, one usually puts on E the topology defined by the norm. 
This topology can then be defined by many other norms but, when 
dealing with a normed space, one should, at least in principle, continue 
to consider the initially given norm. If (E, p )  and (F, q) are two normed 
spaces, an isomorphism of E into F for the structure of normed spaces 
is a linear isometry of E into F, that is to say a linear mapping u : E --t F 
such that, for all x E E, 

Q(44) = P(4. 

DeJnition 11.2. A normed space E which is complete is called a Banach 
space (or a B-space). 

The meaning of Definition 11.2 is obvious: if (E, p )  is a normed space, 
one provides E with the topology defined by the norm p .  If the TVS E 



Chap. 11-31 NORMABLE SPACES. BANACH SPACES 97 

thus obtained is complete (which, in the present situation, means 
sequentially complete; cf. Proposition 8.2), we say that the pair (E,  p )  is 
a Banach space. Of course, one usually drops the mention of p .  Since a 
normed space is metrizable (in particular, it is Hausdorff!), B-spaces 
are a particular type of FrCchet space (see Chapter 10); they are Baire's 
spaces. 

A few words now about quotient space and completion of a normed 
space ( E , p ) .  If M is a closed linear subspace of E,  we may turn the 
quotient space EIM into a normed space by equipping it with the 
quotient norm 

$($) = inf . p ( x )  

(4, canonical map E ---t EIM). That p is a norm is evident. I t  is also 
evident that p defines the quotient topology on EIM (cf. Proposition 7.9). 
The normed space ( E / M ,  p )  is the quotient modulo M of the normed space 

As for the completion, we remark that the norm p is uniformly 
continuous and therefore, by Theorem 5. I ,  there is a unique extension p̂  
of p to the completion I? of E. The student may easily check that the 
topology of 8, as it has been defined in Chapter 5, is the topology defined 
by the seminorm fi (that p^ is a seminorm follows immediately by 
continuation of equalities and inequalities). As the topology of E is 
HausdorfT, p^ is a norm. The normed space (E,  p ^ ) ,  which, needless to say, 
is a Banach space, is called the completion of the normed space ( E , p ) .  
Note that, until now, we have considered only completions of topological 
vector spaces. But a normed space is something more than a special 
type of TVS. The canonical injection of E into €? is an isometry. 
Example I .  

Since any finite dimensional HausdorfT TVS is complete, finite 
dimensional normed spaces are Banach spaces. As a matter of fact, 
they are the only locally compact Banach spaces. 
Example II. 

Let K be a compact topological space. There is no algebraic structure 
on K (in particular, K does not have to be a subset of a TVS). Here 
compact means Hausdorff plus the property that any open covering of K 
contains a finite subcovering (cf. Chapter 6). 

We shall denote by V ( K )  the vector space of complex-valued 
continuous functions defined on K. We turn V ( K )  into a normed space 
by considering in it the norm maximum of the absolute value: 

+(x)=s 

(E,  PI* 

Finite dimensional normed spaces. 

The space of continuous functions on a compact set. 
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In order to verify that 1 1  f 1 1  is a norm, which demands, in particular, that 
it be finite, it suffices to observe that a continuous function is always 
bounded on a compact set (indeed, f ( K )  must be a compact, therefore 
bounded, subset of the complex plane; cf. Proposition 6.2). To  say that 
a sequence of functions f v  converges to a function f in the normed space 
V ( K )  is to say that the f v  converge uniformly on K to f. Thus the topology 
of V ( K )  is the topology of uniform convergence on K. If then we consider 
a Cauchy sequence { fy} in W(K), we know that, for each point x of K, 
the complex numbers f v ( x )  form a Cauchy sequence in the complex 
plane C, hence have a limit f ( x ) .  Thus the f v  converge pointwise to a 
function f in K. But it is easy to see that they also converge uniformly 
to f. Indeed, let E > 0 be given arbitrarily. Let N ( E )  be such that 
v, p > N(E) implies, for all x E K, 

(we are using the fact that the fv form a Cauchy sequence in V(K) ) .  
Then, for each x E K, select pz 2 N(E) such that 

(11.2) 

all X E K ,  

I f(x) - ffJ,(4I < 42. 

Then, by combining (1 1.1) and (1 1.2) we see that, for all v >, N(E)  and 

I f @ )  -f&)I < E .  Q.E.D. 

But if the f v  converge uniformly to f, then f also must be continuous, as 
we see by the argument already expounded in Chapter 10, Example I, 
Proof of (10.2), p. 88. 

Thus f is an element of V ( K )  and it is the limit in this space of the 
Cauchy sequence fy , which proves that V ( K )  is complete, i.e., is a 
Banach space. 

Example III. 
Let 52 be an open subset of Rn whose closure 0 is compact (in other 

words, a bounded open subset of R"). Let k be afinite nonnegative integer. 
Consider the subset of V(Q) consisting of the following functions (see 
Chapter 10, Example I): for each n-tuple p E Nn, such that I p I < k, 
the pth derivative off, 

The space %?(a), Q: bounded open subset of Rn. 

(a/ Wf(4 3 

which is a continuous function in Q, can be extended as a continuous 
function in the closure a of Q. We denote by Vk(o)  this set of Vk 
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functions in Q; it is a vector subspace of Uk(Q), which we turn into a 
normed space by considering the norm 

We leave to the student the proof of its completeness; in addition to 
(10.2), one now uses also (10.3) (p. 87). Of course, go(o) is what we 
have denoted by %‘(A?) in Example 11. 

Before studying the next two examples, we must state and prove 
Minkowski’s inequalities. In order to attain a fair amount of generality 
we consider a set X and a positive measure dx on it. W e  shall always 
suppose that X is the union of a sequence of integrable subsets, i.e.,’ that 
dx is a-finite. We shall deal with the upperintegral of a nonnegative 
function f which we denote by S* f dx. We recall that this is the infimum 
of the integrals of the countably infinite linear combinations, with 
nonnegative coefficients, of integrable step functions, which are >f. 
The number f dx is equal to +co for many an f ! Two particular 
cases will be important in the sequel: (1) X is the set N of integers 20, 
dx is the measure with mass + 1 at every point; then functions on X are 
nothing else but sequences and the upper integral of a sequence with 
terms >O is its sum; (2) X is an open subset of the Euclidean space 
Rfi and dx is the (induced) Lebesgue measure in n variables. 

THEOREM 1 1.1. 
in X .  W e  have: 

Let p be a real number 1 ,  and f, g ,  two complex functions 

Proof. It is clear that we may assume that f and g are 20, since 
If + g I < If I + I g I .  We begin by studying the case where f and g 
are integrable step-functions, i.e., finite linear combinations (with 
nonnegative coefficients) of characteristic functions of integrable sets. 
By subdividing further, if necessary, those integrable sets, we may even 
assume that f and g are finite linear combinations of the same charac- 
teristic functions q$ and that the latter have pairwise products equal to 
zero, i.e., are characteristic functions of disjoint sets. We see then that 

where all the summations are performed over j = 1, ..., K. If we set 
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we see that we are reduced to prove an inequality: 

(11.3) 
3=1 3=1  i=l 

It suffices to prove (1 1.3) for k = 2. For now suppose it has been done. 
We reason by induction on k > 2. We have 

From there, we derive (1 1.3) from the result for k = 2. Now, for k = 2, 
(1 1.3) means that the positively homogeneous function 

is a seminorm or, which is the same, the set {(x, y);  I x IP + I y I P  < l} 
is convex. I t  suffices to consider the portion of this set which is contained 
in the region x 2 0, y 2 0 and therefore the piece of curve 

For 0 < x < 1, the second derivative y” is <O, which proves what we 
wanted. 

From this point on, the proof of Theorem 11.1 is easy to complete: 

(1) We have proved it when f and g are finite linear combinations, 
with coefficients 2 0 ,  of characteristic functions of integrable sets. But 
then it is true if we consider countably infinite such linear combinations. 
This is immediately verified by taking the limit on increasing sequences 
of finite ones. 

Suppose now that f and g are arbitrary nonnegative functions on 
X; let us denote by Ch the set of countably infinite linear combinations, 
with coefficients 3 0 ,  of integrable characteristic functions, which are 2 
than a given function h 0. From the result stated in (1) for such linear 
combinations, we obtain 

(2) 
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It is immediately seen that the right-hand side is equal to 

(J* If dS)llP + (J* I g I *  d y .  

As for the left-hand side, it is at least equal to (J* (f + g)” dx)l/P. This 
follows easily from the fact that Cr + C, C Cf+,. Q.E.D. 

Example IV .  

of complex numbers with the property that the quantity 

The spaces of sequences IP (1 < p < +a). 
We denote by lp the vector space of sequences u = (ui) ( j  = 0, 1, ...) 

is finite. Then, in view of Theorem 11.1, I u I l p  is a seminorm on Zp. 

In  fact, it is a norm and turns Zp into a normed space. This space is 
complete. I t  is a good exercise for the beginner to try to prove this fact 
directly. I t  will follow from the general Fisher-Riesz theorem proved 
when we discuss the next example: 

Example V. 
We deal 

We assume 

The spaces Lp (1 < p < +a). 
with a set X, a positive measure dx on X; dx is o-finite. 
that the student is familiar with the elementary facts of 

integration theory. We denote by 9 p  the space of complex functions in 
X, f, such that 

J* I f l P d x  < +a. 

In virtue of Theorem 11.1, f - (J* I f  Ip dx)l/* is a seminorm on 9*. 
We denote then by 9’ the closure in F p ,  in the sense of that seminorm, 
of the linear subspace of the integrable step-functions (finite linear 
combinations, with complex coefficients, of characteristic functions of 
integrable sets). When p = 1, 9 p  is simply the space of integrable 
functions. It can be proved that a function f belongs to 2 ’ p  if and only if 
f E F p  and i f f  is measurable. For integrable functions, such as I f  Ip 

when f E 9 p ,  one omits the upper asterisk in the integral sign. So we set 

Outside of exceptional cases, f - IlfllLp is not a norm on 9 p .  We have 
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1 1  f [ I L D  = 0 if and only if f = 0 almost everywhere. Thus the kernel 
J c r p  of the seminorm 1 1  / I L D  consists of the elements of N P ,  which vanish 
almost everywhere, and the associated normed space, which is denoted 
by L p  (often also by Lp), L p  = L Z ’ p / J c r p ,  is a space of equivalence classes 
of functions modulo the relation “ f = g almost everywhere (a.e.)” Let 
j c  L p ;  we set 

where f is any representative of the class f (note indeed that any other 
representative g of f is such that Ilg / I L p  = 1 1  f l l L p ;  this is a trivial 
consequence of the triangular inequality, here Theorem 1 1.1, as we 
have already pointed out on p. 67). In  accordance with a well-established 
and convenient tradition, we shall often deal with the classes f of L p  as 
if they were really functions, and not simply “functions defined almost 
everywhere.” Thus we shall drop, most of the time, the dots and write 
f instead off. 

IlfllL’ = Ilf I I L V  ? 

Next we state and prove the classical Fischer-Riesz theorem: 

THEOREM 11.2. 

Proof. 
sequence of integers vk such that v 2 vk implies 

Every Cauchy sequence in 2 0  converges. 

Let { f,,} be a Cauchy sequence in 9 p .  We select an increasing 

l l f ”  -f”k IIL’ < 2-k-1 (I? = 0, 1 ,  ...). 

We set gk = f y k  - fyk--l for k 2 1 ; go = f vo  . We have then 

k=O 

It is clear that it suffices to show that the series Ckm,o gk converges in LZ’P. 

Its sum will be the limit of the f,,, , hence of the fv (Proposition 6.7). 
For h, n = 1, 2, ..., let us denote by Nn,a the set of points x E X such 

that 
m 

Ik!k(x)l 2 l /n*  
k=h 

In  order to estimate meas(Nn,J (Nn,a is measurable!), we apply the 
following straightforward generalization of Minkowski’s inequalities: 

(11.4) 

We take G, = gh+,xN,.h, (xA: characteristic function of A). 
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We obtain 
1 

Now observe that, for fixed n, the sets NnSh (h = 1, 2, ...) form a non- 
increasing sequence; their intersection, N ,  , is obviously of measure 
zero; the union of the N ,  (n = 1,2,  ...) is therefore also of measure zero. 
It is immediately seen that the series Ckm,o gk(x)  converges absolutely 
for every x E X - N; its sum will be denoted by g(x). If x E N, we set 
g ( x )  = 0. Since g is the limit, almost everywhere, of a sequence of 
measurable functions, it follows from Egoroff‘s theorem that g is 
measurable. On the other hand, for all x E X ,  

L V  

1 dX)l < c I g k ( X ) I *  
k=O 

By applying once more (1 1.4), we obtain 

This proves that g E 2’~. The last step consists in proving that g is indeed 
the sum (in 2’””) of the series C g, . It follows from the fact that we have, 
for all h 2 1 and all x E X - N ,  

Raising both sides to the pth power and integrating over X - N yields 
immediately, by application of (1 1.4), 

which shows what we wanted, by taking h -+ +a. Q.E.D. 

COROLLARY. L P  is a Banach space. 

We consider now the case where X is an open subset of Rn and dx  is 
the induced Lebesgue measure. We observe that a continuous function 
f in X cannot vanish almost everywhere without vanishing identically: 
for if f ( x )  # 0 at some point, f ( x )  # 0 in some open neighborhood of 
that point, and such a set cannot have measure zero. This implies 
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immediately that a class f E Lp contains at most one representative which 
is a continuous function; when f contains one, we say that f is a continuous 
function. At this stage, it is convenient to introduce the following 
definition, which is going to be much used in the sequel: 

Definition 11.3. Let X be a topological space, E a vector space, and f a 
mapping of X into E.  The closure of the set {x E X ;  f ( x )  # 0) is called the 
support o f f ;  we denote it by supp f .  

The support off can be defined as the complement of the (open) set 
of points x E E with the following property: f vanishes identically in 
some neighborhood of x. 

THEOREM 11.3. Let X be an open subset of Rn. If 1 < p < + CO, the 
continuous functions with compact support in X form a dense linear subspace 

We state and prove Theorem 11.3 for the Lebesgue measure. It 
should be pointed out, however, that it is more generally true for any 
Radon measure (cf. Chapter 21) on a locally compact space. 

Proof. By definition of L P ( X ) ,  integrable step-functions are dense in it. 
It suffices therefore to show that every such step-function is a limit of 
continuous functions with compact support; but since an integrable 
step-function is a finite linear combination of characteristic functions of 
integrable sets, it suffices to show that every one of the latter can be 
approximated. Let A C X be integrable, and xa its characteristic function. 
Given any E > 0, there is an open subset Q, C X, a compact subset 
K,  of X such that K,  C A C Qe and such that meas(K,) > meas(d) - E 

and meas(QJ < meas(A) + E .  Let, then, He be a compact neighborhood 
of K ,  contained in Q, , U, its complement, 6 = d ( K ,  , U,) ( d :  Euclidean 
distance). Let, then, f be a continuous function on the real line such that 
0 < f ( t )  < 1 for all t and f ( t )  = 1 if t < 0, f ( t )  = 0 if t > +. We set 
g(x)  = f(l - 6-1 d(x, U J ) ;  g is continuous (cf. Lemma 16.1) with 
support contained in H e ,  hence compact. We have: 

of LP(X).+ 

+ When there is some risk of confusion about the set which is being considered, if this 
set is X ,  one writes p p ” ( X )  rather than 2’9. If moreover we wish to make clear that we are 
talking about a given measure dx, we write 2 ’ p ( X ,  dx), or 3&, or 2’&(X); similar remarks 
apply to L p  and also to the case p = + a, to be considered in the next example. When the 
measure dx is the Lebesgue measure on R“, one often reserves the notation S’P and Lp to 
the spaces 2’*(R”, dx) and L”(R”, dx). 
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where we denote by x the characteristic functions. We see immediately 
that 

Q.E.D. 

COROLLARY. If X is open, the continuous functions with compact support 
form a dense subspace of Lp(X) (1 < p < +m). 

Thus, Lp(X) in this case ( X  open in R", dx the Lebesgue measure) 
can be regarded as a "concrete" realization of the completion of the space 
of continuous functions with compact support in X ,  equipped with 
the norm 1) J J L p .  

Example VI. The Space L". 
Let X be a set, and dx a positive measure on it. We recall that 

dx is o-finite, i.e., that X is the union of a sequence of dx-integrable 
sets. We denote by 9" the vector space of all complex-valued, measurable 
functions f in X such that there is a finite constant M 2 0 with the 
following property: 

(1 1.5) There is a subset N of X ,  with measure zero, such that I f (x) l  < M 
for all x E X - N .  

We denote by )I f l )Lm the infimum of all numbers M 2 0 with 
Property (11.5); f - 1) f I1Lm is clearly a seminorm. In  general, it i s  not a 
norm; its kernel is exactly the set of functions f which are equal to zero 
almost everywhere. Indeed, i f f  = 0 in the complement of a set N of 
measure zero, we may take M = 0 in (1 1.5). Conversely, suppose that 
to every integer k > 1 there is a set Nk of measure zero such that 
I f ( x ) l  < 1/k if x .$ Nk; the union of the sets Nk is a set N of measure zero 
and f = 0 in the complement of N. The normed space associated to the 
seminormed space 9" will be denoted by L", its norm by f ry+ I)fllLm; 
one often writes L,  instead of L". The elements of L" are not functions 
in X but equivalence classes of functions modulo the relation "to be 
equal almost everywhere." However, we shall often deal with them as 
if they were functions. An element f of 9" (or of L") is often said to be 
essentially bounded in X (with respect to the measure dx) and 1 1  f l l L m  is 
called its essential supremum. 

We have the equivalent of Theorem 11.2: 

THEOREM 11.4. 
Proof. 

Every Cauchy sequence converges in 9". 

The proof is a simplified version of that of Theorem 11.2. 



106 TOPOLOGICAL VECTOR SPACES [Part I 

Let {fk) be a Cauchy sequence in P'. First of all, we note that the 
sequence of numbers 1 1  fk l l L m  is bounded and that there is, therefore, a 
number 0 < A < + co and, for each k a set of measure zero Nk such 
that I fk(x)I < A for x $ N k ;  the union N of the sets Nk has measure 
zero and we have Ifk(x)I f A for all x E X - N .  Next, we use the fact 
that to every v = 1, 2, ... there is k, such that k, I >, k, implies 
l l f k  - f i  l l L m  < 1/v: there is a set Nv,k , l  of measure zero such that 
1 fk(x) - fi(x)I < 21. for all x $ Nv,k , i .  We denote by N' the union of 
all the sets NY,k,I as v varies and so do k, I > ,  k,; N' has measure zero, 
and we have, if k, 2 k, and x E x - N', I f , ( x )  - f i ( X ) I  < 2/v .  We 
derive from this that the sequence { f k )  converges uniformly in 
X - (N u N'); let f be its limit there; we may extend f by zero to 
N u N': we have If(x)l < A in the complement of this set; but N u N 
isof measure zero. On the other hand, f is the limit almost everywhere 
of the fk's, therefore (EgorofF's theorem) is measurable, hence belongs 
to 3". I t  is evident that f is the limit of the fk's in s*. Q.E.D. 

COROLLARY. L" is a Banach space. 

Let us consider the case where X is an open subset of Rn and dx the 
Lebesgue measure. The space of bounded continuous functions in X, 
@(X), is a linear subspace of 3 " ( X ) .  We have, for f E g 0 ( X ) ,  

This is trivial to check. That the left-hand side, in (1 1.6), is at most 
equal to the right-hand side is evident. On the other hand, given any 
E > 0, there is a nonempty open subset Q of X such that lf(y)l >, 
s~p,,~lf(x)I - E for all y E 52. This implies immediately that the 
supremum of If(.)/ on the complement of any set of measure zero (this 
complement necessarily intersects Q) is >~up,,~lf(x)l - E .  As E is 
arbitrary, we derive (1 1.6). 

Also observe that two functions belonging to @(X)  cannot be equal 
almost everywhere without being equal everywhere. Thus (1 1.6) shows 
that the canonical homomorphism of 5?"(X) onto LF(X) induces an 
isometry of Bo(X) into L"(X). Now, it is quite obvious that g o ( X )  is a 
Banach space (cf. Example 11); therefore, this isometry maps it onto a 
dosed linear subspace of L"(X). This subspace is not the whole of 
L"(X): indeed, there are discontinuous -5?* functions in X which are not 
equal almost everywhere to a bounded continuous function! As we see 
by comparing this with Theorem 11.3, the situation with respect to 
approximation by continuous functions is very different in the case 
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p = +a from what it is in the case of p finite. This difference has 
far-reaching consequences. 

Let E be a normed space, and ( 1  ( 1  the norm on E. Let E' be the dual 
of E, that is to say the vector space of all continuous linear maps of E 
into the complex plane. In  view of the corollary of Proposition 7.7, 
iff E E there is a finite constant C 2 0 such that, for all x E E, 

(11.7) If(*)l < CII * II. 
The infimum of the numbers C such that (11.7) holds (for all x) is 
denoted by I l f l l .  Given any x E E, we have 

(11.8) 

the two equalities below: 

If(*)l < l l f l l  * I I  * II. 
The student may check that we could have defined l l f l l  by either of 

(11.9) 

(11.10) l l f l l  = SUP If(*)l. 
IEE. 11 I II =1 

Thus is the lowest upper bound of the function x - If(.) I on the 
unit sphere {x E E; ( 1  x 1 1  = l} of E. From this follows immediately: 

PROPOSITION 11.2. Let E be a normed space: f - l l f l l  is a norm on the 
dual E' of E. 

Whenever we shall be dealing with a normed space E and we refer 
to its dual E' as a normed space, this will mean that we consider on E 
the norm defined by (1 1.9) or (1 1.10). 

One should be careful not to think that there is always a point x of the 
unit sphere of E in which If(x)l = [ I f [ / .  

The notion of the norm of a continuous linear functional on a normed 
space can be immediately generalized to continuous linear maps of a 
normed space E into another normed space F. Let us denote by I( ( 1  
both norms in E and F, and let u : E ---f F be a continuous linear map. 
From Proposition 7.7 it follows that there is a constant C >, 0 such that, 
for all x E E, 

II +)I1 < CII x II. 

Then again we define the norm of u, ) I  u 11, as the infimum of the constants 
C above. We have 

(1 1.1 1) I1 u I1 = sup I1  u(*)ll = SUP II W l l .  
Z€E* II 5 II < 1 I&. II I II =1 
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The absolute value of complex numbers has been replaced here by the 
norm in F. Proposition 11.2 can be immediately extended, since here 
again 1 1  u 1 1  is defined as the lowest upper bound of a nonnegative function, 
x - 1 1  u(x)II, on a set (e.g., the unit sphere of E), and that the nonnegative 
function in question is obviously subadditive with respect to u. 

Let L ( E ; F )  be the vector space of all continuous linear maps of E 
into F. Assuming that E and F are both normed spaces, whenever we 
refer to L ( E ;  F )  as a normed space, it will be implicit that it carries the 
norm defined by (1 1.1 1). 

THEOREM 11.5. Let E and F be two normed spaces. Suppose that F is 
complete. Then the normed space L(E; F )  is also complete. 

That the fact that E is complete or not should be irrelevant, in 
connection with Theorem 1 1.5, is obvious: indeed, any continuous linear 
map of E into F (assuming that F is complete) can be extended, in a 
unique way, into a continuous linear map of I?, completion of E, into F 
(Theorem 5.2, (c) and (11)). Thus, the extension of mappings from E to I? 
defines an isomorphism, for the vector space structures, of L(E;  F) into 
L(E; F). We leave to the student the verification of the fact that this 
isomorphism is an isometry (we recall that an isometry is a mapping which 
preserves the norms). 
Proof of Theorem 11.5. We must prove that L(E;  F)  is sequentially 
complete. Let {uy> be a Cauchy sequence in L(E;  F).For every E > 0, there 
is N(E), integer 3 0, such that, for all v, p 3 N(E) ,  1 1  u, - up I( < E. 

Whatever be the continuous linear map u : E -+ F, we have (cf. (1 1.8)), 

(11.12) for all x E E ,  I1 .(.)I1 f I I  II I I  x 11. 

In particular, we shall have, for all x E E and all v, p >, N(E), 

(11.13) I1 U Y W  - .,(4ll < 41 x 11. 

This means that, for fixed x E E,  the sequence {uy(x)} is a Cauchy 
sequence in F. But F is complete, hence this sequence converges to, 
some element of F, which we shall denote by u(x). This defines im- 
mediateIy a mapping x - ~ ( x )  of E into F. Let us show that this mapping 
is linear. 

Let x, y be two elements of E, arbitrary E > 0, and select v sufficiently 
large so as to have 

II U ” ( 4  - W I  < 4 3 ,  II %(Y) - .Wll < &/3, 

II .,(x + Y )  - .(x + r)ll < 4 3 -  
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This is possible, since the u, converge pointwise to u. Combining the 
three preceding inequalities, we obtain that 

II u(x + Y )  - 44 - u(r>ll d -5. 

As E is arbitrary, we conclude that u(x + y )  = u(x)  + u(y). We use a 
similar argument in order to prove that u(hx) = h u(x)  for all x E E, 
A €  c. 

We prove now that u is continuous. Choose an integer N( 1) sufficiently 
large so as to have, for all u 3 N( l), 

which implies, for all x E E, 

Choose now E > 0 and x arbitrarily. There exists u 2 N(1) such that 

/ I  udx) - u(4ll < -5. 

This implies 

As E is arbitrarily small, we conclude that 

This means that u is continuous. 
I t  remains to prove that the u, converge to u in the sense of the norm 

of continuous linear maps. Here again, let E > 0 be arbitrary; and let 
N(E) be as chosen in relation with (1 1.13). Choose arbitrarily x E E, 
I /  x 1 1  = 1, and then take v = v ( x )  3 N(E)  such that 1 1  u,(x) - a(.) 1 1  < E .  

We have 

Since x is an arbitrary point of the unit sphere of E, it means that 

I1 U N ( d  - 7.l I1 < 2 E .  Q.E.D. 

COROLLARY. 
is a Banach space. 

Let E be a normed space. The normed space E ,  dual of E, 
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Exercises 

11.1. Prove that, for q 
and has a norm equal to one. 

11.2. 

p ,  we have I' C I* and that the injection I' + I q  is continuous 

Let u E 1'. Prove that 

I (I Ip = lim I u llr. 
r+m 

11.3. Let E,F be two Banach spaces (with norms denoted by 11 [I), u a continuous 
linear map of E into a HausdortT TVS G, and j a continuous one-to-one linear map of F into 
G. Let Eo = { x  E E u(x) E j(F)}. 

Prove that the norm on Eo , 

3e - II x II + llj-1(4x))ll, 

turns Eo into a Banach space. 
Let X be a set, and 9 ( X  C) the space of complex-valued functions in X 

equipped with the topology of pointwise convergence. Prove that 9 ( X ,  C) is not normable 
unless X is finite. 

Let Vm(Rn) be the space of continuous functions in R" which converge to zero 
at infinity, equipped with the topology of uniform convergence on R", i.e., the topology 
defined by the norm 

11.4. 

11.5. 

d - SUP I W l .  
ZER" 

Prove that Vm(R") is a Banach space. 
11.6. Let E = C2, and 1) 11 the norm 

Let El be the linear subspace {( E C2; t2 = O}. For every lo E E, characterize the set 
of 5 E El such that 

(11.14) 

In particular, prove that, if ro 4 El , there is an infinity of points 5 with the above property 
(1 1.14). 

11.7. 11 now 
denotes a norm 

We keep the notation of Exercise 11.6 with one exception: the norm 1) 

5 - I 5 I. = (I 51 I' + I 52 I*)1') 
with p < + a). Prove that there is one and only one point 5 such that (1 1.14) holds. 

11 the norm u - I u Ip , and Im the subspace of 1" consisting of 
the sequences u = (u,)(n = 0, 1, ...) converging to zero, i.e., such that (I,, -+ 0 as n -+ + co. 
Let B be the closed unit ball of Im , 

11.8. Let E = P, 11 

{U E l m  ; SUP I (I,, I < 1). 

Let B, be the subset of B consisting of the sequences having all their terms > 0. Finally, 
let e be the sequence having all its terms equal to one. Prove: 

(1) 
(2) 

that B, is closed in I w ;  
that the distance between B and e is exactly equal to one; 
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(3) that the distance between e and every element of B, is exactly equal to one; 
(4) that the distance between e and every element of B which does not belong to B, 

is > 1. 
11.9. A T V S  E is said to be separable if there is a dense countable set in E. Prove that, 

if a metrizable TVS E is separable, every noncountable subset A of E contains a converging 
sequence. 

11.10. Prove that Lm(R1) is not separable (see Exercise 11.9). 



12 
Hilbert Spaces 

Historically, the first infinite dimensional topological vector spaces 
whose theory has been studied and applied have been the so-called 
Hilbert spaces. They play a most important role in pure mathematics 
(e.g., in the theories of boundary value problems, of probability, of 
group representations), as well as in applied mathematics (e.g., in 
quantum mechanics and in statistics). Although many functional spaces 
are not Hilbert spaces, they can often be represented meaningfully as 
union of subspaces which carry a Hilbert structure (most of the time, 
finer than the structure induced by the surrounding space). The 
knowledge of the properties of these “Hilbert subspaces” may reveal 
important properties of the surrounding space, usually in relation with 
existence and uniqueness of solutions of functional equations. 

The reason for the impressive success of the theory of Hilbert space 
is simple enough: they closely resemble finite dimensional Euclidean 
spaces. This, in two respects: they are complete, as all the finite 
dimensional TVS are; they carry an inner product, which is a positive 
definite sesquilinear form (see below) and which, roughly speaking, 
determines their properties. The usefulness of an inner product can best 
be emphasized by recalling how useful are orthonormal bases in the 
finite dimensional case (especially in relation with the diagonalization of 
self-adjoint matrices). 

We begin by recalling what is a sesquilinear form on a vector space E. 
It is a mapping (x, y) -+ B(x, y )  from E x E into the complex plane, C, 
with the following properties: 

(1) +l+ x2 , y )  = B(x1 , y )  + B(x2 , y ) ;  
B(x, Y 1 +  Y2) = B(x, Y l )  + B(x, Yz) ; 

(2) B(Xx, y )  = B(x, y ) ;  
(3) B(x, Xr) = B(x, y ) .  

It is Property (3) which is responsible for the name sesquilinear: sesqui 
means “one time and a half” in Latin; (2) means that, for fixed y, the 

112 
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map x - B ( x , y )  is linear, whereas (3) says that, for fixed x, the map 
y - B(x, y) is semilinear (if we had B(x, Xy) = X B(x, y), we would refer 
to B as a bilinear form). The importance of Condition (3) is a direct 
consequence of the importance of Hermitian forms. A Hermitian form B 
is a form with Properties (1) and (2), and with the additional property: 

(4) B(x ,y )  = B(y, 4. 
It  is then obvious that B must also have Property (3) above and thus be 
sesquilinear. 

A sesquilinear form B on E is said to be nondegenerate if it has the 
following property: 

( 5 )  If x E E is such that, for all y E E,  B(x, y )  = 0, then x = 0. If 
y E E is such that B(x, y )  = 0 for all x E E,  then y = 0.  

Examples in Finite Dimensional Spaces C" 

The usual Hermitian product (C, c') = tic+ .-- + tnz is a non- 

The form 
degenerate Hermitian form on C". 

B(L5')  = tlq - t2g 
is a nondegenerate Hermitian form on C2 (it would be degenerate if 
viewed as a form on Cn with n > 2). 

A sesquilinear form is Hermitian if and only if B(x, x) is a real number 
for all x E E. It  is obvious one way, just by applying (4) with y = x. 
On the other hand, we have: 

(12.1 ) B(x + y, x + y )  - B(x, 4 - B(y, r) = B(x, r) + B(y, 4. 

If the left-hand side of (12.1) is real for all x, y, so must be the right-hand 
side, which shows that Im B(y,  x) = -1m B(x, y). Apply (12.1) with + substituted for y. The left-hand side must again be real, and so must 
be the right-hand side which is now, in view of sesquilinearity, 

W x ,  Y )  - w, 41. 
This shows that Re B(y,  x) = Re B(x, y), whence (4). 

We shall essentially be interested, in this chapter, in positive definite 
forms. These are sequilinear forms which satisfy the following condition: 

(6) For all x E E, x # 0, B(x, x )  > 0. 



114 TOPOLOGICAL VECTOR SPACES [Part I 

In particular, positive definite sequilinear forms are Hermitian. They are 
obviously nondegenerate. 

We might dso introduce nonnegative sequilinear forms, as we did in 
Chapter 7 (p. 60). These are forms which satisfy: 

(7) For all x E E, B(x, x) > 0. 

A nonnegative sesquilinear form is nondegenerate if and only if it is 
definite positive. One way, it is already known. The other way, our 
statement follows from the next result, the celebrated Schwarz inequality 
(or Cauchy-Schwarx inequality): 

PROPOSITION 12.1. Let B( , ) be a nonnegative sesquilinear form 
on E. Then, for all x and y in E, we have 

I B(x, r)l2 < B(x, 4 B(y, y). 

Proof. 

(12.2) 0 < B(” + xy, x + Ar) = B(x, .) + 2 R e p  B(., r)l + I A l B  B(y, y). 

Since B is nonnegative, we have 

It suffices then to take h = B(x, y )  t .  The right-hand side of (12.2) 
becomes a polynomial in the variable t. Schwarz inequality expresses 
the fact that this polynomial does not have two distinct real roots. 

COROLLARY. If B is nonnegative, 

(12.3) x - B(x, x)l/Z 

is a seminorm on E. If B is positive definite, it is a norm. 
= I h I B(x, ~ ) l / ~ ,  and Indeed, we have B(hx, 

B(.  + y, x + Y)1’2 < w . 7  .) + 21 +, r)l + w, Y))”2 

< B(x, .)1/2 + B(y, y)’/2, 

by Schwarz inequality. 
We recall Definition 7.5: the pair consisting of a vector space E and 

of a nonnegative sesquilinear form B on E is called a (comp1ex)pre-Hilbert 
space. 
Definition 12.1. The pair consisting of a vector space E and a positive 
definite sesquilinear form B on E is called a complex Hausdog pre-Hilbert 
space. 

Let (E, B) be a pre-Hilbert space which is not Hausdorf€. Let N be 
the subset of E consisting of the vectors x such that B ( x , y )  = 0 for all 
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y E E. Because of Schwarz inequality, this subset N is exactly the kernel 
of the seminorm (12.3). The quotient space E / N  can then be regarded 
as a normed space. Observing that, if x, y E E and z E N ,  

B(x + z, Y )  = B(x, Y ) ,  

we derive that there is a canonical sesquilinear form B on EIN: if 4 is 
the canonical map of E onto E/N,  we have 

B(i, 9)  = ~ ( x ,  y )  if i = +(XI, j = +(y). 

i - 8(i, *)1’2. 

Then B is positive definite, and the norm of EIN is nothing else but 

We say that (EIN, 8) is the Hausdorff pre-Hilbert space associated with 
the pre-Hilbert space ( E ,  B) .  

Let (E, B) be a pre-Hilbert space; we may then regard E as a TYS: 
we consider on E the topology defined by the seminorm (12.3). When we 
speak about the topology, or the TVS structure, of a pre-Hilbert space 
(E,  B), it will always be in this sense, unless we specify otherwise. 

Definition 12.2. A Hausdo$ pre-Hilbert space which is complete is called 
a Hilbert space. 

Given a normed space (E,  1 1  ti), one could ask the following question: 
is it a (HausdorfT) pre-Hilbert space ? In other words, is there a positive 
definite sesquilinear form B( , ) on E such that, for all x E E, )I x 11 = 

B(x, x)lI2? If this is true, we say that the norm ( 1  1 1  of E is a Hilbert 
norm. The answer to our question is provided by the following result: 

PROPOSITION 12.2. 
and only if the following relation holds, for all x, y E E, 

The norm 1 1  I( on the space E is a Hilbert norm i f  

(HN) I I  x 1 1 2  + I1 Y 1 1 2  = t(ll x + Y 1 1 2  + II x - Y 11”. 

Proof. 
from (12.1). Conversely, suppose that (HN) holds and set 

If the norm 11 11 is given by (12.3), we derive immediately (HN) 

R(x, Y )  = *(I1 x + Y 1 1 2  - II x - Y 112). 
Ax, y )  = #(I1 x + iY ( I2 - II x - i 112) .  

Then 
B(x, Y )  = 4% r) + iJ(x, Y )  

is a sesquilinear form on E, as easily verified, and the norm 1 1  1 1  is equal 
to (12.3). Q.E.D. 
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Let now (E, B) be a Hausdod pre-Hilbert space, and 1 1  1 1  its norm 
(12.3). Let I? be the normed space which is the completion of the normed 
space (E, 1 1  11). In virtue of the continuation of the identities, (HN) holds 
in 8, hence the norm of I? is a Hilbert norm; let 8 be the positive definite 
sesquilinear form on I? associated to its norm. It  is immediate that 8 
extends B; (I?, 8) is a Hilbert space, which is called the completion of 
the Hausdoe pre-Hilbert space (E, B). 

We could have proceeded otherwise: as easily seen, (x, y )  - B(x, y )  is 
a separately uniformly continuous function on the product TVS E x E, 
hence has a unique extension to the completion of E x E, which is 
canonically isomorphic to 8 x E ;  this extension is the form 8 and 
turns f? into a Hilbert space. 

We shall now introduce the anti-dual of a TVS E. It  is the vector space 
(over the field of complex numbers) of the continuous mappings f of E 
into the complex plane, C, which have the following properties: 

(1) f ( x  + Y )  = f M  + f W ;  
(2) f(W = X f ( 4 .  

We shall denote by E' the anti-dual of E; its elements will be called 
continuous antilinear forms (or functionals, or semilinear forms or 
functionals) in E. We underline the fact that E' is a vector space: if 
f E E', the product off by a scalar is meant in the usual sense: (Af )(x) = 
A f ( x ) .  Of course, there is a canonical mapping of E' onto E', which is 
one-to-one, onto and antilinear: to a continuous linear functional f on 
E it assigns the continuous antilinear functional x - f F )  on E. 

Let (E, B) be a pre-Hilbert space, not necessarily Hausdod, not 
necessarily complete. Consider the following mapping: 

(1 2.4) x - (Y - B(x9 Y)). 

It is a mapping of E into the anti-dual of E. Indeed, for fixed x E E, the 
antilinear functional 

is continuous, as follows immediately from Schwarz inequality. Let us 
denote by 2 the mapping (12.5). Then (12.4) can be written x - 2. This 
latter mapping is one-to-one if and only if B is nondegenerate, that is 
to say positive definite. At any event, we call it the canonical mapping of 
(E, B) into the anti-dual I?' of E. It is one-to-one if and only if (E, B) is 
Hausdod. The fundamental theorem of the theory of Hilbert spaces 
states that it is onto if and only if (E, B) is a Hilbert space (i.e., is 
Hausdoe and complete). When E is a Hausdorff pre-Hilbert space, 
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we may regard it as a normed space (the norm is given by (12.3)), and 
we can also regard its dual as a normed space, which moreover is a 
Banach space (Corollary of Theorem 11.5). The fundamental theorem 
of Hilbert spaces states that x + x" is an isometry of the Hilbert space 
E onto its anti-dual, E'. This is the theorem that we are now going 
to prove, and which is often summarized (quite incorrectly) by saying 
that a Hilbert space is its own dual. 

The proof is based on the following important theorem: 

THEOREM 12.1. Let (E, B) be a Hausdoflpre-Hilbert space, and K a 
nonempty convex complete subset of E. To every x E E, there is a unique 
point xo of K such that 

We have used the notation 

11 x /I = B(x, x y ;  

we shall do this systematically from now on. 

Proof. Let us set 

We denote by A, (n  = 1,2,  ...) the subset of K consisting of the pointsy 
such that 

I /  x - y II < d + l ln .  

By definition of inf and of d,  none of these sets A, is empty; as A,+1 C A,, 
they form a basis of a filter on K. By using the geometry defined on E 
by the form B( , ) and the convexity of K, we are going to show that 
the filter generated by the A, is a Cauchy filter. The  completeness of K 
implies then that this filter has a limit, necessarily unique, which will be 
the point xo that we are seeking. 

Let E > 0 be given arbitrarily. We must show that there is an integer 
N(e) >, 0 such that, if n, m 2 N(E) ,  given any points y ,  of A, and ym 
of A,, we must have 

II Yn - Y m  It < &*  

The argument, at this stage, is purely two-dimensional: everything takes 
place in a plane P containing x,  y ,  , ym . And because of the properties 
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of the sesquilinear form B, the geometry in P induced by the surrounding 
space E is the usual one. Consider the circumference r of radius d and 
center x. As yn and ym get arbitrarily close to r, while remaining in the 
exterior of it, and because of the fact that they belong to one and the 
same convex closed set, they must get arbitrarily close to each other. 
This argument is formalized as follows. We have 

(This follows immediately from (12. l), applied with x - yn instead of x 
and x - ym first, - ( x  - ym) next, instead of y.)  Because of the convexity 
of K, we have &(yn + ym)  E K,  thus 

II x - :(m + Ym)ll 2 d. 

Taking into account how yn and ym were chosen, we derive, from (12.6), 

II Y n  - Y m  1 1 2  Q 2 [(d + y + (d  + -g] - 4d2 

1 1  1 1 
= 8d (; + ;) + 2 (4 + T), 

which easily implies what we wanted. 

Definition 12.3. The point x,, in Theorem 12.1 is called the orthogonal 
projection of x into the complete convex set K.  

We may now prove easily the fundamental theorem of Hilbert spaces. 
In order to make clear the situation, we state a result about pre-Hilbert 
spaces which contains some of the statements on p. 116: 

PROPOSITION 12.3. Let (E ,  B )  be upre-Hilbert space. The mapping (12.4), 

x - f : y - B ( x , y ) ,  

is a linear map of E into its anti-dual, E'. Let us regard E' as a normed space, 
with the usual norm of antilinear continuous functionals (see (1 1.9) and 
(11.10)). Then (12.4) is a continuous linear.map of E into E'. It is an 
isometry into if and only if E is Hausdo8, i.e., B( ) is nondegenerate 
(i.e., positive definite). 

That x" is a continuous antilinear form on E follows immediately from 

, 
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Schwarz inequality, as we have already said. Also from Schwarz 
inequality it follows that 

whence the continuity of x - 2. Suppose now that E is HausdorfF, and 
let x be # 0. Take y = x/ll x /I. We have II y II = 1, and 

B(x,  y )  = II x I!, 

which, by (ll.lO), implies that /I 211 = 1 1  x 11. As E' is a normed space,in 
particular is Hausdorff, if (12.4) is an injection, E itself must be 
Hausdorff, hence B must be nondegenerate. 

Here now is the fundamental theorem: 

THEOREM 12.2. Let (E, B) be a Hausdog  pre-Hilbert space. The 
canonical isometry of E into its anti-dual, E', i.e., the mapping (12.4), 
is onto i f  and only if  (E,  B )  is a Hilbert space. 

Proof. One way, the statement is obvious. The  normed space E' 
which, by complex conjugation of linear functionals, is nothing but a 
copy of the normed space E', is complete (corollary of Theorem 11.5). 
If E is to be an isometric image of E', E also has to be complete. 

Conversely, let us assume that E is complete. By Proposition 12.3, we 
know that (12.4) is an isometry into; we must show that it is onto, in 
other words that, given any continuous antilinear functional f on E, 
there is an element xr of E such that, for all y E E, 

f(r) = B(x, > 9. 

Let H be the kernel o f f  supposed to be # 0. Since f is continuous, 
H is a closed hyperplane of E (Exercise 9.4, Proposition 9.4); in 
particular, H is a closed convex set. As E is complete so is H. Let x E E, 
x 6 H. By Theorem 12.1, x has a unique orthogonal projection, x, , in H .  
As x t$ H, we have x # xo . 

We claim that x - xo is orthogonal to H ,  that is to say that, given any 
y E H ,  we have 

B(x - xo , y )  = 0. 

Indeed, we have, for all numbers t > 0, 
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Replacing there y by -y, then by &iy ( i  = (-1)1/2), we obtain 

Taking t + 0 shows that xo - x is orthogonal to y. 
Let us go back to our functional f. We cannot havef(x - xo) = 0, 

since H = Kerf, and we cannot have x - xo E H. Let us set z = ~- 
Cf(x - xo)l-'(x - xo). 

FIG. 1 

- 
Let now y be any vector in E. We may write y = y1 + f (y )z ,  and it 

is clear, since f(z) = 1, that 

I t  suffices then to take 

x, = (B(z, z))-'z. Q.E.D. 

Let us go back to Theorem 12.1. A closed linear subspace M of E is, 
in particular, a closed convex subset of E. Therefore, given any point 
x of E, we may consider its orthogonal projection (Definition 12.3) into 
M, which we denote by P,(x). We call P, the orthogonal projection 
into M. It maps E onto M; its restriction to M is the identity mapping 
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of M. It is of norm exactly equal to one. Furthermore, P, is a projection, 
that is to say, 
(12.7) P L = P , .  

The mapping P, is self-adjoint, that is to say, 

(12.8) B(PMx, y )  = B(x, p M Y ) *  

(A linear map u of a pre-Hilbert space (E, B) into itself is self-adjoint 
if B(u(x), y )  = B(x, u ( y ) )  for all x, y E E).  The kernel of P, is the 
orthogonal of M, MO (two vectors x, y of E are orthogonal when 
B(x, y )  = 0; two sets A and B are orthogonal if, for all x E A, y E B, 
we have B(x, y )  = 0). We have the direct sum decomposition of E, 

( 1  2.9) E = M @  MO. 

Here the symbol @ means that the two subspaces which are factors in 
the direct sum are orthogonal; this is usually expressed by saying that it 
is the Hilbert direct sum, or Hilbert sum. 

Equation (12.9) has a very important implication: in a Hilbert space E, 
a closed subspace M always has a supplementary, which means that there 
always is another linear subspace of E, N, also closed, such that 
E = M + N a n d  M n N = (0): .we may take N = MO, orthogonal of M. 
This feature of Hilbert space is exceptional among TVS and even among 
B-spaces. 

A set of vectors S is said to be orthonormal if 11 x 1 1  = 1 for all x E S, 
and if B(x, y) = 0 (i.e., x and y are orthogonal) for all x, y E S such 
that x f y .  An orthonormal set of vectors S in a pre-Hilbert space 
(E, B) is called an orthonormal basis of E if the vector space spanned by S 
is dense in E.+ 

Let us keep considering a HausdorfF pre-Hilbert space (E, B). We 
recall the following results (without proof; the student may try to prove 
them: they are not difficult consequences of the previous theorems): 

THEOREM 12.3. 
the linear subspace spanned by S.  Then the following facts are true: 

Let S be an orthonormal set in E,  and V ,  the closure of 

(1) For all x E E, 

( 1 2.10) 1 I B(x, e)lz < /I x (Bessel’s inequality), 
esS 

+ If dim E = + co, an orthonormal basis of E is not a basis in the algebraic sense: one 
cannot express every vector of E as afinite linear combination of vectors belonging to B. 
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from which it follows that the subset S, of S consisting of the 
elements s of S such that B(x, s) # 0 is countable. 

(2) For x E E, the following properties are equivalent: 

(a) X E  vs; 

(b) 
(c) 

in (12.10) the sign < may be replaced by equality, = ; 

the series Cess B(x, e)e converges (with respect to the norm 
1 1  11 of E), and we have 

x = c B(x, e)e. 
eoS 

(3)  If  Vs is complete, then, for all x E E, the series zPs B(x, e)e 
converges, and we have 

P”&) = c B(x, e)e, 
esS 

1 1  Pvs(x)112 = I B(x, e)12 (Parseval’s identity). 
ec S 

Let S be an arbitrary set. Let us denote by 12(S) the set of complex- 
valued functions X defined in S such that 

(12.11) 

If a function A on S belongs to 12(S) it vanishes identically on the 
complement of some countable subset of S (i.e., its support is countable; 
we have put on S the discrete topology so that every subset of S is 
closed: the support of a function is then the set in which it is different 
from zero). We take as norm of X E P(S) the square root of the left-hand 
side of (12.11). It is easily seen that this norm, which we denote by 1 1  11, 
satisfies (HN) (Proposition 12.2); it is therefore defined by a positive 
definite sesquilinear form, which is in fact 

One can prove easily that 12(S) is complete, i.e., is a Hilbert space. 
From Theorems 12.1 and 12.3 the next result follows easily: 

THEOREM 12.4. In a Hilbert space (E ,  B),  there is always an orthonormal 
basis. Furthermore, given any orthonormal subset L of E, there is an 
orthonormal basis of E containing L. 
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Let S be an orthonormal basis of the Hilbert space E. To every x E E 
there corresponds a complex-valued function, defined in S,  namely the 
function 

The mapping 
fz : s .- B(x, s). 

x -fa! 

is a linear isometry of E onto Z2(S). 

From Theorem 12.4 follows immediately that an orthonormal set S 
in E is an orthonormal basis of E if and only if, for any x E E, B(x,  s)  = 0 
for all s E S implies x = 0. 

Examples of Hilbert Spaces 

I. The space l2 of complex sequences u = (urn) such that 
m 

C I on I 2  < +a* 
n=O 

The inner product (that is to say the sesquilinear form that turns l2 into 
a Hilbert space) is 

11. The space L2 (cf. Chapter 11, Example IV): this is the space of 
(classes of) square-integrable functions f (with respect to some 
positive measure dx on a set X). The inner product is given by 

the norm is therefore 

It  is the recognized importance of the space L2 (at first, with respect to 
the Lebesgue measure on open subsets of Rn and later on, with respect 
to general measures) that has been the starting point of the Hilbert 
space theory. 

111. Any finite dimensional space Cn with the usual Hermitian 
product. 
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Remark 12.1. An isomorphism of a normed space ( E , p )  onto another 
normed space (F, q) is a linear mapping u of E onto F such that, for all 
x E E, 

Q(44) = P ( 4  
in other words it is a linear isometry of E onto F (such a mapping is 
obviously one-to-one). 

Similarly, one may define an isomorphism of a pre-Hilbert space 
(E, B) onto another pre-Hilbert space (El , B,) as a linear map u of E 
onto El , one-to-one and such that, for all x, y E E, 

B,(u(x), 439) = B(x, Y ) .  

If now both (E, B) and ( E l ,  B,) are HausdorfF, i.e., if the sesquilinear 
forms are positive definite, we may regard them as normed spaces. It 
follows immediately from Identity (HN) that an isomorphism of E onto 
El in the sense of the normed space structure or in the sense of the 
HausdorfF pre-Hilbert structure are one and the same thing. 

Remark 12.2. A linear subspace M of a pre-Hilbert space E is naturally 
equipped with a structure of pre-Hilbert space: it suffices to take the 
restriction BIM to M of the inner product (x, y) - B(x, y )  which 
makes out of E a pre-Hilbert space. If (E, B) is HausdorfF, so is 
(M, BIM). If (E, B) is a Hilbert space and M closed, then (M,BIM) is 
also a Hilbert space. 

Remark 12.3. If (El , B,) and (E, , B,) are two pre-Hilbert spaces, one 
turns the product vector space El x E, into a pre-Hilbert space by 
considering on it the sesquilinear form 

B((x1 9 x2)9 (Yl 9 Y2)) = B l h  Y Yl) + B,(x, * Y2). 

The latter is called the product pre-Hilbert space of the two given ones. 

Exercises 

12.1. Let u be a continuous linear map of a Hilbert space E into itself which is a self- 
adjoint projection (see (12.7) and (12.8)). Prove that u is the orthogonal projection of E 
onto a closed linear subspace M of E. 

Let E be a Hilbert space (over the field of complex numbers), not reduced to 
{O}. Prove that the topology of E can be defined by a norm which is not a Hilbert norm 
(cf. Proposition 12.2). 

Let E, F be two Hilbert spaces. Prove that there is a unique Hilbert norm on the 
product E x F with the following properties: 

12.2. 

12.3. 

(a) 
(b) 

the topology defined by this norm is the product topology; 
the canonical projections on the “coordinates axes” E and F are exactly of norm 

one. 
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12.4. Let E,F be two Hilbert spaces, G an arbitrary HausdorfT TVS, u : E -+ G 
a continuous map, and j' : F + G a continuous linear injection. Prove that there exists 
a Hilbert norm I /  1 )  on the linear subspace of E, 

H = {X E E, U ( X )  E ~ ' ( F ) } ,  

with the following properties: 
(a) 
(b) 
(c) 
12.5. 

the natural injection of H into E is of norm < 1 ; 
the mapping j-' 0 u : H 4 F is of norm < 1; 
with the norm 11 11, H is a Hilbert space. 

Let (El x E, , B) be the pre-Hilbert space, product of two pre-Hilbert spaces 
(El, Bl) ,  (EZ, B,) (see Remark 12.3). Prove that (El x E, , B) is Hausdoff if and only if 
both (Ej , B,) are Hausdorff, and that it is a Hilbert space if and only if both (Ej  , Bj)  are 
Hilbert spaces ( j  = 1,  2). 

Let (E, B) be a Hilbert space, and M a  closed linear subspace of E. Show that 
there is a canonical structure of Hilbert space on the quotient vector space E/M. Prove 
that this structure has the following properties: 

the quotient topology on E/M is the topology associated with the canonical 
Hilbert space structure; 
let q5 : E -+ E/M be the canonical map; then the restriction of q5 to M", orthogonal 
of M in E (equipped with the Hilbert space structure induced by E, i.e., with the 
restriction of B to MO), is an isomorphism (for the Hilbert space structures) onto 
E/M. 

A TVS E is said to be separable if there is a countable subset of E which is 
everywhere dense. A pre-Hilbert (E, B) is said to be separable if the "underlying" TVS E 
is separable. Prove that a Hilbert space (E, B) is separable if and only if it has a countable 
orthonormal basis (cf. p. 121), i.e., if and only if there is an isomorphism of (E, B) onto 
the Hilbert space 1, (isomorphism for the Hilbert space structures). 

Quote a theorem on Fourier series which implies that the exponentials 

12.6. 

(a) 

(b) 

12.7. 

12.8. 

t - eailrkl , k = O ,  & 1 , & 2  ,..., 
form an orthonormal basis in L'([O, 11). 

12.9. For every n-tuple p = ( p ,  ,..., p,) E N", let us set 

h,(x) = exp[l x ~z](a/axl)p* ... (a/ax,)pn exp[-vl s la]. 

Prove that, as p ranges over N", the functions hp are pairwise orthogonal in L2(Rn). (One 
can prove that, for a suitable choice of the constants ol, > 0, the functions aphp form an 
orthonorml basis in Lz(R"). This implies that La(Rn) is separable; cf. Exercise 12.7.) 

12.10. Let (E, B) be a Hilbert space, and S an orthonormal set in E. Prove that, if 
dim E = + co, there is x E E such that the series 

B(x, s) s 
S€S 

does not converge absolutely in E, i.e., we have 

c B(x, s) (B(s, s))'/, = + a. 
8E.S 

(Hint: by using Theorem 12.4, prove that, if the preceding assertion were not true, we 
would have 

1, = P.)  



13 
Spaces LF. Examples 

Let E be a vector space over the field of complex numbers. Let us 
suppose that E is the union of an increasing sequence of subspaces E n ,  
n = 1,2, ..., and that on each En there is a structure of FrCchet space 
such that the natural injection of En into En+, (we have En C En+,) is 
an isomorphism, which means that the topology induced by En+, on En 
is identical to the topology initially given on E n .  Then we may define 
on E a structure of HausdortT locally convex space, in the following way: 
a subset V of E, assumed to be convex, is a neighborhood of zero if and 
only if, for every n = 1,2, ..., V n En is a neighborhood of zero in the 
Frichet space E n .  When we provide E with this topology, we say that 
E is an LF-space or, equivalently, a countable strict inductive limit of 
FrCchet spaces, and that the sequence of FrCchet spaces, {En} 
(n  = 1,2, ...), is a sequence of definition of E. A space LF may have several, 
and in fact infinitely many, sequences of definition, as will soon be 
clear in the examples. 

Let {En} be a sequence of definition of an LF-space E. Each En is 
isomorphically embedded in the subsequent ones, En+1, En+2 ,.... But a 
priori we do not know if En is isomorphically embedded in E, in other 
words if the topology induced by E on En is identical to the topology 
initially given on E n .  If U is a neighborhood of 0 in E, it contains a 
convex neighborhood of zero V in E, and V n En must be a neighbor- 
hood of zero in En; this means that the topology induced by E on En 
is less fine than the original topology of En . That it is identical to the 
original topology will be a direct consequence of the following lemma: 

LEMMA 13.1. Let E be a locally convex space, E, a closed subspace of E, 
U a convex neighborhood of 0 in E, , and xo a point of E which does not 
belong to U.  Then there exists a convex neighborhood V of 0 in E,  not 
containing x, and such that V n E, = U. 

Proof. In the statement, Eo carries the induced topology. Therefore 
there is a neighborhood of zero, W, in E, such that U = W n E, . 

126 
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The trouble is that W may not be convex and that it may contain x,; 
we shall modify W in such a way that this does not happen. First of all, 
W contains a convex neighborhood of zero W, in E. Let W, be the 
convex hull of U u W,; we claim that 

(13.1) W, n E, = U (of course, we have U C W, n I?,). 

Indeed, let x E W, n E,; since x E W, , we may write x = ty + (1 - t)z 
with 0 < t < 1, y E U ,  and z E W,. If t = 1, x = y belongs to U ;  if 
t < 1, we have z = (1 - t ) - l (x  - ty)  E Eo , hence z E W, n E, C 
W n E, = U ;  but as U is convex, we must then also have x E U. This 
proves (13.1). 

We must now “cut down” W, so that it does not contain x, . However, 
if x, E E, , there is nothing to be done since x, 4 U:  it suffices to apply 
(13.1). Let us therefore suppose that x, 4 E, . Consider the quotient 
space E / E ,  and let 9 be the canonical mapping of E onto EIE,; the 
quotient space is a Hausdorff locally convex TVS, and we have c$(x,) # 0. 
Choose a convex neighborhood of zero in EIE, which does not contain 
+(xo); its preimage 52 is a convex neighborhood of E,, and therefore 
also of 0, in E, which does not contain x, ; the neighborhood of zero 
V = W, n 52 fulfills all the requirements of the Lemma (see figure). 

FIG. 2 

Let us show now how Lemma 13.1 implies the result that E, strict 
inductive limit of the F-spaces En, induces on each En the initially 
given topology. Let Un be an arbitrary (convex) neighborhood of 0 in 
En. There exists a convex neighborhood of zero U,,, such that 
Un+, n En = U,: this follows from Lemma 13.1. By induction on n, 
we see that, for every k = 1, 2, ..., there exists a convex neighborhood 
of zero U,,, in En+k such that 

un+~ n En+k-, = Un+,-,- 
If we set 

m 

u = un+, > 
P=O 
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we see that U n En = Un; furthermore, U is a neighborhood of zero 
in E since U n Em is a neighborhood of zero in Em for all m. 

PROPOSITION 13.1. Let E be an LF-space, (Ek} ( k  = 0, 1, ...) a sequence 
of dejinition of E, F an arbitrary locally convex TVS, and u a linear map 
of E into F.  The mapping u is continuous i f  and only i f ,  for each k ,  the 
restriction ulEk of u to E, is a continuous linear map of E k  into F.  

Proof. Suppose that u : E -+ F is continuous. Let V be a neighborhood 
of zero in F ;  u-'(V) contains a convex neighborhood of zero U in E. 
For each k, u k  = U n Ek is a neighborhood of zero in Ek , and we have 

U k  = ~ - l (  V )  n Ek = (u/Ek)-l( V ) .  

Suppose now that, for each k, ulEk : E,  -+F is continuous. Let V be a 
neighborhood of 0 in F. We use now (for the first time) the fact that F 
is locally convex, for we might then assume that V ,  hence also u-l( V ) ,  
is convex. But, for each k, 

Up'( v) n Ek = (UIf?k)-l( V ) .  

is a neighborhood of zero in Ek . Thus u-l(V), being convex, must be 
a neighborhood of zero in E. Q.E.D. 

COROLLARY. 
to ewery Ek is continuous. 

theory of distributions, as will be shown. 

Remark 13.1. Unless E = ind limn En is a FrCchet space, E is never a 
Bake space. Indeed, each En is a complete, therefore closed, linear 
subspace of E (we are using here the fact that the topology induced by E 
on En is the one initially given on En : otherwise we could not assert in 
all generality that En is closed in E). Thus E is a countable union of 
closed subsets, the En's: one of these, say E n , ,  ought to have an interior 
point x,, , if E were to be a Baire space. 

As x -+ x - x, is a homeomorphism of E onto itself, the origin should 
also be an interior point of En,; in other words, En, should be a neighbor- 
hood of the origin. As a neighborhood of zero is absorbing, En, should 
be absorbing. As En, is a linear subspace, this would imply imme- 
diately that En, = E. But this would mean, in particular, that E is an 
F-space. 

Remark 13.2. Let E be an LF-space, {En) a sequence of definition of E, 

A linear form on E is continuous if and only if its restriction 

These results have a great simplifying value when applied to the 



Chap. 13-41 SPACES LF. EXAMPLES 129 

and M a closed linear subspace of E. I t  is not true in general that the 
topology induced on M by E is the same as the inductive limit topology 
of the F-spaces En n M. One should be careful not to overlook this fact 
(the author has made the mistake a few times in his life and so also have a 
few other utilizers of the LF-spaces!). 

THEOREM 13.1. 

Proof. Let E be a space LF, {En} (n = 1, 2, ...) a sequence of definition 
of E (see p. 126), 9 a Cauchy filter on E. The  collection of sets M + V, 
as M runs over 9 and V runs over the filter of neighborhoods of 0 in 
E, is a basis of filter on E, since 

M n M ’ +  V n  V ’ C ( M +  V ) n ( M ’ +  V’); 

let 9 be the filter that it spans. It is a Cauchy filter. Indeed, let U be an 
arbitrary neighborhood of 0 in E, V another neighborhood of zero such 
that V + V - V C U ,  M a set belonging to 9 such that M - M C V ;  

Any space L F  is complete. 

then 
( M + V ) - ( M + V ) C M - M + + - V C U .  

Observe that 9 is finer than 9. We shall then prove the following 
assertion: 

(13.2) There is an integer p 2 1 such that none of the sets A n Ep , 
as A runs over 9, is empty. 

This will imply Theorem 13.1. Indeed, if none of the sets A n E, is 
empty, they form a filter 9p on E, ; since the topology induced by E 
on E, is identical with the original topology of E , ,  Y p  is a Cauchy 
filter, and since E,  is a FrCchet space, 9, converges to an element x 
in E, . It is clear that x is an accumulation point of 93, which therefore 
converges to x; a fortiori, 9 converges to x. 

Proof of (13.2). We shall suppose that (13.2) is false and show that 
this leads to a contradiction. Thus, suppose that, for every n = 1,  2, ..., 
there is A, = M ,  + V,  E 9 which does not intersect En . By shrinking 
A, if necessary, we may assume that each neighborhood of zero V, 
is convex and balanced, and that V ,  C V,-l for all n > 1. Let, then, 
W, be the convex hull of 

Vn u ( + k  Ek) -  
k t n  

I contend that M ,  + W, does not intersect En. If it did, there would 
be x E M ,  , y E V,  and z E En-l such that x + t y  + z E En for some 
number t ,  0 < t < 1; but t y  E V,  as this set is balanced, and z E E,, ; 
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therefore, x + t y  E ( M ,  + V,) would belong to E contrary to our 
choice of A,. NOW call w the convex hull of uEF(vk n Ek). AS w 
is convex and as W n Ek contains v k  n Ek for all k, W is a neighborhood 
of 0 in E. On the other hand, since the sequence {V,) is decreasing, 
we have, for all n, 

v n u  u ( V k n E k ) I  6 ( v k n E k ) ,  
k <n k=l 

hence W C  W, for all n. Now, since 9 is a Cauchy filter, we may find 
a set B E 9 such that B - B C W C W, (for all n).  But we must have, 
for all n, B n M ,  # 0, hence B - (B 

B C  W, + ( B  n M,)C W, + M , .  

This demands that B n En = 0 for all n, i.e., B = 0, which is 

Example I. 
Let us denote by C[Xl the vector space of polynomials in n letters 

X = ( X I  ,..., X,) (or in n variables, if the reader prefers) with complex 
coefficients. This vector space has a canonical algebraic basis, the 
monomials 

M,) C W, , hence 

impossible. Q.E.D. 

The space of polynomials 

XP = X,.l * - *  X,"., p = (PI ,..., p,) E N". 

(We recall that N" is the set of vectors of R" whose coordinates are 
nonnegative integers.) Any polynomial is a finite linear combination of 
the monomials Xp. Let 9 2  be the vector space spanned by the Xp 
such that Ip I = p ,  + -.. + p,  < m. The elements of 92 are the 
polynomials of degree <m. The degree of a polynomial P ( X )  is the 
smallest integer m such that P ( X )  E 9 2 ;  we shall denote by deg P this 
integer. An elementary computation shows that there are exactly 
("A,) monomials Xp such that I p I < m, in other words 

dim = (m + n)!/(m!n!) .  

Let P(x)  be a polynomial, 

It is obvious that P can be viewed as a function on the set Nn: precisely 
the function which, to each p ,  assigns the value cp if 1 p 1 < deg P and 
equal to zero otherwise. Note that this mapping of polynomials into 



Chap. 13-61 SPACES LF. EXAMPLES 131 

functions on Nn does not preserve multiplication: the function corre- 
sponding to the product of the polynomials is not the product of the 
functions corresponding to each one of these polynomials (we shall see 
later that multiplication of polynomials is transformed into conoolution 
of functions). At any event, if we put on Nn the discrete topology and we 
note that every set is closed in this topology, we see that the functions 
corresponding to polynomials are exactly the functions with compact 
support: a subset of Nn is compact if and only if it is finite. Arbitrary 
functions on Nn correspond (via the coefficients) to formal power series; 
it is obvious that we can regard C[XJ as a vector subspace, or even as a 
subalgebra (or a subring) of the space C[[X]] of formal power series in 
n letters (with complex coefficients). 

Being a finite dimensional vector space, 9: carries a unique Hausdod 
topology, for which it becomes an F-space. We may then view C[Xl as 
the union of the F-spaces 9 p  as m = 0, 1,2, ..., and provide it with the 
inductive limit topology; thus C [ X ]  becomes a space LF. It should be 
noted that the topology thus defined on C[XJ is strictly finer than the 
topology induced on C[X] by C[[XJ], when the latter carries the 
topology of simple convergence of the coefficients (Chapter 10, 
Example 111). 

Example II. 

one of the following spaces: 

Spaces of test functions 

Let 52 be a nonempty open subset of Rn. Let us denote by F(52) any 

Sk(S2), 0 < k < a, Sm(Q), L p ( Q )  (1 < p < +a). 
The first ones, Uk(52), 0 < k < +m, are F-spaces; the last ones,lp(Q), 
are B-spaces. The space L2(52) is a Hilbert space. 

Let K be a compact subset of 52, which means that it is bounded.and 
closed in Rn and that its closure is contained in 52. Consider the subset 
of 3'(52), denoted by F,(K), consisting of the functions f whose support 
lies in K; it should be recalled that the support off, supp f, is the closure 
in SZ of the subset 

(x E Q;f(x) # 0). 

It  may of course happen that F,(K) contains only the function zero 
(i.e., the function identically equal to zero). This happens for instance 
when F(52) = Uo(Q) (or, for that matter, when F(SZ) is any of the spaces 
considered above), and K contains a single point (or has Lebesgue 
measure zero). At any event, F,(K) is always a linear subspace of F(Q) 
and it is easily seen that it is always closed: for if a sequence of functions 
c fk }  converges to a function f in any of the spaces above, chosen as 
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F(SZ), and if the fk all vanish in the open set SZ - K, then obviously 
their limit must also vanish in SZ - K. Thus, regarded as a subspace of 
F(SZ), F,(K) is an 8’-space, i.e., it is complete. When F = L*, then F,(K) 
is even a B-space, and it is a Hilbert space when F = L2. This turns out 
to be true also when F = V k  for 0 < k < + 00. Indeed, it is fairly 
obvious in this case that the topology of F ( K )  can be described by the 
single norm 

This is equivalent with saying that, when functions are required to have 
their support in some fixed compact set K C 52, it amounts to the same 
to ask that they converge uniformly on the whole space or on every 
compact subset of SZ. 

When F = Vm, it is not any more true that F,(K) is a B-space (outside 
of the case where it is zero); it is an F-space which, as will be seen in the 
following chapter, is not normable. 

Notation. We shall adopt the following notation: 
when F(S2) = Vk(SZ), 0 < k < + co, we write %t(K) for F,(K); 
when F(S2) = Lp(S2), 1 < p < +a, we write LP(K) for F,(K). 

We leave to the student the verification of the fact that Lp(K) is the same 
thing as the space normally denoted in that way, that is to say the 
B-space of classes of functions almost everywhere defined in K, Lebesgue 
measurable, and Lp. We may now consider the union of the subspaces 
FJK)  as K varies in all possible ways over the family of compact subsets 
of SZ. We denote by F,(SZ) this union; it is a vector subspace of F(SZ), 
precisely the subspace consisting of all the functions belonging to 
F(Q) which have a compact support. This is what the subscript c is meant 
to indicate. We shall not put on Fc(SZ) the topology induced by F(Q), 
but a finer one, which will turn it into a space LF. We proceed as follows: 

We consider a sequence of compact sets Kl C K,  C *.. C K j  C ... C SZ 
whose union is equal to SZ. I t  might even be advantageous, for further 
purposes, that the Ki be chosen so as to be the closures of (relatively 
compact) open subsets of SZ, and such that Ki be contained in the interior 
of Kjt1 . That such sequences of compact sets do exist has already been 
proved (Lemma 10.1). The  space Fc(SZ) can then be regarded as the 
union of the spaces F,(K,) for j = 1,2, ...; this is simply saying that an 
arbitrary compact subset K of SZ is contained in Ki for sufficiently largej. 
Because of our way of defining the F-spaces F,(K), we see that F,.(Ki+l) 
induces on F,(Kj) the same topology as the one originally given on 
F,(K,) (i.e., the one induced by F(SZ)). Thus we may provide F@) 
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with the inductive limit of the topologies of the F-spaces F,(K,). It is an 
easy matter to check that this topology does not really depend on the 
choice of the sequence of compact sets {K,} (provided they fill Q). With 
this topology, Fc(Q) becomes an LF-space. 

We shall write V?t(Q), VT(Q), and L$(Q) for F,(Q) when 
F is meant for Vk, V", and Lp, respectively. The topology just defined 
on Fc(SZ) will be called the canonical L F  topology. 

The space V?(SZ) plays a basic role in the theory of distributions; 
its elements will be called test functions (they are the V" functions with 
compact support in SZ). A distribution in Q is nothing else but a con- 
tinuous linear functional on Vp(Q) when the latter carries the canonical 
L F  topology. 

Notation. 

Proof. If we want to prove that we have a continuous injection 
FJQ) + G,(Q), where F and G are two functions spaces of the type 
above, it suffices to show that we have a continuous injection 
F,(K) -+ Gc(K) for each compact set K C 52, for after having shown this 
it will suffice to apply Proposition 13.1. The statement relative to the 
upper sequence becomes evident. The one about the lower sequence 
follows from Holder's inequalities, which will be proved only later 
(Chapter 20) but which the student probably knows already. Let p ,  q 
be two real numbers, 1 < p < q < +m. Let us denote by xK the 
characteristic function of the compact set K, equal to one in K and to 
zero everywhere else. Let f E Lq with supp f C K. We may suppose at 
first that f is of a simple type, for instance a bounded measurable step- 
function. We have (cf. Lemma 20.1) 

with r = q/(q - p). We obtain thus 

(13.3) 

By going to the limit, e.g., along sequences of bounded measurable 
step-functions, we obtain easily (13.3) for all f E LP(K), thus proving 
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what we wanted: that f E L p  and that the natural injection of Lq into L P  

is continuous. 

Exercises 

13.1. Let Sq, be the space of polynomials in n variables, with complex coefficients, 
provided with the L F  topology defined on p. 129. Prove the following two facts: 

(a) 
(b) 

13.2. 

The L F  topology on 9- is the finest locally convex topology on this space. 
Every linear map of Pn into any TVS is continuous. 

Let p be a positive number, 1 < p < co. Let {e,} (k = 0, 1, ...) be a decreasing 
sequence of numbers E* > 0, converging to zero. Prove that the subsets of L,D(R"), 

form, as the sequence { E ~ )  varies in all possible ways, a basis of neighborhoods of zero for 
the LF topology on L:(R") (see p. 131). 

13.3. Let E be a normed space, whose norm is denoted by 1 1  /I. Let, for every 
k = 0, 1, 2, ..., Ek be-a linear subspace of E of dimension k, such that E,  C E,,, . Let E m  
be the union of the subspaces E, , equipped with the L F  topology defined by means of 
the sequence {E,}. Let {e,} (k = 0, I ,  ...) be a decreasing sequence, converging to 0, of 
numbers > 0. Set 

" Y ( { E x } )  = {X E E m  ; X 6 El * II S II < e k ,  k = 0, I,...}. 

Prove that V ' ( { e k } )  is not a neighborhood of zero in Em . 
13.4. Let E, F be twolF-spaces, {Em}, {Fn} (m, n = 1, 2, ...) two sequences of definition 

of E and F, respectively (see p. 126), and u : E -+ F a continuous linear map. By using the 
fact that a Frkchet space is a Baire space, prove that to every m there is n such that 
4 E m )  CFn 

13.5. Let E, F, {Em}, and {F,,} be as in Exercise 13.4. If u is an isomorphism (for the 
TVS structures) of E into F, prove that to every n there is m such that u-l(F,) C E m .  

13.6. Let E be a vector space, {E*}, (a E A) a family of locally convex spaces, and, for 
each index a E A, j ,  : E, + E a linear map. Let 9- be the finest locally convex topology 
on E such that all the mappings 4, be continuous. Prove that a convex subset U of E is 
a neighborhood of zero for 9- if and only if dzl(U) is a neighborhood of zero in E, for 
each a, but that this is not necessarily true if L7 is not convex. Let F be a locally convex 
TVS. Prove that a linear map u : E + F is continuous (when E carries the topology F) 
if and only if, for every a E A, u 0 : E, + F is continuous. 

13.7. Let K be a compact subset of C", and Q, (k = 0, I ,  2, ...) a sequence of open 
sets of C" containing K such that 

C" = Q, 3 ..' 3 Q, 3 R,,, 3 ." 

and such that any open subset of C" which contains K contains some Q, (in other words, 
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the J?, form a decreasing basis of neighborhoods of K). On the other hand, let H(K) 
denote the vector space of functions in K which can be extended as holomorphic functions 
in some open set containing K. We have the natural mapping pr : H(Q,) -+ H(K), the 
mapping “restriction to K.” Apply the scheme of Exercise 13.6 with E = H(K) ,  A = N, 
E, = H(R,), and $a = px if LI = k. Prove that H ( K )  is ‘complete and that H ( K )  is not 
(unless K = 0) the strict inductive limit of the sequence of Frkchet spaces H(Q,). 



14 
Bounded Sets 

Let E be a TVS (not necessarily Hausdorf€ nor locally convex). We 
wish to generalize the notion of bounded set, familiar to us in finite 
dimensional spaces or even in normed spaces (see Chapter 11). 

Defnition 14.1. 
neighborhood of zero U in E there is a number h 

A subset B of the TVS E is said to be bounded if to every 
0 such that 

B C XU. 

It may be said that a subset B of E is bounded if B can be “swallowed” 
by any neighborhood of zero. Of course, it suffices, in order that B be 
bounded, that any neighborhood in some basis of neighborhoods of zero 
swallows B. Since there is a basis of neighborhoods of zero in E 
consisting of closed neighborhoods of zero (Proposition 3.1), we see that 
the closure of a bounded set is bounded. It is quite obvious that finite sets, 
bounded subsets (in the usual sense) of finite dimensional spaces, balls 
with finite radii in normed spaces, are bounded sets. Also obvious are the 
following properties: 

Finite unions of bounded sets are bounded sets (we recall that any 
neighborhood of zero contains a balanced one). 

Any subset of a bounded set is a bounded set. 

(1) 

(2) 
Notice that these properties are, in a sense, dual of the properties 

of neighborhoods of a point (they are also shared by the family of 
complements of neighborhoods of a point). This leads to the following: 

Defnition 14.2. A family of bounded subsets of E, {B,} ( a  E Q), is called 
a basis of bounded subsets of E if to every bounded subset B of E there is an 
index a E 52 such that B C B, . 

A basis of neighborhoods of zero is a family of neighborhoods of 0 
such that any given neighborhood of zero contains some neighborhood 
belonging to the family. A basis of bounded sets is a family of bounded 
sets such that any given bounded subset of E is contained in some bounded 

136 
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subset belonging to the family. As we shall see when we study the strong 
topology on the dual of a TVS, this "duality" between neighborhoods of 
zero and bounded sets has important implications. 

What sets do we know to be bounded ? Sets consisting of a single point 
are bounded: this is to be expected and it is obvious on Definition 14.1 
when we take into account the fact that neighborhoods of zero are 
absorbing (Definition 3.1). 

PROPOSITION 14.1. 

can take to be open and balanced. Then we have 

Compact sets are bounded. 

Let K be a compact set, and U a neighborhood of zero in E which we 

K C  5 nU = E.  

From compactness it follows that there is a finite family of integers 
n, ,..., n, such that 

n=O 

In finite dimensional spaces, every bounded set, provided that it is 
closed, is a compact set. This is not true, in general, in infinite 
dimensional TVS. For instance, let E be an infinite dimensional normed 
space. If every bounded set in E were compact, this would be true, in 
particular, of all the balls centered at the origin. Then E would have to 
be locally compact, which is impossible as dim E = +CO (Theorem 9.2). 
There is however an important class of infinite dimensional vector spaces, 
the so-called Montel spaces, in which it is true that every closed bounded 
set is compact. We shall study the Montel spaces later on in relation to 
duality. The  spaces Um(Q), 9, and U,"(Q) (Chapter 10 and 12) are 
Montel spaces (Theorem 14.4, Exercises 14.9, 14.10, p. 148). 

COROLLARY 1. Suppose that E is Hausdorff. Then precompact subsets of E 
are bounded in E .  

Let K be a precompact subset of E. This means that the closure R of K 
in the completion l? of E is compact. Let U be any neighborhood of zero 
in E. Since the injection E ---t I? is an isomorphism for the TVS structure, 
there is a neighborhood of zero 0 in I? such that U = E n  0. By virtue 
of Proposition 14.1, there is a number A > 0 such that R C Xu, whence 

K C E n K C E n (AD) C h(E n 0) = hU. 

Suppose that E is Hausdorff. The union of a converging COROLLARY 2. 
sequence in E and of its limit is a bounded set. 
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For such a union is a compact set. 

COROLLARY 3. 
bounded set. 

Let E be Hausdog .  Any Cauchy sequence in E is a 

For a Cauchy sequence is a precompact subset of E. 
T h e  Cauchy filter associated with a Cauchy sequence contains a 

bounded set. This is not true about a Cauchy filter in general. 

PROPOSITION 14.2, The image of a bounded set under a continuous linear 
mapping is a bounded set. 

Let E, F be two TVS, u a continuous linear map of E into F, B a 
bounded subset of E, and V an arbitrary neighborhood of zero in F. 
Since the preimage u-l( V) of V under u is a neighborhood of zero in E, 
there is h > 0 such that 

B C Xu-'( V )  which implies u(B) C XV. 

COROLLARY. Let f be a continuous linear functional on E,  and B a bounded 
subset of E. Then f is bounded on B, i.e., 

PROPOSITION 14.3. Let E be any TVS. A subset B of E is bounded if and 
only if every sequence contained in B is bounded (in E).  

The  necessity of the condition is obvious; let us prove its sufficiency. 
Suppose that B is unbounded; we shall prove that it contains a sequence 
of points which is also unbounded. There exists a neighborhood U of 
zero in E, which we might as well suppose to be balanced, which does 
not swallow B. In other words, for each n = 1,2, ..., there is a point 
x, E B which does not belong to nu. The  sequence of points x, cannot 
be bounded. 

Any ball in a normed space is a bounded set; thus we see that 
there exist, in normed spaces, sets which are at the same time bounded 
and neighborhoods of zero. This property is characteristic of normable 
spaces, at least among HausdorfF locally convex spaces. 

PROPOSITION 14.4. Let E be a Hausdorfl locally convex space. I f  there is a 
neighborhood of zero in E which is a bounded set, then E is normable. 

Let U be a bounded neighborhood of zero in E. We may assume that 
U is a barrel, since it does contain a neighborhood of zero which is a 
barrel. We claim that, under these circumstances, the multiples (1 In) U 
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form a basis of neighborhoods of zero in E. Indeed, given any neighbor- 
hood of zero V in E, it swallows U. We may assume V balanced; hence 
there is an integer n > 0 such that U C nV,  which means that (1 In) U C V .  
As the space E is HausdorR, the intersection of the sets ( l / n ) U  must be 
equal to {0}, which means that the seminorm associated with U is a 
norm. Q.E.D. 

PROPOSITION 14.5. Let E be a locally convex space. A subset B of E is 
bounded if and only if every seminorm, belonging to some basis of continuous 
seminorms of E,  is bounded on B .  

T o  say that a seminorm p is bounded on a set B simply means that 
~up , ,~p (x )  < + co. The proof of Proposition 14.5 is left to the student. 

PROPOSITION 14.6. Let E be an LF-space, and {En} (n = 0, 1 ,  2,  ...) a 
sequence of deJinition of E (see Definition 12.1.). A subset B of E is bounded 
in E if and only if B is contained in En for a suficiently large n, and if B 
is bounded in that F-space En . 

Proof. Suppose first that B is contained and bounded in some En. Let 
U be an arbitrary neighborhood of zero in E. We must show that U 
swallows B. As Un = U n En is a neighborhood of zero in E n ,  there 
is a number h > 0 such that B C hUn C hU. 

We assume now that B is bounded in E. We shall first show that B 
must be contained in some space E, . We shall suppose that this is not 
so and show that it leads to a contradiction. For each n, there is a point 
x, E B, x, 4 En . We shall construct, with the help of Lemma 13.1, a 
neighborhood of zero U in E which cannot swallow the sequence {x,}, a 
fortiori cannot swallow B. Since x1 4 E l ,  given an arbitrary convex 
neighborhood of zero U ,  in El , there is a convex neighborhood of zero 
U, in E, , with the properties 

U ,  = U ,  n E,  , X, $ U , .  

It may of course happen that E, contains x l ,  but, since x1 4 U, , again 
in virtue of Lemma 13.1, we may find V; , convex neighborhood of 
zero in E,, such that 

U, = V; n E, , x1 $ V ; .  

On the other hand, since x, 4 E,  , hence 2x, 4 E2 , we may find a convex 
neighborhood of zero in E, , V ,  , such that 

u, = v, n E,  , 2x, 4 v3. 
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We set U, = V3 n V; .  We have 

Thus, by induction on n, we build a sequence of sets {Un) with the 
following properties: 

U, is a convex neighborhood of zero in En; 

the points xl, 2x, ,..., nx, do not belong to Un+, . 
un = un+1 n E n ;  

Let then U be the union of those sets U, . For each n, we have U, = 

U n En , thus U is a neighborhood of zero in E. And obviously U cannot 
swallow the sequence { x l ,  x2 ,..., x,, ...}. 

This proves that a bounded subset B of E must be contained in En 
for sufficiently large n. Let Un be any neighborhood of zero in a space En 
containing B. We apply once more Lemma 13.1 : there is a neighborhood 
of zero U in E such that U r\ En C Un . By hypothesis, there is X > 0 
such that B C XU. This yields 

B = B n E , C ( X U ) n E , ,  = X ( U n E n ) C h U n .  

Thus B is bounded in En. Q.E.D. 

COROLLARY 1.  Let E and the En be as in Proposition 14.6. A sequence 
(xk} converges in E if and only if i t  is contained in some subspace E, and 
converges there. 

Exercises 

14.0. Let E be a locally convex metrizable space. Prove that, if E is not normable, 

Let 9 be an open subset of R”, K, , I(, ,..., K ,  ,... a sequence of compact subsets 
of 9, whose union is equal to 9, and such that, for each v, K ,  is contained in the interior 
of K,,, . Let k be a nonnegative integer (k < + 03). Show that, when the sequence of 
nonnegative numbers {M+}  (v = 1, 2, ...) varies in all possible ways, the sets 

there is no countable basis of bounded sets in E. 
14.1. 

form a basis of bounded sets in P(9). Conclude that (unless 9 is empty!) V r ( 9 )  is not 
normable. 

14.2. Show that a subset B of Vm(Q) is bounded if and only if it is bounded in every 
@(a), k < + Q). Derive from this fact a remarkable basis of bounded sets in Vm(9) using 
the same compact sets K,  as in Exercise 14.1. 
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14.3 A subset B of %a(O) (0 < k < i- co) is bounded if and only if it consists of 
functions having their support contained in one and the same compact subset K of R, 
and if B is bounded in uk(O). Prove that, if k is finite, there is a countable basis of bounded 
sets in %:(a). Compare with the situation in 'Zk(Q). 

14.4. Construct bases of bounded sets in the following locally convex TVS: the space 
H(O) of holomorphic functions in an open subset 9 of C" (Chapter 10, Example 11); 
the space of formal power series C [ [ X ] ]  (Chapter 10, Example 111); the space 9 of Vm 
functions rapidly decreasing at infinity in R" (Chapter 10, Example IV). Prove that a 
subset B of the space of polynomials in n letters, with complex coefficients, C [ X ] ,  is 
bounded in C [ X ]  if the degrees of all the polynomials belonging to B are at most equal 
to some fixed integer m, and if B is bounded in C [ [ X ] ] .  

14.5. Prove the following result: 

PROPOSlTlON 14.7. 
continuous if and only if it is sequentially continuous. 
(cf. Proposition 8.5.) 

Let E be an LF-space. A linear map of E into a locally convex space is 

14.6. Let E be anLF-space such that there is a sequence of definition {E,}(k = 0,1,2, ...) 

i f F  is a normed space and u : F + E is a continuous linear map, Ker u has a finite 
codimension (i.e., dim(F/Ker u)  < + 00);  

if M is a linear subspace of E such that the topology induced by E on M turns M 
into a normable space, then dim M < + 00. 

Let E be a metrizable space, and {Bk} (k = 0, 1, 2, ...) a sequence of bounded 

of E consisting of finite dimensional (FrCchet) spaces. Prove the following facts: 

(a) 

(b) 

14.7. 
subsets of E. Prove that there is a sequence { E ~ }  of numbers > 0 such that the union 

m 

&kBr 
k r O  

is bounded in E. 

Let E, F be two TVS, and u a linear map of E into F. Let us say that 
u is bounded if, for every bounded subset B of E, u(B) is a bounded 
subset of F. 

PROPOSITION 14.8. Let E be a metrizable space. If a linear map of E into 
a TVS F is bounded, it is continuous. 

Let f : E + F be bounded. Suppose that f were not continuous. Then 
there would be a neighborhood of zero V in F whose preimage f-l( V) 
is not a neighborhood of 0 in E. Let us suppose that V is balanced and 
let Ul 3 U, 3 3 U, 3 be a totally ordered countable basis of 
neighborhoods of zero in E. For all m, we have 

in other words, there is x,, E ( l / m ) U m  such that f ( x m )  .$ V .  As mxm E Urn , 
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we see that the sequence {mx,,} converges to zero in E, in particular is 
bounded in E. Therefore, as u is bounded, the sequence {m f (xm)}  must 
be bounded in F. This means that there is a positive number p such that 
m f(x,) E p V  for all m. Take m > p; we have 

f (x , )  E !- V C V (since V is balanced), m 

contrary to our assumption. We have reached a contradiction. 

COROLLARY. A bounded linear map of a Frtchet space (resp. a normed 
space, resp. an LF space) into a TVS is continuous. 

The Frdchet and normed cases are trivial consequences of Propo- 
sition 14.8; the LF case follows from the same combined with Propo- 
sitions 13.1 and 14.6. 

We recall that continuous linear mappings are always bounded 
(Proposition 14.2). 

We show now that the spaces WW(SZ), W;(SZ) (SZ: open subset of R"), 
and 9 = 9(Rn) have the property that all bounded and closed subsets 
are compact. The proof is based on Ascoli's theorem, which we recall 
now. First of all, we introduce the notion of equicontinuous sets of 
functions: 

Definition 14.3. Let X be a topological space, F a TVS, and xo a point 
of X .  A set S of mappings of X into F is said to be equicontinuous at the 
point xo if, to every neighborhood of zero, V ,  in F, there is a neighborhood 
U(x0) of xo in X such that, for all f E S, 

x E U(xo) implies f(x) - f (xO)  E V .  

The condition in Definition 14.3 implies that each mapping f E S is 
continuous at xo (but this, of course, is not enough to ensure that S is 
equicontinuous at xo). 

The definitions of an equicontinuous set of mappings f : X + F on a 
set A C X, of uniformly equicontinuous sets of mappings, etc., are 
obvious. Now, if X is a compact space, a set S of mappings from X 
into F which is equicontinuous at every point is uniformly equicontinuous 
(a compact space carries a canonical uniform structure; if the student 
does not want .to hear about uniform structures, he may imagine that 
X is a compact subset of a TVS). In this chapter, we shall not be 
concerned with equicontinuous sets of linear mappings of a TVS E into 
another TVS F, but let us point out (for future purposes) that in order 
that such a set of mappings be equicontinuous everywhere, and also 
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uniformly equicontinuous, it is necessary and sufficient that it be 
equicontinuous at the origin. If S is the set under consideration, the 
definition of equicontinuity reads: to every V, neighborhood of zero 
in F, there is U,  neighborhood of zero in E, such that, for all f E S, 

f ( U ) C  V ,  or U C f - l ( V ) .  

Let us turn our eyes to complex-valued functions (not necessarily 
linear). A set S of mappings f : X - C is equicontinuous at xo if, to every 
E > 0, there is a neighborhood U(xo) of x0 in X such that, for all f E S ,  

x E U(x0) implies I f ( x )  -f(xO)/ < F.  

Now, we state and prove Ascoli's theorem: 

THEOREM 14.1. Let { fn} be a sequence of complex-valued functions 
defned in a compact subset of Rd. W e  make the following assumptions: 

(a) 
(b) 

the set of functions cfTL} is equicontinuous on K ;  
there is a constant M < f m  such that, for every n and every 
x E K,  

I fn(x)l < M .  

W e  conclude that the sequence cfn} contains a subsequence cfn,} which 

Let E > 0 be given arbitrarily. By hypothesis, to every point xo 

converges unqormly in K. 
Proof. 
of K there is v(xo) > 0 such that 

I x - x0 1 < ?(#) implies 1 fn(x)  - fn(xo)I < E for all n. 

The compactness of K implies immediately that we may take 7(xo)  
independently of x0 (this has already been mentioned in the remarks 
preceding the statement of Theorem 14.1: on compact sets, equi- 
continuity at each point implies uniform equicontinuity). Let us then 
write 7 instead of 7(xo).  

Let us choose a finite number of points of K, x1 ,..., xm, such that the 
balls {x E Rd I x - xi 1 < v} (j  = 1, ..., m) cover K .  We focus our 
attention on x1 first, and consider the set of complex numbers { fn(x l ) } .  
In view of Assumption (b), this set is contained in the disk of the complex 
plane, {z; I z I < M}; by the theorem of Weierstrass-Bolzano we can 
extract a subsequence that converges; let it be { fn,(xl)} ,  h = 1,2, .... 
Next, we repeat the same argument at the point x2, but after having 
substituted the sequence { fnA}  for the sequence { fn } ,  which we obviously 
may do: if the sequence {fn} has Properties (a) and (b), so does every 
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subsequence of the Cf,}. Thus we find a subsequence { fn } of the f,, 
such that the sequence of numbers { f (x,))) converges; and so on. 
Repeating m times this procedure, we end up with a subsequence S‘ 
of the originally given sequence { f,}, and whose elements we shall 
represent, for the sake of simplicity, by g, , which has the following 
property: for every j = I ,  ..., m, the sequence of numbers {g,(xj)} 
converges. Let us choose an integer N(e)  so large that n, , n, 3 N(E)  
implies, whatever be j ,  1 < j < m, 

,r 

Let then x be an arbitrary point of K ;  there is some j such that 
I x - xj I < r ] .  We have, for n, , n2 3 N(E), 

I gnJ4 - gn*(.>I < I gn,(.) - gnJ4I + I g n ( 4  - gn,(x~>l 

+ I gn,(xJ> - g&)I < 3 E .  

In  view of the properties of the sequence {gN(,)  , gN(E)+l ,...}, and after 
replacing E by e / 3 ,  we see that we have proved the following fact: 

(14.1) Let S = { fn}  be a sequence of functions in the compact set K, 
having Properties (a) and (b) in Theorem 14.1. Given any B > 0, 
there is a subsequence S’ of S such that, if fnl , fnz E S’, 

From there, the proof of Theorem 14.1 follows easily: for we apply 
(14.1) to S with E = I ,  obtaining thus a subsequence of S which we 
shall denote by Sl; next, we apply (14.1) with S, instead of S and E = Q 
and we obtain a subsequence S, of S,; etc. By induction, we obtain a 
totally ordered sequence of sequences 

s = so3 s13 s,3 s,3 s9+13 *.. 

with the property that, if f,, , f,, E S, , then 

We choose arbitrarily f,, in S o ,  f,, in S, ,..., and fn9 in S, ,...; it is 
clear that the sequence {f,,} (K = 0, 1, ...) is a Cauchy sequence for the 
uniform convergence in K ;  it has therefore a limit, which is a continuous 
function. Q.E.D. 
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Remark 14.1. Consider the Banach space V ( K )  of the continuous 
functions in K, with the topology of uniform convergence, that is to say 
with the norm 

Ascoli’s theorem states that a subset of U ( K )  which is both bounded and 
equicontinuous has a compact closure. 

Ascoli’s theorem has a converse, which we are not going to use: any 
subset of V ( K )  which has a compact closure is bounded and equicontinuous. 

The next result provides us with a criterion of equicontinuity; it is 
sometimes referred to as ArzelP‘s theorem. Given any bounded subset 
of U(K),  we cannot assert, of course, that it is compact (otherwise the 
closed unit ball of V(K) would be compact, V ( K )  would therefore be 
locally compact, hence it would be finite dimensional!). But if, given a 
set S of functions in K, we know that it is bounded (for the maximum 
of the absolute value) and moreover that the functions in the set S have 
continuous first derivatives which are also uniformly bounded by one 
and the same finite constant, then we may conclude that the set S is 
equicontinuous, therefore relatively compact in U( K) (“relatively 
compact’’ means “has a compact closure”). But we must make this 
statement more precise: for what does it mean that a function f ,  defined 
in a compact set K, has continuous first-order derivatives ? To give a 
meaning, we shall assume that K is contained in a bounded open subset 
9 of Rn, and we shall be concerned with the space U l ( 0 )  introduced in 
Chapter 11 (Example 111, p. 98): it is the space of once continuously 
differentiable functions in 52 whose derivatives of order 0 and 1 can be 
extended as continuous functions to the closure 0 of 9. The space 
%’(a) carries the norm 

l l f l l l  = SUP (suplf(x)l, SUP I ( W J f ( 4 l ) 9  
2ER j=l. .... n 

or any equivalent norm, like for instance 

.f - SUP (If(x)l + i I(a/axJf(x)l). 
2& i=l  

With any one of these norms, %‘(a) is a B-space. We may now state 
Arzelh’s theorem: 

THEOREM 14.2. Let K be a compact subset of a bounded open subset 52 
of R”. The restriction mapping f - f I K ,  which assigns to a function in 8 
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its restriction to K ,  transforms bounded subsets of %“(a) into relatively 
compact subsets of %(K).  

“Relatively compact’’ means “has a compact closure.” 

Proof of Theorem 14.2. In view of Ascoli’s theorem (Theorem 14.1) 
it suffices to prove that the restriction to K of a bounded subset of %‘(a) 
is an equicontinuous set of functions in K (it is obviously bounded in 
V ( K ) :  Proposition 14.2). In fact, we might consider only balls centered 
at the origin, in W ( 0 ) .  

Let f be a function belonging to W(0). It follows easily, say from a 
Taylor expansion of order 1, that to every xo E 52 there is p(xo) > 0 
such that, if I x - xo I < p(xo),  then x E 52 and 

This implies obviously that any ball (of finite radius), centered at the 
origin, in W ( D ) ,  is an equicontinuous set in Q, that is to say at every 
point of SZ. In particular, the image of such a ball by the restriction 
mapping is an equicontinuous set of functions in K .  Q.E.D. 

Exercise 14.8. 
sional version of Arzeli’s theorem: 

THEOREM 14.3. 
subset of W ( [ a ,  b ] ) .  The set S is relatively compact in V ( [ a ,  b ] ) .  

Prove directly or derive from Theorem 14.2 the following one-dimen- 

Let [a,  b] be a closed and bounded interval of the real line, and S a bounded 

We may now prove the first of the announced results (all the others 
follow from this first one, as can be shown): 

THEOREM 14.4. Let SZ be an open subset of Rn. If k < oc), any bounded 
subset of Vk+l(SZ) is relatively compact in Vk(Q). A n y  bounded subset of 
W‘(52) is relatively compact in Vm(52). 

Proof. be the usual sequence of compact 
subsets of 52, whose union is .R, and such that K j  is the closure of its 
interior, SZj; for all j ,  K j  C Qj+’ . Since all the spaces under consideration 
are F-spaces, it suffices to show that any bounded sequence contains a 
converging subsequence (Proposition 8.4). We shall begin by considering 
the case where k is finite. 

L e t j  be 2 1 .  Let S be any bounded sequence in Vk+l(Dj). Th‘ is means 
that, for each n-tuple p such that I p I < k ,  the sequence of functions 

Let KO C K ,  C *.. C Kj C 
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is bounded in W(Oj). In  view of Arzelh’s theorem, we may find a 
subsequence S, of S such that the restrictions 

(14.2) (w4pf I Qj-1 , f E s, 9 

converge in V1(Qj-,) (to see this, order the n-tuples p, I p I < k, in any 
fashion: select a sequence Sl,l C S such that the restrictions (14.2) 
converge in Wo(Oj-,) as f runs over S,,, with the first n-tuple p; then 
select a subsequence S1,2 of S1,, such that the restrictions (14.2) converge 
as f runs over S1,, with the second n-tuple p ,  and so on; in a finite 
number of steps, we obtain the subsequence S,). It follows immediately 
from a standard argument (based on (10.2) and (10.3), p. 87) that i f f o  
is the limit of the restrictions (14.2) in V0(Oj-,) when p = 0, then, for 
each p ,  I p 1 < k, ( a / a x ) p f o  is the limit of the restrictions (14.2) in that 
same space. In other words, the sequence S, converges in Uk(Oj-,). 
We have proved the following fact: 

(14.3) Given any j >, 1, and any bounded sequence S in gk+l(Oj), there is a 
subsequence S, of S such that the restrictions of the functions f E S ,  
to Qj-, form a converging sequence in gk(Qj - , ) .  

Let now S be a bounded sequence in qk+l(Q) .  By restriction to Q, , 
it gives rise to a bounded sequence SIQ, in Vk+l(O1). By (14.3), we may 
find a subsequence S, of S such that the sequence of restrictions S,IQo 
to Go converges in ‘Zk(O0). But S, is also bounded in Vk+l(Q); by 
restriction to Q2 , it defines a bounded sequence in Vk+l(Q2). In  view of 
(14.3), we may find a subsequence S, of S, such that S,jQ, converges 
in Wk(Q1); and so forth. We obtain in this way a totally ordered sequence 
of sequences 

s = SOT) s,3 s,3 .-*3 sj3 ... 

such that, for each j >, 1, .SjIDj-, converges in Vk(&,). For each 
j 3 1, let f j be the limit of the sequence Sj1Qj-, in Wk(Oj-,). Letfi be 
an element of Sj such that 

It is obvious that the sequence S’ = {f,, f, ,..., f i  ,... } converges in 
Vk(Q); its limit is the function f in Q whose restriction to Qj-, is f j for 
each j 3 1; obviously, S’ C S. Thus we have proved the result for K 
finite. 
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Let now S be a bounded sequence of %*(SZ); a fortiori, S is bounded in 
each Uk(SZ),  k = 1, 2, ..., therefore S is relatively compact in each 
Uk-l(Q). Let So be a subsequence of S which converges in Uo(Q) (see 
Exercise 8.7), and let f be its limit. Let S,  be a subsequence of So 
converging in %l(SZ); the limit of S,  must also be f (which, by way of conse- 
quence, is Ul); let S, be a subsequence of S, converging (to f) in U2(Q), 
etc. We see that f is Urn in Q, and we have now a sequence of sequences 

this time with the property that, €or each j 2 1, Sj converges to f in 
W(SZ). For each j ,  we select an element f i  E Sj such that 

The subsequence of S,  { fi , f ,  ,..., f i  ,... }, obviously converges to f in 
UW(Q). Q.E.D. 

Exercises 

14.9. Prove the following corollaries of Theorem 14.4: 

COROLLARY 1. 
is relatively compact in %f(Q). 

COROLLARY 2. 

Vm functions rapidly decaying at infinity (Chapter 10, Example IV): 

THEOREM 14.5. Any closed bounded subset of 9' is  compact. 

Any bounded subset of C?'(Q) (Chapter 13, Example 11), 0 < k < + co, 

Any closed bounded subset of V?(Q) is compact (in V?(Q)). 

14.10. Prove the analog of Theorem 14.4 (or of its Corollary 2) for the space Y of 

We consider now the space H(Q) of holomorphic functions in an open 
subset SZ of the complex n-space Cn (see Chapter 10, Example 11, p. 89). 
The TVS H(Q) carries the topology of uniform convergence of functions 
on every compact subset of SZ. We may identify Cn with RZn via the 
canonical mapping 

and regard H ( S )  as a subspace of any of the spaces Uk(SZ) (0 < k < 00). 

On H(Q) all the topologies U k  coincide (see Chapter 10, loc. cit.); in 
particular, they all coincide with the Urn topology: H(Q) is a closed 
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subspace of Vm(sZ), meaning by this that the topology proper of H(Q) 
is identical with the one induced by Um(Q). Let now B be a closed and 
bounded subset of H(J2): B is closed and bounded in Vm(52), hence it is 
compact (where it is compact-in H(Q) or in V"(Q)-is irrelevant!). 
Thus we have proved Montel's theorem: 

THEOREM 14.6. Any closed and bounded subset of H(Q) is compact. 



15 
Approximation Procedures 

in Spaces of Functions 

It has been a standard tactic of the analyst, since the dawn of analysis, 
that, when forced to deal with a “bad” function, he should try to 
approximate it with “nice” ones, study the latter and prove that some 
of the properties in which he happens to be interested, if valid for the 
approximating nice functions, would carry over to their limit. Of course, 
the concept of a “bad” function has evolved in time, with the resulting 
effect that the set of functions considered “good” has steadily increased 
(but so has also the set of functions, or, more generally, of “function-like” 
objects, considered “bad”). We might imagine that Taylor and 
Mac Laurin felt ill at ease when confronted with analytic functions, and 
that is why they strove to approximate them by polynomials, whereas 
for our purposes here, from the local point of view, analytic functions 
will be regarded as the nicest type of functions (right after polynomials, 
which retain their supremacy); later on, nondserentiable continuous 
functions and then functions which are only measurable would be 
regarded as bad (they still are), and approximation techniques were 
devised to deal with them (e.g., approximation by step functions). 
As we shall see in Part 11, functions can become so bad as to stop being 
functions: they become Dirac’s “function” and measures, and in 
distribution theory we shall be dealing with derivatives of arbitrary order 
of measures. In  any one of these situations, it will help to have at our 
disposal approximation techniques, so as to approximate those objects 
by very smooth functions. In  talking about smoothness, we deal only 
with the local aspect: but there is also a global aspect, not to be forgotten, 
for instance when considering integrals 

where f and g are both nice locally, and “nice” means here integrable, 
but where g is allowed to grow at infinity arbitrarily fast. Then it becomes 

150 
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necessary that f decay at infinity arbitrarily fast: the latter can have 
only one meaning: f must vanish outside some bounded set. Similar 
global requirements will force us to study the approximation of “bad” 
functions, measures, and distributions, by smooth functions with 
compact support. Of course, we would like to combine the global and 
the local aspects, and approximate by means of functions with the best 
possible local properties and with the best possible global ones: if it were 
possible, we would like to approximate by analytic functions with 
compact support. But nature bars such a path, since the only analytic 
function with compact support is the zero function: such an analytic 
function would have to be identically zero in the complement of a 
compact set, which is a big open set; this implies that the function be 
zero everywhere! We shall therefore deal with the two viewpoints 
somehow separately (although trying not to keep them too far apart): 
we shall approximate by analytic functions with a high order of decay 
at infinity, or by functions with compact support which are sufficiently 
smooth, say %?*. 

There is another reason to the usefulness of approximation techniques, 
and a reason of very fundamental importance. The  objects manipulated 
by analysts are always extracted from topological vector spaces, spaces 
of functions if the objects are functions, or duals of spaces of functions. 
In  fact, the latter provide us with the largest fishing ponds, as (generally 
speaking) the spaces of functions can be embedded in the duals of other 
spaces of functions. The  question then arises of the mutual relation 
existing between those spaces or those duals, and it is important to know 
when inclusions E‘ C F‘ hold (E’, dual of a TVS E, F‘, dual of another 
TVS F), and more precisely to what relation between E and F could we 
relate such an inclusion. A much used criterion is the following one: 
E’ can be regarded as a vector subspace of F’ if: 

(1) as a vector space, F can be regarded as a subspace of E ;  
(2) F is a dense linear subspace of E ;  
( 3 )  the topology of F is a t  least asfine as the one induced by E .  

Indeed, by (1) and (3) any continuous linear form on E defines by 
restriction to F a continuous linear form on F; if any two continuous 
linear forms on E define the same form on F, they coincide on a dense 
subset of E by (2), hence everywhere in E: they must be identical. Thus, 
to every continuous linear form on E corresponds one and only one 
continuous linear form on F, and this is the meaning of the inclusion 
E’ CF‘. Now, Properties (1) and (3) are always clear enough by the 
definition of E and F and the definition of their respective topologies 
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(e.g., it is clear that Vw(52) C Vk(52) and that the Vm topology is finer 
than the %k one). In practice, the point to be checked is that (2) is true 
(when it is true!), and to that purpose one uses approximation (e.g., we 
shall see that every Vk function is the limit of a sequence of V" 
functions-in the sense of '@(a)). We shall see later that, instead of 
constructing approximating sequences or filters, one may, in certain 
instances, use a direct approach and functional analysis techniques 
(namely the theorem of Hahn-Banach), but in many of the basic 
instances, this leads to cruder results, and for instance does not enable 
us always to conclude that the object to be approximated is the limit of 
a sequence: for we must remember that the density of F in E means that 
every element of E is the limit of a j i l tm of elements belonging to F, not 
necessarily of a sequence (when E is metrizable, then we know that 
density is equivalent with "sequential density"; it is also true in other 
instances, as we shall see, but it is not always true). 

We begin by studying analytic functions and, as a matter of fact, 
entire functions of n variables. We recall that the holomorphic (i.e., 
complex analytic) functions in an open subset In of the complex n-space 
C" form a vector space which is usually equipped with the topology of 
uniform convergence of functions on every compact subset of 52; this 
turns it into a FrCchet space, which we have denoted by H(52). When 
52 = C", we write H, if no confusion is liable to arise (see Chapter 10, 
Example 11, and Chapter 14, Theorem 14.6). 

THEOREM 15.1. The polynomials (with respect to z)  are dense in the space 
of entire functions in C". More precisely, every entire function f is the limit 
in H of its finite Taylor expansions 

C l/p!f(")(O) z p ,  m = 0, 1,2 ,.... 

The last part of the statement is the proof of the theorem. We have 

lul<m 

used the notation 

When we consider open sets 52 # Cn, we must be careful. I t  is not 
always true that an holomorphic function in l2 is the limit of polynomials 
or of entire functions (the two facts are equivalent by Theorem 15.1). 

Definition 15.1. A n  open subset 52 of Cn is called a Runge domain if the 
restrictions of the entire functions to 52 are dense in H(52). 

The next result is almost obvious: 
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THEOREM 15.2. Open polydisks 

{ z  eCn; I zj I < Rj < + w , j  = 1, ..., n} 

are Runge domains. 

of approximation by polynomials. 
The following lemma is going to be used in order to derive a result 

LEMMA 15.1. 
For each integer k = 1, 2, ..., the function 

Let f be a continuous function in Rn with compact support. 

can be extended to the complex values of the variables x as an entire function. 
When k + +a, the functions f k  converge to f uniformly in Rn. 

Proof of Lemma 15.1. The part of the statement concerning the fact 
that f k  can be extended to Cn as an entire function is trivial. I t  suffices to 
consider the “integral representation’’ 

where z1 ,..., x, are complex variables. Observe that the integral is 
performed over a compact subset of Rn, the support off. We may apply 
the Cauchy-Riemann operators i3/aZ, ,..., i3/i3.Zn by differentiating under 
the integral sign (by Leibniz’ rule), and we obtain that the function 
defined by (15.1) satisfies the Cauchy-Riemann equations in the whole 
of Cn (by differentiating under the integral sign with respect to the real 
variables Re xi., Im xi , j  = 1, ..., n, one sees immediately that the function 
(15.1) is V“ with respect to those variables; the legitimacy of applying 
Leibniz’ rule is obvious). 

Let us prove now that the f k  converge uniformly to f. By changing 
variables in the integrals, we see that 

Observe then that we have, for all k,  

(15.2) 
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Indeed, the left-hand side is equal to 

where t is a real variable. But it is well known that 

J -w J --ID 

whence ( 1  5.2). Using this, we see that we may write 

The key feature about the functions (k /dG)"  e-kzIY12 is that their total 
mass is equal to one, according to (15.2), but tends to concentrate near 
the origin, as k -+ +a. Notice indeed that the value of this function 
at zero is ( k / d G ) ,  which converges to infinity, but that its value at any 
point y # 0 converges to zero quite fast. The student may plot the 
curves (say, when n = 1) and get some idea of the situation; we shall 
see, in due time, that these "bell-shaped" functions converge to Dirac's 
measure (and that any other sequence with similar properties could 
have been used!). 

As f is a continuous function with compact support, f is uniformly 
continuous; in other words, to every E > 0 there is > 0 such that 

I x - x' I < implies If(.) -f(x')I < E. 

Let us choose k(e) sufficiently large so as to have, for k > I?(&), 

(k/z/;)" e-kalYla dy < &. 
I Y I  >? 

We h.ave then 

COROLLARY 1 .  Let f be a Vm function with compact support in Rn 
(0 < m < +a). For every dzgerentiation index p = ( p l  ,..., p,) such that 
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1 p 1 < m + 1, the functions (a/ax)pfk cdnverge un;formb to (a/ax)pf in 
Rn, as k -+ +a. 

Indeed, if we make the change of variables x - y - x in the integral 
expressing fk , we obtain 

f k ( x )  = ( k / d G ) n  1 e-k21~l"f(x - y )  d y .  

By Leibniz' rule, we can differentiate "p  times" under the integral sign: 

R" 

(a/ax) . f , (x)  = (k/v'/.r)" / e-k*IYI* [ (~ /W. f l (x  - Y )  dY 
R" 

and it suffices then to apply Lemma 15.1 with ( a / a x ) p f  instead off. 

COROLLARY 2. Every function f E VF(Rn) is the limit, in Vm(Rn), of a 
sequence of polynomials. 

The idea of the proof of Corollary 2 is obvious: the function f can be 
approximated by entire functions in the sense of the V m  convergence, by 
Corollary 1. By Theorem 15.1, each entire function can be approximated 
by polynomials in the Vm sense (remember that the topology of H(Cn) is 
the topology induced by Vw(R2n)). It is then only natural that f will be 
the limit of a sequence of polynomials in Vm(Rn). If the student wishes, 
he can work out the details, with the appropriate e's. 

We examine now the approximation by Vw functions with compact 
support. The  student might havenoticed that we havenot yet exhibitedany 
function of this type, and he may after all be uncertain as to the existence 
of such functions. Here is an example, which will be constantly used in 
the forthcoming; in particular, it will help us to prove that not only do 
Vr functions exist, but that they are everywhere dense in the spaces 
V k  (0 < k < a), Lp (1 < p <a). The function is the following one: 

The  constant a is defined by 

so that we have 

( 1  5.4) 
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The function p is analytic (i.e., its Taylor's series has a nonzero radius 
of convergence) about every point in the open ball {x; I x I < l}; it is 
obviously regular in the exterior {x; I x I > l} of that ball, so that the 
only question about it being V" could arise at the boundary of the ball, 
that is to say for I x I = 1. As p is rotation-invariant, it suffices to check 
that the function of one variable, 

exp(-l/(l - tz))  for 1 t I < 1 
lo for I t l  > 1, 

is V" about t = 1, and the problem is readily reduced to proving that 
the function 

iexp(-l/s) for s > 0 
lo for s < 0, 

is V", which is a well-known and evident fact (note indeed that 

exp(-l/(l - t 2 ) )  = exp (- --) 1 1  (- --)) 1 1  
21 - t  exp 21 + i  * 

(15.5) Notation (used throughout the book): 
For E > 0, we set pe(x) = E-" p (x /E) .  

In view of (15.4), we have, for all e > 0, 

( I  5.6) 

It suffices to make the change of variables EX + x in (15.6) to transform 
it into (1 5.4). 

Observe, also, that 

SUPP pe = {X E Rn; I x I < E }  

and that 

so that these functions p e  have a lot in common with the functions 

considered in relation with Lemma 15.1. Of course, the pc have compact 
support whereas the functiuns (15.7) do not: but in both cases, the total 
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mass of the associated densities is one, and the mass tends (as E -+ 0 or 
ask 3 co) to concentrate about the origin. As we have already mentioned, 
these features will be eventually related to Dirac's measure 6. 

LEMMA 15.2. 
For each E > 0, the functions 

Let f be a continuous function with compact support in Rn. 

f&) = I," P A X  - r)f(r) dY 

are %':functions in Rn. Furthermore,the support o f f .  is contained in the 
neighborhood of order E of supp f ,  i.e., in the set 

When E + 0, the functions f =  converge uniformly to f in Rn. 

to S,  i.e., 
If S is a set and x a point, d(x, S) means the Euclidean distance from x 

d(x,  S )  = inf I x - y 1. 
Y E S  

Proof.of Lemma 15.2. We can differentiate fE(x)  under the integral 
sign; we see immediately then that f c  is ' P O .  The integral expressing f s  
is performed over the set of points y such that y E supp f and that 
x - y E supp p. , i.e., I x - y I < E .  If x does not belong to the neighbor- 
hood of order E of supp f there do not exist such points y, and the integral 
is identically zero. Finally, we must prove that the f &  converge uniformly 
to f. 

Here again we use the fact that f ,  being continuous and identically zero 
outside some compact set, is uniformly continuous. Hence, to every 
7 > 0 there is E > 0 such that 

In virtue of (15.6), we have 
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COROLLARY 1. Let f be a Vk function with compact support in Rn 
(0 < k < +GO). Then, for each differentiation index p = ( p ,  ,..., p,J such 
that I p 1 < k + 1, the functions 

(a/ax>% 

converge uniformly in Rn to (a/ax)pf (as E -+ 0). 
Proof. 
expressing f e  , obtaining thus 

We can make the change of variables x - y .- x in the integral 

By Leibniz’ rule we see that 

(a/ax)”f&(x> = J,. PAY) [(a/wpfl (x - Y )  dY 

and it suffices to apply Lemma 15.2 with (a/ax)pf instead off. 

THEOREM 15.3. Let 0 < k < +GO, Q, be an open set of R”. Anyfunction 
f~ %k(Q) is the limit of a sequence {fi} ( j  = 1, 2, ...) of %* functions with 
compact support in Q such that, for each compact subset K of Q, the set 
K n suppfi converges to K n supp f .  

A sequence of sets Sj converges to a set S if to every E > 0 there is an 
integer J(e)  such that, for j 2 J ( E ) ,  Sj is contained in the neighborhood 
of order E of S, and S is contained in the neighborhood of order e of Sj  . 
Proof of Theorem 15.3. We use a sequence of open subsets 
Q,, Q, ,..., Q, ,..., whose union is equal to Q, and such that, for each 
j > 1, is compact and contained in Q, . Let dj be the distance from 
Di-l to the complement of Qj;  we have dj > 0 for all j .  We can build a 
continuous function gj  with the followi?g properties: 

gj(x) = 1 if d(x,  C Q,) > 3dJ4, 

sj(x) = 0 if d(x ,  C Qj) < dj/2.  

We choose then ej = dj/4,  and consider the function 

Suppose that x e Q j P 1 ;  then, if x - y ~ s u p p p ~ , ,  we must have 
d(Y, CQj) 2 d(x, CQj) - I x - I 3 dj - dj/4 = 3dj/4, which implies 
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gi(y) = 1, hence hi(.) = J p , , ( x  - y )  dy = 1, in view of (15.6). Thus 
hi = 1 in Qi-, . In view of Lemma 15.2, we know that the functions hi 
are %"' and have compact support, and it is obvious that hi converges to 
the function identically equal to 1, that is to say l(x), in V"'(Q). Further- 
more, given any function f E Vk(Q), we have hjf E Vk(Q), for the product 
of a V" function with a Vk function is a V k  function; and since hif = f 
in QiPl, the functions hif converge to f in Vk(Q). If K is a compact 
subset of Q, for j large enough we have K C QiPl . This implies that 
supp f n K = supp(hif) n K. 

We have approximated f by Vk functions with compact support, 
namely the functions hif. We must now approximate f by Vw functions 
with compact support. In order to do this, it suffices to apply Corollary 1 
of Lemma 15.2 to each function hif (with the additional information 
about the supports contained in the statement of Lemma 15.2). Suppose 
for instance KJinite. Then, by Corollary 1 of Lemma 15.2, we may find 
a V" function, which we shall denote by fi , having a compact support 
contained in a neighborhood of order l / j  of supp(hjf ), and such that 

I t  is trivial that the functionsfi converge to f in Vk(Q). If a compact set 
K is contained in some open set Qi-,, we know that K n supp fi is 
contained in the neighborhood of order I / j  of K n supp(h,f) = 
K n supp f. Conversely, if E > 0 is given, let c > 0 be a number such 
that K n supp f is contained in the set 

{x E K ;  If(x)l 2 4 + {x E R"; I x I < 4. 

Choose j large enough so as to have K C QiPl and l / j  < c/2; then we 
have, in Qi-,, 

I fk4 - f(.>l < 4 2 ,  

which implies immediately that the set {x E K; I f(x)l 3 c} is contained 
in K n suppfi; thus K n supp f is contained in the neighborhood of 
order E of K n suppfi . 

We leave to the student, as an exercise, the proof for k = co. 

COROLLARY 1. %:(s2) is dense in vk(L?) (0 < k < +a). 
COROLLARY 2. %:(Q) is sequentially dense in Ut(Q) (0 < k < +co). 
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It suffices to combine Corollary 2 (for K = 0) with Theorem 11.3. 

COROLLARY 4. The polynomials form a dense linear subspace of Sk(Q) 

It suffices to combine Corollary 1 of Theorem 15.3 with Corollary 2 

(0 < < +a). 

of Lemma 15.1. 

Exercises 

15.1. Let g be a continuous > 0 function in R". Prove that there is an entire analytic 
function h (this means that h can be extended to C" as a function everywhere holomorphic 
or, equivalently, that the radius of convergence of the Taylor expansion of h about any 
point is infinite) such that, for all x E R", 

0 < h(x) < g(x). 

Let {gv} (v = 1,2, ...) be a sequence of continuous > 0 functions in R". Letf 
be a continuous function with compact support in R", w an arbitrary open neighborhood 
of suppf. Prove that there is a sequence {h$ (v = 1, 2, ...) of entire functions which 
converge uniformly on R" tof and such that, for all x E R", x 4 w ,  

15.2. 

I h,(x)l Q g M .  

(Use Exercise 15.1 and look at the proof of Lemma 15.1.) 

15.3. Let d be a number > 0, and R an open subset of R". One calls dth Gewrey class in 
R, and denotes by Ga(R), the space of Wm functions f such that, to every compact subset K 
of R, there is a constant A(f, K) > 0 such that, for all p E N", 

sup I(a/ax)*f(x)l < A(f, K)l*l+l (p!)".  
Z E K  

What are the elements of G,(R) and of Gl(R) ? What are the elements of 

u GdQ)? 
d < l  

Is it true or false that every entire function belongs to this union ? 

15.4. Let now d be > 1. Explore the properties of the function 
- - e - l / r a  for t > 0, = 0 for t < 0, 

for a suitable choice of a, so as to prove that there is a function u E Gd(R") (see Exercise 
15.3) which is > 0 and whose support is equal to {x E R"; I x I < I}  (cf. construction of 
the function p ,  on p. 156). 

15.5. We recall that 9 = 9 ( R n )  is the space of Qm functions rapidly decreasing at 
infinity (Chapter 10, Example IV; 9 carries its Frkchet space topology). Prove: 

THEOREM 15.4. VT(R") is dense in 9. 

Prove the following density theorem: 15.6. 

THEOREM 15.5. The entire analytic functions which belong to 9 are dense in 9. 



Partitions of Unity 

In this chapter, we shall apply some of the results of the previous one. 
We shall show that a Vk function can always be represented as a sum of 
Vk functions whose support has an arbitr\arily small diameter. This is in 
striking contrast with the situation for analytic functions: one can 
certainly not represent an analytic function as a sum of other analytic 
functions with small support, as there are no analytic functions which 
have compact support (unless they are identically zero). I t  is obvious 
that, if we can represent the function identically equal to one as a sum 
of V" functions {gi} ( i ~ l )  with arbitrarily small support, we shall have 
in our hands the analog representation for arbitrary gk functions f by 
just writing f = C,(gif) .  A family of functions like {gi} is called a 
partition of unity in V". We are going to show how to construct such 
partitions of unity (our definition will add the requirement that all the 
gi's be nonnegative, according to a well-established custom). The fact 
that the supports of the gi's are arbitrarily small is best expressed by 
introducing open coverings, as we shall now do. 

Let A be an arbitrary subset of R". An open covering of A is a family 
of open sets { Ui} in Rn whose union contains A. Such a definition has 
the disadvantage of using the surrounding space. This is obviously 
unnecessary: for let A be any topological space, an open covering of A 
is a family of open subsets Vi of A whose ution is identical to A. In the 
situation where A C Rn, we can then take P = Ui n A (A is a 
topological space if equipped with the induced topology). The open 
covering {Vi} will be called locally finite if every point of A has a 
neighborhood which intersects only a finite number of open sets Vi. 
If { Wj} is another open covering of A, one says that {W} is jim than 
{ Vi} if every open set Wj is contained in some open set Vi. 

THEOREM 16.1. Let 52 be an open subset of Rn. To every open covering 
{ Ui} (i E I )  of 52 there is a finer open covering { Vj} ( j  E J) of SZ which is 
locally finite. 

Proof. As usual, we select a sequence of relatively compact open subsets 
161 
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of Q, {Qk},  k = 0, 1, 2 ,..., whose union is equal to Q and such that, for 
each k >, 1, the closure of Qk-1 ,  0 , - 1  (which is compact), is contained 
in 52, . For each k = 0, 1, ..., we select then a Jinite family of open sets 
Ui , Ui  ,..., Up, covering 0,. Let us then set 

V l ( a , k )  = (p k r\ G'k-1 for k > l ,  a = l ,  ..., r k ,  

for 01 = 1, ..., To * V ( 4 )  = u- n Q 
0 1  

For fixed k, the V a s k )  cover a, n C o k - 1  , and the V(m,O) cover ao; this 
implies immediately that, as both k and 01 vary, the V ( a s k )  cover Q. Since 
every point of Q is.contained in some Qk-1 and since Q,-, n vca*l) = 0 
as soon as I > k,  we see that the covering {V(a*k)} is locally finite; 
that it is finer than the covering {Ui} is obvious, for, whatever be 
k and 01, V a v k )  C U; . 
Remark 16.1. The open covering {V(m*k)}  constructed in the proof of 
Theorem 17.1 is countable. I t  is obvious that any locally finite covering 
of an open set Q C Rn must be countable. Note that, if { Vj} is a locally 
finite open covering of 52 and if K is any compact subset of 52, K inter- 
sects only a finite number of open sets Vj. 

The next theorem says that, given a locally finite open covering { Vj} 
of Q, we may shrink slightly each set Vj and still have a covering of Q: 

THEOREM 16.2. Let {Vj} be a locally Jinite open covering of Q. To each j 
there is an open subset Wj of Q such that the closure of Wj is contained in Vj 
and such that, when j varies, the Wj form an open covering (necessarily 
locally finite) of 52. 

Proof. We represent Q as the union of a sequence of relatively compact 
open sets 52, such that a k - 1  c Qk (k > 1). For each k, let us consider the 
(finite) family of sets vj, j E J ,  which do intersect 52,; let Jk be the set 
of indices j such that vj n # 0. Of course, we have D k  c UjPJk vi. 
Consider then the function 

(16.1) 
j € J k  

This is a continuous function in Rn, in view of the fact that the supremum 
of a finite number of nonnegative continuous functions is continuous, 
and of the following result, whose proof we leave to the reader: 

LEMMA 16.1. 

(16.2) 

is continuous. 

x -. sup d(x, G Vj) (d(x ,  A): distance from the point x to the set A). 

Let A be any subset of Rn. The function in Rn, 

x - d ( x ,  A) = inf 1 x --y 1, 
Y € A  
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The  function (16.1) is >O at every point of the compact set 0,; we 
conclude that there is a constant ck > 0 such that (16.1) is 3 ck every- 
where in o k  . For each j E Jk  let 

wi = {. E vj; d(x, c Vj)  > 5/21. 

It might happen that Wi is empty, but in any case we set Wj = u&, W i ;  
it is easily seen that the open sets Wj satisfy the requirements in 
Theorem 16.2. 

We begin now the construction that will lead us to partitions of unity 
in Vm(52). We consider a locally finite open covering {Vj} ( j E  J )  of 52. 
For each k = 0, 1, 2, ..., there is a finite subset Jk of indices j E J such 
that vj n SZk # 0 and such that vj does not intersect Qk if j $  Jk (the open 
sets Qk are the ones introduced above). Let us set Vk.j = 52, n Vi for j E J k  . 
The  sets Vk,i form a locally finite open covering of 52. We shall first apply 
to them Theorem 16.2 - and form an open covering { Wk.i} of 1;2 such that, 
for every pair ( k , j ) ,  Wk*i is a compact subset of the (relatively compact) 
open set V k J .  T h e  idea of the proof is then the following one: we begin 
by constructing a continuous function gks j ,  identically equal to one in 
Wk,j and whose support is compact and contained in Vk*j; this is easy 
to do and uses Lemma 16.1. Next, we take advantage of Corollary 1 of 
Lemma 15.2 and approximate gk.j by a V" function yk*j whose support 
lies in a sufficiently small neighborhood of supp gk. j ,  in other words of 
W k s j ,  so that the support of yk.j is also a compact subset of Vk-j .  We 
require that y k r j  be so close to  g k , j  so as to have yk . j (x)  > for all 
x E WkJ. As supp y k . j  C V k . j ,  every point of SZ has a neighborhood which 
intersects only a finite number of sets supp yk.j. We may therefore form 
the sum y ( x )  = x k , j  yk*j (x)  (summation performed over k = 0, 1, ... and 
over j E Jk), and this sum defines a V" function, x - y(x) ,  in 52. We shall 
construct the g k - j  so that they be everywhere nonnegative; then, 
inspection of the proof of Lemma 15.2 shows right away that we may 
also take the y k - i  so as to  be nonnegative everywhere. As yk.j > 4 in 
Wk-j and as the WkJ form a covering of SZ, we have y > + everywhere. 
This implies immediately that l / y  is also a V" function in 52, and that 
we may set 

. m  

where the symbol 1' means that the summation is performed over those 
integers k such that j E Jk (simply because otherwise yk,j is not defined). 
The  functions ,9j have the following properties: 

(16.3) for each index j, Bj is a grn function in Q; 
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(16.4) 

(16.5) 

(16.6) 

for each indexj, the support of Bj is contained in V ;  

for each index j, the function P is everywhere >, 0 in 52; 

for all x E 52, 
p ( X )  = 1. 
i 

(This follows immediately from the fact that the covering { Vj} is locally 
finite and from (16.4), every point xo of 52 has a neighborhood in which 
all functions bj vanish except a finite number of them.) 

Definition 16.1. Let { Vj}  ( j  E J }  be a locally finite open covering of an 
open set 52 C Rn. A set of functions {bj}, indexed by the same set of indices J 
as the covering { Vi}  and having Properties (1 6.3)-( 16.6), is culled a partition 
of unity in %-(SZ) subordinated to the covering { V} .  

Observe that, if all the sets Vj were relatively compact, the function 
would all have a compact support, in view of (16.4); i.e., we would 
have a partition of unity in %:(Q). It  should be kept in mind however 
that, if the sets Vj are not relatively compact, it will not be possible, in 
general, to have partitions of unity in %;(Q) subordinated to the covering 
{V}.  A trivial counterexample is obtained by taking the index set J 
with a single element. 

The reasonings which precede Definition 16.1 constitute essentially 
a proof of the existence of partitions of unity in Ep"(52) subor.dinated to 
an arbitrary locally finite open covering { Vj}  of 52. It will suffice to indicate 
how to construct the continuous functions gk*j by which the whole 
construction begins. This is easily done by considering the following 
function,f(t) of the real variable t: 

for t < 1/2; 
for t 1/2. f(t) = 1; - 2t 

Let then dk,j be the distance from Wk*j to the complement of Vk.j. 
It suffices to take 

g y x )  = f(d(x, Wk*i)/d,.j). 

As it is the compose of two continuous functions, by Lemma 16.1, 
gksj is continuous; it is equal to one in Wk*j and to zero outside the 
neighborhood of order dks j /2  of W k s j ;  this neighborhood is obviously a 
relatively compact subset of Vk*i.  The remaining details of the proof 
can be worked out without difficulty by the student, if he wishes to 
do so. 
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We may now state: 

THEOREM 16.3. Given an arbitrary locally finite open covering of an 
open subset SZ of Rn, there is a partition of unity in %"(a) subordinated to 
this covering. 

COROLLARY. Let {Vj} be a locally jinite open covering of Q, and f a 
function E Uk(SZ) (0 < k < +m). We may write 

f = CfY, 
j 

where f i C 'Zk(S2) and supp f 5 C Vi for every j .  

THEOREM 16.4. Let F be a closed subset of Rn, and U an arbitrary open 
neighborhood of F. There is a function g E Wm(Rn) which is equal to one 
in some naghborhood of F and vanishes identically in the complement of U. 

Proof. Let V be an open neighborhood of F whose closure, v, is 
contained in U. Let us set W = Rn - p. The pair ( U ,  W) is an open 
covering of Rn, obviously locally finite! In  view of Theorem 16.3, there 
is a partition of unity in %F'(Rn) subordinated to this covering. This 
implies, iv particular, that the partition of unity in question consists of 
two elements, g,  h. Since the support of h is contained in W, h vanishes 
identically in V. Since g + h = 1 ,  we must have g = 1 in V. Since 
supp g C U ,  ,g fulfills all our requirements. 

Exercises 

16.1. Prove that there is an integer ~ ( n ) ,  depending only on the dimension n of the 
space R", such that the following is true. There is a set of functions {gi(x, t)}(i E I) of 
x E R" and t > 0 such that the following properties hold: 

(a) 
(b) 

(c) 

(d) 

For each fixed t, {gg'(x, t)}(i E I) is a partition of unity in WF(R"); 
for each t, the diameter of the support of every gi(x,  t), regarded as a function of 
x E R", is < I / t ;  

for each t and every i E I, the number of indices i' E I such that supp g'(., t )  n 
supp gi'(., t) # 0 is at most equal to v(n); 

for each t, there is a function g E WF(R") such that to every i E I corresponds one 
point x i  E R" such that gi(x, t) = g(x - xd) for all JC. 

16.2. Let {U)]  ( j '  E J )  be an arbitrary locally finite open covering of R". Prove that 
there is a partition of unity {g j } ( j  E J )  subordinated to the covering {Uj}  such that, for allj, 
g, belongs to the dth Gevrey class in R", Gd(Rn) (see Exercise 15.3), provided that d > 1 
(use Exercise 15.4). ' 



17 
The Open Mapping Theorem 

This is the last section of Part I ;  we return, in it, to the general theory. 
We shall state and prove the celebrated “open mapping theorem” or 
Banach theorem. Consider twoTVS E,F over the field of complexnumbers, 
and f a linear map of E into F. We have the usual triangular diagram 

f i E-Imf-F 

in which + is the canonical mapping, i the injection of the image off, 
Im f, into F, andf the uniquely determined linear map which makes the 
diagram commutative. We know that f is continuous if and only if 3 is 
continuous. Observe that, in any case, whether f is continuous or not,pis 
one-to-one, and, if viewed as a mapping of EIKer f into Im f, it is onto. 
By definition, f is a homomorphism when 3 is an isomorphism of E/Ker f 
onto Im f. One also says that f is an open mapping (assuming implicitly 
that we are only dealing with continuous mappings). Suppose then that 
F is HausdorfT. I f f  is continuous, Kerf is closed and EJKerf is also 
Hausdorf€. Suppose for a moment that Im f is finite dimensional; 
then Im f and EIKer f have the same dimension and f is always an 
isomorphism, i.e., f is a homomorphism: any continuous linear map of a 
TVS E into a HausdorfT TVS F, whose image is finite dimensional, 
is a homomorphism. We may then ask the following question: is there 
a class of TVS such that, if E and Im f both belong to that class, then 
f is a homomorphism as soon as it is continuous? We have just seen 
that this is so, whatever be E, whenever Im f is a finite dimensional 
linear subspace of a Hausdod TVS. Of course, we are really interested 
in loosening the restriction on Im f: for the condition that Im  f be finite 
dimensional is a rather awkward one. We cannot hope that E will still 
be allowed to be any kind of TVS. 

We shall have to give up some of the generality on E but, as will be 
166 
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shown in this chapter, it is possible to obtain a great deal of generality 
on Im f, while retaining a great deal of it about E, so as to have the 
desired property. As a matter of fact, it is possible to have the same 
conditions on E and on Im f, and these conditions are of a nature with 
which we are already familiar: we shall only have to ask that both E 
and Im f be metrizable and complete (no local convexity is involved in 
this problem). 

Let d, 9? be two classes of topological vector spaces. We might say 
that the open mapping theorem is valid for the pair (d, 3?) if, given any 
TVS E E d, any TVS F E  a, and any continuous linear map of E onto F, 
this linear map is a homomorphism (for reasons of simplicity, we have 
assumed that the image of the mapping is identical with the whole space 
of values; we shall go on doing this, in other words we shall only consider 
mappings which are onto). The  validity of the open mapping theorem 
has great advantages; to try to prove it is not a matter of sheer curiosity. 
We shall illustrate it by an example. 

Let (d, 3?) be a pair of classes of TVS for which the open mapping 
theorem is valid; let E be a TVS belonging to the class d, and F a TVS 
belonging to 93. Let us be given a linear map g of F into E, and suppose 
that we are interested in proving that g is continuous. Suppose further- 
more that we have the following information about g : g is onto; g is 
one-to-one; the inverse of g, which exists by the two preceding properties, 
is continuous. Letf : E -+ F be this inverse. In  virtue of the open mapping 
theorem, we are able to conclude that f is open, i.e., that g is continuous, 
which is what we were seeking. 

Consider the graph of the mapping g just introduced; the graph of g, 
Gr g, is the subset of F x E consisting of the pairs (x, y), x E F, y E E, 
such that y = g(x). Let us go back to the basic information we have 
about g: that g is one-to-one, onto, and has a continuous inverse, 
f : E + F. But let us not suppose that g is continuous. For simplicity, 
we shall restrict ourselves to metrizable spaces. Let (x, y) be an element 
of the closure of G r g  in F x E; the product space F x E is also metriz- 
able, 2nd we can select a sequence of elements (x, , yn),  n = 1, 2, ..., 
of Gr  g, converging to (x, y). This means that x, + x in F, and y ,  +y  
in E. But for each n, yn = g(x,), i.e., f(y,) = x,, and, in view of the 
continuity off, we see that f(y,) converges tof(y) in F. As it also converges 
to x we conclude that x = f(y), i.e., y = g(x), i.e., (x, y )  E Gr g. In  
other words, the graph of g is closed. If we wish then to conclude that 
g is continucus, we might raise the question: in what situation can we 
derive that a linear mapping is continuoils from the fact that its graph 
is closed ? In  relation to this question, we leave to the student, as an 
exercise, the proof of the following statement: 
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PROPOSITION 17.1. Let X ,  Y be two topological spaces (not necessarily 
carrying an algebraic structure). Suppose that Y is Hausdog. Let f be a 
continuous mapping of X.into Y .  Then the graph off in the product topo- 
logical space X x Y is closed. 

Here again, we may consider the pairs of classes of TVS (d,&?) such 
that, given any TVS E E d, any TVS F E g, and any linear map f : E + F 
whose graph is closed, we have the right to conclude that f is continuous. 
If this is so, we shall say that the closed graph theorem is valid for the 
pair (at',&?). It should be expected that the validity of the closed graph 
theorem has advantages, as it must be easier, in many a situation, to 
prove that the graph of a mapping is closed than to prove directly that 
the mapping is continuous. This is indeed so; the reason for it lies in 
the following much used result: 

PROPOSITION 17.2. Let E, F, and G be three Hausdo@ TVS, and j a 
one-to-one continuous linear map of F into G. 

Let f : E + F be a linear map such that the composed j of : E + G is 
continuous. Then the graph off is closed. 

The mapping j has the following intuitive meaning: through j, F can 
be regarded as a vector subspace of G; furthermore, as j is continuous, 
the topology of F is finer than the topology induced on F by G. 

Proof of Proposition 17.2. Let (x, , yo )  be an element of the closure of 
Gr f in E x F. There is a filter 9, in Gr f, which generates a filter F 
in E x F converging to (x,, yo): it suffices to take as 9, the filter 
defined by the intersection' of the neighborhoods of (x, , yo )  with Gr f. 
Let FE and SF, respectively, be the images of .F under the two 
coordinate projections: (x, y) - x and (x, y) - y .  To say that F 
converges to (x, , yo )  is equivalent with saying that SE converges to x,, 
and FF converges to yo (this is the definition of convergence in a product 
space). As the compose mapping j o f is continuous, we derive that 
j (  f gE) is a filter in G, converging to j (  f(xo)); as j is continuous, we derive 
that j FF is also a filter in G which converges; its limit is j(yo). But if we 
do back to the definition of the filter So, precisely to the fact that it was 
a filter on Gr f, we see immediately that j (  f SE) and j SF must be one 
and the same filter on G. Indeed, a generic element of So is a subset of 
E x F consisting of elements of the form (x, f ( x ) ) ;  if we apply j of to 
the first projection of this element, we obtain j (  f ( x ) ) ,  which is the same 
thing as if we apply j to its second projection. 

Since G is Hausdod, we conclude that j(yo) = j ( f ( x o ) )  As j is 
one-to-one, we may conclude that yo = f(x,), i.e., (xo , yo) E Grf. Q.E.D. 
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The next corollary generalizes what we have said, above, about linear 
mappings of a metrizable space into another one: 

COROLLARY. Let E, F be two Hausdog TVS, and g a linear mapping of 
F onto E which is one-to-one and has a continuous inverse. Then the graph 
of g is closed. 

The student should try to prove this result by deriving it directly 
from Proposition 17.2. 

What is the relation between the open mapping theorem and the closed 
graph theorem? Let f : E-+ F be a linear map, and let us consider 
its graph G r  f; note that it is a linear subspace of the product vector 
space E x F. If we put on E x F the product topology, it induces on 
Gr  f a topology which turns Gr  f into a topological vector space. Let us 
denote by p (resp. q) the first coordinate (resp. the second coordinate) 
projection restricted to Gr  f :  

We see that p is one-to-one and onto, and that, if we denote by p-I its 
inverse, we have 

f = q 0 p-1. 

If we have to prove that f is continuous, we may try to prove that p-' is 
continuous. The  definition of the product topology implies that both 
p and q are continuous. In  dealing with p ,  we are dealing with a one-to- 
one mapping onto which is continuous; if we can prove that it is also 
open, it will follow that p-l  and therefore also f are continuous. We may 
then state: 

PROPOSITION 17.3. 
following property: 

(17.1) 

Suppose that E and F are two TVS having the 

If G is any closed linear subspace of the product E x F and u any 
continuous linear map of G onto E, then u is an open mapping. 

Under this condition, i f f  is a linear map of E into F with a closed graph, 
f is continuous. 

I t  is clear from the considerations which precede, that we could have 
restricted Condition (17.1) to the mappings of G into E which are onto 
and one-to-one. As we shall prove the open mapping theorem for 
metrizable and complete TVS, and that any closed subspace of the 
product of two metrizable and complete TVS is metrizable and complete, 
we shall also obtain the closed graph theorem for metrizable and complete 
TVS. 
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Finally, we state and prove the open mapping theorem: 

THEOREM 17.1. Let E, F be two metrizable and complete TVS. Every 
continuous linear map of E onto F is a homomorphism. 

Proof. The proof consists of two rather distinct parts. In the first one, 
we make use only of the fact that the mapping under consideration, 
u : E -+ F, is onto and that F has Baire’s property (p. 74). In the second 
part, we take advantage of the fact that both E and F can be turned into 
metric spaces, and that E is complete. 

LEMMA 17.1. Let u be a linear map of a TVS E onto a Bairespace F.  
Given anarbitrary neighborhood of zero U in E ,  the closure of its image 
u( U),  u( U) ,  is a nezghborhood of zero in F. 

Proof of Lemma 17.1. The  fact that F is a Baire space has the 
consequence that F cannot be the union of a countable family of closed 
sets, none of which has interior points. Let V be a balanced neighborhood 
of zero in E, such that V + V C U. Since V is absorbing, we have 

m 

E = (J nV. 
n=l 

Since u is onto we have 

n=l ?l=l 

__ 
and at least one of the closed sets n u( V) must have a __ nonempty interior; 
since x -, (l/n)x is an isomorphism of F onto itself, u(V)  must have an 
interior __ point, say xo; let W + xo be some neighborhood of xo contained 
in u(V). Here W is a neighborhood of 0 in F; the affine -_ mapping 
x - x - xo is a homomorphism of F onto itself, and maps u( V) onto 
u(V)  - xo; as it maps W + xo onto W, we have W C UCV) - xo . 
Obviously, we have also u( V )  - xo C u( V )  - u( V )  = u( V - V )  C 
(we have V = - V), whence W C u( U ) ,  which proves that the closure 

Now we know that, because F is a Baire space and u is onto, the image 
of any neighborhood of zero in E is everywhere dense in a neighborhood 
of zero in F. The next lemma tells us that, under the assumptions of 
Theorem 17.1, if we enlarge a little the neighborhood of zero in E, then 
not only will its image be dense in a neighborhood of zero in F, but it 
will be itself a neighborhood of zero in F. We are going to make use of 

__ 

~ 

of u( U )  is a neighborhood of zero in F. Q.E.D. 
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a metric in E and a metric in F, both of which we shall denote by the 
same letter, d ,  as no confusion is to be feared. If z is a point either of E 
or of F, we denote by B,(z) the ball with radius r > 0 centered at z, 
i.e., the set 

{z’; d(z, z’) < r>.  

In the proof of Theorem 17.1, we shall need metrics on E and F which 
are translation-invariant. Every metrizable TVS carries such a metric 
which defines its topology (when we talk about metrics, it should always 
be understood that they define the underlying topology!); we have not 
proved this fact in general. We have only proved it for locally convex 
metrizable spaces; the student reluctant to take our word for the general 
result may confine himself to the locally convex case. 

LEMMA 17.2. Let u be a continuous linear map of a metrizable and 
complete TVS E into a metrizable (not necessarily complete) TVS F. 
Suppose that u has the following property: 

(17.2) To every number r > 0 there is a number p > 0 such that, for  all x E E, 

B,(u(x)) c 10). 
Then, if r and p are related as in Property (17.2) and if a > r ,  we have, 

for all x E E,  

B,(u(x)) c u(Ba(x)). 

Proof of Lemma 17.2. 
series of positive numbers: 

We may represent a as a sum of an infinite 

m 

a = C r , ,  ro = r ,  r ,  > O for alt n. 
n=O 

Let y be an arbitrary point of B,(u(x)). We must show that there is a 
point x’ E B,(x) such that u(x’) = y .  We shall define a sequence of 
points x, such that u(x,) converges t o y  in F, and which will be a Cauchy 
sequence in E. Using then the completeness of E, we shall conclude that 
the x, converge to an element x’ of E, which necessarily satisfies 
u(x’)  = y. The way we define the sequence x, will imply that d(x,  x’) < a. 

We shall take advantage of Property (17.2). To each n we can find a 
number pn > 0 such that pn > pnfl + 0, and such that, for every 
x E E, 

B,,(U(X)) c U(Br,(X)). 
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As a first step, we can select a point xl of B,(x) such that d(u(xl), y) < p1 , 
which means that y E Bpl(u(xl)) .  Therefore, we may find a point x2 of 
Bl,(xl) such that d(u(x2), y )  < p2 , that is to sayy E Bp2(u(x2)), and so on; 
for each n, we may find a point xnfl of Brn(xn) such that d(u(x,+l), y )  < 
pn . The sequence of points x, has all the properties required: for each n, 
d(xn ,  x,+~) < r,, hence the x, form a Cauchy sequence and their 
limit x' satisfies d(x, x') < x;so r, = a;  moreover, d(u(x,), y )  + 0. Q.E.D. 

End of the Proof of Theorem 17.1. By Lemma 17.1 we know that to 
every r > 0 there is p > 0 such that 

We use now the property that the metrics employed are translation- 
invariant: for all real numbers 6 > 0 and all points z, 

B, (4  = &(O) + z. 
We conclude that Property (17.2) is valid. By Lemma 17.2, we conclude 
that, for a > r, 

BP(O) c u(Ba(O))* 

This proves obviously that u transforms neighborhoods of zero into 
neighborhoods of zero. 

COROLLARY 1. A one-to-one continuous linear map of a metrizable and 
complete TVS E onto another metrizable and complete TVS F is an 
isomorphism (i.e., is bicontinuous). 

COROLLARY 2. Let Tl , T2 be two metrizable topologies on the same vector 
space E,  both turning it into a complete TVS. Suppose that one is weaker 
than the other. Then they are equivalent. 

COROLLARY 3. Let p ,  q be two norms on a vector space E. Suppose that 
both normed spaces (E ,  p )  and (E ,  q) are Banach spaces, and that, for some 
constant C > 0 and all x E E. 

Then the norms p and q are equivalent, i.e., there is a constant C' > 0 
such that, for all x E E,  

4 ( 4  < CPW 
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In  view of Proposition 17.3 and the remark following it, we obtain 
the closed graph theorem for metrizable and complete TVS: 

COROLLARY 4 .  
linear map of E into F. If the graph off is closed, f is continuous. 

Let E,  F be two metrizable and complete TVS, and f a 

Exercises 

17.1. Let 9 be an open subset of C", and H ( 9 )  the vector space of holomorphic 
functions in 9. Let us identify canonically C" to R2", and regard 9 as an open subset of 
R2" and H ( 9 )  as a vector subspace of @(a) (0 < k < +a). Derive from the open 
mapping theorem that the topologies induced by Vk(Q) (1 < k Q + CO) on H ( 9 )  are all 
identical. 

17.2. Let E, F be two metrizable and complete TVS, and f a linear mapping of E 
into F. Prove that f is continuous if and only if, for every sequence {x,,} converging to 
zero in E and such that the sequencef(x,) converges in F,  the limit of thef(x,) is zero. 

Give an example of a continuous linear mapping of a Frbchet space E into 
another, F,  which has a dense image but is not a homomorphism. 

Give an examples of two topologies on a vector space E, both metrizable and 
complete, one of which turns E into a TVS and is less fine than the other, but which are 
not identical. 

17.3. 

17.4. 

17.5. Prove the following result: 

PROPOSITION 17.4. Any linear map f of an LF-space E into a Frichet space F whose graph 
is closed is continuous. 

Let E be a linear subspace of the space V ( [ O ,  11) of the continuous functions 
on the closed unit interval [0, 11. Let I /  11 be a norm on E which turns E into a Banach 
space and defines a topology on E which is finer than the topology of pointwise convergence 
on [0, I]. Let Vm([O, 11) (0 < m Q + CO) be the space of Vm functions f in the open 
interval 30, I [  such that all the derivatives of order < m + 1 off can be extended to the 
closure of 10, 1[ as continuous functions on [0, 11; V"([O, 11) carries the topology defined 
by the norms 

17.6. 

k 

f - P,U) = u;~$~x I f W i ,  k < m + 1. 
i =U  

Suppose that Vm([O, I]) is contained in E. Prove (by uSing Corollary 4 of Theorem 17.1, 
or else Exercise 17.2) that the natural injection of Vm([O, I]) into E is continuous and that, 
for some finite integer m > 0, it can be extended as a continuous linear injection of 
W"([O, 13) into E. The latter injection, composed with the injection of E into Uo([O, l]), 
is equal to the natural injection of Vm([O, 11) into Vo([O, 13): in other words, Vm([O, 13) C E 
and the injection is continuous (also prove these assertions). 
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Duality. 
Spaces of Distributions 



In this part, the reader will find an exposition of the main body of 
distribution theory and of the theory of duality between topological 
vector spaces. The main spaces of distributions (9, b', 9') are defined 
as duals of spaces of '3?" functions (of '3?7, grn, and 9, respectively). 
The standard operations- differentiation, multiplication by a V" 
function, convolution, Fourier transformation- are systematically defined 
as transposes of analog operations in spaces of V" functions. I t  is evident 
that such an approach, by duality and transposition, requires a minimum 
amount of knowledge about these concepts. This is provided in 
Chapter 18 (The Theorem of Hahn-Banach), 19 (Topologies on the 
Dual), and 23 (Transpose of a Continuous Linear Map). In the Chapter 
presenting the Hahn-Banach theorem, a few pages are devoted to 
showing how the theorem is used in the treatment of various problems 
(e.g., problems of approximation, of existence of solutions to a functional 
equation, and also problems of separation of convex sets). In  Chapters 20, 
21, and 22, examples of duals are given; Chapter 20 is entirely devoted 
to the duality between Lp and Lp', the so-called Lebesgue spaces (and 
also between l p  and P I ,  the spaces of sequences). A proof of Holder's 
inequality is given. Chapter 21 studies the dual of the space of continuous 
functions with compact support, which is the space of Radon measures, 
then the dual of the space of Vm functions with compact support, which 
is the space of distributions. Chapter 22 studies two cases of duality of a 
somewhat more abstract nature: the duality between polynomials and 
formal power series, and the duality between entire analytic functions 
in C" and analytic functionals. We prove the important theorem that 
the Fourier-Bore1 transformation is an isomorphism of the space of 
analytic functionals onto the space of entire functions of exponential 
type in C" (this theorem may be viewed as describing the duality 
between entire functions and entire functions of exponential type; this 
duality is closely related to the one between polynomials and power 
series). At the end of Chapters 20, 21, and 22, we find ourselves with a 
stock of spaces in duality that should provide us with a good number of 
examples on which to rely in the later study of duality. I t  should 
be pointed out, however, that we have at our disposal the space of all 
the distributions, 9, but that we are not yet able to identify any one 
of its subspaces to the duals of the other spaces of functions which have 
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been introduced. In order to be able to do this, we need the notion of 
transpose of a linear map and the fact that the transpose is injective 
whenever the image of the map is dense. For then we may take advantage 
of the fact that the natural injection of V; into L p  (1 < p < +m), 
Vt, Vk (0 < k < +a), and 9 has a dense image. Consequently, 
the dual of each one of these spaces can be identified with a linear sub- 
space of 9, i.e., can be regarded as a space of distributions. The notion 
of transpose, needless to say, is important in many respects, the material 
treated in Chapters 23-38 bears witness to this. I t  is by transposition that 
we define the (linear partial) differential operators acting on distributions 
(Chapter 23), the Fourier transformation of tempered distributions 
(Chapter 25), and the convolution of distributions (Chapter 27). 
Transposition is the key to the study of the weak dual topology, as 
carried through in Chapter 35 (where attention is centered on the dual 
of a subspace and the dual of a quotient space and the related weak 
topologies), and to the study of reflexivity (Chapter 36: in the terms 
set down by Mackey and Bourbaki, with particular emphasis on reflexive 
Banach spaces, on one hand, and on Monte1 spaces, on the other). The 
main theorem in Chapter 37, due to S. Banach, may be regarded as the 
culmination of this line of thought: it shows the equivalence between 
the surjectivity of a continuous linear map of a FrCchet space into 
another FrCchet space, and the property that its transpose be one-to-one 
and have a weakly closed image. This theorem is complemented with a 
characterization of weakly closed linear subspaces in the dual of a 
FrCchet space, also due to Banach. In order to impress the importance 
of these theorems on the mind of the student, Chapter 38 (the last in 
Part 11) shows how they can be applied to the proof of a classical theorem 
of E. Bore1 and also to the proof of one of the main results about 
existence of V" solutions of linear partial differential equations (this 
last application is essentially due to B. Malgrange). 

We have preceded these chapters by a description of the standard 
aspects of distribution theory: the support of a distribution is introduced 
in Chapter 24, where the main theorem of structure is stated and proved; 
the procedures of approximation of distributions by cutting and 
regularizing are described in Chapter 28; the Fourier transforms of 
distributions with compact support are characterized in Chapter 29 
(this characterization forms the celebrated Paley-Wiener theorem). 
In Chapter 30, we show that Fourier transformation exchanges, SO 

to speak, multiplication and convolution. We have added a section 
(Chapter 26) on convolution of functions, where we prove the 
Minkowski-Hblder-Young inequality. We have thought that it was 
appropriate to add also a rather lengthy section (Chapter 31) on 
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Sobolev’s spaces: these spaces play an increasingly important role in 
the theory of linear (and even of nonlinear) partial differential equations, 
and it is mainly with the application of functional analysis to partial 
differential equations in mind that the material presented here has been 
selected. 

Finally, no exposition of the theory of topological vector spaces, even 
admittedly succinct, could dispense with the statement and the proof of 
the Banach-Steinhaus theorem; we fulfill this obligation in Chapter 33. 
We give some of the applications of the theorem in Chapter 34. As it is 
a statement about equicontinuous sets of linear maps, we introduce 
these sets in Chapter 32 and establish their main properties. The 
Banach-Steinhaus theorem is extensively applied in the section on 
reflexivity (Chapter 36). 



18 
The Hahn-Banach Theorem 

Let E be a topological vector space, and E' its dual, i.e., the vector 
space of all continuous linear functionals on E (i.e., of all continuous 
linear maps of E into the scalar field). Let M be a linear subspace of E; 
we suppose that M is equipped with the induced topology. Then M is a 
TVS and we may consider its dual, M'. It is clear that the restriction to M 
of any continuous linear functional on E defines a continuous linear 
functional on M. This gives a meaning to the restriction mapping 

Y,: E +  M',  Y,: E 3 ~ '  .-+ x'IMEM'.  

This restriction mapping (evidently linear) has no reason to be one-to- 
one. For, given some continuous linear functional x' on E', nonidentically 
zero, the subspace M may very well happen to be contained in Ker XI, 

and thus r,(x') will be zero without x' being zero. Nor is there any a 
priori reason that the mapping r ,  should be onto. Indeed, there are 
examples of HausdoriT TVS E on which the only continuous linear 
functional is the functional identically equal to zero, which means that 
E' = (01. But take for M any finite dimensional subspace of E; certainly 
M' is not reduced to zero if M # {0}, for M and M' have the same 
dimension, and thus Y, cannot be onto. One remarkable feature of the 
HausdoriT TVS E whose dual is reduced to (0) is that they are not locally 
convex; for we shall see in this chapter that, when E is locally convex, 
the restriction map r,,, is always onto, regardless of what the subspace M 
is. Observe that the fact that the restriction Y ,  is onto means that, given 
any continuous linear functional on M, it can be extended as a continuous 
linear functional on E. We would like first to show that the fact that Y, 

is always onto is obvious when we are dealing with a Hilbert space E. 
Indeed, let y' be a continuous linear functional on M. By continuity, 
we may extend y' to the closure of M in E (Theorem 5.1); in other 
words, we might have supposed at the start that M was closed. Let then 
M o  be the orthogonal of M in E; we have E = M @ M o  (0: Hilbert 
sum). Let x' be the linear functional on E which is equal to y' on M and 
to zero on MO. Any element x of E can be written as x = x1 + x2 with 
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x1 E M, x2 E Mo, and the mapping x - x1 from E onto M is continuous 
(it is simply the orthogonal projection onto M); thus, if x converges to 
zero in E, x ’ (x )  = y ’ ( x l )  must converge to zero in the complex plane, 
recalling that y ’  is continuous. In  other words, x’ is a continuous linear 
functional in E, and obviously the restriction of x’ to M is identical with 
y ’ .  This proves that y M  is onto in the present context. In the general case, 
when E is locally convex but not a Hilbert space, most of the time we 
cannot represent E as a direct sum M + N such that, if x = x1 + x 2 ,  
x1 E M ,  x2 E N, the mapping x - x1 is continuous. If we could, then the 
extension to E of continuous linear functionals (and, for that matter, of 
any continuous linear map) defined in M would be quite automatic. 
However, when E is locally convex, we need not have at our disposal a 
representation of E as .a direct sum to be able to extend continuous 
linear functionals, as will be shown. 

Let E be a locally convex space, M a linear subspace of E, and f a 
continuous linear functional defined in M. The fact that f is continuous 
can be expressed by saying that there is a seminorm p, defined and 
continuous in E, such that, for all x E M, 

I f(4l < P(4. 
Consider then the subset of M, 

N = {X E M ; f ( x )  = 1). 

Taking any vector x, belonging to N, it is clear that N - x, is the kernel 
off in M, which is a hyperplane of M, say M,: N = M, + x, is thus 
the translation of a hyperplane, a linear submanifold of M which we 
shall call a hyperplane (to be precise, one could say an afine hyperplane 
so as to make the difference with the hyperplanes considered until now, 
which pass through the origin, and are simply linear subspaces of 
codimension one). Observe that the datum of N determines completely 
f i n  M; for we have the decomposition in direct sum 

M = M, + CX,, 

where C x ,  is the one-dimensional linear subspace (i-e., the complex line) 
through x, . In  other words, every element x of M can be written in one 
and only one manner: 

x = y + h X o ,  Y E M , ,  X E C .  

As y E Kerf, we have 

f(4 = Xf(X”) = A, 
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sincef(x,) = 1. Consider now the open unit semiball of p :  

u = {x E E ;  p(.) < 1). 

We know that U is an open convex subset of E, and it is obvious that 

N n U = 0 .  

Suppose we could find a closed (affine) hyperplane H of E with the 
property that 

(18.1) NCH,  H n U = % .  

FIG. 3 

Then H - xo would be the kernel of a continuous linear functional on E 
(Proposition 9.4) and this functional would be completely determined if 
we impose the condition that f = 1 in H (the reasoning is identical to 
the one just presented, showing that the datum of N determines 
completely f in M). As the restriction off to M is equal, in N, to f, it 
means that the restriction off to A4 is equal to f in the whole of M. 
Furthermore, the fact that H n U = 0 means that f ( x )  = 1 implies 
p ( x )  > 1. Let then y E E be any vector such that f ( y )  # 0. Then 

f(r/f(r)> = 1 implies P(Ylf(y))  2 1 9  

I fW I G PW- 
which can be rewritten into 
(18.2) 

This remains obviously true whenf((y) = 0. 
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Summarizing, we see that the existence of a closed hyperplane H with 
Properties (18.1) implies that the continuous linear form f in M can be 
extended as a linear formfto the whole of E, satisfying (18.2). Condition 
(18.2) implies immediately that f is continuous. In other words, we have 
reduced the problem of extending continuous linear functionals to the 
problem of separating by a closed hyperplane a convex open set and an 
affine submanifold (the image by a translation of a linear subspace) 
which do not intersect. 

We have proved that, of the two forms of the Hahn-Banach theorem 
stated below, the second one, or geometric form, implies the first one, 
the analytic form. It will therefore suffice to prove the geometric form. 

THEOREM 18.1 (Analytic form of the Hahn-Banach theorem). Let p 
be a seminorm on a vector space E, M a linear subspace of E, and f a linear 
form in M such that 

If(x)l < P(x) for all x E M. 

There exists a linear form on E , J  extending f, i.e., such that 

f (x> = f ( x )  for all x E M ,  

and such that, furthermore, 

I f(x>l < P(.) for all x E E.  

THEOREM 18.2 (Geometric form of the Hahn-Banach theorem). Let E 
be a topological vector space, N a linear subspace of E, and In a convex 
open subset of E such that 

N n B =  0 .  

There exists a closed hyperplane of E, H ,  such that 

N C H ,  H n B = 0 .  

It  should be remarked that E does not carry any topology in 
Theorem 18.1, but this is somehow deluding because the datum of a 
semi-norm on E is equivalent to the datum of the topology defined by 
this semi-norm. In Theorem 18.2, E is a TVS which does not need to 
be HausdorfT nor locally convex. 

Proof of Theorem 18.2. 
nothing to prove. 

We assume that In # 0, otherwise there is 
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The first part of the proof is quite simple and consists in a straight- 
forward application of Zorn’s lemma: one considers the family 9 of all 
linear subspaces L of E such that 

(18.3) N C L ,  L n Q = 0  

If we have a totally ordered subfamily of 9, Q, (totally ordered for the 
inclusion relation L CL’), it is obvious that the union of all the linear 
subspaces belonging to Q, is a linear subspace of E having Prop- 
erties (18.3). Thus Zorn’s lemma applies and we may conclude that 9 
possesses maximal elements. Let H be one of them. The second part of 
the proof consists in showing that H is a closed hyperplane. 

That H must be closed is obvious. For if H is contained in the 
complement of SZ, so is its closure, since SZ is open. And the closure of H 
is a linear subspace of E containing N. As H is maximal, it must be 
equal to its closure. 

The fact that H is closed implies that E / H  is HausdorfT (Proposition 
4.5). We must show that H is a hyperplane, i.e., that dim EIH = 1. We 
shall do it in two steps. 

(1) 
Let + be the canonical map of E onto E / H ;  + is a homomorphism, 

therefore +(Q) is an open convex subset of E / H  and, since H n SZ = 0, 
the origin of E / H  is not contained in +(Q). Let us set 

The scalar field is the field of real numbers. 

A = u h+(Q). 
A Z O  

The subset A is open, convex, and it is a cone. If dim EfH 2 2, the 
boundary of A must contain at least one point x # 0. It will suffice 
to show that, under our hypotheses, the point -x cannot belong to A. 
But if both x and -x  belong to the complement of A in EIH, so also 
does the straight line L which these two points define; the preimage 
+(L) would then be a vector subspace of E, which does not intersect SZ 
since L n A = 0, which contains H ,  as 0 E L ,  but is distinct from H ,  as 
L # (0). This contradicts the maximality of H.  

Why cannot -x  belong to A ? If it did, there would be a neighborhood 
V of -x  entirely contained in A. But then - V is a neighborhood of x; 
as x is a boundary point of A, we should be able to find y E (- V) n A. 
But -y  E V C A ,  hence, in view of the convexity of A, the whole line 
segment between y and -y  should be contained in A, in particular the 
origin, which is contrary to the definition of A. 
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(2) 
Although the scalars are the complex numbers, we may view E as a 

vector space over the real numbers; it is obvious that its topology, as 
originally given, is compatible with its linear structure (only the 
continuity on R x E of the scalar multiplication (A, x) -. Ax has to be 
checked and it is obvious since the topology of R is the same as the 
topology induced on R by C). Because of the result in Step 1, we know 
that there is a real hyperplane H, of E which contains N and does not 
intersect Q. By a real hyperplane, we mean a linear subspace of E viewed 
as a vector space over the field of real numbers, such that dim, E / H ,  = 1. 
But we must remember that complex numbers act linearly, through 
multiplication, on the elements of E; we have i N  = N (i  = (-1)ll2), 
hence N C H ,  n iH, . But H ,  n iH,  is a complex hyperplane, which 
does not intersect Q. The fact that H ,  n iH, is a complex hyperplane is 
easy to check: it is obviously a complex linear subspace of E (viewed now 
as a complex vector space) and its real codimension is >, 1 and < 2 
(the intersection of two distinct hyperplanes is always a linear subspace 
with codimension two), hence its complex codimension is equal to one. 
The proof of the Hahn-Banach theorem is complete. 

The  Hahn-Banach theorem is frequently applied in analysis, as will 
be seen in the forthcoming. We shall briefly indicate three important 
types of problems to which it is sometimes applied: the first type are 
problems of approximation, the second, of existence of solutions to 
a functional equation, the third, of “separation” of convex sets. 

The scalar field is the field of complex numbers. 

(1) Problems of Approximation 

Consider a locally convex space E, a closed linear subspace M of E, 
and a linear subspace M, of M. We want to show that every element of 
M is the limit of elements belonging to M , .  As an example of this 
situation, the student may think of E as a space of functions, of M as the 
subspace of E consisting of the solutions of some functional equation 
(e.g., of a partial differential equation with constant coefficients), and of 
M, as a special class of such solutions (e.g., solutions which are 
polynomials, or analytic functions, or Yrn functions). We want to prove 
that M ,  is dense in M. In order to do this, we may take advantage of 
the following result: 

COROLLARY 1.  Let E be a locally convex space, M a closed linear subspace 
of E, and M,  a linear subspace of M .  Then M,  is everywhere dense in M 
if and only if every continuous linear form on E vanishing identically in M ,  
vanishes identically also in M .  
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For suppose that A?, were # M ;  there would be an element x, of M 
which does not belong to A?,. Consider the quotient space Ell@, and let + be the canonical map of E onto Elmo; we have +(xo) # 0. Let L be 
the one-dimensional linear subspace of Elm,  spanned by +(xo); every 
vector belonging to L is of the form h +(xo). Let thenf be the linear form 
on L, h +(xo) --f A. Since E/@, is Hausdorff, f is continuous. In  virtue 
of the Hahn-Banach theorem, f can be extended as a continuous linear 
form to the whole of we denote by f this extension. Let f = f o 4; 
f is a continuous linear form on E, which vanishes on A?,, since 

In proving Corollary 1, we have proved the following result (it suffices 
to take a, = {0} in the proof of Corollary 1, when we deal with the 
quotient space E/H0 and the linear f o r m h :  

A?, = Ker 4, but not on x, , since f(xo) = f(+(xo)) = 1. Q.E.D. 

COROLLARY 2. Let E be a H a u s d o e  LCS, and x, an element of E, x, # 0. 
There exists a continuous linear form f on E such that f (xo) # 0. 

In particular, Corollary 2 shows that, if E # {0}, the dual of E cannot 
be reduced to (0). On a Hausdorff locally convex space there are always 
nontrivial continuous linear forms. 

An obvious consequence of Corollary 1 is the following one: 

COROLLARY 3. Let M be a closed linear subspace of an LCS E. If M # E, 
there is a continuous linear form f, nonidentically zero but vanishing 
identically in M .  

(2) Problems of Existence 

Let E, F be two LCS, and u a continuous linear map of E into F. 
Given any continuous linear functional y' on F, it is clear that the 
composition y' o u is a continuous linear functional on E. This defines 
a mapping 

tu : F'3 y' - y' 0 u E E 

(E', F': duals of E and F, respectively); tu is called the transpose of u, 
it is obviously linear (see Chapter 19). The  application of the Hahn- 
Banach theorem we indicate now concerns the possibility of proving the 
existence of a solution y' E F' to the equation 

* U ( Y ' )  = xi ,  

where x; is a given element of E'. An example of such a problem is 
encountered when dealing with a differential operator (in the role of u): 
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x i  could then be the Dirac measure, for instance, and F’, some space 
of distributions. In such a situation, one often applies the following 
consequence of Theorem 18.1 : 

COROLLARY 4. 
form, deJned in Im u, 

Let E, F, u, ‘u , and xi  be as said. Suppose that the linear 

(18.4) 4.4 - x;M, 

is continuous when we provide Im u with the topology induced by F. Then 
there is a continuous linear form y’ in F such that 

(18.5) tu(y’) = x i .  

Proof. If (18.4) is continuous in Im u, we can extend it as a continuous 
linear form to the whole of F; let y’ be such an extension of (18.4). 
For x E E, we have 

tu(y’)(x) = y’(u(x)) = xi(.). Q.E.D. 

In general, the solution y’ of (18.5) is not unique; if z’ is any solution 
of the homogeneous equation 

(18.6) tU(Z’) = 0, 

we see that y’ + z’ is again a solution of (18.5). Again, from the Hahn- 
Banach theorem, it follows that Eq. (18.6) has nontrivial solutions if and 
only if Im u is nondense in F. This is a fact important enough to be 
stated as a corollary of Theorem 18.1: 

COROLLARY 5. 
following two conditions are equivalent: 

Let E, F, u : E -+ F, and tu : F‘ + E be as before. The 

(a) 
(b) tu is one-to-one. 

From Corollary 3 we derive that Im u # F if and only if there is a 
continuous linear form z‘ which vanishes identically on Im u but 
z‘ # 0; now, the fact that z’ = 0 identically in Im u is obviously 
equivalent with C(z‘) = 0. 

Observe that, when Im u is dense in F, we do not need the Hahn- 
Banach theorem to derive the existence of the solution y’  to (18.5) from 
the continuity of (18.4): y’ is then the unique extension of (18.4) to the 

Im u is dense in F;  

- 



Chap. 18-91 THE HAHN-BANACH THEOREM 189 

whole of F; this extension is obtained by continuity. Thus, when Im u 
is not dense in F, we may apply the Hahn-Banach theorem to show both 
facts: that Eq. (18.6) has nontrivial solutions, and that the continuity 
of (18.4) in Im u implies the solvability of (18.5). 

(3) Problems of Separation 

Let E be a TVS over the field of real numbers; let H be a closed 
hyperplane of E. Then E / H  is a Hausdod one-dimensional TVS, that 
is to say a copy of the real line. In particular, the complement of the 
origin in E / H  consists of two disjoint open half-lines, say D, and D, . 
Let 4 be the canonical homomorphism of E onto E / H ;  the preimages 

+-YW and +-l(D*) 

are the two open half-spaces of E determined by  H ;  their closures are the 
two closed half-spaces determined by  H .  Two subsets A and B of E are 
said to be separated (resp. strictly separated) by H if A is contained in 
one of the closed (resp. open) half-spaces determined by H ,  and B is 
contained in the other closed (resp. open) half-space determined by H .  

These definitions enable us to formulate the type of problems examined 
in the present paragraph: can one separate, or separate strictly, two 
disjoint convex subsets of a TVS E ?  It is immediately seen that further 
hypotheses are necessary, on A and B, if we are to give a positive answer 
to this question. 

PROPOSITION 18.1. Let E be a TVS over the real numbers, and A, B two 
disjoint convex subsets of E. I f  A is open nonempty and B is nonempty, 
there exists a closed hyperplane H of E separating A and B. I f  B is also 
open, the hyperplane H can be chosen so as to separate strictly A and B. 

Proof. The vector subtraction A - B is an open subset of E (as it is 
the union of the open sets A - y as y varies over B); it is convex and 
does not contain the origin. In view of Theorem 18.2, there is a closed 
hyperplane H of E which does not intersect A - B (and passes through 0)  
or, which is equivalent, a continuous linear form f on E such that 
f ( A  - B) > 0, which means that f ( x )  > f ( y )  for all x E A and y E B. 
Since B is nonempty, we have a = inf,,, f ( x )  > -a. The hyperplane 
H ,  = {z E E;  f ( z )  = a} obviously separates A and B. 

If now B also is open, we may find a closed hyperplane H I  separating 
A and the closure B of B. It is then obvious that H ,  separates strictly A 
and B. Q.E.D. 
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If B is not open, there will not be, in general, a closed hyperplane 
separating A and B strictly: even if E is finite dimensional; even if 
A and B do not intersect each other (see Exercise 18.2). 

PROPOSITION 18.2. Let E be a locally convex TVS over the real numbers, 
and A, K two nonempty and disjoint convex subsets of E.  

If A is closed and K is compact, there is a closed hyperplane of E which 
separates strictly A and K. 

Proof. Let 8 be a basis of neighborhoods of zero in E consisting of 
closed convex balanced neighborhoods of zero. For each V E 8, let Q, 
be the complement of the closure of A + V. As V varies over b, the 
sets 52, form an open covering of K. Indeed, let x be an arbitrary point 
of K; the complement 52 of A is an open neighborhood of x ;  therefore 
there is V E 8 such that V + V + x is contained in 52. As V is balanced, 
this means that V + x C G(A + V); the interior of V + x does not 
intersect A + V, hence does not intersect its closure. We use now 
the compactness of K: there is a finite family of sets V E 123 such that 
the corresponding 9, form an open covering of K; taking W equal to 
the intersection of that finite family of V's, we see that K C Qw . Let us 
then choose an open neighborhood U of zero in E, also convex and 
balanced, such that U + U C  W. The set K is contained in the com- 
plement of the closure of A + U + U, therefore K + U is contained 
in the complement of A + U: Since U is open, both A + U and K + U 
are open; since A, K, U are convex, A + U and K + U are both 
convex; since they are disjoint, we may apply the last part in the 
statement of Proposition 18.1 and conclude that there is a closed 
hyperplane H of E which separates strictly A + U and K + U and, 
a fortiori, A and K. 

COROLLARY 1. In a locally convex Hausdofl TVS E over the real 
numbers, every closed convex set is equal to the intersection of the closed 
half-spaces which contain i t .  

Indeed, every point of the complement of a closed convex subset 
A of E is compact; by Proposition 18.2, there is a closed hyperplane H 
which separates strictly A and the set consisting of such a point. 

COROLLARY 2. In a locally convex Hausdog  space E over the real 
numbers, the closure of a linear subspace M is the intersection of all the closed 
hyperplanes which contain M .  

Let xo 6 a; by Proposition 18.2 there is a closed hyperplane separating 
strictly a and xo; let f ( x )  = a be an equation of that hyperplane; A4 is 
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contained in the set {x; f(x) < a} and we have f(xo) > a. If there were 
a pointy E M such that f(y) # 0, then we would also have by E M with 
b = a/f(y), which would imply f (by )  = a : M would not be contained 

For future purposes, it is important that we have the analogs of some 
of the previous results when the field of scalars is the complex field, 
C. It should be noticed, however, that the notion of separation by 
hyperplanes does not make any sense in a complex TVS: the complement 
of a closed hyperplane is always connected and we cannot talk about 
one side of the hyperplane, as we could in the real case. Of course, 
Corollary 2 of Proposition 18.2 still makes sense and, as a matter of 
fact, is still valid: 

in the set {x; f ( x )  < a}. Thus M C Kerf and xo $ Kerf. Q.E.D. 

COROLLARY 3. Let E be a locally convex Hausdog TVS over the 
c o m p k  numbers, and M a linear subspace of E. The closure of M i s  the 
intersection of all the closed hyperplanes containing M. 

Proof. Let xo 6 i@; there is a closed hyperplane H of E when we regard 
E as a TVS over the real numbers, such that M C H and xo 4 H. Then 
H n iH is a closed hyperplane (when we regard E as a TVS over the 
complex numbers) which contains M, since M = i M ,  but which does 
not contain xo. 

PROPOSITION 18.3. Let E be a vector space over the complex numbers, 
and ( j  = 1, 2) two locally convex Hausdorff topologies on E (compatible 
with the C-linear structure of E) such that the continuous linear forms 
on E are the same for both Fl and F2. Let A be a convex subset of E. 
The closures of A for Fl and F2 are identical. 

Proof. Let f be a linear map of E into the field of real numbers, R, 
i.e., an R-linear form on E. Let us set, for every x E E, 

The  next result will be useful to us, later on. 

&) = Hf(4 - i f ( i x ) ) .  

Let y = a + i/3 be an arbitrary complex number. We have 
2g(yx) = f (yx )  - i f ( i y x )  =f(m + Pix) - i f(aix - Bx) 

= .f(x) + Bf(ix) - iaf(i.1 + iPf(x) 
= a ( f ( x )  - i f ( i x ) )  + iP(f(x) + i-If(ix)) = 2yg(x). 

- 
This shows thatg is a C-linear form. Since we haveg(x) = &f(x)+if(ix)), 
remembering that f is real valued, we see that 
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The definition of g and this equality show that f is continuous if and 
only if g is continuous. 

From this fact, we derive that the continuous R-linear forms on E are 
the same for the topologies .TI and .T2. This is equivalent to saying that 
the closed half-spaces are the same for Yl and Y2 . Proposition 18.3 
follows then immediately from Corollary 1 of Proposition 18.2. 

Exercises 

18.1. Let (E, p) be a normed space, and M a linear subspace of E. Let us denote by 
p~ the restriction of p to M and consider the normed space (M, p M ) .  Letf be a continuous 
linear form on the normed space (M, p M ) .  Prove that there is a continuous linear form f 
on the normed space (E, p) such that f(x) = f(x) for all x E M and such that 

SUP I m l  = SUP IfWl. 
~ ~ E . p ( x ) = l  X€M,PM(Z)'l 

18.2. Consider the following subset of R': C = {(x, y, z); x 2 0, y > 0, z > 0, 
xy > 9). Show that the straight line D = {(x, y, z); x = 0, z = l}  does not intersect C 
but that there is no plane which contains D and does not intersect C (see remark after 
proof of Proposition 18.1). 

18.3. Let 1; be the Banach space of real sequences u = (u,), n = 0, 1, 2, ... such that 
I u, I < + 00 (cf. Chapter 11, Example IV). Let us call D the one-dimensional 

subspace generated by the sequence (1,O ,..., 0 ,... ), i.e., the straight line {u E 1'; un = 0 
for all n > O}. Let us set 

A = {O E 1'; UO > I U ~ U ,  - b, 1, = 0, 1, 2, ... }. 
In the definition of A, (a,) and (b,) (n = 0, 1, 2, ...) are two sequences of real numbers. 
Prove that these two sequences can be chosen so that A - D is everywhere dense in l i  
and that A does not intersect D. Derive from this that there is no closed hyperplane in 
l i  which separates A and D. 

18.4. Let E be the vector space of polynomials in one variable with real 
coefficients (thus E is a vector space over the real). Let C be the set of polynomials 
adXd + ad-Jd-'  + 1.. + a. with ad > 0 (d = 0, 1, 2, ...). Prove that C is a convex cone, 
that C n (- C) = {0}, and that C u (- C) = E. Prove also that there is no hyperplane 
in E, H, such that C lies on one side of H (i.e., for every hyperplane H of E, the image 
of C under the canonical homomorphism of E onto E/H is not contained in any "half- 
line"). (Note that no topology is given on E and that no condition of closedness is imposed 
upon H.) 

18.5. A subset C of a vector space E over the field of real numbers is called a cone 
(cf. Exercise 18.4) if p C  C C for a11 p > 0;  C is, moreover, a convex cone if C is a cone 
and if C is a convex set. Prove the following facts: 

(a) 
(b) 
(c) 

a subset C of E is a convex cone if and only if C is a cone and if 0 + C_ C C; 
if C is a convex cone, the linear subspace of E spanned by C is equal to C - C ;  
the largest linear subspace of E contained in a convex cone C isaqual to C A ( - C ) .  
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18.6. Let P be a cone in a vector space E over the field of real numbers (cf. Exercise 
18.5). Let us denote by x > y the relation x - y E P. One says that P is pointed if the 
origin 0 of E belongs to P and that P is salient if the only vector subspace of E contained 
in P is {O}. Prove the equivalence of the following two properties: 

(a) 
(b) 

P is a pointed salient convex cone; 
x > y is an order relation (i.e., is reflexive and transitive, and x > y and y > x 
implies x = y )  compatible with the linear structure of E (i.e., x > y implies 
x + z > y + z and px > py for all z E E, p > 0). 

Show that, if w(x, y )  is an order relation on E compatible with the linear structure of E, 
the set of nonnegative elements of E, 

a = {x E E; w(x, O)} ,  

is a pointed salient convex cone in E. What can be said about a if the order defined by w 

is total (i.e., if given any two elements x and y of E, we have either w(x, y) or else w(y ,  x)) ? 

Let E be a vector space over the field of real numbers, E* its algebraic dual, 
that is to say the vector space (over R) of all linear mappings E + R. Let x > y be an 
order relation on E, compatible with the linear structure of E; let P be the cone of non- 
negative elements, 

P = {x E E; x > O}. 
A linear form x* E E* is called positive if x*(x) > 0 for all x E P. Prove that the set P* 
of positive linear forms x* on E is a pointed salient convex cone in E* and that 
P* u (-P*) = E* if and only if dim E = 1. 

18.7. 

18.8. Prove the following “complement” to the Hahn-Banach theorem: 

THEOREM 18.3. 
and p a real function on E such that, for  all x, y E E and all numbers p > 0, 

Let E be a vector space over the real numbers, M a linear subspace of E, 

P ( X  + Y )  Q P ( 4  + P(Yh P ( P 4  = P P W ,  

f : M + R a linear functional on M such that 

f ( x )  Q p ( x )  for  all x E M .  

There exists a linear functional on E,f : E 4 R, such that f ( x )  = f ( x )  for  all x E M and 
such that f (x)  < p ( x )  for  all x E E. 
(Note that p is not necessarily > 0.) 

18.9. Let E and M be as in Theorem 18.3. Let x > y be an order relation on E 
compatible with the linear structure of E, and P = {x E E;  x > 0)  the cone of nonnegative 
elements of E. Let f be a linear form on M which is positive’(it means that f ( z )  > 0 for 
all z E M n P). Suppose that, for every x E E, there is y E M such that y > x. Prove 
then that the function on E, 

x - P ( X )  = inf f (Y) ,  
YEM.Y>X 

is everywhere finite in E and has the following properties: 

(i) P ( X  + Y )  < P ( 4  + P(Y), P ( P 4  = P P ( 4  for all 2, Y E E, P ’ 0;  

(ii) 
(iii) 

p ( x )  > 0 for all x > 0;  
p ( x )  = f ( x )  for all x E M. 

Apply Theorem 18.3 so as to prove that there is a positiwe linear formfon E, extending f .  
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18.10. Prove the following theorem (due to M. Krein): 

THEOREM 18.4. Let E be a Hausdorff T V S ,  x > y an order relation on E, P the cone of 
nonnegative elements in E, M a vector subspace of E, and f a positive linear form on M. 
Suppose that there is at  least one point x,, E P n M which belongs to the interior (in E )  of P. 
Then there is a continuous linear form f on E which is positive and extends f. 

(Hint: show that, for every x E E, there is p > 0 such that x < pxo and apply Exercise 18.9.) 



Topologies on the Dual 

Let E be a TVS over the field of complex numbers, and E' its dual, 
that is to say the vector space of all continuous linear forms (or 
functionals) on E (i.e., continuous linear maps of E into the complex 
plane, C). If x' E E', from now on we shall denote by 

(x', x> 

its value at the point x of E. Later we shall see that we also have the 
right to denote this value by 

(x, x'). 

Definition 19.1. Let A be a subset of E. The subset of E ,  

{x' E E ;  sup I(x', x)l < l}, 
XEA 

is called the polar of A and denoted by AO. 

Some properties of polars: 

(1) 
(2) 

(3) 

the polar Ao of A C E is a convex balanced subset of E'; 
if A C B, Bo C AO; furthermore (pA)O = (l/p)Ao (p: number >O);  
(A u B)o = A0 n Bo; 
suppose that A is a cone; this means that 

x E A implies Ax E A for all numbers A > 0; 

then, we have 

Ao = {x' E E'; for all x E A, (x', x) = O}. 

Indeed, suppose that we have I (x', x) I < 1 for all x E A. Since 
A is a cone, we must also have I (x', Ax) I < 1 for all x E A and all 
h > 0, and this can be read as I (x', x) I < l / h  for all h > 0, which 
obviously means that (x', x) = 0. 

195 
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Thus, when A is a cone, in particular when A is a vector subspace of E, 
its polar Ao is the set of all continuous linear forms on E which vanish 
identically in A; it is then called the orthogonal of A. The student should 
keep in mind that, in the present terminology, the orthogonal of a linear 
subspace of E is a subset of the dual E' of E. In fact, this subset is 
obviously a linear subspace of E': if A is a cone of E,  Ao is a linear 
subspace of E'. 

PROPOSITION 19.1. If B is a bounded subset of E, the polar Bo of B is an 
absorbing subset of E .  

Proof. If B is bounded, any continuous linear functional x' on E is 
bounded on B (corollary of Proposition 14.2), that is to say there is a 
constant M(x' )  > 0 such that 

and this inequality can be read as M(x' ) -~x '  E BO. Q.E.D. 

We shall define now certain topologies on the dual E' of E. We consider 
a family of bounded subsets of E, 6, with the following two properties: 

(6,) If A, B E 6 there is C E 6 such that A u B C C .  
(6,) If A E 6 and h is a complex number, there is B E 6 such that 

h A  C B. 

Let us denote by Go the family of thepolars of the sets belonging to 6 ;  
a generic element of Go will be a subset of E' of the form Ao where A E 6. 

Since every subset A E 6 is bounded, every subset Ao E Go is 
absorbing (Proposition 19.1). If AO, Bo are two subsets belonging to 
Go, the polars of A, B E G, respectively, we have 

A o n  BO = ( A  u B)' 

and, as there is C E 6 such that A u B C C, we have 

C ° C ( A u B ) o = A o n B o .  

If p is any number >O and if A E 6, there is B 3 p-lA, B E  6,  and 
therefore 

BO C pAo. 

These properties show that Go can be taken as a basis of neighborhoods 
of zero in a certain locally convex topology on E' (see Conditions (*) 
and (**) on p. 59). 
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Definition 19.2. We shall call G-topology on E’ the locally convex 
topology defined by taking, as a basis of neighborhoods of zero, the family 
Go of the polars of the subsets that belong to 6. 

PROPOSITION 19.2. A filter .%‘ on E converges to an element x’ of E 
in the 6-topology on E $9’ converges uniformly to x’ on each subset A 
belonging to 6. 

That 9’ converges to x‘ uniformly on a set A E E means that, given 
any number E > 0, there is a set M‘ belonging to 9‘ such that 

sup I(x’, x) - (y ’ ,  x)l < E for all y’ E M .  
XEA 

It is easy to see that we can take as a basis of neighborhoods of zero in 
the 6-topology the sets 

W,(A) = {x’ E E ;  sup I(x’, x)l < &}. 
Z E A  

Here E runs over the set of numbers >0, A over 6. The proof of 
Proposition 19.2 is trivial, in view of these remarks; in virtue of it, the 
6-topology on E‘ could be called the topology of uniform convergence over 
the sets belonging to 6. When carrying it, E‘ will be denoted by EL. 
We shall now introduce the main examples of 6-topologies. 

Example I. The weak dual topology, or weak topology on E’ 
This is the 6-topology corresponding to G: family of allfinite subsets 

of E; it is usually denoted by u(E‘, E), and when E’ is provided with it, 
one writes EG . Continuous linear functionals x’ on E converge weakly 
to zero if, at each point x of E, their values (x’, x )  converge to zero in 
the complex plane. In other words, the weak topology on E‘ is nothing 
else but the topology of pointwise convergence in E, when we look at 
continuous linear functionals on E as functions on E-which they are. 
For us, the weak topology will be most important. A basis of neighbor- 
hoods of EA will be the family of sets 

W,(x, ,..., x,) = {x’ E E ;  I(x’, Xj)l < E ,  j = 1 ,..., r}. 

Here {xl  ,..., x,.} varies over the family of all finite subsets of E, and E over 
the set of numbers >O. 

Example II. 
This is the 6-topology when we take, as family 6, the family of all 

convex compact subsets of E. We shall denote it by y ( E ,  E ) ;  when 
provided with it, the dual of E will be denoted by E: . 

The topology of convex compact convergence 
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Example III. 
This is the G-topology when G is the family of all compact subsets of 

E;  it is sometimes referred to as the topology of uniform convergence on 
the compact subsets of E, or compact convergence; when we put it on 
E ,  we shall write E i .  The student should not think that it is always 
equivalent to the topology of convex compact convergence. We shall 
however see that, in one important instance, when E is a Frdchet space, 
these two topologies are indeed equal. 

Example IV. 
With the weak topology, this one will be for us the most important 

G-topology on E'. It is defined by taking, as family G, the family of all 
bounded subsets of E. A filter in E' converges strongly to zero if it 
converges to zero uniformly on every bounded subset of E; this is why 
the strong topology on E' is sometimes called the topology of bounded 
Convergence. When carrying the strong topology, E will be called the 
strong dual of E and sometimes denoted by EL (b stands for bounded). 

Going back to the general situation, we see that, if G, , 6, are two 
families of bounded subsets of E, satisfying (GI), (G,), and if G, 3 6, , 
the 6,-topology is finer than the B,-topology. In particular, we see that 
we have the following comparison relations between the four topologies 
on E' introduced in the above examples: 

4E, E )  Q y ( F ,  E )  < c ( F ,  E )  Q b(E,  E),  

where c (resp. b) stands for the compact (resp. bounded) convergence 

The topology of compact convergence 

The strong dual topology, or strong topology on E 

topology. 

PROPOSITION 19.3. 
dense in E,  the G-topology on E' is Hausdorff. 

Proof. 
I (x ' ,  x )  I > 1, therefore x' $ BO. 

COROLLARY. 
compact convergence and of compact convergence on E' are Hausdog. 

If the union of the sets belonging to the family 6 is 

If x' E E' is # 0, there is a point x in some set B E  6 such that 

The weak and strong topologies and the topologies of convex 

PROPOSITION 19.4. Let ( E , p )  be a normed space, and E' the dual of E. 
The strong dual topology on E' may be deJined by the norm 

p'(x')  = sup I(x', x)l. 
P ( X ) = l  

Indeed, p' is the norm on E' whose closed unit ball is the polar of the 
unit ball in (E ,  p) .  
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Let E and F be two TVS, and u a continuous linear map of E into F. 
We have already seen (Chapter 18, p. 187) that 

t~ : F' 3y' -y' o u E E' 

is a linear map of F' into E', called the transpose of u (y' o u stands for 
the composition of the mappings 

E A F  '' + C . )  

What can we say about the continuity of lu when we provide E' and F' 
with 6-topologies ? In  fact; suppose that we are given a family of bounded 
subsets of E (resp. F), 6 (resp. $), having Properties (G1), (6%). Let E& , 
Fi, be the duals of E and F, respectively, provided with the topologies 
defined by 6 and $. That tu : FB -+ E& is continuous means that, given 
any polar Ao of a set A E 6, there is a set B E $ whose polar Bo is such 
that 'u(B0) C AO. The latter can be expressed by saying that, for all 
x E A and all y' E BO, we have 

I M Y ' h  x>l Q 1. 

By definition of the transpose, this is equivalent with saying that 

(19.1) IW, U(X)>l d 1. 

It is obvious that (19.1) will follow if u(A) C B. Thus we get a sufficient 
condition for the continuity of %: 

PROPOSITION 19.5. Let E, F be two TVS, and 6 (resp. 5) a family of 
bounded subsets of E (resp. F), hawing Properties (G1), (Q, (p. 196). Let u 
be a continuous linear map of E into F such that, to ewery A E 6, there is 
B E sj such that u(A) C B. Then the transpose lu of u, 

t~ :Fa+ E & ,  
is continuous. 

Now, observe that, if A is a finite (resp. compact and convex, resp. 
compact, resp. bounded) set, then u(A) has the same property. This 
proves the following consequence of Proposition 19.5: 

COROLLARY. 
into F. Then: 

Let E,  F be two TVS, and u a continuous linear map of E 

tu : F + E  

is continuous when the duals E' and F' carry the weak dual topology 
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(resp. the topology of compact convex convergence, resp. the topology of 
compact convergence, resp. the strong dual topology). 

We define now the canonical map of E into the algebraic dual of its 
dual, which we may denote by E*. The image of x E E under this 
mapping is the linear functional in E “value at the point x”: 

x’ - (x’, x). 

Let us denote by vz this linear form on E‘. When can we say that it is 
continuous on E& ? That v, is continuous means that, given any E > 0, 
there is A E G such that 

SYP I vz(x‘)I < E* 

SYP I<x’,(ll4x>l < 1. 

a! €Ao 

This can be rewritten 
2 €Ao 

This will certainly hold if ( l / e ) x  E A, whence the following result: 

PROPOSITION 19.6. Let G be a family of bounded subsets of E, having 
Properties (GI), (G.J. If B is a covering of E,  the canonical map of E into E’*, 

x ĥ t v, : x‘ ...+ (XI, x>, 

maps E into the dual of EL , (EL)’. 

From now on, we shall always suppose that G is a covering 6f E. 
In general, the canonical map of E into (EL)‘ will neither be onto nor 

one-to-one. However, the Hahn-Banach theorem has the following 
consequence: 

PROPOSITION 19.7. If E is a locally convex Hausdot$ TVS, the 
canonical map of E into the dual of E& is one-to-one. 

Proof. Let x E E, x $0; there is a continuous linear form XI on E such 
that (x’, x) # 0 (Corollary 2 of Theorem 18.1), which proves that o, 

We shall see later on that, when E’ carries the weak topology or the 
topology of compact convex convergence, the canonical mapping of E 
into the dual of E is actually onto, which means that E can be regarded 
as the dual of its weak dual, E: , or of Ei . 

is not identically zero. Q. E.D. 

Exercises 

In all the exercises below, E is a locally convex HausdorfTspace over the field of complex 
numbers, C. 
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19.1. Suppose that the topology of E is the topology o(E, E*), that is to say, the 
topology defined by the seminorms 

ps*(x)  = sup I %*(%)I, S*, finite subset of E*, algebraic dual of E. 
X*€S* 

Prove the following facts: 

(i) 
(ii) 
(iii) 
(iv) 

19.2. 

the dual of E is identical with E*; 
every bounded subset of E is contained in a finite dimensional vector subspace of E, 

every linear subspace of E is closed; 
every linear subspace of E has a topological supplementary. 

Let E’be the dual of E, and E* the algebraic dual of E. Prove that the completion 
of E’, equipped with the weak topology o(E’, E), is canonically isomorphic to E*, equipped 
with the topology o(E*, E) (topology defined by the seminorms 

ps(x*)  = sup I x*(x)l, S, finite subset of E). 
X€S 

19.3. 
(a) dim E is finite; 
(b) E; is normable. 

19.4. *, Prove the equivalence of the follo.wing properties: 
(a) E is normable; 

(b) 
(c) Ei is metrizable. 

19.5. 

(a) 
(b) 

Prove the equivalence of the following properties: 

the strong dual El of E is normable; 

Let 6 be a covering of E consisting of bounded subsets of E, satisfying Condi- 
tions (6,) and (Go). Prove the equivalence of following facts: 

the bilinear form (x, x’) - <x’, x> is continuous on E X E& ; 
E is normable and the B-topology on E’ is the strong dual topology. 

(Hint: use Propositions 14.4 and 35.3.) 

19.6. 

(i) 
(ii) 

(iii) 
(iv) 

19.7. 

(a) 
(b) 

19.8. 

Let E be anLF-space having a sequence of definitibn {E*} (k = 0, 1, ...) consisting 
of finite dimensional (Hausdorff) TVS. Prove the following facts: 

the dual E‘ of E is equal to E*, algebraic dual of E; 
on E’, weak and strong topologies are equal; 
the weak (or strong) dual E’ of E is a FrCchet space; 
the canonical map of E into the dual of EL is onto. 

Let E be an LF-space, {Eb} (k = 0, I ,  ...) a sequence of definition of E. Prove 
the equivalence of the following properties: 

the strong dual Ei of E is a Frbchet space; 
all the Ek are normable. 

Let E be a normed space, and E’ its dual. Prove that the origin in E‘ belongs 
to the closure, for the topology o(E’, E), of the unit sphere {x’ E E’; (I x’ I1 = I }  (11 (I: 
dual norm in E’) if and only if dim E is infinite. Derive from this fact that, when dim E 
is infinite, the weak dual topology o(E’, E) is strictly less fine than the strong dual topology 
b(E‘, E). 



20 
Examples of Duals among L” Spaces 

In this chapter, we shall indicate how the duals of some of the spaces 
introduced in Part I can be concretely realized. If we wish to give a 
precise meaning to the latter expression, it is not difficult: let E be a 
topological vector space of functions, and E’ its dual. Suppose that we 
have found a pair (F, j )  consisting of a vector space F (not necessarily 
carrying a topology) and of a linear map j of F into E’; suppose 
furthermore that j : F + E‘ is one-to-one and onto. Then we may say 
that (F, j ) ,  or simply F, is a realization of the dual of E. In practice, we 
shall be somehow more demanding: we shall only accept realizations 
which are “natural,” in a sense that is not easy to make precise. It will 
really mean that we shall select realizations which are interesting in the 
general context of analysis. I t  would be good, when E is a space of 
functions, to have realizations F of E’ which are also spaces of functions. 
It will be clear, however, that this is not always possible. For instance, 
the dual of the space V0(Q) of continuous functions in an open subset Q 
of R” cannot be naturally realized as a space of functions. Such seemingly 
unfavorable situations will lead us to enlarge the stock of the objects 
to manipulate, from functions to measures, from measures to distri- 
butions, or to analytic functionals. Let us also point out that we may look 
for realizations of a dual E‘ which are not merely algebraic, but also 
topological, in the sense that we may wish to find a pair (F, j ) ,  where now 
F is a TVS and j is an isomorphism of F onto E’ in the sense of the 
topological vector space structures (this will require that we have put 
some topology on E‘; the topology will usually be the strong dual one; 
see p. 198). When dealing with normed spaces or Hilbert spaces of 
fucctions, in which case E‘ will be carrying the dual Banach space or 
Hilbert space structure (see Proposition 11.2, corollary of Theorem 11.5 
and Theorem 12.2), we might even require that F be a Banach or a 
Hilbert space, and that j be an isometry of F onto E .  This is indeed 
standard practice, and we shall see now the most important examples 
of such a situation. 

Let us focus our attention on the case of Banach spaces. We assume 
202 
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that we are given two Banach spaces E, F and that we are trying to prove 
the existence of an isometry of E', dual of E equipped with the dual 
Banach space structure, onto F. This can be done if we have at our 
disposal a bilinear form on E x F, which we shall denote by ( , ), 
provided with certain properties. Let us denote by (1 I I E  and ( 1  ( I F ,  
respectively, the norms on E and F. The first condition which should 
be satisfied by the bilinear form ( , ) is a strong form of continuityt: 

(*) For all e E E,  f E F ,  lc ,e, f>l  < II e IIEIlf IIF * 

If (*) holds, we are able to say the following: (1) for fixed f E F, 

e - ( G f >  

is a continuous linear form on E, which we shall denote by Lr; (2) we have 

llJ%ll€, = sup I(e,f>l < IlfllF (I1 1I.r: norm in El. 
11 e 11 ,+ 

This means that the mapping f - L f ,  which is obviously linear, is 
continuous and, furthermore, that it is a contraction, i.e., has a norm < 1. 

The second property that the bilinear form ( , ) should possess is 
then the following one: 

(* *) For each f E F and each E > 0, there exists e E E such that 

II e IIE < 1, I(e ,f>l > IlfllF - E. 

Property (**) enables us to state that the mapping f - L, is an isometry 
on F into E'. Indeed, we have 

whence I l f l l ,  = ( 1  L, ( I E , ,  as E > 0 is arbitrary and as we already knew 

The last step consists in showing that the isometry f -Lf  is onto. 
This is done by special techniques in each case. One considers an 
arbitrary continuous linear functional L on E and constructs (or 
ascertains the existence of) an element f of F such that ( e ,  f) = L(e) for 
all e E E. In some cases (e.g., the spaces lp, 1 < p < +a; see 
below) this is very easy and does not require any deep result; in 
other cases (e.g., the spaces Lp, 1 < p < +m; see below), one is forced 

that IlfllF 2 IILf llE,. 

+ Continuity would correspond to an estimate I<e,f>l < const I1 e I l ~ l l f l l ~ .  
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to apply rather deep results (e.g., in the case of the LP’s, the Lebesgue- 
Nikodym theorem). At any event, the proofs in the present chapter all 
go through the three steps just described. The first step requires the 
proof of an estimate; this estimate will then be the one of Property (*), 
ensuring the continuity of the bilinear form ( , ). In the cases studied 
in this chapter, this estimate is provided by the celebrated Hdlder 
inequalities, which we proceed now to state and prove. 

We shall denote by F(X, C) the vector space of all complex-valued 
functions defined in a set X; we consider a seminorm p on S(X,C). 
In order that the statements below, concerning the seminorm p, be true, 
we must allow the seminorm p to take the value +a0 at some elements 
of S ( X , C ) .  We shall furthermore assume that p is increasing, in the 
following sense: 

(20.1) I f f ,  g are two real-valued functions in X such that 

f(x) > g(x) >, 0 ~ O Y  all x E X ,  

then P(f)  > dg). 

The Hdlder inequalities, which we shall now state and prove, have a 
wide range of applications. However, for our limited objectives, we shall 
apply them with the following two choices of the seminorm p: 

Choice 1. X is the set of nonnegative integers j = 0, 1,2, ..., and we 
identify S(X, C) with the vector space of all complex sequences 
cr = (uj); the seminorm p is, in this case, 

00 

u = (Uj) - 1 u )I1 = c 1 Uj 1; 
5=0 

of course, the set on which p is finite is 1’. 

Choice 2. X is an open subset of Rn and p is given by 

f - J* If(x)l ax, 
X 

where J* denotes the upper Lebesgue integral. We recall that the set 
of functions f on X such that p( f )  < +a is not identical with the set 
of Lebesgue integrable functions; the latter is smaller, it consists of the 
functions such that p( f ) < + w and which, furthermore, are measurable 
or, equivalently, are limits, in the sense of the seminorm p, of continuous 
functions with compact support. When f is integrable, i.e., f E dpl ,  we 
write J If(x)l dx, omitting the upper star; then Ref and Im f are also 
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integrable and, iff  is real valued, f +  = sup( f, 0) and f -  = sup(-f, 0) 
are also integrable, and one defines the Lebesgue integral off by 

f f d x  = s (Ref)+ dx - 1 (Ref)- dx + i (Imf)+ dx - i (1mf)- dx. 

It is well known that the two examples in Choices 1 and 2 are particular 
cases of a more comprehensive theory, measure theory. As a matter of 
fact, most of the reasonings which follow extend to the seminorm 
J$ I f(x)l  dx,  where J'$ denotes the upper integral with respect to a 
positive measure dx on a set X. As anybody who is familiar with this 
theory is also well familiar with the generalizations of the results which 
are going to be proved in this chapter, we shall not go into details. 

s s 

We come now to H6lder's inequalities: 

LEMMA 20.1. Let X be a set, F(X, C )  the space of all complex-valued 
functions in X ,  and p an increasing seminorm on 9 ( X ,  C )  (thus p has 
Property (20.1)), For all nonnegative functions f, g in X and all numbers 
a, ,$l > 0 such that OL + ,$l = 1, we have 

(20.2) P(P'g.B) G [p(.f)l"[P(g>la* 

Proof of Lemma 20.1. 
be denoted by (s, t ) ,  the closed convex set 

We consider in the plane, where the variable will 

r = {($, t ) ;  $eta 2 I ,  > 0, t > 01. 
This set r is equal to the intersection of the closed half-planes which 
contain it and whose boundaries are the straight lines tangent to the 
boundary of r, which is the curve 

ar = {(s, t ) ;  ~ t f i  = 1, > 0, t > 01. 
Such a half-plane can be defined by an inequality 

as + bt 2 c,  where a, b, c are numbers > 0. 

FIG. 4 
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Let x be an arbitrary point of X, such that 

w-4 = [fWl”k(x)lb f 0. 

Let us set so = f ( x ) / M ( x ) ,  to = g(x) /M(x) .  We have sttg = 1 since 
M(x)”+fJ = M(x), recalling that a + #3 = 1. This means that, for the 
positive numbers a, b, c above, we have 

c < as, + bt, , 

c W x )  Q af(4 + b g ( x ) .  

which reads 

If we apply then the seminorm p to both sides of this estimate, we obtain 

c P ( W  < a P(f)  + b dg). 

Let us suppose now that p(M)  # 0; the preceding inequality reads 

c < a P ( f ) / P ( W  + b P(g)lP(M)* 

As this must be true for all triples (a, b, c )  such that the straight line 
{(s, t); as + bt = c> is tangent to a r ,  we conclude that the point with 
coordinates s = p ( f ) / ~ ( M ) ,  t = p(g) /p (M)  lies in r. This means that 
~ t b  2 1, which can be rewritten 

This is obviously true when p(M)  = 0; going back to the definition of 
M(I), we see that we have obtained (20.2). 

Example I. 
The Duals of the Spaces of Sequences B(1 < p < + CO) 

We recall that l p  is the space of complex sequences u = (zi) ( j  = 0, 1, ...) 
such that 

With the norm u .UI 1 1  u / I l p ,  l p  is a Banach space; l2 is a Hilbert space 
(see Chapter 11, Example IV). 

The duality theorem about the spaces P can be stated as follows: 
Let us denote by 1, the vector space of Jinite sequences, that is to say of 
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sequences u = (aj) ( j  = 0, 1, ...) such that uj = 0 for large j .  It is 
obvious that lF is contained in each P; furthermore, IF is dense in each 
P, as the student may check (remembering that p is finite!). 

THEOREM 20.1. The bilinear form on IF x I F ,  
ID 

( U ,  T> == U j T j  , U = (Ui), 7 = ( T j ) ,  

i=O 

can be extended to the product space I p  x p ’ ,  where 1 < p < + co and 

p ’ = p / ( p  - 1 )  if p > 1 ,  
p’ = fco if p = 1 .  

This extension satisfies Hb’lder’s inequality 

(20.3) I(% .>I < I/ 0 IIP II 7 I IP  * 

This implies that the mapping 

7 - (0 - (0, 7)) 

is a continuous linear map of P’ into the dual of p .  In fact,  it is an isometry 
of P’ onto the dual of l p .  

Concerning P‘ when p = 1, we recall that I“ is the Banach space of 
bounded sequences, with the norm 

Proof. We begin by assuming that p > 1; then p‘ < +CO and (20.3) 
is a trivial consequence of the general HCilder inequalities (Lemma 20.1); 
it shows that the mapping 

(20.4) 7 - (0 - (‘-73 T>) 

is a continuous linear map of P’ into the dual of l p ,  and that this map 
has norm 6 1 ,  since we derive, from (20.3), 

SUP KO, .>I < I/ 7 Ill’, * 
n 0 11 p=l 

Let us show that this mapping is an isometry. Let T E P’ be arbitrary. 
We define a complex sequence a by the formula 

ui = ~~1 T~ 1p’-2 if r j  # 0 
= O  if rj = 0. 
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Observe that we have 

(20.5) 1 oi I p  = 1 Ti l p p ’ - p  = I T i  l p ‘ ,  

which implies immediately that u = (ui) E l p .  We have 
m 

(U, T )  = I T i  1’’ = 1 1  7 11;;’ . 
j=O 

But, on the other hand, 

(0 ,  .> < I1  IIP II I l (Z ’ ) ,  9 

where 1 1  I I ( l p ) ,  is the dual norm on the dual of P .  As we have, in view of 
(20.3, 

we conclude that 
II (3 llP = II 7 11$: 

I$* < I1 7 ll;i!”Il 7- l I ( Z 9 ,  II 

But p‘ - p’ /p  = 1, whence our assertion. 
It remains to prove that the mapping (20.4) is onto. In  order to do 

this, we consider an arbitrary continuous linear functional f on P, and 
we shall show how to construct a sequence T E lp’ such that 

j(u) = (0, T )  for all u EP. 

Let us denote by u(i) (j  = 0, 1, ...) the sequence (OR) such that Uk = 0 
if j # k, uj = 1. Obviously, these sequences belong to every P. Let us set 

T j  =f(U(j)) .  

Let u be afinite sequence; then we have u = Cr=,, uju(i), and 
W 

f(U) = UjTj  . 
i = O  

Let M be an arbitrarily large integer, and set 
u. 3 3  = 7.1 T jp‘--2 if T ~ , #  0 and j <  M ,  

= 0 otherwise. 

Also let us use the notation T ( ~ )  for the sequence whose j th entry is 
r j  if j < M, zero otherwise. We have 

( M )  D;, ( M )  ,I$!”* m = I I T  112 9 I I ~ l I z P = l I T  
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Let us now use the fact that f is continuous; there is a constant A > 0 
such that, for all s E lp, 

IfWl < 4 s 111’ 1 

whence 
(M) (M) v*/v II llla’, = If(4 < 4 7 Ill’ 

and 
(M) P’, D ’ / B  < A. I1 7 IIP- .. 

Since p‘ - p‘ /p  = 1, we see that 1 1  T ( M )  [ I l p ,  < A. Since this estimate is 
valid for all M ,  it means that T E P‘. The fact that f(u) = (a, T )  for all 
u E lp follows from the fact that this is true when u is finite, as we have 
seen, and from the density of IF in l p  for p < +m. 

We must now consider the case p = 1, in which case p‘ = +OO. In  
this case, Hblder’s inequality (20.3) is trivial, for it reads 

(20.6) 

and this is evident when the sequence u is finite; in the general case, it 
suffices to observe that 1, is dense in 1’. This shows that, also in this case 
where p = 1, (20.4) is a continu’ous linear map, with norm < l ,  of 
P‘ into the dual of $. Let us take the sequences u(j) introduced on p. 208; 
we have 

I Ti I = 7)l < II ll(19, ? 

which immediately implies 

whence the equality of these two norms, in’view of (20.6): the map 
(20.4) is an isometry of 1“ into (P)‘. It  remains to show that it is an 
isometry onto. 

We consider an arbitrary continuous linear functional f on 1’. We 
associate with it a sequence T by setting T~ = f(u(j))as before. We want 
to prove now that T is bounded. This follows from the inequality 

We have then, by the same argument as in the case p > 1,f(u) = (u,T), 
for all u E 1’. 
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Example 11. 
The Duals of the Spaces L*(Q) (1  < p < + 00) 

Let 52 be an open subset of Rn, and dx the Lebesgue measure on Rn. 
We wish to exhibit a convenient realization of the strong dual of L p ( 5 2 )  
for p 2 1 finite. We must try to follow the direction outlined by 
Example I. The analogy is obvious. The norm in L p ( 5 2 )  is 

With this norm, L p ( 5 2 )  is a Banach space; L2(52) is a Hilbert space (see 
Chapter 11, Example V). What will play the role of the vector space of 
finite sequences lF is the space %?:(52) of continuous functions with 
compact support in 52; this vector space is dense in every L p ( 5 2 )  for 
p < + co (Theorem 11.3). We consider then the bilinear form 

on %:(52) x %?:(52). We can extend it as a bilinear form on L p ( 5 2 )  x Lp’ (L2)  
if 1 < p < co, 1 < p‘ < 00, 1/p + lip' = 1, and this extension 
satisfies Hblder’s inequality 

(20.7) I(f,g>I < l I f I ! ~ ~ I i g l l ~ ~ * .  

Indeed, (20.7) follows immediately from Lemma 20.1. This implies 
that the mapping 

(20.8) f - ( g  - < f , g > )  

is a continuous linear map, with norm < l ,  of Lp’(s2) into the dual of 
Lp(52) .  The next step is to prove that this map is an isometry. We define 
a function g in 52 by setting 

g(4 =f(x> If(x)Ip’-2 when f(x) # 0; 
g(x) = 0 otherwise. 

We have 
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by definition of the norm in the dual of a Banach space, by combining 
this with (20.9) and (20.10), we see that 

llfll$~7p”p < Ilfll(L~,* 9 

which implies that the mapping (20.8) is an isometry, since p‘- p‘/p = 1. 
It remains then to prove that (20.8) is onto. This is usually done by 

applying the Lebesgue-Nicodym theorem, whose statement we now 
recall. Anticipating the next chapter a little, we introduce Radon 
measures on the open set Q: a Radon measure p on Q is a continuous 
linear form on the space e(Q) equipped with its natural LF structure 
(Chapter 13, Example 11). The Radon measure p is said to be positive if, 
for all functions q E @(Q) which are nonnegative everywhere, we have 

An example of positive Radon measure is the Lebesgue measure 

We shall make use of the fact (proved in pp. 218-220) that any 
complex-valued Radon measure p in D can be decomposed as follows: 

p = p+ - p- + i(o+ - u-), 

where p+, p-, u+, u- are positive Radon measures (obviously p +  - p -  is 
the real part of p; u+ - u- is the imaginary part of p). We shall use the 
following particular case of the Radon-Nikodym theorem: 

THEOREM 20.2. 
two conditions are equivalent: 

Let p be a positive Radon measure in Q. The following 

To every nonnegative continuous function g, with compact support 
in .R, and to every E > 0 there is 6 > 0 such that the following 
is true: if h E e(Q) is such that 0 9 h(x)  < g(x)  for all x, then 

(a) 

1 h(x) dx < 6 implies (p, h> < E. 

(b) There exists a function f in Q, nonnegative almost everywhere, 
locally Lebesgue integrable, such that, for all q E e(Q), 
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That f is locally integrable means that f is measurable and that, 
whatever be the compact subset K of Q, 

We recall that f is nonnegative (otherwise we should replace f by I f  I 
in the integral over K). 

Let us consider a continuous linear functional on Lp(Q), A. There is 
a constant C > 0 such that, for all u E L ~ ( Q ) ,  

(20.1 1) I W I  < CII * I I L P  * 

Let now K be a compact subset of Q, and suppose that u E %!(a) has 
its support in K. We have 

II 11% < me=(K) * (S2P I *(x)I>”, 

I W l  < C(me=(W’” y P  I *(.)I. 
whence 

We have denoted by meas(K) the Lebesgue measure of the set K. Thus, 
if u converges to zero uniformly, keeping its support in K, h(u) + 0; 
this shows that the restriction of h to the Banach space %!(K) is 
continuous (see Chapter 13, Example 11). But this implies that the 
linear form u+A(u) on V:(Q) is continuous (corollary of Proposition 
13.1). This linear form defines a Radon measure in 9, which we keep 
denoting by A. We shall first suppose that h is positive. Let now g be 
an arbitrary nonnegative continuous function, with compact support, in 
52, and take h E V:(Q) such that 0 < h(x)  < g(x) for all x. We have 

Setting M = supzl g(x)II-lIp and 6 = (e/CM)p, we see by (20.1 1) that 

1 h(x) dx < 6 implies h(h) < E. 

We conclude that there is a locally integrable function f in Q, f 
almost everywhere, such that 

0 
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At this stage, we consider a sequence of relatively compact open subset 
9, cQ2c ..- CQkC whose union is equal to Q, and for each 
k = 1,2, ... we introduce the function 

if x ~ S 2 ,  and if f ( x )  < k; 
otherwise. 

Obviously f k ,  regarded as a function in Q, is a bounded measurable 
function with compact support (contained in the closure of Q,). As the 
student may know, or easily check, such a function belongs to L*(Q) 
for all q 3 1. As fk < f, we have 

(20.12) 1 v ( x ) f k ( x )  dx < I v ( x ) f ( x )  dx for all nonnegative v E W:(S2). 

As fk E L P ‘ ( Q ) ,  we know from the first part of this proof that 
u - u(x)  fk(x) dx is a continuous h e a r  form on Lp(Q); but we shall 
now show that the norm of this form is bounded by a constant inde- 
pendent of k. 

If tp E q(Q) is arbitrary (in particular, not necessarily 3 0), we have 

I J V , ( X ) f k ( X )  dx I < J I P)(X)lfk(X) dx < J I V(X)lf(X) d X  < CII P) IlLP * 

by applying (20.1 1) and.(20.12). Using the density of q(Q) in D(Q) 
we see that, for all u E L P ( Q ) ,  

We choose then ~ ( x )  such that 

We have 

Then we derive, from (20.13), 

l l f k  IILP, < c, 
or 

J [fk(X)l”‘ dx < CP’ 
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But ( f )”’ is the pointwise limit of the nondecreasing sequence of 
nonnegative integrable functions (fk)@, k = 1, 2, ...; we have, therefore, 

f [ f (x)]”’  dx = lim [ f k ( x ) ] ” ‘  dx < cp’. 
k++w f 

Thus f E Lp’.  The density of e(52) in Lp(sZ) implies immediately that 

X(u) = ( u , f )  = 1 u ( x ) f ( x )  dx for all u ELP(Q). 

This was obtained in the case where the Radon measure 

is positive. If this Radon measure is arbitrary, we decompose it into 
its real part and imaginary part, and these into their positive and 
negative parts, as mentioned in the beginning. We decompose thus h 
into a linear combination (with coefficients f l ,  &z] of four positive 
Radon measures, all of which satisfy an estimate of the kind (20.11). 
Applying the preceding reasonings to each of these four positive Radon 
measures, we conclude that there is a complex-valued function f E Lp‘(52) 
such that 

X(u) = ( u , f )  for all u ED@). 

The case p = 1 can be treated in a similar fashion; we leave it to the 
student as an exercise. We state the theorem summarizing the whole 
situation: 

THEOREM 20.3. Let 52 be an open subset of Rn. Let p be a real number, 
1 < p  < +a. Set p’ = p / ( p  - 1) i f p  > 1, p’ = +m i f p  = 1. Then 
the bilinear form on %‘:(G) X %!?(Q), 

can be extended as a bilinear form on Lp(52) x Lp’(52). This extension 
satisfies Hb’lder’s inequality 

I(% v>l < II IIL” II ZJ I I L D ,  * 

The mapping 
v - (. - (u ,  v>) 

is an isometry of Lp’(52) onto the strong dual of Lp(52). 
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Exercises 

215 

20.1. By using Hblder's inequalities, show that I' C la if p < q and that the injection 
1' 4 19 is continuous and has a norm equal to one. Prove that I' # l a  if p < q and that 
the topology of 1' is strictly finer, then, than the topology induced by la. 

20.2. Relate the result for p = 2, stated in Theorem 20.1, to the canonical linear 
isometry of a Hilbert space onto its antidual (Theorem 12.2). 

20.3. Let I, be the space of complex sequences, converging to zero, equipped with 
the norm of I", 

= (Ok)k-O.l .... - 1 0 \ I m  = sup 1 o k  1 -  

Then I m  is a Banach space. Prove that the mapping 
W 

is an isometry of I' onto the dual of 1, (carrying the dual Banach space structure). Derive 
from this fact that (20.14) does not map 1' onto the dual of lm. 

20.4. 
vanishing on Im (see Exercise 20.3) ? 

Can you give an example of a continuous linear form on I", nonidentically zero, 
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Radon Measures. Distributions 

In the preceding chapter, we have proved duality theorems between 
certain spaces of functions. As we have already said, it is not always 
possible to interpret “in a natural pay” the dual of a functions space 
as a functions space. As a matter of fact, this circumstance is rather 
fortunate as it enables us to add new objects to our inventory. If it were 
nor the case, the consideration of the duals would not provide us with 
anything but functions, which we can always consider directly. In  the 
present chapter, we shall introduce the dual of the space of continuous 
functions with compact support e and the dual of the space of test 
functions (i.e., infinitely differentiable functions with compact support), 
%?:. The elements of the former have already been given a name (p. 21 I): 
they are the Radon measures. The elements of the dual of %?: are the 
distributions, to the study of which much of the forthcoming is devoted. 
Radon measures and distributions are precisely instances of objects which 
cannot be naturally interpreted as functions, or at any event which it 
is preferable to consider in their own right. In  the next chapter, we shall 
introduce a third example of such “new” objects: the anulytic functionals, 
which are the elements of the dual of the space of holomorphk functions. 

Radon Measures in an Open Subset Q of Rn 

Let e(Q) be the space of complex-valued functions, defined and 
continuous in SZ, which vanish outside some compact subset of Q. A 
Radon measure p in 8 is a linear functional on @(Q) which is continuous 
when this space is equipped with the topology inductive limit of the 
spaces %,?(K). Here K is an arbitrary compact subset of Q; e ( K )  is 
the space of the continuous functions in SZ which vanish outside of K; 
its topology is defined by the maximum norm, 
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The student will be careful not to think that e ( K )  is the same thing as 
the space of complex functions, defined in 52 with support in K and 
continuous in K (space which we denote V0(K)) .  For instance, the nonzero 
constant functions in K, extended by zero outside of K, are not elements 
of e ( K ) :  for they are not continuous in 52. 

At any event, a Radon measure in Q is a linear functional p on e(Q) 
such that, for every compact subset K of Q, there is a constant 
C(p, K) > 0 such that, for all continuous functions q vanishing 
identically outside of K, 

I<P, P)l < Q., K )  ”P I P(4I. 

Examples of Radon measures: the Dirac measure at some point xo, 

P - dx”); 
the Lebesgue measure, q -+ J q ( x )  dx (which, on continuous functions, 
coincides with the Riemann integral); the densities 

where g is a locally Lebesgue integrable function in Q; this means that 
g is measurable and that, for any compact subset K of Q, 

A Radon measure p is said to be real if <p, f) is real for all real-valued 
functions f E e(Q); p is said to be positive if (p, f) 2 0 for all non- 
negative functions f E q(l.2). Examples of positive Radon measures in 
the open set SZ are the Lebesgue measure dx, more generally the densities 
g(x) dx when g is a locally Lebesgue integrable function in 9 almost 
everywhere positive; the Dirac measures 8, at the points of 52 are also 
positive Radon measures. 

Let p be an arbitrary Radon measure; we can define its complex 
conjugate j i  by the following formula: 

- 
(F9 v) = <P, F), 

then its real part and its imaginary part: 

Re p = t ( p  + j i ) ,  Im p = &(p - p), i = (- 1)1’2. 
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Example: when p = g(x) dx, i.e., when p is a density with respect to the 
Lebesgue measure, 

ii = g(.) dx, Re p = (Re g)(x) dx, Im p = (Im g)(x) dx. 

Of course, we have p = Re p + i Im p. 
We show next that every real Radon measure can be written as the 

difference of two positive Radon measures. We need the following result: 

THEOREM 21.1. A positive linear functional on %:(52) is a positive 
Radon measure. 

We must show that a linear functional L on g:(52) which is positive is 
necessarily continuous (for the inductive limit topology on vz(52)). Let 
K be an arbitrary compact subset of 52. Let us denote by 1 1  p? 1 1  the 
maximum norm of p) E C,O(K) : 1 1  p? 1 1  = suprl p)(x)l. Suppose that p) is 
real valued; then - 1 1  p) I /  < y(x )  < 1 1  p) 1 1  for all x E 52. Let g(x) be a non- 
negative function belonging to W:(52), identically equal to one in K; 
we have 

-11 p) I! g(x> < v w  < I /  p? !! g(4 for all x. 

As the linear form L is positive, we derive from there 

- / I  v II L(g) < L(p?) < II v I I  Lk). 

lL(v)l < L(g) II v 11. 
Therefore 

This inequality is still true if p) is complex valued, as we see by applying 
it to Re p) and to Im p), respectively. As L(g)  is a nonnegative constant 
independent of p?, Theorem 21.1 is proved. 

Let us now prove the decomposition theorem, 

THEOREM 21.2. 
positive Radon measures. 

function belonging to g!(52). Let us set 

Every real Radon measure is equal to the dzfference of two 

Let p be a real Radon measure; let y be an arbitrary nonnegative 

Wv)  = SUP (P,  TI), 

where the supremum is taken over the set of all functions q1 E %:(a) 
such that 0 < ql(x) < y ( x )  for all x. Observe in particular that M is 
positive, i.e., that M(p?) 0 for all p) 2 0, p) E %:(52). We claim that if 
# is another nonnegative continuous function with compact support in 52, 

(21.1) M(p, + $1 = W v )  + w!b 
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Proof of this Statement. 
y 1  + $1 < 'p + $; this implies immediately 

If 0 < 'p? < 'p and 0 < t+hl < t+h, then 

SUP (CL,v1) + S U P  ( C L ,  $1) = S U P  (I4'pl + $1) 
o<a1<c O < * l < *  04-T1<-T,O<*,$* 

< SUP <CL,x) = Wcp + $1. 
O<X<P+*  

This means that 

We must now prove the converse inequality. I t  will suffice to prove that 
every function x E e(Q) satisfying 0 < x < cp + 4 can be written in 
the form 

x = v 1  + 41 9 

with 0 < 'pl < 'p, 0 & $l < $, 'pl ,  z,h1 E %'!(52). In  order to see this, it 
suffices to set 

vl(x) = sup(x(x) - $(x), 0) for each x E SZ. 

As the supremum of two continuous functions is continuous, 'pl E e(Q) 
and is obviously nonnegative; as x < 'p + 4, we have obviously yl < 'p. 

Set then $1 = x - 'pl. At any point x where ~ ( x )  > $(x), we have 
'pl(x) = x(x) - $(x), hence &(x) = $(x). At a point where x(x) < $(x), 
we have ~ ( x )  = 0, hence $l(x) = x(x) < $(x). Thus  (21.1) is proved. 

The  next step is to extend the functional M to functions belonging 
to V:(Q) which are not necessarily nonnegative. This is very simply 
done, by observing that a real function 4 can always be decomposed in 
the form 4 = dl - c $ ~ ,  with C1 and +2 nonnegative continuous functions 
with compact support in Q (e.g., 4 = sup(+, 0) - sup(-+, 0)). We 
write 

I t  follows at once from(21.1) that M(+) does not depend on the chosen 
decomposition of 4, 4 = q51 - q52, and that (21.1) is also valid when 
4 and $ are real valued but not everywhere 0. Finally, we define 
M(4)  for complex functions 4 by the formula 

(21.3) M(4)  = M(Re4) + iM(Im4). 

Equation (21.1) extends trivially to the case of 4, I/# complex valued. 
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It must now be proved that M is linear; we prove that M is R-linear, 
which implies at once, in view of (21.3), that M is C-linear. 

The R-linearity of M follows from (21.1) and from the positivity of 
M by a standard argument. Let p ,  q be two positive integers; (21.1) 
implies immediately, for all real-valued tp C @!(9), 

whence M ( ( l / p ) q )  = (l/p)M(tp) by substitution of ( l /p)p,  for tp; therefore 
we have 

This shows that M(rp) = rM(tp) for all rational numbers r. If now X is 
an arbitrary real number, and if q is a nonnegative function, we have 

for all x E Q, and for all pairs of rational numbers y1, r2 such that 
rl < h < y2 . In virtue of the positivity of M and of the linearity of M 
with respect to the rational numbers, we derive that 

Taking then q and h fixed, and y1 (resp. f 2 )  converging to h from the left 
(resp. from the right), we conclude that M(htp) = h M(tp). This obviously 
remains true even when tp is real valued (and not necessarily nonnegative), 
in virtue of (21.2). As we said, it then carries over to complex-valued 
functions and to complex scalars A. 

Thus we have proved that M is a positive linear functional on q(i2); 
by Theorem 21.2, it is a (positive) Radon measure. From now on, we 
write p+ instead of M; p+ is called the positive part of p. We define the 
negative part of p, p-, as being the positive part of -p. We leave to the 
student the proof of the fact that 

which completes the proof of Theorem 21.2. 

of four positive measures, in the following manner: 
Any complex measure p can be decomposed into a linear combination 
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The absolute value of a real Radon measure p is now easy to define: it 
is the positive measure 

I P I = P+ + P-. 

Let p be a positive Radon measure. By definition, p is a functional on 
the space of continuous functions with compact support in 52. However, 
its domain of definition can be extended so as to include a larger set of 
functions than %:(52). The properties of such an extension constitute 
what is called the theory of integration of the measure p. In this respect, 
Radon measures are a particular kind of measures; a useful theory of 
integration for general measures can be constructed. For further 
information on this subject, we refer to the treatises on integration 
theory. 

In this chapter, we have given the definition of a Radon measure in an 
open subset of Rn. The student will easily perceive that such a definition 
could have been given for Radon measures on any locally compact 
topological space. I t  will suffice to assume that the letter 52 stands for 
such a space, in the above reasonings. It should be pointed out, however, 
that there will be Radon measures on certain locally compact spaces 
which have no equivalent in others. For instance, this is true of the 
Lebesgue measure dx and of the densities g(x)  dx. Similar measures do 
not exist on arbitrary locally compact spaces, although they might 
exist on certain types of locally compact spaces (e.g., locally compact 
groups: the role of the Lebesgue measure is then played by the so-called 
Haar measure). In the forthcoming, we shall need the following result 
about these densities. 

THEOREM 21.3. 
the open subset 52 of Rn; the Radon measures in 52, 

Let g ,  , g ,  be two locally Lebesgue integrable functions in 

are equal if and only i f g ,  = g ,  almost everywhere in Q. 
We shall not give a proof of this theorem; the student will find a proof 

of it in any good book on integration theory. 
At this point, an important remark is in order, namely that the set of 

locally integrable functions is the largest set of functions defined by local 
conditions involving the Lp norms. This remark will be expanded later 
on when we study the local spaces of distributions. For the time being, 
we shall content ourselves with a precise but limited formulation of the 
observed fact: 

Let p be a number such that 1 < p < +a. 
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Definition 21.1. 
measurable and i f ,  for every compact subset K of Q, we have 

A function f in Q is said to be locally L p  i f f  is Lebesgue 

THEOREM 21.4. 
in Q is locally L1 (i.e., locally integrable). 

inequalities imply that 

Whatever be p ,  1 ,< p < +a, every locally L p  function 

Let f be locally L P  and K an arbitrary compact subset of 9. Hdder's 

I* If(x)l dx < 1 1  lKfl lLpII  1KIILP' 9 
K 

where 1, is the characteristic function of K,  equal to one in K and to 
zero everywhere else, and where p' is the number conjugate of p ,  
p' = $00 if p = 1 and p' = p / ( p  - 1) if 1 < p  < +a. This shows 
immediately that 

J* IfWl dx < +a; 
K 

therefore the restriction off to K belongs to L'(K), as f is measurable. 

Distributions in an Open Subset of R" 

A distribution in an open subset Q of R" is a linear functional on the 
space of test functions %?r(Q) which is continuous when %?:(SZ) carries 
its canonical LF topology (see Chapter 13, Example 11, p. 151). We 
recall that the elements of Vz(i2) are the V" (complex-valued) functions 
in Q with compact support. If we consider a linear functional L on V:(Q) 
we may decide whether it is a distribution by applying the corollary of 
Proposition 13.1, which in the present situation can be stated as follows 
(when combined with Proposition 8.5):  

PROPOSITION 21.1. 
if it possesses the following equivalent properties: 

A linear form L on %?r(Q) is a distribution if and only 

To every compact subset K of SZ there is an integer m 2 0 and a 
constant C > 0 such that, f w  all V" functions cp with support in 
the set K ,  

(a) 
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(b) If a sequence of test functions { y k }  (k  = 1, 2, ...) converge uniformly 
to zero, as well as all their derivatives, and i f  the functions v k  have 
their support contained in a compact subset K of 52, independent of 
the index k, then L(qk) + 0. 

A way of obtaining examples of distributions is the following one: 
Let E be a space of functions in 52 containing %?:(52); suppose that E is 
provided with a locally convex HausdorfF topology which induces on 
Ur(52) a topology less fine than the canonical L F  topology on this space. 
Then the restriction to %:(Q) of any continuous linear functional L 
on E is a continuous linear functional on WF(52) (equipped with its 
LF  topology), i.e., a distribution in 52. If we make the further requirement 
that any two dtferent continuous linear forms L, , L, on E define, in the 
way just described, two dt3erent distributions in 52, we must impose the 
condition that %‘:(52) be dense in E. This is obvious: for the Hahn- 
Banach theorem implies that a subspace of a locally convex Hausdorf€ 
space is dense if and only if every continuous linear vanishing on the 
subspace is equal to zero in the whole space. 

This scheme can be applied to E = e(Q). It shows immediately 
that every Radon measure p in 52 defines, by restriction to V:(52), a 
distribution T, in SZ; if p1 , p2 are two Radon measures in 52 such that 
p1 # p2 , we have 

T,, # T,, (see Corollary 2 of Theorem 15.3). 

In view of these facts, we have the right to identify the distribution T, 
with the Radon measure p. We shall therefore say that the distribution 
T, is a Radon measure, and we shall write p instead of T, . 

PROPOSITION 21.2. 
possesses the following three equivalent properties: 

A distribution T in 52 is a Radon measure i f  it 

The linear form 3, - ( T ,  3,) is continuous on 5f:(52) when this space 
carries the topology induced by e(l2). 
To every compact subset K of 52 there is a constant C > 0 such 
that, for all F‘functions ‘p with support in the set K ,  

(a) 

(b) 

I(TI v)l < C S t P  I v w  

(c) If a sequence of test functions {pk} (k = 1, 2, ...) converge uniformIy 
to zero and i f  the functions yk have their support contained in a 
compact subset K of Q independent of k ,  then <T, Y k )  + 0. 

The equivalence of (a), (b), and (c) follows immediately from the 
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definition of the LF topology on YCo(52) (see Chapter 13, Example 11, 
p. 130) and from Propositions 8.5 and 13.1. We must therefore show 
that T is a Radon measure in 52 if and only if T has Property (a). In one 
direction, it is obvious: if T is,a Radon measure, which is to say if T is 
the restriction to VF(52) of a Radon measure in 52, then T is continuous 
for the topology induced on VF(52) by V!?(52). Conversely, if cp - (T, cp) 
is continuous for this induced topology, it can be extended as a 
continuous linear form to the whole of e(52): by continuity, since 
Vz(52) is dense in e(52) (Corollary 2 of Theorem 15.3). As a matter of 
fact, the extension of cp - (T, cp) is unique: this follows precisely from 
the density of %‘;(52) in V!(Q), as has already been pointed out above. 

A particularly important class of distributions which’ are Radon 
measures are the distributions of the form 

where f is a locally integrable function in 52. Recalling what we have just 
said, that two distinct Radon measures define distinct distributions, and 
using Theorem 21.3, we see that two locally integrable functions define 
the same distribution if and only if they are almost everywhere equal. 
This enables us to identify equivalence classes of locally integrable 
functions modulo the relation “to be equal almost everywhere”lwith the 
distribution defined by any one of their representative. We shall say 
that a distribution T is a function if there is a locally integrable function f 
such that T is the Radon measuref(x) dx; we shall then write f instead 
of T ;  it is understood that f is defined almost everywhere, or, more 
correctly, that f is an equivalence class of locally integrable functions 
modulo the relation “ f l  = f i  a.e.” 

We shall transfer the whole terminology for functions to distributions 
which are functions. Thus we shall say that a distribution f is a Vk 
(resp. Lp) function (0 < k < +a) if the class denoted by f contains a 
representative which is a Vk (resp. Lp) function. We shall use such 
expressions as: the distribution T is a polynomial, an exponential, an 
analytic function, T can be extended to the complex space Cn as an entire 
analytic function, etc. We repeat: the whole terminology which is used 
when we deal with functions will be used when dealing with distributions 
which are functions. 

If all distributions were Radon measures, there would not be much 
point in building a distributions theory. But we shall see that the space 
of distributions contains many more objects than Radon measures. 
This will become obvious as soon as we will have at our disposal the 
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concept of a differential operator acting on distributions. We shall 
be able, then, to differentiate distributions as many times as we wish, 
and it will be obvious that differentiation of Radon measures yields 
distributions which, in general, will not be Radon measures. 

In relation with the previous remark, it can be observed that there are 
many functions which are used in analysis and which are not locally 
integrable, which therefore do not define distributions by the formula 

Such is for instance the function 

t - t-” (K = 1, 2, ...) 

defined on the real line. Obviously, the trouble lies not with measurability 
since t - t-k is measurable (it is V“ in the complement of the origin), 
but with the integrals of the absolute values on bounded intervals of 
the real line. Indeed, we have (for k > I), 

J:t-”t = fm. 

There is a way, however, of defining a distribution in the real line by 
means of the function t - t-k. More precisely, there is a distribution S 
in R1 such that, for any test function v E V:(R1) having its support in 
the complement of the origin (i.e., vanishing in some neighborhood of 
t = O), 

dt 
(S9 ff) = j V ( t )  t * 

In  fact, there is a standard procedure for doing this, leading to the 
concept of the pseudofunctions (in our case, the distributions Pf t-k). 
But the student should keep in mind that .these “extensions” S are 
never functions, in the sense of the expression “this or that distribution 
is a function.” For if S were a function, i.e., if there were a locally 
integrable function f ( t )  in the real line such that, for all test functions q, 

this would imply that f ( t )  = t-k if t # 0, which in turn would mean 
that t-k is locally integrable, which it is not. 

It should also be observed that there are functions which do not 
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define distributions, whatever procedure one tries on them. Such a 
function is 

R1 3 t - e l l t .  

There is no distribution in the real line which coincides with t - ellf in 
the complement of the origin. 

in 52 is denoted by g'(52). 
Notation 2 1.1. Let 52 be an open subset of Rn. The space of distributions 

Exercises 

In the exercises, we denote by R an arbitrary open subset of R". 

21.1. Let x1 , x, ,..., xi ,... be an arbitrary sequence of points of R. Let a1 , a, ,..., af ,... 
be a sequence of complex numbers such that 

m 

Prove that the functional on %:(Q), 
m 

I - c ai dxi), 
i=l 

is a Radon measure in R. 

22.2. Let {x,} be a sequence of points in R which does not have any accumulation 
point in R. Then, prove that, for any sequence of complex numbers {a,}, the functional 
on TwJ), 

03 

'p - c ajD' I(XjCi), Dip = (a/ax,)j ... (a/ax,)jIp, 
i=l 

is a distribution in R. 

22.3. Let xo be an arbitrary point of R. Prove that the functional on V:(Q), 

I - [(a/axl)rpl(xo), 

is a distribution in R, but is not a Radon measure in R. 

22.4. Let I x I = (xi + ... + xal/* be the Euclidean norm on R". What condition 
should be satisfied by the real number s in order that the measurable function x - I x 1' 
in R" define a distribution in R" which is a Function ? 

22.5. Prove that if a distribution T in the open set R is such that (T, +> > 0 for all 
nonnegative + E g:(R), then T is a positive Radon measure. 



22 
More Duals: Polynomials and Formal 

Power Series. Analytic Functionals 

Polynomials and Formal Power Series 

Let 9, be the vector space of all polynomials in n indeterminates with 
complex coefficients. This space is often denoted by C [ X ,  ,..., X,]. 
We modify momentarily the notation in order to shorten it, and also 
in order to emphasize that we are interested not in the ring structure of 
the set of polynomials, but in its topological vector space structure. 
For k = 0, 1,2, ..., let Pn be the vector subspace of qn consisting of the 
polynomials of degree < k ;  each is finite dimensional, in fact its 
dimension is easy to compute: it is equal to 

(k + n)!/k!n!.  

We provide 8, with the locally convex topology which is the inductive 
limit of the topologies of the HausdorfI finite dimensional spaces 9:, 
k = 0, 1 ,... (see Chapter 13, Example I). 

On the other hand, we consider the vector space 9, of formal power 
series in n indeterminates, which is usually denoted by C [ [ X ,  ,..., &]I. 
We provide 9, with the topology of convergence of each coefficient. 
This topology is defined by the sequence of seminorms: 

This topology turns 3, into a FrCchet space (see Chapter 10, 
Example 111). 

Now, there is a natural duality between polynomials and formal 
power series, which can be expressed by the bracket 
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where 
P = c P,XP, u = c u,xp. 

P P 

It should be remembered that all coefficients Pp , except possibly a 
finite number of them, are equal to zero; this gives a meaning to the 
bracket (P, u) .  The main result, in the present context, is the following 
one: 

THEOREM 22.1. (a) The map 

(22.1) u - ( P  - (P, u>) 

is an isomorphism f m  the structures of topological vector spaces of the 
Frkchet space of formal power series 9, onto the strong dual of the LF-space 
of polynomials, 9, . 

(b) The map 

(22.2) 

is an isomorphism of 8, onto the strong dual of 9, . 
Proof. The proof consists of a succession of very simple steps. First of 
all, we have, for all power series u and all polynomials P of degree <A, 

p - (. - (P, u>) 

This shows immediately that both maps (22.1) and (22.2) are continuous 
linear maps into. We must show that they are one-to-one, onto, and 
that their inverse is continuous. 
The Maps are One-to-one 

ifq # p ,  Pp = 1. Then 
Take for P the monomials Xp = Xf1 * - .  XEn; this means that P ,  = 0 

(P, u )  = up for any u ~ 2 , ,  . 
If the linear functional P - <P, u )  were to be zero, we would have 
up = 0 for all p ,  in other words u = 0. 

Suppose now that, for a given polynomial P, the linear functional 

?A - ( P ,  u> 

is identically zero in 9,; take for u the same monomial Xp as before. 
We obtain that P, = 0 for all p ,  hence P = 0. 
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The Maps are Onto 

linear functional on Pn; set, for each p, 
Again, let us begin with (22.1). Let L be an arbitrary (continuous) 

u, = L ( P )  when P ( X )  = XP. 

Then 
u = c u,xp 

a 

is a formal power series and, obviously, we have 

L(P)  = ( P ,  u )  for all P E e. 
Let us consider now (22.2). Let M be an arbitrary continuous linear 

form on 9,; by taking its value on the monomials Xp, we associate with 
it a formal power series 

v = c V,XP. 
P 

From the fact that M is continuous it 
possibly for a finite number of indices p .  

follows that vp = 0 except 
Indeed, there is a constant 

C > 0 and an integer k 2 0 such that, for all formal power series u, 

This means, in particular, that, for all formal power series u such that 
up = 0 for I p 1 < k ,  we have M(u) = 0. This applies in particular to 
the series u = X p  for 1 p I > k. Therefore 

v ,  = M(u) = 0 when u = X p ,  I p I > K. 

Thus v is a polynomial, and then it becomes obvious that, for any 
formal power series u, 

M(u) = ( v ,  u) .  

The Inwmses of Maps (22.1) and (22.2) are Continuous 

Let L be a continuous linear form on Pn , and u the associated formal 
power series. T o  say that L converges to zero in the strong dual of 9, 
is to say that, given any bounded set of polynomials, L converges 
uniformly to zero on this set. We may take sets consisting of a single 
element, in particular of the monomial X p ;  thus, if L converges to zero 
in 9;, up = L(Xp) must converge to zero for each p ,  which means 
exactly that the series u converges to zero in 9,. This proves that the 
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inverse of (22.1) is continuous. Let us study now the inverse of (22.2). 
Let V be an arbitrary convex neighborhood of zero in 8,. For each 
k = 1, 2, ..., V n 9'; contains some set 

We may assume that the pk form a decreasing sequence converging to 
zero; the union W of the sets W k  is not, in general, a neighborhood of 
zero in 9,; but its convex hull F ( W )  is one. We have evidently 
F ( W )  C V .  On the other hand, let a be the set of formal power series 

where 
p ;  = 2--k--lpkI 

Let v be a polynomial of degree < k  which defines a continuous linear 
functional u - (u,  v )  on 9, belonging to the polar of a. Choose u in 
the following way: 

up = p ; ; F p / l  vp  I if v, # 0; 

u, = 0 otherwise. 

We have then 

(22.3) ( u ,  v> = c P;p;l  vp I < 1, 

V h  = 1 vpxp 

since u belongs obviously to the bounded set a, For each integer 
h = 0, I ,  ..., set 

IPl=h 

(vh is the homogeneous part of degree h of v) .  We have, in view of (22.3), 

This means that 2h+1vh E Wh; but xi=o 2-h-1 < 1, hence v = xi=, vh = 

xi=o 2-h-1(2h+1vh) belongs to the convex hull of the union of the Wh, 
this is to say to r ( W ) C Y .  This shows that the image of the polar 
a 0  of under the canonical isomorphism of the dual of 9, onto 8, 
is contained in V ,  in other words that the preimage of Y is a 
neighborhood of zero in the strong dual of 9n.  Q.E.D. 
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If we forget about the multiplicative structure of the sets 8, and 9, , 
we can regard them as sets of functions with complex values and domain 
of definition Nn: this simply means that we identify a polynomial or a 
power series with the collection of its coefficients: instead of writing 
u = x p c N n  upXp, we write u = then 2, turns out to be the space 
of all complex functions in Nn and 8, the space of those functions 
which vanish outside a finite set. Needless to say, this is the same as 
identifying 2, with the space of arbitrary complex sequences depending 
on n indices, and 8, with the space of finite complex sequences. We may 
also write 

22n = n C, , C, C,  the complex plane. 

Then 8, can be regarded as the direct sum of the Cp's. As a matter of 
fact, the topology of simple convergence of the coefficients on 9, is 
precisely the product topology of the Cp's, etc. Let us observe that the 
LF-space Pn, which is canonically isomorphic with the strong dual of 
9,, is continuously embedded in 9, , and is dense in 9, . 

PEN" 

Analytic Functionals in an Open Subset 9 of C" 

We denote by H(9) the space of holomorphic functions in Q, equipped 
with the topology induced by any one of the spaces W(9) (0 < k < + oc)) 
when C n  is identified with RZn. For instance, we may consider that 
H(Q) carries the topology of uniform convergence on compact subsets 
of 9, i.e., the topology induced by g0(9). 

Definition 22.1. The dual of H ( 9 )  is denoted by H'(9 ) ;  its elements are 
called analytic functionah in Q. 

Observing that H(9) is isomorphically embedded in g0(9), we see, 
in virtue of the Hahn-Banach theorem, that any continuous linear 
functional L on H ( 9 )  can be extended as a continuous linear functional 
E on Vo(s2), which, in turn, by restriction to %':(a), defines a Radon 
measure p in 9. As W:(9) is dense in Uo(Q), this Radon measure p is 
uniquely determined by f;; but as f; is not uniquely determined by L 
(except when Q = 0), neither is p. This is easy to  understand; for 
let $o be a continuous function with compact support in 9 such that 
there is a W1 function with compact support in 9, $, satisfying the 
equation 

4" = a+/as, = 1 (+ + i-), a4 i = (-1)1/2. 
2 ax aY1 
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Then, if the Radon measure p defines an analytic functional L in Q, 
the Radon measure p + C$o defines the same one, L. This simply follows 
from the fact that the analytic functional defined by C$o is equal to zero; 
this analytic functional is simply 

It is well defined, as +o is continuous with compact support in Q. By 
integration by parts, we see immediately that 

In general, that is to say when Sa is an arbitrary open subset of Cn, 
there is no natural way of interpreting as functions the analytic functionals 
in Q. This is however possible when Q is of a very simple type, for 
instance when 9 is a polydisk, as we are now going to show. 

Notation 22.1. Let Kl ,..., K ,  be n numbers, 0 < K j  < +a for 
j = 1 ,..., n. We denote by d(Kl ,..., Kn), OY simply d ( K J ,  the openpolydisk 

(2 E C"; I 21 1 < K1 ,... , I Z"1 < K,}. 

Notation 22.2. Let Kl ,..., K ,  be n nonnegative3nite numbers. We denote 
by Exp(Kl ,..., K,), or simply by Exp(K), the space of entire functions of 
exponential type (Kl ,..., Kn), i.e., the space of the entire functions f in Cn 
such that there is a constant A( f ) > 0 such that 

Iff E Exp(K), the inf of the constants A(f) in Property (22.4) can 
be taken as the norm off in Exp(K); that it is indeed a norm is easy to 
check. I t  induces on Exp(K) a topology which is strictly finer than the 
one induced by H(Cn),  the space of entire functions. Also observe that, 
if K ;  < Kl ,..., KA < K,  , we have Exp(K') C Exp(K) (the two spaces 
are regarded, here, as subsets of H(Cn)) .  

Notation 22.3. Let Kl ,..., K ,  be n numbers, 0 < K j  < +a for 
j = 1 ,..., n. We denote by ~!?xp(K) the union of the spaces Exp(K') for all 
K' = ( K ;  ,..., Kk) such that K;  < Kl ,..., Kk < Kn . 
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We shall not put any topology on the vector space 8xp(K). Ourmain 
result is then the following: 

THEOREM 22.2. Let Kl ,..., K, be n positive numbers, some or all of 
which may be infinite. 

Given any function f E I?xp(K), the linear functional on the space Pn of 
polynomials in n indeterminates with complex coeficients (viewed as 
polynomials functions on Cn, i.e., polynomials in z1 ,..., z,), 

P = c Pg” - (f, P) = c Pp f‘”’(O), 
P P 

can be extended, in a unique way, as a continuous linear functional on 
H(d(K) ) ,  i.e., as an analytic functional in the open polydisk d(K), pf . 
Furthermore, the mapping f - pf is an isomorphism (for the structures of 
vector spaces) of I?xp(K) onto the dual of H(d(K)) ,  H’(A(K)). Theinverse 
mapping is given by the formula 

f(l) = (P, e‘z“’), 5 €Cn,  (2, 5 )  = ~ 1 5 1  + ... + zn5n 9 

where pf operates on functions of z E d ( K ) .  

Proof. The proof is based on an estimate of the f(P’(0) ( f  E 8xp(K))  
derived quite straightforwardly from Cauchy’s formulas. Remembering 
that f is an entire function, we may write, for any set of numbers 
I1 ,..., r, > 0, 

where p !  = pl !  -*+p,l, z p  = z:1 z,”.. The Cauchy formula above 
implies immediately Cauchy’s inequality 

As f E Exp(K), there are numbers A > 0, E > 0 ( E  < K j  for all j = 1, ..., n), 
such that, for all z, 

Combining (22.5) and (22.6), we obtain 
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The next step is to choose the rj  so as to minimize the right-hand side of 
(22.7). Consider the function of r ,  

r-peBr, where ,B 0, B > 0. 

If = 0, the minimum of this function is attained for r = 0; if /3 # 0, 
computation of the derivative shows that the minimum is attained for 
r = BIB, and there the value of the function is 

BB(e/W- 

In view of Sterling’s formula, we have, with a suitable constant A,,  

( e l W  < Al(P!)-l (B f 0). 
We see therefore that, in both cases (assuming that A, is sufficiently 

inf (r-pe”‘) < AIBfl(,t?!)-l. 
large), 

r>O 

Taking this into account in (22.7) yields (for all p E Nn) 

(22.8) If‘”’(0)l < AAl(Kl - E)Q ... (K, - &)Pn. 

This is the formula on which the proof of Theorem 22.2 is based. For 
now let g be an arbitrary entire function. Let us set 

r, = K,, - 4 2 ,  rl = Kl - 4 2 ,  

and let us apply Estimate (22.5) with g instead off and with this choice 
of the numbers r j  . We obtain 
(22.9) 

Let us suppose now that g is a polynomial. We have 

1 1 
I<f,g>I = I xp?f ‘p’ (o )g ‘p’ (O) [  < x If‘p’(o)l g I g‘P’(o)I. 

P P 

Taking into account (22.8) and (22.9), we obtain 

where Bj = (K - &)/(K, - &/2) < 1, j = I ,  ..., n, and where we have 
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denoted by K - e/2 the set of numbers (K, - e/2, ..., K ,  - ~12). 
Finally, we obtain 

As the polydisk d ( K  - 812) is a relatively compact subset of the 
polydisk d ( K ) ,  this estimate shows that the linear functional 

g - ( f ,g> 

is continuous on the space of polynomials when this space carries the 
topology induced by H(d(K)) .  Therefore, this linear form can be 
extended to the whole of H(d(K))  in a unique manner, as the set of 
polynomials is dense in H ( d ( K ) ) :  if g E H(d(K) ) ,  the finite Taylor 
expansions of g converge to g in H(d(K));  cf. Theorems 15.1 and 15.2. 
This defines the analytic functional pf in the open polydisk d ( K )  
corresponding to the function f E E x p ( ~ ) .  

The  mapping f - p /  is obviously linear. Let us show that it is 
one-to-one. I t  suffices to remark that g - (f, g) is a continuous linear 
functional on the space 8, of polynomials; the same that would have 
been denoted g -.+ ( j, g) in the duality between polynomials and formal 
power series (see the first part of this chapter), where f = x,fp(O) X p .  

We know that this linear form is identically equal to zero if and only 
if all the coefficients off are zero, i.e., if f(p)(O) = 0 for all p .  As f is an 
entire function this means that f = 0. 

I t  remains to show that f -+ pf is onto. In  order to do this, we use the 
inverse formula given in the last part of the statement of Theorem 22.2. 
In  fact, let p be an arbitrary analytic functional in the open polydisk 
d ( K ) ;  the restriction to d ( K )  of the entire function 

z - e ( Z . 5 )  

belongs obviously to H(d(K)) .  We have therefore the right to consider 

( p ,  e(”p5)); 

this is a function of 5 E C”, which we shall denote momentarily by f. 
We are going to show that f is an entire function, belonging to E x p ( ~ ) ,  
and that p = pf . 

The  continuity of p implies that there is a constant C > 0 and a 
relatively compact open subset U of d ( K )  such that, for all h E H(d(K)) ,  
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We can find a number E > 0 such that U C  A(K - E ) ,  where we have set 
K - E = ( K ,  - E ,  ..., K ,  - E ) .  Let p be an arbitrary n-tuple, and let 
us choose h(z) = z p  in (22.10). We obtain 

(22.1 1) l(p, zP)~ < C(K, - &)PI (K,  - &)Pn. 

On the other hand, let us observe that the Taylor expansion of the 
function of z, exp((z, l)) ,  converges to this function in H(Cn), a fortiori 
in H(d(K)) .  Since p is continuous, this means that we have 

(22.12) 1 
f(5) = <I., e<=J>) = c -i P<p, z"). 

PEN" *' 
In  view of (22.11), the power series at the right-hand side converges 
for all 5 E C". This shows thatfis an entire function. In virtue of (22.1 l), 
furthermore, we have, 

= c exp((K1 - &)I  51 I + . * *  + (K ,  - &)I 5, I>. 

Finally, we show that p = pf; let h be an arbitrary polynomial; we 
have, by using (22.12), 

1 1 
(f, h )  = c $f 'yo)  h'"'(0) = c 7 (p, ZP) h ' P ' ( 0 )  

P P p .  

Q.E.D. 

Let now 52 be an arbitrary open subset of Cn; if h is an entire function, 
the restriction of h to 52 belongs obviously to H(l2). Given any analytic 
functional in Q, we may consider its value on h, (p, h). Then it is 
evident that h - (p, h) is a continuous linear functional on H(Cn), i.e., 
an analytic functional in C" (sometimes called simply an analytic 
functional). If p, , pz are two analytic functionals in 52, it may happen 
that (p, , h) = (pz , h) for all h E N(Cn), without this being true for all 
h E H(Q), i.e., without pl = pz being true. In view of the Hahn-Banach 
theorem, this will happen whenever the restriction to 52 of entire 
functions does not form a dense subspace of H(Q), in other words, 
whenever IR is not a Runge domain (Definition 15.1). We recall that 
polydisks are Runge domains. Thus, the space of analytic functionals 
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in 9, H'(Q), can be canonically identified with a linear subspace of 
H ( 0 )  (disregarding now the question of the topologies) if and only if 9 
is a Runge domain. 

At any event, we may use the following terminology: 

Definition 22.2. We say that an analytic functional p in Cn is carried 
by an open set 9 C Cn if there is a relatively compact open subset U of 9 
and a constant C > 0 such that, for all entire functions h in Cn, 

In other words, p is carried by 9 if the linear form h - (p, h)  defined 
on the restriction to 9 of the entire functions can be extended as a 
continuous linear form to the whole of H ( S ) .  Furthermore, this extension 
of p is unique if and only if 9 is a Runge domain. 

Definition 22.3. Let p be an analytic functional in Cn; the function of 
5 E C", 

( r ,  e ( * 9 ,  

will be called the Fourier-Bore1 transform of p and denoted by p. 

definitions, we may restate Theorem 22.2 in the following way: 
Some authors call f i  the Fourier-Laplace transform of p. With these 

THEOREM 22.3. The Fourier-Bore1 transformation is a linear isomorphism 
of the space of analytic functionals in Cn onto the space of entire functions 
of exponential type in Cn. 

For every n-tuple of numbers Kl ,..., Kn such that 0 < K3 < +a 
( j  = 1 ,..., n), the analytic functional p iscarried by the open polydisk 

{zECn;IZII <Kl,...,l%l < K , )  

if and only if there are positive numbers A, E such that, for all z E Cn, 

I @<OI < A exp{(Kl - &)I 51 I + . * *  + (Kn - €)I Cn I)* 

Exercises 

22.1. Let us consider 9, (the Frkchet space of formal power series in n indeterminates) 
as the dual of the LF-space Pn (the space of polynomials in n indeterminates). Prove that 
9, is identical to the algebraic dual of 9, and that, on 9,, the weak and the strong dual 
topologies are identical. Furthermore, prove that the algebraic dual of 9, is not equal 
to Pn. 
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22.2. Let us denote by P the polynomial obtained by replacing each coefficient of P 
by its complex conjugate (P E 9"). The space 9" can be turned into a Hausdofi pre- 
Hilbert space by means of the Hermitian form 

Prove that the natural injection of the pre-Hilbert space 9" into the space H(C") of entire 
fynctions in C" is continuous and can be extended as an injection of the completion 
9" of 9" onto a linear subspace, which we shall denote by A: , of H(C"). Characterize the 
elements of A: by the Taylor expansion about z = 0. Is it true or false that A: is transla- 
tion invariant (a subset A of H is translation invariant iff E A implies that the function 
2 .- f(z - 2") belongs to A for all 2" E C") ? 

22.3. Prove that the space Exp(K) (Notation 22.2), equipped with the norm 

is a Banach space. 

22.4. Let us consider 3n positive numbers K ,  , K; , K;' (1 < j Q n) such that, for 
every j ,  K ,  < K; < q. Prove that Exp(K) is dense in Exp(K') for the topology induced 
by Exp(K") (see Notation 22.2; the topologies are defined by the corresponding norms of 
the type (22.13)). Prove that the natural injection of Exp(K) into Exp(K') is continuous 
but that it is not an isomorphism. 

22.5. Let us denote by Exp the vector space of all entire functions in C" which are of 
exponential type, that is to say the union of all the spaces Exp(K) as K = (Kl ,..., K,,) 
ranges over the space R: of sets of n nonnegative real numbers. We defineon Exp the 
following topology: a convex subset of Exp, U,  is a neighborhood of zero if its intersection 
with every Exp(K), K E R; , is a neighborhood of zero in this Banach space. Prove that 
the convex set U is a neighborhood of zero in Exp if and only if U n  Exp(p) is a neighbor- 
hood of zero in Exp( p) for all n-tuple p E N". 

Prove the following statements: 

1. 
2. Exp is complete; 
3. 

Exp is not the strict inductive limit of the spaces Exp( p), p E Nn; 

the Fourier-Bore1 transformation is an isomorphism (for the TVS structures) 
of the strong dual H of H onto Exp. 

22.6. Let H be the space of analytic functionals on C", and .F : H + Exp the 
Fourier-Bore1 transformation. For every entire analytic function h, let us set 

h(z)  = h(%), 
- - 

2 E C". 

Prove that 

(22.14) (P,  4 - <P, gu>, 
where < , > is the bracket of the duality between H and H (using the fact that Exp C H ) ,  
turns H into a HausdorfT pre-Hilbert space. Let us denote I? the Hilbert space obtained 
by completion of H' for the Hermitian form (22.14). Prove that the Fourier-Bore1 trans- 
formation 9F : H + H can be extended as an isometry of & onto the Hilbert space A: 
(Exercise 22.2). 
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22.7. 

(a) 

Prove the equivalence of the following facts: 

the series CBENn u p W  converges in H (say strongly; U P '  is the analytic functional 

h - (-1)IpI h(9yo)); 

(b) there is an entire function of exponential type, f, in C", such that, for all p E N", 

Prove, furthermore, that the mapping f + c, l/p! f (p'(0) P I  is an isomorphism (for the 
linear structure) of Exp onto H. What is the relation between this isomorphism and the 
Fourier-Bore1 transformation ? 

p!a, = f ( y o ) .  

22.8. By making use of Exercise 22.7, show that there is a sequence of elements e, 
in H (resp. e; in H') ( p E v) such that 

1. <e;,e,>= l i f p = q , = O i f p # p ;  
2. every element e (resp. e') of H (resp. H') can be written, in one and only one way, 

as a convergent series 

e = c upep (resp. e' = c b 
P O W  P € W  



23 
Transpose of a Continuous Linear Map 

Let E, F be two TVS, and u a continuous linear map of E into F. 
Let y‘ be a continuous linear form on F, which we may regard as a 
continuous linear map of F into C. We are in the situation described by 
the sequence 

E U - F  ’’ > C .  

We may form the compose y’ o u, which is a continuous linear map of E 
into C, that is to say a continuous linear form on E. Thus we end up 
with a mapping 

y‘ - -+y’ou  

of the dual F’ of F into the dual E of E. This mapping is called the 
transpose of u, and will always be denoted by fu in this book. 

If x is an element of E, by using the brackets fo i  expressing the duality 
between E and E ,  F and F’, respectively, we see that 

(Y’ 0 4(4 = (Y’, u(x)>. 

(Y’, 44) = <tu(y’), x>. 

As y‘ o u is defined to be ’u(y’), we have the transposition formula: 

(23.1) 

The notion of transpose of a continuous linear map plays a central 
role in what follows. The  reason for this is that important properties 
of the mapping u itself can be translated, under favorable circumstances, 
into properties of its transpose. As an example, let us mention the 
following property: we assume now, as we shall do from now on, 
that E and F are locally convex (so that we can apply the Hahn-Banach 
theorem); then the image of u is dense, i.e., u(E) is dense in F, if and 
only if 1u : F‘ + E‘ is one-to-one (Corollary 5 of Theorem 18.1). Another 
reason for the importance of the notion of transpose lies in the fact 
that it enables us to extend the basic operations of analysis (differentia- 
tion, multiplication by functions, regularizing convolutions, Fourier 
transformation, etc.) to the new objects which have been introduced 
by taking into consideration the duals of the spaces of functions. For 

240 
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instance, as immediately seen, the multiplication by a given V" function 
# defines a continuous linear map of %': into itself; therefore, by 
transposition, it defines a continuous linear map of the space of distri- 
butions 9' into itself, which may be taken as definition of the mul- 
tiplication of distributions by the function (CI. In  the last example, 
it can be seen that, when the distribution to be multiplied by (CI is a 
locally integrable function f, its product by # (defined by transposition) 
is equal to the ordinary product (CIf. This means that we have indeed 
extended the operation of multiplication from functions to distributions. 
A similar procedure is followed-with a twist - when differentiation of 
distributions is defined. Another important example is Fourier trans- 
formation: it is easy to check that it is an isomorphism of the space 9 of 
rapidly decreasing V" functions (see Chapter 10, Example IV) onto itself; 
its transpose is then an isomorphism of the dual 9' of 9 onto itself. 
This transpose can then be taken as a definition of the Fourier trans- 
formation in 9"; on the other hand, 9'' can be regarded, in a canonical 
way, as a vector space of distributions, this is to say, as a linear subspace 
of 9'. We will have thus extended Fourier transformation to a class of 
distributions (it will be shown that this definition coincides with known 
ones in the cases where a classical theory of Fourier transformation 
already exists, for instance when the distributions are L2 functions). 
These are only few examples among many which bear witness to' the 
impo.-tance of the notion of transpose. We shall study them, and several 
more, soon, after a few general considerations about transposes. 

We begin by a few remarks which do not involve any topology on the 
dual. 

PROPOSITION 23.1. If u : E -+ F is an isomorphism of E onto F (for the 
TVS structures), then the transpose of u, *u : F' + E' is an isomorphism 
(for the vector space structures) of F onto E'. 

Indeed, let v be the inverse of u; v : F --f E. The transpose of u and 
the one of v are inverse of each other (this means 

tv o t~ = identity of F', tu o tv = identity of E). 

But a map has an inverse (in the sense just explained) if and only if 
it is one-to-one and onto. 

PROPOSITION 23.2. Let E, F, and u: E 3 F a continuous linear map. Then 
we have 
(23.2) Ker tu = (Im I()@. 

We recall that by Ao we denote the polar of the subset A of a TVS; 
if A is a vector subspace, Ao is the orthogonal of A, that is to say the set 
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of all continuous linear forms on the space which vanish identically on A 
(then Ao is a linear subspace of the dual; see Chapter 19, Definition 19.1). 

The proof of Proposition 23.2 follows immediately from Eq. (23.1): 
if y’ E (Im u)O, the right-hand side of (23.1) is equal to zero for all x E E, 
hence “(y’)  = 0. If y’ E Ker k, the right-hand side is zero for all x, 
hence y’ is orthogonal to Im u. 

By combining Proposition 23.2 with the Hahn-Banach theorem 
(Theorem 18.1), we easily obtain Corollary 5 of that theorem stating that 
lu is one-to-one if and only if Im u is dense in F. Indeed, we assume here 
that F is locally convex, and in a locally convex space a linear subspace 
is dense if and only if its orthogonal is reduced to {0} (Corollary 1 of 
Theorem 18.1). 

We shall suppose that the duals of E and F carry one of the topologies 
introduced in Chapter 19. Let B (resp. $5) be a family of bounded subsets 
of E (resp. F) having the property that the union of two subsets belonging 
to the family is contained in some subset belonging to the family and 
that, if A belongs to the family and h is a complex number, there is a 
set B in the family containing AA. In practice, we shall mainly be 
interested in the cases where G (resp. 8) is one of the following four 
families of bounded subsets of E (resp. F): the family of all bounded 
sets, the family of all compact sets, the family of all convex compact sets, 
the family of all finite sets. We recall the statement of Proposition 19.5: 

Let u be a continuous linear map of the TVS E into the TVS F ;  the 
transpose of u, fu, is continuous as a linear map from FB into E& i f  to every 
A E  6 there is  BE$^ such that B 3  u(A). 

As we have already pointed out after the statement of Proposition 19.5, 
this implies that tu is continuous from FL into EL (weak topologies), 
from F: into EI (topologies of convex compact convergence), from 
FE into EL (topologies of compact convergence), from FL into Ei (strong 
dual topologies). Observe also that, if fu is continuous from F‘ into E‘ 
when these spaces carry some given topology, it remains continuous if 
we strengthen the topology of F’ or if we weaken the one on E‘. 

PROPOSITION 23.3. 
to the norm of u. 

Proof. 

If E and F are normed spaces, the norm of ‘u is equal 

Let us denote all the norms by 1 1  11. We must show that 
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is equal to I (  u 11 = S U ~ , , ~ , ~ , ~ = ~  I/ u(x)ll. This will follow at once if we 
show that, for every y EF, I)y I (  is equal to the supremum of /(y‘ ,  y)l 
over the unit ball {y ‘ ;  (Iy’ 1) < l} of F’. By the definition of 11 y’ 11, we have 
l(y’,y)l < 1 1  y 11. On the other hand, by virtue of the Hahn-Banach 
theorem, the continuous linear form on the one-dimensionai linear 
subspace spanned by y, Ay -Allyl/, can be extended as a continuous linear 
form y’ on F, having the same norm, which is equal to one; thus we have 
(y ’ ,  y )  = ( 1  y I1 for some y’ E F’, 11 y’ 1 )  = 1. Q.E.D. 

We consider now some examples of transposes. 

Example I, Injections of Duals 

We consider here a procedure for embedding the dual of a locally 
convex HausdorfT space E into the dual of another one, F. This procedure 
is standard and will be used over and over. again in our discussion. 
The starting point is a continuous injection j of E into F; by this we 
mean a one-to-one continuous linear map of E into F. We assume 
furthermore that j has a dense image, i.e., j ( E )  dense in F. Then, as pointed 
out in the remark following Proposition 23.2, the transpose of j ,  
7 : F‘ -+ E ,  is a one-to-one linear map. Furthermore, if we provide 
both E and F’ with the strong dual topology (or both with the weak 
dual topology), is continuous. In other words, is a continuous 
injection of F’ into E ;  for the structures of linear spaces, in particular, 
we may regard F‘ as a vector subspace of E. 

Let IR be an open subset of R”. Very important examples of the 
situation just described are provided by the following diagram (where 
m is some integer 2 0): 

(23.3) 

The spaces carry the “natural” topologies which we have defined on 
them: for the first line, see Chapter 10, Example I; for the second line, 
see Chapter 13, Example 11. Each arrow denotes the “natural” injection, 
which is a one-to-one continuous linear map. Each arrow has a dense 
image, as follows immediately from Corollaries 1 and 2 of Theorem 15.3. 
This means that we can reverse the arrows, replace each space by its 
dual, say its strong dual, and we obtain, in this way, a diagram of 
continuous injections. Recalling that the dual of ‘%:(a) is the space of 
distributions in 52, we see that the duals of all the spaces entering in 
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Diagram (23.3) can be regarded as linear subspaces of g’(8). This 
suggests the introduction of the following general definition: 
Definition 23.1 .A linear subspace of 9(8) carrying a IocaIly convex topology 
finer than the one induced by the strong dual topology on g’(8) is called a 
space of distributions in 8. 

With this terminology, we see that that the diagram of continuous 
injections with dense images (23.3) enables us to regard the duals of 
the intervening spaces of functions, as spaces of distributions in 8. 
This, in a natural (or canonical) way. We recall that the dual of e(8) 
is the space of Radon measures in 8; we have already pointed out (using 
the same argument as here) that Radon measures in 52 can be viewed 
as a special kind of distribution in 8. In the next chapter, we shall 
characterize more “concretely” the distributions which belong to the 
duals of the other spaces (Wm(8),  %‘:(8), 0 Q m < +oo, 0 < K < 00). 

Similar arguments can be applied to the couple 

(23.4) W?(52) + L V ( 5 2 )  (1 < p < +Go). 

The arrow denotes the natural injection, which is continuous and has 
a dense image, by virtue of Corollary 3 of Theorem 15.3. Here, the fact 
that p is finite is essential. At any event, the strong dual of LP(8) is 
a space of distributions in 8. Let us then consider the following diagram: 

(23.5) 

where u is the transpose of the mapping (23.4), p’ is the conjugate number 
of p(p’  = 00 if p = 1, p’ = p / ( p  - 1) if p > l), w is the canonical 
isometry of Lp’(8) onto the dual of Lp(8) (Theorem 20.3), and v is the 
injection of elements of L P ’ ( 8 )  into B‘(52) when we regard these elements 
as (classes of) locally integrable functions. The latter means that, i f f  is 
such an element, v assigns to f the distributions 

qV> 3 v - J v(x)f(x) lix 

From the definition of w (Theorem 20.3), it follows immediately that 
the triangle (23.5) is commutative. This can be rephrased as follows: to 
identify elements of LP’(8 )  with distributions in the manner which we 
have followed (which is to say as locally integrable functions) is consistent 
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with identifying them as continuous linear functionals on L p ( 9 )  in the 
way it is traditionally done. 

Summarizing, we may say the following. By embedding each one of the 
spaces of Diagram (23.3), as well as the spaces Lp(9) (1 < p < +m), 
in the space of locally integrable functions in 9, we can regard them as 
spaces of distributions in 9. Furthermore, now, by transposing the 
natural injection of ‘+?2(9) into each one of them, with the (notable) 
exception of L“(9), we can also regard their duals as spaces of 
distributions in 9. On the other hand, Vr(9) ,  Lp’(9), for 0 < m < + m, 
1 < p‘ < +m, are contained in, or even are duals of some of the former, 
so that for these spaces we have at our disposal two methods of embedding 
them in W(9). What we have just said about Diagram (23.5) shows that 
these two embeddings are identical. Although a trivial fact, this is 
important to know. 

Let, now, 9 be an open subset of Cn. We may consider the space of 
test functions in 9, ‘+?:(9). This means that we are identifying canonically 
Cn with RZn and regarding 9 as an open subset of R2n. Observe that the 
intersection of ‘+?:(9) with H ( 9 ) ,  space of holomorphic function in 9, 
is reduced to the zero element. We certainly are not, therefore, in a 
situation where we have a natural injection of Vr(9)  in H ( 9 )  with 
dense image! I t  follows that we cannot identify the dual of H ( 9 ) ,  H’(9) ,  
the space of analytic functionals in 9, with a space of distributions in 9, 
at least by the method described here (nor, as a matter of fact, by any 
other reasonable method). 

Example 11. Restrictions and Extensions 

Let 9, 9’ be two open subsets of Rn such that 9 C 9 ’ .  Let f be a 
function defined in 9, having compact support in 9. By the trivial 
extension off to 9’ we mean the function defined in Q, equal to f in 9 
and to zero in the complement of 9 with respect to 9‘. 

The  trivial extension to Q’ defines a continuous linear m a p j  of V:(9) 
into ‘+?:(9’). The transpose of this map is a continuous linear map of 
W(Q) into W(9) (e.g., for strong dual topologies) which we shall 
call restriction to 9 of the distributions in 9’. One sees clearly what this 
means: consider a distribution T in 9’; make it operate on test functions 
v with support in 9; then p) - (T, v) defines a distribution in 9, which 
is precisely the restriction of T to 9. 

Suppose that 9 is # 9’. Then the following is true: 
(1) the image of V y ( 9 )  into ‘+??(a’) under the trivial extension is 

not dense; 
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(2) the trivial extension is not an isomorphism of VT(52) into 
%':(Q'); it is of course one-to-one and continuous, but its inverse 
(defined on the image) is not continuous or, if one prefers, the 
topology of q ( 5 2 )  is strictly finer than the one induced (via the 
extension mapping) by %'r(Q). 

We propose the proofs of these two statements as an exercise to the 
student. 

The two preceding statements are related by transposition to the 
following ones: 

(1') the restriction mapping from 9'(Q') to B'(52) is not one-to-one; 
(2') the restriction mapping from B'(52') to B'(l.2) is not onto. 

Concerning (1'), observe that the restriction to Q of a distribution which 
is orthogonal to the (extended) test functions with support in 52 is equal 
to zero. In view of (1) and of the Hahn-Banach theorem, such a 
distribution certainly exists (in fact, consider the Dirac measure 

a? - &YO) 

when xo E Q', xo $ Q). The proof of (2') is more complicated, and will 
not be given, but the student should keep in mind the two facts above. 

Dejinition 23.2. A distribution in 52 is said to be extendable to Q' ;f it is 
the restriction to Q of a distribution in Q'. It  is said to be extendable i f  it is 
extendable to R". 

When the boundary of Q is sufficiently regular, it is possible to give a 
characterization of the distributions in 52 which are extendable. 

The preceding considerations about Vr  have obvious analogs for the 
spaces Vr,  L," (0 < m < +a, 1 < p < fa) and their duals. 

Let us keep 52 and 52' as before and consider Um(52'). It is obvious 
what we mean by the restriction to Q of a function in 52'. The restriction 
to Q defines a continuous linear map of Vm(52') into V"(Q). Unless 
Q = 52', this restriction mapping is neither one-to-one, nor onto. 
Indeed, if Q # 52', we may find a nonidentically zero W' function, as a 
matter of fact a function v, with support in the complement with 
respect to 52 of the closure of 52'; the restriction to Q of y is identically 
zero. On the other hand, it is easy to construct a function which is V" 
in Q but which is not the restriction to 52 of a Fm function in Q'; for 
instance, let xo be a point of Q' which belongs to the boundary of Q and 
consider the restriction to 52 of the function I x - xo 1-l. 

Observe now that Vm(Q') contains, as a linear subspace, the set of 
WT functions (defined in Q') which have their support contained in Q. 
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When we restrict to 52 such a VT function, we obtain the same function, 
regarded as a function defined in 52. We can say that the restriction to 52 
induces the identity map of Vr(52) onto itself. This implies that the 
image of V"(52') under this restriction map is dense in Vw(52), as it 
contains VF(52). Therefore its transpose is a continuous injection of the 
dual of V"(52) into the dual of Vm(52'). As pointed out in Example I, 
the former "is" a space of distributions in 52, the latter is a space of 
distributions in Q'. For distributions in Q which belong to the dual of 
Va(52), we have obtained a kind of extension mapping to 52'. In  the next 
chapter, we shall see that this mapping can be indeed regarded as an 
extension, very similar to the trivial extension of functions belonging 
to V?(Sz). 

Example 111. Differential Operators 

As before, let 52 be an open subset of Rn. By a differential operator in 52, 
we mean here a linear map of V"(52) into itself of the form 

(23.6) 

where the summation is performed over a finite set of n-tuples 
p = (p, ,...,p,), where for each p the coeficient up is a complex-valued 
function defined as V" in 52 and where, as usual, (a /ax )P  stands for the 
differentiation monomial (a/ax,)pl (a /ax, )pn.  In  analysis, one deals 
with differential operators for which the condition that the coefficients 
up be Va is considerably relaxed; for instance, one may want to consider 
coefficients which are just L". To distinguish this wider class of 
differential operators from the restricted one we are considering here, one 
refers to the latter as dt8erential operators with V" coe#icients. But as no 
confusion will arise for us, since we consider only the case of Vm 
coefficients, we shall use only the shorter name of differential operator, 
always meaning that the coefficients are '3". We set 

(23.7) 

so that the mapping (23.6) might be denoted 'p - P(x, a/ax)'p. As we have 
said, the summation with respect to p in (23.7) is finite. There exists 
therefore a smallest integer m 3 0 such that a,(%) = 0 for all n-tuples 
p such that PI + * * .  + p ,  = I p I > m. The  fact that m is minimum for 
this property means that there is an n-tuple p, I p I = m, such that up is 
not identically zero. This integer m is called the order of the differential 
operator P(x,  a/&). 
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The following statement is trivial: 

PROPOSITION 23.4. Let P(x,  alax) be a differential operator in 52. Then 
the mapping 

'p - P(X, a/ax)(p 

is a continuous linear map of Vm(52) (resp. Wr(52)) into itself. 

Exercise P r w e  that the LF topology on 'Zr(f2) (0 < m < + m) is the weakest locally 
convex topology for  which all the dilferential operators in Q, of order < m -1 1, define 
continuous linear maps of q(Q) into q(f2). 

By virtue of Proposition 23.4, we have the right to consider the 
transpose of the mapping q~ - P(x,  a/&) q ~ ;  this transpose is a continuous 
linear map of the dual of Um(sZ) (resp. of W(52)) into itself. Let us now 
consider the case of W(52). We observe that functions belonging to 
P(52) are, in particular, locally integrable functions in 52 and therefore 
define distributions in 52: q5 E Um(52) defines the distribution 

We want to find out what the effect is of applying the transpose of 
P(x, a/&) to z,b regarded as-a distribution in 52. In view of Eq. (23.1), we 
have 

<'P(x, a /ax )  4, 'p) = J #(x) P(X, a / w  d x )  dx. 

We may integrate by parts. We observe that there are no boundary 
integrals since cp has compact support contained in the open set SZ 
Therefore that integral is equal to 
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This can be phrased as follows: the image of z,h E 5P‘(Q), viewed as a 
distribution in Q, under the transpose of the continuous linear map 
v - P(x, a/&) q~ of %r(Q) into itself, is the distribution defined by the 
function 

c (-1YP1 ( a / W P  [a,(.) $1- 
P 

If we now consider y5 as a function, we observe that 

$ - c (- l )IP’  ( a / W p  [a,(x) $1 
P 

is a differential operator in Q. In fact, by using Leibniz’ rule we may 
put it in the usual form; it suffices to observe that 

(23.9) 

where the summation convention q < p  means that summation is 
performed over all n-tuples q = (4, ,..., 4,) such that q1 < p ,  ,..., qn < p ,  , 
and where the symbol 

(23.10) 

By using (23.9) we see that we have 

c (- 1 PI ( a / W p  [ U P ( 4  $1 = c b,(4 ( a / w p  $, 
P P 

where 

(23.1 1 )  
r > p  

Dejinition 23.3. The dzflerential operator X p  b,(x) (a/ax)p with coef- 
jicients bp given by (23.1 1) is called the formal transpose of the dzyerential 
operator cp a,(.) (a/&).. 

Let us momentarily use the notation @(x, a/&) for the formal 
transpose of P(x, a/&). Equation (23.8) can be rewritten as 

(W, a/% $9 v> = ($9 q x ,  a/% ‘p> = (&x, W) $> ‘p>. 

This justifies the following notation, which will be systematically used 
in the sequel: 
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Notation 23.1. 

Observe that we have l fP (x ,  a /ax )  = P ( x ,  a/ax), hence 

The formal transpose of P ( x ,  a /ax)  will be denoted by 
tP(x,  a /ax) .  

(23.12) 

This suggests the following definition: 

Definition 23.4. 
into itself, 

y - tP(x, a/ax)g, 

(lPP(x, a /ax) :  formal transpose of P ( x ,  a /ax) ) ,  is a continuous linear map of 
the space of distributions W(52) into itself, which will be denoted by 

( P ( x ,  a w  $ 9  v> = ($4 tP(x ,  a /a4  v>. 

The transpose of the continuous linear map of %:(a) 

T - P ( ~ ,  a p x )  T. 

This map will be called a dzgerential operator and denoted by P ( x ,  alax). 

Equation (23.12) shows that, when a distribution T is defined by a 
V" function 4, the distribution P ( x ,  a/ax)T is defined by the V" 
function P ( x ,  a/ax)$ (the latter to be understood in the "classical sense"). 
This is what is meant by saying that differential operators, when acting 
on V" functions in the sense of distributions, act "in the same way as 
in the usual sense." One can also say that a differential operator P ( x ,  a /ax)  
acting on distributions, as we have defined it, is an extension of the 
operator so denoted when acting on V" functions. 

Two particular cases are worth looking at: 

Dzflerential Operators of Degree Zero (1) 
Such a differential operator, first defined in %F(SZ), is nothing but the 

usual multiplication of test functions by a function 01 E Y"(f2). The 
differential operator is therefore the mapping q.~ - L Y ~ ;  its formal 
transpose is identical to it. In accordance with Definition 23.4, we may 
define LYT by the formula 

(23.13) (aT, v) = (T, .v>. 
Equation (23.13) can be regarded as the definition of the multiplication 
of a distribution T in 52 by the V" function 01 in SZ; T - arT is a 
continuous linear map of W(52) into itself. When T is a V" function, 
a T  is the V" function thus denoted in the usual sense. 

(2) Dz8erential Operators with Constant Coeficients 
These are the finite linear combinations with complex coefficients of 
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the differentiation monomials (a /ax)p .  We shall use a notation like 
P ( a / a x )  for such an operator: 

P(a/ax)  = C a,(a/ax)P, a,: complex numbers. 

As we shall often do, we have denoted by m the order of P(a /ax) ,  this is 
to say the smallest integer such that ap = 0 for I p I > m. T o  the operator 
P ( a / a x )  we may associate the polynomial in n letters x1 ,..., x, , with 
complex coefficients, of degree m, 

IPlGm 

P ( X )  = c a,XP. 
I P I  Sm 

We have used the notation Xp = Xf1 ... X E n  Conversely, given any 
polynomial in n indeterminates XI ,..., X, , with complex coefficients, we 
may associate with it the differential operator P(a /ax)  obtained by 
substituting alax, for Xi for every j = 1, ..., n. 

What is the formal transpose of P ( a / a x )  ? An immediate computation 
shows that it is the differential operator P ( - a / a x ) .  Thus, if we want to 
consider the extension of the differential operator P(a /ax)  to distributions 
we have to use the formula 

< W P x ) T ,  v) = ( T ,  P(--aPX) v>. 
Take for instance the case where P ( a / a x )  is the single partial differ- 
entiation a/ax, (1 < j < n): 

< a T / a x j ,  v) = -<T,  av/axj). 

Exercises 

23.1. Let 9,, and 9, be the spaces of polynomials and formal power series in n in- 
determinates, with complex coefficients, equipped with their LF and FrCchet topologies, 
respectively. Let us regard them as duals of each other by means of the bracket 

1 
<P, u )  = c - P'P'(0) u, , 

psN" p!  

with u = C P E N n  u,XD E 9" and P E Pn. Let Q be an arbitrary polynomial, belonging to 
9". What is the transpose of the (continuous linear) mapping 

(23.14) f - Q ( a / W f  
of 9, (resp. 9") into itself? 

By using Exercise 2.3, prove that, unless Q = 0, the mapping (23.14) of 9" into itself 
is surjective, and that this assertion is still true if we replace Q by a formal power series. 
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23.2. Let 9 be the Fourier-Bore1 transformation (Definition 22.3); 9 : H --+ Exp 
(H' : space of analytic functionals in C", Exp: space of entire functions of exponential 
type in C"). If u : H -+ H is a linear mapping, we set li : 9 o u 0 9-l. Let P be a 
polynomial in n letters with complex coefficients. Then we may consider the dz&rential 
polynomial in C", P(a/az), 

H 3 h * (Z c~ P(a/a~) h ( ~ ) ) ,  P ( a / a ~ )  = P(a/azi ,..., a/&,). 
What is 4 when u : H -+ H is the transpose of P(a/az) ? 

Let E be a Hilbert space, ( I )E the inner product in E, and F a second Hilbert 
space with inner product ( I )F. By using the definition of the transpose of a continuous 
linear map and the canonical linear isometry of a Hilbert space onto its antidual, prove 
that to every continuous linear map u : E -+ F there is a unique continuous linear map 
of F into E (denoted by u* and called the adjoint of u) such that, for all x E E, y E F, 

23.3. 

(u(x) I Y)F = (x I u*(Y))E.  

Prove that the mapping Y + u* is an antilinear isometry of L(E; F) onto L(F; E) (both 
spaces equipped with the operators norm; antilinear means that (Au)* = Xu*). 

Let us denote by 8(PL, p E N", the analytic functional in C", 23.4. 

h - (-1)IpI h y o ) .  

If P is a polynomial in n variables, with complex coefficients, 

P ( X )  = c C Z " ,  

P 

we set 

P(a/az) = c C p + a ) .  
P 

By using the representation of analytic functionals introduced in Exercise 22.7, we extend 
P(a/az) to the whole of H. On the other hand, P(a/az) operates on entire functions in 
the usual fashion and defines thus a continuous linear map of H into itself. Prove that the 
transpose of 

is equal to 

23.5. 

P(a/az) : H -. H 

P( - a/az) : H --, H. 
By using the fact that the ordinary multiplication of functions, (j, g) - fg, 

is a continuous bilinear map of H x H into H, prove that (j, p) - j / . ~  is a separately 
continuous bilinear map of H x H into H'. Suppose (cf. Exercise 22.7) that an analytic 
functional p is given by 

What is the series representing j p  ? 

23.6. Prove that, for each m = 1 , 2  ,..., 
1 r+m 

is a distribution in the real line extending the distribution in R' - {0} defined by the 
(locally L') function t-"'. 



24 
Support and Structure of a Distribution 

Let 52 be an open subset of R". 

Definition 24.1. A distribution T in 52 is said to vanish in an open subset 
U of 52 if  ( T ,  4)  = 0 for all functions + E %':(52) having their support 
in U. 

In the terminology introduced in the preceding chapter (Chapter 23, 
Example 11), we say that T E GB'(52) vanishes in U, or is equal to zero in U,  
if the restriction of T to U is the zero distribution. As usual, when a 
definition such as Definition 24.1 is introduced, we ought to check that 
it is consistent with the terminology for functions. In the present 
situation, we ought to check that, iff is a locally integrable function in 52 
and iff vanishes in U as a distribution, then f vanishes in U as a function, 
which means, in the framework of distribution theory, that f vanishes 
almost everywhere in U. But this is an immediate consequence of 
Theorem 21.3. 
The following .theorem states a very important property of distributions. 

THEOREM 24.1. Let {U,} ( i E  I )  be a family of open subsets of R". For 
each index i E I ,  let Ti be a distribution on Ui . Suppose that, for every 
pair of indices i, j E I ,  the restrictions to Ui n U, of Ti and Ti coincide. 
Then, there exists a unique distribution T on the union U of the sets Ui 
whose restriction to every set Ut is equal to Ti . 

(see Chapter 16). First of all, by Theorem 16.1, we know that there is an 
open covering {V,} ( j  E J) of U = Uicl Ui which is finer than the 
covering { Ui} (i E I )  and which is locally finite. Next, by Theorem 16.3, 
we know that there is a partition of unity in Vm( U), {gi} ( j  E J), sub- 
ordinated to the covering { Vj} .  Now, if + E %':( U),  we have 

The proof makes use of the existence of partitions of unity in 

d = C g i A  
jsl 

253 
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where gj+ is identically zero for all j with the possible exception of a 
finite number of them. In order to prove the existence of T, we set 

(T, 4) = c <TiM 9 g A > ,  
i d  

where i ( j )  is an index belonging to 1 such that Vj  C Uici) (such an index 
exists since the covering {Vi} is finer than the covering Ui). Observe 
that it does not make any difference what index i( j) we assign to j 
provided that V j  C Uib): if V, C Ui n Vie , we have, in view of our 
hypothesis, (Ti  , gj+) = (Ti ,  , g3+). This same hypothesis shows also 
that our definition of (T, +) is a correct one, i.e., is independent of the 
covering { V,} and of the partition of unity {gj}. For let { h k }  be another 
partition of unity in ‘Zm( U )  subordinated to some covering { W,} (open, 
locally finite, finer than { Ui}). Let us select, for each k, an index i(K) E I 
such that W, C ui(k) . We have 

Suppose now that + converges to zero in some space %‘;(K) (K: compact 
subset of U) .  There is a finite subset J’ of J such that gj+ = 0 if j I$ J’; 
J’ depends only on K. If ~ E J ’ ,  gj+-+O in %‘;(Uio)), therefore 
 ti^) , g,+) 4 0. This proves the continuity on YF( U )  of the linear 
functional + - (T, 4) (cf. Proposition 13.1 and corollary). Thus T, 
defined above, is indeed a distribution in U. 

Next, suppose that the support of + is contained in U i .  Then the 
support of g14 is contained in Vj n U, C Uici) n U,; hence 

and (T, 4) = (Ti  , xigj+) = (Ti  , +). Thus the restriction of T to Ui 
is equal to T i .  

Lastly, we prove that T is unique. If T‘ were a second distribution 
in U whose restriction to every Ui were equal to T i ,  the restriction of 
the difference T - T to every U, would be equal to zero. Consequently, 
the uniqueness of T will follow from the next statement, which can be 
viewed as a corollary of Theorem 24.1 : 
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COROLLARY 1. If a distribution T ,  defined in the union of a family of open 
sets { Ui} ( i  E I )  vanishes in every Ui , T vanishes in their union. 

We use the same refinement { V j }  of {Ui} and the same partition 
of unity (gj} subordinated to it, as in the first part of the proof. For an 
arbitrary + E %:( U), g3#J = 0 except for a finite number of indices j and 
therefore we have, by linearity, 

< T , + )  = c (T ,g j+ )*  
j € J  

But as supp(gj$) C V j  C Ui for some i, we have ( T ,  gj$) = 0. This is 
true for eachj, whence the theorem. 

COROLLARY 2. The union of all the open subsets of 52 in which the 
distribution T vanishes is an open subset of 52 in which T vanishes. 

Definition 24.2. Let T be a distribution in 52. The complement of the 
largest open subset of 52 in which T vanishes is called the support of T and 
will be denoted by 

supp T.  

By complement we mean, in Definition 24.2, the complement with 
respect to 52. This implies that supp T is a relatively closed subset of 52; 
it need not be a closed subset of R”. Evidently, we have used the fact, 
stated in Corollary 2 of Theorem 24.1, that the largest open subset of 
52 in which T vanishes indeed exists. This is not to say that this largest 
open set cannot be empty. I f f  is a locally integrable function in 52, 
the support off in the sense of distributions is the smallest closed subset 
of 52 in the complement of which f is almost everywhere equal to zero. 
Iff  is continuous, the notion of support in the sense of functions (the 
closure of the set of points where f is nonzero) is identical to the notion 
in the sense of distributions, as readily seen. The support of the Dirac 
measure Sz0 at a point x,, of 52 is the set {x,,}. 

By virtue of the argument developed in Chapter 23, Example I, we 
may identify the dual of P(Q) with a linear subspace of 9’(52)-in a 
canonical manner. We recall that this is done by transposing the canonical 
injection of %:(Q) into Um(52), and by observing that this injection has a 
dense image. The notion of support of a distribution enables us to give 
a very simple characterization of the distributions which belong to the 
dual of Um(Q). But before stating it, let us introduce the following 
notation, by now very standard: 

The dual of V“(52) (regarded as a space of distributions 
in 52) is denoted by I’(J.2). 

Notation 24.1. 
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THEOREM 24.2. The distributions belonging to &(Q) are the distributions 
having compact support in 9. 

The proof of Theorem 24.2 is based on the obvious remark that a 
distribution T belongs to S'(Q) if and only if the linear form 4 -.+ ( T ,  4) 
is continuous on U;(Q) for the topology induced by U"(Q). Indeed, if 
the form is continuous for the induced topology, it has an extension, 
necessarily unique, to the whole of V"(Q). The statement, in the other 
direction, is trivial. 

Proof of Theorem 24.2. Let T be a distribution belonging to &(Q). 
In view of the definition of the topology of U"(Q), there is a compact 
subset K of 52, an integer m > 0, and a constant C > 0 such that, for 
all test functions 4 in Q, 

This implies immediately that ( T ,  4) = 0 whenever the support of 4 is 
contained in the complement of K, which means that supp T C K. 

Let, now, T be a distribution in Q with compact support, K. Let 
a~ U:(Q) be equal to one in some neighborhood of K; such a function 
exists, by Theorem 16.4. For all test functions 4 in Q, we have 

(T,+> = ( T ,  4 > I  

since the support of (1 - aW is contained in the complement of supp T.  
Since all the functions a4 have their support contained in a fixed compact 
subset of Q, namely supp a, and since on U~(supp a) the topologies 
induced by Um(sZ) and by U:(Q) coincide, we observe that a+ converges 
to zero in %';(sZ) whenever 4 converges to zero in U"(Q); in this case, 
therefore (T, 4> -+ 0. This shows that the linear form 4 - (T, +> is 
continuous on U:(Q) for the topology induced by W(Q), hence that 

Now that we know what the elements of S'(Q) are, dual of Um(Q), 
T E b'(Q). Q.E.D. 

we can easily interpret the transpose of the restriction mapping 

W(Q) + %'-(s2), s2 C IR' (Chapter 23, Example 11). 

It is the extension mapping 

b'(l2) + B'(sz'), 

which assigns to a distribution T with compact support in Q the 
distribution in B' which is equal to T in Q and to zero in the complement 
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of supp T with respect to Q’. This extension mapping coincides with 
what we have called the trivial extension of functions with compact 
support in Q (see p. 245). 

Exercises 

24.1. Prove that, for all distributions S, T in Q and all complex numbers h # 0, 

supp(S + T) C supp S u supp T, 
supp(hT) = supp T. 

(This implies that the distributions with support in a given set A C Q form a vector 
subspace of 9’(Q).) 

24.2. The vector subspace of B’(f2) consisting of all the distributions having their 
support in a given subset A of Q is weakly closed in 9’(Q) if and only if A is closed in Q. 
Prove this statement. 

24.3. Let P(x, a/&) be a differential operator in Q. Prove that, for all distributions 
T E 9’(Q), we have 

Prove that, for all T E W(Q) and all functions 4 E W‘(Q), 

supp P(X,  a/ax)  T c s ~ p p  T. 

SUPP (4T) = SUPP 4 n SUPP T. 

Distribution theory has been built primarily in order to extend a 
number of basic operations of analysis, like differentiation, to functions 
for which these operations were not well defined in the classical 
framework. Needless to say, the final product of such an extended 
operation applied to a function for which it was not defined before will 
in general not be a function. I t  will be a rather singular distribution. 
But the important point is that it will be an object which we shall know 
how to manipulate in computations and reasonings. Since locally 
integrable functions are contained in the space of distributions, injectively 
up to equality almost everywhere, and since we have defined differential 
operators acting on distributions, we know how to differentiate in the 
sense of distributions any locally integrable function. We know also 
that the result of this differentiation, when applied to differentiable 
functions, will be the same as in the classical theory. At any event, the 
differential operators applied to functions yield a large class of distri- 
butions: the distributions of the form P(x,  D)f, f locally integrable 
function. This raises a natural question: are there distributions which 
can not be represented as finite linear combinations of derivatives (in the 
sense of distributions!) of functions ? Or to put it in different words, by 
introducing distributions in the manner we have, i.e., as elements of 
the dual of the LF-space of test functions, have we not gone beyond our 
scope, introducing too many objects whose interpretation may turn out 
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to be exaggeratedly complicated? The answer to this question, as we 
shall now see, is no-at least in the local. It is not true, however, that 
globally any distribution is a finite sum of derivatives of functions, as 
is easily seen (see Example 24.1 below). The latter phenomenon is due to 
our implicit requirement (to be made explicit later) that the space of 
distributions be complete. The advantages deriving from the com- 
pleteness of 9’(52) outnumber the ones that would follow from the 
expulsion” from 9‘(SZ) of the distributions which are not globally 

finite sums of derivatives of functions, especially if we take into account 
that the local structure of all distributions is of the kind “finite sums of 
derivatives of functions.” 

Let m be a finite nonnegative integer. We know (Corollary 2 of 
Theorem 15.4) that %r(SZ) is dense in q ( 5 2 ) .  Therefore, if we transpose 
the natural injection of %:(SZ) into C(SZ), we obtain an injection of the 
dual of q ( 5 2 )  into 9’(52), this is to say: we obtain a “realization” of the 
dual of q ( Q )  as a space of distributions in 52. 

Dejnition 24.3. The space of distributions in $2 which is the dual of q ( Q )  
is denoted by Wm(52); its elements are called the distributions of order <m 
in SZ. 

A distribution T in SZ is said to be of finite order i f  there is an integer 
m > 0 such that T is of order <m in SZ. The set of distributions of finite 
order in 52 is denoted by BfF(SZ). 

If m‘ 2 m, we have obviously 9’”(SZ) C gtm‘(SZ). Therefore, WF(52) 
is a vector subspace of g’(52). We shall see in a moment that WF(SZ) is 
different from 9’(52), unless 52 = 0. 

A distribution which is of order <m but which is not of order <m - 1 
may be said to be of order m. The distributions of order zero in SZ are 
nothing else but the Radon measures in SZ. 

We begin by showing that every distribution in 52 is locally of finite 
order. 

6 6  

THEOREM 24.3. Let U be a relatively compact open subset of SZ. The image 
of 9 ( S Z )  under the restriction mapping to U is contained in YF( U).  

Proof. Let us denote by K the closure of U ;  K is a compact subset of SZ. 
The restriction of any distribution T in 52 to %:(K) is a continuous 
linear form on this FrCchet space, by virtue of the definition of the 
LF topology on ‘%‘:(SZ). But the topology of %:(K) is equal to the 
intersection of the topologies induced by the spaces e ( K )  for 
m = 0, 1,2, .... This means that the linear form 4 - <T, +) is continuous 
on %:(K) for the topology induced by T ( K )  for some finite m. A fortiori, 
this form is continuous on %‘:( U )  C ‘%‘r(K) for the topology induced 
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by this space %r(K). Observe then that the topology of q( U )  is finer 
than the topology induced on this space by %Z(K). Therefore - (T, +) 
is continuous on %:(U) for the topology induced by %?r(U), which 
means precisely that the restriction to U of T belongs to Wm( U ) .  Q.E.D. 

COROLLARY. Every distribution with compact support in 52 is offinite order. 

Indeed, let T belong to &"(sZ); there is a relatively compact open 
subset U of 52 which contains supp T. The restriction of T to U is of 
finite order; but T = 0 in the complement of supp T. This implies 
immediately that T is of finite order in the whole of Q. 

The next result is the theorem of structure for a distribution of finite 
order. 

THEOREM 24.4. Let T be a distribution of order <m < +co in 52, 
and let S C L? be its support. Given any open neighborhood U of S in 52, 
there is a family of Radon measures {I.,} ( p  E Nn, I p I < m) in 52 such that 

T = c (a /ax)pPp 9 

IPI$" 

and such that supp p p  C U for every p E Nn, 1 p 1 < m. 

Proof. Let N = N(m,  n) be the number of n-tuples p = ( p ,  , . . . ,pn)  
such that I p I \< m. For simplicity, let us set Em = q(52). There is a 
natural injection of Em into the product space it is the mapping 
which assigns to each + E Em the set ((a/ax).+)(,,,,,,,,.,) of its 
derivatives of order <m.  This mapping is obviously linear, obviously 
not onto. But it is an isomorphism into for the structures of TVS, as 
immediately seen (+ converges to zero in Em if and only if every one 
of its derivatives of order <m converges to zero in Eo). Let us denote 
by Em the image of Em under this isomorphism. We may transfer any 
continuous linear functional on Em as a continuous linear functional on 
Em and then extend the latter as a continuous linear functional on 
(EO)". But the dual of a product of a finite family of TVS (Fl ,..., F,.) is 
canonically isomorphic to the product of their duals, via the correspond- 
ence 

Applying this to the product we see that a continuous linear form 
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on it is a set of N Radon measures {Ap}  ( p  E Nn, I p I < m) in 52, operating 
in the following manner: 

<{A,L{$PD = 1 (A, 94,) .  

B E N ’ , I P I ~ ~  

It suffices to assume that this linear form extends the linear form + - (T, +) transferred on I?,,, and to take cjP = (a /ax )P  + for each 
p E Nn, with 4 E E m ,  to see that 

T = C (-1)IpI (a/ax). A,. 
lP l9m 

We must now satisfy the condition on the supports of the measures p p  . 
We take a function gEVm(52) equal to one in a neighborhood of 
supp T and vanishing identically outside some closed subset contained 
in U. Such a function exists in view of Theorem 16.4. We consider 
the multiplicative product gT. First of all, gT = T since for all test 
functions 4, (gT, 4 )  = (T, g+) = (T, +), and supp(1 - g)+ is con- 
tained in the complement of supp T. Therefore we have 

where q < p means q1 < p ,  ,..., qn < p ,  . This means that 

(24.2) g ( a p x ) ~ ~ ,  = C (alax). [(-i)~p-*l((a/a~)~-~g} A,]. 
9 6  P 

It suffices, in order to obtain the representation of T whose existence 
is stated in Theorem 24.4, to substitute the expressions (24.2) in (24.1), 
to reorder the summation and to observe that the supports of the Radon 
measures 

r(a/ax)p-Q gl A, 

are contained in suppg, which, in turn, is contained in U. Q.E.D. 
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COROLLARY 1. A distribution T in SZ is of order <m ;f and only ;f it is 
equal to a finite sum of derivatives of order <m of Radon measures in 52. 

The necessity is stated in Theorem 24.4; the sufficiency is evident. 

COROLLARY 2. Let T be a distribution with compact support in SZ. 
There is a finite integer m 2 0 such that, given any neighborhood U of 
supp T, T is equal to a finite sum of derivatives of order <m of Radon 
measures, all of which have their support contained in U.  

Remark 24.1. In general, it is not possible to represent a distribution 
of order <m (even if it has compact support!) as a finite sum of derivatives 
of Radon measures whose support is contained in its own support (even 
if we lift the restriction that the derivatives be of order <m).  

As we have already stated, not every distribution in an open set 
SZ # 0 is of finite order. 

Example 24.1. Let {x”} (K = 1 ,  2, ...) be a sequence of points in SZ 
such that every compact subset of 52 contains only a finite number of 
them; let {ak} be an arbitrary sequence of complex numbers. The series 

m 

a k  * ’ *  (a/&,). a Z k  

k= l  

defines a distribution in SZ. However, unless the coefficients ak are all 
equal to zero, with the possible exception of a finite number of them, 
this distribution is not of finite order in SZ. 

It is clear what is meant by a convergent series of distributions, 
m 

T k -  
k=O 

It means that the partial sums x:kKo Tk ( K  = 0, 1 ,  ...) form a sequence 
converging in 9’(52), say for the strong dual topology (we shall see, soon, 
that for sequences, strong and weak convergence are the same thing). 

Exercises 

24.4. Let {&} (k = 0, 1, ...) be a sequence of functions belonging to Vr(f2) and 
converging to the function 1 (i.e., the function identically equal to one in f2) in Vm(f2). 
Prove that, for every distribution T in Q, the distributions gkT converge to T in P(f2) 
(for the strong dual topology). 

Prove that every distribution T in f2 is equal to a convergent series xzz Tk in 
which each term Tk has a compact support. 

24.5. 
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24.6. Express the Dirac measure 6 at the origin, on the real line R', as a finite sum of 
derivatives of continuous functions, all of which have their support in the interval 
1-8, e[ (e > 0 arbitrary). Prove that 6 cannot be expressed as the derivative (of some 
order) of a single continuous function with compact support. 

The fact, stated on p. 258, that every distribution is equal, at least 
locally, to a finite sum of derivatives of functions (i.e., locally integrable 
functions) is now clear, if we combine Theorem 24.4 with the following 
result: 

THEOREM 24.5. Let Q be an open subset of R". Every Radon measure p 
in 52 is a finite ium of derivatives of order \cn of locally L" functions in Q. 

More precisely, given any neighborhood U of suppp, there is a set 
{ f,}, p  EN^, I p I \c n, of locally L" functions, all of which have their 
support contained in U,  such that 

P = c ( W ) * f P  * 
Ip lGn 

Proof. We begin by assuming that p has compact support. Let U be 
an arbitrary open neighborhood of supp p in 52. There is a constant 
C > 0 such that, for all functions 9 E %':( U ) ,  

l(P,+>l < C S t P  I +(x)l. 

For simplicity, let us use the notation 

D = ... (alax,). 
We have 

whence 
SIP I b(Y)I < II D+ IIL' > 

and 
164 +)I < CII w llL1 . 

This means that the linear functional D+ -+ (p, +) is continuous on 
D %':(U) for the L1 norm. By the Hahn-Banach theorem, it can be 
extended as a continuous linear functional on the whole of L1( U) .  But 
such a functional is of the form g - J f ( x ) g ( x )  dx with f E La( U )  
(Theorem 20.3). In particular, if we take g = D$, $ E %':(U), we see 
that we have 

(~94) = <f, t'+> = Df,+>, 
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that is to say 
p = ( - l p - f .  

I t  remains to select a function 01 E %:( U )  equal to one in some neigh- 
borhood of supp p, and to observe that we have 

where the summation is performed over all partitions of the set of 
integers (1 ,..., n) into two subsets (il ,..., ir), (ir+l ,..., in). This proves 
the statement for p when supp p is compact. 

In order to prove Theorem 24.5 in the general case, it suffices to 
make use of a locally finite open covering of Q consisting of open sets Uj 
( j  E _I) with compact closure, and of a partition of unity {aj} subordinated 
to this covering; then every aj belongs to %',?(Q). It suffices then to 
apply the result (in the case of compact supports) to each measure 
01p. We leave the details to the reader. 

COROLLARY 1. Every Radon measure p in Q is ajinite sum of derivatives 
of order <2n of continuous functions. 

Proof. Let f be a locally L" function (or, for that matter, a locally L1 
function, which, we recall, is much less restrictive). Select an arbitrary 
point xo = (x! ,..., xt) of Q. We have, in a neighborhood xo, 

(24.3) f = D F  

where 

One can immediately check (by using the Lebesgue-Nicodym theorem 
iff is only locally L1 or directly iff is locally L") that F is a continuous 
function of x in a sufficiently small neighborhood of xo (in which F is 
defined). Combining the representations (24.3) with Theorem 24.5, we 
obtain the corollary locally. By using a partition of unity in %:(SZ), we 
then obtain it globally. 

COROLLARY 2. 
jinite sum of derivatives of continuous functions. 

Combine Corollary 1 with Theorem 24.5. 

Every distribution of jinite order, T ,  in Q, is equal to a 

COROLLARY 3. Given any relatively compact open subset 9' of SZ, the 
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restriction of a distribution T in 52 to SZ' is equal, in Q', to afinite sum of 
derivatives of continuous functions in 52'. 

Combine Corollary 2 with Theorem 24.3. 

Exercises 

24.7. Prove that the Dirac measure in R" is equal to a derivative of order < n of a 

24.8. Let M be a linear subspace of R". Explain the meaning of the measure du, 

Let us denote by 4 I M the restriction to M of a function 4 defined in R". Prove that 

bounded function (not having compact support). 

induced on M by the Lebesgue measure du on R". 

the Radon measure in R", 

is equal to a derivative of order < n - dim M of a bounded function in R". 

Distributions with Support at the Origin 

Let Vm (0 < m < + 00) be the space of m-times continuously differen- 
tiable functions in Rn, with the natural Vm topology (of convergence of all 
the derivatives of order Qm on every compact subset of R"). Let us denote 
by Nm the closure, in Vm, of the set of V" functions having their support 
in the complement of zero. Note that this is the same as saying that Nm 
is the closure in Vm of the set of %9 functions with support in R" - (0) 
(Corollary 1 of Theorem 15.3). 

LEMMA 24.1. Nm consists exactly of all the P functions whose derivatives 
of order Q m  all vanish at the orkin. 

Proof. Let g E '3': be equal to 1 for I x I < 1 and to 0 for I x I > 2. 
Let r$eVm have all its derivatives of order Qm at the origin, equal to 0. 
Taylor's expansion of q5 about the origin shows that the functions 
g(x/e)+(x) converge to zero in Wm as e > 0 converges to 0; hence 
(1 - g(x/e))+(x) converges to +(x) in 'ifrn, which proves that r$ E Nm. 
Conversely, every element of Nrn is a Vm limit of Vm functions having 
all their derivatives of order < m equal to 0 at the origin, hence has the 
same property. 

COROLLARY. The canonical homomorphism of %m onto Vrn/Nm induces 
a one-to-one linear map of the space of polynomiah in n variables of degree 
<m (with complex coefficients), e, onto qm/Nm. 

Proof. Since n Nm = (01, the canonical homomorphism 
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Vm-+ %*INm restricted to is one-to-one. T o  see that it is onto, 
consider an arbitrary element f E Vm and its Taylor expansion of order 
m about x = 0, 

1 
f(4 = c --i [ (a/aJF)pf(o) l~p + w, 

Ipl<rn P *  

where the remainder $ is such that all its derivatives of order < m  
vanish at the origin. In  view of Lemma 24.1,$ E Nm; thusf is congruent 
modulo Nm to a polynomial of degree <m, which proves that the 
canonical homomorphism maps onto Vm/Nm. 

Let &; be the space of distributions in Rn having their support at the 
origin (i.e., contained in the set (0); thus the zero distribution belongs to 
ah). By the corollary of Theorem 24.3, every distribution belonging to 8; 
is of finite order; let T E  &hm be the subspace of e0 consisting of the 
distributions of'order <m, i.e., the continuous linear forms on Vm, 
which have their support as the origin. 

LEMMA 24.2. 

Proof. Every distribution T E &hm is obviously orthogonal to all Vm 
functions having their support in Rn - {0} (by definition of supp T), 
hence to the closure of the set of these functions in Vm. Conversely, if a 
distribution T of order < m  does not have its support at the origin;we 
can find a function C$ E with supp $ C Rn - (0) such that ( T ,  $) # 0. 
This means that T does not belong to the orthogonal of Nm. 

Let j .be the transpose of the canonical homomorphism Vm 3 Vm/Nm; 
j is a one-to-one linear map of the dual of Vm/Nm into &'m, the dual of 
%m (one-to-one since it is the transpose of an onto mapping (cf. 
Proposition 23.2)). On the other hand, it is obvious that every continuous 
linear form on V m  which vanishes on Nm defines canonically a continuous 
linear form on the quotient space, Vm/Nm, whence a one-to-one linear 
map k of &bm, the orthogonal of Nm (Lemma 24.2), into the dual of 
'?P/Nm; it is immediately seen that the map k is the inverse of the 
map j .  Let N(m, n)  be the number of n-tuples p = ( p ,  ,..., p,) such that 
I p 1 = p ,  + a * *  + p ,  < m. From the corollary of Lemma 24.1, we 
know that 

The space &hm is the orthogonal of Nm. 

dim Vrn/Nm = d i m e  = N(m,  n). 

On the other hand, 8im contains all the derivatives of order <m of the 
Dirac measure; these derivatives are obviously linearly independent and 
they number N(m, n);  thus 

dim Forn 3 N(m,  n) = dim %rn/Nrn. 
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But k is a one-to-one mapping of &'bm into the dual of qmlNm, hence k 
is onto by the obvious comparison of dimensions; it is then easily seen 
that k = j - l .  Also we see that dim &Am = N(m,  n),  in other words &Arn 
is spanned by the derivatives of order \cm of the Dirac measure. 
Combining all these results, we have proved: 

THEOREM 24.6. The distributions in Rn which have their support at the 
origin are the jinite linear combinations of the derivatives of the Dirac 
measure at 0. 

Exercises 

24.9. What is the relation between the following topologies on the space 8; of 
distributions having their support at the origin: 

(a) 
(b) 
(c) 

the topology induced by the weak topology u(&, Qm) on 8'; 
the topology induced by the strong dual topology on 8'; 
the topology carried over from Pn, thelF-space of polynomials in n indeterminates, 
with complex coefficients, via the natural isomorphism 

24.10. Prove thit the space H of analytic functionals in C" is isomorphic to the 
completion of the space of distributions in R", having their support at the origin, 8 { ,  
with respect to a certain topology (cf. Exercise 22.7). Prove also the following assertions: 

The natural injection of H(Cn) into Vm(R2") yields, by transposition, a homomor- 
phism (for the strong dual structures) of 8'(R2") onto H'(C"); what is the kernel 
of this homomorphism ? 

The mapping H(C") + Vm(Rn), restriction to the real space R" of functions defined 
in C", yields, by transposition, a continuous injection j : 8'(R") + H'(C"). Prove 
also tha t j  is not an isomorphism into and that the image o f j  is dense. 

1. 

2. 



25 
Example of Transpose: Fourier Trans- 

formation of Tempered Distributions 

As usual, x will denote the point in the Euclidean space Rn. If we use 
a basis in Rn, (el ,..., en), we write x = (x l  ,..., x,), where the xi are the 
coordinates of x with respect to that basis. By R, we mean the dual of 
Rn; elements of R, will be denoted by Greek letters like 5, 7, etc.; the 
value of the linear form 5 at the point x will be written (5, x )  or ( x ,  5). 
By the dual basis of (e l ,  ..., en) we mean the basis (e; ,..., e6)  of R, 
determined by the equations (e i ,  ek) = 1 if j = k, =O if j # k. If 
f1 ,..., f, are the coordinates of 4' E R, in this dual basis, we have 

(x, 5 )  = X l t l  + -.. + % E n .  

We shall make use of the Lebesgue measure in R"; it will be denoted by 
dx. The student ought to keep in mind that the Lebesgue measure in Rn 
is determined up to a constant factor. We assume that we have somehow 
made a choice of a particular one, for instance by selecting a basis 
(el ,..., en) in Rn and by requiring that the measure of the hypercube 
{x; 0 < xi < 1 , j  = 1, ..., n} be equal to one. Such a choice determines 
immediately a Lebesgue measure d t  in R,: we take the dual basis and 
require that the measure of the hypercube { f ;  0 < ti < 1 , j  = l,.,., n} 
be one. If we perform a change of basis in Rn and if we denote by 
y1 ,...,yn the coordinates in the new basis and by dy the Lebesgue 
measure such that the measure of the set b; 0 < yi < 1, 1 < j < n} 
is one, we have dy = t dx for some positive number t. Using the 
coordinates vi in R, with respect to the basis which is the dual of the 
new basis in R, , it is easy to check that d7 = t d f .  

We recall now the definition of the space 9'(Rn). It is the space of V" 
functions q~ in Rn such that, for all pairs P, Q of polynomials in n 
indeterminates, with complex coefficients, 
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the topology of Y ( R n )  is defined by the seminorms 

Q - S;P I P(x> Q ( a / W  +)I. 
We have seen that Y(Rn)  is a FrCchet space in which every closed 
bounded set is compact (see Chapter 10, Example IV; also Theorem 14.5). 
The student will perceive that the definition of the topological vector 
space Y(Rn) is independent of the choice of a particular basis in Rn. 

Also observe that, for all f E R, , the function of x, 

exp( -2ir <x, 5 ) )  v(x) 
belongs to Y(R") as soon as tp E Y(R"). Such a function decreases so 
fast at infinity that the integral of its absolute value, i.e., J I tp(x)l dx, 
is always finite. 

Definition 25.1. The Fourier transform of tp E Y ( R n )  is the function of 
5 E R , ,  

J exp(--2im (x, 5 ) )  d x )  dx. 

J- exp( --i (x, 0) 9-44 dx. 

W e  denote it by .Fy( f ) ,  or by +(c) when no confusion is to be feared. 

integral 
Very often, the Fourier transform of tp is defined to be equal to the 

We choose to put the factor 27r in the exponential, followingSchwartz, 
so as to avoid factors 27r that appear when computing the inverse 
transformation. 

THEOREM 25.1. The Fourier transformation is an isomorphism of Y(Rn) 
onto Y(R,) (for the structures of topological vector spaces). The inverse 
mapping is the mapping 

: WL) 3 ICI - 1 exp(2-i~ (x, 5 ) )  #(5)  d5. 

It is understood that we are using here the Lebesgue measure d( 

(1) The Fourier transformation is a continuous 

associated canonically with dx (as indicated above). 
Proof of Theorem 25.1. 
linear map of Y (Rn)  into Y(R,). 

We have, for any pair of polynomials P ,  Q E C[X, ,..., X,], 
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The first identity is obvious in view of Leibniz' rule of differentiation 
under the integral sign (keeping in mind that the product of p with 
any polynomial decreases "very" fast at infinity). The second formula is 
obvious if we perform an integration by parts in the integral, at the 
right-hand side. If, now, we combine the two formulas, we obtain 

whence, for all 6 E R, , 

Our statement follows immediately from this inequality. 

(2) 9 is a continuow linear map of Y ( R , )  into Y(Rn) .  

in the exponent of the exponential. 

(3) .P is the inwerse of 9. 
If we prove (3), the theorem will be proved since we shall then be 

dealing with two continuous linear maps which are the inverse of each 
other. We must prove that 

This is obvious since 9' is defined exactly as 9 except for the sign 

9 o 4F = identity of 9(Rn); 4F o $ = identity of Y(R,). 

In view of the symmetry in the definitions of 9 and 9, it suffices to 
prove the first one of these two equalities. 

Let now f be some function belonging to Y(R,J. We have, with 
obvious notations, 

We were able to interchange the order of integrations, in the double 
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integral, because of the obvious fact that the function ( y ,  f )  -+ (y ) f ( f )  
is Lebesgue integrable in Rn x R, . At any event, we have obtained 

The proof will be complete if we can make f vary over a sequence of 
functions of 4, belonging to Y&), such that f converges to the function 
identically equal to 1 in &-e.g., in the sense of the weak convergence 
in L2(R,J-whereas s f  converges to the Dirac measure at the origin 
in Y’, dual of Y (anticipating slightly on what follows, we are inter- 
preting Y’ as a space of distributions). T o  find such a sequence is easy; 
it is enough, for instance, to take the sequence 

e-IP1*/k, k = 1, 2, ... (see Exercise 25.1 below). Q.E.D. 

THEOREM 25.2. (Plancherel-Parseercrl). Let +, be any two functions 
belonging to 9(Rn).  We have 

(25.2) 

The bars in (25.2) mean the complex conjugates. 

Proof of Theorem 25.2. In Eq. (25.1), we take x = 0 and make the 
change of variables y - -y  in the integral of the right-hand side. This 
yields 

- 
We then choose f E Y(F2,J in such a way that 5 f ( - y )  = t,h(y). This is 
possible by virtue of Theorem 25.1. It is then trivial to check that - 
f(f) = m. 
COROLLARY 1. The Fourier transformation 9 : Y(Rn) 3 Y ( R , )  can be 
extended as an isometry of L2(Rn) onto L2(Rn). 

Observe that 9, which contains 92, is dense in L2 (Corollary 3 of 
Theorem 15.3); Corollary 1 follows then immediately from (25.3). 

Notation 25.1. W e  shall denote by 9 the isometry of L2(Rn) onto 
L2(R,J extending the Fourier transformation in Y ( R n )  and by 9 the 
inverse isometry. 
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These isometries will be called respectively Fourier transformation 
and inverse transformation in L2. 

COROLLARY 2. 

(25.4) (u I u ) p ( p )  = ( F u  I F V ) ~ ~ ~ )  (Parseual formula); 

If u, v are any two elements of L2(Rn), we have 

(25.5) (Plancherel formula). 

We have denoted by ( 1 ) the inner product in L2 and by ( 1  (1 the norm. 
Observe that (25.4) (resp. (25.5)) follows by continuity from (25.2) 
(resp. (25.3)). As a matter of fact, (25.5) is a restatement of Corollary 1, 
essentially; (25.4) and (25.5) are equivalent by polarization. 

Exercises 

25.1. 

25.2. 

Compute the Fourier transform of the function x 4 e-lzl*lL (k = 1 ,  2, ...). 

Let E > 0 be arbitrary. Prove that the Fourier transform of the function 
JC - E-* rp(x/e), 'p E Y(R*), is the function 6 + $ ( e n .  Using this fact, show how to 
construct sequences in Y(R") which converge to the Dirac measure in 9'(Rn) and whose 
Fourier transforms converge to the function one in "(R,). 

25.3. Let Vm(R,,) be the space of continuous complex-valued functions in R,, which 
converge to zero at infinity, equipped with the norm of uniform convergence in the 
whole of R,, , 

I - SUP I a(6)l. 
&R, 

Prove that Vm(Rn) is a Banach space. Then prove the following (important) theorem of 
Lebesgue : 
THEOREM 25.3. The Fourier transformation .F : Y(Rn) -+ Y(R,,) can be extended as 
a one-to-one continuous linear map of L1(R") into Vm(Rn). 

Prove that the Fourier transformation, extended from 9(R") to L'(R"), is 
neither a mapping ofL1(R,,) onto, nor an isomorphism into Vm(R,,). 

25.4. 

We proceed to define the Fourier transformation in the dual 9'' of 9'. 
But before doing this, we wish to show that 9' is a space of distributions 
in Rn, intermediary between the space 8' of distributions with compact 
support and the space of all distributions, 9'; (we omit the mention (Rn) 
because all functions and distributions considered here are defined in 
the whole Euclidean space Rn). We shall also give a characterization of 
the elements of 9" (regarded as distributions). 

Consider the sequence 

wy + 9 + w-. 
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The arrows indicate the natural injections; they are continuous linear 
mappings, in view of the definitions of the topologies in the three spaces 
under consideration, and they have dense images (Corollary 1 of 
Theorem 15.3; Theorem 15.4). By transposing the above sequence, we 
obtain a new sequence of continuous injections, 

B’ --+ 9’ --+ 9, 

which enables us to regard the (strong) dual 9‘ of Y as a space of 
distributions in Rn (containing a’), just as announced. 

Definition 25.2. The distributions belonging to Y’ (Rn)  are called the 
tempered (or temperate) distributions in Rn. 

The name tempered is motivated by the following structure theorem 
for distributions belonging to 9’ (it shows, among other things, that 
all tempered distributions are of finite order): 

THEOREM 25.4. A distribution in Rn is tempered i f  and only i f  it is a 
finite sum of derivatives of continuous functions growing at in.nity slower 
than some polynomial. 

Proof. The proof is very similar to the arguments used in the preceding 
chapter to prove the various structure theorems in WR. Of course, there 
are a few slight differences. 

First of all, a distribution T is tempered if and only if the linear form 
Q - ( T ,  Q) is continuous on for the topology induced by 9. This 
is a restatement of the definition of the “natural” injection of 9‘ into 9‘. 
From it, the sufficiency of the condition stated in Theorem 25.4 is 
evident. We need only prove its necessity. 

T o  every tempered distribution T there are two integers m, h >, 0 and 
a positive constant C such that, for all tp E %‘:, 

Of course, vh is also a test function. In fact, tp - tp,, is a one-to-one 
linear map of ‘$?: onto itself. Furthermore, as immediately proved by 
induction on h = 0, 1, ..., 
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where q < p means q1 < p ,  ,..., qn < p ,  and where the constant Cp,h 
depends only on the n-tuple p and on the integer h. We see therefore 
immediately that 

Let us introduce once more the differentiation monomial 

D = (a/&,) - * *  (a/&,). 
We have (cf. p. 262) 

StP I P(X)I < I I  DP I I L ’  . 

Therefore, combining this with (25.6), 

Let then N be the number of n-tuples p such that I p 1 < m + n; we 
consider the product space L1 x -7. x L1 = (L1)N and the injection 

of %‘: into ( L 1 ) N .  Estimate (25.7) can be read as saying that the linear 
functional ITh - <T, y> is continuous on for the topology induced 
by (L1)N. Therefore, by the Hahn-Banach theorem, it can be extended 
as a continuous linear form in the whole of (L1)N. But the dual of (L1)N 
is canbnically isomorphic with ( ~ 5 “ ) ~  (cf. p. 259 and Theorem 20.3), 
therefore there exist N L“ functions h,( I p I < m + n) such that 

( T ,  T) = c ( A ,  > ( a / W  9%) 
I P I  Cm+n 

Recalling the expression of q h  in terms of q, we see that this simply 
means that 

T =  1 (1 + Ixl2))”(-1)1”1(a/ax).h, .  
(pl<m+n 

For each p, we set 
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Since h, is L”, we see that g, is a continuous function in Rn and that 

I g,(x)l e I x1 I * * *  I Ill A, I ILm * 

Furthermore, we have 

A, = Dg, , 
and consequently 

(25.8) 

with an obvious definition of thez, . One sees then easily, by induction 
on h, that 

( 1  + I x I”)” ( a / ~ x ) p i , ( x )  = c ( a W *  [P,.*(x)g”,(x)I* 
q< P 

where the P,,* are polynomials depending only on h, p ,  and q. Putting 
this back into (25.8), we obtain the desired expression of T E 9’. Q.E.D. 

Examples of Tempered Distributions 

1. 

2. 

3. 

All distributions with compact support (in particular, all functions 
with compact support) are tempered distributions. 
All continuous functions which grow at infinity slower than some 
polynomial are tempered distributions. 
All (classes of) functions belonging to some L p  (1 < p < +a) 
are tempered distributions (Proof: iff E L p ,  

is continuous on $9: for the topology induced by 9). 

Multiplication by polynomials, differential operators in Rn with 
coefficients which are polynomials define continuous linear mappings 
of 9’ into itself. We are supposing here that these mappings are already 
defined in the whole of 9’ and we are taking their restrictions to 9’. 
These restrictions can be obtained also as the transposes of similar 
mappings defined in 9’. These definitions are consistent, as one sees by 
observing that the mappings in question, defined in 9, when restricted 
to $9:, are continuous on the latter for the topology induced by 9, etc. 

Concerning the multiplication by V“ functions, the following theorem 
can be proved: 
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THEOREM 25.5. 
are equivalent: 

Let a be a V* function. The following three properties 

(1) The multiplication mapping S -+ a s  from 9' into 9' is a continuous 
linear map of 9' into itself. 

(2) The multiplication mapping v --+ a? of Y into V" is a continuous 
linear map of Y into itself. 

( 3 )  For every n-tuple p ,  there is a polynomial Pp in R" such that, for all 
X E R", 

I(?WP 491 < 1 P,(X)l. 

Definition 25.3. The space of V" functions a in Rn having the equivalent 
properties (I), (2), and (3) of Theorem 25.5 is denoted by 0,. 

The letters OM stand for multiplication operators (in Y or Y'), 
referring to Properties (1) and (2) in Theorem 25.5. The functions 
a E OM are often called @?"functions slowly increasing at infinity, referring 
then to Property (3). 

Exercises 

25.5. Prove Theorem 25.5. 
25.6. 

properties: 
(1) 

Give an example of a continuous function f in R" with the following two 

there is no polynomial P in R" such that 
If(x)l < 1 P(x)l for all x E R"; 

(2) 
27.7. 

the distribution p + I .p(x)f(x) dx is tempered. 
The Radon measure on the real line, 

m 

? - dk), 
k-1 

is a tempered distribution on R' if and only if there is an integer m > 0 and a constant 
C > 0 such that, for all k = 1, 2 ,..., 

I UL I < Ck"l. 
Prove this statement. 

We define now the Fourier transformation in the space 9" of tempered 
distributions as the transpose of the Fourier transformation in the space 
Y of V" functions rapidly decaying at infinity. 
Definition 25.4. The transpose of the continuous linear map 

F : SP(R~) 3 - (6 - J exp(-2im (x, 5 ) )  v(x) dx) E SP(R,) 

is called the Fourier transformation in Y ( R J  and is denoted by 9. 
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Of course, in all these statements, one may interchange Rn and R, . 
Theorem 25.1 yields immediately, by transposition (see Proposition 

23.1): 

THEOREM 25.6. The Fourier transformation is an isomorphism ( f o r  the 
structures of topological vector spaces) of 9’(Rn) onto 9’(R,J. 

Let us show rapidly that the Fourier transformation in 9’ does indeed 
extend the Fourier transformation in the spaces of functions, say in 
L2(R”). Let f€L2(Rn) ,  q~ E 9(R,), be arbitrary. Observe that we have 

(25.9) & = sq, 

where the bars stand for complex conjugate ( S - i s  the inverse Fourier 
transformation). By Parseval’s formula, we have 

which proves our assertion. 

8’ of distributions with compact support. 
In Chapter 29, we shall study the Fourier transformation in the space 

Exercises 

25.8. 
25.9. 

25.10. 
25.11. 

Does the function elZ[  have a Fourier transform in the sense of distributions? 
Compute the Fourier transform of the function eilzl*. 

Compute the Fourier transforms of sin x and cos x (x E Rl). 
For what values of the real number s does the function x - I x 1’ define 

a tempered distribution in R” which is a function ? Compute the Fourier transform of 
this distribution. 

25.12. Compute the Fourier transform in Y’(R1) of the Heaviside function 

for x < 0. 

25.13. Compute the Fourier transform in Y”(R1) of the distribution 

(W4 log1 x I .  
We recall that multiplication by a polynomial and differential operators with 

constant coefficients define continuous linear maps of Y (resp. 9”) into itself. Prove’the 
following theorem: 

25.14. 
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THEOREM 25.7. 
a tempered distribution in R". W e  have 

Let P be a polynomial in n variables, with complex coeficients. Let S be 

(25.10) 
(25.1 1) 

S [ P ( x )  S] = P( - ( 2 h ) - 1  a / a n  ss; 
.F[P(a/ax) S] = P(2i-6) 9s. 

25.15. 
25.16. 

Compute the Fourier transform of a polynomial function in R". 
Let T be an arbitrary distribution in R". Prove that the following properties 

of a point f of R, are equivalent: 
(25.12) there exists 9 E R,, such that 

e x p ( - 2 ~  <f  + i v ,  x>) T E 9'; ; 

(25.13) fora l lvER, , ,  T e x p ( - 2 ~ < 6 + i v , x > ) ~ 9 ' ~ .  
Let us denote by rT the set of points having Properties (25.12) and (25.1 3). Give a charac- 
terization (of the type of Theorem 25.4) of the distributions T such that rT is nonempty. 

Let T and r T  be as in Exercise 25.16. What is the set rT when T E 8, i.e., 
has a compact support ? What is the interior of rT when T is a tempered distribution 
whose support is contained in some convex salient cone r C R,, ? (A cone is salient if 
it does not contain any straight line.) 

25.17. 

25.18. 
25.19. 

Let T and rT be as in Exercise 25.16. Prove that rT is convex. 
Let T and rT be as in Exercise 25.16, and f T  the interior of rT. Prove that 

e x p ( - 2 ~  <f + iv, x>) T E (Definition 30.1) 
for all f + i v  E f T  + iR,,. 

We use the same notation as in Exercise 25.19. Let the Fourier transformation, 
9, operate from distributions with respect to the variable x, into distributions with 
respect to v E R.. Prove that 

belongs to 
in f T  + iR,, (the function OT(5) = F((1/2r)G is called the Laphce t r m j o r m  of T). . 

25.21. 
line ( Y  denotes the Heaviside function, equal to 1 for x > 0 and to zero for x < 0): 

(i) 
(ii) 
(iii) 
(iv) 
(v) 

25.20. 

F(exp( - 2~ <f ,  x>) T) 
for all 6 E fTand that it is a holomorphic functionF(6 + iv) of 6 + iv = 4 

Compute the Laplace transforms of the following distributions on the real 

Y(x)  ( d / k ! ) ,  k = 0. 1, ...; 
W', k = 0, 1, ...; 
Y(x) el*, 5 E C'; 
Y(x) cos x, Y ( x )  sin x; 
Y(x) cosh x, Y(x) sinh x. 



26 
Convolution of Functions 

Let f ,  g be two continuous complex-valued functions in R”, having 
compact support. The convolution of f and g is the function, also 
defined in R”, 

(26.1) 

It is clear, on this definition, that there is no need for both f and g to have 
compact support: the integrals defining f * g have a meaning if either one 
of the “factors” f or g has compact support while the other has an 
arbitrary support. Under this assumption, it is immediately seen that 
the function f * g  is continuous. Furthermore, if both supp f and supp g 
are compact, so is supp( f * g ) .  If now we release the requirement that f 
and/or g have compact support, it is clear that we must impose a condition 
ensuring that, for every x E R”, the function of y ,  f ( y ) g ( x  - y ) ,  be 
integrable. This demands that the two functions f and g be locally 
integrable and that the growth at infinity of one of them be “matched” 
by the decay of the other. What we have said earlier is an illustration of this 
situation: if the growth at infinity off, say, is arbitrary, then the decay 
of g must also be arbitrarily fast, which can only mean that g vanishes 
outside a compact set. But other conditions, less “lax” on f and less 
restrictive on g, may easily be imagined. Suppose for instance that f 
grows slowly at infinity, i.e., slower than some polynomial, and that g 
decreases rapidly at infinity, i.e., faster than any power of 1/1 x I. Then 
obviously f * g  is well defined by Eq. (26.1). As will now be shown, one 
may strengthen the condition on f and weaken the one on g in such a 
way that the two conditions come to coincide, and in fact are also shared 
by the resulting function f *g; and the conditions are nothing else but 
that f and g be integrable! 

(f * g)(x)  = J- f(x - Y) g(Y)  4J = J-R“f(Y)g(x - Y )  dr. 
R” 

THEOREM 26.1. 
Y < +m and such that 

(26.2) 

Let p ,  q, and Y be three numbers such that 1 < p ,  q, 

llr = U/P) + (l/!?) - 1- 
278 
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Then, for all pairs of continuous functions with compact support in Rn, f, g ,  
we have 

Proof. 
By Holder's inequalities (Theorem 20.3), we obtain 

Set h(x) = ( f * g ) ( x )  = JRn f ( x  - y)g(y) dy. Set s = p(1 - l / q ) .  

I/@ 

I Wl < 1s If(. -y)l(l-s)a Igo lqdy l  I1 l f lS I l L~*>  

I h(x)lq < llf113 J If(. -Y)l(l--s)q I g(y)l* dY. 

where q' is the conjugate of q, i.e., q'-l = 1 - q-l. Observing that 
sq' = p ,  we obtain 

(26.4) 

At this point, we make use of the following general fact: let t - f ( t )  be 
a continuous function from Rn into some Banach space E, which has 
compact support. We may then define its integral JRn f ( t )  dt ,  say by 
considering Riemann sums; the value of this integral is an element e 
of E. We have 

(26.5) 

We have denoted by 1) 1 )  the norm in E. Our statement follows imme- 
diately from the "triangular" inequality for the norm applied to the 
finite Riemann sums approaching the integral (also observe that t - 1 )  f(t)ll 
is a nonnegative continuous function with compact support in Rn). We 
apply this to the function 

Y - If(. - Y)l(l-s)O I g(Y)lq, 

regarded as a function of y E Rn, obviously continuous with compact 
support, into some space La (with respect to the variable x). By applying 
(26.5) together with (26.4), observing that h(x) is a continuous function 
with compact support in Rn, we obtain 

But this can be rewritten as 
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We choose (Y = r/q and take the qth root of both sides of (26.6). We 
obtain 

I1 h llL' < Ilfllb l l m 1 ~ * ) r  I1 g llLq * 

This is nothing else but (26.3) if we observe that 

P 1 1  
( l - s ) r =  l - p + + = p t  + - - 1 ) = p ,  ( 4 (5 4 

by (26.2). Q.E.D. 

By using the density of the space e ( R n )  of continuous functions with 
compact support in the spaces La(Rn), 01 < +a, one may then prove 
the following consequence of Theorem 26.1 (when I < +a; when 
r = +m, one applies Holder's inequalities): 
COROLLARY 1. Iff E Lp, g EL*,  then 

defines an element of Lr(p, q, r as in Theorem 26. I), denoted by f * g ;  we have 

(26.7) Ilf*gll,r< IlfllL~IlgllL~. 

From this one, the following results are easily derived: 

COROLLARY 2. 
f E L', the mapping 

Let p be a number such that 1 < p < + w. For every 

g -f *g  

is a continuous linear map of Lp into itself, with norm f llLl . 
COROLLARY 3. The convolution 

is a bilinear mapping of L1 x L' into L1; we have: 

Ilf*g llL' < Ilf llL1 llg llL1 . 

One often summarizes the content of Corollary 3 by saying that L1 
is a conwolution algebra. 

Let A be an arbitrary subset of Rn, and f and g two continuous 
functions in Rn, one of which has a compact support. Let fA be the 
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function equal to f in A - suppg and to zero everywhere else. Then 
we have obviously, for all x E A, 

We may summarize this as follows: 

PROPOSITION 26.1. Let f ,  g be continuous functions in Rn, one of which 
has a compact support. Let A be a subset of R". The values of the convolution 
f * g in the set A do not depend on the values o f f  in the complement of the set 

A - suppg = {x E Rn; x = x' - x" for some x' E A', x" E suppg}. 

We have already taken advantage of the fact that, if both f and g have 
compact support, so does f *g. This may be regarded as a corollary of 
the following result: 

PROPOSITION 26.2. Let f ,  g be as in Proposition 26.1. W e  have 

(26.9) supp(f* g) C suppf + suppg (vector sum). 

Proof. 
y E supp g, x - y belongs to the complement of supp f ,  hence 

Let x belong to the complement of supp f + supp g ;  then, for 

COROLLARY. If both supp f and supp g are compact, supp( f * g) is also 
compact. 

Indeed, if K and H are compact subsets of a HausdorfT TVS E 
(here R"), K + H is also a compact subset of E, as it is the image of the 
product K x H, compact subset of E x E, under the continuous 

We proceed now to study convolution from the viewpoint of 
differentiability. Suppose that f and g are two V1 functions, one of which 
has compact support in Rn. Then it follows immediately from Leibniz' 
rule .for differentiation under the integral sign that 

mapping (x, y )  - x + y. 
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is a differentiable function (at every point x) and that 

( W A f  * g )  = ( ( V x J f )  *o" = f  * ((a/%)g), i = 1, ..., n. 

In fact, combining this with the fact that the convolution of two 
continuous functions, one of which has compact support, is a continuous 
function, we see that f * g  is a W function in R". 

Furthermore, if we apply (26.8) with af/axi instead off,  we derive 
the fact that, for all x E A, 

where B = A - supp g. Of course, the right-hand side of the above 
inequality may very well be infinite. But it will be finite whenever supp g 
and A are both compact sets. This implies easily the following result, 
which is a particular case of a more general fact: 

PROPOSITION 26.3. 
compact support, the convolution 

Let m be an integer, 0 < m < +a. If g  EL^ has 

f - f * g  

is a continuous linear map of Vm(Rn) into itself. 

COROLLARY. Let m, g be as in Proposition 26.3. The convolution f - f * g 
is a continuous linear map of VF(Rn) into itself. 

Proof of Corollary. In view of the general properties of LF-spaces, it 
suffices to prove that, for every compact subset K of Rn, the restriction 
of the mapping f - f * g  to VT(K)  is continuous, as a map of %?F(K) 
into VT(Rn) (see Proposition 13.1). But in view of Proposition 26.2, 
it maps VT(K)  into VT(K + supp g), and on both these spaces the 
topology induced by Vr(R") is the same as the one induced by P ( R n ) .  
The corollary follows then directly from Proposition 26.3. 

Exercises 

26.1. Let p be a Radon measure, and f a continuous function with compact support 
in R". Prove that 

(P *f)(x) = f(x - Y )  M Y )  s 
is a continuous function in R". 
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26.2. Let f, g be two locally L' functions in the real line which vanish identically in 
the negative open half-line { t  E R'; t < O}. Prove that 

(f* g)(x) = J ' f ( x  - t ) g ( t )  dt 

is a locally L1 function in R' vanishing for x < 0. 
26.3. 
26.4. 

Compute the Fourier transform off * g when f, g E Y(R"). 
Let j, g be two continuous functions in R", one of which has compact support. 

Prove Leibniz' formula: 

where p ,  q E N" and q < p means q j  < pi for all j = 1 ,..., n. 
Let .f be a continuous function with compact support in R". Prove that, if g is 

a polynomial (resp. an exponential x - exp(<s, (>), 5 E C"; resp. a function which can 
be continued to the complex space C" as an entire analytic function), the same is true of 
the convolution f * g. 

26.5. 
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Example of Transpose: 

Convolution of Distributions 

In this chapter, we shall define the convolution of two distributions 
S, T i n  Rn under the condition that one of the two have compact support; 
for example, if supp S is compact, T may be arbitrary. 

Later on, this condition on the supports will have to be relaxed; but 
of course this will not be possible unless we relate somehow the growth 
of the two factors, S, T. We know already, for instance, that, if S a n d  T 
are both L1 functions, their supports can be arbitrary (needless to say, 
the convolution of two distributions will have to coincide with the 
convolution defined in Chapter 26, when these distributions are 
functions!). T o  give another important example, we shall want to 
define the convolution operators on the space 9" of tempered distri- 
butions, that is to say to find out what are the distributions T such that 
S * T (suitably defined) is a tempered distribution for all S E 3". We 
shall see that rather restrictive conditions of decay at infinity must be 
imposed upon T. The situation here is similar to the one which we would 
encounter if we tried to define the convolution f *g of two functions 
f ,  g, one of which is a polynomial: g will have to decrease rapidly at 
infinity (i.e., more rapidly than any power of I / /  x I). 

We are going to need a very general and very simple result about 
functions with values in a TVS (defined in some open subset of Rn). 

THEOREM 27.1. Let SZ be an open subset of Rn, and x - p(x) a function 
defined in SZ with values in a Hausdorff TVS E. Let e' be an arbitrary 
continuous linear functional on E. Then 

(a) If the function y is continuous, the complex-valued function 

is continuous. 

284 
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(b) If p is continuous and if p is differentiable at some point xo of Q, 
then (27.1) is differentiable at xo and we have 

(c) Let k be either a positive finite integer or + 00. I f  p is a Vk function 
in Q with values in E, the function (27.1) is a complex-valued %'k 
function in Q and we have, for all p E Nn such that I p I < k + 1, 
and all x E Q, 

(27.3) (a/a@ (e', 944) = (e', (a/ax>. d x ) > .  

Theorem 27.1 is a kind of rule of differentiation under the integral 
sign. Its proof is trivial, as soon as we know what we mean by a differ- 
entiable function with values in a TVS. First of all, let t -+ f ( t )  be a 
function from some open interval ]to - E ,  to + e[ of the real line into 
the Hausdo& TVS E. We say that the derivative of f ( t )  at to exists, or 
that f is dz#krentiable at to if 

converges to some element of E, denoted then by f ' ( t o ) ,  as the real 
number h # 0 converges to zero. If we study now a function of several 
variables, like p defined in Q C Rn, it is clear what we mean when we 
say that the partial derivatives of p exist at a point xo of Q. We say then 
that q~ is differentiable at xo if 

n 

d x )  - d X 0 )  - c (Xi - .;)(a,/axi)(x") 
j=1 

converges to zero in E when x + xo in Q. 

Proof of Theorem 27.1. Part (a) is obvious since the mapping (27.1) is 
nothing else but e' o p : Q + C ;  (c) follows by combining (a) and (b). 
As for (b), it is simply a matter of combining the continuity of e' with the 
differentiability of y as we have defined it. The  student may work out 
the details if he likes to. 

We shall apply Theorem 27.1 in the following two situations: 

(1) E = %':(Rn); the elements of E are functions of the variable in 
Rn which, for reasons of clarity, we shall denote by y = 
(yl ,...,y,). On the other hand, 52 will be the whole space Rn; 
the variable point in Q will be denoted by x. 
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(2) 
The function v in Theorem 27.1 will be, in both these situations, 

E = Vm(Rm), the rest staying as in (1). 

(27.4) 

where v is a given element of E (which is to say, either of V:(Rn) or of 
Vm(Rn), depending on whether we are in Situation (1) or (2)). 

LEMMA 27.1. Suppose that rp E Vi(R") (resp. Vm(Rn)). Then (27.4) is a 
dzflerentiable function of x E Ra with values in V:(Ryn) (resp. vm(Ryn)). 
Its Jirst partial derivative with respect to xi (1 < j < n) is the function 

(27.5) 

x * (Y - d x  - A), 

x - (Y - (a/axd d x  - Y) ) .  

Proof. We shall prove the result only in the case of V:(Rn). As in the 
other case, when the space under consideration is VW(Rn), the proof is 
very similar and, as a matter of fact, somewhat simpler. 

Let xo be an arbitrary point of R" and let U = {x E R"; I x - xo I < 1). 
When x varies in U, the function y - ~ ( x  - y) keeps its support in 
the set U - supp v, which is an open subset of Rn whose closure, K, 
is compact. We shall prove that (27.4) is a function in U,  with values 
in V:(Ku) when the latter carries the topology induced by VZ(Rt) 
(the subscript y signifies that the elements of these spaces are functions 
of y), that (27.4) is then differentiable at xo, and that its partial derivative 
with respect to xi at xo is equal to the value of (27.5) at xo. As xo is 
arbitrary, this will obviously prove the lemma. 

The topology of %:(Ku) is defined by the seminorms 

+ - SUP" I(a/aAq +(r)l 9 Q E N". 
?J€R 

Let us denote by q, this seminorm, by 
by cpj the function (27.5). We must prove that 

the function of x, (27.4), and 

converges to zero when x E U converges to xo. But this only means that 
n 

(a/aY)* d x  - Y )  - (a/aYP d x O  - Y )  - c (Xi - x;)(a/ay)Q(a/axj)  d X 0  - Y )  
j=1 

converges uniformly to zero with respect to y E U - supp rp as x E U 
converges to xo, which is trivially true. 
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COROLLARY. Suppose that g, E VF(Rn) (resp. Vm(Rn)). The function 
(27.4) is a function of x E Rn with values in %?:(RE) (resp. Vm(RE)). 
Its partial derivative of order p = ( p ,  ,..., p,) E Nn is equal to 

(27.6) x - (Y - (a /ax>P P)(x - Y ) ) .  

Proof. 
Since (27.4) is differentiable at every point, it is continuous everywhere. 

Its partial derivative with respect to xi (1 < j  < n)  is given by (27.5), 
which is just the same as (27.4) except that g, has been replaced by 
(a/ax,)V, therefore it is a continuous function of x with values in E. 
Thus (27.4) is a function of x with values in E. Suppose then that 
we have proved that (27.4) is a Vk function of x for,some K = 0, 1, 2, ...; 
but this also applies to the first derivatives of (27.4) with respect to the 
variables xi, since they have the same form as (27.4) (except that p) has 
to be replaced by (a/ax,)g,), we conclude that these first derivatives are 
also Yk functions of x with values in E, which proves that (27.4) is a 
Yk+l function of x. This immediately implies the corollary. 

Set E = VF(R;) (resp. “(R;)). 

THEOREM 27.2. 
Suppose that at least one of the two sets, supp g,, supp T ,  is compact. 

Let g, be a gm function, and T a distribution in Rn. 

Then 
x - (TY 9 d x  - Y ) )  

is a Vm function in Rn. For all n-tuples p = ( p ,  ,..., p,), we have 

(27.7) (WwP ( T ,  > P)(x - Y D  = (TY 9 (a/ax>P d x  - Y ) ) .  

The notation T, means that the distribution T acts on a function 
#(x - y )  when the latter is regarded as a function of the variable y .  

Proof. I t  suffices to combine the corollary of Lemma 27.1 with Part (c) 
of Theorem 27.1 (remembering that distributions with compact support 
are continuous linear forms on Vm(Rn)). 

Dejinition 27.1. The function 

x - (TY , P)(x -YD 

is called the convolution of p) and T and denoted by T * or p) t T. 
When the distribution T is a locally integrable function f ,  we have 
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which shows that Definition 27.1 agrees, in this case, with the notion of 
convolution introduced in Chapter 26 (Eq. (26.1)). 

The convolution 
('p, T) - 'p * T 

is a bilinear map from V: x 9' (resp. V" x 8') into V". We state and 
prove now some of its elementary properties. 

Observe that Eq. (27.7) can be read 

(a/&).( T * 'p) = T * [(a/a~)"'p]. 
But if we observe that 

(a/ax)p 'p(x - Y )  = (- 1 ) 'p'(a/aY)p 'p(x - Y ) ,  

the right-hand side of (27.7) can also be read 

((a/aY)"T, 9 d x  - Y ) )  .= "/WTI* 'p,>(x), 

so that we can state: 

PROPOSITION 27.1. Let q~ be a V" function, and T a distribution in R". 
Suppose that at least one of the two sets, supp q ~ ,  supp T ,  is compact. Then, 
for all n-tuples p ,  

(a/ax)"(T * 'p) = [ (a/ax)pT] * 'p = T * [ (a/ax)*9~].  

Another important property is the following one: 

PROPOSITION 27.2. Let T and cp be as in Proposition 27.1. Then 

(27.8) supp('p * T) C supp 'p + supp T (vector sum). 

Proof. As one of the two sets supp v or supp T is compact, their vector 
sum is closed, according to an elementary result of point-set topology. 
Suppose for instance that suppq~ is compact. Let U be an open set 
whose closure fr is compact and contained in the complement of 
supp q~ + supp T. The compact set 

does not intersect supp T; therefore we may find a V" function g in 
Rn, equal to one in a neighborhood of supp T and to zero in some 
neighborhood of fr - supp v (Theorem 16.4). In particular, gT = T 
and we have, therefore, 
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But if x E U, the function y -g(y) p(x - y )  is identically zero. Indeed, 
if it were not zero at some point y,  it would mean that y E supp g and 
that x - y E supp p; the latter means that y E U - supp p. But this is 
impossible as g vanishes in a neighborhood of 0 - supp p. Q.E.D. 

We study now the continuity of the mapping y - T * p. 

THEOREM 27.3. 
support) in Rn. The convolution 

Let T be a distribution (resp. a distribution with compact 

'p - T * Q  

is a continuous linear map of '%';(Rn) (resp. Wm(Rn)) into Wm(Rn). 

Proof. We shall treat only the case of an arbitrary distribution T and 
prove that p .- T * p is a continuous linear map gr - g*. The other 
case is simpler to handle (and, in fact, follows quite easily from this one). 

In view of a general property of LF-spaces (Proposition 13.1), it will 
suffice to prove that, for every compact subset K of Rn, p - T * p is a 
continuous linear map of W;(K) into qrn(Rn). The topology of Vrn(R") 
is defined by the seminorms 

'p - sup 1 (a/&)* p(x)l, H ,  compact subset of R", p EN". 
Z E H  

When x varies in H and supp p is .contained in K, the function 

Y - (V4* d x  - Y )  

varies in,%';(H - K). The restriction of T to W;(H - K) is a continuous 
linear form on this space. Therefore, there is a constant M > 0 and an 
integer K such that we have, for all $ E %':(H - K ) ,  

This proves the asserted continuity. 



290 DUALITY. SPACES OF DISTRIBUTIONS [Part I1 

COROLLARY. Let T be a distribution with compact support in Rn. The 
convolution 

'P'"T*'P 

is a continuous linear map of %:(Rn) into itsey. 

Proof. It  suffices to prove that, for every compact subset K of Rn, 
91 - T * tp is a continuous linear map of %:(K) into %r(Rn). But we know 
that it is continuous from %?p(K) into Wm(Rn), by Theorem 27.3; and 
by Proposition 27.2, it maps %:(K) into %,?(K + supp T). On the latter 
space, the topologies induced by V"(Rn) and by Vp(Rn) coincide, 
whence the corollary. 

By using the corollary of Theorem 27.3, we may now easily define 
the convolution of an arbitrary distribution S with a distribution T 
having compact support. But so as to provide a motivation for the 
definition, we shall first consider the case where S is a locally integrable 
function f and T an L1 function with compact support, g. Then we know 
what the convolution f *g must be; it is the locally L1 function 

Let, then, q~ be a test function; considering f *g as a distribution, we 
observe that we have 

where we have setf(x) = f ( - x ) .  Similarly, 

Now, the operation f - + f i s  easily extendable to distributions, if we note 
that 

Definition 27.2. 
distribution defined by 

Let T be a distribution in R*. By T we denote the 

<F, v> = ( T ,  9;>, 'P E WY(R"). 
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The operation T - is often referred to as the symmetry with respect 
to the origin (": tchetch). 

We now focus our attention on the following two maps. Let S,  T be 
two distributions in R", S having compact support. Consider 

(27.9) %?3J-lp*SSE;, 

(27.10) % ? p a  - p  * E E % ?  

Both are continuous linear mappings, and we may introduce their 
transposes. The transpose of (27.9) is a continuous linear map of 9' 
into itself, whereas the transpose of (27.10) is a continuous linear map 
of 6' into 9'. We have then the following commutativity result: 

THEOREM 27.4. Let S, T be two distributions in Rn, S having compact 
support. 

The image of T under the transpose of (27.9) is equal to the image of S 
under the transpose of (27.10). 

Proof. For simplicity, we shall denote by S * T (resp. T * S) the image 
of T (resp. S )  under the transpose of (27.9) (resp. (27.10)). We must 
p r o v e t h a t S * T =  T*S. 

1. 
Suppose that S is an L1 function f, having compact support, and that 

T is a locally integrable functiong.Let rpbe an arbitrary element of %':. 
We have, according to the definitions, 

Case Where S and T Are Locally Integrable Functions 

As both f and cp have compact support, we may obviously interchange 
the order of integration. This yields 

( S  * T, a> = <f * g ,  a>- 
Similarly, 

We have used the notation 

but, of course, f * g  = g* f, whence the result in this case. 
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2. Case Where Both S and T Have Compact Support 

In view of Proposition 27.1, we have, whatever the n-tuple p ,  

(a/ax)P(S * T )  = [(a/&)”S] * T = S * [ ( a / a ~ ) ” T ] ,  

(a/ax)P(T * S )  = [ (a /a~)PTl  * S = T * [(a/ax)PS]. 
(27.1 1) 

Indeed, it suffices to remark that, for all distributions U, 

Let us now assume that both S and T have compact support. Then 
they are both equal to a finite sum of derivatives of L1 functions with 
compact support (Corollary 2 of Theorem 24.4, Theorem 24.5): 

S = C (a/ax)”f,, T = C (a/ax)qgq. 
IPIGm, IqlGma 

In view of Eqs. (27.11), we have 

It suffices to observe that f p * g ,  = g,* f p  for all pairs ( p ,  4); this 
implies obviously that S * T = T * S in this case. 

3. General Case 
Let q~ be an arbitrary element of ‘8‘;. Let f E %‘: be equal to one in a 

neighborhood of supp S,  and g E ‘8‘; equal to one in a neighborhood of 
supp q~ - supp f .  We have 

<T * S ,  p) = <S,  q~ * T )  = ( S ,  f(p * f’)), since fS = S.  
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We have also 

(27.13) (S*T,v)  = <T,v*s)  = <T,g(cp*s)) = (gT,v*s)  = (S*(gT),cp). 

We have used the fact that g = I in a neighborhood of supp(yt s) 
(cf. Proposition 27.2; note that supp s = -supp S). 

Since g T  has compact support, we know by Part 2 in the proof of 
Theorem 27.4 that 

S * (gT) = (gT) * S .  

Combining this with (27.12) and (27.13), we obtain the desired result. 
The statement and the proof of Theorem 27.4 contain practically all 

the information we need. First of all, we may define the convolution of 
two distributions, one of which has a compact support. 

Dejinition 27.3. Let S and T be two distributions. Suppose that S has 
compact support. The convolution of S and T,  denoted by S t T or T t S, is 
the image of S under the transpose of the continuous linear map v - q~ * T 
of %‘;(Rn) into Vm(Rn), or equivalently, the image of T under the transpose 
of the continuous linear map cp - v t s i f  %‘2(Rn) into itsev. 

Indeed, these two images are equal, in view of Theorem 27.4. 
The beginning of the proof of Theorem 27.4 shows that, when S 

and T are locally integrable functions (S having compact support), the 
convolution S t T in the sense of distributions is equal to the convolution 
in the sense of functions. Keeping this in mind, we may show that 
Definitions 27.1 and 27.3 are consistent, that is to say: 

THEOREM 27.5. Let S, T be two distributions, one of which has compact 
support. Suppose furthermore that T is a V“ function, q~. Then the 
distribution S t T (Dejinition 27.3) is the V“ function 

x - ( S ,  9 v(x - Y ) ) .  

Proof. The statement is true when S is a locally integrable function 
(Part 1 in the proof of Theorem 27.4). Suppose now that S is an arbitrary 
distribution with compact support; let us write 

s = c ( a W P g , ( x ) ,  
P 

where the summation is finite and where the g, are L1 functions with 
compact support. We have, by (27.1 l), 

S * T = c [(a/&)Pg,] * T = E g o  * [(a/ax)”TJ, 
P P 
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but 

is the function 
g, * [(a/ax)”Tl 

x - J gp(Y)  d x  - Y )  dr = J g,(Y) (- 1)lP~(a/aY)” 94% - Y )  dY 

= ((aPY)”g(Y), d x  - Y ) ) ,  

which means exactly that S* T is the function x - ( S ,  , pl(x - y ) ) .  
Suppose now that the support of S is not compact, in which case the 

support of ‘p must be compact. Let U be an arbitrary bounded open 
subset of Rn. Let g be a %‘; function equal to one in the open set 
U - supp ‘p. In the open set U,  we have 

S * T = (gS)  * T (in the sense of distributions in U ) ,  

as immediately seen. From the first part of the proof, we know that 
(gS) * T is a V“ function, equal to x - (S, ,g(y) cp(x - y)). If x E U, 
we have g(y)  = 1 in a neighborhood of the support of the function 
y - ‘p(x - y), hence, for x E U,  

<s, % A Y )  cp(x - Y ) )  = 0, 3 d x  - Y ) ) ,  

which implies that S* T is (in U )  tk function x - (S, , ‘p(x - y)). We 
know that the latter function is a V“ function (Theorem 27.2). Since U 
is arbitrary, this proves Theorem 27.5. By applying Theorem 27.3 
(combined with the fact that the transpose of a continuous linear map is 
a continuous linear map---if the duals of the spaces involved carry the 
strong dual topology), we obtain immediately: 

THEOREM 27.6. The conwolution 

( S , T ) - S * T  

is a separately continuous bilinear map of b‘ x 9‘ into 9‘- 

Separately continuous means here that, if S is kept fixed, the linear 
map T - S* T of 9 into 9 is continuous, and if T is kept fixed, the 
linear map S .-+ S* T of &” into 9’ is continuous. 

We have Eq. (27.1 1): 

PROPOSITION 27.3. Let S E b‘, T E 9’. For all n-tuples p ,  

(a/&)”(S * T )  = [(a/&)”S] * T = S * [(a/ax)*T]. 
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Also: 

PROPOSITION 27.4. Let S E b', T E 9'. W e  have 

supp(S lr T) C supp S + supp T. 

Proof. Let q~ E W: have its support in the complement of the closed 
set supp S + supp T ;  then supp q~ - supp S is a compact subset of the 
complement of supp T.  In view of Proposition 27.2, 

SUPP(S * 9') c supp 9' + supp s; 
but as supp s = -supp S,  we see that ( T ,  s * q ~ )  = 0. Q. E.D. 

COROLLARY. If both S and T have compact support, so does S*  T .  

The corollary shows that b', space of distributions with compact 
support in R", is a ring for the operations addition and convolution 
(in fact, it is an algebra if we consider its vector space structure). In 
fact, we have: 

THEOREM 27.7. The space C' of distributions with compact support in 
R n  is a commutative convolution algebra with the Dirac measure as unit 
element. 

The commutativity of the convolution in b' is just a restatement of 
Theorem 27.4 when both S and T have compact support. That the 
Dirac measure is the unity for convolution follows from the more general 
fact: 

PROPOSITION 27.5. If T is any distribution in R", 

T * 6  = T.  

Proof. We have, for all test functions F, 

But 

" 
( T  * 6, tp> = ( T ,  * S), since, obviously, 6 = 6. 

(9' * %4 = (8, 9 d x  - Y ) )  = d x ) .  Q.E.D. 

COROLLARY. If T E 9, p E Nn, 

( a / & ~ ) p T  = [(a/ax)P6] * T.  

Proof. Combine Propositions 27.3 and 27.5. 
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We define now the translation of a distribution. Let a be any vector 
in Rn; let us define the translation by a, ra f, of a function f by the formula 

r a f ( x )  = f ( x  - a) ,  x E R". 

Suppose that f is locally integrable; if y is a test function, we have 

which can be read 
( T a f ,  V) = (f, 7 - a ~ ) -  

This motivates the following definition: 

Definition 27.4. Let T be a distribution, and a vector belonging to Rn. 
The translation of T by a is the distribution raT defined by 

< T a T  I> = <TI .-,I>* I E v: 

Exercise 27.1. Prove the following Proposition and its corollary: 

PROPOSITION 27.6. Let S, T be two distributions in R", one of which at least has compact 
support; let a E R". Then 

T.(S * T )  = (7.S) * T = S * ( T-T). 

COROLLARY. Let T be any distribution in R", a E R". Then 

raT = 8, * T, 6. : Dirac measure at the point a. 

We should also mention that the convolution of a finite number of 
distributions, all of which, except at most one, have compact support, 
is associative. 

Exercises 

27.2. Let T be a distribution with compact support, and f a function in R". Prove 
the following statements: 

(1) 
(2) 

iff is a polynomial, so is T *f; 
iff is an exponential exp<x, 4 )  ( 5  E C"), 

(T * f ) ( x )  = C ( 0  exp<x, D; 
what is the value of the constant C(4) ? 

iff is an analytic function, so is T *f; 
iff is the restriction to R" of an entire analytic function in C", so is T * f; 
iff is the restriction of an entire function of exponential type in C", so is T * f. 

(3) 
(4) 
(5)  
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27.3. Prove that, given any distribution T with compact support in R", 

1 
h 

(a/ax,)T = lim - ( ~ h ,  T - T) ,  

where h, is the vector in R" whose Rth component is equal to zero if k # j and whose 
jth component is equal to a number h > 0, and where the limit is to be understood in the 
sense of 9 ( R " )  as h + 0. 

27.4. Let f, g be two Q" functions with compact support in the real line; let Y be 
the Heaviside function, equal to 1 for x > 0 and to zero for x < 0. Verify the formula 

(d/dxP( f * ( Yg)) = f * [(dx)'( Ydl.  

27.5. Let r be a closed convex salient cone in R", i.e., = r, p r  C r for all p > 0, 
r + r C r, r containing no straight line. Let us denote by 9'(r) the subspace of 
O'(R") consisting of the distributions in R" having their support in r. Let us denote by 
&(r) the intersection W(r) b'(R"), that is to say the space of distributions with 
compact support contained in r. 

Prove that to every pair of distributions U ,  V E 9'(r) there is a unique distribution 
W E 9(r)  with the following property: 

For every p > 0, if U', V' E B ' ( r )  are equal to U and V, respectively, in the open ball 
{x E R"; I x I < p}, then 

W = U' * V' in the open ball {x; I x I < p}.  

Prove that, by setting W = U * V, we turn 9(r) into a commutative convolution 
algebra which contains b'(r) (with the convolution induced by b'(R")) as a subalgebra. 

Apply this to n = 1 and to r = { t  E R'; t 2 0). Compute the convolution of two 
locally integrable functions in R' which vanish identically for t < 0. (The space o'(r) 
for this particular choice of r is usually denoted by 9+ .) 

27.6. Let 9+ be the space of distributions in R' having their support in the closed 
positive half-line { t ;  t > O}. In this exercise, we regard 9+ as a convolution algebra for 
the convolution defined in Exercise 27.5. 

Prove the following facts: 

(1) 

(2) 

the subspace 9; of o'+ , consisting of the distributions with support at the origin, 
is a subfield of the convolution algebra 9'+ ; 
the subspace of o'+ consisting of the distributions with support in a closed half-line 
{ t ;  t > a} ,  a > 0, is an ideal in P+ . 

27.7. 
Prove that the distributions Y(t)  (tk/R!) (k = 0, 1, 2, ...) are invertible in 9'+ and compute 

Give an example of a continuous function in R', f, such thatf(t) > 0 for t > O , f ( t )  = 0 

We keep considering the convolution algebra 9: of Exercise 27.6. 

their inverses (Y is the Heaviside function, equal to 1 for t > 0 and to zero for t < 0). 

for t < 0, and which does not have any inverse in the convolution algebra 9; . 

27.8. Let A be a subset of {t; t > 0}, and W(A) the space of distributions in R' 
having their support in A. Give a necessary and sufficient condition on A so that P ( A )  be 
an ideal of the convolution algebra 9; (cf. Exercises 27.6 and 27.7). Give an example 
of an ideal of 9'+ which is not of the form 9 ( A ) .  



28 
Approximation of Distributions by 

Cutting and Regularizing 

In this chapter, we are going to show that every distribution T in an 
open set D of Rn is the limit of a sequence of functions belonging to 
%‘r(Q) and, furthermore, that there is a standard procedure for 
constructing this sequence from T.  

Let {Q,} (k = 0, 1, ...) be a sequence of open subsets of D whose 
union is equal to Q and such that QkPl C Dk (K = 1,2, ...). For each k, 
select a function gk E ‘3?“(D) which is equal to one in D, . Now, given 
any distribution T in 52, it is clear that the distributions g,T converge 
to T in 9’(D), say for the strong dual topology, although this is not 
important, as strong and weak convergences in 9’(D) are one and the 
same thing for sequences, as we shall soon see. Anyway, if 37 is a bounded 
subset of %?:(D), there is a compact subset K of D such that 37 C %‘;(K) 
(Proposition 14.6); there is an integer k(K) such that K C D ,  for all 
K 2 K(K), therefore such that gkp = p for all K 3 K(K) and all p E 9. 
Then, for all p E 37, 

< g 3 ,  v> = <T,  gkv) = <T,  v>3 

which proves that gkT -+ T in 9’(D). The fact that the functions g ,  are 
identically equal to one in open sets which form an expanding sequence 
is not at all necessary to reach the conclusion that g,T -+ T.  In connection 
with this, we propose to the student the following exercise: 

Exercise 28.1. Let {g*} be a sequence in ym(Q) which converges to the function identically 
one in R. Prove that, given any distribution T i n  Q, the sequence of distributions g,T converges 
to T i n  W(Q),  and that, if T has compact support, g,T converges to T i n  &‘(Q). 

Going back to the considerations above, we can take the Qk to be 
compact and the ‘%“ functions g k  with compact support. We may then 
state: 

298 
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THEOREM 28.1. Let T be a distribution in Q. There is a sequence of 
distributions with compact support, {T,} ( k  = 0, 1, ...), such that, given any 
relatively compact open subset Q’ of Q, theie is an integer k(Q‘) > 0 such 
that, for all k 2 k(Q’), the restriction of Tk to Q’, T, I Q’, is equal to the 
restriction of T to Q’, T I Q’. 

Let T and the T, be as in Theorem 28.1. If K is any compact subset 
of 52, there is an integer k ( K )  such that, for k 3 k ( K ) ,  T and Tk are 
equal in some neighborhood of K and, in particular, 

K n s u p p  T z K n s u p p  Tk.  

Remark 28.1. The operation just described, of multiplying a distri- 
bution by V“ functions with compact support, g,,  equal to one in 
relatively compact open subsets of Q which expand as k - +  co and 
ultimately fill Q, is the extension to distributions of the “cutting 
operation” on functions. In  the latter case, if we deal with some function 
f i n  Q, we regard f as the 11-nit of the functions f ,  equal to f in Q, and 
to zero outside 52k; then obviously the fk converge to f uniformly on 
every compact subset of 9. Note that fk is the product o f f  by the 
characteristic function tpnk of 5 2 k .  Of course, we cannot multiply a 
distribution by tpRk since this function is not smooth; thus we must 
multiply the distribution by a V“ function (with compact support) 
which coincides with pR, in Qk, that is to say, which is equal to one 
in Q, . 

We have approximated an arbitrary distribution in 52 by a sequence 
of distributions in Q which have compact support. The next step is to 
approximate any distribution with compact support by a sequence of 
test functions. This is done by convoluting the given distributions with 
W: functions which converge to the Dirac measure 6: We shall therefore 
use the properties of the convolution of distributions, established in the 
preceding chapter (Chapter 27). 

We begin by considering the convolution T*F of a distribution T 
with a V“ function p, one of the two having compact support. We may 
regard p as a distribution, in which case T * tp is the distribution 

%:3* - (T*v ,*)  =(T,+**), 

where +(x) = p( -x). But T q is, in fact, a V” function, precisely the 
function 

x - ( T ,  , ~ ( x  - y ) )  (Theorem 27.5). 

The approximation result which we are seeking will be a consequence of 
the following lemma: 
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LEMMA 28.1. Let p be the function defined by 

1 
= llzl <lexp (- 1 - I x 1') 

For E > 0, call pz the function x - E - " P ( X / E ) .  Then the sequence 
CpIIj} ( j  = 1,2, ...) converges to the Dirac measure 6 in the space &'of 
distributions with compact support in Rn. 

About the function pI , see Chapter 15, p. 155. 

Prmf of Lemma 28.1. We advise the student to take a look at the 
proof of Lemma 15.2; the arguments here and there are closely related. 
Let f be a V" function in Rn. We have 

We may assume that E < 1. Then, if I x I < E ,  

therefore, 

This shows that, iff remains in a bounded set of V"(Rn), in fact, in a 

Observe that we do not need the precise information which we have 
about the functions pI . In connection with this, we propose the following 
exercise to the student: 

bounded set of V1(Rn), ( p ,  , f) converges to f(0).  Q.E.D. 

Exercise 28.2. 
properties: 

Let {pk} be a sequence of Radon measures in R", having the follm.ng 

supp pk i s  contained in a ball of radius rk centered at x = 0 such that rk  -P 0 as 
k - , + c o ;  

(1) 
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(2) 

(3) 

the numbers <pk , 1) (1 : function identically equal to one in R") converge to one 
a s k + + c o ;  
there is a constant C > 0 such that, for all k = 1, 2, ..., and all functionsf E q(R"), 

Under these hypotheses, prove that pk converge to 6 in B'(R"). 
What rnodijications could be made on the hypotheses ;f we were only to require that the pLr 

converge to 6 in 9'( R") ? 

We may now easily prove the following result: 

THEOREM 28.2. Let T be a distribution in the open set SZ. There is a 
sequence of functions v k  E gT(SZ) (k = 1 ,  2, ...) With the following properties: 

(i) vk converges to T in Z(Q) and, i f  the support of T is compact, 
vk converges to T in &'(a); 

(ii) for every compact subset K of SZ, K n supp p)k converges to 
K n supp T and, i f  supp T is compact, suppq~,, converges to 

A sequence {&} of subsets of a metric space E (with metric 
(x, y )  - d(x, y ) )  is said to converge to A C E if, to every e > 0, there is 
k(e) such that, for every k 2 k(&), 

a P P  T .  

A, c {X E E ;  d(x,  A )  < &}, 

A C {x E E ;  d(x,  A,) < e}. 

If B C E, we have set d(x, B) = inf,,, d(x, y). 
Proof of Theorem 28.2. We begin by selecting a sequence of 
distributions Tk (k = 0, 1 ,  ...) with compact support, as in Theorem 28.1; 
for every relatively compact open subset SZ' of SZ there is k(SZ') such that, 
if k 3 k(G'), Tkl SZ' = T (Q'. Next we consider a sequence of functions 

plli * ' 

observing that 

supp(pIIj * Tk) C supp plli + supp Tk (Proposition 27.5). 

For each k we select j according to two requirements: j 3 k (in order to 
ensure that j + +a); j sufficiently large so that the neighborhood of 
order lfi of supp Tk is a compact subset of SZ. If we then call jk the 
integer thus selected, we contend that the test functions T k  = p1ljk * Tk 
converge to T in 9'(Q). 
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Indeed, let L3 be B bounded subset of %‘2(9); there is a compact 
subset K of 9 such that supp v C K for all functions rp E L3. Let 9‘ 
be a relatively compact open subset of 9 containing K ;  for k 2 k ( 9 ’ ) ,  
we have Tkl 9‘ = T 19‘. On the other hand, for 1/k < d(K ,  C Q’), 

s u p p ( ~ ~ ~ ~ ~  * p) C 52’ for all p E a. 

We recall that j k  2 k and, also, that p’ = p. Then, for all E g, 

(p)k - T,  p) = (Tk 9 P M k  * p> - <T,  p> 

= <T,  p l i j k  * P) - ( T ,  V> 

= <gT, P l l h  * 9) - <gT, p>, 

where g is an arbitrary function which belongs to %:(9) and is equal to 
one in 9’. This shows ttat, for all v E L3, and k sufficiently large, 

( V k  - T,  P) = (P115, * (gT)  - ( g v ?  v>. 
But g T  is a fixed distribution with compact support, and p1ljk + 6 in 
€“(Rn); by applying Theorem 27.6, we conclude that p l l jk  * ( g T )  +gT  
uniformly on g, which is what we wanted to prove. 

When the support of T is compact, it is easy to see that the vk 

converge to T in df”(9). First of all, we may take Tk = T for all k, and 
v k  = P l / k  * T for Ilk < d(supp T, C 9). As the P l / k  converge to 6 in 
B’(9), a fortiori in B’(9), it follows immediately from Theorem 27.6 
that vk converges to T in €’(sZ). 

Property (ii) in Theorem 28.2 is obvious, by inspection of the definition 
of the functions vk . 

COROLLARY. Let 9 be an open subset of Rn; Vp(9) is sequentially dense 
in &(Q) and in g‘(9). 

There is no need to underline the close relationship between 
Theorem 15.3 and Theorem 28.2; the properties stated in these theorems 
are often referred to as “approximation by cutting and regularizing.” 
Convolution of a distribution with a Vrn function is often called 
regularization (or smoothing). The word cutting refers to the multiplication 
of a distribution T by V“ functions which are equal to 1 in some 
relatively compact open set 9’ and equal to zero outside a neighborhood 
of the closure of 9‘. 
Definition 28.1. A space of distributions in 9, d, is said to be normal if 
V;(9) is contained and dense in d, and if the injection of %‘2(9) into d 
is continuous. 
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We recall (Definition 23.1) that a space of distributions in 52 is a 
linear subspace of 9'(52) carrying a locally convex topology finer than 
the one induced by 9'(52). 

PROPOSITION 28.1. If d is a normal space of distributions in SZ, the 
strong dual of d is canonically isomorphic to a space of distributions in 52. 

We have already essentially proved this statement (in Chapter 23) and 
often used it: let j : %';(Q) -+ d be the natural injection; since the 
image of j is dense, the transpose of j is a continuous one-to-one 
linear map of the strong dual d' of d into W(SZ). 

Examples of normal spaces of distributions in SZ: 

(i) %?(a), VF(52) (0 < m < +a) (Corollaries 1 and 2 of Theorem 
15.3); 

(ii) L p ( s 2 )  (1 < p < +a) (Corollary 3 of Theorem 15.3); 
(iii) B'(SZ), S'(L2) (Corollary of Theorem 28.2.). 

Example of spaces of distributions which are not normal: 

L"(SZ) (we suppose SZ nonempty!); H(Rn), space of functions in Rn 
which can be extended to Cn as entire functions (with the topology 
carried over from the space of entire functions in C", H(Cn)) .  Note that 
L"(S2) contains V:(Q) whereas the intersection of H(R") with c&,"(S2) is 
reduced to the zero function. 
Remark 28.2. The  dual of a normal space of distributions is not 
necessarily a normal space of distributions (although it is a space of 
distributions, by Proposition 28.1), as shown by the example of 
d = L'(Sz), d' = L"(SZ). 

Exercise 28.3. Let {gx} be a sequence of W: functions in R" such that g&) = 1 for 
I s 1 < k (k = 1 , 2 ,  ...), and such that, to every n-tuple p ,  there is a constant C,  > 0 such 
that, for all k = 1 ,  2 ,..., 

Prove that, given any tempered distribution S in R",g,S converges to S in Y'(R") as 
k 4 co. (The student may simply prove that gkS converges weakly to S in 9'; we shall 
see that, for sequences in Y', strong and weak convergences coincide.) 

Construct a sequence of functions g, with the above properties. 

Remark 28.3. A corollary of Exercise 28.3 is that 9" is a normal space 
of distributions in Rn. We already knew that 9' is a normal space of 
distributions in Rn (Theorem 15.4). 
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Exercises 

28.4. Prove the following lemma: 
LEMMA 28.2. The sequence of functions 

( k / ~ ' / ~ ) ~  exp( -K*IxI*), k = 1,  2 ,..., 
converge to the Dirac measure 6 in 9(Rn).  

(Cf. Lemma 15.1 and Lemma 28.1). 
28.5. Prove the following result: 

THEOREM 28.3. Let Q be an open subset of R". Any distribution in Q is the limit of a sequence 
of polynomial functions. 
(Hint: Make use of Theorem 28.1 and Lemma 28.2; cf. Corollary 2 of Lemma 15.1 and 
Exercise 27.2). 



29 
Fourier Transforms of Distributions 

with Compact Support. 
The Paley- Wiener Theorem 

Consider a continuous function f with compact support in Rn. For 
5 E C,, dual of C", we may set 

Let us write 5 = 4 + iv(5, 9 E R,, dual of R"); the rule of differentiation 
under the integral sign shows immediately thatf(4 + iv) is a %P function 
of (t, 7) in R,, , We set, as usual, for j = 1 ,..., n, 

As the integrand, in the definition off(<), is a solution of the system of n 
equations au/@, = 0, so isfi In other words,fis a holomorphic function 
of 5 ih the whole complex space C,: 4 is an entire analytic function of 5 .  
Next, we show that f is of exponential type. We shall generalize the 
situation a little and consider a Radon measure p with compact support, 
rather than the more special measure f(x) dx. We shall then use the 
following lemma: 

LEMMA 29. I .  Let p be a Radon measure in Rn, with compact support, K .  
There is a constant C > 0 such that, for all functions (b E VO(Rn), 

(29.1) I(CL,4)I < CSUP Id(x)I. 
z s K  

Proof. Let Uk be the set of points x such that d(x, K) < l l h  (k = 1,2, ...; 
d is the Euclidean distance). Let g k  be a continuous function with 
compact support in u k  , equal to one in some neighborhood of supp p, 

305 
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such that 0 < gk(x) < 1 for all x. We have gkp = p. On the other hand, 
there is a constant C > 0 such that we have, for all + E Vo with compact 
support contained in U, , 

It suffices then, in order to get (29.1), to take + = gk+, t$ sV0(Rn) 
arbitrary. Indeed, 

l(P,4>l = l<P,Ek4>l < C S U P  Igk(44Wl < C S U P  I 4 ( 4  
X E  u, 

By taking the limit when k + +a, we obtain the desired inequality. 

Remark 29.1. When p = f ( x )  dx, we may take C = J I f(x)l  dx in 
(29.1). 

If we apply (29.2) to p = f ( x )  dx, we obtain (Remark 29.1) 

(29.3) 

This implies immediately our assertion: that f is an entire function of 
exponential type (Notation 22.2). For .$ E R,, f(6) is the Fourier 
transform of f .  We have therefore proved the following: the Fourier 
transform of a continuous function with compact support can be extended 
to the complex space C ,  as an entire analytic function of exponential type. 

In this chapter, we shall extend this result to arbitrary distributions 
with compact support. We shall prove that it then has a converse: every 
tempered distribution, whose Fourier transform can be extended to the 
complex space as an entire function of exponential type, has a compact 
support (in fact, we shall prove a slightly weaker implication: we shall 
assume that the growth of the Fourier transform of the given distribution 
is known on the manifolds parallel to the real space R, , generalizing 
(29.3)). The analogy between this result, known as the Paley-Wiener 
theorem, and the theorem on the Fourier-Bore1 transformation of the 
analytic functionals (Theorem 22.3), is obvious. Let j be the restriction 
of an entire function (in C") to the real space &; j is a one-to-one linear 
mapping of H(C,) into W ( R , J .  It is one-to-one since an entire function 
cannot vanish identically in R, without also vanishing identically in C, . 
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Furthermore, the image of j is dense in view of Corollary 2 of 
Theorem 15.2. The  transpose of j ,  : b'(R,) --+ H'(C,), is a continuous 
injection of the space of distributions with compact support into the 
space of analytic functionals (both spaces carrying the strong dual 
topology). Let, then, T be a distribution with compact support in R", 
9 T  its Fourier transform, and FBT its Fourier-Bore1 transform 
(Definition 22.3). Both transforms are entire functions in C, , respectively, 
defined (as will be shown in a moment for S T )  by 

S T ( 5 )  = (T, 9 exP(-2iV (x, 5))); 2F3? T(5) = ( ( " i T ) P  1 exp(<z, 5))). 

This shows right away that F T ( 5 )  = SG?T(-2i74. 

PROPOSITION 29.1. The Fourier transform of a distribution T with 
compact support in Rn is the function, in R, , 

(29.4) T(6) = (T,, exp(-2i.rr (x, t>)>. 

f' can be extended to the complex space C ,  as an entire analytic, given by 

(29.5) F(5) = ( T ,  , e x p ( - - 2 i ~  (x, 5))). 

Proof. T h e  validity of (29.4) can be established in a variety of ways, 
e.g. by noting that (29.4) is valid when T E %; and then, when T $ V:, 
by going to the limit along a sequence of elements of W: which converge 
to T in &'(Theorem 28.2). Or else, we may use the representation of T 
as a finite sum of derivatives of continuous functions with compact 
support. A third proof is obtained by reasoning directly on the definition 
of 9 T .  

Observe, next, that 5 - ( x  - exp( -2in ( x ,  5 ) ) )  is a V w  function 
of 5 E C, R,, with values in Wm(R;); in particular, (29.5) makes 
sense (and obviously extends (29.4)) and defines, in virtue of Theorem 
27.1, a Vw function in Rzn . We may apply to it the Cauchy-Riemann 
operators ajag, (j = 1, ..., n) and by again using Theorem 27.1, this 

Observe that Theorem 22.3 provides us with some information about 
the relation between the polydisks carrying an analytic functional and 
the growth of its Fourier-Bore1 transforms. Similarly, Estimate (29.3) 
points to a link between the growth of the Fourier transform off on the 
parallels of the real space and the support of F. We shall obtain analog 
relations for a distribution with compact support. 

The  following definition will help us to achieve more precision in the 
statements and in the proofs: 

time part (b), we see that is everywhere holomorphic. Q.E.D. 
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Dejnition 29.1. Let A be a subset of R". W e  shall call indicator of A the 
fumtion, defined in R, , 

Remark 29.2. If A is a subset of a locally convex TVS E, we may 
consider the function IA defined in the dual of E, E .  The set 
{x'; IA(x') < 1) is the polar A0 of A. It  is clear that IA = I,(,) , where 
r(A) is the convex balanced closed hull of A. When the scalars are the 
real numbers, balanced means symmetric and star-shaped wdh respect 
to the origin. A convex set B is balanced, then, if B = - B.  

Note that, with Definition 29.1, (29.2) can be rewritten as 

(29.6) I+, exp(-2i~ (x, <>)>I < C ~ X P ( ~ T I K ( ~ ) )  (5 E Cn , 7 = Im 0. 

We begin by proving (following L. Hormander) the section of the 
Paley-Wiener theorem which is relative to V" functions. 

THEOREM 29.1. Let K be a convex balanced compact subset of Rn. 
The following properties of a distribution 4 E 9" are equivalent: 

(a) 4 is a V" function with compact support contained in K. 
(b) The Fourier transform of 4 can be extended to the complex space C, 

as an entire analytic function 5 -&<) such that, for every integer 
m = 0, 1 ,..., there is a constant C, > 0 such that, for all 
5 = 4 + i, 

(29.7) I &{)I < cm(l + I 5 exp{2T1K(7)}~ 

where IK is the indicator of K. 

Proof. T o  see that (a) implies (b), it suffices to apply (29.6) with 
p = +(x) dx, where +(x) = (1 - d / h 2 ) k + ( x )  and 2k m. For then we 
have $(5) = (1 + I 5 I2)>"&5). 

Next, we prove that (b) implies (a). In order to show that supp 4 
is contained in the convex balanced compact set K, it suffices (Corollary 
1 of Proposition 18.2) to show that supp 4 is contained in every polygon 
of the form 

I7 = {xER"; I ( x , N ~ )  I < 1, j = 1 ,..., n}, 

which contains K and such that Nl ,..., Nn form a basis of R,. 
Let us therefore consider such a polygon. For simplicity, we take the 
functionals x - (Nj , x) as coordinates in Rn and we denote them 
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respectively by x i .  We use the dual coordinates system in R, : the 
coordinates of ( E R, are the numbers ti such that ( = I:,"=, tjNj ; 
we extend these coordinates to C, . With the coordinates xi (resp. ti) 
we associate the Euclidean norm I x I (resp. I ( I) and the Lebesgue 
measure dx (resp. df) ;  the latter is determined by the requirement 
that the measure of the unit cube be one. Now, if 7) E R, , we see that 
the supremum of I (x,  v) I = x:j"=, vixj is attained when xi = sgn vi 
for everyj = 1, ..., n, and that this supremum is then equal to 

n 

(29.8) = c I Ti I 
j=1 

On the other hand, since K C 17, we have Do C KO and therefore, for 
all 7 E R, , IK(v) < In(v). Thus we see that it suffices to show that (b) 
implies (a) when K = 17; then IK(v) is given by (29.8). 

First of all, a straightforward application of Cauchy's formulae 
(p. 90) shows that every derivative of 4, $ ( p )  (PEN,), satisfies also 
Inequality (29.7), possibly with a different constant C,  (indeed, this 
constant will depend on p ) .  From this fact, by taking 5 = f real, i.e. 
7 = 0, we derive that every function I $ ( p ) ( f )  I decreases at infinity 
faster than any power of 1/1 f 1. In other words, 4 belongs to Y(R,), 
hence C$ E 9(Rn) and we have the reciprocity formula (Theorem 25.1): 

+(x) = J exp(2ir (x, 5 ) )  4(5, a. 

J~MexP(2iTxl~l)& , 5 2  , . a * ,  5,) d5, - 
Consider, for fixed complex numbers l2 ,..., 5, , the integral 

(29.9) 

Using the fact that C$ is an entire analytic function, we can integrate 
&5), regarded as a function of 5, alone, on the following path r of the 
complex plane. 

Im 5, 
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As r is a closed path, the integral of 4 along it is equal to zero, by 
Cauchy’s theorem; the portion of this integral which is performed 
on the segment (-M, + M) of the real line is equal to (29.9), which 
is therefore equal to 

If we take into account (29.7), when m = 1, we see immediately that 
R ( M )  -+ 0, when M -+ +a. In other words, we have 

If we apply this argument, in turn, to each variable f1 ,..., f ,  , we obtain 

In this formula, 7 is an arbitrary vector of R,, . 

obtain 
We again take into account (29.7), this time with m = n + 1. We 

I +(.)I < C,+l exp(24 711 I + ... + I 71, I - <x, 71))) 

x / ( I  + I 5 d5. 

We then choose qi = r x i ,  T >0, qk = 0 €or k # j ( j  = 1 ,..., a). This 
gives us 

I $(.)I < const. exp(2x~(1 - 1 xj 1)1 x5 I). 

If I xi I > 1, we take T + +a; we obtain +(x) = 0. Therefore supp + 
Next we prove (following L. Schwartz) the extension of the Paley- 

must be contained in the set l7. Q.E.D. 

Wiener theorem to tempered distributions. 
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THEOREM 29.2. 
Rn are equivalent; 

The following properties of a tempered distribution T in 

The support of T is compact; its convex balanced hull is the set K.  
The Fourier transform of T can be extended to the complex space C, 
as an entire analytic function [+ p(5) such that there is an 
integer m 2 0 and a constant C > 0 such that, for all 1 = 5 + iv, 

(a') 
(b') 

(29.10) I T'(5)l < C(1 + I 5 I)" exp {27rIK(T)}* 

Proof of (a') + (b'). We consider arbitrary coordinates x1 ,..., x,  in Rn 
and the dual coordinates, c1 ,..., 5, in R, ; we use the associated Hilbert 
space structures on Rn and R, (inner product, e.g. in R, : (5 I 5') = 
xr=, titj'). Note that the notion of an orthogonal transformation then 
makes sense: it is a linear map of the space into itself which preserves 
the inner product (hence also the norm). Let us consider a polygon, 
containing K, 

n = {XE R"; I(x, NJI < Bi ,..-, I<x, NJ < 4 1 ,  
(cf. the proof of Theorem 29.1); we require now that Nl ,..., N ,  be an 
orthonormal basis of R, (B, ,..., B,  are positive numbers). As the support 
of T is compact, there is an integer m 3 0 and a constant A > 0 such 
that, for all 4 E %'F(Rn), 

(29.11) 

Let, then, g E Vm(R1) be equal to one on (- co, 4) and to zero on (1, + a). 
The function 

n 

4 ( ~ )  = exP(-2i7r (x, 5)) ng(I 5 I(I(x, Ni)I - Bi)) 
i=1 

is V* in Rn. Its support is contained in the set 

17, = {x; I (x, Nj)  I < Bj + I 5 I-',j = 1, ..., n}. 

I t  is equal to exp (-2i7r ( x ,  5)) in l7,, , which is a neighborhood of l7, 
hence of K, hence of supp T. Consequently we have, in view of (29.1 1) 
and of Proposition 29.1, 

It is very important to observe that the constant A, depends only on the 
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numbers m and A in (29.11) and not on the orthonormal basis (ATl ,..., N,) 
nor on the numbers B, ,..., B, . The independence from the Bj's is 
evident; and so is the independence from the Ni's if we perform an 
orthogonal linear change of variables in R, , Thus we see that 

I m)I < 4 1  + I 5 I)" exp(257Zn(ll) + 2 r h )  
since 

Finally we obtain 

This is true for all polygons l7 of the type considered. We may therefore 
put inf, in front of the right-hand side of the preceding inequality or, 
if one prefers, in front of In(q). But, as is easily proved, 

i$7(v) = I&). 

Proof of (b') == (a'). The proof of this implication is based on a 
standard regularization and on application of Theorem 29.1. Let 
p,(x) = e-"p(x/e)  be the usual mollifiers (cf. Lemma 28.1). It is 
immediately seen that the convolution pe*T is also a tempered distri- 
bution for all E > 0 and that its Fourier transform is equal to Berf 
(cf. Theorem 30.4; a direct verification is easy). Also observe that 

B c ( 5 )  = 8(&5>. 

Since the support of p is the ball {x; 1 x 1 < 11, we have, by applying 
(29.7), for each k = 0, 1 ,..., 

I B m I  < C k ( 1  + 14 exp(27=l T 1). 

This shows that the Fourier transform of p e * T  satisfies Condition (b) 
in Theorem 29.1 with IK(q)  replaced by IK(7) + el q I, which is the 
indicator of the set K,  = {x E Rn; d(x,  K )  < E }  (d : Euclidean distance). 
We conclude that supp(p,*T) C K ,  . 
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As E + 0, pE*T + T (proof of Theorem 28.2); for E < 1, the support 
of pc*T is contained in K,; therefore this is also true of supp T, which 
implies that supp T is compact. Finally, supp(pe*T) converges to 
supp T (again by the proof of Theorem 28.2), hence 

supp T C  K,  = K .  
E > O  

Q.E.D. 

Exercises 

29.1. Give an example of a distribution T with compact support, which is not a 
Radon measure, whose Fourier transform f' can be extended as an entire analytic function 
in C, satisfying, for some C, B > 0 and all I E C. , I f'(0 1 < C exp(B I I I). (Hint: 
Use Exercise 25.12 or 25.13 and multiplication by an element of VF.) 

29.2. Characterize the distributions with compact support in R" whose Fourier 
transform is an entire analytic function of exponential type ( E ,  ..., e) (Notation 22.2) for 
all E > 0. Give an example of an analytic functional on C" whose Fourier-Bore1 transform 
is an entire function of exponential type (e, ..., e) for all e > 0 and which is not a distri- 
bution with compact support. 

29.3. By using the Paley-Wiener theorem, show that, if P(a/ax) is a differential 
operator with constant coefficients (not all identically zero) in R", the equation P(a/ax)u = 0 
cannot have any solution u, other than u = 0, in the space 8" of distributions with compact 
suppbrt. 

29.4. Let A be a subset of R". Set for q E R., 

1hs) = SUP <s, x>. 
zEA 

Set A' = {v E R, ; IA(9) < l}, A" = {x E R"; supqEA' :v, x) < I}. Prove that A' is 
convex, that A" is the convex hull of A and that 1;. = la . 

Let K be a convex compact subset of R". Prove that the following two properties 29.5. 
of a tempered distribution T i n  R" are equivalent: 
(a) the support of T is contained in the set K ;  

(b) the Fourier transform of T can be extended to C" as an entire function ?(I) satisfying, 
for some constants C ,  m > 0 and for all t E C", 

I T(I) I G C(I + I I I ) " ~ X P W & I ~  IN. 



30 

Fourier Transforms of 
Convolutions and Multiplications 

If S and T are two distributions with compact support, the support 
of their convolution, S * T, is also compact, and, by Proposition 29.1, 
the Fourier transform of S*  T is the function equal to 

x - ( ( S  * T) ,  , exp(--2im ( X , Y > ) > .  

By definition of the convolution of two distributions with compact 
support (Definition 27.3), we have 

( ( S  * T ) ,  , exp(-2iw<x, Y ) ) )  = ( S ,  , (Fq , exp(-2im <x, Y - 7)))) 

= ( S ,  9 ( T ,  9 exp(--2im (x, Y + 7)))) 

= ( S ,  9 e.p( -277 (x, Y)) (T ,  9 exp( -22.n (x, 17)))) 

= ( S ,  * exp( -27 (x, Y ) ) X  T, 9 exp( --2h (x, 7>D, 

which shows that 

(30.1) F(S*T) = FSFT.  

Note that both sides are analytic functions (Theorem 29.2). 
The same relation is valid when S and T are two L1 functions in R". 

We know then (Corollary 3 of Theorem 26.1) that S t T is also an L1 
function. We also know (Theorem 25.3) that the Fourier transform of 
any L1 function is a continuous function in R,, converging to zero at 
infinity, so that both sides of (30.1) make sense. 

I t  is not difficult to extend the domain of validity of (30.1) invarious 
directions. In the present chapter, we shall consider the case where one 
of the factors in the convolution, say S, is a tempered distribution. I t  is 
not difficult to see then that S*  T and F S  F T  are also tempered 
distributions, whenever T is a distribution with compact support. But it 
is also easy to see that, now, the condition that T have compact support 
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can be relaxed. As the growth of S is slow at infinity, it should be 
enough to require that the decay of T at infinity be faster than any power 
of I / /  x I, in some reasonable sense. A similar remark applies to the 
right-hand side of (30.1): noting that 95' is an arbitrary tempered 
distribution (since F : Sp' -+ 9" is an isomorphism onto), we must 
require, if we wish to have FS %=T E Sp', that F T  be a V" function 
slowly growing at infinity (this means that all the derivatives of F T  
should, as well, grow slowly at infinity); this is to say that F T  should be 
an element of the space of V" functions already introduced as the space 
0, (Definition 25.3; see also Theorem 25.5). We are going to make all 
this more precise. 

Definition 30.1. We denote by 0;7 the space of distributions T having the 
following property: 

(30.2) Given any integer h 0 ,  there is a finite family of continuous 
functions in R", { f,} ( p  E N", 1 p I < m(h)), such that 

The letter 0 stands for operators, the subscript C for convolution 
(the prime indicates that we are dealing with distributions, not with 
functions). Obviously the elements of 0; are tempered distributions 
(cf. Theorem 25.4). One often refers to the elements of 0; as the 
distributions rapidly decreasing at infinity. 

Examples 

30.1. The continuous functions rapidly decreasing at infinity (i.e., 
decreasing at infinity faster than any power of 1/1 x I), in particular the 
functions belonging to 9'. 
30.2. The distributions with compact support. 
30.3. The finite sums of derivatives of continuous functions rapidly 
decreasing at infinity. One should not think however that this type of 
distributions completely makes up 0;: Property (30.2) is not equivalent 
with saying that T is a finite sum of derivatives of continuous functions 
rapidly decreasing at infinity. Note, in Property (30.2), that, as the 
integer h increases, so will, in general, the integer m(h). In  connection 
with this, we propose the following exercise to the student: 
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Exercise 30.1. Prove that the distribution e'121a, that is to say the distribution 

belongs to Oh. 

We shall not define any topology on Oc (although this can be done in a 
natural way). The introduction of this space is justified by the following 
result: 

THEOREM 30.1. Let T E 0; . Then the convolution mapping 

(30.3) g:(Rn) 3 P - ( T  * P)(4  = < T, 9 cp(x - Y ) )  

is a map of %':(Rn) into Y(Rn), which can be extended as a continuous 
linear map of Y ( R n )  into itself. 

Proof. The proof is very straightforward. Let k be a nonnegative 
integer, and P(D) a differential operator with constant coefficients on R". 
Let h be an integer > k  + n + 1. We use a representation of T as in 
(30.2), with this choice of the integer h. We have 

W ) ( T  * 9') = T * (Wb) = c f,, * [(a/a.)* W) PI. 
p S m ( h )  

Let now q be an arbitrary n-tuple such that I q I < k. We have (see 
Chapter 26, Exercise 26.4) 

4 f D  * [ ( a / a X P  W) PI1 = c (;) (.*-'f*> * [ x r ( a / W p  W) PI, 
r< P 

where Y < q means, as usual, yl < q1 ,..., Y, < q,. Because of our 
choice of h > k + n + 1, and since 

If,,(x)l < CD(1 + I IFh, 
we see that ."-'f,  EL^; hence we have (Corollary 2 of Theorem 26.1) 

ll(.*-'fP) * r.r(a/wp W) PIIIP < II .@-'I, IIL' I1 X r ( w ) '  W) P l!Lm * 

Combining all these inequalities, we see that there is a constant C > 0 
such that, for all functions E %':(R"), 

c II xu W) ( T  * P)llP c c 1 1 II .r(a/a.)p W) P IIP > 
IalGk l r l g k  lPlGm(h) 

which immediately proves our assertion. 



Chap. 30-41 FOURIER TRANSFORMS 317 

Definition 30.2. Let T E 0;; we denote by S * T or T * S the image of a 
tempered distribution S under the transpose of the continuous linear map 
q - T * q of Y into itsey. 

We have denoted by T * q the image of q E Y under the extension to 
Y of Mapping (30.3). We recall that T is the distribution defined by 

w: 3 Q - ( R  v) = (T, +), +(x> = d-4. 

There are several consistency conditions to be verified; for instance, when 
both S and T belong to 0; , we must show that the image of S under 
the transpose of y -. T * q is equal to the image of T under the transpose 
of -, S* y .  This is easily done by using Condition (30.2). By using the 
theorem on structure of tempered distributions, one proves easily the 
following theorem (regularization of tempered distributions): 

THEOREM 30.2. Let q E Y(R”), S E Y‘(R”). The convolution S * q 
(Definition 30.2) is the V“ function slowly increasing at infinity (i.e., 

x - ( S ,  * Q(X - Y ) ) .  

G OM): 

Again by using the structure of a tempered distribution, one may 
easily define the convolution of S E Y  with TEOL; suppose that 

where the g, are continuous functions such that, for a suitable integer 
K 3 0, we have, for all x E R”, 

Choose for T a representation as in Property (30.2) with h 3 K + n + 1. 
Then we may write 

It is not difficult to see that 
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that g, * f ,  is a continuous function, and that 

I(gp*fJ(x)l<CJ?1 + lX-Yl )k l . t g (Y) ldY 

< C(1 + I x Ilk 1 (1 + I Y I)k If*(Y)l dY 

< Cd1 + I X Ilk f (1 + I Y dY 

< C,(1 + I x 1)" since h > K + n + 1. 

This proves that g, * f ,  is slowly increasing at infinity and, therefore, that 
S* T, given by (30.4), is a tempered distribution. 

We go back, next, to Fourier transformation. Observe that both 0, 
and O:, are linear subspaces of 9'; the Fourier transformation is well 
defined for these sets of distributions. Furthermore, we have the 
following result: 

THEOREM 30.3. 
of 0; onto 0, and of 0, onto 0;. 

Proof. It is enough to prove that 9 maps 0; into 0, and 0, into 
0; since 9, which is the inverse of 9 in 9", will obviously have the 
same properties. 

The Fourier transformation is a one-to-one linear map 

Let T E Oc; we use a representation of T as in Property (30.2): 

Let k be an arbitrary integer; choose h 2 k + n + 1 and q E Nn, 
I q I < k. Then we may differentiate q times f, under the integral sign. 
We obtain, in this way, 

l(a/a5)"fP(5)1 < 1 I(2rnX)P I I f P ( 4 l  d X  

< C 1 (2nJ x 1)1*1(1 + I x dx, 
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from which one derives easily thatf^, belongs to Vk(Rn); thus f' E Vk(Rn); 
since k is arbitrary, this means that f' is a Vm function. Furthermore, 
since all the derivatives of order <k of the fp are bounded functions, 
we have, for every q E N", I q I < h, 

l(ala5)g m)I < C(1 + I 5 

for all [ E R, and a suitable constant C > 0, independent of 6. This 
shows that f' E 0, . 

Let, now, 01 E 0, . If h is an arbitrary integer 2 0, there is an integer 
m = m(h) 2 0 and a constant C > 0 such that, for all x, 

(30.5) 

an easy computation shows that there is a constant C' > 0 such that, 
for all x E R", 

(30.6) 

Let p be the Fourier transform of 8;  we have 

B(x) = (1 + 1 x (2)-rn--n-1 4.) ; 

c I(a/ax)"(x)I < c'(1 + I x 1 y - 1 .  
Ia lSh 

Combining this with (30.6), we obtain 

But Relation (30.5) means that 

which shows that dz E 0;. 
We prove now the announced extension of Eq. (30.1): 

THEOREM 30.4. Let S E 9', T E 0; , and 01 E 0,. Then we have 

Q.E.D. 

(30.7) 

(30.8) 

F(S * T )  = F S F T ;  

F(0rS) = F a  * FS. 



320 DUALITY. SPACES OF DISTRIBUTIONS [Part I1 

Proof. 
true with 5 replacing 9, from which we derive 

It suffices to prove (30.7). Indeed, the same formula is then 

S * T = F($S S T ) ;  

but 9s  may be replaced by S and 5 T  by a; then S has to be replaced 
by F S  and T by F a  (we have used Theorems 25.6 and 30.3). 

In order to prove (30.7), we observe that we have 

(F(S * T ) ,  v) = ( S  * T,  p v )  = ( S ,  f * (ST)). 

But on the other hand, we have (cf. Theorems 30.1 and 30.2) 

Let us use a representation of T as in Property (30.2) with h 2 n + 1. 
Then we see that 

But we can interchange the integrations with respect to f and y, since 
(by our choice of h 2 n + 1) all the functions f, are integrable. We obtain 
immediately 

[T * (9v)1(.4 = c J exP(--2i7T (x, 4 ) )  ( 2 ~ 4 ) P f P ( 5 )  940 d5 
IPlSrn(h) 

= [9%9=Tb)l(x). 

Thus we have obtained 

(F(S * TI, v) = (FS, (FvP), 

which is exactly what we wanted to prove. 
From Eqs. (30.7) and (30.8), one easily derives the following formulas, 

valid for an arbitrary polynomial P ( X ,  ,..., X,) in n variables with 
complex coefficients, for any vector a E R”, for any tempered distribution 
S in Rn: 

(30.9) SF(P(a/ax)s) = P(2im5)(FS); 

(30.10) 

(30.1 1) 

1 
F ( P ( X ) S )  = P (- 7& a/a5) ( S S ) ;  

F(T,S) = exp( -2im (a, 5 ) )  (SFS). 
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It suffices to observe that 

p(a/ax)s = [ q q a x )  81 * s, ras = 8, * s. 

Exercises 

30.2. Compute the Fourier transform of the distribution eWe.  From the fact that 
derive that eflzl* belongs to O',-(cf. Exercise 30.1). Conclude 

30.3. Let H be the space of analytic functionals in C", Exp the space of entire functions 
of exponential type in C", .9 the Fourier-Bore1 transformation H' -+ Exp (Definition 
22.3). For all pairs p, Y E  H ,  let us set 

eilzlL belongs obviously 
that there is no natural way of establishing a duality between 0, and Ob. 

p * Y = gt--l(Sp .TI,). 

Prove that the star composition law, which is called conwolution of analytic functionals, 
turns H into a commutative ring with a unit element, and that, if we embed B'(R") into 
H'(C") (by transposing the restriction to the real space, H(C") + Qm(R")), the convolution 
in H induces the convolution of distributions with compact support in R". 

Define and state the basic properties of the convolution h * p of an entire analytic 
function h E H(C") with an analytic functional p E H'(C"). 

30.4. Let X be the set N". Let E be the space of complex functions in X with compact 
support, and F the space of all the complex functions.in X, E will carry the topology 
inductive limit of the spaces Em (space of functions p ...+ f( p) which vanish identically for 
I p 1 > m; m = 0, 1 ,  ...); F will carry the topology of pointwise convergence in X. It is 
clear that 

f -  c f(P)XP 
veN" 

is a TVS,isomorphism u of F onto 9,, the Frkchet space of formal power series with 
complex coefficients in n indeterminates X = (X, ,..., X,,). The restriction of the same 
mapping to E is a TVS isomorphism w of E onto Yn,  the LF-space of polynomials in n 
letters. 

We define the convolution in F 

( f , g ) - f * g : p -  C f ( P - - d g ( q ) ,  
a<v 

where q < p means q, Q pi for everyj = 1, ..., n. 
Describe the relations between u, w, their transposes, t ,  , t ,  , also between the transforms, 

under u and v, of multiplicative products and convolutions of functions on X, and the 
transforms, under t .  and t . ,  of products of polynomials and formal power series. 

30.5. Prove that there are no zero diwisors in the following convolution algebras: 
B', Oi, 9; (see Exercise 27.6). 
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The Sobolev Spaces 

In the previous chapters, the main body of distribution theory has 
been described. Needless to say, the applications of this theory to 
analysis often require a much more detailed study of particular classes 
of distributions. The present chapter is devoted to the elementary theory 
of such a class, which has come to play an increasingly important role 
in the theory of partial differential equations. These distributions are 
grouped into a succession of spaces, the so-called Sobolev spaces and 
their variants. This succession, or ladder, of spaces is built on a notion 
of order of a distribution which is somehow different from the notion 
introduced in Definition 24.3 and turns out to be better adapted to the 
study of a large number of problems. Instead of looking at distributions 
which are sums of derivatives of order <m of Radon measures 
(Theorem 24.4), we may look at distributions which are sums of 
derivatives of order < m  of functions belonging to LP (1 < p < +a). 
The advantage lies in the fact that the spaces LP are much easier to 
manipulate than the space of Radon measures; for one thing, the dual 
of Lp is as well known as Lp itself, provided that p be finite, €or it is 
nothing more than Lp', p' = p / ( p  - 1). 

The distributions of order < m  (in the sense of Definition 24.3) form 
a space which is the dual of (m-times continuously differentiable 
functions with compact support). One may say that the concept of a 
distribution which is a sum of derivatives of order <m of Radon measures 
is the dual of the concept of a function (with compact support) whose 
derivatives of order < m  are continuous functions. A similar fact occurs 
in the theory of Sobolev spaces: for p > 1, the concept of a distribution 
which is a sum of derivatives of order < m  of Lp functions is, in a sense, 
the dual of the concept of a function whose derivatives of order < m  
belong to Lp' (again, p' = p / ( p  - 1)) and furthermore, which is the 
limit (in a natural way) of %: functions. We shall now proceed to give 
a precise form to these ideas. 

In the forthcoming, SZ will be an arbitrary open subset of Rn, m an 
integer 2 0. 

322 
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De$nition 3 1.1. Let p be a number such that 1 < p < + co. We denote 
by H P * m ( 5 2 )  the set of distributions u in 52 such that all deriwatives of order 
<m of u belong to L P ( 0 ) .  

If u E H P s m ( S Z ) ,  we have u E L P ( S Z ) :  thus u is a locally integrable 
function in 52 (Theorem 21.4). The space HP*m(Q)  is equipped with the 
natural norm: 

(31.1) 

By a we have denoted an n-tuple a = (a1 ,..., a,). The norm (31.1) will 
be denoted by ( 1  u ( (p ,m,R  , or simply by ( 1  u when there is no risk of 
confusion. As we shall soon see, the case p = 2 is particularly important; 
in this case, the norm (31.1) will usually be denoted by ( 1  u ( I m  . 

PROPOSITION 31.1. The norm (3 1.1) turns H p ~ m ( S 2 )  into a Banach space. 

Proof. Let {uk) (k = 1,2, ...) be a Cauchy sequence in H P B ~ ( S Z ) ;  for 
each n-tuple a such that I a I < m, {(a/ax).uk} is a Cauchy sequence in 
L P ( Q ) ,  and therefore converges in this space to a limit u“. In particular, 
{uk} converges in L p ( s Z )  to a limit u = uo. Since the differential operators 
(a/&). are continuous mappings of 9’(SZ) into itself, (a/ax).u, converges 
in 9’(52) to (a/ax).u; because of the uniqueness of the limit in a Hausdorff 
space, we must have us = (a/ax).u. Q.E.D. 

COROLLARY. The norm (31.1) turns H2-m(SZ) into a Hilbert space. 

I t  suffices to combine Proposition 31.1 with the remark that, when 
p = 2, the norm (31.1) is associated with the sesquilinear form 

(31.2) (u, w )  - C (a/ax>. u(x) (a/ax). W(X) dx. 

Usually, we shall denote (31.2) by (u, w ) ~ , - ,  or (u, w ) ~ .  
The natural injection of HPpm(52) into L p ( 0 )  and, a fortiori, into 9’(Q), 

is continuous. Also note that we have Hp.ml (SZ)  C H*,ms(SZ) for m, > m2 
and that the norm of the natural injection of the first space into the 
second is <1 (in fact, it is equal to one as is easily seen). An important 
feature of the Banach spaces H P s r n ( Q )  is that, in general, they are not 
normal spaces of distributions; that is to say, %‘:(SZ) is not dense 
in H p ~ ~ ( 5 2 )  (this is only true in general, of course, since %‘:(sZ) 
is obviously dense in HP>m(Q)  when p < +m and m = 0 or when 
p < +m and SZ = Rn as will soon be shown). 

b l S m  
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Definition 31.2. We denote by Hi."(SZ) (1 < p  < +a, m 2 1) the 
closure of %':(SZ) in HPvm(SZ) .  

Notice that the norm of a function + E %':(SZ) in H P s m ( S Z )  is equal to its 
norm in H P , m ( S Z ' )  for all open sets sz' containing SZ. This means that the 
natural injection of %':(SZ) into %':(sz') can be extended as an isometry 
of H{*"(SZ) into Hi*"(Q'). We shall denote by u - 1 1  u I l p , m  the norm 
(31.1) on H,P*"(SZ). 

From Proposition 31.1 and the fact that a closed subspace of a Banach 
space (resp. of a Hilbert space) is a Banach space (resp. a Hilbert space), 
we derive: 

PROPOSITION 31.2. HtVm(SZ) is a Banach space (1 < p < +a); H;*"(SZ) 
is a Hilbert space. 

In  order to see that H,Psm(SZ) is, in general, a proper subspace of 
HP"(SZ), we might look at the case of a bounded subset SZ of Rn, when 
p = 2 and m = 1. In  this case, the orthogonal of %'F(SZ) in H2J(SZ) is 
made up by the elements H2J(SZ) satisfying (u, +)1 = 0 for all + E %':(SZ); 
but (cf. (31.2)): 

which shows that these elements u are the solutions of the partial 
differential equation (to be understood in the sense of distributions in SZ) 

(31.3) u - A u  = O ,  

where d = ( a / a ~ , ) ~  + --. + is the Lapluce operator. It  is easy 
to see that there are elements u of H2J(SZ) which satisfy (31.3): in fact, it 
suffices to take the restrictions to SZ of the solutions of (31.3) in the whole 
space Rn. One can show that these solutions are y* in Rn; since SZ is 
bounded, their restrictions obviously belong to H2*m(SZ) for all m 0. 
If one does not want to use this result, one may take the restrictions to 
SZ of the functions x - e(x*c>, where 5 E Cn satisfies the equation 

n 

C (&I2 = 1. 
j=1 

Since Hgsm(SZ) is a normal space of distributions in SZ, its dual may 
be canonically identified with a space of distributions in 9, which we 
describe now, in the case where p < +a. 
Definition 31.3. We denote by HP*-(S) (1 < p  ,< +a, m 2 1) the 
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space of distributions in Q which are equal to a finite sum of derivatives of 
order <m of functions belonging to Lp(Q). 

Suppose that 1 < p < foo and set p’ = p / ( p  - 1). If u E H P ’ S - ~  (fa 

u = c (a/ax).g,. 

there are functions g, (a E N”, 1 a 1 < m), belonging to Lp’(Q) ,  such that 

lul<m 

If, then, # E %‘;(Q), we have 

whence, in view of H6lder’s inequalities (Theorem 20.3), 

I(u, +)I < C II ga IILp’ II(a/ax).+ IIL’ < Q+ 1Irn.v > 
Ial<m 

This shows that # - (u, #) can be extended, in a unique way, as a 
continuous linear form on Ht*m(Q); let us call this extension the canonical 
extension of u to Ht*m(Q). 

PROPOSITION 31.3. Let p 3 1 be finite, and m an integer 2 1 .  The 
canonical extension is a one-to-one linear map of the space HP’,-*(Q) onto 
the dual of Hf*m(Q). 

We recall that p‘ = p / ( p  - 1). 

Proof of Proposition 31.3. We have seen that the canonical extension 
is “into”; it is of course linear, and it is one-to-one since %‘:(Q) is 
dense in Hg*m(12). We must therefore only show that it is onto. This is 
very easily done in the following way. Let N = N ( m ,  n) be the number 
of n-tuples a = (a1 ,..., a,) such that I a 1 = a1 + . * *  + a% < m; let 
E be the product space of N copies of the space L*(Q), equipped with 
the product topology: an element f on E is an N-tuple ( f,) whose 
components are elements of L p ( Q ) ;  the topology of E can be defined by 
the norm ( f,) - (&19m 1) f, l l&cn,) l /P which turns E into a Banach 
space (a Hilbert space if p = 2). The dual of E is canonically isomorphic 
to the product of N copies of the dual of D(s2), which is canonically 
isomorphic with Lp‘(s2) (Theorem 20.3). On the other hand, there is a 
canonical isometry of Hp,m(Q) ,  and therefore of H;sm(Q), into E, namely 
the mapping 

(31.4) “L+ ((a/ax)w)Ial<rn 
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If we transpose this mapping, we obtain a continuous linear map of E' 
onto the dual of H$*m(Q): that the last map is onto follows immediately 
from the Hahn-Banach theorem. Indeed, any continuous linear form 
on H[-"(Q) can be transferred as a continuous linear form on the image 
of H{*"(Q) under (31.4) and then extended to the whole of E as a 
continuous linear form; the image of the latter under the transpose of 
(31.4) gives back the form on H;*"(Q) we started from. 

Let, now, L be a continuous linear form on Hi*m(SZ); it is the image, by 
the transpose of (31.4), of an element of the dual of E, that is to say of an 
N-tuple (g,) of functions g, E L P ' ( Q ) ;  if we set u = &Gm (-1)la1(a/ax).g,, 
we see immediately that L is the canonical extension of u: it suffices to 
compare L(+) and (u,  4) for all + E %';(Q). 

Remark 31.1. We may define on H P ' , - ( Q )  the following norm: 

( I  u ((p,.-m = ' i d  ( c It& l l h Q J ' p '  
iai<m 

where the infimum is computed over all the representations of u of 
the form 

l.4 = c (a/ax)-ga, gaEL"'(SZ). 
IalSm 

Then, inspection of the proof of Proposition 31.3 shows that the canonical 
extension is an isometry of HP'.-m(Q)onto the dual of HESm(Q) (provided 
with the dual norm). 

Again, the case p = 2 is worth examining more closely. Let J be the 
canonical isometry of the Hilbert space Ht.m(Q) onto its anti-dual 
(Theorem 12.2), and let K be the inverse mapping of the canonical 
extension, K : (Hi*"(Q))' -+ H2v-m(Q). If L is a continuous antilinear 
functional on H,"*"(Q),t is a continuous linear functional on the samespace; 
we then define R(L) = K(L)  (the complex conjugate of any distribution 
Tis defined by (T, 4) = (T,$), 4 E %':); thus R is a linear isometry of 
the anti-dual of H,2."(Q) onto H2*-"(SZ) (cf. Remark 31.1). Finally, we 
have obtained a linear isometry of H,2*m(SZ) onto H2*-m(Q), namely the 
compose R o J. We may refer to this linear isometry as the canonical 
isometry of H,2*"(Q) onto H2*-(Q). 

PROPOSITION 31.4. 
the map 

- 

The canonical isometry of H,2*m(Q) onto H2*-m(Q) is 

21 - c (-l)ya/ax)%. 
b l S m  
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We have used the notation 201 = (201, ,..., 2orn). For example, we see 
that, if m = 1 ,  the above canonical isometry is the mapping 

u -+ u - Au, A :  Laplace operator. 

The proof of Proposition 31.4 consists essentially of the remark that, 
for u E Hi2 .m(9)  and + E %‘:(9), we have 

We leave the details to the student. 

COROLLARY. For all m = 1 ,  2 ,..., H2s-”(9) is a normal space of 
distributions. 

Indeed, the canonical isometry of H,2mm(S2) onto H 2 . - m ( 9 )  maps 
%‘:(9) into itself; but the image of a dense subset under an isometry 
onto is a dense subset. 

We have defined Hfj’*w’(9) and H P , - m ( 9 )  only for m 2 1; it is clear 
that we could have defined these spaces also for m = 0, taking them to 
be equal to HP,O(Q) = L p ( s 2 ) .  

We now center our attention on the case 9 = Rn. 

PROPOSITION 31.5. 
is dense in HPvm(Rn). 

Proof. 
equal to one in the ball {x; I x I < l }  and to zero for I x I > 2. Set 

Let us assume 1 < p < +OO, m > 1. Then %‘:(R”) 

By cutting and regularizing (cf. Chapter 28). Let g E %‘: be 

gk(x) = g ( x / k ) ,  k = 1,2 ,.... 

The function g, is equal to one for I x I < k and to zero for 1 x 1 > 2k. 
Let u be an arbitrary function belonging to HP*m(Rn), and D any one of 
the differential operators (a/&>., I 01 I < m. We have, by Leibniz’ 
formula, 

whence 
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Here, C is a positive constant independent of k = 1, 2, ...; if we choose 
suitably, we may also write 

Since (a/ax)vu E LP(Rn) for I y I < m, we see that, as k + +a, 

This proves that gku converges to u in HPsm(Rn). In view of this fact, it 
suffices to prove that every distribution u E HP,m(Rn) with compact 
support is the limit of a sequence of test functions. In order to prove this, 
we need not assume Q = Rn. 

LEMMA 31.1. Let p 3 1 be jinite. Every u E HP,m(Q) having compact 
support is the limit of a sequence of functions belonging to %‘~(Q). 

Proof of Lemma 31.1. Let p be the usual function employed to define 
mollifiers (e.g., see Lemma 28.1); set p , ( x )  = ecn p(x/e)  for E > 0. For E 

sufficiently small, the support of pe * u is contained in Q; of course, 
pE * u is a %‘: function. It is enough to prove that, for all n-tuples a such 
that I a 1 < m, when k + +a, (a /aX) ’” (P l /k  * u) converges to (a/ax).u in 
Lp(Q). Since 

( W ) ” ( P ,  * u )  = P E *  (a/ax)% 

it suffices to prove that P l / k  * v --+ v in Lp(Rn), as k --+ +a, where now v 
is an arbitrary function in LP(Rn), not necessarily with compact support. 
The shortest proof of this fact is based on a consequence of the Banach- 
Steinhaus theorem, which will be stated and proved later on 
(Theorem 33.1). Anticipating a little, the consequence relevant in the 
present situation is the following one: let E be a Banach space, and 
{ u k }  (k  = 1, 2, ...) a sequence of continuous linear mappings of E into itself 
with the following two properties: (1) there is a constant C > 0 such that 
the norm of uk is <C for all k ;  (2) there is a dense subset A of E such that 
uk(x) converges to x in E, as k + +a. Under these circumstances, U k ( x )  

converges to x as k + +co for every x E E (and not only for every x E A). 
We apply this to the sequence of mappings u - P l / k  * u of IP(Rn) into 
itself. The hypotheses of the preceding statement are satisfied. Indeed, 
the norms of these mappings are <I/ P l / k  / I L l  = 1 1  p (Corollary 2 of 
Theorem 26.1); when k -+ + 00, P l / k  * u converges uniformly to u in Rn 
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provided that u be continuous and have compact support (Lemma 15.2); 
we know that is dense in LP(Rn) (Theorem 11.3). We conclude that 
u = limk,+,(p,lk * u) for all u €Lp(Rn). This proves the lemma and 
consequently also Proposition 3 1.5. 
Remark 31.2. Lemma 31.1 proves that the elements of HPvm(f2) 
(1 < p < +m) which have compact support (contained in Q!) belong 
to Hg *"( Q). 

Since HP.m(Rn) C Lp(Rn), we see that all the distributions which 
belong to the spaces H P B ~ ( R ~ )  are tempered, and so also are the 
distributions belonging to HP,-"'(Rn), as follows immediately from their 
definition. This fact enables us to perform the Fourier transformation on 
the distributions belonging to HP*k(Rn), where now k is an integer, >, 0 
or < 0. We shall restrict ourselves to the case p = 2, which is the most 
simple to study, in view of the fact that the Fourier transformation is an 
isometry of L2(Rn) onto itself (Plancherel formula, Corollary 1 of 
Theorem 25.2). 

PROPOSITION 3 1.6. Let k be an integer 3 0 or < 0. A distribution u belongs 
to H2yk(Rn) if and only if u is tempered and if its Fourier transform 6 is a 
function which is square integrable with respect to the measure (1 + 1 6 1 2 ) k  d f .  

Proof. Suppose first that k is 2 0 .  For all n-tuples a whose length 
I a I is <k, we have (a/ax).u E L ~ ( R * ) ;  by Fourier transformation, this 
means that 5016 E L2(Rn), which implies immediately our assertion in 
this case. 

Suppose now k < 0. By Proposition 31.4, every element of H2sk(Rn) 
is of the form &gIkl (- 1)lul(a/ax)%, with u E H2*ik'(Rn).  Performing 
a Fourier transformation and applying the result when k 2 0, we obtain 
the desired conclusion easily. 

Proposition 3 1.6 points to the natural way of interpolating the spaces 
H2*k(Rn),  that is to say of incorporating them in a one-parameter family 
of Hilbert spaces. The interpolation is achieved by the spaces Hs 
(s real arbitrary) defined in the following way: 

Definition 3 1.4. Let s be an arbitrary real number: Hs, 01 Hs(Rn),  is the 
space of tempered distributions u whose Fourier transform 4 is a square- 
integrable function with respect to the measure (1 + I f 12)s d.$. 

Thus, u E Hs means that (1 + I f (2)s/2 u E L2. Proposition 3 1.6 says that 
H S  = H2**(Rn) when s is an integer 3 0 & < 0. On Hs, we consider the 
Hermitian product 
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and the associated norm 

PROPOSITION 31.7. The Hermitian product ( , )$ turns H8 into a 
Hilbert space. 

This is nothing else but the well-known statement (Fischer-Riesz 
theorem) about the space L2 relative to a positive Radon measure. For 
s s', there is a natural injection, continuous with norm <l ,  H8+ HS'. 

In view of the Plancherel theorem, Ho is identical with L2(Rn) as a 
Hilbert space (which is to say that the identity applies to Hermitian 
products and norms). 

Note that 4 - (1 + I 4 12)s/2 is a 'it" function in k, belonging to 0,; 
its Fourier transform is a distribution belonging to 8; (Theorem 30.3) 
which we denote by Us. We may consider the convolution mapping 
S - Us * S, which is a continuous linear map of the space 9' of tempered 
distributions into itself (Definition 30.1). The next result follows 
immediately, by Fourier transformation (see Theorem 30.4): 

PROPOSITION 31.8. Let s, a be two arbitrary real numbers. The conwolution 

is an isometry of H8+a onto Ha. 

In particular, u - Us * u is an open isometry of Hs onto Ho = L2(Rn).  
Thus, we see that the normed spaces H" are all copies of L2(Rn). This 
fact implies that H S  is a Hilbert space for all real s; on the other hand, as 
9'(Rn) = 9 is a dense subspace of L2(Rn) and as + - U8 * + is obviously 
a continuous linear map of 9' into itself, and because the image under an 
isometry onto of a dense subset is a dense subset, we obtain the following 
result: 

u * u,*u 

PROPOSITION 31.9. 
image. In particular, H 8  is a normal space of distributions in Rn. 

On the product H8 x H-$ we may consider the bilinear form 

The iajection 9 -+ Hs is continuous and has a dense 

(31.5) 
(u, w) - (Us  * u, u-, * 6)o  = J (1 + I 4 12)s'*  G(4)  (1 + I 4 12)--s'2 q-4) a, 

where 6 is the complex conjugate of w .  If w belongs to 9, we have 

. (Un*u ,  U_,*B), = s ( [ ) e ( - [ ) d [  = ( 9 t U . S V )  = (u,w), s 
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where the bracket is the bracket of the duality between Y and 9’ and 
where we have used the definition of the Fourier transform of a tempered 
distribution. The above remark justifies the use of the notation 
(u, w )  - ( u ,  v )  for the bilinear form (31.5). Observing that u E H 8  
implies U ,  * u E H-8, we obtain the following: 

(u ,  uzs * a)  = ( U s  * 11, u, * u)o = 1) u 11: . 

If v is a second element of Hs, we have 

(u, u,, * 6)  = (u; qs. 

Using these facts, we see easily that the following is true: 

PROPOSITION 31 .lo. The bilinear form (31.5) turns H” and H-8 into the 
dual of each other; the mapping u - U ,  * zi is the canonical antilinear 
isometry of the Hilbert space Hs onto its dual, H-8. 

When s is a nonnegative integer, the mapping u - U ,  * u is nothing 
else but the differential operator u - (1 - d/4.rr2)8u, where d is the 
Laplace operator (cf. Proposition 31.4). 

The one-parameter family of spaces H S  is often used to measure the 
regularity of distributions. The next result throws some light on this 
role of the spaces H*: 

PROPOSITION 31.11. If s > n/2, the elements of H” are continuous 
functions. 

Proof. Let s be > n/2, rj5 E 9. We have, by Schwarz’s inequality, 

By extending this inequality from Y to Ha, we see that the Fourier 
transformation maps H8 into L1(Rn). In other words, every function 
u E H8 is the inverse Fourier transform of an integrable function. 
Proposition 31.1 1 then follows immediately from the Lebesgue theorem 
(Theorem 25.3). 

COROLLARY. Let m be an integer > 0. I j  s > m + 4 2 ,  the elements of 
H8 are m times continuously dzzerentiable functions in Rn. 
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Indeed, if u E H", (a/ax).u E HS-" for all n-tuples a, I a I < m, as one 
can check easily. If s - m > n/2, (a/ax).u is a continuous function. 

Finally, we must mention the spaces of distributions with compact 
support, on one hand, and the local spaces of distributions, on the other, 
that one builds out of the Banach spaces HPsm. Let Q, as before, be an 
open subset of Rn, and K an arbitrary compact subset of 52. We shall 
denote by HPvm(K) (1 < p < +a, m: integer 2 0 or < 0)thespace of 
distributions in R" which belong to HPsm(Rn) and have their support 
contained in K; we equip HP*m(K) with the norm induced by HPsrn(Rn) 
with which it obviously becomes a Banach space (a Hilbert space if 
p = 2). Then, by Hfpm(Q) we denote the inductive limit of the spaces 
HPsm(K) as K ranges over the family of all compact subsets of 52. 
Obviously, HfSrn(Q) is a space LF. 

If SZ' is an open subset of Q, let us denote by T I Q' the restriction 
of a distribution Tin 52 to Q'. We then denote by Hf;F(Q) (1 < p < +oo, 
m: integer 0 or < 0) the space of distributions T inQ such that T I 52' 
belongs to HP*"(sz') for all relatively compact open subsets SZ' of Q. We 
equip HeF(Q) with the least-fine locally convex topology such that all 
the mappings T - TI Q' from HKF(Q) into Hp.m(sz') will be continuous 
(a' C Q and compact). By taking a sequence of relatively compact open 
sets sz' whose union is equal to Q, one sees that Hf;F(Q) is a FrCchet 
space. 

For s real, not necessarily an integer, the space H,8(Q) can be defined 
exactly in the same manner as we have defined the 'HfBm(Q) above: as 
the inductive limit of the Hilbert spaces H"(K)  = {u E Hs;  supp u C K}, 
equipped with the Hilbert space structure induced by HS, as K ranges over 
the compact subsets of Q. However, we cannot define the spaces H~oc(Q)  
in exactly the same manner as the spaces Hf;r(Q), for we have made use 
of the spaces HP*m(Q), which have no equivalence here (at least in the 
framework to which we have limited ourselves). But the difficulty is 
easily turned by using cutting-off functions. Thus Hfo,(Q) is the space 
of distributions T in Q such that, for every (b E %';(Q), 4T belongs to H". 
We equip Hio,(Q) with the least-fine topology such that all the mappings 
T - (bT from Hio,(SZ) into H8will be continuous (as4 ranges over %?:(Q)). 
As we could have limited ourselves to a sequence of functions r j  equal 
to one on (relatively compact) open subsets whose union is equal to 52, 
we see that Hfoc(Q) is a FrCchet space. Needless to say, we could have 
defined HkF(Q) in the same fashion and the two definitions agree when 
p = 2 and s is an integer, equal to m. 

Many of the basic properties of the spaces HF*m(Q) and Hr;r(52), as well 
as Hi@) and Hfoc(52), will now be stated in the exercises, to be proved 
by the student. But one property, which is a trivial consequence of 
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Proposition 31.1 1 and of its corollary, should be mentioned right now, 
namely that 

But the student should be very careful not to think that the last one of 
these equalities extends to the topologies: it is not true that a subset of 
%':(Q) is a neighborhood of zero in this space only if it is the intersection, 
with %':(Q), of a neighborhood of zero in some space K(Q) (this is true 
however, when the subscript c is replaced by loc, so that the first 
equality indeed extends to. the topologies). These facts are connected 
with the "dual" (see Exercise 3 1.4) equalities 

(31.6) 

(31.7) 

where &@'"(a) denotes the space of distributions of finite order in Q. 
The validity of (31.6) and (31.7) follows from the fact (Corollary 2 of 
Theorem 24.5) that a distribution of finite order is a finite sum of 
derivatives of locally L2 functions and that multiplication by a test- 
function does not alter the value of the maximum order of these 
derivatives. By Fourier transformation, one checks immediately that 
every distribution with compact support of order < m belongs to some 
space H:(Q) with s depending only on m and on n (dimension of the 
surrounding space, R"). 

Exercises 

31.1. Let A be the Laplace operator in n variables, and A a number > 0. Show that 
to every f E H**-'(Q) there is a unique u E Ho*'(Q) such that 

and that 
( A  - A)u = f 

H*J(Q) = H:*'(Q) 0 N,, , 
where 0 means Hilbert sum and N,, is the subspace of H*J(Q) consisting of the solutions 
of the homogeneous equation (4 - A)u = 0 (the student must therefore also prove that 
N,, is closed). 

31.2. Let A and A be as in Exercise 3 1.1.  Prove that to every f E Ha*-'(Q) and to every 
g E H'*'(Q) there is u E H*J(Q) such that 

( A  - A)u = f, u - g E HoJ(Q). 
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31.3. Prove that H:A~(Q), H,"."(52) (1 Q p < + m, m = 0, & I ,  ...) and H:,(Q), 
HZ(52) (s real) are normal spaces of distributions. 

31.4. Let 1 < p < + co and 1 < p' < + m be such that l/p + I/$' = 1.  Prove 
that the transpose of the canonical injection Q:(Q) -+ Hfc(Q) is a TVS isomorphism of 
the strong dual of Hfz(52) onto H,P'+"(R) C W(Q) (the latter H space carries the inductive 
limit topology of the Hp'.-"(K), K : compact subset of a). Prove that H:(Q) and H z ( Q )  
are (in a natural way-to be made explicit) the dual of each other. 

31.5. Motivate the assertion that the topology of Epr(Q) is not the intersection of the 
topologies of the spaces H:(R), I E R. 

Prove that the topology of 9'(Q) is the least-fine locally convex topology such 
that all the restriction mappings T - T I 52' from 9'(Q) into &c(Q') are continuous as R' 
ranges over the family of all relatively compact open subsets of 52 (&c(R') is the vector 
space UssRHfw(Q) equipped with the finest locally convex topology such that the 
injections H:w(52') -+ G ( P )  are continuous). 

Let 4 E W:(Q). Prove that u .... 4u is a continuous linear map of H"."(Q) into 

31.6. 

31.7. 
H,"."(Q) (1  < p < +m; m = 0, *1 ,  *2 ,... ). 

31.8. Prove that (4, u) - +u is a continuous bilinear map of .Y x Hs into H' (Hint: 
use the corollary of Theorem 34.1). 
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Equicontinuous Sets of Linear Mappings 

In the previous chapters, we have presented the theory of distributions 
in the form given to it by L. Schwartz. Most of the spaces of distribu- 
tions have been introduced as duals of suitable spaces of V" functions. 
The  basic operations on distributions (differentiation, multiplication by 
functions, Fourier transformation, convolution) were systematically 
introduced as transposes of similar operations defined in classes of grn 
functions. What we were required to know about topological vector 
spaces is remarkably little. Practically the only theorem we have made 
use of is the Hahn-Banach theorem (Chapter 18). The  only concepts 
we have been manipulating are the dual of a locally convex Hausdo& 
space and the transpose of a continuous linear map. But now the time 
has come to investigate in greater detail the structure of the spaces of 
functions and distributions which have been introduced, and, in order 
to do that, we must go back to abstract functional analysis. We shall 
now direct our efforts toward one of the most important results on 
topological vector spaces, the Banach-Steinhaus theorem. This theorem 
generalizes a property of Hilbert spaces, which goes back to the early 
part of the century and has long been known as Osgood's theorem or, 
sometimes, as the principle of uniform boundedness, and which states 
that every weakly converging sequence in a Hilbert space is strongly 
bounded, i.e., is bounded in norm. The generalization which we shall 
present is due to N. Bourbaki; it has an optimal range of application, 
as far as our purposes are concerned. It deals with the space L(E; F) 
of all continuous linear mappings of a Hausdo& TVS E into another 
one, F (eventually, E will have to be barreled and F locally convex). We 
shall first provide L ( E ; F )  with various locally convex topologies, in 
straight generalization of what we have done in Chapter 19, when we 
have defined the various dual topologies. As we did there, we begin by 
considering a family 6 of bounded subsets of E, satisfying the following 
two conditions: 
(GI) 
(BII) 

If A, B E G, there is C E G such that A u B C C. 
If X E C and A E B, there is B E G such that XA C B. 

335 
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Consider, then, a bounded subset B of E and a neighborhood of zero, 
V, in F; this pair of sets defines the following subset of L(E;  F ) :  

@(B; V )  = {u E L ( E ;  F ) ;  u(B) C V } .  

PROPOSITION 32.1. The subset 4 ( B ;  V )  of L (E;  F )  is absorbing; it 
is convex (resp. balanced) if V is convex (resp. balanced). 

Proof. The part of the statement about convex and balanced sets is 
obvious. Let u be an arbitrary continuous linear map of E into F ;  we 
know that the image of B under u, u(B), is bounded in F (Proposition 
14.2), therefore there is a number X # 0 such that u(B) C XV, which 
means that 

X-lu E 4 ( B ;  V )  or u E h @(B; V ) .  Q.E.D. 

When B varies over a family 6 of bounded subsets of E satisfying 
(GI) and (GII), while V varies over a basis of neighborhoods of zero in 
F, the sets %(B; V) form a basis of filter inL(E; F). The filter they generate 
is the filter of neighborhoods of zero in a topology on L(E;  F )  which is 
compatible with the linear structure of L(E;F) .  In order to see this, 
it suffices to apply Theorem 3.1 and Proposition 32.1, combined with 
the remark that, if V C W C F ,  then 4 ( B ;  V )  C %(B; W). 

Definition 32.1. Given a family of bounded subsets of E ,  6 ,  satisfying 
Conditions (GI), (GI1), we shall call Gtopology on L (E;  F )  the topology 
on this vector space defined by the basis of neighborhoods of zero consisting 
of the sets 

4 ( B ;  V )  = {U E L ( E ;  F ) ;  u(B) C V } ,  

when B runs over 6 and V over an arbitrary basis of neighborhoods of F. 
When carrying the 6-topology, the space L (E;  F )  will be denoted by 

L c ( E ;  F).  

The next statement generalizes results in Chapter 19 (in particular, 
Proposition 19.1): 

PROPOSITION 32.2. I f  F is a locally convex TVS, so is Lc(E; F). I f  F is 
Hausdorff and if the union of the sets belonging to 6 is dense in E ,  then 
L,(E; F )  is Hausdorff. 

Proof. The first part follows immediately from Proposition 32.1. As 
for the last part, let u EL(E;  F) be nonzero. This means that there is 
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an element x in some set B belonging to 6 such that u(x) # 0.' Since 
F is HausdorR, there is a neighborhood V of zero in F such that u(x) $ V .  
Hence we have u(B) I# V ,  i.e., u 4 4 ( B ;  V ) .  

If one prefers to visualize a topology in terms of convergence (rather 
than in terms of neighborhoods of zero), the following can be said: T o  
any filter .F on L(E; F) and to any point x of E, we can associate the 
filter F ( x )  in F generated by the basis of filter consisting of the sets 

M(x)  = {u(x) E F ;  u E M ) ,  

where M varies over 9. Then the filter .F converges in the 6-topology 
on L ( E ; F )  if the filters - F ( x )  converge in F, uniformly on every subset 
of E belonging to the family 6. For instance, suppose that both E and F 
are normed spaces and that G is the family of all balls of finite radius 
centered at the origin in E ;  then, a sequence of continuous linear maps 
u, : E + F converges to zero in this 6-topology on L(E; F )  if and only 
if the norms of the u, (cf. Part I, Chapter 11, p. 107) converge to zero. 
Another important example is the case of 6 = the family of all finite 
subsets of E ;  then .F converges to zero in the 6-topology if and only if 
9 ( x )  converges to zero in F for each single point x of E. 

The families of bounded subsets of E in which we are interested are 
the same as in Chapter 19: 

(1) The family of all finite subsets of E ;  the corresponding G-topology 
is called the topology of pointwise convergence; when carrying it, the space 
L(E; F )  will be denoted by LJE;  F) (many authors write L,(E; F )  instead, 
but we shall make the notation consistent with the one used in the duality 
case, when F is the complex field C: then, of course, L(E; F )  = E' and 
Ei is precisely the weak dual of E).  

(2) The family of all conaex compact subsets of E (the 6-topology is 
then the topology of convex compact convergence); equipped with it, 
L(E; F) will be denoted by L,(E; F). 

The family of all compact subsets of E, which leads to the topology 
of compact convergence; equipped with it, L ( E ; F )  will be denoted by 

The family of all bounded subsets of E,  leading to the topology 
of bounded convergence; thus topologized, L(E; F )  will be denoted by 
Lb(E;F).  In agreement with the definitions of Chapter 19, Lb(E; c) = 
Ei , strong dual of E. 

(3) 

LAE; F). 
(4) 

t Right at this point, one sees that we needed not assume the union of the sets in B 
to be dense but only total, i.e., to span a dense linear subspace. 
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If we call u, y, c, b the topologies above, we see that each one is locally 
convex HausdorE whenever this is true of F; we have the following 
comparison relations: 

u <  y <  c < b. 

Observe that this implies that a subset of L(E; F) which is bounded for 
one of these topologies is also bounded for the weaker ones. In particular, 
any 6-bounded set is o-bounded. For the time being, we shall center 
our attention on the two extreme topologies, u and b. The result which 
we are seeking concerns o-bounded and b-bounded subsets of L ( E ;  F), 
as well as equicontinuous sets of linear maps, which we must now 
introduce. We have already defined equicontinuous sets of mappings 
of a topological space X into a TVS F (Definition 14.3). In the particular 
case of linear mappings, the definition is simplified (cf. the fact that a 
linear map is continuous everywhere if and only if it is continuous at 
the origin): 

Definition 32.2. Let E,  F be two TVS. A set H of linear maps of E into 
F is said to be equiconhizuous $, to every neighborhood of zero V in F, there 
is a neighborhood of zero U in E such that, for all mappings u E H ,  

X E  U implies U ( X ) E  V .  

The condition in Definition 32.2 can be rewritten in a variety of 
ways: H is equicontinuous if, to every neighborhood of zero V in F, 
there is a neighborhood of zero U in E such that 

(32.1) H ( U )  = u u ( U ) C  v, 
ueH 

or, equivalently, if, given any neighborhood of zero V in F, 

(32.2) H-'(V) = n u-'(V) 
UGH 

is a neighborhood of zero in E. 
We are now going to state and prove a few simple properties of 

equicontinuous sets of linear maps. It is obvious that a subset of an 
equicontinuous set is equicontinuous. Moreover: 

PROPOSITION 32.3. Let E, F be two TVS; suppose that F is locally 
convex. Then the Balanced convex hull of an equicontinuous subset of 
L( E; F )  is equicontinuous. 
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Proof. Let H C L(E; F )  be equicontinuous, and K the balanced convex 
hull of H. Let V be an arbitrary neighborhood of zero in F; let W be 
another neighborhood of zero in F which is balanced, convex, and 
contained in V. By hypothesis, there is a neighborhood U of zero in 
E such that H( U )  C W; hence the balanced convex hull of H( U), which 
is obviously K( U ) ,  is contained in the balanced convex hull of W, which 

Let us denote by FE the product set nxoE F, , where F, is a copy of 
F for every X E  E ; F E  is then equipped with the structure of product 
topological vector space. A basis of neighborhoods of zero in FE consists 
of the sets 

is equal to W and therefore contained in V.  Q.E.D. 

n vx, 
XGE 

where V, is a neighborhood of zero in F for every x and where V, = F 
for all x E E except possibly a finite number of them. The vector space 
FE can be identified with the vector space of all functions (linear or 
nonlinear) defined in E and taking their values in F , S ( E ; F ) .  The 
canonical isomorphism is the mapping 

F(E;  F ,  3-f - ( - f ( x ) ) x ~ E  n F x  . 
X E E  

In other words, this isomorphism assigns to a function f E F ( E ; F )  
the element of FE whose projection on the “axis” F, is the value f(x) 
off at x, this for every x E E. 

FE extends to the topologies 
(i.e., becomes an isomorphism for the structures of topological vector 
spaces) if we provide F ( E ;  F )  with the topology of pointwise convergence 
and FE with the product topology. In particular, L,(E; F )  can be regarded 
as a linear subspace of FE: the a-topology on L ( E ; F )  is exactly the 
topology induced by FE. 

It is not difficult to see that L(E;  F) is not closed in S ( E ;  F), in general. 
In connection with this, we propose the following exercises to the 
student: 

The canonical isomorphism S ( E ;  F) 

Exercises 

32.1. Let us denote by 5?(E;F) the linear subspace of .F(&F) consisting of all 
linear maps of E into F, continuous or not. Prove that 2(E, F )  is closed in S ( E ;  F )  (for 
the topology of pointwise convergence). 

32.2. Let E, F be locally convex TVS and E be HausdoA. Prove that L(E; F )  is dense 
in 9 ( E ;  F )  for the topology of pointwise convergence. 
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32.3. Prove that L(E; F )  = Y(E F) if and only if E is finite dimensional and Hausdorff 

What is the dual of 9 ( E ,  F) ? 

(cf. Theorem 9.1). 

32.4. 
Using this dual and the Hahn-Banach theorem, give a second proof that L(E;F) is 

dense in Y ( E ;  F )  when E and F are locally convex and E is Hausdorff. 

In general, the closure in S ( E ;  F )  of a subset A of L(E; F )  will not 
be contained in L(E; F ) ,  ie., will contain mappings which are linear 
but not continuous. This is not, however, the case, when we deal with 
an equicontinuous set of linear maps. 

PROPOSITION 32.4. The closure of an equicontinuous subset H of L(E; F )  
in the space FE is an equicontinuous set of linear maps. 

Proof. Let R be the closure of H in FE; r7 is a set of linear maps 
(Exercise 32.1). Let V be an arbitrary neighborhood of zero in F, 
W another neighborhood of zero in F such that W + W C V. There is 
a neighborhood of zero, U, in E, such that H ( U )  C W. Select now an 
arbitrary point x of U; to every v E R there is an element u E H such 
that 

W ( X ) E O ( X )  - w; 
this follows simply from the fact that every neighborhood of v in FE 
intersects H. It can be rewritten as v (x )  E ~ ( x )  + W. But u(U) C W, 
hence V ( X )  E W + W C  V. As x is an arbitrary point of U,  we have 
v( U )  C as et is an arbitrary element of B, this proves the result. 

PROPOSITION 32.5. 
F the following topologies coincide: 

On an equicontinuous set H of linear maps of E into 

the topology of pointwise convergence in a dense subset A of E;  
the topology of pointwise convergence in E ;  
the topology of compact convergence. 

Proof. It  suffices to prove the identity, on H, of the first topology 
with the third one. Let K be an arbitrary compact subset of E, and V 
an arbitrary neighborhood of zero in F. Let W be another neighborhood 
of zero in F such that W = -Wand that W +  W f  W C  V. Let us 
select a neighborhood of zero U in E such that U = - U  and that 

Since A is dense in E, the sets U + y form a covering of E as y runs 
over A. Therefore there is a finite number of points y1  ,..., yr  in A such 
that 

H( U )  c w. 

K c ( U  + yJ u * * .  u (U  + yr) .  
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Let uo be an arbitrary element of H, and u an arbitrary element of 

(32.3) 

If x is an arbitrary point of K, there is an index j such that x E U + y j  
(1 \ c j  < r) .  Then 

%I + @({Yl ,..., y,); W ) .  . 

44 - U o ( 4  = [W - 4rhl + [ 4 Y J  - .o(rdI + [ ~ o ( Y i )  - Uo(X)l. 

In the right-hand side, the first and the last brackets belong to W since 
x - yj E - U = U and H ( U )  C W; the middle bracket belongs to 
W since u is in (32.3), hence u(x) - uo(x) E W + W + W C  V .  As 
x is arbitrary in K, this means that u E uo + %(K; V); as u is arbitraly 
in (32.3), this proves the desired result. 

Remark 32.1. One notices, in the preceding proof, that the set K 
need not be compact, but only precompact (Definition 6.3): this means 
that the topology of compact convergence could have been replaced, 
in the statement of Proposition 32.5, by the topology of precompact 
convergence. 

PROPOSITION 32.6. A n  equicontinuous set H of linear maps of E into F 
is bounded for the topology of bounded convergence. 

Proof. We must show that H can be absorbed (or swallowed) by an 
arbitrary neighborhood of zero in L,(E;F) .  We may assume that this 
neighborhood of zero is of the form %(B; V) ,  where B is an arbitrary 
bounded subset-of E and V, an arbitrary neighborhood of zero in F. 
Since H is equicontinuous, there is a neighborhood of zero, U, in E, 
such that H(U)  C V. On the other hand, there is a number A # 0 
such that B C AU, whence 

A-1 H(B)  c H( U )  c v, 
i.e., 

X-lH C 4 ( B ,  V )  or H C A@(& V ) .  Q.E.D. 

In the remainder of this chapter, we center our attention on equi- 
continuous sets of linear forms. In other words, F will now be the complex 
field, C. 

PROPOSITION ,32.7. A set of continuous linear functionals on a TVS E 
is equicontinuous if and only i f  it is contained in the polar of some nkgh- 
borhood of zero in E.  

For the notion of polar, see Definition 19.1. 
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Proof. Let H be an equicontinuous set of linear forms on E. Let us 
denote by D, the closed disk of the complex plane centered at the 
origin and having a radius equal to p .  There is a neighborhood of zero, 
U ,  in E, such that H ( U )  C D, , which means exactly that H C Uo. 

Let U, now, be an arbitrary neighborhood of zero in E; let us set 
H = Uo. For every p > 0, we have H ( p U )  C D, . Therefore H, and a 
fortiori any subset of H, is equicontinuous. 

PROPOSITION 32.8. 
forms on E is a compact subset of Ei . 
Proof. 
of H in Ei is identical to its closure in the product space 

The weak closure of an equicontinuous set of linear 

Let N be an equicontinuous subset of E .  Note that the closure 

C" = n C, (C, C; see Proposition 32.4). 

We may assume that H is equal to this closure. For each x E E, let us 
denote by H ( x )  the set of complex numbers (x', x) as x' runs over H ;  
this set is closed. Moreover, it is canonically isomorphic to the coordinate 
projection of H into the "axis" C,, in the product space CE. On the 
other hand, H ( x )  is a bounded subset of C for all x. Indeed, this would 
mean that H is weakly bounded; but we know that H is more than that: 
H is strongly bounded, i.e., bounded in EL (Proposition 32.6). Thus we 
see that H(x)  is a compact subset of the complex plane C for all x E E. 
At this stage, we use Tychonofs  theorem (see Exercise 6 .  I) ,  which asserts 
the following: let {X,}((Y E A )  be an arbitrary family of compact topological 
spaces; then the product topological space nmEA X, is also compact. Applying 
this in our situation, we see that 

xeE 

is a compact subset of CE. As H is a closed subset of it, we conclude 
that H is compact. Q.E.D. 

Exercises 

32.5. Let E be a norrned space. Prove that, in the dual E'of E, there is identity between 
equicontinuous sets and strongly bounded sets. 

32.6. Let us denote by T.(U E R") the translation mapping f ( x )  - f ( .u  - a). By using 
Proposition 32.5, prove the following result: 

THEOREM 32.1. Let p be a real number such that 1 < p < + co. When the oector a E R" 
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converges to zero in R", the translation mappings 7. converge to the identity in 

L,(Lp(R"); Z?(R")). 
What can you say when p = + w ? 

32.7. Let {pk} (k = 0, 1, ...) be a sequence of Radon measures in R" having their 
support contained in a fixed compact subset K of R". Suppose furthermore that there is 
a constant C > 0 such that, for all k > 0 and all bounded continuous functions f in R", 

By using Proposition 32.5, prove the following result; if the sequence {pk} converges 
weakly to zero in B'(R"), the Fourier transforms pk converge to zero uniformly on every 
compact subset of R". 

Let E be a separable TVS (Exercise 12.7), A a dense countable subset of E, 
F a metrizable TVS. Prove that the topology of pointwise convergence in A turns L(E, F) 
into a metrizable TVS (Chapter 8). Derive from this that, on every equicontinuous set 
of linear mappings E - F, the topology of pointwise convergence in E can be defined 
by a metric. 

Let E be a separable TVS. Prove that every weakly closed equicontinuous 
set of linear functionals in E is, when equipped with the weak topology, a metrizable 
compact space (use Exercise 32.8). Prove that every equicontinuous infinite sequence 
of linear functionals in E contains a subsequence which converges weakly in E' (use 
Exercise 8.7). 

Let E be a separable normed space. Prove that every infinite sequence {xi} 
(k = 1 ,  2, ...) in E' such that the norms {x;} are bounded independently of k, contains 
a subsequence which converges weakly in E' (use Exercise 32.9). 

Let E be a Hilbert space. Prove that every infinite sequence {xk}  (k = 1 ,  2, ...) 
in E such that the norms I/ xk 1 1  are bounded independently of k, contains a subsequence 
{xk,}  with the following property: there is xo E E such that, for all x E E, (xo I x) = 

limj++a, (xk,  I x). (Hint: Show that E may be assumed separable and use Exercise 32.10.) 

32.8. 

32.9. 

32.10. 

32.11. 

For want of a better place, we present, as an appendix to Chapter 
32, a result on completeness of spaces L,(E;  F). This result is extremely 
simple to prove; it is also very important in so far as it implies the 
completeness of many spaces of continuous linear mappings in distribu- 
tion theory, and in particular the completeness of the most important 
duals occurring in that theory. 

THEOREM 32.2. Let E ,  F be two locally convex Hausdorff spaces. Suppose 
that F is complete. Let 6 be a family of bounded subsets of E ,  satisfying 
(6,) and (6,J and forming a covering of E .  Suppose that the following 
condition holds: 

If the restriction of a linear map u : E -+ F to every set A E 6 
is continuous, then u is continuous. 

(*) 

Under these circumstances, the TVS L, (E;  F )  is complete. 
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Proof. Let 9 be a Cauchy filter in L,(E; F); 9 is a fortiori a Cauchy 
filter for the topology of pointwise convergence. As F is complete, 9 
converges pointwise to a function u : E -+ F. The function u is linear 
because the conditions defining linearity involve only a finite number 
of points. Now the filter 9 converges to u uniformly on every set A E 6. 
Indeed, let V, W be two neighborhoods of zero in F such that 
V + V C W. As F is a Cauchy filter in the 6-topology there is M E  9 
such that, for all f ,  g E M and all x E A, 

f(4 - g(4 E v- 
On the other hand, given any point xo of A,  there is Ml E 9 such that 
h E Ml implies hl(xo) E V + u(xo). But M n Ml # 0; takingg E M n M I ,  
we see that, for all f E M ,  

f(x0) E v + v + 4 x 0 )  c u + 4 x 0 ) .  

As xo E A is arbitrary, this means that M - u E @(A; U), whence our 
assertion. As u is the uniform limit of a filter of continuous functions 
on A,  u, restricted to A,  is continuous. By (*), u is continuous. We have 
already shown that 9 converges to u in the 6-topology. Q.E.D. 

COROLLARY 1. Let E be a locally convex Hausdog space such that a 
linear mapping of E into a locally convex space which is bounded on every 
bounded set is continuous. Then for all complete locally convex Hausdog 
spaces F, L,(E; F )  is complete; in particular, Ei is complete. 

Proof. I t  suffices to show that Property (*) holds when 6 is the family 
of all bounded subsets of E. Let u be a linear map whose restriction 
to every bounded set is continuous. Then u transforms bounded sets 
into bounded sets (we leave the verification of this statement to the 
student), hence is continuous in view of our hypothesis. 

The class of locally convex spaces having the property assumed in 
Corollary 1 is very important (it is called bornological). We know (Proposi- 
tion 14.8 and Corollary) that metrizable spaces and LF-spaces are 
bornological. Thus: 

COROLLARY 2. Let E be either a metrizable space or a space LF, and F 
any complete locally convex Hausdofl space. Then L,(E; F )  is complete. 
In  particular, Ei is complete. 

COROLLARY 3. 
are complete. 

The spaces 9, b', 9" (with their strong dual topology) 
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COROLLARY 4. Let E be either a Frkchet space or an LF-space. For any 
complete locally convex Hausdorff space F, L,(E; F )  is complete. 

Proof of Corollary 4. We will show that Condition (*) is satisfied. 
I t  suffices to show that, if the restriction of a linear map y to every 
convex compact subset K of E is continuous, then u is sequentially 
continuous (for then we may apply Propositions 8.5 and 14.7). But if 
S is a sequence in E, which converges to an element x, , the set S v {x,} 
is compact, its closed convex hull K is compact (Corollary of Proposition 
7.11); as the restriction of u to it is continuous, u(S)  converges to u(x,). 

An immediate corollary of Theorem 32.2 is Theorem 11.5, which we 
have already proved directly. Theorem 11.5 states that, if E is a normed 
space and F a Banach space, L(E; F) is a Banach space when equipped 
with the operator’s norm 

Q.E.D. 

W ; P )  3 f.4 - II f.4 II = sup II f.4(X)II, 
z s ~ .  I zn -1 

where we have denoted by 1 1  1 1  the norm both in E and F. In particular, 
the strong dual of a normed space is a Banach space (Corollary of 
Theorem 1 1.5). 
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Barreled Spaces. 
The Banach- Steinhaus Theorem 

We recall (Definition 7.1) that a subset T of a topological vector space 
E is called a barrel if T is absorbing (Definition 3.1)) convex, balanced 
(Definition 3.2), and closed. 

Definition 33.1. A topological vector space E is said to be barreled if 
every barrel in E is a neighborhood of zero in E. 

A barreled space need not be locally convex; it will be locally convex 
if and only if it has a basis of neighborhoods of zero consisting of barrels. 
Many authors include local convexity in the definition of barreled 
spaces. 

PROPOSITION 33.1. Let E be a barreled space, and M a linear subspace 
of E. The quotient space EIM is barreled. 

Proof. Let be a barrel in E / M ;  its preimage under the canonical 
homomorphism rr of E onto EIM is a barrel, T, hence a neighborhood 
of zero in E. But the image under rr of a neighborhood of zero in E is a 
neighborhood of zero in EIM, and T = rr(T). 

A linear subspace of a barreled space need not be barreled. One can 
show that a product of barreled spaces is barreled. 

PROPOSITION 33.2. A TVS which is a Baire space is barreled. 

We recall (cf. Proposition 8.3) that a Baire space is a space having the 
property: 

(B) The union of any countable family of closed sets, none of which 
has interior points, has no interior points. 

Proof of Proposition 33.2. Let E be a Baire TVS, and T a barrel in E. 
Since T is absorbing and balanced, we have E = ULzo k T .  Since every 
set kT is closed, at least one of them must have a nonempty interior; 

346 
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since x "+ k-lx is a homeomorphism, T itself must have at least one 
interior point, xo . If x, = 0, T is a neighborhood of zero. If x,, # 0, 
- xo must also be an interior point of T. But the interior of a convex 
set, in any TVS, is a convex set (Proposition 7. I), therefore all the points 
of the segment joining -x, to x,, in particular the origin, must be 
interior points. Q.E.D. 

COROLLARY 1.  Frkchet spaces are barreled. 

COROLLARY 2. Banach spaces and Hilbert spaces are barreled. 

COROLLARY 3. LF-spaces are barreled. 

It  suffices to prove Corollary 3, the first two being evident. Let E be a 
strict inductive limit of a sequence {Fk} (k = 0, l , , . .) of FrCchet spaces 
(see Chapter 13), and T a barrel in E. The intersection T n Fk is obvious- 
ly a barrel in Fk for every k = 0, 1, ...; hence T n Fk is a neighborhood 
of zero in Fk . Since T is convex, this implies that T is a neighborhood 
of zero in E. 

The importance of barreled spaces stems mainly from the following 
result: 

THEOREM 33.1. Let E be a barreled TVS, and F a locally convex space. 
The following properties of a subset H of the space L (E;  F )  of continuous 
linear maps of E into F are equivalent: 

(a) 
(b) 
(c) H is equicontinuous. 

H is bounded for the topology of pointwise convergence; 
H is bounded for the topology of bounded convergence; 

Proof. That (b) 5 (a) is trivial; that (c) + (b) has been provedalready 
(Proposition 32.6). Note that both these implications are true in general, 
whether E is barreled or not. Theorem 33.1 will be proved if we prove 
that (a) * (c). This is where we use the fact that E is barreled. Let H 
be a bounded subset of L,(E; F) .  We must show that, if V is an arbitrary 
neighborhood of zero in F, H-l( V) is a neighborhood of zero in E. As 
F is locally convex, we may take V to be a barrel (Proposition 7.2). 
Then, if u is any continuous linear map of E into F,  u-l( V )  is obviously 
a barrel. As we have 

H - ~ v )  = n u - y ~ ) ,  
U € H  

we see immediately that H-l( V) is convex, balanced, and closed. The 
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fact that H is bounded for the topology of pointwise convergence will 
imply that H-l(V) is absorbing, hence that H-l(V) is a barrel and 
therefore a neighborhood of zero in E, which will complete the proof. 

Let x be an arbitrary element of E: the set H ( x )  consisting of the 
elements u(x) of F as u varies over H is bounded. Therefore, there is a 
number A > 0 such that H ( x )  C AV. This means that x E h H-l( V ) .  

Q.E.D. 

The corollary which follows is often referred to as the Banach-Steinhaus 
theorem; we shall, however, use this name for the Theorem 33.1 itself. 

COROLLARY. Let E be a barreled space, F a locally convex Hausdog  
space, and 9 a jilter on L( E; F )  which converges pointwise in E to a linear 
map uo of E into F. Suppose that 9 has either OM of the following two 
properties : 

(33.1) There is a set H ,  belonging to 9, which is bounded for the topology of 
pointwise convergence. 

(33.2) 9 has a countable basis. 

Then uo is a continuous linear map of E into F and 9 converges to uo in 
L,(E; F )  (i.e., uniformly on every compact subset of E) .  

Proof. Suppose that (33.1) holds. Then H is an equicontinuous set 
and uo belongs to the closure of H in F E ,  R. But fi is an equicontinuous 
set of linear maps of E into F (Proposition 32.4), hence uo is continuous 
and 9 converges to uo in L, (E;F) .  In view of Proposition 32.5, 9 
converges to uo in L,(E; F )  (as H E 9, to say that 9 converges to uo 
in Lc(E; F) or that the filter induced by 9 on R converges to uo in R 
when this set carries the topology of compact convergence, is one and 
the same thing). 

Next we suppose that (33.2) holds. Let {Ml  , M ,  ,...} be a countable 
basis of 9. For each k = 1, 2, ..., we select an element uk of Mk . By 
hypothesis, for each x E E, the sequence {uk(x)} converges in F (to u,(x), 
of course). This implies that the set of continuous mappings { U k }  is 
bounded in L,(E; F). 

Therefore, the filter associated with that sequence has Property (33.1). 
From the first part of the proof, it follows that uo is continuous and that 
the uk converge to uo in L,(E; F). Let, then, 'i2 be a neighborhood of uo in 
L,(E; F):  suppose that none of the sets Mk is contained in 9. Then we 
could find, for each k,  an element uk of Mk which is not contained in @. 
But this would contradict the fact that any such sequence {uk} converges 
to uo in Lc(E; F). Therefore, some set Mk must be contained in 9. Q.E.D. 
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When F is the complex field, Theorem 33.1 can be given a stronger 
version: 

THEOREM 33.2. Let E be a barreled TVS.  The following properties of 
a subset H of the dual E' of E are equivalent: 

(a) H is weakly bounded; 
(b) H is strongly bounded; 
(c) H is equicontimous; 
(d) H is relatively compact in the weak dual topology. 

Proof of Theorem 33.2. The equivalence of (a), (b), and (c) follows 
from Theorem 33.1. On the other hand, (d) implies trivially (a). I t  
suffices to show that (c) implies (d): but this has already been stated 
and proved (Proposition 32.8). 

As a first application of Theorems 33.1 and 33.2, we shall give an 
example of a normed space which is not barreled. 

Example 33.1. Let %: be the space of continuous functions with com- 
pact support in the real line R1. We equip it with the maximum norm: 
1 1  f 1 1  = suptERl 1 f ( t )  I .  Note that the normed space thus obtained, 
which we shall denote by E, is not a Banach space: indeed, it is not 
complete: the completion of E can be identified with the space of 
continuous functions decaying at infinity, in R1. Consider then the 
sequence of continuous linear functionals on E, 

& : f - K f ( k ) ,  K = 1 , 2  ,.... 

Since every f E E is a function with compact support, f ( k )  = 0 for 
sufficiently large K. This means that the sequence { x i }  converges weakly 
to zero. But it is obvious that this set of continuous linear forms is not 
strongly bounded; in fact, we have 1 1  x i  1 1  = k (here, 1) 1 1  is the norm 
in the strong dual of E). Thus E cannot be barreledi otherwise we would 
have found a fact contradicting Theorem 33.2. 

Remark 33.1. The normed space E in Example 33.1 is not a Baire 
space, in view of Proposition 33.2. 

Exercises 

33.1. 

33.2. 

Give an example of a normed space.of sequences which is not barreled. 

Let E be th: Banach space of continuous functions (with complex values) in 
the closed interval [0, 11, provided with the norm l l f l l  = sup,<,$, If(t)l. Let u = (om) 

be a sequence of complex numbers such that, for all f E E, 
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where c,( f ) is the nth Fourier coeficient o f f :  

c , ( f )  = 1' eginntf(t) d t .  
0 

By applying the Banach-Steinhaus theorem, prove that f ...+ 
linear functional on E. 

on c,( f ) is a continuous 

33.3. Let E be a Baire TVS, and F an arbitrary TVS. Prove that every subset of 
L(E; F) which is bounded for the topology of pointwise convergence is equicontinuous. 

Let E be a locally convex HausdorfT space, and E' its dual. Prove that, if every 33.4. 
weakly bounded subset of E' is equicontinuous, then E is barreled. 

33.5. Let E be a Frbchet space, and E' its dual. Show that there is a countable basis 
of bounded sets in E' (weakly or strongly bounded, as they are identical). 



34 
Applications of 

the Banach-Steinhaus Theorem 

34.1. Application to Hilbert Spaces 

Let E be a Hilbert space, E' its anti-dual (see Chapter 12, p. 116), 
and J the canonical isometry of E onto E'. The complex conjugate of an 
antilinear form is a .linear form, and complex conjugation is therefore 
a one-to-one antilinear mapping of 8' onto the dual of E, E'. Composing 
this mapping with the isometry Jl we obtain the canonical antilinear 
isometry of E onto its dual; we denote it by 9. The weak topology on E 
is then the topology carried over from Ei via the mapping 9. For in- 
stance, a sequence {xk}  of elements of E converges to x weakly in E if, 
for every y E El the inner products ( x k  I y )  converge to (x I y )  (we have 
denoted by ( 1 ) the sesquilinear form on E defining the Hilbert structure 
of E; the norm in E will be denoted by I / ;  we have 1 1  x 1 1 2  = (x I x)). 

PROPOSITION 34.1. The unit ball of the Hilbert space E, {x E E ;  1 1  x ) I  < I}, 
is weakly compact. 

Proof. We begin by proving that the unit ball of E is weakly closed. 
Let x E E belong to its closure, and let { x k }  ( k  = 1, 2, ...) be a sequence 
of elements of norm < 1 converging to x weakly. In particular, the 
numbers ( x k  I x) converge to / I  x l l z .  For every k, we have I ( x k  I x) I < 
1 1  x /I. Therefore we must have 1 1  x / I 2  < ( 1  x 1 1  < 1 .  

By the Banach-Steinhaus theorem applied to duals (Theorem 33.2), 
we know that the unit ball of E' is relatively compact for the weak 
topology on E'; its image under 9-' is the unit ball of E, which must 
therefore be weakly relatively compact. As we have just seen that it 
is weakly closed, this proves Proposition 34.1. 

We recall the following result, already stated (Exercise 32.11): 
Let { x k }  be a sequence in E such that 1 1  x k  1 1  is bounded independently 

of k ;  then there is a subsequence { x k j )  which converges weakly. 

351 
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Remark 34.1. Suppose that the Hilbert space E is infinite dimensional. 
Let {ek} be an orthonormal sequence in E (p. 121); the whole sequence 
{ek} converges weakly to zero. Indeed, Bessel’s inequality states that, 
for all x E E, we have 

+m c I(x I e,)I2 < I/ x 1 1 2 ,  
k=O 

which implies that the numbers I (x I ek) I 2 0 must converge to zero. 
In particular, we see that in an injinite dimensional Hilbert space, 

the origin belongs to the weak closure of the unit sphere {x; 1 1  x 1 1  = l}. 
We can also derive from Theorem 33.2 the theorem of Osgood: 

PROPOSITION 34.2. 
space E, there is a constant C > 0 such that 11 x, 11 < C for  all k. 

strongly bounded. 

If a sequence {xk} converges weakly in the Hilbert 

Indeed, the sequence {xk}  is weakly relatively compact, therefore 

34.2. Application to Separately Continuous Functions 
on Products 

A topological space T is metrizable if its topology can be defined by 
a metric. 

THEOREM 34.1. Let T be a metrizable topological space, E a TVS 
which is metrizable and barreled, F a locally convex space, and M a set of 
mappings of E x T into F. W e  make the following hypotheses: 

(34.1) For every to E T,  the set of mappings x -+ f ( x ,  to), f E M ,  is an 
equicontinuous set of linear maps of E into F. 

(34.2) For every x0s E,  the set of mappings t -+ f ( x o ,  t), f E M ,  is an 
equicontinuous set of maps of T into F. 

Under these circumstances, the set M is equicontinuous. 

We should underline the fact that T carries no linear structure: 
T is just a topological space whose topology can be defined by a metric. 
The proof of Theorem 34.1 will make use of the following elementary 
lemma: 

LEMMA 34.1. Let A be a metrizable topological space, F a TVS, and H 
a set of mappings of A into F. Suppose that, for every sequence (an} 
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converging to a limit a in A ,  the sequence Cf(a,)} converges to f ( a )  in F 
uniformly with respect to f E H .  Then H is equicontinuous. 

Lemma 34.1 is a straightforward generalization of Proposition 8.5. 

Proof of Lemma 34.1. Let a be an arbitrary point of A. We must prove 
that, to every neighborhood V of zero in F, there is a neighborhood U 
of a in A such that, for all f E H and all x E U ,  

f(4 -f(4 E v* 
Suppose this were not the case. Let (uk} be a basis of neighborhoods 
of a in A such that u k  c U k - 1  ( k  = 1, 2, ...). For some V and for each 
k there would be a point ak E u k  and a function f k  E H such that fk(Uk) - 
fk(a) $ V .  The sequence ( a k }  converges to a in A. By our hypothesis, 
given an arbitrary neighborhood of zero W in F, there is an integer 
k( W) > 0 such that, for all f E H and all k 2 k( W), f (ak )  - f ( a )  E W. 
Taking W = V, k 2 k( V), and f = fk , we see that we have reached a 
contradiction. 

Proof of Theorem 34.1. We notice that the product space E x T in 
the statement of Theorem 34.1 is metrizable. In virtue of Lemma 34.1, 
it will suffice to show that, for every sequence ( x k ,  tk) (k = 1, 2, ...) 
converging to a limit (xo , to) in E x T,  f ( x k ,  tk) converges to f ( x o  , to) 
in F, uniformly for all f E M. 

Let us denote by ffa the mapping x - f ( x ,  tk) from E into F. Hypothesis 
(34.1) says that, for fixed k, whenfvaries over M, this is an equicontinuous 
set of linear maps. We contend that, when k = 0, 1, ... varies, and 
when f runs over M ,  the set of mappings f f k  - f i o  is bounded in L,(E; F )  
(u: topology of pointwise convergence). 

Indeed, let x be an arbitrary point of E. We must show that the set N ,  
of elements f ( x ,  tk) - f ( x ,  to) (k = 1, 2, ...; f E M )  is bounded in F. 
Let V be an arbitrary balanced neighborhood of zero in F. We must 
prove that there is a number h > 0 such that N, C hV. On one hand, 
in view of (34.2), we may find an integer k(x )  2 1 such that k 2 k(x) 
implies f i k ( x )  - f i , (x)E V .  On the other hand, when t~ T is fixed and 
f varies over M ,  the set f f ( x )  is bounded in F: this follows from (34.1) 
and from the fact that an equicontinuous subset of L(E;  F )  is bounded 
in L,(E; F )  (cf. Proposition 32.7). Therefore the union of the finite 
number of sets { f tk (x )  - f io (x ) }  ( f  E M ) ,  k = 1, 2, ..., k(x) ,  is bounded 
in F. From there, our contention follows immediately. 

We have not yet used the fact that E is barreled. We use it now: the 
set of mappings f ik  - f t ,  ( f  E M ,  k = 1,2,  ...) is u-bounded, therefore 
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it is equicontinuous (Theorem 33.1). This means that, to every neigh- 
borhood of zero V in F,  there is a neighborhood U of zero in E such that 

( f t , - f , , ) (U)CV forall  EM andall k = l , 2 ,  .... 
Observe then that we may write 

f(.k 9 t k )  -f(.O 9 = [f(.k 9 t k )  - f ( .k  9 

+ [f(.k 9 -f(.O 9 

= - .o 9 t k )  -f(.k - .O 9 

+ M.0 Y tk) - f @ o  9 toll + [ f @ k  ! to) - f @ o  to ) ] .  

It suffices to choose KO 2 1 so large as to have, for all K 2 K O ,  

xk - XO E u, 
and, for all f E M, 

f(.k , to) -f(.o 9 to)  E v 
f(.o 9 tk) -f(.o , t o )  E v 

(by using (34.1)L 
(by using (34.2)). 

For those K 2 KO and all f E M ,  

f(.O 3 t k )  -f(.O 3 + + v, 
which obviously proves what we wanted. 

following one: 

COROLLARY. Let E be a Frichet space, El a metrizable TVS, F a locally 
convex space, and ( x ,  y) - f ( x ,  y )  a separately continuous bilinear map 
of E x El into F. Then the mapping f is continuous. 

That f is separately continuous means that, for every fixed xo E E, 
the linear map y ,.-+ f ( x o  , y )  of El into F is continuous, and that, for 
every fixed yo E El , the linear map x - f ( x ,  yo) o f  E into F is continuous. 

One of the very important consequences of Theorem 34.1 is the 

34.3. Complete Subsets of LG(& F )  

Definition 34.1. A TVS E is said to be quasi-complete if every bounded 
closed subset of E is complete. 

Obviously, complete implies quasi-complete. But there are TVS 
which are quasi-complete without being complete. However, we have: 

PROPOSITION 34.3. I f  a metrizable space E is quasi-complete, it is complete. 
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Proof. It suffices to show that every Cauchy sequence in E converges 
(Proposition 8.2). But the closure of a Cauchy sequence is a bounded 
set (Corollary 3 of Proposition 14.1), whence the result. 

THEOREM 34.2. Let E,  F be two TVS, and 6 a family of bounded subsets 
of E satisfying Conditions (GI), (GI1) (p.  335). Suppose that F is H a u s d M  
and quasi-complete and that 6 i s  a covering of E. 

Under these circumstances, every closed equicontinuow set H of LG(E; F )  
is complete. 

Proof. Let @ be a Cauchy filter on H ,  and x an arbitrary point of E. 
We denote by H(x)  the image of H under the mapping u - u(x) of 
L ( E ; F )  into F and by @(x) the family of sets M ( x )  as M varies over 0. 
We contend that @(x) is the basis of a Cauchy filter on H(x) .  That it 
is a basis of filter is evident. Since 6 is a covering of E,  we may find a 
set A belonging to 6 which contains x ;  let V be an arbitrary neighborhood 
of zero in F, @(A; V) the set of mappings u E L (E;  F )  such that u(A) C V. 
There is a set M E  @ such that M - MC %(A; V); hence M ( x )  - 
M ( x )  C V,  which proves our contention. 

Since H i s  equicontinuous, H is bounded for the topology of pointwise 
convergence (Proposition 37.2); in other words, - for all x E E ,  H ( x )  
is bounded in F and so is its closure, H(x) ,  which is therefore 
complete in view of our hypothesis. The filter - on H ( x )  generated by @(x) 
converges to a unique element uo(x) of H ( x )  (unique, since F is 
Hausdo&). This defines a mapping uo of E into F ;  and we have proved 
that @ converges pointwise in E to uo . In  particular, uo belongs to the 
closure of H in F E  which is an equicontinuous set of linear maps of E 
into F (Proposition 32.4); therefore uo E L ( E ;  F). 

It  remains to show that @ converges to uo in LG(E; F). This follows 
from the fact that there is a basis of neighborhoods of zero for the 
6-topology on L(E; F) which are closed for the topology of pointwise 
convergence (namely the sets @(A; V) with A E G and V, a closed 
neighborhood of zero in F), and from the following general lemma: 

LEMMA 34.2. Let 9, 9’ be two topologies on the same vector space 
G, both compatible with the linear structure of G. Suppose that Y’ isfifiner 
than Y and that there is a basis of neighborhoods of zero for F’ which 
are closed for Y. 

Let, then, A be a subset of G and @ a filter on A which is a Cauchy filter 
for Y’ and which converges to x E A for Y. Then @ converges to x for Y’. 

Proof of Lemma 34.2. Let 9 be a basis of neighborhood of zero in G, 
for F’, which are closed for F; we may assume that the neighborhoods 

- 
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belonging to a are symmetric (V is symmetric if V = - V). To  every 
V E ~  there is M E  @ such that M - M C  V. The latter means that, 
given any point y of M ,  M C y + V. On the other hand, since x is a 
limit point of @ for Y, x belongs to the closure (for Y) of any set 
belonging to @, in particular to the closure of M and therefore toy  + V ,  
which is closed. But x E y + V means y E x + V ;  as y is arbitrary in 
M, we conclude that M C x + V. As V is arbitrary in a, this proves 
that @ converges to x for F’. 

We now derive some important consequences of Theorem 34.2. 

COROLLARY 1. Let E, F be two TVS, F being Hawdorf and quasi- 
complete. Let A be a dense subset of E, and H .an  equicontinuous subset 
of L(E;  F) .  If a filter @ on H converges pointwise in A to a mapping uo of A 
into F, then uo has a unique extension which is a continuous linear map 
of E into F ,  iio , and @ converges to Go in L,(E; F). 

We apply Proposition 32.5 twice: first to see that @, which is a Cauchy 
filter for the topology of pointwise convergence in A, must also be a 
Cauchy filter for the topology of pointwise convergence in E,  and 
therefore (by Theorem 34.2) converges to Go E I? (closure of H in FE; 
Proposition 32.4). As R is equicontinuous, @ converges to 12, for the 
topology of compact convergence, again by Proposition 32.5. 

In the proof of the next corollary, we apply the Banach-Steinhaus 
theorem: 

COROLLARY 2. Let E be a barreled TVS, andF a locally convex Hausdorff 
TVS. If 6 is a covering of E, L,(E; F) is Hausdorff and quasi-complete. 

Needless to say, B is a family of bounded sets of E satisfying ((5,) and 

The &topology on L ( E ; F )  is finer than the topology of pointwise 
convergence, since (5 is a covering of E ;  hence every subset of L(E;  F )  
which is bounded for the B-topology is bounded for the topology of 
pointwise convergence. Since E is barreled, it follows from Theorem 
33.1 that such a subset is equicontinuous. If it is closed, it must be 
complete by Theorem 34.2. 

(%)- 

34.4. Duals of Montel Spaces 

We now introduce the following definition: 

Definition 34.2. A TVS E is called a Montel space if E is locally convex 
Hausdorff and barreled and if every closed bounded subset of E is compact. 
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Every Montel space is quasi-complete (Definition 34.1) since a 
compact subset of a HausdoriT TVS is complete (Corollary 2 of Proposi- 
tion 6.8). A normed space is a Montel space if and only if it is finite 
dimensional: indeed, in a normed space which is a Montel space the 
closed unit ball must be compact, hence the space must be locally 
compact; but a locally compact TVS is necessarily finite dimensional 
(Theorem 9.2). 

There are FrCchet spaces which are Montel spaces, as the next 
statement shows: 

PROPOSITION 34.4. The spaces Vm(Q), %':(a) (a: open subset of R"), 
~'(RR"), and H(O) (8: open subset of C") are Montel spaces. 

For the definition of 9' and H ,  see Chapter 10, Examples IV and 11, 
respectively. Proposition 34.4 is a direct consequence of Theorem 14.4 
(for Vm), of Corollary 2 of Theorem 14.4 (for V:), of Theorem 14.5 
(for 9'), of Theorem 14.6 (for H). 

There are FrCchet spaces which are neither Banach spaces nor Montel 
spaces (see Exercise 34.4). 

A first straightforward consequence of Definition 34.2 is the following 
one: 

PROPOSITION 34.5. Let E be a Montel space, and F a TVS.  On L(E; F),  
the topology of compact convergence in E and the topology of bounded 
convergence in E are identical. 

Indeed, let B be an arbitrary bounded subset of E, and V a closed 
neighborhood of zero in F; we have (with the notation of p. 336) 
@(B; V) = @(8; V) since u(B)  C V implies obviously u ( 8 )  C u(B) C 
P = V for any mapping u EL(E;  F). But since E is a Montel space, B is 

- 

compact. Q.E.D. 

PROPOSITION 34.6. Let E be a Montel space. Every closed bounded 
subset of its strong dual, Ei , is compact in Ei . Furthermore, on the bounded 
subsets of Ei , strong and weak topologies coincide. 

Proof. Let B' be a bounded subset of E i .  By Theorem 33.2, B' is 
equicontinuous. By Proposition 32.5, the weak topology and the topology 
of compact convergence coincide on B'; therefore they coincide with 
the strong dual tgpology by Proposition 34.5. This proves the last part 
of the statement. 

Suppose now that B' is strongly closed, in addition to being strongly 
bounded. Let 8' be its weak closure; since B' is equicontinuous, its 
weak closure is equicontinuous and weakly compact (Proposition 32.8). 
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By the first part of the proof (and the last part of the statement), strong 
and weak topologies coincide on 8'. Since B' is weakly dense in 8', it 
is also strongly dense, therefore 8' = B'. But then B' must be weakly 
compact, therefore strongly compact. Q.E.D. 

COROLLARY 1. In the dual E of a Montel space E, every weakly con- 
vergent sequence is strongly convergent. 

.Let S' be the union of a convergent sequence Si in E and of its Iimit 
point xi. The set S' is weakly compact, hence strongly bounded. There- 
fore, by Proposition 34.6, the strong topology is identical with the weak 
one, on S', and therefore 23; converges strongly to x i .  

COROLLARY 2. In the strong dual spaces B'(SZ), W(Q) (SZ: open subset 
of Rn), 9", and X'(0) (0: open subset of Cn), every weakly converging 
sequence is strongly converging. 

It suffices to combine Corollary 1 with Proposition 34.4. 
Note that Corollary 2 stands in complete contrast with what happens 

in the dual of an infinite dimensional normed space, for instance, in an 
infinite dimensional Hilbert space: in such a space, an infinite orthonorm- 
a1 set converges weakly to zero (Remark 34.1) but, obviously, does not 
converge strongly (that is to say, in the sense of the norm) since, when 
two elements x, y of norm one are orthogonal, we have 

II x - Y / I 2  = I1 x /I2 + I/ Y ( I2 = 2. 

Exercises 

34.1. Give an example of a sequence of continuous linear forms {xi} (n = 0, I ,  ...) on 
a Banach space E which converge to zero for the topology of pointwise convergence in 
a dense subset A of E but which do not converge to zero for the topology of pointwise 
convergence in E (hint: use Example 33.1). 

Let 8 be a locally compact metrizable topological space (this means that every 
point of 8 has a compact neighborhood and that the topology of 8 can be defined by a 
metric). Let E be a barreled TVS, and F a locally convex HausdorlT TVS. Let t - x( t )  
and t ..-. A(t )  be continuous functions defined in 8, and valued in E and L,(E, F), respec- 
tively. Prove that t ..-. A(t) x( t )  is a continuous map of 8 into F. 

Let 8 be a metrizable topological space, to a point of 8, and t - T(t) a mapping 
of 8 into the space W(Q) of distributions in an open subset Q of R". Suppose that, for 
each test function 'p E WF(Q), the complex numbers <T(t), 'p> converge as t ..-. t o .  Prove 
that this implies that, as t ..-. to , the distributions T(t) converge strongly to a distribution 
To in 8. 

0 is finite, Wk(Q) is not a 
Montel space. 

34.2. 

a 
34.3. 

34.4. Let Q be an open subset of R". Prove that, if k 
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34.5. Let 9, be the Frkchet space of formal power series in n indeterminates with 
complex coefficients (with the topology of simple convergence of the coefficients). Prove 
that 9, is a Monte1 space. 
34.6. Prove the following extensions of Theorem 24.3 and of its corollary: 

THEOREM 34.3. Let U be a relatively compact open subset of an open subset Q of R", and 
23 a bounded set of distributions in Q. Let us denote by 23 I U the set of restrictions to U 
of distributions belonging to 23. There exists an integer m > 0 such that 23 1 U is contained 
and is bounded in 9"'( U), the dual of %??( U). 
THEOREM 34.4. Let 23 be a bounded subset of &.(a). There is a compact subset K of Q and 
an integer m > 0 such that 23 is contained and bounded in ern(Q), the dual of Wm(Q), and 
such that all the distributions belonging to 23 have their support contained in K. 
Can one replace, in the above statements, bounded set by convergent sequence and bounded 

by convergent ? 
34.7. 

THEOREM 34.5. Let 8 be a bounded set (resp. a convergent sequence) in Wrn(Sz) 
(0 Q m < + a). For every T E 23, let UT be a neighborhood of supp T i n  Q. 

Then, for every T E 6 and every p E N", I p I < m, there is a Radon measure pP.= in 52 
such that the following will be true: 

(i) for every T E 23, 

Prove the following extension of Theorem 24.4: 

T = ( ~ / ~ X ) ' P P , T ;  
I P I S I  

(ii) for every T &I3 and all p E N", I p I Q m, supp p p , ~  C UT ; 
(iii) for every p E N", when T ranges over 23, pp,T ranges over u bounded subset (resp. 

a convergent sequence) in the space 9 O ( 9 )  of Radon measures in 9. 
34.8. Let E be a Frkchet space. Prove that the dual EL of E, equipped with the topology 

Derive from Lemma 34.2 that E& is complete for any family 6 of bounded subsets 
of compact convergence, is complete. 

of E, satisfying (GI) and (GI3 and containing all the compact subsets of E. 
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Further Study of the Weak Topology 

In this chapter, E will always denote a locally convex Hausdorff 
TVS, and E' its dual. 

Let M be a finite dimensional linear subspace of E, and MOits or- 
thogonal (see Chapter 19, p. 196). Suppose that d = dim M and let 
e, ,..., ed be a basis of the vector space M. Let us apply Corollary 3 of 
the Hahn-Banach theorem (Theorem 18.1): there is a continuous linear 
form fi on M such that fi(ek) = 0 if K # j (1 < j ,  K < d), without fi 
being identically zero in M; the latter implies that f i (e i )  # 0; possibly 
by multiplying f j  by a complex number, we assume that f j ( e j )  = 1. 
Again by the Hahn-Banach theorem, we may extendfi as a continuous 
linear form ei in the whole of E. Let M' be the linear subspace of E' 
spanned by e; ,..., e i  and let x' be an arbitrary element of E'; to x' 
corresponds the following element of M', 

It  is clear that the forms x' and p(x' )  take the same values on every 
ej , therefore on M. In other words, x' - p(x') belongs to M o  ; conversely, 
if x' E MO, we obviously have p(x')  = 0; finally, observe that if x' E M', 
we have 

d 

x' = a,e; (ai: complex numbers), 
i=1 

whence 

(x', e,)  = a, for each k = 1 ,..., d, 

therefore x' = p(x').  All this shows that p is a linear map of E' onto M' 
whose kernel is exactly M o  and which is equal to the identity in M'. We 
see thus that E'/Mo is isomorphic (as a vector space) to M' and therefore 
also to M (in particular, dim E'/MO = d). 

360 
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Let now L be a continuous linear form on E’ when the latter carries 
the weak dual topology, cr. By definition of this topology, there is a 
finite subset S of E and a constant C > 0 such that, for all x’ E E‘, 

(35.1) lL(x’)l < c s u p  Kx’, x>l. 
X€S 

We shall apply the preceding considerations to the linear subspace M 
of E spanned by S (it is obvious that M is finite dimensional); we 
construct M’ as we have said. Set, then, 

d 

xL = C L(e;)ej . 

We have, for all x’ E E‘, with the above definition of the mapping p ,  

(XI, xL)  = C L(eJ (x’, ej> = L(p(x’)). 

On the other hand, observe that x’ - p(x’)  is orthogonal to M, hence 
(x‘ - p(x’),  x > = 0 for all x E S, which implies, by (35.1), that 

i=l 

n 

3-1 

L(x‘ - p(x’))  = 0, i.e., L(p(x’)) = L(x’). 

We reach the conclusion that, for all x’ E E’, 

(x’, XL) = L(x’). 

Now, we know that every element x of E defines a linear form on E ,  
namely the “value” at x,  x’ - (x‘, x ) .  By Proposition 19.6, we know 
that the value at x is a linear map of E into the dual of EL ; and by Proposi- 
tion 19.7 we know that this mapping is one-to-one. As we have just 
proved that it is also onto, we may state: 

PROPOSITION 35.1. 
of E onto the dual of its weak dual. 

The mapping x - value at x is a linear isomorphism 

COROLLARY. The dual of E, equipped with a(E, E ) ,  is identical to E‘. 
Indeed, by Proposition 35.1, EL is canonically isomorphic to the weak 

dual of E,, . It suffices then to apply Proposition 35.1 with E and E‘ 
exchanged. 

We shall identify E with the dual of EL through x -value at x. Note that 
the set E depends on the topology initially given on E, but that the weak 
topology on E’ does not. We may now consider the weak topology on E 
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when we regard E as the dual of E i .  In order not to mix up the two 
weak topologies which we have now on E and E we shall denote them 
by a(E, E') and o(E, E), respectively. In the notation o(F, G )  the topology 
is carried by the$rst space, F. 

If we provide E with the topology u(E, E') and E with u ( E ,  E), 
we find ourselves in a perfectly symmetric situation; we are now going 
to exploit this symmetry. First of all, observe that we may write in- 
differently (x', x) or (x, x') for the value of x' at x (or the value of x 
at x'). 

We may combine the corollary of Proposition 35.1 with Proposition 
18.3. We obtain: 

PROPOSITION 35.2. Let A be a convex subset of the locally convex Haus- 
do$ space E.  The closure of A for the initial topology of E is identical 
to the closure of A for the weak topology o(E,  E ) .  

This proposition enables us to simplify considerably many forth- 
coming statements. The student should however beware of the follow- 
ing possible mistake: Let E' be the dual of E, and A' a convex subset 
of E'; it is not true that the closure of A' in the weak topology on E' 
and the closure of A' in the strong dual topology on E' are the same 
(they will be the same whenever the dual of Ei can be identified with E, 
but not otherwise-in general). 

Let A' be a subset of E'. By A'O we mean the polar of A' which is a 
subset of E when E is regarded as the dual of E (see Definition 19.1). 
The set A' itself could have been the polar of some subset A of E, in 
which case A'O = (AO)O. We introduce the following definition: 
Defmlion 35.1. Let A be a subset of E, and Ao the polar of A. The 
polar of Ao (when we identify E with the dual of E )  is called the bipolar 
of A and is denoted by A*. 

The next proposition gives a simple description of the bipolar of a 
set. 

PROPOSITION 35.3. Let A be a subset of E.  The bipolar A* of A is the 
closed convex balanced hull of A .  

Proof. Let A be the closure, for the initial topology of E as well as for 
the topology o(E, E'), of the convex balanced hull of A (i.e., the smallest 
closed convex balanced set containing A). Since A W  is obviously balanced 
and convex (cf. p. 195), and also weakly closed (the polar of a set is 
always weakly closed, as immediately seen), we see that a C A*. We 
must prove the inclusion in the opposite direction: we must prove that 
if xo 4 A then xO 4 A*. 
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As A is weakly closed, there is a neighborhood of xO in the topology 
o(E, E') which does not intersect A; in other words, there is a continuous 
linear form x' on E such that 

d = inf I(x', x - xO)I > 0. (35.2) 

Let D be the image of A under the mapping x - (x', x); D is convex 
balanced and closed (in the complex plane), therefore D is a closed 
disk with radius p 2 0 centered at the origin. In view of (35.2), 
I (x', xo) 1 d + p. Since 1 <XI, x) I < p for all x E A, in particular 
for all x E A, we see that ( i d  + p ) - V  E Ao but that 

X € A  

I<(W + p)-lx', xo> I > 1 ,  

which proves that xo $ Am. 

COROLLARY 1. (Am)O = AO. 

hull of Ao; but Ao is weakly closed convex and balanced. 
Indeed, (AoO)O = (AO)OO is the closed (for o(E', E)) convex balanced 

COROLLARY 2. 
the closure of M .  

hence MOO is a linear subspace of E. 

tinuous linear map of E into F. As usual, we set 

Let M be a linear subspace of E.  The bipolar Moo of M is 

When M is a linear subspace of E, Mo is a linear subspace of E ,  

Let, now, F be another locally convex HausdorfT TVS, and u a con- 

Im u = {y EF, there exists x E E such that U(X) = y} ;  

similarly, 

Ker t~ = (y' EF'; = O}. 

We recall (Proposition 23.2) that we have 
(35.3) Ker t~ = (Im u)O. 

Now, of course, we may also consider the transpose of 'u : F ' - + E ,  
when we regard E (resp. F) as the dual of Ei (resp. Fi). It is immediately 
seen that ltu = u. Substituting then ;u for u in (35.3), we obtain 

Ker u = (Im %)O. 

We may then take the polars of both sides. Comhining with the Corollary 2 
of Proposition 35.3, we see that we have: 
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PROPOSITION 35.4. Let u be a continuous linear map of E into F. The 
orthogonal of Ker u is the weak closure of the image of h. 

We shall apply Eq. (35.3) and Proposition 35.4 when u is either the 
canonical injection of a subspace into the space or the canonical homo- 
morphism of the space onto a quotient. We shall use them to study the 
dual of a linear subspace and the dual of quotient spaces. 

First, let N be a linear subspace of E; the injection of N into E can be 
transposed into a linear mapping of E' onto N (onto, by virtue of the 
Hahn-Banach theorem). The kernel of the transpose is No, because 
of (35.3). We obtain thus a canonical linear mapping of E'/No onto N'. 

Let, now, q~ be the canonical homomorphism of E onto Elm. We 
suppose that E carries the initial topology (or the weak one) and Elm, 
the quotient modulo m of the topology carried by E. The transpose 
4p is an injection of the dual of E / N  into E'. By Proposition 35.4, the 
weak closure of the image of 4p is the orthogonal of Kerq, that is to 
say of 10. In other words, the weak closure of Im 4p is NO. This implies 
Irn t~ C NO. But, conversely, let x' E NO; the continuous linear form 
x' vanishes on iV and therefore is constant along the equivalence classes 
modulo m. In other words, x' defines a continuous linear form 5' on 
Elm. It is immediately seen that 4p(X"') = x'. This proves that Im f~ = NO. 
We obtain thus a canonical isomorphism of the dual of Elm (Elm carries 
the quotient modulo m of the topology of E) onto NO. 

Let us summarize: 

PROPOSITION 35.5. 
a linear subspace of E. The following is true: 

Let E be a locally convex Hausdog  space, and N 

The transpose of the natural injection N + E is a one-to-one 
linear map of E / N o  onto the dual N of N .  
The transpose of the canonical homomorphism Eo --t Elm is a 
one-to-one linear map of the dual of Elm onto NO. 

It should be underlined that the isomorphisms in (a) and (b) are algebraic, 
that is to say, they do not involve the topologies on the intervening 
spaces. Observe that E'/No can now carry two apparently distinct 
topologies: (1) the quotient modulo N o  of the weak topologies o(E', E)  
on E'; let us denote this topology by o(E', E) /No;  (2) the weak dual 
topology a(E'/No, N) when we regard E'INO as the dual of N .  

PROPOSITION 35.6. 
two properties are equivalent: 

(35.4) N is closed; 
(35.5) 

(a) 

(b) 

Let E and N be as in Proposition 35.5. The following 

the topologies u(E', E)/No and u(E'/No, N )  on E / N o  are identical. 
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Proof. We begin by some preliminary considerations. Let us denote 
by W(xl ,..., x+; E )  (xl ,..., x,, an arbitrary finite subset of E, E an 
arbitrary number > 0) the set of x’ E E’ such that I (x‘, x i )  I < E for 
every j = 1, ..., r. Let v’ be the canonical homomorphism of E‘ onto 
E / N o .  A basis of neighborhoods of zero in the topology u ( E ,  E)/NO 
consists of the images under cp‘ of the sets W ( x l  ,..., x,.; E ) .  

Let now y1 , . . . ,ys be a finite subset of N. In the duality between 
E’/No and N, we have (~’(x’), yi) = (x‘, yi), regardless of what is the 
representative x’ of the class cp’(x’) modulo No. This means that we obtain 
a basis of neighborhoods of 0 in the topology a(E’/No, N )  by taking the 
images under cp’ of the sets W ( y l  ,...,ys ; E ) ,  when E > 0 and the finite 
subset of N, {yl ,...,ys}, vary in all the possible ways. This proves, in 
particular, that the topology u(E’, E)/No is always finer than the topology 
u(E’IN0, N ) .  We are going to show that, when N is closed, to every 
finite subset of E, {xl, ..., x,}, there is a finite subset of N ,  {yl ,..., y,.} 
(having the same number of elements), such that, for all E > 0, 

This will obviously imply that u(E’/No, N) is finer than, therefore 
equal to, u(E’, E)/No. 

We now give the “construction” of the yi’s. Let L be the linear subspace 
of E generated by N together with x1 ,..., x,. ; N is of finite codimension 
in L, hence N has a (finite dimensional) supplementary P in L. Let 
z1 ,..., zd be a basis of P. The restrictions to N o  of the linear forms 

(35.7) X’ - (zi , x’), j = 1 ,  ..., d, 

are linearly independent. Indeed, consider a linear combination 
XfE1 hjzi vanishing on No, in other words belonging to NOo. Since N is 
closed, we have N = NOo; and C hizj E N only if all the coefficients hi 
are equal to zero, from the very choice of the zi (it is in this argument 
that we use the hypothesis N closed; cf. Proposition 35.3). Because the 
restrictions to N o  of the forms (35.7) are linearly independent, for each 
j = 1, ..., d, we may find zi E N o  such that (z; , zi) = 1 and such that 
(z; , zk) = 0 for j # k. Now let x‘ be an arbitrary element of E‘; for 
each j = 1, ..., d; (x’, zi) is a complex number; set 

d 

p(x’) = -c (x‘, Zi) z; . 
j=1 
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The element p(x') belongs to NO and we have 

(2' + p(x'), zj> = 0 for all j = 1 ,..., d. 

Let us go back to x l ,  ..., x, ; for each 1 = 1 ,..., r ,  we have 

xz = y z + w z ,  

where y l  E N and w ,  E P ,  i.e., is a linear combination of the zj . For 
every x' E E', we have 

(x', Yz> = (2' + p(x') ,  Yz> = (x' + p(x'), %>. 

This implies the following: if x' E W(y, ,..., y, ; e), then there is an 
element of E', congruent to x' modulo NO, which belongs to W ( x l ,  ..., 
x, ; e). From there, (35.6) follows immediately. 
We prove now that, if a(E'/No, N) = o(E', E)/No, then N must be 

closed. In view of the first part of the proof, we know that 

(35.8) o(E', E)/No = u(E'/NO, N ) .  

(Indeed, observe that N o  is also the orthogonal of m.) We apply twice 
Proposition 35.1 : (35.5) implies that the dual of E / N o  (when this space 
carries the topology u(E', E) /No)  is canonically isomorphic to N. But 
(35.8) implies that this dual is canonically isomorphic to m. Hence we 
have N = fl. Q.E.D. 

PROPOSITION 35.7. Let E ,  F be two locally convex Hausdog  spaces, 
and u a continuous linear map of E into F. The follom'ng two properties 
are equivalent : 

(a) u(E) is closed in F; 
(b) lu is a homomorphism (for the TVS structures) of Fl onto 

'u(F') C Ei . 

For the notion of homomorphism, see Chapter 17, p. 166. If we set 
M = u(E),  the image of u, we know by (35.1) that Ker 'u = Mo; 
let y~ be the canonical projection F'-tF'/Mo; there is a linear map 
w : F'/Mo -+ E' such that the diagram below is commutative: 

F'/Mo 
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Property (b), in Proposition 35.7, states that v is an isomorphism onto 
lu(F') for the structures of TVS, when F'/Mo carries the quotient 
topology a(F', F) /Mo and "(F') carries the topology induced by a(E', E). 
Proof of Proposition 35.7. For x E E and y' E F', we have 

(4a(r'>), x> = (Y' ,  U W .  

The right-hand side is equal to ( ~ ( y ' ) ,  u(x)) ,  where we use now the 
bracket of the duality between F'/Mo and M (Proposition 35.5). Thus 
we see that ~ ( y ' )  -+ 0 for a(F'/Mo, M) if and only if v(q(y')) + 0 for 
u(E', E). This means that v is an isomorphism of F'IMO, equipped with 
o(F'/Mo, M),onto "(F') C E', equipped with o(E', E). But a(F'/Mo, M)= 

Concerning weak and strong topologies on a TVS, in relation to 
u(F', F)/Mo if and only if M is closed (Proposition 35.6). Q.E.D. 

linear mappings, we have the following result: 

PROPOSITION 35.8. Let E, F be two locally ronvex Hausdorff spaces, 
and u a continuous linear map of E into F. Then u is continuous from E, 
equipped with the weak topology o(E, E ) ,  into F, equipped with o(F, F'). 

Proof. If u : E -+ F is continuous, the transpose lu of u is a continuous 
linear mapping of the weak dual of E, EL, into the weak dual of F, Fi 
(corollary of Proposition 19.5). By iterating this result, we see that the 
transpose of lu, which is equal to u, is a continuous linear mapping of 
the weak dual of Ei into the weak dual of FL . It suffices then to apply 
Proposition 35.1. 

We shall see later (Lemma 37.6) that the converse of Proposition 35.8 
is true when the space E is metrizable: then continuity for a(E, E') 
and o(F, F') implies continuity for the initial topologies. 

Exercises 

35.1. 

35.2. 

Give a necessary and sufficient condition on a subset A of a locally convex 
Hausdofi E in okder that the polar Ao of A be equal to {O}. 

Let E be a locally convex HausdorR space, and & its completion. Prove that, 
if E # E, then a(E', E )  is strictly finer than o(E', E). 

Let E be a locally convex Hausdofi TVS, and E its dual. Prove that, if M is 
a linear subspace of dimension n < + a, its orthogonal Mo C E' has codimension equal 
to n. Is it true that, if M is of codimension n, then M o  is necessarily of dimension R ? 

Let E and E' be as in Exercise 35.3. We suppose that E, provided with the weak 
topology u(E, E'), is the topological direct sum of two linear subspaces M and N, i.e., 
the mapping (x, y) - x + y of the product T V S  M x N into E is an isomorphism onto. 
Prove then that E', provided with o(E', E), is the topological direct s u m  of M o  and No. 

35.3. 

35.4. 
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Topologies Compatible with a Duality. 
The Theorem of Mackey. Reflexivity 

In this chapter, we shall consider a locally convex HausdoriT space E. 
It will be convenient to distinguish the topology originally given on 
E from other topologies that are going to be defined on E; for this 
reason, we shall refer to it as the initial topology on E.  The dual of E is 
denoted E', as usual. We might ask the following question: which locally 
convex HausdoriT topologies on E have the property that, when E carries 
them, its dual is identical to E ?  In Chapter 35 we have encountered 
such a topology: the weak topology a(E, E') on E. The initial topology 
on E is another one. We shall see, now, that one can characterize all of 
them. In order to do this, we identify E to the dual of E: (Proposition 
35.1). We may then equip E with a 6-topology, where 6 is a family of 
bounded subsets of El (i.e., of weakly bounded subsets of E') satisfying 
Conditions (6,) and (6,J (cf. Chapter 19, p. 196, or Chapter 32, p. 335). 

THEOREM 36.1. Let F be a locally convex Hausdorjjf topology on E.  
The following two properties are equivalent: 

(a) 9- is identical to a 6-topology on E, where 6 is a covering of E' 
consisting of convex balanced weakly compact sets; 

(b) the dual of E, equipped with the topology .7, is identical to E'. 

Proof. (a) implies (b). The 6-topology on E is not modified if 
we add to 6 all the subsets of the sets which belong to 6. Since G is a 
covering of E, we see that now all the finite subsets of E' belong to 6, 
so that the 6-topology is certainly finer than the weak topology a(E, E'). 
This has the following immediate consequence: E ,  dual of E , ,  is 
contained in the dual of E when this space carries the 6-topology; we 
shall denote by E; the latter dual. We must prove that 23; C E'. On E', 
the weak topology o(E', E) is obviously identical to the topology induced 
by o(E; , E). This implies that all the sets K E 6, which are compact 

368 
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for u(E', E), are also compact, hence closed, for u(E; ,  E). As they are 
also convex and balanced, we derive from Proposition 35.3 that each 
one of them is equal to its bipolar. Let, then, f E E; . By definition of E ; ,  
there exists K E 6 such that 

If(x)l < 1 for all x E KO. 

This means that f E KW C E'. Thus f E E and therefore Ei = E', 
(b) implies (a). Let U be a neighborhood of zero in E for the topology 
5. The polar Uo of U is a weakly compact subset of E' (Propositions 
32.7 and 32.8). Let us denote by 6 the family of all these subsets Uo 
as U varies over the filter of neighborhoods of zero; the elements of B 
are convex, balanced, weakly compact. Moreover, they form a covering 
of E .  Indeed, if x' E E', there is a neighborhood U of zero in E such 
that I (x', x) 1 < 1 for all x E U ,  i.e., x' E UO. It  remains to check that 
9- is identical to the 6-topology on E. But observe that there is a basis 
of neighborhoods of zero for 9 consisting of convex balanced closed 
neighborhoods of zero. If V is such a neighborhood, V is equal to its 
bipolar VW (Proposition 35.3), hence V is the polar of Vo E 6. On the 
other hand, there is a basis of neighborhoods of zero in the G-topology 
consisting of the polars of the sets belonging to G, that is to say of the 
bipolars UW of the neighborhoods of zero U in E (for the topology F); 
as U C  Urn, the bipolars are neighborhoods of zero for 9-. We have 
thus proved that the 6-topology is finer and coarser than 9. Q.E.D. 

A topology 9- on E which is locally convex HausdortT and is such 
that the dual of E, equipped with F, is identical to E ,  will be said to be 
compatible with the duality between E and E .  Theorem 36.1 characterizes 
these topologies; it shows that they form a partially ordered set having 
a minimum element, the weak topology u(E, E') (the family of finite 
subsets of E' being the smallest family of weakly compact subsets of 
E), and a maximum element, the topology of uniform convergence on 
every weakly compact convex balanced subset of E'. The latter topology 
is called the Mackey topology on E and is denoted by T(E, E'). Since the 
initial topology on E is compatible with the duality between E and E', 
it is coarser than 7(E,  E');  this is also evident by inspection of Proof 2 
of Theorem 36.1. In connection with this, we have: 

PROPOSITION 36.1. The topology of a locally convex Hausdog space E 
is identical to the topology of uniform convergence on every equicontinuous 
subset of E .  

Indeed, we have seen in the proof of Theorem 36.1 that a topology 9- 
compatible with the duality between E and E is identical to the 6- 
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topology on E, where B consists of the polars Uo of the neighborhoods 
of zero U for F. It suffices then to apply Proposition 32.7. 

We have seen (Proposition 35.2) that the closure of a convex subset of 
E is the same for the initial topology or for the weak topology a(E, E'). 
More generally we have: 

PROPOSITION 36.2. The closure of a convex subset A of E is the same 
for all the locally convex Hausdog topologies on E compatible with the 
duality between E and E'. 

Proof. The continuous R-linear forms on E are in one-to-one corres- 
spondence with the continuous C-linear forms on E, that is to say the 
elements of E' (see proof of Proposition 35.2), therefore they are the 
same for all the topologies compatible with the duality between E and E'; 
the closed hyperplanes and the closed half-spaces are therefore also 
the same for these topologies. But then it suffices to apply Proposition 
18.3. 

A deeper result is the Mackey theorem, which states that the bounded 
sets are the same for all topologies compatible with the duality between 
E and E'. In order to prove it, we shall perform a construction which 
will also be used later on, in a different context. 

The Normed Space E, 

Let E be a locally convex HausdorfT TVS, and B a bounded convex 
balanced subset of E. Let EB be the vector subspace of E spanned by 
B; note that B is an absorbing subset of E, (but, in general, not of E). 
For x E E, set 

p B ( x )  = inf 1 h 1; 
XEAB 

since B is convex, balanced, and absorbing, p ,  is a seminorm on E, . 
In fact, it is a norm: For let U be an arbitrary neighborhood of zero in 
E. There exists a number p > 0 such that B C pU,  i.e., p-lB C U n E, . 
This means that the topology defined by the seminorm p ,  on EB , i.e., 
the topology defined by taking the multiples of B, EB, E > 0, as a basis 
of neighborhoods of zero, is finer than the topology induced by E. As 
the latter is HausdorfT, so is the former. Thus we have obtained a normed 
space E, with a continuous natural injection EB -+ E. 

LEMMA 36.1. 
is complete. Then the normed space EB is a Banach space. 

Suppose that the bounded convex balanced subset B of E 
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Proof. Let {xk} (K = 1, 2, ...) be a Cauchy sequence in EB ; it is a 
bounded subset of EB (Corollary 3 of Proposition 14.1), hence it is 
contained in some multiple pB of B. But pB is complete for the topology 
induced by E, hence the sequence {xk} converges to a limit x E pB in the 
sense of the induced topology. Observe that the multiples pB are closed 
for the induced topology. We are in the right conditions to apply Lemma 
34.2. Lemma 36.1 follows immediately, 

COROLLARY. 
space E, is a Banach space. 

EK-+ E transforms the closed unit ball of E, into a compact set. 

Let K be a compact convex balanced subset of E ;  the normed 

In the situation of the corollary, observe that the natural injection 

From Lemma 36.1 we derive the following useful consequence: 

LEMMA 36.2. Let T be a barrel in the locally convex ha us do^ T V S  
E, and B a complete bounded convex balanced subset of E. There is a number 
p > 0 such that 

B C pT. 

Lemma 36.2 is of interest when E itself is not barreled; otherwise T 
would be a neighborhood of zero in E and would therefore absorb 
every bounded set. 

Proof. T n EB is obviously a barrel in EB : it is convex balanced, 
absorbing; as the topology induced by E is coarser than the topology 
of the norm on EB and since T is closed in E, T n E, is also closed in 
the normed space EB . In view of Lemma 36.1, EB is a Banach space, 
hence is barreled. Therefore T n EB contains a multiple of the closed 
unit ball (which is B). Q.E.D. 

We may now easily prove Mackey's theorem: 

THEOREM 36.2. The bounded subsets of E are the same for all locally 
convex H a w d o g  topologies on E compatible with the duality between E 
and E .  

Proof. A set which is bounded in some topology is also bounded in 
every coarser topology. Therefore, it suffices to prove that the weakly 
bounded subsets of E are bounded for the Mackey topology T(E,  E). 

Let K be a convex balanced weakly compact subset of E ,  and B a 
weakly bounded subset of E. Let us denote by D, the closed disk in the 
complex plane with center at zero and radius E > 0, and by x-l(D,) the 
set of elements x' E E such that <x, x')  E D, . The subset of E', 

T = n x - y ~ ~ ) ,  
XEB 
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is a barrel. Indeed, it is the intersection of closed convex balanced 
subsets of Ei . It is absorbing. Indeed, if x' is an arbitrary element of E', 
there is a number T > 0 such that TB C W({x'}; e) = {x E E; 1 (XI, x) 1 
< s} since B is weakly bounded. But this means precisely that TX' E T .  
Then, from Lemma 36.2, we derive that there is a number p > 0 such 
that K C p T .  But this means that 

B c p W(K; E ) ,  W(K, &) = {X E E;  SUP I(.%?', X)l < &}. Q.E.D. 
X'EK 

Given a locally convex Hausdo& TVS E, we may now talk of its 
bounded sets without specifying for which one, among the topologies 
on E compatible with the duality between E and E ,  they are bounded. 
In particular, there is no need to distinguish between bounded and 
weakly bounded sets. 

PROPOSITION 36.3. If the locally convex Hausdotf space E is either 
metrizable or barreled, the initial topology of E is identical to the Mackey 
topology T(E, E ) .  

Proof. 1. Suppose E metrizable. Let U be a neighborhood of zero 
for the Mackey topology, and {U,} a basis of neighborhoods of zero 
for the initial topology. If U were not a neighborhood of zero for the 
initial topology, we would be able to find, for each n = 1, 2, ..., a point 
x, E (l/n) U, such that x, $ U .  Note that the points nx, converge to 
zero, hence form a bounded subset of E. In view of Theorem 36.2, 
there should be a number p > 0 such that nx, E pU for all n. But this 
contradicts the fact that x, $ U for every n. 

2. Suppose E barreled. Then every weakly compact subset K of 
E' is equicontinuous (Theorem 33.2). In this case, Proposition 36.3 
follows from Proposition 36.1. 

We proceed now to study the reflexivity of locally convex HausdoriT 
spaces. 

Definition 36.1. The dual of the strong dual Ei of E is called the bidual 
of E and is denoted by E". 

The strong dual topology being finer than the weak dual topology, 
the dual of EL can be regardea 2s a linear subspace of E". By Proposition 
35.1, we see that the mapping x - value at x is a one-to-one linear 
mapping of E into En. 

Definition 36.2. The space E is said to be semireflexive ;f the mapping 
x - value at x maps E onto E". The space E is said to be reflexive ;f this 
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mapping is an isomorphism (for the TVS structures) of E onto Ei , the 
strong dual of its strong dual EL . 

In  other words, E is reflexive if it is semireflexive and if its initial 
topology is equal to the strong dual topology when we regard E as the 
dual of E ; .  

PROPOSITION 36.4. The strong dual of a semireflexive space is barreled. 

Proof. Let E be a semireflexive space, and Ei its strong dual. Let T' 
be a barrel in EL. Since both the strong dual topology and the weak 
dual one, on E', are compatible with the duality between E' and E, 
Proposition 36.2 implies that T' is weakly closed; hence T' = T'OO. 
Therefore, we will have proved that T' is a neighborhood of zero in 
Ei if we prove that T o  is a bounded subset of E (since T' is the polar 
of T'O). But in view of Mackey's theorem (Theorem 36.2), it will suffice 
to prove that T'O is bounded in E for the topology o(E, E'). 

As T' is absorbing, to every x' E E' there is a number c > 0 such 
that cx' E 7". This implies immediately, for every E > 0, 

C E T ' O  C W ( { X ' } ;  F )  = { X  E E ;  I(x', x ) I  < F } .  

The  finite intersections of sets W({x ' } ;  E ) ,  as x' E E' and E > 0 vary, 
form a basis of neighborhoods of zero in a(E, E'), whence the result. 

THEOREM 36.3. 
two properties are equivalent: 

Let E be a locally convex Hausdorfl space. The following 

(a) E is semireflexive; 

(b) for u(E, E'), every closed bounded subset of E is compact. 

Proof. (a) implies (b), for if E is semireflexive, E is the dual of a barreled 
space, its strong dual EL , according to Proposition 36.4. I t  suffices then to 
apply Theorem 33.2. 

(b) implies (a). I t  suffices to show that the strong dual topology on E' 
is compatible with the duality between E' and E. According to Theorem 
36.1, we must show that the strong dual topology is identical to a 
G-topology, where G is a covering of E consisting of convex balanced 
weakly compact (i.e., compact for'o(E, E')) subsets of E. But the strong 
dual topology on E' is obviously identical to the topology of uniform 
convergence on the weakly closed convex balanced and bounded subsets 
of E. By hypothesis, these sets are weakly compact. Q.E.D. 

PROPOSITION 36.5. 
semireflexive, E is reflexive. 

If a barreled locally convex Hausdor-  space E is 
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Proof. As E is barreled, there is identity between bounded subsets 
of EL and equicontinuous subsets of E ;  the initial topology of E is the 
topology of uniform convergence on the equicontinuous subsets of E'; 
the strong dual topology on E (regarded as dual of Ei if we use the semi- 
reflexivity of E) is the topology of uniform convergence on the bounded 
subsets of Ei , whence the result. 

Before proving the Iast general result in the matter of reflexivity, 
let us observe that the strong dual of a reflexive space is trivially reflexive. 

THEOREM 36.4. and 
on& if E is barreled and i f ,  for the topology a(E, El), every closed bounded 
set is compact. 

Proof. The second of the two conditions is equivalent with the fact 
that E is semireflexive, by Theorem 36.3. If E is reflexive, then it is the 
dual of the reflexive space EL and therefore E is barreled, by virtue of 
Proposition 36.4. Conversely, if E is semireflexive and barreled, E is 
reflexive, by virtue of Proposition 36.5. 

A locally convex Hausdorff space E is rejlexive 

Examples of Semireflexive and Reflexive Spaces 

Example 36.1. The finite dimensional Hausdorfl spaces. On these 
spaces, all the locally convex HausdorfT topologies are identical; every 
closed bounded set is compact; every vector basis defines an isomorphism 
of E onto its dual. 

Example 36.2. The Hilbert spaces. Let J be the canonical isometry 
of a Hilbert space E onto its anti-dual, E': let K be the canonical isometry 
of the Hilbert space E' onto its own anti-dual, which is easily seen to 
be the strong dual of thestrong dualof E, Ei  ; K o J isanisometryof E 
onto El which is nothing else but the mapping x - value at x. 

Example 36.3. In order that a Banach space be reflexive, it suffices 
that it be semireflexive (by Proposition 36.5). If SI, is an open subset 
of R", the spaces L p ( 0 )  are reflexive when 1 < p  < + co (Theorem 
20.3); similarly, the spaces of sequences lp, for 1 < p  < + CO, are 
reflexive (Theorem 20.1.). These spaces D(0) and 1" for p = 1 or 
p = + co are not reflexive (cf. Exercises 36.1 and 36.2; also Corollary 
2 of Lemma 44.2). 

In relation with biduals and reflexivity, a certain number of results 
concerning normed spaces are of interest. Let E be a normed space, 
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x - 1 1  x 11 its norm, E' its dual, and x' - ( 1  x' 1) the dual norm on E ,  
that is to say the norm 

(36.1) 

On the bidual E" of E, we may consider the dual norm of (36.1), which 
we denote by x" -* 1 1  x" 11. 

PROPOSITION 36.6. The mapping x - value at x is an isometry of the 
normed space E into its bidual E" (equipped with the bidual norm). 

Proof. Let B (resp. B', resp. B") be the closed unit ball in E (resp. E', 
resp. E"). In view of Propositions 35.2 and 35.3, B is equal to its own 
bipolar, BOO; B' = BO and B" = B'O in the duality between E and E' 
and E and E", respectively. Therefore B = E n B", where we have 
identified E with its image in E", under the mapping x -value at x. 

COROLLARY. 
onto a closed linear subspace of its strong bidual, EL . 

If E is a Banach space, x - value at x is an isometry of E 

Proposition 36.6 can be expressed by the relation 

II 3611 = sup I<% x'>l. 
2'€E', II 2' II < 1 

If E is normed but is not a Banach space, its closure l? in Ei is a 
Banach space, since Ei  is a Banach space (the strong dual of a normed 
space is a Banach space: corollary of Theorem 11.5). I t  is clear that I? 
is canonically isomorphic to the completion E of E and can be identified 
with 8. 

PROPOSITION 36.7. A normed space E which is  semireflexive i s  a Banach 
space and therefore is reJlexive. 

Proof. T o  say that E is semireflexive is equivalent with saying that the 
mapping x - value at x is a linear isometry of E onto Ei  ; the latter 
being a Banach space, E must also be one. But then semireflexivity of 
E implies reflexivity of E, by Proposition 36.5. 

Proposition 36.6 should be contrasted with the next one: 

PROPOSITION 36.8. Let E be a normed space, and E" its bidual equa$ped 
with the bidual norm. The unit ball of E, { x  E E ;  11 x ( 1  < 11, is dense in 
the unit ball of E", {x" E E ;  ) I  X" 1 )  < l}, for the topology o(E", E'). 
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Proof. We identify E with a linear subspace of E" through the mapping 
x - value at x. The unit ball B of E is a convex subset of El'; its bipolar, 
in the sense of the duality between E" and E', is equal to its weakly 
closed convex balanced hull (here, weakly must be taken in the sense 
of u(E", El)). But this bipolar is the set {x" E E"; 11 x" 1 1  < l}, by definition 
of the bidual norm. 

COROLLARY. A normed space E is reflexive ;f and only if its closed unit 
ball is compact for the weak topology o(E, El). 

Indeed, the topology a(E, E') is obviously identical to the topology 
induced on E by a(E", E ) ;  the closed unit ball of E is dense in the one 
of E" for a(E", E'). If the closed unit ball of E is compact for o(E, E'), 
it is equal to the one of E"; hence E = E" (as normed spaces). 

Example 36.4. The Montel spaces (Definition 34.2). This is quite a 
different class of locally convex HausdorfT spaces from the Banach 
spaces: the only spaces which are both Banach spaces and Montel spaces 
are the finite dimensional Hausdorl€ TVS! 

PROPOSITION 36.9. On a bounded subset B of a Montel space E, the 
initial topology and the weak topology a(E, E') coincide. 

Proof. The closure of B, 8, is compact (for the initial topology); 
a(E, E') is HausdorfT and coarser than the initial topology, whence the 
result by a well-known property of compact sets (Proposition 6.4). 

COROLLARY. 
According to Proposition 36.9, for a( E, E), the closed bounded 

subsets of E (supposed to be a Montel space) are compact. Hence E 
is semireflexive, by Theorem 36.3. But as E is barreled (Definition 34.2), 
E is reflexive, in view of Proposition 36.5. 

A Montel space is reflexive. 

PROPOSITION 36.10. The strong dual of a Montel space is a Montel 
space. 

Proof. Let E be a Montel space, and EL its strong dual. Since E is 
reflexive, EL is barreled (Proposition 36.4). Every closed bounded subset 
of EL is strongly compact, as has already been proved (Proposition 34.6). 

In addition to the Montel spaces urn(Q), %:(sZ) (52: open subset of R"), 
9, and H(0)  (0: open subset of C"), we have now the Montel spaces 
8'(sZ), 9'(sZ), 9', H'(O), their strong duals (see Proposition 34.4). 
All these spaces are reflexive. 
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Exercises 

36.1. 

36.2. 

Prove that a Banach space E is reflexive if and only if Ei is reflexive. 

Let 1' be the Banach space of complex sequences u = (u,) (k = 0, 1, ...) such 
that 1 u I I  = ZLTo I u, I < + 03, and lm the Banach space of bounded complex sequences 
T = (7,) (k  = 0, 1 ,... ), with its natural norm 1 T lm = sup,,,., .... 17, I (Chapter 11, 
Example IV). Let us denote by l m  the linear subspace of 1" consisting of the sequences 
T = (7,) such that T~ + 0 as k + -t 03. Prove that Im is a closed linear subspace of lm 
(hence is a Banach space for the norm I Im) and that there is a canonical isometry of I' 
onto the dual of 1, . Derive from this that I' and Zm are not reflexive (use also Exercise 36.1). 

Using the Hahn-Banach theorem and the reflexivity of the spaces involved, 
prove that V;(Q) is dense in B'(Q) and in 9(Q) (Q: open subset of R"), that the (finite) 
linear combinations of Dirac measures at the points of Q are dense in B'(Q) and W(Q), 
and that the finite linear combinations of Dirac measures at the points of R" are dense 
in 9". 

36.3. 

36.4. Let T be a topological space, E a TVS, E' its dual, and t .LI x( t )  a mapping of 
T into E. Let us say that this mapping is scalarly continuous if for every x' E E' the mapping 
t - <x', x(t)> of T into C is continuous. When T is an open subset of R" (resp. of C"), 
we may say that t - x(t)  is scalarly k-times continuously dzfferentiable (0 < k < + 03) 

(resp. scalarly holomorphic) if this is true of the mapping t .LI <x', x(t)> for all x' E E', etc. 
Prove the following result: 

PROPOSITION 36.11. If E is a Monte1 space, and if the mapping t - x(t)  is scalarly con- 
tinuous (resp. scalarly k-times continuously differentiable, resp. scalarly holomorphic), then 
this mapping is continuous (resp. Vk, resp. holomorphic). 

36.5. 
Let E be a locally convex HausdorfT space, and F a locally convex space. A subset H 

of L(E;F),  space of continuous linear mappings of E into F, which is bounded for the 
topology of pointwise convergence, is also bounded for the topology of uniform conver- 
gence on the convex balanced complete bounded subsets of E. 

Prove the following result by using Lemma 36.1: 

36.6. Prove that the spaces H;,,(Q) and H:(Q) are reflexive (see p. 332). 
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Surjections of Frkchet Spaces 

In this chapter, we shall state and prove a very important theorem 
due to S. Banach. Let E, F be two FrCchet spaces, and u a continuous 
linear map of E into F. The theorem gives necessary and sufficient 
conditions, bearing on the transpose tu of u, in order that u be a sur- 
jection, i.e., u be a mapping of E onto F (i.e., u(E) = F). From Eq. (35.3) 
we derive immediately that Im  u is dense if and only if Ker t~ = {0}, 
in other words if and only if % is one-to-one. Note that the fact that 
u is onto means that Im u is dense and closed. But in general, the fact 
that is one-to-one will not be enough to ensure that Im u is closed. 
It is of course so when F is finite dimensional, since every linear subspace 
of a finite dimensional HausdorfT TVS is closed; but it is not so, in 
general, when F is infinite dimensional. Examples are easy to exhibit: 
it suffices to consider two Hilbert spaces H ,  , H ,  such that there is a 
continuous injection with dense image of Hl into H ,  which is not an 
isomorphism (in which case, the injection cannot be onto, in view of the 
open mapping theorem). Take for instance Hl = HI, H ,  = H o  = L2(R") 
(Definition 31.4; cf. Proposition 31.9): the injection of H 1  into Ho is 
the natural one, expressing that H 1  C HO when we regard both spaces 
as subsets of the space of distributions in R". 

Thus, we see that, if u(E) is to be equal to F, we must have some further 
condition, in addition to the fact that t~ : F' -+ E' be one-to-one. As we 
shall see, the additional condition on tu will simply be that h itself have 
its image closed-provided that closed be understood in the sense of the 
weak dual topology u(E', E) on E'. When E is reflexive, for instance 
when E is a Hilbert space, this is equivalent with saying that k(F')  is 
closed for the strong dual topology. 

The introduction of the condition that Im  !u be weakly closed raises 
the following question: is there a way of characterizing the weakly 
closed linear subspaces of the dual of a FrCchet space ? We shall begin 
by stating and proving such a characterization; it is due to S. Banach 
and is quite simple, as will be seen. We shall soon apply it to the proof 
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of an important complement (Theorem 37.3) to the main theorem 
(Theorem 37.2). 

THEOREM 37.1. Let E be a Fre'chet space. A linear subspace M' of the 
dual E of E is weakly closed if and only ;f the following property holds: 

(37.1) There is a basis of neighborhoods of the origin in E ,  B, such that, 
for every U E 9, the intersection of M' with the polar Uo of U a's 
weakly closed. 

Remark 37.1. We recall that the subsets Uo of E are weakly compact 
(Propositions 32.7 and 32.8). It should also be pointed out that (37.1) 
is equivalent to the following property: 

(37.2) The intersection of M' with every equicontinuous subset H' of E' is 
relatively closed in H' (for the topology induced by u ( E ,  E)). 

In  particular (cf. Proposition 32.7), (37.1) is equivalent to the fact that 
the intersection of M' with the polar of every neighborhood of zero in E 
is weakly closed. Since UO is weakly compact and equicontinuous 
(Proposition 32.7), (37.2) implies (37.1). Conversely, every equicontinuous 
subset H' of E' is contained in some Uo for U E (again by Proposition 
32.7). If M ' n  UO is closed in E', M ' n  H' = M ' n  Uo n H'must 
be closed in H .  Q.E.D. 

Proof of Theorem 37.1 

As Uo is weakly compact, it is obvious that M' n Uo will be weakly 
closed whenever M' is weakly closed. Therefore, it will suffice to prove 
that (37.1) or, equivalently, (37.2) implies that M' is weakly closed. 

We shall begin by showing that, under the hypotheses of the theorem, 
it is equivalent to say that M' is weakly closed or that M' is closed for 
the topology of compact convergence. This will follow from the fact 
that E: and EA have the same dual, namely E. It will then suffice to 
apply Proposition 36.2. Our statement will be a consequence of the 
following two lemmas: 

LEMMA 37.1. Let E be a locally convex Hausdorff TVS. The topology y 
(on the dual E' of E )  of compact convex convergence in E is compatible 
with the duality between E' and E (see Chapter 36, p. 369). 

In other words, x -value at x is an isomorphism (for the vector 
spaces structures) of E onto the dual of Ei . 
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LEMMA 37.2. On the dual E of a Frtchet space E, the topology y of 
compact convex convergence is identical to the topology c of compact 
convergence. 

Proof of Lemma 37.1. The topology y is identical to the topology of 
uniform convergence on every compact convex balanced subset of E. 
Such a set is obviously compact also for the weak topology o(E, E') on 
E, since o(E, E') is HausdorfF and weaker than the initial topology of E 
(Proposition 6.8). It then suffices to apply Theorem 36.1. 

Proof of Lemma 37.2. Whether E is a Frtchet space or not, the topology 
of compact convergence on E is equivalent to the topology of uniform 
convergence over the closed convex hulls of the compact subsets of E. 
It will therefore suffice to show that the closed convex hull I? of a 
compact set K of a Frtchet space E is compact. As g is closed, hence 
complete, it will suffice to prove that is precompact (Proposition 8.4). 
But this is stated in Proposition 7.11. 

At this stage, we have reduced the problem to showing that, under 
the hypothesis that E is a Frtchet space, (37.2) implies that M' is closed, 
i.e., that the complement of M' is open, for the topology of compact 
convergence c(E, E). In order to prove this last implication, we only 
need that E be metrizable, as stated in the following lemma: 

LEMMA 37.3. Let W be a subset of E' whose intersection with every 
equicontinuous subset of E' is weakly open. If E is metrizable, W is open 
for the topology of compact convergence. 

Proof of Lemma 37.3. Let X'E  W ;  we must show that, under our 
hypotheses, there is a compact subset K of E such that XI + KO C W ;  by 
performing a translation, if necessary, we may assume that x' = 0. 
Let {U,} ( k  = 1,2, ...) be a basis of neighborhoods of zero in E such 
that U,,, C U, for all k ;  the polars U i  are equicontinuous sets. 

Let us set U,, = E. We shall construct a sequence of finite sets 
B, C U ,  ( n  = 0, 1 ,...) such that, for every n = 1, 2 ,..., 

A: = B,u -..u Bn-l. U;n A;C W ,  

We do this by induction on n. No problem in selecting A, since Uz = (0) 
and since the origin belongs to W .  Suppose that we have selected A,. 
Then we contend that there is a finite subset B, of U, such that 

CJ;+l n (An u Bn)O C W'. 

If we prove this assertion, we will have established the existence of the 
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Bk's for all k. We reason by contradiction. Suppose that a set like B, 
did not exist. Let us denote by C' the complement of W and set 
CA = U:+l n A: n C'. Since, by hypothesis, W is weakly relatively 
open in U:+l ,  CA is a closed subset of Uz+l n A:, hence is weakly 
compact. According to our line of argument, given any finite subset B 
of U, , BO would intersect CA ; as any finite intersection of sets BO 
is of the same form, we see that, because of the compactness of CA , 
the intersection of all the sets Bo n CA should contain at least one point 
x'o. This x'o belongs to the polar of every finite subset of U, , hence 
to the polar of U, , i.e., 

x ' E U ; n A ; n C ' .  

But in view of the induction on n, U: n A: C W ,  the complement of 
C'. We have thus reached a contradiction and therefore proved the 
existence of the sequence of sets B, . Let S be their union. We have 

a3 u u; n SQ = (u; n A;) c w'. 
n=l n=l 

Now, the union of the sets U: (n  = 1, 2,  ...) is obviously the whole dual 
space E ,  whence SOC W .  But S is a sequence which converges to 
zero in E, therefore S u {0} is a compact set. This means that So is a 
neighborhood of the origin for the topology of compact convergence. 

This proves Lemma 37.3 and therefore Theorem 37.1. 
Before stating and proving the main theorem of this chapter, we shall 

introduce the following notation: 

Notation 37.1. Let E be a locally convex Hausdog TVS, and p a 
continuous seminorm on E. W e  denote by Ek the vector space of the linear 
functionals on E which are continuous for the topology dejned by the 
seminorm p. 

Let us denote by Ep the vector space E equipped with the topology 
defined by p .  Since p is continuous, the canonical mapping 

E -+ E,/Ker p 

is continuous (when E carries its initial topology and Ep/Ker p ,  the 
quotient of the ,topology defined by p); its transpose is a continuous 
injection of the dual of EplKerp into E', whose image is exactly E; 
as one checks immediately. Let U p  be the closed unit semiball of the 
seminorm p ,  Up = {x E E Ip(x) < l}; let U: be the polar of U p .  
Then Ek is the linear subspace of E' spanned by UE . As EL is alge- 
braically isomorphic to the dual of the normed space Ep/Kerp, it can 
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be canonically equipped with a structure of Banach space; the norm, in 
this structure, is nothing else but the "gauge" of the weakly compact 
convex balanced set U i  , which is absorbing in Ek , 

ED 3 x' -p'(x')  = inf A. 
A >O,r'EAU; 

The fact that p' turns Eb into a Banach space can also be derived from 
the corollary of Lemma 36.1. 

Exercises 

37.1. 
o ( E ,  E). 

37.2. 

37.3. 

Show that E; C (Ker p)O and that E: is dense in (Ker p)O for the weak topology 

Give an example where EL # (Ker p)O. 

Let E = Vo(Q), the space of continuous complex functions in an open subset 
Q of R", equipped with the topology of uniform convergence on every compact subset K 
of Q. Let p be the seminormf - SUP,~K I f(x)l. Prove that, in this case, E i  = (Ker p)O = 

set of Radon measures in Q with support in K. 

37.4. Prove the following result (which is going to be used later on): 

PROPOSITION 37.1. Let E,F be two locally Hausdorff TVS.  If u is a homomorphism of E 
onto F, to mery continuous seminorm p on E there is a continuous seminorm q on F, such that, 
for all y' E F ,  

'u(y') E E; implies y' E Fi . 

Now, we state and prove the main theorem of this chapter: 

THEOREM 37.2. Let E, F be two Fre'chet spaces, and u a continuous 
linear map of E into F. Then u maps E onto F if and only if the following 
two conditions are satisjied: 

(a) the transpose of u, lu : F' + E', is one-to-one; 
(b)  the image of k, "(F'), is weakly closed in E'. 

We state also the announced complement to this result; this com- 
plement will be proved and applied in the next chapter. 

THEOREM 37.3. 
facts are equivalent: 

Let E, F ,  and u be as in Theorem 37.2. Then the following 

(I) 
(11) 

u maps E onto F; 
to every continuous seminorm p on E there is a continuous semi- 
norm q on F such that the following is true: 
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(11,) to every y E F there is x E E such that q(u(x) - y )  = 0; 
(11,) for all y' E F' ,  lu(y') E EL implies y' E F; ; 
to every continuous seminorm p on E there is a linear subspace 
N of F such that the following is true: 

(111,) to every y E F there is x E E such that U(X) - y E N ;  
(111,) for all y' E F', lu(y') E Eh implies y' E No;  

closed linear subspaces of F,  whose intersection is equal 
to {0}, and such that the following is true: 
to every k = 1 ,  2, ... and to eoery y EF, there is x E E 
such that u(x) - y E Nk ; 
to every continuous seminorm p on E there is an integer 
k 

(111) 

(IV) there is a nonincreasing sequence Nl 3 N ,  3 ..- 3 Nk 3 of 

(IV,) 

(IV,) 
1 such that every x E E satisfying 

U(X) E Nk 

is the limit, in the sense of the seminorm p ,  of a sequence 
of elements x, (v = 1 ,  2 ,...) of E satisfying, for all v, 

u(x,) = 0. 

By saying that x is the limit, in the sense of p ,  of the x,'s, we mean 
that p ( x  - XJ + 0 as u --+ + co. 

Proof of Theorem 37.2 

Since Ker b = (Im u)O, we see that (a) is equivalent with the fact 
that Im  u = u(E) is dense in F. T h e  theorem will be proved if we show 
that (b) is equivalent with the fact that u(E) is closed in F. This will be 
done through the application of Proposition 35.7, where we substitute 
tu for u, FL for E, EL for F, thus obtaining: 

LEMMA 37.4. Let E, F be two locally convex Hausdog TVS, and u 
a continuous-linear map of E into F. The following two properties are 
equivalent : 

(a) %(F) i s  weakly closed in E'; 
(b) u is a homomorphism of E, equipped with the weak topology u(E, E ) ,  

onto u(E),  equipped with the topology induced by u(F, F'). 

The crux of the proof of Theorem 37.2 lies in the next lemma: 
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LEMMA 37.5. 
are equivalent: 

If E and F are both metrizable, the following properties 

(a) u is a homomorphism of E, equipped with o(E, E’), onto u(E), 
equipped with the topology induced by o(F, F’); 

(b) u is  a homomorphism of E onto u(E) C F (for the initial topologies). 

Before presenting the proof of Lemma 37.5, we shall show how it 
implies the equivalence of Property (a) of Lemma 37.4 with the fact 
that u(E) is closed in F. Consider the usual diagram associated with 
the linear mapping u, 

E 4 u ( ~ )  C F  

(37.3) .1 /- 
EIK&, 

where is the canonical homomorphism of E onto the quotient space 
E/Keru and v is the unique one-to-one linear map of E/Keru onto 
u(E) which makes the triangle (37.3) commutative. Since u is continuous, 
so is v. By definition, u is a homomorphism if o is an isomorphism 
(for the TVS structures). But when both E and F are FrCchet spaces, 
v is an isomorphism if and only if u(E) is closed. Indeed, if v is an 
isomorphism, u(E) = Im v is isomorphic to the FrCchet space EIKer u, 
hence is closed. Conversely, if u(E) is closed in F, u(E) is a FrCchet 
space for the induced topology and therefore v is a one-to-one con- 
tinuous linear map of a FrCchet space, EIKeru, onto another one, 
u(E); v must be an isomorphism in view of the open mapping theorem 
(Theorem 17.1). 

Thus, we are left with the proof of Lemma 37.5: 

PROOF OF LEMMA 37.5. We go back to Diagram (37.3). What we ought 
to show is the following; v is an isomorphism (for the initial topologies 
on E and F and the quotient topology on EIKer u) if and only if v is an 
isomorphism when E carries o(E, E’), F carries o(F, F’), and E/Ker u 
carries u(E, E’)/Ker u. 

We shall apply to v and to its inverse v-l (defined on u(E)) the following 
result: 

LEMMA 37.6. Let E be a metrizable locally convex TVS, F a locally 
convex Hausdorff TVS,  and u a linear map of E into F. If u is  continuous 
when E and F carry their respective weak topologies u(E, E‘) and o(F, F’), 
then u is continuous (for the initial topologies). 

PPOOF OF LEMMA 37.6. Let {U,} (k  = I ,  2, ...) be a basis of neighbor- 
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hoods of zero in E such that uk c Uk-1 ( k  2 2) .  If u were not continuous, 
there would be a balanced neighborhood of zero V in F such that u-l( V )  
would not be a neighborhood of zero in E, hence would not contain 
any one of the sets (Ilk) u k  ; for each k, we would be able to select an 
element x k  of E such that kxk E u k  and such that u ( X k )  $ V .  Since the 
sequence kxk converges to zero in E, and a fortiori converges to zero for 
o(E, E),  we see that the sequence k u(xk) is relatively compact in F for 
o(F, F‘). In view of Mackey’s theorem (Theorem 36.2), this sequence 
is also bounded in F (for the initial topology). Therefore there is a 
number X > 0 such that k u(xk) E XV for all K ;  this implies that, for k 
sufficiently large, u(xk) E (X/k) V C V ,  contrary to our assumption about 

If we combine Lemma 37.6 with Proposition 35.8, we see that a linear 
mapping of a metrizable locally convex TVS into a locally convex 
Hausdo&’ TVS is continuous if and only if it is continuous when both 
spaces carry their respective weak topologies. Keeping this in mind, 
we proceed with the proof of Lemma 37.5. 

Recalling that Ker u is closed in E (since u is continuous), we see that 
we are dealing with a one-to-one linear map v of a metrizable space 
G = E/Ker u, onto the metrizable space H = u(E) CF. According to 
what has just been said, v is continuous as a mapping of G, equipped 
with u(G, G‘), onto H, equipped with o(H, H’); similarly, 0-l : H +  G 
is continuous if and only if it is continuous when H carries o(H,  H‘) and 
G carries o(G, G).  Lemma 37.5 will therefore be proved if we prove 
the following two facts: 

the vectors x k  . Q.E.D. 

(37.4) u(G, G’) = u(E, E‘)/Ker u;  

(37.5) u(H, H’) is identical to the topology induced on H by a(F, F’). 

Recalling that H‘ is canonically isomorphic to F’IHO, the statement 
(37.5) is absolutely obvious. As for (37.4), it will follow immediately 
from Propositions 35.5 and 35.6. Indeed, Part (a) of Proposition 35.5 
says that the dual G’ of G = E/Keru  is canonically isomorphic to 
(Ker u)O. On the other hand, if we apply Proposition 35.6 with E and 
E‘ exchanged and with N = (Ker u)O (observing that this is a closed 
linear subspace of Ei), we see that 

u(E/Ker u, (Ker u)O) = o(E, E’)/Ker u. 

Combining these facts, we obtain (37.4). 

will be given in the next chapter. 
The proof of Theorem 37.2 is complete. The  proof of Theorem 37.3 
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37.5. Prove that Theorem 37.2 remains valid if we replace the assumption that E and 
F be FrCchet spaces by the one that E and F be duals of reflexive Frtchet spaces. 

37.6. Let P(a/aX) = P(a/aX, ,..., a/aX,,), and P ~9,,,  i.e., a polynomial in n 
indeterminates with complex coefficients. We let P(a/aX) operate on 9,,, the space of 
formal power series in X = ( X I  ,..., X,,). Prove that P(a/aX) maps 9% onto itself, unless 
P = 0 (use Theorem 37.2). 

37.7. Prove that every ideal u 9 , ,  u E 9,, , is closed in 9,, (study the transpose of 
the mapping v -+ uv of 9, into itself; show that it is surjective and apply Exercise 37.5). 

37.8. Prove the following result: 

LEMMA 37.7. 
linear map. The following two properties are equivalent: 

u is a homomo*phism of E onto u(E) CF, 
'u(F') is weakly closed in E' and every equicontinuous set A' C "(P) is the image, 
under 'u, of an equicontinuous subset of F .  

Let E, F be two locally convex Hausdorff TVS,  and u : E -+ F a continuous 

(a) 
(b) 
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Applications. 

We proceed to give the proof of Theorem 37.3: 

Proof of Theorem 37.3 

(I) implies (11) by virtue of Proposition 37.1. Indeed, if u(E) = F, 
u is a homomorphism of E onto F, by the open mapping theorem. 
Trivially, (11) implies (111): it suffices to take N = Ker q. 

We prove, now, that (111) implies (IV). For this, we prove first that 
(111) implies Property (b) in Theorem 37.2, that is to say that ‘u(F) 
is weakly closed in E‘. We apply Theorem 37.1, in the following manner. 
As a basis of neighborhoods of zero in E, we take the closed unit semiballs 
Up of the continuous seminormsp on E, and we prove that lu(F’) n UE 
is weakly closed. Let H be the preimage of this set under the mapping 
lu. Let N be a linear subspace of F associated with the seminorm p 
as in (111). If y’ E H‘, then C(y’) E U; C Eb (Notation 37.1), therefore 
y’ E NO. Let y be an arbitrary element of F, x E E such that y - u(x) E N. 
We have (for y’ E H’):  

(Y’, r> = (r’, .(4> = <tu(Y’), x>. 

This equality proves, first of all, that y’ - “ (y ‘ )  is a homeomorphism 
of H onto its image, ‘u(F’) n 77; , for the topologies induced by a ( F ,  F) 
and o(E ,  E), respectively, and, second, that H’ is weakly bounded, 
since %(y‘) varies in the weakly bounded set U i  as y’ runs over H. 
But since F is barreled (Corollary 1 of Proposition 33.2), we derive from 
the Banach-Steinhaus theorem (Theorem 33.2) that H‘ is equicontinuous 
and its weak closure R’ is a weakly compqct subset of F‘ (Proposition 
32.8). The restriction of tu to R’ is then a homeomorphism of onto 
the weak closure of G(F‘) n U; . The latter weak closure is contained 

387 
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in the weakly compact set Ui ; since it is equal to %(R’), it is also 
contained in “(F’). Consequently, it is equal to ‘u(F‘) n U i  . 

Thus (111) implies that C(F’) is weakly closed. As we have 

Ker ‘u = (Im u)O, Ker u = (Im k ) O ,  

(Ker u)O = (Im ‘u)” = weak closure of Im tu, 

hence 
hence 

we have, in the present situation, 

(38.1) Im tu = (Ker u)O. 

This identity will soon be used. 
We now complete the proof of the implication (111) 3 (IV). Let 

p ,  < p 2  < -.*  < p k  < be a sequence of continuous seminorms 
on E such that, for every continuous seminorm p on E, there is an 
integer k 2 1 such that p < p k  . That such a sequence exists is evident: 
it suffices to take the seminorms associated with the sets belonging to a 
decreasing countable basis of neighborhoods of zero, consisting of convex 
closed balanced neighborhoods of zero. For each k = 1,2, ..., let Nk 
be a linear subspace of F associated with p k  as in (111). We take as linear 
subspace Nk the closure of the algebraic sum of the subspaces N‘ for 
I k (an element of this algebraic sum is the sum of a finite number of 
vectors belonging to the N‘, 12 k). We start by proving that the 
intersection of the Nk is equal to {O}. Let y‘ E F‘ be arbitrary. Since 
‘u(y’) is a continuous linear form on E, there is an integer k 2 1 such 
that ‘u(y’) E ELk (Notation 37.1), therefore, in view of (HI2), y‘ E (Nk)O. 
As a matter of fact, since p k  < P I  for 1 2 k, we have ELk C EL, and 
therefore y’ E (Nz)O for those 1. Since y‘ belongs to the orthogonal of 
every N’, I 2 k, y‘ belongs to the orthogonal of their algebraic sum and 
therefore also to the orthogonal of the closure of their algebraic sum, 
hence to (Nk)O. In particular, y’ belongs to the orthogonal of the inter- 
section of all the N j  , j  = 1, 2, .... Since y’ is arbitrary, it follows from the 
Hahn-Banach theorem that this intersection must be equal to {O}. 

Since Nk C Nk , (IV,) is a trivial consequence of (111,). 
We derive now (1V2). Let p be an arbitrary continuous seminorm 

on E, and k 2 1 be such that p < p k  . We show that Ker u is dense in 
H k  = u-l(Nk) for the topology defined by the seminorm p. In view of 
Corollary 1 of the Hahn-Banach theorem (Theorem 18.1), it suffices 
to show that every linear form on E, continuous for the seminorm p ,  
which vanishes on Ker u also vanishes on Hk . Let XI be such a form. 
Since x‘ E E is orthogonal to Ker u, we derive from (38.1) that there 
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is y’ E F’ such that x‘ = ‘u(y’). Since x‘ E Eh, , we derive from (111,) 
that y’ E (Nk)O. As a matter of fact, x’ E Ehz for all I > k, therefore, 
by the same argument used above, y’€(Nk)O. But then, if X E H , ,  

(x‘, x )  = (%(y‘),  x) = ( y ,  u(x))  = 0 since u(x)  E Nk 

The implication (111) * (IV) is completely proved; it remains to show 
that (IV) implies (I). 

Let us use a basis of continuous seminorms p k  on E as before. By 
possibly renaming the Nk’s, we may assume that, for each k, Nk is 
associated to p k  as in (IVJ: every x ~ u - l ( N k )  is the limit for p k  of 
a sequence in Ker u. Let y be an arbitrary element of F. By applying 
(IVl), we may find x1 E E such that y1 = y - u(xl) E Nl and then, by 
induction on k = 2, 3, ..., a sequence of elements x k  in E, yk in F such 
that 

Yk = Y k - 1  - u ( x k )  N k  * 

Observing that u(xk) = Y k - 1  - yk ( k  2 2) ,  we see that there is h k  E Ker u 
such that p k - l ( X k  - h k )  < 2-k. The Series 

converges absolutely in E, defining there an element x (since E is com- 
plete). Let us set, for r > 1, 

7 

zr = x1 + c ( x k  - hk)* 
k=2 

We have 
r 

44 = c 4%) = Y - Y r  * 

44 - Y E Nr . 

k = l  

Therefore 

But since N, C N,, for all s > r ,  we also have 

By going to the limit as s +  + co and recalling that N,, is closed, we 
obtain 

u(x )  - y E N ,  . 
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As the integer r is arbitrarily large, y - u(x) belongs to the intersection 
of all the N,'s, therefore is equal to zero. 

The proof of Theorem 37.3 is complete. 

An Application of Theorem 37.2: A Theorem of E. Borel 

We shall now give a very simple application of Theorem 37.2. We 
shall show how it enables us to prove the following classical theorem 
of E. Borel: 

THEOREM 38.1. Let @ be an arbitrary formal power series in n indeter- 
minutes, with .complex coeficients. There is a V" function q~ in Rn whose 
Taylor expansion at the origin is identical to @. 

In other words if, for every n-tuple p = ( p ,  , . . . ,p,)  of integers 
pi 2 0, we give' ourselves arbitrarily some complex number up , there 
is a V" function in Rn such that ( a / a x ) P p )  I z=o = up for every p .  Of 
course, the origiri in Rn can be replaced by any other point. 
Proof of Theorem 38.1. Let us denote by u the mapping which assigns 
to every function q~ E V"(Rn) its Taylor expansion at the origin; we 
regard the latter as an element of the space 9* of formal power series 
in n letters with complex coefficients. We must show that u is a surjection. 
We provide V"(Rn) with the natural V" topology and 2, with the 
topology of simple convergence of the coefficients (Chapter 10, Examples 
I and 111). The dual of Vm(R*) is the space of distributions with compact 
support in Rn; the dual of 9, is the space gn of polynomials in n letters 
with complex coefficients (Chapter 22). What is then the transpose lu 
of u ?  

Observe that the mapping u is the mapping 

If ( , ) denotes the bracket of the duality between V"(R*) and €" on 
one hand, and between gn and 2, on the other, we see that we have, 
for any polynomial 

P ( X ) =  c PPXP, 
paNn 

1 
( P ,  4P)> = 7 PP[(a/axP d 0 ) l  = <P(-a/ax)& v), 

PEN" p *  
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where 6 is the Dirac measure at the origin and where we have set 

1 P( -a/ax> = c (-1)IPI - Pp(a/ax)". 
PON" P! 

This means that the transpose tu of u is the mapping P - P(-a/ax)i? 
of gn into 8'; it is clear what the image of tu is: the space of all linear 
combinations of derivatives of the Dirac measure at 0. But we know 
(Theorem 24.6) that this space is identical to the space of distributions 
having the origin (0) as support (plus the zero distribution!); the latter 
space is trivially closed, i.e., weakly closed. As tu is obviously one-to-one 
(apply for instance the Fourier transformation to P( -a/ax)6),  we see 
that Conditions (a) and (b) of Theorem 37.2 are satisfied, whence the 
result. Q.E.D. 

An Application of Theorem 37.3: A Theorem of Existence 
of V" Solutions of a Linear Partial Differential Equation 

As usual, IR will denote an open subset of R". We consider a linear 
partial differential operator D ,  with Yrn coefficients, defined in IR (see 
Chapter 23, Example 111). We are going to prove necessary and sufficient 
conditions, bearing on the pair of objects 52, D ,  in order that the equation 

DU = f  

have a solution u E Urn(SZ) for every f E vrn(52). This property of the 
equation Du = f can be rephrased by saying that D, which is a continuous 
linear operator of %P(IR)  into itself, is in fact a surjection of that FrCchet 
space onto itself, i.e., 

D$P(SZ) = $P"(J?). 

In  order to state the announced necessary and sufficient conditions 
for this to be true, we shall make use of two definitions, which we now 
state. 
Dejnition 38.1. W e  say that the open set SZ is D-convex i f  to every 
compact subset K of SZ and to every integer k >, 0 there is a compact subset 
R(k) of 52 such that, for every distribution p with compact support in IR, 
the following is true: 

(38.2) If tDp is of order < k  and i f  supp tDp C K ,  then supp p C l?(k). 
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We explain the notation used: if T is a distribution, supp T is the 
support of T. We have viewed the differential operator D as a continuous 
linear mapping of V:(Q) (or U"(i.2)) into itself (Proposition 23.4); then 
'D  is the differential operator defined as the transpose of that mapping; 
'D is a continuous linear map of 9(Q) (or B'(l.2)) into itself. If the 
expression of D in the coordinates (xl ,..., xn) is 

P(x,  a/ax)  = c a,(x) (a/ax)P, m: order of D, up E Wm(Q), 

the expression of 'D in the same coordinate system is given by the 
"formal transpose" of P(x, a/&) (Definition 23.3), 

IPISm 

tP(x, a/&) = c (--I)Ipl(a/ax)* a,(%). 

For the concept of the order of a distribution, see Definition 24.3. 

Definition 38.2. W e  say that the differential operator D is semiglobally 
solvable in SZ if, for every relatively compact open subset Q' of SZ, the 
following property holds: 

(38.3) 

IPlGm 

We shall also need the following definition: 

To mery function+ E Wm(Q) there is # E Wm(Q) such that D# = + in sz'. 

We may now state the announced result: 

THEOREM 38.2. Let D be a linear partial differential operator with 
V" coejicients in the open set SZ C Rn. The following two properties are 
equivalent : 

(38.4) 

(38.5) 

Proof of Theorem 38.2. We shall apply Theorem 37.3 with E = F = 
V"(Q), u = D, and show that (38.5) is equivalent with Conditions 
(11) and (111) there. Let us show that (38.5) implies (111). Let p be some 
continuous seminorm on V"(Q). By definition of the V" topology, there 
is a compact subset K of Q, an integer m 2 0, and a constant C > 0 
such that, for all 4 E Um(sZ), 

To every f E WTQ), there i s  u E gm(Q) such that Du = f. 

The open set Q is D-convex and D is semiglobally solvable in Q. 

This fact implies immediately that all the distributions p E b'(Q) 
which are continuous in the sense of the seminorm p must have their 
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support in K and must be of order < m. We now use the D-convexity 
of 52. There is a compact subset K' of SZ such that, for all distributions 
p E B'(SZ) such that the order of lDp is < m and that supp lDp C K, 
we have supp p C K'. Let then SZ' be a relatively compact open subset 
of SZ containing K'. Since D is semiglobally solvable, to every f E U"(52) 
there is u E U"(52) such that Du - f~ N, the subspace of P ( 5 2 )  con- 
sisting of the functions which vanish in 0'. We have just seen moreover 
that, if p E &'(Q), f D p  E E i  implies p E No. Whence (111). 

Finally, let us show that (11) implies (38.5). Let m be a nonnegative 
integer, and K a compact subset of 52. Let K, be another compact 
subset of 52 containing K in its interior. Every distribution of order < m 
in 52 with support in K defines a linear form on V"(52) continuous for 
the seminorm 

In view of (11), there is another continuous seminorm q on VP(52) such 
that, for all p E S'(Q), if IDp is continuous in the sense of p ,  p itself 
must be continuous in the sense of q. The argument already used in the 
first part of the proof shows that to every continuous seminorm q on 
g"(52) there is a compact subset K' of SZ such that the distributions 
p E d'(52) which are continuous in the sense of q must all have their 

Although we have not used it, Condition (IV) in Theorem 37.3 has an 
important interpretation when we apply it to the situation of Theorem 
38.2. Let us select an increasing basis of continuous seminorms in F"(52). 
We may select the sequence of seminorms 

support contained in K'. Q.E.D. 

Here {Kk} (k = 1, 2, ...) is a sequence of compact subsets of 52 such 
that Kk c Kk+, and whose interiors cover Q. As 52 is D-convex, to every 
K = 1,2, ..., there is a compact subset K; of SZ such that, if a distribution 
p E S'(f2) is continuous on V"(s2) for the topology defined by the semi- 
norm pk , then supp p C KL. Let, then, be a relatively compact open 
neighborhood of KL in 52; let us choose these open sets 52; such that 
52; C l&+, , and let us denote by Nk the (closed) linear subspace of 
Um(52) consisting of the functions 4 which vanish identically in 52; . 
By inspection of the proof of the implications (11) - (111) (IV) in 
Theorem 37.3, we see immediately that the subspaces Nk have all the 
properties listed in (IV). In  particular, with respect to (IV2), we see that, 
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for every k 2 1, every function 4 E V"(52) which satisfies the linear 
partial differential equation D+ = 0 in i2; is the limit, for the uniform 
convergence of functions and of their derivatives of order < k on the 
compact set Kk , of a sequence of functions r& E Vm(Q) which satisfy 
wv = 0 in the whole of 52 (for all v). (Observe that Kk C KL for all k; 
see Exercise 38.4.) 

Remark 38.1. One can give examples of differential operators D which 
are not semiglobally solvable in any open subset of Rn, although some 
of these subsets are D-convex. On the other hand, differentia1 operators 
with constant coefficients are always semiglobally solvable (see Exercise 
38.1 below) but, in general, given such an operator D, one can find open 
subsets of Rn which are not D-convex. This shows the independence 
of the two properties: D-convexity of Q, semiglobal solvability of D 
in Q. 

Exercises 

38.1. Suppose that the differential operator D has constant coefficients (with respect 
to some coordinate system x1 ,..., x, in R") and that D is not identically zero. Then, it can 
be proved that there exists a distribution E in R" such that D E  = 6. Admitting this, 
derive the fact that D is semiglobally solvable in every open subset of R". 

Let the differential operator D have constant coefficients (not all zero). Prove 
that an open set R C R" is D-convex if and only if, to every compact subset K of R, there 
is another compact subset K' of R such that, for all functions 4 E %'F(R), 

38.2. 

supp P( - DH C K implies supp I$ C K'. 

38.3. 

(AHE) 

Let D be a differential operator with Frn coefficients in an open subset R of R", 

For every open subset 8' of R and every distribution T i n  Q', the fact that D T  
is an analytic function in Q' implies that T is an analytic function in R'. 

having the following property: 

Prove then that R is D-convex. 

38.4. Let D be a linear partial differential operator with Vrn coefficients defined in 
some open subset R of R". Suppose that D is semiglobally solvable in D. Let then K be 
a compact subset of R, and m an integer > 0. Prove the following: if K' is a compact 
subset of D such that, for all distributions p E B'(R) such that 'Dp be of order < m and 
have its support in K, we have supp p C K', then necessarily K C K'. 

of Vrn(R") onto itself (for the TVS structure), 
which induces an isomorphism of VF(Rn) onto itself, having the following property: 
there are compact subsets K of R" such that, for all distributions p E b'(R") with the 
property that supp * J p  C K, we have K n supp p = 0 .  

Give an example of an isomorphism 
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Tensor Products. Kernels 



The topics discussed in Part I11 are tensor products, mainly of spaces 
of functions and distributions, the topologies that such tensor products 
carry naturally, the locally convex spaces which arise by completion 
of the tensor products so topologized. The elements of these completions 
are often referred to as “kernels,” whence the title of Part 111. 

This section of the book begins with the definition of the tensor 
product of two vector spaces (Chapter 39). We have departed slightly 
from the now generally adopted definition by the “universal property” 
(which we state as a theorem, 39.1). In practice, one needs to know if a 
space already given, M, is the tensor product of two others, E and F. 
This is so if there exists a bilinear map 4 : E x F + M whose image 
spans M and such that, for all pairs of linearly independent sets of 
vectors (xJ and (ya) in E and F, respectively, the vectors 4(xa , ya) are 
linearly independent in M (then it is natural to refer to the pair (M, 4) 
rather than to M as a tensor product of E and F). In the same chapter, 
a few examples are presented, essentially of spaces of functions. Examples 
among spaces of distributions are given in Chapter 40. Prior to this, 
we introduce the functions which take their values in a locally convex 
space E and which are differentiable. This enables us to define the tensor 
products gk @ E (0 < K < + 00): their elements are those gk functions 
with values in E whose images span a finite dimensional subspace of E. 
The tensor product of two distributions is defined; its basic properties 
(among which the Fubini type theorem, 40.4) are proved. The following 
chapter, Chapter 41, is devoted to bilinear mappings and the important 
notion of hypocontinuity. The student uncertain as to the advisability 
of advancing further but who has gone as far as Chapter 37 or 38 should 
definitely try to assimilate the contents of Chapters 39, 40, and 41 and 
to gain some familiarity with tensor products and bilinear mappings. 

In any representation of a vector space as a tensor product, the first 
feature that strikes the eye is that of a certain splitting. Splitting of the 
tensor product type are common in algebra. In the problems that concern 
US, they usually originate in a splitting of the variables in the “base 
space.” We could be dealing, for instance, with functions defined in a 
product space R m  x R” where the variable is denoted by (x ,y) .  
It might then be convenient to regard those functions as functions with 
respect to the first variable, x, taking their values in a suitable space of 

397 
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functions (or distributions) with respect to the second one, y. In this 
way, for example, %z,v can be viewed as the space of em functions of x 
with values in %;. It is only natural to try to study this situation in more 
comprehensive, i.e., general, terms, and to deal with functions and 
distributions valued in arbitrary locally convex spaces. Among those, 
the simplest are the ones whose image spans a finite dimensional sub- 
space of the “values space’’ E. They form a linear space which can 
generally be viewed as the tensor product of E with a suitable space of 
complex-valued functions; we have encountered this in dealing with 
%k(E) (see above). However, in analysis, where one is forced to go beyond 
the limitations of finite dimensionality, other operations, of a topological 
nature-definition of a notion of convergence, adjunction of limit 
points, which is to say completion-must follow up the formation of 
tensor products. The space %‘;,?l can certainly not be equated to the 
tensor product %: @ W; in any reasonable manner, for the elements 
of the latter must be recognizable as the finite sums xj uj(x) wj(y), 
uj E %:, v j  E %;. But one cannot fail to notice that, although %‘: @ %; 
is not the whole of %z,v , it is a dense linear subspace of the latter (by 
Corollary 4 of Theorem 15.3), so that W;,y can indeed be regarded as a 
completion of %; @ %;. In particular, %& induces on %?; @ %; a 
certain topology, which is to be considered as “natural” for many good 
reasons. In general, when we wish to topologize and form the completion 
of a tensor product E @ F, we are forced to look for an intrinsic definition 
of the topologies, either relying directly on the seminorms on E and F, 
or else using an embedding of E 0 F in some space related to E and F 
over which a “natural” topology already exists. The  first method leads 
to the so-called projective or 72 topology. The second method may lead 
to a variety of topologies, the most important of which is the E topology 
( E  stands for equicontinuous). This is the only one of the latter class 
which we study here, although the other ones may be of considerable 
importance in special problems. 

Let us sketch how the projective topology is defined. The  aim is to 
build, out of any two continuous seminorms p and q on E and F, 
respectively, a seminorm, denoted by p @ q, on E @ F, and to define 
the topology TI by these “tensor products of seminorms,” p Q q, as p 
and q vary in all possible ways. Consider an arbitrary tensor 0 E E @ F; 
0 has, in general, many representations Ck x k  B y k  (finite sum; xk E E ,  
y k  E F). T o  each one of them, we associate the nonnegative number 
xk p(xk)  q(yk). The value ( p  0 q)(B)  is the infimum of all these numbers. 
This definition is due to R. Schatten. 

The  definition of the topology E is based on the relationship between 
tensor products and linear mappings-or bilinear forms. This rela- 
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tionship is evident in the finite dimensional case. Suppose that dim E 
and dim F are finite and let 9 be an element of E Q F. We may associate 
with 8 the following bilinear form on E‘ x F’: 

(111.1) (x‘, r‘) - c (x’, Xk) (Y’, Yk) ,  
k 

where xk @yk is an arbitrary representation of 8 (that the above 
bilinear form does not depend on the chosen representation of 8 is 
inherent to the definition of tensor product). We may also associate 
with 9 a linear map of E‘ into F, namely 

(111.2) 

It is easy to see that these correspondences establish an isomorphism 
between E Q F, B(E’, F’) (the space of bilinear forms on E‘ x F’), 
and L(E’;  F) (the space of linear mappings E’ --t F). But it is clear that 
these convenient isomorphisms will not subsist if we give up the finite 
dimensionality of E and F. Indeed, one notices that any linear map 
of the type (111.2) must have a finite dimensional image (the image of 
(111.2) is contained in the linear subspace of F spanned by the vectors y,). 
In  addition to this fact, problems concerning continuity arise. Of course, 
we shall make use of the “topological” dual E‘, that is to say the space 
of continuous linear functionals of E. Then (111.2) establishes a one-to-one 
correspondence between E @ F and the mappings of E‘ into F which 
are continuous when both spaces carry their weak topology and which 
have a finite dimensional image. It is easy to see that (111.1) establishes 
a one-to-one correspondence between E Q F and the space B(EL , FL) 
of all continuous bilinear forms on Ei x FL . We may embed the latter 
in the space g(EL , FL) of separately continuous bilinear functionals on 
EL x FL . The advantages of such an embedding are two-fold: the space 
a( Ei , Fi)  carries a natural topology: the topology of uniform convergence 
on the products A’ x B’ of equicontinuous sets; equipped with this 
topology, B(EL , Fi)  is complete if and only if b0th.E and F are complete. 
Taking all this into account, we identify E Q F to B(EL, Fi)  (space of 
continuous bilinear functionals on x FL); we regard it as a linear 
subspace of g ( E ;  , Fi).  The topology induced by this embedding is the 
E topology. The campletion of E @ F, provided with it, will be identified 
with its closure in B(EL, FL) (assuming that both E and F are complete). 
Now, if we regard the tensor product Vk Q E as a linear subspace of 
Vk(E) ,  the space of Vk functions valued in E (and defined, say, in some 
open subset of R*), we see easily that the topology of uniform convergence 
on compact sets of the functions and of all their derivatives of order < k 
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induces on Wk @ E precisely the topology E ;  as furthermore Wk Q E 
is dense in Wk(E), it makes sense to write Wk(E) Wk Be E. Chapters 
42 and 43 are devoted to the definitions and elementary properties of 
the topologies rr and E (Chapter 42 studies the spaces B ( E i ,  Fi) and 
5%(EL,F;), and related spaces of continuous linear maps, alluded to 
above). Chapter 44 presents two important examples of completed 
&-tensor products: the space V ( K ;  E )  E V ( K )  Be E of continuous 
functions, defined in a compact set K and valued in a locally convex 
space E, HausdorfF and complete; P(E) E P E, the space of sequences 
{ x k }  in E such that the series x k  xk converges (here again, E is HausdorfF 
and complete). Chapter 45 is devoted to one of the most important 
results of the theory, the representation of the elements of the completed 
rr-product E @,, F of two FrCchet spaces E, F as series 

(111.3) 'Gk @ y k  
k 

absolutely convergent in E @,, F, with C k  I hk I < + co, {xk} and { Y k } ,  

sequences converging to 0 in E and F, respectively. This representation 
is constantly used in the sequel. Chapter 46 presents one more example 
of completed .rr-tensor product: the space L1(E) L1 @,, E of integrable 
functions valued in the complete HausdorfF locally convex space E. 
When E is a Banach space and L1 @,, E carries the tensor product norm, 
the above isomorphism is an isometry. 

Chapter 47 introduces and studies nuclear mappings, Chapter 49 
does the same for integral mappings. Suppose that E and F are Banach 
spaces and let the series (111.3) represent an element 8 of E @-F;  it 
is clear that 8 defines a continuous linear map of E into F, namely 

k 

This is a typical nuclear map of E' into F (if we want to deal with nuclear 
mappings of E into F, we must exchange E and E ) .  A nuclear map is 
compact (that is to say, transforms the unit ball of E into a relatively 
compact subset of F);  the compose of nuclear maps, whether on the 
right or on the left, with continuous mappings is nuclear. In the case 
of Hilbert spaces, nuclear mappings are exactly those compact operators 
u such that the sequence of eigenvalues {hk]  of their absolute value 
(u * u)lI2 is summable, i.e., & hk < + CO (Theorem 48.2). As a matter 
of fact, in the case of Hilbert spaces E and F, E Be F can be identified 
with the space of compact operators of E into F (we are identifying E and 
E )  and the dual of E @* F can be identified with the space of nuclear 
operators (with the so-called trace-norm, which is equal to the sum 
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of the eigenvalues of the absolute value of the operator); the dual of the 
latter is none other than the space of all bounded operators of E into F 
(with the operators norm; Theorem 48.5’). When E and F are locally 
convex spaces, not necessarily Banach spaces, one defines the nuclear 
operators by means of Banach spaces &, and FB naturally associated 
with the continuous seminorms p on E and the bounded closed convex 
balanced subsets of F, B, such that the space EB is complete. 

The topology T is finer than the topology E .  Thus, the identity mapping 
of E O F  onto itself can be extended as a continuous linear map of 
E &F into E &F. That this mapping may not be an isomorphism, 
or even simply surjective, is shown by the case of Hilbert spaces. But 
its image is dense. Therefore, its transpose is an injection of the dual 
of E F, denoted by J(E,  F), into the one of E BT F, which is identifi- 
able with the space of continuous bilinear functionals on Ex F, B(E, F). 
Thus the elements of J(E, F) are continuous bilinear forms on E x F, 
of a special type, called integral forms. An operator u : E -+ F is said 
to be integral if the associated bilinear form on E x F’, 

(x, Y’) - (Y‘, w>, 
is integral. All the nuclear operators are integral but the converse is not 
generally true unless E and F are Hilbert spaces. However the compose 
of three integral operators (as a matter of fact, of two only-but this 
will not be proved here) is nuclear. A typical integral form is provided 
by the bilinear form on U(X) x U(X), 

(f, g) - J f(4 g(4 dx, 
X 

where X is a compact space and dx a positive Radon measure on it 
(this form is so typical that any integral form on any prijduct E x F 
possesses such a representation-for a suitable choice of X and dx). 
What is important, for the subsequent chapters, is that any integral 
operator E + F can be decomposed into two continuous linear mappings 
E -+ H + F, with H a Hilbert space. 

With Chapter 50, we get to nuclear spaces. These are the locally 
convex HausdorfT spaces E such that, given any other space F, the 
topologies m and E on E O F  are identical. Nuclear spaces do exist: 
the main spaces occurring in distribution theory are nuclear: V“, %:, 
b’, 9, 9, and 9‘; and so also are the space of holomorphic functions 
in an open set of C” (and its dual, the space of analytic functionals in 
that open set). Banach spaces are not nuclear, unless they are finite 
dimensional. Complete nuclear spaces, when they are barreled, are 
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Monte1 spaces, hence they are reffexive (see Chapter 36). Nuclear spaces 
have beautiful “stability properties”: linear subspaces, quotient spaces, 
products, and projective limits of nuclear spaces are nuclear spaces; so 
also are countable topological direct sums and countable inductive limits 
of nuclear spaces. A FrCchet space is nuclear if and only if its strong dual 
is nuclear. Most important, the space of continuous linear mappings 
of E into F (with its topology of bounded convergence) can be identified, 
under reasonable conditions, when the strong dual E‘ of E is nuclear, 
to the completed tensor product E’ @ F. This fact leads easily to the 
kernels theorem of L. Schwartz, which states that there is a one-to-one 
correspondence between distributions K(x, y )  in two sets of variables 
x and y and the continuous linear mappings of (%7)y into 9;. The 
correspondence is the natural one, given by the formula 

This important theorem is proved in Chapter 51, where the nuclearity 
of the main spaces of distribution theory is established. The importance 
of kernels K ( x , y )  in the field of partial differential equations has been 
recognized long before the advent of distributions or topological tensor 
products! Very deep and intensive study has been made of kernels in 
relation to operators in the spaces L p  and particularly in L2. In  Chapter 
52, the last in this book, a few applications are presented to linear 
partial differential equations, involving nuclear spaces (therefore, not 
Banach spaces) and based on some of the main theorems of the previous 
chapters. 

The  theory of topological tensor products and nuclear spaces is due 
to A. Grothendieck. We have followed very closely the work (13) of 
this author, as well as the exposition of L. Schwartz (14). We have 
omitted many of the questions discussed in these two books, to which 
we refer the reader for further information. 
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Tensor Product of Vector Spaces 

As before, we consider only vector spaces over the field C of complex 
numbers. Let E, F be two vector spaces. Let I$ be a bilinear map of 
E x F into a third vector space M. 

Definition 39.1. 
holds: 

We say that E and F are +-linearly disjoint ijthe following 

( L D )  Let {xl ,..., x,> be a finite subset of E, and {yl ,..., y,} a Jinite 
subset of F, consisting of the same number of elements and satis- 
fying the relation 

r 

j=l 
c 4(% 9 rd = 0. 

Then, i j  x1 ,..., x, are linearly independent, y1 = ..- = y, = 0, 
and if y1 ,..., y, are linearly independent, x1 = = x, = 0. 

The reason for introducing this definition lies in the next one: 

Dejinition 39.2. A tensor product of E and F is a pair (M,  +) consisting 
of a vector space M and of a &linear mapping I$ of E x F into M such 
that the following conditions be satisfied: 

(TP 1) 
(TP 2) 
We shall now prove the existence of a tensor product of any two vector 

spaces, its uniqueness up to isomorphisms and the well-known “universal 
property.” But before doing this, we shall give an equivalent definition 
of +-linear disjointness: 

The image of E x F spans the whole space M .  
E and F are +-linearly disjoint. 

PROPOSITION 39.1. Let E, F,  and M be three vector spaces, and # a 
bilinear map of E x F into M .  Then E and F are +linearly disjoint if 
and only 
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the following is true: 
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(LD‘) Let {xi} and {yk}  (1 < j  < I ,  1 < k < s) be arbitrary linearly 
independent sets of vectors in E and F, respectively. Then the 
set of vectors of M ,  {$(xi , yk)} ,  are linearly independent. 

Proof. (LD) implies (LD’). Let {xi}  and {yk}  be as in (LD’) and suppose 
that xj,k hjk +(xi , yk) = 0. Set zj = Ck hjkyk ; we have Zj $(xi , z j )  = 0. 
From (LD) we derive that every zj must be equal to zero. As the y k  
are linearly independent, this implies that the coefficients hik be all 
equal to zero. 

(LD’) implies (LD). Let {xl ?..., xr} and (yl  ,..., yr} be as in (LD); 
suppose that the xi’s are linearly independent and let z1 ,..., z, be a 
basis of the linear subspace spanned by the yj’s. Let us set 
yj = xk hjkzk ; from xj +(xi , y j )  = 0 we derive. xj,k Xjk$(xj , zk) = 0, 
whence hjk = 0 for every pair ( j ,  k), in view of (LD‘). Thus all the 
yj’s are equal to zero. Q.E.D. 

THEOREM 39.1. Let E, F be two vector spaces. 

(a) There ext3ts a tensor product of E and F. 
(b)  Let ( M ,  +) be a tensor product of E and F. Let G be any vector space, 

and b any bilinear mapping of E x  F into G. There exists any unique 
linear map 6 of M into G such that the diagram 

EXFAG 
(39.1) 

M 
is commutative. 

and (Mz , +z) are two tensor products of E and F ,  there 
is a one-to-one linear map u of Ml onto Mz  such that the diagram 

(c) If (Ml , 

(39.2) 

is commutative. 

Property (b) is sometimes referred to as the “universal property”; 
(c) states the uniqueness of tensor product up to isomorphisms; (a) 
states its existence. 
.Proof of (a). Let 3 be the vector space of all complex-valued functions 
on E x F which vanish outside a finite set. Let us denote by e(z,v) the 
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function equal to 1 at the point ( x , y )  and to zero everywhere else; 
as (x, y )  varies over E x F, the functions e(z,u) form a basis of X .  Let N 
be the linear subspace of 3 spanned by the functions 

where a, /I, y, and 6 vary in all possible ways in the complex field C 
whereas ( x ' , y ' )  and (x" ,y" )  do the same in E x F. We then denote by 
M the quotient vector space S I N ,  by rr the canonical mapping of % 
onto M ,  and by $ the mapping of E x F into M defined by 

+(X> Y )  = +z,d 

It  is obvious, in view of our definition of N, that $ is bilinear. In  order 
to conclude that ( M , + )  is a tensor product of E and F, it remains to 
show that E and F are $-linearly disjoint. 

Let (xl ,..., x,.) and (yl ,..., y,) be linearly independent sets of vectors 
in E and F, respectively. We assume that there are complex numbers 
Ajjk (1 < j  < r ,  1 < R < s) such that 

c ' b k  4(xj 9 Y k )  = 0. 
j , k  

This is equivalent with saying that the function 

belongs to the subspace N of 3. Let {x-} and {y& (a E A, f l  E B) be bases 
of E and F, respectively, containing the sets {xl ,..., x,.} and {yl ,..., y,}. 
It is immediately seen that every function (39.3), and consequently 
every function belonging to N, is a linear combination of elements 
of the form 

where, needless to say, all the linear combinations are finite. If we denote 
by g, the element (39.4), we see that there is a finite family of indices I 
and, for each one of them, a constant c,  such that 

We may assume that no pair (C, six, , & @y6) is equal to a pair (x,,, , ya,) 
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for a. E A, Po E B. For this would imply a; = 1 if a = a. , = 0 other- 
wise, fl = 1 if = &, , = 0 otherwise, and therefore g ,  would be 
identically zero. We may also assume that the pairs (za a;xa , zs bfys) 
are pairwise distinct; for if two of them were equal, the corresponding 
functions g ,  would be equal, and we could reorder the sum expressing 
f .  But if these pairs are pairwise distinct and different from every pair 
(xa , ye), the linear independence of the functions e(z,v) implies immedi- 
ately that all the coefficientsc, must be zero, i.e., f = 0; but then, for the 
same reason, all the coefficients AjSk must also be equal to zero. Q.E.D.: 

Property (LD’) is satisfied (see Proposition 39.1). 

Proof of (b). Let G, b be as in (b). Let (xa), (ya) (a E A,  /3 E B) be bases 
of E and F, respectively. We know that $(xa, ya) form a basis of M as 
(a,P) vary over A x B. The Iinear mapping 6 will therefore be the 
(unique) linear map of M into G such that, for all a, /3, 

w, 9 Y,)) = 9 YJ.  

Proof of (c). Let (Mi , bi) (i  = 1, 2) be two tensor products of E and 
F. Apply Diagram (39.1) with M = Ml , G = M ,  , $ = $1, and 
b = $, ; this yields a linear map u : Ml --+ M ,  (the 6 in (39.1)). Then 
do this once more with (Mt , $1), ( M ,  , 4,) interchanged. It yields a 
linear map v : M ,  ---t Ml . It IS easy to see that u and v are inverse of 

We shall never use the tensor product constructed in Part (a) of the 
proof of Theorem 39.1; whenever we shall need the tensor product of 
two spaces, we will have a “concrete realization” of it. In accordance 
with a well-established custom, we shall denote by E QF the tensor 
product of E and F which we shall happen to be using. The canonical 
mapping $ of E x F into E @ F will be denoted by 

( % Y )  - X O r  

each other, hence isomorphisms. Q.E.D. 

rather than by 4. 

PROPOSITION 39.2. Let E, F, E l ,  and Fl be four vector spaces over the 
complex numbers. Let u : E --+ El and v : F - Fl be linear mappings. 
There is a unique linear map of E Q F into El Q Fl , called the tensor 
product of u and v and denoted by u Q v ,  such that 

U @ W ( X @ Y ) = U ( X ) @ V ( ~ )  fora l l  X E E ,  y c F .  

Proof. (x, y )  - U(X) Q v(y)  is a bilinear map of E x F into El @ Fl 
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and u @ v is the linear map of E @ F into E, @ Fl associated with it 
by (b), Theorem 39.1. 

Example I .  Finite dimensional vector spaces 

Let E = C", F = Cn (m,  n: positive integers). Then Cmn is a tensor 
product of E and F, the canonical bilinear map of E x F into Cmn 
being given by 

((4, (Yk))l<j<rn.l<k<?I - ( W k ) l < j < r n . l < k e I .  

Example II .  

Let X ,  Y be two sets, and f (resp. g )  a complex-valued function defined 
in X (resp. Y). We shall denote by f @g the function defined in X x Y 

(x, Y )  -m d Y ) *  

Tensor product of functions 

Let, now, E (resp. F) be an arbitrary linear space of complex-valued 
functions defined in X (resp. Y). We shall denote by E @ F the linear 
suBspace of the space of all complex functions defined in X x Y spanned 
by the elements of the form f @g where f varies over E and g over F. 
It is immediately seen that E @ F is a tensor product of E and F. 

Suppose that both X and Y carry a topology. We recall that the support 
of a function is the closure of the set of points at which the function is 
# 0. It is immediately checked that 

SUPP(f 0 g) = (SUPPf) x (SUPP d- 

We shall take a quick look at a few particular cases of Example 11. 

Example IIa. Functions with jinite support 
Suppose that E (resp. F )  is the vector space of complex functions in X 

(resp. Y) which vanish outside a finite set. Then it is immediately seen 
that E @ F is the space of complex functions in X x Y which vanish 
outside a finite subset of this product. 

Let N be the set of nonnegative integers; let us take X = Nm, Y = Nn 
(m,  n: positive integers). The space E (resp. F) of complex functions 
with finite support in X (resp. in Y) can be identified with the space 
9'" (resp. 9'J of polynomials in m indeterminates (resp. in n indeter- 
minates): iff E E, we assign to f the polynomial P,(X) = &,,mf(p) Xp; 
similarly with g E F. The tensor product 9'" @ 9, is therefore canoni- 
cally isomorphic to9',+, , according to what we have said at the beginning 
of this discussion. 
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Example Ilb.  Formal power series, entire functions, analytic functionals 
Let 9m and 9, be the vector spaces of formal power series in m and 

n indeterminates, respectively (with complex coefficients). T o  an arbitrary 
power series u ( X )  = upXp we assign the function p -+ up defined 
in N" (with complex values). This is an isomorphism of 9m onto the 
space of all complex-valued functions in Nm or, if one prefers, of all 
complex sequences in m indices. The  tensor product 9, @ 9, is 
canonically isomorphic to a linear subspace of 9,+, ; this linear subspace 
is always distinct from 9m+n. This simply means that a formal power 
series u(X,  Y) in m + n indeterminates (X, ,..., X,, , Y, ,..., Y,) cannot 
be written, in general, as a finite sum 

J c U A W  W A Y )  
3=1 

of products of formal power series in the Xi's and formal power series 
in the Yk's. Observe however that, if we provide 9,+, with the topology 
of simple convergence of the coefficients (Chapter 10, Example 111), 
then 9, @ 9, is dense in 9m+n. Indeed, 8,+, is dense in 9,+, ; 
this is evident. On the other hand, we have just seen that 8,+, = 

Pm @ 8, ; the latter is obviously contained in 
The  space H(Cm) of entire analytic functions in the m-dimensional 

complex space C" can be identified to a linear subspace of 2?m , precisely 
the subspace consisting of the convergent power series whose radius 
of convergence is infinite. Then H(Cm) @ H(Cn), viewed as a space 
of functions on Cm x Cn, can be canonically identified to the subspace 
of 9, @ consisting of the series with infinite radius of convergence; 
of course, H(Cm) @ N(Cn) C H(Cm+n). Indeed, H(Cm) @ H(Cn) is a 
proper dense subspace of H(Cm+,), as it contains the polynomials in 
m + n (complex) variables and as these are dense in the space of entire 
functions in Cm+, (Theorem 15.1). 

We might also consider the space Exp(Cm) of entire functions of 
exponential type in Cm (Notation 22.2). I t  is immediately seen that 

@ 2'n . 

Exp(C") 0 Exp(C") 

is a linear subspace of Exp(Cmfn). If p (resp. v) is an analytic functional 
in Cm (resp. Cn), its Fourier-Bore1 transform p (resp. v) belongs to 
Exp(Cm) (resp. to Exp(Cn); Definition 22.3, Theorem 22.3). By Theorem 
22.3, the tensor product @ @ E is the Fourier-Bore1 transform of an 
analytic functional in Cmfn which we shall denote by p @ v and call 
the tensor product of p and v. Later on, we shall see that p @ v can be 
defined without making use of the Fourier-Bore1 transformation. 
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Example IIc. Functions in open subsets of Euclidean spaces 

Let X and Y be open subsets of Rm and R", respectively. Let k, I 
be two nonnegative integers, possibly infinite. We may form the tensor 
products 

g k ( X )  0 W( Y ) ,  V?t(X) @ %'E( Y), etc. 

They are spaces of functions defined in the product set X x Y, regarded 
as an open subset of Rm+n. As a matter of fact, they are linear subspaces 
of P. I (X  x Y), the latter notation having an obvious meaning. The  
functions belonging to %?t(X) @ % I (  Y), for instance, have supports 
whose projection into X is compact, etc. 

The  approximation results in Chapter 15 imply easily the following: 

THEOREM 39.2. Let X (resp. Y) be an open subset of R" (resp. Rn). Then 

qv) 0 g:(y) 

is sequentially dense in %F(X x Y) .  

PYOO~. Let #I E %:(X x Y). By Corollary 2 of Lemma 15.1, + is the 
limit in Vm(X x Y) of a sequence of polynomials {Pk(x, y)} (k = 1, 2, ...). 
Let K = supp #I, K ,  (resp. K,) be the projection of K into X (resp. 
into Y). Both K ,  and K, are compact sets. Let g E %p(X), h E %:(Y) 
be equal to one in a neighborhood of Kl and K, , respectively. Then 
g @ h is identically equal to one in a neighborhood of K, and belongs to 
%p(X) @ %:( Y). This tensor product then contains the sequence of 
functions 

(g @ h ) P k ,  k = I ,  ..., 

which converges in Y m ( X  x Y), therefore also in %r(X x Y) (as the 
elements of the sequence have their support in a fixed compact subset 
of X x Y) to the function (g @ h)#I = 4. Q.E.D. 

COROLLARY 1. 
in Vk*I(X x Y) ,  and in Lp(X x Y )  (1  f p < + 00). 

of Theorem 15.3 (where 52 = X x Y).  

C p ( X )  @ %:(Y) i s  sequentially dense in %t*'(X x Y), 

I t  suffices to combine Theorem 39.2 with Corollaries 1, 2, and 3 

COROLLARY 2. 
in %k*I(X x Y).  

%t(X) @ %?:( Y )  is sequentially dense in %t*'(X x Y) and 

COROLLARY 3. Lp(X) @ L p (  Y) is dense in Lp(X x Y )  (1 < p < + 00). 

Many more results of a similar nature can easily be stated and proved. 



410 TENSOR PRODUCTS. KERNELS 

Exercises 

39.1. Let ( M ,  4) be a tensor product of E and F, and (N,  4) a tensor product of F 
and E. Prove that there is a canonical isomorphism J (for the tensor product structures) 
of (M,  4) onto ( N ,  4). What is the mapping S that then makes the following diagram 
commutative ? 

E x F L F x E  

39.2. Let E and F be two vector spaces over C, and {e,}, {fp} (a E A, fl  E B) bases in 
E and F, respectively. Let E @ F be a tensor product of E and F. Prove that {e, @fp} 
(a E A, f l  E 8) form a basis of E O F .  

39.3. Let E j  , F j  ( j  = 1, 2) be four vector spaces, uj  : E j  + F j  two linear mappings 
( j  = 1, 2), and {em,j}, (a E A j  , fi  = B j )  bases in Ej and F j  , respectively ( j  = 1, 2). 
Let (c:,~) be the matrix of uj with respect to those bases. What is the matrix of the tensor 
product u1 @ u, with respect to the bases @fa,.,) of 
Fl O F ,  ? 

39.4. 

0 of E, 0 E, and 

Let Ej  , F, , and uj  ( j  = 1, 2) be as in Exercise 39.3. What is the kernel (resp. 
the image) of u1 @ up ? Derive that u, @ u, is one-to-one (resp. onto) if this is true of 
both u1 and u, . 
39.5. Let E, F, and M be three vector spaces, and 4 a bilinear mapping of E x F 

into M. Prove that the following properties are equivalent: 

(a) 
(b) the mapping 

(M, 4) is a tensor product of E and F; 

x* ...+ x* 0 4 
is an isomorphism of the algebraic dual M* of M onto the vector space B(E, F) of 
bilinear forms on E x F. 



Differentiable Functions with Values 
in Topological Vector Spaces. 

Tensor Product of Distributions 

Let X and Y be open subsets of Rm and R”, respectively (m, n: 
integers 2 1). It is convenient, in many a situation, to regard a function 
+(x, y )  of the pair of variables x E X, y E Y as a function of one of them, 
say y ,  with values in a space of functions with respect to the other one, x. 
More generally, one might be interested in dealing with functions defined 
in Y and taking their values in some topological vector space E. In  
certain circumstances, E could be a space of distributions (and not 
merely a space of functions) in X. This is why it is reasonable to introduce 
the concepts of differentiable functions with values in a TVS E and, 
having done this, to study the spaces of these functions, and their duals. 
Eventually, one may also need the theory of distributions with values 
in E. 

I n  the present chapter, we limit ourselves to recalling the definition 
of a differentiable function, defined in the open set Y ,  with values in a 
TVS E, and to introducing the spaces %P( Y ;  E )  and %??( Y ;  E )  of K-times 
differentiable functions (with arbitrary support and with compact 
support, respectively), defined in Y and valued in E. These spaces can 
be made to carry a natural qk topology, whose definition is a straight- 
forward generalization of the scalar case. 

We use the concepts and facts thus introduced to define the tensor 
product of a distribution S in X with a distribution T i n  Y.  The approach 
through functions valued in a TVS has the considerable advantage of 
revealing the general facts underlying the definition of the tensor 
product S @ T (and, in particular, the so-called Fubini theorem for 
distributions: see Theorem 40.3). 

Let f be a mapping of the open set Y E  Rn into the TVS E.  We recall 
the meaning of “f is differentiable at a point yo of Y” (cf. the remarks 
following the statement of Theorem 27.1): 

41 1 
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Definition 40.1. 
there are n vectors in E,  e, ,..., e, , such that 

The function - f is said to be differentiable at yo E Y i f  

converges to zero in E as the number I y - yo I > 0 converges to zero. 
The vectors ei are then called the first partial derivatives off at the point 
yo: one sets 

af 
aYj 

ei = - ( y o ) ,  j = 1 ,..., n. 

Iff is differentiable at yo, it is obviously continuous at that point. The  
traditional terminology is extended to functions valued in a TVS: f 
is said to be differentiable in a set A C Y if it is differentiable at every 
point of A ;  f is said to be continuously differentiable if it is differentiable 
at every point and if its first partial derivatives are continuous functions; 
f is said to be k-times continuously differentiable (or V k )  iff is differenti- 
able at every point and if its first partial derivatives are gk-l; f is said 
to be infinitely differentiable if it is Vk for all k = 0, 1, ..., etc. 

W e  shall denote by V k (  Y ;  E )  the vector space of V k  
mappings of Y into E (0 < k < + 00). We shall denote by %'z(Y; E) 
the subspace of Vk( Y ;  E )  consisting of the .functions with compact support. 

The support of a vector-valued function is the closure of the set of 
points at which the function is nonzero. 

Definition 40.2. The V k  topology on Vk( Y; E) is the topology of uniform 
convergence of the functions together with their derivatives of order < k + 1 
on every compact subset of Y. 

Consider a sequence SZ, C SZ, C ... C SZj C .-- of relatively compact 
open subsets of Y whose union is equal to Y, an arbitrary integer 
I < k + 1, a basis of neighborhoods of zero in E, {Us}. As j, I, and a 
vary in all possible ways, the subsets of Vk( Y; E), 

Notation 40.1. 

@Yi,t,, = {fi (a /Q)* f ( y )  E U, for all y E Qi and all q E N", I q 1 < I ) ,  

form a basis of neighborhoods of zero for the V k  topology. If E is 
metrizable, so is Vk( Y; E); if E is metrizable and complete, so is Vk( Y;E). 
Noting that 92j,,,m is a convex set whenever U is a convex set, we see 
also that Vk( Y; E) is locally convex whenever this is true of E. Needless 
to say, Vk(Y;  E) is Hausdo& if and only if this is true of E. 

When E is locally convex, it is easy to obtain a basis of continuous 
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seminorms on Vk( Y; E). It suffices to select a basis of continuous semi- 
norms on E, {p,}, and to form the seminorms 

When j ,  I ,  and K vary in all possible ways, the Pi,,., form a basis of 
continuous seminorms for the topology Vk. 

Given an arbitrary compact subset K of Y, we denote by V:(K; E) 
the subspace of Vk( Y; E) consisting of the functions with support 
contained in K. We provide Vt (K;  E) with the topology induced by 
Vk(Y; E). Let us suppose, as we shall always do from now on, that E 
is locally convex. Then we provide %:( Y; E) with the topology inductive 
limit of the topologies of the spaces V:(K; E) as K varies over the 
family of all compact subsets of Y. A convex subset of Vt(Y;  E) is a 
neighborhood of zero if its intersection with every subspace V:(K; E) 
is a neighborhood of zero in Vt(K; E). The  definition of the topology 
of U t ( Y ;  E) duplicates the definition of the topology of a space LF, 
except that the subspaces Vt (K;  E), which serve as building blocks, 
are not (in general) FrCchet spaces. But notice that, if K C K‘ are two 
compact subsets of Y, the topology induced on V;(K; E) by Vt(K’; E) 
is identical to the initially given topology on Vt(K;  E), which is the 
topology induced by Vk( Y; E). Note also that Vt( Y; E) can be defined 
as the inductive limit of a sequence of subspaces V:(Kj ; E): it suffices to 
take an arbitrary sequence of compact subsets Ki of Y whose union 
is equal to Y (for instance, Ki = Qj,  where the Qi are the relatively 
compact open subsets of Y considered after Definition 40.2). We see 
then easily that WE( Y; E) induces on every V t ( K ;  E) its original topology 
(cf. Lemma 13.1). In  analogy with the properties of LF-spaces proved 
in Chapter 13, we have: 

PROPOSITION 40.1. Let Y be an open subset of Rn, E a locally convex 
Hausdog  TVS,  and k an integer 2 0, possibly infinite. 

A linear map u of Vt( Y ;  E )  into a locally convex TVS F is continuous 
if and only if the restriction of u to every subspace V:(K; E )  ( K :  compact 
subset of Y )  is continuous. 

COROLLARY. A linear functional on Vt(Y;  E )  is continuous if and only 
if its restriction to every subspace V f ( K ;  E )  is continuous. 

Proof. It suffices to observe that the proof of Proposition 13.1 and of 
its corollary never makes use of the fact that the sequence of definition 
{E,} ( n  = 1, 2, ...) consists of FrCchet spaces (cf. Exercise 13.6)! 
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Example 40. I .  The space of values E is finite dimensional (and Hausdorfn 

Let d = dim E be finite, e, ,..., ed a basis of E,  and e; ,..., e;E the dual 
basis in E' (this means that (e; , e j )  = 0 if i # j ,  = 1 if i = j ) .  Consider 
a function f E Vk( Y ;  E). For each y E Y, we may write 

n 

f(Y, = C f i ( Y ) %  

A ( Y )  = <e; ,f(Y)>. 

i=l 

we have 

It is immediately seen (cf. Theorem 27.1) that fi is a complex function 
belonging to Vk( Y). Conversely, let f be such a function, and e a vector 
in E. Let us denote by f @ e the function, valued in E,  y - f (y)e .  
What we have just said means that the functions of the form f @ e 
span Vk(Y;  E )  when f varies over Vk(Y)  and e over E ;  this is true if 
and only if E is finite dimensional. Then the bilinear map ( f ,  e )  -+ f 0 e 
of W ( Y )  x E into Vk(Y;  E )  turns the latter into a tensor product of 
Vk( Y) and E. 

We go back to the general case (in which dim E is not necessarily 
finite). 

Notation 40.2. Let E be a vector space over the field of complex 
numbers, f a complex-valued function defined in Y C Rn, and e a vector 
belonging to E. We denote by f Q e the function, defined in Y and valued 
in E, y -.f(Y) e* 

PROPOSITION 40.2. Let E be a Hausdorfl T V S .  The bilinear mapping 

( f ,e ) - fOe 
of Vk(Y)  x E into the subspace of Vk(Y;  E), consisting of the functions 
whose image is contained in a finite dimensional subspace of E,  turns, this 
subspace into a tensor product of Vk( Y )  and E (which we shall denote by 
Vk( Y) Q E). 

Proof. That  the functions f @ e have their image contained in a finite 
dimensional (in fact, a one-dimensional) linear subspace of E is trivial. 
Conversely, let f be a V k  mapping of Y into E whose image is contained 
in some linear- subspace E, of E such that d = dim Eo is finite. If 
e, ,..., ed is a basis of E, , we may write f = f l  0 el + *.- + f d  0 ed 
with f j  E Vk( Y) (see Example 40.1 above): This shows that f belongs 
to the linear subspace of Vk(Y;  E )  spanned by the functions of the 
form f Q e.  From there the statement follows easily. 
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We shall use the notation VE(Y) 0 E to denote the subspace of 
V k (  Y) @ E consisting of the functions with compact support. Of course, 
Vt (Y)  @ E is a tensor product of VE(Y) and E.  

THEOREM 40.1. 
mapping 

(40.1) 

Let X ,  Y be open subsets of Rm, Rn, respectively. The 

4 - (Y - (x - 54% Y)N 

is an isomorphism, for the structures of topological vector spaces, of 

Vm(X x Y )  onto %?m(Y; C"(X)). 

Proof. That  (40.1) is a one-to-one continuous linear map into is a 
straightforward consequence of the definitions. If, on the other hand, 
f is an element of Vm(Y; E),  with E = Vm(X), we observe that, for 
every y E Y , f ( y )  is a function in X .  If we denote by +(x, y) its value 
at x E X, it is immediately seen that 4 E Vm(X x Y )  and that f is the 
image of + by (40.1). The  continuity of the mapping f ry+ + is-evident 
by virtue of the definitions (or by application of the open mapping 
theorem: see Corollary 1 of Theorem 17.1, since both Vm(X x Y )  and 
Vm( Y ;  Vm(X)) are FrCchet spaces). 

COROLLARY 1. 
of this space onto %?:( Y, V;(X)). 

Proof. That  the restriction of (40.1) is a one-to-one continuous linear 
map into follows immediately from Theorem 40.1, from the definition 
of the topology on V:(Y; V?(X))  and from Proposition 40.1. Let 

V:(Y; VF(X)); the support of f is a compact subset of Y ,  K.  The  
image of K by f is therefore a compact subset of q?(X) ;  such a subset 
is necessarily contained in some subspace of the form VT(H) ,  with H 
a compact subset of X (Proposition 14.6). This means that the preimage 
o f f  under (40.1) is a Vm function of (x,y) with support contained in 
H-x K. This shows that the restriction of (40.1) to V,?(X x Y )  maps 
it onto VF(Y; VF(X)). I n  order to prove that the inverse mapping is 
continuous, the shortest way is probably by observing that V:( Y ;  
V ; ( X ) )  is the inductive limit of .the FrCchet spaces VF(K; VF(H))  
as H (resp. K )  runs over the family of all the compact subsets of X 
(resp. Y). Then ,we may either use the fact that a one-to-one continuous 
linear map of a space LF onto another space LF is an isomorphism (i.e., 
is bicontinuous) or that (40.1) induces an isomorphism of V;(H x K )  
onto V:(K; V:(H)) .  

The restriction of (40.1) to V?(X x Y )  is an isomorphism 
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Going back now to the general case, we state a strengthened version 
of Theorem 27.1 : 

THEOREM 40.2. 
open subset of Rn. For every continuous linear form e' on E,  

Let E be a locally convex Hausdor- space, and Y an 

f - (Y - +'&Y))) 

is a continuous linear map of VW(Y;  E )  (resp. %?(Y; E)) into srn(Y> 
(resp. %:( Y)). 

The proof is absolutely standard; it is essentially done by inspection 
of the definitions. and will not be given here. Instead, we present a 
rather important application of the preceding theory. As before, X and 
Y are two open subsets of Rm and Rn, respectively. 

THEOREM 40.3. Let S be a distribution in X ;  then 

4 - (Y - <sz ? 4(% Y ) ) )  

is a continuous linear map of %:(X x Y )  into %:( Y ) ;  if the support of S 
is compact, it is a continuous linear map of VW(X x Y )  into grn( Y). 

The notation we have used has an obvious meaning: ( S , ,  +(x, y ) )  
is the value of the distribution S in X on the test function x - +(x, y ) ,  
with y playing the role of a parameter. 
Proof of Theorem 40.3. It suffices to combine Theorem 40.1, or its 
corollary, with Theorem 40.2. 

Let now T be a distribution in Y. In virtue of Theorem 40.3, 

q ( x  x Y )  3 4 - < T, 7 <sx ? ,+(XI YD)  

qcx x Y )  3 4 - ( S ,  9 (Tx ? 4(% 39)) 

defines a distribution in X x Y. Similarly, 

is a distribution in X x Y. The next result states that these two distribu- 
tions are equal. It can be viewed as a kind of rule of interchanging 
integrations with respect to x and y .  In analogy with integration theory, 
it is often referred to as Fubini's theorem for distributions. 

THEOREM 40.4. 
For every test function + E %;(X x Y ) ,  we have 

Let S be a distribution in X ,  and T a distribution in Y .  

(40.2) (SX 9 (TU 9 4(% Y ) ) )  = ( T U  * (SX 9 +(% A)). 
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Proof. The equality (40.2) is evident if $(x, y )  = u(x)  v(y),  with 
u E V;(X) and v E %:( Y). I t  is therefore also true if 4 is a finite sum of 
products u(x)  v(y),  in other words if 4 E V;(X) Q %:( Y) (Chapter 39, 
Example IIc). But V:(X) @ %:( Y) is a dense subspace of V;(X x Y) 
(Theorem 39.2) and both sides of (40.2) are continuous with respect 
to 4, whence the result. 

Dejinition 40.3. 
The distribution in X x Y ,  

Let S be a distribution in X ,  and T a distribution in Y.  

@:(x x y >  3 d - ( S ,  7 < T,  9 d b >  Y ) ) )  = ( T ,  9 ( S ,  9 d(% Y) ) )*  

is called the tensor product of S and T (or of T and S )  and denoted by 

S @ T or T @ S (or S ,  @ T,  , etc.). 

We now state a few of the basic properties of the tensor product 
of distributions (without proving them): 

PROPOSITION 40.3. (a) (S, T )  - S Q T is a bilinear map of W ( X )  x 
9 ( Y )  into 9 ( X  x Y). 

(b) supp(S 0 T )  = (supp S )  x (supp T ) ;  
(c) (S, T )  - S Q T is a bilinear map of &'(X) x &'(Y) into 

&'(X x Y).  
(d) If P(x,  D,) (resp. Q(y, Dy))  is a d#erential operator (with grn 

coefficients, see Chapter 23, Example 111) in X (resp. in Y). 

(e) If both S and T are locally L1 functions, S Q T is equal to the 
tensor product of S and T in the functions sense (Chapter 39, 
Example 11). 

Definition 40.4. We shall denote by 9 ' ( X )  @ W( Y )  the linear subspace 
of 9 ' ( X  x Y )  spanned by the distributions of the form S Q T,  S E g ' ( X ) ,  
T E 9'( Y).  

W ( X )  0 9'( Y) is obviously a tensor product of 9 ' ( X )  and 9'( Y). 
We shall also use the notation 9(X) Q &'(Y), &'(X) Q &'(Y), etc., 
with obvious meanings. 

PROPOSITION 40.4. 
subspace of 9 ' ( X  x Y )  (resp. of &'(X x Y)).  

W(X) Q 9'( Y) (resp. &'(X) @ &'( Y ) )  is a dense 

Indeed, both tensor products contain %?p(X) 8 %?;( Y), which is 
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dense in VF(X x Y) (by Theorem 39.2); the latter, in turn, is dense 
in E'(X x Y )  and in 9 ' ( X  x Y) (by the corollary of Theorem 28.2). 

As a conclusion to the present chapter, let us indicate how the con- 
volution of distributions can be linked to their tensor product. 

THEOREM 40.5. Let S, T be two distributions with compact support in 
Rn. For every test function 4 E %F(Rn), we have 

(40.3) <S*T, 4) = ( S ,  0 Tv 3 4 b  + A>. 

If only the support of S is compact, supp T being arbitrary, let g E VF(Rn) 
be equal to one in a neighborhood of supp S.  Then we have 

(40.4) (S*T,  4) = (Sa! 0 T, 9 g(4 +(x + Y ) ) .  

The right-hand side of the equation (40.4) makes sense because 
(x, y )  - g(x) C$(X + y )  is a function with compact support in Rn x Rn; 
obviously (40.3) and (40.4) coincide when the support of T is also 
compact. 

The proof is left to the student. 

Exercises 

40.1. Let X C R", Y C R" be open sets, S a distribution in X ,  and T a distribution 
in Y. Prove that S @ T is a Radon measure in X x Y if and only if both S and T are 
Radon measures. 

40.2. Let E be a locally convex Hausdorff space, and Y an open subset of the complex 

Analytic f u m t i m f  : Y + E: here,f E LXm( Y; E) and, for every point y o  E Y,  there 
is a family {f ,(yo)} ( p E N") of elements of E such that: 
(i) the series 

space C". Compare the following concepts: 
(1) 

converges absolutely in some neighborhood of yo;  

(ii) the sum of the preceding series is equal tof(y) for all y in some neighborhood 
of yo. 

Complex dz#erentiable function in Y one duplicates Definition 40.1 for complex 

Solution of the Cauchy-Riemann equations in Y :  here, f ; Y 4 E is once conti- 
nuously differentiable (in the sense of Definition40.1 after we have identified 
C" to Re") and, for every y o  E Y, satisfies the n conditions 

(2) 

(3) 
Y ,  YO. 
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where we set yj = t j  + (-l)l/27, (1 < J' < n, 5, 9 real). Could you state a 
reasonable condition on E sufficient in order that the three concepts above coincide ? 

40.3. Let X C C", Y C C" be open sets. Give the definition and the basic properties 
of the tensor product px 0 v, of an analytic functional p on X with an analytic functional 
von Y. 

40.4. Let be the Fourier-Bore1 transformation in C", and p, v two analytic func- 
tionals in C". Prove that we have, for all h E H (entire functions in C"), 

<P * Y, h> = < 9 - V P  S.), h> = <Px 0 "Y , h(x + Y>> 

(cf. Exercise 30.3 and 40.3). 



Bilinear Mappings. Hypocontinuity 

Let E, F, and G be three topological vector spaces, 

@ : (X, Y )  - @(X, r) 
a bilinear mapping of E x F into G. This means that, for every xo E E 
(resp. every yo E F), the mappings 

@zo : Y - @(Xo 9 Y )  

: X - @(X, Yo)) (resp. 

from F (resp. E) into G are linear. The bilinear map @ is said to be 
separately continuous if, for all xo , y o ,  these two linear mappings are 
continuous. Practically all bilinear mappings considered in analysis 
are separately continuous. But many of them are not continuous. Let 
us make more explicit what the latter means. It means that to every 
neighborhood of zero W in G, there are neighborhoods of zero U and 
V in E and F, respectively, such that 

X E  U ,  y E V implies @(X,Y)E W. 

When E, F, and G are all three locally convex, this condition can be 
rephrased as follows: to every continuous seminorm r on G, there are 
continuous seminorms p and q on E and F, respectively, such that, 
for all x E E, y E F, 

T(@(X. Y ) )  G P ( X )  d Y ) .  

Indeed, it suffices to take for W the closed unit semiball of r and select 
then p and q so that their closed unit semiballs are contained in U and V, 
respectively. Observe then that, for all E > 0, [ p ( x )  + e]-lx E U and 
[q(y) + ~ 1 - 9  E V, and that, for all A, p > 0, 

r ( @ ( h  PY)) = W @ ( X ,  Y)) .  
420 
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We have already seen (Corollary of Theorem 34.1) that, when E 
is a Frtchet space, F a metrizable TVS, and G a locally convex space, 
then every separately continuous bilinear map of E x F into G is 
continuous. An interesting result of a similar kind is the following one: 

THEOREM 41.1. Let F, G be strong duals of reflexive Frkchet spaces, and 
E either a normed space or the strong dual of a reflexive Fre‘chet space. 
Then every separately continuous bilinear map of E x F into G is con- 
tinuous. 

Proof of Theorem 41.1 

1. E is normed. Let @ : E x F -+ G be a separately continuous 
bilinear map. For x E E and z’ E G‘, we set 

@(x, z’) = ”&‘), 

where WX : G‘ --t F‘ is the transpose of QX : y + @(x, y ) .  We claim 
that @’ : E x G‘ + FL is separately continuous (which will imply 
that @‘ is continuous since E is metrizable and G‘, a FrCchet space). 
Indeed, we have, for x E E, y E F ,  z‘ E G‘, 

(41.1) 

If we fix x, and if z’+ 0 for (T(G’, G), we see that @’(x, z’) - 0  for 
u(F’, F) .  Recalling that F is the dual of F’ and G the dual of G‘ (when 
F‘ and G’ carry their Frtchet space structure), it follows from Lemma 
37.6 that z’ .UI @’(x, z’) is a continuous linear map of G’ into F‘. Now, 
let us fix z’. We derive from (41.1) that, if x + 0 in E, @’(x, z’) -+ 0 
weakly in F‘. Our claim is proved. 

Let, now, W be an arbitrary neighborhood of zero in G; Wcontains 
.a neighborhood of zero of the form Co, where C is some bounded 
subset of G‘. Let U be the closed unit ball of E; U is a bounded subset 
of E (this is where we really use the fact that E is normed). Therefore, 
as immediately seen, @’( U ,  C) is bounded in FL . But since the Frtchet 
topology of F’ is compatible with the duality between F’ and F,  it follows 
from Theorem 36.2 (Mackey’s theorem) that @’( U, C) is a bounded 
subset of F‘, which we denote by B. Suppose now that x E E belongs 
to U, y E F belongs to BO, and z’ E G’ to C. We derive from (41.1) that 

<@‘(x, z’), r> = (z’ ,  @(& Y)) .  

Kz’, @(x,r))l < 1, 

in other words, that @(x, y )  E Co. Thus we have @( U, BO) C W, which 
proves the continuity of @ in this case. 
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2. E is the strong dual of a rejexive Frkchet space. Let U, 3 U, 3 ... 3 
U n 3  ... be a countable decreasing basis of neighborhoods of zero in 
E'; we assume the Un's closed convex and balanced. Let us denote by 
En the linear subspace of E spanned by U: ; En is canonically equipped 
with a structure of Banach space for which the closed unit ball is U: 
(see Notation 37.1 and the remarks following it; cf. also Lemma 36.1). 
The topology of En is finer than the topology induced by E, since U: 
is bounded in E (U: is bounded for a(E, E )  but E is the strong dual 
of the barreled space E'). From there it follows immediately that the 
restriction of @ to En x F, as a bilinear mapping of this product into 
G, is separately continuous. Since En is normed, it follows from the 
first part of the proof that @ : En x F-+ G is continuous. Let, now, 
W be an arbitrary closed convex balanced neighborhood of zero in G. 
For each n = 1,2,  ..., there is a bounded subset B, of F' such that 

(41.2) @( u: , B:) c w. 

At this stage, we use the following easy lemma: 

LEMMA 41 .l.  If {Bk} (k  = 1,2, ...) is a sequence of bounded subsets 
of a metrizable T V S  M ,  there is a sequence of numbers &k > 0 such that 
the union ukm,l ekBk is bounded. 

Proof of Lemma 41.1. Select a countable decreasing basis of neigh- 
borhoods of zero in M, V,  3 V ,  3 ..- 3 Vn 3 .... For each k = 1 , 2  .,.., 
select &k > 0 such that EkBk C v k  ; the sequence { E ~ }  fulfills our re- 
quirement. Indeed, let n = 1, 2, ... be arbitrary. There is qn > 0 such 

Let us return to the proof of Theorem 41.1. Since F' is a FrCchet 
space, we may apply Lemma 41.1 to the sequence {B,} and select a 
sequence of positive numbers E, such that B = Ugz1 cnBn is bounded 
in F'. Recalling that (enBn)O = c;I1B; , we derive from (41.2), 

that r],EkBk c vn for k < n; for k 2 n, EkBk c v k  c vn . 

But the polar of B is contained in the polar of E ~ B , ,  hence 

@(&nc , BO) c w. 

On the other hand, since W is closed convex and balanced, we have 

@( u, BO) c w, 
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where U is the closed convex balanced hull of u;=l e,UE C E. The 
proof of Theorem 41.1 will be complete if we prove that U is a neigh- 
borhood of zero in E; of course, U = U*.It suffices therefore to show 
that Uo is a bounded subset of E'; but, for every n, we have e,UE C U, 
which implies e;lUn = (enUi)03  Uo. Q.E.D. 

COROLLARY 1 .  The convolution mapping 

(S ,  T )  - S*T 

is a continuous bilinear mapping of &' x &' into &' 

COROLLARY 2. The tensor product of distributions 

(S ,  T )  IU+ S @ T 

is a continuous bilinear mapping of &'(Rm) x &'(I?,) into &'(Rm+n). 
(8' can be replaced by 9".) 

Even if we exploit fully Theorems 34.1 and 41.1, there remains quite 
a stock of important bilinear mappings which are not continuous. Let 
us mention two: 

(1) the multiplication mappings (+,$) - +i,h from Vm x V: into 
V: and (+, T) -+ +T from V" x 9' into 9' (see Exercises 41.1 
and 41.2); 

(2) the convolution mappings (4, T) - + * T from V," x 9' into 
V" (or into 9') and (S, T )  - S * T from 8' x 9' into 9'. 

Many more examples could be given. But these bilinear mappings, 
while they are not continuous, have a property which is stronger than 
separate continuity and which palliates, in many a situation, the disad- 
vantages resulting from the absence of continuity. This property is 
called hypocontinuity; here is its definition: 

DeJinition 41.1. A bilinear mapping @ : E x F - G is said to be 
hypocontinuous if the following holds: 

(HC 1) For every bounded subset A of E, the mappings @% : F -+ G 
form, when x varies over A,  an equicontinuous set of linear 
mappings; 

(HC 2) for every bounded subset B of E, the mappings OY : E + G 
form, when y varies over B, an equicontinuous set of linear 
mappings. 
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This definition can be rephrased in various ways. We recall that 

Then, to say that @ is hypocontinuous is saying that @(x,  y )  converges 
to zero in G when x (resp. y )  converges to zero in E (resp. in F )  while 
the other variable remains in a bounded set, and that the convergence 
of @ ( x , y )  in G is then uniform on this bounded set. In other words, 
to every neighborhood of zero W in G and, to every bounded subset A 
(resp. B) of E (resp. F), there is a neighborhood of zero V (resp. U )  in 
F (resp. E) such that 

@(A, V )  c w, @( u, B )  c w. 

For us, the most useful criterion of hypocontinuity will be the follow- 
ing one: 

THEOREM 41.2. Let E, F be barreled spaces (Definition 33.1), and G a 
locally convex space. Every separately continuous bilinear map of E x F 
into G is hypocontinuous. 

Proof of Theorem 41.2. Let A be a bounded subset of E. Let y be an 
arbitrary point of F. Since @ is separately continuous, to every neigh- 
borhood of zero Win G there is a neighborhood of zero U in E such that 
@( U,  y )  C W. Let, then, p > 0 be such that A C p U .  We have @(A, y )  C 
p @( U,  y) CpW. This shows that @(A,y)  is bounded in G. In other 
words, when x varies over A, the mappings GZ form a set of continuous 
linear mappings of F into G which is bounded for the topology of 
pointwise convergence. Our hypotheses allow us to apply the Banach- 
Steinhaus theorem (Theorem 33.1): the @& ( x  E A) form an equi- 
continuous set of linear mappings. Same argument after exchange of 

As all the bilinear mappings which we have encountered (or which 
we are liable to encounter) are separately continuous, and as most of 
the spaces on which they are defined are barreled, these mappings will 
mostly be hypocontinuous. This applies in particular to the examples 
mentioned on p. 423, and to many other similar ones. We should also 
say that the notion of hypocontinuity which we have introduced here, 
although very important, is in a way rather particular. The bounded 
subsets of E and F are given a dominant role; this need not be so. For 
instance, this role might be played by the compact subsets (or the convex 
compact subsets) of E or F or, for instance, if E and F are duals of other 
spaces, one might be interested in bilinear mappings defined on E x F 

E and F. Q.E.D. 
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which are hypocontinuous with respect to the equicontinuous subsets 
of E and F; etc. I t  is clear that one may define the notion of 6-5-hypo- 
continuity, where G and 5 are suitable families of bounded subsets of 
E and F, respectively. For instance, when 6 and are the families of 
finite sets, the notion of G-&hypocontinuity simply reduces to the one 
of separate continuity. 

Exercises 

41.1 Prove that if the locally convex Hausdorff space E is barreled, the bilinear form 
on E x E’, 

(x, x’) - <x’, x>, 

is hypocontinuous. 
41.2. Do Exercise 19.5. 

41.3. Let 9% and 1, be the space of polynomials and formal power series in n letters 
(with complex coefficients), equipped with their Frechet and LF topologies. Prove that the 
duality bracket on Pn X 9,, 

(P ,  u)  - <p, u>, 

is hypocontinuous but not continuous. 
We use the same notation as in Exercise 41.3, but we assume now that 9, carries 

the topology induced by 1,. Prove that, now, the duality bracket between 9, and 1” 
is not separately continuous. 

Let E, F, and G be three TVS. Suppose that E is a Baire space and that F is 
metrizable. Prove that every separately continuous bilinear map of E X F into G is 
continuous. 

Let E, F be two Frechet spaces, G a locally convex Hausdorff space, E‘, F’, 
and G‘ the duals of E, F, and G, respectively, and u a separately continuous bilinear map 
of Ei x Fi  into Gi . 

41.4. 

41.5. 

41.6. 

For all z E G, x‘ E E’, y’ E F’, set 

<z, +’, Y’)> = <v.(x’), Y’>. 

This defines a linear map w,  : E‘ + F”. Prove the following facts: 

(1) 

(2) 

(3) 

w, is a continuous linear map of Ei into F,, ; 

when z varies in a bounded subset C of G, w,  varies in an equicontinuous subset 
of L(Ei ; F); 
for every bounded set C of G there is a neighborhood of zero, U’, in E; , such that 
the set of points w,(x’), z E C, x’ E U’, is bounded in F. 

Derive from this that the bilinear map 
u : E; x Fi + G; 

is continuous. 
41.7. Derive from the preceding result that any separately continuous bilinear maps 

of the product of two duals of reflexive Frkchet spaces into a third one is continuous 
(cf. Theorem 41.1). 
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41.8. Give the example of a Frkchet space E, an LF-space F, both reflexive, and of 
bilinear forms u on E x F and w on E' x F' with the following properties: 

(a) 
(b) 

41.9. 

u is hypocontinuous but not continuous; 
w is separately continuous on E i  x Fi and on Ei x Fi but not continuous on any 
of these two products. 

Let E, F,  and G be three locally convex Hausdorff spaces, and Eo (resp. F,) 
a dense linear subspace of E (resp. F). Let u : E x F --f G be a separately continuous 
bilinear map. Prove the following facts: 

(i) 
(ii) 

if u = 0 in E, x Fo , u = 0 in E x F, 
if the restriction of u to E, x Fo is hypocontinuous, then, for every bounded 
subset A, (resp. B,) of E, (resp. Fo), the set of mappings 

Y - U ( X , Y ) ,  

(resp. x - u(x,  Y ) ,  

x E A,, 
Y E Bo) 

is equicontinuous. 
41.10. Let E, F, G, E, , and Fo be as in Exercise 41.9. We suppose furthermore that 

every point of E (resp. F)  belongs to the closure of some bounded subset of Eo (resp. F,). 
Let u,, : E, x Fo -+ G be a hypocontinuous bilinear map. There is a unique separately 
continuous bilinear map u : E x F -+ G extending u, . Moreover, u has Property (ii) 
of Exercise 41.9. Prove these assertions. 

Let E, F, and G be three locally convex HausdorfT TVS. We suppose that the 
three spaces L(E; F), L(F, G), and L(E; G) carry the topology of bounded convergence 
(or else that all three of them carry the topology of compact convergence, or that all three 
carry the topology of pointwise convergence). Prove the following facts: 

for every equicontinuous subset H of L(F; G), the composition mapping 
(u, 0) - 0 0 u 

41.1 1. 

(a) 

from L(E; F)  x H into L(E, G) is continuous; 
if F is barreled, for every sequence {uk} converging to u in L(E; F )  and every 
sequence {wk} converging to in L(F; G), the sequence {wk 0 uk} converges to 
w o u in L(E, G). 

(b) 



Spaces of Bilinear Forms. 
Relation with Spaces of Linear Mappings 

and with Tensor Products 

All the topological vector spaces considered in this chapter will be 
locally convex and Hausdorff. Let E, F ,  and G be three such spaces. 

Notation 42.1. W e  denote by B ( E ,  F ;  G )  the space of separately 
continuous bilinear maps of E x F into G,  and by B(E,  F ;  G )  the space 
of continuous bilinear maps of E x F into G.  When G is the scalar jield 
( R  or C) ,  we write g ( E ,  F )  and B(E ,  F ) ,  respectively. 

That  B ( E ,  F ;  G) is a linear space (for the natural addition and scalar 
multiplication) is obvious; B ( E , F ;  G) is a linear subspace of it. 

Let G (resp. $) be a family of bounded subsets of E (resp. F ) .  We may 
consider on B(E,  F ;  G) the G-$-topology, or topology of uniform 
convergence on subsets of the form A x B with A E 6, B €6. We 
obtain a basis of neighborhoods of zero in this topology by taking the sets 

%(A, B;  W )  = {@ E B(E, F;  G) ;  @(A, B )  C W } ,  

where A (resp. B )  varies over G (resp. 6) and W over a basis of neigh- 
borhoods of zero in G. Of course, one must check that the sets U ( A ,  B; W) 
fulfill the requirements on neighborhoods of zero in a TVS, in particular 
they must be absorbing. This is easily checked to be so, keepingin 
mind that we are dealing there with continuous bilinear mappings. 
However, if we were dealing with separately continuous bilinear 
mappings, this need not be: indeed, for a bilinear mapping @ to be 
absorbed by a set u(A, B ;  W), it is necessary and sufficient that @(A, B)  
be absorbed by W. If we wish this to be true for all W, we see that 
@(A, B) must be a bounded subset of G. But, in general, if A (resp. B) 
is a bounded subset of E (resp. F ) ,  and if @ is only separately continuous, 
it is not true that @(A, B )  will be bounded in G. Of course, as is readily 

421 
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seen, this is true whenever @ is hypocontinuous. Thus we may define 
the B-$-topology on B ( E ,  F; G) (and not only on B(E,  F; G)) whenever 
E and F are barreled and G is locally convex. There are other cases 
where this definition is possible, as shown by the next result: 

PROPOSITION 42.1. Let E ,  F, and G be three locally convex spaces, Ei , 
FL the strong duals of E, F,  respectively, A’ (resp. B’) an equicontinuous 
subset of E’ (resp. F‘), and Q, a separately continuous bilinear mapping of 
Ei x FL into G.  Then @(A’, B‘) is a bounded subset of G. 

Proof of Proposition 42.1. We may assume that A’ and B‘ are closed 
convex and balanced, hence weakly compact convex and balanced 
(Propositions 32.3 and 32.8). When x’ varies over A’, the mappings 
Q,%, : FL -+ G form a set of continuous linear mappings which is bounded 
for the topology of pointwise convergence in FL . Therefore (Exercise 
36.5) it is also bounded for the topology of uniform convergence on the 
convex balanced complete bounded subsets of Fi ; in particular, 

u a,@’) = @(A‘, 23’) 
x’EA’ 

must be bounded in G. Q.E.D. 

I t  is easily checked that the topology of uniform convergence on the 
products A’ x B’, A’ (resp. B‘) an equicontinuous subset of E’ (resp. F’), 
turns &’(EL , Fi ; G) into a locally convex TVS, which we shall denote 
by g z ( E i ,  FL ; G). Later on, we shall be interested in the subspace 
9?(E:, FL ; G )  of $?(EL , FL ; G) consisting of the bilinear mappings 
E’ x F’ -+ G which are separately continuous when E‘ and F’ carry 
their weak topologies. We shall denote by 

ap;, F; ; G )  

the space in question provided with the topology induced bygE(Ei  , FL ; 
G); this topology will often be referred to as the ?-topology. Finally, 
let us remark that all these topologies are Hausdofi as soon as this is 
true of G. 

We now focus our attention on spaces of bilinear forms and, first 
of all, for reasons that will be clear later on, on the space B ( E : ,  FL) 
of separately continuous bilinear forms on the product of the weak 
duals EL and FL of E and F. We wish to show that there is a canonical 
isomorphism (for the vector space structures) of g(EL , F:) onto L(E;; F J ,  
space of continuous linear mappings of EL into F equipped with its 
weak topology a(F, F’). We then want this isomorphism to extend to the 
topological structures, once we have provided B ( E : ,  FL) with the 
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&-topology. At this point, we discover that the topology to be put on 
L(EL ; F,) is the topology of uniform convergence on the equicontinuous 
subsets of E’ when F carries its initial topology (and not its weak topology). 
This would appear as rather mysterious if one did not observe that 
continuous linear maps from EL into F, are one and the same thing as 
continuous linear mappings of E: into F, where the index 7 means 
Mackey’s topology on E’, i.e., the topology of uniform convergence (of 
continuous linear forms) on the convex balanced weakly compact 
subsets of E. We now state and prove these various facts: 

PROPOSITION 42.2. Let E ,  F be two locally convex Hausdorff TVS.  Then: 

(1) 
(2) 

L(EL ; F,) = L(E: ; F ) ;  
the mapping @ -- 6, where 

is an isomorphism (for the vector space structures) of g(EL , Fi)  
onto L(E: ; I”,); 
the mapping @ - 6 is an isomorphism (for the TVS structure) of 
g*(EL , F,‘) onto L,(E: ; F ) ,  the space L(E: ; F )  equipped with the 
topology of uniform convergence on the equicontinuous subsets of E .  

Proof of (1). If u : E: +F is continuous, its transpose tu : Fi + E 
is continuous (as E is the dual of E:), and the transpose of k, which is 
nothing else but u : Ei + F 0 ,  is also continuous. Conversely, let u 
be a continuous linear map of EL into F,”. Let t~ : Fi+ E: be its trans- 
pose, which is continuous. Let V be an arbitrary closed convex balanced 
neighborhood of zero in F; the polar of V, Vo, is a convex balanced 
compact subset of FL (Propositions 32.7 and 32.8), hence ‘u(Vo) is a 
compact subset of E, , say K .  The polar KO of K is a neighborhood of 
zero in E: and it is readily seen (using the fact that V is equal to its 
weakly closed convex balanced hull) that u(Ko) C V. 

Proof of (2). 
of F, which we denote by $(XI). We have, for all x’ E E ,  y‘ EF’, 

(3) 

As the dual of Fi is F, we identify @; with some element 

(42.1) @ ( X I ,  y’) = (y ’ ,  6 ( x ’ ) ) .  

On this equality, the fact that 6 : EL +F,  is continuous is evident. 
If 6 is given, (42. I )  defines @, which is obviously separately continuous 
on Ei x F,‘. 
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Proof of (3). A basis of neighborhoods of zero in Bc(EL , FL) is obtained 
by taking the sets V ( A ’ ,  B’) consisting of the forms 0 such that 
1 @(x’, y’)  I < 1 for all x’ E A’, y’ E B’, where A’ (resp. B’) is an equi- 
continuous subset of E’ (resp. F’). The mapping @ - 6 transforms 
%‘-(A’, B’) into the set @(A’, B’O) of continuous linear mappings E: + F 
which map A‘ into B’O. By Proposition 36.1, there is a basis of neigh- 
borhoods of zero in F consisting of sets of the form B’O, B’: equicon- 
tinuous subset of F‘. Conversely, if V is a closed convex balanced 
neighborhood of zero in F, its polar VO is an equicontinuous subset of F‘ 
and the inverse of the mapping 0 6 transforms @(A’, V) into 
%‘-(A’, VO). Q.E.D. 

PROPOSITION 42.3. Let E,  F be locally convex Hausdorff TVS.  Then 
L,(E:; F )  (and consequently Bs(EL; Fi ) )  is complete i f  and only i f  both 
E and F are complete. 

Proof 

Necessity of the condition. Let y E F be arbitrarily chosen except 
that y must be # 0. T o  every x E E ,  we associate the mapping u, : E’ -+ F 
defined by x’ - <XI, x) y. This yields a linear mapping x - u, of E 
into L(E: ; F). Indeed, if x’ ---t 0 in E: , x‘ -+ 0 in EL a fortiori and 
therefore (XI, x) -+ 0. We contend that x - u, is an isomorphism (for 
the TVS structures) of E into L,(E: ; F) and that the image of E under 
this mapping is a closed linear subspace. 

The following facts are clear: for each x E E, u, is continuous from 
E: (and in fact from EL) into F; x - u, is linear and one-to-one; u, 
converges to zero in L,(Ei; F) if and only if x converges to zero uniformly 
on every equicontinuous subset of E‘, i.e., (Proposition 36.1) converges 
to zero in E. Thus x - u, is an isomorphism into. The image of E under 
the mapping x - u, is the set of all continuous linear mappings of E: 
into the one-dimensional subspace generated by y, Cy (if C is the scalar 
field, otherwise Ry). Indeed, if u is such a mapping, we have, for all 
x‘ E E‘, u(x’) = f(x’)y, where f is a continuous linear form on E:. 
But then there is x E E such thatf(x’) = (x’, x) for all XI. I t  is clear that 
the set of all continuous linear mappings of E: into Cy is closed in 
L,(E: ; F)  (and even in L,(E: ; F)). This implies that E is complete if 
this is true of L,(E: ; F). Since the latter TVS is isomorphic with 
Be(EL , Fi) ,  we see that the situation is perfectly symmetric in E and F 
and therefore the completeness of L,(E: ; F) also implies that of F. 

I f F  is complete, the vector space dp(E’; F) 
of all linear mappings (whether continuous or not) of E’ into F is complete 

Suficiency of the condition. 
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when we provide it with the topology of uniform convergence on the 
equicontinuous subsets of E’ (this topology is not compatible, in general, 
with the vector space structure of LY(E’; F ) ,  but it is clear that the 
notions of Cauchy filter and of completeness make sense for it). It will 
suffice to show that L,(Ei ; F )  is a closed subspace of 9 ( E ’ ;  F )  for this 

Let u be a linear mapping of E‘ into F which is the limit, uniformly 
on every equicontinuous subset of E’, of continuous linear mappings 
of E: into F. I t  suffices to show that u is continuous from Ei into F, 
(Proposition 42.2, Part (1)). Let, therefore, y‘ E F‘ be arbitrary; the linear 
form y’ c u on E’ is the limit, uniform on the equicontinuous subsets 
of E’, of linear forms on E’ which are continuous for T(E’, E). T h e  
latter are of the form x’ - (x’, x) with x E E ,  since E is the dual of E: . 
T o  say that they converge uniformly on the equicontinuous subsets 
of E‘ is equivalent to saying that the corresponding x converge in the 
completion of E,  in view of Proposition 36.1. Therefore, if E is complete, 
these x have a limit xo E E and we have, for all x‘ E E’, 

topology. 

(y l  0 u, x‘} = (x ‘ ,  xn> 

This  proves the continuity of y’ o u. Q.E.D. 

We now turn our attention to tensor products. There is a canonical 
bilinear mapping 4 of E x F into B(Ei , FL), space of continuous bilinear 
forms on EL x FL : 

We observe first that E and F are +-linearly disjoint (Definition 39.1). 
Indeed, consider two linearly independent finite sets of vectors {xi>, 
{yk} in E and F ,  respectively; select two sets {xi}, {yk} in E’ and F‘, 
respectively, having the same number of elements as {xi> and {yk},  
respectively, and such that (xj, , xj) = 8,. and (y; ,  , y k )  = 8,,. 
(6,. , S,,, : Kronecker symbols). The  value of the bilinear form +(xi , y k )  
is equal to one on (xi , y;), and to zero on (xi, , y;,) as soon as either 
j ’  # j or k # k’. This  implies that the forms +(xj, y k )  are linearly 
independent. Our next observation is that the forms 4(x, y )  span 
B ( E i ,  Fi) as (x, y )  varies over E x F. Let us prove this statement. Let 
@ be a continuous bilinear map on EL x FL . There is a finite subset 
A of E and a finite subset B of F such that 

x’ E An, y’ E BO implies I @(XI, y’)l < 1. 

Let EA (resp. FB) be the linear subspace of E (resp. F )  spanned by 
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A (resp. B); of course, EA and F, are finite dimensional. Their or- 
thogonals, (EA)O and (FB)O have finite codimension, and we may write 

E = M @ (EA)O, F’ = N @ (F,)” (0: direct sum). 

Obviously, @ vanishes on the subspace of E‘ x F’, 

( ( E A ) n  x F’) 0 (E’ x (FB)o) ,  

which is a supplementary of M’ x N’  in E‘ x F’; in other words, 0 is 
completely determiued by its restriction to the finite dimensional 
subspace M’ x N’. Obviously, one can find a finite set of vectors in 
EA , x1 ,..., x,, a finite set in FB ,yl ,..., ys , such that this restriction 
to M‘ x N‘ (and therefore @ in the whole of E‘ x F’) is given by 

r s  

(X’,Y’) - c c (x’, Xj> (Y’ ,Yr) .  
3=1 k=l 

Summarizing, we may state: 

PROPOSITION 42.4. 
In the forthcoming chapters, we shall often write E Q F = B(E:, FL); 

the mapping (42.2) will be denoted by (x, y) - x B y .  Let us show 
rapidly that this is in agreement with our definition of the tensor product 
of two linear mappings (Proposition 39.2). In  view of the general 
properties of tensor products, there is a one-to-one correspondence 
between bilinear forms on E‘ x F‘ and linear forms on E’ Q F‘ (Theorem 
39.1). If we identify every element x (resp. y )  of E (resp. F) with the 
linear form x‘ - (x’, x) (resp. y’ - (y’ ,  y ) )  it defines on E’ (resp. F‘), 
we see that the bilinear form $(x ,y)  of (42.2) is associated with the 
linear form x B y  (Notation of Proposition 39.2). 

Let us go back to B(EL, FL); we may regard it as a linear subspace 
of g(EL , FL), space of separately continuous bilinear forms on EL x FL . 
Then, by using the canonical isomorphism of B(EL, Fj)  onto L(EL ; Fo) 
(Proposition 42.2), we may regard B(EL, FL) as a linear subspace of 
the latter. We leave the proof of the characterization below to the student: 

PROPOSITION 42.5. The canonical image of B(EL , FL) into L(EL ; Fo) 
is equal to th,e space of continuous linear mappings of EL into F whose image 
is jinite dimensional. 

For these mappings, it is irrelevant to specify the topology on 
F, as long as it is HausdorfT: indeed, on the image of the mapping 
all HausdorR topologies (compatible with the linear structure) coincide. 

B(EL , FL) is a tensor product of E and F.  
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It is also clear that, in the finite dimensional cases, all the above iso- 
morphisms become onto, and most statements are trivial. In  the infinite 
dimensional case, not only is B(EL , FL) distinct from g(EL , FJ (equi- 
valently, E O F  is distinct from L(EL; Fo)), but it is not closed in 
g C ( E L ,  F:) (i.e., in L,(E: ; F)) .  We shall see, later on, that there are 
important classes of spaces for which E O F  is dense in L,(E: ; F ) ,  
as well as others for which this is not true. 

We close this chapter with a few words about the normed case. By 
Mackey's theorem, we know that every convex balanced weakly compact 
subset of E is bounded (for the initial topology); therefore Mackey's 
topology 7(E',  E )  on E' is always weaker than the strong dual topology 
on E', in contrast with the fact that its Mackey topology 7(E',  E") is 
always stronger than the strong dual topology. From this it follows that 
a continuous linear map of E: into F is a fortiori a continuous linear 
map of EL into F, i.e., L(E: ; F )  C L(Ei ; F).  Now, when E is normed, 
Ei is a Banach Space, and the equicontinuous subsets of Ei are the 
subsets of its balls centered at the origin (with finite radius!). Thus 
L,(E: ; F )  can be regarded as a subspace of the space Lb(Ei ; F).  By 
applying Propositions 42.2 and 42.3, we may state: 

PROPOSITION 42.6. Assume that the spaces E and I: are normed. Then 
BE(EL , Fi)  is a normed space, canonically isomorphic to the subspace 
L,(E: ; F )  of Lb(EL ; F ) ;  BC(EL , FL) is a Banach space ;f and only i f  both 
E and F are Banach spaces. 

Note that if F is a Banach space so is L,(Ei ; F) ,  even when E is not 
complete. In  this case, we see that L,(E: ;F) is a subspace of &(Ei ;F) 
which is not closed. 

Exercises 

42.1. Let E,F,  and G be three locally convex Hausdorff spaces, and 2' the vector 
space of hypocontinuous bilinear mappings of E x F into G. Prove that the topology 
of uniform convergence on the product sets A x B, where A and B are bounded subsets 
of E and F, respectively, is compatible with the linear structure of 2'. Let us suppose then 
that 2' carries this topology. Prove that 

2' 3 u - (x - (y .- u(x, y))) E L(E; L(F; G)) 

is a TVS isomorphism of .Z onto L(E; L(F; G)). 
Same notation as in Exercise 42.1. Prove that if E and F are barreled and G 

quasi-complete (every closed bounded set is complete) the T V S  .% is quasi-complete. 
Let E, F be two locally convex HausdorfT TVS. Let G be a family of bounded 

subsets of E ,  covering E and having the usual properties (6,) and (GIl). We suppose that 
the initial topology of E is identical to its Mackey topology T(E, E') (for instance, E is 
metrizable or barreled). Prove then that the space LG(E; F )  (Definition 32.1) is complete 
;f and onZy ;f E& (Definition 19.2) andF are both complete (cf. Proposition 42.3). 

42.2. 

42.3. 



The Two Main Topologies on 
Tensor Products. Completion of 

Topological Tensor Products 

In this chapter, E and F will be two locally convex TVS, and E Q F 

We recall that E Q F is isomorphic to B(EL, FL) (Proposition 42.4). 
a tensor product of E and F. 

DeFnition 43.1. W e  call E-topology on E Q F the topology carried 
over from B(EL, FL) when we regard the latter as a vector subspace of 
ge(EL , FL), the space of separately continuous bilinear forms on EL x FL 
provided with the topology of uniform convergence on the products of an 
equicontinuous subset of E' and an equicontinuous subset of F'. Equipped 
with the E-topology, the space E Q F will be denoted by E Q, F. 

The canonical mapping ( x ,  y )  - x Q y of E x F into E Q E F  is 
continuous; this is obvious. The &-topology on E @ F is locally convex; 
it is HausdortT if and only if both E and F are HausdortT. When E and F 
are normed spaces, this is also true of E Q , F  (Proposition 42.6). 

We proceed now to give the definition of the second main topology 
on tensor products. 

DeJinition 43.2. We call rr-topology (or projective topology) on E @ F 
the strongest locally convex topology on this vector space for which the 
canonical bilinear mapping ( x ,  y )  - x Q y of E x F into E Q F is 
continuous. Provided with it,  the space E @ F will be denoted by E F. 

A convex subset of E Q F is a neighborhood of zero for the rr-topology 
if and only if its preimage under ( x ,  y )  - x Q y contains a neighborhood 
of zero in E x F, i.e., if it contains a set of the form 

U @ V = {X @ y  E E OF; x E U , y  E V } ,  

where U (resp. V )  is a neighborhood of zero in E (resp. F). In other 
434 
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words, we obtain a basis of neighborhoods of 0 in E on F by taking the 
convex balanced hulls of sets U, @ Va , where U, (resp. V,) runs over 
a basis of neighborhoods of zero in E (resp. F ) .  

If we wish to describe the projective topology by means of semi- 
norms, the best way is to introduce the notion of tensor product of 
two seminorms. Let p (resp. q) be a seminorm on E (resp. F) ,  U p  
(resp. V,) its closed unit semiball, and W the balanced convex hull 
of U p  @ Vq . Observe that W is absorbing. Let us then set 

(43.1 ) 

Definition 43.3. 
the seminorms p and q. 

The seminorm p @ q is  called the tensor product of 

PROPOSITION 43.1. FW all 8 & E @ F, 

(P O q)(e) = i n f x  ~ ( x j )  q(yj), 
j 

where the infimum is taken over all finite sets of pairs (xi , y j )  such that 

e = cxj arj. 
j 

Furthermore, for all x E E and y E F,  

(43.2) (P O q)(x Or) = P(X> q(y). 

Proposition 43.1 can be interpreted in the following way. Let us 
introduce the space X of complex-valued functions on E x F which 
have a finite support, as in the proof of Theorem 39.1. T h e  tensor 
product E 8 F is isomorphic to a quotient XIN of X. Here, the iso- 
morphism is purely algebraic. Consider on X the seminorm 

f - c I f ( X >  r)l P(X) q(Y). 
( s,r) EEXF 

Its quotient modulo N of this seminorm (cf. Proposition 7.9) “is” the 
seminorm p @ q. 

Proof of Proposition 43.1. Let U (resp. V) be the closed unit semiball 
of p (resp. 9); let W be the closed convex balanced hull of U @ V. To 
say that 0 E pW, p > 0, is equivalent to saying that 

N N 

‘ = E t k x k @ y k ,  x I t k / < P ,  P ( x k ) < l ?  q ( x k ) < 1 .  
k = l  k = l  
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Let us set .$k = t k x k ,  q k  = Y k  . We see that 
N 

Conversely, let us start from such a representation of 8. Let E be an 
arbitrary number > 0. Let us set 

xk = P(tk)-' t k  3 Y k  = q(Tk)-' 7 k  9 t k  = P ( t k )  q ( T k )  

when P ( f k )  q ( 7 k )  # 0 and, otherwise, 

if P ( f k )  # 0 and q(7k) = 0, the analog in the symmetric case, and lastly 

x k  = (N/&)'!k 9 Y k  = 7 k  , tk  = E / N  when P('!k) = q ( 7 k )  =z 0. 

We then have 
N 

= z t k x k  O Y k  d x k )  < 1, q ( Y k )  < for each k, 
k=l  

and 
z I t k l  < f  
k 

This proves that 8 E (p + E)W, as E is arbitrarily small, it proves that 
(P 0 q)(O) G P. 

Note that we have, in particular, for all x E E, y E F, 

(P 0 q)(x Or) < P ( 4  q(r). 

In view of the Hahn-Banach theorem, there is x' E E' (resp. y' E F') 
such that 

(x', x> = ~ ( 4 ,  Kx', x,>l d ~ ( 4  for all x1 6 E 
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But since, on the other hand, 0 = x @ y ,  we have 

(x' 0 y', e> = (x', x> ( y ' ,  Y> = 4%) q(y), 

p ( x )  4 Y )  < (P 0 q)(x Or). 
whence 

By combining this with the estimate in the other direction (p. 436), 
we obtain (43.2). 

PROPOSITION 43.2. 
p and q are norms. 

The seminorm p @ q is a norm if and only ;f both 

Proof. If either p or q are not norms, this must also be true of p @ q, 
as follows immediately from (43.2). Observing that a seminormed 
space is normed if and only if it is Hausdorff, the converse follows 
from the following more general result: 

PROPOSITION 43.3. 
is H a u s d o g  ;f and only if both E and F are Hausdog .  

Proof. If E Ow F is Hausdorff, the same must be true of E and F ;  this 
is obvious. Conversely, let us assume that both E and F are Hausdorff 
and let us show that, given any element 8 # 0 of E @ F,  there is a 
continuous linear form 0' on E @,,F such that (O', 0) # 0. It suffices 
to write 

Let E, F be two locally convex TVS; then E BTF 

6 = C x j  Oyi ,  
3 

where the sum is finite and the sets {x j } ,  {yi} are linearly independent. 
Since E and F are Hausdorff, we can find X I  E E' and y' E F' such that 
<XI, x l )  = ( y ' ,  yl) = 1 and (x', xj> = ( y ' ,  yi> = 0 for j > 1. Consider 
then the linear form on E @ F, 

I t  is clearly continuous for the m-topology, and (el, 0) = 1. Q. E.D. 

Going back to the proof of Proposition 43.2, it suffices to observe 
that if ( E ,  p) and ( F ,  q) are seminormed spaces, the topology m on E @ F 
can be defined by the single seminorm p @ q. If p and q are norms, 
E @,,F must be Hausdod,  i.e., p @ q must be a norm. 

Dejinition 43.4. If (E,  p) and (F, q) are normed spaces, the normed 
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space ( E  Q F, p Q q) will be called the projective tensor product of 
( E ,  P)  and (F,  4). 

When E and F are arbitrary locallyconvex spaces, we obtain a basis 
of continuous seminorms for the rr-topology on E, F by taking a family 
(pa Q qa) (a E A, /? E B), where {pa} (resp. {qa}) is a basis of continuous 
seminorms in E (resp. F). 

In analogy with the algebraic case (Theorem 39. l),  the space E Q,, F 
possesses a “universal” property: 

PROPOSITION 43.4. Let E, F be locally convex spaces. The x-topology 
on E Q F is the only locally convex topology on E Q F having the following 
property : 

For every locally convex space G, the canonical isomorphism of the space 
of bilinear mappings of E x F into G onto the space of linear mappings 
of E Q F into G (Theorem 39.l(b)) induces an isomorphism of the space 
of continuous bilinear mappings of E x F into G, B(E,F;  G),  onto the 
space of continuous linear mappings of E Q F into G, L ( E  @ F ;  G). 

In the property above, the word isomorphism is used in the purely 
algebraic sense. 

Proof. In the algebraic correspondence between bilinear mappings 
E x F + G and linear mappings E Q F + G, if we take G = E Q F, 
the canonical bilinear mapping E x F + E Q F corresponds to the 
identity mapping of E Q F. If 9- is a locally convex topology on E Q F 
having the universal property of the statement, we see that the canonical 
bilinear mapping of E x F into E Q F must be continuous, therefore 9- 
is weaker than rr (Definition 43.2). But on the other hand, since the 
canonical mapping E x F -+ E Q,, F is continuous, so must be the 
identity mapping E Qr F -+ E @,, F, which means that 9- is finer than 
x. Q.E.D. 

COROLLARY. 
the space of continuous bilinear forms on E x F. 

The dual of E Q,, F is canonically isomorphic to B(E,  F ) ,  

It suffices to take G = C in Proposition 43.4. 

Exercises 

Exercise 43.1. Prove that the canonical isomorphism between B(E,F; G) and 
L(E 0, F; G) transforms equicontinuous sets into equicontinuous sets and that the 
projective topology on E @ F is the topology of uniform convergence on the equicon- 
tinuous subsets of B(E, F) regarded as dual of E @ F. 

PROPOSITION 43.5. On E @ F,  the topology rr isJiner than the topology E .  
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Indeed, the canonical bilinear mapping of E x F into E Q , F  is 
continuous. 

PROPOSITION 43.6. Let Ei , Fi (i = I ,  2) be four locally convex Hausdog 
spaces. Let u (resp. v )  be a continuous linear map of El into E, (resp. of 
Fl into F,). I f  9- is either the topology rr or the topology E ,  the tensor product 
u @ v of u and v is a continuous linear map of El Qr Fl into E, Qr F, . 
Proof. First, suppose that 9- = 7r. Noting that ( x ,  y )  -+ (u(x), v (y ) )  
is a continuous linear map of El x Fl into E, x F, and composing this 
mapping with the canonical bilinear mapping of E, x F2 into E, Q,F,  , 
we obtain a continuous bilinear mapping of El x Fl into E, Q,F, ,  
to which is associated, in view of Proposition 43.4, a continuous linear 
mapping of El Q,, Fl into E, Q,, F, , which is nothing else but u Q v. 

Next, suppose that 9- = E .  Let us identify Ei Q Fi with B((E,):, 
(F&) (i = 1, 2). Then u Q v is immediately seen to be identified with 
the mapping which assigns to every continuous bilinear form on 
(El): x PI): ? 

(.; ? Y;)  - , Y 3  

the continuous bilinear form on (E,): x (F,): , 

(43.3) 

where Iu (resp. lv) is the transpose of u (resp. v). If A; (resp. BL) is an 
equicontinuous subset of E; (resp. Fl) ,  %(A;) (resp. Iv(BL)) is an equi- 
continuous subset of E; (resp. Fi),  so that, if the absolute value of 0 
is < 1 on C(A;) x %(B;), the absolute value of (43.3) is < 1 on A; x B; . 

(.; Y;)  - @("(.;), t4Y;)) ,  

Q.E.D. 

COROLLARY. Let E, F be two locally convex Hausdorff spaces; E' Q F' 
is canonically isomorphic to a linear subspace of the dual of E Q, F (and 
a fortiori, also of E Q,, F). 

It suffices to take El = E, Fl = F, E, = F, = C in Proposition 43.6. 
Let E, F be two locally convex HausdorfF TVS. 

Definition 43.5. 
tion of E Q, F (resp. E Q,, F). 

We shall denote by E @e F (resp. E @,, F) the comple- 

Let Ei , Fi (i = 1, 2), u and v be as in Proposition 43.6. 

Dejnition 43.6. We shall denote by u 
of u Q v as a continuous linear map of El Be Fl into E, 
El &F1 into E, @,,F,). 

v (resp. u @,, v )  the extension 
F, (resp. of 
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When E and F are both complete, we know (Proposition 42.3) that 
aS(EL , FL) is complete; in this case, E F can be canonically identified 
with the closure of E @ F = B(EL, FL) in Be(EA, Fi). In the general 
case, when it is not necessarily true that both E and F are complete, 
we may observe that the topologies 8 = a(E', 8) and a(F',  P) on E' 
and F', respectively, are finer than u, whereas the equicontinuous subsets 
of E' and F' are the same, whether we regard these spaces as duals of 
E and F, or of I? and P, respectively. This means that B(EL, FL) C 
B(Ei , FJ  and a ( E ;  ,FA) C B(EL , FJ  and that the &-topology on the 
last one of these spaces of bilinear forms induces the &-topology on all 
the others. Thus E @= F can be regarded as a subspace of - g C ( E i ,  Fi)  
and E @= F, as the closure of E @ F, or of 8 @ P, in .ge(Ei , Fi). I t  is 
trivial that E 0, F is dense in 8 0, P.  

PROPOSITION 43.7. Let Ei , Fi ( i  = 1 ,  2) ,  u, and v be as in Proposition 
43.6. Suppose that u (resp. v) is an isomorphism of El into E ,  (resp. of 
Fl into F,). 

Then u @a v is an isomorphism of El Fl into E, @c F2 . 
Proof. The extension by continuity to 8 of an isomorphism of E into 
F is an isomorphism of 8 into P. I t  suffices therefore to show that 
u @ v is an isomorphism of El @,Fl into E2 @, F, (we know already 
that it is a continuous injection; cf. Exercise 39.3). If we identify a 
tensor 8 E El 0 Fl to a bilinear form @ E B((El)L, (Fl)L), (u 0 v)(8) 
will be identified to the form 

Let Ul , Vl be arbitrary neighborhoods of zero in El and Fl respectively. 
Let us select U, , V, neighborhoods of zero in E, and F, such that 

By taking the polars of all sides and observing that tu and lv are onto, 
we see that 

5-'( U:) C U," + Ker t ~ ,  %-'( V;) C V: + Ker %, 

that is to say 
u; c "( U,"), v," c "( V,"). 

Now, if the form (43.4) converges to zero uniformly on U,O x V,O, it 
is clear that 0 must converge to zero uniformly on U: x V: . Q.E.D. 
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COROLLARY. If El (resp. Fl)  is a linear subspace of E (resp. F), El 0, Fl 
(resp. El Fl)  is canonically isomorphic to a linear subspace of E 0, F 
(resp. E &F).  

In this corollary, isomorphic is meant in the sense of the TVS structure. 
We switch now to the rr-topology. Since the dual of a locally convex 

HausdorfT TVS E is canonically identifiable with the dual of the com- 
pletion of E, we derive from the corollary of Proposition 43.4: 

PROPOSITION 43.8. The dual of E @T F is canonically isomorphic to 
B(E, F) .  

The transpose of 
u &v : El GRF1--+ E, @,Fz 

is the mapping 
y - { ( X l  9 Yl)  - !wx1) ,  V(Yl ) )>  

of B(E, , F,) into B(El , Fl) .  
We may then prove the following statement: 

PROPOSITION 43.9. Let Ei , Fi ( i  = 1, 2),  u, and v be as in Proposition 
43.6. Suppose that u (resp. v )  is a homomorphism of El (resp. Fl)  onto a 
dense linear subspace of E, (resp. F.J. 

Then u @,, v is a homomorphism of El @,,Fl onto a dense subspace of 
E, a, F, which is identical to E, @,, F2 when El and Fl are metrizable. 

Proof. First, we make use of the fact that the image of a continuous 
linear map u : E + F  is dense if and only if 1u is one-to-one. If u(El) 
(resp. v(F,)) is dense in E2 (resp. F,), Y E  B(E, , F,) cannot vanish on 
u(E,) x v(Fl) without being identically equal to zero; thus “u @,,v) 
is one-to-one, therefore the image of u gW v is dense. 

Let, now, @ E B(El ,  Fl)  have the property that @(xl, yl) = 0 as soon 
as either x1 E Ker u or y1  E Ker v. Let us define the following bilinear 
functional on u(El) x v(F,): 

w44 4n)) = @(x1 % n). 
This is obviously a correct definition. Let us consider a neighborhood 
of zero Ul (resp. V,) in El (resp. Fl) such that 

I@(& 9 VdI d 1. 

Select, then, a neighborhood of zero U, (resp. V,) in E, (resp. F,) such 
that U, A u(El) C u( Ul), V, A v(Fl)  C v( Vl). We have, for u(xl) E U, 
and v(yl)  E V, , I Y(u(x l ) ,  v(yl))  I < 1. This shows that Y is continuous 
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for the topology induced by E, x F, . It can be extended in a unique 
manner as a continuous bilinear functional on E, x F,. We denote 
this extension also by Y. We remark that, if Qj belongs to an equi- 
continuous subset of B(El , Fl) ,  H ,  , the neighborhoods U ,  and V,  , 
and therefore also U, and V , ,  can be chosen independently of Qj, 

depending only on H, , and Y then belongs to 

which is obviously an equicontinuous subset of B(E, , F J .  These f.icts 
imply all we want. Indeed, they prove that the image of ‘(u @,, v) is 
exactly equal to the set of Qj E B(El , Fl)  which vanish on 

(Ker u )  x Fl + El x (Ker v) ;  

in particular, this image is weakly closed. Furthermore, any equi- 
continuous subset contained in it is the image of an equicontinuous 
subset of B(E, , F,) under ‘(u @,, v). I t  suffices, then, to apply Lemma 
37.7 (Exercise 37.8). 

If El and Fl are metrizable, this is also true of El @,, Fl ; then El @r Fl 
is a FrCchet space; its image under (u BW v) is isomorphic to El &F1/ 
Ker(u @- v), which is a FrCchet space, is therefore complete, i.e., is 
closed in E, @,, F, . Since it is also dense in this space, according to the 
first part, it must be equal to it. Q.E.D. 

Remark 43.1. 
onto, u : El + E, , v : Fl --t F, , such that u a,, v is not onto. 

Remark 43.2. If u and v are isomorphisms into, it is not true in general 
that u @,, v will be an isomorphism into. In order that this be true, 
it is necessary and sufficient that every equicontinuous subset of B(El, Fl)  
be the image, under ‘(u @* v), of an equicontinuous subset of B(E,, F,). 
And it is sufficient that u(EJ and v(Fl) have a topological supplemen- 
tary in E, and F, respectively. 

Remark 43.3. If u and w are homomorphisms onto, it is not true, in 
general, that u v will be a homomorphism. Comparing with Remark 
43.2, we see that the &-completion and the .rr-completion of E @ F  
behave in quite different manners with respect to isomorphisms into 
and homomorphisms. It is also clear, if we look at Propositions 43.7 
and 43.9, that, in the cases where the two completions will be isomorphic, 
the extensions of tensor products of linear mappings u @ v will have 
very convenient properties. 

It is not difficult to find examples of homomorphisms 
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We close this section with a few words about the case where E and F 
are normed spaces (we denote by 1) 1) the norm in both of them, as well 
as the norm on their duals, on the related spaces of continuous linear 
mappings, etc.). In particular, the space of continuous bilinear forms 
on E’ x F’, B(E’, F‘), carries a canonical norm, which is the maximum 
of the absolute value of a form on the product of the unit balls of E and 
F. This induces a norm on every one of its subspaces, in particular on 
&7(EA , F:) and on B(EL , FL) g E @ F. 

PROPOSITION 43.10. The &-topology on the tensor product E @ F of 
two normed spaces E and F is deJned by the canonical norm on B( EL , FJ. 

The proof is straightforward. We shall denote by I( ( Ic the canonical 
norm on E Q F  which defines the &-topology. We have already the 
notion of r-norm: it is the tensor product of the norms of E and F 
(Definition 43.3, Proposition 43.2); we shall denote it by ( 1  [I,, . 

We keep assuming that E and F are normed spaces. 

PROPOSITION 43.11. 
into E @,,F has norm one. 

Proof. 

The canonical mapping of E x F into E Be F and 

By Proposition 43.1, we have 

I1 x O r  IIn = II x II /I Y II. 

If we identify E 
form 

and 

F with B(EL , FL), x @ y is identified with the bilinear 

(XI, r’) - (XI, x> (Y’, Y>, 

In  the case of normed spaces, the universal property stated in Proposi- 
tion 43.4 can be made more precise: 

PROPOSITION 43.12. Let E,  F be two normed spaces. 

(a) Any norm on E @ F,  such that the canonical bilinear mapping of 
E x F into E @ F is continuous i f  norm < 1 ,  is < to the r-norm. 

(b) For all normed spaces G, the canonical isomorphism of B(E, F ;  G)  
onto L(E On F ;  G)  is an isometry. 

(c) Any norm on E @ F,  such that the canonical linear mapping of 
B(E, F )  into ( E  @ F)*,  algebraic dual of E @ F, is an isometry 
of B(E, F )  onto ( E  O F ) ’ ,  is equal to the 7r-norm. 
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Proof. Note that (b) - (a) trivially: if Yt is a norm on E @ F such 
that the canonical mapping 4 : E x F 4 E @% F has norm < 1, it 
suffices to apply (b) with G = E @% F; we know that the mapping 
E x F + G corresponding in this case to 4 is the identity mapping 
of E OF. 

Let us prove (b). Let u" E B(E, F; G), u EL(E @,, F; G) be canonically 
associated. For all x E E, y E F, we have 

II fi(x, ~ ) l l  < II 4~ 0 ~ ) l l  < II u I1 I1 x 0 Y Iln = I1 u I1 II x I1 II Y I I -  

This proves that 11 u' 11 < I( u 11. Let 8 E E @ F with 11 8 [I,, = 1. We may 
find a decomposition 8 = Cj xj Qyi  with xi (I xi (I I1 yj I1 < 1 + e. 

But then ( 1  u(8) 11 = 1 1  C(xi , y j )  1 1  < 1 1  u" 1 1  (1 + e). By taking E 4 0, 
we conclude that the maximum of 1 1  u(8) I/ on the unit sphere of E @,, F 
is < I( u" 11, which proves what we wanted. 

Finally, we prove (c). Let 12 be a norm on E Q F  such that B(E, F) 
and (E 8% F)' are canonically isometric. By (b) this is true when Yt = ' T .  

Therefore, both E Q n F  and E @% F are mapped isometrically (by the 
mapping: value at 8 E E @ F) onto the same subspace of the dual of 
B(E, F). Q.E.D. 

COROLLARY 1. 
is an isometry. 

The canonical isomorphism of B(E, F )  onto ( E  @,, F)' 

COROLLARY 2. For all 8 E E @ F, we have (1 8 I(= < (1 8 ll,, . 
Proof of Corollary 2. 
bilinear map E x F + E Q, F is continuous and has norm one. 

Apply Proposition 43.12(a), as the canonical 

PROPOSITION 43.13. Let E, , Fi (i  = 1,2) be four normed spaces, and 
u : El -+ E,  , v : Fl + F, two continuous linear mappings. Then 

II U. 0 v Iln = II u 0 t~ Ilc = I1  u II I1  VI II. 

Proof. For all x E El , y E E, , we have (cf. Proposition 43.1 1) 

Il(u 0 9 ( x  0 r ) l l w  = I1 44 0 4Y)IIw = II u(x)ll II mil. 

where w stands either for T or for E. Take, now, 1 1  x 1 1  = 1, ( 1  y 11 = 1 
such that I( u(x) 11 and ( 1  v(y)  11 be arbitrarily close to ( 1  u II and (I PI 11, 
respectively. We obtain 



Chap. 43-12] TOPOLOGICAL TENSOR PRODUCTS 445 

Let us prove the converse inequality: first, when w = T. Consider 
the bilinear map of E, x Fl into E2 Q,,F2,  

(x, r) - 44 0 4 Y ) ;  

it has a norm < 1 1  u ( 1  1 1  v 11. By applying (b) in Proposition 43.12, we see 
that the associated linear map of El @,, El into E2 Q , , F 2 ,  that is to 
say u @ v ,  must have norm < 1 1  u 1 1  1 1  o 11. 

Finally we look at the case where w = E .  Let 8 be an arbitrary element 
of El OFl ; its E-norm is the supremum of its absolute value (when 
we regard 8 as a bilinear form on E; x F;) over the product of the unit 
balls of E; and F; (Proposition 43.10). We denote by sup the supremum 
over x' E Ei , y' E F; , )I x' 1 1  = 1 1  y' )I = 1; we then have 

II(. 0 v)(e)llE = SUPNU 0 v ) ( W '  Or" 
= SUP1 e ( t 4 x ' ) ,  tw))l < II 0 I I C  I I  tU I I  II %J II = II 0 IJE II 24 II II +? II 

Q.E.D. 

Exercises 

43.2. Let Ei , Fi ( i  = I ,  Z), u, and v be as in Proposition 43.6. Prove that the kernel 
of u G,, v is equal to the closed linear subspace of El B,, Fl spanned by the tensors of 
the form x1 @ y1 such that either u(xl) = 0 or v(q)  = 0 or both. 

In relation with Remark 43.2, prove the following lemma (which can be viewed 
as a complement to Lemma 37.7, Exercise 37.8, and which is going to be used, later on): 
LEMMA 43.1. Let E, F be two Hausdorff locally convex spaces. A continuous linear map 
u ; E + F is an isomorphism if and only if every equicontinuous subset of E' is the image 
under Iu of an equicontinuous subset of F .  

Let Ei , Fi ( i  = 1, 2) be four normed spaces, and u : El --t E, , v ; Fl + F, 
two isometries. Prove that Y 0 v is an isometry of El @,, Fl into E, 0, F, if and only if 
every continuous bilinear form on El x Fl is the image, under I(u @,, v), of a continuous 
bilinear form on E ,  x F2 having the same norm. 

Making use of Remark 43.2, prove the following statement: Let F be a Banach 
space, and E a closed linear subspace of F having a topological supplementary in. its bidual 
E". The canonical mapping E @,, E' -+ F @,, E' is an isomorphism (for the TVS 
structures) if and only if E has a topological supplementary in F. 

By using Exercise 43.4, prove the following result: if E and F are normed spaces, 
the canonical linear mapping E a,, F --t E" @,, F is an isometry (into). 

43.7. Prove that, if E and F are two Frkchet spaces, E 0, F is a barreled space (hint: 
use Exercise 33.4). 

Let {Ea) be a family of locally convex spaces, and F a locally convex space. 

43.3. 

43.4. 

43.5. 

43.6. 

43.8. 
Prove the canonical isomorphism 

(n Em) @,, F E n (E, Gw F).  
OL 



44 
Examples of Completion of Topological 

Tensor Products: Products E 

Example 44.1. The Space @(X, E )  of Vm Functions 
Valued in a Locally Convex Hausdorff Space E (0 < m < +a) 

In the discussion that follows, X i s  either a locally compact topological 
space, and then m can only be equal to zero, or else an open subset of 
R", and then m can be any integer, or + co. The space Wm(X; E) 
carries its natural Vm topology (see Definition 40.2); when m = 0 
and X is a locally compact space, that definition still holds: the topology 
of V o ( X ; E )  is the topology of uniform convergence on the compact 
subsets of X. 

PROPOSITION 44.1. If E is compZete, so is Wm(X; E).  

Proof. As E is complete, a Cauchy filter 9 on Wm(X; E) converges 
pointwise to a function f : X + E. As X is locally compact, the conver- 
gence of 9 is uniform on a neighborhood of every point (as it is uniform 
on compact subsets of X), hence the limit f is continuous. This proves 
the result when m = 0. Suppose now that X is an open subset of Rn 
and that m > 0. As a matter of fact, it suffices to show that grad f 
(grad = gradient on exists, is a continuous function, and is the limit 
of grad 9 (obvious notation); having done this, an obvious reasoning 
by induction on the order of differentiation easily completes the proof. 
We may even suppose that we are dealing with only one variable, so 
as to simplify the notation. Extension to n > 1 variables will be evident. 

We recall (Theorem 27.1) that, for all e' E E', $E Vm(X;  E),  

Now, by the preceding argument, we know that ( a / a x l ) 9  converges, 
uniformly on the compact subsets of X, to a continuous function - fl . 

446 
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A fortiori, (a/&,) (e', 5 )  converges to ( e f , f l ) .  We conclude that the 
complex-valued continuous function ( e ' , f l )  is the derivative of the 
function ( e ' , f ) .  We then have 

where h # 0. Let, then, U be a convex closed balanced neighborhood 
of 0 in E and take e' arbitrary in the polar Uo of U. Because of the 
continuity of fl , we may find I h 1 so small that f l ( t )  -fl(xl) E U for 
all t in the segment joining x1 to x1 + h; then the integrand, on the 
right-hand side, and, as a consequence, the left-hand side, have their 
absolute value < 1. This means that 

Wf(x1 + 4 -f(x1)> E u +fl(Xl), 

hence thatf, is the first derivative off. 

COROLLARY 1. Suppose that X is countable at injnity and that E is a 
Fre'chet space. Then Sm(X;  E )  is a Fre'chet space. 

I t  is evident, on the definition of the topology of S m ( X ;  E), that it 
is metrizable whenever X is countable at infinity (i.e., a countable union 
of compact subsets) and E is metrizable. 

COROLLARY 2. 
Vo(X; E) ,  equipped with the norm 

Suppose that X is compact and E a Banach space. Then 

(I1 I/ :  ~ o r ' m  in m, f - SUP Ilf(4ll 
xsx  

is a Banach space. 

We denote by Vm(X) @ E the subspace of Vm(X;  E)-consisting of the 
functions whose image is contained in a finite dimensional subspace 
of E (cf. Proposition 40.2); V m ( X )  @ E is a tensor product of V m ( X )  and 
E. 

Let 9 E V m ( X )  @ E, el ,..., ed be linearly independent vectors of E 
such that the image of is contained in the linear subspace of E they 
span. Thus we may write, for all x E X, 

@4 = W) el + .*. + 4 d ( 4  e d  , 

where ,..., c $ ~  are complex-valued functions. These functions are 
m times continuously differentiable, as one sees immediately by writing 

+j(4 = (e; 9 +(.I> 
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and then applying Theorem 27.1; here ej E E‘ is such that 

(ei , ek) = tii, (Kronecker symbol). 

We may also write 

- 4 =41 @el + ... +& 0 e d .  

PROPOSITION 44.2. If X is a locally compact space, %!(X) Q E is dense 
in %O(X; E) .  

Proof 1. X is a locally compact space, m = 0.  Let f E Vo(X;  E), p be a 
continuous seminorm on E, K a compact subset of X, and E a number > 
0. We may find a finite covering U, ,..., U, of K, by relatively compact 
open subsets of X, such that, for each j = 1, ..., r, and each pair x, 

If X is an open subset of Rn, %:(X) Q E is dense in Y m ( X ;  E).  

Y E  uj 
P ( f W  -f(Y)> < E. 

It is a general property of compact sets (see, e.g., N. Bourbaki, “Topologie 
gCnCrale,”) that we can find a continuous partition of unity subordinated 
to the above covering, i.e., r continuous functions in X, gj (1 < j < r )  
such that: (a) for each j ,  suppgi C Uj ; (b) &gj(x) = 1 for all x E K. 
In  each set U j  we pick up a point xi .  We have, for x E K, f(x) = 

c;=1 g,(x>f<x), hence 

7 7 

P ( ~ ( x )  - C gi(x>,f(xi)) < C gi(x> P(!(~(x) -f(~j>) G E 
j=1 j=1 

as P ( f ( x )  -I(.& < E if x E supp gj * 
Proof 2. X is an open subset of Rn, m is arbitrary. The proof consists 
of a few easy steps. First of all, we see that c ( X ;  E) is dense in 
Wm(X; E): consider a sequence of complex-valued functions g, E %F(X) 
(v = 1, 2, ...) equal to one on increasingly large open sets 52, whose 
union is equal to X; each f~ Sfy(X; E) is the limit of the g.f (in 
V m ( X ;  E)) a‘s v + CO. 

e ( X ;  E) and pe E %P(Rn) be the usual mollifiers (cf. 
p. 156): s u p p p , C { x ~ R n ;  I x I < E } ;  Sp;(x) dx = 1. We can define 
the integral (for fixed x E Rn) 

Let, now, 
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as the limit of the Riemann sums. The latter define a Cauchy filter which 
converges in the completion E' of E. When x varies, we obtain a function 
of x with values in I!?, which it is natural to denote by p. * f ;  this is an 
element of W:(Rn; I?) which converges to f in Wm(Rn; l?j as E + O .  
These statements are easy to check, by dupiicating what is done in the 
scalar case. 

The last step goes as follows. In view of the first part of the proof, 
f ' is  the limit of functionsfj E %:(X) 0 E in the Vo topology. By using 
a cutting off function, we may assume that the supports of thef i  lie 
in an arbitrary neighborhood U of suppf. But then, it is not difficult 
to see that, for each E > 0, pE * f is the limit of the pE *f3 in W:(Rn; l?). 
If U is a relatively compact open subset of X and E is small enough, the 
pe *fi and pE *f - have all their support contained in U .  Finally we see 
that the pe *fi , which belong to W:( u) 0 E as soon as E is sufficiently 
small, converge; as j varies, to pE *f in V ? ( X ;  l?). As pE *f-+ f in 
V m ( X ;  E )  when E -+ 0, the proof is complete. 

THEOREM 44.1. If E is complete, Wm(X; E )  Wm(X) E. 
The meaning of the isomorphism stated in Theorem 44.1 is the 

following: V m ( X ;  E) induces on its linear subspace Wm(X) 0 E the 
topology E ;  therefore, the natural injection of the latter into the former 
extends as an isomorphism of Wm(X) gE B into the completion of 
W m ( X ;  E); but the latter is complete, by Proposition 44.1, and the 
isomorphism of Wm(X) BE E into Wm(X; E) is onto, by Proposition 44.2. 

Proof of Theorem 44.1. As we have just said, it suffices to show that 
%'*(X; E) induces on Wm(X) @ E the topology E. 

We observe, first, that Wm(X; E) can be canonically injected in 
L(E: ; Vm(X) ) .  Indeed, let f~ Wm(X; E) and consider the complex- 
valued function, defined in X, 

(44- 1) x - ( e ' , f (x )> ,  

where e' is an arbitrary element of E'. We know (cf. Theorem 27.1) 
that this function is Wm. Now let p be an arbitrary n-tuple such that 
1 p I < m + 1 and K is a compact subset of X. Then ( a / a x ) p f ( x )  stays 
in a compact subset .X of E as x varies in K; but the closed convex 
balanced hull of X ,  F(X) ,  is also compact since E is complete; it is, 
a fortiori, weakly compact. If e' belongs to the polar of ( I / E )  I'(X), 
which is a neighborhood of zero in E: , we have 
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This shows that the mapping 

The  proof of Theorem 44.1 will be complete if we show that the 
topology Vm on Vm(X;  E) is equal to the topology induced by L,(E: ; 
Vm(X)) .  Let U be a closed convex balanced neighborhood of zero in 
E, Uo its polar, K a compact subset of X, and p E Nn such that 1 p I < 
m + 1. Then it is equivalent to say that ( a / a x ) P f ( x ) ~  U for all X E  K, 
or to say that I (a /ax )P  < e ' , f ( x )  > I < 1 for all x E K and all e' E Uo. 

Exercises 

44.1. 
the norm 

Let E be a normed space, with norm 11 I/. Let K be a compact set. Prove that 

on Q(K) @ E is equal to the s-norm. 
44.2. Let H ,  K be two compact sets. Prove that 

Q(H x K) z Q(H) 6, Q(K), 

with the isomorphism to be understood as a Banach space isomorphism. 
Let Q be an open subset of R", and m an integer > 0 or + a,. Let E be a locally 

convex Hausdoff space. Prove that Wm(Q; E) is identical to the space of scalarly Qm func- 
tions valued in E, that is to say of functionsf such that, for each e' E E ,  x - <e',f(x)> is 
a Qm complex-valued function in Q. 

Let @(Q; E) be the space of functionsf, defined in the open set Q C R" and 
valued in the locally convex Hausdoff space E, such that, for every e' E E', the function 
x - <e' , f (s)> belongs to T(J2). Prove that, if E is a normed space, 

@y(Q; E )  = q ( Q ;  E) .  

44.3. 

44.4. 

44.5. With the notation of Exercise 44.4, prove that 
@P(Rn; 9'(Rn)) # V?(Rn; W(R")). 

Let us denote by Y(Rn; E) the space of functions f E Qm(Rn; E) such that, 
for all pairs of polynomials P, Q in n variables, with complex coefficients, P(x)Q(a/&)f(x) 
remains in a bounded subset of E as x varies over R". We equip Y(R"; E) with its natural 
topology: the topology of uniform convergence of the functions P(x)  Q(a/as)f  over the 
whole of R", for all possible P and Q. Prove that, if E is complete, 

9(Rn; E )  z Y(Rn) E. 

44.6. 

44.7. Let 1, be the space of complex sequences converging to zero, with the norm 
induced by I", 

0 = (on)(n-x.* ,... I - I 0 Im = SUP I an I. 
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Let E be a Banach space, with norm 11 /I. Prove that 1, @, E is canonically isomorphic, 
as a Banach space, to the space of sequences in E which converge to zero, equipped with 
the norm 

e = (4 - S;P I1 en II. 

Example 44.2. 
Summable Sequences in a Locally Convex Hausdorff Space 

We shall need some results about the Banach space 1' of complex 
sequences u = (u,J ( n  = 0, 1, ...) such that 

m 

I u = c I on 1 < +co (Chapter 1 1 ,  Example IV). 
n=o 

We shall say that a subset 
E > 0, there is an integer n, > 0 such that 

of P is equismall at  infinity if, to every 

C 1 an I < E for all UEC.  

We recall that 1" "is" the dual of l1 (Theorem 20.1). We shall make 

n > n ,  

use of the following result: 

THEOREM 44.2. 
valent : 

(a) S is weakly (i.e., for the topology ~ ( 1 1 ,  I")) convergent; 
(b) S is convergent (for the norm on P) .  

The following properties of a subset K of l1 are equivalent: 

(al) K is weakly compact; 
(b,) K is compact; 

(cl) K is bounded, closed, and equismall at injinity. 

Proof. We begin by proving that a sequence S which converges weakly 
in P is equismall at infinity. We may assume that S converges weakly 
to zero. We shall then reason by contradiction. Suppose that there is a 
sequence of integers nk ( k  = 1 ,  2,  ...), strictly increasing, and a sequence 
of elements of S, (dk)}, such that, for all k, 

The following properties of a sequence S C I' are equi- 
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For each k, we select an integer n; > nk such that 

c I UAk) 1 < 44. 
n > n i  

Next, we construct a sequence of integers k,-+ + 00, in the following 
manner: k, = 1, and k, is an integer such that the following conditions 
are satisfied: 

(i) C I u;?’ I < c/4; (ii) ni < nkz; 
n,$n$ni 

and so on; k, is an integer such that 

These two conditions can be fulfilled, by induction on v ,  since nk + + 00 

as k -+ + co, and since the fact that the sequence of sequences S 
converges weakly to zero implies that, for each n separately, the uz) 
converge to zero. 

For the sake of simplicity, we shall write v instead of K, , hence dY) 
instead of u(S), n, and n: instead of nk and n i v .  Observe that we have, 
for all v > 1, 

c I u;) I < 44; 
nl<n<n;- ,  

finally, 

Let us then define a sequence T = ( T ~ )  in the following way: 
- 

7 = d y ) / I  U(Y)  I if nv < n < n: and if a;) # 0, 

T,, = 0 otherwise. 
n n n  

A quick computation shows that, for all v > 1, 
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this means that the U ( Y ’  cannot converge weakly to zero. I t  proves our 
assertion. 

Now we prove that (a) 3 (b). Again, we may assume that S converges 
weakly to zero. In view of the first part, this implies that to every E > 0 
there is an integer n, 3 0 such that, for all u E S, 

On the other hand, as a varies over S, for each n, a, --t 0. It follows 
that there is a finite subset A of S such that, for u E S, u # A, 

Finally, we see that, for a E S, u # A, I u I l  < 2 ~ .  This proves that S 
converges to 0 for the norm. 

Let us now prove that (al) - (bl). We must show that every sequence 
in K, S, contains a subsequence which converges for the norm. But 
S contains a subsequence which converges weakly in K. Hence, it 
suffices to take into account the implication (a) 3 (b). 

Next we prove that, if K is compact, K is equismall at infinity. If 
K were not equismall at infinity, there would be a number c > 0, a 
sequence { u ( ~ ) >  in K, such that 

The sequence { u ( y ) }  cannot possibly contain a subsequence which 
converges to zero. 

Finally, let us prove that (cl) => (bl). Let S be a sequence contained 
in K. As K is equismall at infinity, we can select a sequence of integers 
0 < nl < n2 < * * .  < nk < *.. such that, for every k, and every u E S, 

(44.3) 

Observe that since K is bounded there is a subsequence S(l) of S such 
that u$ converges to some complex number a, if n < n1 , as u(l) ranges 
over S(l); then we may select a subsequence S2) of S(l) such that uh2) 
converges to a complex number urn if n < n 2 ,  as a(2) ranges over S2); 
etc. Let us denote by u the sequence (a,) thus defined. Now, in each 
sequence Sk) we select a sequence 7fk) such that 172) - a, 1 < 1/R 
for all n < nk . We see immediately that {dk)) ( R  = 1, 2, ...) is a Cauchy 
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sequence in I' (for the norm; take into account (44.3)); therefore it 
converges in K, which is closed (of course, its limit is the sequence a, 
which, thus, belongs to 1'). Q.E.D. 

We need the following consequence of Theorem 44.2: 

LEMMA 44.1. The identity mapping of I' is the limit, for the topology 
of uniform convergence on the compact subsets of I', of a sequence of continuous 
linear mappings whose image is Jinite dimensional. 

Proof. Let us denote by q5n the multiplication mapping, in P,  by the 
sequence 1 ~ )  whose terms of rank < n are equal to one, whereas the 
other ones are all equal to zero: if u E l', &(u) is the sequence whose 
terms are all equal to zero if their rank is > n, and are equal to the terms 
of the same rank in a otherwise; obviously, q5n is a continuous linear map 
of 1' into itself with finite dimensional image. I t  is also obvious that 
4% -+I uniformly on every subset of 1' which is equismall at infinity. 

Now let E be a locally convex HausdorfT TVS. We derive fromTheorem 
Q.E.D. 

44.2: 

 LEMMA^^.^. Every linear map u : E ' j l ' ,  which i s  continuous when 
E carries the weak topology o(E', E )  and l', the topology u(l', I"), transforms 
any equicontinuous subset of E' into a relatively compact subset of 1'. 

Proof. If A ' C  E' is equicontinuous, it is relatively weakly compact 
therefore u(A') is relatively weakly compact, hence compact by Theorem 
44.2. 

Let us call weakly continuous any linear mapping u : E' + 1' which 
is continuous for the topologies o(E', E )  and u(P, lw), and any linear 
mapping v : I" -+ E continuous for u(l", P) and o(E, E'). 

LEMMA 44.3. Let v be a linear mapping I" ---t E. The following properties 
are equivalent : 

(a) 
(b) v i s  weakly continuous; 

(c) 

the image of the unit ball B of I" under v is precompact; 

v is the transpose of a mapping u : E' + P which is weakly con- 
tinuous. 

Proof. (a) implies that v is continuous, hence weakly continuous; 
(b) and (c) are equivalent, simply because the transpose of a continuous 
linear map is continuous. Let us show that (c) 3 (a). 

Let V be a closed convex balanced neighborhood of zero in E. The 
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polar Vo of V is weakly compact in E', hence u( Vo) is a compact subset 
of F. This implies that we can find a finite subset of points of Vo, 
y ;  , ..., yi , such that, for every y' E VO, there is j ,  1 < j < s, such that: 

(44.4) 

On the other hand, the unit ball B of I" is weakly relatively compact 
for o(Z", P), in view of the Banach-Steinhaus theorem (Theorem 33.2). 
This implies that there is a finite family of points x1 ,..., x,. in B such that, 
to every x E B ,  there is i, 1 < i < I, such that 

I W')  - tv(r;)ll < 4. 

(44.5) 

Now let x E B, y' E VO be arbitrary. Let us select an index i so as to 
have (44.5) and an indexj so as to have (44.4). We have 

But x - xi E 2B, hence, in view of (44.4), 

I +  - xi 9 tv(r') - *v(r,)>l < t ,  

I<x - xi. tv(r')>I < 1. 

and, therefore, by (444, 

This proves that v(x) - .(xi) E V = P, hence v ( x )  E V + v(xi). Thus 
we see that w(B) is'covered by the sets V + .(xi) (1 < i < Y). Proposition 

Of course, when E is complete, v (B)  is relatively compact (i.e., v(B)  
is compact). 

Let us observe that, if u is weakly continuous, then it is a continuous 
mapping of Ei into P (Proposition 42.2). We contend that u is the limit, 
in L,(E: ; P), of a sequence of continuous linear mappings with finite 
dimensional images. Indeed, with the notation of the proof of Lemma 
44.1, it suffices to take the sequence of mappings 4, o u (n = 1 ,2 ,  ...). 
Indeed, if A' is an equicontinuous subset of E', u(A') is relatively compact 
in P by Lemma 44.2, hence 4, converges to the identity of P, uniformly 
on u(A') by Lemma 44.1 ;this proves that 4, o u converges to u uniformly 

A consequence of what we have just seen is that, when E is complete, 

6.9 implies that W(B) is precompact. Q.E.D. 
- 

on A'. Q.E.D. 

( 4 .6 )  Z1 Qe E LJE: ; P) .  
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As a next step, we show that. there is a canonical correspondence 
between weakly continuous mappings u : E' + I', or, equivalently, 
weakly continuous mappings v : I" + E, and summable sequences in E. 
We define the latter concept: 

Definition 44.1. A sequence {xn} in a TVS E is said to be summable 
if to every neighborhood of zero V in E there is an integer nv > 0 such that, 
for all finite subsets J of integers it 2 nv , 

If {x,} is a summable sequence in a TVS E, the partial sums 

form a Cauchy sequence. Therefore'they converge if E is complete; 
when they converge, their limit is denoted by 

The space of all sequences in E, i.e., of all mappings from the set 
N of nonnegative integers into E, induces a structure of linear space 
on the set of all summable sequences in E. We shall not put a topology 
on this set. 

1. Let v : 1" + E be a weakly continuous mapping. Let us denote 
by en the sequence with all terms equal to zero, except the nth one, 
equal to one, and let us set x, = v(e,). The sequence (e,) (n = 0, 1, ...) 
is weakly summable in I". Therefore, the sequence (x,) is weakly 
summable in E. But on the other hand, all the partial finite sums 

C en (1: finite set of integers 0), 
n d  

belong to the unit ball B of 1". By Lemma 44.3, a(B) is a precompact 
subset A of E. On A, closure of A in 8, which is compact, the weak 
topology o(I?, E )  coincides with the topology of I? as completion of E 
(equipped with its initial topology). We conclude that the sequence 
{xn} is summable in I?, hence in E. 

Thus, with every weakly continuous linear mapping of 1" into E 
we have associated a summable sequence in E. 
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2. Conversely, let (x,) be a summable sequence in E. Let us suppose 
now that E is complete. I contend that 

m 

~1 : ( ~ n )  - C Tnxn 
n=O 

is a weakly continuous linear mapping I" -+ E. We show first that v 
indeed maps I" into E. Possibly by separating each r, into its real and 
imaginary parts, we may assume that every one of them is real; next, 
by dividing each T, by SUP, I r, I (supposed to be # O!), we may assume 
that I 7, I < 1 for all n. Let J be an arbitrary finite set of integers; let 
us denote by xJ the (finite) family of finite sequences E = ( E , ) , ~ ~  such 
that E ,  = f 1 for every n E J. If we embed any sequence (u,JneJ in the 
Euclidean space with dimension equal to the number of elements of J, 
in the obvious canonical way, we see that, if I u, I < 1 for all n E J, 
the sequence belongs to the convex hull of X I :  this is the same 
as saying that a hypercube is the convex hull of its vertices-which it 
is! In particular, the finite subsequence ( T , J ~ € ~  belongs to the convex 
hull of X I .  

Now let p be a continuous seminorm on E, and E a number > 0. 
Since the sequence (xn) is summable, we may select an integer n, > 0 
such that, for every finite set of integers n >, It,, J, we have 

Let us take a finite sequence (en) belonging to X J  . We have 

This immediately implies what we wanted. 
Next, we must show that the mapping v is weakly continuous. It 

suffices to show that, for every x' E E', the sequence {(x', x,)} (n = 0, 
l,...) belongs to P .  It is obvious that, to every E > 0, there is n, >, 0 
such that, for every finite set J of integers n n, , 

In taking for J any finite set of integers n >, nE such that Re(x', x,) is 
2 0 for all n E J, then a set such that Re(x', x,) < 0 for all n E J, and 
doing this again with Im(x', x,), we reach the desired conclusion. 
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Finally, we observe that v(e,) = x, for every n, which shows that 
the mapping (x,) - v is the inverse of the mapping v - ( x n )  introduced 
in 1. We may summarize: 

THEOREM 44.3. 
Then : 

Let E be a complete locally convex Hausdor- space. 

m 

(Xn)neN - ((7n)neN ‘Ict Tnxn) 
n-0 

is a one-to-one linear map of the space of summable sequences in E onto 
the space of weakly continuous linear mappings of I“ into E. 

The latter space, canonically isomorphic to L(Ei ; l’), when carrying 
the topology of uniform convergence on the equicontinuous subsets of E ,  
is canonically isomorphic (for the TVS structure) to 1’ $. E. 

Thus l’ ge E may be identified with the space of summable sequences 
in E. 

Exercises 

44.8. 

44.9. 

By making use of Theorem 44.2, prove that I’ and I* are not reflexive. 

Let djc be the Lebesgue measure on R“, and L P  (1 < p < + 00) the Banach 
space of (classes of) functionsf such that I f  I p  is Lebesgue integrable. Prove that a subset 
A ofL’ is compact if and only if it has the following three properties: 

A is bounded in D’ (in the sense of the Lp norm); 
A is equismall at infinity, i.e., to every E > 0 there is p > 0 such that, for all f E A,  

(i) 
(ii) 

lf(x)l”djc < e; 
J,d > p  

(iii) to every e > 0, there is 7 > 0 such that, for all a E R” such that 1 a I < 7 and 
allf E A, 



45 
Examples of Completion of Topological 
Tensor Products: Completed n- Product 

of Two Frkchet Spaces 

We give the definition of an absolutely summable sequence in a locally 
convex HausdorfT space E. 
Dejinition 45.1. A sequence (z,} ( n  = 0, 1, ...) in E is said to be absolutely 
summable i f ,  for every continuous seminorm p on E,  the sequence of non- 
negative numbers p(zn) is summable. 

An absolutely summable sequence (z,) is summable (Definition 44.1). 
If E is complete, the partial sums Cngp z, converge, as p + + 00. 

Their limit, CZ=,, z, , is called an absolutely Convergent series. 
We state now the main theorem: 

THEOREM 45.1. Let E ,  F be two Frkchet spaces. Every element 8 E E @,, F 
is the sum of an absolutely convergent series 

(45.1) 

where (A,) is a sequence of complex numbers such that E l o  I A, I < 1, 
and (x,) (resp. (y,))  is a sequence converging to zero in E (resp. F). 

I t  is important, in various applications, to have a strengthened form 
of Theorem 45.1: 

THEOREM 45.2. Let E, F be two Frkchet spaces, and U (resp. V )  a convex 
balanced open neighborhood of zero in E (resp. F) .  

Let KO be a compact subset of the convex balanced hull of U Q V. There 
is a compact subset Kl of the unit ball of P, a sequence {x,} (resp. {y,)) 
contained in U (resp. v) and converging to zero in E (resp. F ) ,  such that, 
for every 8 E KO , (45.1) holds for some (A,) E Kl . 

459 
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Proof of Theorem 45.2. 
complex-valued functions on the set E x F such that 

Let us denote by 3, the vector space of all 

llfllp.ll = c lf(-%Y)l P ( 4  q(y) < +m 
( x . u ) € E X F  

for all continuous seminorms p and q on E and F, respectively. The 
space S, contains the space of functions on E x F which have a finite 
support; as in the proof of Theorem 39.1, we denote the latter by 3. 
The seminorms 1) define a locally convex topology on S, which 
is certainly not HausdorB, since all these seminorms vanish on the linear 
subspace 

M ,  = { f E Sl; x # 0 and y # 0 implies f ( x ,  y) = O}. 

As a matter of fact, when E and F are Hausdod, M ,  is exactly the 
intersection of the kernels of the seminorms 1 1  and the Hausdod 
space associated with %, can be canonically identified to the space of 
complex functions on T = (E - {0}) x (F - {0}), which we denote 
by A, (we denote by A the subspace consisting of the functions in T 
which have finite support). Let us denote by supp p the complement 
in E of Ker p; similarly for q. I f f  E A,,  we denote by supp f the set 
of points (x, y )  E T such that f(x, y) # 0 (this is consistent with the 
usual definition of the support if we consider the discrete topology on 
E - {0}, F - (0) and T). From the fact that ( 1  f Ilp.q < + 00, we derive 
that supp f intersects (supp p) x (supp q) according to a countabZe 
subset. It is also evident that, to every n = 1, 2, ..., there is a function 
fn with finite support, such that I l f  - f, I l p , q  Q l / n :  A is dense in A,. 

Now, there is a canonical mapping of A onto E 6 F, namely 

(45.2) 

It is the definition of the x-topology that this mapping is a homomorphism 
of A (equipped with the topology defined by the seminorms ( 1  llp,q) 
onto E @,, F. 

We have not yet exploited the fact that E and F are FrCchet spaces. 
As.both are metrizable, so is A, : this is a trivial consequence of the fact 
that, if p, p' (resp. q, 4') are two continuous seminorms on E (resp. F) 
and if p < p', q < q', we have l ~ f ~ ~ p , q  < ) I f  JJp,.q, for all f E A, . Further- 
more, the support of each f E A, is countable: indeed, it is the union of a 
countable family of countable sets, its intersections with (supp pk) X 
(supp qk), where (Pk) and (qk) are countable bases of continuous semi- 
norms in E and F, respectively. Another consequence of the fact that 
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E and F are metrizable is that A, is complete. We leave the proof of this 
fact to the reader. Then let J ,  be the extension to A, of the canonical 
mapping of A onto E OF; J ,  is a continuous linear mapping of A, 
into E @,, F. As a matter of fact, it is a homomorphism of A, onto E @,, F. 
In order to see this, it suffices to look at the usual diagram: 

Indeed, the image under 4, of A is a dense linear subspace of A,/Ker J1 
which is isomorphic, via g, , to E @,,F; the inverse of this mapping, 
defined on E @,, F, can be extended to E Bjn F by continuity, and this 
extension must be the inverse of gl (defined on the whole of A,/Ker J,). 
Thus g, is an isomorphism onto (we have used the completeness of A, 
only to the extent that it implies the completeness of A,/Ker J,). The 
expression of the homomorphism J1 is given by (45.2): in the present 
situation, every f E A, vanishes outside a countable subset of T, so that 
xb,y)ET f ( x ,  y )  x 0 y is a series in E @,, F, obviously absolutely con- 
vergent (see Definition 45.1). 

We have thus obtained a representation of every element 8 of E @,, F 
as an absolutely convergent series, closely resembling (45.2). We are 
going to show, now, that this series can be made to possess all the 
properties announced in Theorem 45.2. We begin by selecting two 
increasing sequences of continuous seminorms (p,,J, (qm) ( m  = 0, 
1, ...) in E and F, respectively, such that every continuous seminorm 
p (resp. q) on E (resp. F) < some p, (resp. q,). Furthermore, we start 
these two sequences by two seminorms po and q, such that 

U = (X E E;  po(.) < l}, V = (y E F;  qo(y) < 1). 

It is then quite evident that the unit semiball 

is mapped by J1 onto the convex balanced hull of U 6 V, which we 
shall denote by W. We shall apply the following lemma of point-set 
topology: 

LEMMA 45.1. Let s?, B be two complete metric spaces, u an open con- 
tinuous mapping of s? onto B, and 0 an open subset of &. Every compact 
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subset K of u(0)  is the image u(H)  of a compact subset H of 0, which is 
the closure of a countable subset of uL1(K). 

Proof. Consider the family of all open subsets U of 0 whose closure 
is contained in 0; a finite number of open sets u( U )  cover K, which is 
the same as saying that there is one such set U with u( U )  3 K. Let 
us construct, by induction on k = 1,2, ..., an increasing sequence of 
finite subsets of U, A, C A, C -.. c A, C m e . ,  with the following pro- 
perties: 

(i) the Ak’S are all contained in the preimage of K ;  
(ii) A,+, is contained in the set A; of points of u lying at a distance 

(iii) #(A;) 3 K. 
< 2-k from A, ; 

The possibility of finding A, is obvious. Suppose that A, has been 
determined and call A; the set of points of U which lie at a distance 
< 2-k-1 from A,. We can find a subset B, of u-l(K) n A; such that 
the set of points in U which lie at a distance < 2-k-1 from B, is mapped 
onto a subset of u(U) containing K - K n #(A;). We may then take 
A,+, = A, u B, . Let us call A the union of the sets A,. Whatever 
k is, every point of A lies at a distance < 2-k-1 from A, : this follows 
immediately from Property (ii). It implies immediately that A is 
precompact (cf. Proposition 6.9); let H be the closure of A in d:  H 
is compact and contained in 0, hence in 0. Given any E > 0, there is 
k such that A; is contained in 0. If HL is the set of points of 0 at a 
distance < 2-k from H, we have K C #(Hi)  since A; C HL ; we derive 
immediately from this that K C u(H).  Since H is the closure of A C 
u-l(K) and since u-l(K) is closed, we have u(H)  = K. Q.E.D. 

COROLLARY. 
K contains a subset which is everywhere dense and countable. 

Proof. It suffices to apply Lemma 45.1 with d = &? and u the identity 
mapping of d. 

Let us go back to the proof of Theorem 45.2. Let K be a compact 
subset of W, the convex balanced hull of U 0 V.  There is a compact 
subset H of O C A ,  such that J,(H)C K. This follows from Lemma 
45.1; from its corollary it follows that there is a countable subset N of 
T = ( E  - (0)) x (F - {0}) which contains the support of every f E H. 
Indeed, there is a countable subset S of H which is everywhere dense 
in H; let N be the union of the supports of the f E S. Since every f E H 
is the limit of a subsequence of the sequence S, f must be identically 

Let K be a compact subset of a complete metric space d ;  
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zero outside of N; and N is countable, as a countable union of countable 
sets. We order N in an arbitrary way: N = {(t,, q,)},-o,l ,_,,  . For 
every 8 E K, we have 

m 

0 == C f (En  > q n )  E,z O qn 
n=O 

for some f E H. Needless to say, the series is absolutely convergent. 

struct two sequences of numbers > 0 (u,), (b,) (n = 0, 1, ...) with the 
following properties: 

(45.3) For every m, 1irn(um&zn + bm.Jbn) = 0;  

(45.4) the mappingf - (fnanbn)(, ,,,,,..., maps H into a compact subset 
Kl of P. 

Let US set am, ,=  P,(5n), bm,n = q m ( q n ) ,  f,=f(tn, qn).We shall con- 

n+w 

Observe that, for each m, f -(fnum,nbm.n)(n-o,l ,.,,) maps H into a 
compact subset of 1' (by definition of the topology of Ai). But every 
compact subset of P is equismall at infinity (Theorem 44.2), therefore, 
for each m, we may select an integer N ,  3 0 such that 

(45.5) C I f n  I um,nbm,n < 8-" for all f E H. 
n > N ,  

Since H C 0, we may even take No = 0. Let us first choose en > 0 
such that, for all f E H, 

(45.6) 

This is possible, since, for fixed n 2 0, the set (1 f n  I} is bounded as 
f ranges over H. We then set, if N ,  < n < N,,, , 

an = En 2 m a m . n 9  b,, = E, + 2"b,,, . 
Recalling that and bmSn are nondecreasing with m for fixed n, we 
see easily that (45.3) is satisfied. On the other hand, by combining 
(45.5) and (45.6), we obtain 

C Ifn I anbn < 2-(m-1), 
N , ~ n < N . , , + ,  

C I f n  I anbn < 2-(m-2). 
N,<n 

whence 
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This shows that (45.4) holds: indeed, by taking m = 0, hence N ,  = 0, 
we see that the sequences (f,a,b,) remain bounded in l1 when f varies 
over H; then, by taking m = 1,2, ..., we see that these sequences form 
a subset of Z1 which is equismall at infinity, hence relatively compact 
by virtue of Theorem 44.2. 

From there on, the proof of Theorem 45.2 is easy to complete. We 
set, for every f E H and every n = 0, 1 ,..., 

L =fnanbn 9 [n = tnIan 9 Ijn = qn/bn . 

This is possible since a, , b, 3 en > 0. From (45.3) we derive immediate- 
ly that the [, (resp. 3,) converge to zero in E (resp. F). From (45.4), 
we derive that {fn}n=O,l,... varies in a compact subset A of l1 as f varies 
in H. Furthermore, note that there is a number K < 1 such that, for 
all f E H, 

+m +m 

C I Jn  I Po([,) qo(qn) = C I f n  I P o ( t n )  qo(qn) < K*  
n=O n=O 

There is an integer N 3 0 such that 

Po(&,> < 1 ,  qo(qn1 < 1 for all n 2 N ,  

1 - K  
for all f E H .  

n > N  

For n > N, we shall set x, = [, , y, = f j ,  , A, = f, . Let E > 0 be 
a very small number. Let us select, for each n, two numbers p , ,  0, 

such that 

Po( ln)  < Pn < Po([n) + E ,  qo(qn) < on < qo(jjn) + E ,  

and let us set, for It < N, 

xn = fil& 9 Y n  = .,";in 9 An = f- ,fnOn * 

It  is then clear that the sequences (x,) and (y,) converge to zero and 
that they are contained in U and V ,  respectively. Furthermore, (A,) 
remains in a cpmpact subset of P when f ranges over H. Finally, 

m 
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where C is a positive constant, depending on SUP, po([,), SUP, q,(qn), 
and on R. By taking E sufficiently small, we see that (A,) remains inside 
a ball of radius < 1 (centered at 0) in 1'. The proof of Theorem 45.2 is 
complete. 

COROLLARY 1. Let E, F be two Banach spaces. Every element 9 of the 
open unit ball of E @,, F is equal to an absolutely convergent series 

m 

d =  C AnxnOYn, 
n-0 

where (xn)  and (31,) are sequences converging to zero in the open unit ball 
of E and I;, respectively, and C;,o I A, I < 1. 

COROLLARY 2. Let E and F be two Frichet spaces. Every compact subset 
of E @=F is contained in the closed convex balanced hull of the tensor 
product of a compact subset of E with a compact subset of F. 

COROLLARY 3. If E and F are Frkchet spaces and G a complete locally 
convex Hausdorfl TVS, the canonical (algebraic) isomorphism of B(E,  F; G) 
onto L(E @,, F;  G)  becomes a homeomorphism if the $rst space carries the 
topology of uniform convergence on the products of compact sets and the 
second one, the topology of compact convergence. 

Exercises 

45.1. Prove that every compact subset of a FrCchet space E is contained in the closed 
convex balanced hull of a sequence converging to zero. 

Let E and F be two Banach spaces, and G a complete locally convex Hausdo& 
space. Prove that the canonical algebraic isomorphism of B(E, F, G) onto L(E @p; G) 
is a homeomorphism when the first space carries the topology of uniform convergence 
on the products of bounded sets and the second space, the topology of bounded con- 
vergence. 

45.3. Let E, , F, ( j  = 1, 2) be four Frkchet spaces, and uj : EI + F, ( j  = 1,2) two 
continuous linear mappings. Prove, by making use of Theorem 45.1, that, if both u1 and 
u2 are onto, then u1 8, up is also onto. 

Let H, be the space of entire functions with respect to the variable a in C", 
H i  the space of analytic functionals in the variable 6 E C", and H,(H;) the space of entire 
functions of a with values in the space H i  (all the spaces under consideration carry their 
natural topologies). Prove the following facts: 

there is a canonical T V S  isomorphism of H,  G,, H i  onto H.(HL); 
every element B(a, 0 E H,(Hi) 
convergent series, 

45.2. 

45.4. 

(i) 
(ii) Hz a,, H i  is equal to the sum of an absolutely 

e(z, 0 = c AP&Z9 0 "', 
p,qEN" 

where S( is the Dirac measure with respect to the variable 3 at the point 3 = 0. 
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Give the expression of the numbers I\,.. in terms of 8(z, 5); prove that the function 
6(z - t), which assigns to each a E C" the Dirac measure (with respect to the variable t )  
at the point f = z, belongs to H.(H;), and compute the coefficient A,,.q when 
N Z ,  5) = 6(z - 0. 

Let Vz be the space of Qm functions with respect to the variable x in R", 8; 
the space of distributions with compact support in the variable f E R", and W:(b;) the 
space of V m  functions of x E R* with values in 8; (all the spaces under consideration carry 
their usual topologies). Anticipating slightly what is to come, we admit the fact that we 
have, canonically, 

45.5. 

Vy;) op; Gff 8;. 

Let 6(x - y )  be the function which assigns to every x E R" the Dirac measure, with respect 
to y, at the pointy = x. Prove that 8(.r - y)  belongs to W;(S;>. Prove that 8(x - y)  is 
not equal to the sum of an absolutely convergent series. in Vz(8;), 

OD 

6(x - 6) = c Uf(4 0 c m ,  
i-0 

with {uj} C VQ and {uf} C 8' bounded sets (show that if this were true every function 
u E could be written in the form u = 1:' X p ,  , which is not possible). 

45.6. Let E be a Banach space, E' its strong dual, j the natural injection of E 0, E' 
into L(E; E), andf the extension, to E 6, E', of the continuous linear map j .  Prove (by 
applying Theorem 45.1) the equivalence of the following two facts: 

the identity mapping E -c E belongs to j ( E  a,, E'); (a) 
(b) dim E < +a. 
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Examples. of Completion of Topological 
Tensor Products: Completed rr-Products 

with a Space L' 

In Chapter 44, we have studied the completed &-product of a space 
E (locally convex Hausdoe and preferably complete) with the space 
1' of absolutely summable complex sequences. We have shown that, 
when E is complete, 1' E is canonically isomorphic to the space 
of summable sequences in E. It is unnecessary to recall that I' is the 
space of integrable functions on the set N of nonnegative integers with 
respect to the measure dn whose mass at every point is + 1. In the 
present chapter, we shall consider the space L' with respect to an arbitrary 
measure p on a set X and study its .rr-product with a space E. We are 
going to show, among other properties, that, when E is a Banach space, 
L1 @* E is exactly "equal" to the space L'(E) of integrable functions 
with values in E. When L1 = 11, this means that I' @. E can be identified 
with the space of absolutely summable sequences in E, and thus underlines 
the difference between completion of &-products and a-products. One 
can then show that, if E is an infinite dimensional Banach space, the 
canonical mapping of I' @,, E into P @# E is never onto. This implies 
immediately the theorem of Dvoretzky-Rogers: in an injnite dimensional 
Banach space, there is at least one summable sequence which is not absolutely 
summable. This stands in contrast with the case of a nuclear space E, 
whose theory we begin describing in the next chapter: these are the 
spaces such that E @.F = E B e F  for all locally convex Hausdod 
spaces F. It is obvious that, in such a space E, every summable sequence 
must be absolutely summable. Needless to say, no infinite dimensional 
Banach space is nuclear. 

46.1. The Spaces P ( E )  

space, and OL a number such that 1 < u < + 00. 

Let X be a set, dx a positive measure on it, E a locally convex Hausdorf? 

467 
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We denote by . P ( E )  the vector space of all functions f : X + E 
such that, for every continuous seminorm p on E, 

where J denotes the upper integral; we provide P ( E )  with the topology 
defined by the seminorms (46.1). Let us denote by C 6 E the linear 
subspace of 9t"(E) consisting of the integrable step-functions s : X + E. 
By this we mean the finite linear combinations of the form xj ujej, 
where the or are complex integrable step-functions and the ej are vectors 
belonging to E (of course, one may suppose that the uj are characteristic 
functions of integrable sets). We denote by -Ya(E) the closure in .Fa(E) 
of C 6 E. As usual, we denote by -Yo the space -Ya(C). It is obvious, 
from the definition, that 9 @ E is dense in P ( E ) .  Generally, P ( E )  
is not Hausdo& and one denotes by L"(E) the associated Hausdorff 
space; one sets La = L"(C). These notations are all right as long as one 
deals with a single measure dx; if more measures are introduced, the 
notation must be adapted so as not to create confusion. 

One defines the space 9tm(E)  as the space of functions f :.X + E 
such that, for each continuous seminorm p on E,  there is a number 
M p  >, 0 and a set N p  C X with measure zero such that 

(46.2) p(f(x)) < M, for all x 4 N, . 
One then defines the number 11 f I I L m , p  as the infimum of the numbers 
Mp > 0 such that (46.2) holds for some set Np of measure zero. The 
topology of S"(E) is then defined by the seminorms f - 1 1  f ( I t m : p  ; 
9 " ( E )  is the subspace of S " ( E )  consisting of the functions f which 
are measurable. By L"(E) one denotes the associated Hausdorff space. 

A straightforward generalization of the Fischer-Riesz theorem enables 
one to prove that, when E is a FrCchet space, the spaces La(E)( 1 < a < 
+ 00) are complete. But this is not so if E ceases to be metrizable-in 
general. 

The canonical image of 9" @ E into L(E) is denoted by La @ E; 
it is immediately seen to be a tensor product of La and E. For a > 1 
finite, 9 @ E is dense in P(E); as the canonical image of a dense 
subset, L" @ E is dense in La(E). 

We shall now focus our attention on the case of a Banach space E, 
with norm 11 11. In  this case, the topology of P ( E )  is defined by a 
single seminorm and L"(E) is a normed space. Furthermore, La(E) is 
complete, hence a Banach space (theorem of Fisher-Riesz); its elements 
can be interpreted as classes of functions (belonging to 9 " ( E ) )  which 
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are equal almost everywhere. I t  is immediately seen that the bilinear 
form 

(f, 9 )  = <fW, I+)> dx 

is continuous on L"(E) x L"'(E'), where E' is the Banach space dual 
of E and where a' = a/(. - 1). This defines a canonical mapping of 
L"'(E') into (L"(E))', which can be seen to be an isometry, but which 
in general is not onto. 

Iff EL" and e E E, we have 

This proves that the bilinear mapping (f, e) - fe of L" x E into L"(E) 
has norm one. But (Proposition 43.12) the .rr-norm on L" @ E is the 
largest norm on this space such that the canonical mapping of L" x E 
into it has norm one. We conclude that the .rr-norm is larger than the 
norm induced by L"(E). For OL > 1, the .rr-norm is strictly larger than 
the norm of E ( E )  (at least in general). If they were equal, it would 
mean (when cu is finite) that L"(E) = L" @,, E. For instance, we would 
apply this to E = the space L" with respect to a positive measure 
dy on a set Y. In this case, L"(E) = L"&(L&) can be canonically identified 
to the space L"&y with respect to the product measure dx dy on the set 
X x Y (the identification extends to the norms!). Thus we would have 
&.&y L& @,, L& (a: canonical isomorphism), which is generally 
not true, as we shall see in the case OL = 2 (Chapter 49). 

However, it is true, and it is the main result of this chapter, that 
L' @,, E = L'(E). 

46.2. The Theorem of Dunford-Pettis 

As before, we consider a set X and a positive measure dx on it. By 
Sj'* we denote the space of complex-valued functions which are bounded 
on the whole of X, with its natural norm f ,..+ sup,,x If(.) I. The space 
Sj'* is obviously a Banach space; it is quite different from the space 
9* introduced on p. 468, whose elements are not necessarily bounded 
functions. Let us denote by JV the linear subspace of $8'' consisting 
of the functions which vanish outside of a set of measure zero: N is 
closed. Indeed, if a sequence {fk} in A'- converges to f in a*, each fk 

must vanish outside some set of measure zero, N k ,  therefore f = 0 
outside the union U k N k  which has also measure zero. We denote by 
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B" the quotient 8"/N equipped with its natural Banach space structure. 
Although P O o  is not contained in a", there is a natural isometry of L" 
into B": for given any function f E 9" and any E > 0, there is a function 
g E 8" such that f = g almost everywhere, and such that 

I l f l lP  G SUP I &)I < Il f l l t -  + E- 
xox 

Of course, i f f  is measurable, so is g .  
It will be handy to introduce two new terms in our vocabulary, so 

as to abbreviate the statements; the first one is widely used: 

Definition 46.1. A subset A of a topological space is called separable 
if A contains a subset B which is countable and dense in A. 

The second term is also commonly used: if we have a map f of a set 
E onto a set F, a hyt of a subset V of F is a mapping g of V into E such 
that f o g is the identity of V (if one prefers, g is a right inverse off 
on V). 

We may now state the following lemma, which will be used in the 
proof of the theorem of Dunford-Pettis: 

LEMMA 46.1. Every separable linear subspace V of B" possesses a lift 
into 59" which is a linear isometry. 

onto B" considered in this statement is, of course, 
the canonical homomorphism. 
Proof. Let A be a countable and dense subspace of V, and W the set of 
all finite linear combinations of elements of A with coeficients in the 
field Q of rational numbers. Let r be an arbitrary lift of W into g" which 
is linear: such a lift is obtained by lifting in an arbitrary manner an 
algebraic basis of W and extending the lift by Q-linearity. Let w be an 
element of W, two representatives of w in 93" differ only on a set of 
measure zero, therefore, for every e > 0, there is a set of measure zero, 
N , ,  such that 

The mapping of 

I T ( W )  (.)I < II w Ills- + & if x $ N. * 

If we denote by N, the union of the sets Nlln as n + + 03, we see that 

I T(W)  (41 < II w Ills- for x $ N w  * 

Let N be the union of the sets N, as w ranges over W since W is 
countable, the measure of  N is equal to zero. Let us define a lift u : W + 

a" by setting 
.(W) (x) = 0 if X E  N, 
~ ( w )  (x) = ~ ( w )  (x) if x $ N. 
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This is indeed a lift of W, hence ( 1  w ( I B o D  < sup,,x I u(w)(x) 1; but 
I ~ ( w )  (x) I < 11 w I ( B m  for all x E X. We conclude that u is an isometry, 
obviously linear (as 7 was linear). By continuity, we can extend u to 
the closure of W in B", which contains V (taking advantage of the fact 
that a" is complete!). The extension of a linear isometry is a linear 
isometry, and if u was a right inverse of the canonical mapping of a" 
onto B" over W, the same is true of its extension-but, now, over 

Let E be a Banach space, and E its dual with its Banach space 

w3 v. Q.E,D. 

structure; we shall denote by 11 

Definition 46.2. 
$, for every e E E, the complex-valued function 

11 the norms, both in E and in E. 

A function f : X -+ E is said to be scalar& measurable 

x - (Y.4, e> 

is measurable. 
Here, measurable means dx-measurable in X. Every measurable 

function of X into E' is scalarly measurable, but the converse is not 
generally true. 

Let us denote momentarily by T the canonical projection of 9" 
onto L". As before, E is a Banach space. 

PROPOSITION 46.1. Let g be a bounded function X --t E ,  scalarly measur- 
able. Then 

(46.3) 

is a continuous linear mup of E into L" with norm < supzex 11 g(x) 11. 
The theorem of Dunford-Pettis states that, under the assumption 

that E is separable, every continuous linear map of E into L" is of the 
form (46.3); furthermore, the function g can be chosen so that the norm 
of the mapping (46.3) is exactly equal to the maximum of (1 g 11 on X. 

THEOREM 46.1. Let E be a separable Banach space. To every continuous 
linear map of E into L", u, there is a scalarly measurable bounded function 
g : X --t E such that u is equal to (46.3) and such that the norm of u is 

Proof. As E is separable, fl) is a separable linear subspace of L", 
therefore, by virtue of Lemma 46.1, there is a lift u of u(E) into a" 
which is a linear isometry. For each e E E and each x E: X, let us set 
g,(x) = u[u(e)] (x); observe that the function g., for fixed e, belongs 

e - d x  - ((dx), e>)) 

equnI SUPzcx I1 d x )  11. 
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to 9" (indeed, it differs from any other representative of u(e) EL" 
only on a set of measure zero). Furthermore, we have 

I ge(x)I G SUP I u[u(e)I (.)I = II u(4lk.a < II u II II e II. 
zex 

This shows that, for fixed x, e -ge(x) is a continuous linear form 
on E, which we denote by g(x) E E ;  of course, as ge E 9" for all e E E, 
x - g(x) is a scalarly measurable function X - +  E. Furthermore, 

Finally, the mapping u is equal to (46.3) since, for all e E E and x E X ,  

<g(x), e> = ge(x) ' 0[4e>1 (XI- Q.E.D. 

We give now, as corollaries, two equivalent statements of the theorem 
of Dunford-Pettis. We must, however, make a preliminary remark. 
Suppose that g : X -+ E is scalarly measurable and bounded. Then, 
for every e E E, the function x - (g(x), e) belongs to LPm. We may 
campute the integral of its product with a function f~ LPl. As we have 

is a continuous linear form on E, which it is natural to denote by 

(46.4) 

The norm (in E') of (46.4) is d (supzex I( g(x) 11) Ilf[lL1; it is also evident 
that (46.4) does not change value if we replace f by a function which 
is equal to f almost everywhere, so that 
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might be viewed as a linear mapping of L' into E'; note that the norm 
of this mapping is < supzex II g(x)  (I. 

We may now state the two equivalent versions of the theorem of 
Dunford-Pettis; we shall leave the proof of their equivalence to the 
student, as an (easy) exercise: 

COROLLARY 1. Let E be a separable Banach space. To every continuous 
linear map v : L1 .+ E there is a bounded, scalarly measurable function 
g : X -+ E' such that v is given by (46.5) and such that the norm of v 

is equal to SUP,,, I1 g ( 4  II. 

COROLLARY 2. Let E be a separable B-space. To every continuous bilinear 
form @ on L1 x E there is a bounded, scalarly measurable function g : X + 

E' such that, for all f E L1 and e E E, 

@(f, e )  = J <g(4, e>fW dx, 

and such that the norm of @ is equal to sup,,, II g(x)  (I. 

46.3. Application to L' E 

Let h be a continuous linear functional on L'(E) (see 46.1). The 
restriction of h to L1 @ E defines a linear form on this vector space, 
hence (Theorem 39.l(b)) a bilinear form B, on L1 x E, which is imme- 
diately seen to be continuous; furthermore, 1 1  BA 1 1  < 1 1  h 11. Indeed, for 
all f E L1 and all e E E,  

(46.6) B A ( f ,  = '(fe>. 

Observe that BA determines A, since (46.6) determines the values of h 
on L1 @ E,  which is dense in L1(E) ( p .  468). 

THEOREM 46.2. Let E be a Banach space. The canonical injection of 
L1 Q E into L1(E) can be extended as a linear isometry of L1 &, E onto 
L1(E). 

Proof 
considered before the statement of Theorem 46.2, 

1. E is separable. We are going to show that the mapping 

- BA : (.f, e)  - W e ) ,  

is an isometry of the dual of L1(E) onto the Banach space B(L1, E )  of 
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continuous bilinear forms on L1 x E. This implies that the dual of 
L1 @ E, dense linear subspace of L1(E) carrying the norm induced 
by L1(E), is equal to B(L1, E).  By virtue of Part (c) of Proposition43.12, 
we derive that the norm induced on L1 @ E by L1(E) is equal to the 
7r-norm. This implies immediately the theorem when E is separable. 

Let B E B(L1, E). By virtue of Corollary 2 of Theorem 46.1, there is 
a bounded, scalarly measurable function g : X + E such that, for 
all e 6 E and f  EL^, 

B(f, 4 = J <g(.), e>f(.) dx, 

and such that 

Let us now consider f E 9 ( E ) .  T o  every E > 0, there is an integrable 
step-function valued in E, f , ,  such that 

where the fcsi are elements of E and the x r j  characteristic functions of 
integrable subsets of X. Note then that 

is a function of x which belongs to 9 since, for all j, the functions 
<g(x), feSj) are bounded and measurable. From (46.7) we derive 

Here, the integral may be understood as the upper integral, or as the 
integral itself if we note that (g, f) ,  being the limit, almost everywhere, 
of the measurable functions <g, f,) as E = l / n ,  n = 1 ,  2, ..., is measur- 
able, and that I (g(x), f(x)) I < (supssx 1 1  g(x) 11) I( f(x) 11. Either this or 
(46.8) shows that (g,f) E P. We set 
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In particular, X(f) = h(fl) if f = fl a.e. Finally, we see that h can be 
regarded as a continuous linear form on L1(E) with norm < 11 B 11. 
But if f e L 1  and e E E, A(fe) = S<g(x), e )  f ( x )  dx = B(f, e), so that 
B = BA. We have already seen (p. 473) that I( BAII < 1) A ) / ,  which 
proves that I (  h )I = 11 B 11, hence our assertion: when E is separable, 
h - B, is an isometry of (L1(E))' onto B(L', E). 

Proof 2. E arbitrary. If 8 EL' Q E, there is a finite dimensional 
subspace M of E such that 8 EL' @ M .  Let us denote momentarily 
by )I /IwE and )I ( I w M  the respective norms in L' @,, E and L1 Q1 M. 
Since the canonical mapping of L' x M into L1 Q M is continuous 
and has norm < 1 when the latter carries the norm I (  l l f f E ,  this norm 
is < 11 M by Proposition 43.12(a). But since M is separable, 
we have, by Part (l), 

I I f f M  on L1 

11 8 l I n ~ =  11 e(x)l\ dx = 11 8 llL.'(E) 3 

for we assume, needless to say, that M carries the norm induced by E. 
As the canonical mapping of L1 x E into L1(E) has norm < 1, we have, 
again by Proposition 43.12(a), 

I I  8 IIL'(E) G II 6 llnE * 

Combining all these inequalities, we see that all the introduced norms 
of 8 are equal. In particular, 

It 6 llL'(E) = I1 6 ILE * Q.E.D. 

COROLLARY. Let E be a Banach space. Then 

- ((f, e) - W e ) )  

is an isometry of the strong dual of L1(E) onto B(L1, E). 

Indeed, B(L1, E) is canonically isomorphic (as a normed space) with 
the dual of L1 Bjn E L'(E); this defines an isometry of the dual of 
L1(E) onto B(L1, E),  which is immediately seen to be the one in the 
corollary. Note that this corollary extends to nonseparable Banach 
spaces the result stated and proved in Part (1) of the proof of Theorem 
46.2. 
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Exercises 

46.1. Let E be a Banach space, and F a linear subspace of E (equipped with the norm 
induced by E). Prove: (i) that the norm induced on L' 0 F by L' 0, E is equal to the 
,,-norm on L' OF, (ii) that every continuous bilinear form on L' x F can be extended 
as a continuous bilinear norm on L' x E having the same norm. 

Let E and F be as in Exercise 46.1. Prove that every continuous linear map of 
F into La can be extended as a continuous linear map of E into L" having the same norm. 

Let X ,  Y be two sets, ah, dy two positive measures on X and Y, respectively, 
u a continuous linear map of L:, into L i v ,  and E a Banach space. Prove that there is a 
unique continuous linear map ti : L:,(E) + L:,(E) such that f i ( fe)  = u ( f )  e for all 
f E Liz and all e E E. Prove also that I1 z i  I1 = I1 u 11. 

Let E be a locally convex Hausdorff space. Prove that the canonical injection 
of L1 0 E into L'(E) can be extended as an isomorphism (for the TVS structures) of 
L1 6, E onto L'(E). 

46.5. Let X ,  Y, &, and dy be as in Exercise 46.3. Prove that for all a > 1 finite 
we have 

46.2. 

46.3. 

46.4. 

LLV = L&(Q. 
A 

Prove that LiWv r LL 0, Liv . 
46.6. Suppose that X = Y = R" (n > I), dx = dy = Lebesgue measure. Prove that 

is a continuous bilinear form on L:, X L& and that we have L:av c& L:, @, L:, (where g 
would denote the canonical isomorphism). 

Let dr be the Lebesgue measure on X = R". Let E be a finite dimensional 
space equipped with a Hilbert norm. Prove that the r-norm on L:, @ E = Liz@) is 
equivalent to and strictly larger than the norm of L*(E). 

46.7. 
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Nuclear Mappings 

We shall use systematically the concept of the space E, introduced 
in Chapter 36: E is a locally convex HausdorfT space, B a convex balanced 
bounded subset of E, and E, the subspace of E spanned by B, equipped 
with the norm x - pB(x) = infp,O,ztEpB p (see p. 370). We shall use 
the following definition: 

Definition 47.1. A convex balanced bounded subset B of E is said to be 
infracomplete if the normed space E,  is a Banach space. 

We have seen (Lemma 36.1 and corollary) that, if B itself is complete, 
in particular if B is compact, then B is infracomplete. But the converse 
is not necessarily true. 

An important particular case is provided by the spaces E;, , where 
E' is the dual of a locally convex HausdorfT space E and H' is a weakly 
closed convex balanced equicontinuous subset of E' (hence H' is weakly 
compact). There is a natural interpretation of EL, which should be kept 
in mind: let H'O be the polar of H' in E; H'O is a convex balanced closed 
neighborhood of zero in E (for the initial topology of E) which we 
denote by U, for simplicity. Let us then call E, the space E equipped 
with the topology where a basis of neighborhoods of zero is formed 
by the multiples p U, p > 0, of U. We see immediately that EL. is nothing 
else but the space of linear forms on E which are continuous on E,. 
In general, E, is not HausdorfT; the associated Hausdorff space is ob- 
viously normed; its completion is a Banach space which we denote by 
l?,. It should also be noted that every convex balanced closed neigh- 
borhood of zero of E is the polar of a weakly closed convex balanced 
equicontinuous subset of E': its own polar. Let p be the seminorm on E 
associated with U, 

inf p. dX) = xepu.p>o 

The HausdorfT space associated with E ,  is nothing else but E,/Ker p, 
equipped with the quotient topology. The forms x' E EL, (with the 
previous notation, Uo = H') are continuous on E for the topology 

477 
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defined by p, hence define continuous linear forms on EJKer p, and 
by continuous extension, on f?,. It is clear that ELo can be identified 
as a Banach space (i.e., the identification extends to the norms) with 
the dual of f?, . We have a canonical mapping of E into E r r ,  the compose 
of the sequence 

hU jU E _t E&er p --+ I?, , 

where h,  is the canonical mapping and j u  the natural injection of a 
space into its completion. Note that, in general, h,  is not open, since 
E,/Ker p does not carry the quotient modulo Ker p of the topology 
of E but the quotient of the topology of E,. 

We consider two locally convex HausdortT spaces E, F and the tensor 
product E @ F of the dual of E with F, regarded as a linear subspace 
of L(E; F) ,  space of continuous linear maps E -+ F, namely the subspace 
of these maps whose image is finite dimensional. An element xj xi @ yj 
(finite sum) of E‘ @ F defines the mapping 

Let us consider momentarily the case where both E and F are Banach 
spaces. As usual, we denote by L,(E; F )  the space L(E; F )  equipped 
with the topology of bounded convergence, i.e., with the topology 
defined by the operators norm, 

We observe that the canonical bilinear map of E’ x F into L,(E;F),  

(X’I Y) - (x - (X’I x> Y), 

is obviously continuous and has norm < 1. We therefore derive from 
Proposition 43.12(a), that the norm induced by L,(E; F )  on E‘ @F is 
< 1 1  [I,, . The injection of E‘ @ F into L,(E; F )  can then be extended 
as a continuous linear map of E @,,F into L,(E;F),  which we shall 
call canonical. I t  is not known if this canonical mapping of E’ @,,F 
into L,(E; F )  is always injective, although it has been shown to be so 
in all the cases studied so far. 
Definition 47.2. Let E, F be two Banach spaces. The image of E @*F 
into L(E;  F )  is denoted by L1(E; F) .  Its elements are called the nuclear 
mappings of E into F. 
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Ll(E;  F )  is isomorphic, as a vector space, with E @.FIN, where 
N is the kernel of the canonical mapping E' @, F -% L,(E; F ) ;  the above 
quotient is a Banach space (as the quotient of a B-space modulo a closed 
linear subspace). The norm on L1(E; F) transferred from E' @,FIN is 
called the trace-norm (the motivation for this name will be seen later). 
Needless to say, the trace-norm restricted to E' QPF is nothing else 
but the r-norm. 

We shall now give the definition of a nuclear operator in the general 
case of two locally convex Hausdod spaces E,  F, not necessarily Banach 
spaces. 

Let U be a convex balanced closed neighborhood of zero in E, and 
B a convex balanced infracomplete bounded subset of F. Let u : J??, + F, 
be a continuous linear map. We may define a map S : E + F by compos- 
ing the sequence 

hU iB 

where h,  is the canonical mapping E + 8, and iB the natural injection. 
This correspondence u - S yields an injection of L(E, ; F,) into L(E;  F): 
for if iZ = 0, it means that u vanishes on h,(E), which is dense in J??, , 
hence u = 0. In the forthcoming, we consider L(E, ; F,) as a linear 
subspace of L(E;  F). 

Definition 47.3. Let E,  F be two locally convex Hausdoqfj spaces, U the 
family of all convex balanced closed nkghborhoods of zero in E,  and b 
the family of all convex balanced infracomplete bounded subsets of F. 

The union, when U ranges over U and B over 9, of the subspaces 

E -+ I?, LF, - F, 

L'(eu; FB) cL(E,; FB) CL(E; F),  

i s  denoted by L1(E; F ) ;  its elements are called the nuclear mappings of E 
into F. 

Suppose that E and F are Banach spaces. Then every 8, is canonically 
isomorphic (as a TVS, not as a Banach space) with E. On the other 
hand, L1(E; F,) is canonically injected into L1(E; F )  by composing the 
mappings with the injection FB +F. This shows that, when E and F 
are Banach spaces, Definition 47.3 coincides with Definition 47.2, as it 
should. It is not immediately evident that, in the general case (when 
E and F are not necessarily Banach spaces), L1(E; F) is a vector space. 
This will follow trivially from the next propositions, whose importance, 
however, goes beyond that consequence. 

PROPOSITION 47.1. Let E ,  F be two locally convex Hausdog spaces, 
and u a nuclear mapping of E into F. Let G, H be two other locally convex 
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Hausdo@ spaces, and g : G + E,  h : F -+ H two continuous linear 
mappings. Then h o u o g is nuclear. 

Suppose that E, F, G, and H are. Banach spaces. Then: 

11 g IlTI' < 11 1 1  1 1  llTr 1 1  g 11- 

We have denoted by 1) / I T r  the trace norm. 

Proof. By hypothesis, we have a decomposition of u as a sequence 

where h ,  and iB are the canonical mappings and u" is nuclear. Let us 
denote by V the preimage of U in G under g ,  and by q the associated 
seminorm, that is to say the seminorm 

G 3 z - I1  h,(g(z))lI, 

where 11 
triangle 

1 1  denotes the norm in I?', . It  is obvious that, in the commutative 

h G L E ~ E "  

where k, is the canonical mapping, g is an isometry onto h J g ( G ) )  
and might therefore be extended as an isometry I of (?, onto the closure 
M of h,(g(G)). On the other hand, C = h(B) is convex balanced bounded 
in H. Furthermore, C is infracomplete: indeed, the restriction h IFB 
of h to FB induces an isometry J of the Banach space FB/(FB n Ker h) 
onto H,  , as immediately seen; an isometric copy of a Banach space is 
a Banach space. Finally, we have decomposed h o u o g into the sequence 

I ClM J jc G Z G, - M - FB - H ,  - H .  

The notation is evident: k, andj, are the canonical mappings, I and J 
are the isometries defined above, u" I M is the restriction of u" to M. 
It  remains to show that J o (u" I M) o I is nuclear. Thus we are reduced 
to the case where a11 the spaces involved are Banach spaces and where 
g and h are isometries onto. 
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We have the commutative diagram 

E ' & F  +L'(E;F) + L ( E ; F )  

G @,, H-+L1(G; H)-+L(G; H )  

where the horizontal arrows are the canonical mappings and (*) is 
the mapping v - h o v o g, which is an isometry onto. The vertical 
arrow at the center must obviously be an isometry onto; the image of 
u E L1(E; F )  under this isometry is of course h o u o g, which belongs 
to L1(G; H) .  

Still in the case where all the spaces are Banach spaces, we must 
prove the statement about the norms. For this we go back to Diagram 
(47.1), where we do not assume any more that g and h are isometries 
onto; then the vettical arrows are simply continuous linear mappings. 
We know (Proposition 43.13) that I( @ h (1 < ( 1  'g I( ( 1  h 11; of course, 
)I 'g 1 1  = )I g 11 .  If 8 E E' @,, F defines a nuclear mapping u, then h o u o g 
is defined by ( b  @ h) (8 )  and we have therefore 

(47.1) k 0 h l  1 I(*) 

By taking I( 8 (I,, arbitrarily close to 1) u ( I T r ,  we obtained the desired 
inequality. 

The next result makes it easier to prove that certain operators are 
nuclear. 

PROPOSITION 47.2. Let E,  F be two locally convex Hausdorf spaces, 
and u : E+F a continuous linear map. The following conditions are 
equivalent : 

u is nuclear; 
u is the compose of a sequence of continuous linear mappings 

f E---E~-LF~LF, 

where El and Fl are Banach spaces and v is nuclear; 

there is an equicontinuous sequence {x;} in E ,  a sequence (Yk} 

contained in a convex balanced infracomplete bounded subset B 
of F ,  and a complex sequence {A,} with & 1 h, I < + co such 
that u is equal to the mapping 
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I f  E and F are Banach spaces, u is nwlear i f  and only if there is a sequence 
in the closed unit ball of E', {xi}, a sequence in the closed unit ball of F ,  
(yk}, and a complex sequence {hk} with & I hk I < + CQ such that u is 
given by (47.2). Furthermore, the trace-norm 1 1  u [ I T l  of u is equal to the 
infimum of the numbers z k  I hk I over the set of all representations of u 
of the type (47.2). 

Proof. Trivially, (a) (b); (b) * (a) in view of Proposition 47.1. 
On the other hand, because of Theorem 45.1, (a) * (c). Conversely, 
& hk x i  Y k  converges absolutely in EL. @jr F, , where H is the 
convex balanced weakly closed hull of the sequence {xi}: H' is an equi- 
continuous subset of E' and thus (c) -(a). If E is a Banach space, 
the closed unit ball of E' is an equicontinuous subset of E', obviously 
convex balanced and weakly closed; if F is a Banach space, its closed 
unit ball is infracomplete. Finally, the statement about the trace-norm 
is a straightforward consequence of the definition. 

COROLLARY 1. Let E be barreled and F quasi-complete; u is nuclear i f  
and only if u has a representation (47.2) with the sequence {xi}  bounded 
in E' and the sequence {Yk} bounded in F. 

Proof. As E is barreled, a bounded sequence in E is equicontinuous 
(Theorem 33.2). As F is quasi-complete, the closed convex balanced 
hull of a bounded subset, here the sequence bL}, is complete, a fortiori 
infracomplete (Lemma 36.1). 

COROLLARY 2. Let E, F be locally convex H a u s w  spaces; L1(E; F )  is 
a linear subspace of L(E; F). 

Proof. Let u l ,  u2 : E -tF be nuclear. We have a diagram 

where all mappings are linear and continuous, where Ei , Fi (i = 1,2) 
are B-spaces and where er,, v2 are nuclear; furthermore, the upper 
path gives u l ,  the lower one u2 (the diagram is not commutative!). 
Let G (resp. H )  be the Banach space product El x E, (resp. Fl x F2), 
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where w = (wl , w,) : (xl , x2) - (wl(xl), v2(xz)) consists of continuous 
linear mappings and constitutes a decomposition of u = u1 + u 2 .  
Then u is nuclear if w is nuclear. Suppose that wi is defined by an element 
Oi E Ei @,, Fi (i  = 1, 2).  There is a canonical mapping of (E; @ Fl) x 

Ej,:, (xh , x t )  @ (yli , y2:,), which is immediately seen to be continuous 
when all the tensor products carry the projective topologies; this 
canonical mapping extends to the completions. Then it is easily 
seen that the image of (e l ,  8,) under this extension, an element 
8 E (E;  x E;) @,, (Fl x F2), defines w, which is therefore nuclear. 

We introduce the following definition, familiar in Hilbert (or Banach) 
space theory: 

Definition 47.4. Let E,  F be two locally convex Hausdot# spaces. A linem 
map u : E + F is called compact (or completely continuous) if there is a 
nezghbwhood U of 0 in E such that u( U) C F is precompact. 

(E; @F,) into (E;  x a c3 (Fl x F2), ( ( D 4 j  @ Y l A  <z:,xt @ Y 2 k ) )  - 

PROPOSITION 47.3. 

Proof. It suffices to go back to the proof of the implication (a) 3 (c) 
in Proposition 47.2 and to observe that full use of Theorem 45.1 allows 
us to take the sequence (Yk} converging to 0 in FB , a fortiori in F. The 
closed convex hull r of this sequence is precompact (Proposition 7.1 1). 
Let U be the polar of the equicontinuous sequence {xi}: U is a neigh- 
borhood of zero in E, and if x E U, 

Any nuclear map is compact. 

We now study the transpose of a nuclear map. 

PROPOSITION 47.4. Let E, F be two locally convex Hausdorff spaces, 
and u a nuclear map of E into F. 

Then lu : F' + E is nuclear when E and F carry their strong dual 

In the case of Banach spaces, some precision can be added to the 

topology. 

preceding statement concerning the trace-norms: 
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PROPOSITION 47.5. If E, F are Banach spaces and if u E L1(E; F) ,  then 
fu €L1(F'; E') and 1 1  fu l l T r  < 1 1  u l l T r  . 
Proof of Proposition 47.5. Let u E L(E; F )  be defined by some element 
0 E E @,,F; suppose that 8 is equal to an absolutely convergent series 

m 

o =  z x p y j .  
f-0 

Then fu is equal to the mapping 

m 

Y' - c <Y',Yj) x; - 
j = O  

In other words, lu is defined by the element' (I @v z](0) E E' @,, F", 
where I is the identity of E and i the canonical isometry of F into F", x - 
value at x.  By Proposition 43.13, we know that 

11(1 @37 i)(e)llTl < II 0 (In * 

By taking the infimum of both sides as 8 varies over the set of represen- 
tatives of U, we see that I( 'U l l T r  < 11 u [ITr. 

COROLLARY. If E and F are Banach spaces and i f  F is reflexive, then 
u is nuclear if and only if 1u is nuclear. Moreower, 

If fu : F'+ E is nuclear, then ffu : E" -+F" is nuclear and so is 
u : E --f E" % F" F, where the first arrow is the canonical isometry. 
Furthermore we have 1 1  u l l T r  f 11 % [ I T r  < 1 1  tu l lTr because of Proposition 
47.5, which implies at once 1 1  u [ I T r  = 11 fu ( I T r  . 
Remark 47.1. The conclusion of the previous corollary is valid in 
all the cases which are known, even when F is not reflexive. 
Proof of Proposition 47.4. Here E and F are locally convex Hausdorf€ 
spaces, not necessarily Banach spaces. If u : E + F is nuclear, there 
exist two Banach spaces El , Fl , two continuous linear maps f : E + El , 
g : F + F l ,  and a nuclear map v : E , - + F ,  such that u = g o v o f  
(Proposition 47.2). Then 1u = ff o ( lv)  o ('g) is also nuclear, in view 
of Proposition 47.5. 

We conclude these generalities about nuclear mappings by two 
results on extension and lifting of nuclear mappings: 

u [ I T r  = 1 1  fu [ I T r  . 

PROPOSITION 47.6. 
spaces, a n d j  an isomorphism of E into F. 

Let E,  F, and G be three locally convex Hausdot# 



Chap. 47-91 NUCLEAR MAPPINGS 485 

(1) 

(2) 

Given any nuclear map u : E -+ G there is a nuclear map v : F + G 
such that v o j = u. 

Suppose that j ( E ) C  F is closed and let 4 be the canonical map 
of F onto F/j(E). Suppose moreover that every convex balanced 
compact subset of F/j(E) is the image, under 4, of a convex balanced 
infracomplete bounded subset of F. Then, to every nuclear map 
EL : G + F/j(E) there is a nuclear map v : G + F such that 
$ o v = u .  

When E and F are Banach spaces and j is an isometry, for every E > 0, 
v can be chosen (either in (1) or in (2)) so as to have 

It IlTr < 1 1  IL llTr + 8. 
Proof of (1). The map u is the canonical image of an element 

0 = C h k x ; @ z k ,  
k 

where the {x;} form an equicontinuous sequence in E' and the sequence 
{zk} is a sequence contained in some infracomplete bounded subset 
of G; as usual the sequence ( h k )  belongs to l1 (Proposition 47.2). By 
applying the Hahn-Banach theorem, we may lift the sequence {xi} C E' 
into an equicontinuous sequence {y;} C F';  when E and F are Banach 
spaces (and j an isometry), they; can be taken so as to have, for each 
k ,  the same norm as x i  ; then is defined by the element 

B = CAk y;  @ Z k  . 
k 

When E and F are Banach spaces (and j is an isometry), we may take 
the x; (resp. the y;  , resp. the zk) in the unit ball of E' (resp. of F', 
resp. of G); then 

II v IITr < 1 I I* 
k 

and the right-hand side can be taken < 1 1  u l l T r  + E (Proposition 47.2). 

Remark47.2. If E and F are FrCchet spaces, every compact convex 
balanced subset of FIJ'(E) is the canonical image of a compact convex 
balanced subset of F (Lemma 45.1). This is also true if F is the strong 
dual of a FrCchet space and if j ( E )  is weakly closed in F. 

We conclude these generalities by a few words about the so-called 
trace form. This is a continuous linear functional on E @,, E, where 
E is a Banach space and E' the Banach space which is the strong dual 

The proof of (2) is similar and will be left to the student. 
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of E (with the dual norm). We observe that (x, x') - (x', x) is a con- 
tinuous bilinear functional, with norm 1, on E x E ;  therefore, it 
corresponds to a continuous linear form, denoted by Tr(-) and called 
trace form, on E @. E; the norm of T r  is one. If we have 

then we have 

The motivation for the name trace form originates in the fact that, 
if 8 E E E, we may write 

r 

e = C eij ei @ ej ,  
i.i=l 

where (ei , e j )  = 1 if i = j and 0 otherwise, having then 

T 

Tr(f3) = c eii , 
i=l 

which is the trace, in the usual sense, of the linear mapping of E into 
itself defined by 8. 

Example. Nuclear Mappings of a Banach Space into a Space L' 

Let X be a set, and dx a positive measure on X; we assume o-finiteness 
and we denote by L1 the corresponding space of (classes of) integrable 
functions. Let E be a Banach space, and E the dual Banach space. 
We have a canonical isometry 

LI(E') E' @,, L1 (Theorem 46.2). 

By using the canonical mapping of E @- L1 onto the space of nuclear 
mappings of E into L1, we see that every class of integrable functions 
f EL~(E')  defines a nuclear map, namely 
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and that f - uf is onto. Furthermore, this mapping is injective, for we 
have 

I(f(x), e)l dx = 0 for all e E E, 

if and only if the representatives of f vanish almost everywhere. But 
if the mapping f + uf is injective, it is an isometry onto when we consider 
the trace-norm of nuclear operators; indeed, the canonical mapping 
of E' BSL1  onto Ll(E;Ll) is then injective and the trace-norm is the 
quotient of the .rr-norm modulo the kernel of the canonical mapping. 
Thus 

I 1  Ur IITr = J II f(x)ll dx. 

The student may apply these considerations to the case where E itself 
is a space D (1 < p < + a). 



Nuclear Operators in Hilbert Spaces 

Let E, F be two Hilbert spaces, u a continuous linear map of E into 
F, and J (resp. K )  the canonical antilinear isometry of E onto its dual 
E (resp. of F onto F ) .  We call adjoint of u and denote by u* the compose 
of the sequence of mappings 

FK-F'LEGE; 

u* is a continuous linear map of F into E;  it has a norm equal to the one 
of u (Proposition 23.3). If we denote by ( I ) and 1 1  1 1  the inner product 
and the norm, both in E and F, we have, for all x E E, y E F ,  

(44 I Y )  = (x I U*(Y)) .  

When E = F and u = u*,  the operator u is said to be self-adjoint. 
A mapping u E L ( E ;  E )  is called positive if (u(x) I x) 0 for all x E E. 
A positive operator is self-adjoint: indeed, the bilinear form (u(x) Iy) 
is real when x = y (see p. 113). An important and well-known property 
of positive operators is the one stated now: 

LEMMA 48.1. 
map v E L ( E ;  E )  such thut v2 = u. 

Proof. 
function 

Let u E L(E;  E )  be positive. There is a unique positive 

By examining the coefficients of the Taylor expansion of the 

C" 3 z ru+ (1 - z)1'2 

about z = 0, one sees that the Taylor series converges when 1 z I = 1. 
From this it follows immediately that the finite Taylor series, when 
z has been replaced by w E L(E;  E )  with 1 1  w 1 1  < 1, converge in L J E ;  E), 
to a continuous linear map, which it is natural to denote by (I - w ) ~ / ~ .  
Observe that the latter commutes with any continuous linear map which 
commutes with w, as it is a limit (in the sense of the operators norm) 
of polynomials with respect to w. For the same reason, (I - is 

488 
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self-adjoint whenever this is true of w .  And of course ((I - w)1/2)2 = 
I - w. From this we derive that, if w is positive, so is w ( I  - w )  = 
( (I  - w)1/2) w( (1  - w ) ~ / ~ ) .  We see therefore that 

I I  (1 - w)x 112 = ((1 - w)x I 4 - (41 - w)x I 4 < Il(1- w)x II II * 111 
which proves that, in the case where w is positive and 1 )  w 1) < 1, we 
have 1 1  Z - w 1 1  < 1. But then we may consider 

( I  - (I - w))1’2, 

which we shall denote precisely by K w .  Now, if 1 1  u I( is arbitrary, 
we set dii = I (  u (11 u ll-lu)l/z. This proves the existence of the 
mapping v (now denoted dG) of Lemma 48.1. 

Suppose there was a second positive map w E L2(E; E) such that 
w2 = u. Then w commutes with u and therefore with du, in view of 
the earlier considerations. This implies that we have 

o = w 2 -  (dU)Z = (w - h ) ( w  + di). 
We apply the right-hand side to a vector x E E and conclude that 
w = fi on the image of (w + 4 6 ) ;  the orthogonal of this image is 
the kernel of (w + qii) (as this operator is self-adjoint), which is the 
intersection of Ker w with Ker fi, as w and dii are positive; and on 
this intersection, we have trivially w = 2 / U .  Q.E.D. 

COROLLARY. Let u be a positive operator. If x E E satisjies the equation 
( ~ ( x )  I x) = 0, we have u(x)  = 0. 

Proof. Let v be an operator such that v*v = u; then ( ~ ( x )  1 x) = 

1 1  v(x )  [ I 2  and v ( x )  = 0 implies u ( x )  -= v*(v(x) )  = 0. 
T h e  unique positive-operator v of Lemma 48.1 is often denoted by 
4; and called the positive square root of u. 

Let us now consider an arbitrary continuous linear map of a Hilbert 
space E into another Hilbert space I;; let u* be the adjoint of u. Then 
u* u is a positive operator of E into E; let us denote by R its positive 
square root. We have 1 )  R(x) 1 1  = 1 1  ~ ( x )  1 1  for all X E  E and therefore 
Ker R = Keru.  Let us then define the following continuous linear 
map U :  E + F ,  

U(x) = u(xl )  if x = R(xl) E Im R ;  
- 

then U is extended by continuity to the closure of Im R; 

U(x) = 0 if X E  Ker R. 



490 TENSOR PRODUCTS. KERNELS [Part I11 

We have, for all x E E, 
I 1  U(R(X))ll = II u(4 l  = I I  R(.)ll. 

This means that U is an isometry of Im R onto Im u. We have 

u = U O R .  

One refers often to R as the absolute value of u. 
Our purpose is to study the operators u : E + F which are nuclear 

and to characterize them. But, because of the isometric properties of the 
operator U above, it is clear that u will be nuclear if and only if its 
absolute value R is nuclear. In  other words, it suffices to study the nuclear 
operators which are positive mappings of a Hilbert space E into itself. 
But we know that nuclear mappings are compact: we may therefore 
restrict our attention to compact positive operators. These have simple 
and beautiful spectral properties, discovered at the beginning of this 
century by Fredholm and F. Riesz. 

For the benefit of the student who does not have a treatise on Hilbert 
space theory within reach, we recall the statement and the proof of the 
main theorem on compact positive operators. 

THEOREM 48.1. Let E be a Hilbert space, and u a positive compact 
operator of E into itself. T h e  is a sequence of positive numbers, decreasing 
and either +te or converging to zero, 

A, > A, > * - -  > A, > - * a ,  
and a sequence of nonzerofinite dimensional subspaces v k  of E (k = 1, 2, ...) 
with the following properties: 

(1) the subspaces v k  are pairwise orthogod; 
(2)  for each k and all x E V, , ~ ( x )  = A$; 
( 3 )  the orthogonal of the subspace spanned by the union of the V, 

is equal to the kernel of u. 

Proof. Let t be the supremum, on the unit sphere of E, of the non- 
negative ;function (u(x) I x). We use the fact that the closed unit ball 
of E is weakly compact (Proposition 34.1); there is a weakly converging 
sequence {xu}, 11 xu 11 = 1, such that (u(xJ I x.) -+ t .  But as u itself is a 
compact operator, we may suppose that the sequence (u(xu)} converges 
in the sense of the operators norm. This implies at once that, if x is the 
(weak) limit of the x u ,  (u(x) 1 x) is equal to the limit of the (u(xJ I x"), 
i.e., to t. Thus we have 

((t1 - u)(.) 1 x) = 0. 

But, because of our choice of t ,  tI - u is positive. Now if v is positive 
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and if ( ~ ( x )  I x) = 0, we have v(x) = 0. Indeed, (~ (x )  I x) = (1 1/6(x) 
and &(x) = 0 implies (+)2(x) = 0. Thus we have 

u(x) = tx. 

Let us denote by V,  the linear subspace of elements x E E such that 
u(x) = tx .  Let B, be the unit ball of V,, i.e., the intersection of the 
unit ball of E with V , .  By hypothesis, u(Bl) is precompact; but it is 
equal to tB, , hence is closed and B, must be compact. Thus V,  is finite 
dimensional. From now on we write A, instead oft. If Vk is the orthogonal 
of V, ,  we have u( V t )  C V i  as u is selfadjoint. Thus, by restriction, u 
defines a continuous linear map of Vf into itself which is clearly compact 
and positive. We may repeat the above procedure with E replaced by 
V f .  The maximum h, of the function ( ~ ( x )  I x) on the unit sphere of 
Vf is < A , ,  for otherwise there would be an element x in this unit 
sphere such that ~ ( x )  = A,x and x would belong to V,  . We then build 
the sequences {hk}  and {Vk} by induction on k, taking v k  = {x E E; 
u(x) = A g } .  If the procedure comes to a halt after a finite number of 
steps, say K steps, it means that the maximum of the function (u(x) I x) 
on the orthogonal of V,  f + V k  is equal to zero; this orthogonal 
must then be the kernel of u (note that in this case the image of u is 
finite dimensional). If the procedure does not stop after a finite number 
of steps, the decreasing sequence {Ak} must converge to zero. Otherwise 
we would be able to find an orthonormal sequence of vectors x, such 
that u(xJ = &,xV with 2 c > 0. But as u is compact, the sequence 
{u(x.)) should contain a converging subsequence, which is absurd as 

Finally, if an element x E E is orthogonal to all ‘the v k  , we must 
have, in view of their definition, (u(x) 1 x) = 0, hence u(x) = 0. Q.E.D. 

We recall the well-known terminology; the numbers are the 
e&nva~#es of u; v k  is the eagerupace of u corresponding to the eigenvdue 
Ak ; dim V k  is sometimes called the muZt+Zicity of the eigenvalue Ak. 
The sum of the series 

m 

h k d h  v k  

k=l 

is called the trace of u and denoted by T r  u. For each k, let P k  be the 
orthogonal projection of E onto Vk (see p. 120). The finite sums 
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converge to u for the operators norm as K 4 a. We may write 

(48.1) 

This representation of u is called the spectral decomposition of u. In the 
preceding notation, which makes use of infinite series, it is to be under- 
stood that, if the image of u is finite dimensional, the series in question 
are finite. 

We may now state and prove the main theorem on the subject of 
nuclear operators in Hilbert spaces: 

THEOREM 48.2. 
linear map, and R its absolute value. 

Let E, F be two Hilbert spaces, u : E +. F a continuous 

The following properties are equivalent: 

(a) u is nuclear; 
(b) R is nuclear; 
(c) 
If u is nuclear, Tr R is equal to )I u ) I T r  . 

R is compact and T r  R is finite. 

Proof. As we have already pointed out, we have u = U o R, where U 
is an isometry of R(E) onto u(E) C F, and it suffices to prove the equival- 
ence of (b) and (c) and the fact that, if R is nuclear, T r  R is equal to 
( 1  R l lTr . In other words, we may as well suppose that u E L(E; E )  and 
that u is positive. 

Suppose that u is nuclear; then u is compact (Proposition 47.3) and 
has therefore a spectral decomposition 

Let us consider the finite sums 

they converge in norm to u. If we set QK = PI + 
that we have u, = Q K u .  Then (Proposition 47.1) 

+ PK, we see 

11 uK IITr < 11 P K  11 11 IlTr = 11 ?A Ill7 - 
On the other hand, the trace form (see p. 485) is a continuous linear 
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form on E' a,, E of norm one. Using the fact that, if a map u : E +. E 
is defined by an element 8 E E' @ E, we have 1 1  u / I T r  = 1 1  8 l l s  , we have 

I T~(uK)I < II UK llTr < II llTr . 

But as we have pointed out, when dealing with a 
by an element 8 E E' @ E, the trace form is equal 
usual sense, therefore 

K 

dim vk < 11 IITr 9 

k=l  

linear map defined 
to the trace in the 

where we have set V,  = P,(E). By taking K-+  + 00, we see that the 
trace of u is finite, which proves (c). 

Conversely, suppose that u is compact and that T r  u is finite. By using 
the spectral decomposition of u, (48.1), we see that 

and the proof of Theorem 48.2 will be complete if we show that 

11 pk IITr < dim v k  3 v k  = Pk(E)* 

If we select an orthonormal basis e l ,  ..., er in V,  , we can write 

r 
Pk = 2 ei 0 e, , 

where e; is the linear form x -+ (x I ei) on E. We have, therefore, in 
view of Proposition 47.2, 

i=l 

r 

11 Pk < 1 1 = Tr(PK]l= dim v k  . Q.E.D. 
i=l 

Theorem 48.2 provides a motivation of sorts for the name trace-norm. 
Observe that, if u is a positive nuclear map of a Hilbert space E into 
itself, its trace, as an operator, is equal to the trace of an element 
8 E E' @; E representing it. As a matter of fact, one can show that such 
an element 8 is unique, in other words, that the canonical mapping of 
E @,, E onto L1:F; E)  is injective; it follows then from the definition 
of the trace-norm that it is an isometry. 

We leave the proof of the following corollary of Theorem 48.2 to the 
student: 
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COROLLARY. A continuous linear map u : E - F of Hilbert spaces is 
nuclear if and only if there are two orthogonal sequences { x k } ,  {yk} in E and 
F, respectively, and a sequence {hk} in P such that 

: ") 1 I X k ) Y k  a 

k 

We consider now the space E @.,F ( E  and F are Hilbert spaces). 
We recall that the topology E on E @ F is induced by &(E: ; F). The 
equicontinuous subsets of E' are identical to the bounded sets and, as 
E is reflexive, its weakly compact subsets are identical to its bounded 
subsets; in other words, L,(E; ; F )  = L , ( E ;  F) ,  the space of bounded 
linear operators E + F equipped with the operators norm (E carries 
its dual norm). As for E @=F, it is the closure, in the sense of the 
operators norm, of the continuous linear mappings whose image is 
finite dimensional. 

THEOREM 48.3. Let E and F be Hilbert spaces; E BE F is identical to 
the space of compact operators of E into F. 

Proof. E g 8 F  is contained in the set of compact operators; indeed 
every continuous linear map with finite dimensional image is obviously 
compact. On the other hand, we have the general result: 

LEMMA 48.2. Let E, F be two Banach spaces. The set of compact linear 
operators of E into F is closed in L,(E; F) .  

Proof. Let u : E + F be the limit (for the operators norm) of a sequence 
of compact operators. Let E be > 0 arbitrary; let us denote by B the 
closed unit ball of E, by B, the one ofF.  There is a compact operator 
v : E + F such that (u - v ) ( B )  E eB1 . There is a finite set of points 
x1 ,..., x, in B such that 

a(B) C (v(x1) + cB1) U *.* U (v(xr) + eB1) 

whence 
U ( B )  c ( IL(X1)  + 3&&) u ' * *  u ( U ( X r )  + kB1). 

This proves the lemma and therefore that every element of E BsF 
is a compact operator. In order to see that every compact operator 
u : E +F belongs to E BE F, it suffices to observe that u is the limit, 
for the operators norm, of continuous linear mappings with a finite 
dimensional image. Indeed, we write u = U o R, with R : E + E' 
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compact positive and U, an isometry of R(E’) into F. We then use the 
spectral decomposition of R ,  

R = C h$k (Cf. (48.1)). 
k 

The sequence of mappings 

converges to u for the norm; but Pk maps E‘ onto a finite dimensional 

Let us take a look now at the space B(E‘, F‘),  the space of continuous 
bilinear forms on E’ x F equipped with its natural norm, the supremum 
of the absolute value on the product B’ x B; of the unit ball of E and 
the unit ball of F .  If u : E’+F,  we can associate with u the bilinear 
form on E x F’, 

22 : (XI, y‘) - (y’, U(X‘)>, 

which is obviously continuous. Conversely, let 4 E B(E’, F’); then 
u+ : x’ ‘c-t (y‘ ‘c-t $(x’, y’)) is a continuous linear map of E into F” = F; 
we see immediately that 4 = zZ4 . All this means that B ( E ,  F‘) is canoni- 
cally isomorphic to L(E’; F ) ;  it is evident that the isomorphism extends 
to the norms. 

subspace, hence u 0 Pk(E) is finite dimensional. Q. E.D. 

Thus we have the natural mappings 

E &F+LyE’ ;F) -+E & F + L ( E ; F ) e  B(E,F’) .  

The first space carries the r-norm, the second one the trace-norm, and 
the last two the operators norm. All the mappings are continuous; 
the last one is an isometry (into!). It will follow, from what we are 
going to say now, that the first mapping is an isometry (onto!). For 
this, we study the duals of the spaces above. 

We know what the dual of the first one is: B ( E , F ) r L ( E ; F ’ ) .  By 
transposing the mapping (with dense image) E @,, F + E Be F, we 
obtain an injection of the dual of E Be F into B(E, F) .  Its image is denoted 
(in general) by J(E, F);  the elements of J(E, F )  are called integral form 
on E x F (see next chapter, Definition 49.1; this definition is hardly 
justified in the case of Hilbert spaces, as we shall soon see). At any 
event; the elements of J(E, F) can be identified to certain continuous 
linear mappings of E into F‘. What are they ? 

Before we can answer this question, we must recall the duality 
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bracket between E @,, F and L(E; F’). Let 0 be an element of E @,, F, 
and u an element of L(E;F‘) .  We may consider the extended tensor 
product 

Then (u @,,I)(0) is an element of F‘ @,, F; we may consider its trace 
(see p. 486). We have 

If we use a representation of 0 of the form 

u &,I:  E @,,F+F’ &,F, IZidentityofF. 

(u ,  0) = Tr((u B , , W ) ) .  

m 

h k x k @ y k  
k=O 

with Ck I Ak I < + co, {xk}  and Cyk}  being two sequences converging 
to zero in E and F, respectively, we have 

(48.2) 

At this stage, we may show that we need not distinguish all the time 
between E @*F and L1(E‘; F) .  Since the trace-norm is the quotient 
of the n-norm modulo the kernel of the canonical mapping E @,, F + 

L1(F’; E),  it suffices to show that this mapping is one-to-one. This is 
a consequence of the following result: 

THEOREM 48.4. If E and F are Hilbert spaces, the canonical mapping 
of E @,, F into E @= F is one-to-one. 

Proof. It suffices to show that the transpose of the mapping in question 
has a weakly dense image; since the mapping itself has trivially a dense 
image, its transpose is one-to-one. In other words, we must show that 
J(E, F) (E @= F)’ is weakly dense in B(E, F )  g ( E  @,, F)’; here, 
weakly has to be understood in the sense of the duality between B(E, F )  
and E @,,F. We identify B(E, F) to L(E;  F )  and we note that the set 
of w : E -+ F’ with finite dimensional images (and which moreover are 
linear continuous!) belong clearly .to J(E, F) .  It  will therefore suffice 
to show that, if 8 E E @,, F, to every u E L(E;  F )  there is such a w with 
the property that I (u - o, 8) I < E(E  > 0 arbitrary). Suppose then 
that we have $roved the following fact: 
(48.3) To every compact subset K of E and every neighborhood V of 0 

F’, there is a continuous linear mapping w : E + F’ with finite 
dimensional image such that 

(24 - w)(K)C v. 
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We shall combine (48.3) with Eq. (48.2): we shall take, as set K, the set 
{x~)~- , ,~ . . . ,  u (0) and, as set V, the multiple pSo of the polar So of the 
sequence S = {Yk), with p = e / ( z k  I I). We have then I ( u  - v,  8) 1 < 
e. Now, Property (48.3) follows easily from the lemma: 

LEMMA 48.3. Let H be a Hilbert space. Then, to every compact subset 
C of H and to every nezghborhood of zero V in H ,  there is a continuous 
linear map w : H + H with finite dimensional image such that, for all 
x E c, 

x - w(x)  E v. 
Before proving the lemma, let us show how it enables us to complete 

the proof of Theorem 48.4. We apply it with H = F' and C = u(K), 
where K is an arbitrary compact subset of E. Let us choose w as in 
Lemma 48.3 and se't v = w o u;  the image of v is finite dimensional, 
and (I' - w)(C)  C V(I': identity of F') is equivalent with (u - v) (K)  C V ,  
whence (48.3). 

Proof of Lemma 48.3. We may assume that V is a closed ball centered 
at the origin; then C can be covered by a finite number of balls of the 
form x, + V; let M be the (finite dimensional) linear subspace of H 
spanned by their centers. We have C C M + V; if w is the orthogonal 
projection of H onto M ,  the norm of x - w(x)  is necessarily < radius 
of V, since there is a point x" E M such that x - x" E V ;  thus x - w(x) E V .  

E @,, F. The trans- 
pose of u, fu, is a continuous linear operator of F into E ;  the compose 
8 o Iu maps F into itself. It is a nuclear operator, by Proposition 47.1. 
As one sees immediately, 

<u, 6) = Tr(6 o %). 

We are going to show that the linear form 8 ")- (u, 8) is continuous on 
E @ F for the topology E if and only if u is nuclear. This can be stated 
in the following way: 

Let u EL(E;  F') B(E,  F) ,  and 8 E L1(E'; F )  

THEOREM 48.5. F is 
canonically isomorphic to L1( E ;  F'). 

The isomorphism extends to the norms: E @= F carries the operators 
norm (which is equal to the e-norm); L1(E;F') ,  the space of nuclear 
operators E -+ F', carries the trace-norm (which is equal to the vnorm). 
Theorem 48.5 is due to J. Dixmier and R. Schatten. If we use the 
canonical antilinear isometry of a Hilbert space onto its dual, we can 
give the following more striking statement of Theorem 48.5: 

If E and F are HiIbert spaces, the dual of E 
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THEOREM 48.5’. Let E and F be Hilbert spaces. The dual of the space 
of compact linear operators E+F, equipped with the operators norm, 
is the space of nuclear operators E - F ,  equ@ped with the trace-norm, 
and its bidual is the space L,(E; F )  of all continuous linear operators E + F. 

Proof of Theorem 48.5. As we have said, we must show that, if 8 - 
(u,  8) is continuous on E &F, then u must be nuclear. Let us write 

tu = UR (we omit the “compose” sign 0). 

where R is the absolute value of *U and U is an isometry of R(F) into E .  
We shall take advantage of the following result of the spectral theory 
of linear operators in Hilbert spaces: ;f R is a positiwe bounded operator 
(of  F into itself), which is not compact, there exists a bounded linear operator 
G such that GR is the orthogonal projection P onto a closed subspace of 
injinite dimension. We then choose 

e = w ~ ~ - l  (: E jq, 

where w is a continuous linear map of F into itself having a finite dimen- 
sional image. We have then 

(u, 0 )  = Tr(8‘u) = Tr(wP). 

Now, if w remains in the unit ball of L,(F, F), we have 

II 0 II < I1 CJ II I I  GI1 < II GII, 

so that the norm of 8 (as an operator!) remains bounded. But the e-norm 
is precisely the operators norm. On the other hand, if w is the orthogonal 
projection of F onto a linear subspace of P(F) of dimension n, we have 
WP = w and Tr(w) = n. Since dim P(F) = + 00, we may take n + +00. 

In this way, we see that I (u,  8> I does not remain bounded, although 
8 remains bounded in the &-topology. We have reached a contradiction. 
It means that R, and therefore b, must be compact. But then we may 
write (cf. (48.1)) 

00 

R =  h k P k ,  
k-1 

where the Pk are orthogonal projections on (pairwise orthogonal) finite 
dimensional subspaces v k  of F. We choose now 8 = WU-’, whence 
Tr(8‘u) = Tr(wR), and v = xf=l Pk , whence 

N 
Tr(wR) = h k  dim v k .  

k-1 
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On the other hand, I (u,  8) 1 < const (1 8 ( 1  (11 11: operators norm). 
Thus we have 

C X k  dim v k  < const (1 e (1. 

By going to the limit N +  co, we see that T r  R is finite and is at most 
equal to the norm of the linear form 8 -.. <u, 0) on E @#F. From 
Theorem 48.2, we derive that R, and therefore u, is nuclear. We have 

N 

k=l 

But on the other hand, if u is nuclear, so is % and 8 o Iu. We have 
(Proposition 47.1; here 8 is any element of L(E'; F)) 

I<% e>l = 1 Tr(8 0 ")l < 11 0 tY llTr < 1 1  I/ 11 tU (IT1 

and the proof is complete if we apply the corollary of Proposition 47.5 
(in relation to the last estimate, we recall that the trace-form is a con- 
tinuous linear functional on F @- F = L1(F; F) of norm one). 



The Dual of Eme F. Integral Mappings 

We recall that E Q , F  is identifiable with (or is) the space B,(Ei ,FJ 
of continuous bilinear forms on EL x FL, equipped with the topology 
of uniform convergence on the products A‘ x B‘, A‘ (resp. B’) equi- 
continuous subset of E (resp. F). The identity mapping 

E @ , F +  E &F 

gives rise, by transposition, to a (continuous) injection of the dual 
of E B C F  into the one of E @,F, B(E, F), the space of continuous 
bilinear forms on E x F (cf. Corollary of Proposition 43.4). 

Definition 49.1. The canonical image of the dual of E Qe F into B(E, F )  
is denoted by J(E, F);  its elements are called the integral forms on E x F. 

From now on, we identify J(E,F) to the dual of E Q,F.  Note that 
E Q F = B(Ei , Fi) can be identified, as a vector space, with the dual 
of EL Q,, FL ; the s-topology is then the topology of uniform convergence 
on the sets A’ Q B’, with A’ and B’ equicontinuous. A basis of neigh- 
borhoods in the s-topology consists of the polars (A‘ Q B‘)O. On the 
other hand, E’ O F ’  can be trivially regarded as a linear subspace of 
J(E,F).  An equicontinuous subset of J(E, F), the dual of E @,F,  is 
then a subset of a bipolar (A’ Q B’)O0. It is on this remark that we shall 
base the integral representation of integral forms, motivating the name 
of the latter. But prior to proving it, we need a few facts about Radon 
measures. 

Let K be a compact subset of a locally convex HausdorB TVS G. 
We denote by V ( K )  the Banach space of complex continuous functions 
on K, with the maximum norm f - supzGK If(.) I, by V‘(K) its dual, 
which by definition is the space of Radon measures on K. There is a 
natural injection of K into V‘(K): to each X E K  we assign the Dirac 
measure 8, at x (we recall that <a, ,f) = f ( x ) ) .  The mapping x - 8, 
is clearly continuous when W ( K )  carries its weak dual topology; as it 
is also one-to-one, it is a homeomorphism of K onto its image S(K) E 

500  
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W ( K ) .  The  inverse mapping can be extended, by linearity, as a continuous 
linear map of the linear subspace of V' (K)  spanned by the Dirac measures 
a,, x E K, into G. Here W ( K )  carries its weak dual topology. Then, 
by continuity, we can extend the inverse mapping as a continuous linear 
mapping of the closure of the subspace spanned by the Dirac measures 
into the completion (? of G. But the finite linear combinations of the 
Dirac measures are weakly dense in %'(K), in view of the Hahn-Banach 
theorem: a continuous function f which is orthogonal to all Dirac 
measures must necessarily vanish identically. Thus we have obtained 
a continuous linear map of W ( K )  (equipped with the weak dual topology) 
into c. Consider now the weakly closed convex hull S(I?) of 8(K): 
it is a weakly closed subset of the closed unit ball of V ( K ) ,  which is 
weakly compact, as %(K)  is barreled. Therefore S(X) is compact. Its 
image in G is a compact convex set, which contains K. It contains 
therefore the closed convex hull of K in c, I?, which is a compact set, 
and, in fact, is identical to I?, as is easy to check. On the other hand, 
8(R) consists of positive Radon measures on K of total mass < 1; 
in fact, 8(R) is exactly the set of all such Radon measures. For if p~ 
W ( K )  is 2 0 and p(K)  < 1, we have I p(f) I < 1 for all f E W(K) which 
belong to the polar of S(K). Indeed, such a function f satisfies 1 f ( x )  I < 1 
for all x E K. Thus p belongs to the bipolar of S(K) and, as p is positive, 
it belongs to the weakly closed convex hull of S(K), as is easily verified. 
At any event, we see that every point x of the closed convex hull r ( K )  
of K in G is the image of a positive Radon measure p of total mass 
< 1 on K. Then if x' is an arbitrary element of the dual G' of G, we have 

Indeed, this is true when x = & mixi ,  xi E K,  & mi < 1, taking 
then p = C miSZj . It remains true by going to the limit, for an arbitrary 

We may, now, state and prove the integral representation formula 
of integral forms. We recall that weakly closed equicontinuous subsets 
of a dual are weakly compact sets. 

CL E m. 

PROPOSITION 49.1. A bilinear form u on E x F is integral if and only 
if there is a weakly closed equicontinuous subset A' (resp. B') of E'(resp. F') 
and a positive Radon measure p on the compact set A' x B' with total 
mass < 1, such that, for all x E E, y E F, 
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Proof. It is evident that (49.2) defines an integral form. If we regard 
the right-hand side as a linear form on E @ F and if 8 E E @ F (regarded 
as a bilinear form on E’ x F‘) is such that I 8(A’, B’) I < 1, we have 

Conversely, an integral form u belongs to the bipolar of a set A’ @ B‘, 
that is to say to the weakly closed convex balanced hull of A’ @ B’. 
Here A’ and B’ are equicontinuous sets, but we may assume that they 
are weakly closed, which makes them weakly compact. Note that the 
canonical bilinear mapping of E: x F: into E @F’, equipped with 
the topology induced by o(J(E, F), E @ F), induces a homeomorphism 
of A’ x B’ onto A’ @ B’; thus we may transfer every Radon measure 
from A’ x B‘ onto A‘ @ B‘ and vice versa. In view of the considerations 
preceding the statement of Proposition 49.1 and by applying Eq. (49. l), 
we know that, for some positive Radon measure p on A‘ @ B’ of mass 
< 1 and for all t k  E @F,  

I e> I < SA’xB‘ dp < 1. 

+, 0) = J”,,,. (x’ 0 r‘)(@) 44’ 0 r‘). 
If we then take 8 = x @y and transfer p onto A’ x B’, we obtain 
precisely (49.2). 
Remark 49.1. If both E and F carry their Mackey topology (see p. 369) 
there is identity, in E and F’, between weakly compact and weakly 
closed equicontinuous subsets-provided that they are convex balanced! 
This applies, in particular, to the case where E and F are barreled or 
metrizable, in particular normed. 

Consider the integral form u given by (49.2) and let us call U and V 
the polars of A‘ and B‘ in E and F, respectively; U and V are closed 
convex balanced neighborhoods of zero. Let us denote by p and q the 
associated seminorms (p(x) = infZEpu p, p > 0) and by Ev and Fg 
the normed spaces E/Ker p and FIKer q equipped with the quotient 
norms p/Ker p and q/Kerq, respectively. The canonical map of E 
onto E, defines, by transposition, a continuous injection of Eb into 
E‘ whose image is the subspace Euo spanned by the polar Uo of U. The 
dual norm of p is exactly equal to the gauge puo of UO; as we have already 
done (cf. p. 478) we identify E; and ELo;  Ei is the space of linear 
forms on E which are continuous with respect to the seminorm p. 
It is also obvious that EL0 is the dual of E v ,  completion of E, . We note 
then that A‘ is an equicontinuous subset of E(, , and B’ an equicontinuous 
subset of Fi ; in fact each is contained in the respective closed unit ball 
of the Banach space Ei or Fi . Going back to the form u, we derive 
from (49.2) that, for all x E E, y E F ,  

I 4% r)l < P ( 4  q(r) 
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and, therefore, that u defines a continuous bilinear form ii on E, x Fq 
and, by continuity, on 8, x Pq. Returning then to Eq. (49.2) and 
regarding A’ (resp. B’) as an equicontinuous subset of Eb (resp. F:), 
we see that the form ii is integral over 8, x Pq . Conversely, given an 
integral form ii on 8, x Pq we can pull it back as an integral form on 
E x F, just by setting 

4x9  Y )  = W P ( X ) ,  +ll(Y)), 

where 4, (resp. 1,4~) is the canonical mapping of E into f?, (resp. F into 
p,). This reduction of arbitrary integral forms to integral forms on 
products of Banach spaces will be used to a considerable extent. It 
follows from Eq. (49.2). 

Defnition 49.2. Let E, F be two locally convex H a w d d  spaces. A 
continuous linear map u : E -+ F is called integral if the associated bilinear 
form on E x F ,  

is integral. 

By F’ we have denoted the strong dual of F. From what precedes, 
we know that there are continuous seminorms p and q’ on E and F ,  
respectively, such that (y’,  ~ ( x ) )  is integral on f?, x . Let us denote 
by U (resp. V‘) the closed unit semiball of p (resp. q’). By definition 
of the strong dual topology, the polar V ‘ O  of V’ in F is a closed convex 
balanced bounded subset of F. As we have 

(x, Y’)  - w, u(x)>, 

(for suitable choices of p and q’ ;  see above), u maps U into V ‘ O .  Thus 
u defines a continuous linear map of the normed space E, into the normed 
space FVpo (for the definition of the latter, see p. 370). As the dual of 
F,.o can be identified, as a Banach space, with pi, , we obtain a factoriza- 
tion of u into the sequence 

t I i 

where i and j are the natural mappings and fi is integral. Here again, 
we are reduced to the case of normed spaces. 

E E,  - F p  - F, 

PROPOSITION 49.2. Let E, F, G, and H be four locally convex H a u s d d  
spaces, u : E -+ F an integral map, and f : G -+ E, g : F + H continuous 
linear maps. The compose g o u of is integral. 
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Proof. It suffices to verify the following. If @ is an integral form 
on E x F', the form on G x H ,  (6, v') - @(f(f), 'g(v')), is integral. 
But this follows at once from the fact that f @ is a continuous linear 
map of G @, H' into E 0, F'. 

PROPOSITION 49.3. 
its transpose 1u : F' -+ E' is also integral. 

Proof. 

If a continuous linear map u : E -+ F is integral, 

The integral map u can be factorized as follows: 

i 1 3 
(49.3) E - - - t E , - F g - - t F ,  

where p is a continuous seminorm on E, B is a closed convex balanced 
bounded subset of F, i and j are the natural mappings, and u" is integral 
(see above). The transpose of u is factorized by transposing the sequence 
(49.3); it suffices therefore to show that the transpose of u", % :pit 4 

Ek (q': gauge of the polar Bo of B), is integral. In other words, it can be 
assumed that E and F are normed spaces. Let us denote by A' (resp. B") 
the closed unit ball in E' (resp. F"). There is a positive Radon measure 
p on A' x B" of total mass < 1 such that, for all x E E, y' E F, 

It is clear that the right-hand side, hence the left-hand side, can be 
extended from E to E and the form (y', x") - (luU(y'), x") is therefore 
integral. 

PROPOSITION 49.4. Suppose that the canonical injections E -+ E" and 
F' + F '  are isomorphisms into (which is the case, e.g., when E and F' are 
barreled or metrizable). If u : E -+ F is a continuous linear map whose 
transpose is integral, u is integral. 

Proof. By Proposition 49.3, we know that the bitranspose llu : E" -+ F" 
of u is integral. Let i : E -+ E" be the natural injection; viewed as a 
mapping of E into F", u is equal to % o i .  By hypothesis i is continuous, 
therefore u : E -+ F" is integral. Thus we have an integral representation 
of the type (49.2), or rather (49.4), 

Ay"', u(x ) )  = J- <x', x) <y"", y'") dp(x', y""). 
A'XB"" 

Taking the restriction of both sides to E x F', i.e., replacing y'" E E"' 
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by ~ ' E F ' ,  and taking into account the hypothesis that the natural 
injection F ' + F  is an isomorphism into, yields easily the result: 
for we may write 

where B" is the image of B"" under the canonical mapping F"" -+ F", 
transpose of F ' - + F ,  and ji is the image of p under that mapping. 
I t  is clear that B" is a weakly closed equicontinuous subset of F". 

COROLLARY. 
and only if Iu ; F' + E is integral. 

If E and F are normed spaces, u : E -+ F is integral if 

PROPOSITION 49.5. A nuclear map u ; E 4 F is integral. 

Proof. Let us for instance use the representation (47.2) of u (Proposition 
47.2). We see that the bilinear form on E x F' associated with u is 
equal to 

' ( ' 9  y') = 'k <X; 9 X> <Y', Yk>' 
k 

We recall that {x;} is an equicontinuous sequence S' in E', whereas 
the yk are all contained in some bounded subset B of F. The polar BO 
of B is a neighborhood of zero in E ,  by definition of the strong dual 
topology. The polar of Bo in E" is therefore an equicontinuous subset 
Bff in E", trivially weakly closed. If then 0 E E Q F' takes values on 
S' x B" which are bounded, in absolute value, by one, we have 
1 (ii, 0) 1 < C k  1 hk 1 < + co, which implies immediately that u is 
integral. 

Example 49.1. Let X be a compact topological space, and dx a positive 
Radon measure o n X  of total mass < 1. The bilinear form 

(49.5) (f, g) - f W g W  
X 

on U(X) x U(X) (U(X): space of continuous complex functions in 
X with the norm f - supxEx 1 f ( x )  I) is integral, as it can be written 

where 6, is the Dirac measure at x and p is the Radon measure which 
is the image of dx via the mapping x - (S,, 6,) of X onto a weakly 
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compact subset of the diagonal of W ( X )  x U'(X).  By U'(X)  we denote 
the Banach space of Radon measures on X, the dual of W ( X ) .  It can 
easily be checked that the form (49.5) is associated with the mapping 
g - g ( x )  dx of U ( X )  into U'(X) .  

Remark 49.2. Example 49.1 shows that there are integral mappings 
which are not nuclear. Indeed, the mapping g - g dx above, of U ( X )  
into U'(X),  is integral. But, in general, it will not be nuclear; for then 
it would have to be compact. Take for instance X equal to the closed 
unit interval [0, 13 of the real line, and dx equal to the induced Lebesgue 
measure; the image, under g - g  dx, of the unit ball of U ( X ) ,  is not a 
relatively compact subset of U'(X).  

However, as a consequence of Theorem 48.3, every integral map of 
a Hilbert space into another one is nuclear: 

PROPOSITION 49.6. 
integral mapping. The operator u is nuclear. 

Let E ,  F be two Hilbert spaces, and u : E -+F an 

This is merely a restatement of Theorem 48.5. 
We are now going to use Example 49.1 in order to obtain a useful 

factorization of any integral map. Let E, F be two locally convex Haus- 
dorfT TVS, and u : E -+ F an integral map. Consider the representation 

We recall that A' and B" are weakly closed equicontinuous subsets, 
for the dualities between E and E and F' and F", respectively. We 
choose, as compact topological space X, the product A' x 23". We 
define two mappings S : E -+ U ( X )  and T : F' --t U ( X )  in the following 
manner. For every x E E and every y' E F', 

S(X) : (XI, y") - <XI, X>, 

W') : (XI, Y")  - <y", r'>. 

Then let u" be the mapping f - f (x', y")  dp(x', y") of U ( X )  into W ( X ) .  
It is immediately seen that u is the compose of the sequence 

S ii 
(49.6) E - - - t V ( X ) - + W ( X ) Z F "  

(where we regard u as valued in F"); the central arrow u" is an integral 
mapping, as we have seen when looking at Example 49.1. From the 
factorization (49.6) of u, we derive the following important result: 
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PROPOSITION 49.7. Let u : E -+ F be an integral mapping. If the locally 
convex Hausdog space F is complete, there is a Hilbert space H and two 
continuous linear mappings a : E -+ H ,  j3 : H -+ F such that u = j3 o a. 

Proof. In (49.6), we observe that fi can be factorized into 

%(X)  * P ( X ,  dp)  * u ' (X) ,  

where the first arrow is the natural mapping of the space of continuous 
functions into the space of classes of square integrable functions, and 
the second arrow is the injection L2(X, dp)  3 f ~*r f dp E U'(X).  By 
combining this with (49.6) we obtain a factorization of u : E +F" 
into a sequence 

where H,, is a Hilbert space. Let Hl be the linear subspace of H,  which 
is the image of E under u; as u(E) C F, we have T(H,)  C F. We suppose 
that Hl carries the pre-Hilbert structure induced by the structure of 
H, . We have now a factorization of u into 

Since F is complete we may extend T~ by continuity to the completion 
H of HI ; we call this extension j3; H is a Hilbert space. We call a the 
map u1 viewed as a map of E into H .  Q.E.D. 

Remark 49.3. There are linear mappings u : E -+F which can be 
factorized into E 5 H L F ,  with a, f l  continuous and H a Hilbert 
space, without u being integral. Trivial example: the identity mapping 
I of an infinite dimensional Hilbert space; if I were integral, it would 
be nuclear (Proposition 49.6), hence compact. 

A simple and important consequence of Propositions 49.6 and 49.7 
is the following one: 

PROPOSITION 49.8. Let A, B, C ,  and D be four locally convex Hausdorff 
spaces. Suppose that B and D are complete. Then the compose 

(49.7) A* B"-C"-D 

of three integral mappings is nuclear. 
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Proof. By applying Proposition 49.7, we may factorize (49.7) into 

where Hi is a Hilbert space, uj and vj are continuous linear mappings 
( j  = 1,2). As w is integral, the compose w1 o w o u2 must be integral 
(Proposition 49.2), hence nuclear (Proposition 49.6). But then the total 
compose, which is equal to w o u o v, must be nuclear (Proposition 
47.1). 

We shall soon make use of Proposition 49.8. Let us point out an 
easy consequence of it: let E be a FrCchet space, u : E -+ E a continuous 
linear mapping onto; then u cannot be integral. We leave the proof of 
this fact as an exercise to the student. 



Nuclear Spaces 

In Chapters 44, 45, and 46, we have seen a few examples of how 
completion of topological tensor products E Q , F  or E Q,,F may 
yield new representations for known “functional” spaces. There is a 
number of reasons for the usefulness of such representations. An im- 
portant one is that they make the extension of certain mappings automat- 
ic, showing that it is the extension of a tensor product of mappings of 
the type u Be v or u @,, v .  Also, these representations might bring to 
light certain interesting properties of the spaces under consideration, 
which could have gone unnoticed otherwise or which would have 
remained mysterious. A startling example of the latter is L. Schwartz’s 
kernels theorem: it states, essentially, that every continuous linear map 
of the space (%?& of test functions in some variable x, into the space 
53; of distributions in a second variable y, is given by a (unique) distri- 
bution Kz,v in both variables x, y, according to the formula 

The reader will realize the peculiarity of this situation if he compares 
it to those of a more “classical” nature, such as, for instance, the one 
occurring in the L2 theory. It is trivially false that every bounded operator 
of Lz into LE can be represented as a kernel K(x, y) E Lz,v , that is to 
say, can be written as 

f - J K(-% Y)fW dx. 

The identity mapping itself cannot be written in that way! We know 
indeed that the kernel (distribution) defining the identity is a Dirac 
kernel, S(x - y)-which is not a function. 

What then are the reasons for such a striking difference between 
continuous linear operators into 9’ and the ones on L2? This is the 
question which is at the origin of the theory of completed topological 
tensor products and nuclear spaces, due to A. Grothendieck. The answer 

509 
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to it is, very roughly speaking, that the spaces 9' (as well as V", V:, 
B', 9, etc.) are all nuclear, whereas no infinite dimensional Banach 
space is. A nuclear space E is a locally convex HausdorfT space such 
that, for any other space F, E &,F = E &F (the sign = stands for 
the canonical mapping, which is onto when E is nuclear). I t  is at once 
evident, on this definition, that nuclear spaces will be endowed with 
nice properties, in relation with extension of tensor products of two 
mappings, u @ o: for the e-topology is well behaved when we deal 
with isomorphisms into, whereas the r-topology is well behaved when 
we deal with homomorphisms onto. But going back to the kernels 
theorem, it is readily seen that 9& induces on 9; @ 9; the e-topology 
(or the 7r one), and that we have therefore 

9;,ys 9; 8 9;, 

where we omit the indices r or e to the symbol @. In addition to this, 
it is easy to see that 

wz 63 9; s q(q)s; q, 
where (U:), is supposed to carry the 7-topology. As VF is a Monte1 
space, its r-topology is equal to its initial topology, and every equi- 
continuous subset (we are viewing WF as the dual of 9') is bounded 
(= relatively compact). Finally, we see that 

We proceed now to define the nuclear spaces and give their basic 
properties. 

Let E be a locally convex HausdorfT space, and p a continuous semi- 
norm on E. We recall that EV is the completion of the normed space 
EIKer p (the latter is a normed space if we put on it the quotient 
mod Ker p of the seminorm p); thus I?, is a Banach space. 

Definition 50.1. The locally convex Hausdog TVS E is said to be 
nuclear if to every continuous seminorm p on E there is another continuous 
seminorm on E, q 2 p ,  such that the canonical mapping Eq +EV is 
nuclear. 

What the canonical mapping 8, --+ 8, is, should be easy to guess: 
since q p, Ker p 3 Ker q, hence there is a canonical mapping of 
E/Ker q onto E/Ker p; furthermore this mapping is continuous if 
we provide the first space with the norm q/Kerq and the second one 
with p/Ker p. 

, can be identified with the subspace We recall that Eb , the dual of 
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of E' consisting of the functionals x' which are continuous when E 
carries the topology defined by the single seminorm p; Ek carries its 
dual Banach space structure. We recall that this structure may be 
defined without reference to Bp : indeed, Eb is the subspace of E 
spanned by the polar U: of the closed unit semiball U ,  of p ;  its norm 
is the one associated with the weakly compact convex balanced set U: 
(cf. pp. 478 and 502). 

The introduction of nuclear spaces is justified by the following 
theorem: 

THEOREM 50.1. 
TVS E are equivalent: 

The following properties of a locally convex Hausdog 

(a) E is nuclear; 
(b) to every continuous seminorm Q on E there is another continuous 

seminorm q on E, q 2 p ,  such that the canonical injection of 
Ei into E; is nuclear; 

(c) every continuous linear map of E into a Banach space is nuclear; 
(d) every linear map of a Banach space into E ,  which transforms the 

unit ball into an equicontinuous set, i s  nuclear; 
(e) for every Banach space F,  the canonical map of E @* F into E F 

is an isomorphism onto; 
(f) for every locally convex Hausdog TVS F, the canonical map of 

E $,F into E B e F  is an isomorphism onto. 

Proof. (a) => (b) in view of Definition 50.1 and of the fact that the 
transpose of a nuclear map is nuclear. 

Let us show that (b) * (a). The canonical injection j :  E i  + Ei 
is the transpose of the canonical map i : I?, --+ I?, . From the corollary 
of Proposition 49.4 we know that i is integral. We can find two more 
continuous seminorms 5 2 r >, q on E such that the canonical mappings 

c : E r + E q ,  i f f : E , - + E r  

are integral. In view of Proposition 49.8, the compose i" o i' o i, which 
is the canonical mapping E, + E p  , is nuclear. 

Let F be a Banach space, and u : E 3 F a continuous linear map. 
The preimage under u of the closed unit ball of F is a closed convex 
balanced neighborhood of zero U in E. Let Q be the gauge of U. If 
E is nuclear, there is q 2 p such that + E,  is nuclear. But we can 
factorize u into the sequence 

E A I?,,& 8, AF, 
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where i and j are the canonical mappings, and ZZ the extension by con- 
tinuity of the mapping EIKer p -+F defined by u (E/Ker p carries 
the norm p/Ker p). As j is nuclear, so is u (Proposition 47.1). This 
shows that (a) (c). To  see that (c) e- (a), we choose arbitrarily a 
continuous seminorm p on E and we apply (c) with F = 8, and u the 
canonical mapping of E into 8,. But by Definition 47.3, to say that 
u is nuclear is equivalent to saying that there is a continuous seminorm 
q on E, q 2 p, such that the canonical map I?, -+ 8, is nuclear. This 
shows that (c) * (a). 

The equivalence of (b) and (d) is shown in pretty much the same 
fashion as the equivalence of (a) o (c). We shall leave this part of the 
proof to the student. We shall concentrate on the proof of the fact that 
(e) and (f)  are equivalent to the other properties. We begin by showing 
that (e) e (f). 

(e). Note that (f) (resp. (e)) means that, for all locally 
convex Hausdo& spaces (resp. Banach spaces) F, we have 

Trivially, (f) 

(50.1) E @,F = E Q F ,  

where the equality extends to the topologies. If we wish to prove (50.1) 
we may apply Lemma 43.1 (Exercise 43.3) and show that every equi- 
continuous subset of the dual B(E, F )  of E @,, F is an equicontinuous 
subset of the dual J(E, F )  of E 0, F. We recall that B(E, F )  is the space 
of all continuous bilinear forms on E x F and that J(E, F) is the space 
of integral forms on E x F (see Chapter 49). T o  every equicontinuous 
subset Qi of B(E, F )  there are continuous seminorms p and q on E and F, 
respectively, such that CP is an equicontinuous subset of B(E, , Fq) 
( E ,  is the space E equipped with the single seminorm p; analog for 
F,). But we may then go to the quotient spaces Ep -+ E,/Ker p and 
Fq -+F,/Ker q, and then to the completions of the quotient spaces. 
Thus Qi defines (canonically) an equicontinuous subset Qi, in B(Ep , P,) 
and one, Qi2, in B(I?,, P,). Of course, Qil can also be regarded as an 
equicontinuous subset of B(E, P,). On the other hand, the equicontinuous 
subsets of J(E, p,) are identifiable to those of J(E, flq) and these, in turn, 
are equicontinuous subsets of J ( E , F )  (this is only saying that the 
identity mapping is continuous from E Be F into E 0, F,!). Suppose 
then that (e) has been proved. It implies that every set like is an 
equicontinuous subset of J(E , f l , ) ,  hence of J(E ,F) .  This proves the 
equivalence of (e) and (f). 

Let us suppose now that E is nuclear, F a Banach space, and let us 
show that (50.1) holds. Let 0, p be as above (q is now the norm of F).  
Let po be a continuous seminorm on E, po p, such that the canonical 
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map Eb -+ Ebn is nuclear (p, exists by (b)). For B E  B(E,  F), let us 
set 

U B  : y - (. - N., YN. 

When B ranges over @, we may regard the u, as an equicontinuous subset 
of L(E, Eb); if we compose the uB , B E @, with the canonical injection 
Eb -+ E& , we obtain a bounded subset of L1(F, Ebo) (equipped with the 
trace-norm). From this it follows immediately (cf. Proposition 49.5 
and proof) that the bilinear forms on F x (E&)' associated with the 
mappings us form an equicontinuous subset of J (F ,  (Ebo)'), @'I. But 
the natural map of into its bidual, (Eke)', is an isomorphism into, 
and therefore, by restriction to , 0" defines an equicontinuous subset 
@, of , F). Let i, : E -+ I?,o be the canonical mapping, and set, 
for each B, E O0 , B(x,  y )  = Bo(io(x), y ) ,  x E E, y E F .  When Bo ranges 
over @,, B ranges over @, as immediately checked. But on the other 
hand, B ranges over an equicontinuous subset of J(E,  F) in view of the 
equicontinuity of @,, and the continuity of io . Thus (50.1) holds when 
E is nuclear. 

Conversely, let us suppose that (50.1) holds for all Banach spaces 
F and derive from this that E is nuclear. Then let p be an arbitrary 
continuous seminorm on E, and u : E -+ I?, the canonical mapping. 
The  bilinear form associated with u is trivially continuous on E x E' P '  hence, since B(E,  23;) = J(E, Eb) by hypcthesis, it is integral; in 
other words, the mapping u is integral. But by the factorizations property 
of integral mappings (see p. 503), we know that there is a continuous 
seminorm q on E, which we can take 2 p, such that u decomposes into 

where er is the canonical mapping and u" (also canonical) is integral. 
By reasoning then as in the proof of the implication (b) (a), we 
conclude easily that E is nuclear. 

Remark 50.1. Inspection of the proof of Theorem 50.1 shows immediat- 
ely that we have proved that Property (a), E nuclear, is equivalent with 
each one of the properties (b), (c), and (d) where the word nuclear is 
replaced by integral and that E is nuclear if and only if, to every con- 
tinuous seminorm p on E there is a continuous seminorm q >, p on 
E such that the canonical mapping I?, ---f I?, is integral. 

The basic properties of nuclear spaces are now easy to derive, either 
by direct derivation from Definition 50.1 or by application of Theorem 
50.1. Let us begin with the so-called stability properties: 



514 TENSOR PRODUCTS. KERNELS [Part I11 

PROPOSITION 50.1. 

(50.2) A locally convex Hausdorff TVS E is nuclear if and only ;f its 
completion E is nuclear. 

(50.3) A linear subspace of a nuclear space is nuclear. 

(50.4) The quotient of a nuclear space modulo a closed linear subspace is 
nuclear. 

(50.5) A product of nuclear spaces is nuclear. 

(50.6) A countable topological direct sum of nuclear spaces i s  nuclear. 

(50.7) A Hausdorff projective limit of nuclear spaces is  nuclear. 

(50.8) A countable inductive limit of nuclear spaces is nuclear. 

(50.9) If E and F are two nuclear spaces, E @ F is nuclear. 

Before giving the proof of Proposition 50.1, we recall the definitions 
of certain terms used in its statement. First of all (and this will be valid 
from now on), if E is nuclear, we write E @ F instead of E @,,F or 
E B e F .  Let {E,} be a family of locally convex spaces, and E a vector 
space. 

(i) Suppose that we are given, for each index a, a linear map 4, : 
E ---t E, . We then consider on E the least-fine topology, compatible 
with the linear structure of E, such that all the mappings 4- be continuous. 
Equipped with it, E is called the projective limit of the spaces E, with 
respect to the mappings 4,. A basis of neighborhoods of zero in this 
topology is obtained as follows: in each E , ,  we consider a basis of 
neighborhoods of zero U,,a (BE&); let V& be the preimage of U,,s 
under 4, ; then, all the finite intersections of sets V& , when OL and f l  
vary in all possible ways, form a basis of neighborhoods of zero in the 
projective topology on E (this shows, in particular, that the said topology 
exists!); it is also clear that this topology is locally convex as soon as 
all the E, are locally convex. I t  is HausdorlT if every one of the E, is 
HausdorfI and if, for every x E E, x # 0, there is at least one index a 
such that #,(x) # 0, If the latter condition is not satisfied, E, cannot 
possibly be HausdorlT. Now a Hausdo& projective limit E of spaces 
E, can be identified (topology included) to a linear subspace of the 
product space E = nu E, via the mapping x -.. (+m(x)), . 

Suppose now that we are given, for each index a, a linear map (ii) 
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4, : E, -+ E, such that E = U,+,(E,). Suppose that the E, are all 
locally convex. We may then define on E the finest locally convex 
topology such that all the mappings +, be continuous. A convex subset 
U of E is a neighborhood of zero in this topology if, for every a, U n  
+-(E,) is of the form +,( Ua), where U, is a neighborhood of zero in E, . 
When E is equipped with this topology, it is called the inductive limit 
of the spaces E, . The student will readily perceive that LF-spaces are 
a special kind of inductive limit. 

(iii) A notion closely related to the preceding one, and as a matter 
of fact a particular case of it, is the notion of locally convex direct sum. 
In this case, we suppose that every mapping 4, is injective and we 
replace the hypothesis that E = Ua+,(E,) by the hypothesis that E 
is the algebraic direct sum of the vector spaces E, : every element x of 
E can be written in one and only one manner as a sum x = ~+ , (xOL)  
in which all xu are equal to zero except possibly a finite number of them. 
Then the direct sum topology on E is the finest locally convex topology 
such that all the mappings 4, are continuous. We say, when E carries 
it, that it is the topological direct sum of the E, (note that the latter are 
locally convex). A convex subset U of E is a neighborhood of zero if, 
for all a, U n +,(E,) = +,( U,), where U, is a neighborhood of zero 
in E, . As we have said, this is a particular case of inductive Iimit, as 
can be seen in the following way. For each finite set A of indices a, 
let EA be the direct sum of the E,’s, with its obvious topology (the one 
carried over from the product TVS nu€,, E, canonically identified to 
EA); let +A : EA + E be the linear map defined by 

Then the direct sum topology on E is nothing else but the inductive 
limit topology of the spaces EA with respect to the mappings +A . 

But conversely the inductive limit E of spaces E, with respect to 
certain mappings +, may be regarded as a quotient, modulo a closed 
linear subspace M, of a direct sum of the E, . As direct sum, we take 
the linear subspace Eo of the product of the E, consisting of those 
elements (xu), such that xu = 0 for all a except possibly a finite number 
of them. The injection of E,, into E0 is the mapping xu, -+ (Q, , where 
2, = 0 if a # a. and 4, = x., . The linear subspace M of E0 will then 
be the kernel of the linear map + : E0-+ E defined by +((xu),) = C 
+,,(xu). We leave to the student the verification that C$ is a homomorphism 
of Eo onto E. 
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Proof of Proposition 50.1 

Proof of (50.2). Evident by Theorem 50.1, since 

Proof of (50.3). Let El be a linear subspace of a nuclear space E. 
Every continuous seminorm p1 on El is the restriction of a continuous 
seminorm p on E. By hypothesis, there are two continuous seminorms 
r >, q >, p on E such that the canonical mappings 

are nuclear; we may say that the canonical mappipg E, --t E,  is poly- 
nuclear in the sense that it is the compose of two (or more) nuclear 
mappings.&et tl be the restriction of r to El ; there is a canonical 
mapping (Qr1 + I?, and therefore a canonical mapping 

(50.10) 

which is obviously polynuclearibut the image of (50.10) is contained 
in the closed linear subspace (El)pl. Assertion (50.3) will then follow 
from the lemma: 

LEMMA 50.1. If a linear mapping u : E + F  is polynuclear (i.e., the 
compose of at least two nuclear operators) and i f  u(E) is contained in a 
complete linear subspace Fl of F, then the mapping u : E --+ Fl is also 
nuclear. ' 

Proof of Lemma 50.1. The mapping u can be factorized into 

with v,  w nuclear; we may suppose F complete, for if we regard w as 
taking its values in P, w is still nuclear; in particular, w is integral and 
can be factorized into 

GAH-LF 

with a, b continuous linear mappings and H a Hilbert space. We set 
f = a o o; f is nuclear and u is factorized into 

E-LHLF. 
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Let H ,  be the closure of f ( E )  in H, and T the orthogonal projection of 
H onto H ,  ; let us set g = ?T of; g is a nuclear operator and u can be 
factorized into 

b 
E ~ - + H , - L F , - F ,  

where the last arrow is the natural injection. Indeed, b( f ( E ) )  C F, . 

Proof of (50.4). Let E be a nuclear space, M a closed linear subspace 
of E, and + : E -+ E / M  the canonical homomorphism. Let 6 be a 
continuous seminorm on EIM; the seminorm on E, p = 6 o(6, is 
continuous. There exists a continuous seminorm q p on E such 
that the canonical mapping I?, --f is polynuclear. Let (1 be the semi- 
norm on E / M  defined by q : q(i )  = infref+Mq(x), and let us set 
q, = q o +. The open unit ball U, of q, is equal to U + M, with U, 
the open unit ball of q. We derive from this that I?,l is a quotient space 
of I?q and that the mapping I?, + I?, decomposes into 

As 6,  is continuous, b, o g is nuclear. Q. E.D. 

(50.11) + E,, --+ E p  t 

where the arrows denote the canonical mappings. But, as is easily seen, 
I?,, (E/M)a and ( E / M ) ,  ; therefore, it will suffice to show 
that the second arrow, in (50.1 I), is a nuclear map. This will follow 
from the next lemma: 

LEMMA 50.2. Let u : E -+F be polynuclear and equal to the compose 

where N is a closed linear subspace of E ,  (b : E -+ E / N  is the canonical 
homomorphism, and u" is continuous. If F is complete, u" is nuclear. 

Proof. By hypothesis, u can be factorized into E A G > F  with v ,  
w nuclear; we may suppose G complete after extending w to its comple- 
tion (which is permitted, as F is complete) apd regarding u as valued 
in e. Then we decompose v into E :  H - +  G, with a, b continuous 
and H a Hilbert space. Observe that u ( N )  = 0; then let H I  be the 
closure of a ( N )  in H. By going to the quotients, a defines a continuous 
linear map d : E / N  -+ H / H ,  ; H / H ,  can be identified with the orthogonal 
of H ,  in H, on which b is defined; therefore let 6 be the restriction of 
b to H / H , .  We have obtained a decomposition of u" into 

a b W 

EIN - H / H ,  - G --+ F. 
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As w is nuclear, so is 2. 

Proof of (50.5). Let E = n, E, be the product of a family of nuclear 
spaces E, . Every continuous seminorm on E is at most equal to a semi- 
norm of the form 

PA((X=)) = 
.€A 

where A is a finite set of indices a, and where each pa is a continuous 
seminorm on Ea . It is then clear that is isomorphic to the finite 
product nwA (E,); . It  suffices then to select, for each a E A, a continu- 
ous seminorm q, >, pa on E, such that the canonical mapping (&&a + 

(,!?,)ba is nuclear, and set 

q((x,)) = c % ( X J  
.€A 

The canonical mapping of &, naEA into is then nuclear, 
as a product of nuclear mappings. 

Proof of (50.6). Let E be the topological direct sum of a sequence 
of nuclear spaces Ek (k = 0, 1, ...). Let p be a continuous seminorm 
on E, and p k  its restriction to Ek (regarded as a linear subspace of E).  
By hypothesis, there is a continuous seminorm q k  2 p k  on Ek such that 
the canonical mapping uk : (E& + (Ek)ik is nuclear. This means 
that there is a sequence (xi,n) in the unit ball of (E&,  a sequence 
( Y k , % )  in the unit ball of (&)Gk , and a sequence {hk;n} in P such that iLk 

is eiven by 
m .  

xk - c 'k .n  ' 'k> Y k . n  ' 
n-0 

Observe that the dual Ei of Ek can be regarded as a linear subspace 
of E', via the mapping x i  - (x - (x i ,  x k ) ) ,  where x k  is the Rth com- 
ponent of x. Consider then the mapping 

m m  

' = 1 xk - Pkl'k,n (PkXL,n 9 x k )  Y k , n  * 
k k-0 n-0 

Here P k  is a number 2 2" z;=o I hk,n I and yk,% is regarded as an element 
of the direct sum of the Banach spaces (Ek)Gk ; this direct sum is trivially 
isomorphic to E p .  On the other hand, let us set, for x = XI, xk E E, 

q(x) = st$) p k  q k ( x ) *  

Obviously, q is a continuous seminorm on E-and the p,p;,, all belong 
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to the closed unit ball of Ei . Furthermore, the mapping u above induces 
the canonical mapping of I?q into I?,, which is therefore nuclear. 

Proof of (50.7). Follows from the combination of (50.3) and (50.5) 
since a Hausdo& projective limit is a linear subspace of a product 
(see preliminary remarks). 

Proof of (50.8). Follows from the combination of (50.4) and (50.6) 
since an inductive limit is a quotient of a topological direct sum (see 
preliminary remarks). 

Proof of (50.9). For all locally convex HausdorfT spaces G, we have 

@ O F )  8 s  G = 0.P 0, G) = E O,(F 0, G) = ( E  OF) 0, G, 

where E @ F stands for E 8, F = E @,, F. The associativity of topolog- 
ical tensor products n and E follows straightforwardly from their 
definitions. 

PROPOSITION 50.2. 

(50.12) every bounded subset of E is precompact; 

(50.13) every closed equicontinuous subset of the dual E' of E is a metrizable 
compact set (for the strong dual topology); 

E is a linear subspace of a product of Hilbert spaces. 

Let E be a nuclear space. Then: 

(50.14) 

Proof of (50.12). Let B be a bounded subset of E, p a continuous 
seminorm on E, and q > p another one such that I?q + I?, be nuclear. 
The canonical mapping of E into i?, can be decomposed into 

E + e, --t 8,; 

as the arrows denote continuous linear mappings and the last one a 
compact mapping, the canonical image of B in 8, is precompact. As 
p is arbitrary, this implies immediately that B is precompact. 

Proof of (50.13). Let A' be a closed equicontinuous subset of E'; 
we may assume that A' is convex and balanced. There is another such 
set B' 3 A' with the property that the injection EL. -+ EA, is nuclear. 
The image of A' in Ei ,  is precompact; as it is closed and as EL, is a 
Banach space (we may choose B' weakly compact), A', regarded as 
a subset of E;, , is compact and, of course, metrizable. Since the topology 
induced by E' on A' is weaker than the one induced by E;. ,  A' is a 
compact metrizable subset of E'. 
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Proof of (50.14). Let p be an arbitrary continuous seminorm on E, 
and q 2 p another continuous seminorm such that the canonical map 
Eq -+ E ,  is nuclear, hence integral. This implies that there is a Hilbert 
space H ,  such that that canonical mapping has the factorization 

E,  -+ H,, - E ,  . 
By introducing the canonical mapning of E into 
torization 

, we obtain a fac- 

E -  H , +  8, , 

Let us denote by i, the map corresponding to the first arrow and by 
i@ the product TVS n,, H ,  . It is immediately verified that the mapping 
x - (i,,(x)), of E into 2 is an isomorphism into (for the TVS structure). 

COROLLARY 1.  Let E be a quasi-complete nuclear space. Every closed 
bounded subset of E is compact. 

We recall that a TVS E is said to be quasi-complete if every closed 
bounded subset of E is complete. Banach spaces being complete are 
a fortiori quasi-complete; we have: 

COROLLARY 2. 
dimensional. 

A normable space E is nuclear i f  and only i f  it is finite 

We recall that E is nuclear if and only if 8 is nuclear. 

COROLLARY 3. A quasi-complete barreled space which is nuclear is a 
Monte1 space. 

We shall discuss some examples of nuclear spaces and of spaces 
which are neither nuclear nor normable in the next chapter. In particular, 
we shall see that the countability restriction in Properties (50.6) and 
(50.8) cannot be dropped (in general). 

PROPOSITION 50.3. Let E be a nuclear space. The identity mapping of 
E is the uniform limit over the compact subsets of E of continuous linear 
-mappings of E into itself whose image is finite dimensional, i.e., E has the 
following approximation property : 

For every compact subset K and every netghborhood of zero U in 
E there exists a continuous linear map u : E -+ E with finite 
dimensional image, such that, for all x E K,  u(x)  - x E U .  

Proof. Suppose that U is the closed unit semiball of a continuous 
seminorm p on E and let us select another continuous seminorm 

(A) 
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q 2 6 such that the canonical mapping 8, -+ 8, is nuclear. We have 
the commutative diagram 

E L E  

where I is the identity mapping and the other arrows are the canonical 
ones. The lower horizontal one is of the form 

(50.15) 

where the x i  are bounded in E: , the y k  are bounded in E p  , and ( h k )  E 1'. 
The mapping (50.15) is the limit, in L(8,  ; 8,) for the operators norm, 
of mappings 

P - 2 A ,  <x;, P > T k  (n = 0, 1 ,... ), 
k=O 

which, in turn, are the limit of mappings 

n ' - <x; ? '>Yj,k ( j  = O, '>**')> 
k=O 

where now the y j , k  belong to the image of E in 8, ; this follows from 
the fact that the image in question is dense (by definition of 8, as the 
completion of E/Ker p). We reach the conclusion that to every E > 0 
there are integers j and n sufficiently large that, for all x E E satisfying 
q(x) < 1 ,  

n 

x -  X k < x ~ 9 X > Y j , ~ E E U '  
k=O 

If K is now an arbitrary bounded subset of E, we select E > 0 such 
that EK C U ,  = {x E E; q(x) < 1). Q.E.D. 

Remark 50.2. ?'he reader should not think that Property (A) is in 
any-way a prerogative of nuclear spaces: it is not difficult to see that 
all Hilbert spaces have it (Lemma 48.3), that the spaces L P  (1 < p < CO) 

have it, and that the same is true of the space U(X) of continuous 
complex functions on a compact (or on a locally compact) space. As a 
matter of fact, no space is known which does not possess (A)! 
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Let E be a nuclear space; every weakly compact subset of E is bounded 
for the initial topology (this is true in general, in view of Mackey's 
theorem). But conversely, every bounded subset of E is precompact. 
It follows from this that, if E is nuclear and complete, the topology 
T(E', E )  on E is identical to the strong dual topology (which we have 
sometimes denoted by b = b(E', E)) .  

PROPOSITION 50.4. Let E be a nuclear and complete space, and F a complete 
locally convex Hawdorff space. Then 

E @ F Le(Ei; F )  g Ls(F:; E) .  

Proof. We knsw that L,(Ei ; F )  is complete (Proposition 42.3); it 
suffices to show that its linear subspace consisting of the mappings 
with finite dimensional image is dense. Note that L,(EL ; F )  L,(Fi ; E,) 
and consider an element v : FJ + E,, in this space. Let B' be an equi- 
continuous subset of F'; if we suppose that B' is weakly closed, which 
we may, B' is weakly compact, hence v(B') is weakly compact in E 
(as v is continuous). But then o(B') is closed and bounded, hence 
compact in E. We take into account Property (A) with K = v(B') and 
U arbitrary; there is u : E + E with finite dimensional image such 
that, for all y' E B', 

V ( Y ' )  - 4W)) E u. 
The mapping u o v : Fi+ E,, has finite dimensional image and is 
continuous. 

PROPOSITION 50.5. Let E,  F be two locally convex Hausdofl spaces. 
W e  make the following hypotheses: (i) E and F are complete; (ii) E is 
barreled; (iii) E' is nuclear and complete. Then L,(E; F )  is complete, and 
we have 

E @ F L,(E; F ) .  

Proof. We begin by showing that E' is semireflexive (i.e., equal to its 
bidual, E", as a vector space). We apply Theorem 36.3: a closed and 
bounded subset A' of E', in the sense of o(E', E"), is of course closed 
and also, by Mackey's theorem, bounded in the sense of b(E', E).  As 
E is nuclear and complete, A' is compact and, a fortiori, compact for 
o(E, E"), which proves our assertion. 

As E is semireflexive, E is semireflexive. Indeed, as E carries its 
Mackey topology T(E, E'), the natural injection E -+ E is an isomorphism 
into; as E is complete, it is a closed subspace of E". But E" and E = E 
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have the same dual, E' = E"', hence they must be equal. Incidentally, 
we note (by Proposition 36.4) that E is barreled, therefore E' is a Montel 
space. Then E, as the strong dual of a Montel space, is also a Montel 
space (Proposition 36.10). 

At any event, as E and F are both complete, we may apply Proposition 
50.4. We obtain 

E' igi F = L,(E; F). 

But in the dual of a Montel space, there is identity between equicontinu- 
ous sets and strongly bounded sets (Theorem 33.2), whence Proposition 
50.5. 

Proposition 50.5 has applications to many situations occurring in 
distribution theory. 

COROLLARY. 
nuclear space. 

Under the hypotheses of Proposition 50.5, L,(E,F) is a 

It  suffices to combine Proposition 50.5 with (50.9). 
We close this chapter with some results about FrCchet spaces. 

PROPOSITION 50.6. 
dual is nuclear. 

Proof 1. Suppose that E is nuclear. Then (Corollary 3 of Proposition 
50.2) E is a Montel space, therefore E is reflexive. Let u : F --.t E be a 
linear map of a Banach space F into E. Let us set G = F ;  the bitranspose 
of u, llu : G' -+ E = E, is weakly continuous (here weakly means for 
the topology u(G', G )  on G and u(E, E') on E), which means that 
ltu E L(G: ; Eo) = L(E: ; G )  (Proposition 42.2). As E is nuclear, the 
latter space is equal to E @ G (Proposition 50.4). We now use the 
fundamental theorem on completed r-products of FrCchet spaces 
(Theorem 45.1): the mapping % is represented by an element 0 E EA @ G, 
with A a closed convex balanced bounded subset of E. This implies 
immediately that l l t l  is nuclear. But then the restriction of llu to the 
closed linear subspace F C G' = F", restriction which is equal to u, 
is also nuclear. Thus Condition (c) in Theorem 50.1 is satisfied: we 
conclude that E' is nuclear. 

Proof 2. Suppose now that E' is nuclear. As E' is complete (Corollary 
2 of Theorem 32.2), E' is a Montel space (Corollary 3 of Proposition 
50.2), hence E' is reflexive. On the other hand, E can be regarded as a 
closed linear subspace of its bidual E"; as E and E" have the same dual, 
they must be equal. Thus E is semireflexive; but a barreled space which 

A Frichet space E is nuclear if and only if its strong 
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is semireflexive is reflexive. We are going to show that, given any Banach 
space F, the canonical mapping E @,, F --t E F is an isomorphism. 

First of all, that mapping is onto. Indeed, let 8 E E & F ;  8 defines a 
continuous linear map E’+F.  In  view of the nuclearity of E and of 
Theorem 50.1, Part (c), the mapping defined by 8 is nuclear, hence 
defined by some element of E @,,F; but E” = E. 

Next we show that the mapping E @,F+ E &F is one-to-one. 
The transpose of this mapping is the natural injection J(E, F )  -+ B(E, F ) ;  
it will suffice to show that its image is dense for the weak dual topology 
on B(E,  F )  = ( E  @,,F)‘. We now apply Corollary 2 of Theorem 45.1: 
every element 8 E E @,, F belongs to the closed convex balanced hull 
r ( H  @ K) of the tensor product H @ K of a compact subset H of E 
and a compact subset K of F. It will therefore suffice to show that 
E’ @ F ’ C  J(E, F )  is dense in B(E, F )  for the topology of uniform 
convergence on products of two compact sets. Let us regard an element 
of B(E, F )  as a mapping u : F + E; the elements of E OF’ are then 
the mappings v : F 4 E‘ with finite dimensional image. As E is nuclear, 
it has Property (A) in Proposition 50.3. We can approximate the identity 
mapping of E‘ uniformly over the compact subsets of E by continuous 
linear mappings w : E’+  E‘ with finite dimensional image. It is then 
clear that mappings of the form w o u E E OF’ will converge to u 
uniformly on compact subsets of F. This proves the density of E Q F ’  
in B(E,  F) .  

We have shown that the mapping E @,, F --t E 6& F is both onto and 
one-to-one; as it is continuous and as the two completed tensor products 
are FrCchet spaces, it follows from the open mapping theorem that this 
mapping is an isomorphism. 

PROPOSITION 50.7. 
have the canonical isomorphisms 

Let E,  F be two Frbchet spaces. If E is nuclear, we 

E @ F g B(E, F )  ( E  @ F)’ 

We shall give the proof only in the case where F is also nuclear; 
the general case requires a slightly lengthier treatment. 

Proof of Proposition 50.7 (when both E and F are nuclear). Let u : E - + F ’  
be a continuous linear map; then the bilinear form on E x F, (x ,y )  - 
(u(x),  y), is separately continuous, hence continuous. This means that 
we have the vector space isomorphism 

(50.16) B(E, F )  s L(E; F)* 
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In view of Proposition 50.5, where the hypotheses are obviously satis- 
fied, we have 

E’ 8 F ’ r L ( E ;  F’). 

Here the isomorphism extends to the topologies (L(E; F) carries the 
topology of bounded convergence). It suffices therefore to show that 
(50.16) also extends to the topologies. The topology of bounded con- 
vergence inL(E; F‘) is equivalent to the topology of uniform convergence 
on the products A x B C E x F, with A (resp. B) bounded in E 
(resp. F), in B(E, F), or, if one prefers to use the duality between B(E, F) 
and E @ F, to the topology of uniform convergence on the closed 
convex balanced hulls of tensor products A @ B (with A,  B as above). 
On the other hand, B(E, F )  carries the topology of uniform convergence 
on the bounded subsets of E @ F. The result will therefore be proved 
if we show that every bounded subset of E @ F is contained in the closed 
convex balanced hull of a tensor product A @ B of bounded subsets 
of E and F. This is true under the hypothesis that E is nuclear (F does 
not have to be nuclear); however, in the situation where both E and F 
are nuclear, we also know that E @ F is nuclear (Proposition 50.1, 
(50.9)). Therefore, the bounded subsets of the three nuclear FrCchet 
spaces E, F, and E @ F are relatively compact. It then suffices to apply 

By virtue of Propositions 50.4,50.5, and 50.6 we see that when E and 

Corollary 2 of Theorem 45.1. Q.E.D. 

F are FrCchet spaces, E (and therefore E’) being nuclear, we have 

(50.17) E 8 F z L ( E ;  F ) ,  

(50.18) E G F z L ( E ; F ) ,  

(50.19) E 8 F’ ( E  @ F)’ g B(E,F),  

where the duals carry the strong dual topology, the spaces of continuous 
linear maps carry the topology of uniform convergence on the bounded 
subsets, and B(E, F) carries the topology of uniform convergence on 
the products of bounded sets. 
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Examples of Nuclear Spaces. 
The Kernels Theorem 

In this chapter, we shall prove that the most important spaces occurring 
in distribution theory, %;, V", 9, W ,  b', and Y', are nuclear; this is 
also true of the space of holomorphic functions H(Q) in some open 
subset SZ of Cn, of the space of polynomials in n variables, 8,, and 
of its dual, the space of formal power series in n variables, 9,. T o  
prove the nuclearity of the latter is most easy. Indeed we have: 

THEOREM 51.1. Let S be an arbitrary set; the product space Cs is nuclear. 

It suffices to apply Proposition 50.1, (50.5). Note that CS is the space 
of all functions S + C  provided with the topology of pointwise con- 
vergence. Now we may identify 9, to the space of sequences in n 
indices, or, equivalently, to the space of functions on Nn, the set of 
n-tuples p = (p ,  ,..., p,) consisting of n integers 2 0. The identification 
is the obvious one: to u E 9, corresponds the function which assigns 
to everyp E Nn thepth coefficient up of u. By taking S = Nn in Theorem 
51.1, we obtain: 

COROLLARY 1. The space 2, of formal power series in n variables, 
equipped with the topology of simple convergence of the coeficients, is 
nuclear. 

COROLLARY 2. The space 9, of polynomials in n variables, equipped 
with its LF topology, is nuclear. 

Indeed, 8, is the strong dual of 9, and the latter is a nuclear FrCchet 
space. It suffices therefore to apply Proposition 50.6. 

One can also prove Corollary 2 above in the following manner: 
8, can be identified with the topological direct sum xpeNn C p  , where 
each C, is a copy of the complex plane C. It then suffices to apply 
Proposition 50.1, (50.6). In re!ation with this, let us show that the 
countability restriction in (50.6) and (50.8) cannot be dropped: 

526 



EXAMPLES OF NUCLEAR SPACES 527 

THEOREM 51.2. If the set S is not countable, the topological direct sum 

C ,  = C C ,  (C,  C for all s) 
8 E S  

is not nuclear. 

Proof. The dual of C, is easily seen to be isomorphic to the product 
space Cs = rises C, . The closed equicontinuous subsets of the dual 
CS of C, are the compact subsets of CS.  If C ,  were nuclear, these 
compact subsets should be metrizable (Proposition 50.2). But a compact 
set such as [0, 11, is metrizable (if and) only if S is countable. 

Remark 51.1. Theorems 51.1 and 51.2 show that the dual of a nuclear 
space (e.g., Cs with S noncountable) is not necessarily nuclear. Thus 
Proposition 50.6 expresses a property of FrCchet spaces which, although 
not altogether characteristic of these, is not true for general spaces. 

The nuclearity of the spaces of type V" will follow from the fact 
that the space s of rapidly decreasing sequences is nuclear. We proceed 
to define and to study s. 

The sequences which we are now going to consider will have n 
indices p ,  ,..., p ,  ; but these indices will be positive, negative, or zero 
integers. We shall then use the notation I p I = xi"=, 1 pi 1 ;  the set 
of the n-tuplesp = ( p ,  , ..., p,),  p j  : integers >, 0 or < 0, will be denoted 
by 2". This slight departure from our previous practice is due to the 
fact that we wish to relate rapidly decreasing sequences to Fourier 
series. 

A complex sequence u = (up)pEZn is said to be rapidly decreasing 
if, for every constant k >, 0, the quantity 

(51.1) 

is finite. The rapidly decreasing sequences form a vector space, 
which we denote by s and on which we put the topology defined by 
the seminorms (51.1) for k = 0, 1, 2, .... It  is easy to check that s is a 
FrCchet space. 

A sequence r = (rp) is said to be slowly growing if there is a constant 
k 0 such that the sequence ((1 + I p I)-%.,} is bounded. We leave to 
the student the verification of the fact that the mapping 
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is an isomorphism (for the vector space structures) of the space of slowly 
growing sequences (which we shall denote by s') onto the dual of s. 

For us, the importance of rapidly decreasing sequences stems from 
the fact that the Fourier coefficients of a periodic V" function form 
such a sequence. Let us denote by In the hypercube [0, 11" (regarded 
as a subset of R"). We denote'then by gm(Rn)h the vector space of 
periodic V" functions in Rn with In as period. We provide V"(R")Q 
with the topology induced by Vm(Rn) (i.e., with the topology of uniform 
convergence of the functions and all their derivatives); it turns it into 
a FrCchet space. Then, for every u E Vm(R")Q and every p E Z", we set 

Zi, = SIn exp( -2ix ( p ,  x)) u(x)  dx, 

where ( p ,  x )  = p,x, + -.. + p,x, . Let now a E Nn be arbitrary. 
We have, because of the smoothness and the periodicity of u, 

( 2 i ~ p ) % ~  = 1 exp( -2ir ( p ,  x)) (a/&). U(X) dx, 

which implies immediately that the sequence ( G p )  belongs to s. Con- 
versely, let o = (op) be a sequence belonging to s; the series 

In 

c U P  exp(2ix (P, x>> 
P EZ" 

converges in V"(Rn) to a periodic function u whosepth Fourier coefficient 
is equal to up . Because of obvious continuity properties, we may state: 

THEOREM 51.3. The Fourier expansion u .y+ ( ~ 2 ~ ) ~ ~ ~ .  is an isomorphism 
of the space of periodic V" functions, Vm(Rn)Q, onto the space of rapidly 
decreasing sequences, s. 

In this statement, isomorphism is meant in the sense of TVS structures. 
Stressing the analogy between the spces  s and Y on one hand, 

their duals s' and 9' on the other, is hardly needed. The Fourier 
expansion of periodic distributions in Rn, Q'(Rn)Q, is an isomorphism 
of this space onto 9". Furthermore, the space 9 itself can be embedded 
isomorphically into the space Vm(R")Q. We shall now briefly describe 
such an embedding. Let us denote by V;(Rn)Q the subspaceof Vm(Rn)Q 
consisting of those functions which vanish of infinite order at the boundary 
of the hypercube I n .  We put on V:(Rn)h the topology induced by 
V"(Rn)Q; it becomes a FrCchet space. 

Let us denote by h(t)  the function defined for 0 < t < 1 by 
I I 

1 - t  t 
h(t)  = - - - 
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Then, for every + E Y ( R n ) ,  we set 

$(x) =+(h(x,) ,  ..., h(x,)), 0 < xj < 1 ,  1 < j < n. 

529 

It is immediately seen that the function $ vanishes at the boundary 
of In . We denote by 44 the periodic function (with I n  as period) which 
is equal to $ in In. We leave to the student, as an exercise, the proof 
of the following result: 

THEOREM 51.4. The mapping + - + b  is an isomorphism (for the T V S  
structures) of the space Y ( R n )  of Vrn functions in Rn, rapidly decreasing 
at injinity, onto the space %:(Rn)Q of periodic V" functions with period 
In, which vanish of infinite order at the boundary of In . 

We recall that In = [0, 11" C Rn. 
The nuclearity of the main spaces occurring in distribution theory 

will follow from the next result: 

THEOREM 51.5. The Frkchet space s of rapidly decreasing sequences 
is nuclear. 

Proof. Let p be the seminorm (51.1); of course, p is a norm. The 
completion i p  is the Banach space s(k) of complex sequences a = 

such that (51.1) is finite. Its dual is the Banach space s;k) of 
complex sequences T = ( T ~ )  such that 

(51.2) yP(1 + I P IFk I 7,  I 

is finite (sik) is equipped with the norm (51.2)). Let us denote by e, the 
sequence whose pth term is equal to one while all the others are equal 
to zero. We then consider the following element of s ; ~ + ~ + ~ )  @ S ( ~ ) :  

where 
A, = (1  + 1 p 

xa = (1 + I p J)k+n+lep 

yp = (1 + I p 

thus the sequence (A,) i s  summable; 

(belongs to the unit ball of s;~+,,+,,); 

(belongs to the unit ball of qk)). 

Now let a = (a,) be an arbitrary element of s ( ~ + ~ + ~ )  ; we have 

qU) = C A,(l + 1 p I)"+bpe, = c u,e, = u. 
P€Z" PCZ" 
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This means that 8 is the natural injection of s ( ~ + " + ~ )  into s ( k )  ; we 
have thus proved that this injection is nuclear. We may then interpret 
S(k+"+l) as the completion jq of the space s with respect to a norm 
q which is (51.2) where K has been replaced by K + n + 1 .  We see that 
the nuclearity of s is thus established. 

COROLLARY. The following spaces are nuclear: 

Y(R"), Y'( R"), WF(K) (K:  compact subset of R"); 
WF(9), Um(9), 9'(Q), b'(Q) (9: open subset of R"); 
H ( 9 ) ,  W(Q) (9: open subset of C"). 

We recall that H ( 9 )  is the space of holomorphic functions in Q and 
H'(Q), its dual,+ the space of analytic functionals in Q. 

Proof of Corollary. Y(Rn) is isomorphic to a subspace of s, as we 
see by combining Theorems 51.3 and 51.4, hence is nuclear (by (50.3), 
Proposition 50.1). So is its dual, Y'(R"), by Proposition 50.6, and its 
linear subspace W : ( K )  (again by (50.3)). But then W:(Q), as a countable 
inductive limit of spaces W:(K), is nuclear, by virtue of (50.8). The 
dual of the nuclear FrCchet space WF(K) is nuclear; as 9'(9) is a projec- 
tive limit of such duals, as is seen at once, we derive from (50.7) that 
W ( 9 )  is nuclear. On the other hand, consider, for each compact set 
K C 9  CR", a function 4 K ~  WF(K), in such a way that, to every point 
x E Q, there is a set K such that +K is different from zero at every point 
of some neighborhood of x. Then Um(9) is the projective limit of the 
spaces W,"(K) with respect to the mappings f - ~ $ ~ f ;  it follows then 
from (50.7) that Vm(9) is nuclear and so is 6'(9), by Proposition 
50.6. Finally, H ( 9 )  is nuclear as it is a subspace of Wm(9) (where we 
identify 9 to a subspace of R2") and H'(9) is nuclear as the dual of a 
nuclear FrCchet space (Proposition 50.6). 

THEOREM 51.6. 

(51.3) 9'(Rffl) B 9 ( R n )  g ,4P(Rm+n); 

(51.4) Wm(X) 8 %P'(Y)G%~(X x Y ) ( X C R m ,  Y C R n o p m s e t s ) ;  

(51.5) W;(K) @ %;(L) 

(51.6) H ( X )  8 H ( Y ) z H ( X  x Y )  ( X C C " ,  YCCnopensets).  

Proof. We shall prove only (51.3); the proof is the same in all the other 
cases. It follows from Theorem 39.2 that 9 ( R m )  @ Y(R") is dense in 
Y(Rm x R"); it suffices to show that the latter induces on the former 

W e  have the following canonical isomorphisms: 

WF(K x L)(K C Rm, L C Rn compact sets); 
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the topology 7r = E .  It induces a weaker topology, since the bilinear 
mapping (u, v )  -+ u @ v of Y(Rm) x Y(R") into Y(Rm x R") is 
continuous (it is separately continuous!). On the other hand, if cfy} is 
a sequence converging to zero in 9(Rm+n), it converges to zero uniformly 
on the equicontinuous subsets of Y'(Rm+n),  by a general property of 
locally convex spaces. In particular, sets of the form A' @ B', with A' C 
Y'(Rm) and B' C Y'(R") equicontinuous, are equicontinuous in 
Y'(Rm+"). Thus Y(Rm+") induces on Y(Rm) @ Y(R") a topology 
which is finer than the e one. 

COROLLARY. 

(51.7) Y'(R") 8 Y'(Rn) =L(Y(R"); Y'(R")) g Y'(R"+n); 

(51.8) B'(X) @ & " ( Y ) g L ( W " ( X ) ;  & ' ( Y ) ) g  &'(X X Yj;  

(51.9) H'(X)  8 H ' ( Y ) r L ( H ( X J ;  H'(Y))= H'(X x Y ) .  

W e  have, with the notation of Theorem 51.6, 

Proof. It  suffices to apply Proposition 50.5 and combine Theorem 51.6 
with (50.19). 

The isomorphisms (51.7), (51.8), and (51.9) can be regarded as 
variants of the kernels theorem, due to L. Schwartz, which we proceed 
now to state and prove: 

THEOREM 51.7. W e  have the canonical isomorphisms: 

(51.10) 9 ( X  x Y )  9 ( X )  @ 9 ( Y )  g L(%:(y);g ' (x))  

( X  C Rm, Y C Rn open sets). 

Proof. The second isomorphism is a straightforward application of 
Proposition 50.5. The conditions there are satisfied if we take E = W;( Y) 
and F = 9 ' ( X ) :  indeed, E, F, and F' are complete (Theorem 13.1; 
Corollary 3 of Theorem 32.2).; E is barreled; E' is nuclear. Therefore 
E' @ F g &(E; F). 

It remains to show that W ( X  x Y) induces on its dense (Proposition 
40.4) linear subspace W(X) @ 9'(Y) the topology E = T.  By a now 
standard argument, we see that it is enough to show that every compact 
subset of %;(X x Y) is contained in the closed convex balanced hull 
of the tensor product of a compact subset of % F ( X )  with a compact 
subset of W;(Y). But a compact (i.e., closed and bounded) subset of 
g;(X x Y) is contained (and is compact) in a subspace WF(K x L) 
with K (resp. L) a compact subset of X (resp. Y). Our assertion follows 
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then if we combine the isomorphism (51.5) with Corollary 2 of Theorem 
45.1. Q.E.D. 

The isomorphism (51.10) calls for some comment. To  every kernel- 
distribution K(x ,y )  on X x Y we may associate a continuous linear 
mapping K of %?;( Y) into W ( X )  in the following manner: if v E %:( Y), 
then Kv is the distribution on X, 

It  is traditional to write 

Theorem 51.7 states that the correspondence K(x ,y )  t--f K is an iso- 
morphism. 

Note that the transpose of the mapping K is given by 

%:(X) 3 u - (tKu)(y) = I K(x,  y )  u(x) dx. 

Concerning kernels, the following terminology is commonly used: 

(1) The kernel K ( x , y )  or its associated map K are said to be semi- 
regular in x if K maps %:( Y) into P ( X )  (then K is a continuous linear 
map '%?;( Y) -+ %?"(X)). The kernels which are semiregular in x are the 
elements of the space 

W ( X )  8 .w( Y )  L('ik?( Y ) ;  W ( X ) ) .  

By virtue of Theorem 44.1, we have 

$P(X) gi 9'( Y )  wqx; LP( Y)).  

Thus, the kernels semiregular in x can also be identified with the V" 
functions of x valued in the space of distributions with respect to y. 

(2) K(x, y) is said to be semiregular in y if its associated mapping K 
can be extended as a continuous linear map of &'( Y) into 9 ( X ) .  Then 
we see that the transpose of K continuously maps %?:(X) into %"( Y). 
In other words, we are considering the same property of kernels as in 
(1) but with x and y (as well as K and ") exchanged. In  particular, 
the kernels semiregular in y are the elements of 

q x )  8 W y Y ) s L ( q ? ( X ) ;  %P(Y)) W y Y ;  W ( X ) ) .  
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(3) K ( x , y )  is called a regularizing kernel if the associated mapping 
K can be extended as a continuous linear map of &‘(Y) into Vm(X), 
in other words if 

K(x, y )  E %W(X) @ %a( Y )  %-(X x Y ) .  

The student should not think that a kernel K(x,y) which is semi- 
regular both in x and y is regularizing! A look at the identity mapping 
of V: into 9’ easily clarifies this question. Indeed, let us take X = Y = 
Q, an open subset of Rn. The kernel distribution in 52 x 52, associated 
with the natural injection of Vz(52) into 9’(52), is the “Dirac measure” 
on the diag.ona1 of 52 x Q, which is always denoted by S(x - y) .  As a 
distribution with respect to (x,y), it is defined by the formula 

@(x - 39, d(x, Y ) )  = 3) dx, d E %;(Q x Q). 

But 6(x - y) can also be viewed as a distribution in x depending.on the 
“parameter” y: it is then the Dirac measure SJx) in QZ at the point 
y E 52. Of course, S(x - y) is symmetric in x and y.  Clearly, the kernel 
S(x - y )  is semiregular in both x andy: the natural map V,“(52) -+ a’(52) 
is a continuous linear map of V,“(Q) into V”(52)’. In other words, 

6(x - Y )  E {gm(Q.) 8 wu n P ’ ( Q Z )  8 %m(Q2,)}. 

But S(x - y )  is obviously not regularizing, as it is not a V” function 
in 52 x 52. 

Finally, let E be a locally convex space, Hausdo&, and complete. 
By virtue of Theorem 44.1 and of the nuclearity of V“(X),  we have 

W ( X ;  E) g Vm(X) 8 E.  

Similarly (cf, Exercise 44.6), 

.4P(Rn; E )  g Y(Rn) 8 E .  

On the other hand, it is natural to define a distribution T in the open 
set X C Rn with values in the space E, as a continuous linear map of 
V:(X) into E. This is indeed the definition when E = C. When E 
is finite dimensional, it corresponds to the natural idea of what should 
be a vector-valued distribution (its components with respect to a basis 
should be complex-valued distributions). In  other words, the space 
of E-valued distributions in X will be, by definition, 

W ( X ;  E )  = L(W;(X); E) .  
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The latter space, equipped with the topology of bounded convergence 
(i.e., the topology of uniform convergence on the equicontinuous 
subsets of 'ipc"(X) regarded as the dual of g ' ( X ) ;  cf. Proposition 50.4), 
is identical to 9(X) @ E, so that finally 

9 ( X ;  E )  9 ( X )  @ E. 

This can also be done for tempered distributions: 

Y'(R"; E )  = L(Y(R"); E )  s Y(R") 8 E. 

Note that if F is the strong dual of a FrCchet space F, we have, by 
(50.19), 

,49'(Rn; F') g Y(R"; F)'. 

Let 9 be the Fourier transformation 9" + 9" and I the identity 
mapping of E into itself. Then (Proposition 43.7) 9 @ I  is an isomorph- 
ism of 9" @ E into itself; as its image is both dense and complete, 
it is onto. This defines the Fourier transformation of E-valued tempered 
distributions. 



52 
Applications 

In this chapter, we shall present some applications of kernels and 
topological tensor products theory to linear partial differential equations. 
Kernels play a role in this connection as inverses, or as approximations 
of inverses, of differential operators. We shall deal with a differential 
operator D defined in some open subset Q of R” ; we recall that, with 
our definition of differential operators, the coefficients of these are V” 
functions. We shall have to deal with the product Q x Q; the variable 
in this product will be ( x ,  y ) ;  the diagonal in 52 x Q is the set of points 
( x ,  y )  such that x = y. The operator D acts on distributions in Q; if 
D acts on distributions on 52 x Q, we must indicate clearly in what 
variable D operates: for instance, if D acts in the variable x ,  we shall 
write D, rather than D .  Note that the operator 

D, : 9’(Q, x Q,) -+ 9’(Q, x a,) 

is nothing else but the extended tensor product D, @ I ,  , with I, the 
identity mapping of 9’(Q,), taking into account the canonical isomorph- 
ism W(Q, x Q,) = 9’(Q,) @ 9’(Q,). We now introduce some of the 
terminology of kernels and differential operators: 

Definition 52.1. 
kernel (resp. a parametrix) of the dz#erential operator D,  i f  

A kernel K(x, y )  E 9‘(Qz x Q,) is called a fundamental 

D, K(x, y )  - S(x - y )  = 0 (resp. belongs to %‘~(Q, x Q,)). 

We have denoted by S(x - y )  the “Dirac measure” on the diagonal 
of Q, x 52, (see p. 533). 

Definition 52.2. The dzfierential operator D is said to be hypoelliptic 
in Q i f ,  for every open subset 52’ of 52 and every distribution u in Q, the 
fact that Du is a V“ function in Q’ implies that u is a V“ function in Q’. 

Hypoelliptic differential operators form an important class of differen- 
tial operators, to which belong the elliptic and the parabolic operators 

535 
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(but not the hyperbolic ones). In the forthcoming statements concerning 
hypoelliptic differential operators, we make use of the terms "regular 
Kernel" for a kernel K ( x , y )  semiregular both in x and y (see p. 532) 
and "very regular kernel" for a kernel K(x, y )  which is regular and which, 
moreover, is a V" function of (x, y) in the complement of the diagonal. 

The following result is due to L. Schwartz: 

THEOREM 52.1. Suppose that the transpose lD of D has a parametrix 
which is very regular. Then D is hypoelliptic. Furthermore, the topologies 
induced on the kernel of D,  

M D  = {U E S'(Q); DU = 0} C %P'(Q), 

by 9(Q) and by Um(Q) are equal and turn .ND into a Frkhet space. 

In the proof which follows, we suppose that lD acts in the variable 
y : if K(x, y )  is the parametrix of ", we have tDo, K(x, y )  - 6(x - y )  E 

U"(J-2 x Q). 

Proof of Theorem 52.1. Let u E 9'(Q) be such that Du is a V" function 
in a neighborhood w of a point a E Q. Let g E %':(w) be equal to one in 
some neighborhood w' of a and p E U,?(Rn) be equal to one in some 
neighborhood of 0; we suppose furthermore that p(x )  = 0 for 1 x 1 > E ,  

E > 0 to be chosen later. We consider then 

It should be underlined that this makes sense only because we have 
assumed that K(x, y)  and therefore p(x - y )  K(x, y) is semiregular 
iny .  For then, the mapping it defines can be extended as a continuous 
linear mapping of 8'(Qw) (to which D,[g(y) u(y)] belongs) into g'(l2.J. 
By integration by parts, we see that 

But, since K(x, y )  is Wm for x # y ,  and p = 1 near 0, 

&(X, y)  = t q / r P ( x  - Y )  m, r)I - P ( X  - Y )  tDw K(x9 Y) 

is a V" function of (x, y). Now, since K(x, y )  is a parametrix of lDo, and 
since p(x - y )  6(x - y) = 6(x - y) (as p(0) = l) ,  

Kz(x ,  y)  = P ( X  - Y )  tD, K ( X  - Y )  - S(x - Y )  
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is also a Urn function of ( x , y ) .  We reach the conclusion that 

w(x)  - g(x) u(x)  is a Srn function in Q. 

As g E 1 near a,  it remains to show that w is V“ near a for a suitable 
choice of E .  We observe that 

DY[Z(Y) 4 Y ) l  - g(Y) DY 4 Y )  = 0 

in the neighborhood w’ of a.  Let us then choose E > 0 so small that 
the support of p(x - y ) ,  as a function of y, is contained in w‘ when 
I x - a I < E .  Then, for these x’s, 

4 x 1  = J P ( X  - Y )  W x ,  Y )  g(Y)  DY 4 Y )  dY. 

But it is our hypothesis that g Du E U:(52) and that p(x - y) K ( x , y )  
is semiregular in x, therefore maps %,“(52,) into Urn(52,). This proves 
that D is hypoelliptic. 

Consider now a filter of elements u of MD converging to 0 in g‘(52). 
Using the above notation, we may write 

w(x) - g(x)u(x) = J [K&, Y )  + KZ(% r)l g(Y)u(Y) 4Y. 

As Ki(x, y )  E Vm(Q x Q), j = 1, 2, and as gu converges to 0 in &‘(a), 
we see that w - gu converges to 0 in Vm(52). But now, if E > 0 is small 
enough, w(x) = 0 for I x - a I < E ,  hence gu = u in 

W” = {x; I x - a I < E } ,  

and converges to 0 in Um(w”). As a is arbitrary, we conclude that u 

Let K(x,  y )  E 9 ( 5 2  x Q), and K be the map Vr(52) + 9’(52) defined 
by K(x, y ) .  We say that K(x,  y) is a two-sided fundamental kernel of the 
differential operator D if, for all 4 E V:(52), 

converges to 0 in Um(52). Q.E.D. 

K D + = D K 4 = 4 .  

We see that K ( x , y )  is a two-sided fundamental kernel of D if and only if 

D,  4 ( x ,  y )  = S(X - Y ) ,  tDy K(x ,  Y )  = S(X - y ) .  

THEOREM 52.2. If D is a hypoelliptic dayerential operator in 52, every 
point of 52 has an open neighborhood in which lD has a fundamental kernel. 
If iD is also hypoelliptic, every point of L? has an open netghborhood where 
D has a two-sided fundamental kernel, which is very regular. 
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Proof. We shall introduce the spaces H" (see Definition 31.4) and their 
norm ( 1  )Is (p. 330). Let K be an arbitrary compact subset of SZ, and s 
a real number. We denote by @ ( K )  the space V:(K) equipped with 
the topology defined by the seminorms 

4 - II D4 Ilt + II d I I S  

as t ranges over the set of real numbers or, equivalently, over the set 
of positive integers; @ ( K )  is a metrizable space. Its completion, &(K), 
can be identified with a linear subspace of H8, hence of 9'(Q). Note 
however that u - Du is a continuous linear map of @(K) into P(Q), 
hence all the .distributions belonging to &(K) must be V" functions; 
as they have obviously their support in K, we have &(K) = @(K) = 
VF(K). As the identity mapping %':(K)--+&s(K) is continuous, it is 
an isomorphism; by virtue of the open mapping theorem. We reach 
the conclusion that to every real number I, there is a real number t 
and a constant C(Y, s) > 0 such that, for all 4 E V:(K), 

(52.1) II d llr < w, s) (I1 D4 Ilt + II d 11s). 

At this stage, we choose r = 1, s = 0 and we make use of the following 
fact, whose verification will be left to the student. To every E > 0, 
there is > 0 such that, if diam(supp 4) < 7, 

II d 110 < 41 d Ill * 

We apply Estimate (52.1) to the closure K of an arbitrary relatively 
compact open neighborhood 52' of an arbitrary point xo of 52. I t  is clear 
that there is another open neighborhood U C 52' of xo such that we have, 
for all'+ E %?:em( U), 

II 4 Ill < constll Dd Ilt . 

Finally, by enlarging t if necessary, we see that there is a constant 
C' > 0 such that 

If also 'D is hypoelliptic, we may further enlarge t and C' and possibly 
shrink U so as to also have 

Let M be the closure, in H 1 ,  of the set of distributions of the form D+, + E %:( U),  and let p ,  be the orthogonal projection of H' onto M. 
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Estimate (52.2) means that mapping D+ - 4  can be extended as a 
continuous linear map of M (equipped with the H L  norm) into H-'. 
It can be further extended as a continuous linear map G : H f  -+ H-' 
by setting it equal to zero on the orthogonal of M. The transpose 'G 
of G is a continuous linear map of H' into H-' such that, for all f E H', 
we have in U 

tD(tGf) = f .  

As %':(U) is continuously embedded in Hf, 'G induces a continuous 
linear map of %':( v) into H-t, a fortiori into W( U ) ;  the kernel associated 
with it is a fundamental kernel (in U )  of 'D. This proves the first part 
of the statement. 

If 'D  is also hypoelliptic, we derive from (52.3) that there is a con- 
tinuous linear operator r : HI + H-f  such that, for all f E H', D ( m  = f 
in U. Let us then set 

E = GPM + r ( I  - P M ) ,  

where I is the identity mapping of Hi ; E is a bounded linear operator 
H i  + H - f .  We have pMD+ = D+ for all + E %':( U),  hence E(D+) = 

G(&) = r$. On the other hand, in U ,  

D(E+) = G(pM+) + (I - P M W .  

Let {+k} be a sequence in %':( u) such that D+k + pM+ in Hf; as G is 
continuous, r$k = GD+, converges to G(pMr$) in H-' and D+k converges 
to D G(pM$) in 9'; but D$k converges also to p d ,  which must therefore 
be equal to D G(pM+). Finally we have, in U, D(E+) = 4. This proves 
that the kernel K(x, y )  associated with the continuous linear operator 
4 - E+I U (restriction of Er$ to U )  is a two-sided fundamental kernel 
of D. The fact that K is very regular follows from the following lemma: 

LEMMA 52.1. 
damental kernel K(x, y )  of D in 0 is very regular. 

Proof. 

Let D and f D  be hypoelliptic in 0. Every two-sided fun- 

We have, for every + E U:(0), 

D, J K(x, Y )  +(Y) 4 = +(x) 

and, as D is hypoelliptic, we must have J K(x, y )  $ ( y )  dy E Um(QZ). 
Thus K : + ( y )  ry+ J K ( x ,  y )  $ ( y )  dy maps %':(a) into V"(0) and, in 
this sense, its graph is closed since K is continuous when taking its 
values in W(0). We conclude that K : %'r(Q) + V"(s2) is continuous. 
This shows that K(x, y )  is semiregular in x. By interchanging x and y ,  
D and 'D, we see that K(x, y )  is also semiregular in y .  Thus K ( x , y )  
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is regular. It remains to prove that K(x, y )  is a V" function of (x, y )  
in the complement of the diagonal of 52 x 52. 

Let U and V be two open subsets of SZ such that U n V = 0 ; in 
what follows, we denote by K(x,y)  the restriction to U x V of what 
has been denoted until now by K(x, y ) .  We have just seen that 

K(x, y )  E Wa( V,; 9'( U,)> = q U,) 8 V,). 

For every n-tuple q, we have 

D,[(a/ay)q K(x,y) ]  = 0 in U x V .  

Let H be a compact neighborhood of an arbitrary point yo  in V. The 
image of H under the mapping y - (a/ay)*K(x,  y), which is continuous 
from V into W ( U ) ,  is a compact subset &' of 9 ' ( U ) .  Let U' be any 
relatively compact open subset of U,  .Z 1 U' the set of restrictions to U' 
of the elements of X .  One can show (cf. Theorem 34.3, p. 359) that 
X I U' is contained in some space Hioc( U') (Chap. 31-1 1) and compact 
there. But &.I  U' is also contained in ND( U'), the space of solutions 
in U' of the homogeneous equation Du = 0. Since D is hypoelliptic, 
MD( U') C Vm( U') and &( U ' )  is closed in both Frkchet spaces V"( U')  
and HfOc (U') .  They necessarily induce the same topology on ND( U'). 
Therefore, V"(U') and 9 ' ( U ' )  induce the same topology on X 1 U', 
which implies at once that %'"( U )  and a'( U )  induce the same topology 
on 2. Hence, y - (a/ay)*K(x, y )  is a continuous map of H into V"( U ) ;  
as yo is arbitrary, it is a continuous map of V into U"( U).  As q is arbitrary, 
we reach the conclusion that K(x,  y )  is a V" function of (x, y )  in U x V. 

COROLLARY 1. The following conditions are equivalent: 

(a) D and lD are hypoelliptic; 
(b) every point of 52 has an open neighborhood where D has a two-sided 

fundamental kernel (which is very regular). 

If they are satisJied, the topologies induced on MD by g'(52) and by 
%*(52) are equal and turn ND into a Frechet space. 

It suffices to combine Theorems 52.1 and 52.2. 
It is well known that, for harmonic or for holomorphic functions, 

the uniform convergence of functions on compact sets and the uniform 
convergence, still on compact sets, of the functions and all their derivat- 
ives, is bne and the same thing. Granting that the Laplace and the 
Cauchy-Riemann operator are hypoelliptic, which they are, Corollary 1 
of Theorem 52.2 strengthens and generalizes this convergence property. 
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COROLLARY 2. Same hypotheses as in Theorem 52.2. Let K be a compact 
subset of Q. The linear space N D ( K )  of (distributions) solutions of the 
homogeneous equation Du = 0 which have their support in K is finite 
dimensional. 

Proof. Let E be a Banach space of distributions in Q, e.g., E = L2(Q), 
which contains V;(K) and therefore induces on it a topology finer than 
the one induced by B’(Q). From Corollary 1 of Theorem 52.2 we 
derive that E induces on N D ( K )  C VP(K) the same topology as 9’(Q). 
But the unit ball of JYb(K) for the norm induced by E is bounded in 
B’(Q), hence precompact, whence the corollary. 

The previous results will be used to prove the following theorem, 
due to B. Malgrange, asserting, under suitable conditions, the existence 
of a global two-sided fundamental kernel: 

THEOREM 52.3. Let D be a dz@rential operator in 52, and lD its transpose. 
Suppose that both D and tD are hypoelliptic and map U*(Q) onto itself. 
Then D has a two-sided fundamental kernel in Q, which is v e ~ y  regular. 

Proof. Let F be a FrCchet space. We begin by proving that 

(52.4) 

(52.5) 

(D 8 1)(gm(52) 8 F )  = “(52) 8 F ,  

(D 8 I)(B’(Q) 8 F )  = 9(Q) 8 F, 

where I is the identity mapping of F. (52.4) is a trivial consequence of 
Proposition 43.9 and of the fact that DV“(Q) = Um(Q); hypoellipticity 
is irrelevant in this connection (cf. Theorem 52.5). 

We proceed to prove (52.5). As D and LD are both hypoelliptic, we 
may apply Theorem 52.2. We see that there is an open covering (U,) 
of Q such that D has a two-sided, very regular, fundamental kernel in 
every U, . We may assume the covering { Ui} to be locally finite and con- 
sisting of relatively compact open sets. Let then { Vi> be another locally 
finite open covering of Q such that pi C Ui for every i; and let {gi> be a 
partition of unity in %7:(Q) subordinated to the covering {Vi}. For each i ,  
let hi E %:( Ui)  be equal to one on V ,  . Multiplication by hi , S - h i s ,  
in W(Q), gives rise to the extended tensor product 

hi 8 Z : B’(52) 8 F + S’( U j )  @i F. 

We shall write h,S rather than (hi @ I ) S  for S E W(Q) @ F. On the 
other hand, if Ki is a two-sided (very regular) fundamental kernel of 
D in Ui , we may consider the mapping 

Ki @ I : S ’ ( U i )  8 F + Q ’ ( U i )  8 F  
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which satisfies, for all f i  E d'( Vi) @ F, 

Then let S be an arbitrary element of g'(l.2) @ F, and set 

Ti = (Ki 8 Z)(hjS). 

Observe that the restriction of Ti - T, to V,, = Vi n V, belongs to 
9'( V,,) @ F and satisfies there 

(D 8 Z)(Tj - Tj) = (hj - hj)S = 0 

since h, = hj = 1 in V,,. Let us now use the nuclearity of 9' and 
recall that 

9'( Vjj) @ F LJF;; 9'( Vij )  . 

But we have just seen that Ti - T, , viewed as a mapping of F' into 
B'(Vij), takes its values in ND(Vi,), the space of distributions in Vij 
sblutions of the equation Du = 0. By Corollary I of Theorem 52.2, 
we know that the topology induced on ND(Vij)  by B'(Vij) and by 
Vm(Vi,) are the same. Hence 

(52.6) Ti - Tj EL~(F;;  Vm(yj))c Vm(yj) @ F .  

We set 
T = CgjTj. 

j 

We have, in Vi , 

S - ( D  8 I)T = ( D  8 I)Ti - ( D  8 I)T = Cgj(Ti - Tj), 
j 

and each term g,(Ti - T,) belongs to Vm(sZ) @ F, by virtue of (52.6). 
As the Vi's cover SZ, we conclude that 

S - (D 8 Z)T E Vm(Q) @ F. 

By (52.4) we derive the existence of an element + E V"(l.2) @ F such 
that ( D  @ I ) +  = S - (D @ I)T, hence 

(D 63W' + 4) = S, 

and this proves (52.5). 
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We begin by applying (52.5) with F = Vm(Q). We know that 6(x--y) E 

B‘(i2.J @ Vm(sZ,). Therefore, by (52.5), there is a kernel Kl(x,y)  in 
the same completed tensor product, such that (0, @ I , )  K,(x, y )  = 
6(x - y ) ,  i.e., D,Kl = the identity 
mappings in the spaces of distributions in the variables x, y ,  and (x, y) . )  
Let us then set 

. (We denote by I,, I,, and 

L = Is,, - (1% 8 tD,)K, E 9(Q,) 8 9’(Q,). 

(Dl: 63 Ilf)L = (D, 8 z&., - (Is 63 “,)(a 8 I,>Kl 

We have 

= (D, 8 Iv - z, 8 tD,)Z,,, = 0 

by definition of [D. Thus we see that L defines a linear map of V~(Q,) 
into MD(Q,) = {u E B’(S2.J; Du = 01, which is continuous when the 
latter carries the topology induced by g’(J2,). This topology turns 
ND(Qz) into a FrCchet space (Corollary 1 of Theorem 52.2). Therefore, 
in view of (52.5) applied with F = MD(Qz) and instead of D, there 
exists K ,  E ND(s2,) @ g’F,), hence satisfying (0, @ Z,)K2 = 0, 
such, furthermore, that (I ,  @ tD,)K2 = L. Then, if we set K = Kl + K,, 
we have 

(1, 63 tD,)K = L 9 (0s 8 1 s  = Llf - 
This means precisely that K is a two-sided fundamental kernel of D; 

Let E, F be two HausdorfI TVS, and u : E + F a homomorphism 
onto. We say that u has a continuous right inverse if there is a continuous 
linear map v : F + E such that u o v = identity of F. We recall that 
a linear subspace M of E has a topological supplementary if there is 
another linear subspace N of E such that the mapping (xl , x2) - x1 + x, 
of M x N into E is an isomorphism onto (for the TVS structures: 
M x N carries the product structure, M and N carry their induced 
one). Then it is easy to see that u has a continuous right inverse if and 
only if Ker u has a topological supplementary. Indeed, if w is a continuous 
right inverse of u, v(F) is a topological supplementary of Keru. Con- 
versely, if M is a topological supplementary of Ker u, the restriction 
of u to M is an isomorphism of M onto F whose inverse is a continuous 
right inverse of u. 

The next theorem, due to A. Grothendieck, shows that an important 
class of differential operators (“most” elliptic operators with analytic 
coefficients), although they map V“ onto itself, have no continuous 
right inverse. From what we have said above, this implies that their 

Lemma 52.1 implies, then, that K is very regular. Q.E.D. 
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kernels have no topological supplementary. As the class includes all 
elliptic operators with constant coefficients, in particular the Laplace 
operator and the Cauchy-Riemann operator, we see that the space of 
harmonic functions in an open subset SZ of Rn or the space of holo- 
morphic ones in an open subset SZ of Cn have no topological supple- 
mentary in Wm(SZ). 

THEOREM 52.4. 
having the following properties: 

Let D be a dzymential operator in an open set 9 C Rn 

(I) For every open subset 52' of SZ and every distribution S in 52, 
DS = 0 in SZ' implies that S is an analytic? function in 52'. 

(11) D maps Um(9) onto itself. 
(111) To every open set SZ' C 52 there is another open subset SZ" C 52' 

such that 'DT = 0 for some T E B'(W), T # 0.  

Under these conditions, D has no continuous right inverse in Vm(SZ). 

Proof. We reason by contradiction. Suppose that D had a continuous 
right inverse G in V"(SZ). To every compact subset K of SZ there is 
another compact subset K' of SZ, an integer m 0, and a constant 
C > 0 such that, for all + E Wm(52), 

Suppose then that + vanishes in a neighborhood of K :  G+ must vanish 
in K.  Let us choose K with a nonempty interior 0. Let 9, be an open 
ball, contained in the intersection of the complement of K v K' with 
some connected component SZ, of 52 which intersects 0. For every 
+ E W7(Q0), we have G+ = 0 in K, in particular in 0. On the other 
hand, D(G+) = 0 in the complement of supp +, hence G+ is analytic 
in this complement (in view of (I)). We derive from this that G+ = 0 
in every connected component of 52, - supp+ which intersects 8, i.e., 
in every nonrelatively compact connected component of 52, - supp 4 
(relatively compact with respect to Q1). This implies immediately 
that SZ, A (supp Gq4) is a compact subset of In,. As D(G+) = + we see 
that DW:(SZ,) = V;(52,), hence that iD : B'(SZo) + B'(SZ,) is one-to- 
one. But exactly the same reasoning applies to any open ball contained 
in Q0 so that we may suppose (by (111)) that 52, itself is contained in 
some open set 52" where the homogeneous equation 'DT = 0 has a 

+ Analytic is meant here in the real sense, i.e., the Taylor expansion about each point 
converges in some neighborhood of that point. 



Chap. 52-11] APPLICATIONS 545 

solution T E B'(Qf') whose restriction to SZ, is nonzero. We have thus 
reached a contradiction. 

Remark 52.1. Elliptic operators with analytic coefficients are such 
that (I) and (111) hold. If D is such an operator, its transpose lD is also 
elliptic (and has analytic coefficients). Then let K be an arbitrary compact 
subset of Q, and I? the union of K with all the connected components 
of Q - K which are relatively compact; I? is obviously a compact 
subset of SZ. If tD has Property (I) of Theorem 52.4, for every p E d'(Q), 
supp 'Dp C K =>- supp p C I?. Thus Q is D-convex (Definition 38.1). 
T o  show that Property (11) holds, it suffices therefore (by Theorem 
38.2) to show that D is semiglobally solvable (Definition 38.2). All 
operators with constant coefficients are semiglobally solvable (Exercise 
38.1). We see thus that all the elliptic operators with constant coefficients 
satisfy Conditions (I), (11), and (111) in Theorem 52.4 (regardless of 
what the open set SZ is). 

Now let E be a nuclear FrCchet space, and u : E -+ E a homomorphism 
of E onto itself. Suppose that u has a continuous right inverse v.  Let us 
identify er to an element of E' @ E (by (50.18)), say 8, . Let 8, E E' @ E 
be the element corresponding to the identity mapping of E. To say 
that v is a continuous inverse of u is equivalent with saying that 

We have denoted by I' the identity mapping of E'. Thus we see that, 
if u does not have a continuous right inverse, I' @ u does not map 
E' @ E onto itself-although both I' and u are mappings onto. In 
particular, Theorem 52.4 provides us with examples of tensor products 
of surjections whose extension to the completion of the tensor product 
(of %"(Q) with d'(Q)) is not surjective. It shows that the metrizability 
restriction, in Proposition 43.9, cannot be lightly brushed aside. 

Let us go on considering a differential operator D on an open subset 
Q of R". If E is a complete locally convex HausdorfF space, we may 
make D operate on functions valued in E, in fact on distributions valued 
in E if the latter are defined as the elements of LY(52) @ E. Then if T E 

B'(i.2) @ E L(%':(Q); E) (Proposition 50.5), we define D,T as the 
value at T of,the mapping D, @ I, where I is the identity of E. Note 
that if 4 E %?:(a), we have 

If f is a function valued in E, sufficiently smooth, say f E V"(Q; E),  
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we may define D f  directly. Needless to say, the two definitions agree, 
as 

gm(Q; E) gm(Q) 8 E L(B'(Q); E) 

is canonically identifiable to a subspace of 9'(SZ) @ E. The next result 
is a straightforward consequence of Proposition 43.9: 

THEOREM 52.5. Suppose that DV"(SZ) = Um(SZ). Then, whatever the 
Frbchet space E is, LH"(52; E )  = U"(Q; E). 

We consider now a differential operator in SZ of the form 

P(x, y ,  3 P x )  = c a&, y )  (alax)p, 
IN<m 

where y is the variable point of some open subset Y of a Euclidean 
space Rd and where the coefficients a,(x, y )  are V" functions of (x, y )  
in SZ x Y. 

THEOREM 52.6. Suppose that to every function f E Vm(SZ) there is a 
function u E V"(Q x Y )  such that P(x, y ,  a/&) u(x, y )  = f ( x ) .  Let 
then F( Y )  be a Frbchet space of distributions in Y with the property that 
+g E F( Y )  for all + E Vw( Y) ,  g E F( Y). Then 

P(x, y, apx) %m(Q; F( Y ) )  = %m(Q; F( Y)). 

Proof. We take advantage of the fact that 

%P(Q; F( Y ) )  %P(Q) gj F( Y ) .  

And we apply Theorem 45.1 : every element f of V"(S2; F( Y)) can be 
written as a series 

f ( x ,  r) = x k f k ( x )  gk(Y), 
k 

with {A,} E 11, f ,  + 0 in V"(Q), g, --+ 0 in F(Y) .  Let us denote by G 
the linear subspace of Vm(Q x Y) consisting of the functions u ( x , y )  
such that P(x, y ,  a/&) u(x, y )  E V"(SZ), i.e., is independent of y ;  ob- 
viously G is a closed linear subspace of VW(Q x Y), i.e., G is a FrCchet 
space for the induced topology. By hypothesis, the restriction of P ( x ,  y ,  
a/&) is a continuous linear map of G onto Vm(f2), hence it is a homo- 
morphism onto. If we apply Lemma 45.1, we see that there is a sequence 
{u,(x,y)} relatively compact (or even converging!) in V"(Q x Y) 
such that, for each K, P(x, y ,  a/&) u,(x, y) = f , (x) .  We then set 

y )  = uk(x ,  Y )  gk(y). 
k 
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We claim that the series converges in Vm(Q) @ F ( Y )  and that 
P(x,  y ,  a/&) u(x, y )  = f ( x ,  y )  (this is a trivial consequence of that). 
Consider then the bilinear map ($ ,g)  - $g of Vm( Y) x F ( Y )  into 
9’(Y); it is separately continuous and its image, by hypothesis, is 
contained in the FrCchet space F( Y) (which is continuously embedded 
in 9’( Y)). Therefore, this bilinear map is separately continuous, hence 
continuous, when we regard it as a map valued in F( Y) (simply remark 
that the graphs of the linear mappings $ ry+ $g and g ry+ $g are closed!). 
In particular, when g remains in a bounded subset of F(Y) ,  a fortiori 
in a compact one, the mappings $ -. $g form an equicontinuous subset 
of L(gm( Y); F( Y)). Given g in F( Y), we may then consider the mapping 
I @ g  of Vm(Q x Y) into Um(Q) @ F ( Y )  (I: identity of Vm(Q)). When 
g remains in a bounded subset of F( Y), these mappings form an equi- 
continuous set. We derive immediately from this that, as K varies, 
uk(x, y )  gk(y) remains in a bounded subset of F( Y). As Ck I A, I < + 00, 

the series defining u(x, y )  converges absolutely in F( Y), whence the 
result. 

Theorem 52.6 can be applied to the case of F( Y) = Vh( Y) (0 < h < 
+ co) or F(Y) = LfOc(Y) (1 < p < + co). Note that we have 

eJ(Q) 8 wy Y) WqQ; V( Y)) &x w*( Y; WW(Q)). 

The theorem says that, in this case, if we know how to solve in %‘z,y 
the equation 

P ( x , y ,  a / q u  =f 

for right-hand sides f independent of y ,  then we know also how to solve 
it in V:;: (obvious notation) for arbitrary right-hand sides in this space. 



Appendix: 
The Borel Graph Theorem 

Recently, L. Schwartz has proved the following result: 

THEOREM A.l. Let E, F be two locally convex Hausdorff TVS, u a 
linear map of E into F. If E is the inductive limit of an arbitrary family of 
Banach spaces, i f  F is a Souslin space, and if the graph of u is a Borel set 
in E x F, then u is continuous. 

Theorem A.l implies, as we are going to show, that the closed graph 
theorem is valid for linear mappings defined and valued in most spaces 
encountered in Analysis and, in particular, in distribution theory. The 
original proof of Schwartz is based on the theory of Radon measures on 
arbitrary topological spaces; we shall present here a proof due to A. 
Martineau, which is an adaptation of reasonings in the book [O] of 
S. Banach. Martineau has also succeeded in weakening the condition 
that F be a Souslin space; but then the graph has to be closed and not 
merely a Borel set (this restriction is hardly an inconvenience!). A few 
words about this extension will be found at the end of the Appendix; 
bibliographical references will also be found there. Independently and 
by different methods, D. Raikov has also proved the closed graph 
theorem for a large class of spaces, including most spaces of Analysis, in 
particular 9'. 

We begin by recalling the definitions of the various terms used in the 
statement of Theorem A. 1. The meaning of an inductive limit of locally 
convex spaces has been given on pp. 514-515. We recall what a Borel set 
in a topological space X is ( X  does not have to carry any algebraic 
structure). A collection 9 of subsets of X is called a a-algebra if X\A 
belongs to 9 whenever A E ~ ,  and if countable intersections of sets 
which belong to 9 also belong to 9 (this is then also true of countable 
unions). Given any collection 6 of subsets of X ,  there is a smallest 
a-algebra containing 6; it is evident. If we apply this to the collection G 
of all the closed subsets of X, we obtain the a-algebra of Borel sets in X. 

A topological space P is called Polish if there is a metric on P which 
549 
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defines the topology of P, such that P,  equipped with this metric, is a 
complete metric space and, moreover, if there is a countable subset 
of P which is everywhere dense in P (the latter property is expressed 
by saying that P is separable). 

Definition A. 1. 
there is a Polish space P and a continuous mapping of P onto S. 

A Hausdorff topological space S is called a Souslin space if 

We shall now state a certain number of “stability properties” of 
Polish and Souslin spaces, most of them without a proof (the proofs 
are all easy). 

PROPOSITION A.l.  

(a) closed subsets of a Polish space; 

(b) products and disjoint unions of countable families of Polish spaces; 
(c) open subsets of a Polish space; 
(d) locally compact spaces which are metrizable and countable at infinity; 
(e) countable intersections of Polish subspaces of a Hausdorff topological 

space; 

( f )  the set of nonrational numbers with the topology induced by the real 
line R. 

The following spaces are Polish: 

Let us, for instance, prove (c). Let E be a Polish space, U an open 
subset of E, and d a metric on E defining the topology of E. The product 
space R x E is Polish by (b), and so is the subset V of R x E consisting 
of the pairs ( t ,  x) such that t - d(x,  E \ U )  = 1;  indeed, V is closed. 
The second coordinate projection induces a homeomorphism of V onto 
U, whence (c). 

PROPOSITION A.2. 
ifQ is the intersection of a sequence of open subsets of P. 

A subspace Q of a Polish space P is Polish if and only 

The sufficiency is obvious by Proposition A.l; let us prove its neces- 
sity. Let d be a metric on Q, inducing the tbpology of Q and for which 
Q is a complete metric space. Let (? be the closure of Q in P,  and Qn 
be the set of x E (? such that there is an open neighborhood U of x in P 
so that the diameter of Q n U is < l/n; Qn is open in 8. Let xo E Qn for 
all n;  the filter of neighborhoods of x0 in P obviously induces a Cauchy 
filter (for the metric d )  on Q. This Cauchy filter has a limit which can 
only be xO; thus, xO E Q, i.e., Q = nzo Qn . For each n, let Un be an 
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open subset of P such that Q,, = Q n U,, . On the other hand, let 6 be 
a metric on P defining the topology of P, and set 

V ,  = {x E P ;  S(x, 0) c I/m}, m = 1,2 ,... . 
It  is clear that Q = n,,, U,, n V, . 

Let us denote by I the closed unit interval [0, I] in the real line, 
and by IN the cube which is the product of a countable infinity of copies 
of I. Let X be a separable metric space; the metric in X will be denoted 
by d. We may and shall assume that the diameter o f  X is ,< 1 ; this can 
be obtained by replacing d with x - sup(d(x), 1) if necessary. Then let 
(3,) (n  = 0, 1, ...) be a sequence in X which is everywhere dense. The 
following mapping 

x - (4% xn))n=" ,*,... 

is a homeomorphism of X onto a subset of IN, as the student may readily 
check. Combining this fact with Proposition A.2, we obtain: 

PROPOSITION A.3. A topological space X is Polish if and only if X is 
homeomorphic to the intersection of a sequence of open subsets of the cube IN. 

We switch now to Souslin spaces; they are obviously separable. They 
have the following stability properties: 

PROPOSITION A.4. 

(a) 

(b) 
(c) 

(d) 
Proposition A.4 follows easily from Proposition A. 1. We shall limit 

ourselves to proving (c). Let A,(n = 0, 1, ...) be a sequenze of Souslin 
subspaces of a Hausdo& topological space X, A their disjoint union, 
which is a Souslin space in view of (b), 4 the canonical mapping of  A 
onto the union UnAn . As 4 is continuous, this union is a Souslin space 
in view of (d). Let A' be the intersection of the Am's, f the canonical 
map of X onto the diagonal of XN (N equals the set of integers 2 0). 
The image of A' under f is the intersection of this diagonal with nnAn ; 
as X i s  HausdorfF, the diagonal is closed in XN and f is a homeomorphism 
of X onto it. Thus, the restriction o f f  to A' is a homeomorphism of A' 
onto a closed subset o f  nnAn.  It  suffices then to apply (a) and (b). 

The following are Souslin spaces: 

closed or open subspaces of a Souslin space; 
countable products and disjoint unions of Souslin spaces; 

countable intersections or countable unions of Souslin subspaces of a 
Hausdog topological space; 
continuous images of Souslin spaces. 
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PROPOSITION AS. Borel subsets of a Souslin space are Souslin spaces. 

Proof. Let 9 be the family of subsets of a HausdorfT topological 
space X which are Souslin spaces and whose complements are also 
Souslin spaces. In  view of Proposition A.4(c), 9 is a o-algebra. If X is 
a Souslin space, 9 contains the closed sets, in view of Proposition A.4(a), 
hence, the Borel sets. 

PROPOSITION A.6. Let S be a Souslin space. For each n = 0, 1, ... there 
is a countable set C, and two mappings p ,  : Cnfl -+ C, and +n : C, + p(S), 
the set of all subsets of S ,  with the following properties: 

(A.l) p ,  is onto; 
(A.2) for every c E C, , 

4n(4 = u bn+1(c'); 
C'EC",, ,P"(c')=c 

(A.3) for each n, the sets +,(c), as c runs over C,  , are pairwise disjoint and 
their union is equal to S ;  

(A.4) for any sequence (cn} (n = 0, 1, ...), such that c, E C, and 
p,(c,+,) = c, , the sequence of sets (+,(c,)} is the basis of a convergent 
filter on S.  

Proof. Let P be a Polish space and f a continuous map of P onto S; 
we equip P with a metric d which turns it into a complete metric space. 
As P is separable, for arbitrary n = 0, 1, ..., there is a covering of P 
consisting of a countable family of closed balls of radius l/(n + 1); we 
select such a covering and we order it in an arbitrary fashion. This 
yields a sequence 42, whose elements we denote by B k ( k  = 0, I,...). 
Let us set first by induction on k, 

It is clear that the union of the sets &, as k varies, is equal to S, and that 
they are pairwise disjoint. We denote by Co the collection of the sets 
&, k = 0, 1, ...; then we denote by C, the collection of the sets & n 8: 
which are not empty. By induction, we denote by C,,, the collection of 
sets &,, n c, as I = 0, 1 ,..., and c varies over C,,,-,, provided that 
&, n c # 0 .  Condition (A.3) is obviously satisfied. The mapping p ,  
is defined as follows: if c' E C,,, , p,(c') is the unique element of C, 
which contains c'; then (A.2) is obviously satisfied (4, is the mapping 
which assigns to the element c of C,  the subset c of S). As for (A.4), it 
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follows from the fact that for each n = 0, 1, ... there is a set A, in P 
such that f ( A n )  = c, and diameter of A, _I l / ( n  + l), such that 
A,,, C A, . The An's form the basis of a Cauchy filter on P, which 
converges as P is complete, whence (A.4). 

We say that a subset M of a topological space X is meager if M is 
contained in the union of a countable family A,(n = 1,2,  ...) of closed 
sets none of which has an interior point. We recall that X is called a Baire 
space if no meager subset of X has interior points. 

Definition A.2. Let X be a topological space and Y a subset of X .  W e  call 
Baire closure of Y in X the set of points x E X having the following property: 

(AS)  every neighborhood of x contains a subset of Y which is not meager 

We shall denote by b( Y) the Baire closure of Y; clearly b( Y) is closed 

(in X ) .  

in X. 

PROPOSITION A,?. Let X be a Baire space and suppose that Y C X is 
nonmeager. Then the interior o( Y) of b( Y )  is nonempty. 

Proof. We must show that there is an open subset i2 of X such that, 
for any open subset Q' of Q, SZ' n Y is nonmeager. Let A' be a maximal 
family of open sets Oi , pairwise disjoint, such that Y n Oi be meager for 
every i. Let 0 be the union of the Oi's; then 0 n Y is meager. This is not 
because 0 is a countable union of sets whose intersection with Y is 
meager, for the set of indices i needs not be countable; it is because 
every connected component of 0, necessarily contained in some O i ,  
intersects Y according to a meager set. The complement F of 0 is a 
nonmeager closed set, for Y is nonmeager; hence, its interior FO is 
nonempty. By definition of A, no open subset of Fo intersects Y 

The subset of Y which lies outside b( Y) is meager: b( Y) is the smallest 
closed set containing the whole of Y except possibly a meager subset 
of Y; o(Y) is the largest open set with the property that every open 
subset of it contains - some nonmeager part of Y. Obviously b( Y) \ o( Y) is 
meager; hence, o(Y) = b(Y). 

according to a meager set, therefore FO C o( Y) .  Q.E.D. 

PROPOSITION A.8. Let {Y,} (n  = 0, 1, ...) be a sequence of nonmeager 
subsets of X ,  Y their union. Then b( Y )  \ Umo( Y,) is a meager set. 

Proof. Every open subset of o(Y)  contains a nonmeager subset of Y, 
hence a nonmeager subset of some Y, , and intersects some o(Y,), 
which means that U,o( Y,) is a dense open subset of o( Y). Its complement 
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with respect to o(Y) must be meager, as well as its complement with 
respect to b( Y), since b( Y) \ o( Y) is meager. 

We come now to the main step in the proof of Theorem A.l. 

THEOREM A.2. Let X be a Hausdog topological space, S a Souslin 
subspace of X .  Then S and o(S) ,  therefore also S and b(S) ,  difler only by 
a meager set. 

Proof. We shall make use of a sequence of triples (C, , p ,  , 4,) 
(n = 0, 1, ...) with the properties listed in Proposition A.6. For each 
c E C, , the set 

W ( C )  = b[+n(c)I \ u b[+n+1(c’)I 
C’EC”,, ,Pn(c’)-c 

is meager, by virtue of Proposition A.8 and of (A.2). Therefore, 

is also meager. Thus, it will suffice to show that o(S)  n (X \ M) C S. 
Let x E o(S) n (X \ M ) .  As S = (Jc.c,+o(c), there is c, E C,, such that 
x E b(+,,(c,,)). Since x E o(S)  but x $ Ml(co), there is c1 E C,  , pl(cl) = c,, , 
such that x E b[+,(c,)], etc. We find a sequence {cn> like the one in (A.4). 
We have, for each n = 0, I ,  ..., x E b(+,(c,)) C $n(cn). As the sequence 
of sets $,(c,) converges to a unique point of S, this must also be true of 
{$,(c,)>, and this point must necessarily be x which therefore belongs 
to s. Q.E.D. 

THEOREM A.3. Let E be a Baire Hausdorff TVS, S a convex balanced 
subset of E. I f  S is nonmeager and is a Souslin space, S is a neighborhood 
of 0 in E. 

Proof. As S is nonmeager, o(S)  # 0 (Proposition A.7); let a E S n o(S). 
The operation S - o(S)  is invariant under translation and scalar 
multiplication, therefore o(2S) 3 o(S - a)  = o(S)  - a. But o(S) is an 
open set conftaining a,  hence o(S)  - a is a neighborhood of 0, and this 
is also true of 0(2S), hence of o(S)  = & o(2S).  The proof will be complete 
if we show that o(S)  C 2s.  Let x E o(S) .  As o(S) is a neighborhood of 
0, o(S)  n [x  - o(S)] is an nonempty open set which differs from 
S n (x - S) only by a meager set; hence, S n ( x  - S )  # 0 ,  which 
means that there is y E S such that x - y E S, therefore, x E 2 s .  Q.E.D. 
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PROOF OF THEOREM A.l .  Suppose that E is the inductive limit of an 
arbitrary family {E,} (a E A) of Banach spaces, with respect to linear 
mappings 4, : E, + E; to say that u : E + F is continuous is equivalent 
to saying that, for each a, u, = u o 4- : E, + F is continuous. The 
graph of u, is the preimage of the graph of u under the mapping 
(xu , y) - (4=(xm), y )  of E, x F into E x F; but the preimage of a Borel 
set is easily seen to be a Borel set. This shows that we may assume E to 
be a Banach space. Of course, it suffices to show that u is sequentially 
continuous and it is enough to consider the restriction of u to the 
smallest closed linear subspace of E containing a given, but arbitrary, 
sequence of E. In other words, we may assume that E is a separable 
Banach space. . 

Let G denote the graph of u, V an arbitrary closed convex balanced 
neighborhood of 0 in F, W the intersection of G with E x V. Of course, 
W is a Borel set; on the other hand, E x F is a Souslin space, as are 
both E and F (E is a Polish space!). From Proposition A S  we derive 
that W is also a Souslin space and, therefore, that this is also true of its 
image under the first coordinate projection, which is nothing else but 
U = u-l( V). Now, the convex and balanced subset U of E is nonmeager, 
since E = (J;=lnU. By Theorem A.3, U is a neighborhood of 0 in E. 

Q.E.D. 

COROLLARY 1 .  Let E, F be locally convex Hausdog spaces, E the 
inductive limit of a collection of Banach spaces, F a Souslin space, v : F + E 
a continuous linear map. If v is surjective, v is open. 

Proof. Let B : F/Ker v + E be the associated injective map; B is 
continuous, hence the graph of 5-l is closed. But F/Ker v is a Souslin 
space [Proposition A.4,(d)], hence 6-1 is continuous by Theorem A.1. 

Q.E.D. 

COROLLARY 2. Let Y1 and .F2 be two locally convex Hausdog topologies 
on the same vector space E,  both turning E into a Souslin space inductive 
limit of Banach spaces, such that the injimum of Tl and T2 is Hausdotf. 
Then Y1 = .F2. 

COROLLARY 3. If a TVS E, which is both a Souslin space and the 
inductive limit of Banach spaces, is the algebraic direct sum of two closed 
subspaces, it is their topological direct sum. 

We show next, very quickly, that the most important spaces of 
distribution theory, in particular Q’, are Souslin spaces. 
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Of course, a separable FrCchet space is a Souslin space, in fact, a 
Polish space. But we also have: 

PROPOSITION A.9. The weak dual of a separable Fre‘chet space and 
the strong dual of a separable Fre‘chet-Monte1 space are Souslin spaces. 

Proof. Let E be a separable FrCchet space, {Urn} (n = 1,2, ...) be a basis 
of neighborhoods of 0 in E, U: the polar of U, . The dual E’ of E is 
the union of the (weakly compact convex balanced) sets U: , n = 1,2, ... . 
It suffices to show [Proposition A.4(c)] that under out hypotheses 
the U: are Souslin spaces. For the weak topology, this follows from 
Exercise 32.9. For the strong topology, when E is a FrCchet-Monte1 
space, it follows from the result about the weak topology and from 
Proposition 34.6. 

Proposition A.9 and the remark that precedes it tell us that the 
following are Souslin spaces (Q is an open subset of Rn, K a compact 
subset of Rn): LP(Q), L~&2)( 1 < p < + co), H,8,,(Q)(s E R), Um(Q), 
Y(Rrn), V:(K),  L?(K), H8,(K) (also for 1 < p < +a, s E R); &“(Q), 
Y’(Rrn), (%:(K))’. We now use the fact that countable inductive limits 
of Souslin spaces are Souslin spaces [Proposition A.4(c)]. We see thus 
that L?(Q) (1 < p finite), HE”(), and V,“(Q) are Souslin spaces. 

Next we use the fact that projective limits of countable families of 
Souslin spaces are Souslin spaces; this follows from Proposition A.4 and 
from the fact that a projective limit of a collection of spaces E, is a closed 
subspace of the product of the E,’s. 

Since V:(Q) is the inductive limit of the %:(K) as K runs over an 
increasing sequence of compact subsets of Q whose interiors fill Q, its 
dual, 9’(Q), is the projective limit of the duals (%:(K))’, which are 
Souslin spaces, therefore it is a Souslin space. 

One can prove that if E is a countable inductive limit of separable 
FrCchet spaces and if F is a countable union of images, under continuous 
linear mappings, of separable FrCchet spaces, then L,(E; F) is a Souslin 
space. 

We indicate now what is the improvement of Theorem A.1 obtained 
by A. Martineau. A topological space X is said to be a Ka8 space if X is 
a countable intersection of countable unions of compact sets. A Hausdorff 
space X is said to be K-analytic if there is a Ka8 space Y and a continuous 
mapping f of Y onto X. Martineau’s theorem states that Theorem A.l 
remains valid if we substitute the hypothesis “F is a Souslin space” by the 
hypothesis “F is a K-analytic space”, provided that we also replace 
the hypothesis “the graph of u is a Bore1 set” by the one: “the graph of 
u is closed.” 



THE BOREL GRAPH THEOREM 557 

Every Souslin space is K-analytic, as is easily derived from Proposition 
A.3. Every compact space is K-analytic, which implies that there are 
nonseparable K-analytic spaces. Thus, Martineau’s theorem is a true 
generalization. For instance, every weak dual of a FrCchet space is 
K-analytic, although it is not necessarily separable (hence, not a Souslin 
space). The  same remark applies to reflexive FrCchet spaces. 
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Absolutely convergent series, 459 
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Absolute value of measure, 221 
Absolute value of operator, 490 
Absorbing, 21 
Accumulation point, 51 
Adjoint, 252, 488 
Afline hyperplane, 182 
Algebraic dual, 17 
Algebraic transpose, 17 
Analytic functionals, 231 
Analytic functions, 544 
Antidual, 1 16 
Antilinear (also, semilinear), 1 16 
ArzelA’s theorem, 146 
Ascoli’s theorem, 143 

Baire closure, 553 
Baire space, 74, 553 
Balanced, 21 
Banach space (also, B-space), 97 
Banach-Steinhaus theorem, 348 
Barrel, 58 
Barreled, 346 
Basis of filter, 7 
Basis of bounded sets, 136 
Basis of continuous seminorms. 63 
Basis of neighborhoods, 8 
Bessel’s inequality, 121 
Bidual, 372 
Bijection, 18 
Bilinear form, 11 3 
Bilinear map, 420 
Bipolar, 362 
Borel graph theorem, 549 
Borel-Heine-Lebesgue theorem, 5 1 
Borel set, 549 
Borel’s theorem, 390 

Bounded set, 136 
Bounded set of distributions, 359 
Bracket of duality, 227, 238, 425 

Canonical LF-topology, 132 
Canonical mapping onto quotient space, 16 
Canonical map of TVS into algebraic dual 

Carried (analytic functional carried by set), 

Cauchy filter, 37 
Cauchy formula, 90 
Cauchy-Riemann equations, 90 
Cauchy sequence, 37 
Characteristic function, 99, 222 
Qm topology, 89 
%* topology, 86 
Closed convex hull, 58 
Closed graph theorem, 168 
Closed set, 8 
Closure, 8 
Codimension, 81 
Compact (also, completely continuous) 

Compact set, space, 50 
Comparison of filters, 8 
Comparison of topologies, 9 
Compatible 

of its dual, 200 

237 

map, 483 

topology compatible with vector space 
structure, 20 

with duality, 369 
Completed tensor product, 439 
Complete set, 38 
Complete TVS, 38 
Completion, 38, 41 

Complex conjugate measure, 217 
Compose of two mappings, 17 

of normed space, 97 
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Cone, 192, 195 
Continuous function (or map), 11, 12 
Continuous linear form or functional, 35 
Continuous linear map, 34 
Continuous right inverse, 543 
Continuously differentiable functions, 86 
Convergent filter, sequence, I0 
Convex hull, 57 
Convex set, 30, 57 
Convolution algebra, 280 
Convolution 

of analytic functionals, 321 
of distributions, 293 
of functions, 278 

Covering finer than another one, 161 
Cutting, 302 

D-convex, 391 
Definite positive form, 60 
Dense, 9 
Density, 2 17 
Diagonal, 535 
Differentiable vector valued function, 285 
Differential operator, 247 
Differential polynomial, 252 
Differentiation monomial, 251 
Dimension of vector space, 78 
Dirac measure, 217 
Direct sum, 81 
Direct sum topology, 515 
Discrete topology, 9 
Distance, 70 

to set, 76 
Distribution, 222 

of finite order, 258 
with compact support, 256 
with support at origin, 264 

Dixmier-Schatten theorem, 497 
Dvoretzky-Rogers theorem, 467 
Dual, 35 

Dunford-Pettis theorem, 471 
of normed space, 107 

Egoroff’s theorem, 103 
Eigenspace, 49 1 
Eigenvalue, 49 1 
Entire function, 152 
r-norm, 443 

Equicontinuous set 
<-topology, 429, 434 

of functions, 142 
of linear functions, 142 

Equismall at infinity, 451 
Equivalence relation, 15 
Equivalent modulo subspace, 15 
Equivalent norms, 95 
Equivalent seminorms, 95 
Essential supremum, 105 
Essentially bounded, 105 
Euclidean (also, Hermitian) norm, 59 
Exponential type (entire function of), 232 
Extendable distribution, 246 
Extension (of distribution, of function), 246 

Filter, 6 
associated with sequence, 7 
of neighborhoods, 8 

of the origin, 21 
Finer filter, 8 
Finer topology, 9 
Finest locally convex topology, 134 
Finite dimensional TVS, 78 
Finite dimensional vector space, 19 
Finite Taylor expansion, 152 
Fisher-Riesz theorem, 102 
Formal power series, 25 
Formal transpose of differential operator, 

Fourier-Bore1 (also, Fourier-Laplace) 

Fourier series (also, Fourier expansion), 

Fourier transformation 
of distributions, 275 
of functions, 268 

Frkchet space (also, F-space), 85 
Fubini’s theorem, 416 
Fundamental kernel, 535 

Gevrey class, 160 
Graph of linear map, 167 

249 

transform, 237 

528 

Hahn-Banach theorem, 181 
Half-space, 189 
HausdorfT topology, space, 31 
Hausdorff TVS associated with given 

Heaviside function, 276, 297 
Hermitian form, 60, 1 I3 
Hilbert norm, 115 

TVS, 34 
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Hilbert space, 11 5 
Hilbert sum, 121 
Holder’s inequality, 205 
Holomorphic function, 89 
Homeomorphism, 51 
Homomorphism, 35, 166 
Ha Spaces, 329 
Hyperplane, 8 1 
Hypocontinuous, 423 
Hypoelliptic, 535 

Ideal, 26 
Image 

of filter, 12 
of map, 16 

Indicator of set, 307 
Inductive limit of locally convex spaces, 515 
Infinitely differentiable function, 86 
Infinitely dimensional vector space, 78 
Infracomplete, 477 
Initial topology, 368 
Injection of dual, 243 
Injective, 17 
Integrable function, 101 
Integrable step-function, 99, 468 
Integral form, 500 
Integral map, 503 
Interior of set, 8 
Isometry, 96, 124 
Isomorphism, 35 

of normed spaces, 96, 124 
of pre-Hilbert spaces, 124 

K-Analytic space, 556 
Kernel distribution, 509, 532 
Kernel 

of map, 16 
of seminorm, 66 

Kernels theorem, 531 

Laplace operator, 324 
Laplace transform, 277 
Lebesgue measure, 99, 217 
Length of n-tuple, 85 
LPSpace, 126 
Line, 82 
Linear form, functional, 17 
Linear isometry, 96, 124 
Linear map, 15 
Linear subvariety, 15 

Linearly disjoint, 403 
Lm-Space, 105 
Locally compact TVS, 81 
Locally convex TVS, 58 
Locally finite covering, 161 
Locally integrable function, 212, 221 
I.*-Space, 101 

Mackey’s theorem, 371 
Mackey topology, 369 
Maximum of absolute value, 97 
Meager set, 553 
Metric, 70 
Metrizable space, TVS, 38, 70 
Minkowsky’s inequality, 99 
Monte1 space, 356. 
Montel’s theorem, 149 
Multiplication 

of distribution by function, 250 
of vector by scalar, 14 

Multiplicity of eigenvalue, 491 

Natural injection, 16 
Neighborhood of point, 8 
Nondegenerate form, 113 
Nonnegative form, 60, 114 
Norm, 59 

Normable TVS, 95 
Normal space of distributions, 302 
Normed space, 96 

Nuclear map, 478, 479 
Nuclear space, 510 

of functional, of map, 107 

associated with seminormed space, 67 

One-to-one map, 15 
Onto map, 16 
Open covering, 161 
Open mapping, 166 
Open mapping theorem, 166 
Open set, 8 
Order 

of differential operator, 247, 251 
of differentiation, 85 
of distribution, 258 

structure), 193 

24 1 

Order relation (compatible with linear 

Orthogonal to (or of )  a set, 119, 121, 196, 

Orthogonal projection, 1 18, 120 
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Orthonormal basis, 121 
Orthonormal set, 121 
Osgood theorem, 335 

Paley-Wiener theorem, 305 
Parametrix, 535 
Parseval’s identity, formula, 122, 271 
Part (real or imaginary) of measure, 217 
Partition of unity, 164 
Periodic Qm functions, 528 
T - N o ~ ~ ,  443 
T-TOPOIO~Y, 434 
Plancherel (also, Plancherel-Parseval) theo- 

rem, 270 
Pointed cone, 193 
Polar, 195 
Polish space, 549 
Polydisk, 90 
Polynomials, 129 
Polynuclear, 5 16 
Positive definite, 11 3 
Positive linear functional, 193 
Positive measure, 217 
Positive operator, 488 
Positive square root of operator, 489 
Positively homogeneous, 59 
Precompact, 53 
Pre-Hilbert space, 60, 114 
Preimage, 11 
Product of pre-Hilbert spaces, 124 
Product topology, 13 
Product vector space, 18 
Projection, 83 
Projective limit, 29, 514 
Projective topology, 434 
Pseudofunctions, 225 

Quasicomplete, 355 
Quotient norm, 97 
Quotient normed space, 97 
Quotient seminorm, 65 
Quotient topology, 33 
Quotient TVS, 33 
Quotient vector space, 15 

Radon measure, 211, 216 
Radon-Nicodym theorem, 21 1 
Rapidly decreasing at infinity distribution, 

315 
function, 92 

Rapidly decreasing sequence, 527 
Reflexive space, 372 
Regular kernel, 536 
Regularization, 302 
Regularizing kernel, 533 
Relatively compact, 53 
Restriction map, 181 
Restriction of distributions, of functions, 

Runge domain, 152 
245, 246 

G-Topology, 197, 336 
Salient cone, 193 
Scalarly differentiable, 377 
Scalarly measurable, 471 
Schwarz (also, Cauchy-Schwarz) inequality, 

Self-adjoint, 121, 488 
Semiglobally solvable, 392 
Seminorms, 59 

defining topology, 63 
Semireflexive space, 372 
Semiregular kernel, 532 
Separable spaces, 11 1, 125, 550 
Separated, 189 
Separately continuous, 352, 420 
Sequence of definition of LF-space, 126 
Sequences, 101 
Sequentially complete, 38, 74 
Sesquilinear form, 60, 112 
+Algebra, 549 
o-Finite, 99 
Slowly growing (also, increasing) function, 

275 
Slowly growing sequence, 527 
Smoothing, 302 
Sobolev space, 322 
Souslin space, 551 
Space of distributions, 244 
Spectral decomposition, 492 
Sterling’s formula, 234 
Strict inductive limit, 126 
Strictly separated, 189 
Strong (also, strong dual) topology, 198 
Stronger than, 95 
Subadditive, 59 
Subordinated (partition of unity sub- 

Summable sequence, 456 
Supplementary 

114 

ordinated to covering), 164 
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algebraic, 36 
topological, 36, 543 

of distribution, 255 
of function, 104 

Surjective, 17 
Swallow (to), 21, 136 
Symmetry with respect to origin, 291 

Support 

Temperate, tempered, 272 
Tensor product 

of distributions, 417 
of functions, 407 
of mappings, 406 
of seminorms, 398, 435 
of vector spaces, 403 

Test functions, 130, 132 
Topological direct sum, 36, 84 
Topological ring, 27 
Topological space, 6 
Topological vector space (also, TVS), 20 
Topology, 8 

of bounded convergence, 198, 337 
of compact convergence, 198, 337 
of convex compact convergence, 197, 337 
of pointwise convergence, 29, 337 
of uniform convergence, 98 

on compact sets, 86 
Total, 337 

Trace form, 485 
Trace norm, 479 
Trace 

of filter, 39 
of operator, 491 

Translation-invariant metric, 70 
Translation of distribution, of function, 296 
Transpose of linear map, 199, 240 
Triangular inequality, 61, 70 
Trivial topology, 9 
Two-sided fundamental kernel, 537 
Tychonoff’s theorem, 56, 342 

Ultrafilter, 54 
Uniform boundedness (principle of), 335 
Uniformly continuous, 39 
Unit semiball, 61 
Universal property (of tensor product), 404 
Upper integral, 99 

Value at point, 200, 361 
Vanishing of distribution, 253 
Vector addition, 14 
Vector space, 14 
Very regular kernel, 536 

Weak dual, weak topology, 197 
Weakly continuous, 454 
Weierstrass-Bolzano theorem, 51 


