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Preface

The field of geometric group theory is built around one overarching

philosophy – to understand a group G by understanding a space X on

which it acts. This prompts a rich back and forth, between properties

of the group, and properties of the space. Since a given group can act

on many different spaces, a major theme is to try and find the “best”

space on which G acts. This naturally leads to a strong interplay between

geometric group theory and topology.

One of the early proponents of this method was Ross Geoghegan. In

a famous 1984 paper with Ken Brown, Geoghegan showed that Thomp-

son’s group F provided an example of a finitely presented, torsion-free,

FP∞ group that has infinite cohomological dimension. After working in

other topological areas, Geoghegan returned to this topic in the mid-

1990s. Around this time, he started a productive collaboration with

Robert Bieri, in which they explored the controlled connectivity prop-

erties of horoballs in non-positively curved spaces – a project which is

still ongoing. In 2008, Geoghegan wrote an important textbook with the

same title as these proceedings. It provided an introduction to the use

of topological techniques in the study of infinite groups.

In June 2014, the mathematics department at Ohio State hosted the

conference “Topological Methods in Group Theory”, in honor of Ross

Geoghegan’s 70th birthday. The week-long conference featured 19 ple-

nary talks, and 22 short talks, on a variety of topics in geometric group

theory. The present volume contains the proceedings of the conference.

The articles in this volume cover a wide cross-section of topics in geo-

metric group theory, including left-orderable groups, groups defined by

automata, connectivity properties and Σ-invariants of groups, amenabil-
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ity and non-amenability problems, and boundaries of certain groups. It

also covers topics which are more geometric or topological in nature,

such as the geometry of simplices, decomposition complexity of certain

groups, and problems in shape theory. We hope that, through this vol-

ume, the reader will obtain a taste of the rich mathematics presented at

the conference.

N. Broaddus
Department of Mathematics, The Ohio State University
231 West 18th Avenue, Columbus, OH 43210-1174, U.S.A.
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1

Left Relatively Convex Subgroups
Yago Antoĺın, Warren Dicks, and Zoran Šunić

Abstract

Let G be a group and H be a subgroup of G. We say that H is left

relatively convex in G if the left G-set G/H has at least one G-invariant

order; when G is left orderable, this holds if and only if H is convex in

G under some left ordering of G.

We give a criterion for H to be left relatively convex in G that gener-

alizes a famous theorem of Burns and Hale and has essentially the same

proof. We show that all maximal cyclic subgroups are left relatively con-

vex in free groups, in right-angled Artin groups, and in surface groups

that are not the Klein-bottle group. The free-group case extends a result

of Duncan and Howie.

More generally, every maximal m-generated subgroup in a free group

is left relatively convex. The same result is valid, with some exceptions,

for compact surface groups. Maximal m-generated abelian subgroups in

right-angled Artin groups are left relatively convex.

If G is left orderable, then each free factor of G is left relatively convex

in G. More generally, for any graph of groups, if each edge group is left

relatively convex in each of its vertex groups, then each vertex group is

left relatively convex in the fundamental group; this generalizes a result

of Chiswell.

All maximal cyclic subgroups in locally residually torsion-free nilpo-

tent groups are left relatively convex.



2 Antolin, Dicks, and Šunić

1.1 Outline

Notation 1.1 Throughout this chapter, let G be a multiplicative

group, and G0 be a subgroup of G. For x, y ∈ G, [x, y] := x−1y−1xy,

xy := y−1xy, and yx := yxy−1. For any subset X of G, we denote by

X±1 := X ∪X−1, by 〈X〉 the subgroup of G generated by X, by 〈XG〉
the normal subgroup of G generated by X, and let G/�X� := G/〈XG〉.
When we write A ⊆ B we mean that A is a subset of B, and when we

write A ⊂ B we mean that A is a proper subset of B.

In Section 1.2, we collect together some facts, several of which first

arose in the proof of Theorem 28 of [5]. If G is left orderable, Bergman

calls G0 ‘left relatively convex in G’ if G0 is convex in G under some left

ordering of G, or, equivalently, the left G-set G/G0 has some G-invariant

order. Broadening the scope of his terminology, we shall say that G0 is

left relatively convex in G if the left G-set G/G0 has some G-invariant

order, even if G is not left orderable.

We give a criterion forG0 to be left relatively convex inG that general-

izes a famous theorem of Burns and Hale [7] and has essentially the same

proof. We deduce that if each noncyclic, finitely generated subgroup of G

maps onto Z2, then each maximal cyclic subgroup of G is left relatively

convex in G. Thus, if F is a free group and C is a maximal cyclic sub-

group of F , then F/C has an F -invariant order; this extends the result of

Duncan and Howie [15] that a certain finite subset of F/C has an order

that is respected by the partial F -action. Louder and Wilton [21] used

the Duncan–Howie order to prove Wise’s conjecture that, for subgroups

H and K of a free group F , if H or K is a maximal cyclic subgroup

of F , then
∑

HxK∈H\F/K rank(Hx ∩K) ≤ rank(H) rank(K). They also

gave a simple proof of the existence of a Duncan–Howie order; translat-

ing their argument from topological to algebraic language led us to the

order on F/C. More generally, we introduce the concept of n-indicability

and use it to show that each maximal m-generated subgroup of a free

group is left relatively convex.

In Section 1.3, we find that the main result of [13] implies that, for

any graph of groups, if each edge group is left relatively convex in each

of its vertex groups, then each vertex group is left relatively convex

in the fundamental group. This generalizes a result of Chiswell [8]. In

particular, in a left-orderable group, each free factor is left relatively

convex.

One says that G is discretely left orderable if some infinite (maximal)
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cyclic subgroup of G is left relatively convex in G. Many examples of

such groups are given in [20]; for instance, it is seen that among free

groups, braid groups, surface groups, and right-angled Artin groups, all

the infinite ones are discretely left orderable. In Section 1.4, we show

that all maximal cyclic subgroups are left relatively convex in right-

angled Artin groups and in compact surface groups that are not the

Klein-bottle group. More generally, we show that, with some exceptions,

each maximal m-generated subgroup of a compact surface group is left

relatively convex, and each maximal m-generated abelian subgroup of a

right-angled Artin group is left relatively convex.

At the end, in Section 1.5, we show that all maximal cyclic subgroups

in locally residually torsion-free nilpotent groups are left relatively con-

vex.

1.2 Left Relatively Convex Subgroups

Definition 1.2 Let X be a set and R be a binary relation on X; thus,

R is a subset of X ×X, and ‘xRy’ means ‘(x, y) ∈ R’. We say that R
is transitive when, for all x, y, z ∈ X, if xRy and yRz, then xRz, and

here we write xRyRz and say that y fits between x and z with respect

to R. We say that R is trichotomous when, for all x, y ∈ X, exactly

one of xRy, x = y, and yRx holds, and here we say that the sign of

the triple (x,R, y), denoted sign(x,R, y), is 1, 0, or −1, respectively. A
transitive, trichotomous binary relation is called an order. For any order

< on X, a subset Y of X is said to be convex in X with respect to < if

no element of X−Y fits between two elements of Y with respect to <.

Now suppose that X is a left G-set. The diagonal left G-action on

X ×X gives a left G-action on the set of binary relations on X. By a

binary G-relation on X we mean a G-invariant binary relation on X,

and by a G-order on X we mean a G-invariant order on X. If there

exists at least one G-order on X, we say that X is G-orderable. If X

is endowed with a G-order, we say that X is G-ordered. When X is G

with the left multiplication action, we replace ‘G-’ with ‘left’, and write

left order, left orderable, or left ordered, the latter two being hyphenated

when they premodify a noun.

Analogous terminology applies for right G-sets.

Definition 1.3 For K ≤ H ≤ G, we recall two mutually inverse

operations. Let x, y ∈ G.
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If < is a G-order on G/K with respect to which H/K is convex

in G/K, then we define an H-order <bottom on H/K and a G-order <top

on G/H as follows. We take <bottom to be the restriction of < to H/K.

We define xH <top yH to mean (∀h1, h2 ∈ H)(xh1K < yh2K). This re-

lation is trichotomous since xH <top yH holds if and only if we have

(xH �= yH) ∧ (xK < yK); the former clearly implies the latter, and,

when the latter holds, K < x−1yK, and then, by the convexity of H/K

in G/K, h1K < x−1yK, and then y−1xh1K < K, y−1xh1K < h2K,

and xh1K < yh2K. Thus, <top is a G-order on G/H.

Conversely, if <bottom is an H-order on H/K and <top is a G-order on

G/H, we now define a G-order < on G/K with respect to which H/K

is convex in G/K. We define xK < yK to mean

(xH <top yH) ∨
(
(xH = yH) ∧ (K <bottom x−1yK)

)
.

It is clear that < is a well-defined G-order on G/K. Now suppose that

xK ∈ (G/K)− (H/K). Then xH �= H. If xH <top H, then xK < hK,

for all h ∈ H, and similarly if H <top xH. Thus, H/K is convex in G/K

with respect to <.

In particular, G/K has some G-order with respect to which H/K

is convex in G/K if and only if H/K is H-orderable and G/H is G-

orderable. Taking K = {1} and H = G0, we find that the following are

equivalent, as seen in the proof of Theorem 28 (vii)⇔(viii) of [5]:

(1.3.1) G has some left order with respect to which G0 is convex in G,

(1.3.2) G0 is left orderable, and G/G0 is G-orderable,

(1.3.3) G is left orderable, and G/G0 is G-orderable.

This motivates the terminology introduced in the following definition,

which presents an analysis similar to one given by Bergman in the proof

of Theorem 28 in [5]. Unlike Bergman, we do not require that the group

G is left-ordered.

Definition 1.4 Let Ssg(G) denote the set of all the subsemigroups of

G, that is, subsets of G closed under the multiplication. We say that the

subgroup G0 of G is left relatively convex in G when any of the following

equivalent conditions hold:

(1.4.1) the left G-set G/G0 is G-orderable,

(1.4.2) the right G-set G0\G is G-orderable,

(1.4.3) there exists some G+ ∈ Ssg(G) such that G±1
+ = G−G0; in this

event, G+ ∩G−1
+ = ∅ and G0G+ = G+G0 = G0G+G0 = G+,
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(1.4.4) for each finite subset X of G−G0, there exists S∈Ssg(G) such

that X⊆S±1⊆G−G0.

We then say also that G0 is a left relatively convex subgroup of G. One

may also use ‘right’ in place of ‘left’.

Proof of equivalence (1.4.1)⇒(1.4.3). Let < be a G-order on G/G0, and

set

G+ := {x ∈ G | G0 < xG0};

then G−1
+ = {x ∈ G | G0 < x−1G0} = {x ∈ G | xG0 < G0} and

G0 = {x ∈ G | G0 = xG0}. Hence, G±1
+ = G−G0. If x, y ∈ G+, then

G0 < xG0, G0 < yG0 and G0 < xG0 < xyG0; thus xy ∈ G+. Hence,

G+ ∈ Ssg(G).

Now consider any G+ ∈ Ssg(G) such that G±1
+ = G−G0. Then G+ ∩

G−1
+ = ∅, since G+ is a subsemigroup which does not contain 1. Also,

G0G+ ∩ G0 = ∅, since G+ ∩ G−1
0 G0 = ∅, while G0G+ ∩G−1

+ = ∅, since
G0∩G−1

+ G−1
+ = ∅. Thus G0G+ ⊆ G+, and equality must hold. Similarly,

G+G0 = G+.

(1.4.3)⇒(1.4.1). Let x, y, z ∈ G. We define xG0 < yG0 to mean that

(xG0)
−1(yG0) ⊆ G+, or, equivalently, that x−1y ∈ G+. Then < is a

well-defined binary G-relation on G/G0. Since x−1y belongs to exactly

one of G+, G0, and G−1
+ , we see that < is trichotomous. If xG0 < yG0

and yG0 < zG0, then G+ contains x−1y, y−1z, and their product, which

shows that xG0 < zG0. Thus < is a G-order on G/G0.

(1.4.2)⇔(1.4.3) is the left-right dual of (1.4.1)⇔(1.4.3).

(1.4.3)⇒(1.4.4) with S = G+.

(1.4.4)⇒(1.4.3). Bergman [5] observes that an implication of this type

follows easily from the Compactness Theorem of Model Theory; here,

one could equally well use the quasi-compactness of {−1, 1}G−G0 , which

holds by a famous theorem of Tychonoff [27]. The case of this implica-

tion where G0 = {1} was first stated by Conrad [9], who gave a short

argument designed to be read in conjunction with a short argument of

Ohnishi [25]. Let us show that a streamlined form of the Conrad–Ohnishi

proof gives the general case comparatively easily.

Let 2G−G0 denote the set of all subsets ofG−G0. For eachW ∈ 2G−G0 ,

let Fin(W ) denote the set of finite subsets of W , and 〈〈W 〉〉 denote

the subsemigroup of G generated by W . For each ϕ ∈ {−1, 1}G−G0 and

x ∈ G−G0, set ϕ̃(x) := xϕ(x) ∈ {x, x−1}. Set
W :=

{
W ∈ 2G−G0 |

(
∀W ′∈ Fin(W )

) (
∀X∈ Fin(G−G0)

)(
∃ϕ ∈ {−1, 1}G−G0

)(
G0 ∩

〈〈
W ′ ∪ ϕ̃(X)

〉〉
= ∅

)}
.
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It is not difficult to see that (1.4.4) says precisely that ∅ ∈W. Also, it

is clear that

(∀W ∈ 2G−G0)
((

W ∈W
)
⇔

(
Fin(W ) ⊆W

))
.

It follows thatW is closed in 2G−G0 under the operation of taking unions

of chains. By Zorn’s Lemma, there exists some maximal elementW ofW.

We shall prove that 〈〈W 〉〉±1 = G−G0, and thus (1.4.3) holds. By tak-

ing X = ∅ in the definition of ‘W ∈W’, we see that 〈〈W 〉〉 ⊆ G−G0, and

thus W±1 ⊆ 〈〈W 〉〉±1 ⊆ G−G0. It remains to show that G−G0 ⊆W±1.

Since W is maximal in W, it suffices to show that

(∀x ∈ G−G0)
(
(W ∪ {x} ∈W) ∨ (W ∪ {x−1} ∈W)

)
.

Suppose then W ∪ {x} �∈W. Thus, we may fix a Wx∈ Fin(W ) and an

Xx∈ Fin(G−G0) such that(
∀ϕ ∈ {−1, 1}G−G0

) (
G0 ∩

〈〈
Wx ∪ {x} ∪ ϕ̃(Xx)

〉〉
�= ∅

)
.

Let W ′∈ Fin(W ) and X∈ Fin(G−G0). As W ∈W, there exists a func-

tion ϕ ∈ {−1, 1}G−G0 such that

G0 ∩
〈〈

Wx ∪W ′ ∪ ϕ̃({x} ∪Xx ∪X)
〉〉

= ∅.
Clearly, ϕ̃(x) �= x. Thus, ϕ̃(x) = x−1 and

G0 ∩
〈〈

W ′ ∪ {x−1} ∪ ϕ̃(X)
〉〉

= ∅.
This shows that W ∪ {x−1}∈W, as desired.

The Burns–Hale theorem [7, Theorem 2] says that if each nontriv-

ial, finitely generated subgroup of G maps onto some nontrivial, left-

orderable group, then G is left orderable. The following result, using

a streamlined version of their proof, generalizes the Burns–Hale theo-

rem in two ways. Namely, the scope is increased by stating the result

for an arbitrary subgroup G0 (in their case G0 is trivial) and by im-

posing a weaker condition (in their case 〈X〉 is required to map onto a

left-orderable group).

Theorem 1.5 If, for each nonempty, finite subset X of G−G0, there

exists a proper, left relatively convex subgroup of 〈X〉 that includes 〈X〉∩
G0, then G0 is left relatively convex in G.

Proof For each finite subset X of G−G0, we shall construct an element

SX ∈ Ssg(〈X〉) such that X ⊆ S±1
X ⊆ G−G0, and then (1.4.4) will hold.

We set S∅ := ∅. We now assume that X �= ∅. Let us write H := 〈X〉.
By hypothesis, we have an H0 such that H ∩G0 ≤ H0 < H and H0 is

left relatively convex in H. Notice that H−H0 ⊆ H−(H ∩G0) ⊆ G−G0

and X ∩H0 ⊂ X, since X � H0. By induction on |X|, we can find an

SX∩H0 ∈ Ssg(〈X ∩H0〉) such thatX ∩H0 ⊆ S±1
X∩H0

⊆ G−G0. By (1.4.3),

since H0 is left relatively convex in H, we have an H+ ∈ Ssg(H) such
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that H0H+H0 = H+ and H±1
+ = H−H0. We set SX := SX∩H0

∪H+.

Then SX ∈ Ssg(H), since SX∩H0
⊆ H0 and H0H+H0 = H+. Also,

X = (X ∩H0) ∪ (X−H0) ⊆ S±1
X∩H0

∪ (H−H0) = S±1
X ⊆ G−G0.

Remark Theorem 1.5 has a variety of corollaries. For example, for any

subset X of G, we have a sequence of successively weaker conditions:

〈X ∪G0〉/�G0� maps onto Z; 〈X ∪G0〉/�G0� maps onto a nontriv-

ial, left-orderable group; there exists a proper, left relatively convex sub-

group of 〈X ∪G0〉 that includes G0; and, there exists a proper, left

relatively convex subgroup of 〈X〉 that includes 〈X〉 ∩ G0. The last im-

plication follows from the following fact. If A and B are subgroups of G

and A is left relatively convex in G, then A ∩B is left relatively convex

in B.

Definition 1.6 A group G is said to be n-indicable, where n is a

positive integer, if it can be generated by fewer than n elements or it

admits a surjective homomorphism onto Zn.

A group G is locally n-indicable if every finitely generated subgroup

of G is n-indicable.

Note that some authors require in the definition of indicability that G

admits a surjective homomorphism onto Z, while here 1-indicable means

that G is trivial or maps onto Z, 2-indicable means that G is cyclic or

maps onto Z2, and so on.

Example 1.7 Free abelian groups of any rank and free groups of any

rank are locally n-indicable for every n.

The notion of n-indicability is related to left relative convexity through

the following corollary of Theorem 1.5.

Corollary 1.8 Let n ≥ 2. If G is a locally n-indicable group then each

maximal (n−1)-generated subgroup of G is left relatively convex in G. In

particular, in a free group, each maximal cyclic subgroup is left relatively

convex.

Proof If the subgroup G0 is a maximal (n − 1)-generated subgroup of

G, then, for any nonempty, finite subset X of G−G0, 〈X ∪G0〉 maps

onto Zn, and 〈X ∪G0〉/�G0� maps onto Z.

The idea of Corollary 1.8 can be used to show that certain maximal

κ-generated abelian subgroups are left relatively convex, where κ is some

cardinal.
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Definition 1.9 A group G is nasmof if it is torsion-free and every

nonabelian subgroup of G admits a surjective homomorphism onto Z∗Z.

Example 1.10 The class of nasmof groups contains free and free

abelian groups and it is closed under taking subgroups and direct prod-

ucts. Residually nasmof groups are nasmof, and in particular residually

free groups are nasmof. Every nasmof group G is 2-locally indicable, and

by Corollary 1.8, maximal cyclic subgroups are left relatively convex.

Corollary 1.11 Let κ be a cardinal. If G is a nasmof group then each

maximal κ-generated abelian subgroup of G is left relatively convex in G.

In particular, in a residually free group, each maximal κ-generated

abelian subgroup is left relatively convex.

Proof Let G0 be a maximal κ-generated abelian subgroup of G and

X a nonempty finite subset of G−G0. By maximality, if 〈X ∪G0〉 is

abelian, then it is not κ-generated and κ must be a finite cardinal. In

this case, 〈X ∪G0〉 is a finitely generated, torsion-free abelian group of

rank greater than κ. If 〈X ∪G0〉 is nonabelian, then it maps onto Z ∗ Z.
In both cases, 〈X ∪G0〉/�G0� maps onto Z.

1.3 Graphs of Groups

Definition 1.12 By a graph, we mean a quadruple (Γ , V, ι, τ) such that

Γ is a set, V is a subset of Γ , and ι and τ are maps from Γ−V to V . Here,

we let Γ denote the graph as well as the set, and we write VΓ := V and

EΓ := Γ−V , called the vertex-set and edge-set, respectively. We then

define vertex, edge ιe
e−→−τe, inverse edge τe

e−1

−−→−ιe, path

(1.12.1) v0
e
ε1
1−−→− v1

e
ε2
2−−→− v2

e
ε3
3−−→− · · ·

e
εn−2
n−2−−−−→− vn−2

e
εn−1
n−1−−−−→− vn−1

eεnn−−→− vn, n ≥ 0,

reduced path, and connected graph in the usual way. We say that Γ is

a tree if V �= ∅ and, for each (v, w) ∈ V × V , there exists a unique

reduced path from v to w. The barycentric subdivision of Γ is the graph

Γ (′) such that VΓ (′) = Γ and EΓ (′) = EΓ × {ι, τ}, with e
(e,ι)−−−→− ιe and

e
(e,τ)−−−→− τe.

We say that Γ is a left G-graph if Γ is a left G-set, V is a G-subset of

Γ , and ι and τ are G-maps. For γ ∈ Γ , we let Gγ denote the G-stabilizer

of γ.

Let T be a tree. A local order on T is a family (<v | v ∈ VT ) such that,
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for each v ∈ VT , <v is an order on linkT (v) := {e ∈ ET | v ∈ {ιe, τe}}.
By Theorem 3 of [13], for each local order (<v | v ∈ VT ) on T , there

exists a unique order <
T

on VT such that, for each reduced T -path

expressed as in (1.12.1),

sign(v0, <T
, vn) = sign

(
0, <

Z
,

n∑
i=1

εi +
n−1∑
i=1

sign(ei, <vi , ei+1)
)
,

where the sign notation is as in Definition 1.2. We then call <
T
the asso-

ciated order,
∑n

i=1 εi the orientation-sum, and
∑n−1

i=1 sign(ei, <vi , ei+1)

the turn-sum. If T is a left G-tree, then, for any G-invariant local order

on T , the associated order on VT is easily seen to be a G-order.

Theorem 1.13 Suppose that T is a left G-tree such that, for each

T-edge e, Ge is left relatively convex in Gιe and in Gτe. Then, for each

t ∈ T , Gt is left relatively convex in G. If there exists some t ∈ T such

that Gt is left orderable, then G is left orderable. Moreover, if the input

orders are given effectively, then the output orders are given effectively,

Proof We choose one representative from each G-orbit in VT . For each

representative v0, we choose an arbitrary order on the set of Gv0 -orbits

Gv0
\ linkT (v0), and, within each Gv0 -orbit, we choose one representative

e0 and a Gv0 -order on Gv0/Ge0 , which exists by (1.4.1); since our Gv0 -

orbit Gv0e0 may be identified with Gv0/Ge0 , we then have a Gv0 -order

on Gv0e0, and then on all of linkT (v0) by our order on Gv0\ linkT (v0).
We then use G-translates to obtain a G-invariant local order on T . This

in turn gives the associated G-order on VT as in Definition 1.12. In

particular, for each T-vertex v, we have G-orders on Gv and G/Gv.

By (1.4.1), Gv is then left relatively convex in G. For each T-edge e,

Ge is left relatively convex in Gιe by hypothesis, and then Ge is left

relatively convex in G by Definition 1.3. Thus, for each t ∈ T , Gt is left

relatively convex in G.

By (1.3.2)⇒(1.3.3), if there exists some t ∈ T such that Gt is left

orderable, then G is left orderable.

Example 1.14 Let F be a free group and X be a free-generating set

of F . The left Cayley graph of F with respect to X is a left F -tree on

which F acts freely. Thus, the fact that free groups are left orderable

can be deduced from Theorem 1.13; see [13].

Bearing in mind that intersections of left relatively convex subgroups

are left relatively convex, we can generalize the previous example to the

case that a group acts freely on some orbit of n-tuples of elements of T .
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Corollary 1.15 Suppose that T is a left G-tree such that, for each

T-edge e, Ge is left relatively convex in Gιe and in Gτe. Suppose that

there exists a finite subset S of T with ∩s∈SGs = {1}, then G is left

orderable.

Definition 1.16 By a graph of groups (G,Γ ), we mean a graph with

vertex-set a family of groups (G(v′) | v′ ∈ VΓ (′)) and edge-set a family

of injective group homomorphisms (G(e)
G(e′)−−−→ G(v) | e e′−→−v ∈ EΓ (′)),

where Γ is a nonempty, connected graph and Γ (′) is its barycentric

subdivision. For γ ∈ Γ (′), we call G(γ) a vertex group, edge group, or

edge map if γ belongs to VΓ , EΓ , or EΓ (′), respectively. One may think

of (G,Γ ) as a nonempty, connected graph, of groups and injective group

homomorphisms, in which every vertex is either a sink, called a vertex

group, or a source of valence two, called an edge group. We shall use the

fundamental group and the Bass–Serre tree of (G,Γ ) as defined in [26]

and [11].

Bass–Serre theory translates Theorem 1.13 into the following form.

Theorem 1.17 Suppose that G is the fundamental group of a graph of

groups (G,Γ ) such that the image of each edge map G(e)
G(e′)−−−→ G(v) is

left relatively convex in its vertex group, G(v). Then each vertex group

is left relatively convex in G. If some vertex group is left orderable, then

G is left orderable. Moreover, if the input orders are given effectively,

then the output orders are given effectively.

Remark Theorem 1.17 generalizes the result of Chiswell that a group

is left orderable if it is the fundamental group of a graph of groups such

that each vertex group is left ordered and each edge group is convex in

each of its vertex groups; see Corollary 3.5 of [8].

The result of Chiswell is a consequence of Corollary 3.4 of [8], which

shows that a group is left orderable if it is the fundamental group of

a graph of groups such that each edge group is left orderable and each

of its left orders extends to a left order on each of its vertex groups.

(If, moreover, each edge group and vertex group is left ordered, and the

maps from edge groups to vertex groups respect the orders, then the

fundamental group has a left order such that the maps from the vertex

groups to the fundamental group respect the orders.) This applies to the

case of cyclic edge groups and left-orderable vertex groups.

Corollary 3.4 of [8] is, in turn, a consequence of Chiswell’s necessary

and sufficient conditions for the fundamental group of a graph of groups
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to be left orderable. As his proof involved ultraproducts, his orders were

not constructed effectively.

Example 1.18 Let A and B be groups, C be a subgroup of A, and

x : C → B, c �→ c x, be an injective homomorphism. The graph of groups

A← C → B, where the maps are the inclusion map and x, has as fun-

damental group A ∗C B := A ∗B/�{c−1·c x | c ∈ C}�, called the free

product with amalgamation with vertex groups A and B, edge group C,

and edge map x. We then view A and B as subgroups of A ∗C B. In

particular, c x = c.

If C is left relatively convex in each of A and B, then A and B are

left relatively convex in A ∗C B, by Theorem 1.17.

In detail, suppose that G = A ∗C B, that <
A

is an A-order on A/C,

and that <
B

is a B-order on B/C. The Bass–Serre left G-tree T for

A← C → B has vertex-set G/A ∪̇ G/B (where ∪̇ denotes the disjoint

union) and edge-set G/C, with gA
gC−−→−gB. Then <

A
and <

B
deter-

mine a G-invariant local order on T , and we have the associated G-

order <
T
on V T , as in Definition 1.12. Let us describe the G-order <

T

on G/A. Consider any gA ∈ G/A, and write gA = a1b1a2b2 · · · anbnA,

n ≥ 0, where a1 ∈ A, a2, . . . , an ∈ A−C, b1, b2, . . . , bn ∈ B−C. We then

have a reduced T -path

A
a1C−−→− a1B

(a1b1C)−1

−−−−−−−→− a1b1A
a1b1a2C−−−−−→− a1b1a2B

(a1b1a2b2C)−1

−−−−−−−−−→−

. . .
a1b1a2b2···anC−−−−−−−−−−→− a1b1a2b2 · · · anB
(a1b1a2b2···anbnC)−1

−−−−−−−−−−−−−−→− a1b1a2b2 · · · anbnA = gA.

The orientation-sum equals zero, and we have only the turn-sum, which

simplifies by the G-invariance of the local order to give

sign(A, <
T
, gA)

= sign
(
0, <

Z
,

n∑
i=1

sign(C,<
B
, biC) +

n∑
i=2

sign(C,<
A
, aiC)

)
.

We record the case where C = {1}.

Corollary 1.19 In a left-orderable group, every free factor is left rel-

atively convex.

Example 1.20 In a free group, every free factor is left relatively con-

vex, by Example 1.14.
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Example 1.21 Suppose that A and B are free groups, or, more gen-

erally, groups all of whose maximal cyclic subgroups are left relatively

convex; see Corollary 1.8. If C is a maximal cyclic subgroup in both A

and B, then A and B are left relatively convex in A ∗C B, by Exam-

ple 1.18.

Example 1.22 Let A be a group, C a subgroup of A, and x : C → A,

c �→ c x, be an injective homomorphism. The graph of groups C ⇒ A,

where the maps are the inclusion map and x, has as fundamental group

A ∗C x := A ∗ 〈x | ∅〉/�{x−1·c−1·x·c x | c ∈ C}�,

called the HNN extension with vertex group A, edge group C, and edge

map x. We then view A and 〈x | ∅〉 as subgroups of A ∗C x. In particular,

c x = x−1cx.

If C and C x are left relatively convex in A, then A is left relatively

convex in A ∗C x, by Theorem 1.17.

If G = A ∗C x, then the Bass–Serre left G-tree T for C ⇒ A has

vertex-set G/A and edge-set G/C, with gA
gC−−→−gxA.

1.4 Surface Groups and RAAGs

The following applies to all noncyclic compact surface groups.

Example 1.23 LetG = 〈{x} ∪̇ {y} ∪̇ Z | x−1yεxyw〉 with ε ∈ {−1, 1}
and w ∈ 〈Z | ∅ 〉. By Example 1.20, both 〈 y 〉 and 〈 y w〉 are left relatively
convex in 〈{y} ∪̇ Z | ∅ 〉, which in turn is left relatively convex in the

HNN extension G, by Example 1.22. Here the Bass–Serre left G-tree T

has vertex-set G/〈{y} ∪ Z〉 and edge-set G/〈y〉.
Notice that 〈{x} ∪ Z 〉 is not a left relatively convex subgroup in the

group 〈{x} ∪̇ {y} ∪̇ Z | (xy)2 = x2w−1〉.

Proposition 1.24 (a) Every compact orientable surface group of genus

g ≥ 1 is locally n-indicable, for every n ≥ 1.

(b) Every compact non-orientable surface group of genus g ≥ 2 is locally

n-indicable, for 1 ≤ n ≤ g − 1.

Proof (a) Let G be a compact orientable surface group of genus g ≥ 1,

n ≥ 1, and let H be an m-generated subgroup of G that cannot be

generated by fewer than m elements, for some m ≥ n. If H is of infinite

index in G, then H is free of rank m, and if it is of finite index, then it
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is a compact orientable surface group of genus m/2 ≥ g. In both cases,

H admits a homomorphism onto Zm, and therefore also onto Zn.

(b) Let G be a compact non-orientable surface group of genus g ≥ 2,

n ≥ 1, and let H be an m-generated subgroup of G that cannot be

generated by fewer than m elements, for some m ≥ n. If H is of infinite

index in G, then H is free of rank m, and if it is of finite index, then H

is a compact non-orientable surface group of genus m ≥ g ≥ n + 1. In

the former case, H admits a homomorphism onto Zm, and therefore also

onto Zn. In the latter case, H admits a homomorphism onto Zm−1 and,

since in this case m− 1 ≥ n, H admits a homomorphism onto Zn.

The following applies to all noncyclic surface groups except the Klein-

bottle group.

Corollary 1.25

(a) Let G be a compact orientable surface group G of genus g ≥ 1. Every

maximal m-generated subgroup of G is left relatively convex in G.

(b) Let G be a compact non-orientable surface group G of genus g ≥ 3.

Every maximal m-generated subgroup of G, for 1 ≤ m ≤ g − 2 is left

relatively convex in G.

Proof Follows from Proposition 1.24 and Corollary 1.8.

Definition 1.26 Let X be a set, R be a subset of [X,X] in 〈X | ∅ 〉,
and G = 〈X | R 〉. We say that G is a right-angled Artin group, or RAAG

for short. For example, free groups and free abelian groups are RAAGs.

Let Y be a subset of X. The map X → G which acts as the iden-

tity map on Y and sends X−Y to {1} induces well-defined homomor-

phisms G→ G and G/�X−Y�→ G. Moreover, the natural composite

G/�X−Y� → G → G/�X−Y� is the identity map, since it acts

as such on the generating set Y . Thus we may identify G/�X−Y� with

its image 〈Y 〉 in G. It follows that 〈Y 〉 is a RAAG. We let π〈X〉→〈Y 〉 de-
note the map G → G/�X−Y� = 〈Y 〉.
For each x ∈ X, one has a splitting G = A ∗C x, where A = 〈X−{x}〉,

C = 〈{y ∈ X−{x} | [x, y] ∈ R±1}〉, and x : C → A, c �→ cx, is the inclu-

sion map. In essence, this was noted by Bergman [4].

It is not difficult to show that 〈Y 〉 is left relatively convex in G;

since (1.4.4) is a local condition, it suffices to verify this for X finite,

and here it holds by induction on |X| and Example 1.22. In particular,

G is left orderable and, hence, torsion-free.
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By [1, Corollary 1.6], RAAGs are nasmof and therefore locally 2-

indicable. By Corollary 1.11, we have the following.

Corollary 1.27 Let G be a subgroup a right-angled Artin group and

κ a cardinal. Every maximal κ-generated abelian subgroup of G is left

relatively convex in G.

In particular, maximal abelian subgroups of G are left relatively convex

in G.

Example 1.28 There exists an example, attributed by Minasyan [24]

to Martin Bridson, of a subgroup G of finite index in the right-angled

Artin group F2×F2 such that G/G′ is not torsion-free. This implies that

there exists n ≥ 2 such that the right-angled Artin group F2×F2 is not

locally n-indicable.

We do not know if RAAGs have the property that their maximal

n-generated subgroups are left relatively convex.

1.5 Residually Torsion-free Nilpotent Groups and
Left Relative Convexity

Corollary 1.8, combined with the next few observations, provides many

examples of left relatively convex cyclic subgroups.

Proposition 1.29 If G is a finitely generated, nilpotent group with

torsion-free center, then G is 2-indicable.

Proof Let G be any group (not necessarily nilpotent or with torsion

free center), Z1 be its center, and Z2 be its second center, that is, Z2/Z1

is the center of G/Z1.

For g ∈ G and a ∈ Z2, the commutator [a, g] is in Z1. From the

identity [ab, g] = [a, g]b[b, g], we obtain, for a, b ∈ Z2, [ab, g] = [a, g][b, g].

Therefore, for any element g ∈ G, a �→ [a, g] is a homomorphism from

Z2 to Z1, and a �→ ([a, g])g∈G is a homomorphism from Z2 to
∏

g∈G Z1

with kernel Z1, which implies that Z2/Z1 embeds into a power of Z1.

We now let G be a finitely generated, nilpotent group with torsion

free center and we argue by induction on the nilpotency class c of G.

If c = 0, then G is trivial, and hence 2-indicable. Assume that c ≥ 1.

Since Z2/Z1 embeds into a power of Z1, which is a torsion-free group,

Z2/Z1 itself is a torsion-free group. Therefore G/Z1 is a finitely gener-

ated, nilpotent group of class c − 1 with torsion-free center Z2/Z1. By
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the inductive hypothesis, G/Z1 is 2-indicable. If G/Z1 is noncyclic, then

G/Z1 maps onto Z2, and so does G; thus we may assume that G/Z1

is cyclic. In that case, G/Z1 is trivial, G is a free abelian group, and,

hence, G is 2-indicable.

Remark Note that, under the assumption that Z1 is torsion free, the

observation that Z2/Z1 embeds into some power of Z1 yields that Z2/Z1,

the center ofG/Z1, is itself torsion-free. Inductive arguments then quickly

yield that each upper central series factor Zi+1/Zi, for i ≥ 0, is torsion-

free, each quotient Zj/Zi, for j > i ≥ 0, is torsion free, and under the

additional assumption that G is nilpotent, each quotient G/Zi, for i ≥ 0,

is torsion-free; these are well-known results of Mal′cev [23] and we could

use them to skip the first part in the proof of Proposition 1.29 and move

directly to the inductive part of the proof.

Proposition 1.29 also follows from Mal′cev’s result on quotients, to-

gether with Lemma 13 in [6], which states that every finitely generated,

nilpotent group that is not virtually cyclic maps onto Z2 (the proof of

this result relies on the fact that torsion-free, virtually abelian, nilpotent

groups are abelian, which easily follows from the uniqueness of roots in

torsion-free nilpotent groups; another result of Mal′cev from [23]).

With all these choices before us, we still opted for the proof of Propo-

sition 1.29 provided above, because it is short and self-contained.

Proposition 1.30 Every locally residually torsion-free nilpotent group

is locally 2-indicable.

Proof Let G be a locally residually torsion-free nilpotent group and H

a finitely generated subgroup of G. Then H is a residually torsion-free

nilpotent group. If H has a noncyclic, torsion-free, nilpotent quotient,

then this quotient maps to Z2 by Proposition 1.29, and so does H.

Otherwise, H is residually-Z, which implies that it is abelian. Since H

is finitely generated and torsion-free, it is free abelian, hence 2-indicable

(in fact, H is cyclic in this case, since we already excluded the possibility

of noncyclic quotients).

Remark Note that if G is residually torsion-free nilpotent then it is

also locally residually torsion-free nilpotent. In particular, for finitely

generated groups there is no difference between being residually torsion-

free nilpotent or being locally residually torsion-free nilpotent.

Example 1.31 If G is a

• residually free group [22],
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• right-angled Artin group or a subgroup of a right-angled Artin group [14],

• 1-relator group with presentation

〈 X, a, b | [a, b] = w 〉,

where a, b �∈ X and w is a group word over X, including fundamental

groups of all compact surfaces other than the sphere, the projective

plane, and the Klein bottle [2, 17, 3],

• free group in any polynilpotent variety, including free solvable groups

of any given class [18],

• pure braid group [16],

• 1-relator group with presentation

〈x1, . . . , xm, y1, . . . , yn | u = v〉,

where v ∈ 〈y1, . . . , yn〉, v �= 1, u ∈ A = 〈x1, . . . , xm〉, u ∈ γd(A) for

some d such that u is not a proper power modulo γd+1(A), where

γk(A) is the kth term of the lower central series of A [19],

then G is a residually torsion-free nilpotent group.

By Proposition 1.30, such a group G is locally 2-indicable and, by

Corollary 1.8, each maximal cyclic subgroup ofG is left relatively convex.
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[1] Antoĺın, Yago and Minasyan, Ashot. 2015. Tits alternatives for graph
products. J. Reine Angew. Math., 704, 55–83.

[2] Baumslag, Gilbert. 1962. On generalised free products. Math. Z., 78,
423–438.



Left Relatively Convex Subgroups 17

[3] Baumslag, Gilbert. 2010. Some reflections on proving groups residually
torsion-free nilpotent. I. Illinois J. Math., 54(1), 315–325.

[4] Bergman, George M. 1976. The global dimension of mixed
coproduct/tensor-product algebras. Preprint, 19 pages. Incorporated
into [10] and [12].

[5] Bergman, George M. 1990. Ordering coproducts of groups and semi-
groups. J. Algebra, 133(2), 313–339.

[6] Bridson, Martin R., Burillo, José, Elder, Murray and Šunić, Zoran. 2012.
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de Hyman Bass, Astérisque, No. 46.
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Groups with Context-free Co-word Problem
and Embeddings into Thompson’s Group V
Rose Berns-Zieve, Dana Fry, Johnny Gillings, Hannah Hoganson,

and Heather Mathews

Abstract

Let G be a finitely generated group, and let Σ be a finite subset that

generates G as a monoid. The word problem of G with respect to Σ

consists of all words in the free monoid Σ∗ that are equal to the identity

in G. The co-word problem of G with respect to Σ is the complement in

Σ∗ of the word problem. We say that a group G is coCF if its co-word

problem with respect to some (equivalently, any) finite generating set Σ

is a context-free language.

We describe a generalized Thompson group V(G,θ) for each finite group

G and homomorphism θ: G → G. Our group is constructed using the

cloning systems introduced by Witzel and Zaremsky. We prove that

V(G,θ) is coCF for any homomorphism θ and finite group G by con-

structing a pushdown automaton and showing that the co-word problem

of V(G,θ) is the cyclic shift of the language accepted by our automaton.

A version of a conjecture due to Lehnert says that a group has context-

free co-word problem exactly if it is a finitely generated subgroup of

V . The groups V(G,θ) where θ is not the identity homomorphism do

not appear to have obvious embeddings into V , and may therefore be

considered possible counterexamples to the conjecture.

Demonstrative subgroups of V , which were introduced by Bleak and

Salazar-Diaz, can be used to construct embeddings of certain wreath

products and amalgamated free products into V . We extend the class

of known finitely generated demonstrative subgroups of V to include all

virtually cyclic groups.
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2.1 Introduction

Let G be a group and let Σ ⊆ G be a finite set that generates G. The

word problem of G with respect to the free monoid Σ∗ is the set of all

words in Σ∗ that are equivalent to the the identity in G. The co-word

problem of G with respect to Σ∗ is the complement of the word problem.

Both the word problem and the co-word problem of G are languages.

The Chomsky Hierarchy [4] states that the set of regular languages is

a subset of context-free languages, the set of context-free languages is

a subset of context sensitive languages, and the set of context sensitive

languages is a subset of recursive languages. We will focus in particular

on context-free languages. A language is context-free if it is accepted

by a pushdown automaton. If the co-word problem of G is a context-

free language, then we say G is coCF . This property does not depend

on the choice of monoid generating set. The class of coCF groups was

first studied by Holt, Rees, Röver, and Thomas [7]. They showed that

the class is closed under taking finite direct products, taking restricted

standard wreath products with virtually free top groups, and passing to

finitely generated subgroups and finite index overgroups.

One group of particular interest is Thompson’s group V , which is an

infinite but finitely presented simple group. Lehnert and Schweitzer [11]

demonstrate that Thompson’s group V is coCF . This group is of interest

to us because of the conjecture, formulated by Lehnert [10] and revised

by Bleak, Matucci, and Neunhöffer [2], that any group with context-free

co-word problem embeds in V , i.e.,

Conjecture 2.1 [10, 2] Thompson’s group V is a universal coCF
group.

In this chapter we prove two classes of result, one related to em-

beddings into V , and the other offering a potential counterexample to

Conjecture 2.1.

Bleak and Salazar-Diaz [1] define the class of demonstrative subgroups

of V and use this class to produce embeddings of free products and

wreath products into V . They also show that the class of groups that

embed into V is closed under taking finite index overgroups. Their proof

of the latter fact appeals to results of Kaloujnine and Krasner [9]. Here,

we use induced actions to give a direct proof. Our argument shows,

moreover, that if the original embedding is demonstrative, then so is the

embedding of the finite index overgroup.

A theorem of [1] says that Z is a demonstrative subgroup of V . The
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results sketched above prove that all virtually cyclic groups are demon-

strative, and it appears that these are the only known finitely generated

demonstrative subgroups. If V is a universal coCF group, then it should

be possible, by the results of Holt, Rees, Röver, and Thomas [7], to find

an embedding of G �F2 into V , where G is coCF and F2 is the free group

on two generators. The easiest way to find such an embedding would be

to show that F2 has a demonstrative embedding into V . We are thus led

to ask:

Question Does there exist a demonstrative embedding of F2 into V ?

Our class of potential counterexamples to Conjecture 2.1 comes from

the cloning systems of Witzel and Zaremsky [14]. We look at a specific

group V(G,θ) that arises from their family of groups equipped with a

cloning system. We define a surjective homomorphism Φ from V(G,θ) →
V , which implies that V(G,θ) acts on the Cantor set. However, by our

construction, V(G,θ) seems to have no obvious faithful actions on the

Cantor set when θ is not the identity homomorphism.

In our main result, we prove that V(G,θ) is coCF for all pairs of θ and

finite G. We begin by detailing a construction of a pushdown automaton

and we show that the co-word problem is equivalent to the cyclic shift

of the language accepted by the automaton, therefore proving that the

co-word problem is context-free.

We briefly outline the chapter. Section 2.2 provides the necessary back-

ground for the reader to understand the concepts discussed in the two

following sections. In Section 2.3, we give our proofs and examples of

all ideas related to demonstrative subgroups. Finally, in Section 2.4 we

prove our main result.

2.2 Background

2.2.1 Pushdown Automata

Definition 2.2 Let Σ be a finite set, called an alphabet. We call ele-

ments of the alphabet symbols. The free monoid on Σ, denoted Σ∗, is
the set of all finite strings of symbols from Σ. This includes the empty

string, which we denote ε. The operation is concatenation. An element

of the free monoid is a word. A subset of the free monoid is a language.

Example 2.3 Let Σ = {0, 1}. The free monoid Σ∗ contains all finite

concatenations of 0 and 1 in any order. An example word is 01101.
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Definition 2.4 Let G be a group. A finite monoid generating set is a

finite alphabet Σ with a surjective monoid homomorphism Φ : Σ∗ → G.

The word problem of a group G (with respect to Σ), denoted WPΣ(G),

is the kernel of Φ. The complement of the word problem is the co-word

problem, denoted CoWPΣ(G).

Definition 2.5 Let Σ,Γ be alphabets and let # be an element of Γ.

A pushdown automaton [4] with stack alphabet Γ and input alphabet Σ

is defined as a directed graph with a finite set of vertices V , a finite set

of transitions (directed edges) δ, an initial state v0 ∈ V , and a set of

terminal states T ⊆ V .

A transition is labeled by an ordered triplet (w1, w2, w3) ∈ (Σ∪{ε})×
Γ∗ × Γ∗. When following a transition, the pushdown automaton (PDA)

reads and deletes w1 from its input tape, reads and deletes w2 from

its memory stack (shortened to stack for the duration of this chapter),

and writes w3 on its stack. If w1, w2, or w3 equals ε, the automaton

does not execute the action associated with that coordinate. We only

consider a generalized PDA, which (as described above) can add and

delete multiple letters on its stack at a time. A PDA accepts languages

either by terminal state, or by empty stack. This must be specified upon

creation of the automaton. See Definitions 2.7 and 2.8.

Definition 2.6 ([6], Definition 2.6) Let P be a pushdown automaton.

We describe a class of directed paths issuing from the basepoint v0 in

P , called the valid paths, by induction on length. We simultaneously

(inductively) define the stack values of valid paths. The path of length

0 starting at the initial vertex v0 ∈ P is valid; its stack value is # ∈ Γ∗.
Let t1 . . . tn(n ≥ 0) be a valid path in P , where t1 is the transition

crossed first. Let tn+1 be a transition whose initial vertex is the terminal

vertex of tn; we suppose that the label of tn+1 is (s, w1, w2). The path

Figure 2.1 The stack of a PDA. As an element is read from the top,
the next element appears as the new top if nothing is written to the
stack.



Context-free Co-word Problem and Embeddings into V 23

t1 . . . tntn+1 is also valid, provided that the stack value of t1 . . . tn has w1

as a prefix; that is, if the stack value of t1 . . . tn has the form w1w
′ ∈ Γ∗

for some w′ ∈ Γ∗. We say that the edge tn+1 is a valid transition. The

stack value of t1 . . . tntn+1 is then w2w
′. We let val(p) denote the stack

value of a valid path p.

The label of a valid path t1 . . . tn is sn . . . s1, where si is the first

coordinate of the label for ti (an element of Σ, or the empty string). The

label of a valid path p will be denoted �(p).

Definition 2.7 Let p be a valid path of a pushdown automaton P .

We say that p is a successful path when

1 val(p) = ε if P accepts by empty stack, or

2 The terminal vertex of p is in T if P accepts by terminal state.

Definition 2.8 Let P be a PDA. A word w ∈ Σ∗ is accepted by P if

w is the label �(p) of a successful path p. The language accepted by P ,

denoted LP , is the collection of all words accepted by the automaton;

i.e.,

LP = {w ∈ Σ∗ | w = �(p) for some successful path p}.

Definition 2.9 A subset of the free monoid Σ∗ is called a (non-

deterministic) context-free language if it is LP for some pushdown au-

tomaton P .

Let P be a PDA. We operate P in the following way.

1 A word ŵ is placed on the input tape and read symbol by symbol. By

our convention, P reads the input tape from right to left.

2 Next, P follows valid transitions non-deterministically (i.e., by choos-

ing them) until ŵ = �(p) for some successful path p. Throughout this

process, the leftmost symbol on the stack is considered to be in the

top position.

3 If some successful path p exists, P accepts ŵ.

2.2.2 Thompson’s Group V

Definition 2.10 Let X = {0, 1} and consider X∗. As in [1], we define

an infinite rooted tree, T2, as follows.
The set of nodes for T2 is X∗. For u, v ∈ X∗, there exists an edge from

u to v if ux = v for some x ∈ X.
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Figure 2.2 The top portion of the infinite binary tree T2 with some
of its nodes labeled.

Definition 2.11 An infinite path T2 is an infinite string of 0s and 1s.

Ends(T2) is the collection of all such infinite paths.

We say that u ∈ X∗ is a prefix of ω ∈ Ends(T2) if there is ω̂ ∈
Ends(T2) such that ω = uω̂. For u ∈ X∗, we let u∗ = {ω ∈ Ends(T2) |
u is a prefix of ω}.

Define d : Ends(T2)×Ends(T2)→ R by d(ζ1, ζ2) = e−l, where ζ1, ζ2 ∈
Ends(T2) and l is the length of the longest prefix shared by ζ1 and ζ2.

The function d is a metric on Ends(T2).
For w ∈ Ends(T2), let Br(w) = {ζ ∈ Ends(T2) | d(ζ, w) ≤ r}. Then

Br(w) is the metric ball around w with radius r. It can be shown that

each metric ball in Ends(T2) takes the form u∗, for some u ∈ X∗.

We note that Ends(T2) is a Cantor set. Thompson’s group V acts as

self-homeomorphisms on this Cantor set, and each element of V can be

represented by a binary tree pair. Furthermore, the leaves of the trees

can be represented in binary code where a branch to the left is denoted

by “0” and a branch to the right by “1”.

The group V is generated by the maps A,B,C, and π0 [5]. We define

the generators of V by the prefix changes they represent, which are equiv-

alent to the tree diagrams in Figure 2.3. For instance, if ω ∈ Ends(T2)
has the form ω = 0ω̂, for some ω̂ ∈ Ends(T2), then A(ω) = 00ω̂.
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0∗ �→ 00∗
10∗ �→ 01∗
11∗ �→ 1∗

A

0∗ �→ 0∗
10∗ �→ 100∗

110∗ �→ 101∗
111∗ �→ 11∗

B

0∗ �→ 11∗
10∗ �→ 0∗
11∗ �→ 10∗

C

0∗ �→ 10∗
10∗ �→ 0∗
11∗ �→ 11∗

π0

Figure 2.3 Elements A, B, C, and π0 of V represented as tree pairs.

2.2.3 Generalized Thompson Groups V(G,θ)

Definition 2.12 [14] The forest monoid, F , consists of all sequences

of ordered, rooted, binary trees (Ti)i∈N, where all but finitely many trees

are trivial (i.e., consist only of the root). For two elements E1, E2 ∈ F ,
their product, E1E2, is obtained by attaching the ith leaf of E1 with the

ith root of E2.

Given a finite group, G, define

H = S∞ �φ (⊕∞
i=1G),
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where φ : S∞ → Aut(⊕∞
i=1G) is defined by

φ(σ)(g1, ..., gk, ...) = (gσ−1(1), ...gσ−1(k), ...)

for σ ∈ S∞.

Multiplication of the pair of group elements (σ1, (g1, ...., gk, ...)) and

(σ2, (g
′
1, ..., g

′
k, ...)) ∈ H is defined as follows:

(σ1, (g1, ...., gk, ...))(σ2,(g
′
1, ..., g

′
k, ...))

= (σ1σ2, φ(σ2)(g1, ..., gk, ...)(g
′
1, ..., g

′
k))

= (σ1σ2, (gσ−1
2 (1)g

′
1, ..., gσ−1

2 (k)g
′
k, ...)).

Our group V(G,θ) arises from the cloning system construction in [14].

The idea behind cloning systems is to give a general method for produc-

ing hybrids between Thompson’s group F (see [5] for an introduction)

and other families of groups. One example of such a hybrid is the braided

Thompson group BV introduced by Brin [3]. Here BV is a hybrid be-

tween F and the infinite-strand braid group B∞ =
⋃∞

n=1 Bn. The group

V itself is another example; it is a hybrid of F and S∞ =
⋃∞

n=1 Sn. In

the formal theory, a cloning system consists of a group H, a homomor-

phism ρ : H → S∞, and a collection of cloning maps {κk | k ∈ N}. The
cloning maps formally describe how to multiply pairs of the form (f, h),

where h ∈ H and f ∈ F . A cloning system that satisfies conditions

CS1, CS2, CS3 of Proposition 2.7 of [14] defines a Brin–Zappa–Szep

product, F �� H, which is something like a semidirect product. Witzel

and Zaremsky [14] show that F �� H is a cancellative monoid with least

common right multiples. The generalized Thompson group determined

by the cloning system is the group of right fractions of F �� H. We refer

the reader to [14] for a full discussion.

Elements of V(G,θ) are ordered pairs of elements from a subgroup of

the BZS product defined by the following cloning system:

H = S∞ �φ (⊕∞
i=1G),

ρ(σ, (g1, ..., gk)) = σ,

where κk acts on the right by:

(σ, (g1, ..., gk, gk+1, ...))κk = (σζ, (g1, ..., gk, θ(gk), gk+1, ...)),

where ζ is the cloning map for the symmetric group defined in Example

2.9 of [14], and θ is an arbitrary homomorphism from G→ G.

We can think of elements of V(G,θ) as equivalence classes of tree pairs

much as in Thompson’s group V . The difference is that tree pairs in
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V(G,θ) have group elements from G attached to their leaves. A tree pair

(a, b) can be modified within its equivalence class by adding canceling

carets or canceling group elements.

Canceling carets are added to corresponding leaves of the domain and

range trees just as they would be in Thompson’s group V , unless there is

a group element g on the leaf, in which case we put a g on the left branch

of the new caret and θ(g) on the right branch. Canceling group elements

are added to corresponding leaves of the domain and range trees and are

combined, using the group operation, with any group element already

on the leaves. We can multiply two elements (a, b), (c, d) ∈ V(G,θ), by

choosing equivalent tree pairs (a′, b′) and (c′, d′) where b′ = c′. Then
(a, b)(c, d) = (a′, b′)(c′, d′) = (a′, d′). (Note that, in these tree pairs, the

second coordinate corresponds to the domain, and the first to the range.)

Note that any element (a, b) ∈ V(G,θ) can be expressed with no group

elements in the domain tree by adding canceling group elements.

If {g1, ..., gn} is a generating set for G, then

{A,B,C, π0} ∪ {gja, gjb, gjc, gjd, gje | 1 ≤ j ≤ n}

is a generating set for V(G,θ), where gja, gjb, gjc, gjd, gje are defined as in

Figure 2.6.

Remark If θ = idG, the identity homomorphism, then V(G,θ) embeds in

V . We will sketch a proof of this fact. The first step is to construct an

embedding of V(G,θ) into the group of homeomorphisms of G×C, where
C denotes the set Ends(T2).
Let (a, b) be a tree pair representing an element of V(G,θ); we can

arrange that the domain tree b has no nontrivial elements of G attached

to its leaves. We define a function α(a,b) : C → G as follows. If a0a1 . . .

lies under the ith leaf of the domain tree b, then α(a,b)(a0a1 . . .) is defined

to be the group element g ∈ G that is attached to the ith leaf of the range

tree a. For instance, if (a, b) is the tree pair representing gje from Figure

Figure 2.4 Three equivalent tree pairs, the second is obtained by
adding a canceling caret and the third by canceling group elements.
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Figure 2.5 Multiplication of two group elements (a,b) and (c,d).

2.6, then α(a,b)(111 . . .) = gj , but α(a,b)(110 . . .) = 1G, since 110 . . . lies

under the third leaf of the domain tree, and the third leaf of the range

tree is labeled by the trivial element.

Let π(a,b) be the element of V that is obtained by removing any ele-

ments of G from the leaves of the range tree a. For each tree pair (a, b),

we define a homeomorphism h(a,b) : G× C → G× C as follows:

h(a,b)(g, ζ) = (α(a,b)(ζ)g, π(a,b)(ζ)).

It is possible to show that h(a,b) does not change if pairs of canceling

carets are added or removed to the tree pair (a, b). (This uses the fact

that θ is the identity homomorphism ofG.) It follows that the assignment

(a, b) → h(a,b) determines a function φ : V(G,θ) → Homeo(G × C); a
check shows that φ is an injective homomorphism. A proof of injectivity

goes like this: if π(a,b) �= 1, then h(a,b) is non-trivial, since the second

coordinate will be acted upon non-trivially. If π(a,b) = 1 but (a, b) does
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Figure 2.6 Additional generators of V(G,θ). Note that, in this figure,
the domain trees are on the left.

not represent the trivial element in V(G,θ), then α(a,b)(ζ) �= 1G for some

ζ ∈ C, so
h(a,b)(1G, ζ) = (α(a,b)(ζ), ζ) �= (1G, ζ).

Next, we identifyG×C with C as follows. Choose a partition P of C into
|G| = n disjoint open balls: P = {w1∗, . . . , wn∗}. Define I : G × C → C
by sending (gk, ζ) to wkζ. (Note that the latter is the concatenation of

a finite string with an infinite sequence.) This map is easily seen to be

a homeomorphism.

Finally, we define the embedding ψ : V(G,θ) → V by the rule ψ((a, b)) =

I ◦ h(a,b) ◦ I−1.

2.3 Demonstrative Groups

Definition 2.13 [1] Suppose a group G acts by homeomorphisms on

a topological space X. For a group H ≤ G, the action of H in G is

demonstrative if and only if there exists an open set U ⊂ X such that

for all h1, h2 ∈ G, h1U ∩ h2U �= ∅ if and only if h1 = h2. The set U is

called a demonstration set.

For this discussion, let G = V and X = Ends(T2). In this case, if U

(as above) is a metric ball (i.e. U = w∗ for some w∗ ⊆ Ends(T2)), then
we refer to U as a demonstration node.
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Definition 2.14 LetH ≤ G and letH act on a topological space S. We

define G×H S to be {(g, s) : g ∈ G, s ∈ S}/ ∼, where (gh, s) ∼ (g, h · s)
for all h ∈ H.

The induced action of G on G ×H S is ∗ : G × (G ×H S) → G ×H S

defined by g1 ∗ (g2, s) = (g1g2, s).

Bleak and Salazar-Dı́az [1] proved that the class of subgroups of V is

closed under passage to finite-index overgroups; i.e., given an embedding

H → V , there is an embedding G→ V if H has finite index in G. Here,

we give a different proof of this fact. Our method also shows that the

class of demonstrative subgroups of V is closed under passage to finite-

index overgroups.

Theorem 2.15 Let H be a subgroup of Thompson’s group V . If H ≤
G where [G : H] = m, for some m ∈ N, then G embeds in V . Moreover,

if H embeds as a demonstrative subgroup in V , then G embeds as a

demonstrative subgroup of V .

Proof Assume H ≤ G. Choose a left transversal T = {t1, t2, ..., tm} for
H in G with t1 = 1. We can induce an action of G on G ×H Ends(T2)
by:

g · (ti, x) = (gti, x), for x ∈ Ends(T2).

We know we can write gti as tjh for some unique tj ∈ T and h ∈ H. So,

(gti, x) = (tjh, x) = (tj , h · x).

Now, we can embed G ×H Ends(T2) ↪→ Ends(T2) by choosing a set

W = {w1, . . . , wm} such that {w1∗, w2∗, . . . , wm∗} is a fixed partition of

Ends(T2), and defining an injective function φ : T → W by φ(ti) = wi.

Now define Φ : G×HEnds(T2)→ Ends(T2) by Φ((ti, x)) = φ(ti)x = wix

and Φ((g · ti, x) = g · Φ(ti, x).
It can be easily checked that

g · (wix) = g · Φ(ti, x) = Φ(gti, x) = Φ(tj , h · x) = wjh(x)

is a group action of G on Ends(T2). Additionally, because elements of H

act as elements of V and [G : H] < ∞, so do elements of G. Therefore,

G embeds in V .

Now, assume H has a demonstrative embedding in V with demon-

stration node a1a2...an ∗ for ai ∈ {0, 1}.
We will show that wia1 . . . an∗ is a demonstration node for G. We
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compute the action of each of g, g′ ∈ G on wia1 . . . an∗:

g · wia1 . . . an∗ = wjh(a1 . . . an∗),
g′ · wia1 . . . an∗ = wkh

′(a1 . . . an∗).

Since w1∗, . . . , wm∗ partition Ends(T2), if wj ∗ ∩wk∗ �= ∅ then we have

j = k. Since H is a demonstrative subgroup of G with demonstration

node a1a2 . . . an∗, h(a1 . . . an∗)∩ h′(a1 . . . an∗) �= ∅ if and only if h = h′.
Thus, wjh(a1 . . . an∗) ∩ wkh

′(a1 . . . an∗) �= ∅ if and only if j = k and

h = h′, in other words, if and only if g = g′. Thus, G is demonstrative

in V with demonstration node wia1 . . . an ∗ for any i ∈ {1, ...,m}.

2.4 Main Result

The proof of our main theorem uses a result (Proposition 2.17) that is

implicit in both [6] and [11].

Definition 2.16 [6, Definition 3.1] Let S = {A,B,C, π0} be the gen-

erating set for V from Figure 2.3. Let T = {B1, . . . , Bk} be a finite

partition of Ends(T2) into open balls. We say that T is a test partition

if, for any word w = s1 . . . sn (si ∈ S ∪S−1) such that w �= 1 in V , there

is some cyclic permutation s′ = sisi+1 . . . sns1 . . . si−1 and a ball Bj ∈ T

such that s′(Bj) �= Bj .

Proposition 2.17 ([6]; [11]) The partition

T = {a0a1a2∗ | ai ∈ {0, 1} for (i = 0, 1, 2)}

is a test partition.

Proof First, we notice that, for each generator s ∈ {A,B,C, π0} ∪
{A,B,C, π0}−1, each ball a0a1a2∗ is contained in some region for s.

(Here a region of s is a ball in Ends(T2) that corresponds to a leaf in

the domain tree of s; see Definition 2.19 in [6].) It follows that we may

take T as the partition Pbig in Definition 3.3 of [6]. Since the group Γ in

Definition 3.5 of [6] is always trivial, we may also take T as the partition

Psmall in Definition 3.5 of [6]. The desired conclusion now follows from

Proposition 3.6 of [6].

Lemma 2.18 Let Σ = {A,B,C,A,B, π0, gij}, where i ∈ {1, . . . , n},
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and j ∈ {a, b, c, d, e}. Define Φ : Σ∗ → V by the surjective homomor-

phism

Φ : A �→ A

Ā �→ A−1

B �→ B

B̄ �→ B−1

C �→ C

π0 �→ π0

gij �→ 1V .

If w = b1 · · · bm ∈ Σ∗ satisfies Φ(w) �= 1, then there is a cyclic permuta-

tion bj · · · bmb1 · · · bj−1 and some B̂ ∈ {a1a2a3∗ : ai ∈ 0, 1} that satisfy

bj · · · bmb1 · · · bj−1(B̂) ∩ B̂ �= ∅. (Here the action of a word w ∈ Σ∗ on

the ball B̂ is determined by the rule w(B̂) = Φ(w)(B̂).)

Proof Consider w = b1 · · · bm ∈ Σ∗. If Φ(w) �= 1, then we have Φ(w) ∈
CoWP (V ). We know {a1a2a3∗ : ai ∈ 0, 1} is a test partition for V by

Proposition 2.17. So, there is some cyclic permutation Φ(w)′ of Φ(w) and
some B̂ ∈ {a1a2a3∗ : ai ∈ {0, 1}} such that Φ(w)′(B̂) ∩ B̂ �= ∅. Since Φ

takes all the generators gij to 1, Φ will preserve the shape of any tree

pair. Thus, if Φ(w)′ is such that Φ(w)′(B̂)∩ B̂ �= ∅, then w′(B̂)∩ B̂ �= ∅
where w′ is some cyclic shift bj · · · bmb1 · · · bj−1 of w.

Definition 2.19 Let L be a language. The cyclic shift of L, denoted
L◦, is

L◦ = {w2w1 ∈ Σ∗ | w1w2 ∈ L, w1, w2 ∈ Σ∗}.

A cyclic permutation w′ of a word w = w1w2 is w′ = w2w1. Note that

the class of context-free languages is closed under cyclic shifts [12].

Theorem 2.20 The group V(G,θ) is coCF .

Proof Let G = {g1, . . . , gn}. We design an automaton P to accept

by empty stack, with stack alphabet Γ = {0, 1, g | g ∈ G\{1G}} and

input alphabet Σ = {A,B,C,A,B, π0, gij}, where i ∈ {1, . . . , n}, j ∈
{a, b, c, d, e}, and the gij are as defined in Figure 2.6.

We define

LBk
= {w ∈ Σ∗ | w(Bk) ∩Bl �= ∅ for some l �= k},

where the Bk and Bl are balls from the partition T = {a0a1a2∗ | ai ∈
{0, 1}}, and the action of a word w ∈ Σ∗ on the ball Bk is determined by
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the rule w(Bk) = Φ(w)(Bk), as in Lemma 2.18. We let LG be the set of

words w in Σ∗ such that there is a tree pair representative for w ∈ V(G,θ)

with no group elements written on the leaves of the domain tree, and at

least one non-trivial g ∈ G written on a leaf of the range tree.

We design P such that LP = (
⋃

Bk∈T LBk
)∪LG. Figure 2.7 outlines a

portion of the automaton. Note that unlabeled arrows represent (ε, ε, ε)

transitions. From the initial loading phase, there are in fact eight differ-

ent arrows (ε, ε, Bk), one for each of the Bk ∈ {000, 001, . . . , 111}. These
lead to eight separate reading and accept phases, each as pictured in the

figure. These reading and accept phases are identical, with one excep-

tion: the labels on the arrows leading to the test partition accept state

vary. For instance, in the accept phase corresponding to 000, the ar-

row labeled (ε, Bl, ε) corresponds to seven different arrows, one for each

Bl = a1a2a3, where ai ∈ {0, 1} and not all of a1, a2, a3 are 0.

Figure 2.7 Sample reading and accept phases of the automaton for
V(G,θ).

To start off, P enters a non-deterministic loading phase. This consists

of a single state S with transitions labeled (ε, ε, 0) and (ε, ε, 1), both

leading back to S. Here a finite string of 1s and 0s is entered non-

deterministically onto the stack.

We leave the loading phase by taking a transition (ε, ε, Bk) where

Bk ∈ {000, 001, 010, 100, 011, 110, 101, 111},
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i.e. Bk is one of the eight metric balls in the test partition.

Next, P enters the reading phase which has a single state for each

generator, where the first element on the input tape is read and that

generator is applied to the appropriate prefix at the top of the stack.

For example, the reading phase for A would read and delete a 0, and

then add 00; the reading phase for g2b would read and delete 10, and

then add 10g2.

After the reading phase, P enters the clean-up state, which consists

of the pushing and combining of stack elements. This phase allows P to

“clean-up” the stack so that there are at least three 0s and 1s for the

next element on the input tape to successfully act on the stack. First, P

“pushes” elements within the first three spots to the fourth spot on the

stack. For example, as shown in Figure 2.8, one set of transitions will

read and delete 0g0 or 0g1 from the stack and then add 00g or 01(θ(g)),

respectively, to the stack for all g ∈ G\{1G}. Similar transitions can be

followed if the group element is preceded by the prefix 0, 1, 01, 10, 00,

or 11.

Figure 2.8 The clean-up phase. Let a1, a2, a3 ∈ {0, 1} and g, g′ ∈
G\{IG}.

Next, P enters the combining state where group elements are rewrit-

ten as a single element of the group (in accordance with the group op-

eration). For example, one collection of edges is able to read and delete

010(g)(g′) and add 010(gg′) for all g, g′ ∈ G\{1G}. Note that if gg′ = 1G,

then the path reads and deletes 010(g)(g′), and writes 010. Similar paths

exist when combining any two group elements preceded by any three-

digit prefix.
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After exiting the clean-up phase, P reads the next element on the

input tape and repeats the process of the reading phase. When the input

tape is empty and P has gone through the reading and clean-up phases,

P then moves onto one of two accept states.

If the word from the input tape took one metric ball Bk in the test

partition to some other metric ball Bl, then the three-letter prefix de-

scribing Bl is now showing on the stack, so we can follow a path labeled

(ε, Bl, ε) to the test partition accept state. (Here we recall that the single

arrow labeled (ε, Bl, ε) in Figure 2.7 is actually seven different arrows,

one for each l such that Bl �= Bk.) At this point we “unload” all of

the 0s and 1s and group elements off the stack with paths (ε, x, ε) for

x ∈ {0, 1, g | g ∈ G\{1G}}. Once every stack element has been deleted,

P takes the path (ε,#, ε) which deletes the start symbol and accepts the

word. So the language accepted by the eight test partition accept states

is (
⋃

Bk∈T LBk
).

If the word from the input tape does not displace metric ball Bk, then

we enter the group element accept state. Here, we delete every 0 and

1 on the stack until P arrives at a group element. The group element

is then“pushed” further down the stack, and the 0 or 1 it pushes past

is deleted. For example, one path is (ε, g0, g) for g ∈ G\{1G}. If the

group element is followed on the stack by a second group element, then

they are “combined” in a manner mimicking the previously described

combining portion of the clean-up phase. This is repeated until there

are no 0s or 1s left on the stack. At this point, if there is still a group

element remaining on the stack followed by the start symbol, then they

are both deleted and thus the word is accepted. However, if there is no

group element on the stack then the start symbol cannot be deleted so

the word is not accepted. Assuming that the address of an appropriate

metric ball was written on the stack in the loading phase, there will be

a group element remaining, and so the language accepted by the eight

group element accept states is LG.

Thus, LP = (
⋃

Bk∈T LBk
) ∪ LG.

We claim that CoWP (V(G,θ)) = (LP )
◦.

Let w ∈ LP , so that w ∈ LG or w ∈ LBk
, for some k. If w ∈ LG,

then it follows directly that w ∈ CoWP (V(G,θ)). If w ∈ LBk
for some

k, then w(Bk) ∩ Bl �= ∅ for l �= k (Bk, Bl ∈ T ), so w ∈ CoWP (V(G,θ)).

Therefore, LP ⊆ CoWP (V(G,θ)). The CoWP of a group is closed under

cyclic shift, and thus (LP )
◦ ⊆ CoWP (V(G,θ)).

Let w ∈ CoWP (V(G,θ)). We will use the surjective homomorphism

Φ from Lemma 2.18. If w /∈ Ker(Φ), then Φ(w) �= 1V . By Lemma
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2.18, there is some cyclic permutation w′ and some Bk ∈ T such that

w′(Bk) ∩ Bk �= ∅, i.e. w′ ∈ LBk
. Therefore, w ∈ (LBk

)◦ ⊆ (LP )
◦. If

w ∈ Ker(Φ)\{1V(G,θ)
}, then Φ(w) = 1V , which implies that w (as a

reduced tree pair) does not change any prefixes; it simply adds group

elements. Therefore, w ∈ LG ⊆ (LP )
◦.

We now have that CoWP (V(G,θ)) = (LP )
◦. A language is context-free

if and only if its cyclic shift is also context-free. Since LP is context-free,

CoWP (V(G,θ)) is context-free, and V(G,θ) is coCF .

Remark We attempted a similar method of proof with the group gen-

erated by Thompson’s group V and the Grigorchuk group G, Rövers’s

group [13] R = 〈V,G〉. Like V(G,θ), elements of R can be thought of as

Thompson’s group V elements with Grigorchuk group elements, g at-

tached to the leaves. However, the Grigorchuk group elements continue

to act on the tree whereas the group elements in V(G,θ) just sit at the

end of the branches. This became a problem because it is impossible to

complete the calculation of the action of g on any finite test string loaded

onto an automaton. We also ran into problems because the test parti-

tions argument used in Theorem 6.1. and for Finite Similarity Structure

Groups [8] fails.
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Limit Sets for Modules over Groups Acting
on a CAT (0) Space

Robert Bieri and Ross Geoghegan

Abstract

This is a summary, written by the first-named author, of my joint work

with Ross Geoghegan over the past years. Most of the material is avail-

able in detail in [4], and I will occasionally refer to specific detail in that

paper. Other parts of our joint work – results mostly concerned with ex-

tending concepts and results from [4] to higher dimensions – will also be

mentioned but are still in preparation. I am very pleased for this oppor-

tunity to thank my friend Ross for his excellent, enjoyable and fruitful

collaboration over more than 15 years. Obviously, I cannot dedicate this

joint summary to him . . . but do it with what I found in the process of

writing:

I dedicate to Ross the conjectures in Section 3.5

on the occasion of his 70th birthday

(while at the same time keeping the responsibility for their accuracy).

3.1 Horospherical Limit Sets of G-modules

G-modules as well as actions of the group G by isometries on CAT (0)

metric spaces are major tools in group theory. Here we consider the

situation when a group G comes together with two such G-objects: a pair

(M,A) consisting of a proper G-CAT (0)-space and a finitely generated

G-module A. In this generality we relate the G-module A to the G-space

M by means of a G-map

L : A→ {subsets of ∂M}.
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where ∂M is the boundary of M at infinity which carries the G-action

induced by the action on M .

To define L we choose (1) a free presentation ε : F � A, where F is

the free G-module over the finite basis X, and (2) a base point b ∈ M .

For each c ∈ F we consider the support, supp(c) ⊆ G: the (finite) set

of elements of G occurring in the unique expansion of c over GX. Then

putting h(c) := supp(c)b ⊆ M defines a G-map h : F → fM , from F

into the G-space fM of all finite subsets of M . We call h a control map

and define the horospherical limit points of a ∈ A to be the points in the

set L(a), defined to be

{e ∈ ∂M | every horoball at e contains h(c) for some c ∈ ε−1(a)}.

We show that L(a) is independent of the choice of ε : F � A and

the base point b. By the horospherical limit set of A we mean the set

of all points e ∈ ∂M which are limit points of all elements of A: i.e.

Σ(M ;A) :=
⋂

a∈A L(a).

The main point of our work is generality; and our foremost interest

in generality is the range of CAT (0) spaces M : from the Euclidean to

the hyperbolic. Thus we are primarily interested in accessible G-spaces

which – intriguingly often – come naturally together with important

specific groups. Examples we have in mind are the natural action of an

abstract group G on Gab⊗R by left translations, or groups which come

together with a linear or fractional-linear transformation over (R, C or

the p-adic numbers) – and hence have well-known natural actions on

hyperbolic spaces, symmetric spaces, trees or buildings.

3.2 Two General Results on the G-pairs (M,A)

Theorem 3.1 Σ(M ;A) = ∂M if and only if the G-action on M is

cocompact and A is supported over a bounded subset B of M (i.e. for

each a ∈ A there is some c ∈ F with ε(c) = a and h(c) ⊆ B).

Corollary 3.2 If the G-action on M is cocompact with discrete orbits

then Σ(M ;A) = ∂M if and only if A is finitely generated as a module

over a point stabilizer.

Theorem 3.3 If Σ(M ;A) = ∂M holds for a given isometric action

ρ : G→ Isom(M), then it also holds in a neighborhood of ρ in the space

Hom(G, Isom(M)).
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Corollary 3.4 (a) The set of cocompact actions of G on M by isome-

tries is open. (b) Let R(G,M) ⊆ Hom(G, Isom(M)) be the subspace of

all actions such that ρ(G) is cocompact with discrete orbits and finite

stabilizers. For every finitely generated G-module A the set

{ρ | A is finitely generated over ker(ρ)}

is open in R(G,M).

3.3 A Unifying Concept

Our proof of Corollary 3.4 requires all the subtle details of the theory,

and thus the result testifies, in some sense, to the value of Σ(M ;A).

Personally, I am more motivated by the intriguing fact that Σ(M ;A) and

its close relatives show up in a number of highly interesting mathematical

contexts.

3.1 If G acts with discrete orbits on M and trivially on A �= 0 then our

limit set Σ(M ;A) ⊆ ∂M is the usual horospherical limit set of the

orbits. A variant of Σ(M ;A) which we denote Λ(M ;A) coincides

with the classical limit set of G in that case.

3.2 If G is the Lie group SL(n,R) acting on its symmetric space M =

SL(n,R)/SO(n) then the building at infinity B(G) comes with a

natural surjection π : B(G) � ∂M , compatible with the Tits metric,

and in that case the horospherical limit set of G (with respect to the

trivial G-module Z) is the whole of ∂M . When we restrict the action

to the arithmetic subgroup G = SL(n,Z), the horospherical limit set

is much smaller: Σ(M ;Z) ⊆ ∂M is now the complement of the image

π(B(G)) ⊆ ∂M of the rational building. This was a conjecture of

Hanno Rehn (who studied the higher homotopical version of our

limit sets [3] in his thesis [10] in the case when G = SL(n,Z[ 1m ])). It

has recently been proved for more general arithmetic groups by G.

Avramidi and D. Witte-Morris [1].

3.3 In the case when M is Euclidean and G acts by a discrete translation

group Σ(M ;A) is the 0-dimensional part of the Bieri–Neumann–

Strebel–Renz invariant, a group theoretic tool for questions related

to homological finiteness properties of infinite groups. (In fact, the

present work grew out of the aim to extend the leading ideas of the

BNSR theory to the CAT (0) case.)
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(a) The special case where M is Euclidean and G is abelian is inti-

mately connected with tropical geometry. Here, the complement

of our horospherical limit set appears as the radial projection

of the integral tropical variety associated with the annihilator

ideal of the G-module A.

(b) The 1-dimensional part of the BNS invariant, denoted Σ1(G) =

Σ1(G;Z), is not, in general, a horospherical limit set in the above

sense; but in a subsequent paper it will appear as a special case

of a higher dimensional version. Here we recall that when G is

the fundamental group of a 3-manifold X, Σ1(G) can be inter-

preted as the set of interior points of the top dimensional faces

of the (polyhedral) unit-ball associated with the Thurston norm

in H1(X;Z).

Why I think this is worth our effort. To consider limit sets of a CAT (0)

G-space associated with G-modules is new. It plays a crucial role in the

Euclidean case and its applications. The potential for a general theory

relating G-modules to the geometry of CAT (0) G-spaces is evident in

view of 3.2 and the dominant role of modules and the symmetric space

for linear groups.

Moreover, my experience of treating Σ(M ;A) respectfully as an object

of interest in its own right is encouraging.

(a) By computing its complement in [5], tropical varieties (along with

their polyhedrality and substantial parts of the “Fundamental The-

orem of Tropical Geometry” were detected long before their official

date of birth.

(b) The conjecture in Hanno Rehn’s thesis opened the view on the in-

triguing (and now established) fact that the complement of Σ(M ;Z)
– a G-invariant subspace of ∂M which is defined in full generality

– carries, in the special case when G is a nice arithmetic group, the

full information of the rational building at infinity.

3.4 G-dynamical Limit Points and G-finitary
Homomorphisms

In order to prove Theorems 3.1 and 3.3 we had to consider subsets of

Σ(M ;A) with a dynamical flavor. This requires measuring the quality of
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the convergence of a sequence of finite subsets of M towards a boundary

point e ∈ ∂M in terms of the Busemann function1 βe : M → R.
Let ε : F � A be the free presentation of Section 3.1. We say that

e ∈ ∂M is a G-dynamical limit point of the pair (M,A) if there is

a G-endomorphism ϕ : F → F which induces the identity of A and

has the property that there is a number δ > 0 with minβe(h(ϕ(c))) ≥
minβe(h(c)) + δ for all c ∈ F . Note that h(ϕi(c)) exhibit e as a horo-

spherical limit point of ε(c), hence the G-dynamical limit set

◦◦Σ(M ;A) := {e ∈ ∂M | e is a G-dynamical limit point of (M,A)}

is a subset of Σ(M ;A). The concept is not new: in the case of a Eu-

clidean discrete action it was a crucial lemma ([8], [9] and [7]) that
◦◦Σ(M ;A) = Σ(M ;A). But in the general CAT (0) case ◦◦Σ(M ;A) is

often dramatically smaller than Σ(M ;A) as we can see from the follow-

ing theorem:

Theorem 3.5 If e ∈ ◦◦Σ(M ;A) then the closure (in the cone topology)

of the orbit Ge, cl∂M (Ge), lies in a Tits-metric ball with radius r < π
2 .

Moreover, the center of the unique minimal ball with this property is

fixed by G.

The joy of this nice fixed point theorem is somewhat spoiled when

we face the fact that the most interesting group actions (like any non-

elementary Fuchsian group on the hyperbolic plane) do not have fixed

points in ∂M . Thus ◦◦Σ will be empty in these cases and hence cannot be

a useful tool for actions on hyperbolic spaces. This suggests that consid-

ering dynamical limit sets only when ϕ : F → F is a G-endomorphism is

too restrictive. Instead we had to find a class of additive endomorphisms

ϕ : F → F more flexible than G-endomorphisms but still sharing some

of their coarse features.

Definition 3.6 (G-finitary homomorphisms). An additive homomor-

phism ϕ : A → B between G-modules is G-finitary if there is a G-map

Φ : A → fB of the G-set underlying A into the G-set fB of all finite

subsets of B with the property that ϕ(a) ∈ Φ(a) for every a ∈ A. We

say that ϕ is a selection from the G-volley Φ.

Definition 3.7 We say that e is a (finitary) dynamical limit point of

the pair (M,A) if there is a G-finitary endomorphism ϕ : F → F , which

induces the identity of A and has the property that there is a number

δ > 0 with minβe(h(ϕ(c))) ≥ minβe(h(c)) + δ for all c ∈ F .

1 Our convention is that βe(b) = 0 for a fixed base point b ∈ M , and βe(e) = +∞.
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Note that G-endomorphisms are G-finitary, hence every G-dynamical

limit point is dynamical. The set

◦Σ(M ;A) := {e ∈ ∂M | e is a dynamical limit point of (M,A)}

is the main technical tool of the chapter. Its precise relationship to the

horospherical limit set is given in the following Theorem.

Theorem 3.8 ◦Σ(M ;A) is a G-invariant subset of Σ(M ;A); it con-

sists of all e ∈ Σ(M,A) with the property that cl(Ge), the cone-topology-

closure of the G-orbit of e, is contained in Σ(M ;A). In particular, the

set ◦Σ(M ;A) contains every closed G-invariant subset of Σ(M ;A), and

hence ◦Σ(M ;A) = ∂M if and only if Σ(M ;A) = ∂M .

3.5 ◦Σ(M ;A) as an Object of Interest in its Own
Right

I believe that the dynamical invariant ◦Σ(M ;A) qualifies as a member

of this league for the following reasons.

(1) It combines cone topology and the Tits metric topology of ∂M in

an interesting way. On the one hand ◦Σ(M ;A) is a Tits-open subset

of ∂M ; on the other hand if e ∈ ◦Σ(M ;A) then ◦Σ(M ;A) contains

not only the orbit Ge but also the cone-topology closure of that orbit2

cl∂M (Ge).

(2) In the G-finitary category of G-modules3 the Fundamental Theorem

of Homological Algebra holds true: every G-finitary homomorphism

between two modules A and B can be lifted to a G-finitary chain

map between the projective resolutions of A and B, and any two

lifts are homotopic by a G-finitary homotopy. That is precisely what

we need to extend the definition of ◦Σ(M ;A) to higher-dimensional

invariants ◦Σn(M ;A) when A admits a free resolution with finite

n-skeleton, and to prove our openness results for those. This will

appear in a subsequent paper.

(3) For each e ∈ ∂M we consider the set ẐGe of all formal sums Σg∈Gngg

with integer coefficients ng, and the property that for each horoball

H at e the set {g ∈ G | ng �= 0 and gb /∈ H} is finite. We observe

that ẐGe is a right G-module which contains the group ring as a

2 See Theorem 3.8.
3 The category whose objects are G-modules and whose morphisms are G-finitary

additive maps.
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submodule, and we call it the Novikov module at e. Then we have

the following.

Theorem 3.9 e ∈ ◦Σn(M ;A) if and only if TorZGk (ẐGe′ , A) = 0

for all 0 ≤ k ≤ n and all e′ contained in the closure of the orbit Ge

in ∂M .

This is useful since it opens the possibility of relating the vari-

ous ◦Σn(M ;A) via the long exact Tor sequences. It indicates that
◦Σ(M ;A) is perhaps better behaved that Σ(M ;A) with respect to

the module argument.

(4) Polyhedrality questions. As mentioned in 3.3(a), the case when

G is finitely generated and abelian acting on Euclidean G ⊗ R in-

tersects with tropical geometry. Here ◦◦Σ, ◦Σ and Σ coincide, and

their complement in the sphere ∂(G ⊗ R) is closely related to (a

Z-version of) Bergman’s logarithmic limit set [2]. An interpretation

of the definitions in terms of matrices shows that the dynamical in-

variants ◦◦Σ(M ;A) and ◦Σ(M ;A) constitute this relationship. Now,

Bergman conjectured, and a theorem at the roots of tropical geome-

try proved in [5] establishes, that Σ(G⊗R;A) is a rational polyhedral

subset of the sphere (the proof is outlined in the appendix of [4]).

Even though there is no reasonable notion of “polyhedrality” for

subsets at infinity of general CAT (0)-spaces I claim that the follow-

ing is a straightforward generalization of the Bergman conjecture:

Given a G-volley Φ : F → fF let Σ(Φ) denote the set of all e ∈ ∂M

which are in ◦Σ(M ;A) witnessed by selections from this one volley

Φ.

Conjecture 3.10 There is a G-volley Φ : F → fF with Σ(Φ) =
◦Σ(M ;A).

Proof of the claim If G is finitely generated abelian, Theorem B of

[6] yields a finite set of elements Λ ⊆ ZG with the property that

right multiplication of each λ ∈ Λ into the free module F lifts the

identity of A, and the G-map Φ : F → fF , Φ(c) = cΛ is the required

volley.

In the case when G is a finitely generated abelian group and M =

G ⊗ R is Euclidean, hence ◦◦Σ(M ;A) = ◦Σ(M ;A) is the original

Σ-invariant in the sphere at infinity of M , the conjecture readily

implies the more plausible but still wide open
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Conjecture 3.11 The BNSR-Invariant Σ0(G;A) is always rational-

polyhedral.

(5) The fact that ◦Σ(M ;A) and ◦◦Σ(M ;A) are independent of the par-

ticular free presentation of A shows that the above-mentioned matrix

interpretation of these invariants is a condition on stable matrices.

Whether experience with stable matrix theory – possibly under the

assumption that the Whitehead group is trivial – can be of help to

exploit this flexibility remains to be seen.
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Ideal Structure of the C∗-algebra of R.
Thompson’s group T
Collin Bleak and Kate Juschenko

Abstract

We explore the ideal structure of the reduced C∗-algebra of R. Thomp-

son’s group T . We show that even though T has trace, one cannot use the

Kesten Condition to verify that the reduced C∗-algebra of T is simple.

At the time of the initial writing of this chapter, there was no example

of a group for which it was known that the Kesten Condition would fail

to prove simplicity, even though the group has trace. Motivated by this

first result, we describe a class of groups where even if the group has

trace, one cannot apply the Kesten Condition to verify the simplicity of

those groups’ reduced C∗-algebras. We also offer an apparently weaker

condition to test for the simplicity of a group’s reduced C∗-algebra,
and we show this new test is still insufficient to show that the reduced

C∗-algebra of T is simple. Separately, we find a controlled version of a

Ping-Pong Lemma which allows one to find non-abelian free subgroups

in groups of homeomorphisms of the circle generated by elements with

rational rotation number. We use our Ping-Pong Lemma to find a simple

converse to a theorem of Uffe Haagerup and Kristian Knudsen Olesen

which shows that R. Thompson’s group F will be non-amenable if and

only if there exists a finite set H ⊂ T which can be decomposed as dis-

joint union of sets H1 and H2 with
∑

g∈H1
π(g) =

∑
h∈H2

π(h) and such

that the closed ideal generated by
∑

g∈H1
λ(g) −

∑
h∈H2

λ(h) coincides

with C∗
λ(T ).
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4.1 Introduction

This chapter is predominately about dynamical properties of groups of

homeomorphisms, and on testing when groups of homeomorphisms with

unique trace can be shown to have reduced C∗-algebras. Much progress

has been made in this area since this chapter was first drafted, but we

believe our initial results remain of interest (see the remarkable papers

[16, 3, 19, 17]).

Our initial motivation for beginning the work described here arose out

of interest in the amenability question for R. Thompson’s group F , and

the beautiful paper [12] of Haagerup and Olesen (see also [20, Section

4.2]).

4.1.1 On Simplicity

Since the foundational paper [21] of Powers, there has been a long-

standing interest in whether there could exist a group G with unique

trace, for which its reduced C∗-algebra C∗
λ(G) is not simple. The paper

[19] answers this affirmatively, and in particular the papers [16, 3, 19, 17]

fully describe the implication relationships between C∗-simplicity, being

tracial, and having an amenable radical.

In this chapter, we will focus on a method from [21] in which Powers

gives the following test for the simplicity of the algebra C∗
λ(G) over a

group G.

Theorem 4.1 (Powers) If for all non-empty H ⊂ G with |H| < ∞,

e �∈ H and for all positive integers n there is a set {c1, c2, . . . , cn} ⊂ G

so that

lim
n→∞

1

n
||Σn

i=1λ(cihci
−1)|| = 0, ∀h ∈ H,

then C∗
λ(G) is simple.

Let G be a group generated by a finite set S with S = S−1, then
1
|S| ||Σh∈Sλ(h)|| is equal to the spectral radius of the simple random

walk on the Cayley graph of G with respect to S, denoted by ρ(G,S).

The spectral radius of the simple random walk has been computed for

many groups. Kesten in [18] shows that if S = {g1, . . . , gn} is a free set,

i.e., g1, . . . , gn are standard generators of the free group of rank n, then

the spectral radius is

ρ(G,S) =

√
2n− 1

n
.
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Thus the following condition implies the hypothesis of Theorem 4.1.

Condition 4.2 (Kesten Test) For all finite subsets H ⊂ G with e �∈ H

and for all positive integers n there is a set {c1, c2, . . . , cn} ⊂ G so that

〈hc1 , hc2 , . . . , hcn〉

is a free subgroup of G of rank n for all h ∈ H.

Previous to the results of [16, 3, 19, 17], the Kesten Test has been

a main test for detecting the simplicity of the reduced C∗-algebra of a

group, and indeed, one of the results of [17] is that a group has a simple

reduced C∗-algebra if and only if it satisfies the hypotheses of Powers’

Theorem. We show here that the Kesten Test for detecting when the

hypotheses of Powers’ Theorem hold is actually inadequate for many

groups of permutations (e.g., groups of homeomorphisms of spaces).

To explain the comments above, we need to set some notation. If g is a

bijection from a setX to itself, denote by Supp(g) := {x ∈ X | g · x �= x}
and Fix(g) := X\Supp(g), the support and the set of points fixed by g,

respectively.

The following lemma shows the inadequacy of Condition 4.2 for groups

of permutations of a set X.

Lemma 4.3 Let X be a set, and G the group of bijections from X to

X. Suppose h1, h2 ∈ G\ {1} so that Supp(h1) ∩ Supp(h2) = ∅. If c1,
c2 ∈ G so that Supp(hc1

1 ) ∪ Supp(hc2
1 ) = X then

Supp(hc1
2 ) ∩ Supp(hc2

2 ) = ∅.

The reader can prove the above lemma with little effort, but for com-

pleteness we include a proof in the next section. In particular, the fol-

lowing theorem is a corollary to Lemma 4.3.

Theorem 4.4 Let G be a group of permutations of some set X so that

any finite collection of elements of G can only represent a free basis if the

union of their supports is the entire set X. Suppose that H ⊂ G\{1G}
admits elements h1 and h2 so that Supp(h1) ∩ Supp(h2) = ∅. Then for

n ≥ 2 there is no set of elements {c1, c2 . . . , cn} so that 〈hc1 , hc2 , . . . , hcn〉
is a free group on n generators for all h ∈ H.

Now by Theorem 4.4, Condition 4.2 fails to apply to Thompson’s

group T and many other groups with unique trace. In particular, groups

of homeomorphisms of spaces which contain any pair of non-trivial el-

ements with disjoint supports, and where a subset of the elements can
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only be a free basis if the union of their supports is the entire set X, can

never satisfy Condition 4.2. Thus, we offer a new test (Condition 4.5)

which is a natural apparent weakening of Condition 4.2, and which may

be of use for various groups G to show that C∗
λ(G) is simple. (We note

that in [3, 17] other new tests are given of different natures, which do

not appear to directly target the issue we are discussing here.)

In a fashion similar to Condition 4.2, our new Condition 4.5 gives the

simplicity of C∗
λ(G) for a group G if for all finite subsets H of G \{e},

we can carry out a certain construction (creating large free subgroups

in a certain way from H). The new condition is as follows.

Condition 4.5 For all finite non-empty subsets H ⊂ G, e �∈ H and

for all positive integers n there are r, s ∈ G and a set {c1, c2, . . . , cn} ⊂
CG(sr) such that the set {(sgr)ck : k = 1, . . . , n} is free for all g ∈ H.

Of course by taking r and s above to be the identity, we see im-

mediately that anytime a group satisfies Condition 4.2, it also satisfies

Condition 4.5.

Unfortunately, Condition 4.5 is still not weak enough to show that

the algebra C∗
λ(T ) is simple. And, as in the previous case, this is still

a consequence of the fact that R. Thompson’s group F admits no free

subgroups, although we have to work harder to break Condition 4.5. In

particular, we observe that there is no particular obstruction stopping

a discrete group G ≤ Homeo+(S1), where G admits subgroups H with

H admitting a global fixed point on the circle and also free, non-abelian

subgroups, from satisfying Condition 4.5.

Indeed, such groups are rampant in Homeo+(S1), and it is quite plau-

sible that some such groups will satisfy Condition 4.5, while also failing

Condition 4.2.

We also mention the new paper [1], written after the first draft of this

chapter, which shows that if F is amenable, then the C∗ algebra of T

cannot be simple, as T admits F as a normalish subgroup, so that in

this case the amenable radical of T is not trivial (following a method of

[3].)

4.1.2 On Amenability

There has also been a long-standing interest in the question of the

amenability of Richard Thompson’s group F , introduced in Thompson’s

notes of 1965 (see the survey [7] for a general background on the three

Thompson groups F < T < V ), with many failed attempts to prove
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either the amenability or non-amenability of F . The groups F < T < V

arise in many areas of mathematics for reasons which are not entirely

understood. One plausible explanation is that they express in some fun-

damental way connections through Category Theory with associativity

and versions of commutativity (see [4, 10, 8] for some discussion of these

connections), which of course are fundamental aspects of any theory in-

volving products. Regardless of the cause, it is still the case that these

groups arise naturally in many areas of mathematics including dynam-

ics, logic, topology, and more obviously geometric group theory. One

fetching example of such an appearance is in, e.g., the relationship be-

tween the group F and the theory of associahedra, and in particular,

the theory related to the the proof of the Four Color Theorem [5]. In

any case, it is well known now that the Richard Thompson groups are

fundamental. One of the initial motivations for the work in this chapter

was the inspiration given by the work of Haagerup and Olesen in [12].

Uffe Haagerup and Kristian Knudsen Olesen in [12] (see also [20, Sec-

tion 4.2]) show that the simplicity of C∗
λ(T ) implies the non-amenability

of F via a construction given below (see Proposition 4.19 below). Ob-

serve that it is well known that T is a group with unique trace. Thus,

our initial motivation in this chapter was to investigate the ideal struc-

ture of C∗
λ(T ). And indeed, we find we can give a partial converse to the

Haagerup–Olesen result, which is of interest, although it is not hard to

show.

Haagerup and Olesen’s idea showing that the simplicity of the algebra

C∗
λ(T ) implies the non-amenability of F runs as follows. Consider T

“acting” on the interval [0, 1]. Assume that the stabiliser of 0, which is

the standard copy of the Thompson group F in T , is amenable. Since

the action of T on Z[ 12 ] is transitive, we have that the representation

induced by this action, π : T → B(l2(Z[ 12 ])), is weakly contained in the

left regular representation. From this one sees that there is a unique

∗-homomorphism from C∗
λ(T ) into the C∗-algebra generated by π(T ).

Consider now a finite subset H of T so that H = H1 �H2 and with

∑
g∈H1

π(g)−
∑
h∈H2

π(h) = 0.

The simplicity of C∗
λ(T ) now implies that the ideal generated by∑

g∈H1
λ(g)−

∑
h∈H2

λ(g) is proper. However, this is not possible since

π is non-trivial, so F must be non-amenable.

As a converse of the above we have the following. Thompson’s group
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F is non-amenable if and only if there exists a finite set H which can be

decomposed as a disjoint union of sets H1 and H2 with
∑

g∈H1
π(g) =∑

h∈H2
π(h) and such that the closed ideal generated by

∑
g∈H1

λ(g)−∑
h∈H2

λ(h) coincides with C∗
λ(T ).

4.1.3 On Free Subgroups

In the discussions in the last two subsections, we see that finding free

subgroups is an important part of satisfying either of the core conditions

detecting simplicity, and so we find tools to do just that. The results we

mention here are somewhat specialized, but they may be of interest to

researchers working to find free subgroups in groups of homeomorphisms

of the circle in the first case, and in the second case, to researchers

working to find particular free subgroups in R. Thompson’s group T .

Our first proposition (along these lines) detects a free basis in a group

G of homeomorphisms of the circle, where G is generated by elements

with rational rotation number. The main value of the proposition is that

it finds the free basis using essentially the element given, if they satisfy

the correct initial conditions.

Proposition 4.6 Suppose a and b are orientation preserving homeo-

morphisms of the circle S1 with rational rotation numbers Rot(a) = p/q

and Rot(b) = r/s in lowest non-negative terms, where

1 b is not torsion, and

2 if x ∈ Fix(bs) and j ∈ Z with aj �= 1T are given, then we have

ajx �∈ Fix(bs).

In these circumstances, there is a positive integer k so that a and bk are

a free basis for the group 〈a, bk〉.

The next lemma shows that one can use a set of elements with a

common point of support to make large rank free groups R. Thompson’s

group T in such a way as to satisfy our Condition 4.5.

Lemma 4.7 Let H be a finite set of non-trivial elements in T so that

there is some point p ∈ ∩h∈HSupp(h). Then, for any positive integer n

there is an element g ∈ T and {c1, c2, . . . , cn} so that ci ∈ CT (g) for all

i, and so that for all h ∈ H we have that the set

Gh := {(gh)ci | i ∈ {1, 2, . . . , n}}

is a free basis for a free group of rank n.
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And finally, we show that if we have any finite set H of non-trivial

elements in T , then we can very nearly satisfy our Condition 4.5; we need

only allow passing to a fixed power p of the elements (hg)ci , for p = |H|,
to find a free basis of rank n. Note again that this cannot happen for

the original Kesten Condition 4.2.

Lemma 4.8 Let H be a finite set of non-trivial elements in T with

cardinality p. Then there is an element g ∈ T such that for any positive

integer n there are elements {c1, c2, . . . , cn} so that ci ∈ CT (g) for all i,

and so that for all h ∈ H the set

Gh := {((hg)ci)p | i ∈ {1, 2, . . . , n}}

freely generates a free group of rank n.

4.1.4 A Description of What Comes Next

In Section 4.3 we provide a short discussion of the historical Ping-Pong

Lemma and we prove a version of the Ping-Pong Lemma (Proposition

4.6) useful for detecting free subgroups when considering a group gen-

erated by two homeomorphisms of S1 with rational rotation numbers.

Proposition 4.6 is an essential ingredient in the proof of Lemma 4.7.

In Section 4.4, we give proofs that we can carry out the construction

of Condition 4.5 for many cases of finite H ⊂ T \{e}, including the cases

we need to prove Lemma 4.7. We also describe some cases of H where

we cannot carry out the construction of Condition 4.5, but where related

constructions do produce large free subgroups.

In Section 4.5 we present our proof of the second result, modulo our

Lemma 4.7.

In our final Section 4.6 we state some remaining questions which we

find interesting.

4.2 Powers’ Test

We now prove Lemma 4.3. Recall the statement.

Lemma 4.3 (restated) Let X be a set, and G the group of bijections

from X to X. Suppose h1, h2 ∈ G\ {1} so that Supp(h1)∩Supp(h2) = ∅.
If c1, c2 ∈ G so that Supp(hc1

1 ) ∪ Supp(hc2
1 ) = X then

Supp(hc1
2 ) ∩ Supp(hc2

2 ) = ∅.
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Proof Suppose

X = Supp(hc1
1 ) ∪ Supp(hc2

1 )(= c1 · Supp(h1) ∪ c2 · Supp(h1)).

If there is an x ∈ X so that x ∈ Supp(hc1
2 )∩Supp(hc2

2 ), then x = c1·y and

x = c2 ·z, where y and z are in Fix(h1). In particular, x ∈ c1 ·Fix(h1)∩
c2 · Fix(h1). This implies that c1 · Supp(h1) ∪ c2 · Supp(h1) �= X.

As mentioned before, Lemma 4.3 immediately implies that we cannot

use Condition 4.2 when approaching the question of the simplicity of the

algebra C∗
λ(T ).

Corollary 4.9 Suppose that H ⊂ T admits elements h1 and h2 so that

Supp(h1) ∩ Supp(h2) = ∅. Then for n ≥ 2 there is no set of elements

{c1, c2 . . . , cn} so that 〈hc1 , hc2 , . . . , hcn〉 is a free group on n generators

for all h ∈ H.

Proof Suppose H := {h1, h2, . . . , hk} is a finite set with cardinality at

least two, and h1 and h2 are in H so that Supp(h1) ∩ Supp(h2) = ∅.
Further suppose that n ≥ 2 is fixed and c1, c2,. . ., cn are chosen so that

for all h ∈ H, we have that 〈hc1 , hc2 , . . . , hcn〉 is free on n generators.

As proven in Brin and Squier’s paper [6], the group of piecewise linear

homeomorphisms of the unit interval has no non-abelian free subgroups,

so we see immediately that Supp(hc1
1 )∪Supp(hc2

1 ) = S1. Now by Lemma

4.3 we know that Supp(hc1
2 ) ∩ Supp(hc2

2 ) = ∅. Therefore 〈hc1
2 , hc2

2 〉 ∼=
Z× Z.

We now carry out some work in order to offer an apparently weaker

version of Condition 4.2 which will be used throughout the remainder of

this article. In particular, we need the supporting theorem below.

Theorem 4.10 Let H ⊂ G be a finite set and assume there is an

element w ∈ H such that for all positive integers n there is a set

{c1, c2, . . . , cn} ⊂ G and r, s ∈ G such that ci ∈ CG(swr) for all i

and

lim
n→∞

1

n
||Σn

i=1λ(cisgrci
−1)|| = 0, for all g ∈ H\{w},

then for all coefficients βg indexed by H with βw �= 0, the ideal generated

by
∑

g∈H βgλ(g) is equal to C∗
λ(G).

Proof Let I be an ideal in C∗
λ(G) generated by b :=

∑
g∈H βgλ(g).

Assume that I is proper. The closure of I is proper, thus we can assume
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I is closed. Note that Σn
i=1λ(cis)bλ(rc

−1
i ) ∈ I. Since ci ∈ CG(swr) we

have

‖λ(swr)− 1

βwn
Σn

i=1λ(cis)bλ(rc
−1
i )‖

=
1

βwn
‖Σg∈H\{w}Σn

i=1βgλ(cisgrc
−1
i )‖

≤ 1

βw
Σg∈H\{w}|βg|

1

n
‖Σn

i=1λ(cisgrc
−1
i )‖

=max {|βg|/βw : g ∈ H} ·max

{
1

n
‖Σn

i=1λ(cisgrc
−1
i )‖ : g ∈ H

}
.

By our assumptions, the last quantity can be arbitrarily small for large

n. Thus there is an element in I which is at distance less than 1 from a

unitary operator, which implies that it is invertible and I = C∗
λ(G).

Applying the theorem above to the setH∪{e} shows that the following
condition implies simplicity of C∗

λ(G).

Condition 4.5 (restated) For all finite non-empty subsets H ⊂ G,

e �∈ H and for all positive integers n there are r, s ∈ G and a set

{c1, c2, . . . , cn} ⊂ CG(sr) such that the set {ck(sgr)c−1
k : k = 1, . . . , n}

is free for all g ∈ H.

Condition 4.2 implies Condition 4.5. However, Condition 4.5 is still

inadequate for showing that C∗
λ(T ) is simple.

Lemma 4.11 There are elements g1, g2 ∈ T\{e} with the property

that, for any r, s ∈ T , there are no elements c1, c2, c3, and c4 ∈ CT (sr)

with both subgroups

G1 = 〈(sg1r)c1 , (sg1r)c2 , (sg1r)c3 , (sg1r)c4〉, and

G2 = 〈(sg2r)c1 , (sg2r)c2 , (sg2r)c3 , (sg2r)c4〉

free on four generators.

Proof Let g1, g2 ∈ T so that Supp(g1) = (0, 1/2) and Supp(g2) =

(1/2, 1). Let r and s ∈ T and suppose c1, c2, c3 and c4 ∈ CT (sr). Set

kij = (sgir)
cj , for i, j ∈ {1, 2, 3, 4}, and suppose that c1, c2, c3 and c4

were chosen so that both groups Gi = 〈ki1, ki2, ki3, ki4〉 are free on four

generators for 1 ≤ i ≤ 2.

Consider the intervals Xi1 = (c1r
−1) ·Fix(gi), Xi2 = (c2r

−1) ·Fix(gi),

Xi3 = (c3r
−1) · Fix(gi), and Xi4 = (c4r

−1) · Fix(gi). If xij ∈ Xij , then

kij · xij = cjsgirc
−1
j · xij = (cjsgi) · yij = (cjs) · yij = (cjsrc

−1
j ) · xij =
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(sr) ·xij , as for all i, j we have yij ∈ Fix(gi). That is, kij acts as sr over

Xij .

Further, consider the elements fi,ab = k−1
ia kib, where i ∈ {1, 2} and

a �= b ∈ {1, 2, 3, 4}. It is immediate that 〈fi,ab, fi,cd〉 is free on two

generators if either b �= c or d �= a. Therefore, by Brin and Squier’s result

(from [6]) that PLo(I) has no non-abelian free subgroups, we know that

Fix(fi,ab)∩Fix(fi,cd) = ∅ for i ∈ {1, 2} and either b �= c or d �= a. Now,

for instance, if there is an index i and some point p ∈ Xi1∩Xi2∩Xi3, then

both fi,12 and fi,13 must fix p, which is a contradiction. Therefore we see

that Xi1, Xi2, and Xi3 cannot share a common point for any index i. By

the same argument, for any valid indices i, a, b, and c (where i ∈ {1, 2}
and a �= b �= c �= a) we see that Xia ∩Xib ∩Xic = ∅.
One now sees immediately that for any valid indices i, a, b, and c

(where i ∈ {1, 2} and a �= b �= c �= a) we must also have that Xia ∪
Xib ∪ Xic = S1. This follows as otherwise there is some point p in the

intersection Xja ∩ Xjb ∩ Xjc for the index j �= i (since X1∗ = S1\X2∗
for any index ∗).

Suppose that for some indices i, a �= b we have that Xia ⊂ Xib, and

let c and d be the two remaining distinct indices of {1, 2, 3, 4}\{a, b}. Let
p be an endpoint of Xib. We have that p must be in both Xic and Xid,

otherwise there will be some point q ∈ S1\Xib which is near to p so that q

is not in either ofXia∪Xib∪Xic = Xib∪Xic orXia∪Xib∪Xid = Xib∪Xid.

But this contradicts the fact that Xib ∩Xic ∩Xid = ∅.
It now immediately follows that for any index i and two distinct indices

a and b, we have that Xia ∩Xib is a non-empty closed interval (possibly

a single point) while Xia∪Xib is also a closed interval which misses some

points in S1.

But now we are done, as follows. For any index i the intervals Xi1,

Xi2, and Xi3 cover the circle, and have the properties that each pair

of sets intersects in an interval, and no pair covers the whole circle.

Now consider Xi4. It must likewise intersect both Xi1 and Xi2 non-

trivially, and the union of Xi1, Xi2, and Xi4 also covers the whole circle.

Therefore the end of Xi1 which is not in Xi2, is in both Xi3 and Xi4.

Hence Xi1 ∩Xi3 ∩Xi4 �= ∅, which implies that the group Gi cannot be

free on four generators, as fi,13 and fi,14 share a common fixed point

and will not generate a free subgroup of Gi.

Remark 4.12 We observe that it is still plausible that even with g1
and g2 as in the proof above (supports over (0, 1/2) and (1/2, 1), respec-

tively), one could potentially find r, s, and c1, c2, and c3 ∈ CT (sr) so
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that setting kij = cjsgirc
−1
j as above we would have Hr = 〈kr1, kr2, kr3〉

free on three generators for both r = 1 and r = 2. The corresponding

claim for even two generator free groups could not be conceived of under

Condition 4.2.

4.3 A Ping-Pong Lemma for Orientation Preserving
Homeomorphisms of S1

In this section, we prove a version of the Ping-Pong Lemma which we

are using in our main argument. In the notations below we write all

actions as left actions, in keeping with the tradition in the C∗ literature,

although much of the Thompson groups literature uses right action. In

particular, if x ∈ S1 and s, t ∈ T , we write tx for the image of x under

t, and the conjugation st := sts−1, which means: apply s−1 first, then t,

and then s. We consider finite sets with repetitions.

In support of that lemma we ask the reader to recall an ordinary state-

ment of Fricke and Klein’s Ping-Pong Lemma (first proven in [9], but

we give a different statement), and two further facts, one quite classical.

Lemma 4.13 (Ping-Pong Lemma) Let G be a group of permutations

on a set X, and let a, b ∈ G, where b2 �= 1. If Xa and Xb are two subsets

of X so that neither is contained in the other, and for all integers n

we have bn · Xa ⊂ Xb whenever bn �= 1, and an · Xb ⊂ Xa whenever

an �= 1, then 〈a, b〉 factors naturally as the free product of 〈a〉 and 〈b〉.
In particular, 〈a, b〉 ∼= 〈a〉 ∗ 〈b〉.

Suppose that f : S1 → S1 is an orientation preserving homeomor-

phism of the circle S1 = R/Z, then f may be lifted to a homeomorphism

of R by F (x+m) = F (x) +m for every x and m. The rotation number

of f is defined to be Rot(f) = limn→∞(Fn(x) − x)/n. The following

theorem is generally relevant to the arguments in the final section of

this chapter, and appears first in [11], although there now exist many

different proofs, the shortest of which appears to be in [2].

Theorem 4.14 Every element of Thompson’s group T has rational

rotation number.

The last tool we need in order to establish our own version of the

Ping-Pong Lemma is the following classical result of Poincaré.

Lemma 4.15 (Poincaré’s Lemma, circa 1905) If f is an orientation



Ideal Structure of the C∗-algebra of R. Thompson’s group T 57

preserving homeomorphism of S1 and f has rotation number p/q in low-

est terms, then there is an orbit in S1 of size exactly q under the action

of 〈f〉.

We are now in a good position to quote and prove our main technical

tool.

Proposition 4.16 Suppose a and b are orientation preserving homeo-

morphisms of the circle S1 with rational rotation numbers Rot(a) = p/q

and Rot(b) = r/s in lowest non-negative terms, where

1 b is not torsion, and

2 if x ∈ Fix(bs) and j ∈ Z with aj �= 1T are given, then we have

ajx �∈ Fix(bs).

In these circumstances, there is a positive integer k so that a and bk are

a free basis for the group 〈a, bk〉.

Proof In the proof below, let us take a, b ∈ T and p, q, r, s ∈ N as in

the statement of the lemma. Set b0 := b. We will occasionally update to

a new version of b, which will be given by a new index. The new b will

always be an integral power of the previous indexed b.

Set b1 := bs0. The element b1 will have rotation number 0/1 in lowest

non-negative terms. For b1, we have that Fix(b1) is not empty, and also

not the whole circle (otherwise b was originally a torsion element in T ).

Let I ⊂ S1 be such that for each component C of Supp(b1), we have

|C ∩ I | = 1, and associate each such C with its unique point in I ,

so that I becomes an index set for the components of Supp(b1). We

observe that I comes with an inherent circular order as a subset of S1.

Let Lb represent the set of limit points of I which are not in I , and

observe that Lb ⊂ Fix(b1).

For each positive integer d, set Δd := [−d, d] ∩ (Z\{0}), the set of

non-zero integers a distance d or less from zero. Now for all positive

integers d we can set εd to be one half of the distance from Fix(b1) to

the set ∪i∈Δd
ai · Fix(b1). Noting that these εd are all well defined and

non-zero (unless a is torsion) as the sets involved are compact and as

am ·Fix(b1)∩ an ·Fix(b1) �= ∅ implies that either m = n, or a is torsion

and n−m is divisible by the order of a.

Our analysis now splits, depending on whether or not a is torsion.

In the case that a is torsion, our proof is somewhat easier, so we will

execute that proof immediately.
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Case: a is torsion with order q

In this case, the value εq−1 explicitly measures one half of the distance

between Fix(b1) and the union of the images of Fix(b1) under the action

of non-trivial powers of a. Set U to be the open εq−1 neighbourhood of

Fix(b1), and observe that for each integer i ∈ {1, 2, . . . , q − 1} we have

ai · Fix(b1) ∩ U = ∅. For each non-zero i ∈ {1, 2, . . . q − 1} set Ui to

be the εq−1 neighbourhood of ai · Fix(b). Again, for all such indices i,

U ∩ Ui = ∅. Set
Xb := U

⋂
1≤i<q

(aq−i · Ui).

Now by construction we have that the image set ai ·Xb ⊂ Ui, but Ui ∩
Xb = ∅ since Ui∩U = ∅ and Xb ⊂ U . Thus, Xb is an open set containing

Fix(b1) that is disjoint from its image under the action of any non-trivial

power of a.

As Xb and the components of support of b1 altogether cover the cir-

cle, there is a finite set of open interval components of Supp(b1) which

together with Xb covers the circle. In turn, this implies there is a mini-

mal positive integer v so that for all x ∈ S1\Xb, we have bv1x ∈ Xb and

b−v
1 x ∈ Xb.

Now we can set

Xa := ∪1≤i<q(a
i ·Xb).

With this choice of Xa and Xb we have arranged that we satisfy the

hypotheses of Lemma 4.13 for the elements a and ak where k = v · s.

Case: a is not torsion

Throughout this case, given a set X ⊂ S1, and ε > 0, we shall use the

notation Nε(X) to denote the open ε-neighbourhood of X, that is, all

points in S1 a distance less than ε from some point in X.

In this case with a not torsion, we must specify the set Fa := Fix(aq),

which is a closed non-empty subset of the circle which is disjoint from

Fix(b1). Choose a specific ε > 0 so that Nε(Fix(b1)) ∩ Nε(Fa) = ∅,
noting that such an epsilon value exists as Fix(b1) and Fa are disjoint

compact subsets of S1.

Let m be a positive integer so that both amq · Fix(b1) ⊂ Nε(Fa)

and a−mq · Fix(b1) ⊂ Nε(Fa). This m exists as aq acts as a monotone

strictly increasing, or as a monotone strictly decreasing function over

each component of its support, and as the limit point of any point in

a component of support of aq under increasing powers of aq must be
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a fixed point of aq (and similarly under negative powers of aq), and as

Fix(b1) is a compact set and hence is contained in a union of finitely

many components of support of aq.

We now observe that for n an integer with |n| > m, we have that

anq · Fix(b1) ⊂ Fa as well. We would like to argue a stronger result

now that there is a positive constant N so that for all j > N we have

aj · Fix(b1) ⊂ Nε(Fa) and a−j · Fix(b1) ⊂ Nε(Fa).

To make this argument, the main point to observe is that there is an

induced action of 〈a〉 on the set of components of support of aq which

partitions these components into (possibly infinitely many) orbits of size

q. Further, as a commutes with aq and a is orientation preserving, it is

easy to see that each such orbit consists of components of support where

the action of aq is increasing on all components of the orbit, or decreasing

on all components of the orbit.

It is also the case that there are only finitely many components of

support of aq which are not already wholly contained in Nε(Fa). Let

C1, C2, . . ., Cw represent these components, and observe that Fix(b1)

is contained in the union K of these compact intervals. For each com-

ponent Cj , let Ij be the closed interval Cj\Nε(Fa). Now each of these

components Cj are in an orbit of length q amongst the components of

support of aq, and in each such orbit the action of aq on each component

is in the same direction. Hence there is a finite number N so that for

all j > N and intervals Im, we have that aj · Im ⊂ Nε(Fa), and also

a−j · Im ⊂ Nε(Fa).

Now define J to be

J := ∪i∈ΔN
((ai · Fix(b1)) ∩K),

where we recall that Δn = [−n, n] ∩ (Z\{0}) for any particular n ∈ N.
It is immediate that J is a compact set which is disjoint from Fix(b1).

As such, there is a δ > 0 so that δ < ε and the δ-neighbourhood

Nδ(Fix(b1)) of Fix(b1) is disjoint from the set Vδ defined as

Vδ := ∪i∈ΔN
(ai ·Nδ(Fix(b1)))

and noting that as δ < ε we also have that Nδ(Fix(b1)) is disjoint from

Nε(Fa).

Now set Xb := Nδ(Fix(b1)) and Xa := Nε(Fa) ∪ Vδ.

By construction, there is an integer z > 0 so that bz1 takes the comple-

ment of Xb (and so, Xa) into Xb, while all non-trivial powers of a take

Xb into Xa. Hence the integer k = s · z has the property that a and bk

freely generate a free group of rank 2.



60 Bleak and Juschenko

4.4 Applying Condition 4.5, and Variants, in T

Here we list lemmas where Condition 4.5 can be used.

Lemma 4.17 Let H be a finite set of non-trivial elements in T so that

there is some point p ∈ ∩h∈HSupp(h). Then, for any positive integer n

there is an element g ∈ T and {c1, c2, . . . , cn} so that ci ∈ CT (g) for all

i, and so that for all h ∈ H we have that the set

Gh := {(gh)ci | i ∈ {1, 2, . . . , n}}

is a free basis for a free group of rank n.

Proof Let H and p be as in the statement of the lemma, and let n ∈ N
be given. For each h ∈ H, let Rot(h) := rh/sh written in lowest terms

(N.B.: any finite periodic orbit under the action of 〈h〉 is of length sh).

By the definition of p, we see there is a non-empty interval (a, b) with

p ∈ (a, b) so that for all h ∈ H we have (a, b) · hj ∩ (a, b) = ∅ for all

1 ≤ j < sh.

Now let g ∈ T be an element with rotation number Rot(g) = 0 which

fixes exactly the point p. We can choose g so that for all h ∈ H the

product gh has precisely two fixed points which are generated from the

contact of the graph of g with the graph of the element h−1, by choosing

the graph of g to be near to a step function (the nearly vertical compo-

nent of the graph of g should be steeper than any slope of any element

of H, and the nearly horizontal component of the graph of g should have

slope closer to zero than any slope of any element of H, and, in a small

epsilon box around (p, p) which misses the graphs of the elements of H,

the graph of g is unrestrained). As g fixes the point p, it is the case that

for all elements h ∈ H, we have kh ·p = gh ·p = g · (h ·p) �= p and further

that under the action of 〈kh〉, p is in an infinite orbit which limits to the

two ends of the component of support of kh which contains p. In these

conditions we can immediately apply Proposition 4.6 to claim that for

each h ∈ H, there is a power gρh of g so that kh and the element gρh

freely generate a free group of rank 2. Now take θ := LCM{ρh | h ∈ H},
so that gθ is free for kh for each h.

Now, it is immediate that setting ci := gi·θ for indices i in the range

1 ≤ i ≤ n, we can create sets Xh := {(gh)ci}ni=1 so that 〈Xh〉 is free on

n-generators for all h ∈ H.

The following is some weakening of Condition 4.5 which we can achieve

in Thompson’s group T . Unfortunately, by raising to the power p, we find
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a free subgroup of K := {((hg)ci) | i ∈ {1, 2, . . . , n}} which is generally

not finite index.

Lemma 4.18 Let H be a finite set of non-trivial elements in T with

cardinality p. Then there is an element g ∈ T such that for any positive

integer n there are elements {c1, c2, . . . , cn} so that ci ∈ CT (g) for all i,

and so that for all h ∈ H the set

Gh := {((hg)ci)p | i ∈ {1, 2, . . . , n}}

freely generates a free group of rank n.

Proof Index the h ∈ H so that H = {h1, h2, . . . , hp} for some minimal

positive integer p. As each element t ∈ T has a rational rotation number

Rot(t) ∈ Q/Z, let Rot(hi) = ri/si expressed in lowest positive terms.

For each index i, inductively choose a point xi ∈ Supp(hi) so that the

set

Xi :=
{
h−1
j · xi, xi, hj · xi | 1 ≤ j ≤ i

}
is disjoint from the union ∪j<iXj , and where each xi is chosen as a

dyadic rational so that no point in Xi is an end of a component of

support of h
sj
j for any index j. Note that in all cases we are choosing an

xi so that a finite set of images miss a finite set of points in the circle,

and this is easy to do. Set P := {xi | 1 ≤ i ≤ p}. Re-index P so that

0 ≤ x1 < x2 < · · · < xp < 1, and re-index the sets Xi correspondingly.

Now choose, for each i, an interval (ai, bi) centred around xi, and set

Ii :=
{
h−1
j · (ai, bi), (ai, bi), hj · (ai, bi) | 1 ≤ j ≤ i

}
,

where each (ai, bi) is chosen small enough so that each element of Ii is

disjoint from the union ∪j<i,B∈IjB, and where (ai, bi) is disjoint from

h−1
j · (ai, bi) and hj · (ai, bi) whenever xi ∈ Supp(hj), and where h−1

j ·
(ai, bi) and hj · (ai, bi) intersect each other non-trivially only if hj is

torsion of order two. We can insist these intervals are possibly smaller

still, so that the complement of the union Ũ := ∪1≤j≤p,B∈IjB is a union

of closed intervals each of which has non-empty interior. We observe that

by our choices of the sets Xi, we can so choose our intervals (ai, bi).

Now let g̃ be a non-torsion element with rotation number 1/p which

admits exactly one orbit of size p under the action of 〈g̃〉, where the orbit
is the set P , and where g̃ cyclically permutes the xi in order, taking x1

to x2, x2 to x3, etc.

The element γ := g̃p has p components of support S1 := (x1, x2),

S2 := (x2, x3), . . . , Sp := (xp, x1), and γ is either increasing on each
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component of support, or decreasing on each component of support. We

re-choose g̃ if necessary so that it satisfies all previous conditions and so

that γ is increasing on each component of support, and note that such

elements g̃ exist.

Now set U := ∪1≤j≤p(ai, bi), which union also has the property that

the complement C := S1\U is a union of p disjoint closed intervals

Di := [bi, ai+1] (where we set ap+1 := a1) each of which is not a point.

As such is the case, we can find a positive integer d so that γd · C ⊂ U

as after d iterations of γ, the set Di will be moved so as to have image

just to the left of xi+1 (where again, we set xp+1 := x1).

Now set g := γdg̃. The element g so constructed has rotation number

1/p as before, and acts on the set P as g̃ does, but it has the further

property that for all integers s �= 0, gs · C ⊂ U.

Now set, for each index i, ki := ghi. We will now show that for all ki,

the point xj is not in any finite periodic orbit of ki, for any index j.

Let i and j be indices so that ki and xj are an element and point as

defined above, respectively. Let q be an index and consider the interval

(aq, xq] under the action of g, and then consider the interval (aj , xj ]

under the action of ki.

Under the action of g, we know already that xq �→ xq+1, and that

the component [bq−1, aq] of C maps into the interval (aq+1, xq+1). In

particular, the whole interval [bq−1, xq] is mapped into (aq+1, xq+1] by

g and so the interval [aq, xq] is mapped into (aq+1, xq+1] as well, and

precisely the point xq will map to xq+1.

Now consider the action of ki on (aj , xj ]. If xj is in the support of hi,

then hi · (aj , xj ] ⊂ C, whereupon that image is moved into some interval

(a∗, x∗) by the action of g.

In particular, kzi · xj = xj+z (in cyclic order) as long as for all 0 ≤
y ≤ z we have xj+y �∈ Supp(hi). If instead for some minimal integer

s ∈ {0, 1, . . . , p− 1} we have xj+s ∈ Supp(hi) then ks+1
i will move xj out

of P as we will have ks+1
i · xj ∈ (a∗, x∗) for some index ∗. Furthermore,

if this happens, all further iterates of xj will fail to re-enter P .

However, xi is itself in the support of hi, so this eventuality happens

(in p steps or fewer), and so no xj is on a finite periodic orbit under the

action of 〈ki〉, for any indices j and i.

In particular, for all indices j, we see that (ktpj · P ) ∩ P = ∅ for all

t ∈ Z\ {0}.
We can now quote Proposition 4.6, using a := kpj for each index j and

b = g to claim that for each index j there is an integer zj so that the

group 〈kpi , gzj 〉 is free on two generators (in this setup, P = Fix(bs) =
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Fix(gp)). Now set z := LCM({z1, z2, . . . , zp}), the least common multi-

ple of the values zj , and then we have that for all indices j, the elements

kpj and gz generate a free group. In particular, setting ci := giz for

i ∈ {1, 2, . . . , n} we see that Γj :=
{
(kpj )

ci = (kcij )p | 1 ≤ i ≤ n, i ∈ Z
}

freely generates a free group of rank n.

But now, recalling that ki = ghi, and that therefore [g, ci] = 1, we

have proved our claim.

4.5 Non-amenability of F and a Condition on Ideals
of its C∗-algebra.

In this section we will show the following, which is the converse of the

Haagerup-Olesen result. The proof can be done in several ways. One

is to use Lemma 4.7 and follow Powers’ proof of simplicity, another is

to show it directly using the regular Ping-Pong Lemma. This happens

because the generators can be chosen to act in the same way on some

subinterval of [0, 1].

Proposition 4.19 Thompson’s group F is non-amenable if and only if

there exists a finite set H which can be decomposed as a disjoint union of

sets H1 and H2 with
∑

g∈H1
π(g) =

∑
h∈H2

π(h) and such that the closed

ideal generated by
∑

g∈H1
λ(g)−

∑
h∈H2

λ(h) coincides with C∗
λ(T ).

Proof One part of the theorem follows from the draft [12] of Haagerup

and Olesen (see also [20, Section 4.2]).

It is left to show that if F is not amenable then there is a finite set

H which satisfies the conditions of the theorem. Let x1 and x2 be the

standard generators of the copy of Thompson’s group F in T , supported

in [ 12 , 1] ⊂ S1, with supports in [ 12 , 1] and [ 34 , 1] respectively. Let g1 = xr
1

and g2 = xr
2 be the conjugated copies of these generators, where r is

rotation by 1/2, so that g1 and g2 act on the interval [0, 1
2 ] ⊂ S1 and

generate a copy of F there, with trivial action on [ 12 , 1]. Define H =

{2e, g1, g2, x1, x2, g1x1, g2x2}. Define H1 = {g1, g2, x1, x2} and H2 to be

the rest of the set H. Obviously,
∑

g∈H1
π(g)−

∑
h∈H2

π(h) = 0.

Let us show that the ideal, J , generated by
∑

g∈H1
λ(g)−

∑
h∈H2

λ(h)

is the whole reduced C∗-algebra of T . Note that ‖1 + λ(g1) + λ(g2)‖ ≤
C < 3 by assumption. Moreover, the point p = 7

8 is not fixed by any

element from the set E = {x1, x2, g1x1, g2x2}. Thus we can apply Lemma
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4.7 for the set E: let ε > 0 and let g and c1, . . . , cn ∈ CT (g) be such that

‖
∑
s∈E

n∑
i=1

λ((sg)ci)‖ ≤ εn.

Note that the element b = λ(g − 1
3 [e + g1 + g2]g + 1

3

∑
s∈E sg) is in

J , thus 1
n

∑n
i=1 λ(ci)bλ(ci

−1) ∈ J . The distance between the element
1
n

∑n
i=1 λ(ci)bλ(ci

−1) and λ(g) is strictly smaller than 1 for large n.

Indeed,

‖λ(g)− b‖ ≤1

3
‖1 + λ(g1) + λ(g2)‖+

1

3n
‖
∑
s∈E

n∑
i=1

λ((sg)ci)‖ ≤ C + ε,

thus we have found an invertible element in J , therefore J = C∗
λ(T ).

4.6 Some Questions

The last result in particular shows that our Condition 4.5 is almost

(in some sense) enough to show that C∗
λ(T ) is simple. But not quite!

This, together with our partial converse of the Haagerup-Olesen result,

encourages us to ask the foliowing question.

Question 1 Is the non-amenability of Thompson’s group F equivalent

to the simplicity of the algebra C∗
λ(T ).

As the setup of Condition 4.5 is more flexible than that of Condition

4.2, we find Condition 4.5 easier to use. Still, we have not actually proven

that the conditions are not equivalent. Thus it would be quite useful to

give a positive answer to the following question.

Question 2 Is there a group G which fails to satisfy Condition 4.2 but

which does satisfy Condition 4.5?

In [14], [13], and [15] several approaches to amenability via group

actions were developed. It is an interesting question to relate these ap-

proaches to properties of a group’s C∗-algebra.
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5

Local Similarity Groups with Context-free
Co-word Problem

Daniel Farley

Abstract

Let G be a group, and let S be a finite subset of G that generates G

as a monoid. The co-word problem is the collection of words in the free

monoid S∗ that represent non-trivial elements of G.

A current conjecture, based originally on a conjecture of Lehnert and

modified into its current form by Bleak, Matucci, and Neunhöffer, says

that Thompson’s group V is a universal group with context-free co-word

problem. It is thus conjectured that a group has a context-free co-word

problem exactly if it is a finitely generated subgroup of V .

Hughes introduced the class FSS of groups that are determined by

finite similarity structures. An FSS group acts by local similarities on

a compact ultrametric space. Thompson’s group V is a representative

example, but there are many others.

We show that FSS groups have context-free co-word problem under

a minimal additional hypothesis. As a result, we can specify a subfamily

of FSS groups that are potential counterexamples to the conjecture.

5.1 Introduction

Let G be a group, and let S be a finite subset that generates G as a

monoid. The word problem of G with respect to S, denoted WPS(G),

is the collection of all positive words w in S such that w represents

the identity in G; the co-word problem of G with respect to S, denoted

CoWPS(G), is the set of all positive words that represent non-trivial ele-

ments of G. In this point of view, both the word and the co-word problem

of G are formal languages, which suggests the question of placing these
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problems within the Chomsky hierarchy of languages (as described, for

instance, in [6]). The locations of the formal languages WPS(G) and

CoWPS(G) within the hierarchy do not depend on the choice of finite

generating set S.

Anisimov [1] proved that WPS(G) is a regular language if and only

if G is finite. A celebrated theorem of Muller and Schupp [14] says that

a finitely generated group G has context-free word problem if and only

if it is virtually free. (A language is context-free if it is recognized by a

pushdown automaton.) In this case, as noted in [9], the word problem

is actually a deterministic context-free language. Shapiro [18] described

sufficient conditions for a group to have a context-sensitive word prob-

lem.

Since the classes of regular, deterministic context-free, and context-

sensitive languages are all closed under taking complements, it is of no

additional interest to study groups with regular, deterministic context-

free, or context-sensitive co-word problems, since the classes of groups

in question do not change. The (non-deterministic) context-free lan-

guages are not closed under taking complements, however, so groups

with context-free co-word problem are not (a priori, at least) the same

as groups with context-free word problem.

Holt, Rees, Röver, and Thomas [9] introduced the class of groups

with context-free co-word problem, denoted coCF . They proved that

all finitely generated virtually free groups are coCF , and that the class

of coCF groups is closed under taking finite direct products, passage

to finitely generated subgroups, passage to finite index overgroups, and

taking restricted wreath products with virtually free top group. They

proved some negative results as well: for instance, the Baumslag–Solitar

groups BS(m,n) are not coCF if |m| �= |n|, and polycyclic groups are

not coCF unless they are virtually abelian. They conjectured that coCF
groups are not closed under the operation of taking free products, and

indeed specifically conjectured that Z ∗ Z2 is not a coCF group.

Lehnert and Schweitzer [12] later showed that the Thompson group

V (as described in [7]) is coCF . Since V seems to contain many types of

subgroup (among them all finite groups, all countable free groups, and

all countably generated free abelian groups), this raised the possibility of

showing that Z∗Z2 is coCF by embedding the latter group into V . Bleak

and Salazar-Dı́az [4], motivated at least in part by these considerations,

proved that Z ∗ Z2 does not embed in V (leaving the conjecture from

[9] open), and also established the existence of many embeddings into

V . The basic effect of their embedding theorems was to show that the
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class V of finitely generated subgroups of Thompson’s group V is closed

under almost all of the same operations as those from [9], as listed above.

More recently, Bennett and Bleak [2] have proved that V is also closed

under restricted wreath products with virtually free top group (since

virtually free groups are “demonstrative”– see [4] for definitions). It is

thus now known that V and coCF are both closed under the group-

theoretic constructions listed in [9] (and described above).

Conjecture 5.1 [11, 5] The classes V and coCF are the same; i.e.,

Thompson’s group V is a universal coCF group.

Lehnert had conjectured in his thesis [11] that a certain closely re-

lated group Q of quasi-automorphisms of the infinite binary tree is a

universal coCF group. Bleak, Matucci, and Neunhöffer [5] established

the existence of embeddings from Q to V and from V to Q. As a re-

sult, Lehnert’s conjecture is equivalent to Conjecture 5.1. We refer the

reader to the excellent introductions of [5] and [4] for a more extensive

discussion of these and related questions.

Here we show that many groups defined by finite similarity structures

are contained in coCF . The precise statement is as follows.

Main Theorem Let X be a compact ultrametric space endowed with

a finite similarity structure SimX . Assume that there are only finitely

many SimX-classes of balls.

For any finitely generated subgroup G of Γ(SimX) and finite subset S

of G that generates G as a monoid, the co-word problem CoWPS(G) =

{w ∈ S∗ | w �= 1G} is a context-free language.

The groups defined by finite similarity structures (or FSS groups)

were first studied by Hughes [10], who showed that all FSS groups

act properly on CAT(0) cubical complexes and (therefore) have the

Haagerup property. Farley and Hughes [8] proved that a class of FSS
groups have type F∞. All of the latter groups satisfy the hypotheses of

the Main Theorem, so all are also coCF groups. (We note that the Main

Theorem also covers V as a special case.)

The class of FSS groups is not well understood, but we can specify

a certain subclass that shows promise as a source of counterexamples to

Conjecture 5.1. These are the Nekrashevych–Röver examples from [8]

and [10]. The results of [8] show that most of these examples are not

isomorphic to V (nor to the n-ary versions of V ), and it is not difficult

to show that they do not contain V as a subgroup of finite index. It
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seems to be unknown whether there are any embeddings of these groups

into V . Our Main Theorem therefore leaves Conjecture 5.1 open.

(The Nekrashevych-Röver examples considered in [8] and [10] are not

as general as the classes of groups from [17] and [15]; the finiteness of the

similarity structures proves to be a somewhat restrictive hypothesis.)

We note that, even apart from the examples from our Main Theorem,

there are differences between the class of known members of V and the

class of known members of coCF . Berns-Zieve, Fry, Gillings, Hoganson,

and Mathews [3] have used the cloning systems of Witzel and Zaremsky

[19] to describe a class of coCF groups having no known embeddings

into V .

The proof of the Main Theorem closely follows the work of Lehnert

and Schweitzer [12]. We identify two main ingredients of their proof.

1 All of the groups satisfying the hypothesis of the Main Theorem admit

test partitions (Definition 5.21). That is, there is a finite partition of

the compact ultrametric spaceX into balls, such that every non-trivial

word in the generators of G has a cyclic rotation that moves at least

one of the balls off itself, and

2 for each ball B from the test partition, there is a “B-witness automa-

ton”, which is a pushdown automaton that can witness an element

g ∈ G moving part of B off itself.

The Main Theorem follows very easily from (1) and (2). The proofs

that (1) and (2) hold are complicated somewhat by the generality of our

assumptions, but are already implicit in [12]. Most of the work goes into

building the witness automata. We describe a stack language L that the

witness automata use to describe, store, and manipulate metric balls

in X. One slight novelty (not present or necessary in [12]) is that the

witness automata write functions from the similarity structure on their

stacks and make partial computations using these functions.

We briefly describe the structure of the chapter. Section 5.2 contains a

summary of the relevant background, including string rewriting systems,

pushdown automata, FSS groups, and standing assumptions. Section

5.3 contains a proof that the groups G admit test partitions, as described

above. Section 5.4 describes the stack language for the witness automata,

and Section 5.5 gives the construction of the witness automata. Section

5.6 collects the ingredients of the previous sections into a proof of the

Main Theorem.
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5.2 Background

5.2.1 String Rewriting Systems

The description of witness automata in Sections 5.4 and 5.5 will require

some ideas from the theory of rewrite systems. We review these ideas

here.

Definition 5.2 A rewrite system is a directed graph Γ. We write a→ b

if a and b are vertices of Γ and there is a directed edge from a to b. We

write a→∗ b if there is a directed path from a to b. The rewrite system

Γ is called locally confluent if whenever a→ b and a→ c, there is some

d ∈ Γ0 such that c →∗ d and b →∗ d. The rewrite system is confluent

if whenever a →∗ b and a →∗ c, there is some d ∈ Γ0 such that c →∗ d

and b →∗ d. The rewrite system Γ is terminating if there is no infinite

directed path in Γ. If a rewrite system is both terminating and confluent,

then we say that it is complete. A vertex of Γ is called reduced if it is

not the initial vertex of any directed edge in Γ.

Theorem 5.3 [16] (Newman’s Lemma) Every terminating, locally con-

fluent rewrite system is complete.

Remark The relation → generates an equivalence relation on the ver-

tices of Γ. It is not difficult to see that each equivalence class in this

equivalence relation contains a unique reduced element in the event that

Γ is complete.

Definition 5.4 Let Σ be a finite set, called an alphabet. Let L be

a subset of the free monoid Σ∗. Let R be a collection of relations (or

rewriting rules) of the form w1 → w2, where w1, w2 ∈ Σ∗. (Thus, the
wi are positive words in the alphabet Σ, either of which may be empty.

The wi are not required to be in L.)
We define a string rewriting system as follows: The vertices are words

from L. For u, v ∈ L, there is a directed edge u → v whenever there

are words u′, u′′ such that u = u′w1u
′′ and v = u′w2u

′′, for some w1 →
w2 ∈ R.

5.2.2 Pushdown Automata

Definition 5.5 Let S and Σ be finite sets. The set S is the input

alphabet and Σ is the stack alphabet. The stack alphabet contains a

special symbol, #, called the initial stack symbol.

A (generalized) pushdown automaton (or PDA) over S and Σ [6] is a
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finite labeled directed graph Γ endowed with an initial state v0 ∈ Γ0 and

a (possibly empty) collection of terminal states T ⊆ Γ0. Each directed

edge is labeled by a triple (s, w′, w′′) ∈ (S ∪ {ε}) × Σ∗ × Σ∗, where ε

denotes an empty string.

Each PDA accepts languages either by terminal state, or by empty

stack, and this information must be specified as part of the automaton’s

definition. See Definition 5.7.

Definition 5.6 Let Γ be a pushdown automaton. We describe a class

of directed paths in Γ, called the valid paths, by induction on length.

The path of length 0 starting at the initial vertex v0 ∈ Γ0 is valid; its

stack value is # ∈ Σ∗. Let e1 . . . en (n ≥ 0) be a valid path in Γ, where

e1 is the edge that is crossed first. Let en+1 be an edge whose initial

vertex is the terminal vertex of en; we suppose that the label of en+1

is (s, w′, w′′). The path e1e2 . . . enen+1 is also valid, provided that the

stack value of e1 . . . en has w′ as a prefix; that is, if the stack value of

e1 . . . en has the form w′ŵ ∈ Σ∗. The stack value of e1 . . . en+1 is then

w′′ŵ. We let val(p) denote the stack value of a valid path p.

The label of a valid path e1 . . . en is sn . . . s1, where si is the first

coordinate of the label for ei (an element of S, or the empty string).

The label of a valid path p will be denoted �(p).

Definition 5.7 Let Γ be a PDA. The language LΓ accepted by Γ is

either

1 LΓ = {w ∈ S∗ | w = �(p) for some valid path p with val(p) = ε}, if Γ
accepts by empty stack, or

2 LΓ = {w ∈ S∗ | w = �(p) for some valid path p whose terminal vertex

is in T}, if Γ accepts by terminal state.

Definition 5.8 A subset of the free monoid S∗ is called a (non-

deterministic) context-free language if it is LΓ, for some pushdown au-

tomaton Γ.

Remark The class of languages that are accepted by empty stack (in the

above sense) is the same as the class of languages that are accepted by

terminal state. That is, given an automaton Γ′ that accepts a language

L by empty stack, there is another automaton Γ′′ that accepts L by

terminal state (and conversely).

Remark All of the automata considered in this chapter will accept by

empty stack.

The functioning of an automaton Γ can be described in plain language
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as follows. We begin with a word sn . . . s1 ∈ S∗ written on an input

tape, and the word # ∈ Σ∗ written on the memory tape (or stack). We

imagine the stack as a sequence of boxes extending indefinitely to our

left, all empty except for the rightmost one, which has # written in it.

Our automaton reads the input tape from right to left. It can read and

write on the stack only from the left (i.e., from the leftmost non-empty

box). Beginning in the initial state v0 ∈ Γ0, it can follow any directed

edge e it chooses, provided that it meets the proper prerequisites: if the

label of e is (s, w′, w′′), then s must be the rightmost remaining symbol

on the input tape, and the word w′ ∈ Σ∗ must be a prefix of the word

written on the stack. If these conditions are met, then it can cross the

edge e into the next state, simultaneously erasing the letter s from the

input tape, erasing w′ from the left end of the stack, and then writing

w′′ on the left end of the stack. The original input word is accepted if

the automaton can reach a state with nothing left on its input tape, and

nothing on its stack (not even the symbol #).

We note that a label such as (ε, ε, w′′) describes an empty set of pre-

requisites. Such an arrow may always be crossed, without reading the

input tape or the stack, no matter whether one or the other is empty.

5.2.3 Review of Ultrametric Spaces and Finite

Similarity Structures

We now give a quick review (without proofs) of finite similarity struc-

tures on compact ultrametric spaces, as defined in [10]. Most of this

subsection is taken from [8].

Definition 5.9 An ultrametric space is a metric space (X, d) such that

d(x, y) ≤ max{d(x, z), d(z, y)},

for all x, y, z ∈ X.

Lemma 5.10 Let X be an ultrametric space.

1 Let Nε(x) be an open metric ball in X. If y ∈ Nε(x), then Nε(x) =

Nε(y).

2 If B1 and B2 are open metric balls in X, then either the balls are

disjoint, or one is contained in the other.

3 If X is compact, then each open ball B is contained in at most finitely

many distinct open balls of X, and these form an increasing sequence:

B = B1 � B2 � . . . � Bn = X.
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4 If X is compact and x is not an isolated point, then each open ball

Nε(x) is partitioned by its maximal proper open subballs, which are

finite in number.

Convention 5.11 Throughout this chapter, “ball” will always mean

“open ball”. We note, however, that there is really no distinction between

open and closed balls in a compact ultrametric space: by Lemma 5.10(3),

every open ball Nε(x) is the same as a closed ball N ε′(x) = {z ∈ X |
d(x, z) ≤ ε′}, for some ε′ ≤ ε. In particular, every open ball in a compact

ultrametric space X is compact.

Definition 5.12 Let f : X → Y be a function between metric spaces.

We say that f is a similarity if there is a constant C > 0 such that

dY (f(x1), f(x2)) = CdX(x1, x2), for all x1 and x2 in X.

Definition 5.13 A finite similarity structure for X is a function SimX

that assigns to each ordered pair B1, B2 of balls in X a (possibly empty)

set SimX(B1, B2) of surjective similarities B1 → B2 such that whenever

B1, B2, B3 are balls in X, the following properties hold:

1 (Finiteness) SimX(B1, B2) is a finite set;

2 (Identities) idB1 ∈ SimX(B1, B1);

3 (Inverses) if h ∈ SimX(B1, B2), then h−1 ∈ SimX(B2, B1);

4 (Compositions) if h1 ∈ SimX(B1, B2) and h2 ∈ SimX(B2, B3), then

h2h1 ∈ SimX(B1, B3);

5 (Restrictions) if h ∈ SimX(B1, B2) and B3 ⊆ B1, then

h|B3
∈ SimX(B3, h(B3)).

Definition 5.14 A homeomorphism h : X → X is locally determined

by SimX provided that for every x ∈ X, there exists a ball B′ in X such

that x ∈ B′, h(B′) is a ball in X, and h|B′ ∈ Sim(B′, h(B′)).

Definition 5.15 The finite similarity structure (FSS ) group Γ(SimX)

is the set of all homeomorphisms h : X → X such that h is locally

determined by SimX .

Remark The fact that Γ(SimX) is a group under composition is due to

Hughes [10].

Definition 5.16 ([10], Definition 3.6) If γ ∈ Γ(SimX), then we can

choose a partition of X by balls B such that, for each B, γ(B) is a
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ball and γ|B ∈ SimX(B, γ(B)). Each element of this partition is called

a region for γ.

Example 5.17 Suppose that X is the set of all infinite strings in the

symbols 0 and 1. If w1 and w2 are two such infinite strings, then we set

dX(w1, w2) = e−�,

where � is the length of the longest prefix common to w1 and w2. The

function dX : X ×X → R is an ultrametric on X. It is straightforward

to verify that each metric ball in X takes the form u∗ = {w ∈ X | w =

uv for some v ∈ X}, for some finite string u of 0s and 1s.

We define a finite similarity structure SimX as follows. For each pair

of balls u∗, v∗, let
SimX(u∗, v∗) = {φu,v},

where φu,v is the function which removes the prefix u from an infinite

string w ∈ u∗, and adds the prefix v in its place. The assignment SimX

is indeed a finite similarity structure, and the group Γ(SimX) is iden-

tical to Thompson’s group V in this case. If (T1, T2) is a labeled tree

pair representing an element g of V , then the leaves of the domain tree

T1 correspond naturally to a choice of regions for g, where “region” is

defined as above.

If we simply replace the set X in the above discussion by Xn, the set

of all infinite strings in the symbols 0, . . ., n− 1, then we get the n-ary

version Vn of Thompson’s group V .

Let H be a group of permutations of the set {0, . . . , n− 1}. For finite
strings u, v in the symbols 0, 1, . . ., n− 1 and h ∈ H, define

SimXn
(u∗, v∗) = {φu,v,h | h ∈ H},

where φu,v,h(ua1a2a3 . . .) = vh(a1)h(a2)h(a3) . . . for a1a2 ∈ Xn. The

assignment SimXn is a finite similarity structure, and the associated

group Γ(SimXn
) is one of the Nekrashevych-Röver examples considered

in [8] and [10]; these are the potential counterexamples to Conjecture

5.1 under consideration in this chapter.

5.2.4 Standing Assumptions

In this section, we set conventions that hold for the rest of the chapter.

Definition 5.18 We say that two balls B1 and B2 are in the same

SimX-class if the set SimX(B1, B2) is non-empty.
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Convention 5.19 We assume that X is a compact ultrametric space

with finite similarity structure SimX . We assume that there are only

finitely many SimX -classes of balls, represented by the balls

B̃1, . . . , B̃k.

We let X be the chosen representative of its own similarity class, setting

X = B̃1. Let [B] denote the SimX -class of a ball B.

Each ball B ⊆ X is related to exactly one of the B̃i. We choose (and

fix) an element fB ∈ SimX(B̃i, B). We choose fB̃i
= idB̃i

when B = B̃i.

Each ball B̃i has a finite collection of �i maximal proper subballs,

denoted

B̃i1, . . . , B̃i�i .

This numbering (of the balls B̃i and their maximal proper subballs) is

fixed throughout the rest of the argument. (Note that, if B̃i is a singleton,

then �i = 0.) We let � = max{�1, . . . , �k}.
We will for the most part freely recycle the subscripts k and �. How-

ever, for the reader’s convenience, we note ahead of time that we will

use k and � with the above meaning in Definitions 5.28, 5.33, 5.34, and

5.38.

Convention 5.20 We will let G denote a finitely generated subgroup

of Γ(SimX) (see Definition 5.15). We choose a finite set S ⊆ G that

generates G as a monoid, i.e., each element g ∈ G can be expressed in

the form g = s1 . . . sn, where si ∈ S, n ≥ 0, and only positive powers of

the si are used. We choose (and fix) regions for each s ∈ S.

5.3 Test Partitions

Definition 5.21 Let P be a finite partition of X. We say that P is a

test partition if, for any word s1 . . . sn in the generators S, whenever

si . . . sns1 . . . si−1(B̂) = B̂,

for all i ∈ {1, . . . , n} and B̂ ∈ P, then s1 . . . sn = 1G.

Lemma 5.22 If X is a compact ultrametric space and ε > 0, then

{Nε(x) | x ∈ X} is a finite partition of X by open balls.

Proof This follows easily from Lemma 5.10(1).
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Definition 5.23 Let ε1 > 0 be chosen so that, for every s ∈ S and

x ∈ X, there exists a region R of s such that

Nε1(x) ⊆ R.

We let Pbig = {Nε1(x) | x ∈ X}. This is the big partition.

We note that such an ε1 can always be chosen by, for instance, let-

ting ε1 ≤ min{diam(R) | R is a region for some s ∈ S}. (Here we must

choose a positive diameter d for each singleton region {z} in such a way

that Nd(z) = {z}.)

Lemma 5.24 Let B be a compact ultrametric space, and let Γ be a

finite group of isometries of B. There is an ε > 0 such that if γ ∈ Γ acts

trivially on {Nε(x) | x ∈ B}, then γ = 1Γ.

Proof For each non-trivial γ ∈ Γ, there is xγ ∈ X such that γ(xγ) �= xγ .

We choose εγ > 0 satisfying

Nεγ (xγ) ∩Nεγ (γ(xγ)) = ∅.

We set ε = min{εγ | γ ∈ Γ − {1Γ}}. Now suppose that γ �= 1Γ and

γ acts trivially on {Nε(x) | x ∈ X}. Thus γ(Nε(xγ)) = Nε(xγ), so

Nε(γ(xγ)) ∩Nε(xγ) �= ∅, but

Nε(γ(xγ)) ∩Nε(xγ) ⊆ Nεγ (xγ) ∩Nεγ (γ(xγ)) = ∅,

a contradiction.

Definition 5.25 Write Pbig = {B1, . . . , B�}. For each Bk (1 ≤ k ≤
�), we can choose ε̂k ≤ ε1 to meet the conditions satisfied by ε in the

previous lemma, for Γ = SimX(Bk, Bk). Let ε2 = min{ε̂1, . . . , ε̂�}. Let
Psmall = {Nε2(x) | x ∈ X}. This is the small partition.

Proposition 5.26 The small partition Psmall is a test partition.

Proof Let s1 . . . sn be a word in the generators S; we assume s1 . . . sn �=
1. We suppose, for a contradiction, that for all B̂ ∈ Psmall,

si . . . sns1 . . . si−1(B̂) = B̂,

for all i ∈ {1, . . . , n}. Since s1 . . . sn �= 1, we can find x ∈ X such that

s1 . . . sn(x) �= x.

Sublemma 5.27 Fix s1 . . . sn ∈ S+. For each x ∈ X, there is an open

ball B, with x ∈ B, such that:

1 si+1 . . . sn(B) lies in a region of si, for i = 1, . . . , n, and
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2 either B ∈ Pbig or sj . . . sn(B) ∈ Pbig for at least one j ∈ {1, . . . , n}.

Proof We first prove that, for any x ∈ X, there is a ball neighborhood

B of x satisfying (1). We choose and fix x ∈ X.

Consider the elements s1, s2, . . . , sn ∈ G. We first observe that there

is a constant C ≥ 1 such that if any ball B′ lies inside a region for si (for

any i ∈ {1, . . . , n}), then si stretches B
′ by a factor of no more than C.

Next, observe that there is a constant D such that any ball of diameter

less than or equal to D lies inside a region for si, for all i ∈ {1, . . . , n}. It
follows easily that any ball of diameter less than D/Cn−1 satisfies (1);

we can clearly choose some such ball, B1 to be a neighborhood of x. We

note that if a ball satisfies (1), then so does every subball.

Let

B1 � B2 � B3 � . . . � Bm = X

be the collection of all balls containing B1. (Thus, each Bλ is a maximal

proper subball inside Bλ+1, for λ = 1, . . . ,m − 1.) There is a largest

α ∈ {1, . . . ,m} such that Bα satisfies (1).

If α = m, then the entire composition s1 . . . sn ∈ SimX(X,X). We

then take B̃ ∈ Pbig such that s1 . . . sn(x) ∈ B̃. The required B is

(s1 . . . sn)
−1(B̃).

Now assume that α < m. There is some j ∈ {1, . . . , n} such that

sj+1 . . . sn(Bα+1) is a ball and

(sj+1 . . . sn)|Bα+1
∈ SimX(Bα+1, sj+1 . . . sn(Bα+1)),

but (sj+1 . . . sn)(Bα+1) properly contains a region for sj . (Note that

sn+1 . . . sn(Bα+1) = Bα+1, by our conventions.) Let R1, . . . , Rβ be the

regions of sj that are contained in (sj+1 . . . sn)(Bα+1). We must have

Rδ ⊆ (sj+1 . . . sn)(Bα) for some δ (by maximality of (sj+1 . . . sn)(Bα)

in (sj+1 . . . sn)(Bα+1)); the reverse containment (sj+1 . . . sn)(Bα) ⊆ Rδ

follows, since (sj+1 . . . sn)(Bα) is contained in a region for sj by our

assumptions.

Now note that Rδ is partitioned by elements of Pbig; there is some

B̃ ⊆ Rδ (B̃ ∈ Pbig) such that sj+1 . . . sn(x) ∈ B̃. We have that the

map sj+1 . . . sn : Bα → Rδ is a map from the similarity structure. The

required ball B is (sj+1 . . . sn)
−1(B̃).

Apply the sublemma to x: there is B (an open ball) with the given

properties. Let j ∈ {1, . . . , n+ 1} be such that

(sj . . . sn)|B ∈ SimX(B, sj . . . sn(B)),
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where sj . . . sn(B) ∈ Pbig and the case j = n+1 corresponds to the case

in which sj . . . sn is an empty product.

Since sj . . . sn(B) is invariant under every cyclic permutation of s1 . . . sn
by our assumption,

sj . . . sns1 . . . sj−1(sj . . . sn(B)) = sj . . . sn(B),

so s1 . . . sn(B) = B.

Our assumptions imply that (sj . . . sn)|B : B → sj . . . sn(B) = B̃ and

(s1 . . . sj−1)| ˜B : B̃ → B are both in SimX , and both are bijections.

Consider the element (sj . . . sns1 . . . sj−1)| ˜B ∈ SimX(B̃, B̃). It must be

that (sj . . . sns1 . . . sj−1)| ˜B �= 1
˜B ; if (sj . . . sns1 . . . sj−1)| ˜B = 1

˜B , then

sj . . . sns1 . . . sj−1(sj . . . sn)(x) = sj . . . sn(x),

which implies that s1 . . . sn(x) = x, a contradiction.

Now, since (sj . . . sns1 . . . sj−1)| ˜B �= 1
˜B , it moves some element of

Psmall.

5.4 A Language for SimX

In this section, we introduce languages Lred and L. The language L
will serve as the stack language for the witness automata of Section 5.5.

The language Lred consists of the reduced elements of L; it is useful

because there is a one-to-one correspondence between elements of Lred

and metric balls in X.

5.4.1 The Languages Lred and L
We want the language Lred to give a recursively defined “address” to

each metric ball B in X. Our approach is as follows. If B = X, then

B will be denoted by A1,∅, since B is in the same SimX -class as the

first ball (i.e., X = B̃1, as in Convention 5.19), and B is not a proper

subball of any other ball, as indicated by the subscript ∅. If B is instead

a maximal proper subball of X (so B = B̃1n, for some n ∈ {1, . . . , �1},
as in Convention 5.19) and B is in the same SimX -class as B̃i, then B

will be denoted by the string A1,∅Ai,n. Here the maximal proper prefix

A1,∅ tells us the address of the minimal ball properly containing B (i.e.,

the address of X), and Ai,n tells us both the SimX -class of B (i.e.,

[B] = [B̃i]) and the number n of B as a subball of X (which was decided
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upon in Convention 5.19). The description of all remaining metric balls

proceeds inductively. We now offer the details.

Definition 5.28 We define a language Lred as follows. The alphabet

Σ for Lred consists of the symbols:

1 #, the initial stack symbol;

2 A1,∅;
3 Ai,n, i ∈ {1, . . . , k}, n ∈ {1, . . . , �}.

(We refer the reader to Convention 5.19 for the meanings of k and �.)

The language Lred consists of all words of the form

A1,∅Ai1,n1
Ai2,n2

. . . Aim,nm
#,

where m ≥ 0 and [B̃is−1ns
] = [B̃is ] for s = 1, . . . ,m. (Here, and in what

follows, we make the convention that i0 = 1; i.e., that X = B̃i0 .)

The language L also uses symbols of the form [f ], where we have

f ∈ SimX(B̃i, B̃i). The general element of L takes the form

A1,∅w0Ai1,n1w1Ai2,n2w2 . . . Aim−1,nm−1wm−1Aim,nmwm#,

where each wj (j ∈ {0, 1, . . . ,m}) is a word in the symbols {[f ] | f ∈
SimX(B̃ij , B̃ij )}, and some or all of the wj might be empty.

Remark As noted before Definition 5.28, the letter Ai,n signifies a ball

of similarity class [B̃i]; the n signifies that it is the nth maximal proper

subball of the ball before it in the sequence. The letter A1,∅ signifies the

top ball, X.

The condition [B̃is−1ns
] = [B̃is ] for s = 1, . . . ,m is designed to en-

sure that each ball has the correct type; i.e., that the sequence encodes

consistent information about the similarity types of subballs.

We note that the alphabet Σ potentially contains symbols that can

never occur in the language Lred. (For instance, the letter Ai,n can never

occur in a word of Lred if a ball in the SimX -class of B̃i never occurs as

the nth maximal proper subball in any of the balls B̃1, . . . , B̃k listed in

Convention 5.19.)

Also note that, if B̃i is a singleton, then any letter Ai,n occurring in

a word w ∈ Lred must occur immediately before the end of the stack

symbol #.

Definition 5.29 Let BX denote the collection of all metric balls in X.

We define an evaluation map E : L → BX by sending

w = A1,∅w0Ai1,n1
w1Ai2,n2

w2 . . . Aim−1,nm−1
wm−1Aim,nm

wm#
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to

E(w) =
(
fB̃1n1

◦ fw0
◦ fB̃i1n2

◦ fw1
◦ . . . ◦ fwm−1

◦ fB̃im−1nm

)
(B̃im),

where fwi
= fj1 ◦ fj2 ◦ . . . ◦ fjα if wi = [fj1 ][fj2 ] . . . [fjα ].

Definition 5.30 Let w,w′ ∈ L. We say that w′ is a prefix of w if w′

with the initial stack symbol # omitted is a prefix of w in the usual

sense; that is w = w′u, for some string u ∈ Σ∗ .

Proposition 5.31 The function E : Lred → BX is a bijection. More-

over, a word w′ ∈ Lred is a proper prefix of w ∈ Lred if and only if E(w)

is a proper subball of E(w′), and w′ is a maximal proper prefix of w if

and only if E(w) is a maximal proper subball of E(w′).

Proof We first prove surjectivity. Let B be a ball in X. We let

B = Bm � Bm−1 � Bm−2 � . . . � B0 = X

be the collection of all balls inX that containBm. (Thus,Bi is a maximal

proper subball in Bi−1 for i = 1, . . . ,m.)

In the diagram

B̃im

fBm

��

B̃im−1

fBm−1

��

B̃im−2

fBm−2

��

. . . B̃i0

fX

��
Bm

�� Bm−1
�� Bm−2

�� . . . �� X,

the balls B̃ij and the maps fBj are the ones given in Convention 5.19; the

unlabeled arrows are inclusions. Note, in particular, that the maps fBj

are bijections taken from the SimX -structure, and that fX is the iden-

tity map. If we follow the arrows from B̃ij to B̃ij−1
, the corresponding

composition is a member of SimX that carries the ball B̃ij to a max-

imal proper subball of B̃ij−1
. Supposing that the number of the latter

maximal proper subball is nj (see Convention 5.19), we obtain a diagram

B̃im

fBm

��

Im �� B̃im−1

fBm−1

��

Im−1 �� B̃im−2

fBm−2

��

Im−2 �� . . .
I1 �� B̃i0

fX

��
Bm

�� Bm−1
�� Bm−2

�� . . . �� X,

where Ij = fB̃ij−1nj
, for j = 1, . . . ,m. This diagram commutes “up

to images”: that is, if we start at a given node in the diagram, then

the image of that first node in any other node is independent of path.
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(The diagram is not guaranteed to commute in the usual sense.) Set

w = A1,∅Ai1,n1
. . . Aim,nm

. We note that

E(w) = (I1 ◦ I2 ◦ . . . ◦ Im)(B̃im)

= (fX ◦ I1 ◦ I2 ◦ . . . ◦ Im)(B̃im)

= fBm
(B̃im)

= Bm,

where the first equality is the definition of E(w), the second follows since

fX = idX , the third follows from the commutativity of the diagram up

to images, and the fourth follows from surjectivity of fBm . This proves

that E : Lred → BX is surjective.

Before proving injectivity of E, we note that, for a given

w = A1,∅Ai1,n1
. . . Aim,nm

and associated

E(w) =
(
fB̃i0n1

◦ fB̃i1n2
◦ . . . ◦ fB̃im−1nm

)
(B̃im),

each of the functions Is (which, by definition, is the same as fB̃is−1ns
:

B̃is → B̃is−1ns , but with a different codomain) maps its domain onto

a maximal proper subball of its codomain. As a result, a word w′ is a

proper prefix of w if and only if E(w) is a proper subball of E(w′), and
w′ is a maximal proper prefix of w if and only if E(w) is a maximal

proper subball of E(w′).
Suppose now that E(w1) = E(w2), for some w1, w2 ∈ Lred, w1 �= w2.

By the above discussion, we can assume that neither w1 nor w2 is a

prefix of the other. Let w3 be the largest common prefix of w1 and w2.

Let E(w3) = B. Since w1 = w3w
′ and w2 = w3w

′′ for non-trivial strings
w′ and w′′ with different initial symbols, E(w1) and E(w2) are disjoint

proper subballs of E(w3).

Definition 5.32 Let B be a ball in X. The address of B is the inverse

image of B under the evaluation map E : Lred → BX , but with the

initial stack symbol omitted. We write addr(B).

5.4.2 A String Rewriting System Based on L
In this subsection, we describe a string rewriting system with underlying

vertex set L. The witness automata of Section 5.5 will use this rewrite

system to perform partial calculations in SimX on their stacks.
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Definition 5.33 Define

[·] :
⋃

(B1,B2)

SimX(B1, B2)→ {[f ] ∈ Σ | f ∈ SimX(B̃j , B̃j), j ∈ {1, . . . , k}}

by the rule [h] = [f−1
B2

hfB1 ], for h ∈ SimX(B1, B2). (We recall that k

is the number of SimX -classes of balls in X; see Convention 5.19.) The

union is over all pairs of balls B1, B2 ⊆ X.

If [h] = [f ], where f ∈ SimX(B̃j , B̃j) for some j ∈ {1, . . . , k}, then f

is the standard representative of h, and [f ] is the standard form for [h].

Remark If f ∈ SimX(B̃j , B̃j) for some j ∈ {1, . . . , k}, then we some-

times confuse [f ] with f itself; this is justified by our choices in Conven-

tion 5.19.

Definition 5.34 Define a string rewriting system (L,→) as follows.

The vertices are elements of the language L. There are four families of

rewriting rules:

1 (Restriction)

[f ]Ais,ns → Ais,f(ns)[f|B̃is−1
ns
],

where [f ] is a standard form; i.e., f ∈ SimX(B̃is−1
, B̃is−1

);

2 (Group multiplication)

[f1][f2]→ [f1 ◦ f2],

where f1, f2 ∈ SimX(B̃j , B̃j), for some j ∈ {1, . . . , k};
3 (Absorption)

[f ]#→ #,

for arbitrary [f ];

4 (Identities)

[idB̃j
]→ ∅,

for j = 1, . . . , k.

Remark We note that the total number of the above rules is finite,

since there are only finitely many SimX -classes of balls.

Proposition 5.35 The string rewriting system (L,→) is locally conflu-

ent and terminating. Each reduced element of L is in Lred. The function

E is constant on equivalence classes modulo →.
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Proof It is clear that each reduced element of L is in Lred, and that

(L,→) is terminating. Local confluence of (L,→) is clear, except for one

case, which we will now consider.

Suppose that w ∈ L contains a substring of the form [f ][g]Aisns
.

We can apply two different overlapping rewrite rules to w, one send-

ing [f ][g]Aisns
to [f ◦ g]Aisns

, and the other sending [f ][g]Aisns
to

[f ]Aisg(ns)[g|B̃is−1ns
]. We now need to show that both [f ◦ g]Aisns and

[f ]Aisg(ns)[g|B̃is−1ns
] flow to a common string. Note that

[f ◦ g]Aisns
→ Aisf(g(ns))[(f ◦ g)|B̃is−1ns

]

and

[f ]Aisg(ns)[g|B̃is−1ns
]→ Aisf(g(ns))[f|B̃is−1g(ns)

][g|B̃is−1ns
].

It therefore suffices to demonstrate that the maps [(f ◦ g)|B̃is−1ns
] and

[f|B̃is−1g(ns)
][g|B̃is−1ns

] are equal. But this follows from the commutativ-

ity of the following diagram:

B̃is−1

��

[g|] �� B̃is−1

��

[f|] �� B̃is−1

��
B̃is−1ns

g �� g(B̃is−1ns
)

f �� (f ◦ g)(B̃is−1ns
),

where the vertical arrows are the canonical identifications from Conven-

tion 5.19 (e.g., the first vertical arrow is fB̃is−1ns
). It now follows that

(L,→) is locally confluent and terminating.

We now prove that E is constant on the equivalence classes modulo

→. It is clear that applications of rules (2)-(4) do not change the value

of E; we check that (1) also does not change the value of E. Suppose we

are given

B̃im

Im �� B̃im−1

Im−1 �� . . . �� B̃i1

I1 �� B̃i0 = X ,

where each Ij = fwm−1 ◦ fB̃im−1nm
, and (I1 ◦ . . . ◦ Im)(B̃im) is therefore

E(w), for w ∈ L in the form given in Definition 5.28. We pick a particular

Iα = fwα−1
◦fB̃iα−1nα

, for some α ∈ {1, . . . ,m}. We note that the map Iα

corresponds to the substring wα−1Aiαnα
of w. We may assume that wα−1

has length 1 (after applying rewriting rules of the form (2)); we write f

in place of fwα−1
, where f ∈ SimX(B̃iα−1

, B̃iα−1
). The result of applying
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a rewrite rule of type (1) to wα−1Aiαnα
is the string Aiαf(nα)[f|B̃iα−1nα

].

The latter string corresponds to the map

I ′α = fB̃iα−1f(nα)
◦ [f|B̃iα−1

nα
],

so we must show that I ′α = Iα. We consider the commutative diagram

B̃iα

[f|]
��

�� B̃iα−1nα

f|B̃iα−1nα

��

�� B̃iα−1

f

��
B̃iα

�� B̃iα−1f(nα)
�� B̃iα−1 ,

where the leftmost horizontal arrows are the canonical identifications of

Convention 5.19 and the rightmost horizontal arrows are inclusions. If

we follow the arrows in this rectangle from the upper left corner, down

the left side, and across the bottom, the resulting map is I ′α; if we follow
the arrows along the top and right side, the resulting map is Iα. This

proves that I ′α = Iα, as required.

5.4.3 The Action of SimX on L
Definition 5.36 Let f ∈ SimX(B′, B′′), where B′, B′′ are arbitrary

balls in X. Suppose that addr(B′) = ŵ and addr(B′′) = w̃, where

ŵ = A1,∅Ai1n1 . . . Aimnm and w̃ = A1,∅Aj1�1 . . . Ajt�t .

Let w ∈ L. For a word w ∈ L, define a partial function φf : L → L by

the rule

φf (w) = w̃[f ]w′#

if w has ŵ as a prefix, i.e., if w = ŵw′# for some string w′. Otherwise,

φf (w) is undefined.

Proposition 5.37 The expression φf (w) is defined if and only if

addr(B′) is a prefix of E(w). If φf (w) is defined, then

E(φf (w)) = f(E(w)).

Proof The first statement is straightforward.

Assume first that w ∈ Lred. We have that

w = A1,∅Ai1n1
. . . Aimnm

Aim+1nm+1
. . . Aiunu

#.
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If we write Iv in place of fB̃iv−1nv
for v ∈ {1, . . . , u}, then E(w) =

(I1 ◦ . . . ◦ Iu)(B̃iu). If

Bu ⊆ Bu−1 ⊆ . . . ⊆ B1 ⊆ X

is the sequence of all balls containing Bu = E(w) (so that each ball is

necessarily a maximal proper subball in the next), we have

B̃iu

Iu ��

��

B̃iu−1

��

Iu−1 �� B̃iu−2

��

Iu−2 �� . . .
Im+1 �� B̃im

��
Bu

�� Bu−1
�� Bu−2

�� . . . �� B′,

where the bottom horizontal arrows are inclusions, the vertical arrows

are the canonical maps, and the diagram commutes up to images. Con-

catenating diagrams, we have

B̃iu

Iu ��

��

. . .
Im+1 �� B̃im

��

[f ] �� B̃jt

I′t ��

��

. . .
I′1 �� X

fX=idX

��
Bu

�� . . . �� B′ f �� B′′ �� . . . �� X,

where the left rectangle is the previous diagram, the middle square com-

mutes, and the right rectangle defines E(w̃) (i.e, the bottom horizontal

arrows are inclusions, the vertical arrows are the canonical identifica-

tions, and the maps I ′β (β ∈ {1, . . . , t}) are the ones from the definition

of E(w̃)). In particular, the entire diagram commutes up to images.

Next, we note that if we follow the arrows from B̃iu along the top of the

diagram, and down the right side, then the image of the corresponding

composition is exactly E(φf (w)), by definition. The image of B̃iu as we

trace the left side and bottom of the diagram is (f◦fBu
)(B̃iu) = f(Bu) =

f(E(w)). This proves the Proposition in the case that w ∈ Lred.

Now we assume only that w ∈ L and ŵ is a prefix of w. We let wred

denote the (unique) reduced element in the equivalence class of w modulo

→. We note that, as we rewrite w, all of the reductions are made to a

suffix that does not include any part of the prefix ŵ, since ŵ contains

no symbols of the form [f ]. It follows, in particular, that w = ŵw′ and
wred = ŵw′′, and that w′′ is the reduced form of w′. Applying φf to w

and wred, we get

φf (w) = w̃[f ]w′, φf (wred) = w̃[f ]w′′.
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It follows that

φf (w) = w̃[f ]w′ → w̃[f ]w′′ = φf (wred).

Using the fact that E is constant on equivalence classes modulo →, and

the fact that E(φf (w)) = f(E(w)) for reduced words w, we see that

E(φf (w)) = E(φf (wred)) = f(E(wred)) = f(E(w)).

5.5 Witness Automata

Definition 5.38 Let B̂ ⊆ X be a metric ball; choose a finite partition

P of X into open balls such that B̂ ∈ P. We now define a PDA, called

a B̂-witness automaton. There are four states: L (the initial state, or

loading state), R (the ready state), C (the cleaning state), and E (the

eject state). The directed edges are as follows.

1 Two types of directed edges lead away from L. The first type is a loop

at L having the label (ε, ε, Ai,n) (i and n range over all possibilities:

i ∈ {1, . . . , k} and n ∈ {1, . . . , �}, where k and � are as in Convention

5.19.) There is just one edge of the second type: it leads to the ready

state R. Its label is (ε, ε, addr(B̂)).

2 Let s ∈ S, and let B be a region for s. By definition, s|B = f , for some

f ∈ SimX(B, f(B)). We create a directed edge from R to C with the

label

(s, addr(B), addr(f(B))[f ]);

there is one such edge for each s ∈ S and region B for s.

3 The cleaning state C is the initial vertex for three kinds of edge.

First, we note that there is obviously a uniform bound K on the

lengths of the words in {addr(B)}, where the addr(B) are the middle

coordinates of the labels of edges leading from the ready state R. For

each unreduced word w ∈ Σ∗ that occurs as a prefix of length less

than or equal to K + 1 to a word in L, we add a directed loop at C

with label (ε, w, r(w)), where r(w) is the reduced form of w.

Next, for each ball B̃ ∈ P − {B̂}, we add an edge (ε, addr(B̃), ε)

leading from C to E.

Finally, there is also an edge labeled (ε, ε, ε), leading from C back

to R.
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4 The edges leading away from state E are all of the same type. They

are loops with label (ε, A, ε), where A is an arbitrary symbol from the

alphabet Σ, including the initial stack symbol, #.

Remark With a bit more care, it is possible to specify edges leading

away from the loading state L in such a way that it is impossible to

arrive in the state R with anything other than a valid word of Lred

written on the stack; we will assume that this extra care has been taken,

leaving details to the reader.

Proposition 5.39 For any ball B̂ ⊆ X,

L
̂B = {w ∈ S∗ | w(B̂) �⊆ B̂}

is the language accepted by a B̂-witness automaton. In particular, L
̂B is

(non-deterministic) context-free.

Proof Let w ∈ L
̂B . We will prove that w is accepted by a B̂-witness

automaton.

We regard w = s1 . . . sn as an element of G. By continuity of w, there

is some ball B ⊆ B̂ such that w(B) ⊆ B̃, for some B̃ ∈ P − {B̂}. We

may furthermore assume (as in Sublemma 5.27(1)) that sj . . . sn(B) lies

inside a region for sj−1, for j = 2, . . . , n+ 1.

Our automaton begins in state L, with # written on its stack. It be-

gins by writing the address of B on its stack, and (in the process) moving

to state R. Since B lies inside a region Dsn for sn by our assumptions,

it follows that the address for Dsn is a prefix of the address for B. Let

f ∈ SimX(Dsn , f(Dsn)) satisfy sn|Dsn
= f . It follows that we are permit-

ted to follow the directed edge labeled (sn, addr(Dsn), addr(f(Dsn))[f ])

(and in fact can follow no other) to state C. We note that, after doing

so, the stack value of the path is φf (addr(B)). It follows, in particular,

that

E(φf (addr(B))) = f(E(addr(B))) = sn(E(addr(B))) = sn(B),

where the first equality is due to Proposition 5.37, the second is due to

the equality f|B = sn|B , and the third is by the definitions of E and

addr. It follows that the stack value is a word in the language L whose

reduced form in Lred is the address of sn(B).

Next, beginning at state C, we repeatedly apply all possible reductions

to prefixes of length K + 1, using the directed loops at C. The effect of

doing this is to gather all letters of the form [f ] at the end of the prefix

(in the (K + 1)st position at worst; the symbols [f ] drop out entirely if



Local Similarity Groups with Context-free Co-word Problem 89

the empty stack symbol becomes visible to the automaton). After doing

this, we follow the directed edge labeled (ε, ε, ε) back to the ready state

R. Note that the stack is “clean” – there are no symbols of the form [f ]

among the first K symbols on the stack, and, in view of the fact that

sn(B) lies inside a region for sn−1, we can (as above) follow a unique

directed edge back to the state C.

The process repeats. Eventually the automaton winds up in state C

with a word w ∈ L on the stack satisfying

E(w) = s1 . . . sn(B),

and nothing left on the input tape. We again apply the cleaning proce-

dure as described above, resulting in a word w′ which still evaluates to

s1 . . . sn(B), but now has a prefix of length K that is free of the symbols

[f ]. (If the word w′ has total length less than K, then w′ is entirely

free of the symbols [f ].) In view of the fact that s1 . . . sn(B) ⊆ B̃ by

our assumption, it now follows that the address of B̃ is a prefix of w′.
We may therefore follow the arrow labeled (ε, addr(B̃), ε) to the eject

state E, where the automaton can completely unload its stack using the

directed loops at E. Since the entire input tape has been read and the

stack is now empty, the automaton accepts w.

Now let us suppose that w = s1 . . . sn /∈ L
̂B . We must show that

the automaton cannot accept w. The automaton is forced to begin by

loading the address of an (unknown) subball B of B̂ on its stack. After

doing this, it is in the ready state R. Assuming that the automaton has

at least (and, therefore, exactly) one edge to follow from R, it arrives in

state C with a word w′ written on its stack, such that E(w′) is sn(B).

We can then assume that the automaton follows the cleaning procedure

sketched above. (Not doing so would only make the automaton less likely

to accept w.) At this point, the automaton can move back to the ready

state, or (if applicable) to the eject state. However, assuming that n > 1,

moving to the eject state will cause the automaton to fail, since, from

E, there is no longer any opportunity to read the input tape. If n = 1

(i.e., if w = sn), then sn(B) ⊆ B̂, so that, for any B̃ ∈ P − {B̂} the

address of B̃ is not a prefix of the address for sn(B), and therefore no

directed edge from C to E can be crossed.

We may therefore assume that the automaton moves back and forth

between the ready and cleaning states, ultimately ending in the cleaning

state C with a word w′ on the stack, satisfying

E(w′) = s1 . . . sn(B),
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and no letters on the input tape. We may assume, moreover, that w′

has no symbol of the form [f ] among its first K entries. Now, since

s1 . . . sn(B) ⊆ B̂, it is not possible to follow the directed edge into E.

The automaton’s only move is to follow the arrow labeled (ε, ε, ε) back to

R, where it gets stuck. And hence, it follows that the automaton cannot

accept w.

5.6 Proof of the Main Theorem

Proof of Main Theorem By Proposition 5.26, there is a finite test par-

tition P for G. We let P = {B1, . . . , Bα}, where each of the Bi is a

metric ball.

Consider the language

L̂ = {w ∈ S∗ | w(Bi) �⊆ Bi, i ∈ {1, . . . , α}} =
α⋃

i=1

LBi
.

By Proposition 5.39, and because a finite union of context-free languages

is context-free, L̂ is context-free.

For any language L, we let L◦ denote the cyclic shift of L. That is,

L◦ = {w2w1 ∈ S∗ | w1w2 ∈ L; w1, w2 ∈ S∗}.

A theorem of [13] says that the cyclic shift of a context-free language is

context-free. It follows that L̂◦ is context-free.

Finally, we claim that CoWPS(G) = L̂◦. The reverse direction follows

from the (obvious) fact that L̂ ⊆ CoWPS(G), and from the fact that

the co-word problem is closed under the cyclic shift. Now suppose that

w = s1 . . . sn ∈ CoWPS(G). Since P is a test partition, we must have

a ball Bi ∈ P such that sβ . . . sns1 . . . sβ−1(Bi) �⊆ Bi. This implies that

w = s1 . . . sn ∈ L̂◦.
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Compacta with Shapes of Finite Complexes:
a Direct Approach to the

Edwards–Geoghegan–Wall Obstruction
Craig R. Guilbault

Abstract

An important “stability” theorem in shape theory, due to D. A. Edwards

and R. Geoghegan, characterizes those compacta having the same shape

as a finite CW complex. In this chapter we present a straightforward

and self-contained proof of that theorem.

6.1 Introduction

Before Ross Geoghegan turned his attention to the main topic of this

book, Topological Methods in Group Theory, he was a leader in the area

of shape theory. In fact, much of his pioneering work in geometric group

theory has involved taking key ideas from shape theory and recasting

them in the service of groups. Some of his early thoughts on that point

of view are captured nicely in [9]. Among the interesting ideas found

in that 1986 paper is an early recognition that a group boundary is

well-defined up to shape – an idea later formalized by Bestvina in [1].

In this chapter we return to the subject of Geoghegan’s early work. For

those whose interests lie primarily in group theory, the work presented

here contains a concise and fairly gentle introduction to the ideas of

shape theory, via a careful study of one of its foundational questions.

In the 1970s D. A. Edwards and R. Geoghegan solved two open prob-

lems in shape theory – both related to the issue of “stability”. Roughly

speaking, these problems ask when a “bad” space has the same shape

as a “good” space. For simplicity, we focus on the following versions of

those problems.
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Problem A. Give necessary and sufficient conditions for a connected

finite-dimensional compactum Z to have the pointed shape of a CW com-

plex.

Problem B. Give necessary and sufficient conditions for a connected

finite-dimensional compactum Z to have the pointed shape of a finite

CW complex.

Solutions to these problems can be found in the sequence of papers

[5], [4], [6]. A pair of particularly nice versions of those solutions are as

follows.

Solution A. Z has the pointed shape of a CW complex if and only if

each of its homotopy pro-groups is stable.

Solution B. Z has the pointed shape of a finite CW complex if and only

if each of its homotopy pro-groups is stable and an intrinsically defined

Wall obstruction ω (Z, z) ∈ K̃0 (Z[π̌1 (Z, z)]) vanishes.

Solution B was obtained by combining Solution A with C. T. C. Wall’s

famous work on finite homotopy types [13]. So, in order to understand

Edwards and Geoghegan’s solution to Problem B, it is necessary to un-

derstand two things: Solution A; and Wall’s work on the finiteness ob-

struction. Since both tasks are substantial – and since Problem B can

arise quite naturally without regards to Problem A – we became inter-

ested in finding a simpler and more direct solution to Problem B. This

chapter contains such a solution. This chapter may be viewed as a sequel

to [8], where Geoghegan presented a new and more elementary solution

to Problem A. In the same spirit, we feel that our work offers a simplified

view of Problem B.

The strategy we use in attacking Problem B is straightforward and

very natural. Given a connected n-dimensional pointed compactum Z,

begin with an inverse system K0
f1←− K1

f2←− K2
f3←− · · · of finite n-

dimensional (pointed) complexes with (pointed) cellular bonding maps

that represents Z. Under the assumption that pro-πk is stable for all k,

we borrow a technique from [7] allowing us to attach cells to the Kis so

that the bonding maps induce πk-isomorphisms for increasingly large k.

Our goal then is to reach a finite stage where the bonding maps induce

πk-isomorphisms for all k, and are therefore homotopy equivalences. This

would imply that Z has the shape of any of those homotopy equivalent
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finite complexes. As expected, we confront an obstruction lying in the

reduced projective class group of pro-π1. Instead of invoking theorems

from [13], we uncover this obstruction in the natural context of the

problem at hand; in fact, the main result of [13] can then be obtained

as a corollary. Another advantage to the approach taken here is that

all CW complexes used in this chapter are finite. This makes both the

algebra and the shape theory more elementary.

6.2 Background

In this section we provide some background information on inverse sys-

tems, inverse sequences, and shape theory. In addition, we will review

the definition of a reduced projective class group. A more complete treat-

ment of inverse systems and sequences can be found in [10]; an expanded

version of this introduction can be found in [11]

6.2.1 Inverse Systems

We start with a brief discussion of general inverse systems and pro-

categories, which provide the broad framework for more concrete con-

structions that will follow. A thorough treatment of this topic can be

found in [10, Chapter 11].

An inverse system
{
Xα, f

β
α ;A

}
α∈A consists of a collection of objects

Xα from a category C indexed by a directed set A, along with mor-

phisms fβ
α : Xβ → Xα for every pair α, β ∈ A with α ≤ β, satisfying

the property that fγ
α = fγ

β ◦ fβ
α whenever α ≤ β ≤ γ. By fixing C, but

allowing the directed set to vary, and formulating an appropriate defi-

nition of morphisms, one obtains a category pro-C whose objects are all

such inverse systems. When A′ ⊆ A is a directed set there is an obvious

subsystem
{
Xα, f

β
α ;A′}

α∈A′ and an inclusion morphism. When A′ is

cofinal in A (for every α ∈ A there exists α′ ∈ A′ such that α ≤ α′),
the inclusion morphism is an isomorphism in pro-C. A key theme in this

subject is that, when A′ is cofinal, the corresponding subsystem contains

all relevant information.

When C is a category of sets and functions, we may define the inverse

limit of
{
Xα, f

β
α ;A

}
α∈A by

lim←−
{
Xα, f

β
α ;A

}
=

{
(xα) ∈

∏
α∈A

Xα

∣∣∣∣∣ fβ
α (xβ) = xα for all α ≤ β

}
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along with projections pα : lim←−
{
Xα, f

β
α ;A

}
→ Xα. When C is made up

of topological spaces and maps, the inverse limits are topological spaces

and the projections are continuous. Similarly, additional structure is

passed along to inverse limits when C consists of groups, rings, or mod-

ules and corresponding homomorphisms. An important example of the

“key theme” noted in the previous paragraph is that, when A′ is is co-
final in A, the canonical inclusion lim←−

{
Xα, f

β
α ;A′}→ lim←−

{
Xα, f

β
α ;A′}

is a bijection of sets [resp., homeomorphism of spaces, isomorphism of

groups, etc.].

An inverse sequence (or tower) is an inverse system for which A =

N, the natural numbers. Since all inverse systems used in this chapter

contain cofinal inverse sequences, we are able to work almost entirely

with towers. General inverse systems play a useful, but mostly invisible,

background role.

6.2.2 Inverse Sequences (aka Towers)

The fundamental notions that make up a category pro-C are simpler

and more intuitive when restricted to the subcategory of towers in C.
For our purposes, an understanding of towers will suffice; so that is where

we focus our attention.

Let

C0
λ1←− C1

λ2←− C2
λ3←− · · ·

be an inverse sequence in pro-C. A subsequence of {Ci, λi} is an inverse

sequence of the form

Ci0
<
λi0+1 ◦ · · · ◦ λi1 Ci1

<
λi1+1 ◦ · · · ◦ λi2 Ci2

<
λi2+1 ◦ · · · ◦ λi3 · · · .

In the future we will denote a composition λi ◦ · · · ◦ λj (i ≤ j) by λi,j .

Remark Using the notation introduced in the previous subsection, a

bonding map λi would be labeled by λi
i−1 and a composition λi ◦ · · · ◦ λj

( i ≤ j) by λj
i−1. When working with inverse sequences, we opt for the

slightly simpler notation described here.

Inverse sequences {Ci, λi} and {Di, μi} are isomorphic in pro-C, or
pro-isomorphic, if after passing to subsequences, there exists a commut-
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ing ladder diagram

Ci0
<

λi0+1,i1 Ci1
<

λi1+1,i2 Ci2
<

λi2+1,i3 Ci3 · · ·

Dj0
<

μj0+1,j1<

<

Dj1
<

μj1+1,j2<

<

Dj2

<

<

· · ·
(6.1)

where the up and down arrows represent morphisms from C. Clearly
an inverse sequence is pro-isomorphic to any of its subsequences. To

avoid tedious notation, we frequently do not distinguish {Ci, λi} from

its subsequences. Instead we simply assume that {Ci, λi} has the desired
properties of a preferred subsequence – often prefaced by the words

“after passing to a subsequence and relabeling”.

Remark Together the collection of down arrows in (6.1) determine a

morphism in pro-C from {Ci, λi} to {Di, μi} and the up arrows a mor-

phism from {Di, μi} to {Ci, λi}. Again see [10, Chapter 11] for details.

An inverse sequence {Ci, λi} is stable if it is pro-isomorphic to a con-

stant sequence

D
id←− D

id←− D
id←− · · · .

For example, if each λi is an isomorphism from C, it is easy to show that

{Ci, λi} is stable.

Inverse limits of inverse sequences of sets are particularly easy to un-

derstand. In particular,

lim←−{Ci, λi} =
{
(c0, c1, c2, · · · ) ∈

∞∏
i=0

Ci

∣∣∣∣∣λi (ci) = ci−1 for all i ≥ 1

}
,

with a projection map pi : lim←−{Ci, λi} → Ci for each i ≥ 0.

6.2.3 Inverse Sequences of Groups

Of particular interest to us is the category G of groups and group homo-

morphisms. It is easy to show that an inverse sequence of groups {Gi, λi}
is stable if and only if, after passing to a subsequence and relabeling,

there is a commutative diagram of the form

G0 <
λ1

G1 <
λ2

G2 <
λ3

G3 · · ·

Im (λ1) <
∼=<

<

Im (λ2) <
∼=<

<

Im (λ3) <
∼=<

<

· · ·
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where all unlabeled maps are inclusions or restrictions. In this case

lim←−{Ci, λi} ∼= im(λi) and each of the projection homomorphisms takes

lim←−{Ci, λi} isomorphically onto the corresponding im(λi).

The sequence {Gi, λi} is semistable (or pro-epimorphic, or Mittag-

Leffler) if it is pro-isomorphic to an inverse sequence {Hi, μi} for which
each μi is surjective. Equivalently, {Gi, λi} is semistable if, after passing

to a subsequence and relabeling, there is a commutative diagram of the

form

G0 <
λ1

G1 <
λ2

G2 <
λ3

G3 · · ·

Im (λ1) <<
<

<

Im (λ2) <<
<

<

Im (λ3) <<
<

<

· · ·

where “�” denotes a surjection.

6.2.4 Inverse Systems and Sequences of CW Complexes

Another category of utmost interest to us is FH0, the category of pointed,

connected, finite CW complexes and pointed homotopy classes of maps.

(A space is pointed if a basepoint has been chosen; a map is pointed

if basepoint is taken to basepoint.) We will frequently refer to pointed

spaces and maps without explicitly mentioning the basepoints. We will

refer to an inverse system [resp., tower] from FH0 as an inverse system

[resp., tower ] of finite complexes.

For each k ≥ 1, there is an obvious functor from pro-FH0 to pro-G
taking an inverse system

{
Kα, g

β
α; Ω

}
of pointed, connected, finite sim-

plicial complexes to be the inverse system of groups
{
πk(Kα), (g

β
α)∗; Ω

}
(the kth homotopy pro-group of

{
Kα, g

β
α; Ω

}
). A related functor takes{

Kα, g
β
α; Ω

}
to the group lim←−

{
πk(Kα), (g

β
α)∗; Ω

}
which we denote by

π̌k

({
πk(Kα), (g

β
α)∗; Ω

})
(the kth Čech homotopy group of

{
Kα, g

β
α; Ω

}
).

Clearly the initial functor described above takes towers from pro-FH0

to towers in pro-G, while the latter takes each tower to a group.

6.2.5 Homotopy Dimension

The dimension, dim({Ki, fi}), of a tower of finite complexes is the supre-

mum (possibly ∞) of the dimensions of the Kis. The homotopy dimen-
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sion of {Ki, fi} is defined by:

homdim ({Ki, fi})
= inf{dim({Li, gi})| {Li, gi} is pro-isomorphic to {Ki, fi}}.

6.2.6 Shapes of Compacta

Our view of shape theory is that it is the study of (possibly bad) com-

pact metric spaces through the use of associated inverse systems and

sequences of finite complexes.

Let Z be a compact, connected, metric space with basepoint z. Let Ω

denote the set of all finite open covers Uα of Z, each with a distinguished

element U∗ containing z. Declare Uα ≤ Uβ to mean that Uβ refines Uα.
Using Lebesgue numbers, it is easy to see that Ω is a directed set. For

each Uα, let Nα be its nerve, and for each Uα ≤ Uβ let gβα : Nβ → Nα be

(the pointed homotopy class of) an induced simplicial map. In this way,

we associate with Z an inverse system
{
Nα, g

β
α; Ω

}
from pro-FH0. We

may then define pro-πk (Z) (the kth pro-homotopy group of Z) to be the

inverse system
{
π1(Nα), (g

β
α)∗; Ω

}
and π̌k (Z) (the kth Čech homotopy

group of Z) its inverse limit.

Any cofinal tower contained in the above inverse system will be called

a tower of finite complexes associated with Z. Another application of

Lebesgue numbers shows that such towers always exist. We say that

Z and Z ′ have the same pointed shape if their associated towers are

pro-isomorphic. The shape dimension of Z is defined to be the homo-

topy dimension of an associated tower. It is easy to see that the shape

dimension of Z is less than or equal to its topological dimension.1

Since associated towers {Ni, gi} for Z are, by definition, cofinal sub-

systems of
{
Nα, g

β
α; Ω

}
, each comes with a canonical isomorphism

j : π̌k ({Ni, gi})
= lim←−{πk(Ni), (gi)∗} → lim←−

{
πk(Nα), (g

β
α)∗; Ω

}
≡ π̌k (Z) .

6.2.7 The Reduced Projective Class Group

If Λ is a ring, we say that two finitely generated projective Λ-modules

P and Q are stably equivalent if there exist finitely generated free Λ-

1 Another method for associating a tower of finite complexes with Z is to realize Z
as the inverse limit of such complexes. It is a standard fact in shape theory that
such a sequence will be pro-isomorphic to the ones obtained above. See, for
example, [2] or [12].
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modules F1 and F2 such that P ⊕F1
∼= Q⊕F2. Under the operation of

direct sum, the stable equivalence classes of finitely generated projective

modules form a group K̃0 (Λ), known as the reduced projective class

group of Λ. In this group, a finitely generated projective Λ-module P

represents the trivial element if and only if it is stably free, i.e., there

exists a finitely generated free Λ-module F such that P ⊕ F is free.

Of particular interest is the case where G is a group and Λ is the group

ring Z [G]. Then K̃0 determines a functor from the category G of groups

to the category AG of abelian groups. In particular, a group homomor-

phism λ : G → H induces a ring homomorphism Z [G] → Z [H], which

induces a group homomorphism λ∗ : K̃0 (Z [G])→ K̃0 (Z [H]).

6.3 Main Results

We are now ready to state and prove the main results of this chapter.

Theorem 6.1 Let {Ki, fi} be a finite-dimensional tower of pointed,

connected, finite complexes having stable pro-πk for all k. Then there

is a well defined obstruction ω ({Ki, fi}) ∈ K̃0 (Z[π̌1 ({Ki, fi})])) which

vanishes if and only if {Ki, fi} is stable in pro-FH0.

Translating Theorem 6.1 into the language of shape theory yields the

desired solution to Problem B.

Theorem 6.2 A connected compactum Z with finite shape dimension

has the pointed shape of a finite CW complex if and only if each of its ho-

motopy pro-groups is stable and an intrinsically defined Wall obstruction

ω (Z) ∈ K̃0 (Z[π̌1 (Z)]) vanishes.

Our proof of Theorem 6.1 begins with two lemmas. The first is a

simple and well-known algebraic observation.

Lemma 6.3 Let C∗ be a chain complex of finitely generated free Λ-

modules, and suppose that Hi (C∗) = 0 for i ≤ k. Then

1 ker ∂i is finitely generated and stably free for all i ≤ k + 1, and

2 Hk+1 (C∗) is finitely generated.

Proof For the first assertion, begin by noting that ker ∂0 = C0 is finitely

generated and free. Proceeding inductively for j ≤ k + 1, assume that
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ker ∂j−1 is finitely generated and stably free. Since Hj−1 (C∗) is trivial,
we have a short exact sequence

0→ ker ∂j → Cj → ker ∂j−1 → 0.

By our assumption on ker ∂j−1, the sequence splits. Therefore, ker ∂j ⊕
ker ∂j−1

∼= Cj , which implies that ker ∂j is finitely generated and stably

free.

The second assertion follows from the first since by definition we have

Hk+1 (C∗) = ker ∂k+1� im ∂k+2.

The second lemma – which is really the starting point to our proof of

Theorem 6.1 – was extracted from [7, Theorem 4]. It uses the following

standard notation and terminology. For a map f : K → L, the map-

ping cylinder of f will be denoted M (f). The relative homotopy and

homology groups of the pair (M (f) ,K) will be abbreviated to πi(f)

and Hi (f). We say that f is k-connected if πi(f) = 0 for all i ≤ k;

or equivalently, f∗ : πi(K) → πi(L) is an isomorphism for i < k and a

surjection when i = k. The universal cover of a space K will be denoted

K̃. If f : K → L induces a π1-isomorphism, then f̃ : K̃ → L̃ denotes a

lift of f .

Lemma 6.4 (The Tower Improvement Lemma) Let {Ki, fi} be a tower

of pointed, connected, finite complexes with stable pro-πk for k ≤ n

and semistable pro-πn+1. Then there is a pro-isomorphic tower {Li, gi}
of finite complexes with the property that each gi is (n+ 1)-connected.

Moreover, after passing to a subsequence of {Ki, fi} and relabeling, we

may assume that:

1 each Li is constructed from Ki by inductively attaching finitely many

k-cells for 2 ≤ k ≤ n+ 2,

2 each gi is an extension of fi with gi (Ki ∪ (new cells of dimension ≤ k))

⊂ (Ki−1 ∪ (new cells of dimension ≤ k − 1)), and

3 the inclusions Ki ↪→ Li form the promised pro-isomorphism from

{Ki, fi} to {Li, gi}.

Proof Our proof is by induction on n.

Step 1. (n = 0) Let {Ki, fi} be a tower with semistable pro-π1. By

attaching 2-cells to the Kis, we wish to obtain a new tower in which all

bonding maps induce surjections on π1.

By semistability, we may (by passing to a subsequence and relabel-

ing) assume that each fi∗ maps fi+1∗(π1(Ki+1)) onto fi∗(π1(Ki)). Let
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iaj

}Ni

j=1
be a finite generating set for π1(Ki) and for each iaj choose

ibj ∈ fi+1∗(π1(Ki+1)) such that fi∗
(
iaj

)
= fi∗

(
ibj

)
. For each element

of the form iaj
(
ibj

)−1 ∈ π1(Ki), attach a 2-cell to Ki which kills that

element. Call the resulting complexes Lis, and note that each fi extends

to a map ki : Li → Ki−1. Define gi : Li → Li−1 to be ki composed with

the inclusion Ki−1 ↪→ Li−1. This leads to the following commutative

diagram:

K0 <
f1

K1 <
f2

K2 <
f3

K3 · · ·

L1 <
g2<

⊃
k1

<

L2 <
g3<

⊃
k2

<

L3 <
g4<

⊃
k3

<

· · ·
(6.2)

which ensures that the tower {Li, gi} is pro-isomorphic to the original

via inclusions.

Note that each gi+1∗ : π1(Li+1) → π1(Li) is surjective. Indeed, the

loops in Ki corresponding to the generating set {iaj} of π1(Ki) still

generate π1(Li); moreover, in π1(Li) each iaj becomes identified with
ibj which lies in im (gi+1∗). Properties 1 and 2 are immediate from the

construction.

Step 2. (n > 0) Now suppose {Ki, fi} is a tower such that pro-πk is

stable for all k ≤ n and pro-πn+1 is semistable.

We may assume inductively that there is a tower {L′
i, g

′
i} which has n-

connected bonding maps and (after passing to a subsequence of {Ki, fi}
and relabeling) satisfies:

1′ each L′
i is constructed from Ki by inductively attaching finitely many

k-cells for 2 ≤ k ≤ n+ 1,

2′ each g′i is an extension of fi such that

g′i (Ki ∪ (new cells of dimension ≤ k))

⊂ (Ki−1 ∪ (new cells of dimension ≤ k − 1)) ,

3′ {L′
i, g

′
i} and {Ki, fi} are pro-isomorphic via inclusions.

Since pro-πn+1 is semistable, we may also assume that:

4′ g′i∗ maps g′i+1∗(πn+1(L
′
i+1)) onto g′i∗(πn+1(L

′
i)) for all i.

Since the g′is are n-connected, then each g′i∗ : πk (L
′
i) → πk

(
L′
i−1

)
is

an isomorphism for k < n. In addition, each g′i∗ : πn (L
′
i) → πn

(
L′
i−1

)
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is surjective; but since pro-πn is stable, all but finitely many of these

surjections must be isomorphisms. So, by dropping finitely many terms

and relabeling, we assume that these also are isomorphisms.

Our goal is now clear – by attaching (n+ 2)-cells to the L′
is, we wish

to make each bonding map (n+ 1)-connected.

Due to the πn-isomorphisms just established, we have an exact se-

quence

· · · → πn+1 (L
′
i)

g′i∗−→ πn+1

(
L′
i−1

)
→ πn+1 (g

′
i)→ 0, (6.3)

for each i. Furthermore, since n ≥ 1, each g′i induces a π1-isomorphism,

so we may pass to the universal covers to obtain (by covering space

theory and the Hurewicz theorem) isomorphisms:

πn+1 (g
′
i)
∼= πn+1 (g̃

′
i)
∼= Hn+1 (g̃

′
i) . (6.4)

Each term in the cellular chain complex C∗ (g̃′i) is a finitely generated

Z[π1 (Li)]-module; so, by Lemma 6.3, Hn+1 (g̃
′
i) is finitely generated.

Applying (6.4), we may choose a finite generating set
{
iᾱj

}Ni

j=1
for

each πn+1 (g
′
i); and by (6.3), each iᾱj may be represented by an iα′

j ∈
πn+1

(
L′
i−1

)
. By Condition 3′ we may choose for each iα′

j , some iβj ∈
πn+1 (L

′
i) such that g′i−1◦g′i

(
iβj

)
= g′i−1

(
iα′

j

)
. Let iαj =

iα′
j−g′i

(
iβj

)
∈

πn+1

(
L′
i−1

)
. Then each iαj is sent to iᾱj in πn+1 (g

′
i) and g′i−1∗

(
iαj

)
=

0 ∈ πn+1

(
L′
i−2

)
. Attach (n+ 2)-cells to each L′

i−1 to kill the iαjs. Call

the resulting complexes Lis, and for each i let ki : Li → L′
i−1 be an

extension of g′i. Then let gi : Li → Li−1 be the composition of ki with

the inclusion L′
i−1 ↪→ Li−1. This leads to a diagram like that produced

in Step 1, hence the new system {Li, gi} is pro-isomorphic to {L′
i, g

′
i},

and thus to {Ki, fi} via inclusions. Moreover, it is easy to check that

each gi is (n+ 1)-connected. Properties 1 and 2 are immediate from the

construction and the inductive hypothesis, and Property 3 from the final

ladder diagram.

Suppose now that {Ki, fi} has stable pro-πk for all k. Then, by re-

peatedly attaching cells to the Kis, one may obtain pro-isomorphic tow-

ers with r-connected bonding maps for arbitrarily large r. If {Ki, fi}
is finite-dimensional it seems reasonable that, once r exceeds the di-

mension of {Ki, fi}, this procedure will terminate with bonding maps

that are connected in all dimensions – and thus, homotopy equivalences.

Unfortunately, this strategy is too simplistic – in order to obtain r-

connected maps we must attach (r + 1)-cells; thus, the dimensions of

the complexes continually exceed the connectivity of the bonding maps.
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Roughly speaking, Theorem 6.1 captures the obstruction to making this

strategy work.

Proof of Theorem 6.1 Begin with a tower {Li, gi} of q-dimensional com-

plexes pro-isomorphic to {Ki, fi}, via a diagram of type (6.2), which has

the following properties for all i.

(a) gi is (q − 1)-connected,

(b) for k ∈ {q − 2, q − 1, q}, gi maps the k-skeleton of Li into the (k − 1)-

skeleton of Li−1,

(c) gi∗ maps gi+1∗(πq(Li+1)) onto gi∗(πq(Li)), and

(d) gi∗ : πq−1 (Li)→ πq−1 (Li−1) is an isomorphism.

A tower satisfying Conditions (a) and (b) is easily obtainable; apply

Lemma 6.4 to {Ki, fi} with n = dim {Ki, fi} + 1, in which case q =

dim {Ki, fi} + 3. (Note. Although it may seem excessive to allow the

dim {Li, gi} to exceed dim {Ki, fi} by 3, this is done to obtain Condition

(b), which is key to our argument.) Semistability of pro-πq gives Con-

dition (c) – after passing to a subsequence and relabeling. Then, since

pro-πq−1 is stable and each gi∗ : πq−1 (Li) → πq−1 (Li−1) is surjective,

we may drop finitely many terms to obtain Condition (d).

As in the proof of Lemma 6.4, πq (gi) and Hq (g̃i) are isomorphic

finitely generated Z [π1Li]-modules. We will show that, for all i, Hq (g̃i)

is projective and that all of these modules are stably equivalent. (This is

a pleasant surprise, since the Lis and gis may all be different.) Thus we

obtain corresponding elements [Hq (g̃i)] of K̃0 (Z[π1 (Li)]). When these

elements are trivial, i.e., when the modules are stably free, we will show

that, by attaching finitely many (q + 1)-cells to each Li, bonding maps

can be made homotopy equivalences. To complete the proof we define

a single obstruction ω ({Ki, fi}) to be the image of (−1)q+1
[Hq (g̃i)] in

K̃0 (Z[π̌1 ({Ki, fi})]) and show that this element is uniquely determined

by {Ki, fi}.

Notes (1) To be more precise, the elements Hq (g̃i) determine the ele-

ments (−1)q+1
[Hq (g̃i)] of the group K̃0 (Z[π1 (Li)]) which may be asso-

ciated, via inclusion maps (that induce π1-isomorphisms), with elements

of K̃0 (Z[π1 (Ki)]), which in turn determine a common element of the

limit group K̃0 (Z[π̌1 ({Ki, fi})]) via the projection maps – which in our

setting are all isomorphisms.
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Figure 6.1

(2) We have used a factor (−1)q+1
(instead of the more concise (−1)q)

so that our definition agrees with those already in the literature.

While most of our work takes place in the individual mapping cylin-

ders M (gi) and their universal covers, there is some interplay between

adjacent cylinders. For that reason, it is useful to view our work as tak-

ing place in the “infinite mapping telescope” shown in Figure 6.1 (and

in its universal cover).

For ease of notation, fix i and consider the pair (M (g̃i) , L̃i). It is a

standard fact (see [3, 3.9]) that C∗ (g̃i) is isomorphic to the algebraic

mapping cone of the chain homomorphism gi∗ : C∗(L̃i)→ C∗(L̃i−1). In

particular, if the cellular chain complexes C∗(L̃i−1) and C∗(L̃i) of L̃i−1

and L̃i are expressed as:

0→ Dq
dq−→ Dq−1

dq−1−→ · · · d2−→ D1
d1−→ D0 −→ 0 and (6.5)

0→ D′
q

d′q−→ D′
q−1

d′q−1−→ · · · d′2−→ D′
1

d′1−→ D′
0 −→ 0, (6.6)

respectively, then C∗ (g̃i) is naturally isomorphic to a chain complex

0→ Cq+1
∂q+1−→ Cq

∂q−→ · · · ∂2−→ C1
∂1−→ C0 −→ 0,

where, for each j,

Cj = D′
j−1 ⊕Dj and ∂j (x, y) = (− d′j−1x, g̃i∗x+ djy).

Here one views each π1 (Li−1)-module Dj as a π1 (Li)-module in the

obvious way – associating a · x with g̃i∗ (a) · x for a ∈ π1 (Li).

By Condition (b), the map g̃i∗ : D′
j → Dj is trivial for j ≥ q − 2; so,

in these dimensions, ∂j splits as − d′j−1⊕dj , allowing our chain complex
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to be written:

0→ D′
q ⊕ 0︸ ︷︷ ︸
Cq+1

− d′q⊕0
−→ D′

q−1 ⊕Dq︸ ︷︷ ︸
Cq

− d′q−1⊕dq−→ D′
q−2 ⊕Dq−1︸ ︷︷ ︸

Cq−1

− d′q−2⊕dq−1−→ D′
q−3 ⊕Dq−2︸ ︷︷ ︸

Cq−2

∂q−2−→ · · · .

Since the “minus signs” have no effect on kernels or images of maps, it

follows that

ker ∂q−1 = ker(d′q−2)⊕ ker(dq−1), (6.7)

ker ∂q = ker(d′q−1)⊕ ker(dq), (6.8)

ker ∂q+1 = ker(d′q), (6.9)

Hq−1(g̃i) =
(
ker(d′q−2)� im

(
d′q−1

))
⊕ (ker(dq−1)� im ( dq)) , (6.10)

Hq(g̃i) =
(
ker(d′q−1)� im

(
d′q

))
⊕ ker(dq), (6.11)

Hq+1(g̃i) = ker(d′q). (6.12)

Since Hq−1(g̃i) = 0, each summand in Identity (6.10) is trivial. Fur-

thermore, the same reasoning applied to the adjacent mapping cylin-

der M (gi+1) yields an analogous set of identities for C∗ (g̃i+1) in which

the “primed terms” become the “unprimed terms”. This shows that

ker(d′q−1)� im
(
d′q

)
is also trivial. Hence, the first summand in Iden-

tity (6.11) is trivial, so Hq(g̃i) ∼= ker(dq). Identity (6.8) together with

Lemma 6.3 then shows that Hq(g̃i) is finitely generated and projective.

The same reasoning in C∗ (g̃i+1) shows thatHq(g̃i+1) ∼= ker(d′q) is finitely
generated projective, so by Identity (6.12), Hq+1(g̃i) is finitely generated

projective and naturally isomorphic to Hq(g̃i+1) (using g̃i+1∗ to make

Hq+1(g̃i) a π1 (Li+1)-module).

Next we show that Hq(g̃i) and Hq+1(g̃i) are stably equivalent. Extract

the short exact sequence

0→ Hq+1(g̃i)→ D′
q → im

(
d′q

)
→ 0

from above, then recall that im
(
d′q

)
is equal to ker(d′q−1). The latter is

projective, so

D′
q
∼= Hq+1(g̃i)⊕ ker(d′q−1).

Thus [Hq+1(g̃i)] = −
[
ker(d′q−1)

]
in K̃0 (π1(Li)). Combining the fact that

[Hq(g̃i)] = [ker(dq)] and, by Identity (6.8), [ker(dq)] = −
[
ker(d′q−1)

]
, we

obtain [Hq(g̃i)] = [Hq+1(g̃i)].
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To summarize, we have shown that for each i:

• Hq(g̃i) and Hq+1(g̃i) are finitely generated and projective,

• [Hq(g̃i)] = [Hq+1(g̃i)] in K̃0 (π1 (Li)), and

• Hq+1(g̃i) is naturally isomorphic to Hq(g̃i+1) as π1 (Li+1)-modules.

These observations combine to show that each [Hq(g̃i)] determines the

“same” element of K̃0 (π̌1 ({Ki, fi})). More precisely, define ω ({Ki, fi})
to be the image of (−1)q+1

[Hq (g̃i)] under the isomorphism

K̃0 (Z[π1 (Li)])→ K̃0 (π̌1 ({Ki, fi}))

induced by the composition of group isomorphisms

π1 (Li)
p−1
i−→ lim←−{πi(Li), (gi)∗} → lim←−{πi(Ki), (fi)∗} = π̌1 ({Ki, fi}) ,

(6.13)

where pi : lim←−{πi(Li), (gi)∗} → π1 (Li) is the projection map, and the

isomorphism between inverse limits is canonically induced by ladder di-

agram (6.2).

Claim 1. If ω ({Ki, fi}) = 0, then {Ki, fi} is stable.

We will show that, by adding finitely many q- and (q + 1)-cells to each

of the above Lis, we may arrive at a pro-isomorphic tower in which all

bonding maps are homotopy equivalences.

By assumption, each Zπ1-module Hq(g̃i) becomes free upon summa-

tion with a finitely generated free module. This may be accomplished

geometrically by attaching finitely many q-cells to the corresponding

Li−1s via trivial attaching maps at the basepoints. Each gi−1 may then

be extended by mapping these q-cells to the basepoint of Li−2. Since this

procedure preserves all relevant properties of our tower, we will assume

that, for each i, Hq(g̃i) (and therefore πq (gi)) is a finitely generated free

Z[π1 (Li)]-module.

Proceed as in Step 2 of the proof of Lemma 6.4 to obtain collec-

tions
{
iαj

}Ni

j=1
⊂ πn+1 (Li−1) that correspond to generating sets for

the πq (gi)s and which satisfy gi−1∗
(
iαj

)
= 0 ∈ πq (Li−2) for all i, j.

In addition, we now require that
{
iαj

}Ni

j=1
corresponds to a free ba-

sis for πq (gi). For each iαj attach a single (q + 1)-cell to Li−1 to kill

that element. Extend each gi to g′i : L
′
i → L′

i−1 as before, thereby ob-

taining a tower {L′
i, g

′
i} for which all bonding maps are q-connected.

Since the (q + 1)-cells are attached to Li−1 along a free basis, we do

not create any new (q + 1)-cycles for the pair
(
M (g̃′i) , L̃

′
i

)
, so no new
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(q + 1)-dimensional homology is introduced. Moreover, the (q + 1)-cells

attached to Li−1 result in (q + 2)-cells in M(g̃′i−1) which are attached

in precisely the correct manner to kill Hq+1 (g̃i−1) without creating any

(q + 2)-dimensional homology – this is due to the natural isomorphism

discovered earlier between Hq+1 (g̃i−1) and Hq (g̃i). Thus the g′is are all

(n+ 2)-connected, and since the L′
is are (n+ 1)-dimensional, this means

that the g′is are homotopy equivalences. So {L′
i, g

′
i} and hence {Ki, fi},

are stable in pro-FH0.

Claim 2. The obstruction is well defined.

We must show that ω({Ki, fi}) does not depend on the tower {Li, gi}
and ladder diagram chosen at the beginning of the proof. First observe

that any subsequence
{
Lki

, gkiki−1

}
of {Li, gi} yields the same obstruc-

tion. This is immediate in the special case that
{
Lki

, gkiki−1

}
contains

two consecutive terms of {Li, gi}. If not, notice that
{
Lki , gkiki−1

}
is a

subsequence of Lk1
← Lk1+1 ← Lk2

← Lk3
← · · · , which is a subse-

quence of {Li, gi}. Therefore the more general observation follows from

the special case.

Next suppose that {Li, gi} and {Mi, hi} are each towers of finite q-

dimensional complexes satisfying the conditions laid out at the begin-

ning of the proof. Then {Li, gi} and {Mi, hi} are pro-isomorphic; so,

after passing to subsequences and relabeling, there exists a homotopy

commuting diagram of the form:

L0 <
g1

L1 <
g2

L2 <
g3

L3 · · ·

M1 <
h2

μ1

<

λ1

<

M2 <
h3

μ2

<

λ2

<

M3 <
h4

μ3

<

λ3

<

· · ·
where all λi and μi are cellular maps. From here we may create a new

tower:

M1 ←− L2 ←−M4 ←− L5 ←−M7 ←− L8 ←−M10 ←− · · ·

where the bonding maps are determined (up to homotopy) by the lad-

der diagram. Properties (a), (c) and (d) hold for this tower due to the

corresponding properties for {Li, gi} and {Mi, hi}. To see that Property

(b) holds, note that each bonding map is the composition of a gi or an

hi with a cellular map. (This is why so many terms were omitted.) Since

this new tower contains subsequences which are – up to homotopies of

the bonding maps – subsequences of {Li, gi} and {Mi, hi}, our initial

observation implies that all determine the same obstruction.
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Finally we consider the general situation where {Li, gi} and {Mi, hi}
satisfy Conditions (a)-(d), but are not necessarily of the same dimension.

By the previous case and induction, it will be enough to show that, for

a given q-dimensional {Li, gi}, we can find a (q + 1)-dimensional tower

{L′
i, g

′
i} which satisfies the corresponding versions of Conditions (a)-(d),

and which determines the same obstruction as {Li, gi}. In this step, the

need for the (−1)q+1
factor finally becomes clear.

The tower {L′
i, g

′
i} is obtained by carrying out our usual strategy of

attaching a finite collection of (q + 1)-cells to each Li−1 along a generat-

ing set for Hq(M (g̃i) , L̃i). The resulting C∗(L̃′
i)s differ from the C∗(L̃i)s

only in dimension q+1 where we have introduced finitely generated free

modules iFq+1. By inserting this term into (6.5) and rewriting Dq as

im (dq)⊕ ker (dq) , the chain complex for L′
i−1 may be written:

0 −→ iFq+1
dq+1−→ im (dq)⊕ ker (dq)

dq−→ Dq−1
dq−1−→

· · · d2−→ D1
d1−→ D0 −→ 0.

By construction, dq+1 takes iFq+1 onto ker (dq) thereby eliminating the

q-dimensional homology of the pair (M (g̃′i) , L̃
′
i). Note, however, that we

may have introduced new (q+1)-dimensional homology. Indeed, by our

earlier analysis,Hq+1(g̃
′
i) = ker( dq+1). (The original (q + 1)-dimensional

homology of the pair was eliminated – as it was in the unobstructed case

– when we attached (q + 1)-cells to Li.) By extracting the short exact

sequence

0 −→ ker (dq+1) −→ iFq+1 −→ ker (dq) −→ 0

and recalling that ker (dq) ∼= Hq (g̃i) is projective, we have

iFq+1
∼= Hq+1(g̃

′
i)⊕Hq (g̃i) .

So, upon projection into K̃0 (π̌1 ({Ki, fi})), (as described in equation

(6.13)), [Hq+1(g̃
′
i)] and − [Hq (g̃i)] determine the same element. The

same is then true for (−1)q+2
[Hq+1(g̃

′
i)] and (−1)q+1

[Hq (g̃i)], showing

that {Li, gi} and {L′
i, g

′
i} lead to the same obstruction.

Proof of Theorem 6.2 We need only verify the forward implication, as

the converse is obvious.

Using the finite-dimensionality of Z, choose a finite-dimensional tower

of pointed, connected, finite complexes {Ni, gi} associated with Z. By

the pro-πk hypotheses on Z, we may apply Theorem 6.1 to obtain

ω ({Ni, gi}) ∈ K̃0 (Z[π̌1 ({Ni, gi})])). The inclusion of {Ni, gi} into the
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associated inverse system
{
Nα, g

β
α; Ω

}
, as described in Subsection 6.2.6,

yields a canonical isomorphism of π̌1 ({Ki, gi})) onto π̌1

({
Nα, g

β
α; Ω

})
=

π̌1 (Z) which converts ω ({Ni, gi}) to our intrinsically defined Wall ob-

struction ω (Z) ∈ K̃0 (Z[π̌1 (Z)]).

6.4 Realizing the Obstructions

In addition to proving Theorems 6.1 and 6.2, Edwards and Geoghegan

showed how to build towers and compacta with non-trivial obstructions.

By applying their strategy within our framework, we obtain an easy

proof of the following.

Proposition 6.5 Let G be a finitely presentable group and P a finitely

generated projective Z [G] module. Then there exists a tower of finite 2-

complexes {Ki, fi}, with stable pro-πk for all k and π̌1 ({Ki, fi}) ∼= G,

such that ω ({Ki, fi}) = [P ] ∈ K̃0 (Z [G]).

By letting Z = lim←−{Ki, fi} we immediately obtain the following.

Proposition 6.6 Let G be a finitely presentable group and P a finitely

generated projective Z [G] module. Then there exists a compact connected

2-dimensional pointed compactum Z, with stable pro-πk for all k and

π̌1 (Z) ∼= G, such that ω (Z) = [P ] ∈ K̃0 (Z [G]).

Proof Let Q be a finitely generated projective Z [G] module represent-

ing − [P ] in K̃0 (Z [G]), and so that F = P ⊕Q is finitely generated and

free. Let r denote the rank of F . Let K ′ be a finite pointed 2-complex

with π1 (K
′) ∼= G, then construct K from K ′ by wedging a bouquet of

r 2-spheres to K ′ at the basepoint. Then π2 (K) ∼= H2

(
K̃
)
has a sum-

mand isomorphic to F which corresponds to the bouquet of 2-spheres.

Define a map f : K → K so that f |K′= id and f∗ : π2 (K) → π2 (K)

(or equivalently f̃∗ : H2(K̃) → H2(K̃)) is the projection P ⊕ Q → P

when restricted to the F -factor. Note that H2(f̃) ∼= Q ∼= H3(f̃). Obtain

the tower {Ki, fi} by letting Ki = K for all k ≥ 0 and fi = f for all

k ≥ 1.

To calculate ω ({Ki, fi}) according to the proof of Theorem 6.1, we

must attach cells of dimensions 3, 4, and 5 to each Ki to obtain an

equivalent tower {Li, gi} satisfying Conditions (a)-(d) of the proof. As we

saw in Claim 2 of Theorem 6.1, this procedure simply shifts homology to

higher dimensions. In particular, [H5 (g̃i)] = −[H2(f̃)] = [P ], as desired.
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The Horofunction Boundary of the
Lamplighter Group L2 with the

Diestel–Leader metric
Keith Jones and Gregory A. Kelsey

Abstract

We fully describe the horofunction boundary ∂hL2 with the word metric

associated with the generating set {t, at} (i.e. the metric arising in the

Diestel–Leader graph DL(2, 2)). The visual boundary ∂∞L2 with this

metric is a subset of ∂hL2. Although ∂∞L2 does not embed continu-

ously in ∂hL2, it naturally splits into two subspaces, each of which is a

punctured Cantor set and does embed continuously. The height function

on DL(2, 2) provides a natural stratification of ∂hL2, in which countably-

many non-Busemann points interpolate between the two halves of ∂∞L2.

Furthermore, the height function and its negation are themselves non-

Busemann horofunctions in ∂hL2 and are global fixed points of the action

of L2.

7.1 Introduction

The horofunction boundary ∂hX of a proper complete metric space

(X, d) is in general defined as a subspace of the quotient of C(X), the

space of continuous R-valued functions on X, by constant functions [1,

Definition II.8.12]. It suffices to choose a base point b in X and use the

embedding i : X ↪→ C(X) sending z ∈ X �→ d(z, x) − d(z, b). Since X

is proper, the closure X of i(X) in C(X) provides a compactification of

X. We define ∂hX to be X\i(X). We call a point in X a horofunction,

and given a sequence (yn) of points in X, one can define a horofunction

associated with (yn) by

hyn(x) = lim
n→∞ d(yn, x)− d(yn, b), (7.1)
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provided this limit exists.

Gromov defines the horofunction boundary, which he calls the ideal

boundary, in the context of hyperbolic manifolds [5], but the definition

applies to any complete metric space. In [1] Bridson and Haefliger use

this construction in the context of CAT(0) spaces as a functorial con-

struction of the visual boundary. The horofunction boundary also nat-

urally arises in the study of group C∗-algebras, where Rieffel, referring

to it as the metric boundary, demonstrates its usefulness particularly in

determining the C∗-algebra he calls the cosphere algebra [10, Section 3].

In this chapter, X is a group with a word metric, which is N-valued.1

In this setting, we define a geodesic ray to be an isometric embedding

N → X. We refer to a point of ∂hX as a Busemann point if it cor-

responds to a sequence of points lying along a geodesic ray. We will

refer to the space of asymptotic classes of geodesic rays in (X, d) as the

visual boundary ∂∞X. In CAT(0) spaces, all horofunctions correspond

to Busemann points; in fact, we can extend i to ī : X � ∂∞X → X,

and this is a homeomorphism [1, Section II.8.13]. In general one can-

not expect an injective, surjective, or even continuous map from ∂∞X

to ∂hX. Rieffel brings up the question of determining for a given space

(X, d) which points of ∂hX are Busemann points [10, after Definition

4.8]. As an interesting example of non-injectivity, Reiffel demonstrates

that there are no non-Busemann points in ∂hZn with the �1 norm, and

there are countably many Busemann points [10]. However, Kitzmiller

and Rathbun demonstrate that ∂∞Zn is uncountable [7].

Others have studied the horofunction boundary of Cayley graphs of

non-CAT(0) groups, often with variation in their terminology, though

examples are still sparse.2 Develin extended Rieffel’s work to abelian

groups (he refers to the horofunction boundary as a Cayley compactifi-

cation of the group) [2]. Friedland and Freitas found explicit formulas

for horofunctions for GL(n,C)/Un with Finsler p-metrics (they use the

term Busemann compactification) [3]. Webster and Winchester (using

the term metric boundary as Rieffel) studied the action of a word hy-

perbolic group on its horofunction boundary and found it is amenable

[14]. They also established necessary and sufficient conditions for an in-

finite graph to have non-Busemann points in its horofunction boundary

[15]. Walsh has considered the horofunction boundaries of Artin groups

of dihedral type [12] and the action of a nilpotent group on its horo-

1 For us, N contains 0.
2 Note, for non-CAT(0) groups, ∂h depends on the generating set, as is

demonstrated in [10, Example 5.2].
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function boundary [13]. Klein and Nicas have studied the horofunction

boundary of the Heisenberg group equipped with different metrics [8],

[9]. They determine the isometry group of the Heisenberg group with

the Carnot–Carathéodory metric.

The lamplighter group, discussed more fully at the start of Section 7.2,

is given by the presentation:

L2 = 〈a, t | a2, [ati , atj ]∀ i, j ∈ Z〉.

Let S = {t, at}. The generating set S naturally arises when viewing

the lamplighter group as a group generated by a finite state automa-

ton (FSA) [4]. This is a rare case where we are able to understand the

Cayley graph of such a group with its FSA generating set. In this case,

the Cayley graph is the Diestel–Leader graph DL(2, 2) [16]. In [6], the

authors describe the visual boundary for Diestel–Leader graphs, which

are certain graphs arising from products of regular trees. When there

are more than two trees, the topology is indiscrete, but for two trees,

the graph inherits enough structure from its component trees that its

visual boundary is an interesting non-Hausdorff space. Since DL(2, 2)

(the product of two trees with valence 3) is a Cayley graph for L2, this

provides a boundary for L2 which is dependent on the generating set.

This boundary has a natural partition into two uncountable subsets,

which we refer to as the upper and lower visual boundaries and denote

by ∂∞L+
2 and ∂∞L−

2 . When equipped with the subspace topology, these

subsets are Hausdorff.

The goal of this chapter is to fully describe ∂hL2 where the metric on

L2 is the word metric from S. In Section 7.2 we provide some background

on this metric, and in Section 7.3 we discuss the relationship between

∂∞L2 and ∂hL2, proving the following theorem.

Theorem (A - Corollary 7.5 and Observations 7.6 and 7.24) There

is a natural map ∂∞L2 → ∂hL2, which is injective but not continuous.

When restricted to either ∂∞L+
2 or ∂∞L−

2 , however, this injection is

continuous.

In Section 7.4, we explicitly compute formulas for families of horofunc-

tions, including Busemann functions. It turns out the natural height map

H : L2 → Z (see Definition 7.1) is a non-Busemann horofunction. Sec-

tion 7.5 provides a proof that all of the points in ∂hL2 are members of

the families described in Section 7.4, which is our main result.

Theorem (B - Corollary 7.22) Every point in ∂hL2 belongs to one of
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the following families of horofunctions, all of whose formulas we explic-

itly calculate in Section 7.4.

• Busemann: these horofunctions arise from certain sequences of lamp

stands where the union of positions of lit lamps is bounded below or

above and the position of the lamplighter limits to positive or negative

infinity.

• Spine: these horofunctions arise from certain sequences of lamp stands

where the union of lit lamps is bounded neither below nor above and

the position of the lamplighter limits to a finite value.

• Ribs: these horofunctions arise from certain sequences of lamp stands

where the union of positions of lit lamps is bounded below or above but

not both and the position of the lamplighter limits to a finite value.

• Height: the natural height function and its negation arise as horo-

functions from certain sequences of lamp stands where the union of

lit lamps is bounded neither below nor above and the position of the

lamplighter limits to positive or negative infinity.

The spine is parametrized by Z and the ribs by a subset of L2, and so

the set of non-Busemann horofunctions is countable.

We describe the topology of ∂hL2 in Section 7.6 by determining the

accumulation points, leading to the visualization in Figure 7.1.

The names of the spine and ribs families come from the topology. The

spine family is parametrized by the limiting position of the lamplighter

and appears in Figure 7.1 as the central column of points. For each

spine function, there exist two subfamilies of ribs – a “positive rib”

and a “negative rib” – each a countable discrete subspace with the spine

function as its only accumulation point. See the discussion in Subsection

7.4.2 for a thorough description of these subfamilies.

Finally, Section 7.7 deals with some properties of the natural action

of L2 on ∂hL2, in particular noting that ±H are global fixed points.

7.2 The Diestel–Leader Metric on L2

Let d denote the word metric on L2 with generating set S = {t, at}.
Since this is the metric on L2 induced by the Cayley graph DL(2, 2),

we refer to it as the Diestel–Leader metric on L2. Whenever we refer to

∂∞L2 or ∂hL2, we always mean with d. Stein and Taback have calculated
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t∞

t−∞

H

−H

d∞L+
2

d∞L−
2

r+,l

r−,l

Figure 7.1 Visualization of the horoboundary, including the spine
(central column), ribs (discrete point sets limiting to the correspond-
ing spine point), and upper and lower visual boundaries. For each
rib, the dots of increasing size represent finite discrete sets whose
cardinalities double as we approach the spine.

the metric for general Diestel–Leader graphs [11], but in our case it is

simple enough to review and provide a proof.

Each element of L2 is associated with a “lamp stand”, which consists

of an infinite row of lamps in bijective correspondence with Z, finitely
many of which are lit, and a marked lamp indicating the position of

the lamplighter. Figure 7.2 illustrates a typical example. The lamps are

binary: either on or off. Right multiplying by a toggles the lamp at

the lamplighter’s position, while right multiplying by t increments the

position of the lamplighter. We think of this increment as a “step right”

as in the figure. Using S, the actions are either “step (right or left)”

for t±1, “toggle then step right” for at, or “step left then toggle” for

(at)−1 = t−1a.

Definition 7.1 For g ∈ L2, we define H(g) to be the position of
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Figure 7.2 A typical element of L2.

A B
C

Figure 7.3 Distance between two elements of L2 with Diestel–Leader
metric.

the lamplighter in the lamp stand representing g, or equivalently the

exponent sum of t in a word representing g, or the height of g in DL(2, 2).

We define m(g) to be equal to the minimum position of a lit lamp in

the lamp stand representation of g if the set of lit lamps is non-empty,

and equal to +∞ otherwise. Similarly, we define M(g) to be equal to

the maximum position of a lit lamp in the lamp stand representation of

g if the set of lit lamps is non-empty, and equal to −∞ otherwise.

For g1, g2 ∈ L2, we define m(g1, g2) to be the minimum position of

a lamp whose status differs in the lamp stands of g1 and g2 if such a

position exists, and equal to +∞ otherwise. Similarly, M(g1, g2) is the

maximum position of a lamp whose status differs in the lamp stands of

g1 and g2 if such a position exists, and is −∞ otherwise.

We will define “infinite lamp stands” to represent boundary elements.

For these lamp stands, we define the H, m, and M notation analogously.

Lemma 7.2 If g1, g2 ∈ L2, then d(g1, g2) = 2(B −A)− C where

• A = min{m(g1, g2), H(g1), H(g2)} is the left-most position the lamp-

lighter must visit to change between g1 and g2,

• B = max{M(g1, g2)+1, H(g1), H(g2)} is the right-most such position,

and

• C = |H(g2)−H(g1)| is the distance between the lamplighter’s positions

in g1 and g2.

See Figure 7.3 for an illustration of a typical path.

Proof Since the Cayley graph is vertex transitive, without loss of gen-
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erality we may assume that g1 = id and we denote g2 simply by g. We

will consider a geodesic from id to g on the lamp stand representations

of the elements of L2.

A geodesic will start at id with no lit lamps and the lamplighter at

position H(id) = 0. The lamplighter must move in one direction (either

left or right) until it has gone as far as it needs to, it then travels to the

other extremal position, and then finishes by moving to H(g). The initial

direction will be away from H(g) in order to minimize the total distance.

Notice that the minimum extremal position is given by A, which in this

case is A = min{m(g), H(g), 0}, and the maximal extremal position is

given by B, which in this case is B = max{M(g) + 1, H(g), 0}. Notice

that we use M(g)+1 and not M(g) since to turn on the lamp at position

k, the lamplighter must be at position k + 1 either immediately before

turning on lamp k (if using generator (at)−1) or immediately after (if

using generator at).

Thus, the second of the three segments of the geodesic will have length

B−A. The lengths of the first and third segments will sum to less than

B−A, and the amount less will be exactly equal to the distance between

the starting and ending position, which in our case is |H(g)|.

7.3 Busemann Points

7.3.1 The Visual Boundary

As in [6, Section 3.3], we can interpret elements of the visual boundary

in terms of the lamp stand model. Such an element can be represented

by a geodesic ray emanating from the identity which follows a sequence

of steps wherein the lamplighter first moves one direction until reaching

the extremal lit lamp in that direction then “turns around” and marches

off towards ±∞ toggling lamps as necessary. Thus, in the limit there is

either a minimal lit lamp (if any are lit at all), and the lamplighter is

at +∞; or there is a maximal lit lamp (if any are lit at all), and the

lamplighter is at −∞. A “turning around” only occurs if the minimal lit

lamp has negative index in the former case, or the maximal lit lamp has

positive index in the latter. This final configuration of lit lamps gives an

“infinite lamp stand” for the geodesic ray.

In [6, Observations 4.10 and 4.11] the authors investigate the visual

boundary of DL(2, 2) and find that as a set, it is a disjoint union of

the sets ∂∞L+
2 and ∂∞L−

2 , where ∂∞L±
2 is the set of those asymptotic
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classes with lamplighter at ±∞. These two sets both have the subset

topology of punctured Cantor sets, but the full visual boundary is not

Hausdorff. We provide the intuition here.

By [6, Lemma 3.5] in L2 geodesic rays that are asymptotic eventually

merge. For example, if a ray has the lamplighter go from 0 to−n and then

in the positive direction forever, the lamps from −n to 0 will be traversed

twice. Therefore, the initial setting of lamps on the first pass can be re-

done on the second pass. The asymptotic class of the ray includes all

the different initial settings that become the same final setting when the

lamplighter moves in its final direction. Thus, the infinite lamp stand of

a ray is actually an invariant of its asymptotic class.

Notice that such a ray that has the lamplighter go from 0 to −n and

then in the positive direction forever is in ∂∞L+
2 , but is close in the

visual boundary topology to rays in ∂∞L−
2 that have the lamplighter

only move in the negative direction and agree on the initial settings of

the lamps 0 through −n. The fact that these initial settings can be made

arbitrary within the asymptotic equivalence class gives us a large subset

of ∂∞L−
2 that is contained in a neighborhood of any ray in ∂∞L+

2 where

the lamplighter moves in the negative direction for a long time before

eventually moving in the positive direction forever.

Thus, there exist distinct elements of ∂∞L+
2 whose neighborhoods al-

ways intersect, and that intersection is a subset of ∂∞L−
2 . Therefore

∂∞L2 is not Hausdorff. Recall that both ∂∞L±
2 are punctured Can-

tor sets under the subspace topology. So, while the subspace topologies

of these “halves” are Hausdorff, they are not compact. The full visual

boundary ∂∞L2 is, however, compact, since these troublesome open sets

that intersect both ∂∞L±
2 “fill” the punctures with open sets in the

opposite half.

7.3.2 The Visual Boundary as a Subset of the

Horofunction Boundary

We now show that there is a natural injection from the non-Hausdorff

∂∞L2 = ∂∞DL(2, 2) into ∂hL2. Since ∂hL2 is Hausdorff, this injection

is non-continuous.

Lemma 7.3 (Lemma 8.18(1) in Chapter II.8 of [1]) Let γ be a geodesic

ray in DL(2, 2) based at the identity. Then the sequence of points (γ(n))

defines a horofunction bγ .

The horofunction bγ is called the Busemann function associated with
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γ. In a CAT(0) space, the Busemann functions of two rays are equal if

and only if those two rays are asymptotic. Even though DL(2, 2) is not

CAT(0), the same is true in our case.

Lemma 7.4 Let γ, γ′ be geodesic rays in the Cayley graph of L2 based

at the identity. The Busemann functions bγ and bγ
′
are equal if and only

if γ and γ′ are asymptotic to each other.

Proof Recall that asymptotic rays in DL(2, 2) eventually merge. Thus,

the Busemann functions of asymptotic rays are equal.

Now suppose that γ and γ′ are not asymptotic to each other. Let

α ∈ [γ], α′ ∈ [γ′] (i.e. α is in the asymptotic equivalence class of γ) so

that α and α′ have maximal shared initial segment. Say that this shared

initial segment has length k. Let x = α(k+1). Notice that by definition,

bα(x) = −(k + 1). By our choice of α and α′, bα
′
(x) = −(k − 1), so

bα �= bα
′
. By the proof above of the other direction, bγ = bα and

bγ
′
= bα

′
and we are done.

Corollary 7.5 The relation taking an asymptotic equivalence class of

geodesic rays based at the identity to their Busemann functions is an

injection of ∂∞L2 into ∂hL2.

Observation 7.6 The injection in Corollary 7.5 is not continuous.

Proof The continuous injective image of a non-Hausdorff space like

∂∞L2 must also be non-Hausdorff, while C(L2) (and thus its subspace

∂hL2) is Hausdorff.

Recall that the non-Hausdorff property was proved by finding neigh-

borhoods of distinct elements of ∂∞L+
2 that always shared elements of

∂∞L−
2 . Observation 7.24 shows that the restriction of this injection to

either of the subspaces of the visual boundary ∂∞L±
2 is continuous.

7.4 Model Horofunctions

In this section, we construct four families of “model” horofunctions, and

in Section 7.5 we show that these represent all horofunctions.

We break ∂hL2 into four categories: the Busemann points, the spine,

the ribs, and the two points ±H. The reader may refer to Figure 7.1 to

preview a visualization of the boundary, illustrating our choice of terms.

To determine which category a sequence (xn) in L2 falls into (if it defines

a horofunction at all), it turns out we need only consider whether H(xn)
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(a) s−1.
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(c) s1.
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(d) s2.

Figure 7.4 Four “spinal” horofunctions, as functions of the height of
g ∈ L2.

approaches an integer or ±∞, and whether the union over all lit lamps

in the sequence is bounded above or below.

7.4.1 The Spine

Fix l ∈ Z, and let (sln), n ∈ N, be the sequence in L2 having lamps at

±n lit, all others unlit, and H(sln) = l.

Applying Lemma 7.2 with A = −n, B = n+ 1, and C = |l|, we have

d(sln, id) = 4n+ 2− |l|. Given any g ∈ L2, take

n > max{−m(g),M(g), |H(g)|, |l|},

and apply Lemma 7.2 to obtain d(sln, g) = 4n + 2 − |l − H(g)|. By

Equation 7.1, the horofunction is

sl(g) = hsln
(g) = |l| − |l −H(g)|. (7.2)

We call this the spine horofunction at height l. For a given l, this is a

function of only H(g). Figure 7.4 shows the graphs of s−1, s0, s1, and s2,

respectively, as functions of height. The spine horofunction at height 0

is s0 = −|H(g)|. One can check that the sequence (snn) yields H(g) and

(s−n
n ) yields −H(g); and we can see that the spine functions interpolate

between the two.
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7.4.2 The Ribs

The rib horofunctions will be parametrized by certain elements of L2.

There are two subfamilies, corresponding to the +∞ and −∞ direction,

and the generating set {t, at} creates a slight asymmetry between them.

Let f ∈ L2, and set l = H(f).

First, assume M(f) < l (noting that M(f) may equal −∞). Then

consider the sequence (r+,f
n ), n ≥ l, in L2 where the lamps of r+,f

n agree

with those of f in each position below l, H(r+,f
n ) = l, lamp n is lit, and

no other lamps at positions l or above are lit.

Given g ∈ L2, take n large enough, and we have:

d(r+,f
n , id) = 2((n+ 1)−min{m(f), l, 0})− |l|,

d(r+,f
n , g) = 2((n+ 1)−min{m(f, g), H(g), l})− |l −H(g)|.

This yields the (positive) rib horofunction corresponding to f :

r+,f (g) = 2(min{m(f), l, 0} −min{m(f, g), H(g), l})− |l −H(g)|+ |l|
= 2(min{m(f), l, 0} −min{m(f, g), H(g), l}) + sl(g). (7.3)

We can see that if we had chosen an element whose lamps agreed

with f below l, but also had lamps in position l or higher lit, defining a

sequence similarly would lead us to the same horofunction, since we can

always toggle lamps at l or above “for free” with the generator at.

Though the set of positive rib horofunctions is discrete, there is some

structure to be observed. Given a height l, let R+
l be the set of positive

rib horofunctions at height l. Each corresponds to an element f ∈ L2

with H(f) = l and M(f) < l. Then the “minimum lit lamp” map

m : L2 → Z induces a map m̂l : R
+
l → Z. For k ∈ Z, the cardinality of

m̂−1
l (k) is 2(l−k−1) if k < l, 1 if k = +∞, and 0 otherwise. The set R+

l

can then be partitioned according to the non-empty pre-images, which

provides a natural filtration of R+
l . Any sequence (rn) of horofunctions

in R+
l corresponding to a sequence (fn) in L2 with m(fn) → −∞, will

approach sl. We make a precise argument for this fact in Observation

7.26.

In the special case that f has no lit lamps, then M(f) = −∞ and

m(f) = +∞ and the calculation simplifies. Since m(f, g) = m(g), the

only data is the height l = H(f); and we have:

r+,f (g) = r+,l(g) = 2(min{l, 0} −min{m(g), H(g), l})− |l −H(g)|+ |l|
= −2min{m(g), H(g), l} − |l −H(g)|+ l. (7.4)

As indicated in the preceding paragraph, when there are no lit lamps
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the resulting horofunction r+,l is in a sense the farthest positive rib

function of height l from the spine, and we think of it as the rib tip at

height l.

We now turn to the negative rib functions, corresponding to those f

that satisfym(f) ≥ l (possibly withm(f) = +∞). Note we use “≥” now,
whereas we used “<” previously, since the status of the lamp at l does

matter in this direction, since using (at)−1 will only let us toggle lamps

in positions l − 1 or lower “for free”. One can define a corresponding

sequence similarly to the positive direction, except that the lit lamps

approach −∞, and calculate the horofunction r−,f (g) to be

2(max{M(f, g) + 1, H(g), l} −max{M(f) + 1, l, 0})− |l −H(g)|+ |l|
= 2(max{M(f, g) + 1, H(g), l} −max{M(f) + 1, l, 0}) + sl(g). (7.5)

There is a similar simplification in this direction when f has no lit

lamps, so that the horofunction r−,f (g) = r−,l(g) depends only on l, and

is given by

2(max{M(g) + 1, H(g), l} −max{l, 0})− |l −H(g)|+ |l|
= 2max{M(g) + 1, H(g), l} − |l −H(g)| − l. (7.6)

Finally, the set R−
l of negative rib horofunctions at height l has a

structure similar to R+
l .

7.4.3 Busemann Functions

Given a geodesic ray γ with γ(0) = id, let bγ denote its horofunction.

Let g ∈ L2. As discussed in Definition 7.1 and Section 7.3.1, we can

define the functions m and M similarly for γ. We either have γ ∈ ∂∞L+
2

and m(γ) and m(γ, g) are defined, or γ ∈ ∂∞L−
2 and M(γ) and M(γ, g)

are defined. The formula for bγ depends on the direction of γ, so we use

b+,γ = bγ when γ ∈ ∂∞L+
2 and b−,γ = bγ when γ ∈ ∂∞L−

2 , to be clear.

When γ ∈ ∂∞L+
2 , for n large enough, we apply Lemma 7.2 to obtain:

d(γ(n), id) = 2(H(γ(n))−min{m(γ), 0})−H(γ(n)),

d(γ(n), g) = 2(H(γ(n))−min{m(γ, g), H(g)}) +H(g)−H(γ(n)).

Thus the Busemann function corresponding to γ is given by

b+,γ(g) = 2 (min{m(γ), 0} −min{m(γ, g), H(g)}) +H(g). (7.7)
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If γ ∈ ∂∞L−
2 , we can similarly calculate

b−,γ(g) = 2 (max{M(γ, g) + 1, H(g)} −max{M(γ) + 1, 0})−H(g).

(7.8)

Note that the Busemann horofunctions are obtained from the rib ho-

rofunctions by allowing the lamplighter position to approach +∞ or −∞
as appropriate. This is spelled out later in Observation 7.27.

Given any two horofunctions described above, one can find an element

g of L2 on which they disagree. Thus we have the following observation.

Observation 7.7 The horofunctions sl for l ∈ Z, ±H, r+,f for f ∈ L2

and M(f) < H(f), r−,f for f ∈ L2 and m(f) ≥ H(f), b+,γ , b−,γ ,

γ ∈ ∂∞L2, are all pairwise distinct.

7.5 Classification of Horofunctions

We will now prove that the functions referred to in Observation 7.7

constitute all of ∂hL2.

Definition 7.8 Given a sequence (gn) ⊂ L2, we say that the lamp at

position k in the lamp stands of these elements stabilizes if there exists

N ∈ N such that the lamp in position k for the lamp stand representing

gn has the same status (i.e. on or off) for all n > N .

We say that the lamp at position k is flickering if it does not stabilize.

Definition 7.9 We say that sequence (gn) of elements of L2 is right

stable if there exists N ∈ N andM ∈ Z such that for all k > M , the lamp

at position k for the lamp stand representing gn has the same status (i.e.

on or off) for all n > N . That is, a sequence is right stable if the set of

positions of its flickering lamps (should any exist) has a maximum.

We define left stable similarly.

Observation 7.10 If a sequence (gn) ⊂ L2 is not right stable, then

there exists a subsequence (gnk
) such that the sequence (M(gnk

)) is in-

creasing without bound.

Similarly, if a sequence (gn) ⊂ L2 is not left stable, then there exists a

subsequence (gnk
) such that the sequence (m(gnk

)) is decreasing without

bound.

Proof If the sequence is not right stable, then sup{M(gn) | n ∈ N} =

+∞ since if this supremum were a finite value M0 ∈ Z, then by setting
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N = 0 and M = M0, the sequence would satisfy the definition for being

right stable. The existence of the desired subsequence is then guaranteed.

The proof when the sequence is not left stable is similar.

Lemma 7.11 Suppose that a sequence (gn) ⊂ L2 with H(gn) → l ∈
Z∪{+∞} is left stable. If (gn) is associated with some horofunction hgn ,

then the set of positions of its flickering lamps (should any exist) has a

minimum of at least l.

Proof If (gn) has no flickering lamps, then we are done. So assume

the sequence has some flickering lamps, and let k ∈ Z be the minimum

position of a flickering lamp. Suppose for contradiction that k < l.

Let y ∈ L2 such that H(y) = k, y agrees with the stabilization of

lamps of (gn) on the positions k−1 and below, and the lamp at position

k is off. Let x ∈ L2 be exactly as y, except that H(x) = k + 1. Let n be

sufficiently large so that the lamps at positions k − 1 and below of gn
have achieved their eventual status and H(gn) > k.

Suppose the lamp at position k is lit in the lamp stand for gn. In

Lemma 7.2, when computing d(gn, x), C = H(gn) − (k + 1), but when

computing d(gn, y), C = H(gn)−k, while the values for A and B remain

the same (in this case, A = k for both). Thus d(gn, x) = d(gn, y) + 1.

Now suppose the lamp at position k is not lit in the lamp stand for

gn. Using Lemma 7.2 again, when computing d(gn, x), A = k + 1, C =

H(gn)− (k+1), while when computing d(gn, y), A = k, C = H(gn)− k,

and B remains the same. In this case, we have d(gn, x) = d(gn, y)− 1.

By Equation 7.1,

hgn(x)− hgn(y) = lim
n→∞ d(gn, x)− d(gn, y)

which by the above, does not exist. But we assumed hgn exists. Hence,

our assumption that k < l is incorrect, and we have the desired result.

Lemma 7.12 Suppose that a sequence (gn) ⊂ L2 with H(gn) → l ∈
{−∞} ∪ Z is right stable. If (gn) is associated with some horofunction

h = hgn , then for every k ≥ l, the lamp at position k stabilizes.

Proof The proof for this lemma is the same as for Lemma 7.11. The

asymmetry in the inequalities (one is strict, while the other is not) comes

from the asymmetry of our generating set (including at but not ta).

Lemma 7.13 Suppose that a sequence (gn) ⊂ L2 is both left and right
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stable and that H(gn) → l ∈ Z. If (gn) is associated with some horo-

function hgn , then there is g ∈ L2 such that gn → g (i.e. the sequence is

eventually constant), and hgn is associated with the image of g in L2.

Proof By Lemmas 7.11 and 7.12, all the lamps in (gn) stabilize. Since

it is stable on both sides, we in fact have the existence of some N ∈ N
such that the set of lit lamps in gn is constant for all n > N . Since the

lamplighter limits to l by hypothesis and since Z is a discrete set, we

have that the sequence (gn) is eventually constant.

Lemma 7.14 Suppose that a sequence (gn) ⊂ L2 is either left or right

stable, but not both, and that H(gn)→ l ∈ Z. If (gn) is associated with

some horofunction hgn , then hgn is a rib, i.e. one of r±,f , f ∈ L2.

Proof We consider the case where the sequence (gn) is left stable, but

not right stable. The other case is similar.

By Lemma 7.11, there exists N ∈ N such that the the lamps below

position l are stable and H(gn) = l for all n > N . Let r be the rib

horofunction that matches this stabilization. Set (rn) to be the model

sequence defined in Section 7.4.2 that generates this horofunction.

By Observation 7.10, we may take a subsequence (gnk
) such that

(M(gnk
)) is increasing with M(gnk

) > k for all k. Choose a subsequence

(rnk
) of our model sequence such that M(rnk

) = M(gnk
).

Let x ∈ L2. Choose K ∈ N such that K > max{|l|, |M(x)|, |H(x)|},
and let k > K.

Let A,B,C be as in Lemma 7.2 for the computation of d(gnk
, x) and

let A′, B′, C ′ be as in Lemma 7.2 for the computation of d(rnk
, x). Notice

that A = A′ since the lamp stands for gnk
and rnk

are the same below

the position H(gnk
) = H(rnk

), B = M(gnk
) + 1 = M(rnk

) + 1 = B′ by
our choice of K, and C = C ′ since H(gnk

) = H(rnk
). Thus, d(gnk

, x) =

d(rnk
, x).

For x = id, we have that d(gnk
, id) = d(rnk

, id). Hence, hgnk
= hrnk

and so therefore hgn = r.

Lemma 7.15 Suppose that a sequence (gn) ⊂ L2 is neither left nor

right stable and that H(gn) → l ∈ Z. If (gn) is associated with some

horofunction hgn , then hgn = sl.

Proof Suppose that there exists a subsequence (gnk
) such that for all

N ∈ N there exists KN ∈ N such that for all k > KN we have that

M(gnk
) > N and m(gnk

) < −N . Then let x ∈ L2, and let N ∈ N such

that N > max{|M(x)|, |m(x)|, |l|}. Let K = max{KN ,Kl}, where
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KN is as given above and Kl is an integer such that for all k > Kl,

H(gnk
) = l (recall that H(gn)→ l and the integers are a discrete set).

Let k > K. Then by choice of N and definition of K and using Lemma

7.2, d(gnk
, x) = 2(M(gnk

) + 1 − m(gnk
)) − |l − H(x)| and specifically

d(gnk
, id) = 2(M(gnk

)+1−m(gnk
))−|l|. Thus, by Equation 7.1 hgnk

=

sl(x), and we are done.

Now suppose that such a subsequence does not exist. By Observation

7.10, since (gn) is not left stable, there exists a subsequence (gni
) such

that m(gni
) < −i for all i and (m(gni

)) is decreasing. Also by Obser-

vation 7.10, since (gn) is not right stable, there exists a subsequence

(gnj ) such that M(gnj ) > j for all j and (M(gnj )) is increasing. Since

these are both subsequences of (gn), both give rise to horofunctions, and

hgni
= hgnj

= hgn .

Notice that the subsequence (gni
) must be right stable, otherwise we

would be able to find a subsequence as in the first part of the proof.

Similarly, the subsequence (gnj
) must be left stable.

By Lemma 7.14, hgni
is equal to one of the rib examples with stable

component above the lamplighter. But also by Lemma 7.14, hgnj
is equal

to one of the rib examples with stable component below the lamplighter.

By inspecting Equations 7.3 and 7.5, we see that these two horofunctions

cannot be equal, so hgn does not exist.

Lemma 7.16 Suppose that a sequence (gn) ⊂ L2 is left stable and

H(gn) → +∞. If (gn) is associated with some horofunction hgn , then

hgn is equal to a Busemann function bγ with [γ] ∈ ∂∞L+
2 .

Proof By Lemma 7.11, there are no flickering lamps in (gn), so consider

the infinite lamp stand of the stabilization of lamps in (gn). Since the

sequence is left stable, if there are any lamps lit in this infinite lamp

stand, there is a minimum such lamp. Thus, there exists [γ] ∈ ∂∞L+
2

with infinite lamp stand equal to this stabilization.

Take a subsequence (gnk
) such that for every positive integer K, for

all k > K the lamps at positions at most K in the lamp stand for gnk

have achieved their eventual status and H(gnk
) > K.

Let x ∈ L2. ChooseK large enough thatK ≥ max{m(x),M(x), H(x)},
and for the finite values of m(γ) and m(γ, x), K ≥ max{m(γ),m(γ, x)}
as well.

Let k > K. Assume that hgn exists (and is therefore equal to hgnk
)
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and use Lemma 7.2 and Equation 7.1:

hgnk
(x) = lim

nk→∞ 2
(
max{M(gnk

, x) + 1, H(gnk
), H(x)}

−min{m(gnk
, x), H(x)}

)
−

(
H(gnk

)−H(x)
)

−
[
2
(
max{M(gnk

) + 1, H(gnk
), 0} −min{m(gnk

), 0}
)
−H(gnk

)
]
.

Notice that if max{M(gnk
),M(gnk

, x)} > H(gnk
), then since H(gnk

) >

M(x), we have thatM(gnk
, x) = M(gnk

). SinceH(gnk
) ≥ max{H(x), 0},

we have that

max{M(gnk
, x) + 1, H(gnk

), H(x)} = max{M(gnk
) + 1, H(gnk

), 0}.

Therefore,

hgnk
(x) = lim

nk→∞ 2(min{m(gnk
), 0} −min{m(gnk

, x), H(x)}) +H(x).

Now notice that if m(gnk
) < 0 or m(γ) < 0, then m(γ) = m(gnk

).

Similarly, if m(gnk
, x) < H(x) or m(γ, x) < H(x), since H(x) < K, then

m(gnk
, x) = m(γ, x). So by Equation 7.7 and the above, hgn = bγ .

Lemma 7.17 Suppose that a sequence (gn) ⊂ L2 is not left stable and

H(gn) → +∞. If (gn) is associated with some horofunction hgn , then

hgn = H, the height function.

Proof By Observation 7.10, (gn) has a subsequence (gni) such that

(m(gni
)) is decreasing withm(gni

) < −i for all i. We still haveH(gni
)→

+∞, so we can further take a subsequence (gnk
) such that for all k,

m(gnk
) < −k and H(gnk

) > k.

Let x ∈ L2, letK = max{M(x), |m(x)|, |H(x)|}, and consider k > K.

By Lemma 7.2, there exists B ∈ Z such that

d(gnk
, x) = 2(B −m(gnk

))− |H(gnk
)−H(x)|

and

d(gnk
, id) = 2(B −m(gnk

))− |H(gnk
)|.

Thus,

hgnk
(x) = lim

nk→∞ |H(gnk
)| − |H(gnk

)−H(x)| = H(x).

Lemma 7.18 Suppose that a sequence (gn) ⊂ L2 is right stable and

H(gn) → −∞. If (gn) is associated with some horofunction hgn , then

hgn is equal to a Busemann function bγ with [γ] ∈ ∂∞L−
2 .
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Proof As in the proof of Lemma 7.16, but the Busemann function will

have the lamplighter at −∞ instead of +∞.

Lemma 7.19 Suppose that a sequence (gn) ⊂ L2 is not right stable

and H(gn) → −∞. If (gn) is associated with some horofunction hgn ,

then hgn = −H, the negation of the height function.

Proof Similar to the proof of Lemma 7.17.

Theorem 7.20 Suppose that a sequence (gn) ⊂ L2 has (H(gn)) con-

verging to some value l ∈ Z ∪ {±∞}. If (gn) is associated with some

horofunction hgn and g ∈ L2, then:

1 if l ∈ Z and (gn) is both left and right stable, then the sequence is

eventually a constant value g0 and hgn is in the image of L2 in L2,

hgn(g) = d(g, g0);

2 if l = +∞ and (gn) is left stable, then hgn = bγ for some [γ] ∈ ∂∞L+
2 ,

b+,γ(g) = 2(min{m(γ), 0} −min{m(γ, g), H(g)}) +H(g);

3 if l = −∞ and (gn) is right stable, then hgn = bγ for some [γ] ∈
∂∞L−

2 ,

b−,γ(g) = 2(max{M(γ, g) + 1, H(g)} −max{M(γ) + 1, 0})−H(g);

4 if l ∈ Z and (gn) is neither left nor right stable, then hgn = sl,

sl(g) = |l| − |l −H(g)|;

5 if l ∈ Z and (gn) is left – but not right – stable, then hgn = r+,f for

some f ∈ L2,

r+,f (g) = 2(min{m(f), l, 0} −min{m(f, g), H(g), l}) + sl(g);

6 if l ∈ Z and (gn) is right – but not left – stable, then hgn = r−,f for

some f ∈ L2,

r−,f (g) = 2(max{M(f, g) + 1, H(g), l}−max{M(f) + 1, l, 0}) + sl(g);

7 if l = +∞ and (gn) is not left stable, then hgn = H;

8 if l = −∞ and (gn) is not right stable, then hgn = −H.

Proof If l ∈ Z, then apply one of Lemmas 7.13, 7.14, or 7.15, as appro-

priate for the existence of left or right stability. If l = +∞, then apply

either Lemma 7.16 or 7.17, depending on the existence of left stability.

If l = −∞, then apply either Lemma 7.18 or 7.19, depending on the

existence of right stability.
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Lemma 7.21 Suppose for a sequence (gn) ⊂ L2, (H(gn)) does not

converge in Z∪{±∞}. Then (gn) is not associated with a horofunction.

Proof By our hypotheses, (gn) has subsequences (gni) and (gnj ) such

that (H(gni
)) and (H(gnj

)) converge in Z∪{±∞}, but to distinct values.
By Theorem 7.20 and Observation 7.7, since these limits are distinct,

hgni
�= hgnj

. Thus hgn cannot exist.

Corollary 7.22 Let h ∈ L2, and choose a sequence (gn) ⊂ L2 such

that h = hgn . Then (H(gn)) converges to some value l ∈ Z∪{±∞}, and
hgn can be categorized as in Theorem 7.20.

7.6 Topology of the Horofunction Boundary

The topology of ∂hL2 is the topology of uniform convergence on compact

sets. The standard basis is the collection of sets of the form

BK(h, ε) = {h′ ∈ ∂hL2 | |h(x)− h′(x)| < ε for all x ∈ K},

where K ⊂ L2 is compact and ε > 0. By restricting to 0 < ε < 1, we

obtain an equivalent basis. Since the minimum distance between distinct

points in L2 is 1, we may use the following sets as a basis:

BK(h) = {h′ ∈ ∂hL2 | h(x) = h′(x) for all x ∈ K},

where K ⊂ L2 is finite. Notice that pointwise convergence implies con-

vergence in our topology since compact sets of L2 are finite.

With the explicit descriptions of the horofunctions found in Section

7.4, we can establish the accumulation points of ∂hL2. We begin by

recalling that since sl(g) = |l| − |l −H(g)|, we have the following.

Observation 7.23 sl → ±H as l→ ±∞.

Observation 7.24 The injective map that takes elements of ∂∞L+
2 to

their Busemann functions in ∂hL2 is continuous, and the same is true

of ∂∞L−
2 .

Contrast this result with Observation 7.6, which states that the in-

jection of the union of these two sets into the horofunction boundary is

not continuous. Recall that the obstruction to continuity was the non-

Hausdorff property, which was proved by finding neighborhoods of dis-

tinct elements of ∂∞L+
2 that always shared elements of ∂∞L−

2 .
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Proof Let [γ] ∈ ∂∞L+
2 , and consider BK(bγ) for some finite K ⊂ L2.

Let M = max{M(g), H(g) | g ∈ K}, and let k ∈ Z such that k >

M + 2|m(γ)| if m(γ) < 0 or k > M otherwise. Consider the set

B[0,k]([γ], ε) = {γ′ ∈ ∂∞L+
2 | sup{d(γ(x), γ′(x)) | x ∈ [0, k]} < ε}

for 0 < ε < 1. In [6, Observation 4.1], the authors noted that B[0,k]([γ], ε)

is an open set in ∂∞L+
2 . Notice that if γ′ ∈ B[0,k]([γ], ε), then the lamp

stands of γ and γ′ agree on all lamps at positions M or below. Thus, by

Equation (7.7), bγ(g) = bγ
′
(g) for all g ∈ K. Therefore, bγ

′ ∈ BK(bγ)

for all γ′ ∈ B[0,k]([γ], ε), and so our injection is continuous.

The proof for the injection of ∂∞L−
2 is similar.

The topology of each of these sets is a punctured Cantor set, but in

∂hL2 these punctures are “filled” by the height function and its negative,

as we now show.

Observation 7.25 If ([γn]) ⊂ ∂∞L+
2 with m(γn)→ −∞, then bγn →

H. Similarly, if ([γn]) ⊂ ∂∞L−
2 with M(γn)→ +∞, then bγn → −H.

Proof Let ([γn]) ⊂ ∂∞L+
2 with limm(γn) = −∞. By Equation (7.7),

bγn(g) = 2 (min{m(γn), 0} −min{m(γn, g), H(g)}) +H(g).

Fix g and take n large enough so that m(γn) < min{0,m(g), H(g)}, then

bγn(g) = 2 (m(γn)−m(γn)) +H(g) = H(g).

Thus, bγn → H. The other proof is similar.

For a given l ∈ Z, the following observation remarks that the spine

is an accumulation point of the positive and negative rib functions. The

proofs are calculations similar to those in Observation 7.25.

Observation 7.26 Let (f l
n) ⊂ L2 be a sequence satisfying M(f l

n) <

H(f l
n) = l and m(f l

n)→ −∞ as n→∞. Then r+,f l
n → sl.

Similarly, if (f l
n) ⊂ L2 is a sequence satisfying m(f l

n) ≥ H(f l
n) = l

and M(f l
n)→∞ as n→∞, then r−,f l

n → sl.

Finally, the ribs accumulate to Busemann functions.

Observation 7.27 For a geodesic ray γ, with γ(0) = id, set fn =

γ(n). If γ ∈ ∂∞L+
2 , then for large enough n, each fn defines r+,fn and

r+,fn → b+,γ . If γ ∈ ∂∞L−
2 , then for large enough n each fn defines

r−,fn and r+,fn → b−,γ .
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Proof We consider the γ ∈ ∂∞L+
2 case. For large enough n, each fn

satisfies the requirements for defining r+,fn . Let g ∈ L2 be given, and

consider Equations (7.3) and (7.7). Again for large enough n, m(fn) =

m(γ) and m(fn, g) = m(γ, g). Thus

r+,fn − b+,γ = sH(fn)(g)−H(g)→ 0 as n→∞.

With Observations 7.23, 7.25, 7.26, and 7.27, we have the picture of

the horofunction boundary illustrated in Figure 7.1 in the introduction.

7.7 Action of L2 on the Horofunction Boundary

We now conclude with a few comments about the action of L2 on ∂hL2.

An isometric action of a group G on a metric space (X, d) with base

point b can be extended to the horofunction boundary ∂hX in the fol-

lowing way. For g ∈ G and (yn) ⊂ X giving rise to a horofunction, we

have that

g · hyn
(x) = hg·yn

(x) = lim
n→∞ d(g · yn, x)− d(g · yn, b).

In our setting, the action of L2 on itself is by left multiplication. We

compose lamp stands g1 · g2 by starting with the lamp stand for g1
and having the lamplighter move and toggle lamps as in g2, but from a

starting position of H(g1) rather than 0.

Observation 7.28 Let g ∈ L2, h ∈ L2, and choose (gn) ⊂ L2 such

that h = hgn . Then H(g · gn) → H(g) + limH(gn), where for k ∈ Z,
±∞ + k is understood to mean ±∞. Also, (g · gn) is left (resp. right)

stable, if and only if (gn) is left (resp. right) stable.

Proof These statements all follow from the fact that the lamp stand

for g has only finitely many lit lamps and the lamplighter is at a finite

position.

Corollary 7.29 Each of the categories of horofunctions in L2 described

in Theorem 7.20 is invariant under the action of L2.

Proof This result follows from Observation 7.28 and Corollary 7.22.

Interestingly, this implies the following.

Corollary 7.30 The height function H and its negation are global

fixed points of the action of L2 on ∂hL2.
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We now consider the action of L2 on each of the other categories of

horofunctions.

Let g ∈ L2. The action of g on ∂∞L2 is described in [6, Sections 3.4

and 4.6]. If H(g) �= 0, then the action of g on ∂∞L2 has two fixed points,

which are given the notation g∞ and g−∞ in [6]. If H(g) > 0, then g∞ ∈
∂∞L+

2 and g−∞ ∈ ∂∞L−
2 . Otherwise, the reverse is true. In the topology

of ∂∞L2, the action of g has north-south dynamics with attractor g∞ and

repeller g−∞. Recall that in ∂∞L2, the punctures in the two Cantor sets

are “filled” by points from the opposite Cantor set, while in ∂hL2, these

punctures are filled by H and −H. Thus, in the horofunction boundary

we see similar dynamics with the visual boundary, except it occurs on

the separate sets of ∂∞L+
2 ∪ {H} and ∂∞L−

2 ∪ {−H}.

Observation 7.31 For g ∈ L2 with H(g) �= 0, the action of g on ∂hL2

has four fixed points: H,−H, bg
∞
, bg

−∞
. The action of g has north-south

dynamics on ∂∞L+
2 ∪{H} with poles H and either g∞ or g−∞ (whichever

is in the set) and also on ∂∞L−
2 ∪{−H} with poles −H and either g∞ or

g−∞ (whichever is in the set). The point g∞ is always an attractor and

the point g−∞ is always a repeller. If H(g) > 0, then H is an attractor

and −H is a repeller. If H(g) < 0, then these roles are reversed.

For a spinal horofunction sl ∈ ∂hL2, l ∈ Z, the action of g on sl is

given by g · sl = sH(g)+l.

We see similar behavior on the ribs of ∂hL2 in that the l value is

translated by the height of the group element, but there is also additional

structure in this case. Let g ∈ L2 and let f ∈ L2 such that r+,f exists

(i.e. M(f) < H(f)). Then g · r+,f = r+,gf , where gf has the lamp stand

for gf but with all of the lamps at position H(gf) = H(g) + H(f)

and above switched off. Note that g acts as a bijection from R+
H(f) to

R+
H(g)+H(f).

Notice that if m(g) �= H(g) +m(f), then

m(gf) = min{H(g) +m(f),m(g)}.

Using the notation in Section 7.4.2, the above yields the following de-

scription of the action on rib horofunctions that are “close” to the spine.

Observation 7.32 Let g ∈ L2 and l ∈ Z. Let k < l such that H(g) +

k < m(g). The action of g on ∂hL2 restricted to the subset m̂−1
l (k) of

R+
l is a bijection onto the subset m̂−1

H(g)+l(H(g) + k) of R+
H(g)+l.

Corollary 7.33 Let g ∈ L2 such that H(g) = 0 and let l ∈ Z. If
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k < min{m(g) − H(g), l}, then the subset m̂−1
l (k) of R+

l is invariant

under the action of g.

The action on such a rib r+,f leaves m(f) and H(f) fixed, but changes

the status of lamps between those positions. This gives a permutation

on the set m−1
l (k).

The similar statements also hold for negative ribs.
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Intrinsic Geometry of a Euclidean Simplex
Barry Minemyer

Abstract

We give a simple technique to compute the distance between two points

in an n-dimensional Euclidean simplex, where the points are given in

barycentric coordinates, using only the edge lengths of that simplex. We

then use this technique to verify a few computations which will be used

in subsequent papers. The most important application is a formula for

intrinsically computing the volume of a Euclidean simplex which is more

efficient (and more natural) than any previously documented methods.

8.1 Introduction

While studying the isometric embedding problem for metric simplicial

complexes in [9], the author came across the following basic problem. In

attempting to work out basic examples, one needs to be able to compute

distances between points in a given Euclidean simplex given only the

barycentric coordinates of those points and the lengths of the edges of

that simplex. More specifically, let σ = 〈v0, v1, ..., vn〉 be an (abstract)

n-dimensional simplex with vertices v0, ..., vn, let eij denote the edge

connecting the vertices vi and vj , let γij denote the length assigned to

eij , and let x, y ∈ σ with barycentric coordinates x = (x0, ..., xn) and

y = (y0, ..., yn). The questions that needed to be answered were:

1 for what values of γij can σ be realized as a legitimate simplex in En;

2 assuming that we have “good” values γij , give a simple formula to

calculate dσ(x, y), the length of the straight line segment connecting

x to y within σ.
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A naive attempt to solve question (2) is to construct an explicit iso-

metric embedding of σ into En, and then compute dσ(x, y) using basic

Euclidean geometry. But for n ≥ 3 constructing this embedding be-

comes quite cumbersome, and a much simpler method is described in

Section 8.2.

Question (1) is an old problem, and was first solved by Cayley in

[3] way back in 1841. Question (1) was also solved for hyperbolic and

spherical simplices by Karliğa in [5]. Another solution to question (1),

as well as the main ingredient to the solution to question (2), can be

found in an arXiv paper by Igor Rivin [11]. But Rivin does not use his

formula for the Gram matrix to show how to compute distances interior

to a simplex, which is the main issue that we take up in this chapter. In

Sections 8.3, 8.4, and 8.5 we demonstrate the power of formula (8.3) by

working out some computations which would be difficult to produce di-

rectly. Most notably though is Theorem 8.3 which, in conjunction with

equation (8.3), gives a simple formula for intrinsically computing the

volume of any given Euclidean n-simplex. This formula is computation-

ally simpler than the widely used Cayley–Menger determinant, as will

be discussed in Section 8.6.

8.2 The Main Formula

Linearly embed the n-simplex σ into Rn in some way, and by abuse of

notation we will identify each vertex vi with its image in Rn. For each i

let wi := vi−v0, so wi is just the vector in Rn representing the edge e0i.

Since σ is embedded in Rn, the collection {wi}ni=1 forms a basis for Rn.

If we had values for 〈wi, wj〉 then we could use those values to define a

symmetric bilinear form on Rn. But observe that due to the symmetry

and bilinearity of 〈, 〉:

〈wi − wj , wi − wj〉 = 〈wi, wi〉 − 2〈wi, wj〉+ 〈wj , wj〉

and so

〈wi, wj〉 =
1

2
(〈wi, wi〉+ 〈wj , wj〉 − 〈wi − wj , wi − wj〉) . (8.1)

Now, if our embedding of σ into Rn were an isometry, then for all i

we would have 〈wi, wi〉 = γ2
0i. Equation (8.1) would then become

〈wi, wj〉 =
1

2
(γ2

0i + γ2
0j − γ2

ij). (8.2)
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where γ2
ij := 0 if i = j.

The trick now is to define the symmetric bilinear form 〈, 〉 by equa-

tion (8.2). This naturally defines a quadratic form Q on Rn (using only

the edge lengths assigned to σ, and our original choice of embedding).

It is easy to see that an orthogonal transformation will map our origi-

nal embedding to an isometric embedding with respect to the standard

Euclidean metric if and only if this form Q is positive definite. A sim-

ple proof can be found in the first few pages of [2], and, again, the

above result can also be found in [11]. This completes the solution to

question (1).

To solve question (2), let x, y ∈ σ with barycentric coordinates (xi)
n
i=0

and (yi)
n
i=0, respectively. Just as before we consider some linear em-

bedding of σ into Rn and abuse notation by associating x and y with

their images in Rn. Note then that x =
∑n

i=0 xivi and y =
∑n

i=1 yivi.

The square of the distance dσ(x, y) between x and y in σ is given by

〈x − y, x − y〉, where 〈, 〉 is the symmetric bilinear form defined above.

What is left to do is to show how to use equation (8.2) to produce a nice

formula to compute dσ(x, y).

Define the quadratic form Q as above and note that, with respect to

our basis {wi}ni=1, we can express Q as an (n×n) symmetric matrix by

Qij = (〈wi, wj〉)ij =
(
1

2

(
γ2
0i + γ2

0j − γ2
ij

))
ij

. (8.3)

Recall that, by the definition of barycentric coordinates,

x0 = 1−
n∑

i=1

xi and y0 = 1−
n∑

i=1

yi. (8.4)

With the help of equation (8.4) we compute

x− y =
n∑

i=0

(xi − yi)vi = (x0 − y0)v0 +

n∑
i=1

(xi − yi)vi

= −
n∑

i=1

(xi − yi)v0 +

n∑
i=1

(xi − yi)vi =

n∑
i=1

(xi − yi)wi. (8.5)

Combining equations (8.3) and (8.5) yields

〈x− y, x− y〉 =
〈

n∑
i=1

(xi − yi)wi,

n∑
j=1

(xj − yj)wj

〉
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=

n∑
i,j=1

(xi − yi)(xj − yj)〈wi, wj〉 = [x− y] ·Q[x− y], (8.6)

where “·” represents the standard Euclidean inner product, and where

[x − y] is the vector in Rn defined by [x − y] = (xi − yi)
n
i=1. Both the

matrix Q and the vector [x−y] are expressed using only the barycentric

coordinates of x and y and the edge lengths assigned to σ. So, using

equation (8.6), computing distances in σ requires only matrix multipli-

cation.

8.3 The Minimal Allowable Edge Length when all
Other Edges have Length 1

Let σ be as above, and assume that all edges of σ have length 1 except

one edge whose length we will denote by α. By symmetry, let e0n be the

edge with length α, i.e. γ0n = α. The question is, for what values of α

does σ admit an affine isometric embedding into Rn? When n = 2 it is

easy to see that 0 < α < 2, and for n = 3 one observes that 0 < α <
√
3.

But it starts to get a little more subtle1 once n ≥ 4. Note that the

quadratic form Q from Section 8.2 is

Q(α) =

⎡⎢⎢⎢⎢⎢⎣
1 1

2 . . . 1
2

1
2α

2

1
2 1 . . . 1

2
1
2α

2

...
...

. . .
...

...
1
2

1
2 . . . 1 1

2α
2

1
2α

2 1
2α

2 . . . 1
2α

2 α2

⎤⎥⎥⎥⎥⎥⎦
We need to find the values of α for which Q(α) is positive definite.

We first need a Lemma.

Lemma 8.1 Let An and Bn denote the n× n matrices

An =

⎡⎢⎢⎢⎣
1 1

2 . . . 1
2

1
2 1 . . . 1

2
...

...
. . .

...
1
2

1
2 . . . 1

⎤⎥⎥⎥⎦ , Bn =

⎡⎢⎢⎢⎣
1
2

1
2 . . . 1

2

1 1
2 . . . 1

2
...

. . . . . .
...

1
2 . . . 1 1

2

⎤⎥⎥⎥⎦ .

1 When doing some research for [10], I once assumed α = 3
2
would always work. To

my surprise I found out that this leads to a degenerate simplex when n = 9, and
does not lead to a realizable Euclidean simplex for all larger dimensions.
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Then det(An) =
n+ 1

2n
and det(Bn) =

(−1)n+1

2n
.

Proof The proof proceeds by (simultaneous) induction on n. The base

cases are easily checked and left to the reader.

Let us first compute det(An). Add the negative of the first row to

the nth row, which does not change the determinant. Then cofactor

expansion along the new nth row, along with using both portions of the

induction hypothesis, yields

det(An) = (−1)n+1

(
−1
2

)
det(Bn−1) +

1

2
det(An−1)

= (−1)n+1

(
−1
2

)
(−1)n
2n−1

+

(
1

2
· n

2n−1

)
=

1

2n
+

n

2n
=

n+ 1

2n
.

To compute det(Bn), add the negative of row 1 to row n. The only

term in the new nth row which is not 0 is the second to last term, and

it is 1
2 . Then cofactor expansion along the last row gives

det(Bn) = −
1

2
det(Bn−1) = −

1

2

(−1)n
2n−1

=
(−1)n+1

2n
.

With the aid of Lemma 8.1 we are now prepared to prove the following

Theorem.

Theorem 8.2 The quadratic form Q(α) is positive definite if and only

if 0 < α <

√
2n

n− 1
.

Remark Note that

√
2n

n− 1
is a decreasing function, and lim

n→∞

√
2n

n− 1
=
√
2. So all values of α with 0 < α <

√
2 always lead to a Euclidean

simplex. This fact is used in [10].

Proof of Theorem 8.2 By Lemma 8.1 all of the minors of Q(α) which

contain the (1, 1) entry are positive. Thus, Q(α) is positive definite if

and only if det(Q) > 0. To compute det(Q), factor an α2 out of both
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the nth column and the nth row. This yields

det(Q) = α4

∣∣∣∣∣∣∣∣∣∣∣

1 1
2 . . . 1

2
1
2

1
2 1 . . . 1

2
1
2

...
...

. . .
...

...
1
2

1
2 . . . 1 1

2
1
2

1
2 . . . 1

2
1
α2

∣∣∣∣∣∣∣∣∣∣∣
.

Note that we are assuming that α > 0 since it is the side length of a

non-degenerate simplex.

As in the proof of Lemma 8.1 we add the negative of the first row to

the nth row and then use cofactor expansion along the nth row to obtain

det(Q) = α4

(
(−1)n+1

(
−1

2

)
det(Bn−1) +

(
1

α2
− 1

2

)
det(An−1)

)
= α4

(
(−1)n

(
1

2

)
(−1)n
2n−1

+

(
1

α2
− 1

2

)
n

2n−1

)
= α2

(
α2(1− n)

2n
+

n

2n−1

)
, (8.7)

where the notation An and Bn comes from Lemma 8.1. We then see

from equation (8.7) that

det(Q) > 0 ⇐⇒ α2(1− n)

2n
+

n

2n−1
> 0

⇐⇒ α <

√
2n

n− 1
. (8.8)

8.4 Volume of an n-simplex via Edge Lengths

Theorem 8.3 Let σ = 〈v0, v1, . . . , vn〉 be an n-dimensional Euclidean

simplex with edge lengths {γij}ni,j=0. Let Q be the n × n matrix defined

by

Qij =

(
1

2

(
γ2
0i + γ2

0j − γ2
ij

))
.

Then

Vol(σ) =
1

n!

√
det(Q) (8.9)
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Proof Let σ, 〈vi〉ni=0, {γij}ni,j=1, andQ be as above. Isometrically embed

σ into En, and let wi := vi − v0 for all i. Let W = [w1 w2 . . . wn] be the

n×n matrix whose columns are the vectors in {wi}ni=1. It is well known

that det(W ) is the volume of the parallelpiped spanned by the vectors in

{wi}ni=1. Thus Vol(σ) =
1
n!det(W ). But notice thatWTW = (wi ·wj)ij =

Q. So det(Q) = det(W )2, which proves the theorem.

Remark Combining Theorem 8.3 with equation (8.3) produces a very

nice formula for intrinsically computing the volume of an n-simplex,

meaning that the formula depends only on the assigned edge lengths

and not on the coordinates of any of the vertices. The current technique

for finding such volumes is by using the Cayley–Menger determinant.

This will be discussed in Section 8.6. For now, it is worth pointing out

that computing the same volume using a Cayley–Menger determinant

involves computing an (n+2)× (n+2) determinant and, in the author’s

opinion, is much less natural.

Comment The only formulas that I am aware of for computing the

volume of an n-simplex either require coordinates for the vertices of the

simplex or are more difficult computationally2 (and much less natural)

than the formula given here.

In [6] we are interested in knowing the edge length of an equilateral n-

simplex whose volume is 1. To compute this, let en denote the common

edge length of σ. Then Q = (en)
2An, where An is the notation used in

Lemma 8.1. Hence

1 = Vol(σ) =
1

n!

√
det(Q) =

(en)
n

n!

√
n+ 1

2n
.

Solving for en yields

en =

(
n!

√
2n

n+ 1

) 1
n

. (8.10)

As a last note, it is interesting to consider lim
n→∞ en. It is not hard to

check that

lim
n→∞(n!)

1
n =∞ and lim

n→∞

(√
2n

n+ 1

) 1
n

=
√
2

and thus lim
n→∞ en =∞. So, for an equilateral n-simplex to have volume

2 Our formula here requires computing the determinant of an n× n matrix. Other
formulas require determinants of (n+ 1)× (n+ 1) matrices or larger.
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1, as n approaches infinity the edge lengths must approach infinity as

well. The geometric intuition here is to notice that the equilateral n-

simplex with unit edge lengths consists of a smaller percentage of the unit

hypercube as n gets larger. Thus, the volume of the simplex decreases

in n, and so the edge lengths must increase to make the volume 1.

8.5 Distance from the Barycenter to the Boundary
of an Equilateral Simplex

As a final example of the utility of our matrix Q, let us compute the

distance from the barycenter to the boundary of an equilateral simplex.

Let σ be an equilateral simplex, so that all edge lengths are the same

length γ := γij . Let b denote the barycenter of σ, meaning that b has

barycentric coordinates
(

1
n+1

)n

i=1
. Since σ is equilateral, the distance

from b to the boundary of σ is equal to the distance from b to the

barycenter of any of the codimension 1 faces of σ. For convenience,

we compute the distance from b to b′, where b′ is the barycenter of

the codimension 1 face opposite the vertex v0. So b′ has barycentric

coordinates
(
0, 1

n ,
1
n , . . . ,

1
n

)
.

Observe that

[b′ − b] =

(
1

n(n+ 1)

)n

i=1

and Qij =

{
γ2 if i = j,
1
2γ

2 if i �= j.

A simple calculation then shows that

[b′ − b] ·Q[b′ − b] =
γ2

n2(n+ 1)2

(
n(n+ 1)

2

)
=

γ2

2n(n+ 1)
.

Thus,

dσ(b, ∂σ) =
γ√

2n(n+ 1)
. (8.11)

Of particular interest is knowing dσ(b, ∂σ) when σ is an equilateral

simplex with volume 1. Using the notation from Section 8.4 we have
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that γ = en, and combining equations (8.10) and (8.11) yields

dσ(b, ∂σ) =
en√

2n(n+ 1)
=

(
n!

√
2n

n+ 1

) 1
n

·
(

1√
2n(n+ 1)

)

=

(
n!√

nn(n+ 1)n+1

) 1
n

.

8.6 Cayley–Menger Determinants and Gromov’s
K-curvature Question

Given an oriented n-simplex σ = 〈v0, v1, . . . , vn〉 with associated edge

lengths {γij}, one could organize this data into an (n + 1) × (n + 1)

matrix B = (bij) defined by

bij = γ2
ij , (8.12)

where γii := 0.

The first thing to point out is that the matrix Q defined by equation

(8.3) and the matrix B in equation (8.12) are “equivalent” in the sense

that they are uniquely determined by the exact same data. Moreover,

this data (the edge lengths) can be easily recovered from either matrix.

Therefore, given Q it is easy to construct B, and vice versa.

The matrix B mentioned above was first considered by Cayley in [3],

and independently studied 80 years later by Menger in [8]. They used the

matrix B to intrinsically compute the volume of σ just as in Theorem

8.3. This volume formula is:

Vol(σ) =

(
(−1)n−1

2n(n!)2
det(B̄)

) 1
2

, (8.13)

where B̄ is the (n + 2) × (n + 2) matrix obtained by placing B in the

bottom right hand corner, adding a top row of (0, 1, 1, . . . , 1), and a left

column of (0, 1, 1, . . . , 1)T . The determinant det(B̄) is often referred to

as the Cayley–Menger determinant.

As the matrices Q and B are defined using the exact same data,

the formulas (8.9) and (8.13) have some similarities. But formula (8.9)

is certainly computationally simpler because it requires computing an

n×n determinant instead of an (n+2)× (n+2) determinant. Of course,

one makes a slight sacrifice in the simplicity of the matrix representation
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when considering Q over B. But in return one gains a simpler volume

formula as well as a natural means of computing distances and other

geometric quantities in an intrinsic manner.

In closing, we relate the matrix Q to Gromov’s K-curvature problem

found in [4]. The following is taken almost directly from [4].

Let (X , d) be an arbitrary metric space, and letMr denote the space of

positive symmetric r × r matrices. Let Kr(X ) ⊂ Mr denote the subset

realizable by the distances among r-tuples of points as given by the

matrix B in equation (8.12). i.e., the r× r matrix3 B = (bij) ∈ Kr(X ) if

and only if there exists an r-tuple of points (x1, . . . , xr) ∈ X r such that

d(xi, xj)
2 = bij for all i, j. Then every subset K ⊂Mr defines the global

K-curvature class, which consists of the spaces X with Kr(X ) ⊂ K, and
the local K-curvature class, where each point x ∈ X is required to admit

a neighborhood U with Kr(U) ⊂ K. Gromov’s curvature problem is then

as follows

Gromov’s Curvature Problem. Given K ⊂ Mr, describe the spaces

X in the K-curvature class.

This problem was answered in some very specific casess by Gromov in

[4]. When r = 4, this problem was solved (in the global setting) by Berg

and Nikolaev in [1] for CAT(0) spaces, and by Lebedeva and Petrunin

in [7] for spaces whose curvature is bounded below. But all of these

solutions deal with the data in the matrix B and not the actual matrix

B itself.

In light of the discussion above, we can equivalently replace the matrix

B with the matrix Q when discussing Gromov’s curvature problem. But

the matrix Q seems to more closely capture the geometry of the points

involved. So one could ask the same question but look for answers which

intrinsically depend on Q instead of inequalities using the specific dis-

tances. For example, one could ask how knowledge of the eigenvalues

and associated eigenspaces of such matrices Q affect the geometry of

the underlying space X , and vice versa.
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Hyperbolic Dimension and Decomposition
Complexity

Andrew Nicas and David Rosenthal

Abstract

The aim of this chapter is to provide some new tools to aid the study

of decomposition complexity, a notion introduced by Guentner, Tessera

and Yu. In this chapter, three equivalent definitions for decomposition

complexity are established. We prove that metric spaces with finite hy-

perbolic dimension have (weak) finite decomposition complexity, and we

prove that the collection of metric families that are coarsely embeddable

into Hilbert space is closed under decomposition. A method for showing

that certain metric spaces do not have finite decomposition complexity

is also discussed.

The asymptotic dimension of a metric space was introduced by Gro-

mov [10] as a tool for studying the large scale geometry of groups. In-

terest in this concept intensified when Guoliang Yu proved the Novikov

Conjecture for a finitely generated group G having finite asymptotic

dimension as a metric space with a word-length metric and whose clas-

sifying space BG has the homotopy type of a finite complex, [17]. There

are many geometrically interesting metric spaces that do not have finite

asymptotic dimension. In order to study groups with infinite asymp-

totic dimension, Guentner, Tessera and Yu introduced the notion of

finite decomposition complexity, abbreviated here to FDC [11]. Every

countable group admits a proper left-invariant metric that is unique

up to coarse equivalence. Guentner, Tessera and Yu showed that any

countable subgroup of GL(n,R), the group of invertible n × n matri-

ces over an arbitrary commutative ring R has FDC [12]. Such a group

can have infinite asymptotic dimension; for example, the wreath prod-

uct Z � Z (this finitely generated group can be realized as a subgroup
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of GL(2,Z[t, t−1])). The collection of countable groups with FDC con-

tains groups with finite asymptotic dimension and has nice inheritance

properties: it is closed under subgroups, extensions, free products with

amalgamation, HNN extensions and countable direct unions. The FDC

condition was introduced to study topological rigidity questions [11]. In

this chapter we focus on finite decomposition complexity as a coarse

geometric invariant.

The definition of finite decomposition complexity is somewhat tricky

to work with, so it is advantageous to develop tools for determining

whether or not a metric space has FDC. In this chapter we introduce

some new tools for working with finite decomposition complexity (both

the strong and weak forms), and try to give a feel for decomposition

complexity by using these tools in several situations. Motivated by the

equivalent definitions for finite asymptotic dimension, we provide analo-

gous conditions that are equivalent to decomposition complexity, which

we then use in the following two applications.

Buyalo and Schroeder introduced the hyperbolic dimension of a metric

space (Definition 9.25) to study quasi-isometric embedding properties of

negatively curved spaces. Cappadocia introduced the related notion of

the weak hyperbolic dimension of a metric space (Definition 9.26). Hy-

perbolic dimension is an upper bound for weak hyperbolic dimension.

We show in Corollary 9.30 that a metric space with weak hyperbolic di-

mension at most n is n-decomposable (Definition 9.3) over the collection

of metric families with finite asymptotic dimension. This implies that

such a metric space has weak FDC; if n ≤ 1, then it has FDC.

In [6], Dadarlat and Guentner introduced the notion of a family of

metric spaces that is coarsely embeddable into Hilbert space1 (Defini-

tion 9.21). In Theorem 9.23, we show that if a metric family is n-

decomposable over the collection of metric families that are coarsely

embeddable into Hilbert space, then that metric family is also coarsely

embeddable into Hilbert space. In other words, the collection of metric

families that are coarsely embeddable into Hilbert space is stable under

decomposition. This recovers the known fact that a metric space with

(strong or weak) FDC is coarsely embeddable into Hilbert space.

Not all metric spaces satisfy the FDC condition. Clearly, any met-

ric space that does not coarsely embed into Hilbert space will not have

(strong or weak) FDC. Generalizing an example of Wu and Chen [16],

we provide a tool that can be used to show that certain metric spaces

1 Dadarlat and Guentner used the phrase “equi-uniformly embeddable” instead of
“coarsely embeddable”.
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do not have (strong or weak) FDC. In Theorem 9.14 it is shown that if a

metric space X admits a surjective uniform expansion and has weak fi-

nite decomposition complexity, then X has finite asymptotic dimension.

Thus, as explained in Example 9.15, any infinite-dimensional normed

linear space cannot have (strong or weak) FDC because such a space

has infinite asymptotic dimension and admits a surjective uniform ex-

pansion.

In the final section of this chapter we recall some interesting open

problems about decomposition complexity and suggest a few new ones.

9.1 Decomposition Complexity

Guentner, Tessera and Yu’s concept of finite decomposition complexity

was motivated by the following definition of finite asymptotic dimension.

Definition 9.1 Let n be a non-negative integer. The metric space

(X, d) has asymptotic dimension at most n, asdimX ≤ n, if for every

r > 0 there exists a cover U of X such that

(i) U = U0 ∪ U1 ∪ · · · ∪ Un;
(ii) each Ui, 0 ≤ i ≤ n, is r-disjoint, i.e., d(U, V ) > r for every U �= V in

Ui; and
(iii) U is uniformly bounded, i.e., the mesh of U ,

mesh(U) = sup{diam(U) | U ∈ U},

is finite.

If no such n exists, then asdimX =∞.

In the above definition, note that the cover U has multiplicity at most

n + 1, i.e., every point of X is contained in at most n + 1 elements

of U . Also note that while U is not required to be an open cover, if

asdimX <∞, then one can always choose U to be an open cover because

of condition (ii).

The asymptotic dimension of a finitely generated group, G, is defined

to be the asymptotic dimension of G considered as a metric space with

the word-length metric associated with any finite set of generators. This

is well-defined since asymptotic dimension is a coarse invariant and any

two finite generating sets for G yield coarsely equivalent metric spaces.

More generally, every countable group G admits a proper left-invariant
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metric that is unique up to coarse equivalence. Thus, asymptotic dimen-

sion can also be used as a coarse invariant for countable groups.

In order to generalize the definition of finite asymptotic dimension,

it is useful to work with the notion of a metric family, a (countable)

collection of metric spaces. A single metric space is viewed as a metric

family with one element. A subspace of a metric family X is a metric

family Z such that every element of Z is a metric subspace of some

element of X . For example, a cover U of a metric space X is a metric

family, where each element of U is given the subspace metric inherited

from X, and U is a subspace of the metric family {X}.

Definition 9.2 Let r > 0 and n be a non-negative integer. The met-

ric family X is (r, n)-decomposable over the metric family Y, denoted
X (r,n)−−−→ Y, if for every X in X , X = X0 ∪X1 ∪ · · · ∪Xn such that for

each i

Xi =
⊔

r-disjoint

Xij ,

where each Xij is in Y.

Definition 9.3 Let n be a non-negative integer, and let C be a col-

lection of metric families. The metric family X is n-decomposable over

C if for every r > 0 X is (r, n)-decomposable over some metric family Y
in C.

Following [11], we say that X is weakly decomposable over C if X is n-

decomposable over C for some non-negative integer n, and X is strongly

decomposable over C if X is 1-decomposable over C.

Definition 9.4 A metric family Z is bounded if the diameters of the

elements of Z are uniformly bounded, i.e., if sup{diam(Z) | Z ∈ Z} <∞.

The collection of all bounded metric families is denoted by B.

Example 9.5 Let X be a metric space. The statement that the metric

family {X} is n-decomposable overB is equivalent to the statement that

asdim(X) ≤ n.

The following definition is equivalent to Bell and Dranishnikov’s defi-

nition of a collection of metric spaces having finite asymptotic dimension

“uniformly” [1, Section 1].

Definition 9.6 Let n be a non-negative integer. The metric family

X has asymptotic dimension at most n, denoted asdim(X ) ≤ n, if X is

n-decomposable over B.
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Example 9.7 For each positive integer n, let Xn be the metric family

of subsets of Rn, with the Euclidean metric, consisting of open balls

centered at the origin with positive integer radius. Then asdim(Xn) = n.

Proof Since Xn is a family of subspaces of Rn, we have that asdim(Xn) ≤
asdim(Rn) = n.

Suppose that asdim(Xn) = � < n. Then, for each integer m ≥ 1,

there exists a cover Um, which can be assumed to be an open cover

of the open ball Bm(0), with multiplicity at most � + 1, such that

sup{mesh(Um) | m ≥ 1} = D <∞.

Let ε > 0. Choose an integer k so that k > D/ε. For λ > 0 and

A ⊂ Rn let λA = {λa | a ∈ A}. Then U = { 1
k U | U ∈ Uk} is an open

cover of B1(0) with mesh(U) < ε and multiplicity at most �+ 1. Hence

the covering dimension of B1(0) is at most �, which contradicts the fact

that the covering dimension of B1(0) is n.

Definition 9.8 Let D be the smallest collection of metric families

containing B that is closed under strong decomposition, and let wD

be the smallest collection of metric families containing B that is closed

under weak decomposition. A metric family in D is said to have finite

decomposition complexity (abbreviated to “FDC”), and a metric family

in wD is said to have weak finite decomposition complexity (abbreviated

to “weak FDC”).

Clearly, finite decomposition complexity implies weak finite decompo-

sition complexity. The converse is unknown.

Question [12, Question 2.2.6] Does weak finite decomposition com-

plexity imply finite decomposition complexity?

The base case of this question has an affirmative answer, namely, if

asdimX < ∞ then X has FDC [12, Theorem 4.1] (although even this

case is difficult). Therefore, if A is the collection of all metric families

with finite asymptotic dimension, then we have the following sequence

of inclusions of collections of metric families:

A ⊂ D ⊂ wD. (9.1)

The collection of countable groups (considered as metric spaces with

a proper left-invariant metric) in D is quite large. It contains countable

subgroups of GL(n,R), where R is any commutative ring, countable

subgroups of almost connected Lie groups, hyperbolic groups and ele-

mentary amenable groups. It is also closed under subgroups, extensions,
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free products with amalgamation, HNN extensions and countable direct

unions [12].

The FDC and weak FDC conditions have important topological con-

sequences. For example, a finitely generated group with weak FDC sat-

isfies the Novikov Conjecture, and a metric space with (strong) FDC and

bounded geometry satisfies the Bounded Borel Conjecture [11, 12]. These

results were obtained by studying certain assembly maps in L-theory

and topological K-theory. The assembly map in algebraic K-theory has

been studied for groups with FDC by several authors, including Ramras,

Tessera and Yu [15], Kasprowski [13] and Goldfarb [8].

There is an equivalent description of FDC, and weak FDC, in terms of

a metric decomposition game [12, Theorem 2.2.3], that is useful for un-

derstanding the proofs of many of the inheritance properties mentioned

above. The metric decomposition game has two players, a defender and

a challenger. The game begins with a metric family X = Y0. On the

first turn, the challenger declares a positive integer r1 and the defender

must produce a (r1, n1)-decomposition of Y0 over a new metric family

Y1. On the second turn, the challenger declares a positive integer r2
and the defender must produce an (r2, n2)-decomposition of Y1 over a

new metric family Y2. The game continues in this manner, ending if and

when the defender produces a bounded family. In this case the defender

has won. A winning strategy is a set of instructions that, if followed by

the defender, will guarantee a win for any possible requests made by the

challenger. The family X has weak FDC if a winning strategy exists and

strong FDC if, additionally, the strategy always allows for nj = 1 in the

defender’s response.

Next, we recall some terminology introduced in [12] that generalizes

basic notions from the coarse geometry of metric spaces to metric fami-

lies.

Let X and Y be metric families. A map of families, F : X → Y,
is a collection of functions F = {f : X → Y }, where X ∈ X and

Y ∈ Y, such that every X ∈ X is the domain of at least one f in

F . The inverse image of Z under F is the subspace of X given by

F−1(Z) = {f−1(Z) | Z ∈ Z, f ∈ F}.

Definition 9.9 A map of metric families, F : X → Y, is a coarse

embedding if there exist non-decreasing functions δ, ρ : [0,∞) → [0,∞),

with limt→∞ δ(t) =∞ = limt→∞ ρ(t), such that for every f : X → Y in
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F and every x, y ∈ X,

δ
(
dX(x, y)

)
≤ dY

(
f(x), f(y)

)
≤ ρ

(
dX(x, y)

)
.

One can think of a coarse embedding of metric families as a collection

of “uniform” coarse embeddings, in the sense that they have a common

δ and ρ. The easiest example of a coarse embedding of metric families

is the inclusion of a subspace Z of Y into Y.

Definition 9.10 A map of metric families, F : X → Y, is a coarse

equivalence if for each f : X → Y in F there is a map gf : Y → X such

that:

(i) the collection G = {gf} is a coarse embedding from Y to X ; and

(ii) the composites f ◦ gf and gf ◦ f are uniformly close to the identity

maps idY and idX , respectively, in the sense that there is a constant

C > 0 with

dY
(
y, f ◦ gf (y)

)
≤ C and dX

(
x, gf ◦ f(x)

)
≤ C,

for every f : X → Y in F , x ∈ X, and y ∈ Y .

Definition 9.11 A collection of metric families, C, is closed under

coarse embeddings if every metric family X that coarsely embeds into a

metric family Y in C is also a metric family in C.

Guentner, Tessera and Yu proved that D and wD are each closed un-

der coarse embeddings [12, Coarse Invariance 3.1.3]. It is straightforward

to check that the following collections of metric families are also closed

under coarse embeddings.

Example 9.12 Collections of metric families that are closed under

coarse embeddings.

• B, the collection of bounded metric families.

• A, the collection of metric families with finite asymptotic dimension.

• An, the collection of metric families with asymptotic dimension at

most n.

• H, the collection of metric families that are coarsely embeddable into

Hilbert space (see Definition 9.21).

The following is similar to [12, Coarse Invariance 3.1.3].

Theorem 9.13 Let X and Y be metric families, and let C be a col-

lection of metric families that is closed under coarse embeddings. If X
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coarsely embeds into Y and Y is n-decomposable over C, then X is n-

decomposable over C. In particular, if X is coarsely equivalent to Y, then
X is n-decomposable over C if and only if Y is n-decomposable over C.

Proof Let F : X → Y be a coarse embedding, and let r > 0 be

given. We must find a metric family X ′ in C such that X is (r, n)-

decomposable over X ′. Since Y is n-decomposable over C, there is a

metric family Y ′ such that Y is (ρ(r), n)-decomposable over X ′, where
ρ is as in Definition 9.9. It is straightforward to show that X is (r, n)-

decomposable over X ′ = F−1(Y ′). Note that F restricts to a coarse

embedding from F−1(Y ′) to Y ′. Since C is closed under coarse embed-

dings, we are done.

The following observation about decomposition is useful.

Remark If X , Y and Z are metric families and X (r,m)−−−→ Y (s,n)−−−→ Z,
then X (t,p)−−−→ Z where t = min(r, s) and p = (m + 1)(n + 1) − 1. In

particular, this shows that if X is m-decomposable over An, then X has

asymptotic dimension at most (m+ 1)(n+ 1)− 1.

Let (X, dX) be a metric space and λ > 1. A uniform expansion of X

with expansion factor λ is a map T : X → X such that dX(T (x), T (y)) =

λ dX(x, y) for all x, y ∈ X. The following proposition, generalizing [16,

Example 2.2], can be used to show that certain spaces do not have weak

finite decomposition complexity.

Theorem 9.14 Let (X, dX) be a metric space that admits a surjective

uniform expansion. If X has weak finite decomposition complexity then

X has finite asymptotic dimension.

Proof Assume that the metric space (X, dX) has weak FDC and that

T : X → X is a surjective uniform expansion of X with expansion factor

λ > 1. By the analog of [11, Theorem 2.4] for weak FDC (while [11,

Theorem 2.4] is stated for FDC, the proof there readily adapts to weak

FDC), there exists a finite sequence (ri, ni), i = 1, . . . ,m, where each

ri > 0 and the nis are positive integers, together with metric families

Yi, i = 1, . . . ,m, such that

X
(r1,n1)−−−−→ Y1

(r2,n2)−−−−→ Y2 −−−−→ · · · (rm,nm)−−−−−→ Ym

and Ym ∈ B. (This is one winning round of the “decomposition game”.)

By Remark 9.1, we have X
(r,n)−−−→ Ym, where r = min{r1, . . . , rm} and

n = (n1 + 1)(n2 + 1) · · · (nm + 1) − 1. For any positive integer k, let
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T k(Ym) =
{
T k(Y ) | Y ∈ Ym

}
. Notice that T k(Ym) ∈ B. Since T is

surjective, T k(X) = X. Hence,

{X} =
{
T k(X)

} (λkr, n)−−−−−→ T k(Ym).

Since λ > 1, we have λkr → ∞ as k → ∞. It follows that {X} is n-

decomposable over B. That is, X has finite asymptotic dimension.

Example 9.15 Let (V, ‖ ·‖) be any infinite-dimensional normed linear

space. Then T (x) = 2x is a uniform expansion of V , with expansion

factor 2, where the metric is d(x, y) = ‖x − y‖. Clearly, T is surjective.

Note that any real n-dimensional vector subspace of V has asymptotic

dimension n and so V has infinite asymptotic dimension. It follows from

Theorem 9.14 that (V, d) cannot have weak FDC.

Example 9.16 The condition in Theorem 9.14 that the uniform ex-

pansion T is surjective cannot be omitted. Consider X =
⊕∞

i=1 Z with

the proper metric dX
(
(xi), (yi)

)
=

∑∞
i=1 i · |xi− yi|. Then there is a uni-

form expansion T
(
(xi)

)
= (2xi) of (X, dX), with expansion factor 2, but

T is not surjective. Although (X, dX) has infinite asymptotic dimension,

it has FDC (see [11, Example 2.5]) and hence weak FDC.

Now consider Y =
⊕∞

i=1 R equipped with the metric dY
(
(xi), (yi)

)
=∑∞

i=1 i · |xi− yi|. Then X is a metric subspace of Y , and for each n ∈ N,
the subspace

⊕n
i=1 Z of X is coarsely equivalent to the subspace

⊕n
i=1 R

of Y . Nevertheless, X is not coarsely equivalent to Y , since X does not

have weak FDC by Example 9.15.

If X is a metric family and N = sup{asdim(X) | X ∈ X}, then clearly

N ≤ asdim(X ). Equality often does not hold. For example, consider the

space Z =
⊕∞

i=1 R with the Euclidean metric and the metric family X =

{Br(0) | r = 1, 2, . . .} of open balls in Z. For each positive integer n, let

Xn = {Br(0)∩Rn | r = 1, 2, . . .}, where Rn denotes the metric subspace⊕n
i=1 R in Z. Then, by Example 9.7, asdim(Xn) = n. Therefore, n =

asdim(Xn) ≤ asdim(X ) for every positive integer n, and so asdim(X ) =

∞, whereas asdim(Br(0)) = 0 for each r.

However, as was pointed out to us by Daniel Kasprowski, for every

countable discrete group G equipped with a proper left-invariant metric,

the family of finite subgroups of G does have asymptotic dimension zero

as a metric family. The following proposition is a generalization of this

fact.

Proposition 9.17 Let G be a countable discrete group equipped with
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a proper left-invariant metric d. Let F be a non-empty collection of

subgroups of G that is closed under taking subgroups. If asdim(H) ≤ k

for every H in F , where H is considered as a metric subspace of G, then

asdim(F) ≤ k.

Proof Let r > 0 be given. For each H in F , let SH be the subgroup of

H generated by H ∩Br(e), where e is the identity element of G. Let UH
be the set of left cosets of SH in H. Then, for every x, y ∈ H,

d(x, y) ≤ r ⇔ x−1y ∈ Br(e) ⇒ x−1y ∈ SH .

Thus, UH is an r-disjoint, 0-dimensional cover of H. Let Y be the metric

family
⋃

H∈F UH . Then, F is (r, 0)-decomposable over Y. Since UH is

coarsely equivalent to {SH}, it follows that Y is coarsely equivalent to

{SH | H ∈ F}, which is a finite set since d is a proper metric. Therefore,

asdim(Y) = asdim
(
{SH | H ∈ F}

)
≤ k. Thus, F is 0-decomposable over

Ak, the collection of all metric families that have asymptotic dimension

at most k. It follows from Remark 9.1 that asdim(F) ≤ k.

9.2 Equivalent Definitions of Decomposability

In this section we provide three alternative definitions for a metric fam-

ily X to be n-decomposable over a collection of metric families C. We

show that they are all equivalent to Definition 9.3, provided C is closed

under coarse embeddings. When C = B (the collection of all bounded

metric families) and X consists of a single metric space, each of our def-

initions reduces to one of the standard definitions for finite asymptotic

dimension.

Recall that the multiplicity of a covering U of a metric space X is the

largest integer m such that every point of X is contained in at most m

elements of U . Given d > 0, the d-multiplicity of U is the largest integer

m such that every open d-ball, Bd(x), in X is contained in at most

m elements of U . The Lebesgue number of U , L(U), is at least λ > 0 if

every Bλ(x) inX is contained in some element of U . A uniform simplicial

complex K is a simplicial complex equipped with the �1-metric. That is,

every element x ∈ K can be uniquely written as x =
∑

v∈K(0) xv·v, where
K(0) is the vertex set of K, each xv ∈ [0, 1], xv = 0 for all but finitely

many v ∈ K(0), and
∑

v∈K(0) xv = 1. Then the �1-metric is defined by

d1(x, y) =
∑

v∈K(0) |xv − yv|. The open star of a vertex v ∈ K(0) is the

set star(v) = {x ∈ K | xv �= 0}. If there exists an integer m such that
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for every x ∈ K the set {v ∈ K(0) | xv �= 0} has cardinality at most m,

then the dimension of K, dim(K), is at most m. If no such m exists,

then dim(K) =∞.

In what follows, let X = {Xα |α ∈ I} be a metric family, where I is a

countable indexing set, and let C be a collection of metric families. Let

n be a non-negative integer.

Condition (A) For every d > 0, there exists a cover Vα of Xα, for

each α ∈ I, such that:

(i) the d-multiplicity of Vα is at most n+ 1 for every α ∈ I; and

(ii)
⋃

α∈I Vα is a metric family in C.

Condition (B) For every λ > 0, there exists a cover Uα of Xα, for

each α ∈ I, such that:

(i) the multiplicity of Uα is at most n+ 1 for every α ∈ I;

(ii) the Lebesgue number L(Uα) ≥ λ for every α ∈ I; and

(iii)
⋃

α∈I Uα is a metric family in C.

Condition (C) For every ε > 0, there exists a uniform simplicial

complex Kα and an ε-Lipschitz map ϕα : Xα → Kα, for each α ∈ I,

such that:

(i) dim(Kα) ≤ n for every α ∈ I; and

(ii)
⋃

α∈I

{
ϕ−1
α

(
star(v)

) ∣∣ v ∈ K
(0)
α

}
is a metric family in C.

Proposition 9.18 Let X be a metric family and C be a collection

of metric families that is closed under coarse embeddings. Then Condi-

tions (A) and (B) are each equivalent to Definition 9.3.

Proof For notational convenience we prove the proposition when X
consists of a single metric space X. The proof for a general metric family

is a straightforward generalization of this case.

Suppose that X is n-decomposable over C. Let d > 0 be given. Then,

there is a metric family Y in C and a decomposition X = X0∪X1∪· · ·∪
Xn such that, for each i

Xi =
⊔

2d-disjoint

Xij ,

where each Xij is in Y. Thus, the cover V = {Xij} of X is a subspace

of Y and has d-multiplicity less than or equal to n+1. Since C is closed

under coarse embeddings, V is also in C and Condition (A) is satisfied.

Suppose that Condition (A) is satisfied for n with respect to C and let
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λ > 0 be given. There exists a cover V of X that is a metric family in C

and has λ-multiplicity less than or equal to n+1. Let U =
{
V λ

∣∣ V ∈ V},
where V λ is the set of points in X whose distance from V is at most λ.

Then the Lebesgue number L(U) ≥ λ. Given x ∈ X, the ball of radius λ

around x intersects at most n+1 elements of V, since the λ-multiplicity

of V is at most n + 1. This implies that at most n + 1 elements of U
contain x, i.e., the multiplicity of U is at most n+1. Since U is coarsely

equivalent to V and C is closed under coarse embeddings (and hence

under coarse equivalences), Condition (B) is satisfied.

Suppose that Condition (B) is satisfied for n with respect to C and

let r > 0 be given. We follow an argument analogous to the one in [9,

Theorem 9] to show that Condition (B) implies Definition 9.3. There

exists a cover U of X such that U has multiplicity at most n+1, L(U) ≥
(n + 1)r, and U is in C. Given d > 0 and U ⊂ X, let Intd(U) =

{
x ∈

X
∣∣ Bd(x) ⊂ U

}
. Note that if d1 ≤ d2, then Intd2(U) ⊆ Intd1(U). Also

note that if a ∈ Intd(U) ∩ Intd(V ), then a ∈ Intd(U ∩ V ). Now, for each

i ∈ {0, . . . , n}, define

Ui =
{
U0 ∩ U1 ∩ · · · ∩ Ui

∣∣ U0, U1, . . . , Ui ∈ U are distinct
}
,

Si =
⋃

U∈Ui
Int(n+1−i)r(U),

Xi =
⊔

U∈Ui
Int(n+1−i)r(U)� Si+1.

Since U has multiplicity at most n+1 and has Lebesgue number L(U) ≥
(n+1)r, it follows that X = X0∪X1∪· · ·∪Xn. Furthermore, since each

Int(n+1−i)r(U)� Si+1 is contained in some element of U and C is closed

under coarse embeddings, the metric family{
Int(n+1−i)r(U)� Si+1

∣∣ 0 ≤ i ≤ n and U ∈ Ui
}

is in C. It remains to show that in fact each Xi is an r-disjoint union.

We do this by contradiction. Given i, suppose that Int(n+1−i)r(U) �
Si+1 �= Int(n+1−i)r(V ) � Si+1, where U = U0 ∩ U1 ∩ · · · ∩ Ui and V =

V0 ∩ V1 ∩ · · · ∩ Vi, and that there exist a ∈ Int(n+1−i)r(U) � Si+1 and

b ∈ Int(n+1−i)r(V )� Si+1 with d(a, b) ≤ r. Then a ∈
(
Int(n+1−i)r(V )

)r
and b ∈

(
Int(n+1−i)r(U)

)r
. Notice that for each natural number k, the

r-neighborhood(
Int(k+1)r(U)

)r
=

{
y ∈ X

∣∣ ∃ x such that B(k+1)r(x) ⊂ U and d(y, x) ≤ r
}
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is contained in Intkr(U) =
{
y ∈ X

∣∣ Bkr(y) ⊂ U
}
. Therefore, a ∈

Int(n−i)r(V ) and b ∈ Int(n−i)r(U). Thus,

a, b ∈ Int(n−i)r(U) ∩ Int(n−i)r(V ) ⊂ Int(n−i)r(U ∩ V ).

Since Int(n+1−i)r(U)�Si+1 �= Int(n+1−i)r(V )�Si+1, we see that the set

{U0, . . . , Ui, V0, . . . , Vi} has at least i+ 2 elements, which implies that a

and b are both in

Int(n−i)r(U ∩ V ) = Int(n−i)r(U0 ∩ · · · ∩ Ui ∩ V0 ∩ · · · ∩ Vi) ⊂ Si+1.

But this contradicts the assumption that a ∈ Int(n+1−i)r(U)�Si+1 and

b ∈ Int(n+1−i)r(V )� Si+1. Therefore, X is n-decomposable over C.

Lemma 9.19 Let n be a non-negative integer. Then for every uniform

simplicial complex K with dim(K) ≤ n, the cover VK of K consisting of

the open stars of vertices in K has Lebesgue number L(VK) ≥ 1
n+1 .

Proof Let K be a uniform simplicial complex of dimension n, and let

x ∈ K be given. Then x =
∑

v∈K(0) xv · v, where there are at most n+1

vertices v with xv �= 0 and
∑

v∈K(0) xv = 1. There is a v ∈ K(0) with

xv ≥ 1
n+1 . If y ∈ K is not in the open star of v, star(v), then yv = 0 and

d1(x, y) ≥ 1
n+1 . Therefore, the open ball of radius 1

n+1 centered at x is

completely contained in star(v). Thus, the cover VK of K consisting of

the open stars of vertices in K has Lebesgue number L(VK) ≥ 1
n+1 .

Proposition 9.20 Let X be a metric family and C be a collection

of metric families that is closed under coarse embeddings. Then Condi-

tion (C) is equivalent to Definition 9.3.

Proof For notational convenience we prove the proposition when X
consists of a single metric space X. The proof for a general metric family

is a straightforward generalization of this case.

By Proposition 9.18, it suffices to prove that Condition (C) is equiv-

alent to Condition (B). We follow [1, Assertion 2] to show that Condi-

tion (C) implies Condition (B), and we follow [2, Theorem 1] to show

that Condition (B) implies Condition (C).

Assume that X satisfies Condition (C) for n with respect to C. Let

r > 0 be given. Then, by Lemma 9.19, there is a uniform simplicial

complex K of dimension n and a 1
(n+1)r -Lipschitz map ϕ : X → K.

Since dim(K) = n, the cover U =
{
ϕ−1

(
star(v)

) ∣∣ v ∈ K(0)
}

of X

has multiplicity at most n + 1 and Lebesgue number L(U) > r. By

assumption, the metric family
{
ϕ−1

(
star(v)

) ∣∣ v ∈ K(0)
}
is in C. Thus,

X satisfies Condition (B).
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Now assume that X satisfies Condition (B) for n with respect to C.

Let ε > 0 be given. Then there is a cover U of X that is a metric

family in C, has multiplicity at most n + 1 and has Lebesgue number

L(U) ≥ λ = (2n+2)(2n+3)
ε . Note that, because L(U) > 0 and C is closed

under coarse embeddings, we may additionally assume, without loss of

generality, that U is an open covering of X. For each U ∈ U , define
ϕU : X → [0, 1] by

ϕU (x) =
d(x, U c)∑

V ∈ U d(x, V c)
,

where U c is the complement of U in X. Let K = Nerve(U) equipped

with the uniform metric. Since the multiplicity of U is at most n + 1,

dim(K) ≤ n. Define the map ϕ : X → K by

ϕ(x) =
∑
U∈ U

ϕU (x) · [U ],

where [U ] denotes the vertex of K defined by U . Note that given a vertex

[V ] in K, ϕ−1(star([V ])) ⊂ V , since ϕ(x) is in the open star of [V ] if and

only if ϕV (x) �= 0, and this implies that x is in V . Therefore, the metric

family
{
ϕ−1(star([V ]))

∣∣ [V ] ∈ K(0)
}
⊂ U is in C since C is closed under

coarse embeddings.

It remains to show that ϕ is ε-Lipschitz. Since L(U) ≥ λ, it follows

that
∑

V ∈ U d(x, V c) ≥ λ. Also note that for every x, y ∈ X and U ∈ U ,
the triangle inequality implies∣∣d(x, U c)− d(y, U c)

∣∣ ≤ d(x, y).

Thus,

∣∣ϕU (x)− ϕU (y)
∣∣ = ∣∣∣∣ d(x, U c)∑

V ∈ U d(x, V c)
− d(y, U c)∑

V ∈ U d(y, V c)

∣∣∣∣
≤ |d(x, U c)− d(y, U c)|∑

V ∈ U d(x, V c)
+

∣∣∣∣ d(y, U c)∑
V ∈ U d(x, V c)

− d(y, U c)∑
V ∈ U d(y, V c)

∣∣∣∣
which is less than or equal to

d(x, y)∑
V ∈ U d(x, V c)

+
d(y, U c) ·

∑
V ∈ U

∣∣d(x, V c)− d(y, V c)
∣∣(∑

V ∈ U d(x, V c)
)(∑

V ∈ U d(y, V c)
) ,
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which is less than or equal to

1

λ
d(x, y) +

1

λ

( ∑
V ∈ U

∣∣d(x, V c)− d(y, V c)
∣∣)

≤ 1

λ
d(x, y) +

1

λ
2(n+ 1) d(x, y)

=
1

λ
(2n+ 3) d(x, y).

Therefore,

d1(ϕ(x), ϕ(y)) =
∑
U∈ U

∣∣ϕU (x)− ϕU (y)
∣∣

≤ 2(n+ 1)

(
1

λ
(2n+ 3) d(x, y)

)
= ε d(x, y).

This completes the proof.

The equivalent definitions for decomposability give us more tools to

work with. For instance, consider the collection of metric families that

are coarsely embeddable into Hilbert space, defined below. The notion

of a metric family that is coarsely embeddable into Hilbert space was

introduced by Dadarlat and Guentner in [6], although they called it a

“family of metric spaces that is equi-uniformly embeddable”.

Definition 9.21 A metric family X = {Xα |α ∈ I} is coarsely em-

beddable into Hilbert space if there is a family of Hilbert spaces H =

{Hα |α ∈ I} and a map of metric families F = {Fα : Xα → Hα |α ∈ I}
such that F : X → H is a coarse embedding. The collection of all metric

families that are coarsely embeddable into Hilbert space is denoted by

H.

In [7], Dadarlat and Guentner proved the following.

Proposition 9.22 [7, Proposition 2.3] A metric family X = {Xα |α ∈
I} is in H if and only if for every R > 0 and ε > 0 there exists a

family of Hilbert spaces H = {Hα |α ∈ I} and a map of metric families

ξ = {ξα : Xα → Hα |α ∈ I} such that

(i) ‖ξα(x)‖ = 1, for all x ∈ Xα and α ∈ I;

(ii) ∀α ∈ I, ∀x, x′ ∈ Xα, dα(x, x
′) ≤ R ⇒ ‖ξα(x)− ξα(x

′)‖ ≤ ε;

(iii) lim
S→∞

sup
α∈I

sup
{∣∣〈ξα(x), ξα(x′)〉

∣∣ : dα(x, x′) ≥ S, x, x′ ∈ Xα

}
= 0.

Proposition 9.20 enables us to make use of Dadarlat and Guentner’s

work to prove the following theorem.
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Theorem 9.23 The collection H of metric families that are coarsely

embeddable into Hilbert space is stable under weak decomposition. That

is, if a metric family X is n-decomposable over H, then X is in H.

Proof In the light of Proposition 9.20, all of the ingredients for the

proof of this theorem are contained in [7]. The argument is organized as

follows.

Let X = {Xα |α ∈ I} be a metric family that is n-decomposable over

H. We will use Proposition 9.22 to prove that X is in H. Let R > 0

and ε > 0 be given. Since X is n-decomposable over H, the proof of

Proposition 9.20 implies that for each α ∈ I there is a cover Uα =

{Uα,j}j∈Jα of Xα, for some indexing set Jα, and a family of maps ϕα =

{ϕα,j : Xα → [0, 1] | j ∈ Jα} such that

(a)
∑

j∈Jα
ϕα,j(x) = 1, for all x ∈ Xα;

(b) ϕα,j(x) = 0 if x /∈ Uα,j ;

(c) ∀x, y ∈ Xα, dα(x, y) ≤ R ⇒
∑

j∈J

∣∣ϕα,j(x)− ϕα,j(y)
∣∣ ≤ ε2

4 ;

(d) the metric family {Uα,j |α ∈ I, j ∈ Jα} is in H.

The metric family {UR
α,j | α ∈ I, j ∈ Jα}, where UR

α,j = {x ∈
Xα | dα(x, Uα,j) ≤ R}, is coarsely equivalent to the metric family

{Uα,j | α ∈ I, j ∈ Jα}. Therefore, since {Uα,j | α ∈ I, j ∈ Jα} is in

H, so is {UR
α,j | α ∈ I, j ∈ Jα}. By Proposition 9.22, there exists a fam-

ily of Hilbert spaces H = {Hα,j |α ∈ I, j ∈ Jα} and a map of metric

families ξ = {ξα,j : UR
α,j → Hα,j |α ∈ I, j ∈ Jα} satisfying

(i) ‖ξα,j(x)‖ = 1, for all x ∈ UR
α,j ;

(ii) sup
{
‖ξα,j(x) − ξα,j(y)‖ : dα(x, y) ≤ R, x, y ∈ UR

α,j

}
≤ ε/2, for all

α ∈ I, j ∈ Jα;

(iii) lim
S→∞

sup
α∈I,j∈Jα

sup
{∣∣〈ξα,j(x), ξα,j(y)〉∣∣ : dα(x, y) ≥ S, x, y ∈ UR

α,j

}
= 0.

For each α ∈ I, extend ξα,j to all of Xα by setting ξα,j(x) = 0 if

x ∈ Xα�UR
α,j . Then we can define the map ηα : Xα → Hα = ⊕j∈JαHα,j ,

ηα(x) =
(
ηα,j(x)

)
j∈Jα

, by setting

ηα,j(x) = ϕα,j(x)
1/2ξα,j(x).

It now follows from [7, proof of Theorem 3.2] that

(i′) ‖ηα(x)‖ = 1, for all x ∈ Xα and α ∈ I;

(ii′) ∀α ∈ I, ∀x, y ∈ Xα, dα(x, y) ≤ R ⇒ ‖ηα(x)− ηα(y)‖ ≤ ε;

(iii′) lim
S→∞

sup
α∈I

sup
{∣∣〈ηα(x), ηα(y)〉∣∣ : dα(x, y) ≥ S, x, y ∈ Xα

}
= 0.
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Thus, by Proposition 9.22, X = {Xα |α ∈ I} is in H.

Remark In [12, Theorem 4.6], Guentner, Tessera and Yu proved that

the collection of exact2 metric families, E, is closed under weak decom-

position. Thus, since B is contained in E, every metric family with weak

finite decomposition complexity is also in E. A straightforward general-

ization of [7, Proposition 2.10(c)] shows that an exact metric family is

coarsely embeddable into Hilbert space. Therefore, we have the following

sequence of inclusions of collections of metric families, each of which is

stable under decomposition:

wD ⊂ E ⊂ H.

9.3 Weak Hyperbolic Dimension

In this section we prove that a metric space with finite hyperbolic di-

mension, and more generally one with finite weak hyperbolic dimension,

has weak finite decomposition complexity (Theorem 9.29). Buyalo and

Schroeder introduced the hyperbolic dimension of a metric space (Def-

inition 9.25) to study the quasi-isometric embedding properties of neg-

atively curved spaces (see [4] for an exposition). The related notion of

weak hyperbolic dimension was introduced by Cappadocia in his PhD

thesis [5].

Definition 9.24 Let N be a positive integer and R > 0. A subset

Y ⊂ X of a metric space (X, d) is (N,R)-large scale doubling if for every

x ∈ X and every r ≥ R, the intersection of Y with a ball in X with

radius 2r centered at x can be covered with N balls of radius r with

centers in X.

A metric family Y of subsets of X is large scale doubling3 if there

exists (N,R) such that each Y ∈ Y is (N,R)-large scale doubling and

every finite union of elements of Y is (N,R′)-large scale doubling, where
possibly R′ > R and R′ could depend on the particular finite union.

Hyperbolic dimension is analogous to asymptotic dimension with the

role of bounded metric families replaced by large scale doubling metric

families.

2 Exactness of a metric space is a coarse invariant related to the notion of
Property A. Specifically, a metric space with Property A is exact, and an exact
metric space with bounded geometry has Property A [6].

3 Some authors call such a collection of subsets uniformly large scale doubling.
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Definition 9.25 Let n be a non-negative integer. Let L be the collec-

tion of large scale doubling metric families. A metric space (X, d) has

hyperbolic dimension at most n, denoted hyperdim(X) ≤ n, if {X} is

n-decomposable over L. We say hyperdim(X) = n if n is the smallest

non-negative integer for which hyperdim(X) ≤ n. If no such integer

exists then, by convention, hyperdim(X) =∞.

Since a bounded metric family is large scale doubling, we have that

hyperdim(X) ≤ asdim(X). If X is a large scale doubling metric space

(for example, Rn with the Euclidean metric), then hyperdim(X) = 0.

Buyalo and Schroeder showed that hyperdim(Hn) = n, where Hn is n-

dimensional hyperbolic space, n ≥ 2. Chris Cappadocia introduced the

weak hyperbolic dimension of a metric space in his PhD thesis [5]. In

Cappadocia’s theory, large scale doubling metric families are replaced

by weakly large scale doubling4 metric families, dropping the condition

on finite unions appearing in Definition 9.25. That is, a metric family

Y of subsets of a metric space X is called weakly large scale doubling if

there exists (N,R) such that each Y ∈ Y is (N,R)-large scale doubling.

Definition 9.26 ([5]) Let wL be the collection of weakly large scale

doubling metric families. A metric space (X, d) has weak hyperbolic di-

mension at most n if {X} is n-decomposable over wL. We denote this

property by w-hyperdim(X) ≤ n, and write w-hyperdim(X) = n if n is

the smallest non-negative integer for which w-hyperdim(X) ≤ n. If no

such integer exists then, by convention, w-hyperdim(X) =∞.

Since L ⊂ wL, we have w-hyperdim(X) ≤ hyperdim(X) ≤ asdim(X).

We say that a metric space is (N,R)-large scale doubling if it is (N,R)-

large scale doubling as a subset of itself (see Definition 9.24).

Lemma 9.27 Let U ⊂ X be an (N,R)-large scale doubling subset of

a metric space (X, dX). Then (U, dU ) is (N2, 2R)-large scale doubling,

where dU is the subspace metric induced by dX .

Proof Let x ∈ U and r ≥ 2R. Since U is an (N,R)-large scale dou-

bling subset of X, there are points x1, . . . , xN2 ∈ X such that B2r(x) ⊂⋃N2

i=1 Br/2(xi). Let J be the set of indices, i, for which Br/2(xi)∩U is non-

empty. For each i ∈ J choose ui ∈ Br/2(xi)∩U . Since Br/2(xi) ⊂ Br(ui)

for i ∈ J , we have that B2r(x) ∩ U ⊂
⋃

i∈J Br(ui) ∩ U .

A subset A ⊂ X of a metric space (X, dX) is said to be L-separated,

4 Cappadocia uses the terminology uniformly weakly large scale doubling.
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where L > 0, if dX(u, v) ≥ L for all u, v ∈ A with u �= v. We say that a

metric space (X, dX) is N -doubling, where N is a positive integer, if it is

(N,R)-large scale doubling for all R > 0, that is, doubling at all scales

with doubling constant N .

We are now able to prove the key fact needed to establish Theo-

rem 9.29.

Proposition 9.28 Let X = {(Xα, dα) | α ∈ I} be a metric family such

that there exists (N,R) with the property that each (Xα, dα) is (N,R)-

large scale doubling. Then there exists a positive integer M , depending

only on N , such that asdim(X ) ≤M .

Proof Let λ > 0 be given. Let r = max(λ,R). For each α ∈ I, choose a

maximal 2r-separated set Zα ⊂ Xα. Then Uα = {B4r(x) | x ∈ Zα} is a

cover of Xα. Note that the Lebesgue number of Uα satisfies L(Uα) ≥ λ,

for each α ∈ I.

Let � be a positive integer and assume that y ∈ B4r(x1)∩· · ·∩B4r(x�),

where x1, . . . , x� ∈ Zα are distinct. Note that {x1, . . . , x�} ⊂ B8r(x1).

By Lemma 9.27, B8r(x1) ∩ Zα can be covered by N2 balls of radius 4r

with centers in Zα and, in turn, each of these balls can be covered by N2

balls of radius 2r with centers in Zα. For each z ∈ Zα, B2r(z)∩Zα = {z}
because Zα is 2r-separated. It follows that B8r(x1)∩Zα contains at most

N4 points, and so � ≤ N4. Hence, for each α ∈ I, the multiplicity of

the cover Uα is at most N4. Since ∪α∈IUα is a bounded metric fam-

ily, Proposition 9.18 implies that X is (N4 − 1)-decomposable over B

(the collection of bounded metric families). In other words, asdim(X ) ≤
N4 − 1.

Combining Definition 9.26 and Proposition 9.28 yields the following

theorem.

Theorem 9.29 A metric space X with finite weak hyperbolic dimen-

sion has weak finite decomposition complexity. If X has weak hyperbolic

dimension at most 1, then X has (strong) finite decomposition complex-

ity.

Proof If w-hyperdim(X) ≤ n, then, applying Proposition 9.28, X is n-

decomposable over A (the collection of metric families with finite asymp-

totic dimension). Therefore by (9.1), X has weak FDC, and if n ≤ 1,

then X has FDC.

Since w-hyperdim(X) ≤ hyperdim(X), we also get the following corol-

lary.
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Corollary 9.30 A metric space X with finite hyperbolic dimension

has weak finite decomposition complexity. If X has hyperbolic dimension

at most 1, then X has (strong) finite decomposition complexity.

9.4 Some Open Questions

In this section we discuss some open problems involving decomposition

complexity.

There are some interesting finitely generated groups for which the

FDC (or weak FDC) condition is unknown.

Question Consider the following groups:

1 Grigorchuk’s group of intermediate growth,

2 Thompson’s group

F = 〈A,B | [AB−1, A−1BA] = [AB−1, A−2BA2] = 1〉,

3 Out(Fn), the outer automorphism group of a free group Fn of rank

n ≥ 3.

For which of these groups, if any, does the FDC (or weak FDC) condition

hold?

Grigorchuk’s group and Thompson’s group F are known to have infi-

nite asymptotic dimension. Grigorchuk’s group is amenable and there-

fore has Yu’s Property A, a condition that implies coarse embeddability

into Hilbert space (see [12, Section 4] for a discussion of Property A).

A group with weak FDC has Property A, but the reverse implication is

unknown.

Question Does Property A for a countable group imply weak FDC?

Osajda gave an example of a finitely generated group that is coarsely

embeddable into Hilbert space yet does not have Property A [14]. Thus,

Osajda’s example is a group in the collection H of metric families that

are coarsely embeddable into Hilbert space, but not in the collection E

of exact metric families.

Question Are there interesting collections of metric families, stable

under (weak or strong) decomposition, that lie strictly in between E

and H?
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As pointed out to us by the referee, while our proof of Theorem 9.23

is very specific to Hilbert spaces, it is natural to try to generalize it to

more general classes of Banach spaces. That is:

Question Is there an interesting class of Banach spaces that is stable

under weak decomposition?

The mapping class group of a surface has finite asymptotic dimension

[3], and, by analogy, one surmises that Out(Fn) may also have finite

asymptotic dimension and hence FDC. Although a proof that the asymp-

totic dimension of Out(Fn) is finite has so far been elusive, perhaps the

less restrictive, yet geometrically consequential (see the discussion in

Section 9.1) weak FDC condition might be easier to demonstrate.

Question Which, if any, of the groups: Grigorchuk’s group, Thomp-

son’s group F and Out(Fn), n ≥ 3, have finite weak hyperbolic dimen-

sion?

None of these groups are large scale doubling as metric spaces and

so their weak hyperbolic dimension is at least 1. Note that by Theorem

9.29, any group on this list that has finite weak hyperbolic dimension

must have weak FDC.

Question Does a space with finite weak hyperbolic dimension have

FDC?

This question may be more tractable than the general question of

whether weak FDC implies FDC (see [12, Question 2.2.6]).
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Some Remarks on the Covering Groups of a
Topological Group

Dongwen Qi

Abstract

We discuss the connection between Chevalley’s definition of a covering

space and the usual definition given in an introductory topology course.

Then we indicate how some theorems about the covering groups of a

topological group can be proved from the global point of view, without

using local isomorphisms between topological groups.

10.1 Covering Spaces

In a beginning topology course (e.g. [2]), a covering space of a topological

space is defined as follows.

Definition 10.1 For a topological space B (often abbreviated as a

space B in this chapter), a covering space (E, p) of B is a pair consisting

of a space E and a continuous surjective mapping p : E → B, such

that each point of B has an open neighborhood V , whose inverse image

p−1(V ) is a union of disjoint open sets Uα in E, with the property that

p|Uα
: Uα → V is a homeomorphism.

However, the idea of covering space is useful in algebraic topology only

when some more conditions are imposed, for example, when the spaces

involved are assumed to be connected and locally path-connected. In

this case, the lifting property can be proved with the help of consider-

ing fundamental groups of the corresponding spaces. Also, the existence

of a simply connected covering space (called a universal covering) is

proved for a connected, locally path-connected, and semilocally simply
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connected space B. The universal covering E is constructed by using

path homotopy classes in B.

Chevalley’s monograph Theory of Lie Groups I [1] revolutionized the

idea of viewing Lie groups as global objects. It is well known that Lie

groups can admit non-trivial covering groups. However, Chevalley pre-

ferred to develop the theory of covering spaces without using paths or

local path-connectedness. In furtherance of this effort, he formulated the

following definition of a covering space, where connectedness and local

connectedness of the space E are assumed, for the purpose of proving

the lifting property without using paths. The connectedness of some

classical Lie groups had been proved through a standard procedure of

considering homogeneous spaces (and induction). We assume that all

the spaces are Hausdorff in the following discussions.

Definition 10.2 ([1], page 40) For a continuous mapping p of a space

E into a space B, a subset B1 of B is said to be evenly covered by E (with

respect to p) if p−1(B1) is non-empty, and every (connected) component

of p−1(B1) is mapped homeomorphically onto B1 by the mapping p.

Definition 10.3 ([1], page 40) For a space B, a covering space (E, p)

of B is a pair formed by a connected and locally connected space E and

a continuous mapping p of E onto B which has the following property:

each point of B has a neighborhood which is evenly covered by E (with

respect to p).

Here a neighborhood of a point b in space B is understood to be a set

N such that there exists an open set U such that b ∈ U ⊂ N ; N need

not be open itself.

It is worth noting that in a locally connected space, every component

of an open set is an open set.

Now we show that Chevalley’s definition of a covering space satisfies

the usual requirements of a covering space defined in a typical topology

course.

Proof Given a point b ∈ B, let N1 be a neighborhood of b that is

evenly covered by p. Choose an open set U1 of B such that b ∈ U1 ⊂ N1,

and a ∈ p−1({b}) ⊂ E. Since E is locally connected, continuity of p

enables us to find a connected open neighborhood U of a in E such that

p(U) ⊂ U1 ⊂ N1.

Since N1 is evenly covered by p, the connected neighborhood U of

a is contained in one of the connected components of p−1(N1), which

is mapped homeomorphically onto N1 in the subspace topology. Thus
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p(U) is relatively open in N1, i.e., being the intersection of an open set

W1 (of B) with N1. Note also that p(U) ⊂ U1 ⊂ N1, and U1 is open in

B, we see that p(U) = W1 ∩ U1 is indeed an open set of B.

The preceding discussion implies that B is locally connected, and is

connected (since B = p(E)). Now let V1 ⊂ N1 be a connected open

neighborhood of a. Each connected component Oα of p−1(V1) is con-

tained in a component Mα of p−1(N1). Since E is locally connected and

p−1(V1) is open, Oα is open in E. In each component Mβ of p−1(N1),

there is a subset O′
β ⊂Mβ such that p(O′

β) = V1. It follows that the sets

of indices {α} and {β} are the same, and Oα = O′
α. This shows that

Chevalley’s definition of a covering space satisfies the usual requirements

described in a topology course, when E is assumed to be connected and

locally connected.

10.2 Covering Groups of a Topological Group

A topological group G is called a covering group of a topological group

H if there is a continuous homomorphism f : G→ H, such that the pair

(G, f) is a covering space of H.

The following statement is proved in [1] (page 53) using the lifting

property related to a universal covering.

Proposition 10.4 Assume that a topological group H has a simply

connected covering space (G, f). It is then possible to define a multi-

plication in G that turns the space G into a topological group and the

covering space (G, f) into a covering group.

Then Chevalley went on to prove the following statement by consid-

ering extensions of local isomorphisms.

Proposition 10.5 If a topological group H admits a simply connected

covering group (G, f), this covering group is unique up to isomorphism;

i.e., if (G′, f ′) is another simply connected covering group of H, then

there exists an isomorphism θ of the topological group G with G′ such
that f = f ′ ◦ θ.

We now show that Proposition 10.5 can be proved by simply applying

the lifting property related to a universal covering. The lifting prop-

erty is proved in [1] (page 50) under the assumption that G (or E) is

connected, locally connected, and simply connected; or we may replace
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local connectedness by local path-connectedness (which is the case of

Lie groups) and apply the typical path-lifting arguments provided in a

topology course (see [2]).

Proof Let e and e′ be the identity elements in G and G′, respectively.
Since both G and G′ are simply connected, it follows from the lifting

property that there is a unique continuous mapping θ : G → G′, such
that θ(e) = e′, and f = f ′ ◦ θ. A continuous mapping θ′ : G′ → G is

determined similarly that satisfies θ′(e′) = e and f ′ = f ◦ θ′.
Fix an x ∈ G, consider two mappings mx and nx from G to G′,

where mx(y) = θ(xy), and nx(y) = θ(x)θ(y), for y ∈ G. It is clear

that both mappings are continuous, and mx(e) = θ(x) = nx(e). Note

that f ′(mx(y)) = f ′(θ(xy)) = f(xy) = f(x)f(y), and f ′(nx(y)) =

f ′(θ(x)θ(y)) = f ′(θ(x))f ′(θ(y)) = f(x)f(y), since both f and f ′ are

group homomorphisms. Uniqueness of lifting implies θ(xy) = θ(x)θ(y),

for x, y ∈ G, and θ′ ◦ θ = idG, and θ ◦ θ′ = idG′ , because f ◦ (θ′ ◦ θ) =
(f ◦ θ′) ◦ θ = f ′ ◦ θ = f , etc. Thus Proposition 10.5 is proved without

incorporating local isomorphisms among the three groups.

For a space B which has a simply connected covering space (E, p),

the group of deck transformations of B, that is, the group of homeomor-

phisms θ : E → E such that p ◦ θ = p, is isomorphic to the fundamental

group of B.

The following statement ([1], page 59) is important when discussing

the fundamental groups of classical Lie groups.

Proposition 10.6 Let G be a connected and locally connected topolog-

ical group, and let H be a closed locally connected subgroup of G. Assume

that G/H is simply connected and that G and H are semilocally simply

connected. Then the fundamental group of G is isomorphic to a factor

group of the fundamental group of H.

The conditions in Proposition 10.6 imply that H is connected, and

both G and H admit simply connected covering groups, respectively.

Here we give a proof of the above proposition using lifting properties.

Again, we do not need to consider extending local isomorphisms.

Proof Let (G̃, p) and (H̃, q) denote simply connected covering groups

of G and H respectively. Write K = p−1(H). Then K is a closed sub-

group of G̃. By considering coset correspondences and the corresponding

quotient topologies, it is shown (in [1], page 60) that G̃/K and G/H are

homeomorphic. It is not difficult to verify that K is locally connected,
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and hence is connected. The fact that p1 = p|K : K → H is a covering

map follows from a standard argument in topology.

Now we proceed to show that the fundamental group of G is isomor-

phic to a factor group of the fundamental group of H.

Let e1 and e2 be the identity elements in G̃ and H̃ respectively. Be-

cause of the lifting property of universal covering spaces, the group of

deck transformations of G is isomorphic to the kernel ker(p) of p : G̃→ G

([1], page 54). The fact that there is a continuous map φ : H̃ → K such

that q = p1 ◦φ and φ(e2) = e1 also follows from the lifting property. The

basic theory of covering spaces ([2], page 485) implies that φ : H̃ → K

is a covering map, and hence is surjective. Since p1(φ(xy)) = q(xy) =

q(x)q(y), p1(φ(x)φ(y)) = p1(φ(x))p1(φ(y)) = q(x)q(y), for x, y ∈ H̃, and

φ(xe2) = φ(x) = φ(x)e1 = φ(x)φ(e2), the lifting property implies that

φ(xy) = φ(x)φ(y). So φ : H̃ → K is a group homomorphism.

Since q = p1◦φ, φ(ker(q)) ⊂ ker(p1) = ker(p) ⊂ K. For any z ∈ ker(p),

there is an x ∈ H̃, φ(x) = z. Thus q(x) = p1(φ(x)) = p1(z), which is

the identity element in H ⊂ G. It follows that φ|ker(q) : ker(q)→ ker(p)

is surjective. Hence the group of deck transformations of G̃ → G is

isomorphic to a factor group of the group of deck transformations of

H̃ → H.
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The Σ-invariants of Thompson’s group F via
Morse Theory

Stefan Witzel and Matthew C. B. Zaremsky

Abstract

Bieri–Geoghegan–Kochloukova computed the BNSR-invariants Σm(F )

of Thompson’s group F for allm. We recompute these using entirely geo-

metric techniques, making use of the Stein–Farley CAT(0) cube complex

X on which F acts.

11.1 Introduction

In [5], Bieri, Geoghegan and Kochloukova computed Σm(F ) for all m.

Here F is Thompson’s group, and Σm is the mth Bieri–Neumann–

Strebel–Renz (BNSR) invariant. This is a topological invariant of a group

of type Fm [4, 3]. The proof in [5] makes use of various algebraic facts

about F , for instance that it contains no non-abelian free subgroups, and

that it is isomorphic to an ascending HNN-extension of an isomorphic

copy of itself, and applies tools specific to such groups to compute all

the Σm(F ).

In this chapter we consider the free action of F by isometries on a

proper CAT(0) cube complex X, the Stein–Farley complex. We apply a

version of Bestvina–Brady Morse theory to this space, and recompute

the invariants Σm(F ). The crucial work to do, using this approach, is to

analyze the homotopy type of ascending links of vertices in X and super-

level sets in X with respect to various character height functions. Our

proof is purely geometric and self-contained, and does not require the

aforementioned algebraic facts about F . It is possible that this approach

could be useful in determining the BNSR-invariants of other interesting

groups.
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The abelianization of Thompson’s group F is free abelian of rank 2.

A basis of Hom(F,R) ∼= R2 is given by two homomorphisms usually

denoted χ0 and χ1. The main result of [5] is the following.

Theorem A Write a non-trivial character χ : F → R as χ = aχ0+bχ1

(with (a, b) �= (0, 0)). Then [χ] is in Σ1(F ) unless a > 0 and b = 0, or

b > 0 and a = 0. Moreover, [χ] is in Σ2(F ) = Σ∞(F ) unless a ≥ 0 and

b ≥ 0.

Here [χ] denotes the equivalence class of χ up to positive scaling.

In Section 11.2 we recall the invariants Σm(G), and set up the Morse

theory tools we will use. In Section 11.3 we recall Thompson’s group F

and the Stein–Farley complex X, and discuss characters of F and height

functions on X. Section 11.4 is devoted to combinatorially modeling

vertex links in X, which is a helpful tool in the computations of the

Σm(F ). Theorem A is proven in stages in Sections 11.5 through 11.7.

11.2 The Invariants

A character of a group G is a homomorphism χ : G→ R. If the image is

infinite cyclic, the character is discrete. If G is finitely generated, we can

take Hom(G,R) ∼= Rd and mod out scaling by positive real numbers to

get S(G) := Sd−1, called the character sphere. Here d is the rank of the

abelianization of G. Now, the definition of the Bieri–Neumann–Strebel

(BNS) invariant Σ1(G) for G finitely generated (first introduced in [4])

is the subset of S(G) defined by:

Σ1(G) := {[χ] ∈ S(G) | Γ0≤χ is connected}.

Here Γ is the Cayley graph of G with respect to some finite generating

set, and Γ0≤χ is the full subgraph spanned by those vertices g with

0 ≤ χ(g).

The higher Bieri–Neumann–Strebel–Renz (BNSR) invariants Σm(G)

(m ∈ N ∪ {∞}), introduced in [3], are defined somewhat analogously.

Let G be of type Fm and let χ be a character of G. Let Γm be the result

of equivariantly gluing cells, up to dimension m, to the Cayley graph

Γ, in a G-cocompact way to produce an (m− 1)-connected space (that

this is possible is more or less the definition of being of type Fm). For

t ∈ R let Γm
t≤χ be the full subcomplex spanned by those g with t ≤ χ(g).

Then [χ] ∈ Σm(G) by definition if the filtration (Γm
t≤χ)t∈R is essentially

(m− 1)-connected.
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Recall that a space Y is (m − 1)-connected if every continuous map

Sk−1 → Y is homotopic to a constant map for k ≤ m. A filtration

(Yt)t∈R (with Yt ⊇ Yt+1) is essentially (m − 1)-connected if for every t

there is a t′ ≤ t such that for all k ≤ m, every continuous map Sk−1 → Yt

is homotopic in Yt′ to a constant map. Recall also that a pair (Y, Y0) is

(m − 1)-connected if for all k ≤ m, every map (Dk−1, Sk−2) → (Y, Y0)

is homotopic relative Y0 to a map with image in Y0.

In the realm of finiteness properties, the main application of the

BNSR-invariants is the following, see [3, Theorem 5.1] and [5, Theo-

rem 1.1].

Theorem 11.1 [5, Theorem 1.1] Let G be a group of type Fm and N

a normal subgroup of G with G/N abelian. Then N is of type Fm if and

only if for every χ ∈ Hom(G,R) with χ(N) = 0 we have [χ] ∈ Σm(G).

As an example, if χ is discrete then ker(χ) is of type Fm if and only

if [±χ] ∈ Σm(G).

It turns out that to compute Σm(G), one can use spaces and filtrations

other than just Γm and (Γm
t≤χ)t∈R.

Proposition 11.2 [9, Definition 8.1] Let G be of type Fm, acting

cellularly on an (m−1)-connected CW complex Y . Suppose the stabilizer

of any k-cell is of type Fm−k, and that the action of G on Y (m) is

cocompact. For any non-trivial character χ ∈ Hom(G,R), there is a

character height function, denoted hχ, i.e., a continuous map hχ : Y →
R, such that hχ(gy) = χ(g) + hχ(y) for all y ∈ Y and g ∈ G. Then

[χ] ∈ Σm(G) if and only if the filtration (h−1
χ ([t,∞)))t∈R is essentially

(m− 1)-connected.

It is a fact that this is independent of Y and hχ. In our case G can

be naturally regarded as a subset of Y and we will therefore write χ to

denote both the character and the character height function.

The filtration of Y that we will actually use in practice is (Yt≤χ)t∈R,

where Yt≤χ is defined to be the full subcomplex of Y supported on those

vertices y with t ≤ χ(y). Our working definition of Σm(G) will be the

following.

Corollary 11.3 (Working definition) Let G, Y and χ be as in Propo-

sition 11.2. Then [χ] ∈ Σm(G) if and only if the filtration (Yt≤χ)t∈R is

essentially (m− 1)-connected.

Proof We need to show that (Yt≤χ)t∈R is essentially (m−1)-connected

if and only if (h−1
χ ([t,∞)))t∈R is. First note that this is really a statement
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about m-skeleta. Then since m-skeleta are G-cocompact, there exists a

uniform bound D such that for any two points y, y′ of Y sharing a k-cell

(k ≤ m), we have |χ(y)−χ(y′)| ≤ D. Now the result is immediate, since

Y
(m)
t≤χ ⊆ χ−1([t−D,∞))(m) and χ−1([t,∞))(m) ⊆ Y

(m)
t−D≤χ.

Remark Bieri and Geoghegan generalized the BNSR-invariants in [2],

to a family of invariants Σm(ρ) defined for any (sufficiently nice) action

ρ of a group on a CAT(0) space. The classical BNSR-invariants agree

with the case where ρ is the action of G on Hom(G,R). See also [12,

Section 18.3].

11.2.1 Morse Theory

The criterion Corollary 11.3 is particularly useful in the situation where

Y is an affine cell complex and χ is affine on cells. One can then make

use of a version of Bestvina–Brady Morse theory and study relative

connectivity locally in terms of ascending/descending links.

By an affine cell complex we mean a complex that is obtained by glu-

ing together euclidean polytopes. More precisely, Y is an affine cell com-

plex if it is the quotient Ŷ /∼ of a disjoint union Ŷ =
⋃

λ Cλ of euclidean

polytopes modulo an equivalence relation ∼ such that every polytope is

mapped injectively to Y , and such that if two faces of polytopes have a

(relative) interior point identified then their entire (relative) interior is

isometrically identified (see [7, Definition I.7.37] for a more general defi-

nition). In particular, every cell (meaning every image of some polytope

in Ŷ ) carries an affine structure. The link lkY v of a vertex v of Y con-

sists of directions issuing at the vertex. It naturally carries the structure

of a spherical cell complex, whose closed cells consist of directions that

point into closed cells of Y .

Definition 11.4 (Morse function) The most general kind of Morse

function on Y that we will be using is a map (h, s) : Y → R × R such

that both h and s are affine on cells. The codomain is ordered lexico-

graphically, and the conditions for (h, s) to be a Morse function are the

following: the function s takes only finitely many values on vertices of

Y , and there is an ε > 0 such that every pair of adjacent vertices v and

w either satisfy |h(v)− h(w)| ≥ ε, or else h(v) = h(w) and s(v) �= s(w).

As an example, if h is discrete and s is constant, we recover the notion

of “Morse function” from [1]. We think of a Morse function as assigning

a height h(v) to each vertex v. The secondary height function s “breaks
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ties” for adjacent vertices of the same height. We will speak of (h, s)(v)

as the refined height of v. Note that since h is affine, the set of points

of a cell σ on which h attains its maximum is a face σ̄. Since s is affine

as well, the set of points of σ̄ on which s attains its maximum is a face

σ̂. If σ̂ were to have two adjacent vertices, these vertices would have

the same refined height, and (h, s) would not be a Morse function. This

shows that every cell has a unique vertex of maximal refined height and

(by symmetry) a unique vertex of minimal refined height.

The ascending star star(h,s)↑ v of a vertex v (with respect to (h, s)) is

the subcomplex of star v consisting of cells σ such that v is the vertex

of minimal refined height in σ. The ascending link lk(h,s)↑ v of v is the

link of v in star(h,s)↑ v. The descending star and the descending link

are defined analogously. A consequence of h and s being affine is the

following.

Observation 11.5 Ascending and descending links are full subcom-

plexes.

We use notation like Yp≤h≤q to denote the full subcomplex of Y sup-

ported on the vertices v with p ≤ h(v) ≤ q (this is the union of the

closed cells all of whose vertices lie within the bounds). An important

tool we will use is the following.

Lemma 11.6 (Morse Lemma) Let p, q, r ∈ R ∪ {±∞} be such that

p ≤ q ≤ r. If for every vertex v ∈ Yq<h≤r the descending link lk
(h,s)↓
Yp≤h

v is

(k − 1)-connected then the pair (Yp≤h≤r, Yp≤h≤q) is k-connected. If for

every vertex v ∈ Yp≤h<q the ascending link lk
(h,s)↑
Yh≤r

v is (k−1)-connected

then the pair (Yp≤h≤r, Yq≤h≤r) is k-connected.

Proof The second statement is like the first with (h, s) replaced by

−(h, s), so we only prove the first. Using induction (and compactness of

spheres in case r =∞) we may assume that r− q ≤ ε (where ε > 0 is as

in Definition 11.4). By compactness of spheres, it suffices to show that

there exists a well order # on the vertices of Yq<h≤r such that the pair

(S�v, S≺v) :=

⎛⎝Yp≤h≤q ∪
⋃
w�v

star
(h,s)↓
Yp≤h

w, Yp≤h≤q ∪
⋃
w≺v

star
(h,s)↓
Yp≤h

w

⎞⎠
is k-connected for every vertex v ∈ Yq<h≤r. To this end, let # be any

well order satisfying v ≺ v′ whenever s(v) < s(v′) (this exists since

s takes finitely many values on vertices). Note that S�v is obtained

from S≺v by coning off S≺v ∩ ∂ star v. We claim that this intersection
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is precisely the boundary of star
(h,s)↓
Yp≤h

v in Y
(h,s)≤(h,s)(v)
p≤h , which we will

denote B, and which is homeomorphic to lk
(h,s)↓
Yp≤h

v and hence (k − 1)-

connected by assumption. The inclusion S≺v∩∂ star v ⊆ B is clear. Since

S≺v ∩ ∂ star v is a full subcomplex of ∂ star v, it suffices for the converse

to verify that any vertex w adjacent to v with (h, s)(w) < (h, s)(v) lies

in S≺v. If h(w) < h(v) then h(w) ≤ h(v)−ε ≤ r−ε ≤ q, so w ∈ Yp≤h≤q.

Otherwise s(w) < s(v) and thus w ≺ v.

11.2.2 Negative Properties

When trying to disprove finiteness properties using Morse theory, one

often faces the following problem: suppose the Morse function is on a

contractible space and the ascending links are always (m−1)-connected

but infinitely often not m-connected. One would like to say that every

ascending link that is not m-connected cones off at least one previ-

ously non-trivial m-sphere, and thus there are m-spheres that only get

coned off arbitrarily late (and hence the filtration is not essentially m-

connected). But this argument does not work in general because it is

possible that the m-sphere one is coning off was actually already homo-

topically trivial in the superlevel set, and then one is actually producing

an (m+ 1)-sphere. This second option can be excluded if one can make

sure that no (m+1)-spheres are ever coned off (for example, if the whole

contractible space is (m+1)-dimensional) and then the argument works.

In general though, the difference between killing m-spheres and produc-

ing (m + 1)-spheres is not visible locally and one has to take a more

global view. The following will be useful in doing so.

Observation 11.7 Let an (m− 1)-connected affine cell complex X be

equipped with a Morse function (h, s) : X → R× R and assume that all

ascending links are (m − 2)-connected. Then the filtration (Xt≤h)t∈R is

essentially (m− 1)-connected, if and only if Xp≤h is (m− 1)-connected

for some p, if and only if all Xp′≤h are (m− 1)-connected for all p′ ≤ p

(for some p).

Proof Since ascending links are (m− 2)-connected, the Morse Lemma

implies that for any p < q the pairs (Xp≤h, Xq≤h) are (m−1)-connected,

so in particular the map πk(Xq≤h ↪→ Xp≤h) is an isomorphism for k <

m − 1 and surjective for k = m − 1. Now for these p and q, we see

that this map induces the trivial map in homotopy up to dimension

m− 1 if and only if the homotopy groups vanish on Xp≤h. We conclude
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that the filtration is essentially (m− 1)-connected if and only if Xp≤h is

(m− 1)-connected for some p ∈ Z, or equivalently all p′ ≤ p.

11.3 Thompson’s Group and the Stein–Farley
Complex

Thompson’s group F has appeared over the past decades in a variety of

situations, and has proved to have many strange and interesting proper-

ties. It was the first example of a torsion-free group of infinite cohomo-

logical dimension that is of type F∞ [8]. Since it is of type F∞, one can

ask what its BNSR-invariants Σm(F ) are, for arbitrary m. The m = 1

case was answered by Bieri, Neumann and Strebel in [4], and the m ≥ 2

case by Bieri, Geoghegan and Kochloukova in [5]. The main result of the

present work is a recomputation of the Σm(F ), making use of a CAT(0)

cube complex on which F acts freely, called the Stein–Farley complex X.

11.3.1 The Group

The fastest definition of F is via its standard infinite presentation,

F = 〈xi, i ∈ N | xjxi = xixj+1, i < j〉.

One can also realize it as the group of orientation-preserving piecewise

linear homeomorphisms of the interval [0, 1] with dyadic slopes and

breakpoints. For our purposes, the most useful definition is in terms

of split-merge tree diagrams.

A split-merge tree diagram (T−/T+) consists of a binary tree T− of

“splits” and a binary tree T+ of “merges”, such that T− and T+ have the

same number of leaves. The leaves of T− and of T+ are naturally ordered

left to right and we identify them. Two split-merge tree diagrams are

equivalent if they can be transformed into each other via a sequence of

reductions or expansions. A reduction is possible if T− and T+ contain

terminal carets whose leaves coincide. The reduction consists of deleting

both of these carets. An expansion is the inverse of a reduction. We

denote the equivalence class of (T−/T+) by [T−/T+].

These [T−/T+] are the elements of F . The multiplication, say of ele-

ments [T−/T+] and [U−/U+], written [T−/T+] · [U−/U+], is defined as

follows. First note that T+ and U− admit a binary tree S that con-

tains them both, so using expansions we have [T−/T+] = [T̂−/S] and
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E−

E+

Figure 11.1 A split-merge diagram with two heads and three feet.
The diagram is not reduced because the 7th and 8th leaves of E−
and E+ both lie in terminal carets.

[U−/U+] = [S/Û+] for some T̂− and Û+. Then we can define

[T−/T+] · [U−/U+] := [T̂−/S] · [S/Û+] = [T̂−/Û+].

This multiplication is well defined, and it turns out that the resulting

structure is a group, namely F . More information on the background of

F can be found in [10]. We should point out that, under our convention,

T− encodes the subdivision of the range and T+ of the domain; this is

the reverse of the convention in [10].

11.3.2 The Stein–Farley Complex

We now recall the Stein–Farley cube complex X on which F acts. This

was first constructed by Stein in [13], and shown to be CAT(0) by Farley

[11]. We begin by generalizing split-merge tree diagrams to allow for

forests: a split-merge diagram (E−/E+) consists of a binary forest E−
of “splits” and a binary forest E+ of “merges” such that E− and E+

have the same number of leaves. By a binary forest we mean a finite

sequence of rooted binary trees. Thus the leaves of E− and of E+ are

naturally ordered left to right and we identify them. As in Figure 11.1

we will usually draw E+ upside down. We call the roots of E− heads

and the roots of E+ feet of the diagram.
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Just like the tree case, we have a notion of equivalence using reduction

and expansion, defined the same way. It is easy to see that every equiva-

lence class contains a unique reduced split-merge diagram: just note that

if a diagram (E−/E+) has two possible reductions that lead to diagrams

(D1
−/D

1
+) and (D2

−/D
2
+), both reductions can be performed at once to

give a diagram (C−/C+) that is a common reduction of (D1
−/D

1
+) and

(D2
−/D

2
+) (i.e., reduction is confluent in a very strong way). We will

sometimes abuse language and speak of a split-merge diagram, when

really we are talking about equivalence classes of split-merge diagrams.

Let P be the set of equivalence classes of split-merge diagrams. This

set has two important pieces of structure.

Groupoid. The first is a groupoid structure. If [E−/E+] has k heads

and � feet, and [D−/D+] has � heads andm feet, then we will define their

product, written [E−/E+]·[D−/D+], which is a split-merge diagram with

k heads and m feet. Like in F , with split-merge tree diagrams, one way

to define the product is to first note that E+ and D− admit a binary

forest C that contains them both. Using expansions one can thus write

[E−/E+] = [Ê−/C] and [D−/D+] = [C/D̂+] for some Ê− and D̂+. Now

we define

[E−/E+] · [D−/D+] := [Ê−/C] · [C/D̂+] = [Ê−/D̂+].

There is also a more visual description. The product can be obtained by

stacking the diagram (E−/E+) on top of (D−/D+) and then applying

a sequence of operations that are dual to expansion/reduction, namely

if a merge is immediately followed by a split, both can be removed.

Successively applying this operation eventually leads to a split-merge

diagram that represents [E−/E+] · [D−/D+].

For this multiplication operation to give P a groupoid structure, we

need identities and inverses. A forest in which all trees are trivial is called

a trivial forest. The trivial forest with n trees is denoted idn. We consider

binary forests as split-merge diagrams via the embedding E �→ [E/idm]

where m is the number of leaves of E. In particular, for every m we

have the element [idm/idm], and this is clearly a multiplicative identity

for split-merge diagrams against which it can be multiplied. Inverses are

straightforward: the (left and right) inverse of [E−/E+] is [E+/E−].

Observation 11.8 P is a groupoid with the above multiplication.

Since F lives in P as the set of elements with one head and one foot,

we have an action of F , by multiplication, on the subset P1 of elements

with one head.
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The second piece of structure on P is an order relation.

Poset. The order is defined by [E−/E+] ≤ [D−/D+] whenever there

is a binary forest C such that [E−/E+] · C = [D−/D+] (recall that we

identified the binary forest C with a split-merge diagram [C/idm]). In

words, [D−/D+] is greater than [E−/E+] if it can be obtained from it

by splitting feet. It is straightforward to check that ≤ is a partial order.

The subset P1 of elements with one head is a subposet.

The topological realization of the poset (P1,≤) is a simplicial complex

on which F acts, and the Stein–Farley complex X is a certain invariant

subcomplex with a natural cubical structure. Given split-merge diagrams

[E−/E+] ≤ [E−/E+] · E, we write [E−/E+] # [E−/E+] · E if E is an

elementary forest. This means that each of its trees is either trivial, or

a single caret. Now X is defined to be the subcomplex of |P1| consisting
of those chains x0 < · · · < xk with xi # xj for all i ≤ j. The cubical

structure is given by intervals: given x # y, the interval [x, y] := {z |
x ≤ z ≤ y} is a Boolean lattice of dimension n, and so the simplices in

[x, y] glue together into an n-cube. Here n is the number of carets in E,

with y = x · E.

Theorem 11.9 [11] X is a CAT(0) cube complex.

Note that the action of F on X is free. It is free on vertices since the

action is just by multiplication in a groupoid. Also, it is free on cubes

since if a group element stabilizes [x, y] it must fix x and y.

Every cube σ has a unique vertex x with fewest feet and a unique

vertex y with most feet. There is a unique elementary forest E with

y = x · E, and the other vertices of σ are obtained by multiplying x

by subforests of E. We introduce some notation for this: suppose x has

k feet and E = (A1, . . . , Ak), where each Ai is either I or Λ; here I is

the trivial tree and Λ is the tree with one caret. Let Φ be the set of

subforests of E, written Φ := 〈A1, . . . , Ak〉. Then the vertex set of σ is

precisely xΦ.

If we take a different vertex z of σ as “basepoint”, then we also have

to allow merges. Say z has m > k feet. Then we can write σ = zΨ

where Ψ is now of the form 〈A1, . . . , Am〉 where each Ai is either I, Λ or

V. Here V is the inverse of the tree with one caret (so an upside-down

caret). The tuple (A1, . . . , Am) is now to be thought of as a split-merge

diagram, and the set Ψ as the set of all split-merge diagrams that can

be obtained by removing some of the carets. As before, the vertex set of

σ is zΨ.
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11.3.3 Characters and Character Height Functions

It is well known that Hom(F,R) ∼= R2. A standard choice of basis

is {χ0, χ1}, where χ0 and χ1 are most easily described when view-

ing elements of F as piecewise linear homeomorphisms of [0, 1] with

dyadic slopes and breakpoints. Then χ0(f) := log2(f
′(0)) and χ1(f) :=

log2(f
′(1)). Here the derivatives are taken on the right for χ0 and the left

for χ1. So any character of F is of the form χ = aχ0 + bχ1 for a, b ∈ R.
For a tree T we define L(T ) to be the number of carets above the

leftmost leaf of T , and R(T ) to be the number of carets above the right-

most leaf. Then the characters χi : F → Z can be expressed in terms of

split-merge tree diagrams as

χ0([T−/T+]) := L(T+)− L(T−) and χ1([T−/T+]) := R(T+)−R(T−).
(11.1)

It is readily checked that (11.1) is invariant under the equivalence re-

lation on split-merge tree diagrams, and thus gives well defined maps.

Replacing binary trees by binary forests, the above definition general-

izes verbatim to arbitrary split-merge diagrams. In particular, the χi

can now be evaluated on vertices of X. Moreover, any character χ on F

can be written as a linear combination

χ = aχ0 + bχ1 (11.2)

and thus extends to arbitrary split-merge diagrams by interpreting (11.2)

as a linear combination of the extended characters.

Since χ will be our height function, we need the following.

Lemma 11.10 Any character χ extends to an affine map χ : X → R.

Proof It suffices to show that χ0, χ1 can be affinely extended. By

symmetry it suffices to treat χ0. Let �2 = vΦ be a square, say Φ =

〈A1, . . . , Ak〉, with exactly two Ai being Λ and all others being I. Say

Ai = Aj = Λ for i < j. Now either i > 1 and χ0 is constant on �2,

or i = 1 and χ0 is affine-times-constant on �2. We conclude using

Lemma 11.11 below.

Lemma 11.11 A map ϕ : {0, 1}n → R can be affinely extended to the

cube [0, 1]n if it can be affinely extended to its 2-faces.

Proof The values of ϕ on the zero vector and on the standard basis

vectors define a unique affine map ϕ̃. The goal is therefore to show that

ϕ̃ coincides with ϕ on all the other vertices of [0, 1]n. This is proved for

v ∈ {0, 1}n by induction on the number of entries in v equal to 1. Let
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v = (vi)1≤i≤n with vi = vj = 1 for some i �= j. We know by induction

that ϕ(w) = ϕ̃(w) for the three vertices w obtained from v by setting to

0 the entries with index i or j or both. But these three vertices together

with v span a 2-face, and so ϕ̃(v) is the value of the (unique) affine

extension of ϕ to that 2-face. Thus ϕ(v) = ϕ̃(v).

These extended characters χ will be our height functions. Our sec-

ondary height will be given by the number of feet function or its nega-

tive.

Observation 11.12 There is a map f : X → R that is affine on cubes

and assigns to any vertex its number of feet.

Since our definition of Morse function required the secondary height

function to take only finitely many values on vertices, for the next propo-

sition we must restrict to subcomplexes of the form Xp≤f≤q. This is the

full subcomplex supported on those vertices v with p ≤ f(v) ≤ q.

Proposition 11.13 Let χ be a character. The pair (χ, f), as well as

the pair (χ,−f), is a Morse function on Xp≤f≤q, for any p ≤ q <∞.

Proof We have already seen in Lemma 11.10 and Observation 11.12

that χ and f are affine. Also, f takes finitely many values on vertices

in Xp≤f≤q. It remains to see that there is an ε > 0 such that any

two adjacent vertices x and x′ either have |χ(x) − χ(x′)| ≥ ε, or else

χ(x) = χ(x′) and f(x) �= f(x′). Let ε = min{|c| | c ∈ {a, b} \ {0}},
where χ = aχ0 + bχ1. We obtain x′ from x by adding one split or

one merge to the feet of x′. If it does not involve the first or last foot,

then χ(x′) = χ(x). Otherwise χ(x′) = χ(x) ± c for c ∈ {a, b}, and so

|χ(x)− χ(x′)| = |c|, which is either 0 or at least ε.

11.4 Links and Subcomplexes

Since we will be doing Morse theory on X, we will need to understand

homotopy properties of links in X. In this section we model the links,

and then discuss some important subcomplexes of X.

11.4.1 (General) Matching Complexes

In this subsection we establish a useful model for vertex links in X.
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Definition 11.14 Let Δ be a simplicial complex. A general matching

is a subset μ of Δ such that any two simplices in μ are disjoint. The set

of all general matchings, ordered by inclusion, is a simplicial complex,

which we call the general matching complex GM(Δ). For k ∈ N0 a k-

matching is a general matching that consists only of k-cells. The set of

all k-matchings forms the k-matching complex. If Δ is a graph, its 1-

matching complex is the classical matching complex, denoted byM(Δ).

By Ln we denote the linear graph on n vertices. Label the vertices

v1 . . . , vn and the edges e1,2, . . . , en−1,n, so ei,i+1 has vi and vi+1 as

endpoints (1 ≤ i ≤ n− 1).

Lemma 11.15 M(Ln) is (%n−2
3 & − 1)-connected.

Proof For n ≥ 2, M(Ln) is non-empty. Now let n ≥ 5. Note that

M(Ln) = star({en−2,n−1}) ∪ star({en−1,n}), a union of contractible

spaces, with intersection star({en−2,n−1})∩ star({en−1,n}) ∼=M(Ln−3).

The result therefore follows from induction.

It turns out that links of vertices in the Stein–Farley complex X are

general matching complexes. Let x be a vertex ofX with f(x) = n, where

f is the “number of feet” function from Observation 11.12. The cofaces

of x are precisely the cells σ = xΨ, for every Ψ such that xΨ makes

sense. In particular, if Ψ = 〈A1, . . . , Ar〉 for Ai ∈ {I,Λ,V} (1 ≤ i ≤ r),

then the rule is that n must equal the number of Ai that are I or Λ, plus

twice the number that are V.

Observation 11.16 If a vertex x has f(x) = n feet then lkx ∼=
GM(Ln).

Proof The correspondence identifies a simplex xΨ, for Ψ = 〈A1, . . . , Ar〉,
with a matching where (from left to right) I corresponds to a vertex not

in the matching, Λ corresponds to a vertex in the matching and V cor-

responds to an edge in the matching.

As a remark, under the identification lkx ∼= GM(Ln), the part of lkx

corresponding to the matching complex M(Ln) is the descending link

with respect to f . The higher connectivity properties of these descending

links are crucial to proving that F is of type F∞ using X (originally

proved by Brown and Geoghegan [8] using a different space).
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11.4.2 Restricting Number of Feet

Recall the subcomplex Xp≤f≤q from Proposition 11.13. This is the full

cubical subcomplex of X supported on the vertices x with p ≤ f(x) ≤ q.

Similar notation is applied to define related complexes (e.g., where one

inequality is strict or is missing).

Observation 11.17 For p, q ∈ N, the action of F on Xp≤f≤q is co-

compact.

Proof For each n, F acts transitively on vertices with n feet. The result

follows since X is locally compact.

Lemma 11.18 The complex Xp≤f≤q is min(
⌊
q−1
3

⌋
− 1, q − p − 1)-

connected. In particular, Xp≤f≤q is (
⌊
q−1
3

⌋
− 1)-connected for any p ≤⌈

2q+1
3

⌉
.

Proof We first show that Xp≤f is contractible for every p. Since we

know that X is contractible, it suffices to show that the ascending link

with respect to f is contractible for every vertex x of X. We can then

apply the Morse Lemma (using the Morse function (f, 0)). Indeed, the

ascending link is an (f(x) − 1)-simplex spanned by the cube xΦ where

Φ = 〈Λ, . . . ,Λ〉. In particular, it is contractible.

Now we filter Xp≤f by the spaces Xp≤f≤q, and so have to study de-

scending links with respect to f . The descending link in X of a vertex x

with f(x) > q is isomorphic toM(Lf(x)), which is (
⌊
q−1
3

⌋
−1)-connected

by Lemma 11.15. But in Xp≤f only the (f(x) − p − 1)-skeleton of that

link is present. The descending link is therefore min(
⌊
q−1
3

⌋
−1, q−p−1)-

connected.

Corollary 11.19 X2k+1≤f≤3k+1 is (k − 1)-connected for every k.

11.5 The Long Interval

We are now ready to compute Σm(F ) for all m, using the action of F

on X. In this and the following two sections, we focus on different parts

of the character sphere S(F ).

Let χ = aχ0 + bχ1 be a non-trivial character of F . In this section

we consider the case when a < 0 or b < 0. The corresponding part of

S(F ) = S1 was termed the “long interval” in [5]. By symmetry we may

assume a ≤ b (so a < 0). We will show that for any m ∈ N, [χ] ∈ Σm(F ).
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Let

n := 3m+ 4.

Let X2≤f≤n be the sublevel set of X supported on vertices x with 2 ≤
f(x) ≤ n. This is (%n−1

3 & − 1)-connected, by Lemma 11.18, and hence

is m-connected. It is also F -cocompact by Observation 11.17. Thus, by

Corollary 11.3, to show that [χ] ∈ Σm(F ), it suffices to show that the

filtration (Xt≤χ
2≤f≤n)t∈R is essentially (m − 1)-connected. To do this, we

use the function

(χ,−f) : X2≤f≤n → R× R.

This is a Morse function by Proposition 11.13. By the Morse Lemma,

the following lemma suffices to prove that in fact Xt≤χ
2≤f≤n is (m − 1)-

connected for all t ∈ R.

Lemma 11.20 Let x be a vertex in X2≤f≤n. Then the ascending link

lk
(χ,−f)↑
X2≤f≤n

x in X2≤f≤n is (m− 1)-connected.

Proof Let L := lk
(χ,−f)↑
X2≤f≤n

x. Vertices of L are obtained from x in two

ways: either by adding a split to a foot or a merge to two adjacent

feet. For such a vertex to be ascending, in the first case the split must

strictly increase χ and in the second case the merge must not decrease

χ. Also note that we only have simplices whose corresponding cubes lie

in X2≤f≤n. For instance if f(x) = n then the vertices of L may only be

obtained from x by adding merges.

We first consider the case when f(x) = n, so L is simply the subcom-

plex of M(Ln) consisting of matchings that do not decrease χ. Since

a < 0 (and n > 2), merging the first and second feet decreases χ. Merg-

ing the (n− 1)st and nth feet can either decrease, increase, or preserve

χ, depending on whether b < 0, b > 0 or b = 0. Any other merging

preserves χ and increases −f . Hence L is eitherM(Ln−1) orM(Ln−2),

and in either case is (%n−4
3 & − 1)-connected (Lemma 11.15) and hence

(m− 1)-connected.

The second case is when f(x) < n− 1. Thinking of L as the subcom-

plex of GM(Lf(x)) supported on vertices with (χ,−f)-value larger than
(χ,−f)(x), since a < 0 we know {e1,2} �∈ L. Also, the only vertices of

GM(Lf(x)) of the form {vi} that are in L are {v1} and possibly {vf(x)};
since f(x) < n− 1 this implies that for any μ ∈ L we have μ∪{v1} ∈ L.

Hence L is contractible with cone point {v1}.
It remains to consider the case when f(x) = n − 1. If b ≥ 0, so

{vn−1} �∈ L, then we can cone L off on {v1}, as in the previous case.
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Now suppose b < 0, so the vertices of L are v1, e2,3, . . . , en−3,n−2, vn−1.

Since f(x) = n − 1, v1 and vn−1 do not span an edge in L, since this

would involve n + 1 feet. Hence L is the join of {v1} ∪ {vn−1} ' S0

withM(Ln−3). This is %n−5
3 &-connected by Lemma 11.15, so is (m−1)-

connected.

The lemma together with the Morse Lemma gives:

Proposition 11.21 If a < 0 or b < 0 then [χ] ∈ Σ∞(F ).

11.6 The Characters χ0 and χ1

Let χ = aχ0 + bχ1 be a non-trivial character of F with a > 0 and

b = 0, or b > 0 and a = 0. In this section we show that [χ] �∈ Σ1(F ).

We do this by considering the Morse function (χ, f) : X3≤f≤4 → R×R.
Thanks to Lemma 11.18 and Observation 11.17, X3≤f≤4 is connected

and F -cocompact. Hence by Corollary 11.3 it suffices to show that the

filtration (Xt≤χ
3≤f≤4)t∈R is not essentially connected. We would like to

apply Observation 11.7, for which we need the following.

Lemma 11.22 In X3≤f≤4 all (χ, f)-ascending vertex links are non-

empty.

Proof Write Y := X3≤f≤4. Up to scaling and symmetry we may as-

sume that χ = χ0. Given a vertex v on n = f(v) feet, a simplex in

lkX v ∼= GM(Ln) is ascending if and only if its vertices are among e1,2
(χ-ascending) and v2, . . . , vn (f -ascending). The number of feet imposes

restrictions on which of these simplices actually lie in lkY x. But any

ascending link contains e1,2 or v2 and thus is non-empty.

Proposition 11.23 If a > 0 and b = 0 or b > 0 and a = 0, then

[χ] �∈ Σ1(F ).

Proof We treat the case a > 0, b = 0; the other case follows from sym-

metry. By positive scaling we can assume a = 1, so χ = χ0. We want to

show that (Xt≤χ0

3≤f≤4)t∈R is not essentially connected. By Observation 11.7

and Lemma 11.22 it suffices to show that Xt≤χ0

3≤f≤4 is not connected for

any t ∈ Z. Since F acts transitively on these sets, this is equivalent to

proving that X0≤χ0

3≤f≤4 is not connected.

Let x be a vertex in X, and let (T/E) be its unique reduced repre-

sentative diagram. Define L(x) := L(T ). Recall that L(T ) is the num-

ber of carets above the leftmost leaf of T . Let x′ be any neighbor of



The Σ-invariants of Thompson’s group F via Morse Theory 189

x, say with reduced diagram (T ′/E′), so L(x′) := L(T ′). Note that

L(x′) ∈ {L(x) − 1, L(x), L(x) + 1}. We claim that if these neighboring

vertices x, x′ are in X0≤χ0

3≤f≤4, then L(x) = L(x′).
First note that L(E) ≥ L(x) because χ0(x) ≥ 0. Also, L(x) ≥ 1 since

f(x) ≥ 3, so also L(E) ≥ 1. Now if x′ is obtained from x by adding a

merge to the feet of x, then T and T ′ have the same number of carets

above the leftmost leaf, so L(x) = L(x′). Alternately, if x′ is obtained

from x by adding a split, since the leftmost leaf of E has at least one

caret above it, we know that, again, adding this split cannot change

the number of splits above the leftmost leaf of T . Hence in any case

L(x′) = L(x) for all neighbors x′ of x.
This shows that L is constant along the vertices of any connected

component of X0≤χ0

3≤f≤4. Since L does take different values, there must be

more than one component.

11.7 The Short Interval

Let χ = aχ0+ bχ1 be a non-trivial character of F , with a > 0 and b > 0.

The corresponding part of S(F ) = S1 was termed the “short interval”

in [5]. In this section we show that [χ] ∈ Σ1(F ) \ Σ2(F ). Consider the

Morse function (χ, f) : X4≤f≤7 → R × R. By Lemma 11.18 and Obser-

vation 11.17, X4≤f≤7 is simply connected and F -cocompact. Hence by

Corollary 11.3 it suffices to show that the filtration (Xt≤χ
4≤f≤7)t∈R is es-

sentially connected but not essentially simply connected. We would like

to apply Observation 11.7, for which we need the following.

Lemma 11.24 In X4≤f≤7 all (χ, f)-ascending links are connected.

Proof Given a vertex x with n = f(x) feet, a simplex in lkX x ∼=
GM(Ln) is ascending if and only if all of its vertices lie in the set

{e1,2, en−1,n, v2, . . . , vn−1}. The number of feet imposes restrictions on

which of these simplices actually lie in lkX4≤f≤7
x.

We claim that all ascending links are connected. For n ∈ {4, 5}, v2
through vn−1 are pairwise connected by an edge, and each of e1,2 and

en−1,n is connected to at least one of them. For n ∈ {6, 7} the 0-simplices

e1,2 and en−1,n are connected by an edge, and each vi is connected to at

least one of them. Thus in either case the ascending link is connected.

To show that superlevel sets are not simply connected we will use the

following supplement to the Nerve Lemma.
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Lemma 11.25 Let a simplicial complex Z be covered by connected

subcomplexes (Zi)i∈I . Suppose the nerve N ({Zi}i∈I) is connected but

not simply connected. Then Z is connected but not simply connected.

Proof That Z is connected follows for example from the usual Nerve

Lemma, e.g., [6, Lemma 1.2]. However, the usual Nerve Lemma does

not imply that Z is not simply connected, for example, since we are not

assuming that the Zi are simply connected. Hence, there is some work

to do to prove that Z is not simply connected.

Let N := N ({Zi}i∈I). For each i ∈ I pick a vertex zi ∈ Zi. For any

edge {i, j} in N , pick an edge path pi,j from zi to zj in Zi ∪ Zj (this

is possible because Zi and Zj are connected and meet non-trivially).

This induces a homomorphism ϕ : π1(N, i) → π1(Z, zi) where i ∈ I is

arbitrary. We want to see that ϕ is injective.

Let {i0, i1}, . . . , {in−1, in}, {in, i0} be an edge cycle γ in N . Allow for

the possibility of degenerate edges, i.e., edges {i, i} that are actually

vertices. Consider an arbitrary sequence of vertices v0, . . . , vn of Z with

vj ∈ Zij for each j, such that the edge {vj , vj+1} exists in Zij ∪ Zij+1

(with subscripts taken mod n+1); call the resulting edge cycle c. Up to

introducing degenerate edges to γ, such a sequence always exists, and

we also allow for the possibility of degenerate edges in c. The condition

that {vj , vj+1} ⊆ Zij ∪Zij+1
for all j will be referred to as γ and c being

linked. We assume that c can be filled by a triangulated disk in Z and

want to show that γ is nullhomotopic in N .

The proof is by induction on the number of triangles in a (minimal)

such filling disk. Let t ⊆ Z be a triangle of a filling disk with vertices

vj , vj+1, and w, say. Let k be such that Zk contains t. Then we obtain

a path homotopic to c by replacing the edge {vj , vj+1} by the union of

edges {vj , w} and {w, vj+1}, and we obtain a path homotopic to γ by

replacing the edge {ij , ij+1} by the edges {ij , k} and {k, ij+1}. Note that

γ and c remain linked after this process, since {vj , w} and {w, vj+1} lie

in Zk. After finitely many such reductions, the filling disk for c contains

no triangles.

To reduce c to a trivial cycle, the only remaining reductions needed

are removing two forms of stuttering: the one where vj = vj+1 and the

one where vj = vj+2. In the second case, we may remove vj+1 from c

to obtain a homotopic path and we may similarly remove ij+1 from γ

to obtain a (linked) homotopic path (note that ij , ij+1 and ij+2 span a

triangle because Zij ∩Zij+1
∩Zij+2

contains either vj or vj+1, thanks to

γ and c being linked). This reduces the second kind of stuttering to the
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first. The first kind of stuttering can be resolved if Zj+2 contains vj+1

by just deleting vj+1 and ij+1 from their respective paths. Otherwise

(Zj+1 contains vj+2 and) the stuttering can be shifted by replacing vj+1

by vj+2 in c. Under any of these moves γ and c remain linked. After

finitely many such reductions both c and γ will be trivial paths.

It follows that ϕ is injective: Let γ be a cycle in N and let c be

the corresponding cycle in Z made up of the relevant paths pk,�, as

in the definition of ϕ. Each pk,� has a linked path consisting of {k, �}
and (possibly many occurrences of) {k} and {�}. Thus γ and c are

linked after sufficiently many degenerate edges have been added to γ.

By the above argument, if ϕ([γ]) = [c] ∈ π1(Z, zi) is trivial then so is

[γ] ∈ π1(N, i).

Proposition 11.26 If a > 0 and b > 0 then [χ] ∈ Σ1(F ) \ Σ2(F ).

Proof We want to show that the filtration (Xt≤χ
4≤f≤7)t∈R is essentially

connected but not essentially simply connected. First note that the

Morse Lemma together with Lemma 11.24 shows that in fact every

Xt≤χ
4≤f≤7 is already connected.

To show that (Xt≤χ
4≤f≤7)t∈R is not essentially simply connected, it suf-

fices by Observation 11.7 and Lemma 11.24 to show that Xt≤χ
4≤f≤7 fails

to be simply connected, for arbitrarily small t ∈ R. Since the action of

F on R induced by χ is cocompact, it suffices to show that X0≤χ
4≤f≤7 is

not simply connected.

To this end we consider certain subcomplexes of Y := X0≤χ
4≤f≤7. To

define them, as in the proof of Proposition 11.23, for a vertex x of X

with reduced representative (T/E), define L(x) := L(T ). Similarly let

R(x) := R(T ). Now we consider the full subcomplexes YL=i of Y sup-

ported on vertices x with L(x) = i. Similarly we have complexes YR=i.

Each of these spaces decomposes into countably many connected com-

ponents, which we enumerate as Y m
B=i, m ∈ N (where B = L or B = R).

We claim that Y is covered by the complexes Y m
L=i,m ∈ N and

Y m
R=i,m ∈ N. We have to show that every cell xΨ in Y is contained

either in some YL=i or some YR=i. Take x to have the maximal number

of feet within the cell so that Ψ involves only I and V. Note that in

(T/E), which is the reduced representative of x, we know that T is non-

trivial since f(x) ≥ 4, and so L(T ) > 0 and R(T ) > 0. Hence, in order

for χ(x) ≥ 0 to hold we need at least one of L(E) > 0 or R(E) > 0 to

hold. If L(E) > 0, then L(y) = L(x) for all vertices y of xΨ (for similar
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reasons as in the proof of Proposition 11.23), with a similar statement

for the other case, and hence xΨ is contained in some YB=i.

Note that by definition YB=i ∩ YB=j = ∅ for i �= j and B ∈ {L,R}.
Thus the nerve N ({Y m

B=i}i,m∈N,B∈{L,R}) is a bipartite graph. That it is

connected can be deduced from [6, Lemma 1.2] since Y is connected.

x1 x2 x3 x4

Figure 11.2 The diagrams used in the proof of Proposition 11.26.

To construct an explicit cycle, consider the vertices x1 to x4 in Fig-

ure 11.2. Note that x4 and x1 lie in the same component of YL=2. This

is because after extending the left hand side by splitting the second foot

and then merging the first two feet sufficiently many times (depending

on a and b), χ0 is so high that the right side can be removed without χ

dropping below zero. Let us say that this component is Y 0
L=2. For simi-

lar reasons x1 and x2 lie in a common component Y 0
R=2, the vertices x2

and x3 lie in a common component Y 0
L=3 and x3 and x4 lie in a com-

mon component Y 0
R=3. It follows that N ({Y m

B=i}i,m∈N,B∈{L,R}) contains
the cycle Y 0

L=2, Y
0
R=2, Y

0
L=3, Y

0
R=3. Now Lemma 11.25 tells us that Y is

not simply connected (it applies to simplicial complexes, so we take a

simplicial subdivision).
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