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Foreword

Algebra and topology, the two fundamental domains of mathematics, play complemen-

tary roles. Topology studies continuity and convergence and provides a general framework

to study the concept of a limit. Much of topology is devoted to handling infinite sets and

infinity itself; the methods developed are qualitative and, in a certain sense, irrational. Al-

gebra studies all kinds of operations and provides a basis for algorithms and calculations.

Very often, the methods here are finitistic in nature.

Because of this difference in nature, algebra and topology have a strong tendency to

develop independently, not in direct contact with each other. However, in applications,

in higher level domains of mathematics, such as functional analysis, dynamical systems,

representation theory, and others, topology and algebra come in contact most naturally.

Many of the most important objects of mathematics represent a blend of algebraic and of

topological structures. Topological function spaces and linear topological spaces in general,

topological groups and topological fields, transformation groups, topological lattices are

objects of this kind. Very often an algebraic structure and a topology come naturally

together; this is the case when they are both determined by the nature of the elements

of the set considered (a group of transformations is a typical example). The rules that

describe the relationship between a topology and an algebraic operation are almost always

transparent and natural — the operation has to be continuous, jointly or separately. However,

the methods of study developed in algebra and in topology do not blend so easily, and that

is why at present there are very few systematic books on topological algebra, probably,

none which can be qualified as a reasonably complete textbook for graduate students and a

source of references for experts. The need for such a book is all the greater since the last

half of the twentieth century has witnessed vigorous research on many topics in topological

algebra. Especially strong progress has been made in the theory of topological groups,

going well beyond the limits of the class of locally compact groups. The excellent book

[236] by E. Hewitt and K. A. Ross just sketches some lines of investigation in this direction

in a short introductory chapter dedicated to topological groups.

In the 20th century and during the last seven years many topologists and algebraists

have contributed to Topological Algebra. Some outstanding mathematicians were involved,

among them J. Dieudonné, L. S. Pontryagin, A. Weil, and H. Weyl. The ideas, concepts,

and constructions that arise when topology and algebra come into contact are so rich, so

versatile, that it has been impossible to include all of them in a single book; we have made our

choice. What we have covered here well may be called “topological aspects of topological

algebra”. This domain can be characterized as the study of connections between topological

properties in the presence of an algebraic structure properly related to the topology.

A. D. Alexandroff, N. Bourbaki, M. I. Graev, S. Kakutani, E. van Kampen, A. N. Kol-

mogorov, A. A. Markov, and L. S. Pontryagin were among the first contributors to the theory
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of topological groups. Among those who contributed greatly to this field are W. W. Com-

fort, M. M. Choban, E. van Douwen, V. I. Malykhin, J. van Mill, and B. A. Pasynkov. These

mathematicians have also contributed greatly to other aspects of topological algebra and of

general topology.

Though the theory of topological groups is a core subject of topological algebra,

a considerable attention has been given to the development of the theory of universal

topological algebras, where topology and most general algebraic operations are blended

together. This subject started to gain momentum with the works of A. I. Mal’tsev and

in later years, some aspects of Mal’tsev’s work especially close to general topology were

developed by M. M. Choban and V. V. Uspenskij.

The fundamental topic of various types of continuity of algebraic operations was

developed in the works of A. Bouziad, R. Ellis, D. Montgomery, I. Namioka, J. Troallic, and

L. Zippin. The recent excellent book [241] of N. Hindman and D. Strauss contains a wealth

of material on algebraic operations on compacta satisfying weak continuity requirements.

One of the leading topics in the general theory of topological groups was that of free

topological groups of Tychonoff spaces. It is well represented in our book. A. A. Markov,

S. Kakutani, T. Nakayama, and M. I. Graev were at the origins of this chapter. In later years

S. A. Morris, P. Nickolas, O. G. Okunev, V. G. Pestov, O. Sipacheva, K. Yamada, and some

other mathematicians have worked very successfully in this field.

Our book also contains a very brief introduction to topological dynamics. Among

the first who worked in this field were W. Gottshalk, V. V. Niemytzki, and R. Ellis.

J. de Vries, one of the later contributors to the subject, wrote the basic monograph [530]

which gave a strong impuls to its further development. Some recent successes in the field

are connected with the names of S. A. Antonyan, V. G. Pestov, S. Glasner, M. Megrelishvili,

and V. V. Uspenskij. Well-written, very informative surveys [379, 378] by Pestov will orient

the reader on this topic.

In this book we refer also to the works of many other excellent mathematicians, among

them O. Alas, T. Banakh, L. G. Brown, R. Z. Buzyakova, D. Dikranjan, S. Garcı́a-Ferreira,

P. Gartside, I. I. Guran, K. P. Hart, S. Hernández, G. Itzkowitz, P. Kenderov, K. Kunen,

W. B. Moors, P. Nyikos, E. Martı́n-Peinador, I. Prodanov, I. V. Protasov, D. A. Raı̆kov,

E. A. Reznichenko, D. Robbie, M. Sanchis, D. B. Shakhmatov, A. Shibakov, L. Stoyanov,

A. Tomita, F. J. Trigos-Arrieta, N. Ya. Vilenkin, S. Watson, and E. Zelenyuk. We should

also mention that the development of topological algebra was strongly influenced by survey

papers [109, 110, 113] of W. W. Comfort (and coauthors), and by the books [410], [249] of

W. Roelke and S. Dierolf and of T. Hussain, respectively.

We do not mention here the names of those who have worked recently in the theory of

locally compact topological groups. This vast subject is mostly beyond the scope of this

book, we have provided only a brief introduction to it.

This book is devoted to that area of topological algebra which studies the influence

of algebraic structures on topologies that properly fit the structures. This domain could

be called “Topological invariants under algebraic boundary conditions”. The book is

by no means complete, since this area of mathematics is now rapidly developing in many

directions. The central theme in the book is that of general (not necessarily locally compact)

topological groups. However, we do not restrict ourselves to this main topic; on the contrary,
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we try to use it as a starting point in the investigation of more general objects, such as

semitopological groups or paratopological groups, for example.

While not striving for completeness, we have made an attempt to provide a repre-

sentative sample of some old and of some relatively recent results on general topological

groups, not restricting ourselves just to two or three topics. The areas covered to a lesser

or greater extent are cardinal invariants in topological algebra, separate and joint continuity

of group operations, extremally disconnected and related topologies on groups, free topo-

logical groups, the Raı̆kov completion of topological groups, Bohr topologies, and duality

theory for compact Abelian groups.

One of the generic questions in topological algebra is how the relationship between

topological properties depends on the underlying algebraic structure. Clearly, the answer

to this should strongly depend on the way the algebraic structure is related to the topology.

The weaker the restrictions on the connection between topology and algebraic structure are,

the larger is the class of objects entering the theory. Because of that, even when our main

interest is in topological groups, it is natural to consider more general objects with a less

rigid connection between topology and algebra. Examples we encounter in such a theory

help us to better understand and appreciate the fruits of the theory of topological groups.

Chapter 1 is of course, of an introductory nature. We define, apart from topological

groups, the main objects of topological algebra such as semitopological groups, quasitopo-

logical groups, paratopological groups, and present the most elementary and natural exam-

ples and the most general facts. Some of these facts are non-trivial, even though they are

easy to prove. For example, we establish that every open subgroup of a topological group is

closed, and that every discrete subgroup of a pseudocompact group is finite. It is proved in

this chapter that every infinite Abelian group admits a non-discrete Hausdorff topological

group topology. Quotients, products, and Σ-products are also discussed in Chapter 1, as

well as the natural uniformities on topological groups and their quotients.

In the course of the book, we introduce and study several important classes of topological

groups. In particular, in Chapter 3 we study systematically ω-narrow topological groups

which can be characterized as topological subgroups of arbitrary topological products of

second-countable topological groups. An elementary introduction to the theory of locally

compact groups is also given in Chapter 3. Then this topic is developed in Chapter 9, where

an introduction into the theory of characters of compact and locally compact Abelian groups

is to be found. Since there are several good sources covering this subject (such as [236],

[243], and [327] just to mention a few), we do not pursue this topic very far. However,

elements of the Pontryagin–van Kampen duality theory are presented, and the exposition is

elementary and practically self-contained.

The celebrated theorem of Ivanovskij and Kuz’minov on the dyadicity of compact

groups is proved in Chapter 4. Again, the proof is elementary (though not simple), polished,

and self-contained. We apply Pontryagin–van Kampen duality theory to continue the study

of the algebraic and topological structures of compact Abelian groups in Chapter 9. The

book [243] by K.-H. Hofmann and S. A. Morris provides those readers who are interested

in the duality theory with considerably more advanced material in this direction.

In Chapter 4 we consider the class of extremally disconnected groups, the class of

Čech-complete groups, as well as the classes of feathered groups and P-groups. For each
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of these classes of groups we prove original and delicate theorems and then establish non-

trivial relations between them. Feathered topological groups (called also p-groups) present

a natural generalization of locally compact groups and of metrizable groups, that makes

them especially interesting.

One of the unifying themes of this book is that of completions and completeness. One

can look at completeness in topological algebra either from a purely topological point of

view or from the point of view of the theory of uniform spaces; this latter takes into account

the algebraic structure much better than the purely topological one. The basic construction of

the Raı̆kov completion of an arbitrary topological group is presented in Chapter 3; later on, it

has many applications. Čech-completeness of topological groups is studied in Chapter 4, and

the relationship of Dieudonné completion of a topological group with the group structure is

a subject of a rather deep investigation in Chapter 6. In particular, we learn in Chapter 6 that

under very general assumptions it is possible to extend continuously the group operations

from a topological group to its Dieudonné completion. We also establish that this is not

always possible. The class of Moscow groups is instrumental in the theory developed in

Chapter 6. The class of R-factorizable groups is studied in Chapter 8. This class serves as

a bridge from general topological groups to second-countable groups via continuous real-

valued functions. It also turns out to be important in the study of completions of topological

groups.

Chapter 5 is devoted to cardinal invariants of topological groups. Invariants of this

kind (which associate with topological spaces cardinal numbers “measuring” the space

under consideration in one sense or another), play an especially important role in general

topology; probably, this happens because the techniques they provide fit best the set-theoretic

nature of general topology. So one may expect that in the study of non-compact topological

groups cardinal invariants should occupy a prominent place. The following phenomenon

makes the situation even more interesting: The structure of topological groups turns out

to be much more sensitive to restrictions in terms of cardinal invariants than the structure

of general topological spaces. For example, metrizability of a topological group depends

only on whether the group is first-countable or not (Birkhoff–Kakutani’s theorem). For

paratopological groups the statement is no longer true (the Sorgenfrey line witnesses this);

however, a weaker theorem holds: every first-countable paratopological group has a Gδ-

diagonal. How delicate problems involving cardinal invariants of compact groups can be,

is shown by the following simple result: It is not possible either to prove, or to disprove in

ZFC that every compact group of cardinality not greater than c = 2ω is metrizable.

In Chapter 7, a very powerful and delicate construction is presented — that of a free

topological group over a Tychonoff space. Under this construction, any Tychonoff space X
can be represented as a closed subspace of a topological group F (X) in such a way that every

continuous mapping of a space X into a space Y can be uniquely extended to a continuous

homomorphism of F (X) to F (Y ). The set X, of course, serves as an algebraic basis of

F (X). However, the relationship between the topology of X and that of F (X) is the most

intriguing; there are many unexpected and subtle results on free topological groups and

quite a few unsolved problems. One of the most important theorems here states that the

cellularity of the free topological group F (X) of an arbitrary compact Hausdorff space X is

countable. Curiously, one can demonstrate that this happens not because of the existence
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of a regular measure on F (X) (in contrast with the case of compact groups). In fact, such a

measure on F (X) exists if and only if X is discrete.

Yet another major topic in the book is that of transformation groups, and the closely

associated concepts of homogeneous spaces and of groups of homeomorphisms. A section

is devoted to these matters in Chapter 3, where it is established that the group of isometries

of a metric space is a topological group, when endowed with the topology of pointwise

convergence. It is proved in this connection that every topological group is topologically

isomorphic to a subgroup of the group of isometries of some metric space. This provides

an important technical tool for some arguments.

Frequently, results on topological groups are followed by a discussion of other structures

of topological algebra, such as semitopological and paratopological groups. This is done in

almost every chapter. However, we have also devoted the whole of Chapter 2 to basic facts

regarding such objects. A paratopological group is a group G with a topology such that

the multiplication mapping of G×G to G is jointly continuous. A semitopological group
G is a group G with a topology such that the multiplication mapping of G × G to G is

separately continuous. A quasitopological group G is a group G with a topology such that

the multiplication mapping of G×G to G is separately continuous and the inverse mapping

of G onto itself is continuous. A natural example of a paratopological group is obtained by

taking the group of homeomorphisms of a dense-in-itself locally compact zero-dimensional

non-compact space, with the compact-open topology. The Sorgenfrey line under the usual

addition is a paratopological group which is hereditarily separable, hereditarily Lindelöf

and has the Baire property.

In 1936, D. Montgomery proved that every semitopological group metrizable by a com-

plete metric is, in fact, a paratopological group. In 1957, R. Ellis showed that every locally

compact semitopological group is a topological group. In 1960, W. Zelazko established

that each completely metrizable semitopological group is a topological group. Later, in

1982, N. Brand proved that every Čech-complete paratopological group is a topological

group. Recently A. Bouziad made a decisive contribution to this topic. He proved that

every Čech-complete semitopological group is a topological group. This theorem naturally

covers and unifies both principal cases, those of locally compact semitopological groups

and of completely metrizable semitopological groups.

Since each Čech-complete topological group is paracompact, Bouziad’s theorem

implies that every Čech-complete semitopological group is paracompact. These and related

results, with applications, are presented in Chapter 2. In this same chapter we construct an

operation of a rather general nature on the Čech–Stone compactification βG of an arbitrary

discrete group G. With this operation, the compact space βG becomes a right topological

group. This structure has interesting applications; we mention some of them in problem

sections. The reader who wants to learn more on this subject is advised to study the recent

book [241] by N. Hindman and D. Strauss.

We formulate and discuss quite a few open problems, many of them are new. Each

section is followed by a list of exercises and problems, including open problems. However,

we should warn the reader that some of the new open problems might turn out not to be

difficult after all. That does not necessarily mean that they should have been discarded.

The main interest of many of the new questions we have posed lies in the fact that they

delineate a new direction of research. On many occasions exercises and problems are
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provided with hints, references, and comments. In this way, many additional directions and

topics are introduced. Here are two outstanding examples of old unsolved questions. Is it

possible to construct in ZFC a non-discrete extremally disconnected topological group? Is

it possible to construct in ZFC a countable non-metrizable topological group G such that

G is a Fréchet–Urysohn space?

We would be grateful for the information on the progress of open problems posed in

this book.

We hope that this book will achieve several goals. First, we believe that it can be used as

a reasonably complete introduction to the theory of general topological groups beyond the

limits of the class of locally compact groups. Second, we expect that it may lead advanced

students to the very boundaries of modern topological algebra, providing them with goals

and with powerful techniques (and maybe, with inspiration!). The exercise and problem

sections can be especially useful in that respect. One can use this book in a research seminar

on topological algebra (with an eye to unsolved problems) and also in advanced courses —

at least four special courses can be arranged on the basis of this book. Fourth, we expect that

the book will serve quite effectively as a reference, and will be helpful to mathematicians

working in other domains of mathematics.

The standard reference book for general topology is R. Engelking’s book General
Topology [165]. We expect that the reader either knows the basic facts from general

topology that we need, or that he/she will not find it too difficult to extract the corresponding

information from [165].

We wish to express our deep gratitude to the second author’s former students Constancio

Hernández Garcı́a and Yolanda Torres Falcón for their continued help in our work on this

book over many years. We are also indebted to Richard G. Wilson whose comments enabled

us to improve the text.

A. V. ARHANGEL’SKII, M. G. TKACHENKO
arhangel@math.ohiou.edu mich@xanum.uam.mx

February 21, 2008
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Figure 1. Logical dependence of chapters.
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6.5. When the Dieudonné completion of a topological group is a group? 366

6.6. Pseudocompact groups and their completions 374

6.7. Moscow groups and the formula υ(X× Y ) = υX× υY 378

6.8. Subgroups of Moscow groups 385

6.9. Pointwise pseudocompact and feathered groups 388

6.10. Bounded and C-compact sets 395

6.11. Historical comments to Chapter 6 407

Chapter 7. Free Topological Groups 409

7.1. Definition and basic properties 409

7.2. Extending pseudometrics from X to F (X) 424

7.3. Extension of metrizable groups by compact groups 443

7.4. Direct limit property and completeness 446

7.5. Precompact and bounded sets in free groups 453

7.6. Free topological groups on metrizable spaces 456

7.7. Nummela–Pestov theorem 476

7.8. The direct limit property and countable compactness 482

7.9. Completeness of free Abelian topological groups 490

7.10. M-equivalent spaces 499

7.11. Historical comments to Chapter 7 511

Chapter 8. R-Factorizable Topological Groups 515

8.1. Basic properties 515

8.2. Subgroups of R-factorizable groups. Embeddings 526
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Chapter 1

Introduction to Topological
Groups and Semigroups

Notation. We write N for the set of positive integers, ω for the set of non-negative

integers, and P for the set of prime numbers. The set of all integers is denoted by Z, the set

of all real numbers is R, and Q stands for the set of all rational numbers.

The symbols τ, λ, κ are used to denote infinite cardinal numbers. A cardinal number τ
is also interpreted as the smallest ordinal number of cardinality τ. Each ordinal is the set of

all smaller ordinals. Thus, ω is both the smallest infinite ordinal number and the smallest

infinite cardinal number.

All topologies considered below are assumed to satisfy T1-separation axiom, that is,

we declare all one-point sets to be closed. The closed unit interval [0, 1] of the real line

R, with its usual topology, is denoted by I, and Sq stands for the convergent sequence

{1/n : n ∈ N} ∪ {0} with its limit point 0, also taken with the usual topology. We use the

symbol C to denote the complex plane with the usual sum and product operations, while

T = {z ∈ C : |z| = 1} is the unit circle with center at the origin of C.

1.1. Some algebraic concepts

In this section we establish the terminology and notation that will be used throughout

the book.

In dealing with groups, we will adhere to the multiplicative notation for the binary

group operation. In discussions involving a multiplicative group G, the symbol e will be

reserved for the identity element of G.

We are very much concerned with groups in this course. For many purposes, however, it

is natural and convenient considering semigroups. A semigroup is a non-void set S together

with a mapping (x, y) → xy of S × S to S such that x(yz) = (xy)z for all x, y, z in S. That

is, a semigroup is a non-void set with an associative multiplication. Given an element x of

a semigroup S, one inductively defines

x2 = xx, x3 = xx2, . . . , xn+1 = xxn,

for every n ∈ N. The associativity of multiplication in S implies the equality xnxm = xn+m

for all x ∈ S and n, m ∈ N.

An element e of a semigroup S is called an identity for S if ex = x = xe for every x ∈ S.

Not every semigroup has an identity (see items 4) and 6) of Example 1.1.1). However, if

a semigroup S has an identity, then it is easy to see that this identity is unique. Whenever
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2 1. INTRODUCTION TO TOPOLOGICAL GROUPS AND SEMIGROUPS

we use the symbol e without explanation, it always stands for the identity of the semigroup

under consideration.

A semigroup with identity is called monoid. An element a of a monoid M is said to

be invertible if there exists an element b of M such that ab = e = ba. Note that if a is

an invertible element of a monoid M, then the element b ∈ M such that ab = e = ba is

unique. Indeed, suppose that ab = e, ba = e, ac = e, and ca = e. Then we have

c = ec = (ba)c = b(ac) = be = b.

This fact enables us to use notation a−1 for such an element b of M. We also say that b is

the inverse of a. It is clear that (a−1)−1 = a for each invertible element a ∈ M. Further,

one can define negative powers of an invertible element a ∈ M by the rule a−n = (a−1)n,

for each n ∈ N. It is a common convention to put a0 = e. We leave to the reader a simple

verification of the equality anam = an+m which holds for all n, m ∈ Z.

If every element a of a monoid M is invertible, then M is called a group.

Let S be a semigroup. For a fixed element a ∈ S, the mappings x �→ ax and x �→ xa
of S to itself are called the left and right actions of a on S, and are denoted by λa and 
a,

respectively.

If G is a group, the mapping x �→ x−1 of G onto itself is called inversion. Left and

right actions of every element a ∈ G on G are, in this case, bijections. They are called left
and right translations of G by a.

Example 1.1.1. Each of the following is a semigroup but not a group.

1) The set Z of all integers with the usual multiplication.

2) The set Q of all rational numbers with the usual multiplication.

3) The set R of all real numbers with the usual multiplication.

4) The set of all positive real numbers with the usual addition in the role of the product

operation.

5) The set N, in which the product of x and y is defined as max{x, y}.
6) The set N, in which the product of x and y is defined as min{x, y}.
7) Any set S with |S| > 1, where the product xy is defined as y.

8) Any set S with |S| > 1, where the product xy is defined as x.

9) The set S(X, X) of all mappings of a set X to itself with the composition of mappings

in the role of multiplication, where |X| > 1. �
In items 4) and 6) of the above example, the corresponding semigroups have no identity.

The semigroups in 1)–3), 5), and 9) are monoids.

Now we present a few standard examples of groups.

Example 1.1.2. Each of the following is a group:

1) The set Z of all integers with the usual addition in the role of multiplication.

2) The set Q \ {0} of all non-zero rational numbers with the usual multiplication.

3) The set R \ {0} of all non-zero real numbers with the usual multiplication.

4) The set of all positive real numbers with the usual multiplication.

5) The set {0, 1} with the binary operation defined as follows:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.

This group is denoted by Z(2) or by D; it is called the cyclic group of two elements, or the

two-element group. More generally, for an integer n > 1, let Z(n) = {0, 1, . . . , n− 1}
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be the set of all non-negative residues modulo n with addition modulo n. For example,

2 + (n − 1) = 1 in Z(n); of course, n must be greater than or equal to 3 in order for 2

to be an element of Z(n). An easy verification shows that Z(n) with the addition just

defined is a commutative group. It is called the cyclic group of order n.
6) The set T of all complex numbers z such that |z| = 1 with respect to the usual

multiplication of complex numbers (|z| denotes here the modulus of z).

7) The set of all n by n matrices, where the coefficients are real numbers, with non-zero

determinant, and with the usual matrix multiplication. This group is called the general
linear group of degree n over R.

8) If X is any non-void set, then the set of all one-to-one mappings of X onto X forms

a group �X under the operation of composition. This group is called the permutation
group on X. If X is finite and has n elements, then �X is denoted by �n and is called

the symmetric group of degree n. �

A semigroup (monoid, group) S is called Abelian or commutative if xy = yx, for all

x, y ∈ S. Clearly, the semigroups in items 7), 8), 9) of Example 1.1.1 and the groups in 7)

of Example 1.1.2 (with n ≥ 2 and |X| ≥ 3, respectively) are not Abelian.

Let A and B be subsets of a semigroup G. Then AB denotes the set {ab : a ∈ A, b ∈ B},
and, if G is a group, A−1 denotes the set {a−1 : a ∈ A}. A subset A of a group G is called

symmetric if A−1 = A.

We write aB for {a}B and Ba for B{a}. We abbreviate AA as A2, AAA as A3, etc.
Similarly, A−2 is a substitute for A−1A−1, etc.

A non-empty subset H of a semigroup S is called a subsemigroup of S if xy ∈ H , for

all x, y in H . A non-empty subset H of a group G is called a subgroup of G if xy−1 ∈ H ,

for all x, y in H .

Clearly, a subset H of a group G is a subgroup of G if and only if for each x, y ∈ H ,

xy ∈ H and x−1 ∈ H . Every group contains at least two subgroups — the whole group G
and the subgroup consisting of the identity only. These subgroups are called trivial. Note

that the empty set is not a group and, therefore, is not a subgroup of any group. Obviously,

for any subgroup H of a group G we have H2 = HH = H . However, in general, the same

is not true for subsemigroups of semigroups.

In any group G, if a, b ∈ G then (ab)−1 = b−1a−1. If H is any subgroup of G then,

for any a ∈ G, a−1Ha is also a subgroup of G. If H is a subgroup of a group G such that

a−1Ha = H for each a ∈ G, then H is said to be an invariant or normal subgroup of G.

Since in Topology “normal” refers to a separation property of spaces, we will use the term

“invariant” to denote this property of subgroups. Of course, in any Abelian group, every

subgroup is invariant.

If H is a subgroup of a group G and a ∈ G, then the sets aH and Ha are called left and

right cosets of H in G, respectively. The element a is a representative of both cosets.

For any two right cosets Ha and Hb, either they are disjoint or coincide. Furthermore,

Ha = Hb if and only if ab−1 ∈ H . Indeed, ab−1 ∈ H implies that Hab−1 ⊂ H2 = H .

Hence, Ha ⊂ Hb. Similarly, since (ab−1)−1 = ba−1 ∈ H , it follows that Hb ⊂ Ha.

Therefore, Ha = Hb. Conversely, if Ha = Hb, then h1a = h2b for some h1, h2 ∈ H ,

whence ab−1 = h−1
1 h2 ∈ H .

Let H be an invariant subgroup of a group G. Then aH = Ha for each a ∈ G. In other

words, the left cosets of H are the same as the right cosets of H . On the set of all cosets of

Some algebraic concepts



4 1. INTRODUCTION TO TOPOLOGICAL GROUPS AND SEMIGROUPS

H we define multiplication by the rule aHbH = abH . It is easy to see that our definition

of multiplication of cosets is correct. Indeed, suppose that aH = a1H and bH = b1H for

some a, a1 ∈ G and b, b1 ∈ G. Then aa−1
1 ∈ H and bb−1

1 ∈ H whence it follows, by the

invariance of H in G, that

ab(a1b1)−1 = abb−1
1 a−1

1 ∈ aHa−1
1 = (aHa−1)aa−1

1 = Haa−1
1 = H.

Therefore, aHbH = abH = a1b1H = a1Hb1H , thus showing that the result of

multiplication of two cosets does not depend on the choice of representatives in these cosets.

For each aH , we have that (aH)H = (aH)(eH) = aH and (a−1H)(aH) = (a−1a)H =

eH = H . This shows that H plays the role of the identity in the set of all cosets, and a−1H
is the inverse of aH . Hence, the set of all cosets of H is a group with respect to the

multiplication defined above. This group is called the quotient group of G and denoted by

G/H . Note that if G is an Abelian group, then the quotient group G/H is defined for each

subgroup H of G.

If G is a semigroup and H is a subsemigroup of S, then it may happen that, for some a
and b in S, the sets aS and bS do not coincide and, nonetheless, are not disjoint.

We can also think of subgroups of semigroups. Let S be a semigroup. We will call G
a subgroup of S if G ⊂ S and G is a group under the restriction of the product operation in

S to G.

Let S be a semigroup. An element x of S is called an idempotent if xx = x. The set of

all idempotents of S is denoted by E(S). Every idempotent of a group G coincides with the

identity e of G. Indeed, if x2 = x for some x ∈ G, then x2x−1 = xx−1 = e, that is, x = e.

Example 1.1.3. Let X be a non-empty set. Then the idempotents of the semigroup

S(X, X) of all mappings of X to itself are precisely the mappings f : X → X satisfying the

condition f (x) = x for every x ∈ f (X). �

Now we give several definitions and present some special results on groups which will

be used in the sequel.

A homomorphism of a semigroup (monoid, group) G to a semigroup (monoid, group)

F is a mapping f : G → F such that f (ab) = f (a)f (b) for all a, b ∈ G. Given a

homomorphism of monoids f : G → H , the set {x ∈ G : f (x) = eH} is called the

kernel of f and denoted by ker f . It follows immediately from the definition that ker f is

a subsemigroup of G.

A homomorphism of a semigroup (monoid, group) G onto a semigroup (monoid, group)

F which is a one-to-one mapping is called an isomorphism.

If G and H are monoids with respective identities eG and eH and f : G → H is a

homomorphism onto H , then f (eG) = eH . Indeed, put h = f (eG) and for an arbitrary

element b ∈ H , take a ∈ G with f (a) = b. Then bh = f (aeG) = f (a) = b and

hb = f (eGa) = f (a) = b. Since the identity of a monoid is unique, we infer that h = eH .

If G and H are groups, then the equality f (eG) = eH holds for every homomorphism

f of G to H . Indeed, the above argument gives the equality bh = b for an arbitrary element

b ∈ f (G), where h = f (eG). Since H is a group, we have that b−1bh = b−1b = eH and,

hence, h = eHh = eH .

Furthermore, the kernel of f is a subgroup of the group G. For every a ∈ ker f , we have

that eH = f (eG) = f (aa−1) = f (a)f (a−1) = f (a−1), whence it follows that a−1 ∈ ker f .

Since ker f is a subsemigroup of G, it must be a subgroup of G.
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An isomorphism of a group G onto itself is called an automorphism of G.

Example 1.1.4. Let Aut(G) be the set of all automorphisms of a group G with the

operation of composition, (g◦f )(x) = g(f (x)) for all f, g ∈ Aut(G) and x ∈ G. Evidently,

Aut(G) is a group. The group Aut(G) need not be commutative, even if G is commutative.

There exists a natural homomorphism ϕ of G onto a subgroup of Aut(G) defined as

follows. For arbitrary a, x ∈ G, put ϕa(x) = axa−1. It is clear that

ϕa(xy) = axya−1 = axa−1aya−1 = ϕa(x)ϕa(y)

for all x, y ∈ G, so ϕa is a homomorphism of G to G. For an element y ∈ G, put x = a−1ya.

Then ϕa(x) = y and, therefore, ϕa(G) = G. One easily verifies that the mapping ϕa is one-

to-one, so it is an automorphism of G. The correspondence a �→ ϕa is the homomorphism

ϕ of G to Aut(G) we are looking for. Indeed,

(ϕa ◦ ϕb)(x) = ϕa(ϕb(x)) = ϕa(bxb−1) = abxb−1a−1 = ϕab(x)

for all a, b, x ∈ G. Therefore, ϕa ◦ ϕb = ϕab or, equivalently, ϕ(ab) = ϕ(a) ◦ ϕ(b).

The automorphisms ϕa of G, with a ∈ G, are called inner automorphisms. If the group

G is Abelian, then ϕa is the identity mapping of G for each a ∈ G. In other words, ker ϕ
coincides with the group G in this case. In general, the kernel of ϕ coincides with the center
Z(G) of G defined by Z(G) = {a ∈ G : ax = xa for all x ∈ G}. �

Given a subgroup H of a group G with identity e, we say that H is a central subgroup
of G if H ⊂ Z(G), that is, hx = xh for all h ∈ H and x ∈ G. An element a of G is said to

be an element of finite order or, equivalently, a torsion element if an = e, for some n ∈ N.

If this is the case, then the smallest n ∈ N for which an = e is called the order of a and is

denoted by o(a). If all elements of G have finite orders, we say that G is a torsion group. If

the group G has no elements of finite order, except for e, then it is called torsion-free.
The cyclic subgroup of G generated by an element a ∈ G is the set {ak : k ∈ Z}. This

subgroup is also denoted by 〈a〉. Every cyclic group is evidently commutative. If a ∈ G
is a torsion element and o(a) = n, then the cyclic subgroup 〈a〉 has exactly n elements or,

more precisely, 〈a〉 = {ak : 1 ≤ k ≤ n}. The set of all elements a ∈ G of finite order

is called the torsion part of G and is denoted by tor(G). If the group G is commutative,

the torsion part tor(G) is a subgroup of G. Indeed, if x, y ∈ tor(G), there exist integers

m, n ∈ N such that xm = e and yn = e. Set N = mn. Since G is commutative, it

follows that (xy)N = xNyN = (xm)n(yn)m = enem = e, whence xy ∈ tor(G). Similarly,

(x−1)m = (xm)−1 = e−1 = e. If G is commutative, we will call tor(G) the torsion subgroup
of G.

Suppose that A is a non-empty subset of a semigroup S. Then 〈A〉 denotes the smallest

subsemigroup of S which contains the set A. It is clear that every element b ∈ 〈A〉 has

the form b = a1 . . . an, where a1, . . . , an are arbitrary elements of A. If A is a non-empty

subset of a group G, we use the same symbol 〈A〉 to denote the smallest subgroup of G
that contains A. Similarly, every element g ∈ 〈A〉 has the form g = aε1

1 . . . aεn
n for some

a1, . . . , an ∈ A and ε1, . . . , εn = ±1, where n is an arbitrary positive integer. Therefore, the

cyclic subgroup 〈a〉 of G is generated by the one-point set {a}.
In the next lemma we give a necessary and sufficient condition for a homomorphism

defined on a subgroup of an Abelian group to admit an extension over a bigger subgroup.

Some algebraic concepts
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Lemma 1.1.5. Let H be a subgroup of an Abelian group G, f a homomorphism of H
to an Abelian group F , and let x ∈ G and y ∈ F . Define a number m ∈ N∗ = N∪{∞} by
m = min{n ∈ N∗ : nx ∈ H} (thus, m = ∞ if nx /∈ H for each n ∈ N). Then f admits an
extension to a homomorphism h : 〈H ∪ {x}〉 → F satisfying h(x) = y if and only if either
m =∞ or m ∈ N and my = f (mx).

Proof. Necessity is evident, so we only prove sufficiency. Let H0 = 〈H ∪ {x}〉. It

suffices to consider the following two cases.

Case 1. m =∞. Then kx is not in H for each k ∈ N, so every element z ∈ H0 has a unique

representation in the form z = kx+a with k ∈ Z and a ∈ H . Put h(kx+a) = ky +f (a) for

all k ∈ Z and a ∈ H . This defines a mapping h : H0 → F . If z1 = kx + a and z2 = lx + b
are two elements of H0, then h(z1 + z2) = (k + l)y + f (a + b) = h(z1) + h(z2), so h is a

homomorphism.

Case 2. m ∈ N. Then mx ∈ H , by the definition of m. Put h(x) = y and, more generally,

h(kx + a) = ky + f (a) for all k ∈ Z and a ∈ H . Let us verify that the mapping h : H0 → F
is correctly defined. Indeed, suppose that kx + a = lx + b for some k, l ∈ Z and a, b ∈ H .

Then (k− l)x = b− a ∈ H , so m divides k− l by our choice of m. Hence k− l = mp, for

some p ∈ Z. It follows that

(ky + f (a))− (ly + f (b)) = (k − l)y − f (b− a) = mpy − f (mpx) = 0,

or, in other words, h(kx + a) = h(ly + b). Thus, the value h(kx + a) does not depend on

the choice of k ∈ Z and a ∈ H .

One easily verifies that, in either case, h is a homomorphism of H0 to F that

extends f . �
A group G is said to be divisible if Gn = G for each n ∈ N. In other words, given

x ∈ G and n ∈ N, there is an element y ∈ G such that yn = x. The group T of complex

numbers z ∈ C with |z| = 1 is, obviously, divisible. The additive group of real numbers

is also a divisible group. On the other hand, the group Z(2) = {0, 1} is not divisible. A

fundamental property of divisible groups is the following one.

Theorem 1.1.6. Let H be a subgroup of an Abelian group G. Then every homo-
morphism f of H to any divisible group F can be extended to a homomorphism of G to
F .

Proof. We argue with the aim to use Zorn’s lemma. Denote by � the family of the

pairs (K, g) such that K is a subgroup of G containing H and g : K → F a homomorphism

such that the restriction of g to H coincides with f . Given two elements (K, g) and (K1, g1)

in �, we put (K, g) ≤ (K1, g1) if K ⊂ K1 and g1 extends g. This gives us a partially ordered

set (�,≤). Suppose that � ⊂ � is a chain in �, that is, a subset of � linearly ordered by

the order ≤ of �. Put

P∗ =
⋃
{P : (P, g) ∈ � for some homomorphism g : P → F}

and define a mapping g∗ : P∗ → F by the rule g∗(x) = g(x), where x ∈ P and (P, g) ∈ �.

Since � is a chain in (�,≤), it follows that P∗ is a subgroup of G, H ⊂ P∗, and g∗ is a

homomorphism of P∗ to F . If follows from the definition of (P∗, g∗) that (P, g) ≤ (P∗, g∗)

for each (P, g) ∈ �. We have proved that every chain in (�,≤) has an upper bound in

(�,≤).
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Therefore, by Zorn’s lemma, the partially ordered set (�,≤) has a maximal element

(K, h). It remains to verify that K = G. Suppose to the contrary that K = G and choose

an element a ∈ G \ K. Since F is divisible, Lemma 1.1.5 guarantees the existence of

a homomorphism h0 : K0 → F extending h, where K0 = 〈K ∪ {a}〉. It is clear that

(K, h) < (K0, h0) and that (K0, h0) ∈ �. This contradicts the maximality of (K, h) and

finishes the proof. �

Proposition 1.1.7. Let G be any group, and b any element of G distinct from the
identity e of G. Then there exists a cyclic subgroup H of G containing b and isomorphic to
a subgroup of the circle group T.

Proof. Let us consider two cases.

Case 1. b is of finite order. Let p be the order of b. Put ϕ = 2π/p, and

a = cos ϕ + i sin ϕ. Then a ∈ T, and the order of a in the group T is p. Put H = 〈b〉,
K = 〈a〉, and g(bn) = an, for each n = 1, . . . , p. Then H is a subgroup of G containing b,

K is a subgroup of T, and g is an isomorphism of H onto K.

Case 2. b is not of finite order. There exists ϕ such that 0 < ϕ < π and for any pair

(n, k) ∈ N × N, nϕ is not equal to 2kπ. Put a = cos ϕ + i sin ϕ and g(bn) = an, for each

n ∈ Z. Then g is an isomorphism of the subgroup H = 〈b〉 of G onto the subgroup K = 〈a〉
of T, and b ∈ H . �

From Theorem 1.1.6 and Proposition 1.1.7 we obtain:

Corollary 1.1.8. For any Abelian group G, and any element a of G distinct from the
identity e of G, there exists a homomorphism g of G to the circle group T such that g(a) = 1.

Proof. By Proposition 1.1.7, there exists a subgroup H of G which contains a and is

isomorphic to a subgroup K of T. Fix an isomorphism f of H onto K. Clearly, f (a) = 1.

It remains to apply Theorem 1.1.6. �

To finish this section we present two interesting and important examples of groups the

first of which is called the group of quaternions and the second one is the group of r-adic
numbers. In fact, the group of quaternions has a richer structure. Here are the necessary

definitions.

A non-empty set S with two binary operations + and · called addition and multiplication,

respectively, is said to be a ring if the following conditions are satisfied:

(R1) (S, +) is a commutative group;

(R2) (S, ·) is a monoid;

(R3) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x for all x, y, z ∈ S.

Condition (R3) expresses the distributive law that relates addition and multiplication in S.

It is common practice to abbreviate (S, +, ·) simply as S when there is no confusion with

the operations in S. Let 0 and 1 be neutral elements of the group (S, +) and monoid (S, ·),
respectively. We leave to the reader the simple verification of the equality 0 · x = x · 0 = 0,

which holds for each x ∈ S. Notice that if 0 = 1, then S contains only the element 0.

If the multiplication in a ring S is commutative, then the ring is called commutative.
A ring S in which 0 = 1 and every non-zero element x ∈ S is invertible with respect to

multiplication is called a skew field. A commutative skew field is a field.

Some algebraic concepts
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Clearly, R and C are fields when considered with their usual addition and multiplication.

The set M(n, R) of all n by n matrices with real entries and the usual matrix addition and

multiplication is a non-commutative ring, for each n > 1. The set P[x1, . . . , xn] of all

polynomials of mutually commuting variables x1, . . . , xn with real coefficients and the usual

sum and multiplication is an example of a commutative ring. For every integer r > 1, the

set Z(r) of non-negative residues modulo r with addition and multiplication modulo r is

another example of a commutative ring (we noted in item 5) of Example 1.1.2 that Z(r) is a

commutative group with respect to addition). It is well known (and easy to verify) that Z(r)

is a field if and only if the number r is prime. Yet another example of a commutative ring is

the set RX of all real-valued functions on a non-empty set X, with the pointwise operations

of addition and multiplication of functions.

A non-trivial example of a skew field is presented below.

Example 1.1.9. Denote by Q the set of all linear combinations q = a + ib + jc + kd,

where a, b, c, d are real numbers and i, j, k are special symbols satisfying the equalities

i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i, ki = −ik = j. We introduce the

usual coordinatewise addition in Q by the rule

[a + ib + jc + kd] + [a′ + ib′ + jc′ + kd′] = (a + a′) + i(b + b′) + j(c + c′) + k(d + d′).

With this addition, Q is a commutative group called the additive group of quaternions.
The product of two quaternions q = a + ib + jc + kd and q′ = a′ + ib′ + jc′ + kd′ is

formed by multiplying out the formal linear polynomials and applying the above equalities

and the commutativity rules xi = ix, xj = jx, xk = kx for each x ∈ R:

(a + ib + jc + kd)(a′ + ib′ + jc′ + kd′) = (aa′ − bb′ − cc′ − dd′)

+ i(ab′ + ba′ + cd′ − dc′)

+ j(ac′ − bd′ + ca′ + db′)

+ k(ad′ + bc′ − cb′ + da′).

We leave to the reader the routine verification of the fact that the multiplication in Q
is associative. It is clear that Q has the neutral element 1 = 1 + i0 + j0 + k0 with

respect to multiplication, so (Q, ·) is a non-commutative monoid. In addition, the sum and

multiplication in Q satisfy the distributive law, whence it follows that Q is a non-commutative

ring.

Let Q∗ = Q \ {0}, where 0 = 0 + i0 + j0 + k0 is the zero element of Q. It turns

out that every non-zero element q ∈ Q is invertible. Indeed, for q = a + ib + jc + kd,

put q̄ = a − ib − jc − kd. An easy calculation shows that qq̄ = q̄q = a2 + b2 + c2 + d2.

Therefore, if q = 0, then r = q̄α is an inverse of q, where α = 1/(a2 + b2 + c2 + d2). Since

Q is a monoid, the inverse of q is unique, and Q∗ is a multiplicative group. It follows that

Q is a skew field. Sometimes Q∗ is called the multiplicative group of quaternions. Notice

that U = {±1,±i,±j,±k} is a subgroup of Q∗ called the group of quaternion units. �
In the following example we construct, for every integer r > 1, the additive group Ωr

of r-adic numbers. Later on, we shall define multiplication in Ωr, thus making the group

Ωr into a commutative ring (see Example 3.1.31).

Example 1.1.10. Let r be an integer with r > 1. Denote by A the set {0, 1, . . . , r− 1}
and consider the Cartesian product P = AZ of infinitely many copies of the set A enumerated
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by the integers. In other words, P consists of the sequences x = (. . . , xn−1, xn, xn+1, . . .)
infinite in both sides, where xn ∈ A for each n ∈ Z. Let Ωr be the subset of P formed by

all sequences x such that xn = 0 for all n < k, where k is an integer depending upon x.

Our aim is to define addition in Ωr which, in a sense, mimics the decomposition of a

natural number M into powers of r. More precisely, every M ∈ N can be represented in the

polynomial form

M = x0 + x1r + x2r2 + · · ·+ xmrm, (1.1)

where x0, x1, x2, . . . , xm ∈ A, xm = 0 and m ∈ ω. It is easy to verify that such a

representation of M is unique. This gives us a bijection between N and all finite sequences

x = (x0, x1, x2, . . . , xm) such that xi ∈ A for each i ≤ m and xm = 0.

Suppose that for a positive integer N, we have a decomposition

N = y0 + y1r + y2r2 + · · ·+ ynrn (1.2)

similar to (1.1). Then the number M + N can also be decomposed into powers of r, and the

coefficients of the corresponding decomposition admit an explicit expression in terms of xi

and yi. Indeed, let

M + N = z0 + z1r + z2r2 + · · ·+ zkr
k, (1.3)

where z0, z1, . . . , zk ∈ A, zk = 0 and k ∈ ω. It follows from (1.1), (1.2) and (1.3) that

x0 + y0 = z0 + t0r, where t0 is either 0 or 1. Clearly, t0 = 1 iff x0 + y0 ≥ r, so that z0 is the

least non-negative residue of x0 + y0 modulo r. Again, we apply (1.1)–(1.3) and the above

equality x0 + y0 = z0 + t0r to deduce that z1r + r2P = (x1 + y1 + t0)r + r2Q for some

non-negative integers P and Q. Therefore, x1 + y1 + t0 = z1 + t1r, where t1 = P − Q.

Since 0 ≤ x1 + y1 + t0 ≤ 2(r − 1) + 1 < 2r and z1 ≥ 0, it follows that t1 is either 0 or 1,

and that z1 is the least non-negative residue of x1 + y1 + t0 modulo r.

Suppose that we have defined z0, z1, . . . , zs ∈ A and t0, t1, . . . , ts ∈ {0, 1} for some

integer s ≥ 1 such that the equality zi + tir = xi + yi + ti−1 holds for each i = 0, 1, . . . , s
(where t−1 = 0). Taking the sum of (1.1) and (1.2) compared with (1.3) and using the above

equalities with i = 0, 1, . . . , s, we obtain that

xs+1 + ys+1 + ts = zs+1 + ts+1r, (1.4)

where zs+1 ∈ A and ts+1 is either 0 or 1. It is clear that the integer k in the equality (1.3)

that determines the expansion of M + N satisfies k ≤ max{m, n} + 1. Summing up, the

equalities (1.4), together with x0 +y0 = z0 +t0r, enable us to define inductively the numbers

z0, z1, . . . , zk ∈ A satisfying (1.3) in terms of xi and yi.

We are now in position to give a formal definition of the addition in Ωr which is based

on the equalities (1.4). Denote by 0 the zero sequence in Ωr each element of which is zero.

First, we set x + 0 = x and 0 + x = x for each x ∈ Ωr. Let x = (xn) and y = (yn) be

arbitrary elements of Ωr, both distinct from 0. Choose integers m0 and n0 such that xm0
= 0

and xn = 0 if n < m0 and, similarly, yn0
= 0 and yn = 0 if n < n0. Set k0 = min{m0, n0}.

We define a sequence z = (zn) ∈ Ωr as follows. First, we choose zk0
∈ A and tk0

∈ {0, 1}
satisfying xk0

+ yk0
= zk0

+ tk0
r. Clearly, the numbers zk0

and tk0
are uniquely defined by

this equality and the restrictions on them. Suppose that zk0
, zk0+1, . . . , zk and tk0

, tk0+1, . . . , tk
have been defined for some integer k ≥ k0. Then we choose zk+1 ∈ A and tk+1 ∈ {0, 1}
satisfying xk+1 + yk+1 + tk = zk+1 + tk+1r. Again, such a choice is always possible and

Some algebraic concepts
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is unique. This inductive procedure defines a sequence z = (zn) ∈ Ωr, where zn = 0 if

n < k0. It remains to put x + y = z. This finishes our definition of addition in Ωr.

It turns out that the set Ωr with the addition just defined is a commutative group called the

group of r-adic numbers. Indeed, it is clear from the above definition and the commutativity

of the addition in Z that x+y = y+x and that x+0 = x for all x, y ∈ Ωr. Given an arbitrary

non-zero element x = (xn) in Ωr, we define an element y ∈ Ωr as follows. Suppose that

xm = 0 and xn = 0 for each n < m. Set yn = 0 if n < m, ym = r−xm, and yn = r−xn−1

if n > m. Then the element y = (yn) ∈ Ωr satisfies x + y = y + x = 0.

It remains to verify that the addition in Ωr is an associative operation. Let x, y, z be

arbitrary elements of Ωr and suppose that at least one of them is different from 0. Take

the least integer m such that one of the values xm, ym, zm is distinct from zero. Then

xn = yn = zn = 0 for each n < m and it is clear that the values of (x+y)+z and x+(y+z)

at the index n are equal to zero, for each n < m. To show that the values of the two elements

coincide at every index n ≥ m, we argue as follows. Let Σm be the set of all elements

t ∈ Ωr such that tn = 0 if n < m and only finitely many values tn with n ≥ m are distinct

from zero. Consider the mapping ϕ of Σm to the set of non-negative integers defined by the

rule

ϕ(t) = tm + tm+1r + tm+2r2 + · · · .

Since t is in Σm, the above sum is finite. It follows from our definition of the addition in Ωr

that ϕ has the property ϕ(x + y) = ϕ(x) + ϕ(y) for all x, y ∈ Σm. Informally speaking, ϕ
preserves addition or, equivalently, ϕ is a homomorphism of Σm onto the additive semigroup

of non-negative integers. It is also clear that ϕ(t) = 0 iff t = 0. It follows that ϕ is a bijection

preserving operation. Since addition of integers is associative, the same is true for addition

in Σm. Finally, we return back to the elements x, y, z ∈ Ωr considered above. For any index

k ≥ m, consider the “truncated” elements x′, y′, z′ coinciding with x, y, z, respectively, at

every index n ≤ k, and whose values are equal to zero for each index n > k. Then x′, y′, z′

are elements of Σm, whence it follows that (x′ + y′) + z′ = x′ + (y′ + z′). Evidently, the

values of the elements (x′ + y′) + z′ and (x + y) + z at the index k coincide, and the same is

valid for the elements x′ + (y′ + z′) and x + (y + z). Since k ≥ m is arbitrary, we conclude

that (x + y) + z = x + (y + z). Therefore, the addition in Ωr is associative and Ωr is a

commutative group with neutral element 0.

Denote by Zr the set of all elements x ∈ Ωr such that xn = 0 for each n < 0.

Omitting the values of x at negative indices, we may rewrite every element x ∈ Zr as

x = (x0, x1, x2, . . .), thus identifying Zr with the corresponding subset of Aω. We leave to

the reader a simple verification of the fact that Zr is a subgroup of the additive group Ωr.

We will call Zr the group of r-adic integers. �

Exercises

1.1.a. Prove that if H is a subgroup of a group G, then, for any a ∈ G, a−1Ha is also a subgroup

of G.

1.1.b. Verify that for every Abelian group G and every n ∈ N, the set G[n] = {x ∈ G : nx = 0G}
is a subgroup of G.

1.1.c. Let H be a subgroup of a group G such that G = H ∪ aH , for some a ∈ G. Show that H is

an invariant subgroup of G.
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1.1.d. Let r > 1 be an integer and G a torsion group such that for every element x ∈ G, the order

o(x) of x and the number r are mutually prime. Prove that the mapping ϕr : G → G defined

by ϕr(x) = xr is a bijection of G onto G. Show that ϕr is a homomorphism if the group G
is commutative.

1.1.e. Let G be an Abelian torsion group. Verify that every finite subset A of G generates a finite

subgroup 〈A〉 of G. Show that the conclusion is no longer valid for non-commutative groups.

1.1.f. Give an example of an infinite Abelian group all proper subgroups of which are finite.

1.1.g. Give an example of a semigroup G and a subsemigroup S of G such that, for some a and b
in G, the sets aS and bS do not coincide and are not disjoint.

1.1.h. Does Theorem 1.1.6 remain valid if we drop the assumption that the group G is Abelian?

1.1.i. Give an example of a semigroup G such that ∅ =
⋂∞

n=1
Gn.

1.1.j. For every quaternion q = a+ib+jc+kd (see Example 1.1.9), put |q| =
√

a2 + b2 + c2 + d2.

Show that the set {q ∈ Q : |q| = 1} is a subgroup of Q∗.

1.1.k. Let Ωr be the group of r-adic numbers defined in Example 1.1.10, where r > 1.

(a) Verify that the “multiplication” of a non-zero element x ∈ Ωr by r moves every value

xk of x to the next position on the right. In other words, if m is the least integer such that

xm �= 0, then the values yn of the element y = rx satisfy yn = 0 for each n ≤ m and

yn+1 = xn for n ≥ m. Deduce that the mapping ϕr of Ωr to Ωr defined by ϕr(x) = rx
is an isomorphism of Ωr onto itself.

(b) Use a) to solve the equation 2x = a in the group Ω6, where a = (. . . , 0, . . . , 0, 1, 1, 1, . . .)
is an element of the subgroup Z6 of Ω6 with a0 = 1.

Problems

1.1.A. Show that the solutions of the equation X2 = E2 in the multiplicative group GL(2, R) of all

invertible 2 by 2 matrices with real entries do not form a subgroup of the group GL(2, R),

where E2 is the identity matrix (i.e., the neutral element of GL(2, R)). Deduce that the

conclusion in Exercise 1.1.b is no longer valid in the non-Abelian case.

1.1.B. Let Q∗ be the multiplicative group of non-zero quaternions.

(a) Verify that the solutions of the equation q2 = 1 in Q form a two-element subgroup of Q∗.

(b) Show that the solutions of the equation q2 = −1 in Q can be naturally identified with

the points of the unit sphere in R3.

(c) How many solutions does the equation q3 = 1 have in Q? Does the set of solutions form

a submonoid of Q?

1.1.C. If G is a group and a, b ∈ G, then the element [a, b] = aba−1b−1 of G is called the

commutator of a and b. Is the set {[x, y] : x, y ∈ G} a subgroup (submonoid) of G?

1.1.D. How many subgroups does the symmetric group S4 contain (see item 8) of Example 1.1.2)?

How many of them are invariant in S4?

1.1.E. Let H be an invariant subgroup of a group G and K an invariant subgroup of H . Is K then

invariant in G?

1.1.F. Let r and k be mutually prime natural numbers, where r > 1. Prove that for every element

a of the group Zr of r-adic integers defined in Example 1.1.10, the equation kx = a has a

solution in Zr . Deduce that the group Ωr is divisible, for each r.

Hint. To prove the first assertion, take any a = (an)n∈ω in Zr , and define by induction on

n ∈ ω an element x = (xn)n∈ω in Zr and a function t : ω → {0, 1} such that kx0 ≡ a0 (mod r)

and kxn+1 + t(n) ≡ an+1 (mod r) for each n ≥ 0. To guarantee the existence of solutions

x0, x1, . . . of the congruences, apply the conclusion of Example 1.1.d to the cyclic group Z(r).

The second assertion of the problem follows from the first one if one applies Exercise 1.1.k.

Some algebraic concepts
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1.1.G. The construction of the group Ωr of r-adic numbers described in Example 1.1.10 admits a

natural generalization as follows. First, we fix an element a = (. . . , a−1, a0, a1, . . .) of NZ

such that an ≥ 2, for each n ∈ Z. For every n ∈ Z, put An = {0, 1, . . . , an−1}, and consider

the product Π =
∏

n∈Z
An. Denote by Ωa the set of all elements x = (. . . , x−1, x0, x1, . . .)

of Π such that xn = 0 for each n < n0, where n0 ∈ Z depends on x. Given two elements

x = (xn) and y = (yn) of Ωa, we define by induction an element x + y = z = (zn) ∈ Ωa as

follows. If x (or y) contains only zero entries, put z = y (z = x, respectively). Otherwise

put zn = 0 and tn = 0 for each n < m0, where m0 is the maximal integer with the property

that xn = 0 = yn for all n < m0. Choose zm0
∈ Am0

and an integer tm0
≥ 0 such that

xm0
+ ym0

= zm0
+ tm0

am0
. If we have defined zk and tk for all k < n, where m0 < n, then

there exist zn ∈ An and a non-negative integer tn such that xn + yn + tn−1 = zn + tnan (note

that the numbers zn and tn are uniquely determined by these conditions). Each element of

Ωa is called an a-adic number.
a) Verify that Ωa is an Abelian group (called the group of a-adic numbers).
b) Show that, for certain a, the group Ωa can have elements of finite order distinct from the

neutral element of the group.

c) Characterize the sequences a such that the corresponding group Ωa is torsion-free.

d) Verify that the set of x ∈ Ωa with xn = 0, for each n < 0, is a subgroup of Ωa; this

group is called the group of a-adic integers and is denoted by Za.

e) Prove that the group Za, for a = (2, 3, 4, . . .), is divisible and torsion-free (notice that in

the case of Za, we do not have to specify the entries an of a with n < 0).

1.2. Groups and semigroups with topologies

A right topological semigroup consists of a semigroup S and a topology � on S such

that for all a ∈ S, the right action 
a of a on S is a continuous mapping of the space S to

itself.

A left topological semigroup consists of a semigroup S and a topology � on the set S
such that for all a ∈ S, the left action λa of a on S is a continuous mapping of the space S
to itself.

A semitopological semigroup is a right topological semigroup which is also a left

topological semigroup.

A topological semigroup consists of a semigroup S and a topology � on S such that

the multiplication in S, as a mapping of S × S to S, is continuous when S × S is endowed

with the product topology.

A right topological monoid is a right topological semigroup with identity. Similarly, a

topological monoid is a topological semigroup with identity, and a semitopological monoid
is a semitopological semigroup with identity.

A left (right) topological group is a left (right) topological semigroup whose underlying

semigroup is a group, and a semitopological group is a left topological group which is also

a right topological group.

A paratopological group G is a group G with a topology on the set G that makes the

multiplication mapping G×G→ G continuous, when G×G is given the product topology.

For a group G, the inverse mapping In : G→ G is defined by the rule In(x) = x−1, for

each x ∈ G. A semitopological group with continuous inverse is called a quasitopological
group.
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A topological group G is a paratopological group G such that the inverse mapping

In : G → G is continuous. An easy verification shows that G is a topological group if and

only if the mapping (x, y) �→ xy−1 of G×G to G is continuous.

It is evident that every topological group is a topological semigroup, every topological

semigroup is a semitopological semigroup, and every semitopological semigroup is both a

left and right topological semigroup.

Example 1.2.1. Let � be the topology on R with the base � consisting of the sets

[a, b) = {x ∈ R : a ≤ x < b}, where a, b ∈ R and a < b. With this topology, and the

natural addition in the role of multiplication, R is a paratopological group and, therefore,

a topological semigroup. However, (R, �) is not a topological group since the inverse

operation x �→ −x is discontinuous. This paratopological group is called the Sorgenfrey
line. �

Example 1.2.2. Let S = R∪{α} be the one-point compactification of the usual space

R of real numbers. Define multiplication on S by the rule xy = x + y if x and y are in R,

and xy = α, otherwise. With this operation, S is a semitopological semigroup. However,

S is not a topological semigroup, since the multiplication mapping of S × S → S is not

(jointly) continuous at the point (α, α). �

Note that every group (semigroup) can be turned into a topological group (semigroup)

by providing it with the discrete topology. However, the problem of existence of non-

discrete Hausdorff topologies on infinite groups which would make them into topological

groups is a delicate one. We will discuss it for Abelian groups in Section 1.4.

A useful series of right topological semigroups comes when considering semigroups

of the form S(X, X) with weak topologies.

For a topological space X, let Sp(X, X) be the semigroup S(X, X) of all mappings of

the set X to X, taken with the topology of pointwise convergence. This topology has the

standard base � which consists of the sets

O(x1, . . . , xn, U1, . . . , Un) = {f ∈ S(X, X) : f (xi) ∈ Ui for i = 1, . . . , n},
where x1, . . . , xn are pairwise distinct points of X and U1, . . . , Un are non-empty open sets

in X, for some n ∈ N.

Theorem 1.2.3. For any topological space X, Sp(X, X) is a right topological semi-
group. Further, for any f ∈ S(X, X), the left action λf of f on Sp(X, X) is continuous if
and only if the mapping f : X → X is continuous.

Proof. Take any f, g ∈ S(X, X) and a finite subset K of X. Put L = f (K). For each

x ∈ K take an open neighbourhood Ox of gf (x) in X. Let V be the set of all h ∈ S(X, X)

such that h(x) ∈ Ox for each x ∈ K, and let U be the set of all g′ ∈ S(X, X) such that

g′f (x) ∈ Ox for each f (x) ∈ L = f (K). Then, clearly, V is a standard open neighbourhood

of gf in Sp(X, X), and U is an open neighbourhood of g in Sp(X, X) such that 
f (U) ⊂ V
(that is, Uf ⊂ V ). Therefore, Sp(X, X) is a right topological semigroup.

To deduce the last statement of the theorem, we consider the left action λf for some

f ∈ S(X, X). Take an arbitrary point a ∈ X and a non-empty open set V in X. It is easy to

see that

λ−1
f [O(a, V )] = {g ∈ S(X, X) : f (g(a)) ∈ V} = {g ∈ S(X, X) : g(a) ∈ f−1(V )}.

Groups and semigroups with topologies
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Therefore, if the mapping f : X → X is continuous, the set λ−1
f [O(a, V )] is open in Sp(X, X).

Since the sets of the form O(a, V ) constitute a subbase for the topology of Sp(X, X), we

conclude that the left action λf is continuous.

Conversely, suppose that the mapping f is discontinuous. Then we can find a point

a ∈ X and an open neighbourhood V0 of b = f (a) in X such that f (U) \ V0 = ∅ for each

neighbourhood U of a. Let 1X be the identity mapping of X onto itself. Evidently, f =

λf (1X) is in O(a, V0). Take an arbitrary basic neighbourhood O = O(x1, . . . , xn, U1, . . . , Un)

of 1X in Sp(X, X), where the points x1, . . . , xn are pairwise distinct. Then xi ∈ Ui for each

i ≤ n. We claim that the image λf (O) is not a subset of O(a, V0), so that λf is discontinuous

at 1X.

Indeed, if a ∈ {x1, . . . , xn}, we can assume that a = x1. Then W = U1 \ {x2, . . . , xn}
is an open neighbourhood of a in X and, hence, f (W ) \ V0 = ∅. Choose a point y0 ∈ W
such that f (y0) /∈ V0 and take an arbitrary g ∈ S(X, X) such that g(x1) = y0 and g(xi) = xi

for each i with 1 < i ≤ n. Then g ∈ O, and λf (g) = f ◦ g ∈ λf (O) \ O(a, V0) since

f (g(a)) = f (y0) /∈ V0. Similarly, if a /∈ {x1, . . . , xn}, we can choose a point y0 ∈ W =

X \ {x1, . . . , xn} such that f (y0) /∈ V0 and take a mapping g : X → X with g(a) = y0 and

g(xi) = xi for each i ≤ n. Then again g ∈ O and f ◦ g = λf (g) ∈ λf (O) \O(a, V0).

Thus, the left action λf of f on Sp(X, X) is discontinuous for every discontinuous

mapping f . �

Corollary 1.2.4. Let X be a topological space. The following statements are
equivalent:

1) Sp(X, X) is a topological semigroup.
2) Sp(X, X) is a semitopological semigroup.
3) The space X is discrete.

Proof. If X is discrete, then every mapping f of X to X is continuous, so the left

action λf is continuous by Theorem 1.2.3, and Sp(X, X) is a semitopological semigroup

by the same theorem. Hence, 3) implies 2). Conversely, if Sp(X, X) is a semitopological

semigroup then all left actions λf are continuous, which implies, by Theorem 1.2.3, that all

mappings f : X → X are continuous. Since the one-point sets in X are closed, the space X
must be discrete. Therefore, 2) and 3) are equivalent.

Clearly, 1) implies 2). We leave it to the reader to verify that 3) implies 1). �

Some more examples are in order.

Example 1.2.5. We present here several types of topologies on groups (semigroups).

a) Let G be an arbitrary group (semigroup), and let � be the family of all subsets of G, i.e.,

the discrete topology of G. With this topology, G is a topological group (semigroup).

We shall often refer to such a G as a discrete group.
b) Let G be an arbitrary infinite group and let � consist of G and the subsets of G

having finite complements. Then G is not a paratopological group. However, G is a

semitopological group with continuous inverse, that is, a quasitopological group. Note

that G with this topology is a T1-space but not Hausdorff.

c) The additive group R of all real numbers with its usual topology is a locally compact,

non-compact Abelian group.
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d) The multiplicative circle group T with the topology inherited from the complex number

field C is a compact Abelian group.

e) Let G be the group GL(n, R) of all invertible n by n matrices with real entries (see

also item 7) of Example 1.1.2). We endow G with the topology of a subspace of the

n2-dimensional Euclidean space. Then G is a topological group. Indeed, the formula for

multiplying two matrices and the formula for inverting a matrix employ only continuous

functions of the entries of the matrices. This group is called the general linear group
of degree n over R. Similarly, the general linear group GL(n, C) over the field C of

complex numbers, with the matrix multiplication and the topology induced from Cn2

is

again a topological group.

f) Let Q be the additive group of quaternions (see Example 1.1.9). Consider the natural

mapping f : Q→ R4 defined by the rule f (q) = (x, y, z, t), for each q = x+iy+jz+kt ∈
Q. Clearly, f is a bijection of Q onto R4. We topologize Q by declaring the mapping f
to be a homeomorphism. In other words, a subset U of Q is open if and only if the image

f (U) is open in R4. This agreement makes Q into a locally compact, second-countable

Hausdorff topological group. Clearly, the restriction of f to Q∗ = Q \ {0} fails to be

a homomorphism of the multiplicative group Q∗ to the additive group R4. However,

Q∗ with this topology (called Euclidean) turns out to be a topological group. This fact

follows easily from the definition of the multiplication and the procedure of inversion

in Q∗ given in Example 1.1.9. Therefore, the multiplicative group of quaternions Q∗

with the Euclidean topology is a locally compact Hausdorff topological group. �

Example 1.2.6. Let G and H be right topological semigroups, and G×H their product.

For each x ∈ G, the set {x} ×H is called a vertical fiber of G×H . For each y ∈ H , the

set G × {y} is called a horizontal fiber of G × H . Every vertical fiber can be considered

as a copy of the right topological semigroup H . Similarly, every horizontal fiber can be

interpreted as a copy of the right topological semigroup G. Therefore, we can treat every

fiber as a topological space.

Now we will define two new topologies on G×H , each of which contains the product

topology on G×H .

The first one is the cross topology. A subset W of G×H belongs to it if and only if the

intersection of W with every fiber of G×H (horizontal and vertical) is open in the fiber. It

is easy to verify that the semigroup G × H with the usual (coordinatewise) multiplication

and with the cross topology is again a right topological semigroup.

The second new topology on G×H is defined as follows. Take the family SC(G×H)

of all real-valued functions f on G × H such that the restriction of f to each fiber is a

continuous function on this fiber. It is well known that the functions in SC(G×H) need not

be continuous on the space G × H . Now let σ be the smallest topology on G × H which

makes all functions f ∈ SC(G×H) continuous.

It is easy to see that if G and H are Tychonoff spaces, then the topology σ on G×H
contains the usual topology of G×H and also is Tychonoff. However, the cross topology

on G×H need not be regular, even if G and H are second-countable spaces. �

The usual product topology on products of finitely many factors can be used to obtain

many interesting examples of topological groups and semigroups. Especially, if we combine

the product operation with the operation of taking a topological subgroup (subsemigroup)

Groups and semigroups with topologies
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of a topological group (semigroup). Obviously, every subgroup of a topological group,

endowed with the subspace topology, is again a topological group.

Let us describe briefly the much more general operation of topological product of an

arbitrary family of topological groups (semigroups, and so on).

In the next theorem we restrict ourselves to the case of topological groups. A similar

result holds for topological semigroups, semitopological semigroups, right topological

groups, etc.

Theorem 1.2.7. Suppose that {Gα : α ∈ A} is a family of topological groups, eα is the
neutral element of Gα for each α ∈ A, G = Πα∈AGα is the Cartesian product of the sets
Gα, with the Tychonoff product topology and the product operation defined coordinatewise.
Then G is also a topological group, with neutral element e = (eα)α∈A; this topological
group G is called the topological or direct product of the family {Gα : α ∈ A}.

Proof. Let x = (xα)α∈A and y = (yα)α∈A be arbitrary elements of G and O a be

neighbourhood of z = xy−1 in G. If z = (zα)α∈A then, clearly, zα = xαy−1
α for each

α ∈ A. Since G carries the Tychonoff product topology, we can find pairwise distinct

elements α1, . . . , αn of the index set A and an open neighbourhood Wαk of the point zαk in

the group Gαk , for each k = 1, . . . , n such that W =
∏

α∈A Wα ⊂ O, where Wα = Wαk if

α = αk for some k ≤ n, and Wα = Gα otherwise.

Since each Gαk is a topological group, there exist open neighbourhoods Uαk and Vαk

of xαk and yαk , respectively, in Gαk such that Uαk V
−1
αk
⊂ Wαk . Also, put Uα = Vα = Gα

for each α ∈ A \ {α1, . . . , αn}. Then the sets U =
∏

α∈A Uα and V =
∏

α∈A Vα are open

neighbourhoods of x and y, respectively, in the product group G. It follows immediately

from our definition of the sets U and V that UV−1 ⊂ W ⊂ O. Therefore, G is a topological

group. �

A shorter alternative proof of Theorem 1.2.7 goes like this. For every α ∈ A, let

pα : Gα × Gα → Gα be the product operation in the group Gα, and p : G × G → G the

product operation in G. Clearly, the mapping p can be represented as the Cartesian product

of the mappings pα. It follows that p is continuous. Similarly, the inversion in G is the

Cartesian product of inverse operations in the groups Gα. Therefore, the inversion in G is

also continuous, and G is a topological group with neutral element e.

What is particularly interesting and instructive in the examples below is their common

feature — we start with some discrete topological group, and using products and subgroups,

we obtain some topological groups of a highly non-trivial nature.

Example 1.2.8. Let Tτ be the topological product of τ copies of the circle group T.

Then Tτ is a compact Hausdorff topological group. This group resembles the Tychonoff

cube Iτ . However, in the realm of topological groups, Tτ does not play such a fundamental

role as the space Iτ does in the theory of Tychonoff spaces. Indeed, it is no longer true

that every compact group is topologically isomorphic to a topological subgroup of Tτ (the

non-commutativity of many classic compact groups is responsible for this phenomenon).

However, every compact commutative group is topologically isomorphic to a subgroup of

Tτ , for some cardinal τ (see Exercise 9.4.b). �

Example 1.2.9. Denote by D the discrete two-element group {0, 1}.
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a) Let Dτ be the topological product of τ copies of the group D. Then Dτ is a compact

zero-dimensional topological group. Note that a2 = e, for every element a of Dτ . Thus,

each element of Dτ is its own inverse. Such groups are called Boolean.
b) Take only those elements of Dτ which are non-zero at countably many coordinates at

most. They form a topological subgroup of Dτ . This subgroup is called the Σ-product
of τ copies of the group D and is denoted by ΣDτ . Clearly, the topological group ΣDτ

is dense in Dτ . Since ΣDτ is a proper subgroup of Dτ if τ > ω, it follows that ΣDτ is

not compact in this case.

c) Similarly, we could define the Σ-product of τ copies of the group T denoted by ΣTτ .

This topological group is not compact if τ > ω; however, it is countably compact (see

Corollary 1.6.34).

d) Another interesting topological subgroup of Dτ is the σ-product σDτ of τ copies of the

discrete group D; it consists of points with at most finitely many non-zero coordinates.

A curious property of this subgroup is that it is σ-compact, that is, the union of countably

many compact subspaces (see Proposition 1.6.41 below). �

We will continue the study of Σ-products and σ-products in Section 1.6.

Example 1.2.10. For a topological space X, let Cp(X, X) be the semigroup C(X, X) of

all continuous mappings of X to X, with the topology of pointwise convergence. In other

words, Cp(X, X) is a subsemigroup of the right topological semigroup Sp(X, X) considered

in Theorem 1.2.3. Then Cp(X, X) is a semitopological semigroup. Again, this follows from

Theorem 1.2.3. �

Example 1.2.11. Let G be a topological group (semigroup) and X a topological space.

Consider the set of all continuous mappings of X to G, with the product operation defined

coordinatewise and with the topology of pointwise convergence. This object, denoted by

Cp(X, G), is a topological group (semigroup). Note that Cp(X, G) is a topological subgroup

(subsemigroup) of the topological product GX of |X| copies of the group (semigroup) G. �

Example 1.2.12. Let X be a topological space and Homeop(X) the group of all

homeomorphisms of X onto itself, with the pointwise convergence topology.

a) Homeop(X) is a semitopological group, for every space X (see Example 1.2.10).

b) Homeop(X) need not be a topological group (though, obviously, Homeop(X) is a group).

c) If the space X is discrete, then Homeop(X) is a topological group. �

Item c) of Example 1.2.12 is generalized as follows:

Example 1.2.13. Let X be a metric space, with metric 
. Denote by Isp(X) the set of

all isometries of X onto itself (that is, the set of all one-to-one mappings of X onto itself

preserving distance), endowed with the topology of pointwise convergence. Then Isp(X) is

a topological group. The groups of the form Isp(X) will be studied in Section 3.5. �

Exercises

1.2.a. Prove the statements in Examples 1.2.1 and 1.2.2.

1.2.b. Prove the part of Corollary 1.2.4 left unproved.

1.2.c. Prove all statements in Examples 1.2.12 and 1.2.13.

1.2.d. Verify that every infinite subgroup of the topological group T is dense in T.

Groups and semigroups with topologies
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1.2.e. Verify that Theorem 1.2.7 remains valid for left (right) topological semigroups, topological

semigroups, paratopological and quasitopological groups.

1.2.f. Let S = {q ∈ Q∗ : |q| = 1} (see Exercise 1.1.j). Show that S is a compact subgroup of the

group Q∗ when the latter carries the Euclidean topology (see item f) of Example 1.2.5).

1.2.g. Suppose that H is a dense subgroup of a paratopological group G with identity e. Show that

if H is commutative, then so is G. Verify that if n ∈ N and every element x ∈ H satisfies

xn = e, then all elements of G satisfy the same equation.

1.2.h. Prove that for every element g of a Hausdorff paratopological group G, the set Gg = {x ∈
G : xg = gx} is a closed subgroup of G. Show that Gg need not be invariant in G, even if

G is a topological group.

1.2.i. Let D be a dense subset of a topological group G. Verify that the equalities UD = G = DU
hold for every neighbourhood U of the neutral element in G. Is the conclusion valid for

paratopological (or quasitopological) groups?

1.2.j. Let G be an arbitrary topological group. Is the set of commutators {[x, y] : x, y ∈ G} (see

Problem 1.1.C) closed in G?

1.2.k. Let I be the closed unit interval with the usual topology. Prove that Homeop(I) (see

Example 1.2.12) is a topological group.

Problems

1.2.A. Let S be a subgroup of Q∗ considered in Exercise 1.2.f. Prove that there exist elements

q1, . . . , qn ∈ S such that the subgroup 〈q1, . . . , qn〉 generated by these elements is dense in

S. What is the minimum value of n?

1.2.B. Prove that the topological group Q∗ defined in item f) of Example 1.2.5 is topologically

isomorphic to a subgroup of the topological group GL(4, R).

1.2.C. Let G be an abstract group and n a positive integer. Prove that if � is a Hausdorff

paratopological group topology on G, then the set G[n] = {x ∈ G : xn = eG} is closed

in (G, �). Does the conclusion remain valid for semitopological (quasitopological) group

topologies on G?

1.2.D. For a given integer n ≥ 1, we consider the following subsets of the general linear group

GL(n, R): The set SL(n, R) of all matrices with determinant equal to 1, the set TS(n, R) of

all triangular superior matrices with the elements on the main diagonal equal to 1, and the

set O(n, R) of all orthogonal matrices. Prove that each of the three sets is a closed subgroup

of GL(n, R). Verify that SL(n, R) is invariant in GL(n, R), while TS(n, R) and O(n, R) are

not if n ≥ 2.

1.2.E. Let G and H be topological groups and ϕ be a homomorphism of H to the group Aut(G) of

automorphisms of G (see Example 1.1.4). We define the multiplication ◦ in G × H by the

rule

(g1, h1) ◦ (g2, h2) = (g1ϕ(h1)(g2), h1h2)

for all g1, g2 ∈ G and h1, h2 ∈ H . Prove that G × H with the product topology and

multiplication just defined is a topological group. Verify that the group G is topologically

isomorphic to the closed invariant subgroup G × {eH} of G × H .

1.3. Neighbourhoods of the identity in topological groups and semigroups

Given a semigroup S or a group G, what are the ways to topologize S, respectively,

G? Of course, this informal question can be given different formal interpretations; for

example, we could look for topologies which would make S into a topological semigroup,

or a semitopological semigroup, or a right topological semigroup. It is also clear that we can
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always take the discrete topology on S or G, which makes S into a topological semigroup and

G into a topological group. To exclude this trivial solution, we should look for non-discrete

topologizations of S and G, also called non-trivial.
In the matters of topologizations, the following simple fact is instrumental.

Proposition 1.3.1. Let G be a right topological group and g be any element of G.
Then:

a) the right translation 
g of G by g is a homeomorphism of the space G onto itself;
b) for any base �e of the space G at e, the family �g = {Ug : U ∈ �e} is a base of G at

g.

Proof. Clearly, b) follows from a). To prove a), we just observe that, in a right

topological group, every right translation 
g is a continuous bijection. Since 
g ◦ 
g−1 is

the identity mapping, it follows that the inverse of 
g is also continuous, that is, 
g is a

homeomorphism of G onto itself. �
Corollary 1.3.2. In every semitopological group G all, right and left, translations

are homeomorphisms.

Corollary 1.3.3. Suppose that a subgroup H of a right (or left) topological group G
contains a non-empty open subset of G. Then H is open in G.

Proof. Let U be an open non-empty subset of G with U ⊂ H . For every a ∈ H , the

set 
a(U) = Ua is open in G by a) of Proposition 1.3.1. Therefore, the set H =
⋃

a∈H Ua
is open in G. �

The following simple fact is useful in many occasions.

Proposition 1.3.4. Let f : G → H be a homomorphism of left (right) topological
groups. If f is continuous at the neutral element eG of G, then f is continuous.

Proof. Let x ∈ G be arbitrary, and suppose that O is an open neighbourhood of

y = f (x) in H . Since the left translation λy is a homeomorphism of H , there exists an open

neighbourhood V of the neutral element eH in H such that yV ⊂ O. It follows from the

continuity of f at eG that f (U) ⊂ V , for some open neighbourhood U of eG in G. Again,

since λx is a homeomorphism of G onto itself, the set xU is an open neighbourhood of x
in G, and we have that f (xU) = yf (U) ⊂ yV ⊂ O. Hence, f is continuous at the point

x ∈ G. �
Let γ be a family of subsets of a set X. We say that γ is a covering of X or, equivalently,

that γ covers X if X =
⋃

γ. In addition, if X is a topological space and all elements of γ
are open (closed) in X, then γ is called an open covering (respectively, a closed covering).

A simple theorem below complements Corollary 1.3.3.

Theorem 1.3.5. Every open subgroup H of a right (or left) topological group G is
closed in G.

Proof. The family γ = {Ha : a ∈ G} of all right cosets of H in G is a disjoint open

covering of G (it is here that it is important that G be a group and H be its subgroup).

Therefore, every element of γ is closed in G. In particular, H = He is closed in G. By the

symmetry argument, the same holds true in the case when G is a left topological group. �

Neighbourhoods of the identity in topological groups and semigroups
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Recall that a topological space X is said to be homogeneous if for each x ∈ X and each

y ∈ X, there exists a homeomorphism f of the space X onto itself such that f (x) = y.

From Proposition 1.3.1 and Corollary 1.3.2 we easily obtain the next result:

Corollary 1.3.6. Every right topological group G, in particular, every semitopolog-
ical group is a homogeneous space.

Proof. Take any elements x and y in G, and put z = x−1y. Then 
z(x) = xz =

xx−1y = y. Since, by Proposition 1.3.1, 
z is a homeomorphism, the space G is

homogeneous. �
On the contrary, a topological semigroup, even if it has identity and is Abelian, need

not be homogeneous.

Example 1.3.7. Take the closed unit interval I = [0, 1], and put xy = max{x, y}, for

all x, y ∈ I. Clearly, I with the usual topology and this product operation, is a topological

Abelian semigroup (with 0 in the role of identity). However, I is not a homogeneous space

since no homeomorphism of I takes 0 to 1/2. �
Given a group G, it follows from Corollary 1.3.6 that to make G into a right topological

group, we can only use homogeneous topologies. Now, one of the main features of

homogeneous spaces is that they behave in the same way at any point. It follows that if we

know how the topology of a right topological group behaves at the identity, we know this

topology everywhere (see Proposition 1.3.1). This observation suggests a certain approach

to topologizing a group G — first we have to define a family of basic neighbourhoods at

the identity, then move this family around the group by means of translations, and generate

a topology on G by declaring the family thus obtained to be a base for the topology.

Let us see how this approach can be used to turn an arbitrary Abelian group G into

a semitopological group (not necessarily Hausdorff). Recall that a family ξ of non-empty

subsets of a set X is called a prefilter on X if X ∈ ξ and, for each finite collection A1, . . . , Ak

of elements of ξ, there exists B ∈ ξ such that B ⊂ ⋂k
i=1 Ai. If, in addition, from A ∈ ξ and

A ⊂ B ⊂ X it follows that B ∈ ξ, then ξ is called a filter on X.

Construction 1.3.8. (Right topology on a monoid.) Let S be a monoid, e the identity

of S, and �e any prefilter on S such that e ∈ ⋂
�e. For each a ∈ S, put �a = {Pa : P ∈ �e}.

Then �a is a prefilter on S such that a ∈ ⋂
�a. Call a set U ⊂ S open if for each a ∈ U there

exists F ∈ �a such that F ⊂ U. Then the family of all open subsets forms a topology on S.

We claim that, with this topology, S becomes a right topological monoid (not necessarily

Hausdorff).

Indeed, take a ∈ S and an open set V ⊂ S. We have to show that the set U = 
−1
a (V )

is open in S. Take any b ∈ U. Then c = ba = 
a(b) ∈ V . Since V is open and c ∈ V , there

exists Pc ∈ �c such that Pc ⊂ V . Then Pc = Pc, for some P ∈ �e, and b ∈ Pb = Pb ∈ �b.

We have 
a(Pb) = Pba = Pc ⊂ V . It follows that Pb ⊂ U, which implies that U is open.

Hence, the mapping 
a is continuous, and S is a right topological monoid. �
Note that the elements of the family �e need not belong to the topology defined in

Construction 1.3.8. To see this, it is enough to consider the cross topology defined in

Example 1.2.6; obviously, this definition is a particular case of Construction 1.3.8. Now we

formulate a restriction on the family �e that guarantees that all elements of �e belong to

the topology defined above and that the family serves as a base for this topology.
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Proposition 1.3.9. Suppose that S is a monoid and �e is a prefilter on S such that
e ∈ ⋂

�e and the next condition (t) is satisfied:

(t) for each U ∈ �e and each x ∈ U, there exists V ∈ �e such that Vx ⊂ U.

Then, for each U ∈ �e and every a ∈ S, the set Ua belongs to the topology on S defined in
Construction 1.3.8, and the family �a = {Ua : U ∈ �e} is a base of this topology at a. In
particular, it follows that every right action 
a is an open continuous mapping of S to itself.

Proof. Let a ∈ S and U ∈ �e be arbitrary. Take any y ∈ Ua. Then y = xa,

for some x ∈ U. According to (t), there is V ∈ �e such that Vx ⊂ U. It follows that

y = xa ∈ Vxa = Vy ⊂ Ua. Since Vy ∈ �y, we conclude that the set Ua is open.

It follows from the definition of the topology on S that the family �a = {Ua : U ∈ �e}
is a base of the space S at a, for every a ∈ S. This statement, together with the obvious

equality 
a(Ub) = Uba, implies that each 
a is an open continuous mapping. �
Notice that if S is a right topological monoid with topology �, and �e is a base of

the space S at e, then the prefilter �e satisfies condition (t). Therefore, we can introduce

a new topology �0 on S, following Construction 1.3.8. This new topology does not have

to coincide with the original topology, but it is equivalent to it at the identity e. Of course,

� ⊂ �0. With the new topology S may be a better right topological monoid than with the

old one, since all right actions 
a are now open.

Let us now assume that S = G is a group. Which restrictions on the prefilter �e

guarantee that the inverse is continuous? Which restrictions are necessary to make sure that

the multiplication operation is jointly continuous?

The answers to these questions are not completely straightforward. For example, it is
not enough to require that all elements of �e be symmetric sets (that is, satisfy the condition

A = A−1) to ensure that the inverse be continuous. It is also not enough to assume that

for each U ∈ �e there be V ∈ �e such that V 2 ⊂ U to make the product operation jointly

continuous, even in the presence of condition (t).

However, for Abelian groups the following results are available. The first of them is

almost obvious.

Theorem 1.3.10. Let G be an Abelian group, e the neutral element of G, and �e a
prefilter on G such that e ∈ ⋂

�e and each A ∈ �e is symmetric. Then the topology on G
generated by �e as in Construction 1.3.8, turns G into a quasitopological group.

Proof. Since in the Abelian group G each left translation λa coincides with the right

translation 
a, the right semitopological group G is automatically a semitopological group.

Suppose that U is an open subset of G. To show that the set U−1 is open in G, take an

arbitrary point x ∈ U and choose P ∈ �e such that Px ⊂ U. Since G is Abelian and P
is symmetric, we have that Px−1 = P−1x−1 = x−1P−1 = (Px)−1 ⊂ U−1. Thus, the set

U−1 is open in G, so the inverse in G is continuous. �
Theorem 1.3.11. Let G be an Abelian group, e the identity of G, and �e a prefilter on

G such that e ∈ ⋂
�e and the condition (t) is satisfied. Assume also that for each U ∈ �e

there exists V ∈ �e such that V 2 ⊂ U. Then the topology on G generated by �e as in
Construction 1.3.8, turns G into a paratopological group.

Proof. It follows from Proposition 1.3.9 and the commutativity of G that G is a

semitopological group. Let us verify that the multiplication in G is jointly continuous. Take

Neighbourhoods of the identity in topological groups and semigroups
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arbitrary elements x, y ∈ G and an open neighbourhood O of z = xy in G. We use property

(t) of the prefilter �e to choose U ∈ �e such that Uz ⊂ O. By assumptions of the theorem,

there exists V ∈ �e satisfying V 2 ⊂ U. Then VxVy = VVxy = VVz ⊂ Uz ⊂ O. Since, by

Proposition 1.3.9, Vx and Vy are open neighbourhoods in G of x and y, respectively, this

proves that the multiplication in G is continuous. Hence, G is a paratopological group. �

Using Construction 1.3.8 together with Theorems 1.3.10 and 1.3.11, one can effectively

‘semitopologize’ or ‘paratopologize’ many Abelian groups. However, to make a group into

a topological group is a much more complicated matter. This is so because to ensure the

joint continuity of multiplication turns out to be much more difficult than to guarantee the

separate continuity only. Indeed, there exists an infinite abstract group G which can be

made into a Hausdorff topological group only by taking the discrete topology on G (see

Problem 1.3.F).

Let G be an infinite abstract group. To understand what conditions should be imposed

on �e to guarantee that the topology on G defined in Construction 1.3.8 will turn G into

a Hausdorff topological group, we first consider a simpler question: Given a topological

group G, what are the properties of an open base at the identity e of G? The answer is

contained in the next statement.

Theorem 1.3.12. Let G be a topological group and � an open base at the identity e
of G. Then:

i) for every U ∈ �, there is an element V ∈ � such that V 2 ⊂ U;
ii) for every U ∈ �, there is an element V ∈ � such that V−1 ⊂ U;
iii) for every U ∈ � and every x ∈ U, there is V ∈ � such that Vx ⊂ U;
iv) for every U ∈ � and x ∈ G, there is V ∈ � such that xVx−1 ⊂ U;
v) for U, V ∈ �, there is W ∈ � such that W ⊂ U ∩ V ;
vi) {e} =

⋂
�.

Conversely, let G be a group, and let � be a family of subsets of G satisfying conditions
i)–vi). Then the family �� = {Ua : a ∈ G, U ∈ �} is a base for a T1-topology �� on
G. With this topology, G is a topological group, and the family {aU : a ∈ G, U ∈ �} is a
base for the same topology on G.

Proof. If G is a topological group, then i) and ii) follow from the continuity of the

mappings (x, y) �→ xy and x �→ x−1 at the identity e. Property iii) follows from the

continuity of left translations in G. Similarly, iv) follows from the fact that x �→ ax and

ax �→ axa−1 are homeomorphisms of G. Property v) is clear since � is an open base at e.

Property vi) is also clear since G is a T1-space and � is an open base at e.

To prove the converse, let � be a family of subsets of G such that conditions i)–vi)

hold. Let � be the family of all subsets W of G satisfying the following condition:

(n) for each x ∈ W , there is U ∈ � such that Ux ⊂ W .

Claim 1. � is a topology on G.

Indeed, it is clear that
⋃

γ ∈ � for any subfamily γ of �. Assume now that W1 ∈ �
and W2 ∈ �, and put W = W1 ∩W2. We have to prove that W ∈ �. Take any x ∈ W .

There exist U1 ∈ � and U2 ∈ � such that U1x ⊂ W1 and U2x ⊂ W2. From v) it follows

that there is U ∈ � such that U ⊂ U1 ∩ U2. Then, clearly, Ux ⊂ W1 ∩W2 = W . Hence,

W ∈ �, and � is a topology on G.
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Claim 2. Ux ∈ �, for each x ∈ G and each U ∈ �.

Take any y ∈ Ux. Then yx−1 ∈ U. By property iii), there is an element V ∈ � such

that Vyx−1 ⊂ U. It follows that Vy ⊂ Ux. Hence, Ux ∈ �.

Note that Claim 2 and iii) together imply that the following is true:

Claim 3. The family �� = {Ua : a ∈ G, U ∈ �} is a base for the topology �. Hence,
� = ��.

Claim 4. The multiplication in G is jointly continuous with respect to the topology �.

Let a and b be arbitrary elements of G, and O be any element of � such that ab ∈ O.

Then there exists W ∈ � such that Wab ⊂ O. To prove Claim 4, it suffices to find U ∈ �
and V ∈ � such that UaVb ⊂ Wab or, equivalently, UaV ⊂ Wa which is, in its turn,

equivalent to U(aVa−1) ⊂ W . Now we can see how to choose U and V in �.

First, apply i) to choose U ∈ � such that U2 ⊂ W . After that, use iv) to choose V ∈ �
such that aVa−1 ⊂ U. Then, by the choice of U and V , we have U(aVa−1) ⊂ U2 ⊂ W
which implies that UaVb ⊂ Wab. Thus, the multiplication in G is continuous with respect

to the topology �. In particular, all right translations of G are continuous, and the space

(G, �) is homogeneous.

Claim 5. bV ∈ �, for all b ∈ G and V ∈ �.

Take any y ∈ bV . We have to find U ∈ � such that Uy ⊂ bV . Clearly, we have

b−1y ∈ V . By iii), there is an element W ∈ � such that Wb−1y ⊂ V . It follows from

iv) that there is U ∈ � such that b−1Ub ⊂ W . Therefore, b−1Ubb−1y ⊂ V , that is,

b−1Uy ⊂ V . Hence, Uy ⊂ bV . It follows that bV ∈ �.

Claim 6. The mapping In of G onto G given by In(x) = x−1 is continuous with respect to
the topology �.

Indeed, it follows from Claim 3 that we have only to show that the set a−1U−1 is in

� for all a ∈ G and U ∈ �, since In−1(Ua) = a−1U−1. By Claim 5, it suffices to verify

that U−1 ∈ �. Take an arbitrary point x ∈ U−1. Then x−1 ∈ U, so iii) implies that

Vx−1 ⊂ U for some V ∈ �. Apply ii) to choose W ∈ � such that W−1 ⊂ V . Then

W−1x−1 ⊂ Vx−1 ⊂ U, whence it follows that xW = (W−1x−1)−1 ⊂ U−1. Again, by

Claim 5, xW is an open neighbourhood of x in (G, �), so we conclude that U−1 is an

element of �. This proves Claim 6.

Finally, vi) and the homogeneity of G imply that the topology � satisfies the T1-

separation axiom. This finishes the proof of the theorem. �

Theorem 1.3.13. Every topological group G has an open base at the identity consisting
of symmetric neighbourhoods.

Proof. For an arbitrary open neighbourhood U of the identity e in G, let V = U∩U−1.

Then V = V−1, the set V is an open neighbourhood of e, and V ⊂ U. �

Theorem 1.3.14. Every topological group G is a regular space.

Proof. Let U be an open neighbourhood of the identity e in G. By i) of Theorem 1.3.12

and Theorem 1.3.13, there is an open neighbourhood V of e such that V−1 = V and V 2 ⊂ U.

Then if x ∈ V , we have Vx ∩ V = ∅. Hence a1x = a2 for some a1, a2 in V , and thus

Neighbourhoods of the identity in topological groups and semigroups
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x = a−1
1 a2 ∈ V−1V = V 2 ⊂ U. This implies that V ⊂ U. Since G is a homogeneous

space by Corollary 1.3.6, the regularity of G is now immediate. �

Example 1.3.15. Let G be an abstract group and let � be a family of invariant subgroups

of G closed under the formation of finite intersections and such that {e} =
⋂

�. Then the

family of all sets of the form Hx, where H ∈ � and x ∈ G, is a topology � on G. This

follows immediately from Theorem 1.3.12. With this topology, G is zero-dimensional.

Indeed, each H ∈ � is both open and closed since the complement of H is the union of

cosets disjoint from H . �

Unfortunately, Theorem 1.3.12 does not provide us with a clear recipe for defining

non-discrete Hausdorff group topologies on abstract groups. But it does provide us with a

general strategy for searching for such topologies. We present below an important example

of such a topologization of the group of r-adic numbers.

Example 1.3.16. Let us show that for every integer r > 1, the group Ωr of r-adic

numbers defined in Example 1.1.10 admits a non-discrete locally compact Hausdorff group

topology. For every m ∈ Z, denote by Λm the set of all x ∈ Ωr such that xn = 0 for each

n < m. Clearly, Λm is a subgroup of Ωr and Λm+1 ⊂ Λm for each m ∈ Z.

We claim that the family � = {Λm : m ∈ Z} satisfies conditions i)–vi) of

Theorem 1.3.12 and, hence, constitutes a local base at the neutral element 0 for a Hausdorff

topological group topology on Ωr. Since each Λm is a subgroup of Ωr, conditions i)–iii)

are evident. Condition iv) holds trivially since the group Ωr is commutative, while (v)

follows from the inclusions . . . ⊂ Λm+1 ⊂ Λm ⊂ Λm−1 ⊂ · · · . Finally, it is easy to see

that the intersection of the sets Λm with m ≥ 0 contains only the element 0, whence vi)

follows. Thus, � is a local base at 0 for a Hausdorff group topology � on Ωr. Since � is

a decreasing chain of non-trivial subgroups of Ωr, the topology � is non-discrete. Clearly,

each Λm is open in the group (Ωr, �) which will be denoted simply by Ωr. Since every

open subgroup is closed, we conclude that the neutral element 0 of Ωr has a local base of

open and closed neighbourhoods. Therefore, the homogeneity of the space Ωr implies that

it is zero-dimensional.

Let us verify that every group Λm is compact as a subspace of Ωr. Identify Λm with

a subset of AJm by means of truncating the values of x at all positions less than m, where

A = {0, 1, . . . , r − 1} and Jm = {n ∈ Z : m ≤ n} (see Example 1.1.10). Then the group

Λm inherits a topology �m from the space AJm when the latter carries the usual Tychonoff

product topology (and A is discrete). We claim that �m coincides with the restriction of

the topology � to Λm. Indeed, for every x ∈ Λm and every k > m, the sum x + Λk ⊂ Λm

consists of all sequences (. . . , 0, . . . , 0, xm, xm+1, . . . , xk−1, yk, yk+1, . . .), where the value xm

stands at the mth position in the sequence and yk, yk+1, . . . are arbitrary elements of A. It

follows that x + Λk is a canonical open set in AJm under our identification. This proves that

�m = ��Λm. Since the product space AJm is compact and every canonical open set in AJm

is closed, it follows that Λm is a compact subgroup of Ωr, for each m ∈ Z. In particular, the

group of r-adic integers Zr = Λ0 is an open compact subgroup of Ωr.

By our definition of the topology in Ωr, each Λm is an open subgroup of Ωr. We

conclude, therefore, that the group Ωr is locally compact. Notice that the quotient group

Ωr/Λm is countable for each m ∈ Z, so the group Ωr is a countable union of cosets of the

compact subgroup Λm. It follows that the group Ωr is σ-compact.
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Summing up, the group of r-adic numbers Ωr is locally compact, σ-compact, zero-

dimensional, and has a local base at zero consisting of compact open subgroups. �

Exercises

1.3.a. Is the usual convergent sequence Sq homeomorphic to a topological semigroup with an

identity, that is, to a topological monoid? Is it homeomorphic to a semitopological monoid?

1.3.b. Show that the neutral element e is not isolated in the space S defined in Construction 1.3.8

if and only if each P ∈ �e contains more than one element.

1.3.c. Verify that if in a paratopological group G all elements have orders less than or equal to a

given integer n ∈ N, then G is a topological group. Does the same assertion remain valid

for any commutative paratopological group G such that all elements of G have finite orders?

1.3.d. Give an example of a Hausdorff paratopological group that fails to be regular.

1.3.e. Show that the Niemytzki plane (see [165, Example 1.2.4]) admits a binary operation that

makes X into a commutative monoid with jointly continuous multiplication.

1.3.f. (A. V. Arhangel’skii and M. Hušek [54]) Let f : G → H be a continuous homomorphism of

right topological groups, and let X be a dense subspace of G. Suppose also that the space

G is regular and that the restriction of f to X is a topological embedding. Show that f is a

topological embedding of G into H .

1.3.g. Show that for every integer m, the subgroup Λm of the group of r-adic numbers Ωr (see

Example 1.3.16) contains a dense cyclic subgroup.

1.3.h. For any distinct x, y ∈ Ωr , set σ(x, y) = 2−m, where m is the least integer such that

xm �= ym. Also set σ(x, x) = 0 for each x ∈ Ωr . Verify that σ is an invariant metric on the

group Ωr which generates the topology of this group defined in Example 1.3.16. Show that

σ(0, x + y) ≤ max{σ(0, x), σ(0, y)} for all x, y ∈ Ωr . Metrics with this property are called

non-archimedian.
1.3.i. Define a topology on the group Ωa of a-adic numbers (see Problem 1.1.G) similarly to that

in Example 1.3.16, by declaring the corresponding subgroups Λn of Ωa, with n ∈ Z, to be

basic open neighbourhoods of the neutral element in Ωa. Show that the group Ωa with this

topology is locally compact, and that the group Za of a-adic integers is a compact and open

subgroup of Ωa.

Problems

1.3.A. Apply Theorem 1.3.12 to define a Hausdorff topological group topology on the real line R
strictly coarser than its usual topology.

1.3.B. Prove that there exists a topological group topology on the real line R strictly finer than its

usual topology that makes R into a group topologically isomorphic to a dense subgroup of

the Euclidean plane R2.

1.3.C. Does there exist a continuous homomorphism of R onto R2 (both groups carry the usual

Euclidean topologies)?

1.3.D. Let us say that a space X admits the structure of a topological group (of a paratopological
group) if there exists a continuous binary operation on X×X that makes X into a topological

group (paratopological group).

(a) Prove that the Cantor set and the set of irrational numbers, both considered as subspaces

of the real line R, admit the structure of a topological group.

(b) Show that the Sorgenfrey line does not admit the structure of a topological group. Does

it admit (in a natural sense) the structure of a quasitopological group?

Neighbourhoods of the identity in topological groups and semigroups
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1.3.E. (E. Hewitt and K. A. Ross [236]) Let p be a prime number. Prove that every closed subgroup

of the group Ωp of p-adic numbers is either trivial or coincides with one of the groups Λm

defined in Example 1.3.16. Show that for every composite integer r > 1, the group Ωr

contains a compact open subgroup distinct from Λm for each m ∈ Z.

Hint. To deduce the second claim of the problem, suppose that r = ab for some integers

a, b > 1. Let x be an r-adic integer defined by x0 = a and xl = 0 if l �= 0. Denote by

H the minimal closed subgroup of Ωr that contains x. Verify that Λ1 ⊂ H and, hence,

H =
⋃r−1

k=0
(kx + Λ1). Therefore, Λ0 � H � Λ1.

1.3.F. Prove that there exists a countable infinite group G such that the only Hausdorff topological

group topology on G is discrete.

Hint. An example of such a group is given by A. I. Ol’shanskiı̆ in [361].

Open Problems

1.3.1. Is every regular paratopological group completely regular?

1.3.2. Are there Abelian topological groups G and H such that the product groups G × Z and

H ×Z are topologically isomorphic while G and H are not? The group Z carries the discrete

topology.

1.4. Open sets, closures, connected sets and compact sets

We describe here several simple properties of the families of open, closed, and compact

sets in topological groups and semigroups. Though many of these properties are almost

evident and easy to formulate, they form a solid basis for constructing the edifice of

topological algebra.

Proposition 1.4.1. Let G be a left (right) topological group, U an open subset of G,
and A any subset of G. Then the set AU (respectively, UA) is open in G.

Proof. Every left translation of G is a homeomorphism, by Proposition 1.3.1. Since

AU =
⋃

a∈A λa(U), the conclusion follows. A similar argument applies in the case when

G is a right topological group. �

Corollary 1.4.2. If G is a semitopological group then, for any open subset U of G
and any subset A of G, the sets UA and AU are open.

The next example shows that the situation with topological semigroups is different from

what we have just seen in Proposition 1.4.1 and Corollary 1.4.2. First, we introduce the

Vietoris topology on the family Exp(X) of all non-empty closed subsets of a space X. Let

U and V1, . . . , Vn be non-empty open sets in X. Then we put

〈U, V1, . . . , Vn〉 = {F ∈ Exp(X) : F ⊂ U, F ∩ Vi = ∅ for each i = 1, . . . , n}.
The family � of all sets of the form 〈U, V1, . . . , Vn〉 constitutes a base of a topology on the

set Exp(X) which is called the Vietoris topology (see [165, 2.7.20]). It is easy to verify that

Exp(X) with the Vietoris topology is a T1-space provided that X is a T1-space.

Example 1.4.3. Consider the space Exp(R) of all non-empty closed subsets of the usual

real line R, in the Vietoris topology, and with the product operation defined as the union of

sets. Then, clearly, Exp(R) is a topological semigroup. Put a = {0}, U = {x ∈ R : x > 1},
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and W = {P ∈ Exp(R) : P ⊂ U}. Then a ∈ Exp(R) and W is an open subset of Exp(R).

However, aW is not open in Exp(R). Indeed, the point b = {0, 2} of Exp(R) is in aW ;

however, no neighbourhood of b is contained in aW . Of course, this example also shows

that a left action in a topological semigroup need not be a one-to-one mapping. �

In left topological groups with continuous inverse there is an intimate relationship

between the sets of the form AU, where U is open, and the closure operation.

Proposition 1.4.4. Let G be a left topological group with continuous inverse. Then,
for every subset A of G and every open neighbourhood U of the neutral element e, A ⊂ AU.

Proof. Since the inverse is continuous, we can find an open neighbourhood V of e
such that V−1 ⊂ U. Take any x ∈ A. Then xV is an open neighbourhood of x; therefore,

there is a ∈ A ∩ xV , that is, a = xb, for some b ∈ V . Then x = ab−1 ∈ AV−1 ⊂ AU;

hence, A ⊂ AU. �

A similar statement holds for right topological groups with continuous inverse. Let us

show that the conclusion in Proposition 1.4.4 can be considerably strengthened.

Theorem 1.4.5. Let G be a left topological group with continuous inverse, and �e a
base of the space G at the neutral element e. Then, for every subset A of G,

A =
⋂
{AU : U ∈ �e}.

Proof. In view of Proposition 1.4.4, we only have to verify that if x is not in A, then

there exists U ∈ �e such that x /∈ AU. Since x /∈ A, there exists an open neighbourhood

W of e such that (xW ) ∩ A = ∅. Take U in �e satisfying the condition U−1 ⊂ W . Then

(xU−1) ∩ A = ∅, which obviously implies that AU does not contain x. �

Similarly, the equality A =
⋂{UA : U ∈ �e} holds for right topological groups with

continuous inverse.

In what follows we often use the next obvious statement:

Proposition 1.4.6. For any subsets A, B, and C of a group G, AB ∩ C = ∅ if and
only if A ∩ CB−1 = ∅.

Curiously enough, Theorem 1.4.5 can be partially reversed. First, we establish the

following:

Proposition 1.4.7. Let G be a semitopological group such that for each open
neighbourhood U of the neutral element e, there exists an open neighbourhood V of e
satisfying the condition V−1 ⊂ U. Then the inverse operation in G is continuous and,
therefore, G is a quasitopological group.

Proof. Take an element x ∈ G and any open neighbourhood W of x−1. Since G is

a left topological group, there exists an open neighbourhood U of e such that x−1U ⊂ W .

By the assumption, there exists an open neighbourhood V of e such that V−1 ⊂ U. Then

Vx is an open neighbourhood of x, since G is a right topological group. Now we have

(Vx)−1 = x−1V−1 ⊂ x−1U ⊂ W . It follows that the inverse mapping on G is continuous,

so the group G is quasitopological. �

Open sets, closures, connected sets and compact sets
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Proposition 1.4.8. Let G be a semitopological group such that for each closed subset
A of G and every point x ∈ G \ A, x /∈ AU for some open neighbourhood U of the
neutral element e. Then the inverse mapping of G onto itself is continuous and G is a
quasitopological group.

Proof. By Proposition 1.4.7, it suffices to check the continuity of the inverse mapping

at the neutral element e. Take any open neighbourhood U of e and put A = G \ U. Then

e /∈ A and, by the assumption, there is an open neighbourhood V of e such that AV does

not contain e. Then, by Proposition 1.4.6, A ∩ V−1 = ∅, that is, V−1 ⊂ U. Hence, the

inverse mapping is continuous. �

In connection with the above statements we should also mention the following simple

result:

Proposition 1.4.9. Every left topological group G with continuous inverse is a
semitopological group and, hence, a quasitopological group.

Proof. We can get from x to xa in three steps — from x to x−1, then from x−1 to

a−1x−1, and, finally, from a−1x−1 to xa. This means simply that 
a = In◦λa−1 ◦ In. Since

all the mappings on the right side of the above equality are continuous, it follows that the

mapping 
a is also continuous. �

Some delicate situations arise when we take closures of subsemigroups or subgroups

in semitopological semigroups and groups.

Proposition 1.4.10. Let G be a semitopological semigroup, and H a subsemigroup
of G. Then the closure H of H in G is a (semitopological) subsemigroup of G.

Proof. Take any y ∈ H and any x ∈ H . Then xy ∈ xH , since the left translation λx

is continuous. We have xH ⊂ H , since x ∈ H and H is a subsemigroup of G. It follows

that xy ∈ H , for each x ∈ H . Now take any z ∈ H . By the continuity of 
y, it follows that

zy ∈ H . Hence, H is a subsemigroup of G. �

The next example shows that Proposition 1.4.10 cannot be extended to right topological

semigroups.

Example 1.4.11. Let Z = αN = N ∪ {α} be the one-point compactification of

the discrete space N of positive natural numbers. Recall that Sp(Z, Z) = ZZ is the

right topological semigroup of all mappings of Z to itself, endowed with the topology of

pointwise convergence (see Theorem 1.2.3). The product operation in ZZ is the composition

of mappings. Since Z is compact, the right topological semigroup ZZ is also compact.

Consider the set B consisting of all one-to-one mappings of Z to itself. Clearly, B is closed

under compositions; therefore, B is a subsemigroup of ZZ. Denote by C the closure of B
in ZZ. Let us show that C is not closed under the product operation and, therefore, is not a

subsemigroup of ZZ.

For each k ∈ N, define fk : Z → Z as follows: fk(x) = x + k if x ∈ N, and f (α) = α.

Let g be the constant mapping of Z to itself that brings each point of Z to the point α.

Clearly, fk ∈ B, for each k ∈ N, and the sequence {fk(x) : k ∈ N} converges to g(x)

in Z, for each x ∈ Z. Therefore, the sequence {fk : k ∈ N} converges to g in the space

ZZ, which implies that g is in the closure of B, that is, g ∈ C but, clearly, g is not in B.
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Now define h ∈ ZZ by the rule h(x) = x + 1, for each x ∈ N, and h(α) = 1. Since h is

one-to-one, we have h ∈ B ⊂ C. Thus, both g and h are in C.

Let us show that hg is not in C and, therefore, C is not a subsemigroup of ZZ. Indeed,

hg(x) = h(g(x)) = h(α) = 1, for each x ∈ Z. Since the element 1 is isolated in Z, the set

V = {f ∈ ZZ : f (1) = 1 and f (3) = 1} is open in the space ZZ. Obviously, V contains

hg and none of elements of V is a one-to-one mapping, that is, V ∩ B = ∅ and, hence,

V ∩ C = ∅. It follows that hg is not in C. �

The next statement is almost obvious.

Proposition 1.4.12. Let G be an abstract group with a topology � such that the inverse
mapping In is continuous. Then, for any symmetric subset A of G, the closure of A in G is
also symmetric.

Proof. Since the inverse mapping In is continuous and the composition In ◦ In is

the identity mapping of G onto itself, In is a homeomorphism. Hence, the closure of A−1

coincides with the image of the closure of A under In. �

From Propositions 1.4.10 and 1.4.12 we obtain immediately the next result:

Proposition 1.4.13. Let G be a quasitopological group, and H an algebraic subgroup
of G. Then the closure of H in G is also a subgroup of G.

Corollary 1.4.14. Let G be a topological group and H a subgroup of G. Then H is
also a subgroup of G.

Several properties of a subgroup H of a topological group G pass on to the closure of H
in G. In Proposition 1.4.16 below we present one of such properties (see also Theorem 3.4.9

and Exercise 3.4.d in this respect). First, we establish a useful fact about the character of

regular spaces.

Suppose that X is a space and x ∈ X. A family � of subsets of X is called a base for
X at the point x if all elements of � contain x and, for every neighbourhood O of x in X,

there exists U ∈ � such that U ⊂ O. The minimal cardinality of a base of X at x is called

the character of X at x and is denoted by χ(x, X). If X has a countable base at each point

x ∈ X, we say that the space X is first-countable (see [165, Section 1.1]).

Lemma 1.4.15. If Y is a dense subspace of a regular space X, then χ(y, Y ) = χ(y, X)

for each y ∈ Y .

Proof. If � is a base for X at a point y ∈ Y , then the family �Y = {U ∩ Y : U ∈ �}
is evidently a base for Y at y. Therefore, χ(y, Y ) ≤ χ(y, X). Conversely, let �Y be a base

for Y at a point y ∈ Y such that |�Y | = χ(y, Y ). For every U ∈ �Y , choose an open set

VU in X such that VU ∩ Y = U. We claim that the family � = {VU : U ∈ �Y} is a base

for X at the point y. Indeed, take an arbitrary neighbourhood O of y in X. There exists

an open neighbourhood W of y in X such that W ⊂ O. Since �Y is a base for Y at y,

we can find U ∈ �Y such that U ⊂ W ∩ Y . The set Y being dense in X, the intersection

VU ∩ Y = U is dense in VU . Hence VU = U ⊂ W ⊂ O; it follows that y ∈ VU ⊂ O. This

proves that the family � is a base for X at y. It is immediate from the definition of � that

|�| ≤ |�Y | = χ(y, Y ), so that χ(y, X) ≤ χ(y, Y ). �

Open sets, closures, connected sets and compact sets
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Proposition 1.4.16. If H is a first-countable subgroup of a topological group G, then
the closure of H is also first-countable.

Proof. By Corollary 1.4.14, K = H is a subgroup of G and, hence, is a homogeneous

space. It suffices, therefore, to verify that the neutral element e of K has a countable local

base in K. Since χ(e, H) ≤ ℵ0 and the space K is regular, by Theorem 1.3.14, it follows

from Lemma 1.4.15 that χ(e, K) ≤ ℵ0. Thus the group K is first-countable. �

In contrast to the case of topological groups, in a paratopological group the closure of

a subgroup need not be a subgroup.

Example 1.4.17. Let G be the group Zω, and ai be the element of G such that the i-th
coordinate of ai is 1 and all other coordinates of ai are 0. For n ∈ N, let Vn be the set of

all z = (zk)k∈ω ∈ G such that zk = 0 for every k ≤ n, and zk ≥ 0 for every k > n. The

prefilter ξ = {Vn : n ∈ N} satisfies condition (t) of Proposition 1.3.9, so Theorem 1.3.11

implies that ξ generates a topology �ξ on G turning G into a paratopological group. Notice

that ξ is a local base at the neutral element of G. Consider the subgroup H of G generated

by the set A = {a0 + an : n ∈ N} (recall that N does not include 0), and let U = V1 ∩H .

Then U is an open subset of H containing the neutral element e of the group H .

We claim that U = {e}. Indeed, this follows from the next obvious property of elements

of H : If z ∈ H , z = e and the 0-th coordinate z0 of z is 0, then at least one coordinate of z
is strictly negative. Thus, e is isolated in H . Since H is a paratopological group, it follows

that H is a discrete subspace of G.

However, H is not closed in G. Indeed, let b the element of Zω all coordinates of which

are equal to −1. For every integer n ≥ 1, we have that

− (a0 + a1)− (a0 + a2)− · · · − (a0 + an+1) + n(a0 + an+2) =

− (a0 + a1 + a2 + · · ·+ an+1) + nan+2 ∈ H ∩ (b + Vn+1).

It follows that the element b belongs to the closure of H , while, obviously, b is not in H .

Furthermore, the closure S = H of H in G is not a subgroup of G. Suppose to

the contrary that S is a subgroup of G. Then, with the topology inherited from the

paratopological group G, S is a paratopological group, and H is its open subgroup, since

the discrete subspace H is dense in S. Applying Theorem 1.3.5, we conclude that H is

closed in S and in G, a contradiction. �

Example 1.4.17 is also complemented by the next corollary to Theorem 1.3.5.

Corollary 1.4.18. If H is a discrete subgroup of a quasitopological group G, then
H is closed in G.

Proof. By Proposition 1.4.13, the closure H of H in G is a subgroup of G. With the

topology inherited from G, H is a quasitopological group. Since H is discrete in itself, it is

an open subgroup of H . From Theorem 1.3.5 it follows that H is closed in H . Hence, H is

closed in G. �

The above result admits a considerable generalization in the case of topological groups.

Proposition 1.4.19. If H is a locally compact subgroup of a topological group G,
then H is closed in G.
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Proof. Let K be the closure of H in G. Then K is a subgroup of G by Corollary 1.4.14.

Since H is a dense locally compact subspace of K, it follows from [165, Theorem 3.3.9]

that H is open in K. However, an open subgroup of a topological group is closed by

Theorem 1.3.5. Therefore, H = K, that is, H is closed in G. �
Corollary 1.4.20. Every discrete subgroup H of a countably compact quasitopolog-

ical group G is finite.

Proof. By Corollary 1.4.18, H is closed in G. Therefore, H is countably compact.

Since H is discrete, it follows that H is finite. �
A similar argument shows that the next statement is true:

Corollary 1.4.21. Every discrete subgroup H of a Lindelöf quasitopological group
G is countable.

Corollary 1.4.20 can be complemented in a non-trivial way. This requires a new concept.

Suppose that U is a neighbourhood of the neutral element of a topological group G. A subset

A of G is called U-disjoint if b /∈ aU, for any distinct a, b ∈ A.

Lemma 1.4.22. Let U and V be open neighbourhoods of the neutral element in a
topological group G such that V 4 ⊂ U and V−1 = V . If a subset A of G is U-disjoint, then
the family of open sets {aV : a ∈ A} is discrete in G.

Proof. It suffices to verify that, for every x ∈ G, the open neighbourhood xV of x
intersects at most one element of the family {aV : a ∈ A}. Suppose to the contrary that, for

some x ∈ G, there exist distinct elements a, b ∈ A such that xV∩aV = ∅ and xV∩bV = ∅.

Then x−1a ∈ V 2 and b−1x ∈ V 2, whence b−1a = (b−1x)(x−1a) ∈ V 4 ⊂ U. This implies

that a ∈ bU, thus contradicting the assumption that the set A is U-disjoint. �
Theorem 1.4.23. Every discrete subgroup H of a pseudocompact topological group

G is finite.

Proof. By Corollary 1.4.18, H is closed in G. However, pseudocompactness is not

inherited by closed subspaces, so we cannot conclude at this point that H is pseudocompact

and, therefore, finite. Thus, our argument has to be more delicate than that in the proof of

Corollary 1.4.20.

Fix an open neighbourhood U of the identity e in G such that U ∩ H = {e}. Since

G is a topological group, there is a symmetric open neighbourhood V of e in G such that

V 4 ⊂ U. It follows from Lemma 1.4.22 that the family η = {hV : h ∈ H} is discrete in G.

Since η is a family of non-empty open subsets of the pseudocompact space G, it follows

that the index set H in the definition of the family η is finite. �
It is worth noting an interesting result which follows easily from Theorem 1.4.23:

Corollary 1.4.24. Every infinite pseudocompact topological group G contains a
non-closed countable subset.

Proof. Take any infinite countable subset A of G, and let H be the subgroup of

G algebraically generated by A. Then H is countable and infinite. Therefore, by

Theorem 1.4.23, H cannot be discrete. It follows that the subset B = H \ {e} of H is

not closed in H and, therefore, not closed in G. Clearly, B is countable. �

Open sets, closures, connected sets and compact sets
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Corollary 1.4.24 cannot be extended to infinite pseudocompact spaces (see Prob-

lem 1.4.F), while it is obviously true for all infinite countably compact spaces. A non-trivial

generalization of Corollary 1.4.24 will be given in Theorem 3.7.27.

We now present a theorem on non-discrete topologizations of infinite Abelian groups.

This important result is easily obtained on the basis of techniques developed in this section.

Theorem 1.4.25. [A. Kertész and T. Szele] Every infinite Abelian group G admits a
non-discrete Tychonoff topology under which it is a topological group.

Proof. By Corollary 1.1.8, for each a ∈ G distinct from the identity e of G, we can

fix a homomorphism fa of G to the topological group T such that fa(a) = 1 (see item d)

of Example 1.2.5). Let f be the diagonal product of the family {fa : a ∈ G, a = e}. Then

f is a one-to-one homomorphism of the group G to the topological group TG, which is

the product of |G| copies of the group T. Therefore, G is algebraically isomorphic to the

subgroup H = f (G) of the group TG.

Now, with the product topology, TG is a compact topological group. Since H is

an infinite subgroup of TG, the topological subgroup H of TG cannot be discrete, by

Corollary 1.4.20. Denote by � the topology on H inherited from TG. Then, since f
is an isomorphism of G onto H , the family � = {f−1(V ) : V ∈ �} is a topology on

G turning G into a Tychonoff non-discrete topological group, topologically isomorphic

to H . �

Let G be a topological group with neutral element e. The connected component or,

simply, the component of G is the union of all connected subsets of G containing e. Since

the union of any family of connected subspaces containing a given point is connected,

the connected component of G can be described as the biggest connected subspace of G
containing e (see [165, Section 6.1]). Even more is true:

Proposition 1.4.26. The connected component H of any topological group G is a
closed invariant subgroup of G, that is, aHa−1 = H , for each a ∈ G.

Proof. Indeed, since the left multiplication by a ∈ G is a homeomorphism of G onto

itself, aH is homeomorphic to H . Hence, aH is connected. Similarly, aHa−1 is connected.

Since e ∈ aHa−1, and H is the biggest connected subset of G containing e, it follows

that aHa−1 ⊂ H . Replacing a by a−1 in this inclusion, we obtain that a−1Ha ⊂ H or,

equivalently, H ⊂ aHa−1. Thus, aHa−1 = H . Since the closure of a connected subset is

connected [165, Corollary 6.1.11] and H is the biggest connected subset of G containing e,

it follows that H is closed in G. �

Theorem 1.4.28 below can be used to find discrete invariant subgroups of a connected

topological group — all such subgroups lie in the center of the group. Let us first prove a

simple auxiliary result on generating connected groups.

Lemma 1.4.27. Let U be an arbitrary open neighbourhood of the neutral element e of
a connected topological group G. Then G =

⋃∞
n=1 Un.

Proof. Choose an open symmetric neighbourhood V of e in G such that V ⊂ U. Then

H =
⋃∞

n=1 V n is an open subgroup of G, and Theorem 1.3.5 implies that H is closed in G.

Since G is connected, we must have H = G. As V ⊂ U, it follows that G =
⋃∞

n=1 Un. �
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Theorem 1.4.28. Let K be a discrete invariant subgroup of a connected topological
group G. Then every element of K commutes with every element of G, that is, K is contained
in the center of the group G.

Proof. If K = {e}, there is nothing to prove. Suppose, therefore, that the subgroup K
is not trivial. Take an arbitrary element x ∈ K distinct from the identity e of G. Since the

group K is discrete, we can find an open neighbourhood U of x in G such that U∩K = {x}.
It follows from the continuity of the multiplication in G and the obvious equality exe = x
that there exists an open symmetric neighbourhood V of e in G such that VxV ⊂ U. Let

y ∈ V be arbitrary. Since K is an invariant subgroup of G, we have that yxy−1 ∈ K. It is

also clear that yxy−1 ∈ VxV−1 = VxV ⊂ U. Therefore, yxy−1 ∈ U ∩ K = {x}, that is,

yxy−1 = x. This implies that yx = xy for each y ∈ V .

Since the group G is connected, Lemma 1.4.27 implies that the sets V n, with n ∈ N,

cover the group G. Therefore, every element g ∈ G can be written in the form g = y1 · · · yn,

where y1 . . . , yn ∈ V and n ∈ N. Since x commutes with every element of V , we have:

gx = y1 · · · ynx = y1 . . . xyn = · · · = y1x · · · yn = xy1 · · · yn = xg.

We have thus proved that the element x ∈ K is in the center of the group G. Since x is an

arbitrary element of K, we conclude that the center of G contains K. �
In conclusion of this section, we present a few important general facts concerning

separation of compact subsets from closed sets in topological and paratopological groups.

Theorem 1.4.29. Let G be a paratopological group, F be a compact subset of G, and
P be a closed subset of G such that F ∩ P = ∅. Then there exists an open neighbourhood
V of the neutral element e such that FV ∩ P = ∅ and VF ∩ P = ∅.

Proof. Since the left translations in G are continuous, we can choose, for every x ∈ F ,

an open neighbourhood Vx of the neutral element e in G such that xVx ∩P = ∅. Using the

joint continuity of the multiplication in G, we can also take an open neighbourhood Wx of

e such that W2
x ⊂ Vx. The open sets xWx, with x ∈ F , cover the compact set F , so there

exists a finite set C ⊂ F such that F ⊂ ⋃
x∈C xWx. Put V1 =

⋂
x∈C Wx. We claim that

FV1 ∩ P = ∅. Indeed, it suffices to verify that yV1 ∩ P = ∅, for each y ∈ F . Given an

element y ∈ F , we can find x ∈ C such that y ∈ xWx. Then

yV1 ⊂ xWxV1 ⊂ xWxWx ⊂ xVx ⊂ G \ P,

by our choice of the sets Vx and Wx. This proves that the sets FV1 and P are disjoint.

Similarly, one can find an open neighbourhood V2 of e in G satisfying V2F ∩ P = ∅.

Then the set V = V1 ∩ V2 is as required. �
The next result is closely related to Theorem 1.4.29, though this is not obvious

immediately.

Theorem 1.4.30. Let G be a topological group, F a compact subset of G, and P a
closed subset of G. Then the sets FP and PF are closed in G.

Proof. We will show that FP is closed in G. The case of PF differs only in trivial

details. Take any point a /∈ FP . It follows that the sets F−1a and P are disjoint. Clearly,

the set F−1a is compact. Therefore, by Theorem 1.4.29, there is an open neighbourhood U
of e such that F−1aU and P are disjoint. It follows from Proposition 1.4.6 that the sets aU

Open sets, closures, connected sets and compact sets
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and FP are disjoint. Since aU is an open neighbourhood of a, we conclude that a is not in

the closure of FP . Hence, FP is closed in G. �

Easy examples show that the similar statement about the product of arbitrary two closed

subsets of a topological group is not true — the product of two such sets may even be a

proper dense subset of the group (see Exercise 1.4.h).

The above theorem is complemented by the following simple result:

Proposition 1.4.31. For any two compact subsets E and F of a paratopological group
G, their product EF in G is a compact subspace of G.

Proof. Since multiplication in a paratopological group is jointly continuous, the

subspace EF of G is a continuous image of the Cartesian product E×F of the spaces E and

F . Since E × F is compact, by Tychonoff’s theorem, the space EF is also compact. �

Another interesting property of compact sets in topological groups is presented in the

next proposition.

Proposition 1.4.32. Let B be a compact subset of a topological group G. Then, for
every neighbourhood U of the identity e in G, there exists a neighbourhood V of e in G
such that bVb−1 ⊂ U, for each b ∈ B.

Proof. Let U be a neighbourhood of e in G. Choose an open symmetric neighbourhood

W of e in G such that W3 ⊂ U. Since B is compact, we can find a finite set F ⊂ B such

that B ⊂ WF . Put V =
⋂

x∈F x−1Wx. Then V is an open neighbourhood of e in G. If

b ∈ B, then b = wx for some w ∈ W and x ∈ F . Therefore,

bVb−1 = wxVx−1w−1 ⊂ wWw−1 ⊂ W3 ⊂ U,

as required. �

A space X is called pathwise connected if for any points x, y ∈ X, there exists a

continuous mapping f of the closed unit interval I to X such that f (0) = x and f (1) = y (see

[165, 6.3.9]). Here is an important example of a compact pathwise connected topological

group.

Example 1.4.33. Given an n× n matrix A = (ai,j)
n
i,j=1 with complex entries ai,j , we

denote by At = (aj,i)
n
j,i=1 the transpose of A, and by A = (ai,j)

n
i,j=1 the conjugate of A. We

define A∗ to be A
t
which is evidently coincides with At .

Let U(n) be the set of all n× n matrices A with complex entries satisfying AA∗ = En,

where En is the identity n × n matrix. Each matrix A ∈ U(n) is called unitary. Since the

determinant Det of matrices is a multiplicative function, Det(BC) = Det B ·Det C, we have

that

1 = Det En = Det(AA∗) = Det A · Det A∗. (1.5)

Hence, every unitary matrix A is invertible, i.e., Det A = 0. In fact, from the equalities

Det At = Det A, |Det A| = |Det A|, and (1.5) it follows that |Det A| = 1, for every

A ∈ U(n). Furthermore, if A is unitary, then A−1 = A∗ and A∗A = En. This

implies that the matrix A−1 is unitary as well. If, in addition, A, B are unitary, then

(AB)(AB)∗ = ABB∗A∗ = AA∗ = En, and we conclude that U(n) is a subgroup of
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the general linear group GL(n, C) (see item e) of Example 1.2.5) which is called the unitary
group of degree n over C.

We consider U(n) with the topology inherited from the group GL(n, C). Then U(n) is

a topological group. Let us verify that U(n) is compact. If A ∈ U(n), then AA∗ = En, so

that the rows of A form an orthonormal basis of the complex space Cn. In particular, the

entries ai,j of A satisfy |ai,j| ≤ 1 for all i, j ≤ n. It follows that U(n), considered as a space,

can be identified with a subspace of En2 ⊂ Cn2

, where E = {z ∈ C : |z| ≤ 1}. Evidently,

the equality AA∗ = En is equivalent to a system of n2 scalar equations of order 2, while the

latter defines a closed subspace of the spaces Cn2

and En2

. Therefore, U(n) is homeomorphic

to a closed subspace of the compact space En2

, whence the required conclusion follows.

It remains to show that the topological group U(n) is pathwise connected. It follows

from [288, Theorem 2.10.2] that every unitary matrix A ∈ U(n) is unitary equivalent to a

diagonal matrix, that is, there exist n × n matrices U and D such that UAU∗ = D, where

U is unitary and D is diagonal. Without loss of generality we can assume that A = En.

Since A, U ∈ U(n), it follows that D ∈ U(n) and Det D = 1. Therefore, the diagonal

elements dk,k of D satisfy |dk,k| = 1, and we can write dk,k = e2πiλk , where 0 ≤ λk < 1 for

each k = 1, . . . , n. For every real number t and k ≤ n, put dk,k(t) = 22πitλk and consider

the diagonal matrix D(t) with diagonal elements dk,k(t), 1 ≤ k ≤ n. Clearly, each matrix

D(t) is unitary, D(0) = En, and D(1) = D. It is also clear that the mapping t �→ D(t)
of I = [0, 1] to U(n) is continuous. Finally, put ϕ(t) = UD(t)U∗, for each t ∈ I. Then

ϕ(t) ∈ U(n) for each t ∈ I, the mapping ϕ is a continuous bijection (hence, a topological

embedding), ϕ(0) = UEnU∗ = En, and ϕ(1) = UDU∗ = A. We have thus proved that

the neutral element En of U(n) can be connected by a copy of the unit interval I with an

arbitrary element A = En of U(n). This implies immediately that the space U(n) is pathwise

connected.

Obviously, the group U(n) is connected. In fact, it is locally connected and even locally

pathwise connected (see Problem 1.4.K). �

Exercises

1.4.a. Prove the claim in Example 1.4.3 left unproved.

1.4.b. Answer the following questions:

(a) Is it true that for any compact subsets E and F of a semitopological group G, their

product EF in G is a compact subspace of G?

(b) Is the analogous statement true for quasitopological groups?

1.4.c. Can Corollaries 1.4.20, 1.4.21, and Theorem 1.4.23 be generalized to semitopological groups

(with continuous inverse)? To paratopological groups?

1.4.d. Show that Theorem 1.4.29 is no longer valid for regular quasitopological groups.

Hint. For every ε > 0, let Uε = {(0, 0)} ∪ (0, ε)2 ∪ (−ε, 0)2. Then the family

� = {Bε : ε > 0} of symmetric sets in the plane forms a base for a regular quasitopological

group topology � at the neutral element (0, 0) of the additive group R2. Verify that

F = {(x, x) : |x| ≤ 1} is a compact subset of the regular quasitopological group

G = (R2, �), the set P = (R × {0}) \ {(0, 0)} is closed in G and disjoint from P , but

F + Uε intersects P , for each ε > 0.

1.4.e. Show that Theorem 1.4.30 cannot be extended to paratopological groups.

1.4.f. Show that every regular paratopological group algebraically generated by a countable family

of separable metrizable symmetric subspaces has a countable network.

Open sets, closures, connected sets and compact sets
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1.4.g. Generalize Theorem 1.4.29 as follows. If F and P are disjoint closed subsets of a topological

group G and F is compact, then there exists an open neighbourhood V of the identity in G
such that VFV ∩ P = ∅.

1.4.h. Give an example of a topological Abelian group G and closed subsets A and B of G such

that the product AB is a proper dense subset of G. Show that one can choose A and B to be

closed subgroups.

1.4.i. Let G be a compact topological Abelian group. Show that if G is a torsion group, then there

exists a positive integer m such that xm = e, for each x ∈ G. Extend the conclusion to

pseudocompact topological Abelian groups.

1.4.j. If H is a dense subgroup of a connected topological group, then every neighbourhood U of the

identity element in H algebraically generates the group H (this generalizes Lemma 1.4.27.)

1.4.k. Suppose that m and n are integers with 2 ≤ m < n. Show that no dense subgroup of a

connected topological group is isomorphic to the group Z(m)(ω) ⊕Z(n), the direct sum of ω
copies of the cyclic group Z(m) and of the cyclic group Z(n).

1.4.l. A space X is called resolvable if there exist dense disjoint subsets A and B of X. Verify that

the following statements are valid:

(a) The groups R, Q, T, and C, with their usual topologies, are resolvable.

(b) If a subgroup H of a topological group G is resolvable, then so is G.

(c) If a topological group G contains a proper dense subgroup, then G is resolvable.

(d) If a topological group G contains a non-closed subgroup, then G is resolvable.

(e) Suppose that � is a non-discrete quasitopological group topology on the group of

integers Z. Show that the space (Z, �) is resolvable.

Problems

1.4.A. Let G be a topological group and A, B (closed) subgroups of G. Let, further, H be the

closure of the product AB in G.

(a) Is the space H necessarily homogeneous?

(b) Show that if A or B is compact, then H is homogeneous.

(c) Show that if G is Abelian, then H is homogeneous.

1.4.B. Let G be a topological group with neutral element e. Show that the space X = G \ {e} can

fail to be homogeneous.

Hint. Consider the product of the group of reals with the group Zω, both endowed with

their usual topologies.

1.4.C. Let G be a zero-dimensional topological group with neutral element e. Show that the space

X = G \ {e} is homogeneous.

Hint. Use Ford’s lemma in [173] on strong local homogeneity.

1.4.D. Give an example of a homogeneous Tychonoff space X that does not have a closed separable

homogeneous subspace. Show that X cannot be a paratopological group. Can such a space

X be a semitopological group?

1.4.E. Let G be a pseudocompact topological group with the property that all proper subgroups of

G are finite. Prove that G is finite. (See also Exercise 1.1.f.)

1.4.F. Give an example of an infinite pseudocompact Tychonoff space X such that all countable

subsets of X are closed (compare this with Corollary 1.4.24).

Hint. Such a space is constructed by E. A. Reznichenko in [403].

1.4.G. Does the assertion of Exercise 1.4.i remain valid for compact semitopological semigroups?

For compact semitopological monoids?

1.4.H. Prove that every closed non-discrete subgroup of the n-dimensional Euclidean vector space

Rn (considered as an Abelian topological group) contains a straight line that passes through

the origin, where n ∈ N.
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1.4.I. Does the Euclidean plane R2 contain a proper dense connected and locally connected

subgroup?

1.4.J. Let G be an Abelian group with |G| ≤ 2ω. Prove that G is (algebraically) isomorphic to a

dense subgroup of the group Tω if either G has an element of infinite order or G is a torsion

group of unbounded period. The circle group T carries the usual compact group topology.

1.4.K. Prove the following:

(a) Each of the topological groups GL(n, R), SL(n, R), TS(n, R), O(n, R), and U(n) (see

Problem 1.2.D and Example 1.4.33) has a base of pathwise connected open sets.

(b) The groups SL(n, R) and TS(n, R) are pathwise connected, while the groups GL(n, R)

and O(n, R) are disconnected.

Open Problems

1.4.1. Let G be a zero-dimensional topological group with neutral element e. Must the space

X = G \ {e} be homeomorphic to a topological group? (See Problems 1.4.B and 1.4.C.)

1.4.2. Is it true that every infinite “punctured” topological group, that is, a topological group

without the neutral element, has an infinite closed separable homogeneous subspace? (See

Problem 1.4.D.)

1.4.3. Does there exist an infinite (Abelian, Boolean) topological group G such that all dense

subgroups of G are connected?

1.4.4. Does there exist an infinite (Abelian) group G such that all closed subgroups of G are

connected?

1.5. Quotients of topological groups

One of the main operations on topological groups is that of taking quotient groups.

Many non-trivial examples and counterexamples arise as quotients of relatively simple and

well-known topological groups. This operation has been the subject of an intensive and

thorough study; but there exists still a wealth of interesting open problems related to the

behaviour of different topological and algebraic properties under taking quotients.

We start with a general statement about quotients of left topological groups.

Theorem 1.5.1. Suppose that G is a left topological group with identity e and a
topology �, and H is a closed subgroup of G. Denote by G/H the set of all left cosets
aH of H in G, and endow it with the quotient topology with respect to the canonical
mapping π : G → G/H defined by π(a) = aH , for each a ∈ G. Then the family
{π(xU) : U ∈ �, e ∈ U} is a local base of the space G/H at the point xH ∈ G/H ,
the mapping π is open, and G/H is a homogeneous T1-space.

Proof. Clearly, the set xUH is the union of a family of left cosets yH , with y ∈ xH .

Therefore, π−1π(xUH) = xUH . Since the set xUH is open in G and the mapping π is

quotient, it follows that π(xUH) is open in G/H .

Now take any open neighbourhood W of xH in G/H and put O = π−1(W ). The

set O is open, since π is continuous. Clearly, x ∈ O. There is an open neighbourhood

U of e in G such that xU ∈ O. Then π(xU) ⊂ W and, hence, π−1π(xU) ⊂ O. Since

xUH = π−1π(xU), it follows that π(xUH) ⊂ W . Thus, the first two statements of the

theorem are proved.

Quotients of topological groups
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Let us now prove the homogeneity of G/H . For any a ∈ G, define a mapping ha of

G/H to itself by the rule ha(xH) = axH . Since axH ∈ G/H , this definition is correct.

Since G is a group, the mapping ha is evidently a bijection of G/H onto G/H . In fact, ha

is a homeomorphism. This can be seen from the following argument.

Take any xH ∈ G/H and any open neighbourhood U of e. Then π(xUH) is a basic

neighbourhood of xH in G/H . Similarly, the set π(axUH) is a basic neighbourhood of

axH in G/H . Since, obviously, ha(π(xUH)) = π(axUH), it easily follows that ha is a

homeomorphism. It is also clear that ha(xH) = axH . Now, for any given xH and yH in

G/H , we can take a = yx−1. Then ha(xH) = yH . Hence, the quotient space G/H is

homogeneous. It is a T1-space, since all right cosets xH are closed in G and the mapping

π is quotient. �
Let G be a left topological group and H a closed subgroup of G. Then the space G/H

defined in Theorem 1.5.1 is called the left coset space of G with respect to H . Similarly, if

G is a right topological group, one can define the right coset space H\G = {Hx : x ∈ G}
whose topology is determined by the requirement that the canonical mapping p : G→ H\G,

where p(x) = Hx for each x ∈ G, be quotient. As in Theorem 1.5.1, the mapping p turns

out to be open and the sets p(Ux) constitute a local base for H\G at the point Hx, where U
runs over open neighbourhoods of the neutral element in G.

In the proof of Theorem 1.5.1 we have defined, for each a ∈ G, a mapping ha of G/H
onto itself by the rule ha(xH) = axH . It was shown that ha is a homeomorphism of the

space G/H onto itself. This homeomorphism is called the left translation of G/H by a. In

fact, we can say a little more. Here is an obvious statement which is sometimes quite useful.

Proposition 1.5.2. Suppose that G is a topological group, H is a closed subgroup of
G, π is the natural quotient mapping of G onto the left quotient space G/H , a ∈ G, λa

is the left translation of G by a (that is, λa(x) = ax, for each x ∈ G), and ha is the left
translation of G/H by a (that is, ha(xH) = axH , for each xH ∈ G/H). Then λa and ha

are homeomorphisms of G and G/H , respectively, and π ◦ λa = ha ◦ π.

If G is a left topological group and H is a closed invariant subgroup of G, then each

left coset of H in G is also a right coset of H in G, and a natural multiplication of cosets

in G/H is defined by the rule xHyH = xyH , for all x, y ∈ G. It is well known that this

operation turns G/H into a group called the quotient group of G with respect to H . After

these definitions and the proof of Theorem 1.5.1, the next statement is obvious.

Theorem 1.5.3. Suppose that G is a left topological group, and that H is a closed
invariant subgroup of G. Then G/H with the quotient topology and multiplication is a
left topological group, and the canonical mapping π : G → G/H is an open continuous
homomorphism. If G is a topological (semitopological) group, then G/H is a topological
(semitopological) group.

The next statement is also obvious.

Proposition 1.5.4. Suppose that G is a left topological group and H is a closed
subgroup of G. Then G/H with the quotient topology is discrete if and only if H is open in
G.

Quotient spaces of topological groups have nice separation properties. To see this, we

establish first a useful property of the closure operator in quotient spaces.



39

Lemma 1.5.5. Suppose that G is a topological group, H is a closed subgroup of G, π
is the natural quotient mapping of G onto the quotient space G/H , and let U and V be open
neighbourhoods of the neutral element e in G such that V−1V ⊂ U. Then π(V ) ⊂ π(U).

Proof. Take any x ∈ G such that π(x) ∈ π(V ). Since Vx is an open neighbourhood

of x and the mapping π is open, π(Vx) is an open neighbourhood of π(x). Therefore,

π(Vx) ∩ π(V ) = ∅. It follows that, for some a ∈ V and b ∈ V , we have π(ax) = π(b),

that is, ax = bh, for some h ∈ H . Hence, x = (a−1b)h ∈ UH , since a−1b ∈ V−1V ⊂ U.

Therefore, π(x) ∈ π(UH) = π(U). �
Theorem 1.5.6. For any topological group G and any closed subgroup H of G, the

quotient space G/H is regular.

Proof. Let π be the natural quotient mapping of G onto the quotient space G/H , and

let W be an arbitrary open neighbourhood of π(e) in G/H , where e is the neutral element

of G. By the continuity of π, we can find an open neighbourhood U of e in G such that

π(U) ⊂ W . Since G is a topological group, we can choose an open neighbourhood V of e
such that V−1V ⊂ U. Then, by Lemma 1.5.5, π(V ) ⊂ π(U) ⊂ W . Since π(V ) is an open

neighbourhood of π(e), the regularity of G/H at the point π(e) is verified. Now it follows

from the homogeneity of G/H that the space G/H is regular. �
In the case of topological spaces, quotient mappings with compact fibers need not be

closed. It is remarkable that for topological groups the situation is quite different. Let us

recall that closed continuous mappings with compact preimages of points are called perfect
(see [165, Section 3.7]).

Theorem 1.5.7. Suppose that G is a topological group and that H is a compact
subgroup of G. Then the quotient mapping π of G onto the quotient space G/H is perfect.

Proof. Take any closed subset P of G. Then, by Theorem 1.4.30, PH is closed

in G. However, PH is, obviously, the union of a certain family of left cosets, that is,

PH = π−1π(P). It follows, by the definition of a quotient mapping, that the set π(P) is

closed in the quotient space G/H . Thus π is a closed mapping. In addition, if y ∈ G/H
and π(x) = y for some x ∈ G, then π−1(y) = xH is a compact subset of G. Hence the

fibers of π are compact and π is perfect. �
If f : X → Y is a perfect mapping then, for any compact subset F of Y , the preimage

f−1(F ) is a compact subset of X [165, Theorem 3.7.2]. Therefore, the next statement

follows from Theorem 1.5.7.

Corollary 1.5.8. Suppose that G is a topological group and H is a compact subgroup
of G such that the quotient space G/H is compact. Then G is also compact.

The next example shows, in particular, that Corollary 1.5.8 cannot be extended to

quasitopological groups.

Example 1.5.9. Suppose that G is an infinite compact topological group with neutral

element e. Take the square G×G with the usual product operation and the cross topology

�cr, that is, the strongest topology on G ×G which generates the usual topology on each

“vertical” subspace {a}×G and each “horizontal” subspace G×{a}, for every a ∈ G (see

Example 1.2.6). From this definition it follows directly that the product group G×G with

Quotients of topological groups
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the cross topology is a quasitopological group. The natural projection p1 of G × G onto

the first factor G is, obviously, an open continuous homomorphism with compact fibers

(homeomorphic to the original compact group G). It follows (see Theorem 1.5.13 below)

that p1 can be identified with the quotient mapping π : G × G → (G × G)/N, where

N = {e} × G is a closed invariant subgroup of (G × G, �cr). However, the mapping p1

(and, therefore, π) is not closed. Indeed, the set A = {(a, a) : a ∈ G, a = e} is evidently

closed in the space (G×G, �cr) while p1(A) = G \ {e} is not closed in the space G, since

G is not discrete. Thus, Theorem 1.5.7 does not extend to arbitrary left topological groups.

The space (G×G, �cr) is not compact — otherwise the continuous mapping p1 would be

closed, since G is Hausdorff. Hence, Corollary 1.5.8 is no longer valid for quasitopological

groups. �

Given a homomorphism f : G → H of abstract groups G and H , we denote by ker f
the kernel of f , that is, the preimage of the identity eH of the group H under the mapping f .

It is easy to see that the kernel of f is an invariant subgroup of G. Indeed, if a, x ∈ G and

f (x) = eH , then f (axa−1) = f (a)f (x)f (a−1) = f (a)eHf (a)−1 = eH . In other words, if

N = ker f , then aNa−1 ⊂ N for each a ∈ G. Hence, the subgroup N of G is invariant.

In the following proposition, we compare two homomorphisms of a given group

according to the size of their kernels.

Proposition 1.5.10. Suppose that G, H , and K are abstract groups and that ϕ : G→
H and ψ : G→ K are homomorphisms such that ψ(G) = K and ker ψ ⊂ ker ϕ. Then there
exists a homomorphism f : K → H such that ϕ = f ◦ ψ. If in addition, G, H, K are left
topological groups, ϕ and ψ are continuous, and for each neighbourhood U of the identity
eH in H there exists a neighbourhood V of the identity eK in K such that ψ−1(V ) ⊂ ϕ−1(U),
then f is continuous.

Proof. The algebraic part of the proposition is well known. Let us verify the

continuity of f in the second part of the proposition. Suppose that U is a neighbourhood

of eH in H . By our assumption, there exists a neighbourhood V of eK in K such that

W = ψ−1(V ) ⊂ ϕ−1(U). Then f (V ) = ϕ(W ) ⊂ U, that is, f is continuous at the identity

of K. By Proposition 1.3.4, f is continuous. �

Corollary 1.5.11. Let ϕ : G → H and ψ : G → K be continuous homomorphisms
of left topological groups G, H , and K such that ψ(G) = K and ker ψ ⊂ ker ϕ. If the
homomorphism ψ is open, then there exists a continuous homomorphism f : K → H such
that ϕ = f ◦ ψ.

Proof. The existence of a homomorphism f : K → H satisfying ϕ = f ◦ ψ follows

from Proposition 1.5.10. To show that f is continuous, take an arbitrary open set V in H .

Then f−1(V ) = ψ(ϕ−1(V )). Since ϕ is continuous and ψ is open, we conclude that the set

f−1(V ) is open in K. Therefore, f is continuous. �

Proposition 1.5.12. Let G and H be left topological groups and p be a topological
isomorphism of G onto H . If G0 is a closed invariant subgroup of G and H0 = p(G0),
then the quotient groups G/G0 and H/H0 are topologically isomorphic. The corresponding
isomorphism Φ: G/G0 → H/H0 is given by the formula Φ(xG0) = yH0, where x ∈ G
and y = p(x).



41

Proof. Let ϕ : G → G/G0 and ψ : H → H/H0 be the quotient homomorphisms. An

easy verification shows that Φ is a homomorphism of G/G0 onto H/H0. From the definition

of Φ it follows that ψ ◦ p = Φ ◦ ϕ.

G
p ��

ϕ

��

H

ψ

��
G/G0

Φ �� H/H0

Since p, ϕ, and ψ are open continuous homomorphisms, so is Φ. It remains to verify

that Φ is an isomorphism. Let xG0 be an arbitrary element of G/G0. Set y = p(x). If

Φ(xG0) = H0 then ψ(y) = H0, so that y ∈ H0 and x ∈ G0. This shows that the kernel of

Φ is trivial, that is, Φ is an isomorphism. We conclude, therefore, that Φ is a topological

isomorphism. �

The next result is known as the first isomorphism theorem.

Theorem 1.5.13. Let G and H be left topological groups with neutral elements eG and
eH , respectively, and let p be an open continuous homomorphism of G onto H . Then the
kernel N = p−1(eH ) of p is a closed invariant subgroup of G, and the fibers p−1(y) with
y ∈ H coincide with the cosets of N in G. The mapping Φ: G/N → H which assigns to a
coset xN the element p(x) ∈ H is a topological isomorphism.

Proof. The assertions of the theorem about the kernel N and the fibers p−1(y) are well

known, so that Φ is correctly defined, and all we have to verify is that Φ is a topological

isomorphism.

From the definition of the multiplication in the quotient group G/N given before The-

orem 1.5.3 it follows that Φ is a homomorphism. Denote by π the quotient homomorphism

of G onto G/N. Again, the definition of Φ implies that p = Φ ◦ π and, since π is

open, the homomorphism Φ is continuous. In addition, if x ∈ G and Φ(xN) = eH , then

p(x) = Φ(π(x)) = eH . Hence x ∈ N and xN = N, that is, Φ is an isomorphism. Finally,

if U is an open set in G/N, then the image Φ(U) = p(π−1(U)) is open in H . Thus, Φ is an

open continuous isomorphism and, hence, a homeomorphism. �

We present, in connection with Theorem 1.5.13, the following two sufficient conditions

for a continuous homomorphism of (left) topological groups to be open:

Proposition 1.5.14. Let G and H be left topological groups with neutral elements eG

and eH , respectively, and let p be a continuous homomorphism of G onto H such that, for
some non-empty subset U of G, the set p(U) is open in H and the restriction of p to U is
an open mapping of U onto p(U). Then the homomorphism p is open.

Proof. It suffices to show that if x ∈ W , where W is an open neighbourhood of x in

G, then p(W ) is a neighbourhood of p(x) in H . Fix a point y in U, and let l be the left

translation of G by yx−1. Then l is a homeomorphism of G onto itself such that l(x) = y,

so V = U ∩ l(W ) is an open neighbourhood of y in U. Then p(V ) is an open subset of

H . Consider now the left translation h of H by the inverse to p(yx−1), that is, by p(xy−1).

Clearly, h ◦ p ◦ l = p. Hence, h(p(l(W ))) = p(W ). However, h is a homeomorphism of

H onto itself. Since we already know that p(V ) is open in H it follows that h(p(V )) is also
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open in H , that is, p(W ) contains the open neighbourhood h(p(V )) of p(x) in H . Hence,

p(W ) is a neighbourhood of p(x) in H . �

The set U in Proposition 1.5.14 need not be open in G, which makes the result fairly

general.

Proposition 1.5.15. Let p : G → H be a continuous homomorphism of topological
groups. Suppose that the image p(U) contains a non-empty open set in H , for each open
neighbourhood U of the neutral element eG in G. Then the homomorphism p is open.

Proof. First, we claim that the neutral element eH of H is in the interior of p(U), for

each open neighbourhood U of eG in G. Indeed, choose an open neighbourhood V of eG

such that V−1V ⊂ U. By our assumption, p(V ) contains a non-empty open set W in H .

Then W−1W is an open neighbourhood of eH , and we have that W−1W ⊂ p(V )−1p(V ) =

p(V−1V ) ⊂ p(U).

Choose an arbitrary element y ∈ p(U), where U is an arbitrary non-empty open set

in G. We can find x ∈ U with p(x) = y and an open neighbourhood V of eG in G such

that xV ⊂ U. Let W be an open neighbourhood of eH with W ⊂ p(V ). Then the set yW
contains y, it is open in H , and yW ⊂ p(xV ) ⊂ p(U). This implies that p(U) is open

in H . �

In the next theorem we consider conditions under which the restriction to a dense

subgroup of the canonical mapping of a topological group G onto a quotient space G/H
remains open.

Theorem 1.5.16. Let G be a topological group, H a closed subgroup of G, and
π : G→ G/H be the canonical mapping. If K is a dense subgroup of G, then the restriction
r = π�K is an open mapping of K onto π(K) if and only if the intersection K ∩H is dense
in H .

Proof. Suppose that K ∩ H is dense in H . Take an arbitrary non-empty open set U
in K. Then U = V ∩ K, for some open set V in G. Since the mapping π is open, the set

O = π(V ) ∩ π(K) is open in π(K), and we claim that r(U) = O. Indeed, if y ∈ O, take a

point x ∈ K with π(x) = y. Then xH ∩ V = π−1(y) ∩ V = ∅. Since K ∩ H is dense in

H , the set x(K ∩H) = K ∩ xH is dense in xH . Hence (K ∩ xH)∩ V = ∅, so we can pick

a point x′ ∈ K ∩ xH ∩ V . Then x′ ∈ U and r(x′) = π(x′) = π(x) = y, which implies that

r(U) = O. Therefore, the mapping r : K → r(K) is open.

Conversely, suppose that r is open as a mapping of K onto r(K) = π(K). Let U be a

neighbourhood of the neutral element e in G. We claim that H ⊂ U(K∩H). Indeed, take an

open symmetric neighbourhood V of e in G such that V 2 ⊂ U. Then r(V ∩K) = π(V ∩K)

is an open neighbourhood of the point ē = π(e) in π(K), so there exists an open set W in

G/H such that ē ∈ W ∩ π(K) ⊂ π(V ∩K). This implies that

π−1(W ) ∩KH ⊂ (V ∩K)H. (1.6)

Take an arbitrary element h ∈ H . By the density of K in G, there exists g ∈ K such

that gh−1 ∈ V ∩ π−1(W ). Then gh−1 ∈ π−1(W ) ∩ KH and, by (1.6), we can choose

x ∈ V ∩ K and y ∈ H such that gh−1 = xy. It follows that x−1g = yh ∈ K ∩ H
and y−1 = (hg−1)x ∈ V−1V ⊂ U. So h = y−1(x−1g) ∈ U(K ∩ H) and, therefore,

H ⊂ U(K ∩H). This proves our claim.
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Since the latter inclusion holds for every neighbourhood U of e in G, the set K ∩ H
must be dense in H . Indeed, otherwise we can find an element h ∈ H and a symmetric

neighbourhood U of e in G such that Uh∩ (K∩H) = ∅, whence h ∈ H \U(K∩H) = ∅,

a contradiction. �

For certain pairs of left topological groups G and H , every continuous homomorphism

of G onto H is open. Let us show that this is true for compact groups G and H .

Proposition 1.5.17. Let f : G → H be a continuous onto homomorphism of left
topological groups. If G is compact and H is Hausdorff, then f is open.

Proof. By [165, Theorem 3.1.12], the mapping f is closed and, hence, it is quotient.

Let K be the kernel of f . If U is open in G, then f−1(f (U)) = KU is open in G,

by Proposition 1.4.1. Since f is quotient, it follows that the image f (U) is open in H .

Therefore, f is an open mapping. �

Evidently, Proposition 1.5.17 remains valid for right topological groups.

The next result is known as the second isomorphism theorem. It is useful in situations

when iterated quotient groups are involved.

Theorem 1.5.18. Let G and H be left topological groups with neutral elements eG and
eH , respectively, and let p : G → H be an open continuous homomorphism of G onto H .
Let H0 be a closed invariant subgroup of H , G0 = p−1(H0), and N = p−1(eH ). Then the
left topological groups G/G0, H/H0, and (G/N)/(G0/N) are topologically isomorphic.

Proof. Denote by ϕ the quotient homomorphism of H onto H/H0. By Theorem 1.5.1,

ϕ is open, so the composition ϕ ◦p is an open continuous homomorphism of G onto H/H0

with kernel G0 = p−1(H0). Hence the quotient group G/G0 is topologically isomorphic

to H/H0, by Theorem 1.5.13. It is clear that G0 is a closed invariant subgroup of G.

Observe that the mapping Φ assigning to every coset xN of N in G the element p(x) ∈ H is

a topological isomorphism of G/N onto H , by Theorem 1.5.13, and Φ(G0/N) = H0.

Therefore, applying Proposition 1.5.12, we conclude that the group (G/N)/(G0/N) is

topologically isomorphic to H/H0. �

Let us prove one more theorem on quotients of topological groups and topological

isomorphisms known as the third isomorphism theorem.

Theorem 1.5.19. Suppose that G is a topological group, H is a closed invariant
subgroup of G, and M is any topological subgroup of G. Then the quotient group MH/H
is topologically isomorphic to the subgroup π(M) of the topological group G/H , where
π : G→ G/H is the natural quotient homomorphism.

Proof. Clearly, MH = π−1(π(M)). Since the mapping π is open and continuous, the

restriction ψ of π to MH is an open continuous mapping of MH onto π(M). Since M is a

subgroup of G and π is a homomorphism of G onto G/H , it follows that π(M) and MH
are subgroups of the groups G/H and G, respectively, and ψ is a homomorphism of MH
onto π(M). Let e be the neutral element of G. Clearly, ψ−1(ψ(e)) = π−1(π(e)) = H , that

is, the kernel of the homomorphism ψ is H . Now it follows from Theorem 1.5.13 that the

topological groups MH/H and π(M) are topologically isomorphic. �
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To conclude the section, we prove two statements on connections of cardinal invariants

of a topological group G with cardinal invariants of a closed subgroup H of G and the

quotient space G/H .

Theorem 1.5.20. Suppose that G is a topological group, H is a closed subgroup of
G, X is a subspace of G, π is the natural homomorphism of G onto the quotient space
G/H , and Y = π(X). Suppose also that the space H and the subspace Y of G/H are
first-countable. Then X is also first-countable.

Proof. By Proposition 1.5.2, we can assume that the neutral element e of G is in X
and, for the same reason, it suffices to verify that X is first-countable at e. Let us fix a

sequence of symmetric open neighbourhoods Wn of e in G such that W2
n+1 ⊂ Wn, for each

n ∈ ω, and {Wn ∩ H : n ∈ ω} is a base for the space H at e. We also fix a sequence of

open neighbourhoods Un of e in G such that {π(Un) ∩ Y : n ∈ ω} is a base for Y at π(e).

Now put Bi,j = Wi ∩ Uj ∩ X, for i, j ∈ ω. To finish the proof, it suffices to establish the

following:

Claim. The family η = {Bi,j : i, j ∈ ω} is a base for X at e.

Clearly, each Bi,j is open in X and contains e. Now take any open neighbourhood O
of e in G. Let us show that some element of η is contained in O. There exists an open

neighbourhood V of e in G such that V 2 ⊂ O. Choose m ∈ ω such that Wm ∩ H ⊂ V .

Further, there exists k ∈ ω such that

π(Uk) ∩ Y ⊂ π(V ∩Wm+1).

Let us verify that

Bm+1,k ⊂ O.

Take any z ∈ Bm+1,k = Wm+1 ∩ Uk ∩ X. Then z ∈ Uk ∩ X ⊂ (V ∩ Wm+1)H , since

π(z) ∈ π(Uk) ∩ Y ⊂ π(V ∩ Wm+1). However, z does not belong to Wm+1(G \ Wm),

since W2
m+1 ⊂ Wm and z ∈ Wm+1 = W −1

m+1. Hence, z ∈ (V ∩ Wm+1)(H ∩ Wm). Since

Wm ∩H ⊂ V , we conclude that z ∈ V 2 ⊂ O. Thus, Bm+1,k ⊂ O, and η is a base for X at

e. Since η is countable, it follows that X is first-countable at e. �

Corollary 1.5.21. [N. Ya. Vilenkin] Suppose that G is a topological group and H
is a closed subgroup of G. If the spaces H and G/H are first-countable, then the space G
is also first-countable.

It turns out that Corollary 1.5.21 remains valid if one replaces first countability by

separability. To prove this, we need an auxiliary topological result.

Lemma 1.5.22. Suppose that f : X → Y is an open continuous mapping of a space
X onto a space Y , x ∈ X, B ⊂ Y , and f (x) ∈ B. Then x ∈ f−1(B). In particular,
f−1(B) = f−1(B).

Proof. Put y = f (x), and let O be any open neighbourhood of x. Then f (O) is an

open neighbourhood of y. Therefore, f (O) ∩ B = ∅ and, hence, O ∩ f−1(B) = ∅. It

follows that x ∈ f−1(B). The equality f−1(B) = f−1(B) is now evident. �

Theorem 1.5.23. Suppose that G is a topological group and H is a closed subgroup
of G. If the spaces H and G/H are separable, then the space G is also separable.
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Proof. Let π be the natural homomorphism of G onto the quotient space G/H . Since

G/H is separable, we can fix a dense countable subset B of G/H . Since H is separable

and every coset xH is homeomorphic to H , we can fix a dense countable subset My of

π−1(y), for each y ∈ B. Put M =
⋃{My : y ∈ B}. Then M is a countable subset of G

and M is dense in π−1(B). Since π is an open mapping of G onto G/H , it follows from

Lemma 1.5.22 that π−1(B) = G. Hence, M is dense in G and G is separable. �

Exercises

1.5.a. Can Theorem 1.5.7, Corollary 1.5.8, or Proposition 1.5.15 be generalized to paratopological

groups?

1.5.b. Let G be a paratopological group and N a closed invariant subgroup of G such that both N
and the quotient paratopological group G/N are topological groups. Prove that G is also a

topological group.

1.5.c. Let G = R \ {0} be the multiplicative group of non-zero real numbers with the topology

inherited from R, and let H = {−1, 1} and K = {x ∈ R : x > 0}. Verify the following:

(a) H and K are closed subgroups of G;

(b) the quotient group G/H is topologically isomorphic to K;

(c) the groups G and H × K are topologically isomorphic.

1.5.d. Suppose that H is a proper non-trivial closed subgroup of the group R. Show that the quotient

group R/H is topologically isomorphic to the circle group T.

1.5.e. Let H be a closed invariant subgroup of a topological group G. Show that if both groups H
and G/H are connected, then so is G.

1.5.f. Let G be a topological group, not necessarily Hausdorff, and let H be the closure of the set

{e} in G, where e is the neutral element of G. Prove the following:

(a) H is an invariant subgroup of G;

(b) for every continuous homomorphism f : G → K to a Hausdorff topological group K,

there exists a continuous homomorphism h : G/H → K satisfying f = h ◦ π, where

π is the canonical homomorphism of G onto G/H .

1.5.g. Which homogeneous spaces can be represented as quotients of right topological groups with

respect to a closed subgroup?

1.5.h. Can every compact Hausdorff homogeneous space be represented as a quotient of a right

topological group with respect to a closed subgroup?

1.5.i. Let H be a closed nowhere dense subgroup of a topological group G, and suppose that the

quotient space G/H is resolvable (see Exercise 1.4.l). Show that G is resolvable.

Problems

1.5.A. Let GL(n, R) be the general linear group with the topology inherited from Rn2

(see e) of

Example 1.2.5), and En the neutral element of GL(n, R), where n ∈ N.

(a) Verify that Kn = {En,−En} is an invariant subgroup of GL(n, R) and prove that the

quotient group GL(n, R)/Kn is pathwise connected and locally pathwise connected.

(b) Prove that the quotient group GL(n, R)/Kn is topologically isomorphic to an open

subgroup of GL(n, R).

(c) Denote by N the subgroup of GL(n, R) consisting of all diagonal matrices. Show that

the groups GL(n, R)/N and SL(n, R) are topologically isomorphic.

1.5.B. Let H be an open divisible subgroup of an Abelian topological group G. Prove that the

groups G and H × G/H are topologically isomorphic.

Quotients of topological groups
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1.5.C. Suppose that A and B are closed subgroups of a topological group G, and let p be the

canonical mapping of G onto the quotient space G/B. Show that the closure of p(A) in G/B
can fail to be homogeneous. (See also Problem 1.4.A.)

1.5.D. (S. Dierolf and U. Schwanengel [133]) Let H be a closed subgroup of a topological group

G with topology τ and π : G → G/H the canonical mapping. Suppose that σ is a

group topology on G weaker than τ satisfying σ�H = τ�H and π(σ) = π(τ), where

π(γ) = {π(U) : U ∈ γ} for any family γ of subsets of G. Prove that the topologies σ and

τ coincide.

1.5.E. (W. W. Comfort and J. van Mill [115]) An abstract group G is called strongly resolvable if

for every non-discrete Hausdorff group topology � on G, the space (G, �) is resolvable.

Prove the following:

(a) Let H be a subgroup of an Abelian group G. If H is not strongly resolvable, then

neither is G.

(b) If H is an invariant subgroup of an abstract group G and both groups H and G/H are

strongly resolvable, then so is G.

1.5.F. Suppose that H is a closed σ-compact subgroup of a topological Abelian group G and that

the quotient group G/H is compact. Is the group G then σ-compact?

Hint. To give the answer, modify the construction in [511].

1.5.G. Let H be a closed invariant subgroup of a topological group G. Suppose that H is countably

compact and the quotient group G/H is compact and metrizable. Is G countably compact?

Hint. The answer to the question can be found in [89].

1.5.H. Can Theorem 1.5.23 be generalized to paratopological groups?

Open Problems

1.5.1. Characterize (or find the typical properties) of compact spaces that can be represented as

quotients of topological groups with respect to closed metrizable subgroups.

1.6. Products, Σ-products, and σ-products

Cartesian products of algebraic objects with topology, in particular, of topological

groups play a fundamental role in topological algebra. Starting with a certain class � of

topological groups (second-countable groups or compact groups, for example), it is natural

to form topological products of arbitrary collections of groups in this class. Then, passing

to arbitrary topological subgroups of the topological groups so obtained, we introduce

some of the most important classes of topological groups. This approach is implemented

in Sections 3.4 and 3.7. Besides, many interesting examples of topological groups with

non-trivial combination of properties are defined in this way. In this section we present

some basic facts on topological products of topological groups, semigroups and other

objects of topological algebra, and specify certain standard subobjects of these products,

called Σ-products and σ-products. Taking Σ-products and σ-products expand further our

opportunities to construct non-trivial examples of topological groups.

It is well known that topological products can be used to represent and study the

operation of union of a family of topologies given on the same set. Indeed, we have the

following simple statement:

Proposition 1.6.1. Suppose that {�α : α ∈ A} is a family of topologies on a set X,
and let � be the smallest topology on X containing �α, for each α ∈ A. Let, further, Π
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be the topological product of the family � = {(X, �α) : α ∈ A}. For each x ∈ X, put
d(x) = z ∈ Π , where zα = x for each α ∈ A. Then d is a homeomorphism of the space
(X, �) onto the subspace Δ� = {d(x) : x ∈ X} of Π called the diagonal of �. Suppose
also that there exists α0 ∈ A such that �α0

⊂ �α, for each α ∈ A, and that the topology
�α0

is Hausdorff. Then the subspace Δ� is closed in the product space Π .

Proof. The mapping d : (X, �) → Π is continuous as the diagonal product of the

family of continuous mappings {iα : α ∈ A}, where iα : (X, �) → (X, �α) is the identity

mapping for each α ∈ A. It is also clear that d(X) = Δ�. For every α ∈ A, let

pα : Π → (X, �α) be the natural projection. It follows from the definition of � that

this topology is the smallest one that makes each mapping pα ◦ d continuous. Therefore,

the inverse mapping d−1 : Δ� → (X, �) is continuous and, hence, d is a homeomorphism

of (X, �) onto Δ�.

To prove the rest of the theorem, take an arbitrary point x ∈ Π \ Δ�. Then there exist

two distinct indices α, β ∈ A such that pα(x) = pβ(x). Since y = pα(x) and z = pβ(x)

are distinct points of X and the topology �α0
is Hausdorff, we can choose disjoint open

neighbourhoods U and V of y and z, respectively, in (X, �α0
). It follows from �α0

⊂ �α

and �α0
⊂ �β that W = p−1

α (U) ∩ p−1
β (V ) is an open neighbourhood of x in Π disjoint

from Δ�. This proves that the complement Π \ Δ� is open in Π and, therefore, Δ� is

closed. �
The topology � on X considered in Proposition 1.6.1 is usually denoted by

∨
α∈A �α

and is called the join of the topologies �α, with α ∈ A.

Formulating definitions and results below, we restrict ourselves to the case of topological

groups. Similar definitions and statements obviously hold for topological semigroups, right

topological groups, semitopological semigroups, and so on.

We now present an analog of Proposition 1.6.1 for topological groups. It follows

directly from Proposition 1.6.1 and Theorem 1.2.7.

Theorem 1.6.2. Suppose that {�α : α ∈ A} is a family of topologies on a group
G such that (G, �α) is a topological group, for each α ∈ A, and let � be the smallest
topology on G containing each �α. Let, further, Π be the topological product of the family
� = {(G, �α) : α ∈ A}. For every g ∈ G, put d(g) = z ∈ Π , where zα = g,
for each α ∈ A. Then d is a topological isomorphism of (G, �) onto the subgroup
Δ� = {d(g) : g ∈ G} of the topological group Π . In particular, it follows that (G, �) is
a topological group. If there exists α0 ∈ A such that �α0

⊂ �α for each α ∈ A and the
topology �α0

is Hausdorff, then Δ� (also called the diagonal of �) is a closed subgroup of
the Hausdorff topological group Π .

Similarly to the case of topologies on a set, the topology � on G in Theorem 1.6.2 is

called the join of the topologies �α, α ∈ A. The above theorem can be reformulated by

saying that the join of a family of topological group topologies on a given group is again a

topological group topology.

Since a countable product of metrizable spaces is metrizable, Theorem 1.6.2 implies

the following:

Corollary 1.6.3. Let {�n : n ∈ ω} be a family of metrizable topological group
topologies on a group G. Then the topological group topology � =

∨
n∈ω �n is also

metrizable.

Products, -products, and -products
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Note that Theorem 1.6.2 is applicable to families of non-Hausdorff group topologies

as well. In particular, we have:

Corollary 1.6.4. Suppose that G is a group and {hα : α ∈ A} is a family of
homomorphisms hα of G to topological groups Hα. Then there exists a smallest topology
� on G such that each hα : (G, �) → Hα is continuous. Moreover, this topology �
turns G into a topological group topologically isomorphic to the diagonal of �, where
� = {�α : α ∈ A} and �α = {hα

−1(V ) : V is open in Hα}, for each α ∈ A.

We will now present some results on products of topological spaces which are not

always covered by standard courses of general topology, though they play an important role

in the study of products of topological groups and their topological subgroups. Our aim

is to consider several topological properties defined in terms of the closure operator in a

space (such as the tightness, sequentiality, Fréchet–Urysohn property, etc.) and study the

behaviour of these properties under the product operation.

We recall that the tightness of a space X is the minimal cardinal τ ≥ ω with the property

that for every point x ∈ X and every set P ⊂ X with x ∈ P , there exists a subset Q of P such

that |Q| ≤ τ and x ∈ Q. The tightness of X is denoted by t(X). All first-countable spaces

have countable tightness; furthermore, every Fréchet–Urysohn space and every sequential

space has countable tightness (see [165, 1.7.13 (c)]).

Here are two natural modifications of the concept of tightness. Let τ be an infinite

cardinal. We say that the Gδ-tightness of a space X is not greater than τ, and write

get(X) ≤ τ, if whenever a point x ∈ X belongs to the closure of
⋃

γ, where γ is a

family of Gδ-sets in X, then there exists a subfamily η of γ such that x is in the closure of⋃
η and |η| ≤ τ. If under the same assumptions about x and γ there exists a subset M of⋃
γ such that x ∈ M and |M| ≤ τ, we say that the δ-tightness of X is not greater than τ and

write tδ(X) ≤ τ. As usual, the Gδ-tightness of X, get(X), is the minimal cardinal τ ≥ ω
satisfying get(X) ≤ τ, and the δ-tightness of X is defined similarly.

Note that if the tightness of X is countable then the δ-tightness of X is countable, and

if the δ-tightness of X is countable then the Gδ-tightness of X is countable. The converse

to each of the two implications is false, even for topological groups (see Example 1.6.13

and Problem 6.6.D). If, however, the space X has countable pseudocharacter, then the three

cardinal functions of X coincide:

Proposition 1.6.5. Suppose that all points of a space X are Gδ-sets. Then t(X) =

tδ(X) = get(X).

Proof. Since, by our assumption, each point of X is a Gδ-set, the family γ in the above

definition of the Gδ-tightness and δ-tightness may consist of singletons. In this case, the

invariants get(X) and tδ(X) become equal to t(X). �

It turns out that both the Gδ-tightness and δ-tightness of arbitrarily big products with

“good” factors are countable. To deduce this important result, we introduce several technical

concepts related to product spaces.

Let {Xa : a ∈ A} be a family of topological spaces and X = Πa∈AXa be their

topological product. Then an ω-cube in X is any subset B of X that can be represented as

the product B = Πa∈ABa, where Ba is a non-empty subset of Xa, for each a ∈ A, and the

set AB = {a ∈ A : Ba = Xa} is countable. The set AB in this case will be called the core of
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the ω-cube B. We also put XK = Πa∈KXa, for every non-empty subset K of A, and denote

by pK the natural projection mapping of X onto XK. If B is an ω-cube with core K such

that the image pK(B) under the projection pK consists only of one point, we say that B is

an elementary ω-cube.

Suppose that B =
∏

a∈A Ba is an ω-cube in X with core K such that Ba is a Gδ-set in

Xa, for each a ∈ K. Then B is called a canonical Gδ-set in X. Note that, for every J ⊂ A
and every canonical Gδ-set F in X, the projection pJ (F ) is a Gδ-set in XJ .

Proposition 1.6.6. Let {Xa : a ∈ A} be a family of topological spaces such that
the tightness of XK =

∏
a∈K Xa is countable, for every countable subset K of A, and let

X =
∏

a∈A Xa be their topological product. Then, for any family γ of ω-cubes in X and for

any point x ∈ ⋃
γ, there exists a countable subfamily η of γ such that x ∈ ⋃

η.

Proof. We are going to define, by induction, an increasing sequence of countable

subsets An of A and a sequence of countable subfamilies γn of γ in the following way.

Let A0 be a non-empty countable subset of A. Assume that for some n ∈ ω, a countable

set An ⊂ A is already defined, and put K = An. By the assumption, t(XK) ≤ ω. Therefore,

there exists a countable subfamily γn of γ such that pK(x) is in the closure of the set⋃{pK(V ) : V ∈ γn} in the space XK. Now put An+1 = An ∪
⋃{AB : B ∈ γn}. The

inductive step is complete.

Put M =
⋃{An : n ∈ ω} and η =

⋃{γn : n ∈ ω}. Clearly, η is a countable

subfamily of γ. Let H be the closure of
⋃

η. We have to show that x ∈ H , that is, we

have to verify that every canonical open neighbourhood O1 of x in X has a common point

with H . Clearly, O1 = p−1
S pS(O1), for some finite set S ⊂ A. Put F = S ∩ M and

O = p−1
F pF (O1). Then x ∈ O1 ⊂ O = p−1

F pF (O). It follows from the definition of

M and η that
⋃

η = p−1
M pM(

⋃
η) and, since the projection pM of X onto XM is open

and H =
⋃

η, Lemma 1.5.22 implies that p−1
M pM(H) = H . Therefore, the conditions

O ∩H = ∅ and O1 ∩H = ∅ are equivalent.

Since the sequence {An : n ∈ ω} is increasing, there exists n ∈ ω such that F ⊂ An.

By the choice of γn, the point pF (x) is in the closure of the set
⋃{pF (V ) : V ∈ γn} in the

space XF . Therefore, there exists a point z ∈ ⋃
γn ⊂

⋃
η such that pF (z) ∈ pF (O). It

follows that z ∈ O ∩⋃
η. Hence, x ∈ H . �

The next assertion is close to Proposition 1.6.6, but its proof requires some extra

argument.

Proposition 1.6.7. Suppose that {Xa : a ∈ A} is a family of topological spaces such
that the Gδ-tightness of XK =

∏
a∈K Xa is countable, for every countable subset K of A,

and let X = Πa∈AXa be their topological product. Then, for any family γ of Gδ-sets in X
and for any point x in the closure of the set

⋃
γ, there exists a countable subfamily η of γ

such that x ∈ ⋃
η, that is, get(X) ≤ ω.

Proof. Clearly, for each point y in
⋃

γ there exists a canonical Gδ-set B in X such

that y ∈ B ⊂ ⋃
γ. Therefore, we may assume that γ consists of canonical Gδ-sets in X.

Now we can repeat the proof of Proposition 1.6.6 with a minor modification: to

conclude, at the inductive step, that there exists a countable subfamily γn of γ such that

pK(x) is in the closure of the set
⋃{pK(V ) : V ∈ γn} in the space XK, we have to refer to

Σ σProducts, -products, and -products
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the obvious fact that pK(V ) is an ω-cube of type Gδ in the space XK for each V ∈ γn, and

apply the assumption that the Gδ-tightness of XK is countable. �

Since the class of spaces with a countable network is closed under countable products,

and every space with a countable network has countable tightness, Proposition 1.6.7 implies

the following corollaries.

Corollary 1.6.8. Let X be the product of some family of spaces each of which has a
countable network. Then the Gδ-tightness of X is countable.

Corollary 1.6.9. The product of any family of first-countable spaces has countable
Gδ-tightness.

The last two statements can be strengthened with the help of the next simple lemma.

Lemma 1.6.10. Suppose that X = Πa∈AXa is the topological product of a family of
topological spaces, γ is a countable family of elementary ω-cubes in X, and x ∈ ⋃

γ. For
every B ∈ γ, let y(B) be any point of B such that y(B)α = xα, for each α ∈ A \AB, where
AB is the core of B. Put M = {y(B) : B ∈ γ}. Then M is countable, M ⊂ ⋃

γ, and
x ∈ M.

Proof. Suppose that O is a canonical open neighbourhood of the point x in X. Since

x ∈ ⋃
γ, there exists B ∈ γ such that O∩B = ∅. For every a ∈ A, let pa be the projection

of X onto the factor Xa. Since B is an elementary ω-cube, we must have y(B)a ∈ pa(O),

for each a ∈ AB. Taking into account that y(B)a = xa for each a ∈ A \ AB, we conclude

that y(B) ∈ O ∩M = ∅. Therefore, x ∈ M. �

Theorem 1.6.11. Suppose that {Xa : a ∈ A} is a family of first-countable spaces,
and let X = Πa∈AXa be the topological product of this family. Then the δ-tightness of X is
countable.

Proof. Let γ be an arbitrary family of Gδ-sets in X and x a point in the closure of⋃
γ. Since the product of any countable family of first-countable spaces is first-countable,

every element of γ is the union of a family of elementary ω-cubes in X. Therefore, we may

assume that γ consists of elementary ω-cubes. By Corollary 1.6.9, the Gδ-tightness of X is

countable. Therefore, there exists a countable subfamily η of γ such that x ∈ ⋃
η. Since η

consists of elementary ω-cubes, Lemma 1.6.10 implies that there exists a countable subset

M of
⋃

η such that x ∈ M. Clearly, M ⊂ ⋃
γ. Hence, tδ(X) ≤ ω. �

As every Hausdorff space with a countable network has countable pseudocharacter, a

similar argument proves the next statement:

Theorem 1.6.12. Let X be the product of some family of Hausdorff spaces each of
which has a countable network. Then the δ-tightness of X is countable.

In the next example we show that topological groups of countable Gδ-tightness or even

countable δ-tightness may have arbitrary big tightness. Furthermore, our groups will be

compact.

Example 1.6.13. For every infinite cardinal τ, there exists a compact Abelian

topological group G such that the δ-tightness of G is countable, but t(G) ≥ τ.
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Indeed, taking a bigger cardinal, if necessary, we can assume that τ is regular, i.e.,

the cofinality of τ is equal to τ. Let D = {0, 1} be the two-element discrete group.

Then the compact Abelian group G = Dτ has countable δ-tightness by Theorem 1.6.11 or

Theorem 1.6.12. To show that t(G) ≥ τ, we argue as follows. Denote by 0̄ the point of Dτ

with zero coordinates, i.e., the neutral element of the group Dτ . For every ordinal β < τ, let

an element xβ ∈ Dτ be defined by xβ(α) = 0 if α ≤ β and xβ(α) = 1 otherwise. It is clear

that 0̄ is in the closure of the set X = {xβ : β < τ}. To deduce the inequality t(G) ≥ τ,

it suffices to verify that 0̄ is not in the closure of each Y ⊂ X with |Y | < τ. Since τ is a

regular cardinal, for every such a subset Y ⊂ X there exists α < τ such that the inequality

β < α holds for each xβ ∈ Y . Then xβ(α) = 1 for all xβ ∈ Y and, therefore, 0̄ does not

belong to the closure of Y in G. �
A space X is called Gδ-preserving if for each family γ of Gδ-sets in X, the closure

of the set
⋃

γ is again the union of some family of Gδ-sets in X. Evidently, every space

of countable pseudocharacter is Gδ-preserving. In particular, every Hausdorff space with a

countable network is Gδ-preserving. We shall see in Proposition 5.5.5 and Corollary 5.5.6

that, under mild restrictions, topological groups become Gδ-preserving when considered as

topological spaces.

Let us show that, under a natural additional assumption, the property of being Gδ-

preserving becomes productive.

Theorem 1.6.14. Suppose that {Xa : a ∈ A} is a family of spaces such that the space
XK =

∏
a∈K Xa is Gδ-preserving and has countable Gδ-tightness, for every countable

subset K of A. Then the product space X =
∏

a∈A Xa is Gδ-preserving.

Proof. As in the proof of Proposition 1.6.7, we can assume that the family γ consists

of canonical Gδ-sets in X. Put R =
⋃

γ and take an arbitrary point x ∈ R. Again,

get(X) ≤ ω by Proposition 1.6.7, so x ∈ ⋃
μ for some countable subfamily μ of γ. For

every B ∈ μ, let AB be the core of B. Clearly, |AB| ≤ ω and pAB (B) is a Gδ-set in XAB .

Put K =
⋃{AB : B ∈ μ}. Then K is a countable subset of A and pK(B) is a Gδ-set in XK,

for each B ∈ μ. By our assumption, the space XK is Gδ-preserving, so the set pK(
⋃

μ)

is the union of a family of Gδ-sets in XK. Since the projection pK : X → XK is open, we

conclude, by Lemma 1.5.22, that

p−1
K

(
pK(

⋃
μ)

)
= p−1(pK(

⋃
μ)) =

⋃
μ.

Clearly, the preimage of a Gδ-set in XK under the mapping pK is a Gδ-set in X, so the

set on the left hand side of the above equalities is the union of a family of Gδ-sets in X.

Hence, there exists a Gδ-set P in X such that x ∈ P ⊂ ⋃
μ ⊂ ⋃

γ. This proves that X is

Gδ-preserving. �
The next two results are now immediate from Corollaries 1.6.8, 1.6.9, and Theo-

rem 1.6.14.

Corollary 1.6.15. The product of an arbitrary family of Hausdorff spaces each of
which has a countable network is Gδ-preserving.

Corollary 1.6.16. The product of any family of first-countable spaces is Gδ-
preserving.

Σ σProducts, -products, and -products
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We recall (see [165, 1.7.12]) that the Souslin number or, equivalently, cellularity of a

space X is the minimal infinite cardinal κ such that every family of pairwise disjoint open

sets in X has cardinality less than or equal to κ. The cellularity of X is denoted by c(X).

A space X has the Souslin property if c(X) = ℵ0. Clearly, every separable space has the

Souslin property.

For every infinite cardinal τ, we introduce a cardinal function celτ analogous to the

cellularity. As usual, a Gτ-set in a topological space is the intersection of a family of at

most τ open subsets of the space. Given a space X, we define celτ(X) to be the minimal

cardinal λ ≥ ℵ0 such that every family 	 consisting of Gτ-sets in X contains a subfamily


 satisfying
⋃


 =
⋃

	 and |
| ≤ λ. A space X with celτ(X) ≤ τ is called τ-cellular.
Note that every ω-cellular space has countable Gδ-tightness, but the converse is false (the

Niemytzki plane is a counterexample).

It follows immediately from the above definition that c(X) ≤ celτ(X) ≤ celκ(X) ≤
hd(X) if ℵ0 ≤ τ ≤ κ, and celκ(X) = hd(X) for every κ ≥ ψ(X), where ψ(X) and hd(X)

are the pseudocharacter and the hereditary density of X, respectively (see [165, 3.1.F, 2.7.9]

or [262] for the definition of the functions ψ and hd).

The following lemma shows that a product space is ω-cellular if and only if every

countable subproduct is.

Lemma 1.6.17. Let X =
∏

i∈I Xi be a product space and suppose that the subproduct
XK =

∏
i∈K Xi satisfies celω(XK) ≤ ω, for each countable set K ⊂ I. Then X also satisfies

celω(X) ≤ ω.

Proof. Let γ be a family of Gδ-sets in X. Since every element of γ is the union

of a family of canonical Gδ-sets in X, we can assume without loss of generality that all

elements of γ are canonical Gδ-sets in X. Take an arbitrary countable subfamily γ0 of γ and

denote by K0 the union of the cores of the elements of γ0. Then K0 is a countable subset

of I. Suppose that we have defined, for some n ∈ ω, a countable subfamily γn of γ and a

countable set Kn ⊂ I. Since celω(XKn ) ≤ ω, there exists a countable family γn+1 ⊂ γ such

that pKn (
⋃

γn+1) is dense in pKn (
⋃

γ). Denote by Kn+1 the union of Kn with the cores of

the elements of γn+1. Clearly, Kn+1 is countable and Kn ⊂ Kn+1. In addition, our definition

of the set Kn+1 implies that F = p−1
Kn+1

pKn+1
(F ), for each F ∈ γn.

Put γ∗ =
⋃

n∈ω γn and K =
⋃

n∈ω Kn. Then γ∗ is a countable subfamily of γ and

it follows from our construction that pK(
⋃

γ∗) is dense in pK(
⋃

γ). Since Kn+1 ⊂ K
for all n ∈ ω, the equality F = p−1

K pK(F ) holds for each F ∈ γ∗. Finally, since

the projection pK : X → XK is open, we conclude that
⋃

γ∗ = p−1
K pK(

⋃
γ∗) is

dense in p−1
K (pK(

⋃
γ)) ⊇ ⋃

γ. In other words,
⋃

γ∗ is dense in
⋃

γ and, therefore,

celω(X) ≤ ω. �

Let us say that X is an Efimov space if, for every family γ of Gδ-sets in X, the closure of

the set
⋃

γ is again a Gδ-set in X. Evidently, if every closed subset of X is a Gδ-set, i.e., if

X is perfect, then X is an Efimov space. We will show below that the class of Efimov spaces

is much wider than the class of perfect spaces; for example, the former includes arbitrary

products of spaces with a countable network (see Corollary 1.6.19). Note that every Efimov

space is Gδ-preserving, but not vice versa (every first-countable compact space which fails

to be perfectly normal is a counterexample).
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Theorem 1.6.18. Let {Xi : i ∈ I} be a family of spaces such that for every countable
set K ⊂ I, the product XK =

∏
i∈K Xi is an Efimov space and satisfies celω(XK) ≤ ω.

Then X =
∏

i∈I Xi is an Efimov space. Furthermore, every closed Gδ-set P in X has the
form P = p−1

J pJ (P) for some countable set J ⊂ I.

Proof. Let � be a family of Gδ-sets in X. We can assume that all elements of � are

canonical Gδ-sets. In particular, every F ∈ � satisfies F = p−1
C pC(F ), where C is the core

of F . Since celω(X) ≤ ω by Lemma 1.6.17, one can find a countable subfamily 	 of �
such that

⋃
	 is dense in

⋃
�. All elements of 	 are canonical Gδ-sets, so the union of the

cores of the elements of 	, say, J is countable. Clearly, F = p−1
J pJ (F ) for each F ∈ 	.

Therefore, the set E =
⋃

	 satisfies E = p−1
J pJ (E). Since the mapping pJ is open, we

have that ⋃
� = E = p−1

J pJ (E) = p−1
J

(
pJ (E)

)
. (1.7)

It follows from the choice of 	 that the family 	J = {pJ (F ) : F ∈ 	} consists of Gδ-sets

in the Efimov space XJ . Thus, the closure of the set pJ (E) =
⋃

	J is of type Gδ in XJ .

Then (1.7) implies that
⋃

� = p−1
J pJ (E) and, hence,

⋃
� is a Gδ-set in X.

Let us prove the second claim of the theorem. A closed Gδ-set P in X is the union

of a family of canonical Gδ-sets in X, say, P =
⋃

γ. Since celω(X) ≤ ω, γ contains a

countable subfamily μ such that
⋃

μ is dense in P . Since every F ∈ μ has a countable

core, there exists a countable set J ⊂ I such that F = p−1
J pJ (F ) for each F ∈ μ. Then

P = p−1
J pJ (P), due to the fact that pJ is an open mapping. �

Corollary 1.6.19. The product of an arbitrary family of Hausdorff spaces each of
which has a countable network is an Efimov space and, hence, is Gδ-preserving.

Proof. A countable product P of Hausdorff spaces with a countable network is

Hausdorff and has a countable network, so P is a perfect, hereditarily separable space.

In particular, P is an Efimov space and celω(P) ≤ ω. The required conclusion now follows

from Theorem 1.6.18. �

Let γ be a family of sets. Then γ is called a Δ-system if there exists a set R (called the

root of γ) such that A ∩ B = R for all distinct A, B ∈ γ. It is clear that if R is the root of

γ, then the family {A \ R : A ∈ γ} is disjoint.

The next assertion is known as the Δ-lemma (see [285, Chap. 2, Theorem 1.5] or [413,

Section 2]).

Theorem 1.6.20. Let γ be a family of finite sets, and suppose that the cardinality of γ
is an uncountable regular cardinal. Then γ contains a subfamily μ of the same cardinality
which forms a Δ-system.

Theorem 1.6.21 below states that the cellularity of a product space X =
∏

i∈I Xi is

defined by the values of cellularity on finite subproducts of X.

Theorem 1.6.21. Let X =
∏

i∈I Xi be a product space and suppose that the subproduct
XK =

∏
i∈K Xi satisfies c(XK) ≤ τ for every finite K ⊂ I, where τ is an infinite cardinal.

Then c(X) ≤ τ.

Σ σProducts, -products, and -products



54 1. INTRODUCTION TO TOPOLOGICAL GROUPS AND SEMIGROUPS

Proof. Suppose to the contrary that c(X) > τ. Then X contains a disjoint family

{Uα : α < τ+} of non-empty canonical open sets. For every α < τ+, choose a finite set

Aα ⊂ I such that Uα = π−1
Aα

πAα (Uα). Let γ = {Aα : α < τ+}. If |γ| ≤ τ, then there exists

a set C ⊂ τ+ with |C| = τ+ such that Aα = Aβ = J for all α, β ∈ C. Denote by πJ the

projection of X onto XJ . Then {πJ (Uα) : α ∈ C} is a disjoint family of open sets in XJ

which has cardinality τ+, thus contradicting c(XJ ) ≤ τ. We can assume, therefore, that γ
has cardinality τ+. Choosing a subfamily of γ, we may assume additionally that Aα = Aβ

for all distinct α, β < τ+.

By Theorem 1.6.20, one can find B ⊂ τ+ with |B| = τ+ and a finite set R ⊂ I such

that Aα ∩ Aβ = R whenever α, β ∈ B and α = β. By hypothesis, c(XJ ) ≤ τ, so there

exist distinct α, β ∈ B such that V = πR(Uα) ∩ πR(Uβ) = ∅. Since the sets Aα \ R and

Aβ \ R are disjoint, we can take a point x ∈ X such that πR(x) ∈ V , πi(x) ∈ πi(Uα) for

each i ∈ Aα \ R, and πi(x) ∈ πi(Uβ) for each i ∈ Aβ \ R. Clearly, x ∈ Uα ∩ Uβ = ∅,

which is a contradiction. So, we have proved that c(X) ≤ τ. �
Let τ be an infinite cardinal. A space X is said to be pseudo-τ-compact if every

discrete in X family of open sets has cardinality strictly less than τ. It is easy to see

that X is pseudo-τ-compact iff every family γ of open sets in X (not necessarily pairwise

disjoint) with |γ| ≥ τ has an accumulation point in X. It follows from the definition that

pseudo-τ-compactness implies pseudo-λ-compactness whenever τ < λ. Evidently, pseudo-

ω-compactness and pseudocompactness coincide in the class of Tychonoff spaces. Hence,

pseudocompact spaces are pseudo-ℵ1-compact. All Lindelöf spaces and all separable spaces

are also pseudo-ℵ1-compact. More generally, every space of countable cellularity is pseudo-

ℵ1-compact.

Proposition 1.6.22. Let X =
∏

i∈I Xi be a Tychonoff product such that every finite
subproduct XJ =

∏
i∈J Xi is pseudo-τ-compact, where τ is a regular uncountable cardinal.

Then X is also pseudo-τ-compact.

Proof. For every finite J ⊂ I, denote by πJ the projection of X onto XJ . To show

that X is pseudo-τ-compact, consider a family γ = {Uα : α < τ} of canonical open sets

in X. Every Uα has the form Uα = π−1
Jα

(Vα), where Jα is a finite subset of I and Vα is a

rectangular open set in XJα . Since XJ is pseudo-τ-compact for each finite J ⊂ I, we can

assume (choosing a set A ⊂ τ with |A| = τ and considering the family {Uα : α ∈ A} in

place of γ) that Jα = Jβ if α < β < τ.

Apply the Δ-lemma to find a finite set J ⊂ I and a set B ⊂ τ such that |B| = τ and

Jα ∩Jβ = J , for all distinct α, β ∈ B. For every α ∈ B, put Oα = πJ (Uα). Since the space

XJ is pseudo-τ-compact, the family {Oα : α ∈ B} has an accumulation point xJ ∈ XJ .

Take an arbitrary point x ∈ X with πJ (x) = xJ . We claim that x is an accumulation point

for the family {Uα : α ∈ B}.
Indeed, let W be a basic neighbourhood of x in X, say, W = π−1

K (W0), where W0 is

a rectangular open in XK and K ⊂ I is finite. Then πJ (W ) is a neighbourhood of xJ in

XJ , so πJ (W ) intersects Oα for each α ∈ C, where C ⊂ B is infinite. Since the family

{Jα \ J : α ∈ B} is disjoint, there exists an infinite set D ⊂ C such that (Jα \ J) ∩K = ∅
for each α ∈ D. Let us verify that W ∩ Uα = ∅ for each α ∈ D. For α ∈ D, take

p ∈ πJ (W ) ∩ πJ (Uα) and choose a point q ∈ X such that

πJ (q) = p, πJα\J (q) ∈ πJα\J (Uα) and πK\J (q) ∈ πK\J (W ).
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It is easy to see that q ∈ W ∩ Uα = ∅. Therefore, x is an accumulation point for

{Uα : α ∈ B} and for γ. This proves that the product space X is pseudo-τ-compact. �

Many important examples of topological groups are defined as topological subgroups

of products of very simple topological groups. Because of that, we have to introduce and

study some standard subspaces of topological products of topological spaces.

Suppose that η = {Xα : α ∈ A} is a family of topological spaces, X = Π{Xα : α ∈ A}
is the topological product of the family η, and b is a point in X. Then the Σ-product of
η with basic point b is the subspace of X consisting of all points x ∈ X such that only

countably many coordinates xα of x are distinct from the corresponding coordinates bα

of b. This subspace is denoted by ΣΠ{Xα : α ∈ A} or by ΣΠη. For x ∈ X, the set

{α ∈ A : xα = bα} is called the support of x (with respect to b) and is denoted by suppb(x).

Clearly, the Σ-product is the set of all x ∈ X such that suppb(x) is countable. Sometimes

ΣΠη will be called the Σ-product of η at b.
Similarly, the σ-product of η with basic point b is the subspace of X consisting of

all points x ∈ X such that only finitely many coordinates xα of x are distinct from the

corresponding coordinates bα of b. This subspace is denoted by σΠ{Xα : α ∈ A} or

simply by σΠη; note that the basic point is usually not shown in the notation.

Clearly, the σ-product is a subspace of the Σ-product, and both subspaces are dense

in the product. For those interested primarily in topological algebra, the importance of the

operations of taking Σ-product and σ-product is based, in particular, on the following simple

fact:

Proposition 1.6.23. Suppose that η = {Gα : α ∈ A} is a family of topological
groups, eα is the neutral element of Gα, and G = Π{Gα : α ∈ A} is the product of the
family η. Then the Σ-product ΣΠη and the σ-product σΠη with basic point e = (eα)α∈A

(the neutral element of G) are dense topological subgroups of the topological group G.

In what follows when we consider the Σ-product or σ-product of a family of topological

groups, we always assume that the basic point is the neutral element e of the product.

The above statement as well as Example 1.2.9 provide us with motivation to learn more

about topological properties of Σ-products and σ-products of families of topological spaces

and topological groups. We start with a few results on Σ-products.

Theorem 1.6.24. Suppose that η = {Xα : α ∈ A} is a family of topological spaces,
X = Π{Xα : α ∈ A} is the topological product of the family η, and b is a point of X.
Suppose also that, for each countable subset C of A, the tightness of the product space∏{Xα : α ∈ C} is countable. Then the tightness of the Σ-product ΣΠη of η with basic
point b is also countable.

Proof. We put Y = ΣΠη. Take a point y ∈ Y and consider a set P ⊂ Y such that

y ∈ P . We can assume that b /∈ P . Put S = suppb(y) and Kp = suppb(p) ∪ S, for each

p ∈ P . Then Kp is a countable non-empty subset of A. Let Bp be an elementary ω-cube

in X with the core set Kp such that p ∈ Bp. Put γ = {Bp : p ∈ P}. Clearly, P ⊂ ⋃
γ.

Therefore, y ∈ ⋃
γ. It follows from Proposition 1.6.6 that there exists a countable subset

M of P such that y ∈ ⋃{Bp : p ∈ M}. As in Lemma 1.6.10, for every p ∈ M, choose a

point z(p) ∈ Bp such that z(p)α = yα for each α ∈ A \Kp. Since S ⊂ Kp for each p ∈ M,

we have that z(p) = p. Therefore, Lemma 1.6.10 implies that y ∈ M. �

Σ σProducts, -products, and -products
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The above theorem has several important corollaries.

Corollary 1.6.25. The Σ-product of any family of first-countable spaces is a space
of countable tightness.

Clearly, Corollary 1.6.25 covers the case of metrizable spaces.

A space X is called cosmic if it has a countable network. All second-countable spaces

as well as all continuous images of second-countable spaces are cosmic.

Corollary 1.6.26. The Σ-product of any family of cosmic spaces is a space of
countable tightness.

We will now establish another series of very useful facts on Σ-products. The most

general of them is the next lemma.

Lemma 1.6.27. Suppose that η = {Xα : α ∈ A} is a family of topological spaces,
X = Π{Xα : α ∈ A} is the topological product of η, and b ∈ X. Then, for each countable
subset M of the Σ-product Y = ΣΠη of η with basic point b, the closure of M in Y
coincides with the closure of M in X and is naturally homeomorphic to a closed subspace
of the topological product of some countable subfamily of η.

Proof. Put K =
⋃{suppb(x) : x ∈ M}. Then K is a countable subset of A and,

clearly, for any y in the closure of M in X, we have that yα = bα, for each α ∈ A \ K.

Therefore, the closure of M in X is contained in Y and is homeomorphic to the closure of

pK(M) in XK = Π{Xα : α ∈ K}, where pK : X → XK is the projection; the restriction of

pK to the closure of M in X is the natural homeomorphism we are looking for. �
The following four more concrete statements are immediate corollaries of Lemma

1.6.27. The first of them will be strengthened in Theorem 1.6.32.

Proposition 1.6.28. Suppose that η = {Xα : α ∈ A} is a family of topological spaces,
X = Π{Xα : α ∈ A}, and b ∈ X. Suppose also that, for each countable subset C of A,
the product space

∏{Xα : α ∈ C} is Fréchet–Urysohn. Let Y be the Σ-product of η at b.
Then, for each countable subset M of Y , the closure of M in Y is also Fréchet–Urysohn.

Proposition 1.6.29. Let η = {Xα : α ∈ A} be a family of metrizable spaces,
X = Π{Xα : α ∈ A}, and b ∈ X. If Y is the Σ-product of η at b then, for each countable
subset M of Y , the closure of M in Y is metrizable.

Proposition 1.6.30. Suppose that η = {Xα : α ∈ A} is a family of compact spaces,
X = Π{Xα : α ∈ A}, and b ∈ X. Let Y be the Σ-product of η at b. Then, for each
countable subset M of Y , the closure of M in Y is compact.

Proposition 1.6.31. Suppose that η = {Xα : α ∈ A} is a family of first-countable
spaces, X = Π{Xα : α ∈ A}, and b ∈ X. Let Y be the Σ-product of η at b. Then, for each
countable subset M of Y , the closure of M in Y is first-countable.

Here is the promised generalization of Proposition 1.6.28.

Theorem 1.6.32. Let η = {Xα : α ∈ A} be a family of topological spaces,
X = Π{Xα : α ∈ A} be the product of η, and b ∈ X. Suppose also that, for each countable
subfamily ξ of η, the product

∏
ξ is a Fréchet–Urysohn space. Then the Σ-product Y of η

with basic point b is also Fréchet–Urysohn.
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Proof. Suppose that Z ⊂ Y , y ∈ Y , and y ∈ Z. Note that every Fréchet–Urysohn

space has countable tightness. Hence the tightness of Y is countable, by Theorem 1.6.24.

Therefore, there exists a countable subset M of Z such that y ∈ M. However, the closure

M of M in Y is Fréchet–Urysohn, by Proposition 1.6.28. It follows that some sequence of

points of M converges to y. Hence, the space Y is Fréchet–Urysohn. �

Corollary 1.6.33. The Σ-product of any family of first-countable spaces is a Fréchet–
Urysohn space.

Corollary 1.6.34. The Σ-product Y of any family of compact spaces is countably
compact. Moreover, the closure of any countable subset M of Y in Y is compact.

Proof. The first part of the statement obviously follows from the second part. And the

second part is a direct corollary from Proposition 1.6.30, since the product of any family of

compact spaces is compact. �

Combining Corollaries 1.6.33 and 1.6.34, we obtain:

Corollary 1.6.35. The Σ-product of any family of compact first-countable spaces is
a countably compact Fréchet–Urysohn space.

Here is another useful general fact. It concerns a relationship between the product of a

family of spaces and the Σ-product of the same family.

Proposition 1.6.36. For any family η = {Xα : α ∈ A} of spaces and any
b ∈ X =

∏
η, the Σ-product Y of η at b is Gδ-dense in X, that is, every non-empty

Gδ-set in X intersects Y .

Proof. The statement is almost obvious. Indeed, P is the union of a family of non-

empty ω-cubes, since P is a non-empty Gδ-set in X. However, every ω-cube intersects Y .

Hence, P ∩ Y = ∅. (Observe that, by a standard argument, the intersection Y ∩ P is dense

in P .) �

Theorem 1.6.37. Suppose that η = {Xα : α ∈ A} is a family of first-countable spaces,
and let X = Πα∈AXα be their topological product. Then, for any family γ of Gδ-sets in X
and for any point b in the closure of the set U =

⋃
γ, there exists a sequence {xn : n ∈ ω}

of points of U converging to b.

Proof. Let Y be the Σ-product of η at b, and put B = U ∩ Y . It follows from

Proposition 1.6.36 that B is dense in U. Therefore, b ∈ B. Clearly, b ∈ Y , B ⊂ Y , and the

space Y is Fréchet–Urysohn, according to Corollary 1.6.33. It follows that some sequence

of points of B converges to b. Since B ⊂ U, we are done. �

With the help of the above constructions and results, we can define some non-trivial

topological groups and identify certain non-trivial properties of these groups.

Theorem 1.6.38. Suppose that A is an uncountable set and that, for each α ∈ A, Gα is
a compact metrizable topological group containing at least two points. Let G = Πα∈AGα

be the product of topological groups Gα. Then the Σ-product H = ΣΠα∈AGα is a countably
compact, Fréchet–Urysohn, non-compact, non-metrizable topological subgroup of G.

Σ σProducts, -products, and -products
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Proof. Since A is uncountable, H is a proper subset of G. However, H is dense

in G. Therefore, H is not closed in G. Since the space G is Hausdorff, it follows

that the subspace H is not compact. By Corollary 1.6.35, H is countably compact and

Fréchet–Urysohn. Since H is not compact, and every countably compact metrizable space

is compact, we conclude that H is not metrizable. Finally, H is a topological subgroup of

G, by Proposition 1.6.23. �

It will be shown in Corollary 4.2.2 that, in contrast with the above statement, every

compact topological group of countable tightness is metrizable and, hence, the cardinality

of such a group does not exceed the power of the continuum. However, the cardinalities

of countably compact groups of countable tightness (or even countably compact Fréchet–

Urysohn groups) are unbounded, as Theorem 1.6.38 shows.

Example 1.6.39. Suppose that A is an uncountable set.

a) For every α ∈ A, let Gα = T be the circle group. Then the Σ-product ΣΠα∈AGα is

denoted by ΣTA. By Theorem 1.6.38, ΣTA is a countably compact, non-metrizable,

Fréchet–Urysohn topological group which is not compact.

b) Similarly, if Gα = D for each α ∈ A, where D = {0, 1} is the discrete Boolean

group, then the Σ-product ΣΠα∈AGα is denoted by ΣDA. By Theorem 1.6.38, ΣDA

is a countably compact, non-metrizable, Fréchet–Urysohn Boolean topological group

which is not compact. Clearly, the groups DA and ΣDA are zero-dimensional. �

The above example is instrumental in many situations when compact and countably

compact topological groups are involved.

Let us now make a few general observations on the structure of σ-products of spaces

and topological groups.

Proposition 1.6.40. Let X =
∏

α∈A Xα be a product space and Y ⊂ X be the
corresponding σ-product with center at b ∈ X. Then Y is the union of a countable family
{Yn : n ∈ ω} of closed subspaces Yn of X such that Y0 = {b} and, for each n ∈ ω,
Yn ⊂ Yn+1, and Yn+1 \ Yn admits a disjoint open covering λn such that each U ∈ λn is
homeomorphic to an open subspace of the product of a finite subfamily of {Xα : α ∈ A}.

Proof. For every y ∈ Y , only finitely many coordinates yα of y are distinct from the

corresponding coordinates bα of b. We denote by r(y) the number of coordinates of a point

y ∈ Y distinct from those of b. Let Yn = {y ∈ Y : r(y) ≤ n}, for n ∈ ω. Then, clearly,

Y =
⋃

n∈ω Yn, where each Yn is closed in the product space X.

For every n ∈ N, put Un = Yn \ Yn−1, and let Bn be the set of all finite subsets

of A of cardinality n. Given K ∈ Bn, let WK be the set of all y ∈ Y such that

{α ∈ A : yα = bα} = K. Clearly, WK is open in Yn, WK ∩ WL = ∅, for any two

distinct K, L ∈ Bn, and Un =
⋃

λn, where λn = {WK : K ∈ Bn}. It is also clear that each

WK is homeomorphic to an open subspace of
∏

α∈K Xα. �

Proposition 1.6.41. The σ-product of any family of σ-compact spaces is σ-compact.

Proof. Note first that the σ-product of any family of compact spaces is σ-compact.

This follows immediately from Proposition 1.6.40, since the product of any family of

compact spaces is compact.
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Let η = {Xα : α ∈ A} be any family of σ-compact spaces. Then, for each α ∈ A,

Xα =
⋃

n∈ω Xα,n, where each Xα,n is compact. We can also assume that Xα,i ⊂ Xα,j

whenever i < j. Let b be any point of the product of the family η, and Y be the σ-product

of η at b. We can assume that bα ∈ Xα,0, for each α ∈ A. Indeed, bα ∈ Xα,k for some

k ∈ ω, and we can place Xα,k in the role of Xα,0 changing the enumeration accordingly.

Put ηn = {Xα,n : α ∈ A}, and let Yn be the σ-product of ηn at b, for each n ∈ ω. Clearly,

Y =
⋃

n∈ω Yn. However, each Yn is σ-compact since all elements of ηn are compact. �

The next result follows directly from Propositions 1.6.41 and 1.6.23.

Proposition 1.6.42. The product and the Σ-product of an arbitrary family of σ-
compact topological groups contain a dense σ-compact subgroup.

Example 1.6.43. Let M = σDτ be the σ-product of τ copies of the Boolean group

D = {0, 1}, where τ is an uncountable cardinal. Then M is a σ-compact, Fréchet–Urysohn,

non-compact, non-metrizable Boolean topological group. Indeed, since τ is uncountable

and the character of the space χ(Dτ) is uncountable, the product space Dτ cannot contain a

dense first-countable subspace, by Lemma 1.4.15. However, M is dense in Dτ . Therefore,

the space M is not metrizable. Since a subspace of a Fréchet–Urysohn space is also Fréchet–

Urysohn, the rest follows from Propositions 1.6.41 and 1.6.23. �

Sometimes it is useful to consider the so-called ω-box topology on product spaces. Let

X =
∏

i∈I Xi be the product of spaces Xi, with i ∈ I. A standard base of the ω-box topology

on X consists of the ω-cubes B =
∏

i∈I Bi, where each Bi is open in Xi (and, clearly, the

number of indices i ∈ I with Bi = Xi is countable). It follows from the definition that the

ω-box topology on X is finer than the usual Tychonoff product topology. It is easy to see

that for every set J ⊂ I, the projection pJ : X → XJ of X onto the subproduct XJ is open

provided that both spaces carry the ω-box topology.

The following facts complement our knowledge of the properties of σ-products. As

usual, l(Y ) denotes the Lindelöf number of a space Y (see [165, Section 3.8]).

Proposition 1.6.44. Let X =
∏

i∈I Xi be a product space such that for every finite
J ⊂ I, the subproduct XJ =

∏
i∈J Xi satisfies l(XJ ) ≤ τ. Then the σ-product σ(p) ⊂ X,

with the ω-box topology inherited from X and a basic point p, satisfies l(σ(p)) ≤ τ, for any
p ∈ X.

Proof. First, we introduce some notation. For every non-empty set J ⊂ I, put

σ∗
J = {x ∈ σ(p) : πi(x) = πi(p) for each i ∈ I \ J},

where πi : X → Xi is the projection, i ∈ I. If J ⊂ I is finite, then σ∗
J
∼= XJ , so that

l(σ∗
J ) ≤ τ. Observe that if J ⊂ I and |J | ≤ τ, then

σ∗
J =

⋃
{σ∗

K : K ⊂ J, |K| < ω}.
Since the family of finite subsets of J has cardinality ≤ τ, we have l(σ∗

J ) ≤ τ for such a

set J .

Suppose that γ is an open covering of σ(p). Without loss of generality we can assume

that every element V ∈ γ has the form V = UV ∩ σ(p), for some canonical open ω-cube

UV in X. Hence there exists a countable set B(V ) ⊂ I such that UV = π−1
B(V )πB(V )(UV ).

Σ σProducts, -products, and -products
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Choose an arbitrary element W0 of γ and put B0 = B(W0) and μ0 = {W0}. Suppose

that for some n ∈ ω, we have defined a set Bn ⊂ A and a subfamily μn of γ such that

|Bn| ≤ τ and |μn| ≤ τ. Since l(σ∗
Bn

) ≤ τ, we can find a subfamily μn+1 of γ such that

σ∗
Bn
⊂ ⋃

μn+1 and |μn+1| ≤ τ. It remains to put Bn+1 = Bn ∪
⋃{B(V ) : V ∈ μn+1}. This

finishes our inductive construction of the sequences {Bn : n ∈ ω} and {μn : n ∈ ω}.
Consider the set B =

⋃∞
n=0 Bn and the subfamily μ =

⋃∞
n=0 μn of γ. It is clear

that |B| ≤ τ and |μ| ≤ τ. We claim that μ covers σ(p). Indeed, let x ∈ σ(p) be

arbitrary. Denote by y the element of σ(p) such that πi(y) = πi(x) for each i ∈ B and

πi(y) = πi(p) for all i ∈ I \ B. Then K = {i ∈ I : πi(v) = πi(p)} is a subset of B. Since

|K| < ω and B0 ⊂ B1 ⊂ B2 ⊂ · · · , there exists n ∈ ω such that K ⊂ Bn. Therefore,

y ∈ σ∗
Bn
⊂ ⋃

μn+1 and, hence, y ∈ V for some V ∈ μn+1. It follows from our inductive

construction that B(V ) ⊂ Bn+1 ⊂ B and, since πi(x) = πi(y) for each i ∈ B, we conclude

that x ∈ UV ∩ σ(p) = V . Thus, σ(p) =
⋃

μ. This proves that the space σ(p) satisfies

l(σ(p)) ≤ τ. �

Since the Tychonoff product topology is weaker than the ω-box topology, we obtain

the following corollary.

Corollary 1.6.45. Let X =
∏

i∈I Xi be a product space such that for every finite
J ⊂ I, the subproduct XJ =

∏
i∈J Xi satisfies l(XJ ) ≤ τ. Then the σ-product σ(p) ⊂ X,

with the subspace topology and center at p, satisfies l(σ(p)) ≤ τ for any p ∈ X.

Exercises

1.6.a. Verify that Theorem 1.6.2 remains valid for monoidal topologies on monoids, quasitopolog-

ical topologies and paratopological topologies on groups, ring topologies on rings and field

topologies on fields.

1.6.b. Give an example of an infinite group G and two Hausdorff topological group topologies

�1 and �2 on G such that the groups (G, �1) and (G, �2) are compact and the diagonal

ΔG = {(x, x) : x ∈ G} is dense in the product group (G, �1) × (G, �2). Explain why this

does not contradict Theorem 1.6.2.

1.6.c. Show that the join of two compact metrizable topological group topologies on a group need

not be either locally compact or σ-compact.

1.6.d. Construct a topological group K and a subgroup L of K satisfying the following conditions:

(a) L is closed in K and ω = get(K) < get(L);

(b) L is dense in K and ω = get(K) < get(L).

1.6.e. Show that if a subgroup L of a topological group K intersects every non-empty Gδ-set in the

group K, then get(L) ≤ get(K).

1.6.f. Let N be a closed subgroup of a topological group G and π : G → G/N the corresponding

quotient mapping. Show that get(G/N) ≤ get(G) and tδ(G/N) ≤ tδ(G).

1.6.g. Is the square of an Efimov space X necessarily an Efimov space? What if X is a topological

group?

1.6.h. Let p be a prime number and G = Z(p)ω be the product group with the usual Tychonoff

product topology, where Z(p) is the discrete cyclic group with p elements. Show that for

every element a ∈ G distinct from the neutral element of G, there exists a dense subgroup

H of G such that G = H ⊕ 〈a〉.
1.6.i. Let 0̄ be the neutral element of the product group Z(2)ω, and σ(0̄) be the corresponding

σ-product in Z(2)ω with center at 0̄. Construct a discontinuous isomorphism of σ(0̄) onto



61

itself. Does there exist a continuous isomorphism f : σ(0̄) → σ(0̄) which fails to be a

homeomorphism?

1.6.j. Give an example of a σ-compact topological group G which is Fréchet–Urysohn but is not

metrizable.

Hint. Apply Corollary 1.6.33 and Proposition 1.6.41.

Problems

1.6.A. Give an example of a dense subgroup G of the product group Tω1 such that G has countable

pseudocharacter and satisfies t(G) > ω.

1.6.B. (M. G. Tkachenko and Y. Torres [491]) Let G be a non-trivial second-countable Abelian

topological group and κ be a cardinal satisfying ω < κ ≤ 2ω. Prove that the following are

equivalent in the case when G is torsion-free:

a) The σ-product σGκ of κ copies of the group G contains a dense subgroup of countable

pseudocharacter.

b) |G| ≥ κ.

Give an example of a torsion Abelian second-countable topological group G with |G| = 2ω

such that σGκ does not contain a dense subgroup of countable pseudocharacter, for any

cardinal κ satisfying ω < κ ≤ 2ω.

1.6.C. Let Σ = ΣΠi∈IGi be the Σ-product of compact metrizable topological groups, and suppose

that f : Σ → K is a continuous homomorphism onto a compact topological group K. Prove

that K is metrizable.

Remark. The conclusion remains valid for an arbitrary continuous mapping of Σ onto K;

this is Efimov’s theorem in [158].

1.6.D. (W. W. Comfort and J. van Mill [115]) Prove the following statements (see also Prob-

lem 1.5.E):

(a) If G and H are strongly resolvable groups, then so is the product group G × H .

(b) Let {Gi : i ∈ I} be a family of strongly resolvable groups and suppose that the direct

sum G = ⊕i∈IGi does not contain a copy of the group Z(2)(ω), the direct sum of ω
copies of the group Z(2) = {0, 1}. Then G is strongly resolvable.

(c) For every prime p, the subgroup Z(p∞) = {x ∈ T : xpn
= 1 for some n ∈ N} of the

circle group T is strongly resolvable.

(d) The additive group of rationals Q is strongly resolvable.

(e) The abstract groups R, C, and T are strongly resolvable (compare with (a) of

Exercise 1.4.l).

Open Problems

1.6.1. Find out whether the join of two Fréchet–Urysohn (sequential, of countable tightness)

Hausdorff topological group topologies on a group is Fréchet–Urysohn (sequential, of

countable tightness).

1.6.2. Does the product of two topological groups of countable Gδ-tightness (δ-tightness) have

countable Gδ-tightness (δ-tightness)? What is the answer if, additionally, both factors have

countable pseudocharacter?

1.6.3. Is the product of two (or countably many) Gδ-preserving topological groups Gδ-preserving?

1.6.4. Suppose that π : G → H is a continuous open homomorphism of a Gδ-preserving topological

group G onto a topological group H . Is H then Gδ-preserving?

Σ σProducts, -products, and -products
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1.7. Factorization theorems

In this short section we study the question of when a given continuous function defined

on a product space
∏

i∈I Xi depends only on a “small” subset of the index set I. The results

of this section will be applied many times in the following chapters, and this material will

play an especially important role in Chapter 8.

Let f : X → Z and p : X → Y be two continuous mappings. We say that f factorizes
through p if there exists a mapping g : Y → Z, not necessarily continuous, such that

f = g ◦ p. Clearly, f factorizes through p if and only if p(x1) = p(x2) implies that

f (x1) = f (x2), for all x1, x2 ∈ X. We also say that f admits a continuous factorization
through p if there exists a continuous mapping g : Y → Z such that f = g ◦ p. If this is

the case, we write p ≺ f . The next simple fact will be frequently used in the sequel.

Lemma 1.7.1. Let f : X → Z and p : X → Y be continuous mappings, where
p(X) = Y . If f factorizes through p and the mapping p is quotient, then there exists
a unique mapping g : Y → Z satisfying f = g ◦ p, and g is continuous. Hence, p ≺ f .

Proof. The uniqueness of g is evident. To verify that g is continuous, take an arbitrary

open set U ⊂ Z and note that p−1(g−1(U)) = f−1(U) is open in X, by the continuity of f .

Since p is quotient, it follows that the inverse image g−1(U) is open in Y . Therefore, g is

continuous. �

Let X =
∏

i∈I Xi be a product space and f : X → Y a continuous mapping. Given a

set J ⊂ I, we say that f depends only on the set J (equivalently, f does not depend on I \J)

if f factorizes through the natural projection πJ : X → XJ =
∏

i∈J Xi. In other words, f
depends only on J if for all x, y ∈ X, πJ (x) = πJ (y) implies f (x) = f (y). If such a set J
is countable, we say that f depends on countably many coordinates. For a cardinal τ, the

expression “f depends on less than τ coordinates” is self-explanatory.

We also say that f depends on an index j ∈ I if there exist points x, y ∈ X such that

πi(x) = πi(y) for each i ∈ I \ {j} and f (x) = f (y), where πi : X → Xi is the projection.

The next general result on factorization of continuous real-valued functions on product

spaces is known as Glicksberg’s theorem.

Theorem 1.7.2. [I. Glicksberg] Let X =
∏

i∈I Xi be a product space. If X is pseudo-
τ-compact, for some cardinal τ with cf (τ) > ω, then every continuous real-valued function
on X depends on less than τ coordinates. Furthermore, there exist a set J ⊂ I with |J | < τ
and a continuous function h : XJ → R such that f = h ◦ πJ , where XJ =

∏
i∈J Xi and

πJ : X → XJ is the projection.

Proof. Let f be a continuous real-valued function on X. Suppose to the contrary that

f depends on at least τ pairwise distinct coordinates. Denote by J the subset of I consisting

of all indices i ∈ I the function f depends on. We claim that f depends only on J .

Indeed, denote by πJ the projection of X onto XJ =
∏

i∈J Xi and take arbitrary points

x, y ∈ X such that πJ (x) = πJ (y). If f (x) = f (y), we can choose canonical open sets U and

V in X such that x ∈ U, y ∈ V and f (U) ∩ f (V ) = ∅. There exists a non-empty finite set

C ⊂ I such that U = π−1
C πC(U) and V = π−1

C πC(V ). Since πi(x) = πi(y) for each i ∈ J ,

we can assume that πi(U) = πi(V ) for all i ∈ J . It is clear that the sets U and V are disjoint,

so D = C \ J = ∅. Let D = {i1, . . . , in} for some integer n ≥ 1. It is easy to define points
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z0, z1, . . . , zn ∈ X such that z0 = x, zn = y and πi(zk−1) = πi(zk) for all i ∈ I \{ik}, where

k = 1, . . . , n. Since D ∩ J = ∅, we have f (x) = f (z0) = f (z1) = · · · = f (zn) = f (y).

Hence f (U) ∩ f (V ) = ∅, which is a contradiction. This proves that f depends only on J .

Since the projection πJ of X onto XJ is open (hence, quotient), it follows from

Lemma 1.7.1 that there exists a continuous real-valued function h on XJ such that f = h◦πJ .

It remains to show that |J | < τ. Suppose to the contrary that |J | ≥ τ. For every i ∈ J ,

choose points xi, yi ∈ X such that πj(xi) = πj(yi), for each j = i, and f (xi) = f (yi). Since

cf (τ) > ω, we can find ε > 0 and a set J ′ ⊂ J with |J ′| = τ such that |f (xi)− f (yi)| ≥ ε
for each i ∈ J ′. Then, for every i ∈ J ′, we choose open neighbourhoods Ui and Vi of xi

and yi, respectively, such that |f (x)−f (xi)| < ε/3 for all x ∈ Ui and |f (y)−f (yi)| < ε/3

for all y ∈ Vi. Put Ji = J \ {i} and Wi = Vi ∩π−1
Ji

(πJi (Ui)∩πJi (Vi)), where i ∈ J ′. Then

the sets Wi are open, non-empty, and satisfy πJi (Wi) = πJi (Ui) ∩ πJi (Vi). We claim that

the family {Wi : i ∈ J ′} is locally finite in X. Let x ∈ X be arbitrary. Choose a canonical

neighbourhood O of x in X such that |f (x′) − f (x)| < ε/6 for each x′ ∈ O. Then there

exists a finite set C ⊂ I such that O = π−1
C πC(O). If O∩Wi = ∅ for some i ∈ J ′, choose

points y ∈ O ∩Wi and z ∈ Ui such that πJi (z) = πJi (y). It follows from the choice of the

sets O, Ui, and Vi that O∩Ui = ∅, so that πC(O)∩πC(Ui) = ∅ and πC(y) = πC(z). This

implies immediately that i ∈ C, that is, O can intersects only the sets Wi with i ∈ C. Thus,

the family {Wi : i ∈ J ′} has cardinality τ and is locally finite in X, which contradicts the

pseudo-τ-compactness of X. The theorem is proved. �

Theorem 1.7.2 implies the following result which is useful on many occasions. In fact,

the major part of applications of Glicksberg’s theorem requires Theorem 1.7.3 in the special

case τ = ℵ0:

Theorem 1.7.3. Let X =
∏

i∈I Xi be a product space and f : X → Z a continuous
mapping to a Tychonoff space Z satisfying w(Z) ≤ τ. If X is pseudo-τ+-compact, then
there exist a set J ⊂ I with |J | ≤ τ and a continuous mapping h : XJ → Z such that
f = h ◦ πJ , where XJ =

∏
i∈J Xi and πJ : X → XJ is the projection.

Proof. Let us identify Z with a subspace of the Tychonoff cube Iτ , where I = [0, 1].

For every α ∈ τ, denote by pα the projection of Iτ to the α’s factor. Then fα = pα ◦ f is a

continuous real-valued function on X. For every α < τ, apply Theorem 1.7.2 to find a set

Jα ⊂ I with |Jα| ≤ τ and a continuous function gα : XJα → I satisfying fα = gα ◦ πJα ,

where πJα : X → XJα is the projection. Clearly, the cardinality of the set J =
⋃

α<τ Jα is

not greater than τ. Let πJ
Jα

: XJ → XJα be the projection, α < τ. Then hα = gα ◦ πJ
Jα

is

a continuous real-valued function on XJ . Denote by h the diagonal product of the family

{hα : α < τ}. The mapping h : XJ → Iτ is continuous and satisfies the equality hα = pα◦h
for each α < τ.

X
f ��

πJ

��

fα

���
��

��
��

� Iτ

pα

����
��

��
�

Iα

XJ

hα

����������
h

��
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Since f is the diagonal product of the family {fα : α < τ} and fα = hα ◦ πJ holds for

each α < τ, we conclude that f = h ◦ πJ . �
We recall that, for a space Y and an infinite cardinal τ, the fact that Y contains a dense

subset S with |S| ≤ τ abbreviates to d(Y ) ≤ τ (see [165, Section 1.3]). Clearly, the space

Y is separable iff d(Y ) ≤ ω.

Corollary 1.7.4. Let X =
∏

i∈I Xi be the product of spaces satisfying d(Xi) ≤ τ
for each i ∈ I and f : X → Z be a continuous mapping to a Tychonoff space Z, where
w(Z) ≤ τ. Then there exist a set J ⊂ I with |J | ≤ τ and a continuous mapping h : XJ → Z
such that f = h ◦ πJ , where XJ =

∏
i∈J Xi and πJ : X → XJ is the projection.

Proof. It is clear that every space Y with d(Y ) ≤ τ is pseudo-τ+-compact. Since

the class of spaces that have a dense subset of cardinality ≤ τ is finitely productive,

Proposition 1.6.22 implies that the product space X is pseudo-τ+-compact. The required

conclusion now follows from Theorem 1.7.3. �
Corollary 1.7.5. [S. Mazur] Every continuous real-valued function on a product of

separable spaces depends on countably many coordinates.

In Theorems 1.7.2, 1.7.3, and Corollary 1.7.4, continuous functions were defined on

product spaces. It turns out that, under some additional assumptions, every continuous real-

valued function on a dense subspace of a product space admits a continuous factorization via

the projection to a countable subproduct. In Theorem 1.7.7 below we present an important

result going in this direction. First, we need an auxiliary result about partial factorizations

of continuous functions.

Lemma 1.7.6. Let S be a dense subspace of a space X, f : S → Y and g : X → Z
continuous onto mappings, and T ⊂ Z. Suppose that the space Y is regular and that for
every t ∈ T , there exists yt ∈ Y such that g−1(t) ⊂ clXf−1(yt). Suppose also that the
mapping g is open and put S0 = S ∩ clXg−1(T ). Then g�S0 ≺ f �S0.

Proof. For every open set V in Y , let e(V ) = X \ clX(S \ f−1(V )). Then e(V ) is open

in X, S ∩ e(V ) = f−1(V ), and e(V1) ∩ e(V2) = ∅ if V1, V2 are disjoint open subsets of Y .

Put T0 = g(S0). It is clear that T0 ⊂ clZT .

Claim 1. If open subsets V1 and V2 of Y satisfy clY V1 ∩ clY V2 = ∅, then the intersection
g(e(V1)) ∩ g(e(V2)) ∩ T0 is empty.

Suppose the contrary and consider the open set O = g(e(V1)) ∩ g(e(V2)) in Z. Since

O ∩ T0 = ∅ and T0 ⊂ clZT , we can choose a point t ∈ O ∩ T . It follows from

g−1(t) ⊂ clXf−1(yt) that e(Vi)∩f−1(yt) = ∅ for i = 1, 2. If yt /∈ clY Vi for some i ∈ {1, 2},
then there exists an open neighbourhood W of yt in Y such that W ∩ Vi = ∅. Therefore,

e(W ) ∩ e(Vi) = ∅. It is clear that f−1(yt) ⊂ e(W ) ⊂ X \ e(Vi), so f−1(yt) ∩ e(Vi) = ∅,

which is impossible. We conclude that yt ∈ clY V1 ∩ clY V2 = ∅, thus contradicting the

choice of the sets V1 and V2. This proves Claim 1.

Claim 2. If x1, x2 ∈ S0 and g(x1) = g(x2), then f (x1) = f (x2).

Suppose the contrary and choose open neighbourhoods V1 and V2 of the points f (x1)

and f (x2) in Y such that clY V1 ∩ clY V2 = ∅. Then xi ∈ e(Vi) = Oi for i = 1, 2. Therefore,

g(x1) ∈ g(O1) ∩ g(O2) ∩ T0, which contradicts Claim 1. So, Claim 2 is proved.
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By Claim 2, there exists a mapping h : T0 → Y such that f �S0 = h◦g�S0. Let us prove

that h is continuous. Take a point t ∈ T0 and an open subset V of Y such that y = h(t) ∈ V .

Then choose an open neighbourhood W of y with clY W ⊂ V and consider the sets O = e(W )

and U = g(O) ∩ T0. Clearly, t ∈ U, and we claim that h(U) ⊂ clY W ⊂ V . Suppose that

h(U) \ clY W = ∅. Then there exist points y1 ∈ Y \ clY W and t1 ∈ U such that h(t1) = y1.

We choose an open set W1 containing y1 such that clY W1∩clY W = ∅, and put O1 = e(W1).

Pick a point x ∈ S0 such that g(x) = t1. Then f (x) = hg(x) = h(t1) = y1 ∈ W1, whence

x ∈ O1. Thus, t1 ∈ g(O) ∩ g(O1) ∩ T0, which contradicts Claim 1. This proves that

h(U) ⊂ V and, hence, h is continuous. Therefore, g�S0 ≺ f �S0. �

Theorem 1.7.7. Let X =
∏

i∈I Xi be a product space with celω(X) ≤ ℵ0 and suppose
that S is a dense subset of X. Then, for every continuous mapping f : S → Y to a regular
first-countable space Y , there exist a countable set K ⊂ I and a continuous mapping
h : pK(S)→ Y such that f = h ◦ pK�S, where pK : X →∏

i∈K Xi is the projection.

Proof. By the continuity of f , for every point x ∈ S we can find a canonical Gδ-set

F in X such that x ∈ F , f admits a continuous extension over S ∪ F , and this extension is

constant on F . Denote by � the family of these sets F . Since S is dense in X, we can apply

[165, 3.2.A(b)] to deduce that there exists a continuous extension of f over P =
⋃

�, and

this extension (denoted by the same letter f ) is constant on each F ∈ �. It follows from

celω(X) ≤ ω that we can also find a countable subfamily �0 of � such that Q =
⋃

�0

is dense in P . Denote by K the union of the cores of the elements of �0. Then K is a

countable subset of I and Q = p−1
K pK(Q).

It remains to apply Lemma 1.7.6 (with X = P , g = pK and T = pK(Q)) to define a

continuous mapping h : pK(P) → Y such that f = h ◦ pK�P . Since S ⊂ P , this finishes

the proof. �

Corollary 1.7.8. [A. V. Arhangel’skii] Let S be a dense subspace of the product
X =

∏
i∈I Xi, where each space Xi is cosmic. Then, for every continuous real-valued

function f on S, there exist a countable set K ⊂ I and a continuous real-valued function h
on pK(S) such that f = h ◦ pK�S.

Proof. If J ⊂ I is countable, then the space XJ =
∏

i∈J Xi has a countable

network and, hence, celω(XJ ) ≤ ω. It follows from Lemma 1.6.17 that celω(X) ≤ ω,

so Theorem 1.7.7 implies the required conclusion. �

Exercises

1.7.a. Let τ be an infinite cardinal. A space Z is said to have a strong Gτ-diagonal if there exists

a family γ of open neighbourhoods of the diagonal ΔZ = {(x, x) : x ∈ Z} in Z2 such

that ΔZ =
⋂{U : U ∈ γ} and |γ| ≤ τ. Note that every regular space Z with w(Z) ≤ τ

has a strong Gτ-diagonal. Modify the argument in the proof of Theorem 1.7.2 to show that

Theorem 1.7.3 remains valid for any continuous mapping f : X → Z to a space Z with a

strong Gτ-diagonal.

1.7.b. Verify that the Sorgenfrey line cannot be represented as a continuous image of a dense

subspace of a product of second-countable spaces.

1.7.c. Show that Corollary 1.7.5 can be generalized as follows: Every continuous real-valued

function defined on an open subset of a product of separable spaces depends on at most

countably many coordinates.

Factorization theorems
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1.7.d. Will Theorem 1.7.7 remain valid if one weakens the first countability of Y to countable

pseudocharacter?

Problems

1.7.A. (A. H. Stone [461]) Let Z be the discrete additive group of integers. Prove that the product

group Zω1 is not a normal space.

Hint. For every i = 1, 2, consider the subset Fi of G = Zω1 which consists of all elements

x = (xα) in G such that for every j ∈ Z \ {i}, the equality xα = j holds for at most one

α < ω1. Verify that F1 and F2 are closed disjoint subsets of G. Then apply Corollary 1.7.5

to show that the images f (F1) and f (F2) are not disjoint for each continuous real-valued

function on G. Deduce that the space G is not normal.

1.7.B. (M. G. Tkachenko [466]) Let X =
∏

i∈I
Xi be a product space with countable Souslin

number, and S a dense subspace of X. Prove that every continuous real-valued function on

S admits a continuous factorization through the projection of S to a countable subproduct.

In particular, the conclusion holds if X is a product of separable spaces. (This generalizes

Corollaries 1.7.5 and 1.7.8.)

1.8. Uniformities on topological groups

The continuity of multiplication and inversion in a topological group allows us to supply

the group with an additional structure of a uniform space which, in its turn, permits us to

make use of uniformly continuous functions and apply a well developed theory of uniform

spaces (see [165, Chap. 8]) to the study of topological groups. We shall give several examples

of such applications in Sections 3.3, 3.5, 6.5, 6.6, 6.10, 7.1, 7.7, 7.9, and 7.10.

Let G be a topological group with identity e and �s(e) the family of open symmetric

neighbourhoods of e in G. For an element V ∈ �s(e), we define three subsets Ol
V , Or

V and

OV of G×G as follows:

Ol
V = {(g, h) ∈ G×G : g−1h ∈ V}, (1.8)

Or
V = {(g, h) ∈ G×G : gh−1 ∈ V}, (1.9)

OV = Ol
V ∩Or

V . (1.10)

Denote by ΔG the diagonal of G×G, that is, the set ΔG = {(x, x) : x ∈ G}. A subset B of

G×G is called symmetric if (y, x) ∈ B for each (x, y) ∈ B. The next result is immediate.

Lemma 1.8.1. The sets Ol
V , Or

V , and OV are open symmetric entourages of the diagonal
ΔG in G×G, for each V ∈ �s(e).

To introduce three natural uniform structures on G, we need one more auxiliary fact.

Given two subsets A and B of G×G, the composition A + B of A and B is defined to be

the set

A + B = {(x, z) ∈ G×G : (x, y) ∈ A and (y, z) ∈ B for some y ∈ G}.
Observe that, in general, A + B = B + A, even if the sets A and B are symmetric. For a

set A ⊂ G ×G and an integer n ≥ 1, we define inductively a set nA ⊂ G ×G by letting

1A = A, 2A = A + A and, in general, (n + 1)A = nA + A for each n ≥ 1.
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Lemma 1.8.2. Suppose that G is a topological group, U and V are elements of �s(e)

in G, n ∈ N, and V n ⊂ U. Then nOl
V ⊂ Ol

U , nOr
V ⊂ Or

U and nOV ⊂ OU .

Proof. We will only verify the inclusion nOl
V ⊂ Ol

U , the rest is analogous. The case

n = 1 is trivial, so we may assume that n ≥ 2.

If (x, y) ∈ nOl
V , then there exist elements z1, . . . , zn−1 in G such that (zi, zi+1) ∈ Ol

V

for each i = 0, . . . , n− 1, where z0 = x and zn = y. Hence, z−1
i zi+1 ∈ V if 0 ≤ i ≤ n− 1,

whence it follows that

x−1y =

n−1∏
i=0

z−1
i zi+1 ∈ V n ⊂ U.

We thus have x−1y ∈ Ol
U , which implies the inclusion nOl

V ⊂ Ol
U . �

Let X be a space and � a uniformity on the underlying set X. We say that � is a

compatible uniformity on X if the topology induced by � on X coincides with the original

topology of X. One can reformulate the definition of compatibility as follows. For every

U ∈ � and x ∈ X, put

U[x] = {y ∈ X : (x, y) ∈ U}.
The set U[x] is called the U-ball with center at x. The uniformity � on X is compatible

with X if U[x] is a neighbourhood of x in X for all x ∈ X and U ∈ �, and the family of all

U-balls forms a neighbourhood base for the original topology of X.

We are now in position to define three natural uniformities on a given topological group

G. Consider the following families:

�l
G = {Ol

V : V ∈ �s(e)}, (1.11)

�r
G = {Or

V : V ∈ �s(e)}, (1.12)

�G = {OV : V ∈ �s(e)}, (1.13)

where �s(e) denotes, as above, the family of open symmetric neighbourhoods of the identity

e in G. By Lemma 1.8.1, each of the families �l
G, �r

G, and �G consists of open symmetric

entourages of ΔG in G × G. Denote by �G the family of symmetric subsets of G × G.

Finally, we put:

l
G = {D ∈ �G : Ol

V ⊂ D for some V ∈ �s(e)}, (1.14)

r
G = {D ∈ �G : Or

V ⊂ D for some V ∈ �s(e)}, (1.15)

G = {D ∈ �G : OV ⊂ D for some V ∈ �s(e)}. (1.16)

It is clear from the definition that l
G ⊂ G and r

G ⊂ G. The next theorem explains

the role of the six families introduced above.

Theorem 1.8.3. Let G be an arbitrary topological group. The families l
G, r

G, and
G are uniformities on the space G with the respective bases �l

G, �r
G, and �G. Each of

the three uniformities is compatible with G.

Proof. We verify the first claim of the theorem only for l
G, leaving similar verifica-

tions for r
G and G to the reader. According to [165, Section 8.1], we have to show that

l
G satisfies the following four conditions:

(U1) If O ∈ l
G and O ⊂ W ∈ �G, then W ∈ l

G.

Uniformities on topological groups
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(U2) If O1, O2 ∈ l
G, then O1 ∩O2 ∈ l

G.

(U3) For every O ∈ l
G, there is W ∈ l

G such that 2W ⊂ O.

(U4)
⋂

l
G = ΔG.

Clearly, (U1) follows directly from (1.14). To verify (U2), take arbitrary elements

O1, O2 ∈ l
G. Again, it follows from (1.14) that there exist V1, V2 ∈ �s(e) such that

Ol
Vi
⊂ Oi for i = 1, 2. Put V = V1 ∩ V2. Then V ∈ �s(e) and Ol

V ∈ l
G. It is clear that

Ol
V ⊂ Ol

V1
∩Ol

V2
⊂ O1 ∩O2 and O1 ∩O2 ∈ �G, so (U1) implies that O1 ∩O2 ∈ l

G.

Let us show that (U3) holds. Given an element O ∈ l
G, we can find U ∈ �s(e)

such that Ol
U ⊂ O. Choose V ∈ �s(e) satisfying V 2 ⊂ U. Then W = Ol

V ∈ l
G and

Lemma 1.8.2 implies that 2W ⊂ Ol
U ⊂ O.

Finally, let x and y be distinct elements of G. Take an element V ∈ �s(e) such that

y /∈ xV . Then (x, y) /∈ Ol
V , thus proving that

⋂
l

G = ΔG. This gives (U4).

We conclude that l
G is a uniformity on G. From (1.11) and (1.14) it follows that �l

G

is a base for the uniformity l
G. This proves the first part of the theorem for the uniformity

l
G.

Let us show that the three group uniformities are compatible with G. We start with

l
G. Let O ∈ l

G and x ∈ G be arbitrary. Choose V ∈ �s(e) such that Ol
V ⊂ O. Clearly,

Ol
V [x] ⊂ O[x]. From (1.8) it follows that Ol

V [x] = xV , so the latter set is open in G and

we have that x ∈ xV ⊂ O[x]. Hence O[x] is a neighbourhood of x in G and the family

{O[x] : O ∈ l
G} is a neighbourhood base for G at x. This implies that the uniformity

l
G is compatible with G. A similar argument shows that the same remains valid for the

uniformity r
G.

Finally, an easy verification shows that OV [x] = xV ∩Vx, for all V ∈ �s(e) and x ∈ G.

Since the sets xV ∩Vx are open in G, this gives the compatibility of the uniformity G with

the group G. �

In what follows we call l
G, r

G, and G the left group uniformity, right group
uniformity, and two-sided group uniformity on G, respectively.

Given a subgroup H of a topological group G, one can consider the induced left
uniformity l

G,H on the group H which consists of the intersections V ∩ H2, with

V ∈ l
G. Similarly, H inherits from G the rightand two-sided induced uniformities

denoted respectively by r
G,H and G,H . This, together with the three group uniformities

of H , increases the number of the natural uniformities on H up to six. Fortunately, the

corresponding pairs of these uniformities coincide.

Proposition 1.8.4. The equalities l
G,H = l

H , r
G,H = r

H , and G,H = H are
valid for each subgroup H of a topological group G.

Proof. It suffices to verify the equality l
G,H = l

H , the rest is evident. Take an

arbitrary open symmetric neighbourhood V of the neutral element e in G and put U = V∩H .

Then

Ol
V ∩ (H ×H) = {(x, y) ∈ H ×H : x−1y ∈ V}

= {(x, y) ∈ H ×H : x−1y ∈ U} = Ol
U.
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Since U is an open symmetric neighbourhood of e in H , the set Ol
U is a basic element of

the left group uniformity l
H on H . Finally, since the sets Ol

V form a base of the left group

uniformity l
G on G, we conclude that the uniformities l

H and l
G,H coincide. �

The above result shows, in particular, that the induced uniformities on subgroups behave

very much like the induced topologies on subsets of a topological space do — given a subset

Y of a space X and two subspaces S, T of X with Y ⊂ S ∩ T , the topology Y inherits from

S is the same one that Y inherits from T .

The definition of the two-sided uniformity G on a topological group G given in (1.16)

suggests a certain relation between l
G, r

G and G. This relation is explicitly given in the

next theorem.

Theorem 1.8.5. For every topological group G, the two-sided group uniformity G is
the coarsest uniformity on G finer than each of the uniformities l

G and r
G.

Proof. Since OV = Ol
V ∩ Or

V for each V ∈ �s(e), from (1.14), (1.15), and (1.16) it

follows that G is finer than l
G and r

G. Conversely, suppose that � is a uniformity on G
finer than both l

G and r
G. Take an arbitrary element O ∈ G. There exists V ∈ �s(e)

such that OV ⊂ O. Since � is finer than both l
G and r

G, we can find U1, U2 ∈ � such

that U1 ⊂ Ol
V and U2 ⊂ Or

V . Then U = U1 ∩ U2 ∈ � and U ⊂ Ol
V ∩ Or

V = OV ⊂ O.

Therefore, � is finer than G. �

It is clear that, for an Abelian topological group G, the three uniformities l
G, r

G,

and G coincide. It is also well known that every compact Hausdorff space X admits a

unique uniformity compatible with it [165, Theorem 8.3.13]. Therefore, by Theorem 1.8.3,

the three group uniformities coincide for every compact topological group G. In fact, the

topological groups with this coincidence property admit a complete characterization given

in Theorem 1.8.8 below. First, we need two definitions.

Let G be a topological group. A subset A of G is said to be invariant if xAx−1 = A,

for each x ∈ G. It is clear that all subsets of Abelian groups are invariant. The group G is

called balanced if it has a local base at the neutral element consisting of invariant sets. A

balanced group is also called a group with invariant basis.
It is clear from the above definitions that every Abelian topological group is balanced.

The next result gives a useful alternative characterization of balanced groups.

Lemma 1.8.6. A topological group G is balanced if and only if, for every neighbourhood
U of the identity e in G, there exists a neighbourhood V of e such that xVx−1 ⊂ U, for each
x ∈ G.

Proof. Only the sufficiency of the condition requires a proof. Let U be an arbitrary

neighbourhood of e in G. Choose an open neighbourhood O of e such that xOx−1 ⊂ U for

each x ∈ G. Then the set V =
⋃

x∈G xOx−1 is open in G, contains the identity of G and,

clearly, V ⊂ U. It remains to verify that V is invariant. Indeed, take an arbitrary element

y ∈ G. Then

yVy−1 =
⋃
x∈G

yxOx−1y−1 =
⋃
z∈G

zOz−1 = V.

The above equality shows that the set V is invariant, so the group G has a base of open

invariant sets. �

Uniformities on topological groups
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Combining Lemma 1.8.6 and Theorem 1.4.32, we deduce the following fact:

Corollary 1.8.7. Every compact topological group is balanced.

The next theorem shows that the topological groups with coinciding group uniformities

are exactly the balanced groups.

Theorem 1.8.8. For a topological group G, the uniformities l
G, r

G, and G coincide
if and only if the group G is balanced. Therefore, the three uniformities coincide for every
compact topological group G.

Proof. Suppose that G is balanced. Denote by � the family of open, symmetric,

invariant neighbourhoods of the identity e in G. By the assumptions of the theorem, � is a

local base for G at e. Hence, the families γl = {Ol
V : V ∈ �} and γr = {Or

V : V ∈ �}
are bases for the uniformities l

G and r
G, respectively. Since each V ∈ � is an invariant

symmetric subset of G, we have:

(x, y) ∈ Ol
V ⇔ x−1y ∈ V ⇔ yx−1 ∈ xVx−1 = V

⇔ xy−1 ∈ V−1 = V ⇔ (x, y) ∈ Or
V .

Therefore, Ol
V = Or

V for each V ∈ �, that is, the uniformities l
G and r

G have the same

base γl = γr. This gives the equality l
G = r

G. Hence, Theorem 1.8.5 implies that the

two-sided uniformity G on G coincides with each of the uniformities l
G and r

G.

Conversely, suppose that l
G = r

G. Since �l
G and �r

G are bases for l
G and r

G,

respectively, for every U ∈ �s(e) there exists V ∈ �s(e) such that Ol
V ⊂ Or

U . Hence,

x−1y ∈ V implies xy−1 ∈ U for arbitrary x, y ∈ G. In other words, the inclusion xV ⊂ Ux
holds for each x ∈ G. Therefore, G is balanced by Lemma 1.8.6.

The last assertion of the theorem now follows from Corollary 1.8.7. �
The following simple example is a base for many applications.

Example 1.8.9. Since the additive topological group of reals R is commutative, the

three group uniformities of R coincide. Therefore, we denote each of them by �. According

to Theorem 1.8.5, the standard base of the uniformity � is formed by the sets

U(ε) = {(x, y) ∈ R2 : |x− y| < ε},
where ε > 0 (see also (1.11)). It is clear that the family {U(1/n) : n ∈ N} is also a base

for �, so the uniformity � has a countable base. �
In the sequel the space R will always carry the uniformity � defined in Example 1.8.9,

unless it is explicitly specified otherwise.

Let G be a topological group. A real-valued function f on G is called left uniformly
continuous if f is a uniformly continuous mapping of (G, l

G) to (R, �). This means that

for every ε > 0, there exists O ∈ l
G such that |f (x) − f (y)| < ε whenever (x, y) ∈ O

(see Example 1.8.9). Similarly, f is called right uniformly continuous if f is a uniformly

continuous mapping of (G, r
G) to (R, �). Notice that f need not be a homomorphism of

G to R, the group structure of R has been used only to define the uniformity �.

Lemma 1.8.10. A real-valued function f on a topological group G is left uniformly
continuous if and only if, for every ε > 0, there exists a neighbourhood V of the identity in
G such that |f (xv) − f (x)| < ε for all x ∈ G and v ∈ V . Similarly, f is right uniformly
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continuous iff for every ε > 0, there exists a neighbourhood W of the identity in G such
that |f (wx)− f (x)| < ε for all x ∈ G and w ∈ W .

Proof. By the symmetry argument, it suffices to prove the first claim of the lemma.

Suppose that f is left uniformly continuous. Then, for every ε > 0, there exists a

neighbourhood V of the identity in G such that |f (y)−f (x)| < ε for each pair (x, y) ∈ Ol
V .

Observe that (x, y) ∈ Ol
V if and only if y ∈ xV . Therefore, the inequality |f (xv)−f (x)| < ε

holds for all x ∈ G and v ∈ V . The converse is now immediate. �

We say that a real-valued function f defined on a topological group G is uniformly
continuous if f is both left uniformly continuous and right uniformly continuous. In Abelian

topological groups, every left (right) uniformly continuous function is uniformly continuous.

It turns out that an even stronger assertion is valid for compact groups.

Proposition 1.8.11. Every continuous real-valued function on a compact topological
group is uniformly continuous.

Proof. Let f : G → R be a continuous function defined on a compact topological

group G. Since, by Theorem 1.8.8, the left and right group uniformities of G coincide,

it suffices to verify that f is left uniformly continuous. Let ε > 0 be a real number.

For every x ∈ G, choose a neighbourhood Ux of the neutral element e in G such that

|f (xy)− f (x)| < ε/2 for each y ∈ Ux. Then take an open neighbourhood Vx of e such that

V 2
x ⊂ Ux. Since G is compact, there exist elements x1, . . . , xn in G such that G =

⋃n
i=1 xiVxi .

Put V =
⋂n

i=1 Vxi . We claim that |f (xv) − f (x)| < ε for all x ∈ G and v ∈ V which, by

Lemma 1.8.10, implies the left uniform continuity of the function f .

Indeed, given x ∈ G, there exists i ≤ n such that x ∈ xiVxi . Clearly, x ∈ xiVxi ⊂ xiUxi ,

so the choice of Uxi implies that |f (x) − f (xi)| < ε/2. In addition, if v ∈ V , then

xv ∈ xiVxiV ⊂ xiV 2
xi
⊂ xiUxi . This gives the inequality |f (xv) − f (xi)| < ε/2. We thus

have

|f (xv)− f (x)| ≤ |f (xv)− f (xi)|+ |f (xi)− f (x)| < ε/2 + ε/2 = ε,

which finishes the proof. �

The above result will be extended to pseudocompact topological groups in Corol-

lary 6.6.9.

Let f : G → H be a mapping of topological groups. We say that f is left uniformly
continuous if f is uniformly continuous as a mapping of the uniform space (G, l

G) to

(H, l
H ). Similarly, f is called right uniformly continuous if f is uniformly continuous as

a mapping of the uniform space (G, r
G) to (H, r

H ). If f is both left and right uniformly

continuous, we say that it is a uniformly continuous mapping.
The following result shows a big difference between continuous mappings and contin-

uous homomorphisms of topological groups (see Exercise 1.8.a).

Proposition 1.8.12. Every continuous homomorphism f : G → H of topological
groups is uniformly continuous.

Proof. It suffices to verify that f is left uniformly continuous — the right uniform

continuity of f will follow by a similar argument. Take an arbitrary basic entourage

Ol
U ∈ l

H of the diagonal in H × H , where U is an open symmetric neighbourhood of

the neutral element in H . Since f is continuous, there exists an open neighbourhood V of

Uniformities on topological groups
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the neutral element in G such that f (V ) ⊂ U. Suppose that (x, y) ∈ Ol
V , that is, x−1y ∈ V .

Then f (x)−1f (y) = f (x−1y) ∈ U and, hence, (f (x), f (y)) ∈ Ol
U . This implies that f is

left uniformly continuous. �
By Theorem 1.2.7, the product of any family of topological groups has a natural structure

of a topological group. In particular, given a topological group G and a positive integer

n, Gn is a topological group when considered with coordinatewise multiplication and the

usual product topology. This enables us considering uniformly continuous mappings of Gn

to G.

Corollary 1.8.13. Suppose that G is an Abelian topological group. For every n ∈ N,
let fn : Gn → G be the multiplication mapping defined by fn(x1, . . . , xn) = x1 · · · xn. Then
fn is uniformly continuous.

Proof. Since the topological group G is Abelian, the mapping fn is a continuous

homomorphism. Therefore, the conclusion follows from Proposition 1.8.12. �
Suppose that (X, �) and (Y, ) are uniform spaces. Then the product of (X, �) and

(Y, ) is a uniform space (Z, �) with the underlying set Z = X× Y and the uniformity �
on Z whose base consists of the sets

WU,V = {((x, y), (x′, y′)) ∈ Z × Z : (x, x′) ∈ U, (y, y′) ∈ V}, (1.17)

where U ∈ � and V ∈  (see [165, Section 8.2]). The uniformity � is called the product
of � and  and is written as � = �×.

In the case of topological groups, there exists an intimate relation between the products

of groups and products of their left (right, two-sided) uniformities.

Proposition 1.8.14. Let G and H be topological groups. Then the left (right, two-
sided) group uniformity of the product group G × H coincides with the product of the left
(right, two-sided) group uniformities of G and H .

Proof. Again, we prove the proposition only for left group uniformities, leaving the

rest to the reader. Clearly, in the product group Z = G × H , the sets of the form U × V
constitute a base of open neighborhoods at the neutral element (eG, eH ), where U ∈ �s(eG)

and V ∈ �s(eH ). It is immediate from the definition of the left group uniformity l
Z on Z

that a basic entourage of the diagonal in Z2 has the form

Ol
U,V = {((x, y), (x1, y1)) ∈ Z × Z : x−1x1 ∈ U, y−1y1 ∈ V},

where U ∈ �s(eG) and V ∈ �s(eH ). An easy calculation also shows that the set Ol
U,V

coincides with the set WU∗,V∗ defined in (1.17), where U∗ = Ol
U ∈ l

G and V ∗ = Ol
V ∈ l

H .

Since the sets U∗ and V ∗, with U ∈ �s(eG) and V ∈ �s(eH ), form a base for the uniformities

l
G and l

H , respectively, we infer that the corresponding sets WU∗,V∗ form a base for the

product uniformity � = l
G ×l

H on Z. Therefore, the equality Ol
U,V = WU∗,V∗ implies

that the uniformities l
Z and � coincide. �

Apart from the three group uniformities introduced above, every topological group

admits a fourth natural uniformity which is called the Roelcke uniformity. Again, denote by

�s(e) the family of open symmetric neighbourhoods of the identity e in a topological group

G. For an element V ∈ �s(e), let

Ot
V = {(x, y) ∈ G×G : y ∈ VxV}. (1.18)
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Obviously, Ot
V is an open symmetric entourage of the diagonal in G×G. Similarly to the

case of left and right uniformities, we define two families �t
G and t

G as follows:

�t
G = {Ot

V : V ∈ �s(e)} (1.19)

and

t
G = {D ∈ �G : Ot

V ⊂ D for some V ∈ �s(e)}, (1.20)

where �G is the family of symmetric sets in G×G.

The next result is analogous to Theorem 1.8.3.

Theorem 1.8.15. The family t
G is a uniformity compatible with G and �t

G is a base
for t

G. Furthermore, t
G is the finest uniformity on G which is coarser than each of the

uniformities l
G and r

G.

Proof. The verification of the fact that t
G is a uniformity on G goes almost exactly

like we argued in the proof of Theorem 1.8.3 in the case of the left group uniformity l
G.

Therefore, we will only verify the respective conditions (U3) and (U4) for t
G:

(U3) For every O ∈ t
G, there is W ∈ t

G such that 2W ⊂ O.

(U4)
⋂

t
G = ΔG.

Let O be an arbitrary element of t
G. By (1.20), there exists V ∈ �s(e) such that Ot

V ⊂ O.

Choose U ∈ �s(e) such that U2 ⊂ V and put W = Ot
U . To see that 2W ⊂ O, take

two elements (x, y) ∈ W and (y, z) ∈ W . Then y ∈ UxU and z ∈ UyU. Hence

z ∈ U2xU2 ⊂ VxV , whence it follows that (x, z) ∈ Ot
V ⊂ O. This gives the inclusion

2W ⊂ O, thus implying (U3).

Let x1 and x2 be distinct elements of G. Choose disjoint neighbourhoods U1 and U2

of x1 and x2, respectively. Since the right and left translations in G are homeomorphisms,

there exist V1, V2 ∈ �s(e) such that V1x1 ⊂ U1 and x2V2 ⊂ U2. Let V = V1 ∩ V2. Then

V ∈ �s(e) and Vx1 ∩ x2V = ∅, so that x2 /∈ Vx1V and, consequently, (x1, x2) /∈ Ot
V . This

implies (U4). We conclude, therefore, that t
G is a uniformity on G.

Our next step is to verify that the uniformity t
G is compatible with G. Let O ∈ t

G

and x ∈ G be arbitrary. Choose V ∈ �s(e) such that Ot
V ⊂ O. Clearly, Ot

V [x] ⊂ O[x].

From (1.18) it follows that Ot
V [x] = VxV , so the set Ot

V [x] is open in G, and we have

x ∈ VxV ⊂ O[x]. Hence O[x] is a neighbourhood of x in G. Suppose now that U is an

open set in G containing x. By the continuity of the mapping f : G×G×G→ G defined

by f (x, y, z) = xyz, there exists an open symmetric neighbourhood V of the identity in G
such that f (V × {x} × V ) ⊂ U or, equivalently, VxV ⊂ U. Therefore, Ot

V [x] ⊂ U and,

hence, the family {O[x] : O ∈ t
G} is a neighbourhood base for G at the point x. This

implies that the group uniformity t
G is compatible with G.

Since Ol
V ⊂ Ot

V and Or
V ⊂ Ot

V for each V ∈ �s(e), it follows that t
G is coarser than

l
G and r

G. Suppose that � is a uniformity on G such that � ⊂ l
G and � ⊂ r

G. Let O
be an arbitrary element of �. Choose O1 ∈ � such that O1 + O1 ⊂ O. Since � is coarser

than both l
G and r

G, there exists V ∈ �s(e) in G such that Ol
V ⊂ O1 and Or

V ⊂ O1.

Let x ∈ G and v, w ∈ V be arbitrary. Then (vx, x) ∈ Or
V ⊂ O1 and (x, xw) ∈ Ol

V ⊂ O1,

whence it follows that (vx, xw) ∈ O1 + O1 ⊂ O, for all x ∈ G and v, w ∈ V . Put y = vx.

Then (y, v−1yw) ∈ O for all y ∈ G and v, w ∈ V , so that Ot
V ⊂ O. We have thus proved

that t
G is finer than �, whence the second assertion of the theorem follows. �

The next simple fact complements Theorem 1.8.8.

Uniformities on topological groups
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Corollary 1.8.16. The following conditions are equivalent for a topological group G:

a) l
G = r

G;
b) t

G = G;
c) t

G = l
G = r

G = G;
d) the group G is balanced.

Proof. It is clear that c) implies b). The Roelcke uniformity t
G of the group G is

coarser than each of the uniformities l
G and r

G, by Theorem 1.8.15, while Theorem 1.8.5

implies that the two-sided uniformity G is finer than each of the uniformities l
G and r

G.

Therefore, b) implies a). In addition, Theorem 1.8.8 gives the equivalence a) ⇔ d), so it

remains to show that d)⇒ c).

Suppose that the group G is balanced. Then G = l
G = r

G by Theorem 1.8.8, so all

we need to verify is the equality t
G = l

G. Since t
G is coarser than l

G, it suffices to show

that l
G ⊂ t

G. Let O ∈ l
G be arbitrary. We can assume without loss of generality that

O = Ol
V for some V ∈ �s(e). The group G being balanced, the open symmetric invariant

neighbourhoods of the neutral element e constitute a local base for G at e. Hence, there exists

an invariant set U ∈ �s(e) such that U2 ⊂ V . If (x, y) ∈ Ot
U , then y ∈ UxU = xU2 ⊂ xV ,

that is, (x, y) ∈ Ol
V . This implies that Ot

U ⊂ Ol
V , whence the inclusion l

G ⊂ t
G follows.

The proof is complete. �

The next construction has several interesting applications. Let H and K be subgroups

of an abstract group G. The double coset space is the family

K\G/H = {KxH : x ∈ G}
of subsets of G. It is clear that for any x, y ∈ G, either KxH = KyH or KxH ∩KyH = ∅.

Therefore, K\G/H is a partition of the group G. Denote by π the canonical mapping of

G onto K\G/H defined by π(x) = KxH , for every x ∈ G. Then the double coset space

K\G/H coincides with the set of fibers of π.

Suppose now that H and K are closed subgroups of a topological group G, and that

K is compact. Then the sets KxH are closed in G, by Theorem 1.4.30. We topologize

K\G/H by declaring the mapping π : G→ K\G/H quotient.

Proposition 1.8.17. Let H and K be subgroups of a topological group G such that
K is compact and H is closed. Then the double coset space K\G/H is regular and the
mapping π : G→ K\G/H is open.

Proof. If U is open in G, then the set π−1π(U) = KUH is open in G. Hence π(U)

is open in Z = K\G/H since the mapping π is quotient. This implies that π is open.

Let z be an arbitrary point of Z. Take x ∈ G such that π(x) = z. Then π−1(z) = KxH
is a closed subset of G, by Theorem 1.4.30. Hence the singleton {z} is closed in Z, for

every z ∈ Z, and Z is a T1-space.

Suppose that O is a neighbourhood of a point z = π(x) in Z. There exist open

neighbourhoods U and V of the identity e in G such that π(Ux) ⊂ O and V 2 ⊂ U. Apply

Proposition 1.4.32 to choose an open symmetric neighbourhood W of e in G such that

W ⊂ V and x−1Wx ⊂ V , for each x ∈ K; then WK ⊂ KV . Clearly, π(Wx) is an open

neighbourhood of π(x) in Z satisfying π(Wx) ⊂ O, and we claim that the closure of π(Wx)

is contained in O.
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Indeed, suppose that π(Wy) ∩ π(Wx) = ∅ for some y ∈ G. Then Wy ∩KWxH = ∅
and, consequently, we have:

y ∈ WKWxH ⊂ KVWxH ⊂ KV 2xH ⊂ KUxH = π−1π(Ux).

It follows that y ∈ π(Ux). Since π(Wy) is an open neighbourhood of π(y) in Z, we conclude

that all accumulation points of π(Wx) lie in O, as claimed. Thus the space Z is regular. �

In what follows we denote by πK and πH the natural quotient mappings of G onto

the right coset space K\G and the left coset space G/H , respectively. The next result

generalizes Theorem 1.5.7.

Proposition 1.8.18. Suppose that G, K and H are as in Proposition 1.8.17. Then the
natural mapping qK : G/H → K\G/H defined by qK(xH) = KxH , for each x ∈ G, is
open and perfect.

Proof. Put Z = K\G/H and let π : G→ Z be the canonical mapping, π(x) = KxH
for each x ∈ G. Then π = qK ◦ πH and, since the mappings πH and π are open and

continuous, so is qK.

Let z = π(x) be an arbitrary point of Z, where x ∈ G. Then π−1(z) = KxH and the

fiber q−1
K (z) = πH (KxH) = πH (Kx) is compact as a continuous image of the compact set

Kx ⊂ G.

It remains to verify that qK is a closed mapping. Let z = π(x) be a point of Z. Then

q−1
K (z) = πH (Kx) is a compact subset of G/H . Take an arbitrary open neighbourhood O of

πH (Kx) in G/H . Then Kx ⊂ π−1
H (O), so Theorem 1.4.29 implies that there exists an open

neighbourhood V of the identity in G such that KxV ⊂ π−1
H (O). In particular, we have that

πH (KxV ) ⊂ O. Evidently, W = π(xV ) is an open neighbourhood of z in Z which satisfies

q−1
K (W ) = q−1

K (π(xV )) = πH (π−1(π(xV )))

= πH (KxVH) = πH (KxV ) ⊂ O.

We have thus proved that, for every neighbourhood O of the fiber q−1
K (z) in G/H , there

exists an open neighbourhood W of z in Z satisfying q−1
K (W ) ⊂ O. Therefore, the mapping

qK is closed. �

Our next goal is to introduce natural uniform structures for double coset spaces. This

requires the concept of a neutral subgroup of a topological group.

Let us say that a subgroup H of a topological group G is neutral in G if for every

neighbourhood U of the identity e in G, there exists a neighbourhood V of e such that

VH ⊂ HU. Clearly, H is neutral in G if and only if for every neighbourhood U of e,

there exists a neighbourhood V of e satisfying HV ⊂ UH . It follows immediately from the

definition that every open subgroup as well as every invariant subgroup of G is neutral in

G. Therefore, all subgroups of an Abelian topological group are neutral. More generally,

every subgroup of a balanced topological group is neutral. More facts on neutral subgroups

are given in Exercises 1.8.h–1.8.k.

The next result provides us with a sufficient condition for a subgroup H to be neutral

in G.

Uniformities on topological groups
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Lemma 1.8.19. Let H be a subgroup of a topological group G. Suppose that, for every
open neighbourhood U of the identity e in G, there exists an open neighbourhood V of e in
G such that xVx−1 ⊂ U whenever x ∈ H . Then H is neutral in G.

Proof. Given a neighbourhood U of e in G, take an open neighbourhood V of e
satisfying xVx−1 ⊂ U, for all x ∈ H . Then xV ⊂ Ux for each x ∈ H , whence it follows

that HV ⊂ UH . Therefore, H is neutral in G. �
Applying Lemma 1.8.19 and Proposition 1.4.32, we deduce the following fact:

Corollary 1.8.20. Every compact subgroup of a topological group G is neutral in G.

As in the case of topological groups, a double coset space K\G/H can admit natural

uniform structures induced, in a sense, by the corresponding uniform structures of the

topological group G. However, the existence of such uniformities on K\G/H depends on

the subgroups K and H . We will show how to define two natural uniformities on K\G/H
in the case when the subgroup K is compact and H is neutral in G. We will also see that

the neutrality of H in G is necessary only for the existence of one of these uniformities.

Again, let �s(e) be the family of all open symmetric neighbourhoods of the identity

e in G. Denote by π the natural mapping of G onto the quotient space Z = K\G/H ,

π(x) = KxH for all x ∈ G. For every V ∈ �s(e), put

Er
V = {(π(x), π(y)) : y ∈ Vx}

and

El
V = {(π(x), π(y)) : y ∈ xV}.

Since the mapping π : G → Z is open, El
V and Er

V are open symmetric entourages of the

diagonal in the square of the space Z. In the theorem that follows we give some conditions

under which the families �r
Z = {Er

V : V ∈ �s(e)} and �l
Z = {El

V : V ∈ �s(e)} are bases

for the right uniformity �r
Z and the left uniformity �l

Z, respectively, on the space Z.

Theorem 1.8.21. Let K and H be subgroups of a topological group G, where H is
closed and K is compact. Then the family �r

Z is a base for the right uniformity �r
Z on the

double coset space Z = K\G/H , and the uniformity �r
Z is compatible with Z. Furthermore,

if the subgroup H is neutral in G, then the same assertions are valid for �l
Z and �l

Z.

Proof. We will prove the two assertions of the theorem for the family �l
Z, leaving the

rest to the reader.

First, one has to verify that conditions (U1)–(U4) listed in the proof of Theorem 1.8.3

hold valid for the family �l
Z. Since �l

Z is a base for �l
Z, it suffices to check (U2)–(U4) for

the family �l
Z. Condition (U2) is evident, so we start with (U3). Take an arbitrary open

symmetric neighbourhood V of the neutral element e in G. There exists O ∈ �s(e) such

that O2 ⊂ V and, since H is neutral in G, we can find W ∈ �s(e) satisfying W ⊂ O and

HW ⊂ OH . Let us show that 2El
W ⊂ El

V .

Suppose that x, y, y1, z are elements of G such that y ∈ xW , z ∈ y1W , and

π(y) = π(y1). In other words, we assume that (π(x), π(y)) ∈ El
W and (π(y1), π(z)) ∈ El

W .

Then, clearly, (π(x), π(z)) ∈ 2El
W , and we claim that (π(x), π(z)) ∈ El

V . Indeed, it follows

from π(y) = π(y1) that y1 ∈ KyH and, therefore, y1 ∈ KxWH and z ∈ KxWHW . Further,

it follows from our choice of the sets O and W that

WHW ⊂ WOH ⊂ O2H ⊂ VH.
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We conclude that z ∈ KxVH and, hence, π(z) = π(xv) for some v ∈ V . In its turn, this

implies that

2El
W ⊂ {(π(x), π(xv) : x ∈ G, v ∈ V} = {(π(x), π(y) : y ∈ xV} = El

V .

This gives (U3).

To verify (U4), take distinct elements π(a) and π(b) in K\G/H . Then, clearly,

b /∈ KaH . The set KaH is closed in G, by Theorem 1.4.30. Hence, we can find an

open symmetric neighbourhood U of e in G such that bU ∩ KaH = ∅. Choose an open

neighbourhood V of e in G such that VH ⊂ HU. Then b /∈ KaHU ⊇ KaVH = π−1π(aV ).

In other words, we have that b /∈ π−1π(aV ) or, equivalently, π(b) /∈ π(aV ). Now, choose

W ∈ �s(e) such that HW ⊂ VH . We claim that (π(a), π(b)) /∈ El
W .

Indeed, suppose to the contrary that (π(a), π(b)) ∈ El
W . Then there exist x, y ∈ G

such that π(x) = π(a), π(y) = π(b) and y ∈ xW . It follows that x ∈ KaH and b ∈ KyH ,

whence

b ∈ KyH ⊂ KxWH ⊂ KKaHWH = KaHWH ⊂ KaVHH

= KaVH = π−1π(aV ).

Therefore, π(b) ∈ π(aV ), which is a contradiction. This proves that (π(a), π(b)) /∈ El
W , as

claimed. So, the intersection of the sets El
W , where W ∈ �s(e), coincides with the diagonal

in the square of the space Z = K\G/H , thus implying (U4).

Finally, we show that the uniformity �l
Z is compatible with Z. It is easy to see that

z ∈ π(xV ) ⊂ El
V [z] for all z ∈ Z and V ∈ �s(e), where x ∈ G satisfies π(x) = z.

Since, by Proposition 1.8.17, the mapping π of G to Z is open, Er
V [z] is a neighbourhood

of z in Z. Conversely, let O be a neighbourhood of an arbitrary point z ∈ Z. Take

x ∈ G with π(x) = z and a symmetric open neighbourhood V of e in G such that

π(xV ) ⊂ O. Then choose W ∈ �s(e) such that HW ⊂ VH . An easy verification shows

that z ∈ El
W [z] ⊂ π(xV ) ⊂ O. Therefore, the quotient topology of Z is coarser than the

topology on Z induced by the uniformity �l
Z. Thus the two topologies on Z coincide, and

the proof is complete. �

Corollary 1.8.22. Let G, K, H , and Z be as in the first part of Theorem 1.8.21.
Then the natural quotient mapping π of (G, r

G) to (Z, �r
Z) is uniformly continuous. If, in

addition, the subgroup H is neutral in G, then π : (G, l
G) → (Z, �l

Z) is also uniformly
continuous.

Proof. Let U be an arbitrary open symmetric neighbourhood of the neutral element

in G. It follows from our definition of the sets Or
G and Er

U that (π × π)(Or
G) = Er

U

and, similarly, if H is neutral in G then (π × π)(Ol
G) = El

U . The conclusion now is

immediate. �

In the special case when the subgroup K of the group G is trivial, that is, K = {e},
Theorem 1.8.21 acquires the following form.

Corollary 1.8.23. Let H be a closed subgroup of a topological group G and
π : G→ G/H the natural quotient mapping. Then the family {(π ×π)(Or

V ) : V ∈ �s(e)}
is a base for a right uniformity �r

M of the quotient space M = G/H , where �s(e) is the
collection of all open symmetric neighbourhoods of the identity e in G, and �r

M is compatible

Uniformities on topological groups
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with M. Furthermore, if H is neutral in G, then the family {(π × π)(Ol
V ) : V ∈ �s(e)} is

a base for a left uniformity �l
M on M compatible with M.

The next example shows that we cannot do without the assumption about the neutrality

of H in G in Theorem 1.8.21 and Corollary 1.8.23.

Example 1.8.24. Consider the subgroup G of GL(2, R) defined by

G =

{(
x y
0 1

)
: x, y ∈ R, x = 0

}
.

Then

H =

{(
x 0

0 1

)
: x ∈ R, x = 0

}
is a closed subgroup of G. Denote by π the natural mapping of G onto the quotient space

M = G/H of right cosets of H in G. It follows from Proposition 1.8.17 that the mapping

π is open and M is a regular space. The topological group G is second-countable (as a

subgroup of the second-countable group GL(2, R)), and so is the space M = π(G) as a

continuous open image of G.

Suppose that � is a uniformity on the space M which makes the mapping π : (G, l
G)→

(M, �) uniformly continuous. We claim that � is the coarsest uniformity of M, that is, �
contains the unique element M ×M. To this end, it suffices to show that (π × π)(Ol

V ) =

M ×M, for each open symmetric neighbourhood V of the identity e in G. It is clear that

(π × π)(Ol
V ) = {(π(x), π(y)) : y ∈ xV}

= {(π(x′), π(y′)) : (∃h1, h2 ∈ H)(∃ x, y ∈ G)

(x′ = xh1, y′ = yh2, y ∈ xV )}.
It follows that (π × π)(Ol

V ) = (π × π)(Ol
HVH ), for each V ∈ �s(e). Hence, all we need

to verify is that HVH = G, for each V ∈ �s(e). Clearly, for every V ∈ �s(e), there exists

ε > 0 such that every matrix (
x y
0 1

)
with |x − 1| < ε and |y| < ε is in V . In particular, V contains a matrix as above with

xy = 0. A simple calculation shows that(
a 0

0 1

) (
x y
0 1

) (
b 0

0 1

)
=

(
axb ay
0 1

)
,

so that HVH = G for each V ∈ �s(e). We have thus proved that the unique element of the

uniformity � is M×M. The explanation of this phenomenon is quite clear — the subgroup

H of G fails to be neutral in G (see also Problem 1.8.A). �
One more result about the coincidence of natural uniformities on topological groups is

in order.

Theorem 1.8.25. Let H be a closed invariant subgroup of a topological group G and
M = G/H be the quotient group. Then the right uniformity r

M of the topological group M
coincides with the right uniformity �r

M on M when the latter is considered as the quotient
space of G (see Corollary 1.8.23). The corresponding uniformities l

M and �l
M on M

coincide as well.
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Proof. Let π : G→ G/H be the quotient homomorphism. Take an arbitrary element

U ∈ �s(e), where �s(e) is the family of all open symmetric neighbourhoods of the neutral

element e in G. Since the homomorphism π is open, V = π(U) is an open symmetric

neighbourhood of the neutral element in M = G/H . Therefore, according to our definitions

of the uniformities r
M and �r

M , it suffices to verify that (π × π)(Or
U) = Or

V .

If x, y ∈ G and xy−1 ∈ U, then π(x)π(y)−1 = π(xy−1) ∈ π(U) = V . Hence,

(π×π)(Or
U) ⊂ Or

V . Conversely, if z, t ∈ M and (z, t) ∈ Or
V , then zt−1 ∈ V . Choose y ∈ G

and u ∈ U such that π(y) = t and π(u) = zt−1. Put x = uy ∈ G. Then xy−1 = u ∈ U,

that is, (x, y) ∈ Or
U . We also have that π(x) = π(uy) = π(u)π(y) = zt−1t = z, whence

(π×π)(x, y) = (z, t). Therefore, Or
V ⊂ (π×π)(Or

U), and the equality (π×π)(Or
U) = Or

V

follows.

A similar argument shows that (π × π)(Ol
U) = Ol

V for the same sets U ∈ �s(e) and

V = π(U), which implies the equality l
M = �l

M . �

Exercises

1.8.a. Extend the conclusions of Propositions 1.8.4 and 1.8.14 to the Roelcke uniformity.

1.8.b. Give an example of a continuous function f : R → R which is not uniformly continuous.

1.8.c. Verify that the following conditions are equivalent for any topological group G:

(a) the multiplication mapping f2 : G2 → G (see Corollary 1.8.13) is uniformly continu-

ous;

(b) the multiplication mapping fn : Gn → G is uniformly continuous for each n ≥ 2;

(c) the group G is balanced.

1.8.d. Show that the general linear groups GL(n, R) and GL(n, C) defined in e) of Example 1.2.5

are balanced iff n = 1.

1.8.e. Give an example of topological groups G and H such that the spaces G and H are

homeomorphic, but no homeomorphism f : G → H is uniform.

1.8.f. Let H and K be subgroups of a topological group G, where K is compact and H is closed

and neutral in G. Define the corresponding Roelcke uniformity �t
Z on the double coset

space Z = K\G/H and show that the uniformity �t
Z is compatible with K\G/H (see also

Theorem 1.8.21).

1.8.g. Extend Theorem 1.8.25 to the Roelcke uniformity: If H is a closed invariant subgroup of

a topological group G, then the Roelcke uniformity t
M of the quotient group M = G/H

coincides with the Roelcke uniformity �t
M on M mentioned in 1.8.f.

1.8.h. (W. Roelcke and S. Dierolf [410]) Let H be a closed subgroup of a topological group G.

Verify that if the left and right uniformities �l
K and �r

K of the quotient space K = G/H
coincide, then H is neutral in G.

1.8.i. Find an example of a topological group G and a discrete subgroup H of G such that H is

not neutral in G.

1.8.j. Verify that the closure H of a neutral subgroup H of a topological G is again a neutral

subgroup of G.

1.8.k. (W. Roelcke and S. Dierolf [410]) Let K and L be subgroups of a topological group G such

that L ⊂ K ⊂ G. Then the following assertions are valid:

(a) If L is a neutral subgroup of G, then L is also a neutral subgroup of K.

(b) If L is a neutral subgroup of K and K is dense in G, then L is a neutral subgroup of G.

(c) If L is closed and neutral in G and the image πL(K) is a compact subset of the quotient

space G/L, where πL : G → G/L is the quotient mapping, then K is neutral in G.

(d) If L is a closed invariant subgroup of G and K is neutral in G, then K/L is a neutral

subgroup of G/L (see Theorem 1.5.19).

Uniformities on topological groups
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1.8.l. A subset X of a topological group G is called neutral if for every neighbourhood U of the

identity e in G, there exists a neighbourhood V of e in G such that VX ⊂ XU. Show that all

compact and all pseudocompact subsets of a topological group G are neutral in G.

1.8.m. Suppose that G is a paratopological group. For every open neighbourhood V of the neutral

element e in G, let

OV ={(x, y)) ∈ G × G : x−1y ∈ V and y−1x ∈ V}.

Verify that the family {OV : V ∈ �(e)} forms a base of a uniformity on G, where �(e)

is the family of all open neighbourhoods of e in G. Show that this uniformity need not be

compatible with G.

Problems

1.8.A. Describe in topological terms the quotient space G/H in Example 1.8.24 and give a direct

proof of the fact that H is not neutral in G.

1.8.B. (I. V. Protasov [389]) A topological group G is called functionally balanced if every left

uniformly continuous real-valued function on G is right uniformly continuous. Prove the

following assertions:

(a) Every balanced topological group is functionally balanced.

(b) A topological group G is functionally balanced iff every subset of G is neutral in G
(see Exercise 1.8.l).

(c) Every subgroup of a functionally balanced group is functionally balanced.

(d) A quotient group of a functionally balanced group is functionally balanced.

(e) If a topological group G contains a dense functionally balanced subgroup, then G is

functionally balanced itself.

(f) If every neighbourhood of the identity in a group G contains a closed invariant subgroup

N such that the quotient group G/N is functionally balanced, then G is functionally

balanced as well.

(g) If a functionally balanced group G has a local base at the identity consisting of open

balanced subgroups, then G is balanced.

1.8.C. (W. W. Comfort and K. A. Ross [122]) A topological group G is called fine if every continuous

real-valued function on G is left uniformly continuous. Similarly, G is called b-fine if every

bounded continuous real-valued function on G is left uniformly continuous. Prove the

following assertions about a topological group G:

(a) If G is metrizable and b-fine, then G is compact or discrete.

(b) If G is fine (b-fine) and H is a closed invariant subgroup of G, then the quotient group

G/H is fine (b-fine).

1.8.D. (W. W. Comfort and K. A. Ross [122]) Show that there exists an Abelian topological group

G metrizable by a complete metric such that G is b-fine but is not compact.

Hint. Consider the abstract group G = Tω, where T is the circle group with the usual

invariant metric d (that is, d(ax, ay) = d(x, y) for all a, x, y ∈ T). For two points x = (xn)n∈ω

and y = (yn)n∈ω in Tω, let 
(x, y) = supn∈ω d(xn, yn). Then 
 is a complete invariant metric

on G that generates a topology under which G is a topological group with the required

properties. (It is worth noting that there exists an open neighbourhood U of the neutral

element in (G, 
) such that the group G cannot be covered by less than 2ω translates of U.)

1.8.E. (M. Rice [406]) Let � be a uniformity on a set X. A filter � in (X, �) is said to be weakly
Cauchy if for every U ∈ �, there exists xU ∈ X such that U[xU ]∩F �= ∅, for each F ∈ �.

A uniformity � on a set X is called cofinally complete if every weakly complete Cauchy

filter in (X, �) has a cluster point in X. Prove that every first-countable topological group

that admits a compatible cofinally complete metric is locally compact.
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Open Problems

1.8.1. (Implicitly, W. W. Comfort and K. A. Ross [122]; for locally compact groups, G. Itzkowitz

[257]) Is every functionally balanced topological group balanced?

1.9. Markov’s theorem

In this section we will prove that every Tychonoff space X is homeomorphic to a closed

subspace of a topological group. This theorem was first proved by A. A. Markov in 1945

with the help of the theory of free topological groups which he created for this purpose.

The proof presented below is much simpler and more elementary than the original proof

given by Markov. Markov’s theorem has fundamental implications. It shows that, in many

respects, the topology of a topological group can be as complex as the topology of any

Tychonoff space. Later we will show that every topological group is a Tychonoff space

(see Theorem 3.3.11). This lead to a conjecture by P. S. Alexandroff that the space of every

topological group is normal. However, from Markov’s theorem it follows that a topological

group need not be normal, since there are non-normal Tychonoff spaces and normality is

inherited by closed subspaces.

Let us fix a Tychonoff space X and a topological group G. We preserve this notation

throughout this section. The space Cp(X, G) of all continuous mappings of X to G, with the

topology of pointwise convergence and pointwise defined natural operation, is a topological

subgroup of the topological group GX when the latter carries the usual Tychonoff product

topology. Therefore, Cp(X, G) itself is a topological group. If G is the additive topological

group R of real numbers, then we write Cp(X) instead of Cp(X, G). In this case, Cp(X) is

called the space of continuous real-valued functions on X.

Let Y be an arbitrary subspace of Cp(X, G). To every x ∈ X there corresponds

the evaluation mapping x̂ : Cp(X, G) → G defined by the rule x̂(f ) = f (x), for each

f ∈ Cp(X, G). In particular, the value x̂(f ) is defined for each f ∈ Y . Obviously, the

evaluation mappings x̂ are continuous. Thus, we have a mapping ΨY of X to Cp(Y, G) that

assigns to each x ∈ X the restriction of x̂ to Y . We will call ΨY the reflection mapping. It

is worth noting that Cp(Y, G) is a topological subgroup of the product group GY .

The following statement is immediate from the definitions of the reflection mapping

and the diagonal product of a family of mappings.

Proposition 1.9.1. Let Y be an arbitrary subset of Cp(X, G). Then the reflection
mapping ΨY coincides with the diagonal product of Y .

Corollary 1.9.2. The reflection mapping ΨY is continuous, for every subset Y of
Cp(X, G).

We say that a set Y ⊂ Cp(X, G) separates points of X if for any distinct points

x1, x2 ∈ X, there exists f ∈ Y such that f (x1) = f (x2).

Corollary 1.9.3. The reflection mapping ΨY is one-to-one if and only if Y separates
points of X.

The following simple fact will be used on many occasions.

Proposition 1.9.4. Let B be a compact subset of a topological group G. Then the
smallest subgroup H of G containing B is σ-compact.

Markov’s theorem
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Proof. Evidently, the subgroup H of G is algebraically generated by B. Put C =

B ∪ {e} ∪ B−1, where e is the neutral element of G. Then C is a compact subset of G.

For every integer n ∈ N, consider the multiplication mapping fn : Gn → G defined by

fn(x1, . . . , xn) = x1 · · · xn, for all x1, . . . , xn ∈ G. Since G is a topological group, the

mappings fn are continuous. Therefore, for every n ∈ N, Kn = fn(Cn) is a compact subset

of G. It is easy to see that H =
⋃∞

n=1 Kn, so the group H is σ-compact. �

We are now ready to prove Markov’s theorem in a somewhat stronger form.

Theorem 1.9.5. Every Tychonoff space X is homeomorphic to a closed subspace of a
topological group which, in its turn, is a dense subgroup of a σ-compact topological group.

Proof. Let F be a Hausdorff compactification of X, and set Ψ = ΨCp(F ). It follows

from Corollaries 1.9.3 and 1.9.2 that Ψ is a one-to-one continuous mapping of F to

Cp(Cp(F )). Since Cp(Cp(F )) is a topological subgroup of the group RCp(F ), it is a Hausdorff

space. Therefore, since F is compact, Ψ is a homeomorphism of F onto the subspace

B = Ψ(F ) of Cp(Cp(F )). Hence, B is compact and closed in Cp(Cp(F )), and the subspace

M = Ψ(X) of Cp(Cp(F )) is homeomorphic to X.

Let H be the subgroup of the group Cp(Cp(F )) algebraically generated by M. Clearly,

H is dense in the subgroup P of the group Cp(Cp(F )) generated by B. The group P is

σ-compact, by Proposition 1.9.4.

Claim. The equality H ∩ B = M holds.

Observe that M ⊂ H ∩B. Take an arbitrary point b ∈ B \M. Assume to the contrary

that b /∈ H . Then b = n1y1 + · · · + nkyk, where y1 = Ψ(x1), . . . , yk = Ψ(xk), for some

finite collection of distinct points x1, . . . , xk in X and some integers n1, . . . , nk. From the

choice of b it follows that b = Ψ(a), for some a ∈ F \X. Clearly, a = xj for each j ≤ k.

By the definition of operations in the group Cp(Cp(F )), we have that b(f ) =

n1y1(f ) + · · ·+ nkyk(f ), for every f ∈ Cp(F ). Hence, f (a) = n1f (x1) + · · ·+ nkf (xk),

for all f ∈ Cp(F ). We can choose f ∈ Cp(F ) such that f (a) = 0. Therefore, there

exists i ≤ k such that ni = 0. Using the fact that F is compact and, hence, Tychonoff, we

select g ∈ Cp(F ) such that g(a) = 0 and g(xj) = nj , for every j ≤ k. We now have that

g(a) = n1g(x1)+ · · ·+nkg(xk) = n2
1 + · · ·+n2

k ≥ n2
i > 0 = g(a), which is a contradiction.

Thus, our Claim is proved.

It follows that M is closed in H , since B is closed in Cp(Cp(F )). Since M is

homeomorphic to X, and H is a dense subgroup of the σ-compact topological group P , the

argument is complete. �

Theorem 1.9.6. [A. A. Markov] There exists an Abelian topological group H such
that the space H is not normal.

Proof. Take a non-normal Tychonoff space X (for example, we can take as X the

Niemytzki plane or the square of the Sorgenfrey line, see [165, Examples 1.5.9, 2.3.12]). By

Theorem 1.9.5, there exists a topological group G containing X as a closed subspace. Then

the space G cannot be normal, since normality is inherited by arbitrary closed subspaces. �

Corollary 1.9.7. There exists an Abelian topological group H such that the space H
is not Hewitt–Nachbin complete (that is, the space H is not realcompact).
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Proof. Take a Tychonoff space X which is not realcompact (for example, we can

use the space ω1 of countable ordinals with the order topology in the role of X). There

exists a topological group G containing X as a closed subspace, by Theorem 1.9.5. Then

the space G cannot be realcompact, since realcompactness is inherited by arbitrary closed

subspaces. �

A very interesting general question arises in connection with Theorem 1.9.5: Given a

topological property �, when can every Tychonoff space with the property � be embedded

as a closed subspace into a topological group with the property �? Many natural concrete

questions of this pattern remain unsolved (see Problems 1.9.1, 1.9.2, 1.9.3, and 9.12.3).

However, we do know that every Hewitt–Nachbin complete (i.e., realcompact) space X is

homeomorphic to a closed subspace of a Hewitt–Nachbin complete topological group (see

Problem 8.8.C).

We now present a few results specifying when the reflection mapping ΨY is a topological

embedding (compactness of X is not assumed). Though we did not need these results to

prove Markov’s theorem, they clarify the situation, and we will refer to some of them on a

few occasions later.

It is said that a subset Y of Cp(X, G) generates the topology of X if for every x ∈ X
and every closed subset F of X which does not contain x, there exists f ∈ Y such that f (x)

is not in the closure of f (F ) in G.

Corollary 1.9.8. The reflection mapping ΨY embeds X in Cp(Y, G) topologically if
and only if the family Y generates the topology of X.

The next statement easily follows from Corollary 1.9.8.

Proposition 1.9.9. Suppose that G contains a topological copy of the space R, and
let Y = Cp(X, G). Then the reflection mapping ΨY is a topological embedding of X into
Cp(Y, G).

In what follows we denote by C∗
p(X) the subspace of Cp(X) consisting of all continuous

bounded functions on X. Corollary 1.9.8 implies the following statement:

Corollary 1.9.10. Suppose that G = R and Y is either Cp(X), or C∗
p(X). Then the

reflection mapping ΨY embeds X in Cp(Y ) topologically.

Similarly, from Proposition 1.9.9 and Corollary 1.9.8 we obtain:

Corollary 1.9.11. The reflection mapping ΨCp(X,T) embeds X in the topological group
Cp(Cp(X, T), T) as a subspace.

An important complement to Corollary 1.9.10 is the next statement:

Proposition 1.9.12. For any Tychonoff space X, the image of X under the reflection
mapping Ψ = ΨCp(X) is closed in Cp(Cp(X)).

Proof. Assume the contrary, and fix φ ∈ Cp(Cp(X)) such that φ ∈ Ψ(X) \Ψ(X). A

function f ∈ Cp(X) will be called special if there exists an open neighbourhood Uf of φ in

Cp(Cp(X)) such that f (x) = 1 whenever Ψ(x) ∈ Uf . Let A be the set of all special functions

f ∈ Cp(X). Fix f ∈ A, and let V be a neighbourhood of φ. Since f ∈ A and φ ∈ Ψ(X),

there exists b ∈ X such that Ψ(b) ∈ V ∩ Uf . Then f (b) = 1 and Ψ(b)(f ) = f (b) = 1.

Markov’s theorem
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Since Ψ(b) ∈ Ψ(X) ∩ V , it follows, by the continuity of φ, that φ(f ) = 1. Therefore,

φ(f ) = 1 for each f ∈ A.

However, since φ does not belong to Ψ(X), for every g ∈ Cp(X) and every finite

subset K of X, we can find a special function f ∈ A such that f and g coincide on K.

Indeed, it follows from φ /∈ Ψ(X) that for every x ∈ K, there exists a function qx ∈ Cp(X)

such that φ(qx) = Ψ(x)(qx) or, equivalently, φ(qx) = qx(x). Choose ε > 0 such that

|φ(qx) − qx(x)| ≥ 2ε for all x ∈ K. Let V be the family of all functions h in Cp(Cp(X))

such that |h(qx) − φ(qx)| < ε for each x ∈ K. Then V is an open neighbourhood of φ in

Cp(Cp(X)) and, clearly, |Ψ(x)(qx) − h(qx)| ≥ ε for all h ∈ V and x ∈ K. In particular,

Ψ(x) /∈ V for each x ∈ K, where the closure of V is taken in Cp(Cp(X)). Since the space

Cp(Cp(X)) is Tychonoff, we can find a continuous real-valued function f0 on Cp(Cp(X))

such that f0(h) = 1 for each h ∈ V , and f0(Ψ(x)) = g(x) for each x ∈ K. Then the

function f = f0 ◦Ψ ∈ Cp(X) is special (it suffices to take Uf = V ), and f (x) = g(x) for

each x ∈ K.

Therefore, A is dense in Cp(X), and, by the continuity of φ, we have φ(f ) = 1, for

each f ∈ Cp(X).

On the other hand, the equality Ψ(x)(θ) = θ(x) = 0 is obviously valid for each x ∈ X,

where θ is the constant zero-function on X. Since φ ∈ Ψ(X), it follows, by the continuity

of φ, that φ(θ) = 0. This contradiction completes the proof. �
Clearly, Corollary 1.9.10 and Proposition 1.9.12 together provide another proof of

Markov’s theorem.

If a topological space X is endowed with some algebraic structure, then there is a

natural way to specify certain subspaces Y of Cp(X, G), and we can consider reflection

mappings with respect to them. This turns out to be the first step towards a duality theory,

an important chapter in the theory of topological groups. We present in this section only

a few elementary results in this direction that concern topological groups (postponing a

detailed development of the Pontryagin–van Kampen duality theory for locally compact

Abelian groups till Chapter 9). Similar statements hold for topological semigroups and

other objects of topological algebra. First, we introduce some notation. For topological

groups H and G we denote by Homp(H, G) the subspace of the topological group Cp(H, G)

consisting of all continuous homomorphisms of H to G. Here are two simple statements,

the first of which is almost obvious, and the second one is easy to prove.

Proposition 1.9.13. For any topological groups H and G, the subspace Homp(H, G)

is closed in Cp(H, G).

Proof. We will use the additive notation for the group operation in G. Take arbitrary

elements x, y ∈ H , and let

F (x, y) = {f ∈ Cp(H, G) : f (xy−1) = f (x)− f (y)}.
Then F (x, y) is a closed subspace of Cp(H, G) for all x, y ∈ H . Evidently, Homp(H, G)

is the intersection of the sets F (x, y), with x, y ∈ H . Therefore, Homp(H, G) is closed in

Cp(H, G). �
Proposition 1.9.14. Suppose that H is a topological group and G is an Abelian

topological group. Then Homp(H, G) is a topological subgroup of the topological group
Cp(H, G).
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Proof. Again, we use the additive notation for the group operations in G and Cp(H, G).

Let a, b ∈ H and f, g ∈ Homp(H, G). Then, for the element f + g ∈ Cp(H, G), we have:

(f + g)(ab) = f (ab) + g(ab) = f (a) + f (b) + g(a) + g(b)

= (f (a) + g(a)) + (f (b) + g(b)) = (f + g)(a) + (f + g)(b).

Similarly,

(f + g)(−a) = f (−a) + g(−a) = −f (a)− g(a) = −(f (a) + g(a))

= −((f + g)(a)).

Hence, f + g ∈ Homp(H, G). We also have:

(−f )(ab) = −(f (ab)) = −(f (a) + f (b)) = −f (a)− f (b)

= (−f )(a) + (−f )(b)

and

(−f )(−a) = −(f (−a)) = −(−(f (a))) = −((−f )(a)).

Therefore, −f ∈ Homp(H, G). It follows that Homp(H, G) is closed in Cp(H, G) under

the operations of the sum and the inverse. Hence, Homp(H, G) is a topological subgroup

of the topological group Cp(H, G). �

Evidently, the assumption that the group G is Abelian plays an essential role in the

proof of Proposition 1.9.14.

Theorem 1.9.15. Let H be a topological group, G an Abelian topological group,
and let Ψ be the reflection mapping ΨY , where Y = Homp(H, G). Then Ψ is a
continuous homomorphism of the topological group H to the Abelian topological group
Homp(Homp(H, G), G).

Proof. By Corollary 1.9.2, the mapping Ψ is continuous. From Proposition 1.9.14 it

follows that Homp(Homp(H, G), G) is a topological group. This group is Abelian, since

the topological group Cp(X, G) is Abelian, for any Tychonoff space X. It remains to show

that Ψ is a homomorphism.

Take any a, b ∈ H . First, we check that Ψ(ab) = Ψ(a)Ψ(b). Let f ∈ Y =

Homp(H, G). Then Ψ(ab)(f ) = f (ab) = f (a)f (b) = (Ψ(a)(f ))(Ψ(b)(f )). Since f
is an arbitrary element of Homp(H, G), it follows that Ψ(ab) = Ψ(a)Ψ(b). Similarly, one

can verify that Ψ(−a) = −Ψ(a). Hence, Ψ is a homomorphism. �

An important direction of research in any kind of a duality theory for topological groups

is finding the conditions under which the continuous homomorphism Ψ considered in the

last statement happens to be a topological isomorphism of H onto the topological group

Homp(Homp(H, G), G). The topological groups T and R in the role of G play a prominent

role in this line of investigation. Of course, the group H has to be Abelian if we want

Ψ to be a monomorphism. Note also that, in a duality theory, the group Hom(H, G) of

all continuous homomorphisms of H to G is often taken with the stronger compact-open

topology.

Markov’s theorem
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Exercises

1.9.a. Let X be a Tychonoff space and Y = Cp(X). Verify that the set ΨY (X) is linearly independent
in Cp(Cp(X)), that is, the equality k1y1 + · · ·+ knyn = 0̄ holds for some k1, . . . , kn ∈ R and

pairwise distinct y1, . . . , yn ∈ ΨY (X) iff k1 = · · · = kn = 0.

1.9.b. Show that every Tychonoff σ-compact space is homeomorphic to a closed subspace of a

σ-compact topological group.

1.9.c. Show that for every Tychonoff space X, Cp(X) is a dense subgroup of the product group RX.

1.9.d. Let X and Y be topological spaces and C(X, Y ) the family of all continuous mappings of X
to Y . If C ⊂ X and W ⊂ Y , we put 〈C, W〉 = {f ∈ C(X, Y ) : f (C) ⊂ W}. Then the

family

{〈C, W〉 : C ⊂ X is compact and W ⊂ Y is open}
forms a subbase for the compact-open topology on C(X, Y ) (see [165, Section 3.4]). The

space C(X, Y ) endowed with the compact-open topology is denoted by Cc(X, Y ). Verify the

following assertions:

(i) The compact-open topology is finer than the topology of pointwise convergence on

C(X, Y ).

(ii) If X and Y are topological groups, then Hom(X, Y ) is a closed subset of the space

Cc(X, Y ).

(iii) If X is a space and Y a topological group, then Cc(X, Y ) is also a topological group.

(iv) If X and Y are topological groups, X is locally compact (or, more generally, a k-space)

and Y is Abelian, then the reflection mapping ΨY , with Y = Cc(X, Y ), is a contin-

uous homomorphism of H to the Abelian topological group Homc(Homc(X, Y ), Y ).

(Compare this with Theorem 1.9.15.)

Problems

1.9.A. Let X be a space and G a topological group. Given a compact set C ⊂ X and a symmetric

open neighbourhood W of the neutral element e in G, we put

V l
C,W = {(f, g) ∈ Cc(X, G) : f (x)

−1g(x) ∈ W for each x ∈ C}.

Prove that the sets V l
C,W constitute a base for a uniformity on Cc(X, G) and this uniformity is

compatible with Cc(X, G).

1.9.B. Give an example of a locally compact space that cannot be embedded as a closed subspace

into a locally compact topological group.

1.9.C. Can every locally compact σ-compact space be embedded as a closed subspace into a locally

compact σ-compact topological group?

1.9.D. Give an example of a commutative topological group G algebraically generated by a

metrizable subspace such that the space G is not normal.

Hint. Let A and B be discrete spaces satisfying |A| = ω, |B| > ω, and A∩B = ∅. Denote by

αA and αB one-point compactifications of A and B, respectively, and let αA = A∪{x0} and

αB = B∪{y0}. It is easy to see that the subspace Z = αA×αB \{(x0, y0)} of the compact

space X = αA × αB is not normal. Denote by G the subgroup of Cp(Cp(X)) generated by

the set ΨY (Z), where Y = Cp(X). By Corollary 1.9.10, ΨY is a topological embedding of

X into Cp(Cp(X)), so ΨY (Z) is a topological copy of Z in G. Apply Exercise 1.9.a to show

that ΨY (X) ∩ G = ΨY (Z), whence it follows that ΨY (Z) is closed in G. In particular, the

group G is not normal. Finally, put P = αA × B, Q = A × {y0}, and c = (x0, y0). Verify

that M = ΨY (P) ∪ (Ψ(Q) + ΨY (c)) is a metrizable subspace of G (homeomorphic to the

topological sum of P and Q) and that G = 〈M〉.
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Open Problems

1.9.1. Suppose that X is a normal topological space. Is it possible to represent X as a closed

subspace of a topological group G such that the space G is normal?

1.9.2. Can the Sorgenfrey line be topologically embedded as a closed subspace into a normal (or

even Lindelöf) topological group?

1.9.3. Is it true that every paracompact space is homeomorphic to a closed subspace of a paracompact

topological group?

1.10. Historical comments to Chapter 1

For the definitions and the history of purely algebraic notions, the reader can consult

[409]. In particular, one can find there a discussion of quaternions. The construction of

r-adic numbers goes back to K. Hensel [224].

Ideas behind the general concept of a topological group have their roots in the works

of S. Lie (see [294]), who considered groups defined by analytic relations. Another source

of topological groups is transformation groups that usually bear a natural topology. In this

regard, see also [293]. At the beginning of the 20th century D. Hilbert and L. Brouwer

showed interest in more general topological groups than just Lie groups. In particular,

L. Brouwer demonstrated that the Cantor set can be made, in a natural way, into an Abelian

topological group [87].

The general notion of topological group was introduced by F. Leja in [291] and by

O. Schreier in [423]. Locally Euclidean topological groups were considered by É. Cartan

in [96].

An elegant axiomatization of the topology of a general topological group was given

by A. Weil [532]. Soon after that A. N. Kolmogorov observed that every topological group

is a regular space (see a comment by L. S. Pontryagin in [387]). Pontryagin proved later

that every topological group is a Tychonoff space. It is still an open question whether every

regular paratopological group is a Tychonoff space (see Problem 1.3.1).

Associative separately continuous multiplication in the general form was considered,

probably for the first time, by D. Montgomery in [324]. Semitopological semigroups had

already been present in R. Ellis’s paper [159]. Afterwards they were systematically treated

in T. Husain’s book [249]. Among the first to consider semigroups with multiplication that

is only one-sided continuous were R. Ellis [159] and W. Gottshalk [162]. One of the reasons

why objects such as these should not be considered as something too exotic, too special, is

that natural topologies of transformation groups very often turn them into semitopological

groups only.

Connectedness properties of topological groups were already considered in some of the

first articles on topological groups. In particular, Proposition 1.4.26 can be found in [423],

while Lemma 1.4.27 appeared in [291]. In connection with Example 1.4.33, see [99].

H. Freudenthal [177] and A. A. Markov [304] generously contributed to the theory of

subgroups and quotient groups of topological groups. Theorem 1.3.14 was established by

Markov in [304]. Propositions 1.4.1, 1.4.4 and Theorem 1.4.30 are also largely due to

Markov [304]. The quotient topology on G/H , where G is a topological group and H is a

subgroup of G, was introduced in 1931 in the dissertation of van Dantzig. Markov [304] and

H. Freudenthal [177] established Theorem 1.5.1 in a less general setting. H. Freudenthal

Historical comments to Chapter 1
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proved Corollary 1.5.8 in [177]. One finds Theorem 1.5.6 in earlier editions of [387].

Theorem 1.5.7 is presented in [236]. An improvement of Theorem 1.4.25 appeared in

[277], where it was shown that every infinite Abelian group admits a non-discrete metrizable

group topology. For generalizations of this result see [121]. Theorem 1.4.29 was obtained

by E. van Kampen [266]. In [325], a special case of Proposition 1.4.32 can be found.

Theorems 1.5.13, 1.5.18, and 1.5.19 appear, for example, in [236], where their origins

are discussed as well. Corollary 1.5.21 is a classical result of M. Ya. Vilenkin [525].

Exercise 1.5.e is taken from [99].

M. Fréchet was the first to consider finite products of abstract spaces in [175].

Finite and countable products of metric spaces were already a part of the folklore of the

1920’s. However, the addiction to convergent sequences in the study of the general idea

of convergence (similar to the still quite common belief that the only topological spaces

worthy of some attention are those that are regular and second-countable) prevented for a

long time the birth of the general concept of the topological product of spaces. Only in

1930, A. N. Tychonoff gave in [504] the general definition of the topological product of an

arbitrary family of topological spaces. This was a real breakthrough, a major contribution of

General Topology to Mathematics, that widely opened the doors to the future innumerable

successes in Functional Analysis, Topological Algebra, Mathematical Logic, and Category

Theory. In particular, the general definition of the Tychonoff product of spaces made it

immediately clear how to define the topological product of any family of topological groups

(paratopological groups, etc.). L. S. Pontryagin used countable products of topological

groups as a principal tool in his fundamental paper [385]. In [387], he already used the

general topological product of topological groups. The construction of the Σ-product of

spaces described in b) of Example 1.2.9 was also introduced by Pontryagin [387] in the

context of the theory of topological groups. Years later this construction found numerous

applications in General Topology. Proposition 1.6.1, Theorem 1.6.2, and Corollaries 1.6.3

and 1.6.4 have their roots in the Tychonoff theory of products and constitute a standard part

of the present day technique. For Proposition 1.6.6, see [537]. The concepts of δ-tightness

and Gδ-tightness were introduced by A. V. Arhangel’skii in [41] and [39], respectively,

where Proposition 1.6.7, Corollaries 1.6.8, 1.6.9, and Theorems 1.6.11 and 1.6.12 were

proved. However, these results were made possible by the work of many authors; see, in

particular, [350], [537], and the article [468], where the notion of o-tightness was introduced

and studied. Historical comments on this subject are given in [41]. The class of Gδ-

preserving spaces was introduced in [41] under a different name, as weakly Klebanov spaces.

Theorem 1.6.14 and Corollary 1.6.15 appeared in [41]. For Lemma 1.6.17, see [484].

The notion of a Δ-system and the techniques related to it (in particular, Theorems 1.6.20

and 1.6.21) are classical; see in this connection [285], [263], or [30].

Pseudo-ℵ1-compact spaces are also known as DCCC-spaces. They are especially

important in connection with R-factorizable topological groups and free topological groups,

which we consider in the forthcoming chapters. Regarding Proposition 1.6.22, see [484].

A prototype of Proposition 1.6.23 is found in [387]. For Theorems 1.6.24, 1.6.32 and

Corollaries 1.6.25 and 1.6.34, see [350] and [351]. The first part of Corollary 1.6.34 was

already known to Pontryagin (see [387]). One can find a version of Theorem 1.6.37 in

[165]. Theorem 1.6.38 is, as we have seen, a work of many mathematicians, beginning with

Pontryagin.
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Factorization theorems presented and applied in this book are of two kinds —

those which deal with “large” products of “small” spaces, and those which refer to

topological groups satisfying certain conditions. Among such results are Theorem 1.7.2,

due to I. Glicksberg’s [197], and following from it Theorem 1.7.3 and Corollary 1.7.4.

Corollary 1.7.5 is an old classical result of S. Mazur [313].

In connection with Theorem 1.7.7 and Corollary 1.7.8, see [27], where some of the

first factorization theorems for dense subsets of products were established, intended for

applications in Cp-theory (observe that the space Cp(X) is dense in the product space RX,

for every Tychonoff space X). Several important theorems on factorization of mappings

defined on subspaces of product spaces were obtained in [466] and [465] (see also Historical

Comments to Chapter 8).

The “germs” of the theory of uniform spaces are found in the theory of metric spaces.

The concepts of a uniformly continuous mapping, of a Cauchy sequence, of a natural

completion of a metric space gradually lead to understanding that there are situations

where metrics are absent or are not adequate but similar ideas are present and lunge to be

expressed by means of more general structures. The situation is analogous to the situation in

topology — metrics, in general, are not adequate to express convergence properly. A general

framework for the ideas of uniform continuity, uniform convergence, completion, etc., was

provided by the theory of uniform spaces created by A. Weil in [532]. Weil’s article also

treats the theory of topological groups from the position of the theory of uniform spaces. A

basic fact is that the algebraic structure of a topological group, interacting with the topology,

imposes two natural uniform structures on the group, generating its topology, in very much

the same way as the metric imposes a natural uniform structure generating the topology.

For more on that see [109] and [80]. In connection with Lemma 1.8.6, Corollary 1.8.7, and

Theorem 1.8.8 see [202] and [532]. Proposition 1.8.11 appears in [387]. The majority of

results in Section 1.8 can be found, with historical comments, in [410].

Theorem 1.9.6 is a result of A. A. Markov [305, 308]. His proof is quite different; it is

based on the much more complicated theory of multinorms.
The reflection mapping, also called the evaluation mapping used here to prove Markov’s

results, was available in this general form ever since Tychonoff proved his embedding

theorem [504]. Pontryagin used reflection mappings in his duality theory. The proof of

Markov’s theorem, based on Cp-theory and reflection mappings, appears now in print for

the first time. Proposition 1.9.1 and Corollaries 1.9.2 and 1.9.3 were, for sure, already

known to Tychonoff. Corollary 1.9.8, Proposition 1.9.9, Corollaries 1.9.10 and 1.9.11,

Proposition 1.9.12, or some very similar statements, can be found in various books and

articles on topological function spaces published after 1940. In particular, a systematic

treatment of Cp-theory is given in [32]. Theorem 1.9.5 is a new result.

Further references and comments can be found in [325], [236], [410], [109], [122],

[110], and [80].

Historical comments to Chapter 1



Chapter 2

Right Topological and
Semitopological Groups

It frequently happens in Mathematics that the study of certain rich structures (like

Hilbert or Banach spaces, or bounded linear operators acting on these spaces) requires a

detailed knowledge of some weaker structures (locally convex linear topological spaces or,

respectively, topological semigroups). The theory of topological groups is not an exception,

some subtle properties of certain topological groups can only be established with the use of

a well-developed machinery of right topological semigroups.

In the section that follows we show that the Čech–Stone compactification of a discrete

semigroup admits a natural structure of a compact right topological semigroup. In particular,

each of the spaces βN and βZ admits an associative binary operation which extends the

usual sum (or product) operation in N and Z, respectively. Then we establish some simple

algebraic properties of the Čech–Stone compactification of a discrete semigroup S and

express in an explicit form “multiplication” of ultrafilters in the compact semigroup βS.

One of the most important results of contemporary mathematics, Ellis’ theorem, is

proved in Section 2.2. It simply says that every compact right topological semigroup S
has an idempotent, that is, there exists an element p ∈ S satisfying pp = p. This fact

has an enormous amount of applications in the theory of numbers, infinite combinatorics,

topological algebra, etc. One of such applications is Example 2.2.25, where we present a

non-discrete extremally disconnected quasitopological group. Another application will be

given in Section 4.5 where we construct, following V. I. Malykhin, a maximal topology on a

countable infinite Boolean group G under the additional assumption of (something weaker

than) Martin’s Axiom, that makes G into an extremally disconnected topological group.

In the last three sections of this chapter we present several conditions which imply the

continuity of the multiplication and the inverse in semitopological and paratopological

groups. For example, we show in Section 2.3 that every locally compact Hausdorff

semitopological group is a topological group. The influence of pseudocompactness and

Čech-completeness on the continuity of operations in semitopological and paratopological

groups is studied in Section 2.4, where we show that every paratopological group is a

topological group provided it is pseudocompact or Čech-complete. In fact, every Čech-

complete semitopological group is again a topological group (see Theorem 2.4.12). In

Section 2.5 we consider the so called cancellative semigroups and prove that every compact

cancellative topological semigroup is a topological group.

Throughout this chapter, all spaces are assumed to be Hausdorff.

A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies  90
in Mathematics 1, DOI 10.2991/978-94-91216-35-0_2, © 2008 Atlantis Press/World Scientific 
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2.1. From discrete semigroups to compact semigroups

In this section we show that there is a very natural way to turn the Čech–Stone

compactification of a discrete semigroup into a right topological semigroup. Though the

construction is standard, it provides us with a large supply of compact right topological

semigroups of a highly sophisticated structure from both the topological and the algebraic

points of view. In fact, our construction is even more general, as it is clear from the definitions

below.

An operoid is a non-empty set O with a binary operation called product or multipli-
cation. Formally, the operation is a mapping φ of O × O to O; for (x, y) ∈ O × O we

write xy instead of φ(x, y) and call xy the product of x and y. In general, the associativity

of multiplication or the existence of the identity in O are not assumed. Given an operoid

O with a topology �, we will call it a topological operoid if the multiplication is jointly

continuous. As in the case of semigroups, we define the mappings 
a and λa of O to O by


a(x) = xa and λa(x) = ax, for any a and x in O. The mappings 
a and λa are called the

right action and the left action by a on the operoid O.

If the topology � on an operoid O is such that 
a is continuous for each a ∈ O, we say

that O is a right topological operoid. Similarly, if all left actions λa are continuous, O is

called a left topological operoid. If O with a topology � is both a left topological operoid

and a right topological operoid, we say that O is a semitopological operoid. An element e
of an operoid O is called a right identity (left identity) if xe = x (ex = x), for each x ∈ O. If

e ∈ O is both a right identity and a left identity of an operoid O, we say that e is an identity
of O. Clearly, an operoid can have at most one identity.

The next result is a starting point for a rich and profound theory of compact right

topological operoids and semigroups.

Theorem 2.1.1. [E. van Douwen] Let O be an operoid with the discrete topology and
βO the Čech–Stone compactification of the discrete space O. Then the product operation
in O can be extended to a product operation in βO in such a way that βO becomes a right
topological operoid. This can be done in such a way that the left action on βO by any
element of O be continuous. Furthermore, under the last condition this extension is unique,
and if O has a left (right) identity e, then e is also a left (right) identity of the operoid βO.

Proof. For an element a of O, let λa be the left action by a on O. Since λa is a

continuous mapping of O to O, we can extend it to a continuous mapping of βO to βO.

We also denote the latter mapping by λa, and put aq = λa(q), for each q ∈ βO. Thus, the

product aq in βO is defined for each a ∈ O and each q ∈ βO.

Now fix q ∈ βO and put 
q(x) = xq, for each x ∈ O. In this way a mapping 
q is

defined on O, with values in βO. Since O is discrete, 
q is continuous. Therefore, 
q can be

extended to βO; we denote the extension also by 
q. Now for any p in βO, put pq = 
q(p).

The definition of the product operation is complete and, since the mapping 
q is continuous

for every q ∈ βO, βO with this product operation is a right topological operoid. Almost

all other statements in Theorem 2.1.1 are clearly true. In particular, the statement about

identities follows from the continuity of λa and 
a, for each a ∈ O.

The above construction of the extension of the multiplication in O over βO shows that

this extension is unique. Indeed, suppose that ψ : βO × βO → βO is a mapping whose

restriction to O×O coincides with the multiplication in O and which makes continuous all
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right actions 
∗
a with a ∈ βO, and all left actions λ∗

a with a ∈ O, where 
∗
a (x) = ψ(x, a) and

λ∗
a (x) = ψ(a, x) for each x ∈ βO. By the assumption, the left actions λ∗

a and λa coincide

on the dense subset X of the space βO for each a ∈ O, whence it follows that aq = ψ(a, q)

for all a ∈ O and q ∈ βO. Equivalently, we have that 
∗
q (a) = 
q(a) for each a ∈ O,

and the density argument together with the continuity of the right actions 
∗
q and 
q for

q ∈ βO imply that these actions coincide on βO. Therefore, pq = 
∗
q (p) = ψ(p, q) for all

p, q ∈ βO. Thus, ψ coincides with the multiplication in βO defined at the beginning of the

proof. �
Whenever O is a discrete operoid, we consider βO as the right topological operoid with

the product operation defined in the proof of Theorem 2.1.1. The next result serves to prove

Theorem 2.1.3 showing that the compact operoid βO plays a main role among all compact

right topological operoids containing O as a discrete suboperoid. Naturally, a suboperoid S
of an operoid O is a non-empty subset S of O closed under the multiplication in O. In other

words, xy ∈ S for all x, y ∈ S. Then the multiplication in S is, of course, the restriction to

S of the multiplication in O.

A mapping h : S → T of operoids S and T is called a homomorphism if it satisfies

h(xy) = h(x)h(y) for all x, y ∈ S. It is easy to see that if e is the identity of S, then h(e) is

the identity of T for every homomorphism h of S to T .

Proposition 2.1.2. Let S and T be compact right topological operoids, D a dense
suboperoid of S, and h a continuous mapping of the space S to the space T satisfying the
following conditions:

a) the left action λa is continuous on S, for every a ∈ D;
b) the restriction of h to D is a homomorphism of D to T ;
c) the left action λh(a) is continuous on T , for every a ∈ D.

Then h is a homomorphism of S to T .

Proof. It follows from a)–c) of the proposition that, for each a ∈ D, h◦λa and λh(a) ◦h
are continuous mappings of S to T coinciding on the dense subset D of S. Therefore, they

coincide on the whole of S, that is, h(ay) = h(a)h(y), for all a ∈ D and y ∈ S. However,

h(ay) = h(
y(a)), and h(a)h(y) = 
h(y)(h(a)). It follows that the mappings h ◦ 
y and


h(y) ◦ h coincide on the dense subset D of S. Since the mappings h ◦ 
y and 
h(y) ◦ h are

continuous, we conclude that they coincide on S, that is, h(x)h(y) = h(xy), for all x, y ∈ S.

Thus, h is a homomorphism. �
A characteristic property of the Čech–Stone compactification βX of a Tychonoff space

X is that every continuous mapping f : X → K to a compact space K can be extended to

a continuous mapping f̃ : βX → K. The next result has a similar nature and takes into a

account the algebraic structure of the Čech–Stone compactification of a discrete operoid O.

Theorem 2.1.3. Assume that O is a discrete operoid, and g is a homomorphism of
O to a compact right topological operoid T such that for each a ∈ O, the left action λg(a)

on T is continuous. Then there exists a continuous homomorphism h of the compact right
topological operoid βO to T such that h(x) = g(x) for each x ∈ O, that is, the restriction
of h to O coincides with g.

Proof. The mapping g is continuous, since the space O is discrete. It follows, by the

main property of Čech–Stone compactifications, that g can be extended to a continuous
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mapping h of βO to T (it is here the compactness of T is essential). Now it follows from

Proposition 2.1.2 and the properties of the operoid βO that h is a homomorphism. �

Theorem 2.1.4. If O is a discrete semigroup, that is, a discrete operoid with associative
multiplication, then βO is a right topological semigroup.

Proof. We have to show that the multiplication in βO defined in Theorem 2.1.1 is

associative, that is, (pq)r = p(qr), for any p, q, and r in βO.

We obviously have p(qr) = 
qr(p) and (pq)r = 
r(
q(p)). Since all the right actions on

βO are continuous, it suffices to show that the mappings 
qr and 
r ◦ 
q coincide on O. Let

a ∈ O. Then 
r(
q(a)) = (aq)r = 
r(λa(q)) while 
qr(a) = a(qr) = λa(
r(q)). Since λa and


r are continuous on βO, it suffices to show that λa ◦
r and 
r ◦λa coincide on O. Take any

b ∈ O. Then λa(
r(b)) = a(br) = λa(λb(r)) while 
r(λa(b)) = (ab)r = λab(r). Since the

mappings λa, λb, and λab are continuous on βO, it remains to check that λa(λb(c)) = λab(c),

for each c ∈ O. Since the product operation in O is associative, we have

λa(λb(c)) = a(bc) = (ab)c = λab(c),

for each c ∈ O. Hence, the product operation in βO is associative, and βO is a right

topological semigroup. �

Theorem 2.1.4 and the method of its proof may suggest the conjecture that if O is

commutative then βO is also commutative. In general, this is not the case, even if we

assume that O is a group. It can be shown that, even for the discrete group Z of integers,

the compact right topological semigroup βZ is not commutative. Even more, βZ is not a

semitopological semigroup. We will discuss reasons for that later. However, we have the

following partial facts.

Proposition 2.1.5. If O is a commutative discrete operoid, then O is contained in the
center of βO, that is, ap = pa for all a ∈ O and p ∈ βO.

Proof. For each a in O, the mappings λa and 
a are continuous, by their definitions

in the proof of Theorem 2.1.1. Since the operoid O is commutative, the restrictions of

the mappings λa and 
a to O coincide. Since βO is Hausdorff and O is dense in βO, it

follows that the mappings λa and 
a coincide everywhere on βO. That means precisely that

ap = pa, for all a ∈ O and p ∈ βO. �

Proposition 2.1.6. If O is a commutative discrete operoid, then the right topological
operoid βO is commutative if and only if βO is semitopological, that is, all left actions λa

are continuous.

Proof. Assume that βO is commutative. Then λp coincides with 
p, for each p ∈ βO.

Therefore the operoid βO is semitopological, since it is right topological.

Conversely, assume that λp is continuous, for each p ∈ βO. Every right action 
p is

also continuous, by Theorem 2.1.1. From Proposition 2.1.5 it follows that 
p restricted to

O coincides with the restriction of λp to O. Since O is dense in βO, it follows that 
p = λp,

for each p ∈ βO. �

It is helpful to describe the product operation in βO in more direct terms involving the

actual structure of the ultrafilters multiplied. This is done in the following two statements,

in which O is a discrete operoid, and βO is the compact operoid generated by it. For any
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subset A of O we denote by UA the set of all p ∈ βO such that A ∈ p. It is well known

that each UA is open and the family �p = {UA : A ∈ p} is a base for the space βO at the

point p (see [165, Section 3.6]). We use these simple facts below.

Given an operoid S, a set B ⊂ S, and an element a ∈ S, we put aB = λa(B) and

Ba = 
a(B).

Proposition 2.1.7. Let a ∈ O and q ∈ βO. Then A ∈ aq if and only if there is B ∈ q
such that aB ⊂ A.

Proof. Assume that A ∈ aq. Then UA = {p ∈ βO : A ∈ p} is an open

neighbourhood of aq. Since λa is continuous on βO, and λa(q) = aq, there exists B ∈ q
such that λa(UB) ⊂ UA. Since λa(O) ⊂ O, it follows that aB = λa(B) ⊂ UA ∩O = A.

Now we prove the converse statement. Assume that aB ⊂ A, for some B ∈ q. Then

q ∈ B which implies, by the continuity of λa on βO, that aq = λa(q) ∈ λa(B) = aB. Since,

by the assumption, aB ⊂ A, we conclude that aq ∈ A. However, this implies that A ∈ aq,

by the definition of the topology on βO. �
Note that we can reformulate Proposition 2.1.7 as follows:

aq = {A ⊂ O : there exists B ∈ q such that aB ⊂ A},
for all a ∈ O and q ∈ βO.

Proposition 2.1.8. Let p ∈ βO and q ∈ βO. Then the following three statements are
equivalent:

a) A ∈ pq;
b) there exists B ∈ p such that A ∈ bq, for each b ∈ B;
c) there exists B ∈ p such that for each b ∈ B there exists C ∈ q with bC ⊂ A.

Proof. It follows from Proposition 2.1.7 that b) and c) are equivalent.

Now assume that A ∈ pq. Then 
q(p) ∈ UA and, since UA is open and 
q is continuous,

it follows that there exists B ∈ p such that 
q(UB) ⊂ UA. In particular, since B ⊂ UB, we

have bq = 
q(b) ∈ UA, for each b ∈ B. By the definition of UA, this means that A ∈ bq,

for each b ∈ B. Thus, we have shown that a) implies b).

It remains to check that c) implies a). Assume that a subset A of O satisfies c) but not

a). Thus, A is not in pq. Since pq is an ultrafilter on O, it follows that O \ A ∈ pq. Then

O \ A satisfies a) and, therefore, b). Hence, there is B1 ∈ p such that, for each b ∈ B1,

O \ A ∈ bq. On the other hand, since A satisfies b), there exists B2 ∈ p such that A ∈ bq,

for every b ∈ B2. Then B = B1 ∩ B2 ∈ p, B is not empty, and for every b in B we have

A ∈ bq and O \ A ∈ bq, a contradiction. �
Proposition 2.1.7 can be improved slightly and simplified in a special case. Indeed, we

have

Proposition 2.1.9. Suppose that a ∈ O and q ∈ βO. Then:

a) if A ⊂ O and A ∈ q, then aA ∈ aq;
b) if aO = O (i.e., the mapping λa is surjective), then aq = {aA : A ∈ q}.

Proof. Item a) follows directly from Proposition 2.1.7. Let us prove b). Because

of a), it suffices to show that every C ∈ aq is of the form aA, for some A ∈ q. Put

A = {x ∈ O : ax ∈ C}. By Proposition 2.1.7, there is B ∈ q such that aB ⊂ C. Then
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B ⊂ A, and since q is an ultrafilter on O, it follows that A ∈ q. Obviously, aA = C, since

C ⊂ O = aO. �

Let us show that the commutativity of a discrete semigroup S does not imply that the

operoid βS is commutative. Actually, the examples when this happens are very easy to

come about; however, to establish the non-commutativity of βS is very often a non-trivial

task. Because of this, we present the simplest example, where this phenomenon happens

and can be easily observed.

As usual, an ultrafilter p on an infinite set A is called free if the intersection of the

elements of p is empty.

Example 2.1.10. Let N be the discrete semigroup of positive natural numbers where

the product mn is defined as max{m, n}. Take any m ∈ N and any q ∈ βN \ N. Fix an

element A of q. Then A is infinite, and mn = n for all but finitely many elements of A. It

follows that the set K = A \mA is finite. Then A \K ∈ q and A \K ⊂ mA, which implies

that mA ∈ q, since q is a free ultrafilter on N.

Now it follows from Proposition 2.1.7 that mq = q, that is, 
q(m) = q. Since this

is true for each m ∈ N, and 
q is continuous on βN, it follows that 
q(p) = q for every

p ∈ βN. Thus, we have established that pq = q, for every p ∈ βN and every q ∈ βN \ N.

Now, for any two different elements p and q of βN\N, from the formula proved above,

we have that pq = q = p = qp. Hence, the operoid βN is not commutative. �

A natural question to consider is when, for a discrete operoid O, βO\O is a suboperoid

of βO. This is not always the case.

Example 2.1.11. Let O be any infinite set, a ∈ O a fixed element of O, and the

multiplication on O is defined as follows: xy = a, for any x, y in O. Then, for the operoid

βO, we obviously have that pq = a, for any p and q in βO. Since O is infinite, the set

βO \O is non-empty; clearly, it is not closed under the multiplication, since a is not in it.

Hence, βO \O is not a suboperoid of βO. �

Now we give a sufficient condition for βO \O to be a suboperoid of βO.

Proposition 2.1.12. Suppose that O is a discrete operoid such that, for any infinite
subset C of O and any b ∈ O, the set bC is also infinite. Then βO \ O is a suboperoid of
βO.

Proof. We only have to show that the set βO\O is closed under multiplication. Assume

the contrary. Then we can fix p and q in βO \ O such that pq ∈ O. Then {a} ∈ pq, for

some a ∈ O. By c) of Proposition 2.1.8 applied to the set A = {a}, we can fix B ∈ p such

that for each b ∈ B there exists C in q such that bC ⊂ {a}. Now fix b ∈ B and C ∈ q such

that bC ⊂ {a}. Therefore, the set bC is finite, and it follows from our assumption that C is

also finite. Since C ∈ q, we conclude that q is in O and not in βO \O, a contradiction. �

In the above argument it is not important whether p is in βO \O or just in βO. In fact,

under the restrictions imposed on the product operation in Proposition 2.1.12, pq ∈ βO\O
for all p ∈ βO and q ∈ βO \O. Thus, (βO)(βO \O) ⊂ βO \O. A subset S of an operoid

O is called a left ideal of O if OS ⊂ S. Similarly, a subset S of an operoid O is called a

right ideal of O if SO ⊂ S. Thus, Proposition 2.1.12 can be strengthened as follows:
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Proposition 2.1.13. Suppose that O is a discrete operoid such that the set bC is infinite
for every infinite subset C of O and for every b ∈ O. Then βO \ O is a left ideal of the
operoid βO.

If S is both a left ideal of an operoid O and a right ideal of it, then we say that S is a

two-sided ideal of O or simply an ideal of O.

We now present a sufficient condition for βO \O to be a two-sided ideal of βO.

Theorem 2.1.14. Suppose that O is a discrete operoid such that the sets bC and Cb
are infinite, for every infinite subset C of O and for every b ∈ O. Then βO\O is a two-sided
ideal of the operoid βO.

Proof. By Proposition 2.1.13, βO \ O is a left ideal of βO. Let us show that it is a

right ideal of βO.

Take any p ∈ βO \O and any q in βO. We have to show that pq is in βO \O. Since

we already know that βO \ O is a left ideal of βO, it remains to consider the case when

q ∈ O. Then q = {C ⊂ O : c ∈ C}, for some c ∈ O.

Assume now that pq is not in βO \ O. Then pq ∈ O, and therefore, there is a ∈ O
such that {a} ∈ pq.

By c) of Proposition 2.1.8 applied to the set A = {a} ∈ pq, we can fix B ∈ p such

that for each b ∈ B, there exists Cb ∈ q satisfying the condition bCb ⊂ {a}. Since c ∈ Cb

for each b ∈ B, we have bc = a, for every b ∈ B. Hence, Bc = {a}, that is, the set Bc is

finite. By the assumption, this implies that B is finite. Since B ∈ p, it follows that p is in

O, a contradiction. �
Corollary 2.1.15. If O is a discrete operoid such that left and right actions λa and


a are injective, for each a ∈ O, then βO \O is a two-sided ideal of the operoid βO.

Corollary 2.1.16. If G is an infinite discrete group, then βG \G is a two-sided ideal
of the right topological semigroup βG. In particular, βG\G is a compact right topological
semigroup.

Exercises

2.1.a. Suppose that S is a right topological semigroup and I is a right ideal of S. Verify that the

closure of I in S is also a right ideal. Give an example of a left ideal J of a compact right

topological semigroup T such that the closure of J in T fails to be a left ideal.

2.1.b. (See [241, Coro. 2.6]) Let S be a compact right semitopological semigroup. Show that every

left ideal of a S contains a minimal (by inclusion) left ideal, and that all minimal left ideals

of S are closed.

2.1.c. (See [241, Theorem 2.17]) Let S be a compact right topological semigroup such that the set

D = {x ∈ S : λx is continuous} is dense in S. Show that if I is an arbitrary left ideal of S,

then the closure of I in S is again a left ideal.

Problems

2.1.A. Prove that none of the compact semigroups βN, βZ is commutative, no matter which of the

two natural operations on N or Z is extended over the Čech–Stone compactification of the

corresponding semigroup.

Hint. Let ◦ denote the sum or multiplication operation in N. Define by induction two

sequences A = {an : n ∈ ω} and B = {bn : n ∈ ω} of pairwise distinct elements of N such
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that the sets {ak◦bn : k < n} and {bk◦an : k < n} are disjoint. Take elements p, q ∈ βN\N
such that A ∈ p and B ∈ q and apply Proposition 2.1.8 to show that p ◦ q �= q ◦ p. The

same argument applies to Z in place of N.

2.1.B. Let e be an element of a compact right topological semigroup S satisfying ee = e. Prove

that the following are equivalent:

(i) Se is a minimal left ideal;

(ii) eS is a minimal right ideal;

(iii) eSe is a subgroup of S.

2.2. Idempotents in compact semigroups

An element p of an operoid O is called an idempotent if pp = p. The set of all

idempotents of an operoid O will be denoted by E(O). The next result is a celebrated

theorem of R. Ellis from [159]. It is one of mathematical principles in which compactness

is blended into an algebraic structure in such an ingenious way that they serve as pillars for

the whole edifice of the contemporary mathematics and provide for its unity.

Theorem 2.2.1. [R. Ellis] Let S be a compact right topological semigroup. Then there
exists an idempotent in it, that is, E(S) = ∅.

Proof. Let � be the family of all closed subsemigroups of S, and � any chain in �.

Then, since S is compact, and semigroups are always non-empty sets, the intersection of �
is non-empty and is a closed subsemigroup of S. Now, by Zorn’s Lemma, we are entitled

to conclude that there exists a minimal element in �, that is, there exists A ∈ � such that

any proper closed subset B of A is not a subsemigroup of S. Take any element a ∈ A.

Claim. The element a of A is an idempotent.

Consider the set B = Aa. Since A is compact and B is a continuous image of A, it

follows that B is compact and non-empty. Therefore, since S is Hausdorff, B is closed in

S. It is also clear that B is contained in A. If x and y are in B, then y = za, for some z ∈ A.

Since x and z are in A, and A is a subsemigroup of S, we have xz ∈ A and, therefore,

xy = xza ∈ Aa = B. Hence, B is a closed subsemigroup of S contained in A. By the

minimality of A, it follows that B = A, that is, Aa = A. Therefore, since a ∈ A, there

exists c ∈ A such that ca = a. It follows that the set C of all x ∈ A such that xa = a is

non-empty. Clearly, C = A∩
−1
a (a), where 
a(x) = xa for each x ∈ S. Hence, C is closed

and compact. Now, C is closed under multiplication. Indeed, if y and z are any elements of

C, then yz ∈ A (since C ⊂ A and A is a subsemigroup of S). We also have yza = ya = a,

since y and z are in C. Therefore, yz ∈ C, and C is a closed subsemigroup of S contained

in A. By the minimality of A, it follows that C = A. Hence a ∈ C, that is, aa = a. Our

Claim and the theorem are proved. �

Given an operoid O, we denote by βO the Čech–Stone compactification of the discrete

space O considered as a right topological operoid (see Theorem 2.1.1). Recall that if S = O
is a semigroup, then βS is a right topological semigroup, according to Theorem 2.1.4.

Theorem 2.2.2. If G is an infinite discrete group, and βG is the compact right
topological semigroup generated by G, then there exists an idempotent p in βG \G.
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Proof. Indeed, by Corollary 2.1.16, βG \ G is a compact subsemigroup of βG.

Therefore, by Theorem 2.2.1, there exists p ∈ βG \G such that pp = p. �

Points in βG\G are free ultrafilters on G. Let us clarify what it means for an ultrafilter

p to be an idempotent in the compact semigroup βG.

Proposition 2.2.3. Suppose that p is a free ultrafilter on a discrete group G. Then p
is an idempotent in βG if and only if for each A ∈ p there exists B ∈ p such that A ∈ bp,
for each b ∈ B.

Proof. This is a direct corollary of the equivalence of a) and b) of Proposition 2.1.8. �

The following statement is also a corollary of Proposition 2.1.8. It can be considered

as a modification of Proposition 2.2.3.

Proposition 2.2.4. Suppose that O is a discrete operoid and p an idempotent in βO.
Then, for each A ∈ p, there exists B ∈ p such that B ⊂ A and for each b ∈ B there exists
Cb ∈ p satisfying bCb ⊂ A.

Proof. Since pp = p, we can apply c) of Proposition 2.1.8 with q = p. To ensure

that B ⊂ A, we just have to replace B with A ∩ B ∈ p. �

It follows from Theorem 2.1.1 that if the operoid O has an identity e, then e will also play

the role of an identity in the operoid βO. However, it is natural to ask if the subsemigroup

βG \G will have its own identity, for example, when G is a group. The answer is “no”.

Example 2.2.5. Let Z be the discrete group of integers, with the usual addition as

multiplication. Then S = βZ \ Z is a compact subsemigroup of the right topological

semigroup βZ which has no right identity.

Indeed, take any element p ∈ S. We have to show that there is q ∈ S such that qp = q.

Assume the contrary. Then 
p(S) = S and, since Z is a group, Corollary 2.1.16 implies that


p(Z) ⊂ S. Hence 
p(βZ) = S. Since the mapping 
p is continuous on βZ, and Z is dense

in βZ, it follows that 
p(Z) is dense in 
p(βZ) = S. Therefore, the space S = βZ \ Z is

separable. However, S contains an uncountable pairwise disjoint family of non-empty open

sets by [165, Example 3.6.18]. This contradiction completes the argument. �
If S is a semigroup and p ∈ S, the set Tp = {q ∈ S : qp = p} will be called the left

tail of p (in S). It is natural to ask if Theorem 2.2.2 can be strengthened in the following

way: Under the assumptions in Theorem 2.2.2, there exists p ∈ βG \G such that qp = p
for each q ∈ βG \G, that is, βG \G ⊂ Tp. The answer is “no”, as the next result shows.

First we need a set-theoretic lemma and a corollary to it.

Lemma 2.2.6. Suppose that h is a one-to-one mapping of a set O to itself without
fixed points. Then O can be decomposed into three sets A1, A2, and A3 in such a way that
h(Ai) ∩ Ai = ∅, for every i ∈ {1, 2, 3}.

Proof. A subset A of O will be called h-simple if h(A)∩A = ∅. By Zorn’s Lemma,

there exists a maximal chain � of h-simple subsets of O. Put U =
⋃

�. Clearly, U is also

h-simple, that is, the sets U and h(U) are disjoint. It follows that the sets U and h−1(U)

are also disjoint (that is, the set h−1(U) is h-simple). By the construction, U is a maximal

h-simple subset of O.
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Claim 1. The equality O = U ∪ h−1(U) ∪ h(U) holds.

We can assume without loss of generality that the set X = O \ (U ∪ h−1(U)) is not

empty. Take any x ∈ X. Then the set U ∪ {x} is not h-simple, since it is strictly larger

than U. Hence, the set P = (U ∪ {x}) ∩ (h(U) ∪ {h(x)}) is not empty. Since U and h(U)

are disjoint and x = h(x), the set P can be non-empty only if either x ∈ h(U) or h(x) ∈ U.

However, the last case is impossible, since x is not in h−1(U). It follows that x ∈ h(U), and

Claim 1 is proved.

Claim 2. If x ∈ O \ (U ∪ h−1(U)), then h(x) /∈ (U).

Indeed, if h(x) ∈ h(U) then x ∈ U, since h is one-to-one. This contradicts our choice

of the element x.

Put A1 = h−1(U), A2 = U, and A3 = h(U) \ (U ∪ h−1(U)) = O \ (U ∪ h−1(U)).

Now, in view of Claims 1 and 2 it is clear that O = A1 ∪ A2 ∪ A3, the sets A1, A2, and A3

are disjoint, and h(Ai) ∩ Ai = ∅, for every i ∈ {1, 2, 3}. �

Later we will improve Lemma 2.2.6.

Proposition 2.2.7. Suppose that O is a discrete operoid and a ∈ O an element such
that ax = x, for each x ∈ O, and the left action λa is one-to-one on O. Then aq = q, for
each q ∈ βO.

Proof. By Lemma 2.2.6, there are disjoint subsets A1, A2, and A3 of O such that

O = A1 ∪ A2 ∪ A3, and Ai ∩ aAi = ∅, for each i ∈ {1, 2, 3}. Take an arbitrary element

q ∈ βO. Since O = A1 ∪A2 ∪A3, Ai ∈ q, for some i ∈ {1, 2, 3}. We can assume that A1

is in q.

Now assume that aq = q. Then, by a) of Proposition 2.1.9, aA1 ∈ aq = q. Thus, q
contains disjoint sets A1 and aA1, a contradiction. �

We apply Proposition 2.2.7 in the proof of the next result.

Theorem 2.2.8. Let G be a countable infinite discrete group and βG the compact right
topological semigroup generated by it. Then, for each q ∈ βG\G, there exists p ∈ βG\G
such that pq = q.

Proof. Assume the contrary, and fix q ∈ βG\G such that pq = q for every p ∈ βG\G.

Since G is a group, Proposition 2.2.7 is applicable. Therefore, for each a ∈ G\{e}, aq = q.

Consider the right action 
q on βG. By the assumption, 
q(βG \ G) = {q}. On the

other hand, by Proposition 2.2.7, the set 
q(G \ {e}) does not contain the point q. We put

F = βG \G, A = G \ {e}, and B = 
q(A).

Clearly, every open neighbourhood of F contains all but finitely many points of the set

A. It follows, by the continuity of 
q, that every open neighbourhood of q contains all but

finitely many points of the set B. Since q is not in B, we conclude that Φ = B ∪ {q} is an

infinite compact subspace of βG. It is also clear that Φ is countable. It follows that Φ is

metrizable and not discrete. Hence, Φ contains a non-trivial convergent sequence (in fact,

it is almost obvious that Φ itself, properly enumerated, is such a sequence). This, however,

contradicts [165, Coro. 3.6.15]. �



100 2. RIGHT TOPOLOGICAL AND SEMITOPOLOGICAL GROUPS

For any discrete group G, idempotents in βG can be used to produce natural topologies

on the group G itself. The next statement describes this connection in a somewhat more

general situation.

Theorem 2.2.9. Suppose that S is a discrete monoid with identity e, and p ∈ βS \ S
is an idempotent of the compact semigroup βS. Put �p = {{e} ∪ A : A ∈ p}. Then there
exists a topology �p on S such that S endowed with �p is a left topological semigroup, the
identity e is not isolated in the space (S, �p), and {Int(P) : P ∈ �p} is a base of (S, �p) at
the identity e.

Proof. Clearly, �p is a prefilter on S such that {e} =
⋂

�p. Call a set U ⊂ S open

if for every a ∈ U, there exists P ∈ �p such that aP ⊂ U. By the “left” version of

Construction 1.3.8, the set of all open subsets so defined forms a topology �p on S such

that S, with this topology, is a left topological semigroup.

Notice that every open set U containing e must also contain some A ∈ p. Since every

element of the free ultrafilter p is an infinite set, it follows that every open neighbourhood

of e contains infinitely many points; therefore, e is not isolated in the space (S, �p).

Since p is an idempotent, from Proposition 2.2.4 it follows that the prefilter �p satisfies

the next condition:

(int) For each U ∈ �p, there exists V ∈ �p such that for each x ∈ V , there exists

W ∈ �p with xW ⊂ U.

Indeed, we just apply Proposition 2.2.4 with A = U \ {e}, choose the corresponding

elements B ∈ p and, for every Cb ∈ p, Cb ∈ p, and put V = {e}∪B and Wb = {e}∪ bCb.

Since eU = U, it is clear that condition (int) is satisfied.

Let us check that {Int(P) : P ∈ �p} is a base of the space (S, �p) at the identity e.

By the definition of �p, every open neighbourhood O of e contains an element P of the

family �p. Then Int(P) ⊂ O. Since the set Int(P) is obviously open, it remains to show

that e ∈ Int(P), for each P ∈ �p.

Take any P ∈ �p and put

IP = {x ∈ P : xW ⊂ P for some W ∈ �p}.
Claim. The set IP is open in (S, �p) and e ∈ IP .

Clearly, e ∈ IP since eP = P and P ∈ �p. To show that IP is open, take any a ∈ IP .

There exists U ∈ �p such that aU ⊂ P (by the definition of IP ). Since �p satisfies condition

(int), we can choose V ∈ �p such that for each x ∈ V there exists Wx ∈ �p with xWx ⊂ U.

Let us show that aV ⊂ IP . Take any y ∈ aV . Then y = ax, for some x ∈ V . By the choice

of V , there exists Wx ∈ �p such that xWx ⊂ U. Then we have yWx = axWx ⊂ aU ⊂ P .

It follows that y ∈ IP , that is, in view of the choice of y, aV ⊂ IP , and IP is open. �
In the case when S = G is a group we can add more information on the topology �p

defined above.

We recall that a space X is extremally disconnected if the closure of any open subset

of X is open. Every discrete space is clearly extremally disconnected. There are lots

of compact extremally disconnected spaces — one can take, for example, the Čech–

Stone compactification βD of any discrete space D. More generally, the Čech–Stone

compactification βX of every extremally disconnected Tychonoff space X is extremally

disconnected [165, Theorem 6.2.27].
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It is still an open question, formulated for the first time in [17], in 1967, whether there

exists in ZFC a non-discrete extremally disconnected topological group. The next theorem

supplies us with a series of extremally disconnected left topological groups.

Theorem 2.2.10. Suppose that G is an infinite discrete group, p an idempotent in
βG \ G, and G is endowed with the topology �p defined in the proof of Theorem 2.2.9.
Then:

1) for each a ∈ G, the family ηa = {Int(aP) : P ∈ �p} = {{a} ∪ Int(aU) : U ∈ p} is a
base of the space G at a;

2) the space G is Hausdorff;
3) G is extremally disconnected;
4) G is a left topological group and, hence, is homogeneous;
5) there are no isolated points in G;
6) the identity e of G belongs to the closure of a set A ⊂ G \ {e} if and only if A ∈ p;
7) for every topology � on G that is strictly larger than the topology �p, there exists an

isolated point in (G, �) (this means that the topology �p is maximal).

Proof. With the topology �p, G is a left topological group and, therefore, every left

action λa on G is a homeomorphism of the space G onto itself. Together with Theorem 2.2.9,

this implies 1) and 4), since every left topological group is homogeneous.

Let us prove 2). Take any a ∈ G different from e. By Proposition 2.2.7, ap = p (since

λa is an injection on G). Since λa(G) = G, we have ap = {aV : V ∈ p}, according to

Proposition 2.1.9. Since p and ap are distinct ultrafilters on G, it follows that we can find

U ∈ p and V ∈ p such that U ∩ aV = ∅. Clearly, we may also assume that e is not in

aV and a is not in U, since p and ap are both free ultrafilters. Now it follows from 1) that

{a} ∪ Int(aV ) and {e} ∪ Int(U) are disjoint open neighbourhoods of a and e, respectively,

in the space (G, �p). Hence, G is Hausdorff.

By Theorem 2.2.9, the point e is not isolated in G. Now from 4) it follows that there

are no isolated points in the space G.

Let us prove 6). Take any A ⊂ G such that e ∈ A and e /∈ A, and let P be any element

of p. By 1), {e} ∪ P contains an open neighbourhood of e; therefore, P ∩ A = ∅. Since

this is true for each P ∈ p, and p is an ultrafilter, it follows that A ∈ p.

To prove the converse, take any A ∈ p, and let V be any open neighbourhood of e.

From 1) it follows that there exists P ∈ p such that P ⊂ V . Since A and P are both in p,

we conclude that P ∩ A = ∅. Therefore, V ∩ A = ∅. Hence, e ∈ A.

To prove 7), assume that � is a topology on G which properly contains the topology

�p. Then there exist a set A ⊂ G and a point a ∈ G such that a is in the closure of A in

the space (G, �p), while a is not in the closure of A in the space (G, �). Since the space

(G, �p) is homogeneous, we can assume that a = e. Since e is not in the closure of A in

the space (G, �), there exists W ∈ � such that e ∈ W and W ∩A = ∅. On the other hand,

since e is in the closure of A in (G, �p), it follows from 6) that A ∈ p. Therefore, by 1),

A ∪ {e} contains a set U ∈ �p such that e ∈ U. Then U is an open neighbourhood of e in

the space (G, �) as well, since �p ⊂ �. Then, clearly, U ∩W = {e}, that is, the point e is

isolated in (G, �).

Finally, let us prove that (G, �p) is extremally disconnected. Take any open subset V

of G and assume that V is not open. Then there exists a ∈ V ∩ G \ V . Since (G, �p) is
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homogeneous, we can again assume that a = e. Then, by 6), both V and G \ V are in p.

However, these two sets are, obviously, disjoint. This contradiction completes the proof of

3) and of the theorem. �

In connection with Theorems 2.2.9 and 2.2.10 it is natural to ask what happens if we

assume p to be any free ultrafilter on the monoid S (not necessarily an idempotent) What

remains of Theorems 2.2.9 and 2.2.10 in this case? Here is a partial answer to this question.

Theorem 2.2.11. Suppose that G is a discrete group, e is the identity of G, and
p ∈ βG \ G. Put �p = {{e} ∪ U : U ∈ p} and �ap = {{a} ∪ aU : U ∈ p}, for each
a ∈ G. Call a set U ⊂ G open if, for every a ∈ U, there exists P ∈ �ap such that P ⊂ U.
Then:

1) the set of all open subsets so defined forms a topology �p on G such that G, with this
topology, is a left topological group;

2) the space (G, �p) is extremally disconnected, homogeneous, and satisfies the T1-
separation axiom;

3) the space (G, �p) is dense in itself, that is, there are no isolated points in it.

Proof. By the “left” version of Construction 1.3.8, the statement 1) is true. The

homogeneity of (G, �p) follows from 1). There are no isolated points in (G, �p), since the

family �ap does not contain singletons. Since
⋂

�ap = {a} for each a ∈ G, it follows

from the definition of the topology �p that the set G \ {b} is open, for each b ∈ G. Hence,

(G, �p) is a T1-space. It remains to establish that (G, �p) is extremally disconnected.

Claim 1. Suppose H is a closed subset of (G, �p) and a ∈ H a non-isolated point of H .
Then H ∈ ap.

Assume the contrary. Then G \ H ∈ ap, since ap is an ultrafilter on G. The set

U = G \ H is open, therefore, for each b ∈ U, there exists B ∈ �bp such that B ⊂ U.

Since U ∈ ap, we have U ∪ {a} ∈ �ap. It follows from our definition of the topology

�p that the set W = {a} ∪ U is open in G. Then W ∩ H is open in H . Since, obviously,

W ∩H = {a}, the point a is isolated in H , a contradiction.

Claim 2. Every infinite dense in itself closed subset H of G is open.

Assume that H is not open. Then there exists a point a ∈ H such that each element of

the family �ap meets G \ H . Since ap is an ultrafilter, it follows that G \ H ∈ ap. On

the other hand, H ∈ ap by Claim 1, since H is closed and a is not isolated in H . Thus, the

ultrafilter ap contains two disjoint sets, H and G \H , a contradiction.

Now, to show that (G, �p) is extremally disconnected, take any non-empty open subset

V of G and put H = V . Then H is an infinite dense in itself closed subset of (G, �p), since

there are no isolated points in (G, �p). Hence, by Claim 2, V = H is an open set, that is,

(G, �p) is extremally disconnected. �

There is yet another natural way to use the topology of βG to produce some natural

topologies on G itself. To describe it, we need a couple of elementary facts about right

actions on βG.

Proposition 2.2.12. Suppose that G is a group, p ∈ βG, and b, c are two distinct
elements of G. Then bp = cp.
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Proof. Assume the contrary, and put a = b−1c. From bp = cp it follows that

b−1bp = b−1cp. Thus, p = ep = ap. However, since G is a group, it follows from

Proposition 2.2.7 that a = e, a contradiction, since a = b−1c = e. �
Corollary 2.2.13. Let G be a discrete group. Then, for any q in βG\G, the restriction

of the mapping 
q to G is one-to-one.

Proof. Indeed, in view of the definition of 
q, this is simply a reformulation of

Proposition 2.2.12. �
If G is a discrete group, then we put Gq = 
q(G) and Fq = 
q(βG). We use this

convention from now on. Of course, Gq and Fq are taken with the topology inherited from

βG. Clearly, Gq is dense in Fq, since 
q is a continuous mapping. The subspace Gq is

called the orbit of q in βG under the left action of G (or the G-orbit of q). Clearly, the orbit

of q always contains q.

Proposition 2.2.14. Suppose that G is a discrete group, a ∈ G, and q ∈ βG. Then:

1) The mapping λa restricted to Gq is a homeomorphism of Gq onto itself;
2) 
qλa�G = λa
q�G;
3) λa(
q(b)) = 
q(ab) = abq, for each b ∈ G;
4) The space Gq is homogeneous.

Proof. We first prove 2). Take any b ∈ G. Then λa(b) = ab. Therefore,


qλa(b) = abq. On the other hand, λa(
q(b)) = λa(bq) = abq. It follows that


q(λa(b)) = abq = λa(
q(b)), for each b ∈ G.

Since abq = 
q(ab), 3) follows from 2).

From 3) we see that λa(Gq) ⊂ Gq. It also follows from 3) that λa(
q(a−1b) = 
q(b).

Since Gq = {bq : b ∈ G}, we conclude that λa(Gq) = Gq. However, λa is a

homeomorphism of βG onto itself, since the translations λa and λa−1 are continuous

and λa ◦ λa−1 = λa−1 ◦ λa = idβG. Therefore, the mapping λa restricted to Gq is a

homeomorphism of the subspace Gq onto itself, which is statement 1).

Now take any bq ∈ Gq and cq ∈ Gq, and put a = cb−1. Then, by 3), λa(bq) = abq =

cb−1bq = cq. Therefore, Gq is homogeneous. �
After Proposition 2.2.14 it is natural to ask if 
q restricted to G is actually a homomor-

phism of the group G to the semigroup βG. However, 
q(a)
q(b) = aqbq and 
q(ab) = abq.

Since there is no reason to believe that aqbq = abq, we should not also expect 
q�G to be

a homomorphism.

The reasoning above also shows that the subspace Gq = {bq : b ∈ G} is not, in general,

a subgroup of the semigroup βG. Now we are going to show that we can introduce a new

product operation on the set Gq ⊂ βG in such a way that, with the subspace topology, Gq

will become a left topological group, and 
q will become an isomorphism of the group G
onto the group Gq. In fact, if the last condition is to be satisfied, there is only one way to

define the new operation× on Gq — we have to put aq× bq = abq. Since 
q is one-to-one

on G (see Corollary 2.2.13) and aq = 
q(a), Gq becomes a group, and 
q becomes an

isomorphism of G onto Gq. Obviously, the left action by the element aq on the group Gq

so defined coincides with the restriction of λa to Gq and is therefore, by Proposition 2.2.14,

a homeomorphism of the space Gq onto itself. Hence, Gq is a left topological group. We

sum up the information obtained so far in the next statement.
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Theorem 2.2.15. Suppose that G is a discrete group, q ∈ βG, and the product
operation × on Gq is defined by the formula aq× bq = abq. Then Gq, with this operation
and with the subspace topology, is a left topological group, and the mapping 
q�G is an
isomorphism of the group G onto the group Gq. Furthermore, there exists a unique topology
�′ on G such that G with this topology is a left topological group and 
q is a topological
isomorphism of (G, �′) onto the left topological group Gq.

Proof. Indeed, in view of the argument above, we only have to prove the last statement.

There is only one way to define the topology �′, if we wish the mapping 
q�G to be a

homeomorphism — �′ must be the family of all sets 
−1
q (V ), where V is any open subset

of the space Gq. This definition automatically turns 
q into a homeomorphism. Since each

λa�Gq is a homeomorphism, from 2) and 3) of Proposition 2.2.14 it follows that G with the

topology �′ is a left topological group, a copy of Gq. �
Let us consider some particular cases of the construction described in Proposition 2.2.14

and in Theorem 2.2.15.

Theorem 2.2.16. [V. I. Protasov] Suppose that G is a discrete group and q ∈ βG\G,
q is an idempotent. Then:

1) the subspace Gq = 
q(G) of βG is extremally disconnected and has no isolated points;
2) the closure Fq of Gq in βG is also extremally disconnected;
3) Fq = Gq is the Čech–Stone compactification of the space Gq.

To prove Theorem 2.2.16, we need the following three general results.

Lemma 2.2.17. If S is a right topological semigroup and q is an idempotent in S, then
the subspace Sq of S is a retract of S.

Proof. The mapping 
q is continuous and is a retraction of S onto Sq. Indeed, take

any y ∈ Sq. Then y = xq, for some x ∈ S, and we have 
q(y) = yq = xqq = xq = y. �
Proposition 2.2.18. A dense subspace of an extremally disconnected space is ex-

tremally disconnected.

Proof. Let S be a dense subspace of an extremally disconnected space X. If V is an

open subset of S, choose an open set U in X such that V = U ∩ S. The closure U of U in

X is open, so the closure of V in S, which coincides with U ∩ S, is open in S. Hence S is

extremally disconnected. �
Theorem 2.2.19. Suppose that X is an extremally disconnected compact space, Y is a

retract of X, r : X → Y is a retraction, and that D is a dense subspace of X such that X is
the Čech–Stone compactification of D. Then:

1) Y is extremally disconnected;
2) Y is the Čech–Stone compactification of the subspace r(D).

Proof. Take any open subset V of the space Y , and put U = r−1(V ). Since r is

continuous and a retraction of X onto Y , the set U is open in X and V ⊂ U. Let P be

the closure of U in X. Since X is extremally disconnected, the set P is open in X. Put

H = P ∩ Y .

Claim. H is the closure of V in Y .
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We denote by T the closure of V in Y . Clearly, H is open and closed in Y , and T ⊂ H .

It remains to show that H ⊂ T . Take any y ∈ H . Then y ∈ Y and, therefore, r(y) = y. On

the other hand, y ∈ P = U, which implies, by the continuity of r, that y = r(y) ∈ V , since

r(U) ⊂ V . Since y ∈ Y , it follows that y ∈ T . Hence, H = T , and T is open in Y .

It remains to prove the second statement of Theorem 2.2.19, which will obviously imply

item 3) of Theorem 2.2.16.

Let g be any bounded real-valued function continuous on the space r(D). Then f = gr
is a bounded continuous real-valued function on the subspace Z = r−1(r(D)) of the space

X. Clearly, D ⊂ Z. We also have r(D) ⊂ Z and f �r(D) = g, since r is the identity

mapping on r(D). From X = βD and D ⊂ Z ⊂ X it follows that X = βZ. Therefore, f
can be extended to a continuous real-valued function fX on X. However, Y is a subspace

of X. Therefore, the restriction of fX to Y is a continuous real-valued function extending

the function g. �
Proof of Theorem 2.2.16. Note that q is in the closure of G \ {e}. The mapping 
q

is continuous and one-to-one on G, by Corollary 2.2.13. It follows that the point 
q(q) is

in the closure of the set Gq \ {q} = 
q(G \ {e}). However, 
q(q) = qq = q, since q is an

idempotent. Hence, q ∈ Gq \ {q}, and the point q is not isolated in Gq. Since the space

Gq is homogeneous by Proposition 2.2.14, Gq is dense in itself.

Since G is dense in βG and 
q is continuous, we have Gq ⊂ 
q(βG) = Fq. Moreover,

since βG is compact and Hausdorff, Fq is compact and closed in βG.

By Lemma 2.2.17, it follows that Fq is a retract of βG. Now, as G is discrete, the space

βG is extremally disconnected (see [165, Coro. 6.2.28]). Since every dense subspace of an

extremally disconnected space is extremally disconnected by Proposition 2.2.18, items 1)–3)

of the theorem follow from Theorem 2.2.19. �
Combining Theorems 2.2.15, 2.2.16, and 2.2.2, we obtain immediately the following

corollary:

Corollary 2.2.20. Every infinite discrete group G admits an extremally disconnected
Tychonoff topology � such that (G, �) is a left topological group without isolated points.

The advantage of Corollary 2.2.20 compared to Theorem 2.2.10 is that the topology

� on G in Corollary 2.2.20 is automatically completely regular, while the topology �p in

Theorem 2.2.10 need not be even regular.

Here is an important special case of Theorem 2.2.15:

Theorem 2.2.21. Suppose G is a discrete Abelian group, and q ∈ βG \ G is an
idempotent. Then hq = 
q�G is a monomorphism of the group G to the semigroup βG, and
the image Gq = hq(G) is an extremally disconnected semitopological Abelian subgroup of
the right topological semigroup βG.

Proof. The new element in this statement, compared to Theorem 2.2.15, is that to make

the mapping 
q�G into a homomorphism, we do not have to change the product operation

on Gq — the multiplication which is already there fits well.

Indeed, 
q(xy) = xyq = xyqq = xqyq = 
q(x)
q(y) (since yq = qy, for each y ∈ G,

according to Proposition 2.1.5). Thus, hq is a homomorphism of G to βG. Therefore,

Gq = hq(G) is a subgroup of the semigroup βG. Clearly, hq = 
q�G is a monomorphism

(see Corollary 2.2.13). By Theorem 2.2.16, Gq is extremally disconnected. Finally,
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Gq is a left topological group, since it is a subgroup of the right topological semigroup

βG. However, Gq is commutative, since it is isomorphic to G. It follows that Gq is a

semitopological Abelian subgroup of the right topological semigroup βG. �
We will now show how Theorem 2.2.10 can be considerably strengthened. First, we

introduce some terminology and notation.

Suppose S is a discrete space and ξ a filter base on S. Then Fξ stands for the subspace

of βS consisting of all p ∈ βS such that ξ ⊂ p. Clearly, Fξ is a closed subspace of βS.

Therefore, Fξ is compact. We use this notation below.

Proposition 2.2.22. Suppose that G is an infinite discrete group and ξ is a filter base
on G such that for each U ∈ ξ there exists V ∈ ξ satisfying VV ⊂ U. Then Fξ is a compact
subsemigroup of the semigroup βG.

Proof. We already mentioned that Fξ is compact. It is also clear that Fξ is not empty.

It remains to show that Fξ is closed under multiplication.

Take any p and q in Fξ . We have to show that ξ ⊂ pq. Assume that U is any element

of ξ. By the restriction on ξ, there exists V ∈ ξ such that VV ⊂ U. Then V ∈ p and V ∈ q.

Now from the equivalence of a) and c) of Proposition 2.1.8 it follows that VV ∈ pq. Hence,

U ∈ pq, that is, ξ ⊂ pq and pq ∈ Fξ . �
Let G be a paratopological group and ξ be the family of all open neighbourhoods of

the identity e in G. Take an ultrafilter p on G. We will say that p converges to e if ξ ⊂ p.

Corollary 2.2.23. Let (G, �) be a non-discrete paratopological group, where � is
the topology on it. Then the set F of all free ultrafilters on G converging to the identity e
of G is a compact subsemigroup of the semigroup βG \ G, where βG is the Čech–Stone
compactification of the discrete group G.

Proof. First, we note that βG \ G is indeed a subsemigroup of βG, since G is

a group (see Corollary 2.1.16). The family ξ = {U ∈ � : e ∈ U} satisfies the

restrictions imposed on ξ in Proposition 2.2.22, since (G, �) is a paratopological group.

Therefore, by Proposition 2.2.22, Fξ is a compact subsemigroup of βG. It is easy to

see that F = Fξ ∩ (βG \ G). It is also clear that F = ∅, since the paratopological

group topology � is not discrete. Since the intersection of two compact subsemigroups

is a compact subsemigroup whenever this intersection is not empty, it follows that F is a

compact subsemigroup of the semigroup βG \G. �
Here is a strengthening of Theorem 2.2.10.

Theorem 2.2.24. [V. I. Protasov] Let (G, �) be a non-discrete paratopological group.
Then there exists a maximal non-discrete Hausdorff topology �′ on G such that (G, �′) is
a left topological group and � ⊂ �′.

Proof. Let βG be the Čech–Stone compactification of the discrete group G and F
the set of all free ultrafilters on G converging to e in the topology �. According to

Corollary 2.2.23, F is a compact subsemigroup of βG and F ⊂ βG \G. Therefore, there

exists an idempotent p in F . By Theorem 2.2.10, �p is a maximal Hausdorff topology on

G such that (G, �p) is a non-discrete left topological group. Let us show that � ⊂ �p.

Take any U ∈ � such that e ∈ U. Since both (G, �p) and (G, �) are homogeneous, it

is enough to find V ∈ �p such that e ∈ V ⊂ U. Since p converges to e in the space (G, �),
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there exists P ∈ p such that P ⊂ U. By item 1) of Theorem 2.2.10, e ∈ V ⊂ {e} ∪ P , for

some V ∈ �p. Hence, e ∈ V ⊂ U, and the argument is complete. �

Example 2.2.25. Using Theorem 2.2.21, we can easily construct a non-discrete

extremally disconnected quasitopological group. Indeed, let G be the σ-product of ω copies

of the Boolean group Z(2) = {0, 1}. We endow G with the discrete topology, and apply

Theorem 2.2.21 to it. Clearly, G and Gq are Boolean groups, that is, the inverse operation

in both groups is the identity mapping. Hence, the inverse operation in Gq is continuous,

and Gq is the quasitopological group we are looking for. �

It is still an open problem whether there exists in ZFC, without additional set-theoretic

assumptions, a non-discrete extremally disconnected topological group (see Problem 4.5.4).

In Theorem 4.5.22 we shall prove the existence of such a group under the assumption of

Martin’s Axiom.

To conclude this section, we give a quite unexpected application of Theorem 2.2.1 to

finite partitions of semigroups. A semigroup S is called cancellative if zx = zy implies that

x = y, and xz = yz implies that x = y. The additive semigroup of positive integers N is

an example of a cancellative commutative semigroup. The same set N with multiplication

operation is again a cancellative commutative semigroup.

Theorem 2.2.26. [N. Hindman] Let S be an infinite cancellative semigroup, and
S = P1∪P2∪. . .∪Pm be a finite partition of S. Then there exist a sequence D = {xn : n ∈ ω}
of pairwise distinct elements of S and an integer k ≤ m such that all finite products
xi1xi2 . . . xin with i1 < i2 < · · · < in lie in Pk.

Proof. Consider the Čech–Stone compactification βS of the discrete semigroup S.

By Theorem 2.1.4, βS has the natural structure of a compact right topological semigroup.

Since the semigroup S is cancellative, for any infinite subset C of S and any a ∈ S, the set

aC is also infinite. Therefore, by Proposition 2.1.12, βS \ S is a suboperoid of βS. Since

βS is a right topological semigroup, so is βS \ S. Since S is discrete, we conclude that

βS \S is compact. Therefore, it follows from Theorem 2.2.1 that there exists an idempotent

p ∈ βS \ S.

Since p is an ultrafilter on S, there exists an integer k ≤ m such that Pk ∈ p. Put

A0 = Pk. By Proposition 2.2.4, there exists B0 ∈ p such that B0 ⊂ A0 and for every

b ∈ B0, there exists C ∈ p with bC ⊂ A0. Pick a point x0 ∈ B0 and take C0 ∈ p such that

x0C0 ⊂ A0.

Suppose we have defined sequences A0, . . . , An and C0, . . . , Cn and elements x0, . . . , xn

of S satisfying the following conditions for each i ≤ n:

(i) Ai ∈ p and Ci ∈ p;

(ii) xi ∈ Ai;

(iii) Ai = Ai−1 ∩ Ci−1 if i ≥ 1;

(iv) xiCi ⊂ Ai;

(v) xi = xj if i = j.

Put An+1 = An ∩ Cn. Then An+1 ∈ p, by (i). Again, we apply Proposition 2.2.4 to choose

an element Bn+1 ∈ p such that Bn+1 ⊂ An+1 and for every b ∈ Bn+1, there exists C ∈ p
with bC ⊂ An+1. It remains to pick a point xn+1 ∈ Bn+1 distinct from each xi with i ≤ n
and choose an element Cn+1 ∈ p such that xn+1Cn+1 ⊂ An+1. Clearly, the sequences
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{Ai : i ≤ n + 1}, {Ci : i ≤ n + 1} and {xi : i ≤ n + 1} satisfy conditions (i)–(v) at the

stage n + 1. This finishes our construction of the elements An, Cn in p and points xn ∈ S.

We claim that the set D = {xn : n ∈ ω} is as required. First, all points of D
are pairwise distinct, by (v). Therefore, to complete the proof, it suffices to show that

xi1xi2 . . . xin ∈ A0 = Pk for every increasing sequence 0 ≤ i1 < i2 < · · · < in of integers.

We will show by induction on n = |F |, where F = {i1, i2, . . . , in}, that xi1xi2 . . . xin ∈ Ai1 .

It is clear that if |F | = 1, that is, F = {i1}, then xi1 ∈ Ai1 , by (ii). Suppose that |F | > 1,

and consider the set G = F \ {i1}. Then i2 = min G, so by the inductive hypothesis,

xi2 . . . xin ∈ Ai2 . Since i1 < i2, it follows from (iii) that Ai2 ⊂ Ai1+1 ⊂ Ci1 , and (iv)

implies that xi1Ci1 ⊂ Ai1 . Therefore, xi1xi2 . . . xin ∈ xi1Ai2 ⊂ xi1Ci1 ⊂ Ai1 . The theorem is

proved. �

Corollary 2.2.27. Suppose that an infinite Boolean group G with zero element 0 is
the union of finitely many subsets P1, . . . , Pm. Then there exists a positive integer k ≤ m
such that the set Pk ∪ {0} contains an infinite subgroup of G.

Proof. Taking smaller sets, if necessary, we can assume that the sets Pi are disjoint.

It follows from Theorem 2.2.26 that there exist an integer k ≤ m and an infinite subset

D = {xn : n ∈ ω} of G such that all finite sums xi1 + . . . + xin with i1 < · · · < in are

in Pk ∪ {0}. Since the group G is Boolean (hence, Abelian), these sums form an infinite

subset of G which coincides with the subgroup of G generated by D. �

Exercises

2.2.a. Is Theorem 2.2.1 valid for locally compact topological semigroups?

2.2.b. Refine the conclusion of Theorem 2.2.8 and prove that for every countable infinite group G
and every q ∈ βG \ G, the set {pq : p ∈ βG \ G} = 
q(βG \ G) has cardinality 2c, where

c = 2ω.

2.2.c. Suppose that p is a free ultrafilter on a group G. Is it true that p is an idempotent in βG if and

only if for each A ∈ p there exists a ∈ A such that A ∈ ap (or, equivalently, a−1A ∈ p)?

2.2.d. Give an example of a group G and q ∈ βG such that 
q�G is not a homomorphism when

considered as a mapping onto its image.

Problems

2.2.A. Prove that the set E(βZ) of idempotents of the compact additive semigroup βZ is contained

in
⋂∞

n=1
clβZnZ. Deduce that E(βZ) is not dense in βZ \ Z.

Hint. Use Proposition 2.1.2 to show that, for every integer n ≥ 1, the natural homomorphism

ϕn : Z → Zn
∼= Z/nZ admits an extension to a continuous homomorphism of βZ to Zn.

2.2.B. Show that each of the additive semigroups βN, βZ has 2c idempotents.

2.2.C. (See [241, Theorem 2.7 (d)]) Suppose that S is a compact right topological semigroup, L is a

minimal left ideal of S, and R is a minimal right ideal of S. Prove that there is an idempotent

e ∈ R ∩ L such that R ∩ L = eSe and eSe is a group.

2.2.D. Is there an example in ZFC of a non-discrete extremally disconnected regular (Hausdorff)

paratopological group?

2.2.E. Let S = P1 ∪ . . . ∪ Pm be a partition of a commutative semigroup S and {xn : n ∈ ω} be a

sequence in S. Prove that there exist an integer k ≤ m and a sequence D = {zn : n ∈ ω} of

elements of S satisfying the following conditions:

(a) all finite sums of pairwise distinct elements of D lie in Pk;
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(b) each zn ∈ D has the form zn =
∑

i∈Fn
xi, where every Fn is a finite subset of ω and

Fp ∩ Fq = ∅ for all distinct p, q ∈ ω.

Hint. Modify the argument in the proof of Theorem 2.2.26.

2.2.F. (Y. Zelenyuk [548]) Show that every countable infinite group G admits a non-discrete zero-

dimensional Tychonoff topology such that G with this topology is a quasitopological group.

2.2.G. Show that every countable infinite metrizable space X without isolated points admits a group

structure turning X into a topological group.

Hint. Find a “canonical” topological group homeomorphic to X.

2.2.H. Give an example of a metrizable compact homogeneous space which is not homeomorphic

to any left topological group.

Hint. The Hilbert cube H is homogeneous [275]. On the other hand, every continuous

mapping of H into itself has a fixed point [505]. Therefore, there can be no non-trivial

“translations” on H .

2.2.I. (E. G. Zelenyuk [546]) Show that every countable infinite regular space X admits a group

structure turning X into a left topological group.

2.2.J. Let G be a topological group. Then there exists a Hausdorff compactification S(G) of the

space G such that the multiplication in G admits a natural extension to a multiplication in

S(G) turning S(G) into a right topological group.

Hint. Take the natural right uniformity on G and the strongest precompact uniformity �
contained in it. The completion of G with respect to � is the space S(G) we are looking for.

Open Problems

2.2.1. When is the space (G, �p) constructed in Theorem 2.2.11 Hausdorff? Can it be Hausdorff

when p is not an idempotent?

2.2.2. Is every extremally disconnected Hausdorff (regular) paratopological group a topological

group?

2.2.3. Let G be an infinite discrete group. Can an idempotent p ∈ βG\G be chosen in such a way

that (G, �p) or (G, �′
p) will become a topological group?

2.3. Joint continuity and continuity of the inverse in semitopological groups

We have already described several constructions leading to natural topologies on groups.

However, in many cases these topologies turn the group only into a right topological group

or a semitopological group. In this section we present certain topological conditions under

which a semitopological group becomes a paratopological group or even a topological group.

First, we consider the case of regular second-countable semitopological groups where the

arguments are less abstract and simpler, and their essence is more transparent. We start with

notation which is used throughout the section.

Let X be a semitopological group. For A ⊂ X and B ⊂ X we put 〈A, B〉 =

{x ∈ X : Ax ⊂ B}. Let I(A, B) be the interior of the set 〈A, B〉 in the space X, and

Φ(A, B) = 〈A, B〉 \ I(A, B). Note that if B is closed, then 〈A, B〉 is closed and Φ(A, B) is

closed and nowhere dense in X.

Proposition 2.3.1. Let X be a semitopological group such that the space X is regular
and has a countable base �. Put � = {V : V ∈ �}, � = {〈V, F〉 : V ∈ �, F ∈ �},
� = {Φ(V, F ) : V ∈ �, F ∈ �}, Z =

⋃
�, and Y = X \ Z. Then, for each b ∈ Y , the

multiplication is jointly continuous at b, that is, given any a ∈ X and any neighbourhood
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O(c) of the point c = ab, there exist open sets O(a) and O(b) in X such that a ∈ O(a),
b ∈ O(b), and O(a)O(b) ⊂ O(c).

Proof. Clearly, the family � = {〈V, F〉 : V ∈ �, F ∈ �} is countable and consists

of closed sets. Hence � = {Φ(V, F ) : V ∈ �, F ∈ �} is a countable family of closed

nowhere dense sets in X.

Suppose that a ∈ X, b ∈ Y , and c = ab. Since X is regular and � is a base of the

space X, we can fix W ∈ � such that c ∈ W ⊂ W ⊂ O(c). Since the multiplication

in X is separately continuous, there exists V ∈ � such that a ∈ V and Vb ⊂ W . Then

b ∈ 〈V, W〉 ∈ �. Since b /∈ Z =
⋃

�, b is not in Φ(V, W ). It follows that b ∈ I(V, W ).

The set I(V, W ) is open and, by the definition of it, Vx ⊂ W ⊂ O(c), for each x ∈ I(V, W ).

Hence, O(a) = V and O(b) = I(V, W ) are the neighbourhoods of a and b we were looking

for. �

Proposition 2.3.1 plays the key role in the proof of the following result:

Theorem 2.3.2. If a regular semitopological group X has a countable base, and is not
of the first category (in itself), then X is a paratopological group, that is, the multiplication
in X is jointly continuous at every point.

Proof. In the notation of Proposition 2.3.1, the set Y = X \Z is not empty, since Z is

of the first category in X. Therefore, there exists a point b ∈ X such that the multiplication

is jointly continuous at b. It remains to derive from this that the multiplication is jointly

continuous at every point y ∈ X.

Take any x ∈ X, and let z = xy. Let W be any open neighbourhood of z. Since G
is a group, there exists h ∈ G such that b = hy. Then y = h−1b. Put a = xh−1. Then

ab = xh−1hy = xy = z. Since the multiplication is jointly continuous at b, there are open

sets U and V such that a ∈ U, b ∈ V , and UV ⊂ W . Put U1 = Uh and V1 = h−1V . Then

U1 and V1 are open, since the multiplication is separately continuous, x = ah ∈ Uh = U1,

y = h−1b ∈ h−1V = V1, and U1V1 = Uhh−1V = UV ⊂ W . This completes the

proof. �

Now we present our first non-trivial statement on the automatic continuity of the inverse

mapping in paratopological groups.

Proposition 2.3.3. Let X be a compact Hausdorff paratopological group. Then the
inverse operation in X is continuous and, therefore, X is a topological group.

Proof. Let e be the neutral element of X. Since X is Hausdorff, the set M = {(x, y) ∈
X×X : xy = e} is closed in X×X.

Now, let F be any closed subset of X, and P = (X × F ) ∩M. Then F and X × F
are compact, P closed in X × F , since M is closed, and, therefore, P is compact. Now,

(x, y) ∈ P if and only if y ∈ F and xy = e, that is, x = y−1. It follows that the image of P
under the natural projection of X × X onto the first factor X is precisely F−1. Since F is

compact and the projection mappings is continuous, we conclude that F−1 is compact, and

therefore, closed in X. Thus, the inverse operation in X is continuous. �

Since a compact Hausdorff space is never of the first category in itself [165, Th. 3.9.3],

the next result follows directly from Theorem 2.3.2 and Proposition 2.3.3.
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Theorem 2.3.4. Every compact metrizable semitopological group is a topological
group.

By a somewhat more involved argument we can improve both Proposition 2.3.3 and

Theorem 2.3.4. First, we need a lemma:

Lemma 2.3.5. Suppose that X is a Hausdorff paratopological group. Then, for each
compact subset F of X, the set F−1 is closed in X.

Proof. Let x be in the closure of F−1. There exists an ultrafilter ξ on F−1 converging

to x. Then η = {P−1 : P ∈ ξ} is an ultrafilter on F . Since F is compact, there exists a

point y ∈ F such that η converges to y. From the continuity of the multiplication in X it

follows that the family γ = {PP−1 : P ∈ ξ} converges to the point z = xy. On the other

hand, the neutral element e of X clearly belongs to all elements of γ. Since X is Hausdorff,

we conclude that z = e, which implies that x = y−1 ∈ F−1. Thus, F−1 is closed in X. �
Proposition 2.3.6. Suppose that X is a paratopological group, which is a Hausdorff

locally compact space with a countable base. Then the inverse operation on X is continuous.

Proof. Let � be a countable base in X such that for each V ∈ �, the closure of V is

compact. For V in �, let I(V ) be the interior of the set (V )−1 and Φ(V ) = (V )−1 \ I(V ).

By Lemma 2.3.5, (V )−1 is closed; therefore, Φ(V ) is closed and nowhere dense in X,

for each V in �. It follows that the set Z =
⋃{Φ(V ) : V ∈ �} is of the first category in

X. Since the space X is locally compact and Hausdorff, it has the Baire property. It follows

that the set Y = X \ Z is not empty.

Fix y ∈ Y and put x = y−1. Let us check that the inverse operation is continuous at

y. Take any open set W containing x. By the regularity of X, there exists V ∈ � such that

x ∈ V and V ⊂ W . Then y = x−1 ∈ (V )−1. Since y is not in Z, it follows that y ∈ I(V ).

Now, I(V ) ⊂ W−1, since V ⊂ W . This completes the proof of the continuity of inverse at

y. Obviously, it follows that the inverse operation is continuous at all points of X. �
Let us prove that the multiplication in every locally compact Hausdorff semitopological

group is jointly continuous. For this, we need some more sophisticated techniques.

A mapping f of a product space X×Y to a space Z is called strongly quasicontinuous
at a point (a, b) ∈ X× Y if for each open neighbourhood W of f (a, b) in Z and every open

neighbourhood U of a in X, there exist a non-empty open set U1 in X and an open set V in

Y such that U1 ⊂ U, b ∈ V , and f (U1 × V ) ⊂ W .

Lemma 2.3.7. Suppose that X and Y are Čech-complete spaces and f is a separately
continuous mapping of X× Y to a regular space Z. Then f is strongly quasicontinuous at
every point of X× Y .

Proof. Fix a ∈ X, b ∈ Y , put c = f (a, b), and let W1 be a neighbourhood of c
in Z. Since Z is regular, we can find open neighbourhoods W0 and W of c such that

W0 ⊂ W ⊂ W ⊂ W1.

Take the Čech–Stone compactifications βX and βY of X and Y , and fix a decreasing

sequence {Pn : n ∈ N} of open sets in βX and a decreasing sequence {Hn : n ∈ N} of

open sets in βY such that X =
⋂∞

n=1 Pn and Y =
⋂∞

n=1 Hn. A subset O of X (of Y ) will be

called n-small for some n ∈ N if the closure of O in βX (in βY ) is contained in Pn (in Hn,

respectively).
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We will construct by induction certain decreasing sequences of open sets {Un : n ∈ N}
and {Vn : n ∈ N} in X and Y , respectively, and sequences {xn : n ∈ N} ⊂ X and

{yn : n ∈ N} ⊂ Y . We proceed as follows.

Step 1. Put M1 = {x ∈ X : f (x, b) ∈ W0}. Then M1 is open, by the separate

continuity of f , and a ∈ M1, since f (a, b) ∈ W0. Let U1 be a 1-small open subset of X
such that a ∈ U1 ⊂ M1, and let V1 be a 1-small open subset of Y such that b ∈ V1. If

f (U1 × V1) ⊂ W1, we are done. Assume now that f (U1 × V1) \W1 is not empty. Then we

can choose x1 ∈ U1 and y1 ∈ V1 such that f (x1, y1) ∈ Z \W .

Step 2. Put M2 = {x ∈ U1 : f (x, y1) ∈ Z \W}. Then x1 ∈ M2, and M2 is open in X,

by the separate continuity of f . Let U2 be a 2-small open neighbourhood of x1 in X such

that U2 ⊂ U1 ∩M2. Put L2 = {y ∈ V1 : f (x1, y) ∈ W0}. It follows from x ∈ U1 ⊂ M1

that b ∈ L2, and L2 is open in Y , by the separate continuity of f . Let V2 be a 2-small open

neighbourhood of b in Y such that V2 ⊂ L2 and V2 ⊂ V1. If f (U2 × V2) ⊂ W1, we are

done. Assume now that f (U2 × V2) \W1 is not empty. Then we can choose x2 ∈ U2 and

y2 ∈ V2 such that f (x2, y2) ∈ Z \W .

Step n + 1. Assume that we have already defined n-small open sets Un and Vn in X
and Y , respectively, and points xn ∈ Un and yn ∈ Vn such that Un ⊂ M1, b ∈ Vn, and

f (xn, yn) ∈ Z \W . Then we put Mn+1 = {x ∈ Un : f (x, yn) ∈ Z \W}. Clearly, the set

Mn+1 is open and xn ∈ Mn+1. Now we let Un+1 be any (n + 1)-small open neighbourhood

of xn in X such that Un+1 ⊂ Mn+1 and Un+1 ⊂ Un. Put Ln+1 = {y ∈ Vn : f (xn, y) ∈ W0}.
Clearly, this set is open and contains the point b, since xn ∈ Un ⊂ M1. Now let Vn+1 be

any (n + 1)-small open neighbourhood of yn in Y such that Vn+1 ⊂ Ln+1 and Vn+1 ⊂ Vn.

Again, if f (Un+1 × Vn+1) ⊂ W1, we are done. Assume that this is not the case, and

choose points xn+1 ∈ Un+1 and yn+1 ∈ Vn+1 such that f (xn+1, yn+1) ∈ Z \W . Step n + 1

is complete.

The sequences just constructed have the following properties: Un+1 ⊂ Un, Vn+1 ⊂ Vn,

xn ∈ Un, yn ∈ Vn, and Un, Vn are n-small, for each n ∈ ω. It follows from the last property

that the sets P =
⋂∞

n=1 Un and H =
⋂∞

n=1 Vn are compact subsets of X, that the family

{Un : n ∈ N} is a base of neighbourhoods of the set P in X, and the family {Vn : n ∈ N}
is a base of neighbourhoods of the set H in Y . Therefore, there exists an accumulation

point x∗ for the sequence {xn : n ∈ N} in X. Since Un+1 ⊂ Un, the point x∗ belongs to

each Un. By a similar reason, some point y∗ in Y is an accumulation point of the sequence

{yn : n ∈ N}. Now, from x∗ ∈ Un+1 ⊂ Mn+1 it follows that f (x∗, yn) ∈ Z \W , for each

n ∈ N. Since f is separately continuous, we conclude from this that f (x∗, y∗) ∈ Z \W .

Fix k ∈ N, and take any n ∈ N such that n > k. Then yn ∈ Vn ⊂ Vk+1 ⊂ {y ∈ Y :

f (xk, y) ∈ W0}. Therefore, f (xk, yn) ∈ W0. Since this holds for each n > k, it follows, by

the separate continuity of f , that f (xk, y∗) ∈ W0. Then again, by the separate continuity of

f , f (x∗, y∗) ∈ W0 ⊂ W , a contradiction. The proof of Lemma 2.3.7 is complete. �

Lemma 2.3.8. Suppose that X is a locally compact Hausdorff semitopological group.
Then, for any points a ∈ X and b ∈ X, there are open sets U and V in X such that a ∈ U,
b ∈ V , and the closure of UV is compact.

Proof. Fix an open set W in X such that ab ∈ W and W is compact. By Lemma 2.3.7,

the multiplication in X is a strongly quasicontinuous mapping of X×X to X. Therefore, one
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can find a non-empty open subset U1 of X and an open subset V of X such that b ∈ V and

U1V ⊂ W . There is h ∈ X such that a ∈ hU1. Then U = hU1 is an open neighbourhood

of a such that UV = hU1V ⊂ hW . Since the multiplication in X is separately continuous,

hW is compact and hW = hW . Therefore, hW is compact, and the closure of UV is

compact. �

Here is the promised result on the joint continuity of the multiplication in locally

compact semitopological groups which, in its turn, is an important step towards the proof

of Theorem 2.3.12.

Proposition 2.3.9. Suppose that X is a locally compact Hausdorff semitopological
group. Then the multiplication in X is continuous, that is, X is a paratopological group.

Proof. Fix a and b in X, and put c = ab. Let W be an open set in X such that c ∈ W ,

and fix z ∈ X \W . We claim that there are open sets U and V in X such that a ∈ U, b ∈ V ,

and z is not in UV .

We can assume that z is not in the closure of W — otherwise, by the regularity of X,

we can replace W by a smaller open neighbourhood of c the closure of which is contained

in W . Fix an open neighbourhood H of the neutral element e in X such that Hz ∩W = ∅.

The set Ha is also open, and a ∈ Ha.

The multiplication mapping of X×X to X is strongly quasicontinuous at each point of

X×X, by Lemma 2.3.7. Therefore, we can find a non-empty open set U1 in X and an open

set V in X such that U1 ⊂ Ha, b ∈ V , and U1V ⊂ W . There is h ∈ H such that ha ∈ U1,

and there is an open set U in X such that a ∈ U and hU ⊂ U1. Then we have:

(hU)V ⊂ U1V ⊂ W.

Therefore, hUV ⊂ W , by the separate continuity of multiplication.

Assume that z ∈ UV . Then hz ∈ hUV ⊂ W , and hz ∈ Hz. It follows that the set

W ∩Hz is not empty, a contradiction. This proves our claim.

By virtue of Lemma 2.3.8, we can fix open sets U0 and V0 in X such that a ∈ U0, b ∈ V0,

and the closure of U0V0 is compact. Let �a be the family of all open neighbourhoods of a
contained in U0, and �b the family of all open neighbourhoods of b contained in V0. For

subsets U and V of X, we put FU,V = (X \W ) ∩ UV . Clearly, FU,V is always closed.

Now let η = {FU,V : U ∈ �a, V ∈ �b}. Obviously, each P ∈ η is compact. If FU,V

is empty, for some FU,V ∈ η, then UV ⊂ W , and the continuity of f at (a, b) is verified.

Assume that all elements of η are non-empty. Then the family η is centered, and since the

elements of η are closed compact sets, there is z ∈ ⋂
η. On the other hand, it was shown

above that there are U ∈ �a and V ∈ �b such that z is not in the closure of UV . Then

z /∈ FU,V ∈ η, a contradiction. The proof is complete. �

Let us now give an especially short and elegant proof of the continuity of the inverse

operation in every locally compact Hausdorff paratopological group. Our argument makes

use of the following lemma:

Lemma 2.3.10. Suppose that X is a semitopological group, {Un : n ∈ ω} is a sequence
of open neighbourhoods of the neutral element e of X, and {xn : n ∈ ω} is a sequence of
points in X such that xn ∈ Un, for each n ∈ ω, and the next conditions are satisfied:

a) U2
n+1 ⊂ Un for each n ∈ ω;
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b) the sequence {yk : k ∈ N}, where yk = x1 · · · xk, has an accumulation point y in X.

Then there exists k ∈ ω such that x−1
k+1 ∈ U0.

Proof. Since yU1 is a neighbourhood of y, there exists k ∈ N such that yk ∈ yU1. Put

z = y−1
k+1y. Then

x−1
k+1 = y−1

k+1yk ∈ y−1
k+1yU1 = zU1,

and z is an accumulation point of the sequence {y−1
k+1ym : m ∈ N}, by the separate continuity

of multiplication in X.

It follows from condition a) of the lemma that, for each m > k + 2,

y−1
k+1ym = xk+2 · · · xm ∈ Uk+2 · · ·Um ⊂ Uk+1.

Therefore, z ∈ Uk+1 ⊂ Uk, which implies that

x−1
k+1 ∈ zU1 ⊂ UkU1 ⊂ U0.

This finishes the proof. �
Proposition 2.3.11. If X is a locally compact Hausdorff paratopological group, then

the inverse operation in it is continuous, that is, X is a topological group.

Proof. It is sufficient to check the continuity of the inverse at the neutral element e
of X. Assume the contrary. Then we can find an open neighbourhood U of e such that

for each open set V containing e, V−1 is not a subset of U. Using the regularity of X and

the continuity of multiplication, we can define a sequence of open sets {Un : n ∈ ω} in X
satisfying condition a) of Lemma 2.3.10. Since X is locally compact, we can also assume

that the closure of U0 is compact and contained in U. Now, by the choice of U, we can find a

point xn ∈ Un such that x−1
n is not in U, for each n ∈ ω. Put yk = x1 · · · xk, for each k ∈ N.

Then it easily follows from condition a) that all elements yk are in U0. Since the closure of

U0 is compact, there exists an accumulation point y for the sequence {yk : k ∈ N} in X.

Thus all conditions of Lemma 2.3.10 are satisfied; applying it, we obtain k ∈ ω such that

x−1
k+1 ∈ U0, contradicting U0 ⊂ U and x−1

k+1 ∈ X \ U. This finishes the proof. �
We can sum up the results obtained in Propositions 2.3.9 and 2.3.11 in the following

theorem:

Theorem 2.3.12. [R. Ellis] Every locally compact Hausdorff semitopological group
is a topological group.

Let us give now an alternative proof of the continuity of the inverse in any locally

compact Hausdorff paratopological group. We do this since the techniques involved are of

independent interest and can be helpful in other situations.

One of the ideas in the proof is contained in the next lemma:

Lemma 2.3.13. If X is a Hausdorff paratopological group, and B is a compact subset
of X such that the inverse B−1 is compact, then the inverse mapping restricted to B is a
homeomorphism of B onto B−1.

Proof. Let h be the inverse mapping in X restricted to B. By Lemma 2.3.5, the image

of any closed subset of B under h is closed, and the same is true for the mapping h−1 of

B−1 onto B. Therefore, both h and h−1 are closed bijections, which means that h is a

homeomorphism. �
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In fact, what we will need is not Lemma 2.3.13 itself, but a statement of a similar

nature (see Proposition 2.3.15 below). Recall that a space X is said to be a k-space [165,

Section 3.3] if X is Hausdorff and a subset A of X is closed in X if and only if A ∩ F is

compact, for each compact subset F of X.

Lemma 2.3.14. Let f be a mapping of a Hausdorff k-space X onto a Hausdorff k-space
Y such that f−1(F ) is compact for each compact subset F of Y . Then f is continuous.

Proof. It follows from the assumptions of the lemma that for every compact subset K
of Y , the restriction of fK of f to the preimage f−1(K) is continuous. Indeed, if F is closed

in K, then F is compact and the set f−1(F ) is compact. Since X is Hausdorff, f−1(F ) is

closed in X and in f−1(K), which implies the continuity of fK.

Now we claim that the image f (C) is closed in Y , for every compact subset C of X.

Indeed, otherwise we can use the k-property of Y to choose a compact subset K of Y such

that f (C)∩K is not compact. However, since the restriction of f to f−1(K) is continuous,

the image f (C) ∩K of the compact set f−1(K) ∩ C is compact, a contradiction.

The above claim implies immediately that the restriction of f to every compact subset

C of X is continuous. In particular, the image f (C) is compact.

To deduce the continuity of f , it suffices to verify that the set f−1(K) is closed in

X, for every closed subset K of Y . If C is a compact subset of X, then f (C) is a closed,

compact subset of Y . Then F = f (C)∩K is a closed, compact subset of K. It follows that

f−1(K) ∩ C = f−1(F ) ∩ C is a compact subset of X. Since X is a k-space, we conclude

that f−1(K) is closed in X. This completes the proof. �

The result that follows is a corollary to Lemma 2.3.14.

Proposition 2.3.15. If X is a semitopological group such that X is a Hausdorff k-
space, and, for each compact subset B of X, the set B−1 compact, then the inverse mapping
is continuous on X. Hence, X is a quasitopological group.

The general assertion on the continuity of the inverse in locally compact paratopological

groups will be reduced to the following special case of it.

Proposition 2.3.16. Suppose that X is a separable locally compact Hausdorff
paratopological group. Then the inverse operation is continuous.

Proof. Fix a countable subset A of X such that A = X, and let V be an open

neighbourhood of the neutral element e such that Φ = V is compact. We are going to

show that the interior of the set Φ−1 is not empty.

First, let us check that AV−1 = X. Take any x ∈ X. The set xV is open. Therefore,

xV ∩ A is not empty, that is, there exists a ∈ A such that a = xb for some b ∈ V . Then

x = ab−1 ∈ aV−1. It follows that X =
⋃{aV−1 : a ∈ A} = AV−1. Put Fa = aΦ−1.

Since aV−1 ⊂ aΦ−1, we have that

X =
⋃
{Fa : a ∈ A}.

Observe that since Φ is compact, the set Φ−1 is closed, by Lemma 2.3.5. Therefore, Fa is

closed, for each a ∈ A.

Since A is countable, and X has the Baire property, it follows that there is a ∈ A such

that the interior of Fa is not empty. Since all translations in X are homeomorphisms, we
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conclude that the interior of Φ−1 is not empty. Thus, there exists a non-empty open set W
in X such that W is compact and W−1 ⊂ V = Φ. Clearly, both W and W−1 are compact

subsets of X.

Take now any point y ∈ X. Then Wy is an open neighbourhood of y, Wy is compact, and

(Wy)−1 = y−1W−1, which implies that the closure of (Wy)−1 is the compact set y−1W−1.

This argument shows that there is a base � of X such that, for each V ∈ �, the sets V and

V−1 are compact. From this it obviously follows that for every compact subset B of X, the

set B−1 is compact.

Since every locally compact Hausdorff space X is, obviously, a k-space [165, p. 201],

it follows from Proposition 2.3.15 that the inverse mapping in X is continuous. �

Theorem 2.3.17. Suppose that X is a locally compact Hausdorff paratopological
group. Then the inverse operation on X is continuous, so X is a topological group.

Proof. As we have already observed, the locally compact space X is a k-space.

Therefore, in view of Proposition 2.3.15, it suffices to show that if B is a compact subset of

X, then B−1 is compact.

Assume the contrary, and fix an open neighbourhood V of the neutral element e in X
such that V is compact. Since, for each x ∈ X, Vx is open, and the closure of Vx is compact,

we can define by induction a sequence {xn : n ∈ ω} of points in B−1 such that xn+1 is not

in
⋃n

i=0 Vxi.

Denote by A the subgroup of X algebraically generated by the elements of the sequence

{xn : n ∈ ω}, that is, the smallest subgroup of X containing the sequence. Obviously, A is

countable, and Y = A is a separable, locally compact, Hausdorff paratopological group.

Now, from Proposition 2.3.16 it follows that Y is a topological group. The sequence

{x−1
n : n ∈ ω} is contained in B ∩ Y . Therefore, since B is compact, there exists an

accumulation point b for {x−1
n : n ∈ ω} in X. Clearly, the sequence {x−1

n : n ∈ ω}
accumulates at b−1. Put W = V ∩Y . Then W−1 is an open neighbourhood of e in the space

Y . Therefore, W−1b−1 is an open neighbourhood of b−1 in Y , and there exists k ∈ ω such

that xk ∈ W−1b−1. Then b−1 ∈ Wxk. Since Wxk is open in Y , there is m ∈ ω such that

m > k and xm ∈ Wxk. Then xm ∈ Vxk, a contradiction. �

In the next section, Theorem 2.3.17 will be extended to pseudocompact (and regular

countably compact) paratopological groups.

Some further sufficient conditions for a paratopological group to be a topological group

can be obtained with the help of the following lemmas.

Lemma 2.3.18. Suppose that G is a paratopological group, and U any open neigh-
bourhood of the neutral element e in G. Then M ⊂ MU−1, for each subset M of G.

Proof. Put A = {g ∈ G : gU ∩M = ∅} and F = G \ AU. Then, clearly, F is a

closed subset of G and M ⊂ F . Therefore, M ⊂ F . Take any y ∈ F . Then yU ∩M = ∅,

that is, yh = m, for some h ∈ U and m ∈ M. Hence, y = mh−1 ∈ MU−1. Thus,

F ⊂ MU−1. Since M ⊂ F , it follows that M ⊂ MU−1. �

Lemma 2.3.19. Suppose that G is a paratopological group and not a topological group.
Then there exists an open neighbourhood U of the neutral element e of G such that U∩U−1

is nowhere dense in G, that is, the interior of the closure of U ∩ U−1 is empty.
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Proof. The inverse operation in G is discontinuous. Therefore, it is discontinuous

at e, and we can choose an open neighbourhood W of e such that e /∈ Int(W−1). Since

multiplication is continuous in G, we can find an open neighbourhood U of e such that

U3 ⊂ W . We claim that the set U ∩ U−1 is nowhere dense in G.

Assume the contrary. Then there exists a non-empty open set V in G such that V ⊂
U ∩ U−1. From Lemma 2.3.18 it follows that V ⊂ U ∩ U−1 ⊂ (U ∩ U−1)U−1 ⊂ U−2.

Then VU−1 ⊂ U−3 ⊂ W−1. Clearly, V∩U = ∅, and the set VU−1 is open in G. Therefore,

e ∈ VU−1 ⊂ Int(W−1), a contradiction. �
The next corollary follows immediately from Lemma 2.3.19.

Corollary 2.3.20. Suppose that G is a paratopological group such that e ∈ Int U−1,
for each open neighbourhood U of the neutral element e of G. Then G is a topological
group.

For the next result, we need a generalization of Lemma 2.3.5.

Lemma 2.3.21. Suppose that G is a paratopological group. Then, for each compact
subset F of G such that e /∈ F , there exist an open neighbourhood O(F ) of F and an open
neighbourhood O(e) of e such that O(F ) ∩O(e)−1 = ∅.

Proof. For each x ∈ F , we select an open neighbourhood Vx of e such that x−1 /∈ Vx
2.

Then Vxx ∩ Vx
−1 = ∅. Since γ = {Vxx : x ∈ F} is a family of open sets in G covering

the compact set F , there exists a finite subset K of F such that F ⊂ ⋃
x∈K Vxx. Put

O(e) =
⋂

x∈K Vx and O(F ) =
⋃

x∈K Vxx. Then O(e) is an open neighbourhood of e, O(F )

is an open neighbourhood of F , and O(F ) ∩O(e)−1 = ∅. �
Theorem 2.3.22. Suppose that f is a perfect homomorphism of a paratopological

group G onto a topological group H . Then G is also a topological group.

Proof. Put F = f−1f (e), where e is the neutral element of G. Assume that G is not a

topological group. Then, according to Corollary 2.3.20, there exists an open neighbourhood

U of e in G such that e is not in Int(U−1). Put F1 = F \ U. Since F1 is compact and e is

not in F1, Lemma 2.3.21 implies that there exist an open neighbourhood O(F1) of F1 and

an open neighbourhood O(e) of e in G such that O(F1) ∩O(e)−1 = ∅.

Since O = O(F1)∪U is an open neighbourhood of F and the mapping f is closed, there

exists an open neighbourhood V of f (e) in H such that f−1(V ) ⊂ O. We can also assume

that V−1 = V , since H is a topological group. Then (f−1(V ))−1 = f−1(V ) ⊂ O. Finally,

put W = f−1(V ) ∩ O(e) ∩ U. Clearly, W is an open neighbourhood of e contained in U.

We also have W−1 ⊂ (f−1(V ))−1 ⊂ O and W−1 ⊂ O(e)−1. Since O(F1) ∩O(e)−1 = ∅,

it follows that W−1 ⊂ U. Therefore, e ∈ W ⊂ Int(U−1), a contradiction. �
Of course, the statement that every compact Hausdorff paratopological group is a

topological group is a direct corollary of Theorem 2.3.22.

A left semitopological group G is called ω-narrow if for every open neighbourhood V of

the neutral element in G, there exists a countable subset A of G such that AV = G. Similarly,

a right semitopological group G is called ω-narrow if for every open neighbourhood V of

the neutral element in G, there exists a countable subset A of G such that VA = G. A

semitopological group G is said to be ω-narrow if for every open neighbourhood V of the

neutral element in G, there exists a countable set A ⊂ G such that VA = G = AV .
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In the case of topological groups, this concept was introduced by I. I. Guran who called

such groups ω-bounded. To avoid ambiguity (this term has several different meanings in

topology), we change the terminology.

If the set A in the above definition can be taken to be finite, the (left, right) semitopo-

logical group G is said to be precompact or totally bounded. In what follows, the concept

of precompactness will be applied almost exclusively to topological groups.

Theorem 2.3.23. Suppose that G is a topological group, H is a paratopological group
and that ϕ : G→ H is a continuous onto homomorphism. Suppose also that at least one of
the following conditions holds:

1) G is a precompact group;
2) G is ω-narrow group and H has the Baire property.

Then H is a topological group.

Proof. Assume that H is not a topological group. By Lemma 2.3.19, there is an open

neighbourhood U of the neutral element e of H such that U ∩ U−1 is nowhere dense. Let

W be a symmetric neighbourhood of the identity in G such that ϕ(W ) ⊂ U.

Case 1. Since G is a precompact group, there is a finite set A ⊂ G such that G = AW .

Then M = ϕ(W ) ⊂ U ∩ U−1 is nowhere dense, and BM = H , where B = ϕ(A). Hence,

H is the union of a finite family of nowhere dense sets, which is a contradiction.

Case 2. Since G is a ω-narrow group, there is a countable set A ⊂ G such that G = AW .

Then M = ϕ(W ) ⊂ U ∩ U−1 is nowhere dense and BM = H , where B = ϕ(A). Again,

H is the union of a countable family of nowhere dense sets, thus contradicting the Baire

property of H . �
Some interesting applications of Theorem 2.3.23 will be given in Section 5.7. They are

based on the following key result:

Proposition 2.3.24. Suppose that G is a Hausdorff paratopological group with neutral
element e, and let H be a paratopological group which as a topological space coincides
with the topological space G and whose multiplication is given by the rule g× h = hg, for
all g, h ∈ H . Put T = {(g, g−1) ∈ G×H : g ∈ G}. Then:

1) T is closed in the space G×H and is a subgroup of the group G×H;
2) T is a topological group;
3) the natural projection (g, g−1) → g is a continuous isomorphism of the topological

group T onto the paratopological group G.

Proof. It is trivially verified that T is algebraically a subgroup of G×G. Let us show

that T is closed in the space G × H . Assume that (x, y) ∈ (T \ T ). Then y = x−1 and

xy = e. Since G is a paratopological group, we can find open neighbourhoods U and V of

x and y, respectively, in G such that e /∈ UV . Then (U × V ) ∩ T = ∅ and (x, y) ∈ U × V .

Hence, T is closed in G×H , and 1) follows.

Clearly, T is a paratopological group. The statement 3) is also obvious. It remains to

verify the continuity of the inverse in T . It suffices to do this at the neutral element (e, e)

of T . A basic neighbourhood W of (e, e) in T is of the form T ∩ (U × U), where U is an

open neighbourhood of e in G. Take any element (g, g−1) of W . Then g ∈ U and g−1 ∈ U.

It follows that (g, g−1)−1 = (g−1, g) ∈ (U × U) ∩ T = W , that is, W−1 = W , and the

continuity of the inverse mapping in T at (e, e) is verified. �
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We conclude this section with a corollary to Proposition 2.3.24.

Corollary 2.3.25. If a Hausdorff paratopological group G is σ-compact, then there
exists a σ-compact topological group T and a continuous isomorphism of T onto G.

Proof. Let G =
⋃∞

n=0 Fn, where each Fn is a compact subset of a Hausdorff

paratopological group G. As in Proposition 2.3.24, denote by H a paratopological

group which as a topological space coincides with the topological space G and whose

multiplication is given by the rule g × h = hg, for all g, h ∈ H . Clearly, the space H is

σ-compact. Then the product space G×H and its closed subspace T = {(g, g−1) : g ∈ G}
are also σ-compact. According to Proposition 2.3.24, T is a topological group and the

mapping π : T → G, π(g, g−1) = g, is a continuous isomorphism of T onto G. �

Exercises

2.3.a. Can one weaken ‘semitopological group’ to ‘right topological group’ in Theorem 2.3.2?

2.3.b. Let G be a paratopological group and H a dense subgroup of G. Show that if H with the

topology inherited from G is a topological group, then so is G.

2.3.c. Suppose that f : G → H is a continuous isomorphism of a paratopological group G onto a

compact topological group H . Is G then a topological group? What if G is first-countable?

2.3.d. Is every precompact paratopological group a topological group?

2.3.e. Give an example of a first-countable, countably compact, locally compact, normal topological

semigroup with identity which is commutative, but is neither compact nor (algebraically) a

group.

2.3.f. Suppose that G is a topological group, H is a Tychonoff paratopological group and that

ϕ : G → H is a continuous onto homomorphism. Suppose also that G is separable and that

H has a dense subspace homeomorphic to the space of irrational numbers. Prove that H is

a topological group.

2.3.g. Let G be a paratopological group with topology τ, and let τ−1 = {U−1 : U ∈ τ} be

the conjugate topology of G. A real-valued function f on G is called bicontinuous if

f−1(−∞, r) ∈ τ and f−1(r,∞) ∈ τ−1, for each r ∈ R. The group G is said to be

2-pseudocompact if every bicontinuous real-valued function on G is bounded.

a) Give an example of a pseudocompact paratopological group which fails to be 2-

pseudocompact.

b) Show that a countably compact paratopological group is 2-pseudocompact.

Hint. Let G = Z be the additive group of integers with paratopological group topology τ
whose base at zero consists of the sets Un = {0} ∪ {k ∈ Z : k ≥ n}, n ∈ N. Verify that

(G, τ) is as required.

Problems

2.3.A. (S. Romaguera and M. Sanchis [412]) Prove that every compact paratopological group

satisfying the T1 separation axiom is a Hausdorff topological group.

2.3.B. Suppose that G is a regular paratopological group such that some neighbourhood of the neutral

element in G is countably compact. Is G a topological group? (See also Problem 2.4.5.)

2.3.C. Suppose that f is an open continuous homomorphism of a regular paratopological group G
onto a topological group H , and that the kernel of f is compact. Is G a topological group?

2.3.D. Suppose that f is a continuous isomorphism of a metrizable paratopological group G onto

a metrizable topological group H . Is G a topological group?
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2.3.E. Suppose that G is a Tychonoff paratopological group such that the inverse to every compact

subset of G is σ-compact. Is G a topological group? Must G be Lindelöf?

Hint. Consider the Sorgenfrey line or its square.

2.3.F. (O. V. Ravsky [398]) Prove that every commutative Hausdorff paratopological group admits

a continuous isomorphism onto a Hausdorff topological group.

Hint. Let � be a local base at zero of a commutative paratopological group G. Show that the

family {U − U : U ∈ �} is a local base at zero for a Hausdorff topological group topology

on G.

2.3.G. (S. Garcı́a-Ferreira, S. Romaguera, and M. Sanchis [186]) Let G be a paratopological group

with topology τ, and τ−1 be the conjugate topology of G (see Exercise 2.3.g). Prove that G
is 2-pseudocompact iff for every decreasing sequence {Un : n ∈ ω} of non-empty τ-open

sets in G and every decreasing sequence {Vn : n ∈ ω} of non-empty τ−1-open sets in G,

the intersections
⋂

n∈ω
cl(G,τ−1)Un and

⋂
n∈ω

cl(G,τ)Vn are non-empty.

2.3.H. (T. G. Raghavan and I. L. Reilly [395]) Prove that every countably compact paratopological

group of countable pseudocharacter is a topological group.

Open Problems

2.3.1. Let G be a σ-compact paratopological group. Does there exist a continuous isomorphism of

G onto a topological group? (See Corollary 2.3.25 and Problems 2.3.F and 2.4.2.)

2.3.2. (O. Alas and M. Sanchis [4]) Is every 2-pseudocompact paratopological group G of countable

pseudocharacter a topological group provided that G satisfies the T1 separation axiom? (See

also Exercise 2.3.g and Problems 2.3.G and 2.3.H.)

2.4. Pseudocompact semitopological groups

Here we show that every pseudocompact paratopological group is a topological group,

but this assertion cannot be extended either to semitopological or quasitopological groups.

It is well known that a Tychonoff space X is pseudocompact iff every locally finite family

of open sets in X is finite. In fact, pseudocompactness is defined only in the realm of

Tychonoff spaces since its definition makes use of continuous real-valued functions (see

[165, Section 3.10]). To present results in a general form, we recall that a topological space

X is called feebly compact if every locally finite family of open sets in X is finite. Therefore,

‘feebly compact’ is equivalent to ‘pseudocompact’ for Tychonoff spaces.

Theorem 2.4.1. [A. V. Arhangel’skii and E. A. Reznichenko] Suppose that G is a
paratopological group such that G is a dense Gδ-set in a regular feebly compact space X.
Then G is a topological group.

Proof. Assume the contrary. Then, by Lemma 2.3.19, there exists an open neighbour-

hood U of the neutral element e of G such that U ∩ U−1 is nowhere dense. Let W be an

open neighbourhood of e such that WW ⊂ U. Put O = W \ U ∩ U−1. Then, clearly,

O ⊂ W ⊂ O and O−1 ∩ U = ∅.

First, we fix a sequence {Mn : n ∈ ω} of open sets in X such that G =
⋂∞

n=0 Mn.

We are going to define a sequence {Un : n ∈ ω} of open subsets of X and a sequence

{xn : n ∈ ω} of elements of G such that xn ∈ Un, for each n ∈ ω. Put U0 = O, and pick a

point x0 ∈ U0 ∩G.
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Assume now that, for some n ∈ ω, an open subset Un of X and a point xn ∈ Un ∩G
are already defined. Since e ∈ W ⊂ O, we have xn ∈ xnO = xnO. Since Un is an open

neighbourhood of xn, it follows that Un ∩ xnO = ∅. We take xn+1 to be any point of

Un ∩ xnO. Note that xn+1 ∈ G, since xnO ⊂ G.

Using the regularity of X, we can find an open neighbourhood Un+1 of xn+1 in X such

that the closure of Un+1 is contained in Un ∩Mn, and Un+1 ∩G ⊂ xnO. The definition of

the sets Un and points xn, for each n ∈ ω, is complete. Note that Ui ⊂ Uj whenever j < i.
We also have xn+1 ∈ xnO, for each n ∈ ω.

Put F =
⋂

n∈ω Un. Clearly, F ⊂ G, and F = ∅ since X is feebly compact. The set

FW is an open neighbourhood of F in G. Consider the closure P of FW in X, and let H
be the closure of X \ P in X. Then H is a regular closed subset of X, so that H is feebly

compact.

We claim that H ∩ F = ∅. Indeed, assume the contrary, and fix x ∈ F ∩ H . Since

FW is an open neighbourhood of F in G, from x ∈ F it follows that there exists an open

neighbourhood V of x in X such that V ∩ G ⊂ FW . Then the density of G in X implies

that V ⊂ P , while x ∈ V ∩ H implies that V \ P = ∅, which is a contradiction. Thus,

H ∩ F = ∅.

Since H is feebly compact, our definition of F implies that Uk ∩ H = ∅, for some

k ∈ ω (we use that Ui ⊂ Uj whenever j < i). Then Uk ⊂ P . Since xk ∈ Uk ∩G, it follows

that xk ∈ FW . However, F ⊂ Uk+2 ∩G ⊂ xk+1O ⊂ xk+1W . Hence,

xk ∈ FW ⊂ xk+1WW ⊂ xk+1U.

Taking into account that xk+1 ∈ xkO, we obtain that xk ∈ xkOU. Hence, e ∈ OU and

O−1 ∩ U = ∅, which is again a contradiction. �
Naturally, the following two corollaries of Theorem 2.4.1 refer to Tychonoff spaces.

Corollary 2.4.2. Every pseudocompact paratopological group is a topological group.

Corollary 2.4.3. Every Čech-complete paratopological group is a topological group.

Since countably compact space are feebly compact, Theorem 2.4.1 also implies the

next fact.

Corollary 2.4.4. Every regular countably compact paratopological group is a
topological group.

Let us now consider the case of pseudocompact semitopological groups. Below we

will see that not all of them are paratopological groups. However, under some additional

restrictions on the topology of a semitopological group, some strong positive results in this

direction can be obtained. To present one of them, we need a few elementary facts.

Lemma 2.4.5. Let G be a semitopological group with quasicontinuous multiplication.
Then, for each non-empty open U ⊂ G, there exist g ∈ U and an open neighbourhood V
of the neutral element e in G such that gV 3 ⊂ U.

Proof. Since the multiplication in G is quasicontinuous, there exist non-empty open

sets V1, W ⊂ G such that V1W ⊂ U, and there exist non-empty open sets V2, V3 ⊂ G such

that V2V3 ⊂ W . Clearly, we have V1V2V3 ⊂ U. Fix gi ∈ Vi for i = 1, 2, 3. Put g = g1g2g3

and

V = g−1
3 g−1

2 g−1
1 V1g2g3 ∩ g−1

3 g−1
2 V2g3 ∩ g−1

3 V3.
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Then g ∈ U, V is an open neighbourhood of e in G, and an easy calculation shows that

gV 3 ⊂ U, as required. �

We also need the following simple lemma which is a part of the folklore.

Lemma 2.4.6. Let X be a Hausdorff space, � a family of compact subsets of X,
K =

⋂
�, and W an open neighbourhood of K in X. Then for every F ∈ �, there exists

an open neighbourhood O(F ) of F in X such that
⋂{O(F ) : F ∈ �} ⊂ W .

Proof. Since all elements of � are compact, we can assume that the family � is finite,

by the Shura-Bura lemma (see [165, Corollary 3.1.5]). We apply induction on n = |�|.
First, if � = {F1, F2}, we put K1 = F1 \ W and K2 = F2 \ W . Then K1 and K2 are

disjoint compact sets in X, so there are disjoint open neighbourhoods U1 and U2 of K1 and

K2, respectively [165, Theorem 1.3.6]. Then O1 = U1 ∪W and O2 = U2 ∪W are open

neighbourhoods of F1 and F2, respectively, and O1 ∩O2 = W .

Suppose that the conclusion of the lemma is valid for every family of compact sets in X
with at most n elements (n ≥ 2), and that � = {F1, . . . , Fn, Fn+1}. Put P = F1 ∩ · · · ∩Fn.

Then P ∩ Fn+1 ⊂ W , so there exist open neighbourhoods W1 and W2 of P and Fn+1,

respectively, in X such that W1 ∩W2 ⊂ W . By the inductive assumption, one can find open

sets O1, . . . , On in X such that Fi ⊂ Oi for each i ≤ n and O1 ∩ . . . ∩ On ⊂ W1. Then⋂n+1

i=1 Oi ⊂ W , where On+1 = W2. This obviously completes the proof. �

In Lemmas 2.4.7–2.4.11 below we assume that G is a semitopological Čech-complete

group with topology �. In particular, the space G is Tychonoff. Let �e be the family of

open neighbourhoods of the neutral element e in G, and � the family of all non-empty

compact subsets of G such that the family {KU2 : U ∈ �e} constitutes a base for the space

G at the set K.

Let us define a partial order≤ on the topology � of G as follows: For U, V ∈ �, U ≤ V
iff there exists g ∈ U such that g(g−1U)3 ⊂ V . It is clear that U ≤ V implies U ⊂ V .

Lemma 2.4.7. For every non-empty V ∈ �, there exists a non-empty U ∈ � such that
U ≤ V .

Proof. Fix a non-empty open set W such that W ⊂ V . Since G is Čech-complete, it

follows from Lemma 2.3.7 that the multiplication in G is quasicontinuous. Lemma 2.4.5

implies that there exist g ∈ W and W1 ∈ �e such that gW1
3 ⊂ W . Hence, for U = gW1

we have U ≤ V . �

The next statement plays the key role in the proof of the main result of this section,

Theorem 2.4.12.

Lemma 2.4.8. The family � is a π-network in G, that is, every non-empty open subset
of G contains an element of �.

Proof. Let W be a non-empty open subset of G. We have to show that there exists

K ∈ � contained in W . Since the space G is Čech-complete, there exists a sequence

{Bn : n ∈ ω} of open subsets of the Čech–Stone compactification βG of the space G such

that G =
⋂

n∈ω Bn.

Lemma 2.4.7 implies the existence of a sequence {Un : n ∈ ω} of non-empty open

subsets of G such that U0 ⊂ W , Un+1 ≤ Un and Un ⊂ Fn ⊂ Bn for each n ∈ ω, where Fn
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is the closure of Un in βG. Put K =
⋂

n∈ω Un. Clearly, K ⊂ W and K =
⋂

n∈ω Fn, since

Un contains the closure of Un+1 in G. Therefore, K is compact and non-empty, and every

open neighbourhood of K in βG contains some Fn (notice that Fn+1 ⊂ Fn for each n ∈ ω).

It follows that the family {Un : n ∈ ω} is a base for G at the set K.

Finally, let us show that K ∈ �. Since Un+1 ≤ Un for n ∈ ω, there exists gn+1 ∈ Un+1

such that gn+1(g−1
n+1Un+1)3 ⊂ Un. Let also g0 be a point of U0. For n ∈ ω, put Wn = g−1

n Un.

Then Wn ∈ �e and

KW2
n+1 ⊂ Un+1W2

n+1 = gn+1W3
n+1 ⊂ Un.

Since {Un : n ∈ ω} is a base for G at the compact set K, it follows that {KW2
n : n ∈ ω} is

also a base for G at K. Hence, K ∈ �. �
We also need the following very simple lemma.

Lemma 2.4.9. For every open neighbourhood V of the neutral element e of a
semitopological group G and every g ∈ G, there exists an open neighbourhood U of e
such that gU2g−1 ⊂ V 2.

Proof. Put U = g−1Vg. Clearly, U is open and e ∈ U. We have: gU2g−1 =

gg−1Vgg−1Vgg−1 = V 2. �
Lemma 2.4.10. For any g ∈ G and any K ∈ �, gK ∈ � and Kg ∈ �.

Proof. Since the family � = {KU2 : U ∈ �e} is a base for G at the set K ∈ �, the

family {gKU2 : U ∈ �e} = {gW : W ∈ �} is a base for G at the set gK. Hence, gK ∈ �.

Also, it is easy to see that the family {Kg U2 : U ∈ �e} is a base for G at Kg. Indeed,

take an arbitrary neighbourhood O of the set Kg in G. Then K ⊂ O g−1 and, since K ∈ �,

there exists V ∈ �e such that KV 2 ⊂ O g−1. Hence, KV 2g ⊂ O. By Lemma 2.4.9, we

can choose U ∈ �e with g U2g−1 ⊂ V 2, which gives the inclusion Kg U2 ⊂ O. �
Lemma 2.4.11. For any subfamily � of the family �, if the set K =

⋂
� is non-empty,

then K ∈ �.

Proof. Let W be a neighbourhood of the set K in G. There exists a finite family

{K1, . . . , Kn} ⊂ � such that
⋂n

i=1 Ki ⊂ W . Now, by Lemma 2.4.6, we can find an open

neighbourhood Vi of Ki, for each i ≤ n, such that
⋂n

i=1 Vi ⊂ W . From the definition of � it

follows that there exist sets U1, . . . , Un ∈ �e such that
⋂n

i=1 KiU2
i ⊂ W . For U =

⋂n
i=1 Ui,

we have that KU2 ⊂ W . �
Theorem 2.4.12. [A. Bouziad] Let G be a Čech-complete semitopological group.

Then G is a topological group.

Proof. First we will prove that G is a paratopological group. Lemmas 2.4.8 and 2.4.10

imply that the family {K ∈ � : e ∈ K} is non-empty. Put H =
⋂{K ∈ � : e ∈ K}. By

Lemma 2.4.11, H ∈ �. We claim that H = {e}.
Suppose that H = {e}, i.e., there exists g ∈ H \ {e}. Then we can find U1, U2 ∈ �e

such that U1 ∩ g U2 = ∅. Put U = U1 ∩U2. Lemma 2.4.8 implies that there exists K ∈ �
such that K ⊂ U. Take any h ∈ K. By Lemma 2.4.10, e ∈ K h−1 ∈ �, so H ⊂ Kh−1 and

Hh ⊂ K ⊂ U. Therefore, gh ∈ U ∩ g U ⊂ U1 ∩ g U2, which is a contradiction.

We have established that G is paratopological group. However, every Čech-complete

paratopological group is a topological group, by Corollary 2.4.3. �
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A natural question which arises at this point is whether the last statement can be extended

to pseudocompact semitopological groups. To answer this question, we present a general

method allowing to construct semitopological groups with some interesting combinations

of properties.

Suppose that X is a topological space, and G is an Abelian group. Let XG be the space

of all mappings of G to X, with the pointwise convergence topology (which in this case

coincides with the Tychonoff product topology of XG). For a ∈ G, f ∈ XG and each

b ∈ G, put s(a, f )(a + b) = sa(f )(a + b) = f (b). Then sa(f ) ∈ XG, and s is a mapping of

G×XG to XG called the G-shift on XG. The mapping sa : XG → XG is called the a-shift
of XG, or the shift of XG by a. For each f ∈ XG, the subspace s(G× {f}) of XG is called

the orbit of f under the shift s, or simply the orbit of f . A mapping f : G→ X is called a

Korovin mapping and the orbit of f is said to be a Korovin orbit if for every countable subset

M of G and every mapping h : M → X, there exists a ∈ G such that s(a, f )(m) = h(m)

for each m ∈ M, that is, the restriction of the mapping s(a, f ) (which is an element of the

orbit of f ) to M coincides with h.

Theorem 2.4.13. [A. V. Korovin] Let X be a topological space satisfying 1 < |X| ≤
c = 2ω, and G an Abelian group such that |G| = c. Then there exists a Korovin mapping
f : G→ X, that is, there exists a Korovin orbit in XG.

Proof. To construct a Korovin orbit, it is convenient to consider partial shifts. For an

arbitrary countable subset B of G, let �B be the set of all mappings of B to X. Let a be any

element of G, B a countable subset of G, and h ∈ �B. Then sa,B(h) is an element of �a+B

defined by the rule (sa,B(h))(a + b) = h(b), for each b ∈ B. We will say that h′ = sa,B(h) is

obtained by a shift (or by an a-shift) from h. Note that if h′ is obtained by an a-shift from

h, then h is obtained by an −a-shift from h′. Clearly, f : G → X is a Korovin mapping if

and only if for each countable subset M of G and every mapping h : M → X, there exists

a countable subset B ⊂ G and an element a ∈ G such that a + B = M and sa,B(f �B) = h.

This tells us how to construct the required f . We will enumerate all possible h and will

select corresponding B as disjoint subsets of G, which will allow us to define f properly.

Here are the details of this approach.

Let � be the union of all sets �B, where B is a countable subset of G. Clearly, |�B| = c,
for each countable B ⊂ G. Since |Gω| = c, we have |�| = c. We well order � in type c, so

that � = {fα : α < c}, and let Bα be the domain of the mapping fα, that is, Dom(fα) = Bα.

We are going to define, by recursion, a transfinite sequence ξ = {hα : α < c} of

elements of � such that:

1) Dom(hα) ∩Dom(hβ) = ∅, whenever α < β < c;
2) for each α < c, hα is obtained by an aα-shift from fα, for some aα ∈ G.

We can start with h0 = f0. Then conditions 1) and 2) are trivially satisfied at the level

0. Assume that for some β < c, hα ∈ � are already defined, for all α < β. Let us define

hβ ∈ �.

Since β < c and Dom(h) is countable, for each h ∈ �, we have |⋃{Dom(hα) : α <
β}| < c. Put Hβ = Dom(fβ) ∪ (

⋃{Dom(hα) : α < β}), and let Gβ be the smallest

subgroup of G containing Hβ. Then, obviously, |Gβ| < c = |G|. Take any element

aβ ∈ G \ Gβ, and define hβ as the aβ-shift of fβ. Then hβ(aβ + b) = fβ(b), for each

b ∈ Bβ = Dom(fβ), and Dom(hβ) = aβ + Dom(fβ) ⊂ aβ + Gβ. Since Gβ is a subgroup
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of G and aβ /∈ Gβ, the sets Gβ and aβ + Gβ are disjoint. However, Dom(hα) ⊂ Gβ, for

each α < β. It follows that Dom(hα) ∩Dom(hβ) = ∅, whenever α < β. Condition 2) at

the level β is also satisfied, since hβ was defined as a shift of fβ. The transfinite recursion

is complete — the sequence ξ is defined, and it satisfies conditions 1) and 2).

We define a mapping f : G → X as follows. Take any a ∈ G. If there exists α < c
such that a ∈ Dom(hα), then such an α is unique, by condition 1), and we put f (a) = hα(a).

Otherwise, let f (a) be the neutral element of G. Then it is clear from 2) that f is a Korovin

mapping, and the orbit of f , that is, the subspace s(G×{f}) of XG, is a Korovin orbit. �

We call a subset Y of a space X Gδ-dense in X if every non-empty Gδ-set in X intersects

Y (see also Proposition 1.6.36). This concept is helpful in many respects; it also appears in

the context of Korovin orbits.

Proposition 2.4.14. Suppose that X is a Hausdorff topological space, G is an Abelian
group, f ∈ XG is a Korovin mapping, and that Kf = s(G × {f}) is the corresponding
Korovin orbit, with the topology of the subspace of XG. Put k(a) = sa(f ), for each a ∈ G.
Then:

1) k is a one-to-one mapping of G onto Kf ;
2) for every a ∈ G, the restriction of the a-shift sa to Kf is a homeomorphism of the space

Kf onto itself;
3) the subspace Kf ⊂ XG with the group operation, under which the mapping k is an

isomorphism of the group G onto the group Kf , is a semitopological group;
4) if, in addition, the group G is Boolean, then Kf with the operation and topology

described in 3) is a quasitopological group;
5) the space Kf is Gδ-dense in XG; even more, the image of Kf under the natural projection

of XG onto XB, for any countable subset B ⊂ G, is the whole XB;
6) if G is Boolean, then the quasitopological group Kf is not a topological group.

Proof. First, we prove 1). Assume that k(a) = k(b), for some distinct a and b from

G. Then sa(f ) = sb(f ), which implies that sc(f ) = f , where c = a − b. Hence,

g(a + c) = g(a), for each a ∈ G and each g ∈ Kf . It follows that for any g ∈ Kf and any

mapping h : {e, c} → X such that h(e) = h(c), the restriction of g to the set {e, c} does not

coincide with h. Thus, f is not a Korovin mapping, a contradiction.

To prove 2), we observe that, obviously, sa(Kf ) = Kf , and that sa is a homeomorphism

of XG onto XG, by the definition of the topology of pointwise convergence, which coincides

with the Tychonoff product topology of XG.

To prove 3), consider the action l on the group Kf by an arbitrary element sa(f ) of

Kf . Take any element sb(f ) of Kf . Then l(sb(f )) = sa(f ) + sb(f ) = sa+b(f ) = sa(sb(f )).

Hence, l is the restriction of the shift sa to Kf . It follows from 2) that l is a homeomorphism.

The statement 4) is clear, since the inverse mapping in a Boolean group is the identity

mapping.

The statement 5) is immediate, since f is a Korovin mapping.

Let us show that the addition is not continuous at the neutral element of Kf . First,

we note that the space Kf is not discrete — this follows from 5), since XG is not discrete.

Clearly, the neutral element of Kf is k(0) = s0(f ) = f , where 0 is the neutral element of

G. Put x0 = f (0), and let z be any element of X \ {x0}. Put U = X \ {z}, and let W be the

set of all g ∈ Kf such that g(0) ∈ U. Clearly, W is an open neighbourhood of f in Kf .
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Let O(f ) be an arbitrary open neighbourhood of f in Kf . By the definition of the

product topology in XG, there exists a finite subset A ⊂ G such that the set

PA = {g ∈ Kf : g�A = f �A}
is contained in O(f ). Note that the sets O(f ) and k−1(O(f )) are infinite, since Kf is

Hausdorff and not discrete. Fix any c ∈ k−1(O(f )) \ A, put C = A ∪ {c}, and define

hC ∈ EC by the rule hC�A = f �A and hC(c) = z. Since f is a Korovin mapping,

there exists a ∈ G such that sa(f )�C = hC. Then sa(f )�A = hC�A = f �A; therefore,

sa(f ) ∈ PA ⊂ O(f ). We also have s−c(f ) = k(−c) = k(c) ∈ O(f ). Let us show that

sa(f ) + s−c(f ) /∈ W . Indeed, sa(f ) + s−c(f ) = s−c(sa(f )). Hence,

(sa(f ) + s−c(f ))(0) = (s−c(sa(f )))(c − c) = sa(f )(c) = hC(c) = z /∈ U.

Thus, (O(f ))2 \ W = ∅, for each open neighbourhood O(f ) of f , that is, Xf is not a

paratopological group. �

To draw some interesting conclusions from Proposition 2.4.14, we need the following

theorem about subspaces of Tychonoff products of compact metrizable spaces.

Theorem 2.4.15. Suppose that S is a subspace of the topological product X =∏
α∈A Xα of compact metrizable spaces such that pB(S) = XB for every countable

subset B of A, where pB : X → XB is the natural projection of X onto the subproduct
XB =

∏
α∈B Xα. Then X is the Čech–Stone compactification of S and the space S

is pseudocompact. Furthermore, if each Xα is (locally) connected, then S is (locally)
connected as well.

Proof. Since, by assumptions of the theorem, the projections of S fill in all countable

subproducts XB, it follows that S is dense in the product space X. Take an arbitrary

continuous real-valued function f on S. Since each Xα is compact, the product space X
is compact, and every continuous real-valued function on X is bounded. Therefore, both

assertions of the theorem about the pseudocompactness of S and the equality X = βS will

follow if we establish that f admits a continuous extension over X, that is, there exists a

continuous real-valued function f ∗ on X such that f ∗(s) = f (s), for each s ∈ S.

Each space Xα is second-countable, since every compact metrizable space has a

countable base. Therefore, by Corollary 1.7.8, we can find a countable subset B of A
and a continuous function g : pB(S)→ R such that f (s) = g(pB(s)), for each s ∈ S, that is,

f = g ◦ pB. However, by the assumption, pB(S) = XB. The space XB is compact, by the

Tychonoff theorem. It follows that g is bounded on XB, which implies that f is bounded

on S, that is, S is pseudocompact.

Define a function f ∗ : X → R by f ∗(x) = g(pB(x)), for each x ∈ X. Then f ∗ = g◦pB

and, clearly, f ∗ is continuous on X as the composition of two continuous mappings, and

the restriction of f ∗ to S is f .

Now suppose that the spaces Xα are connected. If S were disconnected, there would

exist a continuous function f : S → R satisfying f (S) = {0, 1}. Therefore, to show that S
is connected, it suffices to verify that the image f (S) is connected, for every continuous real-

valued function f on S. However, for every such a function f , we can apply Corollary 1.7.8

to find a countable set B ⊂ A and a continuous real-valued function g on pB(S) such that

f (x) = g(pB(x)) for each x ∈ S. Since pB(S) = XB and the space XB is connected by [165,
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Theorem 6.1.15], we conclude that the image f (S) = g(XB) is connected. This proves that

S is connected as well.

Finally, suppose that the spaces Xα are locally connected. Given a point x ∈ S and a

neighbourhood O of x in X, it suffices to find a closed connected neighbourhood Q of x in

S such that Q ⊂ O. We can assume without loss of generality that O is a canonical open set

in X. Therefore, O has the form O =
∏

α∈A Oα, where each Oα is open in Xα and there are

only finitely many indices α ∈ A with Oα = Xα. For every such an α ∈ A, choose a closed

connected neighbourhood Pα of xα in Xα such that Pα ⊂ Oα, and let Pα = Xα otherwise.

Then P =
∏

α∈A Pα is a closed connected neighbourhood of x in X and, clearly, P ⊂ O.

Put Q = S∩P . Then Q fills in all countable subproducts of the product space P , so we can

apply the assertion proved in the previous paragraph to conclude that Q is connected. �

Now we have all the instruments we need to demonstrate that neither Corollary 2.4.2

nor Theorem 2.4.12 can be extended to pseudocompact quasitopological groups.

Example 2.4.16. There exists a pseudocompact quasitopological group that fails to be

a topological group. Indeed, put c = 2ω, and let Dc be the topological product of c copies

of the discrete Abelian group D = {0, 1}. Below, Dc taken as a group is denoted by G,

and Dc taken as a topological space is denoted by X. Clearly, G is a Boolean group, and

|G| = |X| = c. Therefore, there exists a Korovin orbit Kf in the space XG. It follows from

5) of Proposition 2.4.14 and Theorem 2.4.15 that the subspace Kf of XG is pseudocompact,

while 4) and 6) of Proposition 2.4.14 ensure that Kf is a quasitopological group and is not

a topological group. �

Exercises

2.4.a. Let U and V be open neighbourhoods of the neutral element in a paratopological group G.

Show that if U2 ⊂ V , then (U−1)−1 ⊂ V .

2.4.b. Let us call a semitopological group S topologically periodic if the sequence {xn : n ∈ N}
accumulates at the neutral element of S, for each x ∈ S. Verify that every sequentially

compact paratopological group is topologically periodic.

2.4.c. Give an example of a closed subgroup H of a commutative Hausdorff paratopological group

G such that the quotient space G/H is not Hausdorff.

Problems

2.4.A. (B. M. Bokalo and I. I. Guran [78]) Prove that every sequentially compact Hausdorff

paratopological group G is a topological group.

Hint. It suffices to verify the continuity of the inverse in G. Take an open neighbourhood U of

the neutral element e in G and define a sequence {Vi : i ∈ ω} of open neighbourhoods of e in

G such that V0 = U and V 2
i+1 ⊂ Vi, for each i ∈ ω. Then the set F =

⋂∞
i=0

V−1
i is non-empty

and F ⊂ U. Indeed, if x ∈ F , then x ∈ V−1
i and, by Exercise 2.4.a, x−1 ∈ (V−1

i+1)−1 ⊂ Vi,

for each i ∈ ω. According to Exercise 2.4.b, G is topologically periodic, so there exists

an integer n ≥ 1 such that xn ∈ V1. Choose k ∈ N such that V n−1
k ⊂ V1. It then follows

that x = xn(x−1)n−1 ∈ V1V
n−1
k ⊂ V1V1 ⊂ U. Thus, F ⊂ U. Since the space G is

countably compact and V−1
i+1 ⊂ V−1

i for each i ∈ ω, there exists an integer i0 ≥ 1 such that

V−1
i0

⊂ V−1
i0

⊂ U. Therefore, G is a topological group.
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2.4.B. Is every separable pseudocompact semitopological group a topological group? (See also

Theorem 2.3.23, Example 2.4.16, and Problems 2.4.C and 2.4.D).

2.4.C. Is every first-countable pseudocompact semitopological group a topological group?

2.4.D. Let us call a space X weakly countably compact if X contains a dense subset D such that

every infinite subset of D has an accumulation point in X. Find out whether every regular

(or Tychonoff) weakly countably compact semitopological (quasitopological) group X is a

topological group. What if X is countably compact?

2.4.E. Consider the space obtained when we join every two consecutive countable ordinals by a

copy of the closed interval I = [0, 1]. The linearly ordered set so defined is taken with

the topology generated by this linear order. Removing the initial point 0 from the space so

obtained, we arrive at the space Rω1
called the Alexandroff line. The Alexandroff line is

easily seen to be homogeneous.

a) Is the Alexandroff line Rω1
homeomorphic to some semitopological group?

b) Is the Alexandroff line Rω1
homeomorphic to some left topological group?

2.4.F. (A. V. Arhangel’skii and M. Hušek [54]) Present an example of a pseudocompact quasitopo-

logical group which is neither precompact nor ω-narrow.

2.4.G. (C. Hernández and M. G. Tkachenko [229]) Show that the product of two pseudocompact

quasitopological groups need not be pseudocompact. (See Problems 2.4.6 and 6.6.8.)

Hint. Take two subspaces X and Y of βω such that X ∩ Y = ω and both spaces Xω and

Yω are countably compact. In addition, we can choose X and Y to satisfy |X| = |Y | = c.

Denote by G any Boolean group of cardinality c. By Theorem 2.4.13, there exist Korovin

orbits S and T in XG and YG, respectively. It follows from Proposition 2.4.14 that S and T
are quasitopological groups when endowed with the corresponding subspace topologies and

group multiplications. Then apply Problem 1.7.B (and the choice of X and Y ) to deduce that

S and T are pseudocompact spaces. Since X is a continuous image of S and Y a continuous

image of T , the product X× Y is a continuous image of S × T . However, since X∩ Y = ω,

the space X × Y contains an infinite discrete family of non-empty open sets (a copy of ω).

Hence, neither X × Y nor S × T is pseudocompact.

2.4.H. (O. V. Ravsky [401]) Apply Martin’s Axiom to construct a Hausdorff countably compact

paratopological group which is not a topological group.

Open Problems

2.4.1. Does there exist in ZFC a Hausdorff countably compact paratopological group that fails to

be a topological group? Is it topologically periodic? (See Corollary 2.4.4, Exercise 2.4.b,

Problem 2.4.A, and Problem 2.4.H.)

2.4.2. (I. I. Guran [210]) Let G be a Hausdorff (regular, Tychonoff) paratopological group. Does

there exist a continuous isomorphism f : G → H onto a Hausdorff topological group H?

(See also Problem 2.3.1.)

2.4.3. (I. I. Guran [210]) Is every Hausdorff countably compact paratopological group precompact?

2.4.4. Does there exist a Hausdorff countably compact paratopological group G such that G × G
is not countably compact?

2.4.5. A semitopological group G is called locally pseudocompact if the space G is Tychonoff and

there exists a pseudocompact neighbourhood of the neutral element in G. Is every locally

pseudocompact paratopological group a topological group?

2.4.6. Does there exist a pseudocompact semitopological group G such that G × G is not locally

pseudocompact? (See Problem 2.4.G.)
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2.5. Cancellative topological semigroups

In this section we consider topological semigroups, and present an important case when

a topological semigroup automatically turns out to be a topological group.

A semigroup G is cancellative if zx = zy implies that x = y, and xz = yz implies that

x = y, whenever x, y, z ∈ G.

As in a group, if S is a semigroup and a ∈ S, we can define the right translation 
a

on S by the rule 
a(x) = xa, for each x ∈ S. Similarly one defines the left translation λa.

But unlike the case of groups, these translations need not be bijections; they do not have to

be either one-to-one, or onto. This explains why topological semigroups do not have to be

homogeneous spaces, which is witnessed by the next example (see also Example 1.3.7).

Example 2.5.1. Let S be the closed unit interval I = [0, 1], with multiplication

defined by the rule xy = min{x, y}. Clearly, S is a topological semigroup, which is

not a homogeneous space, and the translations in S are obviously not one-to-one. �

Clearly, cancellative semigroups are precisely the semigroups for which all the trans-

lations are one-to-one (but they still need not be onto). Thus, the topological semigroup in

Example 2.5.1 is not cancellative.

Now, we have the following interesting fact:

Theorem 2.5.2. [K. Numakura] Every compact Hausdorff cancellative topological
semigroup S is a topological group.

Proof. As the first step, let us show that Sa = S and aS = S, for each a ∈ S, i.e., that

every translation in S is a mapping onto S. It suffices to establish that aS = S.

Put S0 = S, S1 = aS, and, in general, Sn+1 = an+1S for each n ∈ ω. From aS ⊂ S it

follows by induction that Sn+1 ⊂ Sn, for each n ∈ ω. Hence, the sequence ξ = {Sn : n ∈ ω}
is decreasing. Since S is compact, Hausdorff, and translations are continuous, all Sn are

closed compact subsets of S.

Consider the sequence η = {an : n ∈ ω}. Since S is compact, η accumulates at a point

y ∈ S. Take any open set V such that yaS ⊂ V . By the continuity of multiplication and the

compactness of aS, there exists an open neighbourhood W of y such that WaS ⊂ V . Now

take any k ∈ ω such that ak ∈ W . Then akaS ⊂ V , that is, Sk+1 ⊂ V . Since the sets Sn are

decreasing, we have that Sn ⊂ V , for each n ≥ k + 1.

Now take any b ∈ S. By the continuity of the translations, yb is an accumulation point

of the sequence ηb = {anb : n ∈ ω}. Clearly, anb ∈ Sn ⊂ V , for each n ≥ k+1. Therefore,

yb ∈ V . Thus, we have shown that yb belongs to the closure of any neighbourhood of the

set yaS. Since yaS is compact and S is Hausdorff, it follows that yb ∈ yaS. The semigroup

S being cancellative, we conclude that b ∈ aS. Thus aS = S and, similarly, Sa = S.

Let us show that S is a group. Take any a ∈ S. Since Sa = S, there exists e ∈ S such

that ea = a. Now let x ∈ S. Since aS = S, there exists y ∈ S such that ay = x. Then

ex = eay = ay = x. Therefore, e is a left-side unit for S. Since S is cancellative, this

left-side unit is unique. Similarly, there exists a right-side unit e′ in S. A standard argument

shows that e = e′, i.e., S is a monoid. We can also find b ∈ S such that ba = e. This

element b is a left inverse of a. Similarly, there exists a right inverse b′ of a and, again, it

is easy to see that b = b′. Now it is clear that S is a group. Since the multiplication in S
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is continuous, S is a paratopological group. Finally, since S is compact, Proposition 2.3.3

implies that the inverse is also continuous, that is, S is a topological group. �
It is natural to ask whether every regular countably compact cancellative topological

semigroup is a topological group. The reader will find some information on this question,

known as Wallace problem, in Exercise 2.5.b and in Problems 2.5.A–2.5.C and 2.5.1 (as

well as in Section 2.6).

The example below shows that the compactness of S in Theorem 2.5.2 cannot be

weakened to local compactness, even if the semigroup S is first-countable. The semigroup

we have in mind is neither metrizable nor paracompact.

Example 2.5.3. There exists a non-metrizable locally compact, first-countable, can-

cellative Abelian topological semigroup S. In particular, S fails to be a topological group.

Indeed, let H be a Hamel basis for the additive group R of real numbers over the field

Q such that H ⊂ R+, where R+ is the set of positive real numbers, 1 ∈ H , and every open

interval in R+ contains c = 2ω points of H . It follows from 1 ∈ H that H ∩ Q = {1}.
Let H0 be the union of H and the set Q+ of positive rational numbers and S be the smallest

subsemigroup of the additive group R such that H0 ⊂ S.

Let us now define a topology � on S. All points of Q+ will be isolated in S. For each

x ∈ H \ {1} we pick an increasing sequence {qn(x) : n ∈ ω} in Q+ converging to x, and

for each n ∈ ω, let Vn(x) = {x} ∪ {qi(x) : i > n}. Suppose now that y is an arbitrary

point of S \Q+. Then y = z1 + · · ·+ zn, for some zi ∈ H , and, for any choice k1, . . . , kn

of natural numbers, we put Wk1,...,kn = Vk1
+ · · · + Vkn , and declare the set Wk1,...,kn to be

a basic open neighbourhood of y. These requirements define a topology � on S which is

finer than the restriction to S of the usual Euclidean topology of the reals. Note that if a
and b belong to S \ {0}, then (a + b) /∈ H unless a + b = 1. Note also that no point of Q+

is the sum of points from S none of which belongs to Q+. It follows that the operation +

on S is continuous, and S is a topological semigroup. Clearly, S is cancellative, since S is

a subsemigroup of the additive group R. Obviously, (S, �) is locally compact and locally

metrizable. Hence, (S, �) is first-countable. Since the topology � on S is finer than the

restriction to S of the usual Euclidean topology, it follows that the space S is Hausdorff.

Hence, the space S is Tychonoff. The countable set Q+ is clearly dense in S. Thus, S is

separable. However, H is an uncountable discrete subspace of S. Therefore, S does not

have a countable base. Since S is separable, it follows that S is not metrizable. Note that

S is not paracompact, since every locally metrizable paracompact space is metrizable [165,

5.4.A]. Thus, neither local compactness nor first countability in cancellative topological

semigroups implies paracompactness or metrizability. �

Exercises

2.5.a. Let S be a cancellative semigroup with the property that aS = S = Sa, for each a ∈ S.

Show that S is a group.

2.5.b. (A. Mukherjea and N. Tserpes [333]) Let S be a cancellative Hausdorff semitopological

semigroup. Prove that if S is sequentially compact, then xS = S = Sx, for each x ∈ S.

Hint. To deduce the equality xS = S, it suffices to verify that, for every a ∈ S, there exists

b ∈ S such that ab = a. Consider the set S(a) = {an : n ∈ N} and let K(a) be the sequential

closure of S(a) in S, that is, the set of all limit points of convergent sequences lying in S(a).

Clearly, a ∈ S(a) ⊂ K(a) and aK(a) ⊂ K(a). Let us show that K(a) ⊂ aK(a). Take an
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arbitrary element y ∈ K(a) and choose a subsequence {an : n ∈ A} of S(a) converging

to y, where A ⊂ ω is infinite. Since S is sequentially compact, there exists an infinite set

B ⊂ A\{0, 1} such that the sequence {an−1 : n ∈ B} converges to some element z ∈ K(a).

Then aan−1 → az when n → ∞ and n ∈ B. By the continuity of multiplication by a and

the Hausdorff property of S, az = y. Hence, aK(a) = K(a) and ab = a, for some b ∈ K(a).

A similar argument shows that K(a)a = K(a), whence the equality Sx = S follows.

2.5.c. We say that X is a Moore space if there exists a sequence �0, �1, . . . of open coverings of

X such that for every point x ∈ X and every neighbourhood U of x in X, one can find n ∈ ω
such that

⋃{W ∈ �n : x ∈ W} ⊂ U. Verify that the topological semigroup S defined in

Example 2.5.3 is a Moore space. Show that the Hamel basis H is a closed discrete subspace

of S and deduce that the space S is not normal.

Problems

2.5.A. (B. M. Bokalo and I. I. Guran [78]; for countably compact sequential semigroups, A. Yur’eva

[544]) Prove that every sequentially compact Hausdorff cancellative topological semigroup

S is a topological group.

Hint. Apply Exercises 2.5.a and 2.5.b to deduce that S is algebraically a group. It follows

that S is a paratopological group, so the conclusion follows from Problem 2.4.A.

2.5.B. (A. H. Tomita [496]; under the Continuum Hypothesis, D. Robbie and S. Svetlichny [408])

Prove that under Martin’s Axiom, there exists a countably compact subsemigroup S of the

compact group Tc that fails to be a group. Notice that S, being a subsemigroup of a group, is

cancellative. Deduce that Theorem 2.5.2 cannot be extended in ZFC to countably compact

cancellative topological semigroups.

2.5.C. (A. H. Tomita [496]) Let p be a free ultrafilter on ω. A space X is called p-compact if every

sequence {xn : n ∈ ω} ⊂ X has a p-limit point y in X, that is, a point y ∈ X with the

property that for every neighbourhood U of y, the set {n ∈ ω : xn ∈ U} belongs to p. Notice

that p-compactness implies countable compactness and prove that every regular, p-compact,

cancellative topological semigroup is a topological group.

Open Problems

2.5.1. (A. D. Wallace [531]) Does there exist in ZFC a regular countably compact cancellative

topological semigroup that fails to be a topological group?

2.5.2. Let G be a regular countably compact cancellative topological semigroup. Is the cellularity

of G countable?

2.5.3. Does there exist in ZFC a regular countably compact cancellative topological semigroup G
such that the product G × G is not countably compact?

2.6. Historical comments to Chapter 2

The recent monograph [241] treats the subject of the first two sections of Chapter 2

in much greater detail, contains many references and, most intriguing, shows how these

abstract techniques can be applied to obtain some important theorems on combinatorics

involving natural numbers, theorems which seem to have nothing to do with General

Topology. The method of ultrafilters developed in [241] lead to the discovery of a fruitful

link between combinatorics of numbers and topological algebra. The reader is warmly

advised to consult the book [241] for comments on the history of the results. The less

Historical comments to Chapter 2
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exhaustive but concentrated and interesting short books [392] by I. V. Protasov, and [394]

by I. V. Protasov and E. G. Zelenyuk are also highly recommended to the reader.

The first prototypes of Theorem 2.1.1 were given by M. Day in [129] (implicitly, using

methods of R. Arens from [13]), and in [104]. In [161], the technique based on ultrafilters

was used to prove a version of Theorem 2.1.1 for the case when the operoid is a discrete

group. In connection with Theorem 2.1.4 and for further references, see [73]. The general

approach, when associativity is not assumed and arbitrary operoids are considered, was

developed by E. van Douwen [151]. Theorems 2.1.1, 2.1.3 and Propositions 2.1.2, 2.1.5–

2.1.9 all originated in his paper [151]. As for Example 2.1.10, see [65].

Theorem 2.2.1, in the case of the joint continuity of multiplication, is due to K. Nu-

makura [352] and A. D. Wallace [531], and due to R. Ellis [161] in the case of separate

continuity. In connection with Propositions 2.2.3, 2.2.4 and Example 2.2.5, see [241].

I. V. Protasov used idempotents in remainders of Čech–Stone compactifications to produce

non-discrete Tychonoff homogeneous maximal topologies on the set of integers [393]. In

particular, Theorems 2.2.10, 2.2.16, and 2.2.24 are due to I. V. Protasov. Theorem 2.2.26

is a result of N. Hindman (see [239], [241], and [392] for the history of its proof). These

results are also discussed in [42] and [240]. For some further results in this direction, see

[545] and [546].

D. Montgomery established in [324] that if a semitopological group G is metrizable by

a complete metric, then it is a paratopological group, and that if G is, in addition, separable,

then it is a topological group. Another early result of this kind was obtained by R. Ellis [159],

who proved that every locally compact Hausdorff semitopological group is a topological

group (our Theorem 2.3.12). In 1960 W. Zelazko established that each completely

metrizable paratopological (semitopological) group is a topological (quasitopological)

group. In 1982, N. Brand proved that every Čech-complete paratopological group is

a topological group. The final result in this series was obtained by A. Bouziad in

[85], who proved that every Čech-complete semitopological group is a topological group

(Theorem 2.4.12). Some further results in this direction can be found in [84] and [269].

Lemmas 2.3.18, 2.3.19, 2.3.21, Corollary 2.3.20, and Theorem 2.3.22 were all proved in

[62]. Theorem 2.3.23, Proposition 2.3.24, and Corollary 2.3.25 are also taken from [62].

Further important results and references on separate continuity versus joint continuity can

be found in [339] and [289].

Theorem 2.4.1 was proved in [62]. Corollary 2.4.2 is due to E. A. Reznichenko

[404]. Corollary 2.4.3 is a weaker form of Bouziad’s principal result that appears here as

Theorem 2.4.12. Theorem 2.4.13, Proposition 2.4.14, and the construction involved in them

can be found in A. V. Korovin’s article [282]. Korovin also applied his construction to obtain

a pseudocompact semitopological group such that its Čech–Stone compactification is not a

semitopological group. E. A. Reznichenko observed in [404] that Korovin’s construction,

when a Boolean group is used, yields an example of a pseudocompact quasitopological group

which is not a topological group (Example 2.4.16). Further applications of this construction

were given in [54] and [229]. In particular, it was shown in [54] that there is a pseudocompact

quasitopological group G such that the Dieudonné completion of G is not homogeneous

(and even has points of different characters), while [229] contains a construction of two

pseudocompact quasitopological groups whose product fails to be pseudocompact.
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Theorem 2.5.2 on compact cancellative topological semigroups was established in

[352]. In [333], this result was extended to countably compact first-countable cancellative

topological semigroups. Further interesting results on cancellative topological semigroups

appeared in [222]. Wallace’s problem [531] whether every Hausdorff countably compact

cancellative topological semigroup is a topological group was given a negative answer

(under the Continuum Hypothesis) in [408]. Some interesting results in this direction were

obtained by A. Tomita in [496].

Further progress in studying paratopological groups, also from the bitopological point

of view, can be found in [4], [54], [78], [210], [398], [401], and [412].

Historical comments to Chapter 2



Chapter 3

Topological groups:
Basic constructions

In this chapter we introduce several most important notions and constructions concern-

ing topological groups and operations with them. In particular, we develop the technique

of prenorms on groups, describe in detail the construction of the Raı̆kov completion of a

topological group, prove a theorem on embeddings of topological groups into groups of

isometries in the topology of pointwise convergence. We also introduce the class of locally

compact topological groups and provide the reader with the first basic facts about groups in

this class (deeper results in this direction will be presented in Chapter 9). Then we define and

study the important classes of ω-narrow topological groups and of precompact (equivalently,

totally bounded) topological groups. We finish this chapter with the Hartman–Mycielski

construction of an embedding of an arbitrary topological group into a connected, locally

pathwise connected topological group.

3.1. Locally compact topological groups

This section contains theorems on topological properties of locally compact groups,

which are not necessarily the properties of all locally compact spaces. Though the proofs

of these theorems are much easier than those of the main results about compact topological

groups in the forthcoming Sections 4.1 and 4.2, the theorems themselves are important, they

are applied very often and help to discover many unusual facts concerning locally compact

groups.

There are many natural examples of locally compact groups. They include the groups

T, R, and Z, each one carrying the usual topology. Every compact group is, of course,

locally compact. Clearly, any discrete group is locally compact, while a discrete group is

compact if and only if it is finite. Unlike the case of compact groups, the product of a family

of locally compact groups need not be locally compact. However, the product of any finite

collection of locally compact groups is a locally compact group. Using this fact, and also

the fact that every closed subgroup of a locally compact group is locally compact, one can

construct many interesting examples of locally compact topological groups. We study in

this section the most elementary general properties of locally compact groups.

Recall that a topological space X is paracompact if every open covering of X can be

refined by a locally finite open covering [165, Section 5.1]. A somewhat stronger property

of the same type is that of strong paracompactness. A family γ of sets is star-finite if every

element of γ intersects only finitely many elements of γ. A space X is said to be strongly

A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies  134
in Mathematics 1, DOI 10.2991/978-94-91216-35-0_3, © 2008 Atlantis Press/World Scientific 
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paracompact if every open covering of X can be refined by a star-finite open covering

[165, Section 5.3]. It is obvious that every strongly paracompact space is paracompact. A

useful fact which we will use in the sequel is that every regular Lindelöf space is strongly

paracompact [165, Corollary 5.3.11]. Since σ-compact spaces are Lindelöf, all regular

σ-compact spaces are strongly paracompact.

Finally, we say that a space X is locally σ-compact if for every point x of X, there

exists an open neighbourhood V such that the closure of V is σ-compact.

The following two theorems are typical for locally σ-compact groups.

Theorem 3.1.1. Every locally σ-compact topological group G is strongly paracom-
pact.

Proof. Take a symmetric open neighbourhood V of the identity e in G such that F = V
is σ-compact, and put H =

⋃
n∈ω Fn. Clearly, H is a subgroup of G, and the interior of

H contains V . Therefore, H is an open and closed subgroup of G by Corollary 1.3.3

and Theorem 1.3.5. It is also clear that each Fn is compact; therefore, the space H is

σ-compact and, hence, Lindelöf. The space G is the free topological sum of the subspaces

homeomorphic to H (of the right cosets of H , see Theorem 1.5.1). Since every regular

Lindelöf space is strongly paracompact by [165, Corollary 5.3.11], it follows that the space

G is strongly paracompact. �

Theorem 3.1.2. Every connected locally σ-compact topological group G is σ-compact
(and, hence, Lindelöf).

Proof. We repeat the argument in the proof of Theorem 3.1.1. The open and closed

subgroup H of G constructed there has to coincide with G, since H is non-empty and the

space G is connected. Since H is σ-compact, it follows that G is σ-compact. �

Note that the proof of Theorem 3.1.1 actually shows that the following statement is

true:

Proposition 3.1.3. Every locally σ-compact topological group G contains an open
and closed subgroup which is σ-compact.

Corollary 3.1.4. Every locally compact topological group G is strongly paracom-
pact.

Corollary 3.1.5. Every connected locally compact topological group G is σ-compact.

Notice that neither Corollary 3.1.4 nor Corollary 3.1.5 remains valid for locally compact

spaces. Indeed, consider the subspace X = Iκ \ {p} of the Tychonoff cube Iκ of weight

κ > ω, where p ∈ Iκ is an arbitrary point. Clearly, X with the topology inherited from Iκ

is a locally compact, connected, locally connected space. However, X is not normal (hence,

not paracompact) and, therefore, is not σ-compact.

Theorem 3.1.6. Let H be the connected component of a topological group G. Then
every non-empty connected subset of the quotient group G/H consists of one point, that is,
the space G/H is totally disconnected.

Proof. Since H is a closed invariant subgroup of G, the quotient G/H is a topological

group, by Theorem 1.5.3. Let ê be the neutral element of G/H and K be a connected subset

Locally compact topological groups
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of G/H such that ê ∈ K. Clearly, it suffices to show that K = {ê}. Assume the contrary,

and take the preimage B = p−1(K) under the natural quotient mapping p : G → G/H .

Then H ⊂ B and B = H , so B is not connected and we can fix b ∈ B and a non-empty

subset U of B such that b is not in U, and U is open and closed in the subspace B. We

also have p−1p(U) = U, since the fibers of p are homeomorphic to H and are, therefore,

connected. Since the restriction of p to B is an open mapping of B onto K, it follows that

p(U) is open and closed in K. However, p(b) /∈ p(U), since b /∈ U = p−1p(U). On the

other hand, p(b) ∈ p(B) = K, and p(U) is non-empty. It follows that the subspace K is

not connected, a contradiction. �

The next result reveals a fundamental property of totally disconnected locally compact

Hausdorff spaces. Recall that a space X is said to be zero-dimensional (notation: ind X = 0)

if it has a base � consisting of sets which are both open and closed in X.

Proposition 3.1.7. Every totally disconnected locally compact Hausdorff space X is
zero-dimensional.

Proof. Since X is regular, we can assume that X is compact. Fix a point a ∈ X, and

let � be the family of all open and closed subsets of X which contain a. Put P =
⋂

�.

Clearly, P is closed in X and a ∈ P . Notice also that the family � is closed under finite

intersections.

Claim. For every closed subset F of X disjoint from P , there exists W ∈ � such that
W ∩ F = ∅.

Indeed, otherwise η = {U ∩ F : U ∈ �} is a centered family of non-empty closed

subsets of F . Since F is compact, we have
⋂

η = ∅, which implies that P ∩ F = ∅, a

contradiction.

Let us show that P = {a}. Assume the contrary. Then P is disconnected, since X is

totally disconnected. Therefore, there exist disjoint non-empty closed subsets A and B of P
such that P = A∪B and a ∈ A. Since X is normal, we can find disjoint open sets U and V
in X such that A ⊂ U and B ⊂ V . Then F = X \ (U ∪ V ) is closed in X, and P ∩ F = ∅.

By our Claim, there exists W ∈ � such that W ∩ F = ∅. The open set G = U ∩W is also

closed in X. Indeed, G ⊂ U ∩W ⊂ X \ (F ∪V ) ⊂ U; therefore, G ⊂ U ∩W = G, which

implies that G = G. Since a ∈ G, we have G ∈ �. However, G ∩B = ∅. Hence, G does

not contain P , a contradiction. Therefore, P = {a}.
Now it follows from the above Claim that every open neighbourhood O of a contains

some V ∈ �, since the set X \O is compact and disjoint from P = {a}. �

Proposition 3.1.8. Suppose that G is a topological group and F is an open compact
neighbourhood of the neutral element e in G. Then there exists an open compact subgroup
H of G such that H ⊂ F .

Proof. Since F is an open neighbourhood of itself, Theorem 1.4.29 implies that there

exists an open neighbourhood V of e such that FV ⊂ F . Then V ⊂ F and we can assume

that V = V−1. Clearly, VV ⊂ FV = F . Arguing by induction, we conclude that V n ⊂ F ,

for each positive n ∈ ω. Then H =
⋃{V n : n ∈ ω} is an open subgroup of G and H ⊂ F .

The set H is also closed in G, since every open subgroup of a topological group is closed.

Hence, H is compact. �
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Theorem 3.1.9. In every locally compact totally disconnected topological group G
there exists a local base � of G at the neutral element e such that each element of � is an
open compact subgroup of G.

Proof. By Proposition 3.1.7, there exists a base � of G at e consisting of open compact

subsets of G. From Proposition 3.1.8 it follows that, for each V ∈ �, there exists an open

compact subgroup HV of G such that HV ⊂ V . Clearly, the family � = {HV : V ∈ �} is

a base of G at e we are looking for. �
For compact groups, the conclusions in Proposition 3.1.8 and Theorem 3.1.9 can be

strengthened as follows.

Proposition 3.1.10. Suppose that G is a compact topological group and F is an open
and closed neighbourhood of the neutral element e in G. Then there exists an open invariant
subgroup K of G such that K ⊂ F .

Proof. Let U be an open and closed neighbourhood of the neutral element e in G. Then

U is compact, so Theorem 3.1.9 implies that there exists an open subgroup H of G such

that H ⊂ U. Clearly, K =
⋂

x∈G xHx−1 is an invariant subgroup of G and K ⊂ H ⊂ U,

so it remains to verify that K is open in G. To this end, apply Proposition 1.4.32 to choose

an open neighbourhood V of e in G such that xVx−1 ⊂ H for each x ∈ G. It follows from

the definition of K that V ⊂ K, so that K is open in G. �
The next theorem is immediate from Proposition 3.1.10.

Theorem 3.1.11. In a compact totally disconnected group G, the family of open
invariant subgroups forms a local base at the neutral element of G.

Theorem 3.1.9 above has several important applications. The first of them complements

the theorem, while the second one is, in a sense, a counterpart of Lemma 1.4.27 for locally

compact groups.

Corollary 3.1.12. In a locally compact group topological G, the connected compo-
nent of G is the intersection of all open subgroups of G.

Proof. Let C be the connected component of G. By Proposition 1.4.26, C is a closed

invariant subgroup of G. Let G/C be the quotient group and π : G → G/C the quotient

homomorphism. Since the mapping π is open, the group G/C is locally compact. It follows

from Theorem 3.1.6 that the group G/C is totally disconnected, so Theorem 3.1.9 implies

that G/C has a base � at the neutral element which consists of open subgroups. Clearly, the

intersection of the inverse images of elements of � under π is the component C of G. �
Corollary 3.1.13. For a locally compact group topological G, the following condi-

tions are equivalent:

a) G is connected;
b) G has no proper open subgroups;
c) every neighbourhood of the identity in G algebraically generates the group G.

Proof. Clearly, a) implies b) and c) follows from b). By Corollary 3.1.12, c) implies

a). Hence, the three conditions a), b), and c) are equivalent for the group G. �
Here is another interesting application of Theorem 3.1.9:

Locally compact topological groups
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Theorem 3.1.14. If G is a locally compact totally disconnected topological group G
and H is a closed subgroup of G, then the quotient space G/H is zero-dimensional.

Proof. Let φ be the natural projection of G onto G/H , and let W be any open

neighbourhood of φ(e) in G/H , where e is the neutral element of G. Then the set

U = φ−1(W ) is an open neighbourhood of e and, by Theorem 3.1.9, there exists a compact

open subgroup V of G such that V ⊂ U. Since the mapping φ is open and continuous, φ(V )

is an open compact subset of G/H . Since the space G/H is Hausdorff, φ(V ) is closed in

G/H . Clearly, φ(V ) ⊂ W . Since the space G/H is homogeneous, it follows that G/H is

zero-dimensional. �
In fact, the above argument shows more than it was claimed. Indeed, φ(V ) is an

image of a zero-dimensional compact group V under an open and continuous mapping

(the restriction of φ to the space V ). Let us call Hausdorff continuous images of compact

topological groups dyadic compacta. [The reader accustomed to a more traditional definition

of dyadic compacta as, for example, in [165, 3.12.12], will find a complete justification of

our approach to this concept in Section 4.1.] In particular, for every cardinal κ, continuous

images of the space {0, 1}κ are dyadic compacta [165, 3.12.12]. Thus, in Theorem 3.1.14

we have established the following fact:

Theorem 3.1.15. Let G be a locally compact totally disconnected topological group,
and let H be a closed subgroup of G. Then the quotient space G/H has a base consisting
of dyadic compacta. In particular, the group G itself has a base of dyadic compacta.

The local compactness assumption in the above statements is of crucial importance.

Example 3.1.16. Let G be the additive group of all convergent sequences of rational

numbers, with coordinatewise defined addition and the natural topology generated by the

norm on G defined as the supremum of absolute values of the elements of the sequence.

Clearly, the space Qω is zero-dimensional. Therefore, G is also zero-dimensional [165,

6.2.11]. Let H be the set of all sequences of rational numbers converging to zero. Then

H is a closed subgroup of G, and the topological group G/H is topologically isomorphic

to the additive topological group R of real numbers (endowed with the usual topology).

However, R is not zero-dimensional. �
Let G be a topological group. We say that G is a group with no small subgroups or, for

brevity, an NSS-group if there exists a neighbourhood V of the neutral element e such that

every subgroup H of G contained in V is trivial, that is, H = {e}. For example, the group

R of real numbers with the usual topology is a locally compact NSS-group. Example 3.1.16

underlines non-triviality of the next statement:

Corollary 3.1.17. Every totally disconnected locally compact NSS-group G is
discrete.

Proof. Take an open neighbourhood U of the neutral element e which does not contain

non-trivial subgroups. By Theorem 3.1.9, there exists an open subgroup H of G such that

H ⊂ U. Clearly, H = {e}. Thus, the point e is isolated in G, and the space G is discrete. �
The following corollary to Theorem 3.1.9 is especially interesting. It can, however,

be considerably strengthened by means of certain algebraic methods blended with the

topological considerations.
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Theorem 3.1.18. Every locally compact totally disconnected Abelian topological
group G is topologically isomorphic to a closed subgroup of a topological product of
discrete Abelian groups.

Proof. Let � be a base of G at the neutral element e. It follows from Theorem 3.1.9

that, for each U ∈ �, there exists a continuous homomorphism fU of G onto a discrete

Abelian group HU such that ker(fU) ⊂ U. Then the diagonal product φ of the family

{fU : U ∈ �} is a topological isomorphism of G onto the subgroup φ(G) of the topological

product H = ΠU∈�HU . It follows that φ(G) is also locally compact and, according to

Proposition 1.4.19, is closed in H . �
The next statement is a far reaching extension of Proposition 3.1.8 to Gδ-sets in

topological groups.

Proposition 3.1.19. Let G be a topological group, and let F be a non-empty compact
Gδ-set in G. Then there exists a Gδ-set P in G such that e ∈ P and FP ⊂ F .

Proof. We have F =
⋂

γ, where γ is a countable family of open subsets of G. Take

any U ∈ γ. By Theorem 1.4.29, there exists an open neighbourhood VU of e such that

FVU ⊂ U. Put P =
⋂{VU : U ∈ γ}. Then P is a Gδ-subset of G such that e ∈ P and

FP ⊂ ⋂
γ = F . �

Proposition 3.1.20. Suppose that G is a topological group and that F is a non-empty
compact Gδ-set in G containing the neutral element e of G. Then there exist a Gδ-set P in
G and a closed subgroup H of G such that e ∈ P ⊂ H ⊂ F .

Proof. By Proposition 3.1.19, there exists a Gδ-set P in G such that e ∈ P and

FP ⊂ F . Clearly, we may assume that P = P−1. From e ∈ F and FP ⊂ F it follows,

by induction, that Pn ⊂ F , for each n ∈ ω. Then S =
⋃∞

n=0 Pn is a subgroup of G and

e ∈ P ⊂ S ⊂ F . The closure of S is the closed subgroup H of G we are looking for. �
Theorem 3.1.21. If a topological group G is an NSS-group, then the following two

conditions are equivalent:

1) there exists a non-empty compact Gδ-set F in G;
2) the neutral element e of G is a Gδ-point in G.

Proof. Clearly, the second condition implies the first. Let us show that the first

condition implies the second one. Since the space G is homogeneous, we can assume

that e ∈ F . By the regularity of G, we can also assume that F ⊂ U, where U is

an open neighbourhood of e such that all subgroups of G contained in U are trivial.

By Proposition 3.1.20, there exist a Gδ-set P in G and a subgroup H of G such that

e ∈ P ⊂ H ⊂ F . Since F ⊂ U, it follows that H ⊂ U. Therefore, H = {e}, by the choice

of U. Then P = {e}. Since P is a Gδ-set in the group G, we are done. �
An interesting application of Theorem 3.1.21 is the next result:

Theorem 3.1.22. Every locally compact NSS-group G is first-countable.

Proof. Clearly, every locally compact regular space contains a non-empty compact

Gδ-set. Therefore, by Theorem 3.1.21, the neutral element e of G is a Gδ-point in G.

Since the space G is locally compact and Hausdorff, it follows that G is first-countable at

e. Hence, by homogeneity, the space G is first-countable. �

Locally compact topological groups
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Now we are going to present several basic results on continuous homomorphisms of

locally compact topological groups. Again, these results do not admit an extension to locally

compact spaces, except for very special cases.

Proposition 3.1.23. Suppose that G is a locally compact topological group and H is
a closed subgroup of G. Then the quotient space G/H is locally compact.

Proof. Open continuous mappings preserve local compactness (in the class of Haus-

dorff spaces). It remains to refer to the fact that the natural quotient mapping of G onto

G/H is open and continuous. �
Lemma 3.1.24. Suppose that G is a topological group, H is a compact subgroup of G,

and P is a non-empty Gδ-set in G contained in H . Then H also is a Gδ-set in G, and every
point in the quotient space G/H is a Gδ-set.

Proof. We can assume that the neutral element e of G belongs to P . Since the space G
is regular and P is a Gδ-set in G, we can fix a sequence {Vn : n ∈ ω} of open neighbourhoods

of e in G such that Q =
⋂{Vn : n ∈ ω} ⊂ P and Vn+1 ⊂ Vn, for each n ∈ ω. Take any

x ∈ G \ H . Then xH is compact and H ∩ xH = ∅. Therefore, xH ∩ Q = ∅. Since

Q =
⋂{Vn : n ∈ ω} =

⋂{Vn : n ∈ ω} and the sequence {Vn : n ∈ ω} is decreasing, we

have xH ∩ Vk = ∅, for some k ∈ ω. It follows that {φ(e)} =
⋂∞

n=0 φ(Vn), where φ is the

natural quotient mapping of G onto the quotient space G/H . Since φ is open, each φ(Vn)

is an open set in G/H . Hence, φ(e) is a Gδ-point in G/H , and H = φ−1(φ(e)) is a Gδ-set

in G. By the homogeneity argument, all points of G/H are Gδ’s. �
Lemma 3.1.24 permits us to improve Proposition 3.1.20 as follows.

Theorem 3.1.25. Suppose that G is a topological group and F is a compact Gδ-set
in G containing the neutral element e of G. Then there exists a compact subgroup H of G
such that H is a Gδ-set in G contained in F and every point in the quotient space G/H is
a Gδ-set.

In the case when the group G is locally compact, one can go even further:

Theorem 3.1.26. Suppose that G is a locally compact topological group and U is an
open neighbourhood of the neutral element e of G. Then there exists a compact subgroup
H of G contained in U such that the quotient space G/H is first-countable.

Proof. Clearly, we can assume that the closure of U is compact. It is also obvious that

G contains a closed Gδ-set F such that e ∈ F ⊂ U. Then F is compact, and Theorem 3.1.25

implies that there exists a compact subgroup H of G such that H ⊂ F and H is a Gδ-set in

G. Since the space G is locally compact and regular, it follows that there exists a countable

base γ of open neighbourhoods of H in G (that is, F =
⋂

γ, and every open neighbourhood

of H contains some U ∈ γ). Let φ be the natural mapping of G onto the quotient space

G/H . Then the countable family {φ(U) : U ∈ γ} is a base of G/H at φ(e), since φ is

continuous and open. �
Every continuous homomorphism of a compact group onto another compact group is

open, by Proposition 1.5.17. A similar statement for locally compact topological groups

does not hold. Indeed, every non-discrete topological group is an image under a continuous

isomorphism of a discrete group, and this isomorphism cannot be an open mapping.
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However, under certain circumstances, a generalization from the compact case to the σ-

compact case is possible.

Recall that a space X has the Baire property if X cannot be represented as the union of

a countable family of closed nowhere dense subspaces [165, Section 3.9].

Theorem 3.1.27. Suppose that G is a σ-compact topological group and that f is a
continuous homomorphism of G onto a locally compact topological group M. Then f is
open.

Proof. Put H = f−1f (e), where e is the neutral element of G. Then H is an invariant

closed topological subgroup of G and, by Corollary 1.5.11, there exists a continuous

isomorphism g of the quotient group G/H onto M such that f = g ◦ π, where π is

the natural quotient homomorphism of G onto G/H . Since G is σ-compact, the quotient

group G/H is also σ-compact. Hence, G/H =
⋃

n∈ω Fn, where each Fn is compact. Since

g is one-to-one and continuous, the restriction of g to Fn is a homeomorphism of Fn onto

g(Fn), for each n ∈ ω. We have M =
⋃

n∈ω g(Fn), where g(Fn) is compact and, hence,

closed in M. However, the space M is locally compact and Hausdorff; therefore, M has

the Baire property [165, Theorem 3.9.3]. It follows that there exist k ∈ ω and a non-empty

open subset V of M such that V ⊂ g(Fk). Put U = f−1(V ) = π−1(g−1(V )). Then U is a

non-empty open set in G, and the restriction of π to U is an open continuous mapping of

U onto g−1(V ), since π is open and continuous, and π−1(π(U)) = U. Since f = g ◦ π
and the restriction of g to π(U) = g−1(V ) ⊂ Fk is a homeomorphism, it follows that the

restriction of f to U is an open continuous mapping of U onto V . However, U is open in G
and V is open in M. Now Proposition 1.5.14 implies that the homomorphism f is open. �

The above theorem combined with Corollary 3.1.5 implies the following:

Corollary 3.1.28. Every continuous homomorphism of a connected locally compact
topological group onto a locally compact topological group is open.

The following example shows that none of the assumptions in Theorem 3.1.27 can be

omitted, even if G is taken to be the groups of reals.

Example 3.1.29. There exists a continuous isomorphism f of the additive group of

reals R with the usual interval topology onto a second-countable topological group M that

fails to be open.

To construct such an isomorphism, consider the product group R × R and its closed

subgroup H = {(x, ax) : x ∈ R}, where a ∈ R is a fixed irrational number. It is clear that

the group H with the topology induced from R × R is topologically isomorphic with R.

Denote by P the discrete subgroup Z × Z of the group R × R, and let π be the quotient

homomorphism of R×R onto the group R×R/P which is topologically isomorphic to T×T.

Put M = π(H) and denote by f the restriction of π to the group H . Clearly, f : H → M
is a continuous isomorphism and the group M is second-countable as a subgroup of T×T.

Finally, f is not open, since no continuous isomorphism of a locally compact, non-compact

group onto a subgroup of a compact group is open. The group M is known as the irrational
winding of the circle group T× T. �

To finish this section, we consider more complicated objects of topological algebra

known as topological rings and (skew) fields and show that several topological groups

considered earlier have a natural structure of a topological ring or a topological (skew) field.

Locally compact topological groups
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Let R be a ring and � a topology on the set R. We say that � is a ring topology provided

that R is a topological group with respect to addition, and multiplication is a continuous

mapping of R×R to R when R carries the topology �. The pair (R, �) is called a topological
ring.

Similarly, if R is a field with a given topology �, we say that � is a field topology
provided that (R, �) is a topological ring and inversion in the multiplicative group R \ {0R}
is continuous, where 0R is the zero element of R. Again, we call (R, �) a topological
field. Clearly, (R, �) is a topological field if and only if both the additive group R and

multiplicative group R \ {0R} are topological groups with respect to the corresponding

topologies � and its restriction to R \ {0R}. A topological skew field is, naturally, a skew

field with a topology satisfying the same restrictions as in the case of a topological field.

Here are some simple examples of topological rings and (skew) fields.

Example 3.1.30. It turns out that some topological groups that appeared in the previous

chapters admit richer algebraic and topological structures.

a) It follows from the above definitions that the complex plane C with the usual addition,

multiplication, and Euclidean topology is a topological field since all algebraic opera-

tions, the addition and multiplication in C, and the inverse in C \ {0}, are continuous.

b) The skew field Q of quaternions with the Euclidean topology defined in item f) of

Example 1.2.5 is a topological skew field. Again, this follows from the fact that the

additive group Q and the multiplicative group Q∗ are topological groups.

c) Suppose that X is a non-empty set and RX the corresponding product space. Clearly,

RX is a commutative topological group with respect to the pointwise addition. It is

easy to see that the pointwise multiplication in RX is also continuous. This follows

immediately from the continuity of multiplication in R and our definition of the topology

and multiplication in RX. Therefore, RX is a commutative topological ring.

d) Let Cp(X) be the space of continuous real-valued functions on a Tychonoff space X,

endowed with the pointwise convergence topology. We know that Cp(X), with the usual

pointwise addition of functions, is a subgroup of the topological group RX (see page 81)

and, therefore, is itself a topological group. Consider the product operation in Cp(X),

also defined pointwise. Clearly, Cp(X) is a subring of the ring RX, that is, Cp(X) is

a subgroup of the additive group RX and fg ∈ Cp(X) for all f, g ∈ Cp(X), provided

that RX is considered with the pointwise multiplication. Since RX is a topological ring,

we conclude that Cp(X) is a subring of RX. Hence, Cp(X) itself is a commutative

topological ring.

Finally, let C∗
p(X) be the subspace of Cp(X) which consists of all functions f such

that f (x) = 0, for each x ∈ X. Evidently, fg ∈ C∗
p(X) and f−1 ∈ C∗

p(X) for all

f, g ∈ C∗
p(X), so C∗

p(X) is a multiplicative subgroup of the ring Cp(X). Notice that

C∗
p(X) coincides with the subgroup of all invertible (with respect to multiplication)

elements of Cp(X). Since R is a topological field, it is easy to see that inversion in

C∗
p(X) is continuous and, hence, C∗

p(X) is a topological group. �
It was shown in Example 1.3.16 that for every integer r > 1, the group of r-adic numbers

Ωr admits a Hausdorff topology making it into a locally compact, σ-compact topological

group. Our next step is to show that the group Ωr admits a natural multiplication that makes

it into a locally compact topological ring and, if r is a prime power then, in fact, Ωr is a

topological field.



143

Example 3.1.31. To define multiplication in Ωr, take any elements x, y ∈ Ωr. If either

x = 0 or y = 0, set xy = 0. If both x and y are distinct from zero, let k and l be the least

integers such that xk = 0 and yl = 0, respectively. We define an element z = (zn) in Ωr

as follows. First, we set zn = 0 for each n < k + l. Then we write the product xkyl in the

form xkyl = zk+l + tk+lr, where zk+l and tk+l are integers and zk+l ∈ {0, 1, . . . , r− 1} = A.

In other words, zk+l is the least non-negative residue of xkyl modulo r. Suppose we have

defined the integers zk+l, zk+l+1, . . . , zk+l+s−1 ∈ A and tk+l, tk+l+1, . . . , tk+l+s−1 for some

s ≥ 1. Then we can write

xk+syl+xk+s−1yl+1 + xk+s−2yl+2 + · · ·+ xkyl+s + tk+l+s−1 = zk+l+s + tk+l+sr, (3.1)

where zk+l+s ∈ A and tk+l+s is an integer. Clearly, such a representation is unique.

In fact, the above formula for calculation of the entries zn comes from the usual

multiplication of numbers written in the decimal system and differs from it in three

unessential details. First, we write p-adic numbers from the left to right, starting with

smaller entries. Second, the base of r-adic numbers is r in place of 10. And the third

difference is that we perform all necessary arithmetic operations with entries of r-adic

numbers from the left to right.

Here is a numerical example which shows in detail the routine of multiplication in

the case when r = 3. We multiply two 3-adic integers written in the first and the second

lines, so all zero entries of both factors and of the product (corresponding to the positions

−1,−2, . . .) are suppressed.

1 2 0 1 2 0 . . . . . .

× 1 2 1 2 1 2 . . . . . .

1 2 0 1 2 0 . . . . . .

0 2 4 0 2 4 . . . . . .

0 0 1 2 0 1 . . . . . .

0 0 0 2 4 0 . . . . . .

0 0 0 0 1 2 . . . . . .

0 0 0 0 0 2 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

= 1 1 0 1 2 0 . . . . . .

We claim that Ωr with addition described in Example 1.1.10 and multiplication given

by formula (3.1) is a commutative ring. Notice that the element u of Ωr defined by the rule

un = 1 if n = 0 and un = 0 otherwise, satisfies xuux = x, for each x ∈ Ωr. Hence, u is

the neutral element of Ωr with respect to multiplication. Since Ωr is a commutative group

with respect to addition, it suffices to verify that the identities xy = yx, (xy)z = x(yz), and

x(y + z) = xy + xz hold for all x, y, z ∈ Ωr. One can easily verify these in the special case

when each of the elements x, y, z has only finitely many non-zero entries. In the general case,

it suffices to “truncate” these elements at some entry n similarly to that in Example 1.1.10,

and then use the above identities for truncated elements to show that the elements on both

sides of every identity coincide at each entry less than or equal to n. This implies that Ωr is

a commutative ring, as claimed.

It remains to verify that Ωr is a topological ring or, equivalently, multiplication in Ωr

is continuous when Ωr carries the topology defined in Example 1.3.16. Let a and b be

Locally compact topological groups
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arbitrary elements of Ωr and Λm a basic open neighbourhood of zero element in Ωr, where

m ∈ Z. Then ab+Λm is a basic open neighbourhood of the element ab in Ωr. If a is distinct

from zero element, let k be the least integer with ak = 0; if a = 0, set k = 0. Similarly, we

define l to be the least integer such that bl = 0 if b = 0 and l = 0 otherwise. Notice that, in

any case, a ∈ Λk and b ∈ Λl. Let n be a non-negative integer greater than or equal to each

of the three numbers m− k, m− l, m. The continuity of multiplication in Ωr will follow if

we show that

(a + Λn)(b + Λn) ⊂ ab + Λm. (3.2)

Take any x, y ∈ Λn. It follows from our choice of the number n that n+k ≥ m and n+l ≥ m.

Recall that the groups Λi satisfy Λi ⊂ Λj whenever i < j and the definition of these groups

given in Example 1.3.16 implies that ΛiΛj ⊂ Λi+j for all i, j ∈ Z. Therefore, we have that

ay ∈ ΛkΛn ⊂ Λn+k ⊂ Λm, xb ∈ ΛnΛl ⊂ Λn+l ⊂ Λm, and xy ∈ ΛnΛn = Λ2n ⊂ Λn ⊂ Λm.

This implies immediately that

(a + x)(b + y) = ab + (ay + xb + xy) ∈ ab + Λm,

and the continuity of multiplication in Ωr is proved. Hence, Ωr is a topological ring.

Now suppose that r = pm, where p is a prime number and m ≥ 1 is an integer. To show

that Ωr is a topological field in this case, it suffices to verify that every non-zero element

x ∈ Ωr is invertible and the mapping x �→ x−1 of Ωr \{0} onto itself is continuous. Take an

arbitrary non-zero element x of Ωr and let k be the least integer with xk = 0. We consider

two possible cases.

Case 1. If (xk, p) = 1, that is, p does not divide xk, then the inverse y = x−1 exists

and has the form (. . . , 0 . . . , 0, y−k, y−k+1, . . .), where (y−k, p) = 1. Indeed, there exists

y−k ∈ {1, 2, . . . , r − 1} such that xky−k = 1 + v0pm for some integer v0. In fact, these

conditions define y−k uniquely and imply that (y−k, p) = 1. Suppose that for some n ≥ 1,

we have defined numbers y−k, y−k+1, . . . , y−k+n−1 ∈ {0, 1, . . . , r − 1} and non-negative

integers v0, v1, . . . , vn−1. Then there exists a unique integer y−k+n ∈ {0, 1, . . . , r − 1} such

that xky−k+n + xk+1y−k+n−1 + · · · + xk+ny−k + vn−1 = vnpm for some integer vn. This

inductive definition gives us the element y with entries yl, where yl = 0 for each l < −k. It

follows from our definition of multiplication in Ωr that xy = u.

Case 2. Suppose that pv is the maximal common divisor of xk and r, where 1 ≤ v < m.

Then xk = pvx′k, where (x′k, p) = 1. Let us define an auxiliary element f = (fn) ∈ Ωr

by the rule f0 = pm−v and fn = 0 otherwise. In other words, f = pm−vu ∈ Λ0.

Consider the element z = fx. It is clear that zn = 0 for each n < k. From the equalities

pm−vxk = pmx′k = tkpm + zk it follows that zk = 0 and tk = x′k. In addition, calculating

the entry zk+1 of z, we have that pm−vxk+1 + x′k = tk+1pm + zk+1. Since m − v > 0 and

(x′k, p) = 1, this implies that zk+1 = 0 and (zk+1, p) = 1. So the element z satisfies the

conditions of Case 1 and, hence, it has the multiplicative inverse z−1 ∈ Ωr. It follows that

u = zz−1 = fxz−1 = x(fz−1) or, equivalently, fz−1 is the inverse of x in Ωr. We conclude,

therefore, that Ωr is a field.

It remains to verify the continuity of inverse in Ωr \ {0}. Again, take an arbitrary

element a ∈ Ωr distinct from 0 and let k be least integer with ak = 0. First, we mention the

following property of inversion in Ωr \ {0}:
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Claim. If b ∈ Ωr \ {0}, s ∈ Z, s ≥ k + 3, and bl = al for each l < s, then the entries of
the multiplicative inverses c = a−1 and d = b−1 satisfy dl = cl, for each l < s− 2k − 2.

Indeed, we have dl = cl = 0 for each l < −k. In Case 1, when (ak, p) = 1, the s − k
equalities

bk = ak, bk+1 = ak+1, . . . , bs−1 = as−1 (3.3)

together with (3.1) imply inductively the corresponding s− k equalities for the entries of c
and d:

d−k = c−k, d−k+1 = c−k+1, . . . , ds−2k−1 = cs−2k−1. (3.4)

In Case 2, when (ak, r) = pv and 1 ≤ v < m, we put f = pm−vu, z = fa, and w = fb.

Then, by (3.1) and (3.3), the entries of the elements z and w satisfy wl = zl = 0 for each

l ≤ k, and the s− k − 1 equalities

wk+1 = zk+1, wk+2 = zk+2, . . . , ws−1 = zs−1. (3.5)

Put g = z−1 and h = w−1. Since the elements z and w satisfy the conditions of Case 1 (with

k + 1 in place of k), we apply (3.5) to conclude, as above, that the entries of the elements g
and h have to satisfy gl = hl = 0, for each l < −k − 1, and the s− k − 1 equalities

h−k−1 = g−k−1, h−k = g−k, . . . , hs−2k−3 = gs−2k−3. (3.6)

According to Case 2, we have that c = fg and d = fh. It remains to repeat the argument

applied earlier to deduce (3.5) from (3.3) and conclude that (3.6) implies the corresponding

equalities dl = cl = 0, for each l ≤ −k − 1, and the s− k − 2 equalities

d−k = c−k, d−k+1 = c−k+1, . . . , ds−2k−3 = cs−2k−3. (3.7)

This finishes the proof of Claim.

We turn back to the proof of the continuity of the inverse in Ωr \ {0}. Consider a basic

open neighbourhood a+Λn of the element a ∈ Ωr \{0}, where n ≥ |k|. Set s = 2k+n+2.

Notice that s ≥ k + 3, and if x ∈ Λs, then the entries bl of the element b = a + x satisfy

bl = al for each l < s. Hence, the above Claim implies that the entries of the inverses

c = a−1 and d = b−1 satisfy dl = cl, for each l < n. In its turn, this gives d − c ∈ Λn or,

equivalently, d ∈ c + Λn. Therefore, the inverse in Ωr \ {0} is continuous.

Summing up, for each prime power number r, Ωr is a locally compact, σ-compact,

zero-dimensional topological field. �

Exercises

3.1.a. Show that the product of a countable family of locally compact groups need not be locally

compact.

3.1.b. Verify that every locally compact group G is Dieudonné complete (that is, complete with

respect to the maximal uniformity on the space G compatible with the topology of G).

3.1.c. Prove that a locally compact group is Lindelöf if and only if it is σ-compact.

3.1.d. Apply Exercise 1.2.i to show that every separable locally compact group is Lindelöf and,

therefore, is σ-compact.

3.1.e. Give an example of a non-separable Lindelöf locally compact group.

3.1.f. Prove that every countable locally compact group is discrete.

Locally compact topological groups
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3.1.g. Let GL(n, R) be the general linear group with real entries. The topology on GL(n, R) is

generated by the metric defined as the maximum of distances between corresponding entries

(see item e) of Example 1.2.5). Then, with this topology and the usual multiplication of

matrices, GL(n, R) is a locally compact, locally connected topological group. Calculate the

connected component of GL(n, R).

3.1.h. Verify that the subgroup H + P of the group R × R in Example 3.1.29 is dense in R × R.

Therefore, M is a proper dense subgroup of T×T and, in particular, M is not locally compact.

3.1.i. Show that for every Tychonoff space X, the multiplicative subgroup C∗
p(X) of the topological

ring Cp(X) considered in Example 3.1.30 is dense in Cp(X).

3.1.j. Find the inverses of the “periodic” 3-adic integers (1, 2, 0, 1, 2, 0, . . .) and (1, 2, 1, 2, 1, 2, . . .)
in the field Ω3. Are the inverses “periodic”?

3.1.k. Let r > 1 be an integer. Verify the following:

(a) If r has two distinct prime divisors, then there exist two non-zero r-adic integers a and

b such that ab = 0. In other words, the subring Zr of Ωr contains non-trivial divisors

of zero. Deduce that Ωr is a field if and only if r is a prime power (cf. Example 3.1.31).

(b) Let us call an r-adic number a infinite if a contains infinitely many non-zero entries.

Show that if the equality ab = 0 holds for non-zero r-adic numbers a and b, then both

numbers are infinite.

Problems

3.1.A. Prove that Corollaries 3.1.12, 3.1.13, and Theorem 3.1.14 are valid for the class of countably

compact topological groups.

Remark. Connectedness and total disconnectedness in countably compact and pseudocom-

pact topological groups were studied by D. Dikranjan in [134, 135, 136].

3.1.B. A topological group G is called locally pseudocompact if G contains a pseudocompact neigh-

bourhood of the neutral element. Which of Corollaries 3.1.12, 3.1.13, and Theorem 3.1.14

remain valid for locally pseudocompact topological groups?

Remark. The articles [136] and [477] contain a helpful information on the subject.

3.1.C. Let G be a connected topological group such that the complement of the neutral element of

G is not connected. Show that there exists a continuous isomorphism of G onto the group

of reals R endowed with the usual topology.

3.1.D. Let G be a connected locally compact topological group such that the complement of the

neutral element of G is not connected. Show that G is topologically isomorphic to the group

R with the usual topology.

3.1.E. Show that there is a Hausdorff topology on R turning R into a connected, locally compact,

locally connected topological group such that the complement of the neutral element is

connected.

3.1.F. Let G be a locally connected topological group such that, for some connected open

neighbourhood U of the neutral element e of G, the subspace U \ {e} is disconnected.

Prove that G is locally compact.

3.1.G. (A. A. Markov [306]) Give an example of a non-trivial connected topological group G all

elements of which have order 2. Can such a group be locally connected?

3.1.H. Prove that the topological ring Rτ contains a dense subfield if and only if τ ≤ 22ω
.

3.1.I. Let Zr be the additive group of r-adic integers (see Example 1.1.10). Prove that for every

continuous homomorphism h of the group Zr to itself, there exists a ∈ Zr such that h(x) = ax,

for each x ∈ Zr .

3.1.J. (a) For which integers r, s > 1, the product group Zr × Zs is monothetic, that is, contains

a dense cyclic subgroup?

(b) Is the compact group Zr ×T monothetic for any integer r > 1? For all integers r > 1?
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3.1.K. A subgroup I of the additive group of a commutative ring R is called ideal if ax ∈ I for all

a ∈ I and x ∈ R. Prove that every ideal I of the ring Zp with prime p is either trivial, that

is, I = {0}, or has the form I = pkZp for some integer k ≥ 0. Describe all ideals of the

ring Zr in the case of a composite integer r.

Open Problems

3.1.1. Characterize Tychonoff spaces X such that the topological ring Cp(X) contains a dense

subfield (see also Problem 3.1.H).

3.1.2. Find an internal characterization of subgroups of products of locally compact topological

groups.

3.1.3. When a locally compact space can be represented as a retract of a locally compact topological

group?

3.2. Quotients with respect to locally compact subgroups

In this section we are going to establish that for a locally compact subgroup H of a

topological group G, the natural quotient mapping π of G onto the quotient space G/H
has some rather nice properties locally. This will lead us to some interesting results on how

properties of G depend on the properties of G/H when H is locally compact. We recall

that, by Proposition 1.4.19, every locally compact subgroup H of a topological group G is

closed in G.

Proposition 3.2.1. Suppose that G is a topological group, H is a locally compact
subgroup of G, P is a closed symmetric subset of G such that P contains an open
neighbourhood of the neutral element e in G, and that P3∩H is compact. Let π : G→ G/H
be the natural quotient mapping of G onto the quotient space G/H . Then the restriction f
of π to P is a perfect mapping of P onto the subspace π(P) of G/H .

Proof. Clearly, f is continuous. First, we show that f−1f (a) is compact, for any

a ∈ P . Indeed, from the definition of f we have f−1f (a) = aH∩P . The subspaces aH∩P
and H ∩ a−1P are obviously homeomorphic and closed in G. Since a−1 ∈ P−1 = P , we

have H ∩ a−1P ⊂ H ∩ P2 ⊂ P3 ∩ H . Hence, H ∩ a−1P is compact and so is the set

f−1f (a).

It remains to prove that the mapping f is closed. Let us fix any closed subset M of P ,

and let a be a point of P such that f (a) ∈ f (M). We have to show that f (a) ∈ f (M) or,

equivalently, that aH ∩M = ∅. Assume the contrary. Then (aH ∩ P2) ∩M = ∅. Note

that aH ∩P2 is compact, since aH ∩P2 is homeomorphic to H ∩ a−1P2, which is a closed

subset of the compact space H ∩ P3.

Since aH ∩ P2 is compact and M is closed and disjoint from aH ∩ P2, there exists

an open neighbourhood W of e in G such that (W (aH ∩ P2)) ∩M = ∅. Clearly, we can

assume that W is symmetric and W ⊂ P .

Since the quotient mapping π is open and Wa is an open neighbourhood of a, the set

π(Wa) is an open neighbourhood of π(a) in G/H . Therefore, the set π(Wa)∩π(M) is not

empty, and we can fix m ∈ M and y ∈ W such that π(m) = π(ya), that is, mH = yaH .

Then m = yah, for some h ∈ H . However, ah = y−1m ∈ P2, since y−1 ∈ W−1 = W ⊂ P
and M ⊂ P . Besides, ah ∈ aH . Hence, ah ∈ (aH ∩ P2) and m = yah ∈ W (aH ∩ P2),
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since y ∈ W . Thus, m ∈ M ∩W (aH ∩ P2), which contradicts the choice of W . Hence,

f (a) ∈ f (M), and f (M) is closed in f (P). �

The next statement is just a smoother way to formulate what was achieved in Proposi-

tion 3.2.1.

Theorem 3.2.2. [A. V. Arhangel’skii] Suppose that G is a topological group, H a
locally compact subgroup of G, and π : G → G/H is the natural quotient mapping of G
onto the quotient space G/H . Then there exists an open neighbourhood U of the neutral
element e such that π(U) is closed in G/H and the restriction of π to U is a perfect mapping
of U onto the subspace π(U) (thus, π is an open locally perfect mapping of G onto G/H).

Proof. First, H is closed in G by Proposition 1.4.19. Since H is locally compact,

there exists an open neighbourhood V of e in G such that V ∩H is compact. Since the

space G is regular, we can select an open neighbourhood W of e such that W ⊂ V . Then

W ∩ H is compact, since W ∩ H is a closed subset of the compact subspace V ∩H . Let

U0 be any symmetric open neighbourhood of e such that U3
0 ⊂ W . Since U0

3 ⊂ U3
0 , the set

P = U0 satisfies all restrictions on P in Proposition 3.2.1. Therefore, by Proposition 3.2.1,

the restriction of π to U0 is a perfect mapping of U0 onto the subspace π(U0). We will now

modify U0 to make sure that the other condition is satisfied.

Since π is an open mapping, the set π(U0) is open in G/H . Since the space G/H is

regular, we can take an open neighbourhood V0 of π(e) in G/H such that V0 ⊂ π(U0).

Then U = π−1(V0) ∩U0 is an open neighbourhood of e contained in P , and the restriction

f of π to the closure of U is a perfect mapping of U onto the subspace π(U). However,

π(U) is closed in π(P), and π(U) ⊂ V0 ⊂ π(U0) ⊂ π(P). Therefore, π(U) is closed in

the closed set V0, which implies that π(U) is closed in G/H . �

Notice that if H is compact, then we can put U = G in Theorem 3.2.2. That means

that the quotient mapping π is perfect in this case (see Theorem 1.5.7). However, in the

general case, the mapping π in Theorem 3.2.2 need not be closed.

Example 3.2.3. Let R be the topological group of real numbers, and let Z be its

subgroup consisting of integers. Then the quotient mapping π : R → R/Z = T is open,

locally perfect, but not closed, since otherwise the kernel Z of π would be compact by [165,

Theorem 4.4.16]. Another way to see that π is not closed is to consider the image under π
of the closed subset {(n2 + 1)/n : n ∈ N} of R.

Theorem 3.2.4. Suppose that G is a zero-dimensional topological group and that H is
a locally compact subgroup of G. Then the quotient space G/H is also zero-dimensional.

Proof. Let π : G → G/H be the natural quotient mapping of G onto the quotient

space G/H . According to Theorem 3.2.2, we can fix an open neighbourhood U of the

neutral element e of G such that π(U) is closed in G and the restriction of π to U is a perfect

mapping of U onto the subspace π(U). Take any open neighbourhood W of π(e) in G/H .

Since the space G is zero-dimensional, we can fix an open and closed neighbourhood V of

e such that V ⊂ U ∩ π−1(W ). Then π(V ) is an open subset of G/H , since the mapping

π is open. On the other hand, π(V ) is closed in G/H , since the restriction of π to U
is a closed mapping and π(U) is closed in G/H . Clearly, π(V ) ⊂ W . Hence, G/H is

zero-dimensional. �



Quotients w.r.t. locally compact subgroups 149

One can derive a wealth of other corollaries from Theorem 3.2.2. First, we formulate

a general statement unifying many of them.

Recall that a regular closed set in a space is the closure of an open subset of this space.

Corollary 3.2.5. Suppose that � is a topological property preserved by preimages
of spaces under perfect mappings (in the class of Tychonoff spaces) and also inherited by
regular closed sets. Suppose further that G is a topological group, H is a locally compact
subgroup of G, and that the quotient space G/H has the property �. Then there exists an
open neighbourhood U of the neutral element e such that U has the property �.

Proof. This is an immediate corollary from Theorem 3.2.2. �

Given a space X and a property �, if every point x of X has an open neighbourhood

O(x) such that the closure of O(x) in X has �, then we say that X has the property � locally.

Local compactness, countable compactness, pseudocompactness, paracompactness, the

Lindelöf property, σ-compactness, Čech-completeness, the Hewitt–Nachbin completeness,

and the property of being a k-space are all inherited by regular closed sets and preserved by

perfect preimages [165, Sections 3.7, 3.10, 3.11]. Thus, Corollary 3.2.5 is applicable. This

observation proves the following statement:

Corollary 3.2.6. Suppose that G is a topological group, and that H is a locally
compact subgroup of G such that the quotient space G/H has some of the following
properties:

1) G/H is locally compact;
2) G/H is locally countably compact;
3) G/H is locally pseudocompact;
4) G/H is locally paracompact;
5) G/H is locally Lindelöf;
6) G/H is locally σ-compact;
7) G/H is locally Čech-complete;
8) G/H is locally realcompact.

Then the space G also has the same property, that is, in case 1) G is locally compact, in
case 2) G is locally countably compact, etc.

Corollary 3.2.7. Suppose that G is a topological group, and that H is a locally
compact subgroup of G such that the quotient space G/H is a k-space. Then G is also a
k-space.

Proof. This statement also follows from Corollary 3.2.5, since the property of being

a k-space is invariant under taking perfect preimages and a locally k-space is, obviously, a

k-space [165, Section 3.3]. �

Exercises

3.2.a. A space X is said to be subparacompact if every open covering of X can be refined by a σ-

discrete covering. Let G be a topological group, and H be a locally compact subgroup of G
such that the quotient space G/H is subparacompact. Show that G is locally subparacompact.

3.2.b. Let G be a topological group, and H be a locally compact subgroup of G such that the

quotient space G/H is strongly paracompact. Show that G is locally strongly paracompact.
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3.2.c. Let H be a locally compact subgroup of a topological group G, and suppose that the quotient

space G/H is metacompact. Show that G is locally metacompact. (Recall that a space X is

metacompact if every open covering can be refined by a point-finite open covering).

3.2.d. Let G be a topological group, and H be a locally compact subgroup of G such that the quotient

space G/H is countably paracompact. Show that G is locally countably paracompact.

3.2.e. Let H be a locally compact subgroup of a topological group G, and suppose that the quotient

space G/H is normal. Show that G need not be locally normal.

Hint. Consider a topological group G such that the space G is normal but the space G×[0, 1]

is not normal (see [217]).

Problems

3.2.A. Is every locally Lindelöf topological group paracompact?

Remark. The answer is “yes”, see [47].

3.2.B. (V. V. Uspenskij [63]) Show that every locally paracompact topological group is paracompact.

Hint. This easily follows from the next two general statements.

3.2.C. Let G be a topological group, and U be a non-empty open subset of G. Then there exists a

locally finite open covering γ of G such that V is homeomorphic to a closed subspace of U,

for every V ∈ γ.

Hint. Consider ξ = {xU : x ∈ G}. Clearly, ξ is an open covering of G belonging to the

left uniformity of G. Therefore, there exists a locally finite open covering γ of G refining ξ
(see [165, Section 8.1]). Since the closure of xU is homeomorphic to the closure of U, γ is

the covering we are looking for.

3.2.D. Let X be a topological space, and γ be a locally finite open covering of X such that V is

paracompact, for each V ∈ γ. Then X is paracompact.

3.2.E. Let G be a topological group, and H be a locally compact subgroup of G such that the

quotient space G/H is first-countable. Let, further, F be a closed subgroup of G such that

H ∩ F = {e}, where e is the neutral element of G. Show that F is first-countable.

3.2.F. Let H be a locally compact subgroup of a topological group G, and suppose that the tightness

of the quotient space G/H is countable. Let, further, F be a closed subgroup of G such that

H ∩F = {e}, where e is the neutral element of G. Prove that the tightness of F is countable.

3.2.G. Let G be a topological group, and H be a locally compact subgroup of G such that the

quotient space G/H is zero-dimensional. Let, further, F be a closed subgroup of G such

that H ∩ F = {e}, where e is the neutral element of G. Show that F is zero-dimensional.

3.2.H. Suppose that a locally compact subgroup H of a topological group G is such that the quotient

space G/H is normal. Let, further, F be a closed subgroup of G such that H ∩ F = {e},

where e is the neutral element of G. Prove that F is locally normal.

3.2.I. Show that every locally normal topological group G is normal.

Hint. From Problem 3.2.C it follows that every locally normal topological group G can be

covered by a locally finite family of closed normal subspaces. It follows that G is an image

of a normal space under a closed continuous mapping, which implies that G is normal.

3.2.J. Prove that every locally metacompact topological group is metacompact.

Hint. Apply Problem 3.2.C in the same way as in the solution of Problem 3.2.B.

3.2.K. Show that every locally subparacompact topological group G is subparacompact.

3.2.L. Verify that every locally countably paracompact topological group is countably paracompact.

3.2.M. Let G be a topological group, and H a locally compact subgroup of G such that the quotient

space G/H is paracompact (metacompact, subparacompact, countably paracompact, or

normal). Show that G is also paracompact (respectively, metacompact, subparacompact,

countably paracompact, or normal).
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Open Problems

3.2.1. Is every locally strongly paracompact topological group strongly paracompact?

3.2.2. Is every locally Dieudonné complete topological group Dieudonné complete?

3.2.3. Is every locally paracompact paratopological (quasitopological) group paracompact?

3.2.4. Is every locally normal paratopological (quasitopological) group normal?

3.2.5. Is every locally metacompact (subparacompact) paratopological (quasitopological) group

metacompact (subparacompact)?

3.2.6. Let f be an open continuous homomorphism of a paratopological group G onto a paratopo-

logical group F with locally compact kernel. Must f be locally perfect?

3.2.7. Suppose that f is an open continuous homomorphism of a paratopological group G onto

a paracompact paratopological group F with locally compact fibers. Must G be locally

paracompact?

3.3. Prenorms on topological groups, metrization

In this section we consider continuous prenorms on topological groups, and present

some of their applications. We follow A. A. Markov’s approach in this, though we call a

prenorm what he called a norm.

At first, we do not assume that there is any topology on G. Let G be a group, with

neutral element e, and let N be a real-valued function on G. We shall call N a prenorm on

G if the following conditions are satisfied for all x, y ∈ G:

(PN1) N(e) = 0;

(PN2) N(xy) ≤ N(x) + N(y);

(PN3) N(x−1) = N(x).

Proposition 3.3.1. If N is a prenorm on G, then N(x) ≥ 0 for each x ∈ G, that is, N
is non-negative.

Proof. Indeed, since e = xx−1, we have from conditions (PN1), (PN2) and (PN3):

0 = N(e) ≤ N(x) + N(x−1) = 2N(x). Therefore, 0 ≤ N(x). �

Proposition 3.3.2. If N is a prenorm on a group G, then |N(x)−N(y)| ≤ N(xy−1),
for any x and y in G.

Proof. From (PN2) we have: N(y) ≤ N(x) + N(x−1y). Besides, from (PN2) and

(PN3) it follows that N(x) = N(x−1) ≤ N(y−1) + N(x−1y) = N(y) + N(x−1y). The two

inequalities clearly imply the inequality in our proposition. �

The next two assertions are obvious.

Proposition 3.3.3. If N is a prenorm on a group G and α is a non-negative real
number, then the function αN on G defined by the formula (αN)(x) = α(N(x)), for each
x ∈ G, is a prenorm on G.

The following simple fact will be used in the next section.

Proposition 3.3.4. For any prenorm N on a group G, the set ZN = {x ∈ G : N(x) =

0} is a subgroup of G.
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Proof. If x ∈ ZN , then N(x) = 0. Therefore, N(x−1) = 0, which implies that

x−1 ∈ G. Let x, y ∈ ZN . Then 0 ≤ N(xy) ≤ N(x) + N(y) = 0, which implies that

N(xy) = 0 and xy ∈ ZN . It follows that ZN is a subgroup of G. �

Proposition 3.3.5. The sum of two prenorms on a group G is a prenorm on G.

There is a very simple method for constructing prenorms on topological groups. It is

described in the following lemma:

Lemma 3.3.6. Let f be a bounded real-valued function on a group G. Then the function
Nf on G, defined by the formula:

Nf (x) = sup {|f (yx)− f (y)| : y ∈ G},
for each x ∈ G, is a prenorm on G.

Proof. Clearly, condition (PN1) is satisfied. One can also check, though this requires

some computation, that conditions (PN2) and (PN3) are satisfied as well. �

In general, a prenorm on a topological group need not be continuous. The next assertion,

though simple, is useful.

Proposition 3.3.7. A prenorm N on a topological group G is continuous if and only
if for each positive number ε there exists a neighbourhood U of the neutral element e such
that N(x) < ε, for each x ∈ U.

Proof. The necessity is clear. Let us prove the sufficiency. Suppose z is any point of

G, and ε is a positive number. Take a neighbourhood U of e such as in Proposition 3.3.7.

The set V = zU is an open neighbourhood of z. Take any y ∈ zU. Then z−1y ∈ U, and

therefore, N(z−1y) < ε. From Proposition 3.3.2 it now follows that |N(z) − N(y)| < ε.

Thus, the function N is continuous at z. �

Notice that the proof of Proposition 3.3.7 also brings us to the following conclusion:

Proposition 3.3.8. Every continuous prenorm on a topological group G is a uniformly
continuous function with respect to both left and right group uniformities on G.

Now we are going to show how to construct continuous prenorms on a topological

group G. The importance of the construction lies in the fact that it provides us with a very

rich family of continuous prenorms on any topological group.

If N is a prenorm on a group G, let us define the unit ball of N as the set BN = {x ∈
G : N(x) < 1}. Clearly, if N is a continuous prenorm, then the unit ball BN is an open

subset of G. We also put BN (ε) = {x ∈ G : N(x) < ε}, where ε is a positive number; we

call BN (ε) the N-ball of radius ε. The sets BN (ε) are also open when N is a continuous

prenorm.

Theorem 3.3.9. [A. A. Markov] For each open neighbourhood U of the neutral
element e of a topological group G, there exists a continuous prenorm N on G such that
the unit ball BN is contained in U.

This theorem will be derived from a more elaborate technical assertion, fixing more

relevant details of the situation.
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Lemma 3.3.10. Let {Un : n ∈ ω} be a sequence of open symmetric neighbourhoods of
the neutral element e in a topological group G such that U2

n+1 ⊂ Un, for each n ∈ ω. Then
there exists a prenorm N on G such that the next condition is satisfied:

(PN4) {x ∈ G : N(x) < 1/2n} ⊂ Un ⊂ {x ∈ G : N(x) ≤ 2/2n}.
Therefore, this prenorm N is continuous. If, in addition, the sets Un are invariant, then the
prenorm N on G can be chosen to satisfy N(xyx−1) = N(y) for all x, y ∈ G.

Proof. Put V (1) = U0, fix n ∈ ω, and assume that open neighbourhoods V (m/2n)

of e are defined for each m = 1, 2, . . . , 2n. Put then V (1/2n+1) = Un+1, V (2m/2n+1) =

V (m/2n) for m = 1, . . . , 2n, and

V ((2m + 1)/2n+1) = V (m/2n) · Un+1 = V (m/2n) · V (1/2n+1),

for each m = 1, 2, . . . , 2n−1. This defines open neighbourhoods V (r) of e for every positive

dyadic rational number r ≤ 1. We also put V (m/2n) = G when m > 2n. It is easy to derive

from this definition that the following condition is satisfied:

(p) V (m/2n) · V (1/2n) ⊂ V ((m + 1)/2n), for all integers m > 0 and n ≥ 0.

Notice that (p) is obviously true if m+1 > 2n. It remains to consider the case when m < 2n.

Let us prove (p) for this case by induction on n.

If n = 1, then the only possible value for m is also 1, and we have:

V (1/2)V (1/2) = U2
1 ⊂ U0 = V (1).

Assume that (p) holds for some n. Let us verify it for n + 1. If m is even, then (p) turns into

the formula by means of which V ((2m + 1)/2n+1) was defined.

Assume now that 0 < m = 2k + 1 < 2n+1, for some integer k. Then

V (m/2n+1) · V (1/2n+1) = V ((2k + 1)/2n+1) · Un+1

= V (k/2n) · Un+1 · Un+1 ⊂ V (k/2n) · Un

= V (k/2n) · V (1/2n).

But by the inductive assumption, we have

V (k/2n) · V (1/2n) ⊂ V ((k + 1)/2n = V ((2k + 2)/2n+1) = V ((m + 1)/2n+1),

which completes the proof of (p).

Now we define a real-valued function f on G as follows:

f (x) = inf {r > 0 : x ∈ V (r)},
for each x in G. The function f is well-defined, since x ∈ V (2) = G, for each x ∈ G.

From condition (p) it follows that if 0 < r < s for positive dyadic rational numbers r and s,
then V (r) ⊂ V (s). Let us agree that r and s, in the argument below, stand only for positive

dyadic rational numbers. Thus, we have:

(1) If f (x) < r, then x ∈ V (r).

Then f is a non-negative function, bounded from above by 2. Therefore, by Lemma 3.3.6,

the function N defined by the formula

N(x) = sup
y∈G
|f (yx)− f (y)|

for each x ∈ G, is a prenorm on G.
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Let us show that N satisfies condition (PN4). Notice that f (e) = 0. Assume that

N(x) < 1/2n, for some x ∈ G. Then f (x) = |f (ex) − f (e)| ≤ N(x) < 1/2n, which

implies, by (1), that x ∈ V (1/2n) = Un. This proves the first part of (p), namely, that

{x ∈ G : N(x) < 1/2n} ⊂ Un.

Let us prove the remaining part of (p), which obviously implies the continuity of N.

Let x be any point of V (1/2n). Clearly, for any point y ∈ G there exists a positive integer

k such that (k − 1)/2n ≤ f (y) < k/2n. Then y ∈ V (k/2n), by (1). Since x ∈ V (1/2n)

and x−1 ∈ V (1/2n), it follows that yx and yx−1 are in V (k/2n)V (1/2n) ⊂ V ((k + 1)/2n).

Therefore, f (yx) ≤ (k + 1)/2n and f (yx−1) ≤ (k + 1)/2n. From this and the inequality

(k − 1)/2n ≤ f (y) we obtain: f (yx) − f (y) ≤ 2/2n and f (yx−1) − f (y) ≤ 2/2n.

Substituting yx for y in the last inequality, we get: f (y)−f (yx) ≤ 2/2n. Together with the

previous inequality, this implies that |f (yx) − f (y)| ≤ 2/2n, for each y ∈ G. Therefore,

N(x) ≤ 2/2n.

Finally, suppose that the sets Un are invariant, that is, xUnx−1 = Un for all x ∈ G
and n ∈ ω. Since the product of finitely many invariant sets is invariant, it follows that

the set Vr is also invariant for each dyadic rational number r > 0. In its turn, this implies

that f (xyx−1) = f (y) for all x, y ∈ G. Therefore, given elements x, y ∈ G, we obtain the

equalities

N(xyx−1) = sup
z∈G
|f (zxyx−1)− f (z)| = sup

z∈G
|f (x−1zxy)− f (z)|

= sup
t∈G
|f (ty)− f (xtx−1)|

= sup
t∈G
|f (ty)− f (t)| = N(y),

where t = x−1zx. To write the second line of the above equalities we use the fact that the

conjugation mapping ϕ : G→ G defined by ϕ(z) = x−1zx for each z ∈ G is a bijection of

G onto itself. This finishes the proof. �
Proof of Theorem 3.3.9. Using the axioms of a topological group, one easily

constructs a sequence of open neighbourhoods {Un : n ∈ ω} of the identity e in G satisfying

all the conditions in Lemma 3.3.10 and such that U0 = U. Take a prenorm N on G satisfying

(PN4) of Lemma 3.3.10. Then N is continuous and the unit ball BN of N is contained in

U0 = U. �
A semitopological group G will be called left uniformly Tychonoff if for every open

neighbourhood V of the neutral element e, there exists a left uniformly continuous function

f on G such that f (e) = 0 and f (x) ≥ 1, for each x ∈ G \ V . Similarly, one defines

the concept of a right uniformly Tychonoff semitopological group. Clearly, if G is left

(or right) uniformly Tychonoff, then the space G is Tychonoff. Finally, if for every open

neighbourhood V of the neutral element e in a semitopological group G, there exists a

real-valued function f on G satisfying f (e) = 0 and f (x) ≥ 1 for each x ∈ G \ V which

is simultaneously left and right uniformly continuous, then G will be called uniformly
Tychonoff.

Theorem 3.3.11. Every topological group G is uniformly Tychonoff.

Proof. Let U be any open neighbourhood of the identity e in G. By Theorem 3.3.9,

there exists a continuous prenorm N on G such that BN ⊂ U. Then we have that N(x) = 0
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and N(x) ≥ 1, for each x ∈ G \ U. Since every continuous prenorm is left and right

uniformly continuous by Proposition 3.3.8, G is uniformly Tychonoff. �

Here is another important application of Lemma 3.3.10 — a very quick proof of the

Birkhoff–Kakutani metrization theorem for topological groups. It is worth noting that

Theorem 3.3.9 does not work so well in this situation compared to Lemma 3.3.10.

Theorem 3.3.12. [G. Birkhoff , S. Kakutani] A topological group G is metrizable if
and only if it is first-countable.

Proof. The necessity is obvious. Let us prove the sufficiency. Fix a countable base

{Wn : n ∈ ω}of the space G at the point e. By induction, we obtain a sequence{Un : n ∈ ω}
of symmetric open neighbourhoods of e such that Un ⊂ Wn and U2

n+1 ⊂ Un, for each n ∈ ω.

This sequence is also a base of G at e. By Lemma 3.3.10, there exists a continuous prenorm

N on G such that BN (1/2n) ⊂ Un for each n ∈ ω. It follows that the open sets BN (1/2n)

also form a base of G at e.

Now, for arbitrary x and y in G, put 
N (x, y) = N(xy−1). Let us show that 
N is a

metric on G generating the original topology on G. Clearly, 
N (x, y) = N(xy−1) ≥ 0,

for all x, y ∈ G. It is also clear that 
N (x, x) = 0, for each x ∈ G. Assume now that


N (x, y) = 0. Then xy−1 ∈ BN (1/2n) ⊂ Un, for each n ∈ ω. Since {e} =
⋂

n∈ω Un, it

follows that xy−1 = e, that is, x = y.

Let us verify the triangle inequality. Take any three points x, y, and z in G. Then we

have:


N (x, z) = N(xz−1)

= N(xy−1yz−1) ≤ N(xy−1) + N(yz−1)

= 
N (x, y) + 
N (y, z).

Thus, 
N is a metric on G.

Notice that the metric 
N is right-invariant, that is, 
N (x, y) = 
N (xz, yz), for all

x, y, z ∈ G. Indeed,


N (xz, yz) = N(xzz−1y−1) = N(xy−1) = 
N (x, y).

Since BN (ε) is obviously the spherical 
N -neighbourhood of e of radius ε, it follows that the

spherical 
N -neighbourhood of any point x of G of radius ε is precisely the set BN (ε)x. Take

any point x ∈ G. Since the sets BN (1/2n) form a base of G at e, and G is a topological group,

the sets BN (1/2n)x constitute a base of G at x, that is, the spherical 
N -neighbourhoods of

e of radius 1/2n form a base of the space G at the point x. Thus, the metric 
N generates

the original topology of the space G, that is, G is metrizable. �

One can complement Theorem 3.3.12 as follows:

Corollary 3.3.13. Every first-countable topological group G admits a right-invariant
metric 
 and a left-invariant metric λ, both generating the original topology of G.

Proof. Take a continuous prenorm N on G as in the proof of Theorem 3.3.12 and put


(x, y) = N(xy−1) and λ(x, y) = N(x−1y) for all x, y ∈ G. As it was shown above, 
 is a

right-invariant metric on G that generates the topology of G. Since the inverse on G is a

homeomorphism of G onto itself, a similar assertion for λ is clear. �
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Not every metrizable topological group admits an invariant metric that generates the

topology of the group. The groups with this property are necessarily balanced:

Corollary 3.3.14. A metrizable topological group G admits an invariant metric
generating its topology if and only if G is balanced.

Proof. Suppose that 
 is an invariant metric on G that generates the topology of G.

For every n ∈ N, denote by Un the 1/n-ball with center at the neutral element e of G with

respect to 
. If x ∈ Un and y ∈ G are arbitrary elements, then the two sides invariance of 

implies that


(e, yxy−1) = 
(y, yx) = 
(e, x) < 1/n,

whence yxy−1 ∈ Un. It follows that yUny−1 = Un for all y ∈ G and n ∈ N, so the family

{Un : n ∈ N} is an invariant base for G at the neutral element e. Hence, the group G is

balanced.

Conversely, suppose that the group G is balanced. Since G is first-countable, there

exists a sequence ξ = {Un : n ∈ ω} of open, symmetric, invariant neighbourhoods of e
in G satisfying U2

n+1 ⊂ Un for each n ∈ ω and such that ξ forms a local base for G at e.

Therefore, by Lemma 3.3.10, we can find a prenorm N on G satisfying (PN4) of the lemma

and the equality N(xyx−1) = N(y) for all x, y ∈ G. Then N is continuous and the open

balls BN (1/n) = {x ∈ G : N(x) < 1/n}, with n ∈ N, form a base for G at the neutral

element e. Hence the metric d on G defined by d(x, y) = N(x−1y) = N(xy−1) is invariant

and generates the topology of G. �

Applying Theorem 3.3.9 in almost the same way as in the proof of Theorem 3.3.12, we

obtain the following important result:

Theorem 3.3.15. Every Abelian topological group G is topologically isomorphic to a
subgroup of the product of some family of metrizable Abelian topological groups.

Proof. Let U be an open neighbourhood of the neutral element e of G. According

to Theorem 3.3.9, we can fix a continuous prenorm NU on G such that the unit ball with

respect to NU is contained in U.

Put HU = {x ∈ G : NU(x) = 0}. Since NU is continuous, HU is closed in G. From

conditions (PN1), (PN2), and (PN3) it follows that HU is a subgroup of G. Since G is

Abelian, it follows that the quotient set GU = G/HU is an Abelian group. We denote by fU

the natural quotient homomorphism of G onto GU , and define a function PU on the group

GU as follows: PU(y) = NU(x), where x is any element of f−1
U (y). Obviously, PU(y) does

not depend on the choice of x in f−1
U (y). Then PU is a prenorm on the group GU , and

PU(y) = 0 if and only if y is the neutral element eU of GU .

It follows from conditions (PN1), (PN2), and (PN3) that the 1/n-balls with respect

to the prenorm PU form a base of a topology �U on GU with respect to which GU is a

topological group and the mapping fU is continuous. It is also clear that the preimage of the

1-ball with respect to PU is contained in U. Note that GU is first-countable and, therefore,

metrizable.

By the standard Tychonoff type argument, it follows that the diagonal product of the

mappings fU , where U runs over a basic family � of open neighbourhoods of e in the group

G, is a topological isomorphism of G onto a subgroup of the product ΠU∈�GU . Since every

GU is an Abelian metrizable group, this completes the argument. �
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We shall see later that Theorem 3.3.15 is no longer valid in the non-Abelian case.

Notice that the proof of Theorem 3.3.12, practically without any change, can be applied to

the situation when the neutral element of a topological group G is a Gδ-set in G. Then the

metric 
 on G constructed in the same way as above no longer generates the original topology

of G but a weaker topology. This weaker topology is still left-invariant and, therefore, the

left translations are homeomorphisms; but in general it need not be a group topology. Thus,

we have:

Theorem 3.3.16. If G is a topological group such that its neutral element is a Gδ-
set in G, then there exists a weaker metrizable topology on G with respect to which G is
topologically homogeneous (by means of left translations).

Corollary 3.3.17. If G is a topological group such that the singleton e is a Gδ-set,
then every compact subspace F of the space G is metrizable.

Proof. Apply Theorem 3.3.16 together with the fact that every one-to-one continuous

mapping of a compact space onto a metrizable space is a homeomorphism. �

Theorem 3.3.12 has important applications to quotients groups.

Corollary 3.3.18. Suppose that f is an open continuous homomorphism of a
metrizable topological group G onto a topological group H . Then H is also metrizable.

Proof. Since f is open and continuous, and the space G is first-countable, the space

H is also first countable. It remains to apply Theorem 3.3.12. �

We note in connection with Corollary 3.3.18 that metrizability of topological spaces,

in general, is not preserved by open continuous mappings. Indeed, every first-countable

space can be represented as an image of a metrizable space under an open and continuous

mapping [165, 4.2.D].

Here is a generalization of Corollary 3.3.18 to quotient spaces of metrizable topological

groups:

Proposition 3.3.19. Let H be a closed subgroup of a metrizable topological group G.
Then the quotient space G/H is also metrizable.

Proof. By Corollary 3.3.13, there exists a right-invariant metric d on G which

generates the topology of G. For arbitrary points x, y ∈ G, define a number 
(xH, yH)

by the rule:


(xH, yH) = inf{d(xh1, yh2) : h1, h2 ∈ H}.
Since d is right-invariant, we have that 
(xH, yH) = d(x, yH) ≥ 0 for all x, y ∈ G. The

function 
 is symmetric:


(yH, xH) = d(y, xH) = inf
h∈H

d(y, xh) = inf
h∈H

d(yh−1, x)

= inf
h∈H

d(x, yh−1) = d(x, yH) = 
(xH, yH).

Since H is closed in G, we also have that 
(xH, yH) = d(x, yH) = 0 if and only if x ∈ yH ,

that is, xH = yH . Let us verify that the function 
 on G/H satisfies the triangle inequality

and, hence, 
 is a metric.
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Suppose that x, y, z are arbitrary points of G and ε > 0 is a real number. By the

definition of 
, we can find h1, h2 ∈ H such that 
(xH, yH) < d(x, yh1) + ε/2 and


(yH, zH) < d(y, zh2) + ε/2. We then have:


(xH, zH) ≤ d(x, zh2h1)

≤ d(x, yh1) + d(yh1, zh2h1) = d(x, yh1) + d(y, zh2)

< 
(xH, yH) + 
(yH, zH) + ε.

Since ε is an arbitrary positive number, the above inequality implies that 
(xH, zH) ≤

(xH, yH) + 
(yH, zH). Thus, 
 is a metric.

To finish the proof, we have to show that 
 generates the topology of the quotient space

G/H . For x ∈ G and ε > 0, let

Oε(x) = {y ∈ G : d(x, y) < ε} and

Bε(xH) = {yH : y ∈ G, 
(xH, yH) < ε}.
Denote by π the quotient mapping of G onto G/H , π(x) = xH for each x ∈ G. It follows

from the definition of the metric 
 that π(Oε(x)) = Bε(xH) for all x ∈ G and ε > 0. Since

the sets Oε(x) form a base for G and the mapping π : G → G/H is continuous and open,

we conclude that the sets Bε(xH) constitute a base for the original topology of the space

G/H . The proof is complete. �
Suppose that H is a closed invariant subgroup of a topological group G, and G/H is

the corresponding quotient group. Then G is called an extension of the group H by G/H .

It turns out that metrizability is stable with respect to extensions of topological groups:

Corollary 3.3.20. [N. Ya. Vilenkin] Suppose that G is a topological group, and H a
closed metrizable subgroup of G such that the quotient space G/H is first-countable. Then
G is also metrizable.

Proof. By Corollary 1.5.21, the space G is first-countable. It remains to refer to

Theorem 3.3.12. �
Corollary 3.3.21. Suppose that G is a topological group, H is a second-countable

subgroup of G, and the quotient space G/H is second-countable. Then G is also second-
countable.

Proof. The space G is separable by Theorem 1.5.23, and Corollary 3.3.20 tells us that

G is metrizable. �
Reformulating Corollary 3.3.20, we can say that extensions of topological groups

preserve metrizability. Similarly, Corollary 1.5.8 implies that extensions of topological

groups preserve compactness. In particular, an extension of a compact metrizable group

by another such a group is also compact and metrizable. This fact admits a natural

generalization via considering compact metrizable subspaces of topological groups (see

Theorem 3.3.24 below).

We start with two preliminary results; the first of them is interesting by itself.

Lemma 3.3.22. The following conditions are equivalent for a topological group G:

a) every compact subspace of G is first-countable;
b) every compact subspace of G is metrizable.
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Proof. It suffices to show that a) implies b). Suppose that X is a non-empty compact

subset of G. Consider the mapping j : G × G → G defined by j(x, y) = x−1y for all

x, y ∈ G. Clearly, j is continuous, so the image F = j(X × X) is a compact subset of G
which contains the identity e of G. By our assumption, the space F is first-countable, so

χ(e, F ) ≤ ω. Denote by f the restriction of j to X×X. Then f−1(e) = ΔX is the diagonal

in X× X. Since f is a closed mapping, we have χ(Δ, X× X) = χ(e, F ) ≤ ω. Therefore,

the compact space X is metrizable by [165, 4.2.B]. �

Now we need the following property of closed continuous mappings.

Lemma 3.3.23. Let f : X → Y be a closed continuous mapping of regular spaces.
Suppose that a point x ∈ X satisfies χ(f (x), Y ) ≤ ω and χ(x, C) ≤ ω, where C = f−1f (x).
Then χ(x, X) ≤ ω.

Proof. Let {Ui : i ∈ ω} be a countable base for C = f−1f (x) at the point x, and let

{Vj : j ∈ ω} be a countable base for Y at y = f (x). For every i ∈ ω, choose an open

neighbourhood Oi of x in X such that Oi ∩ (C \Ui) = ∅. Then Oi ∩C ⊂ Ui. Let us verify

that the family {Oi∩f−1(Vj) : i, j ∈ ω} is a base for X at x. Suppose that U is an arbitrary

open neighbourhood of x in X. Choose i ∈ ω such that Ui ⊂ C ∩U. Then F = Oi \U is a

closed subset of X disjoint from C, so K = f (F ) is closed in Y and y /∈ K. Choose j ∈ ω
with Vj ∩K = ∅. Then Oi ∩ f−1(Vj) ⊂ Oi \ F ⊂ U, as required. �

Theorem 3.3.24. Let H be a closed subgroup of a topological group G, and suppose
that all compact subspaces of H and G/H are metrizable. Then all compact subspaces of
G are metrizable as well.

Proof. Denote by π the canonical mapping of G onto the quotient space G/H of

left cosets. We claim that all compact subsets of the fibers of π are metrizable. Indeed,

let y ∈ G/H be arbitrary. Choose a point x ∈ G such that π(x) = y. Then the fiber

π−1(y) = xH is homeomorphic to the group H , whence our claim follows.

Given a compact subset X of G, let f be the restriction of π to X. The compact subspace

Y = f (X) of the space G/H is metrizable by our hypothesis, and all compact subsets of

the fibers of f are metrizable since they lie in the fibers of π. Therefore, Lemma 3.3.23

implies that all compact subsets of G are first-countable, and the metrizability of X follows

from Lemma 3.3.22. �

Let � be a topological or algebraic property. It is said that � is a three space property if,

given an arbitrary topological group G and a closed invariant subgroup H of G such that both

H and G/H have �, it follows that G also has �. Now we can reformulate Corollaries 3.3.20,

3.3.21, and Theorem 3.3.24 by saying that the following are three space properties: a)

metrizability; b) to be second-countable; c) “all compact subsets are metrizable”.

Exercises

3.3.a. Show that a first-countable paratopological group need not be metrizable.

3.3.b. Prove that every compact subspace of the Sorgenfrey line is countable (hence, metrizable).

3.3.c. Show that the Sorgenfrey line is not homeomorphic to any topological group.

3.3.d. Verify that the group GL(2, R) does not admit a continuous invariant metric that generates

the topology of this group.
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3.3.e. Prove that the topology of any compact first-countable group is generated by a continuous

invariant metric.

3.3.f. Give an explicit formula for a left-invariant continuous metric that generates the topology of

the subgroup

H =

{(
a b
0 d

)
: a, b, c ∈ R, ad = 1

}
of the group GL(2, R).

3.3.g. Let H be a closed subgroup of a topological group G and suppose that d is a right-invariant

continuous pseudometric on G. Define σ on the quotient space G/H by

σ(xH, yH) = inf{d(a, b) : a ∈ xH, b ∈ yH}.

Prove that σ is a continuous pseudometric on G/H . Use this fact to give an alternative proof

of Corollary 3.3.18.

3.3.h. Let H be a closed subgroup of a topological group G, and suppose that all compact subsets

of the group H and of the quotient space G/H are finite. Prove that all compact subsets of

G are finite as well. Extend this result to countably compact sets.

3.3.i. Give an example of a topological group G algebraically generated by a discrete subspace

such that G contains a compact set K with χ(K) > ω. (See Problem 3.3.6.)

Problems

3.3.A. Give an example of a countable non-discrete topological group G without non-trivial

convergent sequences (notice that such a group G cannot be metrizable).

3.3.B. Does there exist an infinite topological group G such that all metrizable subgroups of G are

finite? Can such a group be connected or locally connected?

3.3.C. Show that the Sorgenfrey line does not admit an open continuous homomorphism onto a

metrizable paratopological group with metrizable fibers.

3.3.D. Let H be a closed invariant subgroup of a topological group G and suppose that both groups

H and G/H admit continuous invariant metrics generating their topologies. Does G then

have the same property?

3.3.E. Prove that the group H in Exercise 3.3.f does not admit an invariant metric that generates

the topology of H .

Hint. Define two sequences {xn : n ∈ ω} and {yn : n ∈ ω} of pairwise distinct elements of

the group H such that the sequence {xnyn : n ∈ ω} converges to the neutral element of H ,

while {ynxn : n ∈ ω} is a closed discrete subset of H .

3.3.F. Let H be a closed subgroup of a topological group G. Prove that the quotient space G/H is

Tychonoff.

Hint. Let π : G → G/H be the natural projection. Since the space G/H is homogeneous,

it suffices to find, for a given neighbourhood U of the neutral element e in G, a continuous

function σ on G/H such that σ(π(e)) = 0 and σ(y) = 1, for each y ∈ G/H \ π(U). To

construct such a function σ, apply Exercise 3.3.g.

3.3.G. Let G be a topological group. Prove that if the product group G×G is functionally balanced

(see Problem 1.8.B), then G is balanced.

Hint. Let U be a symmetric open neighbourhood of the identity e in G. Apply Theorem 3.3.9

to choose a continuous prenorm N on G such that N(x) < 1, for each x ∈ U and

N(x) = 1 for each x ∈ G \ U. Then the function 
 defined by 
(x, y) = N(x−1y) for

x, y ∈ G is a continuous left-invariant pseudometric on G bounded by 1. In particular, 

is left uniformly continuous. Since G × G is functionally balanced, 
 is right uniformly

continuous and, therefore, there exists an open symmetric neighbourhood V of e in G such
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that |
(x, vx) − 
(x, x)| < 1, for all x ∈ G and v ∈ V . Deduce that yVy−1 ⊂ U for each

y ∈ G and, therefore, G is balanced.

3.3.H. Let H1 and H2 be compact topological groups. We can assume without loss of generality

that the only common element of the groups H1 and H2 is the identity of both groups. Prove

that there exists a Hausdorff topological group G satisfying the following conditions:

i) G contains H1 and H2 as topological subgroups;

ii) the set H1 ∪ H2 algebraically generates G;

iii) given a topological group K and continuous homomorphisms ϕ1 : H1 → K and

ϕ2 : H2 → K, there exists a continuous homomorphism ϕ : G → K such that

ϕ�Hi = ϕi, for i = 1, 2.

The group G is called the free topological product of H1 and H2. Prove that the group G is

metrizable iff one of the groups H1, H2 is trivial and the other is metrizable.

3.3.I. Show that a topological group algebraically generated by two separable metrizable subgroups

is not necessarily metrizable, even if the generating subgroups are compact.

3.3.J. Show that a topological group G algebraically generated by two metrizable subgroups may

fail to be paracompact. Is G necessarily a normal space?

Open Problems

3.3.1. Suppose that G is a Hausdorff (regular) paratopological group in which every point is a

Gδ-set. Is G submetrizable? (A space is said to be submetrizable if the topology of the space

contains a metrizable topology.)

3.3.2. Let f : G → F be an open continuous homomorphism of a metrizable paratopological group

G onto a Hausdorff paratopological group F . Must F then be metrizable?

3.3.3. Can the Sorgenfrey line, considered as a paratopological group, be represented as an image

of a metrizable paratopological group under an open continuous homomorphism?

3.3.4. Let G be a paratopological group such that every compact subspace of G is first-countable.

Is every compact subspace of G metrizable?

3.3.5. Let G be a quasitopological group such that every compact subspace of G is first-countable.

Is every compact subspace of G metrizable?

3.3.6. Let G be a topological group algebraically generated by two metrizable subgroups. Is every

compact (countably compact) subspace of G metrizable?

3.3.7. Let G be a topological group algebraically generated by two metrizable subgroups. Is G
subparacompact? What if G is Abelian? (See Problems 3.3.I and 3.3.J.)

3.3.8. Let f : G → F be an open continuous homomorphism of a paratopological group G onto a

metrizable paratopological group F , and suppose that the kernel of f is metrizable. Must G
be metrizable?

3.3.9. Characterize the paratopological groups that admit an open continuous homomorphism with

metrizable kernel onto a metrizable paratopological group.

3.3.10. Let S be the Sorgenfrey line. Is there a cardinal number τ > ω such that Sτ is homeomorphic

to a topological group? Notice that Sω is not homeomorphic to any topological group.

3.3.11. Is the Sorgenfrey line homeomorphic to any quasitopological group?
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3.4. ω-narrow and ω-balanced topological groups

In this section we study the class of ω-narrow topological groups. These groups are

characterized as subgroups of topological products of (possibly, uncountable) families of

second-countable topological groups.

We recall that a left semitopological group G is called ω-narrow if, for every open

neighbourhood V of the neutral element e in G, there exists a countable subset A of G such

that AV = G (see Section 2.3).

The following proposition shows that the algebraic asymmetry of the above definition

disappears in the case of quasitopological groups:

Proposition 3.4.1. The following conditions are equivalent for a quasitopological
group G:

1) G is ω-narrow;
2) For every open neighbourhood V of the neutral element e in G, there exists a countable

set B ⊂ G such that G = VB;
3) For every open neighbourhood V of the neutral element e in G, there exists a countable

set C ⊂ G such that CV = G = VC.

Proof. It is clear that both 1) and 2) follow from 3). Also, 3) follows from

the conjunction of 1) and 2) since the equalities G = AV and G = VB imply that

CV = G = VC, where C = A ∪ B. Clearly, the set C is countable if so are A and

B.

It remains to show that 1) and 2) are equivalent. Let G be an ω-narrow quasitopological

group. Given an open neighbourhood V of e, one can find an open neighbourhood U of e
such that U−1 ⊂ V . Choose a countable set A ⊂ G such that AU = G. Then the countable

set B = A−1 satisfies G = G−1 = (AU)−1 = U−1A−1 ⊂ VB, that is, G = VB. This

proves the implication 1)⇒ 2). Inverting the above argument, one obtains the implication

2)⇒ 1). Therefore, the three conditions on the group G are equivalent. �

The following two statements are almost obvious, so we leave their proofs to the reader.

Proposition 3.4.2. If a topological group H is a continuous homomorphic image of
an ω-narrow topological group G, then H is also ω-narrow.

Proposition 3.4.3. The topological product of an arbitrary family of ω-narrow
topological groups is an ω-narrow topological group.

It is clear that Propositions 3.4.2 and 3.4.3 remain valid for left semitopological groups.

The next result is just a trifle less trivial, but we shall prove it for the sake of completeness.

Theorem 3.4.4. Every subgroup H of an ω-narrow topological group G is ω-narrow.

Proof. Let W be an open neighbourhood of the identity e in H . Choose an open

symmetric neighbourhood V of e in G such that V 2 ∩H ⊂ W . Since G is ω-narrow, there

exists a countable subset B of G such that BV = G. Let C be the set of all c ∈ B such that

cV ∩ H is not empty. Then |C| ≤ |B| ≤ ω and, obviously, H ⊂ CV . For each c ∈ C fix

ac ∈ cV ∩H , and put A = {ac : c ∈ C}. Since C is countable, A is a countable subset of

H . We claim that AW = H .
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Indeed, since H is a subgroup of G and V 2∩H ⊂ W ⊂ H , we have: (AV 2)∩H ⊂ AW .

It remains to show that H ⊂ AV 2. Clearly, A ⊂ H ⊂ CV . Since V is symmetric, it follows

that C ⊂ AV , which implies that H ⊂ CV ⊂ AV 2. The proof is complete. �

The above results show that the class of ω-narrow topological groups is extremely stable

under operations, which is, of course, a great advantage. This stability also implies that the

class must be rather wide. But how wide is it, really? Which other naturally defined classes

of topological groups are contained in it? Here are some results in this direction.

First, it is easy to give an example of a topological group which is not ω-narrow — just

take any uncountable discrete group. This simple observation can be given a more general

form:

Proposition 3.4.5. Every first-countable ω-narrow topological group has a countable
base.

Proof. Let {Un : n ∈ ω} be a countable base at the identity e of an ω-narrow

topological group G. For every n ∈ ω, choose a countable set Cn ⊂ G such that Cn·Un = G.

Then the family � = {xUn : x ∈ Cn, n ∈ ω} is countable, and we claim that � is a base

for the group G.

Indeed, let O be a neighbourhood of a point a ∈ G. One can find k, l ∈ ω such that

aUk ⊂ O and U−1
l Ul ⊂ Uk. There exists x ∈ Cl such that a ∈ xUl, whence x ∈ aU−1

l . We

have

xUl ⊂ (aU−1
l )Ul = a(U−1

l Ul) ⊂ aUk ⊂ O,

that is, xUl is an open neighbourhood of a and xUl ⊂ O. It remains to note that xUl ∈ �. �

Note that the Sorgenfrey line is a first-countable ω-narrow paratopological group of

uncountable weight, so Proposition 3.4.5 cannot be extended to paratopological groups.

The following statement is obvious:

Proposition 3.4.6. Every Lindelöf topological group is ω-narrow.

Theorem 3.4.7. If the cellularity of a topological group G is countable, then G is
ω-narrow.

Proof. Let U be an open neighbourhood of the neutral element e. Take a symmetric

open neighbourhood V of e such that V 2 ⊂ U. Recall that a subset P of G is called

V -disjoint if xV ∩ yV = ∅, for every distinct points x, y ∈ P (see page 31).

The family � of all V -disjoint subsets of G is (partially) ordered by inclusion, and the

union of any chain of V -disjoint sets is again a V -disjoint set. Therefore, according to Zorn’s

Lemma, there exists a maximal element A of the ordered set �. Clearly, {aV : a ∈ A} is a

disjoint family of non-empty open sets in G; since the Souslin number of G is countable, it

follows that this family is countable, that is, the set A is countable.

It follows from the maximality of A that for every x ∈ G, there exists a ∈ A such that

the set xV ∩ aV is not empty. Then x ∈ aVV−1 = aV 2 ⊂ aU. Therefore, AU = G. �

Corollary 3.4.8. Every separable topological group is ω-narrow.

Theorem 3.4.9. If a topological group G contains a dense subgroup H such that H is
ω-narrow, then G is also ω-narrow.

ω-narrow and ω-balanced topological groups
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Proof. Let U be any open neighbourhood of e in G. There exists a symmetric open

neighbourhood V of e in G such that V 2 ⊂ U. Since H is ω-narrow, we can find a countable

subset A of H such that H ⊂ AV . Then, by Proposition 1.4.4, G = H ⊂ AVV ⊂ AU.

Therefore, AU = G, and G is ω-narrow. �

Let us say that the invariance number inv(G) of a semitopological group G is countable

(notation: inv(G) ≤ ω) if for each open neighbourhood U of the neutral element e in G,

there exists a countable family γ of open neighbourhoods of e such that for each x ∈ G,

there exists V ∈ γ satisfying xVx−1 ⊂ U. Any such family γ will be called subordinated
to U. Topological groups G such that inv(G) ≤ ω are also called ω-balanced. Clearly, that

every subgroup of an ω-balanced group is also ω-balanced.

The next assertion turns out to be most helpful.

Proposition 3.4.10. If G is an ω-narrow topological group, then the invariance number
of G is countable, that is, G is ω-balanced.

Proof. Let U be an open neighbourhood of the neutral element e in G. There exists

a symmetric open neighbourhood V of e such that V 3 ⊂ U. Since G is ω-narrow, we can

find a countable subset A of G such that VA = G. Then for each a ∈ A, there exists an

open neighbourhood Wa of the neutral element e such that aWaa−1 ⊂ V . We claim that

γ = {Wa : a ∈ A} is the family we are looking for.

Indeed, γ is a countable family of open neighbourhoods of e. Now, let x be any element

of G. Then x ∈ Va, for some a ∈ A, and therefore, xWax−1 ⊂ VaWaa−1V−1 ⊂ VVV−1 ⊂
V 3 ⊂ U, that is, γ is subordinated to U. �

The converse to the previous statement is not true. Indeed, every discrete group is

obviously ω-balanced, while a discrete group is ω-narrow if and only if it is countable.

Theorem 3.4.11. The invariance number of an arbitrary first-countable semitopolog-
ical group G is countable.

Proof. Let {Vn : n ∈ ω} be a countable base of the space G at the neutral element e
of the group G. Take any open neighbourhood U of e. Then Ux is an open neighbourhood

of x. Since the left translation by x is continuous and xe ∈ Ux, there exists n ∈ ω such that

xVn ⊂ Ux. It follows that xVnx−1 ⊂ Uxx−1 = U. Hence, inv(G) ≤ ω. �

Corollary 3.4.12. Every metrizable topological group is ω-balanced.

Here is one more technical result we need to prove before a basic fact on continuous

prenorms on ω-narrow topological groups will be established.

Lemma 3.4.13. Let G be an ω-balanced topological group, and let γ be a countable
family of open neighbourhoods of the neutral element e in G. Then there exists a countable
family γ∗ of open neighbourhoods of e with the following properties:

1) γ ⊂ γ∗;
2) the intersection of any finite subfamily of γ∗ belongs to γ∗;
3) for each U ∈ γ∗, there exists a symmetric V ∈ γ∗ such that V 2 ⊂ U;
4) for every U ∈ γ∗ and every a ∈ G, there exists V ∈ γ∗ such that aVa−1 ⊂ U.
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Proof. For each U ∈ γ, fix a symmetric open neighbourhood VU of e such that

V 2
U ⊂ U. Fix also a countable family νU of open neighbourhoods of e subordinated to U.

Now let

φ(γ) = {
⋂

λ : λ ⊂ γ, |λ| < ω} ∪
⋃
{νU : U ∈ γ} ∪ {VU : U ∈ γ}.

We put γ0 = γ, γ1 = φ(γ0), and repeat this operation, defining by induction countable

families γ2, γ3, and so on, by the rule γn+1 = φ(γn), for each n ∈ ω.

Let γ∗ =
⋃

n∈ω γn. Since γn ⊂ γn+1 for each n ∈ ω, and in view of the above definition,

γ∗ satisfies conditions 1)–4). �

Now we easily obtain the next lemma designed for a direct application.

Lemma 3.4.14. Let G be an ω-balanced topological group, and U an open neighbour-
hood of the neutral element e in G. Then there exists a sequence {Un : n ∈ ω} of open
neighbourhoods of e such that, for each n ∈ ω, the following conditions are satisfied:

a) U0 ⊂ U;
b) U−1

n = Un;
c) U2

n+1 ⊂ Un, and
d) for each x ∈ G and each n ∈ ω, there is k ∈ ω such that xUkx−1 ⊂ Un.

Proof. Put γ = {U}, and take a countable family γ∗ of open neighbourhoods of e
satisfying conditions 1)–4) of Lemma 3.4.13. Then U ∈ γ∗. We are going to define, by

induction, a sequence of elements of γ∗.

Let us first enumerate the elements of γ∗, say, γ∗ = {Wn : n ∈ ω}. Choose U0 to

be any symmetric element of γ∗ such that U0 ⊂ U ∩W0. Since γ∗ satisfies conditions 2)

and 3) of Lemma 3.4.13, this is obviously possible. Now assume that for some n ∈ ω, an

element Un ∈ γ∗ has already been defined. Then, since γ∗ satisfies conditions 2) and 3),

we can choose a symmetric element V of γ∗ such that V 2 ⊂ Un ∩
⋂n

i=0 Wi. Put Un+1 = V .

The definition is complete.

It is immediate from the construction that the sequence{Un : n ∈ ω} satisfies conditions

a)–c). Let us show that condition d) is also satisfied. Fix n ∈ ω and x ∈ G. Since the family

γ∗ satisfies condition 4) of Lemma 3.4.13, there exists j ∈ ω such that xWjx−1 ⊂ Un. Put

k = max{n, j}. Then Uk+1 ⊂ U2
k+1 ⊂ Wj , by the inductive definition of Uk+1. Therefore,

xUk+1x−1 ⊂ x−1Wjx ⊂ Un. Condition d) is verified, so the lemma is proved. �

Theorem 3.4.15. Let G be an ω-balanced topological group. Then, for every open
neighbourhood U of the neutral element e in G, there exists a continuous left-invariant
pseudometric 
 on G such that the following conditions are satisfied:

(p1) {x ∈ G : 
(e, x) < 1} ⊂ U;
(p2) {x ∈ G : 
(e, x) = 0} is a closed invariant subgroup of G;
(p3) for any x and y in G, 
(e, xy) ≤ 
(e, x) + 
(e, y).

Proof. By Lemma 3.4.14, we can find a sequence {Un : n ∈ ω} of open neighbour-

hoods of e in G satisfying conditions a)–d) of that lemma. According to Lemmas 3.4.13

and 3.3.10, there exists a continuous prenorm N on G such that the next condition is satisfied:

(PN4) {x ∈ G : N(x) < 1/2n} ⊂ Un ⊂ {x ∈ G : N(x) ≤ 2/2n}.

ω-narrow and ω-balanced topological groups
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Now, for arbitrary x and y in G, put 
(x, y) = N(x−1y). Then the continuity of N implies

that 
 is also continuous. It is also clear from (PN4) and condition a) of Lemma 3.4.14 that

(p1) is satisfied.

Claim 1. 
 is a pseudometric on the set G.

Indeed, for any x and y in G we have: 
(x, y) = N(x−1y) ≥ 0, and 
(y, x) =

N(y−1x) = N((y−1x)−1) = N(x−1y) = 
(x, y). Also 
(x, x) = N(x−1x) = N(e) = 0.

Further, for any x, y, z in G, we have:


(x, z) = N(x−1z) = N(x−1yy−1z)

≤ N(x−1y) + N(y−1z) = 
(x, y) + 
(y, z).

Hence 
 satisfies the triangle inequality.

Claim 2. The pseudometric 
 is left-invariant.

Indeed, 
(zx, zy) = N(x−1z−1zy) = N(x−1y) = 
(x, y), for arbitrary x, y, and z in G.

This evidently implies Claim 2.

Put Z = {x ∈ G : N(x) = 0}. Notice that 
(e, x) = N(x), for each x ∈ G, since


(e, x) = N(e−1x) = N(x). Therefore, we have that Z = {x ∈ G : 
(e, x) = 0}.
Claim 3. Z =

⋂
n∈ω Un.

This clearly follows from condition (PN4).

Claim 4. Z is a closed invariant subgroup of G.

Since the prenorm N is continuous, the set Z is closed in the space G. The fact that Z
is a subgroup of G follows from Proposition 3.3.4.

It remains to show that the subgroup Z of G is invariant. Take any x ∈ G. We have

to check that xZx−1 ⊂ Z. In view of Claim 3, it suffices to show that xZx−1 ⊂ Un, for

each n ∈ ω. Fix n ∈ ω. From condition d) of Lemma 3.4.14 it follows that there exists

k ∈ ω such that xUkx−1 ⊂ Un. Since Z ⊂ Uk, we conclude that xZx−1 ⊂ Un, that is, Z is

invariant.

It remains to notice that condition (p3) is obviously satisfied, since N is a prenorm and


(e, x) = N(x). �

We need the following two simple lemmas:

Lemma 3.4.16. If N is a prenorm on a group G, and z is an element of G such that
N(z) = 0, then N(zx) = N(x) = N(xz), for each x ∈ G.

Proof. We have: N(zx) ≤ N(z) + N(x) = N(x). Similarly, N(x) = N(z−1zx) ≤
N(zx), since N(z−1) = N(z) = 0. Therefore, N(zx) = N(x). The equality N(x) = N(xz)

follows in a similar way. �

Lemma 3.4.17. In the notation of the proof of Theorem 3.4.15, let a and b be any two
elements of G, and let a1 ∈ aZ, b1 ∈ bZ. Then 
(a1, b1) = 
(a, b).

Proof. We may assume that b = b1 (otherwise we simply repeat the argument twice).

Clearly, a1 = az, for some z ∈ Z. Then N(z−1) = N(z) = 0 and, using Lemma 3.4.16, we

obtain: 
(a1, b) = N(z−1a−1b) = N(a−1b) = 
(a, b). �
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We continue to use the objects constructed in the proof of Theorem 3.4.15, and in

particular, we fix a pseudometric 
 on G constructed above.

Let H = G/Z be the quotient group, and let π be the canonical homomorphism of G
onto H . Let A, B be any elements of H (that is, A and B are cosets of H in G). Choose any

a ∈ A and b ∈ B and put d(A, B) = 
(a, b). By Lemma 3.4.17, the definition of d(A, B)

does not depend on the choice of a in A and b in B.

We also define a function NH on H by the rule NH (A) = N(a), for all A ∈ H and

a ∈ A. From Lemma 3.4.16 it follows that this definition does not depend on the choice of

a in A.

According to these definitions, we have: d(π(a), π(b)) = 
(a, b), for any a, b in G,

and NH (π(a)) = N(a), for any a ∈ G. Since π is a homomorphism of G onto H , and π(Z)

is the neutral element E of the group H , it follows, by the definitions of Z and 
, that d is a

metric on H and NH is a prenorm on H satisfying the additional condition:

(PN5) If NH (A) = 0, then A is the neutral element E of H .

For ε > 0, we put B(ε) = {x ∈ G : N(x) < ε} and O(ε) = {X ∈ H : NH (X) < ε}.
Clearly, π(B(ε)) = O(ε), for each ε > 0. Notice that the prenorm N also satisfies the next

condition:

(PN6) For each ε > 0 and each x ∈ G, there exists δ > 0 such that xB(δ)x−1 ⊂ B(ε).

Since, obviously, π(B(ε)) = O(ε), it follows that for the metric d on H , we have:

(d1) For every ε > 0 and for every X ∈ H , there exists δ > 0 such that XO(δ)X−1 ⊂
O(ε).

Since 
(e, x) = N(x) = N(x−1) = 
(e, x−1), from the definition of d it follows that:

(d2) d(E, X) = d(E, X−1), for each X ∈ H .

It follows from (d2) that O(ε) = (O(ε))−1, for each ε > 0. Also, from (p3) and the

definition of d we obtain:

(d3) (O(1/2n+1))2 ⊂ O(1/2n).

Using (PN5), we conclude that

(d4) {E} =
⋂

n∈ω O(1/2n).

Now let �H be the topology generated by the metric d on H . Let us show that H with this

topology is a topological group.

Indeed, since d is left-invariant, it is enough to observe that the family {O(1/2n) : n ∈
ω}, which is a base of the space H at the neutral element E, satisfies the axioms for a base

of a group topology at the neutral element (see Theorem 1.3.12). And this is exactly what

conditions (d1)–(d4) guarantee, as is routinely verified. Thus, H with the topology �H is a

topological group.

Finally, the equality π(B(ε)) = O(ε), where ε > 0, implies that the homomorphism π
of G onto H = G/Z is continuous at the neutral element. Since G and H are topological

groups, it follows that π is continuous. Notice also that if x ∈ G, X = π(x), and ε > 0,

then N(x) < ε is equivalent to NH (X) < ε. Therefore, π−1(O(ε)) = B(ε) for each ε > 0.

In particular, π−1(O(1)) = B(1) ⊂ U.

Thus, the next theorem is established:

Theorem 3.4.18. If the invariance number of a topological group G is countable, then
for each open neighbourhood U of the neutral element e in G, there exists a continuous

ω-narrow and ω-balanced topological groups
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homomorphism π of G onto a metrizable group H such that π−1(V ) ⊂ U, for some open
neighbourhood V of the neutral element eH of H .

The above theorem has an important corollary:

Corollary 3.4.19. Let G be an ω-narrow group. Then for every neighbourhood U of
the identity in G, there exists a continuous homomorphism π of G onto a second-countable
topological group H such that π−1(V ) ⊂ U, for some open neighbourhood V of the identity
in H .

Proof. By Theorem 3.4.18, one can find a continuous homomorphism π of G onto

a metrizable topological group H and an open neighbourhood V of the identity in H such

that π−1(V ) ⊂ U. From Proposition 3.4.2 it follows that the group H is ω-narrow, so

Proposition 3.4.5 implies that H is second-countable. �

Now it is convenient to introduce the following concept. A topological group G is called

range-metrizable if it satisfies the conclusion of Theorem 3.4.18, that is, for every open

neighbourhood U of the neutral element e of G, there exists a continuous homomorphism

p of G onto a metrizable group H such that π−1(V ) ⊂ U, for some open neighbourhood V
of the neutral element of H .

Clearly, Theorem 3.4.18 can be reformulated as follows: If the invariance number of a
topological group G is countable, then G is range-metrizable.

Now let � be any class of topological groups (of semitopological groups, of paratopo-

logical groups), and let G be any topological group (paratopological group, semitopological

group). Let us say that G is range-� if for every open neighbourhood U of the neutral ele-

ment e of G, there exists a continuous homomorphism p of G to a group H ∈ � such that

π−1(V ) ⊂ U, for some open neighbourhood V of the neutral element eH of H . It follows

immediately from the definition that every subgroup of a range-� group is also range-�.

Similarly, Corollary 3.4.19 is equivalent to saying that every ω-narrow group is range-

Ω, where Ω is the class of second-countable topological groups. The next fact follows from

the definition of the product topology.

Proposition 3.4.20. Let � be any class of topological groups (of paratopological
groups, of semitopological groups) closed under finite products, and let H be the topological
product of a family {Ha : a ∈ A} of groups in the class �. Then every subgroup of H is
range-�.

Theorem 3.4.21. Let � be a class of topological groups (paratopological groups,
or semitopological groups), τ an infinite cardinal number, and G a topological group
(paratopological group, semitopological group), which is range-� and has a base � of
open neighbourhoods of the neutral element such that |�| ≤ τ. Then G is topologically
isomorphic to a subgroup of the product of a family {Ha : a ∈ A} of groups such that
Ha ∈ �, for each a ∈ A, and |A| ≤ τ.

Proof. The argument is practically identical with the proof of the Tychonoff Embed-

ding Theorem [165, Theorem 2.3.20]. We fix a base � of open neighbourhoods of the

neutral element in G such that |�| ≤ τ. Then we choose, for every U ∈ �, a contin-

uous homomorphism fU of G to a group HU ∈ � such that (fU)−1(V ) ⊂ U, for some

open neighbourhood V of the neutral element in H . The diagonal product h of the family
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{fU : U ∈ �} is a topological isomorphism of G onto a topological subgroup of the topo-

logical product of the family {HU : U ∈ �} (recall that, for arbitrary x ∈ G and U ∈ �,

the Uth coordinate of h(x) is the element fU(x) of HU). �

Theorem 3.4.22. [G. I. Katz] For every topological group G, the following three
conditions are equivalent:

1) inv(G) ≤ ω;
2) G is range-metrizable;
3) G is topologically isomorphic to a subgroup of a topological product of metrizable

groups.

Proof. It follows from Proposition 3.4.20 and Theorem 3.4.21 that 2) and 3) are

equivalent. Theorem 3.4.18 gives the implication 1) ⇒ 2). To show that 2) ⇒ 1), take

an open neighbourhood U of the neutral element eG in a range-metrizable group G and

consider a continuous homomorphism p : G → H of G onto a metrizable group H such

that p−1(V ) ⊂ U for some open neighbourhood V of eH in H . Let also � be a countable

base at eH in H . Then it is easy to verify that the countable family {p−1(O) : O ∈ �} of

open neighbourhoods of eG is subordinated to U, so that inv(G) ≤ ω. �

The following special case of Theorem 3.4.21 is particularly important.

Theorem 3.4.23. [I. I. Guran] A topological group G is topologically isomorphic to a
subgroup of the topological product of some family of second-countable groups if and only
if G is ω-narrow.

Proof. Let Ω be the class of second-countable topological groups. Since, by

Corollary 3.4.19, every ω-narrow group G is range-Ω, it follows from Theorem 3.4.21

that G is topologically isomorphic to a subgroup of the product of a family of groups from

Ω. Conversely, every subgroup of a topological product of second-countable topological

groups is ω-narrow, by Proposition 3.4.3 and Theorem 3.4.4. �

Corollary 3.4.24. If the invariance number of a topological group G is countable,
and the neutral element of G is a Gδ-set in G, then there exists a continuous isomorphism
of G onto a metrizable topological group.

Proof. Let{Un : n ∈ ω}be a family of open neighbourhoods of the identity e in G such

that {e} =
⋂

n∈ω Un. For every n ∈ ω, take a continuous homomorphism pn : G→ Hn onto

a metrizable topological group Hn such that p−1
n (Vn) ⊂ Un for some open neighbourhood

Vn of the identity in Hn. Since the product of a countable family of metrizable groups

is a metrizable group and a subgroup of a metrizable group is also metrizable, it follows

that the homomorphism p = Δn∈ωpn of G to
∏

n∈ω Hn and the group H = p(G) are as

required. �

Similarly, from Corollary 3.4.19 (or applying Corollary 3.4.24 and Proposition 3.4.5)

we obtain:

Corollary 3.4.25. If the neutral element of an ω-narrow topological group G is a
Gδ-set in G, then there exists a continuous isomorphism of G onto a second-countable
topological group.

ω-narrow and ω-balanced topological groups
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Since the invariance number of Abelian topological groups is countable, Corol-

lary 3.4.19 can be reformulated for Abelian groups as follows:

Corollary 3.4.26. Suppose that G is an Abelian topological group such that the
neutral element of G is a Gδ-set. Then there exists a continuous isomorphism of G onto a
metrizable topological Abelian group.

Corollary 3.4.27. If a topological group G has a countable network, then there exists
a continuous isomorphism of G onto a second-countable topological group.

Proof. This follows from Proposition 3.4.6 and Corollary 3.4.25, since every space

with a countable network is Lindelöf and every point in such a space is a Gδ-set. �

Corollary 3.4.28. If a paratopological group G is topologically isomorphic to a
subgroup of the product of some family of metrizable paratopological groups, and G is
first-countable, then G is metrizable.

Proof. This follows from Theorem 3.4.21, since the product of a countable family of

metrizable paratopological groups is metrizable. �

Since the Sorgenfrey line is a non-metrizable paratopological group, we obtain from

Corollary 3.4.28:

Corollary 3.4.29. The Sorgenfrey line is not topologically isomorphic to any
subgroup of a topological product of metrizable paratopological groups (and, therefore,
is not range-metrizable).

The last assertion is especially interesting since the Sorgenfrey line, being separable,

is ω-narrow. This shows that paratopological groups behave very differently with respect

to embeddings compared to topological groups.

Applying Theorem 3.4.21, we can establish that certain semitopological groups are, in

fact, topological groups.

Theorem 3.4.30. Let G be a pseudocompact semitopological group. If G is range-
metrizable, then G is a topological group.

Proof. By Theorem 3.4.21, G is topologically isomorphic to a subgroup of the product

of a family γ of metrizable semitopological groups. Since metrizability is inherited by

subgroups, we can assume that each factor Hα ∈ γ coincides with the projection of G to

Hα. Since G is pseudocompact and every metrizable pseudocompact space is compact, we

conclude that every Hα ∈ γ is a compact semitopological group. However, every compact

semitopological group is a topological group, by Theorem 2.3.12. Therefore, the product of

γ is a topological group, and every subgroup of this product is also a topological group. �

In Proposition 3.4.31 below we unify some previous statements and then deduce an

important property of pseudocompact topological groups. Let τ be an infinite cardinal. We

recall that a space X is said to be pseudo-τ-compact if every discrete in X family of open

sets has cardinality strictly less than τ (see page 54).

Proposition 3.4.31. Every pseudo-τ+-compact topological group G is τ-narrow.
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Proof. Let U be an arbitrary open symmetric neighbourhood of the neutral element

in G. By Zorn’s Lemma, there exists a maximal U-disjoint subset A of G. Then AU = G,

by the maximality of A. Take an open symmetric neighbourhood V of e such that V 4 ⊂ U.

By Lemma 1.4.22, the family {aV : a ∈ A} is discrete in G. Therefore, |A| ≤ τ. Since

AU = G, we are done. �
Here is an interesting result about pseudocompact topological groups that will be

generalized and strengthened in Section 3.7.

Theorem 3.4.32. Every pseudocompact topological group G is topologically isomor-
phic to a dense subgroup of a compact topological group.

Proof. By Theorem 3.4.23 and Proposition 3.4.31, G is topologically isomorphic to a

subgroup of the product P of a family γ = {Hα : α ∈ A} of metrizable topological groups.

Since G is pseudocompact, and every metrizable pseudocompact space is compact, we can

assume that each Hα ∈ γ is a compact topological group. Then the product group P is

compact and the closure of G in P is also a compact group which contains G as a dense

subgroup. �
It is worth noting that the proof of Theorem 3.4.32, which we just presented, does not

depend on the existence of the Raı̆kov completion of an arbitrary topological group (see

Theorem 3.6.10).

One special class of ω-narrow topological groups is described in the next theorem.

Later, in Theorem 5.1.19, we will prove a stronger result by a more sophisticated argument.

In particular, we will see that the theorem below remains valid for non-Abelian groups.

Theorem 3.4.33. Suppose that G is an Abelian topological group and M is a pseudo-
ℵ1-compact subspace of G such that M algebraically generates G. Then G is ω-narrow.

Proof. Clearly, we may assume that M is symmetric (otherwise replace M by the

union M ∪M−1 which is again pseudo-ℵ1-compact).

Claim 1. For each open neighbourhood V of the neutral element e in G, there exists a
V -disjoint subset AV of M such that M ⊂ AV V .

To establish the claim, it suffices to assume that V is symmetric and apply Zorn’s

Lemma as in the proof of Proposition 3.4.31.

Fix n ∈ N and an open neighbourhood U of e, and let Mn be the set of all g ∈ G such

that g = b1b2 . . . bn, for some b1, b2, . . . , bn ∈ M. Since M is symmetric, we obviously

have G =
⋃∞

n=1 Mn. Therefore, to prove the theorem, it is enough to verify the following:

Claim 2. For each open neighbourhood U of the neutral element e in G and each n ∈ N,
there exists a countable subset Bn of G such that Mn ⊂ BnU.

We may assume that the set U in Claim 2 is symmetric. Since G is Abelian, the natural

mapping of Gn to G given by the product operation is uniformly continuous. Hence there

exists an open symmetric neighbourhood Vn of e such that for any b1, b2, . . . , bn ∈ G,

b1Vnb2Vn . . . bnVn ⊂ b1b2 . . . bnU.

According to Claim 1, there exists a Vn-disjoint subset An of M such that M ⊂ AnVn. Since

M is pseudo-ℵ1-compact, Lemma 1.4.22 implies that the set An is countable. We denote

by Bn the subgroup of G algebraically generated by the set An. Clearly, Bn is countable.

ω-narrow and ω-balanced topological groups
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Now take any h ∈ Mn. By the definition of Mn, there exist elements b1, b2, . . . , bn in M
such that h = b1b2 . . . bn. Since Vn is symmetric, we can find a1, a2, . . . , an ∈ An such that

ai ∈ biVn, for each i = 1, . . . , n. Then a1a2 . . . an ∈ b1Vnb2Vn . . . bnVn ⊂ b1b2 . . . bnU =

hU. Since U is symmetric, we conclude that h ∈ a1a2 . . . anU ⊂ BnU. Hence, Mn ⊂ BnU.

Claim 2 and the theorem are proved. �

Since every Lindelöf space is pseudo-ℵ1-compact, the next fact follows immediately

from Theorems 3.4.33 and 3.4.9:

Corollary 3.4.34. Suppose that an Abelian topological group G contains a Lindelöf
subspace that algebraically generates a dense subgroup of G. Then the group G is ω-narrow.

Again, one can drop “Abelian” in the above result (see Corollary 5.1.20).

Exercises

3.4.a. Provide a complete proof of Proposition 3.4.2: If f is a continuous homomorphism of an

ω-narrow topological group G onto a topological group H , then H is also ω-narrow.

3.4.b. Provide a detailed proof of Proposition 3.4.3: The topological product of an arbitrary family

of ω-narrow topological groups is an ω-narrow topological group.

3.4.c. Prove that every subgroup of an ω-balanced group is ω-balanced.

3.4.d. Show that the closure of an ω-balanced subgroup H of a topological group G is again an

ω-balanced group.

3.4.e. Verify that H with the topology �H defined on page 167, before Theorem 3.4.18, is a

topological group.

3.4.f. Give a detailed proof of Proposition 3.4.20.

3.4.g. Verify that the mapping constructed in the proof of Theorem 3.4.21 is indeed a topological

isomorphism onto a subgroup of the product.

3.4.h. Give an example of a non-discrete topological group which is not homeomorphic to any

ω-narrow topological group.

3.4.i. Let {�i : i ∈ I} be a family of ω-narrow (ω-balanced) group topologies on a group G.

Show that the join of this family is again an ω-narrow (ω-balanced) group topology on G.

3.4.j. Show that a first-countable ω-narrow paratopological group need not be Lindelöf.

3.4.k. Let X be an arbitrary Tychonoff space. Prove that every discrete subgroup of the additive

group Cp(X) is countable.

Problems

3.4.A. Give an example of a topological group P in which every point is a Gδ-set and such that P
cannot be mapped by a continuous isomorphism onto a metrizable group.

Hint. We follow the argument in [370]. Let K be the general linear group GL(2, R) (see

item e) of Example 1.2.5). Consider the box topology � on the product group Kω1 whose

base consists of the sets
∏

α<ω1
Uα, where each Uα is open in K. Verify that � is a Hausdorff

group topology on Kω1 and the neutral element of the group P = (Kω1 , �) is a Gδ-set. Use

the sequences {xn : n ∈ ω} and {yn : n ∈ ω} of elements of K mentioned in the hint to

Problem 3.3.E to show that the group P does not admit a continuous isomorphism onto a

metrizable topological group.

3.4.B. Let H be a closed subgroup of a topological group G, and suppose that the groups H and

G/H are ω-narrow (ω-balanced). Prove that G is also ω-narrow (ω-balanced).
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3.4.C. Let G be a cosmic completely regular (regular, Hausdorff) paratopological group. Prove that

there exists a continuous isomorphism of G onto a completely regular (regular, Hausdorff)

paratopological group with a countable base.

Hint. See [427] for the Hausdorff case; for regular and Tychonoff paratopological groups,

see [226].

3.4.D. Prove that every uncountable ω-narrow topological group is resolvable (see Exercise 1.4.l).

3.4.E. (A. V. Arhangel’skii and D. K. Burke [51]) Show that a regular first-countable separable

ω-narrow paratopological group need not be Lindelöf.

3.4.F. (A. V. Arhangel’skii and A. Bella [50]) Show that the cardinality of every ω-narrow first-

countable Hausdorff paratopological group is not greater than 2ω.

Open Problems

3.4.1. Is every first-countable ω-narrow (Tychonoff, regular, Hausdorff) paratopological group

separable?

3.4.2. Let G be a first-countable ω-narrow paratopological group. Is the cellularity of G countable?

3.4.3. Let G be a regular ω-narrow first-countable paratopological group. Does there exist a

continuous isomorphism of G onto a regular (Hausdorff) second-countable paratopological

group?

3.4.4. Let G be a first-countable paratopological group. Is G submetrizable?

3.4.5. Is every topological group homeomorphic to a range-metrizable (or even to a balanced)

topological group?

3.4.6. Is every connected topological group homeomorphic to an ω-narrow topological group?

3.5. Groups of isometries and groups of homeomorphisms

In this section we consider groups of isometries of a metric space onto itself in the

topology of pointwise convergence and groups of homeomorphisms of a topological space

onto itself in various topologies.

Let M be a metric space, with a metric 
 and a topology � generated by this metric.

An isometry of M is a mapping f of M onto itself preserving distances, that is, such that


(x, y) = 
(f (x), f (y)), for every x, y ∈ M. Clearly, the inverse of an isometry of M is

defined and is also an isometry of M. The composition of two isometries is also an isometry.

Therefore, the set of all isometries of M, with multiplication defined as composition of

isometries, is a group. We denote this group by Is(M) and endow it with the topology of

pointwise convergence. A subbasic open neighbourhood of any f ∈ Is(M) can be described

as follows.

Fix any point x in M and a positive real number ε, and put

B(x, f, ε) = {g ∈ Is(M) : 
((g(x), f (x)) < ε}.
Intersections of finite families of sets of this type form a standard base of the topology of

pointwise convergence on Is(M). We use the terminology and notation described above

throughout this section.

Theorem 3.5.1. The group Is(M), with the topology of pointwise convergence, is a
topological group.
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Proof. First, we check that multiplication is continuous. Let h = gf , for some

f, g ∈ Is(M), and let U be any open neighbourhood of h. We have to find open

neighbourhoods V and W of f and g, respectively, such that WV ⊂ U. Obviously, we

may assume that U = B(x, h, 2ε), for some ε > 0 and for some x ∈ M. Put y = f (x),

V = B(x, f, ε), and W = B(y, g, ε). Clearly, V and W are open neighbourhoods of f and

g, respectively.

Let us show that WV ⊂ U. Take any f1 ∈ V and g1 ∈ W , and consider h1 = g1f1.

We have to show that 
(h1(x), h(x)) < 2ε. Indeed, we have: 
(f1(x), f (x)) < ε and


(g1(y), g(y)) < ε. Since y = f (x) and g1 is an isometry, we obtain: 
(g1f1(x), g1(y)) < ε.

On the other hand, g1◦f1(x) = h1(x) and g(y) = h(x). Therefore, by the triangle inequality,


(h1(x), h(x)) ≤ 
(h1(x), g1(y)) + 
(g1(y), h(x))

= 
(g1f1(x), g1(y)) + 
(g1(y), g(y)) < 2ε.

The continuity of multiplication is established.

To check the continuity of the inverse operation, it is clearly enough to show that the

set (B(x, f, ε))−1 is open, for each B(x, f, ε). Put y = f (x), and take any g ∈ Is(M).

Claim. g ∈ B(x, f, ε) if and only if g−1 ∈ B(y, f−1, ε).

Indeed, if 
(g(x), f (x)) < ε, then 
(g−1(g(x)), g−1(y)) < ε, since g−1 is an isometry.

Since g−1(g(x)) = x = f−1(y), it follows that g−1 ∈ B(y, f−1, ε). Similarly (the argument

is symmetric) the “if” part is proved. Therefore, (B(x, f, ε))−1 = B(f (x), f−1, ε), where

the set on the right side is open, by the definition of the topology on Is(M). �
The (algebraic) group Homeo(X) of all homeomorphisms of a topological space X onto

itself is similarly defined, but the topology of pointwise convergence on Homeo(X) does

not, in general, turn Homeo(X) into a topological group (see Exercise 3.5.a). On the other

hand, for any metric space M, Is(M) is an algebraic subgroup of the group Homeo(M).

Now, let X be a topological space and G a topological group which, algebraically, is a

subgroup of Homeo(X). Then we say that G is a topological group of homeomorphisms of

the space X. For each x ∈ X, the subspace Gx = {f (x) : f ∈ G} of X is called the orbit of
the point x in X under the action of G. We also say that the group G acts on X transitively
(or is transitive on X) if Gx = X for some (and, therefore, for each) x ∈ X. Obviously, if

this is the case, then the space X is topologically homogeneous.

Every topological subgroup G of the topological group Is(M) of isometries of a metric

space M onto itself can serve as an example of a topological group of homeomorphisms of

M, but not necessarily transitive.

Now let X be a space and let G = Homeo(X) be the group of homeomorphisms of X
onto itself. For any subsets K, W of X we put 〈K, W〉 = {h ∈ G : h(K) ⊂ W}. Let � be

the family of all sets 〈K, W〉 such that K is closed in X and W is open in X. Then � is a

subbase of some topology � on G, and � = {⋂ λ : λ ⊂ �, |λ| < ω} is a base of �. We

will call this topology the closed-based topology of Homeo(X).

Theorem 3.5.2. If X is a normal space, then the group G = Homeo(X) with the
closed-based topology is a topological group.

Proof. Clearly, 〈K, W〉−1 = 〈X \W, X \ K〉, for any two subsets K and W of X. It

easily follows from this that if 〈K, W〉 ∈ �, then 〈K, W〉−1 ∈ �, and that if U ∈ �, then

U−1 ∈ �. Therefore, the inverse operation is continuous.
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To show that the multiplication in G is continuous, take arbitrary elements f, g ∈ G,

and let h = fg ∈ U, where U is an open subset of G. Obviously, we can assume that

U = 〈K, W〉 ∈ �. This means that f (g(K)) ⊂ W , that is, g(K) ⊂ f−1(W ). Since

g and f are homeomorphisms of X onto X, g(K) is closed in X, and f−1(W ) is an

open neighbourhood of g(K). Since X is normal, there exists an open set V such that

g(K) ⊂ V ⊂ V ⊂ f−1(W ). Then 〈K, V 〉 and 〈V , W〉 are open neighbourhoods of g and f ,

respectively, and it is easy to see that 〈V , W〉〈K, V 〉 ⊂ 〈K, W〉. Thus, the multiplication is

(jointly) continuous. �
Similarly to the closed-based topology, the compact-based or compact-open topology

on Homeo(X) is defined as follows. The sets 〈K, W〉, where K is compact and W is open

in X, constitute a standard subbase for this topology on Homeo(X). It is clear that if X
is compact, then the compact-based topology and closed-based topology on Homeo(X)

coincide, but in general these two topologies are different, and one cannot prove in this

case an analog of Theorem 3.5.2, even for second-countable spaces. So that we have to be

content with the following corollary of Theorem 3.5.2:

Corollary 3.5.3. If X is a compact Hausdorff space, then Homeo(X) with the
compact-open topology is a topological group.

Theorem 3.5.4. If X is a locally compact Hausdorff space, then the group Homeo(X)

with the compact-open topology is a paratopological group.

Proof. The proof of the joint continuity of the multiplication in Homeo(X) is

essentially the same as the proof of Theorem 3.5.2, but instead of the normality of X we

have to use the following simple fact: every compact subset of a locally compact Hausdorff

space is contained in an open set U such that the closure of U is compact. �
Here is an example which shows that the conclusion in Theorem 3.5.4 cannot be

strengthened to the conclusion that Homeo(X) is a topological group. First we present

the next general statement:

Theorem 3.5.5. If X is a locally compact Hausdorff space with a countable base, then
the space Homeo(X), with the compact-open topology, also has a countable base.

Proof. Choose a countable base � for X; we can assume that � is closed under finite

unions. Denote by � the family of the closures of elements of �. It is clear that � is

countable. In addition, if C is a compact subset of X and C ⊂ O, for some open set O in X,

then there exists K ∈ � such that C ⊂ K ⊂ O. It follows that {〈K, W〉 : K ∈ �, W ∈ �}
is a countable base for the compact-open topology on Homeo(X). �

Example 3.5.6. Let X = N ∪ {0} ∪ {1/n : n ∈ N}, with the topology inherited from

the real line. The only non-isolated point of X is 0. For an arbitrary k ∈ N, define

a homeomorphism hk of the space X onto itself in the following way: hk(n) = n if

n = 0, 1, . . . , k − 1; hk(k) = 1/k; hk(n) = n − 1 if n ≥ k + 1; hk(1/n) = 1/n if

n = 2, 3, . . . , k − 1, and hk(1/n) = 1/(n + 1) if n ≥ k.

It is easy to see that, endowed with the compact-open topology, the sequence {hk : k ∈
N} converges to the identity mapping of X onto itself, while the sequence of the inverses of

these homeomorphisms does not converge to the identity mapping, since the open set 〈P, P〉
in Homeo(X) does not contain any hk with k > 1, where P = [0, 1]∩X is a compact and open
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subset of X. Therefore, Homeo(X) is a paratopological group which is not a topological

group. Notice that the space Homeo(X) is second-countable. Indeed, X is a locally compact

Hausdorff space with a countable base, so it remains to apply Theorem 3.5.5. �
The group Homeo(X) in Example 3.5.6 is a metrizable paratopological group which is

not metrizable by a left-invariant or right-invariant metric (we leave the verification of this

to the reader; see Problem 3.5.A).

Example 3.5.7. Let A be a set, and let G be the set of all bijections of A onto itself.

We endow G with the topology of pointwise convergence and define multiplication in G
as composition of bijections. Then, obviously, G is a group and a topological space. We

claim that G is, in fact, a topological group. Indeed, we can treat A as a discrete metric

space, with the standard metric 
 defined by 
(x, y) = 1 iff x = y. Every bijection of A
onto itself becomes an isometry after this agreement, so that this interpretation turns G into

the group of isometries of the metric space A. Therefore, by Theorem 3.5.1, G = Is(A) is

a topological group. �

Let X be a homogeneous space. A subgroup G of Homeo(X) will be called rich if the

orbit G(x) = {g(x) : g ∈ G} of x under G coincides with X for some (equivalently, for

each) x ∈ X. We will call a space X p-homogeneous if there exists a rich subgroup G of the

group Homeo(X) such that G, with the pointwise convergence topology, is a topological

group.

Proposition 3.5.8. Let G be a topological group. Then:

a) the group G is topologically isomorphic to a subgroup H of the group Homeo(G),
where H is taken with the topology of pointwise convergence;

b) the group G is a p-homogeneous space.

Proof. a) For every a ∈ G, let λa be the left translation of G by a, that is, λa(x) = ax,

for every x ∈ G. Then λa is a homeomorphism of the space G onto itself, by Corollary 1.3.2.

Put φ(a) = λa, for every a ∈ G. Clearly, φ is a one-to-one mapping of G to the

group Homeo(G). We also have φ(ab) = λab = λaλb = φ(a)φ(b), for all a, b ∈ G.

Indeed, λab(x) = (ab)x = a(bx) = λa(bx) = λa(λb(x)), for each x ∈ G. Hence, φ is a

homomorphism of the group G to Homeo(G).

We endow the set Homeo(G) with the topology of pointwise convergence and consider

the subspace H = φ(G) of the space Homeo(G). Let us show that φ is a homeomorphism

of the space G onto H . From this it will clearly follow that H is a topological group, and

that φ is a topological isomorphism between the topological groups G and H .

Take any x ∈ G and any open set U in G. If b ∈ G, then φ(b)(x) = λb(x) = bx ∈ U
if and only if b ∈ Ux−1. It follows that the preimage under φ of the subbasic open set

O(U, x) = {h ∈ Homeo(G) : h(x) ∈ U} in Homeo(G) is the set Ux−1 which is clearly

open in G. Therefore, φ is a homeomorphism of G onto H = φ(G). This proves a).

b) Clearly, H is a rich subgroup of Homeo(G). Therefore, the space G is p-

homogeneous, as claimed. �

A space X will be called homogeneously metrizable or m-homogeneous if there exists

a metric 
 on X generating the topology of X such that for every two points x and y of X,

there exists a bijection f of X onto itself which is an isometry with respect to 
 and satisfies
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the condition f (x) = y. The next assertion follows from Theorem 3.5.1 and the definition

above:

Corollary 3.5.9. Every homogeneously metrizable space is p-homogeneous.

Let G be a topological group, and let MG be the metric space of all bounded left

uniformly continuous real-valued functions on G, with the uniform convergence metric 

given by the formula:


(f, g) = sup{|f (x)− g(x)| : x ∈ G}.
By Theorem 3.5.1, the group Is(MG) of all isometries of the space MG onto itself, with the

topology of pointwise convergence, is a topological group.

For f ∈ MG and a ∈ G, we put fa(x) = f (ax) for each x ∈ G, and ha(f ) = fa.

Clearly, fa ∈ MG. In this way we defined a mapping ha : MG → MG, which is evidently

an isometry of the metric space MG onto itself. Now we introduce the canonical mapping

ψ of G into Is(MG) defined by the rule ψ(a) = ha, for each a ∈ G.

Claim 1. ψ is a homomorphism.

Claim 2. ψ is one-to-one.

Claims 1 and 2 are easily verified. Notice that, in view of Claim 1, to prove Claim 2 it

suffices to show that if a is not the neutral element e of G, then the mapping ha of MG onto

MG is not the identity mapping.

Claim 3. ψ is continuous.

Indeed, since both G and Is(MG) are topological groups, it suffices to verify the

continuity of ψ at the neutral element e of G. Fix f ∈ MG and ε > 0, and put

〈f, ε〉 = {h ∈ Is(MG) : 
(h(f ), f ) < ε}. Then 〈f, ε〉 is a subbasic open neighbourhood of

the neutral element of Is(MG), and to check the continuity of ψ it is enough to show that

there exists an open neighbourhood V of e in G such that ha ∈ 〈f, ε〉, for each a ∈ V . But

this obviously follows from the left uniform continuity of the function f .

Claim 4. ψ is a homeomorphism of G onto the subspace ψ(G) of Is(MG).

Again, it suffices to verify that if V is any open neighbourhood of e in G, then the

identity isometry id of MG is not in the closure of the set ψ(G \ V ). To do this, we have to

use the fact that every topological group G is left uniformly Tychonoff, that is, for each open

neighbourhood V of the neutral element e of G, there exists a left uniformly continuous

function f on G such that f (e) = 0 and f (x) = 1, for each x ∈ G\V (see Theorem 3.3.11).

So, let us fix such a function f on G. Then 
(fa, f ) ≥ 1, that is, 
(ha(f ), f ) ≥ 1 for

each a ∈ G \ V . This implies that the set ψ(G \ V ) does not meet the open neighbourhood

〈f, 1〉 of id. Therefore, ψ is a homeomorphism of G onto its image in Is(MG). This proves

Claim 4.

From the four above claims, we obtain the following interesting result immediately:

Theorem 3.5.10. [V. V. Uspenskij] Every topological group G is topologically
isomorphic to a subgroup of the group of isometries Is(M) of some metric space M, where
Is(M) is taken with the topology of pointwise convergence.

One can effectively use this theorem, and its proof, to obtain some other general results

on topological groups. For example, we have:
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Theorem 3.5.11. If G is a left uniformly Tychonoff left semitopological group, then G
is a topological group.

Proof. Let MG be the metric space of all bounded left uniformly continuous real-

valued functions on G. Now we can repeat the argument in the proof of Theorem 3.5.10

which provides us with a topological isomorphism ψ between G and a topological subgroup

of the topological group Is(MG). Therefore, G itself is a topological group.

Let us now present an alternative proof. First, we show that the inverse in G is

continuous. Assume the contrary. Then there exist an open neighbourhood V of the neutral

element e in G and a subset A of V such that A−1 ∩ V = ∅ and e ∈ A. Since G is left

uniformly Tychonoff, we can fix a left uniformly continuous function f on G such that

f (e) = 0 and f (x) ≥ 1, for each x ∈ G \ V . Let W be any open neighbourhood of e.

Then A ∩W is not empty, so there exists a ∈ A ∩W . We have: (a−1)−1e = a ∈ W , and

|f (a−1)− f (e)| ≥ 1, which implies, since W is an arbitrary open neighbourhood of e, that

f is not left uniformly continuous, a contradiction.

To show that the multiplication in G is jointly continuous, we fix an open neighbourhood

V of e, take a bounded left uniformly continuous real-valued function f on G such as above,

and define a function Nf on G by the standard rule:

Nf (x) = sup{|f (ax)− f (a)| : a ∈ G},
for each x ∈ G. Then Nf is a prenorm on G, by Lemma 3.3.6, and we claim that Nf is

continuous on G. Indeed, since f is left uniformly continuous, for an arbitrary ε > 0 there

exists an open neighbourhood U of e in G such that |f (x)−f (y)| < ε whenever x−1y ∈ U.

Hence, the definition of Nf implies that Nf (x) ≤ ε for each x ∈ U, so the continuity of Nf

follows from Proposition 3.3.7.

Now put B(r) = {x ∈ G : Nf (x) < r} for each r > 0 and let U = B(1/2). Then U is

an open neighbourhood of e in G and U2 ⊂ B(1) ⊂ V , which proves the joint continuity

of multiplication in G. Notice also that U−1 = U, so we again proved the continuity of the

inverse in G as well. �
Important natural examples of homogeneous spaces are provided by quotients of

topological groups with respect to closed subgroups. Though these quotients need not

be topological groups themselves, they are always homogeneous topological spaces. A

natural question for consideration is the following one: which homogeneous spaces can be

represented as quotients of topological groups with respect to closed subgroups? A partial

answer to this question is given below.

A space X is said to be strongly locally homogeneous if for each x ∈ X and for every

open neighbourhood U of x, there exists an open neighbourhood V of x such that x ∈ V ⊂ U
and, for every z ∈ V , there exists a homeomorphism h of X onto X such that f (x) = z and

h(y) = y, for each y ∈ X \ V .

Proposition 3.5.12. [L. R. Ford] If a zero-dimensional T1-space X is homogeneous,
then it is strongly locally homogeneous.

Proof. Note first that X is Hausdorff, since it is T1 and zero-dimensional. Fix a point

x ∈ X, and take any open neighbourhood U of x. Take arbitrary z ∈ U distinct from x. Since

X is homogeneous, there exists a homeomorphism f of X onto itself such that f (x) = z.

Since X is Hausdorff, we can find disjoint open sets U1 and U2 such that x ∈ U1 ⊂ U
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and z ∈ U2 ⊂ U. By the continuity of f , there exists an open neighbourhood W of x
such that W ⊂ U1 and f (W ) ⊂ U2. Then W and f (W ) are disjoint. Since the space X
is zero-dimensional, we can also assume that W is closed in X. Then f (W ) is also open

and closed in X, since f is a homeomorphism of X onto itself. Now we define a mapping

h : X → X by the following requirements:

1) h coincides with f on W ;

2) h coincides with f−1 on f (W );

3) h(y) = y, for each y ∈ X \ (W ∪ f (W )).

Clearly, h is a homeomorphism, h(x) = f (x) = z, and h coincides with the identity mapping

on X \ U. Hence, X is strongly locally homogeneous. �

Suppose that X is a space. A topology � on the group G = Homeo(X) of all

homeomorphisms of X onto itself will be called acceptable if it turns G into a topological

group such that the action correspondence (g, x)→ g(x), considered as a mapping of G×X
to X, is continuous with respect to the first variable, and for every open neighbourhood U
of the neutral element e of G and for each b ∈ X, there exists an open neighbourhood V of

b such that IdV ⊂ U, where

IdV = {h ∈ Homeo(X) : h(x) = x for each x ∈ X \ V}.
The next statement is obvious, in view of Corollary 3.5.3 and of the definition of

acceptable topologies.

Proposition 3.5.13. For any compact Hausdorff space X, the compact-open topology
on the group Homeo(X) of all homeomorphisms of X onto itself is acceptable.

Proposition 3.5.14. Suppose that X is a homogeneous strongly locally homogeneous
space, and G = Homeo(X) is endowed with an acceptable topology. Then X is canonically
homeomorphic to the quotient space G/Ga, where a is a point of X and Ga is the stabilizer
of a in G, that is, Ga = {g ∈ G : g(a) = a}.

Proof. Obviously, Ga is a subgroup of G. Notice that Ga is closed in G, since the

action correspondence is continuous with respect to the first variable.

Denote by π the quotient mapping of G onto the quotient space G/Ga of the left cosets

of Ga in G. Then π is open and continuous. Now we define a mapping p of G to X by

the obvious rule: p(g) = g(a), for each g ∈ G. The mapping p is also continuous, since

the action correspondence is continuous with respect to the first variable. Since G acts

transitively on X, we have p(G) = X.

Let us show that p is open. Take any g ∈ G and any open neighbourhood O(g) of g in G.

Put b = g(a). Since the topology on G is acceptable, there exists an open neighbourhood

V of b in X such that (IdV )g ⊂ O(g). Since X is strongly locally homogeneous, there

exists an open neighbourhood W of b such that W ⊂ V and, for each y ∈ W , there exists

h ∈ IdV with h(b) = y. Then hg ∈ O(g) and p(hg) = hg(a) = h(b) = y. Hence,

b = p(g) ∈ W ⊂ p(O(g)), and the mapping p is open.

Clearly, p−1p(g) = p−1(g(a)) = gGa for each g ∈ G, that is, the family of fibers of

the mapping p coincides with the family of left cosets of Ga in G or, equivalently, with the

family of fibers of the mapping π. Therefore, there exists a natural bijection i : G/Ga → X
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satisfying p = i ◦ π.

G
π ��

p

��

G/Ga

i
����

��
��

��

X

Since both mappings p and π are continuous, open, and onto, it follows that the mapping i
of G/Ga onto X is a homeomorphism. �

Theorem 3.5.15. [N. Bourbaki] Every homogeneous zero-dimensional compact
Hausdorff space X can be represented as the quotient space of a topological group with
respect to a closed subgroup.

Proof. Indeed, by Proposition 3.5.12, the space X is strongly locally homogeneous.

By Proposition 3.5.13, the compact-open topology on the group Homeo(X) of all homeo-

morphisms of X onto itself is acceptable. Now it follows from Proposition 3.5.14 that X
is homeomorphic to a quotient space of the group Homeo(X) endowed with this topology,

with respect to a closed subgroup. �

Example 3.5.16. Let A2 be the two arrows space [165, 3.10.C]. Then A2 is a zero-

dimensional, homogeneous, first-countable, non-metrizable compact space. By Theo-

rem 3.5.15, A2 is homeomorphic to a quotient space of a topological group with respect

to a closed subgroup. Therefore, Theorem 3.3.12 on the metrizability of first-countable

topological groups does not admit a generalization to quotients of topological groups with

respect to closed subgroups, even if quotient spaces are compact.

Exercises

3.5.a. Prove that the group Homeo(R2) of all homeomorphisms of the Euclidean plane R2 onto

itself, with the topology of pointwise convergence, is neither a paratopological group nor a

quasitopological group.

3.5.b. Prove that if X is a locally compact countable Hausdorff space, then the space Homeo(X),

with the compact-open topology, has a countable base.

3.5.c. Show that the conclusion in Theorem 3.5.2 cannot be extended to the class of all Tychonoff

spaces.

3.5.d. Prove Claim 1 and Claim 2 on page 177, preceding Theorem 3.5.10.

Problems

3.5.A. Prove that the paratopological group G = Homeo(X) in Example 3.5.6 is not metrizable,

neither by a left-invariant metric nor by a right-invariant metric.

3.5.B. Suppose that M is a metric space such that the group of isometries Is(M), with the topology

of pointwise convergence, is ω-narrow. Must M be separable? What if M is, in addition,

metrically homogeneous, that is, any point x ∈ M can be brought to any other point y ∈ M
by an isometry of M onto itself?

3.5.C. Let X be the space of countable ordinals with the usual order topology. Describe in

topological terms the group Homeo(X) when this group is endowed with:

a) the compact-open topology;

b) the topology of pointwise convergence.

Is Homeo(X) a topological group in case a)?
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3.5.D. Let D = {0, 1} be a discrete two-point space, and A be an infinite set. Suppose that

the group G = Homeo(DA) is endowed with the compact-open topology or with the

topology of pointwise convergence, and consider the subgroup H of G which consists of the

homeomorphisms of DA generated by permutations of the index set A. Thus, every element

h ∈ H has the form h(x)(α) = x(f (α)), for all x ∈ DA and α ∈ A, where f : A → A is a

bijection. For each of the two standard topologies on G, answer the following:

(a) Is H closed in G?

(b) Is H connected? Is H zero-dimensional?

(c) Is H invariant in G?

3.5.E. Let (X, d) be a metric, connected, locally compact space. Prove that the group Is(X, d) with

the compact-open topology is a metrizable, locally compact topological group.

Hint. Apply Theorem 3.5.5 to deduce that the space Is(X, d) with the compact-open topology

has a countable base. Apply this fact to verify the continuity of the inverse in Is(X, d) and

then use Theorem 3.5.4.

3.5.F. Prove that the group of homeomorphisms of the closed unit interval [0, 1] endowed with the

topology of uniform convergence is homeomorphic to the space {0, 1} × [0, 1]ω.

3.5.G. Prove that the group Homeo(R2) of all homeomorphisms of the Euclidean plane R2 onto

itself, with the compact-open topology, is a topological group. Is a similar statement true for

Rn, where n is an arbitrary positive integer?

Open Problems

3.5.1. Characterize in internal terms p-homogeneous Tychonoff spaces.

3.5.2. Characterize in internal terms compact Hausdorff p-homogeneous spaces.

3.5.3. Let F be a compact Hausdorff p-homogeneous space. Is the Souslin number of F not greater

than 2ω?

3.5.4. When is the group of isometries Is(M) of a metric space M, in the topology of pointwise

convergence, Dieudonné complete?

3.6. Raı̆kov completion of a topological group

In this section we embed an arbitrary topological group into a nicer group, in which all

Cauchy filters converge. Topological groups with this property are called Raı̆kov complete.

Throughout the section, G is a topological group, and e is its neutral element. For each

x ∈ G, let Bx be the family of all open sets in G containing x.

A filter on G is a family η of non-empty subsets of G satisfying the next two conditions:

(F1) If U and V are in η, then U ∩ V is also in η;

(F2) If U ∈ η and U ⊂ W ⊂ G, then W ∈ η.

A family ξ is called an open filter on G if there exists a filter η on G such that ξ is the

intersection of η with the family of all open subsets of G. Of course, this definition is

equivalent to the following one: ξ is an open filter on G if ξ is a family of non-empty open

subsets of G such that the intersection of any finite number of elements of ξ is also in ξ, and

for each U ∈ ξ and for every open subset W of G such that U ⊂ W , W also belongs to ξ.

A family η of non-empty sets is called a filter base if for any elements U, V ∈ η, there

exists W ∈ η such that W ⊂ U ∩ V . An open filter base on G is a filter base all elements

of which are open subsets of G.
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For a family η of subsets of G, we denote by o(η) the family of all open subsets of G
containing at least one element of η. Clearly, if all elements of η are open, then η ⊂ o(η).

A family η of subsets of G is said to be a Cauchy family if for every open neighbourhood

V of e in G, there exist a, b ∈ G and A, B ∈ η such that A ⊂ aV and B ⊂ Vb. Cauchy filters

and Cauchy open filters play an important role in the construction we are going to describe.

Of course, an open filter η is a Cauchy family if and only if for each open neighbourhood

V of e, one can find a, b ∈ G such that the sets aV and Vb are in η.

A family η of sets will be called shrinking if for every B ∈ η, there exist A ∈ η and

open neighbourhoods U and V of e such that UAV ⊂ B. A canonical filter is an open filter

which is both shrinking and Cauchy.

Let us list some simple facts concerning the concepts just introduced.

Fact 1. If η is an open filter base, then o(η) is an open filter containing η.

Fact 2. If η is a shrinking family of open sets, then o(η) is also a shrinking family of open

sets.

Fact 3. If η is a Cauchy family of sets, then o(η) is also a Cauchy family of sets.

From Facts 1, 2, and 3 we get:

Fact 4. If η is an open filter base which is both Cauchy and shrinking, then o(η) is a

canonical filter containing η.

For any two families ξ and η of subsets of X, we put [ηξ] = {AB : A ∈ η, B ∈ ξ}.
Fact 5. If η and ξ are open filter bases, then [ηξ] is also an open filter base.

Though the next assertion is also almost obvious, we provide a short proof of it.

Fact 6. If η and ξ are shrinking families of sets, then [ηξ] is also a shrinking family of sets.

Proof. Let W ∈ [ηξ]. Then W = AB, for some A ∈ η, B ∈ ξ. Since η and ξ are

shrinking, there are A1 ∈ η, B1 ∈ ξ, and open neighbourhoods U1, U2, V1, V2 of e in G such

that U1A1V1 ⊂ A and U2B1V2 ⊂ B. Then U1A1B1V2 ⊂ U1A1V1U2B1V2, since e ∈ V1

and e ∈ U2. Taking into account that A1B1 ∈ [ηξ], we conclude that A1B1 is the element

of [ηξ] we were looking for. Thus, [ηξ] is shrinking. �

Fact 7. If η and ξ are Cauchy families, then [ηξ] is also a Cauchy family.

Proof. Let U be an open neighbourhood of e in G. Take an open set V containing e
such that V 2 ⊂ U. Since ξ is a Cauchy family, one can find B ∈ ξ and b ∈ G such that

B ⊂ bV . Now, bVb−1 is an open neighbourhood of e. Since η is Cauchy, there exist A ∈ η
and a ∈ G such that A ⊂ abVb−1. Then we have:

AB ⊂ abVb−1bV ⊂ abVV ⊂ abU.

Since AB ∈ [ηξ], this completes the first part of the proof. Similarly, one can find A1 ∈ η,

B1 ∈ ξ and a1, b1 ∈ G such that A1B1 ⊂ Ub1a1. Hence [ηξ] is a Cauchy family. �

The next statement follows directly from Facts 4–7:

Proposition 3.6.1. If η and ξ are canonical filters, then [ηξ] is an open filter base
which is both shrinking and Cauchy, and o([ηξ]) is a canonical filter.
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Now we have all tools to define the Raı̆kov completion of a topological group G. Let

G∗ be the family of all canonical filters on G. Note that Bx is a canonical filter on G, for

each x ∈ G. Put i(x) = Bx, for each x ∈ G. Thus, we have defined a one-to-one mapping

i of G into G∗.

Our program is as follows. First, we will introduce operations on G∗ which will turn

G∗ into a group. Then we will introduce a topology on G∗ which will turn this group

into a topological group. And after all that is done, we will check that i is a topological

isomorphism of G onto the topological subgroup i(G) of G∗.

We define a multiplication ◦ on G∗ as follows: for any η, ξ ∈ G∗, let η ◦ ξ = o([ηξ]).

Note that the associativity of ◦ follows from the next obvious assertion:

Fact 8. If η and ξ are open filter bases, then o([o(η)o(ξ)]) = o([ηξ]).

The inverse of η ∈ G∗ is defined by the rule: η−1 = {U−1 : U ∈ η}. Clearly, η−1 is

in G∗. One can also easily check the next two facts:

Fact 9. (Bx)−1 = Bx−1 , for each x in G.

Fact 10. Bx ◦ By = Bxy, for any x and y in G.

The property of being a Cauchy family can be given the following equivalent form:

Lemma 3.6.2. A family ξ of subsets of a topological group G is a Cauchy family if and
only if for each open neighbourhood U of the neutral element e, there exists P ∈ ξ such
that PP−1 ⊂ U and P−1P ⊂ U.

Proof. Assume that ξ is Cauchy. Take an open neighbourhood V of e such that

VV−1 ⊂ U. There exist P ∈ ξ and a ∈ G such that P ⊂ Va. Then we have:

PP−1 ⊂ Vaa−1V−1 ⊂ U.

Conversely, assume that PP−1 ⊂ U, for some P ∈ ξ. Since P is not empty, we can fix

a ∈ P . Then Pa−1 ⊂ U and, therefore, P ⊂ Ua. The rest is obvious. �

The lemma above implies:

Fact 11. η ◦ η−1 = Be = η−1 ◦ η, for any η ∈ G∗.

Let us call two filter bases η and ξ synchronous, or meshing, if for every A ∈ η and

for every B ∈ ξ, the intersection A ∩ B is not empty. The next simple result reveals one of

basic properties of canonical filters — their minimality in a certain rather strong sense.

Proposition 3.6.3. If η is a canonical filter and ξ is a Cauchy open filter synchronous
with η, then η ⊂ ξ.

Proof. Take any U ∈ η. Since η is shrinking, there exist P ∈ η and an open

neighbourhood V of e in G such that PV ⊂ U. We can choose an open neighbourhood W
of e such that W−1W ⊂ V .

Since ξ is Cauchy, there exists b ∈ G such that bW ∈ ξ. The open filters η and ξ
are synchronous; therefore, P ∩ bW is not empty. Then b ∈ PW−1, which implies that

bW ⊂ PW−1W ⊂ PV ⊂ U. Thus, bW ⊂ U, whence it follows that U ∈ ξ, since ξ is an

open filter. Hence, η ⊂ ξ. �

Corollary 3.6.4. If two canonical filters are synchronous, they coincide.
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Corollary 3.6.5. If η and ξ are any two different canonical filters, then there exist
U ∈ η and V ∈ ξ such that U ∩ V = ∅.

Now we are going to apply the last statements to study G∗.

Fact 12. η ◦ Be = η, for each η ∈ G∗.

Proof. Since e ∈ V for each V ∈ Be, the canonical filter η is contained in the canonical

filter ξ = η ◦ Be. Therefore, η and ξ are synchronous, and ξ = η by Corollary 3.6.4. �

It is clear from the above facts that ◦ is a group operation on the set G∗, and that

the canonical filter Be plays the role of the neutral element in G∗. It is also clear (see

Facts 9 and 10) that the mapping i is an isomorphism of the group G onto the subgroup

i(G) = {Bx : x ∈ G} of G∗.

It remains to define a topology on G∗ which would make G and i(G) homeomorphic

and multiplication continuous. We denote by � the topology of G. Take any open set U in

G, and put U∗ = {η ∈ G∗ : U ∈ η}. Clearly, we have:

Fact 13. For any open sets U and V in G, we have: U∗ ∩ i(G) = i(U) and U∗ ∩ V ∗ =

(U ∩ V )∗.

It follows from Fact 13 that the family � = {U∗ : U ∈ �} is a base of a topology

�∗ on G∗. Note that �∗ generates on i(G) the topology consisting precisely of the sets

i(W ), where W ∈ �, since the trace of the base � on i(G) is this family of sets. Thus, the

mapping i is a homeomorphism of G onto the subspace i(G) of the space G∗.

Obviously, the inverse operation on G∗ is continuous, since (U∗)−1 = (U−1)∗, for each

open set U in G.

Finally, let us show that the multiplication on G∗ is continuous. It suffices to consider

basic open sets. Let η, ξ be any elements of G∗, and let W∗ be any basic open neighbourhood

of η ◦ ξ in G∗, where W is an open set in G. Then W ∈ η ◦ ξ. By the definition of

multiplication, η ◦ ξ = o([ηξ]). Therefore, there exist open sets U ∈ η and V ∈ ξ such

that UV ⊂ W . Clearly, η ∈ U∗ and ξ ∈ V ∗. We claim that U∗ ◦ V ∗ ⊂ W∗. Indeed, let

η1 ∈ U∗ and ξ1 ∈ V ∗. Then UV ∈ [η1ξ1], which implies that W ∈ o([η1ξ1]) = η1 ◦ ξ1,

that is, η1 ◦ ξ1 ∈ W∗. The continuity of the multiplication is checked.

Since the trace of each non-empty element of the base � on i(G) is not empty, i(G) is

dense in G∗.

Let us now show how to construct canonical filters, starting from any Cauchy filter on

G. This is, obviously, an important step — so far the only examples of canonical filters we

explicitly mentioned were the trivial, fixed, canonical filters Bx, where x ∈ G.

Below we use notation: If ξ is a family of subsets of G, then s(ξ) is the family of all

subsets of G of the form UPV , where U and V are any open neighbourhoods of e, P ∈ ξ,

and c(ξ) = o(s(ξ)).

Proposition 3.6.6. Let ξ be a Cauchy filter on G. Then c(ξ) is a canonical filter on G
contained in ξ.

Proof. It is clear that s(ξ) is an open filter base and s(ξ) ⊂ ξ. Let us check that the

family s(ξ) is shrinking. Indeed, take any A ∈ s(ξ). Then there are open neighbourhoods

U and V of e and P ∈ ξ such that A = UPV . We can find open neighbourhoods U1
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and V1 of e such that U2
1 ⊂ U and V 2

1 ⊂ V . Then we have: B = U1PV1 ∈ s(ξ), and

U1BV1 = U2
1 PV 2

1 ⊂ UPV = A. It follows that s(ξ) is shrinking.

Let us check that s(ξ) is Cauchy. Take any open neighbourhood V of e, and choose

an open neighbourhood W of e such that W3 ⊂ V . There exists b in G such that

Wb ∈ ξ, since ξ is a Cauchy open filter. Then b−1Wb is an open neighbourhood of e,

and W (Wb)b−1Wb = W3b is in s(ξ), by the definition of s(ξ). Since W3b ⊂ Vb, it follows

that s(ξ) is Cauchy.

Now, by Fact 4, we conclude that o(s(ξ)), that is, c(ξ) is a canonical filter. Since ξ is

an open filter, and s(ξ) ⊂ ξ, we have that c(ξ) = o(s(ξ)) ⊂ ξ. This finishes the proof. �

Proposition 3.6.7. Let G be a dense subgroup of a topological group H , and let η be
an open filter on H . Put ηG = {W ∩G : W ∈ η}. Then:

1) ηG is an open filter on G synchronous with η;
2) if η is Cauchy in H , then ηG is Cauchy in G;
3) if ηG converges in the space G, then η converges in the space H to the same point;
4) if η is canonical in H , then ηG is canonical in G.

Proof. Both parts of 1) easily follow from the assumption that G is dense in H . To

prove 3), it is sufficient to note that the space H is regular, and that W ⊂ W ∩G, for each

W ∈ η (the closure is taken in H).

Now we prove 2). Let W be an open neighbourhood of the neutral element e in G.

There exists an open neighbourhood U of e in H such that U ∩G = W . By Lemma 3.6.2,

there exists F ∈ η such that FF−1 ⊂ U and F−1F ⊂ U. Put P = F ∩G. Then P ∈ ηG

and PP−1 ⊂ G ∩ U = W . Similarly, P−1P ⊂ W . Therefore, ηG is a Cauchy filter in G.

The proof of 4) is similar to the proof of 2) and is left to the reader. �

Notice that the proof of 2) is necessary since being a Cauchy family is formally,

according to the definition, a relative property — we have to specify with respect to which

topological group the family is Cauchy.

The lemma below is obvious; it complements Proposition 3.6.7.

Lemma 3.6.8. If η is a Cauchy filter on G and the filter o(η) converges in G, then η
converges in G as well.

The next result specifies one of the basic properties of G∗:

Proposition 3.6.9. Every Cauchy filter η on G∗ converges.

Proof. By Lemma 3.6.8 and by Facts 1 and 3, it suffices to consider the case when

η is an open Cauchy filter. It is convenient to identify any x ∈ G with i(x). So now i(G)

becomes G, so that G is a dense subgroup of G∗. Put ηG = {W ∩G : W ∈ η}. Then ηG is

an open filter on G synchronous with η. By Proposition 3.6.7, since η is Cauchy in G∗, the

open filter ηG is Cauchy in G. Put ξ = c(ηG). Then, by Proposition 3.6.6, ξ is a canonical

filter on G contained in ηG.

An arbitrary basic open neighbourhood of the point ξ in G∗ is of the form U∗, where

U is an element of ξ. Then U ∈ ηG and, since U ⊂ U∗, this implies that ηG converges to

the point ξ in G∗. By 3) of Proposition 3.6.7, this means that the filter η also converges to

ξ. �
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A topological group G such that every Cauchy filter on G converges is called Raı̆kov
complete. Thus, we can sum up the results of our construction and of arguments above as

follows:

Theorem 3.6.10. [D. A. Raı̆kov] For every topological group G, there exists a Raı̆kov
complete topological group G∗ and a canonical topological isomorphism i of G onto a
dense subgroup i(G) of G∗.

We are now going to establish a general result which implies that a topological group

G∗ such as in Theorem 3.6.10 is, in a natural sense, unique. This requires two preliminary

facts the first of which is obvious.

Lemma 3.6.11. Under a continuous homomorphism of a topological group G into a
topological group H , the image of each Cauchy filter on G is a Cauchy filter on H .

In the next proposition we present one of the most important properties of Raı̆kov

complete topological groups.

Proposition 3.6.12. Let G be a dense subgroup of a topological group H and
f : G → K a continuous homomorphism of G to a Raı̆kov complete group K. Then f
admits an extension to a continuous homomorphism f ∗ : H → K.

Proof. For every z ∈ H , let ηz be the family of all open neighbourhoods of z in H .

Put ξz = {U ∩G : U ∈ ηz}. Then, obviously, ηz is a Cauchy filter on H and, therefore, ξz

is a Cauchy filter on G.

By Lemma 3.6.11, the family f (ξz) = {f (P) : P ∈ ξz} is a Cauchy filter on the Raı̆kov

complete group K. Therefore, it converges to some y ∈ K. Put f ∗(z) = y. Clearly f ∗ is

correctly defined, and to prove that the mapping f ∗ of H to K is continuous, it suffices to

establish that if z is in the closure of a subset A of G, then y = f ∗(z) is in the closure of

f (A) (see [165, 3.2.A]). Let us do this.

Assume the contrary, and put δA = {U ∩ A : U ∈ ηz}. Then δA is a Cauchy filter on

G. Therefore, by Lemma 3.6.11, the family f (δA) is a Cauchy filter on K. It follows that

the filter f (δA) converges to some y1 ∈ K. Then y1 is in the closure of f (A) and, therefore,

y1 = y. However, every element of the filter δA is contained in some element of the filter ηz

and, hence, in some element of ξz. Therefore, the filters δA and ξz are meshing. It follows

that the filters f (δA) and f (ξz) are also meshing, which implies that the points to which they

converge must coincide. This contradiction shows that the mapping f ∗ is continuous.

It remains to verify that f ∗ is a homomorphism. If not, there exist elements a, b ∈ H
such that f ∗(ab) = f ∗(a)f ∗(b). Let O and W be disjoint open in K neighbourhoods of

f ∗(ab) and f ∗(a)f ∗(b), respectively. Choose open neighbourhoods U and V of f ∗(a) and

of f ∗(b), respectively, such that UV ⊂ W . By the continuity of f ∗ and of the multiplication

in H , one can find open neighbourhoods U1 and V1 of a and b, respectively, in H such

that f ∗(U1) ⊂ U, f ∗(V1) ⊂ V and f ∗(U1V1) ⊂ O. Since G is dense in H , there exist

a1 ∈ U1 ∩G and b1 ∈ V1 ∩G. Since f is a homomorphism and f ∗ coincides with f on G,

we have, on one hand, that

f ∗(a1b1) = f (a1b1) = f (a1)f (b1) = f ∗(a1)f ∗(b1) ∈ UV ⊂ W.

On the other hand, f ∗(a1b1) ∈ f ∗(U1V1) ⊂ O. It now follows that f ∗(a1b1) ∈ O∩W = ∅,

thus contradicting the choice of the sets O and W . The proof is complete. �
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Proposition 3.6.13. Let f : G → H be a topological isomorphism of topological
groups. Suppose that G and H are dense subgroups of Raı̆kov complete groups G∗ and
H∗, respectively. Then f admits a continuous extension to a topological isomorphism
f ∗ : G∗ → H∗.

Proof. By Proposition 3.6.12, one can extend f to a continuous homomorphism

ϕ : G∗ → H∗. Similarly, f−1 admits an extension to a continuous homomorphism

ψ : H∗ → G∗. Then the restriction of ψ ◦ ϕ to G coincides with the identity mapping

iG of G onto itself and, similarly, the restriction of ϕ ◦ ψ to H is the identity mapping iH of

H onto itself. Hence, ψ ◦ϕ is the identity mapping of G∗ onto itself and ϕ◦ψ is the identity

mapping of H∗. This implies that ϕ is a topological isomorphism of G∗ onto H∗. �

The following theorem on the uniqueness of the Raı̆kov completion of a given a

topological group is now immediate.

Theorem 3.6.14. Let G be a topological group, and let H1 and H2 be Raı̆kov complete
topological groups such that G is a dense topological subgroup of both of them. Then there
exists a topological isomorphism ϕ of H1 onto H2 such that ϕ(g) = g, for each g ∈ G.

Theorems 3.6.10 and 3.6.14 enable us to call the topological group G∗ constructed

above the Raı̆kov completion of the group G. In the sequel, the group G∗ is denoted by 
G,

and G will be always identified with the dense subgroup i(G) of 
G. Clearly, we have:

Proposition 3.6.15. For any topological group G, 

G = 
G. In particular, G is
Raı̆kov complete if and only if 
G = G.

Corollary 3.6.16. Let G be a dense subgroup of a topological group H . Then there
exists a topological isomorphism iH of H onto a subgroup of the Raı̆kov completion 
G of
G such that iH (g) = g, for each g ∈ G.

Proof. Let 
H be the Raı̆kov completion of H . Then G is a dense subgroup of 
H ,

and both topological groups 
G and 
H are Raı̆kov complete. Therefore, Theorem 3.6.14

applies, and there exists a topological isomorphism ϕ of 
H onto 
G such that ϕ(g) = g,

for each g ∈ G. The restriction of ϕ to H is the topological isomorphism we are looking

for. �

The result just proved means that all topological groups H containing a given topological

group G as a dense subgroup can be naturally identified with the subgroups K of 
G with

G ⊂ K ⊂ 
G. This canonical identification will be used throughout the rest of the book.

The next result is a special case of Proposition 3.6.12. It establishes a basic property

of Raı̆kov’s completion.

Corollary 3.6.17. Every continuous homomorphism f of a topological group G to
a topological group H can be extended to a continuous homomorphism f ∗ of 
G to 
H .

Here is another useful fact that complements Proposition 3.6.13:

Corollary 3.6.18. Let f : G → H be a continuous homomorphism of topological
groups, and D a dense subgroup of G. If the restriction of f to D is a topological
isomorphism of D onto the subgroup f (D) of H , then f is a topological isomorphism
of G onto the subgroup f (G) of H .
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Proof. By Corollary 3.6.17, f admits an extension to a continuous homomorphism

f ∗ : 
G → 
H . Put E = f (D), and let K be the closure of E in 
H . Then E is a dense

subgroup of the Raı̆kov complete group K, while D is dense in the Raı̆kov complete group


G. Hence, according to Proposition 3.6.13, the restriction g = f �D admits an extension to

a topological isomorphism g∗ : 
G→ K. Since g∗ and f ∗ coincide on the dense subgroup

D of 
G, we conclude that g∗ = f ∗. It follows that f ∗ is a topological isomorphism of 
G
onto K and, hence, f is a topological isomorphism of G onto f (G). �

Corollary 3.6.18 fails to be true in the category of topological spaces. Indeed, consider

the continuous mapping g : I → T of the closed unit interval I = [0, 1] onto the circle T
given by g(x) = e2πix, for each x ∈ I. The restriction of g to the dense open subspace (0, 1)

of I is a homeomorphism of (0, 1) onto the subspace T \ {1} of T, but g is clearly not a

homeomorphism since g(0) = g(1) = 1.

One cannot expect that the homomorphic extension f ∗ : 
G→ 
H in Corollary 3.6.17

be onto or quotient, even if the homomorphism f : G → H has both properties (see

Problem 3.6.G). The next theorem shows, however, that if f is quotient and f ∗ is onto,

then f ∗ is quotient as well.

Theorem 3.6.19. Let f : G→ H be a continuous onto homomorphism of topological
groups. If f is open, then the continuous homomorphic extension f ∗ : 
G → 
H of f is
open when considered as a mapping of 
G onto its image f ∗(
G), and the kernel of f ∗ is
the closure of ker f in 
G. Therefore, f ∗ : 
G → 
H is open provided that f is open and
f ∗(
G) = 
H .

Proof. Let us prove the first part of the theorem. Suppose that f is a quotient

homomorphism. The kernel N of f is a closed invariant subgroup of G, and we claim

that the closure of N in 
G, say, K is an invariant subgroup of 
G. If not, there exist

elements x ∈ 
G and y ∈ K such that xyx−1 /∈ K. Then O = 
G \ K is an open

neighbourhood of xyx−1 in 
G, and the continuity of the multiplication in 
G implies that

we can find open sets U and V in 
G such that x ∈ U, y ∈ V , and UVU−1 ⊂ O. Since G
is dense in 
G, there exist elements a ∈ U ∩G and b ∈ V ∩N. It follows from the choice

of U and V that g = aba−1 ∈ O, that is, g /∈ K. Since a ∈ G and b ∈ N, we conclude that

g /∈ K ∩G = N, which contradicts the invariance of N in G.

Let π : 
G → 
G/K be the quotient homomorphism. It is clear that the kernel P of

f ∗ is a closed subgroup of 
G that contains N, whence it follows that K ⊂ P . Hence, there

exists a homomorphism ϕ : 
G/K → 
H satisfying f ∗ = ϕ ◦ π.

G
� � ��

f

��

π�G

		�������� 
G

f∗

��

π

����������


G/K
ϕ

		��������

H
� � �� 
H

Since the homomorphism π is quotient, ϕ is continuous. Further, since N = K∩G is dense

in K, it follows from Theorem 1.5.16 that the restriction of π to G is an open homomorphism
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of G onto the subgroup π(G) of 
G/K. We claim that the restriction of ϕ to π(G) is a

topological isomorphism of π(G) onto H .

Indeed, the kernel of the homomorphism π�G is the group N = K ∩ G, and

ker(ϕ ◦π)�G = ker f ∗�G = ker f = N. It follows that the kernels of the homomorphisms

π�G and (ϕ ◦ π)�G coincide, so that the restriction of ϕ to π(G) is a monomorphism.

Further, the homomorphisms π�G and f = (ϕ ◦ π)�G are open when considered as

mappings onto their images π(G) and H , respectively. Hence, the restriction of ϕ to

π(G) is a homeomorphism of π(G) onto H , which proves our claim.

Since π(G) is dense in 
G/K, it follows from Corollary 3.6.18 that ϕ is a topological

isomorphism of 
G/K onto the subgroup ϕ(
G/K) = f ∗(
G) of 
H . Hence, the equality

f ∗ = ϕ ◦π implies that f ∗ is an open homomorphism of 
G onto the subgroup f ∗(
G) of


H , and that K is the kernel of f ∗. This finishes the proof of the first part of the theorem.

Finally, if f ∗(
G) = 
H , then f ∗ is open, by the first claim of the theorem. �

Now we are going to show that the class of metrizable topological groups is closed

under taking Raı̆kov completions. This result will be deduced from a more general fact

given below.

Proposition 3.6.20. Let H be a metrizable subgroup of a topological group G. Then
the closure of H in G is also a metrizable subgroup of G.

Proof. Denote by K the closure of H in G. It follows from Corollary 1.4.14 that K is

a subgroup of G, while Proposition 1.4.16 implies that K is also first-countable and, hence,

metrizable by Theorem 3.3.12. �

Corollary 3.6.21. For any metrizable topological group G, its Raı̆kov completion

G is metrizable.

The next theorem is analogous to a statement about complete uniform spaces (see [165,

Theorem 8.3.9]). Its proof is close to that of the Tychonoff Compactness Theorem.

Theorem 3.6.22. Every topological product G =
∏

i∈I Gi of Raı̆kov complete groups
is Raı̆kov complete.

Proof. Let ξ be a Cauchy filter on G. Then there exists an ultrafilter η on G with

ξ ⊂ η. Clearly, η is a Cauchy filter on G as well. For every i ∈ I, let πi be the projection

of G to the factor Gi. By Lemma 3.6.11, the family ηi = {πi(F ) : F ∈ η} is a Cauchy

filter on Gi. Since the group Gi is Raı̆kov complete, ηi converges to some point bi ∈ Gi.

Denote by b the point in G satisfying πi(b) = bi for each i ∈ I. Since ηi converges to bi

for i ∈ I, we conclude that π−1
i (V ) ∩ F = ∅ for every neighbourhood V of bi in Gi and

for every F ∈ η. By our choice, η is an ultrafilter, so that π−1
i (V ) ∈ η.

We claim that η converges to b. Indeed, let O be an arbitrary neighbourhood of b in G.

There exists a canonical open neighbourhood U of b in G such that U ⊂ O. Then U has

the form U = π−1
i1

(U1) ∩ . . . ∩ π−1
in

(Un), where ik ∈ I and Uk � bik is open in Gik for each

k ≤ n. By the above observation, we have Ok = π−1
ik

(Uk) ∈ η for k = 1, . . . , n. Since η is

a filter, this implies that U = O1 ∩ . . . ∩Ok ∈ η. So, from U ⊂ O it follows that O ∈ η.

This and the inclusion ξ ⊂ η together imply that every neighbourhood O of b intersects all

elements of the filter ξ or, in other words, b is an accumulation point of ξ. But ξ, being a

Cauchy filter, converges to the point b. This finishes the proof. �
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Theorem 3.6.22 implies that the operations of taking topological products and Raı̆kov

completions of topological groups commute:

Corollary 3.6.23. Let G =
∏

i∈I Gi be a product of topological groups. Then 
G is
topologically isomorphic to the product group

∏
i∈I 
Gi.

Proof. It is clear that G is a dense subgroup of the group H =
∏

i∈I 
Gi. Since

the group H is Raı̆kov complete, by Theorem 3.6.22, and there exists a unique (up to

a topological isomorphism) Raı̆kov complete topological group containing G as a dense

subgroup (Theorem 3.6.14), we conclude that 
G ∼= H . �
The following simple statement is good to keep in mind. It will be considerably

generalized in Theorem 4.3.7.

Theorem 3.6.24. Every locally compact topological group G is Raı̆kov complete.

Proof. The group G is an open subgroup of its Raı̆kov completion 
G, since G is

locally compact and dense in 
G. However, every open subgroup of a topological group is

closed in it. Therefore, G = 
G, that is, G is Raı̆kov complete. �
There exists a natural relation between Raı̆kov complete groups and complete uniform

spaces. To establish this relation we briefly recall the necessary concepts from the theory

of uniform spaces.

Let (X, �) be a uniform space. A filter ξ of subsets of X is called Cauchy in (X, �)

if, for each U ∈ �, there exists an element F ∈ ξ such that F × F ⊂ U. The space

(X, �) is complete if every Cauchy filter in (X, �) converges to some point of X (see [165,

Section 8.3], where Cauchy filters are called filters with arbitrarily small sets).

Theorem 3.6.25. A topological group G is Raı̆kov complete if and only if the uniform
space (G, ) is complete, where  is the two-sided uniformity of the group G.

Proof. Suppose that the group G is Raı̆kov complete. We have to verify that every

Cauchy filter ξ in (G, ) converges. Take an arbitrary open symmetric neighbourhood V
of the neutral element e in G. Then

OV = {(x, y) ∈ G×G : x−1y ∈ V, xy−1 ∈ V}
is an element of the uniformity  (see (1.8)–(1.10)). Since ξ is Cauchy in (G, ), there

exists F ∈ ξ such that F × F ⊂ OV . If x ∈ F , then F ⊂ xV ∩ Vx, so that ξ is a Cauchy

filter in the group G. The group G being Raı̆kov complete, ξ must converge to some point

of G. This proves that the uniform space (G, ) is complete.

Conversely, suppose that the uniform space (G, ) is complete. To show that the group

G is Raı̆kov complete, take an arbitrary Cauchy filter ξ in G. We claim that ξ is also a Cauchy

filter in (G, ). Indeed, if U ∈ , there exist symmetric open neighbourhoods V and W of

e in G such that OV ⊂ U and W2 ⊂ V . It follows from our choice of ξ that F ⊂ aW ∩Wb,

for some F ∈ ξ and a, b ∈ G. Let x, y ∈ F be arbitrary. Since W is symmetric, we have that

a−1x ∈ W , x−1a ∈ W , and a−1y ∈ W . Hence, x−1y = (x−1a)(a−1y) ∈ W2. Similarly,

from xb−1 ∈ W , yb−1 ∈ W , and by−1 ∈ W it follows that xy−1 = (xb−1)(by−1) ∈ W2.

Since W2 ⊂ V , we conclude that (x, y) ∈ OV . This proves that F × F ⊂ OV , so ξ is a

Cauchy filter in (G, ). Since, by our assumption, the uniform space (G, ) is complete,

ξ converges to some point of G. We get to the conclusion that the group G is Raı̆kov

complete. �
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The reader has surely noted that in the proof of Theorem 3.6.25 we established the fact

that a filter ξ of subsets of the group G is a Cauchy filter in G if and only if ξ is Cauchy in

the uniform space (G, ).

Exercises

3.6.a. Verify that if η is an open filter base, then o(η) is an open filter containing η.

3.6.b. Show that if η is a shrinking family of open sets, then o(η) is also a shrinking family of open

sets.

3.6.c. Verify that if η is a Cauchy family of sets, then o(η) is also a Cauchy family of sets.

3.6.d. Verify that if η is an open filter base which is both Cauchy and shrinking, then o(η) is a

canonical filter containing η.

3.6.e. Show that if η and ξ are open filter bases, then [ηξ] is also an open filter base.

3.6.f. Verify that if η and ξ are open filter bases, then o([o(η)o(ξ)]) = o([ηξ]).

3.6.g. Verify that for any η ∈ G∗, the family η−1 = {U−1 : U ∈ η} is also an element of G∗.

3.6.h. Show that (Bx)
−1 = Bx−1 and Bx ◦ By = Bxy, for all x, y ∈ G.

3.6.i. Verify that ◦ is a group operation on the set G∗, and that the canonical filter Be plays the role

of the neutral element in G∗.

3.6.j. Verify that the mapping i defined on page 183, after Proposition 3.6.1, is an isomorphism of

the group G onto the subgroup i(G) = {Bx : x ∈ G} of G∗.

3.6.k. Show that if η is a Cauchy filter on G and the filter o(η) converges in G, then η converges

in G as well.

3.6.l. Show that for any continuous homomorphism of a topological group G to a topological group

H , the image of each Cauchy filter on G is a Cauchy filter on H .

3.6.m. Prove that every closed subgroup of a Raı̆kov complete topological group is Raı̆kov complete.

3.6.n. Show that the Raı̆kov completion of a second-countable topological group is a second-

countable group.

3.6.o. Let G be a compact topological group such that every element a ∈ G distinct from eG

generates a dense subgroup of G. Show that G is a finite cyclic group with a prime number

of elements. Can one generalize this to precompact topological groups (see page 118)?

3.6.p. Give an example of an ω-narrow topological group that cannot be embedded as a topological

subgroup into any paracompact topological group.

Hint. Use Problem 1.7.A and Theorem 3.6.22.

3.6.q. Let X be a Tychonoff space. Show that the topological group Cp(X) is Raı̆kov complete

iff the space X is discrete. Is the similar statement true for the compact-open topology on

Cp(X)?

3.6.r. Give an example of a continuous onto homomorphism f : G → H of topological groups

such that the continuous extension f ∗ : 
G → 
H is open and onto, but f fails to be open

(see Theorem 3.6.19).

Problems

3.6.A. Let M be a metric space. Is the group Is(M) of isometries of M, with the topology of uniform

convergence, Raı̆kov complete?

3.6.B. Let M be a complete metric space. Show that the group Is(M) of isometries of M, with the

topology of uniform convergence, is Raı̆kov complete. What if Is(M) is endowed with the

topology of pointwise convergence?
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3.6.C. Let M be a metric space. Show that the Raı̆kov completion of the group Is(M) of isometries

of M, with the topology of uniform convergence, is the group of isometries of the completion

of M with respect to the metric, also taken with the topology of uniform convergence.

3.6.D. Let M be a metric space. Show that Raı̆kov completion of the group Is(M) of isometries of

M, with the topology of pointwise convergence, is the group of isometries of the completion

of M with respect to the metric, also taken with the topology of pointwise convergence.

3.6.E. Suppose that G is an Abelian Raı̆kov complete topological group, and N is a closed subgroup

of G. Is the quotient group G/N Raı̆kov complete? What if N is compact or locally compact?

3.6.F. Let N be a closed invariant subgroup of a topological group G and suppose that the groups

N and G/N are Raı̆kov complete. Prove that G is also Raı̆kov complete.

3.6.G. Give an example of a quotient homomorphism f : G → H of a topological group G onto H
such that the continuous homomorphic extension f ∗ : 
G → 
H (see Corollary 3.6.17) is

not onto.

3.6.H. (C. Hernández and M. G. Tkachenko [228]) For a topological group H , denote by (H)ω the

underlying group H with the new topology whose base of open sets consists of Gδ-sets in H .

The topological group (H)ω is called the Gδ-modification of H . Verify that (H)ω is also a

topological group and prove that (H)ω is Raı̆kov complete whenever H is Raı̆kov complete.

3.6.I. Construct a non-discrete Raı̆kov complete Hausdorff group topology on the group Z.

Hint. Let xn = 2n, for each n ∈ N. Verify that there exists the maximal topological group

topology � on Z such that the sequence {xn : n ∈ N} converges to zero in (Z, �). Show that

the topology � is Hausdorff and the group (Z, �) is Raı̆kov complete. For details, see [547].

3.6.J. Give an example of a Raı̆kov complete ω-narrow topological group which contains an

uncountable discrete family of non-empty open sets.

Hint. The group constructed in [485] has all the required properties.

3.6.K. Give an example of a Raı̆kov complete topological group H such that every point in H is a

Gδ-set, but H does not admit a continuous isomorphism onto a metrizable topological group.

(Compare with Corollaries 3.4.24, 3.4.26, and Problem 3.4.A.)

Hint. Verify that the group Kω1 endowed with the box topology and considered in the hint

to Problem 3.4.A, is Raı̆kov complete.

3.6.L. A filter ξ of subsets of a topological group G is said to be a left Cauchy filter in G if for

every neighbourhood U of the neutral element in G, there exist F ∈ ξ and a ∈ G such that

F ⊂ aU. A topological group G is called Weil complete if every left Cauchy filter in G
converges.

(a) Verify that a subgroup H of a Weil complete group G is Weil complete iff H is closed

in G.

(b) Prove that the product of any family of Weil complete groups is Weil complete.

(c) Show that every Weil complete group is Raı̆kov complete.

(d) Give an example of a Raı̆kov complete group which fails to be Weil complete.

(e) Prove that a Raı̆kov complete group G is Weil complete if and only if ξ−1 = {F−1 :

F ∈ ξ} is a left Cauchy filter, for each left Cauchy filter ξ in G. Deduce that Raı̆kov

completeness and Weil completeness coincide for Abelian topological groups.

(f) Use (e) to show that all locally compact topological groups are Weil complete.

(g) Give an example of a topological group that cannot be embedded into a Weil complete

group as a topological subgroup. Conclude that Theorem 3.6.10 cannot be extended to

Weil complete groups.

(h) Find out whether the assertions in Problems 3.6.F and 3.6.H remain valid for Weil

complete groups.
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Open Problems

3.6.1. Suppose that G is a Raı̆kov complete Fréchet–Urysohn topological group. Is G metrizable?

What if, in addition, G is countable?

3.6.2. Does there exist in ZFC a Raı̆kov complete ω-narrow topological group which contains a

discrete family γ of open sets with |γ| = 2ω? (See also Problem 3.6.J.)

3.6.3. Suppose that G and H are homeomorphic topological groups such that G is Raı̆kov complete.

Must H be Raı̆kov complete?

3.6.4. Suppose that X is a Tychonoff space such that Cp(X) is homeomorphic to a Raı̆kov complete

topological group. Is X discrete?

3.6.5. Must the Sorgenfrey line S be closed in every (Hausdorff, regular) paratopological group

containing it as a paratopological subgroup?

3.6.6. Characterize Hausdorff (regular) paratopological groups that are closed in every Hausdorff

(regular) paratopological group containing them as a paratopological subgroup.

3.7. Precompact groups and precompact sets

A left topological group G is called precompact if, for every open neighbourhood V of

the neutral element in G, there exists a finite subset A of G such that AV = G. Similarly,

a right topological group G is called precompact if, given an open neighbourhood V of

the neutral element in G, one can find a finite subset B of G such that VB = G (see also

page 118).

For a quasitopological group G, the existence of a finite set A ⊂ G with G = AV in

the above definition is equivalent to the existence of a finite set B ⊂ G satisfying G = VB
(compare with Proposition 3.4.1). Therefore, for quasitopological groups and, in particular,

for topological groups one can introduce the concept of precompactness in terms of left

translations or, equivalently, right translations. Precompact topological groups are also said

to be totally bounded, by analogy with metric spaces. Obviously, every compact topological

group is precompact and precompact topological groups are ω-narrow. It is also clear that

a discrete group is precompact if and only if it is finite.

The proof of the next stability result is straightforward and is omitted.

Proposition 3.7.1. If f is a continuous homomorphism of a precompact topological
group G onto a topological group H , then the group H is also precompact.

It is clear that every compact group is precompact. The following fact is a bit less

obvious.

Theorem 3.7.2. Every pseudocompact topological group is precompact.

Proof. Let V be an arbitrary symmetric open neighbourhood of the neutral element e
in G. As in the proof of Proposition 3.4.31, consider a maximal V -disjoint subset A of G.

If U is a symmetric open neighbourhood of e with U4 ⊂ V , then the family of open sets

{xU : x ∈ A} is discrete in G, so A must be finite since G is pseudocompact. It follows

from the maximality of A that G = AV , thus implying the conclusion of the theorem. �

The concept of precompactness admits a natural extension to subsets of semitopological

groups as follows. A subset B of a semitopological group G is called precompact in G if,
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for every neighbourhood U of the identity in G, there exists a finite set F ⊂ G such that

B ⊂ FU and B ⊂ UF .

In general, one cannot weaken the requirement on the set B in the above definition

to the single condition B ⊂ FU (or B ⊂ UF ), not even if G is a topological group (see

Problem 3.7.B). If, however, B is a symmetric subset of a quasitopological group G, the

three different definitions coincide, by the argument given in the proof of Proposition 3.4.1.

It is clear that every compact subset of a topological group is precompact. The converse

is obviously false — every pseudocompact non-compact group is a counterexample, by

Theorem 3.7.2. Another way to see this is to take a countable dense subgroup of the circle

group T and apply Proposition 3.7.4 below.

Let us show that a finite subset F of G in the definition of precompact sets in topological

groups can always be chosen inside B.

Lemma 3.7.3. Let B be a precompact subset of a topological group G and S dense in
B. Then, for every neighbourhood U of the identity in G, one can find a finite set K ⊂ S
such that B ⊂ KU and B ⊂ UK.

Proof. Let U be a neighbourhood of the identity e in G. Choose a symmetric

neighbourhood V of e in G such that V 2 ⊂ U. Since B is precompact in G, there exists

a finite set F in G such that B ⊂ FV and B ⊂ VF . If x ∈ F and B ∩ xV = ∅, then

S ∩ xV = ∅ and we pick a point yx ∈ S ∩ xV . Then the finite set

K1 = {yx : x ∈ F and B ∩ xV = ∅}
is contained in S and satisfies B ⊂ K1U. Indeed, if b ∈ B, then there exists x ∈ F such that

b ∈ xV . Clearly, b ∈ B ∩ xV = ∅, so yx ∈ xV and y−1
x x ∈ V−1 = V . Therefore, we have

b ∈ xV = yx(y−1
x x)V ⊂ yxV 2 ⊂ yxU ⊂ K1U.

This implies the inclusion B ⊂ K1U. Similarly, define a finite subset K2 of S choosing

points zx ∈ S ∩ Vx, with x ∈ F , and apply the same argument to show that B ⊂ UK2.

Therefore, the finite set K = K1 ∪K2 ⊂ S is as required. �

We also have the following fact analogous to Theorem 3.4.4:

Proposition 3.7.4. Every subgroup H of a precompact topological group G is a
precompact topological group.

Proof. Let e be the neutral element of G. Take an arbitrary open neighbourhood U of

e in H and choose an open neighbourhood V of e in G such that V ∩ H = U. Clearly, H
is a precompact subset of G, so we can apply Lemma 3.7.3 to find a finite set F ⊂ H such

that H ⊂ FV and H ⊂ VF . Let us verify that H ⊂ FU and H ⊂ UF . Indeed, for every

x ∈ H , there are f ∈ F and y ∈ V such that x = fy. Since H is a subgroup of G, we have

that y = f−1x ∈ V ∩H = U, which in its turn implies that x ∈ FU. Thus, H ⊂ FU and,

similarly, H ⊂ UF . It follows that the topological group H is precompact. �

It is easy to see that if C ⊂ B ⊂ G and B is precompact in a topological group G, then

C is also precompact in G. Conversely, sometimes the precompactness of C implies the

same conclusion with respect to B.
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Lemma 3.7.5. If a set B in a topological group G contains a dense precompact
subset, then B is also precompact in G. Hence, the closure of a precompact subset of
G is precompact in G.

Proof. Let S be a dense precompact subset of B. Consider an arbitrary neighbourhood

U of the identity e in G and choose an open symmetric neighbourhood V of e in G such

that V 2 ⊂ U. There exists a finite subset F of G such that S ⊂ FV and S ⊂ VF . We

claim that B ⊂ FU ∩ UF . Indeed, if b ∈ B, then S ∩ bV = ∅, so we can choose a point

y ∈ S ∩ bV . Then y ∈ xV for some x ∈ F , whence b ∈ yV−1 ⊂ xVV−1 ⊂ xU. This

implies the inclusion B ⊂ FU, and a similar argument applies to show that B ⊂ UF . �

Corollary 3.7.6. If a topological group G contains a dense precompact subgroup,
then G is also precompact.

One more important property of precompact subsets of topological groups is presented

in the next lemma that generalizes Proposition 1.4.32.

Lemma 3.7.7. Let B be a precompact subset of a topological group G. Then, for every
neighbourhood U of the identity e in G, there exists a neighbourhood V of e in G such that
bVb−1 ⊂ U, for each b ∈ B.

Proof. Let U be a neighbourhood of e in G. Choose an open symmetric neighbourhood

W of e in G such that W3 ⊂ U. Since B is precompact, we can apply Lemma 3.7.3 to find

a finite set F ⊂ B such that B ⊂ WF . Then V =
⋂

x∈F x−1Wx. is an open neighbourhood

of e in G. If b ∈ B, then b = wx for some w ∈ W and x ∈ F . Therefore,

bVb−1 = wxVx−1w−1 ⊂ wWw−1 ⊂ W3 ⊂ U.

This proves the lemma. �

Taking B = G in the above lemma, and applying Lemma 1.8.6, we obtain the following

conclusion:

Corollary 3.7.8. Every precompact topological group G is balanced and, therefore,
the invariance number of G is countable.

The elementary theory of precompact groups could be built in parallel to the elementary

theory of ω-narrow groups exhibited in Section 3.4. For example, we could show directly

that the product of any family of precompact topological groups is a precompact topological

group. However, we take another approach, discovering and using connections between

precompact groups and some other important classes of groups, connections, which,

unfortunately, do not admit a generalization to the class of ω-narrow groups.

First we show that precompact subsets of topological groups admit a nice characteri-

zation via the Raı̆kov completion of groups.

Proposition 3.7.9. If B is a closed precompact subset of a Raı̆kov complete topological
group G, then the space B is compact.

Proof. Let ξ be any ultrafilter on the set B. We have to show that ξ converges to some

point in B. First, take an ultrafilter η on G such that ξ ⊂ η. Fix an open neighbourhood U
of the neutral element e of G. Since B is precompact, we can find elements a1, . . . , an ∈ G
such that B ⊂ ⋃n

i=1 aiU. Since B ∈ η and η is an ultrafilter on G, it follows that aiU ∈ η,
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for some i ≤ n. Therefore, η is a Cauchy filter on G. Since the topological group G is

Raı̆kov complete, it follows that η converges to some element x in the space G. However,

the set B is closed in G and B ∈ η, so that x ∈ B. Hence, ξ also converges to x, and B is

compact. �
Theorem 3.7.10. A subset B of a topological group G is precompact in G iff the closure

of B in the Raı̆kov completion 
G of G is compact.

Proof. Suppose that the closure B of B in 
G is compact. Let U be an open

neighbourhood of the identity e in G. Choose an open neighbourhood V of e in 
G such

that V ∩G = U. Since B is compact (hence, precompact in 
G) and B is dense in B, we

can apply Lemma 3.7.3 to find a finite subset F of B such that B ⊂ FV ∩VF . This implies

immediately that B ⊂ FU ∩UF . Indeed, for every b ∈ B, there are x ∈ F and v ∈ V such

that b = xv. Then v = x−1b ∈ B−1B ⊂ G, whence v ∈ G ∩ V = U. So, b = xv ∈ FU
and, hence, B ⊂ FU. Similarly, one shows that B ⊂ UF . This proves that B is precompact

in G.

Conversely, suppose that B is precompact in G. Then B is precompact in 
G, so

Lemma 3.7.5 implies that B is also precompact in 
G. Therefore, B is compact, by

Proposition 3.7.9. �
Corollary 3.7.11. Let A and B be precompact subsets of a topological group G.

Then the sets A−1, B−1 and AB are precompact in G.

Proof. Let 
G be the Raı̆kov completion of the group G. Denote the closures of A
and B in 
G by A and B, respectively. By Theorem 3.7.10, the sets A and B are compact.

Therefore, A
−1

, B
−1

, and A B are also compact. Since the sets A−1, B−1 and AB are dense

in A
−1

, B
−1

, and A B, respectively, we can apply Theorem 3.7.10 once again to conclude

that the sets A−1, B−1, and AB are precompact in G. �
Corollary 3.7.12. Suppose that a topological group H is algebraically generated by

a precompact set B ⊂ H . Then H is topologically isomorphic to a dense subgroup of a
σ-compact topological group and, in particular, the group H is ω-narrow.

Proof. Let 
H be the Raı̆kov completion of H and K be the closure of B in 
H .

Then K is compact by Theorem 3.7.10, so the subgroup G = 〈K〉 of 
H is σ-compact and

contains H as a dense subgroup. Since every σ-compact group is ω-narrow, we can apply

Theorem 3.4.4 to conclude that the subgroup H of G is also ω-narrow. �
According to the Tychonoff Compactness Theorem, compactness is a productive

property in the class of topological spaces. Let us show that a similar assertion is valid

for precompactness in the class of topological groups.

Proposition 3.7.13. Let Bi be a precompact subset of a topological group Gi, for each
i ∈ I. Then the set B =

∏
i∈I Bi is precompact in the topological product G =

∏
i∈I Gi.

Proof. Denote by 
G the Raı̆kov completion of the group G. By Corollary 3.6.23, we

can identify 
G with the product
∏

i∈I 
Gi, where 
Gi is the Raı̆kov completion of Gi, for

each i ∈ I. Then the closure of B in 
G, say, B coincides with the product
∏

i∈I Bi, where

Bi = cl
GiBi, for each i ∈ I. By Theorem 3.7.10, the sets Bi are compact and, therefore,

so is B. Since B is dense in B, the same theorem implies that B is precompact in G. �
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The next important statement is now immediate.

Corollary 3.7.14. The product of a family of precompact topological groups is a
precompact topological group.

Here comes a series of basic facts on precompact topological groups.

Theorem 3.7.15. A topological group G is compact if and only if it is precompact and
Raı̆kov complete.

Proof. This follows from Proposition 3.7.9 and the obvious fact that every compact

topological group is precompact and Raı̆kov complete. �

Theorem 3.7.16. A topological group G is precompact if and only if its Raı̆kov
completion is compact.

Proof. Suppose that G is precompact. Then, by Corollary 3.7.6, the Raı̆kov comple-

tion 
G is also precompact. Now it follows from Theorem 3.7.15 that 
G is compact.

To prove the converse, it suffices to refer to Proposition 3.7.4 and to the obvious fact

that every compact topological group is precompact. �

Corollary 3.7.17. A topological group G is precompact if and only if it is topologi-
cally isomorphic to a subgroup of a compact group.

Proof. Apply Theorem 3.7.16 and Proposition 3.7.4. �

Corollary 3.7.18. The Raı̆kov completion of every pseudocompact topological group
is compact.

Proof. This follows from Theorems 3.7.16 and 3.7.2. �

A continuous extension f ∗ : 
G→ 
H of a continuous onto homomorphism f : G→
H need not be onto, even if f is open (see Problem 3.6.G). The situation improves, however,

if the kernel of f is precompact:

Proposition 3.7.19. Let f : G → H be a quotient homomorphism of a topological
group G onto H . If the kernel K of f is precompact, then the continuous homomorphic
extension f ∗ : 
G→ 
H of the homomorphism f is quotient and onto.

Proof. According to Theorem 3.6.19, it suffices to verify that the homomorphism f ∗

is onto. The forementioned theorem also implies that the kernel N of f ∗ is the closure

of K in 
G, and that f ∗ is open when considered as a mapping onto f ∗(
G). Since K is

precompact, it follows from Theorem 3.7.10 that N is a compact group. It is clear that the

group f ∗(
G) is dense in 
H , so the equality 
H = f ∗(
G) will follow if we show that

the image T = f ∗(
G) is a Raı̆kov complete group.

Let ξ be a Cauchy filter in T . Since the family γ = {(f ∗)−1(P) : P ∈ ξ} is a filter base

in 
G, there exists an ultrafilter η in 
G such that γ ⊂ η. We claim that η is a Cauchy filter in


G. Indeed, let U be an arbitrary neighbourhood of the neutral element e in 
G. According

to Proposition 1.4.32, there exists an open neighbourhood V of e such that x−1Vx ⊂ U, for

each x ∈ N. Take an open neighbourhood W of e in 
G such that W2 ⊂ V . Since ξ is a

Cauchy filter in T and the homomorphism f ∗ : 
G→ T is open, we can find x0 ∈ 
G and

P ∈ ξ such that P ⊂ f ∗(x0W ). Hence, (f ∗)−1(P) ⊂ x0WN. By the compactness of N,
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there exist elements x1, . . . , xn ∈ N such that N ⊂ ⋃n
i=1 Wxi. Hence, our choice of the sets

V and W implies that

(f ∗)−1(P) ⊂
n⋃

i=1

x0WWxi ⊂
n⋃

i=1

x0Vxi ⊂
n⋃

i=1

x0xiU.

Since (f ∗)−1(P) is an element of the ultrafilter η, we must have (f ∗)−1(P) ∩ x0xiU ∈ η,

for some positive integer i ≤ n. We have thus proved that for every neighbourhood U of e
in 
G, there exist y ∈ 
G and Q ∈ η such that Q ⊂ yU. This implies that η is a Cauchy

filter in 
G.

Since the group 
G is Raı̆kov complete, η converges to a point a ∈ 
G. Therefore,

by the continuity of f ∗, the filter f ∗(η) = {f ∗(Q) : Q ∈ η} converges to the point

b = f ∗(a) ∈ T . Since ξ is a Cauchy filter in T and ξ ⊂ f ∗(η), it follows that ξ also

converges to b. This proves that the group T = f ∗(
G) is Raı̆kov complete and, hence,


H = f ∗(
G). �

We now need one simple topological fact.

Proposition 3.7.20. Let Y be a dense pseudocompact subspace of a Tychonoff space
X. Then Y is Gδ-dense in X.

Proof. Suppose to the contrary that there exists a non-empty Gδ-set P in X disjoint

from Y . Take a family γ = {Un : n ∈ ω} of open sets in X such that P =
⋂

n∈ω Un.

Choose a point b ∈ P and define by induction a sequence {Vn : n ∈ ω} of open sets in X
such that b ∈ Vn+1 ⊂ Vn+1 ⊂ Vn ⊂ Un for each n ∈ ω. Since X is Tychonoff, there exists

a sequence {fn : n ∈ ω} of continuous real-valued functions on X such that 0 ≤ fn ≤ 2−n,

fn(b) = 0, and fn(x) = 2−n for each x ∈ X \ Vn, where n ∈ ω. Then f =
∑∞

n=0 fn

is a continuous real-valued function on X satisfying f (b) = 0 and f (x) ≥ 2−n whenever

x ∈ X \ Vn and n ∈ ω. Finally, the function g on Y defined by g(x) = 1/f (x), for each

x ∈ Y , is continuous and unbounded, thus contradicting the pseudocompactness of Y . �

Corollary 3.7.21. Let H be a pseudocompact topological group. Then H is Gδ-dense
in the compact group 
H , the Raı̆kov completion of H .

The following statement follows directly from the definition of precompact left

topological groups.

Theorem 3.7.22. Every precompact locally compact left topological group is compact.

Here are two more elementary facts about precompact groups.

Theorem 3.7.23. If G is a precompact topological group such that every point in G
is a Gδ-set, then G can be mapped by a continuous isomorphism onto a second-countable
topological group.

Proof. Since G is ω-narrow and the points in G are Gδ-sets, there exists a continuous

isomorphism of G onto a metrizable topological group M, by Corollary 3.4.25. Then M is

also ω-narrow, and Proposition 3.4.5 implies that M is separable. �

Theorem 3.7.24. Every compact topological group is topologically isomorphic to a
closed subgroup of the product of some family of second-countable topological groups.
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Proof. Since every compact topological group is ω-narrow, the conclusion follows

from Theorem 3.4.23. �

A characterization of ω-narrow topological groups that admit closed embeddings into

topological products of second-countable groups is given in Problem 5.1.D.

We conclude this introduction to the properties of precompact groups with a subtle

result on the existence of countable non-closed sets in infinite precompact groups which

generalizes Corollary 1.4.24. It is almost immediate that if all countable subsets of a

precompact group G are closed in G, then G is finite. Indeed, otherwise we take a countable

infinite subgroup H of G and, by the assumption, all subsets of H are closed in G and in H .

Therefore, H is discrete, thus contradicting Proposition 3.7.4. This implies that an infinite

precompact group always contains a non-closed countable subset. This result can, however,

be considerably strengthened. First we present two lemmas.

Lemma 3.7.25. Let A be a subset of a topological group G with identity e such that
e ∈ A \ A. Then A contains an infinite discrete subset {xn : n ∈ ω} such that the
set {xi x

−1
j : i, j ∈ ω, i < j} is also discrete. In addition, if i < j and k < l, then

xi x−1
j = xk x−1

l only if (i, j) = (k, l).

Proof. We will construct a set {xn : n ∈ ω} ⊂ A and two sequences {Un : n ∈ ω}
and {Ui,j : i, j ∈ ω, i < j} of open subsets of G satisfying the following conditions for all

n, m, i, j ∈ ω:

(i) xn ∈ Un and xi x
−1
j ∈ Ui,j;

(ii) Un ∩ Um = ∅ for distinct n, m;

(iii) Ui,j ⊂ Ui for each j > i;
(iv) Ui,j ∩ Ui,k = ∅ if j = k;

(v) e /∈ Un and xn /∈ Un,j for each j > n.

Take an arbitrary element x0 ∈ A and choose an open neighbourhood U0 of x0 such that

e /∈ U0. Suppose that we have defined points x0, . . . , xn ∈ A and open sets {Ui : i ≤ n}
and {Ui,j : i < j ≤ n} satisfying (i)–(v). By (i) and (v), there exists an open symmetric

neighbourhood V of e in G such that

(vi) V ∩ Ui = ∅ and xiV ⊂ Ui for each i ≤ n, and xiV ∩ Ui,j = ∅ whenever i < j ≤ n.

Since e ∈ A, we can choose an element xn+1 ∈ A∩V . Then xn+1 = e, so there exists an open

neighbourhood Un+1 of xn+1 in G such that e /∈ Un+1 ⊂ V . Let i ≤ n be arbitrary. Since

xi x
−1
n+1 ∈ xiV ⊂ Ui and xiV ∩ Ui,j = ∅ if i < j ≤ n, there exists an open neighbourhood

Ui,n+1 of xi x
−1
n+1 in G such that xi /∈ Ui,n+1 and Ui,n+1 ⊂ xiV . Hence, (vi) implies that

Ui,n+1 ∩ Ui,j = ∅ for each j ≤ n. It is easy to see that the points x0, . . . , xn+1 and the

sequences {Ui : i ≤ n + 1}, {Ui,j : i < j ≤ n + 1} satisfy (i)–(v). This finishes our

construction.

It remains to note that the set {xn : n ∈ ω} is discrete by (i) and (ii), while the same

property of the set {xi x
−1
j : i, j ∈ ω, i < j} follows from (i)–(iv). The last assertion of the

lemma follows from (i), (ii), and (iv). �

Lemma 3.7.26. Let A be a precompact subset of a topological group G with neutral
element e. If {xn : n ∈ ω} ⊂ A, then e belongs to the closure of the set B = {xi x−1

j : i <
j, i, j ∈ ω}.
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Proof. If xi = xj for some distinct i, j ∈ ω, then e ∈ B ⊂ B. We can assume,

therefore, that the elements of the sequence X = {xn : n ∈ ω} are pairwise distinct. In

particular, the set X is infinite. Let U be an open neighbourhood of e in G. Choose an

open neighbourhood V of e in G such that VV−1 ⊂ U. Since the set A is precompact in

G, there exists a finite set F ⊂ G such that A ⊂ VF . Then the intersection X ∩ Vy is

infinite, for some y ∈ F . Choose distinct i, j ∈ ω such that {xi, xj} ⊂ Vy. If i < j, then

xi x−1
j ∈ (Vy)(Vy)−1 = VV−1 ⊂ U, whence it follows that U ∩ B = ∅. This finishes the

proof. �

Theorem 3.7.27. [I. V. Protasov] Let A be an infinite precompact subset of a
topological group G with identity e. Then AA−1 contains a countable discrete subset
B such that e ∈ B \ B.

Proof. Denote by 
G the Raı̆kov completion of the group G. Since A is precompact,

Theorem 3.7.10 implies that the set K = cl
GA is compact. Choose an infinite discrete

subset D of A. Then D has an accumulation point g in K and, clearly, g /∈ D. The sets D
and Dg−1 are precompact in 
G and the identity e of 
G is an accumulation point of Dg−1.

Since D is infinite, Lemma 3.7.25 implies that the set Dg−1 contains a sequence

{xn : n ∈ ω} of pairwise distinct elements such that B = {xi x
−1
j : i < j, i, j ∈ ω}

is a discrete subspace of 
G. It follows from the inclusions

B ⊂ Dg−1(Dg−1)−1 = DD−1 ⊂ AA−1 ⊂ G

that B is, in fact, a subspace of G. By Lemma 3.7.26, e is an accumulation point of B in G.

This finishes the proof. �

Here is an application of the above results about discrete subsets of topological groups.

Informally, it says that all infinite subsets of an extremally disconnected topological group

are “big”.

As usual, we say that a subspace Y of a space X is C∗-embedded in X if every bounded

continuous real-valued function on Y admits an extension to a continuous function on X
(see [191]).

Theorem 3.7.28. Every precompact subset of an extremally disconnected topological
group is finite.

Proof. Suppose to the contrary that an extremally disconnected topological group G
contains an infinite precompact subset A, and let e be the neutral element of G. Then AA−1

and A∗ = AA−1 \ {e} are also precompact subsets of G, by Corollary 3.7.11. It follows

from Lemma 3.7.26 that e is in the closure of A∗, so we can assume without loss of generality

that e ∈ A \ A.

According to Lemma 3.7.25, A contains a sequence {xn : n ∈ ω} of pairwise distinct

elements such that the set B = {xi x−1
j : i < j, i, j ∈ ω} is discrete and two elements xi x−1

j

and xk x−1
l of B coincide iff (i, j) = (k, l). Let

C = {x2i x−1
2j : i < j, i, j ∈ ω} and D = {x2i+1 x−1

2j+1 : i < j, i, j ∈ ω}.
Then C and D are disjoint subsets of the discrete set B. Applying Lemma 3.7.26 once again,

we conclude that e ∈ (C \C)∩ (D \D). Hence, the function f on B which is equal to 0 on

C and is equal to 1 on D cannot be extended to a continuous function on G. This contradicts
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the fact that every countable discrete subset of a regular extremally disconnected space is

C∗-embedded (see [191, 9.H] or [60, Ch. 6, Ex. 164]). �

Corollary 3.7.29. Every precompact extremally disconnected topological group is
finite.

Exercises

3.7.a. Prove Propositions 3.7.1 and 3.7.4.

3.7.b. Suppose that a topological group G is homeomorphic to a precompact topological group.

Must G be precompact?

3.7.c. Show that subgroups of a precompact paratopological group may fail to be precompact (or

even ω-narrow).

Hint. Consider the circle group T endowed with the Sorgenfrey topology (in other words,

consider the quotient paratopological group R/Z, where R carries the Sorgenfrey topology).

Then the square of T contains an uncountable discrete subgroup.

3.7.d. Suppose that B is a compact subset of a paratopological group G. Is the set B−1 precompact

in G?

3.7.e. Is every precompact Dieudonné complete topological group compact?

3.7.f. Give an example of an infinite precompact Abelian topological group G such that all proper

subgroups of G are finite. (See also Problem 1.4.E.)

Hint. For a given prime p, consider the subgroup G of T which consists of all elements

x ∈ T satisfying xpn
= 1, for some n ∈ N.

3.7.g. Let G be a compact Abelian group and a ∈ G be an arbitrary element. Does there exist a

(not necessarily closed) subgroup H of G such that G = H ⊕ 〈a〉?
Hint. Consider the circle group T, take an element a �= 1 in T of order 2, and apply 3.7.f.

3.7.h. Give an example of an infinite precompact topological group G such that every algebraic

isomorphism of G onto itself is a homeomorphism.

Hint. Let G be an infinite Boolean group and � a family of all subgroups H of G such that

the index |G : H | of H in G is finite. Verify that � is a local base at the zero element for a

Hausdorff topological group topology τ on G, and that the group (G, τ) is as required.

3.7.i. Give an example of an infinite precompact metrizable topological Abelian group G such that

every homomorphism of G to G is continuous.

Hint. Consider the σ-product of the cyclic groups Z(p), where p runs through all primes

numbers P, taken with the topology inherited from the product group
∏

p∈P
Z(p).

Problems

3.7.A. (W. W. Comfort and L. C. Robertson [120]) Let H be a closed invariant subgroup of a

topological group G. Prove that if both groups H and G/H are precompact, so is G.

3.7.B. A subset X of a topological group G is called left-precompact (right-precompact) if, for

every neighbourhood U of the neutral element of G, there exists a finite subset F of G such

that AU = G (UA = G). Give an example of a topological group G and a left-precompact

subset X of G which fails to be right-precompact.

3.7.C. Show that not every precompact paratopological group is topologically isomorphic to a

subgroup of a compact paratopological group.

3.7.D. Give an example of a first-countable precompact paratopological group that is neither

metrizable, nor compact.

3.7.E. Give an example of a countable precompact topological group G without non-trivial

convergent sequences.
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3.7.F. Give an example of a countable precompact topological group G such that |
G| = 2c, where

c = 2ω.

3.7.G. Prove that every infinite precompact group is resolvable (see Exercise 1.4.l and Prob-

lem 3.4.D).

3.7.H. Let p be a prime number. We define a metric 
p on Z by the rule 
p(n, n) = 0 for each

n ∈ Z, and 
p(m, n) = 2−k for distinct m, n ∈ Z, where k is the biggest natural number such

that pk divides m−n. Prove that the metric 
p generates a precompact group topology τp on

the group Z and that the Raı̆kov completion of the group (Z, τp) is topologically isomorphic

to the group of p-adic integers Zp (see Example 1.3.16). This explains, in part, the choice

of the symbol Zp to denote the latter group.

3.7.I. A topological group G is called locally precompact if there exists a neighbourhood O of the

neutral element e in G such that O can be covered by finitely many left and right translates

of each neighbourhood of e in G. Prove that the Raı̆kov completion 
G of every locally

precompact topological group G is locally compact.

3.7.J. Let H be an arbitrary locally pseudocompact topological group (see Exercise 2.4.5). Prove

that H is Gδ-dense in 
H .

3.7.K. A topological group G is said to be σ-precompact if it is the union of a countable family

of precompact subsets. Suppose that X is a Tychonoff space such that the group Cp(X) is

σ-precompact. Must X be discrete?

Hint. See [32].

Open Problems

3.7.1. Let G be a topological group homeomorphic to the product group Rτ , for some cardinal

τ > ω.

(a) Can G be precompact?

(b) Is G Raı̆kov complete?

3.7.2. Suppose that a precompact topological group G is homeomorphic to a Raı̆kov complete

topological group. Is G compact?

3.7.3. Does every infinite precompact paratopological group contain a countable non-closed subset?

3.7.4. Suppose that a paratopological group G is homeomorphic to one of the groups Zτ or Rτ ,

for some cardinal τ ≥ ω. Is G a topological group? (The answer is “yes” for τ ≤ ω, see

Corollary 2.4.3).

3.8. Embeddings into connected, locally connected groups

Our aim in this section is to show that every topological group G is topologically

isomorphic to a closed subgroup of a connected, locally connected topological group G•,

and that the groups G and G• share many properties, such as metrizability, separability,

ω-narrowness, etc.
Evidently, taking the connected cone of a group does not help here. There is, however, a

perfect substitute of connected cones in the theory of topological groups which is presented

below.

Construction 3.8.1. [S. Hartman and J. Mycielski] Let G be a topological group

with identity e and multiplication written multiplicatively. Consider the set G• of all

functions f on J = [0, 1) with values in G such that, for some sequence 0 = a0 <
a1 < · · · < an = 1, the function f is constant on [ak, ak+1) for each k = 0, . . . , n − 1.

Let us define a binary operation ∗ on G• by (f ∗ g)(x) = f (x) · g(x), for all f, g ∈ G•
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and x ∈ J . Then every element f ∈ G• has a unique inverse f−1 ∈ G• defined by

(f−1)(r) = (f (r))−1, for each r ∈ J (the inverse on the left and on the right side of the

equality is taken in G• and G, respectively). It is easy to see that (G•, ∗) is a group with

identity e•, where e•(r) = e for each r ∈ J . The elements of G• are called step functions.
To introduce a topology on G•, we take an open neighbourhood V of e in G and a real

number ε > 0, and define a subset O(V, ε) of G• by

O(V, ε) = {f ∈ G• : μ({r ∈ J : f (r) /∈ V}) < ε},
where μ is the usual Lebesgue measure on J . Let us verify that the sets O(V, ε) form a

base of a Hausdorff topological group topology at the identity of G•, thus making G• into

a topological group. To this end, it suffices to verify that the family

�(e•) = {O(V, ε) : V ∈ �(e), ε > 0}
satisfies the six conditions i)–vi) of Theorem 1.3.12, where �(e) is a base for G at e. We

do it step by step.

i) Take an arbitrary V ∈ �(e) and fix ε > 0. Choose U ∈ �(e) with U2 ⊂ V and take

f, g ∈ O(U, ε/2). Then μ({r ∈ J : f (r) ·g(r) /∈ V}) < ε, whence it follows that the square

of O(U, ε/2) is contained in O(V, ε).

ii) Let O(V, ε) ∈ �(e•) be arbitrary. If U ∈ �(e) is symmetric and satisfies U ⊂ V ,

then O(U, ε) is a symmetric set in G• and, clearly, e• ∈ O(U, ε) ⊂ O(V, ε).

iii) Suppose that O(V, ε) ∈ �(e•) and that f ∈ O(V, ε). Then there exist real numbers

0 = a0 < a1 < · · · < an = 1 such that for each k = 0, 1, . . . , n − 1, f is constant

on Jk = [ak, ak+1), and f takes a value xk ∈ G on Jk. Since f ∈ O(V, ε), the number

δ = ε − μ({r ∈ J : f (r) /∈ V}) is positive. Choose U ∈ �(e) such that if 0 ≤ k < n and

xk ∈ V , then Uxk ⊂ V . A simple calculation shows that O(U, δ)f ⊂ O(V, ε).

iv) Let O(V, ε) ∈ �(e•) and f ∈ G• be arbitrary. Then f , considered as a function

from J to G, takes only finitely many distinct values, say, x1, . . . , xm. Choose an element

U ∈ �(e) such that xiUx−1
i ⊂ V , for each i = 1, . . . , m. A direct verification shows that

fO(U, ε)f−1 ⊂ O(V, ε).

v) Given two elements O(V1, ε1) and O(V2, ε2) of �(e•), put U = V1 ∩ V2 and

ε = min{ε1, ε2}. Then, evidently, O(U, ε) ⊂ O(V1, ε1) ∩O(V2, ε2).

vi) If f ∈ G• and f = e•, then the number ε = μ({r ∈ J : f (r) = e}) is positive.

Choose an element V ∈ �(e) which does not contain any value of f distinct from e. Then

f /∈ O(V, ε) and, therefore,
⋂

�(e•) = {e•}.
We have thus proved that G• admits a Hausdorff topological group topology with �(e•)

being a local base at the identity of G•. �

Let us establish two of the most important properties of the group G•.

Proposition 3.8.2. The topological group G• constructed in 3.8.1 is pathwise
connected and locally pathwise connected.

Proof. Since every topological group is a homogeneous space, the local pathwise

connectedness of G• will follow if we show that each set O(V, ε) defined in 3.8.1 is pathwise

connected. Let f ∈ O(V, ε) be arbitrary. We claim that there exists a continuous mapping

ϕ : [0, 1] → O(V, ε) such that ϕ(0) = e• and ϕ(1) = f . Indeed, by the definition of G•,
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there exist real numbers a0, a1, . . . , an with 0 = a0 < a1 < · · · < an = 1 such that for

each k = 0, 1, . . . , n − 1, f is constant on [ak, ak+1). For every t ∈ [0, 1] and for every

non-negative k < n, put bk,t = ak + t(ak+1 − ak). Then bk,0 = ak, bk,1 = ak+1 and

ak < bk,t < ak+1 if 0 < t < 1, for each k = 0, 1, . . . , n − 1. Let us define a mapping

ϕ : [0, 1]→ G• by ϕ(0) = e•, ϕ(1) = f and, for 0 < t < 1 and 0 ≤ r < 1,

ϕ(t)(r) =

{
f (r) if ak ≤ r < bk,t;

e if bk,t ≤ r < ak+1.

Evidently, ft = ϕ(t) ∈ O(V, ε) for each t ∈ [0, 1]. It follows from our definition of ϕ that

μ({r ∈ J : ft(r) = fs(r)}) ≤ |t − s|
for all s, t ∈ [0, 1]. This inequality, and the definition of the topology of the group G• given

in 3.8.1, together imply that the mapping ϕ is continuous. Thus, every element f ∈ O(V, ε)

can be connected with the identity e• of G• by a continuous path lying in O(V, ε). This

implies immediately that every two element of O(V, ε) can also be connected by a continuous

path inside of O(V, ε), so that the set O(V, ε) is pathwise connected.

The same argument applied to whole group G• in place of O(V, ε) implies the pathwise

connectedness of G•. �

Theorem 3.8.3. For every topological group G, there exists a natural topological
isomorphism iG : G→ G• of G onto a closed subgroup of the pathwise connected, locally
pathwise connected topological group G•.

Proof. We assign to each x ∈ G the element x• of G• defined by x•(r) = x for all

r ∈ J . It is easy to see that the function iG : G → G•, where i(x) = x• for each x ∈ G, is

a topological monomorphism of G to G•, and the latter group is pathwise connected and

locally pathwise connected by Proposition 3.8.2.

It remains to verify that iG(G) is a closed subgroup of G•. Take an arbitrary

f ∈ G• \ iG(G). Then f cannot be constant as a function from J to G. Therefore,

we can find real numbers a1, a2, a3, a4 satisfying 0 ≤ a1 < a2 ≤ a3 < a4 ≤ 1 and two

distinct elements x1, x2 ∈ G such that f is equal to x1 on [a1, a2) and f is equal to x2

on [a3, a4). Choose an open symmetric neighbourhood V of the identity in G such that

x1V ∩ x2V = ∅, and put ε = min{a2 − a1, a4 − a3}. We leave to the reader a simple

verification of the fact that iG(G) ∩ O(V, ε)f = ∅. Thus, the complement G• \ iG(G) is

open in G• and, hence, iG(G) is closed in G•. �

In what follows we identify a topological group G with its image iG(G) ⊂ G• defined

in Theorem 3.8.3. Let us show that the group G is placed in G• in a very special way,

permitting an extension of continuous bounded pseudometrics from G over G•.

Theorem 3.8.4. Let d be a continuous bounded pseudometric on a topological group
G. Then d admits an extension to a continuous bounded pseudometric d• over the group
G•. In addition, if d is (left-) invariant on G, then d• is (left-) invariant on G•, and if d is
a metric on G generating the topology of G, then d• is also a metric on G• generating the
topology of G•.

Proof. One can assume without loss of generality that d is bounded by 1. Take arbitrary

elements f, g ∈ G• and a partition 0 = a0 < a1 < · · · < an = 1 of J such that both f and
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g are constant on each interval Jk = [ak, ak+1) and are equal to xk and yk on this interval,

respectively. We define a distance d•(f, g) by the formula

d•(f, g) =

n−1∑
k=0

(ak+1 − ak) · d(xk, yk).

It is easy to verify that the number d•(f, g) is non-negative and does not depend on the

choice of the partition a0, a1, . . . , an of J which keeps f and g constant on each [ak, ak+1).

Clearly, that the function d• is symmetric and satisfies the triangle inequality, that is, d• is

a pseudometric on G•.

Let us show that d• is continuous. Take an element f ∈ G• and a number ε > 0.

Choose a partition 0 = a0 < a1 < · · · < an = 1 of J such that f has a constant value xk on

each Jk = [ak, ak+1). Since d is continuous on G, there exists an open neighbourhood V of

the identity in G such that d(xk, xky) < ε/2 for each y ∈ V , where k = 0, 1, . . . , n− 1. It

suffices to verify that d•(f, g) < ε for each g ∈ fO(V, ε/2). Suppose that g ∈ fO(V, ε/2);

we can assume without loss of generality that g is constant on each Jk and takes a value yk

on this interval. Denote by L the set of all integers k ≤ n − 1 such that yk ∈ xkV , and let

M = {0, 1, . . . , n−1}\L. It follows from the choice of d and g that d(xk, yk) < ε/2 for each

k ∈ L, and that
∑

k∈M(ak+1−ak) < ε/2. Since d is bounded by 1, and
∑

k∈L(ak+1−ak) ≤ 1,

the definition of d• implies that

d•(f, g) ≤
∑
k∈L

(ak+1 − ak)d(xk, yk) +
∑
k∈M

(ak+1 − ak)

< max
k∈L

d(xk, yk) + ε/2 < ε/2 + ε/2 = ε.

This proves the continuity of d• on G•.

Clearly, if d is (left-) invariant on G, then d• is (left-) invariant on G•. Finally, suppose

that d is a metric on G generating the topology of G. Then d•(f, g) > 0 for any distinct

f, g ∈ G•, so that d• is a metric on the set G•. Take an arbitrary element f ∈ G• and a

basic open neighbourhood fO(V, ε) of f in G•. Let 0 = a0 < a1 < · · · < an = 1 be a

partition of J such that f takes a constant value uk on each [ak, ak+1). There exists δ > 0

such that {u ∈ G : d(uk, u) < δ} ⊂ ukV , for each k = 0, 1, . . . , n− 1. Therefore, if k < n
and y ∈ G \ ukV , then d(uk, y) ≥ δ. Put δ0 = εδ. We claim that

{g ∈ G• : d•(f, g) < δ0} ⊂ fO(V, ε). (3.8)

Indeed, suppose that an element g ∈ G• satisfies d•(f, g) < δ0. There exists a partition

0 = b0 < b1 < · · · < bN = 1 of J refining the partition 0 = a0 < a1 < · · · < an = 1

such that g has a constant value yi on each [bi, bi+1), for i = 0, . . . , N − 1. Then f is also

constant on each [bi, bi+1), and let f (bi) = xi. Denote by P the set of all non-negative

integers i < N such that yi /∈ xiV . Clearly,∑
i∈P

(bi+1 − bi)d(xi, yi) ≤
∑

0≤i<N

(bi+1 − bi)d(xi, yi) = d•(f, g) < δ0.

Since d(xi, yi) ≥ δ if yi ∈ G \ xiV , we have that

δ ·
∑
i∈P

(bi+1 − bi) ≤
∑
i∈P

(bi+1 − bi)d(xk, yi) < δ0.
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It follows that ∑
i∈P

(bi+1 − bi) < δ0/δ = ε. (3.9)

The definition of P implies the equality

D = {r ∈ J : g(r) /∈ f (r)V} =
⋃
{[bi, bi+1) : i ∈ P}.

Therefore, μ(D) < ε according to (3.9), whence f−1g ∈ O(V, ε) or, equivalently,

g ∈ fO(V, ε). This proves the inclusion (3.8). Since the sets fO(V, ε) form a base of

G• at f and the metric d• is continuous, it follows that d• generates the topology of the

group G•. This finishes the proof. �

Corollary 3.8.5. Let f be a continuous real-valued bounded function on a topological
group G. Then f admits an extension to a bounded continuous function on the group G•.
In other words, G is C∗-embedded in G•.

The construction of the group G• in 3.8.1 has another important property, apart from

the (local) path connectedness of G• — it permits to extend continuous homomorphisms.

Proposition 3.8.6. Let ϕ : G → H be a continuous homomorphism of topological
groups. Then ϕ admits a natural extension to a continuous homomorphism ϕ• : G• → H•.
In addition, if ϕ is open and onto, then so is ϕ•.

Proof. For an arbitrary f ∈ G•, define an element ϕ•(f ) ∈ H• by ϕ•(f )(r) =

ϕ(f (r)), for each r ∈ J = [0, 1). If f, g ∈ G• and r ∈ J , then

ϕ•(f ∗ g)(r) = ϕ(f (r) · g(r)) = ϕ(f (r)) · ϕ(g(r)) = [ϕ•(f ) ∗ ϕ•(g)](r).

Hence, ϕ•(f ∗g) = ϕ•(f )∗ϕ•(g), and we conclude that ϕ• : G• → H• is a homomorphism.

To show that ϕ• is continuous, take an open neighbourhood V of the identity in H and

a real number ε > 0. By the continuity of ϕ, there exists an open neighbourhood U of

the identity in G such that ϕ(U) ⊂ V . Then the definition of ϕ• implies immediately

that ϕ•(O(U, ε)) ⊂ O(V, ε), which proves that ϕ• is continuous. It is also clear that

ϕ• ◦ iG = iH ◦ ϕ, where iG : G → G• and iH : H → H• are natural topological

monomorphisms defined in Theorem 3.8.3. In particular, identifying G with iG(G) and

H with iH (H), the above equality takes the form ϕ•�G = ϕ, i.e., ϕ• is a continuous

extension of ϕ over G•.

Finally, suppose that the homomorphism ϕ is open and ϕ(G) = H . We leave to the

reader a simple verification of the equalities ϕ•(G•) = H• and ϕ•(O(V, ε)) = O(W, ε) for

all V ∈ �G(e) and ε > 0, where W = ϕ(V ) is an open neighbourhood of the identity in H .

Therefore, ϕ• is open and onto. �

The correspondences G �→ G• and ϕ �→ ϕ• are functorial since the equality

(ψ ◦ϕ)• = ψ• ◦ϕ• holds for any continuous homomorphisms ϕ : G→ H and ψ : H → K.

This defines the covariant functor • in the category of topological groups and continuous

homomorphisms. It turns out that this functor preserves subgroups and quotient groups:

Proposition 3.8.7. Let G be a topological group and H a subgroup of G.

a) If ϕ is the identity embedding of H to G, then the natural homomorphic extension
ϕ• : H• → G• is a topological monomorphism.
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b) If H is closed or invariant in G, so is H• in G• (we identify H• with the corresponding
subgroup ϕ•(H•) of G•).

c) If H is a closed invariant subgroup of G, then the groups (G/H)• and G•/H• are
naturally topologically isomorphic.

Proof. a) It is clear that ϕ• is a monomorphism. Let V be an arbitrary open

neighbourhood of the neutral element in G. Put W = H ∩ V . For any ε > 0, we have that

ϕ−1(O(V, ε)) = O(W, ε), whence item a) of the proposition follows.

b) A simple verification shows that H• is invariant in G• if and only if H is invariant in

G. Suppose that H is closed in G, and take an arbitrary element f ∈ G• \ H•. There

exists a partition 0 = a0 < a1 < · · · < an = 1 of J such that f is constant on each

interval [ak, ak+1); let xk = f (ak), for k = 0, 1, . . . , n − 1. It follows from the choice of

f that xk ∈ G \ H , for some k < n. Since H is closed in G, we can choose an open

neighbourhood V of the neutral element in G such that xkV ∩H = ∅. It is easy to see that

fO(V, ε) ∩H• = ∅, where ε = ak+1 − ak. Hence, H• is closed in G•.

c) Suppose that H is a closed invariant subgroup of G. Let π : G→ G/H be the canonical

homomorphism. Then the natural extension π• : G• → (G/H)• of π is an open continuous

onto homomorphism, by Proposition 3.8.6. Therefore, according to the first isomorphism

theorem (see Theorem 1.5.13), it suffices to verify that the kernel of π• coincides with

H•. The latter follows, however, from the equality π•(f )(r) = f (π(r)) which holds for all

f ∈ G• and r ∈ J . �
The group G• inherits many properties of G. For instance, if G is Abelian, divisible,

torsion, or torsion-free, so is G•. We show below that a similar assertion is valid for many

topological properties, including metrizability and separability.

Theorem 3.8.8. Let κ be an infinite cardinal number, and let G be a topological group
having one of the following properties:

a) G is metrizable;
b) G has a base of cardinality ≤ κ;
c) G has a local base at the identity of cardinality ≤ κ;
d) G has a network of cardinality ≤ κ;
e) G has a dense subset of cardinality ≤ κ;
f) G is κ-narrow.

Then the group G• has the same property.

Proof. Since, by Theorem 3.3.12, the metrizability of a topological group is equivalent

to having a countable base at the identity, item a) follows from c) with κ = ω. Thus, suppose

that G has a local base � at the identity e satisfying |�| ≤ κ. Then, by the definition of

the topology of G•, the family �• = {O(V, 1/n) : V ∈ �, n ∈ N} is a local base at the

identity e• of G•, and |�•| ≤ |�| · ω ≤ κ. This implies the assertion of the theorem for c)

and a).

For e), take a dense set D ⊂ G with |D| ≤ κ. Denote by S the set of all f ∈ G• for

which there exist rational numbers b0, b1, . . . , bm with 0 = b0 < b1 < · · · < bm = 1 such

that f is constant on each semi-open interval Jk = [bk, bk+1) and takes a value xk ∈ D
on Jk. It is clear that |S| ≤ |D| · ω ≤ κ, and we claim that S is dense in G•. Indeed, let

fO(V, ε) be a basic open neighbourhood of f ∈ G•, where V is an open neighbourhood
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of e in G and ε > 0. Then there exist numbers 0 = a0 < a1 < · · · < an = 1 such that

the function f is constant on [ak, ak+1) for each k < n. Choose rationals b1, . . . , bn−1 in J

such that ak ≤ bk < ak+1 for each k < n and
∑n−1

k=1 (bk − ak) < ε. Also, put b0 = 0 and

bn = 1. For every k < n, choose a point yk ∈ D ∩ xkV , where xk = f (ak), and define an

element g ∈ S by letting g(r) = yk for each r ∈ [bk, bk+1); k = 0, . . . , n− 1. It follows that

g ∈ fO(V, ε), so S is dense in G• and |S| ≤ κ.

Suppose now that G has a base of cardinality less than or equal to κ. Then, evidently,

G has properties c) and e). Therefore, as we have just proved above, the group G• has a

local base �• at the identity e• with |�•| ≤ κ and it also contains a dense subset D• with

|D•| ≤ κ. As in Proposition 3.4.5, it is easy to see that the family

�• = {gV : g ∈ D•, V ∈ �•}
is a base for G•. Indeed, since D• is dense in G•, we have G• = D•U for each U ∈ �•.

Let O be a neighbourhood of a point f ∈ G•. One can find U, V ∈ �• such that fU ⊂ O
and V−1V ⊂ U. Take g ∈ D• such that f ∈ gV . Then g ∈ fV−1 and, hence,

gV ⊂ (fV−1)V = f (V−1V ) ⊂ fU ⊂ O,

that is, gV ∈ �• is an open neighbourhood of f in G•, and gV ⊂ O. This proves that �•

is a base for G•. The inequality |�•| ≤ |D•| · |�•| ≤ κ follows from the definition of �•.

Thus, w(G•) ≤ κ, which implies the necessary conclusion when b) holds.

In the case of d), take a network � for G with |�| ≤ κ. For every m ∈ N, denote by

J(m) the set of all m-tuples (b1, . . . , bm) of rationals such that 0 < b1 < · · · < bm = 1.

Given m, n ∈ N, an element �b = (b1, . . . , bm) ∈ J(m) and �P = (P1, . . . , Pm) ∈ �m, we

define a subset Q(m, n,�b, �P) of G• as the set of all g ∈ G• such that the measure (with

respect to the Lebesgue measure μ on J) of the set of all r ∈ J satisfying bk ≤ r < bk+1

and g(r) /∈ Pk+1, for some k = 0, 1, . . . , m − 1, is less than 1/n (we always put b0 = 0).

Then the family � of all sets Q(m, n,�b, �P) with m, n ∈ N, �b ∈ J(m) and �P ∈ �m has the

cardinality less than or equal to κ, and we claim that � is a network for G•.

Indeed, take arbitrary f ∈ G• and O(V, ε) � e•. There exist numbers 0 = a0 <
a1 < · · · < am = 1 such that f is constant on each semi-open interval [ak, ak+1). For

every k = 0, 1, . . . , m − 1, put xk = f (ak) and choose an element Pk+1 ∈ � such that

xk ∈ Pk+1 ⊂ xkV . Then take n ∈ N with 1/n < ε and choose �b = (b1, . . . , bm) ∈ J(m)

such that ak ≤ bk < ak+1 for each k = 1, . . . , m − 1, and
∑m−1

k=1 (bk − ak) < 1/(2n). All

we need to verify is that f ∈ Q(m, 2n,�b, �P) ⊂ fO(V, ε), where �P = (P1, . . . , Pm) ∈ �m.

Let b0 = 0 and bm = 1.

It follows from the choice of �b and �P that f (r) = xk ∈ Pk+1 for each r ∈ [bk, ak+1),

where k = 0, 1, . . . , m− 1. Therefore, if bk ≤ r < bk+1 and f (r) /∈ Pk+1 for some k < m,

then r ∈ [ak+1, bk+1) and k + 1 = m. Since
∑m−1

k=1 (bk − ak) < 1/(2n), we conclude

that f ∈ Q(m, 2n,�b, �P). To show that Q(m, 2n,�b, �P) ⊂ fO(V, ε), it suffices to verify that

f−1g ∈ O(V, ε) for each g ∈ Q(m, 2n,�b, �P). Let g ∈ Q(m, 2n,�b, �P) be arbitrary. It follows

from the definition of Q(m, 2n,�b, �P) that the set

L = {r ∈ J : bk ≤ r < bk+1 and g(r) /∈ Pk+1 for some k < m}
satisfies μ(L) < 1/(2n). If r ∈ J \L and bk ≤ r < ak+1 for some k < m, then g(r) ∈ Pk+1

and f (r) = xk, whence it follows that (f−1 ∗ g)(r) = x−1
k g(r) ∈ x−1

k Pk+1 ⊂ V . In its turn,
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this implies that

M = {r ∈ J : (f−1 ∗ g)(r) /∈ V} ⊂ L ∪
m−1⋃
k=1

[ak, bk),

so that μ(M) < 1/(2n) + 1/(2n) = 1/n. Hence, f−1g ∈ O(V, ε) and g ∈ fO(V, ε), as

claimed. This proves that � is a network for the group G•.

Finally, suppose that the group G is κ-narrow. Let O = O(V, ε) be a basic

neighbourhood of e• in G•, where V is an open neighbourhood of e in G and ε is a

positive real number. Then there exists a set D ⊂ G such that G = DV and |D| ≤ κ.

Denote by S the set of elements g ∈ G• such that, for some rationals b0, b1, . . . , bn with

0 = b0 < b1 < · · · < bn = 1, the function g is constant on each Jk = [bk, bk+1), and the

value of g on Jk is an element of D. It is clear that |S| ≤ κ. Let us verify that G• = SO.

Take an arbitrary f ∈ G•. There exist a0, a1, . . . , an with 0 = a0 < a1 < · · · < an = 1 such

that f is constant on each [ak, ak+1). Similarly to the construction in e), choose rationals

b0, b1, . . . , bn such that b0 = 0, bn = 1, ak ≤ bk < ak+1, for k = 1, . . . , n − 1, and∑n−1

k=1 (bk − ak) < ε. For every k ∈ {0, 1, . . . , n − 1}, pick an element xk ∈ D such that

f (ak) ∈ xkV . Denote by g the element of G• which is constant on each Jk = [bk, bk+1) and

takes the value xk on Jk. Then g ∈ S, and a simple verification shows that f ∈ gO. This

proves the equality G• = SO and implies that the group G• is κ-narrow. The theorem is

proved. �

Some properties the group G• can never have, except for trivial cases. For example, G•

is neither pseudocompact nor precompact unless |G| = 1 (see Exercise 3.8.c). However,

one can add σ-compactness to the list of properties given in Theorem 3.8.8:

Theorem 3.8.9. The group G• is σ-compact if and only if G is σ-compact.

Proof. The condition is necessary since G is topologically isomorphic to a closed

subgroup of G•, by Theorem 3.8.3. Conversely, let G be the union of compact sets Ki,

where i ∈ ω. We can assume that Ki ⊂ Ki+1 for each i ∈ ω. Let I be the closed unit

segment with usual interval topology. For every n, m ∈ N, let

An = {(a1, . . . , an) ∈ In : 0 < a1 < · · · < an < 1}
and

An,m = {(a1, . . . , an) ∈ An : ak+1 − ak ≥ 1/m for each k ≤ n},
where, as usual, a0 = 0 and an+1 = 1. It is clear that An =

⋃∞
m=1 An,m and that each An,m

is closed in In. In particular, the sets An,m are compact.

Given n ∈ N, we define a mapping ϕn : Gn+1 × An → G• by the rule ϕn(x0, . . . , xn,
a1, . . . , an) = f , where the function f : J → G takes the constant value xk on [ak, ak+1) for

each k ≤ n. We claim that the restriction of ϕn to Gn+1×An,m is continuous for each m ∈ N.

Indeed, take p = (x0, . . . , xn, a1, . . . , an) ∈ Gn+1 × An,m and put f = ϕn(p). Consider a

basic open neighbourhood fO(V, ε) of f in G•, where V is an open neighbourhood of the

identity in G and ε > 0. Choose a positive number δ < min{ε/(2n), 1/(2m)}, and define

a neighbourhood W of p in Gn+1 × Rn by

W = x0V × · · · × xnV × (a1 − δ, a1 + δ)× · · · × (an − δ, an + δ).
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Let us show that ϕn(q) ∈ fO(V, ε), for each q ∈ W ∩ (Gn+1 × An,m). Clearly,

q = (y0, . . . , yn, b1, . . . , bn), where (y0, . . . , yn) ∈ Gn+1 and (b1, . . . , bn) ∈ An,m. Set

g = ϕn(q). Clearly, x−1
k yk ∈ V for each k ≤ n, and if r ∈ J \ ⋃n

k=1(ak − δ, ak + δ) and

ak ≤ r < ak+1 for some k ≤ n, then bk ≤ r < bk+1 and g(r) = yk (again, we put b0 = 0

and bn+1 = 1). Hence, f (r)−1g(r) = x−1
k yk ∈ V . This implies that

L = {r ∈ J : (f−1 ∗ g)(r) /∈ V} ⊂
n⋃

k=1

(ak − δ, ak + δ),

so that μ(L) ≤ 2nδ < ε. Therefore, f−1 ∗ g ∈ O(V, ε). We conclude that g = ϕn(q) is an

element of fO(V, ε), that is, ϕn is continuous on Gn+1 × An,m.

It is easy to see that G• =
⋃∞

i,n,m=1 ϕn(Kn+1
i ×An,m), where each image ϕn(Kn+1

i ×An,m)

is a compact subset of G•, by the continuity of ϕn on the product space Gn+1 ×An,m. This

proves that the group G• is σ-compact. �

Combining Theorems 3.8.3 and 3.8.9, we deduce the following:

Corollary 3.8.10. Every σ-compact group is topologically isomorphic to a closed
subgroup of a σ-compact, pathwise connected, locally pathwise connected group.

Exercises

3.8.a. Fill in the details in the proof of Theorem 3.8.3. Show, in particular, that the function

iG : G → G•, where i(x) = x• for each x ∈ G, is a topological monomorphism of G to G•.

3.8.b. Verify that the number d•(f, g), defined in the proof of Theorem 3.8.4, is non-negative and

does not depend on the choice of a partition a0, a1, . . . , an of J which keeps f and g constant

on each [ak, ak+1). Show also that the function d• is symmetric and satisfies the triangle

inequality, that is, d• is a pseudometric on G•.

3.8.c. Verify that the group G• is never precompact, except for the trivial case when |G| = 1.

3.8.d. Is the homomorphism ϕ• : G• → H• in Proposition 3.8.6 a unique continuous one extending

a given continuous homomorphism ϕ : G → H? What if ϕ(G) = H?

3.8.e. Fill in the details omitted in the end of the proof of Proposition 3.8.6.

3.8.f. Let H be a subgroup of a group G. Verify that the subgroup H• of G• is central in G• iff

H is central in G.

3.8.g. Let G be an arbitrary topological group. Show that, for every integer n ≥ 1, the groups G•

and (G•)n are topologically isomorphic.

3.8.h. Verify that G• is ω-balanced iff G is ω-balanced.

3.8.i. A space X is called ω-bounded if the closure of every countable subset of X is compact.

Prove that if a topological group G is the union of countably many ω-bounded subspaces,

then so is the group G•. Is a similar assertion valid for countable compactness in place of

ω-boundedness?

3.8.j. Verify that the construction of the embedding G ↪→ G• in this section can be extended to

paratopological groups, to semitopological groups, to quasitopological groups, and to left

topological groups.
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Problems

3.8.A. Can the group G• be locally compact but not compact?

3.8.B. When is the group G• Raı̆kov complete?

3.8.C. Suppose that G is an arbitrary subgroup of a compact connected topological group. Prove that

G is topologically isomorphic to a closed subgroupof a pseudocompact connected topological

group. (In fact, it was shown by Ursul in [507] that every precompact topological group is

topologically isomorphic to a closed subgroup of a connected pseudocompact topological

group).

Hint. Let G be a subgroup of a connected compact topological group C. We can assume

that |C| > 1. Identify G with the “diagonal” subgroup G = {g : g ∈ G} of the product

group Cω1 , where gα = g for each α < ω1. Let H = ΣCω1 be the Σ-product of ω1

copies of the group C, that is, a dense subgroup of the group Cω1 defined in Section 1.6.

Then pA(H) = CA, for each countable set A ⊂ ω1, where pA : Cω1 → CA is the natural

projection. Show that the subgroup P of Cω1 generated by the set H ∪ G is connected,

pseudocompact, and contains G ∼= G as a closed subgroup.

3.8.D. Let G be a topological group having one of the following properties:

(a) the cellularity of Gn is countable, for each n ∈ N;

(b) Gn is pseudo-ℵ1-compact, for each n ∈ N.

Prove that the group G• has the same property.

3.8.E. Prove that for every topological group G with |G| > 1, the group G• is resolvable.

3.8.F. Generalize Corollary 3.8.5 by showing that every topological group G is C-embedded in the

group G•. To this end, prove that there exists a mapping B : C(G) → C(G•) satisfying the

following conditions for each f ∈ C(G):

(i) B(f )�G = f ;

(ii) B(rG) = rG• for each r ∈ R, where rG and rG• are the constant functions on G and

G•, respectively, with value r;

(iii) ||B(f )|| = ||f || for each bounded function f ∈ C(G), where || · || is the sup-norm.

Here C(G) and C(G•) are the spaces of all continuous real-valued functions on G and G•,

respectively. [Note that (i) means that B is an extension operator, (ii) means that B preserves

constants, while (iii) tells us that B preserves the norm of bounded functions.]

Hint. First, suppose that f ∈ C(G) is bounded. Given an element h ∈ G•, take a partition

0 = a0 < a1 < · · · < an = 1 of J = [0, 1) such that h is constant on each segment [ak, ak+1).

Then define a function F (f ) ∈ C(G•) by

F (f )(h) =

n−1∑
k=0

(ak+1 − ak)f (h(ak)).

Denote by C∗(G) and C∗(G•) the spaces of bounded continuous real-valued functions

on G and G•, respectively. Show that the mapping F : C∗(G) → C∗(G•) satisfies the

same conditions (i)–(iii) and, in addition, if f (G) ⊂ (−1, 1) for some f ∈ C∗(G),

then F (f )(G•) ⊂ (−1, 1). The latter property of F permits us to define a mapping

B : C(G) → C(G•) as follows. Consider the homeomorphism ϕ of R to (−1, 1) defined by

ϕ(x) = 2 arctan(x)/π, for each x ∈ R. For every f ∈ C(G), put

B(f ) = ϕ−1 ◦ F (ϕ ◦ f ).

This definition is correct, since ϕ ◦ f ∈ C∗(G) and all values of the function ϕ ◦ f lie in

(−1, 1), for each f ∈ C(G). Verify that B satisfies (i)–(iii).
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Open Problems

3.8.1. Characterize the topological groups G such that the group G• is realcompact or Dieudonné

complete.

3.8.2. When is the group G•:

(a) Lindelöf?

(b) Čech-complete?

(c) feathered (that is, contains a non-empty compact subset with countable neighbourhood

base, see Section 4.3)?

(d) paracompact?

(e) normal?

3.9. Historical comments to Chapter 3

Quite a few results in Section 3.1 have their roots in [291] and [128] and in some

other older papers. Theorem 3.1.1 generalizes the well-known theorem that every locally

compact topological group is paracompact (Corollary 3.1.4). This corollary already appears

in [276]; it can be also found in [236], where a reference to E. A. Michael is given. It is quite

remarkable that paracompactness appears “automatically” in the presence of the algebraic

structure. Strong paracompactness of locally compact groups plays an important role in

Pasynkov’s proof that all three classical dimensions for locally compact groups coincide

[363]. Corollary 3.1.5, Theorem 3.1.6, and Proposition 3.1.8 are also very old results (see,

for example, [387, 325, 236], or [80, 81]). In connection with Theorems 3.1.9, 3.1.11,

and Corollary 3.1.12 see [236]. Theorem 3.1.15 appeared in [105]. The theory of dyadic

compacta is a well-developed and interesting part of General Topology; see [165] in this

connection. Regarding NSS-groups, see [327]. Theorem 3.1.27 and Corollary 3.1.28 are

from [387].

Proposition 3.2.1, Theorems 3.2.2, 3.2.4, and Corollary 3.2.5 are recent results from

[47]. Item 1) of Corollary 3.2.6 is a result of J. P. Serre [425]. It appears also in [325] and

[236]. The proofs there were based on a careful analysis of the behaviour of compact sets

under taking quotients. The new approach developed in [47], in particular, Theorem 3.2.2

obtained there permitted us to establish a series of new results on invariance of basic

topological properties under quotients with respect to locally compact subgroups (see

Corollary 3.2.5 and items 2)–8) of Corollary 3.2.6).

Prenorms on topological groups were introduced by A. A. Markov in [308] under the

name of pseudonorms. He immediately recognized that continuous prenorms are destined

to play the same role in the study of topological groups as continuous real-valued functions

in the theory of Tychonoff spaces. Elementary Propositions 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5,

3.3.7, 3.3.8, and Lemma 3.3.6 all originated in [308]. Lemma 3.3.10, on which the proof

of Theorem 3.3.9 is based, comes from [202]. Note that a version of this lemma, that dealt

with invariant pseudometrics, is found in [264]. The notion of a uniformly Tychonoff space

is new, as well as, formally, Theorem 3.3.11, while L. S. Pontryagin was the first to establish

in [387] that every topological group is a Tychonoff space. Theorem 3.3.12 is known as the

Birkhoff–Kakutani theorem, it was proved in [75] and [264]. D. van Dantzig considered

invariant metrics on groups in [128]. In connection with Corollary 3.3.13 see [264, 75],

where this result was obtained (G. Birkhoff did not mention that the metric he constructed

was left-invariant). For Corollary 3.3.14 see [264, 236] and [279].
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As for Theorems 3.3.15 and 3.3.16, see [202] and [24]. The latter article surveys

problems and concepts arising in this direction. Corollary 3.3.20 is a result of M. I. Graev

[202], as well as Corollary 3.3.21. One finds Corollary 3.3.17 in [22]. It seems that

Lemma 3.3.22 and Theorem 3.3.24 are new results.

The class of ω-narrow topological groups was introduced by I. I. Guran in [208], where

the main properties of ω-narrow topological groups were established. Such groups were

called there ℵ0-bounded. Since there is also an older concept of an ω-bounded topological

space which has a quite different meaning, we have decided to change the terminology and

call the groups in question ω-narrow. The general notion of a τ-narrow topological group

was also introduced in [208]. An obvious prototype of these parallel notions is the concept

of a totally bounded topological group.

Propositions 3.4.1, 3.4.2, 3.4.3, Theorem 3.4.4, Propositions 3.4.5, 3.4.6, and Theo-

rem 3.4.7 were obtained in [208]. These results show that the class of ω-narrow topological

groups behaves quite nicely from the categorical point of view — it is closed under products,

taking subgroups and continuous homomorphic images. This shows that this class of topo-

logical groups is analogous or parallel to the class of Tychonoff spaces. Indeed, the smallest

class of topological spaces that contains all separable metrizable spaces and is closed under

taking subspaces and arbitrary products, is precisely the class of Tychonoff spaces. This

fact justifies the introduction of the class of ω-narrow topological groups. Historically, there

was another reason for that as well — it was an attempt to characterize the class of topolog-

ical subgroups of Lindelöf topological groups. Though every such a subgroup is ω-narrow,

Theorem 3.4.7 shows that the class of ω-narrow groups is considerably wider. Notice that

Corollary 3.4.8 and Theorem 3.4.9 reflect very specific properties of topological groups.

Corollary 3.4.19 was obtained by I. I. Guran in [208] and was a crucial step towards his

proof of Theorem 3.4.23. It also implies Corollary 3.4.25, another interesting result from

[208]. Corollary 3.4.27 was obtained in [21] (see also [22]). Corollaries 3.4.28 and 3.4.29

are, probably, new results. In [24], ω-narrow groups were characterized as subgroups of

topological groups of countable cellularity (see Theorem 5.1.11 in Chapter 5).

To a great extent, Theorem 3.4.23 is modeled on an important result of G. I. Katz in

[272] characterizing subgroups of products of metrizable topological groups. These are

precisely the groups we call ω-balanced. In particular, Theorem 3.4.21 has its prototype for

metrizable groups in [272]. Corollary 3.4.24 can be considered as a part of the folklore (see

the discussion on this subject in [24]). It shows that in the class of ω-balanced topological

groups, some main questions are solved in a different way than in the general case of arbitrary

topological groups.

Groups of isometries and groups of homeomorphisms are among the basic mathematical

objects that served as a source for topological algebra. They possess two natural structures,

a topology and a binary operation, blended in a whole. In particular, one finds a discussion

of them in Bourbaki’s tract [81], in [387], [325], and [12], where various natural topologies

on the group of homeomorphisms are discussed. J. de Groot showed in [204] that every

group is algebraically isomorphic to the homeomorphism group of some topological space.

Some further results in this direction were obtained by J. van Mill in [321]. In connection

with Theorem 3.5.1 see [519]. Theorem 3.5.2 is very close to some results in [81]. In

connection with Corollary 3.5.3 and Theorem 3.5.4 see [325] and [12]; however, such

results were surely known to L. S. Pontryagin. One finds Theorem 3.5.5 and Example 3.5.6

Historical comments to Chapter 3
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in [81]. The notion of p-homogeneity is new, so that Proposition 3.5.8 and Corollary 3.5.9

are also new. Theorem 3.5.10 and its proof are taken from [515] where further references

are given. Theorem 3.5.11 is new. In connection with Propositions 3.5.12 and 3.5.13, see

[173] and [81]. The concept of acceptable topology is from [12]. Theorem 3.5.15 can be

found in [81]. Groups of uniformly continuous homeomorphisms of uniform spaces, with

the topology of uniform convergence, were considered by J. Dieudonné [132]. See also

[171] in this connection. For deep results on groups of homeomorphisms of manifolds, see

[86] and [98].

The introduction of the concept of a uniform space by A. Weil, the theory of uniform

spaces developed in [532], made it possible to treat topological groups from these positions,

since every topological group has several natural uniform structures affiliated with it. In

particular, it was studied in [533, 80] and in [131] when the uniform completion of a

topological group G, with respect to one of these uniformities, is a topological group again,

under the naturally extended operation. It turned out that this is always possible if the two-

sided uniformity is used. The construction in Section 3.6 shows it. The resulting completion

is the Raı̆kov completion of a topological group. If the completion with respect to the left

uniformity (called the Weil completion) is a group, then it automatically coincides with the

Raı̆kov completion. This is important, since the Raı̆kov completion is always a group, while

this need not be the case for the Weil completion.

Our approach to the construction of the Raı̆kov completion follows, with some

modifications, the original approach in [396]. Of course, there are also similarities with

the less general construction in [80]. Raı̆kov’s construction was also described, with some

modifications, in [202]. In particular, one finds statements similar to Propositions 3.6.1,

3.6.3, 3.6.6, Lemma 3.6.8, and Proposition 3.6.9 in [396, 202]. Theorem 3.6.10 is from

[396]. For Proposition 3.6.12, Theorem 3.6.14, and Corollaries 3.6.17, 3.6.21 see also [396]

and [202]. Theorem 3.6.19 is apparently new. Theorem 3.6.24 is from [80], where one also

finds results on the Weil completion of a topological group in the case when the completion

is a group. Raı̆kov also established in [396] that Raı̆kov complete groups are precisely

absolutely closed topological groups in the sense of A. D. Alexandroff [6].

Precompact uniform spaces and precompact topological groups (called also totally
bounded) were introduced and studied in [532]. Their definition, given in Section 3.7,

provides a transparent internal characterization of subgroups of compact groups. The

concept of precompactness plays an important role not only in topological algebra. In

the context of metric spaces, it permits to analyze the basic notion of compactness as a

straightforward combination of precompactness and metric completeness.

Pseudocompact groups were extensively studied in quite a big number of publications,

we only mention here [122, 121, 124], and [114]. Such results as Propositions 3.7.1,

3.7.4, Corollaries 3.7.6 and 3.7.11 are either contained in [532], or were known to A. Weil

and N. Bourbaki [80]. Theorems 3.7.15 and 3.7.16 should be also attributed to A. Weil

[532], even thought the notion of Raı̆kov completeness was not yet introduced at that

time. For a precompact group, the Weil completion is also a group and coincides with

the Raı̆kov completion [532]. Corollary 3.7.21 is in [122]. Theorem 3.7.24 was definitely

known to Pontryagin (see [387]). Lemma 3.7.25 and Theorem 3.7.27 are from [391].

Theorem 3.7.28 is new. It generalizes a theorem on compact subsets of extremally
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disconnected topological groups proved by A. V. Arhangel’skii in [17]. In connection with

Corollaries 3.7.8 and 3.7.12, in particular, for further references, see [484].

Construction 3.8.1 is taken from [220], where Proposition 3.8.2 and Theorem 3.8.3,

as well as several other relevant facts are established (see Theorem 3.8.8). In Section 3.8

some further properties of the Hartman–Mycielski construction are established, important

for applications in later chapters (Theorem 3.8.4, Corollary 3.8.5, see also item f) of

Theorem 3.8.8). Theorem 3.8.9 is new.

Historical comments to Chapter 3



Chapter 4

Some Special Classes
of Topological Groups

Chapter 4 is one of the main in the book. It develops, in various directions, the central

theme that we have already touched upon in previous chapters — how the presence of a

synchronized algebraic structure influences properties of a topology. We consider below,

from this point of view, a series of most important topological properties such as compactness

(Sections 4.1 and 4.2), Čech-completeness and featheriness (Section 4.3), the P-property,

extremal disconnectedness (Sections 4.4 and 4.5), the Fréchet–Urysohn property and weak

first countability (Section 4.7). The choice of the above mentioned properties is justified

not only by their remarkable role in General Topology, but by the fact that each of them has

already been a subject of deep and unexpected results in topological algebra.

In Section 4.1 we establish, using only techniques of General Topology, that every

compact topological group is a dyadic compactum, and that the cellularity of every compact

group is countable. In Section 4.2 we show, by a direct elementary construction, that

every non-metrizable compact group contains a topological copy of the generalized Cantor

discontinuum Dω1 . These statements have many corollaries for the topological structure of

compact groups.

As it is well known, completeness type properties play the fundamental role in

General Topology and its applications. In Section 4.3 we consider one of these properties,

Čech-completeness, in its connections with topological groups. It turns out that, unlike

the case of general topological spaces, Čech-completeness of topological groups implies

paracompactness and Raı̆kov completeness of the groups. We also show that Čech-complete

groups and feathered groups are naturally related by open perfect homomorphisms to

metrizable groups.

Section 4.4 is devoted to P-groups, that is, to topological groups in which every Gδ-

subset is open. Lindelöf P-spaces, in many respects, behave as compact Hausdorff spaces.

We establish that every Lindelöf P-group is Raı̆kov complete, and that every continuous

homomorphism of a Lindelöf P-group onto another Lindelöf P-group is open.

In Section 4.5, devoted to extremally disconnected topological groups, we give an

elementary proof of a well-known theorem on algebraic structure of extremally disconnected

topological groups saying that every such group contains an open subgroup consisting of

elements of order≤ 2. It is established that every extremally disconnected topological skew

field is discrete. We also discuss the almost 40 years old problem: Is there in ZFC alone

a non-discrete extremally disconnected topological group? At the end of the section we

present an important example of a non-discrete maximal (hence, extremally disconnected)

A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies  216
in Mathematics 1, DOI 10.2991/978-94-91216-35-0_4, © 2008 Atlantis Press/World Scientific 
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topological group whose construction requires a weak form of Martin’s Axiom abbreviated

to p = c.

In Section 4.6 we have a look at the role of perfect mappings in the theory of

topological groups from another angle. This allows to obtain original results on connections

between some properties of subspaces of topological groups such as Čech-completeness,

featheriness, paracompactness, metrizability, and similar properties of the group itself.

Section 4.7 treats certain delicate convergence properties in topological groups:

Fréchet–Urysohn property, weak first countability, and bisequentiality. It turns out that

in topological groups these properties are transformed greatly, and connections between

them are considerably strengthened. We prove, in particular, that every Fréchet–Urysohn

topological group is strongly Fréchet–Urysohn, that the product of a Fréchet–Urysohn topo-

logical group with a first-countable space is a Fréchet–Urysohn space, and that every weakly

first-countable topological group, as well as every bisequential topological group, is metriz-

able.

In the chapter we formulate a series of open problems. The mastership of the material

of this chapter can open good perspectives for research in various main stream directions of

topological algebra.

4.1. Ivanovskij–Kuz’minov Theorem

In this section we prove the celebrated theorem of Ivanovskij[259] and Kuz’minov[287]

that every compact topological group is a dyadic compactum. Recall that a dyadic
compactum is a compact Hausdorff space that can be represented as an image of the

generalized Cantor discontinuum Dτ under a continuous mapping, where D = {0, 1} is the

two-point discrete space and τ is a cardinal. It is well known that every metrizable compact

space is a continuous image of the Cantor set Dω[165, 3.2.B]. Thus, all metrizable compacta

are dyadic. However, not all compact spaces are dyadic, as we will see below. The proof

of Ivanovskij–Kuz’minov’s theorem is based on an important theorem of E. A. Michael on

selections. We start with a proof of the later theorem, and then present a certain technique

involving well-ordered inverse spectra of compact spaces, playing a crucial role in the proof

of the main theorem.

If M is a space, then Exp(M) stands for the set of all closed non-empty subsets of M,

and �(M) is the set of all non-empty subsets of M. A mapping q of a topological space X
into the set �(M) is called lower semicontinuous if, for each open subset V of M, the set Vq

of all x ∈ X such that q(x) ∩ V = ∅ is open in X. Particularly important is the case when

q(x) ∈ Exp(M) for each x ∈ X, that is, when each q(x) is a non-empty closed subset of M.

Then we, of course, say that q is a lower semicontinuous mapping of X into Exp(M).

Let X and M be some spaces and q a mapping of X into �(M). A mapping f of X to

M is called a selection for q if f (x) ∈ q(x), for each x ∈ X. If, in addition, the mapping f
of X into M is continuous, f is said to be a continuous selection for the mapping q.

We call a mapping f locally constant if, for every point x ∈ X, there exists an open

neighbourhood W of x such that f (y) = f (x), for each y ∈ W . Of course, a locally constant

function is continuous.

Now we are ready to formulate a version (not the strongest one) of Michael’s Selection

Theorem:

Ivanovskij–Kuz’minov Theorem
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Theorem 4.1.1. [E. A. Michael] Let M be a space metrizable by a complete metric, X
a zero-dimensional compact Hausdorff space, and q any lower semicontinuous mapping of
X to the set Exp(M) of all non-empty closed subsets of M. Then there exists a continuous
selection for q.

Proof. There exists a complete bounded metric on M generating the topology of M.

Let d be such a metric. Fix a positive number ε. A mapping f of X to M will be called an

ε-selection for q if d(f (x), q(x)) < ε, for each x ∈ X.

Claim. Let ε and δ be any positive numbers, and f a locally constant ε-selection
for the mapping q. Then there exists a locally constant δ-selection g for q such that
d(f (x), g(x)) < ε, for every x ∈ X.

Indeed, for every x ∈ X choose a point m(x) ∈ q(x) satisfying d(f (x), m(x)) < ε, and

an open spherical neighbourhood W = Oδ(m(x)) of radius δ of the point m(x). Since W is

open in M, and q is lower semicontinuous, there exists an open neighbourhood V (x) of x
in X such that q(y) ∩W is not empty, for each y ∈ V (x). Since f is locally constant, we

can also assume that f is constant on V (x).

The open covering {V (x) : x ∈ X} contains a finite subcovering {V (xi) : 1 ≤ i ≤ n}.
Replacing V (xi), if necessary, by a smaller open and closed set W (xi) (which may be empty),

we obtain a disjoint open covering {W (xi) : 1 ≤ i ≤ n} of X. Now let us define a locally

constant mapping g of X into M as follows: g(x) = m(xi), for each x ∈ W (xi). Clearly,

g satisfies the condition d(f (x), g(x)) < ε, for every x ∈ X, since f (x) = f (xi) and

g(x) = m(xi), for each x ∈ W (xi), and d(f (xi), m(xi)) < ε, by the choice of m(xi).

Let x ∈ W (xi). Then x ∈ V (xi) and, therefore, by the choice of V (xi), d(m(xi), q(x)) <
δ. Since g(x) = m(xi), by the definition of g, it follows that d(g(x), q(x)) < δ. Thus, g is a

δ-selection for q. Our Claim is proved.

We continue the proof of Michael’s Selection Theorem. It is clear from the above

Claim that we can construct recursively a sequence η = {fn : n ∈ ω} of locally constant

mappings of the space X to the space M such that the following two conditions are satisfied,

for each n ∈ ω:

(1) fn is a 1/2n-selection for q;

(2) |fn(x)− fn+1(x)| < 1/2n, for each x ∈ X.

Since every locally constant mapping is continuous, all elements of η are continuous

mappings of X to the metric space M. From conditions (1) and (2) and completeness

of the metric space M it follows that η converges uniformly to a continuous mapping f of

X to M such that d(f (x), q(x)) = 0, for each x ∈ X. Since q(x) is closed in M, we conclude

that f (x) ∈ q(x), for every x ∈ X. Thus, f is a continuous selection for q. �

It is clear from the proof of Michael’s theorem that it remains true if we drop the

assumption of compactness of X and replace it by the following condition: Every open
covering of X can be refined by a disjoint open covering. In other words, it suffices to

assume that the space X is strongly zero-dimensional.
It is easy to see that if f is an open continuous mapping of a space X onto a space Y ,

then the inverse mapping f−1 of the space Y into the set Exp(X) of all non-empty closed

subsets of X is lower semicontinuous.
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For the application of Michael’s theorem we have in mind, we need a slightly more

technical result:

Lemma 4.1.2. Let f : X → Z be a continuous mapping, A a closed subset of X, and p
an open continuous mapping of a space Y onto Z. Further, let h : A → Y be a continuous
mapping such that p(h(a)) = f (a), for each a ∈ A. Then the mapping g : X → Exp(Y )

defined by the rule g(x) = p−1(f (x)), for each x ∈ X \ A, and g(x) = {h(x)}, for each
x ∈ A, is lower semicontinuous.

Proof. Notice that in any case p(g(x)) = {f (x)}. Let U be a non-empty open subset

of Y , and x0 a point of X such that g(x0) ∩ U is not empty. We have to find an open

neighbourhood Ox0 of x0 in X such that g(x) ∩ U is not empty for each x ∈ Ox0.

Put z0 = f (x0) and V = p(U). Then, since z0 = f (x0) ∈ p(g(x0) ∩ U) ⊂ p(U) = V
and the mapping p is open, V is an open neighbourhood of z0 in Z. Now we have to

distinguish two cases.

Case 1. x0 ∈ X \ A. Then g(x0) = p−1(z0). Since f is continuous, there exists an

open neighbourhood Ox0 of x0 in X such that f (Ox0) ⊂ V . Since A is closed in X and x0

is not in A, we can, in addition, assume that Ox0 ∩ A = ∅.

Let x ∈ Ox0. Then g(x) = p−1(f (x)) and f (x) ∈ V = p(U). Therefore, there exists

y ∈ U such that f (x) = p(y). Then y ∈ p−1(f (x)) ∩ U = g(x) ∩ U, which implies that

g(x) ∩ U is not empty, for each x ∈ Ox0.

Case 2. x0 ∈ A. Then g(x0) = {h(x0)}. Since, by the assumption, g(x0) ∩ U is not

empty, it follows that h(x0) ∈ U. By the continuity of h, there exists an open neighbourhood

Ox0 of x0 in X such that g(x) = {h(x)} ⊂ U, for each x in Ox0 ∩A. Since V = p(U) is an

open neighbourhood of z0 in Z, and f is continuous, there exists an open neighbourhood

W of x0 in X such that f (W ) ⊂ V and W ⊂ Ox0.

Take any x ∈ W . Let us show that g(x) ∩ U is not empty.

If x ∈ A, then this is so, since g(x) = {h(x)} ⊂ U, by the choice of Ox0. Assume now

that x ∈ W \ A. Then g(x) = p−1(f (x)). Since x ∈ W , f (x) ∈ V = p(U). Therefore,

f (x) = p(y), for some y ∈ U. Then y ∈ p−1(f (x)) ∩ U = g(x) ∩ U, which implies that

g(x) ∩ U is not empty. �
This lemma will be applied in combination with the next obvious assertion:

Proposition 4.1.3. Let X, Y , M be some spaces, g a lower semicontinuous mapping
of X into �(Y ), and π : Y → M a continuous mapping. Then the mapping q : X → �(M)

defined by the formula q(x) = π(g(x)), for each x ∈ X, is lower semicontinuous.

Now comes a technical statement, which follows easily from the above results, and

which fits our purposes well.

Lemma 4.1.4. Let Z be a space, M a metrizable compact space, Y a closed subspace
of Z×M, and p the projection mapping of Y to Z, that is, p(z, m) = z, for each (z, m) ∈ Y ,
which we assume to be open and onto Z. Further, let f be a continuous mapping of a
space X onto Z, A a closed subset of X, and h a continuous mapping of A to Y such that
p(h(a)) = f (a), for each a ∈ A.

Suppose that a mapping q of the space X into Exp(M) is defined in the following way.
Take any x ∈ X. If x ∈ A, then h(x) = (z, m) and we put q(x) = {m}. If x ∈ X \A, we put
q(x) = Mx, where Mx = {m ∈ M : (f (x), m) ∈ Y} for each x ∈ X \ A. Then:

Ivanovskij–Kuz’minov Theorem
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a) q is lower semicontinuous;
b) if X is, in addition, compact, zero-dimensional and Hausdorff, then there exists a

continuous mapping hX of X to Y such that phX(x) = f (x), for each x ∈ X, and
hX is a continuous extension over X of the mapping h : A→ Y .

Proof. The mapping q is lower semicontinuous by Lemma 4.1.2 and Proposition 4.1.3.

Thus, a) is verified. To prove b), we apply Theorem 4.1.1 to obtain a continuous selection s
for q. Now, let us define a mapping hX of X to Z×M as follows: hX(x) = (f (x), s(x)), for

each x ∈ X. Clearly, hX is continuous, as the diagonal product of two continuous mappings.

From the construction it is also clear that phX(x) = f (x), for each x in X, hX(X) ⊂ Y , and

hX(x) = h(x), for each x ∈ A. �

We also need the following fact:

Theorem 4.1.5. Every compact Hausdorff space X can be represented as a continuous
image of a closed subspace of the space Dτ , where D = {0, 1} is the two-point discrete
space and τ is the weight of X.

Proof. We can assume without loss of generality that X is infinite. Fix a base � of

X such that |�| = τ = w(X), and for each V ∈ �, let FV = V , PV = X \ V , and

gV (0) = FV , gV (1) = PV . Clearly, X = gV (0) ∪ gV (1) for each V ∈ �. With an arbitrary

point z = (zV )V∈� of the space D� we associate the family ξz = {gV (zV ) : V ∈ �} of

closed subsets of X.

Let Z be the set of all elements z of D� such that the family ξz is centered. From the

definition of topology in D� it follows that Z is closed in D�. Therefore, Z is a compact

subspace of D�. It is also obvious that both D� and Z are zero-dimensional spaces.

We claim that X is a continuous image of Z. Take any z ∈ Z. Then, by the definition

of Z,
⋂

ξz is not empty. Pick up a point xz ∈
⋂

ξz. Let us show that, in fact, {xz} =
⋂

ξz.

We will prove slightly more:

Claim. For every open neighbourhood U of xz in X, there exists B ∈ ξz such that B ⊂ U.

Indeed, there exists V ∈ � such that xz ∈ V ⊂ V ⊂ U. Then xz ∈ FV and xz is not

in PV . Since xz ∈ gV (zV ), it follows that gV (zV ) = FV , which implies that FV ∈ ξz. Since

FV = V ⊂ U, our Claim is proved.

Now we define a mapping f of Z into X by the rule: f (z) = xz, where {xz} =
⋂

ξz.

Notice that from the claim and the definition of ξz it follows immediately that f is continuous:

any point z∗ with the same V -th coordinate as z is taken by f into U, since then FV belongs

to ξz∗ as well.

It remains to show that f (Z) = X. Fix x ∈ X, and for each V ∈ � choose zV ∈ D
in such a way that x ∈ gV (zV ). Then, clearly, z = (zV )V∈� is an element of Z and

f (z) = x. �

Another proof of Theorem 4.1.5 can be based on the next two well-known facts (see

Exercise 3.2.B and Theorem 3.2.5 of [165], respectively):

Fact 1. The closed unit interval I = [0, 1] is a continuous image of the Cantor set Dω.

Fact 2. Every compact Hausdorff space X of weight ≤ τ can be topologically embedded
into the Tychonoff cube Iτ .
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Indeed, by Fact 2, a compact Hausdorff space X is homeomorphic to a closed subspace

of Iτ , where τ = w(X). It follows from Fact 1 that the Tychonoff cube Iτ is a continuous

image of the Cantor cube Dτ under a continuous mapping f . Then H = f−1(X) is a closed

subspace of Dτ , and the restriction of f to H is a continuous mapping of H onto X.

Now we need some elementary notions and constructions involving inverse spectra of

spaces. Below, whenever we consider a space Xα, the symbol �α denotes the topology of

Xα. All spaces considered further in this section are assumed to be Hausdorff.

Let X be a space, (A, <) a well-ordered set, and let fα be a quotient mapping of X onto

a space Xα, for each α ∈ A, such that the following two conditions are satisfied:

(S1) If x, y ∈ X, α, β ∈ A and α < β, then fβ(x) = fβ(y) implies fα(x) = fα(y);

(S2) If x, y ∈ X are distinct, then fα(x) = fα(y), for some α ∈ A.

Then we will say that � = {fα : α ∈ A} is a (well-ordered) spectral representation of

the space X, along the well-ordered set (A, <).

It is easy to see that a space X may have many different spectral representations. Let

� = {fα : α ∈ A} be a spectral representation of X. Then for any α, β ∈ A such that

α < β, we can define a mapping pβ
α : Xβ → Xα by the formula pβ

α(xβ) = fα(f−1
β (xβ)), for

each xβ ∈ Xβ. The definition is correct in the sense that we obtain a single valued mapping

pβ
α, by condition (S1). Since fβ is a quotient mapping onto, and fα is a continuous mapping,

it follows that pβ
α is a continuous mapping, for any α, β ∈ A with α < β.

The mappings pβ
α will be called connecting mappings of the spectral representation, for

an obvious reason. A spectral representation of X, together with the connecting mappings

pβ
α will be called a spectrum of X. Notice that from condition (S1) it easily follows that all

connecting mappings are quotient mappings onto. From the definition of the mappings pβ
α

it is also clear that if α < β < δ, where α, β, and δ are in A, then pδ
α = pβ

α ◦ pδ
β.

Now, let � be a spectrum of X, and Z some other space. We are going to introduce the

notion of a spectral mapping of Z into the spectrum �. Here is the definition.

A spectral mapping 	 of a space Z into a spectrum � = {fα : α ∈ A} of a space X is

a family {gα : α ∈ A} of continuous mappings gα of Z to Xα such that the next condition

is satisfied:

(S3) pβ
α ◦ gβ = gα whenever elements α, β ∈ A satisfy α < β.

We introduce some further notation. If � = {fα : α ∈ A} is a spectrum of a space X,

then for each x ∈ X and for each α ∈ A we put xα = f (xα). Then (xα)α∈A is a point of the

product space P = Π{Xα : α ∈ A}. We denote this point by s(x) or by x∗. Thus, we have

a canonical mapping s of the space X onto a subspace s(X) of the product space P . We put

X∗ = s(X) and restrict the range of s to s(X). From the continuity of the mappings fα and

condition (S2) it easily follows that s is a continuous one-to-one mapping of the space X
onto the subspace s(X) of P .

Theorem 4.1.6. Let X be a compact Hausdorff space and � = {fα : α ∈ A} a
spectrum of X. Let, further, 	 = {gα : α ∈ A} be a spectral mapping of a space Z into
�. Then there exists a continuous mapping g of the space Z to the space X such that the
spectral mapping 	 is generated by g, that is, gα = fα ◦ g for each α ∈ A.

Ivanovskij–Kuz’minov Theorem
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Proof. Take any z ∈ Z, and put Fα(z) = f−1
α (gα(z)), and ηz = {Fα(z) : α ∈ A}.

Then, clearly, ηz is a centered family of non-empty closed sets in X. Actually, it is a chain,

that is, Fβ(z) ⊂ Fα(z) if α < β. Therefore, its intersection Pz =
⋂

α∈A Fα(z) is not empty.

Let us show that Pz consists of exactly one point, for each z ∈ Z. This follows from

condition (S2). Indeed, if x ∈ Pz and y ∈ Pz, then fα(x) = gα(z) = fα(y) for each α ∈ A,

and (S2) implies that x = y. Thus, Pz = {xz} for some xz ∈ X.

Now we define a mapping g : Z → X by the rule g(z) = xz. Since xz ∈ Fα(z) =

f−1
α (gα(z)), we have fα(g(z)) = fα(xz) = gα(z) for each z ∈ Z, that is, fα ◦ g = gα, for

each α ∈ A.

Let us show that g is continuous. Fix z ∈ Z and put x = g(z) = xz and

xα = fα(x) = gα(z) for each α ∈ A. Let Ox be any open neighbourhood of x in X.

Since
⋂

ηz is contained in Ox, and ηz is a chain consisting of closed sets, it follows that

Fα(z) ⊂ Ox, for some α ∈ A.

Since X is compact and Xα is Hausdorff, the mapping fα is closed. Since f−1
α (xα) =

Fα(z) ⊂ Ox, it follows that there exists an open neighbourhood Vα of xα in Xα such that

f−1
α (Vα) ⊂ Ox. Put U = g−1

α (Vα). Clearly, U is an open neighbourhood of z in Z, and

g(U) ⊂ Ox, since fα(g(t)) = gα(t) ∈ Vα, for each t ∈ U. Notice that we do not claim that

g is necessarily onto X. �

The following question is quite natural: Is every compact Hausdorff space X a

continuous image of Dτ , for some τ, where D = {0, 1} is the two-point discrete space?

The answer is “no”, since the cellularity of Dτ is always countable and the Souslin number

never increases under continuous onto mappings. Thus, not every compact space is dyadic.

The theory of dyadic compacta is well-developed and rich in results (see [165]), and one

of the most remarkable results in this theory is Ivanovskij–Kuz’minov’s theorem, which we

are going to prove now. In the proof, we apply Theorem 3.7.24 stating that every compact

topological group G is topologically isomorphic to a closed subgroup of the product of some

family of second-countable topological groups.

Theorem 4.1.7. [L. N. Ivanovskij, V. I. Kuz’minov] Every compact topological
group G is a dyadic compactum.

Proof. By Theorem 3.7.24, we can assume that G is a subgroup of the product

M = Πα∈AMα of separable metrizable topological groups Mα. Taking projections of

G to the factors, we may assume that each Mα is compact. Let us also fix a well-ordering

< of the index set A. Now a spectrum, naturally associated with G as a subgroup of the

product group M, is defined as follows.

For each α ∈ A, let πα be the natural projection of M onto the product Lα = Πν<αMν,

Gα = πα(G), and fα be the restriction of πα to G ⊂ M. Since G is compact, and Gα is

Hausdorff, the mapping fα is closed for each α ∈ A. Clearly, conditions (S1) and (S2) are

also satisfied for � = {fα : α ∈ A}. Therefore, � is a spectrum of G.

Claim 1. Each fα is an open homomorphism of G onto Gα.

Indeed, it is clear that fα is a continuous homomorphism, and every continuous homo-

morphism of one compact group onto another compact group is open, by Theorem 3.1.27.
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For α ∈ A, let α + 1 stand for the successor of α in the well-ordered set (A, <), and we

write pα for the natural projection pα+1
α of Gα+1 onto Gα. Notice that fα = pα ◦ fα+1, that

is, pα is one of the connecting mappings of the spectrum �. The next fact is immediate.

Claim 2. The topological group Gα+1 is a subgroup of the product group Gα×Mα, and pα

is the restriction of the projection of Gα ×Mα onto Gα. As a continuous homomorphism
of one compact group onto another, pα is closed and open.

Extending the above notation, we denote by pα
β the natural projection of Gα to Gβ

provided that α, β ∈ A and α < β.

Claim 3. For every α ∈ A which does not have an immediate predecessor, the family
�α = {pα

β : β < α} is a spectrum of the space Gα.

This is obvious since all mappings pα
β are continuous surjective homomorphisms of

compact groups and are, therefore, open.

According to Theorem 4.1.5, there exist a cardinal number τ, a closed subspace H of

Dτ , and a continuous mapping h of H onto G. We put hα = fα ◦ h, for α ∈ A. Obviously,

Dτ is a zero-dimensional compact space, which opens the door for applications of Michael’s

theorem.

We will construct a continuous mapping g of Dτ into G that will be is extension of

the mapping h. Because of that, the mapping g will be onto G. And to define g, we

will first define a spectral mapping of Dτ into the spectrum � of G. A spectral mapping

	 = {gα : α ∈ A} will be constructed by transfinite recursion along the well-ordered set

A in such a way that each gα will be a continuous extension of the mapping hα : H → Gα.

Here is how the construction goes.

Clearly, we may assume that G0 consists only of one element e0. Then the mapping g0

is trivially defined by g0(z) = e0 for each z ∈ Dτ , and g0 extends h0.

Assume now that, for some α ∈ A, a continuous mapping gβ of Dτ to Gβ is defined

for every β < α, and that the following conditions are satisfied:

(1α) gβ is an extension of hβ for each β < α;

(2α) if δ < β < α, then gδ = pβ
δ ◦ gβ.

We want to define a continuous mapping gα of Dτ to Gα extending the mapping hα and

such that gδ = pα
δ ◦ gα, for every δ < α.

Case 1. The element α does not have an immediate predecessor in (A, <).

Then �α = {pα
β : β < α} is, obviously, a spectrum of the space Gα, and

	α = {gβ : β < α} is a spectral mapping of the space Dτ into the spectrum �α, in

view of conditions (1α) and (2α). Since Gα is compact, we can apply Theorem 4.1.5, which

implies that the spectrum �α is generated by a continuous mapping gα of Dτ to Gα. Clearly,

gα satisfies the composition condition gβ = pα
β ◦ gα for each β < α (see Theorem 4.1.5).

It remains to check that gα is an extension of hα.

Take any z ∈ H . Then hα(z) = fα(h(z)), by the definition of hα. Assume that

gα(z) = hα(z). Then, for some β < α, pα
β(gα(z)) = pα

β(hα(z)). On the other hand, it

follows from the definitions that pα
β ◦gα = gβ and pα

β ◦hα = hβ. Therefore, since gβ, by our

assumptions, is an extension of hβ, we have gβ(z) = hβ(z), that is, pα
β(gα(z)) = pα

β(hα(z)),

which is a contradiction. Hence, gα is an extension of hα.

Case 2. α = β + 1, that is, there exists an immediate predecessor β of α in (A, <).

Ivanovskij–Kuz’minov Theorem
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In this case the result is achieved by a straightforward application of Lemma 4.1.4,

where Z = Gβ, M = Mβ, Y = Gα, p = pα
β, f = gβ, X = Dτ , A = H , and h = hα.

Notice that Gα is a subspace of Gβ ×Mβ, and Mβ is compact and, therefore, is a complete

metric space.

Our definition of gα is complete, and it is clear that conditions (1α+1) and (2α+1) are

satisfied. In this way, a spectral mapping 	 = {gα : α ∈ A} of Dτ into the spectrum � of

G is defined such that gα is a continuous extension of hα for each α ∈ A.

Now we apply Theorem 4.1.5 once again; according to it, there exists a continuous

mapping g of Dτ to G such that gα = fα ◦ g, for each α ∈ A. Arguing exactly as in Case 1

(when we proved that gα extended hα), we establish that g is an extension of h. Since

h(H) = G, it follows that g(Dτ) = G. �

Theorem 4.1.7 has many interesting applications. The first of them is almost immediate.

Corollary 4.1.8. The cellularity of any precompact topological group is countable.
In particular, the cellularity of any compact topological group is countable.

Proof. Let G be a compact topological group. Then G is a continuous image of Dτ ,

for some τ, by Theorem 4.1.7. The Souslin number of the product of any family of separable

metrizable spaces is countable by [165, Coro. 2.3.18]; therefore, the Souslin number of Dτ

is countable. It remains to note that under continuous onto mappings, the Souslin number

does not increase.

If G is a precompact topological group, then Theorem 3.7.16 implies that the Raı̆kov

completion 
G of G is a compact topological group. Hence the cellularity of 
G is countable.

Since G is dense in 
G, any disjoint family of open sets in G is also countable. �

The above result will be considerably generalized in Section 5.3 (see Corollary 5.3.22).

Exercises

4.1.a. Prove that the cellularity of any pseudocompact topological group is countable.

4.1.b. A space X is called τ-monolithic, where τ is a cardinal number, if, whenever the cardinality of

a subset A of X does not exceed τ, the closure of A has a network S such that |S| ≤ τ. Prove

that every compact topological group G contains a dense countably compact ℵ0-monolithic

subspace.

4.1.c. Suppose that in a compact topological group G, every countably compact subspace is

compact. Prove that G is metrizable.

4.1.d. Let G be a compact topological group, and let γ be an uncountable family of non-empty

open subsets of G. Prove that there exists an uncountable centered subfamily ξ of γ.

4.1.e. Show that not every compact topological group can be represented as an image of Dτ , for

some τ, under an open continuous mapping.

Hint. Consider the behaviour of dimension under open continuous mappings.

4.1.f. Let G be an infinite compact topological group. Show that for every point x ∈ G, there

exists a sequence {xn : n ∈ ω} ⊂ G \ {x} converging to x.

Hint. Consider a continuous onto mapping f : Dτ → G which exists by Theorem 4.1.7.

Since Dτ is a compact space, the mapping f is closed. This implies that the fiber f−1(x)

cannot be open in Dτ . Take a point a ∈ f−1(x) lying in the closure of Dτ \ f−1(x) and

define a sequence {an : n ∈ ω} ⊂ Dτ \ f−1(x) converging to a (see [165]).
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Problems

4.1.A. Every compact Gδ-subset of an arbitrary topological group G is a dyadic compactum.

Remark. This far reaching generalization of the Ivanovskij–Kuz’minov theorem was

established by M. M. Choban in [101]. The proof is again based on Michael’s selection

theorem and uses the method of inverse spectra. Even more general results will be presented

in Section 10.3.

4.1.B. Recall that a space X is said to be homogeneous if, for any points x, y ∈ X, there exists

a homeomorphism f of X onto itself such that f (x) = y. Is every homogeneous compact

Hausdorff space homeomorphic to a compact topological group?

Hint. See the next problem.

4.1.C. Is every homogeneous compact Hausdorff space dyadic?

Hint. See Problem 4.1.D.

4.1.D. Construct a homogeneous first-countable compact Hausdorff space X such that the cellularity

c(X) of X is uncountable.

Hint. Let X be the Alexandroff duplicate of the Cantor set (see [165, Example 3.1.26]).

Then X is a first-countable non-metrizable compact Hausdorff space with an open discrete

subspace of cardinality c = 2ω. Thus, the Souslin number of X is uncountable. The space

X is also zero-dimensional. Therefore, by a theorem of D. B. Motorov in [332], the space

Xω is homogeneous. Clearly, the Souslin number of X is equal to c.

4.1.E. Let G be a compact topological group such that every subgroup of G is a normal space.

Prove that under the assumption 2ℵ0 < 2ℵ1 , the group G is metrizable. (The cardinality

assumption is, in fact, not necessary but, to avoid it, one has to use more subtle methods from

[120].)

Hint. Suppose that G is not metrizable, and use Theorem 4.1.7 to find a closed separable

non-metrizable subgroup H of G. Then the character of H is uncountable, so |H | ≥ 2ℵ1 by

the Čech–Pospı́šil theorem, see [165, 3.12.11(a)]. Choose an arbitrary point y0 ∈ G distinct

from the neutral element of G and apply 4.1.f to choose a sequence S = {xn : n ∈ ω} in

G\{y0} converging to y0. Show that S can be additionally chosen to satisfy y0 /∈ 〈S〉. Then

use the assumption 2ℵ0 < 2ℵ1 to define by recursion a dense pseudocompact subgroup P of

H such that S ⊂ P and y0 /∈ P . Finally, verify that the space P is not normal.

4.1.F. Prove that the δ-tightness and Gδ-tightness of every compact topological group are countable.

Hint. Verify that continuous onto mappings of compact spaces do not increase δ-tightness.

Then apply Theorems 4.1.7 and 1.6.11.

Open Problems

4.1.1. Let G be a compact group. Is there a dense subspace X of G such that t(X) ≤ ω?

4.1.2. Let G be a compact group. Is there a dense sequential subspace of G?

4.1.3. Let G be a compact group. Is there a dense countably compact ℵ0-monolithic subspace X
of G such that the tightness of X is countable?

4.1.4. Let G be a compact group. Is there a dense subgroup of G satisfying the conditions in one

of the above three problems?

4.1.5. Is every compact Gδ-subset of a (Tychonoff) paratopological group dyadic?

4.1.6. Is every compact Gδ-subset of a Hausdorff semitopological group dyadic?

4.1.7. Is it true that every homogeneous compact Hausdorff space contains a dense subspace of

countable tightness?

Ivanovskij–Kuz’minov Theorem
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4.2. Embedding Dω1 in a non-metrizable compact group

We start with the proof of the following important result:

Theorem 4.2.1. [R. Engelking] If G is a non-metrizable compact topological group
of weight τ, then the space Dτ is homeomorphic to a subspace of G.

Proof. Let G be a compact group of weight τ > ω. Since G is compact, the character

and pseudocharacter of G at the neutral element e coincide, according to [165, 3.1.F. (a)].

Hence, by the Birkhoff–Kakutani theorem, the singleton {e} cannot be a Gδ-set in G. For

each open neighbourhood U of e in G, there exists a closed invariant subgroup H of G such

that H ⊂ U and H is a Gδ-set in G (see Corollary 3.4.19 and Proposition 3.4.6). Therefore,

there exists a family 
 = {Hα : α < τ} of closed invariant subgroups of G such that the

following three conditions are satisfied for each α < τ:

1) Hα is a Gδ-set in G;

2)
⋂


 = {e};
3)

⋂
β<α Hβ = {e}.

We can also assume that H0 = G. Let A be the set of all α < τ such that
⋂

β<α Hβ is

not contained in Hα. If we replace τ with the naturally well-ordered set A, then conditions

1)–3) will be still satisfied, and, in addition, the next condition will hold:

4) (
⋂

β<α Hβ) \Hα is not empty, for each α ∈ A.

So without loss in generality we can assume that the family 
 = {Hα : α < τ} satisfies all

four conditions 1)–4) for each α < τ.

Now, for each α < τ, consider the quotient homomorphism of G onto the compact

metrizable group Mα = G/Hα. Clearly, the diagonal product of these quotient homomor-

phisms is a continuous monomorphism of G to the product of separable metrizable groups

Mα. Therefore, G is represented as a topological subgroup of the product of compact metriz-

able groups Mα, that is, G ⊂ ∏
α<τ Mα. Let � = {pα : α < τ} be the natural spectrum

of G associated with the given embedding of G into the product group M =
∏

α<τ Mα and

with the natural well-ordering on τ = {α : α < τ}. In other words, for every α < τ,

let πα be the natural projection of M onto the subproduct Pα =
∏

β<α Mβ and pα be the

restriction of πα to G. We also put Gα = pα(G) for each α < τ. As in Section 4.1, for

all α, β satisfying β < α < τ, there exists a quotient mapping pα
β : Gα → Gβ such that

pβ = pα
β ◦ pα.

Claim 1. For all elements α, β satisfying β < α < τ, the projection pα
β of Gα to Gβ is an

open continuous homomorphism of the group Gα onto the group Gβ which is not one-to-one.

Indeed, pα
β is not one-to-one by condition 4) above. The validity of the remaining part

of the claim is clear.

Let Dα = {0, 1} be the two-point discrete space for each α < τ, and put Fα =∏
β<α Dβ, � = {fα : α < τ}, where fα is the natural projection of Dτ =

∏
ν<τ Dν onto

Fα. Clearly, each fα is a continuous homomorphism, and Fα+1 = Fα × Dα. The natural

projection of Fα onto Fβ, where β < α, is denoted by qα
β.

For every α < τ, we are going to construct a homeomorphism tα of Fα onto a subspace

Bα of Gα such that

(5) pα
β ◦ tα = tβ ◦ qα

β whenever 0 < β < α < τ.
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Clearly, F1 = D0 = {0, 1}. There are two distinct points a and b in G1 = M0 = G/H0;

we fix them and put t1(0) = a and t1(1) = b. That is how we start.

Now the inductive step follows. Assume that for some α < τ the homeomorphisms tβ
are already defined for all β with 0 < β < α, satisfying the version of condition (5):

(6α) pδ
β ◦ tδ = tβ ◦ qδ

β whenever 0 < β < δ < α.

Case 1. The ordinal α is limit. Put sα
β = tβ ◦ qα

β, for each β < α.

Fδ
tδ ��

qδ
β

��

sδ
β

��	
		

		
		

	 Gδ

pδ
β

��
Fβ

tβ �� Gβ

Then �α = {sα
β : 0 < β < α} is a spectral mapping of Fα into the spectrum

�α = {pα
β : 0 < β < α} of Gα. Since Gα is compact, there exists a continuous mapping tα

of Fα to Gα which generates the spectral mapping �α. From condition (S2) for the spectrum

�α (see page 221) and (6α) it is clear that tα is one-to-one. Since Fα is compact and Gα

is Hausdorff, it follows that tα is a homeomorphism of Fα onto the subspace tα(Fα) of Gα.

From the definition of tα it also follows that condition (6α+1) is satisfied.

Case 2. α = β+1. Then Bβ = tβ(Fβ) is a zero-dimensional compact space (homeomorphic

to Dβ) lying in Gβ. Put Cα = (pα
β)−1(Bβ), where pα

β is the natural projection of Gα onto Gβ.

Since pα
β is open and continuous, the restriction u of pα

β to Cα is an open continuous mapping

of Cα onto Bβ. Now Cα is a closed subspace of Bβ ×Mβ, and Mβ is a compact metric

space. Let π be the natural projection of Bβ ×Mβ onto Mβ. Then the mapping ψ of Bβ to

Exp(Mβ) defined by the rule ψ(b) = π(u−1(b)), for each b ∈ Bβ, is lower semicontinuous.

Therefore, by Theorem 4.1.1, there exists a continuous selection m : Bβ → Mβ for ψ. Put

v(b) = (b, m(b)). Then, clearly, v is a continuous mapping of Bβ to Cα, and v is a continuous

selection for u−1. It follows that v is a topological embedding of Bβ into Cα ⊂ Gα, and

pα
β ◦ v is the identity mapping of Bβ onto itself.

Take any x ∈ v(Bβ). Since pα
β is a homomorphism and, by Claim 1, it is not one-to-one,

there exists y ∈ Gα such that x = y and pα
β(x) = pα

β(y). We fix such a point y. Since

u = pα
β�Cα, for any a ∈ v(Bβ) we have u(yx−1a) = u(y)u(x)−1u(a) = u(a), by the choice

of y. Since the restriction of u to v(Bβ) is one-to-one, it follows that yx−1a is not in v(Bβ),

for any a ∈ v(Bβ). Therefore, the sets yx−1v(Bβ) and v(Bβ) are disjoint.

Consider the disjoint union Fα = (Fβ×{0})∪ (Fβ×{1}). Let us put tα(z) = v(sα
β(z)),

for each z ∈ Fβ × {0}, and tα(z) = yx−1v(sα
β(z)), for each z ∈ Fβ × {1}. Obviously, tα

is a homeomorphic embedding of Fα to Gα, while (6α) and the definition of tα imply the

validity of (6α+1).

The recursive construction of the family {tα : α < τ} is complete. Now we put

φα = tα ◦ fα for each α < τ. Clearly, {φα : α < τ} is a spectral mapping of Dτ into

the spectrum � = {pα : α < τ} of G. Since G is compact, this spectral mapping is

generated by a continuous mapping t of Dτ to G. From (S2) and the fact that each tα is a

homeomorphism it obviously follows that t is one-to-one. Since Dτ is compact and G is

Hausdorff, we conclude that t is a homeomorphism of Dτ onto the subspace t(Dτ) of G. �

Embedding D in a non-metrizable compact group
ω1
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Recall that the tightness of a space X is countable if for every A ⊂ X and every x ∈ A,

there exists a countable subset B of A such that x ∈ B. It is easy to construct compact

spaces of countable tightness that are not first-countable — take, for example, the one-point

compactification of an uncountable discrete space. However, for compact groups we have

the following remarkable fact:

Corollary 4.2.2. Every compact topological group G of countable tightness is
metrizable.

Proof. Assume the contrary. Then, by virtue of Theorem 4.2.1, G contains a

topological copy of the space Dω1 . It is easy to verify that the tightness of Dω1 is uncountable

(take A to be the Σ-product with center at an arbitrary point of Dω1 and as x any point in

the complement of A). Therefore, the tightness of G is uncountable, a contradiction. �

The following result is a part of topological folklore, but we prefer to supply the reader

with its proof.

Proposition 4.2.3. A compact Hausdorff space X without isolated points admits a
continuous mapping onto the closed unit interval.

Proof. First we show that the Cantor set C = {0, 1}ω is a continuous image of some

closed subspace of X. In what follows we identify C with the family of all functions from

ω to 2 = {0, 1}.
For every n ∈ N, let 2n be the family of all functions from n = {0, 1, . . . , n− 1} to 2.

Put � =
⋃

n∈N
2n. We are going to construct, for each f ∈ �, a non-empty open subset Uf

of X such that if f, g ∈ � and g is a proper extension of f , then Ug ⊂ Uf .

Choose non-empty open subsets U0 and U1 of X such that U0 ∩ U1 = ∅ (here we

identify 0 and 1 with the functions (0, 0) and (0, 1), respectively). Suppose that for some

n ∈ N, we have defined the sets Uf for all f ∈ 2n. For every f ∈ 2n and every i = 0, 1, let

f �i denote the function g ∈ 2n+1 such that g�n = f and g(n) = i. Since X has no isolated

points, we can choose non-empty open sets Uf �0 and Uf �1 in X such that Uf �0∩Uf �1 = ∅
and Uf �0 ∪ Uf �1 ⊂ Uf . The construction of the family {Uf : f ∈ �} is complete.

For every function h ∈ 2ω = C, put Fh =
⋂

n∈N
Uh�n. It follows from the choice of

the sets Uf that Fh is a non-empty closed subset of X, for each h. It also follows that the

sets Fh and Fh′ are disjoint whenever h = h′. Let

Y =
⋂
n∈N

⋃
f∈2n

Uf .

Since the family 2n is finite for each n ∈ N, the set Y is closed in X. Notice that

Y =
⋃

h∈C Fh. We define a mapping ϕ : Y → C by ϕ(y) = h if y ∈ Fh. Since the

sets Fh are disjoint, our definition of ϕ is correct. It is clear that ϕ maps Y onto C. It

remains to verify the continuity of ϕ.

Suppose that y ∈ Y , and let O be a neighbourhood of the element h = ϕ(y) in C. It

follows from the definition of the product topology in C = 2ω that V = p−1
n (h�n) ⊂ O for

some n ∈ N, where pn is the projection of C onto 2n. Clearly, h ∈ V . Put f = h�n. Then

y ∈ Fh ⊂ Uf , and it follows from the definition of the mapping ϕ that ϕ(Uf ∩ Y ) ⊂ V .

Indeed, if z ∈ Uf ∩Y , then the image h′ = ϕ(z) satisfies h′�n = h�n; hence, h′ ∈ V . Thus,

ϕ(Uf ∩ Y ) ⊂ V ⊂ O, and the continuity of ϕ follows.
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By [165, 3.2.B], there exists a continuous mapping ψ of the Cantor set C onto I = [0, 1].

Then the composition ψ ◦ ϕ is a continuous mapping of Y onto I. Since Y is a closed

subset of the compact (hence, normal) space X, one can extend ψ ◦ ϕ to a continuous

mapping f : X → I, by the Tietze–Urysohn theorem (see [165, Theorem 2.1.8]). Clearly,

I = f (Y ) ⊂ f (X) ⊂ I; hence, f (X) = I. �

Theorem 4.2.4. Let G be an infinite compact topological group of weight τ. Then G
admits a continuous mapping onto the Tychonoff cube Iτ .

Proof. We start with a simple observation. By Fact 1 on page 220, the Cantor set

C = Dω admits a continuous mapping f onto the closed unit interval I. Hence the product

mapping f ω maps Cω onto Iω. Since Cω = (Dω)ω ∼= C, we conclude that C admits a

continuous mapping g onto Iω. Further, since C is homeomorphic to a closed subspace of

I, Urysohn’s lemma implies that g admits an extension to a continuous mapping of I onto

Iω.

Clearly, an infinite compact group has no isolated points. Hence, in the case τ = ω the

conclusion follows from Proposition 4.2.3 and the above observation. Suppose, therefore,

that τ > ω. By Theorem 4.2.1, G contains a topological copy of Dτ . Again, there exists

a continuous mapping of Dτ onto Iτ . Since G is normal, we can use Urysohn’s lemma to

extend this mapping to a continuous mapping of G onto Iτ . �

If the group G is Abelian, the conclusion in Theorem 4.2.4 can be considerably

strengthened (see Problem 9.6.B).

Corollary 4.2.5. For every non-metrizable compact group G, there exists a contin-
uous mapping of G onto the Tychonoff cube Iω1 .

Exercises

4.2.a. Prove that a compact group G is ℵ0-monolithic (see Exercise 4.1.b) if and only if G is

metrizable.

4.2.b. Show that an ℵ0-monolithic countably compact group need not be metrizable.

4.2.c. Apply Corollary 4.2.2 to show that every hereditarily separable compact group is metrizable.

4.2.d. Give an example of a countably compact non-metrizable group of countable tightness.

Deduce that Theorem 4.2.1 cannot be extended to countably compact groups.

4.2.e. Show that every non-metrizable compact group contains an uncountable discrete subspace.

4.2.f. Prove that a compact group G is metrizable if and only if every subspace of G is normal (see

also Problem 4.1.E).

4.2.g. Give an alternative solution to Problem 4.1.C, using the material in this section — show

that not every homogeneous compactum is dyadic, and therefore, not every homogeneous

compactum is homeomorphic to a compact topological group.

Hint. Take a first-countable non-metrizable homogeneous compact space X (for example, we

can take X to be the two arrows space [165, 3.10.C]). Now use the following generalization

of Corollary 4.2.2: Every dyadic compact space of countable tightness is metrizable (see

[165, 3.12.12(h)]).

Embedding D in a non-metrizable compact group
ω1
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Problems

4.2.A. Let X be a closed subset of a compact topological group G. Suppose that X has countable

tightness and that X algebraically generates the group G. Prove that G is metrizable.

4.2.B. A space X is called scattered if every non-empty subset of X contains an isolated point.

Prove that if G is a non-discrete compact group, then no scattered subspace of G algebraically

generates it.

4.2.C. Let us call a space X left-separated if there exists a well-ordering ≺ of X such that the set

X<x = {y ∈ X : y ≺ x} is closed in X, for each x ∈ X. Prove that if G is a non-discrete

compact group, then no left-separated subspace of G algebraically generates it.

4.2.D. Show that every left-separated countably compact topological group is finite.

4.2.E. (M. G. Tkachenko [467]) Present an example of an infinite pseudocompact left-separated

topological group.

4.2.F. A space X is called C-closed if every countably compact subspace of X is closed in X. Prove

that every C-closed compact topological group is metrizable.

4.2.G. It is not possible to construct in ZFC a hereditarily separable countably compact topological

group which is not compact.

Remark. Under the Continuum Hypothesis, A. Hajnal and I. Juhász constructed in [215]

a countably compact hereditarily separable hereditarily normal topological group G which

was not compact. Their group G is a dense subgroup of Z(2)ω1 .

4.2.H. It is not possible to construct in ZFC a hereditarily separable pseudocompact group G which

is not compact.

Remark. S. Todorčević proved in [495] that the following statement is consistent with ZFC:

(S) Every regular hereditarily separable space is (hereditarily) Lindelöf.

It follows from (S) that every hereditarily separable pseudocompact topological group is

compact and first-countable and, therefore, is metrizable.

Open Problems

4.2.1. Is it possible to construct in ZFC a hereditarily normal countably compact non-compact

topological group? (See also Problem 6.4.H and the remark after Problem 4.2.G).

4.2.2. Is every monolithic hereditarily normal countably compact group compact?

4.2.3. Is it true that every monolithic non-metrizable countably compact group contains an

uncountable discrete subspace?

4.2.4. Does every non-metrizable sequentially compact topological group contain an uncountable

discrete subspace?

4.2.5. Is it true that every countably compact group contains a dense subspace of countable

tightness? Contains a dense sequential subspace?

4.2.6. Suppose that G is an infinite countably compact topological group. Is there a non-trivial

convergent sequence in G? (Assuming Martin’s Axiom, E. van Douwen constructed in [149]

an infinite countably compact topological group without non-trivial convergent sequences.)

4.3. Čech-complete and feathered topological groups

A Tychonoff space X is called Čech-complete if X is homeomorphic to a Gδ-set in a

compact space. The class of Čech-complete spaces is stable with respect to taking closed

subspaces, countable products and perfect images (see Theorems 3.9.6, 3.9.8, and 3.9.10

of [165]). In addition, for metrizable spaces, the properties of being Čech-complete



231

and admitting a complete metric coincide, by the Alexandroff–Hausdorff theorem [165,

Theorem 4.3.26].

Čech-complete spaces need not be topologically complete (or, equivalently, Dieudonné
complete, see Section 6.5). Indeed, let x be an arbitrary point of the Tychonoff cube Iτ of

an uncountable weight τ and let X = Iτ \ {x}. Then X is an open subspace of the compact

space Iτ and, hence, is Čech-complete. However, every continuous real-valued function

on X can be extended to a continuous real-valued function on Iτ . This implies (see [165,

8.5.13]) that the Dieudonné completion μX of X is homeomorphic to Iτ . Hence, X = μX.

The space ω1 of all countable ordinals with the order topology is another example of a

locally compact space that is not Dieudonné complete, since every continuous real-valued

function on ω1 admits an extension to a continuous function on ω1+1 [165, Example 3.1.27].

The space ω1 is even locally metrizable. We shall see in this section that for topological

groups the relationship between Čech-completeness and Dieudonné completeness is quite

different.

A Čech-complete group is a topological group whose underlying space is Čech-

complete. It is not clear from the definition whether there exists a connection between

Čech-complete groups and Raı̆kov complete groups (see Section 3.6). Theorem 4.3.7

states that all Čech-complete groups are Raı̆kov complete (hence, Dieudonné complete),

so that Čech-complete groups form a subclass of the class of Raı̆kov complete groups.

Example 4.3.9 shows that this subclass is proper.

The next result follows immediately from Theorems 3.9.6 and 3.9.8 of [165].

Proposition 4.3.1. The class of Čech-complete groups is closed under taking closed
subgroups and countable products.

A family γ of open sets in a space X is called a base for X at a set F ⊂ X if all elements

of γ contain F and, for every open set V that contains F , there exists U ∈ γ such that

U ⊂ V . The character of X at a set F ⊂ X or, equivalently, the character of F in X is the

smallest cardinality of a base for X at F . The character of X at F is denoted by χ(F, X)

(see [165, 2.1.C (b)]). We start with several facts from general topology that involve the

character of spaces at certain sets.

Lemma 4.3.2. Let γ = {Vn : n ∈ ω} be a sequence of non-empty open sets in a
countably compact space X such that V n+1 ⊂ Vn for each n ∈ ω. Then γ is a base for X
at the set F =

⋂
n∈ω Vn.

Proof. First, note that F =
⋂

n∈ω Vn =
⋂

n∈ω V n, so F is closed in X. Let O be an

arbitrary open set in X which contains F . If Kn = V n∩(X\O) = ∅ for each n ∈ ω, then the

decreasing sequence {Kn : n ∈ ω} of closed non-empty sets in X has empty intersection,

which contradicts the countable compactness of X. Therefore, Vn ∩ (X \O) = ∅ for some

n ∈ ω or, equivalently, Vn ⊂ O. This proves that γ is a base for X at F . �

The following result generalizes Lemma 1.4.15.

Lemma 4.3.3. Let Y be a dense subspace of a regular space X, and K be a compact
subset of Y . Then χ(K, Y ) = χ(K, X).

Proof. Let � be a base for X at K with |�| = χ(K, X). We claim that the family

� = {U ∩ Y : U ∈ �} is a base for Y at K. Indeed, let W be an open neighbourhood of

Cech-complete and feathered topological groupsˇ
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K in Y . Then the set F = Y \ W is closed in Y and the closure F of F in X is disjoint

from K. Hence there exists U ∈ � with U ⊂ X \ F . It is clear that V = U ∩ Y ∈ �
and K ⊂ V ⊂ W . So, � is a base for Y at K and |�| ≤ |�| = χ(K, X). This proves the

inequality χ(K, Y ) ≤ χ(K, X).

Conversely, let � be a base for Y at K satisfying |�| = χ(K, Y ). For every V ∈ �,

choose an open set UV in X with UV ∩ Y = V . It remains to verify that the family

� = {UV : V ∈ �} is a base for X at K. Suppose that O is a neighbourhood of K in

X. Since X is regular and K is compact, for every V ∈ � there exists an open set W in

X such that K ⊂ W ⊂ W ⊂ O. Choose V ∈ � with V ⊂ W . Since UV ∩ Y = V and

Y is dense in X, we have UV ⊂ UV = V ⊂ W ⊂ O. So, � is a base for X at K and,

clearly, |�| ≤ |�| = χ(K, Y ). Therefore, χ(K, X) ≤ χ(K, Y ). This proves the required

equality. �

Lemma 4.3.4. Let X be a Čech-complete space. Then, for every point x ∈ X and every
neighbourhood V of x in X, there exists a compact set F of countable character in X such
that x ∈ F ⊂ V . In other words, every Čech-complete space has pointwise countable type.

Proof. According to the definition of Čech-complete spaces, we can identify X with a

Gδ-subset of a compact space Y . Replacing Y by the closure of X, if necessary, and using the

fact that closed subspaces of a Čech-complete space are also Čech-complete, we can assume

that X is dense in Y . Let X =
⋂

n∈ω Un, where each Un is open in Y . Take an arbitrary

point x ∈ X and a neighbourhood V of x in X. By recursion, one can define a sequence

{Vn : n ∈ ω} of open sets in Y such that V0 ∩ X ⊂ V and x ∈ Vn+1 ⊂ V n+1 ⊂ Vn ∩ Un

for each n ∈ ω. Then the set F =
⋂

n∈ω Vn =
⋂

n∈ω V n is closed in Y (hence compact), it

contains the point x and has countable character in Y — the family {Vn : n ∈ ω} is a base

for Y at F by Lemma 4.3.2. Note that F ⊂ ⋂
n∈ω Un = X, so F has countable character in

X by Lemma 4.3.3. �

The next corollary of Lemma 4.3.4 is immediate; a stronger (and more general) result

will be proved in Proposition 4.3.11.

Corollary 4.3.5. Every Čech-complete group G contains a non-empty compact set
of countable character in G.

The existence of compact sets of countable character has an unexpectedly strong

impact on the properties of topological groups, as we shall see in Theorem 4.3.15,

Proposition 4.3.17, and Corollary 4.3.21.

A subset A of a space X is said to be meager (equivalently, of the first category) in X
if A is the union of a countable family of nowhere dense sets in X. Let us call a set A ⊂ X
almost open in X if there are meager sets B and C in X such that the set (A \B)∪C is open

in X. The next general result has several important application to Čech-complete groups.

Proposition 4.3.6. If A is an almost open non-meager subset of a semitopological
group G, then AA−1 and A−1A are neighbourhoods of the identity in G.

Proof. If A is not meager in G, then so is G. We claim that every non-empty open

subset of G is not meager either. Suppose to the contrary that G contains a non-empty open

meager set U. Since G is homogeneous, we can assume that U contains the identity e of

G. Denote by γ a maximal disjoint family of open subsets of G of the form xV , where
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e ∈ V ⊂ U and x ∈ G. Since left translations in G are homeomorphisms, all elements of γ
are meager in G. In addition, the maximality of γ implies that the open set O =

⋃
γ is dense

in G, so that F = G\O is nowhere dense in G. Let γ = {Wi : i ∈ I}. For every i ∈ I, there

exists a family {Bi,n : n ∈ ω} of meager subsets of G such that Wi =
⋃

n∈ω Bi,n. Then the

set Cn =
⋃

i∈I Bi,n is nowhere dense in G for each n ∈ ω and, clearly, G = F ∪⋃
n∈ω Cn.

This contradicts the fact that G is not meager in itself, thus proving the claim.

For every almost open subset B of G, denote by B∗ the union of all open sets U in G
for which the complement U \B is meager in G. It is clear that if B and C are almost open

sets in G and B ⊂ C, then B∗ ⊂ C∗.

Claim. Let B and C be almost open subsets of G and x ∈ G. Then (xB)∗ = xB∗ and
(B ∩ C)∗ = B∗ ∩ C∗.

Indeed, the first equality (xB)∗ = xB∗ is evident, so we only verify the second one.

Since the inclusion (B∩C)∗ ⊂ B∗∩C∗ is trivial, it suffices to check that B∗∩C∗ ⊂ (B∩C)∗.

If y ∈ B∗∩C∗, one can find open sets U and V in G such that y ∈ U ∩V and the sets U \B
and V \C are meager in G. Since the complement (U ∩ V ) \ (B ∩C) ⊂ (U \B)∪ (V \C)

is meager in G, we conclude that y ∈ U ∩ V ⊂ (B ∩C)∗. Therefore, B∗ ∩C∗ ⊂ (B ∩C)∗,

and the claim is proved.

Let x be an arbitrary element of G. By the above claim, we have xA∗∩A∗ = (xA∩A)∗,

so xA∗ ∩ A∗ = ∅ implies that xA ∩ A = ∅. Therefore, we have

A∗(A∗)−1 = {x ∈ G : xA∗ ∩ A∗ = ∅} ⊂ {x ∈ G : xA ∩ A = ∅} = AA−1.

In other words, the set AA−1 contains the open neighbourhood A∗(A∗)−1 of the identity in

G (notice that A∗ = ∅ since A is not meager in G). A similar argument shows that A−1A
is also a neighbourhood of the identity in G. �

In the next theorem we establish a clear relation between Čech-complete and Raı̆kov

complete topological groups.

Theorem 4.3.7. If a topological group G contains a non-empty open Čech-complete
subset, then G is Raı̆kov complete. In particular, every Čech-complete group is Raı̆kov
complete.

Proof. Let U be a non-empty open Čech-complete subset of G. Then U is not meager

in itself by the Baire category theorem [165, Theorem 3.9.3]. Denote by 
G the Raı̆kov

completion of G, and let X be the Čech–Stone compactification of the space 
G. Consider

the closure C = U of U in X. Since C is compact and U is a dense Čech-complete subspace

of C, [165, Theorem 3.9.1] implies that the complement C \ U is an Fσ-set in C. In

particular, cl
G(U) \ U is an Fσ-set in 
G. Since U is dense in cl
G(U), we conclude that

the complement cl
G(U) \U is meager in cl
G(U) and in 
G. By the same reason, U is not

meager either in C, cl
GU or in 
G. Observe that the set cl
G(U) contains the open subset

V = 
G\ cl
G(G\U) of 
G and U ⊂ V , so U is an almost open non-meager subset of 
G.

By Proposition 4.3.6, the set UU−1 ⊂ G contains a neighbourhood of the identity in


G. Therefore, G is an open and closed subgroup of 
G and, hence, G = 
G. This means

that the group G is Raı̆kov complete. �

Under some additional conditions, Raı̆kov complete groups turn out to be Čech-

complete, as is shown in the next proposition.

Cech-complete and feathered topological groupsˇ
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Proposition 4.3.8. If a metrizable topological group G is Raı̆kov complete, then it is
Čech-complete or, equivalently, G is metrizable by a complete metric.

Proof. Let {Un : n ∈ ω} be a base at the identity e of the group G such that U−1
n = Un

and U2
n+1 ⊂ Un, for each n ∈ ω. By Lemma 3.3.10, there exists a continuous prenorm N

on G such that

{x ∈ G : N(x) < 1/2n} ⊂ Un ⊂ {x ∈ G : N(x) ≤ 2/2n}
for all n ∈ ω. It follows from the choice of the sets Un that N(x) = 0 iff x = e. Therefore,

the function d defined by d(x, y) = N(x−1y) + N(xy−1) for x, y ∈ G is a metric that

generates the original topology of G.

We claim that the metric d is complete and, hence, G is Čech-complete by [165,

Theorem 4.3.26]. Indeed, let ξ = {xn : n ∈ ω} be a Cauchy sequence in G with respect

to the metric d. For every n ∈ ω, let Fn = {xk : k ≥ n}. It is easy to see that the family

{Fn : n ∈ ω} is a base of a Cauchy filter in the group G. To verify this fact, take an arbitrary

neighbourhood W of e in G. There exists m ∈ ω such that Um ⊂ W . Since ξ is a Cauchy

sequence with respect to d, we can find an integer n such that d(xk, xl) < 1/2n+1 for all

k, l ≥ n. Our choice of N and d implies that xk ∈ xnUn and xk ∈ Unxn for each k ≥ n,

whence it follows that Fn ⊂ xnUn ⊂ xnW and Fn ⊂ Unxn ⊂ Wxn. Thus, {Fn : n ∈ ω} is

a base of a Cauchy filter. Since the group G is Raı̆kov complete, this filter converges to an

element x ∈ G. The latter implies immediately that the sequence {xn : n ∈ ω} converges

to x in G, which completes the proof. �

Combining Theorem 4.3.7 and Proposition 4.3.8, we conclude that Čech-completeness

and Raı̆kov completeness coincide for metrizable groups. We shall extend this result to a

wider class of topological groups in Theorem 4.3.15. In general, however, Raı̆kov complete

groups need not be Čech-complete, not even in the class of Abelian ω-narrow groups.

According to Proposition 4.3.1, the class of Čech-complete groups is countably productive,

while arbitrary products of Raı̆kov complete groups are Raı̆kov complete. These facts

suggest a way of constructing a Raı̆kov complete group that fails to be Čech-complete.

Example 4.3.9. Let Z be the additive group of integers with the discrete topology.

The group Zτ is Raı̆kov complete but it fails to be Čech-complete, for any cardinal

τ > ℵ0. Indeed, by Theorem 3.6.22, the class of Raı̆kov complete groups contains arbitrary

topological products, so the group Zτ is Raı̆kov complete. Suppose to the contrary that Zτ

is Čech-complete for some τ > ℵ0. Then, by Corollary 4.3.5, there exists a non-empty

compact set F of countable character in the product space Zτ . Choose a countable family

{Un : n ∈ ω} of open sets in Zτ such that F =
⋂

n∈ω Un. Let x be an arbitrary point of

F . It is easy to define a sequence {Vn : n ∈ ω} of canonical open neighbourhoods of x in

Zτ such that Vn+1 ⊂ V n+1 ⊂ Vn ∩ Un for each n ∈ ω. Then K =
⋂

n∈ω Vn =
⋂

n∈ω V n is

closed in Zτ , and x ∈ K ⊂ F . Hence K is compact.

Given a non-empty set A ⊂ τ, denote by πA the projection of Zτ onto ZA. For every

n ∈ ω, there exists a finite set An ⊂ τ such that Vn = π−1
An

πAn (Vn). Then A =
⋃

n∈ω An

is a countable subset of τ and Vn = π−1
A πA(Vn) for each n ∈ ω. This implies immediately

that K = π−1
A πA(K). In particular, πα(K) = Z for each α ∈ τ \ A, which contradicts the

compactness of K. Therefore, the group Zτ is not Čech-complete. �
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A topological group G is feathered if it contains a non-empty compact set K of countable

character in G. Therefore, all Čech-complete groups are feathered. It is also clear that all

metrizable topological groups are feathered. These simple facts show that the class of

feathered groups is very wide.

Let us show that the compact set K in the above definition can always be chosen to be

a subgroup of G. The proof of this fact requires a technical lemma which will be applied

several times in the sequel (see Theorems 3.1.25 and 3.1.26 in this connection).

Lemma 4.3.10. Let G be a topological group with neutral element e and F be a compact
subset of G containing e and having a countable base {Un : n ∈ ω} in G. Suppose that
a sequence γ = {Vn : n ∈ ω} of open symmetric neighbourhoods of e in G satisfies
V 2

n+1 ⊂ Vn ∩Un for each n ∈ ω. Then H =
⋂

n∈ω Vn is a compact subgroup of G, H ⊂ F ,
and γ is a base for G at H .

Proof. Since V 2
n+1 ⊂ Vn, we have V n+1 ⊂ Vn for each n ∈ ω, and from the definition

of H it follows immediately that H =
⋂

n∈ω Vn =
⋂

n∈ω V n+1 is a closed subgroup of G.

It is also clear that H ⊂ ⋂
n∈ω Un = F , so the group H is compact.

Let W be an open neighbourhood of H in G. Then K = F \W is a compact subset of

G disjoint from H . If V n ∩K = ∅ for each n ∈ ω, then, by the compactness of K, the set

K ∩⋂
n∈ω V n = K ∩H is not empty, which is a contradiction. So, K ∩ Vn = ∅ for some

n ∈ ω. It is clear that F ⊂ W ∪K ⊂ W ∪KVn+1. Since the set W ∪KVn+1 is open in G,

there exists an integer m such that Um ⊂ W ∪ KVn+1. Let k = max{m, n}. Observe that

K ∩ Vk+1Vn+1 ⊂ K ∩ Vn = ∅, whence it follows that KVn+1 ∩ Vk+1 = ∅. Therefore,

Vk+1 = Vk+1 ∩ Um ⊂ Vk+1 ∩ (W ∪KVn+1) = Vk+1 ∩W ⊂ W,

that is, Vk+1 ⊂ W . This proves that γ is a base for G at H . �
Proposition 4.3.11. Let G be a feathered group and O be a neighbourhood of the

neutral element in G. Then there exists a compact subgroup H of countable character in
G satisfying H ⊂ O.

Proof. Since the group G is feathered, it contains a non-empty compact set F with

χ(F, G) ≤ ω. By the homogeneity of G, we can assume that F contains the neutral element

e of G. Let {Un : n ∈ ω} be a countable base for G at F . We define by induction

a sequence {Vn : n ∈ ω} of symmetric open neighbourhoods of e in G satisfying the

following conditions:

(i) V0 ⊂ O;

(ii) V 2
n+1 ⊂ Un ∩ Vn for each n ∈ ω.

Put H =
⋂

n∈ω Vn. Then H ⊂ O, by (i). Lemma 4.3.10 implies that H is a compact

subgroup of G and that {Vn : n ∈ ω} is a base for G at H . �
Corollary 4.3.12. Let G be a feathered group and 
 be the family of all compact

subgroups of G which have countable character in G. Denote by � the family of all sets
of the form π−1

H (V ) in G, where H ∈ 
, πH : G→ G/H is the quotient mapping onto the
left coset space G/H and V is open in G/H . Then � is a base of G.

Proof. It is easy to see that the family � is closed under taking left and right translates

in G. Therefore, it suffices to verify that the subfamily �(e) = {U ∈ � : e ∈ U} is a base

at the identity e of G. Let W be a neighbourhood of e in G. Choose a neighbourhood

Cech-complete and feathered topological groupsˇ
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O of e such that O2 ⊂ W . By Proposition 4.3.11, there exists a compact subgroup

H of G such that H ∈ 
 and H ⊂ O. The set V = πH (O) is open in G/H since

π−1
H (V ) = π−1

H πH (O) = OH is open in G. In addition, OH ∈ �(e) and OH ⊂ O2 ⊂ W ,

which finishes the proof. �

Similarly to metrizable topological groups, the class of feathered groups is countably

productive. As we shall see in the proof that follows, this fact is topological in nature.

Proposition 4.3.13. The product G =
∏

n∈ω Gn of countably many feathered groups
is a feathered group.

Proof. For every n ∈ ω, take a compact set Kn ⊂ Gn of countable character in Gn

containing the neutral element of Gn. Consider the compact set K =
∏

n∈ω Kn in G. Let

γn be a countable base for Gn at Kn, n ∈ ω. We claim that the family

� = {π−1
0 (U0) ∩ . . . ∩ π−1

k (Uk) : U0 ∈ γ0, . . . , Uk ∈ γk, k ∈ ω}
is a base for G at K, where πi : G → Gi is the projection for each i ∈ ω. Indeed, let

W be a neighbourhood of K in G. By Wallace’s theorem (see [165, Theorem 3.2.10]),

one can find open sets Wn ⊂ Gn such that Wn = Gn for only finitely many n ∈ ω and

K ⊂∏
n∈ω Wn ⊂ W . Choose k ∈ ω such that Wn = Gn for all n > k and, for every i ≤ k,

take an element Ui ∈ γi satisfying Ui ⊂ Wi. Clearly, the set U = π−1
0 (U0)∩ . . .∩π−1

k (Uk)

belongs to the family � and satisfies K ⊂ U ⊂ W . Therefore, χ(K, G) ≤ |�| ≤ ω, as

required. �

By Theorem 4.3.7, Raı̆kov completeness is a necessary condition for a topological group

to be Čech-complete. It turns out that this condition is sufficient in the class of feathered

groups, as Theorem 4.3.15 below shows. To prove this important fact, we need a lemma.

Lemma 4.3.14. Let a compact subset K of a topological group G contain the identity
of G, and suppose that {Vn : n ∈ ω} is a base for G at K. Then, for every element x ∈ G,
the family {xVn ∩ Vnx : n ∈ ω} is a base for G at the set xK ∩Kx.

Proof. We can assume without loss of generality that the sequence γ = {Vn : n ∈ ω}
is decreasing. Let O be an open neighbourhood of the set xK ∩ Kx in G. Suppose to the

contrary that (xVn ∩ Vnx) \O = ∅ for all n ∈ ω. Put W = Ox−1. Then xKx−1 ∩K ⊂ W
and the sets (xVnx−1 ∩ Vn) \W are not empty, so we can choose a sequence {an : n ∈ ω}
of points in G satisfying the following conditions for all n ∈ ω:

(i) an ∈ Vn;

(ii) bn = xanx−1 ∈ Vn \W .

Since γ is a base for G at K, (i) implies that the set {an : n ∈ ω} has an accumulation

point y ∈ K. In its turn, (ii) implies that the element z = xyx−1 is an accumulation point

of the set B = {bn : n ∈ ω} ⊂ G \W . Since W is open in G, we conclude that z /∈ W .

In addition, since bn ∈ Vn and Vn+1 ⊂ Vn for each n ∈ ω, all accumulation points of B
lie in K. Therefore, z ∈ K \ W . However, z = xyx−1 ∈ xKx−1 ∩ K ⊂ W , which is a

contradiction. �

Theorem 4.3.15. [M. M. Choban] A feathered group is Čech-complete if and only if
it is Raı̆kov complete.
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Proof. Let G be a feathered group. If G is Čech-complete, then Theorem 4.3.7 implies

that G is Raı̆kov complete. Conversely, suppose that G is Raı̆kov complete. Since G is

feathered, there exists a compact set F of countable character in G which contains the

identity e of G. Let {Un : n ∈ ω} be a base for G at F . Choose a sequence {Vn : n ∈ ω} of

open symmetric neighbourhoods of e in G satisfying V 2
n+1 ⊂ Vn∩Un for each n ∈ ω. Then,

by Lemma 4.3.10, H =
⋂

n∈ω Vn is a compact subgroup of G, H ⊂ F and {Vn : n ∈ ω} is

a base for G at H .

Apply Lemma 3.3.10 to define a continuous prenorm N on the group G which satisfies

{x ∈ G : N(x) < 1/2n} ⊂ Vn ⊂ {x ∈ G : N(x) ≤ 2/2n} (4.1)

for each integer n ≥ 0. From our choice of N it follows that

H = {x ∈ G : N(x) = 0}. (4.2)

Let 
 be a pseudometric on G defined by


(x, y) = N(xy−1) + N(x−1y) (4.3)

for all x, y ∈ G. Then 
 is continuous and 
(x, y) = 0 iff xy−1 ∈ H and x−1y ∈ H .

Consider the equivalence relation ∼ on G defined by x ∼ y iff y ∈ xH ∩ Hx or,

equivalently, if x−1y ∈ H and yx−1 ∈ H . Denote by X the quotient space G/∼ and let

π : G→ X be the quotient map. Let also 
∗ be the function on X×X defined by


∗(π(x), π(y)) = 
(x, y)

for all x, y ∈ G. From (4.2) and (4.3) it follows that 
∗ is correctly defined, since


(x, y) = 
(x′, y′) whenever π(x) = π(x′) and π(y) = π(y′). In addition, our definition of


∗ implies that 
∗(z, t) = 0 if and only if z = t, that is, 
∗ is a metric on X. For any x ∈ G,

z ∈ X and ε > 0, we put

B(x, ε) = {x′ ∈ G : 
(x′, x) < ε}, B∗(z, ε) = {z′ ∈ X : 
∗(z′, z) < ε}.
A simple verification, with the use of (4.2) and (4.3), shows that

B(x, ε) = π−1(B∗(π(x), ε)) for all x ∈ G and ε > 0. (4.4)

Therefore, the metric 
∗ is continuous on the quotient space X. We claim that 
∗ generates

the quotient topology of the space X = G/∼. Indeed, suppose that the preimage

O = π−1(W ) is open in G, where W is a non-empty subset of X. Take an arbitrary

point z ∈ W . Then π−1(z) = xH ∩ Hx ⊂ O, where x is an arbitrary point of the fiber

π−1(z). By Lemma 4.3.14, there exists n ∈ ω such that xVn ∩ Vn x ⊂ O. Let ε = 2−n.

Then (4.1) and (4.3) imply that B(x, ε) ⊂ xVn ∩ Vn x. So, from (4.4) it follows that

π−1(B∗(z, ε)) = B(x, ε) ⊂ xVn ∩ Vn x ⊂ O.

The above inclusion means that B(z, ε) ⊂ W , so the set W is the union of a family of open

balls in (X, 
∗). Hence W is open in (X, 
∗), which proves the claim.

A similar argument shows that the mapping π : G → X is closed. Indeed, let F be

a closed subset of G and z ∈ X \ π(F ) be an arbitrary point. Choose a point x ∈ G
with π(x) = z. Then C = π−1(z) = xH ∩ Hx is a compact subset of G disjoint from

F , so one can apply Theorem 1.4.29 to find an open neighbourhood V of e in G such that

CV ∩ F = ∅. By Lemma 4.3.14, there exists n ∈ ω such that xVn ∩ Vn x ⊂ CV . The

above argument implies that π−1(B∗(z, 2−n)) ⊂ xVn ∩ Vn x ⊂ CV , which in its turn gives
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B∗(z, 2−n) ∩ π(F ) = ∅. Thus, π(F ) is closed in X and, hence, the mapping π is closed.

Observe that all fibers of π are compact, so the mapping π is, in fact, perfect.

Let us prove that the metric space (X, 
∗) is complete. Suppose not. Then X contains

a sequence of open balls {B∗(zn, 2−kn ) : n ∈ ω} satisfying the following two conditions:

(i) kn ≥ n and B∗(zn+1, 2−kn+1 ) ⊂ B∗(zn, 2−kn ) for each n ∈ ω;

(ii)
⋂∞

n=0 B∗
n(zn, 2−kn ) = ∅, the closures are taken in (X, 
∗).

For every n ∈ ω, set Un = π−1(B∗(zn, 2−kn))) and pick an arbitrary point xn ∈ π−1(zn).

Consider the set Wn = {x ∈ G : N(x) < 2−kn}. From (4.1), (4.3), and (4.4) it follows that

Un = B(xn, 2−kn ) ⊂ xnWn ∩Wnxn. Since the sequence {Un : n ∈ ω} is decreasing, it is

contained in a maximal open filter ξ on G. Let V be an arbitrary open neighbourhood of e
in G. Observe that, by (4.1), the family {Wn : n ∈ ω} is a base for G at H . Hence one can

find elements h1, . . . , hm ∈ H and an integer n0 ∈ ω such that

H ⊂ Wn0
⊂ (

m⋃
i=0

hiV ) ∩ (

m⋃
i=0

Vhi).

Since Un0
∈ ξ and Un0

⊂ (
⋃m

i=0 xn0
hiV )∩ (

⋃m
i=0 Vhixn0

), there exist integers i, j ≤ m such

that xn0
hiV ∈ ξ and Vhjxn0

∈ ξ. Therefore, ξ is a Cauchy filter on G. Further, from (ii)

and our definition of the sets Un it follows that
⋂

U∈ξ U ⊂ ⋂∞
n=0 Un = ∅. This contradicts

our assumption that the group G is Raı̆kov complete, thus proving the completeness of the

metric space (X, 
∗).

Finally, X is Čech-complete as is every complete metric space (see [165, Theo-

rem 4.3.26]), and so is the perfect preimage G of X by [165, Theorem 3.9.10]. �
Feathered groups (even metrizable groups) need not be Čech-complete — take the

group of rational numbers, for example. It turns out, however, that feathered groups are

subgroups of Čech-complete groups.

Theorem 4.3.16. [M. M. Choban] Every feathered group can be embedded as a
subgroup in a Čech-complete topological group.

Proof. Let G be a feathered group. Then G is a dense subgroup of 
G, the Raı̆kov

completion of G. Let K be a non-empty compact subset of countable character in G. Then

Lemma 4.3.3 implies that K has countable character in 
G, so that the complete group 
G
is feathered as well. Hence from Theorem 4.3.15 it follows that 
G is a Čech-complete

group. �
In general, a local property does not imply the corresponding global property. For

example, a locally connected space is not necessarily connected, and a locally compact

space can easily fail to be compact. The same happens in the class of topological groups.

For example, the groupR×Z is both locally connected and locally compact, while it is neither

connected nor compact. Let us show that, for topological groups, local Čech-completeness

and Čech-completeness coincide.

Proposition 4.3.17. Every locally Čech-complete topological group is Čech-complete.

Proof. Let U be a Čech-complete neighbourhood of the identity e in a topological

group G. Since Čech-completeness is hereditary with respect to taking open subspaces, we

can assume that U is open in G. By Lemma 4.3.4, there exists a compact set K in G such
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that e ∈ K ⊂ U and χ(K, U) ≤ ω. Since U is open in G, we have χ(K, G) = χ(K, U) ≤ ω.

Therefore, the group G is feathered. In addition, G is Raı̆kov complete by Theorem 4.3.7.

The conclusion now follows from Theorem 4.3.15. �

Corollary 4.3.18. Suppose that G is a topological group, and let H be a locally
compact subgroup of G such that the quotient space G/H is locally Čech-complete. Then
G is also Čech-complete.

Proof. From item 7) of Corollary 3.2.6 it follows that G is locally Čech-complete.

It remains to refer to Proposition 4.3.17, according to which any locally Čech-complete

topological group is Čech-complete. �

Let us say that a topological group G is locally feathered if G contains an open set U
and a non-empty compact set K such that K ⊂ U and χ(K, U) ≤ ω. Then, as in the proof of

Proposition 4.3.17, we have χ(K, G) = χ(K, U) ≤ ω, whence it follows that the group G is

feathered. Therefore, the classes of locally feathered groups and feathered groups trivially

coincide.

Čech-complete and feathered groups admit useful characterizations in terms of quotient

spaces given in Theorem 4.3.20 below. Its proof is based on the following lemma.

Lemma 4.3.19. Let G be a topological group and H be a compact subgroup of G. If
H has countable character in G, then the quotient space G/H is metrizable.

Proof. By Theorem 1.5.7, the mapping πH is perfect. Suppose now that {Un : n ∈ ω}
is a countable base for G at H . We define by induction a sequence {Vn : n ∈ ω} of open

symmetric neighbourhoods of the identity e in G such that V 2
n+1 ⊂ Vn ∩Un for each n ∈ ω.

Put P =
⋂

n∈ω Vn. Then, by Lemma 4.3.10, P is a compact subgroup of G, P ⊂ H , and

{Vn : n ∈ ω} is a countable base for G at P . Let πP : G → G/P be the quotient mapping

of G onto the left coset space G/P .

Apply Lemma 3.3.10 to choose a continuous prenorm N on G which satisfies

{x ∈ G : N(x) < 1/2n} ⊂ Vn ⊂ {x ∈ G : N(x) ≤ 2/2n}
for each integer n ≥ 0. It is clear that N(x) = 0 if and only if x ∈ P . Define a continuous

pseudometric d on G by d(x, y) = N(x−1y) for all x, y ∈ G. Observe that if x′ ∈ xP and

y′ ∈ yP for some x, y ∈ G, then d(x′, y′) = d(x, y). This enables us to define a function 

on G/P ×G/P by


(πP (x), πP (y)) = d(x, y)

for all x, y ∈ G. Since the mapping πP is quotient, 
 is a continuous metric on Y = G/P .

Let us verify that 
 generates the quotient topology of the space Y . Given points x ∈ G,

y ∈ Y and a positive number ε, we define open balls

B(x, ε) = {x′ ∈ G : d(x′, x) < ε}
and

B∗(y, ε) = {y′ ∈ G/P : 
(y′, y) < ε}
in G and Y , respectively. From our definition of 
 it follows that if x ∈ G and y = πP (x),

then B(x, ε) = π−1
P (B∗(y, ε)). Suppose that the preimage O = π−1

P (W ) is open in G, where

W is a non-empty subset of Y . Take an arbitrary point y ∈ W . Then π−1
P (y) = xP ⊂ O,

where x is an arbitrary point of the fiber π−1
P (y). Since {Vn : n ∈ ω} is a base for G at P ,
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there exists n ∈ ω such that xVn ⊂ O. Let ε = 2−n. Then our choice of N and d implies

that B(x, ε) ⊂ xVn. Therefore, we have

π−1
P (B∗(y, ε)) = B(x, ε) ⊂ xVn ⊂ O.

It follows that B∗(y, ε) ⊂ W , so the set W is the union of a family of open balls in (Y, 
).

Hence W is open in (Y, 
), which proves that the metric and quotient topologies on Y = G/P
coincide.

Since P ⊂ H , we can define the natural mapping ϕ : G/P → G/H by ϕ(xP) = xH
for every x ∈ G. Then ϕ satisfies the equality πH = ϕ ◦πP . Since πH is a perfect map, so

is ϕ (see [165, Proposition 3.7.10]). Therefore, the perfect image G/H of the metrizable

space G/P is also metrizable by [165, Theorem 4.4.15]. �
Theorem 4.3.20. [B. A. Pasynkov] A topological group G is feathered if and only

if it contains a compact subgroup H such that the left quotient space G/H is metrizable.
Similarly, the group G is Čech-complete if and only if it contains a compact subgroup H
such that the left quotient space G/H is metrizable by a complete metric.

Proof. Suppose that G contains a compact subgroup H such that the left quotient

space X = G/H is metrizable. Then, by Theorem 1.5.7, the mapping π : G → X is

perfect. We now claim that the subgroup H ⊂ G has countable character in G. Indeed, let

{Un : n ∈ ω} be a countable base for X at the point π(e), where e is the neutral element

of G. Then the family {Vn : n ∈ ω} is a base for G at H , where Vn = π−1(Un) for each

n ∈ ω. To verify this fact, choose an arbitrary open neighbourhood O of H in G. Then

F = G\O is closed in G and the image π(F ) is a closed subset of X which does not contain

π(e). Hence Un ∩ π(F ) = ∅ for some n ∈ ω, which in its turn implies that Vn ∩ F = ∅.

Therefore, H ⊂ Vn ⊂ O, thus proving that χ(H, G) ≤ ω. Since H is compact, the group

G is feathered.

Conversely, if the group G is feathered, it contains a compact subgroup H of countable

character in G by Proposition 4.3.11. Then Lemma 4.3.19 implies that the left quotient

space X = G/H is metrizable. This proves the first part of the theorem.

Now, suppose that the group G is Čech-complete. Then G is feathered by Corol-

lary 4.3.5, so Proposition 4.3.11 implies that G contains a compact subgroup H of count-

able character in G. In its turn, it follows from Theorem 1.5.7 and Lemma 4.3.19 that the

quotient mapping π : G → G/H is perfect and the left coset space G/H is metrizable.

Since Čech-completeness is an invariant of perfect mappings (see [165, Theorem 3.9.10]),

the space G/H is Čech-complete. It remains to note that every metrizable Čech-complete

space is metrizable by a complete metric [165, Theorem 4.3.26].

Conversely, if the group G contains a compact subgroup H such that the left coset

space G/H is metrizable by a complete metric, then the space G/H is Čech-complete by

[165, Theorem 4.3.26]. Since, by Theorem 1.5.7, the quotient mapping π : G → G/H
is perfect, and Čech-completeness is an inverse invariant of perfect mappings (see [165,

Theorem 3.9.10]), we conclude that the space G is Čech-complete. �
By Corollary 3.1.4, locally compact groups are strongly paracompact. We apply the

above theorem to establish that feathered groups (which form a considerably wider class

than locally compact groups) have a slightly weaker property.

Corollary 4.3.21. Every feathered group is paracompact.
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Proof. Let G be a feathered group. By Theorem 4.3.20, G contains a compact

subgroup H such that the left coset space G/H is metrizable. Then the quotient mapping

π : G→ G/H is perfect by Theorem 1.5.7. Hence, the space G is paracompact according

to [165, Theorem 5.1.35]. �

Since Čech-complete groups are feathered, we obtain the next result:

Corollary 4.3.22. Every Čech-complete group is paracompact.

Corollary 4.3.22 is not valid for Čech-complete spaces. Indeed, let W be the space

of ordinal numbers less than or equal to ω1, with the topology generated by the natural

order, and let W ′ be the subspace of W consisting of ordinals ≤ ω. Then X = W × W ′

is a compact space and T = W ×W ′ \ {(ω1, ω)} is an open subspace of X known as the

Tychonoff plank. It is clear that T is locally compact and, hence, Čech-complete. However,

T fails to be normal by [165, 3.12.19 (a)]. Thus, T is a Čech-complete non-paracompact

space.

Our aim now is to study quotient spaces of feathered and Čech-complete groups. We

will show that every quotient space of a feathered group is paracompact.

Theorem 4.3.23. Suppose that H is a closed subgroup of a feathered group G. Then
the quotient space G/H is paracompact.

Proof. By Theorem 4.3.20, G contains a compact subgroup K such that the left coset

space G/K is metrizable. Since the mapping i : G/K → K\G defined by i(xK) = Kx
for each x ∈ G, is a homeomorphism between G/K and the right coset space K\G, the

latter space is also metrizable. Let πK : G → K\G be the quotient mapping. We also

consider the quotient mapping πH : G → G/H onto the left coset space G/H . Denote

by Z the double coset space K\G/H endowed with the quotient topology with respect to

the canonical mapping π : G → Z (see Proposition 1.8.17). Then we define the natural

mappings qH : K\G → K\G/H and qK : G/H → K\G/H by qH (Kx) = KxH and

qK(xH) = KxH , for each x ∈ G. It is clear that π = qK ◦ πH = qH ◦ πK.

G
πH ��

πK

��

π













 G/H

qK

��
K\G qH �� K\G/H

The space Z = K\G/H is metrizable. Indeed, consider the right uniformity �r
Z on Z

(see Theorem 1.8.21). Since the quotient space K\G is metrizable and the mapping πK of

G onto K\G is perfect by Theorem 1.5.7, the group G has a countable neighbourhood base

{Un : n ∈ ω} at K. For every n ∈ ω, let

On = {(π(x), π(y)) : y ∈ Unx}.
It follows from the definition of �r

Z that On ∈ �r
Z for all n ∈ ω, and we will verify that the

family {On : n ∈ ω} is a base for the uniformity �r
Z. Every element of �r

Z contains the set

EV = {(π(x), π(y)) : y ∈ Vx},
for some open neighbourhood V of the identity in G. Since the set KV is open in G and

contains K, there exists n ∈ ω with Un ⊂ KV . It is clear that EW ⊂ EV whenever W ⊂ V
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and that EKV = EV . Therefore, On = EUn ⊂ EKV = EV . Thus, the uniform space (Z, �r
Z)

has a countable base, so the space Z is metrizable.

It follows from Proposition 1.8.18 that the mapping qK is perfect. By [165, Theo-

rem 5.1.3], every metrizable space is paracompact. Therefore, the quotient space G/H
is paracompact as a perfect preimage of the metrizable space K\G/H according to [165,

Theorem 5.1.35]. The proof is complete. �
The next result can be deduced from Theorem 4.3.23, but we prefer to supply it with a

direct proof.

Corollary 4.3.24. Let f : G → H be an open continuous homomorphism of a
feathered group G onto a group H . Then H is feathered.

Proof. The group G contains a non-empty compact set K which has a countable base

in G. Let {Un : n ∈ ω} be such a base for G at K. Then the family {f (Un) : n ∈ ω} is a

countable base for H at the compact set f (K), so the group H is feathered. �
Similarly to feathered groups, Čech-complete groups are stable under taking quotient

spaces and quotient groups. Our proof of this fact requires an important result from general

topology given below.

Proposition 4.3.25. Let f : X → Y be an open continuous mapping of a Čech-
complete space X onto a paracompact space Y . Then Y is Čech-complete.

Proof. Extend f to a continuous mapping g : βX → βY , where βX and βY are Čech–

Stone compactifications of X and Y , respectively. Since the mapping g is perfect, so is the

restriction of g to the inverse image Z = g−1(X) (see [165, Prop. 3.7.4]). First, we prove

the following:

Claim. For every open set U in Z satisfying f (U ∩ X) = Y , there exists an open set V in
Z such that clZV ⊂ U and f (V ∩X) = Y .

For every y ∈ Y , we choose an open set Oy in Z such that clZOy ⊂ U and

Oy ∩ f−1(y) = ∅. Then f being open, the family {f (Oy ∩ X) : y ∈ Y} is an open

covering of the space Y . Since Y is paracompact, this covering has a locally finite open

refinement {Ui : i ∈ I}. For every i ∈ I, choose a point yi ∈ Y such that Ui ⊂ f (Oyi ∩X).

Then the set

V =
⋃
i∈I

Oyi ∩ g−1(Ui)

is as required. Indeed, V is open in Z and V ⊂ U. Take an arbitrary point x ∈ clZV . Since

the family {Ui : i ∈ I} is locally finite, we can find an open neighbourhood W of x in Z
and a finite subset F of I such that f (W ) ∩ Ui = ∅ for each i ∈ I \ F . This implies that

W ∩ g−1(Ui) = ∅ for each i ∈ I \ F , so that

x ∈ clZ

(⋃
i∈F

Oyi ∩ g−1(Ui)

)
⊂

⋃
i∈F

clZOyi ⊂ U.

Therefore, clZV ⊂ U.

To show that f (V ∩ X) = Y , take an arbitrary point y ∈ Y . Then y ∈ Ui for some

i ∈ I, so we have:

y ∈ f (Oyi ∩X) ∩ f (f−1(Ui)) = f (Oyi ∩ f−1(Ui)) ⊂ f (V ∩X).
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This finishes the proof of the Claim.

Since X is Čech-complete, there exists a family {Un : n ∈ ω} of open sets in βX
such that X =

⋂
n∈ω Un. Apply Claim to construct by induction a sequence {Vn : n ∈ ω}

of open sets in Z such that clZV0 ⊂ U0, clZ(Vn+1) ⊂ Vn ∩ Un+1, and f (Vn ∩ X) = Y ,

for each n ∈ ω. Then P =
⋂

n∈ω Vn is a Gδ-set in Z and P ⊂ X. It also follows that

P =
⋂

n∈ω Vn =
⋂

n∈ω clZVn is closed in Z.

Let us show that f (P) = Y . For every y ∈ Y , the fiber g−1(y) is a compact subset

of Z. It follows from f (Vn ∩ X) = Y that g−1(y) ∩ clZVn = ∅ for each n ∈ ω. Since

clZVn+1 ⊂ clZVn for each n ∈ ω, the intersection

g−1(y) ∩
∞⋂

n=0

clZVn = g−1(y) ∩
∞⋂

n=0

Vn = g−1(y) ∩ P

is not empty. Therefore, f (x) = y for each x ∈ g−1(y)∩P , whence it follows that f (P) = Y .

To complete the proof, we note that P is Čech-complete as a closed subspace of the

Čech-complete space Z. Hence the restriction of g to P is a perfect mapping of P onto X (see

[165, Prop. 3.7.4]) and, consequently, X is Čech-complete by [165, Theorem 3.9.10]. �

Theorem 4.3.26. If N is a closed subgroup of a Čech-complete group G, then the
quotient space G/N is also Čech-complete.

Proof. Since every Čech-complete group is feathered, the space G/N is paracompact

by Theorem 4.3.23. Now the conclusion follows from Proposition 4.3.25. �

Our aim now is to establish that, under some mild addition conditions, every continuous

onto homomorphism of Čech-complete groups is open. First, we introduce the necessary

concepts and then prove a theorem from general topology which is interesting in itself.

Let us call a subset U of a space X nearly open if U is in the interior of its closure. A

mapping f : X → Y is said to be nearly continuous if the preimage f−1(U) is nearly open

in X for each open set U ⊂ Y . Similarly, the mapping f is called nearly open if f (V ) is

nearly open in Y , for each open set V ⊂ X. Notice that for a bijection f : X → Y , f is

nearly open if and only if f−1 : Y → X is nearly continuous.

We also say that a mapping f : X → Y has closed graph if the graph of f ,

Gr(f ) = {(x, y) ∈ X× Y : x ∈ X, y = f (x)},
is a closed subset of the product space X× Y .

Theorem 4.3.27. Let f : X → Y be a nearly continuous mapping of a Hausdorff space
X to a Čech-complete space Y . If f has the closed graph and f−1(C) is compact for every
compact set C ⊂ Y , then f is continuous.

Proof. Given an open covering � of the space Y and a set A ⊂ Y , we will say that

A has the diameter less than � provided that A ⊂ U for some U ∈ �. A sequence

{�n : n ∈ ω} of open coverings of Y is called complete if, for every family � of non-empty

closed sets in Y which has the finite intersection property and contains elements of diameter

less than �n for each n ∈ ω, the intersection
⋂

� is non-empty and compact. According to

[165, Theorem 3.9.2], the Čech-complete space Y has a complete sequence {�n : n ∈ ω}
of open coverings.

First, we prove the following auxiliary fact:
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Claim. Let V and W be open subsets of Y such that f−1(V )∩f−1(W ) = ∅. Then for every
n ∈ ω, there exist open sets Vn and Wn in Y of diameter less than �n such that Vn ⊂ V ,
Wn ⊂ W , and f−1(Vn) ∩ f−1(Wn) = ∅.

Indeed, pick a point x ∈ f−1(V )∩ f−1(W ) and choose an open neighbourhood Wn of

f (x) in Y of diameter less than �n and such that Wn ⊂ W . Then f−1(Wn) is a neighbourhood

of x in X, so there is y ∈ f−1(V )∩ f−1(Wn). Let Vn be an open neighbourhood of f (y) in

Y of diameter less than �n and such that Vn ⊂ V . Since f−1(Vn) is a neighbourhood of y,

we have that f−1(Vn) ∩ f−1(Wn) = ∅. This proves our Claim.

We turn to the proof of the theorem. To deduce the continuity of f , it suffices to verify

that the inclusion

f−1(G) ⊂ f−1(G) (4.5)

holds for every open set G ⊂ Y . Indeed, for an arbitrary point x ∈ X, let O be a

neighbourhood of y = f (x) in Y . Since Y is completely regular (hence, regular), there exists

an open neighbourhood W of y such that W ⊂ O. Then P = f−1(W ) is a neighbourhood

of x in X and (4.5) implies that f (P) ⊂ f (f−1(W )) ⊂ W ⊂ O. Therefore, f is continuous.

Suppose to the contrary that (4.5) fails to hold for some open set G ⊂ Y . Then

f−1(G) ∩ f−1(H) = ∅, where H = Y \G. Let us put V0 = G and W0 = H . Apply the

above Claim to define by induction sequences {Vn : n ∈ ω} and {Wn : n ∈ ω} of open sets

in Y satisfying the following conditions for each n ∈ ω:

(i) Vn+1 ⊂ Vn, Wn+1 ⊂ Wn;

(ii) both sets Vn and Wn have the diameter less than �n;

(iii) f−1(Vn) ∩ f−1(Wn) = ∅.

Consider the sets A =
⋂

n∈ω Vn and B =
⋂

n∈ω Wn. It follows from the completeness of

the sequence {�n : n ∈ ω} and (ii) that A and B are compact and non-empty. In addition,

we have that

(a) the families {Vn : n ∈ ω} and {Wn : n ∈ ω} are bases for Y at A and B, respectively.

Suppose to the contrary that there exists on open neighbourhood O of A in Y such that

Vn \ O = ∅ for each n ∈ ω. Put Fn = Vn \ O, where n ∈ ω. Then {Fn : n ∈ ω} is

a decreasing sequence of non-empty closed sets in Y . It follows from (i) and (ii) that for

every n ∈ ω, the set Fn+1 has the diameter less than �n. We infer, by the completeness of

{�n : n ∈ ω}, that the set F =
⋂∞

n=0 Fn is non-empty, which contradicts the fact that

F =

∞⋂
n=0

Fn ⊂
∞⋂

n=0

(Vn \O) = A \O = ∅.

The same argument applies to B and {Wn : n ∈ ω}, thus implying (a).

Apply (iii) to choose, for every n ∈ ω, a point yn ∈ Y such that

(iv) yn ∈ Wn and f−1(Vn) ∩ f−1(yn) = ∅.

It follows from (a) that the subset C = {yn : n ∈ ω} ∪ B of the space Y is compact. Let

Gr(f ) ⊂ X × Y be the graph of f . Since the sets A and C are disjoint, we have that

(f−1(C) × A) ∩Gr(f ) = ∅. By assumptions of the theorem, the set f−1(C) is compact.

Therefore, f−1(C) × A is a compact rectangular subset of the space X × Y disjoint from
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the closed set Gr(f ). By [165, Theorem 3.2.8], there exist open sets U ⊂ X and W ⊂ Y
such that

(b) f−1(C)× A ⊂ U ×W ⊂ (X× Y ) \Gr(f ).

By (a), there exists n ∈ ω such that Vn ⊂ W . It follows from (iv) and (b) that

∅ = f−1(Vn) ∩ f−1(C) ⊂ f−1(W ) ∩ U,

which contradicts the equality f−1(W ) ∩ U = ∅. �

Corollary 4.3.28. If g : X → Y is a nearly open continuous bijection of a Čech-
complete space X onto a Hausdorff space Y , then g is a homeomorphism.

Proof. The inverse mapping f = g−1 of Y to X is nearly continuous. In addition, f
has the closed graph. Indeed, let Gr(f ) and Gr(g) be the graphs of f and g, respectively.

Denote by T the natural homeomorphism of X × Y onto Y × X, T (x, y) = (y, x) for all

x ∈ X and y ∈ Y . The graph of g is closed in X× Y since g is continuous, and the obvious

equality Gr(f ) = T (Gr(g)) implies that Gr(f ) is closed in Y ×X.

It is also clear that if C is a compact subset of X, then f−1(C) = g(C) is a compact set

in Y , by the continuity of g. Therefore, we can apply Theorem 4.3.27 to conclude that f is

continuous. Hence g is a homeomorphism. �

We now need two auxiliary results about nearly open homomorphisms. The first of

them is close to Proposition 1.5.15 while the second one is, in fact, a part of Theorem 4.3.30.

Lemma 4.3.29. Let f : G→ H be a continuous homomorphism of topological groups.
Then the following are equivalent:

a) the interior of f (U) is not empty, for each neighbourhood U of the identity in G;
b) the homomorphism f is nearly open.

Proof. Evidently, it suffices to show that a) implies b). Suppose a) holds. Denote by

�(eG) and �(eH ) the families of neighbourhoods at the neutral elements eG and eH of G
and H , respectively. We claim that f (U) ∈ �(eH ), for each U ∈ �(eG). Indeed, given an

U ∈ �(eG), choose V ∈ �(eG) with V−1V ⊂ U. By our assumption, the set f (V ) contains

a non-empty open set W . Clearly, W−1W is an open neighbourhood of eH and we have that

W−1W ⊂ (
f (V )

)−1
f (V ) = f (V )−1f (V ) = f (V−1V ) ⊂ f (U).

This proves our claim.

To finish the proof, consider an arbitrary open neighbourhood U of eG, take a point

x ∈ U and put y = f (x). Then choose V ∈ �(eG) such that xV ⊂ U. It follows from the

claim that f (V ) contains an open neighbourhood O of eH in H . Therefore, the open set

yO ⊂ H contains y and satisfies yO ⊂ y · f (V ) = f (xV ) ⊂ f (U). We have thus proved

that every point y ∈ f (U) is contained in the interior of f (U), so the homomorphism f is

nearly open. �

Theorem 4.3.30. Every continuous nearly open homomorphism f : G→ H of Čech-
complete groups is open.

Proof. Let N be the kernel of f and K = G/N be the corresponding quotient

group. Let also π : G → G/N be the quotient homomorphism. Clearly, there exists a
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monomorphism g : G/N → H such that g ◦ π = f . Then g is continuous since the

homomorphism π is open. In addition, g is a nearly open mapping since f is.

By Theorem 4.3.26, the group G/N is Čech-complete. Therefore, g : G/N → H is a

continuous nearly open monomorphism of Čech-complete groups. Therefore, the subgroup

P = f (G) of H is dense in some open subset U of H . We can now apply Corollary 4.3.28

to conclude that g : G/N → P is a homeomorphism, i.e., g is a topological isomorphism.

Hence both groups G/N and P are Raı̆kov complete by Theorem 4.3.7. Denote by K the

closure of P in H . Then K is a closed subgroup of H and K contains U. Therefore, the

group K is open in H . Since P is a dense Raı̆kov complete subgroup of K, we must have

K = P . Therefore, g is a topological isomorphism between G/N and the open subgroup

K of H and, hence, the homomorphism f = g ◦ π is open. �

The next example shows that all assumptions in Theorem 4.3.30 are essential, so the

result we just proved is, in a sense, best possible.

Example 4.3.31. There exists a continuous non-open isomorphism f : G→H of

topological groups, where H is compact metrizable and G, f satisfy one of the following

conditions:

a) G is locally compact (hence, Čech-complete);

b) G is precompact and f is nearly open.

For a), let G be the group T with the discrete topology and H be the same group T with the

usual compact topology. For b), take an arbitrary discontinuous homomorphism g : T→ T
and let G be the graph of g. Then G is a subgroup of the product group T×T and we endow

G with the subspace topology. Again, let H be the same as in a). Then the restriction to G
of the projection of T×T onto the first factor is a continuous isomorphism f of G onto H .

The fact that f is nearly open follows from the proposition given below. �

Proposition 4.3.32. A continuous homomorphism f : G→ H of an ω-narrow group
G onto a group H with the Baire property is nearly open.

Proof. According to Lemma 4.3.29, it suffices to show that the interior of the set f (U)

is not empty, for every open neighbourhood U of the neutral element in G. Since the group

G is ω-narrow, there exists a countable set C ⊂ G such that G =
⋃

x∈C xU. Then the sets

f (xU), with x ∈ C, cover the group H . By the Baire property of H , there must exist x ∈ C
such that the closure of f (xU) has a non-empty interior. Since the translations in H are

homeomorphisms, the interior of f (U) is not empty either, as required. �

In some special cases, one can omit the assumption of nearly openness of the

homomorphism f in Theorem 4.3.30. For example, combining Theorem 4.3.30 and

Proposition 4.3.32, we obtain the following:

Corollary 4.3.33. Every continuous onto homomorphism of ω-narrow Čech-
complete groups is open.

Since every space metrizable by a complete metric is Čech-complete (see [165,

Theorem 4.3.26]), we also deduce the following result:

Corollary 4.3.34. Every continuous onto homomorphism of separable completely
metrizable groups is open.
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It follows from Theorem 4.3.20 that every feathered topological group is a preimage of

a metrizable space under a perfect mapping. In the general setting, preimages of metrizable

spaces under perfect mappings were characterized in [16] (see also [60, Ch. 5, Problem 228])

as paracompact p-spaces. A space X is said to be a p-space or feathered space if it is

Tychonoff and there exists a countable collection � = {γn : n ∈ ω} of families γn of open

sets in the Čech–Stone compactification βX of X such that
⋂{St(x, γn) : n ∈ ω} ⊂ X, for

every x ∈ X. Here St(x, γn) is the union of all elements of the family γn that contain x. It is

easy to see that every metrizable space is a p-space, and every Čech-complete space is a p-

space. Thus, each locally compact space is a p-space. On the other hand, every non-empty

p-space X, evidently, contains a non-empty compact subset of countable character in X. It

was established in [16] that a Tychonoff space X admits a perfect mapping onto a metrizable

space if and only if X is a paracompact p-space. Hence, applying Theorem 4.3.20, we obtain

the following:

Theorem 4.3.35. A topological group is feathered iff it is a p-space, and iff it is a
paracompact p-space.

We have established in Section 3.2 that when H is a locally compact subgroup of an

arbitrary topological group G, then the natural quotient mapping π of G onto the quotient

space G/H has some nice properties. Now we will apply these results to the class of

feathered topological groups.

Čech-completeness is preserved by perfect preimages [165, Theorem 3.9.10]. Simi-

larly, we have the following preservation result.

Proposition 4.3.36. The following are valid:

a) A closed subspace of a feathered space is feathered.
b) If f : X → Y is a perfect onto mapping of Tychonoff spaces and the space Y is feathered,

then so is X.

Proof. Item a) is trivial, so we only verify b). If Y is feathered, then there exists

a countable collection � = {γn : n ∈ ω} of open coverings of Y in βY such that

S(y) =
⋂

n∈ω St(y, γn) ⊂ Y , for each y ∈ Y . Extend f to a continuous mapping

g : βX → βY . For every n ∈ ω, let λn = {g−1(U) : U ∈ γn}. Then λn is an open

covering of X in βX. Take an arbitrary point x ∈ X and put y = f (x) = g(x). It follows

from the definition of the coverings λn that St(x, λn) = g−1(St(y, γn)) for each n ∈ ω, so

that

T (x) =
⋂
n∈ω

St(x, λn) = g−1

(⋂
n∈ω

St(y, γn)

)
= g−1(S(y)).

Since the mapping f is perfect, we have that g(βX \ X) ⊂ βY \ Y or, equivalently,

X = g−1(Y ) (see [165, Theorem 3.7.15]). Therefore, the inclusion S(y) ⊂ Y implies

that T (x) = g−1(S(y)) ⊂ X, and we conclude that the space X is feathered. �
The above proposition leads to the following two results that complement Corol-

lary 3.2.6:

Theorem 4.3.37. Suppose that G is a topological group, and H a locally compact
subgroup of G such that the quotient space G/H is a feathered space. Then G is a
paracompact feathered space.

Cech-complete and feathered topological groupsˇ
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Proof. From Theorem 3.2.2 it follows that there exists an open neighbourhood U of the

neutral element e in G such that U is a preimage of a closed subset of G/H under a perfect

mapping. The class of feathered spaces is closed under taking closed subspaces, by a) of

Proposition 4.3.36, so U is a feathered space itself by b) of the same proposition. It follows

that U contains a non-empty compact subspace F with a countable base of neighbourhoods

in G which, by Corollary 4.3.21, implies that G is a paracompact feathered space. �

Since every metrizable space is feathered, we have:

Corollary 4.3.38. Suppose that G is a topological group, and H is a locally compact
subgroup of G such that the quotient space G/H is metrizable. Then the group G is feathered
and paracompact.

Exercises

4.3.a. Show that every precompact Čech-complete group is compact.

4.3.b. Verify that every σ-compact Čech-complete group is locally compact.

4.3.c. Let G be a topological group, and H a locally compact subgroup of G such that the quotient

space G/H has a countable network. Then G contains an open subgroup M which is a

Lindelöf space, and, therefore, G is a free topological sum of Lindelöf subspaces.

4.3.d. Formulate and prove a generalization of Lemma 4.3.14 for an arbitrary compact subset K of

a topological group G (without assuming that K has countable character in G).

4.3.e. Give an example of a countable non-feathered topological group.

4.3.f. Let us call a topological group G weakly feathered if G contains a non-empty compact

Gδ-set.

(a) Give an example of a weakly feathered group which is not feathered.

(b) Give an example of a weakly feathered group which fails to be normal (observe that,

by Corollary 4.3.21, such a group cannot be feathered).

(c) Prove that G is weakly feathered if and only if G contains a compact subgroup H such

that the left coset space G/H is submetrizable, that is, admits a coarser metrizable

topology (cf. Theorem 4.3.20).

4.3.g. Give an example of a first-countable non-feathered paratopological group.

4.3.h. Give an example of a first-countable regular non-paracompact paratopological group.

4.3.i. Show that the quotient space G/H in Theorem 4.3.23 is a paracompact p-space.

4.3.j. Is the continuity of the homomorphism in Proposition 4.3.32 essential?

Problems

4.3.A. Prove that every ω-narrow feathered group is Lindelöf. Give an example of a Lindelöf

topological group which is not feathered.

4.3.B. (A. Bouziad [84]) Prove that if a semitopological group G is a Baire feathered space, then

G is a paratopological group.

4.3.C. Let G be a topological group, and bG a Hausdorff compactification of the space G such that

the remainder bG \ G is Lindelöf. Prove that G is a paracompact p-space.

4.3.D. Show that the conclusion in Problem 4.3.C cannot be extended to Tychonoff paratopological

groups.

4.3.E. Construct a topological group G and a closed subgroup N of G such that the quotient space

G/N is locally compact but fails to be paracompact.

Hint. See [410, Example 5.8 (a)].
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4.3.F. Let N be a closed invariant subgroup of a topological group G. Prove that if both groups N
and G/N are Čech-complete, then so is G.

4.3.G. (A. V. Arhangel’skii [49]) Let G be a topological group with a dense Čech-complete subspace.

Prove that G is Čech-complete.

4.3.H. Prove that the usual topological group Q of rational numbers is not homeomorphic to any

Raı̆kov complete topological group.

4.3.I. Suppose that G is a metrizable non-discrete Raı̆kov complete topological group. Prove that

the cardinality of G is not less than 2ω.

Open Problems

4.3.1. Let G be a regular first-countable paratopological group. Is the space G Tychonoff? (See

also Problem 1.3.1.)

4.3.2. Let G be a first-countable Hausdorff semitopological (paratopological) group. Is the space

G subparacompact? (See Exercise 3.2.a.)

4.3.3. Let G be a first-countable regular (Tychonoff) paratopological group. Is the space G
subparacompact?

4.4. P -groups

We call X a P-space if every Gδ-set in X is open. Similarly, a P-group is a topological

group whose underlying space is a P-space. It is easy to see that every regular P-space is

zero-dimensional. Therefore, all P-groups are zero-dimensional. The classes of P-spaces

and P-groups are peculiar in many respects; they may serve as a source of examples and

counterexamples of topological groups with unusual combinations of properties.

We start with some general results on P-groups.

Lemma 4.4.1. Suppose that G is a P-group. Then:

a) G has a base at the identity consisting of open subgroups, so G is zero-dimensional.
b) If G is ω-narrow, then it has a base at the identity which consists of open invariant

subgroups.
c) Every (topological) quotient group of G is also a P-group.
d) If G is a dense subgroup of a topological group H , then H is a P-group.

Proof. a) For a neighbourhood U of the identity e in G, there exists a sequence

{Un : n ∈ ω} of open symmetric neighbourhoods of e in G such that U0 ⊂ U and

U2
n+1 ⊂ Un for each n ∈ ω. Then N =

⋂∞
n=0 Un is a subgroup of G lying in U. Since G is

a P-group, N is open in G. Every open subgroup of G is closed, so G has a base of closed

and open sets at e. Now the homogeneity of G implies the conclusion.

b) Let U be a neighbourhood of the identity in the ω-narrow P-group G. By a), there exists an

open subgroup N of G such that N ⊂ U. Consider the invariant subgroup P =
⋂

x∈G xNx−1

of G. It is clear that P ⊂ N ⊂ U and we claim that P is open in G. Indeed, since G is

ω-narrow, there exists a countable set F in G such that F · N = G. Note that if x, y ∈ G
and y−1x ∈ N, then xNx−1 = yNy−1. Since every element x ∈ G belongs to yN for some

y ∈ F , we conclude that P =
⋂

x∈G xNx−1 =
⋂

y∈F yNy−1 is open in G.

c) Suppose that π : G → H is a continuous open homomorphism of G onto a group H . If

Q is a Gδ-set in H , then π−1(Q) is a Gδ-set in the P-group G, so that π−1(Q) is open in

G. Therefore, Q = ππ−1(Q) is open in H . This proves that H is a P-group.

P-groups
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d) Let {Un : n ∈ ω} be a sequence of open neighbourhoods of the identity e in H . There

exists a sequence {Vn : n ∈ ω} of open symmetric neighbourhoods of e in H such that

V 2
n+1 ⊂ Vn ⊂ Un for each n ∈ ω. Then N =

⋂∞
n=0 Vn is a closed subgroup of H . Since G is

a P-group, P = N ∩G =
⋂∞

n=0(Vn ∩G) is an open subgroup of G. Therefore, we can take

an open set W in H such that W ∩G = P . It is clear that e ∈ W , and the density of G in

H implies that clHW = clHP ⊂ N. Since N ⊂ ⋂∞
n=0 Un, we conclude that the intersection⋂∞

n=0 Un contains the open neighbourhood W of e in H . Therefore, H is a P-group. �
The following simple property of ω-narrow P-groups will be used in Sections 5.6

and 8.6.

Lemma 4.4.2. Let G be an ω-narrow P-group. Then every homomorphic continuous
image K of G with ψ(K) ≤ ω is countable.

Proof. Consider a continuous homomorphism π : G→ K onto a group K of countable

pseudocharacter. Since G is a P-group, the kernel N of π is an open invariant subgroup

of G. By assumption, the group G is ω-narrow, so it can be covered by countably many

translates of N. Therefore, the quotient group G/N is countable. Finally, the groups K and

G/N are algebraically isomorphic, whence |K| ≤ ω. �
We shall show in Chapter 8 that ω-narrow P-groups need not be complete (see

Example 8.2.1). The situation changes if one replaces ω-narrowness by the stronger Lindelöf

property: every Lindelöf P-group is Raı̆kov complete. To deduce this result, we recall the

following well-known topological fact.

Lemma 4.4.3. A Lindelöf subset Y of a Hausdorff P-space X is closed in X.

Proof. Suppose that Y is a proper Lindelöf subset of X. Let a ∈ X \ Y be arbitrary.

For every y ∈ Y , there exist disjoint open sets Uy and Vy in X such that y ∈ Uy and a ∈ Vy.

Since Y is Lindelöf, the family {Uy : y ∈ Y} contains a countable subfamily {Uy : y ∈ C}
such that Y ⊂ ⋃

y∈C Uy. Put U =
⋃

y∈C Uy and V =
⋂

y∈C Vy. Then Y ⊂ U, V is an open

neighbourhood of a in X and U ∩ V = ∅. In particular, Y ∩ V = ∅. This implies that the

complement X \ Y is open in X, so that Y is closed in X. �
Corollary 4.4.4. Let f : X → Y be a continuous mapping of X to a Hausdorff space

Y . If X is Lindelöf and Y is a P-space, then the mapping f is closed.

Proof. If F is a closed subset of X, then both F and f (F ) are Lindelöf, so Lemma 4.4.3

implies that the image f (F ) is closed in Y . �
Proposition 4.4.5. Every Lindelöf P-group G is Raı̆kov complete.

Proof. Suppose that G is a dense subgroup of a topological group H . By d) of

Lemma 4.4.1, H is also a P-group. Then Lemma 4.4.3 implies that G is closed in H ,

whence it follows that G = H . Therefore, the group G is Raı̆kov complete. �
The next result shows that Lindelöf P-groups behave, in a sense, similarly to locally

compact σ-compact groups or to Čech-complete ω-narrow groups (see Theorem 3.1.27 and

Corollary 4.3.33).

Lemma 4.4.6. Let π : G → H be a continuous onto homomorphism of Lindelöf P-
groups. Then π is open.
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Proof. By Lemma 4.4.3, the homomorphism π is closed and, hence, quotient. Let

U be an open subset of G. Then π−1π(U) = U · K is open in G, where K is the kernel

of π. Since π is a quotient mapping, the set π(U) has to be open in H . So π is an open

homomorphism. �

It is natural to ask, whether there exist Lindelöf P-groups of arbitrarily large cardinality.

We will show below, in Example 4.4.11, that the answer is “yes”. Let us first present several

results on Lindelöf P-spaces and their products that form a part of the general topology

background.

Lemma 4.4.7. Let P =
∏

i∈ω Xi be a product space. Suppose that for every n ∈ ω, the
projection πn+1

n : Pn+1 → Pn is closed, where Pk =
∏

i≤k Xi for k ∈ ω. Then the projection
pn : P → Pn is closed for each n ∈ ω.

Proof. Let n ∈ ω be arbitrary, and suppose that pn(F ) is not closed in Pn for a subset

F of P . Choose a point xn in Cn\Cn, where Cn = pn(F ). Suppose that for some m ≥ n, we

have defined points xn, . . . , xm satisfying the following conditions for each i with n ≤ i ≤ m:

(1) xi ∈ pi(F );

(2) πi
i−1(xi) = xi−1 if i > n.

Let Ck = pk(F ) for every k ≥ n. Since the mapping πm+1
m is closed, we have πm+1

m (Cm+1) =

Cm. Hence from xm ∈ Cm (see (1)) it follows that (πm+1
m )−1(xm) ∩ Cm+1 = ∅, so we can

choose a point xm+1 ∈ (πm+1
m )−1(xm) ∩ Cm+1. It is clear that the points xn, . . . , xm, xm+1

satisfy (1) and (2) for each i = n, . . . , m, m + 1. This finishes our construction of the

sequence {xk : k ≥ n}.
By (2), there exists a point x ∈ P such that pk(x) = xk for all k ≥ n. Then (1) implies

that x ∈ F . Since xn = pn(x) /∈ pn(F ) by our choice of xn, we conclude that x /∈ F . Hence

x ∈ F \F , so that the set F is not closed in P . This proves that the projection pn : P → Pn

is closed. �

Lemma 4.4.8. Let X be a Lindelöf space and Y be a Hausdorff P-space. Then the
projection π : X× Y → Y is a closed mapping.

Proof. Suppose that a set F ⊂ X×Y is closed, and take an arbitrary point y ∈ Y\π(F ).

Then (X× {y}) ∩ F = ∅. For every point x ∈ X, choose open sets Ux and Vx in X and Y ,

respectively, such that x ∈ Ux, y ∈ Vx and (Ux × Vx) ∩ F = ∅. Since X is Lindelöf, there

exists a countable set C ⊂ X such that X =
⋃

y∈C Ux. Then the set V =
⋂

x∈C Vx is open

in Y and contains y. Clearly, V ⊂ Vx for each y ∈ C, so (X × V ) ∩ F = ∅. This implies

immediately that V ∩ π(F ) = ∅ and, hence, y /∈ π(F ). We conclude, therefore, that the

set π(F ) is closed in Y . Hence π is a closed mapping. �

Proposition 4.4.9. Let X and Y be Lindelöf P-spaces. Then the product X × Y is
Lindelöf and the projection of X× Y to X is closed.

Proof. The projection p : X×Y → X is closed, by Lemma 4.4.8. Since X is Lindelöf

and the fibers p−1(x) ∼= Y of the mapping p are also Lindelöf, it follows from [165, Th. 3.8.8]

that the product X× Y is Lindelöf. �

Theorem 4.4.10. The product of countably many Lindelöf P-spaces is Lindelöf.

P-groups
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Proof. Let {Xi : i ∈ ω} be a family of Lindelöf P-spaces. Put P =
∏

i∈ω Xi and

Pk =
∏

i≤k Xi, for k ∈ ω. As in Lemma 4.4.7, let pn : P → Pn and πn+1
n : Pn+1 → Pn

be natural projections. It is clear that each Xn is a P-space. Apply induction on n ∈ ω
along with Proposition 4.4.9 to show that the space Xn is Lindelöf and the projection πn+1

n

is closed for each n ∈ ω. Hence Lemma 4.4.7 implies that the projections pn : P → Pn are

also closed.

Let {Fα : α < τ} be a decreasing sequence of non-empty closed sets in P , where τ > ω
is a regular cardinal. For every n ∈ ω, put Kn =

⋂
α<τ pn(Fα). Since {pn(Fα) : α < τ} is

a decreasing sequence of non-empty closed sets in the Lindelöf space Pn, the closed set Kn

is not empty. It is also clear that πn+1
n (Kn+1) ⊂ Kn for each n ∈ ω. In fact, this inclusion is

equality. Indeed, suppose that x ∈ Kn for some n ∈ ω. From pn = πn+1
n ◦ pn+1 it follows

that (πn+1
n )−1(x) ∩ pn+1(Fα) = ∅ for each α < τ. Since the fiber (πn+1

n )−1(x) ∼= Xn+1

is Lindelöf and the sets pn+1(Fα) are closed, the intersection (πn+1
n )−1(x) ∩Kn+1 must be

non-empty. Hence x ∈ πn+1
n (Kn+1), whence the equality πn+1

n (Kn+1) = Kn follows.

The above equality enables us to define by induction a sequence {xn : n ∈ ω} such

that xn ∈ Kn and πn+1
n (xn+1) = xn for each n ∈ ω. As in the proof of Lemma 4.4.7, choose

a point x ∈ P such that pn(x) = xn for all n ∈ ω. Fix an arbitrary α < τ. Our choice of

x implies that pn(x) ∈ pn(Fα) for every n ∈ ω, whence it follows that x ∈ Fα. Therefore,

x ∈ ⋂
α<τ Fα = ∅. This proves that the product space P is Lindelöf. �

The construction that follows makes use of σ-products introduced in Section 1.6.

Example 4.4.11. For every infinite cardinal τ, there exists an Abelian Lindelöf P-

group Gτ of cardinality τ such that (Gτ)
k is topologically isomorphic to Gτ , for each integer

k ≥ 1. In addition, for every τ < ℵω, the group Gτ may be chosen to satisfy w(Gτ) = τ.

In the case τ = ℵ0 one can take Gτ to be a countable infinite Boolean group and endow

Gτ with the discrete topology. Now suppose that A is a set of cardinality τ > ℵ0 and let

K be a non-trivial countable discrete Abelian group with identity e. In the product group

Π = KA, consider the subgroup

Gτ = {x ∈ Π : | supp(x)| < ω},
where supp(x) denotes the set {α ∈ A : x(α) = e}. Clearly, the group Gτ is the σ-product
of τ copies of the group K (see Section 1.6). Since |A| = τ and K is countable, we have

the equality |Gτ | = τ. For every B ⊂ A, let

UB = {x ∈ Gτ : supp(x) ∩ B = ∅}.
Then the family � = {UB : B ⊂ A, |B| ≤ ω} consists of invariant subgroups of countable

index in the group Gτ and forms a base at the identity for a Hausdorff group topology � on

Gτ . Sometimes � is called the ω-box topology. We claim that the group Gτ endowed with

topology � is as required.

Clearly, the family � is closed under countable intersections, so Gτ is a P-group. The

space Gτ is Lindelöf, by Proposition 1.6.44.

Let us show that the group Gτ is topologically isomorphic with (Gτ)
k for each integer

k ≥ 2. There exists a partition A = A1 ∪ A2 ∪ . . . ∪ Ak of the set A such that |Ai| = τ for

each i = 1, . . . , k. Then

Ni = {x ∈ Gτ : supp(x) ⊂ Ai}
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is a subgroup of Gτ which is topologically isomorphic to Gτ , i ≤ k. Note that the group

Gτ is topologically isomorphic to the product group N1 × · · · ×Nk, so that Gτ
∼= (Gτ)

k.

It remains to show that w(Gτ) = τ whenever τ < ℵω. Denote by ([A]≤ω,⊂) the family

of all countable subsets of A ordered by inclusion. We say that a subfamily γ of [A]≤ω is

dominating if every element of [A]≤ω is contained in some element of γ. If |A| = τ, the

minimal size of a dominating subfamily of ([A]≤ω,⊂) is denoted by D(τ). First, we prove

the following:

Claim. If τ = ℵn for some integer n ≥ 1, then D(τ) = τ.

Clearly, τ ≤ D(τ) for every τ > ω, because the set A can be partitioned into τ disjoint

countably infinite subsets, and these cannot be covered by any collection of fewer than τ
countable subsets. Hence, it suffices to show that D(τ) ≤ τ. Since |A| = ℵn, we can

identify A with the set ℵn. If n = 1, then the required dominating family in ([ℵ1]≤ω,⊂) is

{α : α < ω1}. Suppose that the equality D(ℵk) = ℵk holds for each k ≤ n, where n ≥ 1.

By the assumption, for every uncountable ordinal α < ℵn+1 there exists a dominating family

γα in ([α]≤ω,⊂) satisfying |γα| = |α| ≤ ℵn. Put γ =
⋃{γα : ω1 ≤ α < ℵn+1}. Then

|γ| ≤ ℵn+1, and it is easy to see that γ is dominating in ([ℵn+1]≤ω,⊂). Indeed, if A is

a countable subset of ℵn+1, then A ⊂ α for some uncountable α < ℵn+1, so there exists

B ∈ γα with A ⊂ B. Since γα ⊂ γ, this proves that γ is dominating in ([ℵn+1]≤ω,⊂).

Therefore, D(τ) ≤ ℵn+1, whence our Claim follows.

To calculate the weight of the group Gτ , we argue as follows. Let � be a local base

at the neutral element of Gτ , and suppose that � has the minimal possible cardinality. It

is clear that |�| ≤ w(Gτ). We can assume without loss of generality that � ⊂ �, so each

element of � has the form UB, for some countable subset B of the index set A. Suppose

that τ = ℵn, for some integer n ≥ 1. Then, clearly, |A| = ℵn. Consider the subfamily γ of

[A]≤ω defined by

γ = {B ⊂ A : |B| ≤ ω, UB ∈ �}.
It is clear that |γ| = |�|. Since � is a local base at the neutral element of Gτ , the family γ is

dominating in ([A]≤ω,⊂). Hence, the above Claim implies that |γ| ≥ |A| = ℵn. It follows

that |�| ≥ ℵn = τ. On the other hand, take a dominating family λ in ([A]≤ω,⊂) satisfying

|λ| = τ. Then � = {UB : B ∈ λ} is a local base at the neutral element of Gτ with |�| = τ.

Clearly, �∗ = {x + UB : x ∈ Gτ, B ∈ λ} is a base for Gτ , and |�∗| ≤ |λ| · |Gτ | = τ. We

conclude, therefore, that w(Gτ) = τ. �

Exercises

4.4.a. Show that every precompact P-group is finite (and discrete).

4.4.b. Suppose that every non-empty Gδ-set in a topological group H has a non-empty interior.

Show that H is a P-group.

4.4.c. Let H be a closed subgroup of a topological group G, and suppose that both H and the

quotient space G/H are P-spaces. Prove that G is a P-group.

4.4.d. Let H be a closed subgroup of a topological group G. Prove that if both H and G/H are

Lindelöf P-spaces, then so is G.

4.4.e. Give an example of a P-group which is not Raı̆kov complete and does not have a base at the

identity consisting of open invariant subgroups.

4.4.f. Show that continuous onto homomorphisms of ω-narrow P-groups need not be open.

P-groups
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4.4.g. Prove that every regular P-space X is homeomorphic to a closed subspace of a P-group G.

In addition, if X is Lindelöf, then G can also be chosen to be Lindelöf.

4.4.h. Show that every continuous real-valued function defined on a Lindelöf P-group is uniformly

continuous. Can this assertion be extended to ω-narrow P-groups?

4.4.i. Verify that for every τ > ℵ0 and every non-trivial countable discrete group K, the group Gτ

in Example 4.4.11 contains a proper dense subgroup.

Problems

4.4.A. Let G be a topological group, and H be a closed Lindelöf subgroup of G such that G/H is

a P-space. Show that the natural projection π : G → G/H is closed.

4.4.B. Is it possible to embed an arbitrary regular P-space in a Lindelöf P-group?

4.4.C. Is every regular P-space homeomorphic to a closed subspace of an ω-narrow P-group?

4.4.D. Characterize topological groups that can be represented as isomorphic continuous images of

Lindelöf P-groups.

4.4.E. Let {Gi : i ∈ I} be a family of Lindelöf P-groups, and σΠ ⊂ ∏
i∈I

Gi be the σ-product of

this family, considered as a topological subgroup of the product group
∏

i∈I
Gi. Prove that

the topological group (σΠ)ω (see Exercise 3.6.H) is a Lindelöf P-space.

4.4.F. Suppose that G is an ω-narrow P-group. Is the Raı̆kov completion 
G of G a Lindelöf

group?

4.4.G. Suppose that G is a topological group such every bounded continuous real-valued function

on G is uniformly continuous, i.e., G is b-fine (see Problem 1.8.C). Prove the following:

(a) If G is a P-space, then G is fine.

(b) G is pseudocompact or is a P-group.

Hint. For (b), assume that G is not a P-space and show that G must be precompact. Then

apply Problem 1.8.C to deduce that G is pseudocompact.

4.4.H. Combine the conclusions in Problems 4.4.G and 1.8.C to deduce that every b-fine topological

group is fine. Therefore, the classes of fine and b-fine topological groups coincide.

4.4.I. (O. Alas [3]) Prove that a P-group G is fine iff for every clopen set U in G, there exists an

open neighbourhood V of the neutral element in G such that U = VU.

4.4.J. Let τ be an uncountable cardinal number. Give an example of two Lindelöf P-groups of the

weight (exactly) τ which are not homeomorphic.

4.4.K. Does there exist a Lindelöf P-group of weight ℵω?

4.4.L. Let X be a compact Hausdorff space, and G a topological subgroup of the additive group

Cp(X). Show that G is a P-group if and only if G is discrete.

4.4.M. Give an example of a Tychonoff space X, and a topological subgroup G of Cp(X) such that

G is a non-discrete P-space.

Open Problems

4.4.1. Characterize the algebraic structure of Abelian groups admitting a Hausdorff topological

group topology that makes them into Lindelöf P-groups.

4.4.2. Does every Abelian group admit a Hausdorff topology that makes it into a Lindelöf

topological group?

4.4.3. A space is called linearly Lindelöf if every uncountable subset of regular cardinality has a

point of complete accumulation in X. Let G be a linearly Lindelöf P-group. Is G Lindelöf?

4.4.4. Suppose that G is a regular paratopological (semitopological) group such that G is a Lindelöf

P-space. Is G a topological group?

4.4.5. Is there a non-discrete Lindelöf P-group such that every stronger (topological group) topology

on G has at least one isolated point?
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4.4.6. Let τ be an uncountable cardinal. Is there a Lindelöf P-group U such that every Lindelöf

P-group G of weight ≤ τ can be represented as a continuous image of the space U?

4.4.7. Let G and H be Lindelöf P-groups of weight ℵ1. Must G and H be locally homeomorphic?

4.4.8. Let G be a non-discrete Lindelöf P-group. Does G contain a Lindelöf subgroup of cardinality

ℵ1? Does G contain a (closed) subgroup H such that |G/H | = ℵ1?

4.4.9. Characterize the Tychonoff spaces X such that every P-subgroup of Cp(X) is discrete.

4.4.10. Find conditions on Tychonoff spaces X and Y under which the Gδ-modifications of Cp(X)

and Cp(Y ) are topologically isomorphic as topological groups.

4.4.11. Find conditions on Tychonoff spaces X and Y under which the Gδ-modifications of Cp(X)

and Cp(Y ) are homeomorphic.

4.5. Extremally disconnected topological and quasitopological groups

Starting with a very simple proof of Frolı́k’s theorem on homeomorphisms of extremally

disconnected spaces, we show how this theorem implies a well-known result of Malykhin’s

[298]: Every extremally disconnected topological group contains an open and closed

subgroup consisting of elements of order 2. We also apply Frolı́k’s theorem to obtain

some further theorems on the structure of extremally disconnected topological groups

and of quasitopological groups. In particular, it turns out that every Lindelöf extremally

disconnected quasitopological group with square roots is countable, and every extremally

disconnected topological field is discrete.

Theorem 4.5.1. [Z. Frolı́k] Let X be an extremally disconnected Hausdorff space,
and h a homeomorphism of X onto itself. Then the set M = {x ∈ X : h(x) = x} of all fixed
points of h is an open and closed subset of X.

Proof. A subset A of X will be called h-simple if h(A) ∩ A = ∅. Let (using Zorn’s

Lemma) C be a maximal chain of h-simple open subsets of X. Put U =
⋃

C. Then,

by an obvious standard argument, U is h-simple. Thus, the sets U and h(U) are disjoint.

Therefore, since h is a homeomorphism, h−1(U) and h(U) are also h-simple open sets.

Since X is extremally disconnected, it follows that the closures of U and h(U) are disjoint

open sets as well. Thus, U is h-simple. Notice that the maximality of the chain C and

the definition of U imply that U is a maximal h-simple open subset of X. Therefore, U
coincides with U, that is, U is closed. It follows that the sets h(U) and h−1(U) are also

closed. Hence, the set F = U ∪ h(U) ∪ h−1(U) is closed.

Obviously, the intersection of M with any h-simple set is empty. Since F is the union

of three h-simple sets, it follows that M∩F = ∅. Therefore, X\F is an open set containing

M. Let us show that M = X \ F (which will obviously make the proof of Theorem 4.5.1

complete).

Assume the contrary. Then there exists a ∈ X \ F such that h(a) = a. Since X
is Hausdorff and h is continuous, there exists an open neighbourhood W of a such that

h(W ) ∩W = ∅ and W ∩ F = ∅. Then W is h-simple, and W ∩ U = ∅, W ∩ h(U) = ∅,

W ∩ h−1(U) = ∅, from which it follows that U ∪ W is an h-simple open set that

properly contains U. On the other hand, by the maximality of U this is impossible, a

contradiction. �
The sets U and h(U) are disjoint, as well as the sets U and h−1(U), while the sets h(U)

and h−1(U) may have a non-empty intersection. If we wish to have a disjoint covering of

Extremally disconnected topological and quasitopological groups
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the complement of M by open and closed h-simple subsets of X, we only have to replace

h−1(U) by the set h−1(U) \ h(U).

We recall that a group G is Boolean if every element of G is of order 2 (see

Example 1.2.9). It is easy to see that every Boolean group is Abelian. Indeed, if a, b ∈ G
then abab = e and, multiplying this equality by a from the left and by b from the right, we

obtain ba = ab.

Extremally disconnected groups need not be Boolean — the product of any extremally

disconnected group G with a discrete group H is extremally disconnected, while H may have

no elements x satisfying x2 = eH , except for the identity eH . However, every extremally

disconnected group must contain a relatively big Boolean subgroup:

Theorem 4.5.2. [V. I. Malykhin] Let G be an extremally disconnected topological
group. Then there exists an open and closed Abelian subgroup H of G such that a2 = e,
for each a ∈ H .

Proof. The mapping h : G → G defined by h(a) = a−1 for each a ∈ G is a

homeomorphism of G. By Theorem 4.5.1, the set U = {a ∈ G : a2 = e} is an open

neighbourhood of the neutral element e. Since G is a topological group, there exists an

open neighbourhood V of e such that V 2 ⊂ U. Every two elements a and b of V commute.

Indeed, abab = e, since ab ∈ U. Now from a2 = e and b2 = e it follows that ab = ba.

Therefore, the subgroup H of G generated by V is Abelian. Since V is open, the subgroup

H is also open and, therefore, closed in X. Finally, since the Abelian group H is generated

by V , and all elements of V are of order 2, it follows that a2 = e, for every a ∈ H . �
The above proof depends heavily on the assumption that G is a topological group, in

particular, on the joint continuity of multiplication in G. If we replace this assumption

with the weaker one that the multiplication is separately continuous, we are no longer able

to derive a conclusion as strong as that in Theorem 4.5.2, but we can still obtain some

interesting information on the topological and algebraic structure of G.

Theorem 4.5.3. Let G be an extremally disconnected quasitopological group. Then
the set W = {a ∈ G : a2 = e} is an open and closed neighbourhood of the neutral element
e of G.

Proof. The inverse mapping of G onto itself is a homeomorphism, and e is a fixed

point of this mapping. It remains to apply Theorem 4.5.1. �
It is well known that elements of order 2 in a group need not constitute a subgroup.

This happens because they do not have to commute. In this light, the next result is of some

interest.

Proposition 4.5.4. Let G be an extremally disconnected quasitopological group. Then,
for every element a of G of order 2, there exists an open neighbourhood V of the neutral
element e such that a commutes with every element of V ∪ aV .

Proof. By Theorem 4.5.3, the set U of all elements of G of order 2 is open in G.

Since G is semitopological and a ∈ U, there exists an open neighbourhood V of the neutral

element e such that V ⊂ U and aV ⊂ U. Let b ∈ V . Then ab ∈ U and, therefore,

abab = e. Since a2 = e and b2 = e, it follows that ab = ba. Thus, a commutes with every

element of V .
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Now, let c ∈ aV . Then c = ab, for some b ∈ V , and ac = aab, ca = aba = aab.

Therefore, ac = ca. �

In the proof of Theorem 4.5.6 below we apply Proposition 4.5.4. However, the next

stronger statement is proved by a slightly more elaborate argument. If G is a group and

a ∈ G, we denote by Ca the set of all b ∈ G which commute with a (that is, satisfy the

condition ab = ba). It is clear that Ca is a subgroup of G, and if G is a topological group,

then Ca is closed in G.

Theorem 4.5.5. Let G be an extremally disconnected quasitopological group. Then,
for any a ∈ G, the set Ca of all b ∈ G that commute with a is an open and closed subgroup
of G (containing a).

Proof. Let φ be the mapping of G to G given by the rule φ(x) = a−1xa, for each x ∈ G.

Clearly, φ is a homeomorphism of the space G onto itself. Therefore, by Theorem 4.5.1,

the set F of all fixed points under φ is open and closed. Since Ca is a subgroup of G, it

remains to check that Ca = F . We have: φ(x) = x if and only if a−1xa = x if and only if

ax = xa if and only if x ∈ Ca. �

Remark. Theorem 4.5.5 allows us to strengthen Theorem 4.5.2 in the following way.

Let G be an extremally disconnected topological group. Then, for any a ∈ G, there exists

an open Boolean subgroup H of G such that ab = ba, for every element b of H .

Theorem 4.5.6. Let G be an extremally disconnected quasitopological group such that
G is generated by every open neighbourhood of the neutral element e. Then the group is G
is Boolean.

Proof. By Theorem 4.5.3, U = {a ∈ G : a2 = e} is an open neighbourhood of e.

Take any a ∈ U. It follows from Proposition 4.5.4 that there exists an open neighbourhood

V of e such that a commutes with every element of V . Then, obviously, a commutes with

every element of the subgroup H algebraically generated by V . However, H coincides with

G by the assumption. Hence, a commutes with every element of G. It follows, in particular,

that any two elements of U commute. By the assumption, U generates G. In addition, if

a ∈ U and b ∈ U, then a−1 = a ∈ U, and ab ∈ U, since abab = abba = aea = a2 = e.

Therefore, U is a subgroup of G. It follows that G = U. �

Corollary 4.5.7. Let h be a homeomorphism of the Čech–Stone compactification βN
of the infinite discrete space N onto βN such that there are no fixed points of h in N. Then
no point of βN is fixed under h.

Proof. Since the space βN is extremally disconnected and N is dense in βN, the

conclusion follows from Theorem 4.5.1. �

It may be useful to mention that the following version of Corollary 4.5.7 is valid: If

the homomorphism h has only finitely many fixed points in N, then h has no fixed points in

βN \ N.

Theorem 4.5.8. Let G be a separable extremally disconnected quasitopological group.
Then there exists an Abelian subgroup H of G such that H is a closed Gδ-set in G. Moreover,
H can be chosen so that every element of H commutes with every element of G.

Extremally disconnected topological and quasitopological groups
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Proof. Fix a countable dense subset A of G. By Theorem 4.5.5, for each a ∈ A there

exists an open and closed subgroup Ha of G such that every element of Ha commutes with

a. Put H =
⋂{Ha : a ∈ A}. Then H is a closed subgroup of G and a Gδ-set in G; it is

also clear that every x ∈ H commutes with every element of A. Since A is dense in G, and

left and right translations are continuous, it follows that every x ∈ H commutes with each

element of G. In particular, H is Abelian. �

Theorem 4.5.9. Let G be an extremally disconnected quasitopological group, and let
b be any element of G. Then the set Mb = {x ∈ G : x2 = b} is open and closed in G.

Proof. Let hb be the mapping of G into itself given by the rule: hb(x) = x−1b, for

each x ∈ G. Obviously, hb is a homeomorphism of the space G onto itself. Therefore, the

set F of all fixed points under hb is an open and closed subset of G by Theorem 4.5.1. Now,

F coincides with Mb. Indeed, for a ∈ G, hb(a) = a if and only if a = a−1b if and only if

a2 = b. �

Corollary 4.5.10. Let G be an extremally disconnected quasitopological group, and
let S2(G) = {Mb : b ∈ G}, where Mb = {x ∈ G : x2 = b}. Then S2(G) is a disjoint open
covering of the space G.

We recall that a space X is pseudo-ℵ1-compact if every discrete (equivalently, locally

finite) in X family of non-empty open subsets of X is countable.

Proposition 4.5.11. Let G be an extremally disconnected quasitopological group. If
G is pseudo-ℵ1-compact, then the set {a2 : a ∈ G} is countable.

Proof. This follows from Corollary 4.5.10 which guarantees that, under the restrictions

of the proposition, the disjoint open covering S2(G) of G is countable. �

We will call a group G group with square roots if for each b ∈ G, there exists a ∈ G
such that a2 = b. From Proposition 4.5.11 we obtain the next result immediately:

Theorem 4.5.12. Suppose that G is an extremally disconnected quasitopological group
with square roots. If G is pseudo-ℵ1-compact, then it is countable.

Corollary 4.5.13. Suppose that G is a pseudocompact extremally disconnected
quasitopological group with square roots. Then G is finite.

Proof. By Theorem 4.5.12, G is countable. Therefore, G is compact as every

countable pseudocompact space. Since every compact, countable Hausdorff space has

an isolated point, G must be discrete. Therefore, G is finite. �

Corollary 4.5.14. Suppose that G is a Lindelöf extremally disconnected quasitopo-
logical group with square roots. Then G is countable.

Corollary 4.5.15. Suppose that G is an extremally disconnected quasitopological
group with square roots such that the cellularity of G is countable. Then G is countable.

Theorem 4.5.16. Let G be an extremally disconnected quasitopological group with
square roots such that G is pseudo-ℵ1-compact and has the Baire property. Then G is
countable and discrete.
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Proof. This assertion follows from Theorem 4.5.12, since every countable T1-space

with the Baire property has an isolated point. Indeed, then the space G, being homogeneous,

must be discrete. �

It should be noted that if G is an extremally disconnected topological group, then the

set L = {x ∈ G : x3 = e} need not be open in G. Indeed, if L is open, then L is a

neighbourhood of e; therefore, L∩Me is also an open neighbourhood of the neutral element

e in G (see Corollary 4.5.10). On the other hand, it is clear that Me ∩L = {e}; therefore, e
is isolated in G, which implies that G is discrete.

A topological skew field F is a skew field in which addition and multiplication are

continuous and the set G = F \ {0} of all non-zero elements is a topological group under

multiplication.

Theorem 4.5.17. If a topological skew field F is extremally disconnected, then it is
discrete.

Proof. Suppose to the contrary that F is not discrete. Let 0 and 1 denote the zero

element and the unit element of F . Notice that G = F \ {0} is dense in F and, therefore,

the space G is also extremally disconnected.

Since F is an extremally disconnected topological group with respect to addition, there

exists an open neighbourhood V of 0 such that a + a = 0, for each a ∈ V . Since G is

an extremally disconnected topological group with respect to multiplication, there exists an

open neighbourhood W of 1 in G such that b2 = 1, for each b ∈ W . Clearly, W is open in

F since G is open in F .

Since F is a topological group with respect to addition, there exits an open neigh-

bourhood U of 0 such that U ⊂ V and 1 + U ⊂ W . Then for any a ∈ U, we have that

(1 + a)(1 + a) = 1 + (a + a) + a2 = 1 + 0 + a2 = 1 + a2, since a ∈ U ⊂ V . On the other

hand, (1 + a)2 = 1, since 1 + a ∈ W . Therefore, 1 = 1 + a2 which implies that a2 = 0.

Since all non-zero elements of F are invertible, it follows that a = 0. Therefore, U = {0},
and, hence, F is discrete. This contradiction completes the proof. �

Theorem 4.5.17, as it is clear from its proof, remains valid if we only assume that

F is an extremally disconnected semitopological skew field, that is, both F and G are

quasitopological groups.

We conclude this section with a subtle and very important construction of a non-discrete

extremally disconnected topological group G. Since no examples of such a group are known

to exist in ZFC, we use a weak form of Martin’s Axiom (see [413, Chapter III] or [263,

Chapter 19]) to construct the group G.

Let X be a Hausdorff space without isolated points, and let � be the topology of X.

The space X is called maximal if every topology �′ on X strictly finer than � has isolated

points. It is easy to see that every Hausdorff space (X, �) without isolated points admits a

finer (hence, Hausdorff) topology �∗ such that the space (X, �∗) is maximal — it suffices

to apply Zorn’s lemma to the family of all topologies on X which are finer than � and have

no isolated points.

One of important properties of the maximal spaces is that they all are extremally

disconnected. In fact, we prove a bit more in the next lemma.

Lemma 4.5.18. Let X be a maximal space. Then:

Extremally disconnected topological and quasitopological groups
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a) If U is open in X and x ∈ U, then U∪{x} is open in X and, in particular, X is extremally
disconnected;

b) every open subspace of X is maximal;
c) every dense subspace of X is open;
d) every nowhere dense subset of X is closed and discrete in X.

Proof. a) Suppose that U is a non-empty open subset of X and that x ∈ U. Put

V = U ∪{x} and consider the topology �′ on X with the subbase �∪{V}, where � is the

original topology of X. Then �′ is finer than � and has no isolated points. Since the space

(X, �) is maximal, this implies that �′ = � or, equivalently, V ∈ �. Therefore, {x} ∪ U
is open in X for each x ∈ U and, hence, the closure of U is open in X. This proves a).

b) Consider an arbitrary non-empty open subset U of X. Clearly, U has no isolated points.

Denote by �U the topology U inherits from X. Suppose that �′
U is a topology on U without

isolated points and finer than �U . Denote by �′ the family of all sets V of the form V ∪W ,

where V ∈ � and W ∈ �′
U . Then �′ is a topology on X finer than its original topology �,

and the space (X, �′) has no isolated points. The maximality of (X, �) implies that �′ = �,

so that �′
U = �U and, hence, the subspace U of X is maximal.

c) If S is a dense subset of X, consider the topology �′ on X generated by the family �∪{S},
where � is the original topology of X. Then �′ is finer than � and the space (X, �′) has

no isolated points. As above, we conclude that �′ = � and, hence, S is open in X.

d) Suppose that a set A ⊂ X is nowhere dense in X. Then F = A is also nowhere dense

in X, and the complement O = X \ F is an open dense subset of X. Take x ∈ F and put

Vx = O ∪ {x}. Since x ∈ O, item a) implies that the set Vx is open in X for each x ∈ F .

Since Vx ∩ F = {x}, every point of F is isolated in F . Thus, F is a closed discrete subset

of X and it follows from F = A that A = F . �

In what follows we will use the next characterization of maximal spaces:

Proposition 4.5.19. Let X be a Hausdorff space without isolated points. Then X is
maximal if and only if for every x ∈ X and every disjoint subsets A and B of X \ {x}, the
point x belongs to at most one of the sets A, B.

Proof. Suppose that the space X is maximal. We claim that every subset A of X has

the form U ∪D, where U ⊂ X is open and D is a closed discrete subset of X. Indeed, let

F be the closure of A and O be the interior of F in X. Then F \O is a nowhere dense set

in X, so d) of Lemma 4.5.18 implies that D = A \ O ⊂ F \ O is a closed discrete subset

of X. Since A∩O is dense in the open set O, the set U = A∩O is open in X, by b) and c)

of Lemma 4.5.18. Clearly, we have the equality A = U ∪D, as required.

It easily follows from the above claim that if x ∈ X and x ∈ A for some A ⊂ X \ {x},
then A ∪ {x} is a neighbourhood of x in X. Indeed, by the claim, the set A is the union of

an open set U ⊂ X and a closed discrete set D in X. Since x ∈ A \A, we must have x ∈ U.

Then a) of Lemma 4.5.18 implies that V = U ∪ {x} is open in X, so A ∪ {x} contains the

open neighbourhood V of x in X.

Suppose now that x ∈ X and that A and B are disjoint subsets of X \ {x}. If x ∈ A,

then A ∪ {x} is a neighbourhood of x in X, so there exists an open set V in X such that

x ∈ V ⊂ A ∪ {x}. Since A and B are disjoint subsets of X \ {x}, we have that B ⊂ X \ V
and, hence, B ⊂ X \ V . This implies that x /∈ B, as required.
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Conversely, suppose that a Hausdorff space (X, �) has no isolated points and is not

maximal. Take a topology �′ on X strictly finer than � and such that the space (X, �′) has

no isolated points. Then there exists an element V ∈ �′ \�. Clearly, the set V is not empty

and, considered as a subspace of (X, �′), the space V has no isolated points either. Put

B = X \V . It follows from V /∈ � that there exists a point x ∈ V ∩B, where the closure of

B is taken in the space (X, �). Since V has no isolated points, x is an accumulation point of

the set A = V \ {x} in both spaces (X, �′) and (X, �). Thus, A and B are disjoint subsets

of X \ {x} and the closures of both sets in (X, �) contain the point x. This implies the

equivalence of the two conditions for X. �

Let γ be a family of infinite subsets of ω and suppose that the intersection of every finite

subfamily of γ is infinite. We say that such a family γ has the strong intersection property.
An infinite subset A of ω is called a pseudointersection of γ if the complement A \ B is

finite, for each B ∈ γ. In other words, the set A is almost contained in every element

B ∈ γ. It is clear that every countable family γ with the strong intersection property has a

pseudointersection. Indeed, let {Bn : n ∈ ω} be an enumeration of γ. For every n ∈ ω,

choose an integer an ∈
⋂

i≤n Bi distinct from each ai with i < n — this is possible since the

intersection
⋂

i≤n Bi is infinite. Then the set A = {an : n ∈ ω} is infinite and |A \Bn| ≤ n
for each n ∈ ω, that is, A is a pseudointersection of the family γ.

Denote by p the minimum cardinality of the families γ of subsets of ω with the strong

intersection property such that γ has no pseudointersection. It follows from the above

observation that ℵ1 ≤ p and, clearly, p ≤ 2ω. Therefore, the Continuum Hypothesis

(i.e., the assumption that ℵ1 = 2ω) implies the equality p = 2ω. In fact, the equality

p = 2ω is equivalent to a weak form of Martin’s Axiom (namely, Martin’s Axiom for σ-

centered partially ordered sets, see [176]). It is shown in [285, Chapter 8] that Martin’s

Axiom is consistent with the negation of the Continuum Hypothesis, so we conclude that

the combination ℵ1 < p = 2ω is consistent with ZFC.

The maximal topological group we have in mind will be constructed under the

assumption that p = 2ω. The construction has two main ingredients; one of them

is Corollary 2.2.27 and the other is the characterization of maximal spaces given in

Proposition 4.5.19.

From now on, we fix a countable infinite Boolean group G, without topology. One can

take G to be the direct sum of ω copies of the group Z(2). Let us say that a topological group

topology � on G is linear if the topological group (G, �) has a local base at the neutral

element 0 consisting of open subgroups. It is clear that every linear topology on G makes

G into a zero-dimensional topological group.

We will use the assumption p = 2ω for a recursive construction of length c = 2ω of a

maximal linear group topology on G. Let us start with two lemmas that explain the strategy

of the construction.

Lemma 4.5.20. Suppose that � is a non-discrete linear group topology on G such that
the group (G, �) has a local base at zero of cardinality less than c. Then, under p = c, G
admits a finer non-discrete linear topological group topology �′ with a countable base.

Proof. Since � is a linear group topology on G, there exists a local base � at zero of

the group (G, �) consisting of open subgroups and satisfying |�| < c. The group G being

countable and infinite, there exists a bijection f : G \ {0} → ω. For every U ∈ �, put

Extremally disconnected topological and quasitopological groups
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U∗ = U \ {0} and consider the family

γ = {f (U∗) : U ∈ �}
of infinite subsets of ω. Since the group (G, �) is non-discrete, the family γ has the strong

intersection property. Therefore, it follows from |γ| < p = c that the family γ has a

pseudointersection A. Choose a sequence X = {xn : n ∈ ω} of pairwise distinct elements

of the infinite set f−1(A). It follows from the choice of A and X that the complement X\U
is finite for each U ∈ �.

For every n ∈ ω, denote by Hn the subgroup of G generated by the set {xk : n ≤ k ∈ ω}.
We claim that every U ∈ � contains Hn for some n ∈ ω. Indeed, since the set X \ U is

finite, there exists n ∈ ω such that {xk : n ≤ k ∈ ω} ⊂ U. The fact that U is a subgroup of

G implies the inclusion Hn ⊂ U.

Finally, let �′ be the topology on G whose base �′ consists of the sets x + Hn, with

x ∈ G and n ∈ ω. Clearly, the base �′ is countable, so that �′ is a non-discrete, second-

countable linear group topology on G which is finer than �. �

Lemma 4.5.21. Let � be a non-discrete, second-countable linear topological group
topology on G, and suppose that G \ {0} = P1 ∪ P2, where P1 and P2 are disjoint. Then
there exists a non-discrete second-countable linear group topology �′ on G finer than �
such that at most one of the sets P1, P2 accumulates at zero in (G, �′).

Proof. By the assumptions of the lemma, there exists a countable decreasing local

base {Un : n ∈ ω} at zero of G consisting of open subgroups. Choose a sequence

X = {xn : n ∈ ω} of pairwise distinct non-zero elements of G satisfying the following

conditions for each n ∈ ω:

(i) xn ∈ Un;

(ii) xn+1 is not in the subgroup generated by the elements x0, . . . , xn.

Notice that every finitely generated subgroup of G is finite, so the construction of the

sequence X = {xn : n ∈ ω} with properties (i) and (ii) presents no difficulties. Clearly,

this sequence converges to zero in (G, �). Notice also that by (ii), the set X is independent
in the sense that all sums xn1

+ · · ·+ xnk , with n1 < · · · < nk, are distinct from zero.

Let H be the subgroup of G generated by the set X. The disjoint sets P1 and P2 cover

H \ {0}, so we can apply Corollary 2.2.27 to find an infinite subgroup K of H contained

in one of the sets P1 ∪ {0} or P2 ∪ {0}. We can assume without loss of generality that

K ⊂ P1 ∪ {0}.
Let �′ = �∪{K}. Then �′ is a base for a linear group topology �′ on G finer than the

group topology �. Since K ∩P2 = ∅, the set P2 does not accumulate at zero in (G, �′). It

remains to verify that the topology �′ is non-discrete or, equivalently, K∩Un is infinite for

each n ∈ ω. Suppose to the contrary that K ∩ Um is finite for some m ∈ ω. Let Hm be the

subgroup of H generated by the set {xn : m < n ∈ ω}. It follows from (i) that Hm ⊂ Um,

so the intersection K∩Hm is finite as well. Denote by π the canonical homomorphism of H
onto the quotient group H/Hm. Clearly, that the group H/Hm is generated by the elements

π(x0), . . . , π(xm). Hence the group H/Hm is finite, since it is Boolean. The restriction

ϕ = π�K is a homomorphism of K onto a subgroup of the finite group H/Hm, and the

kernel of ϕ is the finite group K ∩Hm. Therefore, K is finite, which is a contradiction. We

have proved that the linear group topology �′ on G is non-discrete, as claimed. �
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Now we are in position to show that the existence of a non-discrete maximal topological

group is consistent with ZFC.

Theorem 4.5.22. [V. I. Malykhin] Under the assumption p = c, the countable infinite
Boolean group G admits a non-discrete Hausdorff maximal linear group topology.

Proof. Let � = {(Pα,1, Pα,2) : α < c} be an enumeration of all pairs (P1, P2) such that

P1 ∩ P2 = ∅ and both P1 and P2 are subsets of G \ {0}. Such an enumeration exists since

the group G is countable. By recursion of length c we will construct a family {�α : α < c}
of non-discrete, second-countable linear group topologies on G satisfying the following

conditions for all α, β < c:

(i) �α ⊂ �β if α < β;

(ii) the neutral element 0G of G belongs to the closure in (G, �α) of at most one of the

sets Pα,1, Pα,2.

Let �0 be an arbitrary non-discrete, Hausdorff, linear group topology on G. For example,

one can identify G with the σ-product of ω copies of the discrete group Z(2) and consider

it with the topology inherited from the compact group Z(2)ω.

Suppose that for some α < c, we have defined a sequence {�ν : ν < α} of non-

discrete, second-countable linear group topologies on G satisfying (i) and (ii). It follows

from (i) that the linear group topology γ on G with the base
⋃

ν<α �ν is non-discrete. Since

each topology �ν with ν < α has a countable local base at zero of G, the group (G, γ) has

a local base at zero of cardinality less than c. Therefore, we can apply Lemma 4.5.20 to

find a non-discrete, second-countable linear group topology γ1 on G finer than γ. Then,

by Lemma 4.5.21, there exists a non-discrete, second-countable linear group topology �α

on G such that �α is finer than γ1 and the neutral element of G belongs to the closure in

(G, �α) of at most one of the sets Pα,1 or Pα,2. Clearly, the family {�ν : ν ≤ α} satisfies

(i) and (ii) at the stage α. This finishes our recursive construction.

Let � be the linear group topology on G with the base
⋃

α<c �α. Since the group

topologies �α are non-discrete, it follows from (i) that so is �. Suppose that P1 and P2

are disjoint subsets of G \ {0G}. Then there exists α < c such that (P1, P2) = (Pα,1, Pα,2),

and (ii) implies that the neutral element of G lies in the closure in (G, �α) of at most one

of the sets P1 or P2. Since the topology � is finer than �α, the same remains valid for the

closures of P1 and P2 in the group (G, �). Therefore, the group (G, �) is a maximal space,

by Proposition 4.5.19 and the homogeneity argument. �

Exercises

4.5.a. Let G be an abstract group with identity e such that the set of all elements of order 2 in G
is finite, and � be a topology on G such that the inverse operation is continuous and the

one-point set {e} does not belong to �. Then � is not extremally disconnected.

4.5.b. Let G be a group such that the set of elements of order 2 in G is finite, and let � be a topology

on G such that the inverse operation is continuous and the space (G, �) is homogeneous.

Then the space (G, �) is extremally disconnected if and only if it is discrete.

4.5.c. Show that the assumption in 4.5.b that the space (G, �) is homogeneous cannot be dropped.

Hint. Fix an extremally disconnected topology � on the set P of all positive real numbers

such that (P, �) is dense in itself. For V ⊂ P , put −V = {−x : x ∈ V}. The family

Extremally disconnected topological and quasitopological groups
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� = � ∪ {−V : V ∈ �} ∪ {{0}} is a base of a non-discrete extremally disconnected

topology �∗ on the additive group R such that the inverse mapping is continuous.

4.5.d. Let G be the maximal topological group constructed in Theorem 4.5.22. Denote by � the

family of all subset A of G \ {0} such that 0 ∈ A. Verify that � is a free ultrafilter on the

set G \ {0}.

4.5.e. Give an example of a Tychonoff space X such that Cp(X) contains an infinite extremally

disconnected compact subspace.

Problems

4.5.A. Prove that the product of two non-discrete extremally disconnected topological groups is

never extremally disconnected.

4.5.B. Show that every non-discrete subgroup H of a maximal topological group G is open in G
and, hence, is maximal.

4.5.C. Let H be a closed subgroup of a maximal topological group G. Prove that if the quotient

space G/H is not discrete, then it is maximal. Is an analogous assertion valid for extremal

disconnectedness?

4.5.D. Let us call a group G with a topology sub-extremally disconnected if G is a subspace of some

extremally disconnected space. Which results in this section remain true for sub-extremally

disconnected topological (paratopological) groups?

4.5.E. Prove that the space X in Exercise 4.5.e cannot be compact.

4.5.F. (V. I. Arnautov and E. G. Zelenyuk [64]) Let G be a countable infinite Boolean group. Prove

the following:

a) Under p = 2ω, there exists a Raı̆kov complete maximal topological group topology on

G;

b) Under p = 2ω, there exists a maximal topological group topology on G that fails to be

Raı̆kov complete;

c) Under the Continuum Hypothesis, every infinite Abelian group admits a Raı̆kov

complete maximal topological group topology.

In particular, under p = 2ω, an extremally disconnected topological group may fail to be

Raı̆kov complete.

Open Problems

4.5.1. Are all subgroups of an extremally disconnected topological group extremally disconnected?

4.5.2. Is every compact subspace of an extremally disconnected Tychonoff (regular) paratopological

group finite?

4.5.3. Is every compact subspace of an extremally disconnected Tychonoff (regular) quasitopolog-

ical group finite?

4.5.4. Is there in ZFC a non-discrete extremally disconnected topological group?

4.5.5. Let G be an extremally disconnected quasitopological group. Is it true that G has an open

and closed Abelian subgroup?

4.5.6. Characterize Tychonoff spaces X such that every extremally disconnected subspace of Cp(X)

is discrete.

4.6. Perfect mappings and topological groups

In a topological group the product operation generates a variety of continuous mappings.

Some of them are well known and play a fundamental role: the translations, for example.
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However, it is natural to try to treat the subject in a more systematic way. In this section

we are going to consider the following general questions. Suppose that G is a topological

group, A and B are subsets of G, and f is the mapping of the product space A×B onto the

subspace AB of G given by the product operation in G. Under certain natural restrictions

on A and B, what can be said about the properties of the mapping f ? How the properties

of the subspace AB are related to the properties of the subspaces A and B? We establish

some results in this direction, in particular, we show that the theory of perfect mappings, a

well-developed chapter of General Topology, can be effectively applied to answer some of

these questions. Under this approach, the quotient groups also naturally enter the picture.

Let G be a topological group, and A and B be subsets of G. Let us say that A and B
are cross-complementary in G if G = AB = {ab : a ∈ A, b ∈ B}. Suppose that � is a

topological (algebraic, or a mixed nature) property, and A is a subset of G. We will say that

A has a �-grasp on G if there exists a subset B of G such that B is cross-complementary

to A and has the property �. In particular, A ⊂ G has a compact grasp on G if there exists

a compact subspace B of G such that AB = G. Similarly, A has a metrizable grasp on G
if G = AB, for some metrizable subspace B of G.

Proposition 4.6.1. Suppose that G is a topological group, and H a metrizable invariant
subgroup of G such that H has a countably tight compact grasp on G. Then G is metrizable.

Proof. The closure K of H in G is first-countable by Proposition 1.4.16, so the

Birkhoff–Kakutani theorem (see Theorem 3.3.12) implies that K is metrizable. Also, K
is an invariant subgroup of G. Thus, we may assume that H is closed in G. By the

assumption, there exists a compact subspace B of G such that HB = G and the tightness

of B is countable.

Let us consider now the quotient group G/H and the quotient mapping p : G→ G/H .

Since HB = G, we have p(B) = G/H . The restriction of the mapping p to the compact

subspace B ⊂ G is closed and, in particular, quotient. Therefore, G/H is a compactum of

countable tightness by [165, 3.12.8(a)]. Since G/H is also a topological group, and every

compact group of countable tightness is metrizable by Corollary 4.2.2, we conclude that

G/H is metrizable. Since H is metrizable as well, it follows from Corollary 1.5.21 that G
is also metrizable. �

The next simple fact can be formulated in a more general form, for continuous mappings

of topological spaces. However, the formulation that follows completely suits for our

purpose.

Lemma 4.6.2. Let H be a closed subgroup of a topological group G. If both the group
H and the quotient space G/H have countable pseudocharacter, then so has G.

Proof. Let p : G → G/H be the quotient mapping. Choose a countable family γ
of open sets in G/H such that

⋂
γ = {p(e)}, where e is the neutral element of G. Also,

choose a countable family λ of open sets in G such that H ∩⋂
λ = {e}. Then the family

� = λ ∪ {p−1(U) : U ∈ γ} is countable, consists of open sets in G, and
⋂

� = {e}.
Therefore, the pseudocharacter of G at e and, by homogeneity, at every point x ∈ G is

countable. �
The argument in the proof of Proposition 4.6.1, after an obvious modification, can be

turned into a proof of the following statement.

Perfect mappings and topological groups
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Theorem 4.6.3. Let G be a topological group and H a closed invariant subgroup of
G such that H has a countably tight compact grasp on G and the pseudocharacter of H is
countable. Then the pseudocharacter of G is also countable.

Proof. As in the proof of Proposition 4.6.1, we conclude that the group G/H is

metrizable. Since the character and pseudocharacter of metrizable spaces are countable, the

conclusion follows from Lemma 4.6.2. �

Theorem 4.6.4. Suppose that G is a topological group, and let H be a closed subgroup
of G such that the pseudocharacter of H is countable and H has a cosmic grasp on G. Then
the pseudocharacter of G is also countable.

Proof. There exists a subspace B of G such that HB = G and B has a countable

network. Let us consider the quotient space G/H and the corresponding quotient mapping

p : G → G/H . Since HB = G, we have p(B) = G/H . Therefore, G/H has a

countable network. It follows that the pseudocharacter of G/H is countable. Hence, the

pseudocharacter of G is countable by Lemma 4.6.2. �

The following result has many applications.

Proposition 4.6.5. Suppose that F is a compact subspace of a topological group G.
Then the restriction f of the product mapping G × G → G to the subspace F × G is a
perfect and open mapping of F × G onto G. The same is valid for the restriction of the
product mapping to the subspace G× F of G×G.

Proof. Consider a mapping s : F ×G→ F ×G defined by s(x, y) = (x, xy), for each

(x, y) ∈ F×G. Obviously, s is continuous, one-to-one, and s(F×G) = F×G. Clearly, the

inverse mapping s−1 is described by the formula s−1(x, y) = (x, x−1y). Therefore, s−1 is

also continuous. Hence, s is a homeomorphism. Let p : F×G→ G be the natural projection

mapping given by p(x, z) = z, for each (x, z) ∈ F ×G. Since xy = p(x, xy) = ps(x, y) for

all x ∈ F and y ∈ G, we conclude that f is the composition of s and p, that is, f = p ◦ s.
However, since F is compact, the mapping p is closed by [165, Theorem 3.1.16]. Therefore,

the mapping f , being a composition of a homeomorphism with a closed mapping, is itself

closed. Clearly, f has compact fibers, so it is perfect.

Let U be an open subset of F ×G. Denote by π the projection of F ×G onto the first

factor and put O = π(U). For every x ∈ O, the set Ux = {y ∈ G : (x, y) ∈ U} is open

in G as the projection of the open subset U ∩ π−1(x) of {x} × G onto the second factor.

Therefore, f (U) =
⋃

x∈O xUx is open in G, which implies that f is an open mapping.

Finally, since the mapping i of G×G onto itself, defined by i(x, y) = (y, x) for x, y ∈ G,

is a homeomorphism, and i(F ×G) = G×F , the rest of the proposition is immediate. �

The mapping f in the above proposition remains open for an arbitrary subspace F of

G.

Corollary 4.6.6. Suppose that F is a compact subspace of a topological group G, and
let M be a closed subspace of G. Then the restriction f of the product mapping G×G→ G
to the subspace M × F is a perfect mapping of M × F onto a closed subspace of G.

Proof. To derive this corollary from Proposition 4.6.5, we only have to observe that

the restriction of a perfect mapping to a closed subspace is again a perfect mapping and
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that the product of a compact set with a closed set in a topological group is closed by

Theorem 1.4.30. �

Note that the perfect mapping of M ×F onto MF in Corollary 4.6.6 need not be open.

In the next example we show that the assumption that M be closed in G cannot be dropped

either in Corollary 4.6.6 or in Proposition 4.6.5.

Example 4.6.7. Take any compact metrizable group G with a proper dense subgroup

M (the group T and the torsion subgroup of T make the job). Then the natural mapping f
of the space G×M onto G generated by the product operation is not closed. Indeed, each

fiber of f is nowhere dense in G ×M, so if f were closed, it would have compact fibers,

by Vaı̆nšteı̆n’s lemma [165, Lemma 4.4.16], and be perfect. Since G is compact, this would

imply that G×M is compact, which is a contradiction. �

Corollary 4.6.6 is one of the main technical tools in this section. Of course, it works in

combination with other results of the theory of perfect mappings, some of which are quite

deep.

Theorem 4.6.8. Suppose that F is a compact subspace of a topological group G, and
that M a closed subspace of G. Suppose also that both M and F have countable tightness.
Then the tightness of MF is also countable. If, in addition, G = FM, then the tightness of
G is countable.

Proof. Perfect mappings do not increase the tightness and the tightness of the product

space M×F is countable by [165, 3.12.8(a), (f)]. Therefore, it follows from Corollary 4.6.6

that the tightness of MF is also countable. �

Theorem 4.6.9. Suppose that F is a compact metrizable subspace of a topological
group G, and let M be a closed metrizable subspace of G. Then FM is closed in G and
metrizable.

Proof. By Theorem 1.4.30, the set FM is closed in G. It remains to apply Corol-

lary 4.6.6 and the well-known fact that perfect mappings preserve metrizability in the di-

rection of the image (see [165, Theorem 4.4.15]). �

The above techniques can be also applied to the study of the topological structure of a

topological group under certain weaker assumptions than in Theorem 4.6.9. For example,

we have:

Theorem 4.6.10. Let G be a topological group, and let H be a subgroup of G
algebraically generated by a compact metrizable subspace F . Suppose further that
G = HM, where M is a closed metrizable subspace of G. Then G is the union of a
countable family of closed metrizable subspaces.

Proof. Clearly, we can assume that F is symmetric, F = F−1, and that F contains

the neutral element of G. Now we inductively define a sequence of subspaces Mn of G by

the rule: M0 = M, and Mn+1 = FMn, for each n ∈ ω. Since F generates H and G = HM,

we have the equality G =
⋃∞

n=0 Mn. Theorem 4.6.9 guarantees that each Mn is a closed

metrizable subspace of G. �

Perfect mappings and topological groups
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Theorem 4.6.11. Suppose that F is a compact subspace of a topological group G, and
let M be a paracompact, closed subspace of G. Then FM is also a paracompact space. In
particular, if G = FM, then G is paracompact.

Proof. Since the product of a paracompact space with a compact space is paracompact

by [165, Theorem 5.1.36], the conclusion follows from Corollary 4.6.6 and the well-known

fact that paracompactness is preserved by closed mappings (see [165, Theorem 5.1.33]). �

The next result is somewhat unexpected: it shows that certain closed subsets of a

topological group with a compact grasp on this group must be paracompact.

Theorem 4.6.12. Suppose that G is a topological group such that G = FM, where
F ⊂ G is compact and M is a Čech-complete closed subspace of G. Then G is also
Čech-complete, and both M and G are paracompact.

Proof. The product of a Čech-complete space and a compact space is Čech-complete.

Therefore, the space M × F is Čech-complete. Since Čech-completeness is preserved by

perfect mappings, by [165, Theorem 3.9.10], it follows from Corollary 4.6.6 that G is Čech-

complete. Hence, G is paracompact by Corollary 4.3.22. Since M is a closed subspace of

G, the space M is also paracompact. �

Now we are going to generalize Proposition 4.6.5. A subset A of a topological space

X is said to be Gδ-closed in X if, for each x ∈ X \ A, there exists a Gδ-set P in X such

that x ∈ P ⊂ X \ A. Of course, in a space of countable pseudocharacter every subset is

Gδ-closed. On the other hand, a Lindelöf subspace is Gδ-closed in every larger Hausdorff

space, by [165, 3.12.24 (a)].

A mapping f of a space X to a space Y will be called Gδ-closed if, for every closed

subset P of X, the image f (P) is Gδ-closed in Y . Clearly, every closed mapping is Gδ-

closed. We also have:

Lemma 4.6.13. Every continuous mapping f of a Lindelöf space X to a Hausdorff
space Y is Gδ-closed.

Proof. This is so, since all closed subsets of a Lindelöf space are Lindelöf and every

Lindelöf subspace of a Hausdorff space is Gδ-closed in that space [165, 3.12.24]. �

The next result is a kind of Kuratowski’s theorem (see [165, Theorem 3.1.16]). Its

proof is close to that of Lemma 4.4.8:

Proposition 4.6.14. Let p : X × Y → Y be the natural projection, where X is a
Lindelöf space. Then p is a Gδ-closed mapping.

Proof. Take a closed subset F of X×Y and an arbitrary point y ∈ Y \p(F ). We have to

find a Gδ-set P in Y such that y ∈ P ⊂ Y \p(F ). It is clear that the fiber p−1(y) = X×{y}
is homeomorphic to X and, hence, is Lindelöf. Since p−1(y) is disjoint from F , we can

cover p−1(y) by open in X × Y rectangular sets of the form U × V , where each of them

is disjoint from F and y ∈ V . The fiber p−1(y) being Lindelöf, there exists a countable

covering γ = {Un × Vn : n ∈ ω} of p−1(y) by such sets. Then P =
⋂∞

n=0 Vn is a Gδ-set

in Y , it contains the point y and does not intersect p(F ). �
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Theorem 4.6.15. Suppose that F is a Lindelöf subspace of a topological group G.
Then the restriction f of the product mapping G × G → G to the subspace F × G is a
Gδ-closed mapping of F ×G onto G.

Proof. As in the proof of Proposition 4.6.5, consider the mapping s : F ×G→ F ×G
defined by s(x, y) = (x, xy), for each (x, y) ∈ F ×G. Again, s is a homeomorphism. Since

xy = p(x, xy) = ps(x, y), where p : F ×G → G is the projection onto the second factor,

we conclude that f = p ◦ s. However, since F is Lindelöf, the mapping p is Gδ-closed by

Proposition 4.6.14. Therefore, the mapping f being a composition of a homeomorphism

with a Gδ-closed mapping, is itself Gδ-closed. �

Here we give just one application of Theorem 4.6.15 which requires the following

auxiliary fact:

Lemma 4.6.16. Let X and Y be regular P-spaces, where X is Lindelöf and Y is
paracompact. Then the product space X× Y is also paracompact.

Proof. Evidently, X×Y is a regular P-space and, hence, is zero-dimensional. Consider

an open covering γ of X × Y . Let p : X × Y → Y be the natural projection. The fiber

p−1(y) = X × {y} is Lindelöf for each y ∈ Y , so there exists a countable subfamily γ(y)

of γ that covers p−1(y). Since X is zero-dimensional and Lindelöf, we can find a countable

disjoint family γ∗(y) of open rectangular sets in X× Y which covers p−1(y) and such that

every element of γ∗(y) intersects p−1(y) and is contained in some element of γ(y).

By Lemma 4.4.8, the mapping p is closed. Therefore, for every y ∈ Y , there exists an

open neighbourhood Vy of y in Y such that p−1(Vy) ⊂ ⋃
γ∗(y). Since Y is paracompact,

the open covering {Vy : y ∈ Y} of Y admits an open locally finite refinement λ. It

follows from our choice of λ that for every V ∈ λ, there exists a point yV ∈ Y such that

p−1(V ) ⊂ ⋃
γ∗(yV ). Then the family

μ = {p−1(V ) ∩ U : V ∈ λ, U ∈ γ∗(yV )}
is an open covering of the space X× Y which refines γ. Since the family λ is locally finite

and γ∗(yV ) is disjoint for each V ∈ λ, we conclude that the covering μ is locally finite.

This implies that the space X× Y is paracompact. �

Theorem 4.6.17. Suppose that G is a topological P-group, F is a Lindelöf subspace
of G and let M be a paracompact closed subspace of G. Then FM is a paracompact closed
subspace of G. If, in addition, G = FM then G is paracompact.

Proof. It follows from Lemma 4.6.16 that the product space F ×M is paracompact.

The mapping f of F × G onto G given by the product operation, is continuous and Gδ-

closed, by Theorem 4.6.15. Since G is a P-space, it follows that f is closed. Since F ×M
is closed in F×G, the restriction of f to F×M is a closed mapping of F×M to G. Hence,

by a well-known theorem of E. A. Michael (see [165, Theorem 5.1.33]), FM is paracompact

and closed in G. �

Here is one more modification of Proposition 4.6.5. It can be proved by almost the

same argument as Proposition 4.6.5 and Theorem 4.6.15, we just have to refer to [165,

Theorem 3.10.7].

Perfect mappings and topological groups



270 4. SOME SPECIAL CLASSES OF TOPOLOGICAL GROUPS

Theorem 4.6.18. Let G be a sequential topological group, and let F be a countably
compact subspace of G. Then the restriction of the product mapping G × G → G to the
subspace G× F is a closed continuous mapping of G× F onto G.

Recall that a mapping f : X → Y is locally perfect if, for each x ∈ X, there exists an

open neighbourhood U of x such that the restriction of f to the closure of U is a perfect

mapping of U to Y . The following generalization of Proposition 4.6.5 is sometimes useful.

Theorem 4.6.19. Let Y be a locally compact subspace of a topological group G. Then
the restriction of the multiplication mapping G×G→ G to the subspace G×Y is an open
locally perfect mapping of G× Y onto G.

Proof. This follows from Proposition 4.6.5. �
After the results obtained above, and taking into account that every locally compact

topological group is feathered, it is natural to pose the following question. Suppose that G
is a topological group, and H a closed invariant subgroup of G such that both H and the

quotient group G/H are feathered. Must then G be feathered as well? In Section 7.3 we

show that the answer is negative. Notice that the similar question for Čech-completeness is

answered in the affirmative in 4.3.F.

Another natural general question for consideration is the following one. Suppose that

H is a closed subgroup of a topological group G. When does H have a compact grasp on

G? Clearly, a necessary condition for this is compactness of the quotient space G/H . This

condition is not sufficient (see Theorem 7.3.1). We are going to answer the above question

completely in the case when the subgroup H is locally compact.

A mapping f : X → Y is said to be compact-covering or k-covering if, for each compact

subset F of Y , there exists a compact subset K of X such that f (K) = F (see [165, 5.5.11]).

The relevance of this notion to our considerations is revealed by the following statement the

proof of which is obvious.

Proposition 4.6.20. Suppose that G is a topological group, and let H be a closed
subgroup of G. Then H has a compact grasp on G if and only if the quotient space G/H
is compact and the quotient mapping π : G→ G/H is compact-covering.

One can consider Proposition 4.6.20 as an answer to the question formulated above.

However, then the next question comes: When is the quotient mapping π : G → G/H
compact-covering? The following result helps us to answer it in the special case when the

subgroup H of G is locally compact.

Proposition 4.6.21. Every open locally perfect mapping f of a space X onto a space
Y is compact-covering.

Proof. Let F be any compact subspace of Y . For each x ∈ X, fix an open

neighbourhood Vx of x in X such that the restriction of f to the closure of Vx is a perfect

mapping of Vx to Y .

Since f is open and f (X) = Y , the family γ = {f (Vx) : x ∈ X} is an open covering

of Y . Since F is compact and F ⊂ ⋃
γ, there exists a finite subset K of X such that

F ⊂ ⋃{f (Vx) : x ∈ K}. Put Fx = F ∩f (Vx) for x ∈ K. Observe that f (Vx) is closed in Y ,

since the restriction fx of f to Vx is a perfect mapping to Y . Hence, Fx is compact, for each

x ∈ K. From the fact that fx is perfect it follows also that Px = Vx ∩ f−1(Fx) = f−1
x (Fx)



271

is a compact subset of X. Obviously, f (Px) = Fx. Put P =
⋃{Px : x ∈ K}. Then P is

compact, and f (P) = F . �
Theorem 4.6.22. Suppose that G is a topological group, and let H be a locally compact

subgroup of G. Then the quotient mapping π : G→ G/H is compact-covering.

Proof. By Theorem 3.2.2, the quotient mapping π is locally perfect. Since the

mapping π is open, the required conclusion follows from Proposition 4.6.21. �
Let us call a mapping f : X → Y Lindelöf-covering or l-covering if, for each Lindelöf

subspace M of Y , there exists a Lindelöf subspace L of X such that f (L) = M. Introducing

obvious changes in the proofs of the last two statements, we obtain the following results.

Proposition 4.6.23. Every open locally perfect mapping f of a topological space X
onto a topological space Y is Lindelöf-covering.

Theorem 4.6.24. Suppose that H is a locally compact subgroup of a topological group
G. Then the quotient mapping π : G→ G/H is Lindelöf-covering.

Theorem 4.6.22 allows us to clarify completely when a locally compact subgroup H
of a topological group G has a compact grasp on G:

Theorem 4.6.25. A locally compact subgroup H of a topological group G has a
compact grasp on G if and only if the quotient space G/H is compact.

Proof. Assume that G = FH , where F is compact. Then G/H = π(G) = π(F ),

where π is the quotient mapping of G onto G/H . Therefore, by the continuity of π, the

space G/H is compact. The inverse statement follows from Theorem 4.6.22. �
Similarly, we have:

Theorem 4.6.26. A locally compact subgroup H of a topological group G has a
Lindelöf grasp on G if and only if the quotient space G/H is Lindelöf.

Proof. The proof is the same as that of Theorem 4.6.25; we just refer to Theo-

rem 4.6.24. �
In connection with Theorem 4.6.22, note that the quotient mapping of a topological

group G onto a quotient group G/H need not be compact-covering, even under very strong

restrictions on G/H and H . Indeed, as we have already mentioned, there exists an Abelian

topological group G which is not a paracompact p-space but has a closed metrizable

subgroupH such that the quotient group G/H is compact (see Theorem 7.3.1). In this

case the natural quotient mapping π : G→ G/H is not compact-covering.

Exercises

4.6.a. Consider a separable topological group G metrizable by a complete metric, and let A be a

discrete subspace of G. Show that A does not have a locally compact grasp on G.

4.6.b. Let A be any metrizable subspace of the topological group G = Rω1 . Show that A does not

have a compact grasp on G. Verify that the same assertion remains valid if one replaces G
with any Σ-product lying in Rω1 .

4.6.c. Suppose that a topological group G contains a closed invariant metrizable subgroup H such

that H has a closed discrete grasp on G. Is G metrizable? What if H is also second-countable?

Perfect mappings and topological groups



272 4. SOME SPECIAL CLASSES OF TOPOLOGICAL GROUPS

4.6.d. Let H be a closed, invariant, Čech-complete subgroup of a topological group G, and suppose

that H has a Čech-complete grasp on G. Is G Čech-complete?

Problems

4.6.A. Let F be a compact subspace of a topological group G. Suppose further that M is a closed

metrizable subspace of G. Then FM and MF are paracompact p-spaces. In particular, if

G = FM or G = MF , then G is feathered.

Sketch of the proof. The product M × F is a paracompact p-space by [16], and G is an

image of M × F under a perfect mapping, by Corollary 4.6.6. It follows from a theorem of

V. V. Filippov in [169] that MF is a paracompact p-space as well.

4.6.B. Suppose that G is a topological group such that G = FM, where F ⊂ G is a compact

subspace of countable tightness, and M is a closed metrizable subspace of G. Then G is

metrizable.

Sketch of the proof. By Problem 4.6.A, the group G is feathered. It follows from

Theorem 4.6.8 that the tightness of G is countable. However, every feathered topological

group of countable tightness is metrizable. Indeed, every such a group G must contain

a compact subgroup H with a countable base of neighbourhoods. Then H is metrizable,

since every compact group of countable tightness is metrizable by Corollary 4.2.2. It

follows that both spaces H and G/H are first-countable and, therefore, G is metrizable

by Corollary 1.5.21.

4.6.C. Let G be a topological group and H a closed subgroup of G such that w(H) ≤ ω and

nw(G/H) ≤ ω. Prove that nw(G) ≤ ω.

Hint. Let {Un : n ∈ ω} be a sequence of open symmetric neighbourhoods of the neutral

element e in G such that U2
n+1 ⊂ Un for each n ∈ ω and the family {Un ∩ H : n ∈ ω} is

a local base for H at e. Choose a countable network {Pk : k ∈ ω} for the quotient space

G/H . Apply Theorem 1.5.23 to find a countable dense subset {bm : m ∈ ω} of G. Then

the family {π−1(Pk)∩ bmUn : k, m, n ∈ ω} is a network for G, where π : G → G/H is the

quotient mapping.

4.6.D. Let H be a closed subgroup of an Abelian topological group G, and suppose that nw(H) ≤ ω
and w(G/H) ≤ ω. Is it true that nw(G) ≤ ω?

Hint. The answer is “no” (see [511]).

4.6.E. Let G be a topological group, and X a locally compact subspace of G with a locally compact

grasp on G. Must G be locally compact? What if, in addition, X is closed in G?

Open Problems

4.6.1. Suppose that G is a topological group such that G = FM, where F is a compact set of

countable tightness and that M is a first-countable closed subspace of G. Is G metrizable?

4.6.2. Is there a discrete subspace A of the topological group G = Rω1 that has a countably compact

grasp on G?

4.6.3. Is there a discrete subspace A of the group G = Rω1 that has a discrete grasp on G?

4.6.4. Is there a discrete subspace A of the group G = Rω1 that has a locally compact grasp on G?

4.6.5. Is there a discrete (metrizable, locally compact) subspace A of the group G = Rω1 such that

A algebraically generates G?

4.6.6. Is there a locally compact (Čech-complete) subspace A of the group G = Rω1 that has a

locally compact (Čech-complete) grasp on G?

4.6.7. Is there a metrizable subspace A of the group G = Rω1 that has a metrizable grasp on G?

4.6.8. Consider problems similar to the last three problems, where G is the Σ-product of ω1 copies

of R.
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4.6.9. Which theorems in this section remain true for paratopological groups? For semitopological

(for quasitopological) groups?

4.7. Some convergence phenomena in topological groups

It is natural and quite plausible to expect that certain topological properties of spaces

should become stronger in the presence of an appropriately related algebraic structure. The

most obvious example is that of first countability which becomes equivalent to metrizability

in topological groups. We are now going to strengthen this result.

Let X be a topological space. Suppose that it is possible to assign to each point

x ∈ X a sequence {Vn(x) : n ∈ ω} of subsets of X containing x in such a way that

Vn+1(x) ⊂ Vn(x) and the following condition is satisfied: A subset U of X is open in X if

and only if for each x ∈ U, there exists n ∈ ω such that Vn(x) ⊂ U. Then we will say that

{Vn(x) : n ∈ ω, x ∈ X} is a weak ω-assignment on X. Notice that the elements Vn(x) of a

weak ω-assignment on X are not necessarily open in X.

A topological space X is called weakly first-countable if there exists a weak ω-

assignment on X. It is easy to construct weakly first-countable Tychonoff spaces which

are not first-countable (see Problem 113 in Chapter II of [60]). In addition, (weakly) first-

countable compact spaces need not be metrizable, as the two arrows space shows. However,

the situation in the class of topological groups is quite different. To show this, we start with

a study of weak ω-assignments on spaces.

Lemma 4.7.1. Suppose that {Vn(x) : n ∈ ω, x ∈ X} and {Wn(x) : n ∈ ω, x ∈ X} are
two weak ω-assignments on a Hausdorff space X. Then, for each x ∈ X and each n ∈ ω,
there exists m ∈ ω such that Wm(x) ⊂ Vn(x).

Proof. Assume the contrary. Then, for some x ∈ X and some k ∈ ω, we have

Wm(x) \ Vk(x) = ∅ for each m ∈ ω, and we fix xm ∈ Wm(x) \ Vk(x). Clearly,

the sequence η = {xm : m ∈ ω{} converges to x. Since X is Hausdorff, the set

P = {xm : m ∈ ω} ∪ {x} is closed in X. Let P0 = P \ {x} = {xm : m ∈ ω}.
Since {Vn(x) : n ∈ ω, x ∈ X} is a weak ω-assignment on X, for each y ∈ X \ P there

exists n(y) ∈ ω such that Vn(y)(y)∩P = Vn(y)(y)∩P0 = ∅. We also have P0 ∩Vk(x) = ∅.

Since {Vn(x) : n ∈ ω, x ∈ X} is a weak ω-assignment on X, it follows that the set P0 is

closed in X, a contradiction with x ∈ P0 \ P0. �
Sequences {An : n ∈ ω} and {Bn : n ∈ ω} of sets will be called cofinal if for each

n ∈ ω, there exist m, k ∈ ω such that Bm ⊂ An and Ak ⊂ Bn. Though the next proposition

sounds a little bit unexpected, it is an easy corollary of Lemma 4.7.1.

Proposition 4.7.2. Let {Vn(x) : n ∈ ω, x ∈ X} be a weak ω-assignment on a
homogeneous Hausdorff space X, and let b be an element of X. Suppose further that, for each
x ∈ X, fx is a homeomorphism of X onto X such that fx(b) = x. Put Wn(x) = fx(Vn(b)).
Then {Wn(x) : n ∈ ω, x ∈ X} is a weak ω-assignment on X.

Proof. Fix x ∈ X, and put Un(y) = fx(Vn(f−1
x (y)), for each y ∈ X. Since fx is

a homeomorphism of X onto X, it is clear that {Un(y) : n ∈ ω, y ∈ X} is a weak ω-

assignment on X. Therefore, the sequences {Un(x) : n ∈ ω} and {Vn(x) : n ∈ ω} are

cofinal. However, Un(x) = Wn(x), for each n ∈ ω. Thus, by Lemma 4.7.1, the sequences

Some convergence phenomena in topological groups
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{Wn(x) : n ∈ ω} and {Vn(x) : n ∈ ω} are cofinal, for each n ∈ ω. It follows that

{Wn(x) : n ∈ ω, x ∈ X} is a weak ω-assignment on X. �

The next lemma plays the key role in the proof of the main result of this section,

Theorem 4.7.5.

Lemma 4.7.3. Suppose that {Vn(x) : n ∈ ω, x ∈ G} is a weak ω-assignment on a
paratopological group G. Put, for each x ∈ G and each n ∈ ω, Wn(x) = x(Vn(e))2, where
e is the neutral element of G. Then {Wn(x) : n ∈ ω, x ∈ X} is a weak ω-assignment on G.

Proof. We can assume that Vn(x) = xVn(e), for each x ∈ G and each n ∈ ω. Indeed,

this follows from Proposition 4.7.2 since the left translation lx on G given by the formula

lx(y) = xy, for each y ∈ G, is a homeomorphism of G onto itself. Now the continuity of

multiplication in G implies that {Wn(x) : n ∈ ω, x ∈ X} is a weak ω-assignment on G. �

Proposition 4.7.4. Suppose that {Vn(x) : n ∈ ω, x ∈ G} is a weak ω-assignment
on a paratopological group G. Then, for each n ∈ ω, there exists k ∈ ω such that
(Vk(e))2 ⊂ Vn(e).

Proof. This follows from Lemma 4.7.3 and Lemma 4.7.1. �

Now we are ready to prove the following basic fact:

Theorem 4.7.5. [P. J. Nyikos] Every weakly first-countable Hausdorff paratopologi-
cal group is first-countable.

Proof. Let {Vn(x) : n ∈ ω, x ∈ G} be a weak ω-assignment on a Hausdorff

paratopological group G. By Proposition 4.7.2, we can assume that Vn(x) = xVn(e),

for each x ∈ G and each n ∈ ω.

Let us show that, for each n ∈ ω, Vn(e) contains an open neighbourhood of e in

G. Let Un be the set of all points x ∈ Vn(e) such that xVk(e) ⊂ Vn(e), for some

k ∈ ω. Clearly, e ∈ Un ⊂ Vn(e). We claim that the set Un is open. Indeed, take any

y ∈ Un. Then yVk(e) ⊂ Vn(e), for some k ∈ ω. By Proposition 4.7.4, there is m ∈ ω
such that (Vm(e))2 ⊂ Vk(e). Then (yVm(e))Vm(e) ⊂ yVk(e) ⊂ Vn(e), which implies that

Vm(y) = yVm(e) ⊂ Un. Since y was an arbitrary point of Un, it follows that Un is open in

G. Now it is clear that {Un : n ∈ ω} is a countable base of G at e. �

Corollary 4.7.6. [M. M. Choban and S. J. Nedev] Every weakly first-countable
topological group G is metrizable.

Proof. This follows from Theorem 4.7.5, since every first-countable topological group

is metrizable, by the Birkhoff–Kakutani theorem (see Theorem 3.3.12). �

Our next aim is to prove an interesting fact, Theorem 4.7.8, that complements the results

of Section 2.3. Recall that a topological space is said to be symmetrizable if its topology is

generated by a symmetric, that is, by a distance function satisfying all the usual restrictions

on a metric, except for the triangle inequality. In other words, if d is a symmetric on a

space X that generates the topology of X, then a subset U of X is open iff for every x ∈ U,

there exists ε > 0 such that the ε-ball Bε(x) = {y ∈ X : d(x, y) < ε} is contained in U.

It is clear that every symmetrizable space is weakly first-countable, but not vice versa (the

Sorgenfrey line is a counterexample).
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Proposition 4.7.7. Let d be a symmetric on a first-countable Hausdorff space X that
generates the topology of X. Then, for every x ∈ X and every ε > 0, the point x is in the
interior of the set Bε(x) = {y ∈ X : d(x, y) < ε}.

Proof. Given a point x ∈ X and a non-empty set A ⊂ X, we put

d(x, A) = inf{d(x, y) : y ∈ A}.
Let us establish the following.

Claim 1. If a sequence S = {xn : n ∈ ω} of pairwise distinct points of X converges to a
point a ∈ X, then d(x, xn) tends to zero when n→∞ and, therefore, d(a, S) = 0.

Suppose to the contrary that there exist δ > 0 and an infinite set M ⊂ ω such that

d(a, xn) ≥ δ, for each n ∈ M. Then xn = a, for each n ∈ M. Hence, to obtain a

contradiction, it suffices to show that the set S′ = {xn : n ∈ M} is closed in X. Clearly,

T = S′∪{a} is a compact subset of X, so that T is closed in X. Hence, for every x ∈ X\T ,

there exists ε > 0 such that d(x, T ) ≥ ε. In particular, d(x, S′) ≥ ε. We also have that

d(a, S′) ≥ δ > 0. Since d generates the topology of X, this implies that the set U = X \ S′

is open, i.e., S′ is closed in X. Claim 1 is proved.

Assume that there are a point x ∈ X and ε > 0 such that x is not in the interior of Bε(x).

Then x ∈ X \ Bε(x). Since X is first-countable, we can find a sequence {xn : n ∈ ω}
of pairwise distinct points of X \ Bε(x) converging to x. It follows from Claim 1 that

d(x, xn) < ε for some n ∈ ω and, hence, xn ∈ Bε(x). This contradiction completes the

proof. �

Theorem 4.7.8. Every symmetrizable Hausdorff paratopological group G with the
Baire property is a metrizable topological group.

Proof. We fix a symmetric d on the space G generating the topology of G. Let U
be any open neighbourhood of the neutral element e of G. For each positive integer n
and each g ∈ G, put Bn(g) = {x ∈ G : d(g, x) < 1/n}. Since every symmetrizable

space is weakly first-countable and, by Theorem 4.7.5, every weakly first-countable

Hausdorff paratopological group is first-countable, it follows from Proposition 4.7.7 that

g ∈ Int(Bn(g)), for each n ∈ N and each g ∈ G. Let An = {g ∈ G : Bn(g) ⊂ gU}.
Clearly, G =

⋃∞
n=1 An and Ai ⊂ Aj whenever i < j. Since G has the Baire property,

there exist k, n ∈ N and h ∈ G such that k ≤ n and the set V = Bn(h) is contained in

Ak. Then h ∈ Ak and, since V is a neighbourhood of h, we have h ∈ Ak ∩ V . Take any

v ∈ V ∩ Ak. Then Bn(v) ⊂ Bk(v) ⊂ vU. However, h ∈ Bn(v), since v ∈ V = Bn(h).

Hence, h ∈ vU, for each v ∈ V ∩ Ak. It follows that h−1v ∈ U−1, for each v ∈ V ∩ Ak,

that is, h−1(V ∩ Ak) ⊂ U−1. Let V0 = Int(V ). Clearly, V0 ∩ Ak is dense in V0, and the

multiplication by h−1 is continuous. It follows that h−1V0 ⊂ U−1. Since h ∈ V0, we also

have e ∈ h−1V0. Therefore, since h−1V0 is an open set, we obtain e ∈ Int(U−1). Now it

follows from Corollary 2.3.20 that G is a topological group. �

A curious metamorphosis occurs to the Fréchet–Urysohn property in topological

groups. A space X is said to be strongly Fréchet–Urysohn if the following condition is

satisfied:

Some convergence phenomena in topological groups
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(SFU) For each x ∈ X and every sequence ξ = {An : n ∈ ω} of subsets of X such
that x ∈ ⋂

n∈ω An, there exists a sequence η = {bn : n ∈ ω} in X converging to x and
intersecting infinitely many members of ξ.

Clearly, every strongly Fréchet–Urysohn space is Fréchet–Urysohn, as the name of the

new property suggests. However, there are many Fréchet–Urysohn spaces which are not

strongly Fréchet–Urysohn — the countable Fréchet–Urysohn fan obtained by identifying

the limit points of countably many convergent sequences is a standard example of such a

space.

Theorem 4.7.9. If a topological group G is Fréchet–Urysohn, then it is strongly
Fréchet–Urysohn.

Proof. We can assume that the group G is non-discrete. It is enough to verify condition

(SFU) for x = e. Suppose that e ∈ ⋂
n∈ω An, where each An is a subset of G. Fix a

sequence {an : n ∈ ω} in G \ {e} converging to e. For each n ∈ ω, fix a symmetric open

neighbourhood Vn of e such that an /∈ V 2. Since e ∈ An, we may assume that An ⊂ Vn,

for each n ∈ ω (otherwise, replace An with the intersection An ∩ Vn). Put Cn = anAn,

for n ∈ ω. From the choice of Vn it is clear that e /∈ Cn, while an ∈ Cn, for n ∈ ω. The

last condition and the fact that {an : n ∈ ω} converges to e implies that e ∈ C, where

C =
⋃{Cn : n ∈ ω}.
Since the space G is Fréchet-Urysohn, there exists a sequence η = {cn : n ∈ ω} in

C converging to e. Since e is not in the closure of Cn, the sequence η must intersect Cn

for infinitely many values of n. For every n ∈ ω, choose kn ∈ ω such that cn ∈ Ckn ,

and put bn = (akn )
−1cn. Clearly, the sequence {bn : n ∈ ω} converges to e and intersects

infinitely many An’s. Thus, condition (SFU) is satisfied, and the space G is strongly Fréchet–

Urysohn. �
The product of a Fréchet–Urysohn space with a metrizable space need not be Fréchet–

Urysohn [165, 2.4.G (c)]. However, with the help of the preceding result, we can establish

that the situation in the class of topological groups is different.

Theorem 4.7.10. The product of a Fréchet–Urysohn topological group G with a first-
countable space M is Fréchet–Urysohn.

Proof. Take any subset A of G × M and any point (x, y) ∈ G × M in the closure

of A. Let p be the natural projection of G ×M onto G. Fix a decreasing countable base

{Un : n ∈ ω} of the space M at the point y, and put Bn = p((G × Un) ∩ A). Clearly,

x ∈ Bn, for each n ∈ ω. We also have Bn+1 ⊂ Bn, since Un+1 ⊂ Un. From Theorem 4.7.9

it follows that there exists a sequence {bn : n ∈ ω} in G converging to x and intersecting

Bn for infinitely many n ∈ ω. For each k ∈ ω, there are bnk ∈ Bk and ck ∈ Uk such that

(bnk , ck) ∈ A and nk > k. Then, clearly, the sequence {(bnk , ck) : k ∈ ω} converges to the

point (x, y). �
Bisequential spaces constitute an important subclass of the class of strongly Fréchet–

Urysohn spaces. Recall that a prefilter η on a space X is any family of non-empty subsets

of X such that whenever P1 and P2 are in η, there exists P ∈ η such that P ⊂ P1 ∩ P2.

A prefilter η is called open if all elements of η are open sets. A prefilter η on a space X
is said to converge to a point x ∈ X if every open neighbourhood of x contains an element

of η. If x ∈ X belongs to the closure of each element of a prefilter η on X, we say that
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η accumulates to x or that x is a cluster point for η. Clearly, if η converges to x, then η
accumulates to x. Two prefilters η and ξ on X are said to be synchronous if, for any P ∈ ξ
and any Q ∈ η, P ∩Q = ∅. A space X is called bisequential if, for every prefilter η on X
accumulating to a point x ∈ X, there exists a countable prefilter η on X converging to the

same point x such that η and ξ are synchronous.

Clearly, every first-countable space is bisequential. On the other hand, the one-point

compactification of an uncountable discrete space is an example of a bisequential space

which is not first-countable at the single non-isolated point. It is an easy exercise to show that

every bisequential space is strongly Fréchet–Urysohn. However, in the class of topological

groups a much stronger statement holds, as Theorem 4.7.13 shows.

Lemma 4.7.11. For every regular bisequential space X and each x ∈ X, there exists a
countable open prefilter on X converging to x.

Proof. Let η be the family of all open dense subsets of X. Clearly, η accumulates to

every point of X. Now fix x ∈ X. Since η accumulates to x, and X is bisequential, there

exists a countable prefilter ξ on X converging to x and synchronous with η. Since X is

regular, we may assume that all elements of ξ are closed in X. Take any P ∈ ξ. The interior

of P cannot be empty, since otherwise X \ P is an open dense subset of X and, therefore,

X \ P ∈ η which implies that ξ and η are not synchronous. Since ξ is a prefilter, it follows

that {Int(P) : P ∈ ξ} is a countable open prefilter converging to x. �

The next auxiliary fact will be considerably generalized in Chapter 5 (see Proposi-

tion 5.2.6).

Lemma 4.7.12. Let G be a topological group with identity e, and suppose that there
exists a countable open prefilter ξ on G converging to e. Then the space G is first-countable.

Proof. Obviously, γ = {P−1P : P ∈ ξ} is a base at the identity of G. Indeed, all

elements of γ are open in G and contain e. Take open neighbourhoods U and V of e in

G such that V−1V ⊂ U. Since ξ converges to e, there exists P ∈ ξ such that P ⊂ V .

Therefore, P−1P ⊂ V−1V ⊂ U. Hence, G is first-countable. �

Combining Lemma 4.7.11 and Lemma 4.7.12, we obtain the second important result

of this section:

Theorem 4.7.13. [A. V. Arhangel’skii] Every bisequential topological group G is
metrizable.

The statement and argument above can be extended to the wider class of biradial

topological spaces and groups. A space X is called biradial if for every prefilter ξ on

X converging to a point x ∈ X, there exists a chain η of subsets of X converging to x and

synchronous with ξ. Obviously, every bisequential space is biradial. In addition, every

linearly ordered topological space is also biradial. Thus, for example, the space ω1 + 1, in

the usual order topology, is biradial but not bisequential (since it is not Fréchet–Urysohn).

Clearly, every subspace of a biradial space is biradial.

Proposition 4.7.14. If X is a regular biradial space then, for each x ∈ X, there exists
a chain η of non-empty open subsets of X converging to x.

Some convergence phenomena in topological groups
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Proof. Let ξ be the family of all open sets W ⊂ X such that x belongs to the interior

of W . Clearly, ξ is a prefilter converging to x. Since X is biradial, there exists a chain η in X
converging to x and synchronous with ξ. As X is regular, we can assume that all elements

of η are closed in X.

Take any P ∈ η, and put UP = Int(P). Then UP is not empty since, otherwise, the

open set V = X \ P is dense in X, which implies that V ∈ ξ. Since V ∩ P = ∅, it follows

that ξ and η are not synchronous, a contradiction.

Since η is a chain converging to x, the family μ = {UP : P ∈ η} is also a chain

converging to x. Since all elements of μ are open and non-empty, μ is the chain we were

looking for. �

A chain consisting of open sets will be called a nest. A space X is said to be nested if

for each x ∈ X, there exists a nest which is a base of X at x.

Theorem 4.7.15. Every biradial topological group G is nested.

Proof. Since the space G is biradial and regular, it follows from Proposition 4.7.14 that

there exists a nest ξ in G converging to the neutral element e of G. Then, by the continuity

of operations in G, η = {UU−1 : U ∈ ξ} is again a nest converging to e. Since e belongs

to every element of η, it follows that η is a base for G at e. �

In a sense, Theorem 4.7.14 is parallel to the theorem on metrizability of bisequential

topological groups.

We are now going to present a few results on the behaviour of the tightness and Fréchet–

Urysohn property in topological groups under group extensions.

Proposition 4.7.16. Suppose that f : X → Y is a closed continuous mapping of a
regular space X onto a space Y of countable tightness. Suppose further that the tightness
of every fiber f−1(y), for y ∈ Y , is countable. Then the tightness of X is also countable.

Proof. For a subset A of X, we put [A]ω =
⋃{B : B ⊂ A, |B| ≤ ω}. It is easy to

see that [[A]ω]ω = [A]ω, for any A ⊂ X.

Take any M ⊂ X and any x ∈ M. Put y = f (x), F = f−1(y), and P = F ∩ [M]ω.

Let us show that x is in the closure of P . Take open neighbourhoods V and W of x in X
such that W ⊂ V . Then x ∈ K, where K = M ∩W , and y ∈ L, where L = f (K). Since

t(Y ) ≤ ω, there exists a countable subset S of L such that y ∈ S. Take a countable subset C
of K such that f (C) = S. Since the mapping f is closed, we have y ∈ S = f (C) ⊂ f (C).

Hence, C ∩ F = ∅. Clearly, C ⊂ [M]ω ∩ V . It follows that P ∩ V = ∅. Therefore,

x ∈ P . However, P ⊂ F , F is closed in X, and t(F ) ≤ ω. Therefore, P = [P]ω. Since

P = F ∩ [M]ω and [[M]ω]ω = [M]ω, we conclude that x ∈ [P]ω ⊂ [M]ω. Hence, the

tightness of X is countable. �

Theorem 4.7.17. Suppose that G is a topological group, and that H is a locally compact
metrizable subgroup of G such that tightness of the quotient space G/H is countable. Then
the tightness of G is also countable.

Proof. It follows from Theorem 3.2.2 that there exists an open neighbourhood U of

the neutral element e in G such that U is a preimage of a space of countable tightness under

a perfect mapping with metrizable fibers. Hence, the tightness of U is also countable, by
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Proposition 4.7.16. Since U is a non-empty open subset of the homogeneous space G, we

conclude that the tightness of G is countable. �

Let us say that a space X is Fréchet–Urysohn at a point x ∈ X if, for every A ⊂ X
with x ∈ A, there exists a sequence {xn : n ∈ ω} ⊂ A converging to x. Evidently, X is

Fréchet–Urysohn iff it is Fréchet–Urysohn at every point x ∈ X.

Proposition 4.7.18. Suppose that X is a regular space, and that f : X → Y is a closed
continuous mapping. Suppose also that b ∈ X is a Gδ-point in the space F = f−1(f (b))

and F is Fréchet–Urysohn at b. If the space Y is strongly Fréchet–Urysohn, then X is
Fréchet–Urysohn at b.

Proof. Using the regularity of X, we can construct in a standard way a sequence

{Un : n ∈ ω} of open neighbourhoods of b in X such that Un+1 ⊂ Un+1 for each n ∈ ω,

and

{b} = F ∩
⋂
n∈ω

Un.

Now take any subset P of X such that b ∈ P . We have to find a sequence in P converging

to b. If b ∈ P ∩ F , then such a sequence exists, since F is Fréchet–Urysohn at b. The

remaining case, in view of regularity of X, obviously reduces to the case when P ∩F = ∅.

So we make this assumption.

Put Bn = P ∩ Un and Cn = f (Bn), for n ∈ ω. Clearly, b ∈ Bn and, therefore, the

continuity of f implies that c = f (b) ∈ Cn, for n ∈ ω. It is also clear that Cn+1 ⊂ Cn,

and c /∈ Cn, since P ∩ F = ∅. Since Y is strongly Fréchet–Urysohn, and the sequence

{Cn : n ∈ ω} is decreasing, we can select yn ∈ Cn, for each n ∈ ω, in such a way that the

sequence {yn : n ∈ ω} converges to c. For each n ∈ ω, fix xn ∈ Bn with f (xn) = yn.

We claim that the sequence ξ = {xn : n ∈ ω} converges to b. Note that ξ is disjoint

from F . However, the closure of every subsequence of ξ must intersect F , since the mapping

f is closed and every subsequence of {yn : n ∈ ω} converges to c. It follows that every

subsequence of ξ has an accumulation point in F . Take any point z ∈ F distinct from b.

There exists k ∈ ω such that z /∈ Uk. Since {xn : n ∈ ω, n > k} ⊂ Bk ⊂ Uk, it follows that

z cannot be an accumulation point for ξ or for a subsequence of ξ. Thus, b is the unique

point of accumulation of every subsequence of ξ which implies that ξ converges to b. Since

ξ is contained in P , the space X is Fréchet–Urysohn at b. �

Now we can prove a theorem on the behaviour of the Fréchet–Urysohn property under

taking quotients that is similar to Theorem 4.7.17.

Theorem 4.7.19. Suppose that G is a topological group, and H a locally compact
metrizable subgroup of G such that the quotient space G/H is Fréchet–Urysohn. Then the
space G is also Fréchet-Urysohn.

Proof. We argue as in the proof of Theorem 4.7.17 using, in addition to Corollary 3.2.6,

the fact that every Fréchet–Urysohn topological group is a strong Fréchet–Urysohn space,

by Theorem 4.7.9, and referring to Proposition 4.7.18. �

Some convergence phenomena in topological groups
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Exercises

4.7.a. Prove that if G is a biradial topological group of countable pseudocharacter, then G is first-

countable.

4.7.b. Give an example of a weakly first-countable, not first-countable, Hausdorff quasitopological

group.

Hint. Consider the cross topology on the plane.

4.7.c. Show that not every countable Fréchet–Urysohn space can be topologically embedded in a

Fréchet–Urysohn topological group.

Hint. Take the Fréchet–Urysohn fan V (ω). Verify that this space is not strongly Fréchet–

Urysohn and apply Theorem 4.7.9.

4.7.d. Show that every quotient space of a Fréchet–Urysohn (biradial) topological group is again

Fréchet–Urysohn (biradial).

4.7.e. Give an example of two biradial topological groups whose product is not biradial.

4.7.f. A topological space X is called linearly orderable if there exists a linear order ≤ on X such

that the sets of the form X<a = {x ∈ X : x < a} and X>a = {x ∈ X : a < x}, with a ∈ X,

constitute a subbase for the topology of X. A topological group G is called topologically
orderable if it is orderable as a topological space. Prove the following:

a) The Cantor set C ∼= Z(2)ω is a topologically orderable compact topological group.

b) The compact group T is not topologically orderable.

c) (P. J. Nyikos and H. C. Reichel [357]) If (G, <) is a topologically ordered group such

that the neutral element e of G is not isolated either from above or from below, then

the cofinality of the set (G<e, <) equals the cofinality of the set (G>e, >). Equivalently,

the cofinality of (G, <) below e is equal to the cofinality of (G, <) above e.
4.7.g. A group G is algebraically orderable if there is a subset P of G (called the set of positive

elements) such that PP ⊂ P and G is the disjoint union of P , P−1, and the neutral element

of G. Prove that if G is an algebraically ordered group, then:

a) every element of G distinct from the neutral element is of infinite order;

b) G endowed with the topology induced by the linear order defined by letting x < y if

yx−1 ∈ P , is a topologically ordered group.

4.7.h. Let Z be the additive group of integers. Prove the following:

a) The only algebraic orderings on the group Z are defined by taking P to be the positive

integers or the negative integers, both of which turn Z into a discrete space.

b) There exist many distinct non-discrete topologies τ on Z compatible with the group

structure of Z such that (Z, τ) is a topologically orderable group (so, topologically

orderable groups can fail to be algebraically orderable).

Problems

4.7.A. Suppose that G is a topological group such that G = FM, where F is a first-countable

compact space and M is a first-countable closed subspace of G. Then G is metrizable.

Hint. The space G is an image of the first-countable space M × F under a perfect mapping.

Therefore, the space G is bisequential. However, every bisequential topological group is

metrizable, by Theorem 4.7.13.

4.7.B. If a topological group G has a Hausdorff compactification bG of countable tightness, then

G is metrizable.

Hint. There is a countable π-base in bG at any point of G, since the tightness of bG is

countable [440]. Take a countable π-base γ at the neutral element e of G and show that the

family {UU−1 : U ∈ γ} is a local base at e in G.
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4.7.C. Show that a paratopological group G that has a Hausdorff first-countable compactification

need not be metrizable.

Hint. Consider the Sorgenfrey line.

4.7.D. Construct a precompact topological group G and a closed invariant subgroup H of G such

that H is Fréchet–Urysohn and countably compact, the quotient group G/H is compact and

metrizable, but the tightness of G is uncountable.

Hint. Take the group K = Dω with the product topology, where D = {0, 1} is the discrete

two-element group. Clearly, K is compact and metrizable. Let also L = Dc, where c = 2ω.

Then the Σ-product in L with center at the neutral element of L is a dense countably compact

subgroup of L which is denoted by Σ. The space Σ is Fréchet–Urysohn, by Corollary 1.6.25,

and satisfies |Σ| = c. Define by recursion of length c an algebraic homomorphism ϕ : K → L
such that the intersection of the graph of ϕ, P = {(x, ϕ(x)) : x ∈ K}, with K × Σ is dense

in K × Σ and the complement P \ (K × Σ) is not empty. Then H = {0K} × Σ is a closed

subgroup of the group G = H + P and the quotient group G/H is topologically isomorphic

to K. Verify that t(G) > ω.

4.7.E. Does Theorem 4.7.19 remain valid if one assumes that H is an arbitrary closed metrizable

subgroup of the group G?

4.7.F. Show that is consistent with ZFC that a compact sequentially compact topological group

need not be metrizable.

Hint. Under Martin’s Axiom combined with negation of the Continuum Hypothesis, Dω1 is

the group we are looking for.

4.7.G. (M. Venkataraman, M. Rajagopalan, and T. Soundararajan [527]) Let G be a topologically

orderable topological group. Prove the following:

a) If G is not totally disconnected, then it contains an open invariant subgroup which is

topologically isomorphic to the group of reals R.

b) If G is infinite, locally compact, and totally disconnected, then it contains an open

subgroup homeomorphic as a space to the Cantor set.

4.7.H. (M. Venkataraman, M. Rajagopalan, and T. Soundararajan [527]) A separable totally

disconnected topological group is topologically orderable iff it is metrizable and zero-

dimensional.

4.7.I. (M. Sanchis and A. Tamariz-Mascarúa [417]) Prove that a non-discrete topologically

orderable group G is metrizable if and only if G contains an infinite precompact subset.

(See also Exercise 4.7.f.)

4.7.J. (P. J. Nyikos and H. C. Reichel [357]) Let G be a non-metrizable topological group. Prove

that the following conditions are equivalent:

a) G is topologically orderable;

b) the neutral element of G has a linearly ordered (by inverse inclusion) local base;

c) the neutral element of G has a linearly ordered (by inverse inclusion) local base

consisting of open subgroups.

Open Problems

4.7.1. Can any first-countable Tychonoff space X be topologically embedded in a Fréchet–Urysohn

topological group? What if X is also compact?

4.7.2. A space X is called radial if for every A ⊂ X and every point x ∈ A \ A, there exists a

subset B ⊂ A such that x ∈ B and |B \ U| < |B|, for each neighbourhood U of x in G.

Can Theorem 4.7.9 be generalized to radial topological groups? Of course, condition (SFU)

should be also generalized to this case.

4.7.3. Is the product of a radial topological group with a nested topological group radial?

Some convergence phenomena in topological groups
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4.7.4. Is it consistent with ZFC that every countable Fréchet–Urysohn topological group is

metrizable? In other words, can one construct in ZFC a non-metrizable countable topological

group which is Fréchet–Urysohn?

Remark. There are countable Fréchet–Urysohn non-metrizable topological groups under

Martin’s Axiom combined with negation of the Continuum Hypothesis. One can simply

take any countable dense subgroup of the compact group Dω1 , where D = {0, 1} is the

discrete two-element group.

4.7.5. Is there in ZFC an example of a (countable) Fréchet–Urysohn topological group G such that

G × G is not Fréchet–Urysohn?

Remark. Consistent examples of such groups are known. They were constructed by

A. Shibakov [444] (see also the survey [436]).

4.7.6. Is every countably compact sequential topological group G Fréchet–Urysohn? What if G is

also a normal space?

4.7.7. Prove in ZFC that if a topological group G has a Hausdorff compactification bG such that

the tightness of bG is countable at every x ∈ G, then G is metrizable.

4.7.8. Let us say that the dyadicity index of a space X is countable if there exists no continuous

mapping of X onto the Tychonoff cube Iω1 . Suppose that a topological group G has a

Hausdorff compactification bX of countable dyadicity index. Is G metrizable?

4.8. Historical comments to Chapter 4

The class of dyadic compacta was introduced by P. S. Alexandroff in [7] by means of

the following question: Is it possible to represent an arbitrary compact Hausdorff space as

a continuous image of some generalized Cantor discontinuum Dτ? The negative answer

was given by E. Marczewski in [302] (see [165] for further references). He noticed that

the cellularity of every dyadic compactum is countable. The crucial Theorem 4.1.1 was

proved by E. A. Michael in [320] who created the theory of continuous selections. This

theory found many important applications (see, for example, [74]). Theorem 4.1.7 was

independently proved by L. N. Ivanovskij [259] and V. I. Kuz’minov [287]; this is one

of the major achievements in the topological theory of compact groups. The proof of

Theorem 4.1.7 in this book follows the argument in [517, 515, 516] very closely. This

concerns, in particular, Lemma 4.1.2, Proposition 4.1.3, Lemma 4.1.4, and Theorem 4.1.6.

The argument is based on a method created by R. Haydon in [221] and developed further by

E. V. Schepin in [420, 421]. In connection with Theorem 4.1.5 see [7]. Theorem 4.2.1 is an

easy corollary from Theorem 4.1.7 and a general result of R. Engelking on dyadic compacta

in [164]. Some strong partial results in this direction were obtained by B. A. Efimov in

[158]. The proof of Theorem 4.2.1 given in the book is based on Shakhmatov’s argument

from [434]. Corollary 4.2.2 was obtained in [59]. L. B. Shapiro established in [439] that

every homogeneous zero-dimensional dyadic compact space of weight ℵ1 is homeomorphic

to the topological group Dω1 . This result was also obtained by M. G. Bell in [70]. Thus, the

assumption of dyadicity imposes very strong structural constraints on a compact space.

Proposition 4.3.1 and Lemmas 4.3.2 and 4.3.3 are among the standard tools of general

topology. One finds analogous statements in [276], [80], and [165]. M. Henriksen and

J. Isbell introduced spaces of countable type in [223]. Spaces of pointwise countable type

(or of point-countable type) were defined later by A. V. Arhangel’skii in [15]. This notion

brings to light a natural common extension of the classes of compact spaces and first-

countable spaces. Lemma 4.3.4 and Corollary 4.3.5 go back to [223]. For almost open
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sets and Proposition 4.3.6 see [249]. The class of feathered spaces, or p-spaces, was

introduced in [14, 16], by a different condition. B. A. Pasynkov established in [364] that

a topological group G is feathered if and only if it contains a non-empty compact subset

of countable character in G, that is, if G is a space of pointwise countable type. He

called these groups almost metrizable. Lemma 4.3.10, Propositions 4.3.11, 4.3.13, and

Corollary 4.3.12 came from [364], where some further interesting results were obtained.

Theorems 4.3.15 and 4.3.16 are due to M. M. Choban [100]. Later, Theorem 4.3.15 was also

proved by L. G. Brown in [88]. Corollary 4.3.18 is from [47]. Lemma 4.3.19 was known

to L. S. Pontryagin (see [387]). Theorem 4.3.20 and Corollaries 4.3.21, 4.3.22, and 4.3.24

are from [364].

Proposition 4.3.25 and Theorem 4.3.26 are from [365]. Proposition 4.3.36 appeared in

[16]. Theorem 4.3.37 and Corollary 4.3.38 were proved in [47].

In general topology P-spaces were introduced a long time ago (see [350], for example).

They are especially interesting in the context of function spaces; that was shown in [191]

and [32]. Clearly, every topological space gives rise to a P-space by means of the very

natural operation of taking the Gδ-modification of the original topology — a base of this

topology consists of Gδ-sets in the original space.

In topological algebra P-spaces made their appearance quite recently; one of them was

in [109], in connection with the study of pseudocompact groups. They are still looked

upon as exotic objects. However, there is a very important point about P-spaces: Lindelöf

P-spaces behave very much similar to compacta! Thus, they can serve as objects of a nice

theory, not only as a source of peculiar examples. Many elementary results in Section 4.4

could be, probably, viewed as a part of the folklore. The proofs of some of them may appear

in print for the first time. Lemma 4.4.3 and Corollary 4.4.4 are of the purely topological

nature, they were proved in [350] and [351], respectively. Proposition 4.4.5 was obtained by

C. Hernández in [225]. For Lemmas 4.4.7 and 4.4.8, Proposition 4.4.9, and Theorem 4.4.10

see [350] and [351]. Example 4.4.11 goes back to W. W. Comfort and K. A. Ross’ article

[122] (where it was presented for the special case τ = ℵ1).

The first consistent example (under the Continuum Hypothesis) of a non-discrete

extremally disconnected topological group was constructed by S. Sirota in [455]. The

problem of finding such a group was formulated in [17], where it was shown that every

compact subspace of any extremally disconnected topological group was discrete (in

Theorem 3.7.28 this result is extended to precompact subsets of topological groups). The

problem is still open in ZFC. In [298] V. I. Malykhin made an important step forward —

he proved Theorem 4.5.2. Theorem 4.5.1 goes back to Z. Frolı́k [180] and M. G. Katetov

[270]. Our treatment of the topic of extremal disconnectedness follows [38]. In particular,

Theorems 4.5.3, 4.5.5, 4.5.6, 4.5.8, 4.5.9, and Proposition 4.5.4 are from [38]. In connection

with Corollary 4.5.7 see [397]. Theorems 4.5.12, 4.5.16, 4.5.17, and Corollaries 4.5.14,

4.5.15 are from [38]. Lemma 4.5.18 and Proposition 4.5.19 can be found in [152] and [52],

respectively. Theorem 4.5.22 is due to V. I. Malykhin (see [298, 299]).

The notions of grasp on a group and of cross-complementary subsets of a group were

introduced in [46]. Proposition 4.6.1, Lemma 4.6.2, Theorems 4.6.3 and 4.6.4 are taken from

[46]. Proposition 4.6.5 goes back to N. Bourbaki’s [81]. Example 4.6.7, Theorems 4.6.8,

4.6.9, 4.6.10, and 4.6.11 are from [46]. The notion of a Gδ-closed mapping was also

introduced in [46]. Lemma 4.6.13, Proposition 4.6.14, Theorems 4.6.15 and 4.6.17 are

Historical comments to Chapter 4
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from [46], though the first three of them have their prototypes in the theory of P-spaces

(see, in particular, [350] and [351]). Theorems 4.6.22, 4.6.24, 4.6.25, and 4.6.26 also come

from [46].

Weakly first-countable spaces were studied by S. J. Nedev in [340] under the name of

o-metrizable spaces. Lemmas 4.7.1, 4.7.3, and Propositions 4.7.2 and 4.7.4 appear in print,

probably, for the first time. Theorem 4.7.5 is P. Nyikos’ result from [355]. Corollary 4.7.6

was obtained in [341] and later in [355]. Proposition 4.7.7 is from [60]. Theorem 4.7.8 was

proved in [62]. Theorem 4.7.9 is due to P. Nyikos, see [355, 356]. Lemmas 4.7.11, 4.7.12,

and Theorem 4.7.13 were established in [33]. Proposition 4.7.14 and Theorem 4.7.15 are

taken from [31]. Theorems 4.7.17, 4.7.19, and Proposition 4.7.18 are quite recent results

from [47].



Chapter 5

Cardinal Invariants
of Topological Groups

The definition of the notions of topology and topological space, based on the axiomatic

approach, is of necessity of a purely set-theoretic nature. Indeed, a topology is just a

family of sets satisfying certain axioms. Not so many elementary and natural properties of

sets can be formulated without recourse to special, more complicated, structures or tools of

mathematical logic. The most important, and almost the only such property is the cardinality

of a set. So no wonder that in General Topology cardinal invariants, that is, characteristics

of spaces preserved by homeomorphisms and formulated in terms of cardinal numbers and

of families of sets, play a central, almost universal, role. Cardinal invariants measure the

size of the space in various ways, the local behaviour of the space, and, most importantly,

they are used to bring to light specific features of the space. When we consider continuous

mappings, it is important to know which cardinal invariants do not increase under certain

natural restrictions on these mappings. When studying products of spaces, it is most useful,

whatever our main interest may be, to know how certain cardinal invariants behave under

the Tychonoff product operation. Some of the questions of this kind are quite deep and

difficult, and the work on them has generated much of the progress not only in General

Topology, but in Set Theory and in Mathematical Logic as well. To make the point, it is

enough to mention the following question. Suppose that the Souslin number of a space X
is countable. Is the Souslin number of the square X × X of X countable? This question,

which is so easy to formulate and understand, is intimately related to the famous Souslin

Conjecture and to Martin’s Axiom, coined in Mathematical Logic, both of which have so

many consequences in Topology and Analysis.

Cardinal invariants of a somewhat different kind play a fundamental role in algebra also;

one can refer to the cardinality of a basis of a vector space, to the p-rank and torsion-free

rank of an Abelian group (see Section 9.9), and to similar concepts. So we should expect

that cardinal invariants must have a prominent role in topological algebra. Examples of that

were seen in preceding chapters; it suffices to mention the Birkhoff–Kakutani theorem on

the metrizability of first-countable topological groups, the theorem on the metrizability of

compact groups of countable tightness, or the theorem stating that the cellularity of every

compact topological group is countable.

This chapter is devoted to a deeper, and more systematic, study of cardinal invariants

of topological groups, with detours into the realm of paratopological groups. We introduce

a variety of cardinal invariants, some of them of mixed, topological and algebraic nature,

and we study relationships between them. One of the main points of interest is to clarify

how the presence of a “synchronous” algebraic structure influences the behaviour of purely

A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies  285
in Mathematics 1, DOI 10.2991/978-94-91216-35-0_5, © 2008 Atlantis Press/World Scientific 
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topological cardinal invariants in the new ambient, how the relationship between them

changes.

One of the ways to understand the essence and the role of a topological cardinal invariant

is to consider the class of all objects (topological spaces, topological groups, and so on)

satisfying certain restriction on the value of this invariant, and to study the categorical

properties of the class so obtained, that is, to investigate whether the class is closed under

the product operation, whether it is preserved by various classes of mappings, whether it is

hereditary.

We study such questions below and, although the theory is obviously far from complete,

we present, along with simple basic facts, certain deep and delicate results of a very general

nature. We hope that some of these results will serve as corner stones for the emerging

theory.

5.1. More on embeddings in products of topological groups

We already know when a topological group G is topologically isomorphic to a subgroup

of a product of second-countable groups — according to Guran’s theorem, this happens if

and only if G is ω-narrow (see Theorem 3.4.23). It is very natural to introduce more general

classes of groups by taking subgroups of arbitrary products of some “nice” topological

groups. Given a class � of topological groups, it is also natural to try to find an internal

characterization of the subgroups of the groups in �. This is still an open problem for the

class � of Lindelöf topological groups. On the other hand, subgroups of compact topological

groups are precisely the precompact groups, by Corollary 3.7.17. The following definition

generalizes the concepts of precompact and ω-narrow groups.

Let τ be an infinite cardinal. A left topological group G is called τ-narrow if, for every

neighbourhood U of the identity in G, there exists a subset K ⊂ G with |K| ≤ τ such that

KU = G.

We collect several simple properties of τ-narrow topological groups in the following

proposition.

Proposition 5.1.1.

a) Every subgroup of a τ-narrow topological group is τ-narrow.
b) If π : G → H is a continuous homomorphism of a τ-narrow left topological group G

onto a left topological group H , then H is τ-narrow.
c) The topological product of arbitrarily many τ-narrow left topological groups is τ-

narrow.
d) If G is a dense τ-narrow subgroup of a topological group H , then H is also τ-narrow.

Let us mention that in the case τ = ω, item a) of Proposition 5.1.1 coincides with

Theorem 3.4.4, item b) coincides with Proposition 3.4.2, item c) is exactly Proposition 3.4.3,

and item d) is Theorem 3.4.9. Since the general case of τ-narrow groups does not

substantially differ from that of ω-narrow groups, we leave Proposition 5.1.1 without proof.

The above proposition implies that Rω is an ω-narrow group that fails to be σ-compact.

In fact, many non-closed subgroups of the groups R and T are not σ-compact; all of them

are ω-narrow, by a) of Proposition 5.1.1. The next example shows even more.
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Example 5.1.2. The group Rω cannot be embedded as a subgroup into a σ-compact

topological group.

Indeed, the group Rω is Raı̆kov complete, by Theorem 3.6.22, and if it were topologi-

cally isomorphic to a subgroup H of a σ-compact topological group G, H would be closed

in G and σ-compact, which is impossible. �
Proposition 5.1.1 also implies that subgroups of topological products of σ-compact

groups are ω-narrow. However, we shall see in Theorem 5.1.24 that not every ω-narrow

group can be embedded as a subgroup into a topological product of σ-compact topological

groups.

The following result provides us with more examples of τ-narrow groups. We recall

that l(G) and c(G) are the Lindelöf number and the cellularity of G, respectively.

Proposition 5.1.3. Let G be a topological group.

a) If G satisfies l(G) ≤ τ, then G is τ-narrow.
b) If c(G) ≤ τ, then G is τ-narrow.

Proof. Claim a) is almost obvious. Indeed, if U is an open neighbourhood of the

identity in G, then {xU : x ∈ G} is an open covering of G. Since l(G) ≤ τ, there is a set

C ⊂ G with |C| ≤ τ such that the family {xU : x ∈ C} covers G or, equivalently, CU = G.

Hence, G is τ-narrow.

To deduce b), apply the argument in the proof of Theorem 3.4.7. �
Since a separable space has countable cellularity, item b) of Proposition 5.1.3 implies

that every separable topological group is ω-narrow. This suggests that the class of ω-narrow

groups is wider than the class of subgroups of Lindelöf topological groups. Indeed, the

ω-narrow group Zω1 , where the group Z carries the discrete topology, is Raı̆kov complete

and contains an uncountable closed discrete subset, by [165, 2.7.16]. So, Zω1 cannot be

embedded as a subgroup into a Lindelöf topological group.

By Theorem 3.4.23, ω-narrow groups are precisely the subgroups of topological

products of second-countable groups. Similarly, every τ-narrow topological group can

be embedded as a subgroup into a product of topological groups of weight at most τ (see

Theorem 5.1.10). The argument in this case is close to that for ω-narrow groups given in

Section 3.4, so we only sketch the proof here.

Let G be a topological group. We say that the invariance number of G is less than or

equal to τ or, in symbols, inv(G) ≤ τ if for every neighbourhood U of the identity e in G,

there exists a family γ of open neighbourhoods of e with |γ| ≤ τ such that for each x ∈ G,

one can find V ∈ γ satisfying x−1Vx ⊂ U. Following Section 3.4, we call such a family γ
subordinated to U. The next three facts are completely analogous to Propositions 3.4.10,

3.4.5, and Theorem 3.4.18, respectively, so we omit their proofs.

Lemma 5.1.4. If G is a τ-narrow topological group, then inv(G) ≤ τ.

Lemma 5.1.5. Let H be a τ-narrow topological group of character less than or equal
to τ. Then w(H) ≤ τ.

Lemma 5.1.6. Let U be an open neighbourhood of the identity in a topological group
G with inv(G) ≤ τ. Then there exists a continuous homomorphism π : G→ H of G onto a
topological group H with χ(H) ≤ τ such that π−1(V ) ⊂ U, for some open neighbourhood
V of the identity in H .
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Combining Lemmas 5.1.4–5.1.6, we arrive at the following conclusion.

Corollary 5.1.7. Let U be an open neighbourhood of the identity in a τ-narrow
topological group G. Then there exists a continuous homomorphism π : G→ H of G onto
a topological group H with w(H) ≤ τ such that π−1(V ) ⊂ U, for some open neighbourhood
V of the identity in H .

Corollary 5.1.8. Let G be a τ-narrow topological group with identity e and let P be a
subset of G such that e ∈ P and ψ(P, G) ≤ τ. Then there exists a continuous homomorphism
p : G→ H onto a topological group H with w(H) ≤ τ such that ker p ⊂ P .

Proof. Since ψ(P, G) ≤ τ, there exists a family {Uα : α < τ} of open neighbourhoods

of e in G such that P =
⋂

α<τ Uα. Apply Corollary 5.1.7 to find, for every α ∈ A, a

continuous homomorphism pα : G → Hα onto a topological group Hα with w(Hα) ≤ τ
such that p−1

α (Vα) ⊂ Uα for some open neighbourhood Vα of the identity in Hα. In particular,

ker pα ⊂ Uα. The diagonal product p = Δα<τpα is a continuous homomorphism of G to

the group H =
∏

α<τ Hα. It is clear that w(H) ≤ τ. In addition,

ker p =
⋂
α<τ

ker pα ⊂
⋂
α<τ

Uα = P. �

Now we extend Theorem 3.4.22 to topological groups with invariance number less than

or equal to an infinite cardinal number τ.

Theorem 5.1.9. Every topological group G with inv(G) ≤ τ can be embedded as a
subgroup into a topological product of topological groups of character ≤ τ.

Proof. Let e be the identity of G. Consider the family � = {Ui : i ∈ I} of all open

neighbourhoods of e in G. By Lemma 5.1.6 we can find, for every i ∈ I, a continuous

homomorphism πi : G → Hi of G onto a topological group Hi with χ(Hi) ≤ τ such that

π−1
i (Vi) ⊂ Ui for some open neighbourhood Vi of the identity in Hi. Let Π =

∏
i∈I Hi be

the topological product of the groups Hi’s and let ϕ : G→ Π be the diagonal product of the

homomorphisms πi, where i ∈ I. It is clear that ϕ is a continuous homomorphism of G to

Π. It remains to show that ϕ is a topological embedding.

Let H = ϕ(G). Choose an arbitrary neighbourhood U of e in G. There exists i ∈ I
such that Ui ⊂ U, and then π−1

i (Vi) ⊂ Ui by the choice of the open neighbourhood Vi of the

identity in Hi. Denote by pi the projection of Π onto the factor Hi. The set W = p−1
i (Vi) is

an open neighbourhood of the identity in Π. Since ϕ is the diagonal product of the mappings

πj , j ∈ I, we have πi = pi ◦ ϕ. Therefore, ϕ−1(W ) = π−1
i (Vi) ⊂ Ui ⊂ U. In particular,

O = W ∩H is an open neighbourhood of the identity in H which satisfies ϕ−1(O) ⊂ U.

So we have proved that for every open set U in G containing e, there exists an open

set O in H containing the identity of H such that ϕ−1(O) ⊂ U. This implies immediately

that ϕ : G → H is a continuous isomorphism and that its inverse ϕ−1 is also continuous.

Therefore, ϕ : G→ H is a topological isomorphism. �

Theorem 5.1.9 enables us to deduce the main result of this section, which characterizes

τ-narrow topological groups in terms of embeddings into topological products and implies

Theorem 3.4.23 in the special case when τ = ω:
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Theorem 5.1.10. [I. I. Guran] A topological group G is τ-narrow if and only if G is
topologically isomorphic to a subgroup of a topological product of topological groups of
weight less than or equal to τ.

Proof. Clearly, every topological group of weight ≤ τ is τ-narrow. Therefore, items

a) and c) of Proposition 5.1.1 imply that every subgroup of a product
∏

i∈I Hi of topological

groups is τ-narrow provided that w(Hi) ≤ τ, for each i ∈ I.

Conversely, let G be a τ-narrow topological group. By Lemma 5.1.5 and Theorem 5.1.9,

we can identify G with a subgroup of a product Π =
∏

i∈I Hi of topological groups Hi

satisfying χ(Hi) ≤ τ for each i ∈ I. Let πi : Π → Hi be the projection. Clearly, we

can assume that Hi = πi(G), for all i ∈ I. Then each group Hi is τ-narrow by b) of

Proposition 5.1.1, so Lemma 5.1.5 implies that w(Hi) ≤ τ. �

Below, we apply Theorem 5.1.10 to give another characterization of τ-narrow topolog-

ical groups that avoids mentioning topological products:

Theorem 5.1.11. A topological group G is τ-narrow iff it can be embedded as a
subgroup into a topological group H satisfying c(H) ≤ τ.

Proof. Every subgroup of a topological group H with c(H) ≤ τ is τ-narrow, by b)

of Proposition 5.1.3 and a) of Proposition 5.1.1. Conversely, by Theorem 5.1.10, a τ-

narrow topological group G is topologically isomorphic to a subgroup of a product H of

topological groups Hi with w(Hi) ≤ τ, and such a product satisfies c(H) ≤ τ, by [165,

Theorem 2.3.17]. �

A topological space is said to be k-separable if it has a dense σ-compact subspace. We

shall see in Corollary 5.3.22 below that every σ-compact topological group has countable

cellularity. Since every k-separable topological group contains a dense σ-compact subgroup,

all k-separable groups have countable cellularity. Hence, the next result is, in a sense, a

refinement of Theorem 5.1.11 in the case when τ = ω.

Theorem 5.1.12. [V. G. Pestov] The class of ω-narrow groups coincides with the class
of subgroups of k-separable topological groups.

Proof. Every σ-compact topological group H is Lindelöf and, hence, ω-narrow. If H
is dense in a topological group G, then G is ω-narrow by d) of Proposition 5.1.1, so that all

subgroups of G are also ω-narrow by a) of the same proposition.

Conversely, let G be an arbitrary ω-narrow topological group. It follows from

Theorem 5.1.10 that we can identify G with a subgroup of a topological product Π =∏
i∈I Hi of second-countable groups Hi’s. For every i ∈ I, fix a countable dense subgroup

Di of Hi. Let D be a subgroup of
∏

i∈I Di consisting of the points whose all coordinates

except for finitely many are identities. Thus, D is the σ-product of the family {Di : i ∈ I}
(see Section 1.6). Then D is dense in

∏
i∈I Di and in Π. In addition, from Proposition 1.6.41

it follows that D is σ-compact. �

Continuous homomorphic images of τ-narrow groups are τ-narrow, by b) of Propo-

sition 5.1.1. It turns out that, in the class of Abelian topological groups G, continuous

homomorphic images H with χ(H) ≤ ω of a given group G determine whether G is

τ-narrow or not.
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Proposition 5.1.13. Let G be an Abelian topological group and suppose that every
continuous homomorphic image H of G with χ(H) ≤ ω is τ-narrow. Then the group G is
also τ-narrow.

Proof. Let U be an open neighbourhood of the neutral element e in G. There exists

a sequence {Un : n ∈ ω} of open symmetric neighbourhoods of e in G such that U0 ⊂ U
and U2

n+1 ⊂ Un for each n ∈ ω. Then N =
⋂

n∈ω Un is a closed subgroup of G. Since G
is Abelian, we can consider the algebraic quotient group G/N. Let π : G → G/N be the

natural homomorphism. Obviously, the family {π(Un) : n ∈ ω} is a base for a Hausdorff

group topology � on G/N at the neutral element of this group. Let H = (G/N, �). Clearly,

χ(H) ≤ ω and the homomorphism π : G → H is continuous. Therefore, the group H is

τ-narrow. For the open set V = π(U1), choose a set K ⊂ H such that KV = H and

|K| ≤ τ. Let F be any subset of G such that π(F ) = K and |F | ≤ τ. We claim that

FU = G. Indeed, take an arbitrary element x ∈ G. Then π(x) ∈ bV for some b ∈ K.

Choose an element a ∈ F with π(a) = b. Clearly, π(x) ∈ bV = π(aU1), whence it follows

that

x ∈ π−1π(aU1) = aU1N ⊂ aU1U1 ⊂ aU0 ⊂ aU ⊂ FU.

This implies that FU = G, so the group G is τ-narrow. �

Sometimes, the τ-narrowness of a topological group G can be deduced from the

existence of a certain type of subspace of G (see Theorem 5.1.19 below). The next definition

extends the concept of τ-narrowness to subsets of semitopological groups.

A subset B of a semitopological group G is called τ-narrow in G if, for every

neighbourhood U of the identity in G, there exists a subset F of G such that B ⊂ FU ∩UF
and |F | ≤ τ. Clearly, G is τ-narrow iff G is τ-narrow in itself, and every subset of a

τ-narrow semitopological group is τ-narrow in this group. In what follows we focus in

subsets of topological groups.

The lemma below is analogous to Proposition 5.1.3, so its proof is omitted. In fact, we

will prove below, in Proposition 5.1.15, a considerably more general result.

Lemma 5.1.14. A subset B of a topological group G is τ-narrow in each of the following
cases:

a) l(B) ≤ τ;
b) c(B) ≤ τ.

The discrete cellularity number dc(X) of a space X is the smallest infinite cardinal

number τ such that the cardinality of any discrete family of non-empty open subsets of X
is strictly less than τ. Thus, dc(X) = ℵ0 iff X is pseudocompact, and dc(X) ≤ ℵ1 iff every

discrete family of non-empty open sets in X is countable, that is, X is pseudo-ℵ1-compact.

It is clear that each of the conditions l(B) ≤ τ or c(B) ≤ τ implies that dc(X) ≤ τ+, so

Lemma 5.1.14 follows from the next result:

Proposition 5.1.15. Let B be a subspace of a topological group G satisfying
dc(B) ≤ τ+. Then B is τ-narrow in G.

Proof. Assume to the contrary that B fails to be τ-narrow in G. Then there exists

a neighbourhood U of the identity e in G such that either B \ FU = ∅ or B \ UF = ∅
for every F ⊂ G with |F | ≤ τ. We can assume without loss of generality that the first
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case takes place. By Zorn’s lemma, there exists a maximal subset X of B with the property

that X ∩ xU = {x}, for all x ∈ X. Our assumption implies that |X| > τ. Choose an

open symmetric neighbourhood V of e in G such that V 4 ⊂ U. Then Lemma 1.4.22

implies that the family γ = {xV : x ∈ X} is discrete in G. We conclude that the family

θ = {B ∩W : W ∈ γ} of non-empty open sets in B is discrete in B and |θ| = |γ| > τ,

which contradicts dc(B) ≤ τ+. �

It turns out that the property of a subset B of a topological group G being τ-narrow in

G depends only on the subgroup 〈B〉 of G algebraically generated by B:

Proposition 5.1.16. The following properties are equivalent for a subset B of a
topological group G:

a) B is τ-narrow in G;
b) B is τ-narrow in some subgroup H of G containing B;
c) B is τ-narrow in every subgroup H of G containing B;
d) H is τ-narrow in the subgroup 〈B〉 of G.

Proof. If H is a subgroup of G with B ⊂ H , then clearly 〈B〉 ⊂ H . Therefore,

d)⇒ c)⇒ b)⇒ a). It remains to show that d) follows from a). Suppose that B is τ-narrow

in G and put K = 〈B〉. Let U be an arbitrary open neighbourhood of the identity e in

K. Choose an open symmetric neighbourhood V of e in G such that V ∩ K ⊂ U. Let

X be a maximal subset of B with the property that X ∩ xV = {x}, for all x ∈ X. We

claim that |X| ≤ τ. Indeed, if |X| > τ, choose an open symmetric neighbourhood W of

e in G satisfying W2 ⊂ V . Since B is τ-narrow in G, there exists a set F ⊂ G such that

B ⊂ FW and |F | ≤ τ. It follows from |F | < |X| and X ⊂ FW that |X ∩ yW | ≥ 2

for some y ∈ F . Let x1 and x2 be distinct elements of the intersection X ∩ yW . Then

x−1
1 x2 ∈ (yW )−1yW = W2 ⊂ V , whence x2 ∈ x1V . This contradicts our choice of the set

X, so |X| ≤ τ.

The maximality of X implies that B ⊂ XV , and we claim that B ⊂ XU. Indeed, if

b ∈ B, then b = xv for some x ∈ X and v ∈ V , whence v ∈ x−1b ∈ 〈B〉 = K. Therefore,

v ∈ K ∩ V ⊂ U which in its turn implies that b = xv ∈ xU. This proves that B ⊂ XU,

where |X| ≤ τ. Similarly, one can choose a subset Y of B such that B ⊂ UY and |Y | ≤ τ.

Hence B is τ-narrow in 〈B〉. �

Since the sets X and Y in the proof of Proposition 5.1.16 were chosen as subsets of B,

we have:

Corollary 5.1.17. Let B be a τ-narrow subset of a topological group G. Then, for
every neighbourhood U of the identity in G, there exists a subset F of B with |F | ≤ τ such
that B ⊂ FU ∩ UF .

In the following lemma we establish that τ-narrow subsets of a topological group are

stable under the inverse and multiplication in the group.

Lemma 5.1.18. Let A and B be τ-narrow subsets of a topological group G. Then the
sets A−1 and AB are also τ-narrow in G.

Proof. Let U be a neighbourhood of the identity e in G. We can find a neighbourhood

O of e in G and a set F ⊂ G such that O−1 ⊂ U and A ⊂ FO∩OF . Put K = F−1. Then,
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clearly, |K| = |F | ≤ τ and

A−1 ⊂ (FO)−1 ∩ (OF )−1 = O−1K ∩KO−1 ⊂ UK ∩KU.

Hence, the set A−1 is τ-narrow in G.

Let us show that AB is also τ-narrow in G. Choose an open neighbourhood V of e in

G with V 2 ⊂ U and a subset L of G with |L| ≤ τ satisfying B ⊂ LV . For every y ∈ L,

choose a neighbourhood Wy of e in G such that y−1Wyy ⊂ V . Since A is τ-narrow in G,

for every y ∈ L there exists a subset Ky of G such that |Ky| ≤ τ and A ⊂ KyWy. Put

K =
⋃

y∈L Ky and M = KL. It is clear that |M| ≤ τ. Let us verify that AB ⊂ MU.

Suppose that a ∈ A and b ∈ B. Choose y ∈ L such that b ∈ yV . Then there exists x ∈ Ky

such that a ∈ xWy. Therefore, we have

ab ∈ xWyyV = xy(y−1Wyy)V ⊂ xyVV ⊂ xyU,

that is, ab ∈ MU. This proves that AB ⊂ MU. One can prove in a similar way that there

exists a subset M′ of G such that |M′| ≤ τ and AB ⊂ UM′. Clearly, AB ⊂ EU ∩ UE,

where the set E = M ∪ M′ satisfies |E| ≤ τ. Therefore, the product AB is τ-narrow

in G. �
Theorem 5.1.19. Let X be a τ-narrow subset of a topological group G which

algebraically generates G. Then the group G is τ-narrow.

Proof. By Lemma 5.1.18, the set Y0 = X ∪ X−1 is τ-narrow in G. Consider the

sequence {Yn : n ∈ ω} of subsets of G defined by Yn+1 = YnY0 for all n ∈ ω. Apply

Lemma 5.1.18 to show, by induction on n, that Yn+1 is τ-narrow for each n ∈ ω. Since

τ ≥ ω and 〈X〉 =
⋃∞

n=0 Yn, the group G is τ-narrow as well. �
The following two corollaries to Theorem 5.1.19 are almost immediate.

Corollary 5.1.20. If a topological group G contains a dense subgroup algebraically
generated by a Lindelöf subspace, then G is ω-narrow.

Proof. Let B be a Lindelöf subspace of G which generates a dense subgroup H of G.

Then B is τ-narrow in G by Lemma 5.1.14, so the group H is τ-narrow by Theorem 5.1.19.

Hence, item d) of Proposition 5.1.1 implies that G is τ-narrow as well. �
Similarly, we have:

Corollary 5.1.21. If a topological group G contains a dense subgroup algebraically
generated by a subspace B with c(B) ≤ τ, then G is τ-narrow.

The subgroups of σ-compact groups form a proper subclass of the ω-narrow groups

(see Example 5.1.2). However, this still leaves open the possibility that every ω-narrow

group could be embedded as a subgroup into a product of σ-compact topological groups.

Let us show that this is not the case either. Our argument makes use of topological vector
spaces (a more detailed discussion of this subject is presented in Section 9.2).

Suppose that L is a vector space over a field K, where K is R or C. A non-negative

real-valued function ‖ · ‖ on L is called a norm if it satisfies the following conditions:

(N1) if x ∈ L and ‖x‖ = 0, then x = 0L;

(N2) ‖λx‖ = |λ| · ‖x‖, for all λ ∈ K and x ∈ L;

(N3) ‖x + y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ L.
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A vector space L with a norm ‖·‖ is called a normed space. The normed space (L, ‖·‖)
admits a natural metrizable group topology. Indeed, for every positive number ε, consider

the “open ball”

B(ε) = {x ∈ L : ‖x‖ < ε}
with center 0L in L. One can easily verify that the family {B(ε) : ε > 0} is a base at the

neutral element 0L for a Hausdorff group topology τ on the Abelian group L. In addition,

the metric d on L defined by d(x, y) = ‖x − y‖ for all x, y ∈ L is invariant and generates

the same topology τ. Therefore, the group topology τ is metrizable. If the metric space

(L, d) is complete, we call (L, ‖ · ‖) a Banach space. In what follows we omit the symbol

of norm and simply say that L is a normed or Banach space. It is clear that if L is a Banach

space, then (L, τ) is a Raı̆kov complete topological group.

Let us say that a topological group G is locally minimal if there exists a neighbourhood

U of the identity in G such that G admits no strictly weaker Hausdorff topological

group topology for which U remains a neighbourhood of the identity. Evidently, every

discrete topological group is locally minimal. More generally, every locally compact

topological group is locally minimal simply because all translations of a topological group

are homeomorphisms. The next result shows that locally minimal groups can differ

substantially from locally compact groups.

Proposition 5.1.22. Every normed vector space considered as an Abelian topological
group is locally minimal.

Proof. Let L be a vector space with a norm ‖ · ‖. Consider the unit open ball

B(1) = {x ∈ L : ‖x‖ < 1} in L and suppose that τ is a weaker Hausdorff group topology

on L such that B(1) is a neighbourhood of 0L in (L, τ). Choose an open neighbourhood U
of 0L in (L, τ) with U ⊂ B(1). To show that τ coincides with the original topology of L, it

suffices to verify that for every integer n ≥ 1, the set B(1/n) = {x ∈ L : ‖x‖ < 1/n} is a

neighbourhood of the neutral element 0L in (L, τ). By the continuity of the sum operation

in (L, τ), there exists an open neighbourhood V of 0L in (L, τ) such that V + · · ·+ V ⊂ U,

where V is n times a summand. Then V ⊂ B(1/n). Indeed, otherwise there exists x ∈ U
with ‖x‖ ≥ 1/n, whence ‖nx‖ ≥ 1. The latter contradicts the fact that nx ∈ U ⊂ B(1). �

We need one more useful concept. Recall from Chapter 3 that a topological group G
is a group with no small subgroups or NSS-group if there exists a neighbourhood of the

identity in G containing no subgroups except for the trivial one. Obviously, every normed

vector space is an NSS-group when considered as an Abelian topological group. In the

following proposition we establish an important property of locally minimal NSS-groups.

Proposition 5.1.23. Let G be a subgroup of a topological product Π =
∏

i∈I Gi of
topological groups Gi’s. If G is a locally minimal NSS-group, then there exists a finite set
J ⊂ I such that the restriction of the projection πJ : Π → ∏

i∈J Gi to G is a topological
embedding.

Proof. Choose a neighbourhood U of the identity e in G which does not contains non-

trivial subgroups. Let also V be a neighbourhood of e in G such that G admits no strictly

weaker Hausdorff group topology for which V remains a neighbourhood of e. Then there

exists a finite set J ⊂ I and an open neighbourhood W of the identity e′ in ΠJ =
∏

i∈J Gi
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such that π−1
J (W ) ⊂ U∩V . It remains to verify that the restriction of πJ to G is a topological

isomorphism of G onto πJ (G).

By the choice of U, G∩π−1
J (e′) is a trivial subgroup of G, so p = πJ�G is a continuous

monomorphism. Therefore,

τ = {G ∩ π−1
J (O) : O is open in ΠJ}

is a Hausdorff group topology on G weaker than the original topology t of G inherited from

Π. Since V is a neighbourhood of e in (G, τ), we conclude that τ = t. Hence, the mapping

p is a topological embedding. �

Theorem 5.1.24. [T. Banakh] Let G be any infinite-dimensional Banach space
considered as an Abelian topological group. Then G does not admit an embedding as
a topological subgroup into a topological product of σ-compact topological groups.

Proof. Indeed, assume the contrary. Then, by Proposition 5.1.23, G is σ-compact.

Let γ be a countable family of compact subsets of G such that G =
⋃

γ. Since G is

a complete metric space, it has the Baire property. It follows that some element C ∈ γ
has a non-empty interior in G, say, U. Take any x ∈ U. Then V = U − x is an open

neighbourhood of the neutral element in G, and the closure of V is compact. Therefore, the

space G is locally compact. It is well known, however, that every locally compact Banach

space is finite-dimensional (see [81] or [157]), which contradicts our assumptions about

G. We conclude that G cannot be embedded into any product of σ-compact topological

groups. �

Exercises

5.1.a. A subset Y of a uniform space (X, �) is called τ-narrow if, for every U ∈ �, there exists a

set F ⊂ X with |F | ≤ τ such that Y ⊂ ⋃
x∈F

B(x, U). Prove that a subset B of a topological

group G is τ-narrow in G iff B is a τ-narrow subset of the uniform space (G, ), where 
is the two-sided uniformity of the group G.

5.1.b. For a subset Y of a space X, the inequality c(Y, X) ≤ τ means that every disjoint family

of open sets in X contains at most τ elements which intersect Y . Prove that every subset

B of a topological group G satisfying c(B, G) ≤ τ is τ-narrow in G. (This generalizes

Corollary 5.1.21.)

5.1.c. Let π : G → H be a continuous homomorphism of topological groups, L a subgroup of H ,

and let K = π−1(L). Verify that K is topologically isomorphic to a closed subgroup of the

group G × L.

5.1.d. Show that a subgroup of a compact group can fail to be Lindelöf. Define, for every cardinal

τ ≥ ω, a subgroup H of Tτ satisfying l(H) = τ.

5.1.e. Let G be a hereditarily Lindelöf topological group. Show that every pseudocompact subspace

of G is metrizable and compact.

Hint. Show that the space G is submetrizable, that is, admits a weaker metrizable topology.

5.1.f. (R. D. Kopperman et al. [281], Y. Torres [500]) Show that a topological group G is τ-narrow

iff every subgroup H of G with |H | ≤ τ+ is τ-narrow. Verify that if all countable subgroups

of a topological group G are precompact, then so is G.

5.1.g. Prove that the product of an arbitrary family of ω-narrow paratopological (quasitopological,

semitopological) groups is an ω-narrow paratopological (quasitopological, semitopological)

group.
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5.1.h. Verify that every locally compact Banach space is finite-dimensional (this fact was used in

the proof of Theorem 5.1.24).

Problems

5.1.A. Give an example of a paracompact ω-narrow topological group G with an uncountable closed

discrete subspace.

Hint. Take a proper dense subgroup of a Lindelöf P-group of weight ℵ1.

5.1.B. Show that a closed subgroup of an ω-narrow paratopological group can fail to be ω-narrow.

Hint. Consider the second diagonal in the square of the Sorgenfrey line.

5.1.C. Prove that every dense subgroup of an ω-narrow paratopological group is ω-narrow.

5.1.D. (M. A. López and M. G. Tkachenko [295]; items (a) and (c) were also obtained by

G. Lukács [296]) Let H be an ω-narrow topological group. Prove the following:

(a) H is topologically isomorphic to a closed subgroup of a product of second-countable

groups if and only if the set 
H \ H is the union of a family of Gδ-sets in the Raı̆kov

completion 
H of the group H .

(b) Every Lindelöf topological group is topologically isomorphic to a closed subgroup of

the product of some family of second-countable groups.

(c) If the neutral element of H is a Gδ-set in H , then the group H is topologically isomorphic

to a closed subgroup of the product of a family of second-countable groups.

(d) The class of closed subgroups of products of Lindelöf topological groups and the class

of topological groups described in (a) coincide.

(e) Give an example of an ω-narrow Fréchet–Urysohn topological group that cannot be

embedded as a closed subgroup into a product of second-countable topological groups.

(f) Give an example of an ω-narrow hereditarily paracompact topological group that cannot

be embedded as a closed subgroup into a product of second-countable topological

groups.

(See also Problems 5.1.E, 6.5.D, 6.5.E, 8.3.C, and Exercises 6.5.c and 8.3.a.)

Hint. For (a), consider the Raı̆kov completion 
H of the group H and note that the group


H is ω-narrow. Since every point x ∈ 
H \ H is contained in a Gδ-subset P of 
H such

that P ∩ H = ∅, one can apply Corollary 3.4.19 to define a family 
 = {hi : i ∈ I}
of continuous homomorphisms of 
H to second-countable topological groups Hi such that

H =
⋂

i∈I
h−1

i (hi(H)). Let h be the diagonal product of the family 
. By Exercise 5.1.c, the

group H is topologically isomorphic to a closed subgroup of the product group 
H×∏
i∈I

Hi.

Finally, apply Theorem 3.4.23 to embed 
H into a product Π of second-countable topological

groups and note that 
H is closed in Π. Hence H is a closed subgroup of the product

Π × ∏
i∈I

Hi.

Conversely, if H is a closed subgroup of a product G =
∏

i∈I
Gi of second-countable

topological groups, consider the product 
G =
∏

i∈I

Gi of Raı̆kov completions of the

groups Gi (see Corollary 3.6.23) and note that the closed subgroup 
H of 
G satisfies

G ∩ 
H = H . Since the factors Gi and 
Gi are second-countable, the complement 
G \ G
is the union of a family of Gδ-sets in 
G. This implies the required property of H with

respect to 
H .

Parts (b), (c), and (d) of the problem are now immediate. For (e), take the Σ-product of

uncountably many copies of the discrete group Z(2) and apply Corollary 1.6.35 along with

(a) of the problem. For (f), consider the group Gτ with τ = ℵ1 defined in Example 4.4.11

and apply Exercise 4.4.i.

5.1.E. (M. A. López and M. G. Tkachenko [295]; G. Lukács [296]) Prove that a topological group

H is topologically isomorphic to a closed subgroup of a product of metrizable topological
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groups if and only if the group H is ω-balanced and the complement 
H \H is the union of

a family of Gδ-sets in 
H .

5.1.F. (M. A. López andM. G.Tkachenko [295]) Apply the conclusionof Problem5.1.E to show that

every Abelian topological group of countable pseudocharacter is topologically isomorphic

to a closed subgroup of a product of metrizable topological groups.

Open Problems

5.1.1. When is a topological group G topologically isomorphic to a subgroup of a σ-product of

second-countable groups?

5.1.2. Characterize the topological subgroups of Lindelöf topological groups.

5.1.3. Characterize the topological subgroups of paracompact topological groups. (See also

Exercise 3.6.p.)

5.1.4. When is the Raı̆kov completion of a topological group G Lindelöf?

5.1.5. Let G1 and G2 be Lindelöf topological groups. Is it possible to find a Lindelöf topological

group G such that G1 and G2 are topologically isomorphic to subgroups of G?

5.1.6. Let G1 and G2 be Lindelöf topological groups. Does there exist a Lindelöf topological group

G such that G1 and G2 are topologically isomorphic to closed subgroups of G?

5.1.7. Given a countable family � of Lindelöf topological groups, is there a Lindelöf topological

group G such that every group H ∈ � is topologically isomorphic to a (closed) subgroup of

G?

5.1.8. Is it true that every ω-narrow paratopological group is topologically isomorphic to a subgroup

of the product of some family of Lindelöf paratopological groups?

5.1.9. Let A and B be ω-narrow subsets of a paratopological group G. Is the set AB necessarily

ω-narrow in G?

5.1.10. Let G be a Lindelöf topological group and f : G → H a continuous homomorphism of G
onto a metrizable group H . Let M be an arbitrary subgroup of H . Is f−1(M) Lindelöf?

5.1.11. Let G be a paracompact ω-narrow topological group such that the space G is the union of a

countable family of closed discrete subspaces of G (that is, G is strongly σ-discrete). Is G
Lindelöf?

5.1.12. (I. I. Guran) Suppose that G is a topological group such that for each open neighbourhood U
of the neutral element in G, there exists a countable subset M of G satisfying UMU = G.

Is G ω-narrow?

5.2. Some basic cardinal invariants of topological groups

The results of this section show that cardinal functions behave much better on

topological groups than on Tychonoff spaces. In particular, we establish that some cardinal

functions coincide on the class of topological groups, while they are distinct, even for

compact Hausdorff spaces. An example of this kind is the equality χ(G) = πχ(G) which

holds for every topological group G (see Proposition 5.2.6).

Below w(X), nw(X), d(X), χ(X), ψ(X), l(X), and c(X) denote the weight, network

weight, density, character, pseudocharacter, Lindelöf number and cellularity of a space X,

respectively. The tightness, π-weight, and π-character of X are denoted by t(X), πw(X),

and πχ(X). The minimal number of compact subsets of X required to cover X is denoted

by k(X) and is called the compact-covering number of X. Needless to say all these cardinal

functions are defined for an arbitrary topological or semitopological group G as well.
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An important cardinal function is the index of narrowness of a topological group G
denoted by ib(G). By definition, ib(G) is the minimal cardinal τ ≥ ω such that G is

τ-narrow. The following result is a reformulation of Proposition 5.1.3.

Proposition 5.2.1. Every topological group G satisfies the inequalities ib(G) ≤ l(G)

and ib(G) ≤ c(G).

The first of the inequalities in Proposition 5.2.1 can be improved as follows. Given a

space X, we denote by e(X) the supremum of cardinalities of closed discrete subsets of X.

The cardinal invariant e(X) is called the extent of X. Clearly, the extent of every Lindelöf

space is countable.

Proposition 5.2.2. ib(G) ≤ e(G), for every topological group G.

Proof. Let κ = e(G). It suffices to show that the group G can be covered by at

most κ translates of every open symmetric neighbourhood U of the neutral element e of

G. If this fails to be true for such a U, we can define by recursion a transfinite sequence

X = {xα : α < κ+} of elements of G such that xβ /∈ xαU whenever α < β < κ+.

Clearly, the set X is U-disjoint. Take a symmetric open neighbourhood V of e in G such

that V 4 ⊂ U. By Lemma 1.4.22, the family {xαV : α < κ+} of open sets is discrete in G,

whence if follows that X is a closed discrete subset of G. Since |X| = κ+, this contradicts

the definition of κ. �

The weight of a topological group can be expressed in terms of its character and index

of narrowness.

Proposition 5.2.3. The equality w(G) = ib(G) · χ(G) is valid for every topological
group G.

Proof. The inequalities ib(G) ≤ l(G) ≤ w(G) and χ(G) ≤ w(G) are clear, so it

suffices to verify that w(G) ≤ ib(G) · χ(G).

Let τ = ib(G) · χ(G). Denote by 
 a base at the identity e of G satisfying |
| ≤ τ.

Since G is τ-narrow, we can find, for every U ∈ 
, a set SU ⊂ G with |SU | ≤ τ such that

SUU = G. For every U ∈ 
, put �U = {xU : x ∈ SU}. The family � =
⋃{�U : U ∈ 
}

satisfies |�| ≤ τ, and we claim that � is a base of G.

Indeed, let O be a neighbourhood of a point a ∈ G. One can find U, V ∈ 
 such that

aU ⊂ O and V−1V ⊂ U. There exists x ∈ SV such that a ∈ xV , whence x ∈ aV−1. We

have

xV ⊂ (aV−1)V = a(V−1V ) ⊂ aU ⊂ O,

that is, xV is an open neighbourhood of a and xV ⊂ O. It remains to note that xV ∈ �. �

Corollary 5.2.4. If G is a non-discrete ω-narrow topological group, then w(G) =

χ(G). In particular, every infinite precompact group G satisfies w(G) = χ(G).

Proposition 5.2.3 can be used to establish several non-trivial relations between well-

known cardinal functions in topological groups. Since ib(G) ≤ c(G) ≤ d(G) and

ib(G) ≤ l(G) ≤ k(G) for any topological group G, we have the following three inequalities.

Theorem 5.2.5. Every topological group G satisfies:

a) w(G) ≤ d(G) · χ(G);



298 5. CARDINAL INVARIANTS OF TOPOLOGICAL GROUPS

b) w(G) ≤ k(G) · χ(G);
c) w(G) ≤ l(G) · χ(G).

Theorem 5.2.5 fails to be valid for compact Hausdorff spaces — the two arrows space

Z is compact, first-countable, and separable, but w(Z) = c. Therefore, neither a), b), nor c)

of Theorem 5.2.5 can be extended to compact Hausdorff spaces.

The following result shows that the difference between several cardinal functions

disappears in the realm of topological groups.

Proposition 5.2.6. Let G be a topological group. Then:

a) χ(G) = πχ(G);
b) w(G) = πw(G).

Proof. a) It suffices to show that χ(G) ≤ πχ(G). Let γ be a π-base at the identity

e of G such that |γ| = πχ(G). Then the family μ = {UU−1 : U ∈ γ} is a local base

at e. Indeed, if O is a neighbourhood of e in G, then there exists a neighbourhood V of e
such that VV−1 ⊂ O. Since γ is a π-base at e, one can find U ∈ γ with U ⊂ V . Then

W = UU−1 ∈ μ and e ∈ W ⊂ O. This proves that μ is a local base at the identity of G.

Since |μ| ≤ |γ| = πχ(G), we conclude that χ(G) ≤ πχ(G). This proves a).

b) Note that d(G) ≤ πw(G) and πχ(G) ≤ πw(G). Therefore, according to the previous

item a) and Theorem 5.2.5 a), we have that

w(G) ≤ d(G) · χ(G) ≤ d(G) · πχ(G) ≤ πw(G).

Since every base is a π-base, we conclude that πw(G) ≤ w(G). �

Again, none of the equalities in Proposition 5.2.6 is valid for compact Hausdorff spaces.

Indeed, the one-point compactification αD of an uncountable discrete space D satisfies

ℵ0 = πχ(αD) < χ(αD) = |D|. In addition, the two arrows space Z is compact and

satisfies ℵ0 = πw(Z) < w(Z) = c.
In the case of compact topological groups, the relations between cardinal characteristics

become even stronger. Given an infinite cardinal τ, we denote by Ln τ the minimal cardinal

λ such that 2λ ≥ τ.

Corollary 5.2.7. Let G be an infinite compact topological group. Then:

a) πχ(G) = χ(G) = w(G);
b) |G| = 2w(G);
c) d(G) = Ln w(G).

Proof. a) The equality πχ(G) = χ(G) follows from item a) of Proposition 5.2.6.

Since every compact is Lindelöf, c) of Theorem 5.2.5 implies the inequality w(G) ≤ χ(G).

Hence πχ(G) = χ(G) = w(G).

b) Let τ = w(G). Since the space G is homogeneous and non-discrete, the character of

G at each point is equal to τ, by a). Therefore, Čech–Pospı́šil’s theorem (see [165, 3.2.11])

implies that |G| ≥ 2τ . Since every T1 space X satisfies |X| ≤ 2w(X), we conclude that

|G| = 2τ . Another way to obtain this equality is to apply Theorem 4.2.1.

c) The group G is dyadic by Theorem 4.1.7, so for some cardinal κ, there exists a

continuous mapping f : Dκ → G of a Cantor cube Dκ onto the space G. We can assume,



Basic invariants of topological groups 299

by Corollary 1.7.4, that κ = w(G). Since d(Dκ) = Ln κ by the Hewitt–Marczewski–

Pondiczery theorem, we conclude that d(G) ≤ d(Dw(G)) = Ln w(G). The inverse inequality

follows from the fact that w(G) ≤ 2d(G) (see [165, Th. 1.5.6]). �
Recall that the weak Lindelöf number wl(X) of a space X is the least cardinal τ ≥ ℵ0

such that every open covering of X contains a subfamily of cardinality ≤ τ whose union is

dense in X. It is easy to see that wl(X) ≤ l(X) and wl(X) ≤ c(X) for every space X. The

spaces X with wl(X) ≤ ℵ0 are called weakly Lindelöf. The following result improves both

the inequalities ib(G) ≤ l(G) and ib(G) ≤ c(G) from Proposition 5.2.1.

Proposition 5.2.8. Every topological group G satisfies the inequality ib(G) ≤ wl(G).

Proof. Let τ = wl(G). We have to show that G can be covered by at most τ translates

of any neighbourhood U of the identity in G. Choose an open symmetric neighbourhood V
of the identity such that V 2 ⊂ U and consider the open covering γ = {xV : x ∈ G} of G.

By definition of τ, there exists a subfamily μ of γ such that
⋃

μ is dense in G and |μ| ≤ τ.

Then there exists a subset K of G with |K| ≤ τ such that
⋃

μ = KV . It remains to show

that KU = G. Let a ∈ G be arbitrary. Since KV is dense in G, there exists x ∈ K such that

aV ∩ xV = ∅. Therefore, a ∈ xVV−1 = xV 2 ⊂ xU. This implies that KU = G, whence

ib(G) ≤ τ. �
Corollary 5.2.9. Every weakly Lindelöf topological group is ω-narrow.

The i-weight of a Tychonoff space X denoted by iw(X) is defined as the minimal cardinal

τ such that there exists a continuous bijection of X onto a Tychonoff space of weight τ.

Equivalently, iw(X) ≤ τ iff X admits a weaker Tychonoff topology of weight less than or

equal to τ. It is clear that iw(X) ≤ w(X). We refine this inequality in the next lemma which

extends [165, Lemma 3.1.18] to Tychonoff spaces.

Lemma 5.2.10. The inequality iw(X) ≤ nw(X) holds for every Tychonoff space X.

Proof. Let γ be a network for X satisfying |γ| = τ, where τ = nw(X). We call a pair

P = (K, L) ∈ γ×γ separated if there exists a continuous real-valued function fP : X → R
such that fP (K)∩ fP (L) = ∅. Denote by � the family of all separated pairs in γ× γ. It is

clear that κ = |�| ≤ τ. Let f be the diagonal product of the functions fP with P ∈ �. Then

f is a continuous mapping of X to R� ∼= Rκ and the subspace Y = f (X) of Rκ satisfies

w(Y ) ≤ κ ≤ τ. It remains to verify that f : X → Y is a bijection. If x, y ∈ X and x = y,

then there exists a continuous real-valued function g on X such that g(x) = 0 and g(y) = 1.

Choose open neighbourhoods U and V of x and y, respectively, such that |g(y)| < 1/3 and

|g(z)− 1| < 1/3 for all y ∈ U and z ∈ V . Since γ is a network for X, we can find K, L ∈ γ
such that x ∈ K ⊂ U and y ∈ L ⊂ V . It is clear that g(K) ∩ g(L) ⊂ g(U) ∩ g(V ) = ∅, so

the pair P = (K, L) is separated. Therefore, fP (K) ∩ fP (L) = ∅, whence it follows that

fP (x) = fP (y) and f (x) = f (y).

We conclude that f : X → Y is a continuous bijection onto the Tychonoff space Y
satisfying w(Y ) ≤ τ, so iw(X) ≤ τ = nw(X). �

The index of narrowness is instrumental in estimating the i-weight of topological groups.

Proposition 5.2.11. Let G be a topological group. Then there exists a continuous
isomorphism ϕ : G→ H of G onto a topological group H satisfying w(H) ≤ ib(G) ·ψ(G).
Thus, iw(G) ≤ ib(G) · ψ(G).
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Proof. Let τ = ib(G) · ψ(G). Then there exists a family γ = {Uα : α < τ} of open

neighbourhoods of the identity e in G such that
⋂

γ = {e}. Apply Lemma 5.1.7 to find,

for every α < τ, a continuous homomorphism πα : G → Hα onto a topological group Hα

with w(Hα) ≤ τ such that π−1
α (Vα) ⊂ Uα, for some open neighbourhood Vα of the identity

in Hα.

Let ϕ : G→∏
α<τ Hα be the diagonal product of the homomorphisms πα with α < τ.

Put H = ϕ(G). It is clear that w(H) ≤ τ, and from the choice of γ and ϕ it follows

that the kernel of ϕ is trivial, so ϕ : G → H is a continuous isomorphism. Therefore,

iw(G) ≤ τ. �
As a special case of Proposition 5.2.11, we obtain:

Corollary 5.2.12. An ω-narrow topological group of countable pseudocharacter
admits a continuous isomorphism onto a second-countable topological group.

Theorem 5.2.13. Let G be a topological group such that nw(G) ≤ τ. Then there exists
a continuous isomorphism of G onto a topological group H with w(H) ≤ τ.

Proof. This follows from Proposition 5.2.11, since both the index of narrowness of G
and the pseudocharacter of G do not exceed the network weight of G. �

Corollary 5.2.14. Every topological group with a countable network admits a
continuous isomorphism onto a second-countable topological group.

Proposition 5.2.11 provides strong restraints for the cardinality of topological groups.

Theorem 5.2.15. Every topological group G satisfies |G| ≤ 2ib(G)·ψ(G). Therefore,
|G| ≤ 2l(G)·ψ(G) and |G| ≤ 2c(G)·ψ(G).

Proof. Any Tychonoff space X satisfies |X| ≤ 2w(X) (see [165, Theorem 1.5.1]). Since

bijections do not change the size of spaces, we have the stronger inequality |X| ≤ 2iw(X).

Therefore, the inequality |G| ≤ 2ib(G)·ψ(G) follows directly from Proposition 5.2.11. By

Proposition 5.2.1, ib(G) ≤ l(G) and ib(G) ≤ c(G), so the rest of the theorem is

immediate. �
Corollary 5.2.16. Every ω-narrow topological group G satisfies |G| ≤ 2ψ(G).

None of the inequalities in Theorem 5.2.15 is valid for Tychonoff spaces. Indeed,

it is consistent with ZFC that there exists a regular Lindelöf space X of countable

pseudocharacter with |X| > c (see [441]), so we have 2l(X)·ψ(X) = c < |X|. As for the

second inequality, there exist in ZFC a Tychonoff space X as large as we wish satisfying

the conditions c(X) · ψ(X) ≤ ℵ0 (see Exercise 5.2.f).

In the next result we will see how the compact-covering number k(G) of a topological

group G can be used to bound the network weight.

Proposition 5.2.17. Let G be a topological group. Then nw(G) ≤ k(G) · ψ(G).

Proof. Put τ = k(G) · ψ(G). Since ib(G) ≤ l(G) ≤ k(G), Proposition 5.2.11 implies

that there exists a continuous isomorphism ϕ : G→ H of G onto a topological group H with

w(H) ≤ τ. Let � be a family of compact sets in G such that
⋃

� = G and |�| = k(G) ≤ τ.

The restriction of ϕ to every K ∈ � is a homeomorphism, so that w(K) ≤ τ for each K ∈ �.

Since G =
⋃

�, we conclude that nw(G) ≤ τ · τ = τ. �
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The two arrows space Z is compact, first-countable and nw(Z) = w(Z) = c, whence it

follows that ℵ0 = k(Z) · ψ(Z) < nw(Z) = c. Hence, the inequality in Proposition 5.2.17

fails to hold for compact Hausdorff spaces. In Corollary 5.3.25 we will give an interesting

generalization of Proposition 5.2.17.

Clearly, many important cardinal invariants are not productive when taking products of

arbitrary families of topological groups. For example, the Lindelöf number of the product of

a sufficiently large family of Lindelöf topological groups can be as large as we wish (consider

the topological groups Rτ), the same holds for the density and for the pseudocharacter. It

is for this reason that we should appreciate the index of narrowness — it is not increased,

as we saw above, either by arbitrary products, or by passing to subgroups. However, when

we take finite powers of topological groups, the situation is not so clear regarding many

natural properties, and it becomes much harder to find counterexamples to certain tempting

conjectures. We discuss some concrete questions arising here in the problem section below.

There are many reasons why we should pay particular attention to the behaviour of

cardinal invariants and of other topological properties under products of topological groups.

Given a class � of topological spaces and two spaces X and Y from �, we might be

willing, for various reasons, to represent both X and Y as closed subspaces of some third

element Z of the class �. In almost all classes � of topological spaces this problem is

solved trivially: most often, by taking the disjoint topological union of X and Y . The

situation changes drastically if � is a class of topological groups. There is no operation

on topological groups which could be claimed to be analogous to the operation of free

topological sum. The simplest way to represent two topological groups as closed subgroups

of another topological group is to take their topological product. This, evidently, brings us

to the problem of preservation of properties of topological groups under finite products. We

will encounter concrete problems of this kind in many sections of this book.

Exercises

5.2.a. Generalize Corollary 5.1.20 and show that if a subset B of a topological group G satisfies

wl(B) ≤ τ and generates a dense subgroup of G, then G is τ-narrow.

5.2.b. Give an example of a Tychonoff ω-narrow quasitopological group G and a closed subgroup

H of G such that H fails to be ω-narrow.

Hint. Verify that the additive group R2 endowed with topology � defined in the hint to

Exercise 1.4.d is a Tychonoff quasitopological group, and that the x-axis is a closed discrete

subgroup of (R2, �).

5.2.c. Construct an infinite countably compact topological Abelian group G satisfying |G| < w(G).

5.2.d. Let G be an ω-narrow topological group, and let A be a subspace of G with a countable

network. Then there exists a continuous homomorphism f of G onto a topological group H
with a countable base such that f restricted to A is a one-to-one mapping.

5.2.e. Give an example of a regular hereditarily Lindelöf hereditarily separable first-countable

paratopological group G such that G × G is neither normal nor hereditarily separable.

5.2.f. (D. B. Shakhmatov [428]) Show that the inequality |G| ≤ 2c(G)·ψ(G) in Theorem 5.2.15 is not

valid for Tychonoff spaces. Construct, for every cardinal τ ≥ ω, a dense subspace Xτ of Iτ

such that c(Xτ) · ψ(Xτ) ≤ ω and |Xτ | ≥ τ.
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Problems

5.2.A. (For the Hausdorff case, D. B. Shakhmatov [427]; for the regular and Tychonoff cases,

C. Hernández [226])

a) Every Hausdorff (regular, Tychonoff) paratopological group with a countable network

can be mapped onto a Hausdorff (regular, Tychonoff) paratopological group with a

countable base by a continuous isomorphism.

b) Every Hausdorff semitopological (quasitopological) group G with a countable network

admits a continuous isomorphism onto a Hausdorff semitopological (quasitopological)

groupwith a countable base. The sameassertion remains valid for regular andTychonoff

semitopological (quasitopological) groups.

c) Let f be a continuous real-valued function on a Hausdorff (regular, Tychonoff)

paratopological group G with a countable network. Then there exists a weaker second-

countable Hausdorff (regular, Tychonoff) paratopological group topology on G that

keeps f continuous. A similar assertion is valid for Hausdorff, regular, and Tychonoff

semitopological (quasitopological) groups.

5.2.B. (V. V. Uspenskij [514]) There exists a second-countable topological group G such that every

second-countable topological group H is topologically isomorphic to a subgroup of G.

5.2.C. (S. A. Shkarin [447]) There exists a second-countable Abelian topological group G such that

every second-countable Abelian topological group is topologically isomorphic to a subgroup

of G.

5.2.D. (V. I. Malykhin [300]) Under the Continuum Hypothesis, there exists a topological group G
of countable cellularity such that the cellularity of G × G is uncountable.

5.2.E. (A. V. Arhangel’skii and D. K. Burke [51]) Show that there exists a regular paratopological

group G with a countable π-base that fails to be first-countable.

5.2.F. (A. V. Arhangel’skii and A. Bella [50]) Let G be a separable semitopological group. Show

that G is ω-narrow.

5.2.G. (V. I. Malykhin [300]) It is consistent with ZFC that there is a hereditarily separable countably

compact topological group G such that the space G×G has uncountable tightness and, hence,

is not hereditarily separable.

Open Problems

5.2.1. Suppose that a Hausdorff (regular, Tychonoff) paratopological group G contains a dense

τ-narrow subgroup. Is G τ-narrow?

5.2.2. Suppose that a Hausdorff (regular, Tychonoff) quasitopological group G contains a dense

τ-narrow subgroup. Is G then τ-narrow?

5.2.3. Let G be a τ-narrow Hausdorff (regular, Tychonoff) paratopological group such that

ψ(G) ≤ τ. Is the cardinality of G not greater than 2τ? (See also Problem 3.4.F).

5.2.4. Let G be a Hausdorff (regular, Tychonoff) τ-narrow quasitopological group such that

ψ(G) ≤ τ. Is the cardinality of G not greater than 2τ? (See also Problems 5.2.3 and 3.4.F).

5.2.5. Let G be a Lindelöf regular paratopological group of countable pseudocharacter. Does G
admit a continuous isomorphism onto a regular second-countable paratopological group?

(See also Problems 3.4.3, 5.7.P, and the article [51]).

5.2.6. Let G be a Lindelöf paratopological (semitopological) group. Does G satisfy inv(G) ≤ ω?

5.2.7. Is there in ZFC a topological group G of countable tightness such that the tightness of G×G
is uncountable?

5.2.8. Is there in ZFC a paratopological group G of countable tightness such that the tightness of

G × G is uncountable?
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5.2.9. Is it true that, for every infinite cardinal τ, there exists a topological group Gτ of weight ≤ τ
such that every topological group G of weight ≤ τ is topologically isomorphic to a subgroup

of Gτ? (See also Problem 5.2.B.)

5.2.10. Is it true that, for every infinite cardinal τ, there exists an Abelian topological group Hτ

such that every Abelian topological group H of weight ≤ τ is topologically isomorphic to a

subgroup of Hτ? (See Problem 5.2.C.)

5.2.11. Is there a regular second-countable paratopological group G such that every regular second-

countable paratopological group H is topologically isomorphic to a subgroup of G?

5.2.12. Is there a regular second-countable Abelian paratopological group G such that every regular

second-countable Abelian paratopological group H is topologically isomorphic to a subgroup

of G?

5.3. Lindelöf Σ-groups and Nagami number

In this section, we introduce a cardinal function on the class of Tychonoff topological

spaces called the Nagami number. The spaces with countable Nagami number are called

Lindelöf Σ-spaces, while topological groups with the same property are said to be Lindelöf
Σ-groups. We will see that σ-compact spaces form a proper subclass of Lindelöf Σ-spaces;

however, Lindelöf Σ-spaces and σ-compact spaces share many topological properties.

Lindelöf Σ-groups are remarkable in many respects. First, this class of groups is stable

with respect to taking countable products, closed subgroups and continuous homomorphic

images. Second, every family γ of Gδ-sets in a Lindelöf Σ-group contains a countable

subfamily μ such that
⋃

μ is dense in
⋃

γ (see Corollary 5.3.19). In particular, every

subgroup of a Lindelöf Σ-group has countable cellularity (Corollary 5.3.22).

Suppose that X is a subset of Y and that γ is a family of subsets of Y . We say that γ
separates X from Y \ X if for every x ∈ X and every y ∈ Y \ X, there exists F ∈ γ such

that x ∈ F and y /∈ F .

Let βX be the Čech–Stone compactification of a Tychonoff space X and let � be the

family of all closed subsets of βX. We define the Nagami number Nag(X) of X as follows:

Nag(X) = min{|�| : � ⊂ �, � separates X from βX \X}.
It is immediate that Nag(X) ≤ k(X) for every Tychonoff space X. In particular,

every σ-compact regular space X satisfies Nag(X) ≤ ℵ0. A Tychonoff space X such that

Nag(X) ≤ ℵ0 is called a Lindelöf Σ-space. We establish below some properties of the

cardinal function Nag.

First, we show that the Čech–Stone compactification βX of X in the definition of

Nag(X) can be replaced by any compactification bX of the space X.

Lemma 5.3.1. The following conditions are equivalent for a Tychonoff space X and an
infinite cardinal τ:

a) Nag(X) ≤ τ;
b) there exist a Hausdorff compactification bX of X and a family � of closed subsets of

bX separating X from bX \X such that |�| ≤ τ;
c) for every Hausdorff compactification bX of X, there exists a family � of closed subsets

of bX separating X from bX \X such that |�| ≤ τ.

Proof. Clearly, b) follows from a) and c) implies a). Let us verify that a) ⇒ c) and

that b)⇒ a).

Lindelöf Σ-groups and Nagami number
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a)⇒ c). If Nag(X) ≤ τ, we can find a family � of closed subsets of βX separating X
from βX \X and satisfying |�| ≤ τ. We can also assume that the family � is closed under

finite intersections. Let bX be an arbitrary Hausdorff compactification of X. Extend the

identity mapping idX of X to a continuous mapping f : βX → bX and consider the family

� = {f (P) : P ∈ �}
of closed subsets of bX. We claim that � separates X from bX \X. Indeed, take arbitrary

points x ∈ X and y ∈ bX \ X. Clearly, the compact set K = f−1(y) is disjoint from X.

Note that the family �(x) = {P ∈ � : x ∈ P} is closed under finite intersections and that

C =
⋂

�(x) ⊂ X. Then U = βX \ K is an open neighbourhood of C in βX and, hence,

there exists a finite subfamily γ of �(x) such that P =
⋂

γ ⊂ U. Therefore, P ∈ �(x) ⊂ �,

x ∈ P and P ∩K = ∅. This implies immediately that F = f (P) ∈ �, x ∈ F and y /∈ F .

So, � separates X from bX \X. Clearly, |�| ≤ |�| ≤ τ.

b)⇒ a). Let bX be a Hausdorff compactification of X and let � be a family of closed

subsets of bX separating X from bX \X and satisfying |�| ≤ τ. The identity mapping idX

can be extended to a continuous mapping g : βX → bX. We claim that the family

� = {f−1(F ) : F ∈ �}
of closed subsets of βX separates X from βX \ X. Indeed, let x ∈ X and y ∈ βX \ X be

arbitrary points. Since idX is a perfect mapping, its extension g satisfies g(βX\X) ⊂ bX\X
by [165, Theorem 3.7.15]. Hence, z = g(y) ∈ bX \ X. By the choice of �, there exists

F ∈ � such that x ∈ F � z. Then P = g−1(F ) belongs to �, x ∈ P and y /∈ P . This

proves our claim. It is also clear that |�| ≤ |�| ≤ τ. �
Corollary 5.3.2. If K is a closed subspace of a space X, then Nag(K) ≤ Nag(X).

In particular, the class of Lindelöf Σ-spaces is hereditary with respect to closed subspaces.

Proof. Denote by � a family of closed subsets of βX which separates X from βX \X
and satisfies |�| = Nag(X). Denote by bK the closure of K in βX. It is clear that bK is a

compactification of K. For every F ∈ �, denote by CF the closure of F ∩K in βX. Then

CF ⊂ bK for each F ∈ �. Since bK \K ⊂ βX \X, the family

� = {CF : F ∈ �}
separates K from bK \ K and satisfies |�| ≤ |�|. Therefore, by Lemma 5.3.1, we have

Nag(K) ≤ |�| ≤ |�| = Nag(X). �
The next result clarifies the relations between the Lindelöf number, Nagami number,

and network weight.

Proposition 5.3.3. Every Tychonoff space X satisfies l(X) ≤ Nag(X) ≤ nw(X).

Proof. First, we show that Nag(X) ≤ nw(X). Let γ be a network for X with

|γ| = nw(X). Consider the family � = {clβXK : K ∈ γ}. The elements of � are

closed in the Čech–Stone compactification βX of X and |�| ≤ |γ|. Let x ∈ X and

y ∈ βX \ X be arbitrary points. In βX, choose disjoint open neighbourhoods U and

V of x and y, respectively. Since γ is a network in X, there exists K ∈ γ such that

x ∈ K ⊂ U. Put F = clβXK. Then F ∈ � and x ∈ F . Since U and V are disjoint, we

have F ∩ V = ∅, whence y /∈ F . Therefore, the family � separates X from βX \ X and,

hence, Nag(X) ≤ |�| ≤ |γ| = nw(X).
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It remains to verify that l(X) ≤ Nag(X). Choose a family � of closed subsets of βX
with |�| = Nag(X). We can assume that � is closed under finite intersections. Suppose

that μ is a covering of X by open sets in βX. All we need to show is that μ contains a

subfamily ν which covers X and satisfies |ν| ≤ Nag(X).

Let us call an element P ∈ � small if there exists a finite subfamily of μ covering P .

Denote by �s the subfamily of � consisting of all small elements. We claim that X ⊂ ⋃
�s.

Indeed, let x be an arbitrary point of X. Since � separates X from βX \X, the intersection

C(x) of the family �(x) = {P ∈ � : x ∈ P} is a compact subset of X. Hence, there exists

a finite subfamily ν(x) of μ which covers C(x). Let U(x) =
⋃

ν(x). Then C(x) ⊂ U(x).

Since βX is compact and the family �(x) is closed under finite intersections, we can find

P ∈ μ such that x ∈ P ⊂ U(x). This proves that x ∈ P ∈ �s, whence our claim follows.

For every P ∈ �s, choose a finite subfamily μP of μ which covers P . Let also

ν =
⋃{μP : P ∈ �s}. Then X ⊂ ⋃

�s ⊂
⋃

ν and |ν| ≤ |�| · ω = Nag(X). �

Corollary 5.3.4. Every Tychonoff space X satisfies Nag(X) ≤ w(X). In particular,
all regular second-countable spaces are Lindelöf Σ-spaces.

It turns out that many results valid for σ-compact spaces remain valid for Lindelöf

Σ-spaces. In particular, continuous mappings preserve the class of Lindelöf Σ-spaces.

Proposition 5.3.5. Let f : X → Y be a continuous onto mapping of Tychonoff spaces.
Then Nag(Y ) ≤ Nag(X). In particular, if X is a Lindelöf Σ-space, so is Y .

Proof. Let g : βX → βY be a continuous extension of f . Denote by � a family

of closed subsets of βX which separates X from βX \ X and satisfies |�| = Nag(X).

We can assume that � is closed under finite intersections. Let us verify that the family

	 = {g(F ) : F ∈ �} separates Y from βY \ Y .

Take arbitrary points y ∈ Y , z ∈ βY \ Y and put K = g−1(z). Then K is a compact

subset of βX and K ∩ X = ∅. Pick a point x ∈ X with f (x) = y. Clearly, the family

�(x) = {F ∈ � : x ∈ F} is closed under finite intersections and Cx =
⋂

�(x) is a subset

of X. Since the elements of � are closed in βX and U = βX \K is an open neighbourhood

of Cx, there exists F ∈ �(x) disjoint from K. Therefore, G = f (F ) is an element of 	
which does not contain the point z. We conclude that x ∈ G � z, so 	 separates Y from

βY \ Y .

Finally, |	| ≤ |�| = Nag(X); hence, Nag(Y ) ≤ |	| ≤ Nag(X). �

Proposition 5.3.6. Let f : X → Y be a perfect onto mapping of Tychonoff spaces.
Then Nag(X) = Nag(Y ).

Proof. By Proposition 5.3.5, Nag(Y ) ≤ Nag(X). Therefore, it suffices to verify that

Nag(X) ≤ Nag(Y ). Let � be a family of closed subsets of βY separating Y from βY \ Y
and satisfying |�| = Nag(Y ). Extend f to a continuous mapping g : βX → βY . We

claim that the family � = {g−1(P) : P ∈ �} of closed subsets of βX separates X from

βX \X. Indeed, take arbitrary points x ∈ X and y ∈ βX \X. Since f is perfect, we have

g(βX \ X) ⊂ βY \ Y by [165, Theorem 3.7.15], whence y′ = g(y) ∈ βY \ Y . Clearly,

x′ = g(x) = f (x) ∈ Y , so there exists P ∈ � such that x′ ∈ P and y′ /∈ P . Then

F = g−1(P) ∈ �, x ∈ F and y /∈ F . This proves the claim.

Therefore, Nag(X) ≤ |�| ≤ |�| = Nag(Y ). �

Lindelöf Σ-groups and Nagami number
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Corollary 5.3.7. Let X be a Tychonoff space such that w(X) ≤ τ and let K be a
compact space. Then Nag(Y ) ≤ τ, for every closed subspace Y of the product space X×K.

Proof. Denote by π the projection of X×K to X. Since X is compact, the mapping

π is perfect. Applying Propositions 5.3.6 and 5.3.3, we deduce that

Nag(X×K) = Nag(X) ≤ nw(X) ≤ w(X) ≤ τ.

Hence, by Corollary 5.3.2, Nag(Y ) ≤ Nag(X × K) ≤ τ for every closed subspace Y of

X×K. �

The analogy between σ-compact and Lindelöf Σ-spaces can be extended further.

Clearly, if γ is countable family of σ-compact subsets of a space X, then Y =
⋃

γ ⊂ X is

also σ-compact. Similarly, we have the following result expressed in terms of the cardinal

function Nag.

Proposition 5.3.8. Let τ be an infinite cardinal and let γ be a family of subspaces of
a Tychonoff space X such that Nag(P) ≤ τ for each P ∈ γ and |γ| ≤ τ. Then the subspace
Y =

⋃
γ of X satisfies Nag(Y ) ≤ τ. Therefore, if X is covered by a countable family of its

Lindelöf Σ-subspaces, then X is also a Lindelöf Σ-space.

Proof. Let γ = {Pi : i ∈ I}, where |I| ≤ τ. Denote by S the free topological sum

of the elements of γ, that is, S = ⊕i∈IPi. Consider the natural mapping f of S onto Y
whose restriction to each Pi coincides with the identity embedding of Pi to X. Clearly, f is

continuous. By Proposition 5.3.5, it suffices to verify that Nag(S) ≤ τ.

Let βS be the Čech–Stone compactification of S. Since every Pi is closed and open

in S, the closure Ki of Pi in βS is naturally homeomorphic to βPi. Let �i be a family of

closed subsets of Ki which separates Pi from Ki \Pi and satisfies |�i| ≤ τ. Then the family

� = {Ki : i ∈ I} ∪
⋃
i∈I

�i

consists of closed subsets of βS and satisfies |�| ≤ τ · τ = τ. We claim that � separates S
from βS \ S. Indeed, let x ∈ S and y ∈ βS \ S be arbitrary points. Then x ∈ Pi for some

i ∈ I. If y /∈ Ki, then x ∈ Ki � y. Otherwise, by the choice of �i, there exists F ∈ �i

with x ∈ F � y. This proves our claim. Therefore, Nag(S) ≤ |�| ≤ τ.

The second part of the proposition is immediate. �

The next result shows, in particular, that the class of Lindelöf Σ-spaces is countably

productive. Note that an analogous assertion for σ-compact spaces is false: Zω and Rω are

counterexamples.

Proposition 5.3.9. Let X =
∏

i∈I Xi, where Nag(Xi) ≤ τ for each i ∈ I and |I| ≤ τ.
Then Nag(X) ≤ τ.

Proof. For every i ∈ I, let βXi be the Čech–Stone compactification of Xi. By the

assumptions, there exists a family �i of closed subsets of βXi which separates Xi from

βXi \ Xi and satisfies |�i| ≤ τ, i ∈ I. Consider the product space K =
∏

i∈I βXi. For

every i ∈ I, let πi : K → βXi be the projection. The family

� = {π−1
i (F ) : i ∈ I, F ∈ �i}
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consists of closed subsets of K and satisfies |�| ≤ τ. Let us verify that � separates X
from K \ X. Let x ∈ X and y ∈ K \ X be arbitrary points. Suppose that x = {xi}i∈I and

y = {yi}i∈I . Since y ∈ K \X, there exists i ∈ I such that yi /∈ Xi. Then, by the choice of

�i, we can find Fi ∈ �i such that xi ∈ Fi and yi /∈ Fi. Put F = π−1
i (Fi). Then F ∈ �,

x ∈ F and y /∈ F .

Finally, K is a compactification of X, so Lemma 5.3.1 implies that Nag(X) ≤
|�| ≤ τ. �

Proposition 5.3.10. A topological group generated by a Lindelöf Σ-space is also a
Lindelöf Σ-space. More generally, if X a subspace of a topological group G and G = 〈X〉,
then Nag(G) ≤ Nag(X).

Proof. Let τ be such that Nag(X) = τ. It suffices to prove the second assertion.

Consider the subspace Z = X ∪ {e} ∪ X−1 of G, where e is the identity of G. By

Proposition 5.3.8, Nag(Z) ≤ τ. For every n ∈ N, consider the natural mapping in : Zn → G
which assigns to a point z = (z1, . . . , zn) ∈ Zn the element in(z)z1 · · · zn of G. Since the

multiplication mapping of Gn to G is continuous and Zn is a subspace of Gn, in is also

continuous. Hence, from Propositions 5.3.9 and 5.3.5 it follows that Nag(Zn) ≤ τ and

Nag(Yn) ≤ τ, where Yn = in(Zn). Clearly, G =
⋃∞

n=1 Yn; hence, by Proposition 5.3.8,

Nag(G) ≤ τ. �

By Proposition 5.3.5, continuous homomorphisms preserve the class of Lindelöf Σ-

groups. It turns out that a similar assertion is valid for subgroups of Lindelöf Σ-groups.

Proposition 5.3.11. The class of subgroups of Lindelöf Σ-groups is closed under
taking continuous homomorphic images.

Proof. Let G be a subgroup of a Lindelöf Σ-group G∗. Consider a continuous

homomorphism π : G → H onto a topological group H . Denote by K the closure of G in

G∗. Then K is a closed subgroup of G∗, so Nag(K) ≤ Nag(G∗) ≤ ℵ0 by Corollary 5.3.2.

Let 
K and 
H be the Raı̆kov completions of the groups K and H , respectively. Since

G is dense in 
K, we can extend π to a continuous homomorphism 
π : 
K → 
H .

Then the subgroup H∗ = 
π(K) of 
H contains H and Proposition 5.3.5 implies that

Nag(H∗) ≤ Nag(K) ≤ ℵ0. Therefore, H is a subgroup of the Lindelöf Σ-group H∗. �

The study of cellularity type properties in topological groups requires a more pro-

found knowledge of Lindelöf Σ-spaces and, more generally, of the spaces X satisfying

Nag(X) ≤ τ for an infinite cardinal τ. In Theorems 5.3.12 and 5.3.13, we give two useful

characterizations of these classes of spaces.

Theorem 5.3.12. A Tychonoff space X satisfies Nag(X) ≤ τ iff there exist a Tychonoff
space M with w(M) ≤ τ and a compact Hausdorff space K such that X is a continuous
image of a closed subspace of M ×K.

Proof. The sufficiency of the condition follows directly from Corollary 5.3.7 and

Proposition 5.3.5. Conversely, suppose that X satisfies Nag(X) ≤ τ. Then there exists a

family � of closed subsets of βX which separates X from βX \ X and satisfies |�| ≤ τ.

Let � = {Pα : α < τ}. Consider the space ττ , where τ carries the discrete topology. We

Lindelöf Σ-groups and Nagami number
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define a subspace M of ττ by

M = {ϕ ∈ ττ :
⋂
α∈τ

Pϕ(α) ⊂ X}.

It is clear that w(M) ≤ w(ττ) = τ. Now we set K = βX and define a subspace Y of M×K
by

Y = {(ϕ, x) ∈ M ×K : x ∈ Pϕ(α) for each α ∈ τ}.
We claim that Y is closed in M × K. Indeed, let (ϕ, x) ∈ (M × K) \ Y be arbitrary. Our

definition of Y implies that x /∈ Pϕ(α) for some α ∈ τ. Then the set W = U × (K \ Pϕ(α))

is open in M × K, where U = {ψ ∈ ττ : ψ(α) = ϕ(α)}. Obviously, (ϕ, x) ∈ W . If

(ψ, y) ∈ W , then ψ(α) = ϕ(α) and y /∈ Pϕ(α) = Pψ(α), whence (ψ, y) /∈ Y . Therefore,

W ∩ Y = ∅, which proves that Y is closed in M ×K.

It remains to verify that X is a continuous image of Y . Denote by π the projection of

M × K to the second factor. For every ϕ ∈ ττ , set Pϕ =
⋂

α∈τ Pϕ(α). From our definition

of Y it follows that

π(Y ) =
⋃
{Pϕ : ϕ ∈ M}.

Applying the definition of M, we conclude that Pϕ ⊂ X for each ϕ ∈ M, so that π(Y ) ⊂ X.

On the other hand, given an arbitrary point x ∈ X, we can find ϕ ∈ M such that x ∈ Pϕ,

whence it follows that X ⊂ π(Y ). Hence, X = π(Y ). �

Combining the facts established above, we obtain the next important result character-

izing the spaces X with Nag(X) ≤ τ in terms of continuous mappings.

Theorem 5.3.13. A space X satisfies Nag(X) ≤ τ iff there exist a space N with
w(N) ≤ τ, a space Z and continuous onto mappings f : Z → X and p : Z → N, where p
is perfect.

Proof. Suppose that Nag(X) ≤ τ. By Theorem 5.3.12, one can find a space M
with w(M) ≤ τ, a compact space K, a closed subspace Z of M × K, and a continuous

onto mapping f : Z → X. Clearly, the projection πM : M × K → M is perfect and so

is its restriction p = πM�Z to the closed subspace Z of M × K. Then the spaces Z,

N = p(Z) ⊂ M and the mappings f , p are as required.

Conversely, suppose that f : Z → X and p : Z → N satisfy the conditions of

the theorem. Then Nag(N) ≤ w(N) ≤ τ by Corollary 5.3.4. It remains to apply

Propositions 5.3.5 and 5.3.6 to conclude that Nag(X) ≤ Nag(Z) = Nag(N) ≤ τ. �

Recall that a Lindelöf p-space is a Tychonoff space that admits a perfect mapping onto

a regular second-countable space.

Corollary 5.3.14. A Tychonoff space Y is a Lindelöf Σ-space if and only if Y is a
continuous image of a Lindelöf p-space.

With the help of Theorem 5.3.13 we establish an important formula relating three basic

cardinal functions.

Proposition 5.3.15. Every Tychonoff space X satisfies the equality nw(X)=Nag(X) ·
iw(X).



309

Proof. By Lemma 5.2.10 and Proposition 5.3.3, we have Nag(X) · iw(X) ≤ nw(X).

So, it suffices to verify the inverse inequality.

Set τ = Nag(X) · iw(X). Then there exists a continuous bijection i : X → Y of X onto a

Tychonoff space Y satisfying w(Y ) ≤ τ. By Theorem 5.3.13, we can find Tychonoff spaces

N and Z, a perfect onto mapping p : Z → N and a continuous onto mapping f : Z → X,

where w(N) ≤ τ.

It is well known that the diagonal product of a perfect mapping and a continuous

mapping is perfect (see [165, Theorem 3.7.9]). Therefore, the diagonal product ϕ =

pΔf : Z → N × X is a perfect mapping. Denote by πN and πX the projections of N × X
to the first and the second factor, respectively. Then f = πX ◦ϕ and p = πN ◦ϕ. Consider

the mapping g = idN × i : N × X → N × Y defined by g(n, x) = (n, i(x)) for each

(n, x) ∈ N × X, where idN is the identity mapping of N. Evidently, g is a continuous

bijection. We also consider the diagonal product h = πNΔg : N × X → N × N × Y
which is clearly a continuous one-to-one mapping. Finally, we denote by prN and prN×Y

the projections of N × (N × Y ) to N and N × Y , respectively, and obtain the following

commutative diagram:

X N ×X
πX�� g ��

h

������������
πN

��

N × Y

Z

f


ϕ

����������� p �� N N ×N × Y

prN×Y



prN��

Let R = ϕ(Z) and π = πN�R. Then π ◦ ϕ = p. Since p is a perfect mapping,

so are π and ϕ (see [165, Theorem 3.7.10]). Let also T = g(R) and g1 = g�R. Then

T ⊂ N × Y , whence w(T ) ≤ τ. Note that the mapping h1 = h�R satisfies the equality

π = prN◦h1. Again, sinceπ is perfect, so is h1. Hence, the perfect bijection h1 : R→ h1(R)

is a homeomorphism. Clearly, h1(R) is a subspace of N × T , whence it follows that

w(R) ≤ w(N × T ) ≤ τ.

Finally, since the mapping πX is continuous and πX(R) = X, the images under

πX of elements of a base for R form a network for X. Hence, we conclude that

nw(X) ≤ w(R) ≤ τ. �

Recall that a space X is said to be τ-cellular if every family γ of Gτ-sets in X contains

a subfamily η such that |η| ≤ τ and
⋃

η =
⋃

γ. Our goal now is to show that every

topological group G with Nag(G) ≤ τ is τ-cellular. We start with two auxiliary results.

Lemma 5.3.16. Let {xα : α < τ+} be a sequence of points in a Tychonoff space X,
{Uα : α < τ+} a sequence of open neighbourhoods of the diagonal ΔX in X2, and let
{ϕα : α < τ+} be a family of continuous mappings of X to Tychonoff spaces of network
weight ≤ τ. If Nag(X) ≤ τ, then there exist α, β < τ+, α < β, and a point x ∈ X such
that (x, xα) ∈ Uβ and ϕα(x) = ϕα(xβ).

Proof. Since Nag(X) ≤ τ, we can apply Theorem 5.3.13 to find two spaces Y and Z
with w(Z) ≤ τ, a perfect mapping ϕ∗ : Y → Z and a continuous mapping ψ : Y → X such

that ψ(Y ) = X and ϕ∗(Y ) = Z. Taking preimages, we can replace the sequences in X and

X× X with corresponding sequences in Y and Y × Y . Hence, we can assume that X = Y
and that the mapping ϕ∗ : X → Z is perfect. For every α < τ+, let fα : X → Z×∏

β<α Xβ

be the diagonal product of the mappings {ϕ∗} ∪ {ϕβ : β < α}, where Xβ = ϕβ(X) for

Lindelöf Σ-groups and Nagami number
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every β < τ+. Since ϕ∗ is perfect, so are the mappings fα’s (see [165, Theorem 3.7.9]).

Let P = {xα : α < τ+} and Pα = {xβ : β < α}, where α < τ+. Since fα(X) is a

subspace of Z×∏
β<α Xβ, we have nw(fα(X)) ≤ τ for each α < τ+. Therefore, for every

α < τ+, there exists α′ < τ+ such that α < α′ and fα(Pα′ ) is dense in fα(P). Let us define

a sequence {βn : n ∈ ω} ⊂ τ+ by the rule β0 = 0 and βn+1 = (βn)′. If β is the limit

of this sequence, then β < τ+ and fβ(Pβ) is dense in fβ(P). This implies, in particular,

that fβ(xβ) ∈ fβ(Pβ) = fβ(Pβ). Choose a point x ∈ Pβ such that fβ(x) = fβ(xβ). Then

ϕα(x) = ϕα(xβ) for each α < β, and from x ∈ Pβ it follows that (x, xα) ∈ Uβ, for some

α < β. �

The following lemma enables us to replace certain families of Gτ-sets in X2 by a single

continuous mapping of X to Rτ . As usual, ΔX = {(x, x) : x ∈ X} denotes the diagonal in

X2.

Lemma 5.3.17. Let X be a space with l(X) ≤ τ. If ΔX ⊂ K ⊂ X2 and K is of type
Gτ in X2, then there exists a continuous mapping ϕ of X to Rτ such that for all x, y ∈ X,
ϕ(x) = ϕ(y) implies (x, y) ∈ K.

Proof. By the assumptions in the lemma, there exists a family {Oα : α < τ} of open

sets in X2 such that K =
⋂

α<τ Oα. For every x ∈ X and α < τ, choose a cozero-set Uα(x)

in X such that x ∈ Uα(x) and Uα(x)×Uα(x) ⊂ Oα. Since l(X) ≤ τ, we can find, for every

α < τ, a subset Yα of X with |Yα| ≤ τ such that

X =
⋃
{Uα(x) : x ∈ Yα}.

For α < τ and x ∈ Yα, choose a continuous function fα,x : X → R such that X \ Uα(x) =

f−1
α,x (0). Note that the family {fα,x : α < τ, x ∈ Yα} is of cardinality ≤ τ, so the diagonal

product ϕ of this family maps X to a subspace of Rτ . We claim that the mapping ϕ is as

required.

Indeed, suppose that ϕ(a) = ϕ(b) for some a, b ∈ X. Then fα,x(a) = fα,x(b) for all

α < τ and x ∈ Yα. Let α < τ be arbitrary. Then a ∈ Uα(x) for some x ∈ Yα, so our

choice of the function fα,x implies that fα,x(a) = 0. Consequently, fα,x(b) = fα,x(a) = 0

and b ∈ Uα(x). This implies that (a, b) ∈ Uα(x)×Uα(x) ⊂ Oα. Since the latter is valid for

each α < τ, we conclude that (a, b) ∈ ⋂
α<τ Oα = K. �

The next especially important result has a number of applications.

Theorem 5.3.18. Every topological group H with Nag(H) ≤ τ is τ-cellular or,
equivalently, celτ(H) ≤ τ.

Proof. Assume the contrary. Then there exist a family {Fα : α < τ+} of non-empty

Gτ-sets in H and a family {Oα : α < τ+} of open subsets of H such that Fα ⊂ Oα and

Fα ∩ Oβ = ∅ whenever α < β < τ+. For every α < τ, pick a point xα ∈ Fα. Let

f : H3 → H be the mapping defined by f (x, y, z) = xy−1z. Then f is continuous, so

Uα = {(x, z) ∈ H2 : f (x, z, xα) ∈ Oα} is an open neighbourhood of the diagonal in H2 for

each α < τ+. The set Kα = {(x, z) ∈ H2 : f (xα, x, z) ∈ Fα} contains the diagonal of H2

and is of type Gτ in H2. By Lemma 5.3.17, there exists a continuous mapping ϕα : H → Rτ

such that

{(x, y) ∈ H ×H : ϕ(x) = ϕ(y)} ⊂ Kα.
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We can now apply Lemma 5.3.16 to the sequences {xα : α < τ+}, {Uα : α < τ+} and

{ϕα : α < τ+} to find α, β with α < β < τ+ and a point x ∈ H such that ϕα(x) = ϕα(xβ)

and (xα, x) ∈ Uβ. Then (x, xβ) ∈ Kα and (xα, x) ∈ Uβ, whence f (xα, x, xβ) ∈ Fα ∩ Oβ.

This contradiction completes the proof. �

Theorem 5.3.18 implies the following two corollaries immediately.

Corollary 5.3.19. Every family γ of Gδ-sets in a Lindelöf Σ-group contains a
countable subfamily μ such that

⋃
μ =

⋃
γ.

Corollary 5.3.20. Let H be a σ-compact topological group. Then every family γ of
Gδ-sets in H contains a countable subfamily η such that

⋃
η is dense in

⋃
γ.

Subgroups of Lindelöf Σ-groups need not be Lindelöf (see Exercise 5.1.d). Neverthe-

less, we have the following:

Corollary 5.3.21. Any subgroup of a Lindelöf Σ-group has countable cellularity.

Proof. Let H be a subgroup of a Lindelöf Σ-group G. Denote by H∗ the closure of H
in G. Then H∗ is a closed subgroup of G, so Nag(H∗) ≤ Nag(G) ≤ ω by Corollary 5.3.2.

Corollary 5.3.19 implies that c(H∗) ≤ celω(H∗) ≤ ω. Since H is dense in H∗, we conclude

that c(H) = c(H∗) ≤ ω. �

Since the class of Lindelöf Σ-spaces contains σ-compact spaces, the next result is a

special case of Corollary 5.3.21.

Corollary 5.3.22. [M. G. Tkachenko] Every σ-compact topological group has
countable cellularity.

We can extend the analogy between Cantor cubes {0, 1}κ and Lindelöf Σ-groups as

follows. By Theorem 1.6.18, for any family γ of Gδ-sets in {0, 1}κ, the closure of
⋃

γ is

also a Gδ-set or, equivalently, every Cantor cube is an Efimov space (see Section 1.6). It

turns out that Lindelöf Σ-groups have the same property. To prove this fact, we need two

lemmas.

Lemma 5.3.23. Let H be a topological group such that l(H) ≤ τ and let N be a closed
invariant subgroup of type Gτ in H . Then the quotient group K = H/N satisfies ψ(K) ≤ τ.

Proof. Suppose that {Oα : α < τ} is a family of open sets in H such that

N =
⋂

α<τ Oα. If α < τ and x ∈ H \Oα, choose open symmetric neighbourhoods Uα(x)

and Vα(x) of the identity e in H such that xUα(x)∩N = ∅ and V 2
α (x) ⊂ Uα(x). The family

{xVα(x) : x ∈ H \Oα} covers the closed set H \Oα, so there exists a subset Sα of H \Oα

such that H \Oα ⊂
⋃{xVα(x) : x ∈ Sα} and |Sα| ≤ τ. Put μ = {Vα(x) : x ∈ Sα, α < τ}.

Clearly, |μ| ≤ τ.

Denote by π the quotient homomorphism of H onto H/N. We claim that the set⋂{π(V ) : V ∈ μ} contains only the identity e of H/N. Indeed, let z ∈ H/N be arbitrary,

z = e. Choose y ∈ H with π(y) = z. Then y /∈ N and, hence, y ∈ H \ Oα for

some α < τ. By the definition of μ, we can find x ∈ Sα such that y ∈ xVα(x). Since

yVα(x) ⊂ xV 2
α (x) ⊂ xUα(x) and xUα(x) ∩ N = ∅, we conclude that yVα(x) ∩ N = ∅,

whence y /∈ NVα(x). Therefore, z = π(y) /∈ π(Vα(x)). Since the cardinality of the family

{π(V ) : V ∈ μ} is not greater than τ, we conclude that ψ(H/N) ≤ τ. �
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In the next lemma, we present three important properties of topological groups H with

Nag(H) ≤ τ.

Lemma 5.3.24. Let H be a topological group such that Nag(H) ≤ τ. Then:

a) for every closed invariant subgroup N of type Gτ in H , the quotient group H/N satisfies
nw(H/N) ≤ τ;

b) the sets of the form π−1(V ) form a base of H , where π : H → K is an open continuous
homomorphism onto a topological group K with nw(K) ≤ τ and V open in K;

c) for every closed Gτ-set P in H , there exist a continuous open homomorphism π : H →
K onto a topological group K with nw(K) ≤ τ and a closed subset F ⊂ K such that
P = π−1(F ).

Proof. a) Let K = H/N, where N is a closed invariant subgroup of type Gτ in

H . From Proposition 5.3.3 it follows that l(H) ≤ Nag(H) ≤ τ, so Lemma 5.3.23

implies that ψ(K) ≤ τ. In addition, we have ib(K) ≤ ib(H) ≤ l(H) ≤ τ. Therefore,

by Proposition 5.2.11, there exists a continuous isomorphism of K onto a topological

group L with w(L) ≤ τ. In particular, iw(K) ≤ τ. Since K is a continuous image

of H , we also have Nag(K) ≤ Nag(H) ≤ τ. Then Proposition 5.3.15 implies that

nw(K) = Nag(K) · iw(K) ≤ τ.

b) Let U be a neighbourhood of the identity in H . By Lemma 5.1.6, one can find a

continuous homomorphism p : H → L of H onto a topological group L with w(L) ≤ τ and

an open neighbourhood W of the identity in L such that p−1(W ) ⊂ U. Denote by N the

kernel of p and consider the quotient group K = H/N. Let π : H → H/N be the quotient

homomorphism. Clearly, N is of type Gτ in H , so nw(K) ≤ τ, by a). The groups K and L
are algebraically isomorphic, so there exists an isomorphism ϕ : K → L such that ϕ◦π = p.

Since π is an open mapping, the isomorphism ϕ is continuous. Hence, V = ϕ−1(W ) is an

open neighbourhood of the identity in K and π−1(V ) = π−1(ϕ−1(W )) = p−1(W ) ⊂ U.

c) Let P be a closed Gτ-set in H and let γ be a family of open sets in H such that P =
⋂

γ
and |γ| ≤ τ. Fix an arbitrary element W ∈ γ. There is an open covering η of P by sets of the

form π−1(V ) satisfying π−1(V ) ⊂ W , where π and V are as in b). By Proposition 5.3.3,

l(P) ≤ l(H) ≤ Nag(H) ≤ τ, so the covering η of P contains a subcovering μW of

cardinality≤ τ. Let μW = {π−1
α (Vα) : α < τ}. Then the diagonal product ϕW of the family

{πα : α < τ} is a continuous homomorphism of H to the product of τ many topological

groups of network weight ≤ τ and hence, the group HW = ϕW (H) satisfies nw(HW ) ≤ τ.

One easily verifies that the set OW =
⋃

μW satisfies P ⊂ OW = ϕ−1
W ϕW (OW ) ⊂ W and

that, in addition, ϕW (OW ) is open in HW (the mapping ϕW is not necessarily open).

Let p be the diagonal product of the family {ϕW : W ∈ γ}. Since |γ| ≤ τ,

the group L = p(H) satisfies nw(L) ≤ τ. From the definition of p it follows that

OW = p−1p(OW ) ⊂ W for each W ∈ γ, so the equality P =
⋂

γ implies that

P = p−1p(P). As in b), consider the kernel N of the homomorphism p and the quotient

group K = H/N. Let π : H → H/N be the quotient homomorphism. Then there exists

a continuous homomorphism ϕ : H/N → L such that ϕ ◦ π = p. Note that N is of type

Gδ in H , so a) implies that nw(K) ≤ τ. Since the homomorphism π is quotient and

P = π−1π(P), the set F = π(P) is closed in K. �
The next corollary shows that the i-weight in Proposition 5.3.15 can be replaced by the

pseudocharacter in the case of topological groups.
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Corollary 5.3.25. Every topological group H satisfies nw(H) = Nag(H) · ψ(H).

Proof. Clearly, ψ(H) ≤ nw(H). Proposition 5.3.3 implies that Nag(H) · ψ(H) ≤
nw(H) (this inequality holds for every Tychonoff space). Conversely, if τ = Nag(H)·ψ(H),

then the identity e of H is a closed Gτ-set in H , and c) of Lemma 5.3.24 implies that there

exists an open continuous homomorphism π : H → K onto a topological group K with

nw(K) ≤ τ such that {e} = π−1π(e). Therefore, π is a topological isomorphism of H
onto K and nw(H) ≤ τ. �

The following result complements Theorem 5.3.18.

Theorem 5.3.26. Let γ be a family of Gτ-sets in a topological group H such that
Nag(H) ≤ τ. Then

⋃
γ is also a Gτ-set in H .

Proof. Without loss of generality, we can assume that all the elements of γ are closed

in H . Let F =
⋃

γ. By Theorem 5.3.18, there exists a subfamily μ of γ with |μ| ≤ τ

such that
⋃

μ = F . Apply (c) of Lemma 5.3.24 to find, for every P ∈ μ, a continuous

homomorphism πP : H → HP of H to a topological group HP with nw(HP ) ≤ τ such that

P = π−1
P πP (P). Let p be the diagonal product of the family {πP : P ∈ μ}. The group

L = p(H) satisfies nw(L) ≤ τ, so we can define (as in (b) of Lemma 5.3.24) an open

continuous homomorphism π : H → K onto a topological group K with nw(K) ≤ τ and a

continuous isomorphism ϕ : K → L such that ϕ ◦π = p. It is clear that P = π−1π(P) for

each P ∈ μ. Put D =
⋃

μ. Then D = π−1π(D) and, since the homomorphism π is open,

we have

F =
⋃

μ = D = π−1(π(D)) = π−1(π(D)).

It follows from nw(K) ≤ τ that every closed subset of K is of the type Gτ in K. Hence,

F = π−1(E) is of the type Gτ in H , where E = π(D). �
Corollary 5.3.27. Every Lindelöf Σ-group is an Efimov space.

Corollary 5.3.28. Every σ-compact topological group H is an Efimov space.

Corollary 5.3.29. Let H be an arbitrary subgroup of a σ-compact topological group.
Then every regular closed subset of H is a zero-set in H .

Proof. Suppose that H is a topological subgroup of a σ-compact group G. Clearly,

we can assume that H is dense in G. Let U be an open subset of H . We have to verify

that F = clHU is a zero-set in H . Take an open set V in G such that U = H ∩ V and put

K = clGV . Then K is of the type Gδ in G and, since G is σ-compact, K is a zero-set in G.

Therefore, F = K ∩H is a zero-set in G. �
We can extend Theorems 5.3.18 and 5.3.26 to arbitrary products of topological groups

Gi satisfying Nag(Gi) ≤ τ as follows:

Theorem 5.3.30. Let Π =
∏

i∈I Gi be a product of topological groups satisfying
Nag(Gi) ≤ τ for each i ∈ I. Then we have:

a) celτ(Π) ≤ τ;
b) if � is a family of Gτ-sets in Π, then

⋃
� is of type Gτ in Π;

c) for every closed Gτ-set P in Π, there exists J ⊂ I with |J | ≤ τ such that P = π−1
J πJ (P),

where πJ : Π→ ΠJ =
∏

i∈J Gi is the projection.
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Proof. Let us say that a closed subset F of Π is a τ-cube if it has the form F = π−1
K (FK),

where K ⊂ I, |K| ≤ τ, FK =
∏

i∈K Fi, and every Fi is a closed Gτ-set in Gi. The set K
is called the core of F . Note that if F is a τ-cube in Π, then πJ (F ) is of type Gτ in ΠJ for

each J ⊂ I.

a) Let � be a family of Gτ-sets in Π. Since every Gτ-set in Π is a union of τ-cubes,

we can assume that all elements of � are τ-cubes. For every J ⊂ I with |J | ≤ τ, the group

ΠJ satisfies Nag(ΠJ ) ≤ τ by Proposition 5.3.9, so celτ(ΠJ ) ≤ τ by Theorem 5.3.18. As in

the proof of Theorem 1.6.18, one can define a sequence {J(n) : n ∈ ω} of subsets of I and

a sequence {�n : n ∈ ω} of subfamilies of � satisfying the following conditions for each

n ∈ ω:

(i) |J(n)| ≤ τ and |�n| ≤ τ;

(ii) J(n) ⊂ J(n + 1) and �n ⊂ �n+1;

(iii) πJ(n)(
⋃

�n) is dense in πJ(n)(
⋃

�);

(iv) Jn+1 contains the core of every element of �n.

Put J =
⋃

n∈ω J(n), 	 =
⋃

n∈ω �n and D =
⋃

	. It is clear that |	| ≤ τ,

D = π−1
J πJ (D), and that πJ (D) is dense in πJ (

⋃
�). Consequently,⋃

� ⊂ π−1
J πJ (

⋃
�) ⊂ π−1

J πJ (D) = π−1
J πJ (D) = D.

Hence,
⋃

	 is dense in
⋃

�. Since |	| ≤ τ, we have celτ(Π) ≤ τ.

b) Let � be a family of Gτ-sets in Π. Again, we can assume that all the elements of �
are τ-cubes. Since celτ(Π) ≤ τ by a), one can find a subfamily 	 ⊂ � such that |	| ≤ τ
and

⋃
	 is dense in

⋃
�. Denote by J the union of the cores of the elements of 	. Then

|J | ≤ τ and the equality F = π−1
J πJ (F ) holds for each F ∈ 	. Therefore, the set E =

⋃
	

satisfies E = π−1
J πJ (E). Since the mapping πJ is open, we have⋃

� = E = π−1
J πJ (E)π−1

J πJ (E). (5.1)

It follows from the choice of 	 that the family 	J = {πJ (F ) : F ∈ 	} consists of Gτ-sets in

ΠJ . In addition, Nag(ΠJ ) ≤ τ because |J | ≤ τ. Thus, the closure of the set πJ (E) =
⋃

	J

is of type Gτ in ΠJ by Theorem 5.3.26. By (5.1), we have that
⋃

� = π−1
J πJ (E) and

hence,
⋃

� is a Gτ-set in Π.

c) A closed Gτ-subset P of Π is a union of τ-cubes in Π, say P =
⋃

γ. By a), γ
contains a subfamily μ with |μ| ≤ τ such that

⋃
μ is dense in P . Since the cardinality of

the core of every element F ∈ μ is at most τ, there exists a set J ⊂ I with |J | ≤ τ such

that F = π−1
J πJ (F ) for each F ∈ μ. Then P = π−1

J πJ (P). �

Corollary 5.3.31. The product of any family of Lindelöf Σ-groups is an ω-cellular
Efimov space.

Exercises

5.3.a. Show that every non-empty topological space can be represented as an image of a non-discrete

Abelian topological group under a continuous mapping.

5.3.b. Verify that every non-discrete countable topological group is an image under a continuous

homomorphism of a non-discrete countable metrizable group.

5.3.c. Let G be a Lindelöf Σ-group with a σ-disjoint π-base. Show that G is metrizable.
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5.3.d. Show that if G is a topological group, and H is a locally compact subgroup of G such that

the quotient space G/H is a Lindelöf Σ-space, then G contains an open subgroup M which

is a Lindelöf Σ-space (which implies that G is a free topological sum of Lindelöf Σ-spaces).

5.3.e. Give an example of a precompact Lindelöf Σ-group G which is neither compact nor Raı̆kov

complete.

5.3.f. Let G be a Lindelöf Σ-group. Is the Raı̆kov completion of G a Lindelöf Σ-group?

5.3.g. Show that every Lindelöf Σ-group with no small subgroups is cosmic.

5.3.h. Verify that the Gδ-tightness of every Lindelöf Σ-group is countable.

5.3.i. Let us say that X is a Mal’tsev space if there exists a continuous mapping f : X3 → X such

that f (x, y, y) = f (y, y, x) = x, for all x, y ∈ X. Show that the following hold:

a) Every topological group G is a Mal’tsev space.

b) Every retract of a topological group is a Mal’tsev space.

c) Verify that Theorems5.3.18, 5.3.26, 5.3.30, 5.4.7 as well as Corollaries 5.3.21, 5.3.19,

5.3.28, and 5.4.9 are valid for Mal’tsev spaces.

Problems

5.3.A. Suppose that G is a topological group which is a Lindelöf p-space. Prove that G contains a

dense σ-compact subgroup and hence, G is k-separable.

5.3.B. Suppose that G is a Lindelöf Σ-group. Is G a continuous homomorphic image of a topological

group H which is a Lindelöf p-space?

Hint. The answer is “no”. Take a Lindelöf Σ-group G that is not k-separable. For example,

put G = Cp(X), where X is a Gul’ko compactum that is not Eberlein, see [462] (every

Gul’ko compactum is a Corson compactum, by a theorem in [207]).

5.3.C. Let G be a topological group such that G is a Lindelöf p-space all compact subspaces of

which are metrizable. Prove that G is metrizable.

5.3.D. Give an example of a non-metrizable Lindelöf Σ-group G such that every compact subspace

of G is metrizable.

5.3.E. Suppose that G is a Lindelöf Σ-group which is a P-space. Prove that G is discrete.

5.3.F. Show that a Lindelöf subgroup of a Lindelöf Σ-group need not be a Lindelöf Σ-group.

5.3.G. Show that a subgroup of type Gδ of a Lindelöf Σ-group need not be Lindelöf.

5.3.H. A topological group H is said to be a strong Lindelöf Σ-group if there exists a continuous

homomorphism of a Lindelöf p-group onto H . Prove that a Gδ-subgroup of a strong Lindelöf

Σ-group is again a strong Lindelöf Σ-group.

5.3.I. (V. G. Pestov and D. B. Shakhmatov [380]) Prove that not every cosmic topological group

can be represented as an image of a second-countable topological group under a continuous

homomorphism.

5.3.J. Let G be a Lindelöf Σ-group that is hereditarily Lindelöf. Prove that G is cosmic.

5.3.K. Let G be a Lindelöf Σ-group that is hereditarily separable. Is it true in ZFC that G is cosmic?

5.3.L. Suppose that f : G → H is a continuous homomorphism of a Lindelöf Σ-group G onto a

metrizable group H . Suppose further that M is a subgroup of H . Prove that f−1(M) is a

Lindelöf Σ-group.

5.3.M. (J. van Mill [323]) Show that every regular second-countable space is an image of a second-

countable group under a closed continuous mapping.

Open Problems

5.3.1. Characterize the topological subgroups of Lindelöf Σ-groups.

5.3.2. Does every σ-compact (Lindelöf Σ-) topological group have countable δ-tightness? (See

also Exercise 5.3.h and Problems 4.1.F and 6.6.1.)

Lindelöf Σ-groups and Nagami number
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5.3.3. Does every countably compact topological group have countable δ-tightness?

5.3.4. Is every Lindelöf Σ-group G of countable spread (which means that every discrete subspace

of G is countable) cosmic?

5.3.5. Suppose that G is a (regular) paratopological group and F is a compact subspace of G.

Suppose further that S is the minimal subsemigroup of G with F ⊂ S. Is the Souslin number

of the subspace S countable?

5.3.6. Is it possible to represent an arbitrary Tychonoff (regular, Hausdorff) space as an image of a

topological group under a closed continuous mapping?

5.3.7. Is it possible to represent an arbitrary Tychonoff (regular, Hausdorff) space as an image of a

topological group under an open continuous mapping?

5.4. Cellularity and weak precalibres

Here we show that subgroups of Lindelöf Σ-groups satisfy a certain restriction on

linked families of open sets. This condition also implies that the cellularity of such

groups is countable (which was already established in Corollary 5.3.21). Then we prove in

Theorem 5.4.10 that, unlike the case of topological spaces, the cellularity of each subgroup

of a given topological group G is bounded by 2c(G).

A cardinal τ > ω is said to be a precalibre of a space X if every family γ of (non-empty)

open subsets of X with |γ| = τ contains a subfamily λ of the same cardinality τ with the

finite intersection property. If τ is a precalibre of X, then the Souslin number of X is,

obviously, strictly less than τ.

It is quite a delicate question whether ℵ1 is a precalibre of every σ-compact topological

group (see Problem 5.4.H). In fact, the question is undecidable in ZFC. However, there

exists a slightly weaker property of a similar nature enjoyed by all σ-compact and, more

generally, by all Lindelöf Σ-groups. Here is the definition.

Let τ be an infinite cardinal and n ≥ 2 an integer. A family γ of sets is called n-linked
if U1 ∩ · · · ∩Un = ∅, for all U1, . . . , Un ∈ γ. A pair (τ, n) is said to be a weak precalibre of

a space X if every family γ of open sets in X with |γ| ≥ τ contains an n-linked subfamily

of cardinality τ.

If τ is an infinite cardinal and 2 ≤ m < n, then we obviously have the following

implications for every space X:

τ is a precalibre =⇒ (τ, n) is a weak precalibre

=⇒ (τ, m) is a weak precalibre

Thus, for a given cardinal τ, the property “(τ, 2) is a weak precalibre” is the weakest in

the above sequence. If (ℵ1, 2) is a weak precalibre of a space X, it is also said that X has the

Knaster property. It is clear from the definitions that every separable space has the Knaster

property, and all spaces with the Knaster property have countable cellularity.

In contrast with the property of having countable cellularity, precalibres and weak

precalibres are stable with respect to taking products of spaces:

Theorem 5.4.1. Let X =
∏

i∈I Xi be a product space and suppose that (τ, n) is a weak
precalibre for each factor Xi, where τ is a regular uncountable cardinal. Then (τ, n) is a
weak precalibre for X. Similarly, if τ is a precalibre for each factor Xi, then τ is a precalibre
of X.
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Proof. We prove only the first part of the theorem, for weak precalibres, leaving the

rest to the reader.

If (τ, n) is a weak precalibre for spaces Y and Z, then (τ, n) is a weak precalibre for the

product Y ×Z. Indeed, take a family γ of rectangular open sets in Y ×Z and suppose that

|γ| = τ. Since the projection πY of Y × Z to Y is open, there exists a subfamily η of γ of

cardinality τ such that the family ηY = {πY (U) : U ∈ η} is n-linked. Similarly, η contains

a subfamily λ of cardinality τ such that the family λZ = {πZ(V ) : V ∈ λ} is n-linked,

where πZ : Y ×Z → Z is the projection. Since the elements of λ are rectangular, it follows

that the family λ itself is n-linked. Hence, (τ, n) is a weak precalibre of Y × Z.

We can conclude, therefore, that (τ, n) is a weak precalibre for each subproduct

XK =
∏

i∈K Xi, with K a finite subset of I.

Let γ be a family of non-empty open sets in X with |γ| = τ. Without loss of generality

we can assume that γ consists of canonical open sets. For every non-empty finite set K ⊂ I,

denote by pK the projection of X onto XK. Let {Uα : α < τ} be a faithful enumeration

of the elements of γ. Take Aα to be a finite subset of I such that Uα = p−1
Aα

pAα (Uα),

where α < τ. According to Theorem 1.6.20, there exists a set B ⊂ τ of cardinality τ and

a finite subset R of I such that Aα ∩ Aβ = R, for all distinct α, β ∈ B. Since (τ, n) is a

weak precalibre of XR and the projection pR is open, the exists a set C ⊂ B with |C| = τ
such that the family {pR(Uα) : α ∈ C} is n-linked. Then the family λ = {Uα : α ∈ C}
is n-linked as well. Indeed, take distinct elements Uα1

, . . . , Uαn ∈ λ and choose a point

y ∈ pR(Uα1
) ∩ · · · ∩ pR(Uαn ). Since the family {Aαi \ R : i = 1, . . . , n} is disjoint, we

can take a point x ∈ X such that xα = yα for each α ∈ R, and xα ∈ pα(Ui) whenever

α ∈ Aαi \ R, for 1 ≤ i ≤ n. Then x ∈ Uα1
∩ · · · ∩ Uαn = ∅. This proves that (τ, n) is a

weak precalibre of X. �
Corollary 5.4.2. The product of an arbitrary family of spaces with the Knaster

property also has the Knaster property.

Corollary 5.4.3. Let X be a dyadic compactum. Then every regular cardinal τ > ω
is a precalibre of X.

Proof. Clearly, X is a continuous image of Dκ, for some cardinal κ, where D = {0, 1}
is discrete. It follows from Theorem 5.4.1 that every regular cardinal τ > ω is a precalibre

of Dκ. It remains to note that continuous onto mappings preserve the latter property. �
In general, the Souslin number can increase when taking products of spaces or, even

worse, of topological groups (see Problem 5.4.G). Theorem 5.4.1 and Corollary 5.4.2

show that weak precalibres serve as a good substitute for the cellularity (see, for example,

Theorem 6.4.21).

Let us show that (τ, 2) is a weak precalibre of every Lindelöf Σ-group provided that τ
is regular and uncountable. This requires some preliminary work.

If X is a set and n ∈ N, thenwe denote by [X]n the family of all subsets of X of cardinality

n. Recall that for cardinal numbers τ, λ, κ and an integer n ≥ 1, the formula τ → (λ)n
κ means

that for every partition {Bα : α < κ} of the set [τ]n into κ (not necessarily disjoint) subsets,

there exist α < κ and a subset A of τ with |A| = λ such that [A]n ⊂ Bα. Similarly,

τ → (λ1, λ2)n means that for every partition {B1, B2} of [τ]n, there exist i ∈ {1, 2} and a set

A ⊂ τ such that |A| = λi and [A]n ⊂ Bi. We use the following well-known combinatorial

results (see [262, 413]):
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Theorem 5.4.4. The following partition relations hold for every integer n ≥ 1 and a
for each cardinal τ ≥ ω:

a) ω → (ω)2
n;

b) (2τ)+ → (τ+)2
τ;

c) τ+ → (τ+, ω)2

One more definition will be helpful. Given a set X, a point x ∈ X, and a covering � of

X, we put St(x, �) =
⋃{K ∈ � : x ∈ K}.

Lemma 5.4.5. Let X be a set, let τ, λ, κ, μ be cardinals with μ2 ≤ κ, let {xα : α < τ}
be a sequence of points of X, and let {�α : α < τ} be a sequence of coverings of X such
that |�α| ≤ μ for each α < τ. If τ → (λ)2

κ holds, then there exists a set A ⊂ τ with |A| = λ
such that xβ ∈ St(xα, �γ) ∩ St(xγ, �α) for any α, β, γ ∈ A with α < β < γ.

Proof. For every α < τ, let �α = {Kα,i : i ∈ μ} be an enumeration of �α. Given any

{α, β} ∈ [τ]2 with α < β, we define f ({α, β}) = (i, j) ∈ κ×κ in such a way that xα ∈ Kβ,i

and xβ ∈ Kα,j . The function f : [τ]2 → μ × μ partitions [τ]2 into at most |μ × μ| ≤ κ
parts, so there exist (i, j) ∈ μ×μ and A ⊂ τ with |A| = λ such that f ({α, β}) = (i, j) for

all distinct α, β ∈ A. Let α < β < γ be arbitrary elements of A. From f ({α, β}) = (i, j) it

follows that xβ ∈ Kα,j; f ({β, γ}) = (i, j) implies xβ ∈ Kγ,i, and f ({α, γ}) = (i, j) implies

that xα ∈ Kγ,i and xγ ∈ Kα,j . Therefore, we have

xβ ∈ Kγ,i ⊂ St(xα, �γ) and xβ ∈ Kα,j ⊂ St(xγ, �α).

�

Lemma 5.4.6. Let X be a Tychonoff space such that Nag(X) ≤ τ, let {xα : α < τ+}
be a sequence of points of X, and let {�α : α < τ+} be a sequence of open coverings of X.
Then there exists a set A ⊂ τ+ with |A| = τ+ such that St(xα, �β) ∩ St(xβ, �α) = ∅, for
any distinct α, β ∈ A.

Proof. Since Nag(X) ≤ τ, there exists a family � of closed subsets of βX with

|�| ≤ τ which separates X from βX \ X. We can assume that � is closed under finite

intersections. Note that
⋂{F ∈ � : x ∈ F} ⊂ X for each x ∈ X. For every α < τ, choose

a family �α of open sets in βX such that �α = {X ∩ U : U ∈ �α}. Since the family �
is closed under finite intersections, we can find, for every α < τ, an element Fα ∈ � such

that xα ∈ Fα ⊂
⋃

�α. From |�| ≤ τ it follows that there are F ∈ � and B ⊂ τ+ with

|B| = τ+ such that Fα = F for each α ∈ B. We can assume without loss of generality that

B = τ+. As F is compact, for every α < τ+, there exists a finite subfamily �α of �α which

covers F . We can additionally assume that there exists an integer n such that |�α| ≤ n for

each α < τ+. The rest of the proof is a mere application of the partition calculus technique.

Let k = n2. Since ω → (ω)2
k by item a) of Theorem 5.4.4 a), Lemma 5.4.5 applied to

the sequences {xα : α < τ+} and {�α : α < τ+} yields the following:

Claim. Every infinite set I ⊂ τ+ contains an infinite subset J such that xβ ∈ St(xα, �γ) ∩
St(xγ, �α) for any α, β, γ ∈ J with α < β < γ.

Let us define a mapping h : [τ+]2 → {0, 1} as follows:

h({α, β}) = 0 if St(xα, �β) ∩ St(xβ, �α) = ∅.
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Since τ+ → (τ+, ω)2 by c) of Theorem 5.4.4, either there exists a subset A of τ+ of cardinality

τ+ with [A]2 ⊂ h−1(1) or there exists an infinite set R ⊂ τ+ such that [R]2 ⊂ h−1(0). The

latter, however, is impossible by the above Claim. Therefore, for an appropriate subset A
of τ+, we have St(xα, �β)∩ St(xβ, �α) = ∅ for all α, β ∈ A. Since �α ⊂ �α and the trace

of the family �α on X coincides with �α for each α < τ+, the conclusion of the lemma is

immediate. �

Lemma 5.4.6 enables us to present a short proof of the following result which

complements Corollary 5.3.21.

Theorem 5.4.7. Let H be an arbitrary subgroup of a topological group G such that
Nag(G) ≤ τ. Then (τ+, 2) is a weak precalibre of H .

Proof. To have (τ+, 2) as a weak precalibre is a hereditary property with respect to

passing to dense subspaces. Since the closure H∗ of H in G is a closed subgroup of G such

that Nag(H∗) ≤ Nag(G) ≤ τ, we can assume without loss of generality that H = G.

Let {Oα : α < τ+} be a family of non-void open sets in G. Consider the continuous

mapping f : G3 → G defined by f (x, y, z) = xy−1z. For every α < τ+, pick a point

xα ∈ Oα and choose an open covering �α of G such that if y, z ∈ U for some U ∈ �α,

then f (xα, y, z) ∈ Oα and f (y, z, xα) ∈ Oα. By Lemma 5.4.6, one can find a set A ⊂ τ+

of cardinality τ+ such that St(xα, �β) ∩ St(xβ, �α) = ∅ for all distinct α, β ∈ A. If

x ∈ St(xα, �β) ∩ St(xβ, �α), then there exist U ∈ �α and V ∈ �β such that x, xβ ∈ U and

xα, x ∈ V . Therefore, f (xα, x, xβ) ∈ Oα ∩Oβ, by the choice of the coverings �α and �β.

We have thus proved that Oα ∩Oβ = ∅ for all α, β ∈ A. �

Corollary 5.4.8. Every subgroup of a σ-compact topological group has the Knaster
property.

In general, the cellularity is not productive, even in topological groups. It is known, for

example, that there exists in ZFC a topological group G such that c(G ×G) > c(G) (see

Problem 5.4.G). Nevertheless, a weak form of compactness in topological groups improves

the situation.

Corollary 5.4.9. Let G be a topological group with Nag(G) ≤ τ. Then c(G×X) ≤ τ,
for every space X satisfying c(X) ≤ τ.

Proof. Let γ = {Oα : α < τ+} be a family of non-void open sets in G × X, where

the space X satisfies c(X) ≤ τ. We can assume without loss of generality that every Oα has

the form Uα × Vα. By Theorem 5.4.7, (τ+, 2) is a weak precalibre of G, so there exists a

subset A of τ+ with |A| = τ+ such that Uα ∩ Uβ = ∅ for all α, β ∈ A. Since c(X) ≤ τ,

one can find distinct α, β ∈ A such that Vα ∩ Vβ = ∅. Then Oα ∩ Oβ = ∅, whence the

conclusion follows. �

Since every Tychonoff space can be topologically embedded into the Tychonoff cube Iτ

or, equivalently, into the compact topological group Tτ for some τ, there is no upper bound

for the cellularity of subspaces of ω-cellular spaces. The situation changes radically if we

consider subgroups of topological groups. First, we prove a general theorem that relates the

cellularity and the index of narrowness in topological groups.

Theorem 5.4.10. c(G) ≤ 2ib(G), for every topological group G.
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Proof. The proof is very much like that of Theorem 5.4.7. Set κ = ib(G) and τ = 2κ.

Let {Oα : α < τ+} be a family of non-empty open subsets of G. For every α < τ+, choose

a point xα ∈ Oα and open symmetric neighbourhoods Uα and Vα of the identity in G such

that xαUα ⊂ Oα, Uαxα ⊂ Oα and V 2
α ⊂ Uα. Since the group G is κ-narrow, there exists

Kα ⊂ G with |Kα| ≤ κ such that KαVα = G and VαKα = G. Denote by �α an open

covering of G refining the coverings {xVα : x ∈ Kα} and {Vαx : x ∈ Kα} and satisfying

|�α| ≤ κ. Since (2κ)+ → (κ+)2
κ, by b) of Theorem 5.4.4, we can apply Lemma 5.4.5 to the

sequences {xα : α < τ+}, {�α : α < τ+} and find α, β, γ < τ+ with α < β < γ such that

xβ ∈ St(xα, �γ) ∩ St(xγ, �α). Therefore, there exist a, b ∈ G such that xα, xβ ∈ Vγa and

xβ, xγ ∈ bVα, whence xαx−1
β ∈ V 2

γ and x−1
β xγ ∈ V 2

α . We conclude that

xαx−1
β xγ ∈ xαV 2

α ∩ V 2
γ xγ ⊂ xαUα ∩ Uγxγ ⊂ Oα ∩Oγ.

This proves that the family {Oα : α < τ+} is not disjoint, so that c(G) ≤ 2κ. �

Theorem 5.4.11. Every subgroup H of a topological group G satisfies c(H) ≤ 2c(G).

Proof. If H is a subgroup of G, then ib(H) ≤ ib(G) ≤ c(G) by Propositions 5.1.1 a)

and 5.1.3 b), so Theorem 5.4.10 implies that c(H) ≤ 2ib(H) ≤ 2c(G). �

Since topological products of second-countable groups have countable cellularity by

[165, Coro. 2.3.18], Theorem 5.4.11 implies the following useful result.

Corollary 5.4.12. Every subgroup H of a product of second-countable groups
satisfies c(H) ≤ c.

In the next example we show that the upper bound c for the cellularity of ω-narrow

groups in Corollary 5.4.12 is exact.

Example 5.4.13. Let H = A(ω) be the free Abelian group over the set ω, that is,

the direct sum of ω copies of the group Z. We consider H with the discrete topology.

Clearly, H is countable. Our aim is to show that the group Hc, taken with the product

topology, contains a subgroup G satisfying c(G) = c. Denote by I the set of all mappings

g : ω \ {0} → {0, 1}. Since |I| = c, we will construct G as a subgroup of HI .

Let [I]2 be the family of all unordered pairs of I. For any distinct g, h ∈ I, set

ϕ({g, h}) = min{n ∈ ω \ {0} : g(n) = h(n)}.
It is easy to see that the mapping ϕ : [I]2 → {0, 1} has the following property:

Fact 1. If f, g, h are distinct elements of I, then two of the three numbers ϕ({f, g}), ϕ({g, h})
and ϕ({h, f}) are equal and strictly less than the third one.

For every g ∈ I, we define a mapping xg : I → H by xg(h) = ϕ({g, h}) if g = h and

xg(h) = 0 if g = h. Then xg ∈ HI . Let G be the subgroup of HI generated by the set

X = {xg : g ∈ I}. Since the weight of the group HI is equal to the cardinality of I, we

have c(G) ≤ w(G) ≤ w(HI) ≤ c. It remains to show that c(G) ≥ c.
For every g ∈ I, consider the open subset

Vg = {y ∈ G : y(g) = 0}
of G. Since Vg is not empty for each g ∈ I, we only need to prove the following fact.

Fact 2. The family {Vg : g ∈ I} is disjoint.
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Assume the contrary. Then Vg∩Vh = ∅ for some distinct g, h ∈ I. Let n = ϕ({g, h}).
Then xg(h) = xh(g) = n > 0. Denote by π the projection of HI to HK, where K = {g, h}.
Fact 1 implies that the group π(G) is generated by the set

XK = {(0, n)} ∪ {(n, 0)} ∪ {(i, j) : 0 < i = j or i = n < j or j = n < i}.
Since Vg ∩ Vh = ∅, the element (0, 0) belongs to π(G). Therefore, we can find distinct

elements (u1, v1), . . . , (up, vk) of XK and non-zero integers k1, . . . , kp such that

(0, 0) =

p∑
i=1

ki · (ui, vi). (5.2)

Hence, both pairs (0, n) and (n, 0) appear among (u1, v1), . . . , (up, vk). In addition, if

(0, n) = (ui, vi) and (n, 0) = (uj, vj) for some i, j ≤ p, then i = j and ki = kj = 1.

We can assume that i = p − 1 and j = p. Moving (ui, vi) and (uj, vj) to the left part of

(5.2), we obtain the following equality after obvious cancellations:

−(n, n) = k1 · (u1, v1) + · · ·+ kq · (uq, vq), (5.3)

where q = p − 2 and all u1, v1, . . . , uq, vq are distinct from 0. Since each (um, vm) is in

XK, we conclude that either um = vm = i for some i < n, or there exists j > n such that

(um, vm) = (n, j) or (um, vm) = (j, n).

Let k = max{u1, v1, . . . , uq, vq}. It is clear that k > n. We can assume that

(k, n) = (um, vm) for some m ≤ q. Then ui = k for each i = m. Rewriting the vector

equality (5.3) for the first coordinate, we see that the summand k cannot be cancelled, which

is a contradiction. This proves Fact 2 and implies the equality c(G) = c. �
Example 5.4.13 also shows that the cellularity is not monotonous when taking subgroups

of (Abelian) topological groups. On the other hand, if H is a dense or open subgroup of a

topological group H∗, then c(H) ≤ c(H∗). Finally, it is worth mentioning that there exist

an Abelian topological group H∗ and a closed subgroup H of type Gδ in H∗ such that

ω = c(H∗) < c(H) = c (see Exercise 5.4.a).

Exercises

5.4.a. Use the group constructed in Example 5.4.13 to find a topological Abelian group H∗ and a

closed subgroup H of type Gδ in H∗ such that ω = c(H∗) < c(H) = c.

5.4.b. Let H be an arbitrary subgroup of the σ-product of a family of second-countable topological

groups. Prove that the cellularity of H is countable. Is (ω1, 2) a weak precalibre of H?

5.4.c. Show that if G is the product of a family of σ-compact topological groups, then (τ, 2) is a

weak precalibre of G, for every regular cardinal τ > ω.

5.4.d. Let S be the Sorgenfrey line considered as a paratopological group, κ a cardinal, and X ⊂ Sκ

be a compact subspace of Sκ. Denote by H the minimal subsemigroup of Sκ containing X,

that is, x + y ∈ H , for all x, y ∈ H . Is the cellularity of H countable?

5.4.e. Show thatTheorem5.4.7 andCorollary 5.4.9 are valid forMal’tsev spaces (seeExercise 5.3.i).

Problems

5.4.A. Prove that there exists a σ-compact topological group which is not a continuous image of

the space N × Dτ for any cardinal τ, where the factors N and D = {0, 1} carry the discrete

topology.
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5.4.B. Give an example of an infinite topological group G such that the space G × G cannot be

represented as a continuous image of the space G.

5.4.C. Give an example of an infinite topological group G such that G is not homeomorphic to any

dense subspace of any Tychonoff cube Iτ and still the cellularity of G is countable.

5.4.D. (V. V. Uspenskij [521]) Construct a subgroup H of the topological group Zc such that

c(H) = c.

Hint. Apply the Chinese remainder theorem to construct a subgroup of Zc with the required

property.

5.4.E. (P. Gartside et al. [187]) Show that there exists a Lindelöf topological group G satisfying

c(G) = c.

5.4.F. (V. V. Uspenskij [512]) Prove that the cellularity of every Lindelöf P-group does not exceed

ℵ1.

Hint. The proof of this fact can be found in Section 8.6.

5.4.G. (S. Todorčević [494]) Prove in ZFC that there exists a topological group G such that

c(G) < c(G × G).

5.4.H. (D. B. Shakhmatov [429]) It is consistent with and independent of ZFC thatℵ1 is a precalibre

of every σ-compact topological group.

5.4.I. Let G =
∏

i∈I
Gi be the product of a family of topological groups, where τ is an infinite

cardinal and c(Gi) ≤ τ, for each i ∈ I. Then c(H) ≤ 2τ , for every subgroup H of G.

5.4.J. Suppose that H = Σ
∏

ξ is the Σ-product of a family ξ of topological groups, where each

K ∈ ξ is either discrete or satisfies |K| ≤ ℵ1. Let G be the Gδ-modification of H , where H
carries the usual subspace topology inherited from

∏
ξ. Prove that t(G) ≤ ℵ1.

5.4.K. Let G be a σ-compact topological group such that the Gδ-modification of G is Lindelöf.

Prove that G is countable.

5.4.L. Let G be a Lindelöf Σ-group such that the Gδ-modification of G is Lindelöf. Must G be

countable?

5.4.M. (I. V. Protasov [389]) Let G be a topological group. A sequence {xn : n ∈ ω} of elements of

G is called a left Cauchy sequence if, for every neighbourhood U of the neutral element in

G, there exists an integer N such that x−1
n xm ∈ U for all m, n > N. Suppose that a sequence

{xn : n ∈ ω} of elements of a metrizable topological group G does not contain a left Cauchy

subsequence. Prove that one can find an infinite set A ⊂ ω and a neighbourhood U of the

neutral element in G such that xiU ∩ xjU = ∅, for all distinct i, j ∈ A.

Hint. Assume the contrary and apply Ramsey’s theorem (see item a) of Theorem 5.4.4) to

construct by induction an infinite set A ⊂ ω such that the subsequence {xi : i ∈ A} of

{xn : n ∈ ω} is left Cauchy.

5.4.N. (I. V. Protasov [389]) Prove that if a metrizable topological group G is functionally balanced

(see Problem 1.8.B), then G is balanced. Extend the result to the class of feathered topological

groups.

Hint. For a metrizable group G, apply the conclusion of Problem 5.4.M along with (b) of

Problem 1.8.B. For a feathered group G, use Proposition 4.3.11.

Open Problems

5.4.1. Let G be an infinite topological group. Is it always possible to represent G×G as a continuous

image of some subspace of G?

5.4.2. Let G be a Lindelöf topological group of countable tightness. Is the cellularity of G
countable?

5.4.3. Let G be an ω-narrow topological group such that the space G is normal and of countable

tightness. Is the Souslin number of G countable?
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5.4.4. Let G be a Lindelöf topological group such that Cp(G) is Lindelöf. Is the cellularity of G
countable?

5.4.5. Can one refine the conclusion of Lemma 5.4.6 to claim the existence of a set A ⊂ τ+ such

that |A| = τ+ and xβ ∈ St(xα, �γ) ∩ St(xγ, �α) for all α, β, γ ∈ A with α < β < γ?

5.4.6. Let G be a topological group with Nag(G) ≤ τ. Is (τ+, n) a weak precalibre of G for n = 3?

Is this true for all integers n ≥ 2? What is the answer in the case when G is σ-compact and

τ = ℵ1?

5.4.7. Let G be the Σ-product of τ copies of the discrete group Z. Does every subgroup of G have

countable cellularity?

5.5. o-tightness in topological groups

A space X satisfies c(X) ≤ τ if and only if every family γ of open sets in X contains

a subfamily η such that |η| ≤ τ and
⋃

η =
⋃

γ. Here we consider a pointwise version of

the Souslin number known as the o-tightness.
The o-tightness of a space X is the smallest infinite cardinal number τ such that whenever

a point a ∈ X belongs to the closure of
⋃

γ, where γ is any family of open sets in X, there

exists a subfamily η of γ such that |η| ≤ τ and a is in the closure of
⋃

η. If the o-tightness

of X is equal to τ, we write ot(X) = τ.

The o-tightness of X is not greater than the tightness of X and the cellularity of X. It also

clear that the o-tightness of X does not exceed the Gδ-tightness of X, that is, ot(X) ≤ get(X).

Obviously, an open subspace U of a space X satisfies ot(U) ≤ ot(X). It is worth

mentioning the following simple property of the o-tightness:

Proposition 5.5.1. If Y is a dense subspace of a space X, then ot(Y ) ≤ ot(X).

Proof. Let γ be a family of open sets in Y , and suppose that y ∈ Y is in the closure

of the set
⋃

γ. Let η be a family of open sets in X such that γ = {U ∩ Y : U ∈ η}.
Evidently, y ∈ ⋃

η and, since ot(X) ≤ ω, there exists a countable subfamily η′ of η such

that y ∈ ⋃
η′. Then γ′ = {U ∩Y : U ∈ η′} is a countable subfamily of γ. Since Y is dense

in X, it follows that y ∈ ⋃
γ′, so we conclude that the o-tightness of Y is countable. �

There is no upper bound for the o-tightness of compact spaces. Indeed, let τ be an infinite

regular cardinal. Denote by τ + 1 the space τ∪{τ} endowed with the order topology. Then

τ + 1 is a compact space, but the end point {τ} is not in the closure of any set K ⊂ τ with

|K| < τ. Since the set D of all isolated points of τ has the cardinality τ, we conclude that

ot(τ + 1) = τ.

Since the space τ + 1 is homeomorphic to a subspace of the Tychonoff cube Iτ and the

o-tightness of Iτ is countable (note that the cellularity of Iτ is countable), it follows that the

o-tightness can increase when passing to a (closed) subspace. In particular, one cannot drop

the condition of Y being dense in X in Proposition 5.5.1. The same phenomenon occurs in

topological groups (see Exercise 5.5.c).

On the other hand, we show in Theorem 5.5.4 below that a mild compactness type

condition imposed on a topological group G implies that ot(G) ≤ ω. This result requires

the notion of an admissible subgroup.
A subgroup H of a topological group G is called admissible if there exists a sequence

{Un : n ∈ ω} of open symmetric neighbourhoods of the identity in G such that U3
n+1 ⊂ Un

for each n ∈ ω and H =
⋂

n∈ω Un.
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In the next lemma, we establish three simple properties of admissible subgroups.

Lemma 5.5.2. Let G be a topological group. Then:

a) every admissible subgroup H of G is closed in G and the quotient space G/H has
countable pseudocharacter;

b) every neighbourhood of the identity e in G contains an admissible subgroup;
c) the intersection of countably many admissible subgroups of G is again an admissible

subgroup of G.

Proof. a) Suppose that H is an admissible subgroup of G. Then there exists a sequence

{Un : n ∈ ω} of open symmetric neighbourhoods of e in G such that U3
n+1 ⊂ Un for each

n ∈ ω and H =
⋂

n∈ω Un. From U3
n+1 ⊂ Un it follows that Un contains the closure of Un+1

in G for each n ∈ ω, so that the intersection of the sets Un coincides with the intersection

of their closures. Hence, H is closed in G.

Let π : G → G/H be the quotient mapping of G onto the left coset space G/H . For

every n ∈ ω, we have

π−1π(Un+1) = Un+1H ⊂ U2
n+1 ⊂ Un.

Therefore, the set P =
⋂

n∈ω π(Un) satisfies

π−1(P) =
⋂
n∈ω

π−1π(Un+1) ⊂
⋂
n∈ω

Un = H.

This proves that P = {π(e)}, i.e., the point π(e) has countable pseudocharacter in

G/H . To finish the proof, it remains to note that the quotient space G/H is homogeneous.

b) Let U be an arbitrary neighbourhood of e in G. Define a sequence {Un : n ∈ ω} of open

symmetric neighbourhoods of e in G such that U0 ⊂ U and U3
n+1 ⊂ Un for each n ∈ ω.

Then H =
⋂

n∈ω Un is an admissible subgroup of G and H ⊂ U0 ⊂ U.

c) Let {Hn : n ∈ ω} be a sequence of admissible subgroups of G. For every n ∈ ω,

we can find a sequence {Un,k : k ∈ ω} of open symmetric neighbourhoods of e in G
such that (Un,k+1)3 ⊂ Un,k for each k ∈ ω and Hn =

⋂
k∈ω Un,k. Consider the sequence

{Vn : n ∈ ω}, where Vn =
⋂n

i=0 Ui,n for each n ∈ ω. Clearly, every Vn is an open

symmetric neighbourhood of e in G. In addition, V 3
n+1 ⊂ U3

i,n+1 ⊂ Ui,n whenever i ≤ n, so

V 3
n+1 ⊂

⋂n
i=0 Ui,n = Vn for all n ∈ ω. Therefore, H =

⋂
n∈ω Vn is an admissible subgroup

of G, and our definition of the sets Vn implies that

H =
⋂
n∈ω

Vn =
⋂
n∈ω

n⋂
i=0

Ui,n =
⋂
i∈ω

∞⋂
n=i

Ui,n =
⋂
i∈ω

Hi.

So, the group
⋂

i∈ω Hi is admissible. �

One more technical notion will be useful in the sequel. Let us call a subset F of a

topological group H standard if one can find an admissible subgroup N of H and a Gδ-set

K in the quotient space H/N such that F = π−1
N (K), where πN : H → H/N is the quotient

mapping. Observe that every standard set in H is of type Gδ in H .

Lemma 5.5.3. Let H be any topological group. Then:

a) Every Gδ-set in H is the union of a family of standard sets.
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b) If η is a countable family of standard subsets of H , then
⋃

η is the union of standard
sets in H .

Proof. Clearly, a) follows from b) and c) of Lemma 5.5.2. Let us prove b). Suppose

that η is a countable family of standard sets in H . For every F ∈ η, choose an

admissible subgroup NF of H and a Gδ-set KF in H/NF satisfying F = π−1
NF

(KF ), where

πNF : H → H/NF is the natural quotient mapping. Then N =
⋂

F∈η NF is an admissible

subgroup of H , by c) of Lemma 5.5.2. It is clear that the equality F = π−1π(F ) holds

for every F ∈ η, where π : H → H/N is the coset mapping. By a) of Lemma 5.5.2, the

quotient space H/N has countable pseudocharacter, so every fiber π−1(y) is a standard set

in H . Put F0 =
⋃

η and K0 = π(K0). Then F0 = π−1(K0). Since π is an open mapping,

we have F 0 = π−1(K0), which implies that F 0 is a union of standard sets in H . �

Let X be a Hausdorff space such that a subset F of X is closed if and only if the

intersection F ∩ K is closed in K, for each compact set K in X. Such a space X is called

a k-space (see [165, Section 3.3]). All Gδ-sets and their unions in a compact space are

k-spaces. In addition, all Fréchet–Urysohn spaces and all sequential spaces are k-spaces

as well [165, Th. 3.3.20]. If G is a topological group, we will call G a k-group if G is a

k-space as a topological space.

Theorem 5.5.4. [M. G. Tkachenko] Let H be a k-group. If γ is a family of Gδ-sets
in H and x ∈ H is a cluster point of γ, then there exists a countable subfamily η of γ such
that x ∈ ⋃

η. Therefore, both the Gδ-tightness and o-tightness of every k-group H are
countable.

Proof. Suppose that γ is a family of Gδ-sets in H . To prove the first assertion of the

theorem, it suffices to show that the set

X =
⋃
{
⋃

η : η ⊂ γ, |η| ≤ ω}
is closed in H . We may assume without loss of generality that all elements of γ are standard

sets in H . Let B be any compact subset of H and let 〈B〉 be the subgroup of H generated

by B. Then 〈B〉 is a σ-compact subgroup of H and, by Lemma 5.5.3, there exists a family

� of Gδ-sets in 〈B〉 such that X ∩ 〈B〉 =
⋃

� and every element P ∈ � is contained in

the closure of the union of some countable subfamily μP of γ. By Corollary 5.3.20, �
contains a countable subfamily λ such that

⋃
λ is dense in

⋃
�. Put μ0 =

⋃
P∈λ μP . Then

μ0 is countable, so we have
⋃

� =
⋃

λ ⊂ ⋃
μ0 ⊂ X. On the other hand, the equality

X ∩ 〈B〉 =
⋃

� implies that X ∩ 〈B〉 =
⋃

μ0 ∩ 〈B〉. Thus, X ∩ 〈B〉 is closed in 〈B〉 and

X ∩ B is closed in B. Since H is a k-group and B is an arbitrary compact subset of H , the

set X is closed in H .

The inequality ot(H) ≤ get(H) ≤ ω is now immediate, and the theorem is proved. �

Recall that a space X is Gδ-preserving if for every family γ of Gδ-sets in X, the set⋃
γ is again the union of some family Gδ-sets in X (see Section 1.6). The next result gives

a useful sufficient condition for a topological group to be Gδ-preserving.

Proposition 5.5.5. Every topological group H of countable Gδ-tightness is Gδ-
preserving.
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Proof. Let γ be a family of Gδ-sets in the group H . Since every Gδ-set in H is the

union of standard sets by (a) of Lemma 5.5.3, we may assume that all elements of γ are

standard sets. Put P =
⋃

γ. Since get(H) ≤ ω, it follows that

P =
⋃
{
⋃

η : η ⊂ γ, |η| ≤ ω}.
By (b) of Lemma 5.5.3, the set

⋃
η is the union of a family of standard subsets of H for

every countable subfamily η of γ, and each standard set is of type Gδ in H . This implies

the required conclusion. �
Combining Theorem 5.5.4 and Proposition 5.5.5, we deduce the following fact.

Corollary 5.5.6. Let γ be a family of Gδ-sets in a k-group H . Then
⋃

γ is the union
of a family of Gδ-sets in H .

Since every feathered topological group is a k-group, from Theorem 5.5.4 it follows:

Corollary 5.5.7. The Gδ-tightness and the o-tightness of every feathered topological
group are countable.

It is not known whether the o-tightness is productive in the realm of topological groups

(see Problem 5.5.5). However, the o-tightness becomes productive under certain restrictions

on factors by Theorem 5.5.9 below. We start with a lemma.

Lemma 5.5.8. The product X× Y of a space X with ot(X) ≤ ω, and a first-countable
space Y has countable o-tightness.

Proof. Let γ be a family of open sets in X×Y and suppose that a point (x, y) ∈ X×Y
belongs to the closure of

⋃
γ. We may assume that every element of γ has the rectangular

form U × V . Choose a countable base {Vn : n ∈ ω} at the point y in Y and, for every

n ∈ ω, put

γn = {U × V ∈ γ : V ∩ Vn = ∅}.
It is clear that (x, y) ∈ ⋃

γn. Let π : X × Y → X be the projection. From ot(X) ≤ ω it

follows that there exists a countable subfamily μn ⊂ γn such that x ∈ π(
⋃

μn), n ∈ ω. Put

μ =
⋃

n∈ω μn. Then the family μ is countable, so it remains to verify that (x, y) is in the

closure of
⋃

μ.

Take an arbitrary rectangular neighbourhood U × V of (x, y) in X× Y . Choose n ∈ ω
such that y ∈ Vn ⊂ V . Since x ∈ π(

⋃
μn), there exists an element U′ × V ′ of μn

such that U ∩ U′ = ∅. From our definition of μn it follows that V ∩ V ′ = ∅, so that

(U × V ) ∩ (U′ × V ′) = ∅. Since U′ × V ′ ∈ μn ⊂ μ, we conclude that (x, y) ∈ ⋃
μ. �

Theorem 5.5.9. Let G be a topological group such that ot(G) ≤ ω. Then ot(G×H) ≤
ω, for every feathered topological group H .

Proof. Denote by � the family of all compact subgroups K of H satisfying χ(K, H) ≤
ω. Let � be the family of all sets of the form π−1

K (O) in H , where K ∈ �, πK : H → H/K
is the quotient mapping onto the left coset space H/K and O is open in H/K. By

Corollary 4.3.12, � is a base for H . Suppose that (x, y) ∈ G × H is an accumulation

point of a family γ of open sets in G×H . Since topological groups are homogeneous, we

may assume that x = eG and y = eH . In addition, we may assume that every element of γ
has the form U × V , where U and V are open in G and H , respectively, and V ∈ �.
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Let iG be the identity isomorphism of G and let p : G×H → H be the projection. We

will define by recursion on n ∈ ω two sequences {Kn : n ∈ ω} and {γn : n ∈ ω} satisfying

the following conditions for each n ∈ ω:

(i) Kn is a compact subgroup of H and χ(Kn, H) ≤ ω;

(ii) Kn+1 ⊂ Kn;

(iii) γn ⊂ γn+1 ⊂ γ and |γn| ≤ ω;

(iv) p(W ) = π−1
n+1πn+1(p(W )) for each W ∈ γn, where πn+1 is the quotient mapping of

H onto the left coset space H/Kn+1;

(v) (eG, πn(eH )) is in the closure of ϕn(
⋃

γn), where ϕn = iG × πn.

By Proposition 4.3.11, there is K0 ∈ �. Then the quotient space H0 = H/K0 is metrizable

by Lemma 4.3.19. Let π0 : H → H0 be the quotient mapping and ϕ = iG × π0.

Then ϕ is a continuous mapping of G × H onto G × H0. Clearly, ϕ is open as the

product of open mappings iG and π0. Since the group H0 is metrizable, Lemma 5.5.8

implies that ot(G × H0) ≤ ω. Hence we can find a countable family γ0 ⊂ γ such that

(eG, π0(eH )) ∈ ϕ0(
⋃

γ0).

Suppose that, for some n ∈ ω, we have already defined two sequences {Ki : i ≤ n}
and {γi : i ≤ n} satisfying (i)–(v). The family γn is countable by (iii), so we can write

γn = {Uk × Vk : k ∈ ω}. Note that γn ⊂ γ and, hence, Vk ∈ � for every k ∈ ω. So,

there exists Lk ∈ � such that Vk = π−1
Lk

πLk (Vn). Put Kn+1 = Kn ∩
⋂

k∈ω Lk. It is easy

to see that Kn+1 ∈ �; obviously, Kn+1 ⊂ Kn. In addition, if k ∈ ω, then Kn+1 ⊂ Lk, so

that Vk = π−1
n+1πn+1(Vk), where πn+1 : H → H/Kn+1 = Hn+1 is the quotient mapping.

Again, the group Hn+1 is metrizable and the mapping ϕn+1 = iG × πn+1 of G × H onto

G×Hn+1 is continuous and open. Hence ot(G×Hn+1) ≤ ω and we can find a countable

family γn+1 ⊂ γ such that γn ⊂ γn+1 and the identity of G×Hn+1 is in the closure of the

set ϕn+1(
⋃

γn+1). Therefore, the families {Ki : i ≤ n + 1} and {γi : i ≤ n + 1} satisfy

(i)–(v) at the stage n + 1.

Put K =
⋂

n∈ω Kn and μ =
⋃

n∈ω γn. Then K ∈ � and μ ⊂ γ, |μ| ≤ ω. Let

π : H → H/K = M be the quotient mapping. Since K ⊂ Kn+1 for all n ∈ ω, from (iv)

it follows that p(W ) = π−1π(p(W )) for each W ∈ μ. In its turn, this implies that the

continuous open mapping ϕ = iG × π of G×H onto G×M satisfies W = ϕ−1ϕ(W ) for

each W ∈ μ. Hence
⋃

μ = ϕ−1ϕ(
⋃

μ). We claim that (eG, eH ) ∈ ⋃
μ.

Assume that (eG, eH ) /∈ ⋃
μ and choose an open rectangular neighbourhood U × O

of the point (eG, eH ) in G × H disjoint from
⋃

μ. Since
⋃

μ = ϕ−1ϕ(
⋃

μ), the set

ϕ−1ϕ(U × O) = U × π−1π(O) is an open neighbourhood of the identity in G × H
disjoint from

⋃
μ. It is clear that K = π−1π(eH ) ⊂ π−1π(O). Since K =

⋂
n∈ω Kn

is the intersection of a decreasing sequence of compact sets, we have Kn ⊂ π−1π(O)

for some n ∈ ω. Apply Theorem 1.4.29 to find an open neighbourhood V of eH such that

V ′ = KnV ⊂ π−1π(O). Then V ′ is an open neighbourhood of eH and (U×V ′)∩⋃
μ = ∅.

Observe that V ′ = π−1
n πn(V ′) and U × V ′ = ϕ−1

n ϕn(V ′). Hence, the open neighbourhood

ϕn(U×V ′) of (eG, πn(eH )) in G×Hn is disjoint from ϕn(
⋃

μ) ⊇ ϕn(
⋃

μn). This contradicts

(v).

Thus, the identity of G×H is in the closure of the set
⋃

μ, so that ot(G×H) ≤ ω. �

Corollary 5.5.10. The product G×H of an arbitrary topological group G satisfying
ot(G) ≤ ω and a precompact topological group H has countable o-tightness.
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Proof. Let 
H be the Raı̆kov completion of H . Then the group 
H is compact and,

hence, feathered. By Theorem 5.5.9, the product group G× 
H has countable o-tightness.

Since G×H is dense in G× 
H , we conclude that ot(G×H) ≤ ω. �
A simple modification of the proof of Lemma 5.5.8 yields the following:

Lemma 5.5.11. The product X × Y of a space X of countable Gδ-tightness and a
first-countable space Y also has countable Gδ-tightness.

One can deduce the next result following the scheme in the proof of Theorem 5.5.9 and

applying Lemma 5.5.11:

Theorem 5.5.12. Let G be a topological group of countable Gδ-tightness. Then the
Gδ-tightness of the product group G×H is countable, for each feathered topological group
H .

Again, we use Theorem 5.5.12 to establish one more result on the preservation of

Gδ-tightness:

Corollary 5.5.13. The product of a topological group G of countable Gδ-tightness
and a pseudocompact topological group H has countable Gδ-tightness.

Proof. The Raı̆kov completion 
H of the pseudocompact group H is compact, by

Corollary 3.7.18. In addition, Corollary 3.7.21 implies that H is Gδ-dense in 
H . Therefore,

G×H is Gδ-dense in G× 
H . According to Theorem 5.5.12, the product group G× 
H
has countable Gδ-tightness. Since G × H is Gδ-dense in G × 
H , it follows that the

Gδ-tightness of the group G×H is countable as well (see also Exercise 1.6.e). �

Exercises

5.5.a. Present detailed proofs of Lemma 5.5.11 and Theorem 5.5.12.

5.5.b. Give an example of a Lindelöf topological group of uncountable o-tightness.

5.5.c. Verify that the o-tightness of the product of any family of separable spaces is countable. Give

an example of a subgroup G of a topological product of countable discrete groups such that

ot(G) > ω. Deduce that the o-tightness is not monotonous with respect to taking subgroups.

Problems

5.5.A. Is the o-tightness of every subgroup of the topological group Zc countable?

5.5.B. Let G be the σ-product of a family of metrizable topological groups. Does every subgroup

of G have countable o-tightness?

Open Problems

5.5.1. Let G be a topological group of countable o-tightness (Gδ-tightness), and H be a σ-compact

topological group. Is the o-tightness (the Gδ-tightness) of G × H countable?

5.5.2. Let G be a topological group with ot(G) ≤ ω. Is it true that ot(G × H) ≤ ω for every

Lindelöf Σ-group H?

5.5.3. Suppose that G is a topological group of countable o-tightness. Is ot(G×H) ≤ ω, for every

k-group H?

5.5.4. Is it true that the product of an arbitrary family of k-groups has countable o-tightness?

5.5.5. Does the equality ot(G × H) = ot(G) · ot(H) hold for all topological groups G and H?
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5.6. Steady and stable topological groups

Let τ be an infinite cardinal. A topological group G is called τ-steady if every continuous

homomorphic image H of G with ψ(H) ≤ τ satisfies nw(H) ≤ τ. If the group G is τ-

steady for every infinite cardinal τ, then G is called steady. By a) of Lemma 5.3.24, every

topological group G with Nag(G) ≤ τ is τ-steady. In particular, Lindelöf Σ-groups and

σ-compact groups are steady. However, the class of τ-steady groups is considerably wider

than the class of topological groups G satisfying Nag(G) ≤ τ, since topological products

of τ-steady groups are τ-steady (see Theorem 5.6.4). Our proof of this fact leans on two

technical results given below.

Lemma 5.6.1. Let ϕ : G =
∏

α∈A Gα → K be a continuous homomorphism of the
product group G to a topological group K. For every α ∈ A, denote by iα be the canonical
embedding of Gα to G, and let Nα = i−1

α (ker ϕ). Then N =
∏

α∈A Nα ⊂ ker ϕ.

Proof. For every finite set B ⊂ A, put

NB = {x ∈ N : πα(x) = eα for each α ∈ A \ B},
where eα is the neutral element of the group Gα and πα is the projection of G to the factor

Gα, α ∈ A. Consider the product homomorphism iB =
∏

α∈B iα of GB =
∏

α∈B Gα to

G. It is clear that the kernel of the homomorphism ϕ ◦ iB : GB → K contains the product

N∗
B =

∏
α∈B Nα. Therefore, NB = iB(N∗

B) ⊂ ker ϕ for each finite set B ⊂ A. Observe that

the set

S =
⋃
{NB : B ⊂ A, |B| < ω}

is dense in N, S ⊂ ker ϕ and ker ϕ is closed in G. This implies that N = S ⊂ ker ϕ. �
Lemma 5.6.2. Let G =

∏
α∈A Gα be a product of topological groups and let ϕ : G→ K

be a continuous homomorphism of G to a topological group K with ψ(K) ≤ τ. Then
one can find a set B ⊂ A with |B| ≤ τ and, for every α ∈ B, a continuous open
homomorphism pα : Gα → Hα onto a topological group Hα with ψ(Hα) ≤ τ, and
a continuous homomorphism h :

∏
α∈B Hα → K such that ϕ = h ◦ p ◦ πB, where

πB : G → GB =
∏

α∈B Gα is the projection and p : G → ∏
α∈A Hα is the product of

the homomorphisms pα.

Proof. Let {Uν : ν < τ} be a pseudobase at the identity eK of the group K. Since the

homomorphism ϕ of G to K is continuous, we can choose, for every ν < τ, a canonical open

neighbourhood Vν =
∏

α∈A Vν,α of the identity e in G such that ϕ(Vα) ⊂ Uν. Then the set

Bν = {α ∈ A : Vν,α = Gα} is finite for each ν < τ, so the set B =
⋃

ν<τ Bν has cardinality

less than or equal to τ. Clearly, ker πB ⊂ ker ϕ, where πB : G → GB
∏

α∈B Gα is the

projection. Hence there exists a homomorphism ϕB : GB → K satisfying ϕ = ϕB ◦ πB.

Since the homomorphism πB is open, ϕB is continuous.

Let P = ker ϕB. For every α ∈ B, denote by iα the canonical embedding of Gα

into GB and put Nα = i−1
α (P). Since ϕB and iα are continuous homomorphisms, we

conclude that Nα is a closed invariant subgroup of Gα. Let pα : Gα → Gα/Nα be the

quotient homomorphism. The groups Kα = ϕB(iα(Gα)) ⊂ K and Hα = Gα/Nα are

algebraically isomorphic and the natural isomorphism jα : Hα → Kα satisfies the equality

ϕB ◦ iα = jα ◦ pα. The isomorphism jα is continuous because pα is open. Therefore,

ψ(Hα) ≤ ψ(Kα) ≤ ψ(K) ≤ τ for each α ∈ B.
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We now set H =
∏

α∈B Hα. Then the product homomorphism p =
∏

α∈B pα of

GB onto H is continuous and open. Since Nα = ker pα for each α ∈ B, we have

ker p =
∏

α∈B Nα. Therefore, Lemma 5.6.1 implies that ker p ⊂ ker ϕB. Hence there

exists a homomorphism h : H → K such that ϕB = h ◦ p.

G
πB ��

ϕ
���

��
��

��
� GB

ϕB

��

p �� H

h����
��

��
��

K

Since p is open, the homomorphism h is continuous. In addition, ϕ = ϕB ◦ πB =

h ◦ p ◦ πB. �
Proposition 5.6.2 admits a simplified form given below.

Corollary 5.6.3. Let G =
∏

i∈I Gi be an arbitrary product of topological groups.
Then for every continuous homomorphism p : G→ K to a topological group K of countable
pseudocharacter, there exist a countable subset J ⊂ I and a continuous homomorphism
ψ : GJ → K such that p = ψ ◦ πJ , where πJ : G→ GJ =

∏
i∈J Gi is the projection.

Theorem 5.6.4. The product of an arbitrary family of τ-steady topological groups is
a τ-steady topological group.

Proof. Let G =
∏

α∈A Gα be a product of τ-steady topological groups and let

ϕ : G → K be a continuous homomorphism of G onto a topological group K satisfying

ψ(K) ≤ τ. Using Lemma 5.6.2 (and notation introduced there) we find a set B ⊂ A with

|B| ≤ τ, open continuous homomorphisms pα : Gα → Hα onto topological groups Hα with

ψ(Hα) ≤ τ, for α ∈ B, and a continuous homomorphism h of H =
∏

α∈B Hα to K such

that ϕ = h ◦πB ◦p, where p =
∏

α∈B pα : GB → H . Then h(H) = ϕ(G) = K, that is, the

homomorphism h is surjective. By assumption, each group Gα is τ-steady, so nw(Hα) ≤ τ.

This implies that nw(H) ≤ |B| ·τ = τ. Therefore, the continuous image K = h(H) satisfies

the same inequality nw(K) ≤ τ. This proves that the product group G is τ-steady. �
Corollary 5.6.5. The product of any family of steady topological groups is a steady

topological group.

Since every Lindelöf Σ-group is steady by Lemma 5.3.24, the following corollary is

immediate.

Corollary 5.6.6. The topological product of any family of Lindelöf Σ-groups is a
steady group.

The above result will be given a more general form in Corollary 5.6.17. The next

statement is obvious.

Theorem 5.6.7. A continuous homomorphic image of a τ-steady topological group is
τ-steady.

Suppose that X is a Tychonoff space and that τ is an infinite cardinal. The space X
is called τ-stable if every Tychonoff continuous image Y of X with iw(Y ) ≤ τ satisfies

nw(Y ) ≤ τ. Equivalently, a Tychonoff space X is τ-stable provided that for any continuous

onto mappings f : X → Y and any i : Y → Z, where Y and Z are Tychonoff spaces, if i is
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one-to-one and w(Z) ≤ τ, then the space Y satisfies nw(Y ) ≤ τ. If X is τ-stable for every

τ ≥ ω, then X is called stable. We call a topological group G τ-stable if G is τ-stable as a

topological space.

The study of τ-stable topological groups requires several results concerning topological

spaces in general. Let τ be an infinite cardinal. We recall that a space X is said to be

pseudo-τ-compact if every discrete (equivalently, locally finite) family of open sets in X
has cardinality strictly less than τ (see page 54). The next result relates the notions of

τ-stability and pseudo-τ-compactness.

Proposition 5.6.8. Every τ-stable Tychonoff space is pseudo-τ+-compact.

Proof. Suppose that X contains a discrete family {Uα : α < κ} of non-empty

open sets, where κ = τ+. For every α < κ, pick a point xα ∈ Uα and define a

continuous real-valued function fα on X with values in [0, 1] such that fα(xα) = 1 and

fα(X \ Uα) ⊂ {0}. Denote by Cp(X) the space of all continuous real-valued functions

on X endowed with the pointwise convergence topology (see Section 1.2). Let us define a

mapping Φ: [0, 1]κ → Cp(X) by the formula

Φ(t)(x) =
∑
α<κ

t(α) · fα(x),

where t ∈ [0, 1]κ and x ∈ X. Since the family {Uα : α < κ} is discrete, our choice of

the functions fα’s guarantees that each Φ(t) is continuous on X. It is easy to see that the

mapping Φ is injective. Indeed, if t1, t2 are distinct points of [0, 1]κ, then t1(α) = t2(α) for

some α < κ and, hence,

Φ(t1)(xα) = t1(α) = t2(α) = Φ(t2)(xα).

So, Φ(t1) = Φ(t2).

We claim that the mapping Φ is continuous. Indeed, let t0 ∈ [0, 1]κ be arbitrary and let

V be a neighbourhood of g0 = Φ(t0) in Cp(X). Then there exist points x1, . . . , xn ∈ X and

a number ε > 0 such that the basic open set

W = {g ∈ Cp(X) : |g(xi)− g0(xi)| < ε for each i = 1, . . . , n}
satisfies g0 ∈ W ⊂ V . Clearly, there are at most n distinct ordinals α < κ such that xi ∈ Uα

for some i ≤ n. Let α1, . . . , αk be the list of such α’s. Put

O = {t ∈ [0, 1]κ : |t(αj)− t0(αj)| < ε for each j = 1, . . . , k}.
Then O is an open neighbourhood of t0 in [0, 1]κ. Let t ∈ O be arbitrary. If i ≤ n and

xi /∈ ⋃
α<κ Uα, then Φ(t)(xi) = 0 = g0(xi). If xi ∈ Uαj for some i ≤ n and j ≤ k, then we

have (with α = αj):

|Φ(t)(xi)− g0(xi)| = |
∑
β<κ

t(β) fβ(xi)−
∑
β<κ

t0(β) fβ(xi)| =

|t(α) fα(xi)− t0(α) fα(xi)| = fα(xi) · |t(α)− t0(α)| < 1 · ε = ε.

We conclude that Φ(t) ∈ W for each t ∈ O and, hence, Φ(O) ⊂ W ⊂ V . This proves

the continuity of Φ.

Since the mapping Φ: [0, 1]κ → Cp(X) is one-to-one and continuous, it must be

a topological embedding. Hence, Cp(X) contains a copy of the Tychonoff cube [0, 1]κ.

Now we apply [27, Theorem 21]: If X is τ-stable, then every subset C of Cp(X) with
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d(C) ≤ τ satisfies nw(C) ≤ τ. Since the Tychonoff cube C = [0, 1]κ satisfies d(C) ≤ τ
and nw(C) = κ > τ, we conclude that X is not τ-stable. �

The converse to Proposition 5.6.8 is false. Indeed, the Niemytzki plane L is a Tychonoff

separable (hence, pseudo-ℵ1-compact) space that admits a continuous bijection onto a

second-countable space (the upper half-plane in R2 with the usual Euclidean topology), but

L contains a closed discrete subset of cardinality 2ω, whence it follows that nw(L) = 2ω.

Therefore, L is not ω-stable.

In the case of P-spaces, we have the following partial converse to Proposition 5.6.8:

Proposition 5.6.9. Every pseudo-ℵ1-compact P-space X is ω-stable.

Proof. Let f : X → Y be a continuous mapping onto a space Y that admits a continuous

one-to-one mapping onto a second-countable space. Then every point y ∈ Y is a Gδ-set in

Y , so that each fiber f−1(y), being a Gδ-set in the P-space X, is open in X. It follows that

γ = {f−1(y) : y ∈ Y} is a disjoint open covering of the pseudo-ℵ1-compact space X, and

we conclude that γ is countable, that is, |Y | ≤ ω. In particular, nw(Y ) ≤ ω. �

Corollary 5.6.10. Every Lindelöf P-space X is ω-stable.

We now turn back to topological groups. Combining Propositions 3.4.31 and 5.6.8,

one obtains the following statement:

Corollary 5.6.11. Every τ-stable topological group is τ-narrow.

For Abelian topological groups we can weaken the assumption in Corollary 5.6.11 as

follows:

Proposition 5.6.12. Every τ-steady Abelian topological group is τ-narrow.

Proof. Let p : G→ H be a continuous homomorphism of G onto a topological group

H of countable character. Since G is τ-steady, the group H satisfies l(H) ≤ nw(H) ≤ τ.

This implies immediately that H is τ-narrow (see Proposition 5.1.3). Hence, the group G
is τ-narrow by Proposition 5.1.13. �

The analogy between the definitions of τ-steady groups and τ-stable spaces is obvious.

By the next result, we establish the exact relationship between the two properties in the class

of topological groups.

Proposition 5.6.13. Every τ-stable topological group is τ-steady.

Proof. Suppose that p : G → H is a continuous homomorphism of a τ-stable

topological group G onto a topological group H satisfying ψ(H) ≤ τ. The group G
is τ-narrow by Corollary 5.6.11, and so is the continuous homomorphic image H of G.

Therefore, by Proposition 5.2.11, there exists a continuous isomorphism i : H → K onto a

topological group K satisfying w(K) ≤ τ. Since G is τ-stable, we conclude that nw(H) ≤ τ.

This proves that the group G is τ-steady. �

The next example shows that the implications in Proposition 3.4.31 and in Corol-

lary 5.6.11 are not invertible for τ = ω (in Exercise 5.6.b, this is generalized for an arbitrary

cardinal τ ≥ ω). In addition, it also shows that ω-steady groups need not be ω-stable, not

even for Abelian topological groups.
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Example 5.6.14. There exists an ω-steady Abelian P-group H which contains an

uncountable discrete family of open sets. Therefore, H is neither pseudo-ℵ1-compact nor

ω-stable.

Our construction of such a group H makes use of Example 4.4.11. Let K = {0, 1}
be the discrete two-element group with the usual addition, and let Π = Kω1 be the product

group endowed with the ω-box topology. Then Π is an Abelian topological P-group. For

every x ∈ Π, denote by supp(x) the set {α ∈ ω1 : x(α) = 1}. Then

G = {x ∈ Π : supp(x) is finite }
is a subgroup of Π. With the topology inherited from Π, G becomes a Lindelöf P-group

(see Example 4.4.11). Finally, we define H by

H = {x ∈ G : | supp(x)| is even }.
It is clear that H is a proper subgroup of G. For every A ⊂ ω1, denote by πA the projection

of Π onto KA. Let us verify the following:

Claim. πA(H) = πA(G) for every countable set A ⊂ ω1.

Indeed, suppose that A ⊂ ω1, |A| ≤ ω and x ∈ G. If | supp(x)| is even, there is nothing

to prove, so we can assume that | supp(x)| is odd. Choose an arbitrary α ∈ ω1\(A∪supp(x))

and define an element y ∈ H by y(β) = 1 if and only if β ∈ supp(x) ∪ {α}. Then

πA(y) = πA(x), as required.

The above Claim implies, in particular, that H is a proper dense subgroup of G.

Let p : H → L be a continuous homomorphism onto a topological group L of countable

pseudocharacter. Then L is countable by Lemma 4.4.2, which implies that nw(L) ≤ ω.

This proves that H is ω-steady.

For every α ∈ ω1, let

Nα = {x ∈ G : x(β) = 0 for each β ≤ α}.
Then Nα is an open subgroup of G and the family {Nα : α < ω1} forms a decreasing base

of G at the neutral element. Since G is a non-discrete P-group, this implies that χ(G) = ω1.

Since each subgroup Nα is closed in G, the group G is zero-dimensional.

Take an arbitrary element g ∈ G \H and fix a strictly decreasing base {Uα : α < ω1}
of G at g. Since G is zero-dimensional, we can assume that the sets Uα are closed in G.

Then the non-empty set Vα = Uα \Uα+1 is open and closed in G for each α < ω1. Clearly,

Vα ∩ Vβ = ∅ if α = β. Therefore, the only accumulation point of the disjoint family

 = {Vα : α < ω1} in G is the point g. Indeed, let x ∈ G, x = g. Choose disjoint open

neighbourhoods Ox and Og of x and g in G, respectively. Then there exists α < ω1 such

that Nα ⊂ Og. This implies that Vβ ⊂ Nα ⊂ Og and, hence, Ox ∩Vβ = ∅ for each β ≥ α.

Since G is a P-group, the countable disjoint family {Vγ : γ ≤ α} has no accumulation

points in G. Therefore, x cannot be an accumulation point of .

For every α < ω1, put Wα = Vα ∩ H . Then the disjoint family {Wα : α < ω1} of

non-empty open sets in H has no accumulations points in H . This means that the family

{Wα : α < ω1} is discrete in H , so that H is not pseudo-ℵ1-compact. Finally, according

to Proposition 5.6.8, every ω-stable space is pseudo-ℵ1-compact. Therefore, H fails to be

ω-stable. �
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Using results of Section 5.3, one can easily verify that every Lindelöf Σ-space is stable.

In Proposition 5.6.16 below we prove a considerably more general fact. Our argument

makes use of the following lemma that complements the results of Section 1.7.

Lemma 5.6.15. Let X =
∏

i∈I Xi be the product of spaces satisfying Nag(Xi) ≤ τ for
each i ∈ I, and f : X → Z be a continuous mapping to a Tychonoff space Z with w(Z) ≤ τ.
Then there exist a set J ⊂ I with |J | ≤ τ and a continuous mapping h : XJ → Z such that
f = h ◦ πJ , where XJ =

∏
i∈J Xi and πJ : X → XJ is the projection.

Proof. By Propositions 5.3.3 and 5.3.9, the subproduct XK =
∏

i∈K Xi satisfies

l(XK) ≤ Nag(XK) ≤ τ for every finite set K ⊂ I. Choose a point p ∈ X and denote

by σ(p) ⊂ X the σ-product of the spaces Xi with center at p. Then l(σ(p)) ≤ τ, according

to Corollary 1.6.45. Since σ(p) is dense in X, the latter inequality implies that the space

X is pseudo-τ+-compact. Hence the existence of the required set J ⊂ I and mapping

h : XJ → Z follows from Theorem 1.7.3. �
Proposition 5.6.16. Let {Xi : i ∈ I} be a family of spaces such that Nag(Xi) ≤ τ,

for each i ∈ I. Then the product space X =
∏

i∈I Xi is τ-stable. In particular, an arbitrary
product of Lindelöf Σ-spaces is stable.

Proof. Let f : X → Y and g : Y → Z be continuous onto mappings, where g is one-

to-one and w(Z) ≤ τ. We have to show that nw(Y ) ≤ τ. The composition h = g ◦ f is a

continuous mapping of X onto Z, so we can apply Lemma 5.6.15 to find a set J ⊂ I with

|J | ≤ τ and a continuous mapping h : XJ → Z such that f = h◦πJ , where XB =
∏

i∈J Xi

and πB : X → XB is the projection. Since g : Y → Z is one-to-one, we can consider the

mapping p = g−1◦h of XJ to Y . It is clear that h = g◦p. Hence, f = g−1◦h◦πJ = p◦πJ .

Note that πJ is an open mapping, so p is continuous.

X
f ��

πJ

��

Y

g

��
XJ

h ��

p
����������
Z

Since |J | ≤ τ, Proposition 5.3.9 implies that Nag(XJ ) ≤ τ. Therefore, the continuous

image Y = p(XJ ) satisfies Nag(Y ) ≤ Nag(XJ ) ≤ τ by Proposition 5.3.5. It is also clear

that iw(Y ) ≤ τ, since the mapping g : Y → Z is one-to-one and w(Z) ≤ τ. It remains to

apply Proposition 5.3.15 to conclude that nw(Y ) ≤ iw(Y ) · Nag(Y ) ≤ τ. So Y is τ-stable.

The stability of products of Lindelöf Σ-spaces is now obvious. �
Corollary 5.6.17. The product of an arbitrary family of Lindelöf Σ-groups is stable.

A space X is called perfectly κ-normal if the closure of any open set (that is, every

regular closed set) is a zero-set. Recall that a subset P of a space X is said to be a zero-set
if there exists a continuous real-valued function f on X such that P = {x ∈ X : f (x) =

0}. Clearly, every metrizable space is perfectly normal and, hence, perfectly κ-normal.

Furthermore, the product of any family of metrizable spaces is perfectly κ-normal, by a

theorem in [420].

Theorem 5.6.18. Every ω-steady topological group of countable cellularity is perfectly
κ-normal.
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Proof. Let O be a non-empty open subset of an ω-steady topological group G
satisfying c(G) ≤ ω. By Theorem 3.4.7, the group G is ω-narrow. Denote by � the family

of all subsets U of G which have the form U = p−1(V ), where p : G→ H is a continuous

homomorphism onto a second-countable topological group H and V is an open set in H .

From Corollary 3.4.19 it follows that � is a base for G. Therefore, there exists a subfamily

γ of � such that O =
⋃

γ. Since the cellularity of G is countable, we can find a countable

subfamily μ of γ such that
⋃

μ is dense in O. Let μ = {Un : n ∈ ω}. For every n ∈ ω, take

a continuous homomorphism pn : G → Hn onto a second-countable topological group Hn

and an open set Vn ⊂ Hn such that Un = p−1
n (Vn). Then the diagonal product p = Δn∈ωpn

is a continuous homomorphism of G to the topological product P =
∏

n∈ω Hn. Clearly,

the image H = p(G) ⊂ P satisfies w(H) ≤ w(P) ≤ ω. Denote by πn the projection of P
to Hn, n ∈ ω. Then Wn = π−1

n (Vn) ∩ H is an open subset of H , and from pn = πn ◦ p
it follows that Un = p−1(Wn) for each n ∈ ω. The set W =

⋃
n∈ω Wn is open in H and

p−1(W ) =
⋃

n∈ω Un is dense in O.

Let N be the kernel of p and let ϕ : G → G/N be the quotient homomorphism. Then

the natural isomorphism i : G/N → H satisfies p = i ◦ ϕ, so i is continuous.

G

ϕ

��

p �� H

G/N

i

��

In particular, the quotient group G/N has countable pseudocharacter. Therefore, since G
is ω-steady, we have nw(G/N) ≤ ω. Obviously, the set W0 = i−1(W ) is open in G/N and

ϕ−1(W0) = p−1(W ) is dense in O. Since the homomorphism ϕ is open, we have that

clG(O) = clG(ϕ−1(W0)) = ϕ−1(clG/N (W0)).

Every closed subset of G/N is a zero-set, since G/N has a countable network. Therefore,

clG/N (W0) is a zero-set in G/N and its inverse image under ϕ, clG(O), is a zero-set in G.

This implies that the group G is perfectly κ-normal. �

By Proposition 5.6.13, every ω-stable topological group is ω-steady. Therefore, we

have:

Corollary 5.6.19. Every ω-stable topological group of countable cellularity is
perfectly κ-normal.

Corollary 5.6.20. Every topological group, which is a Lindelöf Σ-space, is perfectly
κ-normal.

Exercises

5.6.a. Find an example of a Lindelöf ω-stable topological group G such that G is not perfectly

κ-normal and c(G) > ω.

5.6.b. For every regular cardinal τ ≥ ω, give an example of a τ-steady Abelian topological group

G which fails to be pseudo-τ+-compact.
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5.6.c. Give an example of a precompact topological group which is not ω-steady.

Hint. Embed the Niemytzki plane L in the product group Tc and consider the subgroup

G of Tc generated by L. Use the fact that L admits a continuous bijection onto a regular

second-countable space.

5.6.d. Prove that every ω-stable topological group with a σ-discrete π-base is metrizable.

Problems

5.6.A. Show that a closed subgroup of a τ-stable topological group need not be τ-stable.

5.6.B. Give an example of a perfectly κ-normal topological group that is not ω-steady.

5.6.C. Must the Raı̆kov completion of any ω-stable topological group be an ω-stable group?

5.6.D. Must the Raı̆kov completion of any ω-steady topological group be ω-steady?

5.6.E. Is it true that if an Abelian topological group G of countable tightness is ω-steady, then G is

ω-stable?

Open Problems

5.6.1. Is the product of two stable topological groups ω-stable?

5.6.2. Is the product of a Lindelöf Σ-group and a Lindelöf P-group ω-stable?

5.7. Cardinal invariants in paratopological and semitopological groups

In this section, we establish certain new connections between cardinal invariants in

paratopological groups and in semitopological groups. In particular, it is proved that if G
is a bisequential paratopological group such that the space G × G is Lindelöf, then G is

cosmic. Under the Continuum Hypothesis (abbreviated to CH) we prove that if G is a

separable first-countable paratopological group such that G × G is normal, then G has a

countable base. This sheds a new light on why the square of the Sorgenfrey line is not

normal.

There exists a first-countable, non-normal (therefore, non-paracompact) paratopologi-

cal group — it suffices to take the square of the Sorgenfrey line. However, first countability

has a strong impact on the properties of semitopological groups. The following concepts

are instrumental in this direction.

Let G be an abstract group. A family � of subsets of G will be called discerning or

a Hausdorff discerner on X if all the elements of � are non-empty and, for every z ∈ G
distinct from the neutral element e, there exists P ∈ � such that zP ∩ P = ∅.

If G is a Hausdorff semitopological group and � is a base of G at some a ∈ G, then

� is a Hausdorff discerner on G. We obtain a slightly less trivial and much more useful

example of a Hausdorff discerner when we take an arbitrary π-network of G at e. Recall

that a family � of subsets of a topological space X is said to be a π-network of X at a point

a ∈ X if all the elements of � are non-empty and every open neighbourhood of a in X
contains an element of �. If � is a π-network of X at a ∈ X and all the elements of � are

open, we call � a π-base of X at a. The next statement is obvious:

Proposition 5.7.1. Suppose that G is a Hausdorff semitopological group. Then every
π-network � of G at e is a Hausdorff discerner on G.

Here is one of the main technical results on Hausdorff discerners.
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Proposition 5.7.2. Suppose that G is a group and � a Hausdorff discerner on G.
Then

⋂{PP−1 : P ∈ �} = {e}.
Proof. Put F =

⋂{PP−1 : P ∈ �}. Clearly, e ∈ F . Now take any z ∈ F . We have to

show that z = e. Assume the contrary. Then we can fix P ∈ � such that zP ∩P = ∅. Now

we have z /∈ PP−1. Indeed, otherwise z = ab−1, for some a, b ∈ P , and zb = a ∈ zP ∩P ,

a contradiction. It follows that z /∈ F , a contradiction. Hence, F = {e}. �

Let G be a semitopological group. A topological discerner � on G is a Hausdorff

discerner on G such that the interior of PP−1 contains e, for each P ∈ �. A discerner is

called open if all its elements are open sets. Finally, a discerner � is said to be coopen if

P−1 is open, for every P ∈ �. It is clear that open discerners and coopen discerners are

topological discerners.

Proposition 5.7.3. Suppose that G is a left topological group with a countable
topological discerner. Then G has countable pseudocharacter.

Proof. Since every left topological group is a homogeneous space, the conclusion

follows from the definition of a topological discerner and Proposition 5.7.2. �

In the special case of open discerners, Proposition 5.7.3 can be considerably strength-

ened as follows.

Theorem 5.7.4. Suppose that G is a semitopological group with a countable open
Hausdorff discerner �. Then the diagonal Δ in G×G is a Gδ-set.

Proof. By Proposition 5.7.2,
⋂{VV−1 : P ∈ �} = {e}. For each V ∈ �, put

UV =
⋃{Vx × Vx : x ∈ G}. Since every V ∈ � is an open set, the set UV is an open

neighbourhood of the diagonal Δ in G×G.

Let us show that Δ =
⋂{UV : V ∈ �}. Assume the contrary. Then there exist distinct

points y and z in G such that (y, z) ∈ UV for every V ∈ �. Put b = yz−1. Then b = e
and, for each V ∈ �, there exists x ∈ G such that y ∈ Vx and z ∈ Vx. It follows that

b = yz−1 ∈ Vx(Vx)−1 = Vxx−1V−1 = VV−1. Hence b ∈ ⋂{VV−1 : P ∈ �} = {e}, a

contradiction with b = e. �

Corollary 5.7.5. If G is a Hausdorff semitopological group of countable π-character,
then the diagonal Δ in G×G is a Gδ-set.

Proof. Every countable π-base of the space G at the identity e is a countable open

Hausdorff discerner on G. It remains to apply Theorem 5.7.4. �

Theorem 5.7.6. For every paracompact Hausdorff semitopological group G of
countable π-character, there exists a continuous one-to-one mapping of G onto a metrizable
space.

Proof. By Corollary 5.7.5, G is a space with a Gδ-diagonal. Since G is paracompact,

it follows from [165, 5.5.7] that the topology of G contains a metrizable topology. �

Our next result about semitopological groups, Theorem 5.7.8, requires the following

auxiliary fact:
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Lemma 5.7.7. Suppose that a space X admits a perfect mapping f onto a Hausdorff
space Y and a one-to-one continuous mapping g onto a Hausdorff space Z. Then X is
homeomorphic to a closed subspace of Y × Z.

Proof. Denote by h the diagonal product of the mappings f and g. It follows from

[165, Theorem 3.7.9] that h is perfect. Since g is one-to-one, so is h. Therefore, h is a perfect

one-to-one mapping of X to Y × Z or, in other words, h is a homeomorphic embedding of

X into Y × Z, and the image h(X) is closed in Y × Z. �
Theorem 5.7.8. Suppose that G is a paracompact feathered semitopological group of

countable π-character. Then G is metrizable.

Proof. The group G, being feathered, is a p-space. Since, in addition, G is

paracompact, it admits a perfect mapping onto a metrizable space (see [60, Ch. 5,

Problem 228]). It also follows from Theorem 5.7.6 that G admits a continuous one-to-one

mapping onto a metrizable space. Hence, Lemma 5.7.7 implies the required conclusion. �
The above results are applicable, in particular, to Čech-complete and to first-countable

spaces. In particular, we have:

Corollary 5.7.9. Every first-countable paracompact p-space homeomorphic to a
semitopological group is metrizable.

Let us now have a look at the Sorgenfrey line S. We know that S is a first-countable

Lindelöf paratopological group with the Baire property. On the other hand, S is not Čech-

complete, not metrizable, and not even a p-space (this follows from Corollary 5.7.9). The

square X = S × S is again a first-countable paratopological group. However, X is no

longer paracompact, but is subparacompact in the sense that every open covering of X
can be refined by a σ-discrete covering (see [93]). This combination of properties of the

Sorgenfrey line S is not just an individual feature of S, it is typical for non-metrizable

first-countable paratopological groups.

It turns out that a number of results established in Sections 5.3 and 5.4 can be extended

to paratopological groups. We will only generalize Theorem 5.3.18 and Corollaries 5.3.22

and 5.4.8 here. This will be done with the help of the following corollary from Proposi-

tion 2.3.24, which is especially convenient for applications.

Lemma 5.7.10. For every Hausdorff paratopological group G, there exists a topological
group T homeomorphic to a closed subspace of G × G such that T can be mapped by a
continuous isomorphism onto G.

Theorem 5.7.11. Let G be a paratopological group satisfying Nag(G) ≤ τ. Then G
is τ-cellular and (τ+, 2) is a weak precalibre of G. Hence, c(G) ≤ τ.

Proof. Take a topological group T as in Lemma 5.7.10. Since T is homeomorphic to

a closed subspace of G×G, it follows that Nag(T ) ≤ Nag(G×G) ≤ τ. Hence, according

to Theorems 5.3.18 and 5.4.7, the space T is τ-cellular and (τ+, 2) is a weak precalibre of T .

In particular, c(T ) ≤ τ. Since continuous mappings preserve each of these properties, and

G is a continuous isomorphic image of T , the conclusion of the theorem is immediate. �
Corollary 5.7.12. If G is a σ-compact paratopological group, then (τ, 2) is a weak

precalibre of G, for each regular cardinal τ > ω. In particular, the cellularity of G is
countable.
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The proof of the next statement is another typical application of Lemma 5.7.10.

Theorem 5.7.13. Suppose that G is a Hausdorff paratopological group with the Baire
property such that the extent of G×G is countable. Then G is a topological group.

Proof. Let H be a topological group as in Lemma 5.7.10. Then H is homeomorphic

to a closed subset of G × G and, hence, the extent of H is countable. It follows from

Proposition 5.2.2 that the topological group H is ω-narrow. Now Theorem 2.3.23 implies

that G is a topological group. �

We also need the following fact:

Proposition 5.7.14. [O. V. Ravsky] Every first-countable cosmic paratopological
group G has a countable base.

Proof. Fix a countable base � at the neutral element e of G, and let � be a

countable network of G. By the continuity of the multiplication in G, the countable family

{VP : V ∈ �, P ∈ �} is a base of the space G. �

Clearly, a hereditarily separable first-countable paratopological group need not have a

countable base, as the example of the Sorgenfrey line shows.

Theorem 5.7.15. Suppose that G is a Hausdorff first-countable paratopological group.
Then the following three conditions are equivalent:

1) G×G is Lindelöf;
2) e(G×G) ≤ ω;
3) G has a countable base.

Proof. Clearly, 3) implies 1), and 1) implies 2). Assume now that 2) holds. By

Lemma 5.7.10, we can fix a topological group H homeomorphic to a closed subspace of

G × G and a continuous mapping j of H onto G. Then e(H) ≤ ω, since H is closed

in G × G. Since G is first-countable, the spaces G × G and H are also first-countable.

Therefore, the topological group H is metrizable. Since e(H) ≤ ω, the space H is separable

and has a countable base. It follows that G has a countable network, since G is a continuous

image of H . It remains to apply Proposition 5.7.14. �

For any topological group G, the condition that G has pointwise countable type (that

is, G contains a non-empty compact subset with a countable base of neighbourhoods in

G) is equivalent to the condition that G is a paracompact p-space (see Theorem 4.3.35).

This result does not generalize to paratopological groups, as the Sorgenfrey line shows.

However, we have the next result about paratopological groups of pointwise countable type

which is parallel to Theorem 5.7.15:

Theorem 5.7.16. Suppose that G is a Hausdorff paratopological group of pointwise
countable type. Then the following three conditions are equivalent:

1) G×G is Lindelöf;
2) e(G×G) ≤ ω;
3) G is a Lindelöf Σ-space.
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Proof. The implications 3) ⇒ 1) and 1) ⇒ 2) are evident. Suppose that 2) holds.

According to Lemma 5.7.10, we can fix a topological group H homeomorphic to a closed

subspace of G × G and a continuous mapping j of H onto G. Since G is of pointwise

countable type, so are the spaces G×G and H . Since H is a topological group, it follows

from Theorem 4.3.35 that H is a paracompact p-space. We know that e(G×G) ≤ ω and

H is closed in G×G; hence, e(H) ≤ ω. Since H is also paracompact, it follows that H is

Lindelöf. The space G being a continuous image of H , it remains to apply Corollary 5.3.14

to conclude that G is a Lindelöf Σ-space. �

Now we are going to present two results which depend on the additional assumption

that 2ℵ0 < 2ℵ1 .

Theorem 5.7.17. Suppose that 2ℵ0 < 2ℵ1 . Let G be a separable paratopological
group such that G×G is normal. If G is of pointwise countable type, then G is a Lindelöf
Σ-space.

Proof. Take the same subspace H of G×G as in Lemma 5.7.10. Then, arguing as in

the proof of Theorem 5.7.16, we conclude that H is a paracompact p-space. Since G×G is

separable and normal and H is closed in G×G, it follows from the assumption 2ℵ0 < 2ℵ1

that every closed discrete subspace of H is countable (argue as in [165, Example 1.5.9]).

Since H is paracompact, this implies that H is Lindelöf. Hence, Corollary 5.3.14 implies

that G is a Lindelöf Σ-space, as a continuous image of the Lindelöf p-space H . �

Combining Theorems 5.7.17 and 5.7.15 and taking into account that the class of Lindelöf

Σ-spaces is finitely productive, we obtain the following statement:

Theorem 5.7.18. Suppose that 2ℵ0 < 2ℵ1 . Let G be a separable first-countable
paratopological group such that G×G is normal. Then G has a countable base.

The last five results clarify from the point of view of topological algebra why the square

of the Sorgenfrey line is neither Lindelöf nor normal.

Recall that a Tychonoff space X is said to be weakly pseudocompact if there exists

a Hausdorff compactification bX of X such that X is Gδ-dense in bX, that is, every

non-empty Gδ-set in bX intersects X. Of course, every pseudocompact space is weakly

pseudocompact. The converse is false, since every uncountable discrete space D is also

weakly pseudocompact — it suffices to take the one-point compactification of D.

Below, after a series of more special results, we are going to establish a simple sufficient

condition for a weakly pseudocompact semitopological group to be metrizable. First, we

need the following statement.

Proposition 5.7.19. Every weakly pseudocompact Tychonoff space X with a Gδ-
diagonal is Čech-complete.

Proof. Let bX be a Hausdorff compactification of X such that X is Gδ-dense in bX.

We are going to show that X is a Gδ-subset of bX. Since X has a Gδ-diagonal, there is

a sequence {γn : n ∈ ω} of coverings of X by open sets in βX satisfying the following

condition:

(•) For any distinct x and y in X, there exists n ∈ ω such that no element of γn contains

both x and y.
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Put Wn =
⋃

γn, for each n ∈ ω, and let P =
⋂

n∈ω Wn. Clearly, X ⊂ P . It remains

to show that P ⊂ X. Assume the contrary, and take any y ∈ P \ X. For each n ∈ ω,

fix Vn ∈ γn such that y ∈ Vn. Put G =
⋂

n∈ω Vn. Since X is Gδ-dense in bX, the set

G ∩ X is dense in G and, hence, contains more than one point. Taking two distinct points

x, z ∈ G∩X, we arrive at a contradiction with (•) : {x, z} ⊂ Vn ∈ γn, for each n ∈ ω. �

Corollary 5.7.20. Every pseudocompact space with a Gδ-diagonal is Čech-complete.

Here is another general fact we need:

Proposition 5.7.21. Suppose that X is a weakly pseudocompact space and K is a
compact Gδ-subset of X. Then K has a countable base of neighbourhoods in X.

Proof. Take a Hausdorff compactification bX of X such that X is Gδ-dense in bX.

Since K is a Gδ-set in X, there exists a countable family γ of open sets in bX such that

X ∩⋂
γ = K. Put η = γ ∪ {bX \ K}. Then η is a countable family of open sets in bX

(note that K is closed in bX). Clearly, X∩⋂
η = ∅. Since

⋂
η is a Gδ-set in bX, and X is

Gδ-dense in bX, it follows that
⋂

η = ∅. Therefore,
⋂

γ = K, that is, K is a Gδ-set in bX.

Since K and bX are compact, it follows that K has a countable base of open neighbourhoods

in bX. Hence, X has also a countable base of open neighbourhoods in X. �

Corollary 5.7.22. If X is a weakly pseudocompact space and x is Gδ-point in X,
then X has a countable local base at x.

The next result follows directly from Proposition 5.7.3 and Corollary 5.7.22:

Theorem 5.7.23. If G is a weakly pseudocompact left topological group with a
countable topological discerner, then G is first-countable.

Here is the promised result concerning metrizability of semitopological groups.

Theorem 5.7.24. Every weakly pseudocompact semitopological group G with a
countable topological discerner is a topological group metrizable by a complete metric.

Proof. By Theorem 5.7.23, the space G is first-countable. Therefore, it follows from

Corollary 5.7.5 that G is a space with a Gδ-diagonal. Now Proposition 5.7.19 implies that

G is Čech-complete. By Theorem 2.4.12, every Čech-complete semitopological group is

a topological group. Therefore, G is a topological group. Since G is first-countable, it

follows that G is metrizable. It remains to observe that every metrizable Čech-complete

space is metrizable by a complete metric [165, Theorem 4.3.26]. �

The three facts below are special cases of Theorem 5.7.24:

Corollary 5.7.25. Every first-countable weakly pseudocompact semitopological
group is a topological group metrizable by a complete metric.

Corollary 5.7.26. Every weakly pseudocompact semitopological group of countable
π-character is a topological group metrizable by a complete metric.

Corollary 5.7.27. Every pseudocompact semitopological group G of countable π-
character is a compact metrizable topological group.
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Exercises

5.7.a. (I. I. Guran, cited in [68]) A paratopological group G is saturated if the inverse U−1 of

every non-empty open subset of G contains a non-empty open subset of G. Show that every

subgroup of the Sorgenfrey line is a saturated paratopological group.

5.7.b. A space X is said to be rectifiable if there exists a homeomorphism f of the space X × X
onto itself satisfying the following two conditions:

(i) For any z ∈ X × X, the first coordinates of z and f (z) coincide;

(ii) The image f (ΔX) of the diagonal ΔX = {(x, x) : x ∈ X} is the set Ze = {(x, e) : x ∈
X}, for some e ∈ X.

Show that every topological group G is a rectifiable space.

5.7.c. Prove that every rectifiable space is regular and homogeneous.

5.7.d. Prove that the product of an arbitrary family of rectifiable spaces is (naturally) rectifiable.

Problems

5.7.A. (G. Itzkowitz and V. V. Tkachuk [258]) For a non-discrete topological group G, let p(G) be

the least number of open sets in G whose intersection is not open. Prove that if a topological

group G is pseudo-τ-compact and p(G) = τ, then G is fine (see Problems 1.8.C, 4.4.G,

4.4.H, and 4.4.I).

5.7.B. (A. V. Arhangel’skii and D. K. Burke [51]) Let G be a regular first-countable semitopological

group of countable extent. Prove that |G| ≤ 2ω.

5.7.C. (A. V. Arhangel’skii and D. K. Burke [51]) Suppose that G is a Tychonoff separable

semitopological group of countable pseudocharacter. Prove that there exists a weaker regular

second-countable topology on G.

5.7.D. Give an example of a regular quasitopological group G with a countable π-base which is not

first-countable.

5.7.E. (A. S. Gul’ko [206]) Prove that every first-countable rectifiable space is metrizable.

5.7.F. Show that the Sorgenfrey line is not rectifiable.

5.7.G. Show that every pseudocompact subspace of a rectifiable space of countable pseudocharacter

is compact and metrizable.

5.7.H. Show that a regular first-countable ω-narrow paratopological group need not be Lindelöf.

5.7.I. (O. V. Ravsky [400]) Show that every totally bounded paratopological group G is saturated.

Hint. Take a non-empty open subset U of G. There exists a finite subset F of G such

that FU−1 = G. Therefore, aU−1 is not nowhere dense in G, for some a ∈ F , that is,

V ⊂ aU−1, for some non-empty open subset V of G. Since G is a paratopological group,

it follows that V ⊂ aU−1U−1. Hence, (U2)−1 has a non-empty open interior. Clearly, in a

paratopological group this implies that the interior of U−1 is non-empty.

5.7.J. (T. Banakh and O. V. Ravsky [68]) Show that a Hausdorff paratopological group H is topo-

logically isomorphic to a paratopological subgroup of a saturated Hausdorff paratopological

group if an and only if there exists a continuous isomorphism of H onto a topological group.

5.7.K. (T. Banakh and O. V. Ravsky [68]) Show that a Hausdorff paratopological group H is

topologically isomorphic to a closed paratopological subgroup of a Hausdorff totally bounded

paratopological group if and only if there exists a continuous isomorphism of H onto a totally

bounded topological group.

5.7.L. (O. V. Ravsky [399]) Show that a regular paratopological group with the Baire property need

not be saturated.

Hint. Take the product G = Rω as a group, but not with the natural topology. For n ∈ ω,

denote by Un the set of all elements (xi)i∈ω of G such that xi = 0, for each i ≤ n, and xi ≥ 0,

for each i ≥ n. The sets Un, where n ∈ ω, constitute a local base at the neutral element for
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a topology on G that turns G into a paratopological group. Show that this paratopological

group has the Baire property, but is not saturated.

5.7.M. (M. Fernández [168]) Prove that any subgroup of an arbitrary power of the Sorgenfrey line

is saturated.

5.7.N. (A. V. Arhangel’skii and A. Bella [50]) Suppose that G is a first-countable ω-narrow

Tychonoff paratopological group. Show that G is submetrizable.

5.7.O. (A. V. Arhangel’skii and D. K. Burke [51]) Give an example of a countable regular paratopo-

logical group with a countable π-base that fails to be first-countable. (Compare with Theo-

rems 5.7.6 and 5.7.8.)

5.7.P. (M. Sanchis and M. G. Tkachenko [418]) Let H be a regular paratopological group with

identity e such that the space H2 is Lindelöf. Prove the following:

a) If γ is a countable family of open neighbourhoods of e in H , then one can find a con-

tinuous homomorphism p : H → K onto a regular second-countable paratopological

group K such that ker p ⊂ ⋂
γ and p(U) is a neighbourhood of the neutral element of

K, for each U ∈ γ.

b) If H has countable pseudocharacter, then H admits a continuous isomorphism onto a

regular second-countable paratopological group.

5.7.Q. (M. Sanchis and M. G. Tkachenko [418]) Let G be a paratopological group such that G is a

Lindelöf Σ-space. Prove that G is an Efimov space. Hence, every regular closed subset of

G is a zero-set. (Compare with Corollaries 5.3.28 and 5.3.29.)

Open Problems

5.7.1. Is every regular paracompact ω-narrow paratopological group G of countable o-tightness

Lindelöf?

5.7.2. Suppose that G is a first-countable ω-narrow regular paratopological group. Is G submetriz-

able?

5.7.3. Suppose that G is a Tychonoff semitopological (paratopological) group of countable

pseudocharacter such that the cellularity of G is countable. Is there a weaker regular second-

countable topology on G?

5.7.4. Suppose that G is a first-countable semitopological (paratopological) group which is a p-

space. Is G a Moore space?

5.7.5. Is every paratopological group, which is a Moore space, metrizable?

5.7.6. Suppose that G is a (regular, Tychonoff) paratopological group which is also a rectifiable

space. Is G homeomorphic to a topological group?

5.7.7. Is every regular rectifiable space Tychonoff?

5.7.8. Is every regular rectifiable space of countable pseudocharacter submetrizable? Is it Ty-

chonoff?

5.8. Historical comments to Chapter 5

The results of Section 5.1 concerning τ-narrow topological groups are essentially

due to I. I. Guran [208]. In particular, Propositions 5.1.1, 5.1.3, Lemmas 5.1.4, 5.1.6,

Corollary 5.1.7, and Theorem 5.1.10 all originated in [208] and [210]. A prototype of

Lemma 5.1.6 can be found in [202]. However, Theorem 5.1.10 appeared without proof in

[208], and the first published proof of the theorem (apart from that in Guran’s PhD thesis

[209]) was given by V. V. Uspenskij in [516]. The alternative characterization of ω-narrow

groups as subgroups of k-separable groups in Theorem 5.1.12 was found by V. G. Pestov

Historical comments to Chapter 5
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[375]. Theorem 5.1.11 was obtained in [24]. A common prototype of Theorems 5.1.10

and 5.1.19 was obtained by V. K. Bel’nov in [72] — he proved that if a topological group

G is algebraically generated by a Lindelöf subspace, then G is topologically isomorphic

to a subgroup of the product of some family of second-countable groups. In the present

form, Theorem 5.1.19 appeared in [142]. Proposition 5.2.6 is from [22]. Lemma 5.2.10

originated in [60] (see also [21]). Corollary 5.2.14 was proved in [21]. Theorems 5.2.13

and 5.2.15 are taken from [21].

Theorem 5.1.24 and Proposition 5.1.22 were proved by T. Banakh in [67].

Lindelöf Σ-spaces were introduced and studied by K. Nagami in [335] as a subclass

of a wider class of Σ-spaces. It is remarkable that this class of spaces contains all σ-

compact spaces, all second-countable spaces and all cosmic spaces, and is closed under

countable products and continuous images. The countable versions of Corollaries 5.3.2,

5.3.4, Propositions 5.3.3, 5.3.5, 5.3.8, 5.3.9, and of some other results in this book were

established in [335]. An important corollary from these results for the theory of topological

groups is Proposition 5.3.10.

The majority of other results in Section 5.3 on Lindelöf Σ-spaces, Lindelöf Σ-

groups, and the Souslin number of topological groups are due to A. V. Arhangel’skii,

M. G. Tkachenko, and V. V. Uspenskij. Corollary 5.3.22 on the cellularity of σ-compact

groups appeared originally in [469], and then V. V. Uspenskij extended the result to Lindelöf

Σ-groups in [508]. The Nagami number of a Tychonoff space appeared in [25], where

Theorems 5.3.12 and 5.3.13 were proved. For the special case τ = ℵ0, Theorem 5.3.18 was

proved by Uspenskij in [512], while the present version of the theorem was given in [481].

The notions of a Mal’tsev operation and a Mal’tsev space were introduced by V. V. Uspenskij

in [512] (see also [518], [187], and [449]). In this connection, see also the article [206] of

A. S. Gul’ko, where rectifiable spaces are studied.

The articles [469] and [471] by M. G. Tkachenko cover a good part of the material of

Section 5.4. Corollary 5.4.3 is a famous result of N. A. Shanin [438]. In connection with

this result and Theorem 5.4.1 see also [437]. Example 5.4.13 is due to Uspenskij, see [508].

Theorem 5.5.4 and Corollary 5.5.10 appeared in [479].

The concepts of τ-stability and stability were introduced in [25] by A. V. Arhangel’skii,

where Proposition 5.6.16 and Corollary 5.6.17 were proved. These concepts turned out to

be useful in Cp-theory (see [32]). In this connection, see also [61]. Our Theorem 5.6.18

extends Uspenskij’s result (obtained in [512] for ω-stable groups) to ω-steady groups.

Almost all results of Section 5.7 are due to Arhangel’skii and Reznichenko [62].

Proposition 5.7.14 was proved by O. V. Ravsky. Some properties of topological groups

find a non-trivial reflection in the properties of remainders of the groups in their Hausdorff

compactifications. See [48] about these matters, which we left almost untouched in this

book.



Chapter 6

Moscow Topological Groups
and Completions of Groups

It was established in Section 3.6 that every topological group G is a dense subgroup of

a Raı̆kov complete topological group denoted by 
G and called the Raı̆kov completion of

G. In the class of Tychonoff spaces, there are at least three distinct ways to “complete” a

given space X, by taking the Čech–Stone compactification βX, Hewitt–Nachbin completion

υX, and Dieudonné completion μX of X, respectively. The latter three extensions are

related by the inclusions μX ⊂ υX ⊂ βX and, similarly to the Raı̆kov completion, have

natural functorial properties (permitting extension of continuous mappings of spaces over

corresponding completions).

We will see in Corollary 6.6.4 that the Čech–Stone compactification βG of a pseu-

docompact topological group G is again a topological group containing G as a dense

topological subgroup. However, for very simple topological groups G, the Čech–Stone

compactification βG may fail to be a topological group. For example, neither βZ nor βR
is a topological group, where Z is the discrete group of integers and R is the group of reals

with the usual topology and sum operation. In fact, the spaces βZ and βR are not even

homogeneous.

If, however, one considers the Dieudonné (or Hewitt–Nachbin) completion of a

topological group G, it surprisingly often turns out that the group operations of G can be

extended over the space μG (or υG), thus making μG into a topological group containing G
as a dense topological subgroup. If this happens, we say that G is a PT -group. The reader

will find in Theorem 6.5.24 a long (but far from complete) list of properties of a group G
each of which guarantees that μG is a topological group.

The basic concept in this chapter is that of a Moscow space. The class of Moscow spaces

is very large; it contains, on one hand, all extremally disconnected spaces and, on the other,

all spaces of countable pseudocharacter. In the first three sections we study in detail this

class of spaces and establish some permanence properties of Moscow spaces. The results

in Section 6.4 show that the class of Moscow topological (and paratopological) groups is

even wider compared to the class of Moscow spaces. In fact, very mild compactness type

conditions imposed on a topological group G imply that the space G is Moscow.

The principal result of Section 6.5, Theorem 6.5.1, says that if G is a topological group

and the space G is Moscow, then μG is also a topological group that contains G as a

dense topological subgroup. This important result has a number of corollaries, sometimes

quite unexpected. For example, we show in Section 6.6 that a pseudocompact topological

group G is C-embedded in its Raı̆kov completion 
G, so that βG = 
G in this case, and the

product of an arbitrary family of pseudocompact topological groups is pseudocompact (both

A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies  345
in Mathematics 1, DOI 10.2991/978-94-91216-35-0_6, © 2008 Atlantis Press/World Scientific 
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results due to W. W. Comfort and K. A. Ross). The commutativity of the Hewitt–Nachbin

completion and the product operation is studied in Section 6.7, where we show that if the

product group G =
∏

i∈I Gi is Moscow and has Ulam non-measurable cardinality, then

υG =
∏

i∈I υGi. In the case of two factors, one can go further and characterize the groups

G and H satisfying the formula υ(G × H) = υG × υH . Roughly speaking, the equality

holds if and only if the product G×H is a PT -group (see Theorem 6.7.10).

Subgroups of Moscow topological groups are considered in Section 6.8. It is shown

that every Abelian topological group is topologically isomorphic to a closed subgroup of

a Moscow topological group. Therefore, closed subgroups of Moscow groups may fail to

be Moscow. We also give an example of a closed C-embedded subgroup H of a Moscow

topological group such that H is not Moscow.

Pointwise pseudocompact topological groups are studied in Section 6.9. One of the

main results of the section, Theorem 6.9.14, says that a topological group G is pointwise

pseudocompact if and only if its Dieudonné completion μG is a feathered topological

group. The class of pointwise pseudocompact groups has nice properties. For example,

it is countably productive, and every group from this class has countable o-tightness.

Furthermore, the product of an arbitrary family of pointwise pseudocompact groups is a

Moscow space.

The last section of this chapter is dedicated to bounded and C-compact subsets of

topological groups.

6.1. Moscow spaces and C-embeddings

In this section we introduce the class of Moscow spaces, and establish some of its basic

properties. Moscow spaces work especially well in combination with homogeneity; this

explains why this notion turned out to be a powerful tool in the theory of topological groups.

Applications of Moscow spaces involve Dieudonné completions of topological groups and

C-embeddings.

A Hausdorff space X is called Moscow if for every open subset U of X, the closure of

U in X is the union of a family of Gδ-sets in X, that is, for each x ∈ U there exists a Gδ-set

P in X such that x ∈ P ⊂ U.

Clearly, the notion of a Moscow space generalizes the notion of a perfectly κ-normal

space. The class of Moscow spaces is much wider than the class of perfectly κ-normal

spaces, since every first-countable space, and even every space of countable pseudocharacter

is a Moscow space, while not every first-countable compact space is perfectly κ-normal.

For example, the square of the two arrows space Z (see [165, 3.10.C]) is a first-countable

compact space which is not perfectly κ-normal. Indeed, assume the contrary. Then the

diagonal ΔZ in Z×Z can be represented as the intersection of two regular closed sets, since

Z is linearly ordered. Therefore, ΔZ is a Gδ-set in Z×Z. It remains to refer to the fact that

every compact space with the diagonal of type Gδ is metrizable, by [242, Corollary 7.6].

This contradiction shows that Z × Z is not perfectly κ-normal.

The notion of a Moscow space can be also considered as a straightforward generalization

of extremal disconnectedness (see Sections 2.2 and 4.5).

We sum up the above observations in the next statement.

Proposition 6.1.1. Suppose that a space X has one of the following properties:
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a) perfect κ-normality;
b) extremal disconnectedness;
c) countable pseudocharacter.

Then X is Moscow.

We will see in Corollary 6.3.15 that the product of an arbitrary family of first-countable

spaces is Moscow. It follows that every Tychonoff cube Iτ , as well as every generalized

Cantor discontinuum Dτ , is Moscow. The space Rτ is also Moscow. The next statement is

obviously true:

Proposition 6.1.2. Every dense subspace of a Moscow space is Moscow.

However, we cannot claim that every closed subspace of a Moscow space is Moscow.

Example 6.1.3. Let D(τ) be an uncountable discrete space and αD(τ) = D(τ) ∪ {∗}
be the one-point compactification of D(τ). Then D(τ) is a Moscow space, and D(τ) is

Gδ-dense in αD(τ), while αD(τ) is not a Moscow space. Indeed, let U be any countable

infinite subset of D(τ). Then U is open in αD(τ), and U = U ∪ {∗}, where ∗ is the only

non-isolated point in αD(τ). Every Gδ-set in αD(τ) containing the point ∗ is uncountable;

therefore, U is not the union of any family of Gδ-sets in αD(τ). Since αD(τ) is a closed

subspace of the Tychonoff cube Iτ , we conclude that the class of Moscow spaces is not

closed hereditary. �

The notion of a Moscow space plays a major role in the theory of C-embeddings.

Recall that a subspace Y of a space X is said to be C-embedded in X if every continuous

real-valued function on Y can be extended to a continuous real-valued function on X. When

is a subspace Y C-embedded in the whole space X? Of course, the normality of X guarantees

that every closed subspace of X is C-embedded in X. Let us now consider an “orthogonal”

question: When is a dense subspace Y of X C-embedded in X? The next important general

result provides us with a necessary condition.

Theorem 6.1.4. [L. Gillman and M. Jerison] If a dense subspace Y of a Tychonoff
space X is C-embedded in X, then Y is Gδ-dense in X.

Proof. Assume that Y is not Gδ-dense in X. Then, since X is Tychonoff, there exists

a non-empty zero-set P in X contained in X \ Y . Fix a continuous real-valued function f
on X such that P = {x ∈ X : f (x) = 0}. Put g(y) = 1/f (y), for every y ∈ Y . Obviously,

g is continuous on Y .

It is also clear from the choice of f that g cannot be continuously extended over X,

since the value of any such extension at any point of the set P would have been infinite. �

The converse to Theorem 6.1.4 is not true. Indeed, in Example 6.1.3, the subspace

D(τ) is Gδ-dense in αD(τ) while, obviously, D(τ) is not C-embedded in αD(τ).

To present one of the key properties of Moscow spaces in Theorem 6.1.7 below, we

recall the Urysohn Extension Theorem characterizing C∗-embedded subsets of a space. Its

proof is almost the same as that of [165, Theorem 2.1.8] (a complete argument is given in

[191, 1.17]), so we omit it. As usual, subsets A and B of a space Y are called completely
separated in Y if there exists a continuous function f on Y with values in the unit interval

[0, 1] such that f (A) ⊂ {0} and f (B) ⊂ {1}.
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Theorem 6.1.5. [P. S. Urysohn] A subspace Y of a space X is C∗-embedded in X if
and only if any two completely separated sets in Y are completely separated in X.

The next result shows that, for Gδ-dense subsets of a space, the properties of being

C∗-embedded and C-embedded coincide (a more general fact will be established in

Lemma 9.9.35).

Proposition 6.1.6. Let Y be a Gδ-dense subspace of a space X. Then Y is C-embedded
in X iff it is C∗-embedded in X.

Proof. It suffices to verify that ‘C∗-embedded’ implies ‘C-embedded’. Consider a

continuous real-valued function f on Y . Denote by h a homeomorphism of the real line R
onto the open interval (0, 1). Since Y is C∗-embedded in X, the function h ◦ f on Y can be

extended to a continuous function g : X → [0, 1]. Then the image g(X) does not contain

either 0 or 1.

Indeed, suppose to the contrary that 0 ∈ g(X) (the case 1 ∈ g(X) is similar). Then

F = g−1(0) is a non-empty Gδ-set in X and, since Y is Gδ-dense in X, the intersection

Y ∩ F is not empty. If x ∈ Y ∩ F , then g(x) = 0. On the other hand, g(x) = h(f (x)) = 0.

This contradiction shows that g(X) ∩ {0, 1} = ∅. Therefore, f̃ = h−1 ◦ g is the required

continuous extension of f over X. �

Here is the promised key property of Moscow spaces.

Theorem 6.1.7. [V. V. Uspenskij, M. G. Tkachenko] For a Moscow space X, every
Gδ-dense subset Y of X is C-embedded in X.

Proof. Assume that Y is not C-embedded in X. By Proposition 6.1.6, Y is not C∗-

embedded in X either, so Theorem 6.1.5 implies that Y contains two completely separated

subsets A and B whose closures in X intersect. Take open subsets V1 and V2 in Y such that

A ⊂ V1, B ⊂ V2 and the closures of V1 and V2 in Y are disjoint. Clearly, the intersection

of the closures of V1 and V2 in X is not empty. Fix a point x in V1 ∩ V2, and let Ui be the

interior of the closure of Vi in X, i = 1, 2. Obviously, Vi ⊂ Ui and, therefore, Ui is not

empty and x ∈ U1 ∩ U2.

Since X is a Moscow space, we can find Gδ-sets Pi in X such that x ∈ Pi ⊂ Ui, for

i = 1, 2. Then P = P1 ∩ P2 is a Gδ-subset of X and x ∈ P ; therefore, P ∩ Y is not empty.

Clearly, every point of P ∩Y belongs to the intersection of the closures of the sets V1 and V2

in Y , which is impossible, since this intersection is empty, by the choice of V1 and V2. �

Example 6.1.3 shows that it is not enough to assume Y to be a Moscow space in the

next theorem. However, the homogeneity of the enveloping space X suffices. Much of what

follows depends upon this result.

Theorem 6.1.8. [A. V. Arhangel’skii] If a Moscow space Y is a Gδ-dense subspace
of a homogeneous space X, then X is also a Moscow space and Y is C-embedded in X.

Proof. Let U be an open subset of X and x a point in the closure of U. We have to

show that there exists a Gδ-set P in X such that x ∈ P ⊂ U.

Since X is homogeneous, we may assume that x ∈ Y . Then x ∈ U ∩ Y and, since

Y is a Moscow space, there exists a Gδ-set Q in the space Y such that x ∈ Q ⊂ U ∩ Y .
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Thus, there exists a countable family {Un : n ∈ ω} of open subsets of X such that their

intersection P =
⋂

n∈ω Un satisfies the condition:

x ∈ P ∩ Y ⊂ U.

We claim that P ⊂ U. Indeed, assume the contrary. Then P \ U is a non-empty Gδ-set in

X, and since Y is Gδ-dense in X, it follows that (P \ U) ∩ Y is not empty. On the other

hand, (P \ U) ∩ Y = (P ∩ Y ) \ U = ∅, by the above formula. This contradiction shows

that x ∈ P ⊂ U. Thus, X is a Moscow space. To conclude that Y is C-embedded in X it

remains to apply Theorem 6.1.7. �

From Theorem 6.1.8 and Proposition 6.1.2 we obtain immediately the following

statement:

Corollary 6.1.9. Let X be a homogeneous space and Y a Gδ-dense subspace of X.
Then X is a Moscow space if and only if Y is a Moscow space.

We can sum up the information obtained so far as follows:

Corollary 6.1.10. Let Y be a dense subspace of a homogeneous space X. Then the
following conditions are equivalent:

1) X is a Moscow space and Y is Gδ-dense in X;
2) X is a Moscow space and Y is C-embedded in X;
3) Y is a Moscow space and Y is Gδ-dense in X;
4) Y is a Moscow space and Y is C-embedded in X.

The next characterization of Moscow spaces shows that the relationship of this class of

spaces to C-embeddings is even deeper than one might presume. To formulate the result,

we recall that the Gδ-closure of a set Y ⊂ X in a space X is defined as the set of all points

x ∈ X such that every Gδ-set P in X containing x intersects Y .

Theorem 6.1.11. A space X is Moscow if and only if every dense subspace Y of X is
C-embedded in the Gδ-closure of Y in X.

Proof. The necessity of the condition follows from Theorem 6.1.7 and the fact that

every dense subspace of a Moscow space is Moscow. Conversely, suppose that every dense

subset Y of X is C-embedded in its Gδ-closure Z. Suppose that U is a non-empty open

subset of X, and let V = X \ U. Then the function f on Y = U ∪ V which equals 0 on U
and 1 on V is continuous. Hence, f admits an extension to a continuous function g on the

Gδ-closure Z of Y . Notice that Z ∩ U ∩ V = ∅, since no extension of f is continuous at

the points of the set U ∩ V . Therefore, for every x ∈ U, either x /∈ V or x /∈ Z. In the first

case, O = X \V is an open neighbourhood of x in X satisfying O ⊂ U. In the second case,

there exists a Gδ-set P in X such that x ∈ P and P ∩ (U ∪ V ) = ∅, whence it follows that

P ⊂ U. This implies that U is the union of a family of Gδ-sets in X, so that X is a Moscow

space. �

The next example shows that the conditions on the space X in Theorem 6.1.11 cannot

be weakened.

Example 6.1.12. There exists a non-Moscow space X such that every Gδ-dense

subspace Y of X is C-embedded in X.
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It turns out that ω1 +1 with the order topology is such a space. Indeed, the subspace ω1

of ω1 +1 is countably compact and, hence, pseudocompact. Since every Gδ-dense subspace

Y of ω1 + 1 is either ω1 or ω1 + 1, and ω1 is C∗-embedded in ω1 + 1 [165, Example 3.1.27],

it follows that every Gδ-dense subspace of ω1 + 1 is C-embedded in ω1 + 1. To see that

ω1 + 1 is not Moscow, take two disjoint uncountable sets U and V consisting of non-limit

ordinals. Then U and V are open and the end point ω1 of ω1 + 1 is the only point in the

intersection of their closures. Therefore, ω1 + 1 is not Moscow. �
Here are some curious applications of Theorems 6.1.7 and 6.1.8.

Corollary 6.1.13. If X is a pseudocompact Moscow space and bX is a homogeneous
compactification of X, then bX is the Čech–Stone compactification of X.

Proof. Since X is pseudocompact, X is Gδ-dense in bX. By Theorem 6.1.8, X is

C-embedded in bX. Therefore, bX = βX, according to [165, Coro. 3.6.3]. �
Corollary 6.1.14. Every Gδ-dense subspace Y of a compact Moscow space X is

pseudocompact, and X is the Čech–Stone compactification of Y .

Proof. By Theorem 6.1.7, Y is C-embedded in X. Since X is compact, it follows that

Y is pseudocompact, and that X is the Čech–Stone compactification of Y . �

Exercises

6.1.a. Let U be a regular open subset of a Moscow space X. Show that U \ U is the union of a

family of Gδ-sets in X.

6.1.b. A subset Y of a space X is said to be residually Moscow in X if, for each open subset U of

X and each z ∈ U \ Y , there exists a Gδ-set P in X such that z ∈ P and P ∩ Y ⊂ U. Prove

that if Y is Gδ-dense in X, and Y is residually Moscow in X, then Y is C-embedded in X.

6.1.c. Let Y be a subspace of a space X. We say that Y is h-dense in X if Y is dense in X and,

for each x ∈ X, there exists a homeomorphism h of X onto itself such that h(x) ∈ Y . We

also say in this case that X is Y -homogeneous. Prove that if a Moscow space Y is a Gδ-

dense subspace of a Y -homogeneous space X, then X is also a Moscow space. Show that

the assumption that X is Y -homogeneous cannot be dropped (consider the spaces D(τ) and

αD(τ) in Example 6.1.3).

Problems

6.1.A. Let X be a pseudocompact space, and suppose that the Čech–Stone compactification βX of

X is a Moscow space. Is X perfectly κ-normal?

6.1.B. Is the class of compact Moscow spaces finitely productive?

6.1.C. Suppose that the Čech–Stone compactification of a Tychonoff space X admits the structure

of a topological group. Prove that celω(X) ≤ ω.

Hint. According to [147] or [126], the assumptions about X imply that X is pseudocompact.

Then X is Gδ-dense in βX, so one can apply Corollary 5.3.20.

Open Problems

6.1.1. When does the Čech–Stone compactification βX of a Tychonoff space X turn out to be a

Moscow space?

6.1.2. Given a Tychonoff space X, when does there exist a Hausdorff compactification of X which

is a Moscow space?
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6.2. Moscow spaces, P -spaces, and extremal disconnectedness

In this section we consider the notions of extremal disconnectedness and of P-space in

the context of Moscow spaces. It turns out that the notions of a P-space and of a Moscow

space are almost incompatible. The next statement is obvious.

Proposition 6.2.1. A P-space X is a Moscow space if and only if it is extremally
disconnected.

A point x of a space X is called a point of extremal disconnectedness of X or, briefly,

an ed-point of X if, for any disjoint open sets U and V in X, x is not in U ∩ V . Clearly, a

space X is extremally disconnected iff every point of X is an ed-point.

A point x ∈ X is a P-point of X if every Gδ-set in X containing x also contains an open

neighbourhood of x.

An infinite cardinal number τ is said to be Ulam measurable if there exists a countably

closed free ultrafilter on a set A of cardinality τ. ‘Countably closed’ means that the

intersection of every countable subfamily of ξ belongs to ξ. Clearly, a cardinal τ is Ulam
non-measurable if every countably closed ultrafilter ξ on a set A of cardinality τ is fixed,

that is, has a non-empty intersection. It is immediate from the definition that the cardinal

ω is Ulam non-measurable. In addition, if τ, λ are infinite cardinals, τ is Ulam measurable

and λ > τ, then λ is Ulam measurable as well.

The relation of Ulam measurable cardinals with measures is quite clear. It is easy to

verify that an infinite cardinal τ is Ulam measurable if and only if there exists a two-valued

measure (with values 0 and 1) on the set �(A) of all subsets of a set A of cardinality τ which

vanishes at singletons, is monotone and countably additive. Indeed, given a countably

closed free ultrafilter ξ on A, define a mapping m : �(A)→ {0, 1} by m(B) = 1 iff B ∈ ξ.

Evidently, m is the required measure on A. Conversely, if m is a two-valued countably

additive measure on A vanishing at singletons, put ξ = {B ⊂ A : m(B) = 1}. Then ξ is a

countably closed free ultrafilter on the set A (see [263, Section 23]).

In fact, Ulam measurable cardinals are extremely large. To see it, we present the

following result that combines Theorems 23.12 and 23.14 of [263] and will be used shortly

afterwards.

Theorem 6.2.2. Suppose that a cardinal τ ≥ ω is Ulam non-measurable. Then:

a) the cardinal 2τ is Ulam non-measurable;
b) if {λα : α < τ} is a sequence of Ulam non-measurable cardinals, then the cardinal

supα<τ λα is Ulam non-measurable as well.

It follows from b) of Theorem 6.2.2 that the first Ulam measurable cardinal m0 is regular,

while a) and b) together imply that m0 is strongly inaccessible. In particular, the cardinal

numbers c = 2ω, 2c, 22c

, etc., are all Ulam non-measurable.

We call x ∈ X an Ulam P-point of X or, briefly, a UP-point of X if, for each family

γ of open sets in X such that x ∈ ⋂
γ and |γ| is an Ulam non-measurable cardinal,

⋂
γ

contains an open neighbourhood of x. If every point of X is an UP-point, we say that X is

a UP-space.

Theorem 6.2.3. Let X be a regular space, and b ∈ X an ed-point of X. Then either b
is not a P-point of X, or b is a UP-point of X.
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Proof. Assume to the contrary that b is a P-point and is not a UP-point. Then there

exists a family γ of open sets in X such that τ = |γ| is Ulam non-measurable, b ∈ ⋂
γ, and

b ∈ X \⋂
γ. We can also choose γ to be of the smallest possible cardinality. Then τ > ω,

since b is a P-point, and τ is a regular cardinal.

Since X is regular, we may assume that b ∈ W , where W = X\⋂{U : U ∈ γ}. Clearly,

W is open, and b /∈ W . Let � = {Vα : α < τ} be the family of all sets X\U, where U ∈ γ.

Clearly, Vα is an open subset of X, b is not in the closure of Vα, and b ∈ ⋃{Vα : α < τ}.
Put Wα = Vα \

⋃{Vβ : β < α}, for each α < τ. Obviously, ξ = {Wα : α < τ} is a disjoint

family of open subsets of X, b is in the closure of
⋃

ξ, but b /∈ Wα, for any α < τ.

Let � be the family of all non-empty open subsets V of X contained in at least one

element of ξ. By Zorn’s Lemma, there exists a maximal disjoint subfamily � of �.

Obviously, b is in the closure of
⋃

�.

Denote by η the collection of all subfamilies � of � such that b is in the closure of⋃
�. Clearly, � ∈ η, and every � ∈ η is non-empty. It is also clear that, for any � ⊂ �,

either � ∈ η, or the complement � \� is in η. Since b is an ed-points of X, it follows that

� ∈ η if and only if the complement of � in � is not in η.

Let us show that η is ω-centered, that is,
⋂

μ ∈ η, for any countable subfamily μ of η.

Indeed, if � ∈ μ, then � \� is not in μ, that is, b is not in the closure of
⋃

(� \�). Since

b is a P-point, it follows that b is not in the closure of
⋃{⋃(� \�) : � ∈ μ}. By passing

to the complement, we conclude that b is in the closure of
⋃ ⋂

μ, that is,
⋂

μ ∈ η, and

therefore,
⋂

μ is non-empty. Hence, η is a countably closed ultrafilter on the set �. Since

τ is Ulam non-measurable, for any subfamily ν of η with |ν| ≤ τ, we have that
⋂

ν = ∅.

Now, let �α be the family of all V ∈ � such that V ∩Wα = ∅, and ν = {�α : α < τ}.
Clearly, �α ∈ η, |ν| ≤ τ, and

⋂
ν = ∅. This contradiction completes the proof. �

Theorem 6.2.4. Let X be a regular extremally disconnected P-space and b ∈ X a
point such that χ(b, X) ≤ m0, where m0 is the first Ulam measurable cardinal. Then the
point b is isolated in X.

Proof. Assume the contrary. By an obvious transfinite recursion we can define, making

use of Theorem 6.2.3, a transfinite sequence ξ = {Vα : α < τ∗} of non-empty disjoint open

subsets of X such that the next two conditions are satisfied:

1) For each open neighbourhood U of b, there exists α < τ∗ such that Vβ ⊂ U whenever

α ≤ β < τ∗;

2) For any α < τ∗, b is not in
⋃{Vβ : β < α}.

Let W1 be the union of all Vα’s such that α is a limit ordinal, and W2 the union of all Vα’s

such that α is a successor ordinal. Then W1 and W2 are disjoint open sets and, by 1), b is in

the closure of both of them. This contradicts the extremal disconnectedness of X. �

Theorem 6.2.5. Let X be a regular extremally disconnected non-discrete P-space.
Then:

1) There exists a disjoint family γ of non-empty open and closed subsets of X such that⋃
γ is dense in X and |γ| is an Ulam measurable cardinal;

2) Every disjoint family η of open and closed subsets of X such that |η| is Ulam non-
measurable, is discrete in X;

3) dc(X) is not less than the first Ulam measurable cardinal.
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Proof. The family of all open and closed subsets of X is a base of X, since X is a

regular P-space. Fix a non-isolated point b in X, and let γ be a maximal disjoint family of

non-empty open and closed subsets U of X such that b is not in U (by Zorn’s Lemma, such

a family γ exists). Then
⋃

γ is dense in X and b ∈ A, where A =
⋂{X \ U : U ∈ γ}.

Clearly, A does not contain any open neighbourhood of b in X. By Theorem 6.2.3, b is a

UP-point in X. It follows that |γ| ≥ m0, where m0 is the first Ulam measurable cardinal.

Therefore, |γ| is also Ulam measurable. Thus, 1) is proved.

To prove 2), assume that η is not discrete in X, and take an accumulation point y of

η. Then y ∈ B, where B =
⋂{X \ U : U ∈ η}, and B does not contain any open

neighbourhood of y in X. Therefore, since |η| is Ulam non-measurable, y is not a UP-point

in X, thus contradicting Theorem 6.2.3. Hence, 2) holds.

Assertion 3) follows from 1) and 2). Indeed, take a disjoint family γ of non-empty

open and closed subsets of X such that |γ| is an Ulam measurable cardinal. Obviously, we

may assume that |γ| is the first Ulam measurable cardinal m0.

Now let τ be any cardinal number less than m0. There exists a subfamily η of γ such

that |η| = τ. Then, by 2), η is discrete in X, which implies that dc(X) > τ. Since τ < m0,

we conclude that dc(X) ≥ τ∗. �
Clearly, if the cellularity or the Lindelöf number of X is Ulam non-measurable, then

the discrete cellularity number dc(X) of X, defined in Section 5.1, is Ulam non-measurable

as well. Therefore, the next four results follow from Theorem 6.2.5.

Corollary 6.2.6. If the cellularity of a regular extremally disconnected P-space X is
Ulam non-measurable, then X is discrete.

Corollary 6.2.7. If the Lindelöf number of a regular extremally disconnected P-space
X is Ulam non-measurable, then X is discrete.

By Proposition 6.2.1, every Moscow P-space is extremally disconnected. Therefore,

we have the following:

Corollary 6.2.8. A regular Moscow space of Ulam non-measurable cardinality is a
P-space if and only if it is discrete.

Corollary 6.2.9. A Lindelöf Moscow space X is a P-space if and only if it is discrete
and countable.

Proof. By our definition, all Moscow spaces are Hausdorff. To apply Corollary 6.2.7,

it suffices to verify that the Lindelöf P-space X is regular. Let x ∈ X be a point and U
an open set in X containing x. Then F = X \ U is closed in X. For each y ∈ F , choose

disjoint open sets Vy and Wy in X such that x ∈ Vy and y ∈ Wy. Since X is Lindelöf, the

open covering {Wy : y ∈ F} of the set F contains a subcovering {Wy : y ∈ C}, where C is

a countable subset of F . Then V =
⋂

y∈C Vy is an open neighbourhood of x disjoint from

the open set W =
⋃

y∈C Wy. Since X \ U = F ⊂ W , we conclude that the closure of V is

contained in U, so that the space X is regular. �
It is well known that every regular space X with a topology � can be turned into a

regular P-space by means of the following simple construction. Take the Baire topology
�� on X such that the family of all Gδ-sets in the original space X is a base of ��. Clearly,

A is in �� if and only if A is the union of a family of Gδ-subsets of X. Let (X)ω be the
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space obtained when we endow the set X with the topology ��. We call this space the

Gδ-modification of the space X. Obviously, (X)ω is a regular P-space. Assume now that

the cardinality of X is Ulam non-measurable. Then, by Corollary 6.2.8, (X)ω is a Moscow

space if and only if X∗ is discrete. This result can be also reformulated in terms of the

original space X:

Theorem 6.2.10. Let X be a regular space of Ulam non-measurable cardinality. Then
the following conditions are equivalent:

1) Every point of X is a Gδ-set;
2) For every family γ of Gδ-sets in X, the Gδ-closure of the union of γ is also the union of

a family of Gδ-sets in X;
3) The Gδ-modification of X is a Moscow space;
4) The Gδ-modification of X is discrete.

Proof. By Corollary 6.2.8, the conditions in items 1), 2), and 4) are equivalent, while

3) says that the space (X)ω is Moscow. �

Corollary 6.2.11. Let X be a regular space such that the cardinality of X is Ulam
non-measurable, and at least one point of X is not a Gδ-set in X. Then the Gδ-modification
of the space X is not a Moscow space.

In connection with the above results, we should mention that one cannot get rid of Ulam

measurable cardinals in their formulations since, under the assumption that such a cardinal

exists, V. I. Malykhin constructed a non-discrete extremally disconnected Abelian P-group

(see [299]).

Exercises

6.2.a. Show that the remainder βω \ ω of the Čech–Stone compactification of the discrete group

space ω is not a Moscow space.

6.2.b. Let us call a Tychonoff space X weakly Moscow if the closure of each cozero-set in X is the

union of a family of Gδ-sets in X. Give an example of a weakly Moscow space which is not

Moscow.

6.2.c. Verify that a weakly Moscow space of countable o-tightness is Moscow.

6.2.d. Find out whether every compact weakly Moscow space is Moscow.

Problems

6.2.A. Is every Hausdorff extremally disconnected space zero-dimensional?

6.2.B. Can the regularity of a Moscow space in Corollary 6.2.8 be weakened to the Hausdorff

property?

6.2.C. Assuming CH , prove that the compact space βω \ ω contains a dense subspace X which is

a P-space.

6.3. Products and mappings of Moscow spaces

In this section we present some results on the behaviour of the class of Moscow spaces

with respect to products and continuous mappings which we later apply to topological

groups.
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We recall that a mapping f : X → Y is called compact if the fiber f−1(y) is compact,

for each y ∈ Y .

Theorem 6.3.1. If f is an open continuous compact mapping of a Moscow space X
onto a space Y , then Y is also a Moscow space.

Proof. Let V be an open subset of Y and U = f−1(V ). Put F = U. Since f is open

and continuous, we have F = f−1(V ) and, hence, f (F ) = V . Take any y ∈ V , and fix

x ∈ F such that f (x) = y. Since F is a regular closed set the Moscow space X, there

exist open sets Wn in X, where n ∈ ω, such that x ∈ Wn and
⋂∞

n=0 Wn ⊂ F . Since X is

regular, we may also assume that x ∈ Wn+1 ⊂ Wn, for each n ∈ ω. Put On = f (Wn).

Then, obviously, y = f (x) ∈ On and each On is open in Y . Therefore, y ∈ P , where

P =
⋂∞

n=0 On is a Gδ-set in Y .

Let us show that P ⊂ V . Take any y0 ∈ Y \ V , and put F0 = f−1(y0). Since

f (F ) = V , it follows that F ∩ F0 = ∅. For every n ∈ ω, put Mn = Wn ∩ F0 and consider

the family η = {Mn : n ∈ ω}. Since F0 is compact, η is a decreasing sequence of compact

subsets of X. Clearly, the intersection of η is empty, since it is contained in F0 ∩ F = ∅.

Therefore, some element Mk of η is empty. Then Wk ∩ F0 = ∅, which implies that y0 is

not f (Wk) = Ok. It follows that y ∈ P ⊂ V . Hence, Y is a Moscow space. �
Let us say that a subspace Y of a space X is canonically embedded in X if, for every

open subset V of Y , there exists an open subset U of X such that the closure of V in Y is

the set U ∩ Y .

It is clear that every retract Y of a space X is canonically embedded in X. Indeed, let

r : X → X be a continuous retraction such that Y = r(X). Clearly, Y is closed in X. Given

an open subset V of Y , put U = r−1(V ). Since r is a retraction, we have that U ∩ Y = V .

Hence, V ⊂ U∩Y . It also follows from the continuity of r that r(U) ⊂ V , so that U∩Y ⊂ V .

This implies the equality V = U ∩ Y , so Y is canonically embedded in X.

The next statement is obvious:

Proposition 6.3.2. If a subspace Y of a Moscow space X is canonically embedded in
X, then Y is also a Moscow space.

Here is another preservation result for Moscow spaces which follows from Proposi-

tion 6.3.2 and the observation made after the definition of canonical embeddings.

Theorem 6.3.3. Every retract of a Moscow space is a Moscow space.

Corollary 6.3.4. If a Moscow space Z is the topological product of some family �
of spaces, then every element of � is a Moscow space.

Proof. Clearly, we can assume that � consists of two spaces X and Y , so Z = X×Y .

Now it is easy to see that the conclusion follows from Proposition 6.3.2, since every factor

is embedded canonically into the product space. In fact, every factor is homeomorphic to a

retract of Z. �
Unfortunately, it is not true in general that the product of two Moscow spaces is a

Moscow space.

Example 6.3.5. There exists a separable compact Moscow space B such that B × B
is not Moscow. Indeed, let B be βω, the Čech–Stone compactification of the discrete space
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ω. Then B is extremally disconnected. Therefore, B is a Moscow space. Besides, B is

compact and separable.

Let us show that B × B is not a Moscow space. Fix any point p ∈ βω \ ω, and put

X = ω ∪ {p} and Y = B \ {p}. The set Y is Gδ-dense in B, since B is not first-countable

at p. Therefore, X × Y is Gδ-dense in X × B. Put Z = (X × Y ) ∪ {(p, p)}. Since

(p, p) ∈ X× B, it follows that X× Y is Gδ-dense in the space Z.

Assume now that B × B is Moscow. Since Z is dense in B × B, it follows that Z is

also a Moscow space. Put U = {(n, n) : n ∈ ω}. Then U is a closed subset of X × Y ,

since ω = X ∩ Y . Therefore, the set V = (X × Y ) \ U is open in X × Y . The set U is

also open in X× Y , since each n ∈ ω is isolated in X and in Y . Since X× Y is obviously

open in Z, it follows that the sets U and V are open in Z. Clearly, U and V are disjoint, and

(p, p) ∈ U ∩ V . Since U ∪ V = X× Y , and U and V are disjoint open sets, it follows that

{(p, p)} = U ∩V (the closures are taken in the space Z). Therefore, (p, p) is a Gδ-point in

Z. This contradicts the earlier established fact that X× Y is Gδ-dense in the space Z. �
Though the class of Moscow spaces is not productive, as it is witnessed by Exam-

ple 6.3.5, there are quite a few large classes of Moscow spaces each of which is closed

under the product operation or productive, as we say below.

We will now establish a general theorem regarding products of Moscow spaces. Let us

start with several technical facts that have a close connection with results of Section 1.6.

Lemma 6.3.6. Let {Xn : n ∈ ω} be a countable family of spaces such that the
space XK =

∏
n∈K Xn is Moscow, for every finite subset K of ω. Then the product space

X =
∏

n∈ω Xn is also Moscow.

Proof. Let U be an open set in X, and x a point in the closure of U. Take any finite

subset K of ω, and denote by pK the projection of X onto XK. Since XK =
∏

n∈K Xn is

Moscow, and the set pK(U) is open in XK, there exists a Gδ-subset PK of XK such that

pK(x) ∈ PK and PK is contained in the closure of the set pK(U) in the space XK. Put

P =
⋂{p−1

K (PK) : K ∈ �}, where � is the family of all finite subsets of ω. Then, clearly,

x ∈ P , and P is a Gδ-set in X.

Let us show that P ⊂ U, which will complete the proof. Take any y ∈ P and any

standard open neighbourhood O of y in X. Then O = p−1
F pF (O), for some finite F ⊂ ω.

We have pF (y) ∈ PF , since y ∈ P . Therefore, pF (y) ∈ pF (U). Since, obviously, pF (O)

is an open neighbourhood of pF (y) in the space XF , the set pF (O) ∩ pF (U) is not empty.

Since O = p−1
F pF (O), it follows that O ∩ U = ∅. Hence, y ∈ U and P ⊂ U. �

In the next lemma we show that the o-tightness of a product space is defined by

the o-tightness of finite subproducts of the product (this cardinal function was defined in

Section 5.5).

Lemma 6.3.7. Let {Xn : n ∈ ω} be a countable family of spaces such that the o-
tightness of XK =

∏
n∈K Xn is countable, for every finite subset K of ω. Then the o-tightness

of the product X =
∏

n∈ω Xn is countable.

Proof. Let γ be a family of open sets in X and x a point in the closure of the set

U =
⋃

γ. Take any finite subset K of ω. Since ot(XK) ≤ ω, there exist a countable

subfamily γK of γ such that pK(x) is in the closure of the set
⋃{pK(V ) : V ∈ γK} in the

space XK, where pK : X → XK is the projection.
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Put η =
⋃{γK : K ∈ �}, where � is the family of all finite subsets of ω. Then,

clearly, η is a countable subfamily of γ, and x ∈ ⋃
η. �

Proposition 6.3.8. Let {Xa : a ∈ A} be a family of topological spaces such that
the o-tightness of XK =

∏
a∈K Xa is countable, for every finite subset K of A, and let

X =
∏

a∈A Xa. Then, for any family γ of open sets in X and for any point x in the closure
of the set U =

⋃
γ, there exist a countable subfamily η of γ and an ω-cube B such that

x ∈ B ⊂ ⋃
η. In particular, ot(X) ≤ ω.

Proof. Without loss in generality we may assume that γ consists of open ω-cubes in

X with finite core. For every V ∈ γ, let AV be the finite core of V (see Section 1.6). Then

clearly V = p−1
AV

pAV (V ), where pK denotes the projection of X onto XK, for each non-

empty K ⊂ A. We are going to define, by induction, an increasing sequence of countable

subsets An of A and a sequence of countable subfamilies γn of γ in the following way.

We take A0 to be any non-empty countable subset of A. Assume that a countable set

An ⊂ A is already defined, and put K = An. By Lemma 6.3.7, ot(XK) ≤ ω. Therefore,

there exists a countable subfamily γn of γ such that pK(x) is in the closure of the set⋃{pK(V ) : V ∈ γn} in the space XK. Now put An+1 = An ∪
⋃{AV : V ∈ γn}. The

inductive step is complete.

Put M =
⋃{An : n ∈ ω} and η =

⋃{γn : n ∈ ω}. Clearly, η is a countable subfamily

of γ. Let H be the closure of
⋃

η, and let y be any point in H . Since η consists of ω-cubes,

there exists an ω-cube B in X such that y ∈ B ⊂ H . Indeed, let B be the set of all z ∈ X
such that za = ya, for each a ∈ M. Since y ∈ H , we clearly have B ⊂ H .

It remains to show that x ∈ H . Take any standard open neighbourhood O of x in

X. Then O = p−1
F pF (O), for some finite F ⊂ A. We claim that O ∩ ⋃

η = ∅. Since

p−1
M pM(H) = H , it suffices to consider the case when F ⊂ M. Since the sequence

{An : n ∈ ω} is increasing, there exists n ∈ ω such that F ⊂ An. Then, by the choice of

γn, pF (x) is in the closure of the set
⋃{pF (V ) : V ∈ γn} in the space XF . Therefore, there

exists a point z ∈ ⋃
η such that pF (z) ∈ pF (O). It follows that z is in O ∩ ⋃

η. Hence,

x ∈ H . �

Corollary 6.3.9. [M. G. Tkachenko] The product of an arbitrary family of first-
countable spaces has countable o-tightness.

Now we need an obvious lemma.

Lemma 6.3.10. Let {Xa : a ∈ A} be a family of topological spaces such that the
pseudocharacter of Xa is countable, for each a ∈ A. Then every ω-cube B in the product
space X =

∏
a∈A Xa is the union of a family of Gδ-sets in X.

Finally, we prove the main assertion:

Theorem 6.3.11. Let {Xa : a ∈ A} be a family of topological spaces such that
the o-tightness of XK =

∏
a∈K Xa is countable, for every finite subset K of A, and the

pseudocharacter of Xa is countable, for each a ∈ A. Then the product space X =
∏

a∈A Xa

is Moscow.

Proof. Take any open set U in X, and let x be any point in the closure of U. Put

γ = {U}. From Proposition 6.3.8 it follows that there exists an ω-cube B in X such that
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x ∈ B ⊂ U. By Lemma 6.3.10, there exists a Gδ-set P in X such that x ∈ P ⊂ B. Now we

have x ∈ P ⊂ B ⊂ U. Hence, X is Moscow. �

The last theorem can be generalized as follows:

Theorem 6.3.12. Let {Xa : a ∈ A} be a family of topological spaces such that
XK =

∏
a∈K Xa is a Moscow space of countable o-tightness, for every finite subset K of A.

Then the product space X =
∏

a∈A Xa is Moscow.

Proof. We have to make a few minor changes in the proof of Proposition 6.3.8. We use

notation from that proof. By Lemma 6.3.6, XAn is a Moscow space, where An is a countable

subset of A. Hence, there exists a Gδ-set Fn in the space XAn such that pAn (x) ∈ Fn and

Fn is contained in the closure of
⋃{pAn (V ) : V ∈ γn}. Now put Pn = p−1

An
(Fn), for each

n ∈ ω, and P =
⋂

n∈ω Pn. Clearly, x ∈ P and P is a Gδ-set in X. Since the sets
⋃

η and

P do not depend on coordinates in A \M, and the sequence {An : n ∈ ω} is increasing, it

follows that P is contained in the closure of U. Hence, X is Moscow. �

The condition in Lemma 6.3.6 and in Theorem 6.3.12 that XK is Moscow for each

finite set K of coordinates cannot be replaced by the weaker assumption that each factor is

Moscow. Indeed, according to Example 6.3.5, βω is a separable extremally disconnected

compact space such that βω×βω is not Moscow. However, the space βω×βω is separable

and, therefore, the o-tightness of it is countable.

Corollary 6.3.13. Let {Xa : a ∈ A} be a family of compact spaces of countable
tightness such that XK is a Moscow space, for every finite subset K of A. Then the product
space X =

∏
a∈a Xa is Moscow.

Proof. Since the product of a finite family of compact spaces of countable tightness

has countable tightness [165, 3.12.8 (e)], it suffices to apply Theorem 6.3.12. �

Here are three more corollaries from Theorem 6.3.11.

Corollary 6.3.14. Let X be the product of some family of cosmic spaces. Then X is
a Moscow space.

Corollary 6.3.15. The product of any family of first-countable spaces is a Moscow
space.

Corollary 6.3.16. Every dense subspace of the product of any family of metrizable
spaces is a Moscow space.

Exercises

6.3.a. Show that every compact space is a continuous image of a compact Moscow space.

6.3.b. Prove that every Tychonoff space is an image of a Moscow space under a continuous open

mapping.

6.3.c. Give an example of a family {Xi : i ∈ I} of Tychonoff spaces, each of countable

pseudocharacter, such that the product
∏

i∈I
Xi fails to be a Moscow space.
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Problems

6.3.A. Let X and Y be compact spaces, where X is first-countable and Y is extremally disconnected.

Is the product space X × Y Moscow?

6.3.B. Let X =
∏

i∈I
Xi be the product of a family of compact spaces such that, for every finite set

J ⊂ I, the subproduct XJ =
∏

i∈J
Xi is a Moscow space. Is X a Moscow space?

Open Problems

6.3.1. Suppose that X and Y are compact homogeneous Moscow spaces. Is the product X × Y a

Moscow space?

6.3.2. Let X be a compact space satisfying celω(X) ≤ ω. Is X a Moscow space?

6.4. The breadth of the class of Moscow groups

In this section we demonstrate that the class of Moscow groups contains many other

important classes of groups. In particular, we show that a topological group is much more

often a Moscow space than a topological space in general. To be more precise, there is

a long list of cardinal invariants such that the countability restriction on any one of them

guarantees that a topological group is a Moscow space. This phenomenon does not take

place in the class of general topological spaces.

Recall that an open subset U of a space X is said to be regular open in X if U is the

interior of its closure.

A point x ∈ X is said to be a point of canonical weak pseudocompactness or a cwp-point
of X, for brevity, if the following condition is satisfied:

(cwp) For every regular open subset U of X such that x ∈ U, there exists a sequence

{An : n ∈ ω} of subsets of U such that x ∈ An, for each n ∈ ω, and for every

indexed family η = {On : n ∈ ω} of open subsets of X satisfying On ∩ An = ∅
for all n ∈ ω, the family η has an accumulation point in X.

We say that a space X is canonically weakly Fréchet–Urysohn at a point x ∈ X, or

κ-Fréchet–Urysohn at x if whenever x ∈ U, where U is a regular open subset of G, some

sequence of points of U converges to x. If X is κ-Fréchet–Urysohn at every point of X, we

say that X is κ-Fréchet–Urysohn. Obviously, if a space X is κ-Fréchet–Urysohn at a point

x ∈ X, then x is also a point of canonical weak pseudocompactness of X.

A space X is pointwise canonically weakly pseudocompact if each point of X is a

point of canonical weak pseudocompactness. All κ-Fréchet–Urysohn spaces are pointwise

canonically weakly pseudocompact.

Theorem 6.4.1. If a topological group G is pointwise canonically weakly pseudocom-
pact, then G is a Moscow space.

Proof. Let U be a regular open subset of G. Clearly, it suffices to show that if e ∈ U,

then there exists a Gδ-set P in G such that e ∈ P ⊂ U. So let us assume that e ∈ U and fix

subsets An of U such as in condition (cpw), where x = e.

We are going to define a sequence {Vn : n ∈ ω} of open neighbourhoods of e, and a

sequence {an : n ∈ ω} of points in U such that an ∈ An, for each n ∈ ω. First, choose

a0 ∈ A0, and let V0 be an open neighbourhood of e such that a0V0 ⊂ U. Assume now that
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an open neighbourhood Vk of e is already defined, for some k ∈ ω. Then we let ak+1 to

be any point of Ak+1 ∩ Vk. Let Vk+1 be a symmetric open neighbourhood of e such that

V 2
k+1 ⊂ Vk and ak+1Vk+1 ⊂ U. The recursive definition is complete.

By condition (cpw), the indexed family η = {anVn+1 : n ∈ ω} has a point of

accumulation in G. We denote by H the set of all accumulation points of η in G. Thus, H is

not empty. Put P =
⋂

n∈ω Vn. From the construction it is clear that P is a closed subgroup

of G.

Claim 1. H ⊂ P .

Indeed, take any a ∈ H , and fix m ∈ ω. Put k = m + 2. There exists n > k
such that aVk ∩ anVn+1 = ∅. Then ac = anb, for some b ∈ Vn+1 and c ∈ Vk. Hence,

a = anbc−1 ∈ Vn−1Vn+1Vk ⊂ V 3
m+2 ⊂ V 2

m+1 ⊂ Vm. Therefore, a ∈ Vm, for each m ∈ ω. It

follows that a ∈ P , whence Claim 1 follows.

Claim 2. aP = P , for any a ∈ H .

Indeed, this is so, since H ⊂ P and P is a subgroup of G.

Fix a ∈ H . Then, by Claim 2, P = aP ⊂ ⋃
n∈ω anVn+1P ⊂ ⋃

n∈ω anVn. Since P is a

subgroup of G, we have that e ∈ P . Therefore,

e ∈ P ⊂
⋃
n∈ω

anVn ⊂ U.

Since P is a Gδ-set, the proof is complete. �

Theorem 6.4.2. Every dense subspace of a pointwise canonically weakly pseudocom-
pact topological group is a Moscow space. In particular, if a topological group G satisfies
at least one of the following conditions, then it is a Moscow space:

1) G is locally pseudocompact;
2) G is precompact;
3) G is a dense subgroup of a κ-Fréchet–Urysohn group.

Proof. Evidently, a locally pseudocompact group is canonically weakly pseudocom-

pact. Also, every totally bounded group is topologically isomorphic to a dense subgroup of

a compact topological group (see Corollary 3.7.16). Therefore, in each of the cases 1), 2),

or 3), the required conclusion follows from Theorem 6.4.1 and Proposition 6.1.2. �

The following cardinal invariant of the tightness type serves to push farther away the

limits of the class of Moscow groups.

Let G be a left topological group, and U ⊂ G. A subset A of G is called ω-deep in U
if there exists a Gδ-set P in G such that e ∈ P and AP ⊂ U. We say that the g-tightness
tg(G) of G is countable (and write tg(G) ≤ ω) if, for each regular open subset U of G and

each x ∈ U, there exists an ω-deep subset A of U such that x ∈ A.

Before we state the main result on semitopological groups of countable g-tightness,

Theorem 6.4.9, we present several almost obvious statements showing how large is the

class of these objects.

Proposition 6.4.3. The union of any countable family of ω-deep subsets of U is an
ω-deep subset of U, for any set U in a left topological group G.
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Proposition 6.4.4. If G is a left topological group of countable tightness, then the
g-tightness of G is also countable.

Proof. Clearly, if U is an open subset of G, then every one-point subset of U is ω-deep

in U. It remains to apply Proposition 6.4.3. �

Proposition 6.4.5. If G is a paratopological group of countable o-tightness, then the
g-tightness of G is also countable.

Proof. Let U be a regular open subset of G, and suppose that x ∈ U. Denote by γ the

family of all non-empty ω-deep open subsets of U. Since G is a paratopological group, we

have the equality U =
⋃

γ. Since the o-tightness of G is countable, there exists a countable

subfamily ξ of γ such that x ∈ ⋃
ξ. The family ξ being countable, the set O =

⋃
ξ is an

ω-deep subset of U, by Proposition 6.4.3. Therefore, tg(G) ≤ ω. �

Since the o-tightness of a space X is less than or equal to the cellularity of X, the next

corollary to Proposition 6.4.5 is immediate.

Corollary 6.4.6. Let G be a paratopological group of countable cellularity. Then
the g-tightness of G is countable.

The next two statements are obvious.

Proposition 6.4.7. Let G be an extremally disconnected semitopological group. Then
the g-tightness of G is countable.

Proposition 6.4.8. Let G be a left topological group of countable pseudocharacter.
Then the g-tightness of G is countable.

Here is an important fact (with a simple proof) which has a number of applications.

Theorem 6.4.9. Every semitopological group G of countable g-tightness is a Moscow
space.

Proof. Take any regular open subset U of G, and any point x ∈ U. Since tg(G) ≤ ω,

there exists an ω-deep subset A of U such that x ∈ A. Now we can fix a Gδ-subset P
of G such that e ∈ P and AP ⊂ U. Then, since the right and left translations in G are

homeomorphisms, we have that x ∈ xP ⊂ AP ⊂ U, and xP is a Gδ-set in G. Thus, G is a

Moscow space. �

Theorems 6.4.1 and 6.4.9 together cover very large classes of topological groups.

It is really amazing how many topological conditions, which are innocently weak in the

general case of arbitrary topological spaces, turn out to be sufficient for a topological or

paratopological group to be a Moscow space. Here is one more result of this nature.

Theorem 6.4.10. If G is a dense subgroup of the product of a family of first-countable
paratopological groups, then the g-tightness of G is countable, and G is a Moscow space.

Proof. Since the o-tightness does not increase when passing to dense subspaces,

the o-tightness of G is countable, by Corollary 6.3.9. The conclusions now follow from

Proposition 6.4.5 and Theorem 6.4.9. �
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Let us say that the κ-tightness of a space X does not exceed the cardinal number τ
(notation: κt(X) ≤ τ) if, for every regular open set U in X and each point x in the closure of

U, there exists a subset B of U such that x ∈ B and |B| ≤ τ. Clearly, for every κ-Fréchet–

Urysohn space X, the κ-tightness of X is countable. It is also clear that κt(X) ≤ t(X),

for every space X, and tg(G) ≤ ω whenever G is a left topological group of countable

κ-tightness.

We sum up the results of this section in the following corollary.

Corollary 6.4.11. Every dense subspace of a paratopological group G of countable
g-tightness is a Moscow space. In particular, if a paratopological group G satisfies at least
one of the following conditions, then it is Moscow:

1) the pseudocharacter of G is countable, that is, each point in G is a Gδ-set;
2) G is extremally disconnected;
3) the tightness of G is countable;
4) the o-tightness of G is countable;
5) the cellularity of G is countable;
6) G is a dense subgroup of a paratopological group F of countable κ-tightness;
7) G is a subgroup of a topological group F such that F is a k-space.

Proof. The main assertion of the corollary follows from Theorem 6.4.9 and Proposi-

tion 5.5.1. Items 1) and 2) are evident. Since ot(G) ≤ t(G) and ot(G) ≤ c(G), items 3),

4), and 5) follow from Proposition 6.4.5 and Theorem 6.4.9. Since every paratopological

group H of countable κ-tightness satisfies tg(H) ≤ ω, item 6) follows from Theorem 6.4.9

(and Proposition 5.5.1). Finally, every k-group has countable o-tightness by Theorem 5.5.4;

hence, the fact that a closed subgroup of a k-group is again a k-group and item 4) (along

with Proposition 5.5.1) imply item 7). �

The Gδ-closure of a topological group G in its Raı̆kov completion 
G (see Section 3.5)

will be denoted by 
ωG. The Gδ-closure of a subgroup in a topological group H is,

obviously, a subgroup of H . Therefore, 
ωG is a subgroup of 
G containing G.

Another device allowing to build new examples of Moscow groups from the Moscow

groups already in existence is provided by the following statement, which follows from

Proposition 6.1.2, Corollary 6.4.11, and Theorem 6.1.8.

Theorem 6.4.12. Let G be a topological group satisfying at least one of the following
conditions:

1) the tightness of G is countable;
2) G is a dense subgroup of a topological group H such that the κ-tightness of H is

countable;
3) G is a k-space.

Then 
ωG, as well as any subgroup between G and 
ωG, is a Moscow group.

In general, the product of two topological groups of countable g-tightness need not

be a group of countable g-tightness (see Problem 6.4.A). However, there are very large

productive classes of Moscow groups, as we will presently see.

Note that every precompact topological group is a dense subgroup of a compact group.

Therefore, we have the next corollary to Theorem 6.4.2:
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Corollary 6.4.13. The product of any family of dense subspaces of precompact
topological groups is a Moscow space.

Whether a similar assertion holds for topological groups with countable cellularity is

much less clear. Here we have only a consistency result.

Corollary 6.4.14. Assume Martin’s Axiom and the negation of the Continuum
Hypothesis, MA + ¬CH . Then the product of any family of paratopological groups of
countable cellularity is a Moscow space.

Proof. Under MA+¬CH , the product of any family of topological spaces with count-

able Souslin number is a space with countable Souslin number (see [285, Theorem 2.24]).

It remains to refer to the fact that every paratopological group of countable cellularity is a

Moscow space, by item 5) of Corollary 6.4.11. �
We can extend further the reach of the above theorems using the following approach.

A space X is called a groupy space if it can be represented as a dense subspace of a

paratopological group. First, we need a lemma.

Lemma 6.4.15. If X is a dense subspace of a homogeneous space Z and the o-tightness
of X is countable, then the o-tightness of Z is also countable.

Proof. Let γ be a family of open sets in Z and z ∈ Z, z ∈ ⋃
γ. Since Z is

homogeneous, we may assume that z ∈ X. Since X is dense in Z, we have that z ∈ ⋃
η,

where η = {U ∩ X : U ∈ γ}. From ot(X) ≤ ω it follows that there exists a countable

subfamily ξ of η such that z ∈ ⋃
ξ. Take a countable subfamily λ of γ such that

ξ = {U ∩ Y : U ∈ λ}. Then clearly z ∈ ⋃
λ and, hence, ot(Z) ≤ ω. �

Theorem 6.4.16. If the o-tightness of a groupy space X is countable, then X is a
Moscow space.

Proof. Let G be a paratopological group such that X is a dense subspace of G. Then

the space G is homogeneous and ot(G) ≤ ω, by Lemma 6.4.15. According to item 4) of

Corollary 6.4.11, G is a Moscow space. Therefore X, as a dense subspace of G, is also a

Moscow space (see Proposition 6.1.2). �
Since every space with the Souslin property has countable o-tightness, the next corollary

to Theorem 6.4.16 is immediate.

Corollary 6.4.17. Every groupy space of countable cellularity is Moscow.

Clearly, if a dense subspace of a given space has countable cellularity, then the space

itself has countable cellularity. Therefore, making use of Corollaries 6.4.14 and 6.4.17, we

come to the following conclusion:

Corollary 6.4.18. Assume that MA + ¬CH holds. Then the product of any family
of groupy spaces of countable cellularity is a Moscow space.

It is not clear whether it is possible to drop the assumption MA + ¬CH in Corol-

lary 6.4.18. However, we have the next result in ZFC:

Theorem 6.4.19. The product of any family of separable groupy spaces is a Moscow
space.
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Proof. The product of any family of separable spaces is a space of countable cellularity

[165, Coro. 2.3.18]. It remains to observe that, by 5) of Corollary 6.4.11, a paratopological

group of countable cellularity is a Moscow space, and every dense subspace of a Moscow

space is a Moscow space according to Proposition 6.1.2. �

In Theorem 6.4.20 below the separability of the factors is replaced by a considerably

weaker condition. However, we strengthen another requirement on the factors — they will

be subspaces of topological groups.

Theorem 6.4.20. Let {Xi : i ∈ I} be a family of k-separable spaces, where each Xi is
a dense subspace of a topological group. Then the product space X =

∏
i∈I Xi is Moscow.

Proof. By the assumptions of the theorem, every space Xi contains a dense σ-compact

subspace Yi. Let Y =
∏

i∈I Yi be the product space and σY ⊂ Y the corresponding σ-product

of the spaces Yi, with i ∈ I. Then σY is dense in Y and Y is dense in X. It follows from

Proposition 1.6.41 that σY is σ-compact, so X is k-separable.

Every σ-compact subspace of a topological group is contained in a σ-compact subgroup

of the group, by Lemma 1.9.4. According to Corollary 5.3.22, the cellularity of every σ-

compact topological group is countable, so the cellularity of every k-separable topological

group is countable as well. Since, by Corollary 5.3.22, every topological group of countable

cellularity is a Moscow space, and every dense subspace of a Moscow space is a Moscow

space, the conclusion follows. �

A large productive class of Moscow spaces can be described as follows. Recall that

ℵ1 is said to be a precalibre of a space X if every uncountable family of open subsets of X
contains an uncountable subfamily with the finite intersection property. If ℵ1 is a precalibre

of X, then the cellularity of X is, obviously, countable. The converse is true if we assume

MA + ¬CH [285, Theorem 2.24]. Theorem 5.4.1 implies that if ℵ1 is a precalibre of Xα,

for each α ∈ A, then ℵ1 is a precalibre of the product of the spaces Xα. If X is a dense

subspace of the product Π of a family of second-countable spaces, then ℵ1 is a precalibre

of X. Clearly, this follows from Theorem 5.4.1, since the dense subspace X of Π shares the

same precalibres with Π.

From the above fact and 5) of Corollary 6.4.11, we obtain immediately the following

result:

Theorem 6.4.21. If {Xα : α ∈ A} is a family of groupy spaces, and ℵ1 is a precalibre
of each Xα, then the product space

∏
α∈A Xα is Moscow.

In conclusion, we formulate one more general theorem which easily follows from the

results already obtained.

Theorem 6.4.22. Suppose that {Ga : a ∈ A} is a family of paratopological group
such that the o-tightness of the space GK =

∏
a∈K Ga is countable, for every finite subset

K of A, and let G =
∏

a∈A Ga be their topological product. Then the space G is Moscow.

Proof. By Proposition 6.3.8, the o-tightness of the space G is countable. Since G
is a paratopological group, it follows from item 4) of Corollary 6.4.11 that the space G is

Moscow. �
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Exercises

6.4.a. Give an example of a compact Fréchet–Urysohn space which is not a Moscow space (compare

with Theorem 6.4.1).

6.4.b. Show that “precompact” in item 2) of Theorem 6.4.2 canbe weakened to “locally precompact”

(see Problem 3.7.I).

6.4.c. Show that there exists a compact right topological semigroup without isolated points that has

uncountable o-tightness.

6.4.d. Verify that if a paratopological group G contains a dense subgroup of countable tightness,

then G is a Moscow space.

Problems

6.4.A. Give an example of two topological groups G and H , both of countable g-tightness, such

that the product group G × H has uncountable g-tightness.

6.4.B. Show that a pseudocompact quasitopological group of countable cellularity need not be a

Moscow space.

6.4.C. Show that pseudocompact quasitopological groups can have uncountable o-tightness.

6.4.D. Is it true that every pointwise canonically weakly pseudocompact paratopological group is a

Moscow space (see Theorem 6.4.1)?

6.4.E. Let G be a left topological group.

(a) If G has countable tightness (or o-tightness), is then the g-tightness of G countable?

(b) Under the same assumptions as in (a), is G a Moscow space?

6.4.F. Suppose that a topological (paratopological) group G contains a dense subgroup of countable

g-tightness. Is G a Moscow space?

6.4.G. Does there exist a topological group G that contains a dense Moscow subgroup, but still fails

to be Moscow itself? (See Problem 6.8.B.)

6.4.H. Prove that if a countably compact non-compact topological group G is a hereditarily normal

space, then G does not contain non-trivial convergent sequences.

Open Problems

6.4.1. Is it true that every Moscow topological group has countable g-tightness?

6.4.2. Let G be a topological group of countable tightness. Is the o-tightness of G×G countable?

Is the g-tightness of G × G countable?

6.4.3. Let G be a topological group of countable tightness. Is G × G a Moscow group? (We still

do not have an example in ZFC of a topological group G of countable tightness such that

the tightness of G × G is uncountable.)

6.4.4. Let G be an extremally disconnected topological group. Is G × G a Moscow group?

6.4.5. Let G be an extremally disconnected topological group and B a compact group. Is G × B a

Moscow group?

6.4.6. Can we drop the assumption MA + ¬CH in Corollary 6.4.18?

6.4.7. Let Xi be a k-separable groupy space, for each i ∈ I. Is the product space X =
∏

i∈I
Xi

Moscow? (Compare with Theorem 6.4.20.)

6.4.8. Suppose that a paratopological group G contains a non-empty compact set of countable

character in G. Does there exist a perfect mapping of G onto a metrizable space? Is the

space G Moscow?

6.4.9. Is it true that every quasitopological group G of countable o-tightness has countable g-

tightness? What if the cellularity of G is countable?

Breadth of the class of Moscow groups
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6.5. When the Dieudonné completion of a topological group is a group?

The techniques based on the notion of Moscow space play a vital role in the solution

of the next question:

Let G be a topological group, and μG the Dieudonné completion of the space G. Can

the operations on G be extended to μG in such a way that μG becomes a topological group

containing G as a topological subgroup?

Recall that the Dieudonné completion μX of a space X is the completion of X with

respect to the maximal uniformity �X on X compatible with the topology of X [165, 8.5.13].

In particular, the space X is Dieudonné complete iff the uniformity �X is complete. It is

well known that the Dieudonné completion of a topological space X is always contained in

the Hewitt–Nachbin completion υX of X, so that μX ⊂ υX ⊂ βX (this also follows from

[165, 8.5.13]). In fact, μX is the smallest Dieudonné complete subspace of βX containing

X. Moreover, if there are no Ulam measurable cardinals, then υX and μX coincide, by [165,

8.5.13 (h)]. Therefore, the next question is almost equivalent to the one formulated above:

For a topological group G, can the operations on G be extended to υG in such a way that

υG becomes a topological group containing G as a topological subgroup?

Clearly, if there exists an Ulam measurable cardinal τ, then, for any discrete group G
of cardinality τ, the answer to the last question is in the negative (since in this case the

Hewitt–Nachbin completion υG is a non-discrete non-homogeneous space).

In this section we apply the results of Section 6.4 to topological groups and their

Raı̆kov completions, and describe large classes of topological groups G for which μG is a

topological group. One of the most important facts going in this direction is the following:

Theorem 6.5.1. [A. V. Arhangel’skii] Let G be a Moscow topological group. Then
the operations on G can be extended to the Dieudonné completion μG of G in such a way
that μG becomes a topological group containing G as a topological subgroup.

To prove Theorem 6.5.1 we need several preliminary results. First we recall one concept

introduced in Section 4.6. A subset Y of a space X is Gδ-closed in X if, for every point

x ∈ X \ Y , there is a Gδ-set Px in X such that x ∈ Px and Px ∩ Y = ∅.

Proposition 6.5.2. Let G be a topological group. Then 
ωG is a Dieudonné complete
topological group. If, in addition, G is Moscow, then 
ωG is also Moscow, and G is
C-embedded in 
ωG.

Proof. It follows from Theorem 3.6.25 that the uniform space (
G, ) is complete,

where  is the two-sided uniformity of the group 
G. Therefore, the space 
G is Dieudonné

complete, as every space that admits a complete uniformity [165, 8.5.13]. Every Gδ-closed

subspace of a Dieudonné complete space is also Dieudonné complete [165, 8.5.13 (f)].

Of course, 
ωG is Gδ-closed in 
G. Hence, 
ωG is Dieudonné complete. Since 
ωG
is homogeneous, Theorem 6.1.8 implies that 
ωG is Moscow and G is C-embedded in


ωG. �

A topological property � will be called invariant under intersections if, for every family

γ of subspaces of a topological space X such that every Y ∈ γ has �, the subspace Z =
⋂

γ
of X also has the property �.
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Proposition 6.5.3. Hewitt–Nachbin completeness and Dieudonné completeness are
topological properties invariant under intersections.

Proof. Indeed, both properties are multiplicative, by Theorem 3.11.5 and Prob-

lem 8.5.13 (a) of [165], respectively. They are also closed hereditary, according to The-

orem 3.11.4 and Problem 8.5.13 (a) of [165]. Suppose that γ = {Yi : i ∈ I} is a family

of subspaces of a Tychonoff space X such that each Yi is Dieudonné complete, and let

Y =
⋂

γ. Consider the product P =
∏

i∈I Yi of the family γ and the diagonal Δ of P which

consists of the points all whose coordinates coincide. It is easy to see that Δ is closed in P
and Y is naturally homeomorphic to Δ. Therefore, the spaces P , Δ, and Y are Dieudonné

complete. The argument for Hewitt–Nachbin completeness is the same. �
Recall that a quasitopological group is a group with a topology on it such that the

multiplication is separately continuous and the inverse operation is a homeomorphism (see

Section 1.2).

Proposition 6.5.4. Let H be a subgroup of a quasitopological group G, and � be a
topological property invariant under intersections. Let γ� be the family of all subspaces X
of G such that X has the property � and H ⊂ X. Then either γ� is empty, or there exists
the smallest (by inclusion) element M in γ�, and M is a subgroup of G containing H .

Proof. Assume that γ� is not empty, and let M be the intersection of the family γ�.

Clearly, H ⊂ M. Since � is invariant under intersections, M also has the property �.

Therefore, M ∈ γ�, and M is the smallest element of γ�.

It remains to show that M is a subgroup of G. Note that M−1 is homeomorphic to

M; therefore, M−1 also has the property �. Since H = H−1 ⊂ M−1 ⊂ G, it follows

that M−1 ∈ γ� and, therefore, M ⊂ M−1. Hence, M−1 ⊂ (M−1)−1 = M and, finally,

M = M−1.

For every a ∈ H , we have that H = aH ⊂ aM ⊂ aG = G, which implies that

M ⊂ aM, since aM is homeomorphic to M and, therefore, has the property �. It follows

that a−1M ⊂ M. Since H = H−1, this implies that aM ⊂ M, for each a ∈ H . Therefore,

HM ⊂ M. It follows that Hb ⊂ M or, equivalently, H ⊂ Mb−1, for any b ∈ M. Since

M−1 = M, we conclude that H ⊂ Mb, for any b ∈ M. Since Mb is homeomorphic to M,

it follows that Mb is in γ� and M ⊂ Mb. Hence, Mb−1 ⊂ M. Since M = M−1, it follows

that Mb ⊂ M, for each b ∈ M. Now it is clear that M is closed under multiplication.

Hence, M is a subgroup of G. �
A space X is called a minimal Dieudonné extension of Y if X is Dieudonné complete,

Y is dense in X, and every Dieudonné complete subspace of X containing Y coincides with

X. It is now clear how to define a minimal Hewitt–Nachbin extension of Y .

The next statement is obvious.

Proposition 6.5.5. The Dieudonné completion μX of a space X is a minimal
Dieudonné extension of X in which X is C-embedded.

The converse of Proposition 6.5.5 easily follows from the definitions, but we supply

the reader with its proof because of the importance of the fact.

Proposition 6.5.6. If a space X is a minimal Dieudonné extension of a subspace Y ,
and Y is C-embedded in X, then X = μY , that is, X is the Dieudonné completion of Y .
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Proof. Let βX be the Čech–Stone compactification of the space X. Since Y is a dense

C-embedded subspace of X, it follows that Y is C∗-embedded in βX and, therefore, we

can identify topologically βY with βX, by [165, Coro. 3.6.3]. In other words, we have

the inclusions Y ⊂ X ⊂ βY . Since μY is a subspace of βY containing Y and, by our

assumption, X is Dieudonné complete, it follows that Z = X∩μY is a Dieudonné complete

subspace of X containing Y . We conclude, by the minimality of X, that Z = X. Therefore,

X ⊂ μY . According to Proposition 6.5.5, μY is a minimal Dieudonné complete subspace

of βY containing Y , whence it follows that X = μY . �

Propositions 6.5.3 and 6.5.4 imply the next result:

Proposition 6.5.7. If H is a subgroup of a quasitopological group G, and there exists
a Dieudonné complete subspace X of G such that H ⊂ X, then there exists a subgroup M
of G such that the space M is a minimal Dieudonné extension of H and M ⊂ X. Similarly,
if there exists a realcompact space Y with H ⊂ Y ⊂ G, then there also exists a subgroup
N of G such that the space N is a minimal Hewitt–Nachbin extension of H and N ⊂ Y .

Here is a crucial fact on Dieudonné completeness in quasitopological groups.

Theorem 6.5.8. Let H be a subgroup of a quasitopological group G, and X a subspace
of G containing H such that X is the Dieudonné completion of the space H . Then X is a
subgroup of G.

Proof. By Proposition 6.5.7, there is a subgroup M of G contained in X such that

H ⊂ M and the space M is Dieudonné complete. However, X is a minimal Dieudonné

extension of the space H . Therefore, M = X, and X is a subgroup of G. �

We now have all necessary tools for the proof of the result announced at the beginning

of the section.

Proof of Theorem 6.5.1. Let G be a topological group such that G is a Moscow space. The

Raı̆kov completion 
G of G and the subgroup 
ωG of 
G are Dieudonné complete spaces,

by Proposition 6.5.2. Hence, we can apply Proposition 6.5.7 to find a subgroup M of 
ωG
such that G ⊂ M and M is a minimal Dieudonné extension of G. Obviously, G is Gδ-dense

in 
ωG and in M, so Theorem 6.1.8 implies that G is C-embedded in M. Since M is the

minimal Dieudonné extension of G, it follows from Proposition 6.5.6 that M = μG. �

A topological group G is called a PT -group if the operations on G can be extended

to the Dieudonné completion μG in such a way that G becomes a topological subgroup of

the topological group μG. Combining Corollary 3.6.16 and Theorem 6.5.8, we obtain the

following conclusion:

Corollary 6.5.9. Let G be a topological group. Then μG is a topological group
(containing G as a subgroup) iff there exists a subspace X of the Raı̆kov completion 
G of
G such that G ⊂ X and X is the Dieudonné completion of G. That is, G is a PT -group iff

G naturally contains the Dieudonné completion of G.

The next result is a version of Corollary 6.5.9 for the Hewitt–Nachbin completion of a

topological group. The proof of it is similar to the proof of Theorem 6.5.8.
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Corollary 6.5.10. Suppose that G is a topological group and X a subspace of the
Raı̆kov completion 
G of G such that G ⊂ X and X is the Hewitt–Nachbin completion of
G. Then X is a subgroup of 
ωG.

One of the main questions considered in this section can be reformulated as follows: Is
every topological group a PT -group? One can restate Theorem 6.5.1 by saying that every

Moscow topological group is a PT -group. We will strengthen this result in Theorem 6.5.13

below.

In general, PT -groups admit the following characterization:

Theorem 6.5.11. A topological group G is a PT -group if and only if it is C-embedded
in some Dieudonné complete topological group as a topological subgroup.

Proof. If G is a PT -group, then μG is a topological group containing G as a dense

subgroup, so Corollary 3.6.16 implies that μG is a topological subgroup of 
G containing

G.

Conversely, suppose that G is a C-embedded subgroup of a Dieudonné complete

topological group G∗. Then G is C-embedded in its closure H in G∗. Obviously, H
is Dieudonné complete and G is dense in H . Apply Proposition 6.5.7 to find a subgroup M
of G∗ such that M is a minimal Dieudonné extension of G and G ⊂ M ⊂ H . Then G is

C-embedded in M, so M is the Dieudonné completion of G, by Proposition 6.5.6. Hence,

G is a PT -group. �

In connection with Theorem 6.5.11 it is natural to introduce the following notion.

A topological group G is a strong PT -group if it is C-embedded in 
ωG. Since, by

Proposition 6.5.2, 
ωG is a Dieudonné complete topological group, it follows from

Theorem 6.5.11 that every strong PT -group is a PT -group. The converse is not true, as we

will show below in Example 6.5.30. The next assertion is obvious.

Proposition 6.5.12. Every Raı̆kov complete topological group is a strong PT -group.

Proposition 6.5.2 implies the following statement:

Theorem 6.5.13. Every Moscow topological group is a strong PT -group.

The next result shows that the property of being (strong) PT -groups is hereditary with

respect to C-embedded subgroups:

Proposition 6.5.14. Let H be a C-embedded subgroup of a (strong) PT -group G.
Then H is also a (strong) PT -group.

Proof. Suppose that G is a PT -group. Then, by Corollary 3.6.16, μG is a topological

subgroup of 
G containing G, and G is C-embedded in μG. It follows that H is a C-

embedded subgroup of the Dieudonné complete topological group μG, so Theorem 6.5.11

implies that H is a PT -group.

If G is a strong PT -group, then G is C-embedded in 
ωG, so that H is C-embedded

in 
ωG. It follows from H ⊂ G that 
ωH ⊂ 
ωG. We conclude that H is C-embedded in


ωH and, therefore, H is a strong PT -group. �

Here is a characterization of strong PT -groups which should be compared to Theo-

rem 6.5.11.
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Theorem 6.5.15. A topological group H is a strong PT -group if and only if it is C-
embedded in every topological group H∗ containing H as a Gδ-dense topological subgroup.

Proof. It suffices to observe that each group H∗ containing H as a Gδ-dense subgroup

can be represented as a topological subgroup of the Raı̆kov completion 
H of H . Then,

obviously, H∗ is contained in 
ωH , and H is C-embedded in both 
ωH and H∗. �
The next result follows immediately from Corollary 6.5.9 and the fact that X is Gδ-dense

in μX, for each Tychonoff space X:

Theorem 6.5.16. A topological group G is a PT -group iff μG is a subgroup of 
ωG
containing G.

It is worth mentioning that Theorem 6.5.16 does not hold for strong PT -group, since

there exists a topological group H such that μH = H , but H is not C-embedded in 
ωH
(see Example 6.5.30 below).

Naturally, the following question arises: Which groups G satisfy the equality μG =


ωG? A topological group G is called completion friendly if μG = 
ωG. The next

statement follows from the definition of strong PT -groups:

Proposition 6.5.17. Every completion friendly group G is a strong PT -group.

It is clear from the definition that every Raı̆kov complete group is completion friendly.

It is not quite clear how to answer in ZFC the next question: Is every Moscow group
completion friendly?

To give a partial answer to this question, we first reformulate some of the results obtained

above for the Hewitt–Nachbin completion υG of a PT -group G. The following statement

is well known, it follows from Proposition 6.5.6 and [165, 8.5.13 (h)]:

Proposition 6.5.18. Let Y be a dense subspace of a Tychonoff space X such that the
cellularity Y is Ulam non-measurable. Then the next three conditions are equivalent:

1) X = υY ;
2) X is a Dieudonné complete space in which Y is C-embedded;
3) X = μY .

In particular, conditions 1)–3) are equivalent for every space Y of Ulam non-measurable
cardinality.

According to Proposition 6.5.18, we can rephrase Theorem 6.5.1 as follows:

Theorem 6.5.19. Let G be a Moscow group of Ulam non-measurable cellularity. Then
the operations on G can be extended to the Hewitt–Nachbin completion υG of G in such a
way that υG becomes a topological group containing G as a topological subgroup.

From Propositions 6.5.18, 6.5.2, and Theorem 6.5.19 we obtain:

Proposition 6.5.20. Every Moscow group G of Ulam non-measurable cellularity
satisfies μG = 
ωG = υG and, hence, is completion friendly.

According to item 5) of Corollary 6.4.11, every topological group of countable

cellularity is a Moscow space. Therefore, Proposition 6.5.20 implies the next corollary:

Corollary 6.5.21. Every topological group of countable cellularity is completion
friendly.
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Now we establish a more general fact about topological groups of Ulam non-measurable

cellularity.

Theorem 6.5.22. For a topological group G of Ulam non-measurable cellularity, the
following are equivalent:

a) G is a strong PT -group;
b) G is completion friendly;
c) μG = 
ωG = υG.

Proof. Evidently, c)⇒ b)⇒ a). To show that a) implies c), suppose that G is a strong

PT -group. Then G is C-embedded in 
ωG and, by Proposition 6.5.2, the group 
ωG is

Dieudonné complete. It remains to apply Proposition 6.5.18. �

In particular, a topological group G of Ulam non-measurable cardinality is a strong PT -

group if and only if G is completion friendly. This fact complements Proposition 6.5.17.

Here is a special case of Theorem 6.5.22.

Corollary 6.5.23. An ω-narrow topological group G is a strong PT -group iff it
satisfies μG = 
ωG = υG.

Proof. According to Theorem 5.4.10, the cellularity of every ω-narrow topological

group is not greater than 2ω, so the conclusion follows from Theorem 6.5.22. �

In Section 6.4 it was established that many naturally defined classes of topological

groups are contained in the class of Moscow groups. Therefore, we have the following

corollaries to Theorem 6.5.13:

Theorem 6.5.24. Let G be a topological group satisfying at least one of the following
conditions:

1) t(G) ≤ ω;
2) c(G) ≤ ω;
3) ot(G) ≤ ω;
4) points in G are Gδ’s;
5) G is perfectly κ-normal;
6) G is extremally disconnected;
7) G is a subgroup of a topological group G∗ such that G∗ is a k-space;
8) G is precompact;
9) the g-tightness of G is countable;

10) G is separable.

Then G is a strong PT -group.

Proof. It is enough to combine Theorems 6.4.2, 6.4.9, and Corollary 6.4.11 with

Theorem 6.5.13. �

The above results can be used to identify conditions under which G = 
ωG. Clearly,

this equality holds if and only if G is Gδ-closed in 
G, that is, if and only if G is Gδ-closed

in every topological group in which it is dense.

Corollary 6.5.25. Every Hewitt–Nachbin complete Moscow group H is Gδ-closed
in 
H .
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Proof. Indeed, H is C-embedded in 
ωH , by Proposition 6.5.2. Since H is Hewitt–

Nachbin complete, it follows that H = 
ωH . Thus, H is Gδ-closed in 
H . �
The following simple lemma will be applied in the proof of Theorem 6.5.27.

Lemma 6.5.26. Every Lindelöf subspace L of a Hausdorff space X is Gδ-closed in X.

Proof. Fix any point x ∈ X \ L. For every y ∈ L, take in X disjoint open

neighbourhoods Uy and Vy of x and y, respectively. Since L is Lindelöf, there exists a

countable subset C of L such that L ⊂ ⋃
y∈C Vy. Then P =

⋂
y∈C Uy is a Gδ-set in X that

contains x and is disjoint from L. �
Theorem 6.5.27. Let G be a topological group such that μG is a Lindelöf topological

group (containing G as a subgroup). Then G is completion friendly and, therefore, a strong
PT -group.

Proof. Indeed, μG can be interpreted as a subgroup of 
G such that G ⊂ μG ⊂ 
ωG.

By Lemma 6.5.26, μG is Gδ-closed in 
G. It follows that μG = 
ωG. Thus, G is

completion friendly. �
The case when the Dieudonné completion μG of a topological group G is a Lindelöf

space (not necessarily a group) will be considered in Theorem 6.6.12 and Corollary 6.6.13.

Corollary 6.5.28. Every Lindelöf topological group G is completion friendly and,
therefore, a strong PT -group. In fact, the group G satisfies the equalities G = μG = υG =


ωG.

We will now show how to construct a Lindelöf topological group that is not Moscow.

Our construction makes use of the following simple result:

Proposition 6.5.29. Every regular P-space X of weight ≤ ℵ1 is paracompact and
strongly zero-dimensional.

Proof. Take any open covering γ of X. Since the weight of X does not exceed ℵ1, we

may assume that |γ| ≤ ℵ1 and γ = {Uα : α < ω1}. Since X is a P-space, we may also

assume that all sets Uα are closed. Now put Vα = Uα ∩
⋂

β<α(X \ Uβ), for each α < ω1.

Clearly, since X is a P-space, {Vα : α < ω1} is a disjoint open covering of X refining

γ. �
Example 6.5.30. There exists a Lindelöf hereditarily paracompact topological group

G that fails to be a Moscow space. Further, G contains a dense subgroup H which is a

PT -group, but not a strong PT -group.

In Example 4.4.11, take K to be the discrete two-element group {0, 1}, and let A = ω1.

Then the corresponding Lindelöf P-group G = Gℵ1
is Boolean and satisfies w(G) = ℵ1.

In particular, G has a local base � of cardinality ℵ1 at the neutral element e. Since G is

a regular P-space, we can assume that all elements of � are closed in G. In addition, the

base � = {Uα : α < ω1} can be chosen to satisfy Uβ ⊂ Uα whenever α < β < ω1.

For every α < ω1, let Vα = Uα \ Uα+1. Since G is non-discrete, we can find an

uncountable subset P of ω1 such that Vα = ∅, for each α ∈ P . Choose uncountable

disjoint subsets M1 and M2 of P and put Wi =
⋃

α∈Mi
Vα, where i = 1, 2. Then W1 and W2

are disjoint open subsets of the space Y = G\{e}. It is clear that e is the only accumulation
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point of the sets W1 and W2, so both sets are closed in Y . Hence, {e} = W1 ∩ W2, the

closure is taken in G. Let us define a function f on Y by f (y) = 1 if y ∈ W1, and f (y) = 0

if y ∈ Y \W1. In particular, f (y) = 0 for each y ∈ W2. Since W1 is open and closed in Y ,

this function is continuous on Y . On the other hand, f cannot be extended to a continuous

real-valued function on G, since e is in the closure of both sets W1 and W2. Thus, Y is not

C-embedded in G. In fact, Y is not even C∗-embedded in G.

Now, Y is Gδ-dense in G, since G is a P-space and Y is dense in G. It follows

from Theorem 6.1.7 that G is not a Moscow space and, therefore, the g-tightness of G is

uncountable, by Theorem 6.4.9.

Every proper dense subspace Z of G is not C-embedded in G either. Indeed, by the

homogeneity of G, we may assume that e ∈ G \ Z. Then Z ⊂ G \ {e}. Take the same

function f on G \ {e} that cannot be continuously extended to G. Then, since Z is dense

in G \ {e}, it follows that the restriction of f to Z cannot be continuously extended over G.

Since the P-group G is Lindelöf, it is Raı̆kov complete, by Theorem 4.4.5. As in

Example 4.4.11, we put supp(x) = {α < ω1 : x(α) = 1}, for each x ∈ G. Evidently,

supp(x) is a finite subset of ω1. Then

H = {x ∈ G : | supp(x)| is even}
is a proper subgroup of G. Since the index set ω1 is uncountable, H is dense in G. Therefore,

G = 
H and H is not C-embedded in G. It is also clear that H is a Gδ-dense subgroup of

G, so we have that G = 
ωH . It follows that H is not C-embedded in 
ωH . Hence, H is

not a strong PT -group. Now we can conclude that neither G nor H are Moscow groups,

and that Theorem 6.1.7 and Corollary 6.1.10 cannot be extended from Moscow groups to

the class of strong PT -groups. We also conclude that a Lindelöf topological group need not

be a Moscow space.

Since w(G) = ℵ1, Proposition 6.5.29 implies that every subspace of G is paracompact.

It follows that H is paracompact and, hence, Dieudonné complete and Hewitt–Nachbin

complete, by [165, 5.1.J (f) and 8.5.13 (h)]. So, H is a PT -group. �

There is another way to demonstrate that the groups G and H in Example 6.5.30 are not

Moscow. Since the cardinality of G and H is ℵ1, and the groups G and H are not discrete,

it is enough to refer to Corollary 6.2.8 saying that, for a space of Ulam non-measurable

cardinality, to be both Moscow and a P-space is possible only if the space is discrete.

Exercises

6.5.a. Is a closed subgroup of a (strong) PT -group a (strong) PT -group?

6.5.b. Suppose that a (strong) PT -group H is a dense (or Gδ-dense) subgroup of a topological

group G. Is G then a (strong) PT -group?

6.5.c. Use Corollary 6.5.21 (and item (a) of Problem 5.1.D) to show that a topological group G
of countable cellularity is topologically isomorphic to a closed subgroup of a product of

second-countable topological groups if and only if the space G is realcompact.

6.5.d. Give an example of an ω-narrow PT -group that cannot be embedded as a closed subgroup

into any product of metrizable topological groups.
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Problems

6.5.A. Let p : G → H be a continuous open homomorphism of topological groups with p(G) = H ,

and suppose that G is a (strong) PT -group. Is H a (strong) PT -group?

6.5.B. Give an example of a Gδ-dense subgroup H of a Raı̆kov complete group such that H fails

to be a PT -group.

Hint. Such an example can be found in Section 6.7.

6.5.C. (S. Romaguera and M. Sanchis [411]) A subset Y of a Tychonoff space X is said to be

z-embedded in X if for every zero-set C in Y , there exists a zero-set F in X such that

F ∩ Y = C. Prove that a topological group G is a PT -group iff it is z-embedded as a dense

subgroup in some Dieudonné complete topological group iff it is z-embedded as a subgroup

in some Dieudonné complete topological subgroup. (This generalizes Theorem 6.5.11; see

also Problem 6.5.4).

6.5.D. Apply item (a) of Problem 5.1.D to generalize the statement in Exercise 6.5.c by proving

that for an ω-narrow topological group G, the following conditions are equivalent:

a) G is a realcompact strong PT -group;

b) G = 
ωG;

c) G is topologically isomorphic to a closed subgroup of a product of second-countable

topological groups.

(See also Problems 5.1.E, 6.5.E, 8.3.C, and Exercise 8.3.a.)

6.5.E. Prove that an ω-balanced strong PT -group G is topologically isomorphic to a closed

subgroup of a product of metrizable topological groups provided that G is realcompact

(this complements Problem 6.5.D).

6.5.F. Let G be a PT -group. Does the equality ψ(μG) = ψ(G) hold?

Open Problems

6.5.1. Is it true in ZFC that every Moscow topological group is completion friendly?

6.5.2. Is the product of a strong PT -group and a compact group a strong PT -group? [Of course,

the answer is “yes” for groups of Ulam non-measurable cardinality.]

6.5.3. Let G be a topological group of countable tightness. Is G × G a strong PT -group? (See

Problems 6.4.2 and 6.4.3.)

6.5.4. Suppose that H is a z-embedded subgroup of a (strong) PT -group G. Is H a (strong)

PT -group? (See Proposition 6.5.14, Theorem 8.2.7, and Problem 6.5.C.)

6.5.5. Let G be a paratopological group which is a completely regular Moscow space. Is μG a

paratopological group (containing G as a dense subgroup)? What if, in addition, G has

countable pseudocharacter?

6.6. Pseudocompact groups and their completions

In this section we apply the techniques developed in the previous sections to pseudo-

compact topological groups and give transparent proofs of some classic results.

Theorem 6.6.1. Let G be a precompact topological group, and Y a dense subspace of
G. Then Y is C-embedded in the Gδ-closure Z of Y in G.

Proof. By Theorem 6.4.2, G is a Moscow space. It follows from Y ⊂ Z ⊂ G that Z
is dense in G. Therefore, by Proposition 6.1.2, Z is Moscow. Since Y is Gδ-dense in Z,

Theorem 6.1.7 implies that Y is C-embedded in Z. �
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If G is any compact space (not necessarily a topological group), and Y is a dense

subspace of G, then the Gδ-closure Z of Y in G is Hewitt–Nachbin complete [165,

3.12.25 (c)]. Therefore, from Theorem 6.6.1 we obtain:

Theorem 6.6.2. Let G be a compact topological group, and Y a dense subspace of G.
Then the Gδ-closure of Y in G is the Hewitt–Nachbin completion of the space Y .

Corollary 6.6.3. [W. W. Comfort and K. A. Ross] Let G be a topological group,
and Y a dense subspace of G. Then the next three conditions are equivalent:

a) Y is Gδ-dense in G, and G is pseudocompact;
b) Y is C-embedded in G, and G is pseudocompact;
c) Y is pseudocompact.

Proof. By Theorem 6.6.1, a) implies b). Obviously, b) implies c). Finally, if Y is

pseudocompact, then G is pseudocompact, since Y is dense in G. Also, Y is Gδ-dense in

G, by Proposition 3.7.20. Thus, c) implies a). �

Theorem 6.6.4. Let G be a pseudocompact topological group. Then the Raı̆kov
completion 
G of G (and 
ωG) coincides, as a topological space, with the Čech–Stone
compactification βG of the space G.

Proof. The Raı̆kov completion 
G is a compact topological group containing G as

a topological subgroup, by Corollary 3.7.18. Since G is pseudocompact, Corollary 3.7.21

implies that it is Gδ-dense in 
G and, therefore, 
ωG = 
G. Also, the space G is Moscow, by

Theorem 6.4.2. Since 
G is homogeneous, it follows from Theorem 6.1.8 or Corollary 6.6.3

that G is C-embedded in 
G. Hence, 
G is the Čech–Stone compactification of G. �

Combining Theorem 6.6.4 and Corollary 6.6.3, we obtain the following strengthening

of Corollary 3.7.21:

Corollary 6.6.5. A precompact topological group G is pseudocompact if and only if
G intersects every non-empty Gδ-set in 
G.

Corollary 6.6.6. Every pseudocompact topological group G is Gδ-dense and C-
embedded in its Raı̆kov completion 
G.

Corollary 6.6.7. Every pseudocompact topological group G is completion friendly,
that is, satisfies the condition μG = 
ωG.

Proof. Indeed, the space μG is pseudocompact, since it contains a dense pseudocom-

pact subspace. Therefore, since μG is Dieudonné complete, the space μG is compact [165,

8.5.13 (c)]. It follows that μG = βG, as μG is a dense subspace of βG. Now it follows

from Theorem 6.6.4 that μG coincides with 
ωG = 
G. �

Theorem 6.6.4 can be extended to precompact topological groups as follows:

Corollary 6.6.8. [M. G. Tkachenko] Let G be a precompact topological group.
Then the Hewitt–Nachbin completion υG of G has a natural structure of a topological
group, with continuous multiplication and inverse, extending the multiplication and inverse
in G. Hence, G is a PT -group.
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Proof. Take the compact topological group 
G containing G as a dense subgroup. By

Theorem 6.6.2, the Gδ-closure Z of G in 
G is the Hewitt–Nachbin completion of G, that

is, Z = υG. It is also clear that Z is a topological subgroup of 
G. �

Corollary 6.6.9. [W. W. Comfort and K. A. Ross] Every continuous real-valued
function on a pseudocompact topological group is uniformly continuous.

Proof. Let f be a continuous real-valued function defined on a pseudocompact

topological group G. By Theorem 6.6.4, f can be extended to a continuous function g
on the compact group 
G containing G as a dense subgroup. Since every continuous

function on a compact group is uniformly continuous by Proposition 1.8.11, the restriction

f = g�G is uniformly continuous on G. �

Corollary 6.6.10. The topological product of any family of pseudocompact groupy
spaces is pseudocompact.

Proof. According to Corollary 2.4.2, every pseudocompact paratopological group is

a topological group. Therefore, every pseudocompact groupy space is homeomorphic to a

dense subspace of a compact topological group, by Corollary 3.7.18. It remains to refer to

the fact that the product of any family of compact topological groups is a compact topological

group, and to apply Corollary 6.6.3, since the Gδ-characterization of pseudocompactness

for dense subspaces of topological groups is obviously productive. �

Corollary 6.6.10 implies the next important statement known as the Comfort–Ross

theorem:

Corollary 6.6.11. [W. W. Comfort and K. A. Ross] The product of any family of
pseudocompact topological groups is a pseudocompact topological group.

Theorem 6.6.12. If G is a topological group such that the space μG is Lindelöf, then
the topological group 
ωG is also Lindelöf.

Proof. The group 
G is a complete uniform space with respect to the two-sided group

uniformity of 
G, and μG is the completion of G with respect to the maximal uniformity

on G. Therefore, the identity mapping of G onto itself can be extended to a continuous

mapping f of μG to 
G. Put X = f (μG). Then X is a Lindelöf subspace of 
G, G ⊂ X,

and G is Gδ-dense in X, since G is Gδ-dense in μG and f is continuous. Hence, X ⊂ 
ωG.

However, since X is Lindelöf, every point of 
G\X can be separated from X by a Gδ-set in


G (see [165, 3.12.24]). It follows that 
ωG ⊂ X, and therefore, 
ωG = X. Hence, 
ωG
is Lindelöf. �

Corollary 6.6.13. If G is a topological group such that the space μG is Lindelöf,
then G is a dense topological subgroup of a Lindelöf topological group and therefore, the
group G is ω-narrow.

Exercises

6.6.a. Apply Corollary 6.6.3, Problem 4.1.F, and Exercise 1.6.e to verify that the Gδ-tightness of

every pseudocompact topological group is countable.
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6.6.b. Generalize Theorem 6.6.1 as follows: If H is a locally precompact topological group, and

Y a dense subspace of H , then Y is C-embedded in the Gδ-closure Z of Y in H . (See

Exercises 2.4.5 and 3.7.J.)

6.6.c. Suppose that H is a locally precompact topological group. Prove that the following are

equivalent:

a) H is locally pseudocompact;

b) H is Gδ-dense in 
H ;

c) H is C-embedded in 
H .

6.6.d. Show that if a pseudocompact topological group G is algebraically generated by a countable

family of metrizable subgroups, then G is compact and metrizable.

6.6.e. Show that the topological group Rω1 is not algebraically generated by a countable family of

metrizable subgroups.

Problems

6.6.A. Present an example of a pseudocompact topological group which is not countably compact

(note that no Σ-product of compact topological groups has the required combination of

properties).

Hint. One can construct such a group as a proper dense subgroup of ΣDc, making use of

Theorem 2.4.15.

6.6.B. (M. G. Tkachenko [475]) Prove that the product G×Y of a pseudocompact topological group

with a pseudocompact space Y is again pseudocompact. Extend the conclusion to the case

when G is a pseudocompact groupy space (see also Problem 6.10.E).

6.6.C. (M. G. Tkachenko [475]; for the special case of an invariant subgroup, W. W. Comfort and

L. C. Robertson [120]) Let H be a closed subgroup of a topological group G. Prove that if

both spaces H and G/H are pseudocompact, then so is G (see also Problem 6.10.B).

6.6.D. Give an example of a pseudocompact topological group G such that tδ(G) > ω. Notice that,

in view of Exercise 6.6.a, such a group G must satisfy ω = get(G) < tδ(G).

6.6.E. Prove that the space Y in Theorem 6.6.2 satisfies μY = υY .

6.6.F. Apply Exercise 6.6.b to show that every locally precompact topological group is completion

friendly.

Open Problems

6.6.1. Does there exist a countably compact topological group G with tδ(G) > ω? (See also

Problems 6.6.D and 4.1.F.)

6.6.2. Characterize the topological groups G such that μG is Lindelöf.

Here is a more concrete question in the same direction:

6.6.3. Suppose G is a topological group such that μG is Lindelöf. Is μG a topological group

containing G as a subgroup or, equivalently, is G a PT -group? (See Corollary 6.6.13.)

6.6.4. Characterize the topological groups G such that μG is a Lindelöf topological group

containing G as a subgroup.

6.6.5. Let a countably compact topological group G be algebraically generated by two metrizable

subspaces. Is G metrizable? (See Exercises 6.6.d and 6.6.e.)

6.6.6. Is the topological group Rω1 algebraically generated by two (countably many) metrizable

subspaces?

6.6.7. Do there exist in ZFC two pseudocompact topological groups of countable tightness whose

product has uncountable tightness? (See Problem 5.2.G and Open Problems 5.2.7 and 5.2.8.)

6.6.8. Do there exist pseudocompact quasitopological groups G and H such that both G and H are

Moscow spaces, but the product G × H fails to be pseudocompact? (See Problem 2.4.G.)

Pseudocompact groups and completions
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6.7. Moscow groups and the formula υ(X × Y ) = υX × υY

Under what restrictions on spaces X and Y does the formula υ(X × Y ) = υX × υY
hold? This natural question was given considerable attention in a number of articles. In

particular, the formula holds when X is an arbitrary compact space of Ulam non-measurable

cardinality or if the product space X× Y is pseudocompact [165, 191].

In this section we consider the case when the factors are topological groups. The key

role belongs to Moscow groups and strong PT -groups.

Proposition 6.7.1. Let G =
∏

α∈A Gα be the topological product of topological
groups Gα such that G is a strong PT -group, and the cellularity of G is Ulam non-
measurable. Then υG =

∏
α∈A υGα.

Proof. Clearly, Gα is Gδ-dense in υGα, for each α ∈ A. Therefore, G is Gδ-dense

in G∗ =
∏

α∈A υGα. Each Gα is a strong PT -group, since it is C-embedded in the product

group G (see Proposition 6.5.14). Obviously, the cellularity of each group Gα is Ulam non-

measurable. Therefore, according to Proposition 6.5.18, each υGα = μGα is a topological

group, and G∗ is also a topological group.

Since G is a strong PT -group and G is Gδ-dense in G∗, it follows from Theorem 6.5.15

that G is C-embedded in G∗. Since the group G∗ is obviously Hewitt–Nachbin complete

and the cellularity of G is Ulam non-measurable, it follows that υG =
∏

α∈A υGα. �

Proposition 6.7.1 and Theorem 6.5.13 imply the next statement:

Theorem 6.7.2. Let G =
∏

α∈A Gα be a product of topological groups such
that the space G is Moscow and the cellularity of G is Ulam non-measurable. Then
υG =

∏
α∈A υGα.

Under the same restrictions as in Proposition 6.7.1 and Theorem 6.7.2, a similar formula

holds for the Dieudonné completions. Indeed, by Proposition 6.5.18, the Dieudonné

completion and the Hewitt–Nachbin completion coincide, for every Tychonoff space of

Ulam non-measurable cardinality.

Corollary 6.7.3. Let � = {Gα : α ∈ A} be a family topological groups Gα such
that the cardinality of the product group G =

∏
α∈A Gα is Ulam non-measurable. Then the

formula

υG =
∏
α∈A

υGα (6.1)

holds if at least one of the following conditions is satisfied:

1) every group in � is precompact;
2) every group in � is k-separable;
3) ℵ1 is a precalibre of every space in �;
4) the cellularity of the product space G is countable;
5) the cellularity of every group in � is countable, and MA + ¬CH holds;
6) the tightness of the product space G is countable;
7) the g-tightness of the product group G is countable;
8) the κ-tightness of the space G is countable.
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Proof. Notice that if the Souslin number of the product group G is countable, then

G is Moscow, by item 5) of Corollary 6.4.11. According to Corollaries 4.1.8 and 5.3.22,

this takes care of cases 1)–5). Similarly, in cases 6)–8) the group G is also Moscow, by

Corollary 6.4.11. Therefore, Theorem 6.7.2 applies. �

If the group G in Corollary 6.7.3 satisfies μG = υG, then we can drop the assumption

that the cardinality of G is Ulam non-measurable. In particular, this is the case when the

cellularity of every Gα ∈ � is countable, as in items 1)–5) above (see Proposition 6.5.18).

It is also worth remarking that if the factors Gα in Corollary 6.7.3 are cosmic or have

countable pseudocharacter, then each space Gα is realcompact, and the formula (6.1) holds

trivially (in the case when ψ(Gα) ≤ ω for each α ∈ A, one has to apply Corollary 6.10.10

below).

For the special case of the product of two groups more results are available. We need

the following simple result.

Proposition 6.7.4. If Xi is a minimal Dieudonné extension of Yi for i = 1, . . . , k, then
X =

∏k
i=1 Xi is a minimal Dieudonné extension of Y =

∏k
i=1 Yi.

Proof. We may assume that k = 2, that is, X = X1 × X2 and Y = Y1 × Y2. Clearly,

X is Dieudonné complete and Y is dense in X. Let T be a Dieudonné complete space such

that Y ⊂ T ⊂ X. First, we show that Y1×X2 ⊂ T . Assume the contrary. Then there exists

(a, b) ∈ Y1 ×X2 such that (a, b) /∈ T . Then

F = {x ∈ X2 : (a, x) ∈ T} = ({a} ×X2) ∩ T

is a closed subspace of T containing Y2 and F = X2, since b ∈ X2 \ F . Clearly, F is

Dieudonné complete. This contradicts the minimality of X2. It follows that Y1 ×X2 ⊂ T .

Now it remains to repeat the above argument with X2 in the role of Y1 and Y1, X1 in the

roles of Y2, X2, respectively. Hence, T = X1 ×X2. �

Theorem 6.7.5. Let G1 and G2 be two completion friendly groups. Then the next
conditions are equivalent:

1) G1 ×G2 is a PT -group;
2) μ(G1 ×G2) = μG1 × μG2;
3) the group G1 ×G2 is completion friendly;
4) G1 ×G2 is a strong PT -group.

Proof. Clearly, 3) implies 4), and 4) implies 1). Let us show that 1) implies 2). We

have 
ω(G1 ×G2) = 
ωG1 × 
ωG2 and 
ωGi = μGi, for i = 1, 2. Therefore,


ω(G1 ×G2) = μG1 × μG2.

Since G1×G2 is a PT -group, we have G1×G2 ⊂ μ(G1×G2) ⊂ 
ω(G1×G2). Therefore,

G1 ×G2 ⊂ μ(G1 ×G2) ⊂ μG1 × μG2.

However, by Proposition 6.7.4, μG1×μG2 is a minimal Dieudonné extension of G1×G2.

It follows that μ(G1 ×G2) = μG1 × μG2.

To derive 3) from 2) is even easier. Indeed, we have:

μ(G1 ×G2) = μG1 × μG2 = 
ωG1 × 
ωG2 = 
ω(G1 ×G2).

This completes the proof. �
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Since, by virtue of Theorem 6.5.22, the Dieudonné completion coincides with the

Hewitt–Nachbin completion for each space of Ulam non-measurable cellularity, and the

notion of completion friendly group is equivalent to the notion of strong PT -group, the next

statement is valid:

Corollary 6.7.6. Let G1 and G2 be strong PT -groups of Ulam non-measurable
cellularity. Then the formulae υ(G1 ×G2) = υG1 × υG2 and μ(G1 ×G2) = μG1 × μG2

hold if and only if G1 ×G2 is a PT -group. In this case, G1 ×G2 is automatically a strong
PT -group.

Proof. It follows from [262, 4.6] that

c(G1 ×G2) ≤ 2c(G1) · 2c(G2).

Since both cardinal numbers c(G1) and c(G2) are Ulam non-measurable, it follows from

the above inequality that so is c(G1 × G2). According to Theorem 6.5.22, the groups G1

and G2 are completion friendly. Hence, it remains to apply Theorem 6.7.5. �
We will see in the end of the section that the product of two Moscow groups may be

a strong PT -group which is not a Moscow group (Theorem 6.7.14). Now we need the

following lemma:

Lemma 6.7.7. If X is any Tychonoff space and Y is a compact space, then X × Y is
C-embedded in μX× Y .

Proof. Take any continuous real-valued function f on X × Y . We have to extend f
continuously to μX × Y . Let C(X) and C(Y ) be the families of continuous real-valued

functions on X and Y , respectively.

With each x ∈ X we associate a real-valued function fx ∈ C(Y ) by the rule

fx(y) = f (x, y). We endow C(Y ) with the metric 
 corresponding to the usual sup-

norm, and with topology of uniform convergence, generated by 
. In other words, we

put 
(p, q) = supy∈Y |p(y)− q(y)|, for p, q ∈ C(Y ).

The mapping g : X → C(Y ) given by the rule g(x) = fx is continuous. This follows

from the compactness of Y by an obvious standard argument. Since C(X) is metrizable, it

is Dieudonné complete. Therefore, there is a continuous extension g̃ of g to μX, that is,

there is a continuous mapping g̃ : μX → C(Y ) which coincides on X with g.

Now we define a function F on μX×Y by F (z, y) = g̃(z)(y). Clearly, the restriction of

F to X×Y coincides with f . We claim that F is continuous at each point (a, b) ∈ μX×Y .

Indeed, for any positive number ε, there exists an open neighbourhood U of a in μX such

that 
(g̃(z), g̃(a)) < ε/2 whenever z ∈ U. We also can choose an open neighbourhood V
of b in Y such that

|g̃(a)(y)− g̃(a)(b)| < ε

2
,

for each y ∈ V . Now it is clear that the neighbourhood U × V of (a, b) in μX× Y has the

property that

|F (z, y)− F (a, b)| ≤ |F (z, y)− F (a, y)|+ |F (a, y)− F (a, b))|
= |g̃(z)(y)− g̃(a)(y)|+ |g̃(a)(y)− g̃(a)(b)|
<

ε

2
+

ε

2
= ε

whenever (z, y) ∈ U × V . This completes the proof. �
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Theorem 6.7.8. [W. W. Comfort and S. Negrepontis] If X is a Tychonoff space and
Y is any compact space, then μ(X× Y ) = μX× Y .

Proof. It follows from Lemma 6.7.7 that μX × Y ⊂ υ(X × Y ). It is also clear

that the space μX × Y is Dieudonné complete and μ(X × Y ) is the smallest Dieudonné

complete subspace of υ(X × Y ) containing X × Y . Therefore, we have the inclusion

μ(X× Y ) ⊂ μX× Y .

On the other hand, μX × Y is a minimal Dieudonné extension of X × Y , by

Proposition 6.7.4. It follows that μ(X× Y ) = μX× Y . �
Theorem 6.7.9. The product of a completion friendly group G with a compact group

H is a completion friendly group, and therefore, a strong PT -group.

Proof. Indeed, μ(G×H) = μG×H = μG×μH , by Theorem 6.7.8. It remains to

apply Theorem 6.7.5. �
We now give a criterion for the product of two topological groups to be a PT -group.

Theorem 6.7.10. The product G × H of topological groups G and H is a PT -group
if and only if G and H are PT -groups and the formula μ(G×H) = μG× μH holds.

Proof. If G and H are PT -groups, then μG and μH are topological groups. Therefore,

μG×μH is also a topological group. It follows from μ(G×H) = μG×μH that μ(G×H)

is a topological group. Hence, G×H is a PT -group.

Conversely, suppose that G × H is a PT -group. Clearly, the product group G × H
contains C-embedded copies of the groups G and H , so G and H are PT -groups, by

Proposition 6.5.14. It remains to show that the formula μ(G × H) = μG × μH holds.

Since μ(G×H) is a topological group containing G×H as a dense subgroup, μ(G×H)

can be represented as a topological subgroup of the Raı̆kov completion 
(G × H) of the

group G × H . Similarly, since G × H is a dense subgroup of the topological group

μG × μH , the group μG × μH can be also represented as a topological subgroup of


(G × H). Both spaces μ(G × H) and μG × μH are minimal Dieudonné extensions of

the space G × H , by Propositions 6.5.5 and 6.7.4. According to Proposition 6.5.3, the

intersection of μ(G × H) and μG × μH , as subsets of 
G×H , is again a Dieudonné

complete extension of G × H , so by the minimality of μ(G × H) and μG × μH , they

coincide. Thus, μ(G×H) = μG× μH . �
Theorem 6.7.11. The product of a PT -group G and a compact group H is a PT -group.

Proof. By Theorem 6.7.8, the formula μ(G × H) = μG × H = μG × μH holds.

Since H is also a PT -group, the conclusion follows from Theorem 6.7.10. �
Theorem 6.7.10 can obviously be extended to finite products of PT -groups. However,

for the product of an arbitrary family of topological groups, the corresponding criterion

takes a slightly different form.

Theorem 6.7.12. [A. V. Arhangel’skii and M. Hušek] Suppose that G =
∏

α∈A Gα

is the product of topological groups Gα’s. Then G is a PT -group if and only if each Gα is
a PT -group, and the formula

μ(
∏
α∈A

Gα) ⊂
∏
α∈A

μGα (6.2)
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holds.

Proof. If (6.2) holds, and each Gα is a PT -group, then
∏

α∈A μGα is a Dieudonné

complete topological group containing the Dieudonné completion μG of the topological

group G. Hence, G is a PT -group, by Corollary 6.5.9.

Conversely, suppose G is a PT -group. Then Gα is a PT -group, for each α ∈ A.

It remains to show that the formula (6.2) holds. Since G is a PT -group, μG can be

represented as a topological subgroup of the Raı̆kov completion 
G of G. Similarly, the

group
∏

α∈A μGα can be also represented as a topological subgroup of 
G. The space

μG is a minimal Dieudonné extension of the space G. Since the intersection of μG and∏
α∈A μGα (as subsets of 
G) is again a Dieudonné extension of G, it follows from the

minimality of μG that μG is contained in
∏

α∈A μGα. Thus, the inclusion (6.2) holds. �
We now present an example of two strong PT -groups whose product is not a PT -group.

In addition, both factors are Moscow spaces, but the product space is not.

Example 6.7.13. [A. V. Arhangel’skii] Let X be a zero-dimensional pseudocompact

non-compact topological group (see item b) of Example 1.6.39). Fix a covering η of X
satisfying the next three conditions:

1) every element of η is an open and closed subset of X;

2) no finite subfamily of η covers X;

3) the union of any finite subfamily of η belongs to η.

Consider the space G = Cη(X) of all continuous functions on X with values in the

discrete two-element group D = {0, 1} endowed with the topology of uniform convergence

on elements of η. A basic open neighbourhood of the neutral element in G has the form

OP = {f ∈ G : f (x) = 0 for each x ∈ P},
where P is an arbitrary element of η. Clearly, G is a topological group, and each OP is an

open subgroup of G. Since all elements of η are open in X, it is also clear that the group G
is Raı̆kov complete.

By Theorem 3.7.2 and Corollary 4.1.8, the cellularity of X is countable. Hence, there

exists a countable subfamily γ of η such that
⋃

γ is dense in X. For each P ∈ γ, the

set UP of all f ∈ G such that f (x) = 0 for every x ∈ P is open in G and contains the

zero-function θ on X which is the neutral element of G. It is obvious that θ is the only

element in
⋂{UP : P ∈ γ}. Therefore, θ is a Gδ-point in G. Since G is a topological

group, it follows that the pseudocharacter of G is countable. Hence, G is a Moscow group.

The group X is also a Moscow space, by Theorem 6.4.2. Since X is pseudocompact,

Theorem 6.6.4 implies that X is C-embedded in βX. It follows from Proposition 6.5.18 that

μX = υX = βX, since c(X) ≤ ω.

Consider the natural evaluation mapping ψ of the product space X×G to the discrete

space D = {0, 1} which on this occasion we treat as a subspace of R. The mapping ψ is

defined by ψ(x, f ) = f (x), for all x ∈ X and f ∈ G. Clearly, ψ is continuous, since the

elements of η are open sets. Observe that βX ×G is also a topological group and X ×G
is Gδ-dense in βX×G.

Claim. The group X×G is not C-embedded in βX×G.

Let us check that ψ cannot be extended to a continuous real-valued function on βX×G.

Here we will use property 2) of η. Since the closure in βX of any element of η is obviously
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open and βX is compact, it follows from 2) that the closures of elements of η in βX do not

cover βX. Therefore, we can choose b ∈ βX \X such that b does not belong to the closure

of any element of η. Consider the point (b, θ) ∈ βX×G and the sets B = {(x, θ) : x ∈ X}
and C = {(x, fP ) : P ∈ η, x ∈ X \ P}, where fP ∈ G is the characteristic function of

X \ P , that is, fP (x) = 0 for each x ∈ P and fP (x) = 1 for each x ∈ X \ P . Clearly, ψ
takes the value 1 at each element of C and the value 0 at each element of B. Also, the point

(b, θ) is in the closure of B. Therefore, if ψ could be continuously extended to (b, θ), the

value of this extension at (b, θ) should be 0. On the other hand, b is not in the closure of any

P ∈ η. Therefore, (b, θ) is in the closure of C as well, and the extended function should be

1 at (b, θ), a contradiction.

Finally, let us show that the group H = X ×G is not a PT -group, while both factors

X and G are strong PT -groups. Indeed, assume that H is a PT -group. Then μH is

a topological group. Therefore, μH can be represented as a subgroup of the Raı̆kov

completion 
H containing H . Since βX = 
X, by Theorem 6.6.4, we have the equalities


H = 
X× 
G = βX×G = μX× μG. Therefore, by Propositions 6.5.5 and 6.7.4, 
H
is a minimal Dieudonné extension of H . Since H ⊂ μH ⊂ 
H , it follows that μH = 
H .

However, H is C-embedded in μH . Hence, H = X×G is C-embedded in 
H = βX×G,

which contradicts the above Claim. This contradiction completes the proof that H = X×G
is not a PT -group.

It also follows from Theorem 6.4.9 that the g-tightness of βX×G and of H = X×G
is uncountable. �

Several other observations about the construction in Example 6.7.13 are in order. First,

for the role of the group X we may choose the Σ-product of ω1 copies of the discrete group

D = {0, 1}. Then, according to Theorem 2.4.15 (or Theorem 6.6.4), βX is the product Dω1 ,

the weight of X and βX is ℵ1, and the cardinality of G is ℵ1. In this case X is countably

compact and Fréchet–Urysohn, by Corollary 1.6.35.

Also, the space G is hereditarily Hewitt–Nachbin complete. Indeed, by virtue of

Corollary 3.4.26, every Abelian topological group of countable pseudocharacter can be

mapped by a continuous isomorphism onto a metrizable topological group M. Since

the cardinalities of G and M are Ulam non-measurable, and M is metrizable (hence,

paracompact), it follows from [165, 5.5.10 (b)] that the space M is hereditarily Hewitt–

Nachbin complete. Therefore, G is also hereditarily Hewitt–Nachbin complete, by [165,

3.11.B (a)]. Observe that X and G are strong PT -groups of Ulam non-measurable

cardinality, so Theorem 6.7.10 and Proposition 6.5.20 imply that μ(X ×G) = μX × μG
and υ(X×G) = υX× υG.

The group βX × G is not Moscow, since otherwise X × G, as a dense subspace of

βX×G, would be a Moscow space and, therefore, a strong PT -group. On the other hand,

βX × G is, obviously, Raı̆kov complete and, hence, a strong PT -group. Thus, a strong

PT -group need not be a Moscow group, and a Gδ-dense subgroup of a strong PT -group

need not be a PT -group.

We summarize the most important part of information collected while we discussed

Example 6.7.13 in the next statement:

Theorem 6.7.14. There exist a countably compact topological group X and a Raı̆kov
complete group G of countable pseudocharacter with the following properties:

1) the product X×G is not a PT -group;
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2) the product βX×G is not a Moscow group;
3) the product βX×G is a strong PT -group and even a completion friendly group;
4) βX×G = μX×G = μX× μG = υX× υG = υ(X×G) = μ(X×G);
5) the groups X, βX, and G are Moscow groups of countable g-tightness;
6) the g-tightness of βX×G (and of X×G) is uncountable.

The next corollary follows from Proposition 6.5.21 and Theorem 6.7.9:

Corollary 6.7.15. The product of a topological group of countable cellularity and a
compact group is a completion friendly group, and therefore, a strong PT -group.

Exercises

6.7.a. Verify that the group G in Example 6.7.13 is not ω-narrow.

6.7.b. Apply Corollary 6.6.10 to deduce the formula υ
∏

i∈I
Xi =

∏
i∈I

υXi in the case when each

Xi is a pseudocompact groupy space.

6.7.c. Show that if G =
∏

i∈I
Gi is a product of topological groups and G is a strong PT -group,

then μG =
∏

i∈I
μGi. In particular, the equality holds if the group G is Moscow (see

Proposition 6.7.1).

6.7.d. (M. G. Tkachenko [490]) Prove that the product of a Moscow topological group with a

metrizable group is a PT -group.

Hint. Verify that the product of a Moscow space with a first-countable space is Moscow.

Problems

6.7.A. (M. G. Tkachenko [490]) Prove that if X is a weakly Lindelöf completely regular space and

Y is a realcompact P-space, then υ(X × Y ) ∼= υX × Y .

6.7.B. (M. G. Tkachenko [490]) Show that the product of a Lindelöf topological group G with a

precompact group H is a PT -group. Extend the result to the case when H is an arbitrary

subgroup of a Lindelöf Σ-group.

6.7.C. (M. G. Tkachenko [490]) Extend the conclusion in Exercise 6.7.d to the product of a Moscow

topological group with a feathered topological group.

6.7.D. (M. Sanchis [416]) Prove that the formula μ(
∏

i∈I
Gi) ∼=

∏
i∈I

μGi holds for an arbitrary

product
∏

i∈I
Gi of locally pseudocompact topological groups.

6.7.E. (A. V. Arhangel’skii and M. Hušek [54]) Suppose that S1, . . . , Sn and μ(
∏n

i=1
Si) are

topological semigroups. Prove that the equality μ(
∏n

i=1
Si) =

∏n

i=1
μSi holds. Show

that the similar equality remains valid for the Hewitt–Nachbin completion.

Open Problems

6.7.1. Is every ω-narrow topological group a PT -group?

6.7.2. Let G =
∏

n∈ω
Gn be the product of completion friendly topological groups Gn. Assume

also that G is a PT -group. Is the formula μG =
∏

n∈ω
μGn valid?

6.7.3. Let G be a topological group, and suppose that the formula μ(G × H) ∼= μG × μH holds,

for each (strong) PT -group H . Is G locally compact?

6.7.4. Is every completely regular paratopological group of countable pseudocharacter Dieudonné

complete? (See also Problems 5.7.2, 5.7.3, and Corollary 6.10.10.)

6.7.5. Let G =
∏

i∈I
Gi be a product of paratopological groups. Does the formula μG =∏

i∈I
μGi hold under the assumption that the o-tightness (or cellularity) of G is countable?
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6.8. Subgroups of Moscow groups

Since every topological group G is a dense subgroup of its Raı̆kov completion 
G, it

follows from Example 6.7.13 that not every (dense) subgroup of a strong PT -group is a

PT -group. However, we know that a C-embedded subgroup of a (strong) PT -group is a

(strong) PT -group, by Proposition 6.5.14. In particular, if G is a PT -group such that the

space G is normal, then every closed subgroup of G is a PT -group. The next result follows

from Proposition 6.5.2:

Theorem 6.8.1. If G is a Moscow group, then every subgroup H of G which is C-
embedded in G is C-embedded in 
ωH and, therefore, is a strong PT -group.

Corollary 6.8.2. If G is a Moscow group, and the space G is normal, then every
closed subgroup H of G is C-embedded in 
ωH and, therefore, is a strong PT -group.

We will see in Example 6.8.8 below that not every closed subgroup of a Moscow group

is a Moscow group, not even closed C-embedded subgroups of Moscow groups.

Now we present a general construction that shows that closed subgroups of topological

groups need not be as nice as the groups themselves. Our construction is based on the

following lemma:

Lemma 6.8.3. Every subgroup H of a topological group G can be represented as a
closed invariant subgroup of a Gδ-dense subgroup of the topological group Gω1 .

Proof. Let M be the Σ-product of ω1 copies of the topological group G (over the

neutral element e of Gω1 ). Then, clearly, M is a Gδ-dense subgroup of Gω1 . Consider the

mapping i of G to the diagonal Δ of Gω1 defined by the rule παi(g) = g for all g ∈ G and all

α ∈ ω1, where πα : Gω1 → G is the projection onto the αth factor. It is clear that i(G) = Δ

and i is a topological isomorphism.

Put H∗ = i(H), and let E be the smallest subgroup of Gω1 containing both M and H∗.

It follows from the definition of E that Δ ∩ E = H∗. Indeed, the inclusion H∗ ⊂ Δ ∩ E is

evident. Conversely, suppose that h = x1y1 · · · xkykxk+1 ∈ Δ∩E, where x1, . . . , xk+1 ∈ H∗

and y1, . . . , yk ∈ M. Clearly, there exists α ∈ ω1 such that πα(yi) = e, for each i = 1, . . . , k.

Hence, πα(h) = πα(x1) · · ·πα(xk+1) ∈ H . In addition, from h ∈ Δ it follows that

πβ(h) = πα(h) for each β ∈ ω1, so that h ∈ H∗. This implies that Δ ∩ E ⊂ H∗.

Hence, H∗ = Δ ∩ E.

Clearly, Δ is closed in Gω1 . It follows that H∗ is closed in E. Since E contains M, the

group E is Gδ-dense in Gω1 . The group H∗ is, obviously, topologically isomorphic to H .

It remains to note that Δ is an invariant subgroup of Gω1 because the coordinates of each

element in Δ coincide. Therefore, H∗ = Δ ∩ E is an invariant subgroup of E. �
Here is an interesting corollary to Lemma 6.8.3:

Theorem 6.8.4. Every Abelian topological group H can be represented as a closed
subgroup of a Gδ-dense subgroup of the product of some family of metrizable Abelian
groups.

Proof. This follows from Lemma 6.8.3 and the fact that every Abelian topological

group H can be represented as a subgroup of the product of a family of metrizable Abelian

groups (see Theorem 3.3.15). �
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Corollary 6.8.5. Every Abelian topological group H can be represented as a closed
subgroup of a Moscow Abelian group.

Proof. Indeed, according to Corollary 6.3.16, dense subspaces of products of metriz-

able spaces are Moscow. �
By Example 6.7.13, there exists an Abelian topological group that is not Moscow.

Hence, from Corollary 6.8.5 it follows that not every closed subgroup of a Moscow group

is a PT -group. Let us show that even closed C-embedded subgroups of Moscow groups

can fail to be Moscow. We start with two lemmas. The first of them will be extended to a

larger class of groups in Theorem 8.1.6.

Lemma 6.8.6. Let f be a continuous real-valued function defined on a Lindelöf P-
group H . Then there exists an open invariant subgroup N of H such that f is constant on
every coset xN of N in H .

Proof. For every r ∈ R, let Ur = f−1(r). Since the space R is first-countable, every

Ur is a Gδ-set in H . As H is a P-space, the sets Ur are open in H . Hence, γ = {Ur : r ∈ R}
is a disjoint open covering of H . Using the Lindelöf property of H , we can find a countable

set A ⊂ R such that H =
⋃

r∈A Ur.

Denote by � the family of all open invariant subgroups of H . Since the group H is

ω-narrow, b) of Lemma 4.4.1 implies that � is a base at the identity of H . Fix an element

r ∈ A. For every x ∈ Ur, there exists Nx ∈ � such that xNx ⊂ Ur. Clearly, the set Ur is

Lindelöf as a closed subset of H , and {xNx : x ∈ Ur} is an open covering of Ur. Therefore,

there exists a countable set Cr ⊂ Ur such that Ur =
⋃

x∈Cr
xUx. Then Nr =

⋂
x∈Cr

Nx is an

element of �.

Clearly, N =
⋂

r∈A Nr belongs to �. From our definition of N it follows that the

function f is constant on the coset xN, for each x ∈ H . Indeed, let y ∈ H be arbitrary.

Then y ∈ Ur for some r ∈ A, so we can find x ∈ Cr such that y ∈ xNx. Hence,

yN = xN ⊂ xNx ⊂ Ur, and we conclude that f is constant on the coset yN. �
Lemma 6.8.7. Let H be a Lindelöf subgroup of an ω-narrow topological group G. If

H is a P-space, then H is C-embedded in G.

Proof. Suppose that f : H → R is a continuous function. By Lemma 6.8.6, there

exists an open invariant subgroup N of H such that f is constant on the cosets of N in H .

Since N is open in H , there exists an open neighbourhood U of the identity e in G such that

U ∩H = N. Choose a symmetric open neighbourhood V of e in G such that V 2 ⊂ U.

Claim 1. The function f is constant on the set xV ∩H , for each x ∈ G.

Indeed, suppose that x ∈ G and y1, y2 ∈ xV ∩ H . There exist v1, v2 ∈ V such

that yi = xvi for i = 1, 2. Then y−1
1 y2 = v−1

1 v2 ∈ V 2 ⊂ U, whence it follows that

y−1
1 y2 ∈ U ∩H = N. So, y2 ∈ y1N and, hence, f (y1) = f (y2). This proves Claim 1.

Apply Corollary 3.4.19 to find a continuous homomorphism π : G→ K onto a second-

countable topological group K such that π−1(W ) ⊂ V for some open neighbourhood

W of the identity in K. Let N0 be the kernel of π. Then N0 ⊂ V ⊂ U, whence

N0 ∩ H ⊂ U ∩ H = N. It is clear that xN0 ∩ H ⊂ xV ∩ H , so Claim 1 implies that

f is constant on the set xN0 ∩ H , for each x ∈ G. Therefore, there exists a function

h : π(H)→ R satisfying the equality f = h ◦ π�H .
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Claim 2. The function h is constant on the set yW ∩ π(H), for each y ∈ K.

Indeed, let y ∈ K and z1, z2 ∈ yW ∩π(H) be arbitrary points. Take an element x ∈ G
with π(x) = y and put V0 = π−1(W ). Then V0 ⊂ V and xV0 = π−1π(xV0). We thus have

yW ∩ π(H) = π(xV0 ∩H) ⊂ π(xV ∩H).

So, one can take elements v1, v2 ∈ V such that xvi ∈ H and π(xvi) = zi for i = 1, 2. Since

f = h ◦ π�H , we have f (xvi) = h(zi) for i = 1, 2. Since the elements xv1 and xv2 are in

xV ∩H , it follows that f (xv1) = f (xv2), by Claim 1. This implies immediately the equality

h(z1) = h(z2) and proves Claim 2.

It follows from Claim 2 that the function h is continuous on the subgroup H ′ = π(H)

of K. Take an open neighbourhood O of the identity in K such that OO−1 ⊂ W . Claim 2

enables us to extend h to a locally constant function on the open set H ′O ⊂ K. To see

this, take arbitrary points z ∈ H ′, y ∈ zO and put h∗(y) = h(z). This definition is

correct by Claim 2. Indeed, suppose that y ∈ z1O ∩ z2O for some z1, z2 ∈ H ′. Then

z−1
1 z2 ∈ OO−1 ⊂ W , whence z2 ∈ z1W . Hence, Claim 2 implies that h(z1) = h(z2), that

is, the definition of h∗(y) does not depend on the choice of an element z ∈ H ′. It is also

clear that h∗�H ′ = h. In addition, our definition of the function h∗ implies that it is constant

on the set zO for each z ∈ H ′. In particular, h∗ is continuous on H ′O.

Denote by F the closure of H ′ in K. It is clear that F ⊂ H ′O, so h∗�F is a continuous

function on F . Since F is a closed subset of the second-countable space K, h∗�F can be

extended to a continuous function h̃ on K. Then f̃ = h̃ ◦ π is a continuous real-valued

function on G which satisfies f̃ �H = f . Thus, H is C-embedded in G. �
Example 6.8.8. A closed C-embedded subgroup of a Moscow topological group may

fail to be Moscow.

Let H be a non-discrete Lindelöf Abelian P-group (see Example 4.4.11). Then H is

ω-narrow, so it admits an embedding as a subgroup into a topological product P of second-

countable groups. Let Σ ⊂ Pω1 be the Σ-product of ω1 copies of the group P over the

neutral element e. Consider the diagonal subgroup H∗ of H in Pω1 and denote by G the

subgroup of Pω1 generated by Σ ∪ H∗. It is easy to verify that G is dense in Pω1 and

H∗ is closed in G (see Lemma 6.8.3). In addition, Pω1 is the product of second-countable

groups, so the cellularity of Pω1 is countable and, hence, this group is Moscow, by 3) of

Corollary 6.4.11. Therefore, G is also a Moscow group as a dense subgroup of Pω1 .

By Lemma 6.8.7, the group H∗ is C-embedded in G. It remains to note that the non-

discrete Lindelöf P-group H ∼= H∗ cannot be a Moscow space, by Corollary 6.2.9. �
The example above also shows that a closed non-discrete subgroup of a Moscow

topological group can be a P-group (compare this with Corollary 6.2.8).

Exercises

6.8.a. Suppose that Hi is an open subgroup of a topological group Gi, for each i ∈ I. Show that if

the product group G =
∏

i∈I
Gi is Moscow, then so is the group H =

∏
i∈I

Hi.

6.8.b. Give an example of a topological group G such that every subgroup of G is a Moscow space,

but G has uncountable pseudocharacter.

Hint. Take G to be the Σ-product of an uncountable family of non-trivial discrete groups

and apply Theorem 1.6.24 and 3) of Corollary 6.4.11.
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Problems

6.8.A. Show that the condition of ω-narrowness of the group G in Lemma 6.8.7 can be omitted.

6.8.B. Is the Raı̆kov completion of a Moscow topological group Moscow? (See also Problem 6.4.G).

Hint. The answer is “no”. Indeed, as in Example 6.7.13, take X to be a zero-dimensional

pseudocompact non-compact topological group. In fact, one can additionally to choose G to

be separable (see Problem 6.6.A). Therefore, G contains a countable dense subgroup S. Let

also G be the group from Example 6.7.13. Then G is Raı̆kov complete and has countable

pseudocharacter. It follows that S × G is a dense subgroup of the Raı̆kov complete group


X × G, so that 
(S × G) = 
X × G. It is also clear that the group S × G has countable

pseudocharacter and, hence, is Moscow. However, the group 
X × G fails to be Moscow,

as was shown in Example 6.7.13.

6.8.C. Suppose that every subgroup of a topological group G is a Moscow space. Is the o-tightness

of G countable?

Hint. Construct a topological group of countable pseudocharacter which has uncountable

o-tightness.

6.8.D. Prove that every topological group is a quotient of a Moscow topological group.

Hint. One can apply Theorem 7.6.18 of Chapter 7.

6.8.E. Let H be a closed pseudocompact subgroup of a Moscow topological group G. Prove that

the quotient space G/H is Moscow.

Hint. Consider the Raı̆kov completion 
G of the group G, and denote by G∗ the subgroup

of 
G generated by G ∪ H∗, where H∗ is the closure of H in 
G. Show that G is Gδ-

dense in G∗ and conclude, by Corollary 6.1.8, that G∗ is a Moscow group. Since H∗ is a

compact subgroup of G∗, it remains to apply Theorem 6.3.1 (combined with Theorems 1.5.7

and 1.5.16).

Open Problems

6.8.1. Can every topological group be embedded in a Moscow topological group?

6.8.2. Can every topological group be embedded as a closed subgroup in a Moscow topological

group?

6.8.3. Are all subgroups of the product group Zτ Moscow spaces, for any cardinal τ?

6.8.4. Let G be a Moscow topological group and H a closed precompact subgroup of G. Is the

quotient space G/H Moscow? (See also Problem 6.8.E.)

6.9. Pointwise pseudocompact and feathered groups

The theorem of W. W. Comfort and K. A. Ross, stating that every pseudocompact

topological group is C-embedded in its Raı̆kov completion, was discussed in Section 6.6

(see Corollary 6.6.6). Here it is extended to some new classes of topological groups.

A point x ∈ X is called a pseudocompactness point of X if there exists a sequence

{Un : n ∈ ω} of open neighbourhoods of x in X satisfying the condition:

(pp) every sequence {Vn : n ∈ ω} of non-empty open sets in X such that Vn ⊂ Un for each
n ∈ ω, has a point of accumulation in X.

A space X is said to be pointwise pseudocompact if each point of X is a pseudocom-

pactness point. It is easy to see that every pseudocompactness point of X is a point of

canonical weak pseudocompactness of X. Therefore, a pointwise pseudocompact space is

pointwise canonically weakly pseudocompact.
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Recall that a space X is said to be of countable type at a point x ∈ X if there exists

a compact set F ⊂ X with a countable neighbourhood base in X such that x ∈ F . If X
is of countable type at every point x ∈ X, we say that X is a space of pointwise countable
type. Every Čech-complete space as well as any product of a first-countable space with a

Čech-complete space is of pointwise countable type. Note that a topological group G is

feathered if and only if the space G is of pointwise countable type (see Section 4.3).

A point x of a space X is said to be a q-point if there exists a sequence {Un : n ∈ ω}
of open neighbourhoods of x in X satisfying the following condition:

(qp) For every sequence ξ = {xn : n ∈ ω} of points in X such that xn ∈ Un for each
n ∈ ω, there exists a point of accumulation of ξ in X.

A space is called a q-space if all its points are q-points. Obviously, we have:

Proposition 6.9.1. Every q-space is pointwise pseudocompact.

Since each space X of pointwise countable type is, obviously, a q-space, all spaces

of pointwise countable type are pointwise pseudocompact. The next two statements are

obvious.

Proposition 6.9.2. If Y is a dense subspace of a space X, and y ∈ Y is a
pseudocompactness point of Y , then y is also a pseudocompactness point of X.

Proposition 6.9.3. If a homogeneous space X contains a dense pointwise pseudocom-
pact subspace Y , then X is also pointwise pseudocompact.

Corollary 6.9.4. If a topological group G contains a dense pointwise pseudocompact
subspace Y , then G is pointwise pseudocompact.

From Corollary 6.9.4 we obtain:

Corollary 6.9.5. If G is a pointwise pseudocompact topological group, then its
Raı̆kov completion 
G is also a pointwise pseudocompact topological group.

We can considerably improve Corollary 6.9.5. A subset B of a space X is said to be

bounded in X (or simply bounded) if every continuous real-valued function on X is bounded

on B.

Bounded subsets of a Tychonoff space X can be characterized by means of locally finite

families of open sets in X as follows.

Lemma 6.9.6. A subset B of a Tychonoff space X is bounded in X iff for every locally
finite family γ of open sets in X, the set B meets only finitely many elements of γ.

Proof. Suppose that B intersects infinitely many elements of some locally finite family

γ of open sets in X. Then we can define sequences {xn : n ∈ ω} ⊂ B and {Un : n ∈ ω} ⊂ γ
such that xn ∈ Un for each n ∈ ω and xn /∈ Um whenever n < m. For every n ∈ ω, take a

continuous real-valued function fn on X such that fn(xn) = n and fn(X \ Un) = 0. Since

the family γ is locally finite, the function f =
∑

n∈ω fn is continuous on X and unbounded

on B. Therefore, B is not bounded in X.

Conversely, if B is not bounded in X, there exists a continuous function f : X → R
such that f (B) is unbounded. Then the family of open sets γ = {f−1(n, n + 2) : n ∈ Z}
is locally finite in X and B intersects infinitely many elements of γ. �
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We recall that if (X, �) is a uniform space, then the topology of X generated by

� is Tychonoff [165, Coro. 8.1.13]. In particular, all Dieudonné complete spaces are

automatically Tychonoff.

Proposition 6.9.7. The closure of any bounded subset B of a Dieudonné complete
space X is compact.

Proof. We may assume that B is closed in X, since the closure of a bounded subset is,

obviously, bounded. Let us show that B is also closed in the Čech–Stone compactification

βX of X. Assume the contrary. Then we can fix a point z ∈ βX \ B such that z is in the

closure of B in βX. Then, clearly, x ∈ βX \ X. Since X is Dieudonné complete, there

exists a locally finite open covering γ of X such that z is not in the closure of U, for each

U ∈ γ [165, 8.5.13 (b)]. Since B is bounded in X, Lemma 6.9.6 implies that the family η
of all U ∈ γ such that U ∩ B = ∅ is finite.

Since B ⊂ ⋃
η and η ⊂ γ, from the choice of γ it follows that z is not in the closure

of
⋃

η. Therefore, z is not in the closure of B, a contradiction. �

Proposition 6.9.8. Suppose that x is a pseudocompactness point of a Dieudonné
complete space X. Then X is of countable type at x.

Proof. Take a sequence ξ = {Un : n ∈ ω} of open neighbourhoods of x in X
witnessing that x is a pseudocompactness point of X. Since X is regular, we may assume

that Un+1 is contained in Un, for each n ∈ ω. Then the set P =
⋂∞

n=0 Un =
⋂∞

n=0 Un is

closed in X. From the choice of ξ it follows that P is bounded in X. Since X is Dieudonné

complete, Proposition 6.9.7 implies that P is compact. Let us show that ξ is a neighbourhood

base of the set P in X.

Assume the contrary. Then we can fix an open set V in X such that P ⊂ V and

Un \ V = ∅, for each n ∈ ω. Put Wn = Un \ V , for each n ∈ ω. By the choice of ξ, there

exists a point of accumulation y ∈ X for the family η = {Wn : n ∈ ω}. Since Wn ⊂ Un, it

is clear that y belongs to the closure of Un, for each n ∈ ω. It follows that y ∈ P . However,

this is impossible, since y is, obviously, in X \V and P ⊂ V . This contradiction shows that

ξ is a base of the set P in X, so X is of countable type at x. �

From Propositions 6.9.8 and 6.9.3 we obtain the next result:

Theorem 6.9.9. If a Dieudonné complete homogeneous space X contains a dense
pointwise pseudocompact subspace Y , then X is a space of pointwise countable type.

Corollary 6.9.10. Every pointwise pseudocompact topological group is Moscow
and, therefore, a strong PT -group.

Proof. This follows from Theorem 6.4.1, since every pointwise pseudocompact space

is pointwise canonically weakly pseudocompact. �

The Raı̆kov completion of a topological group may have better properties in comparison

with the original group:

Theorem 6.9.11. If a Dieudonné complete topological group G∗ contains a dense
pointwise pseudocompact subgroup, then G∗ is a feathered topological group (therefore, a
paracompact space).
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Proof. Since G∗ is Dieudonné complete and homogeneous, from Theorem 6.9.9 it

follows that G∗ is a space of point countable type. However, every topological group of

pointwise countable type is paracompact, by Corollary 4.3.21. �

It turns out that the group G∗ in Theorem 6.9.11 can be replaced by the Dieudonné

completion of a pointwise pseudocompact group:

Theorem 6.9.12. The Dieudonné completion μG of every pointwise pseudocompact
topological group G is a feathered topological group (therefore, a paracompact space).

Proof. By Corollary 6.9.10, G is Moscow. Therefore, according to Theorem 6.5.1,

μG is a topological group. Evidently, μG is Dieudonné complete. To obtain the desired

conclusion, it remains to apply Theorem 6.9.11. �

The next result can be considered as the converse to Theorem 6.9.12.

Theorem 6.9.13. Every Gδ-dense subspace X of a feathered topological group G is
pointwise pseudocompact.

Proof. Take any point x ∈ X. Since G is a space of pointwise countable type, x
belongs to a compact subspace F of G such that there exists a countable base {Vn : n ∈ ω}
of neighbourhoods of F in G. Put P = F ∩X and Un = Vn∩X, for each n ∈ ω. Obviously,

we have that x ∈ P ⊂ Un, for each n ∈ ω.

Now take any sequence ξ = {Wn : n ∈ ω} of non-empty open sets in X such that

Wn ⊂ Un, for each n ∈ ω. Let us show that there exists a point of accumulation of ξ in X.

Since X is dense in G, there exists an open subset On of G such that On ∩ X = Wn

and On ⊂ Vn. Since F is compact, and {Vn : n ∈ ω} is a base of open neighbourhoods of

F in G, some point y of F is an accumulation point of the sequence η = {On : n ∈ ω} in

G. Put Ek =
⋃{On : k ≤ n}, for k ∈ ω. Then, clearly, y ∈ Ek, for each k ∈ ω. Since

every set Ek is open in G, and the space G is pointwise pseudocompact, it follows from

Theorem 6.4.1 that the space G is Moscow. Therefore, there exists a Gδ-subset B of G such

that y ∈ B ⊂ F and every point z of B is an accumulation point of η (note that F is also a

Gδ-set in G). However, X is Gδ-dense in G. It follows that B ∩X = ∅. Obviously, every

point of B ∩ X is an accumulation point of the sequence ξ = {Wn : n ∈ ω}. Hence, X is

pointwise pseudocompact. �

From Theorems 6.9.12 and 6.9.13 we obtain immediately:

Theorem 6.9.14. A topological group G is pointwise pseudocompact if and only if its
Dieudonné completion μG is a feathered topological group.

Since every pointwise pseudocompact topological group is Moscow and, therefore, a

strong PT -group, we can reformulate Theorem 6.9.14 as follows:

Theorem 6.9.15. A topological group G is pointwise pseudocompact if and only if its
Gδ-closure 
ωG in the Raı̆kov completion of G is a feathered topological group.

Proof. It suffices to apply Theorem 6.9.11 and the fact that the subgroup 
ωG of 
G
is Dieudonné complete, by Proposition 6.5.2. �

The next result follows immediately from Corollaries 6.9.10 and 6.1.10.
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Theorem 6.9.16. Let G be a pointwise pseudocompact topological group, and Y a
dense subspace of G. Then Y is C-embedded in the Gδ-closure of Y in G and, therefore,
the next two conditions are equivalent:

a) Y is Gδ-dense in G;
b) Y is C-embedded in G.

Corollary 6.9.17. Let G be a feathered topological group (in particular, Čech-
complete or locally compact), and Y a dense subspace of G. Then Y is C-embedded in the
Gδ-closure of Y in G. Therefore, under these assumptions, Y is C-embedded in G if and
only if Y is Gδ-dense in G.

Proof. It suffices to recall that every feathered group is of point-countable type, and

every space of point-countable type is pointwise pseudocompact. �

The above results allow to partially generalize the Comfort–Ross theorem on the

preservation of pseudocompactness under products in the class of topological groups

(Corollary 6.6.11). Indeed, we have:

Theorem 6.9.18. Let Gi be a feathered topological group, and Yi a dense C-embedded
subspace of Gi, for each i ∈ ω. Then the product space Y =

∏
i∈ω Yi is C-embedded in the

product group G =
∏

i∈ω Gi.

Proof. It follows from the assumptions about the factors that Y is Gδ-dense in G.

Obviously, G is a feathered topological group, since the product of any countable family

of feathered topological groups is a feathered topological group, by Proposition 4.3.13. It

remains to apply Corollary 6.9.17. �

Theorem 6.9.19. Let G =
∏

i∈ω Gi be the product of pointwise pseudocompact
topological groups. Then the space G is also pointwise pseudocompact.

Proof. Clearly, 
ωG =
∏

∈ω 
ωGi. By Theorem 6.9.15, each 
ωGi is a feathered

topological group. Therefore, 
ωG is also a feathered topological group. Applying

Theorem 6.9.15 once again, we conclude that the topological group G is also pointwise

pseudocompact. �

While the cellularity of every pseudocompact topological group is countable, we cannot

expect the same to be true for all pointwise pseudocompact topological groups, since every

discrete group is in this class. However, we have the following curious result with an

interesting corollary.

Theorem 6.9.20. If a topological group G is pointwise pseudocompact, then the o-
tightness of G is countable.

Proof. By Theorem 6.9.12, G is a dense subspace of the feathered topological group

μG. Therefore, the o-tightness of μG is countable, by Corollary 5.5.7. Since G is dense in

μG, it follows that the o-tightness of G is countable. �

Theorem 6.9.20 is instrumental in establishing the following important fact:

Theorem 6.9.21. The product of any family of pointwise pseudocompact topological
groups is a Moscow group.
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Proof. Let ξ be a family of pointwise pseudocompact topological groups. By

Theorem 6.9.19 and Corollary 6.9.10, the product of any finite subfamily of the family

ξ is a Moscow group of countable o-tightness. Now it follows from Theorem 6.3.12 that

the product of all spaces in ξ is a Moscow topological group. �

Combining Theorem 6.9.21 with Theorem 6.7.2, we obtain:

Corollary 6.9.22. For any family {Gα : α ∈ A} of pointwise pseudocompact
topological groups such that the cellularity of the product G =

∏
α∈A Gα is Ulam non-

measurable, we have:
υG =

∏
α∈A

υGα.

A space X is said to be locally bounded if it can be covered by open bounded subsets.

We finish this section with considering locally bounded spaces and topological groups.

The next statement is obvious:

Proposition 6.9.23. Every locally bounded space is pointwise pseudocompact.

Proposition 6.9.24. Let G be a topological group, and Y a Gδ-dense subspace of G.
Then the next conditions are equivalent:

a) G is locally bounded;
b) Y is locally bounded;
c) there exists a non-empty subset V of Y which is open in Y and bounded in G.

Moreover, if at least one of the conditions a)–c) is satisfied, then Y is C-embedded in G.

Proof. Clearly, b) implies c). Since Y is dense in G, a) implies c). Let us show that

c) implies a). Take any non-empty open subset V of Y such that V is bounded in G. Then

V is bounded in G, where the closure is taken in G. Since Y is dense in G, V contains a

non-empty open subset U of G. Obviously, U is bounded in G. Since G is a topologically

homogeneous, it follows that the space G is locally bounded. Notice that we have not used

Gδ-denseness of Y in G so far. We are going to use it now to show that a) implies b).

Indeed, every locally bounded space is pointwise pseudocompact. Therefore, if a)

holds, then Y is C-embedded in G, by Theorem 6.9.16. Now take any y ∈ Y . Since G is

locally bounded, there exists an open neighbourhood U of y in G such that U is bounded in

G. Then V = U∩Y is a non-empty open subset of Y bounded in G. Since Y is C-embedded

in G, it follows that V is bounded in Y .

The last assertion of the proposition follows from Theorem 6.9.16, as we just saw it in

the last portion of the above argument. �

The next lemma generalizes Proposition 3.7.20.

Lemma 6.9.25. Suppose that Y is a subspace of a Tychonoff space X. If B is a bounded
subset of Y , then the closure of B in X is contained in the Gδ-closure of Y in X.

Proof. Suppose that the conclusion of the lemma is false, and choose a point b ∈ B\Z,

where B is the closure of B in X and Z is the Gδ-closure of Y in X. It follows from the

definition of Z that there exists a sequence {Un : n ∈ ω} of open neighbourhoods of b
in X such that each Un contains b, and the set P =

⋂
n∈ω Un is disjoint from Y . Clearly,

b ∈ P . We can assume that Un+1 ⊂ Un, for each n ∈ ω. There exist continuous real-valued
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functions fn on X such that 0 ≤ fn ≤ 1, fn(b) = 0, and fn(x) = 1 for each x ∈ X \ Un,

where n ∈ ω. Then the function f =
∑∞

n=0 2−n · fn is continuous on X and f (y) > 0

for each y ∈ Y . Therefore, the function g defined by g(y) = 1/f (y) for each y ∈ Y , is

continuous on Y . From b ∈ B and f (b) = 0 it follows that g is unbounded on B. This

contradiction shows that B ⊂ Z. �

Proposition 6.9.24 is closely related to the next result:

Proposition 6.9.26. Let G be a topological group and Y a dense subgroup of G. Then
the next assertions are equivalent:

a) Y is locally bounded;
b) G is locally bounded, and Y is Gδ-dense in G.

Proof. By Proposition 6.9.24, b) implies a). Assume that Y is locally bounded. Then,

as it was shown in the proof of Proposition 6.9.24, G is locally bounded as well. Now take

any non-empty open subset V of the space Y such that V is bounded in Y . Let Z be the

Gδ-closure of Y in G. Since Y is a subgroup of G, it follows that Z is a subgroup of G.

Since V is bounded in Y , the closure V of V in G is contained in Z, by Lemma 6.9.25. But

V contains a non-empty open subset of G, since G is regular and Y is dense in G. Therefore,

Z contains a non-empty open subset of G. It follows that Z is an open subgroup of G. This

implies that Z is closed in G. Since Z contains Y , Z is dense in G. Hence, Z = G or,

equivalently, Y is Gδ-dense in G. �

Every Raı̆kov complete locally bounded topological group is locally compact, since

by Proposition 6.9.7, the closure of any bounded subset in a Dieudonné complete space is

compact. This observation, combined with Propositions 6.9.24 and 6.9.26, brings us to the

following conclusion:

Theorem 6.9.27. For every locally bounded topological group G, the Raı̆kov comple-
tion 
G of G is a locally compact group which contains G as a C-embedded and, therefore,
Gδ-dense subgroup.

Corollary 6.9.28. If G is a locally bounded topological group, then μG = 
G. In
particular, the group G is completion friendly.

Proof. By Theorem 6.9.27, G is a dense C-embedded subgroup of the locally compact

group 
G. According to Theorem 3.6.24, every locally compact group is Raı̆kov complete,

so the space 
G is Dieudonné complete. Therefore, Theorem 6.5.11 implies that G is a

PT -group, i.e., μG is a topological subgroup of 
G. Clearly, μG is dense in 
G and is

locally compact. Indeed, let U be a bounded neighbourhood of the neutral element of G.

Then the closure of U in μG is compact, by Proposition 6.9.7, so μG is a locally compact

group. However, the locally compact subgroup μG of 
G is closed in 
G, so that μG = 
G.

Since G is Gδ-dense in μG, it follows that μG = 
ωG = 
G. Hence, G is completion

friendly. �
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Exercises

6.9.a. Give an example of a pointwise pseudocompact topological group which is not a q-space.

Hint. Let G be a pseudocompact topological group which is not countably compact (see

Problem 6.6.A). Then Gω1 is as required.

6.9.b. Show that there exists a topological group G which is a q-space, but fails to be feathered.

Hint. Take G to be the Σ-product of an uncountable family of non-trivial finite discrete

groups.

Problems

6.9.A. Suppose that a topological group G is algebraically generated by a pseudocompact subspace.

Show that the group 
ωG is σ-compact. (See also Problem 6.10.A.)

6.9.B. Give an example of a homogeneous locally compact space X such that μX is neither

homogeneous nor locally compact.

6.9.C. (M. Sanchis [416]) Let H be a closed bounded subgroup of a locally bounded topological

group G. Then μG = 
G, by Corollary 6.9.28. Prove the following:

a) μ(G/H) ∼= μG/H , where H is the closure of H in μG;

b) μ(G/H ×X) ∼= (μG/H)×μX, where X is an arbitrary locally pseudocompact space.

Here Y ∼= Z means that the spaces Y and Z are naturally homeomorphic.

Open Problems

6.9.1. Is every first-countable completely regular paratopological group Dieudonné complete?

6.9.2. Let G be a pointwise pseudocompact completely regular paratopological group. Is μG a

homogeneous space? What if G is a q-space?

6.9.3. Is every pointwise pseudocompact paratopological group G a Moscow space? What if G is

a q-space or has pointwise countable type?

6.9.4. Let G and H be topological groups and suppose that both groups are q-spaces. Is G × H a

q-space?

6.10. Bounded and C-compact sets

In this section we consider three distinct classes of subsets of topological groups that

arise when one weakens compactness to a special type of placement of a set in a space or

topological group. One of these classes, formed by precompact sets in topological groups,

was introduced and studied in Section 3.7. Bounded subsets appeared in Section 6.9; they

form another class of sets which is especially interesting when related to topological groups

(see Theorems 6.10.12 and 6.10.16). We introduce here the new class of C-compact sets

and establish natural relations between these classes of sets in general and in the realm of

topological groups.

We start with collecting the simplest properties of bounded sets in the next proposition.

Proposition 6.10.1. Let B be a subset of a Tychonoff space X.

a) If B ⊂ K ⊂ X and K is compact, then B is bounded in X.
b) If B is bounded in X, then so is the closure of B in X.
c) If X is Dieudonné complete (in particular, metrizable) and B is bounded in X, then the

closure of B in X is compact.
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Proof. Items a) and b) are obvious. Since every metrizable space is Dieudonné

complete, c) follows from Proposition 6.9.7. �

We now establish a simple relation between precompact and bounded sets in topological

groups.

Proposition 6.10.2. Every bounded subset of a topological group is precompact.

Proof. Let B be a bounded subset of a topological group G. Suppose that there exists

a neighbourhood U of the identity e in G such that B \FU = ∅, for each finite subset F of

G. By induction, define a sequence {xn : n ∈ ω} ⊂ B such that xj /∈ xiU whenever i < j.

Then choose an open symmetric neighbourhood V of e in G such that V 4 ⊂ U. It is easy

to see that the family γ = {xnV : n ∈ ω} of open sets is discrete in G. In fact, for every

y ∈ G, the set yV intersects at most one element of γ.

The infinite family γ is locally finite in G and each element of γ intersects B, which

contradicts Lemma 6.9.6. Therefore, for every neighbourhood U of e in G, one can find a

finite subset F of G such that B ⊂ FU, and a similar argument implies that the set F can

be chosen to satisfy B ⊂ UF . This finishes the proof. �

Since every pseudocompact subspace B of a space X is bounded in X, we obtain the

following:

Corollary 6.10.3. Pseudocompact subspaces of a topological group are precompact.

It is easy to see that precompact subsets are not necessarily bounded. For example,

consider the torsion subgroup H of the circle group T. Clearly, H is a proper dense subgroup

of the compact group T and, hence, H is a precompact non-compact group. Since the

groups T and H are second-countable, H is not pseudocompact. Therefore, the set B = H
is precompact in H , but B is not bounded in H .

It was established in Theorem 6.4.2 that every precompact topological group is Moscow.

Here is a more general fact.

Proposition 6.10.4. Suppose that a precompact subset B of a topological group
G algebraically generates a dense subgroup of G. Then the group G is Moscow and,
furthermore, is completion friendly.

Proof. Denote by H the subgroup of G generated by B. By virtue of Corollary 3.7.12,

H is topologically isomorphic to a dense subgroup of a σ-compact topological group K, so

Corollary 5.3.22 implies that the cellularity of the groups K and H is countable. Since H is

dense in G, the cellularity of G is countable as well. To conclude that the group G is Moscow,

it suffices to apply item 5) of Corollary 6.4.11. Since, according to Theorem 6.5.13, every

Moscow group is a strong PT -group, and the cellularity of G is countable, it follows from

the equivalence of items 1) and 2) of Theorem 6.5.22 that G is completion friendly. �

The next fact is immediate from Propositions 6.10.2 and 6.10.4:

Corollary 6.10.5. If a topological group G contains a dense subgroup generated by
a bounded set B ⊂ G, then G is Moscow.

In general, boundedness may fail to be productive — even the product of two pseu-

docompact spaces need not be pseudocompact [165, 3.10.19]. Nevertheless, boundedness
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becomes productive in topological groups, similarly to precompactness and pseudocom-

pactness. To prove this fact, we need several auxiliary results.

The following lemma enables us to recognize bounded sets in arbitrary groups

via quotient spaces of countable pseudocharacter. The notion of admissible subgroups

introduced in Section 5.5 plays an important role here.

Lemma 6.10.6. Let B be a subset of a topological group G such that the set πH (B)

is bounded in the quotient space G/H for every admissible subgroup H of G, where
πH : G→ G/H is the quotient mapping. Then B is bounded in G.

Proof. In what follows G/H means the left coset space. Suppose to the contrary

that B is not bounded in G. Then, by Lemma 6.9.6, there exists a locally finite family

γ = {Vn : n ∈ ω} of open sets in G such that B meets every Vn. For every n ∈ ω,

choose a point xn ∈ B ∩ Vn and an open neighbourhood Wn of the identity e in G such that

xnW2
n ⊂ Vn. According to b) and c) of Lemma 5.5.2, Wn contains an admissible subgroup

Hn of G, and H =
⋂

n∈ω Hn is also an admissible subgroup of G. Let π : G → G/H be

the quotient mapping. Then

π−1π(xnWn) = xnWnH ⊂ xnWnHn ⊂ xnW2
n ⊂ Vn, (6.3)

for each n ∈ ω. Since the mapping π is open and γ is locally finite in G, from (6.3) it

follows that the family {π(xnWn) : n ∈ ω} of open sets is locally finite in G/H . Clearly,

π(B) meets every element of this family, so that π(B) fails to be bounded in G/H , by

Lemma 6.9.6. This contradiction completes the proof. �

The following lemma strengthens item a) of Lemma 5.5.2 and explains why quotient

spaces G/H , with H admissible in G, are important. We recall that a space X is

submetrizable if there exists a continuous one-to-one mapping of X onto a metrizable space.

Lemma 6.10.7. If H is an admissible subgroup of a topological group G, then the left
coset space G/H is submetrizable.

Proof. Let {Un : n ∈ ω} be a sequence of symmetric open neighbourhoods of the

identity e in G satisfying U3
n+1 ⊂ Un, for each n ∈ ω, and such that H =

⋂
n∈ω Un. By

Lemma 3.3.10, there exists a prenorm N on G such that

{x ∈ G : N(x) < 1/2n} ⊂ Un ⊂ {x ∈ G : N(x) ≤ 2/2n}, (6.4)

for each n ∈ ω. In particular, N is continuous. From (6.4) it also follows that N(x) = 0 iff

x ∈ H . We claim that

N(hx) = N(x) = N(xh), for all x ∈ G and h ∈ H. (6.5)

Indeed, if x ∈ G and h ∈ H , then

N(x) = N(h−1hx) ≤ N(h−1) + N(hx) = N(hx) ≤ N(h) + N(x) = N(x),

which gives the equality N(hx) = N(x). A similar argument implies that N(xh) = N(x).

Define a continuous pseudometric d on G by d(x, y) = N(x−1y), for all x, y ∈ G. A

simple verification with the use of (6.5) implies that if x, y ∈ G and x′ ∈ xH , y′ ∈ yH ,

then d(x′, y′) = d(x, y). This enables us to define a pseudometric 
 on G/H such that

d(x, y) = 
(π(x), π(y)) for all x, y ∈ G, where π : G → G/H is the quotient mapping.

Suppose that 
(π(x), π(y)) = 0 for some x, y ∈ G. Then N(x−1y) = d(x, y) = 0, whence
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x−1y ∈ H or, equivalently, π(x) = π(y). Therefore, 
 is a metric. It remains to show that


 is continuous when G/H carries the quotient topology.

Let x ∈ G and n ∈ ω be arbitrary. The set V = π(xUn+1) is an open neighbourhood

of π(x) in G/H , and if y ∈ xUn+1, then (2) implies that


(π(x), π(y)) = d(x, y) = N(x−1y) ≤ 1/2n.

In other words, 
(x̄, ȳ) ≤ 1/2n for each ȳ ∈ V , where x̄ = π(x). This means that the metric


 is continuous on G/H . Therefore, the topology on G/H induced by 
 is coarser than the

quotient topology on G/H and the space G/H is submetrizable. �
We need to extend c) of Proposition 6.10.1 to bounded subsets of submetrizable spaces.

This requires the following fact.

Proposition 6.10.8. Every completely regular submetrizable space X is Dieudonné
complete.

Proof. Our argument makes use of Proposition 1.6.1. Let � be the topology of X and

�0 ⊂ � a coarser metrizable topology on X. For every continuous real-valued function f
on X, consider the topology γf on X defined by

γf = {f−1(V ) : V is open in R}.
In other words, γf is the coarsest topology on X that makes f continuous. Denote by �f the

upper bound of the topologies �0 and γf . It is clear that the topology �f is submetrizable

and �f ⊂ �.

Let C(X) be the family of all continuous real-valued functions on X. Since the space X
is completely regular, � is the upper bound of the topologies γf , with f ∈ C(X). Therefore,

since γf ⊂ �f ⊂ �, for each f ∈ C(X), it follows that � is the upper bound of the family

{�f : f ∈ C(X)}. Clearly, each topology �f contains the metrizable topology �0, so

Proposition 1.6.1 implies that the space X with the original topology � is homeomorphic to a

closed subspace of the product
∏

f∈C(X) Xf of metrizable spaces Xf = (X, �f ). Therefore,

the space X is Dieudonné complete. �
Combining c) of Proposition 6.10.1 and Proposition 6.10.8, we obtain the following

important result:

Corollary 6.10.9. If B is a bounded subset of a Tychonoff submetrizable space X,
then the closure of B in X is compact.

If the neutral element e of a topological group G has countable pseudocharacter in G,

then the trivial subgroup {e} of G is admissible, and Lemma 6.10.7 implies that G itself is

submetrizable. This together with Proposition 6.10.8 implies the following:

Corollary 6.10.10. Any topological group of countable pseudocharacter is Dieu-
donné complete.

The next auxiliary result involves admissible subgroups of products of topological

groups.

Lemma 6.10.11. Let H be an admissible subgroup of a product G =
∏

α∈A Gα

of topological groups and ϕ : G → G/H be the quotient mapping. Then one can
find, for every α ∈ A, an admissible subgroup Hα of Gα and a continuous mapping
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h :
∏

α∈A Gα/Hα → G/H such that ϕ = h ◦ ψ, where ψ : G → ∏
α∈A Gα/Hα is the

product of the quotient mappings ψα : Gα → Gα/Hα.

Proof. Since H contains the identity e of G and is of type Gδ in G, we can find, for every

α ∈ A, a Gδ-set Pα in Gα containing the identity of Gα such that
∏

α∈A Pα ⊂ H . By b) and

c) of Lemma 5.5.2, Pα contains an admissible subgroup Hα of Gα, where α ∈ A. Clearly,

H∗ =
∏

α∈A Hα ⊂ H . Therefore, there exists a continuous mapping p : G/H∗ → G/H
such that ϕ = p◦π, where π : G→ G/H∗ is the quotient mapping. Since H∗ is the product

of the groups Hα, there exists a natural homeomorphism λ : G/H∗ → ∏
α∈A Gα/Hα

which assigns to every left coset xH∗ = π(x) the point (ψα(xα))α∈A in
∏

α∈A Gα/Hα,

where x = (xα)α∈A. It is easy to see that the composition λ ◦ π : G → ∏
α∈A Gα/Hα

coincides with the mapping ψ, the product of the quotient mappings ψα : Gα → Gα/Hα.

Let h = p ◦ λ−1, h :
∏

α∈A Gα/Hα → G/H . Then h ◦ ψ = p ◦ λ−1 ◦ ψ = p ◦ π = ϕ, so

the diagram below commutes.

G
ϕ ��

π

��

ψ

�������������� G/H

G/H∗ λ ��
∏

α∈A Gα/Hα

h



This finishes the proof. �

It is well known that pseudocompactness is not a productive property in topological

spaces [165, 3.10.19]. The situation completely changes in the realm of topological groups

— by Corollary 6.6.11, the topological product of an arbitrary family of pseudocompact

groups is pseudocompact. We extend here this result to products of bounded sets in

topological groups.

Theorem 6.10.12. [M. G. Tkachenko] Let Bα be a bounded subset of a topological
group Gα, for each α ∈ A. Then the set

∏
α∈A Bα is bounded in the product group

∏
α∈A Gα.

Proof. Suppose to the contrary that the set B =
∏

α∈A Bα is not bounded in

G =
∏

α∈A Gα. By Lemma 6.10.6, there exists an admissible subgroup H of G such

that ϕ(B) is not bounded in G/H , where ϕ : G → G/H is the quotient mapping. Apply

Lemma 6.10.11 to find, for every α ∈ A, an admissible subgroup Hα of Gα and a continuous

mapping h :
∏

α∈A Gα/Hα → G/H such that ϕ = h ◦ ψ, where ψ is the product of the

quotient mappings ψα : Gα → Gα/Hα with α ∈ A. Since ψα is continuous, the image

ψα(Bα) is bounded in Gα/Hα for each α ∈ A. By Lemma 6.10.7, the quotient space Gα/Hα

is submetrizable, so Corollary 6.10.9 implies that the closure of ψα(Bα) in Gα/Hα, say, Kα

is compact. Therefore, ψ(B) =
∏

α∈A ψα(Bα) is a subset of the compact set K =
∏

α∈A Kα

and, hence, ϕ(B) = h(ψ(B)) is contained in the compact set h(K). However, this contradicts

the fact that ϕ(B) is not bounded in G/H . �

Note that if in the above theorem Bα = Gα for all α ∈ A (i.e., if each group Gα

is pseudocompact), we obtain, as a special case, Corollary 6.6.11 on the preservation of

pseudocompactness under products of topological groups.

Theorem 6.10.12 has several applications. The first of them concerns group products

of bounded subsets.
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Corollary 6.10.13. Let B and C be bounded subsets of a topological group G. Then
the sets B−1, C−1, and BC are bounded in G.

Proof. Let θ : G×G→ G be the group multiplication, θ(x, y) = x ·y for all x, y ∈ G.

By Theorem 6.10.12, the set B×C is bounded in G×G. Since θ is a continuous mapping,

we conclude that the image θ(B × C) = BC is bounded in G. Similarly, boundedness of

the sets B−1 and C−1 in G follows from the continuity of the inverse in the group G. �

A space X is called σ-bounded if there exists a countable family γ of bounded subsets

of X such that X =
⋃

γ.

Corollary 6.10.14. If a bounded subset B of a topological group G algebraically
generates G, then the group G is σ-bounded.

Proof. Let C = B∪B−1∪{e}, where e is the identity of G. By Corollary 6.10.13, the

set B−1 is bounded and, hence, so is C. The same corollary implies that the sets C2 = CC,

C3 = C2C, etc., are bounded in G. It remains to note that G =
⋃∞

n=1 Cn, whence the

conclusion follows. �

Modifying the proof of Proposition 1.8.11 slightly, one can show that every continuous

real-valued function defined on a topological group G is uniformly continuous on every

compact subset of G. In fact, the same assertion remains valid for pseudocompact subsets

of topological groups. Let us extend this result to bounded subsets. This requires a lemma.

Lemma 6.10.15. Let H =
⋂

n∈ω Un be an admissible subgroup of a topological group
G and C a bounded subset of the quotient space G/H . Then, for every neighbourhood W
of the diagonal Δ in G/H ×G/H , there exists n ∈ ω such that C2 ∩ π2(Wn) ⊂ W , where
Wn = {(x, y) ∈ G×G : x−1y ∈ Un} and π : G→ G/H is the quotient mapping.

Proof. Denote by K the closure of C in G/H . By Lemma 6.10.7 and Corollary 6.10.9,

K is compact. It is easy to see that
⋂

n∈ω π2(Wn) = Δ. Therefore, the family

γ = {K2 ∩ π2(Wn) : n ∈ ω}
forms a base of the diagonal�K in K ×K. Indeed, it suffices to verify that the closure of

π2(Wn+1) in G/H ×G/H is contained in π2(Wn), for each n ∈ ω. Suppose that the point

(π(x), π(y)) belongs to the closure of π2(Wn+1) in G/H × G/H , where x, y ∈ G. Since

the mapping π is open, we have

(π(xUn+2)× π(yUn+2)) ∩ π2(Wn+1) = ∅.

Therefore, there are x1, y1 ∈ G and u, v ∈ Un+2 such that x−1
1 y1 ∈ Un+1 and π(xu) = π(x1),

π(yv) = π(y1). Then x−1
1 xu ∈ H and y−1

1 yv ∈ H , whence x ∈ x1HUn+2 and y ∈ y1HUn+2

(we recall that the sets Uk are symmetric). Consequently,

x−1y ∈ U−1
n+2Hx−1

1 · y1HUn+2 ⊂ Un+2HUn+1HUn+2 ⊂ U2
n+2Un+1U2

n+2 ⊂ U3
n+1 ⊂ Un.

So, (x, y) ∈ Wn and (π(x), π(y)) ∈ π2(Wn), whence the required inclusion follows. �

Theorem 6.10.16. Let d be a continuous pseudometric on a topological group G and
B be a bounded subset of G. Then d is uniformly continuous on B with respect to the left
group uniformity l of G.
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Proof. Suppose to the contrary that d is not uniformly continuous with respect to l.

Then we can find ε > 0 such that, for every neighbourhood U of the identity e in G, there

exist elements x, y ∈ B satisfying x−1y ∈ U and d(x, y) ≥ ε. We define by induction two

sequences {Un : n ∈ ω} and {(xn, yn) : n ∈ ω} satisfying the following conditions for all

z ∈ G and n ∈ ω:

(i) Un is an open symmetric neighbourhood of e in G;

(ii) U3
n+1 ⊂ Un;

(iii) xn, yn ∈ B and d(xn, yn) ≥ ε;

(iv) x−1
n z ∈ Un ⇒ d(xn, z) < ε/4, and y−1

n z ∈ Un ⇒ d(yn, z) < ε/4;

(v) x−1
n+1yn+1 ∈ Un.

It follows from (i) and (ii) that H =
⋂

n∈ω Un is an admissible subgroup of G. Let

π : G→ G/H be the quotient mapping onto the left coset space G/H . Put

W∗ = {(x, y) ∈ G×G : d(x, y) < ε/2}, W = π2(W∗)

and

Wn = {(x, y) ∈ G×G : x−1y ∈ Un}.
Then W is an open neighbourhood of the diagonal in G/H ×G/H , and we claim that

(C2 ∩ π2(Wn)) \W = ∅ for each n ∈ ω, (6.6)

where C = π(B). Indeed, (π(xn+1), π(yn+1)) ∈ C2 ∩ π2(Wn) in view of (iii) and (v). Let

us verify that (π(xn+1), π(yn+1)) /∈ W . Otherwise there exists a pair (x, y) ∈ W∗ such that

π(x) = π(xn+1) and π(y) = π(yn+1), i.e., x−1
n+1x ∈ H ⊂ Un+1 and y−1

n+1y ∈ H ⊂ Un+1.

Therefore, d(x, y) < ε/2 and by (iv), d(xn+1, x) < ε/4 and d(yn+1, y) < ε/4. This implies

that

d(xn+1, yn+1) ≤ d(xn+1, x) + d(x, y) + d(y, yn+1) < ε,

thus contradicting (iii). This proves (6.6) which, however, contradicts Lemma 6.10.15. The

proof is complete. �

Corollary 6.10.17. [M. G. Tkachenko] Let B be a bounded subset of a topological
group G. Then every continuous real-valued function defined on G is uniformly continuous
on B with respect to the left group uniformity of G.

Proof. Let f : G→ R be a continuous function. It suffices to apply Theorem 6.10.16

to the continuous metric d on G defined by d(x, y) = |f (x)− f (y)| for all x, y ∈ G. �

Let X be an arbitrary Tychonoff space. We recall that the universal uniformity on X is

the finest uniformity compatible with the topology of X. According to [165, Lemma 8.1.11],

the universal uniformity of X is generated by the family of all continuous pseudometrics

on X.

Corollary 6.10.18. Let �, , l and r be the universal, two-sided, left and
right uniformities of a topological group G, respectively. Then the restrictions of the four
uniformities to every bounded subset of G coincide.

Proof. It is clear that l ⊂ , r ⊂ , and  ⊂ �. Therefore, for a bounded subset

B of G, it suffices to verify that

l�B = ��B = r�B.
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Since the uniformity � is generated by all continuous pseudometrics on G, Theorem 6.10.16

implies that ��B = l�B. To show that ��B = r�B, we need the following

simple argument. Denote by G′ the group with the same underlying set G whose group

multiplication ◦ is defined by x ◦ y = y · x, for all x, y ∈ G. When G′ carries the same

topology as G, it becomes a topological group which we denote by the same symbol G′. Let

�t , l
t , and r

t be the universal, left, and right uniformities of the group G′. Denote by i the

identity mapping of G onto G′. It is easy to see that the mappings i : (G, r) → (G′, l
t)

and i : (G, �) → (G′, �t) are uniformly continuous. This implies that r = l
t and

� = �t . Finally, from Theorem 6.10.16 it follows that �t�B = l
t�B, so we conclude that

r�B = l
t�B = �t�B = ��B. �

There is one more kind of boundedness very close to pseudocompactness. A subset B
of a Tychonoff space X is called C-compact in X if f (B) is a compact subspace of the real

line, for every continuous real-valued function f on X.

It is easy to see that every pseudocompact subspace of a space X is C-compact in X since

pseudocompact subspaces of the real line are compact. However, C-compact subspaces need

not be pseudocompact. In fact, we shall see in Example 6.10.26 that even C-compact subsets

of topological groups can fail to be pseudocompact.

The next result follows immediately from the definition of C-compact sets:

Proposition 6.10.19. Every pseudocompact subspace of a space X is C-compact, and
every C-compact subset of X is bounded in X.

We now show that every C-compact subset of a Tychonoff space is Gδ-dense in its

closure.

Lemma 6.10.20. Let B and X be subsets of a Tychonoff space Y , and B ⊂ X. If B is
C-compact in X, then B is Gδ-dense in clY B.

Proof. Let y ∈ clY B \ B be an arbitrary point. Suppose to the contrary that there

exists a Gδ-set P in Y such that y ∈ P and P ∩ B = ∅. Then we can find a continuous

real-valued function f on Y such that f ≥ 0, f (y) = 0 and f−1(0) ⊂ P . Note that

0 = f (y) ∈ f (B) \ f (B), so f (B) is not compact and B is not C-compact in Y . Since f �X
is continuous on X, B is not C-compact in X. �

Similarly to precompact subsets, C-compact sets in a topological group G can be

characterized by means of their closures in the Raı̆kov completion of G.

Lemma 6.10.21. Let 
G be the Raı̆kov completion of a topological group G. Then the
following conditions are equivalent for a bounded subset B of G:

a) B is C-compact in G;
b) B is Gδ-dense in cl
GB.

Proof. The implication a) ⇒ b) follows from Lemma 6.10.20. Let us show that

b)⇒ a). Suppose that B is not C-compact in G. Then there exists a continuous real-valued

function f on G such that f (B) is not compact. Since B is bounded in G, the set f (B) is

bounded in R and, hence, f (B) is not closed in R. We can assume without loss of generality

that 0 ∈ f (B) \ f (B).

By Corollaries 6.10.17 and 6.10.18, f is uniformly continuous on B with respect to the

two-sided uniformity  of the group G. According to Proposition 1.8.4, the restriction of
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the two-sided uniformity of the group 
G to G is the two-sided uniformity of G. Therefore,

it follows from [165, Th. 8.3.10] that the function f �B can be extended to a continuous

function fK on K = cl
GB. By Proposition 6.10.2, B is precompact in G, so Theorem 3.7.10

implies that K is compact. Since compact sets are C-embedded, there exists a continuous

real-valued function g on 
G such that g�K = fK. Therefore, g�B = f �B. Clearly, g(K)

is a compact subset of the real line which contains f (B), whence it follows that 0 ∈ g(K).

Let P = g−1(0). Then P ∩K = ∅, but P ∩B = ∅. This implies that B is not Gδ-dense in

K = cl
GB. �

The following theorem shows that, similarly to boundedness, C-compactness is a

productive property when considered in the class of topological groups.

Theorem 6.10.22. Let {Gi : i ∈ I} be a family of topological groups and, for every
i ∈ I, Bi a C-compact subset of Gi. Then the set B =

∏
i∈I Bi is C-compact in the product

group G =
∏

i∈I Gi.

Proof. Since C-compact sets are bounded, the set B is bounded in G, by Theo-

rem 6.10.12. Lemma 6.10.21 implies that Bi is Gδ-dense in Ki = cl
GiBi, for each

i ∈ I, where 
Gi is the Raı̆kov completion of the group Gi. Therefore, B is Gδ-dense

in K =
∏

i∈I Ki. According to Corollary 3.6.23, we can identify the Raı̆kov completion


G of the group G with the topological product
∏

i∈I 
Gi. Under this identification, we

have cl
GB = K. Since B is bounded in G and Gδ-dense in K, Lemma 6.10.21 implies that

B is C-compact in G. �

According to Proposition 6.10.19, we have:

pseudocompact ⇒ C-compact ⇒ bounded.

Now we show that none of these implications can be inverted, not even in topological groups.

First, we need a lemma.

Lemma 6.10.23. Every countable C-compact subset of a Tychonoff space X is compact.

Proof. Let B be a countable non-compact subset of X. Denote by βX the Čech–Stone

compactification of X. The set K = clβXB is compact, so there exists a point y ∈ K \ B.

Since B is countable, we can find a closed Gδ-set P in βX such that y ∈ P and P ∩B = ∅.

There exists a continuous real-valued function f on βX such that f (y) = 0 and f−1(0) ⊂ P .

Let Q = f (B). Then 0 = f (y) ∈ Q \Q, so that Q is not compact. Therefore, B is not

C-compact in X. �

There are many pseudocompact spaces that fail to be countably compact (see [165,

Example 3.10.29]). Since every Tychonoff space is homeomorphic to a closed subspace of

a topological group, the next proposition gives us a lot of bounded subsets of topological

groups that are not C-compact.

Proposition 6.10.24. Let X be a pseudocompact, not countably compact subspace of
a topological group G. Then X contains a countably infinite closed discrete subset B which
is bounded in G but is not C-compact in G.

Proof. Since X is not countably compact, it contains a countably infinite closed

discrete subset B. Clearly, every subset of the pseudocompact space X is bounded in
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X. Therefore, B is bounded in G. The set B is infinite and discrete, hence non-compact.

By Lemma 6.10.23, B is not C-compact in G. �
In Example 6.10.26 below we use the Franklin–Mrówka space Ψ (see [165, 3.6.I (a)]).

For our purpose, we need a detailed description of this space.

Denote by ω the discrete space of non-negative integers. A family γ of infinite subsets

of ω is called almost disjoint if the intersection A ∩ B is finite for all distinct A, B ∈ γ. If

every almost disjoint family μ of infinite subsets of ω with γ ⊂ μ coincides with γ, then γ
is called maximal almost disjoint or, briefly, a mad family. Every almost disjoint family of

infinite sets in ω is contained in a mad family. Let γ0 be a countable, infinite, almost disjoint

family of infinite subsets of ω (for example, take a partition of ω into countably many

infinite subsets). Then there exists a mad family γ containing γ0. It is easy to see that γ is

uncountable since, otherwise, one can enumerate the family γ as {An : n ∈ ω} and define,

by induction, an infinite set B = {xk : k ∈ ω} ⊂ ω such that xk ∈ Ak \
⋃

i<k(Ak ∩ Ai), for

each k ∈ ω. Then B /∈ γ and the family γ ∪ {B} is almost disjoint and contains γ, thus

contradicting the fact that γ is a mad family.

We topologize the set Ψ = ω∪ γ by declaring the points of ω isolated in Ψ and taking

the sets {A} ∪ (A \ F ) as basic open neighbourhoods of a point A ∈ γ in X, where F is an

arbitrary finite subset of ω. Since the family γ is almost disjoint, the space Ψ is Hausdorff.

Our definition of the topology on Ψ implies that each of the basic open sets {A} ∪ (A \ F )

is clopen in Ψ, so the space Ψ is zero-dimensional and, hence, Tychonoff. Clearly, for each

A ∈ γ, the set A ⊂ ω converges to the point A ∈ γ ⊂ Ψ. Note that ω is a dense open

subset of Ψ while γ is a closed discrete subspace of the Franklin–Mrówka space Ψ.

Lemma 6.10.25. The space Ψ is pseudocompact, locally compact, and non-compact.
The subset γ of Ψ is C-compact in Ψ.

Proof. Let B be an arbitrary infinite subset of ω. Since γ is a mad family, there exists

A ∈ γ such that A ∩ B is infinite. Hence A is an accumulation point of the set A ∩ B in

Ψ. We have thus proved that every infinite subset of ω has a cluster point in Ψ. Since ω is

dense in Ψ and consists of isolated points, we conclude that Ψ is pseudocompact.

Let f be a continuous real-valued function on Ψ. Since Ψ is pseudocompact, the image

f (Ψ) is compact, and it suffices to verify that C = f (γ) is closed in the real line. Suppose

to the contrary that the set C has a cluster point t /∈ C. Since f is continuous, we can define

by induction sequences {An : n ∈ ω} ⊂ γ and B = {xn : n ∈ ω} ⊂ ω satisfying the

following conditions for each n ∈ ω:

(i) |f (An)− t| < 1/2n;

(ii) xn ∈ An and |f (xn)− f (An)| < 1/2n;

(iii) xk /∈ An and xk = xn if n < k.

It follows from (i) and (ii) that the sequence S = {f (xn) : n ∈ ω} converges to the point

t, while (iii) implies that B ⊂ ω is infinite. Since t /∈ f (γ), the intersection of B with each

A ∈ γ must be finite. However, this is impossible because γ is a mad family. �
Example 6.10.26. There exist a topological group G and an infinite closed discrete

subset B of G such that B is C-compact in G. In particular, B is not pseudocompact.

Proof. The Mrówka–Franklin space Ψ is the union of a dense open subset ω and a

closed discrete uncountable subset B = γ. By Lemma 6.10.25, B is C-compact in Ψ.
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Clearly, B is not pseudocompact. Apply Theorem 1.9.5 to find a topological group G which

contains Ψ as a closed subspace. Then B is a closed discrete subset of G. The set B being

C-compact in Ψ, remains C-compact in G. �

Exercises

6.10.a. It is true that every bounded subset of a semitopological (paratopological) group is precom-

pact?

6.10.b. (M. Bruguera and M. G. Tkachenko [91]) An infinite compact space with a single non-

isolated point is called a supersequence. Suppose that a topological group G contains one

of the following sets:

(a) Alexandroff duplicate of an uncountable compact space;

(b) two arrows space;

(c) a copy of ω1 with the order topology.

Prove that G contains an uncountable supersequence. Show that, in case (b), G contains a

supersequence of length 2ω.

6.10.c. (M. Bruguera and M. G. Tkachenko [91]) Suppose that a paratopological group G contains a

copy of the ordinal space ω1 + 1 or an uncountable supersequence. Show that if a sequence

S = {yn : n ∈ ω} ⊂ G converges to an element g ∈ G, then S is bounded in G \ {g}.

6.10.d. (M. Bruguera and M. G. Tkachenko [91]) Give an example of a topological group G and a

subgroup H of G satisfying the following conditions:

(a) G contains an uncountable supersequence;

(b) H contains a non-trivial sequence S converging to an element of G \ H ;

(c) S is not bounded in H .

6.10.e. (S. Hernández, M. Sanchis, and M. G. Tkachenko [231]) A subset A of a space X is called

relatively pseudocompact or, for brevity, r-pseudocompact in X if every infinite family γ of

open sets in X such that U ∩A �= ∅, for each U ∈ γ, has an accumulation point in A. Prove

the following:

(a) every r-pseudocompact subset of a Tychonoff space X is C-compact in X;

(b) every C-compact subset of a topological group G is r-pseudocompact in G, so r-

pseudocompactness is productive in topological groups (apply item (a) above and

Theorem 6.10.22);

(c) C-compact subsets of a Tychonoff space X may fail to be r-pseudocompact in X.

6.10.f. Prove that if G is a σ-bounded topological group, then so is the group G• defined in

Section 3.8.

6.10.g. Show that every σ-bounded topological group is ω-stable.

Problems

6.10.A. Suppose that a topological group G is algebraically generated by a precompact set B ⊂ G.

Prove that the group 
ωG is σ-compact (see Problem 6.9.A and Proposition 6.10.4).

6.10.B. (M. G. Tkachenko [475]) Let H be a closed subgroup of a topological group G. Suppose

that H is bounded in G and that X is a bounded subset of the quotient space G/H . Prove

that the set π−1(X) is bounded in G, where π : G → G/H is the quotient mapping (this

generalizes Problem 6.6.C).

6.10.C. (M. Bruguera and M. G. Tkachenko [91]) Let K be a closed bounded subset of a topological

group H , and let A ⊂ K. Prove that if K does not contain non-empty Gδ-subsets of the

group H , then A is bounded in H \ (K \ A).
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6.10.D. (M. Bruguera and M. G. Tkachenko [91]) Suppose that a topological group H contains an

uncountable supersequence. Apply Problem 6.10.C to show that if K is a closed bounded

subset of H which does not contain uncountable supersequences and A ⊂ K is an arbitrary

set, then A is bounded in H \ (K \ A).

6.10.E. (M. G. Tkachenko [475]) Suppose that A is a bounded subset of a topological group G and

B is a bounded subset of a Tychonoff space X. Show that the set A×B is bounded in G×X.

Note that this implies the conclusion in Problem 6.6.B.

6.10.F. (S. Hernández and M. Sanchis [230]) Let A be the union of a family of Gδ-sets in a topological

group H . Prove that if A is bounded in H , then clH A × X is pseudocompact, for every

pseudocompact space X. In particular, the space clH A is pseudocompact.

6.10.G. (S. Hernández, M. Sanchis, and M. G. Tkachenko [231]) Let A be a C-compact subset of a

topological group G. Prove the following:

(a) the set A is C-compact in the subgroup 〈A〉 of G generated by A;

(b) in fact, A is C-compact in the subspace AA−1A of G;

(c) every C-compact subgroup of G is pseudocompact;

(d) there exist a topological group G and a bounded subset B of G that fails to be bounded

in 〈B〉.
6.10.H. (S. Hernández, M. Sanchis, and M. G. Tkachenko [231]) Show that if A is an r-

pseudocompact subset of a topological group G and B is r-pseudocompact in a Tychonoff

space Y (see Exercise 6.10.e), then A × B is r-pseudocompact in G × Y .

6.10.I. (S. Hernández, M. Sanchis, and M. G. Tkachenko [231]) Prove that a Tychonoff space X
is weakly pseudocompact if and only if it can be embedded into a topological group as an

r-pseudocompact subspace. Deduce that every uncountable discrete space is homeomorphic

to an r-pseudocompact subspace of a topological group.

6.10.J. (S. Hernández, M. Sanchis, and M. G. Tkachenko [231]) Suppose that A is a bounded subset

of a topological group G and X is a Tychonoff space. Prove that clβ(G×X)(A × B) ∼=
clβGA × clβXB, for every bounded subset B of X. (See also Problems 6.10.E and 6.10.K.)

6.10.K. (S. Garcı́a-Ferreira, M. Sanchis, and S. Watson [185]) Let A, B be bounded subsets of

Tychonoff spaces X and Y , respectively. Prove that A × B is bounded in X × Y provided

that clβ(X×Y )(A × B) ∼= clβXA × clβY B.

6.10.L. (S. Hernández, M. Sanchis, and M. G. Tkachenko [231]) Let A be a C-compact subset of a

topological group G and B a C-compact subset of a Tychonoff space Y . Prove that A × B
is C-compact in G × Y .

6.10.M. (S. Hernández, M. Sanchis, and M. G. Tkachenko [231]) Let G =
∏

i∈I
Gi be the product of

a family of topological groups. If Bi is a bounded subset of Gi and Ci is the closure of Bi in

the Hewitt–Nachbin completion υGi of Gi, for each i ∈ I, then clυG(
∏

i∈I
Bi) ∼=

∏
i∈I

Ci.

Open Problems

6.10.1. Let Bi be a bounded (C-compact) subset of a paratopological group Gi, for each i ∈ I. Is∏
i∈I

Bi bounded (C-compact) in
∏

i∈I
Gi? What if |I| = 2?

6.10.2. Suppose that B is a bounded subset of a paratopological group G. Is the set B2 bounded in

G?

6.10.3. Can Theorem 6.10.16 and Corollary 6.10.17 be extended to bounded subsets of paratopo-

logical groups (taking the uniformity defined in Exercise 1.8.m)?

6.10.4. Is every C-compact subset of a paratopological group G r-pseudocompact in G?

6.10.5. Which of items (a)–(c) of Problem 6.10.G remains valid for paratopological groups?

6.10.6. (S. Garcı́a-Ferreira, M. Sanchis, and S. Watson [185]) Let A, B be bounded subsets of

Tychonoff spaces X and Y , respectively. Does the equality clβ(X×Y )(A×B) ∼= clβXA×clβY B
hold whenever A × B is bounded in X × Y?
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6.11. Historical comments to Chapter 6

The problem posed at the beginning of the eighties by V. G. Pestov and M. G. Tkachenko

in [381], whether it is always possible to continuously extend the operations in a topological

group to its Dieudonné (or Hewitt–Nachbin) completion, became a source of the material

for this chapter. The research in the direction of this basic problem was quite extensive, see,

for example, [517], [479], [481], [35], [37], [54], [43]. Many results of Section 6.1 involve

the notion of a Moscow space, introduced by A. V. Arhangel’skii in [26]. In particular,

Propositions 6.1.1, 6.1.2, Theorems 6.1.8 and 6.1.11, Corollaries 6.1.9 and 6.1.10 are from

[37]. One can find Corollaries 6.1.13 and 6.1.14 in [39, 43]. For Theorem 6.1.7 see [517]

and [468]. Theorem 6.1.4 appeared in [191].

Many results in Section 6.2 are taken from [36]. In particular, Proposition 6.2.1 and

Theorems 6.2.3, 6.2.4, 6.2.5 are from [36]. However, some prototypes of these results

were obtained earlier by J. R. Isbell in [254]. For Theorem 6.2.2 see [60], [263], or [30].

Theorem 6.2.10 and Corollaries 6.2.6, 6.2.7, 6.2.8, 6.2.9, and 6.2.11 are also taken from

[36]. Theorems 6.3.1, 6.3.3, Proposition 6.3.2, Corollary 6.3.4, and Example 6.3.5 are from

[39]. Lemma 6.3.6 is also taken from [39]. Lemma 6.3.7, Proposition 6.3.8, Corollary 6.3.9

have their origins in [468]. Theorems 6.3.11, 6.3.12, and Corollaries 6.3.13, 6.3.14, 6.3.15,

6.3.16 are all from [39]. In connection with techniques involving products and used in this

chapter, see also the article [537] by Y. Yajima.

The notion of a pointwise canonically weakly pseudocompact space was introduced in

[41]. Theorems 6.4.1 and 6.4.2 are from there. The notion of g-tightness was introduced

in [37]. Propositions 6.4.3, 6.4.4, 6.4.5, 6.4.8, Corollary 6.4.6, and Theorem 6.4.9 all

originated in [37]. For Theorem 6.4.12, Corollaries 6.4.13, 6.4.14, and further references

see [40].

The notion of a strong PT -group was introduced in [37]. For Theorem 6.4.20 see [40].

The key role in the proof of this result belongs to Corollary 5.3.22 stating that the cellularity

of every σ-compact topological group is countable (see [469]).

For Theorem 6.5.1, Propositions 6.5.2, 6.5.3, 6.5.4, 6.5.5, 6.5.6, and further references

see [37, 40, 39]. Corollaries 6.5.9, 6.5.10, Theorems 6.5.11, 6.5.13, and 6.5.15 are also

either from [37] or [40]. Example 6.5.30 is from [40]; its prototype appeared in [479]

for another purpose. Proposition 6.5.29 is from [536]. See also [490] for a discussion of

problems related to PT -groups. In particular, the following problem from [490] still remains

open: Is every ω-narrow topological group a PT -group?

Theorems 6.6.1 and 6.6.2 come from [35]. Corollary 6.6.3, essentially, is a result of

W. W. Comfort and K. A. Ross [122]. Corollary 6.6.8 appeared in [479]. Corollary 6.6.9

is again a result of Comfort and Ross, from the influential paper [122]. Corollary 6.6.11 is

a famous theorem of Comfort and Ross; it shows that the influence of a compatible group

structure on a pseudocompact space is so strong that pseudocompactness becomes totally

productive. Theorem 6.6.12 and Corollary 6.6.13 are taken from [40].

Our approach in Section 6.7 follows, in general, [37]. In particular, Theorem 6.7.2 and

Corollary 6.7.3 are taken from there. Some special cases of these results were known earlier,

see [37] and [40] for further references. For Theorem 6.7.5 and Corollary 6.7.6 see [40] and

[37]. Lemma 6.7.7 and Theorem 6.7.8 are due to W. W. Comfort and S. Negrepontis [117].

For Theorems 6.7.9, 6.7.10, 6.7.11, and further references see [54] and [40]. In connection

Historical comments to Chapter 6
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with Theorem 6.7.12 see [54]. Example 6.7.13 is taken from [37]; the argument about the

properties of objects involved in Example 6.7.13 provides a solution to the problem posed

by V. G. Pestov and M. G. Tkachenko whether every topological group is a PT -group [381],

a fundamental problem. Example 6.7.13 was constructed by M. Hušek in [251] to solve

another problem. In connection with Corollary 6.7.15 and for further references see [40],

[54], [39], and [479].

Many results in Section 6.8 originated in [40]. In particular, Theorems 6.8.1, 6.8.4 and

Corollaries 6.8.2, 6.8.5 are from [40]. Lemmas 6.8.6, 6.8.7, and Example 6.8.8 are from

[490].

The class of pointwise pseudocompact topological groups, introduced in [44], is much

wider than the class of (locally) pseudocompact topological groups. On the other hand, it

is still a subclass of the class of Moscow topological groups. Probably, any such a naturally

defined class is of some interest, especially if it enjoys nice categorical properties, that is,

is closed under certain operations. The importance of this particular class of groups is due

to the fact that many of Comfort–Ross’ results on pseudocompact groups can be extended

to it.

Propositions 6.9.1, 6.9.2, 6.9.3, and Corollaries 6.9.4, 6.9.5 are from [44]. Propo-

sition 6.9.7 is a part of the folklore. Proposition 6.9.8, Theorems 6.9.9, 6.9.11–6.9.16,

6.9.18–6.9.21, and Corollaries 6.9.17, 6.9.22 are taken from [44]. In connection with

Proposition 6.9.24 and Theorem 6.9.27, and for further references see [126] and [44].

Most of the results in Section 6.10 come from [231]. The notion of relative pseudocom-

pactness of a subset in a space was introduced by A. V. Arhangel’skii and K. Genedi in [53],

under the name of strong relative pseudocompactness. See also [45] in connection with this

concept. Propositions 6.10.1, 6.10.2, and Corollary 6.10.3 are a part of the folklore. For

Proposition 6.10.4 see [91] and [231]. Proposition 6.10.8 and Corollary 6.10.9 also belong

to the folklore (see [165] and [32]). For some further results and references see [51].

Theorem 6.10.12 appeared in [475]; it was a natural generalization of the fundamental

result of W. W. Comfort and K. A. Ross in [122] about the preservation of pseudocom-

pactness under taking topological products of topological groups. Lemma 6.10.15, Theo-

rem 6.10.16, and Corollaries 6.10.17, 6.10.18 were also proved in [475].



Chapter 7

Free Topological Groups

In this chapter, we introduce the notion of a free topological group and familiarize the

reader with basic properties of these groups that will be used in the rest of the book. Free

topological groups were introduced in 1941 by A. A. Markov in [305] with the clear idea

of extending the well-known construction of a free group from group theory to topological

groups. It is easy to give a categorical definition of free topological groups as a kind of

projective objects in the category of topological groups and continuous homomorphisms,

but the existence proof of such objects is far from trivial, and this is just the first difficulty

when studying free topological groups. After the complete (long and complicated) proof

of the existence theorem had appeared in [308], S. Kakutani [265], T. Nakayama [338]

and M. I. Graev [201] brought significant improvements into the original construction.

Graev’s approach, which involves an extension of continuous pseudometrics from the set of

generators of a free topological group over the whole group, seems to be the most fruitful

and constructive.

Free topological groups have become a powerful tool of investigation in the theory

of topological groups that serve as a source of various examples and as an instrument for

proving new theorems. We shall see below numerous facts confirming this statement.

7.1. Definition and basic properties

It is well known, and easy to prove (see [409, 268]), that for every non-empty set X,

one can find a group G and a mapping σ : X → G such that the image σ(X) algebraically

generates G and the triple (G, X, σ) satisfies the following condition:

(FG) For every mapping f : X → H of X to an arbitrary group H , there exists a

homomorphism f̃ : G→ H such that f̃ ◦ σ = f .

In other words, the homomorphism f̃ makes the diagram below commutative.

X
σ ��

f

��

G

f̃����
��

��
�

H

It is not difficult to verify that the mapping σ is injective. Such a triple (G, X, σ) is called

a free group on X and is denoted by Fa(X). It turns out that the group Fa(X) = (G, X, σ)

is unique in the following sense: If (G′, X, σ′) is also a free group on X, then there exists

an isomorphism ϕ : G → G′ such that σ′ = ϕ ◦ σ. Therefore, identifying X with its

image σ(X) ⊂ G, we can say that the free group Fa(X) on a set X is an abstract group G

A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies  409
in Mathematics 1, DOI 10.2991/978-94-91216-35-0_7, © 2008 Atlantis Press/World Scientific 
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algebraically generated by its subset X such that every mapping f : X → H to an arbitrary

group H admits an extension to a homomorphism f̃ : G → H . This group is then unique

up to an isomorphism fixing the points of X. The set X is called the free basis of G.

The change of the word “group” to “Abelian group” in (FG) gives the definition of

the free Abelian group on X, which will be referred to as Aa(X). The word “free” in the

first definition appears due to the fact that there are no algebraic relations in Fa(X) between

elements of the set X except for the trivial ones. Here are some details.

Since X generates the free group Fa(X), every element g ∈ Fa(X) has the form

g = xε1

1 . . . xεn
n , where x1, . . . , xn ∈ X and ε1, . . . , εn = ±1. This expression or word

for g is called reduced if it contains no pair of consecutive symbols of the form xx−1 or

x−1x. It turns out that if the word g is reduced and non-empty, then it is different from the

identity of Fa(X). In particular, every element g ∈ Fa(X) distinct from the identity can be

uniquely written in the form g = xr1

1 xr2

2 . . . xrn
n , where n ≥ 1, ri ∈ Z \ {0}, xi ∈ X, and

xi = xi+1 for each i = 1, . . . , n − 1. Such an expression is called the normal form of g.

Similar assertions (with the obvious changes for commutativity) are valid for Aa(X). Note

that the empty word is the identity of both Fa(X) and Aa(X).

There exists a profound analogy between abstract and topological groups. To see

this, let us add the continuity requirement to (FG) in the case of topological groups, thus

obtaining the definition of free topological groups. In what follows we say that a subset Y
of a topological group G topologically generates G if the subgroup 〈Y〉 of G generated by

Y is dense in G.

Let σ : X → G be a continuous mapping of a space X to a Hausdorff topological group

G that satisfies the following conditions:

1) the image σ(X) topologically generates the group G;

2) for every continuous mapping f : X → H to a topological group H , there exists a

continuous homomorphism f̃ : G→ H such that f̃ ◦ σ = f .

Then the triple (G, X, σ) is denoted by F (X) and is called the free topological group on X.

Again, if all the groups in the above definition are Abelian, the triple (G, X, σ) is said

to be the free Abelian topological group on X, and we designate it A(X). In this section we

shall usually prove the results only for the group F (X), because the counterpart for A(X)

often requires just to add ‘Abelian’before ‘group’.

First we show that the free topological group F (X) and the free Abelian topological

group A(X) on a space X are, in a natural sense, unique (the existence theorem follows

afterwards).

Theorem 7.1.1. The free topological group F (X) and the free Abelian topological
group A(X) on a Tychonoff space X are unique up to a topological isomorphism “fixing”
the points of X. In other words, if (G1, X, σ1) and (G2, X, σ2) are free (Abelian) topological
groups on X, then there exists a topological isomorphism ϕ : G1 → G2 such that
ϕ ◦ σ1 = σ2.

Proof. By the definition of a free (Abelian) topological group, there exist continuous

homomorphisms ϕ1 : G1 → G2 and ϕ2 : G2 → G1 such that ϕ1◦σ1 = σ2 and ϕ2◦σ2 = σ1.

Consider the continuous homomorphism ψ : G1 → G1 defined by ψ = ϕ2 ◦ ϕ1. Then the

restriction of ψ to Y1 = σ1(X) is the identity mapping, and since 〈Y1〉 is a dense subgroup of

the Hausdorff group G1, ψ has to be the identity automorphism of G1. A similar argument
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implies that the composition ϕ1 ◦ϕ2 is the identity automorphism of G2. Therefore, both ϕ1

and ϕ2 are topological isomorphisms. Put ϕ = ϕ1. Then the equality ϕ ◦ σ1 = σ2 follows

from the definition of ϕ1. �

Clearly, if X is a discrete space, then the free group Fa(X) and the free Abelian group

Aa(X) on the set X, endowed with the discrete topology, become the free topological group

and the free Abelian topological group on X, respectively. The existence and the structure

of the free topological group F (X) and of the free Abelian topological group A(X) on a

non-discrete Tychonoff space X is far less obvious.

Theorem 7.1.2. [A. A. Markov] The free topological group F (X) = (G, X, σ) on X
exists for every Tychonoff space X, and the mapping σ : X → G is a topological embedding.
In addition, the image σ(X) algebraically generates G. The same is true for the free Abelian
topological group A(X).

Proof. First we prove the existence of F (X) for every Tychonoff space X. Put

τ = max{c, |X| · ℵ0}, where c is the power of the continuum, and consider the family � of

all continuous mappings f : X → Hf of X to topological groups Hf satisfying |Hf | ≤ τ.

Since the circle group T contains a copy of the unit interval [0, 1], � separates points and

closed sets in X, that is, � generates the topology of X. In fact, � is not a set but a proper

class. To reduce the size of �, we consider an equivalence relation on � defined by f ∼ g
for f, g ∈ � if there exists a topological isomorphism ψ : Hf → Hg such that g = ψ ◦ f .

A standard cardinal estimate shows that the quotient set �/∼ of the equivalence classes

has cardinality not greater than λ = 22τ

. Therefore, we can choose a representative from

each equivalence class, thus obtaining a family {fi : i ∈ I}, where |I| ≤ λ. Clearly, this

family also generates the topology of X. Let σ : X → ∏
i∈I Li be the diagonal product of

the family {fi : i ∈ I}, where Li = Hfi . The group L =
∏

i∈I Li with the Tychonoff

product topology is a topological group, and σ is a homeomorphism of X onto Y = σ(X).

Denote by G the subgroup of L algebraically generated by Y .

It readily follows from the construction that the triple (G, X, σ) satisfies condition (1)

of the definition of free topological group. So, it suffices to verify (2). Let f : X → K be

a continuous mapping to an arbitrary topological group K. Denote by Hf the subgroup of

K generated by f (X). Then |Hf | ≤ |X| · ℵ0 ≤ τ, so f (considered as a mapping to Hf )

belongs to �. Therefore, f ∼ fi, for some i ∈ I, and there exists a topological isomorphism

ψ : Hf → Li satisfying fi = ψ ◦f . Denote by pi the projection of L to the factor Li. From

the definition of σ it follows that fi = pi ◦ σ.

X
f ��

fi

��	
		

		
		

	

σ

��

Hf

ψ

��
H

pi �� Li

Put ϕ = ψ−1 ◦ pi. Then ϕ : L → Hf is a continuous homomorphism which satisfies

ϕ◦σ = ψ−1 ◦pi ◦σ = ψ−1 ◦fi = f . Therefore, the continuous homomorphism f̃ = ϕ�G
of G to Hf ⊂ K satisfies the similar equality f̃ ◦ σ = f , thus finishing the proof of the

fact that F (X) = (G, X, σ) is the free topological group on X, with σ being a topological

embedding.

Definition and basic properties
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The argument in the case of the free Abelian topological group A(X) is completely

analogous. �

If F (X) = (G, X, σ) is the free topological group on a space X, then the mapping

σ : X → G is a topological embedding, by Theorem 7.1.2. We can, therefore, identify X
with its image σ(X) ⊂ G. This permits us to call G the free topological group on X, so that

G = F (X). The same applies to the free Abelian topological group A(X). In the sequel we

shall follow this agreement.

The study of free topological groups has algebraic and topological aspects. It turns out

that the algebraic structure of free topological groups is very simple — all these groups are

algebraically free. The proof of this result depends on two lemmas of a purely algebraic

nature.

Let p be a prime number. Denote by Γ2(p) the multiplicative group of all 2×2 matrices

x =

(
a b
c d

)
with elements a, b, c, d ∈ Z such that ad − bc = 1 and x ≡ e2 (mod p), where e2 is the

identity 2× 2 matrix. In other words, the integers a, d are equal to 1 modulo p while b and

c are multiples of p.

Lemma 7.1.3. The group Γ2(p) contains a subgroup isomorphic to the free group Fa(N)

with infinitely many generators.

Proof. Consider the elements

u =

(
1 p
0 1

)
, v =

(
1 0

p 1

)
of Γ2(p). We claim that the subgroup 〈u, v〉 of Γ2(p) generated by u and v is isomorphic to

the free group Fa(u, v) with two generators u, v. Indeed, let W be an alternating product of

non-zero powers of u and v in Γ2(p). It suffices to show that W = e2. If vk is the first factor

in W , one can replace W by the element W ′ = v−kWvk. Clearly, W = e2 iff W ′ = e2, so

we assume that the first factor in W is a power of u. Let, therefore, W = ur1vr2ur3 . . . wrn ,

where w is either u or v, and ri = 0 for each i ≤ n. Denote by Wi the product of the first i
factors in W (so that W1 = ur1 , W2 = ur1vr2 , . . . , Wn = W ). Let zi be the upper row of the

matrix Wi. If z2k−1 = (y2k−1, y2k), then

z2k = z2k−1vr2k = (y2k+1, y2k), z2k+1 = z2ku
r2k+1 = (y2k+1, y2k+2),

where y2k+1 = y2k−1 + pr2ky2k and y2k+2 = y2k + pr2k+1y2k+1. Here we use the fact that

the second row of vr2k is (pr2k, 1) and the first row of ur2k+1 is (1, pr2k+1). Combining these

formulas, we finally obtain

yi+2 = yi + pri+1yi+1, i = 1, 2, . . . , n− 1.

Let us show that the sequence |y1|, |y2|, . . . is strictly increasing. Clearly, |y1| = 1 and

|y2| = p · |r1| ≥ p ≥ 2. By induction, we have

|yi+2| ≥ p|ri+1| · |yi+1| − |yi| ≥ 2|yi+1| − |yi| ≥ |yi+1|+ 1.

Therefore, yi = 0 for each i, whence W = Wn = e2. This proves that the subgroup 〈u, v〉
of Γ2(p) is isomorphic with Fa(u, v).
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It remains to show that Fa(u, v) contains a subgroup isomorphic to the free group Fa(N).

Indeed, for every n ∈ N put xn = vnuvn and let X = {xn : n ∈ N}. It is easy to verify

that X is a free basis of the subgroup 〈X〉 of Fa(u, v), that is, 〈X〉 ∼= Fa(N). The lemma is

proved. �

Lemma 7.1.4. Let Fa(X) be the abstract free group on a non-empty set X. Then
the family of all homomorphism of Fa(X) to finite groups separate elements of Fa(X). In
other words, for every element g ∈ Fa(X) with g = e, there exists a homomorphism
h : Fa(X)→ K to a finite group K such that h(g) = eK.

Proof. Suppose that g ∈ Fa(X), g = e, and g = xε1

1 . . . xεn
n is the reduced form of

g, where x1, . . . , xn ∈ X and ε1, . . . , εn = ±1. Denote by f any retraction of X onto

X0 = {x1, . . . , xn}. Then there exists a homomorphism f̂ : Fa(X) → Fa(X0) such that

f = f̂ �X. In particular, idX0
= f̂ �X0. Since X0 ⊂ X, we can identify Fa(X0) with the

subgroup of Fa(X) generated by X0. This implies that f̂ (g) = g = e. Therefore, it remains

to find a homomorphism h0 of Fa(X0) to a finite group K such that h0(g) = eK. Clearly,

the composition h = h0 ◦ f̂ : Fa(X)→ K will be the homomorphism we are looking for.

Let p be a prime number. By Lemma 7.1.3, the group Γ2(p) contains a subgroup

isomorphic to Fa(N). Therefore, the group Fa(X0) can be identified with a subgroup of

Γ2(p). For every k ∈ N, put

Γ2(pk) = {x ∈ Γ2(p) : x ≡ e2 (mod pk)}.
Then Γ2(p), Γ2(p2), . . . is a decreasing sequence of invariant subgroups of Γ2(p), and the

intersection of these subgroups contains only the identity e2 of Γ2(p). So there exists k ∈ N
such that g /∈ Γ2(pk). Let πk : Γ2(p) → Γ2(p)/Γ2(pk) be the quotient homomorphism. It

is clear that the group K = Γ2(p)/Γ2(pk) is finite (in fact, |K| ≤ (pk)4 = p4k). Therefore,

g does not belong to the kernel of the homomorphism h0 = πk�Fa(X0). �

Let us go back to the study of the algebraic structure of free topological groups.

The argument in the next theorem makes use the properties of unitary groups U(n) (see

Example 1.4.33).

Theorem 7.1.5. For every Tychonoff space X, the free topological group F (X) is
algebraically free, i.e., X is a free algebraic basis for F (X). In addition, continuous
homomorphisms of F (X) to finite-dimensional unitary groups U(n) separate elements of
F (X).

Proof. Let X be a non-empty Tychonoff space, and suppose that w is a reduced

element of the abstract free group Fa(X) on X, w = e. Let also i : Fa(X) → F (X) be

the homomorphism that extends the identity mapping idX : X → X. By Theorem 7.1.2, X
algebraically generates F (X), so i is an epimorphism. We shall find n ∈ N and a continuous

homomorphism ϕ of F (X) to the unitary group U(n) such that ϕ(i(w)) = En, where En is the

identity of U(n). This will imply immediately that the kernel of i is trivial or, equivalently,

that the groups Fa(X) and F (X) are algebraically isomorphic.

By Lemma 7.1.4, there exists a homomorphism h of the group Fa(X) to a finite group

K such that h(w) = eK. The group K is isomorphic to a subgroup of the symmetric group

Sn of all permutations of the set {1, 2, . . . , n}, where n = |K|. In its turn, the group Sn

is isomorphic to a subgroup of U(n). Indeed, for every element π ∈ Sn, consider the
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orthogonal operator Aπ : Cn → Cn defined on the standard orthogonal basis e1, e2, . . . , en

of Cn by Aπ(ei) = eπ(i), i = 1, . . . , n. Then the mapping A : Sn → U(n) defined by

A(π) = Aπ for each π ∈ Sn is a monomorphism of Sn to U(n). Therefore, we can identify

K with a subgroup of U(n).

Let w = xε1

1 . . . xεm
m , where x1, . . . , xm ∈ X and ε1, . . . , εm = ±1. It was established in

Example 1.4.33 that the group U(n) is path-connected, so there exists a continuous mapping

f : X → U(n) such that f (xk) = h(xk) for each k = 1, . . . , m. Indeed, for every k ≤ m, let

ϕk : [0, 1]→ U(n) be a continuous mapping such that ϕk(0) = En and ϕk(1) = h(xk) = ak.

We can choose the mappings ϕk in such a way that ai = aj always implies ϕi = ϕj ,

1 ≤ i, j ≤ m. Then we choose open neighbourhoods V1, . . . , Vm of the points x1, . . . , xm in

X such that Vi ∩ Vj = ∅ if xi = xj and Vi = Vj if xi = xj . Since X is a completely regular

space, there exist continuous functions ψ1, . . . , ψm on X with values in [0, 1] satisfying the

following conditions for each k = 1, . . . , m:

(1) ψk(xk) = 1;

(2) ψk(X \ Vk) = 0;

(3) ψi = ψj if xi = xj , 1 ≤ i, j ≤ m.

Put F = X\⋃m
k=1 Vk. From (2) it follows that ψk(x) = 0 for all x ∈ F and k ≤ m. Consider

the mappings χk : X → U(n), where χk = ϕk ◦ ψk for k = 1, . . . , m. It is easy to see that

χk(xk) = ak and χk(x) = En for all x ∈ F and k = 1, . . . , m. Therefore, the mapping

f : X → U(n) defined by

f (x) =

{
χk(x) if x ∈ Vk

En if x ∈ F

is continuous on X and satisfies f (xk) = ak = h(xk) for each k ≤ m.

Finally, extend f to a continuous homomorphism f̃ : F (X)→ U(n). Then

f̃ (i(w)) = f (x1)ε1 · . . . · f (xm)εm = aε1

1 · . . . · aεn
n = h(w) = En,

whence i(w) = e. In other words, i : Fa(X)→ F (X) is an algebraic isomorphism. �

Let us show that Theorem 7.1.5 has its counterpart in the Abelian case. First we need

a simple auxiliary fact.

Lemma 7.1.6. The circle group T contains a subgroup algebraically isomorphic to the
free Abelian group with 2ω generators.

Proof. Consider the additive group of the reals R as a vector space over the field Q.

Let X = {xα : α < c} be a Hamel basis for R such that x0 = 1, where c = 2ω. Denote

by π the homomorphism of R onto T defined by π(x) = e2πix, for each x ∈ R. Clearly,

ker π = Z. For every α < c, put yα = π(xα). We claim that the set Y = {yα : 0 < α < c}
is linearly independent in T, that is, Y generates the subgroup of T isomorphic to the free

Abelian group of size c. Indeed, if 0 < α1 < · · · < αn < c and k1, . . . , kn ∈ Z \ {0}, then

k1xα1
+ · · ·+ knxαn /∈ Z and, hence,

yk1

α1
· . . . · ykn

αn
= π(k1xα1

+ · · ·+ knxαn ) = 1.

Therefore, the subgroup 〈Y〉 of T is isomorphic to the free Abelian group Aa(Y ). �

The above argument also shows that the abstract group T is isomorphic to the group

(Q/Z)⊕ A, where A is a free Abelian group of cardinality 2ω.
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Theorem 7.1.7. For a Tychonoff space X, the free Abelian topological group A(X)

is algebraically isomorphic to the group Aa(X), with X being the free algebraic basis for
A(X).

Proof. By Theorem 7.1.2, X algebraically generates the group A(X). It remains to

verify that X is the free basis of A(X) in the sense that if x1, . . . , xn are pairwise distinct

elements of X and k1, . . . , kn ∈ Z \ {0}, then xk1

1 · · · xkn
n = e. By Lemma 7.1.6, we can find

linearly independent elements t1, . . . , tn ∈ T. Clearly, there exists a continuous mapping

f : X → T such that f (xi) = ti, for i = 1, . . . , n. Extend f to a continuous homomorphism

f̃ : A(X) → T. If k1, . . . , kn ∈ Z \ {0}, then f̃ (xk1

1 · · · xkn
n ) = tk1

1 · . . . · tkn
n = 1, whence

xk1

1 · · · xkn
n = e. �

Theorems 7.1.5 and 7.1.7 enable us to identify F (X) with Fa(X) and A(X) with Aa(X)

from the algebraic point of view. We can now say that the free topological group F (X) is

merely the free group Fa(X) endowed with the topological group topology that induces the

original topology on the set X of its generators (see Theorem 7.1.2) and such that every

continuous mapping f : X → H to a topological group H can be extended to a continuous

homomorphism f̃ : F (X)→ H . In fact, this assertion can be given a more elegant form.

Corollary 7.1.8. The topology of the group F (X) is the finest topological group
topology on Fa(X) that generates on X its original topology. The same is valid for A(X).

Proof. By Theorems 7.1.2 and 7.1.5, X is a free algebraic basis for the group

F (X) ∼= Fa(X), and the topology � of F (X) generates on X its original topology τX.

Let �′ be a group topology on Fa(X) such that �′�X = τX. Extend the identity mapping

i : X → X ⊂ H to a continuous homomorphism ı̃ : F (X) → H , where H is the group

Fa(X) endowed with the group topology �′. Clearly, ı̃ is an (algebraic) isomorphism, and

the continuity of ı̃ implies that �′ ⊂ �. This argument also applies to the group A(X). �
Corollary 7.1.9. Let f : X → Y be a continuous mapping of Tychonoff spaces.

Then f admits an extension to continuous homomorphisms F (f ) : F (X) → F (Y ) and
A(f ) : A(X)→ A(Y ). In addition, if f is quotient and f (X) = Y , then the homomorphisms
F (f ) and A(f ) are open.

Proof. Since Y is identified with the corresponding subspace of F (Y ), we can consider

f as a continuous mapping of X to the free topological group F (Y ). Therefore, by the

definition of F (X), f can be extended to a continuous homomorphism F (f ) : F (X)→ F (Y )

which we shall denote by f̂ .

Now suppose that f is quotient and onto. Denote by �q the family of all images f̂ (U),

where U is open in F (X). It follows from the continuity of f̂ that �q is a group topology

on the abstract group Fa(Y ) which is finer than the topology � of F (Y ). Let us show that

�q induces on Y its original topology τY . Since ��Y = τY (Corollary 7.1.8), it suffices to

verify that V = f̂ (U) ∩ Y is open in Y for every open subset U of F (X). Denote by N the

kernel of f̂ . It is easy to see that f−1(V ) = X∩NU, so the set f−1(V ) is open in X. Since

the mapping f is quotient and onto, we infer that V is open in Y .

Thus, the group topology �q on Fa(Y ) is finer than the topology � of F (Y ) and induces

the original topology on Y . Hence Corollary 7.1.8 implies that �q = �. In other words,

f̂ (U) is open in F (Y ) for every open set U in F (X). The argument in the case of the group

A(X) is exactly the same. �
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The operations X �→ F (X) and f �→ F (f ) = f̂ that assign to a Tychonoff space X
the free topological group F (X) and to a continuous mapping f : X → Y its extension

to the continuous homomorphism f̂ : F (X) → F (Y ), define the covariant functor F from

the category of Tychonoff spaces and continuous mappings to the category of topological

groups and continuous homomorphisms. Indeed, one easily verifies that if g : Y → Z is a

continuous mapping (with Y, Z being Tychonoff) and h = g ◦ f , then ĥ = ĝ ◦ f̂ , that is,

F (g ◦ f ) = F (g) ◦ F (f ). Similarly, one defines the covariant functor A from the category

of Tychonoff spaces to the category of Abelian topological groups.

The above corollary as well as the next one have many applications.

Corollary 7.1.10. Let f : X → G be a quotient mapping of a Tychonoff space X
onto a topological group G. Then the continuous homomorphism f̃ : F (X)→ G extending
f is open. Similarly, if G is Abelian, then the continuous homomorphism f̃A : A(X) → G
extending f is also open.

Proof. Extend the identity mapping i : G → G to a continuous homomorphism

ı̃ : F (G) → G. Let also f̂ : F (X) → F (G) be the continuous open homomorphism

extending f (see Corollary 7.1.9). Then f̃ = ı̃ ◦ f̂ , so it suffices to show that the

homomorphism ı̃ is open.

Denote by x · y and xy the product of the elements x, y ∈ G in the groups F (G) and

G, respectively. Let U be an open neighbourhood of the identity e in F (G). Choose an

arbitrary element x ∈ G. Since x−1 · x = e, there exists an open neighbourhood V of x in

G such that x−1 · V ⊂ U. Then ı̃(U) ⊇ ı̃(x−1 · V ) = x−1V is an open neighbourhood of

the identity in G. Therefore, the homomorphisms ı̃ and f̃ are open. The same argument

applies to the group A(X) when G is Abelian. �

Let us now establish a relation between the groups F (X) and A(X). We recall that

the derived subgroup G′ of an abstract group G is the subgroup of G generated by all

commutators x−1y−1xy, where x, y ∈ G. It is easy to verify that G′ is an invariant subgroup

of G and that the quotient group G/G′ is Abelian [409].

Theorem 7.1.11. The derived subgroup K of the free topological group F (X) is closed
in F (X) and A(X) ∼= F (X)/K. In other words, A(X) is a quotient of F (X).

Proof. Let i : X → X be the identity mapping and ϕ : F (X)→ A(X) be the extension

of i to a continuous homomorphism. It is easy to see that the kernel of ϕ coincides with the

derived subgroup K of F (X), so K is closed in F (X). To show that the homomorphism ϕ is

open, consider the family �q of all images ϕ(U), where U is open in F (X). The continuity

of ϕ implies that �q is a group topology on the abstract group Aa(X) which is finer than the

topology � of the group A(X). By Corollary 7.1.8, it suffices to verify that �q induces on

X its original topology, since this will imply that �q = �.

Let U be an open subset of F (X), and suppose that x ∈ V = X ∩ ϕ(U). Choose an

element z ∈ U such that ϕ(z) = x. Then W = X ∩ xz−1U is an open neighbourhood of x
in X, and

W = ϕ(W ) ⊂ X ∩ ϕ(U) = V.

Therefore, V is a neighbourhood of each point x ∈ V and, hence, V is open in X. �
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There are several properties that free (Abelian) topological groups can never have.

Precompactness and connectedness are among them. In what follows, we use G(X) to

denote the topological group F (X) or A(X). Thus, any statement about G(X) applies to

both F (X) and A(X).

Proposition 7.1.12. For a Tychonoff space X, the following are equivalent:

a) G(X) is precompact;
b) G(X) is connected;
c) X = ∅.

Proof. Let X be a non-empty Tychonoff space. Define the mapping f of X to the

discrete group Z by f (x) = 1 for each x ∈ X. Then f is continuous and, hence, it admits

an extension to a continuous homomorphism f̃ : G(X)→ Z. Clearly, f̃ (G(X)) = Z. Since

the group Z is neither precompact nor connected, neither is G(X). �
The existence proof given in Theorem 7.1.2 is the shortest one, but it is very non-

constructive and does not provide effective tools for studying topological properties of free

topological groups. Even the fact that X is closed in the groups F (X) and A(X) (see a)

of Theorem 7.1.13) is far from being obvious. We shall establish below several technical

general results that shed more light on the topological structure of free (Abelian) topological

groups. Let us introduce the necessary notation.

For every non-negative integer n, denote by Bn(X) the subspace of the free (Abelian)

topological group G(X) that consists of all words of reduced length ≤ n with respect to

the free basis X. Clearly, B0(X) = {e}, where e is the neutral element of G(X). Put also

Cn(X) = Bn(X)\Bn−1(X) for n ≥ 1. It turns out that the topology of Cn(X) inherited from

G(X) admits a clear description in terms of X. Denote by X̃ the free topological sum of X,

its copy X−1, and {e}: X̃ = X⊕{e}⊕X−1. For every n ≥ 1, denote by in the multiplication

mapping of X̃n to G(X), in(y1, . . . , yn) = y1 · . . . ·yn for each point (y1, . . . , yn) ∈ X̃n. From

the continuity of the multiplication in G(X) it follows that the mapping in is continuous. It

is easy to see that in(X̃n) = Bn(X). Finally, we denote by C∗
n (X) = i←n (Cn(X)) the inverse

image of Cn(X) under the mapping in. We shall show in the next theorem that in the case

of F (X), the restriction of in to C∗
n (X) is a homeomorphism of C∗

n (X) onto Cn(X), for each

n ≥ 1. In other words, Cn(X) is homeomorphic to a subspace of X̃n.

Theorem 7.1.13. [A. V. Arhangel’skii] The following statements hold for every
Tychonoff space X and any integer n ≥ 1:

a) The sets Bn(X) and in(Xn) are closed in G(X). In particular, X is closed in G(X).
b) In the case of F (X), in homeomorphically maps C∗

n (X) onto Cn(X). In addition, in(Xn)

is a closed homeomorphic copy of Xn in F (X).

Proof. Consider the free (Abelian) topological group G(βX) on the Čech–Stone

compactification βX of the space X. By the definition of G(X), the canonical embedding

i : X → βX can be extended to a continuous homomorphism ı̂ : G(X)→ G(βX). Since the

restriction of ı̂ to X is one-to-one and G(βX) is algebraically free on βX (see Theorems 7.1.5

and 7.1.7), ı̂ must be injective. In other words, ı̂ is a continuous isomorphism of G(X) onto

the subgroup of G(βX) generated by i(X).

a) Denote by K the topological sum of βX, its copy (βX)−1, and the identity e of

G(βX), that is, K = βX⊕ {e} ⊕ (βX)−1. For every integer n ≥ 1, consider the mapping
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i∗n : Kn → G(βX) defined by the formula i∗n(y1, . . . , yn) = y1 · . . . ·yn for all y1, . . . , yn ∈ K.

Clearly, the mapping i∗n is continuous and the restriction of i∗n to X̃n coincides with ı̂ ◦ in
for each n ≥ 1, where X̃ = X ⊕ {e} ⊕ X−1. Note that Bn(βX) = i∗n(Kn) is compact as

a continuous image of the compact space Kn. Therefore, Bn(βX) is closed in G(βX). We

have ı̂(Bn(X)) = ı̂(G(X)) ∩ Bn(βX), whence it follows that ı̂(Bn(X)) is closed in ı̂(G(X)).

Since ı̂ is a continuous one-to-one mapping of G(X) onto ı̂(G(X)), we conclude that Bn(X)

is closed in G(X). Similarly, ı̂(in(Xn)) = ı̂(G(X)) ∩ i∗n((βX)n), so that ı̂(in(Xn)) is closed

in ı̂(G(X)). Again, since ı̂ is continuous and one-to-one, in(Xn) must be closed in G(X).

Therefore, i1(X) ∼= X is closed in G(X).

b) Since every element of Cn(X) has length n, the restriction of the mapping in : X̃n →
F (X) to C∗

n (X) is one-to-one. It suffices to show that this restriction is open as the mapping

onto its image Cn(X) = in(C∗
n (X)). With notation as in a) and with G(X) = F (X), note

that the domain Kn of i∗n is compact, so i∗n : Kn → F (βX) is a continuous closed mapping.

In addition, its restriction to C∗
n (βX) = (i∗n)−1(Cn(βX)) is one-to-one (again, every element

of Cn(βX) has length n). Therefore, the restriction of i∗n to C∗
n (βX) is a homeomorphism

of C∗
n (βX) onto Cn(βX). Let U be an open subset of C∗

n (X). Choose an open subset V of

C∗
n (βX) such that U = V∩C∗

n (X). Since i∗n�C∗
n (βX) is a homeomorphism and ı̂◦in = i∗n�X̃n,

the set

ı̂(in(U)) = i∗n(U) = i∗n(V ) ∩ i∗n(C∗
n (X)) = i∗n(V ) ∩ ı̂(Cn(X))

is open in ı̂(Cn(X)). But ı̂ is a continuous monomorphism; hence, in(U) is open in Cn(X).

Thus, the continuous bijection in : C∗
n (X)→ Cn(X) is open, i.e., a homeomorphism. Since

Xn ⊂ C∗
n (X), it follows from a) that in(Xn) is a closed homeomorphic copy of Xn in

F (X). �

The situation changes in the case of the group A(X) — if X contains at least two points,

then the restriction of in to Xn is one-to-one iff n = 1. Indeed, if n ≥ 2 and x, y are distinct

points of X, then

in(x, . . . , x, y) = xn−1y = yxn−1 = in(y, x, . . . , x)

(x appears n − 1 times as argument). However, we show in the next proposition that the

mapping in : C∗
n (X) → Cn(X) is perfect and open, for each n ≥ 1 (we keep notation used

in Theorem 7.1.13 and in its proof).

Proposition 7.1.14. In the case of A(X), in : C∗
n (X) → Cn(X) and in : Xn → in(Xn)

are perfect and open mappings, for every Tychonoff space X and any integer n ≥ 1.

Proof. Clearly, i∗n : Kn → Cn(βX) ⊂ A(βX) is a perfect mapping, where K =

βX ⊕ {e} ⊕ (βX)−1. Put Pn = ı̂(Cn(X)). Then Pn ⊂ Cn(βX) and (i∗n)←(Pn) = C∗
n (X).

Therefore, i∗n�C∗
n (X) = ı̂ ◦ in�C∗

n (X) is also a perfect mapping. By Proposition 3.7.10

of [165], the mapping in�C∗
n (X) is perfect. Since Xn is closed in X̃n and in C∗

n (X), the

restriction in�Xn is perfect.

It remains to verify that the mappings in : C∗
n (X) → Cn(X) and in : Xn → in(Xn) are

open. Let O be a non-empty open set in C∗
n (X) and x = (xε1

1 , . . . , xεn
n ) ∈ O be an arbitrary

point, where x1, . . . , xn ∈ X and ε1, . . . , εn = ±1. Since Cn(X) = Bn(X)\Bn−1(X) is open

in Bn(X) and in is continuous, the set C∗
n (X) is open in X̃n. Therefore, we can find open

sets U1, . . . , Un in X satisfying the following conditions for all i, j ≤ n:

1) xi ∈ Ui;
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2) if xi = xj , then Ui ∩ Uj = ∅;

3) if xi = xj , then Ui = Uj;

4) V = Uε1

1 × · · · × Uεn
n ⊂ O.

Using 1)–4), we obtain that

i←n (in(V )) =
⋃
{Uπ(1) × · · · × Uπ(n) : π ∈ Sn},

where Sn is the group of permutations of the set {1, . . . , n}. Therefore, the set i←n (in(V )) is

open in X̃n and in C∗
n (X). According to b) of Theorem 7.1.13, the mapping in : C∗

n (X) →
Cn(X) is perfect (hence quotient), so we conclude that in(V ) is open in Cn(X). It follows

that in(O) is the union of open sets in Cn(X) and, hence, it is open in Cn(X). So, the

mapping in : C∗
n (X) → Cn(X) is open. Finally, the equality Xn = i←n (in(Xn)) implies that

the restriction of in to Xn is an open mapping of Xn onto its image. �

Theorem 7.1.13 has several important corollaries. We know that every topological

group is a Tychonoff space, by Theorem 3.3.11. It turns out that in this assertion, complete

regularity cannot be strengthened to normality.

Corollary 7.1.15. If X is a Tychonoff non-normal space, then the groups F (X) and
A(X) are not normal spaces either.

Proof. By a) of Theorem 7.1.13, X is a closed subspace of the groups F (X) and

A(X). If one of these groups were normal, its closed subspace X would also be normal, a

contradiction. �

According to b) of Theorem 7.1.13, in(Xn) is a closed homeomorphic copy Xn in F (X).

It turns out that A(X) has a similar property, but the argument in this case is different.

Corollary 7.1.16. The group A(X) contains a closed homeomorphic copy of Xn, for
each positive integer n.

Proof. For n = 1 the conclusion follows directly from Theorem 7.1.2 and a) of

Theorem 7.1.13. Let n ≥ 2 be an integer. In what follows we use the additive notation for

the group multiplication in A(X). Consider the mapping f : Xn → A(X) defined by

f (x1, x2, . . . , xn) = x1 + 2x2 + · · ·+ 2n−1xn

for each (x1, x2, . . . , xn) ∈ Xn. From the continuity of the multiplication in A(X) it follows

that f is continuous. Apply induction on n along with the fact that X is a free algebraic

basis for A(X) to show that f is one-to-one.

Let m = 2n − 1. Consider the embedding g of Xn to Xm defined by the formula

g(x1, x2, . . . , xn) = (x1, x2, x2, . . . , xn, . . . , xn),

where each xi appears in the right side of the equality 2i−1 times. Clearly, g(Xn) is closed

in Xm and f = im ◦ g, where im : X̃m → A(X) is the natural multiplication mapping.

In addition, the mapping im : Xm → im(Xm) is perfect by Proposition 7.1.14, so the

composition im ◦ g is a closed mapping and, hence, is a homeomorphism. Finally, a) of

Theorem 7.1.13 implies that im(Xm) is closed in A(X), so that the image f (Xn) = im(g(Xn))

is closed in im(Xm) and in A(X). �

Corollary 7.1.17. For every space X, nw(G(X)) = nw(X).

Definition and basic properties
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Proof. By Theorem 7.1.2, X is a subspace of G(X), so that nw(X) ≤ nw(G(X)).

Conversely, nw(X̃) = nw(X) and nw(X̃n) = nw(X) for each n ∈ ω, where X̃ =

X ⊕ {e} ⊕ X−1. Since the multiplication mapping in : X̃n → Bn(X) is continuous,

we have nw(Bn(X)) ≤ nw(X̃n) = nw(X) for each integer n ≥ 1. Finally, from

G(X) =
⋃∞

n=1 Bn(X) it follows that nw(G(X)) ≤ nw(X) · ω = nw(X). This proves

the equality nw(G(X)) = nw(X). �

Now we can characterize the spaces X for which the groups F (X) and A(X) are Lindelöf.

Corollary 7.1.18. The free (Abelian) topological group G(X) is Lindelöf iff the space
Xn is Lindelöf, for each n ∈ N.

Proof. Suppose that the group G(X) is Lindelöf. By a) of Theorem 7.1.13, the sets

in(Xn) are closed in G(X); hence, they are Lindelöf. According to b) of Theorem 7.1.13

and Proposition 7.1.14, the mapping in : Xn → in(X) is perfect, for each n ∈ N (even is a

homeomorphism in the case G(X) = F (X)), so that Xn is Lindelöf, by [165, Theorem 3.8.9].

Suppose now that Xn is Lindelöf for each n ∈ N. Then X̃n is a finite union of

closed copies of the spaces Xk with k ≤ n, hence Lindelöf. It remains to note that

G(X) =
⋃∞

n=1 Bn(X), where each Bn(X) = in(X̃n) is Lindelöf as a continuous image

of the Lindelöf space X̃n. �

Theorem 7.1.13 also enables us to describe a neighbourhood base at every element g
of the length n in the subspace Bn(X) of the groups F (X) and A(X).

Corollary 7.1.19. Let X be aTychonoff space andg = xε1

1 . . . xεn
n be a reduced element

of G(X). Suppose further that Ui is an open neighbourhood of xi in X, and Ui ∩Uj = ∅ if
xi = xj , 1 ≤ i, j ≤ n. Then the set W = Uε1

1 · . . . · Uεn
n is an open neighbourhood of g in

Bn(X). Moreover, the family of such sets W forms a local base of Bn(X) at g.

Proof. By item a) of Theorem 7.1.13, Cn(X) = Bn(X) \ Bn−1(X) is open in Bn(X).

Consider the point x = (xε1

1 , . . . , xεn
n ) ∈ X̃n. Then the set U = Uε1

1 × · · · × Uεn
n is open in

X̃n, x ∈ U and in(U) = Uε1

1 · . . . · Uεn
n ⊂ Cn(X). Hence, U ⊂ C∗

n , and since the mapping

in : C∗
n (X) → Cn(X) is open (see b) of Theorem 7.1.13 and Proposition 7.1.14), the set

W = in(U) is an open neighbourhood of g = in(x) in Cn(X) and in Bn(X).

Clearly, the sets U = Uε1

1 ×· · ·×Uεn
n form a base of C∗

n (X) at x, so the sets W = in(U)

constitute a base of Cn(X) at the point g. Since Cn(X) is open in Bn(X), the same conclusion

remains valid for Bn(X). �

Theorem 7.1.13 and Corollaries 7.1.17, 7.1.18, and 7.1.19 may suggest the idea that

topological properties of the groups F (X) and A(X) are close to those of the space X. Let

us show that this is not quite the case.

Theorem 7.1.20. If a Tychonoff space X is non-discrete, then neither F (X), nor A(X)

are first-countable.

Proof. Let X be a non-discrete Tychonoff space with a non-isolated point x∗ ∈ X. By

Theorem 7.1.11, A(X) is a quotient group of F (X). Since open continuous mappings do

not rise the character of topological space, it suffices to show that the character of A(X) is

uncountable. Assume the contrary, and take a countable decreasing base {Un : n ∈ N} of
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the neutral element e of A(X). In what follows we use the additive notation for the group

operation in A(X).

There are open neighbourhoods V1, V2, . . . , Vn, . . . of the point x∗ in X such that

2n(Vn − Vn) ⊂ Un for each n ≥ 1. We can choose points xn, yn ∈ Vn such that

yi = xn = yn = xi for all n, i ≥ 1. Then the sequence of elements un = 2n(xn − yn) ∈ Un

converges to e. Let us show that this leads to a contradiction.

By induction on n, we can easily define a sequence {fn : n ∈ N} of continuous

real-valued functions on X satisfying the following conditions for every n ≥ 1:

1) |fn| ≤ 2−n;

2) fn(x∗) = fn(xk) = fn(yk) = fn(yn) = 0 for each k < n;

3) fn(xn) = ±2−n, where fn(xn) and the sum
∑n−1

k=1 (fk(xn)− fk(yn)) have the same sign

(that is, they are simultaneously positive or negative) if n > 1.

Consider the function f =
∑∞

n=1 fn on X. From 1) it follows that f is continuous; hence,

it admits an extension to a continuous homomorphism f̃ : A(X)→ R. For every n ≥ 1, we

have

|f̃ (un)| = 2n · |
∞∑

k=1

(fk(xn)− fk(yn))|

= 2n · |fn(xn) +

n−1∑
k=1

(fk(xn)− fk(yn))| ≥ 2n · |fn(xn)| = 1.

Therefore, the sequence {f̃ (un) : n ∈ N} cannot converge to zero of the group R. This

contradicts the continuity of f̃ . �

Exercises

7.1.a. (M. I. Graev [201]) Let X be a Tychonoff space with a fixed point e ∈ X. A topological

group G = F (X, e) is called the free Graev topological group on (X, e) if G satisfies the

following conditions:

(G1) There exists a continuous mapping σ : X → G such that σ(e) = eG and σ(X)

algebraically generates G.

(G2) If a continuous mapping f : X → H to a topological group H satisfies f (e) = eH , then

there exists a continuous homomorphism f̃ : G → H such that f = f̃ ◦ σ.

Prove the following statements:

a) The group F (X, e) exists for every Tychonoff space X and is unique up to a natural

topological isomorphism.

b) If e1, e2 ∈ X, then there exists a topological isomorphism ϕ of F (X, e1) to F (X, e2)

such that ϕ ◦ σ1 = σ2, where σi : (X, ei) → F (X, ei) is a mapping satisfying condition

(G1), for i = 1, 2.

c) The group F (X, e) does not depend on the choice of e ∈ X, which permits us to denote

the free Graev topological group on X simply by F∗(X) (apply a) and b)).

d) The mapping σ : X → F∗(X) is a topological embedding and σ(X) is closed in F∗(X).

e) There exists the Abelian analog A∗(X) of the group F∗(X), and A∗(X) is a quotient

group of F∗(X).

f) A(X) ∼= A∗(X) × Z, for every Tychonoff space X, where the group Z carries the

discrete topology.

Definition and basic properties
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7.1.b. (M. I. Graev [201]) Let X be a Tychonoff space, and Y a space obtained by adding an isolated

point to X. Verify that F (X) ∼= F∗(Y ) and A(X) ∼= A∗(Y ). Show that the corresponding

isomorphisms ϕ : F (X) → F∗(Y ) and ψ : A(X) → A∗(Y ) can be chosen to satisfy ϕ(X) ⊂ Y
and ψ(X) ⊂ Y (here we identify X and Y with the corresponding subspaces of F (X) and

F∗(Y ), respectively, and the same stands in the case of A(X) and A∗(Y )).

7.1.c. (M. I. Graev [201]) Show that each of the groups F∗(X), A∗(X) is connected iff X is

connected.

7.1.d. (M. I. Graev [201]) Prove that if a Tychonoff space X is disconnected, then there exists a

subspace Y of F∗(X) such that F∗(X) ∼= F (Y ) and A∗(X) ∼= A(Y ).

7.1.e. Formulate and prove the analogs of Theorems 7.1.5, 7.1.7, 7.1.11, 7.1.13, 7.1.20, etc., for

the groups F∗(X) and A∗(X). (Note that the algebraic parts of Theorems 7.1.5 and 7.1.7

require small changes.)

7.1.f. Let X be a Tychonoff space. The free precompact group G = FP(X) on X is a topological

group defined by the following conditions:

(P1) There exists a continuous mapping σ : X → G such that σ(X) topologically gener-

ates G;

(P2) the group G is precompact;

(P3) for every continuous mapping f : X → H to a precompact group H , there exists a

continuous homomorphism f̃ : G → H such that f = f̃ ◦ σ.

Similarly, one defines the free Abelian precompact group AP(X) on X. Prove the following:

a) The group FP(X) exists, and is unique up to a topological isomorphism fixing points

of X, for every Tychonoff space X.

b) The conclusions of Theorems 7.1.2, 7.1.5, and of Corollary 7.1.8 can be extended to

FP(X).

c) X is closed in FP(X), so that precompact topological groups need not be normal.

d) AP(X) is a quotient group of FP(X).

7.1.g. Let a non-empty class  of topological groups be an SC-variety, i.e., let  be closed under

taking closed subgroups and arbitrary topological products. For a space X, the -free
topological group G = F (X, ) on X is a topological group which satisfies the following

conditions:

(V1) There exists a continuous mapping σ : X → G such that σ(X) topologically gener-

ates G;

(V2) G ∈ ;

(V2) For every continuous mapping f : X → H to a group H ∈ , there exists a continuous

homomorphism f̃ : G → H such that f = f̃ ◦ σ.

Prove the following assertions:

a) The group F (X, ) exists and is unique for every space X.

b) The equality A(X) = F (X, �) holds for every space X, where � is the class of all

Abelian topological groups. Show that FP(X) = F (X, �), where � is the class of all

precompact topological groups.

c) σ : X → F (X, ) is a topological embedding iff the continuous homomorphisms of X
to the groups in  separate points and closed sets in X.

d) If  is the SC-variety of all zero-dimensional topological groups, then the group F (I, )

is trivial, where I = [0, 1].

e) The condition in c) does not guarantee that the image σ(X) is closed in F (X, ).

7.1.h. A non-empty class  of topological groups is called an SC-variety if it is closed under taking

arbitrary subgroups and topological products.

a) Prove that if  is an SC-variety and σ : X → F (X, ) is a continuous mapping satis-

fying (V1) of Exercise 7.1.g, then σ(X) algebraically generates the -free topological

group F (X, ).
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b) Show that if  contains the circle group T, then σ is a closed embedding of X into

F (X, ).

7.1.i. (O. Alas, et al. [5]) Show that if a Tychonoff space X is connected and locally connected,

then the groups F (X) and A(X) are locally connected. Find out whether the analogous result

is valid for the free precompact group FP(X) (see Exercise 7.1.f).

7.1.j. (O. G. Okunev [358]) A continuous onto mapping f : X → Y is called R-quotient if for every

mapping g : Y → R, the composition g ◦ f is continuous iff g is continuous. Clearly, every

R-quotient mapping is continuous, and every quotient mapping is R-quotient. Generalize the

second part of Corollary 7.1.9 by showing that if an onto mapping f : X → Y is R-quotient,

then the homomorphism F (f ) : F (X) → F (Y ) extending f is open. Formulate and prove

an analogous assertion in the Abelian case.

7.1.k. Prove that if F (X) is Lindelöf, for some Tychonoff space X, then F (X) × F (X) is also

Lindelöf. Extend the conclusion to the groups A(X), F∗(X), and A∗(X).

Problems

7.1.A. (B. V. S. Thomas [464]) Let Z = X ⊕ Y be the topological sum of Tychonoff spaces X and

Y . Prove that the free Abelian topological group A(Z) is topologically isomorphic to the

product group A(X) × A(Y ).

7.1.B. In the class of Tychonoff spaces, define the notion of the free Tychonoff paratopological

group of a Tychonoff space X. Show that it always exists, is unique, and has very similar

properties to those of the free topological group of X. Do the same for the Abelian case.

7.1.C. In the class of Hausdorff spaces, follow the routine to define the notion of the free Hausdorff

paratopological group of a Hausdorff space X. Does this object exist for every Hausdorff

space? Is X always naturally homeomorphic to a closed subspace of it?

7.1.D. Calculate the pseudocharacter of the free Abelian precompact topological group AP(X) in

terms of the space X.

7.1.E. Give an example of Lindelöf precompact topological groups G and H such that the product

group G × H is not Lindelöf.

Open Problems

7.1.1. Let S be the Sorgenfrey line. Is there a Lindelöf topological group topology on the free

Abelian group Aa(S) such that S is a closed subspace of Aa(S) with this topology? Does

there exist such a topological group topology on Fa(S)?

7.1.2. Let X be an arbitrary normal space. Is there a normal topological group topology on the free

Abelian group Aa(X) such that X is closed in Aa(X) with this topology?

7.1.3. Suppose that X is a space such that Xn is normal, for every n ∈ ω. Is the free topological

group F (X) normal? What about A(X)?

7.1.4. Suppose that X is a space such that Xn is paracompact, for every n ∈ ω. Is the free topological

group F (X) paracompact?

7.1.5. Let X be a sequential Tychonoff space. Is there a sequential group topology on the free

Abelian group Aa(X)? Is there a sequential group topology on Aa(X) such that X is closed

in Aa(X) with this topology?

7.1.6. Characterize the Tychonoff spaces X such that the quotient topological group A(X)/2A(X)

is extremally disconnected, where 2A(X) = {2g : g ∈ A(X)}. Is every space X with this

property discrete?

7.1.7. Characterize Tychonoff spaces X such that the free Abelian group Aa(X) admits a pseu-

docompact group topology such that X is a closed subspace of Aa(X) with this topology.

Consider the similar question for Fa(X).

Definition and basic properties
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7.1.8. Suppose that F (X) is (collectionwise) normal. Is X countably paracompact?

7.1.9. Suppose that the space F (X) has one of the following properties:

(a) sequentiality;

(b) countable tightness;

(c) countable cellularity;

(d) normality;

(e) paracompactness.

Does F (X) × F (X) have the same property?

7.1.10. When, in terms of the space X, does F (X) admit a continuous homomorphism (a continuous

mapping) onto F (X) × F (X)?

7.1.11. When, in terms of X, is F (X) × F (X) a quotient group of F (X)?

7.2. Extending pseudometrics from X to F (X)

A more detailed study of topological groups F (X) and A(X) requires understanding of

how X is placed in these groups. For example, we know that every continuous real-valued

function on X admits an extension to a continuous homomorphism of A(X) to the additive

group R; thus, X is C-embedded in A(X) and F (X). Theorem 7.2.2 below is a considerably

stronger result: Every continuous pseudometric 
 on X admits an extension to a continuous

invariant pseudometric 
̂ on F (X). An analogous assertion holds for A(X). The invariance

of 
̂ on F (X) means that


̂(xg, xh) = 
̂(g, h) = 
̂(gx, hx)

for all g, h, x ∈ F (X). The proof of Theorem 7.2.2 is based on a combinatorial work with

the words that form the groups F (X) and A(X). This requires the concept of a scheme that

plays a crucial role here.

Let A be a subset of N such that |A| = 2n, for some n ≥ 1. A scheme on A is a bijection

ϕ : A→ A satisfying the following conditions:

(S1) ϕ(i) = i and ϕ(ϕ(i) = i, for every i ∈ A;

(S2) there are no i, j ∈ A such that i < j < ϕ(i) < ϕ(j).

Thus, a scheme on A is an idempotent permutation of A without fixed points that satisfies

(S2). Notice that (S2) is equivalent to the requirement that there are no i, j ∈ A with

i < ϕ(j) < ϕ(i) < j. We need the following technical statement:

Proposition 7.2.1. Suppose that n is a positive integer and ϕ is a scheme on
An = {1, 2, . . . , 2n}. If i < ϕ(i) for some i < 2n, then there exists j with i ≤ j < ϕ(i)
such that ϕ(j) = j + 1. In particular, for every scheme ϕ on An, there is j < 2n such that
ϕ(j) = j + 1.

Proof. Let j be the maximal integer such that i ≤ j < ϕ(i) and ϕ(j) < ϕ(i). We claim

that ϕ(j) = j + 1. Indeed, assume the contrary. Then, clearly, j + 1 < ϕ(j), and it follows

from the definition of a scheme that j + 1 < ϕ(j + 1) < ϕ(j), which contradicts the choice

of j. �

Let X be a non-empty set and e be the identity element of the free group Fa(X). A

word X in the alphabet X̃ = X ∪ {e} ∪ X−1 is said to be almost reduced if it satisfies the

following two conditions:



425

(a) X does not contains two adjacent letters of the form x, x−1 or x−1, x for any x ∈ X
(but X may contain several letters e);

(b) after deleting all e’s from the word X, one obtains an reduced word in the alphabet

X ∪X−1.

Since e−1 = e, an almost reduced word cannot contain two adjacent letters equal to e.

Therefore, an almost reduced word of an even length 2n can contain at most n letters e.

We are ready to prove one of the main results of this section, known as Graev’s Extension

Theorem.

Theorem 7.2.2. [M. I. Graev] Every pseudometric 
 on a non-empty set X can be
extended to invariant pseudometrics 
̂ and 
̂A on the groups Fa(X) and Aa(X), respectively.
In addition, if X is a Tychonoff space and 
 is continuous on X, then the pseudometrics 
̂
and 
̂A are continuous on F (X) and A(X), respectively.

Proof. We consider in detail the case of the groups Fa(X) and F (X), and then indicate

the necessary changes for the groups Aa(X) and A(X).

The first step is to extend 
 to a pseudometric 
∗ on the subset X̃ = X ∪ {e} ∪ X−1

of Fa(X), where e is the neutral element of Fa(X). Choose a point x0 ∈ X and for every

x ∈ X, put


∗(e, x) = 
∗(e, x−1) = 1 + 
(x0, x).

Then for x, y ∈ X, define the distances 
∗(x−1, y−1), 
∗(x−1, y) and 
∗(x, y−1) by


∗(x−1, y−1) = 
∗(x, y) = 
(x, y),


∗(x−1, y) = 
∗(x, y−1) = 
∗(x, e) + 
∗(e, y).

From our definition it follows immediately that 
∗�X = 
 and 
∗(z, t) = 
∗(t, z) ≥ 0, for

all z, t ∈ X̃. Let us verify that 
∗ satisfies the triangle inequality


∗(u, w) ≤ 
∗(u, v) + 
∗(v, w)

for all u, v, w ∈ X̃. This is clear if one of the points u, v, w is equal to e. Therefore, we have

to consider the following cases:

(a) u, v, w ∈ X; (a′) u, v, w ∈ X−1;

(b) u, v ∈ X, w ∈ X−1; (b′) u, v ∈ X−1, w ∈ X;

(c) u, w ∈ X, v ∈ X−1; (c′) u, w ∈ X−1, v ∈ X;

(d) v, w ∈ X, u ∈ X−1; (d′) v, w ∈ X−1, u ∈ X.

By the symmetry argument, it suffices to restrict our attention to the cases (b) and (c). In

case (b), we have


∗(u, v) + 
∗(v, w) = 
∗(u, v) + 
∗(v, e) + 
∗(e, w)

≥ 
∗(u, e) + 
∗(e, w) = 
∗(u, w).

Similarly, in case (c) we have


∗(u, v) + 
∗(v, w) = 
∗(u, e) + 
∗(e, v) + 
∗(v, e) + 
∗(e, w)

≥ 
∗(u, e) + 
∗(e, w) ≥ 
∗(u, w).

Now we have to extend the pseudometric 
∗ from X̃ to the whole group Fa(X). Let g
be a reduced element of Fa(X), and suppose that X ≡ xi1xi2 . . . xi2n is a word in the alphabet

Extending pseudometrics from X to F( )X
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X̃ of even length l(X) = 2n, where i1, . . . , i2n are pairwise distinct positive integers, such

that all possible cancellations in X (including deletions of the letter e from X) transform X
to g (we will write [X] = g if all these conditions are satisfied). Denote by �X the family

of all schemes on A = {i1, . . . , i2n}. We say that each ϕ ∈ �X is a scheme for X. For every

ϕ ∈ �X, put

Γ
(X, ϕ) =
1

2

∑
i∈A


∗(x−1
i , xϕ(i)). (7.1)

The factor 1/2 in the above definition appears due to the fact that, for each i ∈ A, the sum

in the right part of (7.1) contains two equal summands 
∗(x−1
i , xϕ(i)) and 
∗(x−1

ϕ(i), xi). Then

we define a number N
(g) as follows:

N
(g) = inf{Γ
(X, ϕ) : l(X) = 2n ≥ l(g), [X] = g, ϕ ∈ �X, n ∈ N}.
It is clear that N
(g) ≥ 0 for each g ∈ Fa(X). We divide the rest of the proof into several

steps.

Claim 1. For every g ∈ Fa(X) distinct from e, one can find an almost reduced word Xg

of even length 2n ≥ 2 in the alphabet X̃ and a scheme ϕg for Xg that satisfy the following
conditions:

(i) Xg contains only the letters of g or the letter e;
(ii) [Xg] = g and l(Xg) ≤ 2l(g);
(iii) N
(g) = Γ
(Xg, ϕg).

Indeed, let X be a word of length l(X) = 2n ≥ l(g) with [X] = g and ϕ be a scheme

for X. Suppose that X = x1x2 . . . x2n, where x1, x2, . . . , x2n ∈ X̃. First, we show that there

exist a non-empty almost reduced word X1 of length 2m ≤ 2n obtained after several simple

transformations and cancellations in X and a scheme ϕ1 for X1 that satisfy (i), (ii), and

(iv) Γ
(X1, ϕ1) ≤ Γ
(X, ϕ).

If X is almost reduced, we simply put X1 = X and ϕ1 = ϕ. Suppose, therefore, that X
contains either two adjacent symbols of the form uu−1 or three adjacent symbols ueu−1,

for some u ∈ X̃ (in the latter case, deleting the letter e from X produces a new cancellation).

Case I.X contains two adjacent symbols uu−1 for some u ∈ X̃. Then xi = u and xi+1 = u−1

for some i < 2n. Let us consider two subcases: ϕ(i) = i+1 and ϕ(i) = i+1. If ϕ(i) = i+1,

we delete uu−1 from X, thus obtaining the word X′, and define ϕ′ as the restriction of ϕ
to {1, . . . , i − 1, i + 2, . . . , 2n}. It is clear that [X′] = g and Γ
(X′, ϕ′) = Γ
(X, ϕ). If

ϕ(i) = i + 1, put r = ϕ(i) and s = ϕ(i + 1). Then {r, s}∩ {i, i + 1} = ∅. Again, we delete

uu−1 from X, thus obtaining the new word X′ with [X′] = g, and define a bijection ϕ′ of

A = {1, . . . , i− 1, i + 2, . . . , 2n} onto itself by ϕ′(m) = ϕ(m) if m /∈ {r, s} and ϕ′(r) = s,
ϕ′(s) = r. One easily verifies that ϕ′ is a scheme on A, and it follows from


∗(x−1
r , xs) ≤ 
∗(x−1

r , xi) + 
∗(xi, xs)

= 
∗(x−1
r , xi) + 
∗(x−1

i+1, xs)

that Γ
(X′, ϕ′) ≤ Γ
(X, ϕ). Evidently, each letter of X′ is also a letter of X.

Case II. The word X contains three adjacent symbols u−1eu for some u ∈ X̃. Then there

exists i with 1 < i < 2n such that u−1 = xi−1, e = xi and u = xi+1. Let r = ϕ(i − 1),

s = ϕ(i) and t = ϕ(i + 1). As in Case I, two subcases are possible: s ∈ {i − 1, i + 1} or
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s /∈ {i − 1, i + 1}. In the former subcase, we can assume without loss of generality that

s = i + 1 and r < i − 1. Then X ≡ AxrBu−1euC, where the words A, B and C have

lengths r − 1, i − r − 2 and 2n − i − 1, respectively. Put X′ ≡ AxrxiBC. Since xi = e,

we have [X′] = [X] = g, l(X′) = l(X) − 2, and each letter of X′ is also a letter of X. Let

ϕ′ be a bijection of the set K = {1, . . . , i − 1, i + 2, . . . , 2n} which coincides with ϕ on

K \ {r, i − 1} and satisfies ϕ′(r) = i, ϕ′(i) = r. Then ϕ′ is a scheme on K, and an easy

calculation shows that

Γ
(X, ϕ)− Γ
(X′, ϕ′) = 
(xr, u) + 
(u, e)− 
(xr, e) ≥ 0.

Hence, we conclude that Γ
(X′, ϕ′) ≤ Γ
(X, ϕ).

Suppose now that s /∈ {i − 1, i + 1}. Since ϕ is a scheme, neither of the inequalities

r < t < i − 1, i − 1 < t < r, i + 1 < t < s, s < t < i + 1 is possible. Suppose, for

example, that r < i − 1 < i + 1 < s < t. Then X ≡ AxrBu−1euCx−1
s DxtE, where

A, B, C, D and E are words of the lengths r − 1, i− r − 2, s− i− 2, t − s− 1 and 2n− t,
respectively. Let X′ ≡ AxrBCx−1

s DxixtE be the word obtained from X by deleting uu−1

and translating e = xi to the letter xt . Clearly, [X′] = g. Let also ϕ′ be a bijection of the

set K = {1, . . . , i− 2, i, i + 2, . . . , 2n} that coincides with ϕ on K \ {r, i, s, t} and satisfies

ϕ′(r) = s, ϕ′(s) = r, ϕ(i) = t and ϕ(t) = i. Then ϕ′ is a scheme on K (which connects xr

with xs and xi = e with xt). Our definition of ϕ′ implies that

Γ
(X, ϕ)− Γ
(X′, ϕ′) = 
(xr, u) + 
(u, xs)− 
(xr, xs) ≥ 0.

Therefore, Γ
(X′, ϕ′) ≤ Γ
(X, ϕ). Notice that each letter of X′ is a letter of X. The other

two cases, when s < r < i− 1 or i + 1 < s < r, are similar to the one considered and are

left to the reader.

In each of Cases I and II, the length of X′ is strictly less than the length of X and, in

addition, X′ does not contain “new” letters. If the word X′ again fails to be almost reduced,

we apply one of the operations described in Case I and Case II to X′, thus obtaining a word

X′′ and a scheme ϕ′′ for X′′ such that [X′′] = g, Γ
(X′′, ϕ′′) ≤ Γ
(X′, ϕ′), and so on. Since

g = [X] = [X′] = [X′′] = . . . and Γ
(X, ϕ) ≥ Γ
(X′, ϕ′) ≥ Γ
(X′′, ϕ′′) ≥ . . ., we finally

obtain an almost reduced word X1 of even length and a scheme ϕ1 for X1 satisfying (i), (ii)

and (iv). Notice that the inequality l(X1) ≤ 2l(g) in (ii) is a consequence of the fact that the

word X1 is almost reduced.

To complete the proof of Claim 1, it is enough to observe that, given an element

g ∈ Fa(X), there exist only finitely many pairs (X1, ϕ1) satisfying (i) and (ii). Therefore,

one of these pairs, say, (Xg, ϕg) satisfies (i)–(iii).

Claim 2. The function N
 is an invariant prenorm on the group Fa(X).

Clearly, N
(e) = 0 and N
(g) ≥ 0 for each g ∈ Fa(X). Let us verify that

N
(g−1) = N
(g) and N
(gh) ≤ N
(g) + N
(h) for all g, h ∈ Fa(X).

For an element g ∈ Fa(X), we can find, by Claim 1, a word X = x1x2 . . . x2n in the

alphabet X̃ and a scheme ϕ on An = {1, . . . , 2n} such that [X] = g and N
(g) = Γ
(X, ϕ).

Consider the word Y = y1 . . . y2n−1y2n with yi = x−1
2n−i+1, 1 ≤ i ≤ 2n, and a scheme ψ on

An defined by ψ(i) = 2n− ϕ(2n− i + 1) + 1 for each i ≤ 2n. Then [Y] = g−1 and

N
(g−1) ≤ Γ
(Y, ψ) = Γ
(X, ϕ) = N
(g),

Extending pseudometrics from X to F( )X
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that is, N
(g−1) ≤ N
(g). With g−1 instead of g, we have N
(g) ≤ N
(g−1). Combining

these inequalities, we finally obtain N
(g−1) = N
(g), for each g ∈ Fa(X).

Let g and h be arbitrary elements of Fa(X), and suppose that X = x1x2 . . . x2n and

Y = y1y2 . . . y2m are words in the alphabet X̃ such that

[X] = g, [Y] = h, N
(g) = Γ
(X, ϕ) and N
(h) = Γ
(Y, ψ),

where ϕ ∈ �An and ψ ∈ �Am . Put Z = XY = x1 . . . x2ny1 . . . y2m and rewrite Z in the form

Z = z1 . . . z2nz2n+1 . . . z2n+2m, where zi = xi if 1 ≤ i ≤ 2n and z2n+j = yj if 1 ≤ j ≤ 2m.

Define a scheme σ ∈ �An+m by the formula

σ(k) =

{
ϕ(k) if 1 ≤ k ≤ 2n;

2n + ψ(k − 2n) if 2n < k ≤ 2n + 2m.

It is clear that [Z] = g · h and

Γ
(Z, σ) = Γ
(X, ϕ) + Γ
(Y, ψ) = N
(g) + N
(h).

Therefore,

N
(g · h) ≤ Γ
(Z, σ) = N
(g) + N
(h).

This proves that N
 is a prenorm on the group Fa(X). It remains to verify that N
 is invariant,

that is, N
(h−1gh) = N
(g) for all g, h ∈ Fa(X). Evidently, it suffices to check the above

equality in the case when h has the length 1, say, h = x ∈ X ∪ X−1. Let X = x1 . . . x2n

be a word in the alphabet X̃ such that [X] = g and Γ
(X, ϕ) = N
(g) for some ϕ ∈ �An .

Consider the word Y = y1y2 . . . y2n+1y2n+2, where y1 = x−1, y2n+2 = x and yk = xk−1 if

2 ≤ k ≤ 2n + 1. Define a scheme ψ ∈ �An+1
by the formula

ψ(k) =

⎧⎪⎨⎪⎩
2n + 2 if k = 1;

1 if k = 2n + 2;

ϕ(k − 1) + 1 if 2 ≤ k ≤ 2n + 1.

Then [Y] = x−1gx and, hence,

N
(x−1gx) ≤ Γ
(Y, ψ) = Γ
(X, ϕ) = N
(g).

Replace x by x−1 and g by x−1gx in the above inequality to obtain N
(g) ≤ N
(x−1gx).

The two inequalities imply that N
(x−1gx) = N
(g). This proves Claim 2.

Claim 3. N
(x−1y) = 
(x, y) = N
(xy−1) for all x, y ∈ X.

Fix two elements x, y ∈ X. Note that by Claim 2,

N
(xy−1) = N
(x−1xy−1x) = N
(y−1x) = N
(x−1y),

so it suffices to show that N
(x−1y) = 
(x, y). If x = y, then, clearly,


(x, y) = 0 and N
(x−1y) = Γ
(X, ϕ) = 0,

where X = x1x2 is the word with x1 = x−1, x2 = y and ϕ ∈ �A1
is the transposition of

elements 1, 2. Suppose, therefore, that x = y.

Put g = x−1y. By Claim 1, one can find a word Y of length 2m ≤ 3 in the alphabet X̃
such that [Y] = g and Γ
(Y, ϕ) = N
(g) for some ϕ ∈ �Am . Since the element g ∈ Fa(X)



429

is reduced, we must have m = 1 and Y = x−1y. Again, if ϕ is the transposition of 1 and 2,

then

N
(x−1y) = Γ
(Y, ϕ) = 
(x, y).

This proves Claim 3.

Define a pseudometric 
̂ on Fa(X) by 
̂(g, h) = N
(g−1h) for all g, h ∈ Fa(X).

Claim 4. The pseudometric 
̂ is invariant on Fa(X), and its restriction to X coincides with

.

Indeed, by the invariance of N
 (Claim 2), we have


̂(gx, hx) = N
(x−1g−1hx) = N
(g−1h) = 
̂(g, h)

for all x, g, h ∈ Fa(X). From the definition of N
 it also follows that


̂(xg, xh) = N
((xg)−1xh) = N
(g−1h) = 
̂(g, h).

We conclude, therefore, that the pseudometric 
̂ is invariant. Claim 3 implies immediately

that the restriction of 
̂ to X coincides with 
, so Claim 4 is proved.

The next step is to establish the continuity of the extension 
̂ for every continuous

pseudometric 
 on X. Denote by � the family of all continuous pseudometrics on X. For

every 
 ∈ �, put

U
 = {g ∈ Fa(X) : N
(g) < 1}.
First, we prove the following important result.

Claim 5. The family � = {U
 : 
 ∈ �} is a base at the identity e for a Hausdorff group
topology �inv on Fa(X). The restriction of �inv to X coincides with the original topology
of the space X.

We have to verify that the family �inv satisfies the five conditions of the complete

neighbourhood system at e given in Theorem 1.3.12. Let us do it step by step.

1) {e} = ∩�. Take any reduced element g = x1 . . . xn ∈ Fa(X) distinct from the

identity e. Since X is completely regular, there exists a continuous pseudometric 
 on X
such that 
∗(x−1

i , xj) ≥ 1 if x−1
i = xj . Indeed, xi = aεi

i for some ai ∈ X and εi = ±1,

1 ≤ i ≤ n. Take a continuous real-valued function f on X such that |f (ai) − f (aj)| ≥ 1

if ai = aj and define a continuous pseudometric 
 on X by 
(x, y) = |f (x)− f (y)| for all

x, y ∈ X. We claim that g /∈ U
. Indeed, by Claim 1, we can find a word X = y1y2 . . . y2m

of length 2m ≤ l(g) + 1 in the alphabet X̃ and a scheme ϕ on Am = {1, . . . , 2m}
such that [X] = g, {y1, y2 . . . , y2m} ⊂ {e, x1, x2, . . . , xn} and N
(g) = Γ
(X, ϕ). By

Proposition 7.2.1, ϕ(i) = i + 1 for some i < 2m, whence


∗(y−1
i , yi+1) ≤ Γ
(X, ϕ) = N
(g).

If both yi, yi+1 are distinct from e, then yi and yi+1 are consecutive letters in g, for example,

yi = xj and yi+1 = xj+1, for some j < n. Since the word g is reduced, x−1
j = xj+1.

Therefore,


∗(y−1
i , yi+1) = 
∗(x−1

j , xj+1) ≥ 1.

If one of the elements yi, yi+1 is equal to e, say, yi = e, then yi+1 = e and, hence,


∗(y−1
i , yi+1) = 
∗(e, yi+1) ≥ 1

Extending pseudometrics from X to F( )X
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by the definition of 
∗. In either case, we have

1 ≤ 
∗(y−1
i , yi+1) ≤ N
(g),

so g /∈ U
 by the definition of U
.

2) For every U, V ∈ �, there exists W ∈ � such that W ⊂ U ∩ V . Indeed, if U = U


and V = Uσ for some 
, σ ∈ �, then put d = 
 + σ. Clearly, d ∈ � and W = Ud is as

required.

3) For every U ∈ � there exists V ∈ � such that VV−1 ⊂ U. To find such a set V ,

suppose that U = U
 for some 
 ∈ �. Put σ = 2
 and V = Uσ . If g, h ∈ V , then we have

N
(gh−1) ≤ N
(g) + N
(h−1) = N
(g) + N
(h) < 1/2 + 1/2 = 1.

This implies immediately that VV−1 ⊂ U.

4) For every U ∈ � and g ∈ U, there exists V ∈ � such that gV ⊂ U. Again,

suppose that U = U
 for some 
 ∈ �, and let g ∈ U
 be arbitrary. Then r = N
(g) < 1,

s = 1 − r > 0 and σ = s−1 · 
 ∈ �. Put V = Uσ . Clearly, V ∈ � and if h ∈ V , then

Nσ(h) = s−1 ·N
(h) < 1. So,

N
(gh) ≤ N
(g) + N
(h) < r + s = 1,

whence it follows that gV ⊂ U.

5) For every U ∈ � and g ∈ Fa(X), there exists V ∈ � such that gVg−1 ⊂ U. Indeed,

by Claim 2, the prenorm N
 is invariant for every 
 ∈ �, so one can take V = U.

We conclude that the family � satisfies 1)–5), so it forms a base at the identity for a

Hausdorff group topology �inv on Fa(X). It remains to verify that �inv induces on X its

original topology τX.

Let O be an open set in the group (Fa(X), �inv) such that O ∩X = ∅. Choose a point

x ∈ O∩X. Since � is a base for �inv at the identity, we can find 
 ∈ � such that xU
 ⊂ O.

The set

V = {y ∈ X : 
(x, y) < 1}
is an open neighbourhood of x in X, and Claim 3 implies that V ⊂ xU
 ∩ X ⊂ O. This

proves that O ∩X is open in X and, hence, τX is finer that �inv�X.

Conversely, let W be an open subset of X, and let x0 ∈ W be an arbitrary point. Since

X is completely regular, there exists a continuous real-valued function f on X such that

f (x0) = 1 and f (x) = 0 for each x ∈ X \ W . Then the pseudometric 
 on X defined

by 
(x, y) = |f (x) − f (y)| for all x, y ∈ X is continuous, so 
 ∈ �. Let us verify that

X ∩ x0U
 ⊂ W . If x ∈ X ∩ x0U
, then x−1
0 x ∈ U
. By Claim 3, we have

|f (x0)− f (x)| = 
(x0, x) = N
(x−1
0 x) < 1.

Since f (x0) = 1, this implies that f (x) = 0, whence x ∈ W . This proves the inclusion

X ∩ x0U
 ⊂ W . We conclude, therefore, that �inv�X is finer than τX. Summarizing, we

have �inv�X = τX. Claim 5 is proved.

Claim 6. If 
 is a continuous pseudometric on a Tychonoff space X, then the pseudometric

̂ is continuous on the free topological group F (X).

Denote by � the topology of the free topological group F (X). Then � is finer than

�inv, by Claim 5 and Corollary 7.1.8. In particular, the set Un
 is open in F (X), for each
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n ∈ N. This fact and invariance of 
̂ together imply the continuity of the extension 
̂.

Claim 6 is proved.

Claims 4 and 6 prove the theorem for the groups Fa(X) and F (X). The argument for the

Abelian groups Aa(X) and A(X) is similar to the one just given, but it requires one important

change in the definition of a scheme. Given a finite subset B of N with |B| = 2n ≥ 2, we

say that a bijection ϕ : B → B is an Abelian scheme on B if ϕ is an involution without fixed

points, that is, ϕ(i) = j always implies j = i and ϕ(j) = i. Then one defines an invariant

extension 
̂A of a given pseudometric 
 on X to the group Aa(X) using Abelian schemes.

The rest of the proof goes the same way. �

Let us study Graev’s extension of pseudometrics from X to A(X) in more detail. In

what follows we use the additive notation for the group multiplication in A(X). However,

we will keep the symbol e to stand for the neutral element of Aa(X), to distinguish the last

one from 0 ∈ Z. The next corollary follows immediately from the invariance of 
̂A.

Corollary 7.2.3. Let 
 be a continuous pseudometric on a space X. Graev’s extension

̂A of 
 over A(X) satisfies 
̂A(g1 + h, g2 + h) = 
̂A(g1, g2) and 
̂A(−h, e) = 
̂A(h, e) for
all g1, g2, h ∈ A(X).

Graev’s extension d̂A of a pseudometric d on X to the free Abelian group Aa(X) admits

a clearer description given below. Note that every element h ∈ Aa(X) \ {e} can be written

as h = k1x1 + · · ·+knxn, where x1, . . . , xn are distinct points of X and k1, . . . , kn ∈ Z\{0}.
In the sequel we shall call such an expression the normal form of h.

Corollary 7.2.4. Suppose that d is a pseudometric on a set X and m1x1 + · · ·+mnxn

is the normal form of an element h ∈ Aa(X) \ {e} of the length l =
∑n

i=1 |mi|. Then there
exists a representation

h = (u1 − v1) + · · ·+ (uk − vk), (7.2)

where 2k = l if l is even and 2k = l + 1 if l is odd, u1, v1 . . . , uk, vk ∈ {±x1, . . . ,±xn} (but
vk = e if l is odd), and such that

d̂A(h, e) =

k∑
i=1

d∗(ui, vi), (7.3)

where d∗ is the extension of d over X̃ = X ∪ {e} ∪ (−X) constructed in Theorem 7.2.2. In
addition, if d̂A(h, e) < 1, then l = 2k, and one can choose y1, z1, . . . , yk, zk ∈ {x1, . . . , xn}
such that

h = (y1 − z1) + · · ·+ (yk − zk) (7.4)

and

d̂A(h, e) =

k∑
i=1

d(yi, zi). (7.5)

Proof. We have h = t1 + t2 + · · ·+ tl, where t1, t2 . . . , tl ∈ {±x1, . . . ,±xn}. Denote by

k the integer such that 2k− 1 ≤ l ≤ 2k. If l = 2k− 1, then we additionally put t2k = e. By

Extending pseudometrics from X to F( )X
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Claim 1 in the proof of Theorem 7.2.2, there exists an Abelian scheme ϕ on {1, 2, . . . , 2k}
such that

d̂A(h, e) =
1

2

2k∑
i=1

d∗(−ti, tϕ(i)).

Since the group Aa(X) is Abelian, we can assume without loss of generality that ϕ(2i−1) =

2i (hence, ϕ(2i) = 2i− 1) for each i = 1, . . . , k. Therefore, we have

h = (t1 + t2) + · · ·+ (t2k−1 + t2k) (7.6)

and

d̂A(h, e) =

k∑
i=1

d∗(−t2i−1, t2i) =

k∑
i=1

d∗(t2i−1,−t2i). (7.7)

For every i = 1, . . . , k, we put ui = t2i−1 and vi = −t2i, thus obtaining (7.2) and (7.3) from

(7.6) and (7.7), respectively.

Finally, suppose that d̂A(h, e) < 1. Note that d∗(x, e) ≥ 1 and d∗(−x, y) = d∗(x,−y) ≥
1 for all x, y ∈ X. From (7.7) it follows that d∗(t2i−1,−t2i) ≤ d̂A(h, e) < 1 for each

i = 1, . . . , k and, hence, one of the elements t2i−1, t2i is in X while the other is in −X.

Therefore, for every i ≤ k we have t2i−1 + t2i = yi − zi, where yi, zi ∈ X. It is clear that

yi, zi ∈ {x1, . . . , xn}. Again, replacing t2i−1 and t2i by the corresponding elements ±yi and

±zi in (7.6) and (7.7), we obtain (7.4) and (7.5), respectively. �

Corollary 7.2.5. Let m1x1 + · · · + mnxn be the normal form of an element
g ∈ Aa(X) \ {e} and d be a pseudometric on X.

a) If d̂A(g, e) < 1, then
∑n

i=1 mi = 0.
b) If

∑n
i=1 mi = 0, then there exists an reduced representation of g in the form

g = (z1 − t1) + · · ·+ (zk − tk)

such that 2k =
∑n

i=1 |mi|, zj, tj ∈ {x1, . . . , xn} for each j ≤ k, and d̂A(g, e) =∑k
j=1 d(zj, tj).

Proof. a) By Corollary 7.2.4, we can represent g as the sum

g = (y1 − z1) + · · ·+ (yk − zk)

such that {y1, z1, . . . , yk, zk} ⊂ {x1, . . . , xn}. Since the sum of the coefficients in the above

representation of g is zero, the same is valid for the representation g = m1x1 + · · ·+ mnxn.

b) Since
∑n

i=1 mi = 0, the number l =
∑n

i=1 |mi| has to be even, say, l = 2k for some

k ∈ N. Again, we apply Corollary 7.2.4 to find an reduced representation ϕ for g of the

form

g = (u1 − v1) + · · ·+ (uk − vk) (7.8)

such that

d̂A(g, e) = Γ(ϕ) =

k∑
j=1

d∗(uj, vj), (7.9)

where uj, vj ∈ {±x1, · · · ,±xn} for each j ≤ k. Each summand in (7.8) has the form

(a − b), (−a + b) = (b − a), (a + b), or (−a − b), for some a, b ∈ X. Let us call the first
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and the second expressions neutral summands, while the third and the fourth ones will be

called positive and negative, respectively.

Suppose that one of the summands in (7.8), for example, (u1 − v1) is positive, so that

u1 ∈ X, v1 = −a for some a ∈ X and, hence, (u1 − v1) = (u1 + a). Since
∑n

i=1 mi = 0,

the right part of (7.8) must contain a negative summand, say, (u2 − v2). Then v2 ∈ X
and u2 = −b for some b ∈ X. Therefore, from our definition of the pseudometric d∗ on

X∪{e}∪(−X) it follows that the sum Γ(ϕ) in (7.9) contains the following part corresponding

to (u1 − v1) and (u2 − v2):

d∗(u1, v1) + d∗(u2, v2) = d∗(u1,−a) + d∗(b,−v2)

= [d∗(u1, e) + d∗(e, a)] + [d∗(b, e) + d∗(e, v2)]

= [d∗(u1, e) + d∗(e, v2)] + [d∗(b, e) + d∗(e, a)]

≥ d∗(u1, v2) + d∗(a, b) = d(u1, v2) + d(a, b).

Replace the sum (u1− v1) + (u2− v2) = (u1 + a)− (b + v2) in (7.8) by (u1− v2) + (a− b).

This gives us another reduced representation ϕ′ for g with the corresponding sum Γ(ϕ′), and

the above inequality implies immediately that Γ(ϕ′) ≤ Γ(ϕ). Note that the representation

ϕ′ for g has less positive and negative summands than ϕ. If ϕ′ still has some positive

or negative summands, then we apply the same procedure to ϕ′ and obtain one more

reduced representation ϕ′′ for g with Γ(ϕ′′) ≤ Γ(ϕ′), which has less positive and negative

summands than ϕ′, etc. Finally, we get an reduced representation ψ for g of the form

g = (z1 − t1) + · · ·+ (zk − tk) with zj, tj ∈ {x1, . . . , xn}, for each j ≤ k, such that

k∑
j=1

d(zj, tj) = Γ(ψ) ≤ Γ(ϕ) = d̂A(g, e).

However, the definition of d̂A implies that d̂A(g, e) ≤ Γ(ψ), whence it follows that∑k
j=1 d(zj, tj) = d̂A(g, e). �

Theorem 7.2.2 and Corollary 7.2.4 have many important applications in the theory of

free topological groups. Let us describe, for example, a neighbourhood base at the neutral

element of the free Abelian topological group A(X) on an arbitrary Tychonoff space X.

First, we need a simple auxiliary result.

Lemma 7.2.6. Let V1, V2, . . . , Vn, . . . be a sequence of subsets of a group G with identity
e such that e ∈ Vi and V 3

i+1 ⊂ Vi for each i ≥ 1. If k1, . . . , kn are positive integers, r ∈ N
and

∑n
i=1 2−ki ≤ 2−r, then Vk1

· · ·Vkn ⊂ Vr.

Proof. We apply induction on n. The lemma is trivially true for n = 1. Suppose

that we have proved the lemma for n = 1, . . . , m. Let us show that it remains valid for

n = m + 1. Denote by s the maximal positive integer such that
∑n

i=1 2−ki ≤ 2−s. Clearly

r ≤ s, and since n ≥ 2, we have s + 1 ≤ ki for each i ≤ n. Our definition of s implies

that 2−s−1 <
∑n

i=1 2−ki , so there exists the minimal positive integer j ≤ n such that

2−s−1 ≤∑j
i=1 2−ki . Then

j−1∑
i=1

2−ki < 2−s−1 and

n∑
i=j+1

2−ki ≤ 2−s−1.
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Now the inductive hypothesis implies that

V1 · · ·Vkj−1
⊂ Vs+1 and Vj+1 · · ·Vn ⊂ Vs+1.

Since s + 1 ≤ kj and r ≤ s (so Vkj ⊂ Vs+1 and Vs ⊂ Vr), we finally have

[Vk1
· · ·Vkj−1

] Vkj [Vkj+1
· · ·Vkn ] ⊂ Vs+1Vs+1Vs+1 ⊂ Vs ⊂ Vr.

�

Theorem 7.2.7. Let X be a Tychonoff space and �X the family of all continuous
pseudometrics on X. Then the sets

V
 = {g ∈ A(X) : 
̂A(g, e) < 1},
with 
 ∈ �X, form a local base at the neutral element e of A(X).

Proof. We use the additive notation for the group operation in A(X). Let V be an open

neighbourhood of e in A(X). There exists a sequence {Vn : n ∈ N} of open neighbourhoods

of e in A(X) such that V1 ⊂ V , −Vi = Vi and Vi+1 + Vi+1 + Vi+1 ⊂ Vi for each i ≥ 1. For

every n ≥ 1, define an open entourage Un of the diagonal in X2 by

Un = {(x, y) ∈ X2 : x− y ∈ Vn}.
Then Un is an element of the universal uniformity �X on the space X and Un+1◦Ui+1◦Un+1 ⊂
Un for each n ≥ 1, where◦denotes the “uniform multiplication” of entourages in the uniform

space (X, �X). Therefore, by [165, Th. 8.1.10], there exists a continuous pseudometric d
on X such that

{(x, y) ∈ X2 : d(x, y) < 2−n} ⊂ Un

for each n ≥ 1. Put 
 = 4d. We claim that V
 ⊂ V .

Indeed, let g ∈ V
. By Corollary 7.2.4, the element g can be written in the form

g = (x1 − y1) + · · ·+ (xp − yp),

with xi, yi ∈ X if 1 ≤ i ≤ p, such that


̂A(g, e) = 
(x1, y1) + · · ·+ 
(xp, yp).

From 
 = 4d it follows that 
̂ = 4d̂, whence

d̂A(g, e) = d(x1, y1) + · · ·+ d(xp, yp) < 1/4.

For every i ≤ p such that d(xi, yi) > 0, choose a positive integer ki satisfying the inequality:

2−ki−1 ≤ d(xi, yi) < 2−ki .

To every i ≤ p with d(xi, yi) = 0 we can assign a sufficiently large integer ki in such a way

that
∑p

i=1 2ki < 1/2. Since xi − yi ∈ Vki for each i ≤ p, Lemma 7.2.6 implies that

g = (x1 − y1) + · · ·+ (xp − yp) ∈ Vk1
+ · · ·+ Vkp ⊂ V1 ⊂ V.

This proves the inclusion V
 ⊂ V . �

The above theorem can be reformulated as follows: The family of pseudometrics

{
̂A : 
 ∈ �X}, where �X is the family of all continuous pseudometrics on X, generates the

topology of the free Abelian topological group A(X). It turns out that a similar assertion for

the free topological group F (X) is “almost always” wrong, except for a very special class of

spaces X. In fact, the family {
̂ : 
 ∈ �X} generates the topology of the group F (X) if and
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only if F (X) is balanced or, equivalently, has an invariant basis (see Problem 7.2.B). There

is, however, an analog of Theorem 7.2.7 for the non-Abelian case dealing with the maximal
group topology �inv with invariant basis on Fa(X) that generates the original topology on X.

Let us prove the existence of such a topology. We will also describe a base of this topology

at the identity of Fa(X). Our argument will be based on the following combinatorial lemma

(we keep notation used in the proof of Theorem 7.2.2).

Lemma 7.2.8. Let g = x1 . . . x2n be a reduced element of Fa(X), where x1, . . . , x2n ∈
X∪X−1, and let ϕ ∈ �n be a scheme. Then there are integers 1 ≤ i1 < · · · < in ≤ 2n and
elements h1, . . . , hn ∈ Fa(X) satisfying the following two conditions:

i) {i1, . . . , in} ∪ {iϕ(1), . . . , iϕ(n)} = {1, 2, . . . , 2n};
ii) g = (h1xi1xϕ(i1)h

−1
1 ) · · · · · (hnxinxϕ(in)h−1

n ).

Proof. We apply induction on n. The lemma is obviously true for n = 0 and n = 1.

Suppose that we have proved it for each m ≤ n, for some n ≥ 1. Let g = x1 . . . x2n+1x2n+2

be an element of Fa(X) where xi ∈ X ∪ X−1, 1 ≤ i ≤ 2n + 2. Consider a scheme

ϕ ∈ �n+1. If k = ϕ(1) = 2n + 2, then k has to be even, for example k = 2m, and we can

apply the inductive hypothesis to the elements g1 = x1 . . . x2m and g2 = x2m+1 . . . x2n+2,

thus obtaining two partitions

{1, . . . , 2m} = {i1, . . . , im} ∪ {ϕ(i1), . . . , ϕ(im)},
{2m + 1, . . . , 2n + 2} = {j1, . . . , jn−m} ∪ {ϕ(j1), . . . , ϕ(jn−m)}

and two equalities

g1 = (p1xi1xϕ(i1)p
−1
1 ) · · · · · (pmximxϕ(im)p

−1
m ),

g2 = (q1xj1
xϕ(j1)q

−1
1 ) · · · · · (qn−mxjn−mxϕ(jn−m)q

−1
n−m).

Combining in the obvious way these equalities, we finally get a required partition of the set

{1, . . . , 2n + 2} and a representation of g = g1g2 satisfying i) and ii).

Suppose that ϕ(1) = 2n + 2. Then

g = (x1g1x−1
1 ) · (x1x2n+2),

where g1 = x2 . . . x2n+1. Since l(g1) = 2n, by the inductive hypothesis there exist a partition

{2, . . . , 2n + 1} = {i1, . . . , in} ∪ {ϕ(i1), . . . , ϕ(in)}
and a representation

g1 = h1xi1xϕ(1)h
−1
1 · · · · · hnxinxϕ(n)h

−1
n .

Finally, we have the partition

{1, . . . , 2n + 2} = {1, i1, . . . , in} ∪ {2n + 2, ϕ(i1), . . . , ϕ(in)}
and the representation

g = (p1xi1xϕ(i1)p
−1
1 ) · · · · · (pnxinxϕ(in)p

−1
n ) · (x1x2n+2),

where pk = x1hk for each k ≤ n. This proves the lemma. �
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Theorem 7.2.9. For every Tychonoff space X, the abstract group Fa(X) admits the
maximal group topology �inv with invariant basis in the sense that every continuous mapping
f : X → H to a topological group H with invariant basis can be extended to a continuous
homomorphism f̃ : (Fa(X), �inv)→ H . The family of all sets of the form

U
 = {g ∈ Fa(X) : 
̂(g, e) < 1},
where 
 is an arbitrary continuous pseudometric on X, constitutes a base of the topology
�inv at the identity e of Fa(X).

Proof. Denote by �inv the Hausdorff group topology on Fa(X) with the family

� = {U
 : 
 ∈ �} as a base at the identity, where � is the family of all continuous

pseudometrics on X (see Claim 5 in the proof of Theorem 7.2.2). By Theorem 7.2.2, each

pseudometric 
̂ is invariant on Fa(X), so the group Finv(X) = (F (X), �inv) has an invariant

basis, and 
̂ is continuous on Finv(X).

Let f : X → H be a continuous mapping of X to a topological group H with invariant

basis. Denote by f̃ the extension of f to a homomorphism of Fa(X) to H . We claim that

f̃ : Finv(X)→ H is also continuous. Indeed, if V is an open neighbourhood of the identity

in H , we can find an invariant prenorm N on H such that W = {h ∈ H : N(h) < 1} ⊂ V .

Define a continuous pseudometric 
 on X by 
(x, y) = N(f (x)−1 · f (y)) for all x, y ∈ X.

Let us show that f̃ (U
) ⊂ W .

Take an arbitrary reduced element g ∈ U
 distinct from the identity e of Fa(X).

Then 
̂(g, e) < 1. It is clear that g has even length, say g = x1 . . . x2n, where

x1, . . . , x2n ∈ X ∪ X−1. Since 
̂(g, e) < 1, there exists a scheme ϕ ∈ �n such

that 
̂(g) = 2−1 · ∑2n
i=1 
∗(x−1

i , xϕ(i)) < 1. Apply Lemma 7.2.8 to find a partition

{1, . . . , 2n} = {i1, . . . , in} ∪ {ϕ(i1), . . . , ϕ(in)} and a representation of g as a product

g = g1 · · · · · gn such that every gk has the form gk = hixik xϕ(ik)h
−1
i , where hi ∈ Fa(X). By

the invariance of N, we have

N(f̃ (g)) ≤
n∑

k=1

N(f̃ (gk)) =

n∑
k=1

N(f̃ (xk) · f̃ (xϕ(k)))

= 
∗(x−1
1 , xϕ(1)) + · · ·+ 
∗(x−1

n , xϕ(n)) < 1.

This implies that f̃ (g) ∈ W . Therefore, f̃ (U
) ⊂ W ⊂ V , and the homomorphism f̃ is

continuous. �
The “invariant” topology �inv on the group Fa(X) almost never coincides with the

topology of F (X). In spite of this difficulty, it is still possible to give a clear description

of a neighbourhood base for the subspace Bn+2(X) of F (X) at any element g ∈ Cn(X),

n ∈ N. For every g = a1 . . . an ∈ Cn(X) with a1, . . . , an ∈ X ∪ X−1, denote by �X(g) the

subfamily of �X consisting of all 
 such that 
̂(a−1
i , ai+1) ≥ 1 for each i < n. Note that the

latter inequality automatically holds if both letters ai and ai+1 belong to X or to X−1. For

a pseudometric 
 ∈ �X(g), put

U
(g) = {x1 . . . xi yεz−εxi+1 . . . xn : x1, . . . , xn ∈ X ∪X−1, y, z ∈ X,

ε = ±1, 0 ≤ i ≤ n, and 
(y, z) +

n∑
k=1


(ak, xk) < 1}.

First, we need the following simple fact about U
(g).
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Proposition 7.2.10. The reduced form of every element of U
(g) has length equal to
n or n + 2.

Proof. A word w = x1 . . . xi yεz−εxi+1 . . . xn ∈ U
(g) admits cancellations if either

y = z or xi yε = e or z−εxi+1 = e. If y = z, then [w] = g is the reduced form of

w and l(g) = n. By the symmetry argument, it suffices to consider the third case. So,

suppose that xi+1 = zε. We claim that the word w′ = x1 . . . xi yεxi+2 . . . xn of the length n
is reduced. Indeed, assuming the contrary, there can be only two possible cancellations in

w′: (a) xi yε = e or (b) yεxi+2 = e.

In case (a), we have x−1
i = yε. As w ∈ U
(g), we also have


̂(a−1
i , ai+1) ≤ 
̂(a−1

i , x−1
i ) + 
̂(x−1

i , yε)

+ 
̂(yε, zε) + 
̂(zε, xi+1) + 
̂(xi+1, ai+1)

= 
̂(ai, xi) + 
̂(y, z) + 
̂(xi+1, ai+1) < 1.

This inequality contradicts the choice of the pseudometric 
 ∈ �X(g).

Similarly, in case (b), we have xi+2 = y−ε. Again, from w ∈ U
(g) it follows that


̂(a−1
i+1, ai+2) ≤ 
̂(a−1

i+1, xi+1) + 
̂(xi+1, zε)

+ 
̂(zε, yε) + 
̂(yε, xi+2) + 
̂(xi+2, ai+2)

= 
̂(a−1
i+1, xi+1) + 
̂(z, y) + 
(xi+2, ai+2) < 1.

This contradicts the choice of 
 ∈ �X(g). Thus, the word w′ is reduced. �

Theorem 7.2.11. The family {U
(g) : 
 ∈ �X(g)} is an open base for Bn+2(X) at any
point g ∈ Cn(X).

Proof. Fix an element g = a1 . . . an ∈ Cn(X) and an open neighbourhood U of

g in F (X). For every i = 1, . . . , n, put gi = a1 . . . ai. There exist open symmetric

neighbourhoods V0 and V1 of e in F (X) such that V 3n+1
0 · g ⊂ U and giV1g−1

i ⊂ V0

for each i ≤ n. Consider the set

O = {(x, y) ∈ X2 : x−1y ∈ V1 and xy−1 ∈ V1}.
Then O is an element of the universal uniformity �X on the space X, so by [165,

Lemma 8.1.11], there exists a continuous pseudometric 
 on X such that

{(x, y) ∈ X2 : 
(x, y) < 1} ⊂ O.

Without loss of generality, we can assume that 
 ∈ �X(g). Now we show that

U
(g) ⊂ U ∩ Bn+2(X). The inclusion U
(g) ⊂ Bn+2(X) is clear. Suppose that

h = x1 . . . xi yεz−εxi+1 . . . xn, where x1, . . . , xn ∈ X ∪ X−1, y, z ∈ X, ε = ±1 and


(y, z) +
∑n

k=1 
(ak, xk) < 1. Then yεz−ε ∈ V1 and, hence, giyεz−εg−1
i ∈ V0. Note

that 
̂(ak, xk) < 1, so xk ∈ Vkak for each k = 1, . . . , n. Therefore,

x1x2 . . . xk ∈ V1a1V1a2 . . . V1ak =

V1 · (a1V1a−1
1 ) · · · · (a1a2 . . . ak−1V1a−1

k−1 . . . a−1
2 a−1

1 ) · a1a2 . . . ak−1ak ⊂
V1 V0 · · ·V0︸ ︷︷ ︸

k−1 times

·gk ⊂ V k
0 · gk
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In its turn, this implies that

x1x2 . . . xi yεz−εxi+1 . . . xn = x1 . . . xi yεz−εx−1
i . . . x−1

1 x1 . . . xn ∈
V i

0 · (giy
εz−εg−1

i ) · V i
0x1 . . . xn ⊂ V i

0 · V0 · V i
0 · V n

0 g ⊂ V 3n+1
0 g ⊂ U,

for i = 0, 1, . . . , n. Hence, U
(g) ⊂ U.

It remains to verify that the sets of the form U
(g) are open in the subspace Bn+2(X) of

F (X). For a given pseudometric 
 ∈ �X(g), consider the set

W = {h ∈ F (X) : 
̂(h, e) < 1}.
We claim that

U
(g) = gW ∩ Bn+2(X).

By Theorem 7.2.2, the set W is open in F (X), so the above equality means, in particular, that

U
 is open in Bn+2(X). The inclusion U
(g) ⊂ gW ∩ Bn+2(X) is almost evident. Indeed,

every element of U
(g) has length ≤ n + 2. If h = x1 . . . xi yεz−εxi+1 . . . xn ∈ U
(g), then

a simple calculation shows that 
̂(g−1h, e) < 1. Indeed, let us write the element g−1h in

the form g−1h = g1 · h1, where

g1 = a−1
n . . . a−1

1 x1 . . . xn and h1 = x−1
n . . . x−1

i+1yεz−εxi+1 . . . xn.

Denote by N
 the prenorm on F (X) associated with 
, that is, N
(x) = 
̂(x, e) for each

x ∈ F (X). Then N
(g1) ≤ 
(a1, x1) + · · ·+ 
(an, xn) and N
(h1) = 
(y, z), by invariance

of N
. Therefore, from h ∈ U
(g) it follows that


̂(g−1h, e) = N
(g−1h) ≤ N
(g1) + N
(h1) ≤ 
(y, z) + 
̂(a1, x1) + · · ·+ 
̂(an, xn) < 1.

Hence, g−1h ∈ W and h ∈ gW . This proves that U
(g) ⊂ gW ∩ Bn+2(X).

The proof of the inverse inclusion gW ∩ Bn+2(X) ⊂ U
(g) requires some work. First,

we claim that gW ∩ Bn−1(X) = ∅.

Indeed, let w = v1 . . . v2k be a reduced element of W , where the letters v1, . . . , v2k belong

to X ∪ X−1. The only possible cancellations in the word X = gw = a1 . . . an v1 . . . v2k

can occur at the join of g and w, so it suffices to show that there can be at most k
cancellations in the word X or, in other words, the shortest possible form of [X] is

Y = a1 . . . an−kvk+1 . . . v2k. Assume the contrary: that the word Y is still reducible. This

means that an = v−1
1 , . . . , an−k+1 = v−1

k and an−k = v−1
k+1. Choose a scheme ϕ ∈ �k such

that N
(w) = 2−1 ·∑2k
i=1 
̂(v−1

i , vϕ(i)). Clearly, there exists i ≤ k such that ϕ(i) ≤ k + 1 —

otherwise ϕ cannot be a bijection of {1, . . . , 2k} onto itself. Therefore, Proposition 7.2.1

implies that ϕ(j) = j + 1 for some j with i ≤ j ≤ k and, hence,


̂(a−1
n−j, an−j+1) = 
̂(vj+1, v−1

j ) = 
̂(v−1
j , vj+1) ≤ N
(w) < 1.

This contradicts the choice of 
 ∈ �X(g). Therefore, gW∩Bn−1(X) = ∅. In addition, every

reduced element w ∈ W has even length, so that the length of any element h ∈ gW∩Bn+2(X)

is either n or n + 2.

Let us show that every element h ∈ gW ∩ Bn+2(X) belongs to U
(g), that is, h has the

form described before Proposition 7.2.10. Clearly, h = g · w, where w = v1 . . . v2k ∈ W
and v1, . . . , v2k ∈ X ∪ X−1. We have just established that either l(h) = n + 2 or l(h) = n.

Suppose that l(h) = n + 2. Without loss of generality we can assume that the element w
is reduced. Consider the word X = gw = a1 . . . anv1 . . . v2k. If X is reduced, then either

w = e or k = 1 and w = v1v2. In the second case, 1 > 
̂(w, e) = 
̂(v−1
1 , v2), so one of the
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letters v1, v2 is in X and the other is in X−1. In other words, v1 = yε and v2 = z−ε for some

y, z ∈ X and ε = ±1. In either case, g ∈ U
(g). Suppose, therefore, that the word X is

reducible.

Again, all possible cancellations in the word X can occur only at the join of g and w, so

that [X] = a1 . . . an−lvl+1 . . . v2k, where 1 ≤ l ≤ n and an = v−1
1 , . . . , an−l+1 = v−1

l . By the

assumption, the length of the word [X] is equal to n+2, so that (n− l)+(2k− l) = n+2 and

l = k − 1. Therefore, [X] = a1 . . . an−k+1vk . . . v2k. Denote by ϕ a scheme on {1, . . . , 2k}
such that N
(w) = 2−1 ·∑2k

i=1 
̂(v−1
i , vϕ(i)). First, we claim that ϕ(i) ≥ k for each i ≤ l.

This is clear if l = 1. If l > 1 and ϕ(i) < k for some i ≤ l, we argue as above to find j < l
such that ϕ(j) = j + 1. Then


̂(a−1
n−j, an−j+1) = 
̂(vj+1, v−1

j ) = 
̂(v−1
j , vj+1) ≤ N
(w) < 1,

and again this contradicts the fact that 
 ∈ �X(g).

Thus, ϕ(1), . . . , ϕ(l) are distinct integers lying between k and 2k. Since ϕ is a

bijection of the set {1, . . . , 2k} and k = l + 1, there exists exactly one integer i such

that k ≤ i < ϕ(i) ≤ 2k. Put j = ϕ(i). It is easy to see that j = i + 1. Indeed, otherwise

there exists an integer q with i < q < j, and then p < k ≤ i < q < j, where p = ϕ(q).

Equivalently, we have p < i < ϕ(p) < ϕ(i), which contradicts the fact that ϕ is a scheme.

So, ϕ(i) = j = i + 1 and ϕ(i + 1) = i.
Not only the integers ϕ(1), . . . , ϕ(l) are distinct and lie between k and 2k, but none of

them is equal to i or i + 1. The sets {1, . . . , l} and {k, . . . , i − 1, i + 2, . . . , 2k} have the

same cardinality, so ϕ maps the first of them onto the second one. Since ϕ is a scheme,

there is only one way to establish a bijection between these sets: 1 ≤ p < q ≤ l implies

k ≤ ϕ(q) < ϕ(p) ≤ 2k. Therefore, we have

ϕ(1) = 2k, ϕ(2) = 2k − 1, . . . , ϕ(2k − i− 1) = i + 2,

ϕ(2k − i) = i− 1, ϕ(2k − i + 1) = i− 2, . . . , ϕ(k − 1) = k.

Since 
̂(v−1
i , vi+1) ≤ N
(w) < 1, one of the letters vi, vi+1 belongs to X and the other

belongs to X−1. Hence there exist y, z ∈ X and ε = ±1 such that vi = yε and vi+1 = z−ε.

Thus, we have

[X] = a1 . . . an−k+1vk . . . vivi+1 . . . v2k = t1 . . . tjy
εz−εtj+1 . . . tn,

where j = n − 2k + i + 1 and a1 = t1, . . . , v2k = tn (i.e., the two words in the above

equality coincide letter by letter). The properties of the scheme ϕ and the equalities

an = v−1
1 , . . . , an−l+1 = v−1

l together imply that


(y, z) +

n∑
r=1


̂(ar, tr) =
1

2

2k∑
s=1


̂(v−1
s , vϕ(s)) = N
(w) < 1.

This inequality means that the element g · w = [X] belongs to U
(g).

Finally, if the length of h = g · w is equal to n then we argue as above and show that

the corresponding scheme ϕ for w satisfies ϕ(i) = 2k − i + 1 for each i ≤ 2k, so that

[X] = a1 . . . an−kvk+1 . . . v2k = t1 . . . tn

and
n∑

r=1


̂(ar, tr) =
1

2

2k∑
s=1


̂(v−1
s , vϕ(s)) = N
(w) < 1.

Extending pseudometrics from X to F( )X
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Again, this implies immediately that h = g · w ∈ U
(g). The theorem is proved. �

For every continuous pseudometric 
 on X, put

U
(e) = {xεy−ε : x, y ∈ X, ε = ±1, 
(x, y) < 1}.
In the case when g is the identity e of F (X), Theorem 7.2.11 provides the following simple

description of a neighbourhood base of B2(X) at e.

Corollary 7.2.12. The family of the sets {U
(e) : 
 ∈ �X} is a base of the subspace
B2(X) ⊂ F (X) at the identity e.

Exercises

7.2.a. (M. I. Graev [201]) Prove that for every continuous pseudometric d on a Tychonoff space

X, there exists the maximal invariant pseudometric d̂ on the free Graev topological group

F∗(X) (see Exercise 7.1.a) extending d. Prove the continuity of d̂. Formulate and prove a

similar result for the group A∗(X).

7.2.b. Give an alternative proof of Theorem 7.1.2 making use of Graev’s extension of continuous

pseudometrics and applying the fact that the upper bound of a family of group topologies on

an abstract group G is again a group topology on G.

7.2.c. Find out whether Corollary 7.1.19 and Theorem 7.1.20 remain valid for the groups FP(X)

and AP(X) (see Exercise 7.1.f).

7.2.d. Prove that for every uniform space (X, �), there exists a unique (up to a topological

isomorphism) free uniform group G = F (X, �) with the following properties:

(U1) There exists a uniformly continuous mapping σ : (X, �) → (G, G) such that σ(X)

generates a dense subgroup of G, where G is the two-sided group uniformity of G.

(U2) If H is an arbitrary topological group with the two-sided uniformity H , then for

every uniformly continuous mapping (X, �) → (H, H ), there exists a continuous

homomorphism f̃ : G → H such that f = f̃ ◦ σ.

Show that σ is a uniform embedding of (X, �) into (F (X, �), G), the set σ(X) is closed

in F (X, �) and algebraically generates F (X, �). Define the free uniform Abelian group
A(X, �) and verify that similar assertions hold true for A(X, �).

7.2.e. Let � be the family of all open coverings of a Tychonoff space X. For every sequence

s = (γ0, γ1, . . .) ∈ �ω, put

Vs = {
n∑

i=0

(xi − yi) : n ∈ ω, xi, yi ∈ Ui for some Ui ∈ γi, i = 0, . . . , n}.

Show that Vs is an open neighbourhood of the identity e in A(X), for each s ∈ �ω, and the

family {Vs : s ∈ �ω} is a local base for A(X) at e.

7.2.f. (Uspenskij [520]). Let X be a Tychonoff space and F0(X) be the open subgroup of F (X)

which coincides with the kernel of the homomorphism f : F (X) → Z, f (x) = 1 for each

x ∈ X.

(a) Verify that every element v ∈ F0(X) admits a representation

v =

n∏
i=1

gix
εi
i y−εi

i g−1
i , xi, yi ∈ X, εi = ±1, gi ∈ F (X). (∗)
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(b) Let � be the family of all continuous pseudometrics on X. For every t = {dg : g ∈
F (X)} ∈ �F (X) and every v ∈ F0(X), put

Nt(v) = inf

n∑
i=1

dgi (xi, yi),

where the infimum is taken with respect to all representations (∗) of v. Prove that each

Nt is a continuous prenorm on F0(X) and the family {Nt : t ∈ �F (X)} generates the

topology of the group F (X).

7.2.g. (K. Eda, H. Ohta, and K. Yamada [156]) Let ω1 + 1 be the space of all ordinals less than or

equal to ω1, with the order topology.

(a) Suppose that both sets S ⊂ ω1 and ω1 \ S are stationary in ω1 (i.e., each of

them intersects every closed unbounded subset of ω1), and consider the subspace

X = S2 ∪ (ω1 ×{ω1})∪ ({ω1}×ω1) of (ω1 + 1)2. Show that each of the groups F (X)

and A(X) contains a topological copy of ω1 + 1, while X does not.

(b) Apply Theorem 7.1.13 to prove that if X is Tychonoff and F (X) contains a copy of the

space ω1, then X also contains a topological copy of ω1.

Remark. The assertion in (b) remains valid for the group A(X) under some extra axioms of

the Set Theory [156].

Problems

7.2.A. Let �1 and �2 be metrizable topologies on X, and let �3 be their supremum, that is, the

smallest topology on X containing both �1 and �2. Are the topologies of the free topological

group on X with these three topologies related in the same way?

7.2.B. (M. G. Tkachenko [472]) Let X be a Tychonoff space and �X be the family of all continuous

pseudometrics on X. Prove that the family {d̂ : d ∈ �X} generates the topology on Fa(X)

coinciding with the topology of F (X) iff the group F (X) is balanced iff there exists a cardinal

τ > ω such that X is pseudo-τ-compact and the intersections of less than τ open sets in X
are open.

7.2.C. (M. G. Tkachenko [482]). Let d be an arbitrary pseudometric on a set X and d̂A the Graev

extension of d over the free Abelian group Aa(X). Prove that d̂A(kg, kh) = |k| · d̂(g, h) for

all g, h ∈ A(X) and all k ∈ Z. (This generalizes Lemma 7.9.1.)

Hint. It suffices to prove that d̂(kh, e) = k · d̂(h, e) for all h ∈ Aa(X) and all k ∈ N, where

e is the neutral element of A(X). Use Corollary 7.2.4 to write an element h ∈ Aa(X) in an

reduced form

h =
∑

1≤i<j≤n

ki,j(xi − εi,jxj) +
∑

1≤i≤n

kixi (7.10)

with xi, xj ∈ X, ki,j , ki ∈ Z and εi,j = ±1, such that

d̂A(h, e)=
∑
i<j

|ki,j| · d∗
(xi, εi,jxj)+

∑
1≤i≤n

|ki| · d∗
(xi, e) (7.11)

and

l(h) =
∑

1≤i<j≤n

2 |ki,j| +
∑

1≤i≤n

|ki|. (7.12)

In addition,
∑n

i=1
|ki| ≤ 1. Call the representation (7.10) of h satisfying (7.11) and (7.12)

an A-scheme for h. To every such A-scheme V for h, assign a non-oriented graph GV with

vertices {x1, . . . , xn} ∪ {e}. The vertices xi and xj with i < j are connected by an edge in

the graph GV if ki,j �= 0 in (7.10). Similarly, the vertices e and xi are connected by an edge

Extending pseudometrics from X to F( )X
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in GV iff ki �= 0 in (7.10). Therefore, e is connected with at most one vertex in the graph GV .

Assign to every edge [xi, xj] (resp., [xi, e]) in GV its multiplicity |ki,j| (resp., |ki|). Verify the

following:

(A) For every non-zero h ∈ A(X), there exists an A-scheme V for h such that the graph

GV does not contain circles.

Let Γ be a finite graph, and each edge of Γ is assigned a positive integer, its multiplicity.

For every vertex t ∈ Γ, the sum It of the multiplicities of all edges connecting t with vertices

in Γ is called the index of t in Γ. Show that the following fact is valid:

(B) Let Γ be a finite graph without circles, and let the index It of each vertex t ∈ Γ,

except for at most one of them, denoted by t∗, be a multiple of an integer k ≥ 2. Then the

multiplicity of each edge in Γ, as well as the multiplicity index of t∗, are also multiples of k.

Apply (A) and (B) to deduce the necessary conclusion.

7.2.D. (P. Nickolas and M. G. Tkachenko [348]) Let ωω be the family of function from ω to ω. A

family � ⊂ ωω is called dominating if for every f ∈ ωω, there exists g ∈ � such that

f (n) ≤ g(n), for all n ∈ ω. The minimal cardinality of a dominating family in ωω is denoted

by d. It is easy to verify that ℵ1 ≤ d ≤ c, and each of the inequalities may be consistently

strict (see [263, Chap. 17]). Prove the following for a Tychonoff space X:

1) If X is not a P-space, then the character of the group A(X) is at least d.

2) If X is infinite, compact, and metrizable, then the weight of each of the groups A(X),

F (X) is equal to d.

3) If X is pseudo-ℵ1-compact, then the weights of the groups A(X) and F (X) coincide.

4) There exists a Lindelöf space Y such that the weight of both groups A(Y ) and F (Y ) is

equal to ℵ1.

Hint. To deduce 1), use Theorem 7.2.7. For 2), modify the description of a neighbourhood

base at the neutral element of F (X) given in Exercise 7.2.f (with an idea to have something

resembling Exercise 7.2.e). Then show that the character of F (X) does not exceed d, for any

compact metrizable space X, and apply Corollary 5.2.4.

7.2.E. (P. Nickolas and M. G. Tkachenko [349]) Prove the following statements:

1) If X is a completely metrizable separable space, then the character of the groups A(X)

and F (X) is equal to d.

2) There exists a regular second-countable space M such that both groups A(M) and F (M)

have the character equal to 2ω.

3) If X and Y are infinite compact spaces of the same weight, then the characters of the

groups A(X), A(Y ), F (X), and F (Y ) coincide.

7.2.F. (S. Garcı́a-Ferreira, M. Sakai, and M. Sanchis [184]) Let κ be an uncountable regular cardinal.

A base � = {Uα : α < κ} for a uniformity � on a set X is called telescopic if it satisfies

the following conditions:

(i) Uα = U−1
α , for every α < κ;

(ii) Uβ ◦ Uβ ⊂ Uα whenever α < β < κ;

(iii) Uβ =
⋂

α<β
Uα whenever β < κ is a limit ordinal.

Prove the following statements:

a) A(X) is topologically orderable and χ((A(X)) = κ iff the universal uniformity on X
has a telescopic base {Uα : α < κ}.

b) F (X) is topologically orderable and χ((A(X)) = κ iff the universal uniformity on X
has a telescopic base {Uα : α < κ} and every open covering of X has a subcovering

of size strictly less than κ.
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7.3. Extension of metrizable groups by compact groups

In this section, we consider the following natural question. Suppose that G is a

topological group, and that H is a closed invariant subgroup of G such that both H and

the quotient group G/H are feathered. Under the assumptions, must G be feathered as

well? Some optimism with regards to this question is nourished by Corollary 1.5.21: If a

topological group G is an extension of a first-countable group by a first-countable group,

then G is itself first-countable. Note also that if H is compact and G/H is metrizable,

then, as we already know, the answer is “yes”, since the natural quotient mapping of G onto

G/H is perfect. So the next step is to consider the “dual” situation and to assume that H is

metrizable and G/H is compact. Will G be feathered in this case? We answer this question

below, making use in a very essential way of the technique of free topological groups.

Theorem 7.3.1. There exists an Abelian topological group P with a closed subgroup
H such that H is metrizable, the quotient group P/H is compact, and P is not feathered.

Proof. Put c = 2ω, and let G = Dc be the topological product of c copies of the

discrete Abelian group D = {0, 1}. Then G is a compact Abelian group. Let M be the

group G endowed with the discrete topology, and consider the topological product Mω

of ω copies of the discrete group M. Then Mω is metrizable, non-discrete, and, clearly,

|Mω| = |G| = 2c. Let L be the σ-product of ω copies of M at the neutral element of

Mω. Then L is a dense subgroup of Mω, and |Mω \ L| = |L| = |M| = 2c, since for any

z ∈ Mω \ L, z + L ⊂ Mω \ L. Fix a bijection g of Mω \ L onto G, and define a mapping

f of the space Mω onto the set G by the following rule: f (x) = e, for each x ∈ L (where e
is the neutral element of G), and f (x) = g(x), for each x ∈ Mω \ L. Clearly, f (Mω) = G.

Consider the free Abelian group A(Mω) of the set Mω. There exists a metrizable

topology �1 on A(Mω) which turns A(Mω) into a topological group and induces on Mω the

product topology � of Mω. The mapping f , by the principal property of the group A(Mω),

can be extended to a homomorphism f ∗ : A(Mω)→ G. Put H = (f ∗)−1(e). Since L ⊂ H
and L is dense in Mω, it follows that H is dense in (A(Mω), �1). Of course, f ∗ is not

continuous with respect to �1. We introduce a new topology on A(Mω) that makes f ∗

continuous, as follows. Let �G be the topology of G. Put �2 = {(f ∗)−1(V ) : V ∈ �G}.
Clearly, �2 is a non-Hausdorff topology on A(Mω). However, it is a group topology on

A(Mω), since f ∗ is a homomorphism and G is a topological group.

The key idea is to blend the two topologies we defined on A(Mω) into one. Let

� = {U ∩ (f ∗)−1(V ) : U ∈ �1, V ∈ �G}.
Clearly, �1 ⊂ �, and the family � is closed under intersections of finite subfamilies.

Therefore, � is a base of a topology �0 on A(Mω) that is stronger than �1. This topology

�0 is the least upper bound of the group topologies �1 and �2 on A(Mω), and therefore,

A(Mω), endowed with �0, is a topological group. Note that (A(Mω), �0) is a Hausdorff

space with a Gδ-diagonal, since the topology �0 contains the metrizable topology �1.

Therefore, all compact subspaces of (A(Mω), �0) are metrizable.

Let us show that the mapping f ∗ of (A(Mω), �0) onto G is open and continuous. The

continuity of f ∗ follows from the fact that �2 = {(f ∗)−1(V ) : V ∈ �G} ⊂ �0. Hence, H
is closed in (A(Mω), �0). Let us show that f ∗ is open.

Extension of metrizable groups by compact groups
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We will call a mapping f : X → Y of a space X superopen if f (U) = Y , for each

non-empty open subset U of X.

Claim 1. The mapping f ∗ of (A(Mω), �1) onto G is superopen.

Indeed, (f ∗)−1(e) is dense in (A(Mω), �1). Since f ∗(Mω) = G, and f ∗ is a

homomorphism, it follows that (f ∗)−1(a) is dense in (A(Mω), �1), for each a ∈ G.

Therefore, f ∗(U) = G for every non-empty U ∈ �1, and Claim 1 is verified.

Now consider an arbitrary element W ∈ �. To show that f ∗ is open, it is enough to

check that f ∗(W ) is open in G. We have W = U ∩ (f ∗)−1(V ), for some U ∈ �1 and some

V ∈ �G. Therefore, f ∗(W ) = f ∗(U) ∩ V = G ∩ V = V ∈ �G. Thus, f ∗ is an open

continuous homomorphism of (A(Mω), �0) onto G. Hence, the topological group G can be

identified with the quotient group of (A(Mω), �0) with respect to the closed subgroup H .

Claim 2. The subspace H of (A(Mω), �0) is metrizable.

Indeed, the traces of elements of � on H form the family

{H ∩ (U ∩ (f ∗)−1(V )) : U ∈ �1, V ∈ �G} = {H ∩ U : U ∈ �1},
which is precisely the topology induced by �1 on H . This is so, since for each V ∈ �G

either (f ∗)−1(V ) ∩H = ∅ or H ⊂ (f ∗)−1(V ). Therefore, the topology induced by �0 on

H coincides with the topology induced by �1 on H , and Claim 2 is proved.

Thus, we have proved that the topological group P = (A(Mω), �0) is an extension of

the metrizable group H by the compact group G.

Let us, finally, verify that (A(Mω), �0) is not feathered. Assume the contrary. Then

(A(Mω), �0) is a feathered space in which every point is a Gδ; therefore, (A(Mω), �0) is

first-countable. Since the mapping f ∗ is open and continuous, and f ∗(A(Mω)) = G, it

follows that G is first-countable, a contradiction. �

Can the metrizable group H in Theorem 7.3.1 be made separable? The next result

provides us with a strong partial answer to this question.

Theorem 7.3.2. The following two statements are equivalent:

1) 2ℵ1 = 2ℵ0 ;
2) there exist an Abelian topological group G with a closed subgroup H such that the

space H has a countable base, the quotient group G/H is compact, |G| = 2ℵ0 , and G
is not feathered.

Proof. First, we show that 2) ⇒ 1). Assume to the contrary that 2ω = 2ω1 . Since

|G/H | ≤ |G| ≤ 2ω, and G/H is compact and Hausdorff, it follows from Čech–Pospı́šil’s

theorem [165, 3.12.11 (a)] that G/H is first-countable at least at one point. Since G/H is

homogeneous, it follows that the space G/H is first-countable. Then G is first-countable, by

Corollary 1.5.21, and Theorem 3.3.12 implies that G is metrizable and, hence, is feathered,

a contradiction.

Now we prove that 1) ⇒ 2). The argument is very similar to the proof of Theorem 7.3.1.

Let G = Dω1 be the topological product of ω1 copies of the discrete Abelian group

D = {0, 1}. Then G is a compact Abelian group, and |G| = 2ℵ1 = 2ℵ0 , by 1).

Let R be the Abelian group of real numbers, with the usual topology �, Q ⊂ R the set

of rational numbers, and e the neutral element of G. Since |R \Q| = 2ω = |G|, we can fix
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a bijection h of R \Q onto G. Define a mapping f : R→ G by f (x) = e, for each x ∈ Q,

and f (x) = h(x), for each x ∈ R \Q. Then f (R) = G.

Consider the free Abelian group Aa(R) of the set R. Fix a separable metrizable topology

�1 on Aa(R) such that �1 induces the usual topology � on R. The mapping f , by the

principal property of Aa(R), can be extended to a homomorphism f ∗ : Aa(R) → G.

Note that f ∗ is not continuous with respect to �1. We introduce a new topology on

Aa(R) that will make f ∗ continuous, as follows. Let �G be the topology of G. Put

�2 = {(f ∗)−1(V ) : V ∈ �G}. Clearly, �2 is a group topology on Aa(R) since f ∗ is a

homomorphism and G is a topological group.

Let us blend the topologies �1 and �2 on Aa(R) into one. We put

� = {U ∩ (f ∗)−1(V ) : U ∈ �1, V ∈ �G}.
Clearly, �1 ⊂ � and the family � is closed under intersections of finite subfamilies.

Therefore, � is a base of a topology �0 on Aa(R) which is stronger than �1. This topology

�0 is the least upper bound of the group topologies �1 and �2 on Aa(R) and, therefore,

Aa(R) endowed with �0 is a topological group. Note that (Aa(R), �0) is a Hausdorff space

in which every point is a Gδ, since the topology �0 contains the metrizable topology �1.

To show that the mapping f ∗ of (Aa(Mω), �0) onto G is open and continuous we argue

exactly as in the proof of Theorem 7.3.1, so we omit this part of the argument. Thus, H
is a closed subgroup of (Aa(R), �0), and G can be interpreted as a quotient group of the

topological group (Aa(R), �0) with respect to H .

Finally, H is a separable metrizable subspace of (Aa(R), �0) since the topology induced

by �0 on H coincides with the topology induced by �1 on H and �1 is separable metrizable.

Since each point in (Aa(R), �0) is a Gδ, the space (Aa(R), �0) cannot be feathered.

Indeed, otherwise (Aa(R), �0) and G would have been first-countable, a contradiction. �

Corollary 7.3.3. It is consistent with ZFC that there exists a topological group G
which is not feathered and is an extension of a second-countable group by a compact group.

Exercises

7.3.a. Let G be a topological group, and H a closed metrizable subgroup of G such that the quotient

space G/H is normal (paracompact). Is the space G then normal (paracompact)?

7.3.b. (V. V. Uspenskij [511]) Let G be an Abelian topological group and H a closed subgroup of

G such that both H and the quotient group G/H are cosmic. Show that the space G need

not even be normal (compare with Problems 4.6.C and 4.6.D).

Problems

7.3.A. Let G be an Abelian topological group, and H a closed subgroup of G such that H is

metrizable and the quotient group G/H is compact. Is G paracompact? Is the topological

group (A(Mω), �0) constructed in Theorem 7.3.1, paracompact?

7.3.B. Let G be an Abelian topological group and H a closed subgroup of G such that both H and

the quotient group G/H are σ-compact. Is G paracompact? (See also Problem 1.5.F.)

Extension of metrizable groups by compact groups
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Open Problems

7.3.1. Characterize the (Abelian) topological groups that can be obtained as an extension of a

metrizable group by a compact group.

7.3.2. Characterize the class ��(2) of topological groups that can be obtained as an extension of

a cosmic topological group by a cosmic topological group.

7.3.3. Give an example of a topological group G with the following two properties:

a) G is not in ��(2);

b) G is an extension of a cosmic topological group E by a topological group H ∈ ��(2).

7.3.4. Let �� be the smallest class of Abelian topological groups containing all compact Abelian

groups, all metrizable Abelian groups, and closed under extensions, under taking quotients,

and under taking closed subgroups. Give an example of an Abelian topological group that

does not belong to this class.

7.3.5. Let ��� be the smallest class of Abelian topological groups containing all compact Abelian

groups, all second-countable Abelian groups, and closed under extensions, under taking

quotients, and under taking closed subgroups. Give an example of an ω-narrow Abelian

topological group that does not belong to this class. Is it true that every cosmic topological

Abelian group G belongs to ���?

7.3.6. Let f be an open continuous homomorphism of a regular paratopological group G onto a

metrizable topological group H such that the kernel of f is metrizable. Is G metrizable?

7.3.7. Does there exist a topological group G, as in Corollary 7.3.3, in ZFC alone?

7.4. Direct limit property and completeness

The topology of sequential spaces is completely determined by convergent sequences

in the sense that a subset F of a sequential space X is closed in X iff the intersection of

F with every convergent sequence C in X (including its limit) is closed in C. The class

of k-spaces is characterized by a similar property; one simply has to replace convergent

sequences by the family of compact subsets of X. In general, we say that the topology of a

space X is determined by a family � of its subsets provided that a set F ⊂ X is closed in X
iff F ∩ C is closed in C, for each C ∈ �.

Denote by G(X) the free topological group F (X) or the free Abelian topological group

A(X) on a space X. This group is the union of the increasing sequence {Bn(X) : n ∈ ω} of

its closed subsets Bn(X), where Bn(X) is the set of all elements in G(X) which have reduced

length ≤ n with respect to the basis X (see Theorem 7.1.13). This suggests the following

definition.

The free (Abelian) topological group G(X) has the direct limit property if the topology

of G(X) is determined by the family {Bn(X) : n ∈ ω}. If G(X) has the direct limit property,

we shall also say that G(X) is the direct limit of its subspaces Bn(X), n ∈ ω.

Clearly, each Bn(X) is compact if the space X is compact. By analogy with k-spaces

one may conjecture that G(X) has the direct limit property for every compact space X. We

will show in Theorem 7.4.1 that this is indeed the case for a wider class of spaces defined

below.

Let a space X be the union of an increasing sequence {Xn : n ∈ ω} of its compact

subsets Xn. If the topology of X is determined by the sequence {Xn : n ∈ ω}, then X is

called a kω-space, and X =
⋃

n∈ω Xn is a kω-decomposition of X.
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Clearly, every kω-space is σ-compact, but not vice versa (consider the space Q of

rational numbers). However, every locally compact σ-compact space is a kω-space. In

particular, every open Fσ-subset of a compact space is a kω-space.

For a subset Y of a space X and a positive integer n, we put 〈Y〉n = G(Y, X) ∩ Bn(X),

where G(Y, X) is the subgroup of G(X) generated by Y . This notation is used in the theorem

below which is important in its own right and has a number of corollaries.

Theorem 7.4.1. [M.I. Graev, J. Mack, S.A. Morris, E.T. Ordman] The group
G(X) has the direct limit property for every kω-space X. In addition, if X =

⋃∞
n=1 Xn

is a kω-decomposition for X, then G(X) =
⋃∞

n=1〈Xn〉n is a kω-decomposition for G(X).

Proof. Let X =
⋃

n∈ω Xn be a kω-decomposition of X. Denote by e be the identity of

G(X). For every n ≥ 1, put X̃n = Xn ∪ {e} ∪X−1
n and Kn = X̃n · . . . · X̃n (n times). Then

〈Xn〉n = Kn is a compact subset of G(X), K−1
n = Kn, Kn ·Kn ⊂ K2n for each n ≥ 1, and

G(X) =
⋃∞

n=1 Kn. Denote by �∗ the new topology on Ga(X) determined by the family

{Kn : n ∈ N}, where every Kn carries the topology inherited from G(X). In other words,

a subset O of G(X) is in �∗ iff O ∩Kn is open in Kn for each n ≥ 1. Clearly, �∗ is finer

than the original topology � of the topological group G(X), but the restrictions of �∗ and

� to Kn coincide for each n ∈ N. Our aim is to show that �∗ = �. First, we establish the

following fact.

Claim. The family �∗ is a group topology on Ga(X) and the original topology of X coincides
with the one X inherits from (Ga(X), �∗).

Indeed, it is clear that �∗ is a topology. Since X ⊂ K1, the definition of �∗ implies

immediately the second part of our Claim. In addition, if U ∈ �∗, then U−1 ∈ �∗. Indeed,

for every n ≥ 1 there exists an open set Vn in F (X) such that U ∩Kn = Vn ∩Kn. Since Kn

is symmetric, the set

U−1 ∩Kn = U−1 ∩K−1
n = (U ∩Kn)−1 = (Vn ∩Kn)−1 = V−1

n ∩Kn

is open in Kn and, hence, U−1 ∈ �∗.

It suffices, therefore, to show that if g, h ∈ Ga(X) and g · h ∈ U ∈ �∗, then there exist

V, W ∈ �∗ such that g ∈ V , h ∈ W and V ·W ⊂ U. Choose m ≥ 1 such that g, h ∈ Km.

We shall construct two sequences {Vn : n ≥ m} and {Wn : n ≥ m} satisfying the following

conditions for each n ≥ m:

(1) Vn and Wn are open in Kn;

(2) An = clKnVn ⊂ Vn+1 and Bn = clKnWn ⊂ Wn+1;

(3) An · Bn ⊂ U.

By the continuity of the multiplication in G(X), there exist open sets V ′
m and W ′

m in Km

such that g ∈ V ′
m, h ∈ W ′

m and V ′
m ·W ′

m ⊂ U ∩K2m. Since Km is regular, one can find open

sets Vm and Wm in Km such that g ∈ Vm ⊂ clKmVm ⊂ V ′
m and h ∈ Wm ⊂ clKmWm ⊂ W ′

m.

Suppose that for some n ≥ m, we have already defined sets Vm, . . . , Vn and Wm, . . . , Wn

satisfying (1)–(3). By (3), the sets An = clKnVn and Bn = clKnWn satisfy An ·Bn ⊂ U∩K2n.

Since the multiplication mapping Kn+1×Kn+1 → K2n+2 is continuous, there exist open set

V ′
n+1 and W ′

n+1 in Kn+1 such that An ⊂ V ′
n+1, Bn ⊂ W ′

n+1 and V ′
n+1 ·W ′

n+1 ⊂ U. Using the

normality of the compact space Kn+1, we can find open sets Vn+1 and Wn+1 in Kn+1 such

that An ⊂ Vn+1 ⊂ clKn+1
Vn+1 ⊂ V ′

n+1 and Bn ⊂ Wn+1 ⊂ clKn+1
Wn+1 ⊂ W ′

n+1.

Direct limit property and completeness
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Continuing this process, we finally obtain the sequences

Vm ⊂ Vm+1 ⊂ · · · ⊂ Vn ⊂ · · · and Wm ⊂ Wm+1 ⊂ · · · ⊂ Wn ⊂ · · ·
satisfying conditions (1)–(3). Put V =

⋃∞
k=m Vk and W =

⋃∞
k=m Wk. Clearly, g ∈ V and

h ∈ W . From (1) and (2) it follows that the set V ∩Kn =
⋃∞

k=n(Vk ∩Kn) is open in Kn for

each n ≥ m, so (1) implies that V ∈ �∗. Similarly, W ∈ �∗. In addition, (2) and (3) imply

that

V ·W =

∞⋃
k=m

Vk ·Wk ⊂
∞⋃

k=m

Ak · Bk ⊂ U.

Thus, we have found the sets V, W ∈ �∗ such that g ∈ V , h ∈ W and V ·W ⊂ U. This

proves our Claim.

Finally, by Corollary 7.1.8, the topology � of the group G(X) is the finest group

topology on Ga(X) which induces on X its original topology. Therefore, the inclusion

� ⊂ �∗ and the above Claim together imply that �∗ = �. This proves the theorem. �

Corollary 7.4.2. If X is compact, then the free (Abelian) topological group G(X)

has the direct limit property.

Theorem 7.4.1 implies a number of interesting results about the topological properties

of free topological groups. We start with two simple facts.

Corollary 7.4.3. Let X be an arbitrary space, and C be any subset of G(X). If
C ∩ Bn(X) is finite for each n ∈ ω, then C is closed and discrete in G(X).

Proof. Let p : X → K be a topological embedding of X to a compact space K. Extend

p to a continuous monomorphism p̂ : G(X)→ G(K) and consider the set Q = p̂(D), where

D is an arbitrary subset of C. Then the intersection Q ∩ Bn(K) is finite (hence closed) for

each n ∈ ω, so Theorem 7.4.1 implies that Q is closed in G(K). Since p̂ is a continuous

monomorphism, we conclude that D is closed in G(X). So, all subsets of C are closed in

G(X) and, hence, C is discrete. �

The corollary below will be generalized in Section 7.5 (see Theorem 7.5.3 and

Corollary 7.5.4).

Corollary 7.4.4. If X is a space, and K is a countably compact subspace of G(X),
then K ⊂ Bn(X), for some n ∈ N.

Proof. Suppose to the contrary that K \Bn(X) = ∅ for each n ∈ N. Then there exists

an infinite subset C of K such that C ∩ Bn(X) is finite for each n ∈ N. By Corollary 7.4.3,

C is closed and discrete in G(X) and in K, which is a contradiction. �

The direct limit property of free (Abelian) topological groups on compact spaces implies

the following general result.

Theorem 7.4.5. If Y is a closed subspace of a Tychonoff space X, then the subgroup
G(Y, X) of G(X) generated by Y is closed in G(X).

Proof. Denote by bX a Hausdorff compactification of X, and extend the identity

embedding of X to bX to a continuous monomorphism ϕ : G(X) → G(bX). Let Y∗

be the closure of Y in bX and G(Y∗, bX) be the subgroup of G(bX) generated by
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Y∗. Since Y∗ is compact, the intersection G(Y∗, bX) ∩ Bn(bX) is compact for each

n ∈ ω. Apply Corollary 7.4.2 to deduce that G(Y∗, bX) is closed in G(bX). Therefore,

G(Y, bX) = G(Y∗, bX) ∩ G(X, bX) is a closed subgroup of G(X, bX). Since ϕ is a

continuous monomorphism and ϕ(G(Y, X)) = G(Y, bX), we conclude that G(Y, X) is closed

in G(X). �
Corollary 7.4.6. If K is a compact subset of a Tychonoff space X, then G(K, X) is

closed in G(X) and G(K, X) ∼= G(K).

Proof. The fact that G(K, X) is closed in G(X) follows from Theorem 7.4.5. Let

us show that G(K, X) ∼= G(K). Denote by bX an arbitrary compactification of X and

let f : K ↪→ X and g : X ↪→ bX be the natural embeddings. Extend f and g to

continuous monomorphisms f̂ : G(K) → G(X) and ĝ : G(X) → G(bX), respectively. By

Theorem 7.4.1, G(K) and G(bX) are kω-groups with kω-decompositions G(K) =
⋃∞

n=0〈K〉n
and G(bX) =

⋃∞
n=0〈bX〉n.

Clearly, ϕ = ĝ ◦ f̂ is a continuous monomorphism of G(K) to G(bX). Let C
be an arbitrary closed set in G(K). Then Cn = C ∩ 〈K〉n is compact and, hence,

ϕ(C) ∩ 〈bX〉n = ϕ(Cn) is closed in G(bX), for each n ∈ ω. We conclude, therefore,

that ϕ(C) is closed in G(bX). This proves that ϕ is a closed mapping, whence it follows

that ϕ is a topological isomorphism between G(K) and G(K, bX). Finally, the equality

ϕ = ĝ ◦ f̂ implies that f̂ is a topological isomorphism between G(K) and G(K, X). �
Recall that X is a P-space if every Gδ-set in X is open. It turns out that the groups

F (X) and A(X) on an arbitrary P-space have the direct limit property. To show this, we

present a useful auxiliary fact.

Proposition 7.4.7. The groups F (X) and A(X) are P-spaces iff X is a P-space.

Proof. Since X is a subspace of F (X) and A(X), the necessity is obvious. Suppose

that X is a P-space. Let G(X) be either F (X) or A(X), and � be the topology of G(X).

Consider the topology �ω on G(X) with the base consisting of all Gδ-sets in G(X). It is

clear that (G(X), �ω) is a topological group. Since X is a P-space, the restrictions of both

� and �ω to X coincide with the original topology of X. Therefore, Corollary 7.1.8 implies

that �ω = �, i.e., G(X) is a P-space. �
Proposition 7.4.8. If X is a P-space, then the groups F (X) and A(X) have the direct

limit property.

Proof. It suffices to prove the statement for F (X), since the argument for A(X) is

similar. Suppose that K is a subset of F (X) such that K ∩ Bn(X) is closed in Bn(X) for

each n ∈ N. By Theorem 7.1.13, the sets Bn(X) are closed in F (X), and so are the sets

K∩Bn(X). Therefore, K is an Fσ-set in F (X). From Proposition 7.4.7 it follows that F (X)

is a P-space; therefore, K is closed in F (X). �
The direct limit property is very useful in arguments involving sequentiality or tightness

of free topological groups.

Corollary 7.4.9. Let X be a kω-space with one of the following properties:

1) sequentiality;
2) countable tightness.

Direct limit property and completeness
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Then the group G(X) has the same property.

Proof. Let X =
⋃

n∈ω Xn be a kω-decomposition of X. Keeping notation of

Theorem 7.4.1, we conclude that the sets Kn = X̃n · . . . · X̃n (n times) determine the

topology of the group G(X), where X̃n = Xn ∪ {e} ∪ X−1
n is a compact subspace of the

space X̃ = X ⊕ {e} ⊕ X−1 and e is the identity of G(X). Note that if X is sequential or

has countable tightness, then so are X̃n and (X̃n)k for all n, k ∈ ω (see Theorem 3.10.35 and

Problem 3.12.8 (e) of [165]). In addition, continuous mappings preserve both properties

in the class of compact spaces, according to Theorem 3.10.32 and Problem 3.12.8 (a) of

[165]. Since the natural multiplication mapping in : X̃n → G(X) is continuous, each

Kn = in((X̃n)n) is sequential (has countable tightness) if X is sequential (has countable

tightness).

1) Suppose that the space X is sequential and let P be a sequentially closed subset of

G(X). Then the intersection P ∩Kn is closed in the sequential space Kn for each n ≥ 1. By

Theorem 7.4.1, G(X) =
⋃∞

n=1 Kn is a kω-decomposition of G(X), so P is closed in G(X).

This proves the sequentiality of G(X).

2) If X has countable tightness, take an arbitrary subset P of G(X) which contains

cluster points for all countable subsets of P . Arguing as in 1), we conclude that every

intersection P ∩Kn is closed in Kn and, hence, P is closed in G(X). This means that G(X)

has countable tightness. �
The direct limit property of the free topological groups on compact spaces considerably

improves the interaction between the topology and algebraic structure of these groups. In

turns out, for example, that the groups in question are Raı̆kov complete. To prove this fact,

we need the following result.

Lemma 7.4.10. Let {Kn : n ∈ ω} be an increasing sequence of compact subspaces of
a topological group G such that G =

⋃
n∈ω Kn. If G is the direct limit of the spaces Kn,

then G is Raı̆kov complete.

Proof. Suppose to the contrary that the group G fails to be Raı̆kov complete. Then G
contains a Cauchy filter ξ of closed subsets with empty intersection.

Denote by e the identity of G. We can assume that the sets Kn have the following

properties:

(a) e ∈ Kn and K−1
n = Kn;

(b) Kn ·Kn ⊂ K2n.

Indeed, it suffices to put Ln = Kn∪{e}∪K−1
n and K∗

n = L0 · . . . ·Ln for every n ∈ ω. Since

Kn ⊂ K∗
n , the compact sets K∗

n generate the original topology of G. Thus, the sequence

{K∗
n : n ∈ ω} is as required. In what follows we write Kn instead of K∗

n .

Since the sets Kn are compact, for every n ∈ ω there exists an element Cn ∈ ξ such

that Kn ∩ Cn = ∅. Let us construct a sequence {Vi : i ∈ N} of sets in G satisfying the

following conditions for each i ∈ N:

(1) e ∈ Vi ⊂ Ki and Vi is open in Ki;

(2) Vi ⊂ Vi+1;

(3) (Kj · Vi) ∩ C2j = ∅, for each j ≤ i.

There exists an open neighbourhood U1 of e in G such that (K1 · U1) ∩ C2 = ∅; we put

V1 = U1 ∩K1. Suppose that we have defined the sets V1, . . . , Vn satisfying (1)–(3). By (3),
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we have (Ki · Vn) ∩ C2i = ∅, for each i = 1, . . . , n. In addition, (Kn+1 · Vn) ⊂ K2n+2 by

(1) and (b), so that the choice of the set C2n+2 implies that (Kn+1 · Vn)∩C2n+2 = ∅. Since

the product Kn+1 ·Vn is compact, there exists an open neighbourhood U of e in G such that

(Ki · Vn · U2) ∩ C2i = ∅

for each i = 1, 2, . . . , n + 1. Put Vn+1 = (Vn ·U)∩Kn+1. Clearly, then Vn+1 ⊂ Vn+1 ·U ⊂
Vn · U2, whence it follows that the set Vn+1 satisfies (3). The verification of (1) and (2) for

Vn+1 does not present any difficulty.

Consider the set V =
⋃∞

n=1 Vn. By (1) and (2), the intersection

V ∩Kn =

∞⋃
i=1

(Vi ∩Kn) =

∞⋃
i=n

(Vi ∩Kn)

is open in Kn for each n ∈ N. Since the sets Kn determine the topology of G, we infer that

V is open in G. From (3) and our definition of V it follows that

(KjV ) ∩ C2j = ∅, j ∈ N. (7.13)

By the assumption, ξ is a Cauchy filter in G, so one can find C ∈ ξ and x ∈ G such

that C ⊂ xV . Then there is an integer n ≥ 1 such that x ∈ Kn, and (7.13) implies that

xV∩C2n = ∅. Since C ⊂ xV , we obtain C∩C2n = ∅, a contradiction with C, C2n ∈ ξ. �

Combining Theorem 7.4.1 and Lemma 7.4.10, we obtain the first general result about

the Raı̆kov completeness of free topological groups.

Theorem 7.4.11. If X is a kω-space, then the groups A(X) and F (X) are Raı̆kov
complete.

Here are two simple facts that follow from Theorem 7.4.11:

Corollary 7.4.12. The groups A(X) and F (X) are Raı̆kov complete, for every compact
Hausdorff space X.

Corollary 7.4.13. Let P be an open or closed subspace of the Euclidean space Rn,
for some integer n ≥ 1. Then the groups F (P) and A(P) over the space P are Raı̆kov
complete.

Proof. This follows from Theorem 7.4.11, since P is locally compact and σ-compact,

hence, is a kω-space. �

A complete characterization of the spaces X that generate a Raı̆kov complete group

A(X) will be given in Section 7.9.

Exercises

7.4.a. A subset Y of F (X) is said to be regularly situated in F (X) if for every n ∈ ω there exists

m ∈ ω such that 〈Y〉 ∩ Bn(X) ⊂ 〈Y〉m, where 〈Y〉m is the set of all elements in F (X) whose

length is at most m with respect to Y .

a) (M. I. Graev [201]) Let X be a convergent sequence with its limit. Give an example

of a compact subset K of F (X) such that K is not regularly situated in F (X), and the

group 〈K〉 is closed in F (X).

Direct limit property and completeness
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b) Prove that if Y is a compact regularly situated subset of the free topological group F (X)

on a Tychonoff space X, then 〈Y〉 is closed in F (X).

c) (S. A. Morris and B. V. S. Thompson [331]) Suppose that Y is a compact regularly

situated subset of F (X). Show that if Y is a free algebraic basis for 〈Y〉, then

〈Y〉 ∼= F (Y ).

7.4.b. (J. Mack, S. A. Morris, and E. T. Ordman [297]) Generalize c) of Exercise 7.4.a as follows.

Let X be a kω-space with kω-decomposition X =
⋃

n∈ω
Xn and Y a closed subspace of F (X)

with kω-decomposition Y =
⋃

n∈ω
Yn. Then the natural homomorphism of F (Y ) onto the

subgroup 〈Y〉 of F (X) is a topological isomorphism iff Y is a free algebraic basis for 〈Y〉,
and for every n ∈ ω there exists m ∈ ω such that 〈Y〉 ∩ 〈Xn〉n ⊂ 〈Ym〉m. Formulate and

prove a similar assertion for A(X).

7.4.c. (J. Mack, S. A. Morris, and E. T. Ordman [297]) Apply Exercise 7.4.b to show that if Y is a

closed subset of a kω-space X, then F (Y, X) ∼= F (Y ) and A(Y, X) ∼= A(Y ).

7.4.d. Let X = X0 ⊕ X1, where X0 is a kω-space and X1 is a discrete space. Prove that A(X) is a

k-space.

7.4.e. The following assertions complement Theorem 7.4.1.

a) Let f : X → Y be a quotient (more generally, an R-quotient, see Exercise 7.1.j) onto

mapping. Show that if G(X) has the direct limit property, then so does G(Y ). Apply

this to the special case when Y is a retract of X.

b) Verify that if F (X) has the direct limit property, then A(X) also has the direct limit

property.

7.4.f. Modify the proof of Theorem 7.4.1 to show that if the subspace Bn(X) of G(X) is locally

compact for each n ∈ ω, then G(X) has the direct limit property (see also Problem 7.9.G).

7.4.g. Give an example of a P-space X and a closed subset Y of X such that the natural continuous

isomorphism of A(Y ) onto the subgroup A(Y, X) of A(X) is not a homeomorphism (cf. 7.4.c

and Theorem 7.7.4).

7.4.h. Let Y be a subspace of F (X) or A(X). Prove that if y ∈ Y and χ(y, Y ) ≤ ω, then there exists

n ∈ ω such that the interior of Y ∩ Bn(X) in Y contains the point y.

Problems

7.4.A. (T. H. Fay, E. T. Ordman, and B. V. S. Thomas [167]) Show that the free topological group

of the space of rational numbers does not have the direct limit property.

7.4.B. Let X be a zero-dimensional compact space. Show that the groups A(X) and F (X) are

zero-dimensional.

7.4.C. (V. G. Pestov [375]) Give an example of a compact space K such that the groups A(K) and

F (K) are not homeomorphic.

Hint. Consider the topological sum K = βN⊕I, where βN is the Čech–Stone compactifica-

tion of the discrete space N and I = [0, 1] is the closed unit interval. Apply Problems 7.1.A

and 7.4.B to show that the connected components of the neutral elements of the groups A(K)

and F (K) have different cardinalities.

7.4.D. (S. Romaguera and M. Sanchis [411]) Let X be a kω-space. Prove that the left uniformity of

the group F (X) is cofinally complete (see Problem 1.8.E).

Open Problems

7.4.1. Does there exist in ZFC a σ-compact Tychonoff space X such that F (X) has the direct limit

property, but X fails to be a kω-space?

7.4.2. Does there exist in ZFC a cosmic Tychonoff space X such that F (X) has the direct limit

property, but X fails to be a kω-space?
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Remark. Assuming the existence of a free selective ultrafilter on ω, O. V. Sipacheva

constructed in [451] a countable subspace Y of βω such that F (Y ) has the direct limit

property, but Y is not a k-space (hence, not a kω-space either).

7.4.3. Let FPG(X) be the free Tychonoff paratopological group of a compact Hausdorff space X.

Is FPG(X) the direct limit of a countable family of compact spaces? Is FPG(X) σ-compact?

7.4.4. Which results of this section can be generalized to FPG(X)?

7.5. Precompact and bounded sets in free groups

Every bounded subset of a topological group is precompact, but precompact sets need

not be bounded (see Section 6.10). Here we show that in free (Abelian) topological groups,

the two classes of sets coincide.

As in the preceding section, we use G(X) to denote either F (X) or A(X). If X is a

subset of a space Y , then G(X, Y ) is the subgroup 〈X〉 of G(Y ) generated by X. The support
of a reduced word g = xε1

1 · · · · · xεn
n ∈ G(Y ) with x1, . . . , xn ∈ Y is defined as follows:

supp(g) = {x1, . . . , xn}.
Given a subset K of G(Y ), we put

supp(K) =
⋃
g∈K

supp(g).

If n ∈ N, the set {g ∈ G(Y ) : | supp(g)| ≤ n} is denoted by Gn(Y ). For a subspace X of Y
and n ∈ N, we use the abbreviation Gn(X, Y ) for the subset Gn(Y ) ∩G(X, Y ) of F (Y ).

We start with the following lemma which permits us to reduce the study of precompact

subsets of the free topological group G(X) on an arbitrary space X to those of the free

topological group on R.

Lemma 7.5.1. Let S be a countable subset of a Tychonoff space X. If S is not bounded
in X, then there exists a continuous function f : X → R such that f (S) is unbounded in R
and f (x) = f (y), for any distinct x, y ∈ S.

Proof. If S is not bounded in X, there exists an infinite discrete family γ of open sets

in X such that U ∩ S = ∅ for each U ∈ γ. We can always find an infinite subfamily

{Un : n ∈ ω} of distinct elements of γ and enumerate S = {yn : n ∈ ω} in such a way

that y2n ∈ Un for each n ∈ ω. Now we define by induction a sequence {fn : n ∈ ω} of

continuous real-valued functions on X satisfying the following conditions for all n ∈ ω,

where gk =
∑

i≤k fi:

(a) 0 ≤ f2n+1 ≤ 1/2n;

(b) f2n ≥ 0 and f2n(x) = 0 for each x ∈ X \ Un;

(c) fn(yk) = 0 if k < n;

(d) |f2n(y2n)| ≥ n;

(e) fn+1(yn+1) = gk(yk)− gn(yn+1) for each k ≤ n.

The sum
∑

n∈ω f2n+1 is a continuous function on X because of (a), and the sum
∑

n∈ω f2n

is continuous in view of (b) and of the choice of the family γ. Therefore, the function f =∑
n∈ω fn is also continuous. It follows from (d), (a), and (b) that f (y2n) ≥ f2n(y2n) ≥ n,

so that f (S) is unbounded in R. It remains to show that f (yk) = f (yl), for any distinct

k, l ∈ ω. Suppose that k < l. Then k ≤ n = l − 1. By (c), we have f (yk) = gk(yk) and
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f (yl) = gl(yl). Since gn+1 = gn + fn+1, condition (e) implies that gn+1(yn+1) = gk(yk)

and, hence, f (yl) = f (yk). �
Lemma 7.5.2. If K is a precompact subset of G(X), then Y = supp(K) is bounded in

X, and K ⊂ Gn(Y, X) for some n ∈ N.

Proof. Suppose that Y = supp(K) is not bounded in X. Since boundedness of the set

Y is determined by its countable subsets, we can assume without loss of generality that both

K and Y are countable. By Lemma 7.5.1, we can define a continuous function f : X → R
such that Z = f (Y ) is unbounded in R and f (x) = f (y) for any distinct x, y ∈ Y . Let

f̂ : G(X)→ G(R) be the homomorphism extending the mapping f . Put L = f̂ (K). Then L
is precompact in G(R) and from the choice of f it follows that supp(L) = Z. Since R is a kω-

space, the group G(R) is Raı̆kov complete by Theorem 7.4.11. Therefore, the closure L of

L in G(R) is compact. For every n ∈ ω, put An = [−n, n] ⊂ R and Cn = Gn(An, R). Since

R =
⋃

n∈ω An is a kω-decomposition of R, Theorem 7.4.1 implies that G(R) =
⋃

n∈ω Cn

is a kω-decomposition of the group G(R). This implies immediately that L ⊂ Cn for some

n ∈ ω. Indeed, otherwise we can choose a sequence S = {gn : n ∈ ω} ⊂ G(R) such that

gn ∈ L \ Cn for each n ∈ ω. From Corollary 7.4.3 it follows that S is a closed discrete

subset of L, thus contradicting the compactness of L. The inclusion L ⊂ Cn implies that

Z = supp(L) ⊂ supp(L) ⊂ An = [−n, n], which contradicts the unboundedness of Z in

R. This proves that Y is bounded in X. Finally, since L ⊂ Cn ⊂ Gn(R) and the restriction

of f to Y is one-to-one, we infer that K ⊂ Gn(X) ∩G(Y, X) = Gn(Y, X). �
Theorem 7.5.3. [D. Dikranjan and M. G. Tkachenko] The following conditions are

equivalent for a subset K of the group G(X):

(1) K is bounded in G(X);
(2) K is precompact in G(X);
(3) there exist an integer n ∈ ω and a bounded subset Y of X such that K ⊂ Gn(Y, X).

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) follow from Proposition 6.10.2

and Lemma 7.5.2, respectively. Let us show that (3) ⇒ (1). If Y is bounded in X and

K ⊂ Gn(Y, X), then the set Y = Y ∪ {e} ∪ Y−1 = G1(Y, X) is bounded in G1(X) and in

G(X). In its turn, Gn(Y, X) = Y · . . . ·Y (n times) is bounded in G(X) by Corollary 6.10.13.

Since K ⊂ Gn(Y, X), the conclusion is immediate. �
Since every pseudocompact subspace of a space Y is bounded in Y , we obtain the

following generalization of Corollary 7.4.4:

Corollary 7.5.4. If K is a pseudocompact subspace of the group G(X), then
K ⊂ Bn(X), for some n ∈ N.

Corollary 7.5.5. Let K be a precompact subset of the group G(X). Then supp(K)

is precompact in G(X).

Proof. By Lemma 7.5.2, supp(K) is bounded in X and in G(X), so the conclusion

follows from Proposition 6.10.2. �
Corollary 7.5.6. If K is a bounded subset of G(X), then supp(K) is bounded in X.

In addition, if the space X is Dieudonné complete, then the closure of supp(K) in X is
compact.
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Proof. The first claim follows directly from Theorem 7.5.3. The second one follows

from the fact that the closure of a bounded subset of a Dieudonné complete space is

compact. �

We recall that a space X is said to be σ-bounded if it is the union of countably many

bounded subsets (see Section 6.10).

Corollary 7.5.7. The group G(X) is σ-bounded iff the space X is σ-bounded.

Proof. If X is σ-bounded, then so is G(X) by Corollary 6.10.14. Conversely,

suppose that the group G(X) is a union of a countable family of its bounded subsets,

G(X) =
⋃

n∈ω Kn. By Corollary 7.5.6, supp(Kn) is bounded in X, for every n. Clearly,

X =
⋃

n∈ω supp(Kn); hence, X is σ-bounded. �

Exercises

7.5.a. (K. Eda, H. Ohta, and K. Yamada [156]) Prove that the following conditions are equivalent

for a Tychonoff space X:

1) G(X) contains a non-trivial sequence converging to the identity e;

2) the subspace B2(X) of G(X) contains a non-trivial sequence converging to e;

3) X contains sequences {xn : n ∈ ω} and {yn : n ∈ ω} such that xn �= yn for each

n ∈ ω, and d(xn, yn) → 0, for every continuous pseudometric d on X.

7.5.b. (V. V. Tkachuk [493]) The Alexandroff duplicate of a space X is the space Y = X × {0, 1}
with the following topology: For each x ∈ X, a basic neighbourhood of (x, 0) in Y is the set

of the form (U × {0, 1}) \ {(x, 1)}, where U is a neighbourhood of x in X, and each point

(x, 1) is isolated in Y .

1) Prove that if X is a compact space of cardinality κ ≥ ω, and Y is the Alexandroff du-

plicate of X, then both F (Y ) and A(Y ) contain a copy of the one-point compactification

of a discrete space of cardinality κ.

2) Deduce from 1) that there exists an infinite compact space Z without non-trivial

convergent sequences such that the groups F (Z) and A(Z) do contain non-trivial

convergent sequences.

7.5.c. Apply Corollaries 6.10.9 and 7.5.7 to show that the groups F (X) and A(X) on a σ-bounded

space X are ω-stable. In particular, F (X) and A(X) are ω-stable, for every pseudocompact

space X.

Problems

7.5.A. Let H be the free Tychonoff paratopological group on a pseudocompact space X.

1) Is H σ-bounded?

2) Is H ω-stable?

3) Does H have countable cellularity or countable o-tightness?

4) Is the space H Gδ-preserving or an Efimov space? (See Section 1.6.)

5) Is H topologically isomorphic to a subgroup of the topological product of a family of

σ-compact paratopological groups?

Open Problems

7.5.1. Can Theorem 7.5.3 be generalized to the free Tychonoff paratopological group of a Tychonoff

space X?
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7.5.2. Is it true that the free Tychonoff paratopological group FPG(X) on a Tychonoff space X is

σ-bounded if and only if X is σ-bounded?

7.5.3. Let X be a subset of a topological group G such that the image f (X) is countable, for every

continuous real-valued function f on G. Does the set A2 ⊂ G have the same property?

7.6. Free topological groups on metrizable spaces

Let X be a metrizable space whose topology is generated by a metric d. By

Theorem 7.2.2, d can be extended to a continuous invariant metric d̂ on F (X) and, hence,

F (X) admits a weaker metrizable group topology with invariant basis generated by the

metric d̂. Thus, free topological groups of metrizable spaces are submetrizable in a strong

way. Definitely, these groups constitute an important subject of study.

We know that for every Tychonoff space X and any integer n ∈ N, the subset Bn(X) of

F (X) consisting of all words of reduced length ≤ n is closed (see a) of Theorem 7.1.13).

It turns out that the sets Bn(X) remain closed in F (X) if (X, d) is a metric space and F (X)

carries the weaker group topology generated by the metric d̂.

Proposition 7.6.1. Let (X, d) be a metric space, and �d be the topology on Fa(X)

generated by the Graev extension d̂ of d to F (X). Then Bn(X) is closed in (Fa(X), �d), for
each integer n ∈ N.

Proof. Suppose that n ∈ N, and let h = y1 . . . yk be the reduced form of an element

of Fa(X) \ Bn(X), where y1, . . . , yk ∈ X ∪ X−1 = Y . It is clear that n < k. If g is in the

�d-closure of Bn(X), we can find a sequence {gi : i ∈ ω} of elements of Bn(X) such that

d̂(gi, h) < 1/i for each i ∈ ω. Choosing a subsequence of the sequence {gi : i ∈ ω}, we

can assume that all gi have the same length, say m ≤ n, and all products g−1
i h also have

equal length, say p ≤ m + k. Let q be the minimal positive integer with 2q ≥ p.

By Claim 1 in the proof of Theorem 7.2.2, for every i there exist a word Xi in the

alphabet Y ∪{e} and a scheme ϕi on {1, 2, . . . , 2q} such that l(Xi) = 2q, [Xi] = g−1
i ·h and

d̂(gi, h) = d̂(e, g−1
i h) = Γd(Xi, ϕi). Choosing a subsequence of {gi : i ∈ ω} once again,

we can assume that all schemes ϕi are equal, say, to ϕ. Since m ≤ n < k, Proposition 7.2.1

implies that there exists an integer j such that m < j ≤ 2q and ϕ(j) = j + 1. Take an

arbitrary positive integer i with 1/i < d̂(y−1
j , yj+1). By definition of Γd , we have

1/i < d̂(y−1
j , yj+1) ≤ Γd(Xi, ϕ) < 1/i,

a contradiction. This proves that Bn(X) is �d-closed in F (X). �
The above result leads to an alternative proof of item a) of Theorem 7.1.13. Indeed, if

k > 0 and h = yε1

1 . . . yεk

k (with y1, . . . , yk ∈ X and ε1, . . . , εk = ±1) is an reduced form

of an element from Fa(X), take a continuous function f : X → R such that f (yi) = f (yj)

if yi = yj . Extend f to a continuous homomorphism f̃ : F (X) → F (R) and note that the

length of f̃ (h) is equal to k. If n < k, then f̃ (h) does not belong to the closure of Bn(R) in

F (R) by Proposition 7.6.1 and, hence, Bn(X) is closed in F (X).

To formulate the next result, we recall notation used in Theorem 7.1.13. Let X be a

space. Put X̃ = X ⊕ {e} ⊕ X−1. For n ≥ 1, denote by in the multiplication mapping of

X̃n to F (X), in(y1, . . . , yn) = y1 · . . . · yn for each point (y1, . . . , yn) ∈ X̃n. The mapping
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in is continuous, and in(X̃n) = Bn(X). Finally, we put Cn(X) = Bn(X) \ Bn−1(X) and

C∗
n (X) = i←n (Cn(X)), for n ≥ 1.

The following result complements item b) of Theorem 7.1.13.

Theorem 7.6.2. Let (X, d) be a metric space, and �d the topology on Fa(X) generated
by the Graev extension d̂ of d. Then the mapping in is a homeomorphism of C∗

n (X) onto the
subspace Cn(X) of (Fa(X), �d).

Proof. By b) of Theorem 7.1.13, the restriction of in to C∗
n (X) is a homeomorphism

of C∗
n (X) onto the subspace Cn(X) of F (X). Therefore, it suffices to show that the topology

on Cn(X) inherited from F (X) coincides with the restriction of �d to Cn(X).

Let g = xε1

1 . . . xεn
n ∈ Cn(X) be arbitrary. Suppose that V is a neighbourhood of g in

F (X). By Corollary 7.1.19, one can find open sets U1, . . . , Un in X such that xi ∈ Ui for

each i ≤ n, Ui ∩ Uj = ∅ if xi = xj , and Uε1

1 · · ·Uεn
n ⊂ V . It remains to find a real number

r > 0 such that

Cn(X) ∩ (g ·Od(r)) ⊂ Uε1

1 · · ·Uεn
n ,

where Od(r) = {h ∈ F (X) : d̂(e, h) < r}. For every i = 1, . . . , n, there exists

a positive number ri < 1 such that {x ∈ X : d(xi, x) < ri} ⊂ Ui. We claim that

r = min{ri : 1 ≤ i ≤ n} works.

Indeed, suppose that g · h ∈ Cn(X) for some h ∈ Od(r). Since r < 1, the element h
has even length, h = yδ1

1 . . . yδ2k

2k . By the assumption, the elements g and g ·h have the same

length n, so we must have exactly k reductions at the joint of g and h in the word gh, and

k ≤ n. In other words, yi = xn−i+1 and δi = −εn−i+1, for each i with 1 ≤ i ≤ k. From the

definition of d̂ (see Theorem 7.2.2) it follows that there exists a scheme ϕ on {1, . . . , 2k}
such that

1

2

2k∑
i=1

d∗(y−δi
i , y

δϕ(i)

ϕ(i) ) = d̂(e, h).

Therefore, d∗(y−δi
i , y

δϕ(i)

ϕ(i) ) ≤ d̂(e, h) < r < 1, whence δϕ(i) = −δi for each i ≤ 2k. Let us

verify that ϕ(i) > k for each i ≤ k. Suppose to the contrary that ϕ(i) ≤ k for some i ≤ k.

By Proposition 7.2.1, there exists an integer j such that i ≤ j < ϕ(i) and ϕ(j) = j + 1.

In particular, j + 1 ≤ ϕ(i) ≤ k and δj+1 = δϕ(j) = −δj . Since j, j + 1 ≤ k, we have

yj = xn−j+1, yj+1 = xn−j , δj = εn−j+1 and δj+1 = εn−j . In particular, εn−j+1 = −εn−j

and, hence,

d(xn−j+1, xn−j) = d∗(x
−εn−j+1

n−j+1 , x
εn−j

n−j ) = d∗(y
−δj

j , y
δj+1

j+1) < r.

Since the word g = xε1

1 . . . xεn
n is reduced and εn−j+1 = −εn−j , the points xn−j and

xn−j+1 must be distinct. By the choice of r, all points x ∈ X with d(xn−j, x) < r are

in Un−j , so xn−j+1 ∈ Un−j+1 ∩ Un−j = ∅. This contradicts our choice of the sets Ui.

Therefore, ϕ(i) > k for each i ≤ k. There exists, however, only one scheme ϕ with

this property, namely, ϕ(i) = 2k − i + 1 for each i ∈ {1, . . . , 2k}. We have, therefore,

δ2k−i+1 = −δi = εn−i+1 for i = 1, . . . , k, that is, δ2k = εn, . . . , δk+1 = εn−k+1.

The final step is to see that the element

g · h = xε1

1 . . . x
εn−k

n−k yδk+1

k+1 . . . yδ2k

2k = xε1

1 . . . x
εn−k

n−k y
εn−k+1

k+1 . . . yεn

2k
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belongs to Uε1

1 · · ·Uεn
n . Since xi ∈ Ui for i = 1, . . . , n − k, it suffices to verify that

yk+1 ∈ Un−k+1, . . . , y2k ∈ Un. Indeed, for every i = 1, . . . , k, we have

d(xn−i+1, y2k−i+1) = d∗(x
εn−i+1

n−i+1, y
εn−i+1

2k−i+1) = d∗(y−δi
i , y

δ2k−i+1

2k−i+1) < r.

Therefore, our choice of r implies that y2k−i+1 ∈ Un−i+1 for every i = 1, . . . , k. Hence

g · h ∈ U1 · · ·Un, and the proof is complete. �

Combining Theorem 7.6.2 and item b) of Theorem 7.1.13, we obtain the following result

that will enable us to establish paracompactness of free topological groups on metrizable

spaces.

Corollary 7.6.3. [V. K. Bel’nov] Let (X, d) be a metric space. Then the topology on
Cn(X) inherited from F (X) coincides with the one induced by the Graev extension d̂ of the
metric d.

We noted at the beginning of this section that the free topological group F (X) on

a metrizable space X admits a weaker metrizable group topology. It turns out that the

relationship between these two topologies is much stronger than the simple inclusion. The

above Corollary 7.6.3 gives the first idea about this special relation. To give the exact

description of the situation we need a new concept and an auxiliary topological result.

Let �1 and �2 be two topologies on a set X such that �1 is finer than �2. If the space

(X, �2) has a σ-discrete family of subsets which is a network for (X, �1), then the topology

�2 is called an s-approximation for �1.

The following properties of s-approximations are evident.

Lemma 7.6.4. Suppose that �1 and �2 are topologies on a set X such that �2 is an
s-approximation of the topology �1. Then the following hold:

1) for every subset Y of X, �2�Y is an s-approximation for �1�Y ;
2) for every integer n > 0, the topology of the product (X, �2)n is an s-approximation for

the topology of (X, �1)n.

Sometimes the existence of an s-approximation for a given topology � on a set X
implies that the space (X, �) is paracompact.

Lemma 7.6.5. Let �1 and �2 be regular topologies on a set X such that �2 is an
s-approximation for �1 and the space (X, �2) is collectionwise normal. Then the space
(X, �1) is paracompact.

Proof. By the assumption, there is a network � =
⋃

i∈ω �i for (X, �1) such that every

family �i = {Pi,α : α ∈ Ai} is discrete in (X, �2). Since (X, �2) is collectionwise normal,

for every i ∈ ω there exists a discrete family γi = {Vi,α : α ∈ Ai} of open sets in (X, �2)

such that Pi,α ⊂ Vi,α for each α ∈ Ai.

Let ξ ⊂ �1 be a covering of X. For every i ∈ ω, consider the set

Bi = {α ∈ Ai : there exists W ∈ ξ such that Pi,α ⊂ W}.
For every i ∈ ω and α ∈ Bi, choose W (i, α) ∈ ξ such that Pi,α ⊂ W (i, α). Since � is a

network for (X, �1), the family θ = {Pi,α : α ∈ Bi, i ∈ ω} is a covering of X. For every

i ∈ ω, put μi = {Vi,α∩W (i, α) : α ∈ Bi}. Since �2 ⊂ �1 and the family {Vi,α : α ∈ Ai} is

discrete in (X, �2), we conclude that μi is a discrete family of open sets in (X, �1). Clearly,
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μi is a refinement of ξ. Note that X =
⋃

θ and Pi,α ⊂ Vi,α ∩W (i, α), for each α ∈ Bi and

each i ∈ ω, so μ =
⋃

i∈ω μi is a covering of X. Therefore, μ is an open σ-discrete covering

of (X, �1) that refines ξ. Since the space (X, �1) is regular, it has to be paracompact [165,

Theorem 5.1.11]. �
Recall that a paracompact space with a σ-discrete network is said to be a paracompact

σ-space. All metric spaces, as well as their arbitrary images under closed continuous

mappings, are paracompact σ-spaces [360]. Paracompact σ-spaces can be characterized in

terms of s-approximations.

Theorem 7.6.6. A regular T1-space (X, �) is a paracompact σ-space iff � admits a
metrizable s-approximation.

Proof. Since every metrizable space is collectionwise normal, the sufficiency follows

from Lemma 7.6.5. The proof of the necessity goes as follows. Let{�i : i ∈ ω}be a network

of the space (X, �), where every �i = {Pi,α : α ∈ Ai} is a discrete family of subsets of

(X, �). We can assume without loss of generality that each Pi,α is �-closed in X. Since

(X, �) is paracompact, for every i ∈ ω there exists a discrete family γi = {Ui,α : α ∈ Ai}
of open sets in (X, �) such that Pi,α ⊂ Ui,α for each α ∈ Ai. Let

Zi =
⋃
{Ii,α : α ∈ Ai}

be the metric hedgehog with “Ai” spines Ii,α = I × {α}, where I = [0, 1] is the usual

unit interval, and all the points (0, α) of the spines are identified to a single point 0̄ [165,

Example 4.1.5]. Every paracompact σ-space is perfectly normal. Therefore, for each

i ∈ ω and each α ∈ Ai, there exists a continuous function fi,α : (X, �) → I such that

f−1
i,α (0) = X\Ui,α and f−1

i,α (1) = Pi,α. We define a mapping ϕi : X → Zi by ϕi(x) = (fi,α, α)

if x ∈ Ui,α, and ϕi(x) = (0, α) = 0̄ if x ∈ X \ Ui,α. The definition is correct since

(0, α) = 0̄ = (0, α′) for all α, α′ ∈ Ai. It is clear that the mapping ϕi : (X, �) → Zi is

continuous for each i ∈ ω, and

{ϕi(Pi,α) : α ∈ Ai} = {{(1, α)} : α ∈ Ai}
is a discrete family of one-point sets in Zi. Let ψ : (X, �) → ∏

i∈ω Zi be the diagonal

product of the mappings ϕi. One easily verifies that ψ is a one-to-one continuous mapping

of (X, �) onto a subspace Y of the metrizable space
∏

i∈ω Zi. In addition, the family

{ψ(Pi,α) : α ∈ Ai} is discrete in Y for each i ∈ ω, so the topology{ψ−1(V ) : V is open in Y}
is the required metrizable s-approximation of the topology � on X. �

The next result shows that the class of paracompact σ-spaces is stable with respect to

taking free topological groups.

Theorem 7.6.7. The free topological group F (X) is a paracompact σ-space iff X is a
paracompact σ-space.

Proof. If F (X) is a paracompact σ-space, then X is closed in F (X) by a) of

Theorem 7.1.13 and, hence, X is also a paracompact σ-space. Let us prove the sufficiency.

Suppose that the topology τ of X admits a metrizable s-approximation τ1. Choose

a metric 
 on X which generates the topology τ1 and consider the topology �d on

Fa(X) generated by the Graev extension 
̂ of 
 to Fa(X) (see Theorem 7.2.2). Let

F
(X) = (Fa(X), �d). By Proposition 7.6.1, the set Bn(X) of all elements of reduced
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length ≤ n with respect to the basis X is closed in F
(X) for each n ∈ ω, so the set

Cn(X) = Bn(X) \ Bn−1(X) is open in the subspace Bn(X) of F
(X). Therefore, we can

represent Cn(X) as the union

Cn(X) =
⋃
k∈ω

Cn,k

of closed subsets of F
(X). For all n, k ∈ ω, choose a σ-discrete network γn,k for (Cn,k, 
̂).

By Corollary 7.6.3, the topology on Cn(X) inherited from F (X) coincides with the one

inherited from F
(X), so the family γ =
⋃

n,k∈ω γn,k is a network for F (X). Since γ is

σ-discrete in F
(X), we conclude that �d is a metrizable s-approximation for the original

topology � of F (X). Therefore, Theorem 7.6.6 implies that F (X) is a paracompact σ-

space. �
We say that a Tychonoff space X is σ-closed-metrizable if it can be represented as

the union of countably many closed metrizable subspaces. The next result complements

Theorem 7.6.7.

Theorem 7.6.8. The free topological group F (X) is σ-closed-metrizable and para-
compact iff the space X is σ-closed-metrizable and paracompact.

Proof. The necessity is clear, so suppose that X is a σ-closed-metrizable paracompact

space. Let X =
⋃

i∈ω Xi, where each Xi is a closed metrizable subspace of X. Every Xi

has a σ-discrete network γi, so γ =
⋃

i∈ω γi is a σ-discrete network for X. Therefore,

F (X) is a paracompact σ-space, by Theorem 7.6.7. In particular, F (X) is perfectly normal.

Since Bn(X) is closed in F (X), and Cn(X) = Bn(X) \ Bn−1(X) is open in Bn(X), we

can represent Cn(X) as the union of a countable family of closed subsets of Bn(X), say,

Cn(X) =
⋃

k∈ω Cn,k. Applying Theorem 7.6.2 and Lemma 7.6.4, we conclude that every

Cn,k and hence, Cn(X), is a union of a countable collection of closed metrizable subspaces

of F (X). Thus, F (X) =
⋃∞

n=0 Cn is σ-closed-metrizable. �
Corollary 7.6.9. The free topological group F (X) on a metrizable space X is σ-

closed-metrizable and paracompact.

Theorems 7.6.7 and 7.6.8 have several interesting applications. The first of them

concerns dimension of free topological groups and needs a series of results regarding zero-

dimensional spaces.

A continuous mapping f : X → Y will be called gentle if there is a network � in the

space X such that its image {f (P) : P ∈ �} is a σ-discrete family of sets in Y . We also

recall that dim X denotes the covering dimension of a Tychonoff space X defined in terms

of finite cozero coverings of X, while ind X stands for the small inductive dimension of X
(see [165, Section 7.1]).

Theorem 7.6.10. Let X be a paracompact σ-space such that ind X = 0. Then
dim X = 0 if and only if there is a one-to-one gentle mapping of X onto a metrizable space
Y such that dim Y = 0.

We naturally split this statement into two statements, one of which is slightly more

general than the corresponding part of the theorem.

Theorem 7.6.11. Let X be a paracompact σ-space such that dim X = 0. Then there
exists a one-to-one gentle mapping of X onto a metrizable space Y such that dim Y = 0.
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Proof. Fix a network � =
⋃{�i : i ∈ ω} of X such that each �i = {Pα,i : α ∈ Ai}

is a discrete family of closed sets in X. Since X is collectionwise normal, there is a discrete

family {Uα,i : α ∈ Ai} of open sets in X such that Pα,i ⊂ Uα,i, for each α ∈ Ai.

Clearly, dim X = 0 is equivalent to saying that X is strongly zero-dimensional [165,

Section 7.1]. Therefore, according to [165, Theorem 6.2.4], we may assume that each Uα,i is

open and closed in X. We may also assume that 0 /∈ Ai, for each i ∈ ω. Put Di = Ai ∪{0}
and consider Di as a discrete topological space. Let Wi =

⋃{Uα,i : i ∈ Ai}. The set Wi is

open and closed. We now define a mapping gi : X → Di as follows. Take any x ∈ X. If

x /∈ Wi, then gi(x) = 0. If x ∈ Wi, then there is exactly one α ∈ Ai such that x ∈ Uα,i, and

we put gi(x) = α. Clearly, gi is a continuous mapping of X to the discrete space Di. It is

also clear that the family {gi(Pα,i) : α ∈ Ai} = {{α} : α ∈ Ai} is discrete in Di.

Let B be the product of the discrete metrizable spaces Di, where i ∈ ω, with the product

topology. Then Ind B = 0, by [165, Example 7.3.14]. According to [165, Theorem 7.3.4],

we have that Ind Y = 0, for every non-empty subspace Y of B. Consider the diagonal

product g of the mappings gi, where i ∈ ω. Then g is a one-to-one continuous mapping of

X onto a metrizable space Y = g(X) ⊂ B such that Ind Y = 0. Notice that Y is normal, so

dim Y = Ind Y = 0, by virtue of [165, Theorem 7.1.10]). Clearly, g(�i) is discrete in B,

for every i ∈ ω. Thus, the image under g of the network � is a σ-discrete network of Y ,

and the mapping g is gentle. �

Lemma 7.6.12. Every σ-locally finite covering of a space by closed and open sets
admits a disjoint open refinement.

Proof. Let γ =
⋃

γn be a covering of a space X by closed and open sets, where each

family γn is locally finite in X. Suppose that γn = {Vα : α ∈ An}, where the index sets Ai

are pairwise disjoint. Given n ∈ ω and α ∈ An, we put

Uα = Vα \
⋃
k<n

⋃
γk.

Since each family γk is locally finite, the sets Uα are open and closed in X. Let A =
⋃

n∈ω An.

Then the family μ = {Uα : α ∈ A} covers X, is a refinement of γ, and we claim that μ is

locally finite in X.

Indeed, take an arbitrary point x ∈ X and let n be the smallest natural number such

that x ∈ ⋃
γn. Choose α0 ∈ An with x ∈ Vα0

. It follows from the definition of the sets Uα

that Vα0
∩ Uα = ∅ whenever α ∈ Ai and i > n. Since the families γk are locally finite,

we can choose, for each i ≤ n, an open neighbourhood Gi of x in X that intersects only

finitely many elements of γi. Then G0 ∩ · · · ∩Gn ∩Vα0
is an open neighbourhood of x that

intersects only finitely many elements of μ. Hence, the family μ is locally finite.

Let {Wα : α < κ} be a well-ordering of μ. Since the family μ is locally finite, the set

Oα = Wα\
⋃

β<α Wβ is open and closed in X, for each α < κ. The family ν = {Oα : α < κ}
covers X, refines μ and γ, consists of closed and open sets, and the elements of ν are pairwise

disjoint. This finishes the proof. �

Theorem 7.6.13. Suppose that g is a one-to-one gentle mapping of a space X with
ind X = 0 onto a metrizable space Y satisfying dim Y = 0. Then dim X = 0 and X is
paracompact.
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Proof. Take any open covering η of X. Since ind X = 0, we may assume that

the elements of η are open and closed sets. Fix a network � in X such that its image

{f (P) : P ∈ �} is a σ-discrete family of sets in Y . We may assume that every element

of � is contained in some element of η. Indeed, otherwise replace � with the family of all

such elements of �; since � is a network of X, enough elements will be left in �.

We have {g(P) : P ∈ �} =
⋃{ξi : i ∈ ω}, where each ξi = {Fa,i : a ∈ Ai}

is a discrete family of subsets of Y . Since Y is collectionwise normal, there is a discrete

family {Va,i : a ∈ Ai} of open sets in Y such that Fa,i ⊂ Va,i, for each a ∈ Ai. Since

Ind Y = dim Y = 0, we may assume that each Va,i is open and closed in Y .

For each i ∈ ω and each a ∈ Ai, we can fix Pa,i ∈ � such that g(Pa,i) = Fa,i. By

our assumption about �, there is W ∈ η such that Pa,i ⊂ W . By the assumption about η,

the set W is open and closed in X. The set g−1(Va,i) is also open and closed in X, since

g is continuous. It follows that the set Ua,i = W ∩ g−1(Va,i) is open and closed in X and

Pα,i ⊂ Uα,i.

For i ∈ ω, consider the family γi = {Ua,i : a ∈ Ai}. By the continuity of g, the

family {g−1(Va,i) : a ∈ Ai} is discrete in X, whence it follows that γi is also discrete in X,

and it is clear that γi is a refinement of η. From the definition of Ua,i it is immediate that

Fa,i = g(Pa,i) ⊂ g(Ua,i). Since g is one-to-one and Y =
⋃{Fa,i : a ∈ Ai, i ∈ ω}, it follows

that X =
⋃{Ua,i : a ∈ Ai, i ∈ ω}.

Thus, γ =
⋃{γi : i ∈ ω} is a σ-discrete covering of X by open and closed sets, and γ

refines η. It follows from Lemma 7.6.12 that dim X ≤ 0 and that X is paracompact. �
It can be useful to note that the paracompactness of X in the above theorem follows

even without assuming that ind X = 0 or dim X = 0.

The proof of the following lemma is straightforward.

Lemma 7.6.14. The product of any countable family of (one-to-one) gentle mappings
is a (one-to-one) gentle mapping.

Theorem 7.6.15. Let Xn be a paracompact σ-space such that dim Xn = 0, for each
n ∈ ω. Then the product space X =

∏
n∈ω Xn satisfies dim X = 0, and X is paracompact.

Proof. By Theorem 7.6.11, we can fix, for each n ∈ ω, a one-to-one gentle mapping

gn of X onto a metrizable space Yn such that dim Yn = 0. Then Ind Yn = 0, by [165,

Theorem 7.1.10]. For the product space Y =
∏

n∈ω Yn, we have dim Y = Ind Y = 0, since

each Yn is metrizable (see [165, Theorem 7.3.16]). Obviously, ind X = 0. It remains to

refer to Theorem 7.6.13 and Lemma 7.6.14. �
Theorem 7.6.16. Let X be a non-empty paracompact σ-space. Then dim F (X) = 0 if

and only if dim X = 0.

Proof. Since every continuous function f : X → R can be extended to a continuous

homomorphism f̃ : F (X) → R, the set X is C-embedded in F (X). Therefore, dim X ≤
dim F (X) by [165, Th. 7.1.8].

Now, suppose that dim X = 0. Since X̃ = X ⊕ {e} ⊕ X−1 is a paracompact

σ-space, Theorem 7.6.2 and Lemma 7.6.4 imply that Cn(X) = Bn(X) \ Bn−1(X) is a

paracompact σ-space. As in the proof of Theorem 7.6.8, one can represent every Cn(X)

as the union Cn(X) =
⋃

k∈ω Cn,k, where each Cn,k is closed in Bn(X) (hence, is closed in

F (X)). Then Cn,k is homeomorphic to a closed subspace of X̃n. Hence, by Theorem 7.6.15,
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dim Cn,k ≤ dim X̃n = dim X̃ = 0. Since F (X) =
⋃

n,k∈ω Cn,k, the countable sum theorem

for the dimension dim (see [165, Th. 7.2.1]) implies that dim F (X) = 0. �

The methods developed above enable us to show that every topological group G is

a quotient of a zero-dimensional topological group H of countable pseudocharacter. In

addition, the group H can be always chosen in such a way that it admits a continuous

isomorphism onto a metrizable topological group. This situation is in a sharp contrast with

the case of locally compact groups, where quotient homomorphisms do not rise dimension

(for the proof of this fact, the reader can consult [543] or [456]). Let us start with an auxiliary

topological fact.

Lemma 7.6.17. Every T1-space X is an image under a quotient mapping of a topological
sum Z = ⊕α∈AZα, where each Zα is a normal space of countable pseudocharacter with at
most one non-isolated point.

Proof. First, suppose that the space X = Xa has a single non-isolated point a ∈ X.

Denote by �a the topology of Xa, and put Ya = Xa \ {a} and Za = {a} ∪ (Ya × N). Let

�∗
a be the topology on Za such that all points of the set Ya ×N are isolated, and the family

γ = {V (k, W) : k ∈ N, a ∈ W ∈ �a}
constitutes a base of a in (Za, �∗

a ), where

V (k, W) = {a} ∪ ((W \ {a})× {k, k + 1, . . .})
It is clear that {a} =

⋂
k∈ω V (k, Xa). Therefore, (Za, �∗

a ) is a T1-space with the single non-

isolated point a, and this point has countable pseudocharacter in (Za, �∗
a ). In particular, Zα

is normal.

Consider the natural mapping ga : (Za, �∗
a ) → (Xa, �a) defined by ga(a) = a and

ga(y, n) = y for all y ∈ Ya and all n ∈ N. This mapping is quotient. Indeed, if A ⊂ Ya,

a ∈ W ∈ �a and W ∩ A = ∅, then

g−1
a (A) ∩ V (k, W) ⊇ (W ∩ A)× {k} = ∅.

Therefore, if a belongs to the closure of A in Xa, then a = g−1
a (a) also belongs to the closure

of g−1
a (A) in Za. This proves that ga is quotient.

Let (X, �) be an arbitrary T1-space. For every point a ∈ X, define a topology �a

on Xa = X × {a} by declaring the point (x, a) ∈ Xa isolated for each x ∈ X \ {a} and

taking the family {U × {a} : a ∈ U ∈ �} as a base at the point (a, a) in (Xa, �a). Define

a mapping πa : Xa → X by πa(x, a) = x for each x ∈ X. The union of the mappings

{πa : a ∈ X} gives a continuous mapping π of the topological sum X∗ = ⊕a∈XXa onto X,

π(x, a) = πa(x) for all x, a ∈ X. It is easy to verify that the mapping π is quotient, and each

Xa is a T1 space with a single non-isolated point. By the fact established in the first part of

the proof, every Xa is a quotient image of a normal space Za of countable pseudocharacter

and with at most one non-isolated point. Let ga : Za → Xa be the corresponding quotient

mapping. The union of the mappings ga is a quotient mapping g of Z∗ = ⊕a∈XZa onto X∗.

Therefore, the composition ϕ = π ◦ g is the required quotient mapping of Z∗ onto X. �

In what follows we call a space X σ-closed-discrete if X is the union of countably many

closed discrete subsets. The next result shows, in particular, that every topological group is

a quotient group of a σ-closed-discrete group.
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Theorem 7.6.18. [A. V. Arhangel’skii] Every topological group G is a quotient of a
topological group H satisfying the following conditions:

a) dim H = 0 and dim Y = 0, for every Y ⊂ H;
b) H is a paracompact σ-closed-discrete space, and every subspace Y ⊂ H is a

paracompact σ-space;
c) H admits a continuous isomorphism onto a metrizable topological group.

Proof. Let Z = ⊕a∈XZa be a topological sum of normal spaces Za, each of which

has countable pseudocharacter and contains at most one non-isolated point. Clearly, every

Za is σ-closed-discrete and hence, has a σ-discrete network. In fact, all one-point subsets

of Za form such a network. Therefore, the space Z is also σ-closed-discrete. Every Za is

paracompact, as a space with a single non-isolated point and hence, so is Z. Thus, Z is a

paracompact σ-closed-discrete space and, in particular, Z is a paracompact σ-space.

By Theorem 7.6.6, there is a metrizable topology τ∗ on Z weaker than the original

topology τ of Z that s-approximates τ (see the definition on page 458). Arguing as in

the proof of Theorem 7.6.7, we take a metric 
 on Z which generates the topology τ∗ and

extend it to a continuous left invariant metric 
̂ on F (Z), thus obtaining the metric topological

group F
(Z) = (Fa(Z), 
̂). The topology �d of the group F
(Z) is an s-approximation of

the topology � of the group F (Z), so F (Z) is a paracompact σ-space, by Theorem 7.6.7.

Lemma 7.6.4 and Theorem 7.6.6 imply that every subspace Y of F (Z) is also a paracompact

σ-space.

The spaces Z̃ = Z⊕{e}⊕Z−1 and Z̃n are paracompact and σ-closed-discrete for each

n ∈ N. Therefore, every subspace of Z̃n is σ-closed-discrete, and from Theorem 7.6.2 it

follows that so is the subspace Cn(Z) = Bn(Z)\Bn−1(Z) of F (Z), n ∈ N. The group F (Z),

being a paracompact σ-space, must be perfectly normal. Therefore, one can represent the

open subset Cn(Z) of Bn(Z) as a union of countably many closed in F (Z) subsets Cn,k,

k ∈ ω. Every Cn,k is σ-closed-discrete, as a subspace of Cn(Z). It follows that the group

F (Z) =
⋃

n∈ω Cn(Z) is also σ-closed-discrete. In other words, the paracompact space

F (Z) is the union of a countable family of closed discrete subsets. Now it follows from the

countable sum theorem [165, Theorem 7.2.1] for the covering dimension that dim F (Z) = 0.

Since every subspace Y of F (Z) is paracompact (hence, is normal), the same argument gives

the equality dim Y = 0.

To complete the proof, consider an arbitrary topological group G and apply Lemma

7.6.17 to find a strictly σ-discrete paracompact space Z and a quotient mapping π of Z onto

G. Extend π to a continuous homomorphism π̃ : F (Z) → G. Then the homomorphism

π̃ is open by Corollary 7.1.10. The above argument shows that the group F (Z) satisfies

a)–c). �

The theorem just proved admits a weaker, but still interesting, formulation:

Corollary 7.6.19. Every topological group is a quotient of a strongly zero-
dimensional topological group of countable pseudocharacter.

A direct verification shows that Theorems 7.6.2, 7.6.7, 7.6.8, and 7.6.16 (as well as the

auxiliary results they depend upon) remain valid for free Abelian topological groups.

According to Corollary 7.6.9, the group F (X) on a metrizable space X has good covering

properties and can be covered by countably many closed metrizable subspaces. It turns out,



Free groups on metrizable spaces 465

nevertheless, that the groups F (X) and A(X) can have quite nasty convergence properties

— for example, they fail to be k-spaces, even for the countable metric space Q.

Theorem 7.6.20. If a space X is metrizable and A(X) is a k-space, then X is locally
compact.

Proof. Suppose that a point x0 ∈ X has no neighbourhood with compact closure in

X. There exists a countable base {Vn : n ∈ ω} at the point x0 in X such that V n+1 ⊂ Vn

and the set Fn = V n \Vn+1 is not compact for each n ∈ ω. Choose a closed discrete subset

{xn,m : m ∈ ω} ⊂ F2n where xn,m = xn,m′ if m = m′. Then the set

M = {xn,m : m, n ∈ ω} ∪ {x0}
is closed in X and all points of M, except for x0, are isolated in M.

To each pair k, l ∈ ω, assign the element

hk,l = (xk,2l − xk,2l+1) + (xl,1 − xl,2) + · · ·+ (xl,2k−1 − xl,2k) ∈ A(X)

and consider the sets Hk = {hk,l : l > k}, k ∈ ω and H =
⋃∞

k=0 Hk. We claim that the

intersection of H with every compact set in A(X) is finite (hence closed), but the identity e
of A(X) is an accumulation point of H . Note that e /∈ H .

Clearly, the length of hk,l equals 2k + 2 for each l ∈ ω, so Hk ⊂ A(X) \B2k(X). Let K
be a compact subset of A(X). By Corollary 7.4.4, K ⊂ Bn(X) for some n ∈ ω. Hence K
intersects only finitely many sets Hk and it suffices to verify that K ∩ Hk is finite for each

k ∈ ω.

The set Xk = {xk,m : m ∈ ω} is closed and discrete in X. For k, l ∈ ω with k < l, set

supp(hk,l) = {xk,2l, xk,2l+1, xl,1, xl,2, . . . , xl,2k−1, xl,2k}.
Clearly, Dk,l = Xk ∩ supp(hk,l) = {xk,2l, xk,2l+1}, so the family {Dk,l : l > k} is disjoint for

each k ∈ ω. Hence the intersection Xk∩supp(P) is infinite for every infinite P ⊂ Hk, where

supp(P) =
⋃{supp(hk,l) : hk,l ∈ P}. Since Xk is closed and discrete in the metrizable space

X, the set Xk ∩ supp(P) is not bounded in X. According to Corollary 7.5.6 this implies that

the intersection K ∩Hk is finite, for every compact subset K of A(X).

It remains to verify that e is an accumulation point of H . Let d be an arbitrary continuous

metric on X. By Theorem 7.2.7, it suffices to show that Vd ∩H = ∅, where

Vd = {g ∈ A(X) : d̂A(e, g) < 1}.
Since {Vn : n ∈ ω} is a base of X at x0, we can choose k > 0 such that d(x0, x) < 1/8

for each x ∈ V2k. Then d(x0, xk,i) ≤ 1/8 and d(xk,i, xk,j) ≤ 1/4 for all i, j ∈ ω. Similarly,

there exists l > k such that d(x0, x) < 1/4k for each x ∈ V2l. Clearly, d(xl,i, xl,j) ≤ 1/2k
for all i, j ∈ ω. Therefore,

d̂A(e, hk,l) ≤ d(xk,2l, xk,2l+1) +

k∑
i=1

d(xl,2i−1, xl,2i) ≤ 1

4
+

k

2k
< 1.

Hence, hk,l ∈ H ∩ Vd . The proof is complete. �

Corollary 7.6.21. Neither F (Q), nor A(Q) are k-spaces.
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Proof. The space of rationalsQwith its usual metric topology is not locally compact, so

the conclusion for A(Q) follows directly from Theorem 7.6.20. In addition, Theorem 7.1.11

implies that A(Q) is a quotient group of F (Q). Since open continuous onto mappings

preserve the property of being a k-space [165, Th. 3.3.23], we conclude that F (Q) is not a

k-space either. �

We shall see in Theorem 7.6.30 that even the local compactness of a metrizable space

X does not suffice to imply that A(X) is a k-space. Another necessary condition on X is

that the set X′ of non-isolated points of X has to be separable. To show this we need to

establish several facts.

In the proof of the next auxiliary topological result we use the existence of so called

Hausdorff gaps [263]. Let V (ℵ1) = {b}∪{an,α : n ∈ ω, α < ω1} be the Fréchet–Urysohn

fan of cardinality ℵ1, where the sequence {an,α : n ∈ ω} converges to b for each α < ω1.

Lemma 7.6.22. [G. Gruenhage and Y. Tanaka] The tightness of the product V (ℵ1)×
V (ℵ1) is uncountable.

Proof. By [263, Theorem 20.2], there exist families � = {Aα : α < ω1} and

� = {Bα : α < ω1} of infinite subsets of ω such that

(a) Aα ∩ Bβ is finite for all α, β < ω1;

(b) for no A ⊂ ω, all sets Aα \ A and Bα ∩ A, α < ω1 are finite.

For a pair �, � of such families (known as a Hausdorff gap), put

X = {(an,α, an,β) ∈ V (ℵ1)× V (ℵ1) : α, β < ω1, n ∈ Aα ∩ Bβ}.
We claim that (b, b) is an accumulation point for X, but not for any countable subset of X.

It follows from the claim that the tightness of V (ℵ1)× V (ℵ1) is uncountable.

Given a function ϕ : ω1 → ω, put

O(ϕ) = {b} ∪ {an,α : α < ω1, n ≥ ϕ(α)}.
From definition of V (ℵ1) is follows that the family {O(ϕ) : ϕ ∈ ωω1} is a base at the point

b.

Take an arbitrary neighbourhood U of the point (b, b) in V (ℵ1) × V (ℵ1). One can

assume that U = O(ϕ)×O(ϕ), for some function ϕ : ω1 → ω. For every α < ω1, put

A′
α = {n ∈ Aα : n ≥ ϕ(α)}, B′

α = {n ∈ Bα : n ≥ ϕ(α)}.
Then A′

α ∩ B′
β = ∅ for some α, β < ω1, for otherwise

(
⋃
{A′

α : α < ω1}) ∩ (
⋃
{B′

α : α < ω1}) = ∅

and, taking A =
⋃{A′

α : α < ω1}, we get a contradiction with condition (b). So, choose

n ∈ A′
α ∩ B′

β. Then

(an,α, an,β) ∈ X ∩ (O(ϕ)×O(ϕ)) = X ∩ U

and, hence, X ∩ U = ∅. Thus (b, b) is an accumulation point for X.

Let K be an arbitrary countable subset of X. There exists an ordinal γ < ω1 such that

K ⊂ {(an,α, an,β) : α, β < γ, n ∈ ω}.
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We can assume without loss of generality that γ = ω (otherwise order γ as ω). Define a

function ψ : ω1 → ω by

ψ(m) = 1 + max{Ak ∩ Bl : k, l ≤ m}
for each m < ω and ψ(α) = 0 if ω ≤ α < ω1. We claim that the neighbourhood

U = O(ψ)×O(ψ) of (b, b) is disjoint from K. Indeed, if (an,k, an,l) ∈ K, then n ∈ Ak ∩Bl.

Put m = max{k, l}. Clearly ψ(m) > max(Ak ∩ Bl) ≥ n, whence it follows that

(an,k, an,l) /∈ U. This proves that U ∩K = ∅. Therefore, the tightness of V (ℵ1)× V (ℵ1) is

uncountable. �

Since all compact subsets of V (ℵ1) are countable, Lemma 7.6.22 implies the following:

Corollary 7.6.23. The product V (ℵ1)× V (ℵ1) is not a k-space.

The next result shows that for A(X) to have countable tightness, the space X must be

quite special. First, we need a purely topological fact.

Lemma 7.6.24. Let f be an open mapping of a space X onto a space Y . Then the
tightness of Y does not exceed the tightness of X.

Proof. Let τ = t(X). Take any B ⊂ Y and any y ∈ B, and put A = f−1(B),

P = f−1(y). Then P ∩ A = ∅, since the mapping f is open and continuous. Fix

x ∈ P ∩ A. There is a subset C of A such that x ∈ C and |C| ≤ τ. Then f (C) ⊂ B,

|f (C)| ≤ |C| ≤ τ. Therefore, t(Y ) ≤ τ = t(X). �

Proposition 7.6.25. Let X be a metrizable space. If the tightness of A(X) is countable,
then the set X′ of all non-isolated points in X is separable.

Proof. If X′ is not separable, we can choose an uncountable discrete family {Uα : α <
ω1} of open sets in X each of which contains a point xα ∈ X′. For every α < ω1, choose

a non-trivial sequence Cα ⊂ Uα converging to xα and put Dα = Cα ∪ {xα}. Consider the

sets

Y =
⋃
{Dα : α < ω1}, Y0 = {xα : α < ω1}.

Then Y and Y0 are closed in X and Y is homeomorphic to the product D× T , where D is a

convergent sequence (with its limit) and T is a discrete space of cardinality ℵ1. Clearly Y0 is

closed in Y . Let p : X → Z be the natural quotient mapping of X onto the space Z obtained

from X by identifying Y0 to a point. Then p is a closed mapping and so is the restriction of

p to Y . Therefore, the subspace Z1 = p(Y ) of Z is homeomorphic to the Fréchet–Urysohn

fan V (ℵ1) of cardinality ℵ1.

Assume to the contrary that the tightness of A(X) is countable. The homomorphism

p̂ : A(X) → A(Z) extending the quotient mapping p is open by Corollary 7.1.9. Since,

by Lemma 7.6.24, open mappings do not rise the tightness, A(Z) has countable tightness

as well. Corollary 7.1.16 implies, however, that A(Z) contains a copy of Z1 × Z1, which

contradicts Lemma 7.6.22. This completes the proof. �

Theorem 7.6.27 below implies, in particular, that the implication in Lemma 7.6.25 can

be reversed. First, we recall that a family � of open sets in a space X is called an external
base of a set Y ⊂ X if for every point y ∈ Y and every neighbourhood U of y in X there

exists V ∈ � such that y ∈ V ⊂ U. In other words, � is a base of X at each point y ∈ Y .
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For the sake of completeness, we supply the reader with the proof of the following simple

fact.

Lemma 7.6.26. If Y is a subset of a metrizable space X, then there exists an external
base � for Y in X such that |�| = w(Y ).

Proof. Denote by τ the weight of Y . Let d be a metric on X that generates the topology

of X. For every x ∈ X and an integer n ≥ 1, denote by O(y, 1/n) the open ball in X with

center y and radius 1/n with respect to d. Then γn = {O(y, 1/n) : y ∈ Y} is a covering of

Y by open sets in X. Since w(Y ) = τ, we can find a subfamily μn of γn such that Y ⊂ ⋃
μn

and |μn| ≤ τ. Clearly, the family � =
⋃∞

n=1 μn satisfies |�| ≤ τ. Applying the triangle

inequality, one can easily verify that � is an external base for Y in X. �

Theorem 7.6.27. [A. V. Arhangel’skii, O. G. Okunev, V. G. Pestov] Let X be a
metrizable space, and X′ the set of all non-isolated points in X. Then the tightness of
A(X) does not exceed the weight of X′.

Proof. Denote by τ the weight of X′. It suffices to prove that if the identity e of A(X)

is an accumulation point for a set M ⊂ A(X), then e ∈ M′ for some M′ ⊂ M such that

|M′| ≤ τ. By Lemma 7.6.26, there exists an external base � for X′ in X such that |�| = τ.

Put

� = {� ⊂ � : X′ ⊂
⋃

�}.
Assign to every � ∈ � an open covering of X of the form

γ(�) = � ∪ {{x} : x ∈ X \X′}.
Clearly, for every open cover γ of X there exists � ∈ � such that γ(�) refines γ. Consider

the family �ω of all sequences (�0, �1, . . .), where �n ∈ � for each n ∈ ω. Assign to

every sequence s = (�0, �1, . . .) ∈ �ω the set Vs of all g ∈ A(X) that can be written in the

form

g = x0 − y0 + x1 − y1 + · · ·+ xk − yk,

where k ∈ ω and xi, yi ∈ Ui, for some Ui ∈ γ(Ai), i = 0, 1, . . . , k. Then 7.2.e implies that

{Vs : s ∈ �ω} is a base at the identity e of A(X).

For every U ∈ �, put

W (U) = {� ∈ � : U ∈ �}.
Equip � with the topology with a subbase consisting of the sets W (U), U ∈ �. It is

easy to see that � with this topology is naturally homeomorphic to the generalized Cantor

cube {0, 1}� (assign to each � ∈ � its characteristic function f� ∈ {0, 1}�). Therefore,

the space � is compact, Hausdorff, and w(�) ≤ τ. Let us consider the space S = �ω

with the product topology. Clearly, w(S) ≤ τ. The set Pg = {s ∈ S : g /∈ Vs} is

closed in S for each g ∈ A(X). Indeed, suppose that g ∈ A(X) and g ∈ Vs0
, for some

s0 = (�0
0, . . . , �0

n, . . .) ∈ S. We are going to find a neighbourhood W of s0 in S such that

W ∩Pg = ∅. By definition of Vs0
, g can be written in the form g = x0−y0 + · · ·+ xk−yk,

where k ∈ ω and for every i ≤ k there exists Ui ∈ γ(�0
i ) such that xi, yi ∈ Ui. We can

assume that xi = yi for each i ≤ k. Then Ui ∈ �0
i for i = 0, . . . , k. Let

W = {s = (�0, . . . , �n, . . .) ∈ S : Ui ∈ �i for each i ≤ k}.
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Clearly, W is open in S, s0 ∈ W , and g ∈ Ws, for all s ∈ W , so that W ∩ Pg = ∅. This

proves our claim.

For every subset H of A(X), put

PH = {s ∈ S : Vs ∩H = ∅}.
Clearly, PH =

⋂
g∈H Pg, so PH is closed in S, for each H ⊂ A(X). Note that if

H ⊂ K ⊂ A(X), then PK ⊂ PH .

Assume that the tightness of A(X) is greater than τ. Then there exists a set M in A(X)

such that e is in the closure of M but e /∈ H for each set H ⊂ M with |H | ≤ τ. Then,

for every subset H of M of cardinality ≤ τ there exists a neighbourhood of e disjoint with

H . Therefore, PH = ∅, and the family {PH : H ⊂ M, |H | ≤ τ} has the τ-intersection

property. All sets in this family are closed in S, and the weight of S does not exceed τ.

Hence, the intersection PM =
⋂{PH : H ⊂ M, |H | ≤ τ} is not empty. Choose s ∈ PM .

Then Vs is a neighbourhood of e in A(X) disjoint with M, which contradicts the assumption

that e is in the closure of M. The proof is complete. �
Combining Proposition 7.6.25 and Theorem 7.6.27, we obtain the following:

Corollary 7.6.28. If X is metrizable, then the tightness of A(X) is countable iff the
set X′ of all non-isolated points of X is separable.

Now we turn back to the study of the k-property in free Abelian topological groups.

The following result is a special case of Theorem 7.6.30.

Proposition 7.6.29. If X is a locally compact metrizable space, and the set X′ of
all non-isolated points of X is separable, then A(X) is homeomorphic to the product of a
kω-space with a discrete space, and therefore, A(X) is a k-space.

Proof. Let γ be a countable covering of X′ by open (in X) sets with compact closures,

and put X0 = X \⋃{U : U ∈ γ}. Then X0 is a kω-space, and X1 = X \ X0 is a clopen

discrete subset of X. Hence Exercise 7.4.d implies that A(X) is topologically isomorphic

to the product A(X0)×A(X1), where A(X0) is a kω-space, by Theorem 7.4.1, and A(X1) is

a discrete group. Therefore, A(X) is a k-space. �
The following theorem completely characterizes metrizable spaces X such that the

group A(X) is a k-space.

Theorem 7.6.30. If X is metrizable, and X′ is the set of all non-isolated points of X,
then the following conditions are equivalent:

a) A(X) is a k-space;
b) X is locally compact and X′ is separable.

Proof. The implication b) ⇒ a) follows from Proposition 7.6.29. Let us show that

a) ⇒ b). Suppose that A(X) is a k-space. Then the group A(X) is sequential. Indeed,

let P be a non-closed subset of A(X). There exists a compact set K ⊂ A(X) such that

P ∩K is not closed in K. By Theorem 7.5.3, we can find an integer n ∈ ω and a bounded

subset Y of X such that K ⊂ An(Y, X). Let C be the closure of Y in X. Then C is compact

and second-countable. Clearly, K ⊂ An(Y, X) ⊂ An(C, X) and the latter set is compact

and second-countable. Therefore, the intersection P ∩ An(C, X) is not closed and there

exists a non-trivial sequence lying in P ∩An(C, X) and converging to a point outside of P .
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This proves that the group A(X) is sequential. Since every sequential space has countable

tightness, Theorem 7.6.20 implies that the set X′ is separable. Finally, X is locally compact

by Theorem 7.6.20. �

Now we are going to characterize the metrizable spaces X such that the free topological

group F (X) is a k-space. Surprisingly, the class of such spaces is narrower than the class

of locally compact metrizable spaces with the separable set of non-isolated points (see

Theorem 7.6.30). This is the first difference between the topological properties of the

groups F (X) and A(X) we find here. Let us start with two preliminary results.

First, we present several conditions implying that a closed subset Y of F (X) generates

a subgroup 〈Y〉 of F (X) topologically isomorphic to F (Y ). Recall that Y is a μ-space if

the closure of every bounded set in Y is compact. According to Proposition 6.9.7, every

Dieudonné complete space is a μ-space.

Proposition 7.6.31. Let Y be a subset of the group F (X) on a Tychonoff space X.
Suppose that F (X) is a k-space, Y is a μ-space and Y forms a free algebraic basis for the
subgroup 〈Y〉 ⊂ F (X). Then the groups 〈Y〉 and F (Y ) are topologically isomorphic iff
for every compact set K ⊂ F (X), there exist n ∈ ω and a compact set P ⊂ Y such that
〈Y〉 ∩K ⊂ 〈P〉n. If this is the case, then both Y and 〈Y〉 are closed in F (X).

Proof. Denote by f the continuous isomorphism of F (Y ) onto 〈Y〉 whose restriction

to Y is the identity mapping.

Let us start with the necessity. Suppose that f is a topological embedding. For every

g ∈ 〈Y〉, let suppY (g) be the finite set of elements of Y which appear in the reduced form

of g with respect to the basis Y . If K is a compact subset of F (X), then 〈Y〉 ∩ K is a

precompact subset of 〈Y〉 ∼= F (Y ). By Lemma 7.5.2, S =
⋃

g∈K suppY (g) is bounded in

Y and 〈Y〉 ∩ K ⊂ 〈S〉n, for some n ∈ ω. Since Y is a μ-space, the closure P of S in Y is

compact. Clearly, 〈Y〉 ∩K ⊂ 〈P〉n, which proves the necessity.

To prove the sufficiency, suppose that for every compact set K in F (X) one can find a

compact set P ⊂ Y and n ∈ ω such that 〈Y〉 ∩ K ⊂ 〈P〉n. First, we show that F (Y ) and

〈Y〉 have the same compact sets or, more strictly, f−1(C) is compact for each compact set

C ⊂ 〈Y〉. Indeed, if C is a compact subset of 〈Y〉, then by our assumption, there exist a

compact set P ⊂ Y and n ∈ ω such that C ⊂ 〈P〉n. This implies that f−1(C) ⊂ Fn(P, Y ).

Since Fn(P, Y ) is compact and f−1(C) is closed in F (Y ), we conclude that f−1(C) is a

compact subset of F (Y ).

Our next step is to verify that the subgroup 〈Y〉 is closed in F (X). Let C be a compact

subset of F (X). Then we can find a compact set P ⊂ Y and n ∈ ω such that 〈Y〉∩C ⊂ 〈P〉n.

Since C and 〈P〉n are compact, we infer that the intersection 〈Y〉∩C = 〈P〉n∩C is closed in

C. By the assumption, F (X) is a k-space, so 〈Y〉 is a closed subgroup of F (X). In particular,

〈Y〉 is a k-space.

Let A be an arbitrary closed subset of F (Y ) and B = f (A). If C is a compact subset

of 〈Y〉, then f−1(C) is a compact subset of F (Y ) and hence, AC = A ∩ f−1(C) is closed

in f−1(C) and compact. So B ∩ C = f (AC) is compact and closed in 〈Y〉. Thus, the

intersection of B with each compact set in 〈Y〉 is closed, so that B = f (A) is closed in 〈Y〉.
Hence, f is a continuous closed bijection of F (Y ) onto 〈Y〉, that is, f is a homeomorphism.

In particular, Y is closed in 〈Y〉 ∼= F (Y ). Since 〈Y〉 is closed in F (X), so is Y . This finishes

the proof. �
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Corollary 7.6.32. Suppose that a μ-space Y is a closed C-embedded subset of a
space X. If F (X) is a k-space, then F (Y, X) ∼= F (Y ).

Proof. By the assumption, Y is closed in X, so Theorem 7.4.5 implies that F (Y, X) is

closed in F (X). Clearly, Y is a free algebraic basis for the subgroup F (Y, X) of F (X). In

addition, if K ⊂ F (X) is compact, then P = K ∩ F (Y, X) is a compact subset of F (Y, X)

and hence, Z = supp(P) ⊂ Y is a bounded subset of X and P ⊂ 〈Z〉n, for some n ∈ ω (see

Lemma 7.5.2).

We claim that Z is bounded in Y . Indeed, otherwise there exists a continuous real-

valued function f on Y such that f is unbounded on Z. Since Y is C-embedded in X, f
admits an extension to a continuous function f̃ on X. Hence, Z is not bounded in X, which

is a contradiction.

Denote by C the closure of Z in X. Since Y is closed in X, we have T ⊂ Y . By the

assumption, Y is a μ-space, so that T is compact. Clearly,

K ∩ F (Y, X) = P ⊂ 〈Z〉n ⊂ 〈T 〉n.

Therefore, from Proposition 7.6.31 it follows that F (Y, X) ∼= F (Y ). �
The following lemma is the main step towards the characterization of the k-property in

free topological groups. Let us say that a covering � of a space Z is generating if a subset F
of Z is closed in Z provided the intersection F ∩C is closed in C for each C ∈ �. Clearly,

Z is a k-space iff the family of all compact subsets of Z is generating.

Lemma 7.6.33. Let X = C ⊕D, where C = {xn : n ∈ ω} is the sequence converging
to x0 and D is an uncountable discrete space. Then the tightness of F (X) is uncountable,
and F (X) is not a k-space.

Proof. Suppose that the tightness of F (X) is countable. Then the covering λ =

{F (C ⊕ A, X) : A ⊂ D, |A| ≤ ω} of F (X) is generating. Indeed, for g ∈ F (X) let

supp(g) be the set of all letters in the reduced form of g with respect to the basis X. If S
is a non-closed subset of F (X), then we can find a point g ∈ F (X) \ S and a countable set

T ⊂ S such that g ∈ T . Put

P = supp(g) ∪
⋃
h∈T

supp(h) and A = P \ C.

Then |A| ≤ |P | ≤ ω, H = F (C⊕A, X) ∈ λ, and T ∪{g} ⊂ H ; it follows that S∩H is not

closed in H . This proves that the covering λ is generating for F (X). From Theorem 7.4.1

it follows that every element of λ is a kω-space and, hence, F (X) is a k-space. So, if the

tightness of F (X) is countable then F (X) is a k-space.

Assume that F (X) is a k-space. Clearly, every bounded set in X = C⊕D is contained

in a set of the form C ⊕ A, where A ⊂ D is finite. Therefore, the covering

γ = {F (C ⊕ A, X) : A ⊂ D, |A| < ω}
is generating for F (X). Indeed, suppose that the intersection of a set S ⊂ F (X) with

every element of γ is closed. Let K be an arbitrary compact subset of F (X). By

Corollary 7.5.6, there exists a bounded subset B of X such that K ⊂ F (B, X). In its

turn, B ⊂ C ⊕ A for some finite set A ⊂ D, so K ⊂ F (C ⊕ A, X) ∈ γ. Hence the

intersection S ∩K = (S ∩ F (C ⊕ A, X)) ∩K is closed in K. Since F (X) is a k-space, we

conclude that S is closed in F (X). In other words, γ is generating for F (X).
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Put Ca = {x0a−1x−1
0 xa : x ∈ C}, for each a ∈ D, and let Y =

⋃
a∈D Ca. It is easy

to see that each Ca is homeomorphic to C and Ca ∩ Cb = {x0}, for any distinct elements

a, b ∈ D. For every finite set A ⊂ D, the set YA = Y ∩ F (C ⊕ A, X) =
⋃

a∈A Ca is

compact and closed in F (C ⊕ A, X). Since the covering γ is generating, Y is closed in

F (X). Therefore, the covering γY = {YA : A ⊂ D, |A| < ω} of Y is generating. Note that

each Ca is a sequence converging to x0, so Y is homeomorphic to the Fréchet–Urysohn fan

V (ℵ1) of cardinality ℵ1.

Now we claim that 〈Y〉 is closed in F (X) and 〈Y〉 ∼= F (Y ). Indeed, it is easy to see that

Y is a free algebraic basis for 〈Y〉. In addition, every compact subset K of F (X) is contained

in Fn(C ⊕ A, X), for some finite set A ⊂ D and some n ∈ ω, and a direct verification

shows that 〈Y〉 ∩ K ⊂ 〈YA〉n, where YA is a compact subset of Y . Since X is metrizable,

Corollary 7.6.9 implies that F (X) is paracompact. In particular, the closed subset Y of F (X)

is paracompact and hence, is a μ-space. So we can apply Proposition 7.6.31 to deduce that

〈Y〉 ∼= F (Y ) is closed in F (X). Therefore, F (Y ) is a k-space.

Finally, F (Y ) contains a closed copy of Y 2, by b) of Theorem 7.1.13, which contradicts

Corollary 7.6.23. �

Corollary 7.6.34. Suppose that X is a non-discrete, non-separable metrizable space.
Then F (X) is not a k-space, and the tightness of F (X) is uncountable.

Proof. Suppose to the contrary that F (X) is a k-space. Clearly, X contains a closed

subspace Y homeomorphic to C ⊕D, where C is a convergent sequence with its limit, and

D is an uncountable discrete space. Then both X and Y are μ-spaces, and Y is C-embedded

in X. Hence, F (Y, X) ∼= F (Y ) by Corollary 7.6.32. Apply Lemma 7.6.33 to obtain a

contradiction. �

In the next two theorems we characterize the metrizable spaces X such that F (X) has

countable tightness or is a k-space. It is instructive to compare them with Corollary 7.6.28

and Theorem 7.6.20, respectively, that characterize similar properties of free Abelian

topological groups. The non-commutativity of the group F (X) requires X to have better

topological properties than those working for A(X).

Theorem 7.6.35. If X is metrizable, then the tightness of F (X) is countable iff X is
separable or discrete.

Proof. Let X be a metrizable space. If X is discrete, then so is F (X) and hence, the

tightness of F (X) is countable. If X is separable, then F (X) has a countable network by

Corollary 7.1.17, and the tightness of F (X) is countable by [165, 3.12.7 (e,f)].

Conversely, if F (X) has countable tightness, then X is either discrete or separable by

Corollary 7.6.34. �

Theorem 7.6.36. The following conditions are equivalent for a metrizable space X:

a) F (X) is a k-space;
b) F (X) is a kω-space or is discrete;
c) X is locally compact separable or discrete.

Proof. Obviously, b) implies a). Every metrizable, locally compact, separable space

is a kω-space, so the implication c)⇒ b) follows from Theorem 7.4.1. It remains to show

that a) ⇒ c). Suppose that F (X) is a k-space. We can assume without loss of generality
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that X is not discrete. Then X must be separable by Corollary 7.6.34. By Theorem 7.1.11,

A(X) is a quotient group of F (X). It is easily seen that continuous open onto mappings

preserve the property of being a k-space [165, Th. 3.3.23]. It follows that A(X) is a k-space.

Therefore, Theorem 7.6.20 implies that X is locally compact. This finishes the proof. �

Exercises

7.6.a. Let X be a metrizable space, and X̃ = X⊕{e}⊕X−1 the topological sum of X, the identity

e of F (X), and a copy X−1 of X. Verify that the multiplication mapping i2 : X̃2 → F (X)

defined by i2(x, y) = x · y for x, y ∈ X̃, is quotient. Apply this fact to show that i2 is a

closed mapping. Present an example of a locally compact space X such that the mapping

i2 : X̃2 → F (X) is not quotient.

7.6.b. Let S1 = {sn : n ∈ ω} be a non-trivial sequence converging to its limit point s0. The

space S2, called the Arens space, is obtained from S1 by attaching to each isolated point sn

of S1 a sequence sn,1, sn,2, . . ., converging to sn. Thus, S2 can be viewed as a quotient of a

disjoint union of countably many convergent sequences, and we give it the quotient topology.

Show that the group F (S1) contains a closed copy of the space S2 and hence, F (S1) is not

a Fréchet–Urysohn space. Verify that a similar result holds for the free Abelian topological

group A(X).

7.6.c. A space X is called an ℵ0-space if there exists a countable family � of subsets of X such that

for every compact set B ⊂ X and every neighbourhood V of B in X, one can find P ∈ �
with B ⊂ P ⊂ V . Show that the groups F (X) and A(X) are ℵ0-spaces iff X is an ℵ0-space.

Deduce that F (X) is an ℵ0-space, for every regular second-countable space X.

7.6.d. Let X′ be the set of all non-isolated points of a Tychonoff space X, and � be the family of

all coverings of X′ by open sets in X. For a sequence s = (γ0, γ1, . . .) ∈ �ω, put

Ws =

{
k∑

i=0

(xi − yi) : k ∈ ω, xi, yi ∈ Ui for some Ui ∈ γi, i = 0, . . . , k

}
.

Apply Exercise 7.2.e to deduce that Ws is open in A(X), and that the family of the sets Ws

with s ∈ γω is a base at the identity of A(X).

7.6.e. Verify that the sets Hk defined in the proof of Theorem 7.6.20 are closed and discrete in

A(X).

7.6.f. Recall that a space X is of pointwise countable type if X can be covered by compact sets each

of which has countable character in X. Apply Corollary 7.1.9 to generalize Theorem 7.6.20

as follows: If X is a Tychonoff space of pointwise countable type and A(X) is a k-space,

then X is locally pseudocompact.

7.6.g. Modify the proof of Theorem 7.6.20 to show that the closed subspace B8(X) of A(X) is not

a k-space.

7.6.h. Let X be a Tychonoff space, and G(X) be either F (X) or A(X).

(a) Verify that if G(X) is a k-space, then it has the direct limit property.

(b) Show that if Bn(X) ⊂ G(X) is a k-space, for each n ∈ ω, and G(X) has the direct limit

property, then G(X) is a k-space.

7.6.i. Let Y = F (X) be the free topological group of a metrizable space X. Prove that the free

topological group F (Y ) of Y is paracompact and σ-closed metrizable.

7.6.j. Show that every closed bounded subspace of the free topological group of any metrizable

space is metrizable and compact.
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Problems

7.6.A. (A. V. Arhangel’skii [19]) Prove that every second-countable topological group can be

represented as a quotient group of a zero-dimensional second-countable topological group.

7.6.B. Let X and Y be metrizable spaces. Is F (X) × F (Y ) paracompact?

7.6.C. Give an example of a Hausdorff space X such that Xn is strongly paracompact, for every

n ∈ ω, while the free Abelian topological group A(X) is not paracompact.

7.6.D. Can an arbitrary paratopological group be represented as a quotient of a zero-dimensional

paratopological group?

7.6.E. Is it true that the free topological group of a σ-closed-discrete space is σ-closed-discrete?

7.6.F. Give an example of a σ-closed-metrizable Tychonoff space Y that cannot be topologically

embedded into the free topological group of any metrizable space.

7.6.G. (A. V. Arhangel’skii, O. G. Okunev, and V. G. Pestov [58]). A space X is called a kR-space
if a real-valued function f on X is continuous if and only if its restrictions to each compact

subset of X is continuous. Prove that for a regular second-countable space X, the group

F (X) is a kR-space iff it is a k-space.

Hint. Apply Corollary 7.6.9, Exercise 7.6.c, and Michael’s theorem [320]: If Y is a kR-space

andℵ0-space representable as a countable union of its closed k-subspaces, then Y is a k-space.

7.6.H. (O. V. Sipacheva and V. V. Uspenskij [454]; for the special case |X| ≤ c, S. A. Morris and

B. V. S. Thompson [331]). Prove that if X is a submetrizable space, then F (X) and A(X) are

NSS-groups, i.e., there exists a neighbourhood of the identity in each of these groups which

does not contain non-trivial subgroups.

Hint. Since A(X) is a quotient group of F (X), it suffices to prove that F (X) is an NSS-group.

By assumption, there exists a continuous metric d on X which generates a topology weaker

than the original topology of X. Extend d to a continuous invariant metric d̂ on F (X) and

consider the open neighbourhood Vd of the identity e defined by

Vd = {g ∈ F (X) : d̂(g, e) < 1}.

Verify that if g ∈ F (X) and g �= e, then d̂(kg, e) → ∞ for k → ∞. Deduce that Vd does

not contain non-trivial subgroups.

7.6.I. (K. Yamada [539]) Show that the following statements hold:

(a) If X is metrizable and the set X′ of all non-isolated points in X is compact, then the

subspace Bn(X) of A(X) is a k-space, for each n ∈ ω.

(b) There exists a countable subspace X of the real line R such that each Bn(X) ⊂ A(X) is

a k-space, but A(X) is not.

Hint. For (a), suppose that there exist n ∈ ω and a subset E of Bn(X) such that E ∩ K is

closed in K for each compact subset K of Bn(X), but e ∈ E \ E, where e is the neutral

element of A(X). Let d be a metric on X generating the topology of X. For every k ∈ ω,

put Uk = {(x, y) ∈ X2 : d(x, y) < 1/(k + 1)}, Vk = {x ∈ X : d(x, X′) < 1/(k + 1)} and

consider the set

Wk = {x0 − y0 + · · · + xr − yr : r ∈ ω, (xi, yi) ∈ Uk ∩ (Vk × Vk) for i ≤ r}.

By Exercise 7.6.d, each Wk is a neighbourhood of e in A(X), so there exists a point

ak ∈ E∩Wk. Note that supp(ak) ⊂ Vk for all k ∈ ω, so the set C = X′∪⋃∞
k=0

supp(ak) ⊂ X
is compact. Therefore, An(C, X) ∩ E is closed in A(X), and we have that P = {ak : k ∈
ω} ⊂ An(C, X). To obtain a contradiction, verify that e ∈ P .

To deduce (b), apply the above item (a) and Theorem 7.6.20.

7.6.J. (V. G. Pestov and K. Yamada [382]) Prove that the following assertions are valid for a

metrizable space X:
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(a) The group A(X) has the direct limit property iff X is locally compact and the set X′ of

all non-isolated points of X is separable;

(b) The group F (X) has the direct limit property iff X is either locally compact separable

or discrete.

7.6.K. Prove that the following conditions are equivalent for a Tychonoff space X, where G(X)

stands for both F (A) and A(X):

(a) the group G(X) is Čech-complete;

(b) the group G(X) is feathered;

(c) X is discrete.

7.6.L. Show that the groups F (X) and A(X) are weakly feathered (see Exercise 4.3.f) if and only

if the space X is submetrizable.

7.6.M. (M. G. Tkachenko [480]) Show that every topological group of weight τ can be represented

as a quotient group of a zero-dimensional topological group of the same weight τ. (See also

Problem 7.6.A)

Open Problems

7.6.1. Let G be an arbitrary second-countable topological group. Does G admit a finer second-

countable zero-dimensional topological group topology? (Compare with Problem 7.6.A.)

7.6.2. Does there exist a metrizable space X such that the o-tightness of the free topological group

F (X) is uncountable?

7.6.3. Let X be a locally compact paracompact space. Is the free topological group F (X)

paracompact?

7.6.4. Let X be a paracompact p-space. Is the free topological group F (X) paracompact?

7.6.5. Suppose that Z = X × Y , where X is metrizable and Y is compact Hausdorff. Is F (X)

paracompact?

7.6.6. Characterize the metrizable spaces X such that the free topological group F (X) is strongly

paracompact.

7.6.7. Give an example of a Tychonoff space X such that F (X) is paracompact, while A(X) is not.

7.6.8. Give an example of a Tychonoff space X such that A(X) is paracompact, while F (X) is not.

7.6.9. Is the free topological group of a σ-closed-metrizable space σ-closed-metrizable?

7.6.10. Is the free topological group F (X) of a first-countable Tychonoff space X Moscow?

7.6.11. Is the free topological group F (X) of a stratifiable space X stratifiable?

Comment. The reader can consult the definition of a stratifiable space in [450], where

O. V. Sipacheva showed that the free Abelian topological group A(X) of any stratifiable

space X is stratifiable.

7.6.12. Suppose that X is a σ-closed-discrete space without isolated points such that the tightness

of F (X) is countable. Is X separable?

7.6.13. Suppose that X is a normal σ-closed-discrete space without isolated points such that the

tightness of F (X) is countable. Is X cosmic?

7.6.14. Suppose that X is a Tychonoff space with a σ-discrete network. Does it follow that F (X)

has a σ-discrete network as well?

7.6.15. Characterize the Tychonoff spaces X such that every closed subset of F (X) is a Gδ-set in

F (X).

7.6.16. Suppose that X is a σ-discrete space, that is, the union of a countable family of discrete (not

necessarily closed) subspaces. Is F (X) σ-discrete as well?

7.6.17. When does the free topological group F (X) (resp., A(X)) of a submetrizable space X have

the direct limit property?

7.6.18. Suppose that X is a paracompact p-space such that the free Abelian topological group A(X)

is a k-space. Is X locally compact?
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7.6.19. When is the tightness of the free topological group F (X) (or A(X)) over a paracompact

p-space X countable?

7.6.20. When does the free topological group F (X) (or A(X)) over a paracompact p-space X have

the direct limit property?

7.7. Nummela–Pestov theorem

Suppose that X is a subspace of a Tychonoff space Y . Then the embedding mapping

eX,Y : X → Y can be extended to a continuous monomorphism êX,Y : G(X)→ G(Y ), where

G(X) is either A(X) or F (X). It is very important to know when êX,Y is a topological

monomorphism, i.e., when ı̂X,Y is an embedding of G(X) into G(Y ). We give a complete

answer to this problem in the special case when X is dense in Y . This requires the use of

uniform structures on topological spaces (see [165, Ch. 8]).

Recall that the standard base of the left uniformity �G on a topological group G consists

of the sets

Wl
U = {(x, y) ∈ G×G : x−1y ∈ U},

where U is an arbitrary open neighbourhood of the identity in G. If X is a subspace of G,

then the base of the left induced uniformity �X = �G�X on X consists of the sets

Wl
U ∩X2 = {(x, y) ∈ X×X : x−1y ∈ U}.

We also recall that the universal uniformity of a space X is the finest uniformity on X
that induces on X its original topology [165, 8.1.C].

Lemma 7.7.1. The restriction �X = �G(X)�X of the left uniformity �G(X) of the group
G(X) to the subspace X ⊂ G(X) coincides with the universal uniformity �X of X.

Proof. Let G = G(X). Since the topology on X generated by the left uniformity �G of

G coincides with the original topology of the space X, we have the inclusion �X ⊂ �X. To

prove the inverse inclusion, consider an arbitrary element U ∈ �X. By [165, Coro. 8.1.11],

there exists a continuous pseudometric d on X such that

{(x, y) ∈ X×X : d(x, y) < 1} ⊂ U.

Let d̂ be the Graev extension of d to a continuous invariant pseudometric on G (see

Theorem 7.2.2). Then by Theorem 7.2.7,

V = {g ∈ G : d̂(e, g) < 1}
is an open neighbourhood of the identity e in G. If x, y ∈ X and x−1y ∈ V , then

d(x, y) = d̂(x, y) = d̂(e, x−1y) < 1,

from where it follows that the element

Wl
V = {(g, h) ∈ G×G : g−1h ∈ V}

of �G satisfies Wl
V ∩ (X × X) ⊂ U. This proves that �X ⊂ �X and, hence, the two

uniformities on X coincide. �
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To characterize the pairs (X, Y ), where X is a dense subspace of Y , such that the natural

mapping êX,Y : G(X)→ G(Y ) is a topological monomorphism, we need two new concepts.

A subspace X of a space Y is called P∗-embedded in Y if every bounded continuous

pseudometric on X admits a continuous extension over Y . If all continuous pseudometrics

on X admit continuous extensions over Y , then X is said to be P-embedded in Y .

The following statement easily follows from [165, 8.5.6 (a)]. We present its proof for

the sake of completeness. As in Chapter 6, μX denotes the Dieudonné completion of a

Tychonoff space X, while �X stands for the universal uniformity of X.

Lemma 7.7.2. The following conditions are equivalent for a dense subset X of a space
Y :

a) X is P∗-embedded in Y ;
b) X is P-embedded in Y ;
c) �Y�X = �X;
d) X ⊂ Y ⊂ μX.

In particular, if X is a dense P-embedded subspace of a Dieudonné complete space Z, then
μX = Z.

Proof. The implication b) ⇒ a) is trivial. It suffices to show, therefore, that

a)⇒ c)⇒ d)⇒ b).

a) ⇒ c). Suppose that X is P∗-embedded in Y . For every U ∈ �X, there exists a

bounded continuous pseudometric dX on X such that

WX = {(x, x′) ∈ X×X : dX(x, x′) < 1} ⊂ U.

Denote by dY an extension of dX to a continuous pseudometric over Y and consider the set

WY = {(y, y′) ∈ Y × Y : dY (y, y′) < 1}.
Clearly, WY ∈ �Y and WY ∩ (X × X) = WX ⊂ U. Hence, the uniformity �Y�X is finer

than �X. The inverse inclusion �Y�X ⊂ �X is trivial. This proves that �Y�X = �X.

c)⇒ d). Suppose that �Y�X = �X. Denote by (Ŷ , �̂Y ) the completion of the uniform

space (Y, �Y ). Since �̂Y�Y = �Y , we have �̂Y�X = �X. In addition, X is dense in

both Y and Ŷ . Therefore, (Ŷ , �̂Y ) is the completion of the uniform space (X, �X). Hence,

X ⊂ Y ⊂ Ŷ = μX.

d) ⇒ b). Suppose that Y ⊂ μX. Consider arbitrary continuous pseudometric d on

X, and denote by (X̄, d̄) the metric space obtained from (X, d) by identifying the points

of X lying at zero distance one from another with respect to d. Let π : X → X̄ be the

corresponding quotient mapping; then d(x, y) = d̄(π(x), π(y)), for all x, y ∈ X. Let �X̄

be the universal uniformity on X̄. Since metrizable spaces are Dieudonné complete, the

uniform space (X̄, �X̄) has to be complete. Clearly, the mapping π : (X, �X) → (X̄, �X̄)

is uniformly continuous, so π admits a uniformly continuous extension π̄ : (μX, �μX) →
(X̄, �X̄) to the completion of (X, �X). By the assumption, Y ⊂ μX; hence, we can define

a continuous pseudometric 
 on Y by 
(x, y) = d̄(π̄(x), π̄(y)), for all x, y ∈ Y . It is easy to

verify that the restriction of 
 to X coincides with d. Thus, X is P-embedded in Y .

Finally, suppose that X is a dense P-embedded subspace of a Dieudonné complete space

Z. Then Z ⊂ μX by the first part of the lemma. However, a space Y with X ⊂ Y ⊂ μX is

Dieudonné complete iff Y = μX. The proof is complete. �
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Theorem 7.7.3. [E. C. Nummela, V. G. Pestov] Let X be a dense subspace of a space
Y . Then the natural mapping êX,Y : F (X) → F (Y ) is a topological monomorphism iff X is
P-embedded in Y .

Proof. Suppose that the monomorphism êX,Y : F (X) → F (Y ) extending the identity

mapping eX,Y : X → Y is a topological embedding. Then we can identify the group F (X)

with the subgroup F (X, Y ) of F (Y ) generated by the set X. Denote by �Y and �X the

left uniformities of the groups F (Y ) and F (X), respectively. Since F (X) is a subgroup of

F (Y ), we have �Y�F (X) = �X. In addition, Lemma 7.7.1 implies that �X�X = �X and

�Y�Y = �Y . Therefore,

�Y�X = �Y�X = �X�X = �X.

We conclude, by Lemma 7.7.2, that X is P-embedded in Y .

Conversely, suppose that X is P-embedded in Y . Then X ⊂ Y ⊂ μX, by Lemma 7.7.2.

Let H be the completion of the group F (X), and Z be the closure of X in H . We claim that

X is P-embedded in Z.

Indeed, every continuous pseudometric d on X can be extended to a continuous invariant

pseudometric d̂ over F (X), by Theorem 7.2.2. Note that d̂ is uniformly continuous with

respect to the two-sided uniformity �X of the group F (X). This fact follows immediately

from the equivalence

d̂(g, h) < ε ⇐⇒ g−1h ∈ Vd(ε)⇐⇒ gh−1 ∈ Vd(ε),

where Vd(ε) = {f ∈ F (X) : d̂(f, e) < ε} is an open neighbourhood of the identity e in

F (X) (see Theorem 7.2.2). Since F (X) is a dense subgroup of H , and the restriction of

the two-sided uniformity �H of H to F (X) coincides with �X, the pseudometric d̂ admits

an extension to a continuous pseudometric 
 on H [165, Th. 8.3.10]. Therefore, 
�Z is a

continuous extension of d over Z. This proves that X is P-embedded in Z.

Let us verify that Z = μX. Denote by �Z the uniformity on Z induced by �H . Since Z
is closed in H , the uniform space (Z, �Z) is complete. In particular, the space Z is Dieudonné

complete. Finally, X is a dense P-embedded subspace of the Dieudonné complete space

Z, so that Z = μX by Lemma 7.7.2. Applying Lemma 7.7.2 once again, we conclude that

Y ⊂ Z ⊂ H . Let f : F (Y ) → H be the continuous homomorphism which extends the

natural embedding of Y in H . Denote by h the restriction of f to the subgroup G of F (Y )

generated by the set X, h : G → F (X) ⊂ H . Then both h and its inverse êX,Y : F (X) → G
are continuous mappings. Therefore, êX,Y is a topological embedding. �

In the Abelian case, we can considerably generalize Theorem 7.7.3 by omitting the

assumption that X is dense in Y . In fact, the next result completely characterizes the pairs

(X, Y ) with X ⊂ Y such that the mapping êX,Y : A(X)→ A(Y ) is a topological embedding.

Theorem 7.7.4. [M. G. Tkachenko] Let X be an arbitrary subspace of a space Y .
Then the natural mapping êX,Y : A(X) → A(Y ) is a topological monomorphism iff X is
P∗-embedded in Y .

Proof. Denote by eX,Y the embedding of X in Y . It is clear that the monomorphism êX,Y

is continuous. Let us verify the continuity of its inverse. Suppose that U is a neighbourhood

of the neutral element eX in A(X). By Theorem 7.2.7, there exists a continuous pseudometric
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d on X such that

Vd = {g ∈ A(X) : d̂A(g, eX) < 1} ⊂ U,

where d̂A is the Graev extension of d over A(X). We can assume without loss of generality

that d ≤ 1 — otherwise replace d with d′ = min{d, 1}. Since X is P∗-embedded in Y , d
can be extended to a continuous pseudometric 
 on Y . Let 
̂A be the Graev extension of 

over A(Y ). Applying Theorem 7.2.7 once again, we conclude that

V
 = {h ∈ A(Y ) : 
̂A(h, eY ) < 1}
is an open neighbourhood of the neutral element eY in A(Y ). Let us identify the abstract

group Aa(X) with the subgroup êX,Y (Aa(X)) = Aa(X, Y ) of Aa(Y ) generated by the subset

X of Aa(Y ). Since 
�X = d, from Corollary 7.2.4 it follows that 
̂A(h, eY ) = d̂A(h, eY ), for

each h ∈ Aa(X, Y ). Therefore, Aa(X, Y ) ∩ V
 = Vd or, equivalently,

A(X, Y ) ∩ V
 = êX,Y (Vd).

This implies immediately that the isomorphism ê−1
X,Y : A(X, Y )→ A(X) is continuous. �

For a space X, let G(X) be either F (X) or A(X). Theorems 7.7.3 and 7.7.4 enable us

to characterize the spaces X with the property that G(X) is topologically isomorphic to the

subgroup G(X, βX) of G(βX) generated by X.

Corollary 7.7.5. The natural mapping ê : G(X)→ G(βX) is a topological monomor-
phism iff X is pseudocompact.

Proof. If X pseudocompact, then μX = βX [255], so Theorem 7.7.3 and Lemma 7.7.2

together imply that ê is a topological embedding of G(X) into G(βX).

Conversely, if ê : G(X) → G(βX) is a topological embedding, then X is P-embedded

in βX by Theorems 7.7.3 and 7.7.4 (note that P- and P∗-embedding properties coincide for

dense subsets by Lemma 7.7.2). However, every P-embedded subset is C-embedded, so X
is C-embedded in the compact space βX. Therefore, X is pseudocompact. �

The natural embedding of G(X) into G(βX) for a pseudocompact space X has a very

special property described in Theorem 7.7.7 below. It is based on the following simple

lemma.

Lemma 7.7.6. Suppose that a subspace Y of a topological group H algebraically
generates H , and that X is a Gδ-dense subset of Y . Then the subgroup 〈X〉 of H generated
by X is Gδ-dense in H .

Proof. Let h ∈ H be an arbitrary element of H , and P be a Gδ-set in H containing

h. There exist a positive integer n, elements y1, . . . , yn ∈ Y and ε1, . . . , εn = ±1 such that

h = yε1

1 · . . .·yεn
n . Consider the mapping f : Yn → H defined by f (x1, . . . , xn) = xε1

1 · . . .·xεn
n

for every (x1, . . . , xn) ∈ Xn. Since f is continuous and Xn is Gδ-dense in Yn, one can find a

point (x1, . . . , xn) ∈ Xn such that f (x1, . . . , xn) ∈ P . Clearly, f (x1, . . . , xn) = xε1

1 · . . .·xεn
n ∈

〈X〉 ∩ P , so we conclude that 〈X〉 is Gδ-dense in H . �

Theorem 7.7.7. Let X be a pseudocompact space. Then the Dieudonné completion of
G(X) is naturally homeomorphic to G(βX). In particular, G(X) is P-embedded in G(βX).
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Proof. By Corollary 7.4.12, the group G(βX) is Raı̆kov complete. In particular,

G(βX) is Dieudonné complete. Corollary 7.7.5 enables us to identify G(X) with the

subgroup G(X, βX) of G(βX) generated by X. Therefore, by d) of Lemma 7.7.2, it remains

to verify that G(X) is P-embedded in G(βX). First, note that the pseudocompact space

X is Gδ-dense in βX. Hence, Lemma 7.7.6 implies that G(X) is Gδ-dense in G(βX). In

its turn, this implies that G(X)2 is Gδ-dense in G(βX)2. The groups G(βX) and G(βX)2

are σ-compact and hence, are perfectly κ-normal, by Corollary 5.3.29. Since perfectly

κ-normal spaces are Moscow, from Theorem 6.1.7 it follows that G(X)2 is C-embedded in

G(βX)2.

Finally, a continuous pseudometric d on G(X) can be considered as a continuous real-

valued function on G(X)2. By the above argument, d can be extended to a continuous

mapping d̃ : G(βX)2 → R. Since G(X) is dense in G(βX) and the restriction of d̃ to G(X)2

coincides with d, we conclude that d̃ is a continuous pseudometric on G(βX). This proves

that G(X) is P-embedded in G(βX). �

We are now going to characterize the spaces X such that the groups A(X) and F (X) are

ω-narrow or, more generally, τ-narrow for some infinite cardinal τ. Our characterization is

based on Lemma 7.7.1 and Theorem 5.1.19.

Recall that a space X satisfies dc(X) ≤ τ if every discrete family of open sets in X has

cardinality strictly less than τ or, equivalently, if X is pseudo-τ-compact (see Section 5.1).

Theorem 7.7.8. The following conditions are equivalent for every space X:

a) the group F (X) is τ-narrow;
b) the group A(X) is τ-narrow;
c) X is τ-narrow in F (X);
d) X is τ-narrow in A(X);
e) dc(X) ≤ τ+.

Proof. According to Theorem 7.1.11, A(X) is a quotient group of F (X), so a) implies

b). By Theorem 5.1.19, c) implies a) and d) implies b). It also follows from Lemma 5.1.15

that e) implies both c) and d). Therefore, it suffices to prove that e) follows from b).

Assume that X contains a discrete family γ of non-empty open sets such that |γ| > τ.

Let γ = {Uα : α < τ+}. For every α < τ+, choose a continuous real-valued function fα

on X with values in [0, 1] such that fα(xα) = 1, for some xα ∈ Uα, and fα(X \Uα) ⊂ {0}.
The function f =

∑τ+

α=0 fα is continuous, since the family γ is discrete in X. Hence, the

pseudometric d on X defined by d(x, y) = |f (x) − f (y)| for x, y ∈ X, is also continuous.

Put

Vd = {g ∈ A(X) : d̂A(e, g) < 1},
where e is the neutral element of A(X) and d̂A is the Graev extension of d over A(X). Then

Vd is an open symmetric neighbourhood of e in A(X), by Theorem 7.2.7. We claim that

X \ FVd = ∅, for every F ⊂ X such that |F | ≤ τ. Indeed, since γ is discrete in X, there

exists α < τ+ such that Uα ∩ F = ∅. Hence, d(xα, x) ≥ 1, for each x ∈ F . This implies

that xα /∈ xVd , for each x ∈ F , which proves the claim.

The above claim implies, by Corollary 5.1.17, that X fails to be τ-narrow in A(X), so

that A(X) is not τ-narrow. Thus, b) implies e), as required. �
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Exercises

7.7.a. Let Y be a retract of a Tychonoff space X. Show that the subgroup G(Y, X) of G(X) is

topologically isomorphic to G(Y ).

7.7.b. Let K be a compact subspace of a Tychonoff space X. Show that the subgroup G(K, X) of

G(X) is topologically isomorphic to G(K).

7.7.c. Suppose that X is a σ-bounded space (see Section 6.10). Verify that the Dieudonné

completion μX of X is σ-compact and G(X) ∼= G(X, μX).

7.7.d. Generalize Theorem 7.7.7 and show that the Dieudonné completion of the group G(X) over

a σ-bounded space X is naturally homeomorphic to G(μX).

7.7.e. (M. G. Tkachenko [483]) For a pseudocompact space X, we identify G(X) with the subgroup

G(X, βX) of G(βX). Apply Lemma 7.7.6 and Theorem 7.7.7 to show that if K is a zero-set

in G(X), then the following assertions are valid:

(a) K∗ = clG(βX)(K) is a zero-set in G(βX);

(b) K∗ ∩ Bn(βX) = clBn(βX)(K ∩ Bn(X)), for each n ∈ ω.

7.7.f. (E. C. Nummela [353]) Let (Y, ) be a uniform space, X a dense subspace of Y , and

� = �X. Modify the proof of Theorem 7.7.3 to show that the group G(X, �) is

topologically isomorphic to the dense subgroup of G(Y, ) generated by X, where G(X, �)

denotes either F (X, �) or A(X, �) (see Exercise 7.2.d).

7.7.g. Let X be a closed subset of a uniform space (U, ), and � = �X. Generalize Theorem 7.7.4

as follows: The natural continuous isomorphism of A(X, �) onto the subgroup of A(Y, )

generated by X is a homeomorphism iff every bounded uniformly continuous pseudometric

on (X, �) admits an extension to a uniformly continuous pseudometric on (Y, ).

Problems

7.7.A. (V. V. Uspenskij [520]) Let Y be a closed subspace of a metrizable space X. Then the

subgroup F (Y, X) of F (X) is topologically isomorphic to F (Y ).

7.7.B. (O. V. Sipacheva [452]) Let Y be a subspace of a Tychonoff space X. Prove that the subgroup

G(Y, X) of G(X) is topologically isomorphic to G(Y ) iff Y is P∗-embedded in X.

7.7.C. Let Y be a closed subspace of a σ-closed-metrizable space X. Is the subgroup G(Y, X) of

G(X) topologically isomorphic to G(Y )?

7.7.D. (M. G. Tkachenko [483]) Let X be a pseudocompact space and n ≥ 1 be an integer. Prove

that β(Bn(X)) ∼= Bn(βX) iff Xn is pseudocompact.

Hint. By Corollary 7.7.5, one can identify G(X) with the subgroup G(X, βX) of G(βX), so

that Bn(X) is a dense subspace of Bn(βX). Suppose that Xn is pseudocompact. Consider

a continuous function f : Bn(X) → [0, 1] and put g = f ◦ jn, where jn : Kn → Bn(βX)

is the multiplication mapping and K = βX ⊕ {e} ⊕ (βX)−1. Apply Glicksberg’s theorem

(see [165, 3.12.20 (d)]) to extend g to a continuous function g̃ on Kn. Then verify that g̃ is

constant on the fiber j←n (h), for each h ∈ Bn(βX). For this purpose, apply the fact that if

a, b ∈ Kn, jn(a) = jn(b) and U, V are neighbourhoods in Kn of a and b, respectively, then

there exist a′ ∈ U ∩ X̄n and b′ ∈ V ∩ X̄n such that jn(a′) = jn(b′). Conclude that there

exists a continuous function f̃ : Bn(βX) → [0, 1] such that g̃ = f̃ ◦ jn. Then f̃ �Bn(X) = f .

Conversely, suppose that β(Bn(X)) ∼= Bn(βX). Note that jn(Xn) is a clopen subset of

Bn(X) and apply Glicksberg’s theorem to deduce that Xn is pseudocompact.

7.7.E. (M. G. Tkachenko [483]) Suppose that Xn is pseudocompact for some integer n ≥ 1, and

identify G(X) with the subgroup G(X, βX) of G(βX). Prove that if F is a zero-set in Bn(X),

then:

(a) F∗ = clBn(βX)(F ) is a zero-set in Bn(βX);

(b) F∗ ∩ Bm(βX) = clBm(βX)(F ∩ Bm(X)), for each m < n.
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Hint. Note that Bn(X) is Gδ-dense in Bn(βX) and apply Problem 7.7.D.

7.7.F. (M. G. Tkachenko [483]) Suppose that all finite powers of a Tychonoff space X are

pseudocompact. Prove that a subset F of G(X) is a zero-set in G(X) iff F ∩ Bn(X) is a

zero-set in Bn(X), for each n ∈ ω.

Hint. Identify G(X) with the dense subgroup G(X, βX) of G(βX). Let Fn = F ∩ Bn(X) be

a zero-set in Bn(X) for each n ∈ N. Denote by F∗
n the closure of Fn in Bn(βX), n ∈ N. By

induction on n ∈ ω, define a sequence {gn : n ∈ ω} satisfying the following conditions for

all n ∈ ω:

(i) gn : Bn(βX) → R is continuous;

(ii) gn+1�Bn(βX) = gn;

(iii) g−1
n (0) ∩ Bn(βX) = F∗

n .

To construct the sequence {gn : n ∈ ω} satisfying (i)–(iii), use 7.7.E along with the following

lemma: If Z is a closed subset of a normal space Y , f is a continuous real-valued function on

Z and F is a zero-set in Y such that Z∩F = f−1(0), then f can be extended to a continuous

function f̃ on Y such that F = f̃−1(0).

Let g be a function on F (βX) such that g�Bn(βX) = gn for each n ∈ ω. Then g is

continuous by Corollary 7.4.2 and g−1(0) ∩ G(X) = F .

7.8. The direct limit property and countable compactness

Theorem 7.4.1 states that both groups F (X) and A(X) have the direct limit property for

every kω-space X. In particular, this is true for any compact Hausdorff space X. However,

the class � of spaces X such that F (X) and A(X) have the direct limit property is considerably

wider. For example, every Tychonoff P-space is in �, by Proposition 7.4.8. In this section

we define a proper subclass of � and study the properties of this new class of spaces.

Let us call X an NC-space if Xn is normal and countably compact, for each integer

n ≥ 1.

All finite powers of an NC-space are NC-spaces, and so are closed subsets of NC-

spaces. Clearly, every compact space is an NC-space. However, the class of NC-spaces

contains many non-compact spaces. For example, every ordinal space W (α) modeled on an

ordinal α of uncountable cofinality and endowed with the order topology is an NC-space,

and a closed subspace of a Σ-product of compact metrizable spaces is an NC-space (see

Lemma 7.8.14 and Theorem 7.8.13, respectively).

First, we show that NC-spaces satisfy Wallace’s theorem.

Lemma 7.8.1. Suppose that the space Xn is normal and countably compact, for some
n ≥ 1. Let F = F1×· · ·×Fn be the product of closed subsets of X and O be a neighbourhood
of F in Xn. Then there exist open sets V1, . . . , Vn in X such that F ⊂ V1 × · · · × Vn ⊂ O.

Proof. Since Xn is countably compact, the spaces β(Xn) and (βX)n are naturally

homeomorphic by Glicksberg’s theorem (see [165, 3.12.20 (d)]). Put K = Xn \O. Then F
and K are closed disjoint subsets of the normal space Xn and, hence, their closures F and K,

respectively, in (βX)n are disjoint as well. Hence Õ = βXn \K is an open neighbourhood

of F in (βX)n which satisfies Õ ∩ Xn = O. It is clear that F = F1 × · · · × Fn, where Fi

is the closure of Fi in (βX)n, i = 1, . . . , n. Since the factors F1, . . . , Fn are compact and

F ⊂ Õ, we can apply Wallace’s theorem (see [165, 3.2.10]) to find open sets U1 . . . , Un in

βX such that F ⊂ U1 × · · · × Un ⊂ Õ. Then the sets V1 = U1 ∩X, . . . , Vn = Un ∩ X are

open in X and satisfy F ⊂ V1 × · · · × V1 ⊂ O. �
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Our next step is to show that, for every integer n ≥ 1, the natural multiplication mapping

in : X
n → G(X) is closed, where G(X) is either F (X) or A(X), and X = X⊕ {e} ⊕ X−1.

Our proof of this fact makes use of the following useful concept.

Let X be a subspace of a space Y , and let f : X → Z and g : Y → Z be continuous

mappings, where f = g�X. If f−1(z) is dense in g−1(z) for each z ∈ f (X), then the

mappings f and g are called concordant.
The following two results relate concordant and closed mappings.

Lemma 7.8.2. Let f : X → Z be a continuous closed onto mapping of Tychonoff spaces
and g : βX → βZ be the continuous extension of f over the Čech–Stone compactification
βX of X. Then the mappings f and g are concordant.

Proof. Let z ∈ Z be arbitrary. Suppose to the contrary that there exist a point

x ∈ g−1(z) and an open neighbourhood U of x in βX such that U ∩ f−1(z) = ∅. Choose

an open neighbourhood V of x in βX such that V ⊂ U. Clearly, x ∈ V ∩X = V ⊂ U.

Then

z = g(x) ∈ g(V ) = g(V ∩X) = f (V ∩X) = f (V ∩X) ⊂ f (U ∩X),

i.e., z ∈ f (U ∩X). This contradicts the choice of the set U. �

Lemma 7.8.3. Let f : X → Z be a continuous onto mapping of Tychonoff spaces, and
g : βX → βZ be a continuous extension of f over the Čech–Stone compactification of X.
If X is normal and the mappings f and g are concordant, then f is closed.

Proof. Suppose to the contrary that there exists a closed subset F of X and a point

z ∈ Z such that z ∈ f (F ) \ f (F ). Let K be the closure of F in βX. Since the mapping g

is closed, we have K ∩ g−1(z) = ∅. From g−1(z) = f−1(z) it follows that the closures in

βX of closed disjoint subsets F and f−1(z) of X intersect. This contradicts the normality

of X. �

It is well known that closed continuous mappings preserve normality. Let us show that

these mappings also preserve the property of being an NC-space.

Proposition 7.8.4. An image of an NC-space under a closed continuous mapping is
an NC-space.

Proof. Let f : X → Y be a closed continuous mapping of an NC-space X onto Y .

For every n ≥ 1, let f n : Xn → Yn be the n-th power of f . We claim that the mapping

f n is closed. Indeed, denote by g the continuous extension of f over βX, g : βX → βY .

Since f is closed, from Lemma 7.8.2 it follows that f and g are concordant. It is easy to

see that the mappings f n and gn are also concordant for each n ∈ N. The spaces Xn and

Yn = f n(Xn) are countably compact, so the Glicksberg theorem [165, 3.12.20 (d)] implies

that β(Xn) ∼= (βX)n and β(Yn) ∼= (βY )n for each n ∈ N. Hence, we can apply Lemma 7.8.3

to the mappings f n : Xn → Yn and gn : (βX)n → (βY )n; it follows that the mapping f n is

closed. Finally, closed onto mappings preserve normality (and countable compactness), so

Yn is a normal countably compact space, for each n ∈ N. Thus, Y is an NC-space. �

Suppose that X is a pseudocompact space. By Corollary 7.7.5, the natural monomor-

phism σ̂ : G(X) → G(βX) extending the embedding σ : X → βX is a topological iso-

morphism of G(X) onto the subgroup G(X, βX) of G(βX) generated by X. Therefore, for
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every n ∈ N, we can identify the subspace Bn(X) of G(X) with the subspace σ̂(Bn(X)) of

Bn(βX) ⊂ G(βX). Let in : X̄n → Bn(X) and jn : Kn → Bn(βX) be the natural multiplica-

tion mappings, where X̄ = X ⊕ {e} ⊕ X−1, K = βX̄ = βX ⊕ {e} ∪ (βX)−1 and e is the

neutral element of G(βX). Taking into account these identifications, we have the following.

Lemma 7.8.5. If X is a pseudocompact space, then the mappings in and jn are
concordant, for each positive integer n.

Proof. Suppose that g = jn(x̄) ∈ Bn(X), where n ∈ N and x̄ = (x1, . . . , xn) ∈ Kn. If

the length l(g) of g with respect to X is equal to n, then j←n (g) = i←n (g). Here i←n (g) and

j←n (g) denote the preimages of the element g under the mappings in and jn, respectively,

in order to avoid ambiguity when using the inverse −1 in the group G(X) or in G(βX).

Suppose therefore, that l(g) < n. Then the word g is obtained after several cancellations in

the word w = x1 . . . xn, and the letters in the reduced form of w belong to X. Let O be an

arbitrary neighbourhood of x̄ in Kn. We can find open sets U1, . . . , Un in K satisfying the

following conditions for all k, l ≤ n:

(a) xk ∈ Uk and U1 × · · · × Un ⊂ O;

(b) if xk = e, then Uk = {e};
(c) if xl = x−1

k , then Ul = U−1
k .

Since X is dense in βX, we can choose, applying (c), a point yk ∈ X̄ ∩Uk for k = 1, . . . , n
in such a way that yl = y−1

k whenever xl = x−1
k . Then from (b) it follows that yk = e iff

xk = e for each k ≤ n. Therefore, ȳ = (y1, . . . , yn) ∈ (U1 × · · · × Un) ∩ X̄n ⊂ O and

in(ȳ) = jn(x̄) = g. This proves that i←n (g) is dense in j←n (g). �

Theorem 7.8.6. If X is an NC-space, then the natural multiplication mapping
in : X̄n → G(X) is closed and Bn(X) = in(X̄n) is an NC-space, for each integer n ≥ 1.

Proof. Every NC-space is pseudocompact, so we can identify G(X) with the subgroup

G(X, βX) of G(βX) by Corollary 7.7.5. Using Lemma 7.8.5 (and notation in its proof),

we conclude that the mappings in : X̄n → Bn(X) ⊂ Bn(βX) and jn : Kn → Bn(βX) are

concordant for each n ∈ N. In addition, since X̄n is pseudocompact, Glicksberg’s theorem

implies that β(X̄n) ∼= Kn and, hence, we can apply Lemma 7.8.3 to conclude that the

mapping in : X̄n → Bn(X) is closed. Therefore, Bn(X) is an NC-space by Proposition 7.8.4.

It remains to note that Bn(X) is a closed subset of G(X) by a) of Theorem 7.1.13, so

in : X̄n → G(X) is a closed mapping. �

Lemma 7.8.7. Let X be an NC-space. Suppose that F1 and F2 are closed subsets of
Bn(X), for some n ∈ N, and that F1 · F2 ⊂ O, where O is open in B2n(X). Then there exist
open sets V1 and V2 in Bn(X) such that F1 ⊂ V1, F2 ⊂ V2, and V1 · V2 ⊂ O.

Proof. Let ϕ : G(X)×G(X)→ G(X) be the multiplication mapping, ϕ(g, h) = g·h for

all g, h ∈ G(X). For n ∈ N, denote by ϕn the restriction of ϕ to Bn(X)×Bn(X), so that ϕn is

a continuous mapping of Bn(X)×Bn(X) to B2n(X). Clearly, the set W = ϕ−1
n (O) is open in

Bn(X)×Bn(X) and F1×F2 ⊂ W . Then Bn(X) is an NC-space, by Theorem 7.8.6, so we can

apply Lemma 7.8.1 to find open sets V1 and V2 in Bn(X) such that F1×F2 ⊂ V1×V2 ⊂ W .

Hence V1 · V2 = ϕn(V1 × V2) ⊂ ϕn(W ) = O. This finishes the proof. �

The following result extends Corollary 7.4.2 to free topological groups on NC-spaces.
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Theorem 7.8.8. [M. G. Tkachenko] If X is an NC-space, then the groups F (X) and
A(X) have the direct limit property.

Proof. Let G(X) be either F (X) or A(X) and e be the identity of G(X). For every

n ∈ N, Kn = Bn(X) is a closed symmetric subset of G(X), Kn · Kn ⊂ K2n, and

G(X) =
⋃∞

n=0 Kn. As in the proof of Theorem 7.4.1, denote by �∗ the new topology

on the abstract group Ga(X) which consists of all sets O ⊂ Ga(X) such that O∩Kn is open

in the subspace Kn of G(X) for each n ∈ N. Clearly, �∗ is finer than the original topology

� of the topological group G(X), but the restrictions of �∗ and � to Kn coincide for each

n ∈ N. In particular, �∗�X = ��X. Therefore, it remains to show that �∗ = �. Since

� is the finest group topology on Ga(X) which induces the original topology on X, all we

need is to verify that �∗ is a group topology on Ga(X).

Clearly, if U ∈ �∗, then U−1 ∈ �∗. So, it suffices to show that if g, h ∈ Ga(X) and

g · h ∈ U ∈ �∗, then there exist V, W ∈ �∗ such that g ∈ V , h ∈ W and V · W ⊂ U.

Choose m ∈ N such that g, h ∈ Km. As in the proof of Theorem 7.4.1, we shall construct

two sequences {Vn : n ≥ m} and {Wn : n ≥ m} satisfying the following conditions for

each n ≥ m:

(1) g ∈ Vm and h ∈ Wm;

(2) Vn and Wn are open in Kn;

(3) An = clKnVn ⊂ Vn+1 and Bn = clKnWn ⊂ Wn+1;

(4) An · Bn ⊂ U ∩K2n.

By the continuity of the multiplication in G(X), there exist open sets V ′
m and W ′

m in Km

such that g ∈ V ′
m, h ∈ W ′

m and V ′
m ·W ′

m ⊂ U ∩K2m. Since Km is regular, one can find open

sets Vm and Wm in Km such that g ∈ Vm ⊂ clKmVm ⊂ V ′
m and h ∈ Wm ⊂ clKmWm ⊂ W ′

m.

Suppose that for some n ≥ m, we have defined the sets Vm, . . . , Vn and Wm, . . . , Wn

satisfying (1)–(4). By (4), the sets An = clKnVn ⊂ Kn+1 and Bn = clKnWn ⊂ Kn+1 satisfy

An · Bn ⊂ U ∩K2n ⊂ U ∩K2n+2. Therefore, by Lemma 7.8.7, there exist open sets V ′
n+1

and W ′
n+1 in Kn+1 such that An ⊂ V ′

n+1, Bn ⊂ W ′
n+1 and V ′

n+1 ·W ′
n+1 ⊂ U. Since the space

X̄n+1 is normal and the surjective mapping in+1 : X̄n+1 → Kn+1 is closed by Theorem 7.8.6,

we conclude that Kn+1 is also normal. So, we can find open sets Vn+1 and Wn+1 in Kn+1

such that An ⊂ Vn+1 ⊂ clKn+1
Vn+1 ⊂ V ′

n+1 and Bn ⊂ Wn+1 ⊂ clKn+1
Wn+1 ⊂ W ′

n+1.

Continuing this process, we obtain sequences

Vm ⊂ Vm+1 ⊂ · · · ⊂ Vn ⊂ · · · and Wm ⊂ Wm+1 ⊂ · · · ⊂ Wn ⊂ · · ·
that satisfy conditions (1)–(4). Put V =

⋃∞
k=m Vk and W =

⋃∞
k=m Wk. Then g ∈ V and

h ∈ W by (1). It follows from (2) and (3) that the set V ∩Kn =
⋃∞

k=n(Vk ∩Kn) is open in

Kn for each n ≥ m, so V ∈ �∗. Similarly, W ∈ �∗. In addition, (3) and (4) imply that

V ·W =

∞⋃
k=m

Vk ·Wk ⊂
∞⋃

k=m

Ak · Bk ⊂ U.

Thus, we have defined the sets V, W ∈ �∗ such that g ∈ V , h ∈ W , and V · W ⊂ U.

Therefore, the multiplication in (Ga(X), �∗) is continuous. This proves that �∗ is a group

topology and hence, �∗ = �. �

To present a wide subclass of NC-spaces, we need to generalize the construction of σ-

and Σ-products given in Section 1.6 and establish some auxiliary facts.
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Let ξ = {XI : i ∈ I} be a family of spaces, Π =
∏

i∈I Xi be the product of ξ, and

b ∈ Π an arbitrary point. For every x ∈ Π, we define the support of x (with respect to b) by

suppb(x) = {i ∈ I : xi = bi}.
Given an infinite cardinal τ, one can define the Σ<τ-product and Στ-product of the family

ξ with center at b as follows:

Σ<τΠξ = {x ∈ Π : |suppb(x)| < τ} and ΣτΠξ = {x ∈ Π : |suppb(x)| ≤ τ}.
It is clear that Σ<ω-products are the usual σ-products, while Σ<ω1

-products are the Σ-

products. Note also that any Σ<τ+-product and the corresponding Στ-product coincide, for

each cardinal τ. Many results of Section 1.6 can be extended to Σ<τ-products; here we

formulate without proof a complement to Corollary 1.6.34.

Corollary 7.8.9. If τ is an uncountable regular cardinal, then the Σ<τ-product P of
any family of compact spaces is < τ-bounded in the sense that the closure of every subset
B of P with |B| < τ is compact.

The following fact about Σ<τ-product of compact metrizable spaces is quite useful.

Theorem 7.8.10. Let ξ = {Xi : i ∈ I} be a family of compact metrizable spaces and
τ ≥ ω a regular cardinal. Then the Σ<τ-product of ξ is a normal space.

Proof. If τ = ω, then the Σ<τ-product of ξ is the usual σ-product which is σ-compact,

by Proposition 1.6.41. We can assume, therefore, that τ > ω.

Let Π =
∏

i∈I Xi be the product space and b ∈ Π the center of Σ<τ(b) = Σ<τΠξ.

It follows from the definition of Σ<τ(b) that x ∈ Σ<τ(b) iff the support suppb(x) of x has

cardinality less than τ. For every non-empty set J ⊂ I, let πJ be the projection of Π onto

the subproduct ΠJ =
∏

i∈J Xi. The restriction of πJ to Σ<τ(b) will be denoted by pJ .

It follows from Corollary 7.8.9 that Σ<τ(b) is a < τ-bounded space. Hence, for every set

J ⊂ I with |J | < τ, the projection pJ of Σ<τ(b) onto the space ΠJ of weight < τ is a closed

mapping.

Suppose that F1 and F2 are closed disjoint subsets of Σ<τ(b). We claim that there exists

a subset J of the index set I such that |J | < τ and the projections pJ (F1) and pJ (F2) of the

sets F1 and F2 are disjoint. Since the projection pJ is closed and the compact space ΠJ is

normal, this will imply the conclusion of the lemma. To this end, we are going to construct

a sequence {Jn : n ∈ ω} of subsets of I and a sequence {Si,n : n ∈ ω} of subsets of Fi, for

i = 1, 2, satisfying the following conditions for all n ∈ ω and i = 1, 2:

(i) |Jn| < τ;

(ii) Jn ⊂ Jn+1 ⊂ I;

(iii) Si,n ⊂ Fi and |Si,n| < τ;

(iv) suppb(x) ⊂ Jn+1 for each x ∈ Si,n;

(v) pJn (Si,n) is dense in pJn (Fi).

To start with, we take an arbitrary element i0 ∈ I and put J0 = {i0}. Since the space Xi0 has

a countable base, we can choose, for i = 1, 2, a countable set Si,0 ⊂ Fi such that pJ0
(Si,0)

is dense in pJ0
(Fi). Suppose that for some n ∈ ω, we have defined sequences {Jk : k ≤ n}

and {Si,k : k ≤ n}, where i = 1, 2, that satisfy (i)–(v). Put

Jn+1 = Jn ∪
⋃
{suppb(x) : x ∈ S1,n ∪ S2,n}.
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Since (i) and (iii) hold at the stage n, and τ > ω is a regular cardinal, the set Jn+1 ⊂ I
has cardinality less than τ. Hence, the space Πjn+1

has weight < τ, and we can choose, for

i = 1, 2, a set Si,n+1 ⊂ Fi such that |Si,n+1| < τ and pjn+1
(Si,n+1) is dense in pJn+1

(Fi). It is

easy to see that conditions (i)–(v) hold at the stage n + 1. This finishes our construction.

Put J =
⋃∞

n=0 Jn and Si =
⋃∞

n=0 Si,n for i = 1, 2. It follows from (i) that the set J ⊂ I
satisfies |J | < τ, while (ii) and (iv) imply that suppb(x) ⊂ J for each x ∈ S1 ∪ S2. It also

follows from (v) that pJ (Si) is dense in pJ (Fi) for i = 1, 2. Denote by Ci the closure of Si

in Σ<τ(b) for i = 1, 2. Then Ci ⊂ Fi and suppb(x) ⊂ J for each x ∈ C1 ∪ C2. Since the

projection pJ : Σ<τ(b)→ ΠJ is closed, we also have that pJ (Ci) = pJ (Fi) for i = 1, 2.

Suppose by the way of contradiction that there exists a point y ∈ pJ (F1)∩pJ (F2). For

i = 1, 2, choose a point xi ∈ Ci such that pJ (xi) = y. It follows from our choice of x1 and

x2 that pI\J (x1) = pI\J (b) = pI\J (x2), which in its turn implies that x1 = x2. Therefore,

F1 ∩ F2 = ∅, a contradiction. This proves that the space Σ<τ(b) is normal. �

Corollary 7.8.11. The Στ-product of a family of compact metrizable spaces is normal,
for each cardinal τ.

Proof. Let ξ = {Xi : i ∈ I} be a family of compact metrizable spaces. Put

Π =
∏

i∈I Xi, and choose a point b ∈ Π. If the cardinal τ is finite, then ΣτΠξ with

center at b is a closed subset of Π. Hence, ΣτΠξ is compact and normal. If τ ≥ ω, then τ+

is a regular uncountable cardinal, and the conclusion follows from Theorem 7.8.10. �

We will also need the next simple lemma whose proof is left to the reader.

Lemma 7.8.12. Suppose that τ is an infinite regular cardinal and X is a Σ<τ-product
of a family of compact metrizable spaces. Then, for every cardinal κ < τ, the space Xκ is
naturally homeomorphic to a closed subspace of another Σ<τ-product of compact metrizable
spaces.

Now we can show that the class of NC-spaces contains all closed subsets of Σ<τ-

products of compact metrizable spaces.

Theorem 7.8.13. Every closed subset of a Σ<τ-product of compact metrizable spaces
is an NC-space, where τ > ω is a regular cardinal. In particular, the same is valid for
closed subsets of Στ-products of compact metrizable spaces, for each cardinal τ ≥ ω.

Proof. Since a closed subset of an NC-space is again an NC-space, it suffices to

verify that any Σ<τ-product X of compact metrizable spaces is an NC-space. It follows

from Corollary 7.8.9 that the closure of every countable subset of X is compact, that is,

X is ω-bounded. Clearly, this property is productive and implies countable compactness.

Therefore, all finite powers of X are countably compact. Finally, Theorem 7.8.10 and

Lemma 7.8.12 together imply that Xn is normal, for each integer n ≥ 1. This means that X
is an NC-space. �

For an ordinal α, we denote by W (α) the set α endowed with the order topology. It is

clear that the space W (α) is compact iff the ordinal α is successor. In the next lemma we

characterize the ordinals α ≥ ω such that W (α) is an NC-space.

Lemma 7.8.14. Let α be an infinite ordinal. Then W (α) is an NC-space iff α is either
successor or a regular uncountable cardinal.
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Proof. If α is successor, then the space W (α) is compact and, consequently, an NC-

space. Suppose that α is a regular uncountable cardinal. To every ordinal β < α we assign

a point x(β) ∈ Dα, where D = {0, 1}, defined by x(β)γ = 1 if γ < β and x(β)γ = 0

otherwise. It is easy to see that the correspondence β �→ x(β) is a homeomorphism of

W (α) onto the subspace X = {x(β) : β < α} of Dα. Denote by 0̄ the point of Dα with

zero coordinates. Clearly, X is a closed subset of Σ<α(0̄), the Σ<α-product of α copies of

the discrete space D with the basic point 0̄, considered as a subspace of Dα. Therefore,

Theorem 7.8.10 implies that both X and W (α) are NC-spaces.

Finally, suppose α is a limit ordinal and β = cf (α) < α. If β = ω, then W (α) contains

an infinite closed discrete subset (a cofinal set in α), so W (α) is not countably compact. If

β > ω, then W (α) contains a closed subspace C cofinal in α which is homeomorphic to W (β)

(take any strictly increasing function f : β → α whose image B is cofinal in α and let C be

the closure of B in W (α)). Consider the closed subspace Z = W (β+1)×C of W (α)×W (α)

which is homeomorphic to W (β +1)×W (β). We claim that Z is not normal. Indeed, since

β > ω, the argument of [165, Example 3.1.27] implies that every continuous real-valued

function on W (β) is eventually constant and, hence, the Čech–Stone compactification of

the space W (β) is homeomorphic to W (β + 1). Since W (β) is not paracompact according

to [165, 5.5.22 (f)], we apply Tamano’s theorem [165, Theorem 5.1.38] to conclude that Z
fails to be normal. Since Z is a closed subset of W (α) ×W (α), the latter space cannot be

normal either. This proves that W (α) is not an NC-space whenever ω ≤ cf (α) < α. �

Corollary 7.8.15. Let α > 0 be an ordinal. The groups F (W (α)) and A(W (α)) have
the direct limit property in each of the following cases:

a) α is a successor ordinal;
b) α is limit and cf (α) = ω;
c) α is an uncountable regular cardinal.

Proof. If α is a successor ordinal, then the space W (α) is compact. If cf (α) = ω, then

W (α) is a kω-space. In either case, the free (Abelian) topological group G(X) has the direct

limit property, by Theorem 7.4.1. Therefore, we can assume that α = cf (α) > ω. Then

Lemma 7.8.14 implies that W (α) is an NC-space, so it remains to apply Theorem 7.8.8. �

Exercises

7.8.a. Is the topological sum of two NC-spaces an NC-space? Is the product of two NC-spaces an

NC-space?

7.8.b. Show that the topological sum of an NC-space and a compact sequential space is an NC-

space.

7.8.c. Let X be an NC-space and K, L closed subsets of G(X).

(a) Verify that if K, L ⊂ Bn(X) for some n ∈ ω, then KL is closed in G(X).

(b) Apply (a) and Theorem 7.8.8 to show that if K ⊂ Bn(X) for some n ∈ ω, then KL is

closed in G(X).

7.8.d. Let us say that X =
⋃

n∈ω
Xn is an NCω-decomposition of a space X if Xn ⊂ Xn+1, each

Xn is a closed NC-subspace of X, and the family {Xn : n ∈ ω} determines the topology of

X. A space with an NCω-decomposition is called an NCω-space.
(a) Generalize Theorem 7.8.8 and show that if X =

⋃
n∈ω

Xn is an NCω-decomposition

of X, then G(X) =
⋃

n∈ω
〈Xn〉n is an NCω-decomposition of G(X).
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(b) Verify that if X =
⋃

n∈ω
Xn is an NCω-decomposition of X, then the natural

monomorphism ϕn : G(Xn) → G(Xn, X) is a topological embedding, for each n ∈ ω.

7.8.e. Apply (b) of Exercise 7.8.d to show that if X is an NCω-space, then the multiplication

mapping in : X̄n → G(X) is quotient, for each n ∈ ω, where X̄ = X ⊕ {e} ⊕ X−1. Give an

example of an NCω-space X for which the mappings in fail to be closed (cf. Theorem 7.8.6).

7.8.f. Prove that if X is a Lindelöf P-space, then the multiplication mapping in : X̄n → G(X) is

closed, for each n ∈ ω.

7.8.g. A continuous mapping f : Y → Y is called z-closed if f (P) is closed in Y , for each zero-set

P in X.

(a) Let X be a dense C∗-embedded subset of a space X̃ and let f : X → Y , f̃ : X̃ → Y
be concordant continuous mappings. Show that if f̃ is z-closed and the fiber f−1(y) is

pseudocompact, for each y ∈ Y , then f is also z-closed.

(b) Apply the above item (a), Lemma 7.8.5, and Glicksberg’s theorem [165, 3.12.20 (d)] to

prove that if Xn (resp., X2n) is pseudocompact for some n ∈ N, then the multiplication

mapping in : X̄n → G(X) (resp., in × in) is z-closed.

(c) Use (b) to verify that if X2n is pseudocompact and K, L are zero-sets in Bn(X), then

the set KL is closed in G(X).

Problems

7.8.A. Suppose that an NC-space X is a closed subspace of a Tychonoff space Y . Prove that the free

topological group G(X) is naturally topologically isomorphic to the topological subgroup

G(X, Y ) of G(Y ).

7.8.B. (M. G. Tkachenko [483]) Suppose that X is a pseudocompact space such that the free

topological group F (X) has the direct limit property. Then X is an NC-space.

7.8.C. Suppose that X is a Tychonoff space such that whenever X is represented as a closed subspace

of a Tychonoff space Y , the free topological group A(X) (or F (X)) is naturally topologically

isomorphic to the topological group A(X, Y ) (or to F (X, Y )). Is X an NC-space?

7.8.D. (O. V. Sipacheva [451]) Let X = ⊕α<ω1
Xα be the topological sum of some family of zero-

dimensional Tychonoff spaces. Show that if A(X) has the direct limit property, then all Xα’s,

except, perhaps, for countably many of them, are P-spaces.

Hint. Suppose that A(X) has the direct limit property, while there are uncountably many

Xα’s that are not P-spaces. By Exercise 7.4.e, one can assume that no Xα is a P-space. For

every α < ω1, choose a point xα ∈ Xα and a decreasing family {Uα,n : n ∈ ω} of clopen

neighbourhoods of xα in Xα such that xα /∈ Int(
⋂

n∈ω
Uα,n), and put Cα,n = Uα,n \ Uα,n+1.

For every α ∈ ω1 \ ω, enumerate the set α as α = {βα,i : i ∈ ω}. Consider the sets

Fα,n = {(x − xα) + n(y − xβα,i ) : x ∈ Cα,n, y ∈ Cβα,i,m, n < m < i},

where α ∈ ω1 \ ω and n ∈ ω. Put also Fn =
⋃

ω≤α<ω1
Fα,n. Note that Fn ⊂

B2n+2(X) \ B2n+1(X) for each n ∈ ω, so Bk(X) ∩ Fn = ∅ if n > 2k + 1. Therefore,

to obtain a contradiction it suffices to verify that each Fn is closed in A(X), but the neutral

element e of A(X) is in the closure of F =
⋃

n∈ω
Fn.

Note that if γ is a disjoint open covering of X, then

H(γ) = {
k∑

i=0

(xi − yi) : k ∈ ω and (∀ i ≤ k)(∃Oi ∈ γ)(xi, yi ∈ Oi)}

is an open subgroup of A(X). For given α < ω1 and n ∈ ω, choose a disjoint open covering

γα,n of X such that Fα,n∩(g+H(γα,n)) is closed in g+H(γα,n), for each g ∈ A(X). Conclude

that Fα,n is closed in A(X). Then apply a similar argument to verify that Fn is closed in A(X),

for each n ∈ ω.
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To show that e ∈ F , consider a continuous pseudometric d on X and for every

α < ω1 \ ω choose nα ∈ ω such that Bd(xα, 1/2) intersects Cα,nα , where Bd(x, ε) =

{y ∈ X : d(x, y) < ε}, for x ∈ X and ε > 0. Find n ∈ ω such that the set

A = {α < ω1 : nα = n} is uncountable. Then find an uncountable set B ⊂ A and

m > n such that Bd(xα, 1/2n) ∩ Cα,m �= ∅ for each α ∈ B. Finally, take α ∈ B such

that α ∩ B is infinite and choose i > m with βα,i ∈ B. Then pick x ∈ Bd(xα, 1/2) and

y ∈ Bd(xβα,i , 1/2n) ∩ Cβα,i,m. Show that (x − xα) + n(y − xβα,i ) belongs to Vd ∩ Fn, where

Vd = {g ∈ A(X) : d̂(e, g) < 1}. Apply Theorem 7.2.7 to conclude that e ∈ F .

Open Problems

7.8.1. Suppose that X is a pseudocompact space such that the topological group A(X) has the direct

limit property. Is X necessarily an NC-space? (Compare with Problem 7.8.B.)

7.9. Completeness of free Abelian topological groups

By Theorem 7.4.11, the groups A(X) and F (X) are Raı̆kov complete if X is compact

or, more generally, a kω-space. However, this result does not characterize those spaces X
for which the groups A(X) and F (X) are Raı̆kov complete. Our aim in this section is to

show that the free Abelian topological group A(X) is Raı̆kov complete if and only if X is

Dieudonné complete. This requires several preliminary steps. In what follows we shall use

the additive notation for the group operation in A(X). However, the neutral element of A(X)

will be denoted by e. We start with a result that sheds a new light on the properties of the

Graev extensions of pseudometrics from X over the abstract free Abelian group Aa(X).

Lemma 7.9.1. Let d be arbitrary pseudometric on X, and d̂A be the Graev extension
of d on Aa(X). Then d̂A(kx, ky) = |k| · d(x, y), for all x, y ∈ X and all k ∈ Z.

Proof. The lemma is trivially true if x = y. If k = 0, then kx = ky = e and there is

nothing to prove. In addition, Corollary 7.2.3 implies that

d̂A(−kx,−ky) = d̂A(ky − kx, e) = d̂A(kx− ky, e) = d̂A(kx, ky)

for an arbitrary k ∈ Z. Therefore, we can assume that x = y and k ≥ 1. Consider the

element g = kx − ky ∈ Aa(X) of the even length 2k. By Corollary 7.2.5, there exists an

reduced representation for g,

g = (z1 − t1) + · · ·+ (zk − tk) (7.14)

such that

d̂A(g, e) =

k∑
i=1

d(zi, ti), (7.15)

where zi, ti ∈ {x, y} for each i = 1, . . . , k. Since the above representation of g is reduced

and k > 0, each summand (zi − ti) in (7.14) is equal to (x − y), so that the equality

d̂A(kx, ky) = d̂A(g, e) = k · d(x, y) follows from (7.15). �
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The above lemma implies that the multiplication by a non-zero integer k in the free

Abelian topological group A(X) is a uniform isomorphism of X onto kX. More precisely,

we have the following result that generalizes Lemma 7.7.1 in the case of free Abelian

topological groups.

Lemma 7.9.2. For every non-zero integer k, the mapping ϕk : X → A(X) defined by
φk(x) = kx for each x ∈ X, is a uniform isomorphism of (X, �) onto the subspace kX of
(A(X), ), where � is the universal uniformity of X, and  is the group uniformity of A(X).

Proof. By Theorem 7.2.7, the sets

Vd = {g ∈ A(X) : d̂A(g, e) < 1}
form a base of open neighbourhoods at the neutral element e of A(X), where d runs

through the family �X of all continuous pseudometrics on X. Therefore, the corresponding

entourages of the diagonal in A(X)× A(X), defined by

Wd = {(g, h) ∈ A(X)× A(X) : d̂A(g, h) < 1},
constitute a base of the group uniformity  on A(X), where d ∈ �X.

Let d ∈ �X and k ∈ Z \ {0} be arbitrary. Lemma 7.9.1 implies that

d̂A(kx, ky) < 1⇐⇒ d(x, y) < 1/|k|
for all x, y ∈ X. Therefore, (kx, ky) ∈ Wd iff d(x, y) < 1/|k|. This implies immediately

that both ϕk and its inverse ϕ−1
k are uniformly continuous with respect to the uniformities

� and  on X and A(X), respectively. �

The next simple fact plays a crucial role in the proofs of Lemma 7.9.4 and Theorem 7.9.6.

Lemma 7.9.3. Let K be a subset of an Abelian topological group G with the group
uniformity . If the uniform space (K, �K) is complete, then every Cauchy filter ξ in G
satisfies one of the following two conditions:

a) ξ converges to some point x ∈ K;
b) there exist F ∈ ξ and a neighbourhood V of the neutral element e in G such that

K ∩ (F + V ) = ∅.

Proof. Suppose that a) does not hold and consider the family

γ = {F + V : F ∈ ξ, V ∈ �(e)},
where �(e) is the family of all open neighbourhoods of e in G. It is easy to see that γ is a base

of some Cauchy filter ξ̃ in (G, ). Indeed, let ξ̃ be the family of all subsets of G containing

at least one set from γ, and take arbitrary U ∈ �(e). Choose a symmetric neighbourhood

V ∈ �(e) such that V + V + V ⊂ U. There exists F ∈ ξ such that F − F ⊂ V . Then

F + V ∈ ξ̃, and

(F + V )− (F + V ) = (F − F ) + (V − V ) ⊂ V + V + V ⊂ U.

This implies that ξ̃ is a Cauchy filter in (G, ).

If the intersection K∩P is not empty for each P ∈ ξ̃, then the family {K∩P : P ∈ ξ̃}
forms a Cauchy filter μ in the complete uniform space (K, �K) and, hence, μ converges

to a point x ∈ K. However, this implies immediately that both filters ξ̃ and ξ converge to x,

which contradicts our assumption about ξ. �
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Let us establish the completeness of “small” subspaces of the group A(X) on a

Dieudonné complete space X. If n ∈ N, and v = (k1, . . . , kn) is an element of Zn, consider

the mapping ϕv : Xn → A(X) defined by

ϕv(x1, . . . , xn) = k1x1 + · · ·+ knxn

for each (x1, . . . , xn) ∈ Xn. Let  be the group uniformity of A(X).

Lemma 7.9.4. Let X be a Dieudonné complete space. Then the subspace ϕv(Xn) of
A(X) with the uniformity inherited from (A(X), ) is complete, for all n ∈ N and v ∈ Zn.

Proof. We prove the lemma by induction on n. Let n ∈ N and v = (k1, . . . , kn) ∈ Zn

be arbitrary. Put |v| = |k1| + · · · + |kn|. If n = 1, we have ϕv(X) = k1X and, hence, the

completeness of ϕv(X) follows directly from Lemma 7.9.2. Suppose that, for some n ≥ 2,

we already know that ϕw(Xm) is complete, for all m < n and all w ∈ Zm. Clearly, it

suffices to consider the case when k1 · . . . · kn = 0. Let ξ be a Cauchy filter in ϕv(Xn). By

Lemma 7.9.3, we can assume that there exist an element F0 ∈ ξ and a neighbourhood V0

of the neutral element e in A(X) such that ϕw(Xm) ∩ (F0 + V0) = ∅ for all m < n and all

w ∈ Zm satisfying |w| ≤ |v|.
According to Theorem 7.2.7, there exists a continuous pseudometric d on X such that

Vd = {g ∈ A(X) : d̂A(g, e) < 1} ⊂ V0.

This implies immediately that if m < n and w ∈ Zm, |w| ≤ |v|, then

d̂A(a, b) ≥ 1 for all a ∈ F0 and b ∈ ϕw(Xm). (7.16)

Suppose that a = k1x1 + · · · + knxn ∈ F0, where (x1, . . . , xn) ∈ Xn. For i, j with

1 ≤ i < j ≤ n, let ai,j = a + kj(xi − xj). Then ai,j ∈ ϕw(Xn−1), where

w = (k1, . . . , ki−1, ki + kj, ki+1, . . . , kj−1, kj+1, . . . , kn) ∈ Zn−1.

Clearly, |w| ≤ |v|. Therefore, it follows from (7.16), the invariance of d̂A, and Lemma 7.9.1

that

1 ≤ d̂A(a, ai,j) = d̂A(kjxi, kjxj) = |kj| · d(xi, xj).

In other words, we have proved that if k1x1 + · · ·+ knxn ∈ F0 for some (x1, . . . , xn) ∈ Xn,

then

d(xi, xj) ≥ 1/|kj| ≥ 1/|v| whenever 1 ≤ i < j ≤ n. (7.17)

In particular, xi = xj if i = j.

Recall that Sn is the group of permutations of the set {1, 2, . . . , n}. Let us show that the

following holds.

Claim A. Let 
 be a continuous pseudometric on X such that 
 ≥ |v| · d, and let F1 ∈ ξ
satisfy F1 ⊂ F0 and F1 − F1 ⊂ V2
. Suppose that g, h ∈ F1 ∩ ϕv(Xn) have normal forms
g = k1x1 + · · ·+ knxn and h = k1y1 + · · ·+ knyn. Then there exists a permutation π ∈ Sn

such that

kπ(i) = ki for each i = 1, . . . , n (7.18)

and


̂A(g, h) =

n∑
i=1

|ki| · 
(xi, yπ(i)). (7.19)
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Indeed, from F1−F1 ⊂ V2
 it follows that 
̂A(g, h) < 1/2. Therefore, Corollary 7.2.4

implies that g− h can be written in an reduced form as follows:

g− h = (z1 − z2) + · · ·+ (z2p−1 − z2p), (7.20)

where p ≤ |v|, z1, . . . , z2p ∈ {x1, . . . , xn} ∪ {y1, . . . , yn}, and

p∑
i=1


(z2i−1, z2i) = 
̂A(g, h) < 1/2. (7.21)

In particular, 
(z2i−1, z2i) < 1/2 for each i = 1, . . . , p. Since 
 ≥ |v| · d, from (7.17)

(which applies to both g and h) it follows that for every i ≤ p, one of the elements z2i−1, z2i

is in {x1, . . . , xn} while the other is in {y1, . . . , yn}. Suppose that there are two summands

(z2i−1−z2i) and (z2j−1−z2j) with i = j in the right part of (7.20) such that each of the pairs

(z2i−1, z2i) and (z2j−1, z2j) contains x1, say, z2i−1 = x1 = z2j−1, but the second components

are distinct, say, z2i = yr and z2j = ys, where r = s (note that the cases z2i−1 = x1 = z2j

and z2i = x1 = z2j−1 are impossible, since the representation (7.20) of g − h is reduced).

This implies that

|v| · d(yr, ys) ≤ 
(yr, ys) ≤ 
(yr, x1) + 
(x1, ys) < 1/2 + 1/2 = 1.

However, yr and ys are distinct letters in the normal form of the element h ∈ F1∩ϕv(Xn) ⊂
F0, which contradicts (7.17). Similarly, if i ≤ n and (7.20) contains two summands (xr−yi)

and (xs − yi) (or the summands (yi − xr) and (yi − xs)), then r = s. In addition, the

representation (7.20) of g − h is reduced, so it contains both summands (x1 − yi) and

(yj − x1) for no i, j ≤ n. This shows that the right part of (7.20) contains |k1| equal

summands of the form (x1 − yi) or (yi − x1) for some i ≤ n, and the rest of the summands

contain neither x1 nor yi. So, we conclude that k1 = ki.

Consider g1 = k2x2 +· · ·+knxn and h1 = k1y1 +· · ·+ki−1yi−1 +ki+1yi+1 +· · ·+knyn.

From (7.21) it follows that 
̂A(g1, h1) ≤ 
̂A(g, h) < 1/2. Therefore, the above argument

applied to g1 and h1 implies the existence of an index j ≤ n with j = i such that the right

part of (7.20) contains |k2| equal summands of the form (x2−yj) or (yj−x2). Consequently,

k2 = kj , and the rest of the summands in (7.20) do not contain either x2 or yj . Continuing

in this way, we finally obtain a permutation π ∈ Sn such that ki = kπ(i) and the right

part of (7.20) contains |ki| equal summands of the form (xi − yπ(i)) or (yπ(i) − xi) for each

i = 1, . . . , n. This implies (7.18), and then (7.19) follows from (7.21). Claim A is proved.

Let 
 = |v| · d. Since ξ is a Cauchy filter in the subspace ϕv(Xn) of (A(X), ), we can

find F1 ∈ ξ such that F1 ⊂ F0 and F1−F1 ⊂ V3
. Fix g∗ = k1x∗1 + · · ·+ knx∗n ∈ F1 where

x∗1 , . . . , x∗n ∈ X, and for every i ≤ n put

Pi = {x ∈ X : 
(x∗i , x) ≤ 1/3}.
Then P = P1 × · · · × Pn is a closed subset of Xn.

Claim B. The set ϕv(P) contains F1. In addition, if a, b ∈ P∩ϕ−1
v (F1) and a = (x1, . . . , xn),

b = (y1, . . . , yn), then 
(xi, yj) ≥ 1/3, for any distinct i, j ≤ n.

Indeed, from F1 − F1 ⊂ V3
 it follows that 
̂A(g∗, h) < 1/3, for each h =

k1y1 + · · · + knyn ∈ F1, where y1, . . . , yn ∈ X. By Claim A, there exists a permutation

π ∈ Sn such that 
̂A(g∗, h) =
∑n

i=1 |ki|
(x∗i , yπ(i)) and ki = kπ(i) for each i = 1, . . . , n.
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Since ki = 0, we deduce that 
(x∗i , yπ(i)) ≤ 
̂A(g∗, h) < 1/3 and, hence, yπ(i) ∈ Pi for each

i ≤ n. This implies that c = (yπ(1), . . . , yπ(n)) ∈ P and

ϕv(c) =

n∑
i=1

kiyπ(i) =

n∑
i=1

kπ(i)yπ(i) =

n∑
i=1

kiyi = h.

So, F1 ⊂ ϕv(P).

Suppose that a, b ∈ P ∩ ϕ−1
v (F1), where a = (x1, . . . , xn) and b = (y1, . . . , yn). From

xj, yj ∈ Pj it follows that


(xj, yj) ≤ 
(xj, x
∗
j ) + 
(x∗j , yj) ≤ 1/3 + 1/3 = 2/3 (7.22)

for j = 1, . . . , n. Suppose that 
(xi, yj) < 1/3, for distinct i, j ≤ n. Then (7.22) implies

that


(xi, xj) ≤ 
(xi, yj) + 
(yj, xj) < 1/3 + 2/3 = 1.

Since 
 = |v| · d, this contradicts (7.17). The proof of Claim B is complete.

Our next step is to refine Claim A.

Claim C. Let m be a continuous pseudometric on X with m ≥ 
, and suppose that F ∈ ξ
satisfies F ⊂ F1 and F − F ⊂ V3m. If a, b ∈ P ∩ ϕ−1

v (F ) and a = (x1, . . . , xn),
b = (y1, . . . , yn), then

m̂A(ϕv(a), ϕv(b)) =

n∑
i=1

|ki| ·m(xi, yi) < 1/3. (7.23)

Indeed, suppose that a, b ∈ P ∩ ϕ−1
v (F ), where a = (x1, . . . , xn) and b = (y1, . . . , yn).

Let g = ϕv(a) and h = ϕv(b). By Claim A, there exists a permutation σ ∈ Sn such that

m̂A(g, h) =

n∑
i=1

|ki| ·m(xi, yσ(i)). (7.24)

From g, h ∈ F and F − F ⊂ V3m it follows that m̂A(g, h) < 1/3. In particular,


(xi, yσ(i)) ≤ m(xi, yσ(i)) ≤ m̂A(g, h) < 1/3,

for each i ≤ n. On the other hand, Claim B implies that 
(xi, yj) ≥ 1/3 whenever i = j.

Therefore, σ(i) = i for each i ≤ n and, hence, (7.23) follows from (7.24). Claim C is

proved.

Claim D. The family λ = {P ∩ ϕ−1
v (F ) : F ∈ ξ} is a base of a Cauchy filter η in the

uniform space (Xn, �n), where �n is the n-fold product of the universal uniformity � on
X.

Indeed, from Claim B it follows that F1 ⊂ ϕv(P), so that λ is a base of a filter η. Let

U be an element of �n. There exists a pseudometric m ∈ �X such that m ≥ 
 and

{(x1, . . . , xn, y1, . . . , yn) ∈ X2n : m(xi, yi) < 1 for each i ≤ n} ⊂ U.

Choose an element F ∈ ξ such that F ⊂ F1 and F−F ⊂ V3m. Then F ′ = P∩ϕ−1
v (F ) ∈ η.

Suppose that a = (x1, . . . , xn) ∈ F ′ and b = (y1, . . . , yn) ∈ F ′. By Claim C,

m(xi, yi) ≤ |ki| ·m(xi, yi) ≤ m̂A(g, h) < 1/3 < 1



Completeness of free Abelian groups 495

for each i ≤ n. Consequently, our choice of m implies that (a, b) ∈ U; therefore,

F ′ × F ′ ⊂ U. So, η is a Cauchy filter in (Xn, �n). This proves Claim D.

Finally, the uniform space (X, �X) is complete, since X is Dieudonné complete. Hence

the n-th power (Xn, �n) of the space (X, �) is also complete. Since P is closed in Xn, we

can apply Claim D to conclude that the filter η with the base λ = {P ∩ ϕ−1
v (F ) : F ∈ ξ}

converges to a point x∗ = (x∗1 , . . . , x∗n) ∈ P . By Claim B, the filter ξ contains the

family ϕv(λ) = {ϕv(P) ∩ F : F ∈ ξ} and hence, ξ converges to the element ϕv(x∗) =

k1x∗1 + · · ·+ knx∗n ∈ ϕv(Xn). Thus, the subspace ϕv(Xn) of (A(X), ) is complete. �

Lemma 7.9.5. Let  be the group uniformity on A(X), where X is a Dieudonné complete
space. Then the uniformity n = �Bn(X) is complete, for each n ∈ N.

Proof. Let ξ be a Cauchy filter in the uniform space (Bn(X), n). Clearly,

Bn(X) =
⋃
{ϕv(X

m) : m ≤ n, v ∈ Zm, |v| ≤ n}. (7.25)

Since the number of summands on the right side of (7.25) is finite, one can find m ≤ n
and v ∈ Zm with |v| ≤ n such that F ∩ ϕv(Xm) = ∅, for each F ∈ ξ. By Lemma 7.9.4,

ϕv(Xm) is a complete subspace of the space (Bn(X), n). Therefore, ξ converges to a point

g ∈ ϕv(Xm) ⊂ Bn(X). �

Theorem 7.9.6. [M. G. Tkachenko] The free Abelian topological group A(X) is
Raı̆kov complete iff the space X is Dieudonné complete.

Proof. By Lemma 7.7.1, the group uniformity  of A(X) induces on X its universal

uniformity �. In addition, X is closed in A(X), by item a) of Theorem 7.1.13. Therefore, if

the group A(X) is Raı̆kov complete, then the uniform subspace (X, �) of (A(X), ) is also

complete. In other words, the space X is Dieudonné complete.

Suppose that a Cauchy filter ξ in (A(X), ) does not converge, where X is Dieudonné

complete space. For every n ∈ N, denote by n the uniformity on

Bn = {g ∈ A(X) : l(g) ≤ n}
inherited from (A(X), ). By Lemma 7.9.5, the uniform space (Bn, n) is complete. Hence

one can apply Lemma 7.9.3 to find an F1 ∈ ξ and a neighbourhood V1 of the neutral element

e in A(X) such that (F1 + V1 + V1) ∩ B1 = ∅.

Suppose that for some n ∈ N we have defined elements F1, . . . , Fn of ξ and symmetric

neighbourhoods V1, . . . , Vn of e in A(X) satisfying the following conditions:

(i) Fi+1 ⊂ Fi if i < n;

(ii) V 2
i+1 ⊂ Vi if i < n;

(iii) (Fi + Vi + Vi) ∩ Bi2 = ∅, for each i ≤ n.

Then we choose an element Fn+1 ∈ ξ and a symmetric neighbourhood Vn+1 of e in A(X)

such that Fn+1 ⊂ Fn, V 2
n+1 ⊂ Vn and (Fn+1 + Vn+1 + Vn+1)∩B(n+1)2 = ∅. This is possible

because the space (Bn+1, n+1) is complete by Lemma 7.9.3.

Suppose that the sequences {Fn : n ∈ N} and {Vn : n ∈ N} satisfying (i)–(iii) have

been defined. For every n ∈ N, put Wn = Vn ∩ B2n and consider the set

V = W1 + W2 + · · ·+ Wn + · · · .

We claim that the following conditions are fulfilled:
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(a) (Fn + V ) ∩ Bn = ∅ for each n ∈ N;

(b) V is a symmetric neighbourhood of e in A(X).

Let us verify (a). First, from (ii) it easily follows that

Vi+1 + Vi+2 + · · ·+ Vi+k ⊂ Vi

for all i, k ∈ N. Hence,

Vi + Vi+1 + · · ·+ Vi+k ⊂ Vi + Vi.

Since Wj ⊂ Vj for each j ∈ N, the above inclusion implies that

Wi + Wi+1 + · · ·+ Wi+k ⊂ Vi + Vi (7.26)

whenever i, k ∈ N. In particular, V ⊂ V1 + V1, so from (iii) (with i = 1) it follows that

(F1 + V ) ∩ B1 = ∅. Assume that (a) does not hold. Then (Fn+1 + V ) ∩ Bn+1 = ∅, for

some integer n ≥ 1. The definition of V implies that

(Fn+1 + W1 + · · ·+ Wm) ∩ Bn+1 = ∅ (7.27)

for some m ∈ N. We can assume that m > n. Note that Wi ⊂ B2i, for each i = 1, . . . , n
and

∑n
i=1 2i = n(n + 1). Therefore,

W1 + W2 + · · ·+ Wn ⊂ Bn(n+1). (7.28)

From (7.26) and (7.28) it follows that

Fn+1 + W1 + · · ·+ Wn + Wn+1 + · · ·+ Wm ⊂ Fn+1 + Bn(n+1) + Vn+1 + Vn+1.

This inclusion and (7.27) together imply that

((Fn+1 + Vn+1 + Vn+1) + Bn(n+1)) ∩ Bn+1 = ∅.

Hence, (Fn+1 + Vn+1 + Vn+1) ∩ B(n+1)2 = ∅, which contradicts (iii). Thus, (a) holds.

Let us verify (b). Note that W−1
n = (Vn ∩ B2n)−1 = V−1

n ∩ B−1
2n = Vn ∩ B2n, for each

n ∈ N, so that V is symmetric as the sum of symmetric sets Wn. For every n ∈ N, set

p(n) = 2n + n and

Un = {(x, y) ∈ X×X : x− y ∈ Vp(n)}. (7.29)

By [165, Theorem 8.1.10], there exists a continuous pseudometric 
 on X such that

{(x, y) ∈ X×X : 
(x, y) < 2−n} ⊂ Un, (7.30)

for each n ∈ N. Clearly, (b) will follow if we show that V2
 ⊂ V .

Suppose that g is an arbitrary element of V2
. Then 
̂A(g, e) < 1/2 and Corollary 7.2.4

implies that there exists an reduced representation

g = (x1 − y1) + · · ·+ (xm − ym) (7.31)

with xi, yi ∈ X, such that


̂A(g, e) =

m∑
i=1


(xi, yi). (7.32)

For every i ≤ m with 
(xi, yi) = 0, let ki ≥ 1 be an integer such that 2−ki−1 ≤ 
(xi, yi) <
2−ki . Apply (7.32) to find sufficiently large numbers ki ∈ N for the rest of indices i ≤ m
such that

∑m
i=1 2−ki < 2 · 
̂A(g, e) < 1. Then, for every j ∈ N, the sum

∑m
i=1 2−ki

contains less than 2j summands equal to 2−j . Let ki1 , . . . , kir be the list of all ki satisfying
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ki = j; then r < 2j . From (7.30), (7.29), and the choice of the numbers ki it follows that

xi1 − yi1 ∈ Vp(j), . . . , xir − yir ∈ Vp(j). In addition, a simple calculation making use of (ii)

shows that the sum Vp(j) + · · ·+ Vp(j) (2j times) is contained in V2j . Therefore,

(xi1 − yi1 ) + · · ·+ (xir − yir ) ∈ B2j ∩ (Vp(j) + · · ·+ Vp(j)︸ ︷︷ ︸
r times

) ⊂ B2j ∩ V2j = W2j .

This inclusion is valid for each j ≤ k = max{k1, . . . , km}. So, we have

g = (x1 − y1) + · · ·+ (xm − ym) ∈ W2 + W4 + · · ·+ W2k ⊂ V.

Hence, V2
 ⊂ V and (b) holds.

Finally, since ξ is a Cauchy filter in (A(X), ), there is F ∈ ξ such that F − F ⊂ V .

Pick g ∈ F . Then g ∈ Bn, for some n ∈ N; therefore, F ⊂ g + V ⊂ Bn + V . However,

(Fn + V )∩Bn = ∅ by (a) or, equivalently, Fn ∩ (Bn + V ) = ∅, by the symmetry of the set

V . Consequently, F ∩ Fn = ∅. This contradicts the fact that both F and Fn belong to the

filter ξ. �

Corollary 7.9.7. If X is metrizable or paracompact, then the free Abelian topological
group A(X) is Raı̆kov complete.

Proof. Each metrizable space is paracompact and all paracompact spaces are Dieu-

donné complete [255]. Therefore, the conclusion follows from Theorem 7.9.6. �

It turns out that the completion of the group A(X) for an arbitrary space X has a similar

structure.

Theorem 7.9.8. The Raı̆kov completion of A(X) is topologically isomorphic to A(μX),
for every space X, where μX is the Dieudonné completion of X.

Proof. Clearly, X is P-embedded in μX. Therefore, Theorem 7.7.4 implies that the

natural monomorphism ê : A(X)→ A(μX) is a topological embedding, where e : X → μX
is the identity embedding. As X is dense in μX, the subgroup A(X, μX) = ê(A(X))

of A(μX) is dense in A(μX). In addition, the group A(μX) is Raı̆kov complete, by

Theorem 7.9.6. It follows that the Raı̆kov completion of A(X) is topologically isomorphic

to A(μX). �

Exercises

7.9.a. Extend Theorem 7.9.6 to free uniform Abelian groups as follows: If a uniform space (X, �)

is complete, then the group A(X, �) is Raı̆kov complete.

7.9.b. Apply Exercise 7.7.c to generalize Theorem 7.9.8 as follows. If (X, �) is a uniform space,

then the Raı̆kov completion of the free uniform Abelian group A(X, �) is topologically

isomorphic to A(X̂, �̂), where (X̂, �̂) is the completion of (X, �).

Problems

7.9.A. Let X be a non-discrete Dieudonné complete first-countable space such that the group F (X)

has the direct limit property. Is X then σ-compact?

7.9.B. Show that every Abelian topological group is a quotient group of a Raı̆kov complete Abelian

topological group.

7.9.C. Let X be a Tychonoff space. Is A(X) C-embedded in A(μ(X))?
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7.9.D. Is the free Abelian topological group A(X) of the Alexandroff one-point compactification of

a discrete space of cardinality ℵ1 hereditarily realcompact?

7.9.E. (V. V. Uspenskij [520]) Suppose that X is the topological product of a family of metrizable

spaces. Show that F (X) is complete with respect to the left uniformity of F (X) (that is, F (X)

is Weil complete).

7.9.F. (V. V. Uspenskij [520]) Suppose that X is a Dieudonné complete pseudo-ℵ1-compact

Tychonoff space. Show that F (X) is Weil complete.

7.9.G. Let X be a Tychonoff space such that the subspace Bn(X) of F (X) is locally compact, for

each n ∈ ω.

(a) (V. G. Pestov and K. Yamada [382]). Prove that if X is not discrete, then it is

pseudocompact.

(b) (P. Nickolas and M. G. Tkachenko [347]). Apply (a) to show that X is either discrete

or compact.

Hint. (a) Suppose that X is neither discrete nor pseudocompact. Choose a discrete family

{Un : n ∈ ω} of non-empty open sets in X and a set {xn : n ∈ ω} such that xn ∈ Un for

each n ∈ ω. Since X is non-discrete and locally compact, there exists an infinite compact

set C ⊂ X with a non-isolated point a ∈ C. It is not restrictive to assume that C ∩ Un = ∅
for each n ∈ ω. Then Z = C ∪ {xn : n ∈ ω} is a closed C-embedded subset of X. Note

that Z is a μ-space and apply Corollary 7.6.32 to conclude that F (Z) ∼= F (Z, X). Deduce

that F (Z) is a k-space.

Put Cn = x−1
n a−1Cxn for each n ∈ ω and let Y =

⋃∞
n=0

Cn. Then Y ⊂ B4(Z) and

Cn ∩ Cm = {e} for distinct n, m ∈ ω, where e is the identity of F (Z). Verify that for

every compact subset K of F (Z) there is n ∈ ω such that K ⊂ F (C ∪ En, Z), where

En = {xk : k ≤ n}. Conclude that

K ∩ Y ⊂ F (C ∪ En, Z) ∩ Y =
⋃
k≤n

Ck

is a compact subset of Y , so that Y is closed in F (Z) and, hence, is a k-space. Therefore, Y
is the inductive limit of the compact sets Cn, n ∈ ω. Apply this fact to show that Y fails to

be locally compact at the point e, thus contradicting the fact that Y is a closed subspace of

B4(Z).

(b) Suppose that X is not discrete and apply (a) to conclude that it is pseudocompact.

Denote by βX the Čech–Stone compactification of X. By Theorem 7.7.3, F (X) can be

identified with the subgroup F (X, βX) of F (βX). Then B2(X) is a dense locally compact

subspace of B2(βX) and, hence, it is open in B2(βX).

Note that the mapping j2 : (βX)2 → B2(βX) defined by j2(x, y) = x · y−1 for

x, y ∈ βX is perfect. Therefore, the preimage j←2 (B2(X)) = X2 ∪ Δ is open in (βX)2,

where Δ = {(y, y) : y ∈ βX} is the diagonal in (βX)2. Show that this implies the equality

X = βX.

7.9.H. Is every topological group G a topological quotient of a Raı̆kov complete topological group?

Hint. See [452].

7.9.I. Give an example of a Tychonoff space X such that F (X) is not C-embedded in F (μ(X)).

Hint. See [42, Theorem 7.26].

Open Problems

7.9.1. Is the free topological group F (X) of a pseudo-ℵ1-compact space a PT -group?

7.9.2. Is the free (Abelian) topological group of each first-countable Tychonoff space Moscow?

7.9.3. Is the free (Abelian) topological group of a first-countable Tychonoff space a PT -group?

7.9.4. When is F (X) C-embedded in F (μ(X))? What if X is first-countable? (See Problem 7.9.I.)
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7.9.5. Characterize the Tychonoff spaces X such that the free (Abelian) topological group over X
is hereditarily Dieudonné complete.

7.9.6. Let FPG(X) be the free Tychonoff paratopological group over a Dieudonné complete space

X. Suppose further that FPG(X) is topologically isomorphic to a subgroup H of a (Tychonoff

or Hausdorff) paratopological group G. Is H closed in G?

7.10. M-equivalent spaces

In this section we assume all spaces considered to be Tychonoff if nothing to the contrary

is specified. Suppose that the free topological groups F (X) and F (Y ) are topologically

isomorphic. Are then the spaces X and Y homeomorphic? It turns out that there is a wealth

of non-homeomorphic spaces X and Y with topologically isomorphic groups F (X) and

F (Y ) (see Examples 7.10.5 and 7.10.18). This makes it natural considering the relations of

M-equivalence and A-equivalence in Tychonoff spaces defined as follows.

Two spaces X and Y are called M-equivalent if the groups F (X) and F (Y ) are

topologically isomorphic. Similarly, X and Y are said to be A-equivalent if the free Abelian

topological groups A(X) and A(Y ) are topologically isomorphic. A topological property � is

called M-invariant (A-invariant) if every space Y M-equivalent (respectively, A-equivalent)

to a space X with � also has the property �.

It is clear that the relations of M- and A-equivalence are reflexive, symmetric and

transitive, so they are equivalence relations. First, we show that M-equivalent spaces are

always A-equivalent.

Proposition 7.10.1. M-equivalent spaces X and Y are A-equivalent.

Proof. Suppose that there exists a topological isomorphism ϕ : F (X)→ F (Y ). Denote

by KX and KY the derived subgroups of F (X) and F (Y ), respectively. Clearly, ϕ(KX) = KY .

By Theorem 7.1.11, A(X) ∼= F (X)/KX and A(Y ) ∼= F (Y )/KY . Therefore, A(X) ∼= A(Y )

and hence, X and Y are A-equivalent. �
Let us show that connectedness is both M- and A-invariant. By Proposition 7.10.1, it

suffices to verify this only for A-equivalence. Given a space X, we put

A0(X) = {x1 + · · ·+ xn − y1 − · · · − yn ∈ A(X) : x1, y1, . . . , xn, yn ∈ X, n ∈ N}.
Let us establish several useful properties of the subgroup A0(X) and relate A0(X) to the

connected component CX of the neutral element in A(X). To this end, we recall one useful

concept from the theory of groups.

Suppose that A is a non-empty subset of an Abelian group G with neutral element e,

and that each element of A has infinite order. The set A is called linearly independent or

simply independent if for all distinct elements a1, . . . , an of A and integers m1, . . . , mn, the

equality m1a1 + · · ·+ mnan = e implies that mi = 0, for each i ≤ n.

An application of Zorn’s lemma shows that every independent subset of G is contained

in a maximal independent subset. The torsion-free rank r0(G) of G is the cardinality of a

maximal independent subset of G. An argument very close to that in [409, 4.2.1] shows that

the cardinalities of every two maximal independent subsets of G coincide, so our definition

of r0(G) is correct.

Lemma 7.10.2. Let X be a space. Then:
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a) the subgroup A0(X) of A(X) is open and the quotient group A(X)/A0(X) is isomorphic
to the discrete group Z;

b) if X is disconnected, then the torsion-free rank of the group A(X)/CX is greater than
or equal to 2;

c) the group A0(X) is connected iff X is connected;
d) if X is connected, then A0(X) coincides with the connected component CX of the neutral

element in A(X).

Proof. a) Let f : X → Z be the constant mapping, f (x) = 1 for each x ∈ X. Extend

f to a continuous homomorphism ϕ : A(X)→ Z. Suppose that n, m ∈ N and g ∈ A(X),

g = x1 + · · ·+ xn − y1 − · · · − ym,

where xi, yj ∈ X for each i ≤ m. Then ϕ(g) = n − m, so the kernel of ϕ coincides with

the subgroup A0(X) of A(X). Since Z is discrete, A0(X) = ϕ−1(0) is an open invariant

subgroup of A(X). In addition, ϕ(A(X)) = Z, so that A(X)/A0(X) ∼= Z.

b) Suppose that the space X is disconnected, X = A ∪ B, where A and B are disjoint non-

empty closed subsets of X. Let D = {a, b} be a discrete two-point space. Define a mapping

f : X → D by f (x) = a if x ∈ A and f (x) = b if x ∈ B. Then f is continuous, so it can be

extended to a continuous homomorphism f̂ : A(X) → A(D). Since A(D) is discrete, the

kernel N of f̂ is an open and closed subgroup of A(X). In particular, the component CX of

the neutral element e in A(X) is contained in N. Therefore, there exists a homomorphism

h : A(X)/CX → A(D) such that h ◦ π = f̂ , where π : A(X) → A(X)/CX is the quotient

homomorphism. Clearly, f̂ and h are epimorphisms, so the torsion-free rank of A(X)/CX

is not less than the torsion-free rank of A(D), while the latter is equal to 2.

c) Suppose that X is connected. For n ∈ N, consider the mapping jn : X2n → A(X), where

jn(x1, . . . , xn, y1, . . . , yn) = x1 + · · ·+ xn − y1 − · · · − yn,

for each point (x1, . . . , xn, y1, . . . , yn) ∈ X2n. Clearly, jn is continuous and jn(X2n) is a

connected subspace of A0(X) containing the neutral element e of A(X). Since A0(X) is the

union of the sets jn(X2n), where n ∈ N, the group A0(X) is connected.

Conversely, suppose that X is disconnected. Then there are non-empty closed disjoint

subsets A and B of X such that X = A ∪ B. As in (b), consider the mapping

f : X → D = {a, b} defined by f (x) = a if x ∈ A and f (x) = b if x ∈ B. Then f
admits an extension to a continuous homomorphism f̂ : A(X) → A(D). Since A(D) is

discrete, the kernel N of f̂ is a clopen subgroup of A(X). Choose points x ∈ A, y ∈ B and

consider the element g = 2x − 2y ∈ A0(X). The image f̂ (g) = 2a − 2b is distinct from

the neutral element of A(D) and hence, g /∈ N. Therefore, A0(X) ∩ N is a proper clopen

subgroup of A0(X). Thus, A0(X) is disconnected.

d) Let X be connected. It follows from a) and c) that A0(X) is an open connected subgroup

of A(X), so that A0(X) is the connected component of e in A(X). �

Theorem 7.10.3. The relations of M- and A-equivalence preserve connectedness.

Proof. Let X and Y be A-equivalent spaces, and suppose that X is connected. Then

there exists a topological isomorphism ϕ : A(X) → A(Y ). Denote by CX and CY the

connected components of zero in the groups A(X) and A(Y ), respectively. Clearly,

ϕ(CX) = CY , and Lemma 7.10.2 implies that the quotient group A(X)/CX is isomorphic to
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Z. Therefore, A(Y )/CY
∼= A(X)/CX

∼= Z. In particular, the torsion-free rank of the quotient

group A(Y )/CY is equal to one, so b) of Lemma 7.10.2 implies that Y is connected. �
Clearly, two homeomorphic spaces are M-equivalent, but the converse is false as we

shall see in Example 7.10.5. Below we present the first general method of obtaining M-

equivalent spaces.

Lemma 7.10.4. Let X = X1 ⊕ X2 be the topological sum of non-empty spaces X1

and X2. Then the subspaces Y1 = b1a−1X1 ∪ X2 and Y2 = b2a−1X1 ∪ X2 of F (X) are
M-equivalent, for all a ∈ X1 and b1, b2 ∈ X2.

Proof. Clearly, a−1X1∪X2 ⊂ 〈Yi〉 and Yi ⊂ 〈a−1X1∪X2〉 for i = 1, 2, so 〈Y1〉 = 〈Y2〉.
Therefore, it remains to show that 〈Y1〉 ∼= F (Y1) and 〈Y2〉 ∼= F (Y2). By the symmetry

argument, it suffices to verify the former relation.

The identity mapping of Y1 onto Y1 can be extended to a continuous monomorphism

h : F (Y1)→ F (X). Suppose that f : Y1 → G is a continuous mapping of Y1 to an arbitrary

topological group G. We claim that f admits an extension to a continuous homomorphism

of F (X) to G. Indeed, let g : X → G be the mapping defined by g(x) = f (x) for each x ∈ X2

and g(x) = f (b1a−1x), for each x ∈ X1. Since X = X1⊕X2, the mapping g is continuous.

From our definition of g it follows that g(b1) = f (b1). In addition, if x = a ∈ X1, then

g(a) = f (b1a−1a) = f (b1). In particular, g(a) = g(b1). Let g̃ : F (X)→ G be a continuous

homomorphism extending g. Then the restriction of g̃ to Y1 coincides with f . Indeed,

the equalities g̃(x) = g(x) = f (x) are evident for each x ∈ X2. If x ∈ X1, then from

g(a) = g(b1) it follows that

g̃(b1a−1x) = g(b1) · g(a)−1 · g(x) = f (b1a−1x)

and, hence, g̃�Y1 = f . This proves our claim.

We can now apply the claim to the natural embedding mapping of Y1 to G = F (Y1)

and extend it to a continuous homomorphism g̃ : F (X) → F (Y1). Then the restriction g∗

of g̃ to 〈Y1〉 satisfies g∗ ◦ h = idF (X) and h ◦ g∗ = id〈Y1〉. Since the homomorphisms h and

g∗ are continuous, h must be a topological isomorphism of F (Y1) onto the subgroup 〈Y1〉
of F (X). Similarly, the subgroup 〈Y2〉 of F (X) is topologically isomorphic to F (Y2). Since

〈Y1〉 = 〈Y2〉, we finally conclude that the spaces Y1 and Y2 are M-equivalent. �
The above lemma enables us to present two non-homeomorphic M-equivalent compact

subspaces of the Euclidean plane R2.

Example 7.10.5. The closed unit interval and the letter T considered as a subspace of

the plane R2 are M-equivalent but not homeomorphic.

Indeed, let X = X1 ⊕ X2, where X1 = [0, 1] and X2 = [2, 3] are subspaces of R.

Let also b1 and b2 be an end point and an interior point of the interval X2, respectively.

By Lemma 7.10.4, the subspaces Y1 = b1a−1X1 ∪ X2 and Y2 = b2a−1X1 ∪ X2 of F (X)

are M-equivalent for each point a ∈ X1. For i = 1, 2, consider the mapping fi : X → Yi

defined by fi(x) = x if x ∈ X2 and fi(x) = bia−1x for x ∈ X1. Clearly, fi is continuous and

fi(X) = Yi. In addition, the only non-trivial fiber of the mapping fi is f−1
i (fi(a)) = {a, bi},

i = 1, 2. Since X is compact and Yi is Hausdorff, this implies that the space Yi is obtained

from the space X by identifying the points a and bi. Therefore, Y1 is homeomorphic with a

closed interval of R while Y2 is homeomorphic to the letter T considered as a subspace of

R2. Evidently, Y1 and Y2 are not homeomorphic. �
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A different problem is to establish whether two given spaces are not M-equivalent.

The notion of a homotopy class can help here. Let X and Y be spaces and C(X, Y ) be the

family of all continuous mappings of X to Y . Then two mappings f, g ∈ C(X, Y ) are called

homotopic if there exists a continuous mapping ϕ : X× [0, 1]→ Y such that ϕ(x, 0) = f (x)

and ϕ(x, 1) = g(x), for each x ∈ X. The mapping ϕ is said to be a homotopy between f
and g. Denote by [f ] the class of all h ∈ C(X, Y ) homotopic to f . It is easy to see that

either [f ] = [g] or [f ] ∩ [g] = ∅, for any f, g ∈ C(X, Y ). In other words, we have the

equivalence relation f ∼ g if f and g are homotopic. The set of all homotopy classes in

C(X, Y ) is denoted by [X, Y ]:

[X, Y ] = {[f ] : f ∈ C(X, Y )}.
Suppose that Y = G is a topological group. Then we can define a group structure in [X, G]

as follows:

[f ] ∗ [g] = [f · g], f, g ∈ C(X, G).

This definition is correct — if f1 ∼ f2 and g1 ∼ g2, then clearly f1 · g1 ∼ f2 · g1 ∼ f2 · g2,

whence f1 ·g1 ∼ f2 ·g2. A standard argument (see [459]) shows that [X, G] with the binary

operation ∗ is a group.

Let us show that if two spaces X and Y are M-equivalent, then the groups [X, G] and

[Y, G] are isomorphic, for every topological group G.

Lemma 7.10.6. Let X be a compact space and ϕ : X×[0, 1]→ G a continuous mapping
to a topological group G. For every t ∈ [0, 1], denote by ϕt the restriction of ϕ to X× {t},
and let Φt : F (X)→ G be the continuous homomorphism extending ϕt . Then the mapping
Φ: F (X) × [0, 1] → G defined by Φ(g, t) = Φt(g), for all g ∈ F (X) and t ∈ [0, 1], is
continuous.

Proof. By Corollary 7.4.2, the group F (X) has the direct limit property. So,

F (X)×[0, 1] is a kω-space with the kω-decomposition F (X)×[0, 1] =
⋃

n∈ω Bn(X)×[0, 1].

It suffices, therefore, to verify the continuity of the mapping Φ on every subspace

Bn(X)× [0, 1].

Let h ∈ Bn(X) be arbitrary, and let O be a neighbourhood of g0 = Φ(h, t) in G,

where t ∈ [0, 1]. Suppose that a point y = (y1, . . . , yn) ∈ X
n

satisfies in(y) = h,

where X = X ⊕ {e} ⊕ X−1, e is the identity of F (X) and in : X
n → Bn(X) is the

multiplication mapping. Then g0 = Φt(y1) · · ·Φt(yn), so we can find, for every i ≤ n,

an open neighbourhood Oi of the point Φt(yi) in G in such a way that O1 · · ·On ⊂ O.

By the continuity of ϕ, there are open neighbourhoods Vi and Ui of yi and t, respectively,

in X and [0, 1] such that Φ(Vi × Ui) ⊂ Oi, i = 1, . . . , n. Put Vy = V1 × · · · × Vn and

Uy =
⋂n

i=1 Ui. Then y ∈ Vy, t ∈ Uy, and

Φ(in(Vy)× Uy) = Φ(V1 · · ·Vn × Uy) ⊂ O1 · · ·On ⊂ O.

By the Wallace theorem, we can find open neighbourhoods W and Wt of the set i←n (h) and

of the point t, respectively, in X
n

and [0, 1] satisfying

W ×Wt ⊂
⋃
{Vy × Uy : y ∈ i←n (h)}.

Since the mapping in : X
n → Bn(X) is perfect, there exists an open neighbourhood Wh of

h in Bn(X) such that i←n (Wh) ⊂ W . The sets Wh and Wt satisfy Φ(Wh ×Wt) ⊂ O. Hence,

Φ is continuous on Bn(X)× [0, 1], and the lemma is proved. �
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Theorem 7.10.7. If X and Y are M-equivalent compact spaces, then the groups [X, G]

and [Y, G] of homotopy equivalent classes of mappings from X and Y , respectively, to G are
isomorphic.

Proof. Since X and Y are M-equivalent, there exists a topological isomorphism

ϕ : F (X) → F (Y ). Therefore, we can identify the groups F (X) and F (Y ); then each

of the spaces X and Y becomes a topological basis of this topological group, that will

be denoted by H . Every continuous mapping f : X → G defines a continuous mapping

ϕ(f ) : Y → G by the rule ϕ(f ) = f̃ �Y , where f̃ is the extension of f to a continuous

homomorphism of H to G. Similarly, every continuous mapping g : Y → G defines a

continuous mapping ψ(g) : X → G by the rule ψ(g) = g̃�X, where g̃ is the extension of g
to a continuous homomorphism of H to G. It is clear that ψ(ϕ(f )) = f and ϕ(ψ(g)) = g
for all f ∈ C(X, G) and all g ∈ C(Y, G). Moreover, from the definition of ϕ it follows that

ϕ(f1·f2) = ϕ(f1)·ϕ(f2) for all f1, f2 ∈ C(X, G). Since the mapping ϕ : C(X, G)→ C(Y, G)

is surjective, it must be a homeomorphism. Similarly, ψ : C(Y, G) → C(X, G) is a

homeomorphism. Since ψ ◦ ϕ and ϕ ◦ ψ are the identity automorphisms of C(X, G) and

C(Y, G), respectively, we conclude that ϕ and ψ are isomorphisms.

Finally, Lemma 7.10.6 implies that if f1 ∼ f2 in C(X, G) and g1 ∼ g2 in C(Y, G),

then ϕ(f1) ∼ ϕ(f2) in C(Y, G) and ψ(g1) ∼ ψ(g2) in C(X, G). Therefore, the mapping

ϕ∗ : [X, G] → [Y, G] defined by ϕ∗([f ]) = [ϕ(f )], is an isomorphism between the groups

[X, G] and [Y, G]. �

The above theorem permits to show that many non-homeomorphic compact spaces are

not M-equivalent either.

Example 7.10.8. The closed unit interval of the real line and the unit circle in the plane

are not M-equivalent.

Indeed, denote by X and Y the closed unit interval and the circle S1, respectively, and

let G = S1. Then the group [X, G] is trivial since every continuous mapping of X to S1 is

homotopic to a constant mapping (see [459]). However, the group [Y, G] is isomorphic to

Z [459]. Therefore, Theorem 7.10.7 implies that X and Y are not M-equivalent. �

A subspace Y of the free (Abelian) topological group G(X) is called a topological basis
of G(X) if Y is a free algebraic basis of G(X) and the maximal topological group topology

on the abstract group Ga(X) which induces on Y its original topology coincides with the

topology of the group G(X).

Clearly, if Y is a topological basis of F (X), then the groups F (X) and F (Y ) are

topologically isomorphic, that is, X and Y are M-equivalent. Conversely, if ϕ : F (X) →
F (Y ) is a topological isomorphism, then ϕ−1(Y ) is a topological basis for F (X). Similar

assertions are valid in the Abelian case. Therefore, to find non-trivial examples of M- and

A-equivalent spaces it suffices to know how to construct topological bases of free (Abelian)

topological groups. The following fact about topological bases is almost immediate.

Lemma 7.10.9. Every topological basis Y of the group G(X) is closed in G(X).

Proof. Let ϕ : G(Y ) → G(X) be a topological isomorphisms extending the identity

embedding of Y into G(X). By a) of Theorem 7.1.13, Y is closed in G(Y ), so the image

ϕ(Y ) = Y is closed in G(X). �
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The notion of a topological basis is especially useful when one tries to establish that

certain topological properties are invariant under M- or A-equivalence relations.

Theorem 7.10.10. Pseudocompactness is an A-invariant property.

Proof. Let X and Y be some A-equivalent spaces, and suppose that Y is pseudocom-

pact. Then we can assume that Y is a topological basis of the group A(X). Assume that X
is not pseudocompact. Then X contains a discrete family γ = {Ui : i ∈ ω} of non-empty

open sets. For every i ∈ ω, choose a point xi ∈ Ui.

For g ∈ A(X) and x ∈ X, denote by d(x, g) the coefficient k that stands at x in the normal

form of g with respect to the basis X. In other words, if g = kx + k1x1 + · · ·+ knxn where

x, x1, . . . , xn are pairwise distinct elements of X and k, k1, . . . , kn ∈ Z, then d(x, g) = k. In

particular, d(x, g) = 0 iff x does not appear in the normal form of g.

Since Y is an algebraic basis of A(X), for every i ∈ ω there exists yi ∈ Y such that

d(xi, yi) = 0. Let ti,1, . . . , ti,ni be all letters distinct from xi which appear in the normal form

of yi (possibly, ni = 0). Choosing a subsequence of {yi : i ∈ ω}, we can additionally

assume that d(xj, yi) = 0 whenever i < j.

By induction on n ∈ ω, we define continuous real-valued functions fn on X as follows.

First, we put f0 ≡ 0. Suppose that for some n ≥ 1 we have defined the functions

f0, . . . , fn−1. Put gn =
∑n−1

i=0 fi. Then there exists a continuous real-valued function

fn on X that takes the value 0 on X \ Un and at each point ti,j with i ≤ n that belongs to

Un, and also satisfies

fn(xn) = n +
∑

j

|bn,jgn(tn,j)|, (7.33)

where bn,j = d(tn,j, yn) and the sum in (7.33) is taken over all j such that tn,j ∈
U0 ∪ · · · ∪ Un−1. This completes our construction.

Since the family γ is discrete, the function f =
∑

n∈ω fn is continuous on X and the

functions f, fn, gn+1 coincide on Un, for each n ∈ ω. In addition, the definition of f implies

that for all n ≥ 1 and all j,

f (tn,j) = 0 whenever tn,j /∈ U0 ∪ · · · ∪ Un−1. (7.34)

Extend f to a continuous homomorphism f̃ : A(X)→ R. From (7.33) and (7.34) it follows

that |f̃ (yn)| ≥ n, for each n ∈ ω. As {yn : n ∈ ω} ⊂ Y , we conclude that Y is not

pseudocompact. This contradiction completes the proof. �

Let us show that a similar statement holds for compact spaces.

Theorem 7.10.11. [M. I. Graev] Let X and Y be any A-equivalent spaces.

a) If X is compact, then so is Y .
b) If X is compact and metrizable, then so is Y .

In other words, compactness is A-invariant and, in the presence of compactness, metriz-
ability is A-invariant as well.

Proof. a) We can assume that Y is a topological basis in the group A(X). By

Lemma 7.10.9, Y is closed in A(X). Theorem 7.10.10 implies that Y is pseudocompact.

Hence, Y ⊂ Bn(X) for some n ∈ N, by Corollary 7.5.4. Therefore, Y is a closed subset of

the compact space Bn(X) and hence, Y is compact.
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b) Suppose that X is a compact metrizable space. As in a), Y is a closed subset of Bn(X),

for some n ∈ N. The spaces X = X⊕{e}⊕X−1 and X
n

are also compact and metrizable.

Therefore, Bn(X) is compact and metrizable, as the image of X
n

under the continuous

mapping in. The same conclusion for Y is immediate. �

Corollary 7.10.12. The class of NC-spaces is A-invariant.

Proof. Let X be an NC-space, and suppose that Y is a topological basis of the group

A(X). Since X is pseudocompact, Theorem 7.10.10 implies that so is Y . Hence, by

Corollary 7.5.4, Y ⊂ Bn(X), for some n ∈ N. By Lemma 7.10.9, Y is closed in A(X).

Therefore, Y is a closed subset of Bn(X). Similarly to b) of Theorem 7.10.11, consider

the multiplication mapping in : X
n → Bn(X). Clearly, X

n
is an NC-space. Theorem 7.8.6

implies that in is a closed continuous mapping of X
n

onto Bn(X) and hence, Bn(X) is an

NC-space, by Proposition 7.8.4. The same conclusion is valid for the closed subspace Y of

Bn(X). �

Similar methods enable us to establish the A-invariance of a number of topological

properties.

Proposition 7.10.13. Let τ be an infinite cardinal. The following topological
properties or classes of spaces are A-invariant:

a) σ-compactness;
b) σ-boundedness;
c) Dieudonné completeness;
d) the class of paracompact σ-closed-metrizable spaces;
e) the class of paracompact σ-spaces;
f) the class of spaces X with nw(X) ≤ τ;
g) the class of spaces X satisfying d(X) ≤ τ;
h) the class of spaces X with dc(X) ≤ τ+.

Proof. Let Y be a topological basis of the group A(X).

a) If a space X is σ-compact, then so is the group A(X). The topological basis Y for A(X)

is closed in A(X) and, hence, is σ-compact.

b) Let Y =
⋃

n∈ω Kn be a σ-bounded space, where each Kn is a bounded subset of Y . For

every g ∈ A(X), denote by supp(g) the finite set of letters that appear in the normal form of

g with respect to the basis X. For every n ∈ ω, put

Bn =
⋃
{supp(g) : g ∈ Kn}.

By Corollary 7.5.6, every Bn is bounded in X. Since X and Y are algebraic bases of A(X),

we have that X =
⋃

n∈ω Bn. Therefore, the space X is σ-bounded.

c) Suppose that X is a Dieudonné complete space. By Theorem 7.9.6, the group A(X) is

Raı̆kov complete. Since Y is a closed subset of A(X), the group uniformity  of A(X)

induces on X a complete uniformity Y . The universal uniformity �Y of the space Y is

finer than Y , so the uniform space (Y, �Y ) is complete. Hence, Y is Dieudonné complete.

d) If X is a paracompact σ-closed-metrizable space, then so is the group A(X), by

Theorem 7.6.8. Since Y is a closed subspace of A(X), it follows that Y is a paracompact

σ-closed-metrizable space as well.
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e) Suppose that X is a paracompact σ-space. Then A(X) is also a paracompact σ-space,

according to Theorem 7.6.7, and the conclusion about Y follows as in d).

f) Follows directly from Corollary 7.1.17.

g) Let �(τ) be the class of spaces X satisfying d(X) ≤ τ. It is clear that this class is

closed under countable sums, finite products and taking continuous images. It follows that

d(A(X)) ≤ τ, for each X ∈ �(τ).

Conversely, suppose that A(X) ∈ �(τ), for some space X. Let S be a dense subspace

of A(X) with |S| ≤ τ. For every g ∈ S, take a finite set D(g) ⊂ X such that g ∈ 〈D(g)〉,
and let D =

⋃
g∈S D(g). We claim that D is dense in X and, hence, d(X) ≤ τ. Indeed,

it follows from the definition of D that S ⊂ 〈D〉. Denote by F the closure of D in X.

By Theorem 7.4.5, the subgroup A(F, X) of A(X) generated by F is closed in A(X) and,

evidently, S ⊂ 〈D〉 ⊂ A(F, X). Since S is dense in A(X), it follows that A(F, X) = A(X),

whence F = X. We conclude that d(X) ≤ τ.

Combining the two inequalities, we obtain that d(A(X)) = d(X). This finishes the

proof of g).

h) By Theorem 7.7.8, dc(X) ≤ τ+ is equivalent to the τ-narrowness of the group

A(X) ∼= A(Y ), so dc(Y ) ≤ τ+, by the same theorem. �

Intuitively, M- or A-equivalent spaces have to have many properties in common. The

following result provides some precise general information in this direction.

Theorem 7.10.14. If X and Y are M-equivalent spaces, then Y can be represented as
the union of countably many subspaces each of which is homeomorphic to a subspace of X.

Proof. Let X and Y be some topological bases of the topological group G ∼= F (X) ∼=
F (Y ). For g ∈ G, denote by lX(g) and lY (g) the reduced lengths of g with respect to the

bases X and Y , respectively. For n ∈ N, put

Cn(Y ) = {g ∈ G : lY (g) = n}.
In addition, for n ∈ N and v = (m1, . . . , mn) ∈ Nn, we define a subset Yv of Y as follows:

Yv = Y ∩
n∏

i=1

(X ∩ Cmi (Y )),

where the product is taken in the group G. Clearly, Y =
⋃{Yv : v ∈ Σ}, where

Σ =
⋃{Nn : n ∈ N}.
Let n ∈ N and v = (m1, . . . , mn) ∈ Nn be arbitrary. For every i = 1, . . . , n, denote by

ϕi the mapping from Yv to X assigning to g ∈ Yv the point of X that appears at the ith place

in the reduced form of g with respect to the basis X. Similarly, for every j = 1, . . . , mi,

denote by ψi,j the mapping from Cmi (Y ) to Y assigning to an element h ∈ Cmi (Y ) the letter

of Y that appears at the j-th place in the reduced form of h with respect to the basis Y . By

b) of Theorem 7.1.13, the mappings ϕi and ψi,j are continuous.

Suppose that y ∈ Yv, where v = (m1, . . . , mn) ∈ Nn. Then we can write

y = xε1

1 · · · xεn
n , where xi ∈ X, εi = ±1

and for every i = 1, . . . , n,

xi = yδi,1

i,1 · · · y
δi,mi
i,mi

, where yi,j ∈ Y, δi,j = ±1.
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Therefore,

y =

n∏
i=1

(

mi∏
j=1

y
δi,j

i,j )εi .

Since Y is a free basis in G, we must have y = yi,j for some i, j. Hence y belongs to the set

Cv
i,j of fixed points of the mapping ψi,j ◦ ϕi. In addition, ϕi : Cv

i,j → X is a homeomorphic

embedding: its inverse is ψi,j . It remains to note that Y is the union of the subspaces Cv
i,j ,

where v = (m1, . . . , mn) ∈ Nn, n ∈ N, i = 1, . . . , n, and j = 1, . . . , mi. The proof is

complete. �

Recall that a topological property � is hereditary if every subspace of a space with �
also has �. The property � is said to be countably additive if every space X, that can be

represented as the union of a countable family of its subspaces Xn with the property �, also

has �. Theorem 7.10.14 implies the following fact immediately.

Corollary 7.10.15. Let � be a hereditary countably additive topological property.
Then � is M-invariant.

Since the classes of Lindelöf perfectly normal spaces and of σ-discrete spaces are

hereditary and countably additive, we have two more results.

Corollary 7.10.16. If Lindelöf spaces X and Y are M-equivalent and X is perfectly
normal, so is Y .

Corollary 7.10.17. The class of σ-discrete spaces is M-invariant.

We have seen in Theorems 7.10.3, 7.10.11, and 7.10.11 that A-equivalence preserves

connectedness, compactness and pseudocompactness. Many other topological properties,

such as Dieudonné completeness, σ-compactness, σ-boundedness, σ-discreteness, as

well as the classes of paracompact σ-spaces and of Lindelöf perfectly normal spaces,

are also stable with respect to the A-equivalence, according to Proposition 7.10.13 and

Corollaries 7.10.16 and 7.10.17.

However, many important topological properties fail to be M- or A-invariant. In

particular, metrizability, local compactness, the first and second countability conditions

are among them. Let us show this.

Recall that the countable fan is a space obtained as follows. Let {Ci : n ∈ ω} be a

countable family of pairwise disjoint convergent sequences Ci = {xi} ∪ {xi,j : j ∈ ω},
where xi is the limit of the sequence {xi,j : j ∈ ω}, i ∈ ω. Denote by X the topological

sum of these sequences, X = ⊕i∈ωCi. Let Z be the quotient space of X obtained by gluing

the closed subset F = {xi : i ∈ ω} of X to a point. Then Z is called a countable fan. It

is well known (and easy to verify) that Z is a kω-space, but it is neither first-countable nor

locally compact. The next example shows that the spaces X and Z are M-equivalent.

Example 7.10.18. [M. I. Graev] The topological sum X of countably many convergent

sequences and the countable fan Z are M-equivalent spaces. Therefore, M-equivalence does

not preserve metrizability, local compactness, the first and second countability.

Indeed, let X = ⊕i∈ωCi be the topological sum of pairwise disjoint sequences

Ci = {xi}∪{xi,j : j ∈ ω}, i ∈ ω. Then X is evidently second-countable, metrizable, locally

compact space. Clearly, X is a kω-space with kω-decomposition X =
⋃∞

n=0 Dn, where
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Dn =
⋃n

i=0 Ci for each n ∈ ω. Therefore, Theorem 7.4.1 implies that F (X) is a kω-space

with kω-decomposition F (X) =
⋃∞

n=0〈Dn〉n. Since 〈Dn〉n ⊂ F (Dn, X) and each subgroup

F (Dn, X) is closed in F (X) by Theorem 7.4.5, we conclude that {F (Dn, X) : n ∈ ω} is a

generating family for F (X).

Consider the subspace

Y = {xi : i ∈ ω} ∪
⋃
i∈ω

x0x−1
i Ci

of the group F (X). It is easy to verify that Y is a free algebraic basis of F (X). We claim that

Y is a topological basis of F (X). Indeed, suppose that �′ is the maximal group topology

on Fa(X) which induces on Y its original topology, i.e., the subspace topology it inherits

from F (X). Clearly, �′ is finer than the topology � of F (X). Since translations in every

topological group are homeomorphisms, �′ induces the original topology on each subspace

Ci of F (X). In addition, X is the topological sum of its subspaces Ci’s, so from � ⊂ �′ it

follows that �′�X = ��X. However, � is the maximal group topology on X which induces

on X its original topology, so that �′ = �. This proves our claim. Therefore, X and Y are

M-equivalent. By Lemma 7.10.9, Y is closed in F (X).

It remains to verify that Y is homeomorphic to the countable fan Z. Put Y0 =⋃∞
i=0 x0x−1

i Ci and consider the onto mapping f : X → Y0 defined by f (x) = x0x−1
i x for

each x ∈ Ci, i ∈ ω. Then f is continuous since its restriction to every Ci is continuous. Put

P = {xi : i ∈ ω}. Note that f−1f (x) = {x} for each x ∈ X\P and P = f−1f (xi) for each

i ∈ ω. In other words, Y0 is obtained from X by collapsing the set P to a point. In particular,

for every i ∈ ω, f (Ci) is a non-trivial sequence in Y0 converging to the point x0 ∈ Y , and

f (Ci) ∩ f (Cj) = {x0}, for all distinct i, j ∈ ω. Note that Y0 ∩ F (Dn, X) = f (Dn) is

compact and closed in F (Dn, X) for each n ∈ ω, so Y0 is closed in F (X) and the family

{f (Dn) : n ∈ ω} is generating for Y0. Hence, the mapping f : X → Y0 is quotient, and Y0

is homeomorphic to Z.

Finally, P = X ∩ Y is closed in Y , Y0 is closed in F (X) and in Y , and P ∩ Y0 = {x0}.
Since the set P is discrete, we conclude that Y is homeomorphic to the topological sum of

Y0 with the countable discrete space P ′ = P \ {x0}. Hence, Y is homeomorphic to the

countable fan Z. This completes the proof. �

Exercises

7.10.a. Let us call Tychonoff spaces X and Y H-equivalent if the spaces F (X) and F (Y ) are

homeomorphic. Prove the following statements for H-equivalent spaces X and Y :

(a) If X is a cosmic space, then Y is also cosmic;

(b) If X is separable, then Y is separable;

(c) If X and Y are compact spaces, then the weight of X is equal to the weight of Y ;

(d) If X is σ-compact, then so is Y ;

(e) If X is a kω-space, then Y is also kω-space;

(f) If X is a Lindelöf P-space, then so is Y ;

(g) If X is submetrizable, then Y is also submetrizable;

(h) If X and Y are compact spaces and the tightness of X is countable, then the tightness

of Y is countable as well;

(i) The class of paracompact σ-closed-metrizable spaces is H-invariant.
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Problems

7.10.A. (S. A. Morris and H. B. Thompson [331]) Let S = {xn : n ∈ ω} ⊂ F (X) be a non-trivial

sequence converging to the identity e of F (X). Show that 〈S〉 contains a closed subgroup

topologically isomorphic to F (S′), where S′ = S ∪ {e}.

Hint. Construct an infinite subset T of S satisfying the following conditions:

(i) T is a free algebraic basis for 〈T 〉;
(ii) T is regularly situated in F (X).

Then apply 3) of Exercise 7.5.a.

7.10.B. (S. A. Morris and H. B. Thompson [331]) Let X be an arbitrary Tychonoff space. Prove that

every metrizable subgroup of F (X) is discrete.

Hint. Use Problem 7.10.A and Exercise 7.4.b.

7.10.C. Prove that every Fréchet-Urysohn subgroup of F (X) is discrete, for any Tychonoff space X.

Hint. Use the facts established in Problem 7.10.A and Exercise 7.6.b.

7.10.D. (P. Nickolas [346]) Show that if X is a kω-space, then F (X) contains a closed subgroup

topologically isomorphic to F (X × X).

Hint. Apply Exercise 7.4.b to verify that the subgroup of F (X) generated by the set

{xyx : x, y ∈ X} is as required.

7.10.E. (E. Katz, S. A. Morris, and P. Nickolas [274]) A subspace Y of the free topological group

F (X) is enjoyably embedded in F (X) if for some a ∈ X, the subspace Z = {y−1ay : y ∈ Y}
of F (X) is homeomorphic to Y , and 〈Z〉 ∼= F (Z). Prove that if X is a kω-space, and a closed

subset Y of F (X) satisfies 〈Y〉 ⊂ 〈X \ {a}〉, then Y is enjoyably embedded in F (X).

Hint. Consider the subspace Z = {y−1ay : y ∈ Y} of F (X). Note that Z is closed in F (X)

and forms a free algebraic basis of the subgroup 〈Z〉 of F (X). Then apply Exercise 7.4.b to

deduce that 〈Z〉 ∼= F (Z). Finally, to show that Y and Z are homeomorphic, verify that if

X =
⋃

n∈ω
Xn is a kω-decomposition of X, then Z =

⋃
n∈ω

Zn is a kω-decomposition of Z,

where Zn = Z ∩ Bn(Xn) for each n ∈ ω.

7.10.F. (E. Katz, S. A. Morris, and P. Nickolas [274]) Let X be a kω-space with at least two

points. Prove that if Y is a closed subspace of F (X), then F (X) contains a closed subgroup

topologically isomorphic to F (Y ).

Hint. Apply Problem 7.10.D to find a closed subgroup of F (X) topologically isomorphic to

F (X × X). For a fixed point b ∈ X, the closed subspace X × {b} of X × X generates a

closed subgroup of F (X × X) topologically isomorphic to F (X). Therefore, if a ∈ X and

a �= b, then the subgroup 〈X × X \ {(a, b)}〉 of F (X × X) contains a closed copy of Y .

Apply Problem 7.10.E to conclude that this copy of Y is enjoyably embedded in F (X × X).

7.10.G. (E. Katz, S. A. Morris, and P. Nickolas [274]) Show that if the free topological group F (X)

on a Tychonoff space X contains a non-trivial convergent sequence, then F (X) contains a

closed subgroup topologically isomorphic to F (Z), where Z is a countable fan.

Hint. By Problem 7.10.A, one can assume that X = {x0} ∪ {xn : n ∈ N} is a convergent

sequence with its limit x0, where xi �= xj if i �= j. For every natural n, let yn = x−1
0 xn

and Z1 = {yn : n ∈ ω}. Then Z1
∼= X is a compact subset of F (X) which contains the

identity of F (X). Apply Exercise 7.4.b and Problem 7.10.F to verify that Z =
⋃∞

m=1
Zm is

as required, where Zm = {ym
n : n ∈ ω} for each m ≥ 1. Use the fact that Z =

⋃∞
m=1

Z∗
m is

a kω-decomposition of Z, where Z∗
m =

⋃m

k=1
Zk for each m ≥ 1.

7.10.H. (E. Katz, S. A. Morris, and P. Nickolas [273]) Prove that A(J) is topologically isomorphic

to a closed subgroup of A(I), where I = [0, 1] and J = (0, 1).

Hint. First, construct a closed subgroup of A(I) topologically isomorphic to A(J ′), where

J ′ = [0, 1). For every n ∈ ω, define a mapping fn of In = [n/(n + 1), (n + 1)/(n + 2)]

to Jn = [0, (n + 1)/(n + 2)] by fn(x) = (n + 1)2x − n(n + 1). Then consider a mapping
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ϕ : J ′ → A(I) defined by

ϕ(x) = (n + 1)x + fn(x) for x ∈ In,

where “+” between (n + 1)x and fn(x) denotes addition in A(I). Verify that ϕ is continuous

and one-to-one. For every n ∈ ω, put Yn = ϕ(Jn). Then ϕ : Jn → Yn is a homeomorphism.

Note that Bn+2(I) ∩ ϕ(J ′) = Yn for each n ∈ ω, and deduce that Y = ϕ(J ′) is a kω-space

with a kω-decomposition Y =
⋃

n∈ω
Yn. Therefore, ϕ is a closed mapping and, hence, ϕ is

a homeomorphism of J ′ onto Y . Then show that Y is a free algebraic basis for the subgroup

〈Y〉 of F (I) and apply Exercise 7.5.b to conclude that 〈Y〉 ∼= A(Y ).

Modify the above argument to show that A(J ′) contains a closed subgroup topologically

isomorphic to A(J).

7.10.I. Is A(J) a topological quotient of A(I), where I = [0, 1] and J = (0, 1)?

7.10.J. Is A(I) a topological quotient of A(J)?

7.10.K. (K. Eda, H. Ohta, and K. Yamada [156]). Let κ be an infinite cardinal and Y be one of the

spaces R, Q, R \Q, βω, βω \ ω, 2κ, where each of them carries its usual topology (so that

the last three spaces are compact). Prove that if X is an arbitrary Tychonoff space and F (X)

or A(X) contains a topological copy of Y , then so does X.

Hint. Note that every non-empty open subset of Y contains a copy of Y , i.e., Y is densely
self-embeddable. Apply Exercise 7.4.h to show that if Y is first-countable and Y ⊂ F (X)

(or Y ⊂ A(X)), then the interior of Y ∩ Bn(X) in Y is not empty for some n ∈ ω. The

Baire category theorem implies the same conclusion if Y is compact. Since Y is densely

self-embeddable, there is the minimal k ∈ ω such that Bk+1(X)\Bk(X) contains a copy of Y .

Then apply b) of Theorem 7.1.13 and Proposition 7.1.14 along with the fact that the space

Y is prime in the sense that if Y ⊂ P × Q, then either P or Q contains a copy of Y .

7.10.L. (P. Gartside, E. A. Reznichenko, and O. V. Sipacheva [187]) Show that there exists a Lindelöf

topological group G satisfying c(G) = 2ω.

7.10.M. Let τ be an infinite cardinal and X be an arbitrary pseudo-τ+-compact space. Prove that the

groups F (X) and A(X) are τ-steady if and only if the space X is τ-stable.

7.10.N. Show that the unit circle S1 and the closed unit interval I are not H-equivalent.

7.10.O. Is the closed unit interval I = [0, 1] H-equivalent to the square I × I?

7.10.P. Give an example of M-equivalent Tychonoff spaces X and Y such that X is a k-space, but Y
is not.

7.10.Q. Give an example of M-equivalent Tychonoff spaces X and Y such that the tightness of X is

countable and the tightness of Y is uncountable.

7.10.R. (O. G. Okunev [359]) Show that the M-equivalence relation does not preserve the Fréchet–

Urysohn property in the class of compact spaces.

Hint. Let X and Y be compact scattered spaces constructed by P. Simon in [448]. Then X
and Y are Fréchet–Urysohn, but the product space X×Y fails to be Fréchet–Urysohn. Apply

Okunev’s method from [358] of constructing M-equivalent spaces to take a quotient space

Z of X × Y which is Fréchet–Urysohn and is M-equivalent to X × Y .

7.10.S. Prove that if X and Y are M-equivalent, then the spaces Cp(X) and Cp(Y ) of continuous

real-valued functions on X and Y , respectively, with the topology of pointwise convergence,

are linearly homeomorphic, i.e., there exists a linear homeomorphism of Cp(X) onto Cp(Y ).

7.10.T. Show that the class of regular Lindelöf spaces is M-invariant.

Hint. See [524].

7.10.U. Let I = [0, 1] be the closed unit interval. Prove that A(X) admits an embedding into A(I)

as a topological subgroup if and only if X is homeomorphic to a closed subspace of A(I).

Hint. See [290].



511

7.10.V. Prove that for any finite-dimensional compact metrizable space X, the free topological group

F (X) is topologically isomorphic to a closed subgroup of F (I), where I is the closed unit

interval.

Hint. See [290].

7.10.W. Does H-equivalence preserve connectedness?

Open Problems

7.10.1. Let X and Y be M-equivalent completely regular spaces, and suppose that X is countably

compact. Is Y countably compact?

7.10.2. Give an example of a Tychonoff space X such that F (X) does not contain a subgroup

topologically isomorphic to F (X) × F (X).

7.10.3. Are the Sorgenfrey line and its square H-equivalent?

7.10.4. Is there an uncountable Tychonoff space X such that the topological group A(X) can be

represented as a continuous image of the Sorgenfrey line?

7.10.5. Is the class of regular hereditarily Lindelöf spaces H-invariant?

7.10.6. Is the class of regular Lindelöf spaces H-invariant?

7.11. Historical comments to Chapter 7

Free topological groups were introduced in 1941 by A. A. Markov in the short note

[305]. The complete construction, about 50 pages long, appeared four years latter, in

[308], where several basic properties of free topological groups over Tychonoff spaces were

established. In particular, Theorems 7.1.1, 7.1.2, 7.1.5, 7.1.7, and the last part of item a) of

Theorem 7.1.13 can be found in [308]. The latter result, i.e., the fact that every Tychonoff

space X is (homeomorphic to) a closed subspace of F (X), enabled Markov to answer in the

negative Kolmogorov’s question as to whether every topological group is a normal space

(see Corollary 7.1.15).

The proof of the existence of free topological groups given in Theorem 7.1.2 is due to

S. Kakutani [265] which seems to be the shortest one. The importance of free topological

groups was immediately recognized by specialists and, in general, by the mathematical

community. Two more existence proofs appeared quite soon after the original Markov’s

article [305] had been published. One of them, by T. Nakayama [338], generalizes Markov’s

construction to free topological groups over uniform spaces (see Exercise 7.2.d), while the

other, due to M. I. Graev [201], is based on extending continuous pseudometrics from a

space X to invariant continuous pseudometrics on F (X) (or A(X)). Such an extension is

described in Theorem 7.2.2 and is widely used in Chapter 7. Graev’s extension is maximal

among all invariant extensions of a given pseudometric from X to F (X), but there are quite

a few natural constructions of invariant extensions of pseudometrics — the article [328] by

S. A. Morris and P. Nickolas contains descriptions of the most important of them.

Theorem 7.1.5 is usually formulated by saying that the free topological group F (X)

on a Tychonoff space X has a complete system of continuous unitary representations. This

result appeared in [338]; our proof of it follows the scheme outlined in [202]. The major

part of the results of Section 7.1 can be found in [308] or in [201, 202], with just a few

exceptions. For example, items a) and b) of Theorem 7.1.13 appeared for the first time in

[18] and in [19], and several years later, in [216]. It is worth noting that a closed embedding

of Xn into A(X), for a Tychonoff space X and an arbitrary integer n ≥ 1, was constructed

Historical comments to Chapter 7
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by B. V. S. Thomas in [464]. Corollary 7.1.19 is due to Arhangel’skii’s [19]; this result was

rediscovered by C. Joiner in [261].

Theorem 7.2.2 on extension of pseudometrics is, as we have just mentioned, due to

M. I. Graev [201]. Apparently, the description of a local base at the identity of the free

Abelian topological group A(X) in terms of continuous pseudometric on X in Theorem 7.2.7

was known to Graev, but appeared explicitly in [345] and [309] (it can also be found in [470]).

Theorem 7.2.9 was proved by Graev in [202] (see also [329]). Theorem 7.2.11 is a part of

the folklore; as far as we know, its proof appears here for the first time. Corollary 7.2.12, a

special case of Theorem 7.2.11, is due to V. G. Pestov [373].

Theorem 7.3.1 on an extension of a compact group by a metrizable group appeared in

[410]; our exposition follows V. G. Pestov’s article [374]. Theorem 7.3.2 and Corollary 7.3.3

are apparently new.

Direct limits of topological spaces appeared at the very beginning of the development of

general topology. The concept of kω-space widely used in Section 7.4 plays an important role

both in General Topology and Topological Algebra. The reader can find useful information

on this subject in [174]. Theorem 7.4.1 on free topological groups over kω-spaces was proved

by J. Mack, S. A. Morris, and E. T. Ordman in [297], thus generalizing an earlier Graev’s

theorem in [201] about free topological groups on compact spaces (see Corollary 7.4.2).

Our proof of Theorem 7.4.1 mimics the argument from [19]. Theorem 7.4.5 is due to

M. I. Graev’s [201]. Proposition 7.4.7 is a part of the folklore; for example, the fact that

the free (Abelian) topological group on a P-space is a P-group was used in [22] and [469].

Proposition 7.4.8 appeared in [473]. Lemma 7.4.10 and Corollary 7.4.12 were proved by

M. Graev in [201], while Theorem 7.4.11 follows immediately from Theorem 7.4.1 and

Lemma 7.4.10 (see [247]).

Lemma 7.5.1 on a continuous function separating points of a countable set in a

Tychonoff space appeared in [142]; it follows from a slightly more general fact established by

A. V. Arhangel’skii, O. G. Okunev, and V. G. Pestov in [58]. Lemma 7.5.2 and Theorem 7.5.3

were proved in [142]. Corollary 7.5.6 on bounded subsets of free topological groups

appeared in [102], the corresponding argument was corrected in [58]. Corollary 7.5.6 also

follows from the results obtained in [453]. Corollary 7.5.7 characterizing σ-boundedness

of free topological groups was proved in [476].

Metrizable subspaces of free topological groups is a subject of many research articles.

Decomposing a topological group into the union of a countable family of metrizable

subspaces frequently helps to clarify the topological properties of the group. V. K. Bel’nov

in [71] established Proposition 7.6.1, Theorem 7.6.2, and Corollary 7.6.3 (it was pointed out

in [24] that the original arguments by Bel’nov from [71] had some small and easily corrected

inaccuracy). Theorems 7.6.6, 7.6.7, and 7.6.8 appeared in [24], as well as Corollary 7.6.9.

In fact, the latter result had originally been proved in [23], and then the argument was refined

in [24].

Theorem 7.6.15 and its proof based on Theorems 7.6.10, 7.6.11, and 7.6.13 are

apparently new. A subtle combination of these facts together with arguments from [24]

resulted in the proof of Theorem 7.6.16 which appears here for the first time. Theorem 7.6.18

and Corollary 7.6.19 are from [24].

The study of the question of when the free (Abelian) topological group on a given

Tychonoff space X is sequential or a k-space goes back to T. H. Fay, E. T. Ordman, and
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B. V. S. Thomas. They showed in [167] that the free topological group over the space

of rationals Q is neither sequential nor a k-space (which is Corollary 7.6.21). C. Borges

observed in [79] that the free topological group over a locally compact metrizable space

need not be a k-space either. A. V. Arhangel’skii, O. G. Okunev, and V. G. Pestov gave

in [58] a complete characterization of metrizable spaces X for which the free topological

group F (X) or the free Abelian topological group A(X) is a k-space. Theorems 7.6.20,

7.6.30, 7.6.36, and Proposition 7.6.29 are all from [58]. It is worth noting that the

corresponding characterizations in the Abelian and non-Abelian cases are quite different, as

Theorems 7.6.30 and 7.6.36 show. To some extent, Proposition 7.6.31 and Corollary 7.6.32

are new. Their proofs are built on ideas from [201, 58, 142].

Additional information on the k-property in subspaces of free topological groups is

given in the problem sections of Chapter 7 and in the articles [538, 539, 541, 542] by

K. Yamada.

An interesting open problem is to characterize the class of Tychonoff spaces X such

that the group A(X) (or F (X)) has countable tightness. According to Corollary 7.4.9, every

kω-space of countable tightness is in this class. The case of metrizable spaces is especially

important; the results of Section 7.6 resolve it completely. Every non-separable metrizable

space admits a quotient mapping onto a space containing a copy of a sequential fan V (ℵ1)

with uncountably many spines. Hence, the first step toward the solution of the problem is

Lemma 7.6.22, on the tightness of V (ℵ1)2, which is due to G. Gruenhage and Y. Tanaka

[205]. Proposition 7.6.24, Theorem 7.6.27, Corollary 7.6.28, as well as Lemma 7.6.33 and

Theorem 7.6.35 are all from [58]. Further calculations of the tightness of free Abelian

topological groups on metrizable space are given in [540].

When working with free topological groups, it is very important to know under which

conditions on a subspace X of a Tychonoff space Y , the subgroup F (X, Y ) of F (Y ) generated

by X is topologically isomorphic to the group F (X), under the natural isomorphism

extending the identity embedding of X to Y . Some instances of this situation were presented

in Corollaries 7.4.6 and 7.6.32. One of the main results of Section 7.7, Theorem 7.7.3, which

deals with the case when X is dense in Y , appeared (in an equivalent form) in the article

[369] by V. G. Pestov, and in a more general form, for free uniform topological groups,

in [354] by E. C. Nummela. A slightly weaker form of Lemma 7.7.1, as a step towards

the proof of Theorem 7.7.3, was given in [369]. In the Abelian case, the assumption

on the density of X in Y can be omitted. This is shown in Theorem 7.7.4 which was

proved in [470]. Corollary 7.7.5 is from [369], while Theorem 7.7.7 appeared in [474].

Theorem 7.7.8 characterizing τ-narrowness of free topological groups is essentially due to

A. V. Arhangel’skii and I. I. Guran (for quite a while, no published version of the proof

existed, see in this respect [471, p. 550] and [142, Lemma 3.2]).

The class of NC-spaces as well as concordant mappings introduced in Section 7.8

were considered in [473, 483] (no name was given to NC-spaces there). Lemma 7.8.1,

Proposition 7.8.4, Lemma 7.8.5, Theorem 7.8.6, Lemma 7.8.7, and Theorem 7.8.8 are all

from [473]. Lemmas 7.8.2 and 7.8.3 can be found, with similar formulations, in [60].

Theorem 7.8.10, in a more general form, appeared in [280]. Theorem 7.8.13 is new, while

Corollary 7.8.15 is essentially from [473]. Some results of Section 7.8 were extended to

universal free topological algebras in [103].

Historical comments to Chapter 7
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The results of Section 7.9 are almost entirely from [470]. Lemma 7.9.1 is a weak form

of a result from [482], it fills in a small gap in the proof of Theorem 7.9.6 presented in [470].

O. V. Sipacheva extended Theorem 7.9.6 to free topological groups (see [452]).

The definition of M-equivalence relation go back to A. A. Markov’s article [308].

M. I. Graev was the first to undertake a thorough study of M- and A-equivalent spaces in

[201]. He proved Proposition 7.10.1, Theorem 7.10.3, and Lemma 7.10.4. Examples 7.10.5,

7.10.8, and 7.10.18 are also essentially from [201]. Lemma 7.10.6 and Theorem 7.10.7 were

proved by B. A. Pasynkov and V. Vylov in [367]. Lemma 7.10.9 and Theorem 7.10.10 on

the preservation of pseudocompactness under A-equivalence are due to Graev’s [201] (the

latter fact was not formulated by Graev in the form given here, but our argument in the proof

of Theorem 7.10.10 is an adaptation of that in [201, Lemma 9.1]). Theorem 7.10.11 is again

from [201]. Corollary 7.10.12 is new. Proposition 7.10.13 is a collection of several results

obtained by distinct authors. For example, items a), f), and g) of Proposition 7.10.13 go

back to [22] (the corresponding results were formulated there for M-equivalence, but the

same arguments work in the Abelian case as well). Item b) appeared (implicitly) in [476],

item c) originated in [470] (see also [29]). Items d) and e) are due to A. V. Arhangel’skii

(see [24]), and item h) is a part of the folklore (based on Guran’s results from [208]).

A prototype of Theorem 7.10.14 was proved by M. I. Graev in [201] and, in the present

form, by V. G. Pestov in [372]. Corollaries 7.10.15, 7.10.16, and 7.10.17 are also from

[372].



Chapter 8

R-Factorizable Topological Groups

In this chapter the reader is introduced to the theory ofR-factorizable topological groups.

Roughly, these are the groups whose algebraic and topological structure is most closely

related to continuous real-valued functions over them. When working with complicated

mathematical objects, a common but fruitful idea is to reduce their study to the study of

some kind of “countable reflections” of these objects and then to go back and apply new

knowledge to clarify the structure and properties of the original objects. Thousands of

implementations of this idea in Set Theory, General Topology, and Algebra have been

given. We present one of these here; it starts with the definition of R-factorizable groups.

Let G be a compact topological group and f a continuous real-valued function on G.

By Theorem 8.1.1 below, G contains a closed invariant subgroup N such that the quotient

group G/N is metrizable and f is constant on each coset xN of N in G. In other words,

one can define a real-valued function h on G/N such that f = h ◦π, where π : G→ G/N
is the quotient homomorphism. Since π is open, the function h is continuous. Clearly, the

group G/N has a countable base.

We isolate this property of compact groups and study the resulting class of R-factoriz-

able groups. We shall see in Sections 8.1 and 8.2 that this class contains, apart from compact

groups, arbitrary subgroups of σ-compact groups, all Lindelöf groups, and dense subgroups

of topological products of second-countable groups.

All spaces in this chapter are assumed to be Tychonoff unless a different separation

axiom is specified.

8.1. Basic properties

We start this section with a theorem on factorization of continuous real-valued functions

on compact topological groups that justifies the introduction of the class of R-factorizable

groups. The theorem will be considerably generalized in several directions in this section,

but it is a good point to start with.

Theorem 8.1.1. [L. S. Pontryagin] Let f be a continuous real-valued function on a
compact topological group G. Then there exists a closed invariant subgroup N of G such
that the quotient group G/N is metrizable, and f is constant on every coset of N in G.

Proof. We define a binary relation ∼ for elements a, b ∈ G by the rule a ∼ b if

f (xay) = f (xby), for all x, y ∈ G. It is immediate from the definition that this relation is

reflexive, symmetric, and transitive. Let N be the equivalence class containing the identity

e of G. Let us show that N is a closed invariant subgroup of G and the equivalence classes

are cosets of N in G.

A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies  515
in Mathematics 1, DOI 10.2991/978-94-91216-35-0_8, © 2008 Atlantis Press/World Scientific 
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Clearly,

N = {a ∈ G : f (xay) = f (xey) = f (xy) for all x, y ∈ G}.
For x, y ∈ G, define a function ϕx,y : G → R by ϕx,y(z) = f (xzy), for each z ∈ G. Since

the functions ϕx,y are continuous, the set N =
⋂

x,y∈G ϕ−1
x,y (ϕx,y(e)) is closed in G.

To show that N is a subgroup of G, take an arbitrary element a ∈ G. Then

f (xay) = f (xy) for all x, y ∈ G. Replacing x by xa−1 in the latter equality, we obtain

f (xy) = f (xa−1y); hence, a−1 ∈ N. Similarly, if b is another element of N, then

f (xaby) = f (xa(by)) = f (xby) = f (xy) for all x, y ∈ G. It follows that ab ∈ N
and, hence, N is a subgroup of G. In addition, if we take an arbitrary z ∈ G and

replace x by xz−1 and y by zy in the equality f (xay) = f (xy), we obtain immediately

that f (xz−1azy) = f (xy). Therefore, z−1az ∈ N, for each z ∈ G, and N is an invariant

subgroup of G.

Finally, if c, d ∈ G and c ∼ d, then f (xcy) = f (xdy), for all x, y ∈ G.

Replacing y by d−1y in this equality, we obtain f (xcd−1y) = f (xy), that is, cd−1 ∈ N.

Conversely, if cd−1 ∈ N, then f (xcd−1y) = f (xy), and replacing y by dy we deduce that

f (xcy) = f (xdy), for all x, y ∈ G. This proves that the equivalence classes of the relation

∼ coincide with the cosets of N in G.

Therefore, for any fixed x, y ∈ G, the function f (xay) with argument a is constant on

the coset A = aN. So, if B = bN for some b ∈ G, we can define


(A, B) = sup
x,y∈G

|f (xay)− f (xby)|.

The function 
 is correctly defined and we claim that 
 is a metric on G/N.

Clearly, 
(A, B) ≥ 0. Suppose that 
(A, B) = 0, where A = aN and B = bN.

Then f (xay) = f (xby) for all x, y ∈ G, whence a ∼ b and A = B. It is also clear that

f (B, A) = f (A, B). To verify the triangle inequality, we take arbitrary A = aN, B = bN,

and C = cN. Then


(A, C) = sup
x,y∈G

|f (xay)− f (xcy)|

≤ sup
x,y∈G

(|f (xay)− f (xby)|+ |f (xby)− f (xcy)|)
≤ sup

x,y∈G
|f (xay)− f (xby)|+ sup

x,y∈G
|f (xby)− f (xcy)|

= f (A, B) + f (B, C).

The next step is to verify the continuity of 
 with respect to the quotient topology on

G/N. Let U = {B ∈ G/N : 
(A, B) < ε} be a ball with center A = aN ∈ G/N and radius

ε > 0. The function ϕ : G3 → R defined by ϕ(x, b, y) = |f (xay)− f (xby)| is continuous,

and ϕ(x, a, y) = 0 for all x, y ∈ G. Therefore, one can find open neighbourhoods U(x, y),

V (x, y) and W (x, y) of x, a and y, respectively, in G such that

ϕ(U(x, y)× V (x, y)×W (x, y)) ⊂ [0, ε).

Since the family {U(x, y)×W (x, y) : x, y ∈ G} is an open covering of the compact space

G×G, there exist points (x1, y1), . . . , (xn, yn) in G×G such that

G×G =

n⋃
i=1

(U(xi, yi)×W (xi, yi)).
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Hence, V ∗ =
⋂n

i=1 V (xi, yi) is an open neighbourhood of a in G, and if b ∈ V ∗, then

ϕ(x, b, y) < ε for all x, y ∈ G. So, 
(A, B) < ε, where B = bN. In particular, the open

set V = π(V ∗) in G/N, where π : G → G/N is the quotient homomorphism, satisfies

A ∈ V ⊂ U. Hence, the metric 
 is continuous on the quotient group G/N, which means

that the topology generated by 
 on the set G/N is contained in the quotient topology of

G/N. Since the quotient group G/N is compact and Hausdorff, it follows that the quotient

topology of G/N and the topology generated by the metric 
 coincide. �

It is clear that the quotient group G/N in the above theorem is compact and metrizable.

Therefore, G/N has a countable base. This is the basic feature of the above construction

that we want to preserve in the general definition of R-factorizable groups that follows.

A topological group G is called R-factorizable if, for every continuous real-valued

function f on G, there exist a continuous homomorphism π : G → K onto a second-

countable topological group K and a continuous function h on K such that f = h ◦π. The

homomorphism π and the functions f, h in this definition make the following triangular

diagram commutative.

G
f ��

π

��

R

K

h
���������

We also say that the homomorphism π factorizes f or, equivalently, we write π ≺ f (see

also Section 1.7).

It is immediate from the above definition that every second-countable topological group

is R-factorizable. By Theorem 8.1.1, compact groups are R-factorizable as well. It also

follows from Lemma 1.7.1 and Corollary 1.7.5 that an arbitrary topological product of

second-countable topological groups is R-factorizable. To extend these results to wider

classes of topological groups, we have to establish several simple but useful facts.

The next result shows, in particular, that the real line R in the definition of R-factoriz-

ability can be replaced by the space Rω.

Lemma 8.1.2. Suppose that f : G→ X is a continuous mapping of an R-factorizable
group G to a Tychonoff space X with w(X) ≤ τ ≥ ω. Then one can find a continuous
homomorphism π : G→ K onto a topological group K with w(K) ≤ τ such that π ≺ f .

Proof. According to [165, Theorem 2.3.23], we can identify X with a subspace of Rτ .

For every α < τ, denote by pα the projection of Rτ to the αth factor. Then pα◦f : G→ R is a

continuous real-valued function, so we can find a continuous homomorphism πα : G→ Kα

onto a second-countable topological group Kα and a continuous real-valued function gα on

Kα such that pα ◦ f = gα ◦ πα. Denote by π the diagonal product of the homomorphisms

πα, with α < τ. Then π : G → ∏
α<τ Kα is a continuous homomorphism and the image

K = π(G) is a subgroup of the group Π =
∏

α<τ Kα satisfying w(Π) ≤ τ. Therefore,

w(K) ≤ τ. For every α < τ, let qα : Π → Kα be the projection. Then πα = qα ◦ π, for

each α < τ. Finally, denote by g the Cartesian product of the family {gα : α < τ}. Then

the mapping g : Π→ Rτ is continuous. In addition, the diagram below commutes.

Basic properties
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G
f ��

πα

��	
		

		
		

	

π

��

X
� � �� Rτ

pα

��
Kα

gα �� R

K
� � �� Π

qα



g

��

Indeed, it suffices to verify that f = g ◦ π or, equivalently, that pα ◦ f = pα ◦ g ◦ π
for each α < τ. This, however, follows from our definition of g and π:

pα ◦ g ◦ π = gα ◦ qα ◦ π = gα ◦ πα = pα ◦ f.

Therefore, the homomorphism π : G → K and the mapping h = g�K satisfy the equality

f = h ◦ π, i.e., π ≺ f . �

On one hand, every compact topological group is R-factorizable, by Theorem 8.1.1. On

the other hand, uncountable discrete groups seem to be very far from being R-factorizable.

Theorem 8.1.9 shows that this is indeed so. It requires several preliminary steps. The first

of them relates R-factorizable and ω-narrow groups.

Proposition 8.1.3. Every R-factorizable group is ω-narrow.

Proof. Let {fi : i ∈ I} be the family of continuous real-valued functions on an R-

factorizable topological group G. For every i ∈ I, define a continuous homomorphism

πi : G → Ki to a second-countable topological group Ki and a continuous function hi on

Ki such that fi = hi ◦ πi. Since the family {fi : i ∈ I} separates points and closed sets in

G, so does {πi : i ∈ I}. Therefore, the diagonal product π of the family {πi : i ∈ I} is a

topological isomorphism of G onto the subgroup H = π(G) of
∏

i∈I Ki. Every subgroup

of a topological product of second-countable groups is ω-narrow, by Proposition 3.4.3 and

Theorem 3.4.4. It follows that G is ω-narrow. �

We shall see in Example 8.2.1 that ω-narrowness does not imply R-factorizability.

However, the stronger condition of being Lindelöf does imply this. To prove this fact, we

need the following general lemma on factorization of continuous functions (no separation

axiom on the factors is assumed):

Lemma 8.1.4. Let S be a subspace of the product space X =
∏

i∈I Xi that satisfies
l(S) ≤ τ. Then, for every continuous real-valued function f on S, one can find a set J ⊂ I
with |J | ≤ τ and a continuous function h : πJ (S) → R such that f = h ◦ πJ�S, where
πJ : X → XJ =

∏
i∈J Xi is the projection.

Proof. For every n ∈ N, let γn be a covering of R by open intervals of length less than

1/n. Since f is continuous, for every x ∈ S and every n ∈ N there exists a canonical open

set Un(x) in X such that x ∈ Un(x) and f (Un(x)∩S) ⊂ V , for some V ∈ γn containing f (x).

It follows from l(S) ≤ τ that, for every n ∈ N, the covering {Un(x) : x ∈ S} of S contains

a subcovering μn with |μn| ≤ τ. Each element U ∈ μn depends on a finite coordinate set

J(U) ⊂ I, so we define Jn =
⋃{J(U) : U ∈ μn} and J =

⋃{Jn : n ∈ N}. It is clear that

|J | ≤ τ and U = π−1
J πJ (U), for each U ∈ μ =

⋃∞
n=1 μn.
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We claim that f (x) = f (y) for all x, y ∈ S satisfying πJ (x) = πJ (y). Indeed,

assume the contrary, and choose x, y ∈ S and n ∈ N such that πJ (x) = πJ (y) and

1/n < |f (x) − f (y)|. By the definition of μn, there are U ∈ μn and V ∈ γn such

that x ∈ U and f (U ∩ S) ⊂ V . From U = π−1
J πJ (U) and πJ (x) = πJ (y) it follows that

y ∈ U; hence f (x), f (y) ∈ V . Therefore, |f (x)− f (y)| < 1/n, contradicting the choice of

n.

By the above claim, there is a function h : πJ (S) → R such that f = h ◦ πJ�S. It

remains to show that h is continuous. Let y be an arbitrary point of Y = πJ (S), z = h(y),

and ε > 0 a real number. We can find n ∈ N such that 1/n < ε. Choose a point x ∈ S with

πJ (x) = y and an element U ∈ μn containing x. Clearly, f (x) = h(πJ (x)) = h(y) = z, so

there exists V ∈ γn such that f (U∩S) ⊂ V ⊂ Oε(z), where Oε(z) = {t ∈ R : |t−z| < ε}.
Then W = πJ (U) ∩ Y is an open neighbourhood of y in Y , and we have

h(W ) = h(πJ (U) ∩ Y ) = f (U ∩ S) ⊂ Oε(z).

Thus, h is continuous. �
Proposition 8.1.5. Let S be a Lindelöf subspace of an ω-narrow topological group H

and f a continuous real-valued function on S. Then there exists a continuous homomorphism
p : H → K onto a second-countable group K such that p�S ≺ f .

Proof. Since the group H is ω-narrow, Theorem 3.4.23 implies that H can be

embedded as a topological subgroup into a product Π =
∏

i∈I Hi of second-countable

topological groups. Let us identify H with its image under this embedding. By Lemma 8.1.4,

for every continuous function f : S → R, we can find a countable set J ⊂ I and a continuous

function h : πJ (S)→ R such that f = h◦πJ�S, where πJ : Π→∏
i∈J Hi is the projection.

Note that both πJ and its restriction p = πJ�H are continuous homomorphisms, and the

image K = πJ (H) is a second-countable topological group as a subgroup of the second-

countable group
∏

i∈J Hi. This completes the proof. �
The next theorem follows immediately from Proposition 8.1.5 in the special case when

S = H . It supplies us with many non-trivial examples of R-factorizable groups.

Theorem 8.1.6. [M. G. Tkachenko] Every Lindelöf topological group is R-factoriz-
able.

Since every space with a countable network is Lindelöf, the following fact follows

directly from Theorem 8.1.6:

Corollary 8.1.7. Every cosmic topological group is R-factorizable.

The notion of R-factorizability can naturally be extended to the classes of semitopolog-

ical, quasitopological, and paratopological groups. However, unlike the case of topological

groups, we have to specify an appropriate axiom of separation. For example, we say that

a regular paratopological group G is R3-factorizable if, for every continuous real-valued

function f on G, one can find a continuous homomorphism p : G → H onto a regular

paratopological group H with a countable base and a continuous real-valued function h
on H such that f = h ◦ p. Similarly, one defines R2-factorizable and R1-factorizable
paratopological groups, by restricting attention to Hausdorff and T1 paratopological groups,

respectively. It turns out that not all results established in this section can be extended to

paratopological groups, as the following example shows.

Basic properties
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Example 8.1.8. The Sorgenfrey line Z, with the usual sum operation, is a Lindelöf

paratopological group which is not R1-factorizable.

Indeed, let f : Z → R be the function of Z defined by f (x) = 1 if 0 ≤ x < 1 and

f (x) = 0 otherwise. Since the set J = [0, 1) is clopen in Z, f is continuous. Suppose

that there exist a continuous homomorphism π : Z → G of Z onto a T1 paratopological

group G and a continuous function g on G such that f = g ◦ π. We claim that π is a

homeomorphism.

If U is open in R, then π(f−1(U)) = g−1(U) is open in G and, clearly, f−1(U) =

π−1π(f−1(U)). Since J = f−1(0, 2), it follows that V = π(J) is open in G and

J = π−1(V ). Taking into account that π is a homomorphism, we have that x + J =

π−1π(x + J) = π−1(y + V ), where x ∈ Z and y = π(x). The sets J ∩ (x + J), with

−1 < x < 0, form a local base at zero in Z, and the above equalities imply that

[0, 1− x) = J ∩ (x + J) = π−1(V ∩ (y + V )),

where y = π(x). Each of the sets V ∩ (y + V ) is an open neighbourhood of the neutral

element 0G in G, so the preimages under π of elements of a neighbourhood base at 0G

in G constitute a local base at zero in Z. This means that π is an isomorphism and π−1

is continuous, that is, π is a homeomorphism. Since Z is not second-countable, it is not

R1-factorizable either. �

The following theorem characterizes R-factorizability in the class of locally compact

groups.

Theorem 8.1.9. A locally compact topological group is R-factorizable iff it is σ-
compact.

Proof. Every σ-compact topological group is Lindelöf and hence, R-factorizable,

by Theorem 8.1.6. Conversely, let G be an R-factorizable locally compact group. Then

Proposition 8.1.3 implies that G is ω-narrow. Choose an open neighbourhood U of the

identity in G with compact closure. There exists a countable set F ⊂ G such that the

translates xU, with x ∈ F , cover G. Since the closures of the sets xU are compact, we

conclude that G is σ-compact. �

Corollary 8.1.10. A discrete topological group is R-factorizable iff it is countable.

Theorem 8.1.6 extends the frontier of the class of R-factorizable groups by weakening

compactness to the Lindelöf property. However, we can move to another direction and

consider countably compact or pseudocompact topological groups. In what follows we

present more general results which imply, in particular, that all subgroups of compact

topological groups are R-factorizable. This will require, however, some work. We start

with the following useful lemma that will enable us to shorten arguments.

Lemma 8.1.11. Let G be a topological group with the property that for every continuous
function f : G→ R, there exists a continuous homomorphism π : G→ H onto an R-factor-
izable group H such that π ≺ f . Then the group G is R-factorizable.

Proof. Let f : G → R be a continuous function. By the assumptions, we can find a

continuous homomorphism π : G → H onto an R-factorizable group H and a continuous

function g : H → R such that f = g ◦ π. By the R-factorizability of H , there are a
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continuous homomorphism p : H → K onto a second-countable topological group K and

a continuous real-valued function h on K such that g = h ◦ p.

G
f ��

π

��

R

H
p ��

g
����������
K

h



Clearly, the continuous homomorphism ϕ = p ◦ π of G onto K satisfies f = h ◦ ϕ. �

The next result refines Corollary 5.2.14 slightly.

Lemma 8.1.12. Let G be a cosmic topological group and γ a countable family of open
sets in G. Then there exists a continuous isomorphism p : G→ H onto a second-countable
topological group H such that p(U) is open in H , for each U ∈ γ.

Proof. By the assumptions, we have ib(G) ≤ l(G) ≤ nw(G) ≤ ω and ψ(G) ≤
nw(G) ≤ ω, so Proposition 5.2.11 implies that there exists a continuous isomorphism

ψ0 : G→ H0 of G onto a second-countable topological group H0.

By Theorem 3.4.23, there is a base � for the topology of G which consists of the sets

of the form ψ−1(V ), where ψ : G → K is a continuous homomorphism onto a second-

countable group K and V is open in K. Let U be an arbitrary non-empty open set in

G. Since nw(G) ≤ ω, the group G is hereditarily Lindelöf, so we can find a countable

family {Un : n ∈ ω} ⊂ � such that U =
⋃

n∈ω Un. Let ψn : G → Kn be a continuous

homomorphism onto a second-countable group Kn corresponding to Un, n ∈ ω. Then the

diagonal product ψU of the family {ψn : n ∈ ω} is a continuous homomorphism of G to

the second-countable group
∏

n∈ω Kn, so the subgroup HU = ψU(G) of
∏

n∈ω Kn is also

second-countable. By the construction, we have Un = ψ−1
U ψU(Un), where ψU(Un) is open

in HU for each n ∈ ω.

Finally, let p be the diagonal product of the family {ψU : U ∈ γ} ∪ {ψ0}, and take

H = p(G). Then H is second-countable as a subgroup of the second-countable group

H0 ×
∏

U∈γ HU . Hence, p and H are as required. �

One of the main results of this section is a factorization theorem for dense subgroups

of topological products of Lindelöf Σ-groups (see Theorem 8.1.14 below). First we present

a version of this result for arbitrary subgroups of a single Lindelöf Σ-group.

Proposition 8.1.13. Every subgroup of a Lindelöf Σ-group is R-factorizable.

Proof. Let H be a subgroup of a Lindelöf Σ-group G and H∗ be the closure of H in

G. Then H∗ is also a Lindelöf Σ-group, so taking H∗ in place of G we can assume that H
is dense in G.

By the continuity of f , for every x ∈ H we can find a closed Gδ-set F in G such

that x ∈ F , f admits a continuous extension over H ∪ F , and this extension is constant

on F . Denote by γ the family of these sets F . Since H is dense in G, we can apply

[165, 3.2.A(b)] to conclude that there exists a continuous extension of f over S =
⋃

γ,

and this extension (denoted by the same letter f ) is constant on each F ∈ γ. By a) of

Theorem 5.3.30, we can find a countable subfamily γ0 of γ such that
⋃

γ0 is dense in S.

Let γ0 = {Fn : n ∈ ω}. According to c) of Theorem 5.3.30, for every n ∈ ω there

Basic properties
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exists a continuous homomorphism ϕn : G → Kn onto a topological group Kn with a

countable network such that Fn = ϕ−1
n ϕn(Fn). Denote by ϕ the diagonal product of the

family {ϕn : n ∈ ω}. Then ϕ is a continuous homomorphism of G to the product group

K =
∏

n∈ω Kn which has a countable network. Denote by N the kernel of ϕ and consider

the quotient homomorphism p : G → G/N. Since p ≺ ϕ, we have that Fn = p−1p(Fn)

for each n ∈ ω. Clearly, the pseudocharacter of the identity in K is countable, so N is a

Gδ-set in G. Hence, nw(G/N) ≤ ℵ0, by a) of Lemma 5.3.24.

By our choice, the union Q =
⋃

n∈ω Fn is dense in S ⊇ H , so we can apply Lemma 1.7.6

(with X = G, S = H , Y = R, g = p and T = p(Q)) to define a continuous function

h : p(H)→ R such that f = h ◦ p�H .

G

p

��

H

p�H

��

f ��� ��� R

G/N p(H)

h

��
� ���

Clearly, the group p(H) is cosmic as a subgroup of G/N. By Corollary 8.1.7, the group

p(H) is R-factorizable. It remains to apply Lemma 8.1.11 to conclude that the group H is

R-factorizable as well. �

We shall see in Example 8.2.1 that Proposition 8.1.13 cannot be extended to subgroups

of Lindelöf groups.

Theorem 8.1.14. [M. G. Tkachenko] Dense subgroups of topological products of
Lindelöf Σ-groups are R-factorizable.

Proof. Let G =
∏

i∈I Gi be the topological product of Lindelöf Σ-groups Gi,

H a dense subgroup of G, and f : H → R a continuous function. It follows from

Corollary 5.3.31 that the space G is ω-cellular. By Theorem 1.7.7, we can find a countable

set K ⊂ I and a continuous function h : pK(H)→ R such that f = h ◦pK�H , where pK is

the projection of G onto GK =
∏

i∈K Gi. It follows from |K| ≤ ω that Nag(GK) ≤ ω (we

apply Proposition 5.3.9 here). Since HK = pK(H) is a subgroup of the Lindelöf Σ-group

GK, the group HK is R-factorizable, by Proposition 8.1.13.

G

pK

��

H
f ��� ���

pK�H

��

R

GK HK
� ���

h

����������

Hence Lemma 8.1.11 implies that H is also R-factorizable. �

Several special cases of Theorem 8.1.14 deserve mentioning here. The first of them

corresponds to the fact that every second-countable space is a Lindelöf Σ-space.

Corollary 8.1.15. A dense subgroup of a topological product of second-countable
topological groups is R-factorizable.

Since the class of Lindelöf Σ-groups contains all σ-compact groups, we have the

following:
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Corollary 8.1.16. Any subgroup of a σ-compact topological group is R-factorizable.

By Corollary 3.7.17, precompact groups are subgroups of compact groups, so Corol-

lary 8.1.16 implies the following fact which generalizes Theorem 8.1.1.

Corollary 8.1.17. Every precompact topological group is R-factorizable.

Let us show that weakly Lindelöf topological groups possess a property somewhat

weaker than R-factorizability. We present a more general result for topological groups G
satisfying wl(G) ≤ τ.

Theorem 8.1.18. [E. V. Schepin] For every continuous real-valued function f on
a topological group G with wl(G) ≤ τ, there exists an open continuous homomorphism
π : G→ K onto a topological group K satisfying ψ(K) ≤ τ such that π ≺ f .

Proof. Let ε > 0 be arbitrary. For every x ∈ G, choose a neighbourhood Ux of x in

G such that |f (y) − f (x)| < ε for each y ∈ Ux. We can also find an open neighbourhood

Vx of the identity e in G such that V 2
x x ⊂ Ux. Since wL(G) ≤ τ, the family {Vxx : x ∈ G}

contains a subfamily μ with |μ| ≤ τ whose union is dense in G. Let μ = {Vxx : x ∈ C},
where C ⊂ G and |C| ≤ τ. Then P(ε) =

⋂{Vx : x ∈ C} is a Gτ-set in G, e ∈ P(ε), and

we claim that

|f (gx)− f (x)| ≤ 2ε for all x ∈ G and g ∈ P(ε). (8.1)

Assume to the contrary that |f (gz) − f (z)| > 2ε for some z ∈ G and g ∈ P(ε). Then

there exists a neighbourhood O of z such that the inequality |f (gy)− f (y)| > 2ε holds for

all y ∈ O. Since the set ∪μ is dense in G, we can find x ∈ C such that O ∩ (Vxx) = ∅.

Pick a point y ∈ O ∩ (Vxx). Then our choice of Vx implies that |f (y) − f (x)| < ε. In

addition, from y ∈ Vxx and g ∈ P(ε) ⊂ Vx it follows that gy ∈ V 2
x x ⊂ Ux. Therefore,

|f (gy)− f (x)| < ε, and we have

|f (gy)− f (y)| ≤ |f (gy)− f (x)|+ |f (x)− f (y)| < 2ε.

This contradiction completes the proof of our claim.

Put P =
⋂∞

n=1 P(1/n). Then P is a Gτ-set in G and e ∈ P . From (8.1) it follows

immediately that f (gx) = f (x) for all x ∈ G and all g ∈ P . Let {Wi : i ∈ I} be a family

of neighbourhoods of e in G such that P =
⋂

i∈I Wi, where |I| ≤ τ. By Proposition 5.2.8,

the group G is τ-narrow. It follows from Corollary 5.1.7 that, for every i ∈ I, there

exists a continuous homomorphism ϕi : G → Hi onto a group Hi with w(Hi) ≤ τ such

that Ni = ker ϕi ⊂ Wi. Denote by ϕ the diagonal product of the homomorphisms ϕi,

i ∈ I. Then the image H = ϕ(G) is a subgroup of the product
∏

i∈I Hi and hence,

w(H) ≤ τ. Let N be the kernel of ϕ. Clearly, N =
⋂

i∈I Ni, so that N ⊂ P . Consider the

quotient homomorphism π : G → G/N. Evidently, there exists an algebraic isomorphism

i : G/N → H such that ϕ = i ◦ π. Since π is open, the isomorphism i is continuous.

Therefore, the quotient group K = G/N satisfies ψ(K) ≤ τ. Finally, the inclusion N ⊂ P
implies that f is constant on all cosets Nx in G. This fact enables us to define a function

h : G/N → R such that f = h ◦ π. Again, h is continuous because π is open. So,

π ≺ f . �
Corollary 8.1.19. For every continuous real-valued function f on a topological

group H of countable cellularity, there exists a closed invariant subgroup N of type Gδ in
H such that f is constant on every coset of N in H .

Basic properties
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Theorem 8.1.18 shows that weakly Lindelöf topological groups are close to being R-

factorizable. It will be shown in Example 8.6.16, however, that R-factorizable groups need

not be weakly Lindelöf. On the other hand, weakly Lindelöf ω-steady groups are R-factor-

izable:

Proposition 8.1.20. Every weakly Lindelöf ω-steady group is R-factorizable.

Proof. Let f : G→ R be a continuous function defined on a weakly Lindelöf ω-steady

group G. By Theorem 8.1.18, we can find a quotient homomorphism π : G → H onto a

topological group H of countable pseudocharacter and a continuous function g : H → R
such that f = g ◦ π. Evidently, the group H is ω-steady as a quotient of the ω-steady

group G. Since the group H is ω-steady and ψ(H) ≤ ω, it must have a countable network.

Then H is R-factorizable, by Corollary 8.1.7. The required conclusion now follows from

Lemma 8.1.11. �

The results of Section 5.6 about the relationship between ω-steady and ω-stable

topological groups can be complemented as follows.

Theorem 8.1.21. Every R-factorizable ω-steady topological group is ω-stable.

Proof. Let G be an R-factorizable ω-steady topological group. Suppose that f : G→
X and g : X → Y are continuous onto mappings, where g is one-to-one and w(Y ) ≤ ω. The

mapping h = g ◦ f of G to Y is continuous, so we can apply Lemma 8.1.2 (with τ = ω) to

find a continuous homomorphism p : G → H onto a second-countable topological group

H and a continuous mapping r : H → Y such that h = r ◦ p. Since g is one-to-one, there

exists a (not necessarily continuous) mapping s : H → X satisfying r = g ◦ s. In fact,

s = g−1 ◦ r.

G/N
ϕ

����
��

��
��

G
f ��π��

p

��

X
g �� Y

H

s

����������
r

����������������

Denote by N the kernel of p. Then N is a closed invariant subgroup of type Gδ in G. Since

G is ω-steady, the quotient group G/N has a countable network. Let π : G → G/N be

the quotient homomorphism. Denote by ϕ the natural isomorphism of G/N onto H . Then,

clearly, p = ϕ ◦ π. The isomorphism ϕ is continuous since π is open.

Let s̃ = s ◦ ϕ. We claim that the mapping s̃ : G/N → X is continuous. Indeed, we

have

f = s ◦ p = s ◦ ϕ ◦ π = s̃ ◦ π,

where f is continuous and π is open. Therefore, the mapping s̃ is also continuous. Since

nw(G/N) ≤ ω, the image X = s̃(G/N) satisfies nw(X) ≤ ω as well. The latter inequality

implies that G is ω-stable. �

Combining Theorem 8.1.21 and Proposition 8.1.20, we deduce the next corollary:

Corollary 8.1.22. A weakly Lindelöf ω-steady topological group is ω-stable.

It turns out that a stronger form of countable cellularity in topological groups does

imply R-factorizability, but only in a special model of ZFC.
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Proposition 8.1.23. It is consistent with ZFC that every topological group G with
celω(G) ≤ ω is R-factorizable.

Proof. Suppose that a topological group G satisfies celω(G) ≤ ω, and let f : G→ R
be a continuous function. Since c(G) ≤ celω(G) ≤ ω, we can apply Theorem 8.1.18 to find

a continuous homomorphism π : G→ K onto a group K of countable pseudocharacter and

a continuous function h : K → R such that f = h ◦ π. Then celω(K) ≤ celω(G) ≤ ω.

We conclude, therefore, that the group K is hereditarily separable. By Theorem 9.3 of

[494], there is a model of ZFC in which every hereditarily separable regular space is

hereditarily Lindelöf. In this model, the group K is Lindelöf and hence, R-factorizable, by

Theorem 8.1.6. So the group G is R-factorizable, by Lemma 8.1.11. �

Exercises

8.1.a. Complement Exercise 8.1.8 as follows: Every continuous automorphism f of the paratopo-

logical group Z (the Sorgenfrey line) has the form f (x) = ax, for each x ∈ Z, where

a = f (1) > 0.

8.1.b. Suppose that a real-valued function f on an ω-narrow topological group G is uniformly

continuous with respect to the two-sided uniformity of G. Prove that there exists a continuous

homomorphism π : G → K onto a second-countable group K such that π ≺ f . Deduce that

if every continuous real-valued function on an ω-narrow topological group G is uniformly

continuous with respect to the two-sided uniformity of G, then G is R-factorizable.

8.1.c. Prove that the free topological group F (X) and the free Abelian topological group A(X) are

R-factorizable, for every pseudocompact space X.

8.1.d. Let X be a Tychonoff space. Prove the following:

a) If the free topological group F (X) is R-factorizable, then so is the free Abelian

topological group A(X).

b) If the free Abelian topological group A(X) is R-factorizable, then X is pseudo-ℵ1-

compact.

8.1.e. Show that the topological group Cp(X) defined in Section 1.9 is R-factorizable, for every

Tychonoff space X.

8.1.f. A Mal’tsev space X is called R-factorizable if, for every continuous real-valued function f
on X, there exists a continuous homomorphism π : X → Y onto a second-countable Mal’tsev

space Y such that π ≺ f . Prove that every σ-compact Mal’tsev space is R-factorizable.

8.1.g. Show that a precompact Tychonoff paratopological group need not be R1-factorizable.

Hint. Consider the circle group T with the Sorgenfrey topology, and modify the argument

in Example 8.1.8.

Problems

8.1.A. Let G be a topological group algebraically generated by a pseudocompact subspace. Show

that all subgroups of G are R-factorizable.

8.1.B. Can Theorem 8.1.1 be extended to all compact left topological groups?

8.1.C. If every continuous mapping of a topological group G to a metric space Y can be factorized

by a continuous homomorphism of G onto a metrizable topological group, we will say that G
is �-factorizable. Show that a paracompact topological group need not be �-factorizable.

8.1.D. The notion of uniform continuity of mappings is naturally defined in the classes of

paratopological and semitopological groups.

Basic properties
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Suppose that f is a uniformly continuous real-valued function on a regular (commuta-

tive) Lindelöf paratopological group. Can f be factorized through a continuous homomor-

phism to a regular second-countable paratopological group?

8.1.E. (M. Sanchis and M. G. Tkachenko [418]) Let G be a paratopological group which is a

Lindelöf Σ-space. Prove that G is R3-factorizable.

Open Problems

8.1.1. Is it true that every topological group G with countable Souslin number is R-factorizable?

What if G is separable?

8.1.2. Must every paracompact R-factorizable topological group be Lindelöf?

8.1.3. Is it true in ZFC that every topological group G with celω(G) ≤ ω is R-factorizable? (See

Proposition 8.1.23.)

8.1.4. Let G be a topological group such that ℵ1 is a calibre of the space G (that is, every

uncountable family of non-empty open sets in X has an uncountable subfamily with non-

empty intersection). Is G necessarily R-factorizable?

8.1.5. Does there exist in ZFC a (normal) R-factorizable topological group of countable extent

(see Section 5.2) which fails to be Lindelöf?

Remark. Under CH , A. Hajnal and I. Juhász constructed in [215] a normal, countably

compact, hereditarily separable, non-compact (hence, non-Lindelöf) topological group

G. Since countably compact groups are precompact, the group G is R-factorizable, by

Corollary 8.1.17.

8.1.6. Is every (normal) topological group of countable extent R-factorizable?

8.1.7. Does the R-factorizability of A(X) imply that of F (X)?

8.1.8. Characterize the spaces X such that the free topological group F (X) or the free Abelian

topological group A(X) is R-factorizable.

8.1.9. Let X be a Tychonoff space such that the cellularity of F (X) is countable. Is F (X) then

R-factorizable? What if X is separable?

8.2. Subgroups of R-factorizable groups. Embeddings

In view of Corollary 8.1.16 and Propositions 8.1.3 and 8.1.13, one can ask whether

subgroups of Lindelöf groups or, more generally, of ω-narrow groups are R-factorizable.

In both cases the answer is “no”, as the following example shows.

Example 8.2.1. There exist an Abelian P-group G and a dense subgroup H of G such

that G is Lindelöf, but H is not R-factorizable. In particular, H is an ω-narrow P-group

which is not Raı̆kov complete.

Indeed, let G = Gω1
be the Lindelöf P-group in Example 4.4.11 (with A = ω1 and

K = Z(2) = {0, 1}), constructed as a subgroup of the product group Z(2)ω1 . More precisely,

G = {x ∈ Z(2)ω1 : | supp(x)| < ω},
where supp(x) = {α < ω1 : x(α) = 1}. Below we use the additive notation for the group

operation in G. The group G carries the ω-box topology with the standard base

� = {x + Uα : x ∈ G, α < ω1},
where each Uα = {x ∈ G : supp(x) ∩ α = ∅} is an open subgroup of G. Note that

Uα =
⋂

β<α Uβ for every limit ordinal α < ω1. Now we put

H = {x ∈ G : | supp(x)| is even}.
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It is easy to see that H is a proper dense subgroup of G. In particular, H is an ω-narrow

P-group that fails to be Raı̆kov complete. Let us show that the group H is not R-factorizable.

Clearly, {Uα : α < ω1} is a decreasing sequence of open subgroups of G which forms

a base for G at the identity. In particular, G is zero-dimensional. For every α < ω1, there

exist non-empty disjoint clopen sets Bα and Cα in G such that Uα \ Uα+1 = Bα ∪ Cα.

Consider disjoint open sets

V = (G \ U0) ∪
⋃

α<ω1

Bα and W =
⋃

α<ω1

Cα.

Clearly, V ∪W = G \ {e}, where e is the neutral element of G. Pick an arbitrary element

g ∈ G \H and put

V ′ = (g + V ) ∩H, W ′ = (g + W ) ∩H.

Then V ′ and W ′ are non-empty disjoint open subsets of H and H = V ′ ∪ W ′. Let a

function f : H → [0, 1] be defined by f (x) = 0 if x ∈ V ′ and f (x) = 1 if x ∈ W ′.
Clearly, f is continuous. Suppose that π : H → K is a continuous homomorphism onto

a second-countable group K. Then the kernel N of π is of type Gδ in H and, hence, N
is open in H . Therefore, there exists α < ω1 such that Uα ∩ H ⊂ N. Choose elements

x ∈ H ∩ (g + Bα) and y ∈ H ∩ (g + Cα). Then x − y ∈ H ∩ Uα ⊂ N; it follows that

π(x) = π(y). However, f (x) = 0 and f (y) = 1, so π does not factorize f . We conclude

that H is not R-factorizable. �

Since Lindelöf topological groups are R-factorizable, by Theorem 8.1.6, it follows from

Example 8.2.1 that subgroups of R-factorizable groups need not be R-factorizable. One

can ask, however, whether closed subgroups of R-factorizable groups inherit this property.

Again, the answer is “no”.

Theorem 8.2.2. Every ω-narrow topological group can be embedded into an R-factor-
izable group as a closed invariant subgroup.

Proof. Let G be an ω-narrow group. By Theorem 3.4.23, G can be embedded as a

subgroup into a topological product of second-countable groups, say K. Let Π =
∏

n∈ω Kn,

where Kn = K for each n ∈ ω. Denote by σ the σ-product of the groups Kn’s, i.e. the

subgroup of Π consisting of all points that do not coincide with the neutral element of Π on at

most finitely many coordinates. Obviously, σ is dense in Π when the latter is endowed with

the usual product topology. Consider the embedding i of G into the diagonal Δ of Π defined

by the rule πni(g) = g for all g ∈ G and all n ∈ ω, where πn : Π → Kn is the projection.

It is clear that i is a topological isomorphism of G onto i(G). Put G∗ = 〈i(G) ∪ σ〉. Then

G∗ is a dense subgroup of Π. The group K is a product of second-countable groups, and so

is Π. Since G∗ is dense in Π, Theorem 8.1.14 implies that the group G∗ is R-factorizable.

Now one can apply the argument in the proof of Lemma 6.8.3 to show that i(G) = G∗ ∩Δ,

whence it follows that G ∼= i(G) is a closed invariant subgroup of G∗. �

Since every Lindelöf topological group is R-factorizable, it is natural to ask, after

Theorem 8.2.2, whether every R-factorizable group is topologically isomorphic to a

subgroup of a Lindelöf group. Again, the answer is in the negative. Indeed, the group

G = Zω1 with the Tychonoff product topology is R-factorizable, by Corollary 8.1.15, but it

does not admit an isomorphic embedding into any Lindelöf topological group. The reason

Subgroups of R-factorizable groups. Embeddings
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for that is the Raı̆kov completeness of G — if G were a subgroup of a Lindelöf group G∗,

it would be closed in G∗ and hence, G would be Lindelöf.

Example 8.2.1 shows that there are ω-narrow Abelian groups that are not R-factor-

izable. Hence, by Theorem 8.2.2, closed subgroups of R-factorizable groups can fail to

be R-factorizable. On the other hand, it is easy to verify that C-embedded subgroups of

R-factorizable groups are R-factorizable:

Proposition 8.2.3. A C-embedded subgroup of an R-factorizable group is R-factor-
izable.

Proof. Let H be a C-embedded subgroup of an R-factorizable group G. Then every

continuous function f : H → R admits an extension to a continuous function g : G → R.

Since G is R-factorizable, we can find a continuous homomorphism π : G → K onto a

second-countable group K such that π ≺ g. Then the homomorphism π0 = π�H of H
onto the subgroup π(H) of K satisfies π0 ≺ f . �

Since every retract of a space X is C-embedded in X, Proposition 8.2.3 implies the

following.

Corollary 8.2.4. If a subgroup H of an R-factorizable group is a retract of G, then
H is R-factorizable.

In general, an R-factorizable subgroup of a topological group G need not be C-

embedded nor C∗-embedded in G. For example, let G = T be the circle group and H
an arbitrary countable dense subgroup of G. Then H is second-countable and, hence, is

R-factorizable. However, H is not C∗-embedded in G.

This makes it desirable to find a topological property responsible for the preservation

of R-factorizability when taking subgroups with that property. To present such a property,

we recall that the complement of a zero-set is a cozero-set. A subspace Y of X is said to

be z-embedded in X if for every zero-set F in Y , there exists a zero-set Φ in X such that

F = Y ∩ Φ. Clearly, C- and C∗-embedded subsets are z-embedded. It turns out that the

property we are looking for is exactly the property of being z-embedded. We start the proof

of this fact with the following general result.

Theorem 8.2.5. An R-factorizable subgroup H of arbitrary topological group G is
z-embedded in G.

Proof. Let F be a zero-set in H , and consider a continuous real-valued function f on H
such that F = f−1(0). Since H is R-factorizable, we can find a continuous homomorphism

π : H → P onto a second-countable group P and a continuous function g : P → R such

that f = g ◦ π. Denote by L the kernel of π. Let {On : n ∈ ω} be a countable base at

the identity of P . We can define by induction a sequence {Un : n ∈ ω} of open symmetric

neighbourhoods of the identity e in G satisfying the following conditions for each n ∈ ω:

(i) U2
n+1 ⊂ Un;

(ii) Un ∩H ⊂ π−1(On).

It is clear that K =
⋂

n∈ω Un is a closed subgroup of G and K ∩ H ⊂ L. Let φ be the

canonical mapping of G onto the left coset space G/K. Since K ∩ H is a subgroup of L,



529

there exists a function ψ : φ(H)→ P satisfying ψ ◦ φ�H = π (see the diagram below).

R H
f��

π

��

φ�H

����
��

��
��

� � �� G
φ

����
��

��
��

�

P

g

����������
φ(H)

ψ�� � � �� G/K

Since the open sets Un satisfy e ∈ Un = U−1
n and U2

n+1 ⊂ Un for each n ∈ ω,

Lemma 3.3.10 implies that there exists a continuous prenorm N on G such that

{x ∈ G : N(x) < 1/2n} ⊂ Un ⊂ {x ∈ G : N(x) ≤ 2/2n} (8.2)

for all n ∈ ω. Define a continuous left-invariant pseudometric d on G by d(x, y) = N(x−1y)

for x, y ∈ G. One easily verifies that d(x, y) = 0 iff x−1y ∈ K. The latter enables us to

define a metric 
 on G/K such that d(x, y) = 
(φ(x), φ(y)) for all x, y ∈ G.

For every x ∈ G, y ∈ G/K, and ε > 0, we put Bε(x) = {x′ ∈ G : d(x′, x) < ε} and

Cε(y) = {y′ ∈ G/K : 
(y′, y) < ε}. By the definition of 
, we have that

(a) φ(Bε(x)) = Cε(φ(x)), for each x ∈ G.

In other words, the images under φ of open balls in G are open in the metric space (G/K, 
).

One can easily verify that the balls Bε(x) satisfy the condition:

(b) Bε(x) = φ−1φ(Bε(x)) for all x ∈ G and ε > 0.

Let t
 be the topology on G/K generated by 
. Note that t
 is weaker than the quotient

topology on G/K. We claim that the homomorphism ψ of φ(H) to P remains continuous

if φ(H) is considered as a subspace of (G/K, t
), and this is the key point of the proof.

Indeed, let a point y ∈ φ(H) and an open set O ⊂ P with z = ψ(y) ∈ O be arbitrary. There

exists n ∈ ω such that zOn ⊂ O. Choose x ∈ H with φ(x) = y; then π(x) = z. The set

U = B1/2n (e) is contained in Un by (8.2), and the image φ(xU) is an open neighbourhood

of y in (G/K, t
) by (a), so (b), (ii), and the equality H ∩ xU = x(H ∩ U) together imply

that

ψ(φ(xU) ∩ φ(H)) = ψ(φ(H ∩ xU)) = π(H ∩ xU)

= yπ(H ∩ U) ⊂ yπ(H ∩ Un) ⊂ yOn ⊂ O.

This proves the continuity of ψ on the subspace φ(H) of (G/K, t
).

It remains to find a zero-set F0 in G such that F0 ∩ H = F . Let Φ = g−1(0) ⊂ P .

From f = g ◦ π it follows that π−1(Φ) = F . It is clear that Φ∗ = ψ−1(Φ) is a zero-set

in φ(H). Being a subspace of the metric space (G/K, 
), φ(H) is z-embedded in G/K.

Therefore, there exists a zero-set F∗ in (G/K, 
) such that F∗ ∩φ(H) = Φ∗. Let us verify

that F = F0 ∩ H , where F0 = φ−1(F∗) is a zero-set in G. Since ψ ◦ φ�H = π, we have

φ−1(ψ−1(Φ)) ∩H = π−1(Φ), that is, φ−1(Φ∗) ∩H = F . Consequently,

F0 ∩H = φ−1(F∗) ∩H = φ−1(F∗ ∩ φ(H)) ∩H = φ−1(Φ∗) ∩H = F.

This finishes the proof of the theorem. �

We now present a counterpart of Theorem 8.2.5 for z-embedded subgroups of R-factor-

izable groups.

Subgroups of R-factorizable groups. Embeddings
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Theorem 8.2.6. Let X be a z-embedded subset of an R-factorizable topological group
G and f : X → R a continuous function. Then there exists a continuous homomorphism
π : G → K onto a second-countable topological group K such that π�X ≺ f . Hence,
every z-embedded subgroup of an R-factorizable group is R-factorizable. The analogous
result remains valid for paratopological, quasitopological, and semitopological groups.

Proof. We consider only the case when G is a topological group — the argument for

paratopological, quasitopological, and semitopological groups is exactly the same.

Let γ = {Un : n ∈ ω} be the family of all open intervals in R with rational end points.

For every n ∈ ω, choose a cozero-set Vn in G such that Vn ∩ X = f−1(Un) and define a

continuous function gn : G → R such that g−1
n (Un) = Vn. The diagonal product g of the

family {gn : n ∈ ω} is a continuous mapping of G to Rω, so we can apply Lemma 8.1.2 to

find a continuous homomorphism π : G → K onto a second-countable topological group

K and a continuous function g∗ : K → Rω such that g = g∗ ◦ π.

G
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��	
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��
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We claim that for all x0, x1 ∈ X, π(x0) = π(x1) implies f (x0) = f (x1). Assume to

the contrary that f (x0) = f (x1), for some x0, x1 ∈ X with π(x0) = π(x1). Suppose that

f (x0) < f (x1). If r0, r1, r2 are rationals with r0 < f (x0) < r1 < f (x1) < r2, consider the

intervals Uk = (r0, r1) ∈ γ and Ul = (r1, r2) ∈ γ. For i ∈ ω, let pi : Rω → R(i) be the

projection. Then gi = pi◦g. The sets g−1
k (Uk)∩X = f−1(Uk) and g−1

l (Ul)∩X = f−1(Ul)

are obviously disjoint. Equivalently, the sets g−1(Ok) ∩ X and g−1(Ol) ∩ X are disjoint,

where Ok = p−1
k (Uk) � g(x0) and Ol = p−1

l (Ul) � g(x1). In particular, g(x0) = g(x1). We

have, however, that g(x0) = g∗π(x0) = g∗π(x1) = g(x1), which is a contradiction.

Put Y = π(X). The statement just proved implies that there is a function h : Y → R
such that f = h ◦ π�X. It remains to verify that h is continuous. Let Un ∈ γ be arbitrary.

Then the set

h−1(Un) = π
(
f−1(Un)

)
= π

(
g−1

n (Un) ∩X
)

= (g∗)−1
(
p−1

n (Un)
) ∩ Y

is open in Y . Since γ = {Un : n ∈ ω} is a base for R, it follows that h is continuous. So,

π�X ≺ f . �

Combining Theorems 8.2.5 and 8.2.6, we conclude that a subgroup H of an R-factor-

izable topological group G is R-factorizable iff H is z-embedded in G. In fact, we have

obtained the following characterization of R-factorizability in topological terms.

Theorem 8.2.7. An ω-narrow topological group G is R-factorizable iff G is z-
embedded in every topological group that contains G as a topological subgroup.

Proof. The necessity follows directly from Theorem 8.2.5. Let us prove the suffi-

ciency. Suppose that G is z-embedded in every topological group that contains G as a

subgroup. Since G is ω-narrow, we can embed G as a subgroup into a topological product

Π of second-countable topological groups (see Theorem 3.4.23). The group Π is R-factor-

izable by Corollary 8.1.15, so the conclusion follows from Theorem 8.2.6. �
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In the following example we show that the condition of ω-narrowness of G in

Theorem 8.2.7 cannot be dropped.

Example 8.2.8. Let G be an uncountable discrete group. By Corollary 8.1.10, G is

not R-factorizable. Suppose that G∗ is a topological group that contains G as a subgroup.

Choose open symmetric neighbourhoods U and V of the identity in G∗ such that U∩G = {e}
and V 4 ⊂ U. It follows from Lemma 1.4.22 that {xV : x ∈ G} is a discrete family of open

sets in G∗, so G is C-embedded (hence, z-embedded) in G∗. �

Exercises

8.2.a. Prove that every ω-narrow P-group G with w(G) = ℵ1 contains a proper dense subgroup

which is not R-factorizable.

8.2.b. Show that an open subgroup of an R-factorizable group is R-factorizable.

8.2.c. Generalize Proposition 8.2.3 (without recourse to Theorem 8.2.6) as follows: Every C∗-

embedded subgroup of an R-factorizable group is R-factorizable.

8.2.d. Use Corollary 5.3.27 and Theorem 8.2.6 to give an alternative proof of Proposition 8.1.13.

8.2.e. Show that for every ω-narrow group G, there exists a “test group” G∗ which contains G as

a subgroup and has the property that if G is z-embedded in G∗, then G is z-embedded in

every topological group that contains G as a subgroup.

8.2.f. Let G be a topological group, and F (G) the free topological group of the space G. Prove

that if F (G) is R-factorizable, so is G.

8.2.g. Prove that the product Π of an arbitrary family of regular second-countable paratopological

groups is R3-factorizable, and that every dense subgroup of Π is again R3-factorizable.

Problems

8.2.A. (C. Hernández and M. G. Tkachenko [227]) Present an example of a closed invariant subgroup

H of an R-factorizable group G such that H has type Gδ in G but is not R-factorizable.

8.2.B. Show that every subgroup of a σ-product of Lindelöf Σ-groups is R-factorizable.

8.2.C. Prove that every Tychonoff R3-factorizable paratopological group is topologically isomor-

phic to a subgroup of a product of regular second-countable paratopological groups.

8.2.D. Prove that if a Tychonoff paratopological group G is R3-factorizable and first-countable,

then G is metrizable.

8.2.E. Use item c) of Problem 5.2.A to show that every cosmic Hausdorff paratopological group

is R3-factorizable. Apply this fact to generalize Exercise 8.2.g to topological products of

cosmic Hausdorff paratopological groups.

8.2.F. (M. Sanchis and M. G. Tkachenko [418]) Suppose that a paratopological group G is a Lindelöf

Σ-space. Prove that every subgroup of G is R3-factorizable.

Hint. Apply Theorem 8.2.6 and the fact established in Problem 5.7.Q.

8.2.G. Apply Corollary 3.4.29 and Problem 8.2.C to deduce that the Sorgenfrey line is not

topologically isomorphic to any subgroup of a Tychonoff R3-factorizable paratopological

group.

Open Problems

8.2.1. Suppose that G is a topological group such that every subgroup of G is R-factorizable.

(a) Is the cellularity of G countable?

(b) Is G pseudo-ℵ1-compact?

(c) Is G Moscow?

Subgroups of R-factorizable groups. Embeddings
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(One can use Problem 8.2.B and some results from [61] to deduce that such a group G need

not be a subgroup of a Lindelöf Σ-group.)

8.2.2. Let τ be an arbitrary uncountable cardinal.

(a) Is every subgroup of Zτ R-factorizable?

(b) Is every subgroup of Zτ pseudo-ℵ1-compact?

8.2.3. Let X be a compact Hausdorff space. Is every subgroup of Cp(X) R-factorizable?

8.2.4. Is there a first-countable Hausdorff paratopological group G such that every continuous

real-valued function on G is constant?

8.3. Dieudonné completion of R-factorizable groups

As we have already seen in Chapter 6, it is a highly non-trivial question whether the

Dieudonné completion μG of a given topological group G is again a topological group

(containing G as a dense topological subgroup). In general, μG can fail to be a topological

group (see Example 6.7.13). However, we show in Corollary 8.3.7 below that the Dieudonné

completion of every R-factorizable group is again a topological group, and this group is

R-factorizable.

First, we prove that the Dieudonné completion μX and the Hewitt–Nachbin completion

υX of a Tychonoff space X coincide, unless the cardinality of X is very large. Recall that

an infinite cardinal τ is said to be Ulam measurable if there exists a countably closed

free ultrafilter on a set of cardinality τ (see Section 6.2). The next lemma generalizes

Proposition 6.5.18 slightly.

Lemma 8.3.1. Let X be a space such that the cardinality of every discrete family of
open sets in X is Ulam non-measurable. Then υX = μX.

Proof. Let d be a continuous pseudometric on X. It suffices to show that d can be

extended to a continuous pseudometric on υX. Denote by X∗ = (X/d, d∗) the metric space

associated with (X, d), and let p : X → X∗ be the projection which assigns to a point x ∈ X
the equivalence class of all y ∈ X satisfying d(x, y) = 0. The mapping p is continuous,

so the cardinality of every discrete family of open sets in X∗ is Ulam non-measurable. Let

τ = c(X∗) = w(X∗). Since X∗ has a σ-discrete base, we infer that either X∗ contains a

discrete family γ of open sets with |γ| = τ, or cf τ = ω, say, τ = supn∈ω τn, and for every

n ∈ ω, X∗ contains a discrete family γn of open sets with |γn| = τn. In both cases, b) of

Theorem 6.2.2 implies that τ is Ulam non-measurable. Since the space X∗ is metric, we

have |X∗| ≤ w(X∗)ω = τω, so that the cardinality of X∗ is Ulam non-measurable as well.

We conclude that X∗ is realcompact, as every metric space whose cardinality is Ulam

non-measurable [165, 8.5.13 (h)]. Hence, one can extend p to a continuous mapping

p̃ : υX → X∗. It remains to define a continuous pseudometric 
 on υX by 
(x, y) =

d∗(p̃(x), p̃(y)) for all x, y ∈ υX. If x, y ∈ X, then


(x, y) = d∗(p̃(x), p̃(y)) = d∗(p(x), p(y)) = d(x, y).

Therefore, the restriction of 
 to X coincides with d. Since υX is Dieudonné complete, this

proves that μX = υX. �

Corollary 8.3.2. Let H be a topological group such that the cardinal ib(H) is Ulam
non-measurable. Then μH = υH .
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Proof. By Theorem 5.4.7, we have c(H) ≤ 2ib(H), so Theorem 6.2.2 implies that the

cardinal c(H) is Ulam non-measurable. Since the cardinality of every discrete family of open

sets in H does not exceed c(H), we can apply Lemma 8.3.1 to conclude that μH = υH . �
Corollary 8.3.3. If a topological group H is ω-narrow or, in particular, has countable

cellularity, then μH = υH .

Sometimes the existence of a dense R-factorizable subgroup of a topological group

implies the R-factorizability of the whole group:

Proposition 8.3.4. Let H be a Gδ-dense R-factorizable subgroup of a topological
group G. Then H is C-embedded in G and G is R-factorizable.

Proof. Let f be a continuous real-valued function on H . We can find a continuous

homomorphism p : H → L onto a second-countable topological group L and a continuous

function g : L→ R such that f = g◦p. Denote by 
G the Raı̆kov completion of the group

G. Since H is dense in 
G, one can extend p to a continuous homomorphism p̃ : 
G→ 
L,

where 
L is the Raı̆kov completion of L. It is clear that the group 
L is second-countable,

and since H is Gδ-dense in G, we conclude that p̃(G) = p(H) = L. So, f̃ = g ◦ p̃�G is a

continuous extension of f over G. This proves that H is C-embedded in G.

A similar argument shows that the group G is R-factorizable. Indeed, let f : G → R
be a continuous function. Then we can find a continuous homomorphism π : H → K onto

a second-countable group K and a continuous function h : K → R such that f �H = h ◦π.

As above, π admits an extension to a continuous homomorphism π̃ : G→ K. The function

g = h◦ π̃ is continuous on G and g�H = f �H , so the density of H in G implies that g = f .

This proves the R-factorizability of G. �
In Theorem 8.3.6 below we show that the Dieudonné completion μK of an R-factor-

izable group K is a well-defined subgroup of its Raı̆kov completion 
K. To present this

description of μK in terms of K and 
K, we need a lemma about realcompact (equivalently,

Hewitt–Nachbin complete) spaces which follows immediately from Corollaries 3.11.7

and 3.11.8 of [165].

Lemma 8.3.5. Let X be an arbitrary Tychonoff space.

a) If γ is a family of realcompact subspaces of X, then
⋂

γ is realcompact;
b) If X is realcompact, then every cozero-set in X is realcompact.

In particular, the intersection of an arbitrary family of cozero sets in a realcompact space
is realcompact.

Denote by 
ωK the Gδ-closure of K in 
K, that is, the set of all x ∈ 
K such that every

Gδ-set in 
K containing x meets K. It is easy to verify that 
ωK is a subgroup of 
K and

K ⊂ 
ωK (see Section 6.4).

Theorem 8.3.6. [S. Hernández, M. Sanchis, and M. G. Tkachenko] Every R-
factorizable group K satisfies υK = μK = 
ωK. In addition, the group 
ωK is R-
factorizable.

Proof. Clearly, the group K is Gδ-dense in L = 
ωK, so Proposition 8.3.4 implies

that K is C-embedded in L, and L is R-factorizable. The group 
K is Raı̆kov complete,

hence, it is Dieudonné complete. In addition, Proposition 8.1.3 implies that the group K is
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ω-narrow, and since K is dense in 
K, the group 
K is also ω-narrow, by Theorem 3.4.9.

Therefore, by Corollary 8.3.2, 
K is realcompact.

The complement 
K\L is the union of Gδ-sets in 
K; equivalently, L is the intersection

of cozero sets in 
K. By Lemma 8.3.5, L is realcompact. Since K is C-embedded in L, we

have υK = L. Finally, Corollary 8.3.2 implies that μK = υK = L. �

Corollary 8.3.7. If G is an R-factorizable group, then the group operations in G can
be continuously extended to the Dieudonné completion μG of G, thus making μG into a
topological group.

Corollary 8.3.8. The following conditions are equivalent for a Gδ-dense subgroup
H of an R-factorizable group G:

1) H is R-factorizable;
2) H is C-embedded in G.

Proof. Since the group G is R-factorizable, the implication 2)⇒ 1) follows directly

from Proposition 8.2.3. To see that 1)⇒ 2), apply Proposition 8.3.4. �

It is worth noting at this point that Gδ-dense subgroups of R-factorizable groups are

not necessarily R-factorizable (see Example 8.2.1).

The last result of this section follows from Theorem 8.3.6 and the definition of

completion friendly groups given in Section 6.5:

Corollary 8.3.9. Every R-factorizable group is completion friendly and, therefore,
is a strong PT -group.

Exercises

8.3.a. Apply Corollary 8.3.9 and item (a) of Problem 5.1.D to show that an R-factorizable group G
is topologically isomorphic to a closed subgroup of the product of some family of second-

countable topological groups iff the space G is realcompact. Show that this equivalence

is no longer valid for the wider class of ω-narrow topological groups (see item (f) of

Problem 5.1.D).

Hint. Apply Theorem 8.1.18 and item (c) of Problem 5.1.D.

8.3.b. Show that a dense R-factorizable subgroup H of a topological group G need not be either

C-embedded or C∗-embedded in G.

Problems

8.3.A. Let H be a closed invariant subgroup of a topological group G and suppose that the spaces

H and G/H are realcompact. Is the space G realcompact? What if the group H is compact?

8.3.B. (M. G. Tkachenko [490]) Apply Theorem 8.1.18 along with Corollaries 5.2.9 and 8.3.3 to

prove that every weakly Lindelöf topological group is completion friendly.

8.3.C. Show that a weakly Lindelöf topological group G is topologically isomorphic to a closed

subgroup of the product of some family of second-countable topological groups iff the space

G is realcompact. (See Problem 5.1.D and Exercises 8.3.a and 6.5.c.)

Hint. Use Problem 8.3.C.

8.3.D. Let H be a closed invariant subgroup of a topological group G, and suppose that the spaces

H and G/H are Gδ-closed in 
H and 
(G/H), respectively. Is the group G Gδ-closed in


G?
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8.3.E. Prove that a completely regular R3-factorizable paratopological group G is topologically

isomorphic to a closed subgroup of the product of some family of regular second-countable

paratopological groups if and only if the space G is realcompact. (Compare with Prob-

lems 5.1.D and 8.2.C.)

Open Problems

8.3.1. According to Corollary 8.3.8, the following conditions are equivalent for an arbitrary Gδ-

dense subgroup H of an R-factorizable topological group G:

1) the group H is R-factorizable;

2) the subgroup H is C-embedded in G.

Are conditions 1) and 2) equivalent for any Gδ-dense subgroup H of a Tychonoff R3-

factorizable paratopological group G?

8.3.2. Let G be a realcompact topological group of countable extent. Is G topologically isomorphic

to a closed subgroup of the product of some family of second-countable topological groups?

8.4. Homomorphic images of R-factorizable groups

The results of Sections 8.1 and 8.2 give us a good idea how R-factorizable groups look

like. Nevertheless, the answers to many questions about the behaviour of this class of groups

remain unknown. We do not know, for instance, whether continuous homomorphic images

of R-factorizable groups are R-factorizable. In many special cases, however, R-factoriz-

ability turns out to be stable with respect to continuous homomorphisms.

Let us show that continuous open homomorphisms preserve R-factorizability. The

proof of this fact requires a simple lemma.

Lemma 8.4.1. Let {Un : n ∈ ω} be a family of neighbourhoods of the identity e in
an ω-narrow group G. Then one can find a continuous homomorphism p : G → H onto a
second-countable topological group H and a family {Vn : n ∈ ω} of open neighbourhoods
of the identity eH in H such that p−1(Vn) ⊂ Un, for each n ∈ ω.

Proof. For every n ∈ ω, apply Corollary 3.4.19 to find a continuous homomorphism

πn of G onto a second-countable topological group Hn and an open neighbourhood Wn of

the neutral element in Hn such that π−1
n (Wn) ⊂ Un. Let π be the diagonal product of the

family {πn : n ∈ ω}. Then H = π(G) is a subgroup of the product P =
∏

n∈ω Hn, so

the group H is second-countable. Denote by pn the projection of P onto the factor Hn.

Obviously, πn = pn ◦π, for each n ∈ ω. The open neighbourhoods Vn = H ∩p−1
n (Wn) of

the identity in H satisfy the condition π−1(Vn) = π−1
n (Wn) ⊂ Un, as required. �

Theorem 8.4.2. [M. G. Tkachenko] A quotient group of an R-factorizable group is
R-factorizable.

Proof. Let π : G → H be an open continuous homomorphism of an R-factorizable

group G onto a topological group H , and f : H → R be a continuous function. Then f ◦π
is a continuous real-valued function on G, and since G is R-factorizable, we can find a

continuous homomorphism ϕ : G → K onto a second-countable topological group K and

a continuous function g : K → R such that f ◦ π = g ◦ ϕ. Choose a countable local base

{Un : n ∈ ω} at the identity of K and put Vn = π(ϕ−1(Un)), for each n ∈ ω. The open

neighbourhoods Vn of the identity in H have the following property:
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(∗) for every h ∈ H and every ε > 0, there exists n ∈ ω such that f (hVn) ⊂
(f (h)− ε, f (h) + ε).

Indeed, let h ∈ H and ε > 0 be arbitrary. Choose g ∈ G with π(g) = h and put

x = ϕ(g). Since g is continuous, there exists n ∈ ω such that g(xUn) ⊂ (g(x)−ε, g(x)+ε).

Then f (h) = g(x) and one easily verifies that f (hVn) ⊂ (f (h)− ε, f (h) + ε).

The group H , being a quotient of G, is ω-narrow by Proposition 3.4.2. Therefore, we

can apply Lemma 8.4.1 to find a continuous homomorphism p : H → L onto a second-

countable topological group L with a local base {Wn : n ∈ ω} at the identity such that

p−1(Wn) ⊂ Vn for each n ∈ ω. Let N be the kernel of p. Then N ⊂ ⋂
n∈ω Vn, and from (∗)

it follows that the function f is constant on every coset hN in H . This enables us to define

a function h : L→ R such that h ◦ p = f .

G
π ��

ϕ

��

H
p ��

f

��

L
h

����
��

��
�

K
g �� R

Finally, the choice of the local base {Wn : n ∈ ω} and (∗) imply immediately that for

every y ∈ L and ε > 0, there exists n ∈ ω such that h(yWn) ⊂ (h(y)− ε, h(y) + ε). This

gives the continuity of h. �

Clearly, continuous homomorphic images of Lindelöf topological groups are Lindelöf

and, hence, R-factorizable (see Theorem 8.1.6). By Propositions 8.1.13 and 5.3.11, this

holds true for arbitrary subgroups of Lindelöf Σ-groups:

Proposition 8.4.3. Continuous homomorphic images of subgroups of Lindelöf Σ-
groups are R-factorizable.

Corollary 8.1.15 suggests considering a wider class of R-factorizable groups, namely,

dense subgroups of topological products of Lindelöf Σ-groups. It turns out that continu-

ous homomorphic images of the groups from this class remain R-factorizable (see Corol-

lary 8.4.7).

To present a result about the preservation of R-factorizability in a general form, we

introduce the minimal class V(ω) of topological groups which contains all Lindelöf Σ-

groups and is closed under taking topological products, continuous homomorphic images,

and dense subgroups. Our aim is to show that all groups in V(ω) are R-factorizable, thus

generalizing Theorem 8.1.14.

Since every continuous homomorphism p : G → H of topological groups admits an

extension to a continuous homomorphism p̃ : 
G→ 
H , the following lemma is immediate.

Lemma 8.4.4. A topological group H belongs to V(ω) if and only if H is a dense
subgroup of a continuous homomorphic image of a topological product of Lindelöf Σ-
groups.

We recall that a space X is called perfectly κ-normal if the closure of every open set is

a zero-set in X (see Section 6.1). Evidently, this class of spaces is hereditary with respect

to taking open subsets; a similar fact for dense subsets follows from Lemma 8.4.5 given

below.
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Lemma 8.4.5. [R. L. Blair] Every dense subspace of a perfectly κ-normal space X is
z-embedded in X.

Proof. Let S be a dense subspace of X and F be a zero-set in S. We can find

a continuous function f : S → R such that F = f−1(0). For every n ∈ N, put

Un = f−1(−1/n, 1/n) and choose an open set Vn in X such that Un = Vn ∩ S. Then

F =

∞⋂
n=1

clSUn ⊆
∞⋂

n=1

clXVn.

Since X is perfectly κ-normal, each set clXVn is a zero-set in X and, hence, P =
⋂∞

n=1 clXVn

is also a zero-set in X. Clearly, F = P ∩ S, which proves the lemma. �

Theorem 8.4.6. Every group in V(ω) is R-factorizable and perfectly κ-normal.

Proof. Let G =
∏

i∈I Gi be a product of Lindelöf Σ-groups, and ϕ : G → H be a

continuous homomorphism of G onto a topological group H . By Corollary 5.6.17, the

group G is stable, and so is the continuous image H of G. In addition, Theorem 5.3.30

implies that celω(G) ≤ ω, so that c(G) ≤ ω and c(H) ≤ ω. According to Corollary 5.6.19,

every ω-stable topological group of countable cellularity is perfectly κ-normal; in particular,

this is true for H . It follows from c(H) ≤ ω that H is weakly Lindelöf, and we can apply

Proposition 8.1.20 to conclude that the group H is R-factorizable.

Finally, consider an arbitrary dense subgroup K of H . By Lemma 8.4.4, it suffices to

show that K is perfectly κ-normal and R-factorizable. The first property of K is immediate

since K is a dense subgroup of the perfectly κ-normal group H . In addition, Lemma 8.4.5

implies that K is z-embedded in H . Now the required conclusion about K follows from

Theorem 8.2.6. �

Corollary 8.4.7. Continuous homomorphic images of dense subgroups of topological
products of Lindelöf Σ-groups are R-factorizable.

Corollary 8.4.8. Let G be a dense subgroup of a product of cosmic topological
groups. Then every continuous homomorphic image of G is R-factorizable.

Homomorphic images of R-factorizable groups will be also considered in Section 8.5

(see Proposition 8.5.7 and Corollary 8.5.10).

Exercises

8.4.a. Show that every continuous homomorphic image of a weakly Lindelöf ω-steady group is

R-factorizable (compare with Proposition 8.1.20).

8.4.b. Verify that every dense subgroup of a perfectly κ-normal R-factorizable group is R-factor-

izable.

8.4.c. Show that the topological group Zc has countable cellularity but it cannot be represented as

a continuous homomorphic image of any subgroup of a Lindelöf Σ-group.

8.4.d. Prove that if X is a dense ω-stable subspace of a product of second-countable spaces, then

the free topological group F (X) and the free Abelian topological group A(X) are R-factoriz-

able. Show that the assertion remains valid for every ω-stable space X that contains a dense

σ-compact subspace.

8.4.e. Let μX be the Dieudonné completion of a Tychonoff space X. Verify the following:
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a) If F (X) is R-factorizable, then so is F (μX).

b) If X contains a dense σ-compact subset and F (μX) is R-factorizable, then F (X) is also

R-factorizable.

Problems

8.4.A. (M. G. Tkachenko [488]) Let G be a topological group and f a continuous real-valued

function on G. For every a ∈ G, let fa be the function on G defined by fa(x) = f (a−1x), for

each x ∈ G. Consider the set Gf = {fa : a ∈ G} as a subset of Cp(G), with the subspace

topology (see Section 1.9). Show that if the group G is R-factorizable, then the space Gf is

cosmic, for each f ∈ Cp(G).

8.4.B. (M. G. Tkachenko [488]) Apply Problem 8.4.A to prove that if G is a P-group satisfying

χ(G) = ℵ1 and G is not Raı̆kov complete, then G cannot be a continuous homomorphic

image of any R-factorizable group. Deduce that not every ω-narrow topological group is a

continuous homomorphic image of an R-factorizable group.

8.4.C. Give an example of an uncountable abstract group G such that every Hausdorff topological

group topology on G is discrete.

Remark. A group G with this combination of properties was constructed under the additional

assumption of CH by S. Shelah in [442]. Afterwards the assumption of CH was eliminated

by G. Hesse in [233].

Open Problems

8.4.1. Let G be an R-factorizable topological group and f : G → H a continuous homomorphism

of G onto a topological group H . Is H R-factorizable? What if every subgroup of G is

R-factorizable?

8.4.2. Does there exist a continuous mapping of a subgroup of a Lindelöf Σ-group onto the space

Zc? (See Exercise 8.4.c.)

8.4.3. Suppose that a topological group H is an image of an R-factorizable group G under a

continuous homomorphism. Is H a PT -group?

8.4.4. Is any quotient group of an �-factorizable topological group �-factorizable? (�-factoriz-

able groups were defined in Problem 8.1.C.)

8.4.5. Suppose that H is a quotient paratopological group of an Ri-factorizable paratopological

group, where i ∈ {1, 2, 3}. Is H then Ri-factorizable provided it satisfies the Ti separation

axiom?

8.4.6. Suppose that a paratopological group H satisfies the Ti separation axiom and is an image

of an Ri-factorizable topological group G under a continuous homomorphism. Is H Ri-

factorizable?

8.5. Products with a compact factor and m-factorizability

Recall that a space X is said to be pseudo-ℵ1-compact if every discrete family of

open sets in X is countable. All theorems about “countable” factorization of continuous

functions defined on a subspace of a Cartesian product have the inherent assumption that

the subspace has to be at least pseudo-ℵ1-compact (or has to satisfy a stronger condition

such as being Lindelöf, of countable cellularity, etc.). Since every R-factorizable group G
is ω-narrow and, hence, is topologically isomorphic to a subgroup of a product Π of second-

countable topological groups (Theorem 3.4.23), the subspace G of Π has to satisfy a kind of
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a factorization theorem. It is natural, therefore, to ask whether every R-factorizable group

is pseudo-ℵ1-compact, weakly Lindelöf, or has countable cellularity.

First, we note that the Lindelöf P-group Gτ in Example 4.4.11 is R-factorizable by

Theorem 8.1.6. However, Gτ has uncountable cellularity if τ > ω. Indeed, in this case Gτ is

non-discrete, so we can define by recursion a strictly decreasing sequence {Uα : α < ω1} of

clopen neighbourhoods of the identity in Gτ . Then the disjoint family {Uα\Uα+1 : α < ω1}
consists of non-empty open sets and, hence, c(Gτ) > ω. In fact, we show in Example 8.6.16

that R-factorizable groups can even fail to be weakly Lindelöf.

A property stronger than R-factorizability arises if we require that every continuous

mapping of a topological group G to a metrizable space admits a factorization via a

continuous homomorphism onto a second-countable topological group. More precisely, we

say that a topological group G is m-factorizable if for every continuous mapping f : G→ M
to a metrizable space M, there exists a continuous homomorphism π : G → K onto a

second-countable group K such that π ≺ f .

Clearly, every m-factorizable group is R-factorizable. The next result characterizes

m-factorizability in terms of continuous pseudometrics.

Proposition 8.5.1. A topological group G is m-factorizable iff for every continuous
pseudometric d on G, one can find a continuous homomorphism π : G → K onto a
second-countable topological group K and a continuous pseudometric 
 on K such that
d(x, y) = 
(π(x), π(y)), for all x, y ∈ G.

Proof. Suppose that G is m-factorizable, and let d be a continuous pseudometric on

G. Consider the metric space M = G/d with the associated metric d∗, obtained from G by

identifying points at zero distance with respect to d. Let also p : G→ G/d be the projection

assigning to a point x ∈ G the equivalence class x̄ consisting of all z ∈ G with d(x, z) = 0.

Then d(x, y) = d∗(p(x), p(y)), for all x, y ∈ G. Since G is m-factorizable, we can find a

continuous homomorphism π : G→ K onto a second-countable group K and a continuous

mapping h : K → M such that p = h ◦ π. Define a continuous pseudometric 
 on K by


(s, t) = d∗(h(s), h(t)) for all s, t ∈ K. It is easy to verify that d(x, y) = 
(π(x), π(y)), for

x, y ∈ G.

Conversely, suppose that G has the above property of factorization of continuous

pseudometrics, and consider a continuous mapping f : G → M to a metric space M with

a metric κ. Define a continuous pseudometric d on G by d(x, y) = κ(f (x), f (y)) for all

x, y ∈ G. By the assumption, we can find a continuous homomorphism π : G → K
onto a second-countable group K and a continuous pseudometric 
 on K such that

d(x, y) = 
(π(x), π(y)), for all x, y ∈ G. We conclude that


(π(x), π(y)) = κ(f (x), f (y)), for all x, y ∈ G. (8.3)

Therefore, the equality π(x) = π(y) always implies f (x) = f (y). So, there exists a mapping

h : K → M such that f = h ◦π. Then (8.3) implies that κ(h(z), h(t)) < ε whenever points

z, t ∈ K satisfy 
(z, t) < ε. Hence the mapping h is continuous. �
Let us show that pseudo-ℵ1-compactness is exactly what we need to add to R-factoriz-

ability in order to obtain m-factorizability.

Theorem 8.5.2. A topological group G is m-factorizable iff G is R-factorizable and
pseudo-ℵ1-compact.
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Proof. Suppose that a topological group G is m-factorizable. Then G is R-factor-

izable, so we have to show that G is pseudo-ℵ1-compact. Let γ = {Ui : i ∈ I} be a

discrete family of non-empty open sets in G. For every i ∈ I, choose a point xi ∈ Ui and

a continuous function fi : G → R such that fi(xi) = 1 and fi(x) = 0 for each x ∈ X \ Ui.

Then di defined by the rule di(x, y) = |fi(x) − fi(y)|, for all x, y ∈ G, is a continuous

pseudometric on G. Since the family γ is discrete, the pseudometric d =
∑

i∈I di is also

continuous. By Proposition 8.5.1, we can find a continuous homomorphism π : G → K
onto a second-countable topological group K and a continuous pseudometric 
 on K such

that d(x, y) = 
(π(x), π(y)) for all x, y ∈ G. For every i ∈ I, define yi = π(xi) and

Vi = {y ∈ K : 
(yi, y) < 1}. Then Vi is open in K and π−1(Vi) = Ui for each i ∈ I.

Therefore, the family {Vi : i ∈ I} is disjoint and, hence, countable. It follows that the

family γ is also countable, so G is pseudo-ℵ1-compact.

Suppose now that the group G is R-factorizable and pseudo-ℵ1-compact. Let f : G→
M be a continuous mapping of G onto a metrizable space M. Then M is pseudo-ℵ1-compact

and, hence, w(M) ≤ ω. Since G is R-factorizable, we can apply Lemma 8.1.2 to find a

continuous homomorphism π : G→ K onto a second-countable topological group K such

that π ≺ f . This proves that the group G is m-factorizable. �

Since continuous mappings preserve pseudo-ℵ1-compactness, Theorems 8.5.2 and 8.4.2

imply that quotients of m-factorizable groups are m-factorizable:

Corollary 8.5.3. Let π : G → H be an open continuous homomorphism of a
topological group G onto H . If G is m-factorizable, so is H .

It is a general problem, yet unsolved, whether the product of two m- or R-factorizable

groups is m- or R-factorizable. We solve it here for m-factorizability in the special case

when one of the factors is compact.

First, we prove that continuous homomorphisms defined on subgroups of arbitrary

topological products with values in first-countable groups depend on at most countably

many coordinates.

Lemma 8.5.4. Let G be a subgroup of the topological product Π =
∏

i∈I Gi of left
(right) topological groups and π : G → H a continuous homomorphism to a left (right)
topological group H satisfying χ(H) ≤ κ. Then one can find a set J ⊂ I with |J | ≤ κ and
a continuous homomorphism ϕ : pJ (G) → H such that π = ϕ ◦ pJ�G, where pJ is the
projection of Π to ΠJ =

∏
i∈J Gi. If, in particular, the space H is first-countable, then the

set J can be chosen to be countable.

Proof. It suffices to consider the case of left topological groups. Let {Vα : α < κ} be

a local base at the identity eH of the group H . Since π is continuous, for every α < κ there

exists a canonical open neighbourhood Uα of the identity in Π such that π(Uα ∩G) ⊂ Vα.

Let Jα be a finite subset of I such that Uα = p−1
Jα

pJα
(Uα). Put J =

⋃
α<κ Jα. Evidently,

|J | ≤ κ. We claim that if x, y ∈ G and pJ (x) = pJ (y), then π(x) = π(y). Indeed,

suppose that pJ (x) = pJ (y). Then x−1y ∈ Uα and π(x−1y) ∈ Vα, for each α < ω. Since

the intersection of the sets Vα contains only eH , we conclude that π(x−1y) = eH , i.e.,

π(x) = π(y).

Therefore, there exists a homomorphism ϕ : pJ (G) → H such that π = ϕ ◦ pJ�G. It

remains to verify that ϕ is continuous. Let α < κ be arbitrary. Then Wα = pJ (Uα) is an
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open neighbourhood of the identity in the group ΠJ . Since the canonical set Uα depends

only on the indices in Jα ⊂ J , we have Uα = p−1
J (Wα). It follows from π = ϕ ◦pJ�G that

ϕ(Wα ∩ pJ (G)) = π(Uα ∩G) ⊂ Vα. This implies that the homomorphism ϕ is continuous

at the identity of the left topological group pJ (G). By Proposition 1.3.4, it is continuous on

pJ (G). �

Theorem 8.5.5. Let G be a topological group.

a) If G is m-factorizable and K is any compact group, then the group G × K is m-
factorizable.

b) Conversely, if G× Z(2)ω1 is R-factorizable, then G is m-factorizable.

Proof. a) Suppose that G is m-factorizable, and let f : G ×K → R be a continuous

function. Denote by C(K) the space of all continuous real-valued functions on K with the

sup-norm topology, and consider the mapping Ψ: G→ C(K) defined by Ψ(x)(y) = f (x, y),

for all x ∈ G and y ∈ K. Since K is compact, Ψ is continuous. By Theorem 8.5.2, G
is R-factorizable and pseudo-ℵ1-compact, so the subspace Ψ(G) of the metric space C(K)

is pseudo-ℵ1-compact and, hence, second-countable. By the R-factorizability of G and

Lemma 8.1.2, there are a continuous homomorphism π : G → H onto a second-countable

topological group H and a continuous mapping ψ : H → C(K) such that Ψ = ψ ◦ π.

We claim that if x1, x2 ∈ G and π(x1) = π(x2), then f (x1, y) = f (x2, y) for each y ∈ K.

Indeed, if f (x1, y) = f (x2, y) for some x1, x2 ∈ G and y ∈ K, then Ψ(x1)(y) = Ψ(x2)(y),

i.e., Ψ(x1) = Ψ(x2). Therefore, the equality Ψ = ψ ◦ π implies that π(x1) = π(x2).

The fact just proved enables us to define a mapping h : H × K → R such that

h ◦ (π × idK) = f , where idK is the identity mapping of K onto itself.

G×K
f ��

π×idK

��

R

H ×K

h

�����������

Let us verify that h is continuous. Choose an arbitrary point (s, y) ∈ H × K and

a number ε > 0. Let also x∗ ∈ G, π(x∗) = s. Since ψ is continuous, there exists an

open neighbourhood U of s in H such that ||ψ(t) − ψ(s)|| < ε/2 for each t ∈ U, i.e.,

|f (x, z) − f (x∗, z)| < ε/2 whenever π(x) ∈ U and z ∈ K. There exists a neighbourhood

V of y in K such that |f (x∗, z) − f (x∗, y)| < ε/2 for each z ∈ V . Let (t, z) ∈ U × V be

arbitrary, and choose x ∈ G with π(x) = t. Then we have:

|h(t, z)− h(s, y)| = |f (x, z)− f (x∗, y)|
≤ |f (x, z)− f (x∗, z)|+ |f (x∗, z)− f (x∗, y)| < ε/2 + ε/2 = ε.

This implies the continuity of h.

The group H × K is Lindelöf as the product of the second-countable group H and

the compact group K. By Theorem 8.1.6, H × K is R-factorizable. Since π × idK ≺ f ,

Lemma 8.1.11 implies that the group G × K is R-factorizable. Finally, the product of a

pseudo-ℵ1-compact space with a compact space is pseudo-ℵ1-compact, so the group G×K
is m-factorizable, by Theorem 8.5.2. This proves a) of the theorem.

b) Suppose that the group G×K is R-factorizable, where K = Z(2)ω1 and Z(2) = {0, 1}
is the discrete group. Let eK be the identity of the group K. It is clear that G ∼= G× {eK}
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is a retract of G×K, so Corollary 8.2.4 implies that the group G is R-factorizable. Let us

show that G is pseudo-ℵ1-compact.

Assume to the contrary that G contains a discrete family {Uα : α < ω1} of non-empty

open sets. For every α < ω1, choose a point xα ∈ Uα and define a continuous function

fα : G → [0, 1] such that fα(xα) = 1 and fα(x) = 0 if x ∈ G \ Uα. We also consider the

function h : Z(2) → [0, 1] such that h(0) = 0 and h(1) = 1. Let π : G × K → G be the

projection. If y ∈ Z(2)ω1 and α < ω1, denote by yα the αth coordinate of y. For every

α < ω1, we define a function gα : G × K → [0, 1] by gα(x, y) = fα(x) · h(yα), for every

(x, y) ∈ G×K. Clearly, gα is continuous. Since the family {Uα : α < ω1} is discrete, the

function g =
∑

α<ω1
gα is also continuous. By the R-factorizability of G×K, we can find a

continuous homomorphism ϕ : G×K → L to a second-countable group L and a continuous

function g̃ : L → R such that g = g̃ ◦ ϕ. From Lemma 8.5.4 it follows that there exists a

countable subset J of ω1 and a continuous homomorphism ψ : G × Z(2)J → L such that

ϕ = ψ ◦ (idG×pJ ), where idG is the identity automorphism of G and pJ : Z(2)ω1 → Z(2)J

is the projection.

G× Z(2)ω1
g ��

ϕ















idG×pJ

��

R

G× Z(2)J
ψ �� L

g̃



Since the above diagram commutes, we conclude that if x ∈ G and y, y′ ∈ Z(2)ω1 satisfy

pJ (y) = pJ (y′), then g(x, y) = g(x, y′). Choose an ordinal α ∈ ω1 \ J . Now we

define two points y, y′ ∈ Z(2)ω1 by yβ = y′
β = 0 if β = α and yα = 0, y′

α = 1.

Evidently, pJ (y) = pJ (y′). A simple calculation shows that g(xα, y) = h(yα) = 0 and

g(xα, y′) = h(y′
α) = 1; it follows that g(xα, y) = g(xα, y′). This contradiction shows that

G is pseudo-ℵ1-compact. Finally, Theorem 8.5.2 implies that G is m-factorizable. �
Corollary 8.5.6. The product of an R-factorizable group G and a compact metrizable

group K is R-factorizable.

Proof. Let f : G × K → R be a continuous function. As in the proof of item a)

of Theorem 8.5.5, consider the mapping Ψ: G → C(K), where C(K) is taken with the

sup-norm topology, defined by Ψ(x)(y) = f (x, y) for all x ∈ G and all y ∈ K. Since

K is compact, the mapping Ψ is continuous. In addition, w(C(K)) = w(K) ≤ ω. By the

R-factorizability of G and Lemma 8.1.2, there are a continuous homomorphism π : G→ H
onto a second-countable topological group H and a continuous mapping ψ : H → C(K)

such that Ψ = ψ ◦ π. The equality π(x1) = π(x2) implies that f (x1, y) = f (x2, y), for all

x1, x2 ∈ G and all y ∈ K. Therefore, there is a continuous mapping h : H ×K → R such

that h ◦ (π × idK) = f , where idK is the identity automorphism of K onto itself. Since the

group H×K is second-countable, we conclude that the product G×K is R-factorizable. �
The following result shows that the property of being pseudo-ℵ1-compact for an R-

factorizable group is determined by its quotient groups of countable pseudocharacter. We

recall that the preservation of R-factorizability under taking continuous homomorphic

images is an open problem (see Problem 8.4.1).

Proposition 8.5.7. An R-factorizable group G is pseudo-ℵ1-compact iff so is every
quotient group G/N of countable pseudocharacter.
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Proof. Continuous mappings preserve pseudo-ℵ1-compactness, so we prove only the

sufficiency. Suppose that every quotient G/N of countable pseudocharacter is pseudo-

ℵ1-compact. By Theorems 8.5.5 and 8.5.2, it suffices to show that the product G × K
is R-factorizable for K = Z(2)ω1 . According to [165, Theorem 2.3.15], K contains a

countable dense subset S. Consider an arbitrary continuous function f : G×K → R. For

every y ∈ K, denote by iy the natural embedding of G into G×K defined by iy(x) = (x, y)

for each x ∈ G. Since the group G is R-factorizable and S is countable, we can apply

Lemma 8.1.2 to find a continuous homomorphism π : G → G0 onto a second-countable

group G0 and a family {fy : y ∈ S} of continuous real-valued functions on G0 such that

f ◦ iy = fy ◦ π, for each y ∈ S. Let us verify that for all x1, x2 ∈ G and all y ∈ K,

π(x1) = π(x2) implies f (x1, y) = f (x2, y).

Assume to the contrary that there exist x1, x2 ∈ G with π(x1) = π(x2) and y ∈ K such

that f (x1, y) = f (x2, y). We can find disjoint open sets U1, U2 in G and an open set V in K
such that xi ∈ Ui, for i = 1, 2, y ∈ V , and f (U1 × V ) ∩ f (U2 × V ) = ∅. Since S is dense

in K, there is a point z ∈ V ∩ S. Clearly, f (x1, z) = f (x2, z). However,

f (x1, z) = fz(π(x1)) = fz(π(x2)) = f (x2, z),

which is a contradiction.

Therefore, there exists a function g : G0×K → R such that f = g ◦ (π× idK), where

idK is the identity automorphism of K. The function g is not necessarily continuous, so we

proceed as follows. Denote by N the kernel of π and consider the quotient homomorphism

π∗ : G → G/N. Clearly, there exists a continuous isomorphism j : G/N → G0 such that

π = j ◦ π∗. The pseudocharacter of the space G∗ = G/N is countable, and the function

g∗ = g ◦ (j × idK) satisfies the equality f = g∗ ◦ (π∗ × idK).

G×K
f ��

π∗×idK

��

R

G∗ ×K
j×idK ��

g∗
�������������

G0 ×K

g



Since π∗ and π∗ × idK are open homomorphisms, the function g∗ is continuous. By the

assumptions, the quotient group G∗ is pseudo-ℵ1-compact. In addition, G∗ is R-factor-

izable, by Theorem 8.4.2. Therefore, Theorem 8.5.2 implies that the group G∗ is m-

factorizable. According to a) of Theorem 8.5.5, the product group G∗×K is m-factorizable

and, therefore, R-factorizable. Since π∗ × idK ≺ f , Lemma 8.1.11 implies that the group

G×K is also R-factorizable. Finally, apply b) of Theorem 8.5.5 to conclude that the group

G is m-factorizable and, by Theorem 8.5.2, pseudo-ℵ1-compact. �

We are going to show, under the additional assumption that c < 2ℵ1 , that any “small”

R-factorizable group G is pseudo-ℵ1-compact, so the product G×K of such a group G with

any compact group K remains R-factorizable. As usual, C(X) denotes the set of continuous

real-valued functions on a space X.

Theorem 8.5.8. If an R-factorizable group G satisfies w(G) ≤ τ ≥ ℵ0, then
|C(G)| ≤ τω. In particular, every R-factorizable group G with w(G)ω < 2ℵ1 is m-
factorizable.
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Proof. The R-factorizable group G is ω-narrow by Proposition 8.1.3, so we can

apply Theorem 3.4.23 to embed G as a subgroup to the product Π =
∏

i∈I Gi of

second-countable groups Gi. Since every ω-narrow group is range-� for the class � of

separable metrizable groups, Theorem 3.4.21 enables us to choose the index set I satisfying

|I| ≤ χ(G) ≤ w(G) ≤ τ.

Since G is R-factorizable, for every f ∈ C(G) there exist a continuous homomorphism

π : G → K onto a second-countable group K and a continuous function h : K → R such

that f = h ◦ π. By Lemma 8.5.4, we can find a countable set J ⊂ I and a continuous

homomorphism ϕ : pJ (G)→ K such that π = ϕ ◦ pJ�G, where pJ : Π→ ΠJ =
∏

i∈J Gi

is the projection.

G
f ��

π

		��
��

��
��

�

pJ

��

R

pJ (G)
ϕ �� K

h



Then the function g = h ◦ ϕ is continuous and satisfies f = g ◦ pJ .

For every countable subset J of I, put CJ = {g ◦ pJ : g ∈ C(pJ (G))}. We have just

proved that

C(G) =
⋃
{CJ : J ⊂ I, |J | ≤ ω}.

Since the weight of the group pJ (G) is countable, for every countable set J ⊂ I, we have

that |C(pJ (G))| ≤ 2ω. Therefore, |C(G)| ≤ |I|ω · 2ω ≤ τω. This proves the first part of the

theorem.

Assume that w(G)ω < 2ℵ1 and that G has an uncountable discrete family{Uα : α < ω1}
of non-empty open sets. For every α < ω1, choose a point xα ∈ Uα. Then the set

X = {xα : α < ω1} is C-embedded in G and, hence, C(G) contains a subset that can

be identified with RX. Hence |C(G)| ≥ 2|X| = 2ℵ1 , which contradicts the inequalities

|C(G)| ≤ w(G)ω < 2ℵ1 . Thus, G is pseudo-ℵ1-compact. Finally, every R-factorizable

pseudo-ℵ1-compact group is m-factorizable, by Theorem 8.5.2. �
Corollary 8.5.9. Let G be an R-factorizable group that satisfies w(G)ω < 2ℵ1 . Then

the product G × K is R-factorizable, for every compact group K. In particular, under
c < 2ℵ1 , this conclusion holds for every R-factorizable group G with w(G) ≤ c.

Proof. By Theorem 8.5.8, the group G is m-factorizable. It remains to apply a) of

Theorem 8.5.5. �
The above corollary applies to small R-factorizable groups only. One can, however,

extend it to a much wider class of groups whose continuous homomorphic images of small

weight are pseudo-ℵ1-compact.

Corollary 8.5.10. Suppose that every continuous homomorphic image H of an R-
factorizable group G satisfying w(H) ≤ ℵ1 is pseudo-ℵ1-compact. Then G is also pseudo-
ℵ1-compact, and the product G×K is R-factorizable, for each compact group K.

Proof. By Theorems 8.5.2 and 8.5.5 a), it suffices to verify that G is pseudo-ℵ1-

compact. Let K = Z(2)ω1 , and suppose that f : G × K → R is a continuous function.

As in the proof of Theorem 8.5.5, consider the mapping Ψ: G → C(K) defined by

Ψ(x)(y) = f (x, y), for every x ∈ G and every y ∈ K, where C(K) is the Banach space of all
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continuous real-valued functions on K with the sup-norm. The compactness of K implies

that w(C(K)) = w(K) = ℵ1. Since G is R-factorizable, we can apply Lemma 8.1.2 to find

a continuous homomorphism π : G→ H onto a topological group H with w(H) ≤ ℵ1 and

a continuous mapping ψ : H → X such that Ψ = ψ ◦ π. By the assumptions, the group H
is pseudo-ℵ1-compact.

Let idK be the identity mapping of K onto itself. As in the proof of Theorem 8.5.5, there

exists a continuous mapping h : H×K → R such that h◦(π×idK) = f . Define the mapping

Φ: H → C(K) by Φ(x)(y) = h(x, y), for all x ∈ H and all y ∈ K. The group H is pseudo-

ℵ1-compact and the mapping Φ is continuous, so the image Φ(H) = Ψ(G) is second-

countable. The latter fact and Lemma 8.1.2 permit us to find a continuous homomorphism

ϕ : G→ P onto a second-countable group P and a continuous mapping p : P → C(K) such

that Ψ = p ◦ ϕ. In its turn, we use the homomorphism ϕ to define a continuous mapping

h∗ : P × K → R such that f = h∗ ◦ (ϕ × idK). Since the group P × K is Lindelöf, we

conclude, as in Theorem 8.5.5 a), that the product G × K is R-factorizable. Therefore, G
is pseudo-ℵ1-compact, by b) of Theorem 8.5.5. �

The next result demonstrates one more time the importance of pseudo-ℵ1-compactness

when studying products of R-factorizable groups. In fact, it completely characterizes R-

factorizability of the product G×K in the case when the second factor is compact.

Theorem 8.5.11. The product G × K of an R-factorizable group G and a compact
group K is R-factorizable iff either G is pseudo-ℵ1-compact or K is metrizable.

Proof. If the group G is pseudo-ℵ1-compact, then the product G×K is R-factorizable,

by Theorem 8.5.5. In addition, if K is metrizable, then the product G×K is R-factorizable

for an arbitrary R-factorizable group G, by Corollary 8.5.6.

Conversely, suppose that G contains a discrete family {Uα : α < ω1} of non-empty

open sets, while K is not metrizable. We can assume without loss of generality that each Uα

is a cozero set. For every α < ω1, let fα be a continuous real-valued function on G such that

Uα = G \ f−1
α (0). Since K is a compact non-metrizable group, there exists a continuous

mapping ϕ of K onto Iω1 , where I is the closed unit interval (see Corollary 4.2.5). For every

α < ω1, denote by πα the projection of Iω1 to the α-th factor, and let gα = πα ◦ϕ. Clearly,

each gα is a continuous real-valued function on K. Since the family {Uα : α < ω1} is

discrete, the function

f (x, y) =
∑
α<ω1

fα(x) · gα(y),

with x ∈ G and y ∈ K, is continuous on the product G×K.

Assume that f is factorizable, that is, there exist a continuous homomorphism

p : G × K → H onto a second-countable topological group H and a continuous function

h : H → R such that f = h ◦ p. Let eG and eK be the identities of G and K,

respectively. Since ker p is a Gδ-set in G × K, we can find Gδ-sets PG and PK in G
and K, respectively, such that eG ∈ PK, eK ∈ PK, and PG × PK ⊂ ker p. The group K
is compact, so there exists a closed invariant Gδ-subgroup N in K such that N ⊂ PK. Let

π : K → L be the quotient homomorphism, where L = K/N. Then π is open; hence,

from {eG} × N ⊂ PG × PK ⊂ ker p it follows that i × π ≺ p, where i is the identity

automorphism of G. Therefore, we can find a continuous homomorphism q : G× L → H
such that p = q ◦ (i× π).
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G×K
f ��

i×π

��

p

����
��

��
��

� R

G× L
q �� H

h



The commutativity of the above diagram implies that if π(y1) = π(y2) for some

y1, y2 ∈ K, then gα(y1) = gα(y2) for each α < ω1. Indeed, suppose that π(y1) = z = π(y2)

for some y1, y2 ∈ K. Pick arbitrary point x ∈ Uα. Then

(i× π)(x, y1) = (x, z) = (i× π)(x, y2).

Therefore, f (x, yi) = h ◦ q ◦ (i × π)(x, yi) = h(q(x, z)) for i = 1, 2; hence, f (x, y1) =

f (x, y2). The definition of f implies that f (x, yi) = fα(x) · gα(yi), for i = 1, 2. Since

fα(x) = 0, we have gα(y1) = gα(y2).

Since the homomorphism π : K → L is open, the claim just proved implies that π ≺ gα

for each α < ω1. The mapping ϕ : K → Iω1 is the diagonal product of the functions gα, so

π ≺ ϕ as well. Hence, there exists a continuous mapping ψ : L→ Iω1 such that ϕ = ψ ◦π.

Clearly, ψ(L) = Iω1 . Finally, the kernel N of the homomorphism π is of type Gδ in the

compact group K, so that the group L = K/N is first-countable and, hence, metrizable.

Thus, the Tychonoff cube Iω1 is metrizable, as a continuous image of the compact metrizable

space L, a contradiction. �
In Theorem 8.5.13 below we show that the product of a weakly Lindelöf R-factorizable

group with a pseudocompact group is R-factorizable. This requires a topological lemma in

which no separation axiom on the factors X and Y is assumed.

Lemma 8.5.12. Let f : X × Y → R be a continuous function. If the space Y is
weakly Lindelöf, then for every x ∈ X there exists a Gδ-set Px in X containing x such that
f (x, y) = f (x′, y), for all x′ ∈ Px and y ∈ Y .

Proof. Take an arbitrary point x0 ∈ X. For every n ∈ N and every y ∈ Y , we can find

open sets U(y, n) and V (y, n) in X and Y , respectively, such that x0 ∈ U(y, n), y ∈ V (y, n)

and |f (x′, y′) − f (x0, y)| < 1/n for all x′ ∈ U(y, n) and y′ ∈ V (y, n). Then the family

{V (y, n) : y ∈ Y} covers Y and since Y is weakly Lindelöf, there exists a countable set

An ⊂ Y such that the union V (n) =
⋃{V (y, n) : y ∈ An} is dense in Y . Then the set

P(n) =
⋂{U(y, n) : y ∈ An} is a Gδ-set in X and contains x0. Let us verify that

|f (x, y)− f (x0, y)| ≤ 1/n for all x ∈ P(n) and y ∈ Y. (8.4)

Assume to the contrary that d = |f (x, y)− f (x0, y)| > 1/n, for some x ∈ P(n) and some

y ∈ Y . Let ε = d − 1/n. Then there exist open sets U1, U2 in X and an open set V in Y
such that (x, y) ∈ U1 × V , (x0, y) ∈ U2 × V , U1 ∪ U2 ⊂ U(n), and

|f (x′, y′)− f (x, y)| < ε/2, |f (x′′, y′′)− f (x0, y)| < ε/2 (8.5)

whenever (x′, y′) ∈ U1 × V , (x′′, y′′) ∈ U2 × V . Since V (n) is dense in Y , we can find

z ∈ An such that V ∩V (z, n) = ∅. Pick a point t ∈ V ∩V (z, n). Then (8.5) and our choice

of x ∈ P(n) ⊂ U(z, n) and t ∈ Y together imply that

d = |f (x, y)− f (x0, y)| ≤ |f (x, y)− f (x, t)|+ |f (x, t)− f (x0, t)|+ |f (x0, t)− f (x0, y)|
< ε/2 + 1/n + ε/2 = d,

which is a contradiction. This proves (8.4).
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Clearly, P =
⋂∞

n=1 P(n) is a Gδ-set in X that contains x0. From (8.4) it follows

immediately that f (x, y) = f (x0, y), for all x ∈ P and y ∈ Y . The lemma is proved. �
Theorem 8.5.13. The product G × H of a weakly Lindelöf R-factorizable group G

and a pseudocompact group H is R-factorizable.

Proof. Let f : G × H → R be a continuous function. Applying Lemma 8.5.12, we

find, for every point y ∈ H , a Gδ-set Ky in H such that y ∈ Ky and f (x, y) = f (x, y′)
whenever x ∈ G and y′ ∈ Ky. Then the completion 
H of H is a compact group, and

H is a dense subgroup of 
H . For every y ∈ H , choose a closed Gδ-set Fy in 
H such

that y ∈ Fy ∩ H ⊂ Ky. By Corollary 5.3.19, there exists a countable set M ⊂ H such

that
⋃

x∈M Fy is dense in
⋃

y∈H Fy. Since H intersects every non-empty Gδ-set in 
H

(see Corollary 6.6.6), the set R =
⋃

y∈M Ky is dense in H . The family {Fy : y ∈ M}
consists of zero-sets in the compact group 
H and, since 
H is R-factorizable, we can

find a continuous homomorphism π : 
H → H0 onto a second-countable topological group

H0 such that Fy = π−1π(Fy), for each y ∈ M. Note that the homomorphism π is open

because the group 
H is compact. Let p = π�H be the restriction of π to H . The

pseudocompactness of H implies that p(H) = π(H) = H0. In addition, since H intersects

every non-empty Gδ-set in 
H , we have p(U ∩H) = π(U), for each open set U in 
H , i.e.,

the homomorphism p is open. Note that the homomorphisms ϕ̂ = idG×π and ϕ = idG×p
are open as products of open homomorphisms (see the diagram below).

G× 
H
ϕ̂

������������ G×H� ���

ϕ

��

f �� R

G×H0

h

�����������

By Lemma 1.7.6 (with X = S = G × H , Y = R, g = ϕ, Z = G × H0 and

T = G× p(R)), there exists a continuous mapping h : G×H0 → R such that f = h ◦ ϕ.

Since G is R-factorizable and H0 is compact and second-countable, the group G × H0

is R-factorizable, by Corollary 8.5.6. Clearly, ϕ ≺ f , so Lemma 8.1.11 implies that the

product group G×H is R-factorizable. �
Corollary 8.5.14. The product G×H of a Lindelöf group G and a pseudocompact

group H is m-factorizable.

Proof. Since every Lindelöf group is weakly Lindelöf and R-factorizable (see Theo-

rem 8.1.6), from Theorem 8.5.13 it follows that the group G×H is R-factorizable.

Let K be an arbitrary compact group. Then the group G × H × K ∼= (G × K) × H
is R-factorizable because the first factor G × K is Lindelöf and the second factor H is

pseudocompact. Hence, G×H is m-factorizable, by b) of Theorem 8.5.5. �
Corollary 8.5.15. The product G × H of a Lindelöf topological group G and a

pseudocompact group H is C-embedded in G× 
H .

Proof. Evidently, G×H is Gδ-dense in G× 
H . Since every m-factorizable group

is R-factorizable, it suffices to apply Proposition 8.3.4 and Corollary 8.5.14. �
We finish this section with a result close to Theorem 8.5.13. Its proof requires the

following auxiliary fact.
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Lemma 8.5.16. The product X×Y of a weakly Lindelöf space X and a dense subspace
Y of a space Y∗ with celω(Y∗) ≤ ω is weakly Lindelöf.

Proof. Let γ be a covering of X× Y by open sets in X× Y∗. We can assume without

loss of generality that the elements of γ are rectangular, that is, each element of γ has the

form U×V . Since X is weakly Lindelöf, for every y ∈ Y there exists a countable subfamily

γ(y) of γ such that p−1
Y (y)∩⋃

γ(y) is dense in p−1
Y (y), where pY is the projection of X×Y∗

to Y∗. Clearly, we can assume that all elements of γ(y) intersect the fiber p−1
Y (y). Denote

by Ky the intersection of the family {pY (E) : E ∈ γ(y)}. Then Ky is a Gδ-set in Y∗ and

y ∈ Ky, by our choice of γ(y). Since celω(Y∗) ≤ ω, there exists a countable set M ⊂ Y
such that

⋃
y∈M Ky is dense in

⋃
y∈Y Ky. It follows from Y ⊂ ⋃

y∈Y Ky that
⋃

y∈M Ky is

dense in Y∗. Let γ∗ =
⋃

y∈M γ(y). Then γ∗ is a countable subfamily of γ, and we claim

that (X× Y ) ∩⋃
γ∗ is dense in X× Y .

Indeed, take an arbitrary non-empty open set O×W in X×Y . Let W∗ be an open subset

of Y∗ such that W = W∗ ∩ Y . Since
⋃

y∈M Ky is dense in Y∗, the intersection Ky ∩W∗ is

not empty, for some y ∈ M. It follows from our choice of the family γ(y) that O∩U = ∅,

for some element U × V ∈ γ(y). Since Ky ⊂ V , we have that W∗ ∩ V ⊃ W∗ ∩Ky = ∅.

However, the sets W∗ and V are open in Y∗ and Y is dense in Y∗, whence it follows that the

set W ∩ V = (W∗ ∩ Y ) ∩ V = (W∗ ∩ V ) ∩ Y is not empty. We conclude, therefore, that

(O×W )∩ (U ×V ) = ∅. This proves that the set (X× Y )∩⋃
γ∗ is dense in X× Y . Since

the subfamily γ∗ of γ is countable, the product space X× Y is weakly Lindelöf. �

Theorem 8.5.17. Let G be a weakly Lindelöf ω-steady topological group and H an
arbitrary subgroup of a Lindelöf Σ-group. Then the product group G×H is R-factorizable.

Proof. According to Corollaries 5.2.9 and 8.1.22, the group G is ω-narrow and ω-

stable. By our assumption, H is a topological subgroup of a Lindelöf Σ-group, say, H̃ .

Taking the closure of H in H̃ , we can assume without loss of generality that H is dense in

H̃ . Suppose that f is a continuous real-valued function on the group G × H . It follows

from Corollary 5.3.19 that the group H̃ satisfies celω(H̃) ≤ ω, so Lemma 8.5.16 implies

that the product group G×H is weakly Lindelöf. Hence, by Theorem 8.1.18 (with τ = ω),

the group G×H contains a closed invariant subgroup N of type Gδ such that f is constant

on each coset of N in G × H . Let eH be the neutral element of H . Since the group G
is ω-narrow and N ∩ (G × {eH}) is a Gδ-set in G × {eH} ∼= G, Corollary 5.1.8 implies

that there exists a quotient homomorphism p : G → G0 onto a topological group G0 of

countable pseudocharacter such that ker p× {eH} ⊂ N.

Let π be the product of p and the identity automorphism idH of the group H . Then

the kernel P of π is contained in N, so that f is constant on each coset of P in G×H . In

other words, there exists a real-valued function g on the group G0×H such that f = g ◦π.

Since the homomorphism π is open, the function g is continuous. By the assumption, the

group G is ω-steady, while the continuous homomorphic image G0 of G has countable

pseudocharacter. Hence, the group G0 has a countable network and, by Proposition 5.3.3 ,

is a Lindelöf Σ-space. It follows that G0×H is a (dense) subgroup of the Lindelöf Σ-group

G0 × H̃ , so Proposition 8.1.13 implies that the group G0 × H is R-factorizable. Since

π ≺ f , the group G×H is R-factorizable according to Lemma 8.1.11. �



Products with a compact factor 549

Since every Lindelöf P-group is ω-stable and, hence, ω-steady (see Corollary 5.6.10

and Proposition 5.6.13), the following corollary is immediate from Theorem 8.5.17:

Corollary 8.5.18. The product of a Lindelöf P-group and a precompact group is
R-factorizable.

Exercises

8.5.a. Let G and H be topological group. Show that if the product group G × H is R-factoriz-

able, then either G or H is pseudo-ℵ1-compact. Extend this result to completely regular

paratopological groups.

Hint. Suppose not, and choose discrete families {Uα : α < ω1} and {Vα : α < ω1} of non-

empty open sets in G and H , respectively. Then define a continuous real-valued function

f on G × H such that f (Uα × Vβ) ⊂ (1,∞) if α < β and f (Uα × Vβ) ⊂ (−∞, 0) if

α ≥ β. Consider an arbitrary continuous homomorphism p : G × H → K to a second-

countable topological group K and find elements x, y ∈ K such that every neighbourhood of

x in K intersects uncountably many elements of the family {p(Uα × {eH}) : α < ω1},

while every neighbourhood of y intersects uncountably many elements of the family

{p({eG} × Vα) : α < ω1}. To finish the argument, show that every real-valued function

h on K satisfying f = h ◦ p is discontinuous at the point xy ∈ K. Notice that the same

argument works for Tychonoff paratopological groups G and H .

8.5.b. Let G be any collectionwise normal topological group such that the group G2 is R-factoriz-

able. Show that the extent of G is countable.

8.5.c. Prove that if an R-factorizable group is ω-stable, then it is m-factorizable.

8.5.d. Let G be an m-factorizable group and H a pseudocompact group.

(a) Show that the product group G × H is m-factorizable iff G × H is C-embedded in

G × 
H .

(b) Apply (a) to prove that if ot(G) ≤ ω, then ot(G × H) ≤ ω and the group G × H is

R-factorizable.

(c) Verify that if G is a k-group, then ot(G×H) ≤ ω and the group G×H is m-factorizable.

8.5.e. Let G be a Lindelöf topological group and X a pseudocompact space. Modify the proof of

Theorem 8.5.13 to show that the product groups G×F (X) and G×A(X) are R-factorizable.

8.5.f. Verify that the product G×Cp(X) is R-factorizable, for every precompact topological group

G and every Tychonoff space X.

8.5.g. Prove that the product G×H of a Lindelöf ω-stable group G with a σ-bounded topological

group H is R-factorizable.

8.5.h. Modify the proof of Theorem 8.5.5 to show that if the product group G×Cp(X) is R-factor-

izable, for an uncountable Tychonoff space X, then G is m-factorizable.

8.5.i. Show that every subgroup of a Lindelöf Σ-group is m-factorizable.

Problems

8.5.A. Give an example of a connected, locally connected ω-narrow topological group that is not

R-factorizable.

Hint. For a topological group G, let G• be the connected, locally connected group containing

G as a subgroup that was constructed in Section 3.8. It follows from Corollary 3.8.5 that G
is C∗-embedded in G•. Apply Example 8.2.1 and Theorem 8.2.6 to construct the required

topological group.

8.5.B. (M. G. Tkachenko [479]) Prove that every locally connected R-factorizable group is pseudo-

ℵ1-compact.
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Hint. First, establish the following fact. If f : G → X is a continuous mapping of a locally

connected R-factorizable group to a second-countable space X, then there exists a continuous

homomorphism π : G → K onto a topological group K with a countable base � such that

π ≺ f and π−1(V ) is connected for each V ∈ �. Then modify the argument in the proof

of Theorem 8.5.2.

8.5.C. Let G be a topological group such that Gω is R-factorizable. Prove that the product group

Gτ and the Σ-product ΣGτ are R-factorizable, for each cardinal τ > ω.

Hint. Apply Exercise 8.5.a and Proposition 1.6.22 to show that the groups Gω, Gτ and ΣGτ

are pseudo-ℵ1-compact. Then extend Theorem 1.7.2 to Σ-products.

8.5.D. (C. Hernández and M. G. Tkachenko [227]) Let N be a closed subgroup of a topological

group G. Suppose that a topology � on the left coset space G/N is weaker than the quotient

topology of G/N. We say that � is left-invariant if the left translations φa : G/N → G/N
defined by φa(xN) = axN for all a, x ∈ G are continuous with respect to �. The group G is

called semi-R-factorizable if, for every continuous function f : G → R, one can find a closed

subgroup N of G and a second-countable left-invariant T1 topology � on G/N such that the

natural projection p : G → (G/N, �) satisfies p ≺ f . Prove that every semi-R-factorizable

group is R-factorizable.

Hint. Show that every semi-R-factorizable group is ω-narrow.

Open Problems

8.5.1. Let G be any R-factorizable topological group. Is G is pseudo-ℵ1-compact?

8.5.2. Is the product of an R-factorizable group with a second-countable group R-factorizable?

8.5.3. Is the product of two R-factorizable topological groups of countable cellularity R-factoriz-

able?

8.5.4. Suppose that G and H are weakly Lindelöf R-factorizable topological groups. Is the group

G × H R-factorizable?

8.5.5. Is the product of an R-factorizable group with (a subgroup of) a σ-compact group R-factor-

izable?

8.5.6. Is the product of an R-factorizable group with (a subgroup of) a Lindelöf Σ-group R-factor-

izable?

8.5.7. Is the product of two R-factorizable topological groups a PT -group?

8.5.8. Let i ∈ {1, 2, 3}. Is the product of an Ri-factorizable paratopological group with a compact

topological group Ri-factorizable?

8.5.9. Is the product of two separable Ri-factorizable paratopological groups an Ri-factorizable

paratopological group, where i ∈ {1, 2, 3}?

8.5.10. Suppose that G is a topological group and G =
⋃∞

i=0
Gi, where each Gi is an R-factorizable

subgroup of G. Must G be R-factorizable? Is G a PT -group?

8.6. R-factorizability of P -groups

Unlike the general case, the R-factorizability of P-groups admits a complete description

— by Theorem 8.6.12, a P-group is R-factorizable if and only if it is pseudo-ℵ1-compact.

The class of P-groups serves as a source of numerous examples that help to understand

relationship between various classes of topological groups. It was not accidental, for

instance, that the ω-narrow non-R-factorizable group H in Example 8.2.1 was constructed

as a dense subgroup of a Lindelöf P-group. We develop further the technique used in the

previous sections and construct an R-factorizable P-group that is not weakly Lindelöf (see

Example 8.6.16).



R-factorizability of P-groups 551

The following lemma is a part of Theorem 8.6.12 that characterizes R-factorizability

of P-groups.

Lemma 8.6.1. Every R-factorizable P-group G is pseudo-ℵ1-compact.

Proof. Assume the contrary. Then G contains an uncountable discrete family

{Uα : α < ω1} of non-empty open sets. Let R = {rα : α < ω1} be a set of pairwise

distinct real numbers. For every α < ω1, define a continuous real-valued function fα on G
such that fα(xα) = rα, for some xα ∈ Uα, and fα(x) = 0 if x ∈ G \ Uα. Then the function

f =
∑

α<ω1
fα is continuous on G. Clearly, R ⊂ f (G), so that f (G) is uncountable. Since

the group G is R-factorizable, we can find a continuous homomorphism π : G→ K onto a

second-countable group K and a continuous function h : K → R such that f = h ◦ π. By

Lemma 4.4.2, the group K is countable, whence |f (G)| ≤ |K| ≤ ω, a contradiction. �

The notion of a τ-complete family of mappings plays an important role in the arguments

to follow. Let X be a space and � be a family of continuous mappings from X elsewhere.

Given a subfamily γ of �, we denote by hγ = ⊗γ the diagonal product of the mappings

from γ considered as a mapping of X onto its image hγ(X). Clearly, hγ is continuous for

every γ ⊂ �. If τ is an infinite cardinal, we say that � is τ-complete if for every sequence

{fα : α < τ} ⊂ � satisfying fβ ≺ fα when α < β < τ, the mapping⊗α<τfα belongs to �.

Lemma 8.6.2. Let G be a Lindelöf topological group, and � be the family of
all continuous open homomorphisms ϕ : G → K onto topological groups K satisfying
w(K) ≤ ℵ1. Then the family � is ℵ1-complete.

Proof. Suppose that {fα : α < ω1} ⊂ � satisfies fβ ≺ fα, whenever α < β < ω1.

Let f = ⊗α<ω1
fα and H = f (G). We also put Hα = fα(G), for every α < ω1. Since

H is a subgroup of the product
∏

α<ω1
Hα, and w(Hα) ≤ ℵ1 for each α < ω1, we have

w(H) ≤ ℵ1. So, it suffices to show that the homomorphism f is open.

Let U and V be neighbourhoods of the identity e in G such that V 2 ⊂ U. For every

α < ω1, denote by Nα the kernel of the homomorphism fα. Then Nβ ⊂ Nα if α < β < ω1,

and N =
⋂

α<ω1
Nα is the kernel of f . Since the group G is Lindelöf, there exists an ordinal

α < ω1 such that Nα ⊂ VN. Then

f−1
α fα(V ) = VNα ⊂ VVN ⊂ UN = f−1f (U). (8.6)

If α < ω1, then f ≺ fα, so there exists a continuous homomorphism gα : H → Hα such

that fα = gα ◦ f . Therefore, from (8.6) it follows that g−1
α (fα(V )) ⊂ f (U). Since the

homomorphism fα is open, g−1
α (fα(V )) is an open neighbourhood of the identity in H . Thus,

the interior of f (U) is non-empty and contains the identity of H . So, the homomorphism

f is open and, hence, f ∈ �. �

Neither pseudo-ℵ1-compact P-spaces, nor P-groups have to be Lindelöf (see Exam-

ple 8.2.1). However, we have the following:

Lemma 8.6.3. Any regular pseudo-ℵ1-compact P-space X satisfying l(X) ≤ ℵ1 is
Lindelöf.

Proof. Assume the contrary. Then there exists an open covering γ of X such that

X \ ⋃
μ = ∅, for each countable subfamily μ of γ. Since l(X) ≤ ℵ1, we can assume

that |γ| = ℵ1. Clearly, the space X has a base of clopen sets, so we can also assume that
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all elements of γ are clopen in X. Let γ = {Uα : α < ω1}. For every α < ω1, the set

Vα = Uα \
⋃

β<α Uβ is clopen in X. Consider the disjoint family λ = {Vα : α < ω1}.
It is easy to see that

⋃
λ =

⋃
γ = X. Since λ refines γ, we have |λ| = |γ| = ℵ1. So,

λ is an uncountable disjoint open covering of X and hence, the space X is not pseudo-ℵ1-

compact. �
Now we apply Lemma 8.6.1 and 8.6.3 to deduce the following.

Corollary 8.6.4. An R-factorizable P-group G with l(G) ≤ ℵ1 is Lindelöf. In
particular, every R-factorizable P-group of weight ≤ ℵ1 is Lindelöf.

Similarly to Lindelöf P-groups, every non-discrete R-factorizable P-group has many

open homomorphisms onto topological groups of weight ℵ1.

Lemma 8.6.5. Let 
 be the family of all continuous homomorphisms of an ω-narrow
P-group G onto P-groups of weight ≤ ℵ1. If all images f (G) with f ∈ 
 are Lindelöf,
then every f ∈ 
 is open.

Proof. Consider a homomorphism f ∈ 
, f : G→ H . Let U be a neighbourhood of

the identity e in G. Since the group G is ω-narrow, (b) of Lemma 4.4.1 implies that there

exists an open invariant subgroup P of G with P ⊂ U. Let ϕ : G → G/P be the quotient

homomorphism. The group G/P is discrete and, hence, countable by Lemma 4.4.2. Let

ψ = f�ϕ be the diagonal product of f and ϕ. Then K = ψ(G) is a subgroup of H ×G/P ,

whence it follows that w(K) ≤ ℵ1. Since H is a P-group and G/P is discrete, the product

H × G/P and its subgroup K are P-groups. By the assumptions, K is Lindelöf. Denote

by g the restriction to K of the projection of the product H ×G/P to the first factor. Then

f = g ◦ψ, so g(K) = H . Since K and H are Lindelöf P-groups, Lemma 4.4.6 implies that

the homomorphism g is open.

Let p be the projection of the product H×G/P to the second factor and h = p�K be the

restriction of p to K. Then from P = ϕ−1(e∗) and ϕ = h◦ψ it follows that ψ(P) = h−1(e∗)

is open in K, where e∗ is the identity of the discrete group G/P . Therefore, f (P) = g(ψ(P))

is open in H . We conclude that f (U) contains the open neighbourhood f (P) of the identity

in H , which implies that f is open. �
The following result plays the key role in the proof of Theorem 8.6.12. In a sense,

it enables us to replace a given pseudo-ℵ1-compact P-group by its quotient of weight less

than or equal to ℵ1, and this quotient group is Lindelöf, by Lemma 8.6.3.

Lemma 8.6.6. Let G be a pseudo-ℵ1-compact P-group and � be the family of
all continuous open homomorphisms f : G → K onto topological groups K satisfying
w(K) ≤ ℵ1. Then the family � is ℵ1-complete.

Proof. It is easy to see that G satisfies the conditions of Lemma 8.6.5, i.e., if a

continuous homomorphic image H = f (G) of weight ≤ ℵ1 is a P-group, then H is

Lindelöf. Indeed, the group H is pseudo-ℵ1-compact being a continuous image of G, so H
is Lindelöf by Lemma 8.6.3. Therefore, all such homomorphisms f : G → H are open by

Lemma 8.6.5.

Suppose that the family {fα : α < ω1} ⊂ � satisfies fβ ≺ fα whenever α < β < ω1.

Let f be the diagonal product of the mappings fα’s and H = f (G). Put Hα = fα(G) for

every α < ω1. Since H is a subgroup of the product
∏

α<ω1
Hα, and w(Hα) ≤ ℵ1 for each
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α < ω1, we have w(H) ≤ ℵ1. Therefore, by Lemma 8.6.5, it suffices to show that H is a

P-group.

If α < ω1, then f ≺ fα, so there exists a continuous homomorphism gα : H → Hα

such that fα = gα ◦ f . Clearly, the family

� = {g−1
α (V ) : α < ω1, V is open in Hα}

constitutes a base of H . In addition, if α < β < ω1, then gβ ≺ gα, so there exists a

continuous homomorphism pβ,α : Hβ → Hα such that gα = pβ,α ◦ gβ. Therefore, for

every countable subfamily γ = {g−1
αn

(Vn) : n ∈ ω} of �, we can find an ordinal β < ω1

satisfying αn < β for each n ∈ ω and a countable family {Wn : n ∈ ω} of open sets in Hβ

such that γ = {g−1
β (Wn) : n ∈ ω}. Since Hβ is a P-group by (c) of Lemma 4.4.1, the set

W =
⋂∞

n=0 Wn is open in Hβ and hence,
⋂

γ = g−1
β (W ) is open in H . Therefore, H is a

P-group. �
Corollary 8.6.7. Let H be a pseudo-ℵ1-compact P-group satisfying ψ(H) ≤ ℵ1.

Then w(H) ≤ ℵ1.

Proof. By the assumption, there exists a family {Uα : α < ω1} of open neighbour-

hoods of the identity e in H such that {e} =
⋂

α<ω1
Uα. Using (b) of Lemma 4.4.1, it is

easy to define by recursion a family {Nα : α < ω1} of open invariant subgroups of H such

that Nβ ⊂ Nα ∩ Uα whenever α < β < ω1. For every α < ω1, let pα : H → H/Nα be the

quotient homomorphism. Clearly, pβ ≺ pα if α < β. Denote by p the diagonal product

of the family {pα : α < ω1}. Then K = p(H) is a subgroup of the product
∏

α<ω1
H/Nα

of countable discrete groups and hence, w(K) ≤ ℵ1. From Lemma 8.6.6 it follows that the

homomorphism p : H → K is open. Since Nβ is the kernel of the homomorphism pβ for

each β < ω1, we have

ker p =
⋂

β<ω1

Nβ ⊂
⋂

α<ω1

Uα = {e}.

So, ker p = {e} and hence, p is a topological isomorphism between H and K. Therefore,

w(H) = w(K) ≤ ℵ1. �
Every pseudo-ℵ1-compact group G is ω-narrow, by Proposition 3.4.31, so Theo-

rem 5.4.10 implies that c(G) ≤ 2ω. We improve this conclusion in the next lemma.

Lemma 8.6.8. Every pseudo-ℵ1-compact P-group G satisfies c(G) ≤ ℵ1.

Proof. Denote by � the family of all open invariant subgroups of G. By b) of

Lemma 4.4.1, � is a base at the identity of G. Since G is ω-narrow by Proposition 3.4.31,

the quotient group G/N is countable for each N ∈ �. In addition, the family � is closed

under countable intersections because G is a P-group.

Let γ be an arbitrary family of open sets in G. We have to show that γ contains a

subfamily λ with |λ| ≤ ℵ1 such that
⋃

λ is dense in
⋃

γ. Without loss of generality, we

can assume that every U ∈ γ has the form U = xN, for some x ∈ G and some N ∈ �. We

shall define by recursion two sequences {Nα : α < ω1} and {λα : α < ω1} satisfying the

following conditions for all α, β < ω1:

(1) Nα ∈ � and Nα ⊂ Nβ if β < α;

(2) λα ⊂ γ;

(3) |λα| ≤ ω;
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(4) πα(
⋃

λα) = πα(
⋃

γ);

(5) U = π−1
α+1πα+1(U) for each U ∈ λα.

In (4) and (5), we use πβ to denote the quotient homomorphism of G onto G/Nβ, where β
is α or α + 1, respectively.

Let N0 ∈ � be arbitrary. Since the group G/N0 is countable, there exists a countable

subfamily λ0 ⊂ γ such that π0(
⋃

λ0) = π0(
⋃

γ), where π0 : G → G/N0 is the

quotient homomorphism. Suppose that, for some α < ω1, we have defined the sequences

{Nβ : β < α} and {λβ : β < α} satisfying (1)–(5). If α is limit, put Nα =
⋂

β<α Nβ. Since

the quotient group Hα = G/Nα is countable, there exists a countable family λα ⊂ γ such

that πα(
⋃

λα) = πα(
⋃

γ). Suppose now that α = β + 1. Since λβ ⊂ γ is countable, we

can find Nβ+1 ∈ � such that Nβ+1 ⊂ Nβ and U = π−1
β+1πβ+1(U), for each U ∈ λβ. Again,

the quotient group G/Nβ+1 is countable, so there is a countable family λβ+1 ⊂ γ such that

πβ+1(
⋃

λβ+1) = πβ+1(
⋃

γ). In either case, the sequences {Nν : ν ≤ α} and {λν : ν ≤ α}
satisfy (1)–(5). This completes the recursive construction.

Put λ =
⋃

α<ω1
λα. It follows from (2) and (3) that λ ⊂ γ and |λ| ≤ ℵ1. Denote by π

the diagonal product of the quotient homomorphisms πα : G→ G/Nα with α < ω1, and let

H = π(G). Then (5) implies that U = π−1π(U) for each U ∈ λ. Therefore, the open set

O =
⋃

λ satisfies O = π−1π(O). In addition, from (4) it follows that πα(O) = πα(
⋃

γ)

for each α < ω1, so π(O) is dense in π(
⋃

γ). By Lemma 8.6.6, the homomorphism

π : G→ H is open. Therefore, we have⋃
γ ⊂ π−1π(

⋃
γ) ⊂ π−1π(O) = π−1π(O) = O =

⋃
λ.

This proves that
⋃

λ is dense in
⋃

γ, so c(G) ≤ ℵ1. �

Since every Lindelöf space is pseudo-ℵ1-compact, we have the following:

Corollary 8.6.9. Every Lindelöf P-group G satisfies c(G) ≤ ℵ1.

Now we apply Lemma 8.6.8 to deduce that the “location complexity” of regular closed

sets in a pseudo-ℵ1-compact P-group is at most ℵ1.

Lemma 8.6.10. For every open subset U of a pseudo-ℵ1-compact P-group G, there
exists a continuous open homomorphism π : G → H onto a topological group H with
w(H) ≤ ℵ1 such that U = π−1π(U).

Proof. By (b) of Lemma 4.4.1, the family � of all open invariant subgroups of G
forms a base at the identity of G. Therefore, for every x ∈ U, there exists Nx ∈ � such

that xNx ⊂ U. Since c(G) ≤ ℵ1 by Lemma 8.6.8, the family γ = {xNx : x ∈ U} contains

a subfamily λ = {xNx : x ∈ C} such that |C| ≤ ℵ1 and O =
⋃

λ is dense in U =
⋃

γ.

If |C| ≤ ℵ0, then
⋂

x∈C Nx = N ∈ � and xNx = π−1π(xNx) for each x ∈ C,

where π : G → G/N is the quotient homomorphism. In particular, O = π−1π(O). If

|C| = ℵ1, then we can enumerate the family γC = {Nx : x ∈ C} in order type ω1, say,

γC = {Nα : α < ω1}. For every α < ω1, put Pα =
⋂

β≤α Nβ. Then Pα ∈ � and, hence, the

quotient group G/Pα is countable and discrete, for each α < ω1. Let πα : G→ G/Pα be the

quotient homomorphism. Denote by π the diagonal product of the family {πα : α < ω1},
and let H = π(G). Then H is a subgroup of the product

∏
α<ω1

G/Pα of countable

discrete groups G/Pα and hence, w(H) ≤ ℵ1. From the definition of π it follows that
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xNx = π−1π(xNx), for each x ∈ C, and again we have O = π−1π(O). By Lemma 8.6.6,

the homomorphism π is open.

In either case, we use the density of O in U to conclude that

π−1π(U) = π−1π(O) ⊂ π−1π(O) = π−1π(O) = O = U.

This shows that U = π−1π(U). �

Dense subgroups of Lindelöf P-groups need not be R-factorizable (see Example 8.2.1).

The following theorem shows that such subgroups have a weaker property that could be

called ℵ1-factorizability.

Theorem 8.6.11. Let S be a dense subspace of a pseudo-ℵ1-compact P-group G. Then
for every continuous function f : S → R, there exists a continuous open homomorphism
π : G→ H onto a group H with w(H) ≤ ℵ1 such that π�S ≺ f .

Proof. Consider the family γ = {f−1(r) : r ∈ R}. Since S is a P-space, γ is a

disjoint open covering of S. From Lemma 8.6.8 it follows that c(G) ≤ ℵ1 and hence, since

S is dense in G, we have c(S) = c(G) ≤ ℵ1. So, |γ| ≤ ℵ1. For every non-empty U ∈ γ,

choose an open set VU in G such that VU ∩ S = U. Applying Lemma 8.6.10, we find a

continuous open homomorphism πU : G → HU onto a group HU with w(HU) ≤ ℵ1 such

that V U = π−1
U πU(V U). Denote by π0 the diagonal product of the family {πU : U ∈ γ}.

Then H0 = π0(G) is a subgroup of the product Π =
∏

U∈γ HU , so w(H0) ≤ ℵ1. For every

U ∈ γ, let pU : Π → HU be the projection. Then πU = pU ◦ π0. The definition of π0

implies that V U = π−1
0 π0(V U), for each U ∈ γ.

Let N be the kernel of π0 and π : G → H be the quotient homomorphism, where

H = G/N. Then there exists an algebraic isomorphism i : H → H0 such that π0 = i ◦ π.

Since π is open, the isomorphism i is continuous. Hence, ψ(H) ≤ χ(H0) ≤ w(H0) ≤ ℵ1,

and Corollary 8.6.7 implies that w(H) ≤ ℵ1. Since π ≺ π0, we have V U = π−1π(V U),

for each U ∈ γ. It remains to verify that π�S ≺ f .

First, suppose that x, y ∈ S satisfy π(x) = π(y). Then πU(x) = πU(y) for each

U ∈ γ. Suppose that x ∈ U for some U ∈ γ. Since U = S ∩ VU = S ∩ V U , the equality

V U = π−1
U πU(V U) implies that y ∈ S ∩ V U = U, i.e., both x and y lie in U. This implies

immediately that f (x) = f (y). Therefore, there exists a function h : π(S) → R such that

f = h ◦ π�S. We claim that f is constant on elements of γ, so that h is constant on

the open subset π(VU) ∩ π(S) of π(S), for each U ∈ γ. Indeed, if s, t ∈ π(VU) ∩ π(S),

choose x, y ∈ S such that π(x) = s and π(y) = t. From V U = π−1π(V U) it follows that

x, y ∈ S ∩ V U = S ∩ VU = U; hence,

h(s) = h(π(x)) = f (x) = f (y) = h(π(y)) = h(t).

Since the sets π(VU) ∩ π(S) with U ∈ γ cover π(S), the function h is continuous. Thus,

π�S ≺ f . �

The following theorem characterizes the R-factorizability of P-groups in purely

topological terms. It is not surprising, after the above series of results, that the characteristic

property is precisely pseudo-ℵ1-compactness.

Theorem 8.6.12. For an arbitrary P-group G, the following conditions are equivalent:

1) G is R-factorizable;
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2) G is ω-narrow, and every continuous homomorphic image H of G with w(H) ≤ ℵ1 is
Lindelöf;

3) G is pseudo-ℵ1-compact;
4) G is ω-stable.

Proof. The implication 1)⇒ 3) is exactly Lemma 8.6.1. The equivalence of 3) and 4)

follows from Propositions 5.6.8 and 5.6.9. Therefore, it suffices to show that 3)⇒ 1) and

2)⇔ 3).

3) ⇒ 1). Let G be a pseudo-ℵ1-compact P-group, and suppose that f : G → R
is a continuous function. Denote by � the family of continuous open homomorphisms

π : G → H onto topological groups H with w(H) ≤ ℵ1 and apply Theorem 8.6.11 to

find π ∈ �, π : G → H , and a continuous function g : H → R such that f = g ◦ π.

By c) of Lemma 4.4.1, H is a pseudo-ℵ1-compact P-group. Therefore, by Lemma 8.6.3,

H is Lindelöf. Since Lindelöf groups are R-factorizable, by Theorem 8.1.6, and π ≺ f ,

Lemma 8.1.11 implies that the group G is R-factorizable.

3)⇒ 2). Suppose that the group G is pseudo-ℵ1-compact. Proposition 3.4.31 implies

that G is ω-narrow. Let f : G → H be a continuous homomorphism of G onto a group

H with w(H) ≤ ℵ1. Denote by N the kernel of f . Then the quotient homomorphism

π : G → G/N is open, so G/N is a P-group, by c) of Lemma 4.4.1. Clearly, there is

a continuous isomorphism p : G/N → H such that f = p ◦ π. Since w(H) ≤ ℵ1, the

pseudocharacter of the quotient group G/N does not exceed ℵ1. Note that G/N is pseudo-

ℵ1-compact, as a continuous image of G, so Corollary 8.6.7 implies that w(G/N) ≤ ℵ1.

Therefore, G/N is Lindelöf by Lemma 8.6.3, and so is H = p(G/N).

2)⇒ 3). Suppose that every continuous homomorphic image of G of weight ≤ ℵ1 is

Lindelöf. If G contains a discrete family {Uα : α < ω1} of non-empty open sets, then we

apply b) of Lemma 4.4.1 to choose, for every α < ω1, a point xα ∈ Uα and an open invariant

subgroup Pα of G such that Vα = xαPα ⊂ Uα. Clearly, the family γ = {Vα : α < ω1} is

discrete in G. Put P =
⋂

α<ω1
Pα and consider the quotient homomorphism π : G→ G/P .

Then ψ(G/P) ≤ ℵ1, so Corollary 8.6.7 implies that w(G/P) ≤ ℵ1 and hence, the

group G/P is Lindelöf, by the assumption. Since the homomorphism π is open and

Vα = π−1π(Vα), for each α < ω1, the family {π(Vα) : α < ω1} is discrete in G/P .

This contradicts the Lindelöf property of G/P . Therefore, G is pseudo-ℵ1-compact. �

Corollary 8.6.13. Let H be a pseudo-ℵ1-compact P-group. Then the Raı̆kov
completion 
H of H is R-factorizable and υH = μH = 
H . In particular, Dieudonné
complete pseudo-ℵ1-compact P-groups are Raı̆kov complete.

Proof. By Theorem 8.6.12, the group H is R-factorizable. In addition, d) of

Lemma 4.4.1 implies that 
H is also a P-group, so H is Gδ-dense in 
H . By Propo-

sition 8.3.4, H is C-embedded in 
H , and the group 
H is R-factorizable. Therefore,


H ⊂ υG. Since H is R-factorizable, from Theorem 8.3.6 it follows that υH = μH is a

topological group that contains H as a dense subgroup. Consequently, μH ⊂ 
H . Hence,

υH = μH = 
H . If H is Dieudonné complete, then H = μH and the above equalities

imply that H = μH = 
H . So, H is complete. �

Corollary 8.6.14. The following conditions are equivalent for any P-group H:

a) H is R-factorizable;
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b) 
H is R-factorizable, and H intersects every non-empty Gω1
-set in 
H .

Proof. Suppose that H is R-factorizable. Then 
H is also R-factorizable, by

Corollary 8.6.13. In addition, H is pseudo-ℵ1-compact, by Theorem 8.6.12, while d) of

Lemma 4.4.1 implies that 
H is a P-group. In particular, 
H is zero-dimensional. Consider

a non-empty Gℵ1
-set Q in 
H . If Q ∩ H = ∅, pick a point x ∈ Q and define a strictly

decreasing sequence {Uα : α < ω1} of clopen neighbourhoods of x in 
H such that⋂
α<ω1

Uα ⊂ Q. For every α < ω1, put Vα = (Uα \ Uα+1) ∩H . Then {Vα : α < ω1} is a

discrete family of non-empty open sets in H , which contradicts the pseudo-ℵ1-compactness

of H . Therefore, H intersects every non-empty Gℵ1
-set in 
H .

Conversely, suppose that H and its completion 
H satisfy b). Let f : H → R be a

continuous function. By Theorem 8.6.11, there exists a continuous open homomorphism

π : 
H → K onto a group K satisfying w(K) ≤ ℵ1, and a continuous function g : K → R
such that f = g ◦ π�H . Since H intersects every non-empty Gℵ1

-set in 
H , we conclude

that π(H) = π(
H) = K. So, f̃ = g ◦ π is a continuous extension of f over 
H . Hence,

H is C-embedded in 
H and H is R-factorizable, by Proposition 8.2.3. �

By Lemma 8.6.1, an R-factorizable P-group G is pseudo-ℵ1-compact. In addition, if

G satisfies w(G) ≤ ℵ1, then Corollary 8.6.4 implies that G is Lindelöf. Now we present

an example showing that the restriction on the weight of G is essential. In fact, we shall

construct an R-factorizable P-group that is not weakly Lindelöf. Let us start with a simple

fact.

Lemma 8.6.15. A regular weakly Lindelöf P-space is Lindelöf.

Proof. Let γ be an open covering of a regular weakly Lindelöf P-space X. Clearly,

X has a base of clopen sets, so we can assume that all elements of γ are clopen. By the

assumption, γ contains a countable subfamily λ such that the union
⋃

λ is dense in X. Since

X is a P-space, this union is closed in X and hence, X =
⋃

λ. �

Example 8.6.16. For every cardinal τ > ℵ1, there exists an R-factorizable P-group H
of cardinality τ which is not weakly Lindelöf.

Let Z(2) be the two-element group {0, 1} with the discrete topology, and τ > ℵ1 be

a cardinal. Consider the Lindelöf P-group G = Gτ defined in Example 4.4.11 as the σ-

product in the product Z(2)τ . The group G carries the ω-box topology inherited from Z(2)τ .

In other words, a base at the neutral element of G consists of subgroups

{G ∩ π−1
A (0A) : A ⊂ τ, |A| ≤ ω},

where πA : Z(2)τ → Z(2)A is the projection, and 0A is the neutral element of Z(2)A. In

what follows we use the fact that the restriction of πB to G is an open homomorphism of G
onto πB(G), for each B ⊂ τ. The group G is R-factorizable, by Theorem 8.1.6. Put

H = {x ∈ G : | supp(x)| is even}.
Clearly, H is a P-group being a subgroup of G. We claim that H is an R-factorizable group

which fails to be weakly Lindelöf. We split the proof of this fact in two steps.

Clearly, H is dense in G, because basic open sets in G depend on countably many

coordinates. In fact, H has the following stronger property:

πB(H) = πB(G) for each B ⊂ τ with |B| ≤ ℵ1. (8.7)
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Indeed, given B ⊂ τ with |B| ≤ ℵ1 and a point y ∈ πB(G), one can always find x ∈ Z(2)τ

with a finite support of even cardinality such that x and y coincide at each coordinate in B.

Then x ∈ H and πB(x) = y. This proves (8.7).

It follows immediately from (8.7) that H intersects every non-empty Gω1
-set in G. The

group G is Raı̆kov complete, by Proposition 4.4.5. Since H is dense in G, it follows that


H = G. Since the group G is R-factorizable, Corollary 8.6.14 implies that its subgroup

H is also R-factorizable.

The group H is not Lindelöf as a proper dense subgroup of the P-group G. Therefore,

H is not weakly Lindelöf, by Lemma 8.6.15. �

We conclude this section with two more results showing that the class of R-factorizable

P-groups is stable under taking topological products and continuous homomorphic images

if we restrict ourselves to considering P-groups.

The next lemma is an essential step in the proof of Theorem 8.6.18; it generalizes

Corollary 8.6.7.

Lemma 8.6.17. Let G =
∏

n∈ω Gn be the product of a countable family of R-factor-
izable P-groups. If ϕ : G → K is a continuous homomorphism onto a group K with
ψ(K) ≤ ℵ1, then K is Lindelöf and nw(K) ≤ ℵ1.

Proof. By Lemma 5.6.2 we can fix, for every n ∈ ω, a quotient homomorphism pn of

Gn onto a group Hn with ψ(Hn) ≤ ℵ1 and a continuous homomorphism h :
∏

n∈ω Hn → K
such that ϕ = h ◦ p, where p =

∏
n∈ω pn : G → ∏

n∈ω Hn is the product homomorphism.

Then, by (c) of Lemma 4.4.1, Hn is a P-group, for each n ∈ ω. From Lemma 8.6.1 it

follows that the groups Gn’s are pseudo-ℵ1-compact, and so are the groups Hn = pn(Gn).

Also w(Hn) ≤ ℵ1 by Corollary 8.6.7. Therefore, Corollary 8.6.4 implies that each group Hn

is Lindelöf. Since a countable product of Lindelöf P-spaces is Lindelöf by Theorem 4.4.10,

we conclude that the group H =
∏

n∈ω Hn is Lindelöf and w(H) ≤ ℵ1. So, the group

K = h(H) is also Lindelöf and nw(K) ≤ ℵ1. �

Theorem 8.6.18. An arbitrary topological product G =
∏

α∈A Gα of R-factorizable
P-groups is R-factorizable. Moreover, for every continuous real-valued function f on G,
there exists a quotient homomorphism π : G → K onto a second-countable group K such
that π ≺ f .

Proof. For a non-empty B ⊂ A, let πB be the projection of G onto GB =
∏

α∈B Gα.

Since R-factorizable groups are ω0-narrow and the class of ℵ0-narrow groups is productive,

GB is an ω0-narrow P-group for each finite B ⊂ A. Hence, Lemma 8.6.17 and the

equivalence 3)⇔ 1)⇔ 2) of Theorem 8.6.12 together imply that the group GB is R-factoriz-

able and pseudo-ℵ1-compact, for each finite B ⊂ A. So, the product group G is pseudo-ℵ1-

compact, by Proposition 1.6.22. Therefore, every continuous function f : G→ R depends

on, at most, countably many coordinates, by Theorem 1.7.2. In other words, there exist a

countable set C ⊂ A and a function g : GC → R such that f = g ◦ πC. The continuity of

g follows from the fact that the projection πC is open. Thus, we may assume without loss

of generality that the index set A is countable.

Our next step is to find an upper bound for the cellularity of G. If B ⊂ A is finite,

then the P-group GB is pseudo-ℵ1-compact and Lemma 8.6.8 implies that c(GB) ≤ ℵ1.

Therefore, c(G) ≤ ℵ1, by Theorem 1.6.21.



R-factorizability of P-groups 559

Let f : G → R be a continuous function. Note that wl(G) ≤ c(G) ≤ ℵ1; applying

Theorem 8.1.18, we find a continuous homomorphism ϕ : G → H onto a group H with

ψ(H) ≤ ℵ1 and a continuous function g : H → R such that f = g ◦ ϕ. By Lemma 5.6.2,

for every α ∈ A there is a quotient homomorphism pα : Gα → Hα onto a group Hα

with ψ(Hα) ≤ ℵ1 such that p ≺ ϕ, where p : G → ∏
α∈A Hα is the product of the

homomorphisms pα’s. Since ψ(
∏

α∈A Hα) ≤ ℵ1, Lemma 8.6.17 implies that the product

group
∏

α∈A Hα is Lindelöf. To simplify notation, we can assume that ϕ = p and

H =
∏

α∈A Hα. The homomorphism p is open as the product of open homomorphisms pα’s.

The Lindelöf group H is R-factorizable, by Theorem 8.1.6. So, there exist a continuous

homomorphism ψ : H → K onto a second-countable topological group K and a continuous

function h : K → R such that g = h ◦ ψ.

G
f ��

ϕ

��

R

H

g
���������� ψ �� K

h



Applying again Lemma 5.6.2, we find a family {qα : α ∈ A} of quotient homomorphisms

qα : Hα → Kα onto groups Kα of countable pseudocharacter such that the product q of

the homomorphisms qα’s satisfies q ≺ ψ. Clearly, the homomorphism q is open. Since

each Hα is an ω0-narrow P-group, from Lemma 4.4.2 it follows that Kα is a countable

discrete group. The group
∏

α∈A Kα is second-countable, so we can assume that q = ψ
and K =

∏
α∈A Kα. Therefore, the continuous homomorphism π = ψ ◦ ϕ of G to the

second-countable group K is open and f = h ◦ π. �
Now we extend Theorem 8.6.18 to continuous homomorphic images of topological

products of R-factorizable P-groups.

Theorem 8.6.19. Continuous homomorphic images of arbitrary topological products
of R-factorizable P-groups are R-factorizable.

Proof. Let G =
∏

i∈I Gi be a product of R-factorizable P-groups and ϕ : G→ H be

a continuous homomorphism of G onto a topological group H . Consider a continuous

function f : H → R. By Theorem 8.6.18, we can find a quotient homomorphism

π : G → K onto a second-countable group K and a continuous function g : K → R
such that f ◦ ϕ = g ◦ π. Put N = ker π and M = ϕ(N). Clearly, N and M are closed

normal subgroups of G and H , respectively. The equality f ◦ ϕ = g ◦ π implies that f is

constant on every coset of ϕ(N) in H and, by the continuity of f , the same holds for cosets

of M in H . Let p : H → H/M be the quotient homomorphism. Then there exists a function

h : H/M → R satisfying f = h ◦ p. Since p is open, h is continuous. Let ψ = p ◦ ϕ.

G
ϕ ��

π

��

ψ

����
��

��
��

H
p

����
��

��
��

f

��

H/M

h

����
��

��
��

K
g ��

q
��

R
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Note that ker π = N ⊂ ker ψ, so there exists a homomorphism q : K → H/M such that

ψ = q ◦ π. Again, π is open, so q is continuous. Therefore, the group H/M = q(K) is

Lindelöf and hence, R-factorizable. We conclude that the homomorphism p : H → H/M
to the R-factorizable group H/M satisfies p ≺ f , so, by Lemma 8.1.11, H is also R-factor-

izable. �

Corollary 8.6.20. Continuous homomorphic images of R-factorizable P-groups are
R-factorizable.

Exercises

8.6.a. Verify that every R-factorizable P-group is m-factorizable.

8.6.b. Suppose that X is a non-empty Tychonoff space. Show that the Abelian topological group

(Cp(X))ω is not R-factorizable, where (Cp(X))ω is the Gδ-modification of the group Cp(X)

(see Problem 3.6.H).

8.6.c. Let X be a compact space. Prove that the groups (F (X))ω and (A(X))ω are R-factorizable if

and only if X is scattered, that is, every non-empty subspace of X has an isolated point.

8.6.d. Let G and H be topological groups. Verify that if G is a P-group, then (a) ⇒ (b), (a) ⇒ (c)

and (b) & (c) ⇒ (a), where (a), (b), and (c) are the following statements:

(a) G × H is R-factorizable;

(b) 
G × H is R-factorizable;

(c) G × H is C-embedded in 
G × H .

8.6.e. Prove that the product G×H of an R-factorizable P-group G and a precompact topological

group H is R-factorizable (see also Problem 8.5.g).

8.6.f. Show that if G is an R-factorizable P-group and X is an arbitrary space, then the product

group G × Cp(X) is R-factorizable (cf. Exercise 8.5.h).

8.6.g. Prove that if all subgroups of a P-group G are R-factorizable, then G is countable.

8.6.h. Let G be a Lindelöf paratopological group. Prove that if G is a Hausdorff P-space, then G
is a topological group.

Hint. Use Lemma 5.7.10, Proposition 4.4.9, and then apply Lemma 4.4.3.

Problems

8.6.A. Show that closed subgroups of R-factorizable P-groups need not be R-factorizable, not even

in the Abelian case.

8.6.B. (M. G. Tkachenko, [488]) If a P-group G is a continuous homomorphic image of an R-

factorizable group, then G is also R-factorizable.

Hint. First, refine Theorem 8.6.12 and show that an ω-narrow P-group G is R-factorizable iff

every continuous homomorphic image H of weight≤ ℵ1 is Lindelöf provided H is a P-group.

Then, for a non-Lindelöf ω-narrow P-group H with w(H) = ℵ1, construct by recursion two

clopen complementary subsets W0 and W1 of H such that the family {xWi : x ∈ H, i = 0, 1}
is a subbase for the topology of H . Let f be a real-valued function on H defined by f (x) = i
if x ∈ Wi, where i = 0, 1. Note that f is continuous and show that the orbit Hf of f in

Cp(H) has uncountable network weight. Apply Problem 8.4.A to deduce that H cannot be

a continuous homomorphic image of an R-factorizable group. This, along with the refined

version of Theorem 8.6.12, implies the required conclusion.
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8.6.C. Show that an ω-narrow topological Abelian group of countable pseudocharacter need not be

R-factorizable.

Hint. Strengthen the topology of the group H constructed in Example 8.2.1 and apply

Problem 8.6.B.

8.6.D. Let G and K be R-factorizable groups. Prove that if G is a P-group and K is weakly Lindelöf,

then the product group G × K is R-factorizable.

Hint. Let f : G×K → R be a continuous function. Apply Lemma 8.5.12 to find, for every

x ∈ G, an open neighbourhood Ux of x in G such that f (x, y) = f (x′, y) for all x′ ∈ U(x) and

y ∈ K. For a, b ∈ G, put a ∼ b if there exists a finite sequence x0 = a, x1, . . . , xn, xn+1 = b
in G such that U(xi)∩U(xi+1) �= ∅ for each i = 0, 1, . . . , n. Verify that ∼ is an equivalence

relation on G and denote by O(x) the equivalence class containing x ∈ G. Verify that

f (a, y) = f (b, y) whenever a ∼ b and y ∈ K. Use Lemma 8.6.1 to find a countable set

{xn : n ∈ ω} ⊂ G such that G =
⋃

n∈ω
O(xn). For every n ∈ ω, define the function fn

on K by fn(y) = f (xn, y) for each y ∈ K. Then continue as in Exercise 8.5.g and find a

continuous homomorphism p : K → L onto a second-countable group L such that p ≺ fn

for each n ∈ ω. Let r : G → R be a mapping defined by r(x) = n iff x ∈ O(xn). Then

r is continuous, so there exists a continuous homomorphism π : G → H onto a countable

discrete group H such that π ≺ r. Show that the homomorphism ϕ = π ×p of G to H ×L
factorizes f , i.e., ϕ ≺ f . Finally, note that the product group H × L is second-countable.

8.6.E. Let G be a regular ω-narrow paratopological group, and suppose that G is a P-space. Must

G be a topological group? (Compare with Exercise 8.6.h.)

8.6.F. (A. Dow, personal communication.) As Theorem 8.6.18 shows, topological products of

pseudo-ℵ1-compact P-groups are pseudo-ℵ1-compact. Prove that under the assumption

2ℵ0 = 2ℵ1 , the product of two regular pseudo-ℵ1-compact P-spaces can fail to be pseudo-

ℵ1-compact.

Open Problems

8.6.1. Do there exist in ZFC two regular pseudo-ℵ1-compact P-spaces whose product is not pseudo-

ℵ1-compact? (See Problem 8.6.F.)

8.6.2. Is every regular P-space homeomorphic to a closed subspace of an R-factorizable P-group?

8.6.3. Suppose that G is a pseudo-ℵ1-compact topological group such that every countable subset

of G is closed. Is G R-factorizable?

8.6.4. Suppose that G is an R-factorizable topological group such that every countable subset of

G is closed. Is G then m-factorizable?

8.6.5. Suppose that G is an R-factorizable topological group such that every countable subset of G
is closed. Suppose further that a topological group H is an image of G under a continuous

homomorphism. Is H R-factorizable?

8.6.6. Suppose that G is the topological product of a family {Gi : i ∈ I} of R-factorizable

topological groups such that every countable subset of Gi is closed, for each i ∈ I. Is G
R-factorizable?

8.6.7. Suppose that f : G → H is a continuous mapping (not necessarily a homomorphism) of an

R-factorizable group G onto a P-group H . Is H then R-factorizable?

8.6.8. Suppose that G is the product of a family of pseudo-ℵ1-compact paratopological groups that

are P-spaces. Is G pseudo-ℵ1-compact?

8.6.9. Let G be a regular pseudo-ℵ1-compact paratopological group which is a P-space. Is G
topologically isomorphic to a subgroup of the product of a family of second-countable

paratopological groups? Must G be R3-factorizable?

R-factorizability of P-groups
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8.7. Factorizable groups and projectively Moscow groups

In this section we show that the idea of R-factorizability can be fruitfully applied to the

study of PT -groups (see Section 6.5 for the related definition).

Let � be a class of topological groups. A topological group G is said to be factorizable
over � or simply �-factorizable if, for every continuous real-valued function f on G,

there exists a continuous homomorphism g of G to a topological group H ∈ � and a

continuous real-valued function h on H such that f = h ◦ g. Clearly, a topological group

G is R-factorizable iff it is factorizable over the class of second-countable groups.

Neither the class of Moscow groups contains the class of R-factorizable groups, nor the

class of R-factorizable groups contains the class of Moscow groups. Indeed, every Lindelöf

group is R-factorizable by Theorem 8.1.6, while not every Lindelöf group is a Moscow

space, as it is shown in Example 6.5.30. In addition, any discrete group is, obviously, a

Moscow space, while a discrete R-factorizable group is countable, by Corollary 8.1.10.

Theorem 8.7.1. If a topological group G is factorizable over the class �� of all
PT -groups, then G is a PT -group.

To prove this theorem, we need two lemmas.

Lemma 8.7.2. If a topological group G is factorizable over the class �� of PT -
groups, then for each continuous real-valued function f on G, there exists a Dieudonné
complete topological group Gf containing G as a topological subgroup such that f can be
continuously extended to Gf .

Proof. By the assumption, there exist a continuous homomorphism g of G to a

PT -group H , and a continuous real-valued function h on H such that f = h ◦ g. Let

g
 : 
G → 
H be the continuous extension of g to the Raı̆kov completions of G and H .

Since H is a PT -group, there exists a Dieudonné complete topological group Z such that

H ⊂ Z ⊂ 
H and h admits an extension to a continuous real-valued function h∗ on Z.

Put Y = g−1

 (Z) and f ∗ = h∗ ◦ g
. Then Y is a subgroup of 
G, G is a subgroup of Y ,

and f ∗ is a continuous real-valued function on Y , the restriction of which to G coincides

with f . We claim that the space Y is Dieudonné complete.

Let F = {(x, g
(x)) : x ∈ 
G} be the graph of g
. Then F is closed in 
G× 
H , and

the canonical mapping φ
 of 
G to 
G× 
H , given by the formula φ
(x) = (x, g
(x)), for

each x ∈ 
G, is a homeomorphism of 
G onto the space F . Clearly, φ
(Y ) = F∩(
G×Z).

Hence, Y is homeomorphic to the closed subspace F∩(
G×Z) of the product space 
G×Z.

Since 
G and Z are Dieudonné complete, it follows that 
G×Z and Y are also Dieudonné

complete. �
Lemma 8.7.3. A topological group G is a PT -group if and only if, for each continuous

real-valued function f on G, there exists a Dieudonné complete topological group Gf

containing G as a topological subgroup such that f can be continuously extended to Gf .

Proof. The necessity is obvious, since each space is C-embedded in its Dieudonné

completion. Let us prove the sufficiency.

By Lemma 8.7.2, for each f ∈ C(G) we can fix a Dieudonné complete topological

group Gf such that G is a topological subgroup of Gf and f admits a continuous extension

over the space Gf . Obviously, we may also assume that G is dense in Gf . Then Gf can
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be represented as a topological subgroup of the Raı̆kov completion 
G such that G ⊂ Gf .

Put G∗ =
⋂{Gf : f ∈ C(G)}. Then G∗ is a topological group containing G as a

subgroup, each f ∈ C(G) can be continuously extended to G∗, and G∗ is Dieudonné

complete, since it is canonically homeomorphic to a closed subspace of the product space∏{Gf : f ∈ C(G)} (to the “diagonal” of this product). Therefore, G∗ is a PT -group. Now

it follows from Proposition 6.5.14 that G is a PT -group. �
Theorem 8.7.1 follows immediately from Lemma 8.7.2 and 8.7.3.

Theorem 8.7.4. If a topological group H is factorizable over the class of strong PT -
groups, then H is also a strong PT -group.

Proof. In our proof we rely upon Theorem 6.5.15. Take any topological group G such

that H is a Gδ-dense subgroup of G. Let us show that H is C-embedded in G.

Let f be any continuous real-valued function on H . By the assumption, there exist a

strong PT -group M, a continuous homomorphism φ of H to M, and a function g ∈ C(M)

such that f = g ◦ φ. Let M∗ = 
ωM. Since M is C-embedded in M∗, g can be extended

to a continuous real-valued function g∗ on M∗.

Further, since H is Gδ-dense in the group G, we may assume that G is a subgroup of


ωH . The homomorphism φ can be extended to a continuous homomorphism φ1 of 
H to


M. Clearly, by the continuity of φ1 we have that φ1(H∗) ⊂ M∗.

Now put f ∗ = g∗φ1. Then f ∗ is a continuous function on H∗ the restriction of which

to H coincides with f . Since G ⊂ H∗, the function f is continuously extended to G as

well. Thus, H is C-embedded in G. Therefore, according to Theorem 6.5.15, H is a strong

PT -group. �
Corollary 8.7.5. If a topological group G is factorizable over the class of Moscow

groups, then it is a strong PT -group.

After Theorem 8.7.4 and Corollary 8.7.5, it is natural to introduce the following

definition. Let us call a topological group G projectively Moscow if it is factorizable

over the class of Moscow groups. Theorem 8.7.4 and Example 6.5.30 show that the class

of projectively Moscow groups is strictly smaller than the class of PT -groups. Indeed,

the topological group H in Example 6.5.30 is not factorizable over the class of Moscow

topological groups, that is, H is not projectively Moscow, since H is not a strong PT -group.

On the other hand, the group G in Example 6.5.30 is R-factorizable by Theorem 8.1.6, since

it is Lindelöf. Therefore, R-factorizability is not inherited by Gδ-dense subgroups.

The fact that the “bad” (meaning non-Moscow) topological group we constructed in

Example 6.5.30 turned out to be a P-space is rather suggestive. Indeed, we already saw in

Section 6.2 that topological groups that are P-spaces are almost never Moscow spaces, and

therefore, we might pay a special attention to the class of groups that are P-spaces when we

are looking for non-PT -groups.

It is not clear if every ω-narrow topological group is a PT -group (see Problem 6.7.1). It

is not clear either whether every topological group of countable cellularity is R-factorizable

(we refer to Problem 8.1.1). However, every topological group of countable cellularity

is Moscow, by Corollary 6.4.11. We should also mention that the non-PT -group in

Example 6.7.13 is not ω-narrow.

We show in the next theorem that closed subgroups of ω-narrow Moscow groups can

be as “bad” as possible.
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Theorem 8.7.6. Every ω-narrow topological group G can be represented as a closed
invariant subgroup of an R-factorizable (hence, ω-narrow) Moscow topological group.

Proof. By Theorem 8.2.2, every ω-narrow group G can be represented as a closed

invariant subgroup of a dense subgroup of an R-factorizable group G∗. In addition, the

group G∗ in Theorem 8.2.2 is constructed as a dense subgroup of the product of some

family of separable metrizable groups. Then, since the Souslin number of the product is

countable, the product group is Moscow and therefore, by Proposition 6.1.2, the group G∗

is Moscow. �
Corollary 8.7.7. A closed subgroup of an R-factorizable Moscow group need not be

a strong PT -group; therefore, it need not be a Moscow group.

Proof. The group H in Example 6.5.30 is ω-narrow, since it is a subgroup of a Lindelöf

group (see Theorem3.4.4). Therefore, by Theorem 8.7.6, H can be represented as a closed

subgroup of an R-factorizable Moscow group. �
The notion of R-factorizability and the technique related to it allow us to obtain an

additional information on the validity of the formula υX× υY = υ(X× Y ).

Theorem 8.7.8. Let G be a Lindelöf group and H be a pseudocompact group. Then:

1) G×H is completion friendly and, therefore, a strong PT -group;
2) υG× υH = υ(G×H).

Proof. Under the restrictions on G and H in the theorem, the group G × H is R-

factorizable, by Theorem 8.5.13. Clearly, both factors G and H are R-factorizable as well.

It follows from Corollary 8.3.9 that the groups G, H , and G×H are completion friendly.

Since these groups are ω-narrow, it remains to apply Theorem 6.7.5 and Corollary 8.3.3. �
Theorem 8.7.9. If G is a Lindelöf P-group and H is a precompact group, then the

product G×H is a strong PT -group and υG× υH = υ(G×H).

Proof. The proof is the same as in the case of Theorem 8.7.8, the only difference is

that we have to refer to Corollary 8.5.18 stating that under the assumptions about G and H ,

the group G×H is R-factorizable. �
Theorem 8.7.10. The product of a precompact group H with a topological group G

of countable o-tightness and of Ulam non-measurable cardinality is a completion friendly
group, and υG× υH = υ(G×H).

Proof. It follows from item 4) of Corollary 6.4.11 and Proposition 6.5.20 that G is

completion friendly. By Corollary 4.1.8 and Proposition 6.5.21, H is also completion

friendly. According to Corollary 5.5.10, the product group G×H has countable o-tightness

and, therefore, is Moscow. By Theorem 6.5.13, G×H is a (strong) PT -group. It remains

to refer to Theorem 6.7.5. �

Exercises

8.7.a. Show that if a topological group G is factorizable over the class of R-factorizable groups,

then G is R-factorizable.

8.7.b. Show that the product of a Moscow topological group and an R-factorizable group need not

be a PT -group.
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8.7.c. Let G be a topological group factorizable over the class of topological groups of countable

cellularity. Show that c(G) ≤ 2ω.

8.7.d. For every infinite cardinal τ, give an example of a topological group G factorizable over the

class of metrizable topological groups such that ot(G) ≥ τ.

Problems

8.7.A. Show that every Abelian group admits a Hausdorff topology turning it into a Moscow R-

factorizable topological group.

8.7.B. (L. de Leo and M. G. Tkachenko [130]) Prove that every uncountable Abelian group admits

a non-R-factorizable ω-narrow topological group topology.

Open Problems

8.7.1. (A. V. Arhangel’skii [40]) Is every strong PT -group projectively Moscow?

Since every Raı̆kov complete group is a strong PT -group, the next question is just a version

of Problem 8.7.1.

8.7.2. (A. V. Arhangel’skii [40]) Is every Raı̆kov complete group projectively Moscow?

8.7.3. Is every Raı̆kov complete Abelian group projectively Moscow?

8.7.4. Suppose that a group G admits an ω-narrow Hausdorff topological group topology. Does G
then admit a topology turning G into an R-factorizable topological group? (The answer is

“Yes” for Abelian groups.)

8.7.5. Is every ω-narrow topological group factorizable over the class of topological groups of

weight ≤ 2ω?

8.8. Zero-dimensionality of R-factorizable groups

Recall that a cozero set is the complement of a zero-set, and a clopen set is a set that

is open and closed. A space X with a base of clopen sets is called zero-dimensional or, in

symbols, ind X = 0. If every finite covering of X by cozero sets admits a disjoint refinement

by clopen sets, then X is called strongly zero-dimensional. This fact is usually abbreviated

to dim X = 0. Every strongly zero-dimensional space is zero-dimensional [165, Th. 6.2.6],

but the converse is false [165, Example 6.2.20]. By a cozero covering we mean below a

covering consisting of cozero sets.

In this section we show that the above implication can be reversed for R-factorizable

groups and for arbitrary subgroups of locally compact groups. Our arguments require

some preliminary facts from the dimension theory of topological spaces that are usually

not included in standard topological courses. All spaces in this section are assumed to be

Tychonoff. The three general results that follow will be applied only to zero-dimensional

spaces and topological groups, so the reader does not really have to be familiar with the

dimension theory in the more general situation.

The first fact we need is the combination of Theorems 7.1.1 and 7.3.3 of [165].

Theorem 8.8.1. Every regular second-countable space Y satisfies the equality ind Y =

dim Y , and if M is a subspace of Y , then dim M ≤ dim Y .

The next result is known as the Mardešić factorization theorem (see [165, 7.4.14]):
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Theorem 8.8.2. [S. Mardešić] Let f : X → Z be a continuous mapping of a compact
space X with dim X ≤ n onto a space Z with w(Z) ≤ τ. Then there exist a compact space Y
and continuous onto mappings g : X → Y and h : Y → Z such that f = h ◦ g, dim Y ≤ n,
and w(Y ) ≤ τ.

In the proof of the following lemma, we shall apply Theorem 8.8.2 in the special case

when τ = ω.

Lemma 8.8.3. The following conditions are equivalent for an arbitrary space X and
any integer n ≥ 0:

i) dim X ≤ n;
ii) for every continuous mapping f : X → Z onto a space Z of countable weight, there

exist a space Y of countable weight satisfying dim Y ≤ n and continuous onto mappings
g : X → Y and h : Y → Z such that f = h ◦ g.

Proof. Suppose that dim X ≤ n and consider a continuous mapping f : X → Z onto

a space Z of countable weight. Let i : Z → Iω be an embedding of Z into the Hilbert

cube Iω. Then the composition i ◦ f : X → Iω is continuous, so it admits an extension to

a continuous mapping f̃ : βX → Iω, where βX is the Čech–Stone compactification of X.

Since dim βX = dim X = n, by virtue of [165, 7.1.17], we can apply Theorem 8.8.2 to find

a compact space Y0 and continuous mappings g0 : βX → Y0 and h0 : Y0 → Iω such that

h0 ◦ g0 = f̃ , dim Y0 ≤ dim βX = n and w(Y0) ≤ ω. Let us put Y = g0(X), g = g0�X and

h = i−1�i(Z) ◦ h0�Y . Then w(Y ) ≤ ω and f = h ◦ g. In addition, Theorem 8.8.1 implies

that dim Y ≤ dim Y0 ≤ n. Thus, i)⇒ ii).

To prove ii) ⇒ i), take any finite cozero covering {U1, . . . , Um} of X by cozero sets.

For every i ≤ m, there exists a continuous function fi : X → R such that Ui = f−1
i (Vi)

for some open set Vi ⊂ R. Denote by Wi the product
∏m

j=1 Wi,j ⊂ Rm, where 1 ≤ i ≤ m
and Wi,j = Vi if j = i, and Wi,j = R otherwise. Clearly, W1, . . . , Wm are open sets in Rm.

Let f be the diagonal product of the functions f1, . . . , fm, and Z = f (X) ⊂ Rm. Notice

that Ui = f−1(Wi) for each i ≤ m and hence, Z ⊂ ⋃m
i=1 Wi. Applying (ii), we choose a

space Y of countable weight with dim Y ≤ n and continuous onto mappings g : X → Y and

h : Y → Z such that f = h ◦ g. Since

γ = {h−1(Wi ∩ Z) : 1 ≤ i ≤ m}
is a covering of Y by cozero sets, it follows from dim Y ≤ n that γ has a refinement

{O1, . . . , Ok} by cozero sets of order≤ n+1. Clearly, {g−1(O1), . . . , g−1(Ok)} is a cozero

refinement of the covering {U1, . . . , Un} of order ≤ n + 1. Hence, dim X ≤ n. �
The next result is a version of the Mardešić factorization theorem for zero-dimensional

R-factorizable groups.

Theorem 8.8.4. Let π : G→ K be a continuous homomorphism of topological groups,
where the group G is R-factorizable and satisfies ind G = 0. Then there exist a topological
group H and continuous onto homomorphisms g : G → H and h : H → K such that
π = h ◦ g, ind H = 0, and w(H) ≤ w(K).

Proof. Let m = w(K). We will define by induction topological groups Gn and

continuous homomorphisms gn : G → Gn and hn+1 : Gn+1 → Gn satisfying the following

conditions for each n ∈ ω:
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(i) G0 = K and g0 = π;

(ii) w(Gn) ≤ m;

(iii) gn = hn+1 ◦ gn+1;

(iv) for every open neighbourhood U of the neutral element en of Gn, there exists a clopen

neighbourhood W of the neutral element en+1 of Gn+1 such that W ⊂ h−1
n+1(U).

Choose G0 and g0 as in (i). Suppose that, for some n ∈ ω, we have defined groups Gk and

continuous homomorphisms gk, hk satisfying (i)–(iv) for each k ≤ n. Since w(Gn) ≤ m by

(ii), we can take a base {Un,α : α < m} of open neighbourhoods of en in Gn. Let α < m be

arbitrary. Since ind G = 0, there exists a clopen neighbourhood Vn,α of the neutral element

e of G such that Vn,α ⊂ g−1
n (Un,α). Define a continuous function fα : G→ R by fα(x) = 1

if x ∈ Vn,α and fα(x) = 0 otherwise. Since the group G is R-factorizable, there exist a

second-countable topological group Hα, a continuous homomorphism pα : G → Hα and a

continuous function ϕα : Hα → R such that fα = ϕα ◦ pα. Denote by gn+1 the diagonal

product of gn and the family {pα : α < m}, and put Gn+1 = gn+1(G). Since w(Gn) ≤ m
and w(Hα) ≤ ω for each α < m, we have w(Gn+1) ≤ m. Let also hn+1 : Gn+1 → Gn and

hn,α : Gn+1 → Hα, with α < m, be the natural projections. It follows from the definition of

gn+1 and hn,α that gn = hn+1 ◦ gn+1 and hα = hn,α ◦ gn+1, for each α < m. Hence (ii) and

(iii) hold at the stage n + 1. In addition, for every α < m, the set Wn,α = (ϕα ◦ hn,α)−1(0)

is a clopen neighbourhood of en+1 in Gn+1, and we have

g−1
n+1(Wn,α) = g−1

n+1((ϕα ◦ hn,α)−1(0)) = (ϕα ◦ hn,α ◦ gn+1)−1(0)

= (ϕα ◦ pα)−1(0) = f−1
α (0) = Vn,α ⊂ g−1

n (Un,α).

Hence, Wn,α ⊂ gn+1(g−1
n (Un,α)) = h−1

n+1(Un,α), thus implying (iv). The inductive step of

the construction is complete.

Finally, we put g = Δ{gn : n ∈ ω} and H = g(G). Since G0 = K and g0 : G → K,

the natural projection h : H → K is defined and satisfies the equality π = h ◦ g. It also

follows from (ii) that w(H) ≤ m. By (iii), the group H is topologically isomorphic to a

subgroup of the limit H∗ of the inverse sequence {Gn, pn
m : m.n ∈ ω, m ≤ n}, where

pn
m = hm+1 ◦ hm+2 ◦ · · · ◦ hn if m < n, and pn

n = idGn . For every n ∈ ω, let πn : H∗ → Gn

be the limit projection; clearly, πn = hn+1 ◦ πn+1.

We claim that ind H∗ = 0. Take an arbitrary neighbourhood V of e in H∗. Then we

can find n ∈ ω and an open neighbourhood U of en in Gn such that π−1
n (U) ⊂ V . By (iv),

there exists a clopen neighbourhood W of en+1 in Gn+1 such that W ⊂ h−1
n+1(U). Therefore,

O = π−1
n+1(W ) is an clopen neighbourhood of the neutral element of H∗ which satisfies

O = π−1
n+1(W ) ⊂ π−1

n+1(h−1
n+1(U)) = π−1

n (U) ⊂ V.

This proves the claim. Since ind(H) ≤ ind H∗ = 0, the group H and the homomorphisms

g and h are as required. �

Theorem 8.8.5. [D. B. Shakhmatov] Every zero-dimensional R-factorizable topolog-
ical group G is strongly zero-dimensional. In other words, ind G = 0 and dim G = 0 are
equivalent for each R-factorizable group G.

Proof. Clearly, dim G = 0 implies ind G = 0. Let us prove the reverse implication.

Suppose that G is an R-factorizable group satisfying ind G = 0, and let {U1, . . . , Un}
be any finite cozero covering of G. For every i ≤ n, take a continuous real-valued



568 8. R-FACTORIZABLE TOPOLOGICAL GROUPS

function fi on G such that Ui = G \ f−1
i (0), and denote by f the diagonal product of

the family {fi : 1 ≤ i ≤ n}. Since G is R-factorizable, we can find, by Lemma 8.1.2,

a continuous homomorphism π : G → K onto a second-countable topological group K
and continuous functions g1, . . . , gn on K such that fi = gi ◦ π for each i ≤ n. Hence,

{π(Ui) : 1 ≤ i ≤ n} is a covering of K and each π(Ui) = K \ g−1
i (0) is a cozero set in

K. By Theorem 8.8.4, we can find a second-countable topological group H and continuous

surjective homomorphisms g : G→ H and h : H → K such that π = h◦g and dim H = 0.

Since γ = {h−1(π(Ui)) : 1 ≤ i ≤ n} is a cozero covering of H , there exists a disjoint open

covering {Vk : 1 ≤ k ≤ m} of H that refines γ. Hence {g−1(Vk) : 1 ≤ k ≤ m} is a disjoint

open covering of G refining {Ui : 1 ≤ i ≤ n}. Thus, dim G = 0. �

Since every subgroup of a σ-compact topological group is R-factorizable by Corol-

lary 8.1.16, the next curious result follows immediately from Theorem 8.8.5.

Corollary 8.8.6. The equalities dim H = 0 and ind H = 0 are equivalent for an
arbitrary subgroup H of a σ-compact topological group.

Locally compact topological groups need not be R-factorizable; in fact, a locally

compact group is R-factorizable if and only if it is σ-compact (see Theorem 8.1.9).

Nevertheless, Corollary 8.8.6 remains valid for arbitrary subgroups of locally compact

groups:

Theorem 8.8.7. Every zero-dimensional subgroup of a locally compact topological
group is strongly zero-dimensional.

Proof. Let H be a zero-dimensional subgroup of a locally compact topological group

G. Take an open neighbourhood U of the neutral element e in G with compact closure and

denote by G∗ the subgroup of G generated by the compact set U. Then the group G∗ is

σ-compact, so its subgroup H∗ = H ∩G∗ is R-factorizable by Corollary 8.1.16. Clearly,

the group H∗ is zero-dimensional as a subgroup of the zero-dimensional group H . Hence,

by virtue of Theorem 8.8.5, H∗ is strongly zero-dimensional. Notice that G∗ is an open

subgroup of G, so H∗ is an open subgroup of H . Since H is the disjoint union of left cosets

of H∗, and each of the cosets is strongly zero-dimensional, the group H is also strongly

zero-dimensional. �

Exercises

8.8.a. Give an example of a zero-dimensional Tychonoff space that cannot be embedded as a closed

subspace into any R-factorizable zero-dimensional topological group.

8.8.b. Prove that the space Zτ is strongly zero-dimensional, for each cardinal τ.

8.8.c. Show that every zero-dimensional locally precompact topological group is strongly zero-

dimensional.

Problems

8.8.A. (M. G. Tkachenko [485]) Show that there exists a Raı̆kov complete ω-narrow group which

is not R-factorizable.

Hint. Let K be the free Abelian group on the set of rationals with the discrete topology.

Consider the group G = Kω1 with the ω-box topology and define a closed non-Lindelöf

subgroup H of G such that |πB(H)| ≤ ω, for every countable set B ⊂ ω1, where
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πB : Kω1 → KB is the projection. Show that such a group H is Raı̆kov complete and

ω-narrow. Finally, apply Corollary 8.6.4 to conclude that H is not R-factorizable.

8.8.B. Let G be an ω-steady R-factorizable group. Prove that the group G• (see Section 3.8) is

ω-steady and R-factorizable as well.

8.8.C. Prove that every realcompact space X admits a closed embedding into a realcompact R-

factorizable topological group.

Hint. By Proposition 1.9.12, X is naturally homeomorphic to a closed subspace of the

group G = Cp(Cp(X)). There exists a tightness type topological property � such that X is

realcompact if and only if Cp(X) has the property � [510]. It also happens to be true for this

property � that a Tychonoff space X has � if and only if Cp(X) is realcompact (see [32]). It

follows that X is realcompact if and only if G = Cp(Cp(X)) is realcompact. Since, for each

Tychonoff space Y , Cp(Y ) is a dense subgroup of RY , it follows from Corollary 8.1.15 that

G is R-factorizable.

Open Problems

8.8.1. Let G be an R-factorizable group. Is the group G• (see Section 3.8) R-factorizable?

8.8.2. (D. B. Shakhmatov [431]) Is it true that the three classical dimensions dim, ind, and Ind

coincide for σ-compact topological groups?

8.8.3. Is an arbitrary zero-dimensional R-factorizable paratopological group strongly zero-dimen-

sional?

8.8.4. Let G be a zero-dimensional topological group of countable cellularity. Is G strongly zero-

dimensional?

8.8.5. Is there an R-factorizable topological group G of the weightℵ1 such that every R-factorizable

topological group H of the weight ℵ1 is topologically isomorphic to a subgroup of G?

8.8.6. Is every (strongly) σ-discrete topological group strongly zero-dimensional?

8.8.7. Let a topological group G be the union of a countable family of locally compact subgroups,

and suppose that H is a zero-dimensional subgroup of a G. Is H strongly zero-dimensional?

8.9. Historical comments to Chapter 8

Theorem 8.1.1 is a starting point of the study of R-factorizable groups. It was obtained

by L. S. Pontryagin in slightly different terms (see [387, Example 37]). Proposition 8.1.3

appeared in [481, p. 26] as a simple observation and, with a proof, in [484]. Lemma 8.1.4

originated in [465], while Theorem 8.1.6 was proved in [476]. Example 8.1.8, which shows

that Theorem 8.1.6 cannot be extended to paratopological groups, is new. Theorem 8.1.9

and Corollary 8.1.10 are from [484]. Lemma 8.1.12 is very close to the results from [21]

(we refer especially to Theorem 5.2.13 and Corollary 5.2.14 that were originally proved

in [21]). Proposition 8.1.13, Theorem 8.1.14, and Corollaries 8.1.15 and 8.1.16 are from

[481]. Corollary 8.1.17 appeared in [475]. Theorem 8.1.18 was proved, in a more general

form, by E. V. Schepin in [419]. Proposition 8.1.20, Theorem 8.1.21, and Corollary 8.1.22

are new. Proposition 8.1.23 is from [484].

The study of subgroups of R-factorizable groups originated in [479] where Exam-

ple 8.2.1 appeared. Theorem 8.2.2 and Proposition 8.2.3 are also from [479]. Theorems 8.2.5

and 8.2.6 characterizing the R-factorizability of topological groups in terms of z-embeddings

were proved in [231] and [227], respectively, while Theorem 8.2.7 and Example 8.2.8 are

from [484].

Historical comments to Chapter 8
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A thorough study of the Dieudonné completion of topological groups was undertaken

by A. V. Arhangel’skii in [37, 39, 40]. Section 8.3 contains several results regarding the

Dieudonné completion of R-factorizable groups. A prototype of Lemma 8.3.1 was proved

by T. Shirota in [446], and, in the present form, it appeared in [487]. Corollary 8.3.2,

Proposition 8.3.4, Theorem 8.3.6, and Corollary 8.3.8 are also from [487]. Corollary 8.3.7

was originally proved in [231].

Theorem 8.4.2 appeared in [479], while Proposition 8.4.3 follows from the results

obtained in [481]. Lemma 8.4.5 is due to R. L. Blair, see [76]. Theorem 8.4.6 and

Corollaries 8.4.7 and 8.4.8 are from [487].

The notion of m-factorizability was introduced in [484] as a natural strengthening of

R-factorizability. Proposition 8.5.1 and Theorem 8.5.2 were proved in [484], as well as item

a) of Theorem 8.5.5. Item b) of Theorem 8.5.5 is new. Lemma 8.5.4 appeared in [487] for

the special case when the factors were topological groups and the subgroup G was the whole

product group. Corollary 8.5.6 and Proposition 8.5.7 were mentioned (without proof) in

[484]. Theorem 8.5.8 and Corollaries 8.5.9 and 8.5.10 are also from [484]. Theorem 8.5.11

and Lemma 8.5.12 are new. Theorem 8.5.13 is also new. In the special case when the first

factor G is Lindelöf, it appeared in [484] (see Corollary 8.5.14 here). Lemma 8.5.16 and

Theorem 8.5.17 appear here for the first time. The latter has a prototype in [484].

Almost all the results of Section 8.6, with a few exceptions, are from [487]. Lemma 8.6.2

and Corollary 8.6.9 were proved by V. V. Uspenskij in [512]. The second part of

Corollary 8.6.4 appeared in [485].

Section 8.7 is based on the article [40] by A. V. Arhangel’skii.

The dimension theory of separable metrizable spaces was created by efforts of several

outstanding mathematicians (see historical comments in the book [166] by R. Engelking).

The equality dim X = ind X in Theorem 8.8.1, for separable metrizable spaces X, goes

back to Hurewicz’s article [248], while the monotonicity of the covering dimension dim

in the same class of spaces follows from the above equality and the simple fact that the

small inductive dimension ind is monotone in regular spaces. Theorem 8.8.2 was proved by

S. Mardešić in [303]. Lemma 8.8.3 is a part of the folklore; it appeared, for example, in [371],

but its prototype can be found on page 368 of [8]. Theorems 8.8.4, 8.8.5, and Corollary 8.8.6

were proved by D. B. Shakhmatov in [430]. In fact, Theorem 8.8.4 is analogous to a result

proved in [480] for the covering dimension dim in place of ind. Theorem 8.8.7 appeared in

[433].



Chapter 9

Compactness and its Generalizations
in Topological Groups

This chapter introduces the reader to the Pontryagin–van Kampen duality theory, the

Bohr topology on Abelian groups, and the study of algebraic and topological structure of

compact, countably compact, and pseudocompact Abelian groups. A special emphasis is

given to the study of Abelian groups in each of the directions just mentioned. The main

objective in Sections 9.1–9.4 is to prepare all necessary material for the proof of an important

corollary to Peter–Weyl’s theorem on irreducible representations of compact topological

groups. We refer to Theorem 9.4.11 saying that the family of continuous homomorphisms

of a compact Abelian group to the circle group separates points of the group.

In the initial four sections we will have to use some basic notions and techniques from

various parts of mathematics. For the sake of completeness we introduce all that material

in the course of the chapter. Section 9.5 contains the duality theorem in the compact-

discrete case, while Section 9.6 familiarizes the reader with several basic facts regarding the

structure theory of compact Abelian groups and dual algebraic characterizations of various

topological properties of compact groups (such as connectedness, total disconnectedness,

weight, dimension). In Section 9.7 we extend Theorem 9.4.11 to locally compact Abelian

groups.

Section 9.8 contains the proof of a special case of the celebrated Varopoulos theorem —

we establish that every sequentially continuous homomorphism of compact Abelian groups

is continuous if the cardinalities of the groups are Ulam non-measurable. We also prove

Arhangel’skii’s theorem stating that a strongly sequentially continuous isomorphism of a

countably compact topological Abelian group G onto a compact topological group is a

homeomorphism provided that G has Ulam non-measurable cardinality.

A detailed study of the Bohr topology (equivalently, the maximal precompact topolog-

ical group topology) on Abelian groups is presented in Section 9.9. Among other facts we

prove van Douwen’s theorem on C-embedded subsets of the groups G# and Trigos-Arrieta’s

theorem saying that the group G# is a normal space iff G is countable.

The rest of the chapter is devoted to the thorough study and comparison of the algebraic

and topological structure of pseudocompact and countably compact topological Abelian

groups.

9.1. Krein–Milman Theorem

In this section we establish a fundamental property of compact convex subsets of locally

convex topological vector spaces. Recall that a real topological vector space L is defined

A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies  571
in Mathematics 1, DOI 10.2991/978-94-91216-35-0_9, © 2008 Atlantis Press/World Scientific 
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as an Abelian topological group L on which a scalar multiplication is given — with every

x ∈ X and every real number λ an element λx of L is associated in such a way that

the corresponding mapping R × L → L is continuous and that the set L taken with this

multiplication and with the addition given in L is a vector space in the algebraic sense. Two

real topological vector spaces L1 and L2 are called topologically isomorphic is there exists

a homeomorphism f of L1 onto L2 that preserves the linear and additive structures of the

spaces, that is, f (x + y) = f (x) + f (y) and f (λx) = λf (x), for all x, y ∈ L1 and λ ∈ R.

A subset F of a real vector space is said to be convex if, whenever x and y belong to F
and 0 ≤ λ ≤ 1, then λx + (1 − λ)y ∈ F . If a real topological vector space L has a base

consisting of convex open sets, then we say that L is locally convex. The proof of the next

simple fact is left to the reader.

Proposition 9.1.1. Let L be a real topological vector space, and F a convex subset of
L. Then the closure of F in L is also convex.

If a vector space L has a finite basis, then the number of elements in this basis is

called the dimension of L and denoted by dim L (see [236]). If dim L = n, where n is a

natural number, we say that the vector space L is n-dimensional. A standard example of an

n-dimensional real topological vector space is Rn, with the natural operations.

The importance of the notion of dimension can be already seen from the following

simple statement a straightforward proof of which is left to the reader. We will also see in

Theorem 9.2.2 that one can drop “locally convex” in this statement.

Proposition 9.1.2. Every one-dimensional locally convex real topological vector
space is topologically isomorphic to R.

Sometimes we use the abbreviation r.t.v.s. to stand for “real topological vector space”.

A subset M of a r.t.v.s. L is called a vector subspace of L if M is a subgroup of the

additive group L, and λx ∈ M for all x ∈ M and λ ∈ R. It is clear that every vector

subspace M of an r.t.v.s. L is again an r.t.v.s. with the operations from L restricted to M.

We will also need the next statement the proof of which is obvious and is omitted.

Proposition 9.1.3. If M is a closed vector subspace of a r.t.v.s. L, then the quotient
group L/M, with naturally defined scalar multiplication, is also a r.t.v.s. (called the quotient
topological vector space). Moreover, the natural quotient mapping π : L→ L/M preserves
the scalar multiplication, that is, π(λx) = λπ(x), for all x ∈ L and λ ∈ R. Therefore, if
F is a convex subset of L, then π(F ) is a convex subset of L/M, and if L is locally convex,
then L/M is also locally convex.

To establish some basic facts about separation in locally convex spaces, we need the

next technical lemma:

Lemma 9.1.4. Let E be a real topological vector space and U a convex open subset of E
which does not contain zero vector θ of E. Suppose also that E is neither zero-dimensional,
nor one-dimensional. Then there exists a one-dimensional vector subspace H of E such
that H ∩ U = ∅.

Proof. Since dim E ≥ 2, the subspace Z of E consisting of all non-zero vectors is

connected. Indeed, any non-collinear vectors x and y in E can be obviously joined by a

topological copy of the closed interval [0, 1] that misses θ. If x, y ∈ Z are collinear, then,
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by our assumption, there exists a vector z ∈ Z that does belong to the set {λx : λ ∈ R}.
Hence, x and z are not collinear, and neither are y and z. Again, it follows that x and y can

be joined by a copy of the interval [0, 1] in Z. It follows that Z is (pathwise) connected.

Consider the set

A = {λx : x ∈ U, λ ∈ R, λ > 0}.
Clearly, A is an open convex subset of E and θ /∈ A. Hence, the set −A = {−x : x ∈ A}
is also open in E, since E is a topological group, and θ /∈ −A. It is easy to see that

A ∩ (−A) = ∅. Indeed, assume the contrary, and fix y ∈ A ∩ (−A). Then y ∈ A and

−y ∈ A. Since A is convex, it follows that θ = y/2+(−y)/2 ∈ A, a contradiction. Hence,

A ∩ (−A) = ∅.

Since the sets A and −A are open and disjoint, the connected subspace Z of E cannot

be the union of A and −A. Therefore, there exists a non-zero element b ∈ E such that

b /∈ A and b /∈ −A. Then b /∈ A and −b /∈ A which obviously implies that λb /∈ U, for

any λ ∈ R. Hence, the one-dimensional subspace H = {λb : λ ∈ R} of E is disjoint from

U. This completes the argument. �

We will now formulate an important result on separation of convex sets in locally convex

topological vector spaces. It is a geometric version of the Hahn–Banach theorem.

Theorem 9.1.5. [H. Hahn, S. Banach] Let L be a real topological vector space and
V a non-empty open convex subset of L such that θ /∈ V , where θ is the zero vector of L.
Then there is a closed topological vector subspace P of L such that the quotient topological
vector space L/P is topologically isomorphic to R and P ∩ V = ∅.

Proof. Consider the family � of all vector subspaces of L disjoint from V and ordered

by inclusion. Clearly, the union of any linearly ordered subfamily of � belongs to �.

Therefore, by Zorn’s lemma, there is a maximal element P in �. Clearly, the closure P of

P in L is a vector subspace of L as well. Since V is open in L, P is disjoint from V . Hence,

P ∈ �. Since P is a maximal element of � and P ⊂ P , it follows that P = P . Thus, P is

closed in L.

Since P = L, the quotient topological vector space L/P (see Proposition 9.1.3) is not

trivial. Let us show that the space L/P is one-dimensional. Assume the contrary. Then

dim L/P ≥ 2. Denote by W the image of V under the quotient mapping π : L → L/P .

By Proposition 9.1.3, W is a convex open subset of L/P . Observe that the zero-vector

of L/P does not belong to W , since V ∩ P = ∅. Hence, by Lemma 9.1.4, the quotient

space L/P contains a one-dimensional vector subspace H disjoint from W . Then π−1(H)

is an element of � strictly larger than P , thus contradicting the maximality of P in �. This

contradiction completes the argument. �

Let L be a r.t.v.s. A real-valued function f on L is called linear functional if

f (x + y) = f (x) + f (y) and f (λx) = λf (x), for all x, y ∈ L and λ ∈ R. Here is an

important corollary from Theorem 9.1.5 on separation of compact convex sets and points

not belonging to them by continuous linear functionals.

Corollary 9.1.6. Suppose that K is a compact convex subset of a real topological
vector space L and a is an element of L\K. Then there exists a continuous linear functional
f : L→ R such that f (a) /∈ f (K).
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Proof. It suffices to consider the case when a is the zero-vector θ of L, by means of

a suitable translation of L. There is a symmetric convex open neighbourhood W of θ such

that W ∩K = ∅ (note that K is closed in L since it is compact). Then the set V = KW is

an open convex subset of L, K ⊂ V , and θ /∈ V . From Proposition 9.1.2 and Theorem 9.1.5

it follows immediately that there exists a continuous linear functional f : L→ R such that

0 /∈ f (V ). Since f (a) = f (θ) = 0 and f (K) ⊂ f (V ), it follows that f (a) /∈ f (K). �
Now we have to introduce a concept playing a crucial role in the study of compact

convex sets. Let K be a convex subset of a real topological vector space L. A subset B of

K is called an extreme subset of K if whenever x ∈ K, y ∈ K, and the midpoint (x + y)/2

of the segment joining x and y in L belongs to B, it follows that x ∈ B and y ∈ B. Clearly,

K is an extreme subset of itself, and the empty set is an extreme subset of any convex set.

A point b of a convex set K is said to be an extreme point of K if the singleton {b}
is an extreme subset of K. The next statement follows immediately from the definition of

extreme set.

Proposition 9.1.7. Let K be a convex subset of a real topological vector space L, and
� be a family of extreme subsets of K. Then the intersection

⋂
� of this family is again an

extreme subset of K.

The existence of non-trivial extreme subsets of compact convex sets is guaranteed by

the next statement.

Proposition 9.1.8. Let K be a non-empty compact convex subset of a real topological
vector space L and f a continuous linear functional from L to R. Put H = {x ∈ L :

f (x) = c}, where c is the maximum of f on K (c is well-defined since K is compact and f
is continuous). Then H ∩K is a non-empty extreme subset of K.

Proof. Take any v ∈ K with f (v) = c. Clearly, v ∈ H ∩ K = ∅. Suppose

that x ∈ K and y ∈ K are such that the point z = (x + y)/2 is in H ∩ K. Then

f (x) ≤ c and f (y) ≤ c. Therefore, by the linearity of f and the definition of H ,

c = f (z) = [f (x) + f (y)]/2 ≤ (c + c)/2 = c. It follows that f (x) = c and f (y) = c,

which implies that x ∈ H ∩K and y ∈ H ∩K. Thus, H ∩K is an extreme subset of K. �
Now we can show that the family of extreme subsets of an arbitrary compact convex

set is quite rich.

Proposition 9.1.9. Let K be a compact convex subset of a real topological vector
space L and F be a compact convex subset of K such that F = K. Then there exists a
closed non-empty convex extreme subset B of K such that B ∩ F = ∅.

Proof. Since F is a proper subset of K, we can fix a ∈ K \ F . By Corollary 9.1.6,

there is a continuous linear functional f : L→ R such that f (a) /∈ f (F ).

The set F is connected, since it is convex. Therefore, f (F ) is a connected subset of R.

It follows now from f (a) /∈ f (F ) that either f (y) < f (a) for each y ∈ F , or f (a) < f (y)

for every y ∈ F . We may assume without loss of generality that the first alternative holds.

Since K is compact and f is continuous, it follows that f (K) is a closed bounded subset

of R. Therefore, there exist b ∈ K and c ∈ R such that f (b) = c and c is the supremum

of f on K. Put H = {x ∈ L : f (x) = c}. Then f (y) < f (a) ≤ c for each y ∈ F ,

which implies that F ∩ H = ∅. On the other hand, H ∩ K is an extreme subset of K,



Krein–Milman Theorem 575

by Proposition 9.1.8. Observe that b ∈ H ∩ K, by the definition of H . Therefore, the set

B = H ∩K is an extreme subset of K we are looking for. �
Proposition 9.1.10. Let K be a compact convex subset of a real topological vector

space L. Then every non-empty closed convex extreme subset B of K contains an extreme
point of K.

Proof. Let � be the family of all non-empty closed convex extreme subsets of K
contained in a non-empty closed convex subset B of K. We partially order � by the inclusion.

Let � be any non-empty chain in �. Then
⋂

� is a non-empty closed convex subset of K,

since K is compact. By Proposition 9.1.7,
⋂

� is an extreme subset of K. Clearly,
⋂

� ⊂ B.

Therefore,
⋂

� ∈ �, by the definition of �. Now it follows from Zorn’s Lemma that there

is a minimal element F in the partially ordered set �.

Clearly, F is a non-empty closed convex extreme subset of K and F ⊂ B. Let us show

that |F | = 1. Assume the contrary, and fix two distinct points a and b of F . Then A = {a}
is a proper compact convex subset of F . Therefore, by Proposition 9.1.9, there exists a

non-empty closed convex extreme subset P of F such that P ∩ A = ∅.

Since P is an extreme subset of F , and F is an extreme subset of K, it obviously follows

that P is an extreme subset of K. Clearly, P ⊂ B. These statements imply that P ∈ �.

However, P is a proper subset of F since a is not in P . This contradicts the minimality of

F in �. Hence, |F | = 1, and by the definition, the only point of F is an extreme point of K
belonging to B. �

Corollary 9.1.11. Let K be a compact convex subset of a real topological vector
space L and F be a proper compact convex subset of K. Then the set K \ F contains at
least one extreme point of K.

Proof. This follows immediately from Propositions 9.1.9 and 9.1.10. �
The above results easily imply the following version of the Krein–Milman theorem:

Theorem 9.1.12. [M. G. Krein and D. P. Milman] Let K be a compact convex subset
of a real topological vector space L, and E be the set of all extreme points of K. Then the
closure of the set S of all vectors in L that can be represented as finite linear combinations
of vectors in E contains K.

Proof. Let H be the closure of S in L. Clearly, H is a closed vector subspace of L.

Therefore, F = K ∩H is a closed convex subset of L. Assume that K is not a subset of H .

Then, clearly, F = K, and it follows from Corollary 9.1.11 that some extreme point b of K
belongs to K \ F . However, by the definition of F , b ∈ E ⊂ S ⊂ H and b ∈ K. Hence,

b ∈ F , a contradiction. �

Exercises

9.1.a. Prove Proposition 9.1.1.

9.1.b. Show that the set of all extreme points of a compact convex subset of a locally convex real

vector space is not necessarily compact.

9.1.c. Suppose that the set of all extreme points of a compact convex subset K of a locally convex

real vector space is finite. Prove that K is second-countable.

9.1.d. Give an example of a non-metrizable convex compact subspace K of a locally convex real

vector space L such that the set of extreme points of K is metrizable.
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Problems

9.1.A. Does there exist an infinite-dimensional locally convex vector space? (See also Exer-

cise 5.1.h.)

9.1.B. Suppose that K is a convex compact subset of a locally convex real vector space L such that

the set of extreme points of K is cosmic. Show that K is second-countable.

9.1.C. Suppose that K is a convex compact subset of a locally convex real vector space L such that

the network weight of the space consisting of all extreme points of K does not exceed an

infinite cardinal τ. Show that the weight of K is not greater than τ.

9.1.D. Take away a point from an arbitrary locally convex topological vector space L. Show that

the space X so obtained is homogeneous. (See Problems 1.4.B, 1.4.C, and 1.4.1.)

Hint. Use the Hahn–Banach theorem to show that every finite-dimensional vector

subspace has a direct complement in L. Now reduce the problem to the finite-dimensional

case, assuming that the point taken away is the neutral element.

9.1.E. Take away a point from an arbitrary locally convex topological vector space L. Is the space

X so obtained homeomorphic to a topological group? What if L = Cp(X)?

9.2. Gel’fand–Mazur Theorem

We will need the concepts of a Banach space (that appeared once in Section 5.1) and

of a Banach algebra. But first we have to generalize the concept of a real vector space

discussed in Section 9.1, and to generalize accordingly some results obtained there.

Let F be a field with multiplicative identity 1 and E an Abelian group, in additive

notation. Suppose that for each α ∈ F and each x ∈ E, an element αx of E is defined in a

such a way that the following conditions are satisfied for all α, β ∈ F and all x, y ∈ E:

(V1) α(x + y) = αx + αy;

(V2) (α + β)x = αx + βx;

(V3) α(βx) = αβx;

(V4) 1x = x.

Then E is called a linear or a vector space over the field F . The zero element of F is

denoted by 0, the zero element of E is denoted by θ. If F is the field R of real numbers,

then E is a real vector space (see Section 9.1). If F = C, where C is the field of complex

numbers, we call E a complex vector space.
In the next lemma we establish almost obvious properties of operations in a vector

space.

Lemma 9.2.1. Let E be a vector space over a field F . Then the following hold for all
x ∈ E and α ∈ F :

1) 0x = θ;
2) (−1) x = −x;
3) αθ = θ;
4) if αx = θ, then either α = 0 or x = θ.

Proof. It follows from (V2) that if x ∈ E, then 0x = (0 + 0)x = 0x + 0x, whence

0x = θ. This gives 1). The equalities θ = 0x = (1 − 1) x = 1x + (−1) x and (V4) imply

that (−1) x = −x. This proves 2). Further, let y ∈ E be arbitrary. Then, according to

(V1), (V3), and 2), we have that αθ = α(y − y) = αy − αy = θ, whence 3) follows.
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Finally, if αx = θ and α = 0, then it follows from (V3) and 3) that α−1αx = α−1θ = θ or,

equivalently, 1x = θ, so that x = θ. �

A topological vector space over a topological field F is a vector space E with a topology

� on E which turns E into an Abelian topological group and satisfies the condition:

(M) The natural mapping m : F × E → E given by the rule m(α, x) = αx, is continuous.

Since we consider only T1-topologies, every topological vector space is Hausdorff. A

topological vector space E over a field F is said to be one-dimensional if it is one-dimensional

as a vector space, that is, E = {αa : α ∈ F}, for some non-zero a ∈ E. Clearly, every

topological field F can be considered as a one-dimensional topological vector space over

itself.

The next statement is not as trivial as it appears on the surface. It demonstrates how

strong are, in fact, the axioms of a linear topological space — it turns out that if E is a

one-dimensional vector space over R or C, then there is only one topology on E which

makes it into a topological vector space.

Theorem 9.2.2. [N. Bourbaki] Suppose that E is a one-dimensional topological vector
space over the topological field R (or C). Then E is topologically isomorphic to the
topological vector space R (respectively, C).

Proof. Fix a non-zero a ∈ E, and put g(α) = αa, for every α ∈ R. Then g is a

one-to-one linear continuous mapping of R onto E. It remains to verify that the inverse

mapping g−1 is also continuous at θ. Assume the contrary. Then we can find a sequence

ξ = {αn : n ∈ ω} of non-zero real numbers αn such that the sequence {αna : n ∈ ω}
converges to θ and 0 is not a limit point for ξ. Observe also that no non-zero β ∈ R can be a

limit point for ξ. Otherwise, by the continuity of g, we would have βa = θ, a contradiction

with 4) of Lemma 9.2.1. Hence, the sequence ξ does not have limit points in R at all. It

follows that the sequence η = {(αn)−1 : n ∈ ω} converges in R to 0. Since a = θ, we can

select an open neighbourhood W of θ in E such that a /∈ W . By axiom (M) of topological

vector spaces, there exist an open neighbourhood V of 0 in R and an open neighbourhood

U of θ in E such that VU ⊂ W . Since the sequence η converges to 0, and the sequence

{αna : n ∈ ω} converges to θ, there exists k ∈ ω such that (αk)
−1 ∈ V and αka ∈ U. Then

a = (αk)
−1αka ∈ VU ⊂ W , that is, a ∈ W , a contradiction. In the case of the field C the

argument is exactly the same. �

Let E be a vector space over a field F , where F is either R or C. A norm on E is a

real-valued function | · | on E such that:

1) |x| > 0, for each x = θ;

2) |αx| = |α| · |x|, for each α ∈ F and each x ∈ E;

3) |x + y| ≤ |x|+ |y|, for all x, y ∈ E.

Notice that the absolute value of α, when α ∈ R or α ∈ C, is also denoted by |α|. A

vector space E over R or C, with a norm on it, is called a normed vector space, and the set

{x ∈ E : |x| ≤ 1} is called the unit ball in E.

Let E be a normed vector space. Put d(x, y) = |x− y|, for all x, y ∈ E. Clearly, d is a

metric on E. It is easy to verify that the operations in E are continuous with respect to the

topology on E generated by this metric. This means that E is a topological vector space
with regard to the topology generated by d, also called the norm topology. If the metric
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space (E, d) is complete, the normed space E is said to be a Banach space, real or complex,

depending on whether the field F under consideration is R or C.

Every vector space E over the field of complex numbers C can be also considered as a

real vector space, that is, as a vector space over the field R. Of course, formally these two

vector spaces are not the same.

Suppose that E is a real or complex vector space. Then the concepts of a segment in E
and of a convex subset of E are defined exactly as in Section 9.1. The next fact is obvious.

Proposition 9.2.3. For every normed vector space E, convex open sets form a base of
the topology of E.

Topological vector spaces, real or complex, in which the above statement holds, are

called locally convex (see also Section 9.1). If E1 is a subgroup of the additive group of a

vector space E over a field F , and αx ∈ E1 for all α ∈ F and x ∈ E1, we will call E1 a

vector or linear subspace of E. It is clear that if E1 is a vector subspace of a locally convex

space E, then E1 is locally convex as well.

Suppose that H is a closed vector subspace of a topological vector space E over a field

K, where K is R or C. Then H is a closed subgroup of the additive topological group

E, and we can consider the quotient group E/H , with the usual quotient group topology.

Let π : E → E/H be the canonical quotient mapping. We define a multiplication in

E/H by scalars from K as follows: απ(x) = π(αx), for all α ∈ K and x ∈ E. A

simple verification shows that this definition is correct, and the corresponding multiplication

mapping of K × E/H to E/H is continuous. This makes E/H into a topological vector

space over the same field K. Furthermore, the quotient mapping π : E → E/H is a

homomorphism (or a linear mapping) of topological vector spaces in the sense that it satisfies

the following conditions for all x, y ∈ E and α ∈ K:

(H1) π(x + y) = π(x) + π(y);

(H2) π(αx) = απ(x).

Recall that a continuous linear functional on a topological vector space E over a

topological field F is a continuous linear mapping of E to F . In particular, every linear

functional is a homomorphism of the corresponding topological vector spaces. Here is an

important theorem on the existence of non-trivial linear functionals.

Proposition 9.2.4. Suppose that E is a real topological vector space, M a vector
subspace of E, and U a non-empty open convex subset of E disjoint from M. Then there
exists a continuous linear functional f on E such that f (x) = 0, for each x ∈ M, and
f (x) = 0, for each x ∈ U.

Proof. Let � be the family of all vector subspaces of E disjoint from U and containing

M. Clearly, the closure of any H ∈ � belongs to �, and the union of any chain of elements

of � is again an element of �. Therefore, by Zorn’s Lemma, there is a maximal element

HM in �, and HM is closed in E.

Consider the quotient space K = E/HM , with the natural quotient topology. It is easily

verified that K is a real topological vector space. The natural quotient mapping p : E → K
is open and continuous, since K is the quotient group of the topological group E. Hence,

p(U) is a non-empty open convex subset of K, and it follows from HM ∩U = ∅ that p(U)

does not contain zero vector of the vector space K. In particular, we see that the vector space
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K is not zero-dimensional. Let us show that the vector space K is one-dimensional. Assume

the contrary. Then, by Lemma 9.1.4, there exists a one-dimensional vector subspace B of

K such that B ∩ p(U) = ∅. Put L = p−1(B). Then L is a vector subspace of E, and

M ⊂ HM ⊂ L. Also U ∩ L = ∅. It follows that L ∈ �. Since, obviously, HM is a proper

subset of L, we conclude that HM is not a maximal element of E, a contradiction.

Since K is one-dimensional, Theorem 9.2.2 implies that the topological vector space K
is topologically isomorphic to R, and p can be interpreted as a continuous linear functional

on E we are looking for. �

Finally, we can formulate and prove a version of the Hahn–Banach theorem which we

will need below.

Theorem 9.2.5. Suppose that E is a locally convex, real or complex, topological vector
space. Then, for every non-zero a ∈ E, there exists a continuous linear functional g on E
such that g(a) = 0.

Proof. If E is a real vector space, this follows from Proposition 9.2.4, since a can be

separated from zero vector θ by a convex open neighbourhood U. It remains to consider

the case when E is a complex vector space.

Put b = ia. Let us denote by ER the vector space E treated as a vector space over R.

Note that the vectors a and b are not collinear in ER, though they are, clearly, collinear in

E. Let M = {αb : α ∈ R}. Then M is a one-dimensional vector subspace of RR, and so

M ∼= R, by Theorem 9.2.2. Since the additive group R is locally compact, it follows from

Proposition 1.4.19 that M is closed in ER. Clearly, a is not in M. The assumption that E is

locally convex means exactly that the vector space ER is locally convex. Therefore, there

exists an open convex neighbourhood U of a in ER such that U ∩M = ∅.

It follows from Proposition 9.2.4 that there exists a continuous linear functional

f : ER → R on ER such that f (x) = 0, for each x ∈ M, and f (x) = 0, for each x ∈ U. In

particular, f (a) = 0, and f (b) = 0.

Let us now define a complex-valued function g on E by the rule g(x) = f (x)− if (ix),

for each x ∈ E. Using the fact that f is continuous and linear, it is easily verified that g is a

continuous linear functional on E. We also have that g(a) = f (a)−if (ia) = f (a)−if (b) =

f (a) = 0. Thus, g is what we are looking for. �

Suppose that A is a complex vector space. Suppose further that a multiplication is

defined in A making A into a semigroup satisfying the following conditions for all x, y, z ∈ A
and all α ∈ C:

a) x(y + z) = xy + xz;

b) (x + y)z = xz + yz;

c) (αx)y = x(αy) = α(xy).

Then A is called a complex algebra. If A \ {θ} has a unit element with respect to

multiplication, we say that A is an algebra with the unit element. The unit element is also

called the identity in A. If the multiplication in A is commutative, we call A a commutative
algebra.

An algebra A over the field C is called a Banach or normed algebra if A is a Banach

space and |xy| ≤ |x||y|, for all x, y ∈ A. If there is a unit element e in A, we also require

that |e| = 1. Two Banach algebras are called isomorphic if there is a bijection between them
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preserving the operations and the norm. It is clear that C itself, with the operations and the

norm given in C, is a Banach algebra and that the norm on C is unique, in the natural sense

(this easily follows from the axioms of a normed space).

In the proof of the main result of this section we need the following general fact from

the theory of Banach algebras:

Theorem 9.2.6. Suppose B is any Banach algebra with identity e. Then every element
of the set U = {x ∈ B : |x − e| < 1} has the inverse in B, and the inverse operation is
continuous at every a ∈ B such that a−1 is defined.

Proof. By a standard argument, it is enough to check the continuity of the inverse

operation at a = e. Clearly, U = {e+y : y ∈ B, |y| < 1} and U is an open neighbourhood

of e. Fix y ∈ B such that |y| < 1, and consider the series

e− y + y2 − y3 + · · · .

This series is obviously norm-dominated by the convergent series

1 + |y|+ |y|2 + |y|3 + · · · .

Therefore, since the Banach space B is complete, the first series converges in B, that is,

there exists z ∈ B such that

z = e− y + y2 − y3 + · · · .

Then, clearly,

z = e− y(e− y + y2 − y3 + · · · ) = e− yz,

which implies that z + yz = e and (e + y)z = e. Similarly, z(e + y) = e. Hence, z is the

inverse element to e + y. We have shown that every element of U has an inverse.

It follows from the definition of z that

|z| ≤ 1 + |y|+ |y|2 + · · · = 1/(1− |y|).
On the other hand, since z− e = −yz, we have: |z− e| = |yz| ≤ |y||z|. Therefore,

|z− e| ≤ |y||z| ≤ |y|/(1− |y|),
and if |y| < ε < 1, we have |z− e| ≤ ε/(1− ε), which implies the continuity of the inverse

at e. �

Theorem 9.2.7. [I. M. Gel’ fand, S. Mazur] Suppose that B is a Banach algebra over
C with identity e such that every non-zero element of B has an inverse. Then B is isomorphic
to the field C of complex numbers.

Proof. Take any non-zero element a ∈ B. It suffices to show that there exists λ ∈ C
such that a = λe. Assume the contrary. Then aλ = (a− λe)−1 exists for every λ ∈ C. Let

us define a mapping φ of C to B by φ(λ) = aλ, for each λ ∈ C. Since, by Theorem 9.2.6,

the inverse operation is continuous on B \ {0}, the mapping φ is continuous as well.

Fix μ ∈ C, and take any λ ∈ C. Clearly, (a−μe)− (a− λe) = (λ−μ)e. Multiplying

both sides first by aμ and then by aλ, we obviously obtain:

aλ − aμ = (λ− μ)aλaμ.

It follows that (aλ − aμ)/(λ − μ) = aλaμ, whenever λ = μ. Since φ is continuous, the

limit of (aλ − aμ)/(λ− μ), when λ converges to μ is aμaμ, for each μ ∈ C. Since aμaμ is
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distinct from the zero element of B, the mapping φ of C to B is not constant. According to

the above formula, the function φ is differentiable, in the natural sense.

Take any λ ∈ C and put a = aλ = ϕ(λ). Then a = 0 = a2 and, by Theorem 9.2.5,

there exists a continuous linear functional f on B such that f (a2) = 0. Since f is linear and

continuous, f is differentiable. Therefore, the function g : C→ C is differentiable, at every

μ ∈ C. It follows that the composition g = f ◦ φ is not constant, because the derivative of

g at λ is equal to f (a2) = 0.

Claim. The function g converges to 0 when λ →∞.

Since f is continuous and f (θ) = 0, it suffices to establish that φ(λ) converges to θ when

λ →∞. For any λ = 0 we have: aλ = (a−λe)−1 = (λ(λ−1a−e))−1 = λ−1(λ−1a−e)−1.

It follows that

|(a− λe)−1| = |λ−1(λ−1a− e)−1| ≤ |λ−1||(λ−1a− e)−1|.
Under λ → ∞ we have that lim(λ−1a − e) = e and lim |λ−1| = 0, which implies that

lim |(λ−1a− e)−1| = 1 and lim |φ(λ)| = |(a− λe)−1| = 0. Therefore, φ(λ) converges to θ
when λ →∞. The claim is proved.

From the above claim, using the Cauchy formula, we have, for any z ∈ C:

g(z) = (1/2πi)

∫
S

g(w)/(w− z)dw,

where S is a circumference of some radius r > 0 with center at z. Let Mr be the maximum

of |g(w)| when w ∈ S. Then

|g(z)| =
∣∣∣∣∫

S

g(w)/(w− z)dw

∣∣∣∣ ≤ Mr

2πr
· 2πr = Mr.

Now, since g(w) converges to 0 when λ tends to infinity, Mr becomes as small as we wish

if we choose a sufficiently large r. Hence |g(z)| < ε, for each ε > 0, that is, g(z) = 0, for

every z ∈ C. However, g is not constant, which is a contradiction. �

Exercises

9.2.a. Verify that the quotient space E/H defined on page 578 is indeed a topological vector space.

Show that if E is locally convex, so is E/H .

9.2.b. Show that the complex-valued function g defined in the proof of Theorem 9.2.5 is a continuous

linear functional on E.

9.3. Invariant integral on a compact group

Let G be a compact topological group. Throughout the section, we denote by �e

the family of open neighbourhoods of the neutral element e in G. By a function on G
we understand in this section a real-valued function on G, unless the contrary is clearly

specified.

We recall that a function f on G is called right uniformly continuous if for every ε > 0,

there exists U ∈ �e such that |f (x) − f (y)| < ε whenever x, y ∈ G satisfy xy−1 ∈ U.

It was established in Proposition 1.8.11 (along with Lemma 1.8.10) that every continuous

function on a compact topological group is (right) uniformly continuous.
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Let ξ be a family of continuous real-valued functions on a topological group G. Then

ξ is called right uniformly continuous if for every ε > 0, there exists V ∈ �e such that

|f (x) − f (y)| < ε for all f ∈ ξ, whenever x, y ∈ G satisfy the condition xy−1 ∈ V . In

the sequel we omit the word “right” and call such a family ξ uniformly continuous (this

agreement also applies to individual functions on a topological group).

Suppose that f ∈ C(G) is a continuous function on a topological group G, and a ∈ G.

Then fa is a function on G given by the rule fa(x) = f (xa), for each x ∈ G. Accordingly,

af is a function on G given by af (x) = f (ax), for each x ∈ G.

Proposition 9.3.1. Let f : G→ R be a uniformly continuous function on a topological
group G. Then the family {fa : a ∈ G} is uniformly continuous.

Proof. Take any ε > 0. Choose V ∈ �e such that |f (x) − f (y)| < ε, whenever

xy−1 ∈ V . If xy−1 ∈ V , then (xa)(ya)−1 = xaa−1y−1 ∈ V . Hence, |fa (x) − fa (y)| =

|f (xa)− f (ya)| < ε. �

Suppose that for each α ∈ Λ, a function fα : G→ R is given. The family {fα : α ∈ Λ}
is uniformly bounded if there exists a positive number M ∈ R such that |fα(x)| ≤ M, for

all x ∈ G and α ∈ Λ.

Now we are going to introduce some notation which will be used throughout this

chapter.

Let f ∈ C(G) be a continuous function on a topological group G. Suppose that

A = {a1, a2, . . . , an} is a finite subset of G. Then

〈A, f 〉(x) =
1

n

n∑
i=1

f (xai) =
1

n

n∑
i=1

fai
(x)

and

[A, f ](x) =
1

n

n∑
i=1

f (aix) =
1

n

n∑
i=1

ai
f (x).

Let also put

�f = {〈A, f 〉 : A ⊂ G, |A| < ω} and �f = {[A, f ] : A ⊂ G, |A| < ω}.
Proposition 9.3.2. If G is a compact topological group, then for every f ∈ C(G), the

families �f and �f are uniformly continuous.

Proof. The statement will be only proved for �f , since the proof for �f is similar.

Take any ε > 0. Since G is compact and f is continuous, the family {fa : a ∈ G} is

uniformly continuous, by Proposition 1.8.11 and 9.3.1. So there exists V ∈ �e such that

|fa (x)− fa (y)| < ε, whenever xy−1 ∈ V and a ∈ G. Now let A = {a1, . . . , an} ⊂ G, and

take x, y ∈ G such that xy−1 ∈ V . Then

|〈A, f 〉(x)− 〈A, f 〉(y)| = |1
n

n∑
i=1

fai
(x)− 1

n

n∑
i=1

fai
(y)|

≤ 1

n

n∑
i=1

|fai
(x)− fai

(y)| < 1

n

n∑
i=1

ε = ε.

This implies the required conclusion. �
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The following statement is clearly true.

Proposition 9.3.3. Let G be a compact topological group, and A be a finite subset of
G. Then min(f ) ≤ min(〈A, f 〉) ≤ max(〈A, f 〉) ≤ max(f ), and min(f ) ≤ min([A, f ]) ≤
max([A, f ]) ≤ max(f ), for each continuous function f on G.

Let G be a compact topological group. We define a metric ρ on the set C(G) of

all continuous functions on G in the usual way — if g1, g2 ∈ C(G), then ρ(g1, g2) =

max{|g1(x)− g2(x)| : x ∈ G}. This definition turns C(G) into a metric space.

For a finite subset A of G and for any f ∈ C(G), put ψA(f ) = 〈A, f 〉. In this way we

have defined a mapping ψA of C(G) to itself.

Proposition 9.3.4. Let A be a finite subset of G. Then:

1) the mapping ψA of C(G) to C(G) is linear;
2) ρ(〈A, g1〉, 〈A, g2〉) ≤ ρ(g1, g2) and ρ([A, g1], [A, g2]) ≤ ρ(g1, g2), for any g1, g2 ∈

C(G);

3) the mapping ψA of C(G) to C(G) is continuous.

Proof. From the definition it is obvious that 〈A, f + g〉 = 〈A, f 〉 + 〈A, g〉 and

〈A, λf 〉 = λ〈A, f 〉, for each λ ∈ R. This takes care of 1).

Now we prove 2). We have ρ(〈A, g1〉, 〈A, g2〉) = max |〈A, g1〉 − 〈A, g2〉| =

max |〈A, g1 − g2〉| ≤ max |g1 − g2| = ρ(g1, g2), by 1) and Proposition 9.3.3. The ar-

gument for [A, f ] is the same. Thus, 2) is proved.

We can rewrite 2) as follows: ρ(ψA(f ), ψA(g)) ≤ ρ(f, g), for any f, g ∈ C(G), that is,

the mapping ψA does not increase distances. This implies the continuity of ψA. �
Proposition 9.3.5. Let G be a compact topological group and f ∈ C(G). If A, B are

finite subsets of G, then the following conditions are satisfied:

1) 〈A, 〈B, f 〉〉 = 〈AB, f 〉;
2) [A, [B, f ]] = [AB, f ];
3) 〈A, [B, f ]〉 = [B, 〈A, f 〉].

Proof. All three statements are verified by routine direct calculations. �
Proposition 9.3.6. For each compact topological group G, each finite subset A of G

and each f ∈ C(G), the families �f and �f are invariant under the mapping ψA, that is,
ψA(�f ) ⊂ �f and ψA(�f ) ⊂ �f .

Proof. The invariance of �f follows from 1) and 2) of Proposition 9.3.5. Using now

the continuity of ψA (see 3) of Proposition 9.3.4), we conclude that �f is also invariant

under ψA. �
Let G be a compact topological group. For each f ∈ C(G), let �f be the closure of

�f in the space (C(G), ρ), and let �f be the closure of �f in the same space.

Proposition 9.3.7. For each compact topological group G and each f ∈ C(G), the
families �f and �f are uniformly continuous.

Proof. We will prove that the family �f is uniformly continuous. The proof for �f

is similar. Let ε > 0 be arbitrary. Since, by Proposition 9.3.2, the family �f is uniformly

continuous, there exists V ∈ �e such that whenever h ∈ �f and xy−1 ∈ V , we have that
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|h(x)− h(y)| < ε. Take any g ∈ �f , and choose h ∈ �f with ρ(g, h) < ε. Then for every

x, y ∈ G such that xy−1 ∈ V , we have:

|g(x)− g(y)| = |g(x)− h(x) + h(x)− h(y) + h(y)− g(y)|
≤ |g(x)− h(x)|+ |h(x)− h(y)|+ |h(y)− g(y)| < 3ε.

Therefore, �f is uniformly continuous. �
Recall that a metric space (X, ρ) is said to be totally bounded if, for each ε > 0, there

exists a finite ε-net A in X, that is, a finite subset A of X such that the family of ε-balls

around points of A cover X or, equivalently, ρ(x, A) < ε, for each x ∈ X.

For each g ∈ C(G), put M(g) = maxx∈G g(x) and m(g) = minx∈G g(x) (we recall that

G is a compact group).

Lemma 9.3.8. Let G be a compact topological group and let f ∈ C(G). Then the
metric space �f is totally bounded.

Proof. Take any ε > 0. By Proposition 9.3.3, since �f = �f , we have m(f ) ≤
m(g) ≤ M(g) ≤ M(f ), for all g ∈ �f . Let S ⊂ R be a finite ε-net in the interval

[m(f ), M(f )]. Apply Proposition 9.3.7 to choose V ∈ �e such that |g(x) − g(y)| < ε
whenever g ∈ �f and xy−1 ∈ V . Since G is compact, there exists a finite set A ⊂ G such

that G = VA. Let � be the set of all functions from A to S and note that � is finite. For

every ϕ ∈ �, choose (if possible) a function fϕ ∈ �f such that

|fϕ(a)− ϕ(a)| < ε, for each x ∈ A. (9.1)

If such a function fϕ does not exist, denote by fϕ the zero function on G. Then

� = {fϕ : ϕ ∈ �} is a finite subset of �f , and we claim that � is a 4ε-net in �f .

Indeed, let g ∈ �f be arbitrary. It follows from our choice of S that, for every a ∈ A,

there exists ra ∈ S such that |g(a) − ra| < ε. We define a function ϕg ∈ � by the rule

ϕg(a) = ra, for each a ∈ A. Then the corresponding function fϕg ∈ � satisfies (9.1), where

ϕ = ϕg and fϕ = fϕg . To finish the proof, it remains to show that ρ(g, fϕg ) < 4ε. Let

x ∈ G be arbitrary. There exists a ∈ A such that x ∈ Va, whence xa−1 ∈ V . Since g and

fϕg = f ∗ are elements of �f , it follows that

|g(x)− g(a)| < ε and |f ∗(a)− f ∗(x)| < ε. (9.2)

It also clear from the definition of ϕg and f ∗ that

|g(a)− f ∗(a)| ≤ |g(a)− ϕg(a)|+ |ϕg(a)− f ∗(a)| < ε + ε = 2ε. (9.3)

Therefore, applying (9.2) and (9.3), we obtain:

|g(x)− f ∗(x)| ≤ |g(x)− g(a)|+ |g(a)− f ∗(a)|+ |f ∗(a)− f ∗(x)| < 4ε.

Since the above inequality holds for each x ∈ G, the distance ρ(g, f ∗) = ρ(g, fϕg ) is less

than 4ε (again, we use the compactness of G). This proves that � is a 4ε-net in �f . �
Since the metric space C(G) is complete, its closed subspace �f is also complete. It is

well known (see [165, Theorem 4.3.29]) that every totally bounded complete metric space

is compact. This fact and Lemma 9.3.8 yield the following theorem:

Theorem 9.3.9. Let G be a compact topological group. Then �f is compact, for any
f ∈ C(G).
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Proposition 9.3.10. Let G be a compact topological group, and let g ∈ C(G). If
g is not constant, then there exists a finite set A ⊂ G such that M(〈A, g〉) < M(g) and,
similarly, there exists a finite set B ⊂ G such that M([B, g]) < M(g).

Proof. Let M = M(g). Since g is not constant, there exist x0 ∈ G and h ∈ R
such that g(x0) < h < M. Let U be an open neighbourhood of x0 such that g(x) ≤ h
for all x ∈ U. Since G is compact, there exists a finite set A ⊂ G such that G = UA.

Put k = |A|, and consider the function 〈A−1, g〉. For each x ∈ G, there exist elements

a ∈ A and u ∈ U such that x = ua. Then ga−1 (x) = g(uaa−1) = g(u) ≤ h. Hence,

M(〈A−1, g〉) ≤ 1/k · [M(k− 1) + h] = M− 1/k · (M−h) < M. The argument in the case

of [B, g] is similar. �

It is easy to see that the functions M and m on C(G) defined before Lemma 9.3.8 are

continuous. Since �f is compact, there exists pf ∈ �f such that ming∈�
f

M(g) = M(pf ).

Similarly, one can find a function qf ∈ �f with ming∈�
f

M(g) = M(qf ).

Theorem 9.3.11. Let G be a compact topological group, and let f ∈ C(G). Then:

a) the functions pf and qf are constant;
b) there is only one constant function in �f ;
c) pf = qf .

Proof. Item a) obviously follows from Propositions 9.3.10 and 9.3.6.

To prove b), suppose that p ∈ �f is a constant function. In view of a), it suffices to

show that p = qf , which will also prove c). Take any ε > 0. Choose finite sets A, B ⊂ G
such that ρ(〈A, f 〉, p) < ε and ρ([B, f ], qf ) < ε. Then, by Propositions 9.3.5 and 9.3.4,

ρ(〈A, [B, f ]〉, p) = ρ([B, 〈A, f 〉], [B, p]) ≤ ρ(〈A, f 〉, p) < ε

and

ρ(〈A, [B, f ]〉, qf ) = ρ(〈A, [B, f ]〉, 〈A, qf 〉) ≤ ρ([B, f ], qf ) < ε.

Hence, ρ(p, qf ) < 2ε. Therefore, since ε > 0 is arbitrary, we have that pf = p = qf . �

Corollary 9.3.12. Let G be a compact topological group, f, g ∈ C(G), α ∈ R, and
let A ⊂ G be a finite subset of G. Then:

a) pαf = αpf ;
b) p〈A,f〉 = pf and, in general, pg = pf for each g ∈ �f ;
c) pf+g = pf + pg;
d) m(f ) ≤ pf (x) ≤ M(f ), for each x ∈ G.

Proof. Indeed, αpf ∈ �αf , by the linearity of the mappings ψB (see Proposition 9.3.4).

Since, by a) of Theorem 9.3.11, αpf is a constant function, it follows from b) of the same

theorem that pαf = αpf .

Clearly, �〈A,f〉 ⊂ �f . Therefore, p〈A,f〉 ∈ �f . Now b) of Theorem 9.3.11 implies that

p〈A,f〉 = pf . Since g ∈ �f implies that �g ⊂ �f , we have that pg ∈ �f , and, by b) of

Theorem 9.3.11, pg = pf .

To prove c), we argue as follows. For a given function g ∈ C(G) and an arbitrary

ε > 0, there exists a finite set B ⊂ G such that |〈B, g〉 − pg| < ε. Put h = 〈B, g〉. It
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follows that |〈A′, h〉 − q| < ε, for any finite set A′ ⊂ G. By 1) of Proposition 9.3.5, we

have 〈A′, h〉 = 〈A′, 〈B, g〉〉 = 〈A′B, g〉, whence

|〈A′B, g〉 − pg| < ε. (9.4)

It follows from item b) that p〈B,f〉 = pf , so there exists a finite set A ⊂ G such that

|〈A, 〈B, f 〉〉 − pf | < ε or, equivalently,

|〈AB, f 〉 − pf | < ε. (9.5)

Combining (9.4) and (9.5) and taking A′ = A, we obtain (making use of the linearity of

ψAB):

|〈AB, f + g〉 − (pf + pg)| ≤ |〈AB, f 〉 − pf |+ |〈AB, g〉 − pg| < 2ε.

Since the above inequality holds for all ε > 0, this proves that pf+g = pf + pg.

Finally, the inequality in d) is evident. �
Let G be a compact topological group, and let f ∈ C(G). Then pf (e) is called the von

Neumann integral or simply the invariant integral of f and is denoted by
∫

f (x) dx. Thus,∫
f (x) dx = pf (e).

Theorem 9.3.13. [von Neumann] Let G be a compact topological group, and let
f, g ∈ C(G). Then the following conditions are satisfied:

1) for each α ∈ R,
∫

αf (x) dx = α

∫
f (x) dx;

2)

∫
(f (x) + g(x))dx =

∫
f (x) dx +

∫
g(x) dx;

3) if f (x) ≥ 0 for all x ∈ G, then
∫

f (x) dx ≥ 0;

4) if f (x) = 1 for all x ∈ G, then
∫

f (x) dx = 1;

5)

∫
f (x) dx =

∫
f (xa) dx for all a ∈ G;

6)

∫
f (x) dx =

∫
f (ax) dx for all a ∈ G;

7)

∫
f (x−1) dx =

∫
f (x) dx;

8) if f (x) ≥ 0 for all x ∈ G, and f (y) > 0 for some y ∈ G, then
∫

f (x) dx > 0.

Proof. Properties 1) and 2) follow from Corollary 9.3.12. Property 3) follows from

the obvious observation that if f ∈ C(G) is a non-negative function, then every function

g ∈ �f is non-negative. To prove 4), it is enough to note that if f ∈ C(G) is a constant

function, then pf = f . Properties 5) and 6) follow from the obvious equalities pf = p〈{a},f〉
and pf = p

[{a},f ]
, according to b) of Corollary 9.3.12.

Let us deduce property 7). Define g : G → R by g(x) = f (x−1). Clearly, g is

continuous, and �g = �f . Therefore, pg = qf . However, qf = pf , by Theorem 9.3.11.

Hence, pg(e) = pf (e), that is,
∫

f (x−1) dx =
∫

f (x) dx.

Finally, let us prove 8). Take any function f ∈ C(G) such as in 8).

Claim. There exists a function g ∈ �f such that g(x) > 0, for each x ∈ G.
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Indeed, there exists y ∈ G such that f (y) > 0. Let U be an open neighbourhood of

y such that f (x) > 0, for each x ∈ U. Take a finite set A ⊂ G such that UA = G. Let

z ∈ G be arbitrary, and consider 〈A−1, f 〉(z). Since UA = G, there exist a ∈ A, and u ∈ U
such that z = ua. Then f (za−1) = f (uaa−1) = f (u) > 0. Since f (x) ≥ 0 for all x ∈ G,

we have that 〈A−1, f 〉(z) > 0. Clearly, the function g = 〈A−1, f 〉 belongs to �f , which

implies the claim.

Take the function g ∈ �f such as in the above claim. Then m(g) > 0, by the

compactness of G. We also have pf = pg and 0 < m(g) ≤ pg(e), by b) and c) of

Corollary 9.3.12. It follows that
∫

f (x) dx = pf (e) = pg(e) ≥ m(g) > 0, and the theorem

is proved. �

We will now formulate and prove an important theorem on the uniqueness of the

invariant integral.

Theorem 9.3.14. Let G be a compact topological group. If a function φ : C(G)→ R
satisfies conditions 1)–5) of Theorem 9.3.13, then φ(f ) =

∫
f (x) dx, for all f ∈ C(G).

Proof. It follows from 2) and 3) of Theorem 9.3.13 that if f (x) ≤ g(x), for all x ∈ G,

then φ(f ) ≤ φ(g), which in turn implies that φ(|f |) ≥ |φ(f )|. Also, by 1) and 4), φ(c) = c,

for all c ∈ R, where c is the constant function on G with value c.

We also note that φ(〈A, f 〉) = φ(f ), for every f ∈ C(G) and every finite set A ⊂ G.

Indeed, this follows immediately from the properties 1), 2), and 5) of φ and from the

definition of 〈A, f 〉. Now it is easy to show that φ(f ) = pf . Take any ε > 0, and let A be

a finite subset of G such that ρ(〈A, f 〉, pf ) < ε. Then

|φ(f )− pf (e)| = |φ(〈A, f 〉)− pf (e)| = |φ(〈A, f 〉)− φ(pf )|
= |φ(〈A, f 〉 − pf )| ≤ φ(|〈A, f 〉 − pf |) ≤ φ(ε) = ε.

Hence, φ(f ) = pf (e) =
∫

f (x) dx. The theorem is proved. �

Suppose that G is a compact topological group with neutral element e and that

K : G×G→ R is a continuous function of two variables x and y. Put F (y) =
∫

K(x, y) dx,

for each y ∈ G. Since G × G is a compact group, the function K(x, y) is uniformly

continuous. Therefore, for each ε > 0 there exists an open neighbourhood V of e in G such

that |K(x, y)−K(x, z)| < ε whenever yz−1 ∈ V . Then, if y, z ∈ G and yz−1 ∈ V , we have:

|F (y)− F (z)| =
∣∣∣∣∫ K(x, y) dx−

∫
K(x, z) dx

∣∣∣∣
=

∣∣∣∣∫ [K(x, y)−K(x, z)] dx

∣∣∣∣ ≤ ∫
|K(x, y)−K(x, z)| dx ≤ ε,

by 1), 2), 3), and 4) of Theorem 9.3.13. It follows that the function F is continuous, that is,

F ∈ C(G). Therefore, the integral
∫

F (y) dy is defined. We then put∫ ∫
K(x, y) dx dy =

∫
F (y) dy =

∫ (∫
K(x, y) dx

)
dy

and ∫ ∫
K(x, y) dy dx =

∫ (∫
K(x, y) dy

)
dx.
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Theorem 9.3.15. For every compact topological group G and every continuous real-
valued function K(x, y) on the topological product G×G, we have:∫ ∫

K(x, y) dxdy =

∫ ∫
K(x, y) dy dx.

Proof. Indeed, each of the functions ϕ1(K) =
∫∫

K(x, y) dx dy and ϕ2(K) =∫∫
K(x, y) dy dx on C(G × G) has the properties 1)–5) formulated in Theorem 9.3.13.

Applying Theorem 9.3.13 once again, we conclude that ϕ1(K) = ϕ2(K), for each

K ∈ C(G×G). �

So far in this section we have considered only real-valued functions on G. For many

applications, however, it is important to have similar results for complex-valued functions.

We show below how to derive these more general statements from Theorems 9.3.13

and 9.3.14.

By C∗(G) we denote the space of all continuous complex-valued functions on a compact

topological group G, with usual operations and sup-norm, turning it into a Banach space.

Every function f ∈ C∗(G) can be represented in a unique way as f = f1 + if2,

where f1 and f2 are continuous real-valued functions, that is, f ∈ C(G) and g ∈ C(G).

Now we define the integral on C∗(G) by linearity:
∫

f (x) dx =
∫

f1(x) dx + i
∫

f2(x) dx.

Clearly, in this way we extended the definition of the invariant integral to all complex-valued

continuous functions on G.

Some important properties of the invariant integral of complex-valued functions are

collected in the next theorem.

Theorem 9.3.16. Let G be any compact topological group. Then for every f, g ∈
C∗(G) and for every κ ∈ C we have:

1)

∫
κf (x) dx = κ

∫
f (x) dx;

2)

∫
(f (x) + g(x)) dx =

∫
f (x) dx +

∫
g(x) dx;

3) if f is real-valued, f = 0, and f (x) ≥ 0 for all x ∈ G, then
∫

f (x) dx is a positive

real number;

4) if f (x) = 1 for all x ∈ G, then
∫

f (x) dx = 1;

5)

∫
f (x) dx =

∫
f (xa) dx for all a ∈ G;

6)

∫
f (x) dx =

∫
f (ax) dx for all a ∈ G;

7)

∫
f (x−1) dx =

∫
f (x) dx;

8)

∫
f (x) dx =

∫
f (x) dx, where the bar denotes the complex conjugation;

9) Re
[∫

f (x) dx
]

=

∫
Re[f (x)] dx, where Re[z] is the real part of z ∈ C;

10)

∣∣∣∫ f (x) dx
∣∣∣ ≤ ∫

|f (x)| dx.
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Proof. Properties 2) and 8) follow directly from the definition of invariant integral

on C∗(G). Property 3) follows from the definition and 3) of Theorem 9.3.13. Property 4)

follows from 4) of Theorem 9.3.13. Similarly, properties 5), 6), and 7) follow from the

definition and corresponding statements in Theorem 9.3.13.

To prove 1), let κ = α + iβ and f = f1 + if2, where α, β ∈ R and f1, f2 ∈ C(G).

Then κf = (α + iβ)(f1 + if2) = (αf1−βf2)+ i(βf1 +αf2). It follows from the definition

of the invariant integral that∫
κf (x) dx =

∫
(αf1(x)− βf2(x)) dx + i

∫
(βf1(x) + αf2(x)) dx

= α

∫
f1(x) dx− β

∫
f2(x) dx + i

(
β

∫
f1(x) dx + α

∫
f2(x) dx

)
= (α + iβ)

(∫
f1(x) dx + i

∫
f2(x) dx

)
= κ

∫
(f1(x) + if2(x)) dx = κ

∫
f (x) dx.

This implies 1).

Clearly, 9) follows from the definition of the integral of a complex-valued function. To

finish the proof, it suffices to deduce 10). If
∫

f (x) dx = 0, then the conclusion follows

from 3) of Theorem 9.3.13. Suppose therefore that reiθ =
∫

f (x) dx, where r is a positive

real number and 0 ≤ θ < 2π. Hence, by 1), r =
∫

e−iθf (x) dx. Applying 9), we obtain the

equality r =
∫

Re[e−iθf (x)] dx. We also have, for each x ∈ G:

Re[e−iθf (x)] ≤ |e−iθf (x)| = |f (x)|,
Therefore, from 2) and 3) of Theorem 9.3.13 it follows that

r =

∫
Re[e−iθf (x)] dx ≤

∫
|f (x)| dx.

Since r = | ∫ f (x) dx|, we conclude that | ∫ f (x) dx| ≤ ∫ |f (x)| dx. �
Theorem 9.3.16 is complemented by the following uniqueness result, similar to

Theorem 9.3.14.

Theorem 9.3.17. If a complex-valued function μ on a compact topological group G
satisfies conditions 1)–5) of Theorem 9.3.16, then μ coincides with the invariant integral

∫
,

that is, μ(f ) =
∫

f (x) dx, for each f ∈ C∗(G).

Proof. Every real-valued continuous function can be represented as the difference of

two non-negative continuous real-valued functions. Therefore, it follows from conditions

1), 2), and 3) of Theorem 9.3.16, imposed on μ, that μ(f ) is a real number, for each real-

valued continuous function f on G. Hence, the restriction φ = μ�C(G) of μ to C(G) is

a real-valued function on C(G) satisfying conditions 1)–5) of Theorem 9.3.13. Again, by

Theorem 9.3.13, μ(f ) = φ(f ) =
∫

f (x) dx, for each f ∈ C(G). Now, by the linearity of μ
and

∫
, we conclude that μ(f ) =

∫
f (x) dx, for each f ∈ C∗(G). �

Theorem 9.3.17 implies that Theorem 9.3.15 remains true for functions in C∗(G×G).

This result (as well as Theorem 9.3.15) is called the Fubini theorem. It plays an important

role in Functional Analysis.
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The invariant integral allows us to make a further important step — to introduce a scalar

product in C(G) and in C∗(G), as follows.

For any f, h ∈ C∗(G) we put

(f, h) =

∫
f (x)h(x) dx,

and call (f, h) the scalar product of f and h. From the properties of the invariant integral

it is immediate that the following usual properties of the scalar product are satisfied for any

f, h, h1, h2 ∈ C∗(G) and any complex number λ:

1) (h, f ) = (f, h);

2) (λf, h) = λ(f, h);

3) (f, h1 + h2) = (f, h1) + (f, h2);

4) (f, f ) > 0 if f is a non-zero function.

Note that (f, f ) is always a non-negative real number. This follows directly from the

definition of the scalar product, or from the properties 1), 2), and 4). We has to mention

that the properties 1)–4) of the scalar product lead to the Cauchy–Bunyakovski inequality:
(f, h)2 ≤ (f, f )(h, h) which in this case can be also written as follows:∣∣∣∣∫ f (x)h(x) dx

∣∣∣∣ ≤
√∫

|f (x)|2 dx

√∫
|h(x)|2 dx.

A standard proof of the Cauchy–Bunyakovski inequality can be found in almost any book

on Analysis or Linear Algebra.

Using the scalar product, we can define the new length, or norm, of a vector f in

C∗(G) and the new distance between elements f , h of C∗(G) by |f |I =
√

(f, f ), and

dI(f, h) = |f − h|I . It follows by a standard argument from the Cauchy–Bunyakovski

inequality that C∗(G), endowed with the distance dI , becomes a metric space. Applying

the properties of the invariant integral, one can easily see that

dI(f, g) ≤ max
x∈G

|f (x)− g(x)| = 
(f, g),

for all f, g ∈ C∗(G). Therefore, the topology of C∗(G) generated by dI is weaker than the

topology generated by the uniform convergence metric 
. If the group G is infinite, then the

metric space (C∗(G), dI) is not complete, in a sharp contrast with the case of the uniform

convergence metric.

The notion of invariant integral on a compact group G allows us to define the concept

of Haar measure on G. Below we just make a few first steps in this direction.

If F is a closed subset of G, we put

m(F ) = inf

{∫
f (x) dx : f ∈ �F

}
,

where �F is the family of all non-negative continuous real-valued functions f on G such

that f (x) ≥ 1, for each x ∈ F . Clearly, 0 ≤ m(F ) ≤ 1, for every closed subset F of G.

The number m(F ) is called the Haar measure of F . In the rest of the section G is a compact

group. The next property of the Haar measure is obvious.

Property 1. If P and F are closed subsets of G such that P ⊂ F , then m(P) ≤ m(F ).
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For any subset A of G, we define a number m(A) ≥ 0 by the rule

m(A) = sup{m(F ) : F ⊂ A, F is closed in G}.
If A ⊂ G in the above definition is closed, then the two definitions are easily seen to be

equivalent. If A is open, we call m(A) the Haar measure of A. The next property of the

function m(A) is also obvious.

Property 2. The number m(A) is invariant under translations, that is, m(xA) = m(Ax) =

m(A), for any x ∈ G and any A ⊂ G.

Let χU be the characteristic function of a set U ⊂ G, that is, χU(y) = 1 if y ∈ U, and

χU(y) = 0 if y ∈ G \ U. We put
∫

χU(x) dx = m(U) and say that m(U) is the invariant

integral of the characteristic function χU .

We list below several properties of m(A); all of them are natural, but not all of them

are obvious. Some of these properties we need below and in the next section.

Property 3. For any closed subsets F and P of G, we have m(F ∪ P) ≤ m(F ) + m(P).

Proof. Here and in some other arguments below we use notation from the definition

of m(F ). Fix a positive number ε. There are functions f ∈ �F and g ∈ �P such that∫
f (x) dx ≤ m(F ) + ε and

∫
g(x) dx ≤ m(P) + ε. Clearly, the function h = f + g is

continuous, non-negative, and h(x) ≥ 1, for every x ∈ F ∪ P . Therefore, h ∈ �F∪P . By a

standard property of the invariant integral, we have that
∫

h(x) dx =
∫

f (x) dx +
∫

g(x) dx.

Hence,

m(P ∪ F ) ≤
∫

h(x) dx =

∫
f (x) dx +

∫
g(x) dx ≤ m(F ) + ε + m(P) + ε

= m(F ) + m(P) + 2ε.

Since ε is any positive number, the required conclusion follows. �

Property 4. For every closed subset F of G and every positive number ε, there is an open
subset U of G such that F ⊂ U and m(U) ≤ m(F ) + ε.

Proof. We can find a function f ∈ �F such that m(F ) ≥ ∫
f (x) dx−δ, where δ = ε/2.

We have f (x) ≥ 1, for each x ∈ F . Therefore, by the continuity of f , there is an open

neighbourhood U of F such that f (x) ≥ 1− δ, for every x ∈ U. Put h(x) = f (x) + δ, for

x ∈ G. Clearly,
∫

h(x) dx =
∫

f (x) dx + δ, and h ∈ �U . Therefore,

m(U) ≤
∫

h(x) dx ≤
∫

f (x) dx + δ.

We also have the inequality
∫

f (x) dx − δ ≤ m(F ) ≤ m(U), since F ⊂ U. It follows that

m(U)−m(F ) ≤ 2δ = ε. �

The last statement is conveniently complemented by the following one:

Property 5. For any disjoint subsets A1 and A2 of G, we have that m(A1 ∪ A2) ≥
m(A1) + m(A2).

Proof. Let A = A1 ∪ A2 and take an arbitrary ε > 0. It suffices to show that

m(A) ≥ m(A1) + m(A2) − 2ε. We can find closed sets F1 ⊂ A1 and F2 ⊂ A2 such that

m(F1) ≥ m(A1) − ε and m(F2) ≥ m(A2) − ε. The sets F1 and F2 are disjoint and the set
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F = F1∪F2 is closed. Obviously, it remains to show that m(F ) ≥ m(F1)+m(F2). Let δ be

any positive number. There is a function f ∈ �F such that m(F ) ≥ ∫
f (x) dx−δ. Since the

space G is Tychonoff and the sets F1, F2 are compact and disjoint, we can find non-negative

continuous real-valued functions h1 and h2 on G such that the following conditions are

satisfied for every i = 1, 2:

1) hi(x) ≤ f (x), for each x ∈ G;

2) hi(x) = 1, for each x ∈ Fi;

3) for every x ∈ G, either h1(x) = 0 or h2(x) = 0.

Put h = h1 + h2. From conditions 1) and 3) it follows that h(x) ≤ f (x), for each

x ∈ G. Therefore,
∫

f (x) dx ≥ ∫
h(x) dx and m(F ) ≥ ∫

f (x) dx − δ ≥ ∫
h(x) dx − δ.

However,
∫

h(x) dx =
∫

h1(x) dx +
∫

h2(x) dx and
∫

hi(x) dx ≥ m(Fi) for i = 1, 2, since,

clearly, hi ∈ �Fi . Hence,

m(F ) ≥
∫

h1(x) dx +

∫
h2(x) dx− δ ≥ m(F1) + m(F2)− δ.

Since this inequality holds for every positive number δ, we conclude that m(F ) ≥
m(F1) + m(F2). �

Notice that Properties 3 and 5 imply the following one:

Property 6. For any disjoint closed sets F1 and F2 in G, we have m(F1 ∪ F2) =

m(F1) + m(F2).

Property 7. Let F and H be arbitrary closed subsets of G such that H ⊂ F . Then
m(F ) = m(F \H) + m(H).

Proof. Take an arbitrary ε > 0. There exists an open neighbourhood U of H such that

m(P) ≤ m(H) + ε, where P = U. Put F1 = F \U. Clearly, F1 is closed and F1 ⊂ F \H .

Therefore, m(F1) ≤ m(F \H). Since F ⊂ F1 ∪ P , we apply Property 4 to deduce that

m(F ) ≤ m(F1) + m(P) ≤ m(F \H) + m(P) ≤ m(F \H) + m(H) + ε.

Since this is true for every ε ≥ 0, it follows that m(F ) ≤ m(F \H) + m(H). On the other

hand, by Property 5, m(F ) ≥ m(F \H) + m(H). Hence, m(F ) = m(F \H) + m(H). �

A similar property holds for open sets.

Property 8. Let V be any open subset of G, and A an arbitrary subset of G. Then
m(A) = m(A \ V ) + m(V ∩ A).

Proof. By Property 5, we have m(A) ≥ m(A\V )+m(V ∩A). Let us prove the reverse

inequality. Fix an arbitrary positive number ε and pick a closed subset F of A such that

m(A) ≤ m(F )+ε. It follows from Property 7 that m(F\V )+m(F∩V ) = m(F ) ≥ m(A)−ε.

Therefore, m(A \ V ) + m(A ∩ V ) ≥ m(A)− ε. Since this is true for every ε > 0, we have

m(A \ V ) + m(A ∩ V ) ≥ m(A). �

The general concept playing a central role in the theory of Haar measure can be now

introduced as follows. A subset A of a compact group G is said to be Haar measurable if

m(A) + m(G \ A) = 1. We always have m(A) + m(G \ A) ≤ 1, by Property 5. It follows

from Properties 7 and 8 that open sets and closed sets are Haar measurable. Some properties

of Haar measurable sets are discussed in problems to this section.
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Exercises

9.3.a. Let G be a compact topological group. For every f, g ∈ C∗(G), let dI (f, g) =√∫ |f (x) − g(x)|2 dx. Use the Cauchy–Bunyakovski inequality to prove that dI is a metric

on C∗(G).

9.3.b. Verify that if G is an infinite compact group, then the metric space (C∗(G), dI ) (see the

previous exercise) is not complete.

9.3.c. Prove, using the properties of the invariant integral, that the cellularity of every compact

topological group G is countable.

Hint. Assume the contrary, and fix an uncountable family ξ = {Uα : α ∈ A} of non-empty

open sets. For each α ∈ A, choose a continuous real-valued function fα on G such that

1) 0 ≤ fα(x) ≤ 1, for every x ∈ G;

2) fα(x) = 0, for each x ∈ G \ Uα;

3) fα(x) > 0, for some x ∈ Uα.

Put rα =
∫

fα(x) dx, for each α ∈ A. Then, by 3) of Theorem 9.3.13, each rα is positive.

It follows that there exist a positive number ε and an uncountable subset B of A such that

rα > ε, for each α ∈ B. Take a natural number N such that N · ε > 1, and a subset K of

B with |K| = N. Define a function hK : G → R as the sum of the functions fα, where α
runs over K. Clearly, 0 ≤ |hK(x)| ≤ 1, for each x ∈ G. Therefore,

∫
hK(x) dx ≤ 1. On the

other hand, it is easy to see that
∫

hK(x) dx ≥ N · ε > 1, which is a contradiction.

Problems

9.3.A. Let U be an open subset of a compact group G, B an arbitrary subset of G, and q a function

on G defined by q(x) = m(xU ∩ B), for each x ∈ G. Then q is continuous.

Solution. Fix x ∈ G, and take any number ε > 0. We have to find an open neighbourhood

W of the neutral element e in G such that if xy−1 ∈ W , then |q(y) − q(x)| ≤ ε.

Clearly, there is a compact subset F of xU such that m(F ) ≥ m(xU) − ε. Now we

can find a symmetric open neighbourhood W of the neutral element e of G such that

F ⊂ yU for each y ∈ G such that xy−1 ∈ W . We assume below that y satisfies this

condition. Then m(xU ∩ yU) ≥ m(F ) ≥ m(xU) − ε. It follows from Property 8 that

m(xU \ (xU∩yU)) ≤ ε. Since m(xU) = m(yU), we also have that m(yU \ (xU∩yU)) ≤ ε.

It follows that m(xU ∩ yU ∩ B) ≤ q(x) = m(xU ∩ B) ≤ m(xU ∩ yU ∩ B) + ε and that

m(xU ∩ yU ∩ B) ≤ q(y) = m(yU ∩ B) ≤ m(xU ∩ yU ∩ B) + ε. Hence, |q(x) − q(y)| ≤ ε
whenever xy−1 ∈ W . Thus, the function q is continuous.

9.3.B. Show that the intersection of any two Haar measurable subsets of a compact group G is again

a Haar measurable subset of G.

9.3.C. Show that the union of two Haar measurable subsets of a compact group G is again a Haar

measurable subset of G.

9.3.D. Prove that if A and B are Haar measurable subsets of a compact group G, then m(A ∪ B) =

m(A) + m(B) − m(A ∩ B).

9.3.E. If A and B are any Haar measurable subsets of a compact group G, then the set A \B is also

Haar measurable.

9.3.F. The union of a countable family of Haar measurable subsets of a compact group G is again

a Haar measurable subset of G.

Invariant integral on a compact group
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9.4. Existence of non-trivial continuous characters on compact Abelian groups

The main result of this section is Theorem 9.4.11 which implies that continuous

homomorphisms of a compact Abelian topological group G to the circle group T separate

points of G.

Throughout this section G is an Abelian compact topological group and e is the neutral

element of G. A complex-valued function φ on G is said to be positive definite if

n∑
i,j=1

λiλjφ(gig
−1
j )

is a non-negative real number for any integer n ≥ 1, any system of complex numbers

λ1, . . . , λn, and any elements g1, . . . , gn ∈ G.

The next statement is perfectly obvious:

Proposition 9.4.1. Let f, g be positive definite functions on G, and μ a non-negative
real number. Then:

a) f + g is a positive definite function;
b) μf is also a positive definite function.

In the next statement several useful properties of positive definite functions are collected.

Proposition 9.4.2. Let φ be a positive definite function on G. Then:

1) φ(e) ≥ 0, that is, φ(e) is a non-negative real number;
2) φ(g−1) = φ(g), for any g ∈ G;
3) |φ(g)| ≤ φ(e), for any g ∈ G.

Proof. To prove 1), it suffices to put n = 1, g1 = e, and λ1 = 1 in the definition of a

positive definite function.

Let us prove 2). Put n = 2, g1 = g, g2 = e, λ1 = 1, and λ2 = λ. It follows that

0 ≤ φ(e) + φ(g)λ + φ(g−1)λ + φ(e)|λ|2 ≥ 0 ∈ R, (9.6)

for any complex number λ. Taking first λ = 1 and then λ = i in (9.6), we conclude, by 1),

that φ(g−1) + φ(g) and i[φ(g−1)− φ(g)] are real numbers. It follows that φ(g−1) = φ(g).

Indeed, let φ(g−1) = a + ib and φ(g) = c + id, where a, b, c, d are real numbers. Then

φ(g−1)+φ(g) = (a+c)+i(b+d). Since φ(g−1)+φ(g) is real, it follows that b+d = 0, that

is, b = −d. Similarly, we can show that a = c. Hence, φ(g−1) = a + ib = c− id = φ(g).

It remains to prove 3). If φ(e) = 0, then we put λ = −φ(g) in (9.6). By 2), we obtain

−2|φ(g)|2 ≥ 0, whence φ(g) = 0, and 3) is satisfied. Assume now that φ(e) > 0, and put

λ = −φ(g)φ(e)
−1

in (9.6). It follows that 3) is again satisfied. �
The next statement provides us with a wide variety of positive definite functions.

Theorem 9.4.3. For any continuous real-valued function f on a compact Abelian
group G, the function φf defined by the rule φf (x) =

∫
f (xy)f (y) dy, for each x ∈ G, is

positive definite.

Proof. Take any system of n complex numbers λ1, . . . , λj , and any n elements

g1, . . . , gn in G, and consider the number b = Σn
i,j=1λiλjφf (gig

−1
j ). We have to show

that b is a non-negative real number. Fix any pair i, j ∈ {1, . . . , n}. We have φf (gig
−1
j ) =



Non-trivial characters on compact groups 595

∫
f (gig

−1
j y)f (y) dy =

∫
f (giy)f (gjy) dy, since G is Abelian and since the translation by

g−1
j preserves the integral (see 6) of Theorem 9.3.13). Since f is real-valued, it follows that

φf (gig
−1
j ) = (gif, gj f ), where on the right side stands the scalar product of the functions

gif and gj f in the space C∗(G) (see Section 9.3) and (gf )(y) = f (gy), for all g, y ∈ G.

Therefore, by the properties of the scalar product, we have

b =

n∑
i,j=1

λiλj(gif, gj f ) = (h, h),

where h =
∑n

i=1 λi · (gif ) ∈ C∗(G). Since (h, h) ≥ 0, it follows that b ≥ 0. �
The requirement of the continuity of f in the above statement can be weakened

considerably, but we do not need this fact for our purposes.

Some general ideas in the proof of the existence of non-trivial continuous characters

on every compact Abelian group can be expressed (in a rather vague way) as follows. First,

characters can be represented as fixed points of some natural transformations on the set of

complex functions on G. Second, characters can be interpreted as extreme points of some

suitably defined compact convex sets of functions. Of course, how to define such convex

compact subset is far from obvious. It is also not clear immediately how to guarantee the

continuity of the character we construct in this way, since it turns out that the functions we

have to consider are not all continuous. These are the difficulties to overcome.

We begin with defining a certain rich enough family of transformations of functions.

For any s ∈ G, θ ∈ [0, 2π], any non-negative real number a, and any function f ∈ C∗(G),

define a function T (a, s, θ)f on G by the rule

[T (a, s, θ)f ](x) = a2[2f (x) + e2iθf (sx) + e−2iθf (s−1x)],

where eiα = cos α + i sin α, for each α ∈ R. It is clear from the definition that

T (a, s, θ)f = a2T (1, s, θ)f , for each function f on G. In other words, the transformation

T (a, s, θ) satisfies T (a, s, θ) = a2T (1, s, θ), for all s ∈ G and θ ∈ [0, 2π]. In the rest of

the section θ, θ1, θ2 always denote elements of [0, 2π], and we call θ1, θ2 strictly distinct if

θ2 − θ1 is not equal to kπ/2, for any integer k.

A few technical lemmas below establish some connection between the transformations

so defined and the existence of characters.

Lemma 9.4.4. Let f be a function on G such that f (e) = 1, and let s ∈ G. Suppose
further that a1 and a2 are non-negative real numbers, and that θ1, θ2 are strictly distinct
elements of [0, 2π] such that

f = T (a1, s, θ1)f = T (a2, s, θ2)f.

Then
f (xs) = f (x)f (s) and f (xs−1) = f (x)f (s−1),

for every x ∈ G.

Proof. Suppose that f satisfies the condition T (a, s, θ)f = f . From f (e) = 1 it

follows that a = 0 and 2f (x)+e2iθf (sx)+e−2iθf (s−1x) = a−2f (x). Substituting x = e, we

obtain: a−2 = 2+e2iθf (s)+e−2iθf (s−1). It follows that 2f (x)+e2iθf (sx)+e−2iθf (s−1x) =

(2 + e2iθf (s) + e−2iθf (s−1))f (x). Simplifying, we arrive at the equality:

[f (sx)− f (s)f (x)]e2iθ + [f (s−1x)− f (s−1)f (x)]e−2iθ = 0.
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It is given that the last equality holds for the two distinct values θ1 and θ2 of θ. Thus, we

have a homogeneous system of two linear equations{
c11(f (sx)− f (s)f (x)) + c12(f (s−1x)− f (s−1)f (x)) = 0

c21(f (sx)− f (s)f (x)) + c22(f (s−1x)− f (s−1)f (x)) = 0,

where c11 = e2iθ1 , c12 = e−2iθ1 , c21 = e2iθ2 , and c22 = e−2iθ2 . Since θ1 and θ2 are strictly

distinct, for the determinant of this system of equations we have:

c11c22 − c21c12 = 2i sin 2(θ1 − θ2) = 0.

Hence, the system has only trivial solutions, that is, f (sx)− f (s)f (x) = 0 and f (s−1x)−
f (s−1)f (x) = 0. This finishes the proof. �

Lemma 9.4.5. For any transformation T (a, s, θ) with a = 0, there is a transformation
T ∗ = T ∗(a, s, θ) and there are positive real numbers b, c, λ, μ such that

λ + μ = 1, b2 + c2 = μ−1(1− 2λa2), bc = μ−1λa2, (9.7)

[T ∗f ](x) = (b2 + c2)f (x) + bc [ei(2θ+π)f (sx) + e−i(2θ+π)f (s−1x)] (9.8)

and

λT (a, s, θ)f + μT ∗f = f, (9.9)

for every complex-valued function f on G. Furthermore, λ can be chosen to be any real
number satisfying the inequalities 0 < λ < 1 and λ ≤ a−2/4.

Proof. Clearly, the equality (9.9) will be satisfied if 2λa2 + μ(b2 + c2) = 1 and

λa2 − μbc = 0, that is, if the last two equalities in (9.7) are valid. To guarantee the two

conditions it suffices to make sure that

(b + c)2 = μ−1 and (b− c)2 = μ−1(1− 4λa2).

Indeed, suppose that the above equalities hold. Then

μ(b2 + 2bc + c2) = 1 and μ(b2 − 2bc + c2) = 1− 4λa2.

The sum of the left sides equals to the sum of the right sides, that is, 2μ(b2 +c2) = 2−4λa2,

which implies that 2λa2 + μ(b2 + c2) = 1. On the other hand, using the subtraction, we

obtain 4μbc = 4λa2. Hence, λa2 − μbc = 0.

Now we proceed as follows. We fix any positive real number λ such that λ ≤ a−2/4

and λ < 1, and put μ = 1 − λ. Then we find real numbers b and c from the following

system of linear equations: {
b + c =

√
μ−1

b− c =
√

μ−1(1− 4λa2).

It follows that 1−4λa2 ≥ 0 and μ−1 > 0, due to the choice of λ and μ. Since the determinant

of the system of equations is non-zero and all the coefficients in it are real numbers, we can

indeed find real values of b and c satisfying the system. An easy verification shows that

both b and c are positive. �
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For each transformation T (a, s, θ), there may exist many transformations T ∗ such as in

the above lemma, depending on the choice of a positive parameter λ in (9.7). Each of them

will be called an adjoint transformation of T (a, s, θ) and will be denoted by T ∗(a, s, θ) or

simply T ∗.

Proposition 9.4.6. Let f be any positive definite function on G. Then, for each
transformation T (a, s, θ), the function T (a, s, θ)f is positive definite and, for each adjoint
transformation T ∗ = T ∗(a, s, θ), the function T ∗f is also positive definite.

Proof. The case a = 0 is trivial, so we can assume that a = 0. Put z = e2iθ, for

brevity. Consider the function φ on G defined by

φ(x) = 2f (x) + zf (sx) + zf (s−1x),

for each x ∈ G. Let us verify the condition of positive definiteness of φ for the arrays

g1, . . . , gn ∈ G and λ1, . . . , λn ∈ C. Since zz̄ = |z|2 = 1, and f is positive definite at

the arrays g1, . . . , gn, sg1, . . . , sgn and λ1, . . . , λn, zλ1, . . . , zλn of the length 2n, we obtain,

using the commutativity of G:

n∑
i,j=1

λiλjφ(gig
−1
j ) =

⎡⎣ n∑
i,j=1

2λiλjf (gig
−1
j )+

n∑
i,j=1

zλiλjf (sgig
−1
j )+

n∑
i,j=1

λizλjf (s−1gig
−1
j )

⎤⎦≥ 0.

Therefore, the function T (a, s, θ)f = a2φ is positive definite as well.

To prove the second part of the statement, we observe that, for each real number γ with

0 ≤ γ ≤ 1, every s ∈ G, and every z ∈ C with |z| = 1, the complex function

ψ(x) = 2f (x) + γ(zf (sx) + z̄f (s−1x))

is positive definite. This follows from Proposition 9.4.1 and the obvious equality

ψ(x) = γ[2f (x) + zf (sx) + z̄f (s−1s)] + (2− 2γ)f (x),

where each of two summands on the right side of the equality is a positive definite function.

Finally, according to (9.8), T ∗f can be represented in the form

[T ∗f ](x) = d2[2f (x) + γ(z1f (sx) + z1f (s−1x))],

where d2 = (b2 + c2)/2, γ = 2bc/(b2 + c2) for some real numbers b, c > 0, and z1 ∈ C,

|z1| = 1. Since d2 > 0 and 0 ≤ γ ≤ 1, the function T ∗f is also positive definite. �

Now we are going to define a concept of a T -invariant set of functions, and a more

narrow version of it, the concept of a strongly T -invariant set. A set A of complex functions

on G is said to be T -invariant if for each f ∈ A and all s ∈ G, θ ∈ [0, 2π] such that

[T (1, s, θ)f ](e) = 0, there is a real number a = 0 such that T (a, s, θ)f ∈ A and for at least

one adjoint T ∗ of T (a, s, θ), we have that T ∗f ∈ A.

Let us say that a set A of complex-valued functions on G is strongly T -invariant if there

are positive real numbers m and M such that for each f ∈ A, each s ∈ G, and for every

θ ∈ [0, 2π] such that [T (1, s, θ)f ](e) = 0, one can find a real number a > 0 satisfying the

following conditions:

1) 0 < m ≤ a2 ≤ M · |[T (1, s, θ)f ](e)|−1;

2) T (a, s, θ)f ∈ A;

3) T ∗f ∈ A, for every choice of the adjoint transformation T ∗ of T (a, s, θ).
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It is clear from the definitions that every strongly T -invariant set of functions is T -

invariant. The next statement and its proof reveal some technical reasons for introducing

the two notions of T -invariance.

We recall that a partially ordered set (B, <) is called directed if for every x, y ∈ B, there

exists z ∈ B such that x < z and y < z. It is a common practice to “transfer” the partial

order from the directed set B to a faithfully ordered set {px : x ∈ B}.
Proposition 9.4.7. If A is a strongly T -invariant set of functions on G, then the closure

A of A in the space C∗
p(G) with the pointwise convergence topology is T -invariant.

Proof. Let f ∈ A and suppose that |[T (1, s, θ)f ](e)| > 0. Then there is a directed set

{fβ : β ∈ B} in A which converges to f . Then {fβ(x) : β ∈ B} converges to f (x), for each

x ∈ G, and we may assume that there is a positive number ε such that |[T (1, s, θ)fβ](e)| ≥ ε,

for all β ∈ B.

Since A is strongly T -invariant, for each β ∈ B we can find a real number aβ > 0 such

that 0 < m ≤ a2
β ≤ M · ε−1, T (aβ, s, θ)fβ ∈ A, and T ∗(aβ, s, θ)fβ ∈ A, for every choice

of the adjoint T ∗(aβ, s, θ) of the transformation T (aβ, s, θ). From Lemma 9.4.5 it follows

that we can take positive real numbers λ∗ and μ∗ such that λ∗ + μ∗ = 1 and

fβ = λ∗T (aβ, s, θ)fβ + μ∗T ∗(aβ, s, θ)fβ,

for each β ∈ B. The directed set {aβ : β ∈ B} is bounded in R and, hence, it

has a limit point a ∈ R. Clearly, 0 < m ≤ a2 ≤ Mε−1. From the definition of

T (a, s, θ) it follows immediately that the function T (a, s, θ)f belongs to the closure of the

set {T (aβ, s, θ)fβ : β ∈ B} in the topology of pointwise convergence. Let T ∗(a, s, θ)

be an adjoint transformation of T (a, s, θ) corresponding to λ∗ and μ∗ and defined in

Lemma 9.4.5. Then, by the choice of λ∗ and μ∗, T ∗(a, s, θ)f belongs to the closure of

the set {T ∗(aβ, s, θ)fβ : β ∈ B} in the space C∗
p(G). Hence, A is T -invariant. �

It is convenient to introduce the following notation. Let f be a complex-valued function

on G such that f (e) = 1. Denote by �[f ] the smallest family of functions on G such that

f ∈ �[f ] and �[f ] is invariant under every transformation of the form T (a, s, θ) and every

adjoint transformation T ∗(a, s, θ) of T (a, s, θ). Then we define Δ[f ] to be the set of all

functions on G of the form
∑n

i=1 λihi, where n ∈ N, hi ∈ �[f ], hi(e) = 1, and λi > 0, for

i = 1, . . . , n, and
∑n

i=1 λi = 1. It easily follows from the definition that h(e) = 1, for each

h ∈ Δ[f ].

Proposition 9.4.8. Suppose that φ is a positive definite function on G. Then the family
Δ[φ] satisfies the following conditions:

1) each function f ∈ Δ[φ] is positive definite;
2) |f (x)| ≤ 1, for each f ∈ Δ[φ] and each x ∈ G;
3) [T (1, s, θ)f ](e) ≥ 0, for all s ∈ G, θ ∈ [0, 2π], and any f ∈ Δ[φ];

4) the set Δ[φ] is strongly T -invariant with m = 1/4 and M = 1;

5) the closure of Δ[φ] in the topology of pointwise convergence on C∗(G) is T -invariant.

Proof. Take any f ∈ Δ[φ]. By Propositions 9.4.1 and 9.4.6, f is positive definite.

It follows from the definition of Δ[φ] that f (e) = 1. Therefore, by Proposition 9.4.2,

|f (x)| ≤ f (e) = 1, for each x ∈ G. By Proposition 9.4.6, the function T (1, s, θ)f is also
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positive definite. Hence, by Proposition 9.4.2, [T (1, s, θ)f ](e) ≥ 0. It remains to prove (4),

since (5) follows from (4), by Proposition 9.4.7.

Again, let f ∈ Δ[φ]. If [T (1, s, θ)f ](e) = c = 0, then c > 0, by (3). Hence, for

a2 = c−1 we have [T (a, s, θ)f ](e) = 1, which implies that T (a, s, θ)f ∈ Δ[φ]. Indeed,

since f ∈ Δ[φ], there exist functions h1, . . . , hn ∈ �(φ) and positive reals λ1, . . . , λn such

that f =
∑n

i=1 λihi and
∑n

i=1 λi = 1, where hi(e) = 1 for each i ≤ n. It follows from

the definition of �(φ) that gi = T (a, s, θ)hi ∈ �(φ), for i = 1, . . . , n. We can assume

without loss of generality that the numbers gi(e) are distinct from zero. Indeed, if gi(e) = 0,

for some i ≤ n, then item 3) of Proposition 9.4.2 implies that gi(x) = 0, for all x ∈ G
(note that by 1), each gi is positive definite). Hence, we can assume that the real numbers

ri = gi(e) are positive. From [T (a, s, θ)f ](e) = 1 and the linearity of the transformation

T (a, s, θ) it follows that
∑n

i=1 λiri = 1. Put μi = λiri and g∗
i = r−1

i gi, for each i ≤ n.

Then f =
∑n

i=1 μig∗
i and

∑n
i=1 μi = 1, where μi > 0, g∗

i ∈ �(φ), and g∗
i (e) = 1, for each

i ≤ n. This means that f ∈ Δ[φ].

From f (e) = [T (a, s, θ)f ](e) = 1 and the equality

f (e) = λ[T (a, s, θ)f ](e) + μ[T ∗(a, s, θ)f ](e)

(see (9.9)) it follows that [T ∗(a, s, θ)f ](e) = 1, since λ + μ = 1. Consequently,

T ∗(a, s, θ)f ∈ Δ[φ]. Finally, since |f (x)| ≤ 1 for every x ∈ G, we have a−2 =

[T (1, s, θ)f ](e) ≤ 4. It follows that Δ[φ] is strongly T -invariant with m = 1/4 and

M = 1. �

A real-valued function k on the group G is called symmetric if k(x−1) = k(x), for each

x ∈ G. Clearly, the function f (x) + f (x−1) is symmetric and continuous, for any function

f ∈ C(G).

Proposition 9.4.9. For every s ∈ G with s = e, there exist a positive definite
continuous real-valued function φ on G with φ(e) = 1 and a continuous real-valued non-
negative symmetric function k on G such that the function f on G defined by

f (x) =

∫
k(xy)φ(y−1) dy

satisfies the condition f (s) = f (e).

Proof. Take a symmetric open set O in G such that e ∈ O and s /∈ O3. This is

obviously possible. By Urysohn’s lemma, there is a continuous real-valued function h on G
such that h(e) = 1, 0 ≤ h(x) ≤ 1 for every x ∈ G, and h(x) = 0, for every x ∈ G \O. We

can also assume that h(y) = h(y−1) for every y ∈ G, since the set O is symmetric. Indeed,

otherwise replace h with the function h∗ defined by the rule h∗(y) = [h(y) + h(y−1)]/2,

for each y ∈ G.

For each x ∈ G, put

φ1(x) =

∫
h(xy)h(y) dy.

Clearly, the function φ1 is real-valued and, by Theorem 9.4.3, φ1 is positive definite.

Furthermore, since h(xy)h(y) ≥ 0 for all x, y ∈ G, it follows from 3) of Theorem 9.3.13

that the function φ1(x) is non-negative.

Claim 1. φ1(e) > 0 and φ1(x) = 0, for each x ∈ G \O2.
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Clearly, the function h(y)h(y) is non-negative, real-valued, and continuous. We also have

h(e)h(e) = 1 > 0. It follows from 8) of Theorem 9.3.13 that
∫

h(y)h(y) dy > 0, that is,

φ1(e) > 0. Suppose now that x ∈ G \ O2, and consider an arbitrary y ∈ G. If y /∈ O,

then h(y) = 0 which implies that h(xy)h(y) = 0. If y ∈ O, then xy /∈ O, since otherwise

x would belong to O2. Therefore, h(xy) = 0 and hence, h(xy)h(y) = 0. It follows that

h(xy)h(y) = 0 for every y ∈ G if x ∈ G \ O2. This means precisely that φ1(x) = 0, for

every x ∈ G \O2. Claim 1 is verified.

By Urysohn’s lemma, we can also fix a continuous real-valued function k on G such

that k(x) = 0, for each x ∈ G \O, k(e) = 1, and 0 ≤ k(x) ≤ 1, for every x ∈ G. As in the

case of the function h, we can also assume that k(y) = k(y−1), for each y ∈ G. Put

f (x) =

∫
k(xy)φ1(y−1) dy.

We claim that f (s) = f (e). In fact, we will show that f (s) = 0 and f (e) = 0. Suppose

that x ∈ G \ O3, and consider an arbitrary y ∈ G. If y /∈ O2, then y−1 /∈ O2 and

φ1(y−1) = 0, which in turn implies that k(xy)φ1(y−1) = 0. If y ∈ O2, then xy /∈ O, since

otherwise x would belong to O3. Therefore, k(xy) = 0 and k(xy)φ1(y−1) = 0. It follows

that k(xy)φ1(y−1) = 0 for every y ∈ G, if x ∈ G\O3. This means that f (x) = 0, for every

x ∈ G \O3. In particular, f (s) = 0, as s /∈ O3.

Since the function k(y)φ1(y−1) is real-valued, continuous and non-negative, and its

value at e is the positive number k(e)φ1(e) = φ1(e), it follows from 8) of Theorem 9.3.13

that

f (e) =

∫
k(y)φ1(y−1) dy > 0.

Hence, f (s) = f (e). To complete the proof, we have to replace φ1 with a function φ that

satisfies φ(e) = 1. Clearly, it is enough to put φ = λφ1, where λ = 1/φ1(e)) is a positive

real number, by Claim 1. According to Proposition 9.4.1, φ is positive definite. �

Recall that the envelope of a set A of functions is the set of all finite linear combinations

of functions in A. We also say that a continuous homomorphism of G to the topological

group T is a character on a topological group G. The latter concept is of extreme importance

for the Pontryagin–van Kampen duality theory developed to some extent in Section 9.5.

Theorem 9.4.10. Let φ be a continuous positive definite function on G such that
φ(e) = 1, and let k be a non-negative continuous symmetric real-valued function on G.
Then the function f on G defined by the formula f (x) =

∫
k(xy)φ(y−1) dy belongs to the

closure of the envelope of the set of continuous characters on G in the topology of pointwise
convergence.

Proof. Consider the set Δ[φ], and for each h ∈ Δ[φ] put

(k ∗ h)(x) =

∫
k(xy)h(y−1) dy.

Put also K = {k ∗ h : h ∈ Δ[φ]}. Clearly, f = k ∗ φ, so that f ∈ K. Let h ∈ Δ[φ] be

arbitrary. It follows from Proposition 9.4.6 and 1) of Proposition 9.4.8 that the functions h
and T (a, s, θ)h are positive definite. Since h(e) = 1, we have, by 3) of Proposition 9.4.2,

that |h(x)| ≤ 1 and |[T (a, s, θ)h](x)| ≤ [T (a, s, θ)h](e), for any x ∈ G.
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Since |h(x)| ≤ 1 for each x ∈ G and the function k is non-negative, it follows from 9),

2), 3), and 6) of Theorem 9.3.16 that

|(k ∗ h)(x)| =
∣∣∣∣∫ k(xy)h(y−1) dy

∣∣∣∣
≤

∫
|k(xy)h(y−1)| dy ≤

∫
k(xy) dy =

∫
k(y) dy.

Therefore, every function in K is bounded by the number C =
∫

k(y) dy.

Clearly, the operation ∗ satisfies the condition

k ∗ (λ1h1 + λ2h2) = k ∗ h1 + k ∗ h2, (9.10)

for any continuous functions h1 and h2 on G and for any complex numbers λ1 and λ2.

Therefore, we have

T (a, s, θ)(k ∗ h) = k ∗ T (a, s, θ)h,

and a similar formula holds for every adjoint transformation T ∗ of T (a, s, θ). This implies

that the set K is T -invariant, but we need a stronger conclusion.

Using again Theorem 9.3.16 and the inequality |[T (a, s, θ)h](x)| ≤ [T (a, s, θ)h](e) valid

for each x ∈ G, we obtain that

|T (a, s, θ)(k ∗ h)(e)| = |k ∗ [T (a, s, θ)h](e)| =
∣∣∣∣∫ k(xy)[T (a, s, θ)h](y−1) dy

∣∣∣∣
≤

∫
k(xy)[T (a, s, θ)h](e) dy ≤ C · [T (a, s, θ)h](e).

Thus, we have shown that each h ∈ Δ[φ] satisfies

|T (a, s, θ)(k ∗ h)(e)| ≤ C · [T (a, s, θ)h](e). (9.11)

Take an arbitrary h ∈ Δ[φ], and let f = k ∗ h ∈ K. If [T (1, s, θ)f ](e) = 0, then

[T (1, s, θ)h](e) = 0 — otherwise Propositions 9.4.2 and 9.4.6 imply that T (1, s, θ)f =

T (1, s, θ)(k ∗ h) = k ∗ [T (1, s, θ)h] ≡ 0, which contradicts our assumption about f . Hence,

By 4) of Proposition 9.4.8, there is a real number a > 0 with 1/4 ≤ a2 ≤ 1/[T (1, s, θ)h](e)

such that T (a, s, θ)h ∈ Δ[φ] and T ∗(a, s, θ)h ∈ Δ[φ], for each adjoint T ∗(a, s, θ) of T (a, s, θ).

It follows from (9.11) that 1/[T (1, s, θ)h](e) ≤ C/|T (1, s, θ)(k∗h)(e)|. We conclude that the

set K is strongly T -invariant with m = 1/4 and M = C. Therefore, by Proposition 9.4.7,

the closure F of the set K in the topology of pointwise convergence on CG is T -invariant.

We also see that all functions in F are bounded by the number C, since the same is

true for all functions in K. From the Tychonoff compactness theorem it follows that F
is a compact subspace of the space of complex-valued functions on G endowed with the

topology of pointwise convergence. Since Δ[φ] is convex and, according to (9.10), the

operation k ∗h is linear with respect to h, it follows that the set K is also convex. Therefore,

according to Proposition 9.1.1, F is convex as well, since C∗(G) can be also considered as

a real topological vector space. Thus, F is a compact convex set of functions.

By Theorem 9.1.12, the envelope of the set E of extreme points of F is dense in F .

Since f ∈ K ⊂ F , it suffices to establish that every function in F is continuous, and that

every element of E is a character on G multiplied by a constant. We do this below in several

steps.
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Claim 1. The family of functions F is uniformly equicontinuous. Hence, every function in
F is continuous.

To prove this, take any h ∈ Δ[φ] and put p = k ∗ h ∈ K. Since |h(x)| ≤ 1 for each

x ∈ G, we have that

|p(tx)− p(x)| =
∣∣∣∣∫ (k(txy)− k(xy))h(y−1) dy

∣∣∣∣
≤

∫
|k(txy)− k(xy)||h(y−1)| dy ≤

∫
|k(tz)− k(z)| dz,

for all x, t ∈ G. Clearly, the right side depends neither on x nor h and can be made smaller

than any given positive ε by requiring that t be in a sufficiently small neighbourhood of the

neutral element e of G — it suffices to note that the function k is uniformly continuous.

Hence, functions in K are uniformly equicontinuous with respect to the natural

uniform structure on G. Obviously, it follows that the functions in F are also uniformly

equicontinuous.

Claim 2. Suppose that f0 is an extreme point of F and that s ∈ G and θ ∈ [0, 2π] satisfy
T (1, s, θ)f0(e) = 0. Then there exists a positive real number a such that T (a, s, θ)f0 = f0.

Indeed, since F is T -invariant, it follows from the assumption about f0, s, θ that there

is a positive real number a such that T (a, s, θ)f0 ∈ F and that, for at least one choice

of the adjoint transformation T ∗(a, s, θ), we have T ∗(a, s, θ)f0 ∈ F . By the definition of

T ∗(a, s, θ),

f0 = λT (a, s, θ)f0 + μT ∗(a, s, θ)f0,

for some positive real numbers λ and μ such that λ+μ = 1. Since f0 is an extreme point of F
and both functions T (a, s, θ)f0 and T ∗(a, s, θ)f0 are in F , this implies that T (a, s, θ)f0 = f0.

Claim 2 is proved.

From now on we suppose that f0 is an arbitrary extreme point of F .

Claim 3. Let s be any element of G such that at least one of the numbers f0(e), f0(s), f0(s−1)

is non-zero. Then there is θ ∈ [0, 2π] such that [T (1, s, θ)f0](e) = 0.

We have

[T (1, s, θ)f0](e) = a + bz + cz,

where a = 2f0(e), b = f0(s), c = f0(s−1), and the complex number z = e2iθ corresponding

to θ satisfies |z| = 1. It remains to show that there is a complex number z such that |z| = 1

and a + bz + cz = 0. Indeed, suppose that |z| = 1, and multiply both sides of the equation

a + bz + cz = 0 by z. We obtain az + bz2 + c = 0, since zz = |z|2 = 1. By the assumption,

at least one coefficient in the quadratic equation is non-zero; therefore, it can have two

solutions at most. Since there are infinitely many complex numbers z such that |z| = 1,

Claim 3 is established.

Claim 4. If f0 is not identically zero, then for each s ∈ G at least one of the numbers f0(e),
f0(s), and f0(s−1) is not zero. In fact, f0(e) = 0.

Fix s0 ∈ G such that f0(s0) = 0. By Claim 3 applied to s0, there is θ ∈ [0, 2π] such that

[T (1, s0, θ)f0](e) = 0. It follows from Claim 2 that

f0(e) = [T (a, s0, θ)f0](e) = a2[T (1, s0, θ)f0](e) = 0,
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for some positive real number a. Thus, f0(e) = 0. This proves Claim 4.

We are ready to formulate and to prove the crucial fact:

Claim 5. Each extreme point f0 of the convex compact set F is of the form f0 = f0(e)χ,
for some continuous character χ on G.

If f0(s) = 0 for each s ∈ G, then f0 = f0(e)χT where χT is the trivial character on G.

Thus, Claim 5 trivially holds in this case. Hence, we may assume that f0 is not identically

zero on G. Then f0(e) = 0, by Claim 4.

Take any s ∈ G. By Claim 3, we can find θ ∈ [0, 2π] such that [T (1, s, θ)f0](e) = 0.

Since [T (1, s, θ)f0](e) is a continuous function of θ, there are two strictly distinct values θ1

and θ2 of θ such that [T (1, s, θ1)f0](e) = 0 and [T (1, s, θ2)f0](e) = 0.

By Claim 2, there are positive real numbers a1 and a2 such that T (a1, s, θ1)f0 = f0

and T (a2, s, θ2)f0 = f0. Put c = f0(e). By Claim 4, c = 0. Let f1 = c−1f0.

Clearly, T (a1, s, θ1)f1 = f1 and T (a2, s, θ2)f1 = f1. We also have f1(e) = 1, and the

function f1 is continuous, since f0 is continuous. Now it follows from Lemma 9.4.4 that

f1(xs) = f1(x)f1(s) and f1(xs−1) = f1(x)f1(s−1), for every x ∈ G. Since s is also an

arbitrary element of G, we conclude that f1 is a continuous character χ on G. Now we have

that f0(x) = cf1(x) = f0(e)χ(x), for each x ∈ G. Claim 5 is proved.

This finishes the proof of Theorem 9.4.10. �
The main result of this section is now easy to prove.

Theorem 9.4.11. [F. Peter and H. Weyl] For every compact Abelian group G and
every a ∈ G distinct from the neutral element e, there exists a continuous character χ on G
such that χ(a) = 1.

Proof. By Proposition 9.4.9, there exist a positive definite continuous real-valued

function φ on G with φ(e) = 1 and a continuous real-valued symmetric non-negative

function k on G such that the function f on G defined by

f (x) =

∫
k(xy)φ(y−1) dy

satisfies the condition f (a) = f (e). By Theorem 9.4.10, the function f belongs to the

closure of the envelope of the set of all continuous characters on G in the topology of

pointwise convergence. Since f (a) = f (e), it follows that at least one of these continuous

characters must take distinct values at a and e. �

Exercises

9.4.a. Show that on every infinite precompact Abelian group G there is a non-trivial continuous

character.

9.4.b. Prove that every compact Abelian group G is topologically isomorphic to a (closed) subgroup

of some power Tτ of the topological group T.

9.4.c. Show that every positive constant real-valued function on a compact Abelian topological

group is positive definite, but not every positive real-valued function on a compact Abelian

topological group is positive definite.

9.4.d. Show that translations do not preserve, in general, positive definiteness of functions on a

compact Abelian topological group.
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Problems

9.4.A. Is it true that every locally compact, σ-compact topological Abelian group can be embedded

as a topological subgroup into the group Rτ × Tτ , for some cardinal τ?

Hint. The answer is “no”. One can take the free Abelian group G over an infinite countable

set and endow G with the discrete topology.

9.4.B. Show that not every infinite Abelian topological group admits a non-trivial continuous

character.

9.4.C. A subset U of an Abelian topological group G is said to be big if a finite number of translations

of U cover G, that is, if there exists a finite subset K of G such that KU = G. Let G be an

Abelian topological group, U a big open neighbourhood of the neutral element e of G, and

let s ∈ G \ U6. Then there exists a continuous character χ on G such that χ(s) �= 1.

Hint. See [127].

9.5. Pontryagin–van Kampen duality theory for discrete and for compact groups

The duality theory brings into natural correspondence compact Abelian groups and

discrete Abelian groups. The definitions, constructions, and the proofs of the two main

duality theorems presented in this section are especially elegant in this case.

Recall that a continuous character on a topological group G is a continuous homomor-

phism of G to the topological group T.

We need some elementary facts concerning the topological group T. Geometrically, T
is the unit circumference in the complex plane, with center at 0, and the multiplication in T
by an arbitrary α ∈ T can be interpreted as the rotation of T by an angle represented by α.

On the other hand, T is topologically isomorphic to the quotient group of the topological

group R of real numbers with respect to the discrete subgroup Z of all integers in R, that

is, T = R/Z. We denote by p the natural quotient mapping of R onto T. Keeping in mind

these two interpretations of T, we can easily establish some basic properties of subgroups

of T.

Proposition 9.5.1. Every infinite closed subgroup H of T coincides with T.

Proof. Clearly, H is compact. Since H is infinite and compact, H cannot be discrete.

Therefore, for each n ∈ N, we can find hn ∈ H \ {1} such that |hn − 1| ≤ 1/n, where |z|
denotes the modulus of z ∈ C, that is, the distance between the origin and z in the complex

plain C. Put Hn = {(hn)k : k ∈ Z}. Then Hn ⊂ H , and it is immediate from the geometric

description of T that, for every z ∈ T, there exists h ∈ Hn such that |z− h| ≤ 1/n. Hence,

the set A =
⋃{Hn : n ∈ N} is dense in T. Since A ⊂ H and H is closed in T, it follows

that H = T. �

Proposition 9.5.2. Every proper closed subgroup H of T is a finite cyclic group.

Proof. By Proposition 9.5.1, H is finite. Let h be the element of H \ {1} closest to 1

with respect to the usual metric of the complex plane C, and put M = {hn : n ∈ Z}. It is

clear from the geometric description of T that for every z ∈ T, there exists y ∈ M such that

|z− y| < |h− 1|. On the other hand, M ⊂ H , and, since H is a subgroup of T, the distance

between any two distinct elements of H is not less than |h − 1|. It follows that H = M.

Hence, H is a finite cyclic subgroup of T, with the generating element h. �
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Obviously, from the geometric description of T it follows that every finite cyclic group

can be realized as a subgroup of T.

The above statements are complemented by the next one, the proof of which is clear

after the proof of Proposition 9.5.2.

Proposition 9.5.3. For each positive integer n, there exists exactly one subgroup of T
consisting of exactly n elements.

Corollary 9.5.4. For every finite group K, the group of characters on K is finite.

Proof. This follows from Proposition 9.5.3. �

If G is an Abelian compact topological group, then we define G∗ to be the group of

continuous characters on G, with the discrete topology. If G is an Abelian discrete group,

then G∗ is defined to be the group of all characters on G, with the topology of pointwise

convergence.

In both cases, the group G∗ is called the Pontryagin dual or simply the dual group to G.

Clearly, finite Abelian groups are covered by both cases. However, the group of characters

is finite in this case, and the two definitions give the same result.

Proposition 9.5.5. For any Abelian discrete group G, the dual topological group G∗

is compact and Hausdorff.

Proof. Since G is discrete, Cp(G, T) coincides with TG, the topological product of

|G| copies of T. Since T is compact and Hausdorff, it follows that so is the group Cp(G, T).

On the other hand, the topological group G∗ coincides with Homp(G, T), which is closed

in Cp(G, T) by Proposition 1.9.13. It follows that G∗ is compact and Hausdorff. �

Proposition 9.5.6. For any Abelian compact topological group G, the evaluation
mapping Ψ: G→ (G∗)∗ is a continuous homomorphism.

Proof. This follows directly from Theorem 1.9.15. �

The statement in Proposition 9.5.6 plays a technical role in constructions and arguments

below. One of the two main results of this section will considerably strengthen Proposi-

tion 9.5.6 — we will show that Ψ is, actually, a topological isomorphism. This is the

Pontryagin–van Kampen duality theorem for compact Abelian groups.

In the next two examples, we leave it to the reader to write down the argument formally.

Example 9.5.7. Pontryagin dual group Z∗ to the discrete group Z of integers is the

compact group T. Indeed, every character h : Z→ T is completely determined by its value

h(1) at 1 ∈ Z, and h(1) can be any element z of T, since 1 is a free generator of Z. A

basic open neighbourhood of the character h in the topology of pointwise convergence on

Z∗ corresponds to an arbitrary open neighbourhood of z = h(1) in the space T. Thus, Z∗ is

naturally isomorphic and homeomorphic to the topological group T. �

Example 9.5.8. Pontryagin’s dual T∗ to the group T is the discrete group Z of the

integers. Indeed, every continuous homomorphism h : T → T is determined by its kernel

up to the natural reflection z→ z̄ of T. If the homomorphism h is non-trivial, then its kernel

is a finite subgroup of T. However, we know after Proposition 9.5.3 that for each n ∈ N,

there exists exactly one subgroup of T consisting of n elements. Hence, every character
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f : T → T has the form f (z) = zn, for some fixed n ∈ Z. It follows that there exists a

natural correspondence between the continuous characters on T and the elements of Z. This

correspondence, obviously, preserves operations. Thus, T∗ = Z. �

Now it is easy to establish the following fact.

Proposition 9.5.9. The evaluation mapping of T to (T∗)∗ is a topological isomorphism.

Proof. The evaluation mapping Ψ of T to (T∗)∗ is one-to-one, since the identity

character separates the points of T. Since T is compact, it follows that Ψ(T) is an

infinite closed subgroup of (T∗)∗. Besides, Examples 9.5.7 and 9.5.8 show that (T∗)∗

is topologically isomorphic to T. Now it follows from Proposition 9.5.1 that Ψ(T) = (T∗)∗.

Since Ψ is continuous and T is compact, we conclude that the evaluation mapping Ψ is a

topological isomorphism. �

The above proposition means that Pontryagin–van Kampen’s duality theorem holds for

T.

In Examples 9.5.7 and 9.5.8 we have established several natural isomorphisms. These

isomorphisms are instrumental in uncovering and proving certain important facts. However,

sometimes too much invoking natural isomorphisms, or various interpretations of the same

group, might make the argument too cumbersome, introducing into it too many unnecessary

details. To avoid this, we can use an approach to duality described below.

Example 9.5.10. Put [z, n] = zn ∈ T, for each z ∈ T and each n ∈ Z. Then [·, ·] is a

mapping of T× Z to T satisfying the following conditions:

a) for each z ∈ T, the correspondence n → [z, n], where n runs over Z, is a character on

the group Z;

b) for each character f : Z→ T on Z, there exists z ∈ T such that f (n) = [z, n], for each

n ∈ Z;

c) for each n ∈ Z, the correspondence z → [z, n], where z runs over T, is a continuous

character on the compact topological group T;

d) for each continuous character f : T → T, there exists n ∈ Z such that f (z) = [z, n],

for each z ∈ T.

The statements a)–d) are just reformulations of what we have already established in

Examples 9.5.7, 9.5.8, and Proposition 9.5.9. �

From Example 9.5.10 and the definition of evaluation mapping we obtain immediately:

Proposition 9.5.11. The evaluation mapping of Z to (Z∗)∗ is an isomorphism.

Example 9.5.12. For every finite cyclic group K, the dual group K∗ is isomorphic to

the group K and, clearly, K∗ is discrete. Note that K can be interpreted as a subgroup of T.

Then every element of K can be identified with a character on K. We leave to the reader to

fill the remaining details in this argument. �

Proposition 9.5.13. The evaluation mapping of K to the discrete group (K∗)∗ is a
(topological) isomorphism, for any finite cyclic group K.

Proof. Let a be the generating element of K. Put n = |K|, and fix b ∈ T such that

bn = 1 and bi = 1, for each i = 1, . . . , n − 1. From the geometric description of T it is
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clear that F = {bi : 1 = 1, . . . , n} = {z ∈ T : zn = 1}. Now take any character χ on K.

Since K is cyclic, χ is determined by its value χ(a) on a. Besides, we have (χ(a))n = 1,

since an is the neutral element of K. It follows that χ(a) = bk, for some k ∈ {1, . . . , n}.
Put χ1(ai) = bi, for each i = 1, . . . , n. Clearly, χ1 is a character on K and it follows from

the above remarks that χ = (χ1)k. Hence K∗ is a cyclic group with n elements. Note

that the character χ1 separates distinct elements of K. Therefore, the evaluation mapping

is one-to-one in this case. It must be also onto, since the number of elements in K∗ and in

(K∗)∗ is the same as in K. It remains to apply Proposition 9.5.6. �

Suppose that G is a compact or a discrete topological group. We will say that G satisfies
Pontryagin’s duality if the evaluation mapping of G to (G∗)∗ is a topological isomorphism.

Thus, the circle group T, each cyclic group K, and the discrete group Z satisfy Pontryagin’s

duality.

For the sake of brevity, the topological group T and all finite cyclic groups, that is, all

closed subgroups of T, will be called elementary compact groups.
According to a basic theorem in the theory of Abelian groups, every finitely generated

Abelian group G (considered without topology) is the product of a finite number of cyclic

groups, finite or infinite (see [409, 4.2.10]). Recall that a group is said to be finitely generated
if there exists a finite subset A of G such that the smallest subgroup H of G containing A
coincides with G.

The next statement allows us to find the group of characters for every finitely generated

Abelian group. (We will need below only the part d) of this theorem.)

Theorem 9.5.14. Suppose that G is the product of a finite collection of Abelian
discrete groups Gi, i = 1, . . . , m, where each Gi satisfies Pontryagin’s duality, Xi is the
group of characters of Gi, X =

∏m
i=1 Xi, and [x, a] = x1(a1) · . . . · xm(am), for each

x = (x1, . . . , xm) ∈ X and each a = (a1, . . . , am) ∈ G. Then [·, ·] is a Pontryagin duality
between the groups G and X, that is, the following conditions hold:

a) for each x ∈ X, the correspondence a → [x, a], where a runs over G, is a character on
the group G;

b) for each character f : G → T on G, there exists x ∈ X such that f (a) = [x, a], for all
a ∈ G;

c) for each a ∈ G, the correspondence x → [x, a], where x runs over X, is a continuous
character on the compact topological group X;

d) for each continuous character ϕ : X → T, there exists a ∈ G such that ϕ(x) = [x, a],
for all x ∈ X.

Proof. Statements a) and c) are verified directly without any difficulty. For example,

we have:

[x, a + b] =

m∏
k=1

xk(ak + bk) =

m∏
k=1

xk(ak) ·
m∏

k=1

xk(bk) = [x, a] · [x, b],

where the group operation in G is written additively. To prove b), notice that Gi can

be canonically identified with the subgroup of G consisting of all a ∈ G such that each

coordinate aj of a, except for ai, is the zero-element of Gj . Let xi = f �Gi, for each

i = 1, . . . , m. Then xi is a character on Gi and we put x = (x1, . . . , xm) ∈ X. Take any
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a = (a1, . . . , am) ∈ G. Under our interpretation of Gi, Gi ⊂ G and a = a1 + · · · + am.

Now we have that [x, a] =
∏m

k=1 xk(ak) =
∏m

k=1 f (ak) = f (a). Thus, b) is proved.

Let us prove d). Each Xi can be canonically interpreted as a topological subgroup of X.

Then ϕi = ϕ�Xi is a continuous character on Xi, for each i = 1, . . . , m. Since Gi satisfies

Pontryagin’s duality, there exists ai ∈ Gi such that ϕi(xi) = xi(ai), for each xi ∈ Xi. Let

a = (a1, . . . , am) ∈ G. Then, clearly, ϕ(x) = [x, a], for each x ∈ X. �
Corollary 9.5.15. Suppose that G is the product of finitely many discrete Abelian

groups Gi, i = 1, . . . , m, where each Gi satisfies Pontryagin’s duality. Then the character
group G∗ of G is the product of the character groups Gi

∗, i = 1, . . . , m, and the groups G
and G∗ also satisfy Pontryagin’s duality.

In particular, from Corollary 9.5.15 and Examples 9.5.8 and 9.5.12 we obtain:

Corollary 9.5.16. Suppose that G is the product of finitely many elementary compact
groups Gi, i = 1, . . . , m. Then G satisfies Pontryagin’s duality.

Proposition 9.5.17. Suppose that F is a closed subgroup of the topological group Tn,
for some n ∈ N. Then F is topologically isomorphic to the product of a finite number of
elementary compact groups.

Proof. We prove it by induction on n. Consider the natural projection p of Tn onto

Tn−1, where n > 1. We can assume that p(F ) satisfies the conclusion of the theorem. By

Proposition 9.5.1, either K = ker p�F is finite or K = ker p = T, since K is (topologically

isomorphic to) a closed subgroup of T. In both cases, it is clear that F is topologically

isomorphic to the product K × p(F ). �
We will now make a major step towards the proof of the duality theorem in the compact

versus discrete case.

Proposition 9.5.18. Suppose that G is an Abelian compact group, and f is a character
on G∗, that is, a homomorphism of G∗ to T. Then, for each finite set h1, . . . , hm of elements
of G∗, there exists a ∈ G such that f (hi) = hi(a), for each i = 1, . . . , m.

Proof. Put F =
⋂m

i=1 ker hi. Then F is a closed subgroup of G, and the quotient group

G/F is topologically isomorphic to a closed subgroup of the group Tm (the diagonal product

of the homomorphisms h1, . . . , hm serves to establish such an isomorphism). Hence, G/F is

topologically isomorphic to the product of a finite number of elementary compact groups, by

Proposition 9.5.17. Now Corollary 9.5.16 implies that G/F satisfies Pontryagin’s duality.

Let p : G → G/F be the quotient homomorphism. The mapping p∗ : (G/F )∗ → G∗

where p∗(q) = q ◦ p, for each q ∈ (G/F )∗, is an isomorphism of (G/F )∗ onto a subgroup

M of G∗ such that hi ∈ M, for each i = 1, . . . , m. Pick q1, . . . , qm in (G/F )∗ such that

p∗(qi) = hi, for i = 1, . . . , m.

Clearly, φ = f ◦ p∗ is a character on (G/F )∗. Since (G/F )∗ satisfies Pontryagin’s

duality, there exists c ∈ G/F such that φ(qi) = qi(c), for i = 1, . . . , m. We have that

φ(qi) = fp∗(qi) = f (hi), for i = 1, . . . , m. Pick a ∈ G such that p(a) = c. Since

hi = qi ◦ p, it follows that hi(a) = qi(p(a)) = qi(c). Hence, f (hi) = hi(a), for each

i = 1, . . . , m. �
We need one more elementary property of the group T which is obvious from the

geometric interpretation of T.
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Proposition 9.5.19. There exists an open neighbourhood V of the neutral element 1

of the group T such that the only subgroup of T contained in V is {1}. In fact, one can take
V = {eπix : −1/2 < x < 1/2}.

Now we are ready to prove the main result of this section.

Theorem 9.5.20. [L. S. Pontryagin, E. van Kampen] Suppose that G is a compact
Abelian topological group. Then the evaluation mapping Ψ of G to (G∗)∗ is a topological
isomorphism of G onto (G∗)∗.

Proof. The evaluation mapping Ψ of G to (G∗)∗ is a continuous homomorphism, by

Proposition 9.5.6. According to Theorem 9.4.11, there are enough of continuous characters

on G to separate points of G, so the mapping Ψ is one-to-one. Since G is compact, it

follows that Ψ is a topological isomorphism of G onto a closed subgroup B = Ψ(G) of

(G∗)∗. It remains to establish that B = (G∗)∗.

Assume the contrary. Put M = (G∗)∗. Then M/B is a non-trivial compact Abelian

group. Therefore, applying Theorem 9.4.11 once again, we can find a non-trivial continuous

character on M/B. It follows that there is a non-trivial continuous character ξ on M such

that ξ(b) = 1, for each b ∈ B. We fix such a ξ. Fix also an open neighbourhood V of 1 in

T which does not contain non-trivial subgroups (see Proposition 9.5.19).

Since ξ is continuous, there exists an open neighbourhood W of the neutral element e of

M such that ξ(W ) ⊂ V . By the definition of the topology of pointwise convergence, there

exists a finite collection h1, . . . , hm of elements of G∗ and ε > 0 such that the following

condition is satisfied:

(δ) if f ∈ M and |f (hi)− 1| < ε for each i = 1, . . . , m, then f ∈ W .

Put L = {f ∈ M : f (hi) = 1 for all i = 1, . . . , m}. Clearly, L is a subgroup of M, and

L ⊂ W . Hence, ξ(L) ⊂ V . Since ξ is a homomorphism, ξ(L) is a subgroup of T. Thus,

ξ(L) is a subgroup of T contained in V . It follows from the choice of V that ξ(L) = {1}.
Take now any f ∈ M. We are going to show that ξ(f ) = 1. By Proposition 9.5.18,

there exists a ∈ G such that f (hi) = hi(a), for each i = 1, . . . , m. By the definition of the

evaluation mapping Ψ, for g = Ψ(a) we also have g(hi) = hi(a), for each i = 1, . . . , m.

Therefore, (fg−1)(hi) = 1, for i = 1, . . . , m, that is, fg−1 ∈ L. Hence, ξ(fg−1) = 1 and

ξ(f ) = ξ(g). Since g = Ψ(a) ∈ Ψ(G) = B, we have that ξ(g) = 1, by the choice of ξ. It

follows that ξ(f ) = 1. This is a contradiction, since the character ξ is non-trivial, and f is

arbitrary element of M. �

Finally, let us consider the case of discrete Abelian groups from the point of view of

Pontryagin’s duality. We will rely upon Corollary 1.1.8: For every discrete Abelian group

G and every element a ∈ G distinct from the neutral element, there exists a character

f : G→ T such that f (a) = 1. In fact, we also need a slightly different statement:

Corollary 9.5.21. For every discrete Abelian group G, and every proper subgroup
H of G, there exists a non-trivial character g on G such that g(h) = 1, for every h ∈ H .

Proof. By Corollary 1.1.8, there exists a non-trivial character f on the quotient group

G/H . Put g = f ◦ p, where p is the quotient homomorphism of G onto G/H . Clearly, g
is a character on G we are looking for. �
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Theorem 9.5.22. For any discrete Abelian group G, the evaluation mapping Ψ: G→
(G∗)∗ is an isomorphism.

Proof. From Corollary 1.1.8 it follows that Ψ is one-to-one. We know that Ψ is a

homomorphism. It remains to show that Ψ is onto. Assume the contrary, and put H = Ψ(G).

Then H is a proper subgroup of the discrete Abelian group (G∗)∗ and, by Corollary 9.5.21,

there exists a non-trivial character f on (G∗)∗ such that f (h) = 1, for every h ∈ H .

By Proposition 9.5.5, the Abelian group G∗ is compact. Therefore, by Theorem 9.5.20,

the evaluation mapping of G∗ to its second dual group is onto. Hence, there exists χ ∈ G∗

such that f (y) = y(χ), for each y ∈ (G∗)∗. Since the character f is non-trivial, it follows

that χ is a non-trivial character on G. Therefore, there exists a ∈ G such that χ(a) = 1.

Then, for h0 = Ψ(a) we have that h0(χ) = χ(a) = 1. On the other hand, f (h0) = 1, since

h0 ∈ H = Ψ(G). Since h0(χ) = f (h0), it follows that h0(χ) = 1, a contradiction. �
We can reformulate the last result as follows:

Corollary 9.5.23. Every discrete Abelian group G satisfies Pontryagin’s duality.

Exercises

9.5.a. Using the “algebraic” definition of the topological group T as the quotient group T = R/Z
of the group R, with the usual topology, prove the main properties of T and of its subgroups,

established in this section on the basis of the “geometric” definition of T. In particular, prove

in this way Propositions 9.5.1, 9.5.2, 9.5.3, and 9.5.19.

9.5.b. Complete the arguments given in Examples 9.5.7, 9.5.8, and 9.5.12.

9.5.c. Suppose that G is a compact Abelian group. Let H be the group of continuous characters

on G taken with the topology of pointwise convergence. Is H discrete?

9.5.d. Suppose that G is a compact Abelian group and H is the group of continuous characters on

G taken with the topology of pointwise convergence. Denote by H ′ the group of continuous

characters on H , with the topology of pointwise convergence. Is H ′ topologically isomorphic

to G?

Problems

9.5.A. For a prime number p, let Z(p∞) be the quasicyclic subgroup of T of all elements z satisfying

zpn
= 1, for some integer n ≥ 0.

(a) Prove that Pontryagin’s dual group (Zp)∗ is topologically isomorphic to the discrete

group Z(p∞), where Zp is the compact group of p-adic integers (see Examples 1.1.10

and 1.3.16).

(b) Calculate the dual group (Zr)
∗, for an arbitrary integer r > 1.

9.6. Some applications of Pontryagin–van Kampen’s duality

Here we study the topological and algebraic properties of compact Abelian topological

groups by methods of Pontryagin–van Kampen’s duality theory. The next technical result

is sometimes very helpful.

Corollary 9.6.1. Suppose that G is an Abelian group, compact or discrete, and H a
closed subgroup of G∗ separating elements of G. Then H = G∗.
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Proof. Assume the contrary. Since the quotient group G∗/H is either compact or

discrete, there exists a non-trivial character f on G∗ such that f (h) = 1, for each h ∈ H .

By Theorems 9.5.20 and 9.5.22, there exists a ∈ G such that f (y) = y(a), for every y ∈ G∗.

Note that a is not the neutral element of G, since f is non-trivial. Since H separates elements

of G, there exists h ∈ H such that h(a) = 1. On the other hand, by the choice of f and of

a we have h(a) = f (h) = 1, since h ∈ H , a contradiction. �

Proposition 9.6.2. Let G be an Abelian topological group, compact or discrete, and
H a closed subgroup of G. Then the natural restriction mapping φ : G∗ → H∗ given by the
rule φ(f ) = f �H , for each f ∈ G∗, is a continuous open homomorphism of the topological
group G∗ onto the topological group H∗.

Proof. Clearly, φ is a continuous homomorphism. Since G∗ and H∗ are both either

discrete or compact, the mapping φ must be closed, and therefore, quotient. Hence, φ is

open. It remains to show that φ is onto. The subgroup φ(G∗) separates elements of H , since

G∗ separates elements of G, and φ(G∗) is closed in H∗, since the mapping φ is closed. It

follows from Corollary 9.6.1 that φ(G∗) = H∗. �

Sometimes it is important to know whether a character of a subgroup can be extended

to a continuous character on the whole group. The next statement is, obviously, a corollary

to Proposition 9.6.2.

Theorem 9.6.3. Suppose that G is an Abelian group, compact or discrete, H is a
closed subgroup of G, and f is a continuous character on H . Then there exists a continuous
character g on G such that g�H = f .

The essence of Pontryagin–van Kampen’s duality theory is to establish the relationships

between the structure and properties of a (compact or discrete) topological group G and

the structure and properties of the group of characters G∗. The theory is rich and contains

many deep results. Here we present only a sample of more elementary statements of this

kind, just to provide a glimpse of the theory.

Theorem 9.6.4. For any finite Abelian group G, the group G∗ is isomorphic to G.

Proof. Every finite Abelian group is the product of a finite number of cyclic groups.

According to Proposition 9.5.13, the group of characters of a finite cyclic group K is

isomorphic to K (see also Example 9.5.12). Now it follows from Corollary 9.5.15 that

K∗ is isomorphic to K. �

In a more general case of finitely generated Abelian groups, we have:

Theorem 9.6.5. For every finitely generated discrete Abelian group G, the dual group
G∗ is the product of a finite family of groups each of which is either a finite cyclic group or
the circle group T.

Proof. Every finitely generated discrete Abelian group is the product of a finite

collection of groups, each of which is either a finite cyclic group or the discrete group

Z. Applying Proposition 9.5.13 and Corollary 9.5.15, and taking into account that Z∗ is

topologically isomorphic to T, we arrive at the desired conclusion. �
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Our next result is of a slightly different nature. Instead of comparing the exact structure

of G with that of G∗, we show that, under Pontryagin’s duality, to a certain basic property

of G corresponds a very different basic property of the dual group G∗.

Theorem 9.6.6. The weight of an infinite compact Abelian group G coincides with the
cardinality of G∗.

Proof. Let e be the neutral element of G, X = G \ {e}, and Ff = X∩ ker f , for each

f ∈ G∗. Then ξ = {Ff : f ∈ G∗} is a family of closed subsets of X such that
⋂

ξ = ∅,

since continuous characters on G separate elements of G. Let τ be the weight of G. Then

there exists a subfamily η of ξ such that
⋂

η = ∅ and |η| ≤ τ. In other words, there exists a

subset H of G∗ such that |H | ≤ τ and
⋂{ker f : f ∈ H} = {e}. Clearly, we may assume

that H is a subgroup of the group G∗. Since H separates elements of G, it follows from

Corollary 9.6.1 that H = G∗. Hence, |G∗| ≤ τ.

Conversely, if |G∗| = τ for some τ ≥ ω, then the space (G∗)∗ is homeomorphic to a

subspace of TG∗ ∼= Tτ . Since G is homeomorphic to (G∗)∗, it follows that w(G) ≤ τ. �

Corollary 9.6.7. A compact Abelian group G is metrizable if and only if its dual
group G∗ is countable.

Applying duality theorems for compact and discrete Abelian groups, we derive the

following result immediately from Corollary 9.6.7:

Corollary 9.6.8. A discrete Abelian group G is countable if and only if its dual G∗

is a second-countable group.

We need one more elementary property of the group T:

Proposition 9.6.9. The only closed connected subgroups of the topological group T
are {1} and T itself.

Proof. This follows immediately from Proposition 9.5.1. �

Lemma 9.6.10. Suppose that f is a non-trivial continuous character on a compact
Abelian group G. Then f is of infinite order in G∗ if and only if f (G) is a connected
subspace of T.

Proof. Suppose that f (G) is connected. Since f (G) is a closed subgroup of T (recall

that G is compact), it follows from Proposition 9.6.9 that f (G) = T. Therefore, f n(G) = T,

for each positive integer n, since {zn : z ∈ T} = T for every such n. It follows that the

homomorphism f n is non-trivial. Thus, f is of infinite order.

Suppose now that f ∈ G∗ and n ∈ N satisfy the condition that f n(x) = 1, for each

x ∈ G, and that f is distinct from the neutral element of G∗. Let Kn = {z ∈ T : zn = 1}
and H = f (G). Clearly, H ⊂ Kn and H contains 1 and at least one more element of T.

Since Kn contains exactly n elements, we conclude that H is a finite space containing more

than one element. It follows that H = f (G) is disconnected. �

Theorem 9.6.11. [L. S. Pontryagin] A compact Abelian group G is connected if and
only if the dual group G∗ is torsion-free.



Some applications of Pontryagin’s duality 613

Proof. Suppose that G is connected, and take any non-trivial continuous character f
on G. Then f (G) is connected and, therefore, f is of infinite order in G∗, by Lemma 9.6.10.

Suppose now that G is not connected. Then there exists a proper open and closed

subset U of G containing the neutral element e of G. By Proposition 3.1.8, there exists

an open and closed subgroup H of G such that H ⊂ U. The quotient group G/H is

discrete, compact, and contains more than one element. Therefore, there exists a non-trivial

continuous character φ on G/H . Put f = φ◦p, where p : G→ G/H is the natural quotient

homomorphism. Then f is a non-trivial continuous character on G, and f (G) = φ(G/H)

is a finite subset of T, containing more than one element. Therefore, f (G) is disconnected.

It follows from Lemma 9.6.10 that f is of finite order in G∗. �

Recall that a topological space X is said to be totally disconnected if every connected

subspace of X is trivial (that is, contains at most than one point). According to Proposi-

tion 3.1.7, a compact Hausdorff space X is totally disconnected if and only if X is zero-

dimensional, that is, has a base consisting of open and closed sets.

Theorem 9.6.12. A compact Abelian group G is totally disconnected if and only if G∗

is a torsion group.

Proof. Suppose that G is totally disconnected. Then G is zero-dimensional. Take any

non-trivial continuous character f on G, and put F = f (G) and H = ker f . The mapping

f is closed, since G is compact. Therefore, the subgroup F of T is topologically isomorphic

to the quotient group G/H , and the mapping f of G onto the subspace F of T is also open.

Since, by Theorem 3.1.14, the quotient group of any totally disconnected compact group is

always zero-dimensional, it follows that F is zero-dimensional and, hence, F = T. Since f
is non-trivial, it follows that |F | > 1. Therefore, F is disconnected and, by Lemma 9.6.10,

f is of finite order.

Suppose now that G is not totally disconnected. Then there exists a connected subset

A of G such that |A| > 1. Clearly, we can assume that the neutral element e of G is in A.

Fix a ∈ A distinct from e, and take a continuous character f on G such that f (a) = 1. Then

B = f (A) is a connected subset of T containing more than one element. Also, f (G) is a

closed subgroup of T and B ⊂ f (G). Hence, f (G) is an infinite closed subgroup of T and,

by Proposition 9.6.9, f (G) = T, that is, f (G) is connected. Therefore, by Lemma 9.6.10,

f is of infinite order in G∗. �

The basic duality theorems for compact and discrete Abelian groups allow to turn

around Theorems 9.6.11 and 9.6.12. In this way we obtain the following statements:

Corollary 9.6.13. A discrete Abelian group G has no elements of finite order distinct
from the identity if and only if the dual group G∗ is connected.

Corollary 9.6.14. A discrete Abelian group G is torsion if and only if the dual group
G∗ is totally disconnected (equivalently, zero-dimensional).

Theorem 9.6.11 can be used to characterize connectedness of compact Abelian groups

in terms of their purely algebraic property, namely, divisibility.

Theorem 9.6.15. A compact Abelian group G is divisible if and only if G is connected.
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Proof. Suppose that G is divisible, and take any non-trivial continuous character f
on G. By Theorem 9.6.11, the connectedness of G will follow if we establish that f is of

infinite order in G∗.

Fix a ∈ G such that f (a) = 1. Now take an arbitrary integer n > 0. Since G is

divisible, there exists b ∈ G such that bn = a. Then f n(b) = (f (b))n = f (bn) = f (a) = 1.

Hence, f n(b) = 1; it follows that f n is not the neutral element of G∗. Since this is true for

every positive integer n, we conclude that f is of infinite order. Therefore, G is connected.

Suppose now that G is not divisible, and fix a ∈ G and n ∈ N such that yn = a, for

each y ∈ G. Put F = {yn : y ∈ G}. Clearly, F is a subgroup of G, and a /∈ F . Also, F is a

compact subspace of G, since it is a continuous image of a closed subspace (the diagonal) of

the compact product space Gn. Therefore, F is closed in G. Hence, there exists a continuous

character f on G such that f (a) = 1 and f (y) = 1, for every y ∈ F . By Theorem 9.6.11,

to show that G is disconnected, it is enough to establish that f n is the neutral element of

G∗. Take any x ∈ G. Then xn ∈ F . Therefore, f n(x) = (f (x))n = f (xn) = 1. Since this

is true for each x ∈ G, we conclude that f n is the neutral element of G∗. �

Below we prove, on the basis of duality theory, an important result on quotients of

compact Abelian groups. In the next statement we introduce some terminology and notation

convenient to use in the argument.

Proposition 9.6.16. Let G be a compact or discrete Abelian group, and H a closed
subgroup of G. Put A(G∗, H) = {f ∈ G∗ : f (H) = {1}}. Then A(G∗, H) is a closed
subgroup of G∗ called the annihilator of H in G∗, and H∗ is topologically isomorphic to
the quotient group G∗/A(G∗, H).

Proof. Consider the restriction mapping r : G∗ → H∗ given by the rule r(f ) = f �H ,

for each f ∈ G∗. Then r is a continuous homomorphism of G∗ onto H∗. Clearly,

ker r = A(G∗, H), so the required conclusion is just a reformulation, in the new terms,

of Proposition 9.6.2. �

We also need the next easy to prove statement.

Proposition 9.6.17. Let G be a discrete Abelian group, and U an open neighbourhood
of the neutral element in the dual group G∗. Then there exists a finitely generated subgroup
H of G such that A(G∗, H) ⊂ U.

Proof. Obviously, we can assume that U is a standard open neighbourhood of the

neutral element in G∗, in the topology of pointwise convergence, of the form

U = {f ∈ G∗ : |f (xi)− 1| < ε for each i = 1, . . . , k},
for some x1, . . . , xk ∈ G and some ε > 0. Take the subgroup H of G generated by

x1, . . . , xk ∈ G, and let f ∈ A(G∗, H). Then, clearly, f (xi) = 1 for each i ≤ k. Hence,

f ∈ U and A(G∗, H) ⊂ U. �

Theorem 9.6.18. Let F be a compact Abelian group and U an open neighbourhood
of the neutral element e in F . Then there exists a closed subgroup E of F such that E ⊂ U
and the quotient group F/E is topologically isomorphic to Tn ×K, for some non-negative
integer n and some finite group K.



Some applications of Pontryagin’s duality 615

Proof. Due to the duality, we can assume that F = G∗, for some discrete Abelian

group G. Then F∗ can be identified with G by means of the evaluation mapping. By

Proposition 9.6.17, there exists a finitely generated subgroup H of G such that A(G∗, H) =

A(F, H) ⊂ U. According to Proposition 9.6.16, G∗/A(G∗, H) = F/A(F, H) = H∗.

Since H is a finitely generated discrete group, from Theorem 9.6.5 it follows that H∗ is

topologically isomorphic to Tn×K, for some non-negative integer n and some finite group

K. Now for E = A(F, H), we have that E ⊂ U, E is a closed subgroup of F , and

F/E ∼= Tn ×K. �
We recall that the torsion-free rank of an Abelian group G is finite and is equal to m ∈ ω,

if m is the smallest element of ω such that the number of elements in every independent

subset of G does not exceed m (see Section 7.10).

There is an interesting connection between the torsion-free rank of a discrete Abelian

group and the dimension of its dual group. We describe below the simplest case, leaving

more complete results for exercises.

Lemma 9.6.19. Suppose that G is a discrete Abelian group of finite torsion-free rank,
and F = {x1, . . . , xn} is a maximal independent subset of G. Put V = {z ∈ T : |z− 1| ≤√

2}. Then there exists a homeomorphism φ of V F onto a subspace of G∗ such that
h = φ(h)�F , for each h ∈ V F (we identify elements of V F with functions from F to V ,
and consider the topology of pointwise convergence on V F ). This homeomorphism can be
selected in such a way that if h(F ) = {1}, then φ(h) is the neutral element of G∗.

Proof. With each function h : F → V we associate fh : G → T as follows. Take

any x ∈ G. Then, by the maximality of F , the family {x1, . . . , xn, x} is not independent.

Therefore, since F is independent, we have mx = m1x1 + · · · + mnxn, for some integers

m, m1, . . . , mn, where m = 0, and where m1, . . . , mn are uniquely determined by m (though,

in general, m cannot be chosen to be any non-zero integer). Put

fh(x) = (h(x1))m1/m · . . . · (h(xn))mn/m,

where the exponent zk/m, for each z = e2πix with |x| ≤ 1/2, is defined as zk/m = e2πkix/m. It

is straightforward to verify that this definition is correct and fh is a homomorphism of G to

T. Thus, fh ∈ G∗, and the rule φ(h) = fh describes a mapping φ of the n-dimensional cube

V F to G∗. Since both G∗ and V F have the topology of pointwise convergence (on G and

F , respectively), it is easy to see that φ is a continuous mapping of V F onto a subspace of

G∗. Clearly, (φ(h))�F = h, for each h ∈ V F . Since the restriction mapping r : G∗ → V F

(which associates with a character on G its restriction to F ) is continuous and r ◦φ = idV F ,

we conclude that φ is a homeomorphism of V F onto a subspace of G∗. �
Below we will use the following general statement on the group of characters of a

quotient group.

Proposition 9.6.20. Suppose that G is a discrete Abelian group, and H is a subgroup
of G. Then (G/H)∗ is topologically isomorphic to the subgroup A(G∗, H) of G∗.

Proof. Let p be the quotient homomorphism of G onto G/H . With an arbitrary

f ∈ (G/H)∗ we associate a homomorphism p◦f of G to T. Clearly, (p◦f )�H ∈ A(G∗, H).

Put φ(f ) = p ◦ f . Then φ is a monomorphism of (G/H)∗ to the subgroup A(G∗, H) of

G∗. Since both G∗ and (G/H)∗ are taken with the topology of pointwise convergence, φ
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is a homeomorphism of (G/H)∗ onto the subspace φ((G/H)∗) of G∗. It remains to show

that A(G∗, H) ⊂ φ((G/H)∗). Take any q ∈ A(G∗, H). Then q(H) = {1} and q is a

homomorphism of G to T. It follows that q can be factored through p, that is, q = f ′ ◦ p,

for some homomorphism f ′ : G/H → T. Then q = φ(f ′) ∈ φ((G/H)∗). �

We also need the following lemma.

Lemma 9.6.21. Suppose that G is a discrete Abelian group and x1, . . . , xm is a finite
independent subset of G. Then there exists a subgroup H of G such that pH (x1), . . . , pH (xm)

is a maximal linearly independent system of elements of the group G/H , where pH is the
natural quotient mapping of G onto G/H .

Proof. Denote by 
 the family of all subgroups H of G such that the system

pH (x1), . . . , pH (xm) is linearly independent in the group G/H . We partially order 
 by

inclusion and observe that the union of any chain in 
 is, obviously, an element of 
.

Therefore, Zorn’s lemma is applicable, and there exists a maximal element H in 
. Then,

by a standard argument, pH (x1), . . . , pH (xm) is a maximal linearly independent system of

elements of G/H . �

Theorem 9.6.22. Suppose that G is a discrete Abelian group such that the dual compact
group G∗ is finite-dimensional. Then the torsion-free rank of G is finite and does not exceed
m = dim(G∗).

Proof. Take any finite linearly independent system F = {x1, . . . , xn} of elements of

G. We have to show that n ≤ m. By Lemma 9.6.21, there exists a subgroup H of G such

that pH (x1), . . . , pH (xn) is a maximal linearly independent system of elements of the group

G/H , where pH is the natural quotient mapping of G onto G/H .

By Proposition 9.6.20, (G/H)∗ is topologically isomorphic to the closed subgroup

A(G∗, H) of G∗. Hence, since G∗ is compact (and normal), we have that dim(G/H)∗ ≤
dim(G∗) = m [165, Theorem 7.1.8], and it remains to show that n ≤ dim(G/H)∗. Thus,

we have reduced the argument about the system F to the case when F is a maximal linearly

independent system of elements of the group G. So, to simplify the notation, we now make

this assumption.

Put V = {z ∈ T : |z − 1| ≤ √
2}. Clearly, V is homeomorphic to the closed

interval [0, 1], and the dimension of V F is n, by [165, Coro. 7.3.20]. It follows from

Lemma 9.6.19 that there exists a homeomorphism φ of V F onto a closed subspace of G∗.

Hence, dim(G∗) ≥ dim(V F ) = |F | = n, that is, m ≥ n. �

Theorem 9.6.23. Let G be a discrete Abelian group of finite torsion-free rank, and let
the dual group G∗ be locally connected. Then the group G is finitely generated.

Proof. Fix a maximal linearly independent system of elements of G consisting of m
elements, say F = {x1, . . . , m}. Let H be the subgroup generated by F , and Φ = A(G∗, H).

We claim that the quotient group G/H is finite.

Indeed, assume that G/H is infinite. Clearly, every element of G/H is of finite

order. Therefore, the dual group (G/H)∗ is totally disconnected, by Corollary 9.6.14.

However, (G/H)∗ = A(G∗, H) = Φ, by Proposition 9.6.20. Therefore, Φ is totally

disconnected. Put V = {z ∈ T : |z − 1| ≤ √
2}. By Lemma 9.6.19, there exists a
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homeomorphism φ of V F onto a subspace of G∗ such that h = φ(h)�F , for each h ∈ V F .

Put W = {f ∈ G∗ : f (F ) ⊂ V}. Then W is a neighbourhood of the neutral element in G∗.

Let us define a mapping r of W to the subspace A(G∗, H) of G∗ as follows. For any

f ∈ W , put r(f ) = f · (φ(f �F ))−1. Clearly, r is continuous. From f ∈ W it follows

that f �F ∈ V F and, therefore, φ(f �F ) is defined. Since h = φ(h)�F , for each h ∈ V F ,

we have that (r(f ))(xi) = 1, for i = 1, . . . , m. Hence, r(f ) ∈ A(G∗, H) = Φ, for each

f ∈ W . Clearly, Φ ⊂ W . Take any g ∈ Φ. Then r(g) = g · (φ(g�F ))−1 = g, since φ(g�F )

is the neutral element of G∗ (see Lemma 9.6.19). Thus, the restriction of r to Φ is the

identity mapping of Φ onto itself. (In fact, we have shown that r is a continuous retraction

of W onto its subspace Φ). Since G∗ is locally connected, we can take an open connected

neighbourhood U of the neutral element e of G∗ such that e ∈ U ⊂ W . Corollary 9.6.7

implies that Φ is infinite, since G/H was assumed to be infinite. Since Φ is also compact, it

follows that Φ is not discrete. Therefore, e is non-isolated in Φ. Hence |U ∩Φ| ≥ 2. Since

r�Φ is one-to-one, we have |r(U)| ≥ 2. However, r(U) is connected and r(U) ⊂ Φ. Thus,

r(U) is a non-trivial connected subset of the totally disconnected space Φ, a contradiction.

Hence, the group G/H is finite. Since H is finitely generated, it follows that so is G. �

Now we can prove an interesting result on the structure of compact locally connected

groups.

Theorem 9.6.24. [L. S. Pontryagin] Every compact finite-dimensional locally con-
nected Abelian group M is topologically isomorphic to Tn×K, where n = dim(M) and K
is a finite group.

Proof. By Theorem 9.5.20, we can represent M as the dual group G∗ to some discrete

Abelian group G. Since M = G∗ is finite-dimensional, it follows from Theorem 9.6.22

that G is of finite torsion-free rank. Since G∗ is locally connected, Theorem 9.6.23 implies

that the group G is finitely generated. Hence, G is the product of a finite number of cyclic

groups, which implies, by Theorem 9.6.5, that M = G∗ is topologically isomorphic to

Tn × K, where n is a natural number and K is a finite group. Clearly, n must be equal to

dim(M). �

As another application of the duality theory, we present below a somewhat unexpected

result, Theorem 9.6.26, which requires the following generalization of Theorem 9.5.14:

Proposition 9.6.25. Let G = ⊕i∈IGi be a direct sum of Abelian groups, and suppose
that G carries the discrete topology. Then the dual group G∗ is topologically isomorphic
to the topological product X =

∏
i∈I G∗

i of dual groups.

Proof. For every χ = (χi)i∈I in X and every g ∈ G, let

[χ, g] =
∏
i∈I

χi(gi), (9.12)

where g =
∑

i∈I gi and gi ∈ Gi, for each i ∈ I. Since the sum g =
∑

i∈I gi contains

finitely many elements, for each g ∈ G, so does the product on the right hand side in

(9.12). It is clear that the function [χ, ·] is a character on G, for each χ ∈ X. Given any

j ∈ I, denote by Hj the subgroup of G whose elements h =
∑

i∈I gi satisfy gi = 0Gi

for each i = j. Clearly, Hi is just a copy of Gi. For every character χ on G, let χj be

the restriction of χ to Hj , j ∈ I. Then χj is a character of Hj and ϕ(χ) = (χj)j∈I is an
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element of X. An easy verification shows that χ(g) = [ϕ(χ), g] for each g ∈ G, that is,

χ = [ϕ(χ), ·]. Evidently, the mapping Is : (χi)i∈I �→ [ϕ(χ), ·] is an algebraic isomorphism

of X =
∏

i∈I(Hi)
∗ onto G∗, where each group Hi

∼= Gi carries the discrete topology. It also

follows from the definition of the product topology of X and the topology of the dual group

G∗ that the isomorphism Is is continuous. Since the group X is compact, we conclude that

Is is a topological isomorphism. �

A torsion Abelian group G is called bounded torsion if there exists a positive integer

m such that mx = 0G, for each x ∈ G. The minimal m with this property is called the

exponent of G. The following two facts clarify the topological and algebraic structure of

compact Abelian groups of a prime exponent.

Theorem 9.6.26. Let G be a compact Abelian topological group of a prime exponent
p. Then G is topologically isomorphic to the product group Z(p)κ, for some cardinal κ ≥ 0.

Proof. The dual group G∗ is discrete and every element of G∗ distinct from zero has

order p. Considering G∗ as a linear vector space over the field Z(p) and taking a Hamel

basis of G∗, we conclude that G∗ is the direct sum of κ copies of the group Z(p) for some

cardinal κ, say, G∗ ∼= ⊕α<κZ(p)α. Since, by Proposition 9.6.25, the dual group to a direct

sum of groups is the topological product of dual groups to summands, it follows that G is

topologically isomorphic to the product of κ copies of the dual group (Z(p))∗ = Z(p). �

Corollary 9.6.27. If G is a compact Abelian group, then for every prime p, the
subgroup G[p] = {x ∈ G : px = 0} of G is topologically isomorphic to the group Z(p)κ,
for some cardinal κ.

Proof. For a prime p, consider the homomorphism ϕp of G to G defined by ϕ(x) = px
for each x ∈ G. It is clear that ϕp is continuous and the kernel of ϕp coincides with G[p].

Therefore, G[p] is a closed subgroup of G. We conclude that G[p] is a compact Abelian

group of the prime exponent p, so one applies Theorem 9.6.26 to finish the argument. �

Let us characterize the structure of compact Abelian torsion groups. First we recall the

Prüfer–Baer theorem on bounded torsion groups (see [409, Theorem 4.3.5]):

Theorem 9.6.28. Every bounded torsion Abelian group is isomorphic to a direct sum
of cyclic groups with bounded finite orders.

Clearly, the result below generalizes Theorem 9.6.26.

Theorem 9.6.29. A compact Abelian torsion group G is topologically isomorphic to
the finite product Z(n1)κ1 × · · · × Z(nr)

κr , where n1, . . . , nr are pairwise distinct positive
integers and κ1, . . . , κr are arbitrary cardinal numbers.

Proof. For every integer n ∈ N, let G[n] = {x ∈ G : nx = 0G}. Since G is a torsion

group, we have that G =
⋃∞

n=1 G[n]. It is also clear that each G[n] is a closed subgroup of

G. Every compact space has the Baire property, so G[m] has a non-empty interior, for some

m ∈ N. Hence, G[m] is an open subgroup of G and the quotient group G/G[m] is finite.

Let s be the size of G/G[m]. Since G is Abelian, it follows that msx = 0G for each x ∈ G,

that is, G is a bounded torsion group. Then the dual group G∗ is also bounded torsion, so
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Theorem 9.6.28 implies that

G∗ ∼=
r⊕

i=1

Z(ni)
(κi),

where n1, . . . , nr are distinct positive integers and κ1, . . . , κr are cardinal numbers. It

remains to apply Proposition 9.6.25 along with Example 9.5.12 to deduce the required

conclusion. �

Corollary 9.6.30. Every compact Abelian torsion group is zero-dimensional.

There are many interesting concrete duality theorems establishing connections between

the properties of G and G∗. For example, one can characterize the dimension of a

compact Abelian group G by a property of G∗. It is also possible to characterize the local

connectedness of a compact Abelian group G by a property of G∗. The last characterization

can be effectively used to give a complete description of the topological and algebraic

structures of locally connected metrizable compact Abelian groups. However, we do not go

deeper into this subject, since this area is enormous and already well developed, and though

the arguments are based on the principal results of this and preceding section, the technical

details we omit are mostly algebraic in nature and require a more extensive knowledge of

the abstract theory of groups than we presume. So we refer the interested reader to [387],

[236], and [337]. In particular, Theorem 9.6.18 is Theorem 9.5 in [236], where it plays a key

role in establishing the structure of locally compact compactly generated Abelian groups.

Exercises

9.6.a. Prove that every compact metrizable Abelian group is topologically isomorphic to a closed

subgroup of the group Tω.

9.6.b. Suppose that G =
∏

i∈I
Gi is the topological product of compact Abelian groups. Then the

discrete dual group G∗ is isomorphic to the direct sum
⊕

i∈I
(Gi)

∗ of the dual groups.

9.6.c. Suppose that G is a discrete Abelian group of a finite torsion-free rank n. Show that the

dimension of the dual group G∗ does not exceed n (and, therefore, dim(G∗) = n).

9.6.d. Let G be a compact Abelian group with a closed subgroup H . Prove that for every continuous

character h on H and for every a ∈ G \ H , there exists a continuous character f on G such

that f �H = h and f (a) �= 1.

9.6.e. Let G be a compact Abelian torsion group. Prove that the closure of every countable subset

of G has a countable base.

9.6.f. Let us call a topological group G monothetic if G contains a dense cyclic subgroup. Verify

that a compact Abelian group G is monothetic iff the dual group G∗ is isomorphic to a

subgroup of the group T endowed with the discrete topology.

9.6.g. Suppose that G is a pseudocompact Abelian topological group. Show that for every element

a ∈ G distinct from e, there exists a continuous character f on G such that f (a) �= 1.

9.6.h. Suppose that G is a pseudocompact connected Abelian group. Show that the dual group G∗

is torsion-free.

9.6.i. Apply Theorem 9.6.29 to show that for every prime p and every cardinal κ, the group

Z(p)(ω) ⊕ Z(p2)(κ) does not admit a compact Hausdorff group topology, where G(α) denotes

the direct sum of α copies of the group G.
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Problems

9.6.A. Let G be a compact Abelian group with a closed subgroup H . Prove that (G/H)∗ is

topologically isomorphic to G∗/A(G∗, H).

9.6.B. Prove that if G is a non-metrizable compact Abelian group, then there exists a continuous

homomorphism of G onto a product group P =
∏

i∈I
Pi, where each Pi is a non-trivial

compact metrizable Abelian group and |I| = w(G).

Hint. Let τ = |G∗|. Then τ = w(G) > ℵ0, by Theorem 9.6.6, so we can find an

independent subset X of G∗ satisfying |X| = τ (see Proposition 9.9.20 below). Then the

subgroup S of G∗ generated by the set X is a direct sum of non-trivial cyclic groups, say,

S =
⊕

α<τ
Cα. Since the group G∗ is discrete, we can apply Proposition 9.6.2 to conclude

that there exists a continuous homomorphism of (G∗)∗ ∼= G onto S∗ ∼= ∏
α<τ

C∗
α . Clearly,

each C∗
α is a non-trivial compact metrizable Abelian group.

9.6.C. Let H be a compact zero-dimensional monothetic group (see Exercise 9.6.f). Then H is

topologically isomorphic to a product group
∏

p∈P
Ap, where for each prime p, Ap is either

trivial, or the finite cyclic group Z(pnp ) with np ∈ N, or the group of p-adic integers.

Hint. Apply Exercise 9.6.f along with Theorem 9.6.12 to conclude that the dual group H∗ is

algebraically isomorphic to a torsion subgroup of T. It follows from [409, Theorem 4.1.1]

(see also Theorem 9.9.14 below) that H∗ is the direct sum of groups Cp, with p ∈ P, where

each Cp is the p-primary component of H∗, that is, the subgroup of H∗ consisting of elements

of p-power order. Therefore, for each prime p, Cp is either the p-torsion subgroup Z(p∞)

of T, or the finite cyclic group Z(pn), for some integer n ≥ 0. According to the duality

theorem and Proposition 9.6.25, the group H is topologically isomorphic to the product∏
p∈P

Ap of the dual groups Ap = (Cp)∗. Since (Z(pn))∗ = Z(pn) and (Z(p∞))∗ = Zp

(see Problem 9.5.A), the required conclusion follows.

9.6.D. Show that the additive group R of reals admits a compact Hausdorff topological group

topology.

Hint. Apply item e) of Problem 1.1.G and Exercise 1.3.i.

9.6.E. Prove that a non-trivial free Abelian group does not admit a compact Hausdorff group

topology.

Hint. Suppose to the contrary that there exists a compact Hausdorff group topology � on

an infinite free Abelian group G. Then the compact group K = (G, �) is zero-dimensional.

Indeed, let C be the connected component of the neutral element of K. Then C is a

compact connected topological group, so Theorem 9.6.15 implies that C is divisible. Since,

algebraically, C is a subgroup of the free Abelian group G, it is itself a free Abelian group,

by Nielsen’s theorem (see [409, Theorem 6.1.1]). Hence, the group C is trivial and K is

zero-dimensional. Let H be the closure in K of an arbitrary infinite cyclic subgroup of K.

Then H is a compact zero-dimensional monothetic group, and it follows from Problem 9.6.C

that H is topologically isomorphic to the product
∏

p∈P
Ap, where for each prime p, Ap

is either a finite cyclic group, or the group Zp of p-adic integers. The first possibility is

excluded because the subgroup H ⊂ G is torsion-free. The second possibility is excluded

because the element (1, 0, 0, . . .) of Zp is divisible in Zp by qn, for every prime q distinct

from p and every integer n ≥ 1 (see Problem 1.1.F).

9.6.F. Suppose that G is a pseudocompact non-compact Abelian group, and let G∗
p be the group

of continuous characters on G, with the topology of pointwise convergence. Let (G∗
p)∗p be

the group of continuous characters on G∗
p, also with the topology of pointwise convergence.

Consider the evaluation mapping Ψ of G to (G∗
p)∗p. Then Ψ is a continuous homomorphism.

(a) Verify that Ψ is one-to-one.

(b) Must Ψ be a homeomorphism of G onto the subspace Ψ(G) of (G∗
p)∗p?

(c) Must Ψ(G) be closed in (G∗
p)∗p?
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9.6.G. Let G be a compact torsion topological group, not necessarily Abelian. Then every finitely

generated subgroup of G is finite.

Comment. This deep result was proved by E. I. Zel’manov in [549].

Open Problems

9.6.1. (E. Hewitt and K. A. Ross [237]) Let G be a compact torsion topological group, not

necessarily Abelian. Is G bounded torsion?

9.7. Non-trivial characters on locally compact Abelian groups

In this section we extend the principal result on the existence of non-trivial continuous

characters on compact Abelian groups, Theorem 9.4.11, to locally compact Abelian groups.

To reach this goal, we establish several results on the structure of certain locally compact

Abelian groups.

A topological group G is called monothetic if it contains a dense cyclic subgroup.

Evidently, every monothetic group is Abelian.

Theorem 9.7.1. Every monothetic locally compact non-compact group G is discrete
and isomorphic to the group Z of integers.

Proof. Assume that G is not discrete. Clearly, G contains a dense cyclic subgroup

algebraically isomorphic to Z, since Z is the only infinite cyclic group. Hence, we

may assume that Z is a dense subgroup of G. We put N = {n ∈ Z : n < 0} and

P = {n ∈ Z : n > 0}. The neutral element of G is also denoted by 0.

We claim that each of the sets N and P is dense in G. Since Z is dense in G, it is

enough to show that both N and P are dense in the subspace Z of G. Since under taking

the inverse the space Z is mapped homeomorphically onto Z and P is mapped onto N, it

suffices to show that P is dense in the subspace Z. Since G has a base at 0 consisting of

symmetric open sets, and Z is dense in G, we have that 0 ∈ P . Therefore, by the continuity

of translations, n ∈ n + P , for each n ∈ Z. Since n + P ⊂ P , for each non-negative

n ∈ Z, it follows that n ∈ n + P ⊂ P , for every non-negative n ∈ Z. If n < 0, we put

Pn = {k ∈ P : k > |n|}. The set n + (P \ Pn) is finite and does not contain n. Hence,

n ∈ n + Pn. Since n+Pn ⊂ P , it follows that n ∈ P . Thus, the sets N and P are both dense

in G. It follows that, for any open neighbourhood U of 0, the family {n + U : n ∈ N} is an

open covering of G. Indeed, we may assume that U is symmetric. Take any g ∈ G. Since

g + U is an open neighbourhood of g and N is dense in G, there exists j ∈ N such that

j ∈ g + U. Then g ∈ j + U, since U is symmetric. Similarly, the family {n + U : n ∈ P}
is also an open covering of G.

Now we fix an open symmetric neighbourhood U of 0 in G such that U is compact. Put

F = U. Since {n+U : n ∈ N} is an open covering of G, there is a finite subset K of N such

that F ⊂ ⋃{n+U : n ∈ K}. Put m = max{|n| : n ∈ K} and Y =
⋃{n+U : 1 ≤ n ≤ m}.

Observe that Y =
⋃{n + F : 1 ≤ n ≤ m} and therefore, Y is compact.

Let us show that Y = X. Take any g ∈ G, and let ng be the first element of P such

that g ∈ ng + U. Then g = ng + a, for some a ∈ U. Since U ⊂ F , there exists j ∈ K
such that a ∈ j + U. Then g ∈ ng + j + U. Since j is negative, from the definition of ng

it follows that ng + j does not belong to P . Hence, ng + j ≤ 0. Therefore, ng ≤ |j| ≤ m,
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which implies that g ∈ Y . Since the closure of Y is compact, it follows that G is compact,

a contradiction. Thus, G is discrete. �

Recall that a topological group G is said to be compactly generated if there exists a

compact subset F of G such that G is the smallest subgroup of G containing F . We will

say that the degree of non-compactness of a topological group G is finite if there exist a

compact set F ⊂ G and a finite subset K ⊂ G such that F + 〈K〉 = G, where 〈K〉 is the

smallest subgroup of G containing K. In fact, we can define the degree of non-compactness
nc(G) for any topological group G as the smallest cardinal number κ (which can be also

finite) such that G = F + H , where F is a compact subset of G and H is a subgroup of G
algebraically generated by a set K ⊂ G of the cardinality κ. Clearly, nc(G) = 0 if and only

if G is compact.

Theorem 9.7.2. For any compactly generated locally compact Abelian topological
group G, the degree of non-compactness of G is finite.

Proof. Fix a compact subset F of G which algebraically generates G. Since G is

locally compact, we can assume that F is the closure of a symmetric open neighbourhood

U of 0 such that U algebraically generates G. The subspace F + F of G is also compact,

since it is a continuous image of the compact space F × F . By the compactness of F + F ,

there exists a finite subset K of F + F such that F + F ⊂ K + U. Then F + F ⊂ K + F .

Put F0 = F and Fn+1 = Fn + F , for each n ∈ ω. Take the smallest subgroup H of G
containing K. Clearly, F1 = F + F ⊂ F + K ⊂ F + H , and G =

⋃∞
n=1 Fn. By induction

it follows that Fn ⊂ F + H , for each n ∈ ω. Therefore, G = F + H , which implies that

the degree of non-compactness of G is finite. �

Proposition 9.7.3. For any locally compact Abelian topological group G of finite
non-compactness degree and any non-zero b ∈ G, there exists a locally compact Abelian
topological group Gb of smaller or zero non-compactness degree and a continuous open
homomorphism p : G→ Gb such that p(b) = 0.

Proof. Let m = nc(G). There exist a finite subset K ⊂ G and a compact set F ⊂ G
such that |K| = m and G = F + HK, where HK is the smallest subgroup of G containing

K. Clearly, we may assume that m > 0. Then K = ∅.

Take any a ∈ K and put M = K \ {a}. Let Ha be the closure of in G of the cyclic

group 〈a〉. Then Ha is not compact, since otherwise Φ = F + Ha is a compact subset of

G such that Φ + HM = G, where HM is the subgroup of G algebraically generated by M.

Then nc(G) ≤ |M| < |K| = m, a contradiction. Therefore, by Theorem 9.7.1, Ha = 〈a〉
is an infinite closed discrete subgroup of G. Take any infinite subgroup H of Ha such that

b /∈ Ha, and let p : G → G/H be the natural quotient homomorphism. Clearly, G/H is

a locally compact Abelian group, p(b) = 0, since b /∈ H , and p(Ha) ∼= Ha/H is a finite

subset of G/H . Therefore, the set B = p(F ) + p(Ha) is compact. We also have:

G/H = p(G) = p(F + HK) = p(F + Ha + HM)

= p(F ) + p(Ha) + p(HM) = B + p(HM).

Since p(HM) is a subgroup of G/H generated by the finite set p(M), it follows that

the non-compactness degree of G/H does not exceed the cardinality of p(M). Thus,

nc(G/H) ≤ |p(M)| ≤ |M| < m = nc(G). �
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We are ready to prove a theorem for the sake of which we introduced the notion of non-

compactness degree. This result provides a bridge from arbitrary locally compact Abelian

groups to compact Abelian groups.

Theorem 9.7.4. For every locally compact Abelian group G of finite non-compactness
degree and each non-zero b ∈ G, there exists a compact Abelian group Gb and an open
continuous homomorphism p : G→ Gb such that p(b) = 0.

Proof. We apply Proposition 9.7.3 nc(G) times, or less, in an obvious way. Taking

the composition of the quotient mappings that arise in the process, we obtain the desired

quotient homomorphism of G onto a locally compact Abelian topological group Gb such

that the non-compactness degree of Gb is zero. However, the last condition implies that Gb

is compact. �
Finally, we are in a position to establish a result on the existence of non-trivial continuous

characters on which the study of the structure of locally compact Abelian topological groups

rests.

Theorem 9.7.5. For any locally compact Abelian group G and each non-zero element
b ∈ G, there exists a continuous character f : G→ T on G such that f (b) = 1.

Proof. Take an open and closed subgroup G1 of G such that G1 is compactly generated.

Case 1. Suppose that b is not in G1. Consider the quotient group G/G1 (which is discrete)

and the quotient mapping π : G → G/G1. Then π(b) = 0. Since G/G1 is a discrete

Abelian group, there exists a homomorphism h : G/G1 → T such that h(π(b)) = 1, by

Corollary 1.1.8. Then h is continuous, and the homomorphism f = h ◦ π is the character

on G we are looking for.

Case 2. Suppose that b ∈ G1. In view of Theorem 9.7.2, the non-compactness degree

of G1 is finite. Hence, by Theorem 9.7.4, there exist a compact Abelian group Gb and a

continuous homomorphism p1 : G1 → Gb such that p1(b) = 0.

Since the group T is divisible, p1 can be extended to a homomorphism p of G to T, by

Theorem 1.1.6. Since G1 is an open and closed subgroup of G, and p1 is continuous, the

homomorphism p must be continuous as well. We also have p(b) = p1(b) = 1. �

Exercises

9.7.a. Let G be a locally compact Abelian group. We denote by G∗ the group of continuous

characters on G endowed with the compact-open topology. Prove that G∗ is a locally

compact Abelian topological group.

9.7.b. Let G be a locally compact Abelian group. Define G∗ and (G∗)∗ as in Exercise 9.7.a.

Consider the evaluation mapping Ψ: G → (G∗)∗ and prove that Ψ is one-to-one and

continuous.

Problems

9.7.A. (V. G. Pestov [375]) Prove that every σ-compact topological group G is a closed subgroup

of some compactly generated topological group H . Furthermore, the compactly generated

group H can be chosen in such a way that G will be a retract of H under a continuous open

homomorphism.
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9.8. Varopoulos’ theorem: the Abelian case

A mapping f : X → Y of topological spaces is called sequentially continuous if

f (x) = limn→∞ f (xn) for every sequence {xn : n ∈ ω} in X converging to x ∈ X. It

is immediate from the definition that every continuous mapping is sequentially continuous,

but not vice versa. Indeed, every mapping of a non-discrete space X without non-

trivial convergent sequences to elsewhere is sequentially continuous, so there are lots

of sequentially continuous mappings of βω to a discrete two-point space that fail to be

continuous. On the other hand, every sequentially continuous mappings defined on a

sequential space is evidently continuous. In particular, a sequentially continuous mapping

of a first-countable space to elsewhere is continuous.

The aim of this section is to show that in “almost all” cases, every sequentially

continuous homomorphism defined on a compact Abelian group G is continuous. This

happens if the cardinality of the group G is not Ulam measurable (see Theorem 9.8.5).

The statement remains true for an arbitrary compact group, but the proof is more involved

(see [522]). The proof of this deep theorem requires several preliminary steps, even in the

Abelian case. The first of them is interesting in itself; it enables us to reduce the general

case of a compact Abelian group G to the case when G is a topological product of compact

metrizable groups. In fact, the following result refines the conclusion of Theorem 4.1.7 for

the special case of compact Abelian groups.

Theorem 9.8.1. Let G be an arbitrary compact Abelian group. Then there exists a
continuous onto homomorphism h :

∏
i∈J Ki → G, where |J | ≤ w(G) and each Ki is a

compact metrizable Abelian group.

Proof. According to [409, 4.1.6], there exists a discrete divisible Abelian group H
that contains the discrete dual group G∗ to G as a subgroup. It also follows from [409,

4.1.5] that the group H is a direct sum of countable divisible groups, say, H = ⊕i∈IHi.

Hence, by Proposition 9.6.25, the dual compact group H∗ is topologically isomorphic to the

product P =
∏

i∈I H∗
i , where each group H∗

i is metrizable, by Corollary 9.6.7. Therefore,

the compact group G is topologically isomorphic to the quotient group P/N, where

N = A(P, G∗) is the annihilator of the subgroup G∗ ⊂ H in P (see Proposition 9.6.16). Let

π : P → P/N be the quotient homomorphism. By Lemma 8.5.4, one can find a set J ⊂ I
with |J | ≤ w(G) and a continuous homomorphism h : PJ → P/N such that π = h ◦ pJ ,

where pJ is the projection of P onto PJ =
∏

i∈J H∗
i . It remains to put Ki = H∗

i , for each

i ∈ J , and note that the homomorphism h :
∏

i∈J Ki → P/N ∼= G is as required. �
Let us consider a topological product P =

∏
i∈I Gi of compact metrizable groups

and a sequentially continuous homomorphism f : P → H to a first-countable topological

group H . For every non-empty set J ⊂ I, we denote by πJ the natural projection of P
onto the subproduct PJ =

∏
i∈J Gi. We will also identify PJ with the subgroup of P

obtained by complementing the elements of PJ by the neutral elements of the factors Gi on

all coordinates i ∈ I \ J . Therefore, each projection πJ is an open homomorphic retraction

of P onto the closed subgroup PJ of P . This notation will be used in the three lemmas that

follow (we do not assume that the groups are Abelian).

Lemma 9.8.2. Let e be the neutral element of the group P and ΣP the Σ-product of the
groups Gi with center at e considered as a subgroup of P . Then the restriction g = f �ΣP
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of f to ΣP is continuous and there exists a continuous homomorphism f ∗ of P to H which
depends on at most countably many coordinates and whose restriction to ΣP coincides with
g.

Proof. By Corollary 1.6.33, the space ΣP is Fréchet–Urysohn (hence, sequential),

so the restriction g = f �ΣP is continuous on ΣP . Since the group H is first-countable,

Lemma 8.5.4 implies that g depends on at most countably many coordinates or, more

precisely, one can find a countable set J ⊂ I and a continuous homomorphism h : PJ → H
such that g = h ◦ πJ�ΣP . Then the homomorphism f ∗ = h ◦ πJ is as required. �

Since H is a group, there exists a mapping ϕ : P → H satisfying f (x) = f ∗(x) · ϕ(x),

for all x ∈ P . It is clear that ϕ is sequentially continuous and is identically equal to eH on

the subgroup ΣP of P . In the next technical lemma we establish a special property of the

mapping ϕ; it is crucial for the proof of Theorem 9.8.5.

Lemma 9.8.3. Suppose that H is a topological group with no small subgroups. Then
there exists a finite partition I = I1∪ I2∪ . . .∪ Ik of the index set I such that for every i ≤ k
and every two disjoint sets A and B with Ii = A ∪ B, the mapping ϕ is identically equal to
eH on one of the groups PA, PB (or possibly both).

Proof. If the required partition does not exist, one easily defines a sequence {In : n ∈
ω} of non-empty disjoint subsets of I and a sequence {xn : n ∈ ω} such that xn ∈ PIn and

ϕ(xn) = eH for each n ∈ ω. For a given n ∈ ω, denote by Kn the product group
∏

i∈In
Kn,i,

where Kn,i is the closure in Gi of the cyclic group generated by the element xn(i) = πi(xn).

The group Kn is evidently Abelian, xn ∈ Kn, and the intersection Kn ∩ ΣP is dense in

Kn. Then the closure Ln of f (Kn) in H is an Abelian subgroup of H and f (xn) ∈ Ln. In

addition, since the homomorphism f ∗ : P → H depends only on a countable set J ⊂ I and

f ∗�ΣP = f �ΣP , we conclude that the element f ∗(xn) = f ∗(πJ (xn)) = f (πJ (xn)) also

belongs to the group Ln (we recall that PJ ⊂ ΣP ⊂ P and, therefore, πJ (xn) ∈ Kn ∩ ΣP).

Since Kn is Abelian, the latter fact and the definition of ϕ imply that the restriction of ϕ to

Kn is a homomorphism. Thus, Ln contains the elements f (xp
n ) and f ∗(xq

n), for all integers

p and q. Finally, since H has no small subgroups, there exists an open neighbourhood U
of eH in H such that ϕ(xpn

n ) /∈ U for some non-zero pn ∈ Z, where n ∈ ω. The sets In

are mutually disjoint, so the sequence {xpn
n : n ∈ ω} converges to e in P . This, however,

contradicts the sequential continuity of ϕ. �

Lemma 9.8.4. Let ϕ and I1, . . . , Ik be as in Lemma 9.8.3. If ϕ is not constant on PIm

for some m ≤ k, then the family � of the subsets A of Am such that ϕ is not constant on PA

is a countably closed free ultrafilter on the set Am.

Proof. First we claim that if A = B∪C ⊂ I and ϕ is constant on both groups PB and

PC, then ϕ is also constant on PA. Indeed, since e ∈ PB ∩ PC and ϕ(e) = eH , it follows

from the definition of ϕ that f (x) = f ∗(x), for each x ∈ PB ∪ PC. Since f and f ∗ are

homomorphisms and the set PB∪PC algebraically generates the group PA, we conclude that

both f and f ∗ are identically equal to eH on PA. This implies immediately that ϕ(x) = eH ,

for each x ∈ PA.

Suppose that ϕ is not constant on Am, for some m ≤ k. Since each Gi is a subgroup of

ΣP , the mapping ϕ is constant on Gi and {i} /∈ �, for each i ∈ Am. It is also clear that if

Varopoulos’ theorem: the Abelian case
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A ∈ � and A ⊂ B ⊂ Am, then B ∈ �. If Am = A∪B and A∩B = ∅, then Lemma 9.8.3

and the above claim together imply that exactly one of the sets A, B belongs to �.

It remains to show that � contains intersections of arbitrary countable subfamilies.

Take an arbitrary sequence {Bn : n ∈ ω} ⊂ �. Then Cn = Im \ Bn /∈ �, for each n ∈ ω.

For every n ∈ ω, let Dn = C0∪· · ·∪Cn. Then D0 ⊂ D1 ⊂ · · · ⊂ Dn ⊂ · · · is an increasing

sequence of subsets of Im and it follows from the above claim that Dn /∈ �, for each n ∈ ω.

Let D =
⋃

n∈ω Dn and take an arbitrary element x ∈ PD. For every n ∈ ω, denote by xn

the restriction of x to Dn. Then xn ∈ PDn and the sequence {xn : n ∈ ω} converges to x in

P . Since ϕ(xn) = eH for each n ∈ ω, we must have ϕ(x) = eH , so that ϕ is constant on PD

and, consequently, D /∈ �. We have thus proved that
⋂

n∈ω Bn = Im \D ∈ �. Therefore,

� is a countably complete free ultrafilter on Im. �

Here is the main theorem of this section, the Abelian case of Varopoulos’ theorem,

which states that sequential continuity implies continuity for homomorphisms of locally

compact groups unless the groups have Ulam measurable cardinalities. We assume, in

addition, that the groups in question are compact.

Theorem 9.8.5. [N. Varopoulos] Let f : G → H be a sequentially continuous
homomorphism of compact Abelian topological groups. If the cardinality of the group
G is Ulam non-measurable, then f is continuous.

Proof. By Theorem 9.8.1, there exists a continuous onto homomorphism h : K → G,

where K =
∏

i∈I Ki is a product of compact metrizable topological groups and |I| ≤ w(G).

Since w(G) ≤ |G|, the former inequality implies that the cardinality of the index set I is

Ulam non-measurable. Clearly, the composition g = f ◦ h is a sequentially continuous

homomorphism of the product group K to H . It suffices to verify that g is continuous, since

the fact that h is open will then imply the continuity of f .

First, we prove the theorem in the special case when H = T. Evidently, the group T has

no small subgroups. As in Lemma 9.8.2, we define a continuous homomorphism g∗ of K
to T which coincides with g on the corresponding Σ-product ΣK ⊂ K. Then g∗ = h∗ ◦πJ ,

for some countable set J ⊂ I, where πJ is the projection of K to KJ =
∏

i∈J Ki and

h∗ : KJ → T is a continuous homomorphism. Let a mapping ϕ : K → T be defined

by g(x) = g∗(x) · ϕ(x), for each x ∈ K. Take the partition I1, . . . , Ik of the set I as in

Lemma 9.8.3 (defined for K in place of P). Since |Il| ≤ |I| for each l ≤ k, no free ultrafilter

on Il is countably complete. Hence, Lemma 9.8.4 implies that ϕ ≡ 1 on KIl , for each l ≤ k.

Since the subgroups KIl with l ≤ k algebraically generate the group K, the mapping ϕ has

to be identically equal to 1 on K. This and the definition of ϕ together imply that g = g∗ is

continuous.

Finally, let H be an arbitrary compact Abelian group and χ a continuous character of

H . Then the composition χ ◦g is a sequentially continuous homomorphism of K to T which

is continuous as we have just shown above. Since the topology of H is generated by the

family of all continuous characters, we conclude that the homomorphism g is continuous.

Hence, the homomorphism f : G→ H is also continuous. �

The next example shows that the Ulam non-measurability restriction on the cardinality

of the compact group G in Theorem 9.8.5 is essential.
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Example 9.8.6. Suppose that � is a countably closed free ultrafilter on a set I and

K =
∏

i∈I Ci, where Ci = C is a compact Abelian group for each i ∈ I, and |C| ≥ 2. Then

there exists a non-trivial sequentially continuous character χ on K which is constant on the

dense subgroup ΣK of K and, hence, is discontinuous.

Since |C| ≥ 2, one can take a non-trivial character μ on C. Given a point x = (xi)i∈I

of K, we define the value χ(x) ∈ T by the rule

χ(x) = lim
�

μ(xi) (9.13)

or, equivalently, χ(x) is the unique common point of the sets {μ(xi) : i ∈ A}, where A ∈ �
and the closure is taken in T. Since � is an ultrafilter and T is compact, the limit in (9.13)

exists and is unique. Let us verify the following:

Claim. For every sequence {x(n) : n ∈ ω} in K, there exists A ∈ � such that
χ(x(n)) = μ(x(n)

i ), for all n ∈ ω and i ∈ A.

Indeed, take an arbitrary n ∈ ω and an open neighbourhood U of yn = χ(x(n)) in T.

Since yn = lim� μ(x(n)
i ), there exists A(U, n) ∈ � such that {μ(x(n)

i ) : i ∈ A(U, n)} ⊂ U.

Let �n be a countable base of T at yn. Since the ultrafilter � is countably complete, we

conclude that the set A =
⋂{A(U, n) : U ∈ �n, n ∈ ω} is as required.

As μ is a character of C, it follows immediately from our Claim that χ is a character

on K, and that both μ and χ are non-trivial. Since μ is continuous, the above claim also

implies that the character χ is sequentially continuous. Finally, {i} /∈ � for each i ∈ I, so

B /∈ � for each countable set B ⊂ I. This fact and Claim together imply that χ ≡ 1 on the

dense subgroup ΣK of K. Hence, the continuity of the character χ would imply that χ is

constant on K, which is not the case. �
We will now apply Varopoulos’ theorem to prove, under a mild restriction on the

cardinality of a compact Abelian group G, that there is no strictly stronger countably compact

group topology on G. In fact, the same is true for compact non-Abelian groups as well, and

the proof is virtually the same, we just need the general, non-Abelian version of Varopoulos’

theorem. However, below we prove the result only for the Abelian case.

Every topological space considered below, until the end of the section, is assumed to

be Hausdorff.

Let us call a sequence {xn : n ∈ ω} in a space X accumulating if there exists an

accumulation point for this sequence in X. A mapping f : X → Y will be called strongly
sequentially continuous if, for every accumulating sequence ξ = {xn : n ∈ ω} in X,

there exists an accumulation point x ∈ X for ξ such that f (x) is an accumulation point for

{f (xn) : n ∈ ω} in Y . A mapping f : X → Y is said to be ℵ0-continuous if, for every

countable subset A of X and for each point x ∈ A, f (x) belongs to the closure of f (A).

Clearly, every ℵ0-continuous mapping is strongly sequentially continuous.

Proposition 9.8.7. Every strongly sequentially continuous mapping is sequentially
continuous.

Proof. Every convergent sequence has a unique accumulation point, so the conclusion

follows from the definition of strong sequential continuity. �
Proposition 9.8.8. Let f be a strongly sequentially continuous mapping of a countably

compact space X onto a space Y . Then Y is also countably compact.

Varopoulos’ theorem: the Abelian case
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Proof. Take an arbitrary sequence η = {yn : n ∈ ω} in Y and, for each n ∈ ω,

fix a point xn ∈ X such that f (xn) = yn. Since X is countably compact, the sequence

ξ = {xn : n ∈ ω} is accumulating in X. Therefore, by the strong sequential continuity of

f , there exists an accumulation point x for ξ in X such that f (x) is an accumulation point

for η in Y . Thus, Y is countably compact. �

Proposition 9.8.9. Let f be a one-to-one strongly sequentially continuous mapping
of a space X onto a countably compact space Y . Then the inverse mapping f−1 is strongly
sequentially continuous if and only if X is countably compact.

Proof. Suppose that X is countably compact. Let η = {yn : n ∈ ω} be an

accumulating sequence in Y . For every n ∈ ω, choose a point xn ∈ X such that f (xn) = yn.

Since X is countably compact, the sequence ξ = {xn : n ∈ ω} is accumulating in X. By the

strong sequential continuity of f , there exists an accumulation point x ∈ X for ξ such that

y = f (x) is an accumulation point for η. Let g = f−1. Since g(y) = x and g(yn) = xn, for

each n ∈ ω, the mapping g is strongly sequentially continuous. Observe that in this part of

the argument we have not used the assumption that Y is countably compact, though Y has

this property automatically, by Proposition 9.8.8.

Conversely, suppose that g = f−1 is strongly sequentially continuous. Then X is

countably compact, by Proposition 9.8.8. �

We are ready to present one of the main results of the section.

Theorem 9.8.10. Let f be a strongly sequentially continuous isomorphism of a
countably compact Abelian topological group H onto a compact topological group G.
Assume also that the cardinality of G is Ulam non-measurable. Then H is compact, and f
is a topological isomorphism.

Proof. Clearly, the group G is Abelian as a homomorphic image of the Abelian group

H . The mapping f−1 is strongly sequentially continuous, by Proposition 9.8.9. Therefore,

it is sequentially continuous. Since H is countably compact, it is topologically isomorphic to

a topological subgroup of a compact topological group F ; therefore, f−1 can be considered

as a homomorphism of the compact Abelian group G to the compact group F . Since f−1

is sequentially continuous, it remains to apply Theorem 9.8.5. �

Theorem 9.8.11. Every strongly sequentially continuous homomorphism f of a
compact Abelian group G, whose cardinality is Ulam non-measurable, onto an arbitrary
topological group H is continuous, and H is compact.

Proof. By Proposition 9.8.8, H is countably compact. Therefore, H can be treated

as a subgroup of a compact group F , and f can be considered as a homomorphism of the

compact group G to a compact group F . By Proposition 9.8.7, f is sequentially continuous.

By Varopoulos’ theorem, f is continuous. Hence, H is compact. �

Example 9.8.12. Let f be a one-to-one mapping of the Čech–Stone compactification

βN of the discrete space of natural numbers onto a discrete space Y . Then f is sequentially

continuous, since all convergent sequences in βN are trivial. The space Y is not countably

compact, while the space βN is compact. Thus, in Proposition 9.8.8, it is not enough

to assume f to be sequentially continuous. The mapping f is not strongly sequentially
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continuous. This example also shows that Proposition 9.8.9 cannot be generalized to

sequentially continuous mappings. �

The conclusion of Theorem 9.8.10 won’t hold if we replace the condition that G is

compact by the condition that G is countably compact.

Example 9.8.13. Let D = {0, 1} be the two-element additive group, and let A be

a set of Ulam measurable cardinality. The last condition means that there exists a free

ultrafilter ξ on A closed under countable intersections. For x = (xa)a∈A ∈ DA, we put

B(x) = {a ∈ A : xa = 0}. Let g(x) = 0 if B(x) ∈ ξ, and g(x) = 1 if B(x) /∈ ξ. The product

group DA, taken with the Tychonoff product topology �, is a compact topological group,

and the mapping g defined above is a homomorphism of DA to D. Clearly, if only countably

many coordinates of a point x ∈ DA are equal to zero, then g(x) = 0. The points of this

kind form a dense subset of DA. On the other hand, g(a) = 1 for the point a ∈ X with all

coordinates equal to 1. It follows that the mapping g : DA → D is not continuous. Let us

show that g is ℵ0-continuous. Let M be a countable subset of DA and x ∈ M. Evidently,

we only need consider the case when all coordinates of x are equal to zero. Then g(x) = 0.

Assume to the contrary that g(y) = 1 for each y ∈ M. Then, for each y ∈ M, the set

B(y) is not in ξ. On the other hand, from x ∈ M it follows that A =
⋃{B(y) : y ∈ M}.

Then A \ B(y) ∈ ξ for each y ∈ M and
⋂{A \ B(y) : y ∈ M} = ∅, contradicting the

Ulam measurability of the ultrafilter ξ. Thus, g is ℵ0-continuous (and strongly sequentially

continuous), but not continuous homomorphism of the compact group DA to the group D.

Let us now take the smallest topological group topology �1 on the group DA containing

the topology � and such that g is �1-continuous. Since g is ℵ0-continuous with respect to

�, we have that ��M = �1�M, for every countable subset M of DA. It follows that the

identity mapping of the space DA with the original topology � onto the set DA provided with

the topology �1, is ℵ0-continuous. Therefore, this mapping is also strongly sequentially

continuous. By Proposition 9.8.8, the space (DA, �1) is countably compact. Thus, the

restriction on the cardinality of G in Theorems 9.8.10 and 9.8.11 cannot be omitted. �

Example 9.8.14. In the compact subspace X = βN \ N of the space βN we fix a

countable infinite discrete subset A satisfying the condition that, for each x ∈ A, there

exists a countable set Bx ⊂ X \A such that x ∈ Bx. Let us now provide the set of points of

the space X with a new topology, defined as the smallest topology containing the topology

of X and all subsets of A. Clearly, X with the new topology is countably compact. Hence,

by Proposition 9.8.9, the identity mapping of the compact space X onto this new space is

strongly sequentially continuous, but evidently, it is not ℵ0-continuous. �

Example 9.8.15. In the product group X = Dω1 , where D = {0, 1} is the discrete

two-element additive group, we put C(x) = {α ∈ ω1 : xα = 1} and take subsets Y and Z
defined by

Y = {x ∈ X : |C(x)| ≤ ω} and Z = {x ∈ X : |ω1 \ C(x)| ≤ ω}.
Then Y and H = Y ∪ Z are countably compact topological subgroups of the compact

group X (by Corollary 1.6.34, the closure in X of every countable subset of Y or Z is a

compact and metrizable subset of H). Adding to the topology of H induced from X two

new open sets Y and Z, we introduce a new finer topological group topology �1 on H , and

obtain a countably compact topological group G = (H, �1). Clearly, the space G is the

Varopoulos’ theorem: the Abelian case
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disjoint topological union of the spaces Y and Z, and the identity mapping f of H onto G
is ℵ0-continuous (hence, strongly sequentially continuous), but not continuous. It follows

that the conclusion of Theorem 9.8.10 does not hold if we replace the condition that G is

compact by the condition that G is countably compact.

Now we come to a curious feature of the mapping f — it cannot be extended to a

sequentially continuous mapping of βH to βG. Indeed, βH is homeomorphic to the product

space Dω1 , and every sequentially continuous mapping of Dω1 to an arbitrary Tychonoff

space is continuous [313]. �

Theorem 9.8.16. Let g be a continuous homomorphism of a topological group G onto
a compact Abelian topological group H of Ulam non-measurable cardinality, and let B be
a countably compact subspace of G such that g(B) = H . Then the homomorphism g is
open.

Proof. We can represent g as the composition of a quotient homomorphism f : G→
H1 and a continuous monomorphism h : H1 → H , so that g = h◦f . Clearly, H1 is Abelian

and f (B) = f (G) = H1. By the continuity of f it follows that H1 is countably compact.

Therefore, by Theorem 9.8.10, h is a topological isomorphism. Hence, g is a quotient

homomorphism, which implies that g is open. �

Corollary 9.8.17. Every continuous homomorphism g of a countably compact
topological group onto a compact Abelian group of Ulam non-measurable cardinality is
quotient, that is, the mapping g is open.

Theorem 9.8.18. Let g be a continuous homomorphism of a topological group G onto a
compact Abelian topological group F such that the cardinality of F is Ulam non-measurable
and the kernel g−1(e) is compact, and there exists a countably compact subspace B of G
such that g(B) = F . Then G is compact, and the mapping g is open and closed.

Proof. By Theorem 9.8.16, the mapping g is open. Since the kernel of g is compact,

the quotient homomorphism g is also a closed mapping. It follows that g is perfect, which

implies that G = g−1(F ) is compact (see [165, Theorem 3.7.2]. �

Corollary 9.8.19. Let g be a continuous homomorphism of a countably compact
topological group G onto a compact Abelian topological group F such that the kernel of g
is compact and the cardinality of F is Ulam non-measurable. Then G is compact and the
mapping g is open and closed.

Exercises

9.8.a. (M. Hušek [252]) A topological group G is called an s-group if every sequentially continuous

homomorphism of G to any topological group H is continuous. Verify the following

assertions:

(a) The product of two s-groups is an s-group;

(b) Apply (a) to show that the topological product of countably many s-groups is again an

s-group.

9.8.b. (M. Hušek [252]) A prenorm N on a topological group G is called sequentially continuous
if for every sequence {xn : n ∈ ω} in G converging to an element x ∈ G, the values N(xn)

converge to N(x). Let D = {0, 1} be the discrete two-element group.



631

(a) Prove that for every cardinal κ ≥ ω, a prenorm N on the product group Dκ is

sequentially continuous iff for every sequence {xn : n ∈ ω} in G converging to

the neutral element of Dκ, the values N(xn) converge to zero.

(b) Let κ be an infinite cardinal. For x, y ∈ Dκ, we write x ≤ y if x(α) ≤ y(α), for

each α ∈ κ. Suppose that f is a non-negative, sequentially continuous, bounded real-

valued function on the group Dκ. Is the function N, defined by N(x) = supy≤x f (y),

sequentially continuous on Dκ? Is N a prenorm?

Problems

9.8.A. Generalize Theorem 9.8.5 by showing that every sequentially continuous homomorphism

f : G → H of a compact Abelian group G to a locally compact group H is continuous unless

the cardinality of G is Ulam measurable. Deduce from this fact that the result remains valid

for every group H topologically isomorphic to a closed subgroup of a topological product

of locally compact groups.

9.8.B. (N. Noble [351]) In connection with Theorem 9.8.5 prove that if f : X → F is a sequentially

continuous mapping of a topological product X =
∏

i∈I
Xi of first-countable spaces to a

finite discrete space F and the cardinal |I| is Ulam non-measurable, then f is continuous.

9.8.C. Let ϕ : G → H be a sequentially continuous homomorphism of a compact Abelian group G
onto a topological group H . Find out which of the following general statements are valid:

(a) H is compact;

(b) H is countably compact;

(c) H is pseudocompact;

(d) H is precompact.

What happens if, additionally, the group H satisfies w(G) ≤ c = 2ω or w(G) ≤ 2c?

Hint. See the next problem.

9.8.D. Let f be a sequentially continuous homomorphism of a compact Abelian group G onto a

topological group H . Show that, consistently, H need not be precompact, even if G = Dc,

where c = 2ω.

Remark. The articles [55] and [56] contain several counterexamples regarding Prob-

lems 9.8.C and 9.8.D.

9.8.E. Under the constructibility axiom V = L, every continuous mapping f of a countably compact

topological Abelian group G onto a compact space F is R-quotient.

Hint. The Čech–Stone compactification βG of the space G is homeomorphic to a compact

topological group. Hence, βG is a dyadic compactum. The mapping f can be extended to

a continuous mapping of βG onto F . Therefore, F is a dyadic compactum as well. See

further details in [34].

9.8.F. It is consistent with ZFC that every one-to-one continuous mapping of a countably compact

Abelian group onto a compact Hausdorff space is a homeomorphism.

Hint. Every one-to-one continuous R-quotient mapping of a Tychonoff space onto another

Tychonoff space is a homeomorphism. It remains to refer to the preceding problem. Thus,

under V = L, if G is a countably compact Abelian group which is not compact, then

there is no one-to-one continuous mapping of the space G onto a compact Hausdorff space.

Example 9.8.13 shows that this assertion cannot be proved in ZFC.

9.8.G. Let f be a continuous mapping of an ω-bounded Abelian group G onto a compact space X,

where the cardinality of G is Ulam non-measurable. Then f is R-quotient.

Hint. There are a Tychonoff space Y and an R-quotient mapping h of G onto Y such that

f = g ◦ h, where g is a one-to-one continuous mapping of Y onto X. The space Y is ω-

bounded, since G is ω-bounded. One can show that X is a dyadic compactum. The cardinality

Varopoulos’ theorem: the Abelian case
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of Y is Ulam non-measurable. Now it is possible to show that g is a homeomorphism. Since

h is an R-quotient mapping, it follows that the mapping g is also R-quotient.

9.8.H. Let G be an ω-bounded Abelian group of Ulam non-measurable cardinality, and let f be a

one-to-one continuous mapping of G onto a compact space X. Then f is a homeomorphism

and G is compact.

Hint. Obviously, every one-to-one R-quotient continuous mapping of one Tychonoff space

onto another Tychonoff space is a homeomorphism. It remains to apply Problem 9.8.G.

9.8.I. Let G be a countably compact ℵ0-monolithic Abelian group (see Exercise 4.1.b), and let f
be a continuous mapping of G onto a compact space X. Then X is metrizable.

Hint. It follows from Theorem 6.6.4 that f can be extended to a continuous mapping

g : 
G → X. Hence, X is a dyadic compactum. The space X is also ℵ0-monolithic. It

remains to observe that every ℵ0-monolithic dyadic compactum is metrizable, since Dω1 is

not ℵ0-monolithic (another way to finish the proof is to apply Proposition 10.4.16).

9.8.J. Show that every totally disconnected pseudocompact topological group G admits a contin-

uous isomorphism of G onto a zero-dimensional topological group.

Hint. The Stone–Čech compactification βG of G is a compact group, and G is a topological

subgroup of βG. The connected component C of the neutral element of the group βG is a

closed invariant subgroup of βG. The space G is totally disconnected, that is, the neutral

element e of G can be represented as the intersection of a family of clopen subsets of G.

Therefore, G ∩ C = {e}. The quotient group βG/C is a zero-dimensional compact group,

and the restriction to G of the quotient homomorphism of βG onto βG/C is a one-to-one

continuous homomorphism of G onto a zero-dimensional subgroup of βG/C.

9.8.K. Prove that every non-metrizable compact Abelian group admits a strictly finer pseudocompact

topological group topology. Extend the result to non-metrizable pseudocompact Abelian

groups.

Hint. For the first part, see the article [120] by W. W. Comfort and L. C. Robertson. The

stronger second part is a recent theorem proved by W. W. Comfort and J. van Mill in [116].

9.8.L. If a compact space Y is a continuous image of an ω-bounded topological group G of countable

tightness, then Y is metrizable.

Hint. Clearly, the group G is pseudocompact. Let f be a continuous mapping of G onto a

compact space Y . First, the space Y is dyadic. Indeed, the Čech–Stone compactification βG
of the space G is the Raı̆kov completion 
G of the group G (Theorem 6.6.4), the compact

group 
G is dyadic (Theorem 4.1.7), and f admits an extension to a continuous mapping of

βG onto Y . Second, the tightness of each separable subspace of Y is countable. To show

this, take any countable subset B of Y , and let P be the closure of B in Y . It suffices to show

that the tightness of P is countable. Clearly, there exists a countable subset A of G such

that f (A) = B. Then the closure H of A in G is a compact space of countable tightness

and f (H) = P . It follows that the tightness of P is countable [165, 3.12.8 (a)]. If Y is

not metrizable, then Y contains a topological copy of some separable non-metrizable dyadic

compactum Z. But this is impossible, since the tightness of Z is countable and every dyadic

compactum of countable tightness is metrizable.

9.8.M. (A. V. Arhangel’skii [34]) Let G be a topological group of countable tightness such that for

each n ∈ N, the space Gn is countably compact and normal, and let f be a continuous

mapping of G onto a compact space X. Then X is metrizable.

9.8.N. (A. V. Arhangel’skii [34]) If f is a one-to-one continuous mapping of a countably compact

topological group G of countable tightness onto a compact space X, then X is metrizable

and f is a homeomorphism.

9.8.O. Suppose that G is an initially ℵ1-compact (that is, every open covering of G of cardinality

≤ ℵ1 contains a finite subcovering) topological group of countable tightness. Show that G
is compact and metrizable.
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Hint. Prove, using free sequences (see [20] or [262]), that the tightness of βG is countable.

Apply the fact that βG is a topological group, since G is pseudocompact. Observe that every

compact group of countable tightness is metrizable. Use also the fact that every metrizable

countably compact space is compact.

9.8.P. (A. V. Arhangel’skii [34]) Let f be a continuous homomorphism of a topological group G
onto a feathered Abelian group H , and assume that for each compact subset P of H there

exists a countably compact subspace B of G such that f (B) = P . Then the mapping f is

quotient.

9.8.Q. (A. V. Arhangel’skii [34]) Let X be a countably compact topological group such that the space

Cp(X) is normal. Show that every compact space Y that can be represented as a continuous

image of X is metrizable.

Open Problems

9.8.1. Is it true that every compact topological group contains a dense countably compact sequential

subgroup?

9.8.2. Is it true that every compact topological group contains a dense sequential subspace? A

dense countably compact subgroup of countable tightness?

9.8.3. Let f be a continuous mapping of a countably compact sequential topological group G onto

a compact Hausdorff space Y . Is Y metrizable?

9.8.4. Let f be a continuous mapping of a countably compact topological group of countable

tightness onto a compact space X. Is X then metrizable? What if one weakens ‘countably

compact’ to ‘pseudocompact’?

9.8.5. Let X be a countably compact topological group such that the space Cp(X) is normal (or

even Lindelöf). Is X then ℵ0-monolithic?

9.8.6. Let G be a separable countably compact topological group such that the space Cp(G) is

normal (or Lindelöf). Is G then metrizable?

9.8.7. Let G be a countably compact topological group of countable tightness. Is Cp(G) normal or

Lindelöf?

9.8.8. Let G be a hereditarily separable countably compact topological group. Is Cp(G) normal or

Lindelöf?

9.8.9. Let G be an ω-bounded topological group of countable tightness. Is Cp(G) normal or

Lindelöf?

9.9. Bohr topology on discrete Abelian groups

The Bohr topology of a topological Abelian group G is the topology on G induced

by the family G∗ of all continuous homomorphisms of G to the circle group T. In other

words, the Bohr topology of G is the coarsest group topology τb(G) on G which satisfies

(G+)∗ = G∗, where G+ is the underlying group G endowed with the topology τb(G). It

is clear from the definition of the Bohr topology that τb(G) is coarser than the original

topology of the group G and that the topological group G+ is precompact. According to

Example 9.9.61, the topology τb(G) can fail to be Hausdorff, but this never happens if the

group G is locally compact (see Proposition 9.9.1).

Denote by rG the diagonal product of the family G∗. Then rG is a continuous

homomorphism of G to the product group TG∗ . Clearly, rG is a monomorphism if and

only if the family G∗ separates elements of G, that is, if for any two distinct elements

x, y ∈ G there exists h ∈ G∗ such that h(x) = h(y). The closure of rG(G) in TG∗ ,
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denoted by bG, is a compact Hausdorff topological group. The group bG is called the Bohr
compactification of G. Note that rG : G→ bG is a continuous homomorphism of G onto a

dense subgroup of bG. In general, rG need not be injective. However, from Theorem 9.7.5

and the definition of the group bG we obtain:

Proposition 9.9.1. The mapping rG : G → bG is a continuous monomorphism, for
every locally compact topological Abelian group G. Hence the Bohr topology τb(G) of G
is Hausdorff and precompact.

The next result follows from the definition of the group G+.

Proposition 9.9.2. Let G be a topological Abelian group. Then every continuous
homomorphism f : G → K to a compact Hausdorff group K remains continuous when
considered as a homomorphism of G+ to K.

Proof. The closure in K of the image f (G) is a compact Abelian group, so we can

assume without loss of generality that K is Abelian. For every continuous character χ on

K, the composition χ ◦ f is a continuous character on G, so χ ◦ f remains continuous on

the group G+. Since, by Theorem 9.4.11, the topology of the compact group K is generated

by the family of all continuous characters of K, the homomorphism f : G+ → K is also

continuous. �
In the next result, we give an internal characterization of the Bohr topology.

Proposition 9.9.3. The Bohr topology τb(G) of a topological Abelian group G is the
maximal precompact group topology on G coarser than the original topology of G.

Proof. It follows from our definition that the topology τb(G) is precompact and coarser

than the original topology of G. Conversely, let t be an arbitrary precompact group topology

on G coarser than the original topology τ of G (we do not require that t be Hausdorff).

Denote by N the closure of the neutral element eG in Gt = (G, t) and consider the quotient

homomorphism π : Gt → Gt/N. It is immediate from our definition of N that every closed

subset F of Gt satisfies F = π−1π(F ). The quotient group H = Gt/N is Hausdorff and

precompact, so the Raı̆kov completion 
H of H is a compact Hausdorff topological group.

Let f = π ◦ i, where i : G → Gt is the identity isomorphism. Then i is continuous

by the choice of t, so f is a continuous homomorphism of G onto the subgroup H of


H . Since the group 
H is compact and Hausdorff, it follows from Proposition 9.9.2 that

f : G+ → 
H is also continuous. We have thus proved that f : G+ → H is continuous as

well.

Take an arbitrary closed subset F of the group Gt . Since the quotient homomorphism

π : Gt → H is open, it follows from the equality F = π−1π(F ) that π(F ) is closed in H .

Hence, by the continuity of the homomorphism f : G+ → H , the set i−1(F ) = f−1(π(F ))

is closed in G. This implies the continuity of the isomorphism i : G+ → Gt and shows

that t ⊂ τb(G). Therefore, τb(G) is the maximal precompact group topology on G coarser

than τ. �
Corollary 9.9.4. If G is a precompact Abelian topological group, then G+ = G.

Let f : G → H be a homomorphism of Abelian topological groups. Denote by f +

the same homomorphism f considered as a mapping of G+ to H+. It turns out that the

continuity is preserved when passing from f to f +.
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Proposition 9.9.5. If a homomorphism f : G → H of topological Abelian groups is
continuous, then so is f + : G+ → H+.

Proof. Let τb(G) and τb(H) be the Bohr topologies of the groups G and H , respectively.

If h : H → T is a continuous homomorphism, then the composition h ◦ f is a continuous

homomorphism of G to T. Since the topologies τb(G) and τb(H) are initial with respect

to the families G∗ and H∗ of continuous characters of G and H , respectively, we conclude

that the homomorphism f + is continuous. �
In the special case when an Abelian group G carries the discrete topology, we denote

the group G with the Bohr topology τb(G) by G# in place of G+. An equivalent description

of G# is as follows: G# is the underlying group G equipped with the initial topology with

respect to the family of all homomorphisms of G to T.

The next corollary follows immediately from Proposition 9.9.1 and the definition of the

Bohr compactification of a topological Abelian group:

Corollary 9.9.6. G# is a precompact Hausdorff topological group, for every discrete
Abelian group G. In addition, rG : G# → bG is an isomorphic topological embedding,
that is, G# is topologically isomorphic to a dense subgroup of the group bG, the Bohr
compactification of G.

In what follows, we identify the group G# with the dense subgroup rG(G#) of bG.

Corollary 9.9.7. If G is a discrete Abelian group, then every homomorphism
f : G# → H to a precompact topological group H is continuous.

Proof. Let 
H be the Raı̆kov completion of H . Since the group 
H is compact and

G# = G+, Proposition 9.9.2 implies that f : G# → 
H is continuous. The continuity of

f : G# → H is now obvious. �
Given a homomorphism f : G → H of discrete Abelian groups, we denote by f # the

same mapping f considered as a homomorphism of G# to H#.

Corollary 9.9.8. For every homomorphism f : G → H of discrete Abelian groups,
the homomorphism f # : G# → H# is continuous. If f (G) = H , then f # is open.

Proof. Since the group H# is precompact, it follows from Corollary 9.9.7 that f # is

continuous. Suppose now that f (G) = H . Let K be the kernel of f and π : G# → G#/K#

be the quotient homomorphism. Then there exists an isomorphism i : G#/K# → H#

satisfying f # = i ◦ π. Clearly, i is continuous since π is open. Since the quotient group

G#/K# is precompact, the inverse isomorphism i−1 : H# → G#/K# is also continuous by

Corollary 9.9.7. Hence i is a topological isomorphism and it follows from the equality

f # = i ◦ π that f # is open. �
A topological Abelian group G is called maximally almost periodic if the corresponding

group G+ is Hausdorff or, equivalently, if the continuous characters of G separate points in

G. According to Theorem 9.7.5, every locally compact Abelian group is maximally almost

periodic. Therefore, every discrete Abelian group is maximally almost periodic.

If f : G → H and g : H → K are continuous homomorphisms of topological Abelian

groups, then (g ◦ f )+ = g+ ◦ f + is a continuous homomorphism of G+ to K+. In

particular, if the groups G, H , and K are discrete, then (g ◦ f )# = g# ◦ f # is a continuous
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homomorphism of G# to K#. Therefore, + and # are covariant functors from the categories of

maximally almost periodic groups and discrete Abelian groups, respectively, to the category

of precompact Abelian topological groups.

We present below three useful properties of Abelian groups with the Bohr topology.

Conditions b) and c) of the next proposition mean that the functor # “respects” subgroups

and quotient groups.

Proposition 9.9.9. Let H be a subgroup of a discrete Abelian group G. Then:

a) H is closed in G#;
b) H# is a topological subgroup of G#;
c) (G/H)# = G#/H#.

Proof. Let π : G→ G/H be the canonical homomorphism.

a) The group (G/H)# is Hausdorff by Corollary 9.9.6, while the homomorphism

π# : G# → (G/H)# is continuous by Corollary 9.9.8. Hence, the group H is closed in

G# as the kernel of π#.

b) The restriction to H of a character of G is a character of H , so the topology τb(H) of

the group H# is always finer than the topology of H inherited from G#. On the other hand,

since the circle group T is divisible, Theorem 1.1.6 implies that every character of H can

be extended to a character of G. This means that τb(H) is coarser than the topology of H
inherited from G#. Therefore, the two topologies on H coincide.

c) The groups (G/H)# and G#/H# are algebraically isomorphic and, since H is closed

in G# by a), the quotient group G#/H# is Hausdorff and precompact. Hence the identity

isomorphism i : (G/H)# → G#/H# is continuous by Corollary 9.9.7. Let p : G# → G#/H#

be the quotient homomorphism. It is clear that p = i ◦ π#.q

G#
π#

��

p

��

(G/H)#

i

�����������

G#/H#

If U is an open set in (G/H)#, then i(U) = p((π#)−1(U)) is open in G#/H#, so i is a

topological isomorphism. �

Corollary 9.9.10. If H is a subgroup of a discrete Abelian group G, then the Bohr
compactification bH of H is topologically isomorphic to the closure of H in the Bohr
compactification bG of the group G.

Proof. It follows from Corollary 9.9.6 that G# is a topological subgroup of the compact

group bG. Hence, b) of Proposition 9.9.9 implies that H# is a dense subgroup of the

compact group K = clbGH . Then, again by Corollary 9.9.6, H# is a dense subgroup of the

compact topological group bH . Therefore, the compact groups bH and K are topologically

isomorphic, by Theorem 3.6.14. �

Let us show that the functor # preserves finite products.

Proposition 9.9.11. Let G = H1 × · · · ×Hn be a product of discrete Abelian groups.
Then the identity mapping i of G# onto H#

1 × · · · ×H#
n is a topological isomorphism.
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Proof. Since the group H#
1 × · · · ×H#

n is precompact, it follows from Corollary 9.9.7

that i is continuous. Conversely, for every k ≤ n, let jk be the canonical embedding of

Hk to the product group G = H1 × · · · × Hn. If ϕ is a character on G#, denote by ϕk the

composition ϕ ◦ jk for k = 1, . . . , n. Then ϕk is a continuous character on H#
k , and we can

define a continuous character ψ on H#
1 × · · · ×H#

n by letting ψ(x) =
∑n

k=1 ϕk(xk) for each

x = (x1, . . . , xn) ∈ G. It is easy to verify that ϕ = ψ; thus, every character on G# remains

continuous as a character on H#
1 × · · · ×H#

n . Hence, i is a topological isomorphism. �

Proposition 9.9.11 is not valid either for infinite direct sums or for infinite topological

products of discrete Abelian groups (see Exercise 9.9.j).

Corollary 9.9.12. Let G = G1×G2 be the product of discrete Abelian groups. Then
the groups bG and bG1 × bG2 are topologically isomorphic.

Proof. It follows from Corollary 9.9.6 and Proposition 9.9.11 that G# is topologically

isomorphic to a dense subgroup of the compact topological groups bG and bG1 × bG2.

Since compact topological groups are Raı̆kov complete, Theorem 3.6.14 implies that the

groups bG and bG1 × bG2 are topologically isomorphic. �

For the further study of Abelian groups with the Bohr topology, we need several concepts

and facts from the theory of abstract Abelian groups (see [409, Section 4.2]).

Given an Abelian group G, we denote by tor(G) the torsion subgroup of G which

consists of all elements of G of finite order (see Section 1.1). For example, the torsion

subgroup of the circle group T is the group

tor(T) = {e2πqi : q ∈ Q}.
Note that the quotient group G/tor(G) is torsion-free, that is, all non-zero elements of

G/tor(G) have infinite order.

Here we extend the concept of linearly independent subsets of Abelian groups defined

in Section 7.10 to subsets which contain elements of finite order, and define the p-rank of

G, for each prime p.

Suppose that A is a non-empty subset of an Abelian group G with neutral element

e. If, for any distinct elements a1, . . . , an ∈ A and any integers m1, . . . , mn, the equality

m1a1 + · · · + mnan = e implies that mixi = e, for each i = 1, . . . , n, we say that A is an

independent subset of G.

Zorn’s lemma implies that every independent subset of G is contained in a maximal

independent subset. One can choose independent subsets consisting either of elements of

infinite order or of elements having prime power orders, for a given prime p. In the first

case, this gives rise to the torsion-free rank r0(G) of G considered in Section 7.10, while

in the second case we obtain the definition of the p-rank of G. More precisely, the p-rank

rp(G) of G is the cardinality of a maximal independent subset of elements of p-power orders

in G. Similarly to the torsion-free rank r0(G), the definition of rp(G) does not depend on

the choice of a corresponding maximal independent subset (see [409, 4.2.1]).

Lemma 9.9.13. Let f : G→ H be a homomorphism of Abelian groups. If H = f (G),
then r0(H) ≤ r0(G).

Proof. Let B be a maximal independent subset of H of elements of infinite order.

Choose a subset A of G such that f (A) = B and the restriction of f to A is one-to-one.
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Then |A| = |B|, the set A is independent in G and each element of A has infinite order.

This proves that r0(H) ≤ r0(G). �

Given an Abelian group G and a prime number p, we denote by Gp the set of all

elements in G of a p-power order. It is easy to see that Gp is a subgroup of G which is

called the p-primary component of G, or a primary component of G if we do not need to

specify p. It is clear from the definitions that rp(G) = rp(Gp). If G = Gp for some prime

p, then G is called a torsion p-group.

A torsion Abelian group G is said to be bounded torsion if there exists an integer n ∈ N
such that nx = 0G, for each x ∈ G.

Theorem 9.9.14. Every torsion Abelian group G is the direct sum of the primary
components of G.

Proof. First, we have to verify that G =
∑

p∈P
Gp. Indeed, let x be an arbitrary

non-zero element of G and n be the order of x. Then n = pk1

1 . . . pkm
m , where p1, . . . , pm are

distinct primes and k1, . . . , km are positive integers. For every i ≤ m, let Ni = n/pki
i . Then

the integers N1, . . . , Nm are relatively prime, so we can find integers s1, . . . , sm such that

s1N1 + · · ·+ smNm = 1. Put yi = siNi x for each i = 1, . . . , m. Then pmi
i yi = sin x = 0G;

it follows that yi ∈ Gpi for all i ≤ m. In addition, the choice of s1, . . . , sm implies that

x = y1 + · · ·+ ym and hence, x ∈ Gp1
+ · · ·+ Gpm .

We claim that Gp ∩ (Gq1
+ · · · + Gqk ) = {0G}, for any pairwise distinct primes

p, q1, . . . , qk. Indeed, let x = y1 + · · · + yk, where x ∈ Gp and yi ∈ Gqi for each i ≤ k.

Then the order of x is a power of p, while the order of y1 + · · ·+ yk is qn1

1 · · · qnk

k , for some

n1, . . . , nk ∈ N. Therefore, x = 0G. Thus, G is isomorphic to the direct sum ⊕p∈PGp. �

For an Abelian group G and an integer n > 0, let

G[n] = {x ∈ G : nx = 0G}.
Clearly, G[n] is a subgroup of G and the order of every non-zero element x ∈ G[n] divides

n.

Lemma 9.9.15. Let G be an uncountable Abelian torsion p-group. Then |G[p]| = |G|.
Proof. Denote by ϕ the homomorphism of G to G defined by ϕ(g) = pg for each

g ∈ G. It is clear that ker ϕ = G[p]. Note that if g, h ∈ G and ϕ(h) = g, then

ϕ−1(g) = h + G[p]. Therefore,

|ϕ−1(g)| ≤ |G[p]| for each g ∈ G. (9.14)

Consider an increasing sequence H1 ⊂ H2 ⊂ · · · of subgroups of G defined by H1 = G[p]

and Hn+1 = ϕ−1(Hn), for each integer n ≥ 1. Let τ = |H1| and suppose that we have proved

the inequality |Hn| ≤ τ ·ω for some integer n ≥ 1. By (9.14) and the inductive hypothesis,

we have |Hn+1| ≤ τ · ω. Note that Hn = G[pn] for each n ≥ 1, so G =
⋃∞

n=1 Hn. Since

|G| > ω, we conclude that |G| = τ = |G[p]|. �

Corollary 9.9.16. Every uncountable torsion p-group G satisfies rp(G) = |G|.
Proof. By Lemma 9.9.15, the cardinalities of G and G[p] coincide. Let A be a

maximal independent subset of the group G[p]. It is easy to verify that A is also a maximal

independent subset of G, so it suffices to show that |A| = |G[p]|. By the choice of
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A, for every x ∈ G[p] \ A the set A ∪ {x} is dependent, so that nx ∈ 〈A〉, for some

n /∈ pZ. Therefore, there are integers a, b ∈ Z such that an + bp = 1; it follows

that x = (an + bp)x = anx ∈ 〈A〉. Hence, G[p] = 〈A〉, so A is uncountable and

|A| = |〈A〉| = |G[p]| = |G|. �

Another useful characteristic of an Abelian group G is the complete rank which we

will often simply call the rank of G:

r(G) = r0(G) +
∑
p∈P

rp(G),

where P is the set of all prime integers. It is clear that r(G) = r0(G) if the group G is

torsion-free, and r(G) = rp(G) if G is a torsion p-group, for some p ∈ P.

Let us establish several elementary facts concerning the rank of Abelian groups. The

first auxiliary fact is almost immediate.

Lemma 9.9.17. Let A0 be a maximal independent subset of an Abelian group G
consisting of elements of infinite order. For every prime number p, let Ap be a maximal
independent subset of the subgroup Gp of G. Then A = A0 ∪

⋃
p∈P

Ap is a maximal
independent subset of G.

Proof. A simple argument about the orders of elements shows that the set A is

independent. Let us verify the maximality of A. Take an arbitrary x ∈ G \ A.

Case 1. x ∈ tor(G). By Theorem 9.9.14, there are distinct primes p1, . . . , pn such that

x ∈ Gp1
+ · · · + Gpn . Then x = y1 + · · · + yn, where yi ∈ Gpi for each i ≤ n. Take any

i ≤ n and let psi
i be the order of yi. Then either yi ∈ Api or the set {yi} ∪Api is dependent.

In either case, there exists an integer mi with 0 < mi < psi
i such that miyi ∈ 〈Api〉. Put

M = m1 · · ·mn. Then Myi ∈ 〈Api〉 for each i ≤ n, and it follows that

Mx = My1 + · · ·+ Myn ∈ 〈Ap1
∪ . . . ∪ Apn〉 ⊂ 〈A〉.

In addition, M = m1 · · ·mn < ps1

1 · · ·psn
n = o(x), so that Mx = 0G. Hence, the set A∪{x}

is dependent.

Case 2. x /∈ tor(G). Then the set A0 ∪ {x} is dependent, and so is the set A ∪ {x}.
Thus, A is maximal. �

The next result relates the rank and the cardinality of maximal independent sets.

Proposition 9.9.18. Let B be a maximal independent subset of an Abelian group G.
Then |B| = r(G).

Proof. Let the sets A0, Ap and A be as in Lemma 9.9.17. Then |A0| = r0(G) and

|Ap| = rp(G) for each p ∈ P. Since A0 ∩Ap = ∅ and Ap ∩Aq = ∅ for distinct p, q ∈ P,

it follows from the definition of r(G) that r(G) = |A|. Since any two maximal independent

subsets of G have the same cardinality, we have |B| = |A| = r(G). �

Corollary 9.9.19. If H is a subgroup of an Abelian group G, then r(H) ≤ r(G).

Proof. Take a maximal independent subset B of the group H . By Zorn’s Lemma,

there exists a maximal independent subset A of G which contains B. Now it follows from

Proposition 9.9.18 that r(H) = |B| ≤ |A| = r(G). �
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Notice that the group Q is infinite, while r(Q) = r0(Q) = 1. It turns out that for

uncountable groups, the rank and the cardinality always coincide.

Proposition 9.9.20. Every uncountable Abelian group G contains an independent
subset A satisfying |A| = |G|. Hence, r(G) = |G| for such a group G.

Proof. Again, let A0 and Ap for p ∈ P be as in Lemma 9.9.17. Then A =

A0∪
⋃

p∈P
Ap is a maximal independent subset of G. Suppose to the contrary that |A| < |G|.

By the definition of A, for every non-zero element x ∈ G there exists an integer n such that

0G = nx ∈ 〈A〉. Since |〈A〉| ≤ |A| · ω < |G|, we can find an element g ∈ 〈A〉 \ {0G},
an integer m = 0 and a set D ⊂ G with |D| > |A| · ω such that g = mx for each

x ∈ D. Let x0 ∈ D be arbitrary. Then m(x − x0) = 0G for each x ∈ D; therefore,

|G[m]| ≥ |D|. By Theorem 9.9.14, the group H = G[m] is the direct sum of the p-

primary components Hp, where p runs through the prime divisors of m. Hence |Hp| = |H |
for some p. It follows from Corollary 9.9.16 that rp(Hp) = |Hp| = |H | ≥ |D|, so

|Ap| = rp(Hp) ≥ |D| > |A| ≥ |Ap|. This contradiction proves the equality |A| = |G|.
Proposition 9.9.18 implies that r(G) = |G|. �

Let us go back to Bohr topologies. The next simple result has many applications.

Proposition 9.9.21. Let G be an Abelian group. Then every independent subset of G
is closed and discrete in G#.

Proof. Suppose that a set A ⊂ G is independent and take an arbitrary x ∈ A. Since, by

a) of Proposition 9.9.9, the subgroup Hx = 〈A\{x}〉 is closed in G# and A∩(G\Hx) = {x},
we conclude that the point x is isolated in A. Hence the set A is discrete as a subspace of

G#. To show that A is closed in G#, take a point y ∈ A. Then y ∈ A ⊂ 〈A〉 = 〈A〉, so

there exists a finite set B ⊂ A such that y ∈ 〈B〉. Hence, U = G \ 〈A \ B〉 is an open

neighbourhood of y in G# which satisfies U ∩ A ⊂ B, that is, |U ∩ A| < ω. Therefore, A
is closed in G#. �

Corollary 9.9.22. [K. P. Hart and J. van Mill] Let G be a discrete Abelian group.
Then G# contains a closed discrete subset of size |G|.

Proof. IfG is uncountable, the conclusion follows fromPropositions 9.9.20 and9.9.21.

The case of a finite group G is trivial, so we can assume that |G| = ω. Since every compact

topological group is either finite or uncountable, by b) of Corollary 5.2.7, G# cannot be

compact. In addition, since G# is countable (hence, Lindelöf), it is not countably compact.

Hence, G# contains an infinite closed discrete subset. �
It will be shown below in Theorem 9.9.30 that, for every infinite Abelian group G, the

topological group G# is very far from being compact. It turn out, however, that the group

G# is realcompact (that is, Hewitt–Nachbin complete), for each G of a not extremely large

cardinality. A proof of this fact, presented below, is based on Theorem 9.8.5. We start with

two lemmas. The first of them is evident, so we omit its proof.

Lemma 9.9.23. Let H be an abstract group and F ⊂ TH a set. If every f ∈ F satisfies
f (xy) = f (x)f (y) for all x, y ∈ H , then so does every p ∈ clTH (F ).

Recall that, for a discrete Abelian group G, the image G# = rG(G) and its closure bG
in TG∗ are topological subgroups of the compact group TG∗ , so every element of G# can be
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considered as a character of the dual group G∗. Hence, by Lemma 9.9.23, every element of

bG is a (perhaps, discontinuous) character of the compact dual group G∗.

Lemma 9.9.24. Let G be a discrete Abelian group and p ∈ bG. Then p belongs to the
Gδ-closure of G# in bG iff p is continuous on every countable subset of G∗.

Proof. Let V be a Gδ-set in bG containing p. There exists a countable subset C of

the compact group G∗ such that VC(p) = {q ∈ bG : q�C = p�C} ⊂ V . Then VC(p)

is also a Gδ-set in bG. Since q�C is continuous on C for each q ∈ rG(G), we have that

VC(p) ∩ rG(G) = ∅ if and only if p is continuous on C. �
Theorem 9.9.25. [W. W. Comfort, S. Hernández, and F. J. Trigos- Arrieta] Let

G be a discrete Abelian group. Then G# is realcompact if and only if the cardinality of G
is Ulam non-measurable.

Proof. Suppose that the cardinality of G is Ulam non-measurable. From the inequality

|G∗| ≤ 2|G| it follows that the cardinality of the dual group G∗ is also Ulam non-measurable.

Take an arbitrary element p ∈ bG that belongs to the Gδ-closure of the subgroup G#. By

Lemma 9.9.24, the character p is continuous on every countable subset of the compact dual

group G∗, so p is continuous on G∗ by Theorem 9.8.5. By the Pontryagin–van Kampen

duality theorem, the latter means that p = rG(g) for some g ∈ G, that is, p ∈ G#. Thus,

the Gδ-closure of G# in bG coincides with G# or, equivalently, the complement bG \ G#

is a union of closed Gδ-sets in bG. Hence, G# is the intersection of cozero sets in bG and

Lemma 8.3.5 implies that the space G# is realcompact.

Conversely, suppose that the space G# is realcompact. If |G| ≤ ω, there is nothing to

prove. We can assume, therefore, that |G| > ω. By Corollary 9.9.22, the group G# contains

a closed discrete subspace D with |D| = |G|. Then D is realcompact as a closed subspace

of the realcompact space G#, so the cardinality of D cannot be Ulam measurable according

to [165, 8.5.13 (h)]. �
All compact subsets of a discrete Abelian group G are finite. When one takes the Bohr

topology τb(G) of G, there might appear infinite compact sets in the group G#. However,

we will show in Theorem 9.9.30 that this is not the case. Our proof of this important result

is based on the study of the subsets of an Abelian group that can be sent to a dense subset

of T by means of a character of the group. We start with subsets of the group Z.

Lemma 9.9.26. For every infinite set A ⊂ Z, there exists a homomorphism ϕ : Z→ T
such that the image ϕ(A) is dense in T.

Proof. Our aim is to show that there exists an element t ∈ T such that the set

At = {tn : n ∈ A} is dense in T. Let {sk : k ∈ ω} be a dense subset of T. It suffices to

choose an element t ∈ T satisfying the following condition:

For every k ∈ ω, there exists n ∈ A such that ||tn − sk|| ≤ 2−k, (9.15)

where || · || denotes the usual norm in the complex plane C. Denote by I0 a non-trivial

closed connected arc in T of length l(I0) ≤ 1 which does not contain 1. There exists n0 ∈ A
such that |n0| · l0 ≥ 2π and, hence, [In0

0 ] = {xn0 : x ∈ I0} = T. Suppose that we have

defined a decreasing sequence I0 ⊇ · · · ⊇ Ik of non-trivial connected arcs in T such that

the length li of Ii is less than or equal to 2−i for each i ≤ k. There exists nk ∈ A such that

|nk| · lk ≥ 2π, so that [Ink

k ] = T. Pick a point xk in Ik such that xnk

k = sk and choose a
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non-trivial closed connected arc Ik+1 containing xk such that Ik+1 ⊂ Ik, l(Ik+1) ≤ 2−k−1

and ||xnk − sk|| ≤ 2−k for each x ∈ Ik+1. This finishes our construction.

Since l(Ik) ≤ 2−k for each k ∈ ω, the intersection
⋂∞

k=0 Ik consists of a single point,

say t. Our construction guarantees that t satisfies (9.15), so that At = T. It remains to

define ϕ(n) = tn for each n ∈ Z. Then the image ϕ(A) = At is dense in T. �
Lemma 9.9.26 is not valid for torsion groups, since the elements of an infinite set A

can have bounded orders. It turns out that this is the only obstacle for the existence of a

character sending A to a dense subset of T.

Lemma 9.9.27. Let A be an infinite subset of a torsion Abelian group G. If the orders
of the elements of A are unbounded, then there exists a homomorphism ϕ : G → T such
that the image ϕ(A) is dense in T.

Proof. Since G is a torsion group, every finite subset of G generates a finite subgroup.

Choose a sequence {xn : n ∈ ω} of elements of A such that for each n ∈ ω, the order kn+1

of xn+1 satisfies kn+1 ≥ 2n+1 · |Hn|, where Hn is the subgroup of G generated by x0, . . . , xn.

As in Lemma 9.9.26, we fix a countable dense subset {sn : n ∈ ω} of T. Our aim is to

define a homomorphism ϕ : G→ T satisfying

||ϕ(xn)− sn|| ≤ 2π/2n for each n ∈ ω. (9.16)

It is clear that (9.16) will imply the density of the image ϕ(A) in T.

Choose an element t0 ∈ T of order k0 = ord(x0) and put ϕ0(x0) = t0. This defines the

homomorphism ϕ0 on the subgroup H0 of G generated by the element x0. The condition

||t0 − s0|| ≤ 2π holds trivially. Suppose that for some n ∈ ω, we have defined a

homomorphism ϕn on the subgroup Hn of G generated by x0, . . . , xn. Denote by m the

minimal positive integer l such that l xn+1 ∈ Hn. Since kn+1 ≥ 2n+1 · |Hn|, we conclude

that 2n+1 ≤ m ≤ kn+1. Let h = mxn+1 and b = ϕn(h). Since the solutions of the

equation ym = b in T form a right polygon with m vertices on the unit circle, we can

choose one of them tn+1 so that ||tn+1 − sn+1|| ≤ 2π/m ≤ 2π/2n+1. As in the proof of

Theorem 1.1.6, we extend ϕn to a homomorphism ϕn+1 of Hn+1 = 〈x0, . . . , xn, xn+1〉 to T
such that ϕn+1(xn+1) = tn+1.

Continuing in this way, we obtain a homomorphism ϕ∞ defined on the subgroup

H =
⋃

n∈ω Hn of G which extends ϕn, for each integer n ≥ 0. It follows from the

construction that ϕ∞ satisfies (9.16); hence, ϕ∞(A) is dense in T. Finally, we apply

Theorem 1.1.6 to extend ϕ∞ over the whole group G. �
Lemma 9.9.28. Suppose that G is a bounded torsion Abelian group. Then all compact

sets in G# are finite.

Proof. First, we consider the case when the exponent of G is a prime number p.

Obviously, every infinite set C ⊂ G contains an infinite independent subset. Indeed, if A is

a finite independent subset of C, then H = 〈A〉 is a finite subgroup of G, so we can take an

arbitrary element x ∈ C \H , thus obtaining the independent set A∪{x} ⊂ C. This implies

immediately that every maximal independent subset of C is infinite. Since independent

subsets of G are closed and discrete in G# by Proposition 9.9.21, no infinite subset of G#

can be compact.

Let m be the exponent of G, and suppose that we have proved the lemma for all torsion

Abelian groups of any exponent less than m. By the way of contradiction, assume that C
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is an infinite compact subset of the group G#. It follows from Proposition 9.9.21 that C
does not contain infinite independent subsets. Let A be a maximal independent subset of

C. Denote by H the subgroup of G generated by A. Clearly, A and H are finite. Since the

set A∪ {x} is dependent for every x ∈ C \H , there exists a proper divisor k of m such that

0G = kx ∈ H . Hence we can find a non-zero element h0 ∈ H , a proper divisor k0 of m and

an infinite subset S of C such that k0x = h0 for each x ∈ S. Since the multiplication by k0

is continuous in G#, the set P = {x ∈ G : k0x = h0} is closed in G#. This implies that

D = C∩P is compact in G#. Clearly, S ⊂ D, so D is infinite. Choose an element x0 ∈ D.

Then k0(x − x0) = 0G for each x ∈ D; it follows that E = D − x0 is an infinite compact

subset of the group G[k0]#. Since the exponent of G[k0] is not greater than k0 and k0 < m,

this contradicts the inductive hypothesis. �

Lemma 9.9.29. If G is a finitely generated Abelian group, then all compact sets in G#

are finite.

Proof. It follows from Lemma 9.9.26 that all compact sets in the group Z# are finite.

Indeed, if A is an infinite subset of Z, then there exists a homomorphism ϕ : Z → T such

that ϕ(A) is dense in T. Clearly, the character ϕ : Z# → T is continuous, so if A were

compact in Z#, the image ϕ(A) would be the whole group T, which is impossible, since G
is countable and T is uncountable.

Finally, let G be an arbitrary finitely generated Abelian group. Then G is algebraically

isomorphic to the product H1 × · · · ×Hn of cyclic groups H1, . . . , Hn, by [409, 4.2.10]. In

other words, G is isomorphic to the group Zm ×K, where K is a finite Abelian group and

m is the number of infinite groups among H1, . . . , Hn. Hence, by Proposition 9.9.11, the

groups G# and (Z#)m×Kd are topologically isomorphic, where Kd is the group K with the

discrete topology. Let C be a compact set in the group (Z#)m ×Kd . Taking projections of

C onto the factors and applying the fact that all compact sets in Z# are finite, we conclude

that C is also finite. �

We are now in a position to prove the first main result of this section.

Theorem 9.9.30. [H. Leptin] For every Abelian group G, all compact subsets of G#

are finite.

Proof. Suppose to the contrary that C is an infinite compact subset of G#. We

can assume without loss of generality that the group G is countable. Indeed, choose a

countable infinite subset S of C and consider the subgroup L = 〈S〉 of G#. By a) and b) of

Proposition 9.9.9, L# is a closed topological subgroup of G#. It is clear that S ⊂ C ∩L, so

the intersection D = C ∩ L is an infinite compact subset of the countable group L#.

Let A be a maximal independent subset of C. Since C is compact and A is closed and

discrete in G# by Proposition 9.9.21, it follows that A is finite. Let H = 〈A〉 and consider the

canonical homomorphism π : G→ G/H . Corollary 9.9.8 implies that the homomorphism

π# : G# → (G/H)# is continuous. We claim that the compact subset D = π(C) of the group

(G/H)# is infinite and the subgroup K of G/H generated by D is a torsion group. Indeed, if

D is finite, take a finite set F ⊂ G such that π(F ) = D. Then C ⊂ H +F ⊂ 〈A∪F〉, which

contradicts Lemma 9.9.29. To show that K is a torsion group, take an arbitrary element

y ∈ K and choose x ∈ 〈C〉 with π(x) = y. Since A is a maximal independent subset of
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C, there exists an integer n > 0 such that nx ∈ 〈A〉 = H . Then ny = π(nx) is the neutral

element of G/H . This proves the claim.

If the orders of elements of D are bounded, then K is a bounded torsion group. Since

D is an infinite compact subset of K#, this contradicts Lemma 9.9.28. If the orders of the

elements of D are unbounded, then, by Lemma 9.9.27, there exists a character ϕ : K → T
such that ϕ(D) is dense in T. Since ϕ is continuous as a homomorphism of K# to T and

D ⊂ K# is compact, we must have ϕ(D) = T. This contradicts the fact that D is countable.

Thus, the set C is finite. �
In the next theorem we establish another important property of Bohr topologies. To

avoid confusion, we use notation

h←(U) = {x ∈ G : h(x) ∈ U}
for a character h ∈ G∗ and a set U ⊂ T.

Theorem 9.9.31. [E. van Douwen] The group G# is zero-dimensional, for every
discrete Abelian group G.

Proof. Let us show that G# has a base of clopen sets at the neutral element 0G. Let

�(1) be the family of open neighbourhoods of the identity 1 in the circle group T. Since

the family

{h←(U) : h ∈ G∗, U ∈ �(1)}
is a subbase for the topology of G# at 0G, it suffices to find, for each subbasic neighbourhood

h←(U) of 0G in G#, a clopen set V in G# with 0G ∈ V ⊂ h←(U).

If G is a torsion group, then the image h(G) is a subgroup of the countable group tor(T)

for each h ∈ G∗. Hence G# is topologically isomorphic to a subgroup of tor(T)κ, for some

cardinal κ. Since the subgroup tor(T) of T is zero-dimensional, so are the groups tor(T)κ

and G#.

In the general case, notice that T contains two proper subgroups A and B such that

A∩B = {1} and T = A ·B. Indeed, take A = tT. The group A is divisible, so there exists

a homomorphism ϕ : T→ A which extends the identity automorphism idA of A. Then the

groups A and B = ker ϕ are as required. Clearly, the groups A and B are zero-dimensional,

since they are proper subgroups of T.

The function m : A × B → T defined by m(a, b) = a · b for all a ∈ A and b ∈ B is

continuous since it is the restriction of the multiplication in T. It follows from our choice

of A and B that m is an isomorphism of A× B onto T.

We claim that, for a given h ∈ G∗, the composition f = m−1 ◦ h is a continuous

homomorphism of G# to A×B (even if the function m−1 is discontinuous as a mapping of

the connected space T onto the zero-dimensional space A×B). Indeed, A×B as a subgroup

of the compact group T× T, so m−1 ◦ h : G# → A× B is continuous by Corollary 9.9.7.

Let U ∈ �(1) be arbitrary. Since m is continuous and A× B is zero-dimensional, we

can find a clopen neighbourhood V of (1, 1) in A × B such that m(V ) ⊂ U. Then, by the

continuity of f , the set W = f−1(V ) is a clopen neighbourhood of the neutral element in

G#, and W = f−1(V ) = h←(m(V )) ⊂ h←(U). �
Since every group of the form G# is precompact (hence, is a subgroup of a compact

topological group), one can invoke Corollary 8.8.6 to strengthen the conclusion of Theo-

rem 9.9.31 as follows:
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Theorem 9.9.32. Every discrete Abelian group endowed with the Bohr topology is
strongly zero-dimensional.

One can show that closed subsets of an uncountable Abelian group G# need not be

C∗-embedded in G# (see Exercise 9.9.f). It turns out, however, that all subgroups of G# are

C-embedded in G#. This will be established in Theorem 9.9.40.

Let S be a space. A subset A of a space X is called S-embedded in X if every continuous

mapping of A to S can be extended to a continuous mapping of X to S. It follows from the

definition that the following implications hold:

R-embedded⇔ C-embedded, I-embedded⇔ C∗-embedded,

where I = [0, 1] is the closed unit interval. For the further study of Bohr topologies we need

several facts about S-embedded subsets, where S is one of the spaces R, I, N or 2 = {0, 1}.
The following implications are trivial:

R-embedded⇒ I-embedded, N-embedded⇒ 2-embedded.

Below we present several implications which are less obvious.

Lemma 9.9.33. Let A be a strongly zero-dimensional subspace of a space X. Then:

i) if A is 2-embedded in X, then it is I-embedded in X;
ii) if A is N-embedded in X, then it is R-embedded in X;

If, in addition, X is strongly zero-dimensional, then every R-embedded subset of X is N-
embedded in X.

Proof. i) This follows from Theorem 6.1.5.

ii) Suppose that A is N-embedded in X and consider a continuous function f : A→ R.

Since A is strongly zero-dimensional, we can choose, for every n ∈ N, a clopen set Un in

A such that f−1([n, n + 1]) ⊂ Un ⊂ f−1(n− 1, n + 2). For every x ∈ A, set

h(x) = min{n ∈ Z : x ∈ Un}.
Then h : A → Z is a continuous function and since A is N-embedded in X, h admits a

continuous extension h̃ : X → Z. The family γ = {h̃−1(n) : n ∈ Z} is a disjoint covering

of X by clopen sets such that f �E is bounded for each E ∈ γ. As A is N-embedded in X, it is

2-embedded in X. Hence A∩E is 2-embedded in E for each E ∈ γ. Since A∩E is strongly

zero-dimensional (as a clopen subset of A), it follows from i) that A ∩ E is C∗-embedded

in E. So we can find a continuous function ϕE : E → R which extends f �A ∩ E. Then

ϕ =
⋃

E∈γ ϕE is a continuous real-valued function on X that extends f .

Finally, let B be an R-embedded subset of X, and take a continuous function f : B → N.

There exists a continuous function g : X → R such that g�B = f . If T = {n + 1
2

: n ∈ Z},
then g−1(Z) and g−1(T ) are disjoint zero-sets in the strongly zero-dimensional space X, so

we can find a clopen set U in X such that g−1(Z) ⊂ U ⊂ X \ g−1(T ). For every x ∈ U,

choose an integer nx satisfying nx − 1
2

< g(x) < nx + 1
2
. Then the function h : X → N

given by h(x) = nx for x ∈ U and h(x) = 0 for x ∈ X \ U is continuous and its restriction

to B coincides with f . So B is N-embedded in X. �

Since every countable regular space is normal and strongly zero-dimensional, by [165,

Coro. 6.2.8], the next corollary follows immediately from the last claim of Lemma 9.9.33:
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Corollary 9.9.34. Every closed subspace of a countable Tychonoff space X is N-
embedded in X.

Let us discuss more closely relations between z-embeddings, C∗-embeddings and C-

embeddings. The results of this discussion with be applied to deduce the fact that H# is C-

embedded in G#, for every subgroup H of a discrete Abelian group G (see Theorem 9.9.40).

First, we present a necessary and sufficient condition for a C∗-embedded subset to be

C-embedded.

Lemma 9.9.35. A C∗-embedded subset Y of a space X is C-embedded in X if and only
if Y is completely separated from every zero-set in X disjoint from it.

Proof. Suppose that Y is C-embedded in X. Let F be a zero-set in X disjoint from

Y and h be a continuous function on X with values in the closed unit interval [0, 1] such

that F = h−1(0). Define a function f on Y by f (y) = 1/h(y) for each y ∈ Y . Then

f is continuous on Y and since Y is C-embedded in X, there exists a continuous function

g : X → R extending f . Then the function gh is continuous on X and is equal to 0 on F
and to 1 on Y . This proves the necessity.

Conversely, let f be a continuous real-valued function on Y . Take a homeomorphism

ϕ of R onto the open interval (0, 1). Then ϕ ◦ f is a continuous bounded function on Y , so

it admits an extension to a continuous function g on X. Clearly,

Z = {x ∈ X : |g(x)| ≥ 1}
is a zero-set in X disjoint from Y , so by our hypothesis, there exists a continuous function

h on X with values in [0, 1] equal to 0 on Z and to 1 on Y . Then the restriction of g · h to Y
coincides with ϕ ◦ f and satisfies |(g · h)(x)| ≤ 1 for each x ∈ X. Therefore, ϕ−1 ◦ (g · h)

is a continuous extension of f over X. �

The following theorem helps to recognize when a z-embedded subset is C-embedded.

Note that the theorem below strengthens Lemma 9.9.35.

Theorem 9.9.36. Let Y be a z-embedded subset of a space X. Then:

a) Y is C-embedded in X if and only if Y is completely separated in X from every zero-set
disjoint from it;

b) if Y is a zero-set in X, then Y is C-embedded in X.

Proof. a) The condition is necessary, by Lemma 9.9.35. For the sufficiency, suppose

that Y is completely separated in X from every zero-set disjoint from it. Let us show that

every two completely separated sets F1 and F2 in Y are completely separated in X and,

hence, Y is C∗-embedded in X by Theorem 6.1.5. Clearly, we can assume that F1 and F2

are zero-sets in Y . Since Y is z-embedded in X, there exist zero-sets T1 and T2 in X such

that Y ∩ Ti = Fi for i = 1, 2. Then T1 ∩ T2 is a zero-set in X and Y ∩ T1 ∩ T2 = ∅. By our

assumption about Y , one can find a zero-set C in X such that Y ⊂ C and C ∩ T1 ∩ T2 = ∅.

Then the zero-sets Z1 = T1 ∩ C and Z2 = T2 ∩ C in X are disjoint. Therefore, Z1 and

Z2 are completely separated in X by [165, Theorem 1.5.13]. Since Fi ⊂ Zi for i = 1, 2,

the sets F1 and F2 are also completely separated in X, and hence, Y is C∗-embedded in X.

Finally, from Lemma 9.9.35 it follows that Y is C-embedded in X.
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b) Suppose that Y is a zero-set in X, and let F be any zero-set in X disjoint from Y .

According to [165, Theorem 1.5.13], the sets Y and F are completely separated in X, so

condition a) of the theorem implies that Y is C-embedded in X. �
If a topological group G admits a continuous isomorphism onto a second-countable

topological group H , then |G| = |H | ≤ c. It turns out that for an Abelian topological group

of the form G#, the restriction |G| ≤ c is also sufficient to guarantee the existence of such

an isomorphism.

Proposition 9.9.37. If a discrete Abelian group G satisfies |G| ≤ 2κ for some κ ≥ ω,
then there exists a continuous isomorphism of G# onto a topological group H with w(H) ≤ κ.
In particular, if |G| ≤ c, then G# admits a continuous isomorphism onto a second-countable
topological group.

Proof. The dual group G∗ is compact by Proposition 9.5.5 and w(G∗) ≤ |G| ≤ 2κ

by Theorem 9.6.6. It follows from c) of Corollary 5.2.7 that d(G∗) ≤ κ, so we can choose

a dense subset S of G∗ with |S| ≤ κ. Then K = 〈S〉 is a dense subgroup of G∗ and

|K| ≤ κ. Let i : G# → TK be the mapping given by i(x)(h) = h(x) for all x ∈ G and

h ∈ K. Obviously, i is a continuous homomorphism and i is a monomorphism, since K is

dense in G∗. The group H = i(G#) ⊂ TK satisfies w(H) ≤ |K| ≤ κ, so the isomorphism

i : G# → H is as required. �
In the next theorem we present more topological consequences of the inequality |G| ≤ c.

Theorem 9.9.38. [W. W. Comfort, S. Hernández, and F. J. Trigos- Arrieta] For a
discrete Abelian group G, the following are equivalent:

a) G# is hereditarily realcompact;
b) ψ(G#) ≤ ω;
c) |G| ≤ c;
d) G# admits a continuous isomorphism onto a second-countable topological group.

Proof. a)⇒ b). Since G# is a subgroup of the compact group bG by Corollary 9.9.6,

it follows from Corollary 5.3.29 that the group G# is perfectly κ-normal and, hence, is a

Moscow space. If the neutral element e of G# has uncountable pseudocharacter in G#, then

G# \{e} is Gδ-dense in G#. Therefore, Theorem 6.1.7 implies that G# \{e} is C-embedded

in G#. In its turn, this implies that G# ⊂ υ(G# \ {e}) and, hence, G# \ {e} = υ(G# \ {e}).
In other words, the subspace G# \ {e} of G# is not realcompact.

b)⇒ c). If ψ(G#) ≤ ω, then |G| ≤ 2ω = c by Corollary 5.2.16.

c)⇒ d). This is Proposition 9.9.37.

d)⇒ a). Let i : G# → H be a continuous isomorphism of G# onto a second-countable

topological group H . Since H is hereditarily realcompact, so is G# by [165, 3.11.B]. �
The following fact plays an auxiliary role; it will be given a final form in Theorem 9.9.40.

Corollary 9.9.39. Let H be an arbitrary subgroup of a discrete Abelian group G,
where |G| ≤ c. Then H# is C-embedded in G#.

Proof. It follows from Corollary 8.1.17 that the group H# is R-factorizable, so

Theorem 8.2.5 implies that H# is z-embedded in G#. The group H# is closed in G# by

Proposition 9.9.9, so the quotient group G#/H# is Hausdorff and satisfies |G#/H#| ≤
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|G#| ≤ c. Hence, ψ(G#/H#) ≤ ω by Theorem 9.9.38. Since H# is the kernel of the natural

quotient homomorphism π : G# → G#/H#, we conclude that H# is a zero-set in G# that is

clearly z-embedded in G#. Hence, by b) of Theorem 9.9.36, H# is C-embedded in G#. �

In general, subgroups of a topological group G need not be C-embedded or C∗-

embedded in G — take the subgroup Q of R or the quasicyclic subgroup Qp∞ of T, for

a prime p. In fact, even closed subgroups can fail to be z-embedded in a larger Abelian

topological group (see Example 9.9.e). Let us show that this never happens in the groups

endowed with the Bohr topology.

Theorem 9.9.40. Let H be a subgroup of a discrete Abelian group G. Then H# is
C-embedded and N-embedded in G#.

Proof. Let f : H# → R be an arbitrary continuous function. The groups H#, G#

and bG are R-factorizable by Corollary 8.1.17, so H# is z-embedded in the groups G# and

bG by Theorem 8.2.5. We now apply Theorem 8.2.6 to find a continuous homomorphism

π : bG → K onto a second-countable topological group K and a continuous function

h : π(H#)→ R such that f = h ◦ π�H#. Clearly, we have

|π(G#)| ≤ |K| ≤ 2ω = c.

It now follows from Corollary 9.9.39 (applied to the abstract groups π(H) and π(G) in place

of H and G) that π(H)# is C-embedded in π(G)#. Note that the topology of the group π(H)#

is finer than that of π(H#) ⊂ K, so h remains continuous when considered as a function

on π(H)#. Hence h can be extended to a continuous function h∗ : π(G)# → R. Since the

homomorphism π# : G# → π(G)# is continuous by Corollary 9.9.8, f ∗ = h∗ ◦ π�G# is a

continuous extension of f over G#. Thus H# is C-embedded in G#.

Finally, since the group G# is strongly zero-dimensional, by Theorem 9.9.32, it remains

to apply the last claim of Lemma 9.9.33 to conclude that H# is N-embedded in G#. �

The above result has several interesting applications. For example, it enables us to

strengthen the conclusion of Theorem 9.9.30 and show that all bounded subsets of the

groups with the Bohr topology are finite. We need a simple topological fact.

Lemma 9.9.41. Let X be a countable regular space such that all compact subsets of X
are finite. Then every infinite set A ⊂ X contains an infinite subset B which is closed and
discrete in X.

Proof. Suppose that A ⊂ X is infinite. The infinite set F = clXA is not compact. Since

F is countable, it follows that F is not pseudocompact. Take any unbounded continuous

function f : F → R. Since A is dense in F , the function g is unbounded on A. For

every integer n, choose a point an ∈ A such that |g(an)| ≥ n. Then the infinite set

B = {an : n ∈ ω} ⊂ A is closed and discrete in X. �

Theorem 9.9.42. [F. J. Trigos− Arrieta] Let G be a discrete Abelian group. Then
all bounded subsets of G# are finite.

Proof. Let A be an infinite subset of G. We have to find a continuous function

f : G# → R with unbounded image f (A) ⊂ R. Choose a countable infinite subset B of

A and denote by H the subgroup of G generated by B. Then H# is N-embedded in G#

by Theorem 9.9.40. Consider B as a subspace of H# and apply Lemma 9.9.41 to choose
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an infinite set C = {xn : n ∈ ω} ⊂ B which is closed and discrete in the countable

group H#. Then C is N-embedded in H# according to Corollary 9.9.34, which in turns

implies that C is N-embedded in G#. Define a function g : C → N by g(xn) = n for each

n ∈ ω. Clearly, g is continuous and, hence, admits a continuous extension f over G#. Then

f (A) ⊇ f (C) = g(C) = N is unbounded in R, as required. �

For a group G of Ulam non-measurable cardinality, the conclusion of the above theorem

can be deduced from Theorem 9.9.30 and 9.9.25, since the closure of a bounded subset B
of a realcompact space is compact.

Two important facts regarding independent subsets of Abelian groups were established

in Propositions 9.9.20 and 9.9.21. Below we present some further delicate topological

properties of independent sets.

Theorem 9.9.43. Let G be a discrete Abelian group. Then every independent subset
of G is N-embedded and C-embedded in G#.

Proof. Let A be an independent subset of G and H be the subgroup of G generated

by A. According to Theorem 9.9.40, the subgroup H# of G# is N-embedded in G#. Since

the relation of being N-embedded is transitive, the first claim of the theorem will follow if

we show that A is N-embedded in H#.

Suppose that f : A → N is an arbitrary mapping to the discrete space N. Note that

the set A is closed and discrete in G# by Proposition 9.9.21, so f is continuous. For every

integer m ≥ 2, denote by Am the set of all elements a ∈ A of order m. For all m ≥ 2 and

n ∈ f (Am), choose an element am,n ∈ Am such that f (am,n) = n. Then

B = {am,n : m ∈ N, m ≥ 2, n ∈ f (Am)}
is a countable subset of A. Let us define a mapping g : A→ A by the rule:

g(a) = am,n whenever a ∈ Am and f (a) = n.

Since the family {Am ∩ f−1(n) : n ∈ f (Am)} is a partition of Am for each m ≥ 2,

the mapping g is correctly defined. It follows directly from the definition of g that

f (g(a)) = f (a) and, furthermore, the orders of a and g(a) coincide for each a ∈ A.

Let L be the subgroup of G generated by B. Clearly, L is countable and L ⊂ H .

Since the set A is independent and g does not change orders of the elements of A, one

can extend g to a homomorphism h : H → L. By Corollary 9.9.8, the corresponding

homomorphism h# : H# → L# is continuous. Notice that B = A ∩ L is a closed discrete

subset of the countable group L#, so the restriction of f to B admits an extension to a

continuous mapping f̃ : L# → N, by Corollary 9.9.34. Then the composition f̃ ◦ h# is a

continuous extension of f over H#, thus implying that A is N-embedded in H#. Thus, A is

N-embedded in G#.

Finally, since A is a discrete subspace of G#, by Proposition 9.9.21, it follows from ii)

of Lemma 9.9.33 that A is R-embedded (that is, C-embedded) in G#. �

The next step is to show that independent subsets of a discrete Abelian group G are

C∗-embedded in the compact group bG, the Bohr compactification of G. A simple lemma

below is a part of the argument in the proof of Theorem 9.9.45.
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Lemma 9.9.44. Let G be a discrete Abelian group and H1, H2 be subgroups of G
with trivial intersection. Then the intersection of the closures of H1 and H2 in the Bohr
compactification bG of G is also trivial.

Proof. Consider the subgroup H = H1 + H2 of G. It follows from Corollary 9.9.10

that the Bohr compactification bH of H is topologically isomorphic to the closure of H in

bG. Since the intersection H1∩H2 is trivial, the group H is algebraically isomorphic to the

product group H1×H2. Hence bH is topologically isomorphic to the group bH1× bH2 by

Corollary 9.9.12. Let us identify the closure of H in bG with the product group bH1×bH2.

It is clear that H1 ⊂ bH1 × {02} and H2 ⊂ {01} × bH2, where 01 and 02 are the neutral

elements of the groups bH1 and bH2, respectively. So the closures of the groups H1 and H2

in bH (and in bG) have the unique common element, the neutral element of bH . �
Theorem 9.9.45. Let G be a discrete Abelian group. Then every independent subset

A of G is C∗-embedded in bG. Hence, the closure of A in bG is naturally homeomorphic
to the Čech–Stone compactification βA of A.

Proof. First we prove that A is C∗-embedded in bG. By Theorem 6.1.5, it suffices

to verify that, for every subset B of A, the sets clbGB and clbG(A \ B) are disjoint. Denote

by H1 and H2 the subgroups of G generated by A \ B and B, respectively. Since the set A
is independent, the intersection of the groups H1 and H2 is trivial. By Lemma 9.9.44, this

implies that the intersection of the closures of H1 and H2 in bG is also trivial. According to

Proposition 9.9.21, the sets A\B and B are closed in G# and, clearly, none of them contains

the neutral element 0G of the group G# ⊂ bG. Hence their closures in bG do not contain

0G either. Since clbG(A \ B) ⊂ clbGH1 and clbGB ⊂ clbGH2, we conclude that the sets

clbG(A \ B) and clbGB are disjoint. This proves the first claim of the theorem.

Since the set A is C∗-embedded in bG, it is also C∗-embedded in its closure K = clbGA.

The space K being compact, there exists a homeomorphism h : K → βA such that h(x) = x
for each x ∈ A (see [165, Coro. 3.6.3]). �

Combining Theorems 9.9.43 and 9.9.45, we conclude that every independent subset

of a discrete Abelian group G is N-embedded in G# and C∗-embedded in bG. In fact, the

subsets of G with these properties are abundant — we will show in Theorem 9.9.51 that every

uncountable set A in an Abelian group G contains a subset B of the same cardinality as A
which is N-embedded in G# and C∗-embedded in bG. This fact shows that the relationship

of the subgroup G# to the group bG is very similar to the relationship of an infinite discrete

space D to its Čech–Stone compactification βD (even though the group G# is very far from

being discrete when G is infinite). The argument that follows requires a series of auxiliary

results. The first of them is purely geometric in nature, but it introduces one of the main

ideas in the proof of Theorem 9.9.51.

Lemma 9.9.46. The torus T2 contains two closed disjoint subsets K and L such that,
for every integer m ≥ 2 and every b ∈ T2, the equation xm = b has solutions in both K
and L.

Proof. Let us represent T2 as the square OXTY with side OX of length 1 (see the

diagram below). We glue the sides OX and YT (identifying the points of OX and YT with

the same x-projections) as well as the sides OY and XT (identifying the points of OY and

XT with the same y-projections). We introduce the coordinate system in OXTY by taking
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O as the origin, OX as the x-axis and OY as the y-axis, respectively. Therefore, a point

P(x, y) in the square corresponds to the point (e2πxi, e2πyi) in T2. In particular, each of the

points O, X, Y, T represents the same point (1, 1) of T2.

A

B C

D E

FG

H
U

U

U

U

O

Y T

X

(L)

(L)

(K)

(K)

x

y

Let K be the union of the two congruent white closed rectangles ABGH and CDEF ,

where |AB| = |CD| = 1/4 and |AH | = |CF | = 1/2. The vertices of the rectan-

gles are A(1/8, 1/4), B(1/8, 1/2), C(3/8, 1/2), D(3/8, 3/4), E(7/8, 3/4), F (7/8, 1/2),

G(5/8, 1/2), and H(5/8, 1/4). A narrow open shadowed “channel” U around K has con-

stant width 1/16, and L is the set T2 \ (K ∪ U). Clearly, the union K ∪ U is open, so L is

closed in T2.

We claim that the sets K and L are as required. For every integer m, let fm : T2 → T2 be

a mapping defined by fm(e2πxi, e2πyi) = (e2πmxi, e2πmyi) for all x, y ∈ R. It suffices to show

that for every m ≥ 2, the image of each of the sets K and L under the mapping fm covers

the torus T2. Notice that in the “real” plane Oxy, the mapping fm is the radial magnification

(modulo 1 in both coordinates) with center at O and coefficient m. Geometrically, one can

represent the images fm(K) and fm(L) as the sets K and L but magnified m times in the

square of size m × m, where each of the m2 small unit squares is canonically identified

with the unit square OXTY . Let us verify that f2(K) = T2 = f2(L), leaving the rest to the

reader (the verification of the equalities fm(K) = T2 = fm(L) for m ≥ 3 is even easier than

that for m = 2, since the radial magnification with coefficient m magnifies small areas m2

times).

Clearly, the restriction of f2 to the interior of K is one-to-one, so the area of the image

f2(K) is four times greater than that of K. Therefore, the area of f2(K) is equal to 1

which means that f2(K) is dense in the unit square OXYT . Since K is compact and f2 is

continuous, we have the equality f2(K) = T2. Notice also that for each b ∈ T2, the four

solutions of the equation x2 = b, when represented in the square OXTY , have the form

(z1, z2), (z1 + 1/2, z2), (z1, z2 + 1/2) and (z1 + 1/2, z2 + 1/2) for some z1, z2 (modulo 1).
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Whenever b ∈ T2, the area K ∪ U doesn’t contain at least one of the four points. Hence,

f2(L) = T2. �

The result below easily follows from Lemma 9.9.46. It plays an important role in the

proof of Lemma 9.9.50.

Lemma 9.9.47. There exist a countable (multiplicatively written) divisible subgroup Σ

of Tω and a countable infinite discrete family � of closed subsets of Σ such that for every
integer m ≥ 2 and every b ∈ Σ, the equation xm = b has solutions in each K ∈ �.

Proof. Let H be the torsion subgroup of T, and let G the square H2. In what follows

we write G multiplicatively, so e = (1, 1) is the identity of G. We put K∗ = K ∩ G and

L∗ = L ∩G, where K and L are the closed disjoint subsets of T2 constructed in the proof

of Lemma 9.9.46. Clearly, G is a countable divisible group, and K∗, L∗ are closed disjoint

subsets of G; notice that K∗ does not contain e. It follows from the choice of the sets K∗

and L∗ that for every integer m ≥ 2 and every b ∈ G, the equation xm = b has solutions in

both K∗ and L∗.

Let Σ be the direct sum of ω copies of the group G, that is,

Σ = {x ∈ Gω : xn = e for all but finitely many n ∈ ω}.
The group Σ is also countable and divisible. For every n ∈ ω, we define a subset Kn of Σ

by

Kn = {x ∈ Σ : xk ∈ K∗ for each k < n and xn ∈ L∗}.
It follows from the above definition that the sets Kn are closed in Σ and disjoint. Let us

show that the group Σ and the family � = {Kn : n ∈ ω} are as required. If x ∈ Gω is an

accumulation point of the family �, then every neighbourhood of x meets infinitely many

Kn’s and, hence, xn ∈ K∗ for each n ∈ ω. This implies that x /∈ Σ because e /∈ K∗ or, in

other words, the family � has no accumulation points in Σ. Since any two distinct elements

of � are disjoint, � is a discrete family in Σ.

Finally, let m, n ∈ ω be integers, where m ≥ 2, and let b ∈ Σ be an arbitrary element of

Σ. Choose N ∈ ω such that N > n and bk = e, for each k > N. Then there exists x ∈ Gω

satisfying the following conditions:

(1) xk ∈ K∗ if k < n;

(2) xn ∈ L∗;

(3) xk = e if k > N;

(4) (xk)
m = bk whenever k ≤ N.

It follows from (3) that x ∈ Σ, while (1) and (2) imply that x ∈ Kn. Clearly, xm = b by

(4). �

The following lemma enables us, in a sense, to replace an Abelian group G by a

homomorphic image of G when we are looking for C∗-embedded subsets of bG lying in G.

Lemma 9.9.48. Let π : G → H be a homomorphism of discrete Abelian groups, and
suppose that A ⊂ G and B ⊂ H are infinite sets such that the restriction π�A is a bijection
of A onto B. If B is discrete and C∗-embedded in bH , then A is C∗-embedded in bG.

Proof. Take an arbitrary function f : A → I, where I is the closed unit interval.

Denote by i the inverse of π�A; then i : B → A is a bijection and i ◦ π�A = idA. Since B
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is discrete in bH and in H#, the function g = f ◦ i is continuous on the subspace B ⊂ H#.

By the assumptions of the lemma, g can be extended to a continuous function g̃ : bH → I.

By Corollary 9.9.6, G# and H# are dense subgroups of the compact groups bG and bH ,

respectively. Hence, the continuous homomorphism π# : G# → H# admits an extension

to a continuous homomorphism π̃ : bG → bH . We claim that f̃ = g̃ ◦ π̃ is a continuous

extension of f over the whole bG. Indeed, since π#(A) = B, we have that

g̃ ◦ π̃�A = g̃ ◦ π#�A = g ◦ π#�A = f ◦ i ◦ π�A = f.

This proves that A is C∗-embedded in bG. �

The next algebraic result is almost obvious, since every subgroup of the group Z is

cyclic.

Lemma 9.9.49. Let H0 ⊂ H1 ⊂ · · · ⊂ Hn ⊂ · · · be an increasing sequence of
subgroups of the group Z. Then the sequence stabilizes, that is, there exists k ∈ ω such that
Hn = Hk for each n ≥ k.

Proof. The union H =
⋃∞

n=0 Hn is a subgroup of Z, so there exists x ∈ H such that

H = 〈x〉. Then x ∈ Hk for some k ∈ ω, whence it follows that H = 〈x〉 ⊂ Hk ⊂ H .

Therefore, Hk = H and Hn = Hk for each n ≥ k. �

The lemma below gives a key to a proof of Theorem 9.9.51.

Lemma 9.9.50. Let κ be an infinite cardinal and X = {xα : α < κ} a subset of an
Abelian group G such that for every α < κ, the element xα does not belong to the subgroup
of G generated by the set {xν : ν < α}. Then X is closed and discrete in G#, is N-embedded
in G#, and C∗-embedded in bG.

Proof. We start with the last assertion of the lemma.

Claim 1. X is C∗-embedded in bG.

Let us show that for every partition X = X1 ∪ X2 of the set X, there exists a

homomorphism f : G → H to the compact group T2 such that the closures of the sets

f (X1) and f (X2) in T2 are disjoint.

By Lemma 9.9.46, the group T2 contains two disjoint closed sets K and L such that

the equation ym = a has solutions in both K and L for every integer m ≥ 2 and every

a ∈ T2. We use the sets K and L to define by recursion a homomorphism f : H → T2

such that f (X1) ⊂ K and f (X2) ⊂ L, where H is the subgroup of G generated by X.

Suppose that for some α < κ, we have defined a family {fβ : β < α}, where each fβ is a

homomorphism of Hβ to T2, and suppose that this family satisfies the following conditions

for all γ < β < α:

(1) if γ < β < α, then fβ�Hγ = fγ;

(2) fβ(xγ) ∈ K if xγ ∈ X1 and fβ(xγ) ∈ L if xγ ∈ X2.

If α is a limit ordinal, we simply put fα =
⋃

β<α fβ. Let α = β+1. We can assume without

loss of generality that xβ ∈ X1. Since xβ /∈ Hβ, the number m = min{n ∈ N : nxβ ∈ Hβ} is

either an integer≥ 2 or m is not defined. In the first case, choose an element y ∈ K satisfying

ym = fβ(mxβ). Then, by Lemma 1.1.5, extend fβ to a homomorphism fα : Hα → T2

satisfying fα(xβ) = y. If m is not defined, then take an arbitrary element y ∈ K and, by



654 9. COMPACTNESS AND ITS GENERALIZATIONS IN TOPOLOGICAL GROUPS

Lemma 1.1.5, extend fβ to a homomorphism fα : Hα → T2 such that fα(xβ) = y. Then

the family {fγ : γ ≤ α} satisfies conditions (1) and (2). This completes the construction.

Let f ∗ =
⋃

α<κ fα. Then, by (1), f ∗ is a homomorphism of H to T2. Since the group

T2 is divisible, f ∗ admits an extension to a homomorphism f : G→ T2. Since f �Hα = fα

for each α < κ, it follows from (2) that f (X1) ⊂ K and f (X2) ⊂ L. Since every character

of G can be extended to a continuous character of bG, we conclude that the closures of X1

and X2 in bG are disjoint. Hence, Theorem 6.1.5 implies that X is C∗-embedded in bG.

This proves Claim 1.

Claim 2. X is closed and discrete in G#.

The discreteness of X is almost immediate. Indeed, take an arbitrary element y ∈ X
and put X1 = {y} and X2 = X \ {y}. Then the closures of X1 and X2 in bG are disjoint

by Claim 1, so that the point y is isolated in the subspace X of G# ⊂ bG. Let x ∈ G \ X
be an arbitrary point. We have to find an open neighbourhood of x in G# disjoint from X.

Let F = 〈x〉 ∩ X. Then 〈F ∪ {x}〉 ⊂ 〈x〉, so we have that 〈F ∪ {x}〉 ∩ X = F . Let

Y = {x} ∪ (X \ F ). It is clear that the set F is countable, so |Y | = κ. It follows from

the choice of the sets X and Y that there exists an enumeration Y = {yν : ν < κ} such

that y0 = x and yμ /∈ 〈yν : ν < μ〉 for each μ < κ. As Y ⊂ X and X is a discrete

subspace of the group G#, there exists an open neighbourhood U1 of x = y0 in G# disjoint

from Y \ {x} = X \ F . It remains to find an open neighbourhood of x in G# which does

not meet F . This is trivial if the cyclic group 〈x〉 is finite since then the set F ⊂ 〈x〉 is

also finite. Suppose, therefore, that x has infinite order. We claim that the set F is again

finite. Assume to the contrary that F is infinite. Since F ⊂ X, there exists a sequence

{zn : n ∈ ω} ⊂ F such that zn+1 /∈ 〈z0, . . . , zn〉 = Hn for each n ∈ ω. Hence {Hn : n ∈ ω}
is a strictly increasing sequence of subgroups of the cyclic group 〈x〉 ∼= Z, which contradicts

Lemma 9.9.49. Thus, in either case, F is finite and U2 = G \ F is a neighbourhood of x in

G# disjoint from F . So x ∈ U1 ∩ U2 ⊂ G# \X, as required.

Claim 3. The set X is N-embedded in G#.

Consider an arbitrary function f : X → N. Let Σ and � = {Kn : n ∈ ω} be as

in Lemma 9.9.47. Since Σ is a countable regular space, the closed subset F =
⋃

� is

N-embedded in Σ by Corollary 9.9.34. Hence there exists a continuous function r : Σ→ N
such that r(x) = n for each x ∈ Kn, where n ∈ ω. As in the proof of Lemma 9.9.50, one can

define a homomorphism h : G → Σ such that h(x) ∈ Kr(x) for each x ∈ X. Obviously, the

function r ◦h extends f . Since the group Σ is precompact, the homomorphism h : G# → Σ

is continuous by Corollary 9.9.7. Hence, r ◦ h is a continuous extension of f over G#. �
Theorem 9.9.51. Every uncountable subset A of a discrete Abelian group G contains

a subset B with |B| = |A| such that B is closed and discrete in G#, is N-embedded in G#,
and C∗-embedded in bG.

Proof. Let A be a subset of G such that |A| = κ > ω. By transfinite recursion of the

length κ, we can construct a subset B = {xα : α < κ} of A such that, for every α < κ, the

element xα does not belong to the subgroup Hα of G generated by the set {xν : ν < α}. It

is clear that |B| = κ. Then, by Lemma 9.9.50, the set B is as required. �
The existence of infinite independent sets or sets as in Lemma 9.9.50 cannot be

guaranteed for very simple infinite Abelian groups, such as the group Z. Indeed, the
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group Z is infinite, but every independent subset of Z has cardinality at most 1, that is,

r0(Z) = r(Z) = 1. Furthermore, Lemma 9.9.49 prohibits any construction of a sequence

{xn : n ∈ ω} in Z such that xn+1 /∈ 〈x0, . . . , xn〉 for each n ∈ ω. This means that the

strategy for a construction of C∗-embedded subsets in the case of countable Abelian groups

has to be quite different.

We will find infinite C∗-embedded sets in bG among closed discrete subsets of the

group G#. Notice that if A ⊂ G# is closed and discrete, then A is C∗-embedded in bG if

and only if every two disjoint subsets of A have disjoint closures in bG. To guarantee the

latter property of A, we have to separate disjoint subsets of A by means of a character of

the group G. The next lemma explains this idea in a greater detail.

Lemma 9.9.52. Let A = {an : n ∈ ω} be a subset of Z such that |a0| ≥ 2 and
|an+1| ≥ 4|an|, for each n ∈ ω. Then for every partition A = A1 ∪ A2, there exists a
character χ on Z such that the closures of the sets χ(A1) and χ(A2) in T are disjoint.
Therefore, the set A is discrete in Z# and C∗-embedded in bZ.

Proof. For every n ∈ ω, denote by in an element of {1, 2} such that an ∈ Ain . Our

aim is to define a decreasing sequence {Cn : n ∈ ω} of closed arcs in the circle group T
whose lengths tend to zero and then take a number z0 ∈

⋂
n∈ω Cn as the value of χ at 1 ∈ Z.

Let J = {eiϕ : π/2 ≤ ϕ ≤ 3π/2}. Clearly, J is a closed arc of the length π in T. and

J does not contain 1. Put also

D1 = {eiϕ : −π/2 ≤ ϕ ≤ 0} and D2 = {eiϕ : π/2 ≤ ϕ ≤ π}.
Then D1, D2 are disjoint closed arcs in T, each of the length π/2. Since |a0| ≥ 2, we have

that [Ja0 ] = {xa0 : x ∈ J} = T. Choose a closed arc C0 ⊂ J of the length π/(2|a0|) such

that [Ca0

0 ] = Di0 . Suppose that we have defined closed arcs C0 ⊇ . . . ⊇ Cn in T satisfying

the following two conditions for each k ≤ n:

(1) [Cak

k ] = Dik ;

(2) the length of Ck is equal to π/(2|ak|).
It follows from |an+1| ≥ 4|an| and (1) (with k = n) that [Can+1

n ] = T. Hence we can

choose a closed arc Cn+1 ⊂ Cn of the length π/(2|an+1|) satisfying [Can+1

n+1] = Din+1
. Our

construction of the sequence {Ck : k ∈ ω} satisfying (1) and (2) for all k ∈ ω is complete.

Since T is compact, it follows from (2) that there exists a unique element z0 ∈
⋂

k∈ω Ck.

We define a homomorphism χ : Z → T by χ(n) = zn
0 for each n ∈ ω. Then (1) and the

definition of the numbers in imply that χ(Ai) ⊂ Di, for each i = 1, 2. Hence, the closures

of the sets χ(A1) and χ(A2) in T are disjoint.

The character χ is continuous on the group Z#, so it can be extended to a continuous

character χ̄ of the compact group bG. Then χ̄(A1) ⊂ D1 and χ̄(A2) ⊂ D2; it follows that

the sets clbGA1 and clbGA2 are disjoint as well. If a ∈ A, we apply this property to the

sets A1 = {a} and A2 = A \ {a} and conclude that the point a is isolated in the subspace

A of Z#. Hence A is discrete in Z# and by [165, Coro. 3.6.4], the closure K = clbGA is

homeomorphic to the Čech–Stone compactification βA of the discrete space A. It follows

that A is C∗-embedded in K and in bG. �

Our next step is to prove Theorem 9.9.54 in the special case of Abelian torsion groups.

In this case, we can directly apply Lemma 9.9.50.
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Lemma 9.9.53. Let G be a discrete Abelian torsion group and A ⊂ G be an infinite set.
Then A contains an infinite subset B such that B is closed and discrete in G#, N-embedded
in G#, and C∗-embedded in bG.

Proof. Since G is a torsion group, every finite subset of G generates a finite subgroup

of G. Therefore, one can easily define a set B = {bn : n ∈ ω} ⊂ A such that

bn+1 /∈ 〈b0, . . . , bn〉 for each n ∈ ω. Then Lemma 9.9.50 implies that the set B is as

required. �
Theorem 9.9.54. Let A be an infinite subset of a discrete Abelian group G. Then A

contains an infinite subset B which is closed and discrete in G#, N-embedded in G#, and
C∗-embedded in bG.

Proof. We can assume that A is countable and generates the group G. Theorem 9.9.30

implies that all compact subsets of G# are finite, so by Lemma 9.9.41, we can additionally

assume that A is closed and discrete in G#.

Let D be a maximal independent subset of A. It follows from Theorem 9.9.45 that D
is C∗-embedded in bG. If D is infinite, we are done. Suppose, therefore, that D is finite.

Denote by K the subgroup of G generated by D. The set D ∪ {x} is dependent for every

element x ∈ G \K, so the intersection 〈x〉 ∩K is non-trivial. Hence every element of the

quotient group G/K has finite order, that is, H = G/K is a torsion group. Let π : G→ H
be the canonical homomorphism. We consider the following two cases.

Case 1. The set π(A) is infinite. Lemma 9.9.53 permits to choose an infinite discrete

subset C of π(A) such that C is N-embedded in H# and C∗-embedded in bH . Now we can

take a set B ⊂ A such that the restriction of π to B is a bijection of B onto C. The set B is

C∗-embedded in bG, by Lemma 9.9.48.

Case 2. The set π(A) is finite. Then A ∩ (x + K) is infinite, for some x ∈ G or,

equivalently, the set Ax = K ∩ (A− x) is infinite. Since the group K is finitely generated,

it follows from [409, 4.2.10] that K can be represented as a direct sum K = K1⊕ · · ·⊕Kn,

where K1, . . . , Kn are cyclic subgroups of K. For every i = 1, . . . , n, let ϕi be the canonical

projection of K onto the subgroup Ki. Since the set Ax is infinite, one can find i ≤ n such that

ϕi(Ax) is also infinite. This means that Ki
∼= Z. Choose an infinite subset Y = {yk : k ∈ ω}

of ϕi(Ax) such that |y0| ≥ 2 and |yk+1| ≥ 4|yk| for each k ∈ ω. Then Y is C∗-embedded

in bZ = bKi by Lemma 9.9.52. As in Case 1, take an infinite set Bx ⊂ Ax such that the

restriction of ϕi to Bx is a bijection of Bx onto Y . Then Bx is C∗-embedded in bG, by

Lemma 9.9.48. Therefore, the infinite set B = x + Bx satisfies B ⊂ A and is C∗-embedded

in bG.

To complete the proof, observe that in each of the above cases B is closed and discrete

in G# as a subset of the closed and discrete set A. Hence, B is N-embedded in G# by

Corollary 9.9.34. �
Combining Theorems 9.9.51, 9.9.54, and ii) of Lemma 9.9.33, we obtain the following.

Theorem 9.9.55. [E. van Douwen] Let A be an infinite subset of a discrete Abelian
group G. Then A contains a subset B with |B| = |A| such that B is closed and discrete in
G#, is N-embedded in G# and C∗-embedded in bG. Also, B is C-embedded in G#.

We conclude this section with a deep result on normality of certain Abelian topological

groups. Corollary 7.1.15 provides many of examples of non-normal Abelian topological
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groups — the free Abelian topological group A(X) on arbitrary Tychonoff non-normal space

X cannot be normal, since it contains as a closed subspace X. From the algebraic point

of view, all free Abelian topological groups look very much alike — all these groups are

algebraically direct sums of infinite cyclic groups. This gives rise to the question of when

an uncountable Abelian group admits a non-normal Hausdorff topological group topology.

Clearly, every Hausdorff topological group topology on a countable group is normal. The

following result shows that the countability of an Abelian group G is the only obstacle for

the existence of a non-normal Hausdorff group topology on G. It is not surprising, after

Theorems 9.9.30 and 9.9.54, that the Bohr topology works.

Theorem 9.9.56. [F. J. Trigos-Arrieta] If G is a discrete Abelian group, then G# is
normal iff G is countable.

Proof. If G is countable, then G# is a regular Lindelöf space and, hence, the space G#

is normal.

Conversely, suppose that the group G is uncountable. By Proposition 9.9.20, G contains

an uncountable independent subset D. Choose two disjoint subsets D1 and D2 of D such

that |D1| = |D| = |D2|. Every independent subset of G is C∗-embedded in the Bohr

compactification bG of the group G, by Theorem 9.9.45. Since the set D ⊂ G# is discrete,

by Proposition 9.9.21, and every subset of D is independent, it follows that the compact space

Ki = clbGDi is homeomorphic to the Čech–Stone compactification βDi of the discrete set

Di, for each i = 1, 2.

Denote by m the mapping of bG × bG to bG defined by m(x, y) = x + y, for all

x, y ∈ bG. Since D1 and D2 are disjoint subsets of the independent set D, the groups

H1 = 〈D1〉 and H2 = 〈D2〉 have the trivial intersection. It follows from Lemma 9.9.44 and

Corollary 9.9.10 that the same holds for the subgroups bH1
∼= clbGH1 and bH2

∼= clbGH2

of the group bG. Therefore, the restriction of m to the product bH1 × bH2 is a topological

embedding into bG. Since Ki ⊂ bHi for i = 1, 2, we can identify the product K1 × K2

with its image K1 + K2 = clbG (D1 + D2) in bG. In addition, since the discrete sets D1

and D2 have the same cardinality, we can also identify D1 with D2 (both denoted by S) and

K1
∼= βD1 with K2

∼= βD2 (both denoted by K). This gives us the natural embeddings

S2 ↪→ K2 ↪→ bG, where K2 ∩G# = S2 is a closed discrete subset of G#.

Let ΔK = {(x, x) : x ∈ K} be the diagonal in K2 and ΔS = S2 ∩ ΔK be the diagonal

in S2. Let also P = S2 \ ΔS . We claim that the closed subsets ΔS and P of G# cannot be

separated by open neighbourhoods. Indeed, take an arbitrary open neighbourhood U of P
in G#. There exists an open set V in bG such that U = V ∩ bG. Then, by Corollary 5.3.29,

clbGV is a zero-set in bG. Clearly, the complement W = K2 \ clbGV is a cozero-set in K2,

so the space W is Lindelöf as an Fσ-set in the compact space K2. Note that ΔS is dense in

ΔK and S2 is dense in K2. Since S2 = ΔS ∪P and P ⊂ U ⊂ V , we have K2 ⊂ ΔK ∪clbGV .

This inclusion and the definition of W imply that W ⊂ ΔK. Since no point of ΔK \ ΔS has

a neighbourhood in K2 lying in ΔK, we have W ⊂ ΔS . Hence, the discrete Lindelöf space

W is countable. Finally, since ΔS is uncountable, the set clbGV intersects ΔS . Since S2 is

dense in K2, it follows that every open neighbourhood of ΔS in G# intersects the sets V and

U. This proves the claim and shows that the space G# is not normal. �

We will now present several results about cardinal characteristics of Abelian groups with

the Bohr topology. The first simple observation is that the equalities c(G#) = c(bG) = ω
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hold for every infinite Abelian group G. This directly follows from Corollary 4.1.8. Let us

calculate the character and the weight of G# and bG in terms of G.

Theorem 9.9.57. χ(G#) = w(G#) = w(bG) = χ(bG) = 2|G|, for every infinite
discrete Abelian group G.

Proof. Since G# is a dense subgroup of bG, the equality χ(G#) = χ(bG) follows

from Lemma 1.4.15, while χ(bG) = w(bG) and χ(G#) = w(G#) hold by Corollary 5.2.4.

The inequality χ(G#) ≤ 2|G| is evident. It remains to show that w(bG) ≥ 2|G|. We divide

the proof in two parts.

1) The group G is uncountable. By Proposition 9.9.20, G contains an independent

subset A satisfying |A| = |G|. It follows from Proposition 9.9.21 that A is discrete in G#,

while Theorem 9.9.45 implies that the closure of A in bG is homeomorphic with the Čech–

Stone compactification βA of A. Since A is infinite, we have that w(βA) = 2|A| = 2|G|,
by [165, Theorem 3.6.11]. Since bG contains a topological copy of βA, we also have

w(bG) ≥ w(βA) = 2|G|.
2) The group G is countable. Then, by Theorem 9.9.54, the group G# contains an

infinite, closed, discrete subset A which is C∗-embedded in bG. Hence the closure of

A in bG is homeomorphic to the Čech–Stone compactification βA, and again we have

w(bG) ≥ w(βA) = 2ω = 2|G|. �

Corollary 9.9.58. If G is an infinite discrete Abelian group, then |bG| = 22|G| .

Proof. Since the group bG is compact, it follows from b) of Corollary 5.2.7 that

|bG| = 2w(bG). It remains to note that w(bG) = 2|G|, by Theorem 9.9.57. �
The exact values of the density and pseudocharacter of G# are given in the next theorem.

Theorem 9.9.59. Let G be an infinite discrete Abelian group. Then:

a) d(Y ) = |Y |, for every subspace Y of G#;
b) ψ(G#) = Ln |G|.

Proof. a) Take any dense subset A of Y . We may assume that Y is infinite, since

otherwise there is nothing to prove. Then A is infinite as well, and the subgroup H = 〈A〉
of G# has the same cardinality as A. Hence, |H | = |A| ≤ |Y |, and H is closed in the

space G#, as a subgroup of G#. Since A ⊂ H and A is dense in Y , we have Y ⊂ A ⊂ H .

Therefore, |Y | ≤ |H | = |A| ≤ |Y |. It follows that |Y | = |A|. Notice that the equality

d(G#) = |G| follows from a) of Proposition 9.9.9.

b) To prove the equality ψ(G#) = Ln |G|, suppose that G is uncountable (otherwise

the equality is trivially satisfied). Note that ψ(G#) coincides with the minimum number |I|
of homomorphisms fi : G → T, with i ∈ I, that separate points of G. For every point-

separating family {fi : i ∈ I}, the diagonal product�i∈Ifi is an injective homomorphism

of G to TI ; hence, |G| ≤ |TI | = 2|I| and, consequently, Ln |G| ≤ |I|.
Conversely, Proposition 9.9.37 implies that the group G# admits a continuous isomor-

phism onto a topological group H such that w(H) ≤ Ln |G|, so ψ(G#) ≤ w(H) ≤ Ln |G|.
Therefore, ψ(G#) = Ln |G|. �

Recall that the extent e(X) of a space X is the smallest cardinal number τ such that

the cardinality of every closed discrete subspace Y of X does not exceed τ. Clearly,

Theorem 9.9.55 implies immediately the following statement:
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Theorem 9.9.60. [K. P. Hart and J. van Mill] Let G be a discrete Abelian group.
Then l(G#) = e(G#) = |G|. Moreover, the same equalities hold for every subspace A of
the space G#.

We conclude the section with some observations on the Bohr topologies of non-discrete

topological groups.

By Proposition 9.9.1, the Bohr topology of every locally compact Abelian group is

Hausdorff. The next example shows that the local compactness requirement is essential.

Furthermore, it also shows that there can exist continuous characters on a compact subgroup

of an Abelian topological group G which do not admit an extension to a continuous character

over the group G (compare this with Theorem 9.6.3).

Example 9.9.61. [R. C. Hooper] There exists a second-countable topological Abelian

group G such that the continuous characters of G do not separate points of G, so the group

G+ is not Hausdorff. In addition, G contains a subgroup C isomorphic to the discrete group

Z(2) such that the unique non-trivial character on C cannot be extended to a continuous

character on G.

Indeed, denote by σ the linear space of all sequences x = (xn)n∈ω where xn ∈ R for

each n ∈ ω, and xn = 0 for all but finitely many values of n. The sum and multiplication by

a constant in σ are defined coordinatewise. For every x ∈ σ, let ‖x‖ = max{|xn| : n ∈ ω}.
Then ‖ · ‖ is a norm on σ, and we define an invariant metric d on G by d(x, y) = ‖x − y‖
for all x, y ∈ σ. Take the topology on σ generated by the metric d. With this topology, σ
becomes a separable metric Abelian topological group. Note that σ is connected as a linear

space over R. Put

H = {(xn)n∈ω ∈ σ : xn ∈ Z for each n ∈ ω}
and

K = {(xn)n∈ω ∈ H :

∞∑
n=0

xn is even}.

The summation in the definition of K is finite. Clearly, H and K are subgroups of σ and

K ⊂ H . In addition, the subgroup H is discrete. Indeed, let U = {x ∈ σ : ‖x‖ < 1}. Then

U is an open neighbourhood of the neutral element e in σ, and H ∩U = {e}. This implies

that the subgroups H and K are closed in σ.

Let G = σ/K and ϕ be the quotient homomorphism of σ onto G. Observe that G is a

connected, metrizable, Abelian topological group. We claim that the family of continuous

characters of G does not separate points of G. To show this, for every n ∈ ω define an

element b(n) ∈ H by b(n)k = 1 if k = n and b(n)k = 0 if k = n. Then b(n) ∈ H \K and

b(n) + K = H \ K for each n ∈ ω. Hence, ϕ(b(n)) = g ∈ G for all n ∈ ω, where g is

distinct from the neutral element of G. Let us verify that χ(g) = 1 for all χ ∈ G∗, where

G∗ is the family of all continuous characters of G.

Suppose that χ(g) = 1, for some χ ∈ G∗. Since b(n) + b(n) ∈ K and χ
is a homomorphism, we have χ(g) = −1. Given any n, k ∈ ω with k = 0, the

number t = (χ ◦ ϕ)((1/k) · b(n)) satisfies tk = −1, so there exists m ∈ N such that

t = exp((2m + 1)πi/k). We conclude, therefore, that the continuous function f from the

closed interval [0, 1/k] to T defined by f (r) = χ ◦ ϕ(r · b(n)) sends this interval to an arc

with the end points 1 and exp((2m + 1)πi/k). Hence, by the connectivity argument, there
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exists a number rn,k ∈ [0, 1/k] such that (χ ◦ ϕ)(rn,k · b(n)) = exp(πi/k). For every integer

k > 0, define an element c(k) ∈ σ by c(k) =
∑

n<k rn,k · b(n). Then, on one hand,

(χ ◦ ϕ)(c(k)) =
∏
n<k

(χ ◦ ϕ)(rn,k · b(n))) = (exp(πi/k))k = −1.

On the other hand, from ‖c(k)‖ ≤ 1/k we have that c(k) tends to the neutral element 0 ∈ σ,

so that (χ ◦ ϕ)(c(k)) → 1 in T, which is a contradiction. This proves that the continuous

characters do not separate points of G.

Since H = 〈b(0)〉+K, the subgroup C = H/K of G is isomorphic to the finite discrete

group Z(2). It follows from b(0) ∈ H \K that g = ϕ(b(0)) ∈ C and C = 〈g〉. Hence, the

character on C sending g to −1 cannot be extended to a continuous character on G. �

Exercises

9.9.a. Let G be a discrete Abelian group. Show that the topological group G# is discrete if and

only if G is finite.

9.9.b. Let G be a discrete Abelian group. Show that the space G# is a quotient of a locally compact

Hausdorff space if and only if G is finite.

9.9.c. Let G be a discrete Abelian group. Show that the space G# is a quotient of a metrizable

space if and only if G is finite.

9.9.d. Let G be a discrete Abelian group. Show that the group G# is extremally disconnected iff G
is finite.

9.9.e. Give an example of an ω-narrow Abelian group G and a closed subgroup H of G such that

H is not z-embedded in G.

9.9.f. Verify that closed subsets of the groups G# can fail to be C∗-embedded in G#. Are they

z-embedded in G#?

9.9.g. (G. Reid [402], P. Flor [172]) Prove that no sequences in G converges to a point of bG \ G.

9.9.h. Is the set {n2 : n ∈ N} dense in Z#?

9.9.i. Show that, consistently, there is an Abelian group G such that d(bG) < d(G#).

9.9.j. Given a family {Gi : i ∈ I} of topological groups, we denote by σΠi∈IGi the σ-product

of this family considered as a topological subgroup of the product group
∏

i∈I
Gi (see

Section 1.6). Prove that if G = ⊕i∈IGi is a direct sum of non-trivial discrete Abelian

groups, then G# is topologically isomorphic to the group σΠi∈IGi
# if and only if the index

set I is finite. Extend this result to products of Abelian groups.

9.9.k. (K. P. Hart and J. van Mill [219]) Let G be a Boolean group endowed with the linear

topological group topology �G whose base at zero consists of all subgroups H of G with

|G : H | < ω (see also Exercise 3.7.h). Prove that �G is the Bohr topology of G.

9.9.l. Show that there is a second-countable Čech-complete topological Abelian group G such that

the Bohr topology of G is not Hausdorff.

Problems

9.9.A. Let G be a discrete Abelian group. Show that the space G# is Čech-complete if and only if

G is finite.

9.9.B. Let B be a countable, infinite, Boolean group and G the group of continuous automorphisms

of B# onto itself, with the topology of pointwise convergence. Describe the group G in

algebraic and topological terms.

9.9.C. Let G be an infinite discrete Abelian group. Prove that there exist disjoint closed subsets A
and B of the group G# such that clbGA ∩ clbGB �= ∅.
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9.9.D. Suppose that G is an uncountable precompact topological group such that all subgroups of

G are normal spaces. Is G metrizable? What if G is hereditarily normal?

Remark. Under CH , the answer to both questions above is “No” (see the remark to

Problem 8.1.5). Therefore, we ask for counterexamples in ZFC.

9.9.E. Describe in topological and algebraic terms the Bohr compactifications bR and bZ of the

discrete additive groups R and Z, respectively.

9.9.F. Let κ be an infinite cardinal. Prove that every Abelian group of cardinality less than or equal

to 2κ is isomorphic to a subgroup of the (abstract) group Tκ.

Hint. Apply Theorem 9.9.59 and Proposition 5.2.11.

9.9.G. Let G be a discrete Abelian group such that Cp(G#) is Lindelöf. Prove that G is countable.

9.9.H. Prove that the tightness of the space G# is countable, for every discrete Abelian group G.

Hint. From the definition of the Bohr topology it follows that G# is topologically isomorphic

(under the natural evaluation mapping) to a topological subgroup of the topological group

Cp(G∗, T), where G∗ is the Pontryagin dual to G with the usual topology, which is the

topology of pointwise convergence, since the group G is discrete. The space G∗ is compact;

therefore, the tightness of the space Cp(G∗, T) is countable [32]. It follows that the tightness

of G∗ is countable as well, since the tightness is monotonous with respect to subspaces.

9.9.I. Prove that the group G# is monolithic, for every discrete Abelian group G, that is, the density

of Y and the network weight of Y coincide, for every subspace Y of the space G#.

9.9.J. A neighbourhood assignment on a topological space X is a function f from X to the set of

all subsets of X such that f (x) is an open neighbourhood of x, for each x ∈ X. A space X
is said to be a D-space (after E. van Douwen) if, for every neighbourhood assignment f on

X, there exists a closed discrete subset A of X such that
⋃{f (x) : x ∈ X} = X.

Let G be a discrete Abelian group. Prove that G# is a D-space hereditarily, that is, every

subspace Y of D# is a D-space.

Hint. Since G∗ is compact, this follows from remarkable results of R. Z. Buzyakova in [95].

They imply immediately that Cp(G∗, T) is a D-space hereditarily. Since G# is homeomorphic

to a subspace of Cp(G∗, T), the required conclusion follows.

9.9.K. (K. P. Hart and J. van Mill [219]) There exists a countable Abelian group G such that some

discrete subspace M of G# is not closed in G#.

Hint. Apply Theorem 3.7.27. Another way is to take an infinite Boolean group G, and pick

a maximal independent subset H of G. Show that the set (H + H) \ {0} is discrete, and

that the neutral element 0 of G belongs to the closure of this set. Observe that this example

shows that the group G# need not be maximal or submaximal, since in every submaximal

space all nowhere dense subsets are closed.

9.9.L. (W. W. Comfort and J. van Mill [115]) Prove that every abstract infinite Abelian group G
with r2(G) < ∞ is strongly resolvable.

9.9.M. (E. van Douwen [150]) Let G be an infinite discrete Abelian group. Show that the space G#

does not have the Baire property.

Hint. There exists a homomorphism f of G onto a countable infinite group F . The kernel

H of the homomorphism f is a subgroup of G. Hence, H is closed in G#. The group

F is precompact and infinite. Therefore, F is not discrete. Hence, H is not open in G#,

which implies that the interior of H in G# is empty. Thus, H is nowhere dense in G#, and

{f−1(y) : y ∈ F} is a countable covering of the space G# by nowhere dense subsets. Hence,

G# is not Baire.

9.9.N. Prove that in the category of locally compact Abelian groups, the covariant functor + defined

on page 633 preserves topological subgroups, quotients and topological products.

Hint. Let H be a closed subgroup of a locally compact Abelian group G. We have to prove

that the subgroup H+ is a topological subgroup of G+. The continuity of the inclusion
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ι : H+ → G+ follows from the functoriality of +. To see that ι is an embedding recall that by

[236, 24.12], every continuous character H → T can be extended to a continuous character

of G.

Now we show that (G/H)+ = G+/H+, where the group G+/H+ carries the quotient

topology. The continuity of the quotient homomorphism f : G+ → (G/H)+ and of

the identity isomorphism (G/H)+ → G+/H+ follows from the functoriality of +. The

continuity of the identity G+/H+ → (G/H)+ follows from the continuity of the quotient

homomorphism f and the universal property of the quotient topology. This proves the

preservation of quotients under +.

Let G and H be locally compact Abelian groups. The continuity of the identity

map (G × H)+ → G+ × H+ follows easily from the functoriality of +. Again, by

functoriality of +, both inclusions i : G+ ↪→ (G × H)+ and j : H+ ↪→ (G × H)+ are

continuous. Since the product topology of G+ ×H+ has the universal property with respect

to the monomorphisms i and j (see [139, Exercise 2.10.4(i)]), it follows that the identity

G+ ×H+ → (G×H)+ is continuous. This proves the preservation of finite products under
+. The case of arbitrary products may lead out of the category of locally compact groups.

Nevertheless, the preservation is still available since the Bohr compactification commutes

with arbitrary products (see [253]).

9.9.O. For every locally compact Abelian group G, the groups G+ and G have the same compact

sets.

Hint. See Glicksberg’s article [198].

9.9.P. (F. J. Trigos-Arrieta [501]) The functor + “respects” compactness-like properties, such as

pseudocompactness, realcompactness, the Lindelöf property, etc.
9.9.Q. (F. J. Trigos-Arrieta [501]) Prove that for a locally compact Abelian group G, the group G+

is normal iff G is σ-compact.

9.9.R. (V. G. Pestov [379]) A subset S of an Abelian group G is said to be big if F + S = G, for

some finite F ⊂ G. Let S be a big subset of the group Z of integers. Prove that the set

S − S + S contains an open neighbourhood of 0 in the space Z#.

9.9.S. (K. Kunen [286]) There are countable infinite Abelian groups G and H such that the spaces

G# and H# are not homeomorphic.

Hint. The groups in question are G = Z(2)(ω) and H = Z(3)(ω), the countable direct sums

of the groups Z(2) and Z(3), respectively. More information on this subject can be found in

the article [138] by D. Dikranjan and L. de Leo.

Open Problems

9.9.1. Does every infinite Abelian group G admit a Hausdorff topological group topology in which

every continuous character on G is trivial?

Remark. It was shown in [1] that every infinite Abelian group G admits a Hausdorff

topological group topology in which continuous characters do not separates points of G.

9.9.2. Let G be a discrete Abelian group such that the group G# is subparacompact. Is G countable?

9.9.3. Let G be a discrete Abelian group and f a continuous mapping of the space G# onto a

compact Hausdorff space F . Is F dyadic?

9.9.4. Let G be an infinite discrete Abelian group. Is G# a left-separated space? (See Problems 4.2.C

and 4.2.D.)

9.9.5. (V. G. Pestov [379]) Let S be a big subset of the group Z of integers (see Problem 9.9.R). Is

it true that the set S − S = {a − b : a, b ∈ S} contains an open neighbourhood of 0 in the

space Z#?

9.9.6. Let G be a precompact Abelian group such that every countable subgroup of G is a retract

of G under a continuous homomorphism. Is G zero-dimensional?
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9.9.7. Let G be a precompact torsion Abelian group such that every finite subgroup of G is a retract

of G under a continuous homomorphism. Is G zero-dimensional?

9.10. Bounded sets in extensions of groups

Let H be a closed invariant subgroup of a topological group G and suppose that all

bounded subsets of the groups H and G/H are finite. Are the bounded subsets of G then

finite? Here we answer this question in the negative by presenting an example which destroys

a number of tempting conjectures about bounded sets in extensions of topological groups.

Let us call a space X B-closed if every bounded subset of X is closed. It is evident

that no infinite compact space is B-closed. The next result describes B-closed topological

groups.

Lemma 9.10.1. A topological group G is B-closed if and only if all bounded subsets
of G are finite.

Proof. Suppose that G contains an infinite bounded subset X. We claim that the

closure of the set

P = {x−1y : x, y ∈ X, x = y}
contains the identity e of G. If not, choose an open symmetric neighbourhood U of e
in G such that U4 ∩ P = ∅. An easy verification shows that the family of open sets

{xU : x ∈ X} is discrete in G. Clearly, each element of this family intersects X. However,

by Lemma 6.9.6, only finitely many elements of a discrete family of open sets in G can

meet a bounded set, which gives a contradiction. Hence, e is in the closure of P and P is

dense in X−1X = P ∪ {e}.
The sets X−1 and X−1X are bounded in G, by Corollary 6.10.13. Since e /∈ P ⊂ X−1X,

we conclude that P is a non-closed bounded subset of G. This proves the necessity of the

condition. The sufficiency is evident. �

To show that the class of B-closed topological groups is not stable under taking

extensions, we need an auxiliary fact given below. As usual, c = 2ω is the power of

the continuum. We denote by 2c the product of c copies of the discrete group 2 = {0, 1}.
Lemma 9.10.2. There exists a dense subgroup H of 2c satisfying the following

conditions:

a) |H | = c;
b) all bounded subsets of H are finite;
c) | ker f | = c, for every continuous homomorphism f : H → P to a first-countable

topological group P .

Proof. Let X be a set of cardinality c. Denote by HX the family of all finite subsets

of X with the binary operation AΔB = (A \ B) ∪ (B \ A), the symmetric difference of

A and B, where A, B ∈ HX. Then HX is a Boolean group of cardinality c whose identity

is the empty set. Given a homomorphism ϕ : HX → 2 and a subset Y of X, we say that

ϕ depends only on Y if ϕ({x}) = 0 for each x ∈ X \ Y . Denote by � the family of all

homomorphisms of HX to 2 that depend only on a countable subset of X. It is easy to see

that |�| = c. Let τ be the coarsest group topology on HX which makes all homomorphisms
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of the family � continuous. Then HX = (HX, τ) is a precompact Hausdorff topological

group and w(HX) ≤ |�| = c. Hence, by Theorem 9.6.26, the Raı̆kov completion 
HX of

HX is topologically isomorphic to the group 2λ, for some cardinal λ satisfying ω ≤ λ ≤ c.
Since every element of � depends only on countably many indices, the pseudocharacter of

the neutral element 0̄ of HX is equal to c. Therefore, λ = c, that is, 
HX is topologically

isomorphic to 2c. This enables us considering H = HX as a dense subgroup of 2c.

Clearly, |HX| = c, thus implying a) of the lemma. To deduce b), we argue as follows.

First, for every non-empty subset Y of X, let pY : HX → HY be defined by pY (A) = A∩Y ,

for each A ∈ HX, where HY is the Boolean group of all finite subsets of Y . Clearly, pY is

a homomorphic retraction of HX onto its subgroup HY . Our definition of the topology τ
on HX implies that pY is continuous (when HY is taken with the subspace topology) and,

in particular, HY is closed in HX. Note also that, for countable Y ⊂ X, the group HY

is countable and carries the Bohr topology. Hence, all bounded subsets of HY are finite,

by Theorem 9.9.30. Let K be an infinite subset of HX. We can assume without loss of

generality that K is countable. Then there exists a countable subset Y of X such that A ⊂ Y ,

for each A ∈ K. Since K is infinite, there exists a continuous real-valued function f on

HY such that f (K) is an unbounded subset of the reals. Then g = f ◦ pY is a continuous

function on HX and g(K) = f (K) is unbounded in R. This implies b).

Finally, we verify c). Let f : HX → P be a continuous homomorphism to a first-

countable topological group P . Then the kernel of f is of type Gδ in HX and, since the

family � generates the topology HX, we can find a countable family {fn : n ∈ ω} ⊂ � such

that
⋂

n∈ω ker fn ⊂ ker f . Each fn depends only on a countable subset of X, so there exists a

countable set C ⊂ X such that HX\C ⊂ ker f . Evidently, | ker f | ≥ |HX\C| = |X \C| = c,
whence c) follows. �

It is worth comparing the next example with Theorem 3.3.24 or with Exercise 3.3.h

saying that if all compact subsets of a closed subgroup N of a topological group G as well

as those of the quotient space G/N are finite, then the same holds valid for the group G.

Example 9.10.3. There exist a precompact Boolean topological group G and an infinite,

closed, bounded subgroup N of G such that both groups N and G/N ∼= N are B-closed.

So, G fails to be B-closed, and B-closedness is not a three space property.

We will define G to be a dense subgroup of the product group K ×K, where K = 2c.

Let H be a dense subgroup of K as in Lemma 9.10.2. Put N = {0} × H , where 0 is the

neutral element of K. Our aim is to define an algebraic homomorphism ϕ : H → K and to

take G = N + P , where P = {(y, ϕ(y)) : y ∈ H} is the graph of ϕ. For every A ⊂ c, let

πA : 2c → 2A be the projection and 0A the neutral element of the group 2A. To guarantee

the boundedness of N in G, the homomorphism ϕ has to satisfy the following condition:

(a) For every non-empty countable set A ⊂ c and every x ∈ 2A, there exists y ∈ H such

that πA(y) = 0A and πA(ϕ(y)) = x.

Consider the family

γ = {(A, x) : ∅ = A ⊂ c, |A| ≤ ω, x ∈ 2A}.
It easy to see that |γ| = c, so we can write γ = {(Aα, xα) : α < c}. One can define by

recursion two sets Y = {yα : α < c} ⊂ H and Z = {zα : α < c} ⊂ K satisfying the

following conditions for each α < c:
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(i) yα /∈ 〈Yα〉, where Yα = {yν : ν < α};
(ii) πAα (yα) = 0Aα ;

(iii) πAα (zα) = xα.

Such a construction is possible since |π−1
A (0A)∩H | = c, for each countable set A ⊂ c (see

c) of Lemma 9.10.2). It follows from (i) that the set Y is independent in K. Hence, there

exists a homomorphism p : 〈Y〉 → K such that p(yα) = zα for each α < c. Since the group

H is Boolean, p admits an extension to a homomorphism ϕ : H → K. Note that (a) follows

immediately from (ii), (iii) and the definition of ϕ.

Let P = {(y, ϕ(y)) : y ∈ H} be the graph of ϕ. It is easy to verify that the subgroup

G = N + P of K ×K satisfies G ∩ ({0} ×K) = N = {0} ×H , where H is dense in K.

Hence, by virtue of Lemma 1.5.16, the quotient group G/N is topologically isomorphic to

the projection of G onto the first factor of the product K ×K, that is, G/N ∼= H ∼= N. In

particular, all bounded subsets of G/N are finite, so G/N is B-closed. Note that the density

of H in K implies that G = N + P is dense in K ×K.

It remains to show that N is bounded in G. It follows from (a) that

(πA × πA)(G) ⊇ (πA × πA)(P) ⊇ {0A} × 2A,

for each countable set A ⊂ c. It is also clear that

(πA × πA)(N) = {0A} × πA(H) ⊂ {0A} × 2A.

In other words, for every countable A ⊂ c, the set (πA ×πA)(N) is contained in a compact

subset of (πA×πA)(G). Let f be a continuous real-valued function on G. Since G is dense

in K×K = 2c×2c, it follows from Corollary 1.7.8 that f depends on at most countably many

coordinates or, equivalently, one can find a non-empty countable set A ⊂ c and a continuous

real-valued function g on (πA×πA)(G) such that f = g ◦ (πA×πA). Since (πA×πA)(N)

is contained in a compact subset of (πA × πA)(G), the image f (N) = g((πA × πA)(N)) is

a bounded subset of the reals. So, N is bounded in G.

Finally, since N is infinite, it follows from Lemma 9.10.1 that G fails to be B-closed.

In fact, one can avoid the use of Lemma 9.10.1 by noting that N \ {(0, 0)} is a non-closed

bounded subset of G. �

Exercises

9.10.a. (M. Bruguera and M. G. Tkachenko [90]) Let � be a topological property. We say that �
is an inverse fiber property if, given an arbitrary continuous onto mapping f : X → Y such

that the space Y has � and the fibers f−1(y) have �, it follows that X also has �. Verify

that every inverse fiber property is a three space property. Prove the following:

a) all pseudocompact subsets are finite (see also Exercise 3.3.h);

b) all convergent sequences are trivial;

c) all supersequences (see Exercise 6.10.b) have length strictly less than a given infinite

cardinal τ;

d) there is no subspace homeomorphic to the ordinal space ω1 (or ω1 + 1);

e) there is no subspace homeomorphic to βω;

f) all compact (countably compact) subsets are scattered (see Problem 4.2.B);

g) all compact (countably compact) subsets are left-separated (see Problem 4.2.C);

h) all compact (countably compact) subsets are first-countable;

i) all compact (countably compact) subsets are C-closed (see Problem 4.2.F);
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j) all countably compact subsets are compact (this property of a space is called C-
compactness);

k) all compact sets are zero-dimensional;

l) all compact subsets have countable tightness;

m) all compact subsets are sequential, under 2ℵ0 < 2ℵ1 .

Therefore, each of the properties described in a)–m) is a three space property.

Problems

9.10.A. (M. Bruguera and M. G. Tkachenko [90]) Let K be a one-point compactification of the

Franklin–Mrówka space X (see [165, 3.6.I]). Show that the free Abelian topological group

A(K) over K contains a closed subgroup N such that all compact subsets of the groups N and

A(K)/N are ℵ0-monolithic, while this is false for the group A(K). Therefore, “all compact

subsets are ℵ0-monolithic” is not a three space property.

9.10.B. (M. Bruguera and M. G. Tkachenko [90]) Construct a pseudocompact non-compact topolog-

ical Abelian group G and a closed countable subgroup N of G such that the quotient group

G/N is compact and all bounded subsets of N are finite (equivalently, N is B-closed, see

Lemma 9.10.1). Therefore, none of the following is a three space property:

a) realcompactness;

b) Dieudonné completeness;

c) “every bounded subset has compact closure”;

d) “every pseudocompact subset has compact closure”.

9.10.C. (M. Bruguera and M. G. Tkachenko [90]) Let G be the free Abelian topological group

over the Franklin–Mrówka space X. Show that G contains a closed subgroup K such

that all pseudocompact subsets of the groups K and G/K are compact, while G contains

a pseudocompact non-compact subspace X. Therefore, “all pseudocompact subsets are

compact” is not a three space property.

9.10.D. (M. Bruguera and M. G. Tkachenko [90]) Give an example of a topological Abelian group

G and a closed subgroup N of G such that all bounded subsets of the groups N and G/N
have compact closures, but G contains a closed copy of the ordinal space ω1.

Open Problems

9.10.1. In what follows N denotes a closed invariant subgroup of a topological group G. Suppose

that all compact subsets of the groups N and G/N are sequentially compact. Does G have

the same property?

9.10.2. Suppose that all compact subsets of N and G/N are separable. Are the compact subsets of

G separable (or have countable cellularity)?

9.10.3. Let all compact subsets of the groups N and G/N be Fréchet–Urysohn. Does the same hold

for compact subsets of G?

9.10.4. Does there exist in ZFC a topological group G and a closed invariant subgroup N of G
such that all pseudocompact subspaces of N and G/N are metrizable, but G contains a

non-metrizable (and/or non-closed) pseudocompact subspace?

9.11. Pseudocompact group topologies on Abelian groups

We have seen in the preceding chapters that the existence of the structure of a

topological group on a topological space improves considerably topological properties of

the space and makes easier their investigation. For example, by the Birkhoff–Kakutani
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theorem, (see Theorem 3.3.12), every first-countable topological group is metrizable, while

Corollary 6.6.11, due to Comfort and Ross, implies that pseudocompactness becomes

invariant under taking arbitrary topological products of topological groups.

Conversely, the topological properties of a topological group have a notable influence

on the algebraic structure of the group, which is especially strong in the case of compact,

countably compact and pseudocompact topological groups. (This phenomenon is, however,

almost invisible in the case of Lindelöf groups or Lindelöf P-groups, see Problems 4.4.1

and 4.4.2.) This section and several sections to follow will elucidate this influence, especially

in the case of Abelian groups of cardinality c = 2ω.

First, we show that the existence of a pseudocompact Hausdorff topological group

topology on an Abelian group implies several restrictions on the cardinality and on algebraic

properties of the group.

Recall that every Čech-complete space X has the Baire property (see [165, Theo-

rem 3.9.3]). We extend this result to all weakly pseudocompact spaces, i.e., Gδ-dense

subspaces of compact spaces.

Lemma 9.11.1. Every weakly pseudocompact space X has the Baire property.

Proof. Let � = {Fn : n ∈ ω} be a family of nowhere dense subsets of the space X.

It suffices to show that V \⋃
� = ∅, for every non-empty open subset V of X. Let bX be

a compactification of X such that X is Gδ-dense in bX. Choose an open set U in bX such

that U ∩X = V .

Since F0 is nowhere dense in X and bX, there is a non-empty open set U0 in bX such

that U0 ⊂ U and U0 ∩ F0 = ∅. Suppose we have defined non-empty open sets U0, . . . , Un

in bX such that Ui ∩ Fi = ∅ and Ui ⊂ Ui−1 for each i ≤ n (we assume that U−1 = bX).

Since bX is regular and Fn+1 is nowhere dense in bX, there exists a non-empty open set

Un+1 in bX such that Un+1 ∩ Fn+1 = ∅ and Un+1 ⊂ Un.

Consider the sequence ξ = {Un : n ∈ ω} and put K =
⋂

n∈ω Un. Since the space

bX is compact and Un+1 ⊂ Un for each n ∈ ω, it follows that K = ∅. In addition, our

construction of the sequence ξ implies that Un+1 ∩ Fn = ∅ for each n ∈ ω, so that K does

not meet any element of �. Since X is Gδ-dense in bX, the intersection K∩X is non-empty.

It remains to note that K ∩X ⊂ U ∩X = V , whence it follows that V \⋃
� = ∅. �

According to b) of Corollary 5.2.7, the cardinality of an infinite compact topological

group G satisfies |G| = 2w(G). This is no longer valid neither for pseudocompact nor for

countably compact topological groups — it suffices to take the Σ-product H of c copies of

the circle group T. By Corollary 1.6.34, H with the topology inherited from Tc is countably

compact and |H | = w(H) = c. In fact, the cardinality of a countably compact topological

group can even be less than the weight of the group (see Exercise 5.2.c). However, there

are certain restrictions on the cardinality of a pseudocompact topological group. Some of

them are given in Theorem 9.11.2 below.

Let us call a cardinal λ strong limit if 2τ < λ for each τ < λ. Clearly, ℵ0 = ω is the

first strong limit cardinal. For every infinite cardinal τ, one can find a strong limit cardinal

λ > τ as the limit of the sequence {τn : n ∈ ω}, where τ0 = τ and τn+1 = 2τn for each

n ∈ ω.

Theorem 9.11.2. Let G be an infinite pseudocompact topological group such that
|G| = κ. Then κ ≥ c, and if cf (κ) = ω, then the cardinal κ cannot be strong limit.
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Proof. Since the group G is infinite and pseudocompact, it has no isolated points.

The Raı̆kov completion 
G of G is a non-discrete compact topological group, by Corol-

lary 3.7.18. Therefore, by Proposition 4.2.3, there exists a continuous mapping f of the

space 
G onto the unit segment [0, 1]. It follows from Corollary 3.7.21 that G intersects

every non-empty Gδ-set in 
G. In particular, G intersects each fiber of the mapping f and,

therefore, f (G) = [0, 1]. This gives immediately the inequality κ = |G| ≥ c.
Assume that the cardinal κ = |G| is strong limit and countably cofinal, that is,

κ = supn∈ω κn, where κn < κ for each n ∈ ω. We already know that κ ≥ c, so one

can assume that all cardinals κn are infinite. Represent G as the union G =
⋃

n∈ω Xn,

where |Xn| = κn, for each n ∈ ω. Let Yn be the closure of Xn in G. Since κ is strong limit,

we have w(Yn) ≤ 2κn < κ and |Yn| ≤ 2w(Yn) < κ, according to Theorems 1.5.6 and 1.5.1

of [165], respectively. By Lemma 9.11.1, the space G has the Baire property. Hence, there

exists m ∈ ω such that Ym contains a non-empty open subset U of G. Theorem 3.7.2 implies

that the group G is precompact, so G can be covered by finitely many translations of the

set U. Hence, the cardinalities of U and G coincide. This contradicts the fact that U is a

subset of Ym, where |Ym| < κ. �

Corollary 9.11.3. Let G be a pseudocompact topological Abelian group. Then, for
every integer d ∈ N, the subgroup dG = {dx : x ∈ G} of the group G is either finite or has
cardinality at least c.

Proof. The homomorphism ϕd of G to G defined by ϕd(x) = dx for each x ∈ G, is

continuous. It follows the homomorphic image ϕ(G) = dG of G is again a pseudocompact

group. Therefore, if dG is infinite, Theorem 9.11.2 implies that |dG| ≥ c. �

Every infinite Abelian group admits a non-discrete precompact Hausdorff topological

group topology — it suffices to endow the group with the Bohr topology (this also follows

from the proof of Theorem 1.4.25, since only the homomorphisms to the circle group T were

used there). However, for every torsion Abelian group G, the product group G × Z does

not admit a pseudocompact topological group topology. This follows from Theorem 9.11.5

below whose proof depends on the next special case of it.

Lemma 9.11.4. If G is a compact Abelian topological group with an element of infinite
order, then r0(G) ≥ c.

Proof. Clearly, the group G is infinite and, hence, non-discrete. For every n ∈ N, let

Zn = {(k0, . . . , kn) ∈ Zn+1:

n∑
i=0

|ki| ≤ n(n + 1) and kj = 0 for some j ≤ n}.

First we establish the following auxiliary fact.

Claim. For every sequence U0, . . . , Un of non-empty open sets in G, there exists a
sequence V0, . . . , Vn of non-empty open subsets of G such that Vi ⊂ Ui for each i ≤ n, and
if (k0, . . . , kn) ∈ Zn and xi ∈ Vi for each i ≤ n, then k0x0 + · · ·+ knxn = 0G.

To prove Claim, fix an arbitrary element (k0, . . . , kn) of Zn. The mapping π : Gn+1 → G
defined by π(x0, . . . , xn) = k0x0 + · · · + knxn is a continuous homomorphism. Put

H = π(G). Since G is compact, the homomorphism π : G → H is open. Hence,

U = π(U0 × · · · ×Un) is a non-empty open subset of H . It follows from (k0, . . . , kn) ∈ Zn
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that kj = 0 for some j ≤ n. By the assumption, G contains a non-torsion element z;

therefore, kjz is a non-torsion element of H . So the compact group H and its open subset

U are infinite. Therefore, we can choose an element yi ∈ Ui for every i ≤ n, such that

k0y0 + · · ·+ knyn = 0G. Since π is continuous, there exist open sets W0, . . . , Wn in G such

that yi ∈ Wi ⊂ Ui for each i ≤ n and 0G /∈ π(W0×· · ·×Wn). Since the set Zn is finite, we

can repeat this construction finitely many times (for every element of Zn), thus obtaining

the required open sets V0, . . . , Vn. Our Claim is proved.

Let us go back to the main argument. As in the proof of Proposition 4.2.3, let 2n be

the family of all mappings from n = {0, . . . , n− 1} to {0, 1} = 2, where n ∈ N. Let also

� =
⋃∞

n=1 2n. The above Claim permits us to define a family {Vf : f ∈ �} of non-empty

open sets in G satisfying the following conditions for each n ∈ N:

(1) Vf ∩ Vg = ∅ for all distinct f, g ∈ 2n;

(2) if f, g ∈ � and g is a proper extension of f , then Vg ⊂ Vf ;

(3) if F ⊂ 2n and kf ∈ Z and xf ∈ G satisfy |kf | ≤ n and xf ∈ Vf for each f ∈ F , then

the equality
∑

f∈F kf xf = 0G holds only if kf = 0 for all f ∈ F .

By (2) and compactness of G, the set Kf =
⋂∞

n=1 Vf�n is non-empty for each f ∈ 2ω.

Choose xf ∈ Kf , f ∈ 2ω. It is clear from (3) that all elements of X = {xf : f ∈ 2ω}
are of infinite order, and that |X| = c. Let us verify that the set X is independent. For any

pairwise distinct elements y0, . . . , ym of X and (k0, . . . , km) ∈ Zm+1 with kj = 0 for some

j ≤ m, we can find n ∈ N with m + 1 ≤ n and a set F ⊂ 2n of size m + 1 such that

|ki| ≤ n, for each i = 0, . . . , m, and {y0, . . . , ym} = {xf : f ∈ F}. By condition (3),

k0y0 + · · ·+ kmym = 0G. Hence, X is an independent subset of X. �

The following theorem gives a restraint on the structure of pseudocompact Abelian

groups very different from those established in Theorem 9.11.2.

Theorem 9.11.5. Let G be a pseudocompact Abelian topological group. Then either
r0(G) ≥ c or G is a bounded torsion group.

Proof. Suppose first that G is not a torsion group. Then there exists an element a ∈ G
of infinite order, so the cyclic subgroup H = 〈a〉 of G generated by a is infinite. The Raı̆kov

completion K = 
G of G is a compact Abelian group, by Corollary 3.7.18. According

to Theorem 9.4.11, the continuous characters on K separate elements of K. Therefore,

for any distinct x, y ∈ H , we can choose a continuous character hx,y ∈ K∗ such that

hx,y(x − y) = 1 or, equivalently, hx,y(x) = hx,y(y). Denote by f the diagonal product of

the family 
 = {hx,y : x, y ∈ H, x = y}. It is clear that |
| = |H | = ω, so f (K) is a

subgroup of the product group Tω. Since the homomorphism f is continuous, the group

L = f (K) is compact and metrizable. It also follows from the choice of the characters hx,y

and the definition of the family 
 that f (x) = f (y) for all distinct x, y ∈ H . Hence, the

group f (H) = 〈f (a)〉 is infinite and the element f (a) has infinite order in L. We conclude

that the group L is not torsion. Now it follows from Lemma 9.11.4 that r0(L) ≥ c. Let

{bα : α < c} be an independent family of elements of infinite order in L.

Since G intersects all non-empty Gδ-sets in K = 
G, the image of G under the

homomorphism f coincides with the group L, that is, f (G) = f (K) = L. For every α < c,
choose an element aα ∈ G with f (aα) = bα. Then {aα : α < c} is an independent family

of elements of infinite order in G, so that r0(G) ≥ c.
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Finally, suppose that G is a torsion group. For every positive integer n, G[n] = {x ∈
G : nx = 0} is a closed subgroup of G and G =

⋃∞
n=1 G[n]. The space G is Baire by

Lemma 9.11.1, so the group G[k] has a non-empty interior for some k ∈ N. Clearly, G[k] is

open in G and, since G is precompact by Theorem 3.7.2, it can be covered by finitely many

translations of the subgroup G[k]. Choose x1, . . . , xm ∈ G such that G =
⋃m

i=1(xi + G[k]).

The group G being torsion, there exists an integer N > 0 such that Nxi = 0, for each i ≤ m.

Then Nkx = 0G, for each x ∈ G. Indeed, choose i ≤ m such that x ∈ xi + G[k]. Then

x = xi +y for some y ∈ G[k]; hence, Nkx = Nkxi +Nky = 0G. Therefore, G is a bounded

torsion group. �

In the theorem below we present a sufficient condition for an Abelian group to admit a

pseudocompact Hausdorff topological group topology. Such a topology will be additionally

chosen to be connected and locally connected.

Theorem 9.11.6. [D. Dikranjan and D. B. Shakhmatov] Let G be an infinite Abelian
group satisfying |G|ω = |G| and suppose that either r0(G) = |G| or G is torsion-free. Then
G admits a pseudocompact, connected, locally connected Hausdorff topological group
topology.

Proof. In either case, we are going to identify G with a dense pseudocompact subgroup

of the group Tκ, where κ = |G|. Since κω = κ ≥ ω, it follows that κ ≥ c. Therefore, by

Proposition 9.9.20, there exists an independent set X ⊂ G of elements of infinite order such

that |X| = κ.

Denote by [κ]≤ω the family of all non-empty countable subsets of κ, and put

� =
⋃
{TA : A ∈ [κ]≤ω}.

It follows from κω = κ that |�| = κ, so � = {bβ : β < κ}. For every β < κ, denote by

Aβ the unique element of [κ]≤ω such that bβ ∈ TAβ . Let also {yβ : β < κ} be a one-to-one

enumeration of the set G \ {0G}.
Our aim is to construct a family 
 = {hα : α < κ} of homomorphisms of G to T

that separates elements of G and such that the image h(G) is Gδ-dense in the product group

Tκ, where h is the diagonal product of the family 
. To this end, we have to define, for

each β < κ, a set Eβ ⊂ κ, a subgroup Gβ of G, and a family 
β = {hα,β : α ∈ Eβ} of

homomorphisms of Gβ to T satisfying the following conditions:

(i) |Eβ| ≤ |β|+ ω and |Gβ| ≤ |β|+ ω;

(ii) Eγ ⊂ Eβ and Gγ ⊂ Gβ for each γ < β;

(iii) hα,β�Gγ = hα,γ , whenever γ < β and α ∈ Eγ;

(iv) β ⊂ Eβ and Aβ ⊂ Eβ;

(v) yβ ∈ Gβ;

(vi) hα,β(yβ) = 1 for some α ∈ Eβ;

(vii) there exists xβ ∈ Gβ ∩X such that hα,β(xβ) = bβ(α), for each α ∈ Aβ.

Choose α0 ∈ κ \A0 and x0 ∈ X. Then both the set E0 = A0 ∪ {α0} and the subgroup

G0 = 〈x0, y0〉 of G are countable. By Lemma 1.1.5, there exists a homomorphism hα0 ,0

of G0 to T such that hα0 ,0(y0) = 1. Similarly, for every α ∈ A0, Lemma 1.1.5 permits to

take a homomorphism hα,0 : G0 → T such that hα,0(x0) = b0(α). Therefore, E0, G0 and


0 = {hα,0 : α ∈ E0} satisfy (i)–(vii).
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Suppose that Eν, Gν and 
ν satisfying (i)–(vii) have been defined for each ν < β,

where 0 < β < κ. Put Dβ =
⋃

ν<β Eν. It follows from (i) that |Dβ| ≤ |β|+ ω < κ, so we

can pick αβ ∈ κ \Dβ. Put Eβ = β ∪ Aβ ∪Dβ ∪ {αβ} and Hβ =
⋃

ν<β Gν. Then Hβ is a

subgroup of G, by (ii). It follows from (i) that |Hβ| ≤ |β| ·ω < κ and, since |X| = κ, we can

take an xβ ∈ X such that the intersection 〈xβ〉∩Hβ is trivial. Define Gβ to be the subgroup

of G generated by the set Hβ ∪ {xβ, yβ}. Clearly, Eβ and Gβ satisfy (i), (ii), (iv) and (v).

Now choose a homomorphism hαβ,β of Gβ to T such that hαβ,β(yβ) = 1. According to (iii),

for every α ∈ Dβ there exists a homomorphism gα,β of Hβ to T such that gα,β�Gγ = hα,γ

whenever γ < β and α ∈ Eγ . In other words, gα,β extends every homomorphism hα,γ with

γ < β and α ∈ Eγ . It follows from the choice of xβ ∈ X and Lemma 1.1.5 that we can find,

for every α ∈ Aβ, a homomorphism hα,β of Gβ to T such that hα,β(xβ) = bβ(α) and, in

addition, hα,β�Hβ = gα,β if α ∈ Dβ. In the latter case, we have hα,β�Gγ = hα,γ whenever

γ < β and α ∈ Eγ . Hence Eβ, Gβ and 
β = {hα,β : α ∈ Eβ} satisfy (i)–(vii). The

recursive construction is complete.

It follows from (iv) that κ =
⋃

β<κ Eβ, while (ii) and (v) imply that G =
⋃

β<κ Gβ.

Therefore, by (ii) and (iii), for every α < κ there exists a homomorphism hα : G→ T such

that hα�Gγ = hα,γ whenever α ∈ Eγ . It remains to verify that the family 
 = {hα : α < κ}
has the required properties.

First, the family 
 separates points of G since the kernel of the homomorphism

h = Δα<κhα of G to Tκ is trivial. Indeed, if β < κ, we use (vi) to find α ∈ Eβ such

that hα,β(yβ) = 1. Hence, hα(yβ) = hα,β(yβ) = 1. Thus, h is an isomorphism of G onto

the subgroup h(G) of Tκ. To show that h(G) is Gδ-dense in Tκ, it suffices to verify that

πA(h(G)) = TA, for every countable subset of the index set κ, where πA : Tκ → TA is the

projection. Indeed, suppose that b ∈ TA for some A ∈ [κ]≤ω. Then b = bβ, for some

β < κ, whence A = Aβ. Since hα�Gβ = hα,β for each α ∈ Aβ ⊂ Eβ, it follows from (vii)

that πA(h(xβ)) = bβ = b. Therefore, projections of h(G) fill in all countable subproducts

of Tκ, and h(G) is Gδ-dense in Tκ. Now it follows from Theorem 2.4.15 that h(G) is a

dense pseudocompact subgroup of Tκ. In addition, the group h(G) is connected and locally

connected, by the same theorem.

Finally, identifying G with its image h(G) under the isomorphism h, we obtain a

pseudocompact Hausdorff topological group topology on G with the required properties.

�
As a combination of Theorems 9.11.5 and 9.11.6, we obtain:

Corollary 9.11.7. Let G be a non-torsion Abelian group such that |G| = c. Then G
admits a pseudocompact Hausdorff topological group topology iff r0(G) = c.

Corollary 9.11.8. A free Abelian group G of cardinality κ satisfying κω = κ admits
a pseudocompact Hausdorff topological group topology.

Let us briefly come across pseudocompact torsion groups. The next result generalizes

Corollary 9.6.30 and is based on it.

Proposition 9.11.9. Every pseudocompact torsion Abelian group G is zero-dimen-
sional.

Proof. By Theorem 9.11.5, G is bounded torsion, that is, nG = {0}, for some integer

n > 1. Let K be the Raı̆kov completion of G. Then K is a compact Abelian group satisfying
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the same equality nK = {0}. By Corollary 9.6.30, the space K is zero-dimensional. Hence,

the subspace G of K is also zero-dimensional. �

The theorem below reduces the problem of existence of a pseudocompact topologization

of a given bounded torsion group to a similar problem for primary components of the group.

Theorem 9.11.10. For a bounded torsion Abelian group G, the following conditions
are equivalent:

a) G admits a Hausdorff pseudocompact topological group topology;
b) each p-primary component Gp of G admits a Hausdorff pseudocompact topological

group topology;
c) for every integer m ≥ 1, the group mG = G/G[m] admits a pseudocompact Hausdorff

topological group topology.

Proof. First we show that a) implies c). Suppose that τ is a Hausdorff topological

group topology on G, and let G∗ = (G, τ). Given an integer m ≥ 1, consider the mapping

ϕm : G∗ → G∗ defined by ϕm(x) = mx, for each x ∈ G∗. Clearly, ϕm is a continuous

homomorphism and the kernel of ϕm is the closed subgroup G[m] = {x ∈ G∗ : mx = 0}
of G∗. Therefore, if the group G∗ is pseudocompact, so is the continuous homomorphic

image mG∗ = ϕm(G∗) of G∗, that is, the group mG admits a pseudocompact Hausdorff

topological group topology (inherited from G∗).

To see that c) implies b), we assume that c) holds. In particular, the group G admits

a Hausdorff pseudocompact topological group topology τ — it suffices to take m = 1 in

c). By our assumption, the period n of G is finite. Let n = pk1

1 · · ·pkr
r , where r ∈ N and

p1, . . . , pr are pairwise distinct prime numbers. For an integer i ≤ r, let mi = n/pki
i . Then

miG = Gpi , where

Gpi = {x ∈ G : pki
i x = 0}

is the pi-primary component of G. Hence, by our assumption, Gpi admits a Hausdorff

pseudocompact topological group topology.

It remains to verify that b) implies a). By virtue of Theorem 9.9.14, the group G is

the direct sum of its primary components Gp. Since G is bounded torsion, at most finitely

many of the primary components are non-trivial, say, Gp1
, . . . , , Gpr . Suppose that for every

i ≤ r, the group Gpi admits a pseudocompact Hausdorff topological group topology τi. Let

G∗
i = (Gpi , τi), for each i ≤ r. Then, by Corollary 6.6.11, the Hausdorff topological group

G∗ =
∏r

i=1 G∗
i is pseudocompact. This finishes the proof. �

To complete the algebraic characterization of bounded torsion Abelian groups admitting

a pseudocompact Hausdorff topological group topology, it suffices, after Theorem 9.11.10,

to consider bounded torsion p-groups. This part will be done in the problem section below

(see Exercise 9.11.g and Problem 9.11.E). We need, however, a short preliminary discussion

prior to this job.

According to Theorem 9.11.2, there exist cardinals κ > c such that no group of

cardinality κ admits a Hausdorff pseudocompact topological group topology. For example,

let k0 = ℵ0 and κn+1 = 2κn , for each n ∈ ω. Then κ = supn∈ω κn is such a cardinal.

Let us call an infinite cardinal τ admissible if there exists a pseudocompact Hausdorff

topological group G such that |G| = κ. By Theorem 9.11.2, no cardinal τ less than c
is admissible, while Theorem 9.11.6 implies that every infinite cardinal τ with τ = τω is
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admissible. A characterization of admissible cardinals is not a simple task at all. Several

results in this direction require additional axioms of ZFC. Suppose, for example, that the

Singular Cardinals Hypothesis (SCH , for brevity) is valid (see [260, Chapter 8]):

if τ ≥ c is a cardinal and cf (τ) = ω, then τω = τ.

Since every cardinal τ ≥ c satisfying τω = τ is admissible, we conclude that under SCH , all

cardinals τ ≥ c with cf (τ) = ω are admissible. However, it was shown by A. H. Tomita in

[498] that the existence of a countably compact (hence, pseudocompact) topological group

of any size κ ≥ c is consistent with ZFC. Under GCH , however, every cardinal κ of

countable cofinality is strong limit, so no pseudocompact topological group has cardinality

κ, by Theorem 9.11.2. Summing up, the existence of a pseudocompact topological group

of cardinality κ > c with cf (κ) = ω is independent of ZFC. A couple of complementary

results on admissible cardinals is given in Exercise 9.11.g.

Exercises

9.11.a. Give an example of an infinite pseudocompact Abelian group that does not have a proper

dense pseudocompact subgroup.

9.11.b. (D. B. Shakhmatov [426]) Show that every pseudocompact topological field is finite.

9.11.c. Does the Abelian group Z(2)(c) ⊕ Z(4)(ω) admit a pseudocompact Hausdorff topological

group topology?

9.11.d. (D. Dikranjan and D. B. Shakhmatov [140]) Modify the proof of Theorem 9.11.6 to show

that for every infinite cardinal τ with τω = τ, the free group of cardinality τ admits a

pseudocompact Hausdorff topological group topology. In other words, Corollary 9.11.8

admits an extension to the non-Abelian case.

9.11.e. (D. Dikranjan and D. B. Shakhmatov [140]) Show that Proposition 9.11.9 can be extended

to pseudocompact Abelian groups G satisfying r0(G) < c.

9.11.f. Let H be a dense divisible subgroup of a compact topological group G. Show that G is

divisible.

9.11.g. (W. W. Comfort and L. C. Robertson [119]) Let Ps(τ, σ), where τ and σ are infinite cardinals,

abbreviate the statement that {0, 1}σ contains a Gδ-dense subset of cardinality τ. Prove the

following:

a) If P(τ, σ) holds, then c ≤ τ ≤ 2σ .

b) A cardinal τ ≥ ω is admissible if and only if Ps(τ, σ) holds, for some σ ≥ ω.

Hint. Item a) is trivial, and it suffices to verify the direct implication in b). Suppose that

there exists a pseudocompact topological group H of cardinality τ, i.e., τ is admissible. The

Raı̆kov completion 
H of H is a compact group. By virtue of Theorem 4.2.4, there exists a

continuous mapping f of 
H onto the Tychonoff cube Iσ , where σ = w(
G) = w(G). Since

H is Gδ-dense in 
H , the image X = f (G) is Gδ-dense in Iσ and, clearly, |X| ≤ |G| = τ.

Let h be an arbitrary mapping of I onto {0, 1}. Then the product mapping hσ sends X to a

Gδ-dense subset Y = hσ(X) of {0, 1}σ , and |Y | ≤ |X| ≤ τ. By a), |{0, 1}σ | = 2σ ≥ τ, so

we can enlarge Y to a Gδ-dense subset Z of {0, 1}σ satisfying |Z| = τ.

Problems

9.11.A. (H. Wilcox [535]) Show that every pseudocompact divisible group is connected (this extend

the “if” part of Theorem 9.6.15 to arbitrary pseudocompact groups).

Hint. Suppose to the contrary that a pseudocompact divisible group H is disconnected.

Then H = U ∪ V , where U and V are disjoint open non-empty subsets of H . We can

assume that U contains the neutral element e of H . Since H intersects every non-empty
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Gδ-set in the Raı̆kov completion 
H of H and the compact group 
H is a Moscow space

(see item 1) of Theorem 6.4.2), the sets cl
H U and cl
H V are disjoint. Hence, cl
H U is a

compact open neighbourhood of e in 
H , and Proposition 3.1.10 implies that cl
H U contains

an open invariant subgroup K of 
H . Clearly, 
H/K is a finite group. The group 
H is

divisible, by 9.11.f. It follows that the quotient group 
H/K is also divisible. However, a

finite divisible group is trivial, a contradiction.

9.11.B. Give an example of an Abelian topological group G such that all closed subgroups of G are

pseudocompact, but G is not countably compact.

Hint. Let κ > ℵ0 be a cardinal. We say that an element x of the product group Tκ is

metrizable if the closure in Tκ of the cyclic group 〈x〉 is metrizable. Verify that the set G of

all metrizable elements of Tκ is a subgroup of Tκ with the required properties.

9.11.C. Show that every Tychonoff space can be embedded as a closed subspace into a pseudocompact

topological Abelian group.

9.11.D. (D. Dikranjan and D. B. Shakhmatov [140]) Prove that every finitely generated subgroup of

a pseudocompact torsion (not necessarily Abelian) topological group is finite.

Hint. Apply Problem 9.6.G.

9.11.E. (D. Dikranjan and D. B. Shakhmatov [140]) Let G be a bounded torsion p-group, that

is, G = Gp, for a prime p. Prove that the group G admits a pseudocompact Hausdorff

topological group topology iff each cardinal βk = |pkG| is either finite or admissible, k ∈ ω.

Hint. It follows from our assumption about G and Theorem 9.6.28 that G =
⊕r

k=1
Z(pk)(αk ),

where α1, . . . , αr are cardinals, finite or infinite. Apply Exercise 9.11.g to show that if

αk ≤ αr , for each k ≤ r, and the cardinal αr is either finite or admissible, then G
admits a pseudocompact Hausdorff topological group topology. Then extend the same

conclusion to the case when γk = max{αk+1, . . . , αr} is either finite or admissible, for

each k = 0, 1, . . . , r − 1. Finally, in the general case, use the assumption about cardinals βk

to show that the sequence (α1, . . . , αr) satisfies the above condition involving cardinals γk.

9.11.F. (W. W. Comfort and J. van Mill [116]) Prove that every non-metrizable pseudocompact

Abelian group contains a proper dense pseudocompact subgroup.

9.11.G. (M. G. Tkachenko [489])) Let G be an infinite Abelian group satisfying r0(G) = |G| = |G|ω.

Prove that G admits a pseudocompact Hausdorff topological group topology � such that the

space (G, �) is Fréchet–Urysohn. Deduce that every torsion-free Abelian group G with

|G| = |G|ω admits a pseudocompact Hausdorff topological group topology making it into a

Fréchet–Urysohn space.

Hint. Embed G into an appropriate Σ-product of circle groups as a Gδ-dense subgroup.

9.11.H. (M. G. Tkachenko [489])) Let G = H ⊕ Z(n)(κ), where n ∈ N, κ is an infinite cardinal

satisfying κω = κ, and H is a torsion Abelian group of a finite period m dividing n, |H | ≤ κ.

Prove that G admits a pseudocompact Hausdorff topological group topology making it into

a Fréchet–Urysohn space.

Hint. Embed G into the group ΣZ(n)κ as a Gδ-dense subgroup.

Open Problems

9.11.1. Let G be an infinite torsion-free Abelian group satisfying |G|ω = |G|. Does G admit a

pseudocompact Hausdorff group topology of countable tightness? (See Problems 9.11.G

and 9.11.H.)

9.11.2. Is it possible to embed an arbitrary sequential Tychonoff space into a pseudocompact

sequential topological group?

9.11.3. Is the product of two sequential pseudocompact groups a sequential space?
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9.11.4. Let G be a non-metrizable pseudocompact quasitopological Abelian group. Does G contain

a proper dense pseudocompact subgroup? Does it admit a strictly finer pseudocompact

quasitopological group topology? (See Problems 9.8.K and 9.11.F.)

9.12. Countably compact topologies on Abelian groups

In this section we consider the question of when an abstract group admits a countably

compact Hausdorff topological group topology. Henceforth all groups are assumed to be

Abelian (except for in Example 9.12.19), so the additive notation is used.

We saw in Section 9.6 that the algebraic structure of a compact topological Abelian

group is subject to various strong restrictions. When the assumption of compactness of

an Abelian group is weakened to countable compactness or to pseudocompactness, the

resulting constraints on the algebraic structure of the group are becoming considerably

softer. For example, it follows from Corollary 9.12.11 that the existence of a countably

compact Hausdorff topological group topology on the group H = Z(2)(ω) ⊕ Z(4)(c) is

consistent with ZFC, where G(α) denotes the direct sum of α copies of the group G. On the

other hand, no Hausdorff topological group topology on H is compact, by Exercise 9.6.i.

Under Martin’s Axiom, we completely characterize the algebraic structure of Abelian

groups of cardinality c that admit a countably compact Hausdorff topological group topology.

It turns out that, in the torsion case, these are exactly the groups that admit a pseudocompact

Hausdorff topological group topology (see Theorem 9.12.9). The algebraic constraints for

the existence of a countably compact Hausdorff topological group topology on an Abelian

group G of size c are relatively simple: For every integer n > 1, the subgroup G[n] of G
has to be finite or to satisfy |G[n]| = c, and the same has to be true for the subgroup dG[n],

where d is any divisor of n.

We start with the following general result, where no upper bound on the cardinality of

a group is imposed. Let us recall that a space X is called ω-bounded if the closure of every

countable set in X is compact. It is clear that every ω-bounded space is countably compact.

Proposition 9.12.1. Let G be an Abelian group of a prime exponent p such that
|G|ω = |G|. Then G admits an ω-bounded Hausdorff topological group topology. In
particular, G admits a countably compact topological group topology.

Proof. We can assume that G is infinite. Let κ = |G|. Denote by H the Σ-product of κ
copies of the discrete group Z(p). Hence, H ⊂ Z(p)κ and H is a dense ω-bounded subgroup

of Z(p)κ, by Corollary 1.6.34. Clearly, |H | = κω = κ, so that |G| = |H |. Consider both

G and H as vector spaces over the field Z(p) and take Hamel bases A = {gα : α < κ}
and B = {hα : α < κ} in G and H , respectively. Then the mapping i : A → B, where

i(gα) = hα for each α < κ, can be extended to an isomorphism f : G → H of the Abelian

groups G and H . Identifying G with H by means of f , we obtain an ω-bounded Hausdorff

topological group topology on G. �

For the further study of countably compact topological groups we introduce special

subsets of infinite products and establish their properties.

Let λ be an infinite cardinal. An infinite subset Y of a topological product X =
∏

α<λ Xα

is called finally dense in X if there exists β < λ such that πλ\β(Y ) is dense in
∏

β≤α<λ Xα,
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where πλ\β is the projection of X onto
∏

β≤α<λ Xα. If every infinite subset of Y is finally

dense in X, then Y is called hereditarily finally dense (briefly, HFD) in X.

The following purely topological result will help us to guarantee countable compactness

of the topological groups we are going to construct.

Proposition 9.12.2. Let λ be an uncountable regular cardinal and X =
∏

α<λ Xα be
the product of compact metrizable spaces Xα each of which contains at least two points.
Suppose that Y is a subset of X such that πβ(Y ) =

∏
α<β Xα, for each β < λ. If S ⊂ Y

is an HFD set in X, then S has a cluster point in Y , but no sequence in S converges in X.
In particular, if Y is HFD in X, then Y is a countably compact dense subspace of X which
does not contain non-trivial convergent sequences.

Proof. Let us show that S has a cluster point in Y . Since S is an HFD set in X, for

every infinite subset T of S there exists an ordinal β = βT < λ such that πλ\β(T ) is dense

in Xλ\β =
∏

β≤α<λ Xα. For β < λ, define Zβ =
∏

α<β Xα and let πβ : X → Zβ be the

canonical projection. Define an increasing sequence βS = β0 < β1 < · · · < βn < · · · < λ
as follows. For an ordinal βn < λ, let �n be a base of Zβn satisfying |�n| ≤ |βn| · ω < λ.

Consider the family

γn = {S ∩ π−1
βn

(U) : U ∈ �n}
and choose an ordinal βn+1 < λ such that βn < βn+1 and βT < βn+1 for each infinite

T ∈ γn.

Once the sequence {βn : n ∈ ω} has been defined, put β∗ = supn∈ω βn. Then β∗ < λ.

Since Zβ∗ = πβ∗ (Y ) is compact, the set πβ∗ (S) has a cluster point x∗ ∈ Zβ∗ . Choose a

point x ∈ Y such that πβ∗ (x) = x∗. We claim that x is a cluster point of S. Indeed, let O
be a neighbourhood of x in X. There exist open sets U ⊂ Zβ∗ and V ⊂ Xλ\β∗ such that

x ∈ U × V ⊂ O. We can assume without loss of generality that the set U is canonical, i.e.,

depends on finitely many coordinates α1 < α2 < · · · < αk with αk < β∗. Therefore, we

can find n ∈ ω such that αk < βn. Since �n is a base for Zβn , there exists U0 ∈ �n such

that πβn (x) ∈ U0 ⊂ πβn (U × V ). Then T = S ∩ π−1
βn

(U0) is an element of the family γn

and βT ≤ βn+1 < β∗; therefore, πλ\β∗ (T ) is dense in Xλ\β∗ . So V ∩ πλ\β∗ (T ) = ∅ and

hence, S ∩ (U × V ) = ∅ and S ∩O = ∅, thus the claim holds.

Suppose that S contains a non-trivial sequence T = {xn : n ∈ ω} converging to a point

x ∈ X. Then T ∗ = T ∪ {x} is a countable infinite compact space. Since S is HFD in X,

πλ\α(T ) ⊂ πλ\α(T ∗) is dense in Xλ\α for some α < λ. Therefore, from compactness of

T ∗ it follows that πλ\α(T ∗) = Xλ\α, contradicting |Xλ\α| ≥ 2|λ\α| = 2λ > λ > ω.

Obviously, Y is dense in X. If Y is HFD in X, then every infinite subset S of Y has a

cluster point in Y by the above argument and hence, Y is countably compact and does not

contain non-trivial convergent sequences. �
For an Abelian group G and an integer d ∈ N, denote by ϕd the homomorphism of G to

G associated with the multiplication by d, i.e., ϕd(x) = dx for each x ∈ G. The following

technical concepts appear in the proofs of all main results of this section. They will enable

us to treat both torsion and non-torsion Abelian groups in Theorems 9.12.9 and 9.12.16.

Let G be an Abelian group, and n be an integer greater than 1. A countable infinite

subset S of G is called:

a) n-round if S ⊂ G[n] and the restriction of the homomorphism ϕd to S is finite-to-one,

for any proper divisor d of n;
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b) sharp if the restriction of the homomorphism ϕd to S is finite-to-one, for each d ∈ N.

Clearly, a countable infinite subset S of G is n-round iff S ⊂ G[n] and, for every

proper divisor d of n, S meets every coset of the subgroup G[d] in a finite set. Similarly, S
is sharp iff S has finite intersections with all cosets of the form x + G[d], for each d ∈ N.

In particular, an sharp set can never be n-round.

The proof of the following simple lemma is left to the reader.

Lemma 9.12.3. Let G be an Abelian group and n, k ∈ N, n > 1. Then:

a) for each p ∈ P, every countable infinite subset of G[p] is p-round;
b) infinite subsets of n-round sets are n-round;
c) if the integers n and k are coprime, then for every nk-round set S, the set kS is n-round.

We need more facts about n-round and sharp subsets of Abelian groups. The next one

is almost evident.

Lemma 9.12.4. Every infinite set in an Abelian group G of exponent n contains a subset
of the form T + z, where z ∈ G and T is a d-round subset of G, for some divisor d > 1 of n.

Proof. Let S be a countable infinite subset of G. If S is n-round, there is nothing to

prove. Suppose that there exists a proper divisor d of n such that the restriction of ϕd to S
is not finite-to-one. We can assume that d is the minimal divisor of n with this property.

Therefore, there are an element g ∈ G and an infinite subset S′ of S such that dx = g for

each x ∈ S′. Choose an element z ∈ S′ and put T = S′ − z. Then T ⊂ G[d] and from the

minimality of d it follows that T is d-round in G. Clearly, T + z ⊂ S. �

The definition of n-good and sharp sets and Lemma 9.12.4 imply the following result

immediately:

Lemma 9.12.5. Every infinite set in an Abelian group G contains either an sharp subset
or a set of the form T + z, where z ∈ G and T is a d-round subset of G for some d ∈ N.

For a discrete Abelian group G, let G∗ be the group of all homomorphisms f : G→ T
endowed with the topology of pointwise convergence, i.e., Pontryagin’s dual of G. Recall

that the standard base of G∗ consists of the sets

W (ϕ, x1, . . . , xn, ε) = {f ∈ G∗ : |f (xi)− ϕ(xi)| < ε for each i = 1, . . . , n},
where ϕ ∈ G∗, x1, . . . , xn ∈ G and ε > 0. Here and in the sequel, |x − y| denotes the

minimal length of the arcs connecting the points x, y in T. The topological group G∗ is

compact and Hausdorff, by Proposition 9.5.5. The group Hom(G, Tω) of homomorphisms

of G to Tω is naturally identified with (G∗)ω. We will also identify Z(n) with the subgroup

T[n] of T. Therefore, if G has exponent n, then G∗ = Hom(G, T) = Hom(G, Z(n)).

The following result prepares ground for applications of Martin’s Axiom and is used

in the proof of Lemma 9.12.7.

Lemma 9.12.6. Let S be an n-round subset of a discrete Abelian group G. Then the
set

HS = {f ∈ (G∗)ω : f (S) is dense in Z(n)ω}
is the intersection of countably many open dense sets in (G∗)ω and, hence, is dense in (G∗)ω.
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Proof. For every r ∈ N and g ∈ Z(n)r+1, consider the set

Ug = {f ∈ (G∗)ω: ∃ x ∈ S such that πi(f (x)) = g(i) for each i = 0, . . . , r},
where πi : Tω → Ti is the projection to the ith factor. Since nx = 0 for each x ∈ S, the sets

Ug are open in (G∗)ω. To see this, it suffices to replace πi(f (x)) = g(i) by the equivalent

condition |πi(f (x))− g(i)| < 1/n in the definition of the set Ug. The equality

HS =
⋂
{Ug : g ∈ Z(p)r+1 for some r ∈ N}

is also evident. It remains to show that Ug is dense in (G∗)ω for each g ∈ Z(n)r+1, r ∈ N.

Equivalently, we have to show that the set

Vg = {(f0, . . . , fr) ∈ (G∗)r+1 : ∃ x ∈ S such that fi(x) = g(i), i = 0, . . . , r}
is dense in (G∗)r+1. Let r ∈ N and g ∈ Z(p)r+1 be arbitrary. Consider a basic open set

W = W0 × · · · ×Wr in (G∗)r+1, where

Wi = W (ψi, xi,1, . . . , xi,mi , εi)

= {f ∈ G∗ : |f (xi,k)− ψi(xi,k)| < εi, k = 1, . . . , mi}.
Here εi > 0, ψi ∈ G∗, and xi,k ∈ G whenever 0 ≤ i ≤ r and 1 ≤ k ≤ mi. Denote by N the

subgroup of G generated by the elements xi,k with 0 ≤ i ≤ r and 1 ≤ k ≤ mi. Since N is a

finitely generated Abelian group, its torsion part tor(N) is finite. We claim that there exists

a non-zero element x ∈ S of order n such that 〈x〉 ∩ N = {0}. Indeed, the intersection

S∩G[d] is finite for each proper divisor d of n, so almost all elements of S have order n. We

can assume, therefore, that every element of S is of order n. Assume that 〈x〉∩N = {0} for

each x ∈ S, and find a divisor dx of n with dx = n such that dxx ∈ N. Since dxx ∈ tor(N),

there exist a proper divisor d of n, an infinite subset S′ of S and an element a ∈ N such that

d x = a for all x ∈ S′. This contradicts our assumption that S is n-round. So, we can pick

an element x ∈ S of order n with 〈x〉 ∩N = {0}. For every i ≤ r, define a homomorphism

hi : G→ T satisfying hi�N = ψi�N and hi(x) = g(i). Clearly, (h0, . . . , hr) ∈ W ∩ Vg. �

Martin’s Axiom is equivalent to the following purely topological assertion: If X is a
compact Hausdorff space of countable cellularity, then the intersection of less than c open
dense sets in X is dense in X (see [262, 285]). We shall use this topological form of MA
in the proofs of all main results of this section. It is known that, under MA, every infinite

cardinal κ < c satisfies 2κ = c [262, 285]. In particular, MA implies that c is a regular

cardinal.

The next lemma is the key to the proof of Theorem 9.12.9.

Lemma 9.12.7. Assume that MA holds. Let G be a discrete Abelian group, x∗ a
non-zero element of G, and α < c an ordinal. For every γ < α, let fγ : G → Gγ be a
homomorphism of G to a topological group Gγ . Suppose that:

a) for every γ < α, Sγ ⊂ G is an nγ-round in G subset of G, for some nγ ∈ N;
b) fγ(Sγ) is dense in a non-discrete subgroup Kγ of Gγ with w(Kγ) < c.

Then there exists a homomorphism f : G→ Tω such that f (x∗) = 0 and, for every γ < α,
the image (fγΔf )(Sγ) is dense in Kγ ×Z(nγ)ω, where fγΔf is the diagonal product of the
homomorphisms fγ and f .
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Proof. For every γ < α, denote by �γ a base for Kγ such that |�γ| < c. Let also � be

a countable base for L = Tω. For γ < α and U ∈ �γ , put Sγ(U) = Sγ ∩ f−1
γ (U ∩ fγ(Sγ)).

Since fγ(Sγ) is dense in the non-discrete group Kγ , the family

�γ = {Sγ(U) : U ∈ �γ}
consists of infinite subsets of G, and |�γ| ≤ |�γ| < c. Note that Sγ(U) is nγ-round for

every U ∈ �γ as an infinite subset of the nγ-round set Sγ . Denote by Hγ the set of all

homomorphisms h : G → K such that h(S) is dense in Z(nγ)ω for each S ∈ �γ . By

Lemma 9.12.6, Hγ is the intersection of at most |�γ| · ω < c open dense subsets of the

compact group (G∗)ω. Since α < c, the set H =
⋂

γ<α Hγ is the intersection of less than c

open dense subsets of (G∗)ω (here we use the fact that c is a regular cardinal under MA). The

dual group G∗ of the discrete Abelian group G is compact, hence dyadic, by Theorem 4.1.7.

So the Souslin number of (G∗)ω is countable. Therefore, MA implies that H is dense in

(G∗)ω.

Consider the non-empty open subset

W = {h ∈ (G∗)ω : h(x∗) = 0K}
of (G∗)ω. Then W ∩H = ∅, so there exists f ∈ W ∩H . Clearly, f (x∗) = 0K. For every

γ < α, denote by hγ the diagonal product of fγ and f . We claim that hγ(Sγ) is dense in

Kγ × Z(nγ)ω for each γ < α. Indeed, let U × V be a non-empty open subset of Kγ × L,

where U ∈ �γ , V ∈ � and V ∩ Z(nγ)ω = ∅. Since S = Sγ(U) ∈ �γ and f ∈ H ,

we infer that f (S) is dense in Z(nγ)ω. Choose a point y ∈ S such that f (y) ∈ V . Then

hγ(y) = (fγ(y), f (y)) ∈ U × V , whence hγ(S) ∩ (U × V ) = ∅. So hγ(Sγ) is dense in

Kγ × Z(nγ)ω. �

Given two integers d, n ∈ N, we write d|n if d divides n. If α is an ordinal and H is a

group, then H (α) denotes the direct sum of α copies of the group H . This notation is used

in the next corollary to Theorem 9.6.28:

Lemma 9.12.8. Let G be a bounded torsion Abelian group of exponent n with
|G| = κ > ω. Suppose that for every divisor d of n, the group dG either is finite or
is of cardinality κ. Then there exist a divisor m > 1 of n and a finite subgroup F of G such
that G is isomorphic to the direct sum F ⊕⊕

d|m Z(d)(αd ), where αm = κ and αd = 0 or
ω ≤ αd ≤ κ, for each proper divisor d of m.

Proof. According to Theorem 9.6.28, G is isomorphic to a direct sum ⊕i∈IHi, where

each Hi is a finite cyclic group whose order di divides n. It is clear that |I| = κ. For every

divisor d > 1 of n, let αd be the number of summands in the direct sum G ∼= ⊕i∈IHi

isomorphic to the group Z(d). Denote by m the biggest divisor of n with αm ≥ ω. Now

we can represent G as follows: G ∼= F ⊕⊕
d|m Z(d)(αd ), where F is the direct sum of the

groups Z(d)(αd ) with finite αd . Evidently, αd ≤ κ for each divisor d of m. Therefore, it

remains to verify that αm = κ.

If m is prime, it follows immediately from |I| = κ that αm = κ as well. In the other

case, let p be a prime divisor of m. Then m = pr, for some integer r > 1. Obviously,

rG ∼= rF ⊕
⊕
d|m

rZ(d)(αd ) ∼= rF ⊕ Z(p)(αm),
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and since αm is infinite, the assumptions of the lemma imply that |rG| = κ. The summand

rF is finite, so we must have αm = κ. �

In the theorem below, we present necessary and sufficient conditions for the existence

of a countably compact topological group topology on “small” Abelian torsion groups.

Theorem 9.12.9. [D. Dikranjan and M. G. Tkachenko] Under Martin’s Axiom, the
following conditions are equivalent for every torsion Abelian group G of cardinality at
most c:

a) G admits a pseudocompact Hausdorff topological group topology;
b) G admits a countably compact Hausdorff topological group topology;
c) G admits a countably compact Hausdorff topological group topology without non-trivial

convergent sequences;
d) G has finite exponent n and dG is either finite or has cardinality c, for every proper

divisor d of n.

Proof. Implications c) ⇒ b) ⇒ a) are obvious. The implication a) ⇒ d) is Corol-

lary 9.11.3. So we shall only prove the implication d)⇒ c).

Suppose that G satisfies d), and let n be the exponent of G. If G is finite there is

nothing to prove, so assume from now on that G is infinite. Then d) (with d = 1) implies

that |G| = c.
By virtue of Lemma 9.12.8, one can find a finite subgroup F of G and a divisor m > 1

of n such that G ∼= F ⊕⊕
d|m Z(d)(αd ), where αm = c and for each proper divisor d of m,

either αd = 0 or ω ≤ αd ≤ c. Since the product of a finite group and a countably compact

group is countably compact, we can assume that F = {0}. Therefore, we may assume that

m = n.

Put K = Z(n)ω. Our aim is to construct an injective homomorphism h : G→ Kc such

that the subgroup h(G) of Kc will fill all κ-faces of Kc for every κ < c. We shall carry out

the construction of h by transfinite recursion of length c with the help of Lemma 9.12.7.

Given a subset A of c, πA will stand for the projection of Kc onto KA. In particular,

πα is the projection of Kc onto Kα. The construction of h will guarantee the following two

properties of the subgroup h(G) of Kc.

(A) if d|n and S is a d-round subset of G, then h(S) is finally dense in (K[d])c;

(B) for every α < c and a divisor d of n, we have πα(h(G[d])) = (K[d])α.

It follows from (B) that h(G) is dense in Kc.

Claim 1. h(G) is countably compact and does not contain non-trivial convergent sequences.

Let us deduce from (A) that h(G) does not contain non-trivial convergent sequences.

Take any non-trivial sequence {h(xn) : n ∈ ω} in h(G). Put S = {xn : n ∈ ω}. By

Lemma 9.12.4, we can find z ∈ G, a divisor d of n with d > 1, and a d-round subset T of

G such that T + z ⊂ S. All infinite subsets of T are also d-round, so (A) implies that h(T )

is HFD in K[d]c. By Proposition 9.12.2, neither h(T ) nor h(S) ⊇ h(T ) + h(z) converges in

h(G) ⊂ Kc.

Let us prove that h(G) is countably compact. First, (A) and (B) imply that h(G[p]) is

countably compact, for every prime divisor p of n. Indeed, by (A) and a) of Lemma 9.12.3,

h(G[p]) is an HFD subgroup of (K[p])c and, by (B), the projections of h(G[p]) fill all

“initial” facets of (K[p])c. Therefore, by Proposition 9.12.2, h(G[p]) is countably compact.
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Suppose that we have proved the countable compactness of h(G[d]) for every proper divisor

d of n, and consider a countable infinite subset S of G. If S is n-round, then every infinite

subset of S is also n-round, so (A) implies that h(S) is an HFD subset of Kc. Since h(G)

fills all “initial” facets of Kc, Proposition 9.12.2 implies again that h(S) has a cluster point

in h(G). If S is not n-round, we apply Lemma 9.12.4 to find a proper divisor d of n, an

element z ∈ G, and a d-round subset T of S such that T +z ⊂ S. Since h(G[d]) is countably

compact by the inductive hypothesis, h(T ) has a cluster point h(y) in h(G[d]). Therefore,

h(z + y) is a cluster point of h(S). This proves that h(G) is countably compact.

Let us return to the main proof. To obtain the required group topology on G as in c),

one has to identify G with its image h(G) ⊂ Kc.

To construct h, some preliminary work is still needed. The group G can be represented

as the union G =
⋃

ν<c Nν of the increasing chain of its subgroups Nν =
⊕

d|n Z(d)(α(ν,d)),

where α(ν, n) = ω + ν (so α(0, n) = ω) and α(ν, d) = min{ν, αd} for every d|n with

d = n. Note that N0 = Z(n)(ω) and Nν =
⋃

μ<ν Nμ for each limit ordinal ν ≥ ω. For every

α < c, we shall define a homomorphism hα : G → K. Then we will take h = Δα<chα, the

diagonal product of the homomorphisms hα. In fact, at a step α < c of the construction,

we shall define a family {hγ,ν : γ, ν ≤ α}, where hγ,ν is a homomorphism of Nν to K for

each γ ≤ α. In addition, the homomorphism hγ,ν will extend hγ,μ whenever μ < ν, so the

restriction of hγ to Nν will coincide with hγ,ν for all γ, ν < c.
For every x ∈ G, denote by ξ(x) the minimal ordinal ξ < c such that x ∈ Nξ . Note that

either ξ(x) is non-limit or ξ(x) = 0.

Denote by � the family of all countable infinite subsets of G \ {0} which are d-round

for some divisor d of n. Since |�| = c, there exists an enumeration � = {Sμ : μ < c} such

that Sμ ⊂ Nμ for each μ < c. In addition, for every μ < c, let dμ be the divisor of n such

that Sμ is dμ-round. These preliminary steps are needed to make sure that (A) is satisfied.

Let Σ be the subgroup of Kc consisting of all x ∈ Kc such that |{α < c : x(α) = 0K}| <
c. Since MA implies that 2κ = c for every infinite cardinal κ < c, we can enumerate Σ as

follows: Σ = {bν : ν < c} (this is needed satisfy (B)).

Suppose now that we have already defined a family {hα,ν : α, ν < c}, satisfying the

following conditions for all α, ν < c:

(1) hα,ν : Nν → K is a homomorphism and hα,ν extends hα,μ if μ < ν;

(2) the image (Δμ≤γ<αhγ,μ)(Sμ) is dense in (K[dμ])α\μ whenever μ < α;

(3) if bν = 0 and d is the order of bν, then there exists x ∈ (Nν+1 \ Nν) ∩G[d] such that

hγ,ν+1(x) = bν(γ) for each γ < ν;

(4) if α > 0 and ξ = min{ξ(x) : x ∈ Sα}, then there exists zα ∈ Sα ∩ Nξ such that

hα,α(zα) = 0K.

(See Claim 2 below for the explicit construction). By (1), for every α < c, there exists

a homomorphism hα : G → K whose restriction to Nν coincides with hα,ν for each ν < c.
Denote by h the diagonal product of the homomorphisms hα, where α < c.

We claim that h is injective. Indeed, let z ∈ G be an arbitrary non-zero element.

Since |Nν| < c for each ν < c, there exists an n-round subset S of G such that z ∈ S and

ξ(z) < ξ(x), for each x ∈ S \ {z}. Find α < c such that S = Sα. Because ξ(z) is minimal

on S, we must have z = zα by (4), and so hα,α(z) = 0. Hence, z /∈ ker(h).
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It is easy to see that h(G) satisfies (A). Indeed, if S is a d-round subset of G, then

S = Sμ for some μ < c. For every α satisfying μ < α < c, let fμ,α = Δμ≤γ<αhγ,α be the

diagonal product of the family {hγ,α : μ ≤ γ < α}. From the equality πα\μ ◦h = fμ,α and

(1), (2) it follows that πα\μ(h(Sμ)) is dense in (K[d])α\μ for each α > μ, and hence, h(Sμ)

is dense in (K[d])c\μ.

Let us show that h(G) satisfies (B). Suppose that α < c, d|n and that z ∈ (K[d])α.

Since the cardinality of the set {ν < c : ord(bν) = d and πα(bν) = z} is c, there exists

ν < c such that α ≤ ν, ord(bν) = d and bν(γ) = z(γ) for each γ < α. By (3), there exists a

point x ∈ Nν+1 ∩G[d] such that hγ,ν+1(x) = bν(γ) for each γ < ν. This and the definition

of h together imply that πα(h(x)) = z. Since z is an arbitrary point of (K[d])α, we have

proved that πα(h(G[d])) = (K[d])α.

Claim 2. The required family 
 exists under MA.

By Lemma 9.12.6, one can find a homomorphism h0,0 of N0 to K such that h0,0(S0) is

dense in K. Let 0 < α < c, and suppose that for every β < α, we have defined a family

{hγ,ν : γ, ν ≤ β} satisfying (1)–(4). If α is a limit ordinal, then the equality Nα =
⋃

ν<α Nν

and (1) together imply that for every γ < α, there exists a homomorphism hγ,α : Nα → K
whose restriction to Nν coincides with hγ,ν for each ν < α. In this case, it remains to define

a homomorphism hα,α : Nα → K satisfying (2) and (4). Then one can put hα,ν = hα,α�Nν

for each ν < α. The existence of such a homomorphism hα,α can be established by the

argument given below in the case of a non-limit ordinal α, so we will now consider this

case.

Suppose that α = β + 1 and that the family {hγ,ν : γ, ν ≤ β} has been defined in

such a way that conditions (1)–(4) hold. We have to extend the homomorphisms hγ,β (with

γ ≤ β) over Nα, thus obtaining the homomorphisms hγ,α, and construct a homomorphism

hα,α : Nα → K.

By the definition of Nα, there exist subgroups P, Q of Nα such that P ∼= Z(n) and

Nα = Nβ⊕P ⊕Q. Denote by d the order of bβ = 0 and choose an element x ∈ P of order

d. For every γ ≤ β, define a homomorphism hγ,α : Nα → K extending hγ,β and satisfying

hγ,α(x) = bβ(γ). (If bβ = 0, then the extension hγ,α of hγ,β can be chosen arbitrarily).

To define a homomorphism hα,α satisfying (2) and (4), choose a point z ∈ Sα such that

ξ(z) = min{ξ(y) : y ∈ Sα}. For every μ ≤ β, denote by fμ,α the diagonal product of the

homomorphisms hγ,α where μ ≤ γ ≤ β. Then fμ,α is a homomorphism of Nα to Kα\μ.

Applying Lemma 9.12.7 to the family {fμ,α : μ < α} and to the element z ∈ G \ {0}, we

find a homomorphism f : Nα → K such that f (z) = 0K and, for every μ ≤ β, the image

(hμ,αΔf )(Sμ) is dense in (K[nμ])α\μ×Z(nμ)ω. It remains to put hα,α = f and hα,ν = f �Nν

for each ν < α. The recursive construction is complete.

It is straightforward to verify that the family {hγ,ν : γ, ν ≤ α} satisfies conditions

(1)–(4). This completes the proof of Claim 2 and of the theorem. �

We will call a subset H of an abstract group G unconditionally closed in G if H is

closed in (G, τ), for each topological group topology τ on G. Every subgroup G[n] of G is

unconditionally closed in G. Indeed, G[n] is the kernel of the homomorphism ϕn : G→ G
defined by ϕn(x) = nx, for all x ∈ G, and the homomorphism ϕn is continuous for any

topological group topology τ on G, i.e., ϕn is unconditionally continuous.
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Corollary 9.12.10. Under MA, a torsion Abelian group G admits a countably
compact Hausdorff topological group topology if and only if G is of finite exponent and
every p-primary component Gp of G admits a countably compact Hausdorff topological
group topology.

Proof. If G admits a countably compact group topology, then G is of finite exponent

by Theorem 9.11.5. If pn is the exponent of Gp, then the subgroup Gp = G[pn] of G is

unconditionally closed, so Gp also admits a countably compact group topology. Conversely,

if G is of finite exponent and Gp admits a countably compact group topology for every

prime p, then G =
∏

p∈P
Gp, by Theorem 9.9.14 (as Gp = {0} only for finitely many

prime p). Therefore, G is a torsion group that admits a pseudocompact group topology,

since pseudocompactness is invariant under topological products by Corollary 6.6.11. By

the equivalence of a) and b) of Theorem 9.12.9, G admits a countably compact group

topology. �
Corollary 9.12.11. Suppose that MA holds. Then for every prime p and every integer

n > 1, the group G = Z(p)(ω) ⊕ Z(pn)(c) admits a countably compact topological group
topology.

Proof. Notice that pn is the exponent of G and every divisor of pn has the form pm,

for some m ≤ n. Since the group pmG ∼= Z(pn−m)(c) is of cardinality c for each m < n,

the conclusion follows from Theorem 9.12.9. �
The next step is to consider the algebraic structure of countably compact Abelian groups

of size c with a non-trivial torsion part. It turns out that there is a wealth of Abelian groups

G of size c that admit a pseudocompact Hausdorff topological group topology, while no

Hausdorff topological group topology on G is countably compact (see Example 9.12.18).

By technical and notational reasons, we identify the circle group T with the quotient

group R/Z. In particular, T is considered as the additive group of the reals with addition

modulo one.

For p ∈ N, every continuous homomorphism g : Tp → T has the form g(t) =
∑p

i=1 kiti,
where t = (t1, . . . , tp) ∈ Tp and ki ∈ Z for each i ≤ p. Set ‖g‖ =

∑p
i=1 |ki|. This notation

is used in the following lemma on the relative density of the solutions of linear equations

on the tori.

Lemma 9.12.12. Let g : Tp → T be a non-trivial continuous homomorphism such that
2δ · ‖g‖ > 1, where p ∈ N and δ > 0 is a positive number. Then, for every a ∈ T and
c ∈ Tp, there exists t = (t1, . . . , tp) ∈ Tp such that g(t) = a and |ti − ci| < δ for each
i = 1, . . . , p.

Proof. Consider the linear function f : Rp→R defined by the formula f (x1, . . . , xp) =

k1x1 + · · · + kpxp for every (x1, . . . , xp) ∈ Rp. Let π : R → T be the natural quotient

map, π(x) = Z + x. Choose a point b = (b1, . . . , bp) ∈ Rp such that π(bi) = ci for

each i = 1, . . . , p. Take μ > 0 satisfying 1/||g|| < 2μ < 2δ and denote by Πμ the

p-dimensional cube with the center at b, Πμ =
∏p

i=1[bi − μ, bi + μ]. One easily verifies

that f (Πμ) = [f (b) − M, f (b) + M], where M = μ · ||g||. It is clear that 2M > 1,

so π(f (Πμ)) = T. Therefore, we can find a point x = (x1, . . . , xp) ∈ Πμ such that

π(f (x)) = a. Then the point t = (t1, . . . , tp) ∈ Tp with ti = π(xi), i = 1, . . . , p, is as

required. �
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The next result serves as a substitute for Lemma 9.12.6 in the case of non-torsion groups.

Lemma 9.12.13. Let S be an sharp subset of an Abelian group G. Then the set

HS = {h ∈ G∗ : h(S) is dense in T}
is the intersection of countably many open dense subsets of G∗ and, hence, HS is dense
in G∗.

Proof. Let {sn : n ∈ N} be a countable dense subset of T. For every n ∈ N, consider

the set

Un = {h ∈ G∗ : ∃ x ∈ S such that |h(x)− sn| < 1/n}.
Clearly, the sets Un are open in G∗. Let us show that HS =

⋂∞
n=1 Un and each Un is dense

in G∗.

We start with a proof of the inclusion P =
⋂∞

n=1 Un ⊂ HS . It suffices to verify that

h(S) is dense in T for each h ∈ P . If h ∈ P and O is a non-empty open set in T, choose

n ∈ N such that sn ∈ O and the open interval with the center at sn and of radius 1/n is

contained in O. From h ∈ Un it follows that |h(x) − sn| < 1/n, for some x ∈ S; hence

h(S) ∩ O = ∅. This proves the density of h(S) in T, so P ⊂ HS . The inverse inclusion

HS ⊂ P is immediate.

It remains to show that every Un is dense in G∗. Let n ∈ N be arbitrary. Take a basic

open set W0 = W (f, z1, . . . , zr, ε) in G∗, where f ∈ G∗, z1, . . . , zr ∈ G and ε > 0. We

claim that W0 ∩ Un = ∅.

Denote by H the subgroup of G generated by z1, . . . , zr. Since H is a finitely generated

Abelian group, there are y1, . . . , ym ∈ H such that H =
⊕m

i=1〈yi〉 [409, 4.2.10]. Note that

m ≤ r. Since z1, . . . , zp are linear combinations of y1, . . . , ym, we can find δ > 0 such

that W1 = W (f, y1, . . . , ym, δ) ⊂ W (f, z1, . . . , zp, ε). Therefore, it suffices to show that

W1 ∩ Un = ∅.

For every x ∈ S, set ||x|| = min{k ∈ N : kx ∈ H} (if kx /∈ H for every k ∈ N, we put

||x|| =∞). Let us consider the following cases.

1) There exists x ∈ S such that ||x|| > n.

1a) If k = ||x|| > n is finite, then 1/k < 1/n, so we can find an element t0 ∈ T such

that kt0 = f (kx) (mod 1) and |t0 − sn| < 1/n. Define a mapping h : H ∪ {x} → T by

h�H = f �H and h(x) = t0. We have kh(x) = kt0 = f (kx) = h(kx) (mod 1), so, by

Lemma 1.1.5, h can be extended to a homomorphism of G to T (denotes below also by h).

Clearly, h ∈ W1 ∩ Un = ∅.

1b) If ||x|| = ∞, we simply put h(yi) = f (yi) for i = 1, . . . , m, and h(x) = sn. Since

kx /∈ H for each k ∈ N, we can apply Lemma 1.1.5 to extend h to a homomorphism G→ T,

so h ∈ W1 ∩ Un.

2) ||x|| ≤ n for all x ∈ S.

Since S is infinite, we can assume that all ||x|| are equal to some d ∈ N. We claim that

at least one of y1, . . . , ym has infinite order. Assume that the order di of yi is finite, for each

i = 1, . . . , m. Put D = d1 · · · · · dm. Then, for every x ∈ S, we have dx ∈ H . Hence,

Ddx = 0G. This implies immediately that S ⊂ G[Dd], a contradiction.

Suppose that y1, . . . , yp are all of infinite order, and that yp+1, . . . , ym have finite orders

dp+1, . . . , dm, respectively, where 1 ≤ p ≤ m. Let S = {xj : j ∈ ω}. For every
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j ∈ ω, there exist integers kj,1, . . . , kj,m such that dxj =
∑m

i=1 kj,iyi and 0 ≤ kj,i < di for

each i = p + 1, . . . , m. Again, we can find an infinite subset J of ω and non-negative

integers kp+1, . . . , km such that kj,i = ki whenever j ∈ J and p + 1 ≤ i ≤ m. For every

j ∈ J , put r(j) =
∑p

i=1 |kj,i|. Since J is infinite, r(j) > p/2 · δ, for some j ∈ J . If

not, then
∑m

i=1 kj,iyi = dxj takes only finitely many values. So ϕd(S) is finite, which

contradicts the admissibility of S. Taking such j and applying Lemma 9.12.12 to the

homomorphism g : Tp → T, defined by g(u1, . . . , up) =
∑p

i=1 kj,iui, and to the element

a = dsn −
∑m

i=p+1 kif (yi) ∈ T, we get t1, . . . , tp ∈ T satisfying

(i) |ti − f (yi)| < δ for i = 1, . . . , p;

(ii)
∑p

i=1 kj,iti = dsn −
∑m

i=p+1 kif (yi).

It remains to put h(yi) = ti, for i = 1, . . . , p, h(yi) = f (yi), for i = p + 1, . . . , m (this

defines h on H), and h(xj) = sn. Then, by (ii), we have

h(dxj) =

p∑
i=1

kj,iti +

m∑
i=p+1

kif (yi) = dsn = dh(xj)

and, hence, h admits an extension to a homomorphism of G to T. Since xj ∈ S, from (i)

and the definition of h it follows that h ∈ W1 ∩ Un = ∅. �

The proof of Lemma 9.12.14 below is completely analogous to that of Lemma 9.12.7,

so we omit it. This auxiliary lemma is exactly what we need to establish the criterion for

the existence of countably compact topological group topologies on non-torsion Abelian

groups, such as in Theorem 9.12.16.

Lemma 9.12.14. Assume that Martin’s Axiom holds. Let G be a discrete Abelian group,
α < c be an ordinal, and x∗ a non-zero element of G. For every γ < α, let fγ : G→ Gγ be
a homomorphism of G to a topological group Gγ . Suppose that

a) for every γ < α, Sγ is a subset of G that is either nγ-round or sharp, and also satisfies
b) fγ(Sγ) is dense in a non-discrete subgroup Kγ of Gγ with w(Kγ) < c.

Then there exists a homomorphism f : G→ Tω such that f (x∗) = 0 and, for every γ < α,
the image (fγΔf )(Sγ) is dense in Kγ × Z(nγ)ω if Sγ is nγ-round, and dense in Kγ × Tω

otherwise.

We write K ≤ G if K is a subgroup of G. We need the following algebraic fact:

Lemma 9.12.15. Let G be an Abelian group such that for all d, n ∈ N with d|n, the
group dG[n] ∼= G[n]/G[d] is either finite or has cardinality c. If G contains an n-round
subset for some n ∈ N, then G also contains an isomorphic copy of the group Z(n)(c).

Proof. Indeed, S ⊂ G[n]; hence ω = |S| ≤ |G[n]|. By the assumptions in the lemma,

this implies that |G[n]| = c. For every proper divisor d of n, dS is an infinite subset of

dG[n], so again |dG[n]| = c. Let us show that Z(n)(c) ≤ G[n] ≤ G by induction on the

number of divisors of n.

If n = p is prime, then G[p] is the direct sum of c copies of the group Z(p), i.e.,

Z(p)(c) ∼= G[p] ≤ G. Now suppose that n = mp, where m > 1 and p ∈ P. Then

pS is an m-round subset of G by c) of Lemma 9.12.3, and the inductive hypothesis

implies that Z(m)(c) ≤ G[m]. We have m = m0pk, where m0 and p are coprime.

Then G[n] = G[m0pk+1] ∼= G[m0] ⊕ G[pk+1]. By the Prüfer–Baer theorem (see
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Theorem 9.6.28), the group G[pk+1] is isomorphic to the direct sum
⊕k+1

i=1 Z(pi)(αi), where

α1, . . . , αk+1 are cardinals ≤ c. Since the group

mG[n] = mG[m0pk+1] ∼= m0pk(G[m0]⊕G[pk+1])

∼= pkG[pk+1] ∼= (pkZ(pk+1))(αk+1)

has cardinality c, this implies that αk+1 = c. Therefore, Z(pk+1)(c) ≤ G[pk+1] ≤ G.

Finally, if n = pk+1 (i.e., if m0 = 1), then m0S is a pk+1-round subset of G, and the

inductive hypothesis implies that Z(m0)(c) ≤ G[m0]. We now have

Z(n)(c) ∼= Z(m0)(c) ⊕ Z(pk+1)(c) ≤ G[m0]⊕G[pk+1] ∼= G[n],

and the proof is complete. �
Theorem 9.12.16. Under MA, the following conditions are equivalent for any Abelian

non-torsion group G of cardinality at most c:

1) G admits a countably compact Hausdorff topological group topology;
2) G admits a countably compact Hausdorff topological group topology without non-trivial

convergent sequences;
3) r0(G) = |G/tor(G)| = c and, for all d, n ∈ N with d|n, the group dG[n] ∼= G[n]/G[d]

is either finite or has cardinality c.

Proof. Clearly, 2) implies 1). Further, 1) implies 3) according to Proposition 9.11.5.

Let us show that 3) implies 2). This is the only implication we need MA for.

The argument below follows the line of the proof of Theorem 9.12.9, but it requires

several important modifications. Suppose that 3) holds for the group G. Denote by D the

set of all integers n > 1 such that G contains an isomorphic copy of the group Z(n)(c).

Clearly, if n ∈ D, d|n, and d > 1, then d ∈ D. Notice that D can be empty.

Put K = Tω. We will construct an injective homomorphism h : G→ Kc satisfying the

following conditions:

(A1) if n ∈ N and S is an n-round subset of G, then h(S) is finally dense in (K[n])c;

(A2) h(S) is finally dense in Kc for every sharp subset of G;

(B1) if n ∈ D, then πα(h(G[n])) = (K[n])α for every α < c;
(B2) πα(h(G)) = Kα, for each α < c.

Recall that in (B1), πα stands for the projection of Kc onto Kα.

Claim 3. The subgroup h(G) of Kc satisfying (A1), (A2), (B1), and (B2) is countably compact
and has no convergent sequences other than the trivial ones.

Indeed, consider any countable infinite subset S of G. By Lemma 9.12.5, S contains

either a set of the form T + z, where T is a d-round subset of G for an integer d > 1, or an

sharp subset S′. In the first case, the image h(T ) is finally dense in (K[d])c by (A1) and, in

the second case, (A2) implies that h(S′) is finally dense in Kc. In either case, h(S) cannot

converge, since compact countable subsets of Kc or (K[d])c are not finally dense.

The countable compactness of h(G) can be established in a similar way. First,

we note that h(G[n]) is countably compact for each n ∈ D. This follows from (A1),

(B1), Lemma 9.12.15, and Proposition 9.12.2; the argument here is the same as in the

corresponding part of the proof of Theorem 9.12.9. Suppose now that S is a countable

infinite subset of G. If S contains a subset of the form T + z, where T is n-round in G,

then n ∈ D by Lemma 9.12.15, T ⊂ G[d] and, hence, h(T ) has a cluster point h(x) in
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h(G[n]). Therefore, h(x + z) is a cluster point of h(S). In the remaining case, S contains

an sharp subset S′, by Lemma 9.12.5, so (A2) implies that h(S′) is finally dense in Kc. In

fact, every infinite subset of S′ is sharp, so h(S′) is an HFD subset of Kc. From (B2) and

Proposition 9.12.2 it follows that h(S′) ⊂ h(S) has a cluster point in h(G), so that h(G) is

countably compact. Thus, Claim 3 is established.

By Claim 3, we obtain the required countably compact topological group topology on

G identifying the group G with its image h(G).

We shall construct the monomorphism h : G → Kc by recursion of length c. By the

definition of D and the assumption that r0(G) = c, one can easily define recursively a family

{Nξ : ξ < c} of subgroups of S such that G =
⋃

ξ<c Nξ and the subgroups Nξ satisfy the

following conditions for all ξ < c:

(a) N0
∼= Z, and Nζ ⊂ Nξ if ζ < ξ;

(b) |Nξ | = |ξ| · ω;

(c) Nξ =
⋃

ζ<ξ Nζ if ξ ≥ ω is limit;

(d) Nξ+1 contains a copy of the group Z which trivially intersects Nξ ;

(e) for every n ∈ D, Nξ+1 contains a copy of the group Z(n) which trivially intersects Nξ .

As in the proof of Theorem 9.12.9, we shall define, for every α < c, a homomorphism

hα : G → K. We will use the decomposition G =
⋃

ξ<c Nξ in order to define homomor-

phisms hα,ξ = hα�Nξ of Nξ to K. Then hα =
⋃

ξ<c hα,ξ for each α < c. The homomorphism

h : G→ Kc will be the diagonal product of the family {hα : α < c}.
Denote by � the family of all countable infinite subsets of G \ {0} such that every

S ∈ � is either sharp or n-round for some n ∈ N. Clearly, |�| = c, so there exists an

enumeration � = {Sμ : μ < c} such that Sμ ⊂ Nμ, for each μ < c. If Sμ is n-round for

some n ∈ N, we put dμ = n; otherwise, write dμ =∞ (this means that Sμ is sharp).

Let Σ be the subgroup of Kc consisting of all x ∈ Kc that satisfy |{α < c : x(α) =
0K}| < c. We use MA to enumerate Σ = {bν : ν < c} in such a way that every x ∈ Σ

appears in this enumeration c times. Finally, for every x ∈ G, denote by ξ(x) the minimal

ordinal ξ < c such that x ∈ Nξ . Then ξ(x) is either zero or non-limit.

Our aim now is to define a family 
 = {hα,ν : α, ν < c} satisfying the following

conditions for all α, ν < c:

(1) hα,ν : Nν → K is a homomorphism and hα,ν extends hα,μ if μ < ν;

(2) for every μ < α, the image Δμ≤γ<αhγ,μ(Sμ) is dense in (K[dμ])α\μ if dμ < ∞;

otherwise this image is dense in Kα\μ;

(3) if bν = 0, then there exists a point x ∈ Nν+1 \Nν such that hγ,ν+1(x) = bν(γ) for each

γ < ν; in addition, if the order n of bν is finite and n ∈ D, then such a point x belongs

to (Nν+1 \Nν) ∩G[n];

(4) if α > 0 and ξ = min{ξ(x) : x ∈ Sα}, then there exists a point z ∈ Sα ∩ Nξ such that

hα,α(z) = 0K.

Conditions (1)–(4) almost coincide with those in the proof of Theorem 9.12.9. The more

complicated form of the new conditions (2) and (3) is due to the necessity of considering

sharp sets.

Arguing as in the proof of Theorem 9.12.9 (taking in account sharp sets), we see that the

homomorphism h = Δα<chα : G → Kc is injective. Conditions (1)–(3) imply the validity
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of (A1), (A2), (B1) and (B2); the verification of this fact is similar to the corresponding part

of the proof of Theorem 9.12.9, so we omit it. Therefore, it remains to prove the following:

Claim 4. The family 
 satisfying (1)–(4) exists under MA.

Indeed, S0 ⊂ N0 = Z by (a), so S0 is sharp, and we apply Lemma 9.12.13 ω times

(or a special case of Lemma 9.12.14) to choose a homomorphism h0,0 which sends S0 to

a dense subset of K. Let α be an ordinal where 0 < α < c, and assume that for every

β < α, we have defined a family {hγ,ν : γ, ν ≤ β} satisfying (1)–(4). As in the proof of

Theorem 9.12.9, we omit considering the case when α is limit. Suppose, therefore, that for

α = β + 1, the family {hγ,ν : γ, ν ≤ β} has been defined and satisfies conditions (1)–(4).

We have to extend the homomorphisms hγ,β (with γ ≤ β) over Nα, thus obtaining the

homomorphisms hγ,α, and to define a homomorphism hα,α : Nα → K.

Suppose that the element bβ = 0 of Σ has a finite order d. If d ∈ D, then, by (e),

there exists an element x ∈ Nα of order d such that 〈x〉 ∩ Nβ = {0}. For every γ ≤ β,

define a homomorphism hγ,α : Nα → K extending hγ,β and satisfying hγ,α(x) = bβ(γ). If

d /∈ D or bβ has infinite order, then by (d), we can choose an element x ∈ Nα of infinite

order such that 〈x〉 ∩Nβ = {0}. Again, for every γ ≤ β, define a homomorphic extension

hγ,α : Nα → K of hγ,β such that hγ,α(x) = bβ(γ).

Finally, we define a homomorphism hα,α : Nα → K. First, choose z ∈ Sα such that

ξ(z) = min{ξ(y) : y ∈ Sα}. For every μ ≤ β, denote by fμ,α the diagonal product

of the homomorphisms hγ,β where μ ≤ γ ≤ β. Then fμ,α : Nα → Kα\μ. Applying

Lemma 9.12.14, we find a homomorphism f : Nα → K such that f (z) = 0K and, for every

μ ≤ β, the image (fμ,αΔf )(Sμ) is dense in (K[dμ])α\μ ×Z(dμ)ω if dμ <∞, or is dense in

Kα\μ ×K if Sμ is sharp. It remains to put hα,α = f and hα,ν = f �Nν, for each ν < α. The

recursive construction is complete.

It is easy to verify that the family 
 = {hα,ν : α, ν < c} satisfies conditions (1)–(4).

This proves Claim 4 and the theorem. �

The free Abelian group of cardinality c satisfies all the conditions in Theorem 9.12.16.

Therefore, we have:

Corollary 9.12.17. Under MA, the free Abelian group of cardinality c admits a
countably compact Hausdorff topological group topology.

The next example shows that the existence of a countably compact Hausdorff topolog-

ical group topology on an Abelian non-torsion group G of size c is a considerably stronger

condition than the existence of a pseudocompact Hausdorff topological group topology.

Example 9.12.18. For every prime p, the group G = R ⊕ Z(p)(ω) admits a

pseudocompact Hausdorff topological group topology, while no Hausdorff topological

group topology on G is countably compact, by Theorem 9.12.16.

Indeed, it follows from Corollary 9.11.7 that the group G admits a pseudocompact

Hausdorff topological group topology since |G/tor(G)| = c, or equivalently, r0(G) = c. In

fact, this conclusion does not require MA because the countable subgroup H = {0}×Z(p)(ω)

of G is unconditionally closed in G (as the kernel of the unconditionally continuous

homomorphism ϕp : G → G, where ϕp(x) = px for each x ∈ G). Therefore, if G
had a countably compact group topology τ, the subgroup H would be closed in (G, τ) and
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therefore, H would be countably compact. It remains to note that every infinite countably

compact topological group is uncountable, by Theorem 9.11.2, while H is countable. �
It is known that for every infinite cardinal τ with τω = τ, the free group of cardinality

τ admits a pseudocompact Hausdorff topological group topology (see Exercise 9.11.d).

We show in the next example that this is no longer valid for countably compact Hausdorff

topological group topologies. This explains why in the above statements very often the

groups considered were assumed to be Abelian.

Example 9.12.19. No abstract free group Fa(X) consisting of more than one element

admits a countably compact Hausdorff topological group topology. Furthermore, every

countably compact subgroup of a free group, provided with a Hausdorff topological group

topology, is trivial.

Indeed, suppose that � is a Hausdorff topological group topology on F = F (X) and

that G is a non-trivial countably compact subgroup of the group (F, �). Take an arbitrary

element a ∈ G distinct from the neutral element e. Clearly, the cyclic subgroup 〈a〉 of

G is Abelian, and so is the closure H = 〈a〉 of 〈a〉 in G. So H is a countably compact

Abelian subgroup of G. However, by Nielsen’s theorem (see [409, Theorem 6.1.1]), a

subgroup of a free group is free, so H must be an infinite cyclic group. This contradicts

the fact that every infinite countably compact group has cardinality at least c. Thus, the

difference between pseudocompact and countably compact Hausdorff topological group

topologizations of groups becomes even more drastic in the non-Abelian case. �
Denote by C the class of Abelian groups that admit a countably compact Hausdorff

topological group topology. The methods of this section permit us to establish, under MA,

that many Abelian non-torsion groups G of cardinality c are in C by means of an appropriate

embedding of G into Tc. Since, according to Problem 9.9.F, every Abelian group of size

≤ 2c can be embedded as a subgroup in Tc, the techniques developed above allow us

to find countably compact Hausdorff topological group topologies on many groups of the

cardinality greater than c. For example, if K is an Abelian group that admits a compact

Hausdorff topological group topology, then G = K × H ∈ C whenever H ∈ C. This

follows immediately from the fact that the product of a countably compact group with a

compact group is countably compact (see also Problem 9.12.D).

Many natural problems remain, however, open. It is not known, for example, whether

the free Abelian group of size c belongs to C in ZFC only (see Corollary 9.12.17 and

Problem 9.12.4). In other words, even very simple Abelian groups present serious difficulties

when searching for non-trivial countably compact topological group topologizations. In this

respect, Theorem 9.11.6 and Corollary 9.11.8 show that pseudocompact topologizations are

much easier to achieve due to the description of pseudocompact topological groups as Gδ-

dense subgroups of compact groups (see Corollary 6.6.5).

Exercises

9.12.a. Show that the free Abelian group A(X) of a set X with some topology � on A(X) is a

countably compact left topological group if and only if A(X) with the same topology � is a

topological group.

9.12.b. Show that in item 1) of Theorem 9.12.16, one can add “connected and locally connected” to

the properties of the group G.
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9.12.c. Let G be a countably compact Abelian topological group, and H be the set of all metrizable
elements of G, that is, H consists of all x ∈ G such that the closure in G of the subgroup

generated by x is metrizable. Prove that H is a subgroup of G. (See also Problem 9.11.B.)

9.12.d. A topological group G is called sequentially complete if no sequence in G converges to a

point of 
G \ G. Show that if a group G does not contain non-trivial convergent sequences,

then it is sequentially complete.

9.12.e. Show that every infinite Abelian group admits a non-discrete ω-narrow Hausdorff topological

group topology of countable tightness and countable cellularity.

Problems

9.12.A. A group G is called reduced if G has no divisible subgroups beyond {0}. Show that if an

Abelian group G admits a totally disconnected countably compact Hausdorff topological

group topology, then G is reduced.

Hint. A totally disconnected countably compact group G is zero-dimensional [135]. The

completion 
G of G is a compact zero-dimensional group [468]. Hence, 
G is a reduced

group and consequently, G itself is reduced.

9.12.B. Prove that in c) of Theorem 9.12.9 and in 3) of Theorem 9.12.16, one can add “hereditarily

separable” to the properties of the group G, under the stronger assumption of CH ..

9.12.C. (D. Dikranjan and M. G. Tkachenko [144]) Let G be a divisible Abelian group of cardinality

at most c. Then the following are equivalent:

(a) G admits a countably compact Hausdorff topological group topology;

(b) G admits a compact Hausdorff topological group topology;

(c) r0(G) = c and, for every prime p, either rp(G) < ω or rp(G) = c.

9.12.D. (D. Dikranjan and M. G. Tkachenko [144]) Let {Gi : i ∈ I} be a family of Abelian

groups, where each Gi admits a countably compact Hausdorff topological group topology

and |Gi| ≤ c, for each i ∈ I. Prove, assuming MA, that if |I| < c, then G =
∏

i∈I
Gi also

admits a countably compact Hausdorff topological group topology.

9.12.E. (A. H. Tomita [497]) A space X is called initially ℵ1-compact if every covering of X by

at most ℵ1 open sets contains a finite subcovering. Prove that the existence of an initially

ℵ1-compact Hausdorff topological group topology on some infinite free Abelian group is

independent of ZFC.

9.12.F. (A. H. Tomita [497]) For no Hausdorff topological group topology on an infinite free Abelian

group F , the power Fω is countably compact. Therefore, a non-trivial free Abelian group F
does not admit a sequentially compact Hausdorff topological group topology.

9.12.G. (E. van Douwen [149]) Prove under GCH that for every infinite countably compact

topological group G, the equality |G|ω = |G| holds.

Remark. According to Proposition 9.12.1, there are no obstacles for an Abelian group G of

a prime exponent to admit a countably compact Hausdorff topological group topology other

than the equality |G|ω = |G| (this statement does not require any extra set-theoretic axioms).

9.12.H. (A. H. Tomita [498]) The existence of a countably compact topological group G satisfying

|G| = ℵω is consistent with ZFC.

9.12.I. (D. Dikranjan and D. B. Shakhmatov [141]) It is consistent with ZFC that the free Abelian

group of cardinality 2c admits a countably compact Hausdorff topological group topology.

Open Problems

9.12.1. It is consistent with ZFC that every precompact (Abelian) topological group without non-

trivial convergent sequences is topologically isomorphic to a closed subgroup of the product

of a family of countably compact (Abelian) topological groups?
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9.12.2. Is it consistent with ZFC that a precompact Abelian topological group G is topologically

isomorphic to a closed subgroup of a product of countably compact Abelian topological

groups if and only if G is sequentially complete? (See Exercise 9Ex12.4.)

9.12.3. Can every countably compact Tychonoff space be embedded as a closed subspace into a

countably compact topological group?

9.12.4. (M. G. Tkachenko [478], W. W. Comfort [110]) Does there exist in ZFC a countably compact

Hausdorff topological group topology on the free Abelian group of cardinality c?

9.12.5. (D. Dikranjan and M. G. Tkachenko [144]) Characterize the algebraic structure of Abelian

groups of cardinality c that admit an ω-bounded Hausdorff topological group topology.

9.12.6. (D. Dikranjan and M. G. Tkachenko [144]) Does the group Z(2)(ω) ⊕ Z(4)(c) admit an ω-

bounded Hausdorff topological group topology under the assumption of MA?

9.12.7. (D. Dikranjan and M. G. Tkachenko [144]) Characterize the algebraic structure of the

non-torsion Abelian groups of size c that admit a totally disconnected countably compact

Hausdorff topological group topology.

9.12.8. (D. Dikranjan and M. G. Tkachenko [144]) Can the equivalence of a), b), d), and e) of

Theorem 9.12.9 be proved in ZFC? Equivalently, is the implication e) ⇒ b) a theorem of

ZFC?

9.12.9. (D. Dikranjan and M. G. Tkachenko [144]) Does the equivalence of conditions 1) and 3) in

Theorem 9.12.16 remain valid in ZFC?

9.12.10. (E. van Douwen [148]) Under which restrictions on an infinite countably compact group G,

the equality |G|ω = |G| holds in ZFC?

9.12.11. (E. van Douwen [148]) Under which restrictions on an infinite countably compact group G,

we have cf |G| �= ω in ZFC?

9.12.12. Does there exist in ZFC a countably compact Hausdorff topological group topology of

countable tightness on the free Abelian group of cardinality c?

9.12.13. Does every infinite Abelian group admits a precompact sequential Hausdorff topological

group topology? (Compare with Exercise 9.12.e.)

9.12.14. Can every Abelian group be represented as a subgroup of a countably compact topological

group of countable tightness?

9.12.15. Does there exist in ZFC an ω-bounded topological group G such that c = |G| < w(G)?

(Compare this with Exercise 5.2.c.)

9.12.16. Is there a ZFC example of a countably compact topological group G such that G×G is not

countably compact?

Hint. See [300] and [218] where consistent examples of such groups are constructed. See

also [149].

9.12.17. Suppose that G is an Abelian group admitting a countably compact Hausdorff topological

group topology. Does the group G×G also admit a countably compact Hausdorff topological

group topology?

9.12.18. Suppose that G and H are Abelian groups admitting a countably compact Hausdorff

topological group topology. Does the group G × H admit a countably compact Hausdorff

topological group topology?

9.12.19. Is every countably compact sequential topological group a Fréchet–Urysohn space?

9.12.20. Is every separable countably compact sequential (Fréchet–Urysohn) topological group

metrizable?

9.12.21. (R. Z. Buzyakova [94]) Give an example of a compact Abelian group G and a countably

compact normal topological Abelian group H such that there is no one-to-one continuous

mapping of the group G × H onto a normal space.

Solution. Put G = Dω1 , where D = {0, 1}. Let H be the subgroup of G consisting of all

points of G with at most countably many non-zero coordinates. The space X = G × H is
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pseudocompact, and it cannot be mapped onto a normal space Z by a one-to-one continuous

mapping. Assume the contrary, and fix a mapping f : X → Z with these properties. The

Čech–Stone compactification of X is the space G × G (see [165, 3.12.20 (c)]), so f admits

an extension to a continuous mapping f ∗ of G × G to βZ. Take any p ∈ G \ H .

Claim. f ∗((p, p)) ∈ Z. Indeed, since the space G has a base of cardinality ω1 at p, and H is

dense in G, and the closure in G of each countable subset of H is compact and is contained

in H , it is easy to construct by a transfinite recursion a subset A of H such that A = A∪{p}
(take the free sequence in G converging to p and contained in H , see [20]).

Put B = {p} × A and C = {(y, y) : y ∈ A}. Clearly, B ⊂ X, C ⊂ X, and the sets

B∗ = B ∪ {(p, p)} and C∗ = C ∪ {(p, p)} are compact. Assume now that f ∗((p, p)) is not

in Z. Then f (B) = Z ∩ f ∗(B∗) and f (C) = Z ∩ f ∗(C∗). Since f is one-to-one and B∗

and C∗ are compact, it follows that f (B) and f (C) are disjoint closed subsets of Z. Since Z
is normal, there exists a continuous real-valued function g on Z separating f (B) and f (C).

Then gf is a continuous function on X separating B and C. However, this is impossible,

since the closures of B and C in βX = G × G are not disjoint. Our Claim is proved.

Put ΔH = {(y, y) : y ∈ H} and ΔG = {(y, y) : y ∈ G}. The subspace ΔG of G × G is

compact and separable, since it is naturally homeomorphic to Dω1 . Put E = f ∗(ΔG). Then

E is also compact and separable. From the above Claim it follows that E is a subspace of

Z. Now we can fix a countable subset M of X such that f (M) is dense in E. It is easy to

check that the closure of M in G×G is a compact subspace F of X. Obviously, f (F ) = E.

Since H is not compact, the image of F under the natural projection mapping of G×H onto

the second factor H is not compact. Therefore, there exists u ∈ H such that (u, u) /∈ F .

Clearly, f ((u, u)) ∈ E. On the other hand, from f (F ) = E it follows that f (w) = f ((u, u)),

for some w ∈ F . Since (u, u) /∈ F and w ∈ F , we conclude that w �= (u, u), a contradiction

with the assumption that f is one-to-one.

9.13. Historical comments to Chapter 9

Our approach to the proof of Krein–Milman’s theorem follows the one adopted in

[81]. In particular, one finds there some versions of Propositions 9.1.2, 9.1.3, 9.1.5, 9.1.9,

and 9.1.10. The first proof of Krein–Milman’s theorem (see Theorem 9.1.12) was given

in [283]. This important result has many applications; see [157] for those and for further

references.

One can find Theorem 9.2.2, some versions of Lemma 9.1.4, and Proposition 9.2.4 in

[81]. A combination of these results leads to a proof of Theorem 9.2.5 called the Hahn–
Banach theorem. This theorem was first established in [212] and [66]. Hahn–Banach’s

theorem is one of the main principles in the theory of topological vector spaces. In particular,

it provides a basis for the study of convexity problems, and demonstrates that the set of

continuous linear functionals in most spaces is immensely rich.

Theorem 9.2.7 is called the Gel’fand–Mazur theorem; it was proved, for a special case,

in [188, 189], and in [312]. Our proof of it is taken from [337].

The existence of the invariant integral on a compact Lie group was established by

F. Peter and H. Weyl in [383]. Haar measure and invariant integral serve as a basis for

Harmonic Analysis. A. Haar made an important step in 1933; he proved the existence of

a left-invariant Haar measure on every locally compact topological group with a countable

base [211]. For compact groups, the existence and uniqueness of the Haar integral, its two-

sided invariance, and its invariance under the inverse, was proved by J. von Neumann [344].
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Our treatment of the subject in this chapter follows Pontryagin’s book [387]. In particular,

Propositions 9.3.1, 9.3.2, 9.3.3, and Theorem 9.3.9 are taken from there. Theorem 9.3.13,

as we already mentioned, is due to J. von Neumann [344].

Characters of finite Abelian groups were introduced by G. Frobenius. Pontryagin

[385] molded them into topological Abelian groups and developed the theory of characters.

An outstanding role in this theory belongs to a corollary to Peter–Weyl’s theorem [383].

The theorem tells that there are sufficiently many irreducible representations of compact

groups, and the especially important corollary from this result is the theorem that there are

sufficiently many continuous characters on every compact Abelian group. This is precisely

Theorem 9.4.11. Our proof of this basic fact is different from the one given in [387]. In

broad lines we follow the approach of M. Cotlar and R. Ricabarra developed in [127].

Though we have introduced several modifications in the argument to make it even more

elementary (and slightly less general), almost every statement in Section 9.4 has its prototype

in [127]. In fact, it was established in [127] that an element g of an Abelian topological

group G is separated from the neutral element e by a continuous character if and only if

there exists a symmetric open neighbourhood U of e such that g /∈ U6 and KU = G,

for some finite subset K of G. Later, this result was improved in [163] (the number 6

was replaced by 4). In treating Pontryagin’s duality between compact and discrete Abelian

groups, we follow the original treatment of this matter by Pontryagin in [387], as well as

the small book [327] by S. A. Morris. For example, one can find Propositions 9.5.1, 9.5.2,

9.5.3, and some other similar statements in [327]. On the other hand, Theorem 9.5.14,

Corollaries 9.5.15, 9.5.16, and Proposition 9.5.18 have their prototypes in [387]. The main

result, Theorem 9.5.20, was proved by Pontryagin for compact metrizable Abelian groups

in [385]. Soon afterwards it was extended to locally compact not necessarily metrizable

Abelian groups by E. van Kampen in [266].

An alternative treatment of the subject can be found in [236] and in [337], where the

theory of Banach algebras is used. Our goal was to make the proof of the main theorem as

elementary as possible. More general results with applications and references can be found

in [236] and in [337]. See more on the history of the subject and references in [236].

In Section 9.6 we mostly follow Pontryagin’s book [387]. In particular, Corollary 9.6.1,

Proposition 9.6.2, Theorems 9.6.3, 9.6.4, 9.6.5, 9.6.6, Corollaries 9.6.7, 9.6.8, Theo-

rems 9.6.11, 9.6.12, 9.6.15, 9.6.22, 9.6.23, and many other results of the section come

from Pontryagin’s [385, 387]. See also [236] for a somewhat different treatment of the

Pontryagin–van Kampen duality and for further references and comments.

E. van Kampen performed the task of extending Pontryagin’s duality theory to the

general case of locally compact Abelian groups. The proof of Theorem 9.7.1 follows [236].

We used some further material from [236] to extend the theorem on the existence of non-

trivial characters to all locally compact Abelian groups (Theorem 9.7.5). Usually, this

theorem is proved on the basis of Peter–Weyl’s theorem on irreducible representations, but

we gave a more elementary proof. A detailed study of the structure of locally compact

Abelian groups, as well as the duality theory for this class of groups, on which the structure

theory is based, can be found in many books, in particular, in [236]. We restricted ourselves

to the compact–discrete case with the sole goal of introducing the reader to certain important

ideas in topological algebra that are already well developed in the existing literature. There

are also many interesting and profound results in the duality theory beyond the class of

Historical comments to Chapter 9
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locally compact groups. In particular, we recommend the reader to look into [232], [377],

and [310].

Theorem 9.8.1 is an important result based on the Pontryagin–van Kampen duality

theory; it appeared, for example, in [522]. Lemmas 9.8.2, 9.8.3, 9.8.4, and Theorem 9.8.5

(known as Varopoulos’ theorem) were also proved in [522] as was Example 9.8.6. Propo-

sitions 9.8.7, 9.8.8, 9.8.9, Theorems 9.8.10 and 9.8.11, as well as Example 9.8.12 were

given by A. V. Arhangel’skii in [34]. Example 9.8.13, in a slightly different form, was

described by N. T. Varopoulos in [522]. Examples 9.8.14 and 9.8.15 are taken from [34].

Theorems 9.8.16, 9.8.18, and Corollaries 9.8.17, 9.8.19 are also from [34].

When the duality theory for locally compact Abelian groups had been created, the

importance of the group Hom(G, T) of continuous characters of a given topological Abelian

group G, even if G is not locally compact, became clear. The weaker topological group

topology on G generated by all continuous homomorphisms f : G → T was called the

Bohr topology of G, and the group G with the Bohr topology was denoted by G+ in the

fundamental article [150] by E. van Douwen. However, the study of the Bohr topology and

Bohr compactification originated much earlier (see [9, 11, 121, 123, 172, 198, 238, 244,
326]). Elementary Propositions 9.9.1, 9.9.2, and 9.9.3 are a part of the folklore. Items

a) and b) of Proposition 9.9.9 as well as Proposition 9.9.11 appeared in [123]. Historical

comments on the structure theory of abstract Abelian groups concerning the series of results

starting Lemma 9.9.13 to Proposition 9.9.20 can be found in [409]. Proposition 9.9.21 and

Corollary 9.9.22 were proved by K. P. Hart and J. van Mill in [219]. Lemma 9.9.24 and

Theorem 9.9.25 are due to W. W. Comfort, S. Hernández, and F. J. Trigos-Arrieta [112].

In fact, the observation that the group G# is not realcompact if the cardinality of G is not

Ulam-measurable was attributed to A. Dow in [150, Fact 4.15].

Lemma 9.9.27 appeared (in a slightly more general form) in [492]. Theorem 9.9.30

was proved by H. Leptin in [292]. It is a special case of a more general result proved

by I. Glicksberg in [198]: If G is a locally compact Abelian group, then every compact

subset of G+ is compact in G (i.e., the compact subsets of G and G+ coincide). The

original argument in [198] used some methods of functional analysis, while W. W. Comfort

and F. J. Trigos-Arrieta presented in [125] an alternative proof of Theorem 9.9.30 based

exclusively on topological group type arguments. Theorem 9.9.31 appeared in the article

[150] by E. van Douwen, while Theorem 9.9.32 that refines it, leans on a general result

about precompact groups (see Corollary 8.8.6) obtained by D. B. Shakhmatov in [433].

Items i) and ii) of Lemma 9.9.33 appeared in [150], while the last claim of the lemma

appeared in [112]. Lemma 9.9.35 came from [191], while Theorem 9.9.36 was proved

by R. Blair in [76]. Proposition 9.9.37 (implicitly) and Theorems 9.9.38 and 9.9.40 are

results from [112]. Theorem 9.9.42 is a special case of a more general result proved by

F. J. Trigos-Arrieta in [502, 501] (see Problem 9.9.P).

Theorem 9.9.43 generalizes a couple of results proved by J. Galindo and S. Hernández

in [182] and, apparently, appears in print for the first time (even if the result itself was known

to specialists, see the proof of the main theorem in [503]). The proof of Theorem 9.9.43

given here is a slight refinement of the argument in [182, Lemma 1]. Theorem 9.9.45 can

be considered as a natural combination of some results in [150] and [219].

Theorems 9.9.51, 9.9.54, and 9.9.55 are essentially due to E. van Douwen (see [150]).

Some important technical improvements to the original arguments from [150] were made
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by K. P. Hart and J. van Mill in [219], and by J. Galindo and S. Hernández in [182]. Our

proofs of Theorems 9.9.51, 9.9.54, and 9.9.55 contain some new ingredients that clarify

main ideas and the whole strategy developed in [150].

Theorem 9.9.56 is an important contribution to the study of separation properties

of topological groups. It was proved by F. J. Trigos-Arrieta in [503]. Theorems 9.9.57

and 9.9.59 on cardinal invariants of the groups G# are essentially from [145]. An

assertion equivalent to Theorem 9.9.60 was proved by K. P. Hart and J. van Mill in [219].

Example 9.9.61 appeared in [245]. An example of topological Abelian group K with

the stronger property that every continuous character on K is trivial was presented by

I. Prodanov in [388] (earlier, an example with the same property appeared in [236], but its

construction was based on some ideas from functional analysis). It is worth mentioning that

in [1], M. Ajtai, I. Havas, and J. Komlós proved that every infinite Abelian group admits a

Hausdorff topological group topology in which the continuous characters on the group do

not separate points.

Many results of Section 9.9 can be extended to maximally almost periodic groups. In

this respect, see [111].

Lemmas 9.10.1, 9.10.2, and Example 9.10.3 are taken from [91].

The study of cardinal restrictions on pseudocompact topological groups and of the

algebraic structure of these groups, which is the subject of Section 9.11, was initiated by

E. van Douwen in [148]. Auxiliary Lemma 9.11.1 can be found in [311]. Proposition 4.2.3

is difficult to attribute to someone; it appeared, for example, in [424]. Theorem 9.11.2

was proved in [148]. Lemma 9.11.4 goes back to W. W. Comfort and J. van Mill’s

[114, Remark 2.17]; the first printed proof of Lemma 9.11.4 is due to D. Dikranjan

and D. B. Shakhmatov, see [140]. Theorem 9.11.5 appeared, in the present form, in

[140]. However, its new ingredient compared to Lemma 9.11.4 — the fact that every

pseudocompact torsion Abelian group is of bounded torsion — was proved in [120].

Theorem 9.11.6 as well as Corollaries 9.11.7 and 9.11.8 are from [140]. The same

article [140] contains a complete characterization of abstract groups admitting a Hausdorff

pseudocompact topological group topology for the following special classes of groups: a)

free Abelian groups; b) torsion-free Abelian groups; c) torsion Abelian groups; d) divisible

Abelian groups. Proposition 9.11.9 was proved by D. Dikranjan in [135]. Theorem 9.11.10

is a weaker form of a result from [140].

The existence of countably compact Hausdorff topological group topologies on Abelian

groups is quite a subtle matter. Again, it was E. van Douwen who established several

fundamental results for this class of groups in [148, 149]. Proposition 9.12.1 is one of

them. Proposition 9.12.2, that serves as a base for further constructions in Section 9.12,

appeared in [213, 214]. Lemmas 9.12.6, 9.12.7, 9.12.8, as well as Theorem 9.12.9

and Corollaries 9.12.10 and 9.12.11 are from [144]. Lemmas 9.12.13, 9.12.14, 9.12.15,

Theorem 9.12.16, and Corollary 9.12.17 are also from [144]. Under the weaker assumption

of CH , Corollary 9.12.17 was proved in [478]. Example 9.12.19 is a weaker form of

Theorem 5.13 from [140].

The problem of characterizing the algebraic structure of the countably compact

topological groups of cardinality higher than 2c seems to be far from a reasonable solution.

In [150], E. van Douwen asked whether every infinite countably compact group G satisfies

|G|ω = |G| or at least cf(|G|) = ω. In the same article [149], van Douwen proved that this

Historical comments to Chapter 9
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hypothesis is valid under GCH . According to Proposition 9.12.1, for Abelian groups of a

prime exponent, there are no other restrictions (this does not require any extra set-theoretic

axioms). However, A. H. Tomita managed to prove in [498] that the existence of a countably

compact topological group G satisfying |G| = ℵω is consistent with ZFC. Finally, it is

consistent with ZFC that the free Abelian group of cardinality 2c is in C, according to a

theorem of D. Dikranjan and D. B. Shakhmatov in [141].



Chapter 10

Actions of Topological
Groups on Topological Spaces

In this short chapter we introduce an important topic of continuous actions of topological

groups on topological spaces. No attempt is made at a systematic treatment of the subject;

this would require a separate book. Some such books already exist (see, in particular,

[530, 86]). Our goal is much more modest — to give the reader just the flavour of the

topic by establishing several important results on dyadicity or similar properties of compact

spaces in this context. One of these results concerns compact Gδ-sets in quotient spaces

of ω-balanced topological groups. Even the corollary dealing with the case of the quotient

space itself is extremely interesting and highly non-trivial. Another theorem provides a deep

insight into the topological structure of compact spaces admitting a continuous transitive

action of an ω-narrow topological group. In fact, all compact spaces just mentioned have

the following strong property — they are Dugundji spaces. Our arguments require several

topological facts which usually do not form a part of standard courses on general topology, so

the first section of the chapter familiarizes the reader with the concepts of Dugundji spaces, 0-

soft mappings, and nearly open mappings. We also develop further the techniques involving

inverse spectra (in Chapter 4 we have already made the first steps in this direction). We also

introduce some basic concepts and elementary results on actions of topological groups on

topological spaces.

10.1. Dugundji spaces and 0-soft mappings

A compact space X is called Dugundji if for every zero-dimensional compact space Z
and every continuous mapping f : A → X, where A is a closed subset of Z, there exists a

continuous mapping g : Z → X extending f .

A
� � ��

f

��	
		

		
		

Z

g

��
X

In the proposition below we establish two basic properties of Dugundji spaces.

Proposition 10.1.1. The class of Dugundji spaces has the following properties:

a) every compact metrizable space is Dugundji;
b) the product of an arbitrary family of Dugundji spaces is Dugundji.
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Proof. a) Let f : A→ X be a continuous mapping, where X is a compact metrizable

space and A is a closed subset of a zero-dimensional compact space Z. Consider a

mapping F : Z → Exp(X) of Z to the family Exp(X) of closed subsets of X defined

by F (z) = {f (z)} for each z ∈ A and F (z) = X for z ∈ Z \ A. Then the mapping F
is lower semicontinuous, so Theorem 4.1.1 implies that there exists a continuous selection

g : Z → X for F . It follows from the definition of F that g(z) = f (z), for each z ∈ A, so g
is a continuous extension of f over Z. Hence, X is Dugundji.

b) Suppose that X =
∏

i∈I Xi is the product of a family {Xi : i ∈ I} of Dugundji spaces.

Since each space Xi is compact, the product space X is also compact. Let f : A → X be

a continuous mapping, where A is a closed subset of a zero-dimensional compact space

Z. For every i ∈ I, consider the mapping fi = pi ◦ f , where pi : X → Xi is the natural

projection. Since fi : A→ Xi is a continuous mapping to the Dugundji space Xi, it admits a

continuous extension gi : Z → Xi. Let g be the diagonal product of the family {gi : i ∈ I}.
Then the mapping g : Z → X is continuous and g�A = f ; thus, X is Dugundji. �

Combining items a) and b) of the above proposition, we deduce the following:

Corollary 10.1.2. The product of an arbitrary family of second-countable compact
spaces is Dugundji.

Let us now establish a simple but very important fact:

Theorem 10.1.3. [R. Haydon] Every Dugundji space is dyadic.

Proof. Let X be an arbitrary Dugundji space of weight τ ≥ ω. By Theorem 4.1.5,

we can find a closed subset A of the space Dτ , where D = {0, 1} is the discrete two-point

space, and a continuous onto mapping f : A→ X. Since X is Dugundji and Dτ is compact

and zero-dimensional, f can be extended to a continuous mapping g : Dτ → X. Clearly,

g(Dτ) = g(A) = f (A) = X, so X is dyadic. �
A continuous mapping f : X → Y is called 0-soft if for every zero-dimensional compact

space Z, every continuous mapping g : Z → Y and a continuous mapping h : A → X of a

closed subset A of Z satisfying g�A = f ◦h, there exists a continuous mapping ϕ : Z → X
extending h which makes the following diagram commutative.

A
� � ��

h

��

Z

g

��

ϕ

����
��

��
�

X
f �� Y

It follows immediately from the above definition that a compact space X is Dugundji if and

only if a mapping of X to a singleton (i.e., a constant mapping) is 0-soft. A priori, 0-soft

mappings are not assumed to be onto. However, every 0-soft mapping of compact spaces

is surjective.

Proposition 10.1.4. If f : X → Y is a 0-soft mapping of compact spaces X and Y ,
then f (X) = Y .

Proof. By Theorem 4.1.5, there exists a zero-dimensional compact space Z and a

continuous onto mapping g : Z → Y . Let y ∈ f (X) be an arbitrary point. Choose x ∈ X
and z ∈ Z such that f (x) = y = g(z), and put A = {z}. Define a mapping h : A → X
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by h(z) = x. Since f is 0-soft, h admits an extension to a continuous mapping ϕ : Z → X
satisfying g = f ◦ ϕ. Hence, Y = g(Z) = f (ϕ(Z)); it follows that Y = f (X). �

One more important property of 0-soft mappings is given below.

Proposition 10.1.5. The composition of 0-soft mappings of compact spaces is 0-soft.

Proof. Let f1 : X1 → X2 and f2 : X2 → X3 be 0-soft mappings of compact spaces

X1, X2, X3, and f = f2 ◦ f1. Suppose that g : Z → X3 and h : A → X1 are a continuous

mappings such that f ◦h = g◦ i, where A is a closed subset of a zero-dimensional compact

space Z, and i : A → Z is the natural embedding. Put h1 = f1 ◦ h. Since f2 is 0-soft, h1

can be extended to a continuous mapping ϕ1 : Z → X2 such that f2 ◦ ϕ1 = g.

X1

f1

��
A

h1 ��

i

��

h
����������
X2

f2

��
Z

g ��

ϕ1

����������
X3

Again, since f1 is 0-soft, we can find a continuous mapping ϕ : Z → X1 extending h such

that the diagram below commutes.

A
h ��

i

��

X1

f1

��
Z

ϕ1 ��

ϕ
����������
X2

Clearly, the mapping ϕ satisfies the equality f ◦ ϕ = f2 ◦ ϕ1 = g, so the mapping f is

0-soft. �

The further study of Dugundji spaces essentially involves inverse spectra. Therefore,

we will present the facts about inverse spectra we need and will define some new concepts.

In Section 4.1, we introduced the concept of an inverse spectrum as an object assigned

to a given spectral representation � = {fα : α ∈ A} of a space X, where each fα was

a quotient mapping of X to some space Xα. It turns out, however, that one can start with

an inverse spectrum S and then define a limit space X of S and a spectral representation

� = {pα : α ∈ A} of X in such a way that the inverse spectrum assigned to � will

be S. Here are the details of the corresponding construction. The reader can find such a

construction in a more general setting, for inverse spectra on arbitrary directed index sets,

in [165, Section 2.5].

In what follows, κ stands for a limit ordinal and we use ordinals α < κ to enumerate

the spaces of a given inverse spectrum. Let S = {Xα, pβ
α : α < β < κ} be a family,

where each Xα is a space and each pβ
α : Xβ → Xα is a continuous mapping. We say that S

is a well-ordered inverse spectrum if the mappings pβ
α satisfy the following commutativity

condition:

(Com) pβ
α ◦ pγ

β = pγ
α, whenever α < β < γ < κ.
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The mappings pβ
α are called connecting, while each mapping pα+1

α with α < κ is called

bonding. It is a common practice to denote by pα
α the identity mapping of Xα onto itself,

which permits to use the alternative notation {Xα, pβ
α : α ≤ β < κ} for the spectrum S.

To define the limit space of S, consider the product space Π =
∏

α<κ Xα and denote by

πα the projection of Π to the factor Xα, where α < κ. Let X be the subspace of Π defined

by

X = {(xα)α<κ ∈ Π : pβ
α(xβ) = xα whenever α < β < κ}.

Then X is the limit space of the spectrum S, and every x ∈ X is called a thread of S. Clearly,

the restriction pα = πα�X is a continuous mapping of X to Xα, for each α < κ; pα is called

a limit projection of S.

Two simple properties of the limit projections of an inverse spectrum are given in the

next proposition.

Proposition 10.1.6. Let {pα : α < κ} be the family of the limit projections of a
well-ordered inverse spectrum S = {Xα, pβ

α : α < β < κ}. Then:

a) the equalities pα = pβ
α ◦ pβ = pβ

α ◦ πβ�X are valid for all α, β with α < β < κ;
b) the family {pα : α < κ} is a spectral representation of the space X.

Proof. Condition a) follows immediately from the definition of the limit space X of

S. To deduce b), we have to verify conditions (S1) and (S2) of Section 4.1. Suppose that

x, y ∈ X, α < β < κ, and pβ(x) = pβ(y). By a), we have pα(x) = pβ
α(pβ(x)) and

pα(x) = pβ
α(pβ(x)), so that pα(x) = pα(y). This implies (S1).

Suppose that x, y ∈ X and x = y. Since X ⊂ Π, there exists α < κ such that

πα(x) = πα(y). But pα(x) = πα(x) and pα(y) = πα(y), so pα(x) = pα(y), and (S2)

follows. Therefore, {pα : α < κ} is a spectral representation of the space X. �
By a) of the above proposition, one can reconstruct the connecting mappings of the

inverse spectrum S using the limit projections of S — it suffices to put pβ
α = pα ◦ (pβ)−1,

for all α, β satisfying α < β < κ. Hence, the spectrum S is completely defined by the limit

space X and by the family {pα : α < κ} of limit projections under the additional condition

that each pα maps X onto Xα (the space X can be empty, even if all connecting mappings

pβ
α of S are surjective; see [165, 2.5.A]).

The next result provides more details on the topology of the limit space of an inverse

spectrum.

Proposition 10.1.7. Let X be the limit space of a well-ordered inverse spectrum
S = {Xα, pβ

α : α < β < κ} with Hausdorff spaces Xα. Then X is a closed subspace of the
product space Π =

∏
α<κ Xα. In addition, the sets of the form (pα)−1(W ), where α < κ,

pα : X → Xα is the limit projection, and W is open in Xα, constitute a base for the topology
of X.

Proof. Take an arbitrary x = (xα)α<κ in Π \ X. By the definition of X, there exist

α, β with α < β < κ such that pβ
α(xβ) = xα. Since Xα is a Hausdorff space and the

connecting mapping pβ
α is continuous, we can find open neighbourhoods U and V of xβ

and xα in Xβ and Xα, respectively, such that pβ
α(U) ∩ V = ∅. It is clear that the set

O = (πβ)−1(U) ∩ (πα)−1(V ) is open in Π and O ∩ X = ∅, where πα and πβ are the

projections of Π to the factors Xα and Xβ, respectively. Therefore, the complement Π \X
is open in Π.
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To prove the second part of the proposition, take any x ∈ X and any neighbourhood

U of x in X. Since X is a subspace of Π, there exists a canonical open set V in Π such

that x ∈ V ∩ X ⊂ U. Choose ordinals α1 < . . . < αn < κ and open sets V1, . . . , Vn in

Xα1
, . . . , Xαn , respectively, such that V = (πα1

)−1(V1) ∩ · · · ∩ (παn )
−1(Vn). Since each

limit projection pα : X → Xα is the restriction of πα to X, the open neighbourhood

O = (pα1
)−1(V1) ∩ · · · ∩ (παn )

−1(Vn) of x in X is contained in U. Clearly, the set

W = (pαn
α1

)−1(V1) ∩ · · · ∩ (pαn
αn−1

)−1(Vn−1) ∩ Vn is open in Xαn and it follows from the

definition of O and from a) of Proposition 10.1.6 that x ∈ O = (pαn )
−1(W ) ⊂ U. �

Theorem 10.1.8. Let S = {Xα, pβ
α : α < β < κ} be an inverse spectrum of compact

spaces Xα and continuous connecting mappings pβ
α. Then the limit space X of S is compact.

In addition, if each pβ
α is surjective, then so are the limit projections pα : X → Xα.

Proof. The product space Π =
∏

α<κ Xα is compact and, by Proposition 10.1.7, X is

a closed subspace of Π. Hence X is compact.

Suppose that each connecting mapping pβ
α is surjective. For every β < κ, let

Πβ = {x ∈ Π : pβ
α(πβ(x)) = πα(x) for each α < β},

where πα : Π → Xα is the natural projection of Π onto Xα. Clearly, Πβ is compact, as a

closed subset of Π and, in addition, πβ(Πβ) = Xβ, for each β < κ. Indeed, let y ∈ Xβ, and

take x = (xα)α<κ ∈ Π such that xβ = y, xα = pβ
α(y), for each α < β, where the coordinates

xγ with β < γ < κ are chosen arbitrary. Then x ∈ Πβ and πβ(x) = y.

It follows from the definition of the limit space X of the spectrum S that X =
⋂

β<κ Πβ.

Let α < κ and y ∈ Xα be arbitrary. Then y ∈ πα(Πβ) or, equivalently, (πα)−1(y)∩Πβ = ∅,

for each β where α ≤ β < κ. Since {Πβ : α ≤ β < κ} is a decreasing sequence of

compact subsets of Π, and the set (πα)−1(y) is closed in Π, we conclude that the intersection

(πα)−1(y) ∩⋂
α≤β<κ Πβ = (πα)−1(y) ∩X is not empty. Hence, y ∈ πα(X) = pα(X) and,

therefore, pα(X) = Xα. �

Let S = {Xα, pβ
α : α < β < κ} be a well-ordered inverse spectrum with continuous

projections pβ
α, and X be the limit space of S. For every α < κ, denote by pα the

limit projection of X to Xα. If Y ⊂ X is a subspace of X, we put Yα = pα(Y ) for

each α < κ and define qβ
α as the restriction of pβ

α to Yβ, where α < β < κ. Clearly,

SY = {Yα, qβ
α : α < β < κ} is a well-ordered inverse spectrum; this spectrum is called the

subspectrum of S generated by Y .

Proposition 10.1.9. Suppose that X is a limit space of a well-ordered inverse spectrum
S = {Xα, pβ

α : α < β < κ}, and that Y is a closed subspace of X. Then the limit space of
the inverse spectrum SY is naturally homeomorphic to Y .

Proof. It follows from the definition of the subspectrum SY = {Yα, qβ
α : α < β < κ}

of S that Y can be identified with a subspace of the limit space Y∗ of SY which is, in its

turn, a subspace of X. Therefore, it suffices to show that Y∗ ⊂ Y . Suppose to the contrary

that there exists a point x ∈ Y∗ \ Y . By Proposition 10.1.7, Y is closed in X, so we can

find an ordinal α < κ and an open set U ⊂ Xα such that x ∈ (pα)−1(U) ⊂ X \ Y .

Hence (pα)−1(U) ∩ Y = ∅ and U ∩ pα(Y ) = ∅, that is, U does not intersect the set Yα, a

contradiction with pα(x) ∈ U ∩ Yα. �
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Given an inverse spectrum S = {Xα, pβ
α : α < β < κ} and an ordinal γ < κ, let

Sγ = {Xα, pβ
α : α < β < γ} be the initial part of S of the length γ. The spectrum S is

called continuous if the following conditions are satisfied:

(C1) pα+1
α (Xα+1) = Xα, for each α < κ;

(C2) if β > 0 is a limit ordinal, then the diagonal product of the family {pβ
α : α < β} is a

homeomorphism of Xβ onto the limit space of the spectrum Sβ.

The simplest examples of continuous spectra are constructed on the basis of Tychonoff

products of spaces and of compact subspaces of products:

Example 10.1.10. Let κ be an infinite cardinal and Π =
∏

α<κ Yα be a product space.

For every α < κ, put Πα =
∏

ν<α Yν and denote by πα the projection of Π onto Πα.

If α < β < κ, let also πβ
α : Πβ → Πα be the corresponding projection. Clearly, the

spectrum S = {Πα, πβ
α : α < β < κ} is continuous, and the limit space of S is naturally

homeomorphic to Π, since the equality πα = πβ
α ◦πβ holds for all α, β, where α < β < κ.

Further, take an arbitrary compact subspace X of Π and consider the subspectrum SX

of S generated by X. Since X is closed in Π, Proposition 10.1.9 implies that the limit space

of SX is naturally homeomorphic to X. Similarly, if β < κ is a limit ordinal, then the limit

space of the spectrum SX,β, the initial part of SX of the length β, is naturally homeomorphic

to Xβ = πβ(X). We have thus shown that the spectrum SX is also continuous. �
The next example gives a general way of constructing continuous spectra of compact

spaces.

Example 10.1.11. Let Y be a compact space, κ an infinite cardinal, and {fα : α < κ}
a family of continuous mappings of Y to some spaces. For every α < κ, denote by hα the

diagonal product of the family {fν : ν < α} and put Xα = hα(Y ). As usual, we assume that

h0 is a mapping of Y to a one-point space X0. It is clear that hβ ≺ hα if α < β < κ, so there

exists a continuous mapping hβ
α : Xβ → Xα satisfying hα = hβ

α ◦ hβ. Therefore, we have

constructed a well-ordered spectrum S = {Xα, hβ
α : α < β < κ} with compact spaces Xα

and continuous onto mappings hβ
α. We claim that the spectrum S is continuous and the limit

space of S is naturally homeomorphic to the image h(Y ), where h is the diagonal product

of the family {fα : α < κ}.
Indeed, by the definition of h, the image X = h(Y ) is a compact subspace of the product

space Π =
∏

α<κ Yα, where Yα = fα(Y ). For every α < κ, let πα : Π→ Πα be the natural

projection, where Πα =
∏

ν<α Yν. Obviously, hα = πα ◦ h, so Xα = πα(X) is a subspace

of Πα, and the restriction to Xβ of the projection πβ
α : Πβ → Πα coincides with hβ

α, where

α < β < κ. Therefore, the inverse spectrum S = {Xα, hβ
α : α < β < κ} is continuous and

the limit space of S is naturally homeomorphic to X, as is shown in Example 10.1.10. �
Proposition 10.1.12. If a spectrum S = {Xα, pβ

α : α < β < κ} is continuous, then
the connecting mappings pβ

α and the limit projections pα : X → Xα are surjective, where
X is the limit space of S.

Proof. Since pα = pβ
α ◦ pβ, for all α, β where α < β < κ, it suffices to verify that

each pα is an onto mapping. Let α < κ and xα ∈ Xα be arbitrary. We will define by

recursion a transfinite sequence {xβ : α ≤ β < κ} satisfying the following two conditions:

(i) xβ ∈ Xβ if α ≤ β < κ;

(ii) pγ
β(xγ) = xβ, whenever α ≤ β < γ < κ.
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Suppose that we have defined a family {xβ : α ≤ β < δ} satisfying (i) and (ii), where

α < δ < κ. If δ is limit, we use (C2) to choose a point xδ in Xδ such that pδ
β(xδ) = xβ

for each β with α ≤ β < δ. Clearly, the family {xβ : α ≤ β ≤ δ} satisfies (i) and (ii). If

δ = γ+1, condition (C1) permits to choose a point xγ+1 ∈ Xγ+1 such that pγ+1
γ (xγ+1) = xγ .

Again, {xβ : α ≤ β ≤ δ} satisfies (i) and (ii).

Once the transfinite sequence {xβ : α ≤ β < κ} satisfying (i) and (ii) is defined, it

follows from the definition of the limit space X that there exists x ∈ X such that pβ(x) = xβ

for each β with α ≤ β < κ. In particular, pα(x) = xα. Hence, the projection pα is

surjective, for each α < κ. �
In the next proposition we establish an important relation between 0-soft mappings and

continuous spectra of compact spaces. This relation plays a crucial role in the arguments to

follow.

Proposition 10.1.13. Let γ be an ordinal and S = {Xα, πβ
α : α < β < γ} be a

continuous inverse spectrum of compact spaces Xα and of 0-soft bonding mappings πα+1
α ,

α + 1 < γ. Then the limit projection πα : X → Xα is 0-soft, for each α < γ, where X is
the limit space of S.

Proof. We apply induction on the length γ of S. If γ is a successor, that is, γ = β + 1,

then X = Xβ. First, suppose that β is a limit ordinal. By the inductive assumption, the limit

projections πβ
α of the spectrum Sβ = {Xα, πδ

α : α < δ < β} are 0-soft (and coincide with

connecting mappings of S). If β is a successor, that is, β = α + 1, then the limit projection

πν : X → Xν coincides with the mapping πβ
ν = πα

ν ◦ πα+1
α , for each ν ≤ α, where both

mappings πα+1
α and πα

ν are 0-soft (here we use the inductive hypothesis again). Hence, πβ
ν

is 0-soft, by Proposition 10.1.5.

Finally, suppose that γ is a limit ordinal. By the inductive hypothesis, the mappings

πβ
α are 0-soft for all α, β satisfying α < β < γ. Fix an ordinal α < γ, and suppose that

g : Z → Xα and h : A → X are continuous mappings such that πα ◦ h = g�A, where A is

a closed subset of a zero-dimensional compact space Z. Let i be the natural embedding of

A to Z.

A
h ��

i

��

X

πα

��
Z

g �� Xα

For every β with α ≤ β < γ, put hβ = πβ ◦ h. Since the spectrum S is continuous, one

can define, by a transfinite recursion, a spectral mapping Φ = {ϕβ : α ≤ β < γ} of Z to

the spectrum S′ = {Xβ, πδ
β : α ≤ β < δ < γ} such that ϕα = g and the following diagram

commutes, for all β, δ where α < β < δ < γ.

Xα Xβ
πβ

α�� Xδ

πδ
β�� X

πδ��

Z

g

����������
ϕβ



A
i��

hδ



h

����������

By Theorem 4.1.6, there exists a continuous mapping ϕ : Z → X satisfying ϕβ = πβ ◦ ϕ
whenever α ≤ β < γ. The commutativity of the above diagrams implies that the next
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diagram commutes as well.

Xα X
πα��

Z

g


ϕ

����������
A

i��

h



Therefore, ϕ is the required continuous extension of h over Z, and πα is 0-soft. �

Our next step is to introduce a special class of mappings that will frequently appear in

the proofs of the main results of this section.

A continuous mapping f : X → Y has metrizable kernel if there exists a metrizable

compact space C and a topological embedding i : X → Y × C such that f = p ◦ i, where

p : Y × C → Y is the projection.

X
f ��

i

��

Y

Y × C

p

�����������

A standard way of constructing mappings with metrizable kernel is presented in the

example below.

Example 10.1.14. Let f0 : X0 → Y and r0 : X0 → C be continuous mappings, where

C is a second-countable compact space. Denote by ϕ the diagonal product of f0 and r0,

ϕ : X0 → Y × C, and put X = ϕ(X0). Let i be the identity embedding of X to Y × C.

Clearly, there are continuous mappings f : X → Y and r : X → C that make the following

diagram to commute, where pY : Y × C → Y and pC : Y × C → C are projections.

X0

f0 ��

r0

��

ϕ

��	
		

		
		

Y

X
r

����
��

��
�� i

		��������

f

�����������

C Y × C
pC��

pY



Therefore, the mapping f : X → Y has metrizable kernel. �

It turns out that open continuous mappings with metrizable kernel are 0-soft:

Theorem 10.1.15. Let f : X → Y be an open continuous onto mapping of compact
spaces. If f has metrizable kernel, then f is 0-soft.

Proof. Suppose that A is a closed subset of a zero-dimensional compact space Z and

that h : A → X and g : Z → Y are continuous mappings such that f ◦ h = g ◦ j, where

j : A→ Z is the identity embedding. Since f has metrizable kernel, we can find a second-

countable compact space C and a topological embedding i : X → Y × C that make the
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diagram below to commute, where p : Y × C → Y is the projection.

A
h ��

j

��

X

f

��

i �� Y × C

p
����

��
��

��
�

Z
g �� Y

We now define a mapping ϕ : Z → Exp(C), where Exp(C) is the family of closed subsets

of C, as follows. For every z ∈ A, let ϕ(z) = πih(z), where π : Y × C → C is the

projection. If z ∈ Z \ A, put ϕ(z) = πif−1(g(z)). We claim that the mapping ϕ is lower

semicontinuous. Indeed, take an arbitrary open set U ⊂ C. It follows from the definition

of ϕ that

ϕ−1(U) = {z ∈ Z : U ∩ ϕ(z) = ∅}
= {z ∈ Z \ A : f−1(g(z)) ∩ i−1π−1(U) = ∅} ∪ {z ∈ A : h(z) ∈ i−1π−1(U)}.

The set V = i−1π−1(U) is open in X and ϕ−1(U) = h−1(V ) ∪ (g−1f (V ) \ A). The set

g−1f (V )\A is open in Z since f is an open mapping and A is closed in Z. Choose an open

set W in Z such that W ∩A = h−1(V ). Then the inclusion h−1(V ) ⊂ g−1f (V ) implies that

the set

ϕ−1(U) = (W ∩ π−1f (V )) ∪ (g−1f (V ) \ A)

is open in X. This proves the claim about ϕ.

By Theorem 4.1.1, there exists a continuous selection s : Z → C for the mapping

ϕ. Let λ1 : Z → Y × C be the diagonal product of the mappings g and s. It follows

from the equality f ◦ h = g�A that s(z) ∈ πif−1(g(z)) for each z ∈ Z, and we claim

that {g(z)} × πif−1(g(z)) ⊂ i(X). Indeed, put y = g(z) and take an arbitrary point

c ∈ πif−1(y). There exists x ∈ X such that f (x) = y and c = πi(x). Notice that i is the

diagonal product of the mappings p ◦ i = f and π ◦ i, so we have:

(g(z), c) = (y, c) = (f (x), πi(x)) = (pi(x), πi(x)) = i(x) ∈ i(X).

Hence, λ1(Z) ⊂ i(X) and the mapping λ = i−1 ◦ λ1 : Z → X is correctly defined. The

definition of λ implies that the diagram below commutes.

A
h ��

j

��

X

f

��
Z

g ��

λ
���������
Y

Clearly, λ is continuous, so the mapping f is 0-soft. �

The following theorem on a special spectral representation of certain compact spaces

will be applied to topological groups in the next section.

Theorem 10.1.16. [R. Haydon] Let S = {Xα, πβ
α : α < β < κ} be a continuous

inverse spectrum, where every space Xα is compact and every bonding mapping πα+1
α is

continuous, open, and has metrizable kernel. If X0 is Dugundji, then so is the limit space
X of the spectrum S.
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Proof. The limit space of an inverse spectrum with compact spaces is compact, so

all we need to verify is that X is Dugundji. By Theorem 10.1.15, all bonding mapping

πα+1
α of the spectrum S are 0-soft, so Proposition 10.1.13 implies that the limit projections

πα : X → Xα of S are also 0-soft. In particular, the projection π0 : X → X0 is 0-soft. Let

p0 be a mapping of X0 to a one-point space and p = p0 ◦ π0. Since X0 is Dugundji, the

mapping p0 is 0-soft. Therefore, the constant mapping p is 0-soft by Proposition 10.1.5; it

follows that X is Dugundji. �
An inverse spectrum, such as in Theorem 10.1.16 in which X0 is a compact metrizable

space, is called a Haydon spectrum.

Now we present some basic facts about nearly open mappings that will be applied to

the study of continuous actions of topological groups on compact spaces.

We recall that a continuous mapping f : X → Y is called nearly open if, for every

open set U ⊂ X, there exists an open set V ⊂ Y such that f (U) is a dense subset of V (see

Section 4.3). Evidently, f is nearly open if and only if f (U) ⊂ IntY clY (f (U)), for each

open set U ⊂ X. Every open mapping is nearly open, but not vice versa. Usually, nearly

open mappings appear as restrictions of open mappings to dense subspaces of the domains:

Proposition 10.1.17. Suppose that f : X → Y is a continuous open mapping and S
is a dense subspace of X. Then the mapping f �S : S → Y is nearly open.

Proof. Let g = f �S. If O is an open subset of S, take an open set U ⊂ X such that

O = U ∩S. Clearly, O is dense in U and g(O) is dense in the open set V = f (U) ⊂ Y . �
Corollary 10.1.18. Let S be a dense subspace of a product space X × Y . Then the

restriction to S of the projection p : X× Y → X is a nearly open mapping of S to Y .

It is well known that a continuous mapping f : X → Y is open if and only if the equality

f−1(B) = f−1(B) holds for each set B ⊂ Y (see [165, 1.4.C]). A similar characterization

of nearly open mappings is given below.

Lemma 10.1.19. The following conditions are equivalent for a continuous mapping
f : X → Y :

a) f is nearly open;
b) the equality f−1(O) = f−1(O) holds for each open set O ⊂ Y .

Proof. a)⇒ b). Let O be an open subset of Y . Since f−1(O) ⊂ f−1(O), it suffices

to verify the inverse inclusion. Suppose that x ∈ X satisfies f (x) ∈ O. If x /∈ f−1(O), then

U = X\f−1(O) is an open neighbourhood of x in X, so f (U) is a dense subset of an open set

V ⊂ Y and, hence, f (U) = V . It follows from f (U)∩O = ∅ that V ∩O = f (U)∩O = ∅,

a contradiction with f (x) ∈ V ∩O.

b) ⇒ a). Let U be an open subset of X. It suffices to show that f (U) is contained in

the interior of the closed set F = f (U). Since O = Y \ F is open in Y , we have, by the

assumption, f−1(O) = f−1(O). It follows from the definition of O that the open sets U
and f−1(O) are disjoint, so U ∩ f−1(O) = U ∩ f−1(O) = ∅. Hence, f (U)∩O = ∅ and,

therefore, f (U) is contained in the interior of F . �
Under some additional conditions, nearly open mappings turn out to be open. Let us

say that a mapping f : X → Y is locally closed at a point x ∈ X, if for every open set U in X



Dugundji spaces and 0-soft mappings 707

containing x, there exists a neighbourhood N of x in X such that N ⊂ U and f (N) is closed

in Y . If f is locally closed at every point of X, we say that f is locally closed. If the space

X is regular and f is continuous, then the set N in the above definition can be chosen to be

closed. Indeed, take an open neighbourhood V of x with V ⊂ U and find a neighbourhood

N of x such that N ⊂ V and f (N) is closed in Y . Then f (N) ⊂ f (N) ⊂ f (N) = f (N), so

the image of the closed neighbourhood N of x is closed in Y . In addition, N ⊂ V ⊂ U.

Proposition 10.1.20. Every nearly open locally closed mapping f : X → Y is open.

Proof. Let U be an open subset of X. For every point x ∈ U, choose a neighbourhood

Nx of x such that Nx ⊂ U and f (Nx) is closed in Y . Then the interior Ux of Nx contains x.

Since f is nearly open, there exists an open set Vx ⊂ Y containing f (Ux) as a dense subset.

Since the image f (Nx) is closed in Y and Ux ⊂ Nx ⊂ U, we have:

f (x) ∈ Vx ⊂ f (Ux) ⊂ f (Nx) = f (Nx) ⊂ f (U).

This implies that the set f (U) =
⋃

x∈U Vx is open in Y . �

Corollary 10.1.21. Every nearly open mapping of a locally pseudocompact Tychonoff
space X to a regular space Y of countable pseudocharacter is open.

Proof. By Proposition 10.1.20, it suffices to verify that every continuous mapping

f : X → Y is locally closed. Let U be a non-empty open set in X and x ∈ U an arbitrary

point. There exists an open neighbourhood O of x in X such that O is a pseudocompact

subset of U. We claim that Z = f (O) is closed in Y . If not, choose a point y ∈ Z \ Z
and take a countable family {Vn : n ∈ ω} of open neighbourhoods of y in Y such that

Vn+1 ⊂ Vn for each n ∈ ω and {y} =
⋂∞

n=0 Vn. Then {O∩ f−1(Vn) : n ∈ ω} is an infinite

locally finite family of non-empty open sets in O, a contradiction with pseudocompactness

of O. Therefore, Z = f (O) is closed in Y and the mapping f is locally closed. �

Corollary 10.1.22. Let X and Y be Hausdorff spaces. If X is locally compact, then
every nearly open mapping of X to Y is open.

Proof. Every continuous mapping of a locally compact space to a Hausdorff space is

locally closed. It remains to apply Proposition 10.1.20. �

Corollary 10.1.23. Every closed nearly open mapping is open. In particular, nearly
open mappings of compact Hausdorff spaces are open.

Exercises

10.1.a. Give an example of a continuous nearly open mapping that is not open.

10.1.b. Can a continuous homomorphism of a metrizable topological group G onto a metrizable

group H be nearly open but not open?

10.1.c. Show that the character cannot increase under a continuous nearly open mapping, in the class

of regular spaces.
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Problems

10.1.A. Give an example of an open perfect mapping f of a zero-dimensional compact Hausdorff

space X onto the Cantor set Y such that every fiber f−1(y) is metrizable but f is not 0-soft.

10.1.B. Give an example of a dyadic compactum that is not a Dugundji compactum.

10.1.C. (E. V. Schepin [420]) Prove that a compact Hausdorff space X is homeomorphic to Dτ , for

some τ ≥ ω, if and only if the character of X at every point is exactly τ, X is zero-dimensional

and Dugundji.

10.2. Continuous action of topological groups on spaces

The fundamental concept of action of a group on a topological space appears occasion-

ally in Chapters 2 and 3. Here we define this concept in full generality and establish some

general facts which are applied in the next section to the study of the structure of compact

Hausdorff spaces admitting a continuous transitive action of an ω-narrow topological group.

Let X be a non-empty set, and G be an abstract group with identity e. Suppose that a

mapping θ : G×X → X satisfies the following conditions for all g, h ∈ G and x ∈ X:

(A1) θ(e, x) = x;

(A2) θ(h, θ(g, x)) = θ(hg, x).

Then we say that G acts on X and that θ is a (left) action of G on X. It is a usual practice

to write gx (or g ∗ x) in place of θ(g, x). Using the short form of notation, we can rewrite

(A1) and (A2) as ex = x and h(gx) = (hg)x, respectively.

Let θ be an action of a group G on a set X. Every element g ∈ G determines a

translation θg of X defined by θg(x) = θ(g, x) for each x ∈ X or, equivalently, θg(x) = gx.

It follows from (A1) and (A2) that θg is a bijection of X, for each g ∈ G. Indeed, θe is the

identity mapping of X onto itself, and θhg = θh ◦ θg for all g, h ∈ G. Hence, (θg)−1 = θg−1 ,

that is, the inverse mapping of θg is θg−1 , thus implying that θg is a bijection of X.

Suppose that H ⊂ G and A ⊂ X are non-empty sets, and that x ∈ X. We put

HA = {ha : h ∈ H, a ∈ A} and Hx = {hx : h ∈ H}.
We say that A is H-invariant if HA ⊂ A. For brevity, G-invariant subsets of X are called

invariant. The orbit of a point x ∈ X is the set Gx. It follows from (A1) and (A2) that Gx
is an invariant subset of X containing x. Clearly, every invariant subset A of X is the union

of the orbits of elements of A.

Given x, y ∈ X, we write x ∼ y if y belongs to the orbit of x under the action of the

group G. Let us show that the binary relation∼ on X determines the partition of X into the

orbits.

Proposition 10.2.1. The relation∼ is an equivalence relation on X. The equivalence
class [x] of an arbitrary element x ∈ X with respect to ∼ is the orbit Gx.

Proof. It follows from ex = x that x ∼ x for each x ∈ X. Suppose that x ∼ y, that

is, y ∈ Gx. Then there is an element g ∈ G with y = gx, so (A2) and (A1) imply that

g−1y = g−1gx = ex = x. Hence y ∼ x, that is, the relation ∼ is symmetric. To verify the

transitivity of ∼, take any points x, y, z ∈ X such that x ∼ y and y ∼ z. Choose g, h ∈ G
satisfying y = gx and z = hy. Then (A2) implies that (hg)x = hy = z and, therefore,

x ∼ z. This proves the first part of the proposition. The second part follows immediately

from definition of the relation ∼ on X. �
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In view of Proposition 10.2.1, we can define the quotient set

X/G = {[x] : x ∈ X}
called the set of orbits. The natural quotient mapping π : X → X/G defined by π(x) = [x]

for each x ∈ X, is called the orbital projection. It is easy to verify that a set A ⊂ X is

invariant if and only if A = π−1π(A).

For every x ∈ X, the set

Gx = {g ∈ G : gx = x}
is called the stabilizer of x. Two important properties of stabilizers are given in the next

proposition.

Proposition 10.2.2. The stabilizer Gx of any point x ∈ X is a subgroup of G. In
addition, Ggx = gGxg−1 for each g ∈ G.

Proof. Take an arbitrary point x ∈ X. Clearly, ex = x, so that e ∈ Gx. Suppose

that g, h ∈ Gx. Then gx = x = hx and h−1x = h−1hx = ex = x. Consequently,

(h−1g)x = h−1(gx) = h−1x = x and hence, h−1g ∈ Gx. Thus, Gx is a subgroup of G.

To prove that Ggx = gGxg−1, take any h ∈ Gx. Then ghg−1(gx) = ghx = gx; hence,

ghg−1 ∈ Ggx and gGxg−1 ⊂ Ggx. Substituting in the above inclusion g−1 in place of g and

gx in place of x, we obtain g−1Ggxg ⊂ Gg−1gx = Gx. Consequently, Ggx ⊂ gGxg−1. �

Corollary 10.2.3. The stabilizer Gx is an invariant subgroup of G if and only if
Gx = Gy, for each y ∈ Gx.

An action θ : G× X → X is called free if Gx = {e}, for each x ∈ X, or equivalently,

if the equality gx = x holds only for g = e. In other words, the translation θg of X has no

fixed points if g = e.

The action of G on X is effective if
⋂

x∈X Gx = {e}. The latter is equivalent to saying

that the translation θg of X, with g ∈ G, coincides with the identity mapping of X only if

g = e. Obviously, every free action is effective.

The action of G is called transitive if Gx = X for each (equivalently, for some) x ∈ X.

In this case, the only orbit of X coincides with X. If the action of G is transitive, then for

any pair of points x, y ∈ X, there exists g ∈ G such that gx = y. The converse is true as

well.

Three examples below clarify the concept of action of a group.

Example 10.2.4. Let G be a group with multiplication θ : G×G→ G, θ(x, y) = xy.

Then θ is an action of G on the set X = G by left translations, that is, θg = λg, for each

g ∈ G. This action is free, since if gx = x for g, x ∈ G, then g = e. In addition, θ is

transitive.

Given a subgroup H of G, one defines an action θH of H on G as the restriction of θ
to the product H ×G. Again, H acts on G by left translations. The orbits of G under the

action θH are the right cosets Hx, with x ∈ G. Therefore, the orbital projection coincides

with the quotient mapping of G onto the set G/H of right cosets. Clearly, the action θH is

free, and it is transitive iff H = G. �

Example 10.2.5. Let G be a group, and H a subgroup of G. We define an action ϕ of G
on the quotient set G/H of left cosets by the rule ϕ(g, xH) = gxH , for all g, x ∈ G. Clearly,



710 10. ACTIONS OF TOPOLOGICAL GROUPS ON TOPOLOGICAL SPACES

ϕ satisfies conditions (A1) and (A2). The action ϕ is effective iff
⋂

x∈G x−1Hx = {e} and

ϕ is always transitive. �
Example 10.2.6. Let X be a non-empty set, and �X be the permutation group on X.

The natural action σ of �X on X is defined by σ(f, x) = f (x), for all f ∈ �X and all

x ∈ X. For any subgroup G of �X, one defines the corresponding action σG of G on X as

the restriction of σ to the product G× X. The action σG is always effective, but it may or

may not be transitive, depending on the choice of G. For example, if X = {1, . . . , n} for

some n ∈ N and G = An is the alternating subgroup of the permutation group Sn = �X (An

consists of all even permutations), then the action of An on X is transitive iff n = 2. �
Let now G be a topological group and X be a topological space. An action θ of G on

X is called continuous if θ is continuous as a mapping of G× X to X. The space X (with

a given continuous action of G on X) is called a G-space. The first simple but important

observation about G-spaces is that the left translations θg with g ∈ G are homeomorphisms,

that is, G acts on the G-space X by homeomorphisms. Indeed, each translation θg is a

bijection of X onto itself and the continuity of both mappings θg and (θg)−1 = θg−1 is

immediate, by the continuity of θ. This fact has an immediate application:

Proposition 10.2.7. Every continuous action θ : G× X → X of a topological group
G on a space X is an open mapping.

Proof. It suffices to verify that the images under θ of the elements of some base for

G×X are open in X. Let O = U ×V ⊂ G×X, where U and V are open sets in G and X,

respectively. Then θ(O) =
⋃

g∈U θg(V ) is open in X since every θg is a homeomorphism of

X onto itself. Since the open sets U×V form a base for G×X, the mapping θ is open. �
Similarly to the case of homomorphisms of topological groups, the continuity of an

action θ of a topological group G can be deduced from its continuity at the identity of G.

Proposition 10.2.8. The continuity of an action θ : G×X → X of a topological group
G with identity e on a space X is equivalent to the continuity of θ at the points of the set
{e} ×X ⊂ G×X.

Proof. It suffices to verify the sufficiency of the condition. Let g ∈ G and x ∈ X
be arbitrary, and U be a neighbourhood of gx in X. Since θh is a homeomorphism of X
for each h ∈ G, the set V = θg−1 (U) is a neighbourhood of x in X. By the continuity

of θ in (e, x), we can find a neighbourhood O of e in G and a neighbourhood W of x in

X such that hy ∈ V for all h ∈ O and y ∈ W . Clearly, if h ∈ O and y ∈ W , then

(gh)(y) = g(hy) ∈ gV = θg(V ) = U. Thus, ky ∈ U, for all k ∈ gO and all y ∈ W , where

O′ = gO is a neighbourhood of g in G. Hence, the action θ is continuous. �
Here are several examples of continuous actions of topological groups.

Example 10.2.9. Any topological group G acts on itself by left translations, that is,

θ(x, y) = xy for all x, y ∈ G (see Example 10.2.4). The continuity of this action follows

from the continuity of the multiplication in G. �
Example 10.2.10. Let G be a topological group, H a closed subgroup of G, and

let G/H be the corresponding left coset space. The action ϕ of G on G/H , defined in

Example 10.2.5, is continuous. Indeed, take any y0 ∈ G/H , and fix an open neighbourhood
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O of y0 in G/H . Choose x0 ∈ G such that π(x0) = y0, where π : G → G/H is the

quotient mapping. There exist open neighbourhoods U and V of the identity e in G such

that π(Ux0) ⊂ O and V 2 ⊂ U. Clearly, W = π(Vx0) is open in G/H and y0 ∈ W . By the

choice of U and V , if g ∈ V and y ∈ W , then ϕ(g, y) ∈ O. Indeed, take x1 ∈ Vx0 with

π(x1) = y. Then y = x1H and ϕ(g, y) = gx1H ∈ VVx0H ⊂ π(Ux0) ⊂ O. It follows that

ϕ is continuous at (e, y0) ∈ G×G/H ; hence, ϕ is continuous, by Proposition 10.2.8. �
Example 10.2.11. Let G = G(n, R) be the general linear group with the topology

inherited from Rn2

, where n ∈ N (see e) of Example 1.2.5). The group G acts on the

n-dimensional Euclidean space Rn by multiplication. Each g ∈ G is an invertible n × n
matrix with real entries, and the action θ(g, x) of g on x ∈ Rn is the result of the usual matrix

multiplication y = gx ∈ Rn. The continuity of θ follows immediately from the formula

yi =
∑n

k=1 gi,kxk for i = 1, . . . , n, expressing the coordinates of y = (y1, . . . , yn) in terms

of the coordinates of x = (x1, . . . , xn) and of the entries of the matrix g = (gi,k). The orbit

of the zero vector 0̄ ∈ Rn under this action is the one-point set {0̄}, while the orbit Gx of

an arbitrary point x ∈ Rn distinct from 0̄ is the set Rn \ {0̄}. Therefore, Rn \ {0̄} is an

invariant subset of Rn under this action. The action θ is effective but not transitive. �
Suppose that a topological group G acts continuously on a space X and that Y = X/G

is the corresponding orbit set. Let Y carry the quotient topology generated by the orbital

projection π : X → X/G — a set U ⊂ Y is open in Y if and only if the preimage π−1(U) is

open in X. The topological space X/G so obtained is called the orbital space or the orbit
space of the G-space X. The orbital projection is always an open mapping:

Proposition 10.2.12. If θ : G×X → X is a continuous action of a topological group
G on a space X, then the orbital projection π : X → X/G is open.

Proof. Take an arbitrary open set U ⊂ X, and consider the set π−1π(U) = GU.

Every left translation θg is a homeomorphism of X onto itself, so the set GU =
⋃

g∈G θg(U)

is open in X. Since π is a quotient mapping, π(U) is open in Y . �
When G is a compact group, the conclusion in Proposition 10.2.12 can be considerably

strengthened.

Theorem 10.2.13. If a compact topological group H acts continuously on a Hausdorff
space X, then the orbital projection π : X → X/H is an open and perfect mapping.

Proof. Let Y = X/H . If y ∈ Y , choose x ∈ X such that π(x) = y and note that

π−1(y) = Hx is the orbit of x in X. Since the mapping of H onto Hx assigning to every

g ∈ H the point gx ∈ X is continuous, the image Hx of the compact group H is also

compact. Hence, all fibers of π are compact.

To verify that the mapping π is closed, let y ∈ Y and x ∈ X be as above, and let O be an

open set in X containing π−1(y) = Hx. Since the action of H on X is continuous, we can

find, for every g ∈ H , open neighbourhoods Ug � g and Vg � x in H and X, respectively,

such that UgVg ⊂ O. By the compactness of H and of the orbit Hx, there exists a finite

set F ⊂ H such that H =
⋃

g∈F Ug and Hx ⊂ ⋃
g∈F gVg. Then V =

⋂
g∈F Vg is an open

neighbourhood of x in X, and we claim that HV ⊂ O. Indeed, if h ∈ H and z ∈ V , then

h ∈ Ug, for some g ∈ F , so that hz ∈ UgV ⊂ UgVg ⊂ O. Thus, W = π(V ) is an open

neighbourhood of y in Y , and we have π−1π(V ) = HV ⊂ O. Hence, the mapping π is

closed by [165, Theorem 1.4.13]. Finally, π is open, by Proposition 10.2.12. �
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Theorem 1.5.7 follows from the above result in the special case when the compact group

H is a subgroup of a bigger topological group G and H acts on G by left translations (see

Examples 10.2.4 and 10.2.9).

Let X be a G-space, with action θ of G on X. For every x ∈ X, denote by θx the

mapping of G to X defined by the rule θx(g) = gx, for each g ∈ G. Then θx is continuous,

as the restriction of θ to the subspace G × {x} of the product G × X. Clearly, the image

θx(G) is the orbit Gx of x. Therefore, each orbit in X under the action of G is a continuous

image of G.

In general, the mappings θx need not be either open or quotient, even if the action θ
is transitive. Indeed, consider an arbitrary non-discrete topological group G, and let Gd

be the same group G endowed with the discrete topology. Then Gd acts continuously and

transitively on G by left translations and every mapping θx is a continuous bijection of Gd

onto G. Therefore, θx fails to be quotient, for each x ∈ G.

However, under some addition restrictions on G and X, the mappings θx might become

quite nice; we will see this at the beginning of the next section.

Let X and Y be G-spaces with continuous actions θX : G×X → X and θY : G×Y → Y .

A continuous mapping f : X → Y is called G-equivariant (or equivariant) if θY (g, f (x)) =

f (θX(g, x)), that is, gf (x) = f (gx), for all g ∈ G and all x ∈ X. Clearly, f is equivariant

if and only if the diagram below commutes,

G×X
θX ��

F

��

X

f

��
G× Y

θY �� Y

where F = idG × f is the product of the identity mapping idG of G and the mapping f .

Example 10.2.14. Let H be a closed subgroup of a topological group G, and Y = G/H
be the left coset space. Denote by θG the action of G on itself by left translations defined in

Example 10.2.9, and by θY the natural continuous action of G on Y (see Examples 10.2.5

and 10.2.10). Then the quotient mapping π : G → G/H defined by π(x) = xH for each

x ∈ G, is equivariant. Indeed, the equality g(π(x)) = gxH = π(gx) holds for all g, x ∈ G.

Equivalently, the diagram

G×G
θG ��

Π

��

G

π

��
G× Y

θY �� Y

is commutative, where Π = idG × π. �

Let η = {Xi : i ∈ I} be a family of G-spaces. Then the product space X =
∏

i∈I Xi

has a natural structure of a G-space. To define the action of G on X, take any g ∈ G and any

x = (xi)i∈I ∈ X, and put gx = (gxi)i∈I . Thus, G acts on X coordinatewise. The following

result guarantees the continuity of this action.

Proposition 10.2.15. The coordinatewise action of G on the product X =
∏

i∈I Xi of
G-spaces is continuous, that is, X is a G-space.
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Proof. By Proposition 10.2.8, it suffices to verify the continuity of the action of G
on X at the neutral element e ∈ G. Let x = (xi)i∈I ∈ X be an arbitrary point and

O ⊂ X a neighbourhood of gx in X. Since canonical open sets form a base of X, we can

assume that O =
∏

i∈I Oi, where each Oi is an open neighbourhood of xi in Xi and the

set F = {i ∈ I : Oi = Xi} is finite. Since all factors are G-spaces, we can choose, for

every i ∈ F , open neighbourhoods Ui � e and Vi � xi in G and Xi, respectively, such that

UiVi ⊂ Oi. Put U =
⋂

i∈F Ui and W =
∏

i∈I Wi, where Wi = Vi if i ∈ F and Vi = Xi

otherwise. It follows immediately from the definition of the sets U and W that UW ⊂ O.

Therefore, the action of G on X is continuous. �

The G-space X defined above is called the Cartesian product of the family η of G-

spaces.

The definition of the coordinatewise action of a group G on a product of G-spaces can

be further extended to limit spaces of inverse spectra. Let S = {Xα, pβ
α : α < β < κ} be a

well-ordered inverse spectrum, where each Xα is a G-space and the connecting mappings pβ
α

are G-equivariant. Then the limit space of the spectrum S is the subspace X of the product

space Π =
∏

α<κ Xα consisting of all elements (xα)α<κ of Π satisfying pβ
α(xβ) = xα

whenever α < β < κ. By Proposition 10.2.15, Π is a G-space. We use this fact and this

notation to define a continuous action of G on X as follows:

Proposition 10.2.16. The subspace X of Π is G-invariant; therefore, the restriction
to X ⊂ Π of the coordinatewise action of G on Π is a continuous action of G on X. In
addition, all limit projections pα : X → Xα of the spectrum S are G-equivariant.

Proof. Take arbitrary x ∈ X and g ∈ G. Then x = (xα)α<κ is a point of Π and

pβ
α(xβ) = xα, whenever α < β < κ. It follows from the definition of the action of G on

Π that gx = (gxα)α<κ, so every projection πα : Π → Xα is G-equivariant. In addition, if

α < β < κ, then pβ
α(gxβ) = gpβ

α(xβ) = gxα by the G-equivariance of pβ
α. Hence, gx is an

element of X, that is, X is G-invariant in Π, and the action of G on X is can be defined as

the one inherited from Π. Clearly, this induced action is continuous, since Π is a G-space.

Finally, for every α < κ, the limit projection pα = πα�X of X to Xα is G-equivariant

as the restriction of the G-invariant mapping πα to the G-invariant subset X of Π. �

Thus, the limit space of an inverse spectrum of G-spaces with G-equivariant projections

is a G-space as well. Speaking about the structure of a G-space in the case of limits of inverse

spectra, we will always mean the one defined in Proposition 10.2.16.

Exercises

10.2.a. Fill details in the proof of Proposition 10.2.1.

10.2.b. Suppose that X is a G-space, for some topological group G.

a) Does X remain a G-space, when we introduce the discrete topology on G?

b) Does X remain a G-space, when we introduce a stronger group topology on G?

10.2.c. Suppose that X is a G-space, for some topological group G. Prove the following statements:

a) The stabilizer Gx is a closed subgroup of G, for each x ∈ X.

b) If G is either countably compact, pseudocompact, σ-compact, Lindelöf, or connected,

then so are the orbits Gx in X.

c) If the group G is compact and the space X is Hausdorff, then the orbit Gx is

homeomorphic to the quotient space G/Gx, for every x ∈ X.
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10.2.d. Let X be a compact G-space, where G is a second-countable topological group. Are the

orbits Gx first-countable?

10.2.e. Let G be a topological group and κ a limit ordinal. Show that if S = {Xα, pβ
α : α < β < κ}

is a continuous inverse spectrum, where each Xα is a G-space and the bonding mappings

pα+1
α are G-equivariant, then the limit projections pα of S are G-equivariant as well.

10.2.f. Let R be the additive group of real numbers, with the usual topology, and Z the group of

integers. Fix an irrational number a ∈ R, and put H = {an : n ∈ Z}. Both Z and H
are closed subgroups of the Abelian group R. Hence, R acts continuously on both quotient

groups X = R/Z and Y = R/H . Then the diagonal product of these actions is a continuous

action θ of R on X×Y . Since each of the groups X and Y is topologically isomorphic to the

circle group T, θ is a continuous action of the topological group R on the torus T2. Prove

the following:

a) each orbit under θ is a proper dense subset of T2;

b) the orbital space of the action θ is antidiscrete, that is, the orbital space has only two

open sets, both trivial;

c) the natural mapping of R onto an arbitrary orbit is one-to-one, continuous, but not a

homeomorphism.

10.2.g. Let X be an infinite discrete space, and SX the group of permutations of X, in the topology

of pointwise convergence. Is the natural action of SX on X continuous?

10.2.h. Let X be an infinite discrete space, and SX be the group of permutations of X, with the

topology of pointwise convergence. Then SX acts in a natural way, by translations, on the

space RX. Is this action continuous?

10.2.i. Suppose that a G-space Y is embedded as a subspace into a space X. This embedding is

called G-equivariant or simply equivariant if there exists a continuous action of the group

G on X which extends the action of G on Y . Show that the natural embedding of the unit

interval I into the real line is G-equivariant, for any continuous action of an arbitrary finite

discrete group G on I.

Problems

10.2.A. Let G be a feathered topological group acting continuously and effectively on a first-countable

separable space X. Prove that G is metrizable. Verify that the conclusion remains valid if

‘feathered’ is replaced by ‘pseudocompact’.

Hint. Take a countable dense set S ⊂ X and show that {eG} =
⋂

x∈S
Gx. Deduce that the

identity eG of G is the intersection of countably many open subsets of G.

10.2.B. Suppose that G is a finite group acting continuously on the real line considered with the usual

topology. Prove that |G| = 2.

10.2.C. Prove that the circle group T does not admit a non-trivial continuous action on the space R.

10.2.D. (V. G. Pestov [379]) Let G = H+(R) be the group of all orientation-preserving homeomor-

phisms of the space R onto itself, with the topology of pointwise convergence. Prove that if

the group G acts continuously on a non-empty compact Hausdorff space X, then there exists

a ∈ X such that ga = a, for each g ∈ G (any such a point a ∈ X is called a fixed point of

the action).

10.2.E. Let G be a discrete group, and βG the Čech–Stone compactification of G. Then, by the

principal property of Čech–Stone compactifications, the natural action of G on itself can be

extended to an action of G on βG. Is this action of G on the space βG continuous?

10.2.F. Suppose that a topological group G acts continuously on a compact space X. A non-empty

subspace M of X is said to be minimal if M is closed in X, GM ⊂ M (that is, M is G-

invariant), and no proper closed non-empty subset of M is G-invariant. Apply Zorn’s lemma
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to prove that for any continuous action of a topological group G on a compact space X, there

exists a minimal subspace of X.

10.2.G. Suppose that a topological group G acts continuously on a space X. Prove that a closed

non-empty subspace M of X is minimal if and only if the orbit Gx is dense in M, for every

x ∈ M.

10.2.H. Let G be a discrete group, and Mg a minimal subspace of βG defined for the action of G
on the space βG as in Problem 10.2.E. Prove that MG is a retract of βG and that MG is

extremally disconnected.

10.2.I. (J. de Vries [529]) A topological group G is called a V -group if every Tychonoff G-space can

be equivariantly embedded into a compact Hausdorff G-space (see Exercise 10.2.i). Prove

that every locally compact group is a V -group.

10.2.J. (M. G. Megrelishvili and T. Scarr [315]) Prove that each ω-narrow V -group is locally

precompact.

10.2.K. (S. A. Antonyan and M. Sanchis [10]) Let G be a locally pseudocompact group. Prove that

every G-space X admits an equivariant embedding into a compact Hausdorff G-space in

each of the following cases:

a) X is first countable;

b) X is a kR-space;

c) X is locally pseudocompact.

10.2.L. (S. A. Antonyan and M. Sanchis [10]) Let G be a locally pseudocompact (respectively,

pseudocompact) group and X a first-countable Dieudonné complete space. Then for each

point x ∈ X, the stabilizer Gx = {g ∈ G : gx = x} is a closed locally pseudocompact

(respectively, pseudocompact) subgroup of G. Furthermore, μ(Gx) = (μG)x.

10.2.M. (F. González and M. Sanchis [199]) Every pseudocompact space X can be equivariantly

embedded into a compact Hausdorff G-space provided that one of the following holds:

a) G is first-countable;

b) G is a kR-space;

c) G is locally pseudocompact.

10.2.N. (S. A. Antonyan and M. Sanchis [10]) Let G be a Moscow topological group. Then every

continuous action α : G×X → X on a first-countable Dieudonné complete space X admits

an extension to a continuous action ᾱ : μG × X → X.

Open Problems

10.2.1. (S. Glasner [194]) Let G be an Abelian topological group without non-trivial continuous

characters. Is it true that for every compact Hausdorff space X and every continuous action

of G on X, there exists a point a ∈ X such that Ga = {a} (that is, a fixed point of the

action)?

10.2.2. (S. A. Antonyan and M. Sanchis [10]) Is every locally pseudocompact group a V -group?

(See Problems 10.2.I and 10.2.J.)

10.2.3. (S. A. Antonyan and M. Sanchis [10]) Let G be a Moscow topological group. Does every

continuous action of G on a Dieudonné complete kR-space (or locally pseudocompact space)

admit a continuous extension to an action of μG on X?

10.2.4. Is the group of rational numbers with the usual interval topology a V -group?

Continuous action of groups on spaces
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10.3. Uspenskij’s theorem on continuous transitive actions of ω-narrow groups
on compacta

In this section, making use of techniques developed in the preceding sections and in

Chapter 2, we prove an amazing theorem: Every compact Hausdorff space admitting a

continuous transitive action of an ω-narrow topological group turns out to be a Dugundji

compactum. Another general theorem on continuous actions of ω-balanced groups is also

established. Several auxiliary results on which the proofs are based seem to be interesting

in themselves.

Proposition 10.3.1. Suppose that an ω-narrow topological group G acts continuously
and transitively on a space Y with the Baire property. Then, for any y ∈ Y , the mapping
θy : G→ Y defined by θy(g) = gy, for each g ∈ G, is nearly open.

Proof. Let U be an arbitrary open neighbourhood of the identity e in G. Take a

symmetric open neighbourhood V of e in G such that V 2 ⊂ U. Since G is ω-narrow, there

exists a countable set A ⊂ G such that AV = G. Hence, the sets aVy, with a ∈ A, cover

the space Y . By the Baire property of Y , there exists a ∈ A such that the set aVy has a

non-empty interior. Since the translation θa is a homeomorphism of Y , the set Vy also has

a non-empty interior. Pick v ∈ V such that vy ∈ Int Vy. It follows that

y ∈ v−1 Int Vy = Int v−1Vy ⊂ Int Uy.

Thus, for every open neighbourhood U of e in G and every y ∈ Y , the interior of the closure

of Uy contains y.

Now take any z ∈ Uy. Choose g ∈ U such that z = gy. There is an open neighbourhood

W of e in G such that Wg ⊂ U. Then Wz = Wgy ⊂ Uy, so it follows from the above that

z ∈ Int Wz ⊂ Int Uy. Thus, Uy ⊂ Int Uy and the mapping θy is nearly open at the identity

of G.

Finally, let U be an arbitrary non-empty open set in G and y ∈ Y . Choose g ∈ U
and put V = g−1U. Since V is an open neighbourhood of e in G, we have Vy ⊂ Int Vy.

Applying the homeomorphism θg, we obtain:

Uy = gVy ⊂ g Int Vy = Int gVy = Int Uy

or, equivalently, θg(U) ⊂ Int θg(U). �

The lemma below complements the material about groups of isometries in Section 3.5.

Lemma 10.3.2. Suppose that an ω-narrow topological group G acts continuously on
a metric space (X, d) by isometries. Then the orbit Gx is separable, for each x ∈ X.

Proof. Let x ∈ X be arbitrary. For every integer n ≥ 1, choose an open neighbourhood

Un of the neutral element e in G such that d(gx, x) < 1/n for each g ∈ Un. Since the group

G is ω-narrow, there exists a countable set Cn ⊂ G such that G = CnUn. Then the set

C =
⋃∞

n=1 Cn is also countable, and the set Cx is dense in Gx. Indeed, for every g ∈ G
and n ∈ N, we can find elements hn ∈ Cn and gn ∈ Un such that g = hngn. Then

d(gx, hnx) = d(gnx, x) < 1/n, so every neighbourhood of gx in X contains elements of the

countable set Cx. �



Uspenskij’s theorem 717

The following important example is, in fact, an essential part of the proof of the central

Theorem 10.3.5 below. However, the construction presented in Example 10.3.3 is fairly

general and interesting in itself.

Example 10.3.3. Let θ : G×X → X be a continuous action of a topological group G
on a compact space X. Denote by C(X) the space of all continuous real-valued functions on

X endowed with the topology generated by the sup-norm: ||f || = supx∈X |f (x)|, for each

f ∈ C(X). The action θ admits a natural “extension” to the action Θ of G on C(X) defined

by the rule Θ(g, f )(x) = f (θ(g−1, x)), for all f ∈ C(X) and g, x ∈ G. One can rewrite the

above definition in the form (gf )(x) = f (g−1x). Then Θg is an isometry of C(X), for each

g ∈ G, that is, Θ acts on C(X) by isometries. Indeed, if f ∈ C(X) and g ∈ G, then

||gf || = sup
x∈X
|(gf )(x)| = sup

x∈X
|f (g−1x)| = sup

y∈X
|f (y)| = ||f ||.

This readily implies that ||gf − gf ′|| = ||f − f ′||, for all f, f ′ ∈ C(X).

We claim that the action Θ is continuous. Indeed, take an arbitrary f0 ∈ C(X) and fix

a real number ε > 0. Consider the open neighbourhood U = {f ∈ C(X) : ||f − f0|| < ε}
of f0 in C(X). For every x ∈ X, choose an open set Ux in X such that x ∈ Ux and

|f0(y) − f0(x)| < ε/3 for each y ∈ Ux. Since the action of G on X is continuous and

ex = x, we can choose an open neighbourhood Vx of x in X and an open symmetric

neighbourhood Ox of e in G such that OxVx ⊂ Ux. Since e ∈ Ox, we have Vx ⊂ Ux. By

the compactness of X, there exists a finite subset F of X such that the family {Vx : x ∈ F}
covers X. Clearly, O =

⋂
x∈F Ox is an open symmetric neighbourhood of e in G. If g ∈ O

and y ∈ X, then y ∈ Vx for some x ∈ F ; it follows that g−1y ∈ OVx ⊂ OxVx ⊂ Ux.

Therefore, if f ∈ C(X) and ||f − f0|| < ε/3, then

|(gf )(y)− f0(y)| = |f (g−1y)− f0(y)| ≤
|f (g−1y)− f0(g−1y)|+ |f0(g−1y)− f0(x)|+ |f0(x)− f0(y)| <

||f − f0||+ ε/3 + ε/3 < ε.

This implies that ||gf − f0|| < ε, so gf ∈ U and hence, the action Θ is continuous at

(e, f0). Finally, by Proposition 10.2.8, Θ is continuous. �
We also need the following property of the spaces C(X), for compact X:

Lemma 10.3.4. Let X be a compact space, and C(X) be the space of all continuous
real-valued functions on X with the sup-norm metric. If F is a separable subspace of C(X)

and ϕ is the diagonal product of the functions in F , then the image ϕ(X) is compact and
metrizable.

Proof. Take a countable dense subset S of F and denote by ψ the diagonal product of

the functions of S, ψ : X → RS . Then Z = ψ(X) is a compact subspace of the metrizable

space RS , so Z is metrizable. Denote by p the restriction to Y = ϕ(X) of the projection

RF → RS . Clearly, p is continuous, and the equality ψ = p ◦ϕ implies that p(Y ) = Z. Let

us verify that p is a bijection.

Suppose to the contrary that there exist two distinct points y1, y2 ∈ Y such that

p(y1) = p(y2). Take x1, x2 ∈ X satisfying ϕ(xi) = yi for i = 1, 2. Since y1 = y2,

we can find f ∈ F such that f (x1) = f (x2). Put ε = |f (x1) − f (x2)|. Since S is dense

in F , there exists g ∈ S such that ||f − g|| < ε/2. Then |f (xi) − g(xi)| < ε/2 for
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i = 1, 2, whence it follows that g(x1) = g(x2). Since g ∈ S, we must have ψ(x1) = ψ(x2), a

contradiction with ψ(x1) = p(y1) = p(y2) = ψ(x2). Thus, p : Y → Z is a homeomorphism,

as a continuous bijection of compact Hausdorff spaces, and w(Y ) = w(Z) ≤ ω. �

The next theorem is one of the main results of the section. It can be considered as a

generous generalization of Theorem 4.1.7 about dyadicity of compact topological groups.

Theorem 10.3.5. [V. V. Uspenskij] If a compact space X admits a continuous
transitive action of an ω-narrow topological group G, then X is Dugundji. In particular, X
is dyadic.

Proof. We are going to construct a Haydon spectrum whose limit space will be X.

Denote by C(X) the space of all continuous real-valued functions on X, with the sup-norm

metric. According to Example 10.3.3, C(X) has the natural structure of a G-space: the

action Θ of G on C(X) is defined by (gf )(x) = f (g−1x), for all g ∈ G, f ∈ C(X) and

x ∈ X. In addition, every translation Θg is an isometry of C(X). Let κ be the cardinality

of C(X). Then C(X) = {fν : ν < κ}. Denote by C0 the set of all constant functions on X,

C0 ⊂ C(X). For every ordinal α, where 0 < α < κ, let

Cα = C0 ∪ {gfν : g ∈ G, ν < α}.

Clearly, each Cα is a G-invariant subset of C(X). Let πα be the diagonal product of the

functions in Cα, πα : X → RCα . The mapping πα is continuous, so the image Xα = πα(X)

is a compact subspace of RCα . If α < β < κ, let πβ
α be the restriction to Xβ of the natural

projection of RCβ to RCα . It follows from the definition of the mappings πα, πβ, and πβ
α

that πα = πβ ◦ πβ
α . In particular, we have Xα = πβ

α (Xβ). Clearly, Cα =
⋃

ν<α Cν, for

each limit ordinal α < κ. This equality and the compactness of X imply that the inverse

spectrum S = {Xα, πβ
α : α < β < κ} is continuous, and that the limit of S is naturally

homeomorphic to X (see Example 10.1.11). We claim that S is a Haydon spectrum, that

is, the space X0 is compact metrizable, and all bonding mappings πα+1
α are open and have

metrizable kernel.

First, we verify that each πα+1
α has metrizable kernel. If α < κ, we have Cα+1 =

Cα ∪ Gfα. Denote by ϕα the diagonal product of the functions in Gfα. It follows

from the definition that πα+1 = παΔϕα. Since Gfα is a separable subspace of C(X),

by Lemma 10.3.2, the image Yα = ϕα(X) is compact and metrizable, by Lemma 10.3.4.

Clearly,

Xα+1 = πα+1(X) ⊂ Xα × Yα ⊂ RCα × RGfα ,

so the bonding mapping πα+1
α : Xα+1 → Xα is the restriction to Xα+1 of the projection of

the product space Xα × Yα to the first factor. The claim follows, since Yα is metrizable.

Also |X0| = 1, since all functions in C0 are constant.

It remains to prove that all bonding mappings of the spectrum S are open. We can

define an action of G on the space Xα by gπα(x) = πα(gx), for all g ∈ G and all x ∈ X.

Clearly, the mapping πα : X → Xα is equivariant, for every α < κ. This action of G on Xα

is continuous. Indeed, since the mapping πα is equivariant, the diagram below commutes.
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G×X
θ ��

Πα

��

X

πα

��
G×Xα

θα �� Xα

Here θ and θα are the actions of G on X and Xα, respectively, and Πα is the product of the

identity mapping idG and πα. Clearly, θ is continuous, and πα is perfect, so the mapping

Πα is perfect, as a product of two perfect mappings [165, Theorem 3.7.7]. In particular, Πα

is quotient and, hence, θα is continuous. Thus, each Xα is a G-space.

All projections πβ
α in the spectrum S are equivariant. Indeed, suppose that α < β < κ,

and let g ∈ G and xβ ∈ Xβ be arbitrary. Choose x ∈ X where πβ(x) = xβ. Since πβ and

πα are equivariant, we have

πβ
α (gxβ) = πβ

απβ(gx) = πα(gx) = gπα(x) = gπβ
απβ(x) = gπβ

α (xβ).

Let us show that the mapping πβ
α is open. Pick xβ ∈ Xβ and xα ∈ Xα such that

πβ
α (xβ) = xα. Consider the mappings ϕβ : G → Xβ and ϕα : G → Xα defined by

ϕβ(g) = gxβ and ϕα(g) = gxα, for each g ∈ G. Clearly, both ϕβ and ϕα are continuous,

and Proposition 10.3.1 (applied to Xβ and Xα, respectively) implies that these mappings

are nearly open. Since ϕα is an onto mapping and the composition ϕα = πβ
α ◦ ϕβ is nearly

open, we infer that πβ
α is also nearly open. It follows from Corollary 10.1.22 that πβ

α is

open. Thus, S is a Haydon spectrum whose limit space is X, so the space X is a Dugundji

compactum, by Theorem 10.1.16. �

Theorem 10.3.8 below states that every compact Gδ-set in a quotient space of an

ω-balanced topological group is Dugundji. Again, this important result generalizes

Theorem 4.1.7 on dyadicity of compact topological groups.

Recall that a Tychonoff space X admitting a continuous bijection f : X → M onto a

metrizable space M is said to be submetrizable, and that f is said to be a condensation of X
onto M. Recall also that every ω-narrow topological group of countable pseudocharacter is

submetrizable, by Proposition 5.2.11 (in this case, the condensation can be chosen to be an

isomorphism of topological groups).

In what follows, we fix a topological group G and its closed subgroup H . Let

π : G → G/H be the quotient mapping of G onto the space G/H of the left cosets of

H in G. Denote by � the family of all closed subgroups K of G such that H ⊂ K and

the quotient space G/K is submetrizable. If K, L ∈ � and K ⊂ L, let πK : G → G/K,

πL : G→ G/L and πK
L : G/K → G/L be the natural mappings, where πK

L (xK) = xL for

each x ∈ G. Since πL = πK
L ◦ πK and both mappings πK and πL are open, so is πK

L .

Lemma 10.3.6. If γ is a countable subfamily of �, then
⋂

γ ∈ �.

Proof. Put N =
⋂

γ. Clearly, H ⊂ N, so it suffices to verify that the quotient space

G/N is submetrizable. For every K ∈ γ, the submetrizable space G/K is an image of G/N
under the continuous the mapping πN

K , so the diagonal product ϕ of the family {πN
K : K ∈ γ}

is a continuous injective mapping of G/N to the product space Π =
∏

K∈γ G/K. The space

Π is submetrizable, as a countable product of submetrizable spaces. Since ϕ is a continuous

injective mapping and any subspace of a submetrizable space is submetrizable, the space

G/N is also submetrizable, that is, N ∈ �. �
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Lemma 10.3.7. If the group G is ω-balanced, then the family {πH
K : K ∈ �} generates

the topology of the quotient space G/H .

Proof. It suffices to verify that for every neighbourhood U of the neutral element e in

G, one can find a neighbourhood V of e in G and K ∈ � such that VK ⊂ UH . This will

imply that (πK)−1πK(V ) ⊂ π−1π(U) and hence, (πH
K )−1(πK(V )) ⊂ π(U).

So, let U be a neighbourhood of e in G. By Theorem 3.4.18, one can find a

continuous homomorphism ϕ : G → M onto a metrizable topological group M, and an

open neighbourhood W of the neutral element in M such that ϕ−1(W ) ⊂ U. Denote by

N the closure of ϕ(H) in M. Then K = ϕ−1(N) is a closed subgroup of G, and H ⊂ K.

Further, let i : G/K → M/N be a mapping defined by the rule i(xK) = ϕ(x)N, for each

x ∈ G. Clearly, the mapping i is defined correctly. Since the mapping πK is open, and

i ◦ πK = pN ◦ ϕ, where pN : M → M/N is the quotient homomorphism, the mapping i is

continuous.

G
πK ��

ϕ

��

G/K

i

��
M

pN �� M/N

We claim that i is a bijection of G/K onto M/N. Indeed, suppose that x, y ∈ G and

i(xK) = i(yK). Then ϕ(x)N = ϕ(y)N and, consequently, ϕ(x−1y) ∈ N. Hence,

x−1y ∈ ϕ−1(N) = K and πK(x) = πK(y), that is, xK = yK.

Thus, i is a condensation of G/K onto the quotient space M/N which is metrizable, by

Proposition 3.3.19. Therefore, K ∈ �.

Finally, V = ϕ−1(W ) is an open neighbourhood of e in G and V ⊂ U. Since W is

open in M and ϕ(H) is dense in N, we have

VK = ϕ−1(W )ϕ−1(N) = ϕ−1(WN) = ϕ−1(Wϕ(H)) = ϕ−1(W )H ⊂ UH.

As we mentioned at the beginning of the proof, this means that the family {πH
K : K ∈ �}

generates the topology at the point π(e) of the quotient space G/H . The conclusion of

the lemma follows, since the natural action of G on G/H is continuous and transitive (see

Example 10.2.10). �

Theorem 10.3.8. [V. V. Uspenskij] Let H be a closed subgroup of an ω-balanced
topological group G. Then every compact Gδ-set in the quotient space G/H is Dugundji.

Proof. Let X be a compact Gδ-set in G/H . There exists a sequence {Un : n ∈ ω} of

open sets in G/H such that X =
⋂

n∈ω Un. Let n ∈ ω be arbitrary. Since X is compact,

we can find, by Lemma 10.3.7, an element Ln ∈ � and an open set Vn in G/Ln such that

X ⊂ (πH
Ln

)−1(Vn) ⊂ Un. Let L =
⋂

n∈ω Ln. Then L ∈ � by Lemma 10.3.6 and it follows

from the choice of the sets Ln and Vn that the following holds:

X ⊂ (πH
L )−1πH

L (X) ⊂
∞⋂

n=0

(πH
Ln

)−1πH
Ln

(X) ⊂
∞⋂

n=0

(πH
Ln

)−1(Vn) ⊂
∞⋂

n=0

Un = X.

Thus, X = (πH
L )−1πH

L (X). Therefore, since the mapping πH
L is open, the restriction of πH

L

to X is also an open mapping of X onto πH
L (X).
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Again, we will construct a Haydon spectrum S with the limit space X. Consider the

family � of closed subgroups of G defined before Lemma 10.3.6. We can enumerate the

family � as � = {Kα : α < κ}, where κ is the cardinality of �. Let N0 = L, and

Nα = L ∩ ⋂
ν<α Kν, if 0 < α < κ. Given ordinals α, β with α < β < κ, we shorten

π
Nβ

Nα
to πβ

α and πH
Nα

to πα. Put also Xα = πα(X), and pβ
α = πβ

α�Xβ. Let us show that

S = {Xα, pβ
α : α < β < κ} is a Haydon spectrum, with the limit space X.

Since the family {pβ
α : α < β < κ} generates the topology of the compact space X (we

apply Lemma 10.3.7 here), X is homeomorphic to the limit space of S. The spectrum S is

continuous because Nα =
⋂

ν<α Nν, for each limit ordinal α < κ. It follows from N0 = L

and from the choice of L that X = (π0)−1π0(X) = π−1
0 (X0), so that Xβ = (πβ

α )−1(Xα),

whenever α < β < κ. Since the mappings πβ
α are open, the projections pβ

α of the spectrum

S are open as well.

It remains to verify that each bonding mapping pα+1
α has a metrizable kernel. It follows

from Nα+1 = Nα∩Kα that the diagonal product of the mappings πα+1
α : G/Nα+1 → G/Nα

and πNα+1

Kα
: G/Nα+1 → G/Kα is injective. Let fα be the restriction of πNα+1

Kα
to Xα+1.

The compact space Yα = fα(Xα+1) is metrizable, as a subspace of the submetrizable space

G/Kα. Since the diagonal product h = pα+1
α Δfα is a condensation of Xα+1 to the product

space Xα × Yα, the mapping h is a homeomorphic embedding of Xα+1 and, hence, pα+1
α

has metrizable kernel. �

The following fact is an almost immediate corollary of Theorem 10.3.8:

Corollary 10.3.9. [M. M. Choban] Every compact Gδ-set in a topological group is
Dugundji.

Proof. Let X be a compact Gδ-set in a topological group K with identity e. Denote by

G the subgroup of K generated by X. Then the group G is σ-compact and, hence, ω-narrow

and ω-balanced. It remains to apply Theorem 10.3.8 in the special case when H = {e}. �

The following theorem provides us with a variety of natural examples of topological

groups which are not ω-balanced.

Theorem 10.3.10. Suppose that X is a zero-dimensional homogeneous compact space
such that the group Homeo(X) of all homeomorphisms of X onto itself, with the compact-
open topology, is ω-balanced. Then X is Dugundji.

Proof. Every zero-dimensional homogeneous compactum is homeomorphic to a

quotient space of the topological group G = Homeo(X) of homeomorphisms of X onto

itself, with the compact-open topology (see Section 3.5). Since G is ω-balanced, it remains

to apply Theorem 10.3.8. �

Corollary 10.3.11. Suppose that X is a zero-dimensional homogeneous compact
space of countable tightness such that the group Homeo(X) of all homeomorphisms of X
onto itself, with the compact-open topology, is ω-balanced. Then X is metrizable.

Proof. By Theorem 10.3.10, X is Dugundji and therefore, X is dyadic. According to

[165, 3.12.12 (h)], every dyadic compactum of countable tightness is metrizable, whence

the conclusion follows. �
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If X is a metrizable compact space, then, by Theorem 3.5.5, the group Homeo(X) of all

homeomorphisms of X onto itself, with the compact-open topology, has a countable base

and therefore, is ω-narrow and ω-balanced. So the converse to Corollary 10.3.11 holds.

Example 10.3.12. The group G of all homeomorphisms of the two arrows space onto

itself, with the compact-open topology, is not ω-balanced. Indeed, the two arrows space

is a zero-dimensional homogeneous first-countable compact Hausdorff space. If G were

ω-balanced, this compactum would be metrizable, by Corollary 10.3.11. �

Exercises

10.3.a. Let G be a topological group acting continuously on a Tychonoff space X. Take the associated

action of G on the space C0(X) of all bounded continuous real-valued functions on X, with

the sup-norm topology. Is this action continuous?

10.3.b. Show that for any homogeneous compact Hausdorff space X, there exists an ω-balanced

topological group acting on X continuously and transitively.

10.3.c. Suppose that G is a separable topological group acting continuously on a compact Hausdorff

space X and that the orbital space X/G is metrizable. Must the space X be metrizable?

Problems

10.3.A. Suppose that G is a second-countable topological group acting continuously on a Tychonoff

space X. If the orbital space X/G is regular and second-countable, must X be metrizable?

10.3.B. Let G be a topological group acting continuously on a Tychonoff space X, and suppose that

each of the spaces G and X/G is cosmic. Does it follow that the space X is cosmic?

10.3.C. Suppose that G is a second-countable topological group acting continuously and transitively

on a Tychonoff space X. Does it follow that the space X is second-countable?

10.3.D. Let a Lindelöf topological group G act continuously and transitively on a compact Hausdorff

space X. Prove that X is metrizable.

Open Problems

10.3.1. Let G be the group of homeomorphisms of a Tychonoff cube Iτ , where τ > ω, onto

itself. Take G with the compact-open topology, and suppose that G acts continuously and

transitively on a compact Hausdorff space X. Is X dyadic?

10.3.2. Suppose that G is a second-countable topological group acting continuously on a compact

Hausdorff space X. Suppose further that X/G is second-countable. Does it follow that the

space X has a countable base?

10.3.3. Suppose that G is an ω-narrow group acting continuously on a compact Hausdorff space

X. Suppose further that the orbital space X/G is second-countable. Does it follow that the

space X is Dugundji? Is X dyadic?

10.3.4. Is it true that every compact Gδ-set in a Hausdorff (Tychonoff) paratopological group is a

Dugundji space? Is dyadic?

10.3.5. Suppose that G is an ω-balanced topological group, and H a closed subgroup of G such

that the quotient space G/H is a Lindelöf p-space of countable tightness. Is G/H second-

countable?
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10.4. Continuous actions of compact groups and some classes of spaces

We have already used the techniques developed in the preceding sections to prove a

few important results such as Theorems 10.3.5 and 10.3.8. These techniques are also quite

effective in answering basic questions on the behaviour of certain general properties of

G-spaces, in particular, of cardinal invariants. We present a sample of results of this kind

below.

Proposition 10.4.1. Suppose that a compact topological group G acts continuously
on a Hausdorff space X. Then the orbital space X/G is Hausdorff, and if, in addition, X is
normal, then X/G is normal as well.

Proof. Any image of a Hausdorff space under a perfect mapping is a Hausdorff

space, and any image of a normal space under a continuous closed mapping is a normal

space, by Theorems 3.7.20 and 1.5.20 of [165], respectively. Hence, it suffices to apply

Theorem 10.2.13 saying that every orbital projection is perfect. �
Theorem 10.4.2. Suppose that a compact topological group G acts continuously on a

Hausdorff space X, and that the orbital space X/G has one of the following properties:

a) X/G is compact;
b) X/G is countably compact;
c) X/G is pseudocompact;
d) X/G is Lindelöf.

Then X has the same property.

Proof. This again follows from Theorem 10.2.13, since the preimage of a compact

(countably compact, pseudocompact, Lindelöf) space under a perfect mapping is compact

(countably compact, pseudocompact, Lindelöf), according to Theorems 3.7.2, 3.10.9,

Problem 3.10.G, and Theorem 3.7.26 of [165], respectively. �
Similar statements are valid for a variety of topological properties that behave nicely

under perfect mappings. We just formulate some of them, omitting the routine proofs.

Theorem 10.4.3. Suppose that a compact topological group G acts continuously on a
Hausdorff space X. Then the orbital space X/G is locally compact (Čech-complete) if and
only if X is locally compact (respectively, Čech-complete).

Theorem 10.4.4. If a compact topological group G acts continuously on a paracompact
Hausdorff space X, then the orbital space X/G is also paracompact.

The case when the orbital space X/G is metrizable deserves special attention.

Theorem 10.4.5. If a compact topological group G acts continuously on a metrizable
space X, then the orbital space X/G is also metrizable.

Proof. Indeed, the image of a metrizable space under a perfect mapping is metrizable

[165, Theorem 4.4.15]. �
Theorem 10.4.6. Suppose that a compact topological group G acts continuously on

a Tychonoff space X in such a way that the orbital space X/G is metrizable. Then X is a
paracompact p-space.
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Proof. Indeed, the preimage of a metrizable space under a perfect mapping is a

paracompact p-space, provided this preimage is a Tychonoff space [60, Chapter V, no. 228].

Therefore, it suffices to apply Theorem 10.2.13. �
Theorem 10.4.7. Suppose that G is a compact topological group acting continuously

on a zero-dimensional Hausdorff space X. Then the orbital space X/G is also zero-
dimensional.

Proof. Again, Theorem 10.2.13 implies the conclusion, since continuous mappings

that are both open and closed, obviously preserve zero-dimensionality [165, 6.2.H (a)]. �
Under some mild restrictions on a G-space X, we can prove some more delicate and

less expected connections between the properties of X, where the action takes place, and

the properties of the orbital space X/G. We start with an obvious auxiliary fact:

Lemma 10.4.8. The orbit of every point under a continuous action of a compact
topological group is a dyadic compactum.

Theorem 10.4.9. Assume that c = 2ℵ0 < 2ℵ1 , and let G be a compact topological
group acting continuously on a Hausdorff space X such that |X| ≤ c. Then each orbit under
this action is metrizable.

Proof. If the cardinality of a dyadic compactum C does not exceed 2ω, then, under

the assumption 2ω < 2ω1 , C is metrizable. Indeed, C must contain a dense subset of points

of countable character — otherwise, by the Čech–Pospı́šil theorem (see [165, 3.12.11 (a)]),

the cardinality of C would be greater than or equal to 2ω1 > 2ω, a contradiction. However,

every dyadic compactum with a dense subset of points of countable character is metrizable,

by [165, 3.12.12 (g)]. It remains to refer to Lemma 10.4.8. �
One cannot drop the assumption that c < 2ℵ1 in Theorem 10.4.9. Indeed, the compact

group Dω1 acts continuously and transitively on itself, while the orbit Dω1 is not metrizable.

Theorem 10.4.10. Suppose that G is a compact topological group acting continuously
on a Hausdorff space X of countable tightness. Suppose also that the orbital space X/G is
first-countable. Then X is first-countable as well.

Proof. Every orbit Gx under the action is a dyadic compactum, according to

Lemma 10.4.8. Since every dyadic compactum of countable tightness is metrizable [165,

3.12.12 (h)], it follows that the orbit Gx is first-countable. On the other hand, the set Gx
has a countable base of open neighbourhoods in X, since the space X/G is first-countable,

and Gx is a fiber under the orbital projection which is perfect. Hence, by the transitivity of

the character (see [165, 3.1.E]), X is first-countable. �
Notice that in the above argument we have established the next lemma:

Lemma 10.4.11. The orbit Gx of every point x ∈ X under a continuous action of a
compact topological group G on a Hausdorff space X of countable tightness is a metrizable
compactum.

Theorem 10.4.12. Suppose that G is a compact topological group acting continuously
on a Hausdorff space X such that the tightness of X does not exceed 2ω. Suppose also that
the orbital space X/G is separable. Then X is also separable.
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Proof. Fix a countable dense subset A in X/G, and let π : X → X/G be the orbital

projection. Since Ba = π−1(a) is a dyadic compactum, by Lemma 10.4.8, it follows from

[165, 3.12.12 (h)] that the weight of Ba is not greater than t(Ba) ≤ c = 2ω. Therefore,

by [165, 3.12.12 (b)], Ba is a continuous image of Dc. Hence, the density of Ba does not

exceed the density of Dc, that is, Ba is separable, according to [165, Corollary 2.3.16]. For

each a ∈ A, choose a countable dense subset Ba of π−1(a). Since π is open, the countable

set B =
⋃{Ba : a ∈ A} is dense in X. �

Theorem 10.4.13. Suppose that G is a compact topological group acting continuously
on a Hausdorff space X of countable tightness. Suppose also that the orbital space X/G is
separable. Then there exists a closed subgroup H of G such that H is a Gδ-set in G, and
hx = x, for all h ∈ H and x ∈ X.

Proof. It follows from Theorem 10.4.12 that the space X is separable. Fix a countable

dense subset A of X. For each a ∈ A, consider the mapping θa : G → Ga given by

θa(g) = ga. According to Lemma 10.4.11, the orbit Ga is a metrizable compactum.

Clearly, the stabilizer Ga of a is the preimage of a under the mapping θa. Since θa is latter is

continuous, and the space Ga is first-countable, Ga is a closed Gδ-set in G. We also know

that Ga is a subgroup of G.

Put H =
⋂{Ga : a ∈ A}. Obviously, H is a closed subgroup of G and a Gδ-set in

G. Take any h ∈ H . From the definition of H it follows immediately that h(a) = a, for

each a ∈ A. Since A is dense in X, and the action of G on X is continuous, it follows that

h(x) = x, for every x ∈ X. �

Theorem 10.4.13 allows us to reduce the study of continuous actions of compact Abelian

groups on separable spaces of countable tightness (in particular, on separable metrizable

spaces) to the case when the acting group is metrizable. Indeed, assuming the commutativity

of G in Theorem 10.4.13, the quotient group G/H is defined. It is metrizable, compact, and

acts in an obvious way on X so that the orbital space X/(G/H) is naturally homeomorphic

to the orbital space X/G.

There are many other topological properties, besides countable tightness, that can

influence drastically the size and topological properties of orbits under continuous actions

of topological groups. At least one statement, Theorem 10.4.17, is worth mentioning.

Recall that a space X is said to be τ-monolithic, for a given infinite cardinal τ, if for

each subset A of X with |A| ≤ τ, there is a network S in A such that |S| ≤ τ, that is, the

network weight of the closure of A in X does not exceed τ. The space X is called monolithic
if it is τ-monolithic, for each τ ≥ ω.

The proof of Theorem 10.4.17 requires three auxiliary results, each of which is

interesting in itself.

Lemma 10.4.14. For every infinite compact space X, the weight of the space C(X) of
continuous real-valued functions on X, endowed with the sup-norm topology, is equal to
the weight of X.

Proof. Let κ be the weight of C(X). Clearly, κ ≥ ω, and C(X) contains a dense subset

S satisfying |S| ≤ κ. It is easy to see that the set S separates points and closed sets in X, so

that the diagonal product ϕ of the functions in S is a homeomorphic embedding of X into

RS . Therefore, w(X) ≤ |S| · ω ≤ κ.
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Conversely, denote by τ the weight of X, and take a base � for X with |�| = τ. For

every pair (U, V ) such that U, V ∈ � and U ⊂ V , choose f = fU,V ∈ C(X) such that

f (U) ⊂ {1} and f (X \ V ) ⊂ {0}. Then the family �0 of the functions fU,V separates

points of X and, clearly, |�0| ≤ τ. For every rational number r, let r be the function on

X constantly equal to r. Put �1 = {r : r ∈ Q} and � = �0 ∪ �1. Then |�| ≤ τ.

Denote by S the minimal subset of C(X) which contains � and is closed with respect to

the usual pointwise operations of sum, subtraction, and multiplication of functions. By

the Stone–Weierstrass theorem (see [165, Theorem 3.2.21]), S is dense in the metric space

C(X). It is also clear that |S| ≤ τ. Therefore, the density of C(X) is not greater than τ.

By [165, Theorem 4.1.15], the density and weight of C(X) coincide, whence it follows that

w(C(X)) ≤ τ.

Combining the above results, we conclude that w(C(X)) = w(X). �

Lemma 10.4.15. Every non-metrizable compact space X admits a continuous mapping
onto a compact space Y of weight ℵ1.

Proof. According to Lemma 10.4.14, the space C(X) has uncountable weight. Since,

by [165, Theorem 4.1.15], the cellularity and weight of every metrizable space coincide,

C(X) contains a family {Uα : α < ω1} of pairwise disjoint non-empty open sets. For every

α < ω1, choose an element fα ∈ Uα, and let ϕ be the diagonal product of the functions

fα’s. Clearly, ϕ is a continuous mapping of X to Rω1 , and Y = ϕ(X) is a compact subspace

of Rω1 . In particular, w(Y ) ≤ ℵ1. We claim that the cellularity of the metric space C(Y ) is

not less than ℵ1.

Indeed, consider the dual mapping ϕ∗ : C(Y ) → C(X) defined by ϕ∗(f ) = f ◦ ϕ,

for each f ∈ C(Y ). It is clear that ϕ∗ is an isometric embedding of C(Y ) into C(X). In

particular, ϕ∗(C(Y )) is a homeomorphic copy of C(Y ). It follows from the definitions of ϕ
and ϕ∗ that fα ∈ ϕ∗(C(Y )) ∩ Uα = ∅, for each α < ω1. Therefore, the cellularity of the

spaces ϕ∗(C(Y )) and C(Y ) is uncountable.

We now apply Lemma 10.4.14 to deduce that w(Y ) ≥ ℵ1. This, together with the

inequality w(Y ) ≤ ℵ1 established earlier, implies the conclusion of the lemma. �

Proposition 10.4.16. An ω-monolithic dyadic compactum is metrizable.

Proof. Suppose by the way of contradiction that X is a non-metrizable ω-monolithic

dyadic compactum. Since X is dyadic, we can find a continuous mapping g of the Cantor

cube Dκ onto X, for some cardinal κ. It is clear that κ is not less than the weight of X.

By Lemma 10.4.15, there exists a continuous mapping g of X onto a compact spaces Y of

weight ℵ1. Since continuous mappings do not increase the weight in the class of compact

spaces, the space Y is also ℵ0-monolithic. The composition g ◦ f is a continuous mapping

of Dκ onto Y , and Corollary 1.7.4 applies to find a subset A ⊂ κ with |A| ≤ ℵ1 and a

continuous mapping h : DA → Y such that g ◦ f = h ◦ πA, where πA : Dκ → DA is the

projection.

Dκ
f ��

πA

��

X

g

��
DA

h �� Y
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Since |A| = ℵ1 ≤ 2ω, it follows from the Hewitt–Marczewski–Pondiczery theorem (see

[165, Theorem 2.3.15]) that the Cantor cube DA is separable. Hence Y is also separable,

as a continuous image of DA. Finally, we apply the ℵ0-monolithicity of Y to conclude that

w(Y ) ≤ d(Y ) ≤ ω, a contradiction. We have thus proved that X has countable weight. �

Theorem 10.4.17. Suppose that G is a compact topological group acting continuously
on an ℵ0-monolithic Hausdorff space X. Then:

a) every orbit Gx is a metrizable compactum;
b) the orbital space X/G is also ℵ0-monolithic;
c) d(X) = d(X/G);
d) if, in addition, X is monolithic, then nw(X) = nw(X/G).

Proof. Item a) follows from Lemma 10.4.8, since every ℵ0-monolithic dyadic com-

pactum is metrizable, by Proposition 10.4.16.

To prove b), fix an arbitrary countable subset A of X/G. For each a ∈ A, fix ba ∈ X
such that π(ba) = a, where π is the orbital projection of X onto X/G. Put B = {ba : a ∈ A}
and F = B. Then nw(F ) ≤ |B| = |A| ≤ ω, since X is ℵ0-monolithic. Since π is closed

and π(B) = A, we have that π(F ) = A. However, continuous mappings do not increase

the network weight. Therefore, nw(A) ≤ nw(F ) ≤ ω, that is, X/G is ℵ0-monolithic.

To prove c), fix a dense subset A of X such that |A| is the density of X. We may assume

that A is infinite. According to a), all fibers under π are separable and metrizable, so we

can fix a countable dense subset Ba in π−1(a), for each a ∈ A. Put B =
⋃{Ba : a ∈ A}.

Since the mapping π is open and continuous, and A is dense in X/G, the set B is dense

in X. Clearly, |B| = |A|. Hence, d(X) ≤ |B| = |A| = d(X/G). On the other hand,

d(X/G) ≤ d(X), by the continuity of π. Hence, d(X) = d(X/G).

For d), suppose that X is monolithic. The same argument as in b) implies that X/G
is also monolithic. Therefore, nw(X) = d(X) and nw(X/G) = d(X/G). It follows that

nw(X) = nw(X/G). �

Clearly, if no restrictions are imposed on a space X, where G acts, we can say nothing

about the density or network weight of X, even if we know that the space X/G of orbits is

separable (just take the action of G on itself by left translations). However, it turns out that

we can always say something about the cellularity of X. Indeed, we have the following:

Theorem 10.4.18. Suppose that G is a compact topological group acting continuously
on a Hausdorff space X. Then the Souslin number of X never exceeds the density of X/G.
In particular, if X/G is separable, then the Souslin number of X is countable, and even
more in this case, ℵ1 is a precalibre of X, that is, every uncountable family of open sets in
X has a centered uncountable subfamily.

Proof. Suppose that X/G is separable (in the general case, the argument is similar).

Fix a countable dense subset A in X and, for each a ∈ A, consider the fiber Fa = π−1(a)

of a under the orbital projection π : X → X/G. By Lemma 10.4.8, each Fa is a dyadic

compactum. The set M =
⋃{Fa : a ∈ A} is dense in X, since the mapping π is open and

continuous. Clearly, M is σ-compact.

Let η be an uncountable family of open sets in X. Clearly, there exists a ∈ A such

that the subfamily ηa = {U ∈ η : U ∩ Fa = ∅} is uncountable. Since Fa is a dyadic
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compactum, it follows from Corollary 5.4.3 that some uncountable subfamily ξ of ηa is

centered. �
An interesting general question is: Given a Hausdorff topological space, which compact

groups admit a non-trivial continuous action on X? For example, it is clear that if X is totally

disconnected, then no connected group can act non-trivially on X. A related more precise

question is: For which spaces X, every orbit under an action of a compact group on the

space X is finite? The following theorem gives a partial answer to this question.

Theorem 10.4.19. If X is an extremally disconnected Hausdorff space, and G is a
compact topological group acting continuously on X, then every orbit Gx is finite.

Proof. Indeed, by Lemma 10.4.8, Gx is a dyadic compactum. If Gx is infinite, then

Gx contains a non-trivial convergent sequence, by [165, 3.12.12 (i)]. However, there are no

such sequences in any extremally disconnected Hausdorff space [165, 6.2.G (a)]. �
The cases when the compact group acting on a space X is metrizable or just finite,

deserve special consideration. We first make below an observation on the case of metrizable

G which is almost obvious after the above discussion. Much stronger results are in fact

possible, but they are far from easily available. Then we will consider in detail the case of

actions of compact groups with finite orbits.

Theorem 10.4.20. Suppose that a compact topological group G is acting continuously
on a Hausdorff space X in such a way that each orbit Gx is metrizable, and the orbital
space X/G is second-countable. Then X is first-countable and separable.

Proof. The argument repeats some fragments of the proofs of Theorems 10.4.10

and 10.4.12. �
In the problems section below, much more advanced results are given compared to the

last theorem (see Problems 10.4.B and 10.4.D).

Now we are going to establish a more delicate result on actions with finite orbits,

Theorem 10.4.23. The key to it is the next purely topological statement on continuous

mappings of spaces.

Proposition 10.4.21. Let f be an open and closed continuous finite-to-one mapping
of a Hausdorff space X onto a space Y . Then nw(X) = nw(Y ) and w(X) = w(Y ).

Proof. Since f is continuous and open, we obviously have that nw(Y ) ≤ nw(X) and

w(Y ) ≤ w(X). Put τ = nw(Y ), and fix a network � in Y such that |�| = τ. For n ∈ ω,

put Yn = {y ∈ Y : |f−1(y)| = n} and Xn = f−1(Yn), and let fn be the restriction of f
to Xn, fn : Xn → Yn. Then X0 = Y0 = ∅, and each fn is an open and closed continuous

mapping, since Xn is a full preimage of Yn under the mapping f , which is open, closed

and continuous. Besides, each fiber f−1
n (y) under fn consists of exactly n points, say,

f−1
n (y) = {x1, . . . , xn}. Since X is Hausdorff, the subspace Xn is also Hausdorff, and we

can choose pairwise disjoint open neighbourhoods Ox1, . . . , Oxn of points x1, . . . , xn in the

space Xn. Since fn is open and exactly n-to-one, the restriction of fn to each Oxi is a

homeomorphism of Oxi onto f (Oxi). Therefore, each fn is a local homeomorphism, and

each point x of Xn has an open neighbourhood in Xn such that nw(Ox) ≤ τ.

Observe now that the Lindelöf degree l(Yn) of Yn does not exceed nw(Yn), by

Proposition 5.3.3. Since the mapping fn is perfect, it follows from (an obvious generalization
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of) [165, Theorem 3.8.8] that l(Xn) ≤ τ. Using the fact that, locally, the network weight of

Xn does not exceed τ, we can cover Xn by a family ηn of open in Xn sets of network weight

not greater than τ. This clearly implies that nw(Xn) ≤ τ (recall that, by the definition,

cardinal invariants take only infinite values).

Since f is finite-to-one, we have X =
⋃∞

n=0 Xn. Hence, nw(X) ≤ τ · ω = nw(Y ),

whence the equality nw(X) = nw(Y ) follows.

To prove that w(X) = w(Y ), put τ = w(Y ). Then, by the first part of the argument,

nw(X) = nw(Y ) ≤ w(Y ) = τ. According to [165, Lemma 3.1.18], it follows that

there exists a one-to-one continuous mapping g of X onto a Hausdorff space M such

that w(M) ≤ nw(X) ≤ τ. Then the diagonal product φ of the mappings f and g is

a homeomorphism of X onto a subspace Z of the product space Y × M. Indeed, φ is

perfect, since f is perfect [165, Theorem 3.7.9], and φ is one-to-one, since g is one-to-one.

Clearly, w(X) = w(Z) ≤ w(Y × M) = τ. Hence, w(X) ≤ τ = w(Y ) and, therefore,

w(X) = w(Y ). �

Theorem 10.4.22. Suppose that a compact topological group G is acting continuously
on a Hausdorff space X in such a way that each orbit Gx is finite. Then w(X) = w(X/G)

and nw(X) = nw(X/G).

Proof. By Theorem 10.2.13, it is enough to refer to Proposition 10.4.21. �

Here is an application of the above result:

Theorem 10.4.23. Suppose that a compact metrizable zero-dimensional topological
group G continuously acts on a Hausdorff space X such that the orbital space X/G is
second-countable. Then X is also second-countable.

Proof. By Theorem 3.1.11, we can choose a decreasing sequence ξ = {Hn : n ∈ ω}
of open invariant subgroups with H0 = G such that ξ is a local base at the neutral element

of G. For every n ∈ ω, put Xn = X/Hn and let pn : X → Xn be the orbital projection.

Then X is the limit space of the inverse spectrum � = {Xn, pn
m : m ≤ n, m, n ∈ ω}, where

pn
m : Xn → Xm are defined as the natural continuous mappings satisfying pm = pn

m ◦ pn,

whenever m ≤ n. Clearly, the quotient group Kn = Hn+1/Hn is finite and, by

Theorem 10.2.13, the orbital projections pn
m and pn are open and perfect. It follows that Xn

is naturally homeomorphic to the orbit space Xn+1/Kn, for each n ∈ ω.

Since the group Kn is finite, and the fibers of the mapping pn+1
n have cardinalities at

most |Kn|, Theorem 10.4.22 applied to pn+1
n implies (by induction on n) that the space

Xn+1 is second-countable. The diagonal product of perfect mappings pn, where n ∈ ω, is a

homeomorphic embedding of X into the product space
∏

n∈ω Xn, since X is the limit space

of the spectrum �. Hence, X is second-countable as well. �

One of basic questions on a continuous action of a topological group G on a topological

space X is whether there exists a continuous selection s for the orbital projection π : X →
X/G. Recall that s is a continuous selection for the mapping π if s is a continuous mapping

of X/G to X such that π(s(y)) = y, for each y ∈ X/G. Unfortunately, such selections exist

very seldom. This can be easily demonstrated with the help of the following statement:

Proposition 10.4.24. If s is a continuous selection for the orbital projection π
corresponding to a continuous action of a topological group G on a Hausdorff space X,
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then s is a homeomorphism of the orbital space X/G onto a closed subspace s(X/G) of the
space X.

Proof. Denote by p the restriction of the orbital projection π : X → X/G to the

subspace Y = s(X/G) of X. Then clearly p is continuous and we have that p ◦ s = idX/G

and s ◦ p = idY . Therefore, s is a homeomorphism between X/G and Y . It is also clear

that r = π ◦ s is a continuous retraction of X onto its subspace r(X) = s(X/G). Since X is

Hausdorff, s(X/G) is closed in X. �

Example 10.4.25. Consider the group R of reals, with the usual topology. The

subgroup G = Z of integers acts continuously on the space X = R; clearly, the space

of orbits for this action is the circle T, that is, X/G = T. Since T is not homeomorphic to

any subspace of R, it follows that there is no continuous selection for the orbital projection

in this case. However, one can easily define some partial selections locally. �

Exercises

10.4.a. Give a detailed proof of Theorem 10.4.20.

10.4.b. Let G = {1,−1} be the two-element multiplicative group. We define an action of G on the

Euclidean plane X = R2 as follows: 1x = x and (−1)x = −x, for each x ∈ R2 (that is, 1

acts as the identity mapping, and −1 acts as the symmetry with respect to the origin).

a) Describe the space of orbits X/G.

b) What are the topological properties of X/G? In particular, is X/G metrizable? Is X/G
locally compact?

c) Prove that for any open neighbourhood U of the point {0̄} = π(0, 0) of the space X/G,

there is no continuous selection on U for the orbital projection π : X → X/G restricted

to π−1(U).

10.4.c. Suppose that the group G = {1,−1} is acting continuously on a Hausdorff space X. Then

either there exists a fixed point under the action of G, that is, a ∈ X such that Ga = {a},

or the orbital projection π : X → X/G is a local homeomorphism, that is, for each x ∈ X,

there is an open neighbourhood U of X such that π restricted to U is a homeomorphism of

U onto the open subspace π(U) of X/G.

10.4.d. Suppose that G is a finite group acting continuously on a Hausdorff space X and that

|Gx| = |G|, for each x ∈ X, that is, each orbit under the action of G consists of exactly

as many elements as G itself. Prove that the orbital projection π : X → X/G is a local

homeomorphism.

10.4.e. Suppose that a compact topological group G acts continuously on a Hausdorff space X.

Prove that for each x ∈ X, and for any open set U in X containing the orbit Gx, there exists

an open neighbourhood V of the orbit Gx such that V is G-invariant, that is, GV = V .

Problems

10.4.A. Let G be a metrizable compact topological group acting continuously on a Tychonoff space

X in such a way that the space X/G of orbits is second-countable. Prove that X is metrizable.

10.4.B. (V. V. Filippov [170]) Suppose that G is a compact topological group acting continuously on

a Tychonoff space X. Suppose further that each orbit Gx is metrizable and that the space

X/G of orbits is second-countable. Prove that X is metrizable.

10.4.C. Suppose that G is a compact group acting continuously on a Hausdorff space X. Suppose

further that the space X/G of orbits is metrizable. Is X Tychonoff?
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10.4.D. Let G be a compact topological group acting continuously on a compact Hausdorff space X
in such a way that the space X/G of orbits is second-countable. Prove that X is Dugundji.

10.4.E. Let p be the natural projection of the two arrows space onto the closed unit interval. Prove that

p cannot be represented as the orbital projection of the two arrows space under a continuous

action of a compact group.

10.4.F. Give an example of an open continuous mapping p of a non-metrizable compact Hausdorff

space X onto a metrizable compact space Y . Observe that p cannot be represented as the

orbital projection of any space under a continuous action of a compact group.

10.4.G. Let X = Cp(X) be the space of continuous real-valued functions on a compact Hausdorff

space X, in the topology of pointwise convergence. Prove that if a compact group G act

continuously on X in such a way that the orbital space X/G is separable or first-countable,

then X/G is cosmic.

10.4.H. (V. V. Filippov [170]) Suppose that G is a compact topological group acting continuously on

a Tychonoff space X. Suppose further that each orbit Gx is metrizable and that the space

X/G of orbits is metrizable. Prove that X is metrizable.

10.4.I. (V. V. Filippov [170]) Suppose that G is a compact group acting continuously on a Tychonoff

space X. Suppose further that each orbit Gx is metrizable. Prove that the weight of the orbital

space X/G is equal to the weight of the space X.

10.4.J. Suppose that G is a compact group acting continuously on a space X metrizable by a complete

metric. Prove that the space X/G of orbits is also metrizable by a complete metric.

10.4.K. Suppose that G is a compact topological group acting continuously on a realcompact space

X. Prove that the space X/G of orbits is also realcompact.

Hint. See [165, 3.11.G].

10.4.L. Recall that B(τ) = D(τ)ω is the Baire space of weight τ ≥ ω, where D(τ) is a discrete space

of cardinality τ. The space B(τ) is zero-dimensional and metrizable by a complete metric

(see Theorem 4.3.12 and Example 7.3.14 of [165]). Suppose that G is a compact group

acting continuously on the Baire space X = B(τ), for some τ ≥ ω. Prove that the space

X/G of orbits is homeomorphic to B(τ).

Hint. See [60, Ch. 6, no. 149].

10.4.M. Recall that a linearly ordered space is a topological space X such that the topology of X is

generated by some linear order on the set X. Suppose that G is a compact topological group

acting continuously on a linearly ordered space X. Prove that:

a) w(X/G) = w(X);

b) if the space X/G is metrizable, then X is also metrizable.

Hint. Apply the fact that every linearly ordered dyadic compactum is metrizable [165,

3.12.12 (f)].

10.4.N. The following assertion is consistent with ZFC: If φ : G × X → X is a continuous

and transitive action of a countably compact group G on a compact space X, then X is

homeomorphic to the quotient space G/H , where H is a closed subgroup of G.

Hint. Fix x ∈ X and for each g ∈ G, put f (g) = φ((g, x)). Then f is a continuous mapping

of G onto X, since the action φ is continuous and transitive. Then X is a dyadic compactum.

Let H = {g ∈ G : g(x) = x}. Then H is a closed subgroup of G, and f is the composition

of the canonical quotient mapping π of G onto the quotient space G/H and of a one-to-one

continuous mapping i of G/H onto X. The space G/H is countably compact and Tychonoff.

One can show now that, consistently, i is a homeomorphism (see [34]).

10.4.O. If a countably compact topological group G of countable tightness acts continuously and

transitively on a compact space X, then X is metrizable.

Hint. Clearly, there exists a one-to-one continuous mapping of the quotient space G/H ,

where H is a closed subgroup of G, onto X. The tightness of G/H is countable and G/H
is countably compact. It remains to refer to Problem 9.8.N.
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Open Problems

10.4.1. Let G be a compact metrizable topological group acting continuously on a Tychonoff space

X in such a way that the space X/G of orbits is submetrizable. Is X submetrizable?

10.4.2. Let G be a compact metrizable group acting continuously on a Tychonoff space X in such a

way that the space of orbits satisfies iw(X/G) ≤ ω. Is it true that iw(X) ≤ ω?

10.4.3. Let G be a compact topological group acting continuously on a compact Hausdorff space X
in such a way that the space X/G of orbits is a Dugundji compactum. Is X Dugundji?

10.5. Historical comments to Chapter 10

Continuous actions of topological groups on topological spaces provide a natural

general background for topological dynamics. At the heart of it is the fundamental

idea of a topological group of transformations; and topological dynamics, in its general

setting, is closely related to the theory of topological semigroups. Concrete prototypes of

general concepts and problems of topological dynamics came from differential equations.

V. V. Niemytzki and K. S. Sibirski were among those who contributed to this discipline at

the early stage. The first monograph on general topological dynamics was [200]. For some

important modern aspects of the theory see the works of D. V. Anosov, K. Kuperberg, and

J. Kennedy.

We should warn the reader that we provide only a very sketchy introduction to this

vast subject to which quite a few extensive monographs (see below) have been devoted. In

particular, see [530].

The roots of the notion of 0-soft mapping can be found in the seminal work of R. Haydon

[221]. The concept itself was conceived and introduced by E. V. Schepin in [420] (for a more

advanced treatment of it, see [422]). In [516], V. V. Uspenskij showed how the methods

created by Haydon and Schepin can be applied to prove that every compact topological

group is a Dugundji space. He also proved a generalization of this theorem obtained by

M. M. Choban: Every compact Gδ-set in a topological group is a Dugundji compactum

(see [101], [516], [517]). The important class of Dugundji compacta was introduced by

A. Pełczyński in [368], where a series of influential questions was raised. R. Haydon

proved in [221] that every Dugundji compactum is dyadic. It should be mentioned that

the technique of inverse spectra introduced to topology by P. S. Alexandroff, was greatly

developed in the fundamental papers of Haydon and Schepin mentioned above.

In connection with Proposition 10.1.1 and Corollary 10.1.2, see [368]. Theorem 10.1.3

is due to R. Haydon [221]. For Propositions 10.1.4 and 10.1.5 see [420] and [422], where

a discussion of elementary results on inverse spectra, such as Propositions 10.1.6, 10.1.9,

10.1.12, and 10.1.13 can be also found. Theorem 10.1.8 and Example 10.1.10 are old

results (see [8]); for further references see [8]. Theorem 10.1.16 belongs to Haydon [221].

In connection with Theorem 10.1.15, Propositions 10.1.17, 10.1.20, Corollaries 10.1.18,

10.1.21, 10.1.23, and for further references, see [516, 517].

The general references for continuous actions of topological groups on topological

spaces are the books of J. de Vries [530], G. E. Bredon [86], and R. Ellis [161]. An older

source is the book of W. Gottshalk and G. A. Hedlund [200]. A recent nice introduction to

topological dynamics is given in [271]. See also [2]. In particular, for further references in
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connection with Propositions 10.2.1, 10.2.2, 10.2.7, 10.2.8, 10.2.12, Corollary 10.2.3, and

Theorem 10.2.13 see [530], [86].

Theorems 10.3.5 and 10.3.8 are due to Uspenskij (see [517, 516, 515]). The proof

of these results presented in the book, in particular, Proposition 10.3.1, Lemma 10.3.2,

Example 10.3.3, closely follow Uspenskij’s argument. In connection with Corollary 10.3.9

see [101]. Probably, Theorem 10.3.10 and Corollary 10.3.11 appear in print for the first

time.

Historical comments to Chapter 10
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[221] Haydon, R. (1974). On a problem of Pełczyński. Milutin spaces, Dugundji spaces, and AE(0−dim), Studia
Math. 52, pp. 23–31.

[222] Heath, R. W. (1992). Some non-metric, first countable, cancellative topological semigroups that are

generalized metric spaces, Topol. Appl. 44, pp. 167–173.

[223] Henriksen, M. and Isbell, J. R. (1958). Some properties of compactifications, Duke Math. J. 25, pp. 83–106.

[224] Hensel, K. (1913). Zahlentheorie (Berlin u. Leipzig, G. J. Göschensche Verlagshandlung).
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Topol. Appl. 155, 4, pp. 322–334. Doi:10.1016/j.topol.2007.05.017.

[419] Schepin, E. V. (1976). Real-valued functions and canonical sets in Tychonoff products and topological

groups, Russian Math. Surveys 31, pp. 19–30. Russian original in: Uspekhy Mat. Nauk 31, pp. 18–27.

[420] Schepin, E. V. (1976). Topology of limit spaces of uncountable inverse spectra, Russian Math. Surveys 31,

pp. 155–191.

[421] Schepin, E. V. (1979). On κ-metrizable spaces, Izv. Akad. Nauk SSSR Ser. Mat. 43, 2, pp. 442–478.

[422] Schepin, E. V. (1981). Functors and uncountable powers of compacta, Russian Math. Surveys 36, 3, pp.

1–71. Russian original in: Uspekhi Mat. Nauk 36, 3, pp. 3–62.

[423] Schreier, O. (1925). Abstrakte kontinuerliche Gruppen, Abh. Math. Sem. Univ. Hamburg 4, pp. 15–32.

[424] Semadeni, Z. (1971). Banach spaces of continuous functions, Vol. I, Monografie Matematyczne, 55 (PWN—

Polish Scientific Publishers, Warsaw).
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473, 512

— countable, 110, 111, 163, 172, 175, 235, 261, 302,

336, 339–341, 444, 515, 517, 619, 692, 722

— external, 467, 468

— for a space, 207

— for a topology, 20, 700

— for a uniformity, 86

basis

— algebraic, viii

— free, 410, 413, 415, 452, 470, 503, 509

— of a vector space, 285, 572

— orthonormal, 35

— topological, 503

bijection, 2, 129, 652

Birkhoff–Kakutani theorem, viii, 155, 212, 285, 667

bisequentiality, 217

Bohr

— compactification, 634–637, 641, 650, 655, 658, 660–

662, 694

— topology, vii, 571, 633–636, 641, 644, 645, 648, 657,

659–661, 668, 694

Bouziad theorem, ix
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C
calibre, 526

Cantor

— cube, 221, 311

— discontinuum, generalized, 216, 217, 282

— set, 25, 87, 217, 220, 225, 280, 281, 708

cardinal, 1

— admissible, 672–674

— regular, 51, 53, 54, 254, 316, 317, 321, 323, 335,

338, 351, 442, 486–488, 676, 678

— strongly inaccessible, 351

— strong limit, 667, 673

— Ulam measurable, 351–354, 366, 532, 624, 626, 629,

631

— Ulam non-measurable, 346, 351–354, 370, 371, 374,

378–380, 383, 393, 532, 564, 571, 626, 628–632,

641, 649, 694

— uncountable, 54, 59, 161, 202, 254, 255, 316, 442,

486–488, 532, 676

cardinal invariant, vii, viii, 44, 285–344, 359

Cartesian product, 8, 16, 46, 713

Cauchy

— family, 182, 183, 185, 191

— filter, 181, 184–186, 190, 191, 491

— — open, 183

— — weak, 80

— sequence, 89

Cauchy–Bunyakovski inequality, 590, 593

C-closed space, 230, 665

C-compactness, 666

C-compact subset, 346, 395, 402–406

Čech–Pospı́šil theorem, 225, 298, 444

Čech–Stone compactification, ix, 90–92, 96, 97, 100,

104, 106, 126, 132, 247, 257, 303, 306, 345, 350,

354, 355, 368, 375, 390, 403, 479, 483, 498, 628,

629, 631, 632, 650, 655, 692, 714, 715

Čech-complete

— grasp, 272

— paratopological group, ix, 90, 121, 132

— semitopological group, ix, 122, 123, 132

— space, 111, 230–233, 241–243, 246–249, 268, 272,

340, 341, 667, 723

— topological group, vii, ix, 212, 216, 230–249, 268,

272, 475, 660

Čech-completeness, viii, 90, 149, 216, 217, 247

cellularity, 52–53, 225, 287, 289, 292, 296, 297, 300–

302, 316–322, 338, 344, 353, 370, 371, 378, 393,

510, 553, 554, 565, 727

— countable, viii, 54, 131, 163, 173, 211, 213, 216,

222–224, 258, 282, 285, 287, 289, 303, 311, 316,

321–323, 334, 335, 338, 343, 361–365, 370–373,

378, 379, 382, 384, 392, 407, 424, 455, 523, 524,

526, 531, 533, 537, 539, 550, 563, 565, 569, 593,

657, 678, 690

C-embedding, 346, 347, 349, 646

C∗-embedding, 646

center

— of an operoid, 93

— of a group, 5, 32, 33

chain, 6, 277

character, 29

— of a set in a space, 231, 235, 239, 247, 365

— of a space, 29, 160, 287, 288, 296–298, 442, 538,

658, 707

— — at a point, 29, 159, 352, 452, 708

— on a group, 594, 595, 600, 603, 604, 608, 619, 621,

641, 655, 693

— — discontinuous, 627

— — sequentially continuous, 627

characteristic function, 591

circle, 1, 188

circle group, 7, 15–17, 36, 37, 45, 58, 61, 80, 85, 134,

141, 148, 194, 201, 286, 414, 423, 525, 528, 571,

594, 603–612, 619, 633, 637, 641, 642, 648, 650,

667, 668, 683, 714, 730

coefficient, of a matrix, 3

cofinal sequences, 273

Comfort–Ross theorem, 376, 388, 392

commutative (see Abelian), 3

commutativity, 95

commutator, 11, 18

compact

— closure, 112, 210, 395, 398, 454, 470, 666, 675

— factor, 538, 540, 545

— fiber, 39, 40, 267, 355, 711

— Gδ-set, 697, 719–722, 732

— grasp, 265, 266, 268, 270, 271

— group topology, 619, 620, 690

— G-space, 714, 715

— kernel, 119, 630

— left topological group, 43

— mapping, 355

— metrizable

— — group topology, 60

— — semitopological group, 111

— — space, 109, 126, 159, 217, 219, 267, 342, 442,

482, 486, 487, 504, 511, 676, 697, 704, 706,

717, 722, 724, 726, 727, 731

— — subspace, 158, 473, 629

— — topological group, 46, 61, 158, 267, 341, 377,

542, 619, 624, 632, 725, 729, 730, 732

— neighbourhood, 136

— operoid, 91–93

— paratopological group, 110, 119, 201

— right topological semigroup, 96

— semigroup, 28, 90, 91, 97, 98, 100, 129
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compact (continuation)

— set, 26, 33–36, 57, 79, 111, 114, 115, 117, 120,

122, 139, 140, 160, 194, 196, 201, 212, 231, 232,

234–236, 239, 243, 248, 270, 272, 341, 365, 403,

573–576, 595, 633, 642, 643, 648, 662, 664–666,

694, 719–722

— space, viii, 45, 46, 52, 56, 57, 69, 104, 110, 175,

179–181, 195, 216–222, 224, 225, 228, 230, 231,

238, 241, 254, 264, 270, 271, 280, 282, 306, 307,

350, 354–356, 358, 359, 378, 380, 381, 448, 451–

453, 455, 475, 486, 498, 502–504, 508, 510, 532,

560, 566, 584, 631–633, 662, 667, 678, 697–708,

714–718, 721–723, 725, 726, 731, 732

— subgroup, 24, 26, 39, 74–76, 136, 137, 140, 161,

235, 239, 240, 248, 629, 659

— subsemigroup, 98, 106

— subspace, 17, 34, 157–161, 225, 264–268, 272, 315,

316, 449, 450, 452, 481, 629, 702

— topological group, vii–ix, 15–17, 24, 34–36, 39, 46,

50, 57, 58, 61, 69–71, 80, 119, 134–138, 140, 160,

161, 171, 192, 193, 197–202, 211, 214–217, 222–

230, 246, 248, 271, 285, 286, 294, 365, 374, 375,

381, 384, 443–446, 512, 515, 541, 544, 545, 550,

581–621, 623–634, 666–668, 673, 675, 677, 691–

693, 711–713, 718, 723–732

compactification, 109, 248, 280–282, 303, 340, 344,

350

— homogeneous, 350

— one-point, 13, 28, 228, 277, 298, 340, 347, 455, 498,

666

compactness, 216, 504, 507, 571

complete

— metric, ix, 80, 132, 218, 234, 240, 246, 271, 341,

731

— metric space, 191, 578, 584

— uniformity, 366, 495

— uniform space, 189, 190, 491, 497

completely separated subsets, 347, 348, 646

completion, of a uniform space, 109

completion friendly group, 370–381, 384, 394, 396,

534, 564

complex

— number, 3, 6

— plane, 1, 142

composition

— of mappings, 2, 3, 28, 423, 699

— of subsets, 66

concordant mappings, 483, 484, 489, 513

condensation, 719

conjugate, of a matrix, 34

conjugate topology, 119, 120

connected

— component, 32, 135, 137, 146, 500, 632

— cone, 202

connected (continuation)

— group topology, 670

— neighbourhood, 146

— space, 126, 135, 181, 423, 500

— subset, 32, 135, 612, 613

— topological group, 32, 35–37, 45, 134–137, 141, 146,

160, 181, 202, 211, 417, 422, 500, 549, 612, 613,

619, 659, 673, 689, 713

connectedness, 87, 417, 499, 500, 507, 511, 571, 613

continuity, v, 66

— automatic, 110

— joint, vii, 22, 109, 132

— of an action, 710

— of inverse, 90, 115

— of multiplication, 66, 90

— of operations, 90

— separate, vii, 22, 132

continuous

— action, 697, 706, 708, 723

— automorphism, 525, 660

— bijection, 299, 332, 336, 719

— character, 594, 595, 603, 604, 611, 619, 621, 623,

659, 662, 693–695, 715

— complex-valued function, 588

— factorization, 62, 64, 66

— functional, 578, 579, 581

— homomorphism, viii, 19, 25, 38–43, 45, 48, 61, 71,

84–86, 92, 108, 118, 119, 140, 141, 146, 151, 157,

160, 161, 167, 168, 172, 186–188, 191, 193, 197,

201, 206, 210, 242, 286–288, 294, 296, 301, 312,

315, 329, 330, 343, 374, 410, 413–416, 421–424,

436, 440, 446, 456, 502, 517–520, 523, 525, 530,

535, 538–540, 551–555, 558, 562, 566, 571, 594,

600, 605, 611, 620–626, 630, 633–635, 663, 682,

683, 694, 707

— image, 65, 138, 157, 220, 255, 307, 308, 314–316,

321, 322, 330, 344, 358, 459, 511, 633

— — homomorphic, 161, 289, 290, 303, 307, 314, 315,

329, 330, 536–538, 561

— inverse, 12, 14, 21, 27, 28, 263, 264, 580

— isomorphism, 61, 118–120, 128, 140, 141, 146, 169,

170, 172, 173, 192, 198, 246, 254, 299, 300, 302,

314, 338, 342, 343, 383, 463, 464, 481, 521, 632,

647

— mapping, 12, 13, 17, 21, 62–65, 81, 86, 92, 109, 115,

138, 142, 157, 159, 179, 186, 188, 217–221, 224,

225, 228, 229, 242, 250, 268, 270, 278, 279, 282,

285, 305, 308–310, 314–316, 330, 334, 337, 338,

355, 358, 397, 410, 415, 416, 421–423, 436, 483,

489, 502, 517, 525, 538, 539, 550, 551, 561, 566,

572, 577, 583, 623, 631–633, 645, 662, 665, 691,

697–707, 712, 726, 728–731

— monomorphism, 634

— prenorm, 152, 153, 164
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continuous (continuation)

— pseudometric, 204, 400, 409, 424, 425, 434, 436,

440, 441, 455, 477, 512, 539

— real-valued function, viii, 62–66, 71, 83, 200, 206,

231, 254, 302, 376, 386, 401, 456, 515–526, 530,

532, 538, 543, 546, 550, 555, 558, 562, 582, 588,

590, 594, 599, 600, 717

— selection, 217, 218, 282, 729, 730

Continuum Hypothesis, 131, 133, 230, 264, 281–283,

302, 336, 354, 526, 538, 661, 690, 695

— negation of, 363

convergent

— prefilter, 276, 277

— sequence, 1, 25, 88, 130, 138, 201, 276, 446, 451,

473, 509, 628, 660, 665

— ultrafilter, 106

convex subset, of a vector space, 571–576, 578, 595,

601

core, of a set, 48, 50

coset, of a subgroup in a group, 3, 4, 24, 41, 523, 677

cosmic

— grasp, 266

— paratopological group, 172, 339, 531

— space, 56, 65, 344, 358, 379, 445, 452, 475, 508,

538, 576, 722, 731

— topological group, 315, 316, 336, 445, 446, 519, 521,

537

countable

— compactness, 131, 149, 210, 482

— fan, 507, 509

— ordinal number, 128, 180

— type, at a point, 389

covariant functor, 206, 416, 636, 661

covering, 19

— closed, 19

— cozero, 565

— generating, 471

— locally finite, 134, 150

— open, 19, 131, 134, 149, 258, 440

— point-finite, 150

— σ-locally finite, 461

— star-finite, 135

cozero-set, 354, 528, 533, 565

Cp-theory, 89

cross-complementary sets, 265, 283

cross topology, 15, 39

cwp-point, 359

cyclic

— group, 2, 36, 60, 191, 201, 605–607, 611, 618, 620,

657, 674, 689

— — of order n, 3

— subgroup, 5, 7, 25, 146, 604, 619, 621

D
degree of non-compactness, 622, 623

Δ-lemma, 53

Δ-system, 53, 88

δ-tightness, 48, 50, 61, 88, 225, 315, 316, 377

dense

— subfield, 146, 147

— subgroup, of a group, 17, 18, 25, 36, 37, 42, 55, 59–

61, 79, 80, 82, 86, 146, 163, 171, 172, 185–187,

191, 195, 196, 225, 230, 249, 254, 267, 286, 292,

295, 361, 362, 365, 522, 526, 531, 532, 534, 536,

537, 550, 555, 619, 621, 627, 633–635, 663, 673

— suboperoid, 92

— subset

— — of a group, 18, 25, 34, 36, 59, 119, 195, 198, 207,

224, 225, 230, 364, 633, 641, 642, 660, 677,

684, 685

— — of a space, 29, 36, 55, 64–66, 89, 104, 120,

128, 194, 231, 260, 347–349, 358–363, 536–

538, 548, 555, 676, 678, 706, 714, 715

density, 296–298, 505, 658, 660, 661, 727

— hereditary, 52

derived subgroup, 416

determinant, of a matrix, 3, 18, 34

diagonal, 60, 66, 73, 309, 310, 337, 342, 346, 400, 498

— of a family

— — of mappings, 47

— — of topologies, 47, 48

— of type Gδ , viii, 346

— second, 295

diagonal product

— of actions, 714

— of homomorphisms, 295, 633, 678

— of mappings, 81, 551, 702, 704, 717

Dieudonné

— complete

— — paratopological group, 384, 395

— — space, 231, 366, 368–370, 390, 394, 395, 398,

454, 470, 477, 490, 492, 495, 497–499, 715

— — topological group, 145, 151, 181, 201, 212, 366,

369, 373, 374, 390, 398, 556, 562

— completeness, 367, 368, 505, 507, 666

— completion, viii, 132, 231, 345, 346, 366–368, 372,

374, 378, 380, 391, 407, 477, 479, 481, 497, 532–

534, 537, 570

— extension, minimal, 367, 368, 379, 383

dimension, 212, 619

— covering, 460–464, 565–570, 616, 617, 619

— large inductive, 461, 462, 569

— of a vector space, 572

— small inductive, 460, 461, 565–570

direct

— limit, of spaces, 446, 512
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direct (continuation)

— limit property, 446–453, 473, 475, 476, 482–490, 497

— sum of groups, 36, 61, 261, 320, 617–620, 637, 638,

657, 660, 662, 675, 679

discerner

— coopen, 337

— Hausdorff, 336, 337

— open, 337

— topological, 337

discerning family, 336

disconnected

— space, 146, 422, 500

— topological group, 37

discrete

— cellularity number, 290, 353, 480, 505

— family of sets, 31, 128, 170, 192, 193, 258, 290, 331,

333, 352, 480, 531, 532, 538, 652

— field, 216, 255, 259

— grasp, 271, 272

— group, 14, 16, 38, 80, 96–106, 132, 134, 138, 139,

145, 163, 164, 193, 199, 254–259, 315, 328, 387,

509, 520, 531, 562, 604–616, 619, 621, 633–637,

640, 641, 644–650, 652, 654–662, 677, 678, 693,

714, 715

— monoid, 100

— operoid, 92–96, 98, 99

— semigroup, 91, 93, 95

— space, ix, 14, 17, 28, 91, 191, 193, 202, 228, 257,

263, 264, 298, 347, 353, 354, 406, 411, 423, 452,

455, 469, 471, 472, 475, 498, 628, 650, 714, 731

— subgroup, vii, 30, 31, 33, 79, 141, 172, 201, 301, 509

— subspace, 30, 130, 160, 199, 200, 225, 229, 230, 271,

272, 316, 475, 629, 655, 661

— topology, 13, 14, 19, 22, 26, 91, 107, 234, 246, 252,

287, 320, 321, 411, 538, 568, 604, 605, 617, 619,

635, 712, 713

divisor of zero, 146

dominating family, 442

double coset space, 74, 76, 79

D-space, 661

duality theory, 85

dual group, 605–621, 623, 641, 661, 677

Dugundji space, 697–708, 716, 718–722, 731–732

dyadicity, vii, 697, 718, 719

dyadicity index, 282

dyadic compactum, 138, 212, 216, 217, 222, 225, 229,

282, 317, 631, 632, 662, 698, 708, 718, 722, 724,

726, 731, 732

E
ed-point, 351

Efimov

— space, 52, 53, 60, 311, 313, 314, 343, 455

— theorem, 61

element

— invertible, 2

— neutral, 16

— of finite order, 5

— torsion, 5

elementary compact group, 607, 608

Ellis theorem, 90, 97

enjoyably embedded subspace, 509

entourage, of the diagonal, 66

— open, 66

— symmetric, 66

envelope, of a set, 600

equivalence relation, 499, 502, 561, 708

equivariant

— embedding, 714, 715

— mapping, 712

Euclidean

— plane, 25, 37, 180, 181, 501, 730

— space, 15, 36, 451, 711

— topology, 15, 18, 25, 130

evaluation mapping, 81, 89, 605–607, 609, 610, 620,

623, 661

exponent, of a group, 618, 675, 677, 679, 680, 683, 690,

696

extension

— operator, 211

— theorem, of Urysohn, 347

extension, of a group, 158, 445, 446, 512, 663

extent, of a space, 297, 339, 342, 526, 535, 549, 658,

659

extremally disconnected

— paratopological group, 108, 109, 362

— quasitopological group, 107, 256–258, 264

— semitopological group, 105, 361

— skew field, 216, 259

— space, 100–104, 255, 260, 263, 264, 345, 351–356,

358, 359, 715, 728

— topological group, vii, x, 107, 200, 201, 215, 216,

255–259, 264, 283, 354, 365, 371, 423, 660

— topology, 105, 263

extremal disconnectedness, 216, 283, 346, 347, 351

extreme

— point, 574–576, 595

— subset, 574, 575

F
factorization theorem, 62, 89, 515, 521, 539

— of Mardešić, 565, 566

family

— almost disjoint, 404

— locally finite, 120, 389

— n-linked, 316

— star-finite, 134

— uniformly bounded, 582

— uniformly continuous, 582–583
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feathered

— semitopological group, 338

— space, 247, 248, 283

— topological group, vii, viii, 212, 216, 230, 235–242,

248, 270, 272, 326–328, 346, 384, 388, 390–392,

395, 443–445, 475, 633, 714

featheriness, 216, 217

feebly compact space, 120

fiber, of a mapping, 39, 41, 74, 278, 665

— locally compact, 151

field, 7, 142, 146, 292, 576, 673

— of 3-adic numbers, 146

— of the complex numbers, 15, 292, 580

— of the rational numbers, 130

— of the real numbers, 292, 576

— skew, 7, 8, 141, 142

field topology, 60, 142

Filippov theorem, 272

filter, 20, 181

— canonical, 182–185, 191

— open, 181, 182, 185, 191

filter base, 106, 181

— open, 181–183, 191

fine group, 80, 254, 342

finite

— basis, 572

— bounded subset, 648, 663, 666

— compact subset, 160, 264, 642, 643, 648

— covering, 565

— exponent, 680, 683

— group, 31, 36, 134, 191, 193, 199, 230, 253, 258,

413, 604–607, 611, 614, 617, 621, 660, 668, 674,

679, 685, 686, 693, 714, 730

— linear combination, 575, 600

— orbit, 728, 729

— order, 25, 613, 618, 637

— partition, 107, 625

— power, 482

— product, 168, 301, 608, 611, 618, 636

— subgroup, 11, 31, 36, 160, 201, 663

— subset, 11, 193, 194, 200, 201, 293, 356–359, 364,

575, 583–585, 608, 616

— sums, 108

— support, 558

first-countable

— left topological group, 341

— orbit, 714

— paratopological group, 119, 159, 163, 170, 172, 173,

201, 248, 249, 301, 302, 336–343, 361, 395, 531,

532

— quasitopological group, 280

— semigroup, 119, 130, 133

— semitopological group, 128, 164, 249, 341–343

first-countable (continuation)

— space, 29, 44, 48–52, 56, 57, 65, 140, 150, 157, 158,

180, 217, 225, 228, 229, 272–282, 298, 301, 326,

328, 338, 342, 346, 347, 357–359, 384, 389, 475,

497, 498, 507, 510, 540, 624, 631, 663, 714, 715,

722, 724, 728, 731

— subgroup, 30

— subspace, 59, 158, 161, 665

— topological group, viii, 139, 155, 157, 160, 163, 180,

230, 277, 280, 285, 420, 443, 624, 667

first category set, 110

fixed point

— of an action, 709, 714, 715

— of a mapping, 109, 257

Fréchet–Urysohn

— fan, 276, 280, 466, 467

— property, 48, 216, 217, 275, 276, 279, 510

— space, x, 48, 56, 57, 59, 276, 279, 280, 365, 473, 666

— topological group, 57–61, 193, 217, 280–282, 295,

383, 509, 674, 691

— topology, 61

Franklin–Mrówka space, 404, 666

free

— group, 409–413, 673, 689

— — Abelian, 320, 410, 414, 423, 431, 432, 441, 568,

604, 620, 671, 688–691, 695, 696

— paratopological group

— — Hausdorff, 423

— — Tychonoff, 423, 453, 455, 456, 499

— precompact group, 422

— — Abelian, 422, 423

— sequence, 633, 692

— topological group, vii, viii, 81, 88, 409–514, 525,

526, 531, 537, 538

— — Abelian, 410–513, 525, 526, 537, 657, 666

— — Graev, 421, 422, 440

— topological product, 161

— ultrafilter, 95, 98, 102, 106, 108, 131, 264, 351, 532,

625, 627, 629

— — selective, 453

— uniform group, 440, 513

— — Abelian, 440, 497

Frolı́k theorem, 255

Fσ -set, 447

Fubini theorem, 589

function

— bicontinuous, 119

— bounded, 83, 152, 177, 206, 211, 254, 631, 722

— complex-valued, 581, 588, 589, 594, 596–598

— constant, 585, 603

— depends only on a set, 62

— depends on an index, 62

— depends on countably many coordinates, 62, 625

— non-negative, 599, 600
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function (continuation)

— positive definite, 594, 597–600, 603

— real-valued, 8, 119, 151, 152, 154, 177, 211, 474,

525, 581, 588, 599, 631

— sequentially continuous, 631

— symmetric, 599, 600

— uniformly continuous, 66, 71, 79, 152, 254, 376, 401,

525, 526, 582, 587

G
Gδ-closed

— mapping, 268, 269, 283

— subgroup, 371, 534

— subset, 268, 366

Gδ-closure, 349, 354, 362, 374, 375, 377, 391–393,

533, 641

Gδ-dense

— set, 57, 125, 198, 370, 402, 405, 479, 673

— subgroup, 198, 202, 370, 373–377, 385, 394, 479,

533–535, 563, 674, 689

— subspace, 340, 347–350, 375, 391–393, 667

Gδ-modification

— of a group, 192, 255, 322, 560

— of a space, 255, 354

— of a topology, 283

Gδ-point, 341, 371, 382

Gδ-preserving

— paratopological group, 455

— space, 51–53, 88, 325

— topological group, 61, 325

Gδ-set, 48–53, 57, 60, 120, 125, 139, 140, 157, 161,

169, 170, 172, 192, 198, 216, 225, 230, 248, 249,

253, 268, 295, 296, 311, 324–326, 337, 341, 346,

349–351, 354, 357, 360, 362, 375, 406, 475, 725

— canonical, 49

Gδ-tightness, 48–52, 61, 88, 225, 315, 323, 325–328,

376

Gel’fand–Mazur theorem, 576, 692

Generalized Continuum Hypothesis, 673, 690, 696

general linear group, 3, 15, 18, 35, 45, 79, 146, 159, 711

Glicksberg theorem, 62, 481, 489

G-orbit, 103

Graev

— extension of pseudometrics, 431, 440, 441, 456–458,

490, 511

— theorem, 425

graph, 441

— of a mapping, 243

grasp, on a group, 265, 272, 283

— locally compact, 271, 272

group, 1, 2

— algebraically orderable, 280

— Boolean, 17, 58, 59, 107, 108, 125, 132, 252, 256,

257, 261, 263, 660, 664

group (continuation)

— bounded torsion, 618, 621, 638, 642, 669, 672–674,

679, 695

— divisible, 6, 45, 207, 613, 620, 652, 673, 690, 695

— finitely generated, 607, 611, 614, 616, 621, 643, 674

— multiplicative, 1, 8, 11, 15

— non-torsion, 671, 676, 684–686, 688, 689, 691

— of a-adic integers, 12, 25

— of a-adic numbers, 12, 25

— of p-adic integers, 202, 610, 620

— of p-adic numbers, 26

— of r-adic integers, 10, 11, 24, 146

— of r-adic numbers, 7, 10, 12, 24, 25, 142

— of automorphisms, 5, 18, 660

— of homeomorphisms, ix, 173–176, 179–181, 213,

721, 722

— of isometries, ix, 134, 173–177, 180, 181, 191, 192,

213, 716

— of permutations, 3, 714

— of quaternions, 7

— — additive, 8, 15

— — multiplicative, 8, 11

— of quaternion units, 8

— of the complex numbers, 36, 61

— of the integers, 26, 36, 66, 93, 98, 119, 134, 192,

234, 238, 280, 323, 345, 503, 604–606, 621, 641,

653, 654, 661, 662, 714

— of the rationals, 36, 61, 138, 238, 249, 414, 640, 648,

715

— of the reals, 25, 36, 45, 61, 70, 81, 83, 85, 130, 134,

138, 141, 142, 146–148, 238, 264, 272, 281, 286,

345, 424, 444, 604, 610, 620, 648, 661, 683, 714,

730

— of transformations, 732

— quasicyclic, 610, 648

— quotient, 4, 38, 40, 474, 614, 636, 637

— reduced, 690

— with square roots, 255, 258

groupy space, 363–365, 376, 377, 384

G-shift, 124

G-space, 710–715, 723, 724

Gτ -set, 52, 310, 313, 557, 558

g-tightness, 360–362, 365, 371, 373, 378, 383, 384, 407

Guran theorem, 286

H
Haar measure, 590–593, 692

Hahn–Banach theorem, 573, 579, 692

Hamel basis, 130, 131

Hartman–Mycielski’s construction, 134, 215

Hausdorff

— gap, 466

— monoid, 20

— paratopological group, 110, 111, 116, 302

— semitopological group, 20
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Hausdorff (continuation)

— space, 14, 45, 101, 109, 110, 216–218, 220–222

— topological group, 16, 22, 47

— topology, vii, 13, 24, 26, 46, 47, 60, 106, 203, 252

Haydon spectrum, 706

H-equivalence, 511

H-equivalent spaces, 508, 510, 511

Hewitt–Marczewski–Pondiczery theorem, 299, 727

Hewitt–Nachbin

— complete

— — space, 82, 83, 375, 533

— — subgroup, 371

— — topological group, 83, 373, 383, 640

— completeness, 149, 367

— completion, 345, 346, 366, 369, 370, 375, 378, 380,

384, 406, 407, 532, 533, 556, 564

— extension, minimal, 367, 368

Hilbert cube, 109

homeomorphic spaces, 255, 281, 662

homeomorphism, 17, 19, 20, 38, 47, 82, 103, 114, 201,

245, 255, 257, 273, 350, 457, 571, 631, 632, 710,

714, 730, 731

— local, 730

— orientation-preserving, 714

homogeneity, 346, 348

homogeneous

— semigroup, 20

— space, ix, 20, 36, 37, 45, 101–103, 109, 128, 129,

132, 174, 176, 178–180, 225, 229, 263, 273, 282,

342, 348, 349, 359, 363, 366, 389, 390, 395, 576,

721, 722

— topology, 20, 132, 157

homomorphism

— factorizes a function, 517

— locally perfect, 151

— nearly open, 245, 246, 707

— of groups, 6, 7, 108

— of linear spaces, 578

— of operoids, 92

— of semigroups, 4

— open, 38, 40–43, 61, 119, 141, 157, 160, 161, 206,

216, 245, 246, 250, 253, 312, 374, 415, 416, 423,

523, 540, 551–555, 611, 622, 623, 630, 635

— perfect, 117, 216

— quotient, 43, 192, 197, 558

— sequentially continuous, 571, 624, 626, 630, 631

— — strongly, 628, 629

— unconditionally continuous, 682, 688

— uniformly continuous, 71, 214

homotopic mappings, 502

homotopy, 502

homotopy class, 502, 503

I
ideal, 96, 147

ideal (continuation)

— left, 95, 96

— — minimal, 96, 97, 108

— right, 95, 96

— — minimal, 97, 108

— two-sided, 96

idempotent, 132

— in a semigroup, 4, 90, 97, 98, 100, 101, 104, 105,

108, 109

— of an operoid, 97, 98

— of a monoid, 102

identity element, 1

— of an operoid, 91

— of a group, 1

— of a semigroup, 1, 12

independent subset, of a group, 499, 615, 616, 637–640,

649, 650, 654, 661, 665

index of narrowness, 297–301, 319, 532, 658

integer, 1, 2, 132

— a-adic, 12

— composite, 26

— non-negative, 1

— p-adic, 202, 610

— prime power, 146

— r-adic, 10, 11, 24, 146

interior, of a set, 116, 253, 275

invariance number, 164, 167–169, 195, 287, 288, 302

invariant

— integral, 581, 586–593, 692

— metric, 25, 80, 156, 159, 160, 212, 456, 659

— prenorm, 427

— pseudometric, 204, 212, 424, 425, 429, 440, 511

— set, 69, 153

— subgroup, 3, 10, 11, 24, 41–43, 137, 158, 181, 207,

709

— topology, 436

inverse

— fiber property, 665

— mapping, 13, 28, 29, 110, 114, 115, 264

— spectrum, 217, 225, 697, 699–703, 705, 706, 713,

714, 732

inversion, in a group, 2

irrational

— numbers, 25, 119

— winding, 141

irreducible representation, 571, 693

isolated point, 100–105, 109, 230, 254, 323, 352, 365,

422, 455, 473

isometry, 17, 173, 176, 717

isomorphism, 4, 103, 104, 201, 606, 610

— discontinuous, 60

— nearly open, 246

— strongly sequentially continuous, 571, 628

— topological, 187

SUBJECT INDEX



769

isomorphism theorem

— first, 41

— second, 43

— third, 43

Ivanovskij–Kuz’minov theorem, vii, 217, 222, 225

i-weight, 299, 308

J
join, of topologies, 47, 60, 61, 172

K
κ-tightness, 362, 378

kernel, of a homomorphism, 4, 40, 41, 119

— locally compact, 151

k-group, 325, 326, 328, 549

Knaster property, 316, 317, 319

kω-decomposition, 446, 447, 452, 507, 510

kω-space, 446–452, 469, 472, 482, 490, 507–510, 512,

513

Korovin

— mapping, 124, 125

— orbit, 124, 125, 127, 128

Krein–Milman theorem, 571, 575, 692

kR-space, 474, 715

k-space, 115, 149, 325, 362, 371, 452, 465–467, 469–

475, 510, 512, 513

Kuratowski theorem, 268

L
Lebesgue measure, 203

left

— Cauchy

— — filter, 192

— — sequence, 322

— coset, 3, 37, 38, 709

— coset space, 38, 75, 397, 550, 710, 712, 719

— group uniformity, 68, 76, 79, 150, 152, 400, 401,

452, 476, 498

— ideal, 96

— identity, 91

— induced uniformity, 68

— tail, 98

— topological group, 12, 19, 26–28, 37–43, 102–106,

109, 128, 193, 198, 210, 286, 337, 341, 360–362,

365, 525, 540, 689

— — locally compact, 198

— topological semigroup, 12, 13, 18, 100

— uniformly

— — continuous function, 70, 80, 154, 177

— — Tychonoff semitopological group, 154, 177

— — Tychonoff topological group, 177

left-invariant

— metric, 155, 160, 167, 176, 180, 212

— pseudometric, 160, 165

— topology, 157, 550

left-precompact set, 201

Lie group, 87, 692

limit

— point, of a sequence, 1, 130, 276, 473, 507, 509

— projection, 700–703, 713, 714

— space, of a spectrum, 699–703, 705, 713

Lindelöf

— grasp, 271

— number, 287, 294, 296–301, 304, 310, 311, 353, 518,

551, 552, 659

— — weak, 299, 523

— paratopological group, 172, 296, 302, 338, 339, 343,

520, 526, 560

— P-group, 250, 252, 254, 255, 295, 322, 333, 336,

372, 526, 539, 549, 552, 554, 557, 564, 667

— p-group, 315

— property, 149

— P-space, 216, 251, 253, 254, 283, 332, 489, 508

— p-space, 308, 315, 722

— quasitopological group, 31, 255, 258

— semitopological group, 302

— Σ-group, 303, 307, 311, 313–317, 322, 328–330,

334, 336, 344, 384, 521, 522, 531, 532, 536–538,

548–550

— — strong, 315

— Σ-space, 303–308, 315, 334, 335, 339, 340, 343,

344, 522, 526, 531

— space, 54, 135, 172, 230, 248, 250–254, 268–271,

296, 297, 300, 323, 336, 343, 353, 372, 376, 377,

442, 507, 510, 511, 551, 557, 633, 661, 723

— subgroup, 254, 311, 315, 386

— subspace, 250, 268, 269, 292, 344, 372, 519

— topological group, 87, 145, 163, 212, 213, 248, 250,

254, 255, 286, 287, 294–296, 301, 322, 328, 335,

372, 376, 377, 384, 386, 420, 423, 510, 515, 519,

522, 526, 527, 547, 549, 551, 552, 556, 558, 562,

564, 570, 633, 667, 713, 722

— topology, 423

linear

— functional, 573, 574, 578, 579, 581, 692

— group topology, 261–263, 660

— mapping, 578, 583

— order, 128

— space, over a field, 576

— topological space, v

local

— base, at a point, 69

— compactness, 149, 507

— connectedness, 619

M
mad family, 404

Mal’tsev

— operation, 344

— space, 315, 321, 344, 525
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Malykhin theorem, 255

mapping

— ℵ0-continuous, 627, 629, 630

— bonding, 700, 703, 705, 714

— canonical, 37, 38, 42, 46

— closed, 39, 40, 159, 250, 251, 254, 270, 278, 279,

315, 316, 459, 473, 483, 484, 489, 630, 707, 728

— compact, 355

— compact-covering, 270, 271

— connecting, 221, 700–702, 713

— constant, 28, 503

— equivariant, 712

— factorizes through, 62

— finite-to-one, 728

— gentle, 460–462

— G-equivariant, 712–714

— identity, 5, 107, 636

— injective, 409

— inverse, 13, 28, 628, 708

— jointly continuous, 13

— k-covering, 270

— left uniformly continuous, 70

— Lindelöf-covering, 271

— locally

— — closed, 707

— — closed, at a point, 706

— — constant, 217

— — perfect, 270, 271

— lower semicontinuous, 217–220

— nearly continuous, 243

— nearly open, 243, 245, 697, 706, 707, 716

— one-to-one, 3, 4, 17, 27–29, 81, 98, 103, 125, 183,

221, 301, 331, 337, 338, 397, 460–462, 620, 623,

628, 631, 632, 691, 714, 731

— open, 21, 37, 41, 42, 44, 64, 74, 75, 157, 218, 219,

224, 242, 266, 270, 271, 316, 355, 358, 418, 467,

630, 704–708, 710, 711, 719, 728, 731

— perfect, 39, 75, 147–149, 217, 247, 264, 266, 267,

305, 308, 338, 365, 418, 708, 711

— quasicontinuous, strongly, 111

— quotient, 38–40, 60, 62, 74, 75, 77, 79, 221, 270,

271, 397, 398, 400, 405, 415, 416, 452, 463, 473,

489, 513, 572, 633, 712

— right uniformly continuous, 70

— R-quotient, 423, 452, 631, 632

— separately continuous, 111

— sequentially continuous, 624, 625, 627–631

— — strongly, 627–630

— superopen, 444

— surjective, 94, 698, 700–702

— uniformly continuous, 70, 72, 77–79, 89, 440

— with closed graph, 243

— with metrizable kernel, 704, 705

— 0-soft, 697–699, 703, 704, 708, 732

mapping (continuation)

— z-closed, 489

Mardešić factorization theorem, 565, 566

Markov theorem, 81–84, 89

Martin’s Axiom, 90, 107, 128, 131, 217, 230, 281, 282,

285, 363, 365, 378, 675, 677–683, 685–691

matrix, 3

— diagonal, 35, 45

— invertible, 11, 15, 34, 711

— orthogonal, 18

— triangular, 18

matrix multiplication, 3, 15

maximal

— almost disjoint family, 404

— chain, 98

— element, 7

— group topology, 264

— — with invariant basis, 435, 436

— invariant pseudometric, 440

— precompact topology, 634

— space, 259–261

— topological group, 216, 261, 264

— topology, 90, 101, 106, 132, 263

— uniformity, 366

meager subset, 232

measure

— countably additive, 351

— two-valued, 351

M-equivalence, 499, 500, 507, 510, 514

M-equivalent spaces, 499–503, 506, 507, 510, 511, 514

meshing filter bases, 183

metacompact

— space, 150

— topological group, 150

metric, 17, 89, 173, 176, 202, 204, 593

— complete, 132

— — cofinally, 80

— invariant, 80

— non-archimedian, 25

— of uniform convergence, 177, 590

— right-invariant, 155, 176, 180

metric space, ix, 17, 88, 89, 173–177, 180, 181, 191–

193, 456–458, 525, 583, 593, 716

metrizability, viii, 157–159, 202, 207, 217, 273, 285,

504, 507

metrizable

— element, 674, 690

— fiber, 160, 708

— grasp, 265, 272

— group topology, 88

— kernel, 161, 446

— orbit, 724, 728, 730, 731

— paratopological group, 119, 159–161, 170, 176, 343,

531
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metrizable (continuation)

— semitopological group, 132, 338

— space, 47, 56, 109, 130, 157, 158, 218, 239, 240,

248, 276, 337, 338, 358, 365, 456, 460, 461, 465,

467–469, 472–475, 481, 497, 498, 513, 539, 575,

632, 633, 660, 719, 721–723, 730, 731

— subgroup, 46, 158, 160, 161, 189, 271, 278–281,

377, 445, 509

— subspace, 86, 157–159, 161, 267, 271, 272, 294, 377,

460, 512, 666

— topological group, viii, 57, 58, 61, 80, 119, 155–157,

161, 164, 167, 169, 170, 172, 181, 189, 192, 193,

201, 207, 213, 216, 217, 224, 225, 228–230, 234,

235, 265, 271–277, 280–282, 296, 314, 315, 322,

328, 336, 341, 373, 374, 383–385, 443, 446, 464,

512, 515, 525, 545, 565, 612, 620, 633, 659, 661,

691, 693, 707, 714

— topology, 47, 157, 161, 248, 441, 456, 458

metrization, 151

m-factorizability, 538–540, 570

Michael theorem

— on kR-spaces, 474

— on paracompactness, 269

— on selections, 217–219, 223, 225

modulus, of a complex number, 3

monoid, 2, 4, 20, 60

— non-commutative, 8

monoidal topology, 60

monomorphism, 105

Moore space, 131, 343

Moscow

— paratopological group, 374

— space, 345–351, 353–366, 368, 370, 377, 378, 382–

384, 387, 388, 395, 407, 475, 562, 674

— topological group, viii, 345, 346, 359, 360, 362, 365–

371, 374, 378, 380, 382–392, 396, 408, 498, 531,

562–565, 715

Motorov theorem, 225

multiplication, 1, 18, 21

— associative, 1, 93

— coordinatewise, 15

— jointly continuous, ix, 21, 23, 25, 91, 109–111

— of matrices, 3

— of ultrafilters, 90

— quasicontinuous, 121

— separately continuous, ix, 87

multiplication mapping, ix, 12, 13, 79, 484, 489

multiplicative notation, 1

μ-space, 470, 471

N
Nagami number, 303–314, 318, 319, 323, 329, 334,

338, 344

natural numbers, 28, 95, 131

N-ball, 152

NCω-space, 488, 489

NC-space, 482–490, 505, 513

neighbourhood assignment, 661

nest, 278

network, 50–53, 170, 207, 224, 248, 301, 302, 458

— countable, 35, 56

network weight, 272, 296, 299–301, 304, 308–313, 329,

330, 332, 419, 505, 558, 576, 661, 725–729

— countable, 272, 300

Nielsen theorem, 620, 689

Niemytzki plane, 25, 52, 82, 332, 336

non-discrete

— group topology, vii, 13, 24, 32, 46, 88, 192, 261–263,

668, 690

— paratopological group, 106, 108

— quasitopological group, 107

— space, 352, 366, 420, 472, 497, 498

— subgroup, 264

— topological group, x, 101, 107, 140, 160, 172, 216,

230, 249, 254, 255, 259, 264, 297, 314, 342, 354,

373, 387, 552, 712

— topologization, 19, 32

— topology, 106, 264

non-isolated point, 347, 405, 463, 466–470, 473–475

non-metrizable

— paratopological group, 170

— semigroup, 130

— space, 180, 225, 575, 666, 726, 731

— subgroup, 57, 225

— topological group, x, 58, 59, 216, 226, 229, 230, 281,

315, 620, 632

non-PT -group, 383

non-trivial

— character, 609, 627, 659, 715

— convergent sequence, 160, 230, 365, 455, 624, 676,

680, 686, 690

— topologization, 19

norm

— on a group, 151

— on a vector space, 292, 577

norm topology, 577

normal

— form, of a word, 410, 431, 432

— space, 87, 135, 150, 174, 229, 280, 282, 322, 340,

385, 423, 445, 463, 475, 482, 483, 486, 487, 511,

571, 632, 633, 691, 723

— subgroup, 3, 661

— topological group, 81, 87, 150, 212, 423, 424, 657,

662, 691

— topology, 423

“normal”, 3

normality, 81

nowhere dense

— set, 116, 260
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nowhere dense (continuation)

— subgroup, 45

— subspace, 141

NSS-group, 138, 139, 212, 293, 474

number

— a-adic, 12

— cardinal, 1

— compact-covering, 296, 298, 300

— ordinal, 1

— p-adic, 26, 143

— prime, 1, 8, 26, 60, 201, 202

— r-adic, 7, 87, 143, 146

— real, 3, 6, 13, 14, 45

Nummela–Pestov theorem, 476

O
ω-assignment, weak, 273, 274

ω-box topology, 59, 60, 252, 333, 526

ω-cellular space, 52, 314

ω-cube, 48, 49, 59, 357

— elementary, 49, 50

ω-deep subset, 360

ω-narrow

— group topology, 172, 565

— left semitopological group, 117, 162

— paratopological group, 163, 170, 172, 173, 294–296,

342, 343, 561

— quasitopological group, 128, 162

— right semitopological group, 117

— semitopological group, 117, 302

— subset, 296

— topological group, vii, 118, 134, 162–173, 180, 191–

196, 199, 201, 213, 234, 246–250, 253, 254, 286–

301, 320, 322, 339, 343, 371, 373, 374, 376, 384,

386, 387, 407, 446, 480, 518, 519, 525–528, 530–

535, 538, 549–553, 556, 560, 561, 563–565, 568,

660, 697, 708, 715–719, 721, 722

ω-narrowness, 202, 388, 518, 531

operation

— associative, 90

— binary, 1, 2, 7, 25, 90, 91

— continuous, 25

— discontinuous, 13

— inverse, 27, 107, 109–111, 113–116, 580

— of composition, 3, 5

— pointwise, 8, 81

operoid, 91, 132

— left topological, 91

— right topological, 91

— semitopological, 91

— topological, 91

orbit, 124, 174, 176, 708, 711–716, 724, 727–730

— of an element, 103, 124

— under a shift, 124

order, of an element, 5, 25, 612, 613, 637–639, 642

order topology, 180, 231, 277, 323, 350, 405, 441, 482

ordinal, 1, 488, 679, 703

— limit, 227, 442, 488, 526, 699, 702, 714

— non-limit, 350

— of uncountable cofinality, 482

— successor, 487, 488

ordinal space, 405, 441, 482, 487, 665, 666

o-tightness, 88, 323–328, 343, 346, 354, 356–358, 361–

365, 384, 388, 392, 455, 475, 549, 564, 565

— countable, 362, 363, 371

P
paracompact

— paratopological group, 151, 343

— p-space, 247, 272, 338, 339, 475, 476, 723

— semitopological group, 338

— σ-space, 459–462, 464, 505, 507

— space, 87, 130, 134, 150, 241, 242, 247, 248, 268,

269, 372, 423, 458, 460–462, 475, 497, 508, 723

— topological group, 87, 150, 191, 212, 240, 241, 248,

268–269, 295–296, 373, 423, 445, 460, 464, 473–

475, 525, 526

paracompactness, 149, 216, 217, 424, 462

— strong, 134, 212

paratopological group, vii–ix, 12–14, 18, 21, 25, 30,

34–36, 45, 46, 90, 109–121, 127, 132, 133, 175,

201, 202, 210, 225, 248, 254, 264, 273, 274, 281,

285, 302, 316, 338, 343, 361–365, 384, 405, 406,

446, 526, 530, 550, 569, 722

— bisequential, 336

— completely

— — metrizable, 132

— — regular, 26, 172, 549

— countably compact, 119–121, 128

— hereditarily

— — Lindelöf, 301

— — separable, 301

— locally

— — compact, 113–116

— — metacompact, 151

— — normal, 151

— — paracompact, 151

— — pseudocompact, 128

— ω-stable, 455

— pointwise canonically weakly pseudocompact, 365

— pointwise pseudocompact, 395

— quotient, 538

— R1-factorizable, 519, 520, 525, 531, 538, 550

— R2-factorizable, 519, 538, 550

— R3-factorizable, 519, 526, 531, 535, 538, 550, 561

— saturated, 342, 343

— sequentially compact, 127

— strongly zero-dimensional, 569

— symmetrizable, 275

— τ-cellular, 338
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paratopological group (continuation)

— 2-pseudocompact, 119, 120

— weakly first-countable, 274

paratopological group topology, 60, 302

p-compactness, 131

perfect κ-normality, 347

permutation, 181, 424

permutation group, 3, 710

Peter–Weyl theorem, 571, 693

�-grasp, 265

P-group, vii, 216, 249–255, 269, 333, 354, 386, 387,

512, 531, 538, 550–561

p-homogeneity, 214

π-base, 280, 302, 314, 336, 342, 343

π-character, 296–298, 337, 338, 341

π-network, 122, 336

π-weight, 296, 298

point

— of extremal disconnectedness, 351

— of pseudocompactness, 388–390

— p-limit, 131

pointwise countable type, 339, 340

polynomial, of n variables, 8

Pontryagin–van Kampen duality

— theorem, 605, 606

— theory, vii, 84, 89, 571, 600, 604, 610, 611, 693, 694

P-point, 351

p-rank, 285, 637, 638, 661, 690

precalibre, 316, 317, 322, 364, 378

precompact

— kernel, 197

— left topological group, 193, 198

— paratopological group, 119, 128, 201, 202, 525

— right topological group, 193

— semitopological group, 118, 193

— set, 193–196, 200–202, 281, 283, 395, 396, 405, 453,

454

— subgroup, 294, 388

— topological group, 118, 134, 191, 193–202, 210, 211,

214, 224, 246, 248, 253, 281, 286, 297, 315, 327,

336, 360, 363, 371, 374, 375, 378, 384, 417, 422,

423, 523, 526, 549, 560, 564, 603, 631, 633–636,

644, 661–664, 690, 691

— topological group topology, 202, 571, 634, 668, 691

— uniformity, 109

— uniform space, 214

prefilter, 20, 21, 30, 276

— open, 276, 277

prenorm, 134, 151–153, 166, 212, 630

— sequentially continuous, 630

primary component, 638, 672, 677, 683

product

— of G-spaces, 712, 713

— of groups, 636

product (continuation)

— of left topological groups, 286

— of mappings, 16, 266, 269, 270, 712

— of paratopological groups, 294, 361, 363, 364, 531,

535, 561

— of quasitopological groups, 294

— of semitopological groups, 294

— of spaces, 55, 56, 64–66, 88, 126, 251, 265, 269,

316, 328, 334, 355–359, 363–365, 376, 378, 392,

537, 675, 676, 697, 698, 700, 702, 706, 712

— of topological groups, vii, 16, 147, 156, 168, 189,

190, 192, 196–199, 236, 264, 287, 289, 293–295,

330, 334, 344, 378, 522, 526, 534, 535, 537, 538,

558, 559, 561, 617–620, 624, 627, 630, 631, 667,

690, 691

— of uniform spaces, 72

product topology, 12, 15, 16

productive class of spaces, 356, 362, 364

projection, orbital, 709–711, 729–731

projection mapping, 49, 59, 62–66, 118, 125, 126, 219,

234, 251, 268, 293, 313, 329, 330, 334, 624, 676,

700–702, 704, 706

property

— A-invariant, 499, 504, 505

— countably additive, 507

— hereditary, 507

— H-invariant, 508, 511

— invariant under intersections, 366

— Lindelöf, 662

— M-invariant, 499, 507, 510

— productive, 196, 396, 399, 403, 405, 407

— topological, 507

Prüfer–Baer theorem, 618

pseudo-ℵ1-compact

— paratopological group, 561

— quasitopological group, 258

— space, 54, 88, 171, 172, 258, 332, 442, 498, 525,

538, 551, 561

— topological group, 211, 333, 531, 532, 539, 542–545,

549–557, 561

pseudo-ℵ1-compactness, 540, 555

pseudo-τ-compact

— space, 54, 62, 63, 170, 331, 334, 441, 480, 510

— topological group, 170, 335, 342

pseudo-τ-compactness, 331

pseudocharacter, 52, 288, 296, 299–302, 311, 313, 329,

374, 387, 423, 553, 558, 658

— countable, 48, 51, 61, 66, 120, 250, 265, 266, 268,

280, 296, 300, 302, 324, 330, 337, 342, 343, 345–

347, 357, 358, 361, 362, 374, 379, 382–384, 388,

397, 398, 463, 464, 542, 561, 647, 707, 719
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pseudocompact

— fiber, 489

— group topology, 423, 632, 666, 667, 670–675, 680,

683, 688, 689, 695

— paratopological group, 90, 119, 121, 201

— quasitopological group, 127, 128, 132, 258, 365,

377, 675

— semitopological group, 120, 121, 124, 128, 132, 170,

341

— space, 32, 36, 80, 126, 127, 198, 290, 294, 341, 350,

375–378, 384, 404, 406, 407, 455, 479, 481–484,

489, 490, 498, 525, 549, 715, 723

— subgroup, 406, 674, 675, 715

— subspace, 342, 395, 396, 402, 403, 525, 665, 666

— topological group, vii, 31, 36, 171, 193, 197, 198,

211, 214, 224, 230, 254, 283, 328, 345, 374–377,

382, 388, 392, 395, 399, 408, 546–549, 564, 619,

620, 631, 632, 666–669, 671–674, 695, 713, 715

pseudocompactness, 54, 90, 149, 392, 397, 399, 407,

408, 504, 507, 514, 662, 667, 675

pseudointersection, 261

pseudometric, 210, 424, 425, 431, 490

— bounded, 204, 477, 481

— right-invariant, 160

— uniformly continuous, 400

P-space, 249–254, 269, 283, 284, 315, 332, 351–354,

372, 373, 384, 386, 442, 449, 452, 482, 489, 512,

551, 557, 560–563

p-space, 247, 248, 271, 272, 283, 338, 343

PT -group, 345, 346, 368–375, 377, 379–381, 384–386,

407, 408, 498, 538, 550, 562–564

— strong, 369–374, 378–385, 390, 391, 534, 563–565

Q
q-point, 389

q-space, 389, 395

quasitopological group, vii, ix, 12, 14, 18, 21, 25, 27–

31, 35, 40, 90, 109, 115, 120, 125, 127, 132, 161,

162, 193, 194, 210, 255, 259, 264, 301, 302, 342,

365, 367, 368, 530, 675

— countably compact, 31

— locally metacompact, 151

— locally normal, 151

— locally paracompact, 151

— weakly first-countable, 280

quasitopological group topology, 36, 60, 675

quaternion, 8, 11, 87, 142

R
Raı̆kov

— complete

— — group topology, 192

Raı̆kov (continuation)

— complete (continuation)

— — topological group, 181, 186–193, 195, 197, 202,

211, 216, 231, 233, 234, 236, 249, 250, 253,

264, 287, 293, 315, 345, 369, 370, 373, 374,

382, 383, 394, 450, 451, 490, 495, 497, 498,

526, 538, 556, 558, 565, 568

— completeness, 214, 216, 236, 528

— completion, vii, viii, 134, 171, 181, 183, 187–192,

195–198, 202, 214, 254, 295, 296, 315, 336, 345,

362, 366, 368, 369, 375, 385, 388–391, 394, 402,

497, 533, 556, 632, 673, 674, 690

Ramsey theorem, 322

range-� group, 168

rank, of a group, 639, 640

rational numbers, 1, 2, 444, 447, 452, 465, 510, 513

real

— line, 1, 25, 26, 45, 70, 79, 175, 453, 474, 503, 510,

517, 572, 573, 714

— numbers, 1, 2

realcompact

— paratopological group, 535

— space, 82, 83, 368, 373, 379, 384, 533, 569, 649, 731

— topological group, 212, 374, 534, 535, 569, 640, 641,

694

realcompactness, 662, 666

reflection mapping, 81–86, 89

regular

— measure, ix

— paratopological group, 25, 26, 35, 87, 108, 109, 119,

121, 128, 161, 172, 173, 193, 248, 249, 254, 264,

301–303, 316, 342, 343, 446, 526, 531, 535, 561

— quasitopological group, 35, 128, 264, 342

— semitopological group, 109, 110, 128, 342

— space, 23, 25, 29, 39, 64, 65, 74, 78, 87, 88, 109, 111,

120, 135, 159, 230, 231, 249, 254, 269, 277–279,

300, 303, 305, 308, 315, 316, 342, 343, 351–354,

372, 442, 459, 510, 511, 551, 557, 561, 565, 570,

645, 648, 707, 722

— topological semigroup, 131

— topology, 15, 105, 342, 343, 458

relative pseudocompactness, 408

remainder, of a compactification, 248, 344, 354

representative, of a coset, 3

restriction, of a mapping, 15, 25, 41, 42, 92, 103, 124,

125, 141, 147, 148, 187, 221, 266, 269, 270, 293,

373, 417, 474, 502, 611, 624, 652, 700, 701, 706,

709, 710, 713

retract, 104, 147, 315, 355, 452, 481, 528, 623, 662,

663, 715

retraction, 104

— homomorphic, 624

R-factorizability, 518–520, 526, 528, 530, 535, 539,

545, 550, 562–564, 569
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right

— coset, 3, 38, 709

— coset space, 38, 75

— group uniformity, 68, 76, 79, 109, 152, 401

— identity, 91, 98

— induced uniformity, 68

— semitopological group, 90

— topological

— — group, 12, 16, 19, 20, 25–27, 38, 43, 45, 47, 90,

109, 119, 193

— — monoid, 12, 20, 21

— — operoid, 91–93, 97

— — semigroup, 12, 13, 15, 17, 18, 28, 90, 91, 93,

96–99, 104, 105, 365

— topology, 20

— uniformly

— — continuous family, 582

— — continuous function, 70, 80, 581

— — Tychonoff semitopological group, 154

ring, 7, 147

— non-commutative, 8

ring topology, 60, 142

Roelcke uniformity, 72, 79

root, of a family of sets, 53

S
s-approximation, 458, 459

scalar product, 590

scheme, on a set of integers, 424, 435

SC-variety, 422

SC-variety, 422

second-countable

— paratopological group, 173, 302, 303, 343, 526, 531,

535, 561

— semitopological group, 109

— space, 15, 56, 65, 88, 158, 159, 175, 305, 308, 315,

332, 336, 344, 364, 442, 473, 474, 525, 537, 565,

575, 576, 698, 704, 722, 728–731

— subgroup, 158

— topological

— — group, vii, viii, 15, 46, 61, 78, 141, 158, 162,

168–170, 191, 198, 199, 222, 271, 286, 287,

295, 296, 300, 302, 315, 320, 321, 344, 373,

374, 445, 446, 474, 475, 515, 517, 519, 521,

522, 525, 528, 530, 534, 535, 538, 539, 550,

558, 562, 612, 647, 659, 660, 714, 722

— — group topology, 262, 475

— topology, 302, 342, 343, 550

selection, for a mapping, 217

semigroup, 1, 2, 4, 11

— cancellative, 90, 107, 129–133

semitopological

— group, vii, ix, 12, 14, 17–20, 26–28, 35, 36, 38, 87,

90, 109, 111, 113, 115, 120–125, 132, 193, 210,

225, 248, 259, 273, 302, 343, 361, 405, 530

semitopological (continuation)

— — completely metrizable, ix, 132

— — countably compact, 128

— — locally compact, ix, 90, 111–114, 132

— — locally pseudocompact, 128

— — range-metrizable, 170

— — uniformly Tychonoff, 154

— — weakly countably compact, 128

— monoid, 12, 25, 36

— operoid, 93

— semigroup, 12–14, 16–18, 28, 47, 87, 93

— — sequentially compact, 130

— subgroup, 105

separability, 44, 202, 207

separable

— metrizable

— — space, 213, 442, 570, 725

— — subgroup, 161

— — subspace, 35

— orbit, 716

— paratopological group, 115, 119, 170, 173, 336, 340,

550

— quasitopological group, 257

— semitopological group, 128, 132, 302, 342

— space, 36, 37, 44, 52, 54, 64–66, 98, 180, 287, 298,

316, 328, 332, 355, 358, 363, 466–475, 508, 526,

632, 666, 692, 714, 717, 724–728, 731

— topological

— — group, 44, 145, 163, 225, 246, 271, 281, 287, 371,

388, 444, 526, 633, 691, 722

— — semigroup, 130

separating family of sets, 303

sequential

— fan, 513

— space, 48, 225, 230, 423, 488, 624, 633, 666, 674

— topological group, 270, 282, 633, 674, 691

— topology, 61, 423

sequentiality, 48, 424, 449

set

— almost contained, 261

— almost open, 232, 283

— big, 662

— bounded, 346, 389, 390, 393–406, 453, 454, 470,

473, 512, 648, 649, 663–666

— directed, 598, 699

— finally dense, 675

— G-invariant, 714, 730

— Haar measurable, 592, 593

— hereditarily finally dense, 676

— H-invariant, 708

— h-simple, 98, 255, 256

— invariant, 708, 709

— linearly ordered, 128

— nearly open, 243
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set (continuation)

— n-round, 676–678, 685

— of orbits, 709

— partially ordered, 598

— regular closed, 149, 313, 334, 343, 346, 554

— regular open, 350, 359, 360, 362

— right-precompact, 201

— sharp, 677, 684–686

— stationary, 441

— strongly T -invariant, 597, 598

— topologically generating, 410

— unconditionally closed, 682

— well-ordered, 221, 223

s-group, 630

shift, 124

shrinking family, 182, 191

σ-bounded

— paratopological group, 455, 456

— space, 400, 455, 456, 481

— topological group, 400, 405, 455, 549

σ-boundedness, 505, 507, 512

σ-compact

— field, 145

— paratopological group, 119, 120, 338, 453, 455

— space, 58, 86, 120, 135, 289, 303, 305, 344, 447,

452, 481, 497, 508, 525, 537, 538

— subgroup, 17, 46, 81, 315

— topological group, 24, 59, 61, 82, 86, 135, 141, 142,

145, 196, 209, 210, 248, 250, 286, 287, 292, 294,

311, 313, 315, 316, 319, 321–323, 328, 329, 344,

395, 405, 407, 445, 515, 520, 523, 550, 568, 569,

604, 623, 662, 713

— topology, 60

σ-compactness, 149, 209, 505, 507

σ-discrete

— covering, 149, 338

— family, 458, 460

— network, 459, 475

— π-base, 336

— space, 475, 507

— topological group, 475, 569

σ-discreteness, 507

Σ-product, vii, 17, 46, 55–59, 61, 88, 211, 271, 272,

281, 322, 323, 377, 383, 387, 395, 482, 485, 486,

550, 624, 627, 667

σ-product, 17, 46, 55, 58–61, 107, 201, 254, 296, 328,

531, 557, 660

Στ -product, 486, 487

Σ<τ -product, 486, 487

Σ-space, 344

Singular Cardinals Hypothesis, 673

Sorgenfrey

— line, viii, ix, 13, 25, 65, 82, 87, 120, 159–161, 163,

170, 193, 274, 281, 295, 321, 336, 338–340, 342,

343, 423, 511, 520, 525, 531

— topology, 201, 525

Souslin

— conjecture, 285

— number, 52, 53, 66, 181, 225, 285, 289, 316, 317,

323, 344, 526, 727

— property, 52, 363

space

— ℵ0-monolithic, 224, 225, 229, 633, 666, 726, 727

— B-closed, 663

— biradial, 277

— bisequential, 276, 277, 280

— collectionwise normal, 424, 458

— completely metrizable, 442

— countably

— — compact, 32, 57, 150, 224, 225, 231, 270, 350,

482, 511, 627–630, 665, 676, 691, 723

— — paracompact, 150, 424

— dense in itself, ix, 102, 263

— finite-dimensional, 295, 511

— hereditarily

— — Lindelöf, 230, 511

— — separable, 230

— homogeneously metrizable, 176

— initially ℵ1-compact, 690

— κ-Fréchet–Urysohn, 359, 362

— — at a point, 359

— k-separable, 289, 364, 365

— left-separated, 230, 662, 665

— linearly

— — Lindelöf, 254

— — orderable, 280

— — ordered, 277, 346, 731

— locally

— — bounded, 393, 394

— — Čech-complete, 149

— — compact, ix, 86, 111, 135, 136, 140, 149, 175,

180, 181, 231, 241, 247, 248, 270, 272, 295,

395, 404, 447, 452, 465, 469, 472, 475, 498,

507, 513, 660, 707, 723, 730

— — connected, 126, 135, 423

— — countably compact, 149

— — Lindelöf, 149

— — metrizable, 130, 231

— — normal, 150

— — paracompact, 149

— — pseudocompact, 149, 395, 473, 707, 715

— — realcompact, 149

— — σ-compact, 135

— metrically homogeneous, 180

— m-homogeneous, 176
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space (continuation)

— monolithic, 725, 727

— nested, 278

— non-compact, 575, 666

— non-Moscow, 349, 354, 355, 358

— non-normal, 66, 81, 82, 131, 419

— non-paracompact, 241, 248

— non-separable, 472

— of continuous functions

— — complex-valued, 588, 590, 593, 595, 598, 601

— — real-valued, 81, 142, 146, 172, 191, 193, 202, 211,

254, 255, 264, 323, 510, 525, 532, 538, 549, 560,

569, 576, 633, 661, 717, 722, 725, 731

— of countable

— — ordinals, 180, 231

— — type, 282

— — type, at a point, 390

— of pointwise countable type, 232, 282, 283, 389,

390, 473

— ω-bounded, 210, 213, 631, 675

— ω-stable, 332, 537

— orbital, 711, 714, 722–732

— pathwise connected, 34, 35, 37

— p-compact, 131

— perfect, 52

— perfectly

— — κ-normal, 334, 346, 350, 536, 537

— — normal, 52, 507

— p-homogeneous, 176, 181

— pointwise

— — canonically weakly pseudocompact, 359, 388,

407

— — pseudocompact, 388–390, 393

— quotient, 38, 39, 44–46, 77–80, 127, 140, 148–150,

157–160, 179, 180, 239–241, 243, 248, 253, 264,

265, 270, 271, 278–280, 315, 388, 397, 400, 405,

445, 660, 664, 697, 719, 720, 722, 731

— radial, 281

— rectifiable, 342–344

— residually Moscow, 350

— resolvable, 36, 45, 46

— scattered, 230, 560, 665

— sequentially compact, 666

— σ-closed-discrete, 463, 464, 474, 475

— σ-closed-metrizable, 460, 473–475, 481, 505, 508

— stable, 331, 334

— stratifiable, 475

— strongly

— — σ-discrete, 296

— — Fréchet–Urysohn, 275, 276, 279, 280

— — locally homogeneous, 178, 179

— — paracompact, 135, 149, 474

— — zero-dimensional, 218, 461, 565, 568, 645

space (continuation)

— submetrizable, 161, 248, 294, 343, 397, 398, 474,

475, 508, 719, 732

— subparacompact, 149, 150, 249, 338

— symmetrizable, 274

— τ-cellular, 52, 309

— τ-monolithic, 224, 725

— τ-stable, 330, 331, 334, 510

— topologically complete, 231

— totally disconnected, 135, 136, 613, 728

— uniformly Tychonoff, 212

— weakly

— — countably compact, 128

— — first-countable, 273, 274, 284

— — Lindelöf, 299, 384, 546, 548, 557

— — Moscow, 354

— — pseudocompact, 340, 341, 406, 667

— without isolated points, 475, 560

— with Gδ-diagonal, 340, 341, 443

special function, 83

spectral

— mapping, 221

— representation, 221, 699, 700, 705

spectrum, 221

— continuous, 702, 703, 705, 714

— well-ordered, 217, 699–702, 705, 713

spread, 316

stability, 344

stabilizer, 179, 709, 713, 715

step function, 203

Stone–Weierstrass theorem, 726

strictly distinct elements, 595

strong intersection property, 261

subfield, 146

— of a ring, 147

subgroup

— admissible, 323, 324, 397, 398, 400

— bounded, 395, 405, 664

— C-embedded, 211, 345, 346, 366, 369, 370, 375,

377, 382, 385–388, 394, 497, 498, 528, 531–535,

547, 549, 560, 645, 646, 648

— C∗-embedded, 206, 528, 531, 534

— central, 5, 210

— closed, 207, 373, 374, 385, 388, 527, 534, 535, 619,

631, 636, 690, 691

— countably compact, 689

— diagonal, 211, 387

— locally

— — bounded, 394

— — compact, 30, 147–150, 192, 212, 239, 247, 248,

270, 271, 278, 279, 315, 569

— N-embedded, 648

— neutral, 75–80

— non-closed, 36
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subgroup (continuation)

— of a group, 3, 28, 29

— of a semigroup, 4, 103

— of type Gδ , 531

— open, vii, 19, 26, 136, 137, 264, 440, 531

— rich, 176

— trivial, 3

— unconditionally closed, 688

— z-embedded, 374, 528–531, 648, 660

submonoid

— of a monoid, 11

suboperoid, 92, 95

subordinated family, 164, 287

subproduct, 52

subring, 142

subsemigroup, 3, 4, 11, 28, 106

— of a group, 130

subset

— big, 604

— neutral, 80

— non-closed, 31, 199, 202

— n-small, 111

— regularly situated, 451, 509

— relatively pseudocompact (see r-pseudocompact),

405

— r-pseudocompact, 405, 406

— standard, 324

subspace

— canonically embedded, 355

— C-embedded, 347–350, 367, 370, 373–375, 377,

380, 383, 392, 393, 424, 471, 528, 571, 645–649,

656

— C∗-embedded, 200, 347–350, 489, 528, 645, 646,

649, 650, 652–656, 660

— closed, 691

— — discrete, 131, 160, 260, 287, 295–297, 332, 403,

404, 448, 463, 473, 640, 643, 648, 653–658, 661

— countably compact, 119, 448

— G-invariant, 713

— h-dense, 350

— I-embedded, 645

— minimal, 714, 715

— N-embedded, 645, 646, 649, 650, 653–656

— P-embedded, 477–479

— P∗-embedded, 477, 478, 481

— R-embedded, 645

— 2-embedded, 645

— z-embedded, 374, 528, 530, 537, 646, 660

subspectrum, 701, 702

sup-norm, 211, 588, 717, 722, 725

supersequence, 405, 406, 665

support

— of a point, 55, 558

— of a word, 453

symmetric

— entourage, 67, 73

— function, 599

— group, 3, 11

— neighbourhood, 23

— set, 3, 21, 29, 66

symmetric, on a space, 274, 275

synchronous

— filters, 183, 185

— filter bases, 183

— prefilters, 277

T
τ-complete family, 551, 552

τ-cube, 314

τ-narrow

— left topological group, 286

— paratopological group, 302

— quasitopological group, 301, 302

— semitopological group, 290

— subset

— — of a topological group, 290–292, 294, 480

— — of a uniform space, 294

— topological group, 170, 207, 213, 286–290, 292, 294,

297, 301, 332, 343, 480, 513

τ-narrowness, 290

τ-stability, 331, 344

telescopic base, 442

thread, of a spectrum, 700

three space property, 159, 664–666

tightness, 48, 50, 61, 281, 296, 302, 322, 466–468, 471,

472, 510, 513, 724

— countable, 49, 50, 55–58, 61, 150, 225, 228–230,

265–267, 272, 278–282, 285, 302, 322, 336, 358,

361–365, 371, 374, 377, 378, 424, 449, 467, 469,

472, 475, 476, 508, 510, 513, 632, 633, 661, 666,

674, 690, 691, 721–725, 731

T -invariant set, 597, 598

T1 separation axiom, 1

T1-space, 14, 26, 37

topological

— algebra, v–vii, x, 131

— discerner, 341

— embedding, 25, 83, 87, 220, 280, 281, 293, 319, 411,

412, 474, 635

— field, v, 141, 142, 255, 577, 673

— group (see topological group), v, vii, ix, 1, 13

— group topology, 24–26, 46, 47, 157, 167, 172, 192,

203, 252, 415, 423, 429, 435, 436, 440, 447, 456,

458, 503, 627, 629, 634, 657, 662, 667, 668, 670–

675, 680, 682–686, 688–691, 694, 695, 713

— isomorphism, 40, 41, 47, 85, 104, 172, 187, 204,

421, 452, 609, 628, 636

— lattice, v

— monoid, 12, 25
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topological (continuation)

— monomorphism, 206, 210, 476–479

— product, 16, 17, 46–50, 56, 57, 88, 168, 170, 172, 455

— ring, 141, 142, 146, 147

— — locally compact, 142

— semigroup, 1, 12–14, 16, 18, 19, 25, 26, 47, 384, 732

— — countably compact, 119, 131, 133

— — locally compact, 108, 119, 130

— — p-compact, 131

— — sequentially compact, 131

— skew field, 142, 259

— space, viii, 3

— subgroup, vii, 15, 17, 296

— subring, 142

— subsemigroup, 15, 17

— sum, 423, 463, 488, 489, 501, 507

— vector space

— — locally convex, 575, 578, 579, 581

topologically isomorphic

— groups, 16–18, 25, 26, 40, 43, 45, 48, 138, 139, 141,

146, 156, 168–171, 176, 177, 190, 196–198, 201,

202, 207, 210, 211, 222, 252, 255, 281, 286, 287,

289, 294–296, 302, 303, 342, 344, 346, 373, 374,

423, 455, 470, 479–481, 489, 497–499, 503, 509–

511, 513, 527, 531–535, 538, 561, 603, 608, 610,

614–620, 631, 635–637, 660, 661, 690, 691, 714

— vector spaces, 569, 572, 573, 577

topological group

— absolutely closed, 214

— ℵ0-monolithic, 632

— balanced, 69, 70, 74, 75, 79–81, 156, 160, 173, 195,

322, 374, 435, 441

— B-closed, 663, 664, 666

— b-fine, 80, 254

— biradial, 278, 280

— bisequential, 217, 277

— collectionwise normal, 549

— compactly generated, 622, 623

— completely metrizable, 246

— countably compact, 17, 46, 57, 58, 146, 229, 230,

281, 282, 301, 302, 316, 365, 377, 383, 526, 571,

628–633, 667, 673–691, 695, 713, 731

— countably paracompact, 150

— factorizable over �, 562–565

— functionally balanced, 80, 81, 160, 322

— hereditarily

— — Lindelöf, ix, 294, 315

— — normal, 230, 365, 661

— — paracompact, 295, 372

— — realcompact, 498, 647

— — separable, ix, 229, 230, 302, 315, 526, 633, 690

— initially ℵ1-compact, 632

— κ-Fréchet–Urysohn, 360

— k-separable, 289, 315, 343, 378

topological group (continuation)

— left-separated, 230

— locally

— — bounded, 393–395

— — Čech-complete, 238

— — compact, v–viii, x, 14, 15, 25, 86, 134–142, 145–

147, 181, 190, 192, 202, 211, 212, 240, 246,

248, 270, 272, 281, 384, 394, 520, 565, 568,

571, 604, 621, 623, 626, 631, 633–635, 659,

661, 662, 692–694, 715

— — connected, 35, 37, 146, 160, 202, 423, 549, 616,

617, 619, 689

— — countably paracompact, 150

— — Dieudonné complete, 151

— — Euclidean, 87

— — feathered, 239

— — Lindelöf, 150

— — metacompact, 150

— — minimal, 293

— — normal, 150

— — paracompact, 150, 151

— — pathwise connected, 35, 45, 203, 204, 210

— — precompact, 202, 377, 568, 715

— — pseudocompact, 146, 202, 360, 377, 384, 715

— — σ-compact, 135, 149

— — strongly paracompact, 149, 151

— — subparacompact, 149, 150

— maximally almost periodic, 635, 636, 695

— �-factorizable, 525, 538

— m-factorizable, 539–541, 543, 547, 549, 560, 561

— monolithic, 230, 661

— monothetic, 146, 619–621

— nested, 278, 281

— non-compact, 211, 230, 238, 365, 621, 666

— non-Moscow, 372, 373, 383, 384, 386

— non-normal, 81, 86, 656

— non-paracompact, 161

— non-separable, 145

— ω-balanced, 162, 164, 165, 172, 210, 213, 296, 697,

716, 719–722

— ω-bounded, 631–633, 691

— ω-stable, 333, 335, 336, 344, 405, 455, 524, 549,

556

— ω-steady, 333, 334, 336, 344, 524, 537, 548, 549,

569

— orderable, topologically, 280, 281, 442

— pathwise connected, 34, 37, 45, 134, 203, 204, 210

— perfectly κ-normal, 334–336, 371, 537

— periodic, topologically, 127, 128

— �-factorizable, 562

— pointwise

— — canonically weakly pseudocompact, 359, 360

— — pseudocompact, 346, 388–393, 395, 408

— projectively Moscow, 562, 563, 565
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topological group (continuation)

— quotient, vii, 37, 43, 46, 87, 147, 158, 192, 201, 249,

265, 271, 281, 311, 416, 424, 443–445, 464, 474,

475, 497, 498, 515, 534, 535, 538, 542

— radial, 281

— range-metrizable, 168, 169, 173

— resolvable, 36, 45, 172, 202, 211

— R-factorizable, viii, 88, 515, 517–570

— satisfies Pontryagin’s duality, 607, 608, 610

— semi-R-factorizable, 550

— sequentially

— — compact, 230, 281

— — complete, 690, 691

— σ-precompact, 202

— stable, 329, 334, 336

— steady, 329, 330

— strongly

— — Fréchet–Urysohn, 217, 276

— — paracompact, 135, 151, 240, 475

— — resolvable, 46, 61, 661

— — zero-dimensional, 464, 567–569, 645

— sub-extremally disconnected, 264

— submetrizable, 456

— subparacompact, 150, 161, 249, 662

— τ-cellular, 310

— τ-stable, 331, 332, 336

— τ-steady, 329–332, 335, 510

— totally disconnected, 137–139, 281, 613, 632, 690,

691

— uniformly Tychonoff, 154

— -free, 422

— weakly

— — feathered, 248, 475

— — first-countable, 217, 274

— — Lindelöf, 523, 524, 534, 537, 539, 546–548, 550,

557, 561

— — pseudocompact, 341

— with invariant basis, 69, 435, 436, 456

— with no small subgroups (see also NSS-group), 138,

315, 625

topologization, 19

topology, vii, 1

— acceptable, 179, 214

— closed-based, 174

— compact-based, 175

— compact-open, ix, 85, 86, 175, 179–181, 191, 623,

721, 722

— completely regular, 105

— countably compact, 627, 675, 680, 683, 685, 686,

688–691, 695

— determined by a family of sets, 446, 488

— locally

— — compact, 24, 60

— — connected, 670

topology (continuation)

— of pointwise convergence, ix, 13, 17, 28, 81, 86, 124,

134, 142, 173, 174, 176, 177, 180, 181, 191, 192,

510, 598, 600, 605, 610, 615, 620, 660, 677, 714,

731

— of uniform convergence, 181, 191, 214

— ω-bounded, 675

— quotient, 37, 38, 87, 550, 711

— sequential, 691

— sequentially compact, 690

torsion

— group, 5, 11, 36, 37, 61, 207, 613, 618–621, 638,

642, 656, 663, 668, 671, 674, 676, 680, 683, 695

— part of a group, 5, 683

— p-group, 638, 639, 674

— subgroup, 5, 267, 637

torsion-free

— group, 5, 61, 207, 612, 619, 637, 639, 670, 674, 695

— rank, 285, 499, 500, 615, 616, 619, 637, 668–671,

673, 686, 688, 690

totally bounded

— metric space, 584

— paratopological group, 342

— semitopological group, 118

— topological group, 134, 193, 213, 214

transformation, of functions, 595–598

— adjoint, 597, 598

transformation group, v, ix, 87

translation, 20, 129, 708, 709

— left, 2, 19, 38, 129, 157, 709, 710, 712

— right, 2, 19, 129

transpose, of a matrix, 34

triangle inequality, 210, 274

Trigos-Arrieta theorem, 571

two-element group, 2, 16, 61, 281, 333, 372, 382, 557,

629, 630, 730

two-sided uniformity, 68, 69, 190, 214, 294, 401, 440

two arrows space, 180, 229, 273, 298, 301, 346, 405,

722, 731

Tychonoff

— compactness theorem, 189, 196

— cube, 16, 135, 220, 221, 229–231, 301, 319, 322,

323, 347, 722

— plank, 241

— product

— — operation, 285

— — topology, 16, 24, 60, 124, 527, 629

— space, viii, 15, 16, 36, 81–83, 87, 122, 142, 146, 149,

180, 212, 249, 316, 343, 345, 358, 460

— topology, 15, 32, 105, 132

U
U-ball, 67

U-disjoint set, 31, 163, 297

Ulam P-point, 351
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ultrafilter, 90, 93, 106, 131, 132

— countably closed, 351, 625, 627, 629

— free, 95

— selective, 453

unbounded

— orders, 642

— period, 37

— subset, 441, 453

uniform

— continuity, 89, 525

— convergence, 89

— homeomorphism, 79

— isomorphism, 491

— space, viii, 66, 89, 190, 191, 214, 481, 491, 497, 511

— structure, 66, 76, 89

uniformity, vii, 66

— cofinally complete, 80, 452

— compatible, 67, 69, 73, 79, 86, 366

— left, 68

— right, 68

— two-sided, 68, 525

— universal, 401, 476, 477, 491

unit

— ball, 152, 577

— circle, 1, 503, 510

— interval, 1, 20, 34, 128, 181, 188, 220, 228, 422, 501,

503, 509–511, 645, 714, 731

unitary

— group, 35, 413

— matrix, 34

— representation, 511

UP-point, 351

UP-space, 351

Urysohn extension theorem, 347, 348

Uspenskij theorem, 716

V
Vaı̆nšteı̆n lemma, 267

van Douwen theorem, 571

Varopoulos theorem, 571, 624, 626, 627, 694

vector

— space

— — complex, 576, 579

— — infinite-dimensional, 576

— — locally convex, 571, 572, 576

— — normed, 293, 577, 578

— — one-dimensional, 577

— — over a field, 576

— — quotient, 572, 573

vector (continuation)

— — real, 571–574, 576, 578

— — topological, 292, 572, 577, 581, 692

— subspace, 572, 578

V -group, 715

Vietoris topology, 26

von Neumann integral (see invariant integral), 586

W
Wallace

— problem, 130, 133

— theorem, 236, 482

weak

— first countability, 216, 217

— precalibre, 316, 319, 321, 323, 338

weight, of a space, 135, 163, 220, 226, 229, 231, 253–

255, 272, 282, 287–289, 295–303, 306–308, 372,

383, 442, 468, 475, 508, 517, 543, 544, 552–556,

565, 566, 569, 571, 576, 612, 620, 624, 631, 647,

658, 667, 673, 678, 691, 725, 726, 728, 729, 731

— countable, 272, 566

Weil

— complete group, 192, 498

— completion, 214

well-ordering, 222, 230

word

— reduced, 410, 420, 425, 432, 435, 437, 453

— — almost, 424

Y
Y -homogeneous space, 350

Z
z-embedding, 569, 646

zero-dimensional

— field, 145

— paratopological group, 474, 569

— space, ix, 24, 136–138, 150, 178, 180, 218, 220, 225,

249, 282, 354, 372, 404, 452, 489, 565, 568, 613,

666, 697, 698, 708, 721–724, 731

— subgroup, 568

— topological group, 17, 24, 25, 58, 138, 148, 181,

249, 261, 281, 382, 388, 422, 452, 463, 474, 475,

565–569, 613, 619, 620, 632, 644, 662, 663, 671,

690, 729

— topology, 109, 475

zero-set, 313, 334, 343, 374, 481, 482, 489, 528, 536,

646

zero element, 8

Zorn lemma, 6, 7, 97, 98, 163, 170, 171, 255, 259, 352,

353, 499, 573, 575, 578, 616, 637, 639, 714
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