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PREFACE

Tuis book is hased on courses I have given at University College of
North Staffordshire recently. Judging from that expertence |
should estimate that the material could be covered by a three-term
course of two hours per week along with a weekly tutortal or problem
hour,

Apart from the stated prerequisites, it is assumed that the student
has some knowledge of the real numbers and real analysis. I do
not assume the prerequisite, apparently fashionable now, of some
mathematical maturity, becavse I think that topology is an ideal
field for the development of this quality, displaying as it does the
transition from geometrical intuition to rigorous algebraic for-
mulation.

Although the book is called Algebraic Topology, the algebra does
not make its appearance until Chapter IV. The first three chapters
are inserted to make the treatment self-contained, and to cater for
the student approaching the subject with no previcus knowledge
of it. Thus a rcader who has already Jearned some point-sct topology
can proceed straight to Chapter IV, But, whatcver parts of the
hook the rcader may choose to omit, I should like to ask him to
regard the excreiscs as an integral part of the text. For they include
theorems which are every bit as important as some of thoze whose
proofs are given in full.

Finally, let me take here the opportunity of thanking Dr. A, H.
Sront and Mr. T. W. ParNaBY, who assisted in the task of proof-
reading, and all those students who unwittingly acted as my
guinea-pigs in the first stages of the preparation of this book.

ANDREW H. WAILLACE

Ungvergity College of North Staffordshire
Aprel 1957
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PREREQUISITES

TeE topics of the following three sections are treated only in the
barest outline, For further details the reader should consult fext-
books on algebra and get-theory, Suitable references are:
N. Boursaki;, Théorie des Fnsembles (Hermann, Paris),
G. BregBoFr AND 8. Macraxg; Swurvey of Modern Algebra
(Macmillan, New York).
W. LEpERMANN: Theory of Finite Groups (Oliver and Boyd,
Edinhurgh).
H. Zassenuaus; The Theory of (roups (English translation,
Chelzea, New York),

1. Set theory

The precise notions of abstract set theory will not be discussed
here; a sct will be thought of from the purely intuitive point of
view of a collection of objeets which are cither enumerated or are
defined by the possession of some common property.

The notation x € ¥ will mean that z is a member of the set E.

A subset ¥ of & given set ¥ is a set each of whose clements is a
member of X, The notation for this is F ¢ £ or £ o F. The state-
ment ¥ c £ is to include the possibility of the equality of £ and F.
The two statements ¥ ¢ F and ¥ ¢ K together imply that E = F.
In particular, the set containing no members is called the empty
set, and denoted by @ 0 is regarded as a subset of every set.

It £ and F are two sets, their union is the set consisting of all the
elements of £ and all the elements of ¥ taken together. This union
i denoted by B U ¥, More generally, if any collection of sets &,
i8 given, | JE; denotes the set consisting of all the elements of all

1
the K, taken together. [ JE, is called the union of the E,.
i

The intersection of two scts £ and F is the set of all elements
which belong both to E and to F; this sct is written as E n F.
More generally, for any family of sets E,, [ £; denotes the sct of all

{

elements belonging to every one of the X, and is called the
intersection of the X ..
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If subsets of a fixed set & are being discussed, the coinplement of a
subset 4 with respect to E consists of all the elements of £ not in A.

Y

If there is no danger of confusion the phrase “with respect to ¥
will be omitted, The complement of A is denoted by CA,

The following rules of calealation with U, n,and C are not hard

to check:
FuiFnh=(EuFin(fugG),

En(Fuh=EnFlu(EnG)

and more gencrally:

EunFizﬂ(fﬂuFﬂ,

i

En|JF, = UEnF),

Cus) =nde
(ney = uydey.

The operation of taking a relative complement is sometimes
useful: if 4 and B are subsets of a given set E the relative
complement of B with respect to 4 is the set of elements of 4 which
are not in 5. This set is denoted by 4 — B, Clearly 4 — B =

An CB (where c denotes the complement with respect to &).

Let E and F be any two sets. A mapping f of £ into F is a law
which assigns to each clement z of £ a uniquely defined element f(x) of
F. A shorthand notation for the statement that f is a mapping of &
into F is f- B — F,

A mapping f:E — F is called onto if cvery element of F can be
written as f{z) for some xe E. f1s called 1-1 or, in words, one-one, if
flx) = fly) implies x = y.

The image of 2 mapping f:£ ~> F is the set of all y in F such that
y = f(x) for some z in E; the image of f iz written as f{£). More
generally if 4 ¢ E, f{4} is the set of all y in F such that y = fix)
for some z in A. f(d)is called the image of 4 under f.

w1
If f:E — F is a given mapping and B ¢ F, f(B) is the subset of £
—1
consisting of all the elements x € £ such that f{x) & B; f(B)1s called the
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—1
inverse image of B under f. Note that f 18 not in general a mapping,
since f{ly), for a single clement y € ¥, may consist of more than one
~1
clement of . fis a mapping of F into £ if and only if f is one-one
and onto.

Two special cases of mappings oceur so often that they require
names. The first is the identity mapping of a set & onto itself.
This mapping ¢ is defined by é(x) =2 for all x & The
second is the inclusion mapping of a subset F of K into #. This
mapping j is defined by j(z) == z for all x € . Note that the inclusion
reduces to the identity when ¥ = K.

Let E, F, (¥ be three sets and f-£ - F, ¢: F — (¢ two mappings.
For each x in K, ¢{f(x)) is a uniqucly defined element of & and so the
correspondence x — g(f{z)) is a mapping of ¥ into G. It is called the
composition mapping of f and ¢ and is dencted by g-f.

The question of cardinal numbers will not be discussed here; but
the following particular terms will be required. A sct is called finite
if it ean be mapped by a onc-one mapping onto a set 1,2,..., n
of the natural numbers for some n. A set iz called denumerable if it
can be mapped by a one-one mapping onto the set of all the natural
numbers. A set satisfying neither of these conditions is called
non-denumerable. For example the set of rational numbers is
denumerable, but not the set of all real numbers.

2. Algebra

Scme results from group theory are required in Chapters IV to IX;
these results will now be sketehed. It will be recalled that a groupisa
set of elements @ closed under an operation . {usually called multi-
plication) satisfying the following axioms:

(Dx.{y.z) =(x.y).zforali x, y, zin &,

(2) there iz a unique element e € ¢ called the identity such that
z.e=¢.xr =xforallx e,

(3) given x & @, there is a unique element x 1 of & called the inverse
of xsuchthatx. 2! =2 .2 = e.

A subset H of (7 is called a subgroup if H is a group (using the same
operation asg is given in ). It can be shown that a set H of clements
of a group & iz a subgroup if and only if ab! & H for all a and & in H.

A mapping f:@ — H of one group into another is called a homo-
morphism if f(x . y) = f(z) . fly) for all z, ¥ in &; here the same
symbol, namely . , is used for the operation in both groups.
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It eaun be shiown that if f: -~ H is a homomorphism then Filts
—1

is a subgroup of }, and if ¢’ is the identity element of H then f{e') is u

1
subgroup of &. f{fs) is called the Image of f, and f(e') is called the
kernel of f.

Two groups & and /T are called isomorphic if there is & onc-one
mapping f of & onto /T such that f{z . ¥) = f(x) . fy) for all x and ¥
in &. The mapping f is called an isomorphism; it 15 clearly a special
case of a homomorphism. The statement that and H arc
isomorphic is written as & =~ H.

It can be shown that the nccessary and sufficient condition that a
homomorphism f:@ - > I should be an isomorphism i& that f should
be onto and its kernel should consist of the identity element of ¢ only.

If @ is a group and S a set (finite or infinite) of elements of (f such
that every clement of 7 can be expressed as a product of elements of
S and their inverses, then & is said to be generated by &, and the
elements of the set S are called generators of &.

It will in general be possible to find products of generators and
their inverses {not including factors of the type x . r~!, which can
always be cancelled out) which turn out to be equal to the identity
of . Such a product is called a relation. The group {# ia fully defined
by giving a sct of generators and relations. If there arc no relations
the group @ is called a free group.

Tt is not hard to see that, if & is a group given by generators and
relations, a homomorphism f:G — H is fully defined by the values of
f on the generators of &. In addition it can be shown that, if f 13
given any valucs on the generators of G such that f{ ) is the identity
of H for each relation B of G, then f can be extended to @
homomorphism of ¢ into 4.

Tu particular, if & is a free group and H any other group and f i3
given arbitrary values in I on the gencrators of (7, f can be extended
to a homomorphism of & into 1.

Avpart from the groups appearing in Chapter IV, all the groups
occurring in topology satisfy, in addition to the axioms (1), (2}, (3)
stated above, the commutative Jaw; namely z. y =% . % for all »
and ¥ in &. Such groups are called abelian. It is usual in this case to
write the group operation as 4 instead of ., and to call it additioL.
Also the identity element of such a group is written as G and the
inverse of z as —x. Written in this notation & group satisfying the
commutative law is called an additive abehan group.
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If an additive abelian group  is specified by generators and
relations, since x — y ==y ' &, the expression &« +y —xr — ¥ 13
zero and so will appear among the relations for all x and y in the group.
If the only relations are of this forin or are lincar combinations of
relations of this form, (¢ is called a free abelian group. The remarks
above on the definition of homomorphisms by defining their values
on the generators hold in the abelian casc, provided that the group
into which & is mapped is also abelian.

If an additive abelian group can be speeified by & finite number of
generators it is said to De finitely generated. It is a fundamental
theorem that for such groups a set of generators a,, a4 ..., a,,
by, by, - - ., b, can be chosen in such a way that the ¢, do not appear
in any relation and the b, satisfy equations of the torm rh, =0,
where the r; are positive integers such that r; s a factor of 7.

In particular if a group has just onc generator it is called a cyche
group. It is clear that, in the theorem just stated. o generatés an
infinite eyclic subgroup ; of & and b; generates a finite cyelic
subgroup H;, for each ¢ and j, and the special form of the relations of
7 implies that each element of & can be expressed in exactly onc
way as a sum of elements, one taken from each of the subgroups
Gy, Gy, ..., G, H, H, ..., H . This result is usually stated by
saying that ¢ is the dircct sum of the 7, and H,. |

More generally, if @ iz any additive abelian group and the & are
subgroups, finite or infinite in number, such that cvery element of &
can be expressed in exactly one way as a sum of clements, one from
each (7, and only a finite number non-zero, then ¢ is called the

direct sum of the &,. This is written (¢ = EGE

If @ is any additive ahelian group and # a subgroup, ¢ can be
split up into a family of subsets called cosets of H, two elements
x and ¥ of G belonging to the same coset if and only if # — y € H.
Two coscts @ and b can be added by taking an element from cach
of them, say x from @ and ¥ from b, and defining ¢ - 4 to be the
coset to which x + y belongs; it can be shown that this definition
does not depend on the particular representatives z and y picked
from the given coscts @ and &. The cosets of Jf, with this operation
of addition, form a group, called the quotient group of f with respect
to H and written G/H.

I.f {7 is a finitely generated abelian group so is any subgroup f, and
30 15 the corresponding quotient group GfH.

If fis a homomorphism of  ondo G, where these are additive
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abelian groups, and if /I is the kernel of f, then ¢ is isomorphic to
¢/JH. In fact the inverse image under { of each element of G' is @
coset of H in ¢, that is to say an element of G/H, and this

correspondence gives the required isomorphism.

3. Euclidean spaces
Euelidean spaces and certain of their subsets will be used frequently
in this book. REuclidean space of n dimensions, or Euclidean n-space,
is the set of all a-tuples (xy, %, . . . , %,) of rcal numbers, each such
n-tuple being a point of the space. In particular 1-space is the set of
real numbers. The distance d between the points (x,, %, 3, . . ., ¥y)
]
and (#y, Yo - - - » ¥} 18 given'by the formula d2 — _El[:ri — )%
=
An open solid n-sphere or open n-cell is the set of points

(2, Zg, - - - » &,) in Euclidean n-space satisfying an inequality of the

form %(mi — a)? << 7% The point (@, & ..., @) 1 called the
< |

ﬂentré of the sphere and r its radius. A closed solid n-sphere or

closed n-cell is defined in the same way but with the inequality <
replaced by =.
Note that a 2-celi is a circular dise and a 1-cell is a line segment.
An n-dimensional sphere or n-spherc is the set of points in
Euclidean (r - 1)-space satisfying an equation of the form

ﬂ . L * [
S (@, — a2 =12 {(ay, @y, - . ., @,) 18 its centre and r its radius.
i
i=1

" Note that a 1-sphere is the circumference of a circle, and a 0-
sphere is a pair of points. | o

An open n-dimensional rectangular block is a sct of pounts In
Euclidean n-space satisfying inequalities of the type @, < 2 -::lbl.,
i—1,2,...,n A closed rectangular block is the same thing with
each < replaced by =C.

CHAPTER I
INTRODUCTION

I. Continuity and neighbourhoods

In analysiz one’s first introduction to the idca of continuity
iz usually hased on the idea that a continuous function f of the real
variable & should be such that small changes in z result in small
changes in f{x}; the requirement being in fact that the graph ¥y — f{x)
should not have any breaks in it, but should be, in the intuitive
gense, a continuous curve, The next step in analysiz is to make this
notion preeise by introducing the e-terminology.

For the present purpose, however, it is more convenicnt to preserve
a geometrical outlook, by noting first that the function f may be
thought of as a mapping of the x-axis into the y-axis, each value of x
being mapped on a uniquely determined value f(x} of y. The con-
tinuity of f at 2’ can then be expressed by suyving that points
sufficiently near to ' on the z-axis are mapped by f into points
arbitrarily near f(x’) on the y-axis.

In analysis the phrases “sufficiently ncar” and *‘arbitrarily near™
would be expressed explicitly by means of inequalities. But the
advantage of the geometrical language is that the same words can
be used to define continuity in a more gencral situation. Namely,
let £, and E, be any two Euclidean spaccs, of dimensions m and »
respectively, and let f denote a mapping of some sub-set 4 of E
into E,. That is to say, f is a law which assigns to each point of 4
a uniquely defined point of £ . Then, as in the case of the function
of one variable, f will be said to be continuous at the point p in 4
if all points of A sufficiently near to p are mapped into points
arbitrarily near f{p) in E,. It should be noted at this point that if
7 = 1 the notion just dcfined coincides with the analytical concept
of a real vaulued funetion of m variables continuous in these variables.
It should aiso be verified as an exercise that the mapping f of a
subset of E, into K, is continuous at a point with coordinates

(1, x5, - . . , 2} if and only if the coordinates (%1, ¥ + - - + ¥ Of the
image under f of a variable point (z,, x5, ..., ) of E_ are con-
tinuous functions of z,, «,, . . ., &, at (x5, €0, . . ., To).

7
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The concept of continuity of 4 mapping of one Euclidean space
mtoe ancther extends the notion of a continuous funetion of one
variable, and hag been phrased in such a way that the same words
deseribe both situatious. That it is desirabie to try to extend this
idea still further to mappings between sets other than subsets of
Euclidean spaces may be seen by considering the following simple
example. In analysia one often wants to work with a family of
functions f, depending continuously on a parameter . What one
usually does is to think of the symbol f,(x) as if it were a funetion of
two variables f(i, ) continuous or uniformly continuous in the first.
But, Jogically, this means a shil{ of view-point, since each f, is a
function defined on some set of real numbers, while f, defined so that
f&, ) = f,(x), is an operator defined on some set in the (f, x)-plane.
It would be more satisfactory if one could describe what one meant by
o continuous family of functions withont this echange of terminology.

A convenient and natural way of reformulating the notion of a
continuous family of functions is to think first of dependence on a
parameter ¢ as being given by a mapping { — f, of the real numbers
into the set of all real valued functions of a real variable. Then to say
that the f, depend continuously on ¢ one would like to say that this
mapping is continuous. In order that one may be able to do this it is
neeessary to know what one means by saying that two functions f,
and f, are mear to one another; if this idea is defined then the same
wording can be used $o define the continuity of the mapping £ — f, as
has been used already to define the continuity of a mapping
between Euclidean spaces,

The remark made in the last sentence, although concerned with a
special example, is much more general in implication. Namely, if -
and I are any sets of objects of any kind among which a concept of
nearness is defined, then the idea of a continuous mapping of 4 into
B can Le formulated. The example of a continuous family of
functions shows that such a general notion of continuity has applica-
tlons: many more examples could be given, and indeed will be in
later sections, to show that the idea is worth following up.

2. The abstract concept of neighbourhood

The idea introduced at the end of the last section, namely of a set
4 along with a definition of nearness of two clements of A, 1s
essentially the starting point of the subject of point-set topology.
The idea is not quite in its most satisfactory form, since nearness in
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its only familiar form so far, that is in Euclidean space, is measured
by a distance formula; and it is not always convenient, or even
possible, to give such a numerical measure in more general cuses.
That this defect can be remedied will now be seen from a further
analysis of the idea of continuity of a mapping f of a set in a Euelidcan
gpace into another Euclidean space.

If one adopts the rather natural course of calling points of a
Euclidean space near a point p a neighbourhood of p, then to say that
a mapping f of a subset 4 of E_ into K, i3 continuous at p means
that, if {7 is a preassigned arbitrarily small neighbourhoeod of f(p),
then all the points of a sufficiently small neighbourhood V of p
are mapped into L7, This is simply a restatement of the definition
of continuity already given in §1. The first thing to notice about
this restatement is that onc can actually omit the word “‘small,”
and simply say that fis continucus at p if, for a preassigned neigh-
bourhood L7 of f{#), there exists a neighbourhood V of p all of whose
points are mapped into U by f. Naturally the preassigned neigh-
bourhoods of f{p) will include arbitrarily small ones, and common
sense shows that the corresponding ¥V must be sufficiently small;
but there is no need to say so.

T'be omission of the word “small” may seem a trivial matter, but
it is a logical step forward. For the restated definition of continuity
at 3 does not contain any explicit mention of the idea of distance,
but is formulated in terms of neighbourhoods of p and f{p). That is
to say, continuity at p 18 defined in terms of certain families of
point-sets assigned to the points p and f(p), and called neighbour-
hoods of p and f{p} respectively. Of course, in defining these
neighbourhoods the idea of distance has to be used, But a separation
of the continuity inte two stages has been effected, as stated in the
following definitions:

DEFINITION A. A neighbourhood of @ point p in a Euelidean space
i the set of all points within a distance r of p for some r.

Derixrriox B. If f is a mapping of a set A in a Euclidean space
into ancther Ituclidean space, then f is continuous af a point p if,
given any necighbourhood L7 of f{z), there is a neighbourhood V of p
such that f{V n 4)c .

The significance of this separation of ideas is that it may be possible
to asgign to each member p of an abstract set 4 (not necessarily now
a subsct of a Euclidean space) a family of subsects of 4 to be called
neighbourhoods of p, a similar assignment being made to the elements

i3
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of a second abstract set 2. This having been done, one can define a
mapping of 4 into B to be continuous at p if, for any preassigned
neighbourhood 17 of f(p), there exists a neighbourhood V of p such
that all members of ¥ are mapped into U by f. Of course this
assignment of neighbourhoods to the members of an abstract set
cannot be made in an arbitrary way. For example, one obviously
wants a set which is to be called a ncighbourhood of p actually to
contain p. To sce what further conditions must be imposed on a
family of subsets of an abstract set 4 before they can reasonably be
called neighbourhoods of some member of A, a closer inspection will
be made of the situation in a Euclidean space.

As already pointed out, the concept of continuity can be adequately
defined if one takes as neighbourhoods of a point p in Euclidean spaee
the family of all spheres with centre p. But as this definition of neigh-
bourhoods is rather too clogely tied up with the notion of distance, the
following question wil! be considered first: what i3 the most general
mcaning one ean give to the word “‘neighbourhood” withont changing
the meaning of continuity? To make this question more explicit,
consider real-valued functions defined on a Euclidean space. Andsup-
pose that, according to some law or other, each pount p of this apace
has assigned to it a family of subsets called N(p). Then the tollowing
property of a real-valued fimetion f will be ealled the property Ch

The function f will be said to have the property C' at a point p if,
for any preassigned positive number g, there cxists a sct U belonging
to N(p) such that |f{p) — f(p)| << ¢ for all p'in . In any case
pe U for all U in N¥(p) will be assumed.

Then the question being asked is: what 18 the most general
definition which can be made for the families N{p) such that, for
every function f,f has the property € at a point p if and only if it is
continuous (in the ordinary sense) at p?

To answer this question, let ¥ be one of the sets belonging to the
family N(p), and define a real-valued function f by setting flg) = 0
whenever g ¥, and f{g) = 1 whenever g ¢ V. Then this function f
has the property ¢ at p. For, given any e, there 15 a set of N{p),
namely V itself, such that l_f[p’] —- f{p]] < ¢ {in fact |f(p’}—f{p} =0
for p’ e V. If, now, the family N(p) is chosen so that the property {
at p is equivalent to continuity at p, there must be a sphere L7 with
centre p such that |f(p’) — f(p)] <= & for all p' in U, & being pre-
assigned. Taking & << 1, and remembering the definition of the
function f, it follows that U c V.

D, .
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It has thus been shown that, if the property € is to be equivalent
to continuity at each point, the families N(p) must satisfy the
neceasary condition that each member V of N(p) contains a sphere U7
with centre ». An exactly similar argument, starting off from the
definition of a function g which is zero on a given sphere W of centre
p and equal to 1 elsewhere, shows that a further necessary condition
is that every spherc of centre p must econtain some membher of the
family N(p).

These two necessary conditions for the equivalence of the property
(! to continuity are also sufficient. For suppose that they are both
satisfied, and let f be a real valued function continuous at p. Then,
given a positive number g, there is a sphere U7 of centre p such that

@) — f(p)| < & for p’e U. But by one of the conditions being

assumed, there is a member V of N(p) contained in U, and so the
inequality |f(»") — fp} < & holds for all " in V; that is, the
function f has the property €' at . Similarly it can be shown that,
under the two assumed conditions, a function f which has the
property ' at p 18 also continuous at p.

wumming up, the above discussion shows that, so far as real-
valued functions on a Euclidecan spacc £, are concerned, the
meaning of continuity is not changed if spherical neighbourhoods of
each point p are replaced by a family of sets N{p} such that every
member of N{p) contains a spherical neighbourhood of » and every
spherical neighbourhood of » contains a member of ¥(p).

Something more general thau this has, in fact, been achieved. For
let ¥, and E_ be two Kuclidean spaces of dimensions m and =
respectively, and in each of these spuces let a family of sets N{p) be
assigned to each point with the properties that, in each of the given
spaces, any member of a family N(p) contains a sphere of centre p,
EIJld‘ any sphere of centre p contains a set of the corresponding
family N{p). Then lct a mapping f of E, into & be said to have the
property C” if, for any given member U of N{(f(p)} in &, there is a
member ¥ of N{p) in E_ such that all points of ¥ are mapped into
U by f. 1t will now be shown that the property ¢ at p js equivalent
trir contmuity at p. For let f have the property (' at p. Let W be a
given EfPhEPE with centre fip). Then, by hypothesis, there is a set U
Pﬁ]ﬂl}gmg to N{f(p)) in &, such that I’ ¢ W. The property €’ at p
HTI-PllEE that there is a set V belonging to N(p) in B, all of whose
points are mapped into {7 by f, and again by hypothesis, there is a
Sphere Z of centre p contained in ¥. Thus all the points of Z are
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mapped into W by f, and so f is continuous at p. Similarly it can be
shown that if f is continuous at p it has the property C" at p.

It follows from what has just been shown that the meaning of
continuity, defined in terms of neighbourhoods as deseribed earlier in
this section, is unaltered if one replaces the family of spherical
neighbourhoods of each point p in each space by a family of neigh-
bourhoods N () having the properties assumed in the last paragmplh
Now the most general family of this type which can be attached to a
point p (that is, the family containing the most sets) is the collection
of all sets each of which contains some sphere with centre p. If this
collection is called N{p), then each member of N(p) contains, by
definition, a sphere of centre p, and each sphere of centre p contains
a member of N(p), namely itself, This family ¥(p) will from now
onwards be called the family of neighbourhoods of the point p in
the Euclidean space under consideration. This has the virtue of
being the most gencral definition of neighbourhood in a Kuclidean
space which, when used along with Definition B, instead of Definition
A above, preserves the usual notion of continty.

Having now achieved maximum generality in the concept of
neighbourhood in a Buclidean space, the next step is to sce what
properties of neighbourhoods one will want to incorporate in an
abstract definition of the necighbourhoods of elements of somne
abstract sget. The choice will be governed by the principle that
there are some properties of continuity and nearness which one will
want to hold even in the most abstract situations.

For example, if f and g are two continuous real valued functions, it
is desirable that, as in the elementary case of functions of a real
variable, f - g should also be continuous. Suppoese, now that fand ¢
are real-valued functions defined on a Euclidean space, and let &
be a preassigned positive number. For auy point p of the Kuclidean
space K, , f and g are to be continuous at p, and so there are neigh-
bourhoods I and V of p such that |f{p") — f(p)| < sf2forallp’im U,
and |g{p") — Q{j_l]l <7 &f2 for all p" in V. From these inequalities 1t
follows at once that |(f(p") + gip)) — (f(p) — gip))| << e for all p’
in {7 n V. The continuity of f + g will follow if &' n F is a neigh-
hourhood of z. But, since I7 and ¥V are both neighbourhoods of p
cach of these sets contains a spherc of centre p. 7 n V therelore
contains the smaller of these spheres, and so is a neighbourhood of p.

The proof just given of the continuity of f g for continuous
funetions f and ¢ clearly rests on the fact that the intersection of twu
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neighbourhoods of p is also a neighbourhood of p. This, then, 1s one
of the propertics which it is desirable to retain in an abstraet theory.

Again, it will be noticed that, since a neighbourhoed U of a point
p in a Euclidean space contains a sphere [} of centre p, of radius 7,
any, and since a sphere of sufficiently small radius entirely contained
in /7 can be drawn about anv point p’ at distance less than r from p,
it follows that I7 is also a neighbourhood of any such point p”.
Now the set 7" of points at distance less than » {from p is a neigh-
bourhood of p, for it contains any sphere of centre p and radius less
than r. It has thus been shown that a neighbourhood L' of a point p
in a Euclidean space is also a neighbourhood of every point p’ in a
certain neighbourhood U of p. It can be seen that this 1s a very
natural intuitive property of the concept of nearness if one expresses
it as follows: points near p arc also near to all other points which are
sufficiently near to p. The naturalness of this attribute of nearness
suggests that it should certainly be carried over into an abstract
theory.

Finally, as already noted, a neighbourhood of a point p 1n a
Euclidean space contains p itself, and it is desirable that this should
also be true of neighbourhoods in an abstract set. Also, by the very
mode of definition of a neighbourhooed in a Euclidean space, any sct
containing a neighbourhood of p is itself a neighbourhood of p,
and it is a matter of formal convenience to extend this to more
abstract situations.




CHAPTER TI

TOPOLOGICAL SPACES

1. Definition of a topological space

As suggested in the last section, the coneept of neighbourhoed can
be defined in an abstract sct, the conditions which were found above
to be natural requirements for a concept of neighbourhood being
taken as axioms. A set furnished in thiz way with neighbour-
hoods will be called a topological space. The formal definition 1s
ag follows:

Derrsrrios 1. A fopological space consists of an abstract set
along with an assignment of a non-empty family of subsets of A&
to each element of E. The clements of £ will be called points, and
the subsets assigned to a paint p of E will be called neighbourhoods
of p. The assignment of neighbourheods to each point of £ must
be made subject to the following eonditions:

(1) If I is a neighbourhood of » then p e U

{2) Any subset of E containing a neighbourhood of p is itaclt a
neighbourhocd of p;

(3) If T and ¥V are neighbourhoods of , so 15 nV;

(4) If [ is a neighbourhood of p, there is a neighbourheod ¥V of p
such that 7 is a neighbourhood of every point of V.

The process of assigning neighbourhoods to each element of a set
E, so making F into a topological space, is sometimes called giving &
a topology or defining a topology on .

Examples. (1} If ¥is a Euclidean space of any dimension, and a
neighbourhood of a point p of £ 1s any set [’ containing a sphere of
centre p (as in Chapter I, §2) then the above conditions are satisfied.
and g0 E is a topological space.

When in future Euclidean spaces are mentioned it will always be
assumed (unless something is said to the contrary) that they are
topological spaces with the topology defined in this way. In
particular, if “sphere of centre p° 18 replaced by “interval of mid-
point p” this is the topology always to he assumed onh the real
numbers unless something is said to the contrary.
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(2) If E is any set a rather trivial topology may be defined on K by
taking as neighbourhoods of a peint p any subset of B which contains
p. This topology is called the diserete topology on .

(3) Let E be the set of integers (positive, negative and zero)
and let g be a fixed prime number. A set U of integers will be called a
neighbourhood of the integer n if U contains all the integers » 4- mg’
for some v and all m = 0, -1, +-2, 43, ... (That is to say, for a
given neighbourhood r is fixed but m varies). Conditions (1) and {2)
on the neighbourhoods in the definition of a topological space are
easily seen to be satisfied here. To check (3), let U and ¥ be two
neighbourhoods of the integer ». There will be, by the definition of
the neighbourhoods in this example, two integers r and s such that
I/ contains all the integers n 4+ mg* {m =0, +1, £2,.. ) and V
contains all the integers n + mg® {m =0, 41, +2,...). Now if
g < r, every integer of the form % -|- mq" is also of the form n + m’'¢",
with m’ = mg* Thus if s < r, U n V will contain all the integers
n -+ mg (m=0,-+1,+2 .. Yandso U n Visaneighbourhood of #.
A similar argument. can be used if r << 5. And so conditien {3) is
verified. To check {4) let I7 be a neighbourhood of = and suppose U
contains the set ¥ of integers » + mg™ {(m =0, +1, +2,...}
Then V is itself a neighbourhood of n. If g == n + myg", for some my,
is any integer in V, then it is not hard to see that the collection of
integers ny, + mg" (m ==0, 41, 42, ....) coincides with V. It
follows at once that U7 is a neighbourhood of n,. This holds for any =,
in ¥, and sc condition (4) in the definition of a topolegical space
is verified.

This example is introduced here to show that a topology can
sometimes be defined in a situation which appears, at first sight,
purely algebraic in contrast to the more or less pictorial notion of
neighbourhood in Euclidean spaces. The fact that notions of
continuity and neighbourhood can be introduced into apparently
non-geometrical subjects has advantages of two kinds. In the first
place, purely algebraic results can often be stated more simply and
elegantly in the language provided by topology, and on the other
hand the algebra and the topology often combine to give powerful
results which could not otherwise be obtained.

(4) As a last example in this section, let & be the set of all real-
valued functions of the real variable x defined on the interval
e <7 ¥ < b and integrable over that interval. If f is an clement of &,
define an g-neighbourhood of f to be the set of all functions g of E
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fi
such that {|f — g| de < ¢, £ being a positive number. And let a set

i
in B be called a neighbourhood of f if it eontains an g-neighbourhood

of f for some e. It is not hard to check that conditions (1) to (4} of
Definition 1 hold, and so E becomes a topological space. Note that

here, as in Euclidean space, the neighhourhoods are defined by a
fr

distance function, H f— yi dx being regarded as the distance

o
between f and g. The g-neighbourhoods as defined here correspond

to spheres in Euclidean space.

Exercises

1. Let E be a set and suppose that to cach pair of elements x and ¥
of E there is assigned a real number dix, y) to be called the distance
between x and ¥ and satisfying the following conditions:

(1) d{x, %) = 0 and d{x, ) = 0 if and only if x = y;
(1} d{x, ¥} = d(y, ) for all x and y of &,

(ii) dix, z) =% d(x, y) - dly, z) for any three elements x, y, z of E£.

Define an g-neighbourhood of « £ & as the set of all y € £ such that
dixr, y) << e. Define a neighbourhood of x€ E to be any set in £
containing an g-neighbourhood of . Prove that with these definitions
E becomes a topological space. A space defined in this way wili be
called a metric space,

2, Prove that a Euclidean space is a metric space.

3. Let £ be the set of continuous functions of the real variable

on the interval ¢ << & << b. Prove that £ becomes a metric space if
b

d{f, g) is taken as | |f —¢|dx. If E is allowed to contain all fnte-
a

grable functions on & =5 & = b, does this definition of d(f, g) make
E into a metric space!?

4, If 4 aund B are any sets, the set of all pairs (g, ) with e 4 and
e B2 will be denoted by A4 X B and called the product set of
A and B

Let £ and F be two topological spaces. Callaset We & XX Fa
neighbourhood of (x, y) e B x F (x € E, y € F)1f there is a neighbour-
hood I7 of x in £ and a neighbourhood ¥ of y in ¥ such that
[/ x VcW. Prove that ¥ x F becomes in this way a topological
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apace. £ X F,given a topology in this way, will be called the
topological product of & and F.

5. Prove that the Euclidean plane is the produet B X K, where R
is the space of real numbers, |

More generally, prove that £, , = K, X K,, wherc the &'
denote Euclidean spaces of dimensions shown by the suffixes.

2. Open sets

By means of neighbourhoods in a topological space as defined in
the last section it is possible to give precise meanings to a number of
terms which have a fairly clear intuitive meaning when one draws

q

Fi, 1

diagrams on paper. For example, when one speaks of a set in the
plane one usually represents it diagrammatically as in Fig. 1 by a
region surrounded by a curve. When onc speaks of an mterior
point of such a set one thinks of a point such as p, while it is natural
to apeak of a point such as ¢ as a fronticr point. The distinetion cne
18 making here may be expressed intuitively by sayving that a point
of a set 4 is an interior point if it is entirely surrounded by points
of 4, and otherwisc it is a frontier point.

The statement that an interior point of A is surrounded by points
of 4 could be made precise by saying that such a point has s neigh-
bourhood entirely contained in A; this will now be taken as the
definition of an interior point of a set in any topological space.
{The notion of the frontier of 4 set will receive attention in {8 of
this Chapter).

DermniTion 2. Let A be a set of points in a topological space 4.
A point p of 4 will be said to be an inlerior point of A if there is a
neighbourhood &7 of p such that {7 4. The collection of all
interior points of .4 will be called the interior of 4 and will be
denoted by 4.

Examples, (1) In the {x, y)-plane let A be the set of points
guch that 2 4 %2 < 1. The interior of this set consists of the points
such that 22 4 z? <7 1.
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(2) The set of points in the (x, y)-plane such that 2* 4- y? < 1
consists entirely of interior points, and so is its own interior.

(3) If A is the set of points in the (r, ¥)-planc such that xr =0
then A contains no interior points,

Example {2) shows the existence of sets consisting entirely of
interior points. Such a set will be called open. Indetail the definition
ig as follows:

DEFINITION 3. A set 4 in a topological space will be called an
open set if, for each point pe A, there is a neighbourhood U7 of p such
that I/ ¢ 4.

Examples. (4) The open intecvals of analysis, that 1s sets of real
numbers satisfying an inequality @ <2 ¢ << b for some a and &, are
open sets on the real linc.

R
(5) The set of points in Euclidean n-apace such that SaZ <1 is
1

an open set. More generally, any solid open n-sphere in Euclidean
n-space 18 an open set.

(6) The set of points in Huclidean n-space satisfying inequalities
of the form a, <7 x, <2 b, (i = 1, 2, ..., a), where the a; and the b,
are fixed, that is, an open n-dimensional rectangular block, 13 an
open sct.

(7) Let E be the topological space formed by the integers with the
topology of Example (3) of §1. Then for any fixed » and r, the set of
integers n -+ mg” (m = 0, £1, =2, ...) 1s an open sel. For it was
shown in the course of discussing this cxample that this set is a
neighbourhood of every integer belonging to it; and so each integer
in this set has a neighbourhood contained in the set, namely the
set itself.

The following theorem seems to be very easy to prove, and does not
appear on the surface to be a very strong result, It isall the more
remarkable, then, that the result proved can be taken as a set of
axioms to give an alternative definition of a topological space, as
will be shown in §3.

Turorem 1. Let E be a topological space. Then (1) the union of an
arbitrary collection of open sets in E is an open set; (2) the intersection
of a finite collection of vpen sets in £ 15 an open set: (3) the whole
space K i3 an open set; (4) the emply set is an open set,

Proov. (1) Let W be the union of some family of vpen sets (this
family may be finite or infinite), and let p be a point of W. Then p

TOPOLOGICAT, SPACES 14

is in at least one of the open sets belonging to the given family;
suppose p< U where U is one of the sets of this family. Then, since U
is an open set, there is a neighbourhood V of » such that ¥V c U.
But U ¢ W, and g0 it has been shown that each point p of W has a
neighbourhood ¥ contained in W. Henece W is open.

(2) Let V and W be two open sets in B, and let p be a point of
V n W. BSince ¥V is open and pe V there is a neighbourhood {/ of p
such that {7 ¢ F. Similarly, there is a neighbourhood L7 of p such
that 7" ¢ W. Baut by condition (3) on the assignment of neighbour-
hoods in a topological space, L' 0 U’ is also a neighbourhood of p
and is clearly contained in V' n W. Thustocachpe V' n Wihercisa
neighbourhood of p contained in ¥ n W, which is therefore an open
set. To prove that the intersection of any finite collection of open
seta 1s open one can now proceed by induction. It 18 1mportant to
emphasize here that the word “finite” cannot be left out. For
example, let E be the real line, o neighhourhood of a point being any
set, containing an interval of which the given point is mid-point, and
let ¥/, be the open interval [.-:t:| < 2 Uy, Uy, .. .18 an infinite family
of open sets on the line, but the intersection of this family is not open,
for the only point in this intersection is the point x = 0.

(3) This part of the theorem is rather trivial, for every point of £
has at least one neighbourhood and E certainly contains it.

(4) To say that the empty set @ is open means that there is a
neighbourhood of p contained in @ for each point p belonging to 9,
and sinee there are, in fact, no points belonging to @, this statement
ia true.

The following theorem gives a new characterization of the interior
of a set in a topological space.

Turorkm 2. If A is any set in a fopological space then A is an
oper set and is the largest open set contained in A.

The term ‘‘largest open set contained in A’ requires some explana-
tion. It is intended to.mean an open sct contained in A and
containing every other open set contained in 4; but it 18 not clear
without some justification that such a set exisis. The neccssity for
justifying the use of the term “largest” as applied o scts of some
specified type {(in this case open sets contained in A4) ia casily seen if
one replaces the word “open” by “finite”’ for example. For if 4
containg an infinite number of points there is no such thing as the
largest finite subset of A; that is, there is no finite subset containing
all other finite subsets.
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The proof of Theorem 2 will now be carried out.

Proor. Let p be a point of 4. Then, by the definition of interior,
there is a neighbourhood 7 of p such that U c 4. On the other
hand, by condition {(4) on the neighboeurhoods in Definition 1, there 1s
a neighbourhood ¥ of p such that {18 a neighbourhood of every point
of V. Tt follows at once from this that every point of V is in A.
Thus to each point p of 4 there is a neighbourhood V of p such that
V c A, which shows that A is open. To complete the proof, let ¥
be an open set such that W ¢ 4. If pis any point of W then, since ¥
is open, there is a neighbourhood Z of p such that Z ¢ W. But Z is
contained alse in 4, and so p is an interior point of A. This holds for
any point of Wandso W c A. That is to say, any open set contained
in A is actually contained in A, as was to be shown,

The following theorems describe two further important propertics
of open sets.

THEOREM 3. U s a neighbourkood of p in a topological space & of
and only if U coniains an open set W containing p.

Proor. In the first place, let {7 contain an open set W contaimng
p; since W is open there is a neighbourhood ¥ of p such that ¥ ¢ W.
But then I contains the neighbourhood V of p, and so, by condition
(2) in Definition 1, I is a neighbourhood of p.

To prove the converse, let U be a neighbourhood of p. p 13 an
interior point of U, for there certainly is a neighbourhood of p
contained in U, namely U itself. Thus p is contained in the subset
7 of I7, and by the last theorem [/ is open. And so, as required, p i3
contained in an open set contained in .

TurorEM £. A set U in a topological space is apen if and only if
it +s e nesghbourkood of every one of ils points.

Proor. If U/ is open and p is in U, then, by the definition of an
open set, there is a neighhourhood Vol p such that ¥ ¢ U7, Then I,
being a set containing a neighbourhood of p s itself a neighbourhood
of p. And this is true for every point of U.

Conversely, if I7 is a neighbourhood of each of its points, all its
points must be interjor points; for each point of U/ has a neigh-
hourhood, namely U itself, contained in L'. It then follows from the
definition of an open set that L 1s open,

Exercises

1, Let fla,, 4, - . - » ©,) be a continuous functicn of 2y, X9, ..+, X,
(in the ordinary sensc of analysis). Prove that the following sets
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of points are open in the Fueclidean space in which the x; are
coordinates:

(a} the set of points at which f £ 0;

(b} the set of points at which f -2 ¢ for some constant ¢;

(¢} the set of peints at which ¢; < f < ¢, for some constants ¢,
and c,.

2. Let M, denote the set of square n-rowed matrices with
real clements. If the elements are taken as coordinates in #®-
dimensional Euclidean space M becomes a topological space.
Prove that the sct of matrices of rank greater than or equal to 7
for any r < n iz an open set in this space.

3. What are the open seéts in the Example (3) of §1¢

4, Let £ be the space of real numbers and let 4 be the set of
rational numhers. Prove that A has no interior peints. Prove also

that Cfl has no interior points,

5. Let E be any topological space and let 4 and 73 be two setsin £.
Prove the following properties of the operation of forming the
interior of u set:

(a) 4 =4;

(b) if O =Au B, (oAU B

) fC=AnBC=AnB.

In the case of {b) give an example of two sets 4 and # in the
apace of real numbers such that €' = AuB.

6. Let E be the space of functions of Example {4) of §1. Let 4 be

the subset of K consisting of functions continuous over the interval

(e, b). Prove that .1 has no interior points.
_ [Hint: Construet a discontinuous tuncvion of arbitrarily small
integral, ]

3. Another definition of a topological space

It was hinted before Theorem 1 that the properties of open sets
established in that theorem could be used to set up the notion of a
topological space in a different way. This alternative method of
definition will now he described, the procedure being bused on the
following theorem.

TrEOREM 5. Let E be an abstract set and let O be a famaly of subsets
of E saiisfying the following conditions:

(1) The union of any collection of sels belonging to O 13 a sel
belonging to O;
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(2) The intersection of a finite collection of sets belonging to O iz
set belonging to O;

(3) 1'he whole set E belongs to O

(4} The empty set O belongs to O.

‘Fhen there is one and only one way of making E into a topological
space (i.e. of assigning neighbourhoods to the elements of E) so thcf.t 0O
is the family of open sets of E, namely by saying that a sel U s a
neighbourhood of p € E if and only +f there is @ set W belenging to O
such that pe W c U.

ProoF. Defineneighbourhoods of each pe E asstated at the end of
the theorem; that is, {7 is to be a neighbourhood of p if and only if
therc is a set W belonging to O such that pe W c U. In order to
justify the name “neighbourhood” it must be shown that this
assignment satisfies the four conditions in the definition of a
topological space. | .

(1) If I7 is a neighbourhood of p as Just defined, p is contained in
a set of O contained in U, and so, in particular, p € U

(2) Let I/ be a neighbourhood of p and let ¥ be a set in & such
that ' ¢ V. Then, by the definition of neighbourhoods in the
present situation, there is a set W of O such that pe W c . Hence
pe W c V,and so ¥ is a neighbourhood of p in the present sense.

(3} Let U and ¥ be two neighbourhoods of p. Then there arc
two sets of the family O, say W and W', such that pe W c U and
pe W c V. By condition (2) imposed on the family O m the present
theorem, W n W' helongs to O. But pe B n W' clnV,andso,
by the definition of neighbourhood being adopted here, UnVisa
neighbourhoed of p.

(4) Let U be a neighbourhood of p i the sense of this theorem.
Then there is a set W of the family O such that pe W U. W is
itself a neighbourhood of p, since W contains a set of the family '0,
namely W itsclf, which contains . And in addition, if ¢ iz any poimnt
of W, the inclusion rclations g€ W < U imply that U 1s a neighbour-
hood of ¢. Thus the given neighbourhood U of p contains a neigh-

bourhood W of p such that U is a neighbourhood of every pomt
g in W. |

The ahove four steps show that the neighbsurhoods defined in
thig theorem in terms of the given family of sets O satisfy the
conditions imposed on the neighbourhoods in the defimition :::n*f a
topological space. And so E is made in this way into a topological
space.
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The next thing iz to show that, when £ is made as above into a
topological space, the open scts are precisely those sets which belong
to the given family O. First let I/ be a set belonging to the family O,
and let p be any point of &', Then U contains a set of (O containing
p, namely U7 itself. And so, by the definition of neighbourhood
adopted in this theorem, U is a neighbonrheood of p. That is to say,
{7 is a neighbourhood of every onc of its points, and so, by Theorem
4, IV is open. It has thus been shown that every set of O is an open
set. Conversely let U7 be an open sct, that is a set such that, for every
point p € U, there is a neighbourhood W of p satisfying pe W c Uj;
then it has to be shown that U belongs to the family O. To do this
let pc U and let W be a neighbourhood of p such that pe W e U.
Since W is a neighbourhood of g, thereisa set Vip) of the family O such
that pe Vip) ¢ W. A set V{p}of the family O can be obtained in this
way corresponding to each point p of I/, and since pe V{p) c U for
cach p e U, it is clear that 7 = | J¥(p), the union being taken over
all p e I7, But by condition (1) imposed on the family O in the state-
ment of this thcorem, U F{p) belongs to O since each V{p) belongs
to O, It has therefore been shown that every open set U belongs to
the family . Combining this with the converse already proved, it
follows that the family of opens sets coincides with the family O.

Finally, it has to be verified that the method adopted here of
making ¥ into & topological space is the only one in which the sets of
the given family O coincide with the open sets. That is to say, if £
iz to be made into a topological apace in such a way that the sets
of O are the open sets, it has to be checked that the neighbourhoods
must be defined as in the statement of this theorem. This follows at
onee from Theorem 3. For if the sets of O arc to be the open sets of
the space, that theorem says that a set {7 can be a neighbourhood
of p if and only if there is an open sct V, that is a set of Q, such that
pe V o U7, and this is exactly the definition adopted for neighbour-
hoods in this thcorem. The proof of Theorem 5 is thus completed.

The essential significance of this theorem is that a topological
space can be defined by giving the open sets instead of assigning
neighbourhoods to each point. That is to say, in order to define a
topological space £, one can pick a family O of sets in £ satisfying
the conditions (1), (2), (3), {4) of the last theorem, and one can define
them to be the open sets of E. The last thcorem shows that the
topological space E is fully defined in this way, for there is only one
way of defining the neighbourhoods of points so that the selected
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family of sets are the open sets. The initial definition of a topological
space in terms of neighbourhoods is probably the most convenient
from the intuitive point of view, depending as 1t does on a common-
sense notion of nearness. But from a logical point of view the
definition in terms of open sets has certain advantages. In the first
place it seems logically simpler to name a single family of open sets in
E rather than to name a family of sets attached to each point of K.
But more important than this is the fact that many definitions can
be made and theorems proved much more simply and elegantly in
terms of open sets than in terms of neighbourhoods. Several
cxamples of this will appear later,

Some examples will naow be given of topological spaces defined by
the naming of the family of open sets.

Examples. (1) Let £ be the set of vreal numbers, and assume
that the word “interval” means a set of numbers satisfying an
inequality of the form a < » < &. Define a sct of numbers to be an
open set if and only if it is a union of intervals. It 1s not hard to see
that the four conditions of Theorem 5 are satisfied by the family of
open sets 8o defined. Then by Theorem 5, E is a topological space, and
a ncighbourhood of a mimber x is any set of numbers containing an
open set, that is union of intervals, containing x. This is however the
same as saying that a neighbourhood of & is a4 set containing an
interval containing #, and it is easy to see that this definos the same
topology on ¥ as has already been used for illustrative purposes.

(2) Similarly, the ordinary topology on a Euclidean space of any
dimension can be defined by taking the open scts to be arbitrary
unions of open solid spheres.

(3) 1t should not be thought that a given set K has neeessarily any
natural topology attached to it, although often one particular
topology happens to be specially familiar, For example the topology
defined on the real numbers in Example (1) above is the familiar
one which, as has alrcady been pointed ont, is the one used in
defining ordinary continuous functions, For some purposes, however,
one may want to define a different topology on the real numbers.
The following is an example of such an alternative topology. The
set F is to be the set of real numbers and a subset of £ will be called
open if and only if it is the whole line £ or the null set @, or the set of
numbers satisfying an inequality of the form x = a for some real
numbher a.

It is casy to see that the conditions of Theorem 5 on unions and
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intersections are satisfied, and so a topology ts thus defined on the
set. of real numbers. In this topology a neighbourhood of a nuntber
a is a set of numbers including ail the numbers satisfying an inequality
of the form @ — ¢ <7 x. Thus, in particular, any number greater
than « is thought of as being near ¢ in this sense,

(4) As a further example of this type, a rather unfamiliar topology
on the (x, ¥}-plane may be set up by saying that an open set is any
union of horizontal line-intervals without end points. In this sense
two points vertically above one another, however closc together
they might appear in a diagram, would not be regarded as near to
one another. Points could only be near together if they were, in the
first place, in the same horizontal line.

{(8) The topology on the integers given in Example (3}, §1, can be
redefined in terms of open sets as followa. Let & be the set of integers.
Denote by ['(n, ) the set of integers of the form »n + mg®, where
n and r are fixed for the set considercd while m takes the values
0, 41, +2,.... Asetin £ will be called open if and only ifit is a
vnion of sets (hot necessarily finite in number) of the type U(n, r)
for various values of n and ». It is not hard to verify that this
definition for open sets satisfics the conditions of Theorem 5, and
that the topology so defined is in fact the same as that defined by
means of neighbourhoods in §1.

Exercises

1. Let £ be the sct of real numbers and let a set be ealled open if
and only if it is cmpty or is the complement of a finite sct of numbers.
Prove that # is made into a topoelogical space in this way. (Note
that although the same underlying set is used here as in the space of
real numbers this is a different space because the open sets, and
consequently neighbourhoods of points, are not the same as in the
space of real numbers.)

2, Let £ be the set of points of the (x, y)-plane for real x and .
Let a set in & be called open if and only if it is empty or is the
complement of a set which ig either finite or is an algebraie curve or
i8 the wunion of a finite set and an algebraic curve, {An
algebraic curve is the set of points defined by a polynomial equation
flz, y) = 0). Prove that E is thus made into a topological space.

3. What are the possible topologies on a gpace consisting of three
points? That is to say, what families of subsets satisfy the conditions
of Theorem 51

3
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4. Subspaces of a given space

In many applications of topology one is concerned with sets
contained in a Euclidean space, and it is natural to think of such a
set as a topological space by regarding points in it as being near
together if they are near together in the surrounding Eueclidean
space. To express this more precisely, let £ denote the Euclidean
apace, and # a subset of £. If pis o point of F, then it is natural to
define a neighbourhood of p in F to be the interscction of F with a
neighbourhood of pin E. In this way, for example, a neighbourhood
of a point p on a sphere would be a set of points on the sphere
containing all the points within a distance of ¢ from p, where ¢ is
some positive numhber and the distances are to be measured in the
surrounding Euclidean space.

It is clear, however, that the definition of necighbourhoods in a
subset F of a topological space E as intersections of F with neigh-
bourhoods in £ can be applied equally well to sets in any space &,
and not only to Euclidean spaces. "This motivates the next definition.

DerFiNiTiON 4. Let E be a topological space and F a subset of £,
If p is a point of F, a subset U of ¥ will be said to be a neighbourhood
of pin F if and only if U — Fn V for some neighbourhood V of
pin k.

Before one can be sure that this definition of neighbourhoods 1n a
subset F of F sets up a topology in F, the conditions (1) to {4} in
the definition of a topological space must be verified.

(1) It is obvious that, if 77 is a neighbourhood of p in F, then
pe U; for U =: ¥ n F where V is a neighbourhood of p in E, and
pe V.

(2) Let {7 be a neighbourhood of p in F, and let U=V n F
where V is u neighbourhood of p in £. Also let W be a subset of #
such that W o {7, Then W u ¥ contains V and se is a neighbour-
hood of p in E, by the definition of a topological space. And so,
by the definition of neighbourhoods in F, (WU n ¥ = W is a
neighbourhood of p in F. |

(3) Let I/ and U'" lLe two neighbourhoods of p in F, and iet
UD=VnF U=V nF, where VV and V' are neighbourhoods of
p in E. By condition {3} in the definition of a topological space
V' n V' is a neighbourhood of pin E,andso Vn V' nF=Unl"
18 & neighbourhood of p in F.

{(4) Finally let I/ be a neighbourhood of p in F, U= ¥V n F,
where V is a neighbourhood of  in £. Then by condition (4) in the

-
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definition of a topological space, there is a neighbourhood W of p in
E such that V is a neighbourhood of every point of W, Then, by
definition, W n ¥ is a neighbourhcod of p in F, V' is a neighbourhood
in B of every point of W n ¥, and so ¥/ is a neighbourhood in F of
every point of W n F.

It has thus been shown that the four conditions in the definition of
a topological space are satisfied by the neighbourheods in F as
defined above. This justifies the use of the term “neighbourhoods”
here and also the following definition:

DerFmniTION 6. Let £ be a topological space and F a sub-set,
Then the neichbourhoods in ¥ of the points of F define a topology on
F. This will be called the topology induced on ¥ by K, and F with
this topology will be called a subspace of .

It has already appeared in this definition and the discussion
leading up to it that one must be careful, when speaking of a space
and a subspace, to distinguish between neighbourhoods in the
space and neighbourhoods in the subspace. Since open sets are
defined in terms of neighbourhoods it follows that there will have to
be a corresponding distinction between sets which are open in the
space and those which are open in the subspace. The following
examples illustrate this point,

Examples. (1) Let ¥ be the (z, ¥)-plane, and let F be the z-axs.
Ag usual, a neighbourhood of a point p in E, is any sct containing a
eircular dise with centre p; while a neighbourhood of a point p in F
is any set in ¥ containing an interval with mid-point p. Then if &7
i5 an open interval in F, that is, an interval without its end-points,
U is open in F but not open in E, since I7 certainly contains no
eircular disc. The fact that the usual topologies on £ and F make ¥
& subspace of £ can be seen by noting that, if pc F, the intersection
of F with a disc of centre p is an interval with mid-point p.

(2) Let E be the (x, y)-plane in its usual topology, and let F' be the
square defined by the inequalities 0 << 2 << 1,0 <y =< 1. Let p be
& point on a side of this square. A circular disc with centre p is a
neighbourhood of p in &, and so the intersection of such a disc with
Fis a neighbourhood of p in #. Thus a set U can be a neighbourhood
of a point p in F, although it appears, when one draws a diagram,
that p is on the edge of I, Thus p, although interior to I/ in the
topology of ¥ docs not look like an interior point, and indeed is not
an interior point of I in £. The notion of interior is thus, like that of
neighbourhood and open set, relative to the space being considered.
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To complete this example, it is clear that if ¥ is the intersection of ¥
with a cireular dise not including the points of the circumference,
then F is open in #'; hut if } eontamns points on the sides of the
square F it will not be open in E. This is a special case of the next
theorem to be proved.

Turorem 6. Let E be o space and F a subspace. Then o subset U
of F is open tn F if and only if there is an open set V in E such tha
=Vnkt

Proor. First suppose that I = V' n F where V' is an open set in
E. Let p be any point of V. Thensince pe V and Vis openin £,
there is a neighbourhood W of p in £ such that W c V. By the
definition of the topology induced on F, W n F is a neighbourhood
of p in F, and is certainly contained in ¥ n F = U. That 13 to say,
for each p € U there is a neighbourhood of p in F contained in U,
and se I7 is open in ¥, |

Conversely, let U be given as open in F. If p is any point of U,
there is, hy the definition of an open set, a neighbourhood Vip) of
in # such that V{p) c {7. By the definition of neighbourhoods in a
subspace there is a neighbourhood W{p) of p in £ such that V(p) =
Wi n F. On the other hand Theorem 3 says that the neighbour-
hood W(p) of p in E contains an open set W'{p) {open in E, that is to
say) containing p. Let V denote the union of all the W'(p) so
obtained for all p € T, Since the W'(p) are all open in £, part (1)
of Theorem 1 shows that V is open. For each pe U the inclusion
relation p e W'{p) n F holds, and so it follows at once that the union
of the #'s, namely U itself, is contained in the union of the W'(p),
and in . That is to say, 7 c ¥V n F, where F is open in . Un
the other hand, Wipin Fc Wip)n F = Fip)c U foreach pe U
and so Fn Fcl. Combining the two inclusion relations just
proved it follows that & —= ¥ n F, and the thcorem is established.

Exercises

1. Iet £_and E_ be Euclidean spaces of dimensions m and n
{(m << n)such that ¥, c E,. If E, and E_have their usual topolo-
gies prove that ¥, is a subspace of K, in the topology induced by
that of &_.

2, By Theorem 5 it should be possible to define a subspace by
naming open sets. Let £ be a topological space and F a subset of £.
Define I ¢ F to be open in F if and only if &' = ¥ n # for some
sot ¥ open in . Show that the family of sets so defined as bemng
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F-"

open in £ satisfies the conditions of Theorem 5, and so defines a
topology on F. Prove that this roineides with the induced topology
ag defined in Definition 5.

3. Let A and F be subaets of a topological space K. As usual A
denotes the interior of A in the space &, Prove that A n F is
contained in the interior of 4 n F regarded as a subset of the
subspace F.

By taking E as the real numbers and 4, F as suitable subsets
show that 4 n F may be different from the interior of 4 n # in the

space F.

5. Limits

The simplest notion which can be expressed in terms of the idea of
neighbourhoods in a topological space is that of the limit of a
sequence of points. The definition iz very similar to that given in
analysis.

DEFINITION 6. A sequence of points p,, P, . . - in a topological
space E is said to have a limit p, or to converge to p, if, for any
preassigned neighbourhood U of p, there is an integer ¥ such that
p,eUforalln = N.

Clearly if ¥ is the space of real numbers, and if the sequence
{p,} is taken to be a sequence of real numbers {z,} and the point p
a real number x, then the preassigned neighbourhood {7 can be
taken as an interval {x --- £, = + &), and the definition just given
becomes the definition of a limit as usually stated in analysis,
Another elementary case is that in which E is a BEuclidean space.
In this ease the preassigned neighbourhood U7 ean be taken to be a
sphere with centre p and radius £, where ¢ is a preassigned positive
number. The sequence py, P,, . - - converges to p if thedistance ofp,
from p is less than ¢ for all sufficiently large values of ».

There are two warnings to be given in connection with the
definition of limits in an arbitrary topological space. In the first
place the Cauchy criterion for the convergence of a sequence of real
namhbers has in general no analogue in a topological space. For this
eriterion says that a sequence x,, x,, . . . converges to some hmit if
and only if i, — x,| < & for preassigned £ whenever i and j are
sufficiently large. And the possibility of stating such a criterion
depends on the possibility of saying that two points are near to cach
other according to some given standard of nearness {in this case
saying that |m¢ — :cfl < ¢). But the standard of nearness required
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for this must be a uniform standard which one ean apply to a
variable pair of points. And this is just what one does not have in a
topological space. All onc can do in general is to say that onc
variable point 18 near a fixed point, nearness heing expressed by
using the family of neighbourhoods of the fixed point.

The second warning associated with the notion of limit is that, in a
topological space as defined so far, there is no guarantee that the
limit of a sequence of points, if it exists, is unique. For example,
let & be the set of points of the (x, ¥)-plane; but instead of using the
ordinary topology of the FEuclidean plane, define a set L7 to be a
neighbourhooed of a point (&, y,) it and only if U7 contains all points
(x, ¥} satisfying an inequality of the form ]x — :rrﬁl <7 & where g 18
some positive number, ¥ being unrestricted. - That 18 to say, a
ncighbourhood of {x,, ¥,) is a set containing a strip parallel to the
y-axis, the point (x,, ¥,) being on the central line of this strip.
Now let (2, #,), (%3, ¥a), . . . be a sequence of points in £ such that
Ly, Xy, - . - converges in the sense of ordinary real number conver-
gence to a limit . Then the point (x, ), for any ¥, 18 a limit of
(x,, ¥,) in the sense of the topology just defined on £.

To explain the situation itlustrated here, consider the proof in
ordinary analysis of the uniqueness of the limit of a sequence of reai
numbers, Suppose that x# and &" are both limits of the sequence
&y, Ty, ... and that z 5= 2", Take & > (0 such that the intervals
(x — e, x4 g)and (x" — g, 2" + #) do not overlap; that is, take ¢
less than half the difference hetween # and x". This leads to a contra-
dietion, since the definition of limit requires that, for sufficiently
large n, x, should lie in both of the intervals (x — &, o + £) and
{r" — &, 2" -1- ). The proof clearly depends on the choice of ¢ so that
these two intervals do not overlap, that is, on the choice of a
neighbonrhood €7 of x and a neighbourhood 7" of &’ such that
Ul =0, Tt is the possibility of such a choice which breuks
down in the example given ahove.

It is often desirable to restrict attention to topological spaces
satisfyving a condition which will enable the proof of the uniqueness
of the limit of a sequence of points to be proved. The required
condition is given by the following definition.

DeFIxITION 7. A topological space is called a Heausdorff space, or 13
sald to satisty the Hausdorff separation axiom, il, for every pair p, ¢
ol points of £ with p ¢ ¢, there is a neighbourhood L of p and a
neighbourhood F of g auch that &' n ¥ = 0.
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TurorEM 7. Let E be a Hausdorff space and suppose that o
sequensce {P,} has @ limit p. Then this limit s unique.

Proo¥. Suppose that the sequence also has ancther limit ¢ £ p.
Let U and ¥V be non-intcrsecting neighbourhoods of p and g,
regpectively. Then p, e U for sufticiently large » and also p,e V for
sufficiently large =, which contradicts L' n V =0. Hence the
sequence cannot have more than one limit.

Examples. (1) The real line is a Hausdorff space. In general, a
Euclidean space of any dimension in its usual topology is a Hausdorft
space, since any two distinet points can be surrcunded by non-
overlapping spheres of sufficiently small radius.

(2) Let E be the topological space introduced in the Example (3)
of §1, eonsisting of the set of integers with neighbourhoods detfined
as in the quoted cxample. This is a Hausdorff space. Forlet » and »’
be two distinet integers, and choose the positive integer r so large
that ¢" is larger than the numerical value of » — n’. This choice
ensures that ¢” is not a factor of = — »’. Let U' be the set of integers
ntmg (m=0+1,+2 ... and Jet U’ be the set n' - hg"
(h =0, +1, £+2,...). Then by the definition of neighbourhoods in
this topology, U is a neighbourhood of # and U is a neighbourhood
ofn’. And U n IU" — @; forif these neighbourhoods had an element
in common the equation n + mg" == 1’ + hq" would hold for suitably
chosenmand %; and thisequation canbe written asn — n’ = (A —m)y’,
implying thatn -- n’ is divisible by ¢7, which is known to be impossible.
The Hausdorff separation condition thus holds in £ as was asserted.

As this example js not based on any familiar geometrical picture,
it is of interest to agk what sort of sequences are convergent in this
apace K. If the sequence ny, #,, ... converges in ¥ to the limit «,
then, given any neighbourhood of #, #, must be contained in this
neighbourhood for all sufficiently large values of #. Taking as a
preassigned neighbourhood of » the set of integers n 4+ mg® (m =
0, +1, +2...), it follows that if n,, #,, ... has n as limit, the
difference n — #, must be divisible by an arbitrarily high power of ¢
for sufficiently Jarge r; and it is not hard to sce that this condition is
also sufficient for convergence. Examples of sequences having » as
limit are n +q, n — g%, n L ¢% n +4qt, ..., and n —¢q, 7 + 2g2,
n— 3g3, n 4 g%, ... . It will be noticed that numeriecal value has
nothing to do with this notion of convergence; in the scnse of
ordinary analysis the first sequence given here diverges steadaly
away from » and the sccond oscillates infinitely.
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(3) Let £ be the set of all hounded real valued functions of the
real variable x defined for () =7 » <7 1. The topology to be introduced
on £ will be defined Ly first introducing a notion of distance, The
distance between two functions f and g belonging to the set E will be
defined to be the upper bound of | flxy — g{.-r_:][ for all 2 between 0 and
1: this upper bound exists since f and g are both bounded. The
distance function so defined satisfics the conditions given in
Exercise 1, §1, and so neighbourhoods may be defined in E, by
saying that the subset U of & is a neighbourhood of f if I’ contains all
functions whose distance from f is less than sone posgitive number &.
Suppose now that the sequence of points (that is hounded real
* valued functions) f,, fs, f3, .. . of B converges to the limit f in E, in
the sense of this topology. A preassigned neighbourhood U of f can,
in particular, be taken as the set of all points of E at distance less
than ¢ from f for a preassigned positive number £, And so the con-
vergence condition (sufticiency is easily checked) becomes: given a
positive number £ there is an integer N such that the distance of f
from f, is less than e for all » >> N'; in other words, | fx) — f.(x)] < ¢
for n = N. But this is just the condition for uniform convergence as
usually defined in analysis. This example illustrates a situation which
often arises in the application of topology to analysis; namely
special types of econvergence can be defined by making a family of
functions into a topologieal space by some suitable definition of
neighbourhoods, and then using the notion of a convergent sequence
of points in this space.

Exercises

1. Prove that any metric space {(Excreise 1, §1) is Hausdorff.

2. Prove that a subspace of a Hausdorff space is Hausdorff.

3. If B and F are Hausdorff spaces prove that the product space
E x F (Exercizse 4, §1) 13 Hausdorff.

4, let i and ¥ he two topological spaces. Prove that the necessary
and sufficient econdition that a sequence {a,, b,} in £ x F should
converge to the limit {a, ) is that the sequences {a,} and {5,} should
converge to ¢ and 5 in B and F respectively.

5. Show that the topological space of Exercise |, §3, namely the
real numbers with the complements of finite sets defined as open,
is not Hausdorff. Show that a sequenee in this space converges
to every point as a hmit provided that no number appears infinitely
nften in the sequence. What happens in the case of infinite repeats?

6. In Example (3} of §3, the set of real numbers was made into a
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topological space by defining as open sets the whole set, the empty
set, and every set satisfying an inequality of the form = > «. Show
that this space is not Hausdorff. Show that a sequence {,} in this
space has a limit if and only if it is bounded below, and show that x
is a limit of {z,} if and only if x <l lim x, (the lower limit in the
ordinary sense of analysis).

6. Limit points

As in the case of limits of a sequence, the notion of limit point of a
set in a topological space is modelled on the corresponding idea in
analysis, The formal definition is as follows.

DEFINITION 8. Let A be a set of points in o topological space E.
Then a point p of E will be said to be a limif point of A if every
neichbourhood of p contains a point of A different from p.

The fast phrase “‘different from p’” in this definition ensures that it
is not enough for ¢ simply to belong to 4. If E is taken as the set of
real numbers with the nsual topology, then the definition just given
becomes the one usually given in analysis. Now in this special case
one can take a decrecasing scquence of intervals with p as mid-point,
of lengths, say, 1, 1, &, 1, ... . If p is a limit point of the set of
numbers A, each of these intervals will contain a number xy, x,, r;,
Xy, - - . , respectively, different from p and belonging to A. If U 18
any neighbourhood of the number p, U will contain every interval of
length 1/n and mid-peint p for sufficiently large n. Thua the sequence
Xy, Ts, Ts, . . . has p as its limit. And it follows from this incidentally
that every neighbourhood of p contains infinitely many points of A.
One must beware, however, of extending the statements just made
for this special case to arbitrary topological spaces, as will be shown by
the following examples. _

Examples, (1) Let £ be the set of all points of the (&, y)-plane,
with the topology already used in the example preceding Definition 7;
that is, a set I/ i3 a meighbourhood of a point p if and only if U
contains a strip parallel to the y-axis with p on iia central hne,
Let 4 consist of the single point (&g, #,). Then for any y == ¥,
(z4, %) is a limit point of the set A4, for every neighbourhood of
(*q, ) contains (z,.y,). Thus it is pessible for cvery neighbourhood
of a limit point to contain only a finite number of points of the set, in
contrast to the situation arising in the case of the real numbers.

The space of this example is not Hausdorft, and the situation
arising here can only arise in a non-Hausdorff space. Forlet £ be a
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HausdorfT space, 4 a set of points in £ and p a limit point of 4, and
suppose that a neighbourhood ¥ of p contains only a finite number of
points of 4, say py, Pa, Py, - -+ » Py SlllCE £ 18 Haunsdorff there 13, for
each ¢, a neighbourhood U, of p, and a neighbourhcod F, of p such
that V. n ¥V, = 0. Thenin particular, Vo=F;nVon ..n ¥, n¥
is a mneighbourhood of p and containa none of the points
#i1, Par Par - » » P But these are the only points of A in ' other
than p, and so ¥, contains no points of .4 other than p contrary to
the supposition that g is a limit point of 4.

An immediate corollary of what has just been proved is that, In a
Hausdorff space, only infinite sets of points are capable of having
limit points at all.

(2) The constcuction of an example to show that a limit point of a
set A in a topological space need not be the limit of any sequence of
points of A is o bit more complicated. Let E be the set of all real
valued functions of the real variable z, defined for all values of 2.
If f is any point of E {that is a function of x) the (e, x,, 24, . . ., ¥,)-
neighbourhood of f will be defined to be the set of al} points ¢ of £
such that |¢?(17;:] —f{:t:,f}| < ei=1,2,...,n; aneighbourhood of f
of this type can be defined for every positive number €, and every
finite collection of numbers x,, x,, ..., x,. The topology of & will
now be defined by saving that I7 is a neighbourhood of f if and only if
7 containg an (&, x,, &g, - - - , o, -neighbourhoed of f for some
€, Ty, Tgy + - . »Z,. 1t must be verified, of course, that this assignment
of neighbourhoods satisfies the conditions in the definition of a
topological space; this will be lett as an exercise. A further exercise
is to check that this space is a Hausdorfl space.

Now let f, be the function of x which is identically zero, and define
a subset 4 of E as follows, Let 2y, ., . . ., @, be any linite collection
of real numbers and let.f, , . De the function of x defined by setting
fo e f)=00{=12...,n) and f, ., () =1 for all other
values of z. Let A be the set of all f, . for all posgible finite sets
Ty, Xgy - + - » &, of Teal numbers, f; certainly does not belong to A,
since it is zero everywhere, while each member of A 18 zero at a
finite number of values of x only. But f, is a Jimit point of 4 in the
topological space &, For let U/ be a neighbourhood of f;. Then U
contains the (g, 2y, @, - - ., ¥,)-neighbourhood of f, for some & and
Xy, ¥g, ..., T, and the function f; . belongs to this {¢, ;, Zy, . .. x.)-
neighbourhood, since ]f_,,:r__i.ﬂ{;ri] — }'ﬂ{:::l.]| < g, both terms of the
difference being zervo, fori =1, 2, ..., n. That i3 to say, frl,..:r,.,s a
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member of the set. 4, belongs to the given neighbourhood €7 of f,.
This proves that f, is a limit point of 1.

But f, is not the limit of any sequence selected from A. For suppose
fi> £z« + - 18 a sequence belonging to 4 and having f, as limit. By the
definition of A each f, is o function of x equal to zero for a finite
set S, of values of x and equal to 1 for all others. The union of all the
8, forn = 1,2, 3,...is al most a denumerable set of points, and so
there is a real number x; not belonging to any of the §,_. Let V' be
the (g, zy)-neighbourhood of f; for svne € <X 1. By the choice of
2y, fi (2o} = 1 for all ¢, and so none of the members of the sequence
f1:Ja - - belongs to V; it follows at once that f; cannot after all be
the limit of this sequence.

It should be noted in passing that the topological space used in
thig exampic appears in rather a natural way in analysis. In fact,
to say that a sequence f,, f,, . . . of points of this space converges to
the limit f means exactly that the functions f,f;... converge
pointwise to f; that is to say, for every fixed value of «, the sequence
f1lz), fo{x), . . . of real numbers converges to fix).

Exercises

1. Verify the statement made at the end of the section; namely
that in the space £ of Example (2}, the sequence {f;} converges to f
if and only if the sequence {f;} of functions converges pointwise to f.

2. Suppouse that a topological space £ satisfies the following
condition:

For each point p e E there is a sequence Fo(p), Vofp), ... of
neighbourhoods of p such that ¥, . {p) € V,(p) for each =, and such
that, given any neighhourhood 7 of p there is an n such that
Valplc U,

Prove that in this caze, if p 15 o limit point of a set A n &, p 18
the limit of some sequence of points of 4.

The condition imposed on £ here is sometimes called the first
countability axiom (the sccond being a condition on the family of
Open sets).

3. Prove that a REuclidcan space satisfies the first countability
axiom. More generally, show that the axiom holds for any metric
space.

4, Lct K be the space of Example (3) of §1 consisting of the
integers with a neighbourhood of »# defined as any set containing all
the integers » - mgim =0, -1, 4-2 .. for some r, 7 being a
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fixed prime. Let & he an integer not divisible by ¢, and let A be the

set of all integers divisible by k. Show that every point of £ is a

limit point of A. If k is divisible by ¢* what are the limit points of A?
Hint: Use the fact that if k is not divisible by ¢ the H.C.F. of &

and ¢ 8 1.]

7. Closure of a set

One sometimes wants to consider, along with a given set, the
collcetion of all its limit points. The process of adding these limit
points is given a special name in the following definition,

DerintTION 9. Let 4 be a set in a topological space E. Then the
closure of A is defined to be the set in F consisting of all the points of
A along with all the limit points of A. The closure of 4 will be
denoted by 4.

Examples. {1) If Eis the sct of real numbers in the usual
topology, and A the set of numbers satisfying the inequality
n < ¢ < b, then A is the set satisfying the inequality ¢ <o < b.

(2) If E is a Euclidean space and A is the set of points at distanece
less than r from some fixed point p, then 4 is the set of points whose
distances from p are less than or equal to 7.

(3) If E is the space of real numbers and A is the set of rational
numbers then 4 = E.

1t is convenient to distinguish those sets in a topological space
which already include all their limit points:

DEFINTITION 10. A set 4 in a topological space B with the property
A == 4 will be called a closed sef of K.

Examples. (4) If Eis the sct of real numbers, the set of numbers
satisfying @ <Z « < b is elosed. Bemembering that the set satisfying
the inequality @ << x < b is an open set of E, it will be noticed that
open and closed intervals, as usually employed in analysis, are open
and closed sets respectively, in the sense of the topology of the real
line,

(5) It is not hard te see that any finite set on the real line is closed,
since such a set has no limit points at all.

(6) There are other closed sets on the real line besides finite
sets and closed intervals. For example the set consisting of the
numbers 0, 1, 1, 3, .. .is closed. Note that this set with 0 omitted
is not closed.

(7) Example {3) above can be generalized to any Hausdortf space.
For if E is a Hausdorff space and A is a finite set of points, A has no
limit points (Example {1) §6) and so 4 is closed.
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(8) There are, however, examples of non-Hausdorft spaces in
which finite sets are not closed. For instance, if ¥ is the (x, y)-plane
with the topology alrcady used in Example (1), §6, a single point
(%o, ¥o) 18 nOt closed, because all the points (xy, #) are limit points of
the set consisting of (xy, #,)-

The following theorem gives one of the most important properties
of closed sets, one which is sometimes used in defining them. The
theorem is preceded by a lemma which translates the definition
given herc of closure into an easily usable criterion.

LEMMA. Let 4 be a set in a topological space K, Then a point pof &
belongs to A if and only if every neighbourhood of p meets A.

Proo¥. Suppose first that p € A. It may happen that p belongs to
A, itself, in which case every neighbourhood of p certamnly meets
A4, namely in p at least. If, on the other hand, p e A, but p ¢ 4, then
p must be a limit point of A. And so, by the definition of limit point,
every neighbourhood of p must meet 4.

Conversely, suppose that every neighbourhood of p meets 4.
If p € A this condition does not really say anything, and p is certainly
in A. Butif p ¢ 4, the assumed condition says that every neighbour-
hood of p meets 4 in a point which must necessarily be different from
p. By definition, p is then a limit point of 4, and so belongs to AA.

TaroreM 8, A set A wn a topological space B is closed if and only if
the complement of A itn E is an open sel,

Proor. Supposc 4 is closed. Let p be a point of the complement
of A. Then since 4 = 4, p is not in the elosure of 4, and so by the
ahove lemma there will be a neighbourhood I7 of p not meeting 4.
But this means that U is contained in the complement of 4. That
it to say, cach point p of the complement of 4 has a neighbourhood
contained in the complement of 4; the complement of 4 is therefore,
by definition, an open set.

Suppose, to prove the converse, that the complement of 4 is an
open set. It must be shown that 4 = A; that is, since in any casc
4 c A, it must be shown that 4 ¢ 4. Suppose on the contrary
that p is a point of 4 but that p ¢ 4. Then p is in the complement of
A; since the complement of A4 is open there is a neighbourhood U of
P contained in the complement of A4, that is, not meeting A. But by
the above lemma this is contrary to the supposition that p e d.
This eontradiction shows that a point p in 4 but not in 4 cannot
be found, and so 4 = A, and the proof is completed.

An important consequence of this theorem is that one can translate
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Theorem 1 into a theorem about closed sets by taking the
complements of all the open sets mentioned there, and noting that
the formation of a union is complementary to the formation of an
intersection. The result obtained is the following:

THEOREM 4. In a lopological space E (1) the tnfersection of an
arbitrary collection of closed sets is closed, (2) the union of a finite
collection of closed sets is closed, (3) the empty sed is closed and (4) the
whole space E s closed,

In conclusion to this section it should be noted carefully that, if one
is considering a subspace F of a space £ as well as & itself, the
notions of closure and closed sets, like those of neighbourhoods and
open sets, are relative. That is to say, a set may be closed in F,
in the sense of the induced topology on ¥, hut not closed in ¥, and
the closure of a set in F may not be the same as its closure in £.
This will be illustruted by some examples:

Examples. (9) Let E be the set of real numbers in the usual
topology, and let ¥ he the set of rational numbers in the induced
topology. Then the sct A of rational numbers satisfying the
inequality 0 < « =7 1 is closed in #, but is not closed in E, for in
order to close it in E one must add all the irrational numbers
hetween O and 1.

(10) Let E and F be as in Example (9) and let 4 be the set of
rational numbers satisfying 0 <2 2 <2 1. This set is not closed in F
nor in &. The closure of 4 in F consists of the rational numbers
such that 0 = 2 = 1, but the closure in £ consists of all real numbers
such that 0 <7 2 < 1.

There is, however, a special case in which closed sets in F are
also closed in the larger space E, namely when F is a closed set in £
in the topology of E (cf. Exercise 5, below}).

Exercises
1. Let A4 and B be sets in a topological space E. Prove the
following properties of the operation of closure:
(1) 4= 4;
by AuB=Adu B;

(& AnBcAn B
Taking & to be the space of real numbers and 4 and B to be

suitable subsets, show that 4 n B and 4 n B may be different.
2. Let E be a topological space and 4 a set in E. Prove that 4 1s
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the smallest closed set in £ containing A (that i3, a closed set con-
tained in every closed set which contains 4).

3. It may be noticed that therc is a sort of duality between the
two previous exercises and the results of Exercise 5, §2, and
Theorem 2. This iz due to the complementary nature of interior
and closure about to he proved, Prove, namely, that, for any set 4

in a topologica! space E, CA = C;{ and CA = CfT . Henee deduee
the results of Exercises 1 and 2 above from Excrcise 5, §2, and
Theorem 2.

4, The properties of closure in Exercise 1 are sometimes taken as
the basis of yet another definition of a topological space, as follows:

Let £ be an abstract set and let an operation be defined on the
subsets of & which assigns to each subset 4 a subset 4 containing
A. This operation 13 to satisty (a), (b), {¢) of Exercise 1 and also

the conditions §§ —— @ and F = E. Prove thut there is one and only
one way of making E into a topological space in such a way that J is
the closure of .

[Hint: BDefine {7 to be open if and only if CU = CU and use Theorem 5
to show that £ 13 thus made mto a topological space., Then note that the
definition Just given for open sets in E ensures that the closod sots are

those for which 4 = A, and finally check that A is the closure of 4 by
showing that it is the smallest closed set containing A ]

5. Let E he « topological space and F a subspace, Prove that
A c F is closed In the space F if and only if 4 = B n F where Bis
closed in .

[Hint: Use Theorem 6.]

In particular, if F iz cloged as a sct in E, prove that 4 ¢ F is
closed in F if and only it it is closed in E.

6. Note that, by Theorem 8, open and closed are complementary
properties but they are not opposite to one another, A set may e
neither open nor closed or it may be both. For example:

(a) Prove that if £ is the space of real numbers and A is the set of
rational numbers then 1 is neither open nor closed.

(b) Prove that if £ is the space of rational numbers {(with topology
induced by that of the real numbers) and 4 is the set V2 <7 2 < /3
then 4 is hoth open and closed. (ef. Chapter III, §4, Exercise 4
for more information on this situation),

7. Prove that each individual point of a topelogical space E is
closed if and only if the following condition holds:
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(ziven any pair of distinct points of E there is a neighbourhood of
cach which does not contain the other.

Note that thiz condition is a separation condition for pairs of
points similar to but weaker than the Hausdorff condition. Note
also that in a space satisfying this condition any finite set is closed,
thus generalising Example (7} ahove.

8. Let £ be the set of real numbers with open sets defined as the
empty set and complements of finite sets, Prove that X satisfics
the separation condition of the last exercise but is not a Hausdorff
space. Thus every finite set in ¥ is closed. If A i3 an infinite set in £
prove that 4 = K.

9. Let ¥ be a Hausdorff space and let {p,} be a sequence in E
having p as its limit. 1f A is the set of points p, {for all ¢} prove that
A = A up. Is this necessarily true in a non-Hausdorff space?

8. Frontier of a set

Frontier points of a set in a topological space have aiready bheen
mentioned in contrast to intertor peints, One wants, however, the
frontier of a sct to be something which, in some sense, separates the
points of the set from points not in the set. That the non-interior
points of a set are not themselves sufhcient for this can be seen from
the following example. Let the space & to be considered be the
(2, y)-plane in the usual topcology, and let 4 be the set consisting of
all points satisfying the inequality z® + %* <7 1 along with ali the
pomnts on the upper halt of the circumference of this circular dise,
Then the only pomts of A which are not iterior are the points on
the upper half circumference; but it would seem natural to say that
the frontier of A consists of the whole cireumference a2 — 2 = 1.
Now it may be noticed that the points of this circumf{erence are not
only not interior to 4, but they also fail to be interior points of the
complement of 4 in E. This gives a topological characterization ot
the set x* 4 ¥? = 1 and in doing so suggests a suitable definition for
the frontier of a set in any topological space.

DerintTiox 11, Let £ be a topological space and 4 a set in L.
Then the fronlzer of A is the set of all points of £ which are neither

in the interior of 4 nor in that of CA.

Analternativedefinition of frontierisgiven by thefollowing theorem:
TnroreM 10, Let 4 be a sef in a lopological space E. Then the

frontier of A is the set A n CA

TOPOLOGICAL SPACES 41

Proor. Let p be in the frontier of A4 and write 4" = {:A ; then by
definition p 12 not an interior point of A. This means that there is no
neighbourhood of p contained in 4, or in other words that cvery
neighbourhood of » must meet 4°. It then follows from the lemma
of §7 that pe A’. Similarly, since p is in the frontier of 4 itisnotan
interior point of 4’, and so every neighbourhood of # meets A4; in
other words pc A. Combining these results, pe A n 4°, and since ¢
is any point of the frontier of A, it follows that the frontier of A is
contained in A n 4"

To get this containing relation in reverse, let p e A n 4'. Then by
the lemma in §7 cvery neighbourhood of » meets both 4 and A’
that is, no necighbourhood of p is eontained in 4 nor in A", p is
therefore not in the interior of A nor in that of 4, and so is in the
frontier of 4. Hence A n A’ is contained in the frontier of A.
Thus A n A’ has been shown both to contain and to he contained in
the frontier of 4, and so the theorem is proved,

Exercises

1. If 4 is a set in any topological space prove that the frontier of
A is contained in that of 4. Give an example of & set in 4 the space
of real numbers for which 4 and A have different frontiers.

2, If 4 15 any sct in a topological space prove that the frontier of
A is contained in that of A. Give an example of a set in 4 the spacc of
real numbers for which 4 and A have different frontiers.

3. Let 4 and B be sets in a topological space. Prove that the
frontier of 4 U B is contained in the union of the frontiers of 4 and
of B, and give an example to show that it may be different from
this union.

[Hint: Write down the definition of the frontier of A4 4 B, namely

A0 8N E(;‘-l U B) and use Exercise 1 of §7 above, along with the
rules for ealeulating with the operations u, N, [.]
4. If 4 is a closed set and B an open set in a topological space and

A" 1s the fronticr of A, prove that B n A’ is contained in the frontier
of An 1.

[Hint: It i{s to be shown that AnBnl4c 40BN {:{4 n B); do
this by showing that {4n B) = (4 u (B8]
3. Let B and F be two topological spaces andlet 4 c E, Bc F.

Let 4° and B be the frontiers of 4 and Bin F and F respeetively.
Prove that the frontier of 4 X Bin & x Fis (A X BYu (4’ x B,

4




CHAPTER TII

TOPOLOGICAL PROPERTIES OF
SPACES

1. Continuous mappings and homeomorphisms

TuE definition of continuous mappings about to be given has
already becn discussed in Chapter I. The notion of neighbourhood,
however, on which this definition rests, was at that stage entirely
intuitive. By means of the definition of topological space given in
Chapter IT the idea of neighbourhood has been given an abstract
formulation, and the properties to be attributed to neighbourhoods
have been c¢learly laid down, and on this foundation the definition of
continuity may be securely set up.

DermviTioN 12, Let £ and # be two topological spaces., A
mapping f of £ into F is a law which assigns to each point p of £ a
well defined point f{p) of ¥. The mapping f is said to he continuous
at p if, for cach neighbourhood U of f(p) in ¥, there is a neighbour-
hood V of p in E such that f{(F)} c /. The mapping f of ¥ into F 13
called confinuous if 16 13 continuous at all points of &.

There are a number of remarks which should be made concerming
this definition. In the first place, it covers the notion of continuity
used in analysis. To say that fis a continuous real-valued function of
a real variable in analysis means that f is a continuous mapping of the
real numbers into themsclves, in the sense of the above definition, the
real numbers being now taken as a topological space with a neigh-
bourhood of a number taken as any set containing an interval with
that number as mid-point. Similarly this definition covers the case of
mappings of one Euclidean gpace into another as discussed from the
intuitive point of vicw in Chapter L.

A second point which should be noted is of the greatest importance
and should be borne in mind whenever any question of mappings
(continuous or otherwise) iz under comsideration. Namcly, it is
essential to name the spaccs £ and F when a mapping of & into #
is being defined, and the mapping is to be regarded as changed if
either & or ¥ is replaced by a subspace or by a bigger space. Oneis
misled in this matter by the fact that in elementary work functions

42
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are usually given by explicit formulae, something which can in fact
be done only in very special cases. The formula y = 2 for example,
is usually regarded as sufficient in elementary analysis to define ¥
as a function of z. Here, however, this formula is to be regarded
as defining a funection or mapping only when the range of values of x
to be considered is specified, and also only when it has been stated
whether the values of the funetion are to be thought of as in the set
of all real numbers or only in some subset. The following are, for
example, four different mappings all defined by the same formula
Yy = T*:

(1) & mapping of the set of all real numbers into itself;

(2) a mapping of the set of all real numbers into the set of non-
negative real numbers;

(3) a mapping of the set of real numbers in the closed interval
from 0 to 1 into the set of all real numbers;

(4) a mapping of the set of real numbers in the closed interval
from 0 to 1 into the closed interval from 0 to 1.

The difference between maps (1) and (3) is that in (3) one is only
applying the formula y — 2® to a subsct of the set of real numbers,
without even econsidering the numbers outside this subset. In
general one often wants to consider the effect of a given mapping on
a subspace, and the process of doing so is given a name in the
tollowing definition:

DermvaTiON 13. Let f be a mapping (not necessarily continuous)
of a topological space & into a topological space F, and let " be a
aubspace of £. Then f induces a mapping f* of E’ into F, defined by
setting f'(p) = f(p) for all pin E'. f’is called the restriciion of f to &',

The fact that [ and f* ave different mappings is brought out most
clearly by noting that if f* only is known, f is by no means uniquely
determined. For example, the mapping (3) above iz the restriction
of (1) to the closed interval from 0 to 1. But exactly the same
restriction is obtained from the mapping g of the real numbers
into themselves defined by setting g(x) = 0 for x << 0, g{z) = z?
for0 Cx < 1,and g{z) = 1 for v > 1.

In the above list of four mappings, the difference between (1) and

. (2) or between (3) and (4) lies in the fact that the mappings, although

defined on the same set, are rcgarded as mappings into different
sets. The importance of this distinetion will not become apparent
until Chapter IV when the question will again be brought up in
connection with certain operations inveolving continuous mappings.
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It has alrcady been pointed out {§3, Chapter I} that & topological
space can be defined in terms of open sets instead of in terms of
neighbourhoods of individual points. The usefulness of this mode of
definition rests principaily on the fact that continuity can be defined
in a very simple way in terms of open sets, as shown by the following
theorem.

TreoREM 11. A mapping f of a topological space E into a topologreal
space F is continuous if and only if the inverse image of every open
set tn F is open in K.

Proor. First let f be given az a continuous mapping of ¥ into #,
-1

and let ' be an open EHet of F. Itisto be shown that f{U}isopenin .

Let p be any point DfﬂU then f(p}e U, and U, heing openin ¥, isa
neighbourhood of f{p) in F (ef. Theorem 4). From the definition of
continuity it follows that there is a neighbourhood ¥V of p in B such
that f (Vyc 7. This inclusinn relation implies, however, that

Ve f{ '}, Thus each point p of f ) has a neighbourhood contained
—1

mf ), and so f{l/)is openin E. -1

To pmv& the converse, suppose that f({/) is open in E whenever U7
is open in #. Let p be any point of &; 11: must be shown that f is
continuous at p, To do this, let U be a neighbourhood of f{ f pyin F.
By Theorem 3 them is an open set W in F such that f ceWcl.

By hypothesis, f{ W} is open in E. Since f{pje W, f{ ) certainly
contains @, and being open it is a neighbourhood of p. Thu-’-_z for anv
given 11e1ghlmurhnnd U of fip) in F there iz a neighbourhood,

namely f{ﬂ?}, of p in £ such that ff = Wect’. And so f i»
continuous at p and the proof is cnmplete.

It should be noted incidentally that the direct image of an open
set, under a continuous mapping need not be open. For example,
let f be the mapping of the space of real numbers into itself given by
fl2y = 2% The open set —1 <7 x <1 is carricd onto the set

0 < & =7 1 which is not open.
~1
The inverse image symbol f is not in general a mapping. Ifit is to

be a mapping f must in the first place be one-onc. That is to say,
f being a mapping of ¥ into F, two points p and ¢ of & are mapped on

the same point of F if and only if p = ¢. In the second place, in
—1
order that f may be defined at all points of F as a mupping of F into

POPOLOCICAL PROPERTIES OF SPACES 45

I, it is necessary and sufficient that every point of # should be the
image of some point (in fact only one, since f 18 one-one) of £ under f.
Another way of stating this sccond condition is to say that f(E) = F,
or to say that f is a mapping of £ onto F.

Mappings which are one-one and onto arc always of special
interest because of the possibility of constructing an inverse mapping.
In topology however, particular importanec is attached to those
mappings which are not only one-one and onte but which have also
the property that both the mapping and its inverse are continuous.

DermNITioN 14. Let £ and F be two topological spaces and let f
-1

be a one-one mapping of & onto F. Thenif both fand fare continuous
f is said to be a homeomorphism of B onto F,and E and F are said

to be homeomorphic under f.
-1
Clearly, if f is o homeomorphism of E onto F then fis a homeo-
~1-1

merphism of ¥ onto E since, if g = f, ¢ = f. One sometimes says of
two spaces related in this way that they are homeomorphic, without
mentioning the mapping: this terminelogy will turn out to be
sufficient in many contexts, but not always, and so one should
develop the habit of noting, at least mentally, the mapping involved
when one states that two spaces are homeomorphie,

In view of Theorem 11 and the definition just given it follows

that a homeomorphism of £ onto F sets up a one-one correspondence
~1

between the open sets of E and those of F; for the continuity of f

implies that f carries each open set of K into an open set of F, and
-1
the continuity of f implies that f carrics each open sect of F into an

open set of E. Also, since, by Theorem 3, every neighbourhood of a
point contains an open set containing the point, it follows that a
homeomorphism between two topological spaces E and F sets up a
one-one correspondence between the neighbourhoods of each point of
E and the nsighbourhoods of the corresponding point of ¥. Now
a topological space is defined simply by means of a set of points and
the family of neighbourhoods of each point, And so it is clear that
two spaces in which not only the points are in one-onc corre-
spondence but also the neighbourhoods of corresponding points will
be very similar to one another.

The statement at the end of the last paragraph can be made rather
more precise as follows. There i3 a wide class of properties of a
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topological space & which depend only on the definmition of # as a
topological space, that is, depend only on the knowledge of which
gets in  are neighbourhoods (or which sets are open if the other
definition is used), but depend in no way on any other proporties
the elements of £ may happen to have. Such properties will in general
be defined in terms of the open sets or neighbourhoods of ¥ and
continuous mappings of other spaces into ¥ and of F into other
spaces. And so it is clear that these properties will also belong to
any space homeomorphic to £, since the open sets and neighbour-
hoods in such a space are in one-one correspondence with those of £,
and continuous mappings may be recognized by looking at open
sets. For the sake of having a satisfactory definition it is better
to take the statement made in the last sentence as characterizing
the type of property under consideration.

DerFINTTION 15. A property of a topological space ¥ will be called
a. topological property of E if it also belongs to every space homeo-
morphic to E. The subject of topology s concerned with the study of
fopological properties of topological spaces.

In descriptive expositions on the subject, topology is often
described as rubber-sheet-gcometry, the implication heing that it is
the study of properties of figures, curves and surfaces, etc., which
remain unchanged under continuous deformations involving
stretching and eompressing, but without cutting or tearing or sticking
points together. This gives quite a good intuitive picture of what is
going on, in the sense that two figures which can be deformed into
one another as just described can usually be shown fairly easily to be
homeomorphic spaces, regarding both agsubspaces of Euclidean space.

For example, the surface of a sphere can be deformed into that of a
cube simply by taking hold of it at eight points and strefching it
tight. And, regarding both of these surfaces as subspaces of Euclidean
3-gpace they can easily be proved to be homcomorphic as follows,
Join the middle point of the cube to a point p on its surface, thus
obtaining a directed line segment {. From the centre of the sphere
draw a directed line segment I’ parallel to I; 1’ will meet the surface of
the sphere in exactly onc point f{p). It is not hard to see that the
mapping f of the cube onto the sphere is a homeomorphism,

On the other hand there are two respects in which this notion of
topology over-simplifies the issuc. In the first place the intuitive
nature of this notion restricts one to subspaces of Euclidean 3-space,
while in fact one often wants to consider sets of a more general
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nature. And in the second place, even subspaces of Euelidean 3-space
which are homeomorphic are not necessarily obtainable from one
another by continuous deformation. For example, let ¥ be the
circumference of a circle, and let £’ be a knotted curve, as shown in
Fig. 2, and for simplicity assume that the curves £ and & " are of the
same length, Fix a point  on E and a point " on E', and mark a
direction of rotation along each curve (shown by the arrows in Fig. 2).
Now if ¢ is any point on E, define f(g) to be that point on £’ whose
digtance from p’ along £’ in the direction marked is the same ag the
distance of ¢ from p measured along F in the direction marked. fis
clearly a homeomorphism of E onto E’. But £ cannot be deformed

Frg, 2,

continuously into E’, unless one extends this term to. ailow the first
curve to cut across itself. Although it might be possible to make such
an extension of the notion of eontinucus deformation in simpie
cases, such an attempt would be impracticable in more elaborate
situations and would certainly make the rubber-sheet-gcometry
point of view unworkable in practice.

Before proceeding in the next few sections to give examples of
topological properties, it had better be explained here just why such
propertica are interesting and important. Two homeomorphic
spaces are to be regarded as having the same topological structure, for
there is an exact correspondence between the neighbourhoods in the
two spaces, and the topology in a space is defined by means of the
neighbourhoods and nothing else. Homeomorphism thus plays a
part in topology analogous to that played by isomorphism in algebra.
The natural question to ask then is whether one can tell if two given
spaces are homeomorphic or not; in other words is it possible to
classify all spaces so that homeomorphic spaces appear in the same
class. It turns out that this is too ambitious a task to attempt, but
it can be thought of as an ideal towards which one strives. The best
classifications which have actually been obtained group apaces into
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classes of spaces bearing relations to one another which are
considerably weaker than homeormorphism.

In the meantime, consider how one would try to find out whether
two given spaccs arec homeomorphic or not. It two spaces E and #
arc homeomorphic and one suspeets them to be so, then in order to
prove one’s suspicions a honieomorphie mapping of E onto ¥ must
be constructed. And if one has already reached the stage of thinking,
from intuitive grounds or otherwise, that £ and F are homeomorphic,
the actual construction of this mapping is likely to be more or less a
matter of sufficient resourcefulness and ingenuity. On the other
hand, if one suspects that two spaces F and F are not homeomorphic,
one is up against much gredter difficulties in constructing a proof.
For one cannot expect to carry out the proof directly. That is, one
cannot usually prove directly that every attempt to construct a
homeomorphism of E onto F is bound to fail, since such a direct
proof would require the writing down and inspection of all mappings
of K into F. Of course there are simple cases when one can sec
at a glance that & and F eannot he homeomorphic, as, for example,
when one of the spaces contains oniy a denumerable number of
pointa and the other 12 non-denumerable. But in general one has to
rely on indirect methods to prove that £ and F arc not homeo-
morphic, and this is where topological properties have their use.
For if one can find a topological property belonging, say, to K but not
to F, then & and F cannot be homeomorphic, since if they were, ¥
would have all topological properties belonging to .

Topological preperties vary greatly in the interest to be attached
to them. For example, the fact that in auny topological spacc
the whole space 18 an open set 15 a topological property. But it 15 not
gpecially interesting, not only because it is simply & matter of
definition, but because it helongs to all topological spaces. Propertics
which belong only to some spaces but not to others are of interest,
because, us observed at the end of the last paragraph, such propertics
help to distinguish between spaces which are not homeomorphic.
Thus the more non-trivial topological properties one has at one’s
disposal the more chance one has of distinguishing between spaces
which arc not homeomorphic to one another. It shounld be emphasized
again that this use of topological properties will never show that
two spaces are homeomorphic to one another; the fact that two
given spaces both have a certain topological property is quite
inconclusive, and the spaces may or may not be homeomorphie.
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In the following three sections cxamples of some elementary
topological properties will be given, while Chapters 1V-1IX will have
as their subject some rather elaborate topological properties of great
importance. The latter propertics consist essentially of the assign-
ment of a collection of groups to a space, the groups assigned to
homeomorphic spaces being tsomorphic. This sort of situation is
usually described by saying that these groups are topological
invariants.

Exercises

1. Let F be a topological space and E a subspace. The inclusion
mapping 1:K — F is defined by i(p) = p for all pc . Prove that
¢ is continuous.

[Hint: Use Theorems 6 and 11].

2, Let B, F, (¢ be three topological spaces and [f:K — F,
q: ¥ — ¢ two continucus mappings. Prove that the eomposition
g.f iz a eontinuous mapping of &£ into .

In particular if £ is a subspace of F and f is taken to be the
inclusion mapping, deduce that if ¢: F — (¢ is continuous then =0 i3
the restriction of g to F.

3. Show that a mapping f:F — F is continuous if and only if
the inverze image of every closed sct in ¥ iz closed in £.

4, Let ¥, F be two topological spaccs and f a mapping of & into
F. Prove that fis continuous if and only if f{4) C f{A4) for every set
ACE,

If p is a limit point of 1, is f{p) necessarily a limit point of f(.4)?

[Hint: Use Exercize 3.]

5, Lect f be a continuous mapping of a topological space E into a
topolegical space F, and lct {p,} be a sequence of peoints in K
eonverging to p as a limit. Prove that {f(p,)} converges to f(p).

6. Let E and F be two topological spaces and K X F their
topological product (Chapter II, §1, Exercise 4). Define f;:
EX F—F and f,E x F— F by f,(p, 9 = p and f,{p, ¢} —=¢
for all pc £ and g F. Prove that f, and f, are continuons,

Also if (7 is a topological space and fif — K x F a given
mapping, prove that f is continuous if and only if the compositions
fi-f and f,. f are eontinuous,

7. Let E be the (x, y)-plane in its usual topology and Iet I be the
set of real numbers # such that 0 =T ¢ =Z | {a subspace of the space of
real numbers}. Let z(t) and y(f) be two real valued functions of ¢ {for
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tcI. Deduce from the last cxereise that the mapping fif — £
defined by f{t) == (z(f), ¥(1)) is continuous if and only if x{f) and
¥(t) are continuous functions in the ordinary sense of analysis.

8. In conneetion with Definition 14 it should be noted that a
mapping can be one-one and onto and continuous in one direction
but not in the other; and such a mapping is, of course, not a homeo-
morphism. For example, let ¥ be the topological space whose points
are the real numbers, open sets being the empty set and complements
of finite sets. And let £ be the spacc whose points are the real numbers
with the ordinary topology. Define f1F -+ F by f(x) =« for all
real numbers x. Prove that f is one-one, onto and continuouns but

—1
that f is not continuous.

9. Show that the property of being a Hausdorfl space 1s a
topological property.

10. Construct an explicit mapping to show that a closed rectangle
in the plane is homeomorphie to a cloged circular dise.

Generalize this to the proof that an n-dimensional closed rect.
angular block and a closed solid =n-dimensional sphere are
homeomorphie.

il. Let E he a solid n-dimensional sphere, that is, the set of

R
points satisfying >x2 <{ 1 in Kuclidean space of # dimensions, and
i=1 "
et § be its surface, defined by DMxr? = 1. Let F be a Euclidean
i1
space of any dimension. Prove that a continuous mapping f:8 — #
can always be extended to a mapping ¢:# — F. That 18 to say,
prove that there is o mapping ¢ whose restriction to § coincides
with f.

[Hint: Take any point g in F' as the image of the centre of & under g,
and then let g map the segment joining the centre of £ to p on & onto
the segment joining ¢ and f{p) mn F.

Tt should be noted that if F is any space and S a subspace, it 13 not
always possible to extend mappings given on § to mappings on E. For
example, if the Euclidcan space ¥ were replaced by the spherc S and f
were taken as the identity mapping the extension would be impoessible;
this will be proved in Chapter VIII, §3, Excreiso 1.]

2. Compact spaces

The subject of this and the two following sections is a discussion of
some elementary topological properties which are of considerable
importance throughout topoiogy. The first of these properties
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arises from the attempt to gencralize the notion of a closed bounded
get in a Euclidean space to other tupological spaces. This notion
requires some modification, since boundedness, involving as it does
the idea of distance, 15 not itseif a topological property. The transia-
tion of the property of being closed and hounded into an equivalent
topological property of sets in Euclidean space is given by the
following theorem, the Heine-Borel Theorem of analysis generalized
to a Euclidean space of any dimension.

THEOREM 12. A4 set 4 in a Euclidean space E of dimension n 3
closed and bounded if and only if, whenever A s contained in the union
of an arbitrary collection of open sets in E, then it 1s also contained in the
unton of a finile number of open sets chosen from the given collection.

Proor. First suppose that 4 is closed and bounded, and let # be
a family of open sets in £ whose union contains 4, and suppose that
A 15 not contained in the union of any finite number of open sets
taken from #'; this will be shown to lead to o contradiction. Since A
is bounded, it is contained in some closed rectangular block B
defined by incqualities of the form ¢, < x, <{b,, : =1,2,.._,n,
where (z,, x5, . . ., .} are the coordinates of a variable point in .
Subdivide B by marking in the bisccting hyperplancs with the
equations x; = Ma, - 0),i=1,2,..,,n. Since it is assumed that
A cannot be contained in the union of a finite number of sets chosen
from F, it follows that there 15 at least one of the subdivisions of B,
say B, containing a portion A, of 4 such that 4, cannot be contained
in the union of a finite number of sets chosen from F. Repeat the
bisection process with B;. That is, mark in the n hyperplanes
bisecting B, in cach coordinate direction. Then, as hefore, one of the
resulting subdivisions B, of 5, will contain a portion 4, of A, such
that 4, cannot be contained in the union of & finite number of scts
chosen from F. Then subdivide B, in the same way, and so on.
Thus g sequence of rectangular blocks B, B,, By, . .. is constructed
with the property that each B, contains a portion 4, of 4 which
cannot be contained in the union of a finite number of open sets
selected from #. On the other hand it is not hard to see that there is
exactly one point common to all the B,; namely a point p with
coordinates {c,, ¢,, - . . ¢,) Where ¢; is the common limit of the upper
and lower bounds of the j-th coordinates of points in B, as ¢ tends to
infinity, Now if ' is any neighbourhood of p, it is clear that, for &
large enough, B, c I'. But R, contains points of 4, namely the set
4;, and so IV meets A. Since 7 iz any neighbourhood of p it follows
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that € 4 (Lemma of Chapter IL, §7) and so pe 4, since A4 1s closed.
p is therefore contained in some set ¥ belonging to the family #'. But
V, being open, is a neighhourhood of p, and so contains B, for some ».
And this gives the required contradiction sinee it implies that A4,
is contained in the set V chosen from F whereas it should not be
vossible to find any finite number of sets of ¥ whose union gontains
A,. The Theorem is thus proved in one direction.

To prove the converse, consider first the family F of open sets
consisting of an open sphere of radius 1 about each point of 4 as
centre. By hypothesis, 4 is contained in the union of some finite
subcollection of these spheres, and so 4 is certainly bounded. It
remains to be shown that A ia closed. To do this, suppose that there
is a point p in A but notin 4. Let g be any point of 4. Since p & A4,
pand g are certainly different, and so there are open spheres Ulg) and
V{7) of centres ¢ and p, respectively, having no point in common. The
family of {/{g) obtained by letting g vary throughout A clearly contains
A in its union, and so, by hypothesis, there is a finite collection ¢,
%, . . . , g, of points of 4 such that 4 ¢ T{g,) U U{g) u ... v Ul(g,).
On the other hand V{g,), for 1 == 1,2, ..., n, is an open sphere of
centre p; let V be the smallest of these spheres. Then V doees not

]
meet | J&'{g,); forif it did it would have some point in commmon with
i=1
I7(g,),say, and since ¥V ¢ ¥(g;) it would follow that L{g;} n Vig,) 7+ @,
which contradicts the definition of the {f{g) and V{g). Since, then,

"
V' has no point in common with | JT{g,), it certainly does mot
i=1
meet 4. This is a contradiction, however. For p, being in 4, should
have the property that every one of its neighbourhoods meets 4.
This contradiction shows the impossibility of tinding a point ped
and not in 4. And so 4 is closed as required.

One can avoid the explicit mention of the open sets of the
Euclidean space in the statement of this theorem by using the
concept of induced topology (Chapter II, §4). Regarding 4 as a
subspace of E, the intersections of A with open sets of £ are open
sete of A: thus in the statement of the above theorem, instecad of
saying that 4 is contained in the union of a collection of open scts of
E. one can say that 4 is equal to the union of a collection of open sets
of 4. The wording of the theorem may also be tidied np with the aid
of the following definition.

DermxiTion 16. Let E be any topological space, and tet £ he a
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family of sets in E such that B is their union. Then ¥ is said to be a
covering of K. If, in particular, ali the scts in the family ¥ arc open
gets, then & is called an epen covering of £. And if F and F’ are two
coverings of E such that cvery set belonging to ¥’ also belongs to F,
then ¥’ is called a subcovering of F.

Using the terminology just introduced Theorem [2 may be
reformulated as follows:

A set A in a Buclidean space 18 closed and bounded if and onlyf every
apen covering of A, A being regarded as ¢ subspace of K in uts tnduced
topology, contains a finite subcovering.

This gcneralized Heine-Borel theorem just proved shows that the
property of being closed and bounded in a Kuclidean space 1s
equivalent to a topelogical property. This topological property can
now be formulated for any topological space, and, combined with the
Hausdorff separation condition, leads to the following definition:

DEeFINITION 17. A topological space E is called a compact space 1f 1t
is, in the first place, a Hausdorff space, and if also every open covering
of K contains a finite subcovering. If 4 is a set in a topological space,
then A4 is called a compact set if 4, regarded as a subspace of £, 1s a
compact space.,

For example, Theorem 12 says that a sel 4 in a Euclidean space 1s
compact if and only if it is closed and bounded.

Compactness has just been referred to as a topological property,
on the prounds that it is defined entirely in terms of open sets. But
the topological nature of compactness must still be formally verified;
that is, it must be checked that a spacc homecomorphie to a given
compact spacc 15 also compact. In fact a rather stronger result
will be obtained in the following theorem:

Tarorky 13. Let f be a continuous mapping of a topological space
E onto a tepological space F. Then if E is compact and F is Hawsdorff
F is compact.

Proor. Let ¢ be & given open covering of F. Then the inverse
image under f of each set of & is open in E {Theorem 11), and the
inverse images of all the sets in & form a covering ¢ of £. ' is thus
an open covering of the compact space &, and so it contains a finife
subcovering of . And finally the images under f of the sets m this
finite subcovering of £ are already known to be sets of the covering
(because of the definition of &) and form a covering of F', since f is
onto, Thus the given covering of F contains a finite subcovering, and
F is given as o Hausdorff space, and so it is compact.
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CoroLLARY 1, If B and F are homeomorphic spaces and B 13
compact, then so s F.

ProoF. In the first place it is almost trivial that the Hausdorff
separation condition is & topological property, and so # is a Hausdoril
space. Thus E is compact and is mapped continuously (by a homeo-
morphism in fact) onto the Hausdorff space F; and so by the
above theorem F ig compact.

CoROLLARY 2. If f:E — F is a confinuous mapping of a compac
space E inlo ¢ Hausdorff space F then f(E) 13 a compact set.

Exercises

1. Deduce from Theorem 13 that if f is a continuous function of
the real variable z for a < x << b then f{x) has a maximum and a
minimum which it attains at points in the closed interval (a, ).

2. Prove that a compact set in a Hausdorff space is closed.

[Hint: Imitate the second part of the proof of Theorem 12.]

3. Prove that a closed set A in a eompact space £ 18 compact,

[Hint: Given an open covering of A construct a covering of K by
taking E—A along with open sots intersecting 4 in the sets of the given
COVOring. ]

4. If A4 is an infinite set of points in a compact space E show that
A has at least one limit point.

[Hint; Otherwiso A4 would be closed and so compact; obtain a
contradiction by constructing an open covering of A each get of which
containg just one point of 4.]

5. Let f be a one-one continuous mapping of a compact space K

anto a Hausdorff space ¥. Prove that fis a homeomorphism (that iz,
—1
prove f continuous).

[Hint: Use Excreises 2 and 3 above and Exercise 3 of §1.]

6. Let £ be a Hausdorff space, 4 a compact set in £ and p a
point of E not in 4, Prove that there is a neighbourhood U of p
and an open set Vsuchthat A cVand Un ¥V =20.

7. Let A and 3 be two compact sets in a Hausdorff space. Prove
that thercare opensets U and Vsuchthat A c U, BV, Un V =0.

8. Let E be a compact metric space, ¥ any topological spare
and f a continuous mapping of ¥ into F. Let ' be an open covering
of . Prove that there is a positive number £ such that any sphere
of radius ¢ in E is mapped by f into some set of the covering C.
(A sphere of centre p and radius r in a metrie space is the set of

points ¢ whose distance from p is less than or equal to r).
[Hint: Suppose that, for each integer n, there is a point p,, of E such

e e
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that a sphere of centro p, and radius 1{n is not mapped into any set of €.
The set of points p, has a limit point p; obtain a contradietion by
ghowing that f cannot be continuous at p.]

3. Arcwise connected spaces

The idea which is to be made precise in this seetion is based on the
intuitive observation that certain sets of points, in the plane, say,
have the property that any two of their points can be joined by a
curve lying entirely in the set, while certain other sets fail to satisfy
this condition. For example, if A4 is & circular dise, open or closed, it
18 clear that every pair of points of 4 can be joined by a curve (in fact
by a straight line segment) lyving entirely in 4. On the other hand
let A" be a sct consisting of two disjoint circular discs; then any
path joining a point of one of these dises to a point of the other must
certainly cross the gap between the discs, and so must pass through
points outside A’

The first step in giving a rigorous topological meaning to the idea
just illustrated 15 to give a proper definition of a path or curve, In
analysis or analytical geometry when one speaks of a curve one is
usually thinking of a set of points in which the coordinates are
expressed as functions of 4 single parameter, and it is usually assuned
at least that these functions are continuous. For example a curve in
the plane would be specified by a pair of cquations x = f{#), ¥ = g(t)
where f and ¢ are continuous functions of ¢t. If one is specially
interested in the part of this curve joining two points » and ¢ in the
plane, the parameter ¢ can alwavs be adjusted =0 as to take the
value 0 at p and 1 at g. ¢ having been chosen in this way, it is not
hard to see that the two real valued functions f and ¢ define a
continuous mapping of the unit interval 0 <J ¢ < 1 into the (x, %)-
plane, The idea of a continuous mapping of this interval into the
plane as represcnting a curve in the plane lends itself readily to
generalization and suggests the following definition for a path in any
topological space.

DErFINTTION 18. Let E be a given topological space, and let 1
denote the unit interval 0 = ¢ < 1, regarded as a subspace of the
space of real numbers in the usual topology. Then a path in E
jotning two points p and ¢ of E is defined to be a continuous mapping
fof I inte F such that f{0) == p and f{1) = ¢. The path will be said
to ke tn a subset A of Eif fiIi c A.

The most important thing to be noticed about this definition is
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that the path is the mapping; in clementary geometry one is
inchined to think of a path as being a point sct, whereas here it is not
the point set image f(7) which is the path but the mapping f itself.
Thus a path will always be named by the mapping which defines it;
the path described in the above definition being cailed the path f
from p to q.

The definttion just given can now be used to deseribe properly the
idea mentioned at the beginning of this seetion.

DerniTIiON 19. A topological space X is sald to be arcwise
connected if, for every pair of points p and ¢ of # thereisa pathin &
joining p and g. If 4 15 a set in a topological space ¥, then 4 is
arcunse connected 1f every pair of points of 4 can be joined by a
path mn 4.

For example, if & is a Euclidean space of any dimension # it is
arcwise econnected. For let » and ¢ be two points of £ with
coordinates (¥, %o, ..., ¥,) and (=4, 25, ..., 2,) respectively, and
define a mapping f of I into & by setting f{f) equal to the point with
coordinates (i {t}, x4(t), ...,z {t)} where z(t}) = (1 — )y, -- iz,
¢ = 1, 2,...,n This mapping is clearly continuous and f{0) = p,
f{1) = g. Thus fis a path from p to g in & and since p and ¢ are any
pointa of £ the arcwise connectedness of £ follows.

It will now be shown that arcwise eonnectedness is a topological
property, this result depending on the following theorem:

THEOREM 14. Lel B and F be two spaces and f a conbinuous
mapping of & onto ¥. Then if K is arcwise connected so is F.

Proor. Let p and ¢ be any points of ¥. Since the mapping f i3
onto there are points " and ¢° in & such that f{p’) = p and fi¢’) = 7.
Nince E is arcwise connected there is a path ¢ in & joining p” and ¢':
that is, there is & continuous mapping ¢ of the interval I into X such
that g(0} == " and ¢{1) — ¢'. Then the composition f.g is a con-
tinuous mapping of I into # (Kxercise 2, 81) such that {(f.g}{0) = p
and {f.gX1) = ¢; that is to say, f.g is & path in ¥ joining p and q4.
Since p and ¢ are any points of F, the existence of this path proves
the arewise connectedness of ¥,

CororrLary 1. If B and I are lwo homeomorphic spaces, then E is
arcunse connected of and only of Fis; that is to say, arcwise connectedness
15 a topological property.

Proor. If K and F are homeomorphic there is a continuous
mapping of each onto the other, and so bv the above theorem, if
one of the spaces iz arewise connected, so iz the other.
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CoroLLARY 2. If f is a conlinuous mapping of an arcivise connected
apace E inio a space F, then f(E) 13 an arcwise connected set in F.

ProoF. fis a mapping onto f(E}, and so the resuit follows from the
theorem.

Exercises

1. Let p, ¢, ¥ be points of a topological space £ and let f be a
path in & joining p and ¢, g a path in & joining g and r. Show that
there is a path in & joining g and ».

[Hint: Definc a path & by A{t) = f(2) for 0 <t <1 and

h(t) =g(2t — 1) for § < ¢ < 1.]

2. If 4 and 1 are arcwise connected sets in a topological space
and 4 n B = 0 prove that 4 U B is arcwise connected.

3. Prove that if £ and F are arcwise connected spaces so is the
product £ < F.

[Hint: To join (p, g} and {p’, ¢’} Jein cach to (p, g').]

4. Prove that the circumference of a circle is arcwisc connected.
More generally if 5 is a sphere of dimension r prove that 8 is arcwise
connected.

[Hint: Do the second part by induection on #, noting that the section
of an r-dimensional sphere by a hyperplane through its centro is an
(# — 1}-dimcnsional sphere. |

5. Prove that the surface of a torus (cf. Fig. 21) is arcwise con-
nected.

4. Connected spaces

For many purposes the property of arewise connectedness is too
restrictive a condition to impose on a space. The property about to
be described is rather weaker, and has the additional advantage of
being simpler, in that it is defined directly in terms of open sets
without the intervention of the idea of a path in a space.

DEerFINITION 20. A topological space is said to be conrnected if it
cannot he expressed as the union of two digjoint non-empty open’
sets. A set 4 in a topological space is called connected if, when
regarded as a subspace of £ in the induced topology, 4 is a connected
space,

Examples. (1) Let A consist of two cireular discs in the plane
such that the distance between their centres is strictly greater than
the sum of their radii. Then A is not a connected set. For let the
dises be called 4, and 4,. Then therc is an open set in the plane

"
o
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containing A, but not meeting 4,, namely an open disc I/ whose
centre is that of 4, and whose radius is greater than that of 4,, but
not Jarge enough for I/ to meet 4,. Thus 4, = 4 n U, and so in the
induced topology of 4, A, is an open set. Similarly 4, is an open set
in 4, and so0 4 is expressed as the union of the disjoint sets 4, and 4,
hoth open in 4.

(2) Let A be the set of rational numbers, in the induced topology as
a subspace of the real numbers. Then A is not connected. Xor the
set {7, of rational numbers less than 4/2 and the set U, of rational
numbers greater than 4/2 are both open sets in 4, and are disjoint,
and 4 = U, u U,.

{3) The space E of all real numbers is connected. For suppose
E =0 UV where I and V are non-empty, disjoint and are both
open in E. Since U is not empty it contains some real number w,
and since V is not empty there must either be numbers greater than
w or less than « belonging to ¥ (possibly both}); for the sake of
definiteness suppose that there is a set W of all numbers greater than
# and belonging to ¥. Since all the numbers in W are greater than
%, W must have a lower bound », and since E == U U V¥, v must be
gither in I7 or in V. Suppose v& {7; then since U is open there is a
positive number £ such that the interval (v — &, ¥ + &) is contained in
I/. But this means that the interval (v, v 4- £) contains no points of
W, which is impossible if v is the lower bound of W but does not lie
in W. Hence v must be in ¥. But V is open, and so there is a
positive number { such that the interval (v — £, v 4 {) is contained
in ¥. This interval cannot contain #, which is in U, and it contains
numbers in W, namely hetween » and ¢ 4 { since v is the lower
hound of W. Hence the interval {v — {, » + {) lies to the right of «,
and so is in W. But this implies that there are numbers smaller than
v belonging te¢ W which is impossible. Thus it turns out that v
cannot lie in IF nor in ¥, which contradicts £ = U u V. This
contradiction shows that F is in fact connected.

It will now be shown that connectedness is a topological property,
and in fact, as in the case of arewise connectedness, a rather stronger
result will be proved.

TuEOREM 15. Let B and F be two topological spaces and f a con-
tinuous mapping of ¥ onto F. Then if K is connecled so ts F.

ProoF. Suppose F is not connected. Then F = U u V, where U
and V are two non-empty disjoint open sets of F. Then the inverse
images [J" and F' of {7 and | respectively under f are open sets in
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B (Theorem 11), and are not empty since f is a mapping onto #.
Algo U’ and ¥’ are disjoint and £ = U’ u V', But this contradiets
the fact that & is conmected; and so # must be connected too.

CororLARY 1. If B and F are homeomorphic then E is connecled 1f
and only if F 3.

Proo¥. This follows at once from the above theorem and the
fact that, if ¥ and # are homeomorphic there is a continuous
mapping of each onto the other.

CoroLLARY 2. T'he tmage of o connected space K under a continuous
mapping into F 18 a connecled set in F,

In the next theorem and also in many other situations it is
convenient to have a criterion for the connectedness of a set in a
space & expressed directly in terms of the topology of , rather than
by the intervention of the induced topology. This criterion is set up
in the following lemma.

LevMma, Let A be a set wn a topological space K, Then A i3 o
connected set if and only if of ts not possible to find two open sels U and V
tnEsuchthat AcU UV, AnU £, AV £0,AnTUnV =0

Proor. First suppose that two sets 7 and V exist as described
above. ThenU' = Undand V" = T n 4 are two open sets of 4 in
the induced topology, by the definition of this topology, U and ¥
are non-empty by the conditions stated in the lemma and they are
disjointsinee AnUa V=0 and A =00V ,sincedcUulV.
Hence 4 is not eonnected (by definition}. Conversely, suppose that A4
is not connected. Then there are two disjoint non-empty open sets U
and V' in 4 (ie. in the induced topology) such that 4 = U u V.
But, by the definition of the induced topology, there are open sets U
and ¥V in ¥ such that ' = U'nd and V' = ¥V n 4. It is easy to
see that U/ and V are as described in the statement of the lemma.
It has thus been shown that 4 is not connected if and only if two
open sets as gpecified in the statement of the lemma can be found,
and this is equivalent to the lemma as stated.

TuroreM 16. Let A be a connected set in a topological space K, and
let B be aset suchthat A ¢ Bc A. Then B is a connecled set.

PrOOF. Suppose B is not connected; then by the above lomma
there are two open sets U and V in E such that Bc U u V,
BnU=#0, BnV=0, BaUnV =0. Since 4 c B it follows
from the first and fourth of these conditions that 4 € I/ U ¥, and
AnUnV =0. It will now be shown that 4 n {7 and 4 0 V are
both non-empty. To do this take a point pe Bn U; such a point
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exists since B {7 is not empty. Since IV is open it is a neigh-
bourhood of cach of its points, by Theorem 4, and in particular it is a
neighbourhood of p. But pe Band B ¢ 4, and so pe A, whence, by
the Lemma in §7, Chapter II, the neighbourhood U of p meets 4.
Thus /! n 4 is not empty; and similarly V' n 4 iz not empty.
Thus AcUulV, AntU£0,AnV#£8,AnUnV =0 and by
the above lemma this contradicts the fact that 4 is connected.
Hence I/ and V cannot exist as supposed, and B is connected as was
to be shown.

As an application of the last theorcm, along with the topological
nature of connectedness, it will now be shown that the following sets of
real numbers are all connected:

(1) asemi-infinite interval ¥ > a for some fixed a; {or, similarly,
x <. a);

{2) a semi-infinite closed interval x = ¢ (or x << a) for some
fixed a;

{3} an open interval ¢ < & <2 b for fixed @ and #;

(4) a semi-open interval @< x<_b or a <<z = b for fixed
a and &;

(3) A elosed interval a < » <Z & for fixed ¢ and b.

{1) The mapping which assigns to cach real number 2 the number
@ + €% 13 clearly a homeomorphism of the set of all real numbers
onte the set satisfying x > a. Since the set of all real nummbers is
connected (Example 3, above) it follows that the semi-infinite
interval £ > a i3 eonnected.

(2} In Theorem 16 let A be the semi-infinite interval z == a, B
the semi-infinite closed interval z = a. The conditions of the
theorem are satisfied, since B = 4 and 4 is connected; hence B
is eonnected.

(3) The mapping which carries & into (b — a)/(b — »} maps the
open 1nterval a <7 » <7 & onto the open semi-infinite interval x > 1,
and the mapping is a homeomorphism. The semi-infinite interval is
known to be connected, and so, by Corollary 1 to Theorem 15, the
interval ¢ <7 ¥ <7 6 18 connected.

(4) and {3) are proved by using Theorem 16 with 4 taken as the
open interval a <7« < & and B taken as each of the semi-open
intervals and as the closed interval in turn.

An important consequence of the connectedness of a line interval
is the following theorem which establishes a relation between
connectedness and arcwise connectedness,

TOPOLOGICAL PROPERTIEA OF SPACES £r1

THEOREM 17. An arcwise connected space 13 connecied.

Proor. Let £ be an arcwise connected topological space and
suppose that ¥ is not connected. Then & = U/ U ¥V where I/ and V
are two non-empty disjoint opens sets of £. Take a point p in I and
a point ¢ in ¥: this can be done since [V and ¥ are not empty. Since
E is arcwise connected there is a continnous mapping f of the unit
interval I into E such that f(0) = p and f(1) = ¢. The conditions
fi0) = p and f(1}) = ¢ imply that f(I}n U and f{I)n V' are not
empty; and since U n V== @ it follows that f(HnTn ¥ =90
Thus f(I} is contained in the union I U V (namely ), and f(7) n U+
0, f(DnV=0fDHnUnV =0 Andso, by the lemma proved
above, f(I) is not conneeted. On the other hand I is connceted and
so by Theorem 15, Corollary 2, f(I) is a connected set in E. This
contradiction shows that the assummption that & is not connected is
false, and so the theorem is proved.

The converse of the above theorem iz not true, as is shown by the
following example:

Let E be the set in the (z, #)-plane such that y = sin (1/z) for
0 <2 <1 along with the points (0,y) for -1 <Ly <1 & 18
connected; for the set E’ of points such that y = sin (1/z) for
0 < z < 1 is a continuous image of the connected interval ) <7 x < 1
and E is the closure in the plane of . But & is not arewise connected;
for any mapping f of the interval 0 <{ ¢ <{ 1 into ¥ such that f(()
i8 a point of E with 2 == 0 and f{1) is & point with x = (} is neceasarily
discontinuous at { = 1.

Exercises

1. After Theorem 16 five types of connected sets were found in the
space of real numbers, Prove now that a connected set in this
apace is necessarily of one of thesc five types or is the whole space,

2. Deduce from Exercise 1 that if f is a continuous real valued
function of the real variable x for a = x <{ b, then for every y,
between f{a) and f{b) therc is an z, between a and & such that
Yo = flz,).

[Hint: Use Theorem 15.]

3. Prove that the following are connected:

(a} Euclidean space of any dimension:

{b} a sclid sphere of any dimension;

(¢) an r-dimensional sphere for r > 0.

4. Prove that a space E is connected if and only if there is no
non-empty set in £ and different from £ which is both open and closed.
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5. Prove the following partial converse of Theorem 17: an open

connected set A in a Euclidean space is arcwise connected.
[Hint: Show that the sct of points of 4 which can be joined by paths
in A t0 a fixed point of 4 iz open and closed in A.]

6. Let A be a connected set in a topological space ¥ and suppose

that 4 has points in common both with a set B of E and with CB :
Prove that A meets the fronticr of B. Hence show that in a connected
space K every set different from £ or § has a non-empty frontier,

7. Let A and B be connected sets in a topological space E such
that A n B 7= . Prove that A U B is connected.

Note that the property stated here is similar to that given in
Excrcise 2, §3, for arcwise connected sets, but slightly weaker.
In general A U B is not arcwise eonnected for arcwise connected sets
A and B unless An B#0; it is not in general sufficient that
An B#£9, as is seen, for example, by taking 4 as the graph
y = sin (1j2), 0 < x <L 1, in the (x, ¥)-plane and B as the segment
joining {00, —1) and (0, 1).

CHAPTER IV

THE FUNDAMENTAL GROUP

1. Homotopy

The subject of this chapter is a more elaborate topological property
than those discussed in §82, 3, 4 of Chapter III. The property in
question will consist in attaching a topologically invariant group 1o &
given space; that is to say, a group will be assigned to each
topological space in such a way that the groups assigned to homeo-
morphic spaces are isomorphie.

The idea involved may be introduced by asking the following
question: what topological property of a space can be used to

¥ig. 3

distinguish between the two spaces shown in Fig. 3, the first being a
circular disc and the second an annulus or dise with a hole in 1t?
How, in other words, can one detect the existence of the hole by a
criterion which makes no use of non-topological ideas like distanee
and angle?

A natural answer to this question is obtained by considering the
possibility, or otherwise, of shrinking to a point closed loops
drawn on the two spaces. Any closed path f on the circular disc
starting and ending at a point x can be shrunk to the peint x without
going outside the disc; at least it certainly appears that this is so
from intuitive grounds, and a rigorous proof will be given later.
On the other hand, it is possible to draw a closed path such as f’
on the annulus which cannot be shrunk to a point within the annulus.
One can think of the situation physically by picturing the paths f

63
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and f' as Joops of string passing through eyelets at x and z', respec-
tively. The first loop can be drawn tight through the eyelet at z,
but the second, if one pulls through the cyclet at ', gets caught
around the inner boundary of the annulus, which one can think of as
heing some sort of barrier.

It is fairly clear that the distinction which has just been drawn
relates to a topological property. That is, the property of a space K
that every closed loop in & can be shrunk to a point in ¥ is a topo-
logical property of E. This is intuitively obvigus since, if £° is
homeomorphic to &, the shrinking of a given path in E’, can he

Fia. 4

carried out by copying, step by step, the shrinking of the
corresponding path in . But this reasoning relies toco much on
some sort of physical intuition to be satisfactory. The essential atep
to be taken now is the replacement of the shrinking process by an
accurately defined topological notion.

still apeaking intuitively, it is clear that shrinking a closed path to
a point is a special case of deforming a elosed path from one shape to
another, and this is itself a special case of deforming any path (not
necessarily cloged) from one position to another. Pictorially, such a
deformation is represented in Fig. 4{a) where f is o given path in a
space £ and iz deformed in £ to & new position g. As the path f
is moved to the new position g, it traces out in £ the shaded curvi-
linear quadrilateral as shown in the figure, The natural way of
describing accurately the idea of a curvilinear quadrilateral in a
space Is to construct a contimuous mapping of a rectangle into the
space. In this case one would want a continuous mapping F
(Fig. 4(8)) of a rectangle into & such that F restricted to the lower
side represents f and restricted to the upper side represents g.

The construction of such a eontinuons mapping is a precizse
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topological notion, and will now be taken as the definition of
deformation, This idea of deformation, now given a rigorous
meaning, is also given a special name in topology, namely homotopy,
The formal definition is asg follows:

Dermxrriox 21. Let f and g be two paths on a topological space F,
that 18, two continuous mappings of the unit interval I, consisting
of real numbers s such that 0 < s <Z I, into &. Also let 2 denote
the unit square in the {s, f)-plane; I2 consists of all points (s, ) such
that 0 <C s << 1, 0 <{ £ <. 1. Then the paths f and g are said to be
homotoprc wn K, or simply homofopic if there is no possibility of
confusion, if there is a continuous mapping F of I2 into £ such that
Fls, 0) = f(s) and F(s, 1y = g(s) for all s [.

The definition is summed up diagrammatically by Fig. 4{b).

It 18, of course clear that homotopy is a relation between two
mappings, a path being a mapping {cf. Chapter IiI, §3). The
definition just given ean therefore be generalized to mappings other
than those of I into . The generalization about to be described will
not actually be required until Chapter VI, but this seems the natural
place to give the definition.

In the first place, if 4 and B arc any two sets a new set denoted by
A X B and called the product set of 4 and B can be defined as the
collection of all pairs (e, ) wherc nc A and 5 B. If 4 and B are
topological spaces a neighbourhood of (e, b) € A X B can be defined
as any suhset W of 4 X B which contains a set of the form T7 x F,
where U is a neighbourhood of @ in A and ¥ is a neighbourhood of b
i B. Inthis way 4 » B becomes a topological space {cf. Chapter II,
81, Exercise 4) and is called the product space of 4 and B. For
example J2 is the product space I x I of I with itself.

The above definition may now be generalized simply by replacing
the first factor in the product I* == I % I by any topological space 4.

Derr¥iTIoN 22, Let A and £ be any two topological spaeces and
let f and g be two continuous mappings of 4 into E. fand g will be
said to be komotopic if there is a continuous mapping ¥ of 4 x [ into
E such that Fa, 0) == flu) and Fia, 1} = ¢g{a) for all ae 4.

Clearly this reduces to the former definition if 4 is replaced by 1.

NoTe. The remark made in Chapter 111, §1, on the importance of
mentioning both spaces when a mapping is named hecomes of
significance here and in eonneetion with Definitions 23, 24 and 25.
For two mappings f, g of 4 into E may not he homotopic, but there
may he a space £’ 5 K such that f and g, regarded as mappings into
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E’' are homotopic. The point is that by extending the space & to E
one makes available more room for detformation.

Returning now to the special case of homotopy of paths, it turns
out that the concept defined above is not of great interest unless
some further restriction is imposed. For it is not hard to show that
any two paths on an arcwise connected space are homotopic (of.
Exercise 1 below). A non-trivial eoncept is obtained if one requires
in addition that the deformation of one path into another should be
carried out without moving the end-points. In this context a path
may be thought of as an elastic string with its ends pegged down;

the only permissible deformations are those in which the pegs are
not digturbed. That this is a non-trivial notion may be seen by
noting that in Fig. 5 the paths f and ¢ joining the fixed points x and
y cannot be deformed into each other. (This statement of impos-
sibility is, of course, based on physical intuition at this stage, but
it will appear later that it can be proved.) The notion of deformation
or homotopy with fixed end-points is described in detail as follows:

DEFINITION 23. Let fand g be two paths on a topological space £
joining the points = and y; that is to say f and g are continuous
mappings of T into E such that f{0) = ¢(0) = zand f(1) = g(1) = %.
Then f and g are said to be komolopic with the fixed end-poinis x and Y
if there is a continuous mapping F:7/2 — F such that F(s, 0) = f(s)
and F(s,1) = g{s) for all sl and in addition F{0,t) = x and
F(l,H) = y for all te I {cf. Fig. 6).

The special case of the deformation of a closed loop as described at
the beginning of this section is covered by this definition; it
corresponds, in fact to taking ¥ = y. Explicitly:

DerFINTTION 24. Let f and ¢ be two closed paths on a topological
space B both beginning and ending at a point z of £. Then fand g
are said to be homolopic with respect to the fixed base-point x if there
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is a continuous mapping F:I?* > E such that F(s, 0) = f(s) and
F(s, 1) = g(s) for all se 7 and also F(0, §) = F(1,t) = = for all el

The particular case of deformation which started off this discussion,
namely shrinking to a point, can now be defined:

Fig. 6

DerFINITION 25, A closed path f on a topological space ¥ beginning
and ending at x will be said to be skrinkable to x or to be komotopic
to a constant with respect to the base-point x if f is homotopic to the
mapping ¢:f — F defined by e¢{s) = x for all se I, with respect to
the base-point x.

If this definition is combined with the previous one and the whole

Frg, 7

thing is written out explicitly, it turns out that shrinking a path f to
the point ¥ amounts to constructing a continuous mapping F of I*
into £, whose restriction to the lower side {f = 0) gives the path f,
while the other three sides are carried into z. In a simple diagram-
matic repregentation such as Fig. 7 it will be noticed that the
horizontal lines, each corresponding to a fixed value of ¢, are mapped
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into loops in £ which get steadily smaller as { increases. Such a
diagrammatic representation gives a very much over-simplified
picture of the ideas involved, of course, and should only be regarded
as a sort of mechanical aid to the understanding and remembering of
the definition.

Example. It will now he shown that every closed path beginning
and ending at a point  on a circular disc is homotopic to & constant
with respect to the base point x. Set up polar coordinates in the
plane of the dise, taking x as the pole. Then, if f:7 — ¥ is the given
closed path f{s) will have polar coordinates (¢{s), 6(2)). Define F(s, t) as
the point with polar coordinates ({1 -~ #)r(s), 6(s)). Since (r(s}, O(sh)
is in E all points (r, O(s}) with r < r(s) are on E, and s0 F(s, {) € £.
F is thus a mapping of I? into E, and it is not hard to see that it iz
continuous. Also, setting { = 0, F(s, 0) is the point (r{s), 6{s)) =
f(s) while the radial coordinate + of F(s, 1) is zero for all ¢; that 13
Fi(s,1) = 2. And finally, since r(0)=r(1)=0, it follows that
F(0, 1) = F(1, £) = xforall{. Thus all the conditions in the definition
of the shrinkability of f to the point x are satisfied.

The property just established for a circular disc is sufficiently
important to receive a special name:

DEFINITION 26. A topological space E will be said to be sumply
connected with respect to the base-point x if every closed path in &
beginning and ending at z is shrinkable to .

It will turn out later that in certain cases the reference to the
base-point is superfluous. When this happens, that is when a space 13
simply connected with respect to any one of its points as base-pomt,
the space will be said to he simply connected. It has just been shown,
for example, that a ecircular disc is simply connected, A similar
method of proof would show that a rectangle, or, more generally, a
rectangular block of any dimension, is simply connected. Similarly
any Euclidean space is simply connected.

Exercises

I. Prove that any two paths on an arcwise connected space are
homotopic (no restriction being made on end-points).

[Hint: Let f, g be the paths, ¥ the space and let A bo a path joining
the initisl points of f and g. Map the bottom, top and left-hand edge of
I? into E by f, g and & respectively. Show that this mapping can be
extended to a mapping of I? into £ by showing that thers is a continuous
mapping of 2 into the union of the three mentioned sides {for example
by projecting from some point lying to the right of I2).]
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2. Prove that if  and ¢ are two points in the Euclidean plane &
and f and g are two paths in F joining p and g, then f and g are

* homotopic with respeet to fixed end-points.

3. Let 8 be a 2-sphere of centre ¢ in Euclidean 3-space £ and let ::
8§ — E be the incluston mapping. Let 7.5 — £ be defined by j{p) =
g for all pe 5. Prove that ¢ and 7 are homotopic.

Note that a similar result is also true for higher dimensions.

4. Let £ be a solid r-dimensional sphere and ¢ its centre. Let ¢
be the identity mapping of X on itself and let j:£ — & be defined by
4(p) = g for all pe £. Prove that ¢ and j are homotopic.

5, Let & be the annulus bounded in the Euclidean plane by two
circles of eentre ¢, and let-+ be the identity mapping of ¥ on itself.
Define j: % - E by setting j{p) = »’, where p’ is the point where the
segment pg meets the inner boundary of £. Prove that ¢ and j are
homotopic.

(reneralize this result, letting £ be the set defined by the inequality

i
a <2 > x7 <2 b in Euclidean n-space.
)

2. Homotopy classes

In principle at least, it is not hard to prove that a given simply
connected space is simply connected. One has only to proceed as in
the casc of the circular disc, attempting to construct the neccssary
homotopies explicitly, This may, of course, require eonsiderable
ingenuity in more eomplicated cases. On the other hand, to show
that a space is not simply connected one has to deal with a different
type of difficulty, namely that of proving the non-existence of certain
homotopies. That is to say, one must construct some closed path on
the space and then prove that it is not homotopic to a constant.
And, as in the casc of trying to show that two spaces arc not homeo-
morphie, a straightforward direct approach to this problem is not
likely to succeed.

The solution to this difficulty is to undertake a deeper and more
detailed study of closed paths on a topological space. The first thing
to notice is that closed paths on a space may be grouped into classes,
such that members of the same class can be deformed into one

- another. This will be proved in Theorem 18, but first some conven-

tions of notation will be introduced. Throughout this section and the
next & will be a given topological space and z an arbitrary fixed
point of E. The paths considered in this section will all be closed
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paths beginning and ending at x, and for the sake of verbal economy
will be called paths based on 2. The statement that two such paths
are homotopic with respeet to the base-point @ will be written as
f ~ g¢; xisnot mentioned in this notation, but this does not matter in
the present context since the basc-point is being kept fixed in the
meantime. Also throughout this section and the next, the symbol e
will be used to denote the constant mapping of I into £ defined by
e(s} —=axforallsel,

Fia. 8

TueoREM 18. The relation of homotopy with respect fo x of paths
based on x is an equivalence relation on the set of all paths in K based
on .

Proor. It must be shown that (i) f ~ f for every path f based on z;
(ii} f ~ g implies ¢ ~ f for every pair of paths based on z; (iii} if f,
g, h are paths based on z such that f ~ ¢ and ¢ ~ h then f ~ &.

(i) To prove that f ~ f, define the mapping F:[? — E by setting
Fi(s, f) = f(s). F is clearly a continuous mapping of I* into £ which
carries every horizontal line on /2 into E in exactly the same way.
Thus F restricted to the top or bottom of the square I2 coincides with
f, and the two vertical sides of I? are carried into . This shows that
F is a homotopy of f into itself as required.

The proof here has been stated rather informally. The strictly
formal proof would run as follows: F as defined above is clearly a
continzous mapping of I? into E. Setting ¢t =0 and £ =1, one
obtains Fis, 0) == f(s) and F(s,1) = f(s); and setting s = 0 and
s =1, one obtaing F(0,1) = F(1,t) =f{0}) =f(1) =« Thus F
satisfics the required conditions to show f~ f.

(ii) Let fand g be given such that f~ 7. Then there is a mapping
of the unit square I? into carrying the vertical sides into z and
agreeing with f and g on the bottom and top, respectively. The proof
consists simply in turning the square upside down {cf. Fig. 8).

To prove this formally, let F:J2—» E be the given confinuous

i
!
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mapping such that F(s, 0) = f(3), F(s, 1) = g{s), F(0,¢) = F{lt)===x;
this is the explicit statement of the given fact that f~g. Now define
F':I* > E by setting F'(s, t) = F{s, 1 — #). The conditions just
stated on F arc translated now into: F'(s, 0) = g{s), F'(s,1) = f(3),
F(0,t) = F'(1,8) = x. And this shows that ¢ —~ f.

(iii) Let f, g, & be given such that f ~ ¢ and ¢ =~ &. The proof
that f ~— & is tllustrated by Figs. 9, 10, 11. The given homotopies
imply that there are two mappings F’ and F” of I? into E, satistying
certain conditions. For the sake of clarity in the diagram,two separate
copies ABCD and PQRS of I? are shown in Fig, 9. Then the con-
ditions are that F should agree with f along A B and with g along DC,
while F” agrees with ¢ along P and with % along SR. Also both #”
and F” carry the vertical sides of I2 into z. Now if the two copies of
P? are stuck together so that DC coincides with PQ it is fairly clear
that F* and F”, which agree along DC and P@, combinc to give a
continuous mapping of the rectangle ABRS into E (Fig. 10}. This
mapping carries the vertical sides into  and agrees with f along AB
and with % along BS, and so it is almost shown that f =~ 4. The
catch is that homotopy is defined in terms of a mapping of a square
into E, not a rectangle. But this can be remedied by a change of
vertical scale (Fig. 11). Allowing for this change of scale, the mapping
of the compressed rectangle ABRS {which is a copy now of I9)
should be defined as F'(s, 2f) on the lower half and F"(s, 2 — 1) on
the upper half,

The formal proof suggested by the above discussion is as follows:

Since f ~ g and g ~ A there are continuous mappings ¥ and F" of
I? into F satisfying the following:

F'{s, 0} = f(s) (1)
F'{s, 1} = g{s) (2)
F(s, 0) = g{s) (3)
F(s,1) = h(s) (4)
FO,80) = F{1,0)=F 0,8 =F(l,))== (5)

the first four of these holding for all s € J, and the last for all t& 1.
Define F:I%2— E by the conditicns

Fla, ) = F'(s,28) if 0t <<y
Flo,) = F'(s,2t — 1) if 3 <<t <L

The first thing to check is that F is in fact properly defined as a
mapping, for hoth parts of its definition apply when ¢ == § and they
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might contradict one another. Sach a contradiction does not,
however arise, for, by (2} and {3), F'(s, 1) = F“(s, ) = g(s), and so
F(s, ) = g(s) by both parts of the definition. Of course 1t 1s more or
less obvious from the above discussion with Fig. 11 that ¥ and F°
fit together properly, but it is nevertheless worth getting into the
good habit of checking this kind of point formally, as things are not
always as simple as in the present case. The next thing to verify is
that F is continuous, It iz clear that if £ 2 1 F is continuous,
this following directly from the continnity of #' or #” according as
{ < tort > % BSuppose now that {7 18 a neighbourhood in £ of
Fi(s, }) for some s . Then the continuity of F' implies that there is
a number {"such that, if |s; — s| <2 {"and |2t; — 1] << 20, F'{s), 2t}
will lie in the neighbourhood U of F'{s, 1) = F(s, }). Similarly the
continuity of F” implies that there is a number " such that if
|31 o .s| < {" and |(Et1 — 1) — {}| <2 28" then F"(s,, 2¢; — 1) will lie
in the neighbourhood U of F%(s5, 0) = F(s, 1). The inequalities
imposed on &, and ¢, in the last two sentences are all satisfied if
131 — Sl <7 £ and ‘tl — %| = {, where { = min ({’, £"). Thus these
two statements combine to show that if |31_ — S| < { and |£1 — %l < L
then F(s;,f;}e 7. The continuity of F is thus proved for points at
which { — 1. This kind of argument will frequently occur in the
subscquent working, and will not be given in full again, the under.
standing being that the full proof is to be done as an exereise.

F has thus been shown to be a continuous mapping of 12 into E;
it will now be shown that it gives the required homotopy of f and A.
Fort =0 F(s,0) = F'(s,0) = f(s) by {1), and for t =1, F(s, 1} =
Fi(s, 1) = k(s) by (4}. Also F(0,t) = F'[0, 2t) or F'(0, 2t — 1)
according as ¢{ <L 1 or £ > 4, and in cither case this is & by (5);
simitarly F{1,#) — x for all ¢, and so all the verifications are complete
and f ~ % has been proved.

Since homotopy with respect to a base-point x is an equivalence
relation all the paths based on x are divided into equivalence classes.

DeriNtTION 27. The equivalence classes of paths based on
x € F corresponding to the relation of homotopy with respect to the
baze-point # will be called homotopy classes of paths on E with respect
to the base-point .,

Exercises

1. Let X be a topological space and x, ¥ two points of E. Prove
that the relation of homotopy with reapect to fixed end-points x and
¥ 13 an equivalence relation between paths joining x and y.

G
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2. Let A and E be any topological spaces, Show that the relation
of homotopy is an equivalence relation between mappings of -
into K.

In the case where A is the circumference of a circle, the corre-
sponding equivalence classes are called free homotopy classes of
closed paths on E (free because they are not bound to a base-point
as in Definition 27).

3. The fundamental group

The mere subdivision of the set of paths based on a point of a
topological space into homotopy classes wounld not be so useful in
itself if it were not for the possibility of expressing algebraleally

(a)

Fic. 12

certain relations between closed paths. The type of relation to be
considered is illustrated by the following example. Let the space £
be the Buclidean plane from which two points P and ¢ have been
removed, and consider closed paths in E based on a third point O
(of. Fig. 12). If f, g, % are the three paths shown in Fig. 12{a} it
would be fairly natural to say that A is equivalent {under homotopy
with respect to the base-point O} to f followed by g; for intuitively
speaking it is clear that & can be deformed into the shape of f followed
by g, as illustrated by Fig. 12(#). It is to be understood of course
that the deformation is to take place in %, that is in the plane with
P and Q removed; if P and @ were not removed the whole thing
would become trivial, as f, g, » would all be shrinkable to 0.

A natural way of expressing the deformability of  into f followed
by ¢ would be to say that % is homotopie to fg, or in symbols,
b~ fg. Of course this motation will have to be justified by the
atatement of a formal definition of the product fy. Before this 1z
done, however, a further intuitive observation will be made,
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referring again to Fig. 12. It scems clear that if either f or g is
continuously deformed then the path fg obtained by sticking f and ¢
together in succession also sustaing a continuous deformation. That
ia to say it appears that the homotopy class of f depends only on the
homotopy classes of f and g. It should therefore be possible to
define a product operation between homotopy elasses, If fand g arce
the homotopy classes of f and ¢ then the product fg wounld be defined
as the homotopy class of fg. If % is the homotopy class of %, the
relation of Fig. 12 could then be written as b = fg.

The main result of this section, the result which makes it worth
while to attempt to translate the situzation of Fig. 12 into an algebraic

¥,
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gperation as outlined above, is that the produet operation so
introduced between homotopy classes turns out to be a group
operation.

The formal definitions will now be given, and proofs given for the
ideas sketched above, The definition of the product of two paths fand
g 18 lllustrated by Fig. 13. ¥ iz any topological space and two copies
of the unit interval 7 arc shown on which the two mappings f and
g are defined. If the two copics of I are joined end-to-end the
mappings f and ¢ combine to give a continuous mapping into E of an
Interval 2 units long. To bring this into the standard form for a path
on ¥, the scale must be reduced by half, and this completes the
definition.

DrrFiNiTION 28. Let f and g be two closed paths on a topologieal
space & based on a point . The symbol fg will denote the following
mapping of [ into E:

{fo)(s) = fi2s}, for 0O =Cs <4,
(fls) = g(2s — 1), for $ L
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It is easy to verify that fg is continuous (s = 4 is the only point
which needs attention) and so defines a path on E; this path is
caltled the product of f and g.

It is casy to sce from the definition that { fg){0) = (fy}{1) == =, and
so the product of two paths based on z is again a path bhased on =z,

The next step is to show that the homotopy class of fg depends
only on those of fand g.

THEOREM 19. If [, [, 0, ¢ are paths in a lopological space E based
on apont zand if f~ ' g ~ ¢, then fy ~ 'y’

I're. 14

Proor. The idea of the proof is shown in Fig. 14. There are
mappings F and & of I2 into X (two copies of 72 are shown) eorre-
sponding to the homotopy of finto " and of ¢ into g¢°. F and (7 arec put
together by laying the two copies of I? side-by-side and halving the
horizontal seale. In this way o mapping H:/%2 — £ is obtained which
agrees with fg on the lower side and with f'¢" on the upper side;
H is the required homotopy of fg and f'¢".

The details of this sketched proof will now he filled in. Since
f=f and g~ g, therc are continuous mappings F and ¢ of I2
into & such that:

F(s, 0) = fls) (6
Fis, 1) = f'(s) {7)
G(s, 0) = gls) (8)
Gs, 1) =g'(s) (%)
F(0,8) = F(l,t) =G(0,8) = G(1,1) = . (10},

i -
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Let & be defined by:
His, t) = F(2s, 1}, 0 a4,
His, ) == GG(2s — 1,8, § =& 1,

It must be checked first that this definition is not self-contradictory
for s = 4; this follows from the fact that H(}, 1) = F(1,{) = x (by
(10)) for all ¢, and also, using the second part of the definitton of H,
Hit, ) = G(0, 1) = = {by {10)). Next the continuity of H must be
shown. Only the points with s = } require attention here, and the
verification is essentially as in the proof pact (iii) of Theorem 13.
Finally, to show that H establishes the required homotopy between
fg and f’g’ it must be shown that the correct boundary conditions
hold when s and ¢ are put equal to 0 and 1. Setting { = 0 in the
definition of H, it follows that H{s, 0) = F(2s, 0) = f(23) (by {6)}) or
H(s, 0) = {25 — 1,0) == g(2s — 1) (by (8)) according as{) = s <7
or 3 <{ ¢ <C 1. If this is compared with Definition 28 it will be seen
that H(s, 0) = (fg)(s). Similarly, setting ¢ = 1, it can be shown that
Hi(s, 1) = {f'g')(s). To check that H carries the vertical sides of I?
into x set 5 equal to 0 and I in the definition of H. H{0,¥) =
F(0,t) = xand H(1, t) = G(1, ) = x {hy {1()). Thus all the necessary
conditions on H have been verified, and it has been proved as
required that fg ~ f'g’.

The theorem just proved now enables the product of homotopy
claszes fo be constructed.

DernirioN 29. Let f and § be two homotopy classes of paths
based on x with respect to the base-point x, and let f be a path
belonging to f, g a path belonging to g. The product fg of f and 7 is
defined to be the homotopy class to which the path fg belongs.

By Theorem 19 this defines a homotopy class depending only on the
classes f and 7 and not on the representatives fand g. Forif f and ¢’
are two more paths belonging to f and 3, respectively, fg ~ f'g" and so
fg and f’g’ belong to the same homotopy class.

The main result of the present chapter can now be stated and
proved.

TrroREM 20. Let E be a topological space and x a point of K.
Then the homotopy clusses with respect lo the base-point x of paths
based on x are the elements of a group having the produel just defined in
Definition 29 as group operalion.

ProoF. The proof of this theorem consists of three parts: {i) to
show that the product operation between homotopy classes is
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associative, (il) to prove the existence of an identity clement, (1ii) to
prove that each homotopy class has an inverse.

(i) Let f, g, k be threc paths based on x and f, g, % their homotopy
classes. It is to be shown that {fg)h ~ f{gh), or, what is the same
thing, by the definition of the product of homotopy classes, that
(fgth = f(gh). By definition fy iz a continuous mapping of I into
E such that (fg)(s) =f(2s), 0 <Cs < 4 and {fy)is) = g(2s — 1),
§ = ¢ < 1. Applying this definition again, to the product of fy
and A, it turng out that ((fg)h)(s) = (fg)(2s), 0 L s £ 3, and
{fo)h)8) = h{2s — 1) } < 5 < 1. Combining these statements it
foliows that (fglh is a continuous mapping of [ inte £ such that:

({fg)R)(s) = fids), 051
(f@h)(8) = glds — 1), T =<s= Ly (11)
({(f@)(s) = hi2s — 1), <1

Similarly, f(gh) is a continuous mapping of f into ¥ such that:
(flgh)is) = f(2s), 0<s < 4]
(flgh)(s) = glds — 2), =<8 i (12)
(flghh(s) = Ai4s —3), §=<<s=1

Now if equations (11) are examined it will be noticed that [ is
divided into three parts of lengths }, 1, 1, and { fg)}% is constructed by
applving f to the first of these subintervals, g to the second and 4 to
the third, the appropriate change of scale being made in each case.
For example, the first interval is of length 1, and (fg}4 is identified
with f with the scale increased by 4; the scale increase is expressed
by taking 48 as the argument of f. Similarly the scale is increased by
4 in the second interval, 4¢ — 1 being a vartable going from 0 to 1
as & goes from  to §, while in the third interval, which is of length §,
the scale 1s increased by 2,

flgh) is constructed in an exactly similar manner, except that the
subdivisions are in this case of lengths &, , ;.

The idea now is 10 make a continuous transition from (fg}k to figh)
by changing the threc subintervals of lengths }, £, 1 into those of
lengths 1, 1, 1 simply by stretching the first, compressing the third,
and sliding the second sideways, as indicated, for example, by the
arrows in Fig. 15. Now ABCD in Fig. 15 can be taken as I2. P,
representing stage £ of the transition from the subdivisions §, $, 4 to 1,
. 1, is divided into three intervals of lengths }{1 - ¥), {1, }{2 — £).
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Just as {fo)k and fgh) are defined on A B and D, & mapping of P
into E will be constructed by applying f, ¢, & to the three intervals
PR, RS, S§¢ with suitable changes of scale, the arguments of f, g, %
being chosen so that they vary from 0 to 1 as s vartes along the corre-
sponding subinterval. This mapping, which will be called Fi{s, {},
will be equal to f{4s/(l + ¢)) on PR, to g{4s — ¢t — 1) on RS, and
to h{{ds — ¢ — 2)/(2 — §)} on S¢.

Fig, 15

It 18 hoped, of course, that the mapping F{s, £) will vield the
required homotopy of {(fg)k and figh}). Since 1t ¢an be defined for
each ¢ from 0 to 1 it is certainly a mapping of 2 into E, and the fact
that it is continuous follows at once from the continuity of f, ¢, A
(special attention is required along the lines HK and LM in Fig. 15;
the situation is simjilar to that of Theorems 18 and 19 and the
details should be filled in as an exercise), Also it is easy to verify that
F coincides with {fg)h on the lower side of I? and with f{gh) on the
upper side, and that F((,¢) = F(1,t) = 2« for all ££ And so the
proof of part (i) of the theorem is complete.

(i) The second part of the theorem will be proved by showing that
the homotopy class & of the constant mapping ¢ {ef. p. 70} acts as
identity. That is to say it will be shown that, for any path f based
on x, ef ~ fe ~ f.

The definition of ef is a continnous mapping of I into ¥ such that
(€)(s) =2 for O << s <1 and {ef)(s) = f(i2s — 1) for $ s < 1.
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Thus 1 is divided in half, the first half being mapped on z, while fis
applicd to the second half with the scale doubled. The idea now is to
shrink steadily the part mapped on x while extending the part to
which fis applied. In Fig. 16 ABCD is I, AB is bisected at P and
PD i3 joined. The horizontal line ¢K at height ¢ is divided into
intervals of lengths {1 — £) and L(1 -}- ¢}, and as { varies from 0 to 1
it is clear that these lengths change continuously from 4, § to 0, L.

The continuous transition from ef applied to 4 B into f applied to D¢
should be possible by mapping @&, at stage ¢, into £ in such a way
that @5 is mapped on » and f is applied to SR with the appropriate
change of scale. Then define (s, t) to be # for points on 8 and to be
equal to f({2s + ¢ — 1)/t + 1)) on SR.

#{s,t) defined 1mm this way 18 clearly a mapping of 2 into &
agreemg with ¢f on A5 and with f on D€', and also carrying the
vertical sides A0, BC Into 2. It remains to show that F is continuous
in the pair of variables &, {. For any point {3, {) not on the line P
the continuity is obvious; for if (s, t) is in the trianglc A PD then F
carries 1t into x and also carries a neighbourhood of (s, {}, namely the
whole triangle 4 P.D, into x; while, if (s, t) is in PBCD but not on
PD the continuity of £ at (s, ) follows from that of f and the fact
that (2s 4+ £ — 1}/{t -+ 1) is continzous in & and ¢ Finally, consider
points (s, t) on P L. F carries such a point inte . Now it is not hard
to see that, if (8", ?') is sufficiently near to the line PD and to the
right of it, then (23" +t" — D){{t" 4+ 1) can be made as small as one
pleases, It follows thus from the continuity of f and the definition of
F, that points sufficiently near to (s, {) and to the right of PD will
be carried by F into a preassigned neighbourhood of ; alil points to
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the left of P 1) are carried into x itsclf, and so the continuity of ¥
at a point of P js proved.

F thus satisfies all the conditions necessary to show that ef ~ f.
The proof that fe =~ f is carried cut in exactly the same manner.

(ili) To complete the proof of the theorem it must now be shown
that every homotopy class has an inverse. That is to say, if f is any
given path based on x, it must be shown that there is a path g
based on x such that fg ~ ¢ and gf ~ ¢. A path fulfilling this con-
dition is obtained by taking f in reverse. Explicitly this means
defining a mapping g of I into E by setting ¢g{s) = f(1 — #). The

Fra. 17

idea of the proof that fy =~ ¢ is based on the following mechanieal
analogy. Think of the path f as being marked by means of a thin
curved tube {cf. Fig. 17). f should actually be represented by
threading a piece of string (representing ) through the tube in the
direction 4 Bx; and then g would be represented by threading the
string through the tube in the opposite direction xBAx. Now the
product fg is defined by applying f to the first half P¢} of [ and g to
the second half QR, the scale being doubled in cach case {cf, Fig, 18},
In the mechanical model this would be represented by stretching
PER to twice its length, folding it over so that @R lies along QP
and then threading the doubled string through the tube in the
direction x4 Bx. The doubled string thus forms a loop inside the tube,
and the deformation which will shrink fi to the point « is represented
by pulling the free ends of this loop so that it slides out of the tuhe:
suceessive stages of this operation are shown in Fig. 19. To represent
even better the mapping to be defined presently, the string, as it
18 withdrawn from the tube. should be wrapped up and compressed
into the point .
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The operation described here now has to be formulated properly.
It will be noted that, at stage ¢ of the withdrawal of the string loop
from the tube, a length £/2 at each end of the criginal unit interval
has actually been withdrawn, and the remainder lies along only

R
P ? Thread
inta tube

Fra, 18

(b}
KIAL ' Y
f‘{ I'.i"|I 1."'.\
i by
P G R

¥Fro, 19

a part of the tube, Now, if POR (see Fig. 19) is tuken as the lower
side of the square I% this statement corresponds to the condition
that on a horizontal line KN at height { above the base a length
{/2 at cach end should be mapped into x, while the first half of the
segment LM should be mapped into £ in the same way as fy maps
the interval from 0 to & — #/2 on PR and the second half of LM in
the same way as fg maps the interval from 1 4 ¢/2to 1 on PR. Thus
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the analogy of drawing the loop through the tube suggests that
fg ~ e can be cstablished by defining a mapping #:/ 2 F as follows:

Fis,t) = =, 0 <L s < §2

s, t) = fi2s — ), 42 < s < 4

Fls,t) =g(2s +£t—1),F <81 —1¢2
Fla, ) = 2,1 —tf2 L s L 1.

That this mapping does in fact satisfy the required conditions,
namely that it is continuous, agrees with fy for { = 0 and with e for
t = 1 and carries the vertical sides of /2 into x, should now be
verified as an exercise; the method is similar to that already
illustrated in other homotopy proofs.

DEFINITION 30. The theorem just proved shows that, 1n a given
topological space £, the homotopy classes of closed paths with respect
to a base-point x form a group. This group will be called the
fundamenial group of E relative io the base-point x, and will be denoted -
by (¥, x).

Exercises

1. Definition 28 ean be generalized as follows: Let x, %,  be three
points of a topological space K, fa path in & joining x and ¥, and g
a path in E joining y and z. Let the mapping fg:7 — ¥ be defined by
setting (fy)(s) = £(28), 0 <5 < 4, and (fa)ls) = g(2¢ — 1), 3 <o < 1.
Check that fy is a path joining x and z.

Prove the following generalization of Theorem 19, If f and f’ are
homotopic with respect to the fixed end-points » and y and g and g’
are homotopic with respect to the fixed end-points ¥ and z, then fg
and f’¢’ are homotopic with respect to the fixed end-points x and 2.

2. Let w, x, v, 2 be pointa of a topological space £ and let f, ¢, A
be paths on E joining the pairs w, x and #, ¥ and ¥, z respectively
prove that {using the product operation defined in Exercise 1) f{gh)
and (fg)» are homotopic with respect to the fixed end-points w and z,

[Hint: Imitate the proof of Theorem 20, {1).]
Note that the result proved here permits the use of the notation

fah without brackets provided that one is interested in the homotopy
clags only. A similar remark holds for any sequence of paths joined
end to end.
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3. Let z, ¥ be two points of a topological space E and let f be a
path in ¥ joining x and ¥. Let e, e, be the mappings of f into &
defined by setting e_(s) = x, ¢ (8) =y for all se /. Prove that ¢_f
and fe are homotopic to f with respect to the fixed end-points z and y.

[Hint: Imitate the proof of Theorem 20, {1i}.]

4, Let f be a path on a topologieal space £ joining x and y and
define f~! by the equation f~1s) = f(1 — s). Prove that ff~! is
homotopic to ¢ (c¢f. the last exercise) with respect to the bage-point .

[Hint: Imitate the proof of Theorem 20, (iii}.]

5. Let ¥ be a simply connected space (Definition 26 and the
remarks following it) and let # and ¥ be two points of . Prove
that any two paths f and g in ¥ joining x and ¥ are hometopic with
respect to the fixed cnd-points 2 and .

[Hint: Use the notation of Exercises 14 above., Prove f homotopie
to flg1g) and so to (fg~llg with respoct to the fixed end-points x and .
Note that fg—1 is a closod path based on x and then use Exercises I and 3
above.]

6. Let f be a closed path based on a point z of a topological space
E. Prove that, if f is freely homotopie to a constant mapping, then
it isa homotopic to the constant mapping e_ with respect to the base-
point x. (The converse is, of course, trivially true).

[Hint: To say that fis fresly homotopic to a constant mapping means
that there 15 a mapping F:I% -+ E such that F(s 0) = fa),
F{g,) = F(l, ) for all ¢ and Fi{s, 1) = y for gome point ¥ independent
of 3 (this is essentially the same as the definition indicated in Exercise 2
of §2). Write g{¢) == F(0, t}; then g is s path joining x and y. Show first
that f is homotopic with respect to the fixed base-point z to gy,
and then use Exercize 4 above.]

7. Deduce from the last cxercise that a topological space K ia

simply connected if and only if every closed path on £ is freely

homotopic to a constant mapping.
8. Let f be a closed path on a sphere S, based on a point x. Prove

that f is homotopic with respect to the base-point x to a preduect,
fifafa- .. f. (the product being in the sense of Exercise I, and
the inscrtion of brackets being unnecessary by Exereise 2) where
each f; is a homeomorphism of I onto some arc of a great circle

i
of S.

[Hint: & can he covered by two open sets {7 and V each homeo-
morphie to an open eircular disc; use the continuity of f to subdivide [
into intervals I, I,, ..., I_such that cach f{I,}C U or V. Hence show
7 homotopic to a product g,9, . . . g, each g; being an open path on {
or V. Apply Exercise 5 above to replace each g by an arc of a great
crrele. ]

ﬁ_
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9. Deduce from Excrcise 8 that the sphere 8 13 simply connected.

[Hint: There is some point ¥ not on the path f,f,...f, and § — y
is horneomorphic to the Euclidean plane.

Note that the step given by Exercisc 8 is neceasary, for it could
happen that the given path f passes through every point of 8.]

10. Use the method of Kxercises 8 and 9 to show that every r-

™

dimensional sphere is simply connected. , & 2

4. Change of base-point

The first step in this section will be to compare the gronps n( X, z)
and (&, ) in the case where x and ¥ can be joined by a path in the
topological space E. It is clear in this case that a given path based

Hif}

o

{a) (b}
20

on z leads by a simple construetion to a path based on ». For
(cf. Fig. 20) if f is a given path based on z and 4 is a path from z to ¥,
then a path ¢(f} bused on y is obtained by going along 4 in reverse
(i.e. from ¥ to x), then round f and finally back to y along %. Tt will
now be shown that this correspondence between paths based on =
and those based on y leads to an isomorphism between the
corresponding groups of homotopy classes,

TeeoreM 21, If E is a fopological space and x and y are two
points of E which can be joined by a path in E, then n(E, x)} and
7(#, y) are isomorphic,

ProoF. Leth bea pathin £ from x to g, thatis to say, a continuous
mapping of { into ¥ such that A{0) == x and %(1) = y. Let f be any
Path bascd on z, that is, a continuous mapping of 7 into Z such that
J(0) = f(1) = z. Define a path ¢(f} based on y us follows:

S{f)(s) = A{l — 38), 0 <L ¢ < &,
Pfi(s) = fi3s — 1), § <8 T 8,
H{f)(s) = h(3s — 2), § s < L.
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It is guite easy to sce that ([} is a continuous mapping of I into &
and carries 0 and 1 into ¥,

One would expect that a continuous deformation of f would lead to
a eorresponding continuous deformation of ¢(f); thatis, if fand g are
homotopic with respect to the base-point z one would expeet ¢(f)
and ¢{g) to be homotopic with respeet to the base-point y. To check
this suppose that the homotopy of fand g with reﬂpect tox is given hy
a continuous mapping #:72 — E such that F(s, 0) = fis), F{s, 1) =
gls), F(0,8) = F{1,1t) = x for all s,¢. Define F b}* sctting:

Gis, i) = (1l —3s), O0=L¢s=<%andalld,
(s, ) = F(3s —'1,1), }+ s gandally,
Gis, t) = hi{3s — 2), £ <Zs =L 1andallt

The verification that & is a continuous mapping of I? into £ and
that it satisfies the correct conditions for ¢ and £ equal to § and 1 to
establish the homotopy of &(f) and ¢{g) with respect to y should be
carried out as an exercise.

From what has just been shown, it follows that all paths in a
given homotopy class with respect to the base-point x are mapped by
¢ into the same homotopy class with respect to y. If fis a homotopy
class with respect to x and fis a path in this class, then the homotopy
class with respeet to i of ¢(f) will be denoted by $(f). & is thus a well
defined mapping of #{¥, x) into #{¥&, y).

In exactly the same way a mapping ¥ of ={#,¥) into n{&, x) can
be constructed. To do this let ¢ be a given path based on y, and
define y{g) as a path based on x, the definition being similar to that of
() above:

g (s) == A(3s), 0o
p(g)(s) = g(3s — 1), } s T,
wg)s) = A3 —3s), § s <L

Having donc this ¢ is defined as the mapping of #{£, ¥) into n( &, )
which maps the homotopy eclass of ¢ on that of pig).

It will now be shown that the mappings ¢ and  are inverse to one
another; this will show that both mappings arc one-one and onto,
In order to do this it will be sufficient to prove that, if fis a given
path based on z, then w{¢(f)} is homotopic to f with respect to the
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base-point z, and that if ¢ is a given path based on y then H(wl{g)) is
homotopic to g with respect to the base-point y.
The full definition of p{¢(f)) is as follows:

w(fN(s) = e 2
wd(fis} = [4~—93}} i <s <o
PA(NNs) = fl9s — 1), 2L,
wd(MNis) =A% —5), §<<s=< 4
WM =h3 —3s), sk L

Tt will be noticed that this definition amounts to dividing I into five
subintervals to each of which A or & reversed or fis applied with the
appropriate change of scale. Experience with this sort of situation in
Theorem 20 should suggest that the deformation of w(¢(f)) into f
will be carried out by expanding the middle one of these subintervals,
to which fis applied, so that it fills the whole of 7, while the remaining
subintervals are compressed into the end-points of I. And eonsidera.-
tions similar to those followed in Theorem 20 suggest that the
required homotopy will be given by a mapping F:I? - E defined

as follows:

F(s, ) = A(3s/(1—1)), 0 < s H(1-0),
F(s,8) = h(4—0sf(1—1}), Fl1—t) < e 31—t}
F(s, t) = f(9s{(8t-+1) — (4—40)/(8-+-1)), (1 —1) < s < 3(5+4),
F(s, t) = h(9s{(1—1) — (54-4){(1 1)), $(6-+4) <5

Fls, t} = R(3(1—s){(1 1)), i+ s L

The details of the proof that this mapping F gives the required
homotopy of p($(f)) and f with respect to the base-point x should he
filled in as an exercise. The proof that ¢ and ¢{y(g)} are homotopic
with respect to the base-point ¥ is carried out in & similar manner,
Having now shown that the mapping ¢:#(E, &) — w{E, ¥) is one-
one and onto, it remains to show that, for any two paths f and g
baged on #, ¢(fy) is homotopic to ¢(f)d(g) with respect to the base-
point y. This will show that ¢ is an isomorphism, as required.
If one earries out reasoning similar to that used in Theorem 20, and
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the earlier part of the proofl of this theorem, one will be led to the
consideration of a mapping F:I? — K defined as follows:

Fis, 1) = h{l — 63/(2 — 1)), 0 s<CH2 — 1),
Fis, ) = f{bs +t — 2), 12— <s<AB— 1)
P(s, 1) = h{(6s < t - 3)/1). M3 —t) << s L,
Fis, 1) = h{{t — 6s + 3)jt), b < s < 3+ 3),
Fis, t) = g(6s — 3 — 1), ot + 3 s R 4)
) =R{(6s —t — )2 — 1)), G+ 4) s

It is not hard to prove that # gives the required homotopy with
respect to the base-point ¢ of ¢(fg) and &{f)b(g}. When this has been
donc the proof of the present theorem is complete.

CoroLLaRY. If K 15 an arcwise connected space, the group w{E, x) is
independent of the base-point .

ProoF. In this case any pair of points of X can be joined by a
path in & and so (&, x) and #(E, ¥) are isomorphic for any x and y
in £. Hence n(kX, i) is the same as #(&, ¥} from the point of view of
group theory.

It follows from what has just been said that, it £ is an arcwise
connected space, one can speak without ambiguity of the fundamental
group of £ without mentioning any base-point, the understanding
being that this group is w(E, ) for any arbitrary = in £. 'The
fundamental group of an arewise connected space will be denoted by
().

Exercises

I. Prove Theorem 21 by the use of Excrcises 14 of §3.

2. The proof that the fundamental group of the circumference €
of a circle is infinite cyclic cannot be completed at the moment.
In the meantime obtain the partial result that #{C') is cyclic.

[Hint: Take (' as 1the unit cir¢le in tho compiex z.plane. Cover ¢ by
two overlapping ares (homeomorphie to line segments} {7 and 17 and
show that any given path f is homotopie to & product g4, g5 .. . g,. each
g, being a path in cither £7or T, Use Exercises 1 and 5 of §3 to replace
each g; by a mapping &, of the form k (s} = ¢*¢—%), Show next that if
the paths &; and A; ; Tun 1n opposite directions round ' they may be
replaced by a& path running direetly from the heginning of &; to tho end
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of by y- Henco fis homotopic to a path g: I — ¢ whero 1 is divided into
subintervals £, I,, ..., f, and g{s} = ¥4~ %) on I,, the &; all = Oor
all < (. Fimallyshow tha.t th_lh ¢an be B.Ll]uated 8O tha.t the k; are all equal.
Thus prove that #(C} 13 generated by the homotopy E]ﬂﬁﬂ of a path
$:I — C defined by ¢(s) = ¢*™¢%. To show that #{C) is actually infinite
eyclic it will have to be proved {¢f. Chapter V1LI, §2, Kxercise 9) that
neither ¢ nor any of 148 powers 15 homotopic to & constant mapping.]
3. Show that the fundamental group of & torus is abelian with

two generators.

[Hint: As in the previous cxercize use a covering of the torus by
simply connected open sets. Also use the fact that the torus is ohtained
from a square by identifying opposite sides. For the complement to
this exercise, showing that the fundamental group of the torus is free
abelian with two generators, see Chapter VIII, §2, Exercise 9.]

4, Prove that the fundamental group of an annulus is the same as
that of the circumference of a cirele.

[Hint: Uso Exorcise 5, §1.]

Note that the result of this exercise, along with the fact (still to be
proved) that the fundamental group of a circumference is infinite
eyelie, justifies the possibility of finding two paths f and g on the
annulus, as in Mig. 5, which are not homotopic with respeet to fixed
end-points.

5. The last exercise can be generalized as follows: Let E” be a
subspace of £, both spaces being arcwise connected, and suppose
that there is a continuous mapping f:& > E satisfving the following
conditions:

(@) f(E) =

(b} the restriciion of f o E” is the identity mapping on &’;

{¢) f 18 homotopic to the identity mapping of & onto itself.

Prove that #(£) =~ «(E").

Exercise 4 is the special case in which ¥ is the annulus and &7 the

inner houndary.

5. Topological invariance

It will now be shown that the fundamental group of an arcwise
connected space is topologically invariant. In detail, this means
that, if £ and E' are two homeomorphic arewise connected spaces,
then =(E) and #{£’) are isomorphic. This is highly plausible, since
pathe themselves and homotopies of paths and the forming of
products are all defined in terms of continuous mappings; and one
expecta concepts defined in this way to be topological in character.
It only remains now to give a formal verification.

7
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TaroREM 22. Let £ and E' be homeomorphic and both arcwise
connected. Then w(E) and w(E') are isomorphic.

Proor. Since E and E’ are homeomorphic there is a homeo-
morphism f of E onto E’; for convenience the inverse of f will be
denoted by g. In the proof of this theorem these mappings will be
used to transfer paths and homotopies from one space to the other,
Let 2 be any point of E and write y = f(x). If % is any path in &
based on z, it is clear that the composed mapping fh:7 — B’ is a
pathin E based on y. If kis asecond path in £ basedonwand hand &
are homotopic with respect to the base-point x, that is, if there iz g
continuous mapping F:7%2— E agreeing with & on the lower side
and with & on the upper and, carrying the vertical sides into x, then 1t
is clcar that the composed mapping f.F:I* — E’ agrees with f.i on
the lower side of 2 and with f.k on the npper side and earries the
vertical sides into . Hence f.k and fok are homotopic with respect
to the base-point ¢y, This shows that if 2 is a given homotopy class on
E with respect to the base-point z, then, for any representative
path & of k, f.h always lies in the same homotopy class ¢{k} of £ with
respect to .

Hence a mapping ¢:m{E) — 7(E’) has been constructed. It will
now be shown that ¢ is an isomorphism between the two groups.
¢ is certainly a mapping onto, for any path £ on £ based on y can be
obtained by composing f with g.k. and so any homotopy class in &’
with respect to y can he obtained as an image under ¢. Now let 2 and
k Le two paths on £ based on x. By examining Definition 28, the
definition of the product of two paths it is not hard to see that the
product of the paths fih and fob on £ is fi(hk). And so ¢ is a
homomorphism. TFinally suppose ${k) is the identity of ={E").
If & is & path in the class £, this neans that f.b is homotopic to the
constant mapping in &£ with respect to y. That is to say, there is a
continuous mapping F':J%- > £ agreeing with f.h on the lower side
of I2 and carryving the other three sides into y. It is then easy to scc
that g.F" where g is the inverse of f, is a continuous mapping of /*
into E agreeing with ¢.f.A = k on the lower side and carrying the
other three sides into 2, That is to say A is homotopic to the eonstant
mapping with respeet to x, and so ¢{h) equal to the identity of #{(E")
implies that % is the identity of #{#), and 80 ¢ is an isomorphism,
The theorem is thus completely proved.

To conclude this chapter, attention will be drawn to the relation
hetween the fundamental group of a topological space and the

—_—
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property of simple connectivity. It is not hard to see that a space E
is simply connected with respect to a point x if and only if #{E, z)
reduces to the identity element alone. In particular, if X is arcwise
connected one can speak of £ ag being simply connected, without
reference to any base-point: & will have this property if and only if
=(E) reduces to the identity.




CHAPTER ¥

THE HOMOLOGY GROUPS

1, Geometrical motivation for homology theory

In the last chapter, it was found that the study of closed curves
in a topological space gavo rise to a topologically invariant group
associated with the space. The remainder of this book wil be
concerned with some other topologically invariant groups which can
be attached to a given spacc: the ideas to be developed will be
introduced first by some further remarks on closed curves.

If a simple closed curve, such as an ellipse, or a polygon, is
drawn on the plane, then it has an inside and outside. That is to say
the curve forms the common boundary of these two portions of the
plane. Similarly if a c¢losed curve is drawn on the surface of a sphere,
the curve is the boundary of two portions of that surface, Contrast
this situation, however, with that obtained by drawing the curve
on the surface of a torus, Fig. 21. « does not divide the surface into
two digjeint portions; or, what is the same thing, « is not the
boundary of any portion of the surface of the torus. The possibility
of drawing a ciosed curve on a surface withount dividing the surface
into two disjoint portions i3 clearly a topological property. That is
to say, if ¥ is a surface and €' is a curve on it, and if F’ is homeo-
morphic to # and " is the curve on F’ corresponding to (7, then
fails to divide # if and only it € fails to divide #'. This topologically
invariant praperty gives in the usual way a test for distinguishing
between topologically distinet surfaces. It is not, of course, a very
delicate test, as there are many topologically differcnt surfaces on
which a non-bounding closed curve may be drawn.

To illustrate this point further, and to show how this ‘bounding
test’ may be refined, consider the comparison of the torus, Fig. 21,
and the double torus, Fig. 22. In the case of the torus two curves
o, f# are marked such that, if the surface is eut along them, it can be
flattened out into a rectangle. Any further cut must necessarily
divide the surface into two parts. But if the double torus is eut along
the curves marked o, § it cannot be flattened out, and further cuts
«’, " may be made without dividing the surface into disjoint parts.

B2
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This suggests that a numerical measurement may be attached to
the bounding or dividing properties of closed curves on a surface.
For the maximum number of closed curves along which the surface
may be cut without dividing it into two or more disjoint parts 1s
clearly a topological invariant. This invariant makes more precise
the property of the existence or otherwise of curves which bounnd
portions of the surface. It is closely related to the more elaborate
invariants which are later to be developed, and already gives some
indication that the study of the bounding properties of curves on &

Fig. 21. Fia. 22,

surface may provide & test which will help considerably in

‘distinguishing between topologically different surfaces. In fact, it

will turn out that closed surfuces can be fully classified by this test
{Chapter VIII, §2, Exercise 7).

In order to generalize what has been said about surfaces to other
spaces, one will have to consider not only whether given closed
curves are boundaries ov not, but also whether pieces of closed 2-,
3-, . .. r-dimensional surface are boundaries of something or not.
The first step in doing this is to make precise what is meant by a
piece of r-dimensional surface embedded in a space, and what is
meant by being a houndary. These ideas must, of course, be defined
80 that when r = 1 or r = 2 thc ordinary elementary idea of a
curve bounding a surface or surface bounding a solid are obtained.
Now a simple closed curve is just a single loop homeomorphic to the
circumference of a eirele, but already in the case of surfaces there is a
much greater variety of possible shapes; and for higher dimensional
figures the variety of possible shapes defies classification. It is there-
fore convenient to adopt a rather special method for specifying the
r-dimensional surfaces to be considered. The miethod will be illus-
trated by considering first a surface § embedded in a space .
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It will be assumed that § can be subdivided into a finite number of
curvilinear triangles; this is a genuine restriction but the subsequent
gain in manipulative facility justifies it. § can then be thought of as
the sum of these triangles 7', 7’5, . . ., T, That is to say, one may
write formally S =7, + T, + ...+ T,. And so in general one
can think of all the triangles embedded in & {infinite in number of
course) as being listed in some way, and in order to construct a
piece of surface in & onc simply picks a finite number of these
triangles. It is not necessary to try to say what shape 8 has; it is
only necessary to name the triangles of which it is composed.
And this point is important in higher dimensions where the shapes
occurring cannot easily be described.

Suppose now that §=7T,4+ T, 4 ...+ T,. How does one
know whether S is closed or not? Obviously one can do this by
looking at each T'; in turn and checking whether any of them has a

free edge. Ome can think of this as being carried out algebraically
e

by saving that (boundary of 8} = > (boundary of T';), then writing
i=1

(boundary of T,) = T! + T2 L T3, where each 7% rcprescnts a

curvilinear arc, namely a side of T, and seeing whether all the terms

of 3T% can be paired off with one another.

From this it looks ag if the addition of the boundary sides is
carried out ‘modulo 2’ in the sense that anything appearing twice 13
crossed out. This is not altogether satisfactory; for although one
wants the boundary sides of the 7' to eancel as indicated, it may
happen that the surface S is composed of two pieces which have a tri-
angle in common (as, for instanee, a bowl with a triangular base sitting
on a table). Now one may want to acknowledge the fact that this tri-
angle appears twice in the surface, but certainly not by cancelling it
out and so leaving a hole in the surface. The natural way to represent
algebraically the double appearance of a triangle would be to attach
to it the coefficient 2. Thus it is reasonable to consider surfaces in &
which are represented algebraically by linear combinations, with
coefficients which are integers, of triangles embedded in £.

The main steps of the gencralization to r-dimensional surfaces in
a space £ can now be indicated:

(I} The idea of a triangle must be generalized first, The tetra-
hedron is the natural generalization to three dimensions, and the
simplexes to be defined in §2 give the extension to any number of
dimensions,

).
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{2) The method of embedding simplexes in a space & must be
properly gpecified; it will in fact be done by means of continuocus
mappings (in $4).

(3) Pieces of r-dinmtensional surface in £ will be considered which are
represented algebraically by linear combinations of simplexes with
integral coefficients (§5).

(4) The rule for writing down the houndary of a simplex must be
get up in such a way that the intuitive idea of a boundary is
reproduced in low dimensional cases (§6).

2. Euclidean simplexes

In the rigorous formulation of the ideas described in the above §1,
the first step is to define properly the Eueclidean simplexes and to
work ont some of their properties.

DernrtioN 31, Let x4, 2,,...,%, denote p--1 points in
n-dimensional Euclidean space, and let the coordinates of z; be

{(zt, 22, .. .,al),i=0,1,...,p The points =, wy, ..., x, will be
'{:alle-d Imﬂaﬂy iﬂdﬁﬂﬁﬂdﬁﬂi if and only if the matrix
adah . all
1.2 v
:t_rl:.-:l,..::s.:ll (13)

‘1.2 S
X, 2y . H:rj,l

has rank p - 1.
This definition may be expressed geometrically by considering the

hyperplanes in Euclidean n-space containing the pointsz,, xq, . . ., .
it
'""'iuch a hyperplane Z e, X* = h must necessarily satisfy the condition

Zﬂ:r—f? jiﬂl

tm=l
equations in a,, a,, . . . , & whose matrix, namely {13), hasrank » - 1.

Thus there are at most (» + 1) — (p + 1) linearly independent

., p), that is, & set of homogeneous linear

Tl
equations of the form > o, X* = b satisfied by the coordinates of
=1
p- In other words, the smallest linear subspace of the
given Euclidean n-space which can contain xg, #y,...,%, is of
dimension p.
To illustrate this, suppose four points x,, x,, ¥4, *, in 3-space are
linearly independent. Then the smallest linear subspace containing

them is of dimension 3, that is, the whole space. Thus four points are

Iﬂjllrlgq-l-,m
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lineariy independent if and only if they are non-coplanar. Similarly
three points in 3-space or in the plane are linearly independent if and
only 1if they are not collinear.

DerFiNITION 32. Letxg, x;, . .., x,be(p -|- 1) linearly independent
points of Euclidean =n-space. Then the Fuclidean p-simplex
[2y2, ... x,] is defined as the set of all points with coordinates
(z1, 22, ..., z") where

.7
:v:}_ijm{i_l,ﬂ,. L 1),
jai)
Arz0(=0,1...,p) ;. (14}
y
> A =1,
j=0

The points x4, x4, ..., 2z, will be called the vertices of [xpxy . .. 2,].

The geometrical meaning of this definition will now be cxamined
inthe cases p = 1, 2, 3. For convenience taken = 3. Forp = 1 one
iz considering t-hF' set of points (2!, 22, 2%) with 2z = A, + A,at,
Ao =0, A4, =0, 4, + 4, = 1. But these are the formulae for the
coordinates of the point dividing the join of {a}, =3, 23, (=1, *{, 43
internally in the ratic 4, : ;. Clearly as the 4’s vary all the points
of the line segment joining {x}, z&, x3) and (!, zf, &%} are obtained.
And so this line segment is the Euclidean simplex [z4x,] in the sense
of the above definition.

Take now p = 2. The points to be eonsidered are those with
coordinates (21, z2, 28) such that 2t = A} + A2} — A, D4, =1,
A; = 0. And these are the coordinates of the point dividing in the
ratio {4, -|- A5} 1 2,4 the join of xy to the point dividing the segment
Xy, in the ratio A5 : 4, It is clear that all points of the triangle
x4y are obtained in this way, and so this triangle is the Euclidean
2.simplex [xyr,2,] of the above definition.

An exactly similar argument may be carried out for the case p = 3,
showing that the 3-simplex [ryxrr,xs] I1s the tetrahedron with
Ty Tqs Ly, Xy &3 Vertices.

Each point of the Euclidean p-simplex [#gx, ... x,] is specified
by giving a set of values to Aj, 4, ..., 4, in (14). It will now he
shown that the correspondence between the points of the simplex
and the (p 4- 1)-tuples (4,, 2, ..., 4,} is one-one.

Suppose then, that {1,, 4,, .. ., A} and (g, gy, .. ., ;) define the
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same point of the simplex {xgx; ... x,}. In symbols this hypothesis
states that:

i=

Fy
ko= Suhi=12

[

p—\
2.0
0

These equations can be written as;

||
r::[\/j"a

P
E(F —,uj}.-l: =0,1==1,2,...,n,

?
DA — gy =0
i=0
namely a set of homogeneous linear equations in (4, -~ w,), 7 = 0,
1,2,...,p, with the matrix (13) which is of rank » +— 1. Hence
A; = u; for each ¢, as was to be shown.

DEFINITION 33. The numbers 4, 4,, . . ., 4, in (14} are catled the
barycentric coordinates of the corresponding point in the simplex.

The reason hehind this definition is that, in the cases p =1, 2, 3,
the point of the simplex [z4x, . . . ] with barycentric coordinates
{igs Ay, ..., A,) is the barycentre or mass centre of masses
Ay A4, . .., A, placed respectively at the vertices ay, z, ..., x,.

Associated with a given Euclidean p-simplex there are a number of
others called its faces and defined as follows:

DeFiNiTION 34. Let x;, z,, ..., x; be ¢ 4 1 of the vertices of the
Euclidean p-simplex [#gx, . . . x,]. Then the g-simplex [z, . . . 2] 18
called a g-dimensional face of [x42y . . . 2 ]

A p-simplex has only one p-dimensional face, namely itself.
The 0-dimensional faces of a simplex arc its vertices. The p-simplex
{rgx;...x,] has p + 1 (p — l)-dimensional faces, namely the
simplexes [xyx,...&, ...x,], where the circumflex denotes the
omission of the corresponding vertex. The term ‘face’, without
qualification as to dimension, will generally be used to denote these
{p — 1l)-dimensional faces. In particular, the fices of a tetrahedron
arc its faces in the ordinary sense, those of a triangle arc its sides
and those of a line scgment are its end points, In addition, for
example, a tetrahedron has 1-dimensional faces, namely its edges.

If, in the formulae {14), one sets 4, — (), the remaining A’s still
add up to 1 and are non-negative. Thus the formulae (14) with
A; =0 dcfine exactly the set of points of the (p — 1}-simplex
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[£g6y ... & ... 2,], that is to say, the i-th face of [z4r, ... %]
Similarly it is not hard to see that the points of any g-dimensional
face of [xyx, ...z, may be obtained from the formulae (14) by
setting a suitable selection of barycentric ¢coordinates equal to zero.

An important property of the Euclidean simplexes is their con-
vexity; that is to say, if two points belong to a Huclidean simplex
then all points on the line segment joining them also belong to the
simplex. This is fairly obvious from a diagram in the cases of
simplexes of dimensions 1, 2, 3, but it requires formal proof in the
gencral case, Let (', % ..., y"and (2%, 2% . . ., 2" )be twopoints of

» . n _ P P
[Xqy . .. 2, and let :12611'33;1 2t = LE&L;I}, with %lj = %‘u,j — 1.
=] 1=

Take any point on the line segment joining these points, say the
point dividing it intcrnally in the ratio «:f, The coordinates of

this point ave {#', w?, . .., w"™), where
i Py et oAt aduy  DBA A ap) 3
o+ f o« f %+ f
et
y PA; + ap;
i o - ﬁ !'

then since the A's, u’s, «, f are all non-negative, it follows that
r

v; = 0 for each j. Also D, = 1. Thus (u", «? ..., w")is a point of
0

[%g%y - .. x,], namely the point with barycentric coordinates
{vg ¥y, + +» ¥,). This proves the convexity of [zgr ... 2,].

A further useful property of Euclidean simplexes is that they
consist exactly of all the points obtained by joining any one vertex
to all the points of the opposite face. More precisely, if [xy2, . . . 2]
is a given simplex, and z; a selected vertex, then every point of
[€g®y . . . %,} lies on some linc segment joining x, to some point of
the face [z4z,... %,...2,]. The converse property, ihat every
such point belongs to the simplex [zyx, ...2,], is trivial by the
convexity of the simplex. To prove the stated property, let

(z!,2%, ..., 2" be a point of [zy%, . . . x,] different from x,. In terms
I? 1
of barycentric coordinates let 2* — 3 2, and let (4, ¥*, . . . ¥") be
i=0
the point with coordinates given by y* = éi; x}, where 1] = 4,/ E A
Eals z

The point (%, %% ..., y") belongs to the face [xyx, ... &£,... 2],

L
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having barycentric coordinates (Ag 43,...,0,...,4)), with the

zero in the i-th place. Also the point {21, 2%, .. ., 2?) divides the join
of x,and (3%, ¥% ..., ¥") in the ratio ( 3 4,):4,. Henece (z',2%,...2")
j#i

liex on a segment joining x; to a point of the opposite face, as
required.
Exercises

1. Let ABC be a triangle and P a point in it. Prove that the
barycentric coordinates of I in the triangle A B(' are the ratios of
the areas of the triangles PBC, PCA4, PAB to that of triangle 4 BC.

Generalize this result to the case of a tetrahedron.

2, Let 8 denote the Euclidean p-simplex [xyx, .. . 2] and let S be
the union of its (p — 1)-dimensional faces and let g be the point of S
with barycentric coordinates

1 1 1
)
(This point is called the centroid or barycentre of §; note that it is -
the centroid in the ordinary sense if p = 2 or 3). Prove that every

directed segment starting from ¢ mects 8 in exactly one point.
3. Use the result of the last cxercise to prove that § is homeo-
morphie to the solid sphere E? consisting of all points in Euclidean

P
p-space such that > 27 <{ 1, and that the homeomorphism can be
i=1

constructed to carry S onto the sphere 82! with the equation
»

Saf—1.

i=1

[Hint: Take 5 and E? to be in the same Fuclidean space, and map
each radins of E¥ proportionally on the parallel segment jommg the
centroid of & to a point of 5.]

4. Prove that, in the notation of Exercise 3, there is a homeo-

morphism of § onto S7~! carrying one face of § onto the hemisphere
satisfying x, <C 0 and the rest onto the hemisphere x, == 0.

[Hint: Place the selected face &, of & i the hyperplane x, = 0 with
it centroid at the origin. Let f be the projection from the origin of the
remaining faces of & onto tho st », = 0 of ¥%71; prove that f, so far as
defined, is a homeomorphism, Then map the segment joining the
origin, to each point ¢ on the frentier of 8, proportionally on the arc of a
great circle on S™1 joining (0, 0, ..., 0, —1) to fig).]

Note that this exercise gives an example of the extension of a
mapping similar to that seen in Exercise 11, §1, Chapter III.




100 ALGERBRAIC TOPOLOGY

5. (ieneralize the result proved in the last paragraph of §2. by
showing that, if [x, 2, . . . £,]is a Euclidean p-simplex and [xyz, . . . #,]
and [z, 2,4 .. .2,] are opposite faces (in the sense of being defined
by complementary sets of vertices), then [xgx; . .. z,] consists of ali
points on all line segments obtained by joining a point on one of
these faces to a point of the other. {The result given in §2 is the
special case ¢ = 0, when one of the pair of opposite faces is a vertex).

6. Let > be any convex set in a Fuclidean space (that is a sct
such that if it contains points p and ¢ then it contains all the points
of the line segment joining p and ¢) and let x,, x,, . . ., x, be lincarly
independent points belonging to >. Prove that [zy, ... 2,]C 2.

[Hint: Proceed induetively; suppose true for a number of vertices less
than ¢ + 1, and then use the result stated at the cnd of §2,]

3. Linear mappings

Using the barycentric coordinates introduced in Definition 33,
two different simplexes of the same dimension will now be compared
and will be shown to homeomorphic. In fact, a homeomorphism
will be constructed which carries ¢-dimensicnal faces into g-
dimensional faces for each ¢.

Let [zg2, . . . z,] and [y, . . - ¥,] be two Euelidean p-simplexes in

Tuclidean n-space, and let f he a mapping which carries each point of
[42; - - - @] into the point of {yay, . .. y,] having the same bary-
centric coordinates. Thus if (21, 2%, ..., 2"} is a point of [z, . . . 2]
whose coordinates are given by (14), its image under f has coordinates

(wl, w®, ..., w") where wu'= %ﬂ.jy;. f is certainly a one-one
=0

mapping, since the cnrrespnnd;nce between the points of a simplex
and their barycentric coordinates has been shown to be one-one.
Also since faces are obtained by setting one or more barycentric
coordinates equal to zero, it easily follows that the g-dimensional
face [xx, . .. x) of [&g2 . . . #,]is mupped by f onto the ¢g-dimensional
face [y4,...%] of [¥o¥y---Y,]. In particular, the vertex z, is
mapped on the vertex y,, for each 1.

1t remains to be shown that f is a homeomorphism. Let
(2L, 2%, ..., 2" be a point of [x,2y ..., ] with coordinates given by (14).
The equations (14) may be regarded as linear equations in 4y, 4;,
Ag, ..., A, They are certainly consistent so long as {2%,2% ..., 2")
is in [zg%, ...%,], for then (2%, 2% ...,2") is, by Definition 32,
ain values to the A’s in (14). Also the rank of

eeeeee——— o
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the matrix of the equations ([4} namely the matrix (13), is p -+ I,
X ¥ps + - - 5 ¥, being linearly independent points; and so, given
(21, 2% ..., 2") in [xer; ... 2], p + 1 of the equations (14} can be
solved for Ay, 4,,..., 4, a8 linear, and hence continuous, functions
of the coordinates 21,22 ...,z But if (el «? ..., w"} is the
image of {z!, 2%, ...2") under f, the «' are certainly continnous
functions of the i, and so, by what has just heen proved arc
continuous functions of the 2*. Hence f is continnous, Similarly f-!
ig continuous, and so f is a homeomorphism.

DerINITION 35. The mapping f constructed as ahove is ealled
a linear mapping of |xyx; ... x,] onto [yoy, - - - ¥,).

The reason for this definition is that the equations (14) and the
similar relations connecting the w* and the A, enable the w* to be
expressed linearly in terms of the z?. Some gencralizations of this
idea will now be described in concluding this section.

In the first place, if one simply rearranges the order of the vertices
of a simplex and applics the definition of a Euclidean simplex, the
same point-set is obtained. That is to say, the point-set [£,F, . . . &,]
is the same as the point-set [ay2, ... x,]if &, 7, ..., & is some
permutation of x,, x,,...x . But of course the barycentric co-
ordinates of a point with respect to the ordered set of vertices
£, &y, . .., &, will not be the same as those with respect to the
ordered set xy, x,, . .., >, Thusif[yy, . . . ¥ ]is asecond p-simplex
& new hnear mapping of the point-set [xyr, ... 2 ] onto [yey, . . . ¥,]
may be defined, namely that which is obtained by applying
Definition 35 to [£,%; ... £,] and [y, - . - #,)-

Similarly, the g, could be rearranged in some new order
Hos H1, « « - 5 § and one could then construct the linear mapping of
(&4%, .. .2, | onto {#,#,, ...%,], using the above definition. This
Iinear mapping could equally well be specified as the linear mapping
of [zgx, ... x,] onto [#yy, . . . v,| which carries the vertices of the
first simplex in the order &, 7,, .. ., ¥, into those of the second in
the order g, #,, ...%,. This way of describing a lincar mapping
will be used in the future, the essential feature heing that the
mapping is fully defined as soon as the orders of the vertices of
the two simplexes aro specified.

It should be noted further that there is nothing in the definition of a
hinear mapping which really requires that the object and image
simplexes should lie in the same Euclidean spaces, or even in spaces
of the same dimension. The same definition could be applied to a
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simplex [xy2 --.2,] in Euclidean n-space ¥, and a simplex
(Yot - - - ¥,] 0 m-space E_, the correspondence being as before
between points with the same barycentric coordinates.

A more essential generalization of the original definition of a linear
mapping is obtained by considering two simplexes [zez, . . . #,] and
lye¥y - - %, in Ruclidean spaces E_ and E,, respectively, where
g <<p. Let ug, up,...,u, be a set of points in K, obtained by
taking the vertices y,, ¥,, - . . , ¥, With repetitions. That is to say, ¥,
will be taken p, times, ¢, p, times, and so on, where py + y -k . .. =
p -+ 1, and the resulting set, in some order, will be called %4, %,, . . . .
The points #, do not of course define a p-simplex hecause they are not
linearly independent, all of them lying in the g-dimensional linear
space containing [¥ey - - - #,]- But a mapping f (no longer homceo-
morphic) of [z2,...x,] onto [yoyy . .. #¥,] which can still just:-
fiably be called lincar can be defined as follows.

Let (21, 2%, ..., 2% be the point of [xyx . .. z,] with barycentric
coordinates (Ag Ay, - .., 4,). Then let (w' w® ..., %™} be the
point of B, with coordinates given by

i .
w' = > Aun,t=1,2,....m, {15)
i=0

where (;, us, ..., u}') are the coordinates of %;. Now if each u, 1s
replaced by the y, to which it is equal, it can be seen at once that «
is a linear combination of g, ¥}, . . . , ¥, with non-negative coefficients
adding up to unity. This means that (w!, w? ..., @™} 15 a pomnt of
the simplex [y,yy - . - ¥,). Alsc every point of this simplex ¢an be

obtained in this wav. For any point of [y, . . . ¥,] has coordinates

4 iJ
e " : i, — . .
i= j=0
Y, is the same as gome one of the Uy,

Thus the mapping f which maps the point {z',2% ...,2%) of
[#4%y - . - %,] with coordinates given by (14) onto the point
fwl, w2, ..., w*) of [ygyy. - %) given hy (15) is a mapping of
(%) . - -,] onto [we; - .. 4] Also, by (15) the w' are lincar
functions of the 4., and by sclving (14}, the latter are linear functions
of the z*, Thus the w' are linear functions of the 2* This justifies
the name ‘linear mapping’ for f and also shows that f is continuous.

Such a linear mapping, where the image simplex is of lower
dimension than the original, will be called degenerate. Clearly it 13
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fully specified when the images of the vertices of [agxy ... 2]
are given.

Exercises

1, Let 8, 8,, S,; be Euclidean simplexes (not necessarily of the
same dimension) and let f:8;-—+ S, and .8, &8; be linear
mappings (possibly degenerate). Prove that the composition mapping
g-f is a linear mapping.

2. Let {zyx,...x,] and [yg, . . - ¥,] be simplexes in Euchidean
spaces B, and E, respectively, with ¢ <7 p. Let f be a lincar mapping
of [xyry...x,] onto [yey, ... Y] for some arrangement of the
vertices. Lct x,,_, be a point of B, lincarly independent of 25, 2, , . .2,
and let y,,, be a point of &, linearly independent of gy, ¥y, - . ., %,
Define the mapping g of [z, ... x,,¢] onto [y, ... ¥, 4] as
follows: if ge[xyr; ... %, ,]is on a line segment joining &, , to
q' €[4, - - . 2,1 and divides this scgment in the ratio ¢ : 1 then g(g)
is to divide the join g, , and f(g') in the ratio ¢:1. Prove that g 15 a
linear mapping.

4. Singular simplexes on a space

The concept now to be introduced to give formal rigour to the
idea of cmbedding a simplex in a given space E is that of the singular
simplex. As a preparation for this definition, for each dimension p, &
definite p-simplex will be chosen in some Eueclidean space. This
fixed choice is really just a matter of convenicnee, and could be made
in many ways, The choeice actually to be made is as follows:

DEFINITION 36. The standard Euclidean p-simplex A, will be the
simplex in {p -+ 1)-space E, , , whose vertices arc the points (0,0,...,1,
...,0) with the unit in the i-th place, for ¢+ =1,2,...,p + L.

If (2%, 2%, ...,z"*Y) is any point of A, and if {4,, 4;,...,4,) are
its barycentric coordinates, then inspection of the formulae {14)
showsthat 2, =21 (1 = 0,1, ..., p). Thus 2l | 2., 2Pt =],

Conversely, take any point in £, with coordinates (21, 2%, . . ., 2?1)
] I} r.:.l L -

such that 2° 2= 0 for each ¢ and >2' = [. Then z* may be expressed
i—=1

by the formulae ([4) provided A; is taken as z't1 for each j and

Zg» T4y ..., %, are taken as the vertices of A, as defined above.

In other words, A, is precisely the set of points with non-negative
p+1

. ; E - T
coordinates on the hyperplane Zz =1lin kK __,.
1]
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DeriNITION 37. The above choiee of standard Euclidean simplexes
having heen made, a singular p-simplex, ov singular simpler of
dimension §, on a gpace K is defined ns a continuous mapping ¢
of A, into E.

There are two points to be carefuily noted here:

(a) The singular simplex is the mapping into &, and is not a sct of
points in E. This point is cmphasized by the notation; a singular
simplex defined as above by the mapping o is called the singular
simyplex o,

(b) In further emphasis of {a), the set of points o(A_), that is the
image of the mapping a, does not even need to look like a simplex
(except for p = 0, when both A, and ¢{A,) are single points)., The
definition of a singular simplex makes no reference to the shape of
a{A)). This may seem rather strange, as the idea of a singular
simplex is supposed to be based on the intuitive idea of a simplex
embedded in a space. But a little reflection shows that the situation
is no stranger than that arising from the contrast between the
intuitive idea of a path and the rigorous definition. The intuitive
reasoning which motivates the work to be carried out later may still
be based on some sort of pictortal notion of curvilinear triangles and
tetrahedra in the space; but the actual proofs must be based only on
Definition 37.

It will he usceful to have a special notation for a particular type of
singular simplex on a space J§ which is cither & Euclidean space or a
subspace of a Euclidean space. Suppose that E containg a Kuchdean
p-simplex {xyx,...z,]. Then the linear mapping of A  onto
[x4%y . . . 2,] which carries the vertex (0,0,...,1,... (), with 1 1n
the sth place, onto x,_, is a continnous mapping of A, into £ and so
i a singular simplex on %.

Dxrrixitiox 38. The singular simplex on & just described will be
denoted by (xgry . .. T,).

Note that [z4z, . . . x,] with square brackets denotes a point-set,
while (xgx, . . . x,) with round brackets is a mapping. Rearrangement
of the z, does not affect the former, but does change the latter.

5. Chains on a space

In §1, addition was suggested as the algebraic expression for the
geometrical process of sticking together simplexes to form pieces of
p-dimensional surface in a space £. But, algebraically speaking,
addition does not make much sense unless it appears as the operation
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in some sort of algebraie system. The natural thing to do, then, is to
construct an additive abelian group whose generators are the
singular p-simplexes on X. This is, of course, a group with an
infinite mimber of generators.

DeriniTION 3. The additive abelian group whose generators are
the singular p-simplexes on ¥ is called the group of p-chains on E,
and will be denoted by € (E). Its elements will be called p-chains or
p-dimensional chains on K.

Each p-chain so defined will be a linear combination >a,0" of
singular p-simplexes ¢* on £ with coefficients a; which are integers
(positive, negative or zero), and it is understood that only a finite
number of coefficients are non-zero in any such expression. A chain
group is to be constructed for each dimension g, In particular, each
clement of C'j(k) is specified by simply giving a finite collection of
points on £ with positive or negative multiplicities, for in this case,
and in this case alone, a singular (-simplex is defined fully by the
image of the mapping defining it. '

6. The boundary of a simplex

It has already been suggested that, speaking geometrically, the
boundary of a piece of surface divided into triangles should be made
up of the boundaries of the triangles put together in some way.
But since one does not want to add together simplexes ‘modulo 2°,
some rule must be evoived for writing down the boundary of a
triangle in such a way that, for example, the common side of two
triangles put together to form a quadrilateral will not count as part
of the boundary of the guadrilateral.

Of course, since the sticking together of triangles is now to be
represented algebraically by forming linear combinations of singular
simplexes, the operation which will have to be defined now is the
fermation of the boundary of a singular simplex. The procedure will
be introduced by considering singular simplexes in a Fuclidean
space K, in particular the type defined by linear mappings
(Definition 38).

Consider the singuler simplex (zpx; . . . x,), where[x,z, .. . 2] isa
p-simplex in #. The aim is to define an operation on (xqx, . .. x,)
which will express first of all the geometrical fact that the point-set
boundary of [z, . . . z,] consists of the union of its faces, and will,
secondly, have the form of a simple algebraic rule which can be
easily worked with. One would expect that the geometrical faces of

B
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|z, . . . #,] would be represented, in terms of singular simplexes, by
singular simplexeg which are linear mappings of A,,_, onto these faces.
For cach such face there are, of course, p! choices of singular simplex,
but the requirement of algebraic simplicity suggests that one shoula
try first the singular simplexes (wgx, ... &,...¢;) for 2 =10, 1, 2.

.,p. In addition, one would expeet each singular simplex
(Zg2y ... &;...2,) to appear just once in the boundary of
(742, . - - x,). Thus, denoting the operation of forming the boundary
by the letter d, it seems reasonable to put forward as a tentative

definition of d(zy2,...2,) a formula of the type %—l—_._ (xgTy. ;... 2,)
i=0

To see whether a formula like this can be used as a definition, 1t 18
necessary to investigate whether a simple rule can be devised for
fixing the sign of each term in such a way that the resulting definition
expresses algebraically the intuitive geometrical properties of
boundaries. Now the perimeter of a triangle and the surface of a
tetrahedron are closed, that is have no boundary. One therefore
naturally requires that the definition of the boundary operation
on singular simplexes should satisfy the condition that the boundary
of a boundary should reduce to zero. A bit of experimentation with
low dimensional cases (say p =1, 2,3} shows that this can Dle
arranged if the signs in the above tentative definition arc taken

alternately + and —, giving the formula:

dlzgxy .. @) = > {—1){agey . o &L ), (16}

i

E A=

It will be proved presently that

By .- x,) = > (—Did{zge, ... & .. x0) =10

i

T

for all », and so the requirements of intuition are fully satistied in
this respect. The further justification for accepting (16) as a
definition of the boundary operation arises from the elegance and
power of the theory which can be based on it. The formal statement
of the definition will now be given,

Derixitiox 40. Tet B be a subspace of a Euclidean space
containing a Kuclidean p-simplex [zgr . . . 7,] and let (@52, ... 2,)
he the singular simplex on E defined in Definition 38. Then the
boundary of (xgx, . .. x,) will be denoted by d(zy>, . . . %} and will be
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defined by the formula (16). Moreover, if &4, 05 ..., 6, are
gingular simplexes on K defined by linear mappings of A, into Z,
such that, for each ¢, da, is defined by a formula like (16), and if x is

" b

the chain >e,a,, the a; being integers, then de is defined as Yado,.
i=1 i=1

In particular, set do =— 0 for any 0O-chain a.

The second part of the definition in which da is defined is, of
course, designed to cxpreas algebraically the geometrical idea stated
in the first sentence of this section, namely on the nature of the
boundary of a surface made of triangles placed edge to edge.

THEEOREM 23. If (ryx, . .. x,) 15 as in Definition 40, d*(xyz, . . . 2}
= 0, where d* denoles the operation of d twice in succession,

Proor. The formula (16) expresses d(zyz; ...2z,) as a {p — I})-
chain on ¥, a linear combination of singular simplexes defined by
linear mappings. And so the second part of Definition 40 says that

Fy
Blagty . . a,) = 5 (—1)dlrgr, ... & ... 2,)

i =)

= > (—1y+i(eeey ... & ... & .. X,)

j<i
+ zliml}i-’_j_l(m‘ﬁml * oron ':f:t" L :éj‘ . a o Iﬂ}
J=t

— 0,

aince each term appears twice, once in each summation, with opposite
signs. |

7. Boundaries and cycles on any space

The definition of the last section shows how to form tho boundary
of a special type of singular simplex on a portion of Euclidean space.
In particular Iet x, be the vertex (0,0,...,1,..., ), with the unit
in the (¢ + 1)-th place, of A, and let (x4, . .. %,) be the singular
p-simplex on A defined by the identity mapping of A, on itself.
Then the above definition gives d{xyx,...z,) asa {p—1}-chain on A,
The idea now is that, if # is a given singular p-simplex on a space k,
Fha mapping ¢ of A, into K should be made to carry d(zg, . .. z,)
inte & singular (p — 1)-chain on £ which will be called the houndary
of the singular simplex o, to be denoted by do. b

This is the natural extension of the geometrical idea that, if a
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triangle, say, is embedded in ¥ by some¢ continuous mapping, then the
boundary of the embedded triangle is obtained by restricting this
mapping to the sides of the original plane triangle. But of ¢ourse,
whereas one speaks in this geometrical statement of point-sets,
namely the triangle and its sides, the rigorous definition of the
boundary of a singular simplex must be expressed entirely in terms of
singular simplexes and chains.

The method of carrying d(xyx, . . . z,) into & to define dag can best
be described by considering a more general situation, which wiil in
any case be of importance later. Let B, £ be two spaces and let f be a
continuous mapping of ¥ into £’. Then, in geometrical language,
any simplex embedded in £ iz also sutomatically embedded in B’
because E is mapped by f into £7. 'To express this idea properly, let
g be a singular simplex of dimension p on E, that is, by definition, a
continuous mapping ¢:A,— E. Then the composition f.o is a con-
tinuous mapping of A into £’, in other words, a singular p-simplex
on E’. Thus to cach singular p-simplex ¢ on £ there is assigned a
singular p-gimplex f,(6) = fog on E’. That is to say, a mapping f;
has been set up of the collection of generators of €' (#) into the
collection of gencrators of ¢ (E'). It therefore folows at once
from the definition of ' (E), € (E") that f, can be extended to a
homomorphism of ' (E) into U (E") by setting f; (Da,0,) equal to
Zﬂ’a‘fl{gi:’-

DEeFxITION 41. The homomorphism f:C (k) — C (£}  con-
structed as above from the continucus mapping f:E — K iy
called the homomorphism induced by f on the ehain group €' {E), The
transition from a continuous mapping to the induced homomorphism
on the chain group will always be denoted by the attachment of the
suffix unity. It is, of course, clear that an induced homomorphism
may be constriicted as above for each value of p, but it is convenient
to use the same notation, namely f,, for it independently of the
value of p.

An essential property of the induced homiomorphism whieh has to
be proved is the following:

TaroreEM 24, Let K, K, E" be three aspaces, [ a conbinuous
mapping of E into B, g a continuous mapping of B into BE". Then
(gSh = 911

If one attempts to sec the geometrical meaning of this theorem it
appears rather trivial, for geometrical intuition sees a simplex as ¢
point-set, a triangle or a tetrahedron, say, embedded in the space ¥

THE HOMOLOGY GROUPS 1{H}

And from this point of view, the iheorem simply says that, if a
simplex is given embedded in £ and is carried into £’ by f and thence
into £" by g, then the final result iz the same as would be obtained by
carrying the original simplex straight into " by g.f. That this is so
for a point-set simplex embedded in & is simply a matter of the
definition of g.f. But of course a singular p-simplex on ¥ 18 not a
point-get; it is a mapping of A into E. And so the ahove theorem
does require a formal proof.

ProoFE. To prove Theorem 24 it is sufficient to show that, for any
singular p-simplex ¢ on £, the image of o under (g.f); i3 the same as
its image under g,.f,. Now the image of ¢ under (g.f), is, by
Definition 41 applied to g.f, the composition of the mappings ¢ and
g.f, that is to say g-f-¢. On the other hand, the image of ¢ underg,.{,
is obtained by operating first with f;, on o, the result being f.o
{Definition 41), and then operating with g, on f.o, the result being
gfoo (Definition 41 applied to g). Thus {(g-f); (o) = (g:-f1) (o) =
g.f.o, and the theorem is proved.

The idea of the indueed homomorphism now enables the boundary
of a singular simplex ¢ on a space X to be defined. The situation is
that (xyr, ... x;) 1s a singular simplex on A (ef. the beginning of
this section) and d{x,x, . . . x,) has already been set up as a (p — 1)-
chain on A, that is, an element of ¢, _;(A). On the other hand, ¢
is a continuous mapping of A  into £, and so the induced homo-
morphism a,:C, (A} — C,_;(E) is defined.

DeFmNrTION 42, In the notation already introduced, do is defined
as oy{d{zgx; . . . 2,)). The operator d is then to be extended to any
p-chain on K by setting d{Da,0) = >ade,. d thus becomes a
homomorphism of € (£) into ,_,(E). A similar homomorphism is
defined for each value of p, but no distinetion in notation will he

made

An egsential property of the boundary operator d just defined is the
following:

TuEOREM 25. Let B and E’ be two spaces and let f be a continuous
mapping of B into E'. Then f,.d = d.f,.

Translated into geometrical terms and applied to the case p = 2,
this theorem means that, if one has a triangle T embedded in a space
£ and then one embeds it in B’ hy the further mapping f of & into £,
then the boundary of the image triangle in E’ can either be found
directly in E', or by first marking the boundary of 7 in £ and mapping
it into £’ by means of f.
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ProoF. The proof of the theorem is a simple formal verification:

(f1-d)(0} = f,(do) (definition of the composition of f, and d),
= filo(d(zyzy . . . z,))) (definition of da),
= {fyo){d{xyz, . . . x,)) (definition of the composition
of f; and o},
== (foo) (d{xyx, . . . ,)) {Theorem 24),
= d(f»0) {definition of the boundary of the singular
simplex f.o),
= {d.f,)(c) (definition of f,, along with the defimtion
of the composition of d and f,},
where o iz any singular p-simplex on E. Applying this result to
linear combinations of singular p-simplexes it follows that (f.d){2) =
(dof){c) for any element « of C {E) and this proves the theorem.
The definition of d{x,x, ... #,) in §6 was constructed exactly so
that the boundary of the boundary of a singular p-simplex of the
form (2,2, . ..%,) on a portion of Euclidean space would be zero,
This result will how be carried over to any singular simplex on any
space.
TrrorEM 26. For any space E and each value of  the boundary
operator d satisfies d* = 0.
Proor. The symbol d? means, of course, the operation of d twice
successively. As in the proofs of Theorems 24 and 25, it is enough to
show that d2¢ = 0 for any singular p-simplex ¢ on E. Now

d2a = dido) = d{o,(d(zyz, . . . x,))) (definition of da),
— g,(d(d{zy 2 . .. x,))) (Theorem 25, applied to
the mapping g},
— o (A (xgzy . . - T,)
— {} {Theorem 23},

and this completes the proof.

To conclade this seetion, a name will be given to those chains
on & space which, in this theory, play the part of generalized closed
curves and surfaces.

DEFINITION 43. A p-cycle on a space E is a p-chain x such that
do = 0.

If x and § are p-cycles on E then d{ax — f) =do —df =0,
and so @ — £ is a p-cycle. This implies that the p-cycles on & form a
subgroup of (_(E). This subgroup will be denoted by Z_(¥). 1t1s
clearly the kernel of the homomorphism d:C{(¥) — €, _ (k).
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DErisITiON 44, If « 15 a p-chain on & such that thereis a (p + I)-
chain # on E satisfying o = df, then o will be called a p-boundary
on K.

If @ and § are p-boundaries on ¥ then o = dy, f§ = dé for suitable
(p I 1)-chains y and §. Thusx — f=d{y — d)andsoa — fisa
p-boundary.  Thus the p-boundaries on £ form a subgroup of € (&)
which will be denoted by B (E). B_{E} is clearly the image of the
homomorphism d:0' ,{E) — C(E). '

Le$ o be a p-boundary on E. Then & = 4§ for some chain 8, and
do — 42 = 0 (Theorem 26). Thus a p-boundary is a p-cycle, or in
other words B (£) iz a subgroup of Z (F),

8. Homologous cycles and homology groups

The remarks made in §1 of this Chapter on the bounding properties
of curves on a surface indicate that attention should now he directed
to the distinetion between cycles which are boundaries and those
which are not. But the cobviously infinite variety of cycles on a
space & makes this impracticable until some sort of classification has
been carried out. An indication of what is wanted may be had by
considering two elosed curves « and § on a space ¥, Clearly if x and
# taken together form the boundary of a piece of surface S in E,
then « 18 a boundary if and only if § is. For if 2 hounds a piece of
surface S, then £ bounds the piece of surface obtained by sticking
N and 8’ together,

To express this idea algebraically, let & and £ be two p-cveles on E,
and let y be a (p + 1)-chain such that « — # = dy; thatis, xand 8
together form the boundary of . The use ¢f the minus sign between
a and £ is an arbitrary choice made for futurc convenience; the
formula can be made to appear in this form by suitable choice of the
signs of the simplexes making up « and . Then if  is a boundary,
8ay o = dy’ it follows that § = a — dy = d(y’ — 9), and so f iz a
boundary. Similarly if « — § = dy and # is a boundary, then s0 is «.

The relation &« — § = dy will now be given a name:

DEerFiNrTION 45. 1If 2 and £ arc two p-cycles on E such that
o — f = dy for some {p 4- 1)-chain y, then « and 8 will be called
homologous eycles of E, and o will be said to be homologous fo f. This
relation will be written o ~ 8. In particular if 8 is zero and ¢ = dy
then o is said to he homologous to zero, written o ~ 0.

The relation of homology just introduced is an equivalence
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relation on the set of p-cycles on £. To prove this, note first that
o — & = d0 and 80 o ~ «; second, if & ~ § then « — § = dy for
some Y, and g0 § — o == —dy = d(—vy), that is 8~ «; third, if
o~ 3, B~y then 0« — 3 =4di, § — v =du for some 4 and g,
and so o — ¢ = d{4 + u), that is, ¢~ y. Thus homology is
reflexive, symmetric and transitive, in other words is an equivalence
relation.

DerixtTioN 46. The equivalence classes of p-cycles on E under the
relation of homology are called p-dimensional homology classes on E.

The usefulness of these homology classes is due in one respect to
the fact that, while one certainly cannot count up the cyeles on £
and say how many are or are-not boundaries, one can often make a
simple list of representatives of the various homology classes. For
example, in the case of the torus (ef. Fig. 21) if 2 and § are taken as
I-cyeles, each consisting of a 1l-simplex with the ends joined, then
cvery l-cycle on the torus is homologous to a eycle of the form
mea + nf, where m and » are integers, and such a eycle is homologous
to zero only if m = n» = 0. (cf. Chapter VIII, §2, Excreise 4 for the
proof of this statement.) Thus the one-dimensional homology classes
of the torus are labelled by pairs of integers m, n.

But the principal value of the idea of homology classes appears
from algebraic considerations. Namely, the group Z {£) of p-cycles
on ¥ 18 an additive abelian group and the relation of homology
actually splits it np into coscts modulo the subgroup B (F) of p-
boundaries on E. For ¢ and f, elcments of Z (&), are in the same
coset modulo B (¥) if and only if « — f# is in B (X)), and this ia
precisely the relation of homology. It follows that the homology
classes of p-cycles on K can be regarded as the clements of the
gquotient group H (F) = Z {E)/B (E).

DerFINTTION 47. The group H,(£) is called the p-dimensional,
or simply the p-th, homology group of K.

Thus the homology classes of p-eyeles on F form a group, two
classes being added by adding representative cycles. And the
information one wants on possible bounding relations in £ is to be
chtained by studying the structure of this group for each p, finding
how many genecrators there are, if this number i3 finite, and what
relations hold between them. For cxample, it will eventually he
shown that the l-dimensional homology group of the torus is a
group with two generators, represented by «, £ in Fig. 21, and no
relations (ef. Chapter VIII, §2, Exercise 4).

_ I
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9. Relative homology
The idea of homology was evolved from the eonsideration of the
way in which a surface was or was not divided by closed curves.

© A somewhat similar situation arises from the consideration of a

surface which already has boundaries, using open curves this time.
Consider, for example, a sphere with two holes eut in it (Fig. 23}.
While any closed curve on this surface will certainly divide it into
two parts, open arcs such as ¢ joining two points on the boundaries
of the holes can be drawn without dividing the surface. On the
other hand, two ares o, 8 of this type will divide the surface into two

parts. If, however, there were more holes in the sphere it would be
possible to draw a larger number of open arcs joining boundary
points of the holes without cutting the surface in two.

Now, just as the homology groups of a space were designed to
generalize and make more preeise the bounding propertics of closed
curves on a surface, a further type of group will be introduced here to
deal with the more general situation outlined ahove. The sphere
of Fig. 23 with two holes cut in it is a space ¥, and the edges of the
holes form a subspace F. A system of open cuts joining points of #
will divide & if the cuts, along with portions of the boundaries of the
holes, formo a boundary on E. The type of open cut considered here
must, in a more precise treatment, be replaced by a 1-chain whose
houndary is a 0-chain on F, and so the last sentence may be rephrased
by saying that a I-chain x with boundary in F represents a cut
dividing ¥ if x 4 8, where § is some 1-chain on F, forms a boundary
on . The two ideas just introduced, namely 1-chains representing
cuts joining points of ¥, and the making up of & boundary with a
given l-chain along with other chains on ¥, will now be extended
to any space,




114 ALGEBRAIC TOPOLOGY

In what follows K wiil be a space and ¥ a subspace.

DEFINITION 43. A p-chain « on K will be called a relaisve p-cycle
on B modulo F if dg iz a (p — 1)-chain on F.

If « and 8 are relative p-cycles on K modulo F, d{x — f§) =
da — d8, and, since da and df are both chains on F so is dx — d§.
Thus % — # is also a relative p-cycle on E modulo F. It follows at
once that the relative p-cycles on E modulo F form a subgroup of
O (E). This subgroup will be denoted by Z (&, F).

DerFmITION 49, A p-chain % on F will be called a relative p-
boundary of E modulo F if there is a p-chain f on F and a (p 4 1)-
chain ¢ on ¥ such that « + § = dy.

If & and # are relative p-beundaries on £ modulo # then there are
p-chains y and § on # and (p 4 1)-chains 4 and g on & such that
o} y=di, §+ 0 =dyu; and 50 {x — 8) + (y — ) = d{d — p).
Thus o — f is a relative p-boundary on K modulo ¥, and so the
relative p-boundaries form a subgroup of C (£). This subgroup
will be denoted by B (¥, F).

If x is an element of B, (K, F) then &« 4+ § = dy for suitable
chains y on K and f on ¥. Hence dau = —df, a {(p — 1}-chain cn F.
Thus « is a relative p-evcle on F modulo F. That is to say, B (F, F)
is a subgroup of Z (¥, F).

The definitions of this section are already bearing a formal
resemblance to those of §7. This similarity will be pushed further
by the definition of relative homology.

DeriNiTION 30. Two relative p-cycles «, 8 on £ modulo F will be
said to be relatively homologous modulo F or simply homologous
modulo F if their difference is a relative p-boundary, This relation
will be written # ~ 8 mod F. In particular the relative p-boun-
daries themselves will be sald to be (relatively) homologousito O modulo F.

Reasoning as in §8, it is easy to see that this relation of relative
homalogy is an equivalence relation on Z (K, F), and that the
equivalence classes are the cosets of this group with respecet to the
subgroup B (&, F).

DerixtTioN 51, The cosets of Z_(E, ¥) with respect to B (¥, F)
are called p-dimensional relative homology classes of ¥ modulo F, and
the quoticnt group H (¥, F) = Z (&, I){ B {¥, F)} is called the p-th
relative homology group of E modulo F.

Exercises
1. Let E be the circumference of a circle, say the circle of centre
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(0, 0) and radius 1 in the (x, y)-plane. The standard Euclidean
gsimplex A, is the sct of points in the (x,, #,)-plane such that
2+ 2= 1,2, =20, x, 220, and its points are fully specified by
the parameter ;. The mapping ¢ which carries the point (x,, z,) on
A, into (cos 272, sin 2772) on K is a singular simplex on E. Prove
that it is a eycle.

2, Continuing with the notation of Exercise 1, define two further
gingular simplcxes g, and ¢, on K as follows: ¢, carries (x;, ;)
on A, into (cos 7x,, sin 7z, ) and &, carries (x,, x,) into (cos = (1 4 @),
gin (1 + x,)). Prove that the chain o; 4 ¢, 18 a eycle on & and

prove that it is homologous to the cycle o of Exercise 1.

[Hint: To prove the hemology rolation, map A, into E in such a way
that one side is wrapped round the whole circumference, while the others
are carried ontoc the upper and lower semieireles.]

3. Let K be a line segment, ¥ the set consisting of its two end-
points x, and a, and let x and § be the relative homology classes in ¥
modulo ¥ represented by the singular simplexes (x,x,) and (z,x,)
respectively. (Check that thesc singular simplexes are relative
cycles.) Prove that ¢ = —§.

[Hint: Map A, on £ in such a way that two of the sides are mapped
along X and the third is mapped on one of the end-points, and note
that if o; and o, are singular simplexes which map A; and 4, respectively
on a single poinft in any space then g, = do,.]

4. A torus ¥ can bo constructed by sticking together the opposite
sides of a square £’ with vertices x,, ¥y, %3, ;. Thus there is a
continuous mapping f of £ onto # which is a homeomorphism on
the interior of &’ but which is such that f{p) = f{g) if p and g arc
opposite to one another on a pair of opposite sides of B, Let « be
the chain (x,x.x,) — (%yr,x,) on £, the two singular simplexes
being defined by linear mappings. Prove that fi{«} is a cycle on E.
{f1 18 the homomorphism on chain groups induced by f).

5. Let two circles be given in the (x, ¥)-planc F with centres
(2, 8), (¢', &) and radii r and " respeetively. Using the notation of
Exercise 1 for points of A, define the two singular simplexes ¢ and
a’ on B by the formulae:

olx,, ,) = (@ -+ r cos 2mxy, b + rsin 27zy),
7' (g, To) = (@ + ¢ cos Zpxy, B + ¢’ sin 2xa,).

Prove that o and ¢’ are homologous cycles of E.
[Himnt:; Map the square £ of Exercise 4 onto & cylinder by identifying
points lying opposite one another on one pair of opposite sides. « goos
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into a chain § on this cylinder such that df = r — +’, where r and ¢ are
cyeles obtained by mapping A, round the eylinder’s eircular ends.
Then map the cylinder into E so that ite ends go into the given eircles, ]

6. Prove that if a space & consists of just one point, H(FE) is
infinite cyclic and H (E) is zero for r = 1.

[Hint: Start by showing that there is exactly one singular simplex o
on E for each dimension p, and that, forp > 1,do, = Dore, ; according
a3 p is odd or even.]

7. Let E be a non-arcwise connected spaceand let § = £, 0 E, U

... UE_ where no point of ¥, can be joined by a path in & to a
point of E, for i 7 j. Prove that H (£} is the direct sum of the
groups H (E,) for each p.

8. Let £ be an arcwise comnected space; prove that H,(F) is
infinite cyclie, with a generator represented by ¢:A,— E such that
a{Ay) = x, where z is an arbitrary point of E.

9. Prove that, if E is arewise connected and F ¢ E, then HJ{E, F)
is zero, provided that F is not empty.

CHAPTER VI

CONTINUOUS MAPPINGS AND
THE HOMOLOGY GROUPS

1. The induced homomorphism

In Chapter V, §7, it was shown that a continuous mapping f of a
space & into a space £ induces a homomorphism f, of (&) into
O (E') for each p, and that f,.d = d.f,. The last equation means
that, if f; carries a p-chain o on & into the p-chain 2’ on £’ then it
carries do onto de’. Thix is in agreement with the geometrical
statement that, if §'is a piece of surface cmbedded in E and f{8) = &,

" a piece of surface in £, then f carries the houndary curve of 9 into

that of §’. Looking at this geometrical statement from another
point of view, let « and § be two closed curves in % together forming
the boundary of §. Then f carries %, fi into closed curves which
together form the boundary of §°.

Experience alrcady gained in the last chapter in translating
intuitive results into theorems on homology suggests that the above
statement should be put in the form: if « and B are homologous
cycles on E then fi(«) and f,(#) are cycles on E’ and arc homologous.
Rather than attempt to prove this result as it stands, it seems worth
while to ask a more general question on relative homology, In this
context the following definition will be useful:

DEFiNTTION 52, Let B, B’ be two spaces, F a subspace of £ and
F’ a subspacc of £'. If a continucus mapping of ¥ into E’ carrics ¥
into F', f will be called a continuous mapping of the pair {E, F) info
the pair (K’ F'). Two such mappings f, g of the pair {E, F) into
the pair (&', F’) will be called homotopie if there is a eontinuous
mapping H of the pair (E x I, F x I} into (E’, F') such that
H(p, 0) = fip), H(p, 1) = g(p) for all pc E.

The second part of the definition is a natural extension of the idea
of homotopy (Definition 22); the geometrical idea is that the mapping
[ 18 to be deformed into the mapping ¢ 1n such a wayv that af each
stage of the deformation F is carried into F'.

As in the case of single spaces, the notation f(E, F) — (E'. F)
will be used as a shorthand for “fis a mapping of (E, #)into (E’, F')".

117
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A particular case of & mapping f:(#, F) — (£, F') is obtained is
EcE and Fc F', and f is defined by f{p) = p for all p e £. This
mapping is ealled the inclusion mapping of (£, F) into {£', F'); it is
not hard to see that it is continuous.

Following the lead of the geometrical consideration (at the
beginning of this section) of the effect of a mapping f on closed
curves of F, it scems reasonable to ask: (1) if fis a continuous
mapping of the pair (H, F) into the pair (', F'), does f carry relative
p-cycles of E modulo F into relative p-eycles of £ moduloe F7;
(2) if so, are relatively homologous relative p-cycles carried into
relatively homologous relative p-cycles? The answer is given hy:

THEOREM 27. Let f be a continuous mapping of the pair (E, F)
info the pair (E', F'). Then f, carries Z (E, F) info Z(E', F') and
B(F, F) inio By(E', F') and so each relative homology class of E
modulo F inlo a relative homology class of E' modulo ¥,

Proor. Let « be an element of Z (E, F). Thendgiwin ', (F).
If o' = fi{a)} then de’ = dofy{x) = fi{do) by Theorem 25. Since de.
iz & chain on F and f(F) c F', f,(dx) is a chain on F”. That is to say,
do'is a chain on F', and so o' isin Z,(E’, F'). Since « is any element
of Z,(¥, F) it follows that f, carries this group into Z,(&’, F').

Next let o be an element of B (¥, F}. Then there is a p-chain §
on F and a (p + 1)-chain y on E such that « + # = dy. Applying
the homomorphism f; to this equation, fi(x} -|- f1(5) = fildy} =
d{f,{¥)), by Theorem 25, Since f carries F into #, f,(5) 18 a chain on
F', and so f;(«) added to a chain on F" is a boundary on E', that is to
say, fil«) is in B(£", F'}). This holds for any o in B {E, F), and so
the seccond part of the theorem has been proved.

Finally, if & and § are two elements of some relative homology
class in Z {E, F), then o« — # is, by definition, in B (&, F), and so,
by what has just heen proved, file — f) =fila) — fi{f} is in
B (E', F'). That is to say, fi(«} and f () are in the same relative
homology class of Z_{E’, F'). This provesihelastpart of the theorem.

The last part of the above theorem shows that the contimmous
mapping f induces an operation on homology classes. For, let 2 be a
relative homology class of relative p-eyeles of £ modulo ¥, and let «
he a relative cycle belonging to this class. Then Theorem 27 shows
that the relative homology class of f,(«) depends only on the class &
and not on the particular representative « chosen. For if & and §
are both in the class & they are relatively homologous, and so
filo) ~ f1(B), modulo F’. Write f,(&) for the relative homology

B LA
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class in Z (&', F') of f {«), « being any representativc of &. Then
the remark just made means that f, is & mapping of p-dimensional
relative homology classes of £ modulo F into those of E” moduio £,
But these relative homology classes are the elements of the relative
homology groups, and so f, maps H,(E, F) into I (E', F').
Moreover, f, i# a homomorphism. For let & and § be clements of
H(E, F). Then:

f4(& + f) = the relative homology elass of f,{a -|- f) (definition
of f., o+ f being a representative of the class

)
— theclassof f; (o) |- fL{f) {pince f, is a homomorphism)

== f (&) + f,( B} (definition of ).

DrrFmNiTION 53. Given a continuous mapping of the pair (£, F)
into the pair (E’, '), the homomorphism f_, construected as above is
called the induced homomorphism on the relative homology groups.
A similar homomorphism may, of course, be constructed for each
value of p, but no distinction in notation will be made.

In particular, if F is taken to be the empty sct one obtains the
speeial result that a continuous mapping f of F into E' induces a
homomorphism f. of H (F) into H_{£'} for cach value of p. A
special case of importance is obtained if £ ¢ B and f is taken to be
the inclusion mapping (Chapter 111, §1, Execrcise 1).

Another special case to be noted arises when the pairs (£, F} and
(B, F') coincide and [ is the identity mapping; then f, is the
identity homomorphism of H,(E, F} on itself. This apparently
trivial remark will be of importance presently.

Exercise

If Fis a subspace of K, and E and F are hoth arcwise connected,
prove that the inclusion mapping F — & induces an isomorphism

of H,(F) onto H (E).

2. Topological invariance of the homology groups

In accordance with the general prineiple stated in §1 of Chapter 111
that anything defined by means of continuous mappings should be
topologically invariant, one would expect the homology groups of a
space to be topological invariants. The essential step in the proof
that this is s0 18 the following theorem.
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THeoREM 28. Let E, E', E” bethree spaces eachwith a sub-space F, F',
F?, respectively, and let two continuous mappings f-E — E' and g:
E' — E" be given such that f(Fy o F',g(F") ¢ F". Then the composition
h = g.f may be constructed and has the property h(F) c F”, and the
induced homomorphismsf o H (E, F) - H (E',6 F'), g H(E, F'} —
H(&", F"), hy H (E.Fy— H (E",F") satisfy h, = g,.f, for each p.

Proor. The first point, that A{F) c F”, is evident, for A(F) =
g f(F)) cg(F)c F'. Thus h,_ is defined. Let & be an clement of
H (E, F)and « a relative cycle representing the relative homology
clasg . Then;

hyel®) = therelative homology class of A, (z) {Definition 53),
= the class of {g,-f,)(x) (Theorem 24).

But (g,.f,)(&) is, by definition of g,, the relative homology class
obtained by operating with ¢, on a representative of the class
f«(@), while, by the definition of f,, f,(«) is a reprosentative of f_(&).
And 50 (g,.f,)(#) is the relative homology elass of (g,.fy){a), which
hag just been proved equal to 2,(&}. This holds for all & in H (£, F)
and so the thecrem is proved.

This theorem will now be applied to the case of two homeomorphic
spaces E, E’, with homeomorphisms f:E—» E’' and g:E' — E
such that f.g and g.f are the identity mappings on E” and £ respec-
tively. Alsolet F be a subapace of ¥ and write #' = f(F). Since the
homomorphism induced on the homology groups by the identity
mapping 15 the identity, Theorem 28, along with the statement f.g =

identity, implies f,.g, = identity; similarly g,.f, — identity. Thus

f» and ¢, are isomorphisms, and so the following has been proved:
TueoreM 29. The relative homology groups are topological invarionits
of a patr of spaces.
This holds, of course, in the particular case where F is empty,
giving the result that the homology groups H,(E) are topological
invariants of K.

3. Homotopic mappings and the homology groups

Consider a 1-cycle @ on a space ¥, and for simplicity suppose it to
he represented geomctrically by a single loop. If this loop is
subjected to some deformation in ¥, earrying it to a new position o,
it is intuitively obvious that « traces out a path y, a piece of surface
embedded in £, and that the boundary of ¥ consists of & and o'
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(cf. Fig. 24). What one naturally wants to say here is that o and o
are homologous cycles, and that « — «' = dy. But the situation is
not quite #o simple as this. For while z may be considered as a
curve made up of line segments (i.e. P-simplexes) in &,  appears
then as made up of a number of curvilinear quadrilaterals, namely
the paths of these 1-simplexes in the deformation of «. But if y
is to be considered as a 2-chain it has to be made up of 2-simplexes,
Briefly, the path of a cycle cannot be considered as a chain unless
some further operation jis carried out.

Fia, 24.

Before going further into this question, it will be phrased in a
different way. For a cycle on a space is actually a linear combination
of singular simplexes on the space, that is to say, a collection of
mappings with associated cocfficients. Thus the picture of a 1-cycle
in Fig. 24 as a simple loop, that is the continuocus image of the
circumference of a circle, is not generally valid. And consequently
the idea of deformation of a eyele, which in the description of
Fig. 24 simply takes the form of a homotopy of the mapping
embedding the loop x in £, does not make sensc as 1t stands,

One can, however, replace the crude concept of the deformation of
a cycle by the foliowing considerations, l.et f and g be two homotopie
mappings of a space X into E. Let « be a p-cyclo on X and let fi(x)
and g,(«) be its images in Z (£) under the homemorphisms induced
by f and g. The image of X in K has a path of deformation because of
the homotopy from f to g, and the cycle f{«) ecan be thought of as
being pulled along this path into the new position g {x}. The question
to be asked in this section and the next two is whether the successive
positions of f{a) as the mapping f is deformed into g can be thought
of as making up in some way a (p + l)-chain having f{«} and
¢,(a), with suitable signs, as its boundary.

9
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In order to tackle this question, note first that a homotopy of f
into ¢ means an embedding of X ¢ I, where I is the interval
0<{t< ]1,in ¥. And so to begin with some homological properties
of the product X x I will be examined. In effect thiz amounts to
coneidering a special case of the general problem which has just
been posed. For there are two naturally homotopic mappings of
X into X X I, namely those given by f(¢) = {¢,0) in X x I and
glg) = (¢, 1) in X X I. The question to be tackled first is whether,
when ¢ is a p-cycle on X, f,(a} and g,(=) are homologous in X
x I

To illustrate the method to be adopted, consider first the case
p == 2, with the aid of the accompanying Fig. 25. A gingular 2-
simplex on X, that is, a continuous mapping ¢:A, — X, induces a
mapping o:4, X I —> X X I if one sets o'(z, i} = (o(z}, f). For-
getting for a moment the strict definition of a singular simplex on a
space as a certain mapping into the space, think of f {0} as being the
curvilinear triangle on the base X x {0} of X x I, and g,{o) as
being that on the top X x {1} (cf. Fig. 25). These two triangles are
joined by a curvilinear prism in X x I obtained by embedding, by
means of the mapping ¢, the prism: A, X fin X X I. Tntuitively,
one clearly wants the boundary of this prism in X X [ to consist of
7,(#), fi(g) and the three surfaces obtained by embedding in X X [
the vertical sides of A; X I. But in homology theory boundaries are
defined only for portions of space built up from simplexes, and so
the prism in X X I must be broken up in some way into tetrahedra.
Now the prism A, X I, with its vertices named as in Fig. 25, can
be split up in a natural way into the three tetrahedra [xy,y,¥5],
[0 9 ¥a), [To21Zo¥,], and so the embedded prism in X X I may be
thought of as decompesed into the images of these tetrahedra
under o’

Reverting to the rigorous notion of singular simplexes and chains
on X X I, it is clear that the idea of a curvilinear prism in X < [
broken into tetrahedra will have to be replaced by a chain consisting
of a linear combination of three singular 3-simplexes on X x I
The natural way to do this, following the geometrical picture as
closely as possible, will be to form & 3-chain on A, x 7 from the
singular simplexes (z,¥,1¥a), (TgT 1Y), (Xy21XeY,) defined by linear
mappings (Definition 38} and then to map this chain into Cg{X X 1)
by means of the induced homomorphism o, :C,{A, X I) = Ci{X x I).
If theresulting chainon X x [iscalled Pg, the essential featureof its
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construction must be that its boundary should be a linear com-
bination of fy{a), g,(¢) and singular simplexes representing the
vertical sides of the prism in X X 7 in Fig. 25. That such a
construction can be made will appear in §4, below,

Suppose now that « = >0, is a 2-cycle on X, and suppose that a
chain Po,, representing as abave a curvilinear prism in X X 7, is

Fia. 25

constructed for each o,. The idea is that, when the boundaries of the
Pg, are caleulated, the singular simplexes representing the vertical
sides of the prisms in X X I should cancel out, so that d3a,Po, =
g{e) — fi{e). This would prove that gy(«) and f,(«) werc homo-
logous, That & construction can be made to satisfy this further
requirement will also appear in §4.

4. Prisms

Consider the product A, X I. A, is a simplex in Euclidean
{p -+ I)-space, and so it is convenient to embed A, X I in (p + 2)-
space in such a way that, if (21, 22, . . ., 2# t?) are the coordinates of a
variable point, then A, x {0}lies in the set z2**=0,and A, X {1}in
the set 27+2 — 1, and the coordinates of two points (¢, 0) in A, % {0}
and (g, 1)in A, x {1} differ only in the value of 2?2, In addition,
theset 2?2 — 0 in (p L 2)-space is itself a Enclidean (p 4 1)-space,
and it is convenient to identify it with the {p + 1)-space containing
A, in such a way that A_ is identified with A x {0}.
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Lot xg, &4, . . . . &, he the vertices of A, and so of A, X {01}, and
let %5, %3y - - - » %, be those of A, X {1} Also let (wgz, ... 2, - . - ¥,)
denote the singular simplex on A % [ defined by the hincar mappiny
of A__, with vertices in the usual standard order onto the simplex

with the vertices z,, z,, . .. %, ¥, . . ., ¥, in that order (Definition
35).
[ ] P'« -
DErrxITION 34, Thechain > (—1)(xgx, ... 2y, oy ) o &y >0 7
i=1)

will be called the prism over (xgr; ... 2z,;) and will be denoted by
Plzgr, . .. xp).

This definition generalizes and gives a precisc meaning to the
idea of dividing A, X 7 into tetrahedra as in §3. The justification
for the choice of coefficients in this chain is that in this way, as will be
seen presently, one can foillow rigorously the intuitive suggestions
of §3.

For the sake of {acility in working with prisms, 1t 1s convement to
extend the above definition at once so that P becomes an operator
on singular simplexes on any space.

DrrixiTioN 5. Let ¢ be a singular p-simplex on a space £, that
is o continuous mapping of A, into £, Define the mapping ¢":
A, x IT— E x Ibysetting ¢'(z, {) = (o{z), {) for cach point z of A,
and cach ¢ in f. Then if ¢, is the induced homomorphism of
C, (A, x I} into O, (& X f}, define the chain o to be
g {Plagry ... 2,)). Po will be called the prism over o.

Since, in the above notation, (xyr, . . . 2,) is the singular simplex
on A, induced by the identity mapping, the definitions of Po and
Plrye, ... x,} agree when o Is taken to be the singular simplex
(€gty . - - o) on AL Itis worth noting that some pictorial significance
may be given to the phase “prism over ¢ if £ is identified with the
subset & X {0} of £ % [I.

The operator P being now defined on any singular simplex on %, it
can at once be cxtended to s homomorphism of C(F)into Op L1}
by setting P{Da,0,) = Da Po for any p-chain >a.o, on £,

g i i

- TuroreM 30. Let f be a continuous mapping of K inlo a space F,
and let the mapping " E < I — F X I be defined by selting f'{z, ) =
(f(z), t) for each point z of K and each t in I. Then P.f, = f1.P.
Proor. In words this theorem states that f] carrics the prism over
g into the prism over f,(¢), which is just what one would expeet
geometrically. To prove the theorem let ¢ be a singular simplex on £,
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Then:
(Pofi{o} = P(f(o))

= P(f.¢) (Definition 41),

= (foo}(Plzgx; .. . %)) (definition of the operator F)

where (f.o); is the homomorphism of €', (A, X I}into €y | (F X I}
induced by the mapping (f.0):A, X I - F X I defined hy
setting (f.0V(z, t} = {{(f-6)(2). 1) for each z in &, and ¢ in 7. Clearly
(f.0) =fie’, and so, by Theorem 24, (f.0); =f.0;. Hence:

(fool(Plagry - - - 7,)) = floop (P22 . . %))

= f1{Pos) (definition of Pg)

Thir holds for any & and so the theorem is proved.
The next step is the caleulation of dP{xgr, . .. x,}. The definition
of Plwyr,...xz,) shows that

¥ .
dP(rgr, ... x,) = 2 (—1) dlegry .. 29 .. ¥y,)
{wl)
Each {xy, ... zy,...¥,) i3 a singular simplex on the subspacc

A, % I of Euclidean (p — 2)-space defined by a linear mapping, and
so Definition 40 gives:

ety - oy ) = A=Wy &y 2, )
juid
= AP (g Y Yer e Y
i=i

It follows that dP{xyr, ... 2)) =
=1y, . 2 YY)

Fed . ;
- _2(_-1}%? (Tgy o - Yy Wi Yol
e

From the first summation, taking ¢-—3, for+ =1,2,...,p,
B
one obtains the terms >(@gry ... %Y ... ¥,), and from the
i=1
second, taking =+ -+ 1, for 1 =0,1,...,p — 1, one obtains
r—1
—2{xexy .. Y .. - Yo). But these two summations are the
=t
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same with opposite signs, and so cancel. The remaining terms may
be written as follows:

dP(xgr, ... x,) = {yuyll ceaYp) — (TpEy .. Ty)
. 1=8 V.
+ 2= gy f oy )

]
F<i

i=p—1
+ SN gy By By (D)

>l
Now, the first two terms in {17) are singular simplexes on the top
and bottom of A X [ as required. It remains to be shown that the
two summations in (17) represent in some way chains on the vertical
sides of A, < I. From the diagram for the case p = 2 (cf. Fig. 25) it
appears that the upright sides of A, X fare obtained by constructing
prisms over the sides of A,. And so it is reasonable to expect that
the two summations in (17) should be obtained by applying the

operator P to d{xyr, ... x,}). This will now be proved.
ToroREM 3. dP(xyr; ... 2} = {gety - - - ¥,) — (@g2y ... 2,)
— Pd{rge, ... xz,) (18)

Proor. The method of proof will be to calculate P(d(zyz, - . . x,)
and then to compare the result with the right hand side of (17).
Using the definition of d{xgx, . .. x,) (Definition 40} it follows that
one must calculate Pz x, ... £, ... z,) foreachi. Now one might be
tempted to write:

Plrgx, ... 8,...¢,) =_E__[-—]]’(:t:u:1:1 e TY YY)

=t
-+ _Z{_—l}f—l(:t:u o E L xy .. Y) {19)
gl |
this formula being obtained by applying mechanically the defining
tormula, for F{xyx,...x,) to the case Plxryr, ... &, ...x;). But
although (19} happens to be the right answer one cannot derive it in
this dircet fashion. ¥or the definition of P{x,x, ...z} applies to
just one singular simplex on A, namely {(xyz, . . . x). To calculate
Plegr, ... & ... x;) one must use the general definition of the prism
over & singular simplex on the space A, applying this definition to
the singular simplex (xox; . . . ;... z,).

To define in detail Plxyr,...%£,...2,) let A _; X I have
vertices g, ¥y, .« .y U1, ¥y U0 evey ¥yg. By 3 X I will be embedded
in Huclidean (p - I)-space, just as A X I was embedded in
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(p + 2)-space, the u, being the verticesof A, X {0}, the z, thnau? of
A, 4 % {1}, and the points of A,_; X {0} and A, _; X {1} differing
only in the value of the last coordinate. Also, A, , will be identified
with A, ; X {0}. Let the mapping ¢":A, ; —> A, be the singular
(p — 1}-simplex (xgz; . .. & .. .x,) on A, that is to say, the lincar
mapping carrying g, %, . . . , %, 5, in that order, into xy, 2y, . . ., &,
... x,. Let o be the mapping of A, , X [into A, X I defined by
setting ¢*'(z,t) = (o%(2), t) for each point zin A, ; and eachin /. The
definition of Pz, . . . #;...2,) s then o} (P(ugu, . .. %, _,}), where

oY ig the homomorphism on chain groups induced by ¢, and

—1
Plugu; ... %, 4) :ﬂZ(-—].}f(uuul . U ... vy ). This last formula
=0
for Plagu; . .. uﬂ_:] is correct hecaunse (ugu, .. .u#, ;) is related to
A, ; just as (xg, ... x,) is related to A,

Now, if the mapping &'’ should induce the linear mapping of the
simplex with vertices g, %, . . ., %;, ¥; . . . ¥,y onto that with vertices
Tgs TgsrvesBg o s B Ypn oo s Ypp OEXgu Ty v v s By Yo - - PR T
according as j > 1 or j <C ¢, it would follow that the induced homo-
morphism o}’ would carry the singularsimplex (ugu; . . . w2, . .. ¥, )
iNto (Tgy... & . . ZY .. Yg) OT (Tey... Ty Hi--Yph
according as j > { or§ << 4, and so 5} would earry Pluyu, - . . #y_y)
into the right hand side of (19). (19) would therefore be the correct
formula for P{xyz, ... %, ... z,), and a comparison of (19) with the
two summations on the right of {17) would establish the theorem,

Thus, to complete the proof of the theorem, the lincarity of the
regtriction of ¢’ to the simplex with the vertices g u,, ...,
%, ¥;, ..., %, ; must be shown for each j. The simplest way do to
this is to let £, be the linear mapping of the simplex with vertices
Ugo Ugy o ooy Ujy Uyy . oo, 0y ONLO that with vertices =z, ¥y, . ..,
Tp War v oo s Yir v -5 Yy (assuming j <7 ¢ for the sake of definiteness)
and to show that f, coincides with the appropriate restriction of o',

Let (w01, 22, . . ., wPt1) be the coordinates of a variable point inthe
(p -+ 1)-space containing A _; X I, and (21, 2% .. ., 2"+%) those in the
{(p + 2)-space containing A » I. If (e, u%, ..., wP+1) ig in the
simplex with vertices g, %y, - - -, @, Uy . . -, ¥, and (21, 2% ... , 2P+2)
= f.(w!, w2, . . ., w1 then for f; to coincide with the restriction of
o' to this simplex it is necessary and sufficient that:

(1) 2242 = wP,

{2} (21, 22, ..., =271, 0) = a'(ad, w2, . . ., w?”, 0),
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these statements being simply a reformulation of the definition of
o’

Now, 1f Ay, A4, ..., 4, are the Dbarycentric coordinates of
(el, 2w?, ..., wPt) with respect to the set of vertices ug, w. ..., 4,
¥ioo0ay By g, the fact that (21, 2% ..., 2773 - fileel, w?, ..., w?Tl)
along with the hincarity of f; implies that A5, 4,, ..., 4, are also the
harycentrie eoordinates of (2, 2=, . . . . 2"*?) with respect to the ver-
tiees Fq, 2, . oL X, Fy e e ,i}i, oo Yy wFTlis the linear combina-
tion of the {p-} I)th coordinates of uy, uy, ..., ¥, v, ..., v, with
Ay 4;. ..., A, as coefficients, and, by what has just been said, 27+2
is the same linear combination of the {p = 2th coordinates of
Tgs Ty v v s Tpn Yjs o oo slin - s Yy Bub the last coordinates of
Ug, Uy - v oy Upy By X, <0, &y are O and those of v, 0,4, ..., 0,_,,
Yo Yigr + -+ - o, are 1, and so it follows at onee that 2#=2 -z P+l

For & 7= p 4 1, w’is the linear combination of the A-th coordinates
of wg, uy, ..., 4y vy, ..., v, with Ay, 44, .. ., 4, as coefficients; but
for i 7= p -+ 1, the k-th coordinate of u, is the same as that of v, for
all 2. Hence w”* 18 the linear combination of the A-th coordinates of
Uy Uyo v -y My With Ao Ay oo A A Ay AL A, a8
coeflicients. Similarly 2%, h =£ p + 2, is the linear combination of the
h-th coordinates of xy 2y, ..., &, ..., 2, with A, ;... 4_ .,
Ay Aji1sAsioe ... Ay 08 coeficients. These coefficients are thus the
barycentric coordinates of {w?!, %, ..., «* 1) with respeet to the
verbices wg, %y, . . ., %, _1, and also those of (21, 2%, .. ., 2#T1 0) with
respect to wg, ¥y, ..., &; . .., &, and so the lincarity of ¢* implics
that (=1, 2% ..., 0) = gi{w!, w?, ..., w? (). The conditions
{1}, {2) above thus hold and so f, coincides with the appropriate

resiriction of ¢*', and the proof of Theorem 31 is complcte.

5. Homotopic mappings and the homology groups {(contd.)

Returning now to the tepic of §3, let ¢ be a singular p-simplex on a
space X, and, as in §4, let ¢ be the mapping of A > Tinto X > {
given by o'(z, §) = (o(z), ) forzin A jandtin 7. Also, fand g will be
the mappings of X into X x I defined by flg) = (4. 0, glg) = (¢, 1)
for each ¢ in X. The prineipal tool in this discussion will he the
following generalization of Theorem 31.

TrHrOREM 32. dPg = g,{v) — fi{c) — Pdo. (20}

Proor. This will be proved by operating on {I8) with the homo-

f

morphism ¢ on the chain groups of A, > I induced by ¢’
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Applying o; to the left hand side of (18):

o(dPwgry . .. 2,)) = doy(Plagry . . . x,}) (Theorem 25),

—dPg {Definition 55).

To work out a{xy, ... 2,), let z be any point of A, By the
definition of [, { f.c)(z) = {o(2), 0)in X X [, and this, by the definition
of &', is the same ag ¢’(z, 0). But the singular simplex (xyz, ... x,) s
the identity mapping of A on itself, or, what is the same thing,
since A_ is identified with A < {}}, the mapping which carries z onto
(z, 0). o'(z, 0) is therefore the image of z under the compaosition
of the mapping ¢ anrd (rg,...z,}, and this composilion is
oy (4%, - . - x,), by the definition of the induced homomorphism g},
The result just obtained above, that o'(z, 0) = (f.0)(z), then shows
that of(xyz, . . . x,) operating on z is the same as ( f.o} operating on 2.
Hence:

oy{Tery . .. x,) = (foo) = fi{0) (Definition 41)
similarly,

o Yol -« - ¥y) = Gal0).
Finally, oy{Pd{zyt, ... x,)) = Po(d{ze; ... x,)) (Theorem 30)
= Pdg ( Definition 42).

(18) has thus been transformed into (20) by the operation of 7.
As a corollary to this theorem it should be noted that P, 4, f,. ¢,
arc all homomorphisms on chain groups, and so (20) may be applied
to chains on X simply by operating term by term. Hence for a

chain e« on X:
dPy = g, (o) — fi{e) — Pda. (21)

Suppose in particular that « is a cycle. Then dz =1, and s0
Pdy is zero, and =o {21) shows that ¢,(2) — f(x}) = dPx. That1s to
say, fi(«) and g,{x) arc homologous. This proves the result con-
cerning X X I which was conjectured on intuitive grounds in §3.
But before treating homotopic mappings of X into any space K, the
ultimate goal of this discussion, the result just proved will be
extended to relative homology.

Let ¥ be a subspace of X. Y x [ is thus o subspace of X < 1.
Let & be a relative p-cyvele of X modulo ¥ und let f and ¢ be as mn
Theorem 32. Clearly fi{«) and ¢ {2) are relative p-eyeles on X X 71
module ¥ x I, for their boundarics are chains on ¥ x {0} and
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Y X {1} respectively. Also, since da is a chain on ¥, Pda is a
chain on Y x I, and so {21) simply states that f,{«} and g, {x} are
homologous in X X I modulo ¥ X 1.

If, now, the relative cycle « is taken as a representative of a
relative homology class &, an element of H (X, ¥), f(=) and g,{x}
will be representatives of the relative homology classes f (&), 74{&),
respectively, by Definition 53. But, since it has just been shown that
fi(a) ~g,(x} modulo ¥ X I, it follows that f,(&) = g.(x}. The
following theorem has thus been proved.:

TaEOREM 33. Let X be a space, ¥ a subspace, and let f, g be the
mappings of X ntoX x I defined by flg) = (g, 0}, glg) = (g, 1)
for each point q of X. Let fq. g, be the induced homomorphisms of
H (X, Yyinto H(X X I,Y X I). Then fy = gy for each dimension p.

This can be carried over at once into the general result which has
heen the aim of this chapter:

TuroreM 34. Let f and g be homotopic mappings of a pair (X, T)
into a pair (B, F) and let f,, g, be the induced homomorphisms of
H (X, Y)into HE, F). Then f, = g, for each dimension p.

Proo¥. Since f and ¢ are homotopie (Definition 52) there is a
continuons mapping ¢{X X I, ¥ X I) — (¥, F) agreeing with f
and g for ¢t = 0 and ¢ = I, respectively.

Let f and ¢ be the mappings of X into X x I given by flg) = (g, 0),
g(q) = {g, 1} for each point ¢ in X, and let f,, g, be the induced
homomorphisms of H (X, ¥)into H (X X I, Y X I). Finally, let
é, be the homomorphism of H (X x I, Y x I) into H,E, F)
induced by ¢. Now it is clear that f = ¢. f and g = ¢.9, and so, hy
Theorem 28, f, = ¢ fy and ¢,= ¢y, But Theorem 33 says
that f, = g, and sof, = g, as required,

The following theorem is a direct conscquence of Theorem 34, and
exhibits the way in which this theorem is often used.

TurorEM 35. Let (B, F), (E’, F’) be two puairs of spaces and J:
(B, F)—> (E', F'), g:(E’, ') — (B, F) two continuous mappings such
that the composilion g.f, a mapping of (E, F) inlo itself, i3 homotopic
( Definition 52) o the identity mapping of (B, F) onfo uself while f.q
is homaotopie to the identity mapping of (E', F') onto dtself. Then the
induced homomorphism [ H (E, F) - H (E', F') is an tsomorphism
onto for each p.

Proor. Since g.f is homotopic to the identity ¢ of (¥, F) onto
itself, Theorem 34 shows that {g.f}, = %, both sides of this equation
being homomorphisms of H (£, F) into itself for any p. By Theorem
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28 this is equivalent to g,.f, — ¢, and, by the remark made at the
end of §1 of this chapter, ¢, is the identity homomorphism of
H (E, F) onto itself. Similarly f,.g, 18 the identity homomorphism
of H (E', F',) onto itself for each p. That is to say f, and g, are
inverse to each other, and so both are isomorphisms onto.

CoroLLARY, If F and F' are both emply the above theorem reduces to
the following: If E and E' are two topological spaces and 1B — B’
and ¢:E' — E are continuous mappings suchk that f.g and g.f are
homolopic to the appropriate identity mappings, then f, 18 an 150-
morphism of H (E) onto H_(E'} for each p.

The use of this theorem and its corollary will be Hlustrated in some
of the following exercises. Incidentally it should be noted that the
result of Theorem 35 marks a limit to the usefulness of homology
groups for distinguishing between non-homeomorphic spaces.
For two spaces £ and E’ can be non-homeomorphic but there may be
mappings f and g satisfying the conditions of the above corollary
(cf. Exercises 2 and 3 below). It is also not hard to show that, if
B, E' arc as in the above corollary and are arcwise-connected, then
w(B) == w(E'} (a special case appeared in Chapter IV, §4, Exercise
B). Thus such spaces are indistinguishable by means of fundamental
groups and homology groups.

Exercises

1. Yet E’ be a subspace of a topological space K and suppose
there iz a continuous mapping ¥ — E satisfying the following
conditions:

(a) flE) = &',

(b) the restriction of f to E’ is the identity mapping of E’ onto
itself;

(¢) f is homotopic to the identity mapping of £ onto itself.

Prove that H_(E) and H_{E') are isomorphic for all p, the iso-
morphism being induced by the inelusion mapping of £’ into X,

[Hint: Regard fas a mapping into £, let ¢ be the inclasion mapping of
E’ into E and use the corollary to Theorern 35.]

2, Prove that if £ iz a solid sphere of dimension »n then H (&) is

mfinite cyclic and H (&) is zero for r 2= 1.

[Hint: Let E’ denote the subspace of E consisting of its centre only;
let f be defined by f{p) = &’ for all p € £; then use Exercise 1.]

3. Prove that the homology groups of an annulus and of a solid

torus are isomorphic to those of the circumference of a circle.
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4. Prove that if ¥ is a Huclidean space of any dimension H (£} is
infinite cyclic and H (£} is zero for r 2= 1.

[Hint: Every cyele on & 18 actuslly a cyclo on some solid sphore
contained m K]

5. Let £, F,  be topological spaces such that £ 5 F o (fand let f
be a continuous mapping of (K, ¥) into itzelf such that:

(&) f 18 homotopic to the identity mapping of {£, F') onto itself:

(b} if the homotopy of condition (a) 13 given by a continuous
mapping H:E X I — E, then (G x I} $ G; [ -

(©) J(F) 6.
Prove that H (£, F) and II (E, ) are isomorphic, for each r, the
isomorphisny being induced Ly the inclusion mapping of (£, ()
into {#, F).

[Hint: Apply Theorem 35 to f and tho inclusion mapping of (£, &)
into (£, ).]

6. Lct E bhe the solid sphere in Euclidean n-space given by

i H
N ax? <2 1, let F be the set defined by § < Y af <[ 1, and let & be

gem ] =]

]
the spherc with the equation Yaf — 1. Define f by setting
i=1
flzy, 2y, . . x,) equal to the point (2w, 2z, ..., dx,) i (2], x..
...x e E—F and equal to the intersection with & of the join ol
(0,0,...,0)t0 (z, x5, ..., 2,) i (£, 2y, ..., ¥, )€ F. Prove that f
satisfies the conditions of Exercise 5 and hence show that H (E, F)
and H (¥, ) are isomorphic for all r.

[Hint: The deformation of the identity mapping into f should consist
in moving points radially outwards until £ — F filis the whole sphere
and ' 18 compres:sed onto G.]

1
7. Let E be the subsct of the n-dimensional sphere D27 = 1 in
t=1
Euclidean (n 4 1)-space defined by the inequality «, ., 2 0, et # be
the subset of K defined by 0 2, | << 1 and let ¢ be the subset
of F defined by @, , == 0. Prove that I (E, FF) o« H (¥, () for all r,

{Hint: As in Exercisc 6; there the homotopy required consisted in
moving points radially, while here they should be moved along groat
circles radiating from (0, 0,...,0, 1).]

CHAPTER VII

BARYCENTRIC SUBDIVISION AND
EXCISION

1. Motivation for barvcentric subdivision

One of the principal results to be obtained in this chapter is that
in homology theory onc need only consider singular simplexes on a
space which are, in some sense, arbitrarily small. That is to say,
given a cycle or relative cycle, one can always replace it by a homo-
logous cycle or relative cycle each of whose singular simplexes is a
mapping of a simplex into an arbitrarily small neighbourhood in the
space. It should be remarked that the phrase “‘arbitrarily small”
needs to be given a precise meaning in any given context. For
example, if £ is a subsct of a Euclidean space smallness may be
defined in ¥ by considering only neighbourhoods in E whose
diametersare less than some preassigned number, Or, if £ 1ssome more
general space, smallness may be defined by some given open covering
of ¥, a neighbourhood being considered as small if it is contained in
some set of the covering.

To motivate geometrically the result stated above, let E be some
subspace of Euclidean space, and let v denote a closed surface in E,
v will be thought of in the meantime as a geometric representation of
a Z-cycle on F, and so can he thought of us made up of triangles
fitted together edge to edge. To muke the situation pictorially
mimpler, assume that the triangles making up y are all flat with
straight edges. Each of these triangles may be subdivided into six
smaller ones by drawing in the medians, The cycle y is transformed
in this way into a new cycle »° whose simplexes are geometrically
represented by the smaller triangles just constructed. It must be
carefully noted at this point that ¥ and 3" are different eycles, for if
one translated the situation into the rigorous language of homology
theory ¢ and 3" would be linear combinations of diffcrent sets of
singular simplexes, Nevertheless, v and 9’ are represented geo-
metrically by the same piece of surface in ¥, and so it seems natural
to ask whethor they are homologous, Indeed, homology theory
would be rather unsatisfying to one’s geometrical intuition if this
were not so, for one naturally feels that two pieces of surface
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which look the same should fulfil the same functions as regards
forming boundaries. If y and 4 can be shown to be homologous,
the same will evidently hold for ¥ and the cycle obtained from 3’ by
drawing all the medians in the triangles of 4’, and so on; but if
this operation of subdivision is carried out sufficiently often, the
triangles of which the resulting cycle are composed can be made
arbitrarity small. This will give some geometrical support for the
result stated at the beginning of this section.

In order tofind whether y and y’ are homologous, one must attempt
to find a portion of 3-dimensional space made up of tetrahedra (and
s0 representing geometrically a 3-chain) such that its boundary is
made up of y and 3’. More explicitly, what one wants is a union of
tetrahedra whose triangular faces include all the triangles making up
» and all the smaller triangles making up ', while all the other
triangular faces coincide in pairs.

As a first step towards solving this question, displace 9" by moving
the centroid of each triangle of ¥ out of the plane of that triangle.
For example if in Fig, 26{a} ABC, ABD are two of the triangles
making up y, X, Y their centroids. In Fig. 26(5) X and Y are
shown displaced out of the planes ABC and ABD, respectively.
The small triangles A PX, BPX, etc., which arc among the triangies
of which 4’ is composed, are at the same time displaced as indicated.
As this is done for all the triangles of y, it is clear that a set of
tetrahedra is formed with the property that y and the displaced 3
together form the boundary of their union. This looks promistng,
but is not yet ready for translation into homelogy theory, as the
triangles 4 PX, BPX, etc. making up the displaced ¢ do not appear
as faces of tetrahedra.

To remedy this, take a point O, say the centroid of the tetrahedron
XABC, and joinit to X, 4, B, C, P, @, B. Thus (cf. Fig. 27{a)) the
tetrahedron X 4 BC is split up into tetrahedra such that the triangles
ABC, XA P, XBP, ctec. all appear as faces. The only flaw is that the
triangle OBC appears both as itself and as the union of OQ( and
0Q B, with similar remarks concerning 04 B, OAC. To avoid this,
displace P, @, R, from the lines A B, BC, AC, respectively (cf. Fig.
27(b)). Note that this last operation is similar in form to the displace-
ment of X from the plane of ABC; each operation is the displace.
ment of the mass-centre of a simplex, in the onc case a 1-simplex, in
the other a 2.simplex. It is to be understcod that a similar con-
struction ia carried out in association with each triangle composing .
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The polyhedron of Fig. 27 is now a union of tetrahedra whose
boundary consists of the triangles X4 P, X BP, ete., which belong to
', triangle ABC, which belongs to y, and triangles PAB, ¢BC,
RCA, which cancel out with similar triangles obtained in a similar
way from the neighbouring triangles of ¥. Thus y and the displaced

i, 28

y’ together form the boundary of a union of tetrahedra 3, which is to
be thought of as the geometrical representation of a 3-chain. Finally
suppose that the polyhedron in Fig. 27 is flattencd into the plane
ABC, X, P,Q, R resuming their original positions, while (7 is made to
coincide with X; a similar operation is to be performed on the

Fia, 27

polyhedron corresponding, as in Fig. 27, to each triangle of y.
The tetrahedra forming £ become flattened out in this process, but
they may still be thought of as geometrical representations of
gingular simplexes on E defined by degenerate linear maps. The
geometrical reasoning just carried out thus makes it quite plausible
that » and y’ should be homologous.

In order to translate the above gcometrical reasoning into terms of
homology theory two operators have to be constructed, one corre-
sponding to the transition from v to 3, the other to the construction
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of a chain § such that df = y — 3'. These operators arc to be
defined on singular simplexes on any space, and so it is natural, as
a {irst step, to attempt to define them on the standard simplexes
A Agy Ay, oL

Thefirst operation will be called baryeentrie subdivision and will be
denoted by £. It is to correspond to the drawing in of all the medians
of a triangle, or, what is the same thing, the joining of the centroid,
or barycentre, to all the vertices and mid-points of the sides. The
mid-points of the sides are the mass-centres, or harycentres, of the
sides, and so it 18 reasonable to describe the marking in of the mid-
points of the sides as barycentric subdivision of the sides, Thus the
barycentric subdivision of. the trianglo is obtained by first bary-
centrically subdividing the boundary and then joining the bary-
centre of the triangle to all the vertices so obtained. This joining
oprration may be interpreted as follows. If {y,,) is any singular
l-simplex defined by a linear mapping of A, into a Euclidean space,
then its join to the point z is to be the singular 2-simplex (zy.y,)
(cf. Definition 38 for the definition of this notation). If & = Y.,
1 a singular 1-chain on a Kuclidean space, each simplex being defined
by a linear mapping, then the join of z to « will be written as zx and
will be defined as >a,0,, where g, ig the join of z and ¢,. With this
notation it seems natural to define B(x x,x,), for a singular 2-simplex
defined by a linear mapping into a Euelidean space, by the formula

Brgryts) == b Bd(ryry,)) (22)

where £ is the baryeentre of the triangle formed by x,, #,, z,. The
use of A on the right of (22) presupposes that this operator is
extended by linearity to aet on chains. This suggested formula {22},
applicd Lo the singular simplex on Aydefined by the identity mapping
of A, on itself, and then generalized to higher dimensions, gives the
basis for an inductive slgebraic definition of B as an operator on
chain-groups.

The sccond operator, to be denoted by H, is to correspond to the
construction of a degenerate polyhedron on a given triangle as base,
as illustrated in Fips. 26, 27. Noting first the analogy already
remarked on between displacing X from the plane of triangle 4 BC
in Fig. 26 and displacing P, ¢, R from the sides of this triangle, it 1s
natural to regard the triangles P4 B, QBC, KC A as representing the
operation of If on the boundary of the triangle 4 BC. Then, according
to the geometrical construction sketehed above, remembering that
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X and 2 are both, when the polvhedron of Fig. 27 is flattened out,
the baryeentre of triangte A BC, the operation of H on triangle A B¢
is obtained by joining the barycentre of this triangle io the following

(a) triangle A B{' itsclf,

(b} the triangles forming the barycentric subdivision of 4 BC,

(c) the triangles obtained by operating with I on the boundary of
ABC,

This can be most naturally translated into algebraic terms by
saying that, if (ryr,2,) is a singular 2-simplex defined by a linear
mapping intc a Euclidean space, and if 4 is the barycentre of the
triangle with vertices x,, ¥, 2, then H{xyrx,) is a lincar com-
bination of:

(a) blxgryxy) = {bryzix,),

(b) b(B(z2y2,))

{c) B{Hd{xyz2,)}.

The use of H in (&) presupposes that this operator is extended by
linearity to act on chains. The cocfficients of the linear combination
of the terms (a), (b). {¢) above must be chosen so that the boundary of
H{xzg,x,) will work out properly. According to the geometrical
picture, (Fig. 27}, it should turn out that dH{xyr x,) 18 a linear
combination of:

{d‘] [mﬂxl‘tﬂ}?

(b} Bi{xgr,rs),

(¢) simplexes represented by the triangles PAB, QBC, BCA, that
iz, H{d{x 2 2:}).

On the basis of this condition it is not hard to see that a suitable
definition for H{xgryr,) is given by the formula

H{xgr,ws) == blayr,z,) — b Blrgexy)) — b{Hd{x,r,x,)). (23)
This formula, generalized 1o higher dimensions, will be taken as the
pattern for an inductive definition of the operator I,

2. The operator B

The ideas skcteched in §1 will now be given a rigorous formal
treatment, the first step being to define the operator /3 and to work
out some of its properties. A symbel such as {(yy, . . . ¥,) will always
mean a singular simplex defined by a linear mapping on some
portion of a Euclidean space (Definition 38).  In particular, the
symhol (xgx, ... x,) will always be used to denote the singular

p-simplex on A defined by the identity mapping of A, on itself, A
being the standard Iuclidean p-simplex, with vertices xg, ..., %,

148
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DerFiriTION 56. Let 7,1 = 0,1, 2, . .., p, be points of Euclidean
n-space, and let the coordinates of y; be y}, 43, ..., 4" Then the
barycentre of the p-simplex [yqy, . . . #,] 18 the point whose coordinates

L
2l 2% .. .,2" are given by 22 = (> W)fip+1),7=12,...,n
i=0

This definition reduces to the mid-point of a line segment or the
centroid of a triangle in the cases p = 1, p = 2, respectively.

DermrTIoN 57. Let 2, yo ¥ .- s ¥, be p + 2 points of some
Euclidean space. Then the singular (p -+ 1)-simplex (zy%s . . - ¥,)
is said to be the joun of z lo the singular p-simplex (v . .. ¥, 1
If « = Da,e, is a p-chain on some portion of a Euclidean space with
each o, defined by a linear mapping, then the join of z to o is defined
to be the (p + 1)-chain >a,0,, where ¢, is the join of z to ¢,, and
this join is written as za.

The operation of joining a fixed point z to each p-chain has the
following important property:

THEOREM 36. For any z and o as wn the last definition d{2a) =
o — z{dx).

Proor. Since the operation of joining z to « is carried out by
joining it to each singular simplex and then attaching the appropriate
coefficients, it will be sufficient to prove this theorem in the case
where « is & singular p-simplex (y,¥, . . . %,). Thus it must be shown

that dizygy, . .. ¥,) = (Woth - - - ) — 2@ Wy, . - - ¥,)). Now, by
Definition 40,

¥ _ .
DYy - - - Yp) = We¥y - - - ¥p) +_Zé—1]‘+liﬁyny1 o Yi o Yp)

= (Yolfy - - - ¥p) — 2oty . . - ),

ag required.

The operator of barycentric subdivision will now be defined
inductively,

DerinmTioNn 8. Let Ba = & for any 0-chain on any space, and
suppose that the meaning of Be« has already been defined for any
{p — l)-chain « on any space. Then (1} (xyz,...=z,) being the
singular p-simplex on A, defined by the identity mapping, and b,
being the barycentre of A = [wer, . .. x,], Blxyry . .. 2,) is defined
a8 the join of b, to Bd{zyx, ... z,); (2) if ¢ is a singular p-simplex
on any space &, that is a continuous mapping of A into E, and if o,
i the induced homomorphism of € (A ) into O (£} (cf. Definition 41},

BARVOCENTRIC SUEBDIVISION AND EXCISION 139

Bo is defined as o(B(xgx, . . . x,)); (3)if « = Z0,0; is any p-chain
on a space E, Ba is defined as 2o, Bo,.

1t will be noticed at once that this definition, or at least the first
part of it, ia modelled on the formula (22) which arose from the
geometrical considerations of §1. The statement (2) of the definition
can be described geometrically as follows, in the case p = 2. If a
triangle T is embedded in a space E, and T is assumed to be the
image under a mapping f of a plane triangle T, then T is to be sub-
divided by drawing in the medians of T, and taking their images
under f. It is not hard to see a similar geometrical interpretation in
the ease p — 3. The point of part (3) of the definition is to make B
into a homomorphism, and so into something which is algebraically
gignificant.

The following two theorems establish important properties of the
operator B.

TreorEM 37. Let K and B’ be two spaces and let f be o continuous
mapping of E into E'. Also let fi be the homomorphism induced on
the chain groups of E by f (Definition 41). Thern B.f; = fi-B.

Proor. It is to be proved that, if « iz any element of {7 (£}, for
any p, then B(fy(x)) = f,(B=). And since B and f, are both homo-
morphisms and C(E) is the frec group generated by singular
p-simplexes of E, it will be sufficient to prove that B(f,(a)} = f;(Ba)
for any singular p-simplex ¢ on E. The geometrical plausibility of
this result may be seen by thinking of & as represented by a triangle
embedded in £, and regarding the operator B as the marking in of
the images under the embedding map of the medians, as described in
the note following the definition of B.

To prove the theorem, let ¢ be a singular p-simplex on £, that 1s a
eontinuous mapping of A into &, and let ¢, be the homomorphism
of O (A,) into €', () induced by . Then

filBo) = filo(Blagr, . . . 2))), (Definition 58),
— (f o) (B, - - 7))
= {f.0)(Bilxgx, ... %)), (Theorem 24},
— B(f.0), (Definition b8),
= Bf,{ag), 1 {Definition 41),

and this is the required result.
TarorEM 38. B.d — 4.8.
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ProoF. As in the last theorem it will be sufficient to prove that, if
¢ is & singular p-simplex on E, then B{do) = d{Beg}. This corre-
sponds to the geometrical statement that, if one draws in the median
of a triangle, the boundary of the figure so obtained consists of the
sides of the original triangle with their mid-points marked 1n.

The proof of the theorem will be carried out by induetion. The
result is trivial for operations on (-chaing, and it will be assumed as
induction hypothesis that B{da) = d{Ba) for any (p — 1)-chain «
on E. Then, if o is a singular p-simplex on £:

dBo = da(Blrgxy . . - 2,))
— g, {dBxexr, .. . x,)) (24)

by Definition 58 and Theorem 25,
Now, by definition, Blxgz, ... ¢,) = b,(Bd(zyz, . .. x,}), where
b, is the barycentre of [zgx, . . . 2, j and 80:

dB(x,x, .. .x,) = Bdlzgxy ... x,) — b(dBd{zyr, . . . x)),
{Theorem 36),

= Bd(x42, - . . x,) — by(Bd®(xe2y . - - %)),
(Induetmn Hypothesis),
— Bd(zyx,...x,), (since d? =0).
Substituting Bd(xyz, . ..=z,) for dB(xyx, ... x,) in (24), it follows
that:
dBo = g,(Bd{zyx, ... x,))
e Bﬂl{d{muml v ..'I:p”,
(Theorem 37 applied to o,4),
_ Bdo, (Definition 42),

and this completes the proof.

3. The operator H

The operator H will now be defined. The procedure is similar to
that adopted in the definition of B. Namely, the definition of
H{zyx, . .. z,) will be based on the suggested formula (23), and then
H, like B, will be extended 1o any singular simplexes and finally
to chains.

DerFinrrioN 59. Let Ho = 0 for any O-chain x on any space, and
suppose that the meaning of Ha has already been defined for any
(p — 1)-chain « on any space. Then (1) if {#yz, . . . z,) has it3 usual

PARYOENTRIC SURDIVISION AND EXQCISION 141

meaning and if b, is the baryeentre of A, define H{zxgz, ... 7,) a3
the join of &, to the chain

(xgry ... x,) — Blagr, ... x)) — Hd(zge, ... 2);

(2) if ¢ is a singular p-simplex on a space £, that is, a con-
tintous mapping of A into E, and if g, is the induced homo-
morphism of the chain groups, define Ho == o\{H(zye; ... 7))
(3} if & is a p-chain on £ and x = Ya,0;, define Hoa = >a,Ha,.

The following theoremn is very similar to Theorem 37, both in
statement and in proof.

TuroreM 39. If E, E' are two given spaces and [ is a continuous
mapping of E into E', and if f, is the induced homomorphism of the
chain groups, then f.H = H.f,.

ProoF. As in Theorem 37, it is sufficient to prove that f;{H o)} =
Hf.ig) for any singular p-simplex o on .

[ ey = filo{Hlzgr, ... 2.))),  (Definition 5%,

= (fleo)(Hizgzy . . 2,))
= (foo)(H{xgx, . . . 2)), (Theorem 24},

— H(f.0), (Definition 59),
= Hf,(a) (Definition 41),

as was to be shown.

The main result of the present section is the following theorem,
which shows that, on the basis of the above definition of H, the
boundary of Ha for a singular simplex ¢ is in fact made up of the
various parts indicated in the cloging paragraphs of §1.

TueoreM 40, Let « be a p-chain on a space E, for any p. Then

dH o = o« — By — Hda.

ProoF. The proof will be by induction. The result is triviai for
a 0-chain u, and, as induction hypothesis the theorem will be assumed
to hold when « is a (p — 1)-chain on any space. On the basis of
this hypothesis, it will be sufficient, as in the proof of Theorems
37-39, to prove this theorem in the case where « is replaced by a
sgular p-simplex ¢. Then:

dHo = do(H{xg, .. .x)),
= gy {dH(zgz, . .. 2,)}, (25)
by Definition 59 and Theorem 25.
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But H{xyr, . . . ) is defined as

bl(xgry ... x) — Blrgr;...x,) — Hd(zygx, ... x))]
and s0, by Theorem 38,

dH{zge, . .. 2,) = (Tgrg . . . 1) — Blegr, ... x,) — Hd{zgz, ... x)
— b [d{zgry . .. x,) — dBlxgx, ... . x)) — dHd{zgx, .. . x,)] (26)
By the induction hypothesis,
dHd{xgx, .. . 2,) = dxpxy . . 7, — Bd{xyz, . . . 2))
— Hd¥(xgr, . ... x,)
= d{@gr, . .- 7,) — dB(xgry ... 2,),
(since d® = 0, and, by Theorem 38, d.B = B.d).

It follows at once from this that the expression in the square
brackets on the right of (26) is zero, and so

dH(xyr, ... 2,) = (wpxy ... &) — Blogr, ... 2} — Hd{zpx, ... x).
Substituting this in the right hand side of (25) it follows that:
dHo = oy[(xgxy - . . ) — Blxgzr, . . x,) — Hd(zgr, . . . 2)]
= g — Bg— Hdﬂ',

since g, commutes with B and H, by Theorems 37 and 39, and
oyd(xexy ... x,)) = do by definition, while oy(ver;...x)) =0,
{zgx; ... x,) being the identity mapping of A, on itself, This
completes the proof.

- 4. Reduction to small simplexes

The theorems of §$2 and 3 are now to be applied to the proof of the
result stated at the beginning of §1, namely, that a cycle can always
be replaced by a homologous eycle each of whose singular simplexes
is 8 mapping of a standard Euclidean simplex into an arbitrarily
small set. To do this it must first be verified that repeated bary-
centric subdivision applied to a chain yields a chain each of whose
singular simplexes i3 a mapping into an arbitrarily small set, and
that, if « is a cycle, 5o is By, and Bz is homologous to o,

Now it 18 clear that, if a triangle is subdivided by drawing in its
medians, each of the subdivisions is smaller than the original
triangle. The object of the next two theorems is to generalize this
statement to higher dimensions. In general, the size of a =et in
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Euclidean space is measured by itz diameter, that is, the maximum
distance apart of two points of the set. The following theorem gives
a simple rule for finding the diameter of a simplex in Euclidean space.

TaeoREM 41. The diameter of a Fuclidean simplex ts the length
of its longest edge.

Proor. Let S be a Euclidean simplex in a Euclidean space of any
dimension. Suppose that 4 and B are two points of 8, but that they
are not both vertices. Assume that B is not a vertex. Construct the
sphere > of centre A and passing through the vertex of S furthest
from A. All the other vertices lie in > and so, since a sphere 1s
convex, the whole of 8 lies in > (Chapter V, §2, Exercise 6}. It
follows that 4 B is less than the distanee of A from one of the vertices
of 8, say B’. Similarly, if 4 is also not a vertex there will be a
vertex A’ such that the distance A B’ is less than the distance A"B’.
Thus two points of § at maximum distance apart must be vertices,
and so must certainly be two of the vertices which, among the pairs
of vertices, are at the greatest distance apart. This completes the

proof.
For convenience of statement in the next theorem, the diameter of
a Euclidean simplex with vertices ¥,, %, .. . ., ¥, Will also be called

the diameter of the singular simplex (yoy, ...y} defined by a
linear mapping as in Definition 38.

TeEOREM 42. Let (yoy, - - - ¥,) be a singular simplex defined by a
linear mapping of A, into some Fuclidean space, and let the digmeter of
(Yol - - - ¥,) be 1. Then each singular simplex appearing in the
chain Blyy, . . . y,) @5 of diameter at most plf(p + 1).

Proor. This theorem will be proved by induction on p. It is
obvicusly true for p = 1, for in this case barycentric subdivision
simply amounts to the bisection of a linc segment. Assume then that
the result is true when p is replaced by » — I. The barycentric
subdivision of {.y; .. .%,) is formed by joining the barycentre b
of [Ye¥y - .. ¥,] to Bdlyy . ..¥,), (Definition 58). Now if [ is the
diameter of (ygy; . ..y,), the diameter of each (y,...¥;. . ¥y
(1=0,...,p) will not exceed !, and so by the induction hypo-
thesis the diameter of each simplex introduced in the barycentric
subdivision of d{y.y, . ..y,) will not exceed (p — 1)ifp, and this
is less than plf{p + 1). That is to say, if {242, ...2,_,) 18 a singular
simplex appearing in Bd{yay, - . - #,), the length of the longest edge
of the Euclidean simplex [z;...z,_,] does not exceed pl/(p + 1)
{Theorem 41). Now if ({y#, . . . £,) is a singular simplex appearing in
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Blyy - - - ¥y, the edges of [fit; .. . £,] either belong to a simplex
[242, - - - 2,_;] of the type just mentioned, and so are less than
pif{p + 1) in length or are obtained by joining the barycentre & of
{#¥, - - - 4,) to-the vertices and to the barycentres of the faces.
Since b divides the join of each vertex to the barycentre of the
opposite face in the ratio p : 1, and sinee each of these joins is less
than [, the diameter of (y,y, . . . ¥,), it follows that ali these remaining
edges are of length not greater than pif{p -+ 1}, A final application
of Theorein 41 shows that, since the edges of each simplex {t,¢, . . . £]
such that (1,4, ...1,) appears in By, ... ¥,) are all not greater
than pif{p + 1) in length, the diameters of these simplexes do not
exceed plfip + 1) : .

CoroLLary, If ¢ is @ given number, and r is laken large enough,
Br{ygyy . .. y,) will be a hLnear combination of singular svmplexes
of diamelers less than e.

Proor, Here B' denotes the repeated application of B r times 1
auceession. From the above theorem it follows that the diameters of
the singular simplexes making up the chain By, . . . ¥,) do not
exceed p'lf{p 4+ 1), and the required result follows at omec since
plip 4+ 1} < 1.

The above corollary shows that repeated barycentric subdivision
applied to a singular simplex defined by a linear mapping 1n some
Euclidean space vields arbitrarily small singular simplexes. The
next step in the argument is to extend this to any singular simplexes
on any spaces,

THREOREM 43. Lel o be a singular simplex on a space E, and let an
open covering of B be given ( Definition 16). Then if r is lorge encugh,
Bro will be a linear combinalion of singular p-simplexes ench of which
s a mapping of A, inlo one of the sels of the covering of E.

Proor. To prove this, note first that, if f is any continuous
mapping of a compaet get S in some Euclidean space into a space £
ot which an open covering is given, then there ig a number e such
that f carries the z-neighbourhood of every point of S into some set of
the covering on E. This statement can easily be established by a
repeated biseetion argument (cf. also Chapter 111, §2, Exercise 8).
Consider now in particular A az S, ¢ as the mapping f, and choose r,
by the corollary to Theorem 42, so that Bfixgx; ...z} is a linear
combination of singular simplexes on A each of diameter less than
¢, where, as usual {22 ...2,) iv defined on A, by the identity
mapping. Then cach singular simplex of B7(xgx; . . . x,) 18 4 mapping

Bt —— e — — —
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of A, onto a subset of A, of diameter less than g, a subsot
which is therefore contained in an gz-neighbourhood of any one
of its points, and which is therefore carried by the mapping o
into some sect of the eovering on E. But, by Definition 58,
Bg = o, B(zyz, . . . z,), and s0, by repeated application of Theorem
37, B'o = o, Bf{zyx; ... «,). Henee it follows that ecach singular
simplex of Bro is a mapping of A into some sot of the given
covering of K.

CoROLLARY. Let o be a p-chain on a space K, and lef an open
covering of E be given. Then if r is large enough B'o unll be a tinear
combination of singular simplexes each of which is a mapping of A,
into some set of the given covering of K.

PROOF. % can be written as D«,o,, with only a finite number of
singular simplexes ¢; appearing. By tho above theorem, r; can be
chosen: so that BTg, is a linear combination of singular simplexes
each of which is a mapping of A into some set of the covering. If r
is taken as the greatest of the #, the result stated in the corollary
is obtained.

A special case which is of interest ariges if E is a subspace of
some Euclidean space, and the given covering is the collection of all
8f2-neighbourhooeds of the points of £. The result just proved states
in this case that, if z iz a chain on ¥ then » can be so chosen that B
is a linear combination of singular simplexes each of which is a map
of A into a set of diameter less than 4.

The first half of the discussion of this section is thus eompleted,
namely the treatment of the “reduction in size™ of singular simplexes
brought about by baryveentric subdivision. The remainder of the
discussion consists in showing that Bz is homologous to o« when a0 15 a
cycle. This will actually be done for the more general sitnation of
relative homology.

TreorEM 44, Let E be a space and F a subspace. Let o be ¢
relative cycle of E modulo F. Then Bu is olso a relative cycle of K
modulo F and x and Bu are relafively homologous modulo F.

Proor. First let ¢ be a singular p-simplex on F. o is thus a
mapping of A into F, and so, since Bo = oy(Blxer, ... %)), by
Definition 58, Be is u chain on F. Extending this by forming linear
combinations, it follows that B earries chains on F into chaing on F.
Now if & is a relative cycle on £ module F, d« is & chain en F.
dBy = Bda, by Theorem 38, and by what has just becn shown
this is a chain on F. That is to say, Bx is a relative cycle modulo £,
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Now by Theorem 40, dHa = x — Bx — Hdx. Arguing as in
the case of B, it is not hard to see that H carrios chaing on F into
chaine on F, and so, in particular, Hda is a chain on F. Thus
Theorem 40 says that « — Ba added to a chain on ¥ is a boundary,
and this means that « and Be are homologous modulo F.

This theorem implies at once that « is homologous modulo ¥ to
Bra for any r, and this statement may be combined with Theorem 43
to give the main result of this section, which may be stated as
follows:

TaeorEM 45. Let B be a space, F a subspace and let a covering of K
by open sets be given, Then an element of H (&, F), for any p, can
always be represented by a relative cycle made up of singular simplexes
each of which is a mapping of A, into one of the sets of the given COVEring.

5. The excision theorem

The object of this section is to work out a further application of
the method of barycentric subdivision. The result to be obtained
will be one of the most useful tools in the caleulation of the homology
groups of given spaces. Consider a space E, a subspace F, and a
further set U/ contained in ¥, the situation being represented
diagrammatically in Fig. 28. Let a be a relative cycle of £ modulo #.
As indicated in Fig. 28(a), it is possible, speaking geometrically, that
simplexes of « may meet U/ and also reach outside ¥. Fig. 28(b)
suggests, however, that if « is transformed by a sequence of bary-
centric subdivisions into a chain o’ whose simplexes are small
enough, then those simplexes which meet I/ will lie entirely in F.
Of course the statement just made would not be true if U/ and F had
frontier points in common and one of the simplexes making up «
were to pass through such a point. It is thus to be expected that one
will want the additional condition that U7 should be contained in the
interior of F. Suppose then that this condition holds and that o« has
been replaced by o’ as above. In relative homology module ¥ a
relative cycle is always homologous to the relative cycle obtained by
ignoring any simplexes of the given one which are entirely contained
in F. Thus ' is homologous modulo F to the relative cycle obtained
from o' by leaving out all the simplexes which meet U. Since «
and &’ are homologous modulo F, by Theorem 44, it follows that the
given relative eycle is homologous modulo F to s relative cycle of
E—-—-U modulo U,

Thus the reasoning based on Fig. 28 suggests that, under suitable
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topological conditions, every element of 5/ (¥, F} can be represented
by a relative cycle of £ — U modulo F — U, in other words, that the
homomorphism H (E — U, F — /) - H_(E, F} induced by the
inclugion mapping is onto. |

A similar argument suggests that the kernel of this homomeoerphism
ig zero. For if «, a relative cyele of £ — U modulo F — U, 18 homo-
logous to zero modulo F, it is reasonable to hope again that, by
cutting down the size of the simplexes by repeated barycentric
subdivision, one may cut out all the simplexes meeting U,

The theorem below which is based on the above geometrical
reasoning is called the Excision Theorem, the idea being that, under
certain circumstances, a subset 7 of F may be excised, that is cut
out, without affecting the relative homology of ¥ modulo ¥.

TaroreM 46, Let E be a space, F a subspace, and let U be a set
whose closure is contasned in the inlerior of F. Then the homomorphism
i:H (B — U, F—U)— H|(E, F)induced by the inclusion map is an
ssomorphism onto, for each p.

ProoF. Apply Theorem 45 to the space £ with the covering
consisting of the two open sets E — U and the interior of . Thisis a
covering because of the condition imposed on U/. Then any element
of H {E, F) can be represented by a relative eycle « which is a
linear ecombination of singular simplexes each of which is a mapping
of A_ into either £ — U or the interior of F. Now if ¢ is a singular
gimplex appearing in the expression for «, and if the image set
a{A_) hag any point in common with U, then of{A ) is not contained
in B — U7, and a0 must be containedin F. Thus ¢ is a singular simplex
on F, and 8o it may be dropped from the expression for « without
affecting the relative homology class of « modulo ¥. It follows that
any element of H_(E, F) can be represented by a rclative cycle
which ig 4 chain on £ — U, that is, a relative cyele on £ — U modulo
F — U. This shows that the homomorphism ¢:H (B — U, F — U)
— H (¥, F) is onto.

To show that ¢ is an isomorphism, let & represent an element of its




148 ALGERBRAIC TOPCGLOGY

kerncl. That is to sav, let % be a relative cyele of £ — U modulo
F — 7 such that 2 is homologous to zero in £ modulo &, This ineans
that there is a chain 8 on & and a chain y on F such that o = ag 4 v.
Operate on this relation with B, noting that, by Thoorem 38, this
operator commutes with 4. Thus B« = dB'f + B"y. By the
corollary to Theorem 43, ¢ can be chosen so that B7§ is a linear
combination >, of singular simplexes each of which maps A,
into either E — T or the interior of F. Let 8, be the set of terms n
Sb,a; for which o(A)) meets U and let §, denote the remaining
terms. For each singular simplex o; appearing in the expression f,,
a,(4,) is not contained m & -~ U (since it meets ') and so f; is a

chain on #. On the other hand 3, is a chain on £ — U'. The equa-
tion B'w = dB78 - B’y may be written as:

Bra — df, = df, + BTy (27)

By and df, are both chains ou ¥ — U, and so the right hand side of
(27) must also be a chain on £ — U, On the other hand p, and 57y
are chains on F, and so the right hand side of {27) is a chain on F.
Combining these two statements it follows that the right hand side
of (27) is a chain on ¥ — U. Thus (27) says that B'e added to
—(d3, + B}, a chain on F — U, is the boundary of a chain, j,,
on E — U7, That is to say, Bra is homologous to zero in & — U
modulo F — [7., But, by Theorem 44, B'a and o are homologous
in £ — I modulo F — 7, and since x is a representative of any
clement of the kernel of the homomorphism ¢:H (¥ — U, F — U) —
H(E, F), it follows at once that this kernel is zero, and so the
theorcm is completely proved.

Exercises
1. Let 8" he the sphere in Euclidean (n 4 1)-space with the

nil
equation > x2 =1, let ¥, be the sub-set of S defined by z, ., == 0,
i=1
E, the sub-set defined by «, ., <. } and write F = E, n X, Prove
that H (S", E,) ~ H (K,, F) for all r.

2. Clombine Excreise 1 above with Exercise 7, §5, Chapter Vi, to
show that, if 8®, E,, E, are as above, and 571 ig the sub-set of S*
defined by z,, ., = 0, then H{8", E,) = H (E,, 8*71) for all r.

Norte. The combination of exeision and homotopy used to obtain
this result is an example of a technique which will be of fundamental

importance in the computation of homology groups.

BARYCENTRIC SUBDIVISION AND EXCISION 1<)

3. Let E be the surface of a torus and let & be the union of the
two circles marked « and £ in Fig. 21, Chapter V, §1. Let E’ be a
circular dise and F' its circumference. Prove that H (E, F) o~
H(E', F')for all r,

[Hint: As an intermediate step show that H_(F, F) ~ H_(F, F|)
where F) is the union of two cireular bands on the surface E having the
circles x and fas their central lines; use IExercise 5, §5, Chapter VI for thas.

Then exciao the utuon of two circular bands contained i the interior of
Fo
1-




CHAPTER VII1

THE HOMOLOGY SEQUENCE

I. The exact sequence

Associated with a given pair of spaces E, F, where F is a subspace
of E, there are three sets of homology groups, those of F, those of £
and the relative groups of ¥ modulo F. Three homomorphisms will
now be introduced which will exhibit relations hetween these sets of
groups, and will eventually lead to & method of calculating homology
groups.

The firat of these homomorphisms is already familiar. It is, namely,
the homomorphism ¢ of H,(F) into H (¥), for each p, induced by the
inclusion mapping of ¥ into E (remarks following Definition 53). Thus
if & is an element of H, (F), that is to say a p-dimensional homology
class in F, then i% is the homology elass in E represented by any
eycle in the class & 1 is called the injection of H (¥} mto H (&)

The second homomorphism will be a mapping of H (E} nto
H{E, F}, for each p. If « is a cycle of &, 1t 18 8 chain with zero
boundary,and since the zero chain may be regarded as belonging to F,
x may equally well be regarded as a relative eycle of & modulo F.
Moreover, if & and o' are homologous cycles of B then & — o' = dff
for some chain 8, and, comparing this with the definition of relative
homology (Definition 50) it is clear that & and o', regarded as relative
eycles, are homologous modulo #. Thus if  is a p-dimensional
homology elass of £, that is to say, an element of H (), all the cycles
belonging to & will, when regarded as relative cycles modulo &, belong
to the same relative homology class. This relative homology class, an
element of H (E, F} will be denoted by j&. iSince addition of
homology or relative homology classes is defined by addition of
representative cycles or relative cycles, it follows at once that 9 iz a
homomorphism. Itwill be called the projectionof H (E)into H (&, F).

The third homomorphism arises from the following fact. If « is a
relative p-cycle of £ modulo F then it is, by definition, a chain whose
boundary du is a chain on F, But since d2 =0, de is a (p — 1)-
eycle on F. Thus to each relative p-cycle on £ modulo ¥ there has
been assigned a {» — 1)-cycle of F. This assignment will now be
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carried over into a mapping of H (K, F) into H__,(#). Let & be an
element of H (E, F) and let o and a’ be two representative relative
eycles. Then « and «' are homologous modulo ¥, and so there is a
p-chain #on ¥ and a (p + 1)-chain y on ¥ such that a — o' + f§ =
dy. Henece da — de’ = —df. Thus the two (p — 1)-cycles dx and
da’ on F are homologous in F, since their difference is the boundary
of a chain on F, namely —g. {Note carefully that da and do’,
although they are boundaries, are not necessarily homologous to
zero on I, for they are boundaries of « and «, which are chains on &
but not necessarily on F). Thus again, whatever representative « is
taken for the relative homology class &, da always belongs to the
same (p — 1}-dimensional homology class of F. This class will be
denoted by 0&. As in the case of j, the fact that addition in the
homology groups is defined by adding representative cycles or
relative eycles, implies at once that 7 is & homomorphism. @ will be
called the boundary homomorphism. |

For the discussion of the relations between these homomorphisms
it is convenient to arrange the relevant groups in a sequence, as
follows:

—> H(F) —> H,(E)-3> H (B, F)~> H,_,(F)
_‘*}Hp—l(E} _j} p-][E! F} _L {28}

where the arrows are marked according to the homomorphisms
they represent. This sequence terminates on the right of course
with the 0O-dimensional groups, and it will appear later that, in
most elementary cases, it extends only to a finite number of terms
to the left.

Dermnrrion 60. The sequence (28) of groups and homomorphisms
is called the homology sequence of the pair (B, F).

The properties of the homology sequence (28) are suggested by the
following considerations. Let a be a p-cycle of &, and suppose that «
18 homologous to a cycle o’ of F'. This means in the first place that the
homology class of « in E is the image under ¢ of the homology class of
@' in F; but the definition of relative homology shows also that a,
regarded as a relative cycle medulo ¥ is homologous to zero modulo
F. That is to say, j maps the homology class of = in E onto zero,
This suggests that the image of ¢ is connected in some way with the
kernel of j. Next, a cycle of £, regarded as a relative cycle modulo F,
represents a relative homology class which is mapped on zero by 9,
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and is at the same time the image of a homology eclass of £ under j;
this suggests comparing the image of § with the kernel of 2. Finally,
suppose 2. is a cycle of F which is homologous to zero in F, that i,
a = df. fisa relative cycle of £ modulo # and so, by the definition
of 0, the homology class of  in F is the image under @ of the relative
homology class of #. But in addition the class of o« in F' is carried
onto zero by ¢, which suggests comparison of the image of d with the
kernel of 1.

The results sketched above will now be stated formally in the
following theorem, whose proof simply consists of a tidied up
version of the above discussion.

TrrOREM 47. In the sequence (28), (1) the image of i coincides wnth
the kernel of j, (2) the image of § coincides with the kernel of 0, and
(3] the tmage of @ coincides with the Lernel of 1, for all values of p.

A special remark is required concerning the homomorphisin j of
HE) into H,(E, F). This mapping is not followed by a further
homomorphism ¢, but it is trivial that § is onto for this case, since
cach singular (hsimplex on & iz both a O-cycle and a relative eyele
modulo .

Proor. (1) Let & be an element of the image of 1 for the dimension
p. By the definition of ¢ it follows that the class & can be represented
by a p-cyele on F. Regarded as a relative eyele modulo F thig p-
cycle is homologous to zero modulo ¥. And so, by the definition of §,
% is in the kernel of j; this shows that the image of ¢ is contained in
the kernel of j.

Next let & in A (k&) be in the kernel of j. Then if x is a cycle
representing %, the definition of j means that « is rclatively homon-
logous to zerc module #. That is to say, &« = df + ¢ where §is a
(p + 1)-chain on ¥ and y is a p-chain on ¥. Taking boundaries.
dx = dy, and since dz — 0 it follows that v is a eycle of F, and is
homologous to «. Thus & can be represented by ¥, & eycle on F, and
s0 & 1s In the image of ©, This shows that the kernel of § is eontained
in the image of ¢, and so, combining the two inclusion relations it
follows that the image of # and the kernel of j coincide.

{2) Lot & be an element of H (. F) in the image of 3. That is to
say, & has a representative which is not only a relative eycle modalo
F, but is actually a cycle on E. Then since dee = 0 the definition of
d shows that d% = . Henee the image of § is contained in the kernel
of .

If & is an element of H (K, #) in the kernel of ¢, then § has a
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representative « whose houndary is homologous to zero in ¥
(definition of @). Thus da = df, for some chain # on ¥. Hence
dia — ) =0 and so « — 8 is a cyele on E. But « — f is homo-
logous to o modulo F by the definition of relative homology, and go
& has a representative, namely « — 8, which iz a cycle; that is to
say, & is in the image of j and 8o the kernel of ¢ is contained in the
image of 3. The two inclusion relations just obtained show that the
image of 7 and the kernel of @ coincide.

(3) Let & be an element of H__,(F) in the image of ¢. Then by
the definition of @, & can be represented by a cycle « which is the
boundary of a relative eycle § of & modulo F. But to say that
o = dff is the same as to say that « is homologous to zero in Z;
and this means that z is in the kernel of ¢. Thus the image of 3 is
contained in the kernel of 3.

Finally let & be an element of & ,_,{F} in the kernel of +. Then if o«
is & {p — 1)-cycle on F representing #, « is homologous to zero in i7;
that is, « = df for some p-chain § on E. But § is then a relative
eyele of ¥ modulo F, and the definition of  shows that the class of g
i carried by ¢ into #. Thus the kernel of ¢ is contained in the image
of 8, and the two inelusion relations which have been proved show
that the image of d coincides with the kernel of ¢, All three parts of
the theorem are thus completely proved.

DEFINITION 61, A sequence of groups and homomorphisma (like
(28)) with the property that the image of each homomorphism is the
kernel of the next is called an exuct sequence.

This definition enables Theorem 47 to be stated briefly: The
homology sequence of o pair of spaces 18 exact,

2. Homology groups in some special cases

The theory of the last section will now be illustrated by application
to a number of simple cases. It will appear that the use of the
cxact sequence (28) along with a certain amount of ingenuity
suffices to calculate the homology groups of some of the most
elementary spaces. It will also become clear, however, that some
more systematic method is necessary to deal with spaces which
present even the mildest complications. Chapter IX will then be
devoted to the task of working out such a method, applicable to a
very wide class of spaces.

Examples. (1) Let E be a closed line segment and let ¥ be the
subspace consisting of the two end-points 4 and B. It is already

11
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known ({cf. Chapter VI, §5, Exercise 2) that H_(¥) is zcro for
p # 0 while H,(¥) is infinite cyclic, a generator « being represented
by the singular 0-simplex which maps A, on the point 4. Also
H (F) is zero for p == 0 and Hy(F) is the free abelian group of two
generators @ and &, where these are represented by the singular
O-simplexes mapping A, on A and B respectively (Chapter V,
89, Kxercises 6 and 7).

Consider the following portion of the homology sequence
of & and F"

—» H(F) ~> H(E) 2> H(E,F) > H__ (F) —> (29)

for p > 1. As noted above, H,_,(F) is zero; thus ¢ maps the whole
of H,(E, F) onto zero, and so H {E, F) is iteelf the kernel of 0.
By Theorem 47, that is by the exactness of (29), it follows that
H (E, F'} is the image of . That is to say, j is a mapping onto.
On the other hand it has been remarked that, for p 3£ 0, H (F) is
zero. Now if 7 maps a zero group onto another group, that second
group must also be zero. Henee H (K, F') is zero for p > 1.
Consider now the following portion of the exact sequence of K

and F':
— H,(F}—> H,(E) > H(E, F)—> HyF) > H(E) > H,(E, F).

Here primes have been attached to ¢ and j on their second appear-
ances to avoid confusion. H, (¥, ¥F) is known to be zero (Chapter V,
39, Exercise 9) and s0 H, (K} is the kernei of j/. It follows from
exactness that ¢ iz a mapping onto. Also H,(E) is zero, as was
remarked above, and so the image of #, that is, the kernel of & is
zero. ¢ is thus an isomorphism into. That is to say, H(E, F) is
mapped 1somorphically on some subgroup f of Hy(F). Then, since
the image of d is the kernel of #*, and i’ has been shown to be onto, it
follows that H(¥) is isomorphic to H,(F){GF. Now & is a sub-group
of a free abclian group with {wo generators, and so is either zero,
an infinite cyclic group or a free group with two generators. 7
cannot be zero, or H (&) would be isomorphic to H,(F), and it
cannct have two independent generators, or the quotient group
H(E) would be finite. Thus &, and so H,(£, F') which is isomorphic
to it, 18 an infinite cyclie group.

The exact sequence of E and ¥ has thus been applied to determine
the groups I, (£, F) for all p from the previous knowledge of the
homology groups of # and ¥. The result on H,(E, F) may be made
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a bit more explicit. For, @, b, « being as defined at the beginning of
thiz example, it is easy to see that i'a = i'b = o, and so, if ma + nb
is any element of H,(F), i'(ma + nb) = (m + nj«; hence ma 4 nb
ig in & if and only if m = —un, and so ¢ is generated by ¢ — b,
It follows then that H (E, F), which is isomorphic to ¢ under 0, is
generated by an clement § such that 8 =a — b. Thus § can be
represented by any relative cycle whose boundary is the difference
of the singular simplexes mapping A, into the end points 4 and B of
E. A suitable relative eyele is that formed by the singular 1-simplex
which maps A, linearly onto the segment K.

Y

X
Fra. 28

(2) Let E be the circumference of a cirele, made up of two over-
lapping closed segments (cf. Fig. 29) AXE and OY D, and let ¥ be
the segment AXB. Also let E' be the segment CY D and F’ the
union of the two segments 4C and BD.

In the first place, the excizionn theorem {Theorem 46) shows that
H_(E, F) is isomorphic to H_(£", F') for all p. Next, there 18 a
homotopy of the identity mapping of the pair (E’, #°) on itself into
a mapping of (E’, F') into itself which carries the arec A into the
point ¢ and the arc BD into the point I} {ef. Chapter VI, §5,
Exercise 7). It follows, {Chapter VI, §5, Exercise 5) that the
homology groups of E* modulo F’ are isomorphic to those of a line
segment modulo its end points, which are known by Example (1)
above. Thus H (E’', F') is zero for all p %= 1, while for p =1 it is
infinite cyclic, and the same holds for H (&, F).

Congider now the exact sequence:

— H(P)—'s H (E)-1> H(E F) "+ H,_ ,(F)—>
for p > 1. H (F)=0 and so the image of ¢ i3 zero; hence by
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exactness j is an isomorphism. But H (F, F) = 0 and so H {£) =0

for p > 1.
In the exact sequence just considered take p — 1:

s H,(F) s HyE) > H(E, F) 25 H(F) = Hy(E)

H,(F} =0 and so 7 has zcro image; hence j is an isomorphiem
(onto or into). The homomorphism ¢’ is an isomorphism onto
(Chapter V1, §1, Exercise). It follows that ¢ hasg zero image; thatis to
say the kernel of 8 is the whole group H,(E, F) and so j is a mapping
onto. Hence H,(E) is isomorphic to H,{E, F), and so by what has
been shown already, is infinite cyclic.

Finally H,(E) is infinite cyalic by Chapter V, §3, Exercise 8.

Thus, summing up, H,(E) is zero for all p exeept p = 0 or 1 when
the group is infinite eyclic.

To identify a l-cycle on the circumference E representing a
generator of H,{E), note first that the isomorphism of H,(¥) and
H (E, F) is induced by the projection homomorphism j; and so a
eycle y on E will represent a generator of H(&) if and only if its
relative homology class modulo F generates If,(E, F). Let two
singular simplexes 0y, o, on £ be defined as follows. oy is to be a
homeomorphism of the standard 1-simplex A, on the are C'Y D, say
the mapping which earries each point p of A, into the point dividing
YD in the same ratio as p divides A|. oy is to be a similar map on
the are DXC. It is elear that o, + o, 18 a l-cycle on E. Also the
relative homology class of o, + g, in £ modulo F can equally well
be represented by o;, which is itself a relative eycle. Thus under the
excision isomorphism between H, (¥, F) and H J(E', F') the relative
homology class of ¢, + ¢, in E module F corresponds to that of g,
in B’ modulo ¥’. But by Example (1) above, ¢, represents a gener-
ator of the 1-dimensional homology group of the are C¥ D modulo
its end points, and so also represents a gencrator of H,(E', F') (by
Chapter VI, §5, Fxercise 5). It follows at onece that ¢, + o, repre-
sents a generator of H (B, #), and se, by the remark at the beginning
of this paragraph, o; + ¢, i8 a cycle whose homology class generates
H,(E).

(3) As a final example, let E be a circular disc and F its
circumference, and consider the exact sequence:

— > H(F) —> H(E) 2> H,E,F)

°s H, (F) > H, (E) —
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If p > 2, H,(E) =0 {Chapter VI, §5, Exercise 2), and H,_{¥) =10
(Example {2} above}, and so the exaetness of the above sequence
implies that O (¥, ¥F) = 0,

Suppose now that p = 2. H(¥) == 0 and so ¢’ maps H,(F} onto
zero. That is to say, the kernel of i’ is the whole group H,(F).
Hence @ is a mapping onto. On the other hand H,(E) = 0, and so j
has zero image; thatis, @ has zero kernel, and so ¢ is an isomorphism.
It has already been shown to be a mapping onto, and so H,(E, F) is
isomorphic to H,(F), and so, by Example (2) is infinite cyclic.

To identify a generator of H,(E, F), note that the isomorphism of
this group to H,(F) is induced by the boundary homomorphism @.
Thus a generator of H,(E, F) is represented by any 2-chain on ¥
whose boundary is a 1-cyele on F representing a generator of H,(F}).
To find such a representative explicitly, mark points ¢, X, I}, ¥ on
the eircumference of E, as in Example (2). Construct a mapping of
the atandard 2-simplex A, onto £ which mapa the sides xgx, and
x,x, on the ares C¥YD and DXC respectively (the z; being the
vertices of A,). This mapping is a singular simplex ¢ on & whose
boundary is o, + o3 — 7, where o, and g, are as in Example (2) and
r is the singular 1-simplex which maps the side x,x, onto the point .
But + is the boundary of the singular 2-simplex mapping A; on C,
and go the boundary of ¢ is homologous in F to ¢; 4+ g,, known
by Example (2) to represent a generator of H {F). It follows from
the remark at the beginning of this paragraph that ¢ represents a
generator of H,( K, F).

To complete this example, take p = 1 in the homology sequence
of the pair (K, F) as quoted above. If « is a relative l-cycle of £
modulo F then du is homologous to zerc on F (cf. Chapter V, §9,
Exercise 8). Hence ¢ maps H,(¥, F) onto zero. In other words
H (E, F) is the kernel of @ and so is the image of j. But H,(&) == 0,
and so H,(E, F) =0 too. Finally, H(E, F) is zero (Chapter V,
§9, Exercise 9).

Summing up the results of this example, H (¥, F) is zero for all p
except p = 2, when the group is infinite cyclic.

Exercises
1. Let E be a topological space and ¥ a subspace consisting of
Just one point. Prove that H (E) o~ H{E, F)forr = 1.
2. Let E be a topological space consisting of two circumferences of
circles having one point in common. Prove that H{¥) is infinite
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cyclie, H,(E) 15 iree abelian with two generators and H {F) is zero

for r = 2.

[Hint: Let F denote the subspace of £ consisting of tho common
point p, and let ¥ be the union of two closed arcs, one on each circle,
each having p as mid-point. Show that H_(F, F) o= H(E, F’) and use
excigion and homotopy as in Kxample (2} above.]

3. Generalize the result of Exercise 2 to a space E consisting of the
union of any number of circles having one point in common, showing
that H, () is free abelian with as many generators as there are circles

making up E.

Fra. 306

4. Let E he the surface of a torus. Prove that H (E) is zero for
r == 3, H,(E) and H (&) are infinite cyclic, and H,(X) is {free abelian
with two generators.

[Hint: Start by using Exercize 3, §5, Chapter VII; ¥ is the union of two
circles as in Exercise 2 above and so H_ (F) is kmown for all r. The
crucial peint in the application of the homology sequence of the pair
(E, F'}is to show that H.{¥, ¥) has a generator which ¢an be represented
by a eycle on H, thus showing that the projection homomorphism
H.(E) - Hy(E, F)is onto; to do this use Exorcise 4, §9, Chaptor V.]

5. Let £ be the surface of a sphere with p» handles attached
(illustrated for p = 3 in Fig. 30) and let F be the subspace consisting
of a circle around each handle (the 2, of Fig.30) and a curve running
along each handle (the 8.}, all beginning and ending at the same point
of E. Prove that H(F) is free abelian with 2p generators. Then
show that H () iz zero for r == 3, H,(F) and H (£) are infinite
cvelic and H,(FE) 18 free abelian with 2p generators (isomorphic to
H,(F) under injection).

[Hint: Note that if £ i1s cut along F it can be flattenod out into a
circular disc and show that H (¥, F) is irsomorphic to the rth homology
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group of a disc modulo its circurnference. Then use the homology
sequence of the pair (E, F). The essential point is to show that the
kernel of the injection H,(F) — H,(E) is zero. To do this note that ¥
can be mapped continuously on the surface of a torus E' by squeezing
each handle o a point oxecopt one, and that a relation between the
injection images of tho generators of H,(F) would lead to a relation

hetween the generators of H;(£").]

6. Thereal projective plane E is the set of all triples of real numbers
(x, ¥, z), excluding the triple (0, 0, 0), where the two friples (z, ¥, z)
and (z', y', 2’) are regarded as the same if and only if there is a real
number ¢ 5= 0 such that £’ = ¢z, ¥’ = ¢y, 2’ = cz. The triples may
be normalized by the condition 2? + y* 4 22 =1, and then it
becomes clear that ¥ is obtained from the unit sphere § in Euclidean
3-space by regarding each pair of diametrically opposite points of §
as a single point of E. That is to say there is a mapping f of S onto &
earrying each diametrically opposite pair of points of § onto a point
of E; in fact f maps (2, ¥, 2) and {—2, —y, —z) on S into the point
(z, y, 2) of £, K is made into a topological space by requiring that,
on a sufficiently small neighbourhood of each point of 8, f should
act as 8 homeomorphism. It should be noted also that the mapping f
carries the great circles of § into the lines of F (that is, into the sets
defined by linear equations in z, ¥, 2.)

Let ¢ be the singular simplex on § which maps A, onto a semi-
circle €' of a great circle such that the arc length of o(p) from one end
of € is proportional to the distance of p from one end of A,. Prove
that f,{a) is & cycle « of E (f; being the homomorphism on chain
groups induced by the mapping f described above) and that 2« is
homologous to zero. Also if F = f(() prove that F is homeo-
morphic to the circumference of a circle and that o represents a
generator of H,(F). Finally note that if & is cut along # one obtains
a ecircular dise £’ with diametrically opposite points on the circum-
ference F' identified, and prove that H (E, F)~ H {E’, F'). Hence
show that H _(E) is zero for r 2> 2, H{E) is infinite cyclic and H ()
15 eyclic of order two.

7. Let E be a surface obtained by cutting % circular holes in the
surface of a sphere, and on the circumference of each hole identifying
dismetrically opposite points. Procceding as in Exercise 3, and
noting that Exercise 6 gives the case k = I, prove that H (&) ig
infinite cyclic, H,(E) has k generators ay, oy, . - ., % of which & -]
are not subject to any relation while 2x, =0, and H (&) is zero
forr = 2.
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NoTe: If E iz a topological space such that every point has a
neighhourhood homeomorphic to an r-dimensional solid sphere, £ is
called an r-dimensional manifold. In particular it ean be shown that
every compact 2-dimensional manifold is homeomorphie to a sphereo
or to a surface of one of the types deseribed in Exercises 5 and 7.
{One can distinguish the surfaces of Exercize b from those of Exercise
7 by the fact that H,(X) is a free abelian group for the former but
involves a relation for the latter. And the nomber of generators of
H(E} tells which member of the set of surfaces of Kixercise 5 or 7, as
the case may be, is under consideration. The sphere {(as will be shown
in the next section} is characterized among the 2-dimensional
compact manifolds by the condition H,(E)—= 0. Thus compact
2-dimensional manifolds are completely classified by the knowledge
of their homology groups. It should be emphasized that ne such
complete classification exists for higher dimensional manifolds,
and still less for more complicated spaces.

8., Let ¥ be an arcwise connected space. A, is the part of the line
8 +t=1 in the (s, {)-plane for which s> 0,t = 0. Let f:I > E
be a closed path on £ based on a point « and define the singular
l-simplex o:A; — F by setting ofs, t) = f{s) for (s,¢) € A;. Prove
that ¢ is a eycle on E, and write it as &{f) to show its dependence on
the path f.

Prove that if f and g are paths based on x and are homotopic with
respect to the hase.point z then A(f) and A{g) are homologous
¢ycles. Hence show that A induces a mapping A:n(E) — H,(E)
defined by setting A(a) for a € 7(E) equal to the homology class of
h{f), where f is a path representing the homotopy class « and
w{ E) is the fundamental group of . Prove that } is a homemorphism
of #{¥) onto H,(E).

{Hint: If f and ¢ are homotopic show that there is a continuous
mapping A:A, - & (that is a singular 2-simplex) such that 2 agrees
with f and g along two sides of A, and carries the third side into .
Hence show that d4 = k{f) — k{g) + +, where 7 is the singular simplex
mapping A, onto #; finally show that = is a boundary,

To show that k is & homomorphism, let f and g be two paths based on
x. Construet & mapping i:A, — F agreeing with f, g and fg (Definition,
28} on the sidea (with suitable identifications of those sides with [f).
Then check that di = &{f) + k{g) — h{fg).

Finally to show that k 1& onto, show first that any l-eycle « on ¥ i3
homologous to a 1-cycle a’ each of whose singular simplexes 18 8 mapping
of A, into & carrying the endpoints into @ (this i8 done essentially by
pulling back the endpoints of the singular simplexes along paths ending

T wC
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at ). The singular simplexes of o’ are then themselves cycles and are in
the image of &,]

9. Combine Exercise 8 with Exercises 2 and 3 of §4, Chapter 1V,
and Example (2), §2, Chapter VIII, and Exercise 4 above to show
that the fundamental group of the ecircumference of a ecircle is
infinite eyclic and that of a torus is free abelian with two generators.

10. Complete the result: of Exercise 8 by showing that the kernel of
the homomorphism A is the commutator subgroup of =(£), that is to
say the subgroup generated by elements of the form «fa™'871.

Fus. 31

[Hint: Since H,(#) is an abelian group it is obvious that the com-

mutator subgroup of #(E) is contained in the kernel of k. Conversely,
let f bo a closed path based on x representing an element of the kernel

of h. Then A(f} is & cycle on E homologous to zero, and so there is &
2-chain ﬂil ¢,;0; such that A(f) = d 1§1 ¢,0;. Tho first thing to do i3 to
1= =
show that the &, can be replaced by singular simplexes which map the
vertices of A, mto 2. The procedure is illustrated by Fig. 31. (a) shows
a singtlar stmplex ¢ on &. A new singular simnplex o’ is to be dofined by
mapping A, onto the figure (&) {which is also shown by dotted lines in
(g); the mapping consists simply in pushing in the sides of A,} then
increasing tho geale so that the triangle in {6} becomes the same size as
Ay, and finally mapping the triangle in {¢) into E by the mapping o and
the three tails into paths ending at 2. It has to be checked that, when
each ¢, is replaced by a singular simplex «; in this way, the resulting

m
chain _El ¢;0; has i{ f) as its boundary, where f* ~ f. Now for each ¢, do; ia
t::

of the form +;; + 7,4 + 75 Where each r; is certainly in the image of A
{check this in detail!) and so do] can be writton as A(f,, fiaf;3). Frove
that f, fi>f;s i8 homotopic to a constant mapping, and so that
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Fifafafisfa = 18 homotopic to f , with respoct to the basopoint
x. But smcﬂ the Ghﬂ.]ﬂﬂ R{fYsndh(f3 ff1L . . . Fos) are equal, it follows

that f* and the f;; must repeat ea.ch nther in such a way that eta:c-.h
APPEArs A8 uften with the exponent 41 as with —1. It then follows easily
that f(f1} fis S - - - fim)™ 1 ~ fis in the commutator subgroup of #{E).]

3. Homology groups of cells and spheres

The most important feature of the examples in §2 is that they
form the starting point of an induction for determining the homology
oroups associated with spheres and solid spheres of all dimensions.
The next step would be to note that the two-dimensional sphere can
be covered by two overlapping circular dises, one covering a bit
more than the northern hemisphere, the other a bit more than the
southern hemisphere. The homology groups of the sphere can then be
deduced from those of the disc modulo its eircumference in & manner
very similar to the derivation of the homology groups of a cirele
from those of a line segment modulo its end points in Example (2).
This similarity suggests the pattern followed in the proof of Theorem
48 below.

The notation and terminology to be used is as follows. A closed
r-cell (or solid r-sphere) ia the set of pointz in Euclidean r-space

given by the inequality Z:::* < 1, {x;,x,,...,%,) being the co-

ordinates of a variable pnmt of the space. The term r-cell will also
be applied to sets homeomorphie to the one just defined. A closed
r-cell will be denoted by E”, suffixes being attached if more than one
ccll is to be considered at a time.

An open r-cell is the interior of a closed r-cell.
An #-sphere or r-dimensional sphere is the frontier of a closed

r+1

{r + 1)-cell. That is, an r-sphere is the set >xF = 1 in Euclidean
i=1

(v -~ 1)-space, or & set homeomorphie to this. An r-sphere is denoted

by S7,

It should be noted in particular that E? is a single point while 5°
iz a pair of distinet points.

TaroreM 48. {(a) H{S") =0 for p # 0 or r; H(8") and Hy(S7)
are infinite cyelic except for r = 0, and H(SY is a free abelian group
with two generators.

(b) HAET, 81 =0 for p+£r(r=1); HE, 8 ) is infinite
cyclic.,

Proor, Note firat that (a) is trivial for # — 0 {cf. Chapter V, §9,
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Exercises 6 and 7) and has been proved for r = 1 in Example (2)
of §2. Also (b) has been proved for r = 1, 2 in Examples {1) and {3)
reapectively. The proofs of (a) and {b) in general will be carried out
in & number of steps which imitate closely the procedure followed
in the three examples already given.

The first step is to consider, corresponding to the procedure of
Examples (1) and (3) of §2, the exact sequence:

—> H (871 —» H (B 1> H (B, 81
—>H, (S5 H__ (B

where ¢ 2= 2 and p 2= 2. H_(E7) is zero (Chapter VI, §5, Exercise 2)
and so thﬂ image of j is zere; then by cxactness the kernel of 8 is
zero, and so ¢ is an isomorphism. On the other hand H,_(E") = 0
for p, r 2= 2 (Chapter VI, §5, Exercise 2), and so " maps H, ,(S™1)
onto zero. That is to say the kernel of ¢, which is alse the image of 9,
is the whole group H_ ,(S"!). Hence ¢ is a mapping onto. It has

thus been shown that
H (B8 )~ H, (8 (r=2,p292) (29)
To deal with the case  — 1 consider the sequence:
—s H,(8™) > H (B s H (B, 8
s H (S s H (BN L H(E", 71,

forr 2= 2. Hy (81} and H,(E") are both infinite cyclic groups and the
mapping i’ is an isomorphism onto (Chapter VI, §1, Exercise).
Thus the kernel of ¢ is zero, and so & maps H,(E", S™1) onto zero.
That is to say, & has the whole group H(E", 871) as its kernel, and
50 7 18 a mapping onto. But since H (™) =0 (Chapter VI, §5,
Exercise 2} the image of j must be zero, Hence

H(E,8 1) =0, r>=2 (30)

The next step is to imitate the procedure of Example (2) of §2, the
idea bheing to cover the r-sphere with two overlappmg r-cells,

corresponding to the two ares 4X B and CY D in Fig. 29. S being
r+1

the set of points in Euclidean (r + 1)-space such that Z.-x: — 1 for
=1

any r = 1, define 7 to be the set of points of S* such that T, = — &
and Ej to be the sot of points on §” such that z,, ; <{ &, where ¢ is
ally positive number less than 1. It is not hard to see that £ and
E}, are both closed r.cells; the easiest way to prove this is to carry
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out stereographic projections into some hyperplane r, | = constant.
Let E} n KL be denoted by F.
It follows from the Excision Theorem (Theorem 46) that

H (S, E}) o~ H (B}, F) (31)

for all p, {and r 3= 1), the set excised heing the set of points on 8"
such that z, ., <7 —e.

The next operation consists essentially of stretching the set
2,4 > £ on 8 8o that it covers £] while ¥ is compressed into the
set 2, == —¢. This is done by constructing a mapping f of the
pair {E], F) into itself which is homotopic to the identity mapping
and is such that f(F) is the set z, ., = —¢ on 5" The explicit
construction of such & mapping has already been seen in Exercise 7,
§5, of Chapter VI. Then, by Exercise 5 of Chapter VI, 85,

H(B], F) = H,(E], 877") (32)
for all p, where 971 is the set x,,, = —¢ on S”. But as has already

been noted Y is homeomorphic to E7, and at the same time 871 is
its boundary and so homeomorphic to ™. Thus (32) becomes:

H (E;, F)~ H,(E",8™1) for all p.
(lombine this with (31), obtaining the result:
H (8", E) == H(E", 8 ) (33)

for all p. Noto that this is also subject to the condition r == 1.
The group H (8", Ej) will now be examined with the aid of the

following exact sequence:
—> H,(E}) —> H,(8") <> H,(8", B
> H a—1(ES)

with r assumed greater than or equal to 1.

E? is a closed r-cell, and so by Chapter VI, §5, Excreise 2, H (£])
and H,_,(E}) are both zero for p = 2. Hence the kernel of d is the
whole group H_(87, EJ) and so j is a mapping onto. And ¢ has zero
image, and so j is an isomorphism. Thus 7 is an isomorphism onto
for p 3> 2. On the other hand, if p =1, ¢ is an isomorphism onto
{cf. Chapter VI, §1, Exercise) and so in particular ¢’ has zero kernel.
It followa that the image of @ is zero. Also H,(E7) is zero, and so the
argument just used still shows that, for p=1, jisan isomorphism
onto. Thus:

‘s H, (89—

H (8", E}) o= H,(8") (34)
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for all p =1, and r 2= 1, the isomorphism being induced by the
projection mapping j. Along with (33} this implies that

H (S7) oz H(E7,87) (35)

forall p =1, r = 1.

The final step in the proof of this theorem is to obtain the results
stated under (a) and (b) by combining the isomorphisms {29} and (35)
for various values of p and r. (35) with p and r replaced by p — 1
and r — 1 respectively can be combined with (29) to give

H (B, 8Y) = H,_,(E™, 8% (36)

for all » == 2, r = 2. The isomorphism (38) can now be applied
ropeatedly with p, r replaced in turn by p — 1, r — 1, then p — 2,
y — 2, and so on, If p = » this step by step process leads to the

result:

H (B, Sy o H_ (B, 59

and this last group is zero since p — r -+ 1 2= 2 (by Example (1},
§2). Thus H_(E", 871} is zero for p >>r. On the other hand if
p <7 r the repeated application of (36) leads to the result:

HF{E", Sr—l] s Hl{Er—p +1, Sr-p}

and this is zero by (30); and so H,{E', 87} is zero for p <Ir.
Finally if p = r, the repeated application of (36) leads to:

H(E", 8™) o2 H,(E", §°)

which is infinite cyclic by Example (1) of §2. It has thus been shown
that H (E7, 871} is zero for p 7= r and H _(£7, 87') is infinite cyclic,
under the restriction p == 2, r > 2 (the result having been deduced
from (36) which is restricted in this way). As has been pointed out,
this result also holds for » = 1, p being unrestricted, by Example 1
of §2. Andifr > 2and p=0or 1, H (E", 81 is zero, (by Chapter
V, §9, Excreise 9if p — 0, and by {(30) if p = 1). Thus part (b) of the
present theorem is completely proved.

Part (b) combined with (33) shows that, under the restriction
p=1, r= 1 (which arises from the restriction imposed on (35})
H (8") is zero for p += r, while H {87) is infinite cyclic. Forr = 1,57
is arcwise eonnected and so H,{S") is infinite eyclic (Chapter V, §9,
Exercise 8). ¥or r = 0, 87 is a pair of points, and so H (8%} is zero
for p 2= 1, while H,{8%) is a group with two independent generators
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(Chapter V, §9, Exercises 6 and 7). This completes the proof of
Part {a) and so the theorem is established.

NoTe(1). Some further information on the homology groups associ-
ated with spheres and cells may be obtained by examining the proof
of the above theorem more closely. The isomorphism (29) is indueed
by the boundary homomorphism &, and so if a eycle « on 8™ is
known to represent a generator of the cyclic gronp H, (8" 1) for
r > 1, it will follow that a generator of H .(E7, 571} is represented
by any chain 8 on E* such that o =df. Conversely, if # is known to
represent a generator of H,(E”, 877) then df represents a generator
of H, (8 1).

Note (2). A connection hag-thus becn established between genera-
tors of H, {S™1) and H (E", 871), or rather their representatives. A
similar, but rather more complicated analysis of the isomorphism
between H (S7) and H (E7, §71) will now be worked out. In the first
place H_(S7) is mapped on H S, E}) by the projection homo-
morphism 7. Suppose that an r-cycle  can be found on 87 such that
v = 3, 4+ y, where all the singular simplexes making up the chain
v, are on the set of points of 8™ for which x, , 2> —e¢, while all those
making up ¥, are on the set x, ;< —e; then dy; = —dy, 18 an
{r — 1)-eyele on 871, the set on 37 for which »,  , == —e&. Then if y
is the homology class of v on 87, an element of H (57), y; can be
taken as a representative of the element jy of H (87, E}), and also as
a representative of the image of jy in H {E], F) under the iso-
morphism (31) induced by excision. Now if f is the mapping already
used above, of £} onte E7 homotopic to the identity and such that
f(F) = 871, f,(v,) represents the image of jy under the isomorphism
(33), but also f,(y,) is relatively homologous to p; in E] modulo
871 by Theorem 34. Thus y, represents the image of 9 under the
combined isomorphism (35).

It follows at once from this analysis that y represents a generator
of H (57} if and only if y, represents a generator of H _(E{, S['), the
latter group being, of course, isomorphic to H (E7, 81),

The remarks on the generators of the groups H (87) and H (E*,8771)
made in the last two paragraphs will be of essential importance in the
proof of Theorem 50 in the next Chapter.

Exercises

1. Prove that there is no extension of the identity mapping of 571
onto itself to a mapping of EY onto 8L,
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[Hmt: ‘ If there were, the identity mapping of 8§71 onto itself would be
homotopic to a constant mapping, and Theorem 34 would give
H, (8™} = 0, which is a contradietion.] |

2. Let f be a continuous mapping of Ef into itself. Prove that Jfhas

atilﬁast one fixed point; that is, prove that there is at least one
point & & " such that f{z) — 2.

[Hint: _Suppu?ﬁe there is no fixed point for f; join f(z) to x for cach x
by a straight line segment and extend this line till it meots S™2 in a

point ?r{m]. Prove that g is continuous and is an extension of the identity
mapping of $7~1 onto itself and use Exercise 1.]




CHAPTER I[X

SIMPLICIAL COMPLEXES

1. Definition of complexes

This chapter will be devoted to the study of a eertain class of
spaces for which a systematic algebrate procedure can be worked out
for calculating the homology groups. The class of spaces is described
in the following definition:

DermxITION 62, A simplicial complex 1s a subset of a Euclidean
space consisting of the point-set union of a finite number of Euclidean
simplexes {not necessarily all of the same dimengion} with the
property that the intersection of any two of these simplexes is either
empty or is a face of each of them. Here the word “face’ is to be
understood in the general sense, not necessarily meaning a face of
maximum dimension.

Examples. (1) A Eueclidean simplex is obviously itscll a
simplicial complex.

(2} Let K denote the union of the faces of a tetrahedron. X is thus
the union of four triangles any two of which intersect along a side
(that is 4 face) of each of them. And so K is a simplicial complex.
More generally the union of the {r — 1)}-dimensional faces of a
Kuclidean r-simplex is a simplicial complex,

(3) Let X denote the union of the six faces of a cube, and on each
face draw one of the diagonals. K is thus the union of twelve
triangles. It is clear that if any two of these triangles are picked
they will either be disjoint or will have a vertex or a side in common.
Both vertices and sides of a triangle are faces in the general sense,
and so the conditions of the above definition are satisfied, and £ is a
simplicial complex.

(4) In the above three examples the complex is in each case a
union of simplexes all of the same dimension. The accompanying
figure shows complexes which are not restrieted in this way (Fig. 32).

In discussing simplicial complexes the following definitions are
useful:

DrriniTiON 63. If the greatest dimension of the simplexes
making up a simplicial complex is n the complex is said to be of
dimension n.
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DEFINITION 64. Let K be a simplicial ecomplex. Then « g-simplex
of K, or a g-dimensional sinplex of K will mean any one of the
simplexes making up A which is of dimension g or any ¢-dimensional
face of one of the higher dimensional simplexes making up K.
Collectively the simplexes of K will mean the ecomplete list of all the
simplexes whose union is A along with all their faces of all dimensions.

DrrFmnrrioN 65. Let K be a simplicial complex. The union of all
the p-simplexes of X for p < ¢ will be called the g-skeleton of K, and

will be denoted by K_. Obviously K, < K, , for cach ¢. Also it
should be noted that, if X is a complex of dimension », K will
coincide with K.

Yor example, if K is the complex of Example (3) above, the 1-
skeleton consists of the edges of the cube along with the diagonals
which have been drawn to the faces.

The special importance of simplicial complexes from the point of
view of topology arises from the fact that many of the more important
topological spaces, that is those which arise frequently both in
topology itself and in applications of topology to other branches of
mathematies, ean be proved to be homecmorphic to simplicial
complexes.

DEFINITION 66. A topological space will be said to be tricngulable
if it is homeomorphic to a simplicial eomplex.

It was remarked in anticipation at the beginning of this chapter
that for simplicial complexes the finding of the homology groups
could be reduced to a systematic algebraic procedure. And so,
because of the topological invariance of the homology groups, the
same will be true of the wider class of all triangulable spaces,

12
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Examples. (5) The surface of a sphere is a triangulable space,
because it is homeomorphic to the union of the faces of a tetra-
hedron, which is a simplicial complex. A convenient way to set up
the homeomorphism is to take the centroid of the tetrahedron as the
centre of the sphere and to project the one surface onto the other
from this point. It will be noticed that the images of the individual
faces of the tetrahedron are curvilinear triangles on the sphere.
That is to say, the setting up of this homeomorphism has the effect of

Fica. 33

subdividing the surface of the sphere into a number of curvilincar
triangles. A similar remark can be made in other elementary cases,
and gives an intuitive justification to the term “triangulable”.

It should be noted that when a space is triangulable the homeo-
morphism set up hetween it and some simplicial eomplex is by no
means uniquely determined, For example the surface of a sphero is
also homeomorphic to the complex obtained by adding a diagonal
to each face of a cube.

(6) The surface of & torns is a triangulable space. For the torus 1s
clearly homeomorphic to the square collar illuatrated in Fig. 33, and
the surface of this collar can be divided into triangles to make it
a simplicial complex.

(7} It should be noted on the other hand that there are plenty of
gpaces, even (uite elementary ones, which are not triangulable.
For example, a non-compact space cannot be triangulable in the
present sense, since simplicial complexes, being finite unions of
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simplexes which are compact, are certainly compact. This particular
difficulty can be avoided by extending the notion of simplicial
complex to admit infinite unions of simplexes, an extension which
will not, however, be considered here. But even among compact
spaces it is not hard to find examples which are not triangulable.
For example let £ be the set in the {x, y)-plane consisting of the
union of the eircumferences of eircles of radii 1, 4, 4 . . . all touching
the y-axis at (0,0). This is a closed and bounded set in the plane, and
0, in the indueced topology, % is a compact space. £ is not, however,
triangulable. For, as was scen in Exercise 3, §2, Chapter VIII,
H,(E) has an infinite number of independent generators, whereas it
will be shown in Theorem 54 that the homology groups of a
triangulable space are always finitely generated.

2. The direct sum theorem for complexes

The object of this section is to prove a theorem which will give all
the groups H (K,, K, ,} where A is a simplicial complex, Consider
first an r-dimensional Eaclidean simplex S, and let S denote its
frontier, that is to say the union of the (» — 1)-dimensional faces of 8.
Let ¢ be the centroid or baryeentre of §. Every point p of S other
than ( itself can be specified by naming the point P(p) in which the
gegment Gp from G to p produced meets S along with the ratio
s(p) In which p divides the join of ¢ and P(p). The set IV of points p
of § for which 2{p} > 1 is clearly an open set of § in the topology
induced by the surrounding Iluclidean space, The first thing to be
done i3 to construct a deformation of 5 into itseif which will compress

V into the frontier & of &, and will stretch § — ¥ until it fills the
whole of S.

This construction involves the definition of a mapping of § onto
itself which iz homotopic to the identity., Teo do this, define the
mapping ¥ of § x 1 onto S as follows, using the notation introduced
in. the last paragraph:

(1) F{G, )y =G loralltc f;

(2y fps2Gand pd V, Fip, {) is the point p’ on the line (Fp such
that s(p') = (1 + Ds(p);

{3} f pe ¥V, F(p, t}) s the point on the line Gp such that s{p") =
4 (1 —t)sip).

It is not hard to see that F is continuous, and that the mapping f
defined by setting f(p) = F{p,0) is the identity mapping of S
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onto itseif. Hence if ¢ is defined by setting gip) = F{p, 1), g wili he
a mapping of § onto itself which is homotopie to the identity.

More can be said about the mapping g, however. In the first place,
in the above definition of F, it is clear that s{p") is not less than s(p);
this is obvious in part {2) of the definition of ¥, and equally so in
part (3) if s{p) is written as s(p) + {1 — s(p))- Thus # carries
V x Iinto V. It follows that ¢ is a mapping of the pair (S, V) into
itself which is homotopic to the identity mapping of the paic (S, V)
on itself. (cf. Definition 52.)

In addition, if pe s, s{p) will be equal to 1, and, using part (3} of
the definition of F, F(p,t) = p for all tel. It follows that the
homotopy between f and g satisfies the conditions of Chapter VI,
§5, Exercise 5, and so the following can be stated:

LeEmma a. H S, V) o2 H (Y, H} for all q, this isomorphism being
induced by the inclusion map of (S, f;‘] into (S, V).

Now let W be the set of points p in S such that s{(p) > . Wisalso
an open get in the induced topology on .Y, and the inclusion relations

& c W c ¥V hold, and also the closure of W in § is contained in V.
The Excision Theorem (Thcorem 46) can thercfore be applied to
obtain the result H (S — W,V — W)= H(S, V) for all ¢. Com-
bining this with lemma a the following is proved:

Lemya b, H(S — W,V — Wy H,/(S,8) for all g.

Consider now a simplicial complex K. In each r-simplex 8; of K
construct sets V, and ¥, bearing the same relation to S; as ¥V and W

1t
bore ahove to the simplex S, Define the set I as A, U {U F.),

=1

where it is assumed that there are n r-simplexes in A, K — U
congists of the union of the sets 8, — ¥, and so is a closed set
the topology induced on K, by the surrounding Euclidean space.
Hence {7 is an open set in A "

Similarly, if 7 is defined as K, , v {{JW,), Z will be an open
set in K. ‘-1

Finally & mapping F, may be constructed for each of the
pairs (S,, V,) similar to the F constructed above for the pair
(8, V). Using the F,, define the mapping 7 of K, X I onto K, as
follows:

(1) G{p, t) = F(p, £ if pcS,, one of the r-simplexes of A’

(2) Gip,ly=pitpe kK, ;.
It must be ehecked that this definition does not contradict itself for
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point ¢ Lying in both §; and §;, and hence lying in & face of each and
so in K,_,. Butif p has this property, then both ¥ (p, ) and F (p, 1)
are equal to p; thus the two possible definitions of G{p, {), namely
F.(p,t) and F,(p, 1) coincide, and in addition they agree with the
value of ({p, t) according to the second part of the definition of 7.
Thus there is no contradiction. & is clearly a continuous mapping of
the pair (K_x I, U X I} into (K, U) satistying also the condition
{p,t) = p for pe K,_,. Henee the argument leading to Lemma «
above yields the following:

LemMa e. The inclusion mapping (K, K,_,)— (K, U)induces the
tsomorphism H (K, K, )= H (K, U} for all q.

The following theorem is the main result of this section.

TueoreEM 49. If K is o simplicial complex and 8,,8,, . .., 8, are
the r-dimensional stmplexes of K (or, what is the same thing in view of
the definitions given in §1, the r-dimensional simplexres of K) then
H (K, K, |)is a direct sum SG, where G is isomorphic to H (S, 8,)
under the injecltion homomorphism H (S, S O > (K, K ).

Proor. To bring out as clearly as possible the meaning of this
theorem, the proof will be carried out in terms of relative cycles
representing elcments of H (K, K, ;). To show that & (K K_ )=

EIGt-, it must be shown that each element & of I (K _, K_ ) can be
written as > &, with &, G, and that if > %, = (), with &, 7, for each ¢,
then each %, iz zero. This means that it must be shown first that

every relative ¢-cycle « of K, modulo X__; 1% homologous modulo
K, , to a sum D>« where g, is a relative cycle of §;, modulo 15:’1-;
the last phrase implies that the relative homology class of «; in K,
modulo A__, s in the injection image of H(§,, 5}], that is, in ..
And second, it must be shown that if, for each i, «, is a relative cyele

of §; modulo ;_‘Ea‘i and if > a. is homologous to zere in A modulo K,

then o, is homologous to zero in §; modulo 8, ¢ = 1,2, ..., n.
Suppose then that « is a relative g-eycle of K, modulo K__,.
Since X, ¢ U, o can be regarded as a relative cyele of K_modulo U,
By the Excision Theorem (Theorem 46) the inclusion mapping
(K, — 2, — Z) - (K, U) induces an isomorphism onto of the
corresponding homology groups, which implies that « is homologous
modulo U to a relative cycle 2’ of K. — Z modulo U — Z, That is,
there is a g-chain 8 on U and a (g + 1)-chain v on K, such that

=& + f +— dy. (37)
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But since K, — Z is the union of the disjoint sets S, — W, {1 =1, 2,
..., 1}, & ean be written as Do where . is a relative g-cycle of
S; — W, module V; — W, and (37} becomes

«= Ja; 4+ f 4 dy (38)

Now «, for each 1, is a relative eycle of S; modulo ¥, and so, by
Lemma @ is homologous in S, modulo ¥, to a relative cyc:le o, of §;

modulo S'f. That is, there is a g-chain g, on V;and a (g + 1)-chain y;
on 8, such that o} = &, + f, + dy,. Combined with (38) this gives

x=2u; + § + 2B + dly + 2.7) (39)

£+ S8, is a chain on UV and ¥ ++ >y, is a chain on K; thus (3%)
says that & — D, is homologous to zero in K, modulo U. It then
follows at once from Lemma ¢ that & — >, which iz a relative
eyele of K modulo K__, is homologous to zero in K modulo K,
and this completes the first part of the proof of the present theorem,
» having been shown to be homologous modulo K, _, to >a,, where

a, i8 a relative eycle on §; modulo ;":Jt..
To prove the second part of the theorem, let o, be a relative eycle

of 8, modulo f;’t., i=1,2,...,n, and suppose that Da, is homo-
logous to zero in K, modulo K__,. «; can be regarded as a relative
eycle of 8; module V, and so, by the Excision Theorem, «, is homo-
logous meodulo ¥, to a relative cycle 0, of §; — W, modulo V; — W..
It is clear from the definitions of U7 and Z that >, is a relative cycle
of K,— Z modulo U — Z and that Y«, and >0, are homologous in K
modulo I7. Since Y, has been assumed homologous to zero in K,
modulo K__, it is also homologous to zero in K, modulo I/, and so
>0, is homologous to zero in K, module U. Hence, by the excision
Theorem, >6,, which has been remarked to be a relative cycle of
K, — Z modulo U — Z, is homologous to zero in K, — Z modulo
[/ — Z. Butsince K, — Zis the union of the disjoint sets V, — W, it
follows from this that ¢, is homologous to zero in S; — W, modulo
V,— W, for each i. But this implies at once that 6; is homologous
to zero in 8, modulo V,; and since ), and «, are homologous in 8,
modulo V,, «. is therefore homologous to zero in §; modulo ¥,
Finally, by Lemma g, «,, heing homologous to zero in §8; modulo F,,

iz also hemologous te zero in 8, modulo Si This holds for each 7, and
so the second part of the theorem is proved.
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CororLLARY 1, It is a simple consequence of the above theorem,
combined with Theorem 48 and the fact that 4 Euclidean r-simplex
is a closed r-cell and its frontier an {r — 1)-sphere (Chapter V, §2,
Exercise 3), that H (K K , ;) is zero for ¢ 7= r (r 22 1) while H (K
K__,) is a finitely generated free abelian group, the generators being the
smages of those of the groups H_(S,, S.,i}, 1 =12,...,n, under
wnjection.

CoROLLARY 2. If K is a simplicial complex of dimension n, H(K) =
0 for all g > n.

Proor. Since the dimension of K is », K, is here equal to K.
Let ¢ = » and consider the following exaet sequencc for any r
such that 1 = # = n:

—> H(K,_,) — H(K,) > H(K,. K,_,)—>.
The third term appearing is zero by Corellary 1, since ¢ > # and
hence g # r. And so the homomorphism ¢ is onte. This holds for
each r from 1 to » and so the injection homomorphism H (K ) —
H,(K) is onto. HJK,) is certainly zero, and so the corollary is
proved.

3. A generator for H,(S, §)

The object of this section is to find explicitly a generator for a
group of the form H (S, f;'}, where S is an r-dimensional Euclidean
simplex and S is the union of its faces. Such a group has already
been shown to be infinite cyelic by Theorem 4%, sinee S 18 an #- cell,
and in the remarks following that theorem an indication was given
of a method of identifying & gencerator. This identification will now
be carried out in detail by means of the following theorem:

THREOREM 50. Let S be an r-dimensional Euclidean simplex and
A, as usual the standard Euclidean r-simplex. Then the singular
ﬂmpfﬂr dfﬁned by any linear mepping of A, onto 8 is a relative cycle of

8 modulo S and represents a generator of H,(S, 8).

Proor. If r = 1, § is simply a line segment, and 8 consists of its
end points. In this case the theorem has already been proved in the
form of Example (1), §2, Chapter VIII. The general result will now be
proved by induction, assuming it to be trne for a simplex
of dimension » — 1.

Pick a linear mapping of A, onto 8, and then name the vertices of
S in such a way that this mapping is represented by the symbol
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(#oy - - - %) {Definition ‘38} Let S, denote the face of & whose
s Yo S denoting the frontier of 5,. By thoe
. ¥,) represents a generator of the

vertices are ¥4, ¥, - .
induction h}-’PUtllEHiE, {ylyﬂ.

group H__ {5, 8,).

r

The boundary of (yeyy ... %) 18 2(—1)V{yeyy .. % ... %) and

{=0

this can be written as (y,#,...4,) + v where (g9, ...¥%,) 15 a

chain on 8, while y is a chain on the closure of 8§ — 8. 1 18 not

hard to see that there is a homeomorphism of § onto the (r — 1)-
r

sphere S™! with the equation 27 =1 in Euclidean r-space,

4l
carrving &, onto the set x, > —e&, for some positive ¢ less than 1, and

carrying the remaining faces of § onto the set v, < —e¢ (ef, Chapter V,
§2, Exercise 4). It follows at once from tle second note following
Theorem 48, that diyy, . .

) represents a generator of H, (S, S,)-

. 4,) represents a generator of H__ (S)if
and only if {y,4.... .
It has alrcady been noted that, by the induction hypothesis, this
condition holds. Hence d{yy, . .
H. l{é}, And from this along with the first note following Theorem

. ¥,) rcepresents a generator of

43, it follows that (yg%, . . - ) represents a generator of (S, 1‘;’),

and so the proof by induction is completed.

At first sight it looks as if this theorem gives a choice of (r 4 1) !
gencrators for H (S, S ), since there are (r — 1)! distinet linear
mappings of A, onto 8. But H (9, ), being an infinite evcelic group,
should have a choice of just two generators, each obtained from
the other by change of sign. The (r 4- 1)1 linear mappings of
A, onto § must thercfore be divided into two classes corresponding
to the two possible generators of H_ (S, S’}. The clue as to how
this division iz carried out will be obtained by looking at the cases
r=1and r= 2.

For r = 1 the situation is clear enough; for in this case (r =- 1)1 = 2
and the two generators of (4, LE‘J-T} correspond to the two directions
along the segment 8. To sco this in detail let y, and ¥, be the end
points of § Then (ya) and (yy,) are linear mappings of A; onto
S, mapping A, in the two opposite directions along N, If ¢ and g
are the relative homology classes in § modulo S of (11} and {ywo)
then, since d{ygy,) = ¥; — ¥o = —A{¥ %), Ox = — 83, where ¢

—

" o ST
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is the boundary homomorphism of H, (S, ;S:] into H “[fj;}. But it
appeared in Example (1), §2, Chapter VIII that ¢ is, in this case, an
isomorphism, and so a == ---#. 1t has thus been shown that {y,y,)
and (¥4, Trepresent the twe oppositely signed pgenerators of
H(S, S,

If r = 2, 8 is a triangle with vertices y,, ¥, ¥4, and there are six
linear mapypings of A, onto 8, namely the six singular simplexes
(v ,97), where ¢, §, & is one of the six permutations of the suffixes
0, 1, 2. Consider firat two of these singular simplexcs, say (yo¥ 142}

and (#,%.1,), and let their relative homology elasses in 8 modulo S be
a and 3. By the definition of the boundary operator

Uyehfe) = (Yiy2) — (Yolra) + Watn) } (39)

and d(y1yao) = Wae) — (W) + (1Y)

In order to test whether « is equal to § or to —§, it will be sufficient
to test whether the difference or the sum of diy,y,y.) and d{y,y,¥,) is

homologous to zero in 8, since, as seen in Exﬂmplc (3}, §2, Chapter

VIII, the boundary homomorphism @ of f,(S, Sjl inte H 1{5’} 18 in
this case an isomorphism. It will now be shown, in faet, that

d{yo1ye) — A ¥y, 18 homologons to zero in S.
To do this, note that, by subtracting the equations (39}

(Yo%) — Aol = (v} -1 (Fwe) — [lyews) + (Wayp)]. (40}

But d{yﬂ_yl} = i1 — Yo = —d{yy), whenee (yoy) -+ (y17,) 15 a
cycle on 8. Infact it iz a cycle on the segment joining g, and ¥, and
50 18 homologous to zero in that segment, and so homologous to zero

in S, Similarly (#.4,) + (#,8,) 18 2 cyele homologous to zero on 8.
Combining these two facts it follows from {40) that

iy, %) — A(y, Y%} 18 homologous to zero in 8, and so, by the
definition of the boundary homomorphism, 8x = 85. As has just
been pointed out, ¢ is an isomorphism, and so @ = 8.

In 4 similar manner it can be shown that (y,y,y,) i3 a relative
eyvele of 8 modulo S representing o, while {¥.9.9), (¥:%:1%0)s (Y10 e¥a)
all represent —x.

It will be noticed at once that in this case the representatives of o
and —eq fall into classes which correspond to the even and odd
permutations of the suffixes 0, 1, 2. I other words, (y,4,1,.) represents
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the same generator of Hy(S, 8) as (ygy,¥,) if ¢, 4, k 1s an even per-
mutation of 0, I, 2 and the oppositely signed generator if the
permutation is odd. This will now be shown to be true in general for
any value of r; it is of course trivially true in the case r =1 already
treated above, for in that case there are just two permutations of the
suffixes of ¥, and y;, one odd and one even, and it was shown that

(yoy,) and (#,¥,) represent oppositely signed generators of H,( S, 8,
TAREOREM 51. Let S be an r-dimensional Euclidean stinplex with ver-

1508 Yo, Yy v+ o+ Yo Then LS, S‘) has a generator x represented by the
singular simplex {4,y . . . ¥,). *1s also represented by +(y; ¥, .. Y )
where g, 1y, .+ .+, 8, 18 & permutation of 0,1,2,...,r, and the sign
taken is + or — according as this permutation is even or odd.
Proo¥. The first part of the theorem, namely that a generator of

H (S, é} can be represented by (¥, - - - ¥,)has already been proved
in Theorem 50. The rest of the theorem will be proved by induction;
it is known to be true for r = 1 and 7 == 2, s0 thig gives a starting
point for the induction,

Now it is clear, that in order to prove this theorem for amy
permutation ¢y, ¢y, ..., % of the suffixes 0,1,2, ..., it will be
sufficient to prove it for a permutation which is an interchange of
just two suffixes, since any permutation can be broken down into a
sequence of interchanges, the parity of the permutation depending
only on the parity of the number of interchanges in this scquence.
To avoid complications of notation the result will actually be
proved how in the easc of the interchange of the suffixes {4 and 1,
the proof for any other pair of suffixes would follow exactly the
same lines,

Explicitly, what has to be shown is that, if « is represented by
(Yo¥1 « - - ¥,). then it is also represented by —(#,¥#o¥z - - - y,.), where 1n.
the two brackets all the g, are in the same order except the first two,
which are interchanged. Imitating the procedure illustrated above
in the particular case r = 2, consider the two boundary formulae

Aot Ye - - - Up) = (Yo - - - ¥r) ~— (¥~ - U
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The first two terms in both right hand sides are the same, but
oppositely signed, while in the remaining summadions the corre-
sponding terms differ only in the order of y, and y,. Adding these

two formulae gives

d{yot1¥s - - - Y} + Yol - - ¥,)

¥

=2 (=1 llyayr - YooY o Yoy (4]
=

(Yt - - 45+ - - %) and (Yoo - - . ¥ - - - ¥,) are singular simplexes on
the i-th face S; of 8, and in fact are relative cycles of §; modulo S,
which, assuming as induction hypothesis that the present theorem
is true for Euclidean simplexes of dimension r -- 1, represent

oppositely signed generators of H__ (S, Si}. That is to say,

o, Ay

{(Yo¥r -+ - Y- Ydand —{gyo. . Y. W)

are homologous in 8, modulo 8 ., which means that there is an
(r — 1}-chain 8, on S; and an r-chain y, on 8, such that
(1Y oy Yoo %)+ W0 - Heo 9] =B + dys.
An equation like this holds for each ¢ from 2 up to », and, combined
with (41) thesc equations give
T r
HyoyYe - ¥ + Ay . ¥ = 2 B A 2 v (42)

gz f=4
If the boundary operator d is applied to this equation, it turns out
4 #
that d{ > 8,) = 0; thatis to say, > f;is a cycle. Moreover, by the
i=2

i=2
definition of the j,, it is a cycle on the union of the {r — 2).dimen-
gsional faces of 8. In other words it is an (r — 1}-eycle on an (r — 2)-
dimensional simplicial complex, and so is homologous to zero in that

,

complex (Theorem 49, Corollary 2). > 8, is therefore certainly
=2

homologous to zero in 8. It must be noted carefully that, although

every term in equation {42) except > f#, appears explicitly as a
i=2
boundary, this implies only that it is homologous to zero in 8,

which ia trivial; it is not trivial, and requires the argument just

¥ .
carried out, to see that > 8, is actually homologous to zero in 8.
i=2
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,
Equation {42), along with the facts that > fi; is homologous to

e

. r .
zero on & and that 5 v, is a chain on 8, shows that

Ay Yo - Yy) T+ d(ylyﬂy; .. ¢,) 13 homologous to zero on 8. Lot

# be the relative homology class of (%% - - .4,) in S modulo 5,
o being that of (yg¥,¥s - - - ¥,). and let @ be the boundary homo-
morphism of H,(S,5) into H,. ,(S). Then it follows that d(x + ) =0.
But it appearcd in the proof of Theorem 43 (remiembering that the
pairs (S, 8) and (ET, 8§1) are homeomorphic) that 2 is here an
isomorphism, and 30 it follows that « = —f, in other words that
(414oYs - - - ¥,) represents —u, as was to be shown.,

4. The homology groups of a simplicial complex

The main results on the homalogy groups of simplicial complexes
will be obtained in the theorems of this section. Throughout the
section, K will denote a given simplicial complex of dimension #.

The first thing to do is to combine Theorems 49 and 51. It follows
from these that the gencrators of H (K, K, _ ;) are obtained by
choosing for each r-dimensional simplex §; of K an order of vertices;
this fixes, for each 1, a lincar mapping of A_onto S;, thatis to say a
singular simplex ¢; on K, which is in fact a relative cyele of K|
modulo K,_, whose relative homology class g, in K, modulo K__; 15
the image under the injection HJ{S.5,)— Hi(K, K,;) of &
generator of H (S, :551-}; d, is therefore a generator of H{K,, K, 1},
and a gencrator is obtained in this way for each t. The same
gencrator &, is obtained if the selected order of vertices in S, is
changed by an even permutation, while the generator —@&, 18
obtained if an odd permutation is used.

Derrxrrion 67, Fach generator of H(K,, K, ;) is called an
orienled r-simplex of K.

Clearly there are two oppositely signed oriented r-simplexes of K
corresponding to each r-simplex of X in the sense of the Definition 64,
It should bhe noted that an oriented simplex is actually a relative
homology elass; the justification for calling it a simplex is that it is
fully specified by the naming of a simplex of K, along with an order
for its vertices. The adjective “oriented” is used here because, in
dimensions 1, 2, 3 the choice of an criented simplex corresponding to
a simplex of K is equivalent to the geometrical process of assigning
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an orientation to the simiplex in question; hefore procceding to the
algebraic theorems this geometrical process will be described in
detail.

If § is a 1-simplex of K with vertices y, and g; the two oriented
simplexes associated with S are represented by the singular simplexes
(o4} and (yy,). In order to specity the oriented simplex one
wants it 13 enough to mark by an arrow one of the two directions
along 8. Thus orientation here is simply a matter of naming direction.

If & a 2-simplex, with vertices ¥, ¥, ¥, it has already been
seen that one of the oriented simplexes corresponding to 5 18
represented by (ygf=), (#Watfo). ©oF (Yaygyy) while the other is
represented by (yost)s Ws¥i%a), OF (¥y¥e¥s). Now it will be noticed.
if a. diagram is drawn, that in one of these sets of three singular sim-
plexes the vertices are always named in clockwise order round the tri-
angle §, and in the other set of three they are named in anti-clockwise
order. Thus the geometrical process of orienting a triangle consists
in marking a direction of rotation round the triangle.

Finally, let S be a tetrahedron with vertices ¥, #1, ¥o, %3 TO any
order y,, y;, ¥, i, of these vertices a sense of rotation can be assigned
as follows., One shounld imagine that cne is standing at the vertex y,
looking at the opposite face. If, from this point of view, ¥;, ¥, ¥,
appear in clockwise order the sense of rotation will be called right
handed, otherwise left handed. If, now, all 24 orders of the vertices
are tested for right or left handedness (a diagram with the vertices
named should be used for this) it will be found that the orders which
have the same sensc of rotation as g, ¥, ¥ ¥ are all even per-
mutations of this order and those giving the opposite scnse are odd
permutations, But by Theorem 51 the choice of an oriented simplex
corresponding to S is made by picking one of the classes of per-
mutations of the order %,, ¥, ¥s, ¥3 and so here the geometrical
process of orientation consists in fixing a sense of rotation for 8.

In general, in the case of an r-simplex of K, there is, of course, no
intuitive geometrical ides attached to the choice of an oriented
simplex corresponding to §. Nevertheless it is sometimes convenient
to use geometrical language, and speak of the choice of such an
oriented simplex as orienting 8, or giving § an orientation. Thus to
orient or give an orientation to a 1-, 2-, or 3-simplex means to pick a
direction, direction of rotation or sense of rotation, respectively, as
described above.

Returning now to the main argument, the object 1s to show that
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the homology groups of K can be worked out in terms of the oriented
simplexes of K. The first step will be to show that an r-cycle on K is
always homologous to a cycle on K,. The idea is illustrated by the
Fig. 34 where the curve a represents a i-eycle on a 2-dimensional
complex. If the part of « in any onc triangle is considered, the
diagram suggests that it may be pushed, as indicated by the arrows,
into the sides of that triangle. If this is done for each triangle
containing part of ¢, this cycle will end up in the 1-skeleton of K.
The proper formulation of the result to be proved is as follows:

TarorEM 52. The injection homomorphism ©:H (R} — H (K) ts

onto for all 7.
Proor. Consider the following exact sequence for g = r:

K, .., K)o H(K) > H (K, ) 2> H(E 1K) (43)

a+1?

H

r+1{

Since ¢ 3= r, r is certainly not equal tog -+ 1. Hence, by Theorem 49,
Corollary 1, H (K, ., K,) is zero. Thus the kernel of j,, and 50 the
image of i, is the whole group H{K,.,). It follows that in the

chain of homomorphisms

H(K) > H(E, ) "> HAK, ) > . = H(K) (44)

r
each of the i, is onto, and so their composition is also onto, If K is 1:_nf
dimension n, K, = K, and so the composition of the ¢, is 1, which 13
therefore onto, as wag to be shown,

It is worth noting now, for future use, that, if ¢ is taken strictly
greater than r in the exact sequence {43), both H_ (K .\, K_) and
H/(K,. ., K,) are zero. Hence theimage of g, which is alro ‘fhe kernel
of i, is zero. It follows that, in the chain of homomorphisms (44},

JIMPLICIAL COMPLEXES 183

all the ¢, for ¢ > r are isomorphisms onto. It follows from this that
the kernel of £, which will be considered later, coineides with that of ¢,.

The next step is to identify H (X,) with asubgroup of H (K., K,_,).

TrEOREM 53. The projection homomorphismj: H (K )— H (K, K, )
18 an wsomorphism (into, nol necessarily ondo).

Expressed geometrically, this means that if an r-cycle on K 1
homologous to zero module X, _,, then it will be homologous to zero
in the ordinary sensc in K,. And this means that the ordinary
homology class of an r-cyele on X, is fully determined by its relative
homology class in K_modulo K,_;. This relative homology elass can
be written as a linear combination, with integral coefficients, of
oriented simplexes on K; and so the theorem about to be proved
implies that the homology class in K, of an r-cyele on A, can be
identified with a linear eombination of oriented simplexes.

Proor oF TrHECREM 53. Consider the exact sequence

s H (K _)-"sH(K)- > H(K, K,_)—>.

K, , is an (r — 1)-dimensicnal simplicial eomplex, and so, by
Corollary 2 of Theorem 49, H (K, _,) ia zero. It follows that the image
of the injection homomaorphism £ is zero; that is to say the kernel of
j is zero, and j is an isomorphism as was to be shown.

The first important result on the homology groups of simplicial
complexes can be derived now:

THEOREM 54. The homology groups of a simplicial complex K are
finitely generaied abelian groups.

ProoF, In Theorem 53, H {K,)has been shown to be isomorphie to
a subgroup of the group H(A,, K_,) which is finitely generated,
by Theorem 49, Corollary 1; it follows that H.(K,) is {initely
generated, But by Theorem 52 the homomorphism ¢/ {K ) —
H{K) is onto, and so H (K) is a quotient group of H{(K,) by one
of its subgroups. Since a quotient group of a finitely generated
group is finitely generated and H, (K,) haa been shown to be finitely
generated, the group H,(X) is finitely generated, as required.

CororLLaRY. The homology groups of any triangulable space are
finitely generaled,

For such s spaco is homeomorphic to a simplicial complex and
the homology groups of homeomorphic spaces are isomorphic.

It may appear at first that the result of Theorem 54 is scarcely
enough to deserve the name of theorem, for, as yet, no indieation is
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given of a method of finding the homology groups of & simplicial
complex. It can be seen, however, after a hit of reflection, that the
purely qualitative statement that these groups are finitely generated
is quite remarkable and surprising in itself. For, if onc remembers
that the homology groups are defined by starting off from the
chain groups, which are generated by all singular simplexes and so are
very far from being finitely generated, there seems to be no reason to
expect that the homology groups of any spacc should be finitely
generated. In fact, 1f a space is not triangulable, therc 18 no
rcason to expect its homology groups to be finitely generated,
and a simple example will suffice to show that they need not be
(Chapter VIII, §2, Exercise 3).

It is worth noting, incidentally, that this is the second ‘“finiteness”
result to have been proved for the homology groups of simplicial
complexes, the first being Corollary 2 to Theorem 49, where it 1s
shown that a simplicial complex has only a finite number of non-zero
homelogy groups.

A consequence of Theorem 54 is that, associated with a triangul-
able space B there are certain numerical topological invariants,
For, H (E), being a finitely generated abelian group, is a direct sum of
cyelic groups, Suppose that there arve p, infinite eyeclic groups, and
finite cyclie groups of orders f,y, fre: -« by Then the integers
P, and £,48,5.. -1, are topological invariants, because they are derived
from the homology groups. p, is called the r-dimensional Detti
number of E, and the product of the ¢,; 18 called the r-dimenstonal
torsion coefficient of E. In particular, for a surface p, 18 the invariant
introduced in Chapter V, §1, in rather an intuitive way, namely
the maximum number of elosed curves along which the surface can he
eut without dividing it into two parts. These curves are, strictly
speaking, 1-cycles, onerepresenting each of the p, generators of H,(E).

5, Oriented chains and cycles

Theorems 52 and 53 of the last section contain most of the
information required to show how the homology groups of an
n-dimensional simplicial complex can be calculated. For Theorem
5% identifies H,(K) with the quotient group of H(K,) with respecet
to a subgroup, while, by Theorem 53, H(K,) is identified with a
subgroup of H,(K,, K, ;). Combining these two statements 1t
follows that H (K) is identified with the quoticnt group of one
subgroup of H{K,, K, ;) with respect to another. 1t remains now
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to work out some sort of algebraic rule by which these two sub-

groups of H (K, K_,) can be characterized. The subgroups

question arc the image of the homomorphism j of Theorem 53,

and the image under j of the kernel of the homomorphism » of

Theorem 52. These two groups will now be examined 1 turn.
(‘onsider first the homology sequence

_— HT[ET] _j'} IIT{K-;*! ﬁrr—]_} _-E-} HT—'I(K'I‘—I) —

4 is the homomorphism of Theorem 53 and g the boundary homo-
morphism. The exactness of this sequence implies that the image of
j is the same as the kernel of ¢. But, by an application of Theorem
53 with  replaced by r — 1, H,_((K,_,} can be identified with a
subgroup of H,_,(K,_;, K,_;). More preecisely, the projection homo-
morphism j*:H,_(K,_)—~H,_,(K,_,;,K,_;)is anisomorphism of the
first group into the sccond. And it follows at once from this that the
kernel of @ is the same as that of the composition 5.8 of §’ and 0.
Hence the image of j is the same as the kernel of the homomorphism
§.9. Now this statement is an improvement on the statement that
the image of j is the kernel of @ from the present point of view
(although the statements are in fact equivalent) because j.0 is a
homomorphism of II (K, K,_,) into H_, (K, ,, K _,), and 5015 &
mapping between groups of the same kind, namely groups generated
by oriented simplexes on K.

Writing & for the homomorphism j;g, the above may be
summed up:

CoMPLEMENT TO TREOREM 53. The image of j i3 the kernel of the
homomorphism 0 H (K, K, _\Y—>H__ (K, ,, K .}

Consider now the kerncl of the homomorphism 2 of Theorem 52.
In the note following the proof of that theorem, it was pointed out
that, in the chain of homoemorphisms

H(K,) > H(K, )2 H(K,_,) —> ... 5% H(K)
all the ¢ except the first are isomorphisms onto. And 2o the kernel
of ¢ coincides with that of ¢. In the exact sequence
5 :
'_}Hr—-i-l{Kr+l* Kr} _}Hr[Kr) i:’"‘F*']r:r'(‘ttf-:"+1:| —>  {13)

the kernel of 7, is the same as the image of ¢. Thus the kernel of ¢
has heen shown to be the image of the boundary homomorphism
B:Hr +1(-Kr+1l Kr} — Ifr{Er}~

It is not, however, the kernel of ¢ itself which is actually wanted,
but rather the image of the kernel of ¢ under the homomorphism

13
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of Theorem 53, and this coincides, by what has just been proved,
with the image under j of the image of ¢ in the sequence (45}
But the image under j of the image of ¢ is precisely the image of the
composed mapping j.8, which is a homomorphism of H, ;; (K, 4, K,),
into H{K,, K,_,), defined in the same way as the homomorphism 4
introduced above, but for dimension r + 1 instead of ». In spite of
this difference of dimension it will be convenient to eall j.¢ by the
same name o as j.@. The following has thercfore been established:

CoMPrL.EMENT To THEOREM 52. The image under 7 (the homo-
morphism of Theorem 53) of the kernel of ¢ (the homomorphism of
Theorem 52) coincides with the image of the homomorphism
O:H, (K, 1, K)— HK, K )

Theorems 52 and 53 can now be connccted together to give the
final result. The two homomorphisms appearing in these theorems
can be represented eonveniently in the following diagram:

H(K, K._)<— H(K)—> H,(K).

Also it is to be understood that, for each value of g, a homomorphism
& is defined as the ecomposition of the boundary homomorphism
0:H(K, K, ,)—H, (K, ,)and the projection homomorphism of
H_ (K, ,)into H _ (K, _;, K, 5}, no mark being attached to o
to distinguish between ditferent dimensions.

Then, since ¢ is onto, H (K} is isomorphie to the quotient group
H (K,)[(kernel of 7). Since j is an isomorphism, the “numerator”
and “denominator’” here may be identificd with their images under .
Combining the Complements to Theorems 52 and 53 with this
statement, the following theorem is proved.

TaEOREM 55. The homology group HA{K) is isomorphic to the
guolient group of the kernel of 8:H (K K, )= H, (K. _,, K,_,)
with respect to the image of §:H, (K, , K)— H (K, K _.)}.

Although this is the final result, it will be very much casier to
apply, as well as easier to remember, when cxpressed in rather a
different way. The clue to a convenient reformulation of Theorem a5
is obtained by noting that its statement bears a marked algebraic
similarity to the statement of the original definition of the homology
eroups of a space. For the starting point of this definition is a sct of
groups, namely the chain groups on K, denoted by U (K), p =
0,1,2,..., and a homomorphism d:C,(K) — C,_,{K) defined for
each p. This homomorphism has the property that the jmage of
d:0 . (K)— O (K) is contained in the kernel of d:C(K) =, _;(X)

nEl
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{this statement means exactly the same as saying that d* = 0), and
H (K) is defined as the quotient group of the kernel of d:C (X)) —
C',_,(K) with respect to the image of &:.C, (K)— C (K}, Now in
the situation described by Theorem 53 there is also a sequence of
groups, namely the groups Jf (K , K _ ;) defined for each value of
#»=0,1,2,...,n, and there is a homomorphism of H (K _, K ;)
into H, (K, ;, K, ,)for cach p, namely §. And Theorem 55 implies
that the image of o:H (K, , K} > H (K, K ;) is contained
in the kernel of S:H (K, K, _|)—H, (K, ,, K ,), and says
that H_(K) is the quotient of the ﬂecﬂnd of these groups with
respect to the first. Some new terminolegy will now be introduced
to draw explicit attention to the algebraic similarity.

DerrxrrIon 68. The group H (K, K,_ ;) wil be called the
oriented chain group of dvmension p on K, and each of its elements wili
be called an oriented p-chain on K. I (K, K ,_;) will be denoted
by € (K).

Note that, while the ordinary chain groups on K are generated by
singular simplexes, the oriented chain groups are generated by
oriented rimplexes on K.

DErmirioN 6. The homomorphism & introduced above will he
called the oriented boundary operator.

DerrxrTioN 70, The kernel of 8:9 (K} — €, _,{K) will be called
the p-dimensional ortenled cycle group of K and cach of its elements
will be called an oriented p-cycle on K. This group will be denoted Ly
Z (K).

DrrinirioN 71. The image of 6:%°, | (K) —> € (/) will be called
the p-dinensional orienfed boundary group of & and each of its elements
will be called an oriented p-boundary of K. This group will be dencted
by % (K).

Theorem 55 can now be reformulated as follows:

THEOREM 56. For a sitmplicial complex K, If (K} 15 isomorphic to

KB (K).

This can be stated in words by saying that, to find the homology
groups of a simplicial complex, one can use, instead of ordinary
chains, eyeles and boundaries, the oriented chains, eyeles and
boundaries. The esscntial algebraic simplification which thisinvolves
is, of eourse, that the oriented chain, eycle and boundary groups are
all finitely generated,

A further useful terminology is provided by the following
definition,




1= ALGERRAIC TOPOLOGY

DEFINITION 72. Two oriented eycles « and f§ are said to Dbe
homologous with respect to § (or just homologous if there iz no danger
of confusion with the other use of this term) if o -- § is an oriented

boundary.

6. The oriented boundary operator

The one flaw in Theorem 56 is that the identification of the groups
# (K) and 4,(K) depends on the use of the oriented boundary
operator, which has so far been defined only in terms of the boundary

o

(s )

——wilf~ .
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homomorphism acting on a group of the form A K, K, ), and
mapping it into H, ;(X,_,). Thusit wouldappear that the action of 0
could not be known without knowledge of these groups. In this case,
Theorem 56 would certainly not vield the promised straightforward
algebraic method of finding homology groups. It will now be shown,
however, that the action of 8 can be described in quite a different
way, which depends only on the knowledge of the simplexes of the
complex K along with the choice of an orientation on each of them.

Let K then be a given simplicial complex, and let an orientation be
given to each simplex of K; these orientations can be chosen in a
quite arbitrary manner. For example Fig. 35 shows a 2-dimensional
simplicial complex with all its simplexes oriented; the l.gimplexes are
oriented by marking a directional arrow on them and the 2-simplexes
by a cireular arrow to show direction of rotation. Tt will be remem-
hered that, in the general case, the choice of crientation of an +-
simplex can be made by specifying an order for its vertices, an order
which ean always by changed by an cven permutation without
changing the orientation.

Let S be an r-dimensional simplex of K, and let ¢ denote the
oriented simplex on K corresponding to S along with the orientation
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which has been chosen for 8. That is to say, suppose that the
vertices of S are named in such a way that the orientation of § is
defined by tho order y,, ¥y, . - -, ¥,; then ¢ is the relutive homology
class in K, modulo K, , represented by the singular simplex
(Yofy - - - ¥,). Also let Ty, 4"y, ..., T, be the faces of S, T being
that opposite y,, and let ,{ = 0, 1, 2, . . ., r) be the oriented simplex
on K corresponding to 7', along with the orientation which has been
chosen for T,. The object of this section is fo express dg n terms
of the =,.

In the first place, the relative homology class @ can be represented
by (¥g¥¥y . - - ¥,), which is a relative cycle of K, modulo K,_,, and
s0, by the definition of the boundary homomorphism ¢, do can be

r
represented by the cyele >(—1)Y{yy; - - - Y,..-4) 0 is obtained
i=0

from & by composing it with the prejection homomorphism of
H (K, ,)into H, (K, K, _,),andso do can also be represented

:
by S(—=1)(oyy - - ¥i--- %) But (weys ... ¥, -y, is a singular
z=1

simplex defined by a linear mapping of A, _, onto T, and so it
T
represents +7,. Thus do = > -{: 7,. It still remains to determine
is 0

the signs in this expression.

The signs in the formula just obtained will be found with the aid of
the following definition,

PrermnirioN 73. Using the notations already introduced in this
section, let an even permutation be performed on ¥, 4y, - .., %, In
such a way that %, comes into first place. This can be done, for

example, by first interchanging ¥, and y,, and then interchanging any

two OF 4y, %9y -+« 5 Yoo » + - » ¥y, Where 3, s in the ¢th place. The order
iu which ¢y, %5, ..., % .-, ¥, appear after this rearrangement

defines an orientation on T, which will be called the orientation
induced on T, by the given ortentation on S.

Examples. (1) In Fig. 36 the triangle is oriented in the anti-
cloekwise direction, corresponding to the order ¥, ¥y, ¥, of vertices.
Aceording to the above definition the orientation induced on the side
opposite g, corresponds to the order y,, y,. The order gy, ¥,, %515 an
even permutation of g, ¥, #,. and so the orientation induced in the
side opposite ¥, is represented by the order y,, y,; and similarly the
orientation induced in the side opposite ¥, corresponds to the order
Yg, ¥y It will be noticed that the arrows marking the directions
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corresponding to the induced orientations on the sides all run in the
anti-clockwise direction, thus agreeing with the anti-clockwise
orientation of the triangle.

(2) From the definition of right- and left-handed senses of rotation
in a tetrahedron it follows at once that the orientation induced in
each face of a right-handedly oriented tetrahedron will appear as the

Y2

U

Yo

IFred, 36

clockwise direction of rotation when viewed from the opposite
vertex.

Now it has already been found that éo, which is a relative homology
class in K, ; modulo K,_,, is represented by the cycle

ot

_E:i]—li*'{yﬂyl Y )
On the other hand the order 3, %g ¥y, - --» 0., ¥, of ver-
tices of & is obtained from the natural order by ¢ interchanges,
and so by an even or odd permutation aceording as i is even or odd.
It follows that the order Yy %gs.--»> ¥ .., Y, Tepresents the
induced orientation of T, or the orientation opposite to the inducel
one aecording as i is even or odd. That is to say, the singular simplex
(Yolfy - §s - - - Yy) Tepresents an oriented simplex on K which
corresponds to 7', with the induced orientation if ¢ is even and with
the opposite orientation if ¢ is odd. And this means that, for each i,
(—1) oYy - -5 Y, represcnts the oriented simplex corre-
sponding to T';with the induced orientation. It follows that do, being

,

represented by S(—Dyoyy - - - ¥ - - - ), 18 the sum of the oriented
i=0

simplexes on K corresponding to the (r — 1)-dimensional faces of N

with their induced orientations.
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Finally the oriented simplex on K corresponding to 7'; in its
induced orientation will be 4+, or —r, according as this induced
orientation does or does not agree with the orientafion givenon T'.
The rule for finding can thus be expressed as follows:

TrEOREM 57. If an r-simplex S in a simplicial complex K and all
is (r — 1)-dimensional faces Ty, Ty, ..., T, are oriented in an
arbitrary way oand if 6 and 714 74, ..., T, Gre the corresponding

r

ortented simplexes on K, then o = 3 +7,, where 7,18 given a 4 or —
i=0
sign according as the orteniation given on T agrees or does nol agree
with that tnduced on T, by the ortentation of 5.
This theorem, along with Theorem 56, gives an algebraic rule by
which the homology groups of a simplicial complex, and so also
those of a triangulable space, may be calculated. The procedure will

be illustrated in the following Exercises.

Exercises

1. Let K be a simplicial complex and x an oriented 1-chain on A.
Remembering that orientation for a 1-simplex is speeified by marking
a direction on the corresponding simplex in K, show that the
following condition is nccessary and sufficient for « to be an cricnted
cvele: at each vertex p of K the sum of the coefficients in « of the
1.simplexes oriented towards p is cqual to the sum of the coeflicients
of those oriented away from p.

2. Suppose that in a simplicial complex A two 2-simplexes appear
with a common edge, forming a quadrilateral ABCD with the
diagonal AC. Suppose that an oriented l-cycle o includes an
oriented simplex r corresponding to the diagonal 4C' with non-zero
coefficient. Show that o is homologous with respect to 0 to an

oriented l-cyele in which 7 does not appear.

[Flint: = can be replaced by a suitable linear combination of two sides
of ABCD.]

NotE. The usefulness of this result appears when one is given a
space B made up of quadrilaterals fitted edge to edge. It shows
that, so far as finding H,(E) is concerned, onc does not need to
divide % into triangles by actually marking in the diagonals of these
quadrilaterals, Clearly the result can he gencralized to the situation
where the quadrilaterals are replaced by arbitrary polygons placed
edge to cdge.

3. Let a connected simplicial complex K consist of n triangles
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8,85, ...,8 placed edge to cdge in such a way that every -
dimensional simplex of K is a side of exactly two 2-dimensional
simplexes of K. Prove that there is an oriented 2-cycle on K if and
only if the 5, can be oriented in such a way that for each pair of
adjacent triangles the orientations induced on the common side
are opposite. Prove also that,if this condition holds and if the 5, are
oriented as just deseribed, then every oriented 2-cycle on K 1s a

)
multiple of > a,, where @, is the oriented simplex corresponding to 5.
i—1

n
[Hint: Suppose that thero is an oriented 2-cyele X ¢;0; on K;
i=1

recriont the 8; if necessary to make all the ¢; = 0. If g; and o; corre-
spond to adjacent triangles S; and §; 1 K, then the common side must

ft
canccl out when the boundary of ¥ ¢,0; is formed. Check that for this
i=1

to happen ¢, must be equal to ¢, and the orientations induced on the
common side must be opposite. ]

4. Let K be as in Exercize 3, and let the condition stated there on
the orientations of the S, be satisfied. Prove that H,(K) is infinite
evelie,

Hint: Exercise 3 shows that 2',(K} is infinite eyelie, and #F,(K) is
zero sinco ¥ is of dimension 2.]

NoTEe. 1t can be shown that every compact 2-dimensional manifold
(cf, Chapter VIII, §2, note following Exercise 7) is triangulable.
Also in the resulting eomplex K every l-simplex will be a side of
cxactly two 2-simplexes. If this complex satisfies the orientation
condition of Exercise 3 the manifold is called orientable, otherwise
non-orientable. In the orientable case Ho(K) is infinite cyche
(by Exercise 4), while in the non-orientable case Fo{K) 18 zero
(hy Exercise 3) and so H,(K) is zero. Hence the orientable compact
92.dimensional manifolds are the spheres with handles (Chapter V111,
§2, Exercise 5) and the non-orientable ones are the surlaces of
Chapter VIII, §2, Exeroise 7,

5. Let K be a connected 2-dimensional complex such that every
1-dimensional simplex is a common side of exactly two 2-dimensionat

-
simplexes. Let « == k7, be an criented l-boundary on KX and
i=1

suppose that T, T, .. ., T\ are the 1-dimensional simplexes of X
to which the oriented simplexes 74, 7q, - . ., 7, correspond. Show
that if 8;, 8, . . ., S, arc the 2-simplexes of K and it ¢, 03, . . ., O,
are the corresponding oriented simplexes {with suitable orientations)

SIMPLIQCIAL COMPLEXES 1633

r
and if K — | JT, is connected, then « is the boundary of some

i=1
7
multiple of > a;.
i=1

]
(Hint: Write &« = & % ¢, and orient the §; so that the ¢; are
i=1

all non-negative; then proceed as in Tixercise 3, noting that, by tho

’

connectedness of K — |J T, every sinplex §; can be reached by &
tes]

sequence of simplexes each having & side in common with the next,

starting off from some simplex having one of the ¥'; as a side. ]

6. In the motation of Exercise 3, prove that, if K satisfies the
orientability condition stated in Exercise 3, then an oriented

T r
1-.boundary « = Sk, must be such that | J7,; disconneets A,
i=1

i=1
1 L[]

[Hint: By Exercise 3, x = ¢{d X ¢;), but X a; is an oviented cycle
i=1 i=1

under the orientability condition. |
7. Use the results of the above exercises to caleulate H,(K} where

K is the surface of a torus.

[Hint: A torus is obtaincd from a square by identifying opposite
sides; use the rcmark following Excrcise 2 above to show that the
only 1l-simplexes which need to be considered are those (in a suitablc
triangulation) lying along the Images on the torus of the sides of the
SUATC, ]




GUIDE TO FURTHER READING

TuE following suggestions are designed for the student who has
had in this book his first intreduction to topology and now wishes to
enter more deeply into the subject. Rather than attempt to give an
exhaustive bibliography, it seems more useful for this purpose to
give references of a fairly general character which will, in turn, lead
the reader to the threshold of special topics and research problems.

A. Point-set topology
This part of topology is touched on in Chapters I-11I of this hook.

It consists of the theory of topological spaces subjected to various
conditions {for example compactness, connectedness, ete.) without
the use of algebraic methods (as in homology theory). A full account
of this subject will be found in :

N. Bovurpagl; Topologie Générale (Hermann, Paris},

J. L. KELLEY; General Topology (Van Nostrand, New York).

B. Algebraic topology

The ohject of algebraic topology is the construetion of topological
invariants which are algebraic structures, such as groups or rings.
One example of this is the construction of the homology groups of a
space. But there are stveral other ways of constructing families of
additive abelian groups which are topological invariants, and have
similar properties to those of the homology groups described in
Chapters V-TX, (On locking into the literature of the subject it will
be discovered that the homology groups as constructed in this book
are usually called the singular homelogy groups, te indicate their
dependence on singular simplexes}. The most comprchensive modern
text on this subject 1s:

8. ErLensEre and N. STEENROD; Foundafions of Algebraic
Topology (Princeton University Press).

A further example of a topologically invariant group is the
fundamental group of a space. This iy itself merely the simplest
of & family of groups known as the homotopy groups of a space.
the elements of the groups in general bheing homotopy classcs of
mappings of spheres into the space. For anaccount of this subject see:

P, J. Hiwrox; An Introduction to Homotopy Theory (Cambridge
University Press).
185
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C. Topological algebra

The title of $his section ¢ is not merely intended as a facetious
contrast to that of section B. Topological algebra refers to the
introduction of a topology on a set which already has an algebraic
structure (a group or a ring or a vector space for example) in such a
way that the relevant algebraic operations are continuous. The
resulting structures are then called topological groups or rings or
vector spaces as the case may be. Groups of matrices, such as the
group of all orthogonal magrices of a given order can be treated very
naturally in this way, for their clements can be taken as coordinates
in a Buclidean space; but of course this is a very special case, for it is
not always possible to specify the points of a space by coordinates.
Topological vector spaces arise in a natural way n analysis as
sets of funetions which form vector spaces and on which a topology 18
defined in such a way that some special type of convergence or
continuity can be conveniently studied.

The study of topological groups leads naturally to the study of
spaces on which such groups aet as transformation groups. Among
these spaces are the fibre bundles which play a fundamental role in
modern differential geometry.

Finally, the special case of Lie groups deserves mention; these are
sroups in which coordinate systems can be set up around each point
in such a way that the group operations are expressed in terms of
coordinates by means of differentiable functions. Such groups
form the subject of one of the most important branches of topological
algelira,

The following references should serve to introduce the various
topics mentioned under heading C:

N. BourBakr;, Topologie Générale, Chapter 111 (Hermann, Parns).

N. Borrraki; Espaces Vectoriels Topologiques (Hermann, Paris).

(. CuEvALLEY; Theory of Lie Groups {Princeton University Press).

L. Ponrrracix; Topalogical Groups { Princeton University Press).

N. Sreesrop; The Topology of Fibre Bundles (Princeton
University Press).

A. WeL;, L'Intégration dans les Groupes Topologiques et ses
Applications (Hermann, Paris).
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Mappings {contd.)
linear 101, E02
one-one 2
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180187
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Frism over singular simplex 23 125
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