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Preface to the Third Edition

The first edition of this text was based on lecture notes prepared for a one-
semester undergraduate course given at Smith College. The aim was to
present a simple, thorough survey of elementary topics to students whose
preparation included a calculus sequence in which some attention had been
paid to definitions and proofs of theorems. With this in mind, I have
attempted to resist the temptation to include more topics. There are many
excellent introductory topology texts which are first-year graduate school
level texts and it was not my original intention, nor is it now, to write at that
level.

The main outlines of the text have not been changed. The first chapter is
an informal discussion of set theory. The concept of countability has been
postponed until Chapter 5, where it appears in the context of compactness.

The second chapter is a discussion of metric spaces. The topological
terms “open set,” “neighborhood,” etc., are introduced. Particular attention
is paid to various distance functions which may be defined on Euclidean n-
space and which lead to the ordinary topology.

In taking up topological spaces in Chapter 3, the transition from the
particular to the general has been maintained, so that the concept of
topological space is viewed as a generalization of the concept of metric
space. Thus there is a similarity or, perhaps, a redundancy in the
presentation of these two topics. A great deal of attention has been paid to
alternate procedures for the creation of a topological space, using
neighborhoods, etc., in the hope that this seemingly trivial, but subtle, point
would be clarified.

Chapters 4 and 5 are devoted to a discussion of the two most important
topological properties: connectedness and compactness. Some of this
material could lead to further discussion of topics related to analysis,
function spaces, separation axioms, metrization theorems, to name a few.
On the other hand, material such as homotopy and two-dimensional closed
surfaces could lead to further discussion of topics related to algebraic
topology.

In conclusion, it is a pleasure to express in print my gratitude to those
mathematicians under whom I studied and who helped make this book



possible. In particular I should like to mention Professors C. Chevalley, S.
Eilenberg, I. James, H. Riberio, P. Smith, and E. Thomas.

B. M.



Introduction to Topology



CHAPTER 1

Theory of Sets

1 INTRODUCTION

As in any other branch of mathematics today, topology consists of the study
of collections of objects that possess a mathematical structure. This remark
should not be construed as an attempt to define mathematics, especially
since the phrase “mathematical structure” is itself a vague term. We may,
however, illustrate this point by an example.

The set of positive integers or natural numbers is a collection of objects
N on which there is defined a function s, called the successor function,
satisfying the conditions:

1. For each object x in N, there is one and only one object y in N such that y
= s(x);

2. Given objects x and y in S such that s(x) = s(y), then x = y;
3. There is one and only one object in N, denoted by 1, which is not the

successor of an object in N, i.e., 1 ≠ s(x) for each x in N;
4. Given a collection T of objects in N such that 1 is in T and for each x in

T, s(x) is also in T, then T = N.

The four conditions enumerated above are referred to as Peano’s axioms for
the natural numbers. The fourth condition is called the principle of
mathematical induction. One defines addition of natural numbers in such a
manner that s(x) = x + 1, for each x in N, which explains the use of the word
“successor” for the function s. What is significant at the moment is the
conception of the natural numbers as constituting a certain collection of
objects N with an additional mathematical structure, namely the function s.



We shall describe a topological space in the same terms, that is, a
collection of objects together with a specified structure. A topological space
is a collection of objects (these objects usually being referred to as points),
and a structure that endows this collection of points with some coherence,
in the sense that we may speak of nearby points or points that in some sense
are close together. This structure can be prescribed by means of a collection
of subcollections of points called open sets. As we shall see, the major use
of the concept of a topological space is that it provides us with an exact, yet
exceedingly general setting for discussions that involve the concept of
continuity.

By now the point should have been made that topology, as well as other
branches of mathematics, is concerned with the study of collections of
objects with certain prescribed structures. We therefore begin the study of
topology by first studying collections of objects, or, as we shall call them,
sets.

2 SETS AND SUBSETS

We shall assume that the terms “object,” “set,” and the relation “is a
member of” are familiar concepts. We shall be concerned with using these
concepts in a manner that is in agreement with the ordinary usage of these
terms.

If an object A belongs to a set S we shall write  (read, “A in S”). If
an object A does not belong to a set S we shall write  (read, “A not in
S”). If A1, . . . , An are objects, the set consisting of precisely these objects
will be written {A1, . . . , An}. For purposes of logical precision it is often
necessary to distinguish the set {A}, consisting of precisely one object A,
from the object A itself. Thus  is a true statement, whereas A = {A}
is a false statement. It is also necessary that there be a set that has no
members, the so-called null or empty set. The symbol for this set is Ø.

Let A and B be sets. If for each object , it is true that , we say
that A is a subset of B. In this event, we shall also say that A is contained in
B, which we write , or that B contains A, which we write .

In accordance with the definition of subset, a set A is always a subset of
itself. It is also true that the empty set is a subset of A. These two subsets, A



and Ø, of A are called improper subsets, whereas any other subset is called
a proper subset.

There are certain subsets of the real numbers that are frequently
considered in calculus. For each pair of real numbers a, b with a < b, the set
of all real numbers x such that  is called the closed interval from a
to b and is denoted by [a, b]. Similarly, the set of all real numbers x such
that a < x < b is called the open interval from a to b and is denoted by (a,
b). We thus have , where R is the set of real numbers.

Two sets are identical if they have precisely the same members. Thus, if
A and B are sets, A = B if and only if both  and . Frequent use
is made of this fact in proving the equality of two sets.

Sets may themselves be objects belonging to other sets. For example,
{{1, 3, 5, 7}, {2, 4, 6}} is a set to which there belong two objects, these two
objects being the set of odd positive integers less than 8 and the set of even
positive integers less than 8. If A is any set, there is available as objects with
which to constitute a new set, the collection of subsets of A. In particular,
for each set A, there is a set we denote by 2A whose members are the subsets
of A. Thus, for each set A, we have  if and only if .

EXERCISES

1. Determine whether each of the following statements is true or false:
(a) For each set .
(b) For each set .
(c) For each set .
(d) For each set .
(e) For each set .
(f) There are no members of the set {Ø}.
(g) Let A and B be sets. If , then .
(h) There are two distinct objects that belong to the set {Ø, {Ø}}.

2. Let A, B, C be sets. Prove that if  and , then .
3. Let A1, . . . , An be sets. Prove that if  

and , then A1 = A2 = . . . = An.



3 SET OPERATIONS: UNION, INTERSECTION, AND
COMPLEMENT

If x is an object, A a set, and , we shall say that x is an element,
member, or point of A. Let A and B be sets. The intersection of the sets A
and B is the set whose members are those objects x such that  and 

. The intersection of A and B is denoted by  (read, “A intersect
B”). The union of the sets A and B is the set whose members are those
objects x such that x belongs to at least one of the two sets A, B; that is,
either  or .* The union of A and B is denoted by  (read,
“A union B”).

The operations of set union and set intersection may be represented
pictorially (by Venn diagrams). In Figure 1, let the elements of the set A be
the points in the region shaded by lines running from the lower left-hand
part of the page to the upper right-hand part of the page, and let the
elements of the set B be the points in the region shaded by lines sloping in
the opposite direction. Then the elements of  are the points in either
shaded region and the elements of  are the points in the cross-
hatched region.

Figure 1

Let . The complement of A in S is the set of elements that belong to
S but not to A. The complement of A in S is denoted by Cs(A), S/A, or by S
− A. The set S may be fixed throughout a given discussion, in which case
the complement of A in S may simply be called the complement of A and be
denoted by C(A). C(A) is again a subset of S and one may take its



complement. The complement of the complement of A is A; that is, C(C(A))
= A.

There are many formulas relating the set operations of intersection,
union, and complementation. Frequent use is made of the following two
formulas.

THEOREM (DeMorgan’s Laws). Let , . Then

(3.1)    ,

(3.2)    .
Proof. Suppose . Then  and .

Thus,  and , or  and . Therefore 
 and, consequently,

Conversely, suppose . Then  and 
and . Thus,  and , and therefore .
It follows that  and, consequently,

We have thus shown that

One may prove Formula 3.2 in much the same manner as 3.1
was proved. A shorter proof is obtained if we apply 3.1 to the
two subsets C(A) and C(B) of S, thus

Taking complements again, we have

EXERCISES



1. Let , . Prove the following:
(a)  if and only if .
(b)  if and only if .
(c)  if and only if .
(d)  if and only if .
(e)  if and only if .
(f)  if and only if .

2. Let . Prove the following:
(a) .
(b) .

4 INDEXED FAMILIES OF SETS

Let I be a set. For each , let Aα be a subset of a given set S. We call I
an indexing set and the collection of subsets of S indexed by the elements of
I is called an indexed family of subsets of S. We denote this indexed family
of subsets of S by  (read, “A sub-alpha, alpha in I”).

Let  be an indexed family of subsets of a set S. The union of this
indexed family, written, , (read “union over α in I of Aα”) is the set
of all elements  such that  for at least one index . The
intersection of this indexed family, written  (read “intersection over
α in I of Aα”) is the set of all elements  such that  for each 

. [Note that , for which reason the two
occurrences of “α” in the expression  are referred to as dummy
indices.]

As an example, let A1, A2, A3, A4 be respectively the set of freshmen,
sophomores, juniors, and seniors in some specified college. Here we have I
= {1, 2, 3, 4} as an indexing set, and  is the set of undergraduates
while .

If the indexing set I contains precisely two distinct indices, then the union
over α in I of Aα is the same as the union of two sets as defined in the
previous section; that is,



Similarly,

We have allowed for the possibility that the indexing set I is the empty
set in which case a careful reading of the definition shows that

DeMorgan’s laws are applicable to unions and intersections of indexed
families of subsets of a set S.

THEOREM Let  be an indexed family of subsets of a set S. Then

(4.1)   ,

(4.2)   .
Proof. Suppose . Then ; that is, 

 for each index . Thus  for each index 
 and . Therefore,

Conversely, suppose that . Then  for
each index . Thus  for each index ; that is, 

. Therefore,  and

This proves 4.1. The proof of 4.2 is left as an exercise.

Given any collection of subsets of a set S, the concept of indexed family
of subsets allows us to define the union or intersection of the
aforementioned subsets. We need only construct some convenient indexing
set. In the event that the collection of subsets is finite, the finite set {1, 2, . .
. , n} of integers is a convenient indexing set. Given subsets A1, A2, . . . , An

of S, we shall often write  for 



 and, similarly, 
.

EXERCISES

1. Let  be two indexed families of subsets of a set S. Prove
the following:
(a) For each .
(b) For each .
(c) .
(d) .
(e) If for each  then

(f) Let . Then

2. Let . Then

3. Let  be an indexed family of subsets of a set S. Let . Prove
that
(a) .
(b) .

4. Let  be an indexed family of subsets of a set S. Let . Prove
that
(a)  if and only if for each .
(b)  if and only if for each .

5. Let I be the set of real numbers that are greater than 0. For each , let
Ax be the open interval (0, x). Prove that , . For



each , let Bx be the closed interval [0, x]. Prove that 
.

5 PRODUCTS OF SETS

Let x and y be objects. The ordered pair (x, y)* is a sequence of two
objects, the first object of the sequence being x and the second object of the
sequence being y. Let A and B be sets. The Cartesian product of A and B,
written A × B, (read “A cross B”) is the set whose elements are all the
ordered pairs (x, y) such that  and .

The Cartesian product of two sets is a familiar notion. The coordinate
plane of analytic geometry is the Cartesian product of two lines. The
possible outcomes of the throw of a pair of dice is the Cartesian product of
two sets, A and B, where A = B = {1, 2, 3, 4, 5, 6}. Unless A = B, the two
Cartesian products A × B and B × A are distinct.

A generalization of the Cartesian product of two sets is the direct product
of a sequence of sets. Let A1, A2, . . . , An be a finite sequence of sets,
indexed by {1, 2, . . . , n}. The direct product of A1, A2, . . . , An, written

(read “product i equals one to n of Ai”) is the set consisting of all sequences
(a1, a2, . . . , an) such that  . In particular,

For this reason we shall often write

for .
The concept of direct product may be extended to an infinite sequence

A1, A2, . . . , An, . . . of sets, indexed by the positive integers. The direct



product of A1, A2, . . . , An, . . . , written

or

is the set whose elements are all infinite sequences (a1, a2, . . . , an, . . .)
such that  for each positive integer i.

The set of points of Euclidean n-space yields an example of a direct
product of sets. If for i = 1, 2, . . . , n we have Ai = R, where R is the set of
real numbers, then

is the set of points of a Euclidean n-space. An element  is a sequence
x = (x1, x2, . . . , xn) of real numbers. In general, if the sets A1, A2, . . . , An
are all equal to the same set A, we write

and call an element  an n-tuple.

EXERCISES

1. Let . Prove that

2. Prove that if A has precisely n distinct elements and B has precisely m
distinct elements, where m and n are positive integers, then A × B has
precisely mn distinct elements.



3. Let A and B be sets, both of which have at least two distinct members.
Prove that there is a subset  that is not the Cartesian product
of a subset of A with a subset of B. [Thus, not every subset of a Cartesian
product is the Cartesian product of a pair of subsets.]

6 FUNCTIONS

The most familiar example of a function in mathematics is a
correspondence that associates with each real number x a real number f(x).
The purpose of marking an examination may be described as the
construction of a marking function that makes correspond to each student
taking the examination some integer between zero and one hundred.
Integration of a continuous function defined on some closed interval [a, b]
is another example of a function, namely the correspondence that associates
with each object f in this given set of objects the real number

The concept of function or correspondence need not be restricted to the
realm of numerical quantities. The correspondence that associates with each
undergraduate in college one of the four adjectives freshman, sophomore,
junior, or senior is also an example of a function using correspondence as
an undefined concept.

DEFINITION Let A and B be sets. A correspondence that associates with
each element  a unique element  is called a
function from A to B, which we shall write

or

DEFINITION Let f:A → B. The subset , which consists of all
ordered pairs of the form (a, f(a)) is called the graph of f:A →



B.

The graph Γf of a function f:X → Y is the subset of X × Y consisting of
precisely those points (x, y) for which the statement f(x) = y is true. This set
is sometimes written

This notation, called the set builder notation, is of the general form {z | P(z)
}, where P(z) is some statement which may or may not be true of z. The
resulting set is the set of all z, in an appropriate universe, for which P(z) is
true.

Let A and B be sets. Given a subset Γ of A × B there is a function f:A →
B such that Γ is the graph of f:A → B if, for each , there is one and
only one element of the form .

(Thus the equivalent definition of a function as a subset  with
the aforesaid property is frequently employed, in which case for each 
, the function Γ makes correspond to x the element  such that 

.)

DEFINITION Let f:A → B be given. For each subset X of A, the subset of B
whose elements are the points f(x) such that  is denoted
by f(X). f(X) is called the image of X. For each subset Y of B,
the subset of A whose elements are the points  such that 

 is denoted by f−1(Y). f−1(Y) is called the inverse
image of Y, counter image of Y, or f inverse of Y.

DEFINITION Let f:A → B be given. A is called the domain of f. B is called
the range of f.

EXAMPLE Let f:R → R, R the set of real numbers, be the function such that
for each . If X is the closed interval [1,
2], then f(X) = [−2, 0]. If Z is the open interval (−1, 1), then 

 
 is the set of roots of the

polynomial x2 − x − 2. f−1([−5, −4]) = Ø.



A function f:A → B is also called a mapping or transformation of A into
B. We may think of such a function as carrying each point  into its
corresponding point .

DEFINITION A function f:A → B is called one-one if whenever f(a) = f(a′)
for , then a = a′.

Thus, f:A → B is one-one if for each  there is only one 
such that f(a) = b.

DEFINITION A function f:A → B is called onto if B = f(A).

A one-one function is sometimes called injective and an onto function is
sometimes called surjective. A function which is both one-one and onto is
sometimes called bijective.

DEFINITION A function f:A → B is called a constant function if there is a
point  such that f(x) = b for each .

DEFINITION A function f:A → A is called the identity function (on A) if f(x)
= x for each .

EXERCISES

1. Let f:A → B be given. Prove the following:
(a) For each subset .
(b) For each subset .
(c) If f:A → B is one-one, then for each subset ,

(d) If f:A → B is onto, then for each subset ,



2. Let A = {a1, a2} and B = {b1, b2} be two sets, each having precisely two
distinct elements. Let f:A → B be the constant function such that f(a) =
b1 for each .
(a) Prove that f−1(f({a1})) ≠ {a1}. [Thus it is usually the case that

f−1(f(X)) and X are not equal.]
(b) Prove that f(f−1(B)) ≠ B. [Thus it is usually the case that f(f−1(B)) and

B are not equal.]
(c) Prove that . [Thus it is usually the

case that  are  are not equal.]
3. Let f:A → B be given and let  be an indexed family of subsets of

A. Prove:
(a) .
(b) .
(c) If f:A → B is one-one, then .

4. Let f:A → B be given and let  be an indexed family of subsets of
B. Prove:
(a) .
(b) .
(c) If X is a subset of B then f−1(C(X)) = C(f−1(X)).
(d) If X is a subset of A, and Y is a subset of B, then 

.
5. Let A and B be sets. The correspondence that associates with each

element  the element p1(a, b) = a is a function called the
first projection. The correspondence that associates with each element 

 the element p2(a, b) = b is a function called the second
projection. Prove that if B ≠ Ø, then p1:A × B → A is onto and if A ≠ Ø,
then p2:A × B → A is onto. Under what circumstances is p1 or p2 one-
one? What is  for an element ?

6. Let A and B be sets, with B ≠ Ø. For each  the correspondence that
associates with each element  the element   is a
function. Prove that for each   is one-one. What is 

 for a subset ?
7. Let A be a set and . The function χE:A → {0, 1} defined by 

 if  and  if  is called the characteristic



function of E. Let E and F be subsets of A, show:
(a) ;
(b)  and find a similar expression for .

8. Let A be a set to which there belong precisely n distinct objects. Prove
that there are precisely 2n distinct objects that belong to 2A.

7 RELATIONS

A function may be viewed as a special case of what is called a relation. We
are accustomed to thinking of one object being in a given relation to
another; for example, Jeanne is the sister of Sam or silk purses are more
expensive than sows’ ears. To say that the number 2 is less than the number
3, or 2 < 3, is thus to say that (2, 3) is one of the number pairs (x, y) for
which the relation “less than” is true.

DEFINITION A relation R from the elements of a set A to the elements of a
set B is a subset of A × B. A relation R on a set E is a subset
of E × E.

If , one frequently writes aRb. We wish to
distinguish certain properties that a relation on a set E may or may not have.

DEFINITION A relation R on a set E is called reflexive if aRa is true for all 
. It is called symmetric if, whenever aRb, also bRa. It is

called transitive if, whenever aRb and bRc, then aRc.

Let < be the pairs of real numbers (x, y) such that x < y. Then < is a
transitive relation on the set E of real numbers, but < is not reflexive and
not symmetric. Let R be the pairs of real numbers (x, y) such that |x − y| < 1.
Then R is reflexive and symmetric, but not transitive. Let Λ be the pairs of
real numbers (x, y) such that x − y is an integer. Then Λ is reflexive,
symmetric, and transitive.

DEFINITION A relation R on a set E which is reflexive, symmetric, and
transitive is called an equivalence relation.



DEFINITION Let R be an equivalence relation on a set E. For each , the
equivalence class of a, denoted by π(a), is the subset of E
consisting of all x such that aRx.

Two equivalence classes are either disjoint or identical.

LEMMA Let R be an equivalence relation on a set E and let 
for . Then π(a) = π(b).

Proof. Let . Then aRc and bRc. Suppose 
 so that aRx. cRa by symmetry, so cRx by transitivity.

Another application of transitivity yields bRx, so . Thus 
. Similarly .

By the reflexive property  is always true, so the equivalence
classes are non-empty and disjoint. Let E/R be the set of equivalence
classes, then π:E → E/R is an onto function. E/R is sometimes called the
quotient of E by the relation R, and π is called the projection.

EXERCISES

1. Let P be a subset of the real numbers R such that (i)  (ii) if 
then , and (iii) for each , one and only one of the three
statements, , or  is true. Define 

 and . Prove that Q is a transitive
relation.

2. Let f:X → Y be a function from a set X onto a set Y. Let R be the subset
of X × X consisting of those pairs (x, x′) such that f(x) = f(x′). Prove that
R is an equivalence relation. Let π:X → X/R be the projection. Verify
that, if  is an equivalence class, to define F(α) = f(a), whenever
α = π(a), establishes a well-defined function F:X/R → Y which is one-
one and onto.

3. Let f:X → X be a one-one function of a set X into itself. Define a
sequence of functions f0, f1, f2, . . ., fn, . . .:X → X by letting f0 be the
identity, f1 = f, and inductively fn(x) = f(fn−1(x)). Prove that each of these



functions is one-one. Let R be the subset of X × X consisting of those
pairs (a, b) such that b = fk(a) for some integer k or a = fi(b) for some
integer j. Prove that R is an equivalence relation.

4. Let X be the set of functions from the real numbers into the real numbers
possessing continuous derivatives. Let R be the subset of X × X
consisting of those pairs (f, g) such that Df = Dg where D maps a
function into its derivative. Prove that R is an equivalence relation and
describe an equivalence set π(f).

5. Let E be the set of all functions from a set X into a set Y. Let  and
let R be the subset of E × E consisting of those pairs (f, g) such that f(b)
= g(b). Prove that R is an equivalence relation. Define a one-one onto
function eb:E/R → Y.

8 COMPOSITION OF FUNCTIONS AND DIAGRAMS

DEFINITION Let f:A → B and g:B → C be given. The composition of f:A →
B and g:B → C is the correspondence that associates with
each element , the element . This function is
written .

A function h:A → C is, therefore, the composition of f:A → B and g:B →
C (often abbreviated by writing h = gf) if for each . In
a pictorial representation of these functions, we have h = gf when these
functions behave in the manner indicated in Figure 2.

Figure 2



The concept of the composition of functions can be extended to the
composition of a finite number of functions.

DEFINITION Let f1:A1 → A2, f2:A2 → A3, . . . , fn:An → An+1 be given. The
composition of f1:A1 → A2, f2:A2 → A3, . . . , and fn:An → An+1
is the correspondence that associates with each element 

 the element  . This function is
written

or

Let three functions f:A → B, g:B → C, and h:C → D be given. We may
form hgf:A → D. We may also form gf:A → C and compose this function
with h:C → D to obtain h(gf):A → D. Similarly, we may form (hg)f:A → D.
We thus have three functions hgf, h(gf), (hg)f:A → D. But

Thus, these three functions are the same. This observation provides a basis
for the justification of the removal or replacement of parentheses in
expressions such as (f4f3)(f2f1), etc.

Suppose we are given three functions f:A → B, g:B → C, and k:A → C.
The existence of these three functions may be indicated, as in Figure 3, by
what we shall call a diagram. The letters A, B, C stand for the various sets,
and an arrow leading



Figure 3

from one set to another indicates a function from the first set to the second,
namely, the function that carries each element x of the first set into the
element t(x) of the second set, where t stands for the symbol closest to the
middle of the arrow. The fact that we may form the composition of two
functions (such as gf:A → C in the above diagram) is represented by a path
in the direction of the arrows that goes from one set to a second and from
the second set to a third. (In the above diagram we say, “We may go from A
to B via f and from B to C via g.”)

We shall desire to diagram more complex situations than the one
indicated in Figure 3. Let us say that by a diagram we shall mean a figure
consisting of several symbols denoting sets and arrows leading from one
symbol to another, each arrow leading from a set X to a set Y having an
associated symbol t, the arrow and its symbol representing a given function
t:X → Y. For example, diagram (8.1) indicates the existence of given
functions f:A → B, g:A → C, k:B → D, h:C → D. This diagram shows us

that by composing functions we may obtain two functions from A to D,
namely, kf, hg:A → D. In any diagram, a path from X to Y consisting of a
sequence of arrows leading from X to Y indicates the existence of a function
from X to Y obtained by composing the functions represented by these
arrows in the order of their occurrence, starting at X and terminating at Y.

In diagram (8.1) it may or may not be true that kf = hg. In the event that
kf = hg we will say that diagram (8.1) is commutative. In general, a diagram
is said to be commutative if for each X and Y in the diagram that represent
sets, and for any two paths in the diagram beginning at X and ending at Y,
the two functions from X to Y so represented are equal. For example, the
statement that diagram (8.2) is commutative means that f = jh, k = gj, and
kh = gjh = gf (note that the first two equalities imply the third).



A given set A may occur more than once in a diagram. For example, let A
be the set of positive real numbers and R the set of real numbers. Let f:A →
R be defined by the correspondence , and let g:R → A
be defined by the correspondence . Let i:A → A be the
identity function. Then the diagram (8.3) is commutative, for  

 for .

EXERCISES

1. Using the functions defined by the correspondences g(x) = x2 and 
, construct an example of a commutative diagram

similar to diagram (8.3).
2. Let f:R × R → R be the function defined by the correspondence f(x, y) =

x2 + y2 and let g:R × R → R be the function defined by the
correspondence g(x, y) = x + y. Let h:R → R be the function defined by
the correspondence h(x) = x2. Is the diagram

commutative?
3. Let i:A → A be the identity function. Let the diagram



be commutative. Prove that g:B → A is onto and that f:A → B is one-
one.

4. Let f:A → B, g:B → C. Prove that for  .

9 INVERSE FUNCTIONS, EXTENSIONS, AND RESTRICTIONS

DEFINITION Let f:A → B and g:B → A be given. The function f:A → B is
called the inverse of g:B → A and the function g:B → A is
called the inverse of f:A → B if g(f(a)) = a for each  and
f(g(b)) = b for each .

In this event we shall also say that f:A → B and g:B → A
are inverse functions and that each of them is invertible.

Let iA:A → A and iB:B → B be identity functions. The statement that f:A
→ B and g:B → A are inverse functions is equivalent to the statement that
the two diagrams

are commutative.

THEOREM Let f:A → B and g:B → A be inverse functions, then both
functions are one-one and onto.

Proof. Suppose . Then x = g(f(x)) =
g(f(y)) = y and therefore f is one-one. To show that f is onto, let 

. We have  and f(g(b)) = b, therefore if we set a =



g(b), b = f(a) and f is onto. The roles of the two functions may
be interchanged, since the definition of inverse functions
imposes conditions symmetrical with regard to the two
functions. Therefore, g:B → A is also one-one and onto.

We have shown that, given a function h:X → Y, a necessary condition
that this function be invertible is that the function be one-one and onto. This
condition is also sufficient.

THEOREM Let f:A → B be one-one and onto. Then there exists a function
g:B → A such that these two functions are inverse functions.

Proof. We shall first define g:B → A. Given , we may
write b = f(a) for some  since f is onto. Furthermore, f is
one-one; hence there is only one element  such that f(a) =
b. We define g(b) = a. The correspondence that associates with
each  the element , as defined above, is a function
g:B → A.f(g(b)) = b for each  by the definition of g:B →
A. Given , let a′ = g(f(a)). Then f(a′) = f(g(f(a))) = f(a) by
the remark just made. Since f:A → B is one-one, a = a′ =
g(f(a)). Thus, f:A → B and g:B → A are inverse functions.

The last two theorems may be combined in the statement: given f:A → B,
a necessary and sufficient condition that there be a function g:B → A such
that these two functions are inverse functions is that f:A → B be one-one
and onto. Furthermore, in this event, the function g:B → A is uniquely
determined.

THEOREM Let f:A → B, g:B → A be inverse functions and let f:A → B and
g′:B → A be inverse functions. Then g:B → A and g′:B → A are
equal.

Proof. We must prove that g(b) = g′(b) for each . But b
= f(g(b)) and therefore g′(b) = g′(f(g(b))) = g(b), since g′(f(a)) =
a for each .

The proof of this last theorem may also be viewed as a direct
consequence of the commutativity of the diagram



which yields g′(b) = g′(iB(b)) .= g′(f(g(b))) = iA(g(b)) = g(b).

DEFINITION Let . Let f:A → Y and F:X → Y. If for each 
, we say that F is an extension of f to X or

that f is a restriction of F to A. In this event we shall write f =
F | A.

EXAMPLE Let A be the open interval (0, π/2). For each , let Δθ be a
right triangle one of whose acute angles is θ radians, and let f(θ)
be the ratio of the length of the side of this triangle opposite the
angle of magnitude θ to the length of the hypotenuse of Δθ,
(more familiarly,

Thus f:A → R. For each , let (a, b)θ be the point of the
plane R2 whose distance from the origin is 1 and such that the
rotation about the origin of the line segment whose end points
are the origin and (1, 0) to the position of the line segment
whose end points are the origin and (a, b)θ represents an angle
of magnitude θ radians. Define F(θ) = b. Then F:R → R. F is an
extension of f to R as is easily seen if one recognizes f:A → R as
the sine function defined for acute angles by means of right
triangles and F:R → R as the sine function defined for angles of
arbitrary magnitude by means of the unit circle.

DEFINITION Let . The function i:A → X, which is defined by the
correspondence i(x) = x for each  is called an inclusion
mapping or function.



Let  and F:X → Y. Then F is an extension of f if and
only if the diagram

is commutative, where i:A → X is an inclusion mapping.
Given F:X → Y, there are as many restrictions of F:X → Y as there are

subsets of X. Given a subset , we may obtain the restriction of F to A
by forming the composition of the inclusion mapping i:A → X and F:X →
Y. Thus, we may write F | A = Fi.

EXERCISES

1. Let A be the set of all functions f:[a, b] → R that are continuous on [a,
b]. Let B be the subset of A consisting of all functions possessing a
continuous derivative on [a, b]. Let C be the subset of B consisting of all
functions whose value at a is 0. Let d:B → A be the correspondence that
associates with each function in B its derivative. Is the function d:B → A
invertible?

To each , let h(f) be the function defined by

for . Verify that h:A → C. Find the function g:C → A such that
these two functions are inverse functions.

2. Let R be the real numbers and ∞ an object not in R. Define a set 
. Let a, b, c, d be real numbers. Let f:R* → R* be a

function defined by f(x) = (ax + b)/(cx + d) when x ≠ −d/c, ∞, while
f(−d/c) = ∞ and f(∞) = a/c. [In the event that c = 0, f is linear and f(x) =
(ax + b)/d when x ≠ ∞ and f(∞) = ∞.] Prove that f has an inverse
provided ad − bc ≠ 0.



3. Let . Let f:A → Y, g:B → Y, and F:X → Y. Prove that if g is
an extension of f to B and F is an extension of g to X, then F is an
extension of f to X.

4. Let m, n be positive integers. Let X be a set with m distinct elements and
Y a set with n distinct elements. How many distinct functions are there
from X to Y? Let A be a subset of X with r distinct elements, 0 ≦ r < m
and f:A → Y. How many distinct extensions of f to X are there?

10 ARBITRARY PRODUCTS

Let X1, . . . , Xn be sets. We have defined a point

as an ordered sequence such that . Given such a point, by setting
x(i) = xi we obtain a function x which associates to each integer i, 

, the element . Conversely, given a function x which
associates to each integer , an element , we obtain the
point

It is easily seen that this correspondence between points of  and

functions of the above type is one-one and onto, so that a point of 
may also be defined as a function x which associates to each integer 

, a point . The advantage of this second approach is
that it allows us to define the product of an arbitrary family of sets.

DEFINITION Let {Xα}α∈I be an indexed family of sets. The product of the
sets {Xα}α∈I, written , consists of all functions x with
domain the indexing set I having the property that for each 

.



Given a point , one may refer to x(α) as the αth coordinate of
x. However, unless the indexing set has been ordered in some fashion (as is
the case with finite products in our earlier discussion), there is no first
coordinate, second coordinate, and so on.

DEFINITION Let . The function  defined by
pα(x) = x(α) is called the αth projection.

Clearly two points  are identical if and only if, for each 
, that is, x(α) = x′(α).

In dealing with product spaces use is frequently made of a principle,
called the axiom of choice, whereby we assume that if for each  we
can choose a point , then we may construct a point or function 

 by setting x(α) = xα. This is equivalent to the statement that the
product of non-empty sets is non-empty. Using the axiom of choice we may
prove

PROPOSITION If for each  is non-empty, then each of the projection
maps  is onto.

Proof. Let  be given. Set x(α) = xα. Suppose 
. Since Xβ is non-empty we may choose a point 

. Then  and pα(x) = x(α) = xα, hence pα is
onto.

In the above proof we have obtained a point , that is, a point
whose αth coordinate is xα and whose other coordinates are unrestricted. If 

 then to say that  is to restrict the αth coordinate of x to
lie in B and leave all other coordinates unrestricted.

EXERCISES

1. Let A be a set. For each , let Xα. Verify that  is the set of all
functions from the set I to the set A. This set of functions is denoted by



AI. Suppose A = {0, 1}. If I is finite how many elements are there in AI?
Verify that AI in this case is the set of all characteristic functions defined
on I.

2. Let  be two indexed families of sets with the same
indexing set I. For each . Prove that there is a unique
function  such that pαf = fαpα for each , where
pα is the appropriate projection map. This function f is denoted by 

. Given a third indexed family of sets  and functions gα: Yα
→ Zα for each , show that  . Suppose that
each fα has an inverse kα. Prove that  has the inverse .

3. Let  be an indexed family of sets and let I = I1 ∪ I2, where
I1 ∩ I2 = Ø. Show that there is a one-one mapping of 

 onto . More generally, let  be a
partition of I, that is  for γ1 ≠ γ2, each Iγ ≠ Ø.
Show that there is a one-one mapping of  onto .

4. Let N be the set of positive integers. In the notation of Problem 1, an
infinite sequence x1, x2, . . . of points of a set X may be viewed as an
element . If j:N → N is a function such that j(i) < j(i + 1) for 

, then the infinite sequence xj is a subsequence of the sequence x.
Prove that a subsequence of xj is a subsequence of x.

For further reading, the books by Halmos, Naive Set Theory, and
Kaplansky, Set Theory and Metric Spaces are both excellent sources.

* The logical connective “or” is used in mathematics (and also in logic) in the inclusive sense. Thus,
a compound statement “P or Q” is true in each of the three cases: (1) P true, Q false; (2) P false, Q
true; (3) P true, Q true, whereas “P or Q” is false only if both P and Q are false.
* If x and y are real numbers, the symbol (x, y) is ambiguous, for it may stand for either the ordered
pair whose first element is x and the second y, or for the open interval (x, y). It is hoped that this
ambiguity will be resolved by the context in which the symbol occurs.



CHAPTER 2

Metric Spaces

1 INTRODUCTION

A metric space is a set of points and a prescribed quantitative measure of the
degree of closeness of pairs of points in this space. The real number system
and the coordinate plane of analytic geometry are familiar examples of metric
spaces. Starting from the vague characterization of a continuous function as
one that transforms nearby points into points that are themselves nearby, we
can, in a metric space, formulate a precise definition of continuity. Although
this definition may be stated in the so-called “ε, δ” terminology, there are
other, equivalent formulations available in a metric space. These include
characterizations of continuity in terms of the behavior of a function with
respect to certain subsets called neighborhoods of a point, or with respect to
certain subsets called open sets.

2 METRIC SPACES

Given two real numbers a and b, there is determined a non-negative real
number, |a − b|, called the distance between a and b. Since to each ordered
pair (a, b) of real numbers there is associated the real number |a − b|, we may
write this correspondence in functional notation by setting

Thus we have a function d:R × R → R, where R is the set of real numbers.
This function has four important properties, which the reader should verify:

1.



2. d(x, y) = 0 if and only if x = y;
3. d(x, y) = d(y, x);
4.

for . For the purposes of discussing “continuity” of functions, these
four properties of “distance” are sufficient. This fact suggests the possibility of
examining “continuity” in a more general setting; namely, in terms of any set
of points for which there is defined a “distance function” such as the function
d:R × R → R above.

DEFINITION 2.1 A pair of objects (X, d) consisting of a non-empty set X and a
function d:X × X → R, where R is the set of real numbers, is
called a metric space provided that:

1.

2. d(x, y) = 0 if and only if ;

3. d(x, y) = d(y, x), 

4.

The function d is called a distance function or metric on X
and the set X is called the underlying set.

[A more precise notation for a metric space would be (X, d:X × X → R) and
for a distance function d:X × X → R. We shall, however, frequently delete the
sets and arrow in the symbol for a function, when, in a given context, it is clear
which sets are involved.]

We may think of the distance function d as providing a quantitative measure
of the degree of closeness of two points. In particular, the inequality 

 may be thought of as asserting the transitivity of
closeness; that is, if x is close to y and y is close to z, then x is close to z.

Let  where R is the set of real numbers. The verification that the
function d(a, b) = |a − b| satisfies the four properties enumerated in Definition
2.1 establishes:

THEOREM 2.2 (R, d) is a metric space, where d is the function defined by the
correspondence d(a, b) = |a − b|, for 



Given a finite collection (X1, d1), (X2, d2), … , (Xn, dn) of metric spaces,
there is a standard procedure for converting the set

into a metric space; that is, for defining a distance function on X.

THEOREM 2.3 Let metric spaces (X1, d1), (X2, d2), … , (Xn, dn) be given and
set

For each pair of points 
, let d:X × X → R be the function defined

by the correspondence

Then (X, d) is a metric space.

Proof. With x and y as above,  for , and
therefore . If d(x, y) = 0, then di(xi, yi) = 0 for 
and therefore xi = yi for each i. Consequently, x = y.
Conversely, if x = y, then di(xi, yi) = 0 for each i, and d(x, y) =
0. Since di(xi, yi) = di(yi, xi) for .
Finally, let . Let j and k be integers such
that d(x, y) = dj(xj, yj) and d(y, z) = dk(yk, zk). Thus, for 

, and

As an immediate application of this theorem, we have:



COROLLARY 2.4 (Rn, d) is a metric space, where d:Rn × Rn → R is the function
defined by the correspondence

It is interesting to compare the metric space (R2, d) that we obtain in the
above manner with what might be considered a more natural model of the
coordinate plane. In (R2, d) as defined above, the distance from the point (1, 2)
to the point (3, 1) is 2, since maximum {|1 − 3|, |2 − 1|} = 2. The distance
function d′ used in analytical geometry would yield

If, for each pair of points  we define

then we are constructing a new metric space (R2, d′), (provided, of course, that
d′ is a distance function), which must be distinguished from the metric space
(R2, d) where

For example, in (R2, d) the set M of points x such that  for a fixed
point  is a square of width 2 whose center is at a and whose sides are
parallel to the coordinate axes, whereas in (R2, d′) the set of points x such that 

 for a fixed point  is a circular disc whose center is a and
whose radius is 1 (see Figure 4).

Figure 4



The formula used to define the function d′ may be generalized to yield a
distance function for Rn, often referred to as the Euclidean distance function.

THEOREM 2.5 (Rn, d′) is a metric space, where d′ is the function defined by
the correspondence

The proof of this theorem will be found in Section 8.

The fact that we have metric spaces (Rn, d) and (Rn, d′), with d and d′
defined as above, serves to emphasize the fact that a metric space consists of
two objects, a set and a distance function. Two metric spaces may be distinct
even though the underlying sets of points of the two spaces are the same.

EXERCISES

1. Let (X, d) be a metric space. Let k be a positive real number and set dk(x, y)
= k·d(x, y). Prove that (X, dk) is a metric space.

2. Prove that (Rn, d″) is a metric space, where the function d″ is defined by the
correspondence

for . In (R2, d″) determine
the shape and position of the set of points x such that  for a point 

.

3. Let d be the distance function defined on Rn by using Theorem 2.3, let d′ be
the Euclidean distance function, and let d″ be the distance function defined
in Problem 2 above. Prove that for each pair of points ,



4. Let X be the set of all continuous functions f:[a, b] → R. For f, ,
define

Using appropriate theorems from Calculus, prove that (X, d) is a metric
space.

5. Let . A function f:S → R is called bounded if there is a real number K
such that  (or equivalently,  Let X′ be the set
of all bounded functions f:[a, b] → R. For f,  define

(l.u.b. is an abbreviation of least upper bound, see Definition 5.5 of this
chapter). Prove that (X′, d′) is a metric space.

6. Let f, g:[a, b] → R be two functions that are both continuous and bounded.
Compare d(f, g) and d′(f, g), where d and d′ are defined as in Problems 4
and 5 respectively.

7. Let X be a set. For x,  define the function d by

and

if x ≠ y. Prove that (X, d) is a metric space.
8. Let Z be the set of integers. Let p be a positive prime integer. Given distinct

integers m, n there is a unique integer t = t(m, n) such that m − n = pt·k,
where k is an integer not divisible by p. Define a function d:Z × Z → R by
the correspondence d(m, m) = 0 and

for m ≠ n. Prove that (Z, d) is a metric space. [Hint: for a, b, 
 Let p = 3. What is the set of elements 

 such that d(0, x) < 1? What is the set of elements  such that d(0,
x) < ?



3 CONTINUITY

In calculus, the first occurrence of the word “continuity” is with reference to a
function f:R → R, R the set of real numbers. To decide which condition or
conditions this function must satisfy for us to say, “the function f is continuous
at a point ,” we try to decide upon a precise formulation of the statement
“a number f(x) will be close to the number f(a) whenever the number x is close
to a.” Having defined a distance function for the real numbers R, we have a
quantitative measure of the degree of closeness of two numbers. But how close
must f(x) be to f(a)? Instead of specifying some particular degree of closeness
of f(x) to f(a), let us think, rather, of requiring that no matter what choice is
made for the degree of closeness of f(x) to f(a), it can be so arranged that this
degree of closeness is achieved. By the phrase “arrange matters” we mean that
we can find a corresponding degree of closeness so that whenever x is within
this corresponding degree of closeness to a, then f(x) is within the prescribed
degree of closeness to f(a). We have now arrived at the following formulation,
“the function f:R → R is continuous at the number , if given a prescribed
degree of closeness, f(x) will be within this prescribed degree of closeness to
f(a), whenever x is within some corresponding degree of closeness to a.” To
put this statement in its final form, we shall substitute for “a prescribed degree
of closeness” the symbol “ε,“ and for the phrase “some corresponding degree
of closeness” the symbol “δ,“ and use the distance function to measure the
degree of closeness.

DEFINITION 3.1 Let f:R → R. The function f is said to be continuous at the
point , if given ε > 0, there is a δ > 0, such that

whenever

The function f is said to be continuous if it is continuous at
each point of R.

Because we initially formulated the definition of continuity in terms of the
phrase “degree of closeness,” we may easily devise a definition of “continuity”



applicable to metric spaces in general, since we need only use the distance
functions of these metric spaces to measure “degree of closeness.”

DEFINITION  3.2 Let (X, d) and (Y, d′) be metric spaces, and let  A
function f:X → Y is said to be continuous at the point 
if given ε > 0, there is a δ > 0, such that

whenever  and

The function f:X → Y is said to be continuous if it is
continuous at each point of X.

Definitions, such as those given above, are created to serve two purposes.
First of all, they are abbreviations. Thus, the statement that begins, “given ε >
0, there is … ,” is replaced by the shorter statement, “f:X → Y is continuous at
the point .” Second, these definitions are attempts to formulate precise
characterizations of what we feel are significant properties; in this case, the
property of being continuous at a point. We have tried to indicate in the
discussion preceding these definitions that they do provide a precise
characterization of our intuitive, and perhaps vague, concept of continuity.
There are, in a certain sense, tests that we may apply to see whether or not they
do so. As an illustration, there are certain functions that we “know” are
“continuous,” that is, we are sure that they possess this property we are trying
to characterize. If it should turn out that a function we “know” to be
“continuous” is not continuous in accordance with these definitions, then,
although these definitions may be precise, they would not furnish a precise
characterization of the property we have in mind when we say a function is
“continuous.” This type of testing of a definition thus takes the form of
proving theorems to the effect that certain functions are continuous. For
example:

THEOREM  3.3 Let (X, d) and (Y, d′) be metric spaces. Let f:X → Y be a
constant function, then f is continuous.



Proof. Let a point  and ε > 0 be given. Choose any δ
> 0, say δ = 1. Then whenever d(x, a) < δ, we have d′(f(x), f(a))
= 0 < ε.

THEOREM 3.4 Let (X, d) be a metric space. Then the identity function i:X → X
is continuous.

Proof. Suppose  Let ε > 0 be given. Choose δ = ε,
then whenever d(x, a) < δ we have d(i(x), i(a)) = d(x, a) < ε.

Note that in the above proof we could have equally well chosen δ to be any
positive number, provided only that  and the proof would still be valid.
The choice of δ need not be a very efficient choice; all that is required is that it
“do the job.”

There is one situation we shall have to consider for which the notation f:X
→ Y that we have adopted for a function from a metric space (X, d) into a
metric space (Y, d′) is ambiguous. Consider metric spaces (X, d) and (X, d′)
with the same underlying set. If we simply write f:X → X for a function, it is
impossible to tell which metric space is denoted by the first occurrence of X
and which by the second. For this reason, when considering one set X with two
different distance functions, we shall write f:(X, d) → (X, d′) if we intend to
think of f:X → X as a function from the metric space (X, d) into the metric
space (X, d′). As an illustration, we shall prove:

THEOREM  3.5 Let i:Rn → Rn be the identity function. Then

and

are continuous, where the distance function d is the
maximum distance between corresponding coordinates (as
defined in Section 2) and d′ is the Euclidean distance.

Proof. Let  We shall first prove that i:
(Rn, d) → (Rn, d′) is continuous. Let ε > 0 be given. Choose 



. Suppose x = (x1, x2, … , xn) is such that d(x, a) < δ;
that is, . Then

Therefore, given ε > 0, there is a a δ > 0 such that d′(i(x),
i(a)) < ε whenever d(x, a) < δ.

We now prove that i:(Rn, d′) → (Rn, d) is continuous. Let ε
> 0 be given. Choose δ = ε. Suppose that x = (x1, x2, … , xn) is
such that d′(x, a) < δ. Then

and therefore for each i, (ai − xi)2 < δ2, or |ai − xi| < δ = ε.
Consequently, d(x, a) < ε. Thus, given ε > 0, there is a δ > 0,
such that d(i(x), i(a)) < ε whenever d′(x, a) < δ.

One of the most important elementary theorems about continuous functions
is the statement that the composition of two continuous functions is again a
continuous function.

THEOREM  3.6 Let (X, d), (Y, d′), (Z, d″) be metric spaces. Let f:X → Y be
continuous at the point  and let g:Y → Z be continuous at
the point  Then gf:X → Z is continuous at the point 

.

Proof. Let ε > 0 be given. We must find a δ > 0 such that
whenever  and d(x, a) < δ, then d″(g(f(x)), g(f(a))) < ε.
Since g is continuous at f(a), there is an η > 0, such that
whenever  and d′(y, f(a)) < η, then d″(g(y), g(f(a))) < ε.
Using the fact that f is continuous at a, we know that given η >
0, there is a δ > 0, such that  and d(x, a) < δ imply that d′
(f(x), f(a)) < η and hence d″(g(f(x)), g(f(a))) < ε.

COROLLARY 3.7 Let (X, d), (Y, d′), (Z, d″) be metric spaces. Let f:X → Y and
g:Y → Z be continuous. Then gf:X → Z is continuous.



EXERCISES

1. Let X be the set of continuous functions f:[a, b] → R. Let d* be the distance
function on X defined by

for . For each , set

Prove that the function I:(X, d*) → (R, d) is continuous.
2. Let (Xi, di), (Yi, d′i), i = 1, … , n be metric spaces. Let fi:Xi → Yi, i = 1, … ,

n be continuous functions. Let

and convert X and Y into metric spaces in the standard manner. Define the
function F:X → Y by

Prove that F is continuous.
3. Define the function f:R2 → R by f(x1, x2) = x1 + x2. Prove that f is

continuous, where the distance function on R2 is either d or d′.
4. Define functions g, h, k, m as follows: g:R2 → R2 × R2 by g(x, y) = ((x, y),

(x, y)); h:R2 × R2 → R × R by h((a, b), (c, d)) = (a + b, c − d); k:R × R → R
× R by k(u, v) = (u2, v2); m: R × R → R by . Prove that all
these functions are continuous and that xy = mkhg(x, y).

4 OPEN BALLS AND NEIGHBORHOODS

In the definition of continuity of a function f at a point a in a metric space (X,
d), we are concerned with how f transforms those points  such that d(x, a)



< δ. If we give a name to this particular collection of points in X we shall be
able to cast the definition of continuity in a more compact form.

DEFINITION 4.1 Let (X, d) be a metric space. Let  and δ > 0 be given.
The subset of X consisting of those points  such that
d(a, x) < δ is called the open ball about a of radius δ and is
denoted by

Thus,  if and only if  and d(x, a) < δ. Similarly, if (Y, d′) is
another metric space and f:X → Y, we have  if and only if 
and d′(y, f(a)) < ε. Thus:

THEOREM 4.2 A function f:(X, d) → (Y, d′) is continuous at a point  if
and only if given ε > 0 there is a δ > 0 such that

For a function f:X → Y we have  if and only if , where U
and V are subsets of X and Y respectively. Therefore:

THEOREM 4.3 A function f:(X, d) → (Y, d′) is continuous at a point  if
and only if given ε > 0 there is a δ > 0 such that

Given a point a in a metric space (X, d), the subset B(a; δ) of X, for each δ >
0, is an example of the type of subset of X that is called a neighborhood of a.

DEFINITION 4.4 Let (X, d) be a metric space and . A subset N of X is
called a neighborhood of a if there is a δ > 0 such that

The collection  of all neighborhoods of a point  is
called a complete system of neighborhoods of the point a.



A neighborhood of a point  may be thought of as containing all the
points of X that are sufficiently close to a or as “enclosing” a by virtue of the
fact that it contains some open ball about a. In particular, for each δ > 0, B(a;
δ) is a neighborhood of a. These open balls have the property that they are
neighborhoods of each of their points.

LEMMA 4.5 Let (X, d) be a metric space and . For each δ > 0, the open
ball B(a; δ) is a neighborhood of each of its points.

Proof. Let . In order to show that B(a; δ) is a
neighborhood of b we must show that there is an η > 0 such that 

. Since , d(a, b)
< δ. Choose η < δ − d(a, b). If  then

and therefore . Thus  and B(a; δ) is a
neighborhood of b.

We may describe this proof pictorially. We have started with an open ball
B(a; δ) about a. We choose a point . Then the minimum distance
from b to points not in B(a; δ) is at least δ − d(a, b), as indicated in Figure 5,
so that a ball about b of radius η < δ − d(a, b) is contained in B(a; δ).

Figure 5

The complete system of neighborhoods of a point may be used to
characterize continuity of a function at a point.



THEOREM 4.6 Let f:(X, d) → (Y, d′). f is continuous at a point  if and
only if for each neighborhood M of f(a) there is a
corresponding neighborhood N of a, such that

or equivalently,

Proof. First suppose that f is continuous at the point .
We must show that, given a neighborhood M of f(a), we can
find a neighborhood N of a such that . Since M is a
neighborhood of f(a), there is an ε > 0 such that .
Since f is continuous at a, there is a δ > 0 such that .
But N = B(a; δ) is a neighborhood of a, therefore

Conversely, suppose that f satisfies the property that for
each neighborhood M of f(a), there is a corresponding
neighborhood N of a, such that . Let ε > 0 be given. To
prove that f is continuous at a we must show that there is a δ >
0 such that

But B(f(a); ε) = M is a neighborhood of f(a) and therefore there
is a neighborhood N of a such that . Since N is a
neighborhood of a, there is a δ > 0 such that .
Therefore

The proof of the first part of the above theorem may be represented
pictorially by considering an arbitrary neighborhood M of f(a) (as indicated in
Figure 6). Since M is a neigh-borhood of f(a), it contains an open ball B(f(a);
ε) for some ε > 0. Since f is continuous at a, for some δ > 0 the neighborhood
N = B(a; δ) is carried into M by f. Similarly, the proof of the second part of the
theorem may be depicted by Figure 7. We start with a neighborhood M =



B(f(a); ε) of f(a). The assumed property of f allows us to assert that there is a
neighborhood N of a that is carried into M by f. Since N is a neighborhood of a
we have an open ball B(a; δ) contained in N, which must also be carried into
M.

Figure 6

Figure 7

If N is a neighborhood of a point a in a metric space (X, d) and N′ is a subset
of X that contains N, then N′ contains the same open ball about a that N does
and therefore N′ is also a neighborhood of a. Thus, the previous theorem
becomes:

THEOREM 4.7 Let f:(X, d) → (Y, d′). f is continuous at a point  if and
only if for each neighborhood M of f(a), f−1(M) is a
neighborhood of a.

The collections of neighborhoods of points in a metric space possess five
properties that will be of significance in the next chapter.

THEOREM 4.8 Let (X, d) be a metric space.



N1. For each point , there exists at least one
neighborhood of a.

N2. For each point  and each neighborhood N of a, 
.

N3. For each point , if N is a neighborhood of a and 
, then N′ is a neighborhood of a.

N4. For each point  and each pair N, M of
neighborhoods of a, N ∩ M is also a neighborhood of a.

N5. For each point  and each neighborhood N of a,
there exists a neighborhood O of a such that  and O is a
neighborhood of each of its points.

Proof. For , X is a neighborhood of a, thus N1 is true.
N2 is trivial and N3 has already been discussed. To prove N4,
let N and M be neighborhoods of a. Then N and M contain
open balls B(a; δ1) and B(a; δ2) respectively and therefore N ∩
M contains the open ball B(a; δ), where δ = minimum {δ1, δ2}.
To prove N5, let N be a neighborhood of a. Then N contains an
open ball B(a; δ) and by Lemma 4.5, O = B(a; δ) is a
neighborhood of each of its points.

For a given point a in a metric space X, the collection of open balls with
center a has been used to generate the complete system of neighborhoods at a,
in the sense that the neighborhoods of a are precisely those subsets of X which
contain one of these open balls.

DEFINITION  4.9 Let a be a point in a metric space X. A collection  of
neighborhoods of a is called a basis for the neighborhood
system at a if every neighborhood N of a contains some
element B of .

As an example, if a is a point on the real line R, a basis for the
neighborhood system at a is the collection of open intervals containing a.

EXERCISES



1. Let (X, d) be a metric space such that d(x, y) = 1 whenever x ≠ y. Let .
Prove that {a} is a neighborhood of a and constitutes a basis for the system
of neighborhoods at a. Prove that every subset of X is a neighborhood of
each of its points.

2. Let  and f:R → R be defined by  for x > a.
Prove that f is not continuous at a, but is continuous at all other points.

3. Let f:X → Y be a function from a metric space X into a metric space Y. Let 
 and let  be a basis for the neighborhood system at f(a). Prove that

f is continuous at a if and only if for each  is a neighborhood
of a.

4. Let a be a point on the real line R. Prove that each of the following
collections of subsets of R constitute a basis for the system of
neighborhoods at a:

i) All closed intervals of the form [a − ε, a + ε], ε > 0;

ii) All open balls B(a; ε), ε a positive rational number;

iii) All open balls , n a positive integer;

iv) All open balls , n a positive integer larger than some fixed intege
k.

Show that no finite collection of subsets of R can be a basis for the system
of neighborhoods at a.

5. Let a be a point in a metric space X. Let N be the set of positive integers.
Prove that there is a collection  of neighborhoods of a which
constitutes a basis for the system of neighborhoods at a.

6. Let a and b be distinct points of a metric space X. Prove that there are
neighborhoods Na and Nb of a and b respectively such that Na ∩ Nb = Ø.

7. Let (X1, d1), (X2, d2), … , (Xn, dn) be metric spaces and convert

into a metric space (X, d) in the standard manner. Prove that an open ball in
(X, d) is the product of open balls from X1, X2, … , Xn respectively. Let 

, and let  be a basis for the neighborhood system at



ai. Let  be the collection of all sets of the form .
Prove that  is a basis for the neighborhood system at 

. Let pi: X → Xi, i = 1, 2, … , n, be the projection
that maps pi(a) = ai. Prove that each pi is continuous. Let Y be a metric
space and f: Y → X a function. Prove that f is continuous if and only if each
of the n functions pif is continuous.

8. Let R be the real numbers and f:R → R a continuous function. Suppose that
for some number . Prove that there is a positive number k and
a closed interval F = [a − δ, a + δ] for some δ > 0 such that  for 

.

5 LIMITS

The concept of limit of a sequence of real numbers may be generalized to an
arbitrary metric space. First, let us recall the appropriate definition in the real
line.

DEFINITION 5.1 Let a1, a2, … be a sequence of real numbers. A real number a
is said to be the limit of the sequence a1, a2, … if, given ε >
0, there is a positive integer N such that, whenever n > N, |a
− an| < ε. In this event we shall also say that the sequence a1,
a2, … converges to a and write limn an = a.

Interpreting ε as an “arbitrary degree of closeness” and N as “sufficiently far
out in the sequence,” we see that we have defined limn an = a in the event that
an may be made arbitrarily close to a by requiring that an be sufficiently far
out in the sequence.

Now, suppose that we have a metric space (X, d) and a sequence a1, a2, …
of points of X. Given a point  we measure the distance from a to the
successive points of the sequence, by the sequence of real numbers d(a, a1),
d(a, a2), … . It is natural to say that the limit of the sequence a1, a2, … of
points of X is the point a if the limit of the sequence of real numbers d(a, a1),
d(a, a2), … is the real number 0.



DEFINITION 5.2 Let (X, d) be a metric space. Let a1, a2, … be a sequence of
points of X. A point  is said to be the limit of the
sequence a1, a2, … if limn d(a, an) = 0. Again, in this event,
we shall say that the sequence a1, a2, … converges to a and
write limn an = a.

COROLLARY 5.3 Let (X, d) be a metric space and a1, a2, … be a sequence of
points of X. Then limn an = a for a point  if and only if
for each neighborhood V of a there is an integer N such that 

 whenever n > N.

Proof. Let V be a neighborhood of a. For some 
. Thus if limn an = a there is an integer N

such that whenever n > N, d(a, an) < ε and hence .
Conversely, given ε > 0, B(a; ε) is a neighborhood of a. If
there is an integer N such that for n > N, , then d(a,
an) < ε and limn an = a.

If S is a set of infinite points, and there is at most a finite number of
elements of S for which a certain statement is false, then the statement is said
to be true for almost all the elements of S. Thus limn an = a if for each
neighborhood V of a almost all the points an are in V.

Continuity may be characterized in terms of limits of sequences in
accordance with the following theorem.

THEOREM  5.4 Let (X, d), (Y, d′) be metric spaces. A function f:X → Y is
continuous at a point  if and only if, whenever limn an = a
for a sequence a1, a2, … of points of X, limn f(an) = f(a).

Proof. Suppose f is continuous at a and limn an = a. Let V
be a neighborhood of f(a). Then f−1(V) is a neighborhood of a,
so by Corollary 5.3 there is an integer N such that 
whenever n > N. Consequently,  whenever n > N.
Thus, for each neighborhood V of f(a) there is an integer N
such that  whenever n > N and again, applying
Corollary 5.3, limn f(an) = f(a).



To prove the “if” part of this theorem, we shall prove that if
f is not continuous at a, then there is at least one sequence a1,
a2, … of points of X, such that limn an = a, but limn f(an) = f(a)
is false. Since f is not continuous at a, there is a neighborhood
V of f(a) such that for each neighborhood U of . In
particular, for each neighborhood , n = 1, 2, … 

. Thus, for each positive integer n, there is a

point an with  and . Now  and
therefore limn an = a, whereas, limn f(an) = f(a) is impossible,
since  for all n.

If limn an = a, we can write limn f(an) = f(a) as limn f(an) = f(limn an). We
may therefore describe a continuous function as one that commutes with the
operation of taking limits. It is worth noting that in proving f is continuous
whenever f commutes with the operation of taking limits we have used the fact
that the sequence of neighborhoods , n a positive integer, constitutes a
basis for the neighborhood system at a.

In order to introduce the concept of distance from a point to a subset we
shall recall some facts about the real number system.

DEFINITION 5.5 Let A be a set of real numbers. A number b is called an upper
bound of A if  for each . A number c is called a
lower bound of A if  for each . If A has both an
upper and lower bound A is said to be bounded.

An upper bound b* of A is called a least upper bound
(abbreviated l.u.b.) of A if for each upper bound b of A, 
. A lower bound c* of A is called a greatest lower bound
(abbreviated g.l.b.) of A if for each lower bound c of A, 
.

Not every set of real numbers has an upper bound. One of the properties of
the real number system, usually referred to as the completeness postulate, is
that a non-empty set A of real numbers which has an upper bound necessarily
has a l.u.b. Given a non-empty set B of real numbers which has a lower bound,
the set of negatives of elements of B has an upper bound, hence a l.u.b. whose



negative is a g.l.b. of B. Thus it follows that every non-empty set B of real
numbers which has a lower bound has a g.l.b.

The greatest lower bound of a set A of real numbers may or may not be an
element of A. For example, 0 is a g.l.b. of [0, 1] and , whereas 0 is
also a g.l.b. of (0, 1) but . In any event, the g.l.b. of a set of real
numbers must be arbitrarily close to that set.

LEMMA 5.6 Let b be a greatest lower bound of the non-empty subset A. Then,
for each ε > 0, there is an element  such that

Proof. Suppose there were an ε > 0 such that  for each
. Then  for each  and b + ε would be a lower

bound of A. Since b is a g.l.b. of A, we obtain the contradiction 
.

COROLLARY 5.7 Let b be a greatest lower bound of the non-empty subset A of
real numbers. Then there is a sequence a1, a2, … of real
numbers such that  for each n and limn an = b.

Proof. For  we obtain an element  such that 
. Since b is a lower bound of A, .

Therefore limn an = b.

DEFINITION 5.8 Let (X, d) be a metric space. Let  and let A be a non-
empty subset of X. The greatest lower bound of the set of
numbers of the form d(a, x) for  is called the distance
between a and A and is denoted by d(a, A).

From Corollary 5.7 we obtain:

COROLLARY 5.9 Let (X, d) be a metric space, , and A a non-empty subset
of X. Then there is a sequence a1, a2, … of points of A such
that limn d(a, an) = d(a, A).



EXERCISES

1. Let X1, X2, … , Xk be metric spaces and convert  into a metric
space in the standard manner. Each of the points a1, a2, … of a sequence of
points of X has k coordinates; that is an =  Let

. Prove that limn an = c if and only if limn 
.

2. In each of the three metric spaces (Rk, d), (Rk, d′), (Rk, d″) considered in
Section 2, prove that limits of sequences are the same.

3. Prove that a subsequence of a convergent sequence is convergent and
converges to the same limit as the original sequence.

4. A sequence of real numbers a1, a2, … is called monotone non-decreasing if
, for each i and called monotone non-increasing if , for each

i. A sequence which is either monotone non-decreasing or monotone non-
increasing is said to be monotone. The sequence is said to be bounded
above if there is a number K such that  for each i and bounded below
if there is a number M such that  for each i. A sequence which is both
bounded above and bounded below is called bounded. Prove that a
convergent sequence of real numbers is bounded. Prove that a monotone
non-decreasing sequence of real numbers which is bounded above
converges to a limit a and that a is the l.u.b. of the set {a1, a2, …}.
Similarly prove that a monotone non-increasing sequence which is bounded
below converges to a limit b and that b is the g.l.b. of the set {a1, a2, …}.

5. Let a1, a2, … be a bounded sequence of real numbers. Since each of the
sets An = {an, an+1, …} is bounded we may set vn = g.l.b. An, un = l.u.b. An.
Observe that , … is monotone non-decreasing and bounded
above; and u1, u2, … is monotone non-increasing and bounded below. Let V
= limn un and U = limn un. Prove that there are subsequences of a1, a2, …
which converge to U and V respectively (thus a bounded sequence of real
numbers has a convergent subsequence). Prove that a1, a2, … converges if
and only if U = V.

6. Let (X, d) be a metric space and A a non-empty subset of X. For ,
prove that .



7. Let A be a non-empty subset of a metric space (X, d). Define the function
f:X → R by f(x) = d(x, A). Prove that f is continuous.

8. Let A be a non-empty subset of a metric space (X, d) and let . Prove
that d(x, A) = 0 if and only if every neighborhood of x contains a point of A.

9. Let (X, d) be a metric space. Define a distance function d* on X × X by the
method of Theorem 2.3. Prove that the function d:(X × X, d*) → (R, d) is
continuous.

6 OPEN SETS AND CLOSED SETS

In a metric space, the open ball B(a; δ) is a neighborhood of each of its points
(Lemma 4.5). The collection of subsets possessing this property plays a
fundamental role in topology.

DEFINITION  6.1 A subset O of a metric space is said to be open if O is a
neighborhood of each of its points.

Open sets may be characterized directly in terms of open balls.

THEOREM 6.2 A subset O of a metric space (X, d) is an open set if and only if
it is a union of open balls.

Proof. Suppose O is open. Then for each , there is an
open ball . Therefore 0 =  is a union of
open balls. Conversely, if O is a union of open balls, then using
the centers of these balls as the elements of an indexing set we
can write . If , then  for some 

. B(a; δa) is a neighborhood of x and since 
, by N3, O is a neighborhood of x. Thus O is a

neighborhood of each of its points, and by Definition 6.1, O is
open.

Most of the functions considered in topology are continuous. Open sets
provide a simple characterization of continuity.



THEOREM 6.3 Let f:(X, d) → (Y, d′). Then f is continuous if and only if for
each open set O of Y, the subset f−1(O) is an open subset of X.

Proof. First, suppose f is continuous. Let  be open.
We must show that f−1(O) is open; that is, f−1(O) is a
neighborhood of each of its points. To this end, let ,
then  and O is a neighborhood of f(a). Since f is
continuous at a, Theorem 4.7 may be applied, yielding f−1(O)
is a neighborhood of a.

Conversely, suppose for each open set , f−1(O)
is open. Let  and let M be a neighborhood of f(a). Then
there is an ε > 0 such that . But B(f(a); ε) is open
and therefore f−1(B(f(a); ε)) is open. Since , this
subset is a neighborhood of a. Therefore f−1(M) contains a
neighborhood of a and f is continuous at a. Since a was
arbitrary, f is continuous.

Just as the collections of neighborhoods of points in a metric space possess
certain significant properties so do the collection of open sets in a metric
space.

THEOREM 6.4 Let (X, d) be a metric space.

O1.  The empty set is open.

O2.  X is open.

O3.  If O1, O2, … , On are open, then O1 ∩ O2 ∩ … ∩ On
is open.

O4.    If for each , Oα is an open set, then  is
open.

Proof. The empty set is open, for in order for it not to be
open there would have to be a point . Given a point 
, for any δ > 0,  and therefore X is a neighborhood of
each of its points; that is, X is open. To prove O3, let 

, where for i = 1, 2, … , n, Oi is open.
Then each Oi is a neighborhood of a. By N4, the intersection of
two neighborhoods of a is again a neighborhood of a, and



hence by induction, the intersection of a finite number of
neighborhoods of a is again a neighborhood of a. Therefore O1
∩ O2 ∩ … ∩ On is a neighborhood of each of its points.
Finally, to prove O4, let , where for each ,
Oα is open. Then  for some  and Oβ is a
neighborhood of a. Since , by N3, O is a neighborhood
of a. Therefore O is a neighborhood of each of its points.

DEFINITION  6.5 A subset F of a metric space is said to be closed if its
complement, C(F), is open.

In the real number system, a closed interval [a, b] is a closed set, for its
complement is the union of the two open sets O1 and O2, where O1 is the set of
real numbers x such that x < a and O2 is the set of real numbers x such that x >
b. A common mistake is the assumption that a set cannot be both open and
closed. In any metric space (X, d), the two sets Ø and X are open, and therefore
their complements X and Ø are closed. Thus, X and also Ø are both open and
both closed. Whether or not, in a given metric space, there are other subsets
that are simultaneously open and closed, is a significant topological property,
which we shall subsequently describe by the adjective “connected.” In any
event, the adjectives open and closed are not mutually exclusive. Nor, for that
matter, are they all-inclusive, for we shall shortly give an example of a subset
of the real number system that is neither open nor closed.

DEFINITION 6.6 Let A be a subset of a metric space X. A point  is called a
limit point of A if every neighborhood of b contains a point
of A different from b.

If b is a limit point of A then each of the open balls  contains a point 
 and limn an = b. Thus a limit point of a set is the limit of a convergent

sequence of points of A. The converse is false, for the point b may be a point
of A while for some δ, B(b; δ) contains no point of A other than b. Thus b is
not a limit point of A although the sequence b, b, … converges to b. In this
latter case b is called an isolated point of A.



THEOREM  6.7 In a metric space X, a set  is closed if and only if F
contains all its limit points.

Proof. Let F′ denote the set of limit points of F. First
suppose F is closed and consequently C(F) is open. Choose a
point . Since C(F) is open there is a δ > 0 such that 

 or . Hence  and .
Conversely, suppose , or equivalently, . If 

, then . It follows that for some 
, or . Hence C(F) is open and F

is closed.

THEOREM 6.8 In a metric space (X, d), a set  is closed if and only if for
each sequence a1, a2, … of points of F that converges to a
point  we have .

Proof. First, let F be closed. Suppose limn an = a and 
for n = 1, 2, … . If the set of points {a1, a2, …} is infinite then
every neighborhood of a contains infinitely many points of F,
a is a limit point of F, and so by Theorem 6.7, . If this set
of points is finite, then for some integer N, an = am whenever n,
m > N. Since limn an = a, d(an, a) = 0 for n > N or an = a,
whence . Conversely, suppose that F is a set such that for
each sequence with limn an = a and  for all n, we have 

. If b is a limit point of F then b is the limit of a
convergent sequence of points of F and . Thus by
Theorem 6.7 F is closed.

Finally, we may characterize closed sets in terms of distance from a point to
a set.

THEOREM 6.9 A subset F of a metric space (X, d) is closed if and only if for
each point , d(x, F) = 0 implies .

Proof. First, suppose F is closed. Let  be such that
d(x, F) = 0. By Corollary 5.9 there is a sequence of points of F
such that limn d(x, an) = 0. Thus, every neighborhood of x
contains points of F. If some an = x, x is in F. Otherwise each



an is different from x, so that x is a limit point of the sequence
and hence of F. Thus, by Theorem 6.7, . Conversely,
suppose that F is such that d(x, F) = 0 implies . If x is a
limit point of F then d(x, F) = 0. Thus in this case F contains
all its limit points and is closed.

Continuity may be characterized by means of closed sets.

THEOREM  6.10 Let (X, d), (Y, d′) be metric spaces. A function f:X → Y is
continuous if and only if for each closed subset A of Y, the set
f−1(A) is a closed subset of X.

Proof. For , we have C(f−1(A)) = f−1(C(A)). But f is
continuous if and only if the inverse image of each open set is
an open set, and this is true if and only if the inverse image of
each closed set is a closed set.

As a final result in this section we record the following facts about closed
sets.

THEOREM 6.11 Let (X, d) be a metric space.
C1. X is closed.
C2. Ø is closed.
C3. The union of a finite collection of closed sets is

closed.
C4. The intersection of a family of closed sets is closed.

Proof. C1 and C2 have already been discussed. C3 and C4
follow from the application of DeMorgan’s formulas to the
corresponding properties O3 and O4 of open sets.

The union of closed sets need not, in general, be a closed set, as may be seen
by the following example. For each positive integer n let Fn be the closed

interval . Then , where (0, 1] is the set of real numbers x
such that . The set (0, 1] is not closed, for 0 is a limit point of the set
but is not in the set.



EXERCISES

1. Let (Xi, di), i = 1, 2, … , n be metric spaces. Let , and let (X, d) be
the metric space defined in the standard manner by Theorem 2.3. For i = 1,
2, … , n, let Oi be an open subset of Xi. Prove that the subset O1 × O2 × …
× On of X is open and that each open subset of X is a union of sets of this
form. [A collection of open sets of a metric space is called a basis for the
open sets if each open set is a union of sets in this collection. For example,
the open balls in a metric space form a basis for the open sets.]

2. Let X be a set and d the distance function on X defined by d(x, x) = 0, d(x,
y) = 1 for x ≠ y. Prove that each subset of (X, d) is open.

3. Let (X, d1), (Y, d2) be metric spaces. Let f:X → Y be continuous. Define a
distance function d on X × Y in the standard manner. Prove that the graph Γf
of f is a closed subset of (X × Y, d).

4. Let f:R → R be defined by

Prove that the graph Γf is a closed subset of (R2, d), but that f is not
continuous.

5. Let A be a closed, non-empty subset of the real numbers that has a lower
bound. Prove that A contains its greatest lower bound.

6. Let A be a subset of a metric space. Let A′ be the set of limit points of A and
Ai the set of isolated points of A. Prove that A′ ∩ Ai = Ø and .
The set  is called the closure of A. Prove that  if and only if
there is a sequence of points of A which converges to x. Prove that if F is a
closed set such that  then . Prove that Ā is the intersection of all
such closed sets F and hence is closed.

7 SUBSPACES AND EQUIVALENCE OF METRIC SPACES



Let (X, d) be a metric space. Given a non-empty subset Y of X we may convert
Y into a metric space by restricting the distance function d to Y × Y. In this
manner each non-empty subset Y of X gives rise to a new metric space (Y, d | Y
× Y). On the other hand, we may be given two metric spaces (X, d) and (Y, d′).
If , it makes sense to ask whether or not d′ is the restriction of d.

DEFINITION 7.1  Let (X, d) and (Y, d′) be metric spaces. We say that (Y, d′) is a
subspace of (X, d) if:

1.
2. d′ = d | Y × Y.

Let  and i:Y → X be an inclusion mapping. Denote by i × i:Y × Y → X
× X the inclusion mapping defined by (i × i)(y1, y2) = (y1, y2). Then (Y, d′) is a
subspace of (X, d) if the diagram

is commutative. There are as many subspaces of a metric space (X, d) as there
are non-empty subsets of X.

EXAMPLE 1 Let Q be the set of rational numbers. Define dQ:Q × Q → R by
dQ(a, b) = |a − b|. Then (Q, dQ) is a subspace of (R, d).

EXAMPLE 2 Let In (the unit n-cube) be the set of all n-tuples (x1, x2, … , xn) of
real numbers such that , for i = 1, 2, … , n. Define dc:In

× In → R by dc((x1, x2, … , xn), .
Then (In, dc) is a subspace of (Rn, d).

EXAMPLE 3 Let Sn (the n-sphere) be the set of all (n + 1)-tuples (x1, x2, … ,
xn+1) of real numbers such that . Define ds:Sn × Sn → R
by



Then (Sn, ds) is a subspace of the Euclidean space (Rn+1, d′).

EXAMPLE 4 Let A be the set of all (n + 1)-tuples (x1, x2, … , xn+1) of real
numbers such that xn+1 = 0. Define dA:A × A → R by

Then (A, dA) is a subspace of (Rn+1, d).

THEOREM 7.2 Let (Y, d′) be a subspace of (X, d). Then the inclusion mapping
i:Y → X is continuous.

Proof. Given  and ε > 0, choose δ = ε. If d′(a, y) < δ,
then d(i(a), i(y)) = d(a, y) = d′(a, y) < δ = ε.

The metric space (A, dA) of Example 4 is in most respects a copy of the
metric space (Rn, d). The only distinction between (Rn, d) and (A, dA) is that a
point of Rn is an n-tuple of real numbers, whereas a point of A is an (n + 1)-
tuple of real numbers of which the last one is zero. The relationship between
the metric spaces (Rn, d) and (A, dA) is an example of the relationship called
“metric equivalence” or “isometry.”

DEFINITION 7.3 Two metric spaces (A, dA) and (B, dB) are said to be metrically
equivalent or isometric if there are inverse functions f:A → B
and g:B → A such that, for each 
, and for each u, . In this event we
shall say that the metric equivalence or isometry is defined by
f and g.

THEOREM 7.4 A necessary and sufficient condition that two metric spaces (A,
dA) and (B, dB) be metrically equivalent is that there exist a
function f:A → B such that:

1. f is one-one;



2. f is onto;
3. for each 

Proof. The stated conditions are necessary, for if (A, dA)
and (B, dB) are metrically equivalent, there are inverse
functions f:A → B and g:B → A, and therefore f is one-one and
onto. Conversely, suppose a function f:A → B with the stated
properties exists. Then f is invertible and the function g:B → A
such that f and g are inverse functions is determined by setting
g(b) = a if f(a) = b. For u, , let x = g(u), y = g(v). Then

Given metric spaces (A, dA) and (B, dB) and functions f:A → B and g:B → A,
let us denote by f × f:A × A → B × B the function defined by setting (f × f)(x,
y) = (f(x), f(y)) for  and, similarly, let g × g:B × B → A × A be defined
by setting (g × g)(u, v) = (g(u), g(v)) for . The statement that dB(f(x),
f(y)) = dA(x, y) for  is equivalent to the statement that the diagram

is commutative (one may also describe this relation by saying that the function
f:A → B is “distance preserving”). In terms of diagrams, the statement that (A,
dA) and (B, dB) are metrically equivalent is the statement that there exist
functions f:A → B, g:B → A such that the four diagrams



are commutative (where iA:A → A and iB:B → B are identity mappings). The
first two diagrams express the fact that f and g are inverse functions and the
last two diagrams express the fact that f and g “preserve distances.” Since the
distance between x and y in A is the same as the distance between f(x) and f(y)
in B, f is continuous. Similarly, g is continuous. Thus:

LEMMA 7.5 Let a metric equivalence between (A, dA) and (B, dB) be defined
by inverse functions f:A → B and g:B → A. Then both f and g are
continuous.

From the point of view of considerations that relate only to the concept of
continuity, the relationship of metric equivalence is too narrow. We are led to
define a broader concept of equivalence in which we drop the requirement of
“preservation of distance”; that is, the commutativity of the last pair of
diagrams, and merely require that the first two diagrams be commutative and
the functions in these diagrams be continuous.

DEFINITION  7.6 Two metric spaces (A, dA) and (B, dB) are said to be
topologically equivalent if there are inverse functions f:A →
B and g:B → A such that f and g are continuous. In this event
we say that the topological equivalence is defined by f and g.

As a corollary to Lemma 7.5 we obtain:

COROLLARY  7.7 Two metric spaces that are metrically equivalent are
topologically equivalent.

The converse of this corollary is false; that is, there are metric spaces that
are topologically equivalent, but are not metrically equivalent. For example, a
circle of radius 1 is topologically equivalent to a circle of radius 2 (considered
as subspaces of (R2, d)), but the two are not metrically equivalent.

The following two results furnish a sufficient condition for the topological
equivalence of two metric spaces with the same underlying sets.

LEMMA  7.8 Let (X, d1) and (X, d2) be two metric spaces. If there exists a
number K > 0 such that for each , then
the identity mapping



is continuous.
Proof. Given ε > 0 and , set δ = ε/K. If d1(x, a) < δ then 

.

COROLLARY  7.9 Let (X, d) and (X, d′) be two metric spaces with the same
underlying set. If there exist positive numbers K and K′ such
that for each ,

then the identity mappings define a topological equivalence
between (X, d) and (X, d′).

We have discussed the two metric spaces (Rn, d) and (Rn, d′), where the
distance function d is determined by the maximum distance between
coordinates, and the distance function d′ is what is called the Euclidean
distance function. For each pair of points , the inequality 

 holds. It therefore follows from Corollary 7.9 that
the metric spaces (Rn, d) and (Rn, d′) are topologically equivalent.

THEOREM 7.10 Let (X, d) and (Y, d′) be two metric spaces. Let f:X → Y and
g:Y → X be inverse functions. Then the following four
statements are equivalent:

1. f and g are continuous;
2. A subset O of X is open if and only if f(O) is an open

subset of Y;
3. A subset F of X is closed if and only if f(F) is a closed

subset of Y;
4. For each  and subset N of X, N is a neighborhood

of a if and only if f(N) is a neighborhood of f(a).
Proof. 1 ⇒ 2. Let O be an open subset of X. Then f(O) =

g−1(O) is open since g is continuous. Conversely, if f(O) is an



open subset of Y, then f−1(f(O)) = O is open since f is
continuous.

2 ⇒ 4. For each  and , N is a neighborhood of
a if and only if N contains an open set O containing a if and
only if f(N) contains an open set O′ = f(O) containing f(a) if
and only if f(N) is a neighborhood of f(a).

4 ⇒ 1. Let  and let U be a neighborhood of f(a).
Then f−1(U) is a neighborhood of a, for U = f(f−1(U)) is a
neighborhood of f(a). Thus f is continuous. Similarly, let 

 and let V be a neighborhood of g(b). Then g−1(V) = f(V)
is a neighborhood of f(g(b)) = b, and g is continuous.

Thus, statements 1, 2, and 4 are equivalent. We leave it to
the reader to verify that statements 2 and 3 are equivalent.

Statement 1 in Theorem 7.10 is, of course, the statement that the metric
spaces (X, d) and (Y, d′) are topologically equivalent. Consequently, Theorem
7.10 asserts that two metric spaces are topologically equivalent if and only if
there exist inverse functions that establish either a one-one correspondence
between the open sets of the two spaces, a one-one correspondence between
the closed sets of the two spaces, or a one-one correspondence between the
complete systems of neighborhoods of the two spaces.

Both metrically equivalent and topologically equivalent are equivalence
relations defined on a collection of metric spaces. By Corollary 7.7, each
equivalence class of metrically equivalent metric spaces is contained in an
equivalence class of topologically equivalent metric spaces. Distinguishing
which topologically equivalent equivalence class a metric space belongs to is a
coarser, but consequently more fundamental, distinction. By Theorem 7.10,
this is determined by the collection of open sets, or the “topology” of the
space.

EXERCISES

1. For each pair of points , prove that there is a topological
equivalence between (Rn, d) and itself defined by inverse functions f:Rn →
Rn and g:Rn → Rn such that f(a) = b. [Hint: If a = (a1, a2, … , an), b = (b1,



b2, … , bn), define f by setting f(x1, x2, … , xn) = (x1 + b1 − a1, x2 + b2 − a2,
… , xn + bn − an).]

2. Prove that the open interval (−π/2, π/2), considered as a subspace of the real
number system, is topologically equivalent to the real number system.
Prove that any two open intervals, considered as subspaces of the real
number system, are topologically equivalent. Prove that any open interval,
considered as a subspace of the real number system, is topologically
equivalent to the real number system.

3. For i = 1, 2, … , n, let the metric space (Xi, di) be topologically equivalent
to the metric space (Yi, d′i). Prove that if

are converted into metric spaces in the standard manner, then these two
metric spaces are topologically equivalent.

4. The open n-cube is the set of all points  such that 0 <
xi < 1 for i = 1, 2, … , n. Prove that the open n-cube, considered as a
subspace of (Rn, d), is topologically equivalent to (Rn, d). [Hint: Use the
results of Problems 2 and 3.]

5. Let XRY mean that the metric space X is isometric to the metric space Y.
Prove that: (i) XRX; (ii) if XRY then YRX; and (iii) if XRY and YRZ then
XRZ. Do the same if XRY means that the metric space X is topologically
equivalent to the metric space Y.

6. Let (Y, d′) be a subspace of the metric space (X, d). Prove that a subset 
 is an open subset of (Y, d′) if and only if there is an open subset O of

(X, d) such that O′ = Y ∩ O. Prove that a subset  is a closed subset of
(Y, d′) if and only if there is a closed subset F of (X, d) such that F′ = Y ∩ F.
For a point , prove that a subset  is a neighborhood of a if and
only if there is a neighborhood N of a in (X, d) such that N′ = Y ∩ N.

7. Let (Y, d′) be a subspace of (X, d). Let a1, a2, … be a sequence of points of
Y and let . Prove that if limn an = a in (Y, d′), then limn an = a in (X, d).
[The converse is false unless one assumes that all the points mentioned lie
in Y; see the next problem.]

8. Consider the subspace (Q, dQ) (the rational numbers) of (R, d). Let a1, a2,
… be a sequence of rational numbers such that . Prove that,



given ε > 0, there is a positive integer N such that for n, m > N, |an − am| <
ε. Does the sequence a1, a2, … converge when considered to be a sequence
of points of (Q, dQ)?

8 AN INFINITE DIMENSIONAL EUCLIDEAN SPACE

In this section we shall define a metric space H, sometimes called Hilbert
space, which contains as subspaces isometric copies of the various Euclidean
spaces (Rn, d′). A point u of H is a sequence u1, u2, … of real numbers such
that the series  is convergent.

Let u = (u1, u2, …) and v = (v1, v2, …) be in H. Our intention is to define a
metric on H by setting

In order to do this we must first know that the series in brackets converges. To
accomplish this we shall make use of the following result, which is frequently
referred to as Schwarz’s lemma or Cauchy’s inequality.

LEMMA 8.1 Let (u1, u2, … , un), (v1, v2, … , vn) be n-tuples of real numbers,
then

Proof. It suffices to prove that

To this end, we consider, for an arbitrary real number λ, the
expression . We have,



Therefore, the quadratic equation in λ,

can have at most one real solution. Consequently,

or

COROLLARY  8.2 Let u = (u1, u2, …), v = (v1, v2, …) be in H with 
 Than the series  absolutely

convergent and .

Proof. For each positive integer n

Thus the partial sums of this series of positive terms are
bounded and the series converges to a limit not greater than
U1/2V1/2.

Furthermore, if α and β are real numbers and we set αu + βv = (αu1 + βv1,
αu2 + βv2, …) then αu + βv is also in H for  is the sum of three
absolutely convergent series. In particular  and

Taking square roots we obtain

COROLLARY 8.3 .



THEOREM  8.4 (H, d) is a metric space, where d is defined by d(u,v) = 
.

Proof. It is readily apparent that d satisfies all the
properties of a distance function with the exception of the
property that  . Let a = (a1,
a2, …), b = (b1, b2, …), c = (c1, c2, …). Set u = a − c, v = c −
b so that ui = ai − ci, vi = ci − bi. Then ui + vi = ai − bi and
Corollary 8.3 yields the desired inequality.

Let En be the collection of points  such that uj = 0 for j >
n. To each point  we can associate the point 

. Clearly h is a one-one mapping of Rn onto
the subspace En of H. Using 

. Since En is a metric

space, (Rn, d′) is a metric space and h is an isometry of (Rn, d′) with (En, d|En).

EXERCISES

1. Let V be a vector space with the real numbers R as scalars. A function A:V
× V → R is called a bilinear form if A (αa + βb, c) = αA(a, c) + βA(b, c)
and A(a, βb + γc) = βA(a, b) + γA(a, c) for scalars α, β, and  and
vectors a, b, and . A bilinear form is called positive definite if A (x, x)
> 0, unless x is the zero vector. Define a vector space structure on Hilbert
space H and show that for u = (u1, u2, …) and 

 yields a positive definite bilinear form.

2. Let V be a vector space with the real numbers R as scalars. A norm on V is
a function N:V → R such that (i)  for all ; (ii) N(v) = 0 if and
only if v = 0; (iii)  for all u, ; (iv) 
for all . Prove that if A is a positive definite bilinear form on V,
then N(v) = (A(v, v))1/2 defines a norm on V.

3. Let N be a norm on a vector space V as defined in the previous problem. Set
d(u, v) = N(u − v) for u, . Prove that (V, d) is a metric space. Prove
that the following functions are continuous: (i) a:V × V → V defined by



a(u, v) = u + v; (ii) b:V → V defined by b(v) = −v; (iii) c:R × V → V
defined by c(α, v) = αv.

For further reading, Kaplansky, Set Theory and Metric Spaces, Kolmogorov
and Fomin, Elements of the Theory of Functions and Functional Analysis, and
Simmons, Introduction to Topology and Modern Analysis all have excellent
chapters on metric spaces.



CHAPTER 3

Topological Spaces

1 INTRODUCTION

In the context of metric spaces, the various topological concepts such as
continuity, neighborhood, and so on, may be characterized by means of open
sets. Discarding the distance function and retaining the open sets of a metric
space gives rise to a new mathematical object, called a topological space. The
topological concepts that have been studied in Chapter 2 must be reintroduced
in the context of topological spaces. The procedure for formulating the
appropriate definitions of these terms in a topological space is to find, in a
metric space, the characterization of the term by means of open sets, using in
most cases what is a theorem in a metric space as a definition in a topological
space. There are other ways of introducing topological spaces. For example,
if, upon discarding the distance function of a metric space, we were to retain
the systems of neighborhoods of the points of the metric space, we obtain
what we shall call a neighborhood space. We shall indicate the equivalence
between the concept of a neighborhood space and the concept of a topological
space. Certain new topological concepts are also introduced; namely, the
closure, interior, and boundary of a set (these concepts could have been
introduced in metric spaces). In many respects the elementary material in this
chapter is a repetition of material from Chapter 2, but in a different context.
The concept of a topological space is one of the most fruitful concepts of
modern mathematics. It is the proper setting for discussions based on
considerations of continuity.

2 TOPOLOGICAL SPACES



DEFINITION 2.1 Let X be a non-empty set and  a collection of subsets of X
such that:

O1. .
O2. .
O3. If , then

O4. If for each , then .
The pair of objects  is called a topological space. The
set X is called the underlying set, the collection  is called
the topology on the set X, and the members of  are called
open sets.

By virtue of Theorem 6.4, Chapter 2, if  is the collection of open sets of a
metric space (X, d), then  is a topological space, called the topological
space associated with the metric space (X, d), and the metric space (X, d) is
said to give rise to the topological space . We are therefore in a position
to give many examples of topological spaces; namely, for each metric space
its associated topological space. On the other hand, any set X and collection 
of subsets satisfying O1, O2, O3, O4 is an example of a topological space,
and we shall see that not every such example arises from a metric space.

EXAMPLES

1. The real line, that is, the topological space that arises from the metric
space consisting of the real number system and the distance function d(a,
b) = |a − b|.

2. The topological space that arises from the metric space (Rn, d). We shall
call this topological space Euclidean n-space with the usual topology.

3. Let X be an arbitrary set. Let . Then  is a topological space.
4. Let X be a set containing precisely two distinct elements a and b. Let 

 . Then 
 are four distinct topological spaces with the same

underlying set.



5. Let X be an arbitrary set. Let  be the collection of all subsets of X, i.e., 
. Then  is a topological space. Of all the various topologies that

one may place on a set X, this one contains the largest number of elements
and is called the discrete topology.

6. Let X be an arbitrary set. Let  be the collection of all subsets of X whose
complements are either finite or all of X. Then  is a topological space.

7. Let Z be the set of positive integers. For each positive integer n, let On =
{n, n + 1, n + 2, . . .}. Let . Then  is a
topological space.

To verify that  is a topological space, one verifies that the specified
collection of subsets, , is a topology; that is, that  satisfies conditions O1,
O2, O3, O4. For example, let X and  be as in Example 6. Then , for its
complement Ø = C(X) is certainly finite. Also , since C(Ø) = X. Thus, 
satisfies conditions O1 and O2. Next, let O1, O2, . . . , On be subsets of X, each
of whose complements is finite or all of X. To show that 

 we must show that  is
either finite or all of X. But 

. Either this set is
a union of finite sets and hence finite, or for some i, C(Oi) = X and the union
is all of X. Finally, for each , let , so that C(Oα) is either finite or
X. Then . Either each of the sets, C(Oα) = X, in
which case the intersection is all of X, or at least one of them is finite, in
which case the intersection is a subset of a finite set and hence finite. Thus 

 is a topological space. The reader should verify that the remaining
examples do, in fact, constitute examples of topological spaces.

The relationship between the totality of metric spaces and the totality of
topological spaces is indicated in Figure 8. We shall see that two distinct
metric spaces (X, d) and (X, d′) may give rise to the same topological space 

. Also there are topological spaces , such as Example 7 above,
which could not have arisen from a metric space. The subcollection of
topological spaces that arise from metric spaces is called the collection of
metrizable topological spaces. In passing from a metric space to its associated
topological space, we may say that the “open” sets have been “preserved.”



Figure 8

DEFINITION 2.2 Given a topological space , a subset N of X is called a
neighborhood of a point  if N contains an open set that
contains a.

This definition has been formulated so that a subset N of a metric space (X,
d) is a neighborhood of a point  if and only if N is a neighborhood of a
in the associated topological space. Thus, in passing from a metric space to a
topological space, neighborhoods have also been “preserved.”

COROLLARY 2.3 Let  be a topological space. A subset O of X is open if
and only if O is a neighborhood of each of its points.

Proof. First, suppose that O is open. Then, for each 
 O contains an open set containing x; namely, O itself.

Conversely, suppose O is a neighborhood of each of its
points. Then for each , there is an open set Ox such
that . Consequently,  is a union of
open sets and hence open.

DEFINITION 2.4 Given a topological space , a subset F of X is called a
closed set if the complement, C(F), is an open set.

EXERCISES



1. Let  be a topological space that is metrizable. Prove that for each pair
a, b of distinct points of X, there are open sets Oa and Ob containing a and
b respectively, such that Oa ∩ Ob = Ø. Prove that the topological space of
Example 7 is not metrizable.

2. Prove that for each set X, the topological space (X, 2X) is metrizable. [Hint:
See Exercise 2, Chapter 2, Section 6.]

3. Let (Rn, d) and (Rn, d′) be defined as in Chapter 2 so that for x = (x1, x2, . . .
, xn) and ,

Prove that the two metric spaces (Rn, d) and (Rn, d′) give rise to the same
topological space.

4. Let  be a topological space. Prove that Ø, X are closed sets, that a
finite union of closed sets is a closed set, and that an arbitrary intersection
of closed sets is a closed set.

5. Let  be a topological space that is metrizable. Prove that each
neighborhood N of a point  contains a neighborhood V of a such that
V is a closed set.

6. Prove that in a discrete topological space, each subset is simultaneously
open and closed.

3 NEIGHBORHOODS AND NEIGHBORHOOD SPACES

Theorem 4.8, Chapter 2, in which are stated certain properties of
neighborhoods in a metric space, corresponds to a theorem in topological
spaces.

THEOREM 3.1 Let  be a topological space.
N1. For each point , there is at least one

neighborhood N of x.



N2. For each point  and each neighborhood N of 
.

N3. For each point , if N is a neighborhood of x and 
, then N′ is a neighborhood of x.

N4. For each point  and each pair N, M of
neighborhoods of  is also a neighborhood of x.

N5. For each point  and each neighborhood N of x,
there exists a neighborhood O of x such that  and O is a
neighborhood of each of its points.

Proof. For each point , X is a neighborhood of x, thus
N1 is true. N2 and N3 follow easily from the definition of
neighborhood in a topological space. To verify N4, let N, M
be neighborhoods of x. Then there are open sets O and O′
such that  and . Thus, N ∩ M
contains the open set O ∩ O′, which contains x, and,
consequently, N ∩ M is a neighborhood of x. Finally, for a
point , let N be a neighborhood of x. Then N contains
an open set O containing x. In particular, O is a neighborhood
of x and by Corollary 2.3, O is a neighborhood of each of its
points.

In a topological space, as in a metric space, we lay down the definition:

DEFINITION 3.2 For each point x in a topological space , the collection 
 of all neighborhoods of x is called a complete system of

neighborhoods at the point x.

One may paraphrase the properties N1–N5 of neighborhoods in terms of the
complete system of neighborhoods  at the points :

N1. For each ;
N2. For each  and ;
N3. For each  and , if  then ;
N4. For each  and 

N5. For each  and , there exists an  such that 
and  for each .



The proof of Theorem 3.1 was, in most respects, similar to the proof of the
corresponding theorem in metric spaces, Theorem 4.8, Chapter 2. However, it
was necessary to supply a proof of Theorem 3.1 above, for in the proof of 4.8,
Chapter 2, use was made of the concept of open balls, a concept which does
not occur in a topological space. Though a comparison of these two theorems
might lead one to believe that statements about neighborhoods that are true in
a metric space are also true in a topological space, this is not always the case.
Given two distinct points x and y in a metric space (X, d) there are
neighborhoods N and M of x and y respectively, such that N ∩ M = Ø. This
statement is false in many topological spaces. For example, let Y = {a, b}, a ≠
b, and let , so that  is a topological space. Then the only
neighborhood of b is Y. Thus, for each neighborhood N of a and each
neighborhood M of b, N ∩ M = N ∩ Y = N ≠ Ø.

DEFINITION 3.3 A topological space  is called a Hausdorff space or is
said to satisfy the Hausdorff axiom, if for each pair a, b of
distinct points of X, there are neighborhoods N and M of a
and b respectively, such that N ∩ M = Ø.

Some authors use the term “separated space” instead of Hausdorff space.
Many of the significant topological spaces are Hausdorff spaces. For this
reason certain authors require a topological space to be a Hausdorff space and
use the two terms synonymously; that is, they add to the list O1–O4 of
properties of open sets in the definition of a topological space, the property,
for each pair x, y of distinct points there are open sets Ox and Oy containing x
and y respectively, such that Ox ∩ Oy = Ø.

Suppose we have a metric space (X, d) and we discard the distance
function, retaining only the neighborhoods of the points in X. Then for each
point , we have a collection  of subsets of X; namely the complete
system of neighborhoods at x. These neighborhoods satisfy certain properties.
We may select some of these properties and use them as a set of axioms for
what we might naturally call a “neighborhood space.”

DEFINITION  3.4 Let X be a set. For each , let there be given a
collection  of subsets of X (called the neighborhoods of x),
satisfying the conditions N1–N5 of Theorem 3.1. This object
is called a neighborhood space.



In a neighborhood space, the appropriate definition of open set is obtained
from Corollary 2.3.

DEFINITION 3.5 In a neighborhood space, a subset O is said to be open if it is
a neighborhood of each of its points.

It is important to realize that the mathematical object neighborhood space,
although closely connected with the concept of a topological space, is a new
object, and until we have defined the term open set in a neighborhood space,
that term in a neighborhood space is meaningless.

LEMMA 3.6 In a neighborhood space, the empty set and the whole space are
open, a finite intersection of open sets is open, and an arbitrary
union of open sets is open.

Proof. [Since we are concerned with neighborhood spaces, we
may use only the properties N1–N5 of neighborhoods and, of
course, Definition 3.5 of open sets.] The empty set is open, for
in order for it not to be open it would have to contain a point x
of which it was not a neighborhood. Given a point x, there is
some neighborhood N of x, so by N3, the whole space is a
neighborhood of x. Thus, the whole space is a neighborhood of
each of its points and hence open. If O and O′ are open, then O
∩ O′ is also open, for by N4, given , O and O′ are
neighborhoods of x, hence so is O ∩ O′. Thus the intersection of
two open sets is a neighborhood of each of its points, and,
consequently, by induction, any finite intersection of open sets is
open. Finally, suppose for each , Oα is open. If 
, then  for some . But Oβ is a neighborhood of x and 

, thus by N3,  is a neighborhood of x and is
therefore open.

If we start with a topological space and define neighborhoods by Definition
2.2, Theorem 3.1 tells us that the underlying set and the complete systems of
neighborhoods of the points of the set yield a neighborhood space. On the
other hand, if we start with a neighborhood space and define open sets by
Definition 3.5, Lemma 3.6 tells us that we obtain a topological space.
Suppose then, we have a topological space , use the neighborhoods of 



 to form a neighborhood space, and finally use the open sets in this
neighborhood space to create a topological space . Do we end up with
our original topological space ? The answer is yes. To prove this result
we must show that . Now, if O is an open set in our original topological
space, that is, , by Corollary 2.3, O is a neighborhood of each of its
points, from which it follows that O is an open subset of the neighborhood
space and hence . Conversely, if , then in the neighborhood
space, O is a neighborhood of each of its points. But the neighborhoods of the
neighborhood space we have created are the neighborhoods of , so that
again by Corollary 2.3, O is open in  or . Thus .

Logically, it would still be possible for there to be neighborhood spaces that
did not arise in this manner from topological spaces. We shall now show that
there are none. To do so, we need a characterization, in a neighborhood space,
of neighborhoods in terms of open sets.

LEMMA 3.7 In a neighborhood space, a subset N is a neighborhood of a point
x if and only if N contains an open set containing x.

Proof. First, let N contain an open set O containing x. By
Definition 3.5, O is a neighborhood of x, whence, by N3, N is a
neighborhood of x. Conversely, if N is a neighborhood of x, then
by N5, N contains a neighborhood O of x (and by N2, O contains
x), such that O is a neighborhood of each of its points.

To denote a neighborhood space, let us use the symbol , where for
each ,  is the collection of neighborhoods of x. Now suppose that we
start with a neighborhood space . We define open set in  by
Definition 3.5, thus obtaining a topological space . In the topological
space  we define neighborhood by Definition 2.2 to obtain a
neighborhood space . Under these circumstances, if , by
Lemma 3.7, N contains an open set O containing x, so that by Definition 2.2,
N is a neighborhood of x in , or . Conversely, if , then by
Definition 2.2, N contains a set , and . Since , O is open in
the neighborhood space  and so by Lemma 3.7, N is a neighborhood of
x. Thus, for each , and the two neighborhood spaces are the
same.

Collecting together the results on the correspondence between topological
spaces and neighborhood spaces, we have:



THEOREM  3.8 Let neighborhood in a topological space be defined by
Definition 2.2 and open set in a neighborhood space be
defined by Definition 3.5. Then the neighborhoods of a
topological space  give rise to a neighborhood space 

 and the open sets of a neighborhood space 
 give rise to a topological space .

Furthermore, for each topological space ,

and for each neighborhood space ,

thus establishing a one-one correspondence between the
collection of all topological spaces and the collection of all
neighborhood spaces.

Theorem 3.8 justifies the specification of a topological space by defining
for a given set X what subsets of X are to be the neighborhoods of a point 

; that is, by specifying the corresponding neighborhood space. For
example, let X be the set of positive integers. Given a point  and a
subset U of X, let us call U a neighborhood of n if for each integer 

. We must then verify that these neighborhoods satisfy
conditions N1–N5 so that we have a neighborhood space and consequently a
topological space. The reader should verify that this corresponding
topological space is the one described in Example 7 of Section 2.

EXERCISES

1. Given a real number x, call a subset N of R a neighborhood of x if 
implies . Prove that this definition of neighborhood yields a
neighborhood space. Describe the corresponding topological space.

2. Given a real number x, call a subset N of R a neighborhood of x if N
contains the closed interval [x, x + 1]. Prove that the neighborhoods so



defined satisfy N1–N4, but not N5. Use the Definition 3.5 of open set
anyway, and determine which subsets of R will be open.

3. In a neighborhood space, a collection  of neighborhoods of a point 
 is called a basis for the complete system of neighborhoods at x, or

simply a basis for the neighborhoods at x, if, for each neighborhood N of x,
there is a neighborhood  such that .

Prove that if for each point ,  is a basis for the neighborhoods at
x, then:

BN1. For each , ;
BN2. For each  and ;
BN3. For each  and , U ∩ V contains an element 

;
BN4. For each  and , there is an  such that 

and for each , O contains an element .
4. Define a basic neighborhood space to be a set X, such that for each 

a collection  of subsets of X satisfies the conditions BN1–BN4 of
Problem 3. In a basic neighborhood space  define a subset N of X to
be a neighborhood of a point  if  for some . Prove that
the neighborhoods of a basic neighborhood space yield a neighborhood
space. (Thus a topological space may be constructed by specifying for each
point x a basis  of the neighborhoods at x satisfying BN1–BN4.) The
correspondence between basic neighborhood spaces and neighborhood
spaces is many-one, since there are many different bases for the
neighborhoods at a point in a neighborhood space. However, prove that if 

 and  are two basic neighborhood spaces, then they give rise to
the same neighborhood space if and only if for each point  we have

(i) given , there is a  with , and
(ii) given , there is a  with .

Also prove that starting from a given neighborhood space , if for
each ,  is a basis for the neighborhoods at x, then the
neighborhood space that arises from the basic neighborhood space  is

.

4 CLOSURE, INTERIOR, BOUNDARY



In a metric space, given a point x and a subset A, we can say that there are
points of A arbitrarily close to x if d(x, A) = 0. In a topological space, we can
also find a characterization of “arbitrary closeness.” To indicate the proper
translation from metric spaces to topological spaces of this concept, let us first
prove:

LEMMA 4.1 In a metric space (X, d), for a given point x and a given subset A,
d(x, A) = 0 if and only if each neighborhood N of x contains a
point of A.

Proof. First, suppose that each neighborhood N of x contains a
point of A. In particular, for each ε > 0, there is a point of A in
B(x; ε). Thus  for each ε > 0 and consequently 

.
Conversely, suppose that there is a neighborhood N of x that
does not contain a point of A. Since N is a neighborhood of x in
a metric space, there is an ε > 0 such that . It follows
that a ∈ A implies that d(x, a) ≧ ε. Thus d(x, A) ≧ ε.

We shall, therefore, in a topological space, say that the points of a subset A
are arbitrarily close to a given point x, if each neighborhood of x contains a
point of A. Given a subset A, the collection of points that are arbitrarily close
to A is called the closure of A.

DEFINITION 4.2 Let A be a subset of a topological space. A point x is said to
be in the closure of A if, for each neighborhood N of x, N ∩
A ≠ Ø. The closure of A is denoted by Ā.

The purpose of the next two lemmas is to provide a description of the
closure of a subset in terms of closed sets.

LEMMA  4.3 Given a subset A of a topological space and a closed set F
containing A, .

Proof. Suppose , then x is in the open set C(F). Also, 
 implies . Thus, C(F) ∩ A = Ø. Since C(F) is

a neighborhood of x, . We have thus shown that 
 or .



LEMMA 4.4 Given a subset A of a topological space and a point , then 
 for some closed set F containing A.

Proof. If , then there is a neighborhood and hence an
open set O containing x such that O ∩ A = Ø. Let F = C(O).
Then F is closed and . But x ∈ 0 and therefore x
∉ F.

Combining these two lemmas, we obtain:

THEOREM 4.5 Given a subset A of a topological space,  where 
 is the family of all closed sets containing A.

Proof. By Lemma 4.3,  since  for each 
. By Lemma 4.4,  for each  implies that 
, or . Thus, .

Frequently, in introducing the concept of closure of a subset, the
characterization of closure given by Theorem 4.5 is used as a definition and
the statement embodied in our Definition, 4.2, is then proved as a theorem.
Another possible description of the closure Ā of a subset A is the
characterization of Ā as the smallest closed set containing A. For Ā is
contained in each closed set containing A, while Ā, being the intersection of
closed sets, is itself a closed set.

Theorem 4.5 is the characterization of closure in terms of closed sets. The
next theorem characterizes closed sets in terms of closure.

THEOREM 4.6 A is closed if and only if A = Ā.
Proof. We have just seen that Ā is closed, so if A = Ā, then

A is closed. Conversely, suppose A is closed. In this event A
itself is a closed set containing A, so, therefore, Ā ⊂ A. On the
other hand, for an arbitrary subset A, we have A ⊂ Ā, for if x
∈ A, then each neighborhood N of x contains a point of A;
namely x itself. Thus, if A is closed, A = Ā.

The act of taking the closure of a set associates to each subset A of a
topological space a new subset Ā. This correspondence or operation on the
subsets satisfies the following five properties:



THEOREM 4.7 In a topological space ,
CL1. ;
CL2. ;
CL3. For each subset A of X, A ⊂ Ā;
CL4. For each pair of subsets A, B of X, .
CL5. For each subset A of X, .
Proof. The property CL3 has been established during the

proof of Theorem 4.6. Note that CL2 follows from CL3. CL1
is true, for given a point x ∈ X and a neighborhood N of x, N
∩ Ø = Ø; thus there are no points in . To prove CL5 we note
that Ā is closed, so, applying Theorem 4.6 to Ā we have 

. It remains for us to prove CL4. Suppose x ∈ Ā, then
each neighborhood N of x contains points of A and hence
points of A ∪ B. Thus . Similarly, ,
and, consequently, . On the other hand, 

 and , so . Thus,  is a
closed set containing A ∪ B, whence .

One may use the properties CL1–CL5 as a set of axioms for what we will
call a closure space and then prove that there is a “natural” one-one
correspondence between the collection of topological spaces and the
collection of closure spaces. An outline of how this might be done is given in
Problem 11 at the end of this section.

In a topological space, we have seen that the closure of a subset A is the
smallest closed set containing A. Another significant subset associated with A
is the “interior” of A, which, as we shall see, is the largest open set contained
in A.

DEFINITION 4.8 Given a subset A of a topological space, a point x is said to be
in the interior of A if A is a neighborhood of x. The interior
of A is denoted by Int (A).

LEMMA  4.9 Given a subset A of a topological space and an open set O
contained in A, 0 ⊂ Int (A).



Proof. If x ∈ O, then A is a neighborhood of x, since O is
open and O ⊂ A. Thus x ∈ Int (A) and O ⊂ Int (A).

LEMMA 4.10 Given a subset A of a topological space, if x ∈ Int (A), then x ∈
0 for some open set O ⊂ A.

Proof. If x ∈ Int (A), then A is a neighborhood of x, whence A
contains an open set O containing x.

In much the same manner in which Lemmas 4.3 and 4.4 combine to yield
Theorem 4.5, Lemmas 4.9 and 4.10 combine to yield:

THEOREM 4.11 Given a subset A of a topological space,

where  is the family of all open sets contained in A.

Thus, Int (A), being the union of open sets, is itself open, and is the largest
open set contained in A. Furthermore, if  is the family of open sets
contained in a given set A, then  is the family of closed sets
containing C(A). Thus:

THEOREM 4.12 .

COROLLARY 4.13  .

For a given subset A, the set of points that are arbitrarily close to both A and
C(A) is called the “boundary” of A.

DEFINITION 4.4 Given a subset A of a topological space, a point x is said to be
in the boundary of A if x is in both the closure of A and the
closure of the complement of A. The boundary of A is
denoted by Bdry (A).

Thus, Bdry . It follows that A and C(A) have the same
boundary, for Bdry  . In terms of the



definition of the closure of a set, we have the statement that a point x is in the
boundary of a set A if and only if each neighborhood N of x contains both
points of A and points of the complement of A. Since the boundary of A is the
intersection of two closed sets:

COROLLARY 4.15 For each subset A, Bdry (A) is closed.

EXERCISES

1. A family  of subsets is said to be mutually disjoint if for each
distinct pair β, γ of indices Aβ ∩ Aγ = Ø. Prove that for each subset A of a
topological space , the three sets Int (A), Bdry (A), and Int (C(A)) are
mutually disjoint and that .

2. In a metric space (X, d), prove that for each subset A:
(a) x ∈ Ā if and only if d(x, A) = 0;
(b) x ∈ Int (A) if and only if d(x, C(A)) > 0;
(c) x ∈ Bdry (A) if and only if

3. In the real line, prove that the boundary of the open interval (a, b) and the
boundary of the closed interval [a, b] is {a, b}.

4. In Rn with the usual topology, let A be the set of points x = (x1, x2, . . . , xn)
such that . Prove that Bdry (A) is the (n − 1)-
dimensional sphere Sn−1, i.e., x ∈ Bdry (A) if and only if 

.
5. In Rn+1 with the usual topology, let A be the set of points x = (x1, x2, . . . ,

xn+1) such that xn+1 = 0. Prove that Int (A) = Ø, Bdry (A) = A, Ā = A.

6. In a topological space, each of the terms open set, closed set,
neighborhood, closure of a set, interior of a set, boundary of a set, may be
characterized by any other one of these terms. Construct a table containing
the thirty such possible definitions or theorems in which, for example, the
entry in the row labelled interior and the column labelled open set is the
characterization of interior in terms of open sets (Theorem 4.17), etc.



7. Let A be a subset of a topological space. Prove that Bdry (A) = Ø if and
only if A is open and closed.

8. A subset A of a topological space (X, ) is said to be dense in X if Ā =
X. Prove that if for each open set O we have A ∩ O ≠ Ø, then A is dense in
X.

9. The “rational density theorem” for the real line states that between any two
real numbers there lies a rational number. Use the rational density theorem
to prove that the rational numbers are dense in the real line.

10. The “Archimedean principle” for the real line states that if c, d > 0 then
there is a positive integer N such that Nc > d. Prove the Archimedean
principle for the real line and use this principle to prove the rational density
theorem for the real line.

11. Let a closure space be defined as a set X together with a correspondence
which associates to each subset A of X a subset Ā of X satisfying the five
conditions CL1–CL5 of Theorem 4.7. Prove that in a closure space, A ⊂
Bimplies . Define A to be closed if A = Ā. Prove that the empty set
and the whole space are closed. Also that a finite union of closed sets is
closed and an arbitrary intersection of closed sets is closed. Prove that for
each subset A of X, , where  is the family of all closed
sets containing A. Now prove that there is a one-one correspondence
between the collection of topological spaces and the collection of closure
spaces.

12. Prove that Ā = A ⊂ Bdry A.
13. Let A be a subset of a topological space. Prove that A is closed if and only

if Bdry (A) ⊂ A, and that A is open if and only if (A) ⊂ C(A).

5 FUNCTIONS, CONTINUITY, HOMEOMORPHISM

DEFINITION 5.1 A function f from a topological space  to a topological
space  is a function f:X → Y.

If f is a function from a topological space  to a topological space 
 we shall write . In the event that the topologies on X

and Y need not be explicitly mentioned, we may abbreviate this notation by
f:X → Y or simply f.



DEFINITION 5.2 A function  is said to be continuous at a
point a ∈ X if for each neighborhood N of f(a), f−1(N) is a
neighborhood of a. f is said to be continuous if f is
continuous at each point of X.

Let (X, d) and (Y, d′) be metric spaces and let their associated topological
spaces be  and  respectively. Given a function f from the first
metric space to the second, we also have a function, which we still denote by
f, from the first topological space to the second. Our definition of continuity
has been formulated so that for each point a ∈ X, the function f:(X, d) → (Y,
d′) is continuous at a if and only if  is continuous at a.

THEOREM 5.3 A function  is continuous if and only if for
each open subset O of Y, f−1(O) is an open subset of X.

Proof. First, suppose that f is continuous and that O is an
open subset of Y. For each , O is a neighborhood of
f(a), therefore f−1(O) is a neighborhood of a. Since f−1(O) is a
neighborhood of each of its points, f−1(O) is an open subset of
X. Conversely, suppose that for each open subset O of Y,
f−1(O) is an open subset of X. Let a ∈ X and a neighborhood
N of f(a) be given. N contains an open set O containing f(a),
so by our hypothesis, f−1(N) contains the open set f−1(O)
containing a. Thus, f−1(N) is a neighborhood of a and f is
continuous at a. Since a was arbitrary, f is continuous.

For any set X, given a collection E of subsets of X, let C′(E) denote the
collection of subsets of X which are complements of members of E. Also
given f:X → Y and a collection E of subsets of Y, let f−1(E) denote the
collection of subsets of X of the form f−1(E) for some E ∈ E. Theorem 5.3
states that  is continuous if and only if . Let 

 and  be the closed subsets of X and Y respectively. For 
 so that . Thus 

 is equivalent to  and we obtain:

THEOREM 5.4 A function  is continuous if and only if for
each closed subset F of Y, f−1(F) is a closed subset of X.



It is important to remember that Theorem 5.3 says that a function f is
continuous if and only if the inverse image of each open set is open. This
characterization of continuity should not be confused with another property
that a function may or may not possess, the property that the image of each
open set is an open set (such functions are called open mappings). There are
many situations in which a function  has the property that
for each open subset A of X, the set f(A) is an open subset of Y, and yet f is not
continuous. For example, let Y be a set containing two distinct elements a and
b and let each subset of Y be an open set. Let R be the real line and define f:R
→ Y by f(x) = a for x  0 and f(x) = b for x < 0. Every subset of Y is open so in
particular for each open subset U of R, f(U) is an open subset of Y. On the
other hand {a} is an open subset of Y but f−1({a}), the set of non-negative real
numbers, is not an open subset of the reals.

THEOREM 5.5  is continuous if and only if for each subset
A of X, .

Proof. First suppose that f is continuous. Given a subset A
of X, , whence . The set 
is closed so . Thus . Conversely,
suppose that for each subset A of X, . Let F be a
closed subset of Y. Then . Thus 

. Since it is always the case that 
we have ; consequently f−1(F) is closed and f is
continuous.

THEOREM 5.6 Let  be continuous at a point a ∈ X and let 
 be continuous at f(a). Then the composite

function  is continuous at a.
Proof. Let N be a neighborhood of (gf)(a) = g(f(a)). Then

(gf)−1(N) = f−1(g−1(N)). But g−1(N) is a neighborhood of f(a),
since g is continuous at f(a), and therefore f−1(g−1(N)) is a
neighborhood of a, since f is continuous at a.

The equivalence relation that is appropriate to topological spaces is called
homeomorphism.



DEFINITION 5.7 Topological spaces  and  are called
homeomorphic if there exist inverse functions f:X → Y and
g:Y → X such that f and g are continuous. In this event the
functions f and g are said to be homeomorphisms and we say
that f and g define a homeomorphism between  and 

.

The following easily verified corollary to this definition indicates that
homeomorphism is the translation from metric spaces to topological spaces of
the concept of topological equivalence.

COROLLARY 5.8 Let (X, d) and (Y, d′) be metric spaces. Let  and 
be the topological spaces associated with (X, d) and (Y, d′)
respectively. Then the metric spaces (X, d) and (Y, d′) are
topologically equivalent if and only if the topological
spaces  and  are homeomorphic.

THEOREM  5.9 A necessary and sufficient condition that two topological
spaces  and  be homeomorphic is that there exist a
function f:X → Y such that:

1. f is one-one;
2. f is onto;
3. A subset O of X is open if and only if f(O) is open.
Proof. Suppose that  and  are homeomorphic.

Let the homeomorphism be defined by inverse functions f:X
→ Y and g:Y → X. f is invertible and consequently one-one
and onto. Furthermore, given an open set O in X, the set f(O)
= g−1(O) is open in Y, since g is continuous. On the other
hand, if f(O) = O′ is an open subset of Y, then O = f−1(O′) is
open in X.

Now, suppose that a function f:X → Y with the prescribed
properties exists. Then f is invertible and we define g:Y → X
by g(b) = a if f(a) = b, so that f and g are inverse functions. If
O is an open subset of X, then f(O) = g−1(O) is open in Y, so
that g is continuous. Also, if O′ is an open subset of Y, then
f−1(O′) = O is an open subset of X and f is continuous.



EXERCISES

1. Let a function f:X → Y be given. Prove that  is always
continuous, as is , where  is any topology on Y and 
 is any topology on X.

2. Prove that a function  is a homeomorphism if and only if
  (i) f is one-one;
 (ii) f is onto;
(iii) For each point x ∈ X and each subset N of X, N is a

neighborhood of x if and only if f(N) is a neighborhood
of f(x).

3. Let  be a homeomorphism. Let a third topological space 
 and a function  be given. Prove that h is

continuous if and only if hf is continuous. Let another function 
 be given. Prove that k is continuous if and only if fk is

continuous.
4. Let R be the real line. Prove that the function f:R → R defined by f(x) = sin

x is continuous. [Hint:  and 
 Find an open interval (a, b)

such that f((a, b)) is not an open interval.

6 SUBSPACES

DEFINITION 6.1 Let  and  be topological spaces. The topological
space Y is called a subspace of the topological space X if Y
⊂ X and if the open subsets of Y are precisely the subsets O′
of the form

for some open subset O of X.

In the event that Y is a subspace of X, we may say that each open subset O′
of Y is the restriction to Y of an open subset O of X. A subset O′ that is open in



Y is often called relatively open in Y or simply relatively open. A subset O of
X that is open in X and is contained in Y is necessarily relatively open in Y, but
the relatively open subsets of Y are in general not open in X.

We shall now prove that there are as many subspaces of a topological space
X as there are non-empty subsets Y of X.

PROPOSITION 6.2 Let  be a topological space and let Y be a subset of X.
Define the collection  of subsets of Y as the collection of
subsets O′ of Y of the form

where . Then  is a topological space and
therefore a subspace of  provided Y ≠ Ø.

Proof. We must prove that  is a topology. Ø = Ø ∩ Y
and Y = X ∩ Y are in . Suppose , so that
for i = 1, 2, . . . , n, O′i for some . Then O′1 ∩ O′2 ∩ .
. . ∩ O′n = (O1 ∩ O2 ∩ . . . ∩ On) ∩ Y is in , since O1 ∩
O2 ∩ . . . ∩ On is open in X. Finally, suppose that for each 

. Thus, for each  for some
. But  is in

, since  is open in X.

Given a subset Y of a topological space , the topology  of Y
described in the above proposition is said to be induced by the topology  on
X and is called the relative topology on Y. The neighborhoods in this relative
topology on Y are called neighborhoods in Y or relative neighborhoods. The
following result states that the neighborhoods in Y are the restrictions of the
neighborhoods in X.

THEOREM 6.3 Let Y be a subspace of a topological space X and let a ∈ Y.
Then a subset N′ of Y is a relative neighborhood of a if and
only if

where N is a neighborhood of a in X.



Proof. First suppose N′ is a relative neighborhood of a.
Then N′ contains a relatively open set O′, which contains a.
Let O′ = O ∩ Y, where O is an open subset of X. Then N = N′
∩ O is a neighborhood of a in X and 

. Conversely,
suppose N′ = N ∩ Y, where N is a neighborhood of a in X.
Then N contains an open set O containing a and hence N′
contains the relatively open set O′ = O ∩ Y containing a.
Thus N′ is a relative neighborhood of a.

EXAMPLE 1 The closed interval [a, b] of the real line with induced topology
is a subspace of the real line. A relative neighborhood of the
point a is any subset N of [a, b] that contains a half-open interval
[a, c), where a < c and [a, c) is the set of all real numbers x such
that a ≦ x < c. Similarly, a relative neighborhood of the point b
is any subset M of [a, b] that contains a half-open interval (c, b],
where c < b and (c, b] is the set of all real numbers x such that c
< x ≦ b. If d is such that a < d < b, then a relative neighborhood
of d is any subset U of [a, b] that is a neighborhood of d in the
real line R.

EXAMPLE 2 Let A be the subset of Rn+1 consisting of all points x = (x1, x2, . . .
, xn+1) such that xn+1 = 0. Let Rn+1 have the usual topology and
let A have the induced topology so that A is a subspace of Rn+1.
The topological space A is homeomorphic to Rn. To prove this
fact we shall use the result that the relationship of subspace is
“preserved” in passing from metric spaces to topological spaces.

LEMMA 6.4 Let (X, d) be a metric space and let (Y, d′) be a subspace of (X,
d). If  is the topological space associated with (X, d) and 

 is the topological space associated with (Y, d′), then 
is a subspace of .

Proof. Since d′ is the restriction of d, an open ball in (Y, d′) is
the restriction of an open ball in (X, d) to Y. Consequently a
subset O′ of Y is open in Y if and only if, for each y ∈ O′, there
is an εy > 0 such that  . Let .
Then O is open in X and O′ = O ∩ Y. Thus . Conversely,



if , then O′ = O ∩ Y for some . For each  we
have , and O is open, so there is an εy such that 

. It follows that , and hence O′ is
open in (Y, d′).

Returning to our example, we define f:Rn → A by setting f(x1,
x2, . . . , xn) = (x1, x2, . . . , xn, 0). It is easily verified that f is one-
one, onto, and that the inverse of f is the function g:A → Rn

defined by g(x1, x2, . . . , xn, 0) = (x1, x2, . . . , xn). If we first
consider f and g as functions defined on the metric spaces (Rn,
d) and (A, d′), where (A, d′) is a subspace of (Rn+1, d), then
clearly f and g are continuous. It follows that f and g are
continuous functions defined on the topological spaces Rn and
A, where A is considered as a subspace of Rn+1, and that they
therefore define a homeomorphism.

Given a subspace  of a topological space , the closed subsets of
the topological space  are called relatively closed in Y or simply
relatively closed. Again, the relatively closed subsets are the restriction to Y of
the closed subsets of X.

THEOREM  6.5 Let  be a subspace of the topological space . A
subset F′ of Y is relatively closed in Y if and only if

for some closed subset F of X.
Proof. First, suppose F′ is relatively closed. Then CY(F′)

is relatively open. Thus, CY(F′) = O ∩ Y, where O is open in
X. But then F′ = CY(O ∩ Y) = CY(O) = Cx(O) ∩ Y, where
Cx(O) is a closed subset of X. Conversely, suppose F′ = F ∩
Y, where F is a closed subset of X. Then, CY(F′) = CX(F) ∩ Y;
hence CY(F′) is relatively open in Y and therefore F′ is
relatively closed.

EXAMPLE 3 Let a < b < c < d. Let Y = [a, b] ∪ (c, d) be considered as a
subspace of the real line. Then the subset [a, b] of Y is both



relatively open and relatively closed. To prove this fact we note
that [a, b] = [a, b] ∩ Y so that [a, b] is relatively closed, whereas
for O < ε < c − b, [a, b] = (a − ε, b + ε) ∩ Y so that [a, b] is
relatively open. Since (c, d) is the complement in Y of a
relatively open and relatively closed subset of Y, (c, d) is also
relatively open and relatively closed in Y.

THEOREM 6.6 Let the topological space Y be a subspace of the topological
space X. Then the inclusion mapping i:Y → X is continuous.

Proof. For each subset A of X, i−1(A) = A ∩ Y. Thus, if O is
an open subset of X, i−1(O) = O ∩ Y is a relatively open
subset of Y.

DEFINITION 6.7 Let  and  be two topologies on a set Y. The topology  is
said to be weaker than  if .

If Y is a subset of a topological space  then the relative topology  on
Y is the weakest topology such that the inclusion map i:Y → X is continuous,
for if 1 is another topology on Y such that  is continuous
then given , O′ = i−1(O) with . Thus  and .

Let X and Y be topological spaces and f:Y → X be a function which is not
necessarily continuous. The function f induces a function f′:Y → f(Y) which
agrees with f and is onto. Viewing f(Y) as a subspace of X we have:

LEMMA 6.8 f:Y → X is continuous if and only if f′: Y → f(Y) is continuous.

Proof. Since the inclusion map i:f(Y) → X is continuous, the
continuity of f′ yields the continuity of f = if′. Conversely, if O′
is a relatively open set in f(Y), then O′ = O ∩ f(Y), where O is
open in X. If f is continuous f−1(O) = f′−1(O′) is open in Y and f′
is continuous.

EXERCISES

1. If Y is a subspace of X and Z is a subspace of Y, then Z is a subspace of X.



2. Let O be an open subset of a topological space X. Prove that a subset A of
O is relatively open in O if and only if it is an open subset of X.

3. Let F be a closed subset of a topological space X. Prove that a subset A of
F is relatively closed in F if and only if it is a closed subset of X.

4. Prove that a subspace of a Hausdorff space is a Hausdorff space.
5. Prove that a subspace of a metrizable space is a metrizable space.
6. Prove that an open interval (a, b) considered as a subspace of the real line

is homeomorphic to the real line.
7. Let Y be a subspace of X and let A be a subset of Y. Denote by IntX (A) the

interior of A in the topological space X and by IntY (A) the interior of A in
the topological space Y. Prove that . Illustrate by an
example the fact that in general IntX (A) ≠ IntY (A).

8. Let Y be a subspace of X and let A be a subset of Y. Denote by ĀX the
closure of A in the topological space X and by ĀY the closure of A in the
topological space Y. Prove that . Show that in general ĀY ≠ ĀX.

7 PRODUCTS

Throughout this section let  be topological
spaces and let . We wish to define a topology on X that may be
regarded as the product of the topologies on the factors of X. Again our guide
is the corresponding situation in metric spaces. If these topological spaces
were metrizable, then there is a standard procedure for converting the product
of the corresponding metric spaces into a metric space. In this resulting metric
space, the open subsets of X are the unions of sets of the form O1 × O2 × . . . ×
On, where each Oi is an open subset of Xi. In the general situation, where 

 may not be metrizable, one can show that the unions of the products of
open sets will constitute a topology. This result is based on the following
lemma.

LEMMA 7.1 Let  be a collection of subsets of a set X with the property that 
, and a finite intersection of elements of  is again



in . Then the collection  of all subsets of X which are unions
of elements of  is a topology.

Proof. Clearly Ø and X are in . Suppose O and O′ are in .
Then , where  for  and 

 for . Thus for   and
hence

is in . Finally a union of sets each of which is a union of sets of 
 is again a union of sets of  so that  is a topology.

Since in the product set X the collection  of subsets of X that are unions of
sets of the form O1 × O2 × . . . × On, each Oi an open subset of Xi, satisfies the
conditions of this lemma we may state:

DEFINITION  7.2 The topological space , where  is the collection of
subsets of X that are unions of sets of the form

each Oi an open subset of Xi, is called the product of the
topological spaces , i = 1, 2, . . . , n.

In the future we shall often denote a topological space  simply by X.
Thus, if we say, let X1, X2, . . . , Xn be topological spaces and , we
shall mean that X is to be considered as the product of the topological spaces.

As was the case with metric spaces, the sets of the form O1 × O2 × . . . ×
On, Oi open in Xi, have been used as a “basis” for the open sets of X.

DEFINITION 7.3 Let X be a topological space and  a collection of open
sets in  is called a basis for the open sets of X if each
open set is a union of members of .

The next proposition characterizes the neighborhoods in the product space.



PROPOSITION  7.4 In a topological space , a subset N is a
neighborhood of a point a = (a1, a1, … an ∈ N) if and only
if N contains a subset of the form N1 × N2 × . . . × Nn,
where each Ni is a neighborhood of ai.

Proof. First suppose that N1 × N2 × . . . × Nn ⊂ N where
each Ni is a neighborhood of ai. By the definition of
neighborhood in a topological space, each Ni contains an
open set Oi containing ai hence N contains the open set O1
× O2 × . . . × On containing a, and therefore N is a
neighborhood of a. Conversely, suppose N is a
neighborhood of a. Then N contains an open set O
containing a. Since O is an open subset of the product
space , we may write 

, where for each i and
each  is an open subset of Xi. Since 

 , for some ,
hence  for i = 1, 2, . . . , n. But Oβ,i is open. Thus, if
we set Ni = Oβ,i, i = 1, 2, . . . , n, Ni is a neighborhood of ai
and .

DEFINITION 7.5 Let X be a topological space and . A collection  of
neighborhoods of a is called a basis for the neighborhoods
at a if each neighborhood N of a contains a member of .

Thus, if , a basis for the neighborhoods
at a is the collection consisting of all subsets of the form N1 × N2 × . . . × Nn,
where each Ni is a neighborhood of ai.

Recall that in a product space the ith projection pi: X → Xi is the function
such that pi(a) = ai. If , then

Since this set is an open subset of X the projection maps are continuous.



A subset O1 × O2 × . . . × On of X can be written as 
 so that we have a guide to the appropriate topology

on an arbitrary product of topological spaces.

DEFINITION 7.6 Let  be an indexed family of topological spaces.
The topological product of this family is the set 
with the topology  consisting of all unions of sets of the
form 

We have used as a basis for the topology  the collection  of sets of the
form . That  is a topology follows from
the fact that , and a finite intersection of elements of  is
again in . Clearly this topology makes the projection maps continuous. Since
any topology on X which makes the projection maps continuous must contain
the sets of this form, the product topology is the weakest topology consistent
with the continuity of the projection maps.

It is easily seen that, analogous to Proposition 7.4, a basis for the
neighborhoods at a point x is the collection of sets of the form 

, where Nαi is a neighborhood of 
. In effect then, in the product space X we are saying that

a point y is in a given neighborhood of x or is close to x if there is a finite set
of indices {α1, . . . , αk} such that y(αi) is close to x(αi).

EXERCISES

1. Prove that a subset  is closed if and only if F is an intersection
of sets, each of which is a finite union of sets of the form F1 × F2 × . . . ×
Fn, where each Fi is a closed subset of Xi. Formulate the corresponding
statement in an arbitrary product of topological spaces.

2. Let  be the topological product of the family of spaces .
Prove that a function f: Y → X from a space Y into the product X is



continuous if and only if for each  the function fα = pαf: Y → Xα is
continuous.

3. Let  be a family of spaces and let , where J and K are
disjoint and non-empty. Let  be given. Define a function 

 by setting for each   and
. Prove that φx is continuous.

4. Let  and  be two families of spaces indexed by the same
indexing set I. For each , let fα: Xα → Yα be a continuous function.
Define  by (f(x))(α) = fα(x(α)). Prove that f is
continuous.

5. Let N be the set of positive integers. For each n ∈ N let Xn = {0, 2} with
the discrete topology. Let . Define a function f:X → [0, 1] by
setting . Prove that f is one-one and continuous. The image

f(X) is called the Cantor set D and consists of all real numbers a ∈ [0, 1]
which can be represented as triadic decimals  such that 

 for all n. Given a ∈ D define (g(a))(n) = an so that g(a) ∈ X.
Prove that g is a homeomorphism of D with X.

6. Prove that the family of open intervals with rational end points is a basis
for the topology of the real line.

8 IDENTIFICATION TOPOLOGIES

Let R be the real line and S the unit circle defined by 
. The function p:R → S defined by

p(t) = (cos 2πt, sin 2πt) maps R continuously onto S so that p(t) = p(t′),
provided t − t′ is an integer. One may think of p as wrapping the real line
around the circle so that the points which differ by an integer are identified or
superimposed on each other. Furthermore, we shall see that the topology of S
may be obtained from the topology of R in such a way as to make the
mapping p an identification.



DEFINITION  8.1 Let p: E → B be a continuous function mapping the
topological space E onto the topological space B. p is called
an identification if for each subset U of B, p−1(U) open in E
implies that U is open in B.

If p: E → B is an identification and g: B → Y is a continuous function
defined on B, then g induces a continuous function gp:E → Y. It turns out that
frequently the reverse is true, that is, a continuous function G:E → Y will
induce a continuous function g:B → Y.

THEOREM  8.2 Let p:E → B be an identification and let G:E → Y be a
continuous function such that for each  with p(x) =
p(x′), we also have G(x) = G(x′). Then for each b ∈ B we may
choose any , define g(b) = G(x), and the resulting
function g is continuous.

Proof. First the definition of g(b) does not depend on the
choice of , for if  then p(x) = p(x′)
and G(x) = G(x′). Note that g is defined so that gp = G. Hence
G−1 = p−1g−1. If O is an open subset of Y, then G−1(O) is open
in E. But G−1(O) = p−1(g−1(O)). Since p is an identification,
g−1(O) is open in B and therefore g is continuous.

The hypothesis on the function G is that Gp−1 be well-defined or single-
valued. The conclusion is then that the function g may be inserted in the
diagram of Figure 9 and that commutativity will hold.

Figure 9

One may use an onto function p:X → Y from a topological space X to a set
Y (without a topology) to construct a topology for Y so that p becomes an
identification.



DEFINITION 8.3 Let p:X → Y be a function from a topological space X onto a
set Y. The identification topology on Y determined by p
consists of those sets U such that p−1(U) is open in X.

Verification of the fact that this collection of sets is a topology depends on
the behavior of p−1 with respect to unions and intersections. Once Y has been
given the identification topology determined by p, p is an identification.

Let f:X → Y be a function from a set X to a set Y. Let ~f be the relation
defined on X by x~fx′ if f(x) = f(x′). ~f is an equivalence relation. Let X/~f be
the collection of equivalence sets under this relation and let  be
the function which maps each x ∈ X into its equivalence class. πf is an onto
function. Now suppose that X is a topological space and give X/~f the
identification topology determined by πf. Let Y also be a topological space.
Since πf(x) = πf(x′) if and only if f(x) = f(x′), f induces a continuous function 

 such that f = f*πf. Furthermore f* is one-one, for if f*(u) = f*

(u′), with u, , then for .
Thus  or u = πf(x) = πf(x′) = u′.

Consider the diagram

Let  be the topology on X/~f and let  be the topology on Y. Since f* is
continuous, , or equivalently, since f* is one-one, . If 
were some other topology on Y so that f were continuous we would again
have . Thus the topology  carried over to Y by f* is the weakest or
smallest topology such that f is continuous. Introducing the topologies into the
diagram we obtain Figure 10, in which the inclusion map 

 is continuous.



Figure 10

We shall conclude this section by considering some examples.

EXAMPLE 1 (The covering of the circle by the real line.) Let p(t) = (cos 2πt,
sin 2πt) so that p:R → S is a continuous mapping of the real line
onto the circle. To show that p is an identification mapping, we
must show that if U ⊂ S is such that p−1(U) is open, then U is
open. Let  and s = p(x). x is the center of an open
interval  of length 2ε < 1, which under p is mapped
into an arc of S centered at s of length 4πε and contained in U.
This arc is an open ball in S with center s; hence U is open.

The function defined by g(t) = (cos 2πt, sin 2πt, t) is a
homeomorphism of the real line with a helix H in R3. Let S be
taken to be the set of points  defined by x2 + y2 = 1,
z = 0. Then the projection of H onto S defined by (cos 2πt, sin
2πt, t) → (cos 2πt, sin 2πt, 0) is also an identification. This
projection accounts for the literal sense in which the real line
may be thought of as covering the circle.

Let f be any function defined and continuous on R. f is called
periodic of period 1 if f(t + 1) = f(t) for all t ∈ R. It follows that
f(t) = f(t′), provided t − t′ is an integer, so that f induces a
continuous function f*, defined on the circle S such that f*(p(t))
= f(t).

EXAMPLE 2 (Shrinking a subset to a point.) Let X be a topological space and
A a non-empty subset of X. Define a new untopologized set X/A
as the union of X − A and a new point a*. Define a function f:X
→ X/A by f(x) = x for , f(x) = a* for x ∈ A. Now give



X/A the identification topology determined by f. This space is
the space obtained by shrinking A to a point.

Let  be the boundary of the unit interval I = [0, 1].
Then  is homeomorphic to a circle. In fact, by Theorem 8.2,
the function p(t) = (cos 2πt, sin 2πt), defined now for t ∈ I, must
induce a continuous function  is one-one and a
basis for the open sets containing a* is the totality of images of
sets of the form .

Shrinking the boundary of I to a point amounts to pasting the
two end points together to make the single point a* out of the
boundary. If the boundary of a square is shrunk to a point, the
resulting space turns out to be homeomorphic to the surface of a
globe or a 2-sphere. One can even visualize this shrinking as a
process in which an elastic sheet having a string in its boundary
is deformed into a 2-sphere by gathering the string to a point.

EXAMPLE 3 (Attaching a space X to a space Y.) Let X and Y be topological
spaces and let A be a non-empty closed subset of X. Assume that
X and Y are disjoint and that a continuous function f:A → Y is
given. Form the set  and define a function 

 by  for 
for , and  for . Give  the
topology in which a set is open (or closed) if and only if its
intersections with both X and Y are open (or closed). φ is onto.
Let  be the set  with the identification
topology determined by φ.

If Y is a single point a*, then attaching X to a* by a function
f:A → a* is the same as shrinking A to a point. Let I2 be the unit
square in R2 and let A be the union of its two vertical edges so
that  and either  or 

. Let Y = [0, 1] be the unit interval. Define f:I2

→ Y by f(x, y) = y. Then  is a cylinder formed by
identifying the two vertical edges of I2.

EXERCISES



1. Let n be an integer. Let φn:R → R be the function from the real line into
itself defined by φn(x) = nx. Let p(t) = (cos 2πt, sin 2πt) as before. Show
that φn induces a function φn: S → S of the circle into itself so that φnp =
pφn. [φn is said to wrap the circle around itself n times for positive n.]

2. A torus is the surface of a donut or an inflatable inner tube. It can be
thought of as being generated by rotating a circle about a line in the plane
of the circle, provided the circle and the plane do. not intersect. Prove that
if C is a circular cylinder with S1 and S2 as its boundary circles and S1 and
S2 are identified by mapping them both homeomorphically onto some third
circle S, giving a map , then  is a torus.

Define a relation in the plane R2 by  provided x − x′ and y
− y′ are integers. Prove that ~ is an equivalence relation. Let T be the
collection of equivalence sets and φ:R2 → T the mapping carrying each
point into its equivalence set. Give T the identification topology
determined by φ. Show that T is homeomorphic to a torus.

3. The unit disc is the set of points in R2 given by  
. Its boundary in R2 is the unit circle S.

Let A be the subset of the circular cylinder S × [0, 1] given by S × {1}.
Prove that S × [0, 1]/A is homeomorphic to the disc D. (S × [0, 1]/A is the
cone over S, see the next problem.)

4. Let X be a topological space and A the subset of X × [0, 1] given by X ×
{1}. The space X × [0, 1]/A is called the cone over X. Denote this space by
TX. Prove that if X and X′ are homeomorphic, then so are TX and TX′.

5. Let X be a topological space and let p0 and p1 be two points not in X × [−1,
1]. Let f(x, −1) = p0 and f(x, 1) = p1 for x ∈ X define a mapping of 

. Let Y = {p0, p1} have the discrete
topology so that f is continuous.  is called the suspension
of X, and is denoted by SX. The equator is the image of X × {0} in SX.
Prove that this subject of SX is homeomorphic to X. Prove that the image
of X × [0, 1] in SX is homeomorphic to the cone over X, and that therefore
the suspension of X is two cones over X identified along the equator. Prove
that the suspension of a circle is homeomorphic to the 2-sphere S2.



9 CATEGORIES AND FUNCTORS

A great deal of the more recent work in topological spaces has involved the
consideration of a collection of topological spaces and collections of
continuous mappings between these spaces. It has proven to be extremely
fruitful to formulate an abstract definition of the structure involved.

DEFINITION 9.1 A category C is a collection of objects A whose members are
called the objects of the category and for each ordered pair
(X, Y) of objects of the category a set H(X, Y) called the
maps of X into Y together with a rule of composition which
associates to each  and  a map 

. This composition is associative, that is, if 
, then h(gf) = (hg)f and identities exist, that is,

for each object X ∈ A there is an element 
such that for all  and for all 

 1xh = h.

In Chapter 1 we were concerned with the category Cs of sets and functions.
That is, As is the class of all sets and for X,  is the set of all
functions from X to Y. For X ∈ As, 1X is the identity mapping of X onto itself.
In an obvious fashion one may obtain what we would call subcategories C′ of
Cs by taking as objects A′ some specified collection of sets and for 

 to be some specified set of functions from X to Y
provided that we always include the identity mapping 1x in H(X, X) for each X
∈ A′ and for each ordered pair (X, Y) of A′ include in H′(X, Y) all functions f
which can be written in the form hg for . For
example A′ might be all finite sets and H′(X, Y) all functions from X to Y. In
particular A′ could contain a single set X and H′(X, X) could be all invertible
functions.

In Chapter 2 the appropriate category was the category CM of all metric
spaces and continuous functions. Chapter 3 furnished us with our main
example, namely the category CT of all topological spaces and continuous
mappings.

We shall include in some detail one more example of a category of
algebraic objects.



DEFINITION  9.2 A group G is a set G together with a function which
associates to each ordered pair g1, g2 of elements of G an
element  such that:

  (i) g1(g2g3) = (g1g2)g3 for ;

  (ii) there is an element e ∈ G, called the identity such
that for all e ∈ G, eg = ge = g;

(iii) for each e ∈ G there is an element  called
the inverse of g, such that gg−1 = g−1g = e.

A homomorphism f from a group G to a group K is a
function f:G → K such that f(e) = e′ if e and e′ are identities
in G and K respectively and for all .

Let  be a collection of groups and for G,  let H(G, K) be the set
of all homomorphisms of G into K. If we use the ordinary composition of
functions to define for  and  an element 

, it is easily verified that we have constructed a category  of
groups  and homomorphisms.

In Chapter 4 we shall associate to certain topological spaces a group called
the fundamental group of the space.

A transformation from one category to another which preserves the
structure of a category is called a “functor.”

DEFINITION 9.3 Let C and C′ be categories with objects A and A′ respectively.
A functor* F:C → C′ is a pair of functions F1 and F2 such
that F1:A → A′ and for each ordered pair X, Y of objects of
A,

so that  and F2(gf) = F2(g)F2(f) for 
.

In keeping with the notation of the examples let us denote an element 
 by . If F:C → C′ is a functor we have



F2 preserves identities, and if

is commutative, then so is

that is, F carries commutative diagrams into commutative diagrams.
The passage from a metric space (X, d) to its associated topological space 

 is an example of a functor from CM to CT. As another example of a
functor, this time from CT to itself, let Z be a fixed topological space. To each
topological space X ∈ CT associate the topological space F1(X) = X × Z and
to each continuous function  associate the function F2(f) defined
by (F2(f))(x, z) = (f(x), z) for . Then F2(f):F1(X) → F1(Y) is
continuous and it is easily verified that F = (F1, F2) is a functor.

EXERCISES

1. Let  be an indexed family of categories with objects  and
maps . Let . For  let 

. For  define gf
by gf(α) = g(α)f(α). Prove that this yields a category  with
objects A and maps H(U, V).

2. Let C be a category with objects A. Let  be such that ge = g,
gf = g for all g ∈ H(X, Y) and eh = h, fh = h for all h ∈ H(W, X). Prove



that e = f and that therefore the identities are unique. Let f ∈ H(X, Y) be
such that there are maps g, g′ ∈ H(Y, X) with gf = 1x and fg′ = 1y. Prove
that g = g′ and that therefore f has a two-sided inverse f−1 = g. Such an f is
called an equivalence. Prove that 1x is an equivalence for all X ∈ A, if f is
an equivalence so is f−1, and f ∈ H(X, Y) and f′′ ∈ H(Y, Z) are equivalences
so is f′′f. Verify that in the category CT of topological spaces and
continuous mappings the equivalences are the homeomorphisms. Prove
that a functor carries equivalences into equivalences.

3. Let Cs be the category of sets and functions. Verify that the set of
equivalences in H(X, X) with the same rule of composition as in Cs is the
group of one-one mappings of X onto itself. In general, verify that in any
category C for each object X, the set of equivalences in H(X, X) with the
same rule of composition is a group.

4. Let A be a collection of pairs (X, Y) such that X is a topological space and Y
is a subspace of X. Given (X, Y) and  let H((X, Y), (X′, Y′)) be
the set of all continuous functions f:X → X′ such that . Construct
a category with objects A and these maps. Verify that if for (X, Y) ∈ A we
set F1(X, Y) = Y and for  we set F2(f) = f | Y then (F1,
F2) is a functor.

5. Let C be a category whose objects are pairs (X, A) where X is a topological
space and A is a non-empty closed subset of X, and whose maps H((X, A),
(Y, B)) are continuous functions f:X → Y with . Define F1(X, A) =
X/A. Let p(X, A) : X → X/A be the identification map. Prove that if 

 then there is a continuous function f*:X/A → Y/B
such that the diagram

is commutative. Define F2(f) = f* and prove that F = (F1, F2) is a functor
from the category C to the category CT of topological spaces and
continuous functions.



For further reading there are many excellent general texts including Kelley,
General Topology, Dugundji, Topology, and Pervin, Foundations of General
Topology.

* Definition 9.3 defines a covariant functor. In further work one also needs to consider contravariant
functors in which F2:H(X, Y) → H′(F1(Y), F1(X)) and F2(gf) = F2(f)F2(g).



CHAPTER 4

Connectedness

1 INTRODUCTION

A subspace of a topological space is “connected” if it is all “of one piece”;
that is, if it is impossible to decompose the subspace into two disjoint non-
empty open sets. The non-empty connected subsets of the real line are single
points and intervals. The continuous image of a connected set is necessarily a
connected set. A consequence of these two facts is the intermediate value
theorem; that is, a continuous function f:[a, b] → R must assume all values
between f(a) and f(b). A second type of connectedness is called “path-
connectedness,” by which it is meant that each pair of points may be
“connected” by a “path” or “arc.” Path-connectedness is a stronger condition
than connectedness, since each path-connected topological space is
connected, whereas the converse is false. A third type of connectedness that
we shall consider is “simple connectedness.” A topological space is simply
connected if there are no holes in it to prevent the continuous shrinking of
each closed arc to a point. The degree to which a given topological space fails
to be simply connected may be measured by an algebraic topological
invariant called the fundamental group of the space.

2 CONNECTEDNESS

DEFINITION 2.1 A topological space X is said to be connected if the only two
subsets of X that are simultaneously open and closed are X
itself and the empty set Ø. A topological space which is not
connected is said to be disconnected.



Thus, a topological space X is disconnected if and only if there are two
non-empty open subsets P and Q whose union is X and whose intersection is
empty, for in this event P is the complement of Q and therefore both open
and closed, whereas P is neither X nor Ø. Similarly, a topological space X is
disconnected if and only if there are two non-empty closed subsets F and G
whose union is X and whose intersection is empty.

Every subset A of a topological space X is itself a topological space in the
relative topology. We say that the subset A is connected if the topological
space A with the relative topology is connected, or what amounts to the same
thing,

DEFINITION 2.2 A subset A of a topological space X is said to be connected if
the only two subsets of A that are simultaneously relatively
open and relatively closed in A are A and Ø.

Thus, the statement, A is connected, has the same meaning whether the
reference is to A as a topological space or as a subspace of some larger
topological space.

We shall shortly see that intervals such as [a, b] and (a, b) are connected
subsets of the real line R. As an example of a subset of the real line that is
disconnected, let A = [0,1] ∪ (2,3). [0, 1] is a relatively closed subset of A
since [0, 1] is closed in R. At the same time [0, 1] is a relatively open subset
of A, since . Finally, [0, 1] ≠ Ø and [0, 1] ≠ A, hence A is
disconnected. By the same token, the “open interval” (2, 3) is also both
relatively open and relatively closed in A.

It will be useful to have the following formulation of connectedness, or
more precisely, disconnectedness.

LEMMA  2.3 Let A be a subspace of a topological space X. Then A is
disconnected if and only if there exist two open subsets P and Q
of X such that

and P ∩ A ≠ Ø, Q ∩ A ≠ Ø

Proof. First, suppose that A is disconnected. Then there is a
subset P′ of A that is different from Ø and from A and is both



relatively open and relatively closed. This implies that the
complement of P′ in A, CA(P′), is also different from Ø and
from A and relatively open. Thus P′ = P ∩ A and CA(P′) = Q ∩
A, where P and Q are open subsets of X. We therefore have that 

 , for  and , and also P ∩
Q ∩ A = (P ∩ A) ∩ (Q ∩ A) = P′ ∩ CA(P′) = Ø so that 

. Finally, P′ = P ∩ A and CA(P′) = Q ∩ A are non-
empty.

Conversely, given open sets P and Q satisfying the stated
conditions, set P′ = P ∩ A and Q′ = Q ∩ A. Then 

 and P′ ∩ Q′ = (A
∩ P) ∩ (A ∩ Q) = Ø. Thus P′ = CA(Q′), and P′ is both
relatively open and relatively closed in A. Since P′ ≠ Ø and P′
≠ A (for Q′ is non-empty), A is disconnected.

A corresponding result also holds, using closed sets.

LEMMA  2.4 Let A be a subspace of a topological space X. Then A is
disconnected if and only if there exist two closed subsets F and
G of X such that

and F ∩ A ≠ Ø, G ≠ A ≠ Ø

The next theorem asserts that connectedness is preserved under continuous
mappings.

THEOREM  2.5 Let X and Y be topological spaces and let f:X → Y be
continuous. If A is a connected subset of X, then f(A) is a
connected subset of Y.

Proof. Suppose f(A) is not connected. Then there are open
subsets P′ and Q′ of Y such that 

, and P′ ∩ f(A) ≠ Ø, Q′ ∩ f(A) ≠ Ø.
Since f is continuous, P = f−1(P′) and Q = f−1(Q′) are open
subsets of X. But  . Also 



 . Finally, P
∩ A ≠ Ø, Q ∩ A ≠ Ø. Thus, A is not connected. It follows that
if A is connected then f(A) must also be connected.

COROLLARY  2.6 Let X and Y be topological spaces, let f: X → Y be a
continuous mapping of X onto Y, and let X be connected;
then Y is connected.

COROLLARY 2.7 Let X and Y be homeomorphic topological spaces, then X is
connected if and only if Y is connected.

A property of a topological space is said to be a topological property if
each topological space homeomorphic to the given space must also possess
this property. Thus, Corollary 2.7 states that connectedness is a topological
property.

Lemma 2.8 supplies an interesting characterization of connectedness,
which will facilitate our proving that the product of two connected spaces is
itself connected.

LEMMA 2.8 Let Y = {0, 1}. A topological space X is connected if and only if
the only continuous mappings f: X → Y are the constant
mappings.

Proof. Let f: X → Y be a continuous non-constant mapping.
Then P = f−1({0}) and Q = f−1({1}) are both non-empty. Thus,
P ≠ Ø and P ≠ X. {0} and {1} are open subsets of Y and f is
continuous, therefore P and Q are open subsets of X. But P =
C(Q), so P is both open and closed and consequently X is
disconnected. Thus, if X is connected, the only continuous
mappings f: X → Y are constant mappings.

Conversely, suppose X is disconnected. Then there are
non-empty open subsets P, Q of X such that P ∩ Q = Ø and P
∪ Q = X. Define a mapping f: X → Y as follows: If , set
f(x) = 0; if , set f(x) = 1. f is continuous, for there are four
open subsets, Ø, {0}, {1}, and Y of Y and f−1(Ø) = Ø, f−1({0})
= P, f−1({1}) = Q, and f−1(Y) = X, so that the inverse image of
an open set is open.



Clearly, the role of the space Y = {0, 1} in the above result could be played
by any other topological space Z consisting of two points in which all subsets
are open.

THEOREM 2.9 Let X and Y be connected topological spaces. Then X × Y is
connected.

Proof. We shall show that the only continuous mappings f:
X × Y → {0, 1} are constant mappings. Suppose, on the
contrary, that there is a continuous mapping f: X × Y → {0,
1} that is not constant. Then there are points (x0, y0), 

 such that f(x0, y0) = 0, f(x1, y1) = 1. If we
picture f(x, y) as a number attached to the point (x, y), then
we have the situation depicted in Figure 11. Suppose f(x1, y0)
= 0. We then define an “imbedding” ix1: Y → X × Y by ix1(y)
= (x1, y). ix1

 is continuous, hence the composite mapping fix1
 :

Y → {0,1} is continuous (fix1
 may be thought of as

essentially f restricted to the points of the form (x1, y); that is,
the points lying above x1 in Figure 11.) But 

 and  . Thus, in this
case, there is a non-constant mapping of Y into {0, 1},
contradicting the connectedness of Y. Similarly, if f(x1, y0) =
1, we define an imbedding  by setting 

 and obtain a non-constant mapping ,
contradicting the connectedness of X. It follows that there are
no non-constant mappings of X × Y into {0, 1} and that
therefore X × Y is connected.



Figure 11

COROLLARY 2.10 If X1, X2, . . . , Xn are connected topological spaces, then 
 is a connected topological space.

The main idea in the proof of Theorem 2.9 is that f:X × Y → {0, 1} must
remain constant on each of the connected subsets {x0} × Y and X × {y1}. The
same procedure allows us to show that in an arbitrary product  of
connected spaces, altering a finite set of coordinates can not change the value
of a continuous function f:X → {0, 1}.

LEMMA 2.11 Let  be an indexed family of topological spaces each of
which is connected. Let x and x′ be two points of 
such that x(a) = x′(a) except on a finite set of indices  and
let f:X → {0, 1} be continuous. Then f(x) = f(x′).

Proof. We shall define an “imbedding” of  into X. Let
J = I − I′ so that x(α) = x′(α) for . Given 

, set (j(z))(α) = z(α) for  and (j(z))(α) = x(α) for 
. Then  and j is continuous, for each of the

functions pαj is continuous (in fact, pαj = pα for , pαj is a
constant function for . Both x and x′ are in the image of the
connected set  so that f(x) = f(x′).

THEOREM 2.12  is connected if each Xα is connected.

Proof. Again let f:X → {0, 1} be continuous and let w, x ∈
X be such that f(w) = 0. We will show that f(x) = 0. {0} is a
neighborhood of 0, hence there is a neighborhood N of w
such that f(N) = 0. It follows that there is a finite set of
indices I′ = {α1, . . . , αk} and neighborhoods Nαi of w(αi) in
Xαi, i = 1, . . . , k, such that .
Define a point  by setting x′(αi) = w(αi), i = 1, . . . , k, x′
(α) = x(α) for all other . Then  so f(x′) = 0. Since
x(α) = x′(α) except for , f(x) = 0.



EXERCISES

1. On the real line, prove that the set of non-zero numbers is not a connected
set.

2. Let A and B be subsets of a topological space X. If A is connected, B is
open and closed, and A ∩ B ≠ Ø, prove that . [Hint: Assume 
and use the sets P = A ∩ B and Q = A ∩ C(B) to prove that A is not
connected.]

3. Let A and B be connected subsets of a topological space X. If A ∩ B ≠ Ø,
prove that A ∪ B is connected. [Hint: in the topological space A ∪ B, show
by using the result of Problem 2 that the only non-empty open and closed
subset is A ∪ B.]

4. Let A and B be non-empty subsets of a space X. Prove that A ∪ B is
disconnected if . Prove that X is connected if and
only if for every pair of non-empty subsets A and B of X such that X = A ∪
B we have .

5. Prove that a space X is connected if and only if for every non-empty
subset A of X different from X we have Bdry (A) ≠ Ø.

3 CONNECTEDNESS ON THE REAL LINE

In this section we shall define the term “interval” and prove that a non-empty
subset of the real line is connected if and only if it is either a single point or
an interval.

DEFINITION 3.1 A subset A of the real line is called an interval if A contains
at least two distinct points, and if given points a, b ∈ A with
a < b, then for each point x such that a < x < b, it follows
that x ∈ A.

Thus, an interval contains all points between any two of its points. It is a
simple matter to verify that a closed interval [a, b] or an open interval (a, b)
is an interval in the sense of Definition 3.1. Other subsets of the real line that
are intervals are defined in Definition 3.2.



DEFINITION 3.2 Let a be a real number. The subset of R consisting of all real
numbers x such that a < x is denoted by (a, + ∞). The subset
of R consisting of all real numbers x such that  is
denoted by [a, + ∞). The subset of R consisting of all real
numbers x such that x < a is denoted by (−∞, a). The subset
of R consisting of all real numbers x such that  is
denoted by (−∞, a].

Let b be a second real number with a < b. The subset of
R consisting of all real numbers x such that  is
denoted by (a, b]. The subset of R consisting of all real
numbers x such that  is denoted by [a, b).

We shall also denote R itself by (−∞, + ∞).

The subsets of R that have been mentioned in this section exhaust the
collection of intervals.

THEOREM 3.3 A subset A of the real numbers is an interval if and only if it is
of one of the following forms: (a, b); [a, b); (a, b]; [a, b];
(−∞, a); (−∞, a]; (a, + ∞); [a, + ∞); (−∞, +∞).

Proof. We leave it to the reader to verify that each of these
nine types of sets is an interval and shall prove the “only if”
part of the theorem. Suppose A is an interval. We first note
that if a point , then either x is a lower bound of A or an
upper bound of A, for otherwise there would be points 

 with a < x < b and we would obtain the contradiction
. We shall, consequently, distinguish four cases.

Case 1. A has neither an upper bound nor a lower bound.
In this case C(A) must be empty so that A = (−∞, +∞).

Case 2. A has an upper bound but no lower bound. Since
an interval is non-empty, A has a least upper bound a. We
claim that if x < a, then . For, suppose x < a, then there
is a point  with  (for otherwise a would not be
a least upper bound). Since x cannot be a lower bound of A
there is a point  with b < x. But b < x < a′ and 
imply that . We have thus shown that . On
the other hand, for x > a, . It follows that A is



either of the form (−∞, a] or (−∞, a), depending on whether 
 or .

Case 3. A has a lower bound but no upper bound. By
reasoning similar to that of Case 2, one shows that A is either
of the form [a, +∞) or (a, +∞), where a is the greatest lower
bound of A.

Case 4. A has a lower bound and an upper bound. Let a be
the greatest lower bound of A and let b be the least upper
bound of A. Since A contains at least two distinct points, a <
b. A point x, if it is to lie in A, must therefore lie in [a, b], so
that . We claim that a < x < b implies that .
This implication follows from the fact that for any such point
x, there must be points a′ and b′ with  and 

. Hence . Consequently, A
must be of one of the four forms (a, b), [a, b), (a, b], or [a,
b], depending on which, if any, of the two points a, b belong
to A.

We shall now prove that apart from the empty set and single points, the
only connected subsets of the real line are intervals.

THEOREM 3.4 A subset A of the real line that contains at least two distinct
points is connected if and only if it is an interval.

Proof. We shall first show that if A is not an interval then it
is not connected. If A is not an interval, then there are points
a, b, c with a < c < b and , whereas . Let P =
(−∞, c), Q = (c, +∞). P and Q are open subsets of the real
line that satisfy the conditions of Lemma 2.3; hence A is not
connected.

Conversely, we shall show that if A is not connected then
A is not an interval. If A is not connected, by Lemma 2.4,
there are closed subsets F and G of the real line such that 

 and both F and G contain a point of
A. Assume that the notation is such that there is a point 

 and a point  with a < b. We shall find a
point between a and b that is not in A. Let G′ = G ∩ [a, b].
Then G′ is a closed non-empty subset of the real line and,



consequently, contains its greatest lower bound c. We cannot
have a = c, for then A ∩ F ∩ G ≠ Ø, contradicting 

. Thus, a < c. Next, let F′ = F ∩ [a, c]. F′ is also
a closed non-empty subset of the real line and therefore
contains its least upper bound d. In the event that c = d we
have , hence  and A is not an interval.
Otherwise d < c and (d, c) ∩ (F ∪ G) = Ø so that (d, c) ∩ A =
Ø, and again A does not contain a point between a and b and
is therefore not an interval.

EXERCISES

1. Let f:R → R be continuous. Prove that the image under f of each interval is
either a single point or an interval.

2. Prove that a homeomorphism f:[a, b] → [a, b] carries end points into end
points.

3. Let A and B be subsets of R. A function f:A → B is called monotone
increasing if  and x < y imply f(x) < f(y).
(a) Let f:A → B be monotone increasing. Prove that f:A → B is one-one.
(b) Let f:[a, b] → [f(a), f(b)] be monotone increasing and continuous.

Prove that f is a homeomorphism.

4 SOME APPLICATIONS OF CONNECTEDNESS

THEOREM 4.1 (Intermediate-Value Theorem). Let f:[a, b] → R be continuous
and let f(a) ≠ f(b). Then for each number V between f(a) and
f(b) there is a point  such that f(v) = V.

Proof. [a, b] is connected, hence f([a, b]) is connected and
is therefore an interval. Now,  . Thus if V is
between f(a) and f(b), since f([a, b]) is an interval, 
; that is, there is a  such that f(v) = V.



Theorem 4.1 states that for each V between f(a) and f(b), the horizontal line
y = V intersects the graph of y = f(x) at some point (v, V) with a < v < b, as
indicated in Figure 12.

If the domain of a continuous real-valued function contains an interval [a,
b], then its restriction to [a, b] is continuous and we can assert that f must
assume at least once each value between f(a) and f(b) over the interval [a, b].

Figure 12

As a special case of the intermediate-value theorem, namely V = 0, we
have

COROLLARY 4.2 Let f: [a, b] → R be continuous. If f(a)f(b) < 0, then there is
an  such that f(x) = 0.

COROLLARY 4.3 (Fixed-Point Theorem). Let f:[0, 1] → [0, 1] be continuous.
Then there is a  such that f(z) = z.

Proof. In the event that f(0) = 0 or f(1) = 1, the theorem
is certainly true. Thus, it suffices to consider the case in
which f(0) > 0 and f(1) < 1. Let g:[0, 1] → R be defined by

g(x) = x − f(x)

(therefore, if g(z) = 0, f(z) = z). g is continuous and g(0) = −
f(0) < 0, whereas g(1) = 1 − f(1) > 0. Consequently, by
Corollary 4.2, there is a  such that g(z) = 0, whence
f(z) = z.

We may interpret this theorem geometrically. Since f: [0, 1] → [0, 1], the
graph of y = f(x) is contained in the unit square defined by 



. The point (z, f(z)) given by the theorem lies on both the
graph of y = f(x) and the line y = x. Hence the theorem asserts that the graph
of y = f(x) intersects the line y = x in this square (see Figure 13), or
equivalently, that in order for the curve which constitutes the graph to
connect a point on the left-hand edge of the square with a point on the right-
hand edge of the square, the curve must intersect the diagonal of the square
pictured in Figure 13.

Figure 13

The reason for calling Theorem 4.3 a fixed-point theorem is that, if we
think of f: [0, 1] → [0, 1] as a transformation that carries each point x of [0,
1] into the point f(x) of [0, 1], then to say that f(z) = z is to say that the
transformation f leaves z “fixed.”

There are many so-called “fixed-point” theorems, of which Corollary 4.3 is
undoubtedly the simplest. In general, a fixed-point theorem is one that states
that for a specified topological space X each continuous function f:X → X
possesses a fixed point; that is, there is necessarily a  such that f(z) = z.
One of the convenient facts about a fixed-point theorem is that if X and Y are
homeomorphic topological spaces and a fixed-point theorem is true for X,
then it is also true for Y.

THEOREM 4.4 Let X and Y be homeomorphic topological spaces. Then each
continuous function h: X → X possesses a fixed point if and
only if each continuous function k: Y → Y possesses a fixed
point.

Proof. Let f:X → Y and g:Y → X be a pair of continuous
inverse functions. Let k: Y → Y be a continuous function so
that we have the diagram



and suppose that each continuous function h: X → X
possesses a fixed point. Then the function h = gkf:X → X is
continuous and there is  such that h(z) = z. Let w = f(z).
We have

Thus, w is a fixed point of k. Since the hypotheses are
symmetric with regard to X and Y, it also follows that if each
continuous function k:Y → Y has a fixed point then so does
each continuous function h:X → X.

Any two closed intervals [a, b] and [c, d] are homeomorphic Since a fixed-
point theorem holds for [0, 1], we obtain

COROLLARY 4.5 Let f:[a, b] → [a, b] be continuous. Then there is a 
such that f(z) = z.

Theorem 4.3 is a special case of the “Brouwer Fixed-Point Theorem,”
which we shall now state. Recall that in Rn, the unit n-cube In is defined as
the set of points (x1, x2, . . . , xn) whose coordinates satisfy the inequalities 

 for i = 1, 2, . . . , n.

THEOREM 4.6 (Brouwer Fixed-Point Theorem). Let f:In → In be continuous.
Then there is a point  such that f(z) = z.

We shall not prove this theorem. However, one can supply a very
suggestive argument for the truth of the theorem in the case n = 2. To this end
we may, on the basis of Theorem 4.5, work with a topological space
homeomorphic to I2. If we think of I2 as being a surface constructed of elastic
material, we may conceive of a deformation or stretching by which we obtain
a surface that is a disc; that is, the set of points (x1, x2) in the plane whose
coordinates satisfy the inequality . Thus, the disc is homeomorphic



with I2, and we may argue the validity of the fixed-point theorem with regard
to the disc.

Let g be a continuous transformation of this disc into itself. Suppose that it
were possible that for each point x of the disc, we had g(x) ≠ x. Then for each
point x in the disc, there would be a unique half-line Lx emanating from g(x)
and passing through x (see Figure 14). The half-line Lx will contain a point on
the boundary of the disc other than g(x). Let us call this point h(x). In
particular, if y is a boundary point of the disc, then h(y) = y. This is true even
if g(y) itself is a boundary point, as may be seen by examining the various
cases depicted in Figure 14. Using the given transformation g we have thus
constructed a new transformation h, which has the property that it carries
each point of the disc into a boundary point and leaves each boundary point
fixed (h is called a “retraction” since it retracts or pulls the interior of the disc
onto its boundary while leaving the boundary fixed).

Figure 14

We next argue that the transformation h is continuous, for the image h(x)
will vary by a small amount if we suitably restrict the variation of x. Though
it is by no means simple to prove that no continuous transformation such as h
can exist, our intuition should tell us that none can. For if there were a
function such as h we should be able to retract the head of a drum onto the
rim, although intuitively we know that we can do so only by ripping the drum
head someplace; that is, by introducing a discontinuity. Since there is no



function such as the retraction h, we have obtained a contradiction, and
therefore our supposition that g did not have a fixed point is untenable.

Another application of the intermediate-value theorem relates to the
concept of antipodal points on spheres. Let us recall that the n-sphere, Sn, is
the set of points (x1, x2, . . . , xn+1) in Rn+1 satisfying the equation 

, the topology of Sn being the relative topology. If (x1,
x2, . . . , xn+1) is in Sn, the pair of points (x1, x2, . . . , xn+1) and (−x1, −x2, . . . ,
−xn+1) are called a pair of antipodal points. Given , it
is convenient to denote (−x1, −x2, . . . , −xn+1) by − x and call −x the antipodal
point of x. A pair x, −x of antipodal points is the pair of end points of a
diameter of the sphere. We shall be particularly interested in the 1-sphere, S1,
which is a circle.

Figure 15

Consider a continuous function f:S1 → R. If we define F:S1 → R by F(x) =
f(x) − f(−x) for , we can show that F(z) = 0 for some ; that is, f(z)
= f(−z), or f has the same value at one or more pairs of antipodal points. The
proof of this fact is motivated by the consideration that a value of F is
determined by a diameter of the circle and a designation of one of its
extremities as x and the other as −x. If we rotate this diameter through π
radians, as indicated in Figure 15, then the initial value of F corresponding to
Figure 15a is opposite in sign to the final value of F corresponding to Figure
15c. But F is continuous, so its value must be zero for some position of the
diameter corresponding to a value of θ with , where θ is the angle
through which the diameter has been rotated. Thus F(z) = 0 and



THEOREM  4.7 Let f: S1 → R be continuous, then there exists a pair of
antipodal points  such that f(z) = f(−z).

Theorem 4.7 is the case n = 1 of the Borsuk-Ulam Theorem.

THEOREM  4.8 Let f: Sn → Rn be continuous. Then there exists a pair of
antipodal points  such that f(z) = f(−z).

We shall not prove this theorem. The case n = 2 answers a question about
map making. The 2-sphere S2 may be thought of as the surface of a globe. In
this case the Borsuk-Ulam Theorem gives a negative answer to the question,
“Is it possible to draw a map of the surface of the earth on a flat sheet of
paper so that distinct points on the surface of the earth correspond to distinct
points on the map, and nearby points on the surface of the earth correspond to
nearby points on the map?” The reason the answer to this question is “no” is
that otherwise the existence of such a correspondence would imply the
existence of a continuous function f: S2 → R2 that was one-one, and this
possibility is ruled out by the Borsuk-Ulam Theorem.

EXERCISES

1. Prove that a polynomial of odd degree considered as a function from the
reals to the reals has at least one real root.

2. Let f: [a, b] → R be a continuous function from a closed interval into the
reals. Let U = f(u) and V = f(v) be such that  for all .
Prove that there is a w between u and v such that .

3. Let F: R2 → R be a real-valued function defined and continuous on the
plane. For each continuous function f: [a, b] → R we may define a new
continuous function Kf: [a, b] → R by setting 
. Thus, if S is the set of continuous real-valued functions defined on [a, b],
K defines a transformation of S into itself. Prove that an element  is a
fixed point of K if and only if g satisfies the differential equation g′(x) =
F(x, g(x)) with initial condition g(a) = 0.



4. Prove that the mapping p: R → S1 defined by p(t) = (cos t, sin t) for 
is continuous and that therefore, for each continuous function g: S1 → R,
there is a continuous function φ:R → R such that the diagram

is commutative. Let f: S1 → R be continuous and define F: S1 → R by F(x)
= f(x) − f(−x) for . Prove that (Fp)(t) = − (Fp)(t + π), and that
therefore there is a  such that (Fp)(z) = 0. Then show that if x =
p(z), f(x) = f(−x), thereby proving Theorem 4.7.

5 COMPONENTS AND LOCAL CONNECTEDNESS

In any topological space X, each point  belongs to a maximal connected
subset of X called the “component of a.”

THEOREM 5.1 Let X be a topological space. For each point  there is a
non-empty subset Cmp(a), called the component of a, with
the property that Cmp(a) is connected and if D is any
connected subset of X containing a, then .

Proof. There are connected subsets of X containing a for
{a} is such a subset. Let I be an indexing set for the family of
connected subsets  containing a. We set .
Thus, if D is any connected subset of X containing a, D = Dβ
for some , whence . It remains to prove that
Cmp(a) is connected. Suppose it is not. Then there are
nonempty relatively open subsets A and B of Cmp(a) such
that A ∩ B = Ø and . Assume the notation is
such that  and let b be a point of B. Since 

 for some connected subset Dγ of X
containing a. Now , hence A′ = A ∩ Dγ and B′ =



B ∩ Dγ are non-empty relatively open subsets of Dγ.
Furthermore,   and 

. Consequently, the supposition
that Cmp(a) is not connected yields the contradiction that Dγ
is not connected. Therefore Cmp(a) is connected.

LEMMA 5.2 In a topological space X, let . Then Cmp(b) = Cmp(a).

Proof. Since  and Cmp(a) is a connected set
containing b, by Theorem 5.1, . But ,
hence , so, by the same reasoning it follows that 

 and therefore Cmp(a) = Cmp(b).

COROLLARY 5.3 In a topological space X, define . Then ~ is
an equivalence relation.

Proof. Since {a} is connected,  so a ~ a
If a ~ b or , then by 5.2, Cmp(a) = Cmp(b). We
have already seen that , so  and b ~ a.
Finally, if a ~ b and b ~ c, then as before, Cmp(a) =
Cmp(b) = Cmp(c), whence  and a ~ c.

A subset of X that is a component of some point  is called a
component of X. The components are the equivalence sets under the relation 

. They constitute a partition of X into maximal connected subsets in
the sense of the following definition.

DEFINITION  5.4 Let X be a set and  an indexed family of nonempty
subsets of X.  is called a partition of X if:

 (i) ;

(ii) .

THEOREM 5.5 Let A be a connected subset of a topological space X and let 
. Then B is also connected.

Proof. We shall show that if B is not connected then A is
not connected. For suppose there are open subsets P, Q of X
such that  , and Q ∩ B ≠ Ø.



It would follow that  and since 
. To prove that A is not connected

we must show that P ∩ A ≠ Ø and Q ∩ A ≠ Ø If P ∩ A = Ø,
then A would be contained in the closed set C(P), hence 

 or . But this last relation would imply that
P ∩ B = Ø. Thus, P ∩ A ≠ Ø. Similarly, Q ∩ A ≠ Ø.

COROLLARY 5.6 The closure of a connected set is connected.

COROLLARY 5.7 In a topological space, each component is a closed set.

Proof. Let A be a component, say A = Cmp(a). Then Ā
is a connected set containing a and therefore 

. But , hence in this case A = Ā and A is
closed.

It might be thought that a component must also be an open set, but it need
not be as the following example will indicate. Let X be the subspace of the
real line consisting of the points 0 and all numbers of the form  a positive
integer. The only connected set containing 0 is {0}, thus Cmp(0) = {0}. On
the other hand {0} is not a neighborhood of 0 in X and hence {0} is not an
open subset of X.

A sufficient condition for the components in a space to be open is that the
space be “locally connected.”

DEFINITION 5.8 A topological space X is said to be locally connected at a
point  if each neighborhood N of a contains a
connected neighborhood U of a. A topological space X is
said to be locally connected if it is locally connected at each
of its points.

LEMMA 5.9 Let X be a locally connected topological space and let Q be a
component. Then Q is an open set.

Proof. Let . Since X is locally connected there is at least
one connected neighborhood N of a. But Q = Cmp(a), hence by
Theorem 5.1, , which, in turn, implies that Q is a



neighborhood of a. Thus, Q is a neighborhood of each of its
points and therefore Q is open.

If X is locally connected at a then there are “arbitrarily small” connected
neighborhoods of a, for, given any neighborhood N of a, there is a connected
neighborhood  that is at least as “small” as N. An equivalent
formulation of local connectedness is obtained by utilizing the concept of
basis for the neighborhoods at a.

LEMMA 5.10 A topological space is locally connected at a point  if and
only if there is a basis for the neighborhoods at a composed of
connected subsets of X.

Proof. First, suppose that X is locally connected at a and let
Ua be the collection of connected neighborhoods of a. Since
every neighborhood N of a contains an element of Ua, Ua is a
basis for the neighborhoods at a. Conversely, if there is a basis
Ua for the neighborhoods of a consisting of connected sets,
each neighborhood N must contain an element of Ua and
therefore X is locally connected at a.

EXERCISES

1. Prove that a non-empty connected subset of a topological space that is
both open and closed is a component.

2. Let X be a topological space that has a finite number of components.
Prove that each component of X is both open and closed.

3. Verify that local connectedness is a topological property, but the
continuous image of a locally connected space need not be locally
connected.

4. Let X and Y be homeomorphic topological spaces. Prove that any
homeomorphism f:X → Y establishes a one-one correspondence between
the components of X and the components of Y.



5. Prove that the product of two locally connected topological spaces is
locally connected.

6. Prove that Euclidean n-space Rn and the standard n-cube In are locally
connected.

6 PATH-CONNECTED TOPOLOGICAL SPACES

In the three-dimensional geometry of the calculus, one often discusses a
curve in terms of a parametric representation, usually written x = f(t), y =
g(t), z = h(t). If not stated explicitly, it is generally understood that the three
functions f, g, h are at least continuous, if not differentiable over some
common interval [a, b] as their domain, and therefore F(t) = (f(t), g(t), h(t))
defines a continuous function F:[a, b] → R3. The curve in question is, from
this viewpoint, the image of [a, b] under F; that is, F([a, b]). We may think of
this curve as “connecting” the two points F(a) = (f(a), g(a), h(a)) and F(b) =
(f(b), g(b), h(b)). Given two points , the question of whether or not
there is a curve “connecting” A and B is therefore seen to be the same as the
question of whether or not there is a continuous function F:[a, b] → R3 such
that F(a) = A and F(b) = B. Furthermore, the interval [a, b] may just as well
be restricted to [0, 1], for using any homeomorphism φ:[0, 1] → [a, b], one
may show that the required F:[a, b] → R3 exists if and only if a
corresponding G = Fφ:[0, 1] → R3 exists. These observations motivate the
following two definitions:

DEFINITION 6.1 Let X be a topological space. A continuous function f:[0, 1]
→ X is called a path in X. The path f is said to connect or
join the point f(0) to the point f(1). f(0) is called the initial
point and f(1) is called the terminal point of the path f.

If f is a path in X, f([0, 1]) is called a curve in X.

DEFINITION  6.2 A topological space X is said to be path-connected if, for
each pair of points , there is a path f connecting u to
v.



A non-empty subset A of a topological space X is said to
be path-connected if the topological space A in the relative
topology is path-connected.

The real line R is a path-connected space, for if a, b are two real numbers,
the path f:[0, 1] → R defined by

for  connects f(0) = a and f(1) = b. Rn is also path-connected. This
may be seen by either joining a given pair x, y of points of Rn by a path, or by
using the general result that if X and Y are path-connected spaces, then so is X
× Y (see Exercise 5 of this section). Another significant class of path-
connected spaces is the spheres, Sn, n > 0.

A path f in a topological space X whose initial and terminal points coincide
is called a closed path or a loop in X. Though such paths play a significant
role in topology, we shall not be concerned with them in this section.

If f is a path in a topological space X and g is a continuous mapping of X
into a second topological space Y, then the composite function gf:[0, 1] → Y
is a path in Y.

THEOREM 6.3 Let Y be a topological space. If there exists a path-connected
topological space X and a continuous mapping g:X → Y,
which is onto, then Y is path-connected.

Proof. Let . Since g:X → Y is onto, there are points 
 such that g(a′) = a, g(b′) = b. Since X is path-

connected, there is a path f in X joining a′ to b′ and,
consequently, the path gf joins a to b.

Note the necessity of the requirement that g:X → Y be onto. It follows that
given homeomorphic topological spaces X and Y, X is path-connected if and
only if Y is path-connected. Thus, path-connectedness is a topological
property.

Path-connectedness is a stronger property than connectedness; that is, if a
topological space X is path-connected then X is connected.

THEOREM  6.4 Let X be a path-connected topological space, then X is
connected.



Proof. Suppose X were not connected. Then there is a
proper subset P of X which is both open and closed. Since P
is proper, there is a point  and a point . Let f:[0,
1] → X be a path from a to b. f−1(P) is a proper subset of [0,
1] for  . Since f is continuous, f−1(P) is both
open and closed. But this contradicts the fact that [0, 1] is
connected. Therefore X is connected.

The converse of Theorem 6.4 is false. A counter-example to the converse,
that is, a topological space that is connected but not path-connected, is the
subspace of the plane consisting of the set of points (x, y) such that either

or

One may obtain some idea of this space by referring to Figure 15, where we
have tried to show the main characteristics of this space. It is impossible to
picture this space completely, for, as the values of x approach 0, the
oscillation of the graph  becomes more and more rapid.

Figure 16

It is not difficult to prove that this space is connected. First of all let us
decompose this space into two subsets Z1 and Z2, where Z1 is the set of points



 on the Y-axis, and Z2 is the complementary set consisting
of those points   and . The function 

 defines a continuous mapping of the connected interval (0,

1] onto Z2, hence Z2 is connected. To prove that the entire space 
is connected, we shall prove that ; that is, . This is so because
there are points of Z2 arbitrarily close to each point of Z1. For, let 
and let ε > 0 be given. We may find an even integer N sufficiently large so
that . Now  and , hence by the

intermediatevalue theorem there is a number  such that 

. The point  is in Z2 and its distance from (0, y) is less than
ε. Thus  and  is the entire space Z. By Corollary 5.6, Z is connected.

Now suppose there was a path F:[0, 1] → Z with initial point 
 and terminal point . Let us write F(t) =

(F1(t), F2(t)). Then F1 and F2 are continuous functions and F1(0) = 0, F1(1) =
1. The set U = F1

-1 ({0}) is a closed bounded subset of the real numbers and
hence contains its least upper bound t*. Since F1(1) ≠ 0, t* < 1. We shall show
that because of the oscillation of  for values of x close to zero, the
function F2 cannot be continuous at t*. For each value of t such that 
we have F1(t) > 0, hence  and . We shall show that for
each δ > 0 with , there is a value of t such that |t* − t| < δ whereas 

. First F1(t* + δ) > 0, hence there is an even integer N
sufficiently large so that  . By the
intermediate-value theorem, we may find  such that 

. Since u, v > t* we have 
 . Thus, if 

 , whereas if 
. This contradicts the continuity of F2 at t*.

Thus no path such as F exists and therefore our space Z is not path-
connected.



EXERCISES

1. Prove directly by constructing appropriate paths that the topological
spaces Rn, In (the unit cube), and Sn(n > 0) are pathconnected.

2. Verify that in a topological space X
  (i) if there is a path with initial point A and terminal point B, then there
is a path with initial point B and terminal point A, and
 (ii) if there is a path connecting points A and B and a path connecting
points B and C, then there is a path connecting points A and C.

3. The path component of a point x in a topological space X is the set of all
points of X that may be connected to x by a path in X. Denote this subset
by PCmp(x). Verify:
  (i) for each ;
 (ii) for each , if , then ;
(iii) for each  and , then ;
(iv) for each  is path-connected;
 (v) if A is a path-connected subset of X, then  for some .
(vi) X is path-connected if and only if X, then  for some 
.

4. If A and B are path-connected subsets of a topological space X and A ∩ B
≠ Ø, then A ∪ B is path-connected.

5. Let  be an indexed family of topological spaces and set .
For each  let fα:I → Xα be a path in Xα. Set (fA(t))(α) = fα(t) so that
fA:I → X. Prove that fA is a path in X. Prove that if each Xα is path-
connected, so is X.

6. Let X be a topological space, and let TX and SX be the cone over X and the
suspension of X respectively. Prove that TX and SX are both path-
connected.

7 HOMOTOPIC PATHS AND THE FUNDAMENTAL GROUP



The collection of points on and between the two concentric circles x2 + y2 = 1
and x2 + y2 = 2 is called an annulus. It is easy to see that this annulus is path-
connected. For example, given two points p0 = (x0, y0) and p1 = (x1, y1), one
may construct a path from p0 to p1 by first traversing the radius on which p0
lies until we reach a point whose distance from the origin is the same as that
of p1 and then traversing in a clockwise direction the circular arc from this
point to p1 (see Figure 17). Let us call this path F0. Alternately, one may
construct a second path F1 from p0 to p1, by first traversing in a clockwise
direction a circular arc from p0 to the radius on which p1 lies and then
traversing this radius until p1 is reached. If, for the moment, we think of each
of these two paths F0 and F1 as being represented by elastic strings with
initial point p0 and terminal point p1, it is clear that in a given unit of time it
would be possible to smoothly deform the path F0 into the path F1 (keeping
p0 and p1 fixed throughout the deformation). This deformation might be
carried out so that at time  the string lies over the curve F1/4 of Figure
18, at time  the string lies over F1/2, and at time  the string lies over
F3/4. We may thus conceive of the deformation of the path F0 into the path F1
as being accomplished by constructing an entire family of paths Ft for 

, such that if t and t′ are close then the paths Ft and Ft′ are “close.”

Figure 17



Figure 18

The concept of regarding two paths as being “close” implies the
introduction of some sort of topology in this set of paths. Although this
topology might be introduced directly by defining open set or neighborhood
in the set of paths, an easier procedure is first to regard the unit of time as a
unit interval on a line. Instead of viewing the two original paths F0 and F1 as
being defined on the same unit interval, let us view F0 as temporarily being
defined on the homeomorphic image I0 of the unit interval, where I0 is the set
of points (x, 0) in the plane with  (see Figure 19). Similarly, let us
view F1 as being defined on I1, where I1 is the set of points (x, 1), .
For each value of t, , we may view the path Ft as being defined on
the homeomorphic image of the unit interval It, where It is the set of points
(x, t), . If we have such a situation, we may define a function H:I2 →
X, where I2 is the unit square and X is our annulus, by setting H(x, t) = Ft(x,
t), as depicted in Figure 19. Equivalently, if we insist on viewing each path Ft
as being defined on the same unit interval I, we may still obtain the same
function H by setting H(x, t) = Ft(x). We now introduce the concept of
closeness amongst paths by requiring that the function H:I2 → X be
continuous.

Figure 19



DEFINITION 7.1 Let F0, F1 be two paths in a topological space X with the
same initial point p0 = F0(0) = F1(0) and the same terminal
point p1 = F0(1) = F1(1). F0 is said to be homotopic to F1 if
there is a continuous function H:I2 → X such that

The function H is called a homotopy connecting F0 to F1.

In this event we say that the path F0 is deformable into the path F1 with
fixed end points. One may illustrate the fact that a path F0 is homotopic to F1
by indicating that I2 is the domain of the homotopy H, where the boundary of
I2 is mapped in agreement with the conditions of Definition 7.1 (see Figure
20).

Figure 20

The relation of homotopy between paths satisfies the following three
properties.

THEOREM 7.2 Let F0, F1, F2 be three paths in a topological space X with the
same initial point p0 and the same terminal point p1.

   (i) F0 is homotopic to itself.
 (ii) If F0 is homotopic to F1 then F1 is homotopic to F0.
(iii) If F0 is homotopic to F1 and F1 is homotopic to F2

then F0 is homotopic to F2.



Proof. To show that F0 is homotopic to itself we need only
define H:I2 → X by H(x, t) = F0(x). Next, suppose that F0 is
homotopic to F1 so that there is a homotopy H:I2 → X from
F0 to F1. For each , set H′(x, t) = H(x, 1 − t). Then H′
is easily seen to be a homotopy from F1 to F0. To prove (iii),
first let G be a homotopy from F0 to F1 and let H be a
homotopy from F1 to F2. We may construct a homotopy from
F0 to F2 in stages. First, we alter H to a function H′ defined
for (x, t′) with  so that G and H′ together constitute a
function K′ defined for (x, t) with . Finally, we
compress K′ to a function K again defined on I2. The
diagrams of Figure 21 depict this process. To this end let 

. We then have two functions G and H′, G defined
on the subset A = I2 of the plane and H′ defined on the subset
B consisting of the points (x, t) such that  and 

. The set A ∩ B consists of the points (x, 1), 
and therefore we have G(x, 1) = F1(x), H′(x, 1) = H(x, 0) =
F1(x); that is, G and H′ agree in their common domain of
definition. We shall now prove a lemma that asserts that
together G and H′ define a continuous function .



Figure 21

LEMMA 7.3 Let A, B be closed subsets of a topological space Z. Let g:A → X
and h:B → X be continuous functions with the property that for 

. Then the function k:A ∪ B → X defined
by k(z) = g(z), , k(z) = h(z), , is a continuous extension
of g and h.

Proof. Let U be a closed subset of X. Then g−1(U) is a
relatively closed subset of A and, since A is closed, g−1(U) is a
closed subset of Z. Similarly, h−1(U) is a closed subset of Z. But

, hence k−1(U) is closed and k is
continuous.



Continuing now with the proof of Theorem 7.2, the function
K′: A ∪ B → X defined by  

 is continuous. We finally
“compress” K′ to the function K:I2 → X defined by 

. To recapitulate, for  with 
, we have

whereas for , we have

From these two equations it follows that K(0, t) is the initial
point of F0 and F2, K(1, t) is the terminal point of F0 and F2,
and that K(x, 0) = G(x, 0) = F0(x), whereas K(x, 1) = H(x, 1) =
F2(x). Therefore K is a homotopy from F0 to F2. This completes
the proof of Theorem 7.2.

If F is a path that is homotopic to a path G we shall write F ≅ G. Theorem
7.2 then states: (i) F0 ≅ F0 (ii) if F0 ≅ F1 then F1 ≅ F0; (iii) if F0 ≅ F1 and
F1 ≅ F2 then F0 ≅ F2. Thus ≅ is an equivalence relation. We shall denote
the equivalence class of a path F by [F].

DEFINITION 7.4 An equivalence set of homotopic paths is called a homotopy
class of paths. At a point z in a topological space Z the
collection of homotopy classes of closed paths at z is
denoted by Π(Z, z). Among these homotopy classes there is
the homotopy class 〚ez〛 , where ez is the constant path
defined by .

The remainder of this section will be devoted to showing that there is a
natural procedure whereby II(Z, z) may be converted into a group with [ez] as
its identity.

DEFINITION 7.5 Let F, G:I → Z be closed paths at . Define F · G:I → Z
by



Since F(1) = G(0) = z, by Lemma 7.3 F · G is a closed path at z. F · G is
called the product or concatenation of F and G or F followed by G. We will
now show that this product induces a product in II(Z, z).

LEMMA 7.6 In II(Z, z) let 〚F〛 = 〚F′〛 and 〚G〛 = 〚G′〛, then 〚F ·
G〛 = 〚F′ · G′〛.

Proof. We are given homotopies K, L:I2 → Z connecting F to
F′ and G to G′ respectively. In effect, a concatenation of the
homotopies K and L yields a homotopy connecting F · G to F′ ·
G′. Let H(t, s) = K(2t, s), , and H(t, s) =
L(2t − 1, s), . Since K(1, s) = L(0, s)
= z, Lemma 7.3 shows that H is continuous, while H(t, 0) = (F ·
G)(t), H(t, 1) = (F′ · G′)(t), and H(0, s) = H(1, s) = z.

DEFINITION 7.7 In II(Z, z) let 〚F〛·〚G〛 = 〚F · G〛.

LEMMA 7.8 〚F〛 · 〚ez〛 = 〚ez〛·〚F〛 = 〚F〛 for all .

Proof. We shall first show that 〚F〛  · 〚ez〛  = 〚F〛 .
Define H:I2 → Z by

If  and s = 2t − 1, then . Thus, by Lemma 7.3,
H is continuous. If s = 1 then  and H(t, 1) = F(t). If s =
0 then for  we have  so that H(t, 0) = F(2t)
while for  we have  so that H(t, 0) = ez(t) = z.
Therefore H(t, 0) = (F · ez)(t) and H connects F · ez to F.

To show that [ez] · [F] = [F], we define H(t, s) = z for 
and  for  and in similar fashion show that



H connects Fz to ez · F.

The apparent complexity of the expressions for the homotopies H in these
two cases is explained by the use of the following two Figures. In Figure 22
we have projected the point  with  onto the point 

 from the point (0, −1). In this fashion as s goes from 0 to 1 the
interval  is gradually enlarged until it becomes the interval 

 . By analytic geometry . By setting 

 we have arranged matters so that for a fixed s the interval 

 is mapped in such a way as to trace out the same path as F.

Finally the interval  is mapped into z. Thus we have started out
along the interval , mapping this horizontal interval by F · ez
and gradually, as s increases, increased the length of the horizontal interval
mapped using F and decreased to zero the length of the horizontal interval
mapped by ez.

Figure 22



Figure 23

Similarly, using Figure 23, the projection of the point  with 
onto the point  from the point (1, 2) results in gradually
contracting the interval , into the interval .

DEFINITION 7.9 Let F:I → Z be a path. Define F−1:I → Z by F−1(t) = F(1 −
t).

If F is a path from z to y then F−1 is a path from y to z. In particular if F is a
closed path at z then F−1 is also a closed path at z which may be thought of as
F traversed in the opposite sense.

LEMMA 7.10 For each , 〚F〛 · 〚F−1〛 = 〚F−1〛 · 〚F〛 =
〚ez〛.

Proof. We must show that F · F−1 ≅ ez ≅ F−1 · F. To show
that F · F−1 ≅ ez define H:I2 → Z as follows:

Since the various definitions of H agree when s = 2t and s =
−2t + 2, H is continuous. By setting s = 0 and s = 1, H is easily
seen to be a homotopy connecting ez to F·F−1. Interchanging



the roles of F and F−1 yields a homotopy connecting ez to F−1 ·
F.

Figure 24 may be used to explain the construction of the homotopy H. We
have marked the upper and lower edges of I2 with the symbols for paths to
indicate how the mapping H behaves along these edges. Let Fs(t) = H(t, s).
The path Fs starts out by tracing the path of F at twice its normal rate until s =
2t whereupon it remains stationary at F(s) until s = −2t + 2. The path Fs then
returns to z backwards along this portion of the path of F, again at twice the
normal rate.

Figure 24

We have thus shown that every element of Π(Z, z) has an inverse. To
complete the proof that Π(Z, z) is a group we must show that the product is
associative.

LEMMA 7.11 (〚F〛 · 〚G〛) · 〚K〛 = 〚F〛 · (〚G〛 · 〚K〛) for all 
 .

Proof. We must show that (F · G) · K ≅ F · (G · K). We
define H:I2 → Z as follows:



The various definitions of H agree when s = 4t − 1 and s = 4t −
2 so H is continuous. Again by setting s = 0 and s = 1 it is
easily seen that H is a homotopy connecting (F · G) · K with F
· (G · K).

In Figure 25 we have illustrated the homotopy H. A point (t, s) with 
 is projected from (0, − 1) onto the point  which by (F · G)

· K is mapped into . Points (t, s) with  are

parallel projected onto  which by (F · G) ·K are mapped into 

. Finally a point (t, x) with  is

projected from (1, 2) onto the point  which by (F · G) · K is mapped

into  .

Figure 25

EXERCISES

1. Let X, Y be topological spaces and f:X → Y be a continuous function with
f(x) = y. Let g and g′ be closed paths at . Prove that fg ≅ fg′
whenever g ≅ g′. Set f*〚g〛 = 〚fg〛. Prove that f* is a homomorphism
from Π(X, x) to Π(Y, y).

2. The category of topological spaces with base points has as its objects
pairs of the form (X, x) where X is a topological space and  and has



as its mappings functions f: (X, x) → (Y, y) such that f: X → Y is a
continuous function and f(x) = y. Set F1(X, x) = Π(X, x) and F2(f) = f* as
defined in Exercise 1. Prove that (F1, F2) is a functor from the category of
topological spaces with base points to the category of groups and
homomorphisms as defined in Section 9, Chapter 3.

3. Two groups G and G′ are called isomorphic if there are homomorphisms
h:G → G′ and h′:G′ → G such that h′h is the identity mapping of G and
hh′ is the identity mapping of G′. Prove that if f:X → Y is a
homeomorphism of the topological space X with the space Y such that f(x)
= y then Π(X, x) is isomorphic to Π(Y, y).

4. Let A be a subspace of a topological space X. If there is a continuous
function r:X → A such that r(a) = a for all , A is called a retract of X
and r is called a retraction, i.e., ri = 1A where i:A → X is the inclusion
map and 1A is the identity mapping of A. Let . Prove that if r:X → A
is a retraction then i*:Π(A, a0) → Π(X, a0) is one-one and r*:Π(X, a0) →
Π(A, a0) is onto. Prove that a circle on the boundary of an annulus is a
retract of the annulus.

5. Two continuous functions f, g: X → Y are said to be homotopic if there is a
continuous function H:X × I → Y such that H(x, 0) = f(x), H(x, 1) = g(x).
If furthermore for some  we have , they are
said to be homotopic rel x0. Let f, g:X → Y be homotopic rel x0 and let p:I
→ X be a closed path at x0. Set K(t, s) = H(p(t), s). Prove that K is a
homotopy connecting fp to gp and that therefore f* = g*.

6. A subspace A of a topological space X is called a deformation retract rel
x0 of X if there is a retraction r:X → A such that ir:X → X is homotopic rel
x0 to the identity map of X where i is the inclusion map. Prove that in this
case Π(A, a0) and Π(X, a0) are isomorphic. Prove that the center x0 of a
closed disc is a deformation retract rel x0 of the disc. Let C be the circular
boundary of a closed disc D. Prove that if Π(C, c) contains more than one
element then C cannot be a retract of D.

8 SIMPLE CONNECTEDNESS



DEFINITION 8.1 A topological space Z is said to be simply connected if at
each point  there is only one homotopy class of closed
paths.

Thus if Z is simply connected, at each point  the fundamental group
Π(Z, z) consists of precisely the identity element 〚ez〛. In this case there is
for each closed path f at z a homotopy H: I2 → Z which deforms f into the
constant path ez, as depicted in Figure 26. The possibility of carrying out the
deformation corresponds to the fact that the curve traced out by f does not
enclose any holes in the space Z.

Figure 26

One can prove that an annulus is not simply connected, for, although a
closed path such as C1 (see Figure 27) is homotopic to a constant path, a
closed path such as C2 is not homotopic to a constant path.



Figure 27

THEOREM 8.2 Let Z be a path-connected topological space and let . Z is
simply connected if and only if there is exactly one homotopy
class of closed paths at z.

In order to prove this theorem we must develop a procedure for comparing
the homotopy classes of closed paths at different points.

DEFINITION 8.3 Let f be a path in a topological space Z with z = f(0) and y =
f(1). Let g be a closed path at y. Define gf:I → Z by

gf is a closed path at z which is constructed in accordance with Figure 28.
In particular if g is the constant path ey the

Figure 28

same homotopy used in the proof of Theorem 7.10 shows that (ey)f ≅ ez.



LEMMA 8.4 Let , then .

Proof. Let K:I2 → Z be the homotopy connecting g to g′.
Define H:I2 → Z as follows:

In the usual fashion one verifies that H is a homotopy
connecting gf to g′f.

We may picture the homotopy H as being constructed in accordance with
Figure 29. The homotopy K has been contracted by a factor of 3 on the t-axis
so that it can occupy the middle strip of I2, while the first and third segments
of each horizontal line are appropriately contracted repetitions of f and f−1. In
fact, if f′ is homotopic to f it is easily seen that using a contraction of this
homotopy to map the first strip and the reverse to map the third strip we can
obtain a homotopy connecting gf and g′f′. We have thus shown:

LEMMA 8.5 Let f and f′ be homotopic paths with f(0) = f′(0) = z and f(1) =
f′(1) = y. Then for .

Figure 29

DEFINITION  8.6 Let f:I → Z be a path with z = f(0) and y = f(1). For 
 set af(〚g〛) = 〚gf〛.



PROPOSITION 8.7 af:Π(Z, y) → Π(Z, z) is a homomorphism and if f ≅ f′ then
af = af′.

Proof. Since (ey)f ≅ ez, af carries the identity of Π(Z, y)
into that of Π(Z, z). We must show that

for . Now af(〚g〛 · 〚h〛) = af(〚g · h〛)
= 〚(g · h)f〛 and (af(〚g〛 )) · (af(〚h〛 )) = 〚gf〛  ·
〚hf〛 = 〚gf · hf〛.

Figure 30

Thus we must show that (g · h)f ≅ gf · hf. In Figure 30 we
have indicated how I2 can be mapped along the lower edge
by (g · h)f and along the upper edge by gf · hf. By now the
procedure for constructing the appropriate homotopy
should be clear. The last part follows from Lemma 8.5.

THEOREM 8.8 af:Π(Z, y) → Π(Z, z) and af−1:Π(Z, z) → Π(Z, y) are inverse
functions.

Proof. Suppose . Figure 31 shows how (gf)f−1
is defined. Again a slight modification of the construction
used in Lemma 7.10 provides a homotopy



Figure 31

connecting (gf)f−1 to g. Thus . Similarly
afaf− is the identity.

If Z is path-connected and Π(Z, y) consists of a single element 〚ey〛, then
for any point  there is a path f from z to y and Π(Z, z) = af(Π(Z, y)) is
also a single element. Thus Theorem 8.2 is a corollary to Theorem 8.8.

A homomorphism a:G → G′ of a group G into a group G′ which has an
inverse is called an isomorphism and G and G′ are said to be isomorphic. In
this event a is one-one and onto. The relation G is isomorphic to G′ is an
equivalence relation. Theorem 8.8 therefore states that in a path-connected
space the fundamental groups at any two points are isomorphic.

EXERCISES

1. An isomorphism of a group G with itself is called an automorphism. Let f
and f′ be paths in a space Z with f(0) = f′(1) = z and f(1) = f′(0) = y. Let f′ ·
f−1 be the path defined by  

. Prove that af′af is an
automorphism of Π(Z, y) such that af′af(〚g〛) = 〚f′ · f−1〛 · 〚g〛 · 〚f′
· f−1〛−1.

2. The fundamental groupoid of a space Z has as its objects the points of Z
and as its maps H(z, y) the homotopy classes of paths from z to y. Define a
rule of composition H(z, y) × H(y, w) → H(z, w) so that the fundamental
groupoid of Z becomes a category. Prove that for each  there is
an element  with α−1α = 1z and αα−1 = 1y. Let f:Z → W be
continuous. Let F1(z) = f(z) and F2( 〚 g 〛 ) = 〚 fg 〛  for 

. Prove that (F1, F2) is a functor from the
fundamental groupoid of Z to that of W.



3. Prove that a product of simply connected spaces is simply connected.
4. Prove that for each positive integer n,Rn and In are simply connected.

For further reading, in addition to the more general texts, Wall, A
Geometric Introduction to Topology, Chinn and Steenrod, First Concepts of
Topology, Massey, Algebraic Topology: An Introduction, and Wallace,
Introduction to Algebraic Topology are highly recommended.



CHAPTER 5

Compactness

1 INTRODUCTION

A closed and bounded subset A of the real line R is characterized by the fact
that for each collection  of open subsets of R such that ,
there is a finite subcollection  with . This second
property is stated in terms that are applicable to any topological space. If this
property holds in a particular topological space, the space is said to be
“compact.” The closed and bounded subsets of Rn are precisely the compact
subspaces of Rn. This fact can be either proved directly or established by
proving that the product of two compact spaces is itself compact. In
metrizable spaces there is an alternate formulation of compactness; namely,
that each infinite subset has a “point of accumulation.”

Compactness, like connectedness and arcwise connectedness, is a “global”
property, in that it depends on the nature of the entire space. The advantage in
compact spaces is that one may study the whole space by studying a finite
number of open subsets. We shall see this when we prove that a continuous
function f:X → Y from a compact metric space X to a metric space Y is
“uniformly continuous.” In conclusion we shall examine some compact
surfaces that may be formed by “identifying” edges of a rectangle.

2 COMPACT TOPOLOGICAL SPACES

DEFINITION 2.1 Let X be a set, B a subset of X, and  an indexed family
of subsets of X. The collection  is called a covering
of B or is said to cover B if . If, in addition, the



indexing set I is finite,  is called a finite covering of
B.

Let X be a topological space and for each  let Nx be a neighborhood
of x. Then  is a covering of X. For each integer n, let An = [n, n + 1].
Then , where Z is the set of integers, is a covering of the set R of real
numbers. Similarly, if for each ordered pair (m, n) of integers we let Am, n be
the set of points , such then , is a
covering of R2. As a final example of a covering, let X = R and let B = (0, 1].
If we set , and in general, for each

positive integer n > 1, set , then , where N

is the set of natural numbers, is a covering of B.

DEFINITION 2.2 Let X be a set and let  be two coverings of a
subset C of X. If for each  for some ,
then the covering  is called a subcovering of the
covering .

Thus  is a subcovering of  if “every Aα is a Bβ.” In
particular, if  is a covering of a subset C, and I is a subset of J such
that  is also a covering of C, then  is a subcovering of .
Let Q be the set of rational numbers and for each  set Bq = [q, q + 1].
Then  is a covering of the real numbers R. If again we let Z be the set
of integers and An = [n, n + 1], then  is a subcovering of .

Suppose that f:X → Y is a continuous function from a topological space X
to a metric space Y. Given ε > 0, the continuity of f gives rise to a covering of
X in the following manner. For each , given this ε > 0, there is an open
neighborhood Ux of x such that the images under f of all points of Ux are
within ε of f(x), or equivalently, . The family  of
these subsets of X is clearly a covering of X. This covering has the additional
property that it is composed of open sets. We shall, naturally, refer to such a
covering as an “open” covering.



DEFINITION 2.3 Let X be a topological space and B a subset of X. A covering
 of B is said to be an open covering of B if for each 

, is an open subset of X.

DEFINITION 2.4 A topological space X is said to be compact if for each open
covering  of X there is a finite subcovering 

.

As an alternate definition of compactness we may use the criterion, X is
compact if for each open covering  of X there is a finite subset of
indices {α1, α2, … , αn} such that the collection  covers X.

DEFINITION 2.5 A subset C of a topological space X is said to be compact, if
C is a compact topological space in the relative topology.

A topological space C may be a subspace of two distinct larger topological
spaces X and Y. In this event the relative topology of C is the same whether
we regard C as a subspace of X or of Y, and, consequently, the assertion C is
compact depends only on C and its topology. We may relate the compactness
of a subspace C of a topological space X to the topology of X by means of the
following theorem.

THEOREM 2.6 A subset C of a topological space X is compact if and only if
for each open covering  of C, Uα open in X, there is a
finite subcovering  of C.

Proof. Let C be compact and let  be an open
covering of C. Then  is a covering of C by
relatively open sets. Thus there is a finite sub-covering 

 and  covers C. Conversely, suppose that
for each open covering  of C there is a finite
subcovering. Let  be a covering of C by relatively
open subsets of C. For each  where Uβ
is open in X. Thus  is an open covering of C. By our
hypothesis there is a finite subcovering  It
follows that  covers C and C is compact.

Compactness may be characterized in terms of neighborhoods.



THEOREM 2.7 A topological space X is compact if and only if, whenever for
each  a neighborhood Nx of x is given, there is a finite
number of points x1, x2, … , xn of X such that .

Proof. Suppose X is compact. Let there be given for each 
 a neighborhood Nx of x. For each x, there is an open set

Ux such that  and consequently the family 
 is an open covering of X. Since X is compact there is

a finite subcovering . But  for
each i, whence  covers X.

Conversely, suppose that whenever, for each  a
neighborhood Nx of x is given, there is a finite number of

points x1, x2, … , xn of X such that . Let 
be an open covering of X. Then, for each , there is an α
= α(x) such that , and therefore Nx = Uα is a
neighborhood of x. By our hypothesis, there are points x1,
x2, … , xn of X such that , i = 1, 2, … , n, covers
X, and hence X is compact.

In terms of closed sets, we have:

THEOREM  2.8 A topological space is compact if and only if whenever a
family  of closed sets is such that  then
there is a finite subset of indices {α1, α2, … , αn} such that 

.

Proof. Suppose X is compact and a family  of
closed sets is given such that . Then

so that  is an open covering of X. Hence there is a
finite subcovering . Therefore



Conversely, suppose that for each family  of closed
sets such that  there is a finite subset of indices
{α1, α2, … , αn} such that  Let  be an open
covering of X. Then  is a family of closed sets such
that . Thus  and 

, is a finite subcovering.

THEOREM 2.9 Let f:X → Y be continuous and let A be a compact subset of X.
Then f(A) is a compact subset of Y.

Proof. Let  be an open covering of f(A)
Thus and consequently

so that  is a covering of A. Since f is continuous,
f−1(Uα) is an open subset of X for each  and therefore 

 is an open covering of A. A is compact, thus
there is a finite subcovering 
of A. But  implies
that  was an arbitrary open covering of f(A),
whence by Theorem 2.6, we have shown that f(A) is compact.

COROLLARY  2.10 Let the topological spaces X and Y be homeomorphic.
Then X is compact if and only if Y is compact.

Not every subset of a compact space is itself compact. We shall see that the
closed interval [0, 1] is compact, whereas the open interval (0, 1) is not
compact. To show that (0, 1) is not compact, it suffices to find one open
covering of (0, 1) that does not have a finite subcovering. To this end, for

each integer n = 3, 4, 5, … , let . Then (Un)n=3, 4, 5, … is an

open covering of (0, 1). On the other hand, for each integer k > 3 we have 
. Thus the union of every finite subcollection of {Un}n = 3, 4, 5, …

must fail to contain some point of (0, 1), and hence there is no finite
subcovering of {Un}n = 3, 4, 5, ….



We do, however, have this result.

THEOREM 2.11 Let X be compact. Then each closed subset of X is compact.
Proof. Let F be a closed subset of the compact space X. If 

 is an open covering of F, then by adjoining the open
set O = C(F) to the family  we obtain an open
covering  of X. Since X is compact there is a finite
subcovering Vβ1, Vβ2, … , Vβm of X. But each  is either
equal to a Uα for some  or equal to O. If O occurs
among Vβ1, Vβ2, … ,  we may delete it to obtain a finite
collection of the Uα’s that covers F = C(O).

Thus, in a compact space, for each subset the property of being closed
implies the property of being compact. In a Hausdorff space, the converse is
also true.

THEOREM 2.12 Let X be a Hausdorff space. If a subset F of X is compact,
then F is closed.
Proof. We shall show that O = C(F) is open by showing

that for each point  there is a neighborhood U of z
contained in O, or equivalently, for which U ∩ F = Ø. To this
end, with  fixed, by the Hausdorff property, we may
choose for each point  an open neighborhood Ux of z
and an open neighborhood Vx of x such that Ux ∩ Vx = Ø.
The family  is an open covering of F. Since F is
compact, there is a finite subcovering  of F.
The intersection  is an
intersection of a finite set of neighborhoods of z and is
therefore a neighborhood of z. Furthermore, U cannot
intersect F since it does not intersect each element 

 of a covering of F. Thus , from
which it follows that O is a neighborhood of each of its
points and F = C(O) is closed.



COROLLARY 2.13 Let X be a compact Hausdorff space. Then a subset F of X
is compact if and only if it is closed.

THEOREM  2.14 Let f:X → Y be a one-one continuous mapping of the
compact space X onto a Hausdorff space Y. Then f is a
homeomorphism.
Proof. We define g:Y → X by setting g(y) = x if f(x) = y, so

that f and g are inverse functions. It remains to prove that g is
continuous. We shall prove this by proving that for each
closed subset F of X, g−1(F) is a closed subset of Y. Given a
closed subset F of X, by Theorem 2.11, F is compact. Hence
f(F) = g−1(F) is a compact subset of Y. By Theorem 2.12,
g−1(F) is a closed subset of Y. Thus, g is continuous and f is a
homeomorphism.

EXERCISES

1. Prove that the real line R is not compact.
2. Prove that every finite subset of a topological space is compact.
3. Let  be an open covering of [0, 1]. Define a subset P of [0, 1] as

follows: a point x is in P if and only if there is a finite collection 
 of elements of  that covers [0, x]. Prove that if 

, then there is a neighborhood O of x such that  and that
therefore P is open. Prove that if , then there is a
neighborhood O of x such that O ∩ P = Ø and therefore P is closed.
Conclude that P = [0, 1] and that therefore [0, 1] is compact.

4. Let X be a topological space. A family  of subsets of X is said to
have the finite intersection property if for each finite subset J of I, 

. Prove that X is compact if and only if for each family 
 of closed subsets of X that has the finite intersection property, we

have .
5. Let X be a set and  and ′ be two topologies on X. Prove that if 

and  is compact then  is compact. Prove that if  is
Hausdorff and  is compact with , then .



6. Let f:X → Y be a continuous mapping of a compact space X onto a
Hausdorff space Y. Prove that f is an identification.

3 COMPACT SUBSETS OF THE REAL LINE

DEFINITION  3.1 A subset A of Rn is said to be bounded if there is a real
number K such that for each 

In particular a subset A of the real line R is bounded if A is contained in
some closed interval [− K, K], K > 0. Every closed interval [a, b] is bounded
for  where K = maximum {|a|, |b|}.

LEMMA 3.2 If A is a compact subset of R then A is closed and bounded.

Proof. Since the real line satisfies the Hausdorff axiom, by
Theorem 2.12, A is closed. For each positive integer n, let 

, where N is the set of natural numbers.
Therefore  is an open covering of A. Since A is compact,

. If we set k = maximum {n1, n2,
… , nq} then  for i = 1, 2, … , q, whence 

. Thus  and A is bounded.

LEMMA 3.3 The closed interval [0, 1] is compact.

Proof. Let  be a covering of [0, 1] by open sets.
Assume that there is no finite subcovering of . In this
event, at least one of the two closed intervals  or 
cannot be covered by a finite subcollection of the family 

. Let [a1, b1] denote one of these two intervals of length 
 that cannot be covered by a finite sub-collection of the family 

. We may now divide the interval [a1, b1] into the two
subintervals



and

of length  and assert that at least one of these two intervals
cannot be covered by a finite subcollection of the family 

. Let [a2, b2] denote one of these two intervals of length 
 that has the property that it cannot be covered by a finite

subcollection of the family . We shall now proceed to
define a sequence [a0, b0], [a1, b1], [a2, b2], … , [an, bn], … of
such intervals. Assume that for r = 0, 1, 2, … , n we have
defined intervals [ar, br] such that:

1. [a0, b0] = [0, 1];

2. ;

3. for r = 0, 1, … , n − 1, either  or 

;

4. for each r = 0, 1, … , n, no finite subcollection of 
covers [ar, br].

We then define [an+1, bn+1] in the following manner. In view of
(4) at least one of the two intervals

cannot be covered by a finite subcollection of . Denote
by [an+1, bn+1] whichever of these two intervals cannot be
covered by a finite subcollection of , (if neither can be,
we may agree that [an+1, bn+1] is the first of the two). Then
conditions (2), (3), and (4) will also hold for [an+1, bn+1]. It
follows by induction that we may define a sequence [a0, b0],
[a1, b1], [a2, b2], … of such intervals for which conditions (1)
through (4) are true.



By conditions (3), . It follows that for
each pair of positive integers m and . Thus each bn is
an upper bound of the set {a0, a1, a2, …}. Let a be the least
upper bound of this set. Then  for each n, and hence a is
a lower bound of the set {b0, b1, b2, …}. Let b be the greatest
lower bound of the latter set. We therefore have . But, by
the definition of a and b, we must have  for

each n, whence by condition (2),  for each n and we
conclude that a = b. We are now in a position to obtain a
contradiction to condition (4), from which it will follow that
our assumption that there is no finite subcovering of [0, 1] is
untenable.

 covers [0, 1] and . Therefore 
for some . Since Oβ is open there is an ε > 0 such that 

. Let us choose the positive integer N large enough
so that . Then bN − aN < ε. Now .

Therefore,  and .
Consequently, . Thus [aN, bN] may be
covered by a finite subcollection (namely, one!) of the family 

. Therefore the assumption that no finite subcollection of 
 covers [0, 1] leads to a contradiction and we must

conclude that [0, 1] is compact.

It can be seen that the gist of the above argument is that if no finite
subcollection of  covers [0, 1], then no finite subcollection of 
covers a sequence of subintervals whose lengths approach zero, whereas on
the other hand if the length of one of these subintervals is small enough it is
contained in some Oβ.

Since each closed interval [a, b] is homeomorphic to the closed interval [0,
1] and compactness is a topological property, we obtain:

COROLLARY 3.4 Each closed interval [a, b] is compact.

The next theorem, which characterizes the compact subsets of the real line,
is frequently referred to as the Heine-Borel Theorem.



THEOREM 3.5 A subset A of the real line is compact if and only if A is closed
and bounded.

Proof. The “if” half of the theorem is Lemma 3.2.
Conversely, if A is closed and bounded A is a closed subset of
a closed interval [−K, K] for some K > 0. But [−K, K] is a
compact space and therefore, by Theorem 2.11, A is compact.

EXERCISES

1. Using the method of subdivision of Lemma 3.3, prove that the unit square
I2 is a compact subset of the plane and in general that the unit n-cube In is
a compact subspace of Rn.

2. Let X be a compact space and (Fn)n = 1,2,3, … a sequence of nonempty
closed subsets of X such that  for each n. Prove that 

.
3. Let f:[a, b] → R be continuous. Prove that the set f([a, b]) has both a least

upper bound M and a greatest lower bound m and that there are points 
 such that f(u) = M, f(v) = m.

4. Let f:[a, b] → [c, d] be a continuous increasing function such that f(a) = c,
f(b) = d. Prove that f is a homeomorphism.

4 PRODUCTS OF COMPACT SPACES

The fundamental result of this section is that the product of two compact
spaces is itself compact. We shall establish this fact with the aid of the next
lemma, which relates compactness to coverings by members of a base for the
open sets. Let us recall that a base for the open sets of a topological space Z is
a collection  of open subsets with the property that each open subset of Z is
a union of members of the collection .

LEMMA 4.1 Let  be a base for the open sets of a topological space Z. If, for
each covering  of Z by members of , there is a finite



subcovering, then Z is compact.

Proof. We must show that, if each covering of Z by “basic”
open sets has a finite subcovering, then each open covering 

 of Z has a finite subcovering. For each , Oα is
a union of members of . Let J be an indexing set for all the
basic sets Bβ that occur in the expression of some Oα as a union
of members of . Thus  and hence 
is a covering of Z by members of . It follows from our
hypothesis that there is a finite subcovering 

 of Z. Since each  occurs in the
expression of some , as a union of members of , 

 Consequently,  must cover Z and
therefore Z is compact.

Let us recall that if X and Y are topological spaces, then a base for open
sets of X × Y is the collection of sets of the form U × V, where U is open in X
and V is open in Y.

THEOREM  4.2 Let X and Y be compact topological spaces; then X × Y is
compact.

Figure 32

Proof. By virtue of Lemma 4.1 it suffices to prove that
each covering of X × Y by sets of the form U × V, U open in



X, V open in Y, has a finite subcovering. Let  be
such a covering. As an aid to understanding the proof, let us
view the product X × Y as pictured in Figure 32, where a
point  lies over the point  and level
with the point . In particular, for each , the
subset  of X × Y consisting of all points (x0, y), ,
may be thought of as the collection of points lying over x0.
The open covering  is necessarily an open
covering of . But  is homeomorphic to Y and hence
compact. We may therefore find a finite subset  of I such
that  covers  [this finite covering of  is
portrayed by the small rectangles in Figure 32]. We may also
assume that  for each , for otherwise we may
delete Uβ × Vβ and still cover . The set  is
a finite intersection of open sets containing x0 and is
therefore an open set containing x0. We assert that 

 is an open covering of . For, suppose
. The point (x0, y) is in Uβ × Vβ for some 

. Since  for all . It follows
that , proving our assertion.

Now  is an open covering of the compact space X,
hence there is a finite subcovering  of X. Let
us set  and show that the finite
family  is a covering of X × Y. Given a point 

 for some xi so that 
. By our previous assertion  for some 

 which certainly implies that  for
some . We have thus established that 
is a finite subcovering and that therefore X × Y is compact.

If X1, X2, … , Xn are topological spaces, one may distinguish between 

 and , for the points of the first space are n-tuples (x1,

x2, … , xn), whereas the points of the second space are ordered pairs ((x1, x2,
… , xn−1), xn) whose first elements are (n − 1)-tuples. Nevertheless, these two



spaces are certainly homeomorphic [the obvious homeomorphism carries a
point (x1, x2, … , xn) into ((x1, x2, … , xn−1), xn)], hence by induction on n we
obtain:

COROLLARY  4.3 Let X1, X2, … , Xn be compact topological spaces. Then 

 is also compact.

It is true that the product of an arbitrary family of compact spaces is
compact. This result, which we shall not prove, is called the Tychonoff
Theorem.

Let us recall that the unit n-cube In is the subset of Rn consisting of all
points x = (x1, x2, … , xn) such that  for i = 1, 2, … , n. As a
subspace of Rn, In has the same topology as the product space I × I × … × I
(n-factors). Since I = [0, 1] is compact, as a special case of Corollary 4.3 we
have:

COROLLARY 4.4 The unit n-cube In is compact.

THEOREM 4.5 A subset A of Rn is compact if and only if A is closed and
bounded.

Proof. The proof that if A is compact then A is closed and
bounded is similar to the proof of this fact for a subset of the
real line as presented in the preceding section. Conversely,
we shall first show that each closed “cube” is compact. The
collection of points x = (x1, x2, … , xn) in Rn such that 

 for i = 1, 2, … , n, which we shall denote by MK, is
a “cube” of width 2K with center at the origin. MK is
homeomorphic to the unit n-cube In, for the function F:In →
MK defined by

is easily seen to be a homeomorphism (Theorem 2.14).
Since In is compact, MK is compact. Now suppose A is



closed and bounded; then A is a closed subset of the
compact cube MK for some K, whence A is compact.

EXERCISES

1. Let S be the set [0, 1] and define a subset F of S to be closed if either it is
finite or is equal to S. Prove that this definition of closed set yields a
topology for S. Show that S with this topology is connected, path-wise
connected, and compact, but that S is not a Hausdorff space. Show that
each subset of S is compact and that therefore there are compact subsets of
S that are not closed.

2. A topological space X is said to be locally compact if each point  has
at least one compact neighborhood. Prove that the real line and Rn are
locally compact.

3. Let X be a topological space and x* a point of X. Assume a base for the
system of neighborhoods of x* consists of the complements of compact
subsets of X − {x*}. Prove X is compact. Prove that if in addition X − {x*}
is a locally compact Hausdorff space, then X is a compact Hausdorff
space. Given a locally compact Hausdorff space Y which is not compact,
show that Y is a subspace of a compact Hausdorff space that contains one
more point than Y does. This space is called the one-point
compactification of Y. Prove that the one-point compactification of Rn is
homeomorphic to Sn.

5 COMPACT METRIC SPACES

A metric space (X, d) is said to be compact or is called a compactum if its
associated topological space is compact. In this section we shall derive
certain properties of compact metric spaces. A basic result is that a metric
space is compact if and only if every infinite subset has at least one “point of
accumulation.”



DEFINITION 5.1 Let X be a topological space and A a subset of X. A point 
 is called an accumulation point of A if each

neighborhood of a contains infinitely many distinct points
of A.

In referring to the accumulation points of a set A, care must be taken to
specify of which topological space A is to be considered a subset. For
example, in the real line R, the subset  has the

accumulation point 0, whereas in the topological space (0, + ∞), the same set
A has no accumulation points.

Recall that in a metric space we defined a as a limit point of a subset A if
every neighborhood of a contains a point of A different from a. If we use the
same definition in a topological space every accumulation point of A is also a
limit point of A. In Hausdorff spaces, and hence in metric spaces,
accumulation points and limit points coincide.

LEMMA 5.2 Let X be a Hausdorff space and A a subset of X. A point 
is an accumulation point of A if and only if a is a limit point of
A.

Proof. Suppose a is not an accumulation point of A. Then
there is a neighborhood N of a that contains at most a finite
collection {a1, a2, … , ap} of points of A distinct from a. For
each of these points ai, i = 1, 2, … , p, we can find
neighborhoods Ui of a and neighborhoods Vi of ai such that Ui
∩ Vi = Ø. Then N ∩ U1 ∩ U2 ∩ … ∩ Up is a neighborhood of a
that contains no points of A other than possibly a.

THEOREM 5.3 Let X be a compact space; then every infinite subset K of X
has at least one limit point in X.

Proof. Suppose K is a subset of X that has no limit points.
For each  there is a neighborhood Nx of x such that Nx
∩ K = {x}. K is closed and hence compact. Therefore there
are points x1, x2, … , xm such that  cover
K. It follows that K = {x1, x2, …, xm} and K is finite.



For compact Hausdorff spaces, and in particular for compact metric
spaces, Theorem 5.3 becomes every infinite subset A of X has at least one
point of accumulation in X. The next two lemmas are used to prove the
converse for metric spaces.

LEMMA 5.4 Let (X, d) be a metric space such that every infinite subset of X
has at least one accumulation point in X. Then, for each positive
integer n, there is a finite set of points  of X such
that the collection of open balls

covers X.

Proof. Suppose there were an integer n such that no finite
collection of balls of radius  covered X. Choose a point 

 certainly does not cover X, hence there is a

point  such that 

does not cover X, hence there is a point  such that 
. Continuing in this way we may

construct a sequence x1, x2, … , xk, … of points of X such that
for k > 1,

Thus

if k ≠ k′. It follows that the set {x1, x2, … , xk, …} is infinite and
therefore has a point of accumulation . The neighborhood 

 contains infinitely many points of {x1, x2, … , xk, …}



and in particular contains two points xk, xk′ with k ≠ k′. Since 

, we obtain the contradiction .

A similar argument yields the following result.

LEMMA 5.5 Let (X, d) be a metric space such that each infinite subset of X
has at least one point of accumulation. Then for each open
covering  of X there is a positive number ε such that each
open ball B(x; ε) is contained in an element Oβ of this covering.

Proof. We shall suppose the result is false and obtain a
contradiction. If the lemma is false, for each n = 1, 2, … , there
is an open ball  such that  for each 

. Let A = {x1, x2, …}. If A is finite, some point 
occurs infinitely often in the sequence x1, x2, … . Since 
covers  for some  Also, Oβ is open, hence there
is a δ > 0 such that . We may, however, choose n
so that  and xn = x, in which case

a contradiction. There remains the possibility that A = {x1, x2,
…} is infinite. Thus A has at least one point of accumulation x.
Again  for some  so that  for some δ >
0. There are infinitely many points of A in the neighborhood 

 of x. Hence we may choose an n such that  and 

. We then have , which

is again a contradiction.

The number ε of Lemma 5.5 depends on the particular open covering 
 considered. Given the open covering , if the number ε has the

property that for each  for some , then each
number ε′ with 0 < ε′ < ε also has this property. The least upper bound of the



set of numbers having this property is called the Lebesgue number, εL, of the
open covering . We may now state:

COROLLARY 5.6 Let (X, d) be a metric space such that each infinite subset of
X has an accumulation point. Then each open covering 

 of X has a Lebesgue number εL.

A topological space X is said to have the Bolzano-Weierstrass property if
each infinite subset of X has at least one point of accumulation. We may now
prove that every metric space that has the Bolzano-Weierstrass property is a
compact metric space.

THEOREM 5.7 Let (X, d) be a metric space that has the property that every
infinite subset of X has at least one accumulation point. Then
X is compact.

Proof. Let  be an open covering and let εL be its
Lebesque number. Let us choose n so that . By
Lemma 5.4 there is a finite set {x1, x2, … , xp} of points of X

such that the open balls 

cover X. Furthermore, by Lemma 5.5, for each i = 1, 2, … ,
p, there is a  such that . It follows that

the collection  is a finite subcovering of 
.

We have now proved the main result of this section.

THEOREM 5.8 Let (X, d) be a metric space. Each infinite subset of X has at
least one accumulation point if and only if X is compact.

Having proved that a subspace X of Euclidean n-space Rn is compact if and
only if it is closed and bounded, we may state:

COROLLARY  5.9 Let X be a subspace of Rn. Then the following three
properties are equivalent:



1. X is compact.
2. X is closed and bounded.
3. Each infinite subset of X has at least one point of

accumulation in X.

The existence, for each open covering of a compact metric space, of a
Lebesgue number has as a consequence the fact that each continuous function
defined on a compact metric space is “uniformly” continuous.

DEFINITION 5.10 Let f:(X, d) → (Y, d′) be a function from a metric space (X,
d) to a metric space (Y, d′). f is said to be uniformly
continuous if, for each positive number ε, there is a δ > 0,
such that whenever d(x, y) < δ, then d′(f(x),f(y)) < ε.

If the function g:X → Y is continuous, then for each  and each ε > 0,
there is δ > 0, where δ may depend on both the choice of x and ε, such that
d(x, a) < δ implies d′(g(x), g(a)) < ε. If, however, g is uniformly continuous,
then given ε > 0, the number δ may be used at each point , that is,
uniformly throughout X, to yield d′(g(x), g(a)) < ε if d(x, a) < δ. Thus:

COROLLARY 5.11 If f:X → Y is uniformly continuous, then f is continuous.

On the other hand a continuous function need not be uniformly continuous.
As an example, consider f:(0, 1] → R defined by . Given ε = 1, we

shall show that there does not exist a δ > 0 such that |x − y| < δ implies |f(x) −
f(y)| < 1. For given any δ > 0 we can choose n large enough so that if  

 we have

whereas



In view of the next result, it should be noted that in this example the interval
(0, 1] is not compact.

THEOREM  5.12 Let f:(X, d) → (Y, d′) be a continuous function from a
compact metric space X to a metric space Y. Then f is
uniformly continuous.
Proof. Given ε > 0, for each , there is a δx > 0 such

that if  then . The collection 

 is an open covering of X. Since X is compact,
this open covering has a Lebesgue number. Let us choose δ
to be a positive number less than this Lebesgue number. If 

 and d(z, z′) < δ so that z and z′ are in a ball of radius
less than δ, we have  for some .

Consequently, , whence 

.

EXERCISES

1. In a metric space (X, d), a sequence a1, a2, … of points of X is called a
Cauchy sequence if for each ε > 0 there is a positive integer N such that
d(an, am) < ε whenever n, m > N. A metric space X is called complete if
every Cauchy sequence in X converges to a point of X. Prove that a
compact metric space is complete.

2. In Euclidean n-space Rn, prove that every Cauchy sequence lies in a
bounded closed subset of Rn. Use this fact to prove that Rn is complete.

3. Let (X, d) be a compact metric space. Prove that X is “bounded with
respect to d”; that is, there is a positive number K such that 
for all 

4. Let (X, d) be a compact metric space and let  be a family of closed
subsets of X such that . Prove that there is a positive number
c such that for each  for some .



5. A subset A of a topological space X is called dense if Ā = X. Let X be a
compact metric space. Prove that there is a sequence a1, a2, … of points of
X such that the set A = {a1, a2, …} is dense in X.

6. Let X be the set of continuous functions f:[a, b] → R. Let I:X → R be
defined by . Define a distance function d on X by setting 

. Prove that I is uniformly continuous. Let f1,
f2, … be a Cauchy sequence in (X, d). Prove that for each 

, … is a Cauchy sequence of real numbers. For each 
, denote by f(t) the limit of this sequence. Prove that the function

f:[a, b] → R so defined is continuous, that limn fn = f in X, and therefore
(X, d) is complete, so that in the terminology of Problems 2 and 3 in
Section 8, Chapter 2, X is a complete normed vector space. [A complete
normed vector space with either the real or complex numbers as scalars is
called a Banach space.]

7. Let A be any set and let RA be the set of all functions f:A → R where R is
the reals. Define f + g by (f + g)(a) = f(a) + g(a) and αf by (αf)(a) = αf(a),
for  and . Prove that RA is a vector space with R as scalars.
A function  is bounded if  exists. Prove that the

set B of bounded functions is a normed vector space in the sense of
Problem 2, Section 8, Chapter 2. Prove that B is a complete metric space.
Now let A be a topological space and let C(A, R) be the set of all bounded
continuous functions from A to R. Prove that C(A, R) is a closed subset of
B and is complete.

6 COMPACTNESS AND THE BOLZANO-WEIERSTRASS
PROPERTY

Theorem 5.8, which states that a metric space is compact if and only if each
infinite subset has at least one accumulation point, raises the question as to
whether or not these two properties are equivalent in an arbitrary topological
space. We already know that the first implies the second for Hausdorff
spaces. Since there are examples of topological spaces that are not compact,
but in which each infinite subset has a point of accumulation, compactness is



the stronger of the two properties. We might therefore think of the second
property, which we have called the Bolzano-Weierstrass property, as a weaker
type of compactness. To illustrate how much weaker the Bolzano-Weierstrass
property is, we need to introduce the concept of countability.

DEFINITION 6.1 A non-empty set X is said to be countable if there is an onto
function f:N → X, where N is the set of positive integers.

A finite set X = {x1, x2, . . . , xn} is countable, for we may construct an onto
function f:N → X by setting f(i) = xi, 1 ≦ i ≦ n, and defining f(i) for i > n
arbitrarily, say f(i) = x1, i > n. A countable set that is not finite is called
denumerable. In this case an onto function f:N → X gives rise to an
“enumeration,” x1 = f(1), x2 = f(2), . . . , xn = f(n), . . . of the elements of X, so
that we may write X = {x1, x2, . . . , xn, . . .}. Since we have not required the
function f to be one-one, a given element x ∈ X may occur more than once in
this enumeration. It is easy to see, however, that by deleting all but the first
occurrence of any element x ∈ X and reducing the succeeding subscripts
accordingly, it is possible to obtain an enumeration of X in which each
element occurs one and only one time.

There are several facts about countability that are of general interest. As a
simple consequence of Definition 6.1 we obtain:

COROLLARY 6.2 Let X and Y be non-empty sets. If X is countable and there is
an onto function g:X → Y, then Y is countable.

Proof. Since X is countable, there is an onto function
f:N → X, N the set of positive integers. The composite
function gf:N → Y is onto and hence Y is countable.

COROLLARY 6.3 A non-empty subset of a countable set is countable.

Proof. Let A ⊂ X, countable, A non-empty. We may
define an onto function g:X → A by setting g(a) = a for a
∈ A and defining g arbitrarily for points x ∉ A.

The set N of positive integers is countable, since the identity function i:N
→ N is onto. On the other hand, the collection 2N of subsets of N is not



countable, since for an arbitrary set X there is no onto function f:X → 2X [see
Exercise 1]. A set that is not countable is called uncountable. Another
example of an uncountable set is the set R of real numbers [see Exercise 2].
Surprisingly, N × N is a countable set.

THEOREM 6.4 Let N be the set of positive integers. Then N × N is countable.
Proof. The elements of N × N may be arrayed in the form

of the infinite matrix of Figure 33. We may arrange these
elements in the form of a sequence,

Figure 33

x1 = f(1), x2 = f(2), . . . , xk = f(k), . . . , by setting x1 = (1, 1),
x2 = (2, 1), x3 = (1, 2), x4 = (3, 1), . . . ; that is, having
exhausted the entries on the diagonal of this matrix from (p,
1) to (1, p) we proceed to enumerate the entries on the
diagonal from (p + 1, 1) to (1, p + 1). To explicitly define
the onto function f:N → N × N we note that there are 

 entries on or above the diagonal from (p, 1) to (1,
p), hence if 1 ≦ j ≦ p + 1 we are setting

As a direct consequence of Theorem 6.4 and Corollary 6.2 one obtains the
result that the set Q+ of positive rational numbers is countable, for the



function h:N × N → Q+ defined by  is onto.

COROLLARY 6.5 Let X1, X2, . . . , Xn, . . . , be a sequence of sets, each of
which is countable. Then  is a countable set.

Proof. Since each Xi is countable there is an onto
function fi:N → Xi, i = 1, 2, . . . , n, . . . . We define a
function  by setting 

. F is onto, for if 
 for some i, whence x = fi(j) = F(i, j) for

some (i, j) ∈ N × N. But N × N is countable and therefore 
 is countable.

A more direct proof of Corollary 6.5 can be given by utilizing the matrix
of Figure 33 to display the elements of , entering the element 

 in the ith row and jth column. One then enumerates the
elements of  in accordance with the scheme adopted in the proof of
Theorem 6.4 Since any countable collection of sets may be arranged in the
form of a finite or infinite sequence of sets, Corollary 6.5 states that, if X is
the union of a countable collection of sets, each of which is countable, then X
is countable.

In view of the fact that the set Q+ of positive rational numbers is countable,
the set Q− of negative rational numbers is also countable. Consequently, the
set Q of all rational numbers is countable. Using Corollary 6.5 we may then
assert that the collection B of all open intervals on the real line of the form
B(p; q), q > 0, with p and q rational, is also a countable set, for it is a
countable union of sets each of which is countable. This fact may be used to
prove that there is a countable basis for the open sets on the real line.

Let us now return to our discussion of the relation between compactness
and the Bolzano-Weierstrass property. The Bolzano-Weierstrass property
implies that each countable covering has a finite subcovering.

THEOREM 6.6 Let E be a subspace of a topological space X with the property
that each infinite subset of E has a point of accumulation in E.



Then every countable open covering of E has a finite
subcovering.

Proof. We may assume that a countable open covering of E
is given in the form of a sequence O1, O2, . . . , On, . . . of
open subsets of X such that . Suppose that no
finite subcollection covers E. Then for each integer k, the
open set  does not cover E. Hence for each k
there is a point xk ∈ E such that . The subset

of E must be infinite. Let x ∈ E be a point of accumulation
of A. Since x ∈ E, x ∈ Op for some index p. Op is a
neighborhood of x and therefore infinitely many of the
points of A belong to Op. In particular, for some k > p we
would have , contradicting the choice of
xk. Therefore there must be a finite subcollection of the
open sets O1, O2, . . . , On, . . . that covers E.

If a topological space X is such that every open covering has a countable
subcovering, by virtue of Theorem 6.6, the Bolzano-Weierstrass property
implies compactness. A sufficient condition for every open covering to have
a countable subcovering is given by the next theorem, often called Lindelöf’s
Theorem.

THEOREM 6.7 Let X be a topological space that has a countable basis for the
open sets. Then each open covering  has a countable
subcovering.

Proof. Let  be a countable basis for the open sets
of X. We shall first prove that for each point x ∈ X and each
open set O containing x, there is a basis element Bβ such that
x ∈ Bβ ⊂ O. For, since  is a basis for the open sets, O is a
union of elements of , thus  for some subset J′
of J. But x ∈ O, hence x ∈ Bβ for some β ∈ J′, and clearly 

. Now suppose that  is an open covering of x.



We must find a countable subset  such that  is a
covering. For each x ∈ X and each Oα containing x, we
choose a Bβ such that . The totality of sets Bβ so
chosen constitute a countable subfamily  of the basis 

 and this subfamily covers X. Now, for each such Bβ with 
, let us choose a single index  such that 

. The totality of sets Oα so chosen constitute a
subfamily , which is also countable and
must cover X, for .

COROLLARY 6.8 Let X be a topological space that has a countable basis for
the open sets. Then X is compact if and only if X has the
Bolzano-Weierstrass property.

Although we shall not give an example of a topological space X that has
the Bolzano-Weierstrass property, but is not compact, the preceding
discussion has revealed that such a space must be found among those
topological spaces which are not metrizable and do not possess a countable
basis for the open sets. Those spaces which possess a countable base for the
open sets are called completely separable or are said to satisfy the second
axiom of countability.

EXERCISES

1. Let X be an arbitrary non-empty set and f:X → 2X an arbitrary function
from X to the subsets of X. Let A be the subset of X consisting of those
points x ∈ X such that x ∉ f(x). Prove that there cannot be a point a ∈ X
such that A = f(a). Finally, prove that there is no onto function f:X → 2X.

2. Let a function f:N → [0, 1] be given, N the set of positive integers. In the
resulting enumeration x1 = f(1), x2 = f(2), . . . , of numbers in [0, 1],
express each number xk in decimal notation  an
integer . Construct a real number y = .y1y2 . . . yn . . . such that 

, r = 1, 2, . . . , thereby obtaining the result that f cannot be onto and
consequently the real numbers are not countable.



3. Use the rational density theorem, which states that between any two real
numbers there is a rational number, to prove that the collection of open
intervals B(p; q), q > 0, p, q rational are a basis for the open sets of R and
that therefore R satisfies the second axiom of countability.

4. Let X and Y be topological spaces satisfying the second axiom of
countability. Prove that X × Y also satisfies the second axiom of
countability and hence Rn does.

5. Let {Aα}α∈ I and {Bβ}β∈ J be families of subsets of a set X. {Aα}α∈ I is
called a refinement of {Bβ}β∈ J if for each α ∈ I there is a β ∈ J such that
Aα ⊂ Bβ. Suppose that {Aα}α∈ I is a refinement of {Bβ}β∈ J and that {Aα}
α∈ I covers X. Prove that if I is finite there is a finite subcovering of {Bβ}
β∈ J and if I is countable there is a countable subcovering of {Bβ}β∈ J.

6. Recall that a subset A of a topological space X is called dense in X if Ā =
X. A topological space X is called separable if there is a countable dense
subset. Prove that X is separable if X satisfies the second axiom of
countability.

7. A topological space X is said to satisfy the first axiom of countability if at
each point x ∈ X there is a countable basis for the complete system of
neighborhoods at x. Prove that if X satisfies the second axiom of
countability then X satisfies the first axiom of countability.

8. Let X satisfy the first axiom of countability. Prove that for each x ∈ X
there is a countable basis U1, U2, . . . for the neighborhoods at x such that 

 and such that if ui ∈ Ui then limn un = x. Let f:X → Y be a
function into a second topological space Y. Show that if for all sequences
x1, x2, . . . such that x = limn xn we have f(x) = limn f(xn) then f is
continuous at x.

9. Let f:X → X be a function from a metric space X into itself. f is said to be
contractive if there is a positive constant K < 1 such that d(f(x), f(x′)) < K ·
d(x, x′) for all x, x′ ∈ X. Prove that a contractive function is continuous.
Let a ∈ X. Set a0 = a, a1 = f(a), a2 = f(a1), and in general an+1 = f(an) =
fn+1(a). Prove that for such an f the following hold: d(an+1, an) < Kn−1 d(a1,
a0); a0, a1, . . . , an, . . . is a Cauchy sequence. If X is a complete metric



space so that limn an = a for some a ∈ X, then a is a fixed point of f, and if
f(b) = b, b = a, so that every contractive mapping has a unique fixed point.

7 SURFACES BY IDENTIFICATION

In an earlier section we discussed the function p:[0, 1] → S1 defined by
p(t) = (cos 2πt, sin 2πt). p is a continuous function defined on a compact
space and onto a Hausdorff space. Whenever this is the case the topology of
the image space is determined by the function and the domain space.

LEMMA 7.1 Let f:X → Y be a continuous mapping of a compact space X onto
a Hausdorff space Y. Then a subset B of Y is closed if and only
if f−1(B) is a closed subset of X.

Proof. This lemma is a weaker form of Theorem 2.14. First
suppose B is closed. Then f−1(B) is closed by the continuity of f.
Conversely, if f−1(B) is closed, then f−1(B) is compact. B =
f(f−1(B)), hence B is compact. Being a compact subset of a
Hausdorff space, B is closed.

COROLLARY 7.2 Let f:X → Y be a continuous mapping of a compact space X
onto a Hausdorff space Y. Then Y has the identification
topology determined by f.

As a further corollary, let πf:X → X/~f be the identification map which
carries each element x ∈ X into its equivalence set determined by the relation
x ~f x′ if f(x) = f(x′). ~f is continuous so X/~f is compact. By Theorem 8.2 of
Chapter 3 there is a continuous map f*:X/~f → Y such that f*πf = f. As was
remarked in that section, f* is one-one; hence by Theorem 2.14, f* is a
homeomorphism.

COROLLARY 7.3 The mapping f*:X/~f → Y induced by a continuous function
f:X → Y of a compact space onto a Hausdorff space is a
homeomorphism.



One may think of a point  as being represented by “pasting”
together the various points in . As an example we shall consider a cylinder.
We start with a rectangle with four corner vertices A, B, B′, A′ [see Figure
34a] and identify the edge AB with the edge A′B′ in such a way that A is
identified with A′ and B with B′, then we obtain a surface that is
homeomorphic to the cylinder in Figure 34b. We may equally well picture the
cylinder as being the topological space obtained by replacing both A and A′
by a new point A*, both B and B′ by a new point B*, and similarly any pair of
corresponding points C and C′ on the respective edges AB and A′B′ is
replaced by a new point C* as indicated in Figure 34c.
Furthermore, a neighborhood of this new point C* would contain the interior
of the small semi-circles drawn in Figure 34c. It is interesting to note that if
in this figure we join C* to itself by the path represented by the horizontal
line, the space consisting of the points of this line would be homeomorphic to
a circle [such as the one drawn about the middle of the cylinder in Figure
34b], for it consists of an interval whose end points have been identified. This
is a special case of the following general result.

Figure 34

LEMMA 7.4 Let X and Y be topological spaces, let f:X → Y be a continuous
function that is onto, and let Y have the identification topology
induced by f. If B ⊂ Y is such that A = f−1(B) is closed, then the
subspace B of Y has the identification topology induced by the
restriction f | A:A → B.

Proof. We must show that a subset F of B is closed in B if
and only if (f | A)−1(F) is closed in A. The restriction f | A of the



continuous function f to A = f−1(B) is continuous, so that if F is
closed in B, then (f | A)−1(F) is closed in A. Conversely, suppose
that (f | A)−1(F) is closed in A. Then, since A is closed in X, (f |
A)−1(F) is closed in X. If we prove that (f | A)−1(F) = f−1(F), it
will follow that F is closed in Y and consequently in B, for Y
has the identification topology and therefore f−1(F) closed in X
implies F closed in Y. It remains to prove (f | A)−1(F) = f−1(F).
Suppose that . To show that  we must
show that x ∈ X and . But if x ∈ f--1(F), then 

, whence . Thus x is in the domain
of f | A and , hence  implies that 

. Conversely, if , then 
. Now (f | A)(x) = f(x), thus fx ∈ F and x ∈ f−1(F).

It follows that (f | A)−1(F) = f−1(F), and the proof is complete.

Another surface that may be obtained by identifying some of the boundary
points of a rectangle is a surface called the Möbius strip or band. Starting
again with the rectangle whose vertices we shall now label in the order A, B,
A′, B′ [see Figure 35a], we identify the edge AB with the edge B′A′ by first
giving the rectangular strip a 180 degree twist, so that the vertices A and A′
coincide and the vertices B and B′ coincide [Figure 35b]. A topologically
equivalent space is indicated in Figure 35c, where corresponding or identified
pairs of points such as A, A′ have been replaced by a single new point A*. The
fact that we intend to identify the two edges AB and A′B′ of Figure 35a with a
twist is often indicated by labelling the edges with the same letter, such as
“a,” and then placing arrowheads on these edges in such a position that the
resulting identification matches up or superimposes the two arrowheads. The
Möbius strip has many curious properties. The oblique line in Figure 35c
joining C* to itself is homeomorphic to a circle. The upper horizontal line
running from B* through D to A* is homeomorphic to an interval. However, if
on the Möbius strip we trace out the curve from B* through D to A* and
continue on [along the lower horizontal line of Figure 35c] through E back to
B* we trace out an interval with its end-points identified, that is, a circle.
Thus the Möbius strip is a surface whose bounding curve is a circle. Other
interesting properties may be deduced from the representation in Figure 35c.
For example, if the Möbius strip is cut down its center, the resulting surface
will not be disconnected for we may still connect a point of the upper half



rectangle in Figure 35c to a point of the lower half rectangle by joining both
of them to the bounding curve B*DA*EB*.

Figure 35

If an arrowhead is placed on a circle we say that the circle is oriented. The
sense of rotation indicated by the arrowhead is then called the positive
orientation and the opposite sense of rotation is called the negative
orientation. An oriented circle in the plane can be moved about in the plane
in an arbitrary manner but will always be oriented in the same sense when it
returns to its original position. For this reason the plane is said to be
orientable. On the Möbius strip an oriented circle can be moved around the
strip, say along the oblique line in Figure 35c with its center initially at C*,
and when it returns to its original position the orientation will have been
reversed. Surfaces with this property are called non-orientable.

So far we have considered only surfaces resulting from the identification of
a pair of edges of a rectangle. If we identify the edges of a rectangle
according to the scheme indicated in Figure 36a, the resulting topological
space is called a torus.

A torus is topologically the surface of a donut or a rubber tire, as indicated
in Figure 36b. We may view the torus as being obtained in two steps. First,
we identify the two opposite edges labelled a of the rectangle to obtain a
cylinder, and second, we identify the two resulting circular edges (labelled b)
of the cylinder to obtain the torus. The justification for breaking the
identification up into two steps is contained in the following proposition.



Figure 36

PROPOSITION 7.5 Let X, Y, Z be topological spaces, let f:X → Y and g:Y → Z
be continuous and onto. If Y has the identification topology
induced by f:X → Y and Z has the identification topology
induced by g:Y → Z, then Z has the identification topology
induced by gf:X → Z.

Proof. Clearly, if F is a closed subset of Z, then (gf)−1(F)
is a closed subset of X, for gf is continuous. Conversely,
suppose (gf)−1(F) = f−1(g−1(F)) is a closed subset of X.
Since Y has the identification topology induced by f:X →
Y, g−1(F) is a closed subset of Y. Similarly, since Z has the
identification topology induced by g:Y → Z, g−1(F) closed
in Y implies that F is closed in Z. Thus F is closed if and
only if (gf)−1(F) is closed; that is, Z has the identification
topology induced by gf:X → Z.

Topologically, the torus is the product of two circles. An arbitrary point w
of the torus may be written as w = (C, D), where C is a point of the circle b
and D a point of the circle a in either Figure 36a or 36b. Furthermore, it is
clear that the product of a neighborhood of C and a neighborhood of D is a
neighborhood of w and conversely that a neighborhood of w contains the
product of a neighborhood of C and a neighborhood of D. Thus the topology
of the torus is the topology of the product of two circles. One would have
anticipated this result if one viewed the torus as being generated by revolving
a circle such as b in a circular path by moving it in such a way as to always
have the point labelled A in contact with the circle labelled a.



There are two other surfaces resulting from the identification of opposite
pairs of edges of a rectangle. One of these surfaces is called a Klein bottle.
The Klein bottle may be obtained by first identifying the edges labelled a in
Figure 37a in the prescribed manner to obtain a cylinder, and then identifying
the two circles labelled b in either Figure 37a or 37b, not, however, in the
manner of Figure 36 to obtain a torus, but with a “twist.” Unfortunately, at
least from the point of view of our visualization of the Klein bottle, there is
no way to identify these two circular edges of the cylinder of Figure 37b
without forcing the surface of the Klein bottle to intersect or pass through
itself. For this reason, it is helpful to construct the Klein bottle in several
pieces.

Figure 37

In Figure 38 we have three rectangles. If the rectangles R1 and R2 are
joined along the edge labelled c and the rectangles R2 and R3 are joined along
the edge labelled d, we obtain the rectangle and identifications of Figure 37,
so that Figure 38 also represents the Klein bottle. If, in these three rectangles,
we first identify the pairs of edges labelled e, f, and g respectively, we obtain
three cylinders that are homeomorphic to the three corresponding cylindrical
surfaces of Figure 39, also labelled R1, R2, R3. To construct the Klein bottle
we need only identify these three cylinders along the pairs of circular edges
labelled a, c, and d, respectively. We may join the cylinders R1 and R3 along
the circles labelled a, so that R3 lies inside R1. If we then join R1 and R2 along
the circles labelled c, we obtain the cylinder pictured in Figure 40. To
complete the construction, we must identify the two circles labelled d (Figure
40) in the prescribed manner. Any attempt to literally carry out this
identification will be frustrated by our inability to pass through the surface of
the cylinder. We must therefore either be content, as in Figure 40, to indicate



this identification, or adopt the fiction that in Figure 41 the Klein bottle does
not intersect itself along the circle d, but that each point along d is to
represent at the same time two points of the Klein bottle.

Figure 38

Figure 39



Figure 40

Figure 41

Figure 42



The last surface we shall consider in detail is obtained by identifying both
of the pairs of opposite edges of a rectangle with a “twist.” These
identifications are indicated in Figure 42. Note that in this figure all the
vertices are not identified with one another, but only diagonally opposite
vertices are joined together. In order to relate this surface to some of the
preceding surfaces, we shall adopt the same method as the one used in the
examination of the Klein bottle, [one might call this the “cut-and-paste
method”]. We first separate the large rectangle into three smaller rectangles
R1, R2, R3, which when re-identified along the pairs of edges labelled c, d,
will again give us the rectangle and the identifications of Figure 42. This
operation is indicated in Figure 43. If we first join the two edges labelled f in
rectangle R2 we obtain a Möbius strip. Since we are only interested in the
topological nature of this surface, we may distort [by homeomorphisms] the
two rectangles R1 and R3 into the semicircular regions of Figure 44. If we
then join the regions R1 and R3 along their common edge FABCDE we obtain
the disc and the Möbius strip of Figure 45, with the indicated identifications.
The surface we have been considering is therefore a Möbius strip whose
boundary circle FGHEJKF is to be attached to the boundary circle
FGHEJKF of a disc. This last surface is easily seen to be homeomorphic to
one of the models of the “real projective plane,” namely, a disc with antipodal
points identified.

Figure 43



Figure 44

Figure 45

An analytic model of the real projective plane is obtained in the following
manner. Let A = R3 − {(0, 0, 0)} be the set of all ordered triples (x1, x2, x3) of
real numbers such that not all of x1, x2, x3 are zero. Define an equivalence
relation on A by (x1, x2, x3) ~ (y1, y2, y3), if there is a real number r ≠ 0 such
that rx1 = y1, rx2 = y2, rx3 = y3. The collection of equivalence sets P is the real
projective plane. A point p ∈ P is the collection of all points on a given
straight line through the origin of R3 other than the origin itself. The
intersection of this equivalence set p with the unit sphere S2 in R3 is a pair of
antipodal points. If we confine ourselves to the hemisphere of S2 lying above
the plane x3 = 0, each equivalence set p meets the hemisphere in either a
single point in the interior of the hemisphere or in a pair of antipodal points
on the equator or boundary of the hemisphere. This upper hemisphere is a
disc (view it from the point at the north pole so that it may be projected onto
the equatorial plane). Identifying antipodal points on the boundary yields an
identification space which is equivalent to the real projective plane.

The sphere, torus, Klein bottle, and projective plane are examples of a
larger class of surfaces that may be obtained by identifying pairs of edges of



a polygon with 2n sides. Such surfaces are called closed 2-manifolds. For
example, in Figure 46 we have indicated a surface that can be obtained by
identifying pairs of sides of an octagon. With each such figure we may
associate a “surface symbol.” We do so by starting at any vertex, such as A in
Figure 46, and writing down the labels of the edges in clockwise order if the
arrow along that edge is also pointing in the clockwise direction or the label
with an inverse sign above if the arrow points in the counterclockwise
direction. Thus a surface symbol for the surface of Figure 46 would be
abbc−1a−1cdd. Referring back to Figure 36, one can see that a surface symbol
for the torus is ab−1a−1b.

Figure 46

By the “cut-and-paste” method one can show that each 2-manifold is
homeomorphic to a 2-manifold whose surface symbol is of one of the
following four forms: abb−1a−1; 

 The first form indicates
that the surface is homeomorphic to a sphere. The second form includes the
surface symbol of a torus and in general indicates that the surface is
homeomorphic to a sphere with p handles. These two classes of surface are
orientable. They can all be constructed in three-dimensional Euclidean space.
The third form indicates that the surface is homeomorphic to the projective
plane. We have seen that the projective plane is a disc to whose circular
boundary has been attached a Möbius strip. One may think of the disc as
constituting the portion of the surface of a sphere obtained by removing a
circular region. Attaching a Möbius strip to the circular boundary of this



region is called attaching “a crosscap.” Thus the projective plane is called “a
sphere with crosscap.” In the same manner, the fourth form consists of all
surfaces obtained by attaching q Möbius strips or crosscaps to a sphere with q
circular regions removed.

EXERCISES

1. Prove that the triangle T with two edges identified as in Figure 47 is
homeomorphic to a disc.

2. Prove that the triangle S with two edges identified as in Figure 48 is a
Möbius strip.

Figure 47

Figure 48



3. Prove that the Klein bottle is homeomorphic to a surface with surface
symbol a1a1a2a2 by cutting the rectangle of Figure 49 along the diagonal c
and pasting the resulting triangles along their common edge b.

Figure 49

4. Show that if the Klein bottle of Figure 50 is cut along the curves c and d
the result is two Möbius strips and that therefore the Klein bottle is two
Möbius strips joined along their circular boundaries.

Figure 50

5. Cut the Klein bottle of Figure 51 along the curves c1, c2, c3, c4 and d1, d2.
Show that the regions labelled S1, S2, S3, S4 are pasted together to form a
surface homeomorphic to a cylinder and therefore homeomorphic to a
sphere with two circular regions removed whose boundaries are the circles
d1d2 and c1c2c3c4 respectively. Show that the region labelled M1 is a
Möbius strip whose boundary is d1d2 and that the regions labelled N1 and
N2 form a second Möbius strip whose boundary is c1c2c3c4.



Figure 51

6. Prove that the following three statements about a closed 2-manifold are
equivalent: (i) M contains a Möbius strip; (ii) M is non-orientable; (iii) the
surface symbol of M contains two occurrences of some symbol “a.”

For further reading in general topology we would include Kelley,
Dugundji, or Simmons, while Blackett, Elementary Topology, Fréchet and
Fan, Combinatorial Topology, Wallace, Introduction to Algebraic Topology,
and Chinn and Steenrod, First Concepts of Topology are recommended for an
introduction to topics in algebraic topology.
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