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Preface

This book is designed to develop the fundamental concepts of general
topology which are the basic tools of working mathematicians in a variety
of fields. The material here is sufficient for a variety of one- or two-
semester courses, and presupposes a student who has successfully mastered
the material of a rigorous course in advanced calculus or real analysis. Thus
it is addressed primarily to the beginning graduate student and the good
undergraduate.

A principal goal here has been to seek some sort of balance, in the
treatment, between two broad areas into which general topology might
(rather arbitrarily and, of course, inaccurately) be divided. The first, which
could be called “continuous topology”, centers on the results about
compactness and metrization which are the indispensable tools of the
modern analyst. This is what Kelley has labeled “what every young analyst
should know”, and is represented here by sections on convergence,
compactness, metrization and complete metric spaces, uniform spaces and
function spaces. The second area, which might be called “geometric
topology”, is primarily concerned with the connectivity properties of
topological spaces and provides the cores of results from general topology
which are necessary preparation for later courses in geometry and algebraic
topology. This core is formed here by a series of nine sections on
connectivity properties, topological characterization theorems and
homotopy theory. By suitable surgical intervention, mixed audiences can be
taught a mixture of the two approaches, using whatever recipe the instructor
likes best. To aid in the concoction of such recipes this preface is followed
by a table of some of the important topics in the book together with a list of
the material which is prerequisite for each.

While trying to maintain the balance just described, I have also tried to
keep in mind the potential uses of such a book both as a text and as a
reference source. Thus, in a concession to pedagogy, I have paced the book



rather more slowly at the beginning than at the end and have concentrated
motivational comments at the beginning. I have also attempted to keep the
pedagogical lines of force transparent by paring the material of each section
down to what I believe is fundamental. At the same time, I have included a
large selection of exercises (over 340, each containing several parts), which
provide drill in the techniques developed in the text, develop limiting
counterexamples and provide extensions of, and parallels to, the theory
presented in the text. Some of the “theoretical” exercises are suitable for
extended development and discussion in the classroom, and all should
enhance the value of the book as a reference source. Worth particular
mention are the exercises on normed linear spaces and topological groups,
and many of the exercises in the sections on compactness, compactification,
metrization and the Stone-Weierstrass theorem. To facilitate its use as a
reference source, I have included at the end of the book a collection of
background notes for each section, a large (but certainly not exhaustive)
bibliography and an index as comprehensive as my patience would allow.

The primary organization of the book is into forty-four sections; chapter
headings are provided, but not as a referencing device; they serve only to
collect the sections into coherent groups. Within each section, the
definitions, examples and theorems are further numbered consecutively so
that Theorem 25.3 appears as the third item (not necessarily the third
theorem) in Section 25. The one exception to this rule is Section 1, on set
theory, where the material is somewhat condensed and the numbers 1.1, 1.2,
. . . serve to designate subsections rather than specific results. One note of
caution seems advisable. A reference to a theorem number only, omitting
the word “theorem”, should serve as a warning that the relevant observation
may be made in the remarks following the proof of the theorem, rather than
in the statement of the theorem itself. (This happens infrequently, however,
and most references, even of this type, are to the numbered theorem itself.)
Each section ends with a set of exercises, lettered consecutively; most
exercises consist of several parts. A reference to 3E is a reference to the
fifth exercise in Section 3; where more precision is needed, 3E.3 is used to
designate the third part of this exercise.

A few notational and terminological conventions deserve special
mention. Following the lead of Halmos and Kelley, we replace the
cumbersome “if and only if” by “iff” and denote the end of a proof by ■.



When discussing statements of the form “P iff Q”, we occasionally use
“necessity” to mean “if P then Q” and “sufficiency” to mean “P if Q”.
Square brackets are used nonmathematically in two contexts in this book.
At the end of an exercise, they enclose hints to the solution of that exercise,
and placed at the end of an item in the bibliography, they enclose a
reference to the review of that item in the Mathematical Reviews or (for
items written between 1930 and 1940) the Zentralblatt.

Anyone who writes a book of this sort accumulates a sea of outstanding
debts. My own personal sea has been fed by more rivers of kindness than I
can count; many have no doubt achieved the status of underground streams
and been forgotten. The one I cannot forget created the sea long before this
project was conceived, and I here acknowledge my greatest debt to A. H.
Stone. J’en suis pas digne.

The presentation here has been affected by countless conversations with
friends and colleagues, who were not always aware they were speaking for
posterity. I apologize, mentioning particularly Donald Plank, Melvin
Henriksen, W. W. Comfort, Don Johnson, Ta Sun Wu, John Isbell, Anthony
Hager and Phillip Nanzetta. A great many students deserve my thanks for
stoically suffering through earlier versions of the manuscript: These include
my own at Lehigh, Case Western Reserve and the University of Alberta, as
well as those of Professor Johnson at New Mexico State University and
Professor Comfort at Wesleyan University. Especially, parts of the
manuscript were assiduously edited by Robert Shurtleff, and critically
reviewed by the students in Professor Comfort’s class. They will, I think,
recognize their influence in the ultimate presentation.

If I mention the students who have suffered through one or another of the
early versions of this manuscript, I cannot neglect my wife, Mary, who has
suffered through every version, both as wife and as proof reader.

The typing was done by Elizabeth Roach and Rosemary Pappano.
Virtually every mistake that survived their typing was my own and I am
shaken to report that they caught several of my best and most subtle errors,
mathematical and otherwise.

Case Western Reserve University deserves my thanks for making it
possible for me to avoid dividing my time and myself between the
classroom and preparation of this manuscript in the fall of 1968. Parts of the



manuscript were prepared during my tenures on several grants from the
National Science Foundation.

 
 
Edmonton, Alberta

S.W.

April 1970



Topic Prerequisite  material  (with
1.1–8.8 assumed)

Stone-Čech compactification 8.11–8.16, 11 or 12.1–12.14, 13, 14,
15.1–15.7, 17

(19.4–19.13)

Urysohn’s metrization theorem 13, 14.1–14.11, 15.1–15.7, 16, 22

(23.1)

Uniform metrization theorem 13, 14.1–14.11, 20.1–20.8, 22, 23.1–
23.3

(23.4)

General metrization theorem 13, 14.1–14.11, 15.1–15.8, 20.1–
20.13, 22, 23.1–23.2

(23.9)

Banach’s fixed-point theorem 22, 24.1–24.6

(24.16)

Baire category theorem 13, 14, 15.1–15.5, 17, 18, 19.4–
19.10, 22, 24

(25.4)

Continuum characterization
theorems

13, 14, 15.1–15.5, 17, 26.1–26.10

(28.13, 28.14)

Cantor set characterization and
mapping property

13, 14, 15.1–15.8, 17, 22, 26–29,
30.1–30.2

(30.3, 30.7)



Hahn-Mazurkiewicz theorem 13, 14, 15.1–15.8, 17, 22, 26–30,
31.1–31.4

(31.5)

Brouwer fixed-point theorem 26, 27, 32, 33, 34.1–34.5

(34.6)

For completeness, I will list also some of the special sections and their
dependence on previous material.
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Chapter 1

Set Theory and Metric Spaces

1 Set theory
The material of this section is introduced primarily to serve as a review for
those with some background in set theory and as an introduction to our
notational conventions and terminology. The reader entirely unfamiliar with
any aspect of set theory should not be content with the intuitive discussion
given here, but should consult one of the standard references on the subject
(see the notes).

Most of the material in this book is accessible to anyone who understands
1.1 through 1.8 below. It is recommended that the remainder of this section
be skipped on first reading and referred to later as needed.

 
 
1.1 Sets. A set, family or collection is an aggregate of things (for example,
numbers or functions or desks or people), called the elements or points of
the set. If a is an element of the set A we write a ∈ A and if this is false we
write a ∉ A.

If A is a set and S is a statement which applies to some of the elements of
A, the set of elements a of A for which S(a) is true is denoted {a ∈ A ∣
S(a)}. Thus if N is the set of positive integers, the positive divisors of 6
form the set {a ∈ N ∣ab = 6 for some b ∈ N}. In the case of small sets,
such as this one, it is easy to describe the set by listing its elements in
brackets. Thus the set just given is the set {1, 2, 3, 6}.

This discussion is rather naïve and leads to certain difficulties. Thus if P
is the set of all sets, we can apparently form the set Q = {A ∈ P ∣A ∉ A},
leading to the contradictory Q ∈ Q iff Q ∉ Q. This is Russell’s paradox



(see Exercise 1A) and can be avoided (in our naïve discussion) by agreeing
that no aggregate shall be a set which would be an element of itself.

 
 
1.2 Elementary set calculus. If A and B are sets and every element of A is
an element of B, we write A ⊂ B or B ⊃ A and say A is a subset of B or B
contains A. The collection P(A) of all subsets of a given set A is itself a set,
called the power set of A.

We say sets A and B are equal, A = B, when both A ⊂ B and B ⊂ A.
Evidently, A and B are equal iff they have the same elements.

We write A − B to denote the set {a ∈ A∣a ∉ B} and (unlike some
writers) use this notation even when B is not a subset of A, i.e., even when
B ⊄ A. When we do have B ⊂ A, A − B is called the complement of B in A.

The empty set, ⌀; is the set having no elements. By the criterion for
equality of sets, there is only one empty set and, by the criterion for
containment, it is a subset of every other set.

Note that element and subset are different ideas. Thus, for example, x ∈
A iff {x} ⊂ A.

A few sets will keep recurring and we will establish now a conventional
notation for them.

R: the set of real numbers,  
Rn: Euclidean n-space,  
N: the set of positive integers,  
I: the closed interval [0, 1] in R,  
Q: the set of rational numbers in R,  
P: the set of irrational numbers in R,  
Sn: the n-sphere, {x ∈ Rn+1 ∣|x| = 1}.

Eventually, each of these sets will be assumed to carry some “usual”
structure (a metric, topology, uniformity or proximity) unless the contrary is



noted. Additional less often used conventional notations will be introduced
in the text. All can be found in the index.

1.3 Union and intersection. If Λ is a set and, for each λ ∈ Λ, Aλ is a set,

the union of the sets Aλ is the set λ∈Λ Aλ, of all elements which belong to
at least one Aλ. When no confusion about the indexing can result, we will
write the union of the sets Aλ as simply  Aλ. The intersection of the sets Aλ

is the set λ∈Λ Aλ, or simply  Aλ, of all elements which belong to every
Aλ. In case  is the collection {Aλ∣ λ ∈ Λ}, the union and intersection of

the sets Aλ are sometimes denoted  and  , respectively.

When only finitely many sets A1, . . . , An are involved, the alternative

notations A1 ∪⋯∪An or Ak are sometimes used for the union of the

Ak, while A1 ∩⋯∩An or  Ak sometimes denotes their intersection.
When denumerably many sets A1, A2, . . . are involved, their union will

sometimes be denoted by A1 ∪ A2 ∪ ⋯ or , their intersection by

A1 ∩ A2 ∩ ⋯ or

We say A meets B iff A ∩ B ≠ . ø Otherwise, A and B are disjoint. In
general, a family  of sets is pairwise disjoint iff whenever A, B ∈ , A ∩
B = ø.

For those who wish to test themselves on the concepts just introduced,
here are a few easily proved facts:

a. A ⊂ B iff A ∪ B = B,
b. A ⊂ B iff A ∪ B = A,

c. If  is the empty collection of subsets of A, then  and 

.
d. A ∪ B = A ∪ (B − A).
e. A ∩ (B ∪ C) = (A ∩ B) ∪ C iff C ⊂ A.

1.4 Theorem. If A is a set, Bλ ⊂ A for each λ ∈ Λ and B ⊂ A, then



Proof. a) If x ∈ A − ( Bλ), then x ∈ A and x ∉ Bλ for any λ, so x ∈ A − Bλ

for each λ; hence x ∈  (A − Bλ). Conversely if x ∈  (A − Bλ), then for

each λ, x ∈ A and x ∉ Bλ; hence x ∈ A − Bλ. Thus x ∈ A − ( Bλ iff x ∈ 

(A − Bλ), so that

.

b) Similar to (a). See Exercise 1B.

c) If x ∈ B ∩ ( Bλ, then x ∈ B and Bλ; thus x ∈ B and x ∈ for

some λ0. Hence x ∈  (B ∩ Bλ). Conversely, if (B ∩ Bλ), then x ∈ B ∩

 for some λ0 ∈ Λ; thus x ∈ B and x ∈ , so that x ∈ B and x ∈ Bλ.

Hence x ∈ Bλ. We have shown x ∈ B ∩ ( Bλ) iff x ∈ (B ∩ Bλ); it

follows that .

d) Similar to (c). See Exercise 1B. ■

1.5 Small Cartesian products. If x1 and y2 are distinct elements of some
set, the two-element sets {x1, x2} and {x2, x1} are, by the criterion for set
equality, the same. It is useful to have a device for reflecting priority as well
as membership in this case, and it is provided by the notion of the ordered
pair (x1, x2). By definition, ordered pairs (x1, x2) and (y1, y2) are equal iff x1
= y1 and x2 = y2. For a somewhat more formal approach to ordered pairs,
see Exercise 1C.



Now if X1 and X2 are sets, the Cartesian product X1 × X2 of X1, and X2 is
defined to be the set of all ordered pairs (x1, x2) such that x1 ∈ X1 and x2 ∈
X2. This definition, for example, gives the plane as the set of all ordered
pairs of real numbers. Other examples: S1 × I is a cylinder, S1 × S1 is a
torus, R × Rn = Rn+1 .

Once defined for two sets, Cartesian products of any finite number of sets
can be defined by induction; thus, the last example in the previous
paragraph could be taken as the definition of Rn+1.

For more about finite Cartesian products, and for a bridge between the
definition given here and the definition provided in Section 8 for products
of infinitely many sets, see Exercise 1D.

 
 
1.6 Functions. A function (or map) f from a set A to a set B, written f : A →
B, is a subset of A × B with the properties:

a. For each a ∈ A, there is some b ∈ B such that (a, b) ∈ f.
b. If (a, b) ∈ f and (a, c) ∈ f, then b = c.

More informally, we are requiring that each a ∈ A be paired with exactly
one b ∈ B. The relationship (a, b) ∈ f is customarily written b = f(a) and
functions are usually described by giving a rule for finding f(a) if a is
known (rather than, for example, by giving some geometric or other
description of the subset f of A × B). This reflects the common point of
view, which is prone to regard a function not so much as a static subset of A
× B as a “black box” which takes in elements of A and spits out elements of
B.

When regarded as a set in its own right, the collection of functions from
A to B is denoted BA.

If f : A → B and C ⊂ A, we define f(C) = {b ∈ B∣ b = f(a) for some a ∈
A}. If D ⊂ B, we define f-1(D) = {a ∈ A ∣f(a) ∈ D}. Hence every function
f: A → B induces functions ƒ: P(A) → P(B) and f-1: P(B) → P(A). (and here
we are following the unfortunate, but common, practice of denoting the
elevation of f from A to P(A) by f also). The properties of these induced



functions are investigated in Exercise 1H, which should be mandatory for
anyone who cannot provide easily the answers to the questions it poses.

Note that if f : A → B, then f-1(B) = A but it need not be true that f(A) = B.
We call f(A) the image of f (or the image of A under f), calling B the range
of f and A the domain of f. When f(A) = B, we say f is onto B. Note also that,
for b ∈ B, f-1({b}) [which is always abbreviated ƒ-1(b)] may consist of
more than one point; in extreme cases, we may have f-1(b) = A. When such
behavior is proscribed, f is called a one-one function. In addition to the
usual requirements for a function, then, a one-one function f : A → B must
evidently obey the rule: a1 ≠ a2 ⇒ ƒ(a1) ≠ f(a2). In words, such a function
takes distinct elements of A to distinct elements of B.

If f : A → B and g : B → C, then f and g determine together a natural
function, their composition g ∘f: A → C, defined by

(g ∘ f)(a) = g[f(a)], for a ∈ A.

More formally, (a, c) ∈ g∘f iff for some b ∈ B, (a, b) ∈ f and (b, c) ∈ g.
Less formally, put two black boxes end to end.

1.7 Special functions. A function f : N → A is called a sequence in A. It
can be described by giving an indexed list x1, x2, . . . of its values at 1, 2, . . .
and this is often abbreviated (xn)n∈N or even simply (xn). Thus ƒ(n) = 1/n,
(1/n)n∈N and 1, 1/2....., 1/n, . . . describe the same sequence in R.

A real-valued function on A is a function on A whose range is R. The
collection RA of all real-valued functions on A inherits an algebraic
structure from R since we can define addition, multiplication and scalar
multiplication in RA as follows: given a ∈ A and r ∈ R,

(f + g)(a) = f(a) + g(a),  
(fg)(a) = f(a)g(a),  
(rf)(a) = r[f(a)].



For this and other reasons, the real-valued functions merit special attention
in any branch of mathematics, and topology is no exception.

The identity function on any set A is the function i: A → A defined by i(a)
= a for each a ∈ A. More generally, if B ⊂ A, the inclusion j: B → A is the
function j(b) = b for each b ∈ B.

 
 
1.8 Relations. A relation R on a set A is any subset of A × A. (Thus every
function from A to A is a relation on A, but not all relations on A have the
properties required of functions.) If R is a relation on A, we usually denote
the relationship (a, b) ∈ R by aRb. For example, {(n1, n2) ∈ N × N ∣n1 <
n2} is a relation on N and it would be typical to denote this relation by <, so
that (n1, n2) ∈ < iff n1 < n2.

A relation R on A is called reflexive iff aRa for each a ∈ A, symmetric iff
aRb implies bRa for all a, b ∈ A, antisymmetric iff aRb and bRa implies a
= b for all a, b ∈ A and transitive iff aRb and bRc implies aRc for all a, b, c
∈ A. For example, < is a transitive relation on R, ≤ is a reflexive,
antisymmetric, transitive relation on R, ≠ is a symmetric relation on R.

An equivalence relation on A is a reflexive, symmetric and transitive
relation on A. As an example, let f be any function from A to B and define a
relation R on A by xRy iff f(x) = f(y). For other examples, see Exercise 1E.

If R is an equivalence relation on A, the equivalence class (or R-
equivalence class where confusion is possible) of a ∈ A is the set [a] = {a′
∈ A |a′Ra}. If a, b ∈ A, note that either [a] = [b] (and this happens
precisely when aRb) or else [a] ∩ [b] = ø. Since a ∈ [a] for each a ∈ A, the
sets [a], for a ∈ A, evidently form a partition of A, i.e., they are disjoint sets
whose union is A. For example, if R is the equivalence relation introduced
in the preceding paragraph, the equivalence class of a ∈ A is the set
f−1[f(a)]. Other examples can be found in 1E.

 
 
1.9 Order relations. A relation R on A is a partial order provided R is
reflexive, antisymmetric and transitive. Thus ≤ is a partial order on R. It is



the model partial order and thus it is customary to denote any partial order
on any set by ≤. In this context, ≥ is defined by a ≥ b iff b ≤ a.

Associated with any partial order ≤ on A is a relation < defined by a < b
iff a ≤ b and a ≠ b. Note that < is not reflexive or symmetric, but it is
transitive and has the property that for any a and b in A, if a < b, then b ≮ a.
A transitive relation with this property will be called a strict order. Thus
every partial order determines a strict order. Conversely, any strict order <
determines a partial order ≤ defined by a ≤ b iff a < b or a = b. Moreover
the passage from a partial order ≤ to its associated strict order < to the
partial order determined by < returns us to ≤, and the assertion remains true
with “strict order” and “partial order” interchanged. Thus, in dealing with a
partially ordered set, the symbol “<” has a well-defined meaning.

A set A is linearly ordered by a partial order ≤ provided that for any a, b
∈ A exactly one of a < b, b < a or a = b holds. Then ≤ is called a linear
order.

If ≤ is a partial order on A, the smallest element of A, if it exists, is the
element a0 such that a0 ≤ a for each a ∈ A, and the largest element of A, if
it exists, is the element a1, such that a ≤ a1, for each a ∈ A. Smallest
(largest) elements are unique, when they exist, by antisymmetry. They may
not exist: R with the order ≤ has no smallest or largest element.

A set A is well-ordered if it has a linear order ≤ such that every subset of
A has a smallest element (in the linear order induced on that subset by the
linear order on A). The set N of positive integers is well-ordered by its usual
order, the real line R is not.

 
 
1.10 Minimal and maximal elements. If A is partially ordered by ≤, an
element b0 of A is a minimal element of A provided b ≤ b0 implies b = b0 for
each b ∈ A, and b1 is a maximal element of A provided b1 ≤ b implies b1 =
b for each b ∈ A. If a smallest (largest) element exists in A, then it is the
unique minimal (maximal) element of A. In Fig. 1.1, where x < y is
represented by a rising line connecting x to y, we find an example of a set
with a unique maximal element b which is not a largest element, so the
converse fails.



Figure 1.1

The reader is invited to draw a diagram illustrating that maximal
elements need not be unique.

The least upper bound (lub) of a subset B of a partially ordered set A is
the smallest element of the set {a ∈ A∣ b ≤ a for each b ∈ B}. It may or
may not exist and, when it does, it may or may not belong to B. When it
exists, it is unique. The greatest lower bound (glb) of B is similarly defined.

1.11 Lattices. A partially ordered set L is a lattice iff each two-element set
{a, b} in L has a least upper bound a ∨ b and a greatest lower bound a ∧ b.
If every nonempty subset of L has a least upper bound and a greatest lower
bound, L is a complete lattice. Lattices having a least element 0 and a
greatest element 1 are called complemented iff for each a ∈ L, there is some
a′ ∈ L such that a ∨ a′ = 1, a ∧ a′ = 0. A lattice is distributive iff for all a,
b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

and

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).



These rules are redundant since either can be deduced from the other.

A Boolean lattice is a lattice with 0 and 1 which is complemented and
distributive.

The model lattice for most purposes is the set P(A) of all subsets of a
fixed set A. This becomes a complete Boolean lattice when partially ordered
by the relation B ≤ C iff B ⊂ C. (See Exercise 1K.)

1.12 Cardinality. If A and B are sets, we say A is equipotent with B iff
there is a one–one function f from A onto B. Intuitively, equipotent sets have
the same number of elements. We now postulate the existence of sets, called
cardinal numbers, so chosen that every set A is equipotent with precisely
one cardinal number, called the cardinal number of A and denoted ∣A∣.

If C and D are cardinal numbers, we say C ≤ D iff there is a one–one
function f : C → D. The result is a partial order on any family of cardinal
numbers. Let us see what this says:

a) ≤ is reflexive: given a cardinal number C, there is a one–one function
f: C → C. The identity function will do nicely.

b) ≤ is antisymmetric : given cardinal numbers C and D, if one–one
functions f : C → D and g: D → C can be found, then C = D. This is the
Cantor–Bernstein theorem, which in more general form says that if one–
one functions f: A → B and g: B → A can be found, then there is a one-one
function carrying A onto B. (Existence of a one–one, onto function between
cardinal numbers C and D ensures that C = D. Why?) A proof of the
Cantor–Bernstein theorem is given in Exercise 1J.

c) ≤ is transitive: given cardinal numbers C, D and E and one–one
functions f: C → D and g: D → E, there is a one-one function h: C → E.
Here, the composition g ∘ ƒ : C → E will serve.

In fact, any set of cardinal numbers is well-ordered by the relation ≤,
although we will not prove this, deferring to any of the standard references
on set theory (see the notes).

Recalling that ∣A∣ denotes the cardinal number of A, evidently
i) ∣A∣= ∣B∣ iff A and B are equipotent,
ii) ∣A∣ ≤ ∣B∣ iff A is equipotent with some subset of B.



1.13 Special cardinals. We will distinguish notation for certain cardinal
numbers. The empty set is the cardinal 0, and the cardinal number n is the
set {0, . . . , n - 1}. A set A is denumerable iff A is equipotent with N and, in
this case, we write ∣A∣ = ℵ0. A set A is said to have the cardinal of the
continuum, iff A is equipotent with R, and then we write ∣A∣ = c. A set A is
countable iff it is denumerable or has cardinal number n for some n = 0, 1,
2, . . . ; otherwise, A is uncountable. The elements of a countable set A can
be listed in a (finite or infinite) sequence a1, a2, . . . and such a listing is
called an enumeration of the elements of A.

1.14 Facts about countability. a) n < ℵ0 < c,
b) The union of countably many countable sets is countable,
c) The product of two countable sets is countable,
d) The set Q of rational numbers is countable.

Proof a) It is clear that n < ℵ0 and, since N is equipotent with the subset
{1/n | n = 1, 2, . . .} of R, that ℵ0 ≤ c. To show ℵ0 ≠ c, it is enough to show
that there is no one-one function from N onto I. If such a function f: N → I
exists, let the decimal expansion of f(n) be  ···. Define .b1b2 . . . by
taking bk to be 5 if akk ≠ 5, bk to be 7 if akk = 5. Then .b1b2 · · · is an
element of I which can appear nowhere among the values of f, since it
differs from f(n) in the nth place, for each n = 1, 2, . . . . This contradicts the
assumption that f is onto, showing no such function can exist, and
completes the proof of (a).

b) Let {A1, A2, . . } be a countable collection of countable sets. Set B1 =
A1 and, for n > 1, Bn = An - Ak. Then each Bn is countable and

Enumerate the elements of each Bn as follows:



and define f: N →  Bn by f(1) = b11, f(2) = b21, f(3) = b12, f(4) = b13,
f(5) = b22, f(6) = b31, . . . and so on, following the scheme indicated by the

arrows. The result is a one-one function f from N onto  ,
and the proof is complete.

c) If A and B are countable, enumerate the elements of B as b1, b2, . . .
and let An = A × {bn} = {(a, bn) | a ∈ A}. Then An is countable for each n =

1, 2, . . . and A × B =  An; thus A × B is countable by part (b).

d) Write each element of Q in the form m/n, where m and n are integers
in lowest terms. Then the function defined by f(m/n) = (m, n) maps Q in
one–one fashion onto a subset of N × N. Since N × N is countable by part
c), Q is countable. ■

 
 
1.15 Cardinality and the power set. It is possible to develop an arithmetic
of cardinal numbers. We limit ourselves here to the definition of
exponentiation. If A and B are sets, |A||B| is defined to be |AB| (recall AB

denotes the set of all functions f: B → A). The reader will verify in Exercise
1I that this definition gives the right answer if |A| = n and |B| = m, where n
and m are integers.

Let us pay particular attention to the cardinal number 2|A| where A is a
set. Now 2 = {0, 1} and hence 2|A| = |2A| = |{0, 1}A| is the cardinal number
of the set of functions f: A → {0, 1}. Such a function f determines and is
completely determined by the subset B = {a ∈ A | f(a) = 1} of A (f is called
the characteristic function of B) and hence 2|A| = |P(A)|.



By writing elements of I in binary form, it is not difficult to show that 
= c (Exercise 1I). Hence, from 1.14(a), ℵ0 <  < 2c. It is generally true for
any cardinal number α that α < 2α; put another way, for any set A, |A| <
|P(A)|. This is Cantor s theorem (Exercise 1I).

1.16 The continuum hypothesis. The continuum hypothesis states that
there are no sets A for which ℵ0 < |A| < . It has been proved independent
of the other axioms needed to develop set theory (see notes); that is, either it
or its negation can consistently be added to the other axioms. At present,
intuition has provided us with little basis for preferring one assumption over
the other (although in most contexts in which it arises, it, rather than its
negation, is assumed) and it is definitely in order to attempt to eliminate
from any proof any use of the continuum hypothesis. It follows, in the same
vein, that whenever it or its negation is assumed, this should be explicitly
pointed out.

1.17 The axiom of choice. The following axiom is assumed by most
mathematicians when they need it, to the unremitting disgust of a few. We
give it in two equivalent forms:

Axiom of choice
a. If {Aλ| λ ∈ Λ} is a family of nonempty pairwise-disjoint

sets, there is a set B ⊂ Aλ such that B ∩ Aλ has exactly
one element, for each λ ∈ Λ.

b. If {Aλ | λ ∈ Λ} is an indexed family of nonempty pairwise-

disjoint sets, there is a function f: Λ → Aλ such that f(λ)
∈ Aλ, for each λ ∈ Λ (f is called a choice function).

It is left to the reader to decide that these two statements both say the same
thing. What they say is: given any collection of sets, however large, we can
pick one element from each set in the collection. It bothers some people
because it asserts the existence of a set (i.e., B in part (a)) without giving
enough information to determine that set uniquely (by applying a finite



number of rules), and it is the only formal set-theoretic axiom which does
this. For this reason it is customary to mention the axiom of choice
whenever it is used. It need not be used if the number of sets is finite. In
particular, if A is a nonempty set, the statement “choose a ∈ A” need not be
supported by an appeal to the axiom of choice.

The status of the axiom of choice bears some resemblance to that of the
continuum hypothesis, with some differences. It, too, is known to be
independent of the other axioms of set theory (that is, it or its negation can
be consistently assumed), but it enjoys the status of an accepted part of the
theory of sets in the minds of most modern mathematicians; that is, the
intuition of almost all mathematicians now is that the axiom of choice
should be assumed where needed without hesitation. Moreover, it is usually
much clearer that, where it is used, it is needed, so that its presence does not
usually provoke the same frenzy of attempt to eliminate it.

 
 
1.18 Alternative forms of the axiom of choice. We now provide some
alternative, often-used forms of the axiom of choice. We say a family of
sets is of finite character iff each finite subset of a member of the family is
also a member, and each set belongs if each of its finite subsets belong.

Theorem. The following statements are all equivalent:

a) (Axiom of choice): If {Aλ | λ ∈ Λ} is an indexed family of

nonempty pairwise disjoint sets, there is a set B ⊂ Aλ such
that B ∩ Aλ is exactly one element for each λ ∈ Λ.

b) (Zorn’s Lemma): If each chain (linearly ordered set) in a
nonempty partially ordered set A has an upper bound, then A
has a maximal element.

c) (Zermelo’s Theorem): Every set can be well-ordered.

d) (Tukey’s Lemma): Each nonempty family of sets of finite
character has a maximal element.



As with the axiom of choice, it is customary to mention any one of these
wherever it is used. The proof of equivalence will not be given here; it can
be found in any standard reference.

 
 
1.19 Ordinals. For our purposes, it will be sufficient to postulate the
existence of an uncountable well-ordered set Ω with a largest element ω1,
having the property that if α ∈ Ω with α < ω1, then {β ∈ Ω | β ≤ α} is
countable. Such a set Ω exists if there exists any uncountable well-ordered
set; see Exercise 1L. The elements of Ω are ordinals with ω1 being the first
uncountable ordinal and Ω0 = Ω–{ω1} being the set of countable ordinals.

If α and β are ordinals with α < β, we say α is a predecessor of β and β is
a successor of α. We call α an immediate predecessor of β, and β an
immediate successor of α, if β is the smallest ordinal larger than α. Every
ordinal α has an immediate successor, often denoted α + 1; some ordinals,
called the limit ordinals have predecessors without having an immediate
predecessor (ω1, for example). The others are nonlimit ordinals.

To build a picture of Ω, observe that it has a least element, which we
denote 1 for now. The immediate successor of 1 will be denoted 2, the
immediate successor of 2 will be denoted 3, and so on, so that we can
regard the first few elements of Ω as being the positive integers 1, 2, 3, . . . .
Since Ω0 is well-ordered, there is a smallest ordinal larger than all of 1, 2, 3,
. . . . It is called the first infinite ordinal ω0. It is still only a countable
ordinal; it and its first few successors ω0 + 1, ω0 + 2, . . . evidently form
another “copy” of N tacked on behind the first. The smallest ordinal larger
than these is denoted 2ω0, and we can apparently continue in this fashion
through 3ω0, 4ω0, . . . by adding denumerably many copies of N one after
the other.

1, 2, 3, . . . , ω0, ω0 + 1, ω0 + 2, . . . , 2ω0, 2ω0 + 1, 2ω0 + 2, . . .
, . . . .



The smallest ordinal larger than these is denoted  and it is still only
countable. Repeating the process obtained to reach  denumerably many
times leads us to  and, repeating this over and over, we pass , . . . .
The smallest ordinal larger than all these is still countable however, so the
process continues. In fact, ω1 is unreachable by countable operations such
as this, by the next theorem.

1.20 Theorem. If A is a countable subset of Ω not containing ω1, then lub
A < ω1.

Proof. For each α ∈ A, {β ∈ Ω |β ≤ α} is countable. Since A is countable,
the union of these sets, namely B = {β ∈ Ω | β ≤ α for some α ∈ A}, is also
countable. Let γ be the smallest element of Ω not contained in B. Then β ∈
B iff β < γ, so γ has a countable number of predecessors, and hence γ < ω1.
But γ is an upper bound for A, so lub A < ω1. ■

1.21 Induction. The following theorem is a statement of the principle of
mathematical induction. To prove it, we accept as obvious the fact that the
positive integers N form a well-ordered set.

Theorem. Let S(n) be a statement which is true or false, for n =
1, 2, . . . . If

a. S(1) is true,
b. S(n) is true implies S(n + 1) is true, for n = 1, 2, . . . ,

then S(n) is true for all n.

Proof. If the set F of all integers n for which S(n) is false is nonempty, then
it has a least element n, and n ≠ 1 by (a). Since n > 1, n − 1 ∈ N, and n − 1
∉ F, so S(n − 1) is true. But then S(n) is true, by (b) ; this contradiction
establishes that F = ø. ■

As an example, we prove that 1 + 2 +⋯+ n = n(n + 1)/2 for any positive
integer n. The formula certainly works for n = 1. Suppose it works for n.
Then



which is the form the formula should take for n + 1. The “inductive step” is
now established, so by the principle of mathematical induction, the formula
applies to any n.

It is also instructive to point out an often used incorrect form of
application of the principle of mathematical induction. A typical (wrong)
argument would sound like this: “{1} is a finite set, and, if {1, . . . , n} is a
finite set, so is {1, . . . , n + 1}. Therefore the positive integers form a finite
set.” This argument looks as absurd as it is, but uses of the principle of
mathematical induction just as ridiculous logically are often submitted by
those new to it.

1.22 Transfinite induction. A second method of induction, the principle of
transfinite induction, can be applied to statements indexed by a well-
ordered set of any sort. We will not need it in any form other than as stated
here, however:

Theorem. For each ordinal α ∈ Ω0, let S(α) be a statement
which is true or false. If

a. S(1) is true,
b. S(β) is true for all β < α implies S(α) is true,

then S(α) is true for each α ∈ Ω0.

The proof is in no essential way different from the proof of the principle
of mathematical induction: one makes the same use of the well-ordering.

Both induction principles can be used as the basis for defining things. For
example



f(1) = 1,  
f(n + 1) = (n + 1)f(n)

is an inductive definition of the factorial function on N. For an example of
definition by transfinite induction, see 31.

1.23 Remarks. The process which topology evolves from, outlined in the
next section and the notes, is basic to any pure mathematical discipline. We
wish to study a particular property enjoyed by some objects of interest (in
this case, continuity of functions on some space) and the efficient way to
proceed is to first clean the structure on the space down to the bare bones
needed for introducing and developing the property we want. The passage
to such abstraction has several well-documented advantages. Among them:

1. Since we have only what is essential, our proofs use only what is
essential and thus clarify the nature of the object of study, and the logical
dependence of the theorem in question.

2. Proofs become easier. Actually, this is a popular professional myth,
with an element of truth. Occasionally, a proof really does get easier as a
theorem gets more abstract, but this is offset by the need for more and more
interpretive skill on the part of those who would use the theorem. What
people really mean when they say “proofs become easier” is something like
this: “by establishing some notation and introducing the right definitions
and conventions, we can draw together all the theorems about this subject
and find common characteristics and even repetitions in their proofs, then
prove lemmas which enable us to write large numbers of proofs more
succinctly.” If the subject matter is carefully chosen, the work done in
abstracting the properties needed, establishing notation and proving those
lemmas will be more than paid for by the gain in succinctness and clarity of
the proofs later on, and by the acquisition of powerful methods for
continued investigation of the original objects of study.

Such is the case with topology.

Problems



1A. Russell’s Paradox
The phenomenon to be presented here was first exhibited by Russell in
1901, and consequently is known as Russell’s Paradox.

Suppose we allow as sets things A for which A ∈ A. Let P be the set of
all sets. Then P can be divided into two nonempty subsets, P1 = {A ∈ P |A
∉ A} and P2 = {A ∈ P |A ∈ A}. Show that this results in the contradiction:
P1 ∈ P1 ⇔ P1 ∉ P1. Does our (naive) restriction on sets given in 1.1
eliminate the contradiction?

 
 

1B. De Morgan’s laws and the distributive laws
1.  [see 1.4a), b)].
2.  [see 1.4c), d)].
3. If Anm is a subset of A for n = 1, 2, . . . and m = 1, 2, . . . is it

necessarily true that

1C. Ordered pairs
Show that, if (x1, x2) is defined to be {{x1}, {x1, y2}}. then (x1, x2) = (y1, y2)
iff x1 = x2 and y1 = y2.

1D. Cartesian products
1. Provide an inductive definition of “the ordered n-tuple (x1, . . . , xn) of

elements x1, . . . , xn of a set” so that (x1; . . . , xn) and (y1, . . . , yn) are equal
iff their coordinates are equal in order, i.e., iff x1 = y1, . . . , xn = yn.

2. Given sets X1, . . . , Xn define the Cartesian product X1 × . . . × Xn



a. by using the definition of ordered n-tuple you gave in part 1,
b. inductively from the definition of the Cartesian product of two sets,

and show that the two approaches are the same.

3. Given sets X1, ⋯ , Xn let X = X1 × . . . × Xn and let X* be the set of all
functions f from {1, . . . , n} into  Xk having the property that f(k) ∈ Xk
for each k = 1, . . . , n. Show that X* is the “same” set as X, in the sense that
there is a natural one-one mapping F of X* onto X. [F will take some value
F(f) in X for each f ∈ X*. What must such a value look like? Find a natural
one.]

4. Use what you learned in part three to define the Cartesian product X1 ×
X2 × . . . of denumerably many sets as a collection of certain functions with
domain N.

If you have completed part 4 successfully, the definition of Cartesian
product given in Section 8 for infinitely many sets will give you little
trouble.

1 E .  Examples on equivalence relations
Which of the following are equivalence relations on R? For each that is,
describe the equivalence class [x] of x ∈ R.

1. aRb iff a − b is rational.
2. aRb iff a − b is irrational.
3. aRb iff a − b is an integer.
4. aRb iff |a − b| ≤ 1.

1F. Cardinality
1. |P| = c.
2. |I| = c.

See also 1I.

1G. Well-ordering



Assuming the axiom of choice, each of the following sets can be well-
ordered. Try to think of a well-ordering for each (you may not be able to
use the usual order).

1. N,
2. the rationals,
3. R.

When you have trouble, ask somebody who should know. Then think about
the axiom of choice.

1H. Inverses of functions are nice
Let f: A → B. Prove each of the following. For some, you will need to
assume that f is one—one; for others, that it is onto; some need neither.
Precede your proof of each by a correct statement of what you are proving.

1. ,
2. ,
3. ,
4. ,
5. ,
6. .

1I. Cardinality revisited
1. |A| < |  (A)|. [This is proved by contradiction, in essentially the same

way that Russell’s paradox is established. First show |A| ≤ |  (A)|. Now if
|A| = |  (A)|, then there is a one-one mapping f of A onto  (A). For each x
∈ A, let Ax be the image of x under f. Then  (A) = {Ax | x ∈ A}. Let B = {x
∈ A| x ∉ Ax}. Then B = Ay for some y ∈ A. Show that this leads to the
contradiction: y ∈ Ay ⇔ y ∉ Ay.] This is Cantor’s theorem.

2. If |A| = n and |B| = m, where n and m are integers, then |AB| = nm.

3. 2ℵ0 = c.

1J. The Cantor–Bernstein theorem



Let A, B be sets.

1. Suppose that with each subset C of A there is associated a subset C′ of
A in such a way that C ⊂ D implies C′ ⊂ D′. Then E = E′ for some E ⊂ A.
[Let E = {C ∈ P(A) | C ⊂ C′}.]

2. If f: A → B and g : B → A are one-one functions, there is a one-one
function h of A onto B. [For C ⊂ A, define C′ = A − g(B − f(C)). Show that
part 1 applies and, if E is the resulting set, define h to be f on E and g−1 on A
− E. Show that h is one-one and onto from A to B.]

1K. Lattices
1. Show that the power set P(A) of a fixed set A, when partially ordered

by B ≤ C iff B ⊂ C, becomes a complete Boolean lattice. Describe the
largest and smallest elements of P(A), the least upper bound and greatest
lower bound operations in P(A) and the lattice complement of B ∈ P(A).

2. Exhibit a complemented lattice with an element a having two distinct
complements b and c.

3. Show that in a complemented distributive lattice, complements are
unique.

1L. The ordinals
We postulated the existence of the set Ω (1.15). Show that such a set exists
if there exists an uncountable well-ordered set. [There are two cases.]

2 Metric spaces
The concept of continuous function is central to the study of analysis and,
as the functions in question are defined on more and more complicated
spaces, the need for a notion of continuity which is as generally applicable
as possible becomes acute. There were two steps in the development of
general machinery for the definition of continuity for functions other than
those defined on Euclidean spaces. Both came with (what was then)
lightning speed on the heels of the development of a general theory of sets
by Cantor, in the 1880’s. The first step was taken by Frechet, in 1906, with



the introduction of metric spaces, the second and conclusive step by
Hausdorff, in 1914, with the introduction of topological spaces.

It is impossible now to give a faithful historical development of topology,
but we can properly begin a book on topology with a brief motivational
introduction to metric spaces. Thus, here we will define metric spaces,
show that the abstract distance they provide is sufficient to define
continuity, then conduct a brief and successful search for a way to define
continuity for functions between metric spaces without mentioning the
metrics. This will lead us naturally to the definition of topology in the next
section.

2.1 Definition. A metric space is an ordered pair (M, ρ) consisting of a set
M together with a function ρ : M × M → R satisfying, for x, y, z ∈ M :

M-a) ρ(x, y) ≥ 0,  
M-b) ρ(x, x) = 0; ρ(x, y) = 0 implies x = y,  
M-c) ρ(x, y) = ρ(y, x),  
M-d) ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (triangle inequality).

The function ρ is called the metric on M. If all axioms but the second part of
M-b are satisfied, we call (M, ρ) a pseudometric space and ρ is then a
pseudometric. Functions ρ: M x M → R (which are potentially metrics or
pseudometrics but which have not yet been tested) are called distance
functions. If a metric ρ is fixed for a particular discussion, we may drop the
ordered-pair notation and simply speak of “the metric space M.”

Although all the material of this section will be developed for metric
spaces, the basic results remain true for pseudometric spaces as well. In
particular, the definitions of open set, closed set and continuous function
given below for metric spaces can be applied to pseudometric spaces also
(and now and then we will act as though they had).

2.2 Examples. a) The real line R with the distance function ρ(x, y) = |x − y|
is a metric space. More generally, Rn is a metric space when provided with
the distance function



called the usual metric on Rn The reader will verify that it is a metric in
Exercise 2A.

b) The plane R2 with the distance function

ρ1(x, y) = |x1 − y1| + |x2 − y2|

is a metric space; ρ1 is called the taxi-cab metric.

c) The plane R2 with the distance function

ρ2(x, y) = max {|x1 − y1|, |x2 − y2|}

is a metric space.

d) If (M, ρ) is a metric space and A is a subset of M, then A inherits a
metric structure from M in an obvious way, making A a metric space. For
example, I, N and Q all have “usual metrics,” obtained by viewing them as
subsets of R with its usual metric.

e) Let X be any set and define ρ on X × X by p(x, x) = 0 and ρ(x, y) = 1 if
x ≠ y. Then ρ is a metric on X, called the discrete metric.

f) Let X be any set and define ρ on X × X by ρ(x, y) = 0 for all x and y in
X. This is a pseudometric on X, called the trivial pseudometric. When is it a
metric?

The distance functions available in metric spaces are precisely what we
need to develop the notion of continuity in a more abstract setting, by
mimicking the familiar definition for real-valued functions of a real
variable. In fact, the following definition should look quite familiar when
stated for R with its usual metric.



2.3 Definition. If (M, ρ) and (N, σ) are metric spaces, a function f : M → N
is continuous at x in M iff for each ε > 0, there is some δ > 0 such that
σ(f(x), f(y)) < ε whenever ρ(x, y) < δ.

We turn now to the question: can we eliminate the dependence, in the
previous definition, on the presence of distance functions? The answer is
affirmative and depends on the development of the notion of an open set in
a metric space.

2.4 Definition. Let (M, ρ) be a metric space, x a point of M. For ε > 0, we
define

Uρ(x, ε) = {y ∈ M | ρ(x, y) < ε},

called the ε-disk about x. If only one interpretation is possible, we will
abbreviate Uρ(x, ε) to U(x, ε).

If E and F are subsets of M, we define the distance between E and F to
be

ρ(E, F) = inf {ρ(x, y) | x ∈ E, y ∈ F}.

If E has only one point, we usually write ρ(x, F) rather than ρ({x}, F). Now
we can extend the notation for ε-disks to sets:

Uρ(E,∈) = {y ∈ M | ρ(E, y) < ε}.

Using ε-disks, we can reformulate the definition of continuity as follows:
ƒ: (M, ρ) → (N, σ) is continuous at x in M iff for each ε > 0, there is some δ
> 0 such that f(Uρ(x, δ)) c Uσ(f(x), ε). This observation, together with the
next definition, will make it possible to define continuity without
mentioning the metrics involved at all.



2.5 Definition. A set E in a metric space (M, ρ) is open iff for each x ∈ E,
there is an ∈-disk U(x, ∈) about x contained in E. A set is closed iff it is
the complement of an open set. Evidently, a set F is closed iff whenever
every disk about x meets F, then x ∈ F.

2.6 Theorem. The open sets in a metric space (M, p) have the
following properties:

a. Any union of open sets is open.
b. Any finite intersection of open sets is open.
c. ø and M are both open.

Proof. a) If Aλ is an open set for each λΛ in , and if x is a point in Aλ, then

x ∈ Aλo for some λ0, so Aλo contains some ε-disk about x. Then Aλ will

contain this same ε-disk about x. It follows that Aλ is open. Arguments
this simple will rarely be written out in such detail hereafter.

b) If A1, . . . , An are open sets and x ∈ Ai, then for each i, x ∈ Ai, so
there is some disk U(x, εi) contained in Ai. Clearly, if ε is the minimum of

ε1, . . . , εn, then the ε-disk U(x, ε) is contained in Ai.

c) ø contains a disk about each of its points since there are no points to
worry about and M contains a disk about each of its points because all disks
are contained in M. Hence, ø and M are open. ■

 
 
2.7 Examples. a) Open sets in R. In the usual metric on R, the ε-disk about
a point c is just the interval (c − ε, c + ε). This makes it clear that each
“open interval” in R, of the form (a, b), is an open set. Hence every
countable union of disjoint open intervals is an open set. We will prove the
converse now; i.e., every open set in R is a countable union of disjoint open
intervals. If A is an open set in R, the relation x ~ y iff there is some open
interval (a, b) with {x, y} ⊂ (a, b) ⊂ A is an equivalence relation on A and



the resulting equivalence classes are disjoint open intervals whose union is
A. The fact that there can be only countably many follows since each must
contain a distinct rational.

b) Infinite intersections of open sets need not be open. In fact, the sets An
= (− 1/n, 1/n) for n = 1, 2,. . . , are open in R with the usual metric, but 

 An = {0} is not an open subset of R.

c) Disks are open. That is, in a metric space X, if x ∈ X and δ > 0, then
U(x, δ) is an open set. This is left as a useful exercise on the triangle
inequality, see Exercise 2D.

d) If X is given the discrete metric, then for any point x ∈ X, the disk
U(x, 1) about x is just the set {x}. Thus each one-point set in X is open. But
then, since any set is the union of its points, every set in X is open.

e) One-point sets are always closed.

 
 

We can now rephrase the notion of a continuous function between metric
spaces in terms of the open sets in these spaces, thus avoiding explicit
mention of the metrics involved.

2.8 Theorem. If (M, ρ) and (N, σ) are metric spaces, a function ƒ
: M → N is continuous at x0 ∈ M iff for each open set V in N
containing ƒ(x0), there is an open set U in M containing x0 such
that f(U) c V.

Proof. If ƒ is continuous at x, and V is an open set in N containing ƒ(x), then
Uσ(ƒ(x), ε) ⊂ V for some ε > 0, by the definition of open set. But, by
continuity of ƒ, there is a δ > 0 such that ƒ(Uρ(x, δ)) ⊂ Uσ(ƒ(x), ε). Then U
= Uρ(x, δ) is an open set containing x and f(U) ⊂ V.

Conversely, suppose for each open V containing f(x) there is an open U
containing x such that f(U) ⊂ V. If ε > 0 is given, then Uσ(ƒ(x), ε) = V is an



open set containing f(x). Hence, there is an open U containing x such that
ƒ(U) ⊂ V. But since x ∈ U and U is open, Uρ(x, δ) ⊂ U for some δ > 0.
Then ƒ(Uρ(x, δ)) ⊂ Uσ(f(x), ∈), so ƒ is continuous at x. ■

Having Theorem 2.8, it is apparent that we can carry the notion of
continuous function anywhere we can carry a reasonable notion of open set.
“Reasonable” will simply be taken to mean “satisfying the properties (a),
(b), and (c) of 2.6,” and this, then, will be the basis of the definition of
topological space, given in the next section.

Having given this brief motivational introduction, we will abandon the
motivational approach now and develop topological spaces axiomatically.
Thus, although topologies are introduced in the next section, continuous
functions are not defined on general topological spaces until Section 7.
However, the astute reader will see, in that definition, just a restatement of
Theorem 2.8 (used there as the definition).

Problems

2A. Metrics on  Rn

Verify that each of the following is a metric on Rn :

1. 
2. 
3. ρ2(x, y) = max {|x1 − y1|, . . . , |xn − yn|}.

[For the first, make use of Minkowski’s inequality: 

 for real numbers an, bn and cn. The
inequality is good for both finite and infinite sums.]

2B. Metrics on C(I)
Let C(I) denote the set of all continuous real-valued functions on the unit
interval I and let xo be a fixed point of I.

1. ρ(f, g) = supx∈I |f(x)–g(x)| is a metric on C(I).



2.  dx is a metric on C(I).
3. η(f, g) = |f(x0)–g(x0)| is a pseudometric on C(I).

These examples indicate that interesting and useful metrics can be
defined on spaces other than the classical Euclidean spaces.

2C. Pseudometrics
1. Let (M, ρ) be a pseudometric space. Define a relation ~ on M by x ~ y

iff ρ(x, y) = 0. Then ~ is an equivalence relation.

2. If M* is the set of equivalence classes in M under the equivalence
relation ~ and if ρ* is defined on M* by ρ*([x], [y]) = p(x, y), then p* is a
well-defined metric on M*. The metric space (M*, ρ*) is called the metric
identification of (M, ρ).

3. If h : M → M* is the mapping h(x) = [x], then a set A in M is closed
(open) iff h(A) is closed (open) in M*.

4. If ƒ is any real-valued function on a set M, then the distance function

ρf(x, y) = |ƒ(x) − ƒ(y)|

is a pseudometric on M.

5. If (M, ρ) is any pseudometric space, then a function f : M → R is
continuous iff each set open in (M, ρf) is open in (M, ρ).

2D. Disks are open
For any subset A of a metric space M and any ε > 0, the set U(A, ε) is open.
(In particular, U(x, ε) is open for each x ∈ M.)

2E. Bounded metrics
A metric ρ on M is bounded iff for some constant A, ρ(x, y) ≤ A for all x and
y in M.



1. If ρ is any metric on M, the distance function ρ*(x, y) = min {ρ(x, y),
1} is a metric also and is bounded.

2. A function f is continuous on (M, ρ) iff it is continuous on (M, ρ*). [It
suffices to show that both ρ and ρ* generate the same collection of open
sets in M.]

2F. The Hausdorff metric
Let ρ be a bounded metric on M; that is, for some constant A, ρ(x, y) ≤ A for
all x and y in M.

1. Show that the elevation of ρ to the power set P(M) as defined in 2.4 is
not necessarily a pseudometric on P(M). (Take M to be the unit disk 

 in the plane with the usual metric.)

2. Let ℱ(M) be all nonempty closed subsets of M and for A, B ∈ ℱ(M)
define

dA(B) = sup {ρ(A, x) |x ∈ B}  
d(A, B) = max {dA(B), dB(A)}.

Then d is a metric on ℱ(M) with the property that d({x}, {y}) = p(x, y). It is
called the Hausdorff metric on ℱ(M).

3. Prove that closed sets A and B are “close” in the Hausdorff metric iff
they are “uniformly close”; that is, d(A, B) < ε iff A ⊂ Uρ(B, ε) and B ⊂
Uρ(A, ε).

The restriction in this problem to bounded metrics is, to a topologist, no
problem at all, see 2E and 22.2. It is there so that dA(B), and hence d(A, B),
can never take the value ∞.

The Hausdorff metric is related to uniformities on the power set in
Exercise 36E.

2G. Isometry



Metric spaces (M, ρ) and (N, σ) are isometric iff there is a one-one function
ƒ from M onto N such that ρ(x, y) = σ(ƒ(x), ƒ(y)) for all x and y in M ; ƒ is
called an isometry.

1. If ƒ is an isometry from M to N, then both ƒ and ƒ−1 are continuous
functions.

2. R is not isometric to R2 (each with its usual metric).

3. I is isometric to any other closed interval in R of the same length.

4. Consider the pseudometric η defined on C(I) in 2B.3. What familiar
space is the metric identification (2C.2) isometric to?

Isometric spaces are “metrically identical” ; that is, there is nothing about
their respective metrics which will serve to distinguish them.

2H. Sequence spaces
Let m denote the set of all bounded sequences (xn)n∈N of real numbers, c
the set of all convergent sequences from m, c0 the set of all sequences from
c which converge to 0.

1. The distance function

ρ((xn), (yn)) = sup {|xn − yn| | n = 1, 2, . . .}

is a metric on m (and hence on each of the subspaces c and c0). On which of
the three spaces is it bounded?

2. The distance function

is a pseudometric on c. The metric identification (2C) of (c, σ) is isometric
to the real line.



21. lp-space
For each p > 0, we denote by lp the set of all real sequences (xn) for which 

1. For p ≥ 1, define a distance function ρ on lp by

This is a metric on lp. [Use the generalized Minkowski inequality:

(∑|an + bn|p)1/p ≤ (∑ |an|p)1/p + (∑ |+bn|p)1/p,

for real sequences (an), (bn) and (cn) and for p ≥ 1.]

2. For 0 < p < 1, define a distance function ρ n lp as follows:

Verify that this is a metric, using the inequality: |a + b|p ≤ |a|p + |b|p, for real
numbers a and b and for 0 < p < 1.

For p = 2, lp consists of all square-summable sequences, and as such, will
be given its usual name and notation, (real) Hilbert space H.

2J. Normed linear spaces
A normed linear space is a real linear space X such that a number ∥x∥, the
norm of x, is associated with each x ∈ X, satisfying:



NL-a) ∥x∥ ≥ 0 and ∥x∥ = 0 iff x = 0.  
NL-b) ∥αx∥ = |α| · ∥x∥, for α ∈ R,  
NL-c) ∥x + y∥ ≤ ∥x∥ + ∥y∥.

If (NL-a) is replaced by the weaker condition

NL-a)’ ∥x∥ ≥ 0 and ∥0∥ = 0,

then X is a pseudonormed linear space.

1. If X is a pseudonormed linear space, the distance function p(x, y) = ∥x
− y∥ is a pseudometric on X. It is a metric iff ∥·∥ is a norm. We will call ρ
the norm metric, in case ∥·∥ is a norm.

2. If ∥·∥1 and ∥·∥2 are pseudonorms on the same linear space X, they give
the same open sets (i.e., are equivalent) iff there are constants C and C′ such
that ∥x∥1 ≤ C · ∥x∥2 and ∥x∥2 ≤ C′ · ∥x∥1, for all x ∈ X.

3. If (X, ∥·∥) is a pseudonormed linear space and the metric identification
procedure (2C) is applied to X with its induced pseudometric p, producing a
metric space (X*, ρ*), then X* is a normed space with operations [x] + [y] =
[x + y] and α[x] = [αx] and norm ∥[x]∥* = ∥x∥, and furthermore the norm
metric induced by ∥·∥* is ρ*.

4. Let X be any metric space, C*(X) the set of all bounded continuous
functions from X to R. Then C*(X) is a normed linear space with the norm
∥ƒ∥ = sup {|ƒ(x)|| x ∈ X} and pointwise addition and scalar multiplication.
This is the sup norm on C*(X). The associated metric was first introduced
in 2B.1.

 
 

5. The collection ℒ all Riemann- (or, if you want, Lebesgue- ) integrable
functions f on I is a pseudonormed linear space with the pseudonorm 

dx and pointwise addition and scalar multiplication. But ∥·∥



is not a norm. (In fact, the set of all functions ƒ on I such that |ƒ|p is
Lebesgue integrable is a pseudonormed space, with  for any
p with 1 ≤ p < ∞. It is called ℒp(I) and the normed space resulting from part
3 above is Lp(I). Verification of the axiom NL-c for the cases p > 1 requires
the Holder and Minkowski inequalities; see any reference on real analysis,
e.g., Royden.)

6. On Rn, with coordinatewise addition and scalar multiplication, each of
the following is a norm :

a. ∥(x1, . . . ,xn)∥ = 
b. ∥(x1, . . . ,xn)∥1 = 
c. ∥(x1, . . . , xn)∥2 = max {|x1|, . . . , |xm|}.
d. The norms ∥·∥, ∥·∥1 and ∥·∥2 have for their norm metrics the metrics ρ,

ρ1 and ρ2 of 2A, respectively.



Chapter 2

Topological Spaces

3 Fundamental concepts
As we pointed out in the previous section, open sets in metric spaces
provide us with a way of phrasing the definition of continuous function
without mentioning distance. Thus wherever we can carry a reasonable
abstract notion of “open set,” we can define continuous functions. The
problem of what properties one should postulate as reasonable for our
abstract open sets is, of course, a difficult one and any solution must
ultimately live or die on the merits of the theory it produces. The
“reasonableness” of the following definition, which is based on the
observations made in Theorem 2.6, can thus be justified only by reading the
forty-two sections which follow it.

3.1 Definition. A topology on a set X is a collection τ of subsets of X, called
the open sets, satisfying:

G-1) Any union of elements of τ belongs to τ,

G-2) any finite intersection of elements of τ belongs to τ,

G-3) ø and X belong to τ.

We say (X, τ) is a topological space, sometimes abbreviated “X is a
topological space” when no confusion can result about τ.

Given two topologies τ1 and τ2 on the same set X, we say τ1 is weaker
(smaller, coarser) than τ2, or τ2 is stronger (larger, finer) than τ1 iff τ1 ⊂ τ2.



3.2 Examples. a) Let (M, ρ ) be a metric space. Then, by Theorem 2.6, the
open sets in M defined by 2.5 form a topology on M, called the metric
topology τp. Whenever (X, τ) is a topological space whose topology τ is the
metric topology τρ for some metric ρ on X, we call (X, τ) a metrizable
topological space. Note the distinction: a “metrizable space” is a space with
a topology which happens to have come from some metric, a “metric space”
is a space with a metric. Every metric space (X, ρ ) determines a metrizable
space (X, τρ) and given a metrizable space (X, τ), one can always find many
metrics ρ on X such that τρ = τ (for example, if τρ = τ then τ2ρ = τ also). The
obvious modifications to the discussion above will define pseudometrizable
topologies.

b) The metric topology generated by the usual metric on any subset of Rn

will be called the usual topology. Hereafter, when a topology is used on a
subset of Rn without mention it is assumed to be the usual topology.

c) Let X be any set and let τ be the collection of all subsets of X. Then τ is
clearly a topology for X; it is called the discrete topology. Moreover, it is
metrizable, being the topology produced by the discrete metric on X, by part
(d) of Example 2.7. It is finer than any other topology on X.

d) Let X be any set and let τ = {ø, X}. Then τ is a topology for X, called
the trivial (indiscrete) topology for X. It is pseudometrizable since it is the
topology generated by the trivial pseudometric on X, by part (e) of Example
2.7. It is coarser than any other topology on X.

e) Let X = {a, b} and let τ = {ø, {a}, X}. Then τ is a topology for X, and it
is not even pseudometrizable. For suppose ρ is a pseudometric on X which
produces τ. Since {a} is an open set, and a ∈ {a}, there must be an ε > 0
such that U(a, ε) ⊂ {a} ; that is, ρ(a, y) < ε implies y = a. Hence, evidently
ρ(a, b) ≥ ε. But then U(b, ε) = {b}, so {b} is an open set, contrary to the
definition of τ. Hence, no pseudometric p can produce this topology on X.
With this topology, X is sometimes called the Sierpinski space.

The remainder of this section will be devoted to developing descriptive
terminology which can be applied to subsets of a topological space. The
notions of a closed set and of the closure, interior and frontier operations
will be introduced and it will be observed that each of the first three



completely describes the topology (the frontier operation does also, but this
is not important).

3.3 Definition. If X is a topological space and E ⊂ X, we say E is closed iff
X − E is open.

The proof of the following theorem is an obvious application of De
Morgan’s laws in conjunction with the definition of a topology on X, and
can be omitted.

3.4 Theorem. If ℱ is the collection of closed sets in a
topological space X, then

F-a) Any intersection of members of ℱ belongs to ℱ,

F-b) Any finite union of members of ℱ belongs to ℱ,

F-c) X and ø both belong to ℱ.

Conversely, given a set X and any family ℱ of subsets of X
satisfying F-a, F-b and F-c, the collection of complements of
members of ℱ is a topology on X in which the family of closed
sets is just ℱ.

This theorem is a result of, and illustrates, the obvious duality between
the notions of open set and closed set. More formally, any result about the
open sets in a topological space becomes a result about the closed sets
upon replacing “open” by “closed” and interchanging and .

3.5 Definition. If X is a topological space and E ⊂ X, the closure of E in X
is the set

Ē = Cl (E) =  {K ⊂ X | K is closed and E ⊂ K}.



Where confusion is possible as to what space the closure is to be taken in,
we will write Clx (E). By property F-a for closed sets, Ē is closed. It is the
smallest closed set containing E, in the sense that it is contained in every
closed set containing E (this is the precise meaning of “smallest” in 1.9 if
the closed sets containing E are ordered by K1 ≤ K2 iff K1 ⊂ K2).

 
 

3.6 Lemma. If A ⊂ B, then Ā ⊂ .

Proof. Since B ⊂  , if A is contained in B, we have A ⊂  ; since  is
closed, we must then have Ā.⊂ .■

3.7 Theorem. The operation A → Ā in a topological space X has
the following properties:

K-a) E ⊂ Ē,

K-b) 

K-c) ,

K-d)  = ø,

K-e) E is closed in X iff Ē = E.

Moreover, given a set X and a mapping A → Ā of (X) into 
(X) satisfying K-a through K-d, if we define closed sets in X
using K-e, the result is a topology on X whose closure operation
is just the operation A → Ā we began with.

Proof. First suppose X is a topological space. We will show K-c holds,
leaving the rest of K-a through K-e as an easy exercise. Since Ā ∪  is
closed and contains A ∪ B, it contains  . On the other hand, since A ⊂
A ∪ B and B ⊂ A ∪ B we have  and  , by Lemma 3.6,
and thus . This establishes K-c.



We proceed to the second part of the theorem. Let X be any set and A →
Ā a mapping of (X) into (X) satisfying K-a through K-d. Let ℱ be the
collection of all sets A such that A = A. The assertion is that ℱ satisfies F-a
through F-c of Theorem 3.4.

First note that if A ⊂ B, then by K-c, B = A ∪  so that Ā ⊂ 
(why couldn’t we just refer to Lemma 3.6?).

Now suppose Fλ ∈ ℱ for each λ ∈ A. Then since  Fλ is contained in

Fλ,  is contained in  , for each λ, and hence  .

But the reverse inclusion is given by K-a, so  , that is,  Fλ ∈
ℱ. Thus F-a of Theorem 3.4 holds.

Next suppose F1, . . . , Fn ∈ ℱ. Then by K-c and induction,

 , so F1 ∪ · · · ∪ Fn ∈ ℱ.

This establishes F-b of Theorem 3.4.

By K-d and K-a, it is clear that ø and X, respectively, belong to ℱ, so F-c
of Theorem 3.4 is established.

Thus ℱ is a collection of closed sets for X. It remains to show the
resulting closure operation in X is just the operation A → Ā we began with;
that is, that Ā is the smallest element of ℱ containing A, for each A ⊂ X.
Since  = Ā by K-c, we know that Ā ∈ ℱ , and from K-a, we know that A
⊂ Ā. If K is any element of ℱ containing A, then Ā ⊂ = K. Thus Ā is
indeed the smallest element of ℱ containing A. ■

An operation A → Ā in a set X which satisfies K-a through K-d is called a
Kuratowski closure operation (which, incidentally, is the reason for the
letter K in the numeration). Thus every Kuratowski closure operation
determines and is determined by some topology.

 
 
3.8 Examples. a) Let X be an infinite set and for each A ⊂ X, define Ā as
follows:



Ā = A, if A is finite,  
Ā = X, if A is infinite.

The properties K-a through K-d can be verified for the resulting operation A
→ Ā, so we have a Kuratowski closure operation in X. The resulting
topology on X, the cofinite topology, has for closed sets those sets A for
which Ā = A. Apparently, then, the only closed sets are X, ø and all finite
sets in X.

b) We always have  . The corresponding statement for
intersections is not true. Let X be R, A the rationals in R, B the irrationals in
R, and give X the usual topology. Check that Ā. = R and = R. But A ∩ B =
ø, so  = ø. Thus,  . It is always true that 

 .

c) As an exercise, you are asked to verify that if (M, ρ ) is a
(pseudo)metric space, and A ⊂ M, then in the resulting (pseudo)metric
topology on M,

Ā = {y ∈ M | ρ(γ, A) = 0}.

This provides a clue to the way the closure of a set is regarded in general. Ā
is the set of points either in A or sitting right next to A. (Further elucidation
of this point of view will be found in Theorem 4.7.)

d) The closed disk U(x,  ) = {y ∈ M | ρ(x, y) ≤ ε} in a metric space (M,
ρ) is a closed set in the metric topology but it need not be the closure of the
disk U(x, ε). In Exercise 3E, you will verify that a counterexample exists. In
Rn with the usual metric, the closure of U(x, ε) is U(x,  ).

e) The closure of a subset A of a discrete space X is A itself.

f) The closure of any nonempty subset of a set X with the trivial topology
is X (and, of course, the closure of ø is ø).



3.9 Definition. If X is a topological space and E ⊂ X, the interior of E in X
is the set

E° = Int (E) =  {G ⊂ X | G is open and G ⊂ E}.

Where confusion might otherwise result, we will write Intx (E). Evidently,
by property G-1 of open sets, E° is open. It is the largest open set contained
in E, in the sense that it contains any other open set contained in E.

The notions of interior and closure are dual to each other, in much the
same way that “open” and “closed” are. The strictly formal nature of this
duality can be brought out in observing that

X − E° =  
X − Ē = (X − E)°.

Thus any theorem about closures in a topological space can be translated to
a theorem about interiors. The next two results are, for example, the dual
results to 3.6 and 3.7 about closures.

3.10 Lemma. If A ⊂ B, then A° ⊂ B°.

Proof. It is clear that A° ⊂ A, so if A° ⊂ B, we have A° ⊂ B. Thus A° is an
open set contained in B, so A° ⊂ B°. ■

3.11 Theorem. The interior operation A → A° in a topological
space X has the following properties:

I-a) A° ⊂ A.

I-b) (A°)° = A°.

I-c) (A ∩ B)° = A° ∩ B°.

I-d) X° = X.



I-e) G is open iff G° = G.

Conversely, given any map A → A° of (X) into (X) in a set X,
satisfying I-a through I-d, if open sets are defined in X using I-e,
the result is a topology on X in which the interior of a set A ⊂ X
is just A°.

Proof. The proof can be done directly or by using the translation process on
3.7. Either way, it is easy and we will omit it. ■

3.12 Examples. a) In R, with the usual topology, the interior of a closed
interval [a, b] is (a, b). In R2 with the usual topology, the interior of the disk

is the disk 

b) In R, with the usual topology, if A is the set of rationals, B the set of
irrationals, then A° = B° = ø. But (A ∪ B)° = R° = R. Hence,

(A ∪ B)° ≠ A° ∪ B°.

It is always true that A° ∪ B° ⊂ (A ∪ B)°.

 
 
3.13 Definition. If X is a topological space and E ⊂ X, the frontier of E is
the set

usually written Fr (E). Evidently, the frontier of E is a closed set.

It is possible, but unrewarding, to characterize a topology completely by
its frontier operation. We will be content to give the relationship between



the frontier, closure and interior operations.

3.14 Theorem. For any subset E of a topological space X:

a) Ē = E ∪ Fr (E)

b) E° = E − Fr (E)

c) X = E° ∪ Fr (E) ∪ (X − E)°.

Proof.

a. 

b. 

c. Since Fr (E) ∪ (X − E) =  (as is easily verified) and since

X–E° = ,

we have

X = E° ∪  = E° ∪ Fr (E) ∪ (X − E)°. ■

3.15 Examples. a) The frontier of the closed interval [a, b] in R is {a, b},
as is the frontier of any interval with the same endpoints. If A denotes the



set of rationals in R, FrR(A) = R.

b) For any space X, FrR (X) = ø.

c) If D is the closed unit disk in the plane, and X = R2, FrR (D) = S1,
while FrR (D) = ø. In combinatorial topology, the word “boundary” would
be used in such a way that the boundary of D would always be S1. This
prompts our use of the word “frontier.”

Problems

3A. Examples of topologies

1. If ℱ is the collection of all closed, bounded subsets of R (in its usual
topology), together with R itself, then ℱ is the family of closed sets for a
topology on R strictly weaker than the usual topology.

2. If A ⊂ X, show that the family of all subsets of X which contain A,
together with the empty set ø, is a topology on X. Describe the closure and
interior operations. What topology results when A = ø? when A = X?

3. Let B be a fixed subset of X and for each nonempty A ⊂ X, let A = A ∪
B, with  = ø. Verify that A → Ā is a closure operation. Describe the open
sets in the resulting topology. What topology results when B = ø? when B =
X?

4. Call a subset of R2 radially open iff it contains an open line segment in
each direction about each of its points. Show that the collection of radially
open sets is a topology for R2. Compare this topology with the usual
topology on R2 (i.e., is it weaker, stronger, the same or none of these?). The
plane with this topology will be called the radial plane.

5. If A ⊂ X and τ is any topology for X, then {U ∪ (V ∩ A) | U, V ∈ τ} is
a topology for X. It is called the simple extension of τ over A.

3B. Frontiers in the plane
Any closed subset of the plane R2 is the frontier of some set in R2.



3C. Complementation and closure
If A is any subset of a topological space, the largest possible number of
different sets in the two sequences

A, A′, A′ −, A′−′, . . .  
A, A− A−′, A−′−, . . .

(where ’ denotes complementation and − denotes closure) is 14. There is a
subset of R which gives 14. [For any open set G, Cl (Int (Cl G)) = Cl G.]

3D. Regularly open and regularly closed sets
An open subset G in a topological space is regularly open iff G is the
interior of its closure. A closed subset is regularly closed iff it is the closure
of its interior.

1. The complement of a regularly open set is regularly closed and vice
versa.

2. There are open sets in R which are not regularly open.

3. If A is any subset of a topological space, then Int (Cl (A)) is regularly
open.

4. The intersection, but not necessarily the union, of two regularly open
sets is regularly open. (Thus the same proposition, with “union” and
“intersection” interchanged, holds for regularly closed sets.)

3E. Metrizable spaces
Let X be a metrizable space whose topology is generated by a metric ρ

1. The metric 2ρ defined by 2ρ(x, y) = 2 · ρ(x, y) generates the same
topology on X.

2. The closure of a set E ⊂ X is given by E = {γ ∈ X | ρ(E, y) = 0}.



3. The closed disk U(x,  ) = {γ | ρ(x, y) ≤ ∈} is closed in X, but may not
be the closure of the open disk U(x, ∈). [Consider ∈ = 1 and the usual
metric on

{(x, y) ∈ R2 | x2 + y2 = 1} ∪ {(x, 0) ∈ R2 | 0 ≤ x ≤ 1}.]

3F. Unions of closed sets
1. Give an example of a sequence B1, B2, . . . of closed sets in a

topological space X whose union is not closed.

2. If ρ generates the topology on a metrizable space X and, for each λ ∈
Λ, Cλ is a closed set in X such that  ≥ ε for all λ1 and λ2, where ε is

some fixed positive number, then  Cλ is closed.

3G. The lattice of topologies
1. The intersection of any family of topologies on X is a topology on X.

[Note: intersect the topologies, not the sets which are elements of the
topologies.]

2. The union of two topologies on X need not be a topology on X. But for
any family of topologies on X, there is a smallest topology larger than all of
them.

Thus, the topologies on a fixed set X, when partially ordered by
inclusion, form a complete lattice. The question of whether or not this
lattice is complemented has only recently been answered (see notes).

3H. Gδ  and Fσ  sets

A subset of a topological space X is a Gδ iff it is a countable intersection of
open sets and an Fσ iff it is a countable union of closed sets.

1. The complement of a Gδ is an Fσ, and vice versa.



2. An Fσ can be written as the union of an increasing sequence F1 ⊂ F2
⊂ . . . of closed sets. (Hence, a Gδ can be written as a decreasing
intersection.)

3. A closed set in a metric space is a Gδ (hence, an open set is an Fσ). [If
A is closed, let An = {y |ρ(A, y) < 1/n} and see 2D.]

4. The rationals are an Fσ in R. (Much later, see 24.12 and 25A.4, it will
be apparent that they cannot be a Gδ.)

3I. Borel sets
The family of Borel sets in a topological space X is the smallest family of
sets  with the following properties:

a.  contains the open sets,
b. countable intersections of elements of  belong to  .
c. complements of elements of  belong to  .

1. In (a), “open” can be replaced by “closed”; in (b), “intersection” can
be replaced by “union.”

In any space, define the class  , 0 ≤ α < ω1, by transfinite induction, as
follows: the class 0 consists of the open sets, and for α > 0, the class 
αconsists of the sets which are countable unions or countable intersections
of sets of lower class. (Thus, for example, the class 1 will consist precisely
of the Gδ sets (see 3H).)

2. In a metric space,  is the family of Borel sets. [Show
that  satisfies (a), (b) and (c). For (c), you will have to use transfinite
induction and 3H.3.]

3. In a metric space, the family of Borel sets is the smallest family of sets
satisfying:

a.  contains the open sets,
b. ’ countable intersections of elements of  belong to  .
c. countable unions of elements of  belong to  .

“Open” can be replaced by “closed.”



4 Neighborhoods
The means we have at hand so far for describing topologies (open sets, the
closure operation, etc.) are not the most convenient, and for this reason are
rarely used. In this and the next section, we present the two most popular
ways to describe topologies.

Very often the topology we wish to present is quite “regular,” in the sense
that the open sets containing one point look no different from the open sets
containing any other (this is true, for example, in the Euclidean spaces). In
such cases, one can describe the topology by describing what it looks like
“around” one point, or a few points, and then retiring from the field with the
observation that around other points it is the same. Considerable saving of
effort can result, and topologies will often be presented this way here, so we
will present now a detailed discussion of the “local” description of
topologies and topological concepts.

4.1 Definition. If X is a topological space and x ∈ X, a neighborhood
(hereafter abbreviated nhood) of x is a set U which contains an open set V
containing x. Thus, evidently, U is a nhood of x iff x ∈ U°. The collection 

x , of all nhoods of x is the nhood system at x.

The next theorem is similar to Theorems 3.7 and 3.11 about closure and
interior: it lists properties of the nhood system x at x in a topological
space, and provides a converse which says whenever nhoods have been
assigned to each point of a set, satisfying these properties, one has a
topology.

4.2 Theorem. The nhood system x at x in a topological space
X has the following properties:

N-a) If U ∈ x , then x ∈ U,

N-b) If U, V ∈ x then U ∩ V ∈ x ,

N-c) If U ∈ x , then there is a V ∈ x , such that U ∈ y for
each y ∈ V,



N-d) If U ∈ x and U c V, then V ∈ x ,

and furthermore,

N-e) G ⊂ X is open iff G contains a nhood of each of its points.

Conversely, if in a set X a nonempty collection x of subsets of
X is assigned to each x ∈ X so as to satisfy N-a through N-d,
and if N-e is used to define “open,” the result is a topology on
X, in which the nhood system at each x ∈ X is precisely x .

Proof. N-a is obvious. For N-b: if U, V ∈ x , then x ∈ U° and x ∈ V°, so x
∈ U° ∩ V° = (U ∩ V)° and hence U ∩ V ∈ x .For N-c: let U ∈ x and
pick V = U°. Then for each y ∈ V, y ∈ U°, so U ∈ x For N-d: if U ∈ x ,
then x ∈ U°. If U ⊂ V, then U° ⊂ V°, so x ∈ V°. Hence V ∈ x . Finally, to
prove N-e, if G is open, then G = G° and G is a nhood of each of its points.
On the other hand, if each x ∈ G has a nhood Vx ⊂ G, then G =  is
a union of open sets and thus open.

The converse assertion is left to Exercise 4E. ■

Neighborhoods provide us with an interesting description of what has
happened in the passage from metric spaces to topological spaces. The
linearly ordered “distances from x” have been replaced by the partially
ordered “nhoods of x” (partially ordered by U1 ≤ U2 iff U1 ⊃ U2), in
describing closeness to x of points nearby. Not only have we lost the linear
order in our notion of closeness, we have lost the symmetry. If y is close to
x in a metric space, then x is close to y; but it can happen in a topological
space that y is in every nhood of x while x is in no nhood of y (a very
extreme example; this doesn’t happen in useful topological spaces, although
many useful spaces do lack symmetry in some degree).

Since supersets of nhoods are nhoods (N-d), it is not necessary to give all
the nhoods of x to describe the nhood system there. We can be content with
a nhood base.

4.3 Definition. A nhood base at x in the topological space X is a
subcollection ℬx taken from the nhood system x , having the property that



each U ∈ x contains some V ∈ ℬx. That is, x must be determined by ℬx
as follows:

x = {U ⊂ X | V ⊂ U for some V ∈ ℬx}.

Once a nhood base at x has been chosen (there are many to choose from, all
producing the same nhood system at x) its elements are called basic nhoods.

Obviously, the nhood system at x is itself always a nhood base at x. There
are more interesting examples.

4.4 Examples. a) In any topological space, the open nhoods of x form a
nhood base at x, since for any nhood U of x, U° is also a nhood of x. For
this reason, it is the custom of a great many writers to use “nhood of x” to
mean “open nhood of x” and to use the term “nhood” (without reference to
a point x) to mean “nonempty open set.” For us, nhoods will not necessarily
be open, however, unless so described.

b) In any metrizable space, generated by a metric ρ say, each open set
containing x contains some disk U(x, δ) about x; thus the disks U(x, δ)
about x form a nhood base at x. In fact, we need consider only the disks of
rational radius to obtain a nhood base at x, so each point in a metric space
has a countable nhood base. In particular, these comments apply to the
usual topologies (and the usual metrics which generate them) on the spaces
Rn. n = 1, 2,. . . . A topological space in which every point has a countable
nhood base is said to satisfy the first axiom of countability or to be first
countable. Thus every metric space is first countable. We will meet the
second axiom of countability in Exercise 5F; both axioms will be studied in
greater detail in Section 16.

c) In R2, with the usual topology (and the usual metric), the set of all
squares with sides parallel to the axes and centered at x ∈ R2 is a nhood
base at x. Notice that this base at x has no set in common with the nhood
base described in (b), although they both describe the same topology. Thus,
before one uses the term “basic nhood at x,” one must fix for the discussion
what nhood base at x is being used. Sometimes context or general usage
make this clear. It is customary, for example, to mean “disk about x” when



one refers to a “basic nhood at x” in R2, or for that matter, in any metric
space.

d) If X is a discrete space, each point x ∈ X has an acceptable nhood base
consisting of a single set, namely {x}.

e) If X is a trivial space, the only nhood base at x ∈ X is the collection
consisting of the single set X.

We turn now to the problem of specifying a topology by giving a
collection of basic nhoods at each point of the space. Each of the properties
V-a, V-b and V-c corresponds to the respective property N-a, N-b, N-c in
Theorem 4.2. Note that N-d is dropped altogether.

The following theorem is used much more often than the corresponding
Theorem 4.2 about nhood systems.

4.5 Theorem. Let X be a topological space and for each x ∈ X,
let ℬx be a nhood base at x. Then

V-a) if V ∈ ℬx, then x ∈ V,

V-b) if V1, V2 ∈ ℬx, then there is some V3 ∈ ℬx such that V3 ⊂
V1 ∩ V2,

V-c) if V ∈ ℬx, there is some V0 ∈ ℬx such that if y ∈ V0, then
there is some W ∈ ℬy with W ⊂ V,

and furthermore,

V-d) G ⊂ X is open iff G contains a basic nhood of each of its
points.

Conversely, in a set X, if a collection ℬx of subsets of X is
assigned to each x ∈ X so as to satisfy V-a, V-b and V-c and if
we define “open” using V-d, the result is a topology on X in
which ℬx is a nhood base at x, for each x ∈ X.



Proof The properties V-a, V-b and V-c are easily verified for basic nhoods,
by referring to the corresponding properties U-a, U-b, and U-c for nhoods.
Similarly, V-d follows from U-e. We will proceed to the converse.

Suppose a collection ℬx satisfying V-a, V-b and V-c has been prescribed
at each x ∈ X and define

x = {U ⊂ X ∣ B ⊂ U for some B ∈ ℬx}

for each x ∈ X. The assertion is that x has the properties N-a through N-d
of a nhood system at x.

Certainly each U ∈ x contains x, since each B ∈ ℬx does, so N-a is
clear. If U1, U2 ∈ x, then for some B1, B2, B3 ∈ ℬx we have B1 ⊂ U1, B2
⊂ U2 and (by V-b) B3 ⊂ B1 ∩ B2 ⊂ U1 ∩ U2. Thus U1 ∩ U2 ∈ x,
establishing N-b. For N-c, let U ∈ x. Pick B ∈ ℬx such that B ⊂ U. By V-
c, there is some B0 ∈ ℬx such that each y ∈ B0 has some By ∈ ℬy
contained in B. Thus B ∈ y for each y ∈ B0. Hence U ∈ y for each y ∈
B0, establishing N-c. Finally, the superset property N-d is clear from the
definition of X.

Thus x is a nhood system at x, for each x ∈ X. Moreover, it is clear that,
at each x, ℬx is a nhood base at x in the resulting topology on X. ■

4.6 Example. There is a useful alternative to the usual topology on the real
line which is best described in terms of basic nhoods. The Sorgenfrey line,
E, is the real line with the topology in which basic nhoods of x are the sets
[x, z) for z > x. Some of its basic properties will be studied in Exercise 4A,
and we will find frequent occasion in later work to refer to it. It is named
after the man who first produced it, in 1947.

Since nhood bases are important descriptive devices in dealing with
topologies, it will be useful to have nhood characterizations of all the
concepts so far introduced for topological spaces.



4.7 Theorem. Let X be a topological space and suppose a nhood
base has been fixed at each x ∈ X. Then

a. G ⊂ X is open iff G contains a basic nhood of each of its
points,

b. F ⊂ X is closed iff each point x ∉ F has a basic nhood
disjoint from F,

c.  = {x ∈ X | each basic nhood of x meets E},
d. E° = {x ∈ X | some basic nhood of x is contained in E},
e. Fr (E) = {x ∈ X | each basic nhood of x meets both E and X

− E}.

Proof. a) This is part of Theorem 4.5 and is recorded here for reference.

b) This follows directly from (a) together with the definition of a closed
set as the complement of an open set.

c) Recall that  is closed and E ⊂ K}. If some nhood U
of x does not meet E, then x ∈ U° and E ⊂ X − U°. Since X − U° is closed, 

 ⊂ X − U°. Hence x ∉ . Conversely, if x ∉  , then X  is an open set
containing x, and hence containing a basic nhood of x, which does not meet
E.

d) This follows from (c) by an application of De Morgan’s laws.

e) Follows directly from (c) and the definition of Fr (E) as 
 ■

4.8 Theorem. (Hausdorff criterion) For each x ∈ X, let  be a
nhood base at x for a topology τ1 on X, and let  be a nhood
base at x for a topology τ2 on X. Then τ1 ⊂ τ2 iff at each x ∈ X,
given B1 ∈ , there is some B2 ∈  2 such that B2 ⊂ B1

.



Proof. Suppose τ1 ⊂ τ2. Let B1 ∈ . Then, since B1 is a nhood of x in (X,
τ1), x is contained in some element B of τ1 which is contained in B1. But if
B ∈ τ1 then B ∈ τ2 so B is a nhood of x in (X, τ2). It follows that B2 ⊂ B for

some B2 ∈ , so B2 ⊂ B1.

Conversely, if B ∈ τ1, then B contains some B1 ∈  for each x ∈ B;

hence B contains a corresponding element B2 ∈  for each x ∈ B. Thus B
∈ τ2. ■

The theorem above could be paraphrased: “small nhoods make large
topologies.” This is intuitively reasonable; the smaller the nhoods in a space
are, the easier it is for a set to contain nhoods of all its points and the more
open sets there will be.

We close this section by introducing a concept which depends for its
definition on the use of nhoods.

4.9 Definition. An accumulation point (cluster point) of a set A in a
topological space X is a point x ∈ X such that each nhood (basic nhood, if
you prefer) of x contains some point of A, other than x. The set A′ of all
cluster points of A is called the derived set of A.

4.10 Theorem. Ā = A ∪ A′.

Proof. From 4.7, A′ ⊂ Ā, and since A ⊂ Ā, we have A ∪ A′ ⊂ Ā. On the
other hand, if every nhood of x meets A (i.e., if x ∈ Ā), then either x ∈ A or
every nhood of x meets A in a point different from x, so x ∈ A ∪ A′. ■

Problems

4A. The Sorgenfrey line
The following material concerns the Sorgenfrey line, E, introduced in 4.6.

1. Verify that the sets [x, z), for z > x, do form a nhood base at x for a
topology on the real line.

2. Which intervals on the real line are open sets in the Sorgenfrey
topology?



3. Describe the closure of each of the following subsets of the Sorgenfrey
line: the rationals, the set {1/n | n = 1, 2, . . .}, the set {–1/n | n = 1,2,. . .},
the integers.

4B. The Moore plane
Let Γ denote the closed upper half plane {(x, y) | y ≥ 0} in R2. For each
point in the open upper half plane, basic nhoods will be the usual open disks
(with the restriction, of course, that they be taken small enough to lie in Γ).
At the points z on the x-axis, the basic nhoods will be the sets {z} ∪ A,
where A is an open disk in the upper half plane, tangent to the x-axis at z.

1. Verify that this gives a topology on Γ.

2. Compare the topology thus obtained with the usual topology on the
closed upper half plane as a subspace of R2.

3. Describe the closure and interior operations in the space Γ.

Hereafter, the symbol Γ will be reserved for the closed upper half plane
with the topology described here. This space is often called the Moore
plane. We will find consistent use for it as a counterexample.

4C. The slotted plane
At each point z in the plane, the basic nhoods at z are to be the sets {z} ∪ A,
where A is a disk about z with a finite number of straight lines through z
removed.

1. Verify that this gives a topology on the plane.
2. Compare this topology with the usual topology on the plane.
3. Can we re-replace “finite” in the definition of this space with

“countable?”

This space will be called the slotted plane, A.

4D. The looped line
At each point x of the real line other than the origin, the basic nhoods of x
will be the usual open intervals centered at x. Basic nhoods of the origin
will be the sets



(–ε, ε) ∪ (–∞,–n) ∪ (n, ∞),

for all possible choices of ε > 0 and n ∈ N.
1. Verify that this gives a topology on the line.
2. Describe the closure operation in the resulting space.

This space is the looped line, L.

4E. Topologies from nhoods
1. Show that if each point x in a set X has assigned a collection x of

subsets of X satisfying N-a through N-d of 4.2, then the collection

τ = {G ⊂ X | for each x in G, x ∈ U G for some U ∈ x }

is a topology for X, in which the nhood system at each x is just x .

2. Show that, if ℬx is a nhood base at x for each x in a topological space
X, then V-a, V-b, V-c and V-d of 4.5 hold for elements of ℬx.

4F. Spaces of functions
Consider the set RI of all real-valued functions on the unit interval.

1. For each f ∈ RI, each finite subset F of I and each positive δ, let

U(f, F, δ) = {g ∈ RI ||g(x)–f(x)| < δ, for each x ∈ F}.

Show that the sets U(f, F, δ) form a nhood base at f, making RI a
topological space.



2. For each f ∈ RI, the closure of the one-point set {f} is just {f}. (This is
not unusual. In fact, it is a situation to be desired; spaces without this
property are difficult to deal with. See the discussion in Sections 13–15.)

3. For f ∈ RI and ε > 0, let

V(f, ε) = {g ∈ RI | |g(x) − f(x)| < ε, for each x ∈ I}.

Verify that the sets V(f, ε) form a nhood base at f, making RI a topological
space.

4. Compare the topologies defined in 1 and 3.

5. If the definition in 3 is made to apply to continuous functions only,
show that the resulting topology on C(I) is the one induced by the metric
defined in 2B.1.

We will return to the topology in 1, in a more general context, in Section
8 on product spaces. Both the topologies on RI introduced here are treated
in the chapter on function spaces.

4G. Nowhere dense sets
A set A in a topological space X is nowhere dense in X iff Clx A contains no
nonempty open set. A point p is isolated iff the set {p} is open and a set D
is discrete in X (or, relatively discrete) iff each d ∈ D has a nhood U in X
such that U n D = {d}.

1. In a metric space X without isolated points, the closure of a discrete set
in X is nowhere dense in X.

2. In any space X, the frontier of an open set is closed and nowhere
dense.

3. Conversely, every closed nowhere dense set is the frontier of an open
set.

4. In a metric space X, the frontier of an open set is the set of
accumulation points of a discrete set. [This requires the axiom of choice and



is difficult.]

5 Bases and subbases
As we observed in the last section, we can specify the nhood system at a
point x of a topological space X by giving a somewhat smaller collection of
sets, a nhood base at x. In much the same way, the topology on all of X can
be specified, without describing each and every open set, by giving a base
for the topology.

5.1 Definition. If (X, τ) is a topological space, a base for τ (sometimes we
call it a base for X when no confusion can result) is a collection ℬ ⊂ τ such
that

That is, τ can be recovered from ℬ by taking all possible unions of
subcollections from ℬ. Evidently, ℬ is a base for X iff whenever G is an
open set in X and p ∈ G, there is some B ∈ ℬ such that p ∈ B ⊂ G.

5.2 Examples. a) In R, the collection ℬ of all open intervals is a base for
the usual topology. More generally, in any metric space M, the collection of
all open disks about points of M is a base for M.

b) The collection {{x} | x ∈ X} is a base for the discrete topology on X.

The following theorem is similar to 3.7, 3.11, 4.2 and 4.5. That is, it lists
a few properties that bases enjoy and provides the converse assertion: any
structure on a set X with these properties provides a topology on X. Note
that no mention is made in this theorem of the topology. If you have a given
topology τ and want to know whether a particular collection ℬ of sets is a
base for τ, 5.3 can be used to show ℬ is a base for some topology, but you
must return to the Definition 5.1 to show the topology generated by ℬ is τ
(and here the form of the definition given in the last sentence of 5.1 is
particularly useful).



5.3 Theorem. ℬ is a base for a topology on X iff

a) X = B∈ℬ B

b) whenever B1, B2 ∈ ℬ with p ∈ B1 ∩ B2, there is some B3 ∈ ℬ with

p ∈ B3 ⊂ B1 ∩ B2.

Proof. If ℬ is a base for a topology on X, the two properties are clear.
Suppose, on the other hand, X is a set and ℬ a collection of subsets of X
with these properties. Let τ be all unions of subcollections from ℬ. Then
any union of members of τ certainly belongs to τ, so τ satisfies G-1 of 3.1.

Moreover, if ℬ1 ⊂ ℬ and ℬ2 ⊂ ℬ, so that  B and  C are
elements of τ, then

But by property (b), the intersection of two elements of ℬ is a union of
elements of ℬ, so

is a union of elements of ℬ, and hence belongs to τ. Thus τ satisfies G-2 of
3.1. Finally, X ∈ τ by (a) and ø ∈ τ since ø is the union of the empty
subcollection from ℬ. Hence τ satisfies G-3 of 3.1. This completes the
proof that τ is a topology on X. ■

The reader might well suspect, especially after studying the examples
given in 5.2, that more than a casual similarity exists between the idea of a



nhood base at each point of X on the one hand and the notion of a base for
the topology of X on the other. Indeed, as the next theorem makes clear, the
only real difference between the two notions is that nhood bases need not
consist of open sets.

5.4 Theorem. If ℬ is a collection of open sets in X, ℬ is a base
for X iff for each x ∈ X, the collection ℬx = {B ∈ ℬ | x ∈ B} is
a nhood base at x.

Proof. Suppose first that ℬ is a base for X, x ∈ X, and ℬx = {B ∈ ℬ | x ∈
B}. The elements of ℬx are clearly nhoods of x. Moreover, if U is any
nhood of x, then x ∈ U° and, since U° is a union of elements of ℬ, x ∈ B ⊂
U° for some B ∈ ℬ. Thus B ∈ ℬx and B ⊂ U, so ℬx is a nhood base at x.

Conversely, if ℬx is an open nhood base at x, for each x ∈ X, and ℬ = 

x∈X ℬx, then for any open set U in X, and each element p of U, there is an
element Bp of ℬ such that p ∈ Bp ⊂ U. Then U = {Bp |p ∈ U} is a union
of elements of ℬ, so ℬ is a base for X. ■

We can go one step further in reducing the size of the collection we must
specify to describe a topology. The reduction from topology to base was
accomplished essentially by dropping property G-1 of topologies. The
further reduction to subbase is accomplished by dropping G-2 (see 3.1).

5.5 Definition. If (X, τ) is a topological space, a subbase for τ (or a subbase
for X) is a collection  ⊂ τ such that the collection of all finite intersections
of elements from  forms a base for τ.

5.6 Theorem. Any collection of subsets of a set X is a subbase
for some topology on X.

Proof. Exercise 5 D. ■



Problems

5A. Examples of subbases
1. The family of sets of the form (− ∞, a) together with those of the form

(b, ∞) is a subbase for the usual topology on the real line.

2. Describe the topology on the plane for which the family of all straight
lines is a subbase.

3. Describe the topology on the line for which the sets (a, ∞), a ∈ R, are
a subbase. Describe the closure and interior operations in this topology.

5B. Examples of bases
1. The collection of all open rectangles is a base for a topology on the

plane. Describe the topology in more familiar terms.

2. For each positive integer n, let Sn = {n, n + 1, . . .}. The collection of
all subsets of N which contain some Sn is a base for a topology on N.
Describe the closure operation in this space.

3. The collection of all open intervals (a, b) together with the one-point
sets {n} for all positive and negative integers n is a base for a topology on
the real line. Describe the interior operation in the resulting space.

5C. The scattered line
We introduce a new topology on the line as follows: a set is open iff it is of
the form U ∪ V where U is an open subset of the real line with its usual
topology and V is any subset of the irrationals. Call the resulting space S,
the scattered line.

1. With the definition of “open set” given, S is a topological space.

2. Describe an efficient nhood base at
a. the rational points
b. the irrational points

in S. Put these together to describe a base for S.



5D. No axioms for subbase
Any family of subsets of a set X is a subbase for some topology on X and
the topology which results is the smallest topology containing the given
collection of sets.

5E. Bases for the closed sets
A base for the closed sets in a topological space X is any family of closed
sets in X such that every closed set is an intersection of some subfamily.

1. ℱ is a base for the closed sets in X iff the family of complements of
members of ℱ is a base for the open sets.

2. ℱ is a base for the closed sets for some topology on X iff (a) whenever
F1 and F2 belong to ℱ, F1 ∪ F2 is an intersection of elements of ℱ, and (b) 

F∈ℱ, F = ø.

5F. Second countable and separable spaces
A space X is second countable iff X has a countable base. X is separable iff
a countable subset D of X exists with Clx D = X. (Such a set D is said to be
dense in X.)

1. A separable metric space is second countable. [The disks of rational
radius about the points of a countable dense set form a countable base.]

2. Every second countable space is separable and first countable. [For
separability, obtain a countable dense set by choosing one element from
each member of a countable base. Note that this requires the axiom of
choice.]

3. The Sorgenfrey line E (4.6) is first countable and separable; we will
see later that it cannot be second countable.

Material on separable and second countable spaces will be developed in
the text in Section 16.



Chapter 3

New Spaces from Old

6 Subspaces
A subset of a topological space inherits a topology of its own, in an obvious
way. This topology and some of its easily developed properties will be
presented here.

 
 
6.1 Definition. If (X, τ) is a topological space and A ⊂ X, the collection τ’ =
{G ∩ A | G ∈ τ} is a topology for A, called the relative topology for A. The
fact that a subset of X is being given this topology is signified by referring
to it as a subspace of X.

 
 

Any time a topology is used on a subset of a topological space without
explicitly being described, it is assumed to be the relative topology. This
natural and convenient convention has the result that any adjective which
can be applied to topological spaces (e.g., “separable,” see 5F) can be
applied automatically to subsets of a topological space. We are not saying
that if a space has a particular property, then every subspace of that space
has the same property; see 6B.

 
 
6.2 Examples. a) The real line, regarded as the x-axis in R2, inherits its
usual topology from R2. The integers, as a subspace of R, inherit the
discrete topology. Each of these examples is a special case of the general
rule: if X is metrizable and A ⊂ X, then the relative topology on A is



generated by the restriction of any metric which generates the topology on
X. The proof of this will be made easy by the next theorem, so it is left to
Exercise 6C.

 
 

b) By relativizing the usual topology on Rn, we have a usual topology on
any subset of Rn. By part (a), the usual topology on A is generated by the
usual metric on A.

 
 

c) Any subspace of a discrete space is discrete and any subspace of a
trivial space is trivial.

d) A subspace of a subspace is a subspace. That is, if A1 ⊂ A2 ⊂ X, then
the relative topology induced on A1 by the relative topology of A2 in X is
just the relative topology of A1 in X. The proof is easy.

 
 

The open sets in a subspace A of X are the intersections with A of the
open sets in X. Most, but not all, of the related topological notions are
introduced into A in the same way, by intersection, as the following theorem
and example show.

 
 

6.3 Theorem. If A is a subspace of a topological space X, then:
a. H ⊂ A is open in A iff H = G ∩ A, where G is open in X,
b. F ⊂ A is closed in A iff F = K ∩ A where K is closed in X,
c. if E ⊂ A, then ClA E = A ∩ ClX E,
d. if x ∈ A, then V is a nhood of x in A iff V = U ∩ A, where U is a nhood

of x in X,
e. if x ∈ A, and if ℬx is a nhood base at x in X, then {B ∩ A | B ∈ ℬx} is

a nhood base at x in A,



f. if ℬ is a base for X, then {B ∩ A | B ∈ ℬ} is a base for A.

Proof. a) is just the definition of the subspace topology on A, recorded here
for reference.

b) follows directly from (a).

c) follows from (b) and the definition of the closure of E as the
intersection of all closed sets containing E.

d) follows from (a) and the definition of a nhood of x as a set containing
an open set containing x.

e) Each B ∩ A is a nhood of x in A, by part (d). Further, if V is any nhood
of x in A, then V = U ∩ Y where U is a nhood of x in X. Then U ⊃ B for
some B ∈ ℬx, so V = U ∩ A ⊃ B ∩ A. Thus the sets B n A form a nhood
base at x in A.

f) follows from (e) and the theorem (5.4) on translation between bases
and nhood bases. ■

The reader will notice that two concepts are missing from the list above;
no mention is made of the interior operator or the frontier operator in
subspaces. The following examples indicate why this is so.

6.4 Examples. a) Let X be the plane with the usual topology while A = E =
the x-axis. Then IntA E = A while Intx E = ø, so that the former cannot be
obtained by intersecting the latter with A. It is always true, however, that

IntA E ⊃ A ∩ Intx E.

b) Using the same example, we have FrA E = ø while Frx E = A, so that,
again, the former cannot be obtained by intersecting the latter with A. It is
always true, however, that FrA E ⊂ A ∩ Frx E.

Problems



6A. Examples of subspaces
1. Recall that A denotes the slotted plane (4C). Any straight line in the

plane has the discrete topology as a subspace of A. The topology on any
circle in the plane as a subspace of A coincides with its usual topology.

2. We will let B denote the radial plane (3A). The relative topology
induced on any straight line as a subspace of B is its usual topology. The
relative topology on any circle in the plane as a subspace of B is the discrete
topology.

3. Discuss the subspaces of the scattered line S (5C).

4. The rationals, as a subspace of R, do not have the discrete topology.

5. The topology on the nonnegative reals, regarded as the subspace {(0,
y) | y ≥ 0} of the Moore plane Γ (4B) is the usual topology. The x-axis in
the Moore plane inherits the discrete topology.

6. An open set in an open subspace of X is open in X. This need not be
true if the subspace is not open. A similar result holds for closed sets in
closed subspaces.

7. If τ is the simple extension over A (3A.5) of a topology τ′ on X, then A
is open in (X, τ) and the topology A inherits from (X, τ) is the same topology
it inherits from (X, τ′).

6B. Subspaces of separable spaces
1. The Moore plane Γ (4B) is separable (see 5F).

2. The x-axis in the Moore plane has for its relative topology the discrete
topology. Thus, a subspace of a separable space need not be separable.

3. An open subset of a separable space is separable.

6C. Subspaces of metrizable spaces
If M is metrizable and N ⊂ M, then the subspace N is metrizable with the
topology generated by the restriction of any metric which generates the
topology on M.



6D. Ordered spaces
Let X be linearly ordered by a relation ≤. Take as a subbase for a topology
on X all sets of the form {x | x < a} and {x | x > a}, for a ∈ X. The resulting
topology on X is the order topology on X and whenever we use the phrase
ordered space we mean a linearly ordered set with its order topology. An
interval in a linearly ordered space is any subset which contains all points
between x and y whenever it contains x and y.

1. If a < b in X, the interval {x ∈ X | a < x < b} is an open set in the order
topology; but intervals of the form {x ∈ X |a ≤ x ≤ b} may also be open.

2. The usual topology on the real line is the order topology given by the
usual order.

3. In I x I, with the lexicographic order: (x1, x2) < (y1, y2) iff either x1 <
x2 or else x1 = x2 and y1 < y2, describe the nhoods of each of the following:

a. the points (x, 0), with particular attention to (0, 0),
b. the points (x, 1), with particular attention to (1, 1),
c. the points (x, y), 0 < x < 1, 0 < y < 1.

4. A subset of an ordered space has a topology induced by the restricted
order and a topology inherited from the order topology on the larger space.
Show by an example that these two topologies on a subset need not be the
same. [An example exists using for the large space the real line with its
usual topology and order.] Find conditions on the subspace which will
ensure that the two induced topologies agree.

7 Continuous functions
It is the purpose of this section to define continuous functions on a
topological space and establish their elementary properties. The basis for
our definition is Theorem 2.8, in which it was demonstrated that the notion
of distance could be effectively suppressed in defining continuity of
functions between metric spaces, by introduction of the use of open sets. In
fact, the reader who restudies Theorem 2.8 at this point will see in the
following definition just a rewording of that theorem, with the slight



modification that here we use “nhood of x0” instead of “open set containing
x0”.

7.1 Definition. Let X and Y be topological spaces and let f: X → Y. Then f is
continuous at x0 ∈ X iff for each nhood V of f(x0) in Y, there is a nhood U of
x0 in X such that f(U) ⊂ V. We say f is continuous on X iff f is continuous at
each x0 ∈ X.

It is left to the reader to verify that the effect of the definition is not
altered if “nhood” is replaced by “basic nhood” throughout.

The next theorem provides an alternative, and somewhat surprising, set
of characterizations of functions f : X → Y which are continuous on all of X.
This theorem, in one or another of its forms, is more often used to check
“global” continuity than the alternative, that is, checking continuity at each
point of X individually. The fourth characterization, although not often used
as a test for continuity, is interesting. It provides us with a description of the
continuous functions f : X → Y as precisely those functions which take the
points close to a set E in X close to its image in Y.

7.2 Theorem. If X and Y are topological spaces and f : X → Y,
then the following are all equivalent:

a. f is continuous,
b. for each open set H in Y, f− 1(H) is open in X,
c. for each closed set K in Y, f− 1(K) is closed in X,
d. for each E ⊂ X, f(ClXE) ⊂ ClY f(E).

Proof. a) ⇒ b): If H is open in Y, then for each x ∈ f−1(H), H is a nhood of
f(x). Hence, by continuity of f, there is a nhood V of x such that f(V) ⊂ H;
that is, V ⊂ f−1(H). Thus f−1(H) contains a nhood of each of its points and is
therefore open.

b) ⇒ c) : If K is closed in Y, then f−1(Y − K) is open in X, by part (b).
Hence, since f−1(K) = X − f−1(Y − K), f−1(K) is closed in X.



c) ⇒ d): Let K be any closed set in Y containing f(E). By part (c), f−1(K)
is a closed set in X containing E. Hence, ClX E ⊂ f−1(K), and it follows that
f(ClX E) ⊂ K. Since this is true for any closed set K containing E, we have

f(ClX E) ⊂ ClY f(E).

d) ⇒ a) : Let x ∈ X and let V be an open nhood of f(x). Set E = X − f−1(V)
and let U = X– ClX E. It is easy to verify that, since f(ClX E) ⊂ ClY f(E), we
have x ∈ U. It is even clearer that f(U) ⊂ V. Hence, f is continuous at x. ■

The following theorem is intuitive, easily proved and surpassingly
important.

7.3 Theorem. If X, Y and Z are topological spaces and f : X → Y
and g : Y → Z are continuous, then g օ f : X → Z is continuous.

Proof. If H is open in Z, then g −1(H) is open in Y, by continuity of g.
Hence, by continuity of f, f−1[g−1(H)] = (g օ f)−1(H) is open in X. Thus g օ f
is continuous. ■

 
 
7.4 Definition. If f : X → Y and A ⊂ X, we will use f | A (the restriction of f
to A) to denote the map of A into Y defined by (f |A)(a) = f(a) for each a ∈
A.

7.5 Theorem. If A ⊂ X and f : X → Y is continuous, then (f | A):
A → Y is continuous.

Proof. If H is open in Y, then (f | A) −1(H) = f−1(H) ∩ A, and the latter is
open in the relative topology on A. ■



The theorem above has a sort of converse: if f is continuous on each of a
few properly fitting pieces of X, it is continuous on X. This is stated more
precisely by the following theorem, and its generalizations in Exercise 7D.

7.6 Theorem. If X = A ∪ B, where A and B are both open (or
both closed) in X, and if f : X → Y is a function such that both f |
A and f | B are continuous, then f is continuous.

Proof. Suppose A and B are open. If H is open in Y, then f−1(H) is open in X,
since f−1(H) = (f | A)−1(H) ∪ (f | B)−1(H) and each of the latter is open in an
open subspace of X and so open in X. The proof is similar if A and B are
closed. ■

If we write f : X → Y, we have specified the domain of f (as X), but the
image of f is not determined, except that it must be a subset of Y. The next
theorem says, essentially, that it is not necessary to modify this procedure
when dealing with continuous functions. The proof is left as Exercise 7E.

7.7 Theorem. Suppose Y ⊂ Z and f : X → Y. Then f is continuous as a
map from X to Y iff it is continuous as a map from X to Z.

In the passage from X to the image Y of X under a continuous map f, we
lose information in two ways. The first is set-theoretical : Y will have fewer
(or, at least, no more) points than X. The second is topological: Y will have
fewer (or, at least, no more) open sets than X in the sense that each open set
H in Y is the image of an open set (for example, f−1(H)) in X, but there may
well be open sets U in X such that f(U) is not open in Y.

The maps which preserve X set-theoretically and topologically are called
homeomorphisms.

7.8 Definition. If X and Y are topological spaces, a function f from X to Y is
a homeomorphism iff f is one—one, onto and continuous and f−1 is also
continuous. In this case, we sayX and Y are homeomorphic. If f is
everything but onto, we call it an embedding of X into Y and say that X is
embedded in Y by f. Thus, X is embedded in Y by f iff f is a homeomorphism
between X and some subspace of Y.



Evidently, a continuous map f : X → Y is a homeomorphism iff there is a
continuous map g : Y → X such that the compositions g օ f and f օ g are the
identity maps on X and Y respectively. Various algebraic isomorphisms may
be defined in the same formal way. The attempt to unify and systematize
such notions has led to the development of categorical algebra.

The reader can easily verify the following theorem; it is a direct
consequence of Theorem 7.2.

7.9 Theorem. If X and Y are topological spaces and f : X → Y is
one-one and onto, the following are all equivalent:

a. f is a homeomorphism,
b. if G ⊂ X, then f(G) is open in Y iff G is open in X,
c. if F ⊂ X, then f(F) is closed in Y iff F is closed in X,
d. if E ⊂ X, then f(Clx E) = ClY f(E).

Homeomorphic topological spaces are, for the purposes of a topologist,
the same. That is, there is nothing about homeomorphic spaces X and Y
having to do only with their respective topologies which we can use to
distinguish them. Thus, for example, a “topological characterization” of the
real line R would consist of a list of properties possessed by the real line
which, if possessed by any other space X, ensure that X is homeomorphic
with R.

If we denote “X is homeomorphic with Y” by X ~ Y, then the relationship
~ has the following properties:

a. X ~ X,
b. if X ~ Y, then Y ~ X,
c. if X ~ Y and Y ~ Z, then X ~ Z.

Thus, the relation “is homeomorphic to” is an equivalence relation on any
set of topological spaces. The reader might profit from thinking, at this
point, about the question: is there a set of all topological spaces?



To prove two spaces are homeomorphic, one constructs a
homeomorphism. To establish that two spaces are not homeomorphic, one
must find a topological property possessed by one and not the other. The
definition of “topological property” makes it clear why this works. A
topological property is a property of topological spaces which, if possessed
by X, is possessed by all spaces homeomorphic to X. First countability,
second countability and separability are examples of topological properties
which have already been introduced. We will introduce many more in
sections to come.

 
 
7.10 Examples. a) The open interval (a, b) in R is homeomorphic to (0, 1),
one homeomorphism being f(x) = (x − a)/(b − a). Moreover, all intervals of
the form (a, ∞) are obviously homeomorphic by translation, and (1, ∞) is
homeomorphic to (0, 1) under the map f(x) = 1/x. Also, the interval (−∞, −
a) is homeomorphic to (a, ∞) under the map f(x) = −x. Finally, (− ∞, ∞) is
homeomorphic to (− π/2, π/2) under the map f(x) = arctan x. The relations
above can be summarized, using transitivity of the homeomorphism
relation, as follows: all open intervals in R, including the unbounded
intervals, are homeomorphic. Verification of the details passed over here is
left to Exercise 7G.

b) All bounded closed intervals in R which have more than one point are
homeomorphic. In fact, [a, b] is homeomorphic to [0, 1] under the same
map f(x) = (x − a)/(b − a) used above. In 7G, we will see that we cannot
include the unbounded intervals this time.

Problems

7A. Characterization of spaces using functions
The characteristic function of a subset A of a set X is the function from X to
R which is 1 at points of A and 0 at other points of X.

1. The characteristic function of A is continuous iff A is both open and
closed in X.



2. X has the discrete topology iff whenever Y is a topological space and f :
X → Y, then f is continuous.

3. X has the trivial topology iff whenever Y is a topological space and f :
Y → X, then f is continuous.

7B. No Cantor–Bernstein theorem for topological
spaces
Recall that the Cantor—Bernstein theorem states that if A and B are sets and
if one-one functions f : A → B and g : B → A exist, then a one-one function
of A onto B exists. The analog for topological spaces would be: whenever X
can be embedded in Y and Y can be embedded in X, then X and Y are
homeomorphic. Find a counterexample. [See 7G.3].

7C. Functions agreeing on a dense subset
If f and g are continuous functions from X to R, the set of points x for which
f(x) = g(x) is a closed subset of X. Thus two continuous maps on X to R
which agree on a dense subset (one whose closure is X) must agree on all of
X. Rephrased: a real-valued continuous function is determined by its values
on a dense set. [See also 13.14.]

7D. Sufficient conditions for continuity
There are useful extensions of Theorem 7.6. A family of subsets of a
topological space is called locally finite iff each point of the space has a
nhood meeting only finitely many elements of the family.

1. The union of any subfamily from a locally finite family of closed sets
is closed.

2. If {Aλ | Λ ∈ Λ} is a locally finite collection of closed subsets of X
whose union is X, a function on X is continuous iff its restriction to each Aλ,
is continuous.

3. If {Bλ | λ ∈ Λ} is any collection of open subsets of X whose union is
X, a function on X is continuous iff its restriction to each Bλ is continuous.



7E. Range immaterial
If Y ⊂ Z and f : X → Y, then f is continuous as a map from X to Y iff f is
continuous as a map from X to Z.

7F. Functions to and from the plane
The facts presented here for the plane will be proved in more generality for
product spaces in Section 8.

If f is a function on any space X to the plane, associated with f we have
the coordinate functions f1 and f2, each mapping X to R. For each x ∈ X,
f1(x) and f2(x) are the first and second coordinates, respectively, of f(x).

On the other hand, if g is a function from the plane to any space Y, for
each fixed x0 ∈ R we can define a function  from R to Y by  = g(x0,
y). Similarly, if y0 ∈ R is fixed, (x) = g(x, y0) defines a function  from
R to Y. We say g is continuous in x iff  is continuous for each y0 ∈ R and
g is continuous in y iff  is continuous for each x0 ∈ R.

1. A function f : X → R2 is continuous iff both coordinate functions f1
and f2 are continuous.

2. If g : R2 → Y is continuous, then it is continuous in both x and y.

3. The converse to part 2 fails. [Let g(x, y) = xy/(x2 + y2), with g(0, 0) =
0.]

7G. Homeomorphisms within the line
1. Show that all open intervals in R are homeomorphic (see 7.10).

2. All bounded closed intervals in R are homeomorphic.

3. The property that every real-valued continuous function on X assumes
its maximum is a topological property. Thus I is not homeomorphic to R.

7H. Disjoint homeomorphisms



Suppose X and Y are topological spaces such that X = Xn and Y = Yn,
where (Xn) and (Yn) are sequences of disjoint open sets in X and Y
respectively. If Xn and Yn are homeomorphic for each n, then X and Y are
homeomorphic.

7I Topological properties
Each of the following expresses a topological property of X :

1. X has cardinal number ℵ ,
2. the topology on X has cardinal number ℵ ,
3. the topology on X has a base whose cardinal number is ℵ ,
4. there is in X a set of cardinal ℵ whose closure is X,
5. X is metrizable.

Each of the following expresses a property of X which is not a
topological property:

6. the topology on X is generated by the metric p,
7. X is a subset of R.

7J. Retracts
A continuous function r from a space X onto a subspace A of X is called a
retraction of X onto A iff r | A is the identity map on A. When such a
retraction exists, A is called a retract of X.

1. If A is a retract of X and B ⊂ X, A ∩B need not be a retract of B.
2. The unit disk is a retract of the plane.
3. If A is a retract of B and B is a retract of C, then A is a retract of C.

7K. Semicontinuous functions



A function f : X → R is lower semicontinuous iff for each a ∈ R, f −1(a, ∞)
is open in X. We call f upper semicontinuous iff for each a ∈ R, f−1(− ∞, a)
is open in X. Note that lower and upper semicontinuity bear no relation to
continuity from the left or right for functions of a real variable; we are using
the ordering of the range of our functions, not the domain. Most of the
results below are stated for lower semicontinuous functions; they have
obvious analogs for upper semicontinuous functions.

1. If fα is a lower semicontinuous real-valued function on X for each α ∈
A, and if supα fα(x) exists at each x ∈ X, then the function f(x) = supα fα(x)
is lower semicontinuous on X.

2. Every continuous function from X to R is lower semicontinuous. Thus
the supremum of a family of continuous functions, if it exists, is lower
semicontinuous. Show by an example that “lower semicontinuous” cannot
be replaced by “continuous” in the previous sentence.

3. The characteristic function (7A) of a set A in X is lower
semicontinuous iff A is open, upper semicontinuous iff A is closed.

4. If X is metrizable and f is a lower semicontinuous function from X to I,
then f is the supremum of an increasing sequence of continuous functions
on X to I. This provides a partial converse to part 2. [Given f, first find a
sequence hn with 0 ≤ f(x) − hn(x) ≤ 1/n, where hn is a finite linear
combination of characteristic functions of open sets. Then show that every
characteristic function, hence each hn, is the supremum of an increasing
sequence of continuous functions. Finally, combine these two operations to
obtain an increasing sequence of continuous functions whose supremum is
f.]

5. Let C1(I) be the family of continuously differentiable real-valued
functions on I. For each f ∈ C1(I), define



Prove that L is lower semicontinuous from C1(I) to R, if C1(I) is given the
topology of 4F.3.

7L. Linear operators and linear functionals
If X and Y are normed linear spaces (2J), a linear operator from X to Y is a
function Γ: X → Y satisfying

a. Γ(x1 + x2) = Γ(x1) + Γ(x2),
b. Γ(ax) = aΓ(x),

for all a in R and x, x1, x2 in X A linear operator from X to R is called a
linear functional.

A linear operator Γ from X to Y is bounded iff a constant M exists such
that ∥Γ(x)∥ ≤ M ∥x∥, for all x ∈ X. (Here we indulge in the common bad
habit of failing to use a distinguishing notation for the norms on X and Y.) In
case Γ is a linear functional, the norm we use on R is ∥x∥ = |x|.

1. A linear operator is bounded iff sup {∥Γ(x)∥ |x ∈ X, ∥x∥ = 1} < ∞.

2. For a linear operator Γ from X to Y, the following are equivalent:
a. Γ is continuous at some x0 ∈ X,
b. Γ is uniformly continuous on X,
c. Γ is bounded.

3. Given normed linear spaces X and Y, the collection L(X, Y) of all
bounded linear operators from X to Y is a linear space under pointwise
addition and scalar multiplication (Γ1 + Γ2)(x) = Γ1(x) + Γ2(x), (aΓ)(x) = a ·
Γ(x). It becomes a normed linear space if we define ∥Γ∥ = sup {∥Γ(x)∥ ∣∥x∥
= 1} (see part 1).

4. If Y = R, the space L(X, Y) given in part 3, consisting of all bounded
linear functionals on X, is called the dual space of X, denoted X*. Show
that, in a natural way, X ⊂ (X*)*. [For each x ∈ X, define Fx on X* by
Fx(Γ) = Γ(x). Show that the mapping x → Fx is a norm-preserving one–one
map of X into (X*)*.]

The spaces X for which (X*)* = X (that is, for which the mapping x → Fx
given in part 4 is onto (X*)*) are called reflexive. In problem 24J, we will



see that the norm metric on any dual space is complete, so that dual spaces
are examples of “Banach spaces.” Thus, only Banach spaces can be
reflexive.

See Royden (Real Analysis) for a discussion of the representation of dual
spaces of some familiar spaces; for example, the dual of Lp(I) is Lq(I),
where 1/p + 1/q = 1.

7M. C(X) and C*(X)
For topological spaces X and Y, let C(X, Y) denote the collection of all
continuous functions from X to Y. We will distinguish two special
collections: C(X) will be used to denote C(X, R) and C*(X) will denote the
set of all bounded functions from C(X). We can define addition,
multiplication and scalar multiplication of functions in C(X) pointwise:

(f + g)(x) = f(x) + g(x),

(f · g)(x) = f(x) · g(x),

(a · f)(x) = a · f(x), for a ∈ R.

1. If f and g belong to C(X), then so do f + g, f ⋅ g and a · f, for a ∈ R. If,
in addition, f and g are bounded, then so are f + g, f · g and a · f.

2. C(X) and C*(X) are algebras over the real numbers. (Consult any book
on abstract algebra for the definition of an algebra.)

3. C*(X) is a normed linear space (2J) with the operations of addition and
scalar multiplication given above and the norm ∥f∥ = supx∈X ∣f(x)∣.

4. C(X) and C*(X) are lattices when given the partial order f ≤ g iff f(x) ≤
g(x) for each x ∈ X. [If f, g belong to C(X), so do

m(x) = min {f(x), g(x)} and M(x) = max {f(x), g(x)}.]



Study of the interaction between the algebraic and lattice properties of
C(X) and C*(X) and the topological properties of X is still actively being
carried on. Some questions of importance in this direction are:

i) for what class of spaces is it true that X and Y are homeomorphic iff C*
(X) and C*(Y) [or C(X) and C(Y)] are isomorphic?

ii) how are topological properties of X reflected in algebraic and lattice
properties of C*(X) and C(X)?

iii) what properties of a ring R (usually with a lattice structure) will
ensure that R is isomorphic with C(X) for some topological space X?

An excellent introduction to the study of questions of this sort can be
found in the book on rings of functions by Gillman and Jerison.

7N. The group of homeomorphisms
For any topological space X, let H(X) denote the group of homeomorphisms
of X onto itself, with composition as the group operation. A central and
obvious question is: if ϕ is an isomorphism of H(X) onto H(Y) is there a
homeomorphism T of X onto Y such that ϕ(h) = T օ h օ T–1, for each h ∈
H(X)?

1. H(X) is a group, with composition as the operation.

2. Let X = I and Y = (0, 1) and define ϕ(h) = h ∣ Y for each h ∈ H(X).
Then ϕ is an isomorphism of H(X) with H(Y), but there is no
homeomorphism of X onto Y. [7G].

Part 2 effectively disposes of the question asked in the introduction for
general spaces X and Y. Affirmative answers are available, however, for
suitably restricted classes of spaces. See the notes.

8 Product spaces, weak topologies
Our objective now is to define a topology on the Cartesian product of
topological spaces, in some natural and useful way. First we extend the
notion of Cartesian product to infinite collections of sets. The key to
understanding the definition we are about to give is a careful study of
Exercise 1D. There we show that the product of a finite collection of sets is,
in a natural way, a collection of functions each defined on the indexing set.



8.1 Definition. Let Xα be a set, for each α ∈ A. The Cartesian product of
the sets Xα is the set

which we denote simply by Π Xα if no confusion can result about the
indexing set. Thus Π Xα is a set of functions defined on the indexing set. In
practice, the value of x ∈ Π Xα at α is usually denoted xα, rather than x(α),
and xα is referred to as the αth coordinate of x. The space Xα is the αth
factor space.

The map πβ: Π Xα → Xβ, defined by πβ(x) = xβ, is called the projection
map of Π Xα on Xβ, or more simply, the βth projection map.

We need the axiom of choice (1.17) to ensure that the Cartesian product
of a nonempty collection of nonempty sets is nonempty. This assertion is, in
fact, equivalent to the axiom of choice; see Exercise 8F. If each Xα is
nonempty and the axiom of choice is assumed, then the βth projection map
carries Π Xα onto Xβ.

8.2 Examples. a) If the index set A is finite, say A = {1, 2, . . . , n}, it is
customary to prescribe the function x in  Xk by listing its values as an
ordered n-tuple, x = (x1, . . . , xn). Thus  Xk = {(x1, . . . , xn) ∣ xk ∈ Xk,
k = 1, . . . , n}.

b) The notation in (a) is carried over to the case where A = N. Thus 
 Xk = {(x1, x2, . . .) ∣ xk ∈ Xk, k = 1, 2, . . .}.

c) If Xα = X for each α ∈ A, then Πα∈A
 Xα is just the set XA of all

functions from A to X. (Finally, the reason for the notation XA is clear.) For
example, RR is the set of all real-valued functions of a real variable.

d) If Xα ⊂ Yα for each α ∈ A, then Π Xα ⊂ Π Yα.



Now suppose Xα is a topological space, for each α ∈ A. We want to
define a topology on Πα∈A Xα which is at the same time natural enough
that, for example, the product topology on R × R will be the usual topology
on R2, and tame enough that a number of theorems of the form “if each Xα
has property P, then so does Π Xα” will remain true.

If naturality were the only requirement, the job would be easy. In fact,
after recalling that the open squares in R2 form a base for the usual
topology in R2, an obvious candidate for a topology on Π Xα arises. Simply
take as a base for such a topology all sets of the form Π Uα, where Uα is an
open set in Xα, for each α ∈ A. In fact, this procedure gives a valid
topology, called the box topology, on Π Xα. It satisfies our craving for
naturality, but is not much used because it is not tame enough, having an
over-abundance of open sets. The definition, given next, of the usual
topology used on the product space rectifies this by sharply reducing the
number of basis elements.

8.3 Definition. The Tychonoff topology (or product topology) on Π Xα is
obtained by taking as a base for the open sets, sets of the form Π Uα, where

P-a) Uα is open in Xα, for each α ∈ A,

P-b) For all but finitely many coordinates, Uα = Xα.

The reader will easily verify that P-a could have been replaced by

P-a)′ Uα ∈ ℬα, where for each α, ℬα is a (fixed) base for the
topology of Xα.

Also, notice that the set Π Uα, where Uα = Xα except for α = α1, . . . , αn, can
be written



Thus the product topology is precisely that topology which has for a
subbase the collection {πα

–1(Uα) | α ∈ A, Uα open in Xα}. Again, the sets
Uα can be restricted to come from some fixed base (in fact, in this case,
subbase) in Xα.

In case only a finite number of spaces X1, . . . , Xn is involved, the
product topology on  coincides with the box topology, so in those
cases where we have any intuition to begin with, the product topology will
always seem “natural”. In particular, R × R × · · · × R (n times) with the
product topology is homeomorphic to Rn.

Hereafter, Π Xα is always assumed to be endowed with the product
(Tychonoff) topology if each Xα is a topological space.

 
 
8.4 Examples. a) Let X = RR. Recall that X is the set of all real-valued
functions of a real variable. A basic nhood of ƒ ∈ X in the product topology
is obtained by picking a finite subset {x1 , . . . , xn} of the index set R and a
corresponding set {∈1, . . . , ∈k} of positive numbers, and letting

U(f ; x1, . . . , xn; ∈1, . . . , ∈ n) = {g ∈ RR | | |g(xk) − f(xk)| < εk,
for k = 1,. . .,n}.

We can obtain a somewhat simpler description of a base in RR by letting F
= {x1, . . . , xn}, ∈ = min {ε1, . . .,εn} and noting that the nhood

U(f, F, ε) = {g ∈ RR |∣g(x) − f(x)| < ε for x ∈ F}



is contained in U(f; x1, . . . , xn; ε1, . . . , εn), so that the sets U(f, F, ε), as F
ranges through all finite subsets of R and ε ranges through all positive
numbers, form a nhood base at ƒ (see Fig. 8.1).

Fig. 8.1 U(f, F, ε)

b) For each α ∈ A, let Xα be a discrete space of more than one point.
Then Π Xα will be a discrete space if and only if A is finite.

c) If S1 is the unit circle in R2, then S1 × I is a cylinder and S1 × S1 is a
torus (Fig. 8.2).

d) If Yα ⊂ Xα for each α ∈ A, then the product topology on Π Yα
coincides with its topology as a subspace of Π Xα.

8.5 Definition. If X and Y are topological spaces and f : X → Y, we call f an
open (closed) map iff for each open (closed) set A in X, ƒ(A) is an open
(closed) set in Y.



If ƒ is one-one and onto, then ƒ is open iff ƒ is closed iff ƒ−1 is
continuous. Thus a one-one onto map f is a homeomorphism iff it is
continuous and open iff it is continuous and closed.

In general, an open map need not be closed and vice versa; see 8A, 9C.

8.6 Theorem. The βth projection map πβ : Π Xα → Xβ is
continuous and open, but need not be closed.

Proof. Left as Exercise 8A. ■

8.7 Theorem. The Tychonoff topology is the weakest topology on
Π Xα for which each projection πβ is continuous.

Figure 8.2

Proof. If τ is any topology on the product in which each projection is
continuous, then for each β, if Uβ is open in Xβ,  ∈ τ. Consequently,
the members of a subbase for the Tychonoff topology all belong to τ, and
hence the Tychonoff topology is contained in τ. ■



8.8 Theorem. A map ƒ : X → Π Xα is continuous iff πα ∘ ƒ is
continuous for each α ∈ A.

Proof. Necessity of the composition condition is clear since the composition
of continuous maps is continuous. Conversely, supposes πα ∘ ƒ is
continuous for each α ∈ A. The sets of the form  , α ∈ A and Uα
open in Xα, form a subbase for the topology on Π Xα. But 

. Thus the inverse images by ƒ of these
subbasic open sets are open in X, by continuity of πα ∘ ƒ. This suffices to
show ƒ is continuous. ■

The previous two theorems form the penultimate justification for our
choice of the Tychonoff topology on Π Xα over the box topology. Directly
or indirectly, these results lie at the heart of most useful investigations into
the properties of product spaces. As is often the case, a theorem (in this
case, 8.7) with a desirable conclusion becomes the basis for a definition.

 
 
8.9 Definition. Let X be a set and Xα a topological space with ƒα: X → Xα,
for each α ∈ A. The weak topology induced on X by the collection {ƒα | α ∈
A} of functions is the smallest topology on X making each fα continuous. It
evidently is that topology on X for which the sets  , for α ∈ A and
Uα open in Xα, form a subbase.

By Theorem 8.7 the product topology on Πα∈A Xα is the weak topology
induced by the collection {πα | α ∈ A} of projections. Moreover, Theorem
8.8 carries over to any weak topology, without essential change in the
mechanics of the proof.

8.10 Theorem. If X has the weak topology induced by a
collection {ƒα| α ∈ A} of functions ƒα: X → Xα, then ƒ: Y → X is



continuous iff ƒα ∘ ƒ is continuous for each α ∈ A.

Proof. Mimic the proof of 8.8. ■

It is one of the remarkable and fruitful results in topology that, with a
simple extra condition on the generating collection of maps, any space with
a weak topology can be embedded as a subspace of the product of the range
spaces.

8.11 Definition. If, for each α ∈ A, ƒα : X → Xα, then the evaluation map e
: X → Π Xα induced by the collection {ƒα | α ∈ A} is defined as follows: for
each x ∈ X, [e(x)]α = ƒα(x). That is, for x ∈ X, e(x) is the point in Π Xα
whose αth coordinate is ƒα(x) for each α ∈ A.

A collection {ƒα | α ∈ A} of functions on X will be said to separate
points in X iff whenever x ≠ y in X, then for some α ∈ A, ƒα(x) ≠ ƒα(y).

8.12 Theorem. For each α ∈ A, let ƒα : X → Xα. Then the
evaluation map e : X → Π Xα is an embedding iff X has the weak
topology given by the functions ƒα and the collection {ƒα|α ∈ A}
separates points in X.

Proof. The heart of the proof of this theorem lies in the observation that, for
each α ∈ A, πα ∘ e = ƒα.

Now suppose e is an embedding of X into Π Xα. Then e(X) has the weak
topology induced by the restricted projections [see Exercise 8H]. Hence,
since e is a homeomorphism, it is clear that X has the weak topology
induced by the functions πα ∘ e = ƒα. Moreover, if x ≠ y, in X, then e(x) ≠
e(y) and hence [e(x)]α ≠ [e(y)]α, that is, ƒα(x) ≠ ƒα(y), for some α ∈ A. Thus
the collection {ƒα | α ∈ A} separates points.

Now suppose the topology on X is the weak topology induced by the
functions ƒα and that the collection {ƒα | α ∈ A} separates points in X. For



each α ∈ A, πα ∘ e = ƒα is continuous. Thus, by Theorem 8.8, e is
continuous. If x ≠ y in X, then for some α ∈ A, ƒα(x) ≠ ƒα(y), i.e., [e(x)]α ≠
[e(y)]α, and thus e(x) ≠ e(y). Hence e is one–one. Finally, we will show e is
an open map; i.e., if U is open in X, then e(U) is open in e(X). Since e is
one-one, it suffices to show e(U) is open whenever U is a subbasic open set.
Hence we assume U is of the form ƒα

−1(V) for some α ∈ A and some open
set V in Xα. But then

U = [(πα | e(X)) ∘ e]−1(V) = e−1[(πα | e(X))−1(V)]

and hence e(U) = [πα | e(X)]−1(V) = πα
–1(V) ∩ e(X) which is an open set in

e(X), since πα
−1(V) is open in Π Xα. (The last argument looks a lot nicer if

you just carry the fact that πα should be restricted to e(X) in your head
instead of writing it out.) ■

The following problem is, in various forms and with occasional
modifications, one of the most important and often investigated questions in
topology and related areas: given a space X and a property  of spaces, can
X be embedded in a larger space Y having property  ? The theorem just
proved forms the essential core of a great many constructions intended to
deal with such questions. The best known example, the Stone-Čech
compactification βX of a Tychonoff space X (see Section 19) is typical of
the use of 8.12 in this way.

In case X already has a topology and we wish to know whether or not this
topology is the weak topology given by a certain collection {ƒα | α ∈ A} of
continuous functions on X, there is often a pleasant alternative to verifying

that the sets (V), for α ∈ A and V open in Xα, form a subbase for the
existing topology.

8.13 Definition. A collection {ƒα | α ∈ A} of functions on a space X (to
spaces Xα) is said to separate points from closed sets iff whenever B is

closed in X and x ∉ B, then for some .



8.14 Theorem. A collection {ƒα | α ∈ A} of continuous
functions on a topological space X separates points from closed
sets in X iff the sets (V), for α ∈ A and V open in Xα, form a
base for the topology on X.

Proof. Exercise 8B. ■

8.15 Corollary. If {ƒα | α ∈ A} is a collection of continuous
functions on a topological space X which separates points from
closed sets, then the topology on X is the weak topology induced
by the maps ƒα.

Whenever one-point sets in X are closed, a collection of functions which
separates points from closed sets will separate points. A space is a T1-space
(see Section 13) iff one-point sets are closed.

8.16 Theorem. If X is a T1-space and {ƒα | α ∈ A} is a
collection of continuous functions on X (to spaces Xα) which
separates points from closed sets, then the evaluation e: X → Π
Xα is an embedding.

Proof. This is a direct consequence of 8.15, the remark preceding this
theorem and 8.12. ■

Problems

8A. Projection maps



1. The βth projection map πβ is continuous and open. The projection π1 :
R2 → R is not closed.

2. Show that the projection of I x R onto R is a closed map.

8B. Separating points from closed sets
1. If ƒα is a map of X to Xα for each α ∈ A, then {ƒα | α ∈ A} separates

points from closed sets in X iff { (V) | a ∈ A, V open in Xα} is a base for
the topology on X.

2. If X has the weak topology induced by a collection of maps which
separates points, this collection of maps need not separate points from
closed sets.

8C. Products are associative and commutative
1. If {Aλ | λ ∈ Λ} is a partition of the set A (into disjoint subsets whose

union is A), and Xα is a topological space for each α ∈ A, then ΠλεΛ (ΠαεAλ
Xα) is homeomorphic to ΠαεA Xα.

2. If ϕ is a one-one map of A onto B and for each α ∈ A, Xα is
homeomorphic to Yϕ(α), then Πα∈A Xα is homeomorphic to Πβ∈B Yβ.

8D. Closure and interior in products
Let X and Y be topological spaces containing subsets A and B, respectively.
In the product space X × Y:

1. (A × B)° = A° × B°.

2.  .

3. Part 2 can be extended to infinite products, while part 1 can be
extended only to finite products.

4.  .

5. If Xα is a nonempty topological space and Aα ⊂ Xα, for each α ∈ A,
then Π Aα is dense (see 7C) in Π Xα iff Aα is dense in Xα, for each α.



8E. Miscellaneous facts about product spaces
Let Xα be a nonempty topological space for each α ∈ A, and let X = Π Xα.

1. If V is a nonempty open set in X, then πα(V) = Xα for all but finitely
many α ∈ A.

2. If bα is a fixed point in Xα, for each α ∈ A, then  = {x ∈ X | xα = bα

whenever α ≠ α0} is homeomorphic to  .

3. If bα is a fixed point in Xα, for each α ∈ A, then A = {x ∈ X ∣xα = bα
except for finitely many α ∈ A} is a dense set in X ; i.e., Clx A = X.

8F. Products and the axiom of choice
1. Show that the axiom of choice is equivalent to the assertion that the

product of a nonempty collection of nonempty sets is nonempty.

2. Assuming the axiom of choice, show that each projection map is onto
if each factor space is nonempty.

8G. The box topology
Let Xα be a topological space for each α ∈ A.

1. In ∏ Xα, the sets of the form ∏ Uα, where Uα is open in Xα for each α
∈ A, form a base for a topology.

2. What do nhoods of ƒ ∈ RR look like in the box topology? [see 8.4(1)].
Compare with 4F3.

3. Work out formulas for the closure and interior of sets in a box product,
similar to those given in 8D.

8H. Weak topologies on subspaces
Let X have the weak topology induced by a collection of maps ƒα : X → Xα,
for α ∈ A.



 
 

1. If each Xα has the weak topology given by a collection of maps gαλ : Xα
→ Yαλ, for λ ∈ Λα, then X has the weak topology given by the maps gαλ ∘
ƒα: X → Yαλ, for a ∈ A and λ ∈ Λα.

2. Any B ⊂ X has the weak topology induced by the maps ƒα ∣B. [Any B
⊂ X has the weak topology induced by the inclusion map j: B → X.]

81. Weak topologies and the lattice of topologies
Let {τα | α ∈ A} be a family of topologies on a fixed set X and denote by Xα
the space consisting of the set X with the topology τα. The identity function
from the set X to the space Xα will be denoted iα.

1. The weak topology induced on X by the maps iα is the supremum τ of
the topologies τα (see 3G).

2. (X, τ) is homeomorphic to the diagonal Δ in the product space ∏ Xα.
(Note: Δ = {x ∈ ∏ Xα | xα = xβ for all α, β}.)

The corresponding theorems for the infimum of the topologies τα are
given in Exercise 91.

8J. Homeomorphic products
Exhibit spaces X, Y and Z such that X × Y is homeomorphic to X × Z, but Y
is not homeomorphic to Z.

It is also true that there are nonhomeomorphic spaces X and Y such that X
× X and Y × Y are homeomorphic (see notes).

See also 30F.

9 Quotient spaces
Dual to the notion of the weak topology induced on X by a collection of
maps ƒα : X → Xα, which is the weakest topology making all these maps
continuous, we have the notion of the strong topology induced on Y by a



collection of maps gα : Yα → Y, which is the strongest topology on Y making
all these maps continuous. In the particular case when there is only one map
g : X → Y, the resulting strong topology on Y is called the quotient topology
induced on Y by g. We will be solely concerned in this section with
investigating three distinct but equivalent ways of viewing quotient spaces,
leaving discussion of strong topologies to Exercise 9H (where we show that
quotient spaces play a role for strong topologies similar to that played by
product spaces relative to weak topologies).

9.1 Definition. If X is a topological space, Y is a set and g : X → Y is an
onto mapping, then the collection τg of subsets of Y defined by

τg = {G ⊂ Y ∣ g–1(G) is open in X}

is a topology on Y, called the quotient topology induced on Y by g. When Y
is given some such quotient topology, it is called a quotient space of X, and
the inducing map g is called a quotient map.

It is clear that the quotient topology induced on Y by g is the largest
topology on Y making g continuous. We should also note that the quotient
topology can be completely described as follows: F ⊂ Y is closed in the
quotient topology induced by g iff g–1(F) is closed in X.

The first and obvious question we must deal with is: under what
conditions on g will a preassigned topology τ on Y be identical to the
quotient topology τg induced by g? It is obvious that continuity of g is
necessary, to make τ ⊂ τg. Thus we search for additional conditions to force
τ ⊃ τg. In fact, the conditions we need were given in Definition 8.5.

9.2 Theorem. If X and Y are topological spaces and ƒ : X → Y
is continuous and either open or closed, then the topology τ on Y
is the quotient topology τƒ.



Proof. Suppose ƒ is continuous and open. Since τƒ is the largest topology
making ƒ continuous, τ ⊂ τƒ. But if U ∈ τƒ, then by definition of τƒ, ƒ–1(U)
is open in X. Now ƒ is open as a map to (Y, τ), so ƒ[ƒ–1(U)] = U belongs to
τ. Thus τƒ ⊂ τ and this establishes equality.

The reader can verify the theorem if ƒ is continuous and closed. ■

9.3 Example. Let X = [0, 2π] with its usual topology,

Y = {(x, y) ∈ R2 ∣ x2 + y2 = 1}

with its usual topology, and define ƒ : X → Y by ƒ(x) = (cos x, sin x). Then ƒ
is continuous and closed, so the unit circle with its usual topology is a
quotient space of [0, 2π].

Just as 8.10 was the central useful fact about weak topologies, the
following theorem states the fundamental result about quotient topologies.

9.4 Theorem. Let Y have the quotient topology induced by a
map ƒ of X onto Y. Then an arbitrary map g : Y → Z is
continuous iff g ∘ ƒ : X → Z is continuous.

Proof. Necessity is trivial, since the composition of continuous maps is
continuous.

To prove sufficiency, suppose g ∘ ƒ is continuous, and let U be open in Z.
Then (g ∘ ƒ)–1(U) = ƒ–1[g–1(U)] is open in X, so by definition of the
quotient topology on Y, g–1(U) is open in Y. Hence g is continuous. ■



There is another approach to quotient spaces which yields a great deal of
insight. Essentially, we can regard any quotient space of X as a certain
collection of subsets of X with a naturally defined topology. The best
approach is to view the necessary construction abstractly, then show it can
be used to describe quotient spaces.

 
 
9.5 Definition. Let X be a topological space. A decomposition  of X is a
collection of disjoint subsets of X whose union is X. If a decomposition 
is endowed with the topology in which ℱ ⊂  is open iff ∪ {F ∣ F ∈ ℱ}
is open in X, then  is referred to as a decomposition space of X. You are
asked to show that this does give a topology on  in 9B.

Define a map P of X onto  by letting P(x), for x ∈ X, be the element of 
 containing x. P is called the natural map (or decomposition map) of X

onto  .

The next theorem says that every decomposition space is a quotient
space; the theorem following that says that every quotient space is
(homeomorphic to) a decomposition space.

9.6 Theorem. The topology on a decomposition space  of X is
the quotient topology induced by the natural map P: X → .

Proof. See Exercise 9B. ■

9.7 Theorem. If Y has the quotient topology induced by ƒ : X →
Y, then Y is homeomorphic to the decomposition space  whose
elements are the sets ƒ–1(y), y ∈ Y, under a homeomorphism h:
Y →  such that h ∘ ƒ is the natural map P of X onto  . (We
might paraphrase the situation by saying ƒ : X → Y is
“isomorphic” to P: X →  under the isomorphism h.)



Proof. With the hint that h is defined in the obvious way, that is, h(y) = ƒ –
1(y), we leave the details of this proof to Exercise 9B. ■

The natural map P : X →  associated with a particular decomposition
space  is, as noted in 9.6, a quotient map. It is often of interest, in
investigations revolving around decomposition spaces, to know that P is, in
fact, closed. To state the basic result giving conditions on  which will
make P closed, we introduce the following definition.

9.8 Definition. An open set V in a topological space X is saturated relative
to a given decomposition  of X iff V is a union of elements of  (i.e., iff V
= P–1(W) for some open set W in  ). A decomposition  is upper
semicontinuous iff for each F ∈  and each open set U in X containing F,
there is some saturated open set V in X with F ⊂ V ⊂ U.

9.9 Theorem. The natural map P associated with a
decomposition space  of X is closed iff  is upper
semicontinuous.

Proof. Suppose P is closed. Let F ∈  and let U be an open set in X
containing F. Then P(X–U) is a closed set in  , so P–1[P(X–U)] is a closed
set in X which is a union of elements of  . Then clearly V = X–P–1(P(X–
U)] is a saturated open set in X and, without much effort, F ⊂ V ⊂ U.

Conversely, suppose  is upper semicontinuous, and let K be a closed
subset of X. To show P(K) is closed, let F ∈ –P(K). Then F ⊂ X–K, so
there is a saturated open set V with F ⊂ V ⊂ X–K, by upper semicontinuity.
But then P(V) is an open set and F ∈ P(V) ⊂ –P(K), which establishes
that P(K) is closed in  . ■



9.10 Corollary. A quotient map f : X → Y is closed iff {f–1(y) | y
∈ Y} is an upper semicontinuous decomposition of X.

Before moving on to some of the examples which typify the importance
of quotient constructions in topology, it is convenient to introduce one last
way of regarding quotient spaces. It requires nothing but a definition, but
represents probably the most popular way of presenting quotient spaces.

9.11 Definition. If ~ is an equivalence relation on the topological space X,
then the identification space X/~ is defined to be the decomposition space 
whose elements are the equivalence classes for ~.

9.12 Examples. a) In 9.3, we saw that the unit circle is a quotient space of
[0, 2π]. Viewed as a decomposition space, the appropriate elements of the
decomposition are the one point sets {x} for which 0 < x < 2π together with
the set {0, 2π}. As an identification space, it is obtained through the
equivalence relation 0 ~ 2π and otherwise x ~ y iff x = y. Clearly, the last
description is the neatest. We can (and do) simply say “the unit circle is
obtained from [0, 2π] by identifying endpoints.”

b) Consider the square [0, 2π] × [0, 2π]. If we identify each point (0, x)
with the point (2π, x), the resulting identification space is homeomorphic to
the cylinder S1 × [0, 2π] (Fig. 9.1).

Figure 9.1



Figure 9.2

The corresponding quotient map of [0, 2π] × [0, 2π] which gives the
cylinder S1 × [0, 2π] as a quotient space is f(x, y) = ((cos x, sin x), y).

c) Again consider the square [0, 2π] × [0, 2π]. This time, identify each
point (0, y) with the point (2π, y) and also identify each point (x, 0) with the
point (x, 2π). Intuitively, it is clear that the resulting identification space is
what one obtains by first rolling the square to obtain a cylinder, as we did in
(b), then matching the ends of the cylinder to obtain a torus (Fig. 9.2). More
formally, the quotient map f(x, y) = ((cos x, sin x), (cos y, sin y)) gives the
torus S1 x S1 as a quotient space of [0, 2π] × [0, 2π].

We should mention here that it is clear that any square will produce a
cylinder with one pair of sides identified and will give a torus with two
pairs of sides identified, as above. The reason we chose [0, 2π] × [0, 2π] is
obvious.

d) If we again consider [0, 2π] × [0, 2π], but now identify points (x, 0)
with points (2π–x, 2π) the result is a twisted strip, called the Moebius strip
(Fig. 9.3). It has several interesting properties most of which require
combinatorial or algebraic methods to elucidate.



Figure 9.3

Figure 9.4

e) Once more we consider [0, 2π] × [0, 2π]. Again the points (0, y) are
identified with the points (2π, y); now, however, we identify each point (x,
0) with the point (2π–x, 2π). This can be conveniently represented by
arrows, as in Fig. 9.4(a). The result, shown in Fig. 9.4(c), cannot be
faithfully represented in 3-dimensional space without self-intersection. It is
the so-called Klein bottle. It is a higher-dimensional relative of the Moebius
strip.

f) Given any topological space X, we can describe two constructions. We
obtain the cone, ΛX, over X by identifying all the points (x, 1) in X × I with
a single point (Fig. 9.5). The suspension, Σ X, of X is obtained by



identifying all the points (x, 1) in X × [–1, 1] to a single point, and all the
points (x,–1) to another point (Fig. 9.6).

We conclude this section by providing two more methods for generating
new spaces from old. The first is an obvious construction, based on the idea
of “pulling apart” a collection of spaces to provide a topology on their
union.

Figure 9.5



Figure 9.6

9.13 Definition. Let Xα be a topological space, for each α ∈ A, and let

with the topology being defined on  in the obvious way, to make it
homeomorphic to Xα. The collection of spaces  is different from the
collection of spaces Xα, then, only in that  ∩  = ø if α ≠ β.

Now define a topology on X =  as follows: U ⊂ X is open iff U
∩  is open for each α ∈ A. The resulting space X is called the disjoint
union (or free union) of the spaces Xα and is denoted Σα∈A Xα, or just Σ Xα.
If only two spaces X and Y are involved, we write X + Y for the disjoint
union of X and Y.

In practice, we almost always drop the distinction between Xα and  ,
and treat Xα itself as a subset of the disjoint union. This will never cause
any trouble; often, in fact, the spaces Xα will be disjoint to begin with.

We can now employ the construction just accomplished to provide one of
the important and interesting ways of generating new spaces.

9.14 Definition. Let X and Y be disjoint topological spaces, with f a
continuous map of a closed subset A of X into Y. For each p ∈ f(A),
consider the set Ap = {p} ∪ f–1(p) and form the quotient of X + Y obtained
by identifying the points of Ap for each p ∈ f(A). The resulting space is
denoted by X + f Y and we say X has been attached to Y by f. The
decomposition map of X + Y onto X + f Y will be denoted q. For examples
of attachings, see Exercise 9L..

9.15 Theorem. a) q | Y is a homeomorphism and q(Y) is closed
in X + f Y, b) q | (X - A) is a homeomorphism and q(X–A) is open
in X + f Y.



Proof. a) q | Y is certainly one-one and continuous. Let F be a closed subset
of Y. Then F is a closed subset of X + Y and F = q–1[q(F)]. Since q is a
quotient map, q(F) must thus be closed in X + f Y and hence in q(Y). Hence
q | Y is a homeomorphism. Also, letting F = Y, this argument shows that
q(Y) is closed in X + f Y.

b) q | (X–A) is certainly one-one and continuous. Let G be an open subset
of X–A. Then q-1[q(G)] = G. Since q is a quotient map, q(G) must then be
open in X + f Y and hence in q(X–A), so q | (X–A) is a homeomorphism. The
argument also shows that q(X–A) is open in X + f Y. ■

Problems

9A. Examples of quotient spaces
1. Let ~ be the equivalence relation (x1, x2) ~ (y1, y2) iff x2 = y2, on R2.

Then R2/~ is homeomorphic to R.

2. Let  be the decomposition of the plane into concentric circles about
the origin. Prove that  is homeomorphic to {x ∈ R | x ≥ 0} ; show directly
that  is upper semicontinuous.

3. Let ~ be the equivalence relation x ~ y iff x and y are diametrically
opposite, on S1. Then S1/~ is homeomorphic to S1. Is the corresponding
result for S2 true?

9B. Quotients versus decompositions
1. The process given in 9.5 for forming the topology on a decomposition

space does define a topology.

2. The topology on a decomposition space  of X is the quotient
topology induced by the natural map P: X →  . (See 9.6.)

9C. Open and closed maps



1. An open continuous map need not be closed, even if it is onto.
[Consider the map π1 of R2 onto R defined by π1(x1, x2) = x1.]

2. A closed continuous map need not be open, even if it is onto.
[Consider the map of [0, 2π] onto the unit circle given in 9.3.]

3. State and prove an analog to 9.9 for open maps, by appropriately
defining “lower semicontinuous decomposition”.

9D. Quotients of subspaces and subspaces of quotients
If  is a decomposition of X, then  induces an obvious decomposition 
on any subset A of X.

 
 

1. It is not, in general, true that  is homeomorphic to

 | A = {y ∈  | A ∩ y ≠ ø in X}.

[Let  be the set of vertical lines in R2. For A take the negative x-axis
together with the point (0, 1). Then  has an isolated point (4G), while  |
A does not.]

2. If A is a union of elements of  , then  and  | A are homeomorphic.

9E. Finite decompositions
A decomposition  of a space X will be called finite-iff only finitely many
elements of  have more than one point. (Typically,  will contain only one
element with more than one point.) Prove that a finite decomposition with
closed elements is upper semicontinuous. Show that the restriction that the
elements of  be closed is necessary.

9F. Interpolation of quotient maps



Let f : X → Y be continuous. Then there is a quotient map q of X onto a
space Z and a one-one continuous map h of Z into Y such that f = h ∘ q.

9G. Quotient maps and product spaces
The following conjecture is rather attractive: if  is a decomposition of X
into homeomorphic sets, say all homeomorphic to Y, then X is
homeomorphic to  x Y. Find a counterexample.

9H. Strong topologies
Here we develop the theory for strong topologies analogous to the theory
for weak topologies given in 8.9 through 8.16.

Suppose Xα is a topological space and fα is a map of Xα to a set Y, for
each α ∈ A. The strong topology coinduced by the maps fα on Y consists of
all sets U in Y such that  is open in Xα, for each α ∈ A.

 
 

1. This is a topology on Y, the largest making each fα continuous.

2. If Y has the strong topology coinduced by the maps fα, for α ∈ A, then
a map g : Y → Z is continuous iff g ∘ fα is continuous for each α ∈ A.
(Compare with 8.10 and 9.4.)

 
 

The family of maps fα will be said to cover points of Y iff each y ∈ Y is
in the image of some fα. For families which cover points, the strong
topology is just a quotient topology, according to what follows.

Let X be the disjoint union of the spaces Xα. If x and y are points of X,
then (somewhat informally) x ∈ Xα and y ∈ Xβ, for some choice of indices
α and β. We define x ~ y iff fα(x) = fβ(y). This defines an equivalence
relation on X, and we denote the resulting quotient space by Z.



 
 

3. If the maps fα cover points of Y, then Y has the strong topology
coinduced by them iff X is homeomorphic to the quotient space Z
constructed above, under the map h which is defined as follows: for y ∈ X,
pick α ∈ A and x ∈ X so that fa(x) = y, and then define h(y) = [x].

91. Strong topologies and the lattice of topologies
Let {τα | α ∈ A} be a family of topologies on a fixed set X and denote by Xα
the space consisting of the set X with the topology τα. The identity function
from the space Xα to the set X will be denoted jα.

 
 

1. The strong topology coinduced on X by the maps jα is the intersection
(infimum) τ of the topologies τα.

2. (X, τ) is homeomorphic to the quotient space obtained by identifying
points x and y in the disjoint union Σ Xα iff jα(x) = jβ(y), where x ∈ Xα and y
∈ Xβ.

These results compare with the results in 81 on weak topologies and
suprema in the lattice of topologies.

9J. Disjoint unions and products
If Xα is homeomorphic to X, for each α ∈ A, then the disjoint union Σ Xα is
homeomorphic to X x A, where A is given the discrete topology.

9K. Covering spaces
Let p be a continuous map of a space  onto a space X. If each x in X has a
nhood U such that p–1(U) is a disjoint union of open sets V each of which is
homeomorphic to U under the map p | V, then p is called a covering
projection. X is called the base space and  is the covering space.



A local homeomorphism from a space X to a space Y is a continuous map
f from X to Y such that each point x in X has an open nhood which is
mapped homeomorphically by f onto an open subset of Y.

 
 

1. The map p(x) = (cos x, sin x) of R onto S1 is a covering projection.

2. Every covering projection is a local homeomorphism. The converse
fails.

3. A local homeomorphism is an open map. Thus, under a covering
projection, the base space is a quotient space of the covering space.

4. Give conditions under which X × Y is a covering space of X, with the
usual projection map being the covering projection.

5. If p:  → X and q :  → Y are covering projections, then the map p ×
q defined by (p × q)(x, y) = (p(x), q(y)) is a covering projection from  × 
to X × Y.

9L. Attachings
1. If X is any space, A is a closed subset of X, and p ∉ X, the space X + f

{p} resulting from the function f which takes A to {p} is homeomorphic to
the quotient space of X obtained by identifying A to a single point.

2. Let X = I, Y = [2, 3], a = {0, 1}, and let f : A → Y be defined by f(0) =
2, f(1) = 3. Then X + f Y is homeomorphic to S1.

9M. Coherent topologies
Let  be a collection of subsets of a topological space X. The topology on
X is said to be coherent with  provided a set G is open in X iff G ∩ A is
open in A, for each A ∈  .

1. The topology on X is coherent with  iff it is the strong topology (9H)
coinduced by the inclusion maps iA: A → X, for A ∈  .

2. The topology on X is coherent with  provided a set F is closed in X
iff F ∩ A is closed in A, for each A ∈  .



3. If  is a collection of open sets whose union is X, then the topology on
X is coherent with  .

4. If  is a locally finite collection (7D) of closed sets whose union is X,
then the topology on X is coherent with  .

 
 

There is only one topology on X coherent with any given collection  of
subsets of X, of course. It is sometimes called the weak topology generated
by the sets in  , a term which we have already used to mean something
quite different.

Coherent topologies are useful in the study of k-spaces; see Section 43.



Chapter 4

Convergence

10 Inadequacy of sequences
The reader should be familiar with the fact that a function f : R → R is
continuous at x0 in R iff whenever (xn) is a sequence converging to x0 in R,
then the sequence (f(xn)) converges to f(x0). Since we introduced topologies
for the purpose of providing a general setting for the study of continuous
functions, this raises two obvious questions:

a) can we define sequential convergence in a general topological space?

b) if so, does the resulting notion describe the topology (as do the closure
and interior operations, for example) and hence the continuous functions?

The answers (respectively, “yes” and “only for a limited class of spaces”)
are provided in this section. Succeeding sections constitute the successful
search for a generally applicable and descriptive notion of convergence.

10.1 Definition. A sequence (xn) in a topological space X is said to
converge to x ∈ X, and we write xn → x, iff for each nhood U of x, there is
some positive integer n0 such that n ≥ n0 implies xn ∈ U. In this case, we
say (xn) is eventually in U.

It is clear that we can replace “nhood” with “basic nhood” in this
definition without altering its impact.

10.2 Examples. a) Let ρ be a pseudometric on X. Then xn → x in the
topology generated by ρ iff ρ(xn, x) → 0. This is clear, since xn → x iff (xn)
is eventually in each ε-disk about x.



 
 

b) In the product space RR a sequence fn converges to f iff fn(x) → f(x) for
each x ∈ R. This is clear once it is remembered that basic nhoods of f ∈ RR

have the form

U(f, F, ε) = {g ∈ RR | |g(x)–f(x)| < ε for each x ∈ F},

for F a finite subset of R and ε > 0. Thus fn → f iff fn approaches f on each
finite set, which happens iff fn(x) → f(x) for each x ∈ R.

Sequential convergence will be able to describe only those topologies in
which the minimum number of (basic) nhoods around each point is no
greater than the number of terms in the sequences.

10.3 Definition. A topological space X is first countable (or satisfies the
first axiom of countability) iff each x ∈ X has a countable nhood base.

Since the disks about x of rational radius form a nhood base at x in any
pseudometric space, the pseudometrizable spaces are all first countable.
They form the most important single class of first-countable spaces.

The first axiom of countability has been defined before, in 4.4(b), but you
may have missed it. The second axiom was introduced in 5F. Both will be
studied in detail in Section 16.

10.4 Theorem. If X is a first countable space and E ⊂ X, then x
∈ Ē iff there is a sequence (xn) contained in E which converges
to x.

Proof. If x ∈ Ē, pick a countable nhood base {Un|n = 1, 2, . . .} at x in X.

Replacing Un by  Uk where necessary, we may assume that



U1 ⊃ U2 ⊃ · .

Now Un n E ≠ ø for each n, so we can pick xn ∈ Un ∩ E. The result is a
sequence (xn) contained in E which obviously converges to x.

Conversely, suppose (xn) is a sequence contained in E and xn → x. Then
each nhood of x contains a tail of the sequence (xn) and thus meets E, so x
∈ Ē. ■

 
 

10.5 Corollary. Let X and Y be first countable spaces. Then
a. U ⊂ X is open iff whenever xn → x ∈ U, then (xn) is eventually in U,
b. F ⊂ X is closed iff whenever (xn) ⊂ F and xn → x, then x ∈ F,
c. f : X → Y is continuous iff whenever xn → x in X, then f(xn) → f(x) in Y.

Proof. This is left as Exercise 10C. ■

Thus sequential convergence describes the topology of any first
countable space. A somewhat wider class of spaces can be described using
sequences, in fact (see the notes), but the following examples show that the
basic Theorem 10.4 fails in the general setting.

 
 
10.6 Examples. a) Consider X = RR with the product topology. Let

E = { f ∈ RR | f(x) = 0 or 1 and f(x) = 0 only finitely often},

and let g ∈ RR be the function which is 0 everywhere. Then if U(g) is a
basic nhood of g, we have

U(g) = {h ∈ RR | |h(y)–g(y)| < ε if y ∈ F}



for some finite set F ⊂ R and some ∈ > 0. But such a nhood U(g) meets E
in the function h which is 0 on elements of F and 1 elsewhere. Hence, g ∈
ClX E. On the other hand, if (fn) is a sequence in E, with each fn being 0 on
the finite set An, then any function which is a limit of the sequence (fn) can

be zero at most on the countable set  . Since g does not meet this
requirement, no sequence in E can converge to g.

Since sequences cannot describe the topology of RR, the criterion for
continuity given in Theorem 10.5 for first-countable spaces probably fails
here. In Exercise 10B, you are asked to find a noncontinuous function F :
RR → R with the property that whenever fn → f in RR, then F(fn) → F(f).

b) Recall that Ω denotes the set of ordinals ≤ ω1, the first uncountable
ordinal, and Ω0 = Ω — {ω1}. Put the order topology (6D) on Ω, for which
a subbase consists of all sets [1, α) = {γ| 1 ≤ γ < α}, for α ∈ Ω, together
with all sets (β, ω1] = {γ| β < γ ≤ ω1}, for β ∈ Ω. Note that if α is a nonlimit
ordinal, {α} is a nhood of α in this topology, while if α is a limit ordinal, the
nhoods (β, α], β < α, form a nhood base at α. Whenever Ω is used as a
topological space hereafter, this topology is assumed.

Now note that ω1  in this topology. But if (αn) were a sequence in Ω0
with limit ω1, we would have ω1 = sup (αn), contradicting Theorem 1.20.
Thus sequences fail to describe the topology on Ω.

Problems
10A. Sequential convergence in topological spaces

For each of the following spaces, answer these questions:
a. Which sequences converge to which points?
b. Is X first countable?
c. Does the result of Theorem 10.4 hold true for X?

(One of your answers should show that first countability is not necessary in
Theorem 10.4.)



 
 

1. X any uncountable set with the cofinite topology (in which the closed
sets are X and all finite subsets of X).

2. X any uncountable set with the cocountable topology, in which the
closed sets are X and all countable subsets of X.

 
 

3. X the real line with the topology in which the open sets are the sets of
the form (a, ∞), a ∈ R.

 
 

4. X the Sorgenfrey line E (4.6).

5. X any discrete space.

6. X any trivial space.

 
 
10B. Sequential convergence and continuity

Find spaces X and Y and a function F: X → Y which is not continuous, but
which has the property that F(xn) → F(x) in Y whenever xn → x in X.

10C. Topology of first-countable spaces

Let X and Y be first-countable spaces.
1. U ⊂ X is open iff whenever xn → x ∈ U, then (xn) is eventually in U.
2. F ⊂ X is closed iff whenever (xn) is contained in F and xn → x, then x
∈ F.

3. f : X → Y is continuous iff whenever xn → x in X, then f(xn) → f(x) in
Y.

4. Which of the properties above hold for an uncountable set Z with the
cofinite topology?



11 Nets
Formally, a sequence in X is a mapping of N into X ; in more informal
terms, we are using the integers to order a collection of points in X. The key
to successful generalization of the notion of sequence, for use in topological
spaces, lies in retaining the idea of ordering a collection of points of X by
mapping some ordered set into X, while significantly relaxing the
conditions on the ordered sets we will allow.

The linearity of the order on the integers can be dispensed with, provided
we supply some other way of giving a definite “positive orientation” to our
ordered sets. The following definition has stood the test of time.

11.1 Definition. A set Λ is a directed set iff there is a relation ≤ on A
satisfying:

Λ-a) λ ≤ λ, for each λ ∈ Λ,  
Λ-b) if λ1 ≤ λ2 and λ2 ≤ λ3 then λ1 ≤ λ3,  
Λ-c) if λ1, λ2 ∈ A then there is some λ3 ∈ A with λ1 ≤ λ3, λ2 ≤
λ3.

The relation ≤ is sometimes referred to as a direction on Λ, or is said to
direct Λ.

The first two properties, Λ-a and A-b, are familiar requirements for an
order relation . (Note, however, the lack of antisymmetry; a direction need
not be a partial order.) Λ-c provides the positive orientation we were
seeking for Λ. In fact, it models a property possessed by the set  of all
nhoods of a point x in a space X, when ordered by “reverse inclusion”: U1 ≤
U2 iff U2 ⊂ U1. Although directed sets were not first introduced (either
historically or here) with this in mind, it is precisely this which makes them
useful in describing convergence in general topological spaces.

The concept of a net, which generalizes the notion of a sequence, can
now be introduced, using an arbitrary directed set to replace the integers.



11.2 Definition. A net in a set X is a function P : Λ → X, where Λ is some
directed set. The point P(λ) is usually denoted xλ, and we often speak of
“the net (xλ)λ∈Λ” or “the net (xλ)” if this can cause no confusion.

A subnet of a net P : Λ → X is the composition P ∘ ϕ, where ϕ : M → Λ
is an increasing cofinal function from a directed set M to Λ. That is,

a. ϕ(µ1) ≤ ϕ(µ2) whenever µ1 ≤ µ2 (ϕ is increasing),
b. for each λ ∈ Λ, there is some µ ∈ M such that λ ≤ ϕ (µ) (ϕ is cofinal in

Λ).

For µ ∈ M, the point P ∘ ϕ (µ) is often written  , and we usually speak of
“the subnet  of (xλ)”.

If (xλ) is a net in X, a set of the form {xλ| | λ ≥ λ0}, for λ0 ∈ Λ, is called a
tail of (xλ).

The definition of net convergence is modeled after the definition of
sequential convergence introduced in 10.1 and should provide no problems.

11.3 Definition. Let (xλ) be a net in a space X. Then (xλ) converges to x ∈ X
(written xλ → x) provided for each nhood U of x, there is some λ0 ∈ Λ such
that λ ≥ λ0 implies xλ ∈ U. Thus xλ → x iff each nhood of x contains a tail of
(xλ). This is sometimes said: (xλ) converges to x provided it is residually (or
eventually) in every nhood of x.

We say (xλ) has x as a cluster point iff for each nhood U of x and for each
λ0 ∈ Λ there is some λ ≥ λ0 such that xλ ∈ U. This is sometimes said (xλ)
has x as a cluster point iff (xλ) is cofinally (or frequently) in each nhood of x.

Note that in both definitions above it is sufficient if we restrict attention
to the nhoods in some fixed nhood base at x.

 
 
11.4 Examples. a) Let X be a topological space, x ∈ X and Λ any fixed
nhood base at x in X. Then the order relation U1 ≤ U2 iff U2 ⊂ U1 directs Λ.
Hence if we pick xU ∈ U for each U ∈ A, the result is a net (xU) in X.
Moreover, xU → x. For given any nhood V of x, we have U0 ⊂ V for some



U0 ∈ A. Then U ≥ U0 implies U ⊂ U0, so that xU ∈ U ⊂ V. This example
should be studied carefully; it is the model for most of the proofs, to be
given later in this section, of the properties of nets in topological spaces.

b) The set N of positive integers is a directed set when given its usual
order. Thus every sequence (xn) is a net. It is clear that the two definitions
of convergence of (xn) (as a sequence in 10.1 and as a net in 11.3) coincide.

Note that every subsequence of a sequence (xn) is a subnet of (xn). The
converse is not true; there is no guarantee that a subnet of (xn) is a
subsequence, because there is no way of being sure that it is a sequence!
This illustrates the (at first, strange) fact that a subnet can have a much
richer index set than the original net.

c) The collection  of all finite partitions of the closed interval [a, b] into
closed subintervals is a directed set, when ordered by the relation A1 ≤ A2 iff
A2 refines A1. Thus, if f is any real-valued function on [a, b], we can define
a net PL :  → R by letting PL(A) be the lower Riemann sum of f over the
partition A ; likewise, we can define PU :  → R by letting PU(A) be the
upper Riemann sum of f over A. Convergence of both of these nets to the
number c simply means  . This example is historically
important; it is what first led Moore and Smith to the concept of a net. See
the notes.

d) Let (M, ρ) be a metric space, with x0 ∈ M. Then M–{x0} becomes a
directed set when ordered by the relation x < y iff ρ(y, x0) < ρ(x, x0). Hence
if f : M → N, where N is a metric space, the restriction of f to M– {x0}
defines a net in N. The reader can check that this net converges to z0 in N iff

 in the elementary calculus sense.

e) If (xλ) converges to x, every subnet of (xλ) converges to x.

f) If xλ = x, for each λ ∈ Λ, then xλ → x.

11.5 Theorem. A net has y as a cluster point iff it has a subnet
which converges to y.



Proof. Let y be a cluster point of (xλ). Define M = {(λ, U)|λ ∈ Λ, U a nhood
of y such that xλ ∈ U}, and order M as follows: (λ1, U1) ≤ (λ2, U2) iff λ1 ≤ λ2
and U2 ⊂ U1. This is easily verified to be a direction on M. Define ϕ: M →
Λ by ϕ(λ, U) = λ. Then ϕ is increasing and cofinal in Λ, so (p defines a
subnet of (xλ). Let U0 be any nhood of y and find λ0 ∈ Λ such that  ∈
U0. Then (λ0, U0) ∈ M, and moreover, (λ, U) ≥ (λ0, U0) implies U ⊂ U0, so
that xλ ∈ U ⊂ U0. It follows that the subnet defined by ϕ converges to y.

Suppose ϕ : M → Λ defines a subnet of (xλ) which converges to y. Then
for each nhood U of y, there is some uU in M such that u ≥ uU implies xϕ(u)
∈ U. Suppose a nhood U of y and a point λ0 in Λ are given. Since ϕ(M) is
cofinal in A, there is some u0 ∈ M such that ϕ(u0) ≥ λ0. But there is also
some uU ∈ M such that u ≥ uU implies xϕ(u) ∈ U. Pick u* ∈ M such that u*
≥ u0 and u* ≥ uU. Then ϕ(u*) = λ* ≥ λ0, since ϕ(u*) ≥ ϕ(u0), and xλ* = xϕ(u*)
∈ U, since u* ≥ uU. Thus for any nhood U of y and any λ0 ∈ Λ, there is
some λ* ≥ λ0 with xλ* ∈ U. It follows that y is a cluster point of (xλ). ■

11.6 Corollary. If a subnet of (xλ) has y as a cluster point, so
does (xλ).

Proof. A subnet of a subnet of (xλ) is a subnet of (xλ). ■

We turn now to the problem of showing that nets do indeed represent the
correct way of approaching convergence questions in topological spaces.

11.7 Theorem. If E ⊂ X, then x ∈ Ē iff there is a net (xλ) in E
with xλ → x.



Proof. If x ∈ Ē, then each nhood U of x meets E in at least one point xU.
Then (xU) is a net contained in E which converges to x. (See Example
11.4(a).)

Conversely, if (xλ) is a net contained in E which converges to x, then each
nhood of y meets E (in a tail of (xλ)) and hence x ∈ Ē. ■

11.8 Theorem. Let f: X → Y. Then f is continuous at x0 ∈ X iff
whenever xλ → x0 in X, then f(xλ) → f(x0) in Y.

Proof. Suppose f is continuous at x0 and xλ → x0. Given a nhood V of f(x0),
f–1(V) is a nhood of x0, so for some λ0, λ ≥ λ0 implies xλ ∈ f-1(V). Thus λ ≥
λ0 implies f(xλ) ∈ V, showing that f(xλ) → f(x0).

On the other hand, if f is not continuous at x0, then for some nhood V of
f(x0), f(U) ⊄ V for any nhood U of x0. Thus for each nhood U of x0, we can
pick xU ∈ U such that f(xU) ∉ V. But then (xU) is a net in X and xU → x0,
while f(xU) ↛ f(x0). ∎

11.9 Theorem. A net (xλ) in a product X = Πα∈A Xα converges to
x iff for each α ∈ A, πα(xλ) → πα(x) in Xα.

Proof. If xλ → x in Π Xα, then since πα is continuous, πα(xλ) → πα(x), by the
previous theorem, for each α.

Suppose on the other hand that πα(xλ) → πα(x) for each α ∈ A. Let



be a basic nhood of x in the product space. Then for each i = 1, . . . , n there
is a λi such that whenever λ ≥ λi,  . Thus if λ0 is picked greater
than all of λ1, . . . , λn, we have  , i = 1, . . . , n, for all λ ≥ λ0. It
follows that for λ ≥ λ0, xλ ∈  , and hence that xλ → x in the
product. ■

In case all factor spaces are homeomorphic to X, the last theorem has a a
pleasant re-interpretation. In the product topology on the set XA of all
functions from A to X, a net fλ converges to f iff for each α ∈ A, fλ(a) →
f(a). That is, convergence of functions in XA with this topology is just
pointwise convergence. For sequences of functions, this was pointed out in
10.2. Thus if functions on a certain set A to a space X are to be studied with
pointwise limits in mind, it is appropriate to consider them as elements in
the product space XA with the Tychonoff topology. There are other kinds of
functional convergence than pointwise, e.g., uniform convergence, and we
will mention here that XA can be provided with appropriate structures to
deal with these also. This is a topic which is deferred until the chapter on
function spaces, where different convergence structures on XA and the
interactions between them are studied.

 
 
11.10 Definition. A net (xλ) in a set X is an ultranet (universal net) iff for
each subset E of X, (xλ) is either residually in E or residually in X–E.

It follows from this definition that if an ultranet is frequently in E then it
is residually in E. In particular, an ultranet in a topological space must
converge to each of its cluster points.

For any directed set Λ, the map P : Λ → X, defined by P(λ) = x for all λ
∈ Λ, gives an ultranet on X, called the trivial ultranet. Nontrivial ultranets
can be proved to exist (relying on the axiom of choice; see 12D.5) but none
has ever been explicitly constructed. Most facts about ultranets are best
developed using filters and ultrafilters as a vehicle. We will do this in the
next section.



11.11 Theorem. If (xλ) is an ultranet in X and f : X → Y, then
(f(xλ)) is an ultranet in Y.

Proof. If A ⊂ Y, then f–1(A) = X–f–1(Y–A), so (xλ) is eventually in either f–
1(A) or f-1(Y–A), from which it follows that (f(xλ) is eventually in either A or
Y - A. Thus, (f(xλ)) is an ultranet. ■

Problems
11A. Examples of net convergence

1. In RR, let E = {f ∈ RR |f(x) = 0 or 1, and f(x) = 0 only finitely often}
and let g be the function in RR which is identically 0. Then, in the product
topology on RR, g ∈ Ē (refer to Example 10.6). Find a net (fλ) in E which
converges to g.

2. In the ordinal space, recall that ω1 ∊  (see Example 10.6). Find a net
(xλ) in Ω0 which converges to ω1 in Ω.

3. Let M be any metric space. A mapping P(α) = xα of Ω0 into M will be
a net. Show that xα → x in M iff xα is eventually equal to x.

4. Let x ∈ Rn and define ≤ on Rn by y ≥ z iff |y–x| ≤ |z–x|. Then, with this
order, A = Rn — {x} is a directed set. Thus any function f : Rn → R defines
a net in R (by restricting f to Rn–{x}). Show that this net converges to L iff
limy→x f(y) = L.

11B. Subnets and cluster points

1. Every subnet of an ultranet is an ultranet.

2. Every net has a subnet which is an ultranet.

3. Exhibit a sequence (xn) on a set X and a subnet of (xn) which is not a
sequence.



4. If (xλ) is a net in a space X and for each λ0,  = {xλ| λ ≥ λ0}, then y is a
cluster point of (xλ) iff y ∈  for each λ ∈ Λ.

5. If an ultranet has x as a cluster point, then it converges to x.

11C. Cluster points in products
If (xλ)λ∈Λ is a net in Π Xα having x as a cluster point then for each α,
(πα(xλ))λ∈Λ has πα(x) for a cluster point. The converse fails, even in R × R.

11D. Nets describe topologies
1. Nets have the following four properties (some have already been

mentioned in the text):
a. if xλ = x for each λ ∈ Λ, then xλ → x,
b. if xλ → x, then every subnet of (xλ) converges to x,
c. if every subnet of (xλ) has a subnet converging to x, then (xλ) converges

to x,
d. [diagonal principal] if xλ → x and, for each λ ∈ Λ. a net 

converges to xλ, then there is a diagonal net converging to xλ; i.e., the
net  , ordered lexicographically by A, then by Mλ, has a
subnet which converges to x.

2. Conversely, suppose in a set X a notion of net convergence has been
specified (telling what nets converge to what points) satisfying a), b), c) and
d) of part 1. If the closure of a subset E of X is defined by Ē = {x ∈ X| xλ →
x for some net (xλ) contained in E}, the result is a topological space in
which the notion of net convergence is as originally specified.

12 Filters
We have just seen that a good (i.e., topologically descriptive) notion of
convergence can be obtained by simply using the nhoods of a single point
as the model for an indexing set to replace the integers used for sequences.
We now introduce a second way of describing convergence in a topological
space in which we say, in effect, why not just treat the nhoods themselves as
converging to the point? The result is the theory of filter convergence.



12.1 Definition. A filter ℱ on a set S is a nonempty collection of nonempty
subsets of S with the properties:

a. if F1, F2 ∈ ℱ then F1 n F2 ∈ ℱ,
b. if F ∈ ℱ and F ⊂ F′, then F′ ∈ ℱ.

A subcollection ℱ 0 of ℱ is a filter base for ℱ iff each element of ℱ
contains some element of ℱ 0, that is, iff

ℱ = {F ⊂ S |F0 ⊂ F0 for some F0 ∈ ℱ}.

Evidently, a nonempty collection  of nonempty subsets of S is a filter base
for some filter on S iff

 
 

a)‘ if C1, C2 ∈ then C3 ⊂ C1 ∩ C2 for some C3 ∈ , in which case the
filter generated by  consists of all supersets of elements of .

If ℱ 1 and ℱ 2 are filters on X, we say ℱ 1 is finer than ℱ 2 (or ℱ 2 is
coarser than ℱ 1) iff ℱ 1 ⊃ ℱ 2. A filter ℱ on X is fixed iff  ℱ ≠ ø and

free iff  ℱ = ø.

12.2 Examples. a) Let X be any set, A ⊂ X. Then {F ⊂ X | A ⊂ F} is a
filter on X with a particularly simple filter base, the collection consisting of
the single set A.

b) Let X be any topological space, A ⊂ X. Then {U ⊂ X | A ⊂ U°} is a
filter on X. In particular, the set of all nhoods of x ∈ X is a filter on X,
and any nhood base at x is a filter base for . This filter will sometimes be
called the nhood filter at x.

c) Let  = {(a, ∞) | a ∈ R}. Then  is a filter base for a free filter on R,
which we will call the Frechet filter on R.



12.3 Definition. A filter ℱ on a topological space X is said to converge to x
(written ℱ → x) iff ⊂ ℱ, that is, iff ℱ is finer than the nhood filter at x.
We say ℱ has x as a cluster point (or, ℱ clusters at x) iff each F ∈ ℱ meets
each U ∈ . Hence ℱ has x as a cluster point iff Also, it
is clear that if ℱ → x, then ℱ clusters at x.

It will be convenient to have the notions of convergence and clustering
available for filter bases; they generalize easily and obviously. A filter base 

 converges to x iff each U ∈ x contains some C ∈  (iff the filter
generated by  converges to x);  clusters at x iff each U ∈ meets each
C ∈  (iff the filter generated by  clusters at x).

12.4 Examples. a) Let X be a topological space, A ⊂ X. The cluster points
of the filter ℱ = {U ⊂ X | A ⊂ U} include each point of Ā. Under what
conditions (on A or on the topology) will ℱ converge to some point?

b) The Frechet filter on R has no cluster points.

c) Let ℱ be the filter on R generated by the filter base  = {(0, ε) | ε >
0}. Then ℱ → 0 (although 0 does not belong to every element of ℱ).

12.5 Theorem. ℱ has x as a cluster point iff there is a filter 
finer than ℱ which converges to x.

Proof. If ℱ has x as a cluster point, the collection  = {U ∩ F │ U ∈ , F
∈ ℱ } is a filter base for a filter  which is finer than ℱ and converges to
x.

Conversely, if ℱ ⊂  → x, then each F ∈ ℱ and each nhood U of x
belong to  and hence meet, so ℱ clusters at x. ■

According to the next three theorems, filter convergence is adequate to
the task of describing topological concepts.



12.6 Theorem. If E ⊂ X, then x ∈ Ē iff there is a filter ℱ such
that E ∈ ℱ and ℱ → x.

Proof. If y ∈ Ē, then  = {U ∩ E │ U ∈ y } is a filter base. The resulting
filter contains E and converges to y.

Conversely, if E ∈ ℱ → y, then y is a cluster point of ℱ and hence y ∈
Ē.■

12.7 Definition. If ℱ is a filter on X and f : X → Y, then f(ℱ) is the filter on
Y having for a base the sets f(F), F ∈ ℱ.

12.8 Theorem. Let f : X → Y. Then f is continuous at x0 ∈ X iff
whenever ℱ → x0 in X then f(ℱ) → f(x0) in Y.

Proof. Suppose f is continuous at x0 and ℱ → x0. Let V be any nhood of
f(x0) in Y. Then for some nhood U of x0 in X, f(U) c V. Then since U ∈ ℱ, V
∈ f(ℱ).

Conversely, suppose whenever ℱ → x0 in X then f(ℱ) → f(x0) in Y. Let
ℱ be the filter of all nhoods of x0 in X. Then each nhood V of f(x0) belongs
to f(ℱ), so for some nhood U of x0, f(U) c V. Thus f is continuous at x0. ■

12.9 Theorem. A filter ℱ converges to x0 in ∏Xα iff πα(ℱ) →
πα(x0) in Xα, for each α.

Proof. If ℱ → x0 in ∏ Xα, then πα(ℱ) → πα(x0) in Xα because πα is
continuous.



Conversely, suppose πα(ℱ) → πα(x0), for each α. Let (Uk) be a
basic nhood of x0 in ∏ Xα. Then Uk is a nhood of (x0), for each k. So Uk

∈ (ℱ), for each k, and hence (Fk) ⊂ Uk for some Fk ∈ ℱ. Then 

Fk ∈ ℱ and , so . Thus ℱ →
x0.■

Many of the applications of filter convergence can be neatly done using
only the ultrafilters.

12.10 Definition. A filter ℱ is an ultrafilter iff there is no strictly finer filter
 than ℱ . Thus the ultrafilters are the maximal filters.

The next theorem makes clear the analogy between ultrafilters and
ultranets (11.10). In particular, it can be used to show that an ultrafilter must
converge to each of its cluster points.

12.11 Theorem. A filter ℱ on X is an ultrafilter iff for each E ⊂
X, either E ∈ ℱ or X–E ∈ ℱ.

Proof. Suppose ℱ is an ultrafilter and E ⊂ X. Every element F of ℱ meets
either E or X–E and hence (since no two elements of ℱ have empty
intersection) they must all meet one or the other, say F n E ≠ ø for all F ∈
ℱ. Then

{F ∩ E │ F ∈ ℱ }

is a filter base for a filter finer than ℱ which contains E. Since  cannot
be strictly finer than ℱ, we have  = ℱ and hence E ∈ ℱ .

Conversely, suppose ℱ contains E or X–E for each E ⊂ X. If  is a
strictly finer filter than ℱ, then for some A ∈ , A ∉ ℱ. But then X–A ∈



ℱ, from the condition, and since ℱ ⊂  we have the impossible situation
that both A and X–A belong to . Thus ℱ must be maximal.■

12.12 Theorem. Every filter ℱ is contained in some ultrafilter.

Proof. Let  be the collection of all filters finer than ℱ, partially ordered
by ℱ 1 ≤ ℱ 2 iff ℱ 1 ⊂ ℱ 2. Then a chain {ℱ α │α ∈ A} from  has  ℱ

x for an upper bound (that  ℱ α is indeed a filter follows easily from the
fact that if F1 and F2 belong to  ℱ x, then they both belong to some one
ℱα by linearity of the inclusion order on {ℱ a |α ∈ A}). Thus, by Zorn’s
lemma,  has a maximal element  and, obviously,  is an ultrafilter
containing ℱ. ■

The proof of the last theorem, it should be noted, depends on the axiom
of choice. Thus the following examples of free ultrafilters depend for the
proof of their existence on the (nonconstructive) choice axiom. Explicit
constructions of free ultrafilters have never been accomplished, although
there are more free ultrafilters than fixed ultrafilters (that is, for a discrete
space X, │βX–X│ > │X│; see 19J and 19.13(d).

 
 
12.13 Examples. a) A filter ℱ on X is a fixed ultrafilter iff ℱ = {F ⊂ X | x
∈ F} for some x ∈ F. By the criterion given in Theorem 12.11, each filter
of this form is an ultrafilter. On the other hand, if ℱ is a fixed ultrafilter, say

 ℱ = A ≠ ø, then ℱ must be the filter of all sets containing A (since this is
a filter containing ℱ) and A must be a single point (since the filter of all sets
containing x ∈ A is finer than ℱ).

b) The Frechet filter ℱ on R is, by Theorem 12.12, contained in some
ultrafilter . Since ℱ is free,  must be also be free.

c) The ultrafilter containing a given filter ℱ need not be unique. For if ℱ
is the filter of all sets containing A ⊂ X, then for each x ∈ A, the filter of all



sets containing x is an ultrafilter containing ℱ. In fact, if a filter is contained
in a unique ultrafilter, it is itself an ultrafilter; see Exercise 12C.

 
 

The following theorem is easily proved (using, for example, the criterion
given in Theorem 12.11) and will be useful later.

12.14 Theorem. If f maps X into Y and ℱ is an ultrafilter on X,
then f(ℱ) is an ultrafilter on Y.

The similarities between net and filter convergence are manifest. Each
describes the topology on a topological space with equal facility, “finer
filters” provide a filter analog to “subnets” (by Theorem 12.5). In addition,
there is more than a casual relationship between the ideas behind the two
approaches. Thus the fact that a formal bridge can be built between the two
notions should come as no surprise.

12.15 Definition. If (xλ) is a net in X, the filter generated by the filter base 
 consisting of the sets  = {xλ ￨ λ ≥ λ0 }, λ0 ∈ Λ, is called the filter

generated by (xλ).

 
 
12.16 Definition. If ℱ is a filter on X, let Λℱ = {(x, F) ￨ x ∈ F ∈ ℱ }.
Then Λℱ is directed by the relation (x1, F1) ≤ (x2, F2) iff F2 ⊂ F1, so the
map P: Λℱ → X defined by P(x, F) = x is a net in X. It is called the net
based on ℱ.

12.17 Theorem. a) A filter ℱ converges to x in X iff the net
based on ℱ converges to x.



 
 
b) A net (xλ) converges to x in X iff the filter generated by (xλ)
converges to x.

Proof. a) Suppose ℱ → x. If U is a nhood of x, then U ∈ ℱ. Pick p ∈ U.
Then (p, U) ∈ Λℱ and if (q, F) ≥ (p, U), then q ∈ F ⊂ U. Thus the net
based on ℱ converges to x.

Conversely, suppose the net based on ℱ converges to x. Let U be a nhood
of x. Then for some (p0, F0) ∈ Λℱ, we have (p, F) ≥ (p0, F0) implies p ∈
U. But then F0 ⊂ U ; otherwise, there is some q ∈ F0–U, and then (q, F0) ≥
(p0, F0), but q ∉U. Hence U ∈ ℱ, so ℱ → x.

b) The net (xλ) converges to x iff each nhood of x contains a tail of (xλ).
Since the tails of (xλ) are a base for the filter generated by (xλ), the result
follows. ■

Similar results are true of cluster points, the relationship between subnets
and finer filters and the relationship between ultranets and ultrafilters. We
will leave all these to Exercise 12D.

Filters are preferred to nets in dealing with convergence questions in
topological spaces. The reason for this involves the difference that nets are,
and must remain, essentially set-theoretic (or order-theoretic) in nature, and
hence passive, while filters can, with the addition of topological restrictions
on their sets, become intimately involved with the structure of the space
itself. Examples of uses of filters which could hardly be duplicated with
nets can be found in Exercises 17K, 17M, 19J, 19K and 19L. See also
Exercise 12E in this section.

Problems

12A. Examples of filter convergence



1. If the real line is given its topology as the looped line (4D), then the
Frechet filter ℱ converges to 0.

2. Which filters ℱ will converge to x in a discrete space X? In a trivial
space X?

3. Let X be an infinite set, ℱ the filter on X generated by the filter base
consisting of all complements of finite sets. To which points does ℱ
converge if X is given the cofinite topology?

4. Show that if a filter in a metric space converges, it must converge to a
unique point.

12B. Ultrafilters: lattices of filters
1. The intersection of any number of filters on X is a filter on X. But the

set of all filters on X, ordered by ℱ1 ≤ ℱ2 iff ℱ1 ⊂ ℱ2, is not a lattice
because if ℱ and  are different ultrafilters on X, then {ℱ,  } has no
supremum.

2. The collection of all filters on X contained in a given ultrafilter is a
complete lattice with 0 and 1. Conversely, if a family of filters has a
supremum, then the filters of the family are all contained in some single
ultrafilter.

3. Under what condition is a filter the intersection of the ultrafilters
containing it?

12C. Ultrafilters: uniqueness

If a filter ℱ is contained in a unique ultrafilter ℱ‘, then ℱ = ℱ’.

12D. Nets and filters: the translation process
1. A net (xλ) has x as a cluster point iff the filter generated by (xλ) has x

as a cluster point.

2. A filter ℱ has x as a cluster point iff the net based on ℱ has x as a
cluster point.



3. If (xλμ) is a subnet of (xλ), then the filter generated by (xλμ) is finer than
the filter generated by (xλ).

4. The net based on an ultrafilter is an ultranet and the filter generated by
an ultranet is an ultrafilter.

 
 

5. The net based on a free ultrafilter is a nontrivial ultranet. Hence,
assuming the axiom of choice, there are nontrivial ultranets.

12E.  filters

Let  be a class of subsets of a topological space such that if P1 and P2 are
sets from  , then P1 ∩ P2 and P1 ∪ P2 belong to  on X is a
collection ℱ of nonempty elements of  with the properties:

a. P1, P2 ∈ ℱ implies P1 ∩ P2 ∈ ℱ,
b. P1 ∈ ℱ, P1 ⊂ P2 ∈  implies P2 ∈ ℱ.

A -ultrafiltrer is a maximal -filtrer.

A -filtrer ℱ converges to p ∈ X iff each nhood of p contains an element
of ℱ, and this definition is applied even when the -filtrer is defined on a
dense subset of X rather than on X itself. A -filtrer ℱ has p as a cluster
point iff p belongs to the closure of each P ∈ ℱ. Then if  consists of
closed sets, a -filtrer ℱ has a cluster point iff ∩ { P | P ∊ ℱ } ≠ ø.

The most important examples of -filters are obtained as follows:

a)  = all subsets of X ; then the -filters are the filters in X, as defined in
12.1, and the theory we are about to outline reduces to the material of this
section.

b)  = all open subsets of X ; then the -filters are called open filters.

c)  = all closed subsets of X ; then the -filters are called closed filters.

d)  = all zero sets in X = all sets of the form ƒ–1(0) for ƒ : X → I
continuous; then the -filters are called z-filters.



 
 
Each of these collections , except the last, is known to satisfy the
requirement set out at the beginning of this problem. Part 1 below takes
care of the zero sets also.

 
 

1. If Zn is a zero set in X, for n = 1, 2, . . . , then so is Zn. [Let Zn = 
(0). Prove g(x) = is continuous from X to I and g–1(0) = 

Zn.] Also, if Z1 and Z2 are zero sets, so is Z1, ∪ Z2.

2. Every -filter is contained in a -ultrafilter.

3. For a -filter ℱ , the following are equivalent:
a. ℱ is a -ultrafilter,
b. whenever P ∊  and P n F ≠ ø for each F ∊ ℱ , then P ∊ ℱ .

4. Suppose p ∊ X has a base of nhoods with property . If a -ultrafilter
has p as a cluster point, then it converges to p.

5. Every -ultrafilter is prime; i.e., if P1 and P2 belong to  and P1 ∪ P2,
∊ ℱ , then P1 ∊ ℱ or P2 ∊ ℱ .

6. Every prime filter is an ultrafilter, but there are prime z-filters which
are not z-ultrafilters. [In R, let J = {1/n | n = 1,2, . . . }. The sets Jm = {1/n |
n = m, m + 1, . . . } form a filter base for a filter on J, and this filter is
contained in some ultrafilter  on J. Define ℱ to be the collection of all
zero-sets Z in R such that Z n J ∊ . Then ℱ is a prime z-filter, but one can
use part 4 above to show that ℱ is not a z-ultrafilter.]

7. If X is T3, every prime z-filter is contained in a unique z-ultrafilter
(compare with part 6 and 12C). But not every prime -filter is contained in
a unique -ultrafilter. [Let X = {a, b, c},  = {φ, {a}, {b}, {a, b}, X}.]

8. If  satisfies the condition that whenever A, B ∊  and A ∩ B = ø,
then there are C, D ∊  such that A ∩ C = B ∩ D = ø and C ∪ D = X, then



every prime -filter is contained in a -ultrafilter. In particular, if X is
normal, every prime closed filter is contained in a closed ultrafilter.

12F. Mappings of  -filters
For each topological space X, let  be a collection of subsets of X such

that if ƒ : X → Y is continuous and Q ∊ , then ƒ—1(Q) ∊ . (For
example, each of the collections  described in the previous problem has
this property.)

Let ƒ : X → Y be continuous, ℱ a -filter (12E) on X.

 
 

1. ƒ#(ℱ) = {Q ∊  |ƒ–1(Q) ∊ ℱ} is a -filter on Y.

2. Let X and Y be T3. If ℱ is a prime z-filter on X, ƒ#(ℱ) is a prime z-filter
on Y. In particular, if ℱ is a z-ultrafilter on X, ƒ#(ℱ) is contained in a unique
z-ultrafilter on Y.

12G. Open ultrafilters
An open filter in a space X is a -filter (12E) where  is the collection of
open subsets of X. An open ultrafilter is a maximal open filter; by 12E.2,
every open filter is contained in an open ultrafilter.

Show that the following are equivalent, for an open filter ℱ on a
topological space X :

a. ℱ is an open ultrafilter,
b. if G is any open set in X and G ∩ H ≠ ø for each H ∊ ℱ , then G ∊ ℱ ,
c. if G is open and G ∉ ℱ , then X–G ∈ ℱ.

[If you did 12E, then in part 4 you showed (a) equivalent to (b).]



Chapter 5

Separation and Countability

13 The separation axioms
Our definition of a topology admits structures which are, for most purposes,
useless. The trivial topology on X, for example, makes X look not much
different from a single point, topologically. It would be much nicer if some
of the set-theoretic structure of X were reflected in its topology. What is
needed, apparently, is a requirement that the topology on X contain enough
open sets to distinguish between the points of X, in some way. Increasing
amounts of the sort of point separation needed can be introduced by
requiring that X satisfy one of the separation axioms (or, in German,
Trennungsaxiome) T0, T1 or T2.

 
 
13.1 Definition. A topological space X is a T0-space (or, the topology on X
is T0) iff whenever x and y are distinct points in X, there is an open set
containing one and not the other.

 
 
13.2 Examples. a) The trivial topology on a set X of more than one point is
not T0.

 
 

b) The difference between pseudometrics and metrics is purely
topological. In fact, a pseudometric ρ on X is a metric iff the topology it
generates is T0. For if the topology generated by ρ is T0, then whenever x ≠



y in X, there is some open set, and hence some ε-disk, about one not
containing the other. Then ρ(x, y) ≥ ε > 0, showing ρ is a metric.
Conversely, if ρ is a metric then any two distinct points x and y are at some
positive distance ε and hence the ε-disk about x is an open set containing x
and not y.

c) Let X be any topological space and define ~ on X by x ~ y iff 
. Then ~ is an equivalence relation on X and the resulting quotient space X/~
is a T0-space (the latter following easily from the observation that a space is
T0 iff whenever x ≠ y then  .) This procedure, and the space it
produces, are referred to as the T0-identification of X. You will prove the
statements made here in Exercise 13C, as well as the additional fact that the
T0-identification and the metric identification are the same for any
pseudometric space.

d) Subspaces and products of T0 spaces are T0 ; quotients need not be.
See Exercise 13B.

13.3 Definition. A topological space X is a T1-space iff whenever x and y
are distinct points in X, there is a nhood of each not containing the other.

Evidently, every T1-space is T0. But the set X = {a, b} with the topology
consisting of the open sets ø, {a} and X is a T0-space which is not T1.

We can leave the proofs that subspaces and products of T1-spaces are T1,
and the result on quotients of T1-spaces, to Exercise 13B. The following
theorem makes that exercise easy.

13.4 Theorem. The following are equivalent, for a topological
space X:

a) X is T1,

b) each one-point set in X is closed,

c) each subset of X is the intersection of the open sets containing
it.



Proof. a) ⇒ b): If X is T1 and x ∈ X, then each y ≠ x has a nhood disjoint
from {x}, so X — {x} is an open set and thus {x} is closed.

b) ⇒ c): If A ⊂ X, then A is the intersection of all sets of the form X–{x},
for x ∉ A, and each of these is open, since one-point sets are closed.

c) ⇒ a) : If (c) holds, then {x} is the intersection of its open nhoods and
hence for any y ≠ x, there is an open set containing x and not y. ■

The real importance of T1-spaces lies in the observation above: they are
the spaces in which points are closed. The more restricted Hausdorff spaces
about to be introduced will also have this property, however, and will have
in addition an all-important unique-limits property. Thus the following
separation property is the most important of those mentioned so far.

 
 
13.5 Definition. A space X is a T2-space (Hausdorff space) iff whenever x
and y are distinct points of X, there are disjoint open sets U and V in X with
x ∈ U and y ∈ V.

Evidently, every T2-space is T1.

13.6 Examples. a) Let X be any infinite set with the cofinite topology (in
which the closed sets are the finite sets and X). Since one-point sets are
closed, X is a T1-space. But no two nonempty open sets are disjoint, so X
cannot be Hausdorff.

b) Every metric space is Hausdorff. If x and y are distinct points, then
ρ(x, y) = ε > 0, so the disks U(x, ε/2) and U(y, ε/2) are disjoint open sets
containing x and y respectively.

13.7 Theorem. The following are equivalent for a topological
space X:

a) X is Hausdorff,

b) limits in X are unique (i.e., no net or filter in X converges to
more than one point),



c) the diagonal Δ = {(x, x) | x ∈ X} is closed in X × X.

Proof. First note that by the translation process between nets and filters,
unique net limits imply unique filter limits and vice versa.

a) ⇒ b): We will use filters. Suppose X is Hausdorff and ℱ is a filter on X
with ℱ → x and ℱ → y. Then each nhood U of x and each nhood V of y
belongs to ℱ, so U ∩ V ≠ ø. But X is T2, so we must then have x = y.

b) ⇒ c): We will use nets. If Δ is not closed, then for some x ≠ y, a net
((xλ, xλ)) in Δ converges to (x, y). But then (xλ) is a net in X converging to
both x and y, which is impossible.

c) ⇒ a): Suppose Δ is closed. If x ≠ y in X, then (x, y) ∉ Δ, and hence
there is a basic nhood U × V of (x, y) in X × X which does not meet Δ. But
then U and V are disjoint nhoods of x and y, respectively. Thus X is
Hausdorff. ■

 
 

Most of the literature in topology, including the monograph in which
Hausdorff first introduced topological spaces, deals exclusively with
Hausdorff spaces. The underlying reason for this is the existence of unique
limits in Hausdorff spaces, which has pleasant consequences (for example,
continuous functions with Hausdorff range are determined by their values
on a dense set; see Theorem 13.14).

We will develop now the answers to some of the natural questions about
products, subspaces and continuous images of Hausdorff spaces, following
a pattern we will repeat with every important topological property we
introduce.

13.8 Theorem. a) Every subspace of a T2-space is T2.

b) A nonempty product space is T2 iff each factor space is T2.

c) Quotients of T2-spaces need not be T2.



Proof. a) If X is T2 and A is a subspace of X, distinct points a and b in A
have disjoint nhoods U and V in X and then U ∩ A and V ∩ A are disjoint
nhoods of a and b in A.

b) If Xα is a T2-space, for each α ∈ A, and x ≠ y in ΠXα, then for some
coordinate α, xα ≠ yα, so disjoint nhoods Uα of xα and Vα of yα can be found
in Xα. Now  and  are disjoint nhoods of x and y, respectively,
in Π Xα.

Conversely, if Π Xα is a nonempty T2-space, pick a fixed point bα ∈ Xα,
for each α ∈ A. Then the subspace Bα = {x ∈ Π Xα| |xβ = bβ unless β = α} is
T2, by part (a), and is homeomorphic to Xα under the restriction to Bα of the
projection map. Thus Xα is T2, for each α.

c) See the following examples. ■

13.9 Examples. a) The continuous closed image of a Hausdorff space need
not be Hausdorff. Let X be the real line, with nhoods as usual except that
basic nhoods of 0 have the form (–ε, ε)–A, for ε > 0, where A = {1/n |n ∈
N}. Then X is a Hausdorff space and A is a closed subset of X so the space
X/A obtained by identifying A with a single point is a closed continuous
image of X (the decomposition is clearly upper semicontinuous). But X/A is
not Hausdorff, for if p is the projection of X onto X/A then p(0) and p(A) are
distinct points of X/A which cannot be separated by open sets.

b) The continuous open image of a Hausdorff space need not be
Hausdorff. Let X be the union of the lines y = 0 and y = 1 in R2 and let Y be
the quotient of X obtained by identifying each point (x, 0), for x ≠ 0, with
the corresponding point (x, 1). The resulting projection map p: X → Y is
continuous and open, but p(0, 0) and p(0, 1) are distinct points of Y which
do not have disjoint nhoods.

The situation outlined in the examples above is quite unpleasant. Not
only do continuous images of Hausdorff spaces fail, in general, to be
Hausdorff, but even the best sorts of quotient maps may not preserve the T2-
axiom. This provokes the following series of results, giving various
necessary conditions and sufficient conditions for image spaces to be



Hausdorff, culminating with a characterization of the continuous open maps
on any space X which have Hausdorff range (13.12). The best available
result on continuous closed images of Hausdorff spaces requires the prior
development of compactness and is given in Exercise 17N.

13.10 Theorem. If f : X → Y is continuous and Y is Hausdorff,
then

{(x1, x2)| f(x1) = f(x2)}

is a closed subset of X × X.

Proof. Let A = {(x1, x2) | f(x1) = f(x2)}. If (x1, x2) ∉ A, then f(x1) and f(x2)
are distinct and hence have disjoint nhoods U and V in Y. Then since f is
continuous, f–1(U) and f–1(V) are nhoods of x1 and x2 respectively, so f–1(U)
× f–1(V) is a nhood of (x1, x2). Obviously this nhood cannot meet A, so A is
closed. ■

13.11 Theorem. If f is an open map of X onto Y and the set

{(x1, x2) | f(x1) = f(x2)}

is closed in X × X, then Y is Hausdorff.

Proof. Suppose f(x1) and f(x2) are distinct points of Y. Then

(x1, x2) ∉ A = {(x1, x2) | f(x1) = f(x2)},



so there are open nhoods U of x1 and V of x2 such that (U × V) ∩ A = ø.
Then, since f is open, f(U) and f(V) are nhoods of f(x1) and f(x2),
respectively, and f(U) ∩ f(V) = ø (otherwise (U x V) n A ≠ ø). ■

13.12 Theorem. If f is a continuous open map of X onto Y, then
Y is Hausdorff iff {(x1, x2)| f(x1) = f(x2)} is a closed subset of X ×
X.

Proof. Simply combine 13.10 and 13.11. ■

We close this section with a result which implies that a continuous
function which takes values in a Hausdorff space is determined once its
values on a dense set are known. This result will have important
ramifications later when we spend a great deal of time extending functions
on subsets of X to X itself, since it implies that extensions of functions on
dense subsets of X, when they exist, are unique.

13.13 Theorem. If f, g : X → Y are continuous and Y is
Hausdorff, then {x|f(x) = g(x)} is closed in X.

Proof. Let A = {x|f(x) = g(x)}. If (xλ) is a net in A and xλ → x, then by
continuity we have both f(xλ) → f(x) and g(xλ) → g(x) in Y. Since f(xλ) =
g(xλ) for each λ and limits are unique in Y, we must have f(x) = g(x). Thus x
∈ A and A is closed. ■

13.14 Corollary. If f, g: X → Y are continuous, Y is Hausdorff,
and f and g agree on a dense set D in X, then f = g.



Problems

13A. Examples
1. Let B be a fixed subset of a set X and for each nonempty A ⊂ X, define

Ā = A ∪ B. This defines a topology on X (according to 3A.3). Under what
conditions on B is the resulting space T0? T1? T2?

2. If τ is a Hausdorff topology on X, any finer topology is also Hausdorff.
The radial plane (3A.4), the Sorgenfrey line (4.6), the Moore plane (4B),
the slotted plane (4C), the scattered line S (5C), and any simple extension
(3A.5) of a Hausdorff topology are thus all Hausdorff.

3. The looped line (4D) is Hausdorff.

4. Recall that the sets V(f, ε) defined for f ∈ R1 by

V(f, ε) = {g ∈ R1 | lg(x)–f(x)l < ε, for each x ∈ I}

form a nhood base at f, making R1 a topological space (see 4F.3). Discuss
the separation axioms for this space. (Note that the subspace of continuous
functions on I is metrizable, by 4F.5, and thus has all the separation
properties we could ask for.)

13B. T0- and T1  -spaces

1. Any subspace of a T0- or T1-space is, respectively, T0 or T1.

2. Any nonempty product space is T0 or T1 iff each factor space is,
respectively, T0 or T1.

3. Quotients of T1-spaces need not be T0, but the closed image of a T1-
space is T1.

4. A quotient space of X is T1 iff each element of the corresponding
decomposition is closed in X.



13C. The T0-identification

For any topological space X, define ~ by x ~ y iff  .

1. ~ is an equivalence relation on X.

2. The resulting quotient space X/~ =  is T0.

3. The procedure above, when applied to a pseudometric space (S, ρ)
yields the metric identification S* of S described in 2C.

13D. The Zariski topology
For a polynomial P in n real variables, let Z(P) = {(x1, . . . , xn) ∈ Rn | P(x1,
· · · , xn) = 0}. Let  be the collection of all such polynomials.

 
 

1. {Z(P) | P ∈  } is a base for the closed sets of a topology (the Zariski
topology) on Rn.

2. The Zariski topology on Rn is T1 but not T2.

3. On R, the Zariski topology coincides with the cofinite topology; in Rn,
n > 1, they are different.

13E. Accumulation points and condensation points
Recall that a is an accumulation point of a set A in a space X iff each nhood
of a meets A in some point other than a. We say a is a condensation point of
A iff each nhood of a meets A in uncountably many points. Let A’ denote
the set of accumulation points of A, Ac the set of condensation points of A.

1. In a T1-space, a is an accumulation point of A iff each nhood of a
meets A in an infinite set.

2. For any set A, A’ and Ac are closed sets, with Ac ⊂ A’.

3. Given a set A, let A1 = A’, A2 = (A1)’, A3 = (A2)’ and so on. Then A1 ⊃
A2 ⊃ · · ·



4. For any positive integer n, there is a set A c R such that A, A 1, . . . , An

—1 are nonempty, and An = ø. (The result can be extended to countable
ordinals. Let A∝ = (Aα—1)’ if α is a nonlimit ordinal, A∝ = (  )’ if α is
a limit ordinal, and show that for any α < ω1, a set A can be found such that
A∝ = ø and Aβ ≠ ø for β < α).

5. Can the results 3 and 4 be proved for condensation points?

13F. Hausdorffness and the lattice of topologies
Let τ1, and τ2 be Hausdorff topologies on the same set X.

 
 

1. If (X, τ1, n τ2) is Hausdorff, then the diagonal is closed in (X, τ1) × (X,
τ2).

2. There are Hausdorff topologies τ1 and τ2 on a set X such that the
diagonal is closed in (X, τ1) × (X, τ2), but (X, τ1, ∩ τ2) is not Hausdorff.
Thus the condition in 1 is necessary but not sufficient.

3. If disjoint τ1-open sets can be separated by disjoint τ2-open sets and
vice versa, then (X, τ1 ∩ τ2) is Hausdorff.

4. The condition of 3 is not necessary.

 
 

The situation with suprema in the lattice of topologies is a bit more
satisfactory. In fact, if {τx |α ∈ A} is any family of topologies on the same
set X, then (X, sup (τα)) is embedded in Π (X, τα), by 81.2, so that any
property preserved by products and subspaces will be preserved in passing
to suprema. The T2-axiom (as well as any other separation axiom from T0
up through complete regularity) is thus inherited by suprema (by 13.8, 13B,
14.4 and 14.10).

13G. Topological groups



A topological group G is a group with a Hausdorff topology satisfying the
conditions:

a) multiplication is continuous; that is, the map m : G × G → G defined
by m(x, y) = xy is continuous.

b) inversion is continuous; that is, the map O: G → G defined by O(x) =
x–1 is continuous.

 
 
The identity in G is denoted e.

If A ⊂ G, B ⊂ G and x ∈ G, the set {y · z | y ∈ A, z ∈ B} is denoted AB,
and the sets A –1 xA, Ax are similarly defined. The set A2 = AA, in particular,
is the set {a · a’|a, a’ ∈ A}, not the set of all squares a2 for a ∈ A.

1. The continuity conditions (a) and (b) can be expressed as follows :
a. ’) for each nhood W of xy there are nhoods U of x and V of y such that

UV ⊂ W,
b. ’) for each nhood W of x–1 there is a nhood U of x such that U–1 ⊂ W.

2. The conditions (a) and (b) can be replaced by the single condition that
the map c: G × G → G defined by c(x, y) = x · y–1 be continuous.

3. R, with the usual topology and addition, is a topological group. Any
group with the discrete topology is a topological group.

4. Let a, b ∈ G. Each of the maps

x → x–1  
x → ax  
x → xb  
x → axb

is a homeomorphism of G onto G.

5. If {U | U ∈  } is a nhood base at e, then for any x ∈ G, {xU | U ∈ 
} is a nhood base at x, and so is {Ux | }.



6. Let  be a nhood base of open sets at e in G. Then
a. for each U ∈  , there exists V ∈  with V2 ⊂ U,
b. for each U ∈  , there exists V ∈  with V–1 c U,
c. for each U ∈  and x ∈ U, there exists V ∈  with xV ⊂ U,
d. for each U ∈  and x ∈ G, there exists V ∈  with xVx –1 ⊂ U,
e. for each U, V ∈ , there exists W ∈  with W ⊂ U n V,
f. 

Conversely, given any collection of sets satisfying (a)–(f) and using 5 to
obtain a nhood base at each x ∈ G, the result is a topology on G making G
a topological group.

7. The open symmetric nhoods of e form a base. [If U is open and a
nhood of e, so is U–1 and thus so is U ∩ U–1].

 
 
13H. Open images of Hausdorff spaces

1. Given any set X, there is a Hausdorff space Y which is the union of a
collection [Yx|x ∈ X} of disjoint subsets, each dense in Y.

2. If X is any topological space and Y is the space formed in part 1, let

Z = {(x, y) ∈ X × Y | y ∈ Yx}.

Then the restriction to Z of the projection map from X × Y to X is a
continuous open map of Z onto X. Thus every topological space is the
continuous open image of a Hausdorff space.

14 Regularity and complete regularity
The separation axioms introduced in the previous section are rather weak
and are added to the hypotheses of a theorem, if needed, without too much
regret. Some theorems are simply not true for the trivial topology!

The properties to be introduced in this and the next section are rather
more restrictive, although they are also defined in terms of separation. For



one thing, we pass from a simple relationship in which the topology
separates points to a more complex one in which the topology separates
points from closed sets or closed sets from each other. Some pretty decent
topologies are eliminated in the transition, so the concepts to be introduced
now are not used in theorems without some attempt to justify their
presence.

14.1 Definition. A topological space X is a regular space iff whenever A is
closed in X and x ∉ A, then there are disjoint open sets U and V with x ∈ U
and A ⊂ V.

We have slipped backwards, in passing from Hausdorff to regular spaces,
in the sense that the topology on a regular space X may no longer reflect the
set theoretic character of X. For example, a trivial space is always regular
and thus a regular space need not be Hausdorff.

To remedy this deficiency, we note that separation of points from closed
sets would imply separation of points if points were closed. Thus we define
a T3-space to be a regular T1-space.

Clearly, then, every T3-space is T2.

14.2 Example. Not every T2-space is T3. Let X be the real line with nhoods
of any nonzero point being as in the usual topology, while nhoods of 0 will
have the form U–A, where U is a nhood of 0 in the usual topology and

A = {1/n | n = 1,2, . . .}.

Then X is Hausdorff since this topology on the line is finer than the usual
topology which is Hausdorff. But A is closed in X and cannot be separated
from 0 by disjoint open sets, so X is not T3.

14.3 Theorem. The following are equivalent for a topological
space X:

a) X is regular



b) if U is open in X and x ∈ U, then there is an open set V
containing x such that  ⊂ U.

c) each x ∈ X has a nhood base consisting of closed sets.

Proof. a) ⇒ b): Suppose X is regular, U is open in X and x ∈ U. Then X–U
is a closed set in X not containing x, so disjoint open sets V and W can be
found with x ∈ V and X–U ⊂ W. Then X–W is a closed set contained in U
and containing V, so  ⊂ U.

b) ⇒ c): If (b) applies, then every open set U containing x contains a
closed nhood (namely V) of x, so the closed nhoods of x form a nhood base.

c) ⇒ a) : Suppose (c) applies and A is a closed set in X not containing x.

Then X–A is a nhood of x, so there is a closed nhood B of x with B ⊂ X–
A. Then B° and X–B are disjoint open sets containing x and A, respectively.
Thus X is regular. ■

14.4 Theorem. a) Every subspace of a regular space (T3-space)
is regular (T3).

b) A nonempty product space is regular (T3) iff each factor
space is regular (T3).

c) Quotients of T3-spaces need not be regular.

Proof. It suffices to prove parts (a) and (b) for regular spaces; the assertions
for T3-spaces will then follow by combination with the corresponding
results for T1 -spaces (13B).

a) If X is regular, Y ⊂ X, and A is a closed set in Y, then A = B ∩ Y where
B is closed in X. Now if y is a point of Y and y ∉ A, then y ∉ B, so there are
disjoint open sets U and V in X such that y ∈ U and B ⊂ V. Then U ∩ Y and
V ∩ Y are disjoint open sets in Y containing y and A, respectively.



b) If Π Xα is regular and nonempty then each Xα, since it is
homeomorphic to a subspace of Π Xα, is regular. Conversely, suppose that
each Xα is regular. Pick x ∈ Π Xα and consider a basic nhood  ∩ · · ·
n  of x in Π Xα. Now Ui is a nhood of  in  , for i = 1, . . . , n,
and hence Ui contains a closed nhood Ci of  .But then (C1) ∩ · · · ∩ 

(Cn) is a closed nhood of x contained in (U1) ∩ · · · ∩ (Un).
Thus the closed nhoods of x form a nhood base at x, showing that Π Xα is
regular.

c) See the following examples. ■

 
 
14.5 Examples. a) A closed continuous image of a T3-space need not be T2;
if it is T2, it need not be regular. Let Γ denote the closed upper half plane
{(x, y) I y ≥ 0} in R2, with the topology specified as follows: nhoods of
points (x, y) with y > 0 will be as in the usual topology while basic nhoods
of points z on the x-axis in Γ will be sets of the form {z} ∪ A, where A is
the interior of a circle in the upper half plane tangent to the x-axis at z. This
space is the Moore plane. It was the object of study in Exercise 4B.

Γ is certainly Hausdorff. Since a base of closed nhoods can easily be
constructed at each point of Γ, it follows from 14.3 that Γ is T3. Now let D
and E be the sets of points on the x-axis in Γ whose first coordinates are
rational and irrational, respectively. Then D and E are closed sets in Γ and
we will see later (25F) that D and E cannot be contained in disjoint open
sets in Γ. If Y is the decomposition space of Γ whose elements are D, E and
the one-point sets in Γ–(D ∪ E,) then Y is the image of Γ by a closed
continuous map (9E), but Y is not T2 since D and E cannot be separated by
disjoint open sets in Y. If Z is obtained from Γ by identifying only the points
of D, then Z is a closed continuous image of Γ which is T2 but not regular.
(Z is T2 by 14.7 below, not regular because the point D and the closed set E
cannot be separated by disjoint open sets.)

b) The open continuous image of a T3-space need not be regular. In fact,
in 13.9(b) we provided a space X which is T3 and a non-Hausdorff T1-space



Y which is the image of X. under an open continuous map.

The following two theorems constitute a partial apology for the examples
just given.

14.6 Theorem. If X is T3 and f is a continuous, open and closed
map of X onto Y, then Y is T2.

Proof. By 13.11, it is sufficient to show that the set

A = {(x1, x2) ∈ X × X | f(x1) = f(x2)}

is closed in X × X. If (x1, x2) ∉ A, then x1 ∉ f–1[f(x2)] so that, since X is
regular, there are disjoint open sets U and V with x ∈ U and f–1[f(x2)] ⊂ V.
Since f is closed, we can find a saturated open set in X containing f–1[f(x2)]
and contained in V; that is, f-1[f(x2)] c f–1(W) ⊂ V for some open set W in Y.
Then U × f-1(W) is a nhood of (x1, x2) which cannot meet A, since U ∩ f–
1(W) = ø. ■

14.7 Theorem. If X is T3 and Y is obtained from X by identifying
a single closed set A in X with a point, then Y is T2.

Proof. If y1 and y2 are distinct points of Y, then f-1(y1) and f–1(y2) are a point
and a disjoint closed set (not necessarily in that order) in X and hence there
are disjoint open sets U and V in X containing f–1(y1) and f–1(y2). Now U
and V can be taken as saturated since f is closed (9.8, 9.10). Then U = f–1(S)
and V = f–1(T), where S and T are open sets in Y which must contain y1 and
y2, respectively. Since U and V are disjoint, so are S and T. ■



The next axiom of separation which would seem natural would involve
separating disjoint closed sets by disjoint open sets. We will set aside the
study of this property, normality, until the next section, however, and take
up a separation property intermediate between regularity and normality
which has assumed a dominant role in the study of topology, primarily by
virtue of Theorems 14.12 and 14.13.

 
 
14.8 Definition. A topological space X is completely regular iff whenever A
is a closed set in X and x ∉ A, there is a continuous function f : X → I such
that f(x) = 0 and f(A) = 1. It is clearly enough to find a continuous function f
: X → R such that f(x) = b and f(A) = a, where b ≠ a. Any such function f
will be said to separate A and x. A completely regular T1-space is called a
Tychonoff space.

Completely regular spaces are regular. For suppose A is closed, x ∉ A,
and f : X → I is a continuous function with f(x) = 0 and f(A) = 1. Then 

 and are disjoint open sets in X containing x and A,
respectively. But completely regular spaces need not be Hausdorff, as any
trivial space of more than one point illustrates, and this is the reason
Tychonoff spaces enjoy a separate identity. An early joke has somehow
become semistandard, with some writers referring to Tychonoff spaces as 

-spaces.

A counterexample exists showing that not every regular space is
completely regular. It is formidable and we have relegated it to Exercise
18G, where most people won’t be bothered by it. There is an even more
complicated example, also noted in 18G, of a T3-space on which every
continuous real-valued function is constant!

 
 

14.9 Example. Every metric space is Tychonoff. In fact, every
pseudometrizable space is completely regular. For if ρ is a pseudometric
which gives the topology on X, A is a closed subset of X and x ∉ A, then
f(y) = ρ(y, A) is a continuous function on X to R such that f(A) = 0 and f(y) ≠
0.



We turn now to the basic questions about subspaces, products and
quotients of Tychonoff spaces.

14.10 Theorem. a) Every subspace of a completely regular (or
Tychonoff) space is completely regular (respectively, Tychonoff).

b) A nonempty product space is completely regular (or
Tychonoff) iff each factor space is completely regular
(respectively, Tychonoff).

c) Quotients of Tychonoff spaces need not be completely regular
or T2.

Proof. a) Suppose X is completely regular and Y ⊂ X. If A is closed in Y,
then A = B ∩ Y where B is closed in X. Given any x ∈ Y − A, x ∉ B so there
is a continuous f : X → R such that f(x) = 1, f(B) = 0. Then f | Y separates x
and A in Y, so Y is completely regular. The result for Tychonoff spaces now
follows from this together with the corresponding (easy) result for T1-
spaces.

b) If Π Xα is nonempty, each Xα is homeomorphic to a subspace of Π Xα
and thus is completely regular if Π Xα is.

Conversely, suppose Xα is completely regular, for each α. Let x ∈ Π Xα
and let A be a closed set in Π Xα not containing x. Then some basic nhood 

 of x does not meet A, where Uk is an open set in 
 For k = 1, . . . , n there is a continuous fk:  I such that  = 1

and = 0. Define g : Π Xα → I by

g(y) = min  k = 1, . . . , n}.

Then g is continuous (it is the infimum of the functions fk  k = 1, . . . , n
and the infimum of finitely many continuous functions is continuous, by



7M.4) and g(x) = 1, g(X − A) = 0. Thus Π Xα is completely regular.

Again, the result for Tychonoff spaces is easily derived from the result
just given and the corresponding result for T1-spaces.

c) See the following examples. ■

14.11 Examples. a) The closed continuous image of a Tychonoff space
need not be T2 ; if it is T2, it need not be Tychonoff. It is enough to show the
Moore plane Γ is Tychonoff; the required closed continuous images are
those constructed in 14.5(a). To show Γ is Tychonoff, let p ∈ Γ and let V be
a basic nhood of p (so that V is either a disk centered at x or else x together
with a disk tangent to x, depending on the placement of x). Define f : Γ → I
by setting f(p) = 0, setting f(x) = 1 for each x ∉ V, and defining f linearly
along the straight-line segments between x and the points on the boundary
of V. Then f is a continuous function on Γ such that f(p) = 0 and f(X − V) =
1. Since any closed set in Γ which does not contain p is contained in X − V
for some basic nhood V of p, it follows that Γ is Tychonoff.

b) In 13.9(b), we exhibited a space X which is Tychonoff and a non-
Hausdorff T1-space Y which is the image of X by an open continuous map.

We close this section with the two theorems which embody much of the
importance of completely regular and Tychonoff spaces.

The completely regular spaces are precisely the spaces having enough
bounded continuous real-valued functions to determine their topology
completely, according to the first of these results.

14.12 Theorem. A topological space X is completely regular iff
it has the weak topology induced by its family C*(X) of bounded
real-valued continuous functions.

Proof. If X is completely regular, then the functions in C*(X) separate points
from closed sets so, by 8.15, X has the weak topology induced by C*(X).

Conversely, suppose X has the weak topology induced by C*(X).
Suppose U is open in X and x ∈ U. There are functions f1,. . . , fn in C*(X)



and subbasic open sets V1, . . . , Vn in R such that

.

Each Vi is of the form (ai, ∞) or ( − ∞, ai). But if Vi = ( − ∞, ai), then

 (−fi)−1(−ai, ∞)

so that apparently, by occasionally replacing an fi by − fi, we can assume
each Vi above has the form (ai, ∞). If we denote by gi the function defined
by

gi(x) = sup {fi(x) − ai, 0},

then evidently gi is nonnegative and  . Hence, at this
point, we have

.

Finally, let g = g1 •g2 · ··· · gn· Then g(x) = g1(x) gn(x) is positive, so x ∈
g−1(0, ∞). Moreover, if g(y) > 0, then each gi(y) ≠ 0, so each gi(y) > 0, and
hence y ∈ g1

−1(0, ∞) ∩ ··· n gn
−1(0, ∞) ⊂ U. Thus

x ∈ g−1(0, ∞) ⊂ U.



It follows that g(x) ≠ 0 while g(X − U) = 0, so X is completely regular. ■

Any product of closed bounded intervals will be called a cube. Thus a
cube is (homeomorphic to) a product of copies of the unit interval I. We
now can give the following elegant and all-important corollary to the
previous theorem. (This result will be extended in the section on
compactness; see 17.11.)

14.13 Theorem. A topological space X is a Tychonoff space iff it
is homeomorphic to some subspace of some cube.

Proof. Every cube is a product of metric spaces and thus Tychonoff, and
hence every subspace of a cube is Tychonoff.

Conversely, suppose X is Tychonoff. Then X is T1 and, by the previous
theorem, has the weak topology induced by the bounded continuous
functions f : X → R. Each such function f has a range contained in some
closed bounded interval If and thus can be regarded as a map of X into If.
Then the evaluation map e : X → Π If defined by [e(x)]f = f(x) is a
homeomorphism, by 8.16, so X is homeomorphic to a subspace of the cube
Π If. ■

Problems

14A. Examples on regularity and complete regularity
1. The family of all subsets of X containing a fixed subset A, together

with the empty set, is a topology for X according to 3A.2. Under what
conditions is it regular? completely regular?

2. Recall that if τ is a topology on X and A is a fixed subset of X, then the
simple extension of τ over A is the topology τA = {U ∪ (V ∩ A) | U, V ∈ τ}
on X. Show that if τ is regular or completely regular, and A is closed in X,
then τA has the same property. Find counterexamples if A is not closed.

3. The slotted plane (4C) is T2 but not T3.



4. The looped line (4D) is Tychonoff.

14B. The double of a topological space
Let X be any T1-space and set X1 = X × {1}, X2 = X × {2}, D(X) = X1 ∪ X2.
For each A ⊂ X, let A1 = A × {1} and A2 = A × {2} be the corresponding
subsets of X1 and X2 in D(X) and, for each x ∈ X, let x1 and x2 be the
corresponding points (x, 1) and

(x, 2) in D(X). Set ℬ = {U1 ∪ (U2–{x})| U open in X, x ∈ X} ∪ {{x2}| x ∈
X}.

1. ℬ is a base for a topology on D(X). With this topology, D(X) will be
called the double of X.

2. X is homeomorphic to the closed subset X1 of D(X).

3. If X is Hausdorff, regular or completely regular, then so is D(X).

14C. Zero sets in completely regular spaces
A zero-set in a topological space X is a set of the form f–1(0) for some
continuous f : X → R.

1. If f is a real-valued continuous function on X, then {x | f(x) ≥ a} and {x
| f(x) ≤ a} are zero sets, for each a ∈ R. [g(x) = max {f(x)–a, 0} is
continuous.]

2. X is completely regular iff the cozero-set nhoods of each point form a
nhood base. (A cozero-set is the complement of a zero-set.)

3. X is completely regular iff the zero sets form a base for the closed sets
in X (i.e., iff every closed set in X is an intersection of zero sets).

The last two assertions provide handy ways of deciding whether or not a
given space is completely regular.

14D. Subsets of regular spaces
If X is T3 and A is an infinite subset of X, there is a sequence U1, U2, . . .

of open subsets of X such that Ūn ∩ Ūm = ø if n ≠ m and Un ∩ A ≠ ø for



each n. [Use induction.]

14E. Semiregular spaces
A space is semiregular iff the regularly open sets (3D) form a base for the
topology.

1. Every regular space is semiregular. Is the converse true?

2. A semiregular, T1-space need not be Hausdorff.

3. Every space X can be embedded in a semiregular space. [In the set X ×
I, define a topology as follows: nhoods of (x, y) for y ≠ 0 will be usual
interval nhoods

{(x, z) | y–ε < z < y + ε} in Ix= {x} × I,

for small positive ε; nhoods of (x, 0), x ∈ X, will have the form {(x’, z) | x’
∈ U, 0 ≤ z < εx’} where U is a nhood of x in X and for each x’ ∈ U, εx’ is
picked small and positive. The resulting space Z is semiregular and X is
embedded in Z as the closed, nowhere-dense subspace {(x, 0) | x ∈ X}.]

Thus subspaces of semiregular spaces need not be semiregular.

14F. Urysohn spaces
A space X is a Urysohn space iff whenever x ≠ y in X, there are nhoods of U
of x and V of y with = ø.

1. Every regular, T1-space is Urysohn and every Urysohn space is
Hausdorff.

2. Not every Urysohn space is semiregular (14E). Thus not every
Urysohn space is regular.

3. Not every semiregular, Hausdorff space is Urysohn. [Give the real line
the discrete topology and add the following points:

a. + ∞ whose nhoods have the form { + ∞} u (a, ∞) for a ∈ R,
b. –∞ whose nhoods have the form {–∞} ∪ (–∞, a) for a ∈ R,



c. p1, p2, . . . where the nhoods of pn have the form {pn} ∪ all but finitely
many points of (–n–1,–n) ∪ (n, n + 1).

Verify that the resulting space X has the required properties.]

14G. Completely Hausdorff spaces
A space X is completely Hausdorff (functionally Hausdorff) iff whenever x
≠ y in X, there is a continuous f : X → I with f(x) = 0, f(y) = 1.

 
 

1. Every completely Hausdorff space is Hausdorff. (The famous example
of E. Hewitt of a regular T1-space in which every continuous real-valued
function is constant (see Exercise 18G) shows that not every regular T1-
space is completely Hausdorff.)

2. Discuss products and subspaces of completely Hausdorff spaces.

14H. C*(X) for non-Tychonoff spaces
Given any topological space (X, τ), there is a Tychonoff space Y such that
the rings C*(X) and C*(Y) of bounded continuous real-valued functions on
X and Y are isomorphic. [Weaken the topology on X to obtain a completely
regular space with the same ring of functions. Then identify points to get a
Tychonoff space.]

Thus C*(X) is studied only for Tychonoff spaces X.

15 Normal spaces
Regularity and complete regularity, as we have seen, constitute nontrivial
restrictions on a topological space. Nonetheless, spaces with these
properties behave decently with respect to the formation of products and
subspaces. In the next (and obvious) step to normal spaces, we find
ourselves confronted with the real bad boy among the separation axioms.
So odd is the behavior of subspaces and products of normal spaces that their
study is a separate subject. This is unfortunate, since as theorems late in this



section will show, normal spaces possess many properties of paramount
interest to topologists.

15.1 Definition. A topological space X is normal iff whenever A and B are
disjoint closed sets in X, there are disjoint open sets U and V with A ⊂ U
and B c V. A normal T1-space will be called a T4-space.

Now is the time to introduce a note of caution. The terminology in the
literature with respect to the separation axioms beyond Hausdorff is more
than a little confused. Some writers interchange our usage, using T3,
Tychonoff and T4 for those spaces which need not be T1 (and regular,
completely regular and normal for those that are). Others use T3 and regular
to mean the same thing, which sometimes means it includes T1 and
sometimes not (and likewise for Tychonoff and completely regular, and T4
and normal). Look before you leap.

The construction of examples of nonnormal spaces will be facilitated by
the following lemma, due to F. B. Jones.

15.2 Lemma. If X contains a dense set D and a closed, relatively
discrete subspace S with |S| ≥ 2|D|, then X is not normal.

Proof. If X were normal then for each T ⊂ S, the sets T and S–T would be
disjoint and closed in X and hence would be contained in disjoint open sets
U(T) and V(T). Now if T1–T2 ≠ ø, then clearly U(T1) ∩ V(T2) is a nonempty
open set in X, so U(T1) ∩ V(T2) n D is nonempty. But then U(T1) ∩ V(T2) n
D is a subset of U(T1) ∩ D and not a subset of U(T2) ∩ D. Thus if T1 and T2
are different subsets of S, then U(T1) ∩ D and U(T2) ∩ D are different
subsets of D, so |P(S)| ≤ |P(D)|. This is impossible if |S| ≥ 2|D|. ■

15.3 Examples. a) A normal space need not be regular. If X is the real line
with the topology in which open sets are the sets (a, ∞) for a ∈ X, then X is
normal since no two nonempty closed sets are disjoint, but X is not regular
since the point 1 cannot be separated from the closed set (–∞, 0] by disjoint



open sets. Of course, every T4-space is Tychonoff, but we need Urysohn’s
lemma (15.6) to prove this.

b) A Tychonoff space need not be T4. As we have seen, the Moore plane
Γ is Tychonoff. But Γ is not normal, by the lemma above, for the x-axis T in
Γ is closed and relatively discrete, the set K = {(x, y) ∈ Γ | x and y are
rational} is dense in Γ, and |T| ≥ 2|K|. (Note that K is countable and |T| = c.)

c) Every metrizable space is T4. In fact, every pseudometrizable space is
normal. For suppose ρ is a pseudometric which gives the topology on X and
let A and B be disjoint closed sets in X. For each x ∈ A, pick δx > 0 such
that U(x, δx) does not meet B and for each y ∈ B, pick εy > 0 such that U(y,
∈y) does not meet A. Let

Then U and V are open sets in X containing A and B respectively. Suppose z
∈ U ∩ V. Then ρ(x, z) < δx/3 and ρ(z, y) < εy/3 so p(x, y) < δx/3 + εy/3 < δx,
assuming δx = max {δx, εy}. But then y ∈ U(x, δx), which is impossible.
Thus U and V must be disjoint, showing that X is normal.

15.4 Theorem. a) Closed subspaces of normal (or T4) spaces are
normal (respectively, T4).

b) Products of normal spaces need not be normal.

c) The closed continuous image of a normal (or T4) space is
normal (respectively, T4).

Proof. a) If Y is closed in X and A and B are disjoint closed sets in Y, then A
and B are disjoint closed sets in X, and hence are contained in disjoint open
sets U and V in X. Then U ∩ Y and V ∩ Y are disjoint open subsets of Y



containing A and B. Thus Y is normal. The assertion for T4-spaces follows
now from the fact that every subspace of a T1-space is T1.

b) See Example 15.5(b).

c) Suppose X is normal and f is a closed continuous map of X onto Y. If A
and B are disjoint closed sets in Y, then f–1(A) and f–1(B) are disjoint closed
sets in X and hence we can find disjoint open sets U1 and U2 in X containing
f–1(A) and f–1(B). Since f is closed, the sets V1 = Y–f(X–U1) and V2 = Y–f (X–
U2) are open in Y. It is easily checked that V1 and V2 are disjoint and
contain A and B, respectively. Thus Y is normal. The assertion for T4-spaces
follows, since the image of a T1-space under a closed continuous map is T1.
■

 
 
15.5 Examples. a) Arbitrary subspaces of T4-spaces need not be T4. In fact,
the nonnormal Tychonoff space Γ (15.3(b)) can be embedded in some cube,
by 14.13. But in 17.10, we note that every cube is normal. If every subspace
of a space X is normal, X is said to be completely normal ; see Exercise
15B.

b) Products of T4-spaces need not be T4. It is noted, in 16D, that the
Sorgenfrey line E is T4 (in fact, that E has even stronger properties). But E
× E is not normal. (The proof makes an easy exercise in the use of Lemma
15.2; see 15A.2.) Normality in product spaces is studied in some detail in
Section 21.

c) Arbitrary quotients of T4-spaces need not be T4. See 13.9(b), which
provides an open continuous map from a T4-space X onto a non-Hausdorff
T1-space Y.

 
 

The remainder of this section will be devoted to giving some useful
properties of normal spaces. The theorems which follow deal, in order, with
separation of sets by continuous functions, with existence of extensions of
continuous functions and with existence of certain kinds of open coverings.



Each of the properties thus exhibited for normal spaces is, in fact,
characteristic of normal spaces. Since separation, extension and covering
are among the most important topics in topology, any one of them would be
enough to overcome the stigma we originally attach to normal spaces
because of the trouble we get into when forming subspaces and (especially)
products. That all three should be true for the same kind of space certainly
ranks with other wonders of the world (e.g., the embedding of Tychonoff
spaces in cubes).

The first of these results has as an immediate consequence that every T4-
space is Tychonoff. Intrinsically, it ranks among the greatest theorems in
topology, since it provides, starting from scratch, a bare-hands construction
of a continuous function where none was assumed to exist.

15.6 Urysohn’s Lemma. A space X is normal iff whenever A and
B are disjoint closed sets in X, there is a continuous function f: X
→ [0, 1] with f(A) = 0 and f(B) = 1.

Proof. Suppose X is normal and A, B are disjoint closed sets in X. By
normality, there is an open set U1/2 such that A ⊂ U1/2 and Ū1/2 n B = ø. But
now A and X–U1/2 are disjoint and closed and so are Ū1/2 and B. Hence
open sets U1/2 and U3/4 exist such that

A ⊂ U1/4, Ū1/4 ⊂ U1/2, Ū1/2 ⊂ U3/4, Ū3/4 ∩ B = ø.

Now suppose sets , k = 1, . . . , 2n–1 have been defined in such a way
that

A ⊂  ∩ B = ø;



then the process can, by normality, be continued so as to provide sets 
, k = 1, .. , 2n+1–1 with the same properties. By induction, then, we

have for each “dyadic rational” r (i.e., each rational of the form r = k/2n for
some n > 0 and k = 1, . . . , 2n–1) an open set Ur subject to the conditions:

a. A ⊂ Ur and Ūr, n B = ø for each dyadic r,
b. Ūr ⊂ Us whenever r < s.

Now define f : X → [0, 1] as follows:

It is apparent that f (A) = 0 and f (B) = 1, so we have the function we want
provided f is continuous. But continuity of f follows easily from facts like
these:

a) if x ∉ Ūr, then f(x) ≥ r (continuity at points x where f(x) = 1),

b) if x ∈ Ur, then f (x) ≤ r (continuity at points where f(x) = 0),

c) if x ∈ Ur–Ūs, where s < r, then s ≤ f(x) ≤ r (continuity at all other
points).

This proves necessity in the theorem.

 
 

Conversely, suppose A and B are disjoint closed sets in X and f : X → [0,
1] is a continuous function such that f (A) = 0, f (B) = 1. Then apparently f–1

[0,  ) and f–1(  , 1] will be disjoint open sets in X containing A and B,
respectively, so the condition of the theorem is sufficient for normality. ■

15.7 Corollary. Every T4-space is Tychonoff.



As a convenience for later use, we point out that 0 and 1 in the statement
of Urysohn’s Lemma can obviously be replaced by any pair of real numbers
a and b with a ≠ b.

If A and B are disjoint closed sets in a normal space, a function of the
type whose existence is guaranteed by Urysohn’s Lemma is called a
Urysohn function for A and B.

It is not in general true that, given disjoint closed sets A and B in a
normal space, there will be a Urysohn function such that A = f –1(0), B = f –
1(1). The spaces with this property are called perfectly normal; see Exercise
15C.

Now we turn to the next in our series of three characterizations of normal
spaces. Its importance cannot be overstated. It provides for the existence of
extensions of continuous functions and some of the best and hardest work
being done today in topology (in particular, by algebraic topologists) deals
with variations on the extension question; if A ⊂ X, when can a continuous
function f : A → Y be extended to a continuous function F : X → Y?

15.8 Tietze’s extension theorem. X is normal iff whenever A is a
closed subset of X and f : A → R is continuous, there is an
extension off to all of X; i.e., there is a continuous map F : X →
R such that F | A = f.

Proof. ⇒ : First suppose f : A → [-1, 1]. Let

A1 = {x ∈ A | f(x) ≥ }, B1 = {x ∈ A | f(x) ≤  } .

Now A1 and B1 are disjoint closed sets in A, and therefore in X, so by
Urysohn’s Lemma, there is a continuous f1 : X → [  ] such that f1(A1) = 

 , f1(B1) =  . Evidently, for each x in A, |f(x) - f1(x)| ≤  , so that f - f1 is a
mapping of A into [  ].



Now we repeat the process with f - f1 = g1. That is, divide [  ] into

thirds (at and ) and let A2 = {x ∈ A | g1(x) ≥  }, B2 = {x ∈ A | g1(x) ≥
 }. Then there is a Urysohn function f2 : X → [  ] such that f2(A2) = 

, f2(B2) = . Evidently, |(f–f1 )–f2| ≤  on A.

Continuing the process, we obtain a sequence f1, f2, . . . of continuous
functions on A such that

Define F(x) = fi(x), for each x ∈ X. Certainly F(x) = f(x) for each x ∈
A, so it remains only to show F continuous.

Let x ∈ X and ε > 0 be given. Pick N > 0 so that < ε/2. Since
each fi is continuous for i = 1, . . . , N, pick open Ui containing x such that

Y ∈ Ui ⇒ |fi(x) - fi(y)| < ε/2N.

Then U = U1 ∩··· ∩ UN is open in X, and

so that F is continuous at x. This completes the proof in the case where f
maps A into [-1,1].



Since (–1, 1) is homeomorphic to R, we can prove the general case by
considering a map f : A → (–1, 1). Since we can regard f as mapping A into
[-1, 1], we can find an extension F‘ : X → [–1, 1]. Let A0 = {x ∈ X | |F’(x)|
= 1}. Then A and A0 are disjoint closed sets in X, so there is a Urysohn
function g : X → [0, 1] such that g(A0) = 0 and g(A) = 1. Define F : X → (–
1, 1) by F(x) = g(x) · F‘(x). Then F is continuous, and if x ∈ A, F(x) = g(x)
· F’(x) = 1 · f(x) = f (x), so F is the desired extension of f.

<= : Suppose the condition holds. If A and B are disjoint closed sets in X,
then A ∪ B is closed in X and the function f : A ∪ B → [0, 1] defined by f
(A) = 0 and f (B) = 1 is continuous on A ∪ B. The extension of f to all of X
will be a Urysohn function for A and B. Thus, by 15.6, X is normal. ■

It is worth mentioning that implicit in the proof of the Tietze theorem is
the proof that if the function ƒ carries A to [a, b], then the extension F can
be made to have the same property.

The last property characteristic of normal spaces will play an important
role in later work both on paracompactness and Dowker’s conjecture. The
terminology associated with this theorem is unusually descriptive.

 
 
15.9 Definition. A cover (or covering) of a space X is a collection  of
subsets of X whose union is all of X. A subcover of a cover  is a
subcollection  of  which is a cover. An open cover of X is a cover
consisting of open sets, and other adjectives applying to subsets of X apply
similarly to covers.

An open cover  = {Uα | α ∈ A} of X is shrinkable provided an open
cover  = {Vα | α A} exists with the property that , ⊂ Uα for each α ∈ A.
Of course,  is called a shrinking of  .

A covering  is point finite provided each x ∈ X belongs to only finitely
many elements of  .



15.10 Theorem. X is normal iff every point-finite open cover is
shrinkable.

Proof. Suppose X is normal and  = {Uα | α ∈ A} is a point-finite open
cover of X. Well-order the set A ; for convenience, then, suppose A = {1, 2,.
. ., α, . . .}. Now construct {Vα | α ∈ A} by transfinite induction as follows:
let

Then F1 ⊂ U1 so there is an open set V1 such that F1 ⊂ V1 and  ⊂ U1 by
normality. Suppose Vβ has been defined for each β < a now, and let 

]. Then Fα. is closed and Fα ⊂ Uα, so we
let Vα be any open set such that Fα ⊂ Vα and  ⊂ Uα. Now  = {Vα| α ∈
A} is a shrinking of provided it is a cover. But if x ∈ X, then x belongs to
only finitely many elements of  , say  . Let a = max (α1, . . . ,
αn). Now x ∉ Uγ for any γ > α and hence, if x ∉ Vβ for any β < α, then x ∈
Fα ⊂ Vα. Hence, in any case, x ∈ Vβ for some β ≤ α. This completes the
proof that  is a shrinking of .

For the converse, let A and B be disjoint closed subsets of X. Then {X–A,
X–B} is a point-finite open cover of X. But any shrinking {U, V} of {X–A,
X–B} induces a separation X - U, X–V of A and B. ■

Problems

15A. Examples on normality
1. Let A be a fixed subset of X, τ the topology for X consisting of ø and

all supersets of A. Discuss normality of (X, τ).



2. Recall that E denotes the Sorgenfrey line (4.6). Show that E × E is not
normal.

3. The radial plane (3A.4) is not normal.

4. The scattered line (5C) is T4.

5. Suppose (X, τ) is normal and A is closed in X. Show that (X, τA) is
normal iff X - A is a normal subspace of (X, τ), where τA denotes the simple
extension (3A.5) of τ over A.

15B. Completely normal spaces
A space X is completely normal iff every subspace of X is normal.

 
 

1. X is completely normal iff whenever A and B are subsets of X with 
 , then there are disjoint open sets U ⊃ A and V ⊃ B. [To

do necessity, consider the subspace X– (  ), which contains both A and
B, and in which A and B have disjoint closures. Sufficiency is easy.]

2. Why can’t the method used to show every subspace of a regular space
is regular be carried over to give a proof that every subspace of a normal
space is normal?

3. Every metric space is completely normal.

15C. Perfectly normal spaces
A T1-space X is called perfectly normal iff for each pair of disjoint closed
sets A and B in X, there is a continuous function f : X → I such that A = f-
1(0) and B = f -1(1). Recall that a Gδ-set in a topological space is a countable
intersection of open sets.

 
 

1. A space X is perfectly normal iff it is T4 and each closed set in X is a
Gδ-set. [For sufficiency, if A is a closed set and A = where each Gn is



open, then a Urysohn function fn exists such that fn(A) = 0 and fn{X–Gn) =
1, for each n. Set fA(x) = ∑ (fn(x)/2n). If A and B are now disjoint closed
sets, set

Then f is continuous and f–1(0) = A, f-1(1) = B.]

2. Every metric space is perfectly normal.

3. It is not sufficient for perfect normality that X be T4 and every point in
X be a Gδ-set.

15D. Retraction and extension
A continuous function r from X onto a subspace A of X is a retraction iff r |
A is the identity on A. The subspace A of X is then called a retract of X.
Questions about existence of extensions can be phrased in terms of
existence of retractions, according to part 2 below. This is the way algebraic
topologists like to view extension questions.

1. A retract in a Hausdorff space is a closed set.

2. A subset A of X is a retract of X iff every continuous function f : A →
Z has an extension to a continuous function F : X → Z. [If r is a retraction,
consider f ◦ r.]

Related to retracts are the absolute retracts. A space R is an absolute
retract iff given any T4-space X, any closed subset A of X, and a continuous
f : A → R, then f has an extension to all of X. The reason for the name is
given in 3 below.

3. A T4-space is an absolute retract iff it is a retract of every T4-space in
which it can be embedded as a closed subset.

4. R is an absolute retract; any closed interval in R is an absolute retract.

5. Any product of absolute retracts is an absolute retract.



 
 

Related to absolute retracts are the absolute nhood retracts. A space Y is
an absolute nhood retract (ANR) iff whenever A is a closed subset of a
normal space X and f : A → Y is continuous, then f can be extended over
some open set U containing A in X.

6. A normal space is an ANR iff whenever it is embedded as a closed
subset of a normal space, it is a retract of some open set in that space.

7. S1 is an ANR, but not an absolute retract. [The second statement
follows from the no-retraction theorem: there is no retraction from the unit
disk onto S1, which you may assume for now. It is proved in the text in
Section 34.]

8. The product of finitely many ANRs is an ANR.

 
 
15E. C*-embedding: Urysohn’s extension theorem

A subspace A of X is C-embedded (C*-embedded) in X iff every continuous
function f : A → R (f : A → I) can be extended to a continuous function F: X
→ R (F: X → I). Subsets B and C of a topological space X are called
completely separated iff there is a continuous g : X → I such that g(B) = 0
and g(C) = 1. Show that a subspace A of X is C*-embedded in X iff every
pair of completely separated sets in A is completely separated in X (this is
Urysohn’s extension theorem).

15F. Order topologies
Every ordered space (6D) is T4.

15G. Extremally disconnected spaces
A topological space X is extremally disconnected iff the closure of every
open set in X is open.

1. For any space X, the following are equivalent:
a. X is extremally disconnected,



b. every two disjoint open sets in X have disjoint closures,
c. every two disjoint open sets in X are completely separated (15E),
d. every open subspace of X is C*-embedded (15E),

[Prove that (a) ⇒ (c) ⇒ (b) ⇒ (a) and (c) ⇒ (d) ⇒ (b), using the Urysohn
extension Theorem 15E for (c) ⇒ (d).]

2. Every dense subspace and every open subspace of an extremally
disconnected space is extremally disconnected. (Closed subspaces need not
be; see the book by Gillman and Jerison.) By Exercise 191, products of
extremally disconnected spaces need not be extremally disconnected.

3. The only convergent sequences in an extremally disconnected T2-space
are those which are ultimately constant. [Suppose xn→ p, but (xn) is not
ultimately constant. Construct a sequence U1, U2, . . . of disjoint open sets
in X such that ∈ Uk for some subsequence (  ) of (xn), and such that p
∈ Ūk, for each k. Let G =  U2k. Then Ḡ is an open set containing p, but 

 for any odd k.]

Part 3 shows that sequential convergence cannot be used to describe the
topology of any nondiscrete extremally disconnected space. In particular,
such spaces cannot be first countable.

Extremally disconnected spaces are important in studying the Stone–
Čech compactification of a product space (191.2) as well as, more
generally, in the study of the Stone space of any complete Boolean algebra.
They also crop up in investigations of the reducibility of mappings of
compact spaces (17P), and the extremally disconnected compact spaces are
precisely the compact-projective spaces (17Q).

15H. Hahn-Banach theorem
In the presence of algebraic structure on a space X, e.g., if X is a normed
linear space, one can ask whether a function f on a subset A of X which is
continuous and has certain algebraic properties can be extended to all of X
in such a way that continuity and these algebraic properties are preserved.
The answer, if A is a subspace of X and f is a continuous linear functional
on X, is yes. This follows (see part 2) as an intermediate corollary to the



Hahn–Banach theorem (part 1) below. Prerequisite to the understanding of
this material is a careful study of Problems 2J and 7L.

1. (Hahn-Banach theorem) Let X be any linear space, p: X → R a
function such that p(x + y) ≤ p(x) + p(y) and p(αx) = α · p(x) for α ≥ 0. If A
is a linear subspace of X and ƒ is a linear functional on A such that f(x) ≤
p(x) for all x ∈ A, then f can be extended to a linear functional F on X such
that F(x) ≤ p(x) for all x ∈ X. [First note that if A’ is a subspace of X with A
⊂ A’ and F’ is an extension of f to A’ which is less than or equal to p on A’,
then for any y ∉ A’, a further extension of f to the subspace {x + λy | x ∈
A’, λ ∈ R} can be found which is less than or equal to p there. Next, use
Zorn’s lemma to conclude that there exists a maximal extension of f, when
extensions of f are ordered by g1 ≤ g2 iff

dom g1 ⊂ dom g2 and g1 = g2 | dom g1,

which is less than or equal to p. Finally, combine these two results to
conclude that the domain of this maximal extension must be all of X.]

2. If X is a normed linear space and f is a bounded linear functional on a
subspace A of X, then f can be extended to a bounded linear functional f on
X with ∥F∥ = ∥f∥. [Use the Hahn-Banach theorem with p(x) = ∥f∥ · ∥x∥.]

3. If X is a normed linear space, A is a subspace of X and y ∉ Ā, then
there is a bounded linear functional F on X such that

a. F(A) = 0,
b. F(y) = the distance from A to y,
c. ∥F∥ = 1.

[Define f on {a + λ · y | a ∉ A, λ ∈ R} by f(a + λy) = λ · δ and use the
Hahn-Banach theorem to conclude f can be extended to a functional F on all
of X with |F(x)| ≤ ∥x∥ at each x ∈ X.]

Part 3 can be regarded as giving a form of complete regularity on the
space X, in which subspaces can be separated from points by linear
continuous maps. Part 2 could be called a Tietze extension theorem for
normed linear spaces.



15I. Jones’ lemma
Prove Jones’ lemma (15.2) by comparing the number of continuous
functions on D with the number on X and using the Tietze extension
theorem.

16 Countability properties
We will introduce three topological properties in this section and investigate
the relationships between them, as well as the basic combinatorial questions
(about subspaces, products and quotients) for each individually.

Recall that the first axiom of countability, providing for countable nhood
bases, was introduced in Section 4. We are ready now for the second axiom.

16.1 Definition. X is second countable (or, satisfies the second axiom of
countability) iff its topology has a countable base.

Every second-countable space is first countable. On the other hand, any
uncountable discrete space is first countable without being second
countable.

16.2 Theorem. a) The continuous open image of a second
countable space is second countable.

b) Subspaces of second countable spaces are second countable.

c) A product of Hausdorff spaces is second countable iff each
factor is second countable and all but countably many factors
are one-point spaces.

Proof. a) Let f be a continuous open map of X onto Y. It is sufficient to
check that if ℬ is a base for X, then f(ℬ) = {f(B) | B ∈ ℬ} is a base for Y.
For this purpose, let V be an open set in Y, p ∈ V. Then f-1(V) is open in X,
and if we pick q ∈ f-1(p) ⊂ f-1(V), then for some basic open set B, q ∈ B ⊂
f-1(V). It follows that p ∈ f(B) c V, and thus that the sets f(B) do form a base
for Y (where did we use openness of f?).



b) The restriction of a base for X to a subspace A of X is a base for A.

c) Suppose X = Π Xα is second countable. By (a), each Xα is second
countable and by Exercise 16A, since Π Xα is first countable, there are at
most countably many nontrivial factors.

 
 

Conversely, suppose {Bαn | I n = 1, 2, . . .} is a base for Xα, for each α ∈
A. Then the sets of the form

 × ··· ×  × Π {Xα |α ≠ α1, . . . , αk}

form a base for the product space. It is easily verified that, since A is
countable, there are only countably many sets of this form. ■

An example showing that the requirement that f be open in 16.2(a) is not
frivolous, is given to be worked out in 16B.1.

16.3 Definition. A topological space X is separable iff X has a countable
dense subset. (A set D is dense in X iff ClX D = X.)

The real line is separable, since the rationals are dense. A discrete space
is separable iff it is countable.

16.4 Theorem. a) The continuous image of a separable space is
separable.

b) Subspaces of separable spaces need not be separable.
However, an open subspace of a separable space is separable.

c) A product of Hausdorff spaces, each with at least two points,
is separable iff each factor is separable and there are ≤ c
factors.



Proof. a) A continuous map of X onto Y carries a dense subset of X to a
dense subset of Y.

b) The Moore plane Γ is separable, while the x-axis T in Γ is not; see
Exercise 6B. The assertion for open subspaces is an easy exercise.

c) ⇒ : Since projection is continuous, each Xα is separable if Π Xα is, by
part (a). We proceed to show |A| ≤ c. For each α ∈ A, let Uα and Vα be
disjoint nonempty open sets in Xα (using the fact that each Xα is Hausdorff
and has at least two points). Let D be a countable dense set in Πα∈A Xα and,
for each α ∈ A, let Dα = D ∩  (Uα). Then Dα ≠ ø for each α, and for
distinct α and β, Dα ≠ Dβ since points in  (Uα) ∩  (Vβ) which belong
to D will belong to Dα and not Dβ. Thus the map F : A → P(D) defined by
F(α) = Dα is one-one and therefore

|A| ≤ |P(D)| =  = c.

⇐ : In Xα, let {dα1, dα2, . . .} = Dα be a countable dense subset. If we
suppose |A| ≤ c, then we can regard A as a subset of the unit interval I. For
each sequence J1,...,Jk of disjoint closed intervals with rational endpoints
and each sequence n1,...,nk of positive integers, define a point p(J1,...,Jk ;
n1,...,nk) as follows:

Pα =  if α ∈ Ji,  
Pα = dα1 otherwise.

The set D of points p so defined is countable. Moreover, it is dense. For a
(basic) open set in Π Xα has the form



where  is open in  , i = 1,. . ., m. Then  contains a point  of  ,
for each i, and there are disjoint closed rational intervals J1, . . . , Jm
containing the points α1, . . . , αm, respectively. The point p(J1, . . . , Jm; n1, .
. . , nm) belongs to B since  =  , i = 1,. . ., m. Hence, the set D is dense.
■

16.5 Definition. X is Lindelöf iff every open cover of X has a countable
subcover.

16.6 Theorem. a) The continuous image of a Lindelöf space is
Lindelöf.

b) Closed subspaces of Lindelöf spaces are Lindelöf; arbitrary
subspaces of Lindelöf spaces need not be Lindelöf.

c) Products of (even two) Lindelöf spaces need not be Lindelöf.

Proof. a) Suppose f: X → Y is continuous and onto and X is Lindelöf. Let
{Uα | α ∈ A} be an open cover of Y. Then {f-1(Uα) | α ∈ A} is an open
cover of X from which we can choose a countable subcover {f-1(  ) | i =
1, 2,. . .}. {  | i = 1, 2, . . .} will be the desired countable subcover from
{Uα | α ∈ A}.

b) Suppose F is closed in X and X is Lindelöf. If {Uα | α ∈ A} is an open
cover of F, find for each α an open set Vα in X with Vα ∩ F = Uα. Then X - F
and the sets Vα form an open cover of X, for which there will be a countable
subcover, {X - F, Vα1, Vα2, . . .}. Then the corresponding  , i = 1, 2, . . . ,
cover F, so {Uα | α ∈ A} has a countable subcover.

For the remaining assertions of the theorem, see the examples below. ■

16.7 Examples. a) Arbitrary subspaces of Lindelöf spaces need not be
Lindelöf. Recall Ω denotes the set of ordinals which are less than or equal
to the first uncountable ordinal ω1 (as described in 1.19). Since Ω is a
totally ordered space, it can be provided with its order topology; recall that
a basic nhood of α ∈ Ω is then of the form (α1, α2) = {β ∈ Ω | α1 < β < α2},



where α1 < α < α2, with the modification that nhoods of ω1 have the form
(γ, ω1] = {β ∈ Ω | γ < β ≤ ω1}, for γ < ω1.

Now Ω is a Lindelöf space. In fact, given any open cover of Ω, find one
element U which contains ω1. Then U contains an interval (γ, ω1] for some
γ < ω1. But this leaves at most the set [1, γ] to be covered, and this set is
countable, so at most countably many more elements of the cover will be
needed to cover Ω.

The subspace Ω0 = Ω– {ω1}, however, is not Lindelöf. If for each α ∈
Ω0, we set Uα = [1, α), then {Uα | α ∈ Ω0} is an open cover of Ω0 which
has no countable subcover. For if {Uα1, Uα2, . . .} covers Ω0, then sup {α1,
α2, . . .} = ω1, which is impossible, by Theorem 1.20.

b) The product of two Lindelöf spaces need not be Lindelöf. Consider the
Sorgenfrey line E which is the real line with the topology in which basic
open sets have the form [a, b), a < b. In Exercise 16D you will prove this
space is Lindelöf. Now E x E is not normal, as we pointed out in Example
15.2, but it is regular, since E is. But a regular Lindelöf space is normal
according to the next theorem, so E x E cannot be Lindelöf.

16.8 Theorem. A regular, Lindelöf space is normal.

Proof. Let A and B be disjoint closed sets in a regular Lindelöf space X. For
each a ∈ A, let Ua be an open set containing a such that Ūa ∩ B = ø, by
regularity. Similarly, find a set Vb for each b ∈ B separating b from A. Since
A and B are Lindelöf subspaces of X, apparently a countable number of the
sets Ua cover A, say A ⊂ U1 ∪ U2 ∪ · · · ; similarly, B ⊂ V1 ∪ V2 ∪ · · · .
Now construct open sets Sn and Tn inductively as follows:



Then it is easily seen that S = U Sn and T = U Tn are disjoint open sets
containing A and B, respectively. ■

16.9 Theorem. If X is second countable, then X is

a) Lindelöf,

b) Separable.

Proof. a) Let ℬ be a countable base for X. Suppose  is any open cover of
X. For each U ∈  and x ∈ U, there is some Bx,U ∈ ℬ such that x ∈ Bx,U
⊂ U. Now ℬ′ = {Bx,U | x ∈ U, U ∈ } is really a countable set, since ℬ′ ⊂
ℬ. Say {Bx,U | x ∈ U, U ∈  } = {  ,  , . . .}. Then U1, U2, . . . is
a countable subcover from  .

b) You did this as Exercise 5F.2. Simply pick one point from each
element of a countable base and verify that the resulting countable set is
dense. ■

The next examples show that, in general, no other implications between
the properties in Theorem 16.9 will hold.

 
 
16.10 Examples. a) A separable space not Lindelöf. The space E is
separable, hence so is E2 = E x E. But E2 is not Lindelöf (otherwise it
would be normal by Theorem 16.8).



b) A Lindelöf space not separable. Let X be uncountable and discrete.
Adjoin an extra point ϰ* to X and specify that its nhoods will be {x*} ∪ A,
where A is the complement of a finite set in X, while nhoods of points in X
remain the same. Then the resulting space X* is Lindelöf (in fact, every
open cover has a finite subcover) but not separable, since there are
uncountably many points x ∈ X and each is open in X*.

16.11 Theorem. For a (pseudo)metric space X, the following are
equivalent:

a) X is second countable,

b) X is Lindelöf,

c) X is separable.

Proof. By 16.9 it suffices to show (b) implies (a) and (c) implies (a) for a
pseudometric space. Thus, let (X, p) be a pseudometric space.

b) => a): Suppose X is Lindelöf. Let  = {U(x, 1/n) | x ∈ X}. For each
n,  is an open cover of X and hence has a countable subcover  . Then 

 =  ∪  ∪ · · · is a countable collection of open sets in S. Let W be a
nonempty open set in X, and x ∈ W. Then U(x, 1/m) ⊂ W for some m. Now
since  covers X, there is some y ∈ X such that x ∈ U(y, 1/2m). Then

U(y, 1/(2m)) c U(x, 1/m) ⊂ W;

i.e., U(y, 1/2m) is an element of  containing x and contained in W. Thus 
 is a countable base for X, so X is second countable.

c) ⇒ a) : Let {d1, d2, . . .} be a countable dense subset of X and let

 = U(dn, 1/m), n = 1, 2, . . . , m = 1, 2, . . . .



Then {Unm | n = 1, 2, . . . , m = 1, 2, . . .} is countable. We claim it is a base.
Let x ∈ W, W a nonempty open set in X. Then U(x, 1/m) ⊂ W for some m.
But some dn ∈ U(x, 1/2m) and then U(dn, 1/2m) ⊂ U(x, 1/m) so

x ∈ Un2m = U(dn, 1/2m) ⊂ W.

Thus, {Unm} is a base as advertised. ■

16.12 Example. Experience indicates the necessity of pointing out that a
separable, first-countable space need not be second countable. E provides
an easy counterexample. It is separable since the rationals are dense, and
first countable since the sets [x, x + 1/n) form a nhood base at x, but not
second countable. For if E were second countable, then E x E would (in
two easy steps) be normal, which is not true.

Problems

16A. First countable spaces
1. Every subspace of a first-countable space is first countable.

2. A product Π Xα of first-countable spaces is first countable iff each Xα
is first countable, and all but countably many of the Xα are trivial spaces.

3. The continuous image of a first-countable space need not be first
countable [discrete spaces are first countable]; but the continuous open
image of a first-countable space is first countable. (See also part 5 below
and 23K.)

4. For a space to be first countable, it is not sufficient that each point be a
Gδ. [Construct a space X by adjoining to the real line (whose topology is
unchanged) a single point p whose nhoods are all sets of the form (a, ∞) -
C, where C is a countable subset of (a, ∞) with no cluster points. Verify that
p is a Gδ but has no countable nhood base. Why the condition that C be
“scattered?”]



The condition that each point be a Gδ is sufficient for first countability of
a compact Hausdorff space. (See 17F.7.)

5. For each n ∈ N, let Xn be a copy of the subspace {0} ∪ {1/m | m = 1,
2, . . .} of R. Let X be the disjoint union of the Xn. Is the quotient Y of X
obtained by identifying all accumulation points of X first countable?

16B. Second countable spaces
1. A quotient of a second-countable space need not be second countable.

[For each n ∈ N, let In be a copy of [0, 1] and let X be the disjoint union of
the spaces In. Now identify the left-hand endpoints of all the intervals In.
The resulting space Z is not first countable at the distinguished point, and
hence is not second countable, although X is second countable.]

2. Any base for the open sets in a second countable space has a countable
subfamily which is a base.

3. Any increasing chain of real numbers which is well ordered by the
usual order must be countable.

16C. The countable chain condition

Let ℵ be any cardinal number. A space X has caliber ℵ iff whenever  is a
family of open subsets of X with |  | = ℵ, a subfamily  of  exists with | 

 | = ℵ and ∩ { V | V ∈  } ≠ ø. We say X satisfies the countable chain
condition iff every family of disjoint open subsets of X is countable.

 
 

1. Every separable space has caliber ℵ1.

2. Every product of separable spaces has caliber ℵ1.

3. If X has caliber ℵ1, then X satisfies the countable chain condition.

4. Investigate the three properties mentioned in 1 and 2 for a space X with
ℵ1 elements and the “co-countable” topology, in which the open sets are ø
and all complements of countable sets.



 
 

It is an open question whether the product of two spaces, each with the
countable chain condition, has the countable chain condition. Also, this
condition plays a key role in the enunciation of the Souslin hypothesis with
which we will be concerned in Section 21.

16D. Lindelöf spaces
A subset A of a space X is Gδ-closed in X iff each point p ∉ A is contained
in a Gδ disjoint from A.

 
 

1. The Sorgenfrey line E is Lindelöf. Conclude that E is a T4-space.

2. If X is Lindelöf, every uncountable subset of X has an accumulation
point.

3. A regular space is Lindelöf iff each open cover has a countable
subcollection whose closures cover (i.e., has a countable dense subsystem).

4. Any space is Lindelöf iff each closed filter ℱ with the countable
intersection property (whenever F1, F2, . . . ∊ ℱ, then  Fn ≠ ø) has a
nonempty intersection. [The complements of the sets in an open cover with
no countable subcover generate a base for a closed filter with the countable
intersection property.]

5. A regular space is Lindelöf iff each open filter with the countable
intersection property has a cluster point [the complements of the closures of
the sets in an open cover having no countable dense subsystem form an
open filter with the countable intersection property].

6. A regular space is Lindelöf iff whenever it is embedded in a Hausdorff
space, it is Gδ-closed. [A non-Lindelöf space X has an open filter with the
countable intersection property but no cluster point. Add a point p to the
space whose nhoods are {p} ∪ U, where U is any element of this filter. This



provides a Hausdorff space in which X is not Gδ-closed. The reverse is
easier.]

16E. Hereditarily Lindelöf spaces
A space X is hereditarily Lindelöf iff every subspace of X is Lindelöf.

1. Every second-countable space is hereditarily Lindelöf.

2. Any space X can be embedded as a dense subset of a Lindelöf space.
[Adjoin a point p to X whose nhoods are the sets {p) ∪ E, where E is a
subset of X whose complement in X is Lindelöf.

3. If X is hereditarily Lindelöf and E ⊂ X, the set E* of points of E which
are not accumulation points of E is countable.

16F. Cardinality and the countability axioms
1. A separable first-countable space has cardinal ≤ c [  ].

2. If X is separable and C(X) denotes all continuous functions f : X → R,
then |C(X)| ≤ c. [A continuous function is determined by its values on a
dense set.]

3. If (X, τ) is second countable, then |τ| ≤ c.

16G. Separable spaces
1. Every subspace of a separable metric space is separable.

2. Prove the irrationals are separable directly by finding a countable
dense subset.

3. The set Ω0 of ordinals less than the first uncountable ordinal is not
separable.

4. Give an example of a regular, separable space which is not normal.
(Compare with 16.8.)

16H. Examples on countability properties



1. The plane with slotted disks (4C) is separable, but neither first
countable nor Lindelöf (hence not second countable).

2. The plane with the topology given by radially open sets (3A.4) is
separable, but neither first countable nor Lindelöf.

3. The Moore plane Γ is separable and first countable, but not Lindelöf.

4. The sequence space m (2H) is not separable. [An uncountable subset A
of m can be found such that ρ(a, b) = 1 whenever a, b ∊ A.]

5. The sequence spaces c and c0 (2H) are separable. [Consider sequences
with rational terms which are ultimately constant.]



Chapter 6

Compactness

17 Compact spaces
Many of the most important theorems in a course in classical analysis are
proved for closed bounded intervals (e.g., a continuous function on a closed
bounded interval assumes its maximum). The basis for the proof of such
theorems is almost without exception the Heine—Borel theorem, that a
cover of a closed bounded interval by open sets has a finite subcover. It is
not surprising, then, that the (topological) property of closed bounded
intervals thus expressed has been made the subject of a definition in
topology, the definition of compactness.

This section is long, but falls naturally into three parts. In the first (17.1
through 17.4) we study compactness and equivalent conditions for
compactness, in the second (17.5 through 17.9) we give the basic theorems
and examples about subspaces, products and continuous images of compact
spaces; in the third (17.10 through 17.14) we study some of the properties
of compact spaces which are the reasons this section is so long.

17.1 Definition. A space X is compact iff each open cover of X has a finite
subcover. X is countably compact iff each countable open cover of X has a
finite subcover.

Evidently, X is compact iff X is countably compact and Lindelöf.
Countable compactness played an important role in the early stages of
topology, because for the spaces then considered (usually metric spaces) it
is equivalent to compactness (see 17F.6). It is still important in certain
restricted directions. Another variation of compactness, sequential
compactness, is introduced in Exercise 17G. It, too, was once more
important than it now is.



 
 
17.2 Examples. a) R is not compact. In fact, the cover of R by the open sets
(–n, n), for n ∊ N, can have no finite subcover.

b) I is compact. Let  be any open cover of I and let K be the set of all
points c in I such that some finite subcollection from  covers [0, c].
Clearly 0 ∊ K. Also, if c ∊ K and b ≤ c, then b ∊ K. Thus K is a subinterval
of I containing 0. Moreover, if c ∊ K, then any finite subcollection from 
which covers [0, c] also covers [0, c + ε] for some ε > 0 (unless c = 1, in
which case we have finished). Thus K is an open set in I. Finally, if k is the
right-hand endpoint of K, then k ∊ K. For pick U ∊  such that k ∊ U.
Then (k–ε, k] U for some ε > 0 so that, by adding U to a finite subcollection
from  which covers [0, k–∈], we obtain a finite subcollection from 
which covers [0, k]. Now K is a closed subinterval of I which contains 0
and is an open set in I. Thus K = I. This proves that I is compact.

c) The ordinal space Ω is compact. Let  be any open cover of Ω. Let α1
be the least element of Ω such that (α1, ω1] is contained in some element U1
of  . If α1 ≠ 1, let α2 be the least element of Ω such that (α2, α1] is
contained in some element U2 of  . Continue this process. Then for some
n, αn = 1, since otherwise we would have a sequence α1 > α2 > · ,which
would contradict the well-ordering of Ω. Then {U1, . . . , Un} is a
subcollection from  which covers all of Ω except possibly 1, so an (n +
1)-element subcollection from  covers Ω. Note that each of the closed
subspaces [1, α] of Ω is now compact, by 17.5.

Some of the properties of the subspace Ω0 of Ω will be of interest. First
note that Ω0 is countably compact. For let  = {U1, U2, . . .} be a countable
open cover of Ω0. If no finite subcover of Ω0 exists, then for each n, pick αn
∉ U1 ∪ · · · ∪ Un. If α = sup {α1, α2, . . . }, then α ∊ Ω0 and no finite
subcollection from  covers the compact set [1, α], which is impossible.
Next note that Ω0 is not compact, since the cover of Ω0 by the sets [1, α),
for α ∊ Ω0, can have no finite subcover. Also, letting Ω(α) denote the set of
all ordinals ≤ α, Ω0–Ω(α) is homeomorphic to Ω0, for each α ∊ Ω0. The
homeomorphism is easily constructed; it takes the least element of Ω0–Ω(α)



to 1, the next element to 2, and so on by transfinite induction. Finally, every
continuous real-valued function on Ω0 is constant on some tail. To see this,
let f : Ω0 → R be continuous. Then f(Ω0) is countably compact, by 17F.5,
and Lindelöf. Hence f(Ω0) is compact. By the next theorem, the net 
must then have a cluster point in f(Ω0). This cluster point y is unique. For
suppose z is another cluster point of the same net. Then we can find an
increasing sequence α1, α2, . . . of countable ordinals such that |f(α2n–1)–y] <
1/n and |f(α2n)–z| < 1/n, for n = 1, 2, . . . . Thus if α = sup {α1, α2, . . .}, we
have f(α) = y and f(α) = z, so that y = z. Next we claim the net (f(α))
converges to this unique cluster point y. If not, then for some open nhood U
of y, Ω0–f–1(U) contains a cofinal subset of Ω0. But Ω0–f–1(U) is a closed
subset of Ω0 and thus countably compact (17F.5), and the argument above
can be re-applied to yield a cluster point of (f(α)) other than y. Since this is
impossible, (f(α)) must converge to y. Now for n = 1, 2, . . . , pick αn ∊ Ω0
such that α ≥ αn implies |f(α)–yl < 1/n. Let α0 = sup {α1, α2, . . .}. Then α ≥
α0 implies f(α) = y, so f is constant on the tail {α ∊ Ω0 | α ≥ α0 } of Ω0.

This last property of Ω0 yields an extension theorem: every continuous
real-valued function on Ω0 can be extended to a continuous function on Ω.

 
 
17.3 Definition. A family ℰ of subsets of X has the finite intersection
property iff the intersection of any finite subcollection from ℰ is nonempty.

Families with the finite intersection property are somewhat like filters; in
fact, if ℰ is such a family and ℱ is the collection of all possible finite
intersections from ℰ then ℱ is a filter base, so every family ℰ with the finite
intersection property generates a filter. Conversely, every filter is a family
with the finite intersection property. Some of the implications in the
following theorem will now be clear.

17.4 Theorem. For a topological space X, the following are
equivalent:



a. X is compact,
b. each family ℰ of closed subsets of X with the finite

intersection property has nonempty intersection,
c. each filter in X has a cluster point,
d. each net in X has a cluster point,
e. each ultranet in X converges,
f. each ultrafilter in X converges.

Proof. a) ⇒ b) : If {Eα | α ∊ A} is a family of closed sets in X having empty
intersection, then {X–Eα | α ∊ A} is an open cover of X. By compactness,

there is a finite subcover {X–  } and then  = ø, so
{Eα | α ∊ A} does not have the finite intersection property.

b) ⇒ c) : If ℱ is a filter on X, then {  |F ∊ ℱ } is a family of closed sets
with the finite intersection property, so there is a point x in  | F ∊ ℱ}.
Then ℱ has x for a cluster point.

c) ⇒ d) : This is an easy exercise in the use of the standard translation
process from filters to nets. See 12.15–12.17 and 12D.

 
 

d) => e) : If an ultranet has a cluster point, it converges to that point.

e) ⇒ f) : Let ℱ be an ultrafilter on X. The net based on ℱ is then an
ultranet (12D.4) and hence converges. Then ℱ converges (12.17).

f) => a) : Suppose  is an open cover of X with no finite subcover. Then
X–(U1 ∪ · · · ∪ Un) ≠ ø for each finite collection {U1, . . . , Un} from  .
The sets of the form X–(U1 ∪ · · · ∪ Un) then form a filter base (since the
intersection of two such sets has again the same form), generating a filter
ℱ. Now ℱ is contained in some ultrafilter ℱ* and, by (f), ℱ* converges,
say to x. Now x ∊ U for some U ∊  . Since U is a nhood of x, U ∊ ℱ*.
But, by construction, X–U ∊ ℱ ⊂ ℱ*. Since it is impossible for both U and
X–U to belong to ℱ*, we have a contradiction. Thus  must have a finite



subcover. ■

 
 

The previous theorem gives a hint of one of the lines from topology to
more “applied” branches of mathematics. Compactness can be used by
“existential” (as opposed to “constructive”) analysts, in the following way.
Given a differential equation, it may be possible to topologize some set of
functions (among which are the solutions, if any, of that equation) in such a
way that convergence of an appropriate net or sequence of functions to the
limit f implies that f is a solution of the original differential equation. Thus
the study of compactness (every net has a convergent subnet), countable
compactness (every sequence has a convergent subnet; see 17F) and
sequential compactness (every sequence has a convergent subsequence; see
17G) in spaces of functions is germane to the study of existence of solutions
to differential equations.

We turn now to investigation of the basic structural questions about
subspaces, continuous images and products of compact spaces. That the
answers are as pleasing as they are is one of the primary reasons for the
importance of compactness. In particular, we will have more to say about
the Tychonoff Theorem (which is about products).

We begin with subsets.

17.5 Theorem. a) Every closed subset of a compact space is
compact.

b) A compact subset of a Hausdorff space is closed.

Proof. a) If A is closed in the compact space X and  is any open cover of
A, then for each U ∊  we can find an open set VU in X such that VU ∩ A =
U. Now {X–A} ∪ {Vu | U ∊  } is an open cover of X which, by
compactness, has a finite subcover. The intersections with A of this finite
cover form a finite subcover of A from  .



b) Suppose A is a compact subset of the Hausdorff space X. If a ∈ Ā,
then a net (xλ) exists in A with xλ → a in X. But since A is compact, (xλ) has
a cluster point b in A and thus a subnet which converges to b. Since this
subnet converges to a also and limits in X are unique, we must have a = b.
Thus a ∈ A, showing that A is closed. ■

 
 

For non-Hausdorff spaces, the second part of the theorem above may fail;
see Exercise 17B.4. Before turning to continuous images and products, we
note that compact subsets of a topological space “behave like points” in a
sense made more precise by the following theorem. The proof is left to
Exercise 17B.

17.6 Theorem. a) Disjoint compact subsets of a Hausdorff space
can be separated by disjoint open sets.

b) A compact set and a disjoint closed set in a regular space can
be separated by disjoint open sets.

c) If A x B is a compact subset of a product X x Y contained in
an open set W in X x Y, then open sets U in X and V in Y can be
found such that

A × B ⊂ U × V ⊂ W.

17.7 Theorem. The continuous image of a compact space is
compact.

Proof. Suppose X is compact and f is a continuous map of X onto Y. If  is
an open cover of Y, then {f–1(U) | U ∈  } is an open cover of X and, by
compactness, a finite subcover exists, say {f–1(U1),. . ., f–1(Un)}. Then,
since f is onto, the sets U1, . . . , Un cover Y. Thus Y is compact. ■



This theorem has a nice consequence. If f is a continuous mapping from a
compact space X to a Hausdorff space Y, then each closed subset E of X is
compact, so f(E) is compact and thus closed in Y. Hence every continuous
map from a compact space to a Hausdorff space is a closed map (and thus
a quotient map). One consequence of this is given in 17.14 at the end of this
section.

For use in the next theorem, we recall that an onto mapping takes
ultranets to ultranets (11.11). A proof similar to the one given here can
easily be constructed using ultrafilters.

17.8 Theorem (Tychonoff). A nonempty product space is
compact iff each factor space is compact.

Proof. ⇒ : If the product space is nonempty; then the projection maps are
all continuous and onto, so the result here follows from 17.7.

⇐ : Let (xλ)λ∈Λ be an ultranet in Πα∈A Xα. Then for each fixed α,
(πα(xλ))λ∈Λ is an ultranet in Xα and hence converges, since Xα is compact.
By 11.9 it follows that (xλ) converges. Thus the product space is compact. ■

The theorem just proved can lay good claim to being the most important
theorem in general (nongeometric) topology. It plays a central role in the
development of a wealth of theorems within topology and applications of
topology to other fields. To mention but a few examples: the construction of
the Stone-Čech compactification βX of any Tychonoff space X is based on it
(see 19.4), Ascoli’s theorem on compactness of function spaces (see 43.15)
relies on it (and Ascoli’s theorem can, in turn, be used to provide existence
theorems for various differential equations), the proof of compactness of the
maximal ideal space of a Banach algebra requires it and hence it is central
to the development of the Gelfand representation theorem.

It is worth mentioning that the proof of 17.8, as we have given it, is
deceptively simple; it hides a good deal of muscle. Tychonoff did not have
available for his proof the powerful convergence theorems which roam
around in ours. Some idea of the strength of his theorem can be had by
studying Exercise 170, in which you show that 17.8 implies the axiom of



choice. (Thus the axiom of choice must be used somehow in our proof,
since it cannot be derived from the other axioms of set theory.)

We can use the Tychonoff theorem to provide a number of important
examples of compact spaces.

17.9 Examples. a) A subset of Rn is compact iff it is closed and bounded.
For if A is compact, it is closed. Moreover the sets U(x, 1) for x ∈ A form
an open cover of A which, by compactness, has a finite subcover. A routine
calculation shows that A is thus bounded.

Conversely, each closed interval [a, b] in R is homeomorphic to I and
thus is compact. But a closed, bounded subset of Rn will be a closed subset
of an n-fold product [–c, c] × ··· × [–c, c] of such intervals and thus will be
compact.

b) Every cube is compact. This follows directly from Tychonoff’s
theorem, since a cube is just a product of closed bounded intervals. Of
particular interest is the Hilbert cube, which is the product  of countably
many copies of I. To us it makes no difference, but a metric geometer
working with Hilbert space H (18.7) would rather think of the Hilbert cube
as the product

[0,1] x [0,  ] x [0,  ] x ···

(since then it is isometric, rather than just homeomorphic, to a subspace of
H).

c) The Cantor set. Beginning with the unit interval I, define closed
subsets A1 ⊃ A2 ⊃ ··· in I as follows. We obtain A1 by removing the interval
(  , ) from I. A2 is then obtained by removing from A1 the open intervals
(  ) and (  ). In general, having An–1, An is obtained by removing the
open middle thirds from each of the 2n–1 closed intervals that make up An–1.
The Cantor set is the subspace C =  An of I. It is a nonempty compact
metric space.



We can develop an interesting alternative description of the Cantor set.
Each x ∈ I has an expansion (x1, x2, . . .) in ternary form (that is, each xi is
0, 1 or 2) obtained by writing x = ∑ xi/3i. These expressions are unique,
except that any number but 1 expressible in a ternary expansion ending in a
sequence of 2’s can be re-expressed in an expansion ending in a sequence of
0’s (for example,  can be written as (1, 0, 0, . . .) or as (0, 2, 2, . . .)). Then
the Cantor set C is precisely the set of points in I having a ternary
expansion without 1’s. For this reason, C is sometimes referred to as the
Cantor ternary set.

Using the ternary representation, it is possible to show that C is
homeomorphic to a product of denumerably many copies of the two-point
discrete space. In fact, by writing the discrete space as D = {0, 2}, the
ternary correspondence x → (x1, x2, . . .) becomes a homeomorphism. The
proof is left as an exercise. You should do it if you think you can’t, since it
will teach you a lot about product spaces. Later, in the section devoted to
the Cantor set, we will see that the product of denumerably many nontrivial
finite discrete spaces is homeomorphic to the Cantor set. For this reason,
(possibly nondenumerable) products of finite discrete spaces are called
Cantor spaces. The Cantor spaces occupy a special place in topology.
Compactness and discreteness are, in a sense, dual properties, and only the
Cantor spaces carry the banners of both.

We close this section with a study of some of the (nonstructural)
properties of compact spaces which make them important. In particular, we
will develop the relationship between compact Hausdorff spaces, Tychonoff
spaces and normal spaces.

17.10 Theorem. A compact Hausdorff space X is a T4-space.

Proof. It suffices to prove regularity since a regular Lindelöf space is
normal. Let A be closed in X, x ∉ A. For each a ∈ A, pick disjoint open sets
Ua containing x and Va containing a. The sets Va, a ∈ A, cover A and, by
compactness of A, some finite collection  , . . . ,  is sufficient. Let V = 

 and U =  . Then U and V are disjoint open sets containing



x and A, respectively. ■

 
 

One importance of this theorem can be brought into focus by recalling
that normal spaces enjoy very nice separation, extension and covering
properties, but that products of normal spaces need not be normal. By
combining the above theorem with Tychonoff’s theorem, we obtain the only
result which asserts normality for a large class of product spaces: every
product of compact, Hausdorff spaces is T4. One of the immediate
consequences of this is a result we have already mentioned without proof:
every cube is T4. The search for theorems which assert normality for
various product spaces has occupied the time of some very good
mathematicians; we will return to this topic in Section 21.

Another (related) consequence of Theorem 17.10 provides the important
relationship between compact Hausdorff spaces, Tychonoff spaces and
normal spaces.

17.11 Corollary. The following are equivalent, for a topological
space X:

a. X is Tychonoff,
b. X is homeomorphic to a subspace of some cube,
c. X is homeomorphic to a subspace of some compact

Hausdorff space,
d. X is homeomorphic to a subspace of some T4-space.

Proof.

a) => b) : We have already shown (a) equivalent to (b) in
14.13.

b) => c): Every cube is a compact Hausdorff space and thus is
normal.



c) => d) : Every compact Hausdorff space is a T4-space.

d) => a) : Every subspace of a T4-space is a Tychonoff space.
■

In studying the interplay between compactness and the strong-side
separation axioms (normality and the Tychonoff property) one example has
become of paramount importance.

 
 
17.12 Example. The Tychonoff plank. Our basic building blocks are the
ordinal spaces Ω, with which we are familiar, and Ω(ω) = N ∪ {ω}, where
ω is the first infinite ordinal. When Ω(ω) is given its order topology, the
points of N are isolated (open) and the point ω has for basic nhoods the sets
{n, n + 1, . . .} ∪ {ω}.

The product space Ω x Ω(ω) will be denoted T* and the corner point (ω1,
ω) in T* will be denoted t. The Tychonoff plank is the subspace T = T*– {t}
of T*. Since T* is a compact Hausdorff space, T is a Tychonoff space.

But T is not normal. To develop this fact, some terminology will be
useful. For each n ∈ N, let Ωn = Ω0 x {n}, and for each α ∈ Ω0, let Ωn(α)
be the tail {(β, n) | β ≥ α} in Ωn. Also, we will call the set A = {(n, ω1) | n ∈
N} the right edge of T, and the set B = {(ω, α) | α ∈ Ω0} the top edge of T.
Now A and B are closed sets in T, since they are the intersections with T of
closed sets in T*. Hence if T were normal, there would be a continuous ƒ :
T → I with ƒ(A) = 0 and ƒ(B) = 1. But for each n ∈ N, ƒ is constant on
some tail Ωn(αn) of Ωn since Ωn is just a copy of Ω0 (see 17.2c). If we let a
= sup {α1, α2, . . .}, then α < ω1 and ƒ takes some constant value on Ωn(α)
for each n. But since ƒ(A) = 0, this constant value must be 0 for each n.
Thus ƒ(α, n) = 0 for each n ∈ N, and hence ƒ(α, ω) = 0. But (α, ω) ∈ B,
contradicting the fact that ƒ(B) = 1. Thus no continuous function separates
the right edge of T from the top edge, so T cannot be normal.



17.13 Theorem. A continuous real-valued function on a
countably compact space is bounded.

Proof. If ƒ : X → R is continuous and X is countably compact, then the open
cover of X by the sets ƒ—1(–n, n) has a finite subcover. ■

17.14 Theorem. A one-one continuous map from a compact
space X onto a Hausdorff space Y is a homeomorphism.

Proof. If ƒ is such a map, then for each closed set E ⊂ X, E is compact, so
ƒ(E) is compact, and thus closed, in Y. Thus ƒ is a closed map, and hence a
homeomorphism. ■

Neither of the properties above is characteristic of compact spaces and
each has been intensively investigated for noncompact spaces as well. The
technique is a familiar one. By making the property the subject of a
definition, its study becomes the study of a class of topological spaces
(somewhat wider than the class of compact spaces). Exercises 17J, 17K,
17L and 17M are devoted to the development of this line of thought.

Problems

17A. Examples on compactness
1. An infinite set X with the cofinite topology is compact.

2. Which subsets of the Sorgenfrey line E are compact?

3. Which subsets of the slotted plane (4C) are compact?

4. Which subsets of the Moore plane Γ are compact?

5. The sequence space m (2H) is not compact [an uncountable subset A
of m exists any two of whose points are at distance 1].

17B. Compact subsets



1. A subset E of X is compact iff every cover of E by open subsets of X
has a finite subcover. (But note that compactness is not a relative property;
that is, if E is compact, it is compact in whatever space it is embedded.)

2. The union of a finite collection of compact subsets of X is compact.

3. The intersection of any collection of compact subsets of a Hausdorff
space X is compact; “Hausdorff” is necessary, even for intersections of two
compact sets.

4. A compact subset of a non-Hausdorff space need not be closed
(compare with 17.5).

5. In a Hausdorff space, disjoint compact sets can be separated by disjoint
open sets. (This is an illustration of the general rule, “compact sets behave
like points.” The next two parts of this exercise are examples of the same
principle.)

6. In a regular space, a compact set and a disjoint closed set can be
separated by disjoint open sets.

7. If A × B is a compact subset of X x Y contained in an open set W in X x
Y, then there exist open sets U ⊂ X and V c Y such that A x B ⊂ U × V ⊂
W.

17C. Maximal compact spaces
A compact space X is maximal compact iff every strictly larger topology on
X is noncompact.

1. A compact space X is maximal compact iff every compact subset is
closed.

2. Every compact Hausdorff space is maximal compact and every
maximal compact space is T1 (so maximal compactness acts like a
separation axiom for compact spaces).

17D. z-filters in compact spaces
A variant of the convergence characterization of compactness (17.4) is
important in studying the interplay between compactness and the Tychonoff
separation axiom. To give it, we must review the language of z-filters.



A nonempty collection ℱ of nonempty zero sets in a topological space X
is a z-filter on X iff

 
 

a) if Z1, Z2 ∈ ℱ, then Z1 ∩ Z2 ∈ ℱ,

b) if Z ∈ ℱ and Z‘ is a zero set containing Z, then Z’ ∈ ℱ.

Thus a z-filter is almost a filter, but the superset property has been altered to
that only zero sets will belong. Convergence for z-filters is easily defined,
once we recall that the zero-set nhoods of a point in a Tychonoff space form
a nhood base (14C). We say a z-filter ℱ a Tychonoff space X converges to a
point x in X, written ℱ → x, iff each zero-set nhood of x belongs to ℱ. We
say ℱ has x as a cluster point iff x ∈ F for each F ∈ ℱ (since ℱ consists of
closed sets, we needn’t take closures here). Finally, a z-ultrafilter is a z-
filter which is contained in no strictly larger z-filter. Parts 1 and 3 below are
repeats of parts of the Exercise 12E on -filters.

 
 

1. Every z-filter is contained in some z-ultrafilter.

2. For a Tychonoff space X, the following are equivalent:
a. X is compact,
b. every z-filter on X has a cluster point (i.e., has nonempty intersection),
c. every z-ultrafilter on X converges.

3. If Z1 and Z2 are zero sets, ℱ is a z-ultrafilter and Z1 ∪ Z2 ∈ ℱ, then
one of Z1 or Z2 belongs to ℱ.

17E. Compact ordered spaces
Call an ordered space X lattice complete iff each nonempty subset has a
supremum and an infimum. Recall that X is Dedekind complete iff every
subset of X having an upper bound has a least upper bound. Then the
following are equivalent:



a. X is compact,
b. X is lattice complete,
c. X is Dedekind complete and has a first and a last element.

17F. Countably compact spaces
1. A space is countably compact iff each sequence has a cluster point.

(Hence, iff each sequence has a convergent subnet. This does not
necessarily mean each sequence has a convergent subsequence, see 11B.
Spaces in which each sequence has a convergent subsequence are studied in
17G.)

2. A T1-space is countably compact iff every infinite subset has a cluster
point.

3. The product of a compact space and a countably compact space is
countably compact. (The result fails for two countably compact factors; see
the notes.)

4. If X1, X2, . . . are all first countable, then Π Xn is countably compact iff
each Xn is countably compact.

5. Continuous images and closed subspaces of countably compact spaces
are countably compact.

6. For metric spaces, compactness and countable compactness are
equivalent.

7. Let X be a countably compact space, x ∈ X. If U1, U2, . . . is a
sequence of open sets in X such that  ⊂ Un for all n and  Un = {X},
then {U1, U2, . . .} is a nhood base at x. (Compare with 16A.4.)

17G. Sequentially compact spaces
A space X is sequentially compact iff every sequence in X has a convergent
subsequence. (Compare with countable compactness; see 17F.)

1. Not every compact space is sequentially compact. [Consider an
uncountable product of copies of I.]



2. Every sequentially compact space is countably compact, but not every
sequentially compact space is compact. Hence, together with part 1,
sequential compactness is neither stronger nor weaker than compactness;
just different. [Use Ω0.]

3. A first-countable space is sequentially compact iff it is countably
compact. (Thus, for metric spaces, sequential compactness is equivalent to
compactness, by 17F.6.)

4. A second-countable T1-space is sequentially compact iff it is compact.

5. The countable product of sequentially compact spaces is sequentially
compact. (It is also true, but difficult to prove, that the product of ≤ℵ1
sequentially compact spaces is countably compact. See the notes.)

6. Assuming the continuum hypothesis, the product of any uncountable
family of T1-spaces, each having more than one point, is never sequentially
compact.

17H. Realcompact spaces
Every compact Hausdorff space is Tychonoff, and thus embeddable in some
cube. This makes it clear that a space X is a compact Hausdorff space iff it
is embeddable as a closed subset of some product of copies of the unit
interval I and leads to the following generalization of compactness: X is
realcompact iff it can be embedded as a closed subset of a product of copies
of the real line R.

1. Every compact Hausdorff space is realcompact.
2. Every intersection of realcompact subsets of X is realcompact.
3. Every product of realcompact spaces is realcompact.

171. σ-Compact spaces
A space X is σ-compact iff X can be written as the union of countably many
compact subsets. X is said to be hemicompact (or denumerable at infinity)
iff there is a sequence K1, K2, . . . of compact subsets of X such that if K is
any compact subset of X, then K ⊂ Kn for some n.

1. Every hemicompact space is σ-compact; the converse fails.



2. Every σ-compact space is Lindelöf.

3. The product of finitely many σ-compact spaces is σ-compact. This
cannot be extended to infinitely many factors. [Consider .]

17J. Pseudocompact spaces
A space X is pseudocompact iff every continuous real-valued function on

X is bounded.

1. Every countably compact space is pseudocompact.

2. In a Tychonoff space X the following are all equivalent:
a. X is pseudocompact,
b. if U1 ⊃ U2 ⊃ . . . is a decreasing sequence of nonempty open sets in X,

then  ,
c. every countable open cover of X has a finite subcollection whose

closures cover X. (Compare with 17K.2.)

3. A pseudocompact T4-space is countably compact. [If X is not
countably compact, it has a denumerable closed discrete subset D. Use
15.8.]

17K. H-closed spaces
A Hausdorff space is H-closed (absolutely closed) iff it is closed in every
Hausdorff space in which it can be embedded. This generalizes a property
of compact Hausdorff spaces.

An open filter in a topological space is a collection of open sets satisfying
the axioms for a filter, except that only open supersets of elements must
belong. See Exercises 12E and 12G for elementary facts about open filters.

For the duration of this problem, all spaces are Hausdorff.

1. A space X is H-closed iff every open filter has a cluster point. [If some
open filter fails to have a cluster point, a point can be added to X whose
nhoods are the elements of the open filter (together with the point itself),
and the result is a Hausdorff extension of X in which X is not closed. The
reverse implication is also done by contradiction.]



2. A space is H-closed iff every open cover has a finite subcollection
whose closures cover (i.e., a finite dense subsystem). [If an open filter does
not have a cluster point, the complements of closures of its elements form
an open cover with no finite dense subsystem.] (Compare with 17J.2.)

3. An H-closed space is compact iff it is regular. [One way is trivial. For
the reverse, let  be an open cover and use regularity to prove the existence
of a cover  such that for each V ∈  , there is some U ∈  containing V.
Then a finite dense subsystem of  induces a finite subcover from .]

4. Let N* be the subspace {0} ∪ {1/n | n ∈ N} of R, and to the space N x
N* adjoin a point q whose nhoods have the form Un0(q) = {(n, 1/m) ∈ N x
N* | n ≥ n0}. Use part 2 above to prove that the resulting (Hausdorff) space
X is H-closed and show that X is not compact.

17L. More on H-closed spaces
1. A regularly closed subset of an H-closed space is H-closed.

2. A descending chain  of nonempty H-closed subsets of an H-closed
space X has nonempty intersection. [Let  be the collection of all open sets
G in X such that Ḡ ⊃ A for some A ∈  . Show that  has the finite
intersection property and thus (17K.1) has a cluster point p. Then p ∈ ∩ 
.]

3. An H-closed space is compact iff each closed subset is H-closed. [If ℱ
is a closed filter, well-order ℱ and use this well-ordering to find a
descending chain of closed sets with the same intersection. Apply part 2.]

4. A continuous Hausdorff image of an H-closed space is H-closed. [Use
17K.2.]

5. A nonempty product is H-closed iff each factor is H-closed.

17M. Minimal Hausdorff spaces
A Hausdorff space X is minimal Hausdorff iff every one—one continuous
map of X to a Hausdorff space is a homeomorphism [i.e., iff there is no
strictly weaker Hausdorff topology on X]. This, again, generalizes a
property of compact, Hausdorff spaces.



1. A Hausdorff space X is minimal Hausdorff iff every open filter with a
unique cluster point converges (necessarily to that point). [The key is the
statement in brackets after the definition of minimal Hausdorff space. Thus
if a nonconvergent open filter with a unique cluster point exists, construct a
strictly weaker Hausdorff topology on the space (by enlarging nhoods of the
unique cluster point).]

2. Every minimal Hausdorff space is H-closed. [Construct a weaker
Hausdorff topology for a nonabsolutely closed space.] Thus a minimal
Hausdorff space is compact iff it is regular. Also, if every closed subset of a
minimal Hausdorff space is minimal Hausdorff, the space is compact. [See
17K.3 and 17L.3.]

3. Every H-closed space X has a unique weaker topology which is
minimal Hausdorff. [Use the complements of the regularly closed sets in X
as a base for a new topology on X.]

4. A space is minimal Hausdorff iff it is semiregular and H-closed.

 
 

More is known. A product of minimal Hausdorff spaces is minimal
Hausdorff. Every Hausdorff space can be embedded (as a closed, nowhere
dense subspace) in a minimal Hausdorff space. See the notes.

17N. Hausdorffness of closed images
1. If f is a closed map of X onto Y and ƒ–1(y) is compact for each y ∈ Y,

then Y is Hausdorff (or regular) if X is.

2. For a compact Hausdorff space X, if ƒ is a quotient map of X onto Y,
the following are equivalent:

a. Y is Hausdorff,
b. ƒ is closed,
c. {(x1, x2) ∈ X × X I ƒ(x1) = ƒ(x2)} is closed in X x X.

170. The Tychonoff theorem is equivalent to the axiom
of choice



1. How does the Tychonoff theorem rely for its proof on the axiom of
choice?

2. The Tychonoff theorem implies the axiom of choice [allowable
reference: any paper of Kelley written in 1950].

17P. Onto maps of compact spaces
The basic question we raise here is the following. Given a map f of a
compact space X onto a compact space Y, when is it possible to throw away
part of the domain in such a way that the restriction of f to what remains is a
homeomorphism?

 
 

Let X and Y be compact Hausdorff spaces and let f be a continuous map
of X onto Y.

1. There is a compact subset X0 of X such that f(X0) = Y, but f maps no
proper closed subset of X0 onto Y. [Use Zorn’s lemma.]

2. If Y is extremally disconnected and no proper closed subset of X is
mapped onto Y, then f is a homeomorphism. [It suffices to show f is one-
one. If x1 ≠ x2, pick disjoint open G1, G2 such that x1 ∈ G1, x2 ∈ G2. Then
A — f(X — G1) and A — f(X — G2) are disjoint and open in Y and hence so

are  and  , by 15G.1. But

for i = 1, 2, and hence f(x1) ≠ f(x2).]

17Q. Projective spaces
A compact space X is called projective in the category of compact spaces
and continuous maps provided whenever f : X → Z is continuous and g : Y
→ Z is continuous and onto, then there is a continuous map h : X → Y such
that f = g ⃘ h.



Recall that a space is extremally disconnected (15G) iff the closure of
every open set is open. We will draw on parts of Problems 15G and 17P in
the course of presenting the following material.

1. Every projective space is extremally disconnected. [Let G be an open
set in the projective space X. Let Y be the disjoint union of X–G and , and
g : Y → X the obvious map (essentially the identity) while f : X → X is the
identity. By projectivity of X, there is a map h : X → Y such that f = g ⃘h.
Conclude that Ḡ is open.]

2. Every extremally disconnected space is projective. [Let X be
extremally disconnected, and let f : X → Z and g : Y → Z be as in the
introductory paragraph. In X x Y, let D = {(x, y) | f(x) = g(y)}. Then D is
compact and the projection π1 of X x Y onto X carries D onto X. Apply 17P
to get a homeomorphism π1 | E of a closed subset E of D with X. Let h = π2

⃘(π1 | E)–1, where π2 is the projection of X × Y onto Y.]

17R. Compact subsets of  R
There are uncountably many nonhomeomorphic compact subsets of R.

[Use ordinals.]

17S. The Alexander subbase theorem
When describing compactness of X in terms of open covers, it is evident
that it suffices to restrict attention to a fixed base for X. That is, X is
compact iff there is a base ℬ for the topology of X such that any cover of X
by elements of ℬ has a finite subcover. The corresponding assertion for
subbases remains true, if we assume the axiom of choice, but is much less
obvious. It is interesting, since it can be used to prove the Tychonoff
theorem.



A family ℬ of subsets of X will be called inadequate iff it fails to cover
X, and finitely inadequate iff no finite subfamily of ℬ covers X.

1. Given any finitely inadequate family ℬ, there is a finitely inadequate
family ℬ* ⊃ ℬ which is maximal in the order ℬ1 ≤ ℬ2 iff ℬ1 ⊂ ℬ2 on the
set of all finitely inadequate families.

2. A maximal finitely inadequate family ℬ* has the following property:
if C1, . . . , Cn are subsets of X and C1 ∩ ··· ∩ Cn belongs to ℬ*, then Ck

belongs to ℬ* for some k = 1, . . . , n. [The proof is by contradiction.]

3. The following are all equivalent, for a topological space X:
a. there is a subbase  for X such that each cover of X by elements of 

has a finite subcover,
b. there is a subbase  for X such that each finitely inadequate subfamily

of  is inadequate,
c. every finitely inadequate family of open subsets of X is inadequate,
d. X is compact.

[The only hard part is (b) implies (c).]

4. Use part 3 to provide a proof of the Tychonoff theorem.

18 Locally compact spaces
Analysts who deal with abstract spaces often appreciate the presence of
some form of compactness. Quite often, it is enough that the spaces in
question be locally compact.

18.1 Definition. A space X is locally compact iff each point in X has a
nhood base consisting of compact sets.

Recalling that a space is regular iff each point has a nhood base
consisting of closed sets, we see immediately that every locally compact
Hausdorff space is regular. (In the next section, we will see from a slightly
better angle that every locally compact Hausdorff space is, in fact,
completely regular.)

Definition 18.1 provides many compact nhoods of each point in a locally
compact space, but for most spaces, we can stop as soon as one has been



found, according to the next theorem.

18.2 Theorem. A Hausdorff space X is locally compact iff each
point in X has a compact nhood.

Proof. Suppose x has a compact nhood K. Let U be any nhood of x, and let
V = Int (K ∩ U). Then V is an open nhood of x. Now Clx V is compact and
Hausdorff, so Clx V is regular. Then, since V is a nhood of x in Clx V, there
is an open nhood W of x in Clx V with  W ⊂ V. Now W is open in V
and hence in X, and  W is closed in Clx V and hence compact; this
makes it a compact nhood of x in X which is contained in U. Hence x has a
base of compact nhoods in X. The other implication is easy. ■

Theorem 18.2 provides us with the usual path to proving local
compactness, or nonlocal compactness, of the familiar examples of
topological spaces. For one thing, it implies that every compact Hausdorff
space is locally compact, Here are some other examples.

18.3 Examples. a) The real line R is locally compact.

b) The space Q of rationals and the space P of irrationals are not locally
compact.

c) Manifolds. A topological n-manifold is a Hausdorff space X such that
for each x ∈ X there is a homeomorphism ϕx carrying an open set U in X
which contains x onto an open subset of Rn (for X to be a C∞-manifold, or a
differentiable manifold, it must also be true that whenever (domain ϕx) ∩

(domain ϕy) ≠ ø, then  is a C∞-function from Rn to Rn). Using
Theorem 18.2, every topological n-manifold is locally compact. Other
properties of manifolds are mentioned in 18H.

We turn now to the usual questions about subspaces, products and
continuous maps of locally compact spaces, beginning with subspaces.



18.4 Theorem. In a locally compact Hausdorff space, the
intersection of an open set with a closed set is locally compact.
Conversely, a locally compact subset of a Hausdorff space is the
intersection of an open set and a closed set.

Proof. Let X be locally compact and T2. If A is open in X and a ∈ A, then a
has a compact nhood K in X contained in A, and K is then a compact nhood
of a in A, so A is locally compact. If B is closed in X and b ∈ B, then b has
a compact nhood K in X and K ∩ B is a compact nhood of b in B, so B is
locally compact. Hence, open subsets and closed subsets of X are locally
compact. But (easily) the intersection of two locally compact subsets of X is
locally compact so, in particular, the intersection of an open set with a
closed set in X is locally compact.

Conversely, suppose Y is Hausdorff and X is a locally compact subset of
Y. It will suffice to show X is open in ClY X (Why?). Let x ∈ X and find a
nhood U of x in X such that Clx U is compact, by local compactness. Say U
= X ∩ V where V is open in Y. Then

ClY (X ∩ V) ∩ X = ClY U ∩ X = ClX U

and the latter is compact. Thus ClY (X ∩ V) n X is closed in Y. But it
contains X n V and thus ClY (X ∩ V); i.e., ClY (X ∩ V) n X ⊃ ClY (X ∩ V).
But then ClY (X ∩ V) ⊂ X, and hence (ClY X) ∩ V ⊂ X. Thus (ClY X) ∩ V is
a nhood of x in ClY X which is contained in X, so X is open in ClY X. ■

There is one consequence of the previous theorem which crops up often.
A dense subset of a compact Hausdorff space is locally compact iff it is
open.

Quotients of locally compact spaces need not be locally compact. In fact,
the spaces which are quotients of locally compact spaces are studied for



their intrinsic interest. They are called “k-spaces,” or “compactly generated
spaces,” and are dealt with in some detail in Section 43.

Some quotient maps do preserve local compactness, as the next theorem
shows.

18.5 Theorem. If f is a continuous, open map of X onto Y and X
is locally compact, then so is Y.

Proof. Suppose y ∈ Y and V is a nhood of y. Pick x ∈ f–1(y) and, by
continuity and local compactness, find a compact nhood K of x such that
f(K) ⊂ V. Now x ∈ Intx K, so y ∈ f(IntX K) ⊂ ƒ(K) and, since f is open,
f(Intx K) is open. It follows that f(K) is a compact nhood of y contained in V.
■

Local compactness behaves well only with respect to finite products,
essentially, according to the next theorem.

18.6 Theorem. Suppose Xα is nonempty for each α ∈ A. Then Π
Xα is locally compact iff

a. each Xα is locally compact,
b. all but finitely many Xα are compact.

Proof. ⇒ : Projections are continuous and open, so part a) follows from
18.5. For b), let x ∈ Π Xα and let W be a compact nhood of x. Then W
contains a basic nhood of the form



and it follows that, if α ≠ α1, . . . , αn, then πα(W) = Xα. Thus Xα is compact
for all α except possibly α1, . . . , αn.

⇐ : Let x ∈ Π Xα, and let U be a basic nhood of x ; say 

where we assume the set {α1, . . . , αn} = S is expanded to include all α for
which Xα is not compact. It suffices to find a compact nhood contained in
U. But, for each αi, i = 1,. . ., n, there is a compact nhood  of  with 

 . Then, since Xα is compact for α ∉ S,

is a compact nhood of x and K ⊂ U. ■

18.7 Examples. a) Rn is locally compact for each positive integer n,  is
not.

b) Hilbert space H is the collection of all real sequences x = (x1, x2, . . .)
such that Σ  < ∞, with the metric

The proof that d is actually a metric requires the classical Schwarz
inequality and is left to Exercise 18B. Let 0 denote the sequence (0, 0, . . .)
in H. We will show now that the closed ε-disk Bε = {x ∈ H | d(x, 0) ≤ ε} in
H is not compact. For n = 1, 2, . . . , let xn be the sequence in H whose kth
coordinate is 0 if k # n and whose kth coordinate is c if k = n. Then x1, x2, . .
. is a sequence in Bε, having no cluster point since, if n ≠ m, d(xn, xm) = √2



ε. Thus Bε is not compact. It follows that H is not locally compact. For if K
were a compact nhood of 0 in H, then for sufficiently small ε, Bε would be a
closed subset of K and thus compact. Other properties of H are given in
Exercise 18B.

Problems

18A. Examples on local compactness
1. Q is not locally compact.

2. The Moore plane Γ is not locally compact.

3. The Sorgenfrey line E is not locally compact.

4. The slotted plane (4C) is not locally compact.

5. Let A ⊂ X and let τ be the topology for X consisting of ø together with
all subsets of X containing A. Is (X, τ) locally compact?

6. Discuss local compactness of the radial plane (3A.4).

18B. Hilbert space
Recall that H denotes all real sequences x = (x1, x2, . . .) with Σ  < ∞.

1. The distance function  is a metric for H. [Use the
Schwarz inequality: 

2. If (xn)n ∈ N is a sequence in H, then xn → x in H implies  → xi in R
for each i = 1, 2,... .

The converse fails.

3. H is separable.

4. The topology on H differs from the topology it would inherit as a
subspace of  . [See part 2.]

5. Rn is isometric to the subspace of H consisting of all sequences (x1, x2,
. . .) such that xk = 0 for k > n.



6. H is isometric to a nowhere dense subset of itself.

Part 6 above shows that, for subsets of H, the property of being open in
H is not a topological (or even a metric) invariant. The corresponding result
for Rn is true: if U and V are homeomorphic subsets of Rn and U is open,
then V is open. This result, due originally to Brouwer and called invariance
of domain, is most elegantly proved using the machinery of algebraic
topology.

18C. Quotients of locally compact spaces
Compare with Theorem 18.5.

1. The closed continuous image of a locally compact space need not be
locally compact. [Let X be the plane, A the x-axis in X, and D the
decomposition of X whose elements are A and the sets {x} for x ∈ X–A.
The projection P of X onto X/D is closed because D is upper
semicontinuous (see 9E).]

2. The closed continuous image of a locally compact space is locally
compact provided the pre-image of each point is compact (so
noncompactness of A was needed in part 1).

3. The condition of 2 is not necessary. [Identify [1, ∞) in R.]

18D. Subsets and subgroups of topological groups
Let G be a topological group. (13G.)

1. If U and V are open in G, so is UV. If A and B are closed in G, AB need
not be closed. [An example can be found in R with its usual topology and
addition (caution: then AB becomes A + B).] If one of A or B is compact,
then AB is closed.

2. If F is compact and U open in G, with F ⊂ U, then for some nhood V
of the identity in G, FV c U.

3. If F is compact in G; then for each nhood U of e, there is a nhood V of
e such that xVx-1 ⊂ U, for each x ∈ F. (Compare with 13G.6(d).)

4. For x, y ∈ G and A, B ⊂ G we have
a. 



b. 
c. 
d. if ab = ba, for each a ∈ A, b ∈ B, then ab = ba for each a ∈ Ā, b ∈ 

.

5. If H is a subgroup (Abelian subgroup, normal subgroup) of G, so is  .

6. A subgroup is discrete iff it has an isolated point.

7. Every open subgroup is closed.

8. Every locally compact subgroup is closed. (This is difficult.)

18E. Quotients and products of topological groups
Let G be a topological group.

1. The product Π Gα of topological groups is a topological group when
given the product topology and pointwise multiplication (πα(x· y) =
πα(x)πα(y)). The projection πα is a continuous open homomorphism.

2. Let H be a closed normal subgroup of G. Then G/H, the set of all left
cosets xH of H, is a topological group when given the quotient topology and
factor group structure. The natural map P: G → G/H, P(x) = xH, is
continuous and open.

3. G/H is discrete iff H is open.

4. If G is locally compact and K ⊂ G/H is compact, a compact set F ⊂ G
exists with P(F) = K.

5. If G is compact, so is G/H. Conversely, for locally compact G, if H and
G/H are compact, so is G. [See 4.] A similar theorem holds for local
compactness (i.e., if H and G/H are locally compact, so is G), but the proof
(due to Gleason) is difficult. See the notes.

18F. Character groups
Let G be a locally compact, Abelian group. A character on G is a
homomorphism χ: G → T where T is the circle group (the unit circle in R2

with the usual topology and complex multiplication).



1. The set Ĝ of all continuous characters on G is a topological group
when given pointwise multiplication and the topology for which the sets

P(F, ε) = {X ∈ Ĝ| |X(x) — 1| < ε, for all x ∈ F},

for compact F ⊂ G and ∈ > 0, form a base at the identity 1 (1(x) = 1, for all
x ∈ G).

G is called the character group of G.

2. Ĝ is locally compact and Abelian.

3. If G is compact, Ĝ is discrete. If G is discrete, Ĝ is compact.

4.  = R.  = T.  = N.

5.  [Map  by x → ℰx, where ℰx is the character on Ĝ defined
by ℰx = χ(x). Assume the fact that if α ≠ e in G, then for some χ ∈ Ĝ, χ(a) ≠
1 (this is very hard to prove!) and show x → ℰx is a topological

isomorphism (a homeomorphism and an isomorphism) of G onto  .] This
is the Pontryagin duality theorem.

18G. A regular space not completely regular
Recall that T denotes the Tychonoff plank (17.12) (Ω, x N*) — {(ω1, ω0)}.
Let Z be the set of all integers, positive, negative and zero and form the
product T x Z. Identify points in T x Z as follows: if n is odd, the right
edges of T x {n} and T x {n + 1} (which are copies of T) are identified
point for point and if n is even, the top edges of T × {n} and T x {n + 1}
are identified point for point. The image Tn of T x {n} under the resulting
quotient map is clearly a homeomorphic copy of T.

Now add points a and b to the quotient space obtained, the basic nhoods
of a being of the form Un(a) = {a} ∪  Tm and the basic nhoods of b
being of the form



as n ranges over all integers. Let the space  Tn ∪ {a, b} be denoted K.

1. K is regular and T1.

2. Let f: K → R be continuous, let n be an even integer, and let p be a
positive integer. If f ≥ 1/p at all but finitely many points on the right edge of
Tn, then f ≥ 1/(p + 1) at all but finitely many points on the right edge of Tn-2.
[Otherwise, f < 1/(p + 1) at infinitely many points on the right edge of Tn–2,
and hence on the right edge of Tn–1, and then (see 17.12) there is some β0 <
ω1 such that, in Tn–1, f(β, ω0) ≤ 1/(p + 1) for all β > β0. Since the top edge of
Tn–1 coincides with the top edge of Tn, we would have f(β, ω0) ≤ 1/(p + 1)
for all β > β0 in Tn. This is impossible, since f ≥ 1/p on most of the right
edge of Tn entails f ≥ 1/p on most of the top edge of Tn (again using
19F(1)).] Similarly, if f ≤–1/p at all but finitely many points on the right
edge of Tn, then f ≤ -1(p + 1) at all but finitely many points on the right
edge of Tn–2.

3. Any continuous real-valued function on K has the same value at a and
b. [It is enough to show every such function has the same sign at a and b
(why?). But if f(α) > 0, then f ≥ 1/p at all but finitely many points on the
right edge of Tn for some even n. Use part 2 to conclude f(b) ≥ 0. Similarly,
if f(a) < 0, then f(b) ≤ 0.]

Thus K is a regular T1-space which is not completely regular (not even
completely Hausdorff).

By modifying this example, E. Hewitt manufactured a regular T1-space
on which every continuous real-valued function is constant! See the notes.

18H. Manifolds
Topological n-manifolds were introduced in 18.3(c). Let X be a compact n-
manifold.



1. If U is an open subset of X which is homeomorphic to Rn, the quotient
of X obtained by collapsing X–U to a single point is homeomorphic to the
n-sphere Sn.

2. X can be embedded in a finite product of spheres (and hence in some
Euclidean space Rm). [You need an evaluation map.]

19 Compactification
Since compact Hausdorff spaces behave nicely, it is of interest to study the
process of “compactification” that is, the process of embedding a given
space as a dense subset of some compact Hausdorff space.

19.1 Definition. A compactification of a space X is an ordered pair (K, h)
where K is a compact Hausdorff space and h is an embedding of X as a
dense subset of K.

In many cases h will be an inclusion map, so that X ⊂ K. In other cases,
we can agree to write X when we mean h(X) (referring to our earlier
remarks that homeomorphic spaces are, to a topologist, the same), so that
we can again write X ⊂ K. Whenever one of these situations occurs we say
simply that K is a compactification of X, and think of K as containing X as a
dense subspace.

Many examples of compactifications lie at hand. To mention a few, [0, 1]
is a compactification of [0, 1), S1 is a compactification of R (under
stereographic projection), the ordinal space Ω is a compactification of Ω0.
These are all obtained by adding one point to the space X to be
compactified; this process can be generalized to arbitrary locally compact
Hausdorff spaces.

 
 
19.2 Definition. Let X be a locally compact, noncompact Hausdorff space,
p a point not in X (for example, p = X). Let X* = X ∪ {p}, and let the basic
nhoods of p be the sets of the form {p} ∪ (X — L), where L is a compact set
in X. Nhoods of points in X are unchanged in X*. In Exercise 19A, you will
verify that this is a valid assignment of nhoods in X*. Clearly X* is compact
(since the element of an open cover which contains p will cover all but a
compact subset of X) and X is open and dense in X*. Moreover, X* is



Hausdorff (precisely because X is locally compact and Hausdorff, see 19A).
We call X* the one-point compactification (Alexandroff compactification)
of X.

This embedding of a locally compact Hausdorff space in a compact
Hausdorff space has the following consequence.

19.3 Theorem. Every locally compact Hausdorff space is a
Tychonoff space.

We have just used the fact that if a space has a
compactification, it is a Tychonoff space. To establish the
converse, that every Tychonoff space has a compactification, we
recall the details of the embedding of any Tychonoff space in a
cube. The procedure we will outline here is a modification of
that used in the original embedding theorem (14.13) in that here
we use the bounded continuous functions from X to R while
there we used the continuous functions from X to I. Since a
bounded continuous function from X to R can be regarded as a
function from X to some closed bounded interval, the difference
is not great.

Let C*(X) denote the collection of all bounded continuous real-valued
functions on X; the range of each f ∈ C*(X) can be taken as a closed
bounded interval If in R. Since X is Tychonoff, the collection C*(X)
separates points from closed sets in X and thus, by 8.16, the evaluation map
e: X → Π {If | f ∈ C*(X)} defined by

[e(x)]f = f(x)

is an embedding of X in Π If. Note that under the embedding e, the element f
of C*(X) is transformed into the restriction to e(X) of the fth projection map
πf ; that is, for f : X → If, f = πf o e. (Fig. 19.1.)



Figure 19.1

19.4 Definition. The Stone—Čech compactification of X is the closure βX
of e(X) in the products Π If. (More formally, (βX, e) is the Stone-Čech
compactification of X.)

The central useful fact about the Stone-Čech compactification is an
extension property, given by the following theorem.

19.5 Theorem. If K is a compact Hausdorff space and f : X → K
is continuous, there is a continuous F: βX → K such that F ๐ e
= f.

Proof. K is a Tychonoff space and thus can be embedded by an evaluation
map e‘ in a cube Π {Ig | g ∈ C*(K)}. The situation is illustrated in Fig.
19.2.

Figure 19.2

We can define a map H : Π If → Π Ig as follows; for each t ∈ Π If, [H(t)]g =
tg ๐ f. This map is continuous when followed by each projection πg, in fact



(πg o H)(t) = πg๐f(t), so H is continuous. Now H takes e(X) into e’(K), for an
element of e(X) has the form e(x) for some x ∈ X and

H[e(x)]g = [e(x)]g๐f = g ๐ f(x) = [e’(f(x))]g

so that H[e(x)] = e’(f(x)). But e(X) is dense in βX, so H[e(X)] is dense in
H(βX) and thus, since e’(K) is closed and contains H[e(X)], H(βX) ⊂ e‘(K).
Finally, define F = e’-1 ๐ (H | βX). Then F: βX → K is continuous and F ๐ e
= f since, for x ∈ X,

F o e(x) = e‘-1 [H(e(x))] = e’-1[e’(f(x))] = f(x). ■

Very often it is possible to deal with e(X) directly (as, for example, when
dealing with preservation of a topological property in the passage from X to
βX). Then X is often written for e(X), so that X ⊂ βX, and the above
theorem becomes: every continuous function from X to a compact space K
can be extended to βX.

Theorem 19.5 actually characterizes the Stone-Čech compactification, up
to what is called a topological equivalence. We need some preliminary
terminology and lemmas.

 
 
19.6 Definition. If (K1, h1) and (K2, h2) are compactifications of X, we
write (K1, h1) ≤ (K2, h2) iff there exists a continuous F: K2 → K1 such that F
⃘h2 = h1

(Fig. 19.3). When emphasis on F is needed we write F: (K1, h1) ≤ (K2, h2).
Note that F is just an extension to K2 of the canonical homeomorphism h1 ๐

 of h2(X) with h1(X).



Figure 19.3

(In case h1 and h2 are inclusion maps, this says (K1, h1) ≤ (K2, h2) iff there
is a continuous F: K2 → K1 such that F | X is the identity.) If both

(K1, h1) ≤ (K2, h2) and (K2, h2) ≤ (K1, h1),

we say (K1, h1) and (K2, h2) are topologically equivalent. Topologically
equivalent compactifications of X are regarded by any topologist as the
same (for example, any compactification of X topologically equivalent to
(βX, e) is called the Stone-Cech compactification of X), because of the
following result.

19.7 Lemma. (K1, h1) and (K2, h2) are topologically equivalent
compactifications of X iff there is a homeomorphism H of K2

with K1 such that H ⃘h2 = h1.

Proof. Exercise 19E. ■

19.8 Lemma. If F: (K1, h1) ≤ (K2, h2) then

a) F | h2(X) is a homeomorphism of h2(X) with h1(X),

b) F carries K2 —h2(X) onto K1 — h1(X).



Proof. a) In fact F | h2(X) = h1 ๐  .

b) From (a), F is onto. Thus we can prove (b) by proving, more generally,
that whenever S is Hausdorff and f: S → T is a continuous map whose
restriction to a dense subset A of S is a homeomorphism, then f(S — A) ⊂ T
— f(A). Suppose not. Then for some x ∈ A and y ∈ S — A, f(x) = f(y). Pick
disjoint nhoods U of x and V of y. Now f(U ∩ A) is a nhood of f(x) in f(A),
since f is a homeomorphism, so f(U ∩ A) = W ∩ f(A) where W is .a nhood of
f(x) in T. But any nhood V’ of y contained in V contains points of A not in
U, so f(V’) ⊄ W. Thus f is not continuous at y, a contradiction. ■

The proofs of the following theorems are now easy exercises
(19E).

19.9 Theorem. If (K1, h1) and (K2, h2) are compactifications of
X and (K2, h2) has the extension property of Theorem 19.5, then
(K1, h1) ≤ (K2, h2).

19.10 Corollary. (βX, e) is characterized up to topological
equivalence by the extension property.

Thus βX is (up to topological equivalence) the only compactification of X
with the extension property and, by 19.9, it is the largest element in the
collection of compactifications of X partially ordered by ≤. Note that, if X c
βX and X c K, 19.9 provides a continuous F: βX → K such that F | X is the
identity while 19.8 says F(βX — X) = K — X. We will use this fact later.

More light can be shed on the nature of the Stone—Čech
compactification using the following terminology.

19.11 Definition. A subset A of a space T is C*-embedded in T iff every
bounded continuous real-valued function on A can be extended to T.

Either regarded as a consequence of 19.5 or taken directly from the fact
that the bounded real-valued continuous functions on e(X) are just the
restrictions to e(X) of the projection maps, we see that e(X) is C*-embedded
in βX. This property also characterizes βX.



19.12 Theorem. If (K, h) is a compactification of X such that
h(X) is C*-embedded in K, then (K, h) is the Stone—Čech
compactification of X.

Proof. It suffices to show the extension property 19.5 holds for (K, h). Let f
: X → L be a continuous map of X into a compact Hausdorff space L. Let e:
L → Πg ∈ C*(L) Ig be the cube embedding of L (Fig. 19.4).

Figure 19.4

For each g : L → Ig, the map g ⃘ƒ ⃘h-1: h(X) → Ig has a continuous extension
hg: K → Ig. Define G: K → Π Ig by

[G(t)]g = hg(t).

Then G is continuous since for each projection πg of Π Ig, πg ⃘G(t) = hg(t), so
that πg ⃘G is continuous. Moreover G carries h(X) into e(L) since

G[h(x)]g = hg(h(x)) = (g ⃘ƒ ⃘h–1)(h(x)) = g[ƒ(x)] = e[ƒ(x)]g.

But G[h(X)] is dense in G(K) and e(L) is compact, so G(K) ⊂ e(L). Thus F
= e–1 ⃘G carries K into L and, by the above computation, F ⃘h = ƒ. ■



Theorem 19.12 is most useful in proving that one familiar space is or is
not the Stone-Čech compactification of another.

19.13 Examples. a) I is not the Stone-Čech compactification of (0, 1) since
the bounded continuous real-valued function sin (1/x) on (0, 1) cannot be
extended to I.

b) From 17.2, every continuous real-valued function on the ordinal space
Ω0 can be extended to Ω, so βΩ0 = Ω.

c) As an exercise (19F), you will show every continuous real-valued
function on the Tychonoff plank T can be extended to T* (see 17.12). Thus
βT = T*.

d) |βN| = 2c. From Theorem 16.4, the product Ic of c copies of I has a
countable dense set A. Any one–one map ƒ of N onto A is continuous and
hence has an extension ƒβ : βN → Ic (by 19.5). Since ƒβ is onto a dense
subset of Ic, it is onto Ic. Thus |βN| ≥ |Ic| = cc = 2c. On the other hand, there
are c elements in C*(N) so βN ⊂ Ic and thus |βN| ≤2c.

Problems

19A. The one-point compactification: construction
The procedure used to obtain the one-point compactification X* of a locally
compact, non- compact Hausdorff space X can be applied to any space Y.
That is, Y* = Y ∪ {p} with nhoods of y ⊂ Y unchanged in Y* while nhoods
of p have the form {p} ∪ (Y — L) where L is a compact subset of Y. Y* is
called the Alexandroff extension of Y.

1. This is a valid assignment of nhoods in Y*.

2. Y* is compact and Y is open in Y*.

3. Y is dense in Y* iff Y is noncompact.

4. Y* is Hausdorff iff Y is locally compact and Hausdorff.

19B. The one-point compactification: examples
1. The one-point compactification of Rn is homeomorphic to Sn.



2. The one-point compactification of N is homeomorphic to the subspace
{0} ∪ {1/n | n = 1, 2, . . .} of R.

3. The one-point compactification of the Tychonoff plank T is T* (see
17.12).

19C. Compactification in the plane
The one-point compactification X* of X has the property that X* — X is a
discrete space.

Find a nonlocally compact subset of the plane which has a
compactification K such that K — A is discrete.

19D. Compactification of ordered spaces
Every ordered space has an ordered compactification [use 17E].

19E. Exercise on topological equivalence
1. Compactifications (K1, h1) and (K2, h2) of X are topologically

equivalent iff there is a homeomorphism H: K2 → K1 such that H ๐ h2 = h1.
[For necessity, if

F: (K1, h1) ≤ (K2, h2) and G: (K2, h2) ≤ (K1, h1),

then F and G are inverses and hence homeomorphisms.]

2. Prove 19.9 and 19.10.

19F. The Tychonoff plank
Show that the Tychonoff plank T is C*-embedded in T* [see 17.12].

19G. C*-embedding and βX
Let X and T be Tychonoff spaces.



1. If X is dense and C*-embedded in T, the embedding e: X → βX can be
extended to an embedding E: T → βX.

2. If X is C*-embedded in T, then ClβT X = βX (up to topological
equivalence).

19H. Cardinality of βX
1. |βN| ≥ |βQ|. [Consider any one—one map of N onto Q and use 19.5.]

2. |βQ| ≥ |βR|. [Consider the inclusion map of Q into R and use 19.5.]

3. |βN| = |βQ| = βR| = 2c. [N is C*-embedded in R. See 19G.]

191. β(X x X) ≠ βX  x βX
Exercise 15G on extremally disconnected spaces is a necessary prerequisite
to this problem.

1. βX is extremally disconnected iff X is extremally disconnected.
[15G.1c for sufficiency.] In particular, if X is discrete, βX is extremally
disconnected.

2. If D is any infinite discrete space, βD x βD is not homeomorphic to
β(D x D). [Show βD x βD is not extremally disconnected by studying the
closure of the open set

{(x, x) ∈ βD x βD | x ∈ D}.]

The Stone—Čech compactification of a product has been intensively
studied. The identity β(Π Xα) = Π βXα holds iff Π Xa is pseudocompact; see
the notes.

19J. Filter description of βX
In 17D we observed that a completely regular space is compact iff every z-
ultrafilter converges (i.e., is fixed). A compact space containing a copy of X
can be obtained by “fixing” the free z-ultrafilters on X.



Let BX be the space whose points are the z-ultrafilters in X. For each zero
set Z ⊂ X, define Z* = {ℱ ∈ BX | Z ∈ ℱ}.

1. The sets Z* can be used as a base for closed sets to obtain a topology
on BX. [Use 5E.2 and 17D.3.]

2. For x ∈ X, let h(x) be the unique z-ultrafilter converging to x. Then h
is an embedding of X as a dense subset of BX. (Hereafter we identify X
with h(X), so X ⊂ BX.)

3. For each zero set Z in X, ClBX Z = Z*.

4. For zero sets Z1 and Z2 in X, ClBX (Z1 ∩ Z2) = ClBX Z1 ∩ ClBX Z2.

5. BX is a compact Hausdorff space. [It is enough to show each family of
basic closed sets with the finite intersection property has nonempty
intersection.]

6. Each continuous map f of X into a compact Hausdorff space K can be
extended to BX. (This should be compared with 19.5.) [If p ∈ BX — X
extend f to p as follows: p is a unique z-ultrafilter in X and ℱ = {Z ⊂ K | Z
is a zero-set in K and f-1(Z) ∈ p}. Show ℱ is prime (12E) and thus has a
unique cluster point q (12E.6). Define f(p) = q. (This is essentially a use of
12F.)]

7. BX = βX.

19K. Wallman compactification
Let X be a Hausdorff space, and let γX be the collection of all closed
ultrafilters on X. For each closed set D ⊂ X, define D* ⊂ γX to be the set

D* = {ℱ ∈γX | D ∈ ℱ}.

Let  is a closed subset of X}. It is somewhat surprising that the
procedure used in 19J can be applied here, with results which are not
always identical.

1.  is a base for the closed sets of a topology on γX.



2. The mapping h: X → γX which takes x ∈ X to the (unique) ultrafilter
in γX which converges to x is an embedding of X in γX.

3. X is dense in γX (more accurately, h(x) is dense in γX). More generally,
if D is closed in X, then ClγX D = D*.

4. If A and B are closed subsets of X, ClγX (A ∩ B) = ClγX A ∩ ClγX B.

5. γX is compact. [Any collection of basic closed sets with the finite
intersection property has nonempty intersection.]

6. Every continuous function on X to a compact Hausdorff space K can
be extended to γX. [Mimic the proof of 19J.6.]

7. γX is Hausdorff iff X is normal. [Use part 4 for necessity.] Thus γX =
βX iff X is normal (by 6).

19L. Wallman basis problem
The procedure used to obtain βX in 19J and γX in 19K can be generalized.
Let ℬ be any base for the closed sets of X satisfying the following
conditions:

a) for each closed set F and x ∉ F, there is some A ∈ ℬ such that x ∈ A
and A ∩ F = ø,

b) finite unions and finite intersections of elements of ℬ belong to ℬ,

c) if A, B ∈ ℬ are disjoint, then for some C and D ∈ ℬ, A ⊂ X–C, B ⊂
X–D and (X–C) ∩ (X–D) = ø.

Then ℬ is called a Wallman base for X ; a space X is seminormal iff it has a
Wallman base.

Now let  be any base for the closed sets of X and call ℱ ⊂  an  -
filter iff ℱ consists of nonempty sets and

i) F1 n F2 ∈ ℱ whenever F1, F2 ∈ ℱ,  
ii) F ∈ ℱ whenever F ⊃ G ∈ ℱ and F belongs to  .



An  -ultrafilter is a maximal  -filter. See 12E for basic results on  -
filters.

Let  be the set of all  -ultrafilters on X and for each A ∈  , let

A* =  .

Let  = {A* | A ∈  }.

1.  is a base for the closed sets of a topology on  .  with this
topology is called the Wallman space of the Wallman base  , whenever 
is a Wallman base.)

2. The mapping h : X →  which takes x ∈ X to the (unique)  -
ultrafilter in  which converges to x is an embedding of X in  .

3. X is dense in  . More generally, if A ∈  , then  A = A*.

4. If A, B ∈  , then  (A n B) =  .

5.  is Hausdorff iff  is a Wallman base for X.

A great deal of Exercises 19J and 19K is now subsumed in the following
two propositions:

7. In a completely regular T1-space the zero sets form a Wallman base.
(Thus a T1-space is seminormal iff it is completely regular.)

8. The collection of all closed subsets of X form a Wallman base iff X is
normal. 
 
For an arbitrary normal space X, it is still an open question whether every
Hausdorff compactification of X can be obtained from some Wallman base
for X. A limitation on the search for a correct Wallman base in X to produce
a particular compactification K is given in the next problem.

19M. Wallman basis, continued



Let  be a Wallman base for X. A bounded function f : X → R is  -
uniformly continuous iff for each ∈ > 0, a finite collection A1, . . ., An ∈ 
exists such that f(X–Ak) has diameter < ∈, for each k = 1, . . . , n.

 
 

1. The continuous real-valued functions which extend from X to 
are precisely the  -uniformly continuous ones.

2. If K is a compactification of X, the zero sets of those bounded
continuous functions f on X to R which extend to K form a Wallman base 

 for X.

3. The Wallman space resulting from the base in 2 need not be K
[Consider K = R*.]

19N. H-closure
An H-closure of a Hausdorff space X is an H-closed space containing X as a
dense subset. The ultrafilter process introduced in 19J and 19K for
describing compactifications of a topological space X can be used here,
with some modification, to describe the “best” H-closure of X. See 17K for
the basic facts about H-closed spaces.

1. A Hausdorff space is H-closed iff every open ultrafilter converges.

Now let  be the collection of nonconvergent open ultrafilters on X and
for each ℱ ∈  , let the nhoods of ℱ in the space αX = X ∪  be the sets
{ℱ} u G, where G ∈ ℱ. Nhoods of points in X are unchanged.

2. αX is a topological space, containing X as an open dense subset.

3. αX is H-closed.

4. αX is the largest H-closure of X ; i.e., if T is any H-closure of X, T is
the continuous image of αX, under a map which is the identity on X.

190. Realcompactification
1. Construct a realcompactification for any Tychonoff space X, that is, a

realcompact space containing a dense subset homeomorphic to X, by



following step for step the construction of βX given in the text (but
replacing C*(X) by C(X)). This is the Hewitt realcompactification (Nachbin
completion) of X, denoted υX.

2. Show that every real-valued continuous function f on X can be
extended to υX (that is, that X is C-embedded in υX). Conclude that X ⊂ υX
⊂ βX.

3. Describe the circumstances under which υX = βX.

That Greek letter, by the way, is upsilon, not nu, and υX is the standard
notation for the Hewitt realcompactification of X.

20 Paracompactness
Paracompact spaces were first introduced by Dieudonné in 1944 as a
natural generalization of compact spaces still retaining enough structure to
enjoy many of the properties of compact spaces, yet sufficiently general to
include a much wider class of spaces. The notion of paracompactness
gained stature with the proof, by A. H. Stone, that every metric space is
paracompact and the subsequent use of this result in the solutions of the
general metrization problem by Bing, Nagata and Smirnov. The central role
played by paracompactness, or paracompact-like properties, in some of the
current areas of intensive investigation in topology ensure it a permanent
place alongside metrizability and compactness among the most important
concepts in general topology.

To proceed, we need a great deal of terminology applying to coverings.

20.1 Definition. If  and  are covers of X, we say  refines  , and write
 <  , iff each U ∈  is contained in some V ∈  . Then we say  is a

refinement of  .

If  is a cover of X and A ⊂ X, the star of A with respect to 
e9780486131788_i0793.jpg is the set

St (A, e9780486131788_i0794.jpg) = U {U ∈ 
e9780486131788_i0795.jpg | A ∩ U ≠ ø}.



We say e9780486131788_i0796.jpg star-refines 
e9780486131788_i0797.jpg , or e9780486131788_i0798.jpg is a star-

refinement of e9780486131788_i0799.jpg , written 
e9780486131788_i0800.jpg * < e9780486131788_i0801.jpg , iff for

each U ∈ e9780486131788_i0802.jpg, there is some V ∈ 
e9780486131788_i0803.jpg such that St (U, 
e9780486131788_i0804.jpg) ⊂ V. Finally, e9780486131788_i0805.jpg

is a barycentric refinement of e9780486131788_i0806.jpg , written 
e9780486131788_i0807.jpg ∆ e9780486131788_i0808.jpg, provided

the sets St (x, e9780486131788_i0809.jpg), for x ∈ X, refine 
e9780486131788_i0810.jpg . As an easy exercise, the reader should

prove that a barycentric refinement of a barycentric refinement is a star-
refinement ; that is, if e9780486131788_i0811.jpg ∆ 

e9780486131788_i0812.jpg ∆ e9780486131788_i0813.jpg , then 
e9780486131788_i0814.jpg * < e9780486131788_i0815.jpg . (See

Exercise 20B.)

20.2 Definition. A collection e9780486131788_i0816.jpg of subsets of X
is locally finite (or nhood finite) iff each x ∈ X has a nhood meeting only
finitely many U ∈ e9780486131788_i0817.jpg . We call 

e9780486131788_i0818.jpg point finite iff each x ∈ X belongs to only
finitely many U ∈ e9780486131788_i0819.jpg . (We have already met
point finite covers in Section 15 in connection with their shrinkability in
normal spaces.) Apparently every locally finite collection is point finite. A
notion related to local finiteness is that of a discrete collection of sets. A
collection e9780486131788_i0820.jpg of subsets of X is discrete iff each
x ∈ X has a nhood meeting at most one element of 

e9780486131788_i0821.jpg . Clearly every discrete collection of sets is
locally finite.

Finally, we point out that given any property of collections of sets in X,
there is a corresponding “σ-property” which we illustrate with an example.
A collection e9780486131788_i0822.jpg of subsets of X is σ-locally
finite iff e9780486131788_i0823.jpg where each 

e9780486131788_i0824.jpg n is a locally finite collection in X. The
definition of a “σ-discrete” collection should now be clear. It is worth
pointing out that if e9780486131788_i0825.jpg is a σ-locally finite



cover of X, the subcollections e9780486131788_i0826.jpg n which are
locally finite and make up e9780486131788_i0827.jpg will not usually
be covers.

 
 
20.3 Examples. a) A point finite collection need not be locally finite. In
fact, for any space X, {{x} | x ∈ X} is a point finite cover, which is locally
finite only under stringent conditions on X (what are they?).

b) The cover of R by the sets [n, n + 1], as n ranges through all integers,
is point finite.

To illustrate the properties of locally finite collections, we prove some
simple lemmas.

20.4 Lemma. If {Aλ | λ ∈ Λ} is a locally finite system of sets in
X, then so is { e9780486131788_i0828.jpg | λ ∈ Λ}.

Proof. Pick p ∈ X and find an open nhood U of p such that U ∩ Aλ = ø
except for finitely many λ. But then U ∩ e9780486131788_i0829.jpg = ø
except for these same λ. This establishes the lemma. ■

20.5 Lemma. If{Aλ|λ ∈ Λ} is a locally finite system of sets, then
U e9780486131788_i0830.jpg . In particular, the union of a
locally finite collection of closed sets is closed.

Proof. Easily e9780486131788_i0831.jpg On the other hand, suppose p
∈ e9780486131788_i0832.jpg . Now some nhood of p meets only
finitely many of the sets Aλ, say e9780486131788_i0833.jpg Since every
nhood of p meets Aλ, every nhood of p must then meet 

e9780486131788_i0834.jpg .



Hence, p ∈ e9780486131788_i0835.jpg so that, for some k, p ∈ 
e9780486131788_i0836.jpg . Thus e9780486131788_i0837.jpg ,

establishing the lemma. ■

20.6 Definition. A Hausdorff space X is paracompact iff each open cover
of X has an open locally finite refinement.

It should be pointed out that some writers do not require that a
paracompact space be Hausdorff.

20.7 Theorem. If X is a T3-space, the following are equivalent:
a. X is paracompact,
b. each open cover of X has an open σ-locally finite

refinement,
c. each open cover has a locally finite refinement (not

necessarily open),
d. each open cover has a closed locally finite refinement.

Proof. a) ⇒ b): A locally finite cover is σ-locally finite.

b) ⇒ c): Let e9780486131788_i0838.jpg be an open cover of X. By
(b), there is a refinement e9780486131788_i0839.jpg of 

e9780486131788_i0840.jpg such that e9780486131788_i0841.jpg
, where each e9780486131788_i0842.jpg is a locally finite collection
of open sets, say e9780486131788_i0843.jpg = {Vnβ | β ∈ B}. For
each n. let Wn = e9780486131788_i0844.jpg Then {W1, W2,. . .} covers
X. Define An = Wn - e9780486131788_i0845.jpg Wi. Then {An|n ∈ N}
is a locally finite refinement of {Wn|n ∈ N}. Now consider {An ∩ Vnβ| n ∈
N, β ∈ B}. This is a locally finite refinement of 

e9780486131788_i0846.jpg and hence of 
e9780486131788_i0847.jpg .

c) ⇒ d): Let e9780486131788_i0848.jpg be an open cover of X. For
each x ∈ X, pick some Ux in e9780486131788_i0849.jpg such that x ∈
Ux, and, by regularity, find an open nhood Vx of x such that 



e9780486131788_i0850.jpg ⊂ Ux. Now {Vx|I x ∈ X} is an open cover
of X and so, by (c), has a locally finite refinement {Aγ | γ ∈ Γ}. Then {

e9780486131788_i0851.jpg | γ ∈ Γ} is still locally finite, by Lemma
20.4, and for each γ, if Aγ ⊂ Vx, then e9780486131788_i0852.jpg ⊂ U
for some U ∈ e9780486131788_i0853.jpg . It follows that {

e9780486131788_i0854.jpg | γ ∈ Γ} is a closed locally finite
refinement of e9780486131788_i0855.jpg .

d) => a): Let e9780486131788_i0856.jpg be an open cover of X, 
e9780486131788_i0857.jpg a closed locally finite refinement. For each

x ∈ X, let Wx be a nhood of x meeting only finitely many V ∈ 
e9780486131788_i0858.jpg . Now let e9780486131788_i0859.jpg

be a closed locally finite refinement of {Wx | x ∈ X }. For each V ∈ 
e9780486131788_i0860.jpg , let

V* = X–∪ {A ∈ e9780486131788_i0861.jpg | A ∩ V = ø}.

Then {V* | V ∈ e9780486131788_i0862.jpg } is an open cover (the sets
V* are open by Lemma 20.5) and is furthermore locally finite. For consider
x ∈ X. There is a nhood U of x meeting only A1, . . . , An, say, from 

e9780486131788_i0863.jpg . But whenever U n V* ≠ ø, we have Ak n V*
≠ ø for some k = 1,. . ., n which implies Ak ∩ V ≠ ø. Since each Ak meets
only finitely many V, we must then have U ∩ V* = ø for all but finitely
many of the V*.

Now for each V ∈ e9780486131788_i0864.jpg , pick U ∈ 
e9780486131788_i0865.jpg such that V ⊂ U, and form the set U n V*.

The collection of sets which results, as V ranges through 
e9780486131788_i0866.jpg , serves as an open locally finite

refinement of e9780486131788_i0867.jpg ; the details are easily
checked. ■

20.8 Corollary. Every Lindelöf T3-space is paracompact.



Proof. A countable subcover is a σ-locally finite refinement. ■

Regarded either as a consequence of 20.8 or taken directly from the
definition (since a finite subcover is a locally finite refinement) we have the
fundamental result that a compact Hausdorff space is paracompact. The
following theorem establishes the importance of paracompact spaces as the
smallest known class of spaces including both the compact and the
metrizable spaces.

20.9 Theorem. (A. H. Stone) Every metric space is
paracompact.

Proof. Let e9780486131788_i0868.jpg be an open cover of the metric
space (X, p). For each n = 1, 2, . . . and U ∈ e9780486131788_i0869.jpg ,
let Un = {x ∈ U | ρ(x, X - U) ≥ 1/2n}. Then

ρ(Un, X–Un+1) ≥ 1/2n–1/2n+1 = 1/2n+1.

Let ≺ be a well-ordering of the elements of e9780486131788_i0870.jpg .
For each n = 1, 2, . . . and U ∈ e9780486131788_i0871.jpg , let

e9780486131788_i0872.jpg

For each U, V ∈ e9780486131788_i0873.jpg , and each n = 1, 2, . . . , we
have

e9780486131788_i0874.jpg

or



e9780486131788_i0875.jpg

(depending on which comes first in the well ordering). In either case,

e9780486131788_i0876.jpg

Hence, defining an open set ( e9780486131788_i0877.jpg , for each U ∈ 
e9780486131788_i0878.jpg and n ∈ N, by

e9780486131788_i0879.jpg

we have e9780486131788_i0880.jpg ≥ 1/2n+2, so 
e9780486131788_i0881.jpg is discrete for each n. Hence, 
e9780486131788_i0882.jpg is σ-discrete, and thus σ-locally finite.

Moreover, e9780486131788_i0883.jpg refines 
e9780486131788_i0884.jpg and covers X. (If x ∈ X, find the first U ∈ 
e9780486131788_i0885.jpg to which x belongs, and then x 
e9780486131788_i0886.jpg for some n.) ■

Note (and we will use this fact) that the above proof can be used without
change to conclude that any open cover of a pseudometrizable space has an
open locally finite refinement.

The normal spaces also form a class of spaces including both the
compact spaces and the metric spaces. The relationship between
paracompactness and normality is given next.

20.10 Theorem .  Every paracompact space is normal.
Proof. We first establish regularity. Suppose A is a closed set in a
paracompact space X and x ∉ A. For each y ∈ A, find open Vy containing y
such that x ∉ e9780486131788_i0887.jpg . Then the sets Vy, y ∈ A,
together with the set X–A, form an open cover of X. Let 

e9780486131788_i0888.jpg be an open locally finite refinement and let V
= ∪ {W ∈ e9780486131788_i0889.jpg | W ∩ A ≠ ø}. Then V is open,
contains A, and e9780486131788_i0890.jpg | W ∩ A ≠ ø}. But each such



set W is contained in some Vy, and hence e9780486131788_i0891.jpg is
contained in e9780486131788_i0892.jpg and thus does not contain x.
Hence x ∉ e9780486131788_i0893.jpg Thus x and A are separated by
open sets in X.

Now suppose A and B are disjoint closed sets in X. For each y ∈ A, by
regularity, find open Vy such that y ∈ Vy and 

e9780486131788_i0894.jpg n B = ø. Then proceeding exactly as
above, we can produce an open set V such that A ⊂ V and V ∩ B = ø. Thus
X is normal. ■

 
 

Recall that Ω0 denotes the set of ordinals less than the first uncountable
ordinal ω1. The next theorem gives us the easiest example of a normal
space which is not paracompact. Another example can be found in 20H.

20.11 Example. Ω0 is not paracompact. Otherwise, the cover by sets

Uβ = {γ ∈ Ω0 | γ < β}, β ∈ Ω0,

has a locally finite refinement {Va | a ∈ A}. For each α ∈ Ω0, α ∈ Va for
some a ∈ A and hence (f(α), α] ⊂ Va for some f(α) < α. We assert that some
β0 belongs to (f(α), α] for a cofinal set of points α. It is sufficient to prove
this since then β0 will necessarily belong to infinitely many Va.

If no such β0 exists, then for each β0 ∈ Ω0, the set {β | for all α ≥ β, f(α)
≥ β0} is nonempty. Hence, it has a least element α(β0). Consider the
sequence of points defined inductively by α0 = α(0) and αn = α(αn–1) for n ≥
1. Note that for all α ≥ αn, f(α) ≥ αn–1. Now let α* = sup {αn}. Then α* ∈
Ω0, and since α* ≥ αn for each n, f(α*) ≥ αn–1 for each n, from which it
follows that f(α*) ≥ α*. But this is impossible since for each α we chose f(α)
< α.



By contradiction, then, some β0 exists with the required property. ■

Having established the position of paracompactness in the scheme of
things, we proceed to investigate the usual questions involving subspaces,
products and continuous images.

20.12 Theorem. a) An Fσ-subset of a paracompact space is
paracompact (so closed subsets of paracompact spaces are
paracompact).

b) The continuous closed image of a paracompact space is
paracompact if it is Hausdorff.

c) The product of a paracompact space with a compact T2-space
is paracompact.

Proof. a) Suppose F = e9780486131788_i0895.jpg Fn is an Fσ-subset of a
paracompact space X, where each Fn is closed in X. Let {Uα | α ∈ A} be an
open cover of F; say Uα = F ∩ Vα, where Vα is open in X. For each n, {X–
Fn} ∪ {Vα | ∈ A} is an open cover of X which has an open locally finite
refinement ωn. Let

e9780486131788_i0896.jpg = {W ∩ F | W ∈ ωn}.

Then e9780486131788_i0897.jpg is a locally finite collection of open
subsets of F and e9780486131788_i0898.jpg clearly refines {Uα | α ∈
A}. Thus {Uα | α ∈ A} has an open σ-locally finite refinement, so X is
paracompact by 20.7.

b) We will provide only a sketch of the proof of this result. The reader
interested in the complete details is referred to the original proof as given
by Michael (see the notes). Michael proves that a T1-space is paracompact
if every open cover e9780486131788_i0899.jpg has a refinement 



e9780486131788_i0900.jpg such that U 
e9780486131788_i0901.jpg is closed for each 
e9780486131788_i0902.jpg. ( e9780486131788_i0903.jpg is called

a closure-preserving closed refinement of e9780486131788_i0904.jpg
). The techniques used to prove this are similar to those you will see in the
proof of 20.14 below. Note that a closed locally finite refinement of 

e9780486131788_i0905.jpg would satisfy this requirement, so that for
T3-spaces the stated property is equivalent to paracompactness, by 20.7.

Now suppose X is paracompact and f is a closed continuous map of X
onto Y. Then Y is a T1-space, so it suffices to show every open cover 

e9780486131788_i0906.jpg of Y has a closure-preserving closed
refinement. But {f–1(U) | U ∈ e9780486131788_i0907.jpg } is an open
cover of X and thus has a closed locally finite refinement 

e9780486131788_i0908.jpg . It is easily checked that, since U 
e9780486131788_i0909.jpg is closed for any 
e9780486131788_i0910.jpg, the cover e9780486131788_i0911.jpg

= {f(W) | W ∈ e9780486131788_i0912.jpg } is a closure-preserving
closed refinement of e9780486131788_i0913.jpg . Thus Y is
paracompact.

c) Let X be paracompact, Y compact, and let 
e9780486131788_i0914.jpg be an open cover of X x Y. For fixed x ∈

X, a finite number of elements of e9780486131788_i0915.jpg , say 
e9780486131788_i0916.jpg , cover {x} × Y. Pick an open nhood Vx of

x in X such that Vx x Y ⊂ e9780486131788_i0917.jpg (see 17.6c). The
sets Vx, as x ranges through X, form an open cover of X. Let 

e9780486131788_i0918.jpg , be an open locally finite refinement. For
each V ∈ e9780486131788_i0919.jpg, V ⊂ Vx for some x. Consider
the sets (V x Y) ∩ e9780486131788_i0920.jpg , i = 1, . . . , nx, formed
as V ranges through e9780486131788_i0921.jpg . This is a refinement
of e9780486131788_i0922.jpg and an open cover 

e9780486131788_i0923.jpg of X x Y. Moreover, given (x, y) ∈ X × Y,
there is a nhood U of x which meets only finitely many V ∈ 

e9780486131788_i0924.jpg and the nhood U x Y of (x, y) can then
meet only finitely many sets of e9780486131788_i0925.jpg . ■



20.13 Examples. a) Ω0 is a nonparacompact open subspace of the
paracompact space Ω. (But if every open subspace of X is paracompact
every subspace is paracompact ; see Exercise 20E.)

 
 

b) The Sorgenfrey line E is regular Lindelöf and thus paracompact, while
E x E is not normal and thus not paracompact. So products of paracompact
spaces need not be paracompact. See also Exercise 20F.

c) Every discrete space is paracompact and every topological space is the
continuous, one-one image of a discrete space. Thus continuous images of
paracompact spaces need not be paracompact. Another example is given in
13.9(b). Note there that X is paracompact and Y is the image of X under an
open continuous map, but Y is not T2.

 
 

We close this section with a final property of paracompact spaces which
will prove useful later on, in the material on uniform spaces. The proof
embodies the actual approach used by A. H. Stone to prove every metric
space is paracompact.

20.14 Theorem. A T1-space X is paracompact iff each open
covering of X has an open barycentric refinement.

Proof. Suppose X is paracompact. e9780486131788_i0926.jpg is any
open cover of X. Let e9780486131788_i0927.jpg = {Vα| α ∈ A} be an
open locally finite refinement of e9780486131788_i0928.jpg, and by
15.10, since X is normal, let

e9780486131788_i0929.jpg = {Wα| α ∈ A}



be a shrinking of  . Now  must be locally finite also. Pick x ∈ X and let
Ax = ∩ {Vα| x ∈  }. Since each such Vα contains x, this is really a finite
intersection, so Ax is open. Let Bx = U {  | x ∉  }. Since  is locally
finite, Bx is a closed set. Now set Cx = Ax–Bx. We assert  = {Cx | x ∈ X} is
the required open barycentric refinement.

Fix y ∈ X and pick a such that y ∈  . We claim St (y,  ) ⊂ Vα.
Suppose y ∈ Cx (i.e., Cx is part of St (y,  )). But then since y ∈  , we
have x ∈  also (otherwise  ⊂ Bx, so y ∉ Cx). But if x ∈  , then Ax ⊂
Vα and hence Cx ⊂ Vα. So St (y,  ) ⊂ Vα.

Thus  is a barycentric refinement of  and hence of  .

Suppose, conversely, that X is T1 and each open cover has an open
barycentric refinement.

First we show X is regular. Let p ∈ X and let A be a closed set in X not
containing p. Then {X–p, X–A} is an open cover of X. Let  be an open
barycentric refinement of {X–p, X–A} and  an open barycentric
refinement of  . Then  star-refines {X–p, X–A}. We claim St (p,  )
and St (A,  ) are the required disjoint nhoods of p and A. If not, for some
V, V‘ ∈  , V contains p and V’ meets A while V n V‘ ≠ ø. Then St (V, 
) meets both A and p, which is impossible.

Next we show every open cover  = {Uα | α ∈ A} has an open σ-locally
finite refinement. Construct open covers  ,  , . . . of X such that  is a
barycentric refinement of  and, for each n = 1, 2,. . .,  is a barycentric
refinement of  . For each α ∈ A, define Vα = {x ∈ Uα | St (x,  ) ⊂ Uα
for some n}. Note that if St (x,  ) ⊂ Uα then because  is a barycentric
refinement of  , St (x, ) consists of points of Vα [precisely, for each y
∈ St (x, ), St (y, ) ⊂ Uα so y ∈ Vα]. Moreover, for each x ∈ X, St
(x,  ) ⊂ some Uα so x ∈ some Vα. Thus the sets Vα form an open
refinement of  with the property that, if x ∈ Vα then St (x,  ) ⊂ Vα for
some m. We will find a σ-locally finite refinement of the cover {Vα | α ∈ A}
=  .



Well-order  say as V1, V2,. . ., Vα,. . . . For each fixed n = 1, 2,. . . define
a sequence of closed sets Hn1, Hn2,. . ., Hnα,. . . as follows (see Fig. 20.1):

Hn1 = X–St (X–V1,  )

and

Note (as a mildly intricate exercise) that St (Hnα,  ) is contained in Vα and
does not meet Hnβ for any β ≠ α. Now, the sets Hnα for all n = 1, 2,. . . and α
∈ A, cover X. For if x ∈ X, there is a first index α for which x ∈ Vα. Then,
from above, St (x, ) ⊂ Vα for some m. We claim x ∈ Hmα. If not,

and then St (x, ) meets (X–Vα) ∪  Hmβ. Since St (x, ) is
contained in Vα, it must then meet some Hmβ for β < α. But then x ∈ St
(Hmβ, ) ⊂ Vβ, which is impossible since α was the first index for which x
∈ Vα.

Finally, for each n = 1, 2,. . . expand the sequence Hnα of closed sets to a
sequence of open sets by defining



Figure 20.1

Then Gnα ⊂ Vα for each α and n, and the Gnα for all α and n form an open
cover of X. It suffices, then, to show each subcollection {Gnα |α ∈ A} is
locally finite. In fact, it is discrete. Since  is a cover of X, it is
sufficient to show no U ∈  meets both Gnα and Gnβ for α ≠ β.
Otherwise, there exist V1, V2 ∈  such that V1 meets both Hnα and U,
and V2 meets both Hnβ and U. But St (U, ) then meets both Hnα and
Hnβ and hence, since  * < , some W ∈  meets both Hnα and Hnβ.
Then St (Hnα, ) meets Hnp, which is impossible.

Thus {Gnα |α ∈ A} is discrete, so {Gnα | α ∈ A, n = 1, 2,. . .) is a σ-
locally finite refinement of , and thus of . ■

20.15 Corollary. A T1-space is paracompact iff every open cover
has an open star-refinement.



Proof. A barycentric refinement of a barycentric refinement is a star
refinement. ■

Problems

20A. Examples on paracompactness
1. The scattered line S (5C) is paracompact.

2. The Moore plane Γ, the slotted plane (4C) and the radial plane (3A) are
not paracompact.

3. Discuss paracompactness of the sequence spaces m, c and c0 (2H).

20B. Barycentric and star refinement
1. A barycentric refinement of a barycentric refinement of a cover  is a

star-refinement of .

 
 

2. If  is the cover of a metric space X by (1/3n)-spheres about each of
its points, then  *< .

3. If  is an open cover of X,  is an open barycentric refinement of ,
and for each U ∈  we define FU = X–St (X–U, ), then {FU | U ∈ } is a
closed cover of X.

20C. Partitions of unity
A partition of unity on a space X is a collection Φ of continuous functions
from X to R+ (the nonnegative reals) such that, at each x ∈ X, ϕ(x) ≠ 0 for
only finitely many ϕ ∈ Φ, and Σϕ∈Φ ϕ(x) = 1. Φ is called locally finite iff
each x ∈ X has a nhood on which all but finitely many ϕ ∈ Φ vanish. Φ is
subordinated to a cover  of X iff each ϕ ∈ Φ vanishes outside some U ∈ 

.

For a T1-space X, the following are equivalent:
a. X is paracompact,



b. Every open cover  of X has a locally finite partition of unity
subordinated to it,

c. Every open cover  of X has a partition of unity Φ subordinated to it.

[For (a) ⇒ (b), use normality to find a shrinking of a locally finite
refinement of , then construct (and modify) Urysohn functions. For (c) ⇒
(a), first show X is completely regular. Then, let  be the collection of sets
of the form {x ∈ X |ϕ(x) > 1/i} for ϕ ∈ Φ. Show  is locally finite and U 

 is a refinement of . Apply Theorem 20.7.]

20D. Metacompact spaces
A space is metacompact iff each open cover has an open point finite
refinement.

 
 

1. If  is any point finite cover of X, then  has an irreducible subcover 
 ; i.e., no proper subcollection of  covers X.

2. A countably compact metacompact space is compact. [An irreducible
open subcover of an open point finite cover of a countably compact space
must be finite; use 17F.2.]

20E. Subspaces of paracompact spaces
Let X be paracompact.

 
 

1. If every open subspace of X is paracompact, then every subspace of X
is paracompact.

2. Every paracompact space with a dense Lindelöf subspace is Lindelöf.
In particular, then, a separable paracompact space is Lindelöf. [Since a
paracompact space is regular, to show it is Lindelöf, it is enough to show
every open cover has a countable dense subsystem, by 16D.3.]



3. If X is Lindelöf and F is a closed subset of βX which is not a Gδ and
which is contained in βX–X, βX–F is not paracompact [use 2].

20F. Products of paracompact spaces
The following result supplements the result (20.12) that the product of a
paracompact space with a compact space is paracompact.

The product of a paracompact space with a metric space need not be
paracompact. [In fact, if P denotes the space of irrationals and S is the
scattered line, then S is paracompact. (20A.1) and P is metric, but S x P is
not even normal. For the sets A = {(x, y) ∈ S x P | x is rational} and B =
{(x, x) ∈ S x P | x ∈ P} are closed and cannot be separated by disjoint
open sets in S x P.

20G. Continuous images of paracompact spaces
If ƒ is a perfect mapping of X onto Y (i.e., if ƒ is continuous, closed, and ƒ–

1(y) is compact for each y ∈ Y) then X is paracompact iff Y is paracompact.

20H. A separable, normal nonparacompact space
Recall that Ω0 denotes the set of all ordinals < ω1, the first uncountable
ordinal.

1. To each α ∈ Ω0, we can assign a function ƒα : N → N such that
whenever α < β, then eventually (i.e., for n ≥ Nαβ) ƒα(n) < ƒβ(n).

We will use the functions ƒα to describe a topology on X = (N × N) ∪ Ω0.
For each α ∈ Ω0 and integer n ∈ N, let Un(α) = {α} ∪ {(k, ƒα(k)) | k > n};
thus Un(α) is {α} together with a portion of the graph of ƒα. Now we assign
nhoods to points in X as follows:

a. points of N x N are to be isolated,
b. if α is a nonlimit ordinal, nhoods of α will be the sets Un(α), for n = 1,

2,. . .,
c. if α is a limit ordinal, nhoods of α will be obtained by choosing β < a,

choosing an integer n(γ) for each ordinal γ with β < γ ≤ α and letting
Uβ<γ≤α Un(γ)(γ) be a nhood of α.



2. The above is a valid assignment of a nhood base to each point in X,
making X a Hausdorff, separable topological space.

3. X is normal. [Of two disjoint closed sets H and K in X, one must be
countable (consider their intersections with Ω0). For this set, say H, find α0
∈ Ω0 such that no ordinal beyond α0 lies in H. For each α ∈ Ω0, pick an
integer nα as follows:

a. nα. >  if α > α0 (see 1 for the definition of Nαβ),
b. arrange the countably many ordinals ≤α0 in a sequence (beginning

with α0), α0, α1,. . . and define  to be 1,  to be any integer larger
than

max (  , ,. . .,  ).

Using the integers nα thus defined, a nhood U(α) of α of the form (α)
or Uβ<γ≤α (γ) can be contructed using the scheme in either (b) or (c)
above, as is appropriate. If (c) is needed, β is taken to be the largest ordinal
< α which is not in H (or β = 1 if H contains all ordinals <α).

Let U = [H ∩ (N x N)] ∪ Uα∈H U(α). Then U is an open set containing H
whose closure does not meet K.]

4. X is not paracompact. [The cover of X by the basic nhoods defined in
(a), (b) and (c) can have no locally finite refinement.]

21 Products of normal spaces
In this section, all spaces are assumed to be Hausdorff (so that normality
and the T4-axiom are equivalent here). Sorgenfrey’s example of a pair of
normal spaces whose product is not normal is well known. We will discuss
here subsequent work on the problem of suitably restricting spaces X and Y
to make X x Y normal. Specifically, we will require that X be normal and
ask: under what conditions on Y will X x Y be normal? The results are
largely disappointing, although attempts to find positive theorems have led



to a number of interesting insights and one pretty strange result. Our
program will take us through three conditions on Y:

a. Y metric,
b. Y compact,
c. Y compact metric.

The first condition is easily disposed of. In Exercise 20F, we provided an
example, due to Michael, of a normal space X and a metric space Y such
that the product X x Y was not normal. Alternatively, a study of Michael’s
paper would do no harm. He provides several examples of nonnormal
products X x Y with conditions of varying strength on X and Y. Among
them: X can be hereditarily paracompact and Y can be separable metric.

The second condition on Y, compactness, is disposed of by a theorem of
Tamano based on work of Corson. We will take the time now to present this
theorem; it is interesting for other reasons also.

21.1 Theorem. The following are equivalent, for a Tychonoff
space X:

a. X x βX is normal,
b. for each compact F ⊂ βX–X, there is a locally finite open

cover {Uλ | λ ∈ Λ} of X such that (C1βX Uλ) n F = ø, for
each λ ∈ A,

c. X is paracompact.

Proof. a) => b): Suppose X x βX is normal and let F be a
compact subset of βX–X. Then Δx = {(x, x) ∈ X x βX | x ∈ X}
and X x F are disjoint closed subsets of X x βX, so there is a
Urysohn function f : X x βX → I with f(Δx) = 0 and f(X x F) = 1.
Let fx be the restriction of f to {x} x βX, for each x ∈ X, and
define d on X x X by



Then d is a pseudometric on X, which induces a topology τ on X
weaker than the original topology. Now the cover of (X, τ) by
spheres Ud(x, ) = Ux has locally finite refinement {Uλ | λ ∈ Λ}
by elements of τ (and each Uλ is an open set in X with its
original topology). If y ∈ Ux, then d(x, y) <  , so

fx(y) = |fx(y)–fy(y)| < .

Hence fx(p) ≤  for each p ∈ ClβX Ux. But fx(p) = f(x, p) = 1 for
each p ∈ F so (ClβX Ux) ∩ F = ø for each x ∈ X. Hence (ClβX
Uλ) ∩ F = ø for each λ ∈ Λ.

b) => c): Let {Uα| α ∈ A] be any open covering of X. For
each a fix an open set  in βX such that  ∩ X = Uα. Let Fα =
βX–  for each α and set F = ∩ Fα. Then F is a compact subset
of βX–X so, by part b), there is a locally finite open cover {Vλ| λ
∈ Λ} of X such that (ClβX Vλ) ∩ F = ø for each λ. Then ClβX Vλ
⊂ U  for each λ and, since ClβX Vλ is compact, it is contained
in the union of a finite subcollection {  }. It follows

that Vλ ⊂ . If we now let Hλ,k = Vλ ∩  for each
λ ∈ Λ and k = 1, . . . , nλ, then {Hλ,k} is a locally finite
refinement of {Uα| α ∈ A}. Thus X is paracompact.

c) => a): If X is paracompact, then X x βX is paracompact (by
20.12) and thus normal. ■

As we have mentioned, the last theorem provides the answer to the
question: is the product of a normal space and a compact space always
normal? The answer, since there are nonparacompact normal spaces (e.g.,
Ω0), is no.



The last theorem also provides what will probably be the conclusive
result in a string of attempts to provide a global characterization of
paracompactness. These attempts began with a conjecture by Kelley to the
effect that the paracompact spaces were those which were completely
uniformizable by the family of all nhoods of the diagonal. This conjecture
was proved false by Corson,1 who showed that paracompactness of X was
equivalent to the imposition of two global conditions:

1. the family of all nhoods of the diagonal is a uniformity for X, and
2. X x βX is normal.

Tamano’s theorem eliminates any reference to uniformities for X, providing
a completely topological characterization.

Returning to the main line of development in this section, we ask whether
the product of a normal space X with a compact metric space Y is normal.
To handle this case, the work of Dowker is significant; it requires a
definition.

 
 
21.2 Definition. A space X is countably paracompact iff every countable
open covering has a locally finite refinement. A countably paracompact
normal space is called a binormal space.

21.3. Theorem. Let X be normal. The following are then
equivalent:

a) X is countably paracompact,

b) each countable open covering of X has an open point-finite
refinement,

c) each countable open covering {Un|n = 1, 2, . . .} of X is
shrinkable; i.e., has an open refinement {Vn | n = 1, 2, . . . } with

 ⊂ Un for n = 1, 2, . . . ,

d) each sequence F1 ⊃ F2 ⊃ · · · of closed sets with empty
intersection has an “expansion” to open sets Gi ⊃ Fi with  Gi



= ø.

Proof. a) => b): A locally finite refinement is point finite.

b) ⇒ c): Let {Un| n = 1, 2, . . . } be a countable open cover of X, {Vα|α ∈
A} a point finite refinement. For n = 1, 2, . . . let

Vn = {Vα|Vα ⊂ Un, Vα ⊄ Uj if j < n}.

Then Vi ⊂ Ui for i = 1, 2, . . . and {Vn| n = 1, 2, . . .} is still point finite. But
any point finite cover in a normal space is shrinkable (15.10).

c) => d): If {Fn| n = 1, 2, . . .} is a decreasing sequence of closed sets
with empty intersection, then {X–Fn| n = 1, 2, . . . } is an open cover of X. If
{Vn| n = 1, 2, . . . } is a shrinking of this open cover, then {X -  n = 1, 2, . .
. } will be an expansion of {Fn | n = 1, 2, . . . } with empty intersection.

d) => a): Let {Un | n = 1, 2, . . . } be an open covering of X and, for each
n, let Fn = X–(U1 ∪ · · · ∪ Un). Let {Gn | n = 1, 2, . . . } be an expansion of
{Fn| n = 1, 2, . . . } with empty intersection (given by d)). Now pick W1, W2,
. . . as follows:

W1 is any open set with X - G1 ⊂ W1,  ∩ F1 = ø,  
W2 is any open set with  ∪ (X–G2) c W2,  ∩ F2 = ø,

and so on. Then {Wn| n = 1, 2, . . . } is an open cover of X, since

{X–Gn| n = 1, 2, . . .}



covers X, and moreover

i)  ⊂ Wn+1,  
ii) X–Gn ⊂ Wn,  
iii) Wn ⊂  Ui.

Now let Sn = Wn+1–  for n ≥ 2 (and S1 = W1). Then since  ⊂ Wn, Sn
⊃ Wn+1–Wn, for each n, so {Sn | n = 1, 2, . . .} is an open cover of X.
Moreover, Si ∩ Sj ≠ ø iff |i–jl ≤ 1. Finally, consider the sets

S1 ∩ U1, S1 ∩ U2  
S2 ∩ U1, S2 ∩ U2, S2 ∩ U3  
S3 ∩ U1, S3 ∩ U2, S3 ∩ U3, S3 ∩ U4

and so on. These are all open, they cover X (since the Sn cover X and the
union across the nth row above is Sn), and they form a refinement of {Un| n
= 1, 2, . . . }. Moreover, Si ∩ Uj can meet at most the other sets on the same
row and the rows one above and one below (in the scheme above). Thus if x
∈ X and Sn ∩ Um contains x, then Sn ∩ Um is a nhood of x meeting only
finitely many sets of the form Si ∩ Uj. Thus {Si ∩ Uj|i ∈ ℕ, j = 1, . . . , i +
1} is a locally finite refinement of {Un | n = 1, 2, . . .}. ■

With the last result, we are now ready for the fundamental result on
products of normal spaces and compact metric spaces. One interesting
aspect of the following theorem: it ties normality of such products to
normality of the more special class of products X x I where X is normal;
these products are of interest to those who do homotopy theory.



21.4 Theorem. The following are equivalent for any (Hausdorff)
space X:

a) X x I is normal,

b) X x Y is normal whenever Y is compact metric,

c) X is binormal.

Proof. a) ⇒ c): Suppose X x I is normal. Clearly X will be normal. To show
countable paracompactness, let F1 ⊃ F2 ⊃ · · · be a sequence of closed sets
with ∩Fn = ø. Let Wn = X - Fn. Let A be the complement in X x I of

[W1 x [0,1)] ∪ [W2 x [0,  )] ∪ · · ·

(Fig. 21.1) and let B = X x {0}. Then A and B are disjoint closed sets in X x
I. Let U be an open set in X x I containing A such that U ∩ B = ø. Let Gn =
{x ∈ X | (x, 1/n) ∈ U}. Then Gn is open, Gn ⊃ Fn and ∩ Gn = ø. Thus X is
countably paracompact, by 21.3.



Figure 21.1

c) ⇒ b): Let A and B be disjoint closed sets in X x Y. Let {Bn | n = 1, 2, . .
. } be a base for Y and for each finite subset γ of N let Hγ = ∪n∈γ Bn. Let Ax
= {y ∈ Y | (x, y) ∈ A} and Bx = {y ∈ Y |(x, y) ∈ B}. For each γ, let

Uγ = {x ∈ X|Ax ⊂ Hγ} ∩ {x ∈ X|Bx ⊂ Y–Hγ}.

Then each Uγ is open. To show this, suppose ⊂ Hγ. Then if y ∉ Hγ,
(x0, y) ∉ A. Since A is closed, there is then a basic open nhood Ny x My of
(x0, y) in X x Y which does not meet A. The sets My thus obtained as y
ranges through Y - Hγ form an open cover of Y–Hγ. Since Y–Hγ is compact,

we can find a finite subcover { , . . . , }. Let N =  Nyi. Then N is
a nhood of x0, and x ∈ N implies Ax ⊂ Hγ. Thus {x ∈ X |Ax ⊂ Hγ} is an
open set in X. Similarly, {x ∈ X | Bx ⊂ Y–Hγ} is open in X. It follows that
Uγ is open in X.

Furthermore, the sets Uγ cover X. For if x ∈ X, then for each y ∈ Ax there
is some Bn such that y ∈ Bn and  ∩ Bx = ø. The sets Bn thus obtained as y
ranges through Ax form a cover of Ax, so a finite subcover can be extracted.
Thus Ax ⊂ Hγ and  ∩ Bx = ø for some finite subset γ of N. Then x ∈ Uγ.

Now let  be any locally finite refinement of the cover formed by the
sets Uγ and for each γ let Wγ = ∪ {V ∈  | V ⊂ Uγ}. Then the sets Wγ form
a locally finite cover with the property that Wγ ⊂ Uγ for each γ. Let {Vγ | γ
is a finite subset of N} be a shrinking of {Wγ | γ is a finite subset of N}; that
is,  ⊂ Wγ for each γ. Define V to be the union of the sets Vγ x Hγ, as γ
ranges through all finite subsets of N. Then V is open and A ⊂ V. Also



and this does not meet B. Thus X x Y is normal.

 
 

b) => a): This is obvious. ■

 
 

The theorem above provides an answer to our fundamental question: that
is, the spaces which have normal product with every compact metric space
are the binormal spaces. But it also raises a question with an interesting
history. Is every normal space binormal? We will refer to the assertion that
this is so as Dowker’s conjecture. A counterexample to Dowker’s
conjecture, that is, a normal space which is not binormal, will be called a
Dowker space. In this terminology, M. E. Rudin has shown that Dowker’s
conjecture cannot be proved with the existing axioms of set theory (through
the axiom of choice). In fact, from Dowker’s conjecture she deduces a
result (the Souslin hypothesis, that every compact ordered space with the
countable chain condition is separable) which is known to be independent
of these axioms (a recent result of Jech, Tennenbaum and Solovay). It is
still unknown whether a Dowker space can be constructed using existing
set-theoretic axioms through the choice axiom.

Problems

21A. Countable paracompactness
1. Every perfectly normal space is countably paracompact.

2. A closed subset of a countably paracompact space is countably
paracompact.

3. The product of a compact space and a countably paracompact space is
countably paracompact. [Study the proof of 20.12(c).]



21B. Semicontinuity in countably paracompact spaces
1. Let X be countably paracompact and normal. If g is a real-valued lower

semicontinuous function on X and h is a real-valued upper semicontinuous
function on X with h(x) < g(x) for each x ∈ X, then there is a continuous
real-valued function f on X with h(x) < f(x) < g(x) for each x ∈ X. [For each
rational r, let Gr = {x| h(x) < r < g(x)} and let {Ur| r ∈ Q} and {Vr | r ∈ Q}
be locally finite open coverings of X such that  ⊂ Ur ⊂ Gr,. Define fr to be
continuous from X to [–∞, ∞] such that fr(x) =–∞ if x ∉ Ur, fr(x) = r if x ∈ 

 . Let f(x) = l.u.b. fr(x). Show f has the required properties.]



2. If X has the property expressed above, then X is countably
paracompact and normal. [Show X is normal. Then let (Fi) be a decreasing
sequence of closed sets in X with empty intersection. Set g(x) = 1/(n + 1) for
x ∈ Fi–Fi+1, i = 0, 1, 2, . . . (where F0 = X) and set h(x) = 0 for all x ∈ X.]

21C. Normality in infinite products
Let A be an uncountable set and, for each α ∈ A, let Nα be a copy of the
positive integers. Consider the space T = Πα∈A Nα. A typical basic nhood
U(t; a1, . . ., αn) of a point t in T consists of all points t’ for which t’α = tα for
α ∈ {α1, . . ., αn}.

1. For each positive integer k, let Ak be the set of all points t in T such
that each integer other than k occurs at most once among the coordinates of
t. Prove that the sets Ak are closed and pairwise disjoint.

2. T is not normal. [Suppose A1 is contained in an open set U. Define a
sequence x1, x2, . . . of points of A1 as follows: let x1 be the point all of
whose coordinates are 1, and let U(x1; α1, . . ., αn) be a nhood of x1
contained in U. Let x2 be the point all of whose coordinates are 1, except
that the αith coordinate of x2 is i, for i = 1, . . ., n1 and let

be a nhood of x2 contained in U. Continue, obtaining a sequence x1, x2, . . .
of points of A1 and a related sequence α1, α2, . . . of coordinate indices. Now
let x be the point of A2 whose coordinates are 2 except that  = i for i = 1,
2, . . . . Prove A1 and A2 cannot be separated by showing x ∈ ClT U.]

3. Every countably compact, T1-space contains a closed copy of the
integers (i.e., a countable, closed, relatively discrete set).

4. If a product of nonempty T1-spaces is normal, all but countably many
of the factor spaces are countably compact.

5. If X is any product of metric spaces, the following are all equivalent:



a. X is normal,
b. X is paracompact,
c. all but countably many of the factor spaces are compact.



Chapter 7

Metrizable Spaces

22 Metric spaces and metrizable spaces
Our purpose in this section is twofold: we seek to establish the notational
and conventional groundwork for the material to follow and to prove a few
basic facts about metric and metrizable spaces. We will begin by
investigating products and continuous images of metrizable spaces.

22.1 Definition. Two metrics ρ1 and ρ2 on the same set M are said to be
equivalent if they generate the same topology on M.

A topologist, then, is always willing to replace a given metric with an
equivalent metric if it serves some purpose. One useful result in this
direction is the following theorem.

22.2 Theorem. Every metric ρ on M is equivalent to a bounded metric.

Proof. In fact, there are two standard ways of replacing ρ by a metric with a
bound: define new functions ρ1 and ρ2 on M x M by

The reader will verify (22F) that these are indeed metrics on M, giving the
same topology as ρ does. ■

We are prepared to use 22.2 immediately.



22.3 Theorem A nonempty product space ΠαaeA Mα is
metrizable iff each Mα is metrizable and Mα is a single point for
all but a countable set of indices.

Proof. =>: Each Mα is homeomorphic to a subspace of the product and
hence metrizable. Moreover, the product is first countable, if metrizable,
and thus can be at most a countable product (see 16A.2).

⇐: Let M1, M2, . . . be metrizable spaces. Using 22.2, let ρi be a metric on
Mi, bounded by 1, which gives the topology on Mi, for i = 1, 2, . . .. Define

ρ on  Mi as follows: for x = (x1, x2, . . .) and y = (y1, y2, . . .),

This is easily verified to be a metric. We will show that it gives the product
topology on  Mi-Let x = (x1, x2, . . .) be a point in  Mi. A basic
nhood U of x in the Tychonoff product topology restricts only finitely many
coordinates and thus can be written

 
 
U = U ρ1(x1, ε1) × U ρ2(x2, ε2) x · · ·

× U ρn(xn, εn) × Π {Mk | k = n + 1, n + 2,. . .}.

Let ε be chosen so that



Now a routine calculation shows that if ρ(x, y) < s, then ρi(xi, yi) < εi for
each i = 1, . . . , n, so that apparently Uρ(x, ε) ⊂ U. Thus the product
topology on Π Mk is weaker than the topology induced by ρ. On the other
hand, given ε > 0, we can choose N large enough that  1/2i < ε/2.
Then it is easily verified that

so that the topology induced by ρ is weaker than the product topology. ■

22.4 Example. Among the spaces admitted to metrizability by the last
theorem the most important are  , also called Frechet space, and its
subspace  , the Hilbert cube (which we studied in 17.9). These two
spaces, together with Hilbert space H (18.7), form the backbone of the
theory of separable metric spaces. One easy result that is of particular
interest: any one of these spaces can be homeomorphically embedded as a
subspace of any other. This embedding property takes on additional
significance once the Urysohn metrization theorem (23.1) is proved, since a
part of that theorem asserts that every separable metric space is
homeomorphic to a subset of  . Thus any one of  ,  , or H can be
used as a universal space for separable metric spaces. Still dealing with
homeomorphisms between these three spaces, it is immediately clear that 

 cannot be homeomorphic to either  or H, since it is compact and the
others are not even locally compact. The question of whether  is
homeomorphic to H has been only recently settled (in a very general
context) in the affirmative; in fact, R. D. Anderson has proved that all
separable infinite-dimensional Banach spaces are homeomorphic. (See 24J
for the definition of a Banach space.)

Turning to continuous maps of metric spaces, we limit ourselves to
quoting results which will be proved later when better machinery is
available.



Quotients of metrizable spaces need not be metrizable; they are studied in
Exercise 23K. In Section 23, as a corollary to the Urysohn metrization
theorem, we will prove that the continuous image of a compact metric
space is a compact metric space if it is Hausdorff.

We close this section with one of the fundamental results about compact
metric spaces. It is used both in dimension theory (an application we will
not see) and in building the theory of uniform spaces (which we get to in
Sections 35 through 41).

22.5 Theorem (Lebesgue covering lemma). If {U1, . . . , Un} is a
finite open cover of a compact metric space X, there is some δ >
0 such that if A is any subset of X of diameter < δ, then A ⊂ Ui
for some i.

Proof. Suppose not. Then for each n ∈ N, let An be a set of diameter < 1/n
such that An ⊄ Ui for any i. Pick xn ∈ An for each n, and let x be a cluster
point of the resulting sequence. Now x ∈ Ui, for some i, so for some δ > 0,
U(x, δ) ⊂ Ui. Pick n large enough that 1/n < δ/2, and find m > n such that
Xm ∈ U(x, δ/2). Now Xm ∈ Am, so Am ∩ U(x, δ/2) ≠ ø, while the diameter
of Am is less than δ/2. It follows that Am ⊂ U(x, δ) ⊂ Ui, a contradiction. ■

Any number δ which works in the previous lemma is called a Lebesgue
number for the cover {U1, . . . , Un}.

Problems

22A. Results on metric spaces
1. The collection of all metrics on a fixed set M has cardinal number 2|M|.

2. Every 2-element metric space can be embedded isometrically in the
real line R. Every 3-element metric space can be embedded isometrically in
R2. There are 4-element metric spaces which cannot be isometrically



embedded in Hilbert space H and hence cannot be embedded in any R“
(since each R” is isometric to a subspace of H, by 18B.5).

22B. Perfect normality
1. Show that a compact Hausdorff space is metrizable iff the diagonal Δ

in X x X is a zero set. [If Δ is a zero set, it is the zero set of a nonnegative
function.]

2. Find a perfectly normal compact space X which is not metrizable.

3. Conclude that the product of two perfectly normal compact spaces
need not be perfectly normal.

22C. Linear topological spaces
A (real) linear topological space is a real linear space (vector space) E with
a Hausdorff topology such that:

 
 

TL-a) vector addition is continuous; that is, the map a : E x E → E
defined by a(x, y) = x + y is continuous,

TL-b) scalar multiplication is continuous; that is, the map s : R x E → E
defined by s(λ, x) = λx is continuous.

 
 

For x and y in E, denote by L(x, y) the set of all points z such that z = λ1x
+ λ2y with 0 ≤ λi ≤ 1 and λ1 + λ2 = 1. A subset A of E is convex iff whenever
x and y belong to A, L(x, y) ⊂ A. A linear topological space is locally
convex iff each point p of E has a base of convex nhoods.

 
 

1. Every normed linear space (2J) is a locally convex linear topological
space.

2. If A is convex and x ∈ A°, y ∈  , then L(x, y)–{y} ⊂ A.



3. If A and B are convex, so are A°, Ā, A + B, A ∩ B and, for λ ∈ R, λA.

4. A convex open set A in L is regularly open (3D). So a locally convex
linear topological space is semiregular (14E).

5. A linear topological space is a topological group (13G).

22D. Metric-absolute retracts
A space Y is a metric-absolute retract iff whenever A is a closed subset of a
metric space X and f: A → Y is continuous, then f can be extended to all of
X (compare with 15D).

Let (X, d) be a metric space, A a closed subset of X. Let L be a locally
convex linear topological space (22C).

1.An open, locally finite cover  of X–A can be found with the
properties:

a. if a ∈ Fr (A), each nhood of a meets infinitely many sets from  ,
b. if a ∈ A and W is any nhood of a, there is a nhood W’ ⊂ W of a such

that, for U ∈  , U ∩ W’ ≠ ø ⇒ U ⊂ W.

[To get  , consider an open locally finite refinement of a set of disks in X–
A which get smaller as they get closer to A.] Such a cover  of X–A will be
called a canonical cover of X–A.

2.If  is a canonical cover of X–A, for each U0 e  , define

Then  is continuous on X–A, and if αu is a real constant for each U ∈  ,
then  αU · λU(x) is continuous on X–A.

3. Let  be a canonical cover of X–A. For each U ∈  , pick xu ∈ U and
then find au ∈ A such that d(xu, au) < 2 · d(xu, A). If f : A → L is any
continuous function, define F : X → L by



Then F is continuous. [Check continuity at points a ∈ A as follows. Let V
be any convex nhood of F(a) and, by continuity of f, find δ > 0 such that f
maps the δ-sphere about a into V. Let W be the (δ/3)-sphere about a in X.
Apply (b) of part 1, to find W’ ⊂ W such that, for U ∈  , U ∩ W’ ≠ ø ⇒ U
⊂ W. Verify that xu ∈ W’ ⇒ F(xu) = f(au) ∈ V. Then apply part 1 again,
finding W’ ⊂W’ such that U n W” ≠ ø ⇒ U ⊂ W’. The claim is that F(W”)
⊂ V. (For x ∈ W” ∩ (X–A), F(x) will belong to the convex hull of a finite
set of the f(au), and hence to V. For x ∈ W” ∩ A, F(x) ∈ V because W” ⊂
W.)]

4.Thus every locally convex linear topological space is a metric-absolute
retract.

22E. Extending metrics
Let (X, d) be a metric space, A a closed subset of X. For a ∈ A, define ra: A
→ R by ra(x) = d(a, x). Now fix a point a ∈ A and define ϕ on A by ϕ(x) =
rx–ra (so ϕ(x) is a function on A, for each x ∈ A). Provide C*(A) and C*(X)
with their sup norms (2J.4).

1. ϕ maps A continuously into C*(A). Now by 22C.1 and 22D.4, there is
a continuous extension Φ: X → C*(A) of ϕ. Let L be the linear topological
space C*(A) x R x C*(X) with norm defined by

∥(f, p, g)∥ = max (∥f∥, |p|, ∥g∥).

Map X onto L as follows: for x ∈ X, let αx(y) = d(x, y) and let

F(x) = (Φ(x), d(x, A), d(x, A) · αx).



Clearly F : X → L and F is continuous.

2. F is an isometry on A.

3. F is a homeomorphism on X.

4. If X is any metrizable space, A is a closed subset of X, and p is a
compatible metric on A, then p can be extended to a compatible metric on
X.

22F. Bounded metrics
1. If p is a metric on X, then both

ρ1(x, y) = min {1, ρ(x, y)} and ρ2(x, y) = ρ(x, y)/[1 + ρ(x, y)]

are metrics equivalent to ρ on X.

2. Every metric generating the topology of a compact metrizable space is
bounded.

3. Conversely, if every metric generating the topology of a metrizable
space X is bounded, then X is compact. [Otherwise, a sequence (xn) exists in
X with no cluster point. Define p on (xn) by p(xn, xm) = |n–m| and apply
22E.4.]

23 Metrization
A natural question follows the statement that metrics generate topologies,
namely, “which topologies?” More precisely, can a condition be found
which is equivalent to metrizability but which deals only with open sets?
The search for such conditions was long and was not satisfactorily
concluded until the early 1950’s when Bing, Nagata and Smirnov
independently provided similar characterizations. Our general metrization
theorem (23.9) is given in the form proved by Nagata and Smirnov.

Before giving the main metrization theorem, we will provide some other
useful results on metrization. The first is the classical theorem of Urysohn,



characterizing the separable metric spaces.

23.1 Urysohn’s metrization theorem. The following are equivalent for a
T1-space

X:
a. X is regular and second countable,
b. X is separable and metrizable,
c. X can be embedded as a subspace of the Hilbert cube  .

Proof a) ⇒ c): Let ℬ be a countable base for X, and let  = {(U, V) | U, V
∈ ℬ and U ⊂ V}.  is countable and, since X is a regular Lindelöf space
and thus normal, for each pair (U, V) in  , there is a function fuv : X → I
such that f(U) = 0, f(X–V) = 1. If ℱ = {fuv | (U, V) ∈  }, then ℱ is
countable, and certainly ℱ separates points from closed sets in X. It follows,
by 8.16, that if Iƒ is a copy of I for each f ∈ ℱ, the evaluation map e : X →
Πƒ∈ℱ Iƒ defined by giving coordinates:

[e(x)]ƒ = f(x),

is an embedding. Since ℱ is countable, Πƒ∈ℱ If =  , and we have
established (c).

c) ⇒ b) :  is separable and metric and thus so is every
subspace of  .

b) ⇒ a) : This is obvious. ■

Apparently second countability is a strong axiom, differing from
metrizability only by a separation axiom.



23.2 Corollary. The continuous image of a compact metric
space in a Hausdorff space is metrizable.

Proof. Let f be a continuous map of a compact space X onto a Hausdorff
space Y. Then Y is compact and thus regular so, by Urysohn’s theorem, it
suffices to show Y is second countable. Let ℬ be a countable base for X and
let  be the collection of all finite unions of sets from ℬ. Then  = {Y–f(X–
C) | C ∈  } is a countable collection of open sets in Y; we claim it is a
base for Y. Let U be open in Y and suppose p ∈ U. Then f–1(p) ⊂ f–1(U) and
f–1(p) is compact. Now a simple argument shows that there are sets B1 , . . . ,
Bn in ℬ such that f–1(p) ⊂ B1 ∪ . . . ∪ Bn ⊂ f–1(U). Let C = B1 ∪ . . . ∪ Bn.
Then C ∈  and (easily) p ∈ Y–f(X–C) ⊂ U. Thus  is a base for Y. ■

The next metrization theorem will be useful later in our work with
uniform spaces. We need some terminology.

23.3 Definition. A normal sequence in a space X is a sequence  , . . .
of open covers of X such that  star-refines  , for n = 1, 2, . . . . It will
be called a compatible normal sequence in X iff {St (x,  ) ∣n = 1, 2, . . . }
is a nhood base at x, for each x ∈ X. Any open cover of X which is  in
some normal sequence in X will be called a normal cover. (Thus, every
cover in a normal sequence is a normal cover.)

23.4 Theorem. A topological space X is pseudometrizable iff it
has a compatible normal sequence. (Hence, a T0-space is
metrizable iff it has a compatible normal sequence.)

Proof If X is pseudometrizable, its topology generated by the pseudometric
p, define  = {Up(x, 1/3”) | x ∈ X}. Then the sequence  , . . . is a
compatible normal sequence in X. (Certainly the sets St (x,  ) form a
nhood base at x, for each x in X. It is also pretty clear that St (Uρ(x, 1/3”), 

 ) ⊂ Uρ(x, 1/3n–1), so that . . .  * <  * <  .)



Conversely, suppose we have a compatible normal sequence (  ) for X.
Define t on X × X as follows:

t(x, y) = 0 if y ∈ St (x, ), all n,

t(x, y) = 1 if y ∉ St (x, ),

t(x, y) = if y ∈ St (x, ), y ∉ St (x, ),

t(x, y) = if y ∈ St (x, ), y ∉ St (x, 
).

Now for x, y ∈ X, let  (x, y) be all finite sequences s = {x1, . . . , xn} of
points of X such that x1 = x, xn = y or x1 = y, xn = x. Define

The reader will have no trouble verifying that p(x, y) is a pseudometric. It
remains to show that p is compatible with the topology on X.

Let  be the cover of X by the spheres Uρ(x, 1/2"). It will suffice to
show that, for any n,

a.  <  ,
b.  <  ,

since it will then be clear that the topologies generated by the two
sequences are the same. (Compare the nhood bases at any point.)

a) Suppose U ∈  . Pick x ∈ U. If y ∈ U, then y ∈ St (x,  ) so t(x, y)
≤ 1/2" and hence p(x, y) ≤ 1/2n < 1/2n–1. Thus y ∈ Uρ(x, 1/2n–1), so U ⊂
Up(x, 1/2n–1). Thus  <  .



b) To show  <  , it is enough to prove that whenever p(x, y) <
1/2", then x and y lie together in some element of  , since then

Uρ(x, 1/2n) c St (x,  ) ⊂ U

for some U ∈  .

Hence, suppose p(x, y) < 1/2n. Then

and consequently, for some sequence {x1, . . . , xk} from  (x, y),

We proceed now by induction on the length k of this sequence. If k = 2, then
t(x, y) < ½“ so that y ∈ St (x,  ), y ∉ St (x,  for some m > n. Hence,
in particular, y ∈ St (x,  ), from which it follows that x, y ∈ U for
some U ∈  in fact, so that certainly x, y lie together in some U’ ∈  .
(Recall, then, that if t(x, y) < 1/2n, we have x and y together in some
element of  ; we will use this again.)

Suppose the result is true for sequences of length < k, and suppose 
t(xi-1, xi) < 1/2n. Let j be the last number, 2 ≤ j ≤ k, such that

Then



so that

Now by the inductive hypothesis x1, xj lie in some U1 ∈  while the
argument above shows, since t(xj, xj+1) < 1/2n, that xj, xj+1 lie in some U2 ∈

 , and finally, using the inductive hypothesis again, xj +1, xk lie in some
U3 ∈  . Then x1 and xk lie in St (U2,  ) ⊂ U for some U ∈  .
This establishes our claim, by induction. ■

 
 

The above construction should be studied carefully. It and the theorem it
proves are fundamental building blocks in the theory of uniform spaces,
which we will develop in Sections 35 through 41.

We exhibit a use of the above theorem by proving the following elegant
neighborhood characterization of metrizable spaces, a slight alteration of a
result of Nagata.

23.5 Theorem. A T0-space X is metrizable iff each x ∈ X possesses a
countable nhood base {Uxn |n ∈ N} with the following properties:

a. y ∈ Uxn ⇒ Uyn ⊂ Uxn–1
b. y ∉ Uxn–1 ⇒ Uyn n Uxn = Ø.

Proof. ⇒ : This part is easy, since the properties (a) and (b) are obviously
satisfied if Uxn is the disk of radius 1/2n about x.

⇐ : Let Un = {Uxn | x ∈ X}. We claim St (Uxn, Un) ⊂ Uxn–2, for any n >
2. Suppose Uzn n Uxn ≠ Ø. Then, by property (b), z ∈ Uxn-1. Hence, by



property (a), Uzn ⊂ Uxn–2, and thus St (Uxn, Un) ⊂ Uxn-2 as asserted. It now
follows that Un star-refines Un–2 for any n > 2, so that U1, U3, . . . is a
normal sequence. It also follows that St (x, Un) ⊂ Uxn–2 for any n > 2, so
that U1, U3, . . . is compatible with X. Thus, by 23.4, X is metrizable. ■

We introduce now an idea which is obviously related to the notion of a
compatible normal sequence; it will subsequently be used in Theorem 23.7.

23.6 Definition. A development for a space X is a sequence U1, U2, . . . of
open covers of X such that Un refines Un–1, and, at each x ∈ X, {St (x, Un) |
n = 1, 2, . . .} is a nhood base. A space having a development is called
developable. A Moore space is a regular, Hausdorff space having a
development.

The requirement that Un refine Un–1 is not crucial. An otherwise
satisfactory sequence without this property can easily be made (the reader
should do it !) to give rise to a development.

The normal Moore space conjecture states that every normal Moore
space is metrizable. Whether or not this is true is an unsolved question; it
may, in fact, be unsolvable. See the notes. A related theorem on
metrizability of developable spaces can easily be given here. It is the first
recorded metrization theorem, due to Alexandroff and Urysohn in 1923.

23.7 Theorem. A T0-space X is metrizable iff it has a
development U1, U2, . . . with the additional property that
whenever U, V ∈ Un and U n V ≠ Ø, then U ∪ V ⊂ W for some
W ∈ Un–1.

Proof. Necessity is easy. If X is metrizable, take for Un the collection of
1/4n spheres in X.

To prove sufficiency, we employ the nhood metrization theorem, 23.5.
Let U1, U2, . . . be a development for X with the required property. Then
easily, for each n > 1, we find that if U ∈ Un and x ∈ U, then St (U, Un) ⊂



St (x, Un–1). Now for n = 1, 2, . . . and x ∈ X, define Uxn = St (x, Un). Then
we need only verify properties a) and b) of Theorem 23.5.

a) If y ∈ Uxn, then for some V ∈ Un, x ∈ V and y ∈ V. But then

Uyn = St (y, Un) ⊂ St (V, Un) ⊂ St (x, Un–1) = Uxn–1,

using the comment above for the next-to-the-last step.

b) If Uxn n Uyn ≠ Ø, then for some U, V ∈ , U ∩ V ≠ Ø. But then U ∪
V ⊂ W for some W ∈ , and hence y ∈ St (x, ) = Uxn–1. Thus, if y
∉ Uxn–1, then Uyn n Uxn = ø. ■

Each of the metrization theorems so far given possesses unique
advantages. The Urysohn theorem is an indispensable part of the theory of
separable metric spaces; 23.4 (which is a variant of the “uniform
metrization theorem”) will play a key role in building a theory of uniform
spaces in Chapter 8; the nhood metrization theorem, in addition to having a
unique visual appeal, is clearly well suited to dealing with spaces whose
primary description is a nhood description; the Alexandroff-Urysohn
theorem is historically important and takes on additional significance in
investigation of questions involving metrization of Moore spaces.

The last three named theorems are general, in the sense that they apply,
unlike the Urysohn theorem, to any topological space. The next theorem,
which also possesses this advantage, is usually called the “general
metrization theorem,” however, because it alone provides the Urysohn
theorem as an easy corollary. It was discovered and proved in the early
1950’s by Nagata, Smirnov and in a slightly different form, Bing. Our
treatment is essentially Smirnov’s. Note the key role played by A. H.
Stone’s theorem that every metric space is paracompact.

The vehicle for proving the general metrization theorem is, as with the
Urysohn theorem, an embedding. This time the “universal space” is a
generalization of Hilbert space.



 
 
23.8 Definition. Let τ be an infinite cardinal number. The generalized
Hilbert space of weight τ, Hτ, is described as follows (compare with 18.7b):

Let A be an index set of cardinal τ. Then Hτ consists of all functions x: A
→ R such that

a. xa ≠ 0 for at most countably many a ∈ A,

b. ∑a∈A  converges,

where we are writing xa instead of x(a). Note that the sum in (b) makes
sense, since it is really a countable sum. The distance function in Hτ is
defined, just as it was in Hilbert space H, by

Recall that a collection U of sets in X is σ-locally finite provided 

 where each n is a locally finite collection.

23.9 Theorem. A topological space is metrizable iff it is T3 and
has a σ-locally finite base.

Proof. Necessity follows from the fact that every metric space is
paracompact.

Thus, let be the cover of X by 1/2n spheres, and let be a locally finite
refinementof Un. Then is a σ-locally finite base for X. Since every
metric space is T3, necessity is proved.

We now prove sufficiency. Let X be a space with a σ-locally finite base ℬ
= It is apparent that X is paracompact, since every open cover has a σ-
locally finite refinement consisting of basis elements, and hence X is



normal.

Next, we show X is perfectly normal. Let G be open in X. By regularity,
for each x ∈ G, there is a basis element Bx such that  ⊂ G. Let

Bn = ∪ {  | Bx ∈ ℬn}.

Then Bn is the union of a locally finite collection of closed sets and hence
closed, and G =  Bn. Thus every open set in X is an Fσ, so X is
perfectly normal. (See 15C.1.)

Now each basis element Bnα has the property that for some continuous
ƒnα: X → I, Bnα = {x ∈ X | ƒnα(x) ≠ 0}, by perfect normality. Let τ be the
cardinal number of the base ℬ, and let Hτ be the generalized Hilbert space
of weight τ ; we can use the pairs n, α as the index set A in the definition of
Hτ. Define F : X → Hτ by giving coordinate functions Fnα(x) = [F(x)]nα as
follows:

The denominator here makes sense because for any x in X, x ∈ Bnα for only
finitely many Bnα ∈ ℬn, so that fnα(x) ≠ 0 for only finitely many α, if n is
fixed. This also shows that Fnα(x) ≠ 0 for only countably many pairs n, α.
Since

we find that



so that F(x) is indeed an element of Hτ. We claim F is a homeomorphism of
X with a subset of Hτ.

First, if x ≠ y in X, then for some Bnα ∈ ℬ, x ∈ Bnα and y ∉ Bnα. Then
fnα(x) ≠ 0 and fnα(y) = 0, from which it follows that Fnα(x) ≠ Fnα(y), and
hence F(x) ≠ F(y). Thus, F is one-one.

Continuity is harder. First, note that each Fnα is continuous as a map of X
into R. Now let x0 ∈ X and ε > 0 be given. Choose N so large that

Now let U be a nhood of x0 meeting only finitely many Bnα for n ≤ N; say,
U meets  . Let V ⊂ U be a nhood of x0 such that for x ∈ V,

for i = 1, . . . , k. Now for x ∈ V and any pair n, α other than ni, αi for i = 1, .
. . , k, we have Fnα(x) = Fnα(x0) = 0. Hence, for x ∈ V,

But we also have



by choice of N. It now follows that, for x ∈ V,

Hence, for x ∈ V, d(F(x), F(x0)) < ε, proving continuity of F.

Finally, we show F is closed. If A is closed in X, we assert 
Suppose F(x) ∉ F(A); i.e., x ∉ A. Then for some nα, x ∈ Bnα and Bnα ∩ A
= Ø Hence fnα(x) ≠ 0 and fnα(A) = 0. It follows that Fnα(x) ≠ 0 and Fnα(A) =

0 and then, obviously, d(F(x), F(A)) > 0 so that . Thus 
, so F(A) is closed. ■

 
 

The proof of the general metrization theorem just given is that of
Smirnov. Nagata’s proof of the same theorem is accomplished by
converting a σ-locally finite base for X to a countable collection of locally
finite covers (using perfect normality), proving that a locally finite cover of
a normal space is a normal cover, and then applying the uniform metrization
theorem (23.4).

Problems

23A. Examples on metrizability
1. The looped line (4D) is metrizable.

2. The scattered line S (5C) is not metrizable.



3. The disjoint union of metrizable spaces is metrizable.

4. Let A be any infinite set and for each α ∈ A, let Iα be a copy of I. Let
Z be the disjoint union of the spaces Iα and let X be the quotient of Z
obtained by identifying all the left-hand endpoints. Let a denote the
common left-hand endpoint of the spaces Iα in X. Does the following
metric:

ρ(x, y) = |x–a| + |a–y| if x ∈ Iα, y ∈ Iβ, α ≠
β,

ρ(x, y) = |x–y| if x, y ∈ Iα,

generate the topology of X? The set X with the metric ρ is the hedgehog
space (of spininess |A|), and ρ is the hedgehog metric. Metrizability of
quotient spaces in general is discussed in Exercise 23K.

5. Find a countable Hausdorff space which is not metrizable.

23B. Exercise on normal sequences and covers
1. Let be an open cover of X. If there is a normal open cover {Uλ | λ ∈

Λ} of X such that, for each λ, {G ∩ Uλ | G ∈ } is a normal cover of Uλ,
then is a normal cover of X.

2. If is a normal cover of X, then {G × Y | G ∈ } is a normal cover of
X × Y.

3. Every locally finite open cover of a T4-space is a normal cover.

4. If a normal sequence , . . . is compatible with X, then is a
base for X. The converse fails.

23C. Metrizability of X*
The following are all equivalent, for a locally compact metric space X :

a. X is separable.



b. X =  Kn, where Kn is compact and Kn c Int Kn+1.
c. X* is metrizable.

(Recall that X* is the one-point compactification of X.)

23D. Metrizability of βX
1. If p ∈ X has a countable base of nhoods in X, it has a countable base of

nhoods in βX.

2. No point in βX– X can be a Gδ in βX. [Otherwise {p} is a zero set in
βX. Use the resulting function f to construct disjoint zero sets in X whose
closures in βX are not disjoint. Then refer to 19J.4.] 23E. Urysohn’s theorem

1. Prove that X is T3 and second countable iff X is a separable metric
space by appealing to the general metrization theorem (23.9). (Compare
with 23.1.)

2. Give an example of a second countable Hausdorff space which is not
metrizable (thus showing regularity is needed in 23.1).

3. Show that a regular Lindelöf space need not be metrizable (so that
second countability cannot be weakened in 23.1). Recall that a regular
separable space need not even be normal (16G) so that improvement of 23.1
in this direction is not possible either.

23F. Semimetrization
A semimetric on a set X is a function d: X × X → R satisfying the
requirements: for all x and y in X,

a. d(x, y) = 0 iff x = y, and
b. d(x, y) = d(y, x).

One can define open sets in a semimetric space just as if d were a metric,
and the result is a topology on X. The question then arises: which
topological spaces are semimetrizable?

 
 



1. X is semimetrizable iff at each x ∈ X, a countable nhood base {Uxn | n
= 1, 2, . . .} can be found such that y ∈ Uxn ⇔ x ∈ Uyn.

2. Not every first countable space is semimetrizable.

23G. Piecewise metrizability
1. If a Tychonoff space X is the union of a locally finite collection of

closed, metrizable subspaces, then X is metrizable.

2. If a T4-space X is the union of any locally finite collection of
metrizable subspaces, then X is metrizable. [Use 15.10.]

3. A locally metrizable, Hausdorff space is metrizable iff it is
paracompact. (Thus, every paracompact n-manifold is metrizable.)

4. A space can be the union of two metrizable subsets without being
metrizable. [Let X be the one-point compactification of an uncountable
discrete space.] For further results, see the notes.

5. If X is T2 and the union of two compact metrizable subsets, then X is
metrizable. (This is the addition theorem for compacta. It is also true for
countable unions; see the notes.)

23H. The nhood metrization theorem
Provide examples to show that neither one of the conditions of 23.5 is by
itself sufficient to ensure metrizability.

23I. The general metrization theorem
1. Exhibit a specific σ-locally finite base for R.

2. Show that regularity is needed in the general metrization theorem; that
is, that T3 cannot be replaced by T2 in 23.9. [See 23E.2.]

23J. Frink’s metrization theorem
Use the uniform metrization theorem (23.4) to prove the following
metrization theorem, due to A. H. Frink.



 
 

A T1-space X is metrizable iff there is a nhood base {Uxn | n ∈ N} at each
x ∈ X such that:

a. Ux1 ⊃ Ux2 ⊃ · · · ,
b. for each n ∈ N, there is some m > n such that Uxm ∩ Uym ≠ ø ⇒ Uxm ⊂

Uyn.

23K. Metrizability of quotient spaces Let f be a closed continuous map of a
metric space M onto a space Y.

1. If p ∈ Y has a countable nhood base, then f–1(p) has compact frontier.
[Let {Vn | n = 1, 2, . . .} be a countable nhood base at p. If Fr (f–1(p)) is not
compact, let (xn) be a sequence in Fr (f–1(p)) with no cluster point. For each
n, find yn ∈ f–1(Vn) - Fr (f–1(p)) within 1/n of xn. Then E = {yn | n = 1, 2, . .
.} is closed and hence f(E) is closed in Y. But .]

2. Suppose for each p ∈ Y, f–1(p) has compact frontier. Let Fp = [f–1(p)]
and define sets Upn as follows:

Wpn = {x ∈ X | d(x, Fr Fp) < 1/n}  
Vpn = Wpn ∪ Int Fp  

Upn = f(Vpn) = Y–f(X–Wpn).

Verify that {Upn | n = 1, 2, . . .} is a nhood base at p ∈ Y satisfying the
conditions of 23J.

3. The following are equivalent:
a. Y is metrizable,
b. Y is first countable,
c. For each p ∈ Y, f–1(p) has compact frontier.



23L. Metrizability of continuous images
According to 23.2, the Hausdorff continuous image of a compact metric
space is metrizable. This result cannot be improved by weakening the
conditions on the space, according to part 2 below.

 
 

1. Every closed continuous image of a metric space X in a Hausdorff
space is metrizable iff the set of accumulation points of X is compact. [Use
23K.3.]

2. Every continuous image of a metric space X in a Hausdorff space is
metrizable iff X is compact. [Use part 1.]

24 Complete metric spaces
Compact spaces enjoy nice properties, but compactness is itself a strong
property, tailored to overcome the weak structure available in a topological
space. When a metric is present, it is possible to gain many of the
advantages of compactness with a weaker property, tailored to the metric
structure. As with compactness, it provides for the existence of certain
limits and, as with compactness, this makes it interesting to “existential”
analysts.

24.1 Definition. A sequence (xn) in a metric space (M, ρ) is Cauchy (or,
where confusion is possible, ρ-Cauchy) iff for each ε > 0, there is some
positive integer N such that ρ{xn, xm) < ε whenever m, n ≥ N.

It is apparent that every convergent sequence in (M, ρ) is Cauchy. For if ε
> 0 is given, as soon as the terms of the sequence pass the point beyond
which they are within ε/2 of their limit, they will all be within ε of each
other, by the triangle inequality.

A Cauchy sequence need not converge, however. For example, the
sequence (1/n) is Cauchy in the open interval (0, 1) with its usual metric,
but fails to converge (in that space). In some metric spaces, every Cauchy
sequence converges. This is true of R with its usual metric, for example, by
the classical Cauchy criterion for convergence.



 
 
24.2 Definition. A metric space (M, ρ) is complete iff every Cauchy
sequence in M converges. We also say ρ is a complete metric for M. A
topological space X is completely metrizable iff there is a complete metric
for X which generates its topology. Thus X is completely metrizable iff it is
homeomorphic to some complete metric space.

Completeness is a property of metric spaces, complete metrizability is a
property of topological spaces. For example, (0, 1) with its usual metric is
not a complete metric space, but it is completely metrizable since it is
homeomorphic to the complete space R. Some metrizable spaces are not
completely metrizable; one example is the space Q of rationals, as we will
see in 25A.4.

In showing (0, 1) was not complete, we produced a nonconvergent
sequence which was Cauchy because it did converge in a larger space. The
next theorem shows that all examples of noncomplete spaces have the same
property, by providing the fundamental result that every metric space has a
completion; that is, a complete space containing it as a dense subspace. We
require a definition.

24.3 Definition. Metric spaces (M, p) and (N, σ) are isometric iff there is a
one–one function f of M onto N such that σ(f(x), f(y)) = p(x, y), for all x and
y in M. The mapping f is called an isometry.

24.4 Theorem. Every metric space M can be isometrically
embedded as a dense subset of a complete space. The resulting
completion is unique up to an isometry which leaves M
pointwise fixed.

Proof. The details of the following proof should be familiar. The process
used is entirely analogous to the construction of the real line as a set of
equivalence classes of Cauchy sequences of rational numbers.

Let (M, ρ) be a metric space, ℳ the set of all Cauchy sequences in M.
Note that if (xn, (yn) ∈ ℳ, then (ρ(xn, yn)) forms a Cauchy sequence in R



and hence converges. Thus we can define

Moreover, d turns out to be a pseudometric. Let (ℳ*, d*) be the associated
metric space (see 2C.2). For reference, ℳ* has for points the equivalence
classes [(xn)] consisting of all (yn) such that limn→∞ ρ(xn, yn) = 0, and d* is
defined on ℳ* by

Now the map g(x) = [(x, x, . . .)] is an isometry of M onto a dense subspace
of ℳ*. Moreover, ℳ* is complete (an easy diagonal process shows every
Cauchy sequence converges), so ℳ* is the desired completion of M.

Uniqueness of ℳ* is easy. If ℳ′ is any complete space containing M as
a dense subspace, then each point x in ℳ’ is reached by a sequence (xn) in
M. Define f : ℳ′ → ℳ* by f(x) = [(xn)], where (xn) is a sequence in M
(necessarily Cauchy!) converging to x. Then f is well defined and preserves
distances, and if x ∈ M, f(x) = [(x, x, . . .)], so f leaves M pointwise fixed. ■

Perusing the proof of 24.4, we obtain the following corollary.

24.5 Corollary. Every pseudometric space has a pseudometric
completion; that is, can be isometrically embedded as a dense
subset of a complete pseudometric space.

24.6 Examples. a) The completion of (0, 1) is [0, 1].

b) The completion of the space of rationals Q is the real line.

c) Let X be any topological space, C00(X) the space consisting of all
bounded continuous real-valued functions f : X → R which are 0 except on



some compact subset of X; i.e., C00(X) is all real-valued continuous
functions with compact support. Define

Then C00 with this distance function is a metric space, but is not complete.
Its completion is the set of functions C0(X) which are small off compact
sets; i.e., C0(X) = {f: X → R | f continuous and for each ε > 0 there is a
compact Kf ⊂ X such that |f(x)| < ε for all x ∉ Kf}.

Next on our program is the development of Lavrentieff’s theorem (24.9),
one of the more important embedding theorems useful in dealing with
complete metric spaces.

 
 
24.7 Definition. Suppose f : A → M, where M is a metric space and A is a
subset of X. We define osc (f, U), the oscillation of f on U, for any U ⊂ X,
as follows:

osc (f, U) = sup {ρ(f(x), f(y))| x, y ∈ U ∩ A},

and we accept the convention that osc (f, U) = ∞ if U ∩ A is empty.

If X is a topological space and x ∈ Ā, we define the oscillation of f at x to
be

osc (f, x) = inf {osc (f, U) | U nhood of x}.

24.8 Lemma. Let X be a metric space, Y a complete metric
space and A ⊂ X. If f : A → Y is continuous, then f can be
extended to a continuous function f* : A* → Y, where A* is a
Gδ-set in X and A ⊂ A* ⊂ Ā.



Proof. Let A* = {x ∈ Ā | osc (f, x) = 0}. For x ∈ A*, let (xn) be any
sequence in A converging to x. Given ∈ > 0, since osc (f, x) = 0, there is
some nhood U of x such that osc (f, U) < ε. Since xn → x, there is some N
such that m, n ≥ N ⇒ xn, xm ∈ U ⇒ ρ(f(xn), f(xm)) < ε. Thus, (f(xn)) is a
Cauchy sequence in Y and since Y is complete, f(xn) → y for some y. Now
define f*(x) = y. The reader should check that this definition of f*: A* → Y
is independent of the choice of the sequence (xn) converging to x, and that
f* as defined is continuous.

It remains, then, to show that A* is a Gδ-set in X. But if we let

An = {x ∈ Ā | osc (f, x) < 1/n},

then An is open in Ā. For if y ∈ An, then there is some open nhood U of y
such that osc (f, U) < 1/n, and it is clear that U ∩ Ā ⊂ An. Since 

 , = A* is a Gδ-set in A and thus in X. ■

24.9 Theorem. (Lavrentieff) If X and Y are complete metric
spaces and h is a homeomorphism of A ⊂ X onto B ⊂ Y, then h
can be extended to a homeomorphism h* of A* onto B* where
A* and B* are Gδ-sets in X and Y, respectively, and A ⊂ A* ⊂
Ā, B ⊂ B* ⊂  .

Proof. Since h: A → Y is continuous, it can be extended to a continuous
map h* : A1 → Y, where A1 ⊂ Ā and A1 is a Gδ-set in X.

Since h –1: B → X is continuous, it can be extended to a continuous map
g* : B1 → X, where B1 ⊂  , and B1 is a Gδ-set in Y.

Let A* = {x ∈ A1 | h*(x) ∈ B1}. This is the inverse image of a Gδ-set,
and thus a Gδ-set, in A1 and hence in X. We claim h* | A* is a



homeomorphism of A* onto the Gδ-set B* = {x ∈ B1 | g*(x) ∈ A1} in Y. We
can prove this by showing

a. h*(A*) = B*.
b. (h*)–1 = g*.

If x ∈ A*, then h*(x) ∈ B1 and g*(h*(x)) = x ∈ A1, so h*(x) ∈ B*. Thus h*
(A*) ⊂ B*. If y ∈ B*, then g*(y) ∈ A1 and h*[g*(y)] = y, so y ∈ h*(A*).
Thus h*(A*) = B*. Moreover, since h*[g*(y)] = y, for each y ∈ B*, and g*
[h*(x)] = x, for each x ∈ A*, h* and g* are inverses. Thus h* is a
homeomorphism of A* onto B*. ■

 
 

Making good use of Lavrentieff’s theorem, we turn to the question of
manufacturing new complete spaces from old. The product theorem is not
difficult, but the full force of Lavrentieff’s theorem will be needed to obtain
a pleasant subspace theorem. We can easily prove a weak subspace theorem
now.

 
 

24.10 Theorem. A closed subset A of a complete metric space (M, ρ) is
complete.

Proof. If (an) is a ρ-Cauchy sequence in A, it is also Cauchy in M and hence
converges, say to a. But A is closed, so a ∈ A. Thus every Cauchy sequence
in A converges (to a point in A). ■

24.11 Theorem. Suppose Xn is a nonempty metric space for n =.
1, 2, . . .. Then Π Xn is completely metrizable iff each Xn is
completely metrizable.

Proof. ⇒ : Pick ai ∈ Xi, i = 1, 2, . . .. Then Xn is isometric to the closed
subset



 except for i = n}

of Π Xn, and it follows that Xn is completely metrizable.

⇐ : Suppose ρn is the complete metric for Xn, n = 1, 2, . . .. The bounded
metric

already introduced in 22.2 as equivalent to ρn is easily verified to be
complete (24A.3). Define ρ on Π Xn by

We know that this gives a compatible metric on Π Xn, so only completeness
remains to be checked. Suppose x1, x2, . . . is a ρ-Cauchy sequence in Π Xn.
Then for each i,  ,  , . . . is a  -Cauchy sequence in Xi, and hence
converges, say to yi. We assert x1, x2, . . . converges to y = (y1, y2, . . .). Let ε

> 0 be given. Choose N so large that  (1/2n) < ε/2. Then pick Nε so
large that when n > Nε,

for i = 1, . . . , N. Then for n > Nε we find



so that (xn) converges to y, as claimed. ■

We are now ready for the subspace theorem. The first part is due to
Alexandroff, the second to Mazurkiewicz. Both are classical results from
the 1920’s.

24.12 Theorem. A Gδ-set in a complete space is completely
metrizable. Conversely, if a subset A of a metric space M is
completely metrizable, it is a Gδ-set.

Proof. First, suppose G is open in the complete space (M, p). Define f(x) =
1/[ρ(x, M - G)] for each x ∈ G. Then f is continuous on G (24E). Now
define

ρ*(x, y) = ρ(x, y) + |f(x)–f(y)|

for x, y ∈ G. Then ρ* is a metric on G, and if a sequence (xn) in G is ρ*-
Cauchy, then it is ρ-Cauchy. Also, for any ε > 0 there is some integer N such
that



An easy computation with this last inequality shows that ρ(xn, M–G) must
be bounded away from 0; thus, for some δ > 0,

(xn) ⊂ Mδ = {x ∈ M | ρ(x, M–G) ≥ δ}.

But Mδ is closed in M and thus complete, and (xn) is ρ-Cauchy, so (xn)
converges in Mδ and hence in G. Thus, every ρ*-Cauchy sequence
converges and we have established that G is completely metrizable,
provided ρ* gives the same topology as does ρ on G. This is left as an
exercise (24E).

Now suppose H is a Gδ-set in M, say  , where each Hn is
open. From the above, Hn is completely metrizable, for each n, and hence Π
Hn is completely metrizable. But the set

Δ = {(x1, x2, . . .) ∈ Π Hn | x1 = x2 = · · ·}

is closed in Π Hn and thus completely metrizable, and by Exercise 24I, the
map

f(x) = (x, x, . . .)

is a homeomorphism of H with Δ. Thus H is completely metrizable.

Conversely, suppose A is a completely metrizable subspace of a metric
space M, and let M denote the completion of M. The inclusion i : A →  is
a homeomorphism, and thus, by Lavrentieff’s theorem, has an extension to
a homeomorphism of Gδ-sets. But i can have only itself for an extension so
evidently i(A) = A must itself be a Gδ in . Since the intersection with M of
a Gδ in  is a Gδ, A is a Gδ in M. ■



Thus, the completely metrizable spaces are precisely those metric spaces
which are Gδ-sets in whatever metric space they are embedded (“absolute
Gδ-sets”). Next we see that they retain this property, to a certain extent, in
nonmetric embeddings.

24.13 Theorem. For a metric space X the following are all equivalent:
a. X is completely metrizable,
b. X is a Gδ in its completion  ,
c. X is a Gδ in every metric embedding,
d. X is a Gδ in βX,
e. X is a Gδ whenever densely embedded in a Tychonoff space.

Proof. The equivalence of (a), (b), and (c) has already been established in
Theorem 24.12.

 
 

c) ⇒ d) : Let ρ be a bounded metric on X compatible with the topology.
For each x ∈ X, let ϕx : X → R be the function

ϕx(y) = ρ(x, y).

This is a bounded continuous real-valued function on X so by the mapping
property for βX, there is an extension  of ϕx to all of βX. Define ρ* on βX
by ρ*(a, b) = infx∈X  . Then ρ* is a pseudometric on βX, for

i) ρ*(a, a) = 0
ii) ρ*(a, b) = ρ*(b, a)
iii) if a, b, c ∈ βX, then



Moreover, the restriction of ρ* to X is ρ, and ρ* is a “continuous
pseudometric” on βX; that is, the topology it induces is weaker than the
usual topology on βX.

Now perform the usual metric identification on (βX, ρ*). The result is a
metric space K which contains X (X ⊂ βX is not affected by the
identification since ρ* is already a metric there). Let h : βX → K be the
identification map. Now X is a Gδ in K, and hence h–1(X) is a Gδ in (βX, ρ*)
and hence in βX. But h–1(X) = X.

d) ⇒ e): Suppose X =  Gn, each Gn open in βX, and let f: X → Y be an
embedding of X as a dense subset of a Tychonoff space Y. Then f has an
extension fβ: βX → βY. Consider the sets βY–fβ(βX–Gn) = Hn, for n = 1, 2, . .
.. They are open, since each fβ(βX–Gn) is compact and, moreover, for each
n, X c (fβ)–1(Hn) ⊂ Gn so that

.

Thus fβ(X) =  , so X is a Gδ in βY and hence in Y.
Note that we did make use of the fact that X was dense in Y in our tacit use
of the assumption that βY was a compactification of X, so that fβ was onto.

e) ⇒ c): If X is embedded in a metric space M, then by (e) X is a Gδ in 
and  is, of course, a Gδ in M. It follows that X is a Gδ in M. ■

We conclude this section with an important fixed point theorem for
complete spaces.



 
 
24.14 Definition. If f : X → X, a fixed point of f is a point x ∈ X such that
f(x) = x.

24.15 Definition. A map f: X → X, where (X, d) is a metric space, is d-
contractive provided d(fx, fy) ≤ α · d(x, y) for some α < 1 and all pairs (x, y)
in X x X.

24.16 Theorem. (Banach) If X is complete in the metric d and f :
X → X is d-contractive, then f is continuous and has precisely
one fixed point.

Proof. That f is continuous is clear (any distance decreasing map is
continuous). If x, y are both fixed points of f in X, then f(x) = x, f(y) = y so

d(x, y) = d(fx, fy) ≤ α · d(x, y),

but since α < 1, this can be so only if d(x, y) = 0; i.e., if x = y. Hence f has at
most one fixed point.

Choose x ∈ X. Consider the sequence x1, x2, . . . defined as follows: x1 =
x, x2 = f(x1), . . . , xn = f(xn—1). Then x1, x2, . . . is a Cauchy sequence and
hence converges, say to x0. We claim x0 is the required fixed point. In fact,
since xn → x0 and f is continuous, we have f(xn) → f(x0). But the sequence
f(x1), f(x2), . . . is just x2, x3, . . . so that xn → f(x0). It follows that f(x0) = x0,
as claimed. ■

 
 

Fixed-point theorems, such as the one just given, are useful in proving
certain existence theorems in differential and integral equations. One
example is given in 24L.



Problems

24A. Examples on completeness and completion
1. Hilbert space H (18.7) is complete.

2. The completion of C00(X) is C0(X) (see 24.6c).

3. If ρ is a complete metric on X, so is the metric ρ* defined by

ρ*(x, y) = min {1, ρ(x, y)}.

4. If I is any closed interval in R, the space C*(I) of bounded continuous
functions on I, with the sup metric ρ(f1, f2) = supx∈I |f1(x)–f2(x)|, is
complete.

5. The space P of irrationals is completely metrizable.

24B. Totally bounded metric spaces
A metric space M is totally bounded iff for each ε > 0, a finite number of ε-
disks will cover

M.
1. Every totally bounded metric space is bounded. The converse fails.
2. A metric space is separable iff it is homeomorphic to a totally bounded

metric space.
3. A metric space is totally bounded iff each sequence has a Cauchy

subsequence.
4. A metric space is compact iff it is complete and totally bounded.

The results of this exercise, particularly 3 and 4, have generalizations to
uniform spaces. See Section 39.

24C. Equivalent conditions for completeness



In a metric space (X, d), define the diameter of A ⊂ X to be δ(A) = sup {d(x,
y) | x, y ∈ A}.

1. The following are equivalent:
a. X is complete.
b. each decreasing sequence C1 ⊃ C2 ⊃ · · · of closed sets with δ(Cn) →

0 has nonempty intersection.
c. each infinite totally bounded (24B) subset has an accumulation point.

2. The condition that δ(Cn) → 0 in b) above is necessary.

3. A metrizable space is compact iff it is complete in every compatible
metric. [Use 22E.4 for sufficiency.]

24D. Completion
Check the details in the proof of 24.4. Specifically:

1. d, as defined on ℳ, is a pseudometric.

2. The map g(x) = [(x, x, . . .)] is an isometry of M with a subspace of
ℳ*.

3. If ℳ′ is a complete space containing M as a dense subspace, for each x
∈ ℳ′, let (xn) ⊂ M be a sequence converging to x and define f(x) = [(xn)].
Verify that f is an isometry of ℳ′ with ℳ*, such that f(z) = z for each z ∈
M (i.e., f(z) = g(z), see part 2).

24E. Equivalent metrics on open subsets
Let G be an open subset of a metric space (M, p). Define f(x) = 1/[ρ(x, M–
G)], for x ∈ G. Then for x and y in G, define ρ*(x, y) = ρ(x, y) + |f(x)–f(y)|.

1. f is continuous.
2. ρ* is a metric on G.
3. ρ* is equivalent to ρ on G.

24F. Topologically complete spaces



Certain of the assertions in 24.13 do not require metrizability of X. In
particular: a completely regular space X is a Gδ in βX iff X is a Gδ in every
completely regular space in which it is densely embedded.

A space which is a Gδ in its Stone-Čech compactification is called
topologically complete.

24G. Pseudometric completion
Given a pseudometric space (X, p), we can form the metric identification of
the completion of X, i.e., (  )*, or the completion of the metric
identification of X, i.e.,  .

1. The metric identification of a complete pseudometric space is a
complete metric space.

 
 

2. (  )* is isometric to 

24H. Extending maps
Give an example of a subset A of a metric space X and a continuous map f
of A into a complete space Y which cannot be extended to all of Ā (compare
with 24.8).

241. Embedding an intersection in a product

If X is a topological space and Xn ⊂ X for each n = 1, 2, . . . then  is
homcomorphic to {(x1, x2,. . .) ∈  Xn | x1 = xn, n = 2, 3,. . .}.

24J. Banach spaces
A normed linear space (2J) is called a Banach space iff its norm metric is
complete.

A sequence x1, x2, . . . of points in a normed linear space is summable iff
the associated sequence x1, x1 + x2,. . . of partial sums converges (in the
norm metric) and absolutely summable if ∑∥xn∥< ∞.



1. A normed linear space is a Banach space iff every absolutely
summable sequence is summable.

 
 

2. If Y is any Banach space, the space L(X, Y) of all bounded linear
operators (7L) from a normed linear space X to Y is a Banach space. In
particular, the dual space X* of any normed linear space X is a Banach
space.

3. Rn, with any of the norms given in 2J.6, is a Banach space. [(a) gives
the usual metric, which we already know is complete.]

4. The space l2 of all real sequences (xn) such that ∑|xn|2 < ∞, with the
norm ∥(xn)∥ = [∑ |xn|2]1/2 is a Banach space. Compare with 18.7(b).

5. The space s of all sequences of real numbers, with the norm

is a Banach space.

6. For any topological space X, the space C*(X) of bounded real-valued
functions on X, with the sup norm ∥f∥ = sup |f(x)|, is a Banach space.

The dimension of a Banach space is the least cardinal of a base for the
underlying vector space.

 
 

7. If a Banach space is ℵ0-dimensional, it is separable. The spaces
described in (3), (4) and (5) above are separable, while (6) need not be.

24K. The irrationals as a product
The space P of irrational numbers (with the relative topology in R) is
homeomorphic to the product of denumerably many copies of N.



[Enumerate the rationals in R as r1, r2,. . .. Now partition P into countably
many intervals I1, I2,. . . each having rational endpoints and length ≤  .
Also, so determine I1, I2, . . . that one of the endpoints of one of the
intervals is r1. Next partition each In into countably many intervals In1, In2,.
. . each having rational endpoints and length  Also, we may so determine
these intervals that r2 is an endpoint of some interval of the form , while
r1 is not. Continue, at the kth stage using intervals of length ≤ (1/2k) with
rational endpoints and requiring that rn be an endpoint of some interval 

 while none of r1,. . ., rn–1 are. For an irrational number p, consider
the sequence , . . . of intervals containing p. Using 24C to prove that
it is onto, show that the map f(p) = (n1, n2,. . .) is a homeomorphism of P
onto the product  .]

24L. Picard’s theorem
Let f(x, y) be a continuous real-valued function defined on an open set A in
the plane containing (x0, y0) and suppose f satisfies a Lipschitz condition
with respect to y:

|f(x, y1)–f(x, y2)| ≤ M |y1–y2|.

We assert that the integral equation

(1)

which is equivalent to the differential equation



has a unique solution defined on some closed interval [x0–K, x0 + K].

Let B be an open set such that (x0, y0) ∈ B c A and such that |f(x, y)–f(x0,
y0)l < L, for some constant L, on B. Let K be a positive constant < 1/M such
that

{(x, y)||x–x0| ≤ K,|y–y0| ≤ KL} ⊂ B.

For each ϕ ∈ C*[x0–K, x0 + K], define Aϕ by

1. A maps a closed subspace of C*[x0–K, x0 + K] into itself.

2. A is a contraction mapping, if C*[x0–K, x0 + K] is endowed with the
sup metric: ρ(ϕ1, ϕ2) = sup {|ϕ1(x)–ϕ2(x)|| x ∈ [x0–K, x0 + K]}.

3. Conclude that the integral equation (1) has a unique solution defined
on [x0–K, x0 + K].

24M. Lavrentieff ’s theorem
Show that Lavrentieff’s theorem (24.9) is equivalent to the following
complement to 22E.4: if A is a subset of a metrizable space X and ρ is a
compatible metric on A, then ρ can be extended to a compatible metric on a
Gδ-set in X which contains A.

25 The Baire theorem



The applications of topology to analysis are usually manifested in the form
of an “existence theorem” of some sort and the major share of the work in
this direction is borne, directly or indirectly, by two theorems: the
Tychonoff theorem and the Baire category theorem. We turn now to the
development necessary to introduce the latter.

 
 
25.1 Definition. X is a Baire space iff the intersection of each countable
family of dense open sets in X is dense. A set A ⊂ X is nowhere dense in X
iff IntX Clx A = ø. A set A ⊂ X is first category in X iff A = An, where
each An is nowhere dense in X. All other subsets of X are called second
category in X. You can visualize first category sets as being “thin”, second
category sets as being “thick”.

Every Baire space is second category in itself. In fact:

25.2 Theorem. X is second category in itself iff the intersection
of every countable family of dense open sets in X is nonempty.

Proof. ⇒ : Let G1, G2, . . . be dense open sets. Then X–G1, X–G2,. . . are

nowhere dense closed sets, so is first category. Hence 
 .

⇐ : If X =  An, each An closed and nowhere dense, then

is an intersection of open dense sets and hence ≠ ø, a contradiction. Thus X
≠ An for any sequence of closed nowhere dense sets An. ■



25.3 Theorem. (Baire) A Gδ-set in a compact Hausdorff space is
a Baire space.

Proof. We begin by proving that a compact T2-space is Baire. Let J1, J2, . . .
be dense open sets in the compact space K, and let U be any open set in K.
Now U ∩ J1 ≠ ø so there is a nonempty open set V1 with  ⊂ U ∩ J1
(using regularity). Similarly, a nonempty open set Vn can be found, n = 2, 3,
. . . such that  ⊂ Vn—1 ∩ Jn. Now , . . . is a decreasing sequence of
compact sets, so  . But  . Thus every open set U
meets  , establishing that  is dense in K. Hence, K is a Baire space.

Now suppose X =  where each Hn is open in a compact Hausdorff
space K. We can assume X is dense in K (otherwise replace K by ClK X).
Now if G1, G2, . . . is a sequence of dense open sets in X, then for each i, Gi
= Ji n X, where Ji is dense and open in K. But now J1, H1, J2, H2, . . . is a
sequence of dense open sets in K, and hence

is dense in K and therefore in X. Hence X is a Baire space. ■

25.4 Corollary. a) Every locally compact Hausdorff space is Baire.

b) Every completely metrizable space is Baire.

Proof. A locally compact space X is open in βX (18.4) and a completely
metrizable space X is a Gδ in βX (24.13). ■

The corollary above, rather than 25.3, is often referred to as the Baire
theorem since it deals with the spaces of most interest to analysts. Its
importance is well documented. Two of the most powerful theorems in
functional analysis, the open mapping principle and the uniform
boundedness principle (25D) are direct consequences of application of the



Baire theorem. The example we give next is typical of an existence theorem
based on the Baire theorem; we show that some element of a space must
have a given property by showing that the space is second category while
the elements which do not have the property form a set of first category.

25.5 Theorem. There is a continuous real-valued function f on I
having a derivative at no point.

Proof. We will show that

a) C(I) = all real continuous functions on [0, 1] is complete in the
uniform metric d, and

b) the set ℰ of functions in C(I) which have a derivative somewhere is
first category in C(I).

It will follow that C(I)–ℰ is nonempty; in fact, it must then be second
category.

a) Let f1, f2, . . . be a Cauchy sequence of functions from C(I) in the
uniform metric. Then, for each x ∈ I, f1(x), f2(x), . . . is a Cauchy sequence
of real numbers and hence converges, say to f(x). The resulting function f
defined on I is easily verified to be the uniform limit of the continuous
functions f1, f2,. . . and thus continuous. Since every Cauchy sequence thus
converges, C(I) is complete.

b) Define ℰn for n = 1, 2, . . . by

If a function f ∈ C(I) has a derivative at some point, then for some n large
enough, f ∈ ℰn; hence ℰ ⊂  ℰn. Thus we can establish (b) by showing



each ℰn is closed and has no interior.

 
 

1. ℰn has no interior. Given f ∈ ℰn and ε > 0, we will find a continuous
function g such that d(f, g) < ε and g ∉ ℰn; that is, for all x ∈ [0, 1–1/n],
there is some h ∈ (0, 1/n] with

We sketch the construction of g. Find a polynomial function P(x) on [0, 1]
such that d(f, P) < ∈/2. Let M be the maximum slope of P(x) in [0, 1], and
let Q(x) be a continuous function consisting of straight-line segments of
slope ± (M + n + 1) constrained so that |Q(x)| < ε/2.

Define g(x) = P(x) + Q(x). Then d(f, g) ≤ d(f, P) + d(P, g) < ε/2 + ε/2 = ε
and

But for x ∈ [0, 1 - 1/n], an h ∈ (0, 1/n] can be found for which the right-
hand side is ≥ (M + n + 1) — M = n + 1. Thus g ∉ ℰn.

2. ℰn is closed. The (evaluation) map e: C(I) × I → R defined by e(f, x) =
f(x) is continuous. It follows easily that, if h0 is a fixed element of (0, 1/n],
the map Eh0: C(I) × [0, 1–1/n] → R defined by



is continuous. Thus  n] is closed in C(I) × [0, 1–1/n]. Let

 ,

for some x ∈ [0, 1–1/n]}.

Then  is closed in C(I). For if fm ∈  for m = 1, 2, . . . and fm → f,
then the sequence (xm) in [0, 1–1/n] such that (fm, xm) ∈  has a

cluster point x ; easily, (f, x) ∈  , so that f ∈ . Moreover,

so that ℰn =  , establishing that ℰn is closed. ■

Problems

25A Exercise on category
1. The union of finitely many nowhere dense subsets of X is nowhere

dense.
2. The frontier of any open subset of X is nowhere dense.
3. Every open subset of a Baire space is a Baire space. The result fails for

second category spaces.
4. The“ space Q of rationals is not completely metrizable.
5. The space P of irrationals is a Baire space.



25B. Category in ϭ-compact spaces
A topological space X is ϭ-compact iff X is a countable union of compact
subsets. For σ-compact spaces, there is a partial converse to the Baire
theorem. To state it succinctly, we will define X to be locally compact at one
of its points x iff x has a compact nhood in X. Note that the set of points at
which X is locally compact is always open.

A σ-compact space is second category (Baire) iff the set of points at
which X is locally compact is nonempty (dense) in X.

25C. Continuous functions on Baire spaces
Let X be a Baire space and f: X → R a real-valued continuous function on
X. Then every nonempty open subset of X contains a nonempty open set on
which f is bounded. (If you have done Exercise 7K on semicontinuous
functions, you can prove similar results for (1) lower semicontinuous
functions and upper bounds, and (2) upper semicontinuous functions and
lower bounds, which together imply the result for continuous functions.)

25D. Category in Banach spaces
The Baire category theorem plays an integral role in the proof of 1 below,
and thus indirectly in the proofs of three important theorems in analysis: the
open mapping theorem, the closed graph theorem and the uniform
boundedness principle.

The definitions and elementary facts about Banach spaces needed here
are found in Problems 2J, 7L and 24J.

 
 

1. Let X and Y be Banach spaces and Γ a bounded linear operator from X
onto Y. For some ε > 0, the image under Γ of {x ∈ X |||x|| < 1} covers {y ∈
Y | ∥y|| < ε}. [Let Bn = {x ∈ X |∥x∥ < 1/2n} for n = 1, 2, . . .. Use the Baire
category theorem to conclude some n · Γ(B1), and hence Γ(B1), is not
nowhere dense in Y. Then for some y ∈ Y and δ > 0, {z ∈ Y | ∥z–y|| < δ} ⊂ 

 and hence, {z ∈ Y |∥z∥ < δ} ⊂ Γ(B0). Conclude, using completeness



of X, that {z ∈ Y |∥z∥ < δ/2} ⊂ Γ(B0).]

2. Open mapping theorem. If X and Y are Banach spaces and Γ is a
bounded linear operator of X onto Y, then Γ is open. [Use part 1.] Hence, if
Γ is a one-one bounded operator of X onto Y, it is a homeomorphism.

3. If X is a vector space with norms ∥·∥1 and ∥·∥2, each of which makes X
a Banach space, and if a constant C exists such that ∥x1∥ ≤ C ∥x2∥, for all x
∈ X, then ∥·∥1 and ∥·∥2 are equivalent; that is, they generate the same
topology on X.

4. Conclude that the norms ∥·∥, ∥·∥1 and ∥·∥ given in 2J.6 for Rn are all
equivalent. [In 24J.3 you showed each of these is complete.]

5. Uniform boundedness principle (version 1). Let ℱ be any family of
continuous, real-valued functions on a complete metric space X such that
for each x ∈ X, there is some constant Mx such that |f(x)| ≤ Mx for all f ∈ ℱ.
Then there is some constant M and a nonempty open set U in X such that
|f(x)| ≤ M for each x ∈ U and each f ∈ ℱ. [Let

En = {x ∈ X ||f(x)| ≤ n for each f ∈ ℱ}.

Show En is closed and apply the Baire category theorem to conclude some
En contains a nonempty open set U.]

6. Uniform boundedness principle (version 2). Let ℱ be any family of
bounded linear operators from a Banach space X into a normed linear space
Y such that at each x ∈ X, there is a constant Mx such that ||Γ(x)|| ≤ Mx for
each Γ ∈ ℱ. Then for some constant M, ∥Γ∥ ≤ M for all Γ ∈ ℱ. [Use part
4. Note that what you want to show is that ∥Γ(x)∥ ≤ M for each x with ||x|| ≤
1.]

25E. Hilbert space



A linear space X becomes an inner product space when to every pair x, y of
elements of X a real number (or, for a complex inner product space, a
complex number) 〈x, y〉 is assigned, subject to the following rules:

(IP1) 〈x, x〉 ≥ 0; 〈x, x〉 = 0 iff x = 0,  
(IP2) 〈x, y〉 = 〈y, x〉 (or, in the complex case 〈x, y〉 = 

 ,  
(IP3) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉.

The number 〈x, y〉 is called the inner product of x and y.

1. Every inner product space is a normed linear space, (2J), when the
norm is defined by ∥x∥ = 〈x, x〉½. When the resulting normed linear
space is a Banach space, we call the inner product space a Hilbert space.

2. Cauchy-Schwarz inequality. In any inner product space, 〈x, y〉 ≤ ∥x∥
• ∥y∥. [Set λ = ∥x∥/∥y∥ and work with the inequality 0 ≤ ∥x–λy∥2.]

Elements x and y in an inner product space X are orthogonal iff 〈x, y〉
= 0. A subset A of X is an orthonormal system iff any two elements of X are
orthogonal and ∥x∥ = 1 for each x ∈ A. An orthonormal system which is
maximal (with respect to inclusion) is called complete.

3. An orthonormal system A is complete iff whenever 〈x, a〉 = 0 for
each a ∈ A, then x = 0. Every inner product space has a complete
orthonormal system.

4. If A is a complete orthonormal system in a Hilbert space H, and x ∈ H,
then x has a unique representation of the form



for some sequence x1, x2, . . . of elements of A. [Show that if x1, x2, . . . is
any sequence from A, then ∑ 〈x, xn〉

2 ≤ ∥x∥2. Use this to conclude that
only countably many of the inner products 〈x, z〉, for z ∈ A, are nonzero.
Let x1, x2, . . . be the resulting sequence of elements of A and set αn = 〈x,
xn〉.]

25F. An application of the Baire theorem
1. Suppose that for each irrational p, an equilateral triangle Ap (with

interior) is constructed with a vertex at (p, 0) and the opposite side parallel
to and above the x-axis. Use the Baire category theorem and 25A.5 to show
that contains a rectangle of the form {(x, y) ∈ R2| a ≤ x ≤ b, 0 < y <
1/n} for some a < b and some positive integer n. [It is enough to show that,
for some n, {p ∈ P | Ap has height ≥ 1/n} is dense in some interval [a, b]
with a < b.]

2. Let D = {(x, 0) | x is rational} and E = {(x, 0) | x is irrational}. Then D
and E are disjoint closed sets in the Moore plane Γ. Apply part 1 to show
that D and E cannot be contained in disjoint open sets in Γ.



Chapter 8

Connectedness

26 Connected spaces
The topological study of connectedness is heavily geometric (or visual).
Thus connectedness-like properties play an important role in most
topological characterization theorems, as well as in the study of
obstructions to the extension of functions. The use of connectedness in
characterization theorems is exemplified in later sections of this chapter; its
use in obstruction theory is appropriate subject matter for a book on
algebraic topology.

 
 
26.1 Definition. A space X is disconnected iff there are disjoint nonempty
open sets H and K in X such that X = H ∪ K. We then say that X is
disconnected by H and K. When no such disconnection exists, X is
connected.

Note that we can replace “open” in this definition by “closed”. It is
apparent, then, that X is connected iff there are no open-closed subsets of X
other than ø and X or, equivalently, iff ø and X are the only subsets of X
with empty frontier.

 
 
26.2 Examples. a) The Sorgenfrey line E is disconnected.

b) Any discrete space of more than one point is disconnected. In fact, any
T1-space having an isolated (open) point is disconnected. In particular, the
ordinal spaces Ω0 and Ω are disconnected.



c) I is connected. For if I is disconnected by H and K, with 1 ∈ H, then
H contains some nhood of 1, so c = sup K cannot be 1. Now c belongs to
either H or K and hence some nhood of c is contained in H or K. But any
nhood of c contains points of H (to the right of c) and points of K (to the left
of c), a contradiction.

 
 

d) The long line. The ordinal space Ω, as we have mentioned, is not
connected. A connected space can be obtained from Ω by inserting between
each pair of consecutive ordinals a copy of (0, 1) and giving the resulting
ordered set the order topology. This space is called the long line, W. W is
connected, since a disconnection of W would either disconnect a copy of
[0, 1] or isolate a limit ordinal, neither of which is acceptable. W is also
compact (this can be proved in the same way we proved Ω is compact, or
else use the criterion for compactness of ordered spaces given in 17E).

We turn now to the usual questions, involving continuous maps,
subspaces and products of connected spaces.

26.3 Theorem. The continuous image of a connected space is connected.

Proof. Suppose X is connected and f is a continuous map of X onto Y. If Y
were disconnected by H and K, then X would be disconnected by f–1(H) and
f–1(K), so Y must be connected. ■

Subspaces of connected spaces are not usually connected; examples
abound in I. In fact, the only subspace theorem available dealing with
connectedness is just a useful way of rephrasing the definition so that it can
be applied to a subspace without passing to the relative topology. Note that
connectedness of X is not a part of 26.5.

26.4 Definition. Sets H and K in X are mutually separated in X iff

.

 
 
26.5 Theorem. A subspace E of X is connected iff there are no



nonempty, mutually separated sets H and K in X with E = H ∪
K.

Proof. If E is disconnected by H and K, then H and K are mutually
separated in any X containing E, since

and similarly for (Clx H) ∩ K.

Conversely, if H and K are mutually separated in X and E = H ∪ K, then

and hence H is closed in E. Similarly K is closed in E. ■

26.6 Corollary. If H and K are mutually separated in X and E is
a connected subset of H ∪ K, then E ⊂ H or E ⊂ K.

Proof. If H and K are mutually separated in X, so are E ∩ H and E ∩ K. ■

The last theorem and its corollary provide us with some neat ways of
proving a given space X is connected.

26.7 Theorem. a) If , where each Xα is connected and 
, then X is connected.



b) If each pair of x, y of points of X lies in some connected
subset Exy of X, then X is connected.

 
 
c) If  where each Xn is connected and Xn–1 ∩ Xn ≠
ø for each n ≥ 2, then X is connected.

Proof. a) Suppose X = H ∪ K where H and K are mutually separated in X.
Then, since Xα is a connected subset of H ∪ K for each α, we have Xα ⊂ H
or Xα ⊂ K. Since the Xα are not disjoint, while H and K are, we must have
Xα ⊂ H for all α or Xα ⊂ K for all α; say the former. Then X ⊂ H, so K = ø.
Thus X can never be the union of two nonempty mutually separated sets in
X, so X is connected.

 
 

b) Fix a ∈ X. Then Eax and the latter union satisfies the
conditions of part (a).

c) X1 is connected, and if X1 ∪ ··· ∪ Xn–1 is connected, so is X1 ∪ ··· ∪
Xn by part (a). Thus An = X1 ∪ ··· ∪ Xn is connected, for n = 1, 2, . . .. Since

is nonempty, is connected by part (a). ■

26.8 Theorem. If E is a connected subset of X and E ⊂ A ⊂ Ē,
then A is connected.

Proof. It is enough to show Ē is connected (since if E ⊂ A ⊂ Ē, then A =
ClA E and we can replace X by A). Suppose Ē = H ∪ K where H and K are
disjoint, nonempty open sets in Ē. Then E = (H ∩ E) ∪ (K ∩ E), and the
latter are disjoint, nonempty open sets in E. Thus if Ē is disconnected, so is
E. ■



The two theorems just proved give nice ways of leap-frogging from
connectedness of some familiar spaces (we already know I is connected) to
connectedness of others.

 
 
26.9 Examples. a) R is connected. For  and each set [–n,
n] is homeomorphic to I and hence connected, while their intersection is
nonempty, so connectedness of R is a simple application of 26.7(a).

b) Rn is connected. We can use the same theorem. Rn is the union of the
family of all straight lines through its origin; each such line is
homeomorphic to R and thus connected, so Rn is connected.

 
 

We turn now to the problem of deciding connectedness for product
spaces. The last theorem will be useful here.

26.10 Theorem. A nonempty product space is connected iff each
factor space is connected.

Proof. If the product is connected and no factor space is empty, then the
projections are continuous and onto and hence each factor space is
connected.

Conversely, suppose each factor space Xα, α ∈ A, is connected. Pick a ∈
Π Xα and denote by E the set of all points in the product which lie together
with a in some connected subset of the product. Then E is connected, so it
suffices by the previous theorem to show E is dense in the product.

Let be a basic open set in the product. Pick
 for i = 1, . . . , n and define sets E1, .. , En as follows :

E1 = {c ∈ Π Xα |  arbitrary, cα = aα otherwise},



, arbitrary, cα = aα otherwise},

 
 
 
 

 for i = 1, . . . , n–1,  arbitrary, cα = aα
otherwise}.

Then Ek is homeomorphic to  and thus connected. Moreover, Ek ∩ Ek+1

≠ ø for k = 1, . . . , n–1 so  Ek = F is connected. But a ∈ F and F
meets U. Thus every basic open set U contains points of E. ■

The importance of connectedness for us lies almost wholly with its use in
characterization theorems. In particular, it is not usually possible to deduce
the presence of other topological properties in a space from the fact that the
space is connected, or vice versa. In fact, if one needs connectedness of X,
and X is not itself connected, we can usually just look at the individual
“components” (maximal connected pieces) of X, as described now.

 
 
26.11 Definition. If x ∈ X, the largest connected subset Cx of X containing
x is called the component of x. It exists, being just the union of all
connected subsets of X containing x.

If x ≠ y in X, then either Cx = Cy or Cx ∩ Cy = ø; otherwise Cx ∪ Cy
would be a connected set containing x and y and larger than Cx or Cy, which
is impossible. Thus the components of points in X form a partition of X into
maximal connected subsets. This justifies referring to them as components
of X.

 
 

26.12 Theorem. The components of X are closed sets.



 
 
Proof. If C is the component of x in X, then is a connected set containing
x and thus C ⊂ C, showing that C is closed. ■

26.13 Examples. a) In the space Q of rational numbers, the component of
each point q is {q}. We would say, somewhat imprecisely, “the components
in Q are the points.” This example shows, incidentally, that components
need not be open.

 
 

b) Recall (17.9c) the construction of the Cantor set C: we define

and so on, with Cn being obtained by removing the open middle thirds of

the 2n–1 closed intervals which comprise Cn–1. Then  .

It is easy to see that the components of C are the points, for if x ∈ C,
then among the intervals removed from I in the process of constructing C
there are intervals arbitrarily close to x on either side, and each such interval
induces a disconnection of C.

We give now an important theorem, asserting that connectedness of a
space implies “chain-connectedness” with respect to any open cover. This
result will be useful later in theorems asserting existence of “paths”
between points of certain connected spaces.

26.14 Definition. A simple chain connecting two points a and b of a space
X is a sequence U1, . . . , Un of open sets of X such that a ∈ U1 only, b ∈
Un only, and Ui ∩ Uj ≠ ø iff |i–j| ≤ 1.



26.15 Theorem. If X is connected and U is any open cover of X,
then any two points a and b of X can be connected by a simple
chain consisting of elements of U.

Proof. Let Z be the set of all points of X which are connected to a by a
simple chain of elements of U. Then Z is obviously an open set and, since a
∈ Z, Z is nonempty. We can prove the theorem by showing Z is closed.

Let z ∈  . Then z ∈ U for some U ∈ U and, since U is open, U ∩ Z
contains some point b. Now a is connected to b by a simple chain U1, . . . ,
Un of elements of U. If z ∈ Uk for some k, then the smallest such k
produces a simple chain U1, . . . , Uk from a to z. If z ∉ Uk for any k, pick
the smallest l such that Ul ∩ U ≠ ø (e.g., n is such an l). Then U1, . . . , U,, U
is a simple chain from a to z. Either way, z ∈ Z. ■

Problems

26A. Examples on connectedness
1. The Sorgenfrey line E is not connected.
2. The slotted plane (4C) and the radial plane (3A.4) are connected. [See

6A.]
3. Any infinite set with the cofinite topology is connected.
4. No countable subset of R is connected.

26B. Quasicomponents
Define ~ in any space X by x ~ y iff x and y lie together in some connected
subset of X. Define ≈ in X by x ≈ y iff there is no decomposition X = U ∪ V
into disjoint open sets, one containing x, the other containing y.

 
 

1. ~ is an equivalence relation on X. The equivalence class [x] of x is just
the component Cx of x in X.



2. ≈ is an equivalence relation on X. We call the equivalence class of x
the quasicomponent of x in X. The quasicomponent of x in X is the
intersection of all open-closed subsets of X which contain x.

3. The component of x is contained in the quasicomponent of x.

4. In the space X in Fig. 26.1, the quasicomponent of the point x shown is
strictly larger than the component of x.

Figure 26.1

26C. Cardinality of connected spaces
1. A connected, Tychonoff space having more than one point has ≥ c

points.

2. A connected, separable, metric space has either one point or c points.

3. Let X be the set of all points in the closed upper half plane both of
whose coordinates are rational. Describe a topology for X as follows: for
each point p (rational or irrational) on the x-axis, let Vpε denote the set of all
rational points in the interval (p–ε, p + ε) on the x-axis. Now for p ∈ X, if p
lies on the x-axis, the nhoods of p will be the sets Vpε, ε > 0; if p lies above
the x-axis, let p1 and p2 be the uniquely determined points on the x-axis
such that p, p1 and p2 are the vertices of an equilateral triangle (note that p1
and p2 will have irrational first coordinate, since the slopes of the lines
joining them to p are irrational). The nhoods of p will be the sets {p} ∪ 

 for ε > 0. Then X is a countable, connected Hausdorff space. [To
prove connectedness, show any nonempty open-closed subset H of X must
be all of X.]



4. The space X described in part 3 is not regular.

26D. Subspaces
Among the criteria for a subspace E of a space X to be connected, the
following was absent: E ⊂ X is disconnected iff there are disjoint open
subsets H and K in X, each meeting E, such that E ⊂ H ∪ K. Find a
counterexample. (Thus 26.5 represents the best we can do along the lines of
expressing connectedness of E in terms of the topology on X.)

26E. Nonhomeomorphism
Some use of connectedness lies at the heart of most proofs that two spaces
are not homeomorphic. Use connectedness to show that X is not
homeomorphic to Y when:

1. X = R, Y = Rn for n > 1, (compare with 28C) ;
2. X = [0, ∞), Y = R;
3. X = I, Y = S1 ;
4. X = S1, Y = Sn for n > 1.

Note that in none of the above cases can we distinguish between X and Y
using any of the forms of compactness available to us.

26F. The Cantor set
Every closed subset A of C is a retract (7J) of C.

26G. Connectedness in ordered spaces
1. An ordered space X (6D) is connected iff it is Dedekind complete and

whenever x < y in X, then x < z < y for some z in X.

2. Every ordered space can be embedded in a connected ordered space.
[First, embed in a Dedekind complete ordered space. Then whenever x < y
in this space, and no z exists with x < z < y, put a copy of (0, 1) between x
and y.]

3. Let I and {0, 1} have their usual orders, and let X = I x {0, 1} have the
lexicographic order. Then X is Dedekind complete. What space results from



applying the process in part 2 to X?

26H. Uses of connectedness
1. Any continuous f : I → I has a fixed point (i.e., a point x such that f(x)

= x).

2. If P(x) is a polynomial of odd degree, then the equation P(x) = 0 has at
least one real root.

27 Pathwise and local connectedness
The definition of connectedness is negative in nature; it provides for the
nonexistence of a certain kind of splitting of the space. A more positive
approach to the same sort of problem is provided by pathwise (or arcwise)
connectedness, in which it is required that it be possible to reach any point
in the space from any other point along a connected path. This approach is
especially useful in studying connectivity properties from an algebraic point
of view, e.g., via homotopy theory.

27.1 Definition. A space X is pathwise connected iff for any two points x
and y in X, there is a continuous function f : I → X such that f(0) = x, f(1) =
y. Such a function f (as well as its range f(I), when confusion is not
possible) is called a path from x to y.

We call X arcwise connected iff for any two points x and y in X, there is a
homeomorphism f : I → X such that f(0) = x, f(1) = y. The function f (as
well as its range) is called an arc from x to y.

We will observe in 31.6 that every Hausdorff path from x to y contains an
arc from x to y. Thus a T2-space is pathwise connected iff it is arcwise
connected!

27.2 Theorem. Every pathwise connected space is connected.

Proof. If H and K disconnect the pathwise connected space X, let f : I → X
be any path between points x ∈ H and y ∈ K. Then f–1(H) and f–1(K)
disconnect I, which is impossible. ■



Figure 27.1

27.3 Examples. a) The topologist’s sine curve (Fig. 27.1)

is a connected space, but no path can be found from (0, 0) to any point (x,
sin (1/x)) with x > 0. Verification is left to 27A.

b) Closed line segments are arcs, so Rn is pathwise connected.

c) If E is any countable subset of R2, then the space R2–E is pathwise
connected. In fact, if a and b are points in R2–E, then R2–E contains
uncountably many straight lines through each point and two of these will
intersect, giving an arc from a to b.



 
 

Paths can be “added,” in the following sense. If a, b, c ∈ X, and f1: I →
X is a path from a to b, while f2 : I → X is a path from b to c, then the
function f : I → X defined by

is a path from a to c, obtained by “putting the paths f1 and f2 end-to-end”.
(For example, f is continuous because it is continuous on each of the closed
sets [0,  ] and [  , 1].)

This path addition provides a way to associate with each pathwise
connected space X a group π1(X) in such a way that homeomorphic spaces
have isomorphic groups. The branch of algebraic topology which is
concerned with the relationships between X and π1(X) is homotopy theory
(a piece of which is developed in Sections 32 through 34). Other branches
of algebraic topology study connectivity properties of a topological space X
by associating algebraic structures with X in other ways. In particular, the
ordinary covering notion of connectedness is studied using Čech homology
theory, while singular homology theory (and homotopy theory) are suited to
the study of pathwise connectedness.

For the time being, we will use the addition of paths defined above only
to provide a partial converse to Theorem 27.2. We require a definition.

27.4 Definition. A space X is locally pathwise connected iff each point has
a nhood base consisting of pathwise connected sets. (We should point out
here that a subset A of X is pathwise connected iff any two points in A can
be joined by a path lying in A.)

27.5 Theorem. A connected, locally pathwise connected space X
is pathwise connected.



Proof. Let a ∈ X and let H be the set of all points of X which can be joined
to a by a path. Now H is nonempty since a ∈ H, so if H is open-closed it
must be all of X.

But H is open. For if b ∈ H, let U be any pathwise connected nhood of b.
Then any point z ∈ U can be joined to b by a path and hence can be joined
to a by adding the path from b to a.

Also, H is closed. For if b ∈  , let U be any pathwise connected nhood
of b. Then U ∩ H ≠ ø; say z ∈ U ∩ H. Now b can be joined to z by a path
and z can be joined to a by a path so, by addition of paths again, b ∈ H. ■

27.6 Corollary. An open connected subset of Rn is pathwise connected.

We turn now to the study of locally connected spaces. Unlike most other
localized properties, there is no generally discernible relationship between
connectedness and local connectedness.

27.7 Definition. A space X is locally connected iff each x ∈ X has a nhood
base of open connected sets.

27.8 Examples. a) The space [0, 1) ∪ (1, 2] is locally connected but not
connected.

b) Consider the space X consisting of the vertical lines x = 0 and x = 1 in
the plane, together with the horizontal line segments {(x, 1/n) | 0 ≤ x ≤ 1}
for n = ± 1, ± 2, . . . and the unit interval I on the x-axis (Fig. 27.2). This
space is typical of connected spaces which are not locally connected. X is,
in fact, arcwise connected, but no point in I other than the endpoints will
have a base of connected nhoods.



Figure 27.2

27.9 Theorem. X is locally connected iff each component of each
open set is open.

Proof. Suppose X is locally connected and x ∈ C, where C is a component
of the open set U in X. There is, by local connectedness, an open connected
set V with x ∈ V ⊂ U. Now we must have V ⊂ C, so C is open.

Conversely, suppose each component of each open set in X is open. If U
is any open nhood of x in X, then the component of U containing x is an
open connected nhood of x contained in U. Thus X is locally connected. ■

27.10 Corollary. The components of a locally connected space
are open-closed.

27.11 Corollary. A compact locally connected space has a finite
number of components.



27.12 Theorem. Every quotient of a locally connected space is
locally connected.

Proof. Let f be a quotient map of X onto Y. Suppose U is an open set in Y, C
a component of U. For x ∈ f–1(C), let Cx be the component of x in the open
set f–1(U). Now f (Cx) is connected and contains f(x) ∈ C, so f(Cx) ⊂ C.
Thus x ∈ Cx ⊂ f–1(C). Since Cx is open, f–1(C) is open and thus, since Y
has the quotient topology, C is open in Y. ■

The theorem above is one of the nicest dealing with preservation of a
local property by continuous maps. For example, it follows that both
continuous open images and continuous closed images of locally connected
spaces are locally connected.

 
 

27.13 Theorem. A nonempty product space is locally connected iff
a. each factor is locally connected,
b. all but finitely many factors are connected.

Proof. The proof is obtained by substituting “connected” for “compact” in
the proof of 18.6, the corresponding theorem for local compactness. See
27F. ■

27.14 Definition. X is connected im kleinen at x iff each open nhood U of x
contains an open nhood V of x such that any pair of points in V lie in some
connected subset of U.

Certainly every locally connected space is connected im kleinen. At first
it is easy to believe the converse, but the following example shows that the
two notions are different. The theorem after that shows that they are not
much different.

 
 
27.15 Example. At the point x, the space shown in Fig. 27.3 is connected
im kleinen, but has no base of open connected nhoods.



Figure 27.3

27.16 Theorem. If X is connected im kleinen at each point, then
X is locally connected.

Proof. Let U be an open set in X, C a component of U. If x ∈ C, then there
is an open set Vx containing x and lying in U such that each two points in Vx
lie in a connected subset of U. It follows that Vx ⊂ C. Thus C is open and X
is locally connected. ■

Problems

27A. The topologist’s sine curve
Let V = {(x, 0) | x ≤ 0} ∪ {(x, sin (1/x)) | x > 0} with the relative topology
in R2 and let T be the subspace {(x, sin (1/x)) | x > 0} of V.

1. V is connected. [Use 26.7 and 26.8.]

2. V is not pathwise connected. [If f is a path from (0, 0) to (x, sin (1/x)),
then f(I) is compact and connected.]

3. T is pathwise connected, but the closure of T in V is not. (Compare
with 26.8.)

27B. Combinations of pathwise connected spaces
1. The continuous image of a pathwise connected space is pathwise

connected.



2. A nonempty product of finitely many spaces is pathwise connected iff
each factor space is pathwise connected.

27C. Pathwise connectification
Let X be any space and define a topology on Y = X x I as follows: basic
nhoods of points (x, α) for α ≠ 0 will be the sets of the form {(x, β) | α–ε < β
< a + ε} for ε > 0 (that is, usual linear nhoods of (x, α) in the appropriate
copy of I), and basic nhoods of (x, 0) will have the form 
where U is a nhood of x in X and for each z ∈ U, εz > 0 and 

. Let X* be the quotient of Y obtained by identifying
all the points (x, 1), x ∈ X.

1. X is embedded in X* as the closed nowhere dense set {(x, 0) | x ∈ X}.

2. X* is pathwise connected.

3. If f′: X → Z is continuous, where Z is pathwise connected, then f can
be extended to a continuous function F: X* → Z.

27D. Path components
The path components of a space X are the equivalence classes in X under
the equivalence relation x ∼ y iff there is a path joining x to y.

1. The path component containing x ∈ X is pathwise connected and
contained in the component of x.

2. X is locally pathwise connected iff each path component of each open
set is open.

3. A path component of X need not be closed. But if X is locally pathwise
connected, the path components of X are both open and closed.

27E. Examples on local connectedness
1. The Sorgenfrey line E is not locally connected.
2. The topologist’s sine curve V is not locally connected.
3. The space of Example 27.15 is not locally connected.



27F. Combinations of locally connected spaces
1. The continuous image of a locally connected space need not be locally

connected.
2. A nonempty product space is iff locally connected

a. each factor space is locally connected,
b. all but finitely many factor spaces are connected.

27G. Property S
A topological space X has property S iff every open cover of X can be
refined by a cover consisting of a finite number of connected sets. The
property was introduced by Sierpinski in 1920.

1. If X has property S, then X is connected im kleinen at each point, and
thus locally connected.

2. A compact, Hausdorff space is locally connected iff it has property S.

3. Not every locally connected Hausdorff space has property S.

4. The continuous Hausdorff image of a compact locally connected space
is compact and locally connected. Is property S preserved by all continuous
maps?

Property S assumes special importance in deciding questions about local
connectivity of certain subsets of R2. In particular (see Whyburn: Analytic
Topology, p. 112), if A is a connected open subset of R2 such that Fr (A) is a
continuum, then A has property S iff Fr (A) is locally connected. As a
corollary, Fr (A) locally connected ⇒ A locally connected.

28 Continua
Compactness and connectedness are powerful, but dissimilar, properties.
When they are combined to generate the notion of a continuum, the result is
an extensive collection of interesting theorems (not all of which we will be
able to give here).

28.1 Definition. A continuum is a compact, connected Hausdorff space.
Among the continua we find many familiar spaces. Thus the unit interval I,



the circle S1, the torus S1 × S1 (and, in fact, any product of continua) are all
continua. Our main goal is to find topological criteria which will enable us
to characterize the unit interval and the unit circle as continua.

28.2 Theorem. Let {Kα | α ∈ A} be a collection of continua in X
directed by inclusion. Then  is a continuum.

Proof. The intersection is a closed subset of each Kα and thus is compact.
Suppose disjoint closed sets H and K can be found with ,
and x ∈ H, y ∈ K. For any fixed α0, X can be replaced by , and each Kα
by  ∩ Kα, without affecting the intersection, so we may assume X is
compact and Hausdorff. Then H and K are closed in X and can be separated
by open sets U and V in X. For each Kα, Kα ⊄ U ∪ V since otherwise U ∩
Kα and V ∩ Kα would disconnect Kα. Thus we can pick xα ∈ Kα–(U ∪ V).
The result is a net (xα) which has a cluster point z in X, by compactness.
Now if W is any nhood of z and Kα is given, then for some Kβ, ⊂ Kα, xβ, ∈
W. Thus W n Kα ≠ ø for each nhood W of z, so z ∈ Kα = Kα, for each a.
Then  But U ∪ V is then a nhood of z inside which (xα)
never gets, by choice of the xα. We have a contradiction.

Thus  must be connected. ■

28.3 Definition. A continuum K in X is irreducible about a subset A of X
provided A ⊂ K and no proper subcontinuum of K contains A. If A = {a, b},
we say K is irreducible between a and b.

28.4 Theorem. If K is any continuum, any subset A of K lies in a
subcontinuum irreducible about A.

Proof. The set  of all subcontinua of K containing A is partially ordered
by inclusion; i.e., K1 ≤ K2 iff K2 ⊂ K1. By 28.2, each chain in this partially



ordered set has an upper bound (the intersection of its elements) and hence,
by Zorn’s lemma,  has a maximal element K′. Clearly K′ is a
subcontinuum of K irreducible about A. ■

In particular, K will contain subcontinua irreducible between any two of
its points. In the plane, for example, any arc joining a and b is a continuum
which is irreducible between a and b (and so, in general, a continuum
irreducible about a set A will not be unique).

28.5 Definition. Let X be a connected T1-space. A cut point of X is a point p
∈ X such that X–{p} is not connected. If p is not a cut point of X, we call it
a noncut point of X. A cutting of X is a set {p, U, V} where p is a cut point
of X and U and V disconnect X– {p} (i.e., where U and V are disjoint
nonempty open subsets of X whose union is X–{p}).

The property of being a cut point (in fact, of being a cutting), is preserved
under homeomorphism; but continuous maps can destroy cut points.
Consider the map f(x) = (cos x, sin x) of [0, 2π] onto the unit circle in R2.

Cut points are critical in the characterizations of the interval and circle as
continua having certain additional properties. One property relating to cut
points is shared by all continua, however; they all have at least two noncut
points. This follows easily from the second of the following lemmas.

28.6 Lemma. If K is a continuum and {p, U, V} is a cutting of
K, then U ∪ {p} and V ∪ {p} are connected (and thus are
continua).

Proof. It suffices to prove the lemma for U ∪ {p}. But the map f defined on
K by

carries K onto U ∪ {p}, and f is continuous on each of the closed sets U ∪
{p} and V ∪ {p}, so f is continuous. Thus U ∪ {p} is the continuous image



of a connected space and therefore connected. (Since U ∪ {p} = K–V, U ∪
{p} is closed in K and thus compact. The part of the theorem in parentheses
follows.) ■

28.7 Lemma. If K is a continuum and {p, U, V} is a cutting of
K, then each of U and V contains a noncut point of K.

Proof. Suppose each point x in U is a cut point, inducing a cutting {x, Ux,
Vx} of K. If both Ux and Vx meet V ∪ {p}, they disconnect V ∪ {p} which is
impossible by the previous lemma. So one, say Ux, is contained in U. Now
Ux ∪ {x} is a continuum for each x ∈ U, by the previous lemma. Since {Ux

∪ {x} | x ∈ U} is directed by inclusion,  is a nonempty
continuum contained in U, by 28.2.

Pick . Then Uq ⊂ U (as above), and if r ∈ Uq, then
Ur does not contain q (otherwise Ur and Vr both meet Vq ∪ {q} and
disconnect it). Then Ur ∪ {r} does not contain q. But this contradicts the
fact that

28.8 Theorem. Every continuum K of more than one point has at
least two noncut points.

Proof. If p is a cut point of K, then a cutting {p, U, V} of K exists, and each
of U and V contains a noncut point of K, by the previous lemma. On the
other hand, if no cut point of K exists, certainly there are two noncut points.
■

As we will see shortly, the property of continua expressed by Theorem
28.8 is the key to the characterization of the unit interval; it is the only



metric continuum blessed with exactly two noncut points. For this, we need
a series of results, the first of which says that you cannot get a new
continuum from an old one by excision without excising some noncut
points.

28.9 Theorem. A continuum K is irreducible about the set of its noncut
points.

Proof. Let N be the set of noncut points of K and suppose a proper
subcontinuum L of K contains N. If x ∈ K–L, then a cutting {x, U, V} of K
exists, and L must lie in one or the other of U and V, say L ⊂ U. Then V ∪
{x}, being a continuum itself, has two noncut points and thus has a noncut
point y x. Then [V ∪ {x}]–{y} is connected, and U ∪ {x} is connected and
these sets meet, so their union is connected. But their union is K–{y}, while
y lies in V, hence not in U, hence not in L; this is a contradiction since L
contains all the noncut points of K. ■

An order relation can be introduced on certain subspaces of a continuum.
It is the last tool we need to reach our characterization theorems.

28.10 Definition. A cut point p in a connected space X separates a from b
iff a cutting {p, U, V} exists with a ∈ U, b ∈ V. The set consisting of a, b
and all points p which separate a from b is denoted E(a, b). The separation
order on E(a, b) is defined by: p1 ≤ p2 iff p1 = p2 or p1 separates a from p2.
This is easily seen to be a partial order on E(a, b).

The basis for our proofs of the continuum characterization theorems
(28.13, 28.14) will be the fact that the set E(a, b) is linearly ordered by the
separation order.

28.11 Theorem. The separation order on E(a, b) is a linear order.

Proof. For each p ∈ E(a, b), let {p, Up, Vp} be a cutting of X such that a ∈
Up and b ∈ Vp.

If r and s are distinct points of E(a, c)–{a, b}, then either s ∈ Ur or s ∈
Vr. If the latter, then r separates a from s, so r < s. Hence, suppose s ∈ Ur.
Now Vr ∪ {r} is connected (28.6) and contained in the union of Us and VS,
so it must be contained in one of these. Since b ∈ Vr ∪ {r}, we must then
have Vr ∪ {r} ⊂ Vs. Now r ∈ Vs so that s separates a from r; i.e., s < r.



This completes the proof that ≤ is a total order on E(a, b). ■

It is natural to ask, at this point, whether any connection exists between
the order topology on E(a, b) and its subspace topology relative to X.

28.12 Theorem. a) If E(a, b) has more than two points, its order
topology is weaker than its subspace topology.

b) If K is a continuum with exactly two non cut points a and b,
then E(a, b) = K, and the topology on K is the order topology.

Proof. a) It suffices to note that, for p ∈ E(a, b), the sets Up ∩ E(a, b) and
Vp ∩ E(a, b) (in the notation of the previous proof) are open in E(a, b) and

Up ∩ E(a, b) = {q ∈ E(a, b) | q < p}  
Vp ∩ E(a, b) = {q ∈ E(a, b) | q < p}.

b) If p ∈ K and p is not one of a or b, then given any cutting {p, U, V} of
K, by Lemma 28.7, U and V each contain one of a and b. Thus p ∈ E(a, b),
so E(a. b) = K.

From (a), the order topology is weaker than the given topology on K.
Suppose, conversely, that U is open in K and p ∈ U. First assuming that p is
not one of a or b, we will show that U contains some interval (r, s) = {q ∈
K | r < q < s} containing p. If not, then whenever p ∈ (r, s), the closed
interval [r, s] = {q ∈ K | r ≤ q ≤ s} meets K–U. But the sets [r, s] n (K–U)
then form a family of closed subsets of K with the finite intersection
property (each [r, s] is closed in K by part a)).

Thus their intersection (in the compact space K) is nonempty. But p ∈ U
and



which leads to a contradiction. If p is one of a or b, the argument is similar.
■

Now every continuum with exactly two noncut points is a totally ordered
set with the order topology induced by its separation order. Using the order,
we are ready to characterize the metric continua with two noncut points as
homeomorphs of the unit interval.

28.13 Theorem. If K is a metric continuum with exactly two
noncut points, then K is homeomorphic to the unit interval I.

Proof. Let D be a countable dense subset of K not containing the noncut
points a and b. Note that:

a. D has no smallest or largest element,
b. given p and q in D with p < q, there is an element r of D with p < r < q.

In Exercise 28B we show that every countable totally ordered set D with
these properties is order isomorphic, and thus homeomorphic, to the dyadic
rationals P in the interval (0, 1). Let f be an order isomorphism of D onto P.

But each point p of K other than a or b is a cut point, dividing K into sets
Ap and Bp with Ap < Bp (i.e., x < y whenever x ∈ Ap and y ∈ Bp). It
follows that f(Ap ∩ D) and f(Bp ∩ D) form a Dedekind cut of the dyadic
rationals, and thus uniquely determine an element F(p) of (0, 1). Defining
F(a) = 0 and F(b) = 1, we have completed the job of extending f to what is
obviously an order isomorphism, and thus a homeomorphism, of K onto I.
■

With the notation and methods we have available now, the
characterization of the circle comes fairly easily.

28.14 Theorem. If K is a metric continuum such that for any two
points a and b, K–{a, b} is not connected, then K is
homeomorphic to the unit circle.



Proof. First we show K has no cut points. For if {p, U0, V0} is a cutting,
then since U0 ∪ {p} and V0 ∪ {p} are continua, each has noncut points; say
y is a noncut point of U0 ∪ {p} and z is a noncut point of V0 ∪ {p}. But
now the connected sets (U0 ∪ {p})–{y} and (V0 ∪ {p})–{z} intersect, and
their union, K–{y, z}, is thus connected, contrary to the hypotheses of the
theorem. Hence K has no cut points.

Now let a and b be distinct points of K. Then K– {a, b} = U ∪ V where U
and V are disjoint nonempty open subsets of K. We set U* = U ∪ {a, b}, V*
= V ∪ {a, b} and assert that U* and V* are arcs, each having a and b for
endpoints and that U* ∩ V* = {a, b}. This will obviously establish K = U*
∪ V* as a homeomorphic image of a circle.

First, U* and V* are connected. For suppose U* = S ∪ T where S and T
are disjoint, nonempty and open in U*. If S contains both a and b, then T is
open in U and hence in K. This is impossible, since T is already closed in K
(being closed in the closed set U*). Thus we can suppose a ∈ S, b ∈ T. But
now using the same argument, S–{a} is open and closed in the connected
set K–{a}, which is impossible. Thus U* and V* are connected.

Second, a and b are both noncut points of U* (and similarly V.*) For if S
and T disconnect U*–{a}, and if b ∈ S say, then (by arguments similar to
those above) T is both open and closed in K– {a}, which is impossible.

Finally, to show each of U* and V* has precisely two noncut points
(namely, a and b), we proceed in two stages: (1) Suppose each has a third;
say p is a non-cut point of U* and q is a noncut point of V*, each different
from a or b. Then the sets U*–{p} and V*–{q} are connected, intersect, and
their union is K–{p, q), a nonconnected set. With this contradiction, we
have dispensed with case 1. (2) Suppose one, say U*, has a third noncut
point p. Then if q is any point in V, we have a cutting {q, A, B} of V*, where
A and B are connected and, say, a ∈ A, b ∈ B. (Easily a and b cannot both
belong to one.) Now U*–{p}, A and B form a chain of connected sets
whose union is K– {x, y}, a contradiction.

Thus each of U* and V* is a metric continuum with precisely two noncut
points, a and b, and U* ∩ V* = {a, b}. It follows that K = U* ∪ V* is
homeomorphic to the unit circle. ■



Problems

28A. Indecomposable continua
A continuum K is decomposable iff it is the union of two proper
subcontinua; otherwise K is indecomposable. For p ∈ K, consider the set Cp
of all points x of K such that a proper subcontinuum of K contains both p
and x (i.e., such that K is not irreducible between p and x). We call Cp the
composant of p (or, the composant of K containing p).

1. Describe the composants of the unit interval.

2. Every decomposable continuum is a composant for some one of its
points.

3. A continuum K is decomposable iff K contains a proper subcontinuum
L with IntK L ≠ ø.

4. Let a, b, c be three points in R2. Construct simple chains .of
connected open sets such that the sets in  have diameter less than 1/n and
have closures contained in sets of Cn–1, with the following properties:  is
a simple chain from a to c through b,  is a simple chain from a to b
through c,  is a simple chain from b to c through a. Then repeat the
process (Fig. 28.1). Let , and let . Then C is an
indecomposable continuum.



Figure 28.1

28B. Order isomorphism
Let X and Y be ordered spaces. A map f of X onto Y is an order isomorphism
iff f is one-one and x < y ⇔ f(x) < f(y).

1. Every order isomorphism is a homeomorphism relative to the order
topologies on X and Y.

2. Let P denote the set of dyadic rationals in (0, 1); i.e., P consists of all
numbers of the form k/2n for n = 1, 2, . . . and k = 1, . . . , 2n–1. Then

a. P has no largest or smallest element,
b. if p, q ∈ P with p < q, then for some r ∈ P, p < r < q.

3. Any countable linearly ordered set D with the properties (a) and (b)
given in 2 is order isomorphic to P. (Thus P is order isomorphic, and
homeomorphic, to the set Q of all rationals in R.)

28C. R as a product
The real line R can easily be written as a product space X × Y, by taking X
to be a one-point space. Is R homeomorphic to any product X × Y with X
and Y each having more than one point?

28D. Continua of convergence
Let A1, A2, . . . be a sequence of subsets of a space X. We define

lim sup An = {x ∈ X | each nhood of x meets infinitely many An}
lim inf An = {x ∈ X | each nhood of x meets all but finitely many

An}

so that always lim inf An ⊂ lim sup An. When lim inf An = lim sup An, we
denote their common value by lim An.



1. lim inf An and lim sup An are closed sets.

2. If X is compact and each Ai is connected, and lim Ai exists, then lim Ai
is connected.

3. If X is a metric continuum which is not locally connected at one of its
points p, there is a nhood U of p such that a sequence K1, K2, . . . of distinct
components of Ū converges to a continuum K containing p and disjoint
from the Ki. (Briefly, non-local connectedness of a metric continuum
implies the existence of a “continuum of convergence,” a result which is
supported by reference to examples of non-locally connected spaces.)

28E. Structure of continua
1. Let K be a continuum contained in X and let U be an open set in X

which meets both K and X–K. Then every component of Ū ∩ K meets Fr
(U).

2. No continuum can be written as the union of countably many disjoint
closed sets. [Suppose L = K1 ∪ K2 ∪ ⋯ . Let G1 be an open set containing
K2 such thatḠ1 ∩ K1 = ø, and let L1 be a component of Ḡ meeting K2. Then
L1 ∩ K1 = ø, but L1 meets some  with n2 > 2. Let Ḡ2 be an open set
containing  such that Ḡ2 ∩ K2 = ø and let L2 be a component of L1 ∩ Ḡ2

meeting Ln2. Continue. Show that L1 ⊃ L2 ⊃ ⋯ but , obtaining a
contradiction.]

29 Totally disconnected spaces

A connected space has one component. At the opposite extreme we have an
important class of spaces, typified by the Cantor set.

29.1 Definition. A space X is totally disconnected iff the components in X
are the points. Equivalently then, X is totally disconnected iff the only
nonempty connected subsets of X are the one-point sets.

The Cantor set, the space Q of rationals, the space P of irrationals and
any discrete space are all totally disconnected. We give an outline now of a
famous example, due to Knaster and Kuratowski, of a connected space K
and a point p in K such that K - {p} is totally disconnected!



29.2 Example. Recall that the Cantor set C is obtained by deleting a
countable collection of open intervals from I. Let Q be the set of endpoints
of these intervals (so Q ⊂ C) and set P = C–Q. Let p ∈ R2 be the point 

 and for each x ∈ C, denote by Lx the straight-line segment joining p
and x. Define

 = {(x1, x2) ∈ Lx | x2 rational}, if x ∈ Q,  
 = {(x1, x2) ∈ Lx | x2 irrational}, if x ∈ P.

Then the subspace K =  of R2 is connected, while K–{p} is totally
disconnected. See Exercise 29B.

29.3 Theorem. a) Every product of totally disconnected spaces
is totally disconnected.

b) Every subspace of a totally disconnected space is totally disconnected.

Proof. a) Suppose C is a nonempty connected subset of a product Π Xα of
totally disconnected spaces. Then, for each a, πα(C) is connected and hence
must be a one-point set. It follows that C is a one-point set.

b) is even easier. ■

Continuous images of totally disconnected spaces need not be totally
disconnected. In fact, one of the amazing results in topology is given in
Section 30: every compact metric space is a continuous image of the Cantor
set.

We now introduce a concept obviously related to total disconnectedness,
but slightly stronger in the general case as examples and theorems will
show.

29.4 Definition. A space X is 0-dimensional iff each point of X has a nhood
base consisting of open-closed sets. Equivalently, X is 0-dimensional iff for



each point x in X and closed set A not containing x, there is an open-closed
set containing x and not meeting A.

The reformulation of the definition makes the following theorem clear.

29.5 Theorem. Every 0-dimensional T1-space is totally disconnected.

To formulate a partial converse to this theorem we need a lemma.

29.6 Lemma. A compact T2-space X is totally disconnected iff
whenever x ≠ y in X, there is an open-closed set in X containing
x and not y.

Proof. This is left to Exercise 29D. ■

29.7 Theorem. A locally compact T2-space is 0-dimensional iff
it is totally disconnected.

Proof. It suffices to prove a locally compact, totally disconnected T2-space
X is 0-dimensional. Let A be a closed set in X, x ∉ A. Let U be an open
nhood of x with compact closure disjoint from A. For each p ∈ Fr (U), let
Vp be an open-closed subset of Ū containing x but not p. The sets X - Vp
form an open cover of Fr (U) so a finite subcover exists, say corresponding
to the points p1, . . . , pn. Let . Then V is an open-closed
set in Ū containing y and disjoint from Fr (U). But then V ⊂ U and hence is
an open-closed set in X containing x and not meeting A. Thus X is 0-
dimensional. ■

29.8 Examples. a) The set Q of rationals is 0-dimensional.

b) The Cantor set C is 0-dimensional.

c) If K is the example of Knaster and Kuratowski, then K–{p} is a totally
disconnected metric space which is not 0-dimensional. See Exercise 29B.
Thus Theorem 29.7 cannot be much improved.



An infinite product of nontrivial discrete spaces is never discrete.
According to Theorem 29.3, such products (and their subspaces) are,
however, totally disconnected. We close this section with the important
theorem providing a converse to this for an important class of totally
disconnected spaces: that is, every totally disconnected compact metric
space is homeomorphic to a subset of a countable product of discrete
spaces.

The development requires the following notion.

29.9 Definition. Let X0, X1, . . . be topological spaces and, for each n = 1, 2,
. . . , let fn be a continuous map of Xn into Xn–1. The sequence

which we abbreviate <Xn, fn>, is called an inverse limit sequence. The
inverse limit space of this sequence is the following subset of Π Xn:

X∞ = {(x0, x1, . . .) | fn(xn) = xn–1 for each n}.

29.10 Example. Suppose X0 ⊃ X1 ⊃ ⋯ and fn: Xn → Xn–1 is the injection
mapping. Then X∞ is homeomorphic to  Xn. The map is a natural one
since, as a set,

That the map f(x) = (x, x, . . .) is actually a homeomorphism of  Xn onto
X∞ is left as an easy exercise.

This example is the model for inverse limit sequences. Thus it is clear,
e.g., that many inverse limit spaces will be empty. This does not suit our



purposes and hence provokes the following theorem, generalizing the result
that a decreasing intersection of nonempty compact Hausdorff spaces is
nonempty.

29.11 Theorem. If <Xn, fn> is an inverse limit sequence of
nonempty compact Hausdorff spaces, then the inverse limit
space X∞ is a nonempty compact Hausdorff space.

Proof. X∞ is obviously Hausdorff, since it is a subspace of ∏ Xn. Moreover,
if we let Yn = {(x0, x1, . . .) ∈ Π Xn | f(xn) = xn–1}, then X =  Yn and
each Y1 ∩ ⋯ ∩ Yn is nonempty, so it suffices to show Y1 ∩ ⋯ ∩ Yn is
compact, for which it is enough to show each Yn is closed in the compact
space ∏ Xn.

If z = (z0, z1, . . .) is not in Yn, then f(zn) ≠ zn–1 so there are disjoint nhoods
U of fn(zn) and V of zn–1 in Xn–1. Let W be a nhood of zn in Xn such that
fn(W) ⊂ U. Then W × V × {Xk | k ≠ n–1, n} is a nhood of (z0, z1, . . .) not
meeting Yn. Thus Yn is closed in ∏ Xn, as desired. ■

Figure 29.1

29.12 Definition. Let <Xn, fn> and <Yn, gn> be inverse limit sequences. A
mapping Φ of <Xn, fn> to <Yn, gn> is a sequence (ϕn) of mappings ϕn: Xn →
Yn such that ϕn—1 ◦ fn = gn ◦ ϕn, for n = 1, 2, . . . (Fig. 29.1). We call Φ



continuous iff each ϕn is continuous, onto iff each ϕn is onto, and so on. The
induced mapping ϕ: X∞ → Y∞ is defined by

ϕ(x0, x1, . . .) = (ϕ0(x0), ϕ1(x1), . . .).

We know (ϕ0(x0), ϕ1(x1), . . .) belongs to Y∞ if (x0, x1, . . .) belongs to X∞, by
virtue of the requirement ϕn—1 ◦ fn = gn ◦ ϕn.

29.13 Theorem. a) If Φ is continuous, so is the induced mapping
ϕ.

b) If Φ is onto, so is the induced mapping ϕ, provided the Xn and
Yn are all compact Hausdorff spaces.

Proof. a) Suppose Φ is continuous. Then denoting the nth projection in Π
Xn by πn and the nth projection in ∏ Yn by ,

 (x0, x1, . . .) = ϕn(xn) = ϕn ◦ πn (x0, x1, . . .).

Thus ϕ is continuous when followed by each projection  and hence ϕ is
continuous.

 
 

b) Let (y0, y1, . . .) ∈ Y∞ and for each n, let An = . Then An is a
nonempty compact subset of Xn. If hn = fn | An, the sequence



is an inverse limit sequence of nonempty compact spaces (stop to check that
hn takes An into An—1) and hence has nonempty limit space A∞. But if (x0,
x1, . . .) ∈ A∞, then ϕ(x0, x1, . . .) = (y0, y1, . . .). Thus ϕ is onto. ■

29.14 Definition. A partition of a set X is a collection of disjoint sets in X
which cover X. If , . . . is a sequence of partitions of X such that 
refines  for each n ≥ 0, then the derived sequence obtained from , .
. . is the inverse limit sequence

where Yn is the discrete space having the sets of  as elements and fn takes
each set in  to the unique set in  which contains it.

29.15 Theorem. Let X be a totally disconnected compact metric space.
Then

a) For each n = 0, 1, 2, . . . there is a finite open cover  of X
by disjoint open sets of diameter < 1/2n such that  for
each n ≥ 0.

b) If  · · · is the derived sequence of any such
sequence , . . . of covers, then X is homeomorphic to the
resulting inverse limit space Y∞.

Proof. a) Since X is compact and totally disconnected, it is 0-dimensional,
so a cover  of X by open-closed sets of diameter < 1 certainly exists. By
compactness,  can be taken finite,  = {U1, . . . , Un}. Define

, , . . . , .



Then  is a finite cover by disjoint open sets of diameter
< 1.

Having obtained , we can refine  by a finite cover of
open-closed sets  = {U1, . . . , Uk} of diameter < 1/2n and then

is the desired nth cover.

b) Since the spaces Yn are nonempty, compact, Hausdorff spaces, Y∞ is
compact and nonempty by 29.11. For each n, define ϕn: X → Yn by letting
ϕn(x) be the set in  (i.e., element of Yn) containing x. Then (ϕn) is a
mapping of the sequence  (where i is the identity) to 

, because if x ∈ X, then

so that the desired commutativity relation holds. Moreover, each ϕn is
continuous and onto and hence so is the induced map ϕ : X → Y∞ (it is
obvious that the inverse limit space of . Since X is
compact, and Y∞ is Hausdorff, ϕ is also a closed map. Hence we need only
show ϕ is one-one.

But if x ≠ y in X, then say p(x, y) = ∈. Pick n large enough that 1/2n <
∈/2. Then since each element of  has diameter < 1/2n, x and y cannot
belong to the same element of ; i.e., ϕn(x) ≠ ϕn(y). Thus, easily, ϕ(x) ≠
ϕ(y). ■

Problems



29A. Examples on totally disconnected and  0-
dimensional spaces

1. The Sorgenfrey line E is 0-dimensional.
2. The set P of irrationals is 0-dimensional.
3. βN and βQ are totally disconnected [allowable reference: Gillman and

Jerison].

29B. The example of Knaster and Kuratowski
Recall the construction of the space K (29.2). K consists of the “rational
points” on the lines joining endpoints of C to  and the “irrational
points” on the lines joining other points of C to p.

1. K is connected. [If U is an open-closed subset of K containing p, U
has open-closed intersection with each line . Deduce that U = K.]

2. K — {p} is totally disconnected.

3. K — {p} is not 0-dimensional. [The open set {(x, y) | y < } of K —
{p} cannot contain any open-closed set (otherwise, this set would be a
proper open-closed subset of K).]

29C. Inverse limit spectra
Inverse limit sequences and their limit spaces have a natural generalization,
obtained by replacing the integers as index set with any directed set.
Specifically, let A be any directed set and suppose Xα is a topological space
for each α ∈ A. For each α and β with α < β, let fβα: Xβ → Xα be a
continuous map. The collection of spaces Xα and maps fβα will be called an
inverse limit spectrum, denoted 〈Xα; fβα〉, provided the following
condition is satisfied: if α < β < γ, then fγα = fβα ◦ fγβ.

The inverse limit space of an inverse limit spectrum 〈Xα; fβα〉 is the set

X∞ = {x ∈ ∏ Xα | Whenever α < β, xα = fβα(xβ)}.



1. If each Xα is T2, then X∞ is closed in ∏ Xα.

2. If each Xα is a (nonempty) compact Hausdorff space, then X∞ is a
(nonempty) compact Hausdorff space.

3. The projection πα restricted to X∞ still maps X∞ onto Xα, and the sets 
 (U) for α ∈ A and U open in Xα form a base (rather than just a subbase!)

for X∞.

4. Suppose 〈Xα ; ƒβα〉 and 〈Yα ; gβα〉 are two inverse limit spectra
with the same index set A, and for each α ∈ A, let hα : Xα → Yα be
continuous. If the hα satisfy the appropriate composition condition, then a
unique map h∞ : X∞ → Y∞ is induced such that the diagram in Fig. 29.2
commutes (i.e., such that hα ∘ πα = πα ∘h∞) for each α ∈ A.

Figure 29.2

5. If each hα is a homeomorphism of Xα with Yα, then h∞ is a
homeomorphism of X∞ onto Y∞.

 
 

Inverse limit spectra and their limit spaces are important in the extension
of homology and cohomology theory from simplicial objects to the more
general Čech theory, applicable to a wide class of spaces. See the book by
Spanier on algebraic topology.



29D. Totally disconnected compact Hausdorff spaces
In a compact Hausdorff space, the quasicomponents (26B) are the
components. Conclude that a compact Hausdorff space is totally
disconnected iff distinct points can be separated by an open-closed set
containing one and not the other. 29E. Connectedness in topological groups
Let G be a topological group.

 
 

1. The component C of the identity in G is a closed normal subgroup.

2. G/C is totally disconnected (so if G is locally compact, G/C is 0-
dimensional).

3. An open-closed compact nhood U of e in G contains an open–closed
subgroup H. [Use18D.2 to find a (symmetric) nhood V of e such that UV ⊂
U. It follows that Vn ⊂ U for any n. Then  Vn is an open (hence closed
by 18D.7) subgroup contained in U.]

4. If G is compact, an open-closed compact nhood U of e in G contains
an open-closed normal subgroup N. [Let H be the subgroup given by 3 and
let N =  xHx–1.]

5. If G is locally compact and totally disconnected, the open-closed
subgroups of G form a base at e. [The open–closed nhoods of e are a base.
See part 3.]

6. If G is locally compact, C is the intersection of all open-closed
subgroups. [G/C is locally compact and totally disconnected.]

7. In a locally compact group, the following are equivalent:
a. G is connected,
b. G has no proper open-closed subgroups,
c. G =  Vn for any open nhood V of e.

29F. Cantor spaces

As a corollary to Theorem 29.15, every totally disconnected compact metric
space can be embedded in a product of countably many finite discrete



spaces. The corollary can be strengthened. Show that every 0-dimensional
T1-space (hence, every locally compact totally disconnected T1-space)
which has a base ℬ of cardinal ℵ can be embedded in the product of ℵ
copies of the discrete space with two points. (Recall that a product of two-
point discrete spaces is called a Cantor space.) [The base ℬ can be taken to
consist of open-closed sets, by an extension of 16B.2. For each B ∈ ℬ,
consider the characteristic function of B. Apply 8.16.]

30 The Cantor set
The Cantor set C is a totally disconnected compact metric space. By adding
one more property to this list, we can completely characterize C. Our goal
in this section is the proof of this useful fact, and one of its startling
corollaries: every compact metric space is a continuous image of C.

30.1 Definition. A set A in a space X is perfect in X iff A is closed and
dense in itself; i.e., each point of A is an accumulation point of A.

The whole space X, then, is perfect iff it is dense in itself. In particular,
the Cantor set C is perfect.

30.2 Lemma. If U is any nonempty open set in a compact totally
disconnected, perfect T2-space and n is any positive integer, then
U = U1 ∪ ⋯∪ Un for some choice of nonempty disjoint open
sets U1, . . . , Un.

Proof. It suffices to check the case n = 2, since all others will follow by
induction. But if U is any nonempty open set in X, then U cannot be a single
point since X is perfect. Now if p and q are different points of U, then there
is an open-closed set V in X which contains p but not q, by 29.6. Setting U1
= U ∩ V and U2 = U–V gives the desired separation of U. ■

Now, given two totally disconnected, perfect, compact metric spaces, we
can approximate them by inverse limit sequences of discrete spaces by
using Theorem 29.15 and we can keep the discrete spaces in the two



sequences the same size at each stage, using 30.2. The result is the
following theorem.

30.3 Theorem. Any two totally disconnected, perfect compact
metric spaces are homeomorphic.

Proof. Let X, Y be such spaces. Let ( n), ( n) be sequences of finite covers
of X and Y, respectively, by disjoint open sets, the sets of the nth covers
having diameter < 1/2n. The existence of these is guaranteed by the
Theorem 29.15. By using Lemma 30.2 in order to split sets where
necessary, we may assume  and  have the same number of elements
for each n.

Now if  = { U11, . . . , U1n } and  = {V11, . . . , V1n}, then each Uij is
a union of elements of , and each Vij is a union of elements of . Again,
using Lemma 30.2 we can assume U1j and V1j are the union of the same
number of elements of , , respectively, in such a way that U2k ⊂ U1j
iff V2k ⊂ Vij. Continue in this fashion, matching the covers of  and 
for all n.

Now let X0  X1 ← . . . and Y0  Y1 ← . . . be the derived sequences of (
) and ( ), respectively. Define ϕn : Xn → Yn by ϕn(Unj) = Vnj. Then ϕn is

a homeomorphism from Xn to Yn, and it is easily verified that ϕ : X∞ → Y∞
is also then a homeomorphism. But X∞ is homeomorphic to X, and Y∞ is
homeomorphic to Y. ■

30.4 Corollary. The Cantor set is the only totally disconnected,
perfect compact metric space (up to homeomorphism).

The previous result provides us with some interesting and easily proved
results (some of which we already know). Recall that denotes the
product of ℵ0 copies of the two-point discrete space.



30.5 Corollary. The Cantor set C is homeomorphic to .

30.6 Corollary. The Cantor set C is homeomorphic to .

The next result is a much deeper (and more startling) application of the
characterization theorem.

30.7 Theorem. Every compact metric space X is a continuous
image of the Cantor set.

Proof. Let  , . . . be a sequence of finite covers of X by the closures of
open sets, the sets of  being of diameter < 1/2n, such that  < for n
= 2, 3, . . . . Say  For each U1i ∈ , define V1i = {(u,
i) ∣ u ∈ U1i} so that V1 = V11 ∪ . . . ∪  is the disjoint union of the U1i.
Now each U2j ∈  is contained in some U1k ∈ . Define V2ij = {(u, i, j)

∣ u ∈ U2j} whenever U2j ⊂ U1i, and let V2 = V2ij. Then V2, it
is worth pointing out, is somewhat more than the disjoint union of the U2j.
Each U2j occurs in the disjoint union once for each U1i such that U2j ⊂ U1i.
Now define ƒ2: V2 → V1 by ƒ2((u, i, j)) = (u, i). Then ƒ2 is continuous on
each piece V2ij and thus continuous on V2. Also, there is a map ϕ1: V1 → X
defined by ϕ1(u, i) = u and a map ϕ2: V2 → X defined by ϕ2(u, i, j) = u.

Continue the process. The result is a pair of inverse sequences and a
mapping between them (Fig. 30.1), where i is the identity map on X. The
reader should

Figure 30.1



check that (ϕn) satisfies the composition condition necessary to be a map of
inverse limit sequences. The result is a map ϕ : V∞ → X of the inverse limit
spaces, which is continuous and onto because X and each Vn is a compact
Hausdorff space and each ϕn is continuous and onto.

It is worth pointing out, at this stage, that each Vn is a compact metric
space, being a disjoint union of a finite number of compact metric spaces.
Let dn be the metric on Vn induced by the metrics on the Unj. We also need
the obvious fact that if (x1, x2, . . .) ∈ V∞, then we must have ϕ(x1) = ϕ2(x2)
= . . . , and, if zx denotes this common value, then for any (y1, y2, . . .) ∈ V∞,
dn(xn, yn) ≥ d(zx, zy).

We would like to show V∞ is the Cantor set. It is compact because each
Vn is compact, and metric because it is a subset of the metric space  Vn.
If x = (x0, x1, . . .) and y = (y0, y1, . . .) are distinct points of V∞, then for
some n, xn ≠ yn. Now xn and yn must correspond to distinct points of X
(under ϕn : Vn → X), say to zx and zy. Now if dm is the metric on Vm, then
clearly dm(xm, ym) ≥ d(zx, zy) for all m ≥ n. Since the diameters of the sets

Vm1, . . . ,  which compose Vm approach 0 as m → ∞, it follows that
beyond some point N, xm and ym belong to different sets of Vm; say, xm ∈
Vm1, ym ∉ Vm1. But Vm1 is open–closed in Vm, and hence {(z0, z1, . . .) ∈ V∞
∣ Zm ∈ Vm1} is an open-closed nhood of x in V∞ not containing y. Thus V∞
is totally disconnected.

But V∞ need not, in general, be perfect. However, if C is the Cantor set,
V∞ × C is a perfect, totally disconnected compact metric space which has
V∞, and hence X, for a continuous image. ■

Problems

30A. Properties of  C
1. C is nowhere dense in I.



2. C is homogeneous (i.e., given x and y in C, a homeomorphism of C
onto itself can be found which carries x to y). Thus, the property of being an
endpoint in C is not topological, but merely reflects a peculiarity of the
embedding of C in I.

3. Any totally disconnected, compact metric space is homeomorphic to a
subset of C. [See 29.15(b).]

30B. Perfect sets
1. Every perfect set in a complete metric space contains a compact

perfect set.

2. A compact Hausdorff space which is countable is not perfect.
“compact Hausdorff” can be replaced by “complete metric.”

3. If A ⊂ X has no isolated points, then Ā is perfect in X.

30C. Open subsets of  C
1. Every open subset of C can be written as the union of a finite or

infinite sequence of disjoint open-closed subsets of C.

2. Every open subset of C is homeomorphic either to C or to C–{0}. [If
G is a finite union as in (1), then G is a 0-dimensional, perfect, compact
metric space and is thus homeomorphic to C. If G =  Gn as in (1), then

we can write C–{0} as  Cn where the Cn are disjoint nonempty open-
closed subsets of C and for each n, Cn and Gn are homeomorphic, so C —
{0} and G are homeomorphic (see 7H).]

30D. βN versus  C
1. Every compact metric space is the continuous image of βN.

2. Is βN a continuous image of C?

3. Why is C preferable to βN as a universal mapping space for compact
metric spaces?

30E. Scattered sets; the perfect kernel



A topological space X is scattered iff it contains no nonempty dense-in-
itself subset.

1. Every discrete space is scattered. Exhibit a nondiscrete scattered space.
[There are infinite compact subsets of R which are scattered.]

2. Every topological space X can be written as the union of two disjoint
sets, one perfect, the other scattered. (The perfect set in this union is called
the perfect kernel of X.)

30F. Homeomorphism and product spaces
Let X be a compact space such that X × X is homeomorphic to X. Must 
be homeomorphic to X? [Add an isolated point to C.] Note that noncompact
spaces X with this property are easy to find. These results complement the
observations made in Exercise 8J.

30G. Convex sets in  Rn

A subset E of Rn is convex iff whenever x and y belong to E, then E
contains the closed line segment joining x to y. Show that every closed
bounded convex set in Rn is the continuous image of I. [There is a
continuous map ƒ of C onto E, by 30.7. How can ƒ be extended to all of I?]

31 Peano spaces
Here we give a topological characterization of those spaces which are
continuous images of the unit interval I.

31.1 Definition. A Peano space is a compact, connected, locally connected
metric space.

The next three results are directed specifically at the proof of the Hahn–
Mazurkiewicz theorem, which characterizes the continuous images of I as
precisely the Peano spaces.

31.2 Theorem. Every Peano space is arcwise connected.

Proof. Suppose a and b are points in a Peano space X. Using Theorem
26.15, there is a simple chain U11, . . . , U1n of open connected sets of
diameter < 1 from a to b. About each point p of U1i there is an open



connected set V of diameter <  whose closure is contained in U1i, and if
p ∈ U1i+1 we can arrange that  ⊂ U1i+1 also. Do this for each i = 1, . . . ,
n. We wish now to obtain a simple chain of such sets V from a to b.

Pick xi ∈ U1i ∩ U1i+1 for i = 1, . . . , n–1 and for each i = 0, . . . , n–1
(with a = x0 and b = xn) find a simple chain of the sets V from xi to xi +1 in
U1i+1. We cannot simply join these together to get a simple chain from a to
b, because of doubling back (Fig. 31.1), but we can obtain the desired
simple chain as follows: take all elements of the first chain (from a to x1) up
to and including the first one U meeting some element V of the second
chain (from x1 to x2), then omit all elements of the first chain after U and all
elements of the second chain before V. Repeat this at all other intersections.

Figure 31.1

The result, then, is a chain U21, . . . ,  of open connected sets of
diameter <  such that for each i, 2i ⊂ U1j for some j. Now continue this
process, obtaining a simple chain of open connected sets of diameter < 1/2n

whose closures lie in elements of the previous chain for each n > 1.

For each n, let Cn be the union of the closures of the elements of the nth

chain. Then C =  Cn is a compact, connected metric space containing a
and b. We have finished if we show that no points other than a and b are



noncut points, since then C is an arc by 28.13.

Let x ∈ C — {a, b}. For given n, at most one or two links of the nth
chain contain x. Let An be the union of all the links preceding these, Bn the
union of all the links following these. Then

form a separation of C — {x} into disjoint, nonempty open sets. Thus x is a
cut point of C. ■

The proof just given can easily be modified to show that every open
connected subset of a Peano space is arcwise connected (see 31C.1). We
will use this fact a little later, in the proof of Lemma 31.4.

31.3 Lemma. A compact locally connected metric space is
“uniformly locally connected”; that is, for any ε > 0, there is
some δ > 0 such that whenever p(x, y) < δ, then x and y both lie
in some connected subset of X of diameter < ε.

Proof. Given ε > 0, cover X by open connected nhoods of diameter < ε.

Reduce this to a finite subcover { , . . . , } and let δ be a Lebesgue
number (22.5) for this cover. Then if p(x, y) < δ, both x and y belong to
some Vxi. ■

31.4 Theorem. A Peano space X is uniformly locally arcwise
connected; i.e., for each ε > 0, there is a δ > 0 such that
whenever p(x, y) < δ, then x and y are joined by an arc of
diameter < ε.



Proof. First, X is uniformly locally connected, by 31.3. Thus if ε > 0 is
given, there is a δ > 0 such that if p(x, y) < δ, then x and y lie together in a
connected set B of diameter < ε/2. Each x ∈ B has an open connected
nhood Ux of diameter <ε/4. Then U =  Ux is an open connected subset
of X, and hence, (see Exercise 31C.1), U is arcwise connected. Thus, if p(x,
y) < δ, then x and y lie in an arcwise connected subset U of diameter <ε. ■

We are now ready to prove the Hahn-Mazurkiewicz theorem, classifying
the continuous images of the unit interval as the Peano spaces. Proving that
continuous images of I have the properties of a Peano space is no trouble;
all the necessary theorems are already at hand. But to prove the converse is
significantly more difficult. The basic idea is that given any Peano space X,
there is a continuous map of the Cantor set onto X by 30.7 and, using the
small arcs in X provided by the previous theorem, we can extend this map
to the whole unit interval. The details, of course, are painful.

31.5 Theorem. (Hahn and Mazurkiewicz) A Hausdorff space X
is a continuous image of the unit interval I iff it is a Peano
space.

Proof. Let ƒ be a continuous map of I onto X. By 23.2, X must be compact
and metric. Moreover, X is the continuous image of a connected space and a
quotient (in fact, a closed, continuous image) of a locally connected space,
so X has these properties itself. Thus, X is a Peano space.

Now suppose X is any Peano space. Recall C is the Cantor set in I, with
I1, I2, . . . being the intervals in I–C ordered by size, and for intervals of the
same size, from left to right. Let ƒ be a continuous map of C onto X. Our
problem is to extend ƒ continuously over each In = (pn, qn). Now ƒ(pn) and
ƒ(qn) are already defined. If ƒ(pn) = ƒ(qn), define ƒ*(p) = ƒ(pn) for each p ∈
In. Now for each n = 1, 2, . . . find δn > 0 such that ρ(x, y) < δn in X ⇒ x and
y are joined by an arc of diameter < 1/2n. But, for each n, find ηn > 0 such
that ∣p — q∣ < ηn in C ⇒ ρ(ƒ(p) ƒ(q)) < δn.



Only finitely many intervals I1, . . . , In1 have length ≥η1 and for each
such Ij extend ƒ to (pj, qj) by letting its values run over any arc from f(pj) to

ƒ(qj) in X. Then intervals , . . . ,  will have length η2 ≤ ∣Ij∣< η1. For
these intervals Ij we have ∣pj–qj∣ < η1 so that ρ(ƒ(pj), ƒ(qj)) < δ1. Extend ƒ
to (pj, qj) by letting its values run over any arc of diameter < 1 between
ƒ(pj) and ƒ(qj). In general, for the intervals Ij such that ηk+1 ≤ ∣Ij∣ < ηk, we
can let the values of ƒ on (pj, qj) run over an arc of diameter < 1/k between
ƒ(pj) and ƒ(qj).

The result is a function from I onto C whose continuity can be easily
checked, once you see what is going on. ■

31.6 Corollary. A T2-space is pathwise connected iff it is arcwise
connected.

Proof. By the previous theorem and Theorem 31.2, every path is arcwise
connected. ■

Problems

31A. Peano spaces
1. If X is a Peano space of more than one point and Y is any Peano space,

there is a continuous map of X onto Y.

2. If a and b are distinct points in X above, and c and d are distinct points
in Y, the map ƒ can be so constructed that ƒ(a) = c and f(b) = d.

31B. Uniform local connectedness
1. Every uniformly locally connected space is locally connected. [By

27.16, it is enough to show such a space is connected im kleinem at each
point.]

2. The converse fails. [Consider the graph of sin (1/x) for x > 0.]

31C. Subsets of Peano spaces
1. An open connected subset of a Peano space is arcwise connected.



2. Is a compact, connected subset of a Peano space always a Peano
space?

31D. Mapping the Cantor set
Show that the extension F of the map ƒ of the Cantor set onto X given in the
proof of 32.5 is continuous.

32 The homotopy relation
In the next three sections, we will provide a brief introduction to homotopy
theory, one of the branches of algebraic topology. Our limited aim is the
development of sufficient machinery to prove the Brouwer fixed-point
theorem (34.6). In this first section, we will build the framework of basic
definitions and theorems which will enable us to introduce the appropriate
algebraic techniques in Section 33. The Brouwer theorem will follow easily
after we have applied these techniques to study the unit circle in Section 34.

32.1 Definition. Let f and g be continuous functions from X to Y. We say f
is homotopic to g, written ƒ ≃ g, iff there is a continuous function H: X × I
→ Y such that H(x, 0) = ƒ(x) and H(x, 1) = g(x) for all x ∈ X. The map H is
called a homotopy between ƒ and g. For clarity, we will sometimes write H :
ƒ ≃ g when H is a homotopy between ƒ and g.

Setting ƒt(x) = H(x, t) for x ∈ X and t ∈ I, the homotopy H is seen to
represent a family {ƒt | t ∈ I} of maps from X to Y, varying continuously
with t, such that ƒ0 = ƒ and f1 = g. Thus H gives a continuous deformation
of the map ƒ into the map g.

32.2 Examples. a) In Rn, define ƒ(x) = x for all x and g(x) = 0 for all x.
Then ƒ ≃ g, the homotopy being given by

H(x, t) = (1–t)x.

b) Let X be any space, Y a convex subset of Rn. Then any two maps ƒ, g :
X → Y are homotopic, the homotopy being given by



H(x, t) = t ⋅ g(x) + (1–t) ⋅ ƒ(x)

Note the importance of the range in questions of homotopy. For example,
if D is the disk { } in the plane, we can conclude from
example b) above that any two maps from S1 to D are homotopic; for
instance, the map ƒ(x) = x and the constant map g(x) = (1, 0). But regarded
as maps from S1 to S1, ƒ and g are no longer homotopic (34.4).

32.3 Theorem. ≃ is an equivalence relation in the set C(X, Y) of
all continuous maps from X to Y.

Proof. If ƒ ∈ C(X, Y), then H: ƒ ≃ ƒ, where H is defined by H(x, t) = ƒ(x)
for all x ∈ X and t ∈ I.

If f, g ∈ C(X, Y) and H : ƒ ≃ g, then H’ : g ≃ f where H′(x, t) = H(x, 1–t)
for all x ∈ X and t ∈ I.

If ƒ, g, h ∈ C(X, Y) and H1 : ƒ ≃ g while H2: g ≃ h, then H: f ≃ g, where

H is continuous on X × I since it is continuous on each of the closed subsets
.■

32.4 Definition. The equivalence classes in C(X, Y) under the relation ≃ are
called the homotopy classes in C(X, Y).

32.5 Theorem. Composites of homotopic maps are homotopic.

Proof Suppose ƒ1 and g1 are homotopic maps from X to Y and ƒ2 and g2 are
homotopic maps from Y to Z; say H1: ƒ1 ≃ g1 and H2: ƒ2 ≃ g2.



Then ƒ2 ∘ H1 :ƒ2 ∘ ƒ1 ≃ ƒ2 ∘ g1 g1. By transitivity of the homotopy
relation, it remains to construct a homotopy between ƒ2 ∘ g1 and g2 ∘ g1.
Define

H : X × I→ Z

by H(x, t) = H2(g1(x), t). Then H is a composite of continuous functions and
hence continuous, and H : ƒ2 ∘ g1 ≃ g2 ∘ g1. ■

32.6 Definition. A space X is contractible iff the identity map i : X → X is
homotopic to some constant map c(x) = x0, from X to a point x0 ∈ X.

It follows from Example 32.2(b) that any convex subset of a Euclidean
space is contractible.

32.7 Theorem. X is contractible iff for any space T, any two
continuous maps ƒ, g : T → X are homotopic.

Proof. Sufficiency is obtained by setting T = X and letting ƒ and g be,
respectively, the identity and a constant map.

For necessity, suppose X is contractible; say i ≃ c, where c is a constant
map from X to itself. Let ƒ, g : T → X be any two continuous maps. By the
previous theorem, ƒ = i ◦ ƒ ≃ c ◦ ƒ and g = i ◦ g ≃ c ◦ g. But c ◦ ƒ = c ◦ g, so
apparently ƒ ≃ g. ■

32.8 Definition. Two spaces X and Y are said to be homotopically
equivalent iff there are continuous functions ƒ : X → Y and g : Y → X such
that ƒ ◦ g ≃ iY and g ◦ ƒ ≃ ix. The maps ƒ and g are called homotopy
equivalences and g is called a homotopy inverse of ƒ (and vice versa).

Homotopy equivalence is an equivalence relation on any set of
topological spaces, and homeomorphic spaces are always homotopically
equivalent. The converse to the last statement fails, as the following
theorem shows.



32.9 Theorem. X is contractible iff it is homotopically
equivalent to a one-point space.

Proof. Suppose X is contractible, say the identity i : X → X is homotopic to
the constant function c(x) = x0. Let Y, = {x0}, and let j: Y → X be the
inclusion map. Then c ◦ j is the identity on Y and j ◦ c = c is homotopic to
the identity on X. Thus j is a homotopy equivalence from Y to X.

Conversely, suppose ƒ : X → Y is a homotopy equivalence between X and
a one-point space Y, and let g: Y → X be a homotopy inverse. Then g ◦ ƒ is
a constant map from X to X which is homotopic to the identity on X, so X is
contractible. ■

 
 
32.10 Definition. A subset A of X is a retract of X iff there is a continuous
map r: X → A, called a retraction, such that r(a) = a for each a ∈ A. We
call A a deformation retract of X iff there is a retraction r: X → A which is
homotopic (as a map into X) to the identity function i on X. If H : r ≃ i, H
is called a deformation retraction.

 
 
32.11 Example. A retract need not be a deformation retract. In fact, the
one-point subsets of any space are retracts, but no one-point subspace of S1

is a deformation retract (34.4).

32.12 Theorem. If A is a deformation retract of .X, then A is
homotopically equivalent to X.

Proof. Let j: A → X be inclusion and r : X → A be the retraction. Then j ◦ r
is homotopic to the identity on X and r ◦ j is the identity on A, so r is a
homotopy equivalence. ■



 
 

We conclude this section by introducing a generalization of the homotopy
relation which will be useful in the next section.

 
 
32.13 Definition. A topological pair is an ordered pair (X, A) where A is a
topological space and A ⊂ X. A mapping ƒ: (X, A) → (Y, B) of topological
pairs is a mapping ƒ : X → Y such that ƒ(A) ⊂ B; it is continuous if it is
continuous in the usual sense from X to Y.

Two continuous mappings ƒ, g: (X, A) → (Y, B) are homotopic iff there is
a continuous function H: X × I → Y such that H(x, 0) = ƒ(x) and H(x, 1) =
g(x) for all x ∈ X and such that H(a, t) = ƒ(a) = g(a) for all a ∈ A. Thus for
ƒ and g to be homotopic mappings of the pair (X, A) it is necessary that ƒ | A
= g | A. If ƒ and g are homotopic mappings of (X, A) we say “ƒ is homotopic
to g relative to A” and write ƒ ≃ g[A].

Two pairs (X, A) and (Y, B) are homotopically equivalent iff there are pair
mappings ƒ : (X, A) → (Y, B) and g : (Y, B) → (X, A) such that ƒ ∘ g ≃
iY[B] and g ∘ f ≃ ix [A]. Apparently ƒ | A must in this case be a
homeomorphism of A onto B and g | | B must be its inverse.

Clearly, if ƒ ≃ g[A], then ƒ and g are homotopic as mappings of X to Y.
The converse may fail, even when ƒ and g agree on A, as the following
example shows.

 
 
32.14 Example. Let X be the subspace of R2 consisting of the segment {x
|0≤ x ≤1} of the x-axis, the segment {y | 0 ≤ y ≤ 1} of the y-axis and each of
the line segments {(1/n, y) | 0 ≤ y ≤ 1} for n = 1, 2, . . .. Let A be the one-
point subspace {(0, 1)}. X is easily seen to be contractible so, by 32.7, the
identity i on X and the constant map g(x) = (0, 1) are homotopic. Moreover,
these two maps agree on A. But no homotopy H between i and g can have A
pointwise fixed, as required for relative homotopy.



Some of the other relationships between homotopy and relative
homotopy will be explored in the exercises. In particular, homotopy relative
to A is an equivalence relation in the set of all maps from X to Y (see 32B).

We should introduce a note of caution here. The literature contains
references to several notions of relative homotopy, no two of which are
exactly alike. It would be wise to check definitions whenever such a notion
is encountered.

Problems
32A. Contractible spaces

1. Every contractible space is pathwise connected.
2. Every retract in a contractible space is contractible.

32B. Relative homotopy

Let (X, A) and (Y, B) be topological pairs.

1. The relation ƒ ≃ g[A] is an equivalence relation on the set of all
mappings ƒ : (X, A) → (Y, B).

2. If (X, A) and (Y, B) are homotopically equivalent as pairs, then X and Y
are homotopically equivalent spaces. Is the converse true? That is, if ƒ is a
homotopy equivalence from X to Y such that ƒ | A is a homeomorphism of A
onto B, is ƒ a homotopy equivalence between (X, A) and (Y, B)?

 
 
32C. Homotopy in subspaces and products

1. If f0, f1 : X → Y are homotopic and A ⊂ X, then f0 | A and f1 | A are
homotopic.

2. Maps f0 and f1 of X into a product space are homotopic iff they are
homotopic when followed by each projection.

 
 
32D. Weak deformation retracts



If A ⊂ X, a map r: X → A is a weak retraction of X onto A iff r ◦ j is
homotopic to the identity on A, where j is the inclusion map of A in X. Then
A is a a weak retract of X. A subset B of X is deformable into A in X iff
there is a continuous map D : B × I → X, called a deformation, such that
D(b, 0) = b for all b ∈ B and D(B × 1) ⊂ A. Finally, A is a weak
deformation retract of X iff there is a map D : X × I → X such that D(x, 0) =
x, for all x ∈ X, and r(x) = D(x, 1) is a weak retraction of X onto A.

 
 

1. Note that r is a weak retraction of X onto A iff it is a left homotopy
inverse to the inclusion map j. Show X is deformable into A (in X) iff j has a
right homotopy inverse.

2. Every retract is a weak retract. The converse fails. (But see 32F.)

3. The following are equivalent, for A ⊂ X :
a. A is homotopically equivalent to X,
b. A is a weak deformation retract of X,
c. A is a weak retract of X and X is deformable into A.

(Compare with 32.12.)

32E. Deformation and retraction
1. Any compact, convex subset of Rn is a deformation retract of Rn.
2. If A is a retract of X, then A × Y is a retract of X × Y.
3. Not every weak deformation retract of X is a deformation retract.
4. A is a deformation retract of X iff A is a retract of X and X is

deformable into A (32D).

32F. The homotopy extension property

Let X be a topological space, A a subspace of X. We say the pair (X, A) has
the homotopy extension property with respect to a space Y iff each
continuous F’ defined on (X × 0) ∪ (A × I) to Y has an extension to a
continuous F : X × I → Y.

1. If (X, A) has the homotopy extension property with respect to Y, A is a
weak retract of X iff A is a retract of X.



2. (X, A) has the homotopy extension property with respect to every
space Y iff (X × 0) ∪ (A x I) is a retract in X × I.

32G. Null-homotopic maps

A map f : X → Y is null homotopic iff ƒ is homotopic to some constant map
of X into Y. Recall that ΛX denotes the cone over X (9.12(f)).

1. Two null-homotopic maps ƒ and g of X to Y need not be homotopic to
one another.

2. A map ƒ : X → Y is null homotopic iff ƒ can be extended to a
continuous map F:ΛX→ Y.

33 The fundamental group
We are now in a position to use the “addition” of paths defined in Section
27 to associate with any topological space a group (actually, several
groups). The basic idea, of course, is to regard the paths in X as elements of
the group, with path addition as the group operation. The first obstacle we
encounter is that it is not possible to add any two paths in X ; the first must
end at the point where the second begins. This is taken care of (in
Definition 33.1) by restricting attention to the paths which begin and end at
some fixed point of X. The second obstacle is that, even for this restricted
family of paths, the requirements of a group operation are not satisfied by
path addition. This we overcome, with the help of the material of the
previous section, by considering homotopy equivalence classes of paths,
rather than individual paths.

The result will be a group assigned to each fixed x0 ∈ X which,
intuitively, measures the number of two-dimensional holes in the path
component of x0.

33.1 Definition. Let X be a topological space, x0 a fixed point in X. A
continuous function ƒ : I → X will be called a loop based at x0 iff ƒ(0) =
ƒ(1) = x0. Two loops ƒ and g based at x0 will be called loop homotopic (or,
where no confusion can result, simply homotopic) iff ƒ ≃ g[{0, 1}]. Thus a
loop homotopy between two loops based at x0 must be a relative homotopy
which at any stage carries the endpoints of I into x0. We will signify this
relation of homotopy between two loops by .



The relation ≃ between loops based at x0 is an equivalence relation and
hence partitions the set Ω(X, x0) of loops based at x0 into equivalence
classes. The equivalence class containing ƒ will be denoted [ƒ], and the set
of all such equivalence classes of loops based at x0, will be denoted Π1(X,
x0).

We can “add” loops just as we “added” paths in Section 27. If ƒ1 and ƒ2
are loops based at x0, we define a new loop ƒ1 * ƒ2 as follows:

Then we can elevate the operation * to the set Π1(X, x0) of equivalence
classes of loops by defining

[ƒ1] ∗ [ƒ2] = [ƒ1 ∗ ƒ2].

It is left as Exercise 33A for the reader to show that ∗ is then well defined
in Π1(X, x0). That is, if  g1, and  g2, then g1 ∗ g2.

Thus ∗ is a binary operation on Π1(X, x0).

33.2 Theorem. Π1(X, x0), with the operation ∗, is a group.

Proof. We check associativity first. For this, it suffices to show that

 ƒ ∗ (g ∗ h)

for loops ƒ, g and h based at x0. A pictorial approach will make the idea
behind the necessary homotopy easy. In terms of its action on I, (ƒ ∗ g) ∗



h is accomplished by completing the action of ƒ in the interval , the
action of g in the interval  and the action of h in the interval  This
is represented on the top line of Fig. 33.1. The bottom line represents ƒ ∗
(g ∗ h). A homotopy between ƒ ∗ (g ∗ h) and (ƒ ∗ g) ∗ h can then be
constructed by allowing the action of ƒ, g and h to be divided at time t as
shown. The details are left to the reader.

Figure 33.1

Figure 33.2

Now let e denote the constant map e(t) = x0 for all t ∈ I. We claim [e]
serves as an identity in Π1(X, x0). It suffices to show  ƒ and 



ƒ for all ƒ ∈ Ω(Y, y0). To exhibit a homotopy for the first, define
for each t ∈ I,

(A picture like the one in Fig. 33.1 will help in understanding where this
came from.) H is continuous on I × I since it is continuous on each of the
closed sets {(x, t) | x ≤ (2–t)/2} and {(x, t) | x ≥ (2–t)/2} and it is easily
checked that H(x, 0) = ƒ(x) and H(x, 1) = (ƒ ∗ e)(x) for all x ∈ I. The
relation  ƒ is done in similar fashion.

Finally we must show existence of inverses. For each loop ƒ at x0, define
ƒ ← to be the loop

ƒ←(x) = ƒ(1–x), 0 ≤ x ≤ 1,

and let

[ƒ]← = [ƒ←].

The reader can check that this is well defined. To show [ƒ]← is an inverse
for ƒ, it suffices to check that  e and  e. First (Fig.
33.2), let



The function H is continuous on each of three closed sets which cover the
square and thus continuous, and clearly H(x, 0) = (ƒ ∗ ƒ←)(x) and H(x, 1) =
e(x) for all x . ∈ I The homotopy showing  e is similarly
constructed. ■

Figure 33.3

The dependence of Π1(X, x0), called the fundamental group of X based at
x0, on the base point x0 is not illusory in the general case (33B), but for an
important special class of spaces it can be ignored.

33.3 Theorem. If X is an arcwise connected space, then for any
pair of points x0 and x1 in X, Π1(X, x0) and Π1(X, x1) are
isomorphic.

Proof. Let h: I → X be an arc from x0 to x1, h← the arc h traversed in the
opposite direction. For each loop ƒ based at x0, define α(ƒ) to be the
following loop based at x1 (Fig. 33.3): a(ƒ) = h← ∗ ƒ ∗ h.



This induces a mapping A[ƒ] = [h← ∗ ƒ ∗ h] of Π1(X, x0) to Π1(X, x1). We
will show this is the desired isomorphism.

First, A is single valued. That is, if g , then 
. For if  , then the function G defined by

is a homotopy between h← ∗ ƒ ∗ h and h← ∗ g ∗ h.

Second, A is a homomorphism; that is A([ƒ] ∗ [g]) = A[ƒ] ∗ A[g]. But

Finally, it is necessary to show A is one-one and onto. This is left as
Exercise 33B. ■

 
 

Thus for an arcwise connected space X, we can speak of the fundamental
group Π1(X) of X. This will cause us no difficulty here, but would be an
annoying oversimplification in a deeper study of the fundamental group. In
point of fact, Π1(X) is a set of groups indexed by the points of X, any two of
which are isomorphic under any one of a set of isomorphisms indexed by
the paths between the two points in question. See Exercise 33B.

Later on, we will compute some simple homotopy groups (with the help
of some by no means simple tools). Now we turn to the question of their
homotopy (and thus topological) invariance.



33.4 Definition. A pair (X, x0) where X is a topological space and x0 ∈ X
will be called a pointed space (space with base point). A mapping ƒ: (X, x0)
→ (Y, y0) of pointed spaces is a continuous function from X to Y such that
ƒ(x0) = y0.

We have associated with each pointed space (X, x0) an algebraic object
Π1(X, x0). The power of the homotopy method in topology is largely
traceable to the fact that mappings of pointed spaces induce
homomorphisms of the associated algebraic structures.

33.5 Theorem. Every continuous mapping ƒ: (X, x0) → (Y, y0)
induces a homomorphism ƒ# : Π1(X, x0) → Π1(Y, y0).

Proof. For each loop g at x0 in X, let ƒ’(g) be the loop at y0 in Y defined by
ƒ’(g)(t) = ƒ[g(t)]. This defines a mapping ƒ’ from Ω(X, x0) to Ω(Y, y0)
which in turn induces a mapping ƒ# : Π1(X, x0) → Π1(Y, y0) as follows:

ƒ#([g]) = [ƒ’(g)].

To see that ƒ# is well defined, note that if H is a homotopy between g1 and
g2 in Ω(X, x0), then ƒ ∘ H is a homotopy between ƒ’(g1) and ƒ’(g2) in Ω(Y,
y0).

It remains to show that ƒ# is a homomorphism, for which it suffices to
establish the necessary algebraic property for ƒ’. But



33.6 Theorem. a) If f is the identity on X, ƒ# is the identity on
Π1(X, x0).

b) If f and g are continuous mappings from (X, x0) to (Y, y0) such
that ƒ ≃ g[x0], then ƒ# = g#.

c) Iƒ ƒ: (X, x0) → (Y, y0) and g: (Y, y0) → (Z, z0), then (g ∘ ƒ)# =
g# ∘ ƒ#.

d) Iƒ r: (X, x0) → (A, x0) is a retraction and i: (A, x0) → (X, x0)
is the inclusion map, then i# is a monomorphism and r# is an
epimorphism.

Proof. a) Obvious.

b) It suffices to show that if h is a loop based at x0 in X, then g*
(h) .

But if ƒ and g are homotopic relative to x0, then f ∘ h and g ∘ h are
homotopic; that is, ƒ*(h) and g*(h) are homotopic.

c) If h is any loop based at x0 in X, then for t ∈ I,

d) r ∘ i is the identity map on (A, x0), so r# ∘ i# = (r ∘ i)# is the identity
on Π1(A, x0). Both results follow. ■

33.7 Theorem. If (X, x0) and (Y, y0) are homotopically equivalent, then
Π1(X, x0) and Π1(Y, y0) are isomorphic.

Proof There are mappings ƒ : (X, x0) → (Y, y0) and g: (Y, y0) → (X, x0) such
that f ∘ g is homotopic to the identity on Y and g ∘ ƒ is homotopic to the



identity on X. Then, from 33.6, g# ∘ f# = (g ∘ f)# is the identity on Π1(Y, y0)
and ƒ# ∘ g# = (f ∘ g)# is the identity on Π1(X, x0). Since ƒ# and g# are
homomorphisms, they are thus isomorphisms and the theorem is proved. ■

Note that the above theorem (and 33.6b) require relative homotopies as
stated; this is a severe and unnecessary restriction, although the weak result
obtained is sufficient for our purposes. One stronger result is stated in 33C.
Even stronger results can be obtained; see the book by Massey, p. 82.

Problems
33A. The operation ∗

1. Show that [ƒ1] [ƒ2] = [ƒ1 ∗ ƒ2] is a well-defined operation in Π1(X,
x0). (Refer to 33.1.)

 
 
33B. Π1(X) for arcwise connected spaces

1. Construct a space X with points x0 and y0 such that Π1(X, x0) and Π1(X,
y0) are not isomorphic.

Now let X be an arcwise connected space and, for each x ∈ X, let Gx =
Π1(X, x). For each path h from x to y in X, let αh be the isomorphism αh([ƒ])
= [h← ∗ ƒ ∗ h] of Gx with Gy. If h is a path from x to y and k is a path from
y to z, let h ∗ k be the path from x to z defined by

(This just extends the definition of ∗ to paths which are not loops.)

2.If f is a loop at x, then αf is an inner automorphism of Gx.

3.If h is a path from x to y and k is a path from y to z, then αh∗k = αk ∘ αh.



This is intended to develop the categorical point of view of Π1(X) as an
object in the category of groups and conjugacy classes of homomorphisms.
A better understanding of this point of view can be gained by reading the
relevant portions of Spanier’s book, Algebraic Topology.

 
 
33C. Homotopy equivalence

Show that if X and Y are arcwise connected and homotopically equivalent,
then Π1(X) and Π1(Y) are isomorphic. (This is difficulty.)

 
 
33D. The higher homotopy groups

Let X be a topological space. Let ∂In denote the boundary of the n-cube In;
that is, ∂In = {(x1, . . . , xn) ∈ In | some xi is 0 or 1}. An n-dimensional
hyperloop based at y0 in Y is a continuous function f : In → Y such that
ƒ(∂In) = {y0}. Define f ∗ g for hyperloops ƒ and g by

Let Ωn(Y, y0) denote the set of n-dimensional hyperloops based at y0 in Y
and let Πn(Y, y0) denote the set of equivalence classes in Ωn(Y, y0) under the
relation of homotopy relative to ∂In. The equivalence class of f will be
denoted [ƒ].

1. [ƒ] ∗ [g] = [ƒ ∗ g] is a well-defined operation in Πn(Y, y0), making
Πn(Y, y0) a group, called the nth homotopy group of (Y, y0).

2. If ƒ: (X, x0) → (Y, y0) is continuous, the induced map f∗([h]) = [ƒ ∘ h]
is a homomorphism of Πn(X, x0) into Πn(Y, y0).

3.



a. If i: (X, x0) → (Y, y0) is the identity, then i∗ : Πn(X, x0) → Πn(Y, y0) is
the identity.

b. If f : (X, x0) → (Y, y0) and g : (Y, y0) → (Z, z0), then (g ∘ f)∗ = g∗ ∘ f∗.
c. If ƒ, g : (X, x0) → (Y, y0) are homotopic relative to x0, then ƒ∗ = g∗.

4. If (X, x0) and (Y, y0) are homotopically equivalent, then Πn(X, x0) and
Πn(Y, y0) are isomorphic.

For more on the higher homotopy groups, see Exercise 43K.

34 Π1(S1)

Let ƒ’ be a loop based at (1, 0) in S1. We will, with some difficulty, assign a
number D(f) to ƒ which, intuitively, measures the number of times ƒ winds
positively (counterclockwise) around S1 and which is an invariant of
homotopy type. This will enable us to compute Π1(S1).

34.1 Definition. Let the loop ƒ be fixed; we will assume ƒ is nonconstant. A
proper partition of I relative to ƒ is a partition 0 = a0 < a1 < · · · < an = 1 of
I such that if x ∈ [ai, ai+1], then |ƒ(x)–ƒ(ai)| < 1 and such that ai ≠ aj ⇒ ƒ(ai)
≠ ƒ(aj), except that ƒ(a0) = ƒ(an).

Uniform continuity of ƒ on I insures that proper partitions can be found.
(Although we have neither defined nor studied uniform continuity as yet,
we need here only the fact that a continuous function defined on a closed
bounded interval with range in some metric space is uniformly continuous.
Any course in real analysis should include a proof of this fact for real-
valued functions and almost any proof for real-valued functions carries over
without change to functions which take values in an arbitrary metric space.
Alternatively, see Theorem 36.20.)

Given a proper partition P = {a0, . . . , an} of I relative to ƒ, the P-
approximation to ƒ is the function ƒp which in each subinterval [ai, ai+1]
traverses from f(ai) to f(ai+1) the shorter of the two subarcs of S1 determined
by f(ai) and f(ai+1). Each of the subarcs Ai thus traversed is assigned a
number n(Ai): +1 if the arc is traversed in the positive (counterclockwise)
direction and -1 if the arc is traversed in the negative direction.



Figure 34.1

The degree of ƒ is then defined as follows: pick a point x ≠ ƒ(ai) for any i
and define

D(ƒ) = Σ {n(Ai) | x ∈ Ai}.

We will show D(f) is independent of the choice of the proper partition P and
the point x. For this purpose, we will denote the number just defined, which
apparently depends on P and x as well as ƒ, by D(ƒ, P, x).

34.2 Theorem. For a proper partition P of I, D(ƒ, P, x) is
independent of the choice of x ≠ ƒ(ai), and hence can be denoted
D(ƒ, P).

Proof. Let x0 be any point in S1 not an ƒ(ai) for some i and let z1 be the first
point after x0 (in the counterclockwise ordering of S1) which is an ƒ(ai) for
some i. Then for any point x with x0 < x < z1, x0 and x must be in the same



subarcs of S1 relative to the partition P, so D(ƒ, P, x0) = D(ƒ, P, x). Next let
z2 be the next point after z1 which is an ƒ(ai) for some i and suppose z1 < x
< z2 (Fig. 34.1). Suppose z1 = ƒ(ai). Consider ƒ(ai–1) and ƒ(ai+1). There are
two cases:

Case 1. ƒ(ai–1) and ƒ(ai+1) are on opposite sides of z1. Then the arcs
[ƒ(ai–1), ƒ(ai)] and [ƒ(ai), ƒ(ai+1)] lie in the same direction and one contains
x0, the other x; since all other subarcs of S1 relative to the partition P
contain both of x0 and x or neither, clearly D(ƒ, P, x) = D(ƒ, P, x0).

Case 2. ƒ(ai–1) and ƒ(ai+1) lie on the same side of z1. Then the arcs [ƒ(ai–

1), ƒ(ai)] and [ƒ(ai), ƒ(ai+1)] lie in opposite directions and both contain one
of the points x0 or x; again, all other subarcs of S1 relative to the partition P
contain both of x0 and x or neither, so again D(f, P, x) = D(f, P, x0).

We can continue in this manner past all of the points ƒ(ai) on S1. Hence
D(ƒ, P, x) is independent of the choice of x ≠ ƒ(ai). ■

34.3 Theorem. If P1 and P2 are proper partitions of I, then D(ƒ, P1) =
D(ƒ, P2).

Proof. A moment’s reflection (enforced in 34C) should make it clear that it
suffices to prove this when P2 is obtained by adding one point to the
partition P1. Thus let P1 = {a0, a1,. . .,an} and P2 = {a0, . . . , ai, b, ai+1, . . . ,
an}. But there must be a point z ≠ ƒ(ai) in S1 not lying on either of the arcs
[ƒ(ai), ƒ(b)] or [ƒ(b), ƒ(ai+1)]. Then clearly D(ƒ, P1, z) = D(ƒ, P2, z) and
hence

D(f, P1) = D(f, P2). ■

Thus we are justified in suppressing the role of the particular proper
partition P used and simply referring to the degree D(f) of the loop ƒ: I →
S1. The proof of our next result establishes the importance of the notion of
degree in questions of homotopy involving S1.



34.4 Theorem. Π1(S1) is infinite cyclic.

Proof. Suppose first that ƒ0 and ƒ1 are homotopic loops based at (1, 0) in S1,
say H: ƒ0 ≃ ƒ1. We claim D(ƒ0) = D(ƒ1). For each t, 0 ≤ t ≤ 1, let ƒt be the
loop defined by ƒt(x) = H(x, t) for x ∈ I. Note that for t = 0 and 1,
respectively, this gives ƒ0 and ƒ1 as it should. By compactness of I, it is
sufficient to show that for each t ∈ I, there is some ε > 0 such that |s–t| < ε
implies D(ƒs) = D(ƒt) Let P = {a0, . . . , an} be any proper partition of I for
the loop ƒt. By uniform continuity of H, there is an ε1 > 0 such that |s–t| < ε1
implies P is a proper partition for ƒs. Now let y ∈ S1 be any point such that
y ≠ ƒt(ai) for any i. Pick δ > 0 small enough that both

a) |z–y| < δ implies z ≠ ƒt(ai) for any i, and

b) if |z1–ƒt(ai)| < δ and |z2–ƒt(ai+1)| < δ, then the shortest arc from z1 to z2
has the same orientation as the shortest arc from ƒt(ai) to ƒt(ai+1), for i = 0,
1, . . . , n–1.

 
 

Now use uniform continuity of H to pick ε < ε1 such that |s–t| < ε implies
|ƒs(ai)–ƒt(ai)| < δ, for i = 0, . . . , n. Then clearly D(ƒt, P, y) = D(ƒs, P, y)
whenever |s–t| < ∈, and hence D(ƒt) = D(ƒs). Thus, by compactness of I,
D(ƒ0) = D(ƒ1).

Now, regarding S1 as the unit circle in the complex plane, define the loop
p: I → S1 by p(t) = ei2πt. Then, for any integer k, pk = p ∗p ∗ ··· ∗ p (k
times) is the loop pk(t) = ei2πkt. Note that the degree of pk is k, so that pk is
not homotopic to pl for k ≠ l. Thus the map k → [pk] embeds the positive
integers as a group in Π1(S1). To show this embedding is an isomorphism,
we need only show every loop ƒ in S1 is homotopic to pk. for some integer
k.

To this end, let ƒ : I → S1 be a loop based at (1, 0) in S1. Define open sets
A1 and A2 in S1 by:



A1 = {(x, y) ∈ S1 y >– }  
A2 = {(x, y) ∈ S1|y < }.

Then {ƒ–1(A1), ƒ–1(A2)} is an open cover of I. Let δ be a Lebesgue number
for this cover and let {a0, . . . , an} be any partition of I into subintervals of
length < δ. Then each ƒ[ai–1, ai], i = 1, . . . , n, is contained in either A1or A2.
By dropping partition points where necessary, we may assume ƒ[ai–1, ai]
and ƒ[ai, ai+1] are never contained in the same set Aj, j = 1 or 2. Now each
ƒ(ai) is contained in a short arc of A1 ∩ A2 containing either (1, 0) or (–1,
0). Let αi be the map ƒ restricted to [ai–1, ai], and for each i, let ηi be the arc
from ƒ(ai) to the point (1, 0) or (–1, 0), whichever is closer. Now consider

the arcs η1(α1, , , . . . , ( . If β1 is the positive arc from (1,
0) to (–1, 0) and β2 is the positive arc from (–1, 0) to (1, 0), then each of the
arcs

η1(α1, , , . . . , 

is homotopic to a constant map or one of β1, β2, , or . Hence, we have

ƒ = (αn(αn–1 · · · α1 = (  · · · (η1α1)

which, after cancellation, must reduce to

ƒ ≃ x0 β2β1β2β1β2β1 · · · β2β1



or

and hence, for some k,  pk. ■

34.5 Theorem. If D = {(x, y) ∈ R2 | x2 + y2 ≤ 1}, then S1 is not
a retract of D.

Proof. A retraction r: D → S1 would, by 33.6(d), induce an epimorphism r#

: Π1(D) → Π1(S1). But D is contractible, so Π1(D) is trivial, while Π1(S1) is
infinite cyclic. ■

34.6 Theorem. (Brouwer Fixed-point Theorem.) Every
continuous map

ƒ: D → D

has a fixed point.

Proof. If ƒ(x) ≠ x for each x ∈ D, define r(x) for each x ∈ D to be the point
where the line from ƒ(x) through x intersects S1. Then r: D → S1 would be a
retraction, contradicting 34.5. ■



The higher-dimensional analogs to 34.6 are also true; we are not in a
position to prove them.

Problems
34A. Application of the Brouwer fixed-point theorem

1. Let ƒ1 and ƒ2 be continuous real-valued functions defined on

D = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.

Use the Brouwer fixed-point theorem to show the system

ƒ1(x, y) = 0

ƒ2(x, y) = 0

of equations has a solution under certain conditions on ƒ1 and ƒ2.

2. State and prove a similar theorem for functions of n variables, using a
higher-dimensional version of the Brouwer fixed-point theorem.

 
 
34B. Examples of homotopy groups

1. Let X be the “punctured plane” R2–(0, 0). Show that Π1(X) is infinite
cyclic.

2. Show that, if X and Y are arcwise connected spaces, then Π1(X × Y) is
isomorphic to Π1(X) × Π1(Y) (direct product).

3. Let T be the torus (9.12c). Then Π1(T) = Z × Z, where Z is the group of
integers.

4. Let M be the Moebius Band (9.12d). Then Π1(M) = Z.



 
 
34C. Proper partitions

Show that if D(ƒ, P1) = D(ƒ, P2) whenever P2 is a proper partition obtained
by adding one point to the proper partition P1, then D(ƒ, P1) = D(ƒ, P2) for
any two proper partitions P1 and P2.

 
 
34D. Retracts and the fixed-point property

A space X has the fixed-point property iff every continuous map ƒ: X → X
has a fixed point.

1. Every retract of a space with the fixed-point property has the fixed-
point property.

2. Let Xn be the space obtained by identifying the left-hand endpoints of
n disjoint copies of the unit interval I. Show that Xn has the fixed-point
property.

 
 
34E. The fundamental theorem of algebra

Let P(z) = a0zn + · · · + an–1z + an be a complex polynomial, with a0 ≠ 0.
Let Q(z) = zn. For each real number r > 0, define Sr = {z | |z| = r} in R2.

1. For sufficiently large r, P |Sr and Q | Sr are homotopic maps of Sr into
R2–{0}.

2. The polynomial P(z) has a root. [For any r > 0, Q | Sr is not a
nullhomotopic map of Sr into R2–{0} ; hence, for sufficiently large r,
neither is P |Sr.]



Chapter 9

Uniform Spaces

35 Diagonal uniformities
Uniform spaces are the carriers for the notions of uniform convergence,
uniform continuity and the like. These notions are easily defined in metric
spaces (e.g., ƒ : M → N is uniformly continuous iff for each ε > 0, a δ > 0
exists such that whenever p(x, y) < δ, then σ(f(x), f(y)) < ε), the important
quality of metric spaces for this purpose being that distance is a notion
which can be applied uniformly to pairs of points without regard to their
location. This quality is not possessed by topological spaces, where the
nhoods of a point (and hence the notion of “topological distance”) depend
on the location of the point, so uniform spaces will apparently need
somewhat more structure than a topology provides, although we may be
able to get away with less than a metric.

To introduce the first of two approaches we will take to uniform structure
(a third will be developed in the exercises), we need some notation.

 
 
35.1 Definition. If X is any set, we denote by Δ the diagonal {(x, x) | x ∈
X} in X × X. Where confusion might occur, we specify which set X we are
referring to by writing Δ(X).

If U and V are sets in X × X, then U ∘ V is the set {(x, y) I for some z, (x,
z) ∈ V and (z, y) ∈ U}. Notice that U and V are just relations on X and ∘ is
a natural extension of the notion of composition of functions.

Our first definition of a uniform structure on X has its roots in the
observation that x and y are close together, in a metric space, iff the point (x,
y) is close to the diagonal in X × X.



 
 
35.2 Definition. A diagonal uniformity on a set X is a collection (X), or
just , of subsets of X × X, called surroundings, which satisfy:

a. D ∈  ⇒ Δ ⊂ D,
b. D1, D2 ∈  ⇒ D1 ∩ D2 ∈ ,
c. D ∈  ⇒ E ∘ E ⊂ D for some E ∈ ,
d. D ∈  ⇒ E –1 ⊂ D for some E ∈ ,
e. D ∈ , D ⊂ E ⇒ E ∈ .

When X has such a structure, we call X a uniform space. The uniformity 
is called separating (and X is said to be separated) iff ∩ {D | D ∈ } = Δ.

A base for the uniformity  (also called a base,for the surroundings on
X) is any subcollection ℰ of  from which  can be recovered by applying
condition (e). Thus ℰ is a base for iff ℰ ⊂ and each D ∈  contains
some E ∈ ℰ. Apparently, a collection ℰ of subsets of X × X is a base for
some uniformity iff its sets satisfy (a), (c), (d) and the following modified
form of (b):

b′) D1, D2 ∈ ℰ ⇒ D3 ⊂ D1 ∩ D2 for some D3 ∈ ℰ.

That is, all supersets of elements of ℰ will then satisfy (a)–(e).

A subbase for  is a subcollection  of ℰ such that all finite
intersections of elements of ℰ form a base for .

 
 
35.3 Examples. a) The usual uniformity on R is the uniformity having for a
base the collection of sets Dε ε > 0, where

Dε = {(x, y) | |x–y| < ε}



b) More generally, any metric ρ on a set M generates a metric uniformity 
 on M, namely the uniformity having for a base the sets , ε > 0, where

 = {(x, y) ∈ M × M | ρ(x, y) < ε}.

The uniformities which can be generated in this way from metrics are called
metrizable. They are characterized in Section 38.

This is an appropriate place to point out that, if ρ is any metric on X, the
uniformities generated by ρ and 2ρ coincide, so that different metrics may
give rise to the same uniformity. Thus a uniformity represents truly less
structure on a set than a metric. (See also Exercise 35G.)

c) Given any set X, the collection  of all subsets of X × X which contain
Δ is a uniformity on X, called the discrete uniformity. It has for a base the
collection consisting of the single set Δ.

d) Given any set X, the collection  consisting of the single set X × X is a
uniformity on X, called the trivial uniformity.

e) For each a ∈ R, let Da be the following subset of R × R :

Da = Δ ∪ {(x, y) | x > a, y, > a}.

Then the sets Da a ∈ R, form a base for a uniformity on R.

35.4 Remarks. a) If D ∈ , then D –1 ∈ , for any uniformity  on X.

b) The requirements (c) and (d) in the definition of a uniformity are
together equivalent to the single requirement: D ∈  ⇒ E ∘ E–1 ⊂ D for
some E ∈ .

First suppose (c) and (d) hold. Then given D ∈ , find E1 ∈  such that
E1 ∘ E1 ⊂ D and E2 ∈  such that E2

–1 ⊂ E1. Let E = E1 ∩ E2. Then E ∘



E–1 ⊂ D. Thus the condition above holds.

Figure 35.1

On the other hand, if the condition above holds, then given D ∈ , find
E ∈  such that E ∘E–1 ⊂ D. Then E –1 ⊂ D easily, and if F = E ∩ E–1,
then F ∈  and F ∘ F ⊂ D. Thus (c) and (d) hold.

c) The symmetric sets D in  (i.e., those for which D = D–1 form a base
for .

In fact, if E ∈ , then by remark (a) above, E–1 ∈ , and then D = E ∩
E–1 is a symmetric element of  contained in E.

 
 

A diagonal uniformity represents strictly more structure on a set X than a
topology since, as we now proceed to show, every such uniformity
generates a topology in a natural way, while different uniformities may
produce the same topology.

35.5 Definition. For x ∈ X and D ∈ , we define (see Fig. 35.1)



D[x] = {y ∈ X | (x, y) ∈ D}.

This is extended to subsets A of X as follows:

35.6 Theorem. a) For each x ∈ X, the collection  = {D[x] | D
∈ } forms a nhood base at x, making X a topological space.
The same topology is produced if any base ℰ is used in place of 

 .

b) The topology is Hausdorff iff  is separating.

Proof a) First note that x ∈ D[x] for each x. Second,

D1[x] ∩ D2[x] = (D1 ∩ D2)[x],

so the intersection of nhoods is a nhood. Finally, if D[x] ∈  , find E ∈ 
such that E ∘ E c D. Then for any y ∈ E[x], E[y] ⊂ D[x], so this property of
nhoods is satisfied.

The proof that only a base ℰ for  need be used is left to the reader. See
Exercise 35D.2.

 
 

b) Suppose  is separating. If x ≠ y in X, then for some D ∈  , (x, y) ∉
D. Find a symmetric E ∈  such that E ∘ E ⊂ D. Then if z ∈ E[x] ∩ E[y],



we have (x, z) ∈ E and (y, z) ∈ E so that (z, y) ∈ E, and hence (x, y) ∈ E ∘
E ⊂ D. Since this is prohibited, apparently E[x] and E[y] are disjoint
nhoods of x and y.

Conversely, if the topology is Hausdorff, then if (x, y) ∉ Δ, x ≠ y, so that
E[x] ∩ D[y] = ø for some D, E ∈  , and then D ∩ E is an element of  not
containing (x, y). ■

 
 
35.7 Definition. The topology thus associated with a diagonal uniformity 
will be called the uniform topology  generated by  . Whenever the
topology on a topological space X can be obtained in this way from a
uniformity, X is called a uniformizable topological space.

 
 
35.8 Examples. a) The topology generated by the usual uniformity on R is
the usual topology.

b) More generally, the metric uniformity on a metric space M generates
for its uniform topology the metric topology on M. This follows from the
fact that, for x ∈ M,

It is reasonable to ask whether the converse is true; that is, if a uniformity
has a metrizable topology, is the uniformity itself metrizable?
Astonishingly, the answer is no! You will see, in Example 38.5, a
nonmetrizable uniformity whose topology is the discrete topology.

c) The discrete uniformity on a set X generates the discrete topology.

d) The trivial uniformity on a set X generates the trivial topology.

e) Consider the uniformity for R a base for which consists of the sets

Da = Δ ∪ {(x, y) | x > a, y > a}



for a ∈ R. For any x ∈ R, Da[x] = {x} whenever a ≥ x and consequently
this uniformity generates the discrete topology on R.

This example, together with c), serves to establish that different
uniformities may give rise to the same topology. Thus the correspondence
between uniformities on X and topologies on X is many-to-one, so that a
uniformity on X represents truly more structure on X than a topology. These
comments are amplified by the results in Exercise 41F.

 
 

35.9 Theorem. The open, symmetric elements of  form a base for  .

Proof. An open symmetric set can be obtained by intersecting an open set
with its inverse, so it suffices to show that the open sets form a base, for
which purpose it is enough to verify that D ∈  ⇒ D° ∈  . Pick a
symmetric E such that E ∘ E ∘ E ⊂ D. We have finished if we show E ⊂
D°. But if (x, y) ∈ E, then E[x] x E[y] ⊂ D, for if (w, z) ∈ E[x] × E[y], then
(x, w) ∈ E, (y, z) ∈ E and hence, since (x, y) ∈ E, (w, z) ∈ E ∘ E ∘ E ⊂ D.
Thus each (x, y) ∈ E has a nhood contained in D, so E ⊂ D°. ■

 
 

Now any uniform space we consider is automatically a topological space
so we have there a notion of continuous function. We introduced uniform
structures to provide a notion of uniform continuity, and we define this now.

35.10 Definition. Let X and Y be sets provided with diagonal uniformities 
and ℰ. A function ƒ : X → Y is uniformly continuous iff for each E ∈ ℰ,
there is some D ∈  such that (x, y) ∈ D ⇒ (ƒ(x), ƒ(y)) ∈ E. If ƒ is one-
one, onto and both ƒ and ƒ–1 are uniformly continuous, we call ƒ a uniform
isomorphism (uniform equivalence) and say X and Y are uniformly
isomorphic (uniformly equivalent).

For the purpose of checking uniform continuity, it is clearly sufficient to
restrict attention to bases for the uniformities  and ℰ.

 
 



35.11 Theorem. Every uniformly continuous function is continuous.

Proof. Suppose X and Y have diagonal uniformities  and ℰ and ƒ : X → Y
is uniformly continuous. Now if x ∈ X, a basic nhood of ƒ(x) has the form
E[ƒ(x)] for some E ∈ ℰ. By uniform continuity, there is some D ∈  such
that (x, y) ∈ D ⇒ (ƒ(x), ƒ(y)) ∈ E. Then easily ƒ(D[x]) ⊂ E[ƒ(x)], so ƒ is
continuous at x. ■

 
 
35.12 Examples. a) Let (M, ρ) and (N, σ) be metric spaces. Then ƒ : M → N
is uniformly continuous with respect to the metric uniformities  and 
iff for each ε > 0, there is some δ > 0 such that (x, y) ∈  ⇒ (ƒ(x), ƒ(y)) ∈ 

 . It is easy to see that this reduces to the usual ε–δ requirement for
uniform continuity of functions between metric spaces.

b) Any function defined on a space with the discrete uniformity to
another uniform space is uniformly continuous.

c) Examples of continuous functions which are not uniformly continuous
should be familiar; for instance, the function ƒ(x) = x2 from R to R (with
the usual uniformity).

Problems
35A. Examples of uniformities

Verify that each of the following is a uniformity on the set X indicated:
1. The metric uniformity on a metric space (M, ρ). See 35.3(b).
2. The discrete uniformity on any set X. See 35.3(c).
3. The trivial uniformity on any set X. See 35.3(d).
4. The uniformity defined on R in 35.3(e), having as a base the sets

Da = Δ ∪ {(x, y) | x > a, y > a}, a ∈ R.

35B. More examples of uniformities



Decide which of the following collections are uniformities on the sets
indicated and, for each that is, give the most efficient base you can and
describe the uniform topology, in familiar terms if possible.

 
 

1. On R, let  be all subsets of R × R which contain Δ ∪ V, where V =
{(x,–x) | x ∈ R}.

2. On I, let  be all subsets of I × I of the form Eε = {(x, y) ||x–y| is
rational and < ε}, ε > 0.

 
 

3. On [–1, 1], let  be all subsets of [–1, 1] × [–1, 1] which contain Δ ∪
⎝, where ⎝ is the boundary of [–1, 1] × [–1, 1].

 
 
35C. Separation in uniform spaces

Let  be a separating uniformity on the set X.

 
 

1. If a and b are distinct points in X, then for some D ∈  , D [a]∩ D
[b]= ø.

2. If A is compact and B is closed in the uniform topology on X and if A
∩ B = ø, then for some D ∈  , D[A] ∩ D[B] = ø.

 
 
35D. Bases and subbases for uniformities

1. If ℰ is a base for the uniformity  on X, then {E[x] | E ∈ ℰ} is a nhood
base at x, for each x ∈ X.

 
 



2. If ℰ is a base (subbase) for the uniformity  consisting of open sets,
then

{E[x] | E ∈ ℰ, x ∈ X}

is a base (subbase) for the topology of X.

3. Let H be a subset of X × X containing Δ. Then the collection of all
subsets of X ×X which contain H is a uniformity for X iff H is symmetric
and H ∘ H = H.

 
 
35E. Union and intersection of uniformities

1. The intersection of two uniformities on X need not be a uniformity on
X. [Let X = I and for each x ∈ I, let  = all subsets of I x I containing Δ ∪
{(x, 1)} ∪ {(1, x) Then  is a uniformity on I, but for x ≠ y,  is not
a uniformity on I. (See 35D.3.)]

2. If two uniformities do intersect in a uniformity, is the uniform
topology of the intersection the intersected uniform topologies?

3. The union of two uniformities on X need not be a uniformity on X. [On
R, consider the uniformity  of Example 35.3(e), construct a similar
uniformity  on R such that for some D1 ∈  and D2 ∈  , D1 ∩ D2 ∉ 

. ]

Compare with 36G.

35F. Uniformities on topological groups

Let G be a topological group, with  a base of symmetric nhoods at the
identity e. The right uniformity  for G has for a base all sets of the form

Ru = {(x, y) | x ∈ Uy}



for U ∈  , while the left uniformity  for G has for a base all sets of the
form

Lu = {(x, y) | x ∈ yU}

for U ∈  . If  , we say G has equivalent uniform structures.

1.  and  are uniformities on G, whose topologies τL and τR are each
the group topology on G.

2. If G is Abelian or compact, then G has equivalent uniform structures.

Since, in Section 38, we will see that every topological space which is
uniformizable is completely regular, part 1 above provides the corollary:
every topological group is a Tychonoff space. This in turn provides the
result: every linear topological space (22C) is a Tychonoff space. [See
22C.5.]

35G. Uniformities from different metrics

Show that if ρ1 and ρ2 are metrics on X and there are constants m and M
with 0 < m < M such that mρ1 < ρ2 < Mρ1, then ρ1 and ρ2 generate the same
uniformity on X.

This extends a comment made in 35.3(b).

36 Uniform covers
Any uniformity on X can be described, without passing to X x X, by giving
the list of covers of X each of which consists of sets “of the same size ”.
The result is an alternative approach to the theory of uniform spaces, and
one which is quite often more convenient than the approach of the previous
section.

 
 
36.1 Definition. A cover of a uniform space (X,  ) is a uniform cover iff it
is refined by a cover of the form  = {D[x] | x ∈ X} for some D ∈  .



36.2 Theorem. The collection µ of all uniform covers of a
uniform space (X,  ) has the properties:

a. if  ,  ∈ µ then for some  ∈ µ,  *<  and  * <
 ,

b. if  <  and  ∈ µ, then  ∈ µ.

Conversely, given any family µ of covers of a set X satisfying a)
and b), the collection of all sets  , for 

 ∈ µ, is a base for a diagonal uniformity on X, whose uniform
covers are precisely the elements of µ.

Proof. a) It is sufficient to show that any two covers  and  have a
common barycentric refinement. (Recall that a barycentric refinement of a
barycentric refinement of  star-refines  .) Pick a symmetric D ∈  such
that

D ∘ D ⊂ D1 ∩ D2.

Then for each x ∈ X, St (x,  ) ⊂ D1[x] ∩ D2[x] and it follows that  is a
common barycentric refinement of  and  .

b) is obvious from the definition of uniform cover.

The converse is left as a straightforward exercise (36C). ▄

Thus the uniform covers describe a uniformity as well as its surroundings
do. In fact, the relationship between the two should be approached in much
the same spirit one approaches the open sets and closed sets in a topological
space: either describes the structure equally well. Actually, there is an
abundance in the literature of references to “uniform spaces” whose
primary structure is a collection of covers satisfying (a) and (b) above (such
a collection is often called a covering uniformity), so it is best to keep an
open mind about the sort of structure involved when someone starts yelling
“uniform space.” We will find it convenient, on different occasions, to use



both coverings and surroundings to describe uniformities and we emphasize
this dual approach with the following convention: hereafter, a uniformity on
X will mean either a diagonal uniformity on X or a covering uniformity on
X.

Although, as we have said, coverings and surroundings should be used in
the same way as one uses open and closed sets in a topological space, i.e.,
interchangeably, we should comment that the passage back and forth is not
nearly as neat. The uniform covers of a uniform space translate only to a
base for the surroundings and similarly, the surroundings provide, in
translation, only a base (as defined below) for the uniform covers. This
causes no real problems, since all the important concepts defined for
uniform spaces can be defined in terms of bases for the uniformities in
question.

 
 
36.3 Definition. A base for a covering uniformity µ on X is any
subcollection µ’ of µ such that

µ = {  |  covers X and  <  for some  ∈ µ’}.

Once we are over our initial confusion, µ’ will simply be called a base for
the uniformity on X (context and notation will make it clear whether the
base should consist of covers or surroundings). Evidently, µ’ is a base for
some uniformity on X iff it satisfies (a) of 36.2.

A subbase for the covering uniformity µ is any subcollection µ’ of µ such
that all finite intersections of elements of µ’ form a base for µ, where the
intersection of two covers  and  of X is the cover  ∧  = {U ∩ V | U
∈  , V ∈  }.

In the language of bases, we can restate (and provide a trivial
strengthening of) Theorem 36.2. The proof is left as Exercise 36C. The
reader is invited to think now about the corresponding result for subbases.



36.4 Theorem. a) If  is a base for a diagonal uniformity  ,
then {  } is a base for a covering uniformity, whose
surroundings are precisely the elements of  .

 
 
b) If µ’ is a base for a covering uniformity µ, then 
is a base for a diagonal uniformity whose uniform covers are
precisely the elements of µ.

The importance of a self-contained theory of covering uniformities
justifies restating the important properties introduced in Section 35 in terms
of uniform covers. Each of the Theorems 36.5, 36.6 and 36.8 would be the
definition of the property involved if you got into a discussion with
someone who knew only covering uniformities.

The first theorem shows that uniform covers may correctly be interpreted
as covers by sets “of the same size.”

36.5 Theorem. A uniformity is metrizable, generated by the
metric p, iff the covers  of X by ε-spheres,
for ε > 0, form a base.

Proof. The sets  = {(x, y) | ρ(x, y) < ε} form a base for the surroundings
on X so the covers consisting of the sets

form a base for the uniform covers of X. ■



36.6 Theorem. If µ’ is a base for a covering uniformity µ on X,
the sets St (x,  ), for  ∈ µ’, form a nhood base at x in the
uniform topology.

Proof. Let  be the diagonal uniformity corresponding to µ. The sets  ,
for  ∈ µ’, form a base for  , so the sets  , form a nhood base
at x in the uniform topology, by 35.6. But

 
 

 = {y | (x, y) ∈  = {y | (x, y) ∈ U × U for some  = St (x,  ),
so the theorem is established. ■

 
 

The last theorem enables us to state the condition that a uniformity on X
be separated in terms of its uniform covers, as follows: a covering
uniformity is separated iff whenever x ≠ y in X, then there is a uniform
cover  of X such that St (x,  ) ∩ St (y,  ) = ø. This can be rephrased, in
light of the existence of a star-refinement of such a cover  , as follows: a
covering uniformity is separated iff whenever x ≠ y in X, then there is some
uniform cover  of X such that x ∉ St (y,  ).

36.7 Theorem. Let µ be a covering uniformity on X. Then the
open uniform covers of X form a base for μ.

Proof. Let  be the diagonal uniformity on X corresponding to µ. The open
elements of  form a base for  , so the covers  , for D open in  , form
a base for µ. But  = {D[x] | x ∈ X } and (easily) if D is open in X x X,
then D[x] is open in X for each x ∈ X. ■



36.8 Theorem. Let X and Y be uniform spaces. A function f : X
→ Y is uniformly continuous iff for each uniform cover  of Y,
there is a uniform cover  of X such that  <  , where 

 = {f(U) | U ∈  . (Hence, iff for each uniform cover 
of Y,  is a uniform cover of X).

Proof. Suppose f : X → Y is uniformly continuous and  is a uniform
cover of Y. Let E be a surrounding for Y such that  and let D be a
surrounding for X such that whenever (x, y) ∈ D, then (f(x), f(y)) ∈ E.
Then, easily,

 .

Conversely, suppose the condition of the theorem holds. Given any
surrounding E for Y, find a uniform cover  of Y such that  ⊂ E and a
uniform cover  of X such that  . Then easily, (x, y) ∈ 
implies (f(x), f(y)) ∈  implies (f(x), f(y)) ∈ E, so f is uniformly
continuous. ■

It is convenient at this point to include a theorem relating the most
important property of uniform covers (existence of star-refinements) to the
most important property of surroundings (existence of E such that E ๐ E ⊂
D). It says they are essentially the same.

36.9 Theorem. a) If D ๐ D–1 ⊂ E, then  is a barycentric
refinement of  .

b) If  is a star-refinement of  , then  .



Proof. a) Suppose D ๐ D–1 ⊂ E. Let x ∈ X and let D[y] be any element of 
e9780486131788_i1680.jpg containing x. It suffices to show D[y] c E[x].

But if z ∈ D[y], then (y, z) ∈ D and, since (y, x) ∈ D we have (x, y) ∈ D–1,
so that (x, z) ∈ D ◦ D–1 ⊂ E and hence z ∈ E[x]. Thus St (x, 

e9780486131788_i1681.jpg ) ⊂ E[x].

b) Suppose e9780486131788_i1682.jpg star-refines 
e9780486131788_i1683.jpg . Let (x, y) ∈ 
e9780486131788_i1684.jpg . Then, say, (x, z) ∈ 
e9780486131788_i1685.jpg and (z, y) ∈ 
e9780486131788_i1686.jpg so that there are U1, U2 ∈ 
e9780486131788_i1687.jpg with (x, z) ∈ U1 × U1 and (z, y) ∈ U2 ×

U2. But then St (U1, e9780486131788_i1688.jpg ) contains both x and
y and is contained in some U’ ∈ e9780486131788_i1689.jpg , and
hence (x, y) ∈ U’ × U’ ⊂ e9780486131788_i1690.jpg . Thus 

e9780486131788_i1691.jpg . ■

We end this section with an introduction to so-called fine Uniformities
and fine spaces. We need some preliminary material on combining
uniformities. First recall that a normal sequence of covers is a sequence 

e9780486131788_i1692.jpg , . . . such that 
e9780486131788_i1693.jpg , for n = 1, 2, . . . , and a normal cover is a

cover which is e9780486131788_i1694.jpg in some normal sequence.

36.10 Definition. A family ν of covers of a set X is a normal family iff
every cover in ν has a star refinement in v. Then every normal sequence is a
normal family, but a sequence of covers can be a normal family without
being a normal sequence (e.g., by being two normal sequences intermixed).

The proof of the following theorem is left as an easy exercise for the
reader (36F).

36.11 Theorem. Every normal family of covers of X is a subbase
for some uniformity on X; the converse fails.

36.12 Theorem. If X is any uniformizable topological space,
there is a finest uniformity on X compatible with the topology of



X.

Proof. Let {µα | α ∈ A} be the collection of all covering uniformities
compatible with the topology of X. Then µ0 = U {µα | α ∈ A} is obviously a
normal family and hence is a subbase for a uniformity on X, finer than all
the µα. We have finished if µ is compatible with the topology of X.

First, finer uniformities clearly generate finer topologies, so it is
sufficient to show the uniform topology generated by µ is contained in the
original topology. But a subbase for µ generates a subbase for the uniform
topology of µ, so this is clear. ▅

 
 
36.13 Definition. If X is a uniformizable topological space, the uniformity
constructed in 36.12 is called the fine uniformity on X, denoted µF, and
when X is provided with this uniformity, it is called a fine space.

We can further elucidate the nature of the fine uniformity on a
topological space, using the following concept.

36.14 Definition. An open cover e9780486131788_i1695.jpg of a
topological space X is normally open iff e9780486131788_i1696.jpg = 

e9780486131788_i1697.jpg in some normal sequence 
e9780486131788_i1698.jpg, e9780486131788_i1699.jpg2, . . .

consisting of open covers. Note that every normally open cover is an open
normal cover, but the converse fails.

36.15 Theorem. µF is the uniformity on X having as a base all
normally open covers of X.

Proof. If µ is any uniformity on X giving the topology of X and 
e9780486131788_i1700.jpg, , . . . is any normal sequence consisting of

open covers of X, then the collection µ ∪ { e9780486131788_i1702.jpg, 
e9780486131788_i1703.jpg, . . .} is a normal family and hence a subbase



for a uniformity, which clearly still gives the same topology on X. It follows
that every normal sequence of open covers of X, and hence every normally
open cover of X, must be included III µF.

But, conversely, the open covers in µF form a base for µF, by 36.7, and
each open cover in µF is normally open (also by 36.7). ▅

36.16 Corollary. In a paracompact space, the fine uniformity is
generated by all open covers.

Proof. Every open cover in a paracompact space has an open star
refinement, by 20.15, and thus every open cover is normally open. ▅

The diagonal analogs to the last theorems are easily described.

36.17 Corollary. a) The fine uniformity 
e9780486131788_i1704.jpg is generated by all open nhoods

D of the diagonal such that D = E1 in some sequence Et, E2, . . .
of open sets containing the diagonal with En ๐ En ⊂ En–1, for all
n > .

b) In a paracompact space, the fine uniformity is generated by
all nhoods of the diagonal.

Proof. Exercise 36H. ▅

36.18 Theorem. Every continuous function on a fine space to
some uniform space is uniformly continuous.

Proof. Let X have the fine uniformity µF and let f: X → Y. If 
e9780486131788_i1705.jpg is any open uniform cover of Y, then 



e9780486131788_i1706.jpg is a normal cover and hence f–1(
e9780486131788_i1707.jpg) is normal and open. Then f –1(
e9780486131788_i1708.jpg) ∈ µF. Thus f is uniformly continuous. ▅

36.19 Theorem. A compact T2-space has only one uniformity
compatible with its topology.

Proof. Let X be a compact space, µ a uniformity compatible with the
topology on X. We will show every open cover 

e9780486131788_i1709.jpg of X belongs to µ, so that µ must be the fine
uniformity µF.

For each x ∈ X, x ∈ U for some U ∈ e9780486131788_i1710.jpg.
Since U is open, St (x, e9780486131788_i1711.jpg) ⊂ U for some 

e9780486131788_i1712.jpg ∈ µ. Find an open 
e9780486131788_i1713.jpg ∈ µ such that 
e9780486131788_i1714.jpg * < e9780486131788_i1715.jpg and

for each x, pick an element Vx of e9780486131788_i1716.jpg
containing x. A finite number of these, say e9780486131788_i1717.jpg
,. . ., e9780486131788_i1718.jpg, cover X. Let 

e9780486131788_i1719.jpg be a common star refinement of the
corresponding covers e9780486131788_i1720.jpg, . . . , 

e9780486131788_i1721.jpg. Now if W ∈ 
e9780486131788_i1722.jpg, then for some xi,

W ⊂ St ( e9780486131788_i1723.jpg, 
e9780486131788_i1724.jpg) ⊂ St (xi, 

e9780486131788_i1725.jpg) ⊂ e9780486131788_i1726.jpg

so that e9780486131788_i1727.jpg< e9780486131788_i1728.jpg. Thus
e9780486131788_i1729.jpg ∈ µ. ▅



36.20 Corollary. Every continuous function on a compact T2-
space is uniformly continuous.

Theorem 36.19 is generalized in Exercise 41F, where the topological
spaces with unique uniform structure are characterized.

Problems

36A. Exercise on refinement
A partition of X is a cover of X whose elements are disjoint.

 
 

1. Every partition star-refines itself.

2. For any cover e9780486131788_i1730.jpg of X, there is a finest
partition P( e9780486131788_i1731.jpg) refined by 

e9780486131788_i1732.jpg. Each element U of 
e9780486131788_i1733.jpg is contained in a unique element P(U) of

P( e9780486131788_i1734.jpg).

3. e9780486131788_i1735.jpgstar-refines itself iff for some partition
P, e9780486131788_i1736.jpg < P < e9780486131788_i1737.jpg.
[If e9780486131788_i1738.jpgstar-refines itself, set P = P(

e9780486131788_i1739.jpg); show that St (U, 
e9780486131788_i1740.jpg) ⊃ P(U) for each U ∈ 
e9780486131788_i1741.jpg.] 36B. Examples of covering uniformities

1. The collection µ’ consisting of the single cover {X} is a base for the
trivial uniformity on X. (More accurately, µ’ is a base for a covering
uniformity whose associated diagonal uniformity is trivial.)

2. The collection µ’ consisting of the single cover {{x} | x ∈ X} is a base
for the discrete uniformity on X.

3. In a metric space (M, p), the covers e9780486131788_i1742.jpgby
∊-spheres form a base for the metric uniformity on M.



 
 

4. If the single cover e9780486131788_i1743.jpg is a base for a
uniformity on X, the same uniformity is generated by some partition P of X
[see 36A.3].

5. The collection µ’ of all finite (countable) covers of a set X is a base for
a uniformity on X, whose uniform topology is the discrete topology. [Use
partitions; see 36A.]

36C. Coverings give uniformities
1. Let µ’ be a base for a covering uniformity µ on X. Then the collection

of all sets e9780486131788_i1744.jpg = U {U × U | U ∈ 
e9780486131788_i1745.jpg}, for e9780486131788_i1746.jpg∈ µ,

is a base for a diagonal uniformity e9780486131788_i1747.jpg on X
whose uniform covers are precisely the elements of µ.

2. Let e9780486131788_i1748.jpg be a base for a diagonal
uniformity e9780486131788_i1749.jpg on X. Then the collection of all
covers e9780486131788_i1750.jpg= {D[x] | I x ∈ X}, for D ∈ 

e9780486131788_i1751.jpg, is a base for a covering uniformity µ on X
whose surroundings are precisely the elements of 

e9780486131788_i1752.jpg.

36D. Bounded metrics
We already know that every metric is (topologically) equivalent to a
bounded metric. Prove that any metric ρ is uniformly equivalent to (i.e.,
produces the same uniformity as) the bounded metric ρ* = min (p, 1).

36E. The Hyperspace
Let e9780486131788_i1753.jpg be a diagonal uniformity on X and let
ℋ(X) be the collection of all closed subsets of X. For A, B ∈ ℋ(X) and D
∈ e9780486131788_i1754.jpg, we will say A and B are D-close iff A ⊂
D[B] and B ⊂ D[A].



1. The sets {(A, B) | A is D-close to B}, for D ∈ 
e9780486131788_i1755.jpg, form a base for a diagonal uniformity 
e9780486131788_i1756.jpgon ℋ. The resulting uniform space (ℋ, 
e9780486131788_i1757.jpg) is called the hyperspace of X.

2. The hyperspace of a metrizable uniform space is metrizable. [Replace
the metric on the space by a uniformly equivalent bounded metric (36D)
and consider the resulting Hausdorff metric (2F) on ℋ.]

We will return to the hyperspace in 39D.

36F. Normal families
Every normal family in X is a subbase for some uniformity on X, but the
converse fails.

36G. The lattice of uniformities
We saw in 35E that the union or intersection of uniformities on a fixed set X
need not be a uniformity on X. Now show that given any family 

e9780486131788_i1758.jpg of uniformities on X, there is a coarsest
containing them all and a finest contained in all of them, so that the
uniformities on X form a complete lattice. [Use normal families.]

36H. Fine uniformities; the diagonal case
1. The fine (diagonal) uniformity e9780486131788_i1759.jpgon a

uniformizable space is the uniformity having for a base the open sets D ⊃ Δ
such that for some sequence D1, D2, . . . of open sets containing Δ, Dn ๐ Dn
⊂ Dn–1 for all n and D1 = D.

2. In a paracompact uniformizable space, the fine (diagonal) uniformity
is generated by all nhoods of the diagonal.

37 Uniform products and subspaces; weak
uniformities
In this section, we provide the standard constructions for uniform structures
on subspaces and products of uniform spaces, as well as the generalization



from product structures to weak uniformities. There are no surprises.

Subspaces, in particular, can be dealt with quickly and easily.

 
 
37.1 Definition. If e9780486131788_i1760.jpgis a diagonal uniformity
on X and iA ⊂ X, the relative uniformity induced on A by 

e9780486131788_i1761.jpg is the uniformity consisting of the sets D ∩
(A x A), for D ∈ ଞ e9780486131788_i1762.jpg. With this uniformity, A is
called a (uniform) subspace of X.

Verification that the relative uniformity induced on A by 
e9780486131788_i1763.jpg actually is a diagonal uniformity on A is

left to Exercise 37A.

To describe the uniform covers in a subspace A of X, we need the
following notion. If e9780486131788_i1764.jpg is any collection of
subsets of a set X and A ⊂ X, the trace of e9780486131788_i1765.jpg
on A is the collection { U ∩ A | U ∈ e9780486131788_i1766.jpg}of
subsets of A.

37.2 Theorem. The traces on A of the uniform covers of X form
a base for the uniform covers of A.

Proof. If e9780486131788_i1767.jpg is a uniform cover of X, then for
some D ∈ e9780486131788_i1768.jpg, {D[x] | x ∈ X} refines 

e9780486131788_i1769.jpg. But then, obviously, {[D ∩ (A × A)][x] | x ∈
A} refines the trace of e9780486131788_i1770.jpg on A, so the latter is a
uniform cover of A.

Conversely, if e9780486131788_i1771.jpg is a uniform cover of A,
then for some D ∈ e9780486131788_i1772.jpg

{[D ∩ (A × A)][x] |x ∈ A}



refines e9780486131788_i1773.jpg. Then {D[x] | x ∈ X} is a uniform
cover of X whose trace on A refines e9780486131788_i1774.jpg. ▅

37.3 Theorem. The topology on a uniform subspace A of X is the
subspace topology.

Proof. It is sufficient to note that, for D ∈ e9780486131788_i1775.jpg
and a ∈ A,

[D n (A × A)][a] = D[a] ∩ A. ▅

We turn now to the problem of defining a uniformity on the product of
uniform spaces, subject to the obvious restriction that the topology of such a
uniformity should be the product topology.

A definition will make life easier.

 
 
37.4 Definition. If Xα is a set for each α ∈ A and X = Π Xα, the αth
biprojection is the map Pα: X × X → Xα x Xα defined by Pα(x, y) = (πα(x),
πα(y)).

37.5 Theorem. If a diagonal uniformity on Xα, for each α ∈
A, then the sets

e9780486131788_i1777.jpg

where e9780486131788_i1778.jpg∈ 
e9780486131788_i1779.jpg. for i = 1, . . . , n, form a base for

a uniformity e9780486131788_i1780.jpg on Π Xα whose



associated topology is the product topology on Π Xα.

Proof. a) Easily, e9780486131788_i1781.jpg.

b) The intersection of two sets of the form 
e9780486131788_i1782.jpg clearly has the same form.

 
 

c) Let D = e9780486131788_i1783.jpg). For i = 1,. . ., n, find 
e9780486131788_i1784.jpg such that e9780486131788_i1785.jpg,

and let e9780486131788_i1786.jpg. Then if (x, z) ∈ E ๐ E, we can find
some y such that (x, y) ∈ E and (y, z) ∈ E. Now (xα., yα.) and (yα, zα) each
belong to Eα for a = α1, . . . , αn and hence

(xα, zα) ∈ Eα ๐ Eα ⊂ Dα, for α = α1, . . . , αn.

Thus (x, z) ∈ D, so E ๐ E ⊂ D.

d) As in (c), if e9780486131788_i1787.jpg ⊂ 
e9780486131788_i1788.jpg for i = 1,. . ., n, then E–1 ⊂ D.

Finally, to show the product uniformity gives the product topology, note
that if e9780486131788_i1789.jpg , then for x ∈ Π Xα,

e9780486131788_i1790.jpg

37.6 Definition. The uniformity constructed in 37.5 is the product
uniformity on Π Xα, and Π Xα is the product space formed from the factor
spaces Xα, α ∈ A.

Before describing the uniform covers on a product space, it will be
convenient to introduce the uniform analog to the weak topology induced
by a collection of maps from a set X to topological spaces Xα, α ∈ A;



namely, the weak uniformity induced by a collection of maps from a set X
to uniform spaces Xα, α ∈ A.

37.7 Definition. For each α ∈ A, suppose fα: X → Xα, where X is a set and
Xα is a space with a diagonal uniformity e9780486131788_i1791.jpg.
Define Fα : X x X → Xα x Xα by

Fα(x, y) = (fα(x), fα(y)),

for each α ∈ A. The collection of sets of the form

e9780486131788_i1792.jpg

where e9780486131788_i1793.jpg∈ e9780486131788_i1794.jpgfor i =
1, . . . , n, is a base for a uniformity on X, called the weak uniformity
generated by the maps fα on X. Verification that this is a base for a
uniformity can be obtained by a trivial rewriting of the proof of 37.5. In the
same way, you can prove that the topology induced by a weak uniformity is
the weak topology induced by the maps fα.

It is clear that the product uniformity on Π Xα is the weak uniformity
generated by the projection maps πα.

37.8 Theorem. The weak uniformity generated by the maps fα :
X → Xα is the weakest uniformity making each fα uniformly
continuous.

Proof. It is clear that each fα is uniformly continuous, for if D ∈ 
e9780486131788_i1795.jpg, then e9780486131788_i1796.jpg(D) is an

element of the weak uniformity and if (x, y) ∈ 
e9780486131788_i1797.jpg(D), then (fα(x), fα(y)) ∈ D.



Suppose e9780486131788_i1798.jpg is the weak uniformity on Xα
and e9780486131788_i1799.jpg is any uniformity such that each fα is
uniformly continuous. We will show e9780486131788_i1800.jpgwill
always belong to e9780486131788_i1801.jpg. For each i = 1, . . . , n
there will be some e9780486131788_i1802.jpg∈ 

e9780486131788_i1803.jpgsuch that if (x, y) ∈ 
e9780486131788_i1804.jpg, then e9780486131788_i1805.jpg.

Then  and hence

e9780486131788_i1807.jpg

so that the latter set belongs to e9780486131788_i1808.jpgas claimed. ▅

37.9 Theorem. If X has the weak uniformity generated by maps
fα: X → Xα, then f : Z → X is uniformly continuous iff fα ⃘ f is
uniformly continuous, for each α.

Proof. If f is uniformly continuous, then fα ๐ f is, for each a, because
composition preserves uniform continuity.

Suppose fα ๐ f is uniformly continuous, for each a. Let D ∈ 
e9780486131788_i1809.jpg(X). Then D contains a set of the form 
e9780486131788_i1810.jpg, where e9780486131788_i1811.jpgis

the map associated with e9780486131788_i1812.jpg(see 37.7) and 
e9780486131788_i1813.jpg(the uniformity on 
e9780486131788_i1814.jpg). But for each i = 1, . . . , n, there is some

Fi ∈ e9780486131788_i1815.jpg(z) such that

e9780486131788_i1816.jpg



since e9780486131788_i1817.jpgis uniformly continuous. Thus for 
e9780486131788_i1818.jpg, and hence, if e9780486131788_i1819.jpg

then e9780486131788_i1820.jpg. This establishes uniform continuity of f.
▅

It is worth the effort of rewriting the above theorems to have them set
apart for the special case of product spaces.

37.10 Corollary. a) The product uniformity on Π Xα is the
weakest making each projection πα uniformly continuous.

b) A map f: Z →Π Xα is uniformly continuous iff πα f is
uniformly continuous for each α.

Just as with weak topologies, weak uniformities generated by most
collections of maps are just subspaces of product uniformities. Recall that
the evaluation map e: X → Π Xα determined by a collection of maps fα: X
→ Xα is the map [e(x)]α = fα(x); that is, e is defined by the relation πα ๐ e =
fα.

37.11 Theorem. The evaluation e is a uniform isomorphism iff
the maps fα separate points in X and X has the weak uniformity
given by them.

Proof. Exercise 37B. Use the proof of Theorem 8.12 as a model. ■

We now turn to the problem of describing the uniform covers on a
product space, or in a weak uniformity, in terms of uniform covers of the
factor spaces. What we are really doing then, is developing the covering
description of product, or weak uniformities.



37.12 Theorem. The weak uniformity on a set X induced by
maps fα: X → Xα has as a subbase for its uniform covers the
inverse images

e9780486131788_i1821.jpg

for α ∈ A and e9780486131788_i1822.jpg a uniform cover of
Xα.

Proof. The weak uniformity on X is the coarsest making all fα uniformly
continuous ; i.e., the coarsest making each e9780486131788_i1823.jpga
uniform cover. Thus, if the e9780486131788_i1824.jpgform a subbase for
a uniformity on X, it must be the weak uniformity. But since 

e9780486131788_i1825.jpg, the covers e9780486131788_i1826.jpg
form a normal family and thus, by 36.11, are a subbase for a uniformity on
X. ■

37.13 Corollary. A base for the uniform covers on a product Π
Xα of uniform spaces consists of all covers obtained as follows:
Pick α1,. . ., αn, and a uniform cover of 

e9780486131788_i1828.jpg for each i; then form the cover of
Π Xα by all the sets Π Uα, where e9780486131788_i1829.jpg ,
i = 1, . . . , n, and U

α = Xα otherwise.

Problems

37A. Uniform subspaces



1. Show that, if e9780486131788_i1830.jpg is a diagonal uniformity
on X and A ⊂ X, the sets D n (A × A), for D ∈ 

e9780486131788_i1831.jpg , form a diagonal uniformity on A.

2. If A is dense in the uniform space X and 
e9780486131788_i1832.jpg is any uniform cover of A (in the relative

uniformity), then { Ū | U ∈ e9780486131788_i1833.jpg } is a uniform
cover of X.

37B. Evaluation and the weak uniformity
Let Xα be a uniform space and fα : X → Xα for each α ∈ A, where X is a
uniform space. Then the evaluation map e: X → Π Xα is a uniform
isomorphism (into, not onto) iff the maps fα separate points and the
uniformity on X is the weak uniformity given by the maps fα.

37C. Sufficient conditions for uniform continuity
Is there a uniform analog to 7.6? That is, if, f is uniformly continuous when
restricted to each of two open (or closed) subsets A and B of X, whose union
is all of X, then is f uniformly continuous on X?

37D. Metric products and subspaces
1. A uniform product of metrizable spaces is metrizable iff the number of

nontrivial factors is countable.

 
 

2. Every uniform subspace of a metrizable uniform space is metrizable.

37E. Uniform quotients
Let X be a uniform space, Y a set, with f : X → Y a map of X onto Y.

1. There is a largest uniformity on Y which makes f uniformly
continuous. It is called the quotient uniformity induced on Y by f, and Y with
this uniformity is called a uniform quotient of X (by f).



2. If Y is a uniform quotient of X by f, the uniform topology on Y may
differ from the quotient topology induced on Y by f.

3. A map f between uniform spaces X and Y is uniformly open iff for each
surrounding D for X, there is a surrounding E for Y such that f(D[x]) ⊃
E[f(x)], whenever x ∈ X. Show that if f : X → Y is uniformly open, then Y
has the quotient uniformity induced by f.

37F. Inverse limits of uniform spaces
Construct a theory of inverse limit spectra and inverse limit spaces for
uniform spaces which mimics 29C.

38 Uniformizability and uniform metrizability
Here we tackle two difficult, but important, questions: which topologies
come from uniformities and which uniformities come from metrics?

One lemma is basic to the development of criteria both for
uniformizability and for uniform metrizability. The major part of the
development of this lemma has already been accomplished in Section 23.
There, in 23.4, we showed that the topology generated by a normal
sequence e9780486131788_i1834.jpg > * . . . is also generated by a
pseudometric p, and that in fact if e9780486131788_i1835.jpg is the
collection of 1/2” spheres measured by p, then 

e9780486131788_i1836.jpg and e9780486131788_i1837.jpg <
This easily leads to the following lemma, which says any uniform cover in
a uniform space can be “approximated” by a pseudometric.

38.1 Lemma. If e9780486131788_i1838.jpg is a uniform
cover on a uniform space X, there is a pseudometric ρ on X such
that e9780486131788_i1839.jpg = {Up (x, ∈) | x ∈ X} is a
uniform cover for each ∈ > 0 and e9780486131788_i1840.jpg
. Moreover, p can be taken to be bounded by 1.

Proof. First, using the definition of a covering uniformity, a normal
sequence can be constructed “beneath”  :



. . . *< e9780486131788_i1842.jpg .

Letting p be the pseudometric associated with this normal sequence by 23.4,
the conclusions of the lemma are easily satisfied by ρ.

Once ρ is found, it does not hurt to replace it with min (ρ, 1) = ρ*, since
Uρ*(x, ∈) = Uρ(x, ∈) for all x and all ∈ ≤ 1. ■

The collection of uniform covers which make up a uniformity on X thus
gives rise to a collection of pseudometrics on X. What is more, this
collection of pseudometrics can be used to recover the original uniformity.
Thus, certain collections of pseudometrics on X can lay claim to being
uniform structures. In Exercise 38A, you will develop the properties such a
collection of pseudometrics must satisfy.

It is also worth mentioning that, by 36.9, the diagonal analog to the
normal sequence that sits under any uniform cover is the composition
sequence

. . . ⊂ D2 ⊂ D1 ⊂ D

contained in any D ∈ e9780486131788_i1843.jpg(X) where for each n,
Dn ๐ Dn ⊂ Dn-1. Such a sequence can be used in much the same way to
generate a pseudometric.

We are prepared now to prove our theorem on uniformizability. Our
policy of using whichever description of a uniform space is most
convenient is stretched to the limit here; one implication will be proved
using covering uniformities, the other using diagonal uniformities.

38.2 Theorem. A topological space is uniformizable iff it is completely
regular.

Proof. ⇒ : Let μ be a covering uniformity on X which generates the
topology, and suppose A is closed in X, x ∉ A. For some 



e9780486131788_i1844.jpg ∈ μ, St (x, e9780486131788_i1845.jpg ) ∩
A = ⌀. Let d be the pseudometric (bounded by 1) associated with 

e9780486131788_i1846.jpg by 38.1. Then

Ud(x, 1) ∩ A = ⌀.

Let f : X → [0, 1] be the function f(x) = d. (A, x)Then f is easily uniformly
continuous on X, and f(A) = 0, f(x) = 1. Thus X is completely regular.

<= : Suppose X is completely regular. Let S be the collection of
continuous real-valued functions on X. For f ∈ S and ∈ > 0, let

Df,∈ = {(x, y) ∈ X × X | lf(x)–f(y)| < ∈},

and let e9780486131788_i1847.jpg be the entourage uniformity having as
base the collection of sets of the form e9780486131788_i1848.jpg where
f1, . . . , fn ∈ S, ∈i > 0. In fact, e9780486131788_i1849.jpg is apparently
the weak uniformity generated on X by its collection of real-valued
continuous functions. We need only show e9780486131788_i1850.jpg
generates the right topology on X.

Note we are really proving that the topology associated with a weak
uniformity is the weak topology. Suppose A is closed in the original
topology on X, and x ∉ A. Find f ∈ S such that f (x)= 0, f (A) = 1. Let E =
Df,1/2. Then if z ∈ E[x], (x, z) ∈ E so that |f(x) - f(z)| < 

e9780486131788_i1851.jpg and hence |f(z)| <  It follows that E[x] ∩
A = ø, so A is closed in the uniform topology. Thus the usual topology is
smaller than the uniform topology.

For the reverse, it suffices to show E[x] is open in the original topology
on X for each E belonging to the base for the uniformity and each x ∈ X.
But e9780486131788_i1853.jpg and then



e9780486131788_i1854.jpg

so we need only check [x] is open in X. But

so the desired result follows from continuity of the fk. ■

A word of caution. Do not read into the complete regularity we are using
to characterize uniform spaces any separation axioms which are not there.
For example, every pseudometric space is uniformizable, i.e., completely
regular, but the nonmetric examples of these spaces are not even T0! Thus
the trivial topology on any space is uniformizable.

The particular uniformity constructed in 38.2 for X will not usually be the
only one giving the right topology. (Topological spaces with unique
uniform structure are discussed in 41F; an example of a topological space
with several compatible uniformities is given in 40E.)

As might be imagined, Lemma 38.1 must serve as the stepping stone to
success in any search for a uniform metrization theorem. The idea of the
following proof is simple enough. According to 38.1, each element of the
base of a uniformity can be described by a pseudometric. If there are only
countably many pseudometrics to deal with, the result of combining them is
still a pseudometric, and it will describe completely the uniformity in
question.

38.3 Theorem. A uniformity μ on X is pseudometrizable iff it has a
countable base. Proof. If ρ is a pseudometric giving the uniformity μ, then 

e9780486131788_i1857.jpg } is a countable base for μ, where  =
{Uρ(x, 1/2n) | x ∈ X}.

Conversely, suppose { ,. . . } is a base for μ. By taking common star
refinements in order, we may assume · · · * < 



e9780486131788_i1860.jpg * <  . Let dn be the pseudometric
associated with  by 38.1 and assume dn ≤ 1. Define

e9780486131788_i1863.jpg

Then d is a pseudometric on X, and {Ud(x, 1/2") | x ∈ X} < {Udn(x, 1) | x ∈
X} < e9780486131788_i1864.jpg , so for each n the cover  belongs to
the uniformity μd generated by d. Thus μ ⊂ μd.

We will be done if we show {Ud(x, ∈) | x ∈ X} ∈ μ for each ∈ > 0. Pick
N large enough that e9780486131788_i1866.jpg (1/2n) < ∈/2. Now, by
38.1, the uniformity generated by dn is contained in μ for each n, so that {

 ))| x ∈ X} belongs to μ, for each n. Let 
e9780486131788_i1868.jpg be a common refinement of these N

covers. Then given U ∈ e9780486131788_i1869.jpg , for some X1, . . .
, xN in X,

and a routine computation shows that, if x ∈ U,

e9780486131788_i1871.jpg

It follows that  < {Ud(x, ∈) | x ∈ X}. ■

38.4 Corollary. A uniformity is metrizable iff it is separating and
has a countable base.

It is well at this point to correct what is a common misconception. A
uniformity μ is metrizable if for some metric the covers of X by ∈-spheres



form a base for μ. If μ is metrizable, so is the topology it generates, but
metrizability of the associated topology does not imply metrizability of μ.

38.5 Example. An example of the phenomenon just mentioned can be
found in the countable ordinals. For each α ∈ Ω0, let

Dα = {(x, y) | x = y or x > α, y > α}

(see Fig. 38.1). Then {Dα | α ∈ Ω0} is a base for a uniformity which cannot
be metrizable (for any countable base would lead to a collection (  ) with
the property that supn {αn} = (ω1), but whose topology is obviously the
discrete topology; indeed, Dα[β] = {β} if β < α.

e9780486131788_i1874.jpg

Figure 38.1

Problems

38A. Gage structures
A covering uniformity μ on a space X is prescribed by giving a collection of
uniform covers. By 38.1, then, we could describe such a uniformity by
giving the family {ρα |α ∈ A} of pseudo- metrics, such that for each α and

∈ > 0,  } is a uniform cover; i.e., by giving the family
of all pseudometrics which generate a weaker uniformity than the original
uniformity (38.1 ensures that the original uniformity will be the smallest
containing all these weaker uniformities).

 
 

1. The collection  of pseudometrics so obtained has the properties:



a. ρ1, ρ2 ∈ e9780486131788_i1877.jpg ⇒ ρ1 ∨ ρ2 ∈ , where ρ1, ∨ ρ2
= sup (ρ1, ρ2),

b. if ρ is a pseudometric and for each ∈ > 0 there is a δ > 0 and a ρ ∈ 
such that ρ’(x, y) < δ ⇒ ρ(x, y) < ∈, then ρ ∈ 

e9780486131788_i1880.jpg .

We call  the gage of the uniformity p.

2. Conversely, any collection  of pseudometrics on X satisfying a) and
b) of 1 is a gage for some covering uniformity μ.

3. A collection Φ satisfying 1-a) only is a base for the gage obtained by
taking all pseudometrics ρ which satisfy 1-b) relative to Φ.

4. Any collection Φ of pseudometrics on X is contained in a smallest
possible gage, called the gage generated by Φ.

5. Since gages are in one–one correspondence with uniformities, we can
treat them as uniformities. In particular, verify that if 

e9780486131788_i1883.jpg is a gage for μ, the uniform topology of μ
on X is generated by the nhoods Up(x, ∈), ρ ∈  , ∈ > 0, at x.

6. Let X be a completely regular topological space and for each f ∈ C*
(X), define ρ f(x, y) = |f(x)–f(y)|. The collection {ρf |f ∈ C*(X)} generates a
gage for a uniformity compatible with the topology on X.

 
 

Gages do a good job of illuminating the nature of the generalization from
pseudometric spaces to uniform spaces; a pseudometric space is a space
with a gage generated by a single element.

38B. Separation axioms in groups
1. Every topological group (13G) is Tychonoff [See 35F.]

2. Every locally compact topological group is normal. [Let U be a nhood
of e such that Ū is compact. Let H =  (U ∪ U–1)n = 

e9780486131788_i1886.jpg (Ū ∪ Ū–1)n. Then H is an open subgroup
of G (hence closed) and is σ-compact, therefore Lindelöf, therefore normal.



Thus {αH | a ∈ G} is a cover of G by disjoint, open–closed normal
subspaces. Proceed.]

38C. Metrization of topological groups
Let G be a topological group (13G).

1. G is metrizable iff G is first countable [35F, 38.4]. (More can be
shown, with some difficulty. If G is first countable, then it has a left
invariant metric ρ; i.e., ρ(ax, ay)= ρ(x, y) for all a, x, y ∈ G.)

2. If G is locally compact, G is metrizable iff the identity e is a Gδ.
(Again the metric can be taken as a left invariant.)

38D. Examples on metrization
For each of the following uniformities on the set indicated, decide whether
it is metrizable, pseudometrizable or neither. If it is neither, decide whether
or not the associated topology is metrizable.

 
 

1. The uniformity  on R which has for a base the sets

Da = Δ ∪ {(x, y) | x > a, y > a}

for a ∈ R.

2.The discrete uniformity on any set X.

3.The uniformity on R having for a base all countable covers of R.

38E. Uniformizability and the fine uniformity
Give an example of a completely regular space X for which the uniformity 

 generated by the continuous real-valued functions on X (see 38.2) is not
the fine uniformity.



39 Complete uniform spaces; completion
The notion of completeness can easily be carried over from metric spaces to
uniform spaces. All that is needed is an appropriate generalization of the
notion of a Cauchy sequence.

39.1 Definition. Let X have a diagonal uniformity  A net (xλ) in X is 
e9780486131788_i1890.jpg -Cauchy (or just Cauchy) iff for each D ⊂ 

, there is some λ0 ∈ A such that (  ) ∈ D whenever λ1, λ2 ≥ λ0. The
corresponding covering description is as follows: (xλ) is μ-Cauchy, or just
Cauchy, iff for each uniform cover  , there is some λ0 ∈ Λ such that 
and  lie together in some element of e9780486131788_i1896.jpg
whenever λ1, λ2 ≥ λ0.

39.2 Theorem. Every convergent net is Cauchy.

Proof. If xλ → x and D ∈  , pick symmetric E ∈ 
e9780486131788_i1898.jpg such that E ∘ E ⊂ D. Then (xλ) is eventually

in E[x], say for λ ≥ λ0, and now if both λ1 and λ2 are ≥ λ0, then (  , x) ∈ E
and (  , x) ∈ E so (  ) ∈ E ∘ E ⊂ D. ■

39.3 Definition. If every Cauchy net in a uniform space X converges, then
X is a complete uniform space.

The concept of completeness thus defined matches up with the definition
already given for metric spaces, according to the next theorem. As
preparation for reading the proof, note that if X is a metrizable uniform
space, generated by a metric ρ, then a sequence (xn) in X is Cauchy in the
sense of 39.1 iff for each ∈ > 0, there is some n0 such that 

e9780486131788_i1902.jpg whenever n1, n2 ≥ n0; i.e., iff it is Cauchy
as defined earlier for metric spaces.

39.4 Theorem. A space X with a uniformity  generated by the
metric ρ is complete iff ρ is a complete metric.



Proof. If  is complete, every Cauchy net, hence every Cauchy sequence,
converges, so ρ is complete.

Conversely, suppose ρ is complete and (xλ) is a Cauchy net in X. Pick λ1
∈ ∧ so that whenever λ, λ’ ≥ λ1, we have ρ(xλ, xλ′) < 1. Having picked λ1,. .
., λn–1 choose λn greater than λ1,. . ., λn–1 so that whenever λ, λ′ ≥ λn we have
ρ(xλ, xλ′) < 1/n. Then xλ′ → x for some x ∈ X. But the terms of (xλ) are
residually close to the terms of (  ) so we must then have xλ → x. (See
39A.) ■

There is a pitfall to be avoided here. Given a metrizable topology on X,
there will always be some complete uniformity compatible with that
topology, even if X with this topology is not completely metrizable. See
Exercise 39B for a discussion of completely uniformizable topological
spaces.

We will develop now some of the elementary properties of complete
uniform spaces. These will make complete spaces seem quite a bit like
compact spaces; many of the elementary properties enjoyed by compact
spaces are also found in complete spaces, in fact. The section will end with
an investigation of the property, total boundedness, which is precisely the
difference between completeness and compactness, and a theorem on
extension of uniformly continuous functions whose range is a complete
space.

39.5 Theorem. a) A closed subset A of a complete space X is
complete.

b) A complete subspace A of a Hausdorff uniform space X is
closed.

Proof. a) A Cauchy net (xλ) in A is Cauchy in X and hence converges. Its
limit in X must belong to the closed set A, so A is complete.

b) A net (xλ) in A which converges to x ∈ X is Cauchy in A and thus has a
limit point y ∈ A. Since X is Hausdorff, limits are unique, so x = y. Thus A
is closed. ■



39.6 Theorem. A nonempty product of uniform spaces is
complete iff each factor space is complete.

Proof. Suppose ΠXα is complete. Each Xα is homeomorphic to a closed
subspace of the product and is thus complete, by 39.5.

On the other hand, suppose Xα is a complete space for each α ∈ A. Then
the projection into Xα of a Cauchy net in the product is Cauchy in Xα and
thus converges to some point xα. The original net then converges to the
point in the product whose αth coordinate is xα, for each α ∈ A. ■

The analogy between completeness and compactness does not extend to
mapping properties. In fact, the uniformly continuous image of a complete
space need not be complete. The situation is actually even worse than this;
see Exercise 39C.

We turn now to a study of the difference between completeness and
compactness of a uniform space.

 
 
39.7 Definition. A uniformity  on X is totally bounded (precompact) iff
for each D ∈  , there is a finite cover {U1,. . ., Un} of X such that Uk × Uk
⊂ D, for each k. Equivalently, a covering uniformity µ on X is totally
bounded iff µ has a base consisting of finite covers. If X is equipped with a
totally bounded uniformity, it is called a totally bounded (precompact)
uniform space.

 
 

39.8 Lemma. X is totally bounded iff each net in X has a Cauchy subnet.

Proof. Let (xλ) be a net in the totally bounded space X. Now given any D ∈ 
e9780486131788_i1908.jpg , there is a set UD ⊂ X such that UD × UD ⊂

D and (xλ) is frequently in UD. Let Γ = {(λ, D) | D ∈  and xλ ∈ UD},
directed by (λ1, D1) ≤ (λ2, D2) iff λ1 ≤ λ2 and e9780486131788_i1910.jpg .



For each (λ, D) ∈ Γ define x(λ,D) = xλ. Then (x(λ,D)) is a subnet of (xλ) and,
given D0 ∈  , pick λ0 ∈ Λ so that (λ0, D0) ∈ Γ. Then

(λ, D), (λ’, D’) ≥ (λ0, D0) ⇒ (xλ, xλ’) ∈ UD × UD’ ⊂ 
e9780486131788_i1912.jpg ,

so that (x(λ,D)) is a Cauchy subnet of (xλ).

On the other hand, if X is not totally bounded, then a set D ∈ 
e9780486131788_i1913.jpg exists such that no finite cover {U1,. . .,

Un} of X exists with Uk × Uk ⊂ D for each k. Then if E ο E ⊂ D, it follows
from the fact that E[x] × E[x] ⊂ D for each x ∈ X that no finite sequence
E[x1],. . ., E[xn] covers X. Then we can construct by induction a sequence
x1, x2, . . . such that xn ∉ E[xi] for any i < n. Easily, (xn) can have no Cauchy
subnet. ■

39.9 Theorem. A uniform space X is compact iff it is complete
and totally bounded.

Proof. If X is compact and (xλ) is a Cauchy net in X, (xλ) has a cluster point
x, and since it is Cauchy, (xλ) must converge to x. Thus X is complete. Since
every net has a convergent, hence Cauchy, subnet, X is also totally bounded.

To show a complete, totally bounded space is compact, note that every
net has a Cauchy subnet (by total boundedness), which is a convergent
subnet (by completeness). ■

We continue this section with an extension theorem. Recall that a
continuous function on a subset A of a metric space X to a complete metric
space Y can be extended to a Gδ-subset between A and its closure by the
primitive version of Lavrentieff’s theorem (24.8). If the function in question
is uniformly continuous, we can extend it to all of Ā.



39.10 Theorem. A uniformly continuous function on a subset A
of a uniform space X to a complete uniform space Y can be
extended to Ā.

Proof. For each x ∈ Ā, a Cauchy net (xλ) in A converges to x. The net (f(xλ))
is easily still a Cauchy net, and hence converges in Y, say to y. We define
f(x) = y in this case.

To show f is uniformly continuous, let e9780486131788_i1914.jpg
and ℰ be the uniformities on X and Y, respectively, and let E’ ∈ ℰ. Pick
symmetric E ∈ ℰ such that E ๐ E ๐ E ⊂ E’. Now find an open D ∈ 

e9780486131788_i1915.jpg such that, if x and y are points of A and (x,
y) ∈ D, then (f(x), f(y)) ∈ E. We claim if x and y are points of Ā and (x, y)
∈ D, then (f(x), f(y)) ∈ E’. This will establish uniform continuity of f on Ā.

Find nets (xλ) and (yµ) in A converging to x and y respectively. Since D is
open and (x, y) ∈ D, eventually (xλ, yµ) ∈ D, and thus (f(xλ), f(yµ)) ∈ E
eventually. But, since f(xλ) converges to f(x), eventually f(xλ) ∈ E[f(x)] and
thus (f(xλ), f(x)) ∈ E. Similarly, (f(yµ), f(y)) ∈ E eventually. Now it follows
that (f(x), f(y)) ∈ E ๐ E ๐ E ⊂ E’, establishing the theorem. ■

We will prove now that every uniform space can be uniformly embedded
in a product of pseudometric spaces. These factor spaces all have
pseudometric completions, by 24.5, so we have an obvious scheme for
obtaining a completion of any uniform space, analogous to the procedure
used to obtain the Stone—Čech compactification of a Tychonoff space. The
idea behind the proof of the key embedding theorem is, of course, our old
friend, Lemma 38.1.

39.11 Theorem. Every uniform space X can be embedded in a
product of pseudometric spaces, and the factors can be made
metric if X is separated.



Proof. Let µ = { e9780486131788_i1916.jpg |α ∈ A} be a covering
uniformity on X, which we assume is separating (the proof in the
nonseparated case duplicates the proof below, with the metric identification
omitted). With each uniform cover e9780486131788_i1917.jpg , associate
a pseudometric dα using Lemma 38.1, and let Xα denote the pseudometric
space (X, dα). Let e9780486131788_i1918.jpg be the metric identification
of Xα, the identification map being hα, and define e : X → 

e9780486131788_i1919.jpg to be evaluation: [e(x)]α = hα(x). Since µ is
separating, any two distinct points x and y are at positive distance in some
dα, and hence e is one-one. The composition of e with any projection map is
uniformly continuous and thus e is uniformly continuous. Finally, to show
e–1 is uniformly continuous, let Dα be an element of the diagonal uniformity
on X associated with µ. If dα is the pseudometric associated with Dα (by
way of e9780486131788_i1920.jpg ), then note that {(x, y) ∈ X × X |
dα(x, y) < 1} ⊂ Dα. If we let

e9780486131788_i1921.jpg

then Tα belongs to the metric uniformity on e9780486131788_i1922.jpg ,
and thus

e9780486131788_i1923.jpg

belong to the uniformity on e9780486131788_i1924.jpg . But e–1(T) =
{(x, y) ∈ X × X | dα(x, y) < 1} ⊂ Dα.

This establishes uniform continuity of e –1. ■

39.12 Theorem. Every uniform space X can be uniformly
embedded as a dense subspace of a complete uniform space 

e9780486131788_i1925.jpg which is unique, in the sense that
if Y is any complete space containing X as a dense subspace,
then e9780486131788_i1926.jpg and Y are uniformly



isomorphic, under an isomorphism leaving X pointwise fixed.
Moreover, e9780486131788_i1927.jpg is separated iff X is.

Proof. X can be embedded in a product of pseudometric spaces, X ⊂ Π Xα,
and each Xα has a pseudometric completion e9780486131788_i1928.jpg .
Then the closure in e9780486131788_i1929.jpg of X is a complete
uniform space containing X as a dense subspace. Moreover, each Xα can be
made metric if X is separated, and then the resulting completion of X will be
Hausdorff and hence separated.

Uniqueness remains. But if Y is any completion of X, then the identity
map i: X → X has uniformly continuous extensions I: 

e9780486131788_i1930.jpg → Y and J: Y → 
e9780486131788_i1931.jpg , by 39.10. It follows that I is the required

uniform isomorphism of e9780486131788_i1932.jpg with Y. ■

39.13 Theorem. The completion of a totally bounded uniform space is
compact.

Proof. In fact, we can show that whenever a uniform space Y contains a
dense totally bounded subspace X, then Y is totally bounded.

Let e9780486131788_i1933.jpg be any uniform cover of Y, 
e9780486131788_i1934.jpg an open star refinement of 
e9780486131788_i1935.jpg , and let e9780486131788_i1936.jpg

be a finite uniform cover of X which refines the trace on X of 
e9780486131788_i1937.jpg . It is sufficient to show { 
e9780486131788_i1938.jpg } is a uniform cover of Y which refines 
e9780486131788_i1939.jpg .

First, it is a uniform cover. Let e9780486131788_i1940.jpg be a
uniform cover of Y whose trace on X is e9780486131788_i1941.jpg
and find an open refinement e9780486131788_i1942.jpg of 

e9780486131788_i1943.jpg . Since each 
e9780486131788_i1944.jpg is open, e9780486131788_i1945.jpg ,

and each e9780486131788_i1946.jpg is contained in 
e9780486131788_i1947.jpg for some e9780486131788_i1948.jpg

. Thus, e9780486131788_i1949.jpg refines 
e9780486131788_i1950.jpg , showing the latter to be a uniform cover



of Y.

Second, e9780486131788_i1951.jpg refines 
e9780486131788_i1952.jpg , since given W ∈ 
e9780486131788_i1953.jpg , we have W ⊂ V and St (V, 
e9780486131788_i1954.jpg ) ⊂ U for some V ∈ 
e9780486131788_i1955.jpg and U ∈ e9780486131788_i1956.jpg

and it follows that e9780486131788_i1957.jpg ⊂ U. ■

Thus the uniform completion of a totally bounded uniform space is, in
fact, a compactification of X (whose unique uniformity restricts to the
uniformity on X). Conversely, given any compactification BX of X, BX has a
unique uniformity (which is totally bounded), thus giving rise to a totally
bounded uniformity on X.

The resulting one-one correspondence between totally bounded
uniformities on X and compactifications of X will be further studied in
Section 41 on proximities.

Problems

39A. Cauchy nets and Cauchy sequences
Supply the missing details in the proof of Theorem 39.4. Specifically:

1. If ( e9780486131788_i1958.jpg ) is constructed as in 39.4 and 
e9780486131788_i1959.jpg , then xλ → x.

2. If the requirement that λn be greater than or equal to all of λ1,. . ., λn—1
is dropped, ( e9780486131788_i1960.jpg ) need not be a Cauchy
sequence.

3. Every subnet of a Cauchy net is Cauchy.

39B. Completely uniformizable spaces
A topological space is completely uniformizable iff there is a complete
uniformity which generates its topology. Thus every completely
uniformizable space is completely regular.



1. A completely regular space X is completely uniformizable iff the fine
uniformity on X is complete. [If e9780486131788_i1961.jpg and 

e9780486131788_i1962.jpg are uniformities on X generating the same
topology, and e9780486131788_i1963.jpg , then 

e9780486131788_i1964.jpg complete ⇒ 
e9780486131788_i1965.jpg complete.]

2. Every paracompact space is completely uniformizable.

As a consequence of 2, every metric space is completely uniformizable.
Thus a completely uniformizable metric space need not be completely
metrizable, nor can we prove a Baire theorem (25.4) for completely
uniformizable spaces.

39C. Mapping properties of complete spaces
With mapping properties, the analogy between complete uniform spaces
and compact spaces ends.

1. The uniformly continuous image of a complete uniform space need not
be complete. (The situation is even worse. The uniformly continuous and
uniformly open image of a complete space need not be complete. See the
notes.)

2. If X is a complete metric space, Y is a separated uniform space, and f is
a continuous uniformly open map of X onto Y, then Y is complete. [Show
that f is uniformly open as a map of X into the completion 

e9780486131788_i1966.jpg of Y and conclude that f(X) = Y is closed in
e9780486131788_i1967.jpg .]

39D. Completeness of the hyperspace
Recall that the hyperspace (36E) of a uniform space (X, 

e9780486131788_i1968.jpg ) is obtained by forming the set ℋ of all
closed subsets of X and taking as a base for a diagonal uniformity on ℋ the
collection of all sets of the form {(A, B) | A is D-close to B}, for D ∈ 

e9780486131788_i1969.jpg , where A and B are D-close iff A ⊂ D[B]
and B ⊂ D[A].



1. The hyperspace of a complete metric space is a complete metric space.
[Refer to 36E.2.]

2. The hyperspace of an arbitrary complete uniform space need not be
complete. [Consider a complete space X of cardinality c whose (covering)
uniformity is the uniformity having as a base all countable covers of X
(36B.5).]

39E. Homeomorphism does not imply uniform
isomorphism
There is an uncountable family of countable discrete metric spaces, no two
of which are uniformly isomorphic. [From 17R, there are compact subsets
Cα, α ∈ Ω0, of R no two of which are homeomorphic. For each α, let Dα =
{ e9780486131788_i1970.jpg } be a countable dense subset of Cα and let
Xα = {( e9780486131788_i1971.jpg , 1/m) | m ≥ n} in R2. Then Xα is a
countable discrete metric space whose completion is Xα ∪ Cα. Use 39.12 to
conclude that a uniform isomorphism of Xα onto Xβ would induce a
homeomorphism of Cα with Cβ.]

39F. Filters and completeness

Filters can be used to describe completeness in a uniform space. A filter ℱ
in a uniform space X is Cauchy iff ℱ contains an element of each uniform
cover of X. (In the language of diagonal uniformities, ℱ is Cauchy iff it
contains a set A such that A × A ⊂ D, for each surrounding D.)

1. Every convergent filter is Cauchy.
2. X is complete iff every Cauchy filter converges.

39G. Examples on completeness and completion
Decide which of the following uniform spaces are complete. For those that
are not, try to describe their uniform completion in simple terms.

1. The uniformity e9780486131788_i1972.jpg on R having as a base
the sets



Dα = Δ ∪ {(x, y) | x > a, y > a}

for a ∈ R.

2. Any set X with the discrete uniformity.

40 Proximity spaces
The basic purpose in this section is to introduce a new “nearness relation”,
called proximity, on a set X and to establish a one-one correspondence
between the proximities on X and the totally bounded uniformities on X.

40.1 Definition. A proximity space is a pair (X, δ) where X is a set and δ is a
binary relation on e9780486131788_i1973.jpg satisfying, for A, B and C
subsets of X :

P-1) ø e9780486131788_i1974.jpg A,

P-2) a δ a, for each a ∈ A,

P-3) A δ B implies B δ A,

P-4) A δ (B ∪ C) iff A δ B or A δ C,

P-5) A e9780486131788_i1975.jpg B implies there are C, D ⊂ X
such that C ∩ D = ø and A e9780486131788_i1976.jpg (X–C), B 

e9780486131788_i1977.jpg (X–D).

The space is called separated if it satisfies the additional axiom:

P-6) a δ b implies a = b.

We speak, in practice, of “the proximity space X” and δ is referred to as
the proximity on X. The phrase A δ B is read “A is close to B” (or, where
confusion is possible, “A is δ-close to B”). As with uniformities, it causes
no real loss in generality to assume most proximities are separated.

40.2 Examples. a) In any set X define A δ B iff both A and B are nonempty.
This defines a proximity on X, called the trivial proximity.

b) In any set X, define A δ B iff A ∩ B ≠ ø. This always defines a
proximity on X, called the discrete proximity.



c) In any normal topological space X, define A δ B iff 
e9780486131788_i1978.jpg . This provides a proximity on X, called

the elementary proximity. It is separated iff X is T0. In a sense to be made
precise in the next section, all proximities are obtainable as elementary
proximities.

d) In a space X with a diagonal uniformity 
e9780486131788_i1979.jpg, define A e9780486131788_i1980.jpg

B iff for some D ∈ e9780486131788_i1981.jpg, D[A] ∩ D[B] = ø.
Equivalently, from the existence of elements E ∈ 

e9780486131788_i1982.jpg such that E ๐ E ⊂ D, the definition above
can be made to read, A e9780486131788_i1983.jpg B iff for some D ∈

e9780486131788_i1984.jpg, D[A] ∩ B = ø.

If a covering uniformity µ is given on X, the definition becomes A 
e9780486131788_i1985.jpg B iff for some 
e9780486131788_i1986.jpg ∈ µ, St (A, 
e9780486131788_i1987.jpg) ∩ St (B, e9780486131788_i1988.jpg)

= ø; equivalently, from the existence of elements 
e9780486131788_i1989.jpg such that e9780486131788_i1990.jpg

* < e9780486131788_i1991.jpg, we can write the definition A 
e9780486131788_i1992.jpg B iff for some 
e9780486131788_i1993.jpg ∈ µ, St (A, 
e9780486131788_i1994.jpg) ∩ B = ø.

A proximity which can be obtained in either of these ways (they are the
same, by the translation process for uniformities) is called uniformizable.
As we will see later in this section, all proximities are uniformizable.

In both cases, the proximity induced by a uniformity is separated iff the
uniformity itself is separated.

e) As a special case of (d) (verify that it is a special case) in a metric
space X, a proximity is obtained if we define A δ B iff d(A, B) = 0.
Whenever a proximity is obtainable in this way from a metric, it is called
metrizable. Metrizable proximities are always separated; their nonseparated
counterparts are the pseudometrizable proximities, the definition and
properties of which are obvious analogs to those of metrizable proximities.



 
 
40.3 Definition. In a proximity space (X, δ), we write A ⊂⊂ B iff A 

e9780486131788_i1995.jpg (X − B). When A ⊂⊂ B, we call B a
proximity nhood (p-nhood, δ-nhood) of A.

 
 

40.4 Theorem. Proximity nhoods have the following properties, for any
A, B, C ⊂ X:

P-1)’ ø ⊂⊂ A,

P-2)’ if A ⊂⊂ B, then A ⊂ B,

P-3)’ A ⊂⊂ (B ∩ C) iff A ⊂⊂ B and A ⊂⊂ C,

P-4)’ if A ⊂⊂ B then for some C, A ⊂⊂ C ⊂⊂ B,

and in a separated space

P-5)’ if a ≠ b, then a ⊂⊂ X − {b}.

Conversely, given a relation ⊂⊂ between subsets of a set X
satisfying, (P-1 )’ through (P-4)’, we can define a proximity δ on
X by A e9780486131788_i1996.jpg B iff A ⊂⊂ X − B, and
the proximity nhoods of A relative to δ will be precisely those
sets B for which A ⊂⊂ B. Moreover, δ will be separated iff (P-
5)’ holds.

Proof. Left as Exercise 40B. ■

40.5 Theorem. In any proximity space (X, δ):
a. if A δ B and A ⊂ C, B ⊂ D, then C δ D,
b. if A ∩ B ≠ ø, then A δ B,
c. if A ⊂⊂ B ⊂ C, then A ⊂⊂ C.

Proof. (a) follows directly from (P-3), while (b) follows from (a) and (P-2),
and (c) follows from (P-3)’. ■



40.6 Definition. In a proximity space (X, δ), define Ā = {x | x δ A}. The
result is a closure operator on P(X) (Exercise 40C), thus providing a
topology on X, called the topology induced by δ. The topological spaces
whose topologies can be derived in this way from proximities are called
proximizable.

In the topology induced by a proximity δ, the nhoods U of a point x are
precisely the proximity nhoods of x; that is, those sets U for which x ⊂⊂ U.
It is not in general true, however, that the nhoods of a set A are the
proximity nhoods of A (see Exercise 40C).

Whenever we use a topology on a proximity space (X, δ), it is assumed to
be the topology induced by δ.

40.7 Theorem. a) Ā δ e9780486131788_i1997.jpg iff A δ B,

b) if A ⊂⊂ B, then Ā ⊂ B° ; the converse fails.

Proof. a) If A δ B, then Ā δ e9780486131788_i1998.jpg by Theorem 40.5.
On the other hand, suppose Ā δ e9780486131788_i1999.jpg. Then A ⊂⊂
X − B, so for some C ⊂ X, A ⊂⊂ C ⊂⊂ X − B. Then Ā ⊂ C ⊂⊂ X − B, so
Ā δ B. Repeating the argument shows A δ B.

b) If A ⊂⊂ B, then for some C, A ⊂⊂ C ⊂⊂ B and then Ā ⊂ C ⊂ B°, so
Ā ⊂ B°. The converse fails, even for the proximity generated by the usual
metric on the plane. Let A be the set {(x, 0) | x ≥ 1}, B the set of points (x, y)
with x > 0 and |y| < 1/x. Then Ā ⊂ B°, but d(A, X − B) = 0, so it is not true
that A ⊂⊂ B. ■

40.8 Theorem. The topology induced by a proximity induced by
a uniformity is the uniform topology.

Proof. Let e9780486131788_i2000.jpg be a diagonal uniformity on X.
Then U is a uniform nhood of x iff D[x] ⊂ U for some D ∈ 

e9780486131788_i2001.jpg iff E[x] ∩ E[X − U] = ø for some E ∈ 
e9780486131788_i2002.jpg [take E symmetric so that E ๐ E ⊂ D] iff x 
e9780486131788_i2003.jpg (X − U) in the proximity induced by 
e9780486131788_i2004.jpg if x ⊂⊂ U iff U is a proximity nhood of x. ■



40.9 Definition. If (X, δ) and (Y, δ’) are proximity spaces, a map f : X → Y
is a proximity map (p-map, δ-map) iff whenever A δ B in X, then f(A) δ’ f(B)
in Y.

Alternatively, f is a p-map iff whenever C ⊂⊂′ D in Y, then f−1(C) ⊂⊂
f−1(D) in X.

40.10 Theorem. a) Every p-map is continuous.

b) Every uniformly continuous map is a p-map.

Proof. a) Let f: X → Y be a p-map. To show f is continuous, it suffices to
show f(Ā) ⊂ e9780486131788_i2005.jpg for each A ⊂ X. But x ∈ Ā iff x
δ A, and if x δ A, then f(x) δ f(A), which implies that f(x) ∈ 

e9780486131788_i2006.jpg. Thus f(Ā) ⊂ e9780486131788_i2007.jpg.

b) Let (X, e9780486131788_i2008.jpg) and (Y, ℰ) be uniform spaces
and suppose f: X → Y is uniformly continuous. Now suppose C ⊂⊂′ B.
Find a symmetric E ∈ ℰ such that E[C] ⊂ B (for C 

e9780486131788_i2009.jpg Y − B, so for some E, E[C] ∩ (Y − B) = ø).
Let D be an element of e9780486131788_i2010.jpg such that if (x, y)
∈ D, then (f(x), f(y)) ∈ E, by uniform continuity of f. We assert that
D[f−1(C)] ⊂ f−1(B). For if x ∈ D[f−1(C)], then for some y ∈ f−1(C), (x, y) ∈
D. Then (f(x), f(y)) ∈ E and f(y) ∈ C, so f(x) ∈ E[C] ⊂ B and hence x ∈
f−1(B). Thus D[f−1(C)] ⊂ f−1(B), so that f−1(C) ⊂⊂ f−1(B). ■

40.11 Theorem. If v is totally bounded, a map f: (X, µ) → (Y, v)
is uniformly continuous iff it is a p-map (relative to the induced
proximities).

Proof. Let f be a p-map. It suffices to show that f−1(η) ∈ µ for each finite
uniform cover η of Y, since these form a base for (Y, v).

We begin by supposing η has two elements, say η = {N1, N2}. If

f–1(η) ∉ µ,



then for each e9780486131788_i2011.jpg ∈ µ, there is some U ∈ 
e9780486131788_i2012.jpg such that U meets both X − f–1(N1) and X − f–

1(N2) [otherwise e9780486131788_i2013.jpg< f–1(η)]. It follows that

[X − f–1(N1)] δ [X − f–1(N2)]

and hence, since f is a p-map, (Y − N1) δ (Y − N2). Then for every uniform
cover e9780486131788_i2014.jpg of Y, St (Y − N1, 

e9780486131788_i2015.jpg) meets Y − N2 ; in particular, St (Y − N1, η)
meets Y − N2. This is impossible. Thus f–1(η) ∈ µ.

We can complete the proof by showing every finite uniform cover is
refined by an intersection of two-element uniform covers. Let 

e9780486131788_i2016.jpg = {U1,. . ., Un} be a uniform cover and
pick e9780486131788_i2017.jpg such that 

e9780486131788_i2018.jpg * < e9780486131788_i2019.jpg. For i
= 1, . . . , n let

e9780486131788_i2020.jpg

Since each U′ ∈ e9780486131788_i2021.jpg is included in some Wi, we
have e9780486131788_i2022.jpg Wi = Y. Also, Wi ⊂ Ui for each i = 1, . .
., n, so e9780486131788_i2023.jpg = {Ui, Y − Wi} is a cover of Y for
each i. Moreover, each e9780486131788_i2024.jpg is a uniform cover of
Y since (it is easily checked that) e9780486131788_i2025.jpg < 

e9780486131788_i2026.jpg. But then



e9780486131788_i2027.jpg

is a uniform cover of Y, and e9780486131788_i2028.jpg < 
e9780486131788_i2029.jpg. ■

40.12 Definition. A one-one, onto map f such that both f and f −1 are p-
maps is a p-isomorphism. Apparently, a one-one onto map f: (X, δ) → (Y,
δ′) is a p-isomorphism precisely when A δ B iff f(A) δ′ f(B); i.e., precisely
when C ⊂⊂ D iff f(C) ⊂⊂ f(D). Such maps are also called proximity
isomorphisms or δ-isomorphisms.

 
 

The next theorem follows easily from Theorem 40.10.

40.13 Theorem. a) Every p-isomorphism is a homeomorphism.

b) Every uniform isomorphism is a p-isomorphism.

We now know that proximity represents a structural layer somewhere
between uniformity and topology. The rest of this section will be devoted to
substantiating the claim that the theory of proximity spaces is, in a sense, a
theory of totally bounded uniform spaces.

40.14 Definition. We say e9780486131788_i2030.jpg = {Uα | α ∈ A} is a
p-cover of the proximity space X iff there is a cover 

e9780486131788_i2031.jpg = { Vα | α ∈ A} of X such that Vα ⊂⊂ Uα for
each α ∈ A. We call e9780486131788_i2032.jpg a p-refinement of 

e9780486131788_i2033.jpg.

 
 

40.15 Theorem. Every proximity is induced by some totally bounded
uniformity.

Proof. We assert that, given a proximity δ on X, the collection µ of all finite
p-covers of X is a base for a uniformity on X, whose associated proximity is
δ. If so, the uniformity will easily be totally bounded, since the generating
covers are finite.



First, if e9780486131788_i2034.jpg and 
e9780486131788_i2035.jpg belong to µ, so easily does

e9780486131788_i2036.jpg

and e9780486131788_i2037.jpg.

Next, given e9780486131788_i2038.jpg ∈ µ, we wish to find 
e9780486131788_i2039.jpg ∈ µ such that 
e9780486131788_i2040.jpg ;actually, by 20B.1, it is enough to find a

barycentric refinement e9780486131788_i2041.jpg of 
e9780486131788_i2042.jpg. Write e9780486131788_i2043.jpg =

{U1,. . ., Un} and let e9780486131788_i2044.jpg = {V1,. . . , Vn} be a
p-refinement of e9780486131788_i2045.jpg. For i = 1, . . . , n find Hi
and Gi such that Vi ⊂⊂ Hi ⊂⊂ Gi ⊂⊂ Ui (using 40.4), and set 

e9780486131788_i2046.jpg, e9780486131788_i2047.jpg. Then,
for each i, e9780486131788_i2048.jpg and 

e9780486131788_i2049.jpg are open and, by 40.7, 
e9780486131788_i2050.jpg. Let e9780486131788_i2051.jpg be

the cover of X by the zn open sets of the form 
e9780486131788_i2052.jpg ∩ ⋯ ∩ e9780486131788_i2053.jpg

where each ∊i is 1 or 2. Then e9780486131788_i2054.jpg is a p-cover,
since it is p-refined by the cover

e9780486131788_i2055.jpg

where e9780486131788_i2056.jpg = G¡ and 
e9780486131788_i2057.jpg = X − Gi, and thus 
e9780486131788_i2058.jpg ∈ µ. Moreover, 
e9780486131788_i2059.jpg is a barycentric refinement of 
e9780486131788_i2060.jpg. In fact, given x ∈ X, x ∈ 
e9780486131788_i2061.jpg for some i0 and we can show St (x, 



e9780486131788_i2062.jpg, for if x ∈ W for some W ∈ 
e9780486131788_i2063.jpg then the i0th factor 
e9780486131788_i2064.jpg of W cannot be X − 
e9780486131788_i2065.jpg, so it must be e9780486131788_i2066.jpg.

Thus W ⊂ e9780486131788_i2067.jpg.

Finally, we show that the resulting uniformity on X induces the proximity
δ we started with. For this purpose, it suffices to show A 

e9780486131788_i2068.jpg B iff St (A, 
e9780486131788_i2069.jpg) ∩ B = ø for some finite p-cover 
e9780486131788_i2070.jpg of X.

If A e9780486131788_i2071.jpg B, then A ⊂⊂ X − B and hence

A ⊂⊂ C1 ⊂⊂ C2 ⊂⊂ C3 ⊂⊂ C4 ⊂⊂ X − B

for some C1, C2, C3, C4 ⊂ X. Set e9780486131788_i2072.jpg = {C4, X–
C1}. Then since C3 ⊂⊂ C4 and X - C2 ⊂⊂ X–C1, 

e9780486131788_i2073.jpg is a p-cover of X. Moreover, St (A, 
e9780486131788_i2074.jpg) ⊂ C4, so St (A, 
e9780486131788_i2075.jpg) ∩ B = ø.

Conversely, suppose St (A, e9780486131788_i2076.jpg) ∩ B = ø for
some finite p-cover e9780486131788_i2077.jpg. Then if 

e9780486131788_i2078.jpg is a p-refinement of 
e9780486131788_i2079.jpg, A ⊂ St (A, 
e9780486131788_i2080.jpg) ⊂⊂ St (A, 
e9780486131788_i2081.jpg) ⊂ X − B, so A 
e9780486131788_i2082.jpg B. ■

40.16 Corollary. The proximizable topological spaces are
precisely the completely regular spaces.



Proof. The proximizable spaces, by Theorem 40.15 together with Example
40.2(d), coincide with the uniformizable spaces. ■

40.17 Definition. Given a proximity δ on X, the totally bounded uniformity
constructed in 40.15 which generates it will be denoted µδ (or, in the case of
the corresponding diagonal uniformity, e9780486131788_i2083.jpgδ).

40.18 Theorem. µδ is the only totally bounded uniformity giving
the proximity δ.

Proof. It suffices to show that the finite p-covers form a base for any totally
bounded uniformity µ which generates δ. Now the finite uniform covers
form a base for µ, by total boundedness. But let 

e9780486131788_i2084.jpg be any finite uniform cover, 
e9780486131788_i2085.jpg a finite star refinement of 
e9780486131788_i2086.jpg, and for each V ∈ 
e9780486131788_i2087.jpg, pick Uv ∈ e9780486131788_i2088.jpg

such that St (V, e9780486131788_i2089.jpg) ⊂ Uv. Then 
e9780486131788_i2090.jpg = {UV | V ∈ e9780486131788_i2091.jpg}

is a finite cover which refines e9780486131788_i2092.jpg, so it suffices
to show e9780486131788_i2093.jpg is a p-cover.

It is enough to show V ⊂⊂ Uv for each V ∈ 
e9780486131788_i2094.jpg. But if e9780486131788_i2095.jpg is

any star refinement of e9780486131788_i2096.jpg, then easily St (V, 
e9780486131788_i2097.jpg) ∩ St (X–Uv, 
e9780486131788_i2098.jpg) = ø; it follows that V 
e9780486131788_i2099.jpg (X–Uv), i.e., that V ⊂⊂ Uv. ■

40.19 Theorem. If µ is any uniformity inducing δ, then µδ ⊂ µ.

Proof. Since both µ and µδ generate the same proximity, the identity i : (X,
µ) → (X, µδ) is a p-map. Then, since µδ is totally bounded, i is uniformly
continuous by 40.11. Thus µδ ⊂ µ. ■



The study of proximities on X is now revealed as merely the study of
equivalence classes of uniformities on X, under the equivalence relation µ1
~ µ2 iff µ1 and µ2 give the same proximity on X. Moreover, each
equivalence class of uniformities contains precisely one totally bounded
uniformity, the smallest uniformity in the class. As we have said, then, in
certain ways the study of proximity structures reduces to the study of totally
bounded uniform structures. The next section provides a good illustration.

The real reason for an interest in proximity structure lies in the fact that
many of the interesting properties of uniform spaces turn out not only to be
uniform invariants, but to be proximity invariants ; that is, turn out to be
possessed by all uniform spaces which are proximity isomorphic to any
uniform space having them.

Problems

40A. Examples of proximities
Verify that each of the following is a proximity relation on the set in
question.

1. The trivial proximity (40.2a).
2. The discrete proximity (40.2b).
3. The elementary proximity on a normal space (40.2c).
4. The uniform proximity on a uniform space–both kinds. (40.2d.)
5. The metric proximity on a metric space (X, d) (40.2e).

40B. P-nhoods
1. Given a proximity space (X, δ), show that the relation ⊂⊂ in (X, δ)

satisfies axioms (P-1)′ through (P-4)’ of 40.4, and also (P-5)’ if X is
separated.

 
 

2. Conversely, show that any relation ⊂⊂ satisfying (P-1)′ through (P-4)’
will generate a proximity δ, with the definition A 

e9780486131788_i2100.jpg B iff A ⊂⊂ X–B, for which ⊂⊂ is just the



p-nhood relation. Also, (X, δ) is separated iff (P-5)’ holds.

40C. The proximity topology
1. Verify that A = {x ∈ X ∣x δ A} defines a valid closure operator on any

proximity space (X, δ), making X a topological space.

2. The resulting topology on X is Hausdorff iff (X, δ) is separated.

3. The nhoods of x ∈ X in this topology are precisely the sets U for
which {x} ⊂⊂ U.

4. More generally, if A ⊂⊂ B, then B is a nhood of A in the induced
topology on X, but the converse fails.

40D. Proximizable topologies
Our verification that the proximizable topological spaces were precisely the
completely regular ones was indirect; we showed proximizability
equivalent to uniformizability. We can, however, explicitly construct a
proximity on any completely regular space compatible with the topology on
that space.

Given a completely regular space X, define A 
e9780486131788_i2101.jpg B iff for some continuous f: X → I, f(A) =

0 and f(B) = 1. Then δ is a proximity on X compatible with the topology on
X.

40E. Subspace proximities
Given a proximity space (X, δ) and A ⊂ X, a proximity δA is induced on A
in a natural way, namely, B δA C iff B δ C.

 
 

1. δA is a proximity on A. It is called the relative proximity on A and A
with this proximity is a subspace of (X, δ).

2. The topology induced by δA is the relative topology on A.



3. The proximity induced by the relative uniformity on a subset of a
uniform space is the relative proximity.

Thus, subspaces of proximity spaces work well. We will see later (40F
and 41C) that products and quotients do not behave as nicely.

40F. Product proximities
For each α ∈ Z, let (Xα, δα) be a proximity space. We can define a product
proximity on X = Π Xα as follows: A δ B iff whenever A = A1 ∪ ··· ∪ Am, B
= B1 ∪ ··· ∪ Bn then for some Ai and Bj, [πα(Ai)] δα [πα(Bj)] for all α.

1. δ is a proximity on X, the coarsest proximity for which each projection
πα is a p-map.

2. The topology induced by δ is the product topology.

3. The proximity induced by the product uniformity need not be the
product proximity, even though both produce the product topology. [Take X
= Y = N with the usual (discrete) uniformity and proximity.]

This result can be stated: products of p-isomorphic uniform spaces need
not be p-isomorphic.

4. The proximity induced on a product of totally bounded uniform spaces
is the product proximity. [Use coverings.]

Apropos of 4, Dowker has noted that it is enough if all but one of the
uniform spaces is totally bounded. This cannot be improved, by the
example in 3.

41 Compactness and proximities
Here our basic purpose is to establish the one-one correspondence between
the compatible proximities on a Tychonoff space X and the
compactifications of X.

41.1 Theorem. A compact Hausdorff space admits a unique
proximity, given by the elementary proximity A δ B iff Ā ∩ 

e9780486131788_i2102.jpg ≠ φ.



Proof. Such a space is uniformizable with a unique uniformity, so it must be
proximizable with a unique proximity δ.

Now if A e9780486131788_i2103.jpg B, then Ā 
e9780486131788_i2104.jpg by 40.7, and hence Ā n 
e9780486131788_i2105.jpg = ø.

Conversely, suppose Ā ∩ e9780486131788_i2106.jpg= ø. For each x
∈ Ā, X– e9780486131788_i2107.jpg is open and contains x, so for
some open set Cx, x ⊂⊂ Cx ⊂⊂ e9780486131788_i2108.jpg . The
cover of Ā by the sets Cx, x ∈ Ā, has a finite subcover, say Ā ⊂ 

e9780486131788_i2109.jpg ∪ ··· ∪ e9780486131788_i2110.jpg =
C. Now e9780486131788_i2111.jpg ⊂⊂ X–

e9780486131788_i2112.jpg for each i = 1, . . . , n so C ⊂⊂ X– 
e9780486131788_i2113.jpg and hence Ā ⊂⊂ X–
e9780486131788_i2114.jpg. Thus e9780486131788_i2115.jpg , so

by 40.7, A e9780486131788_i2116.jpg B. ■

Now suppose X is any Tychonoff space. Then X can be densely
embedded in various ways in compact spaces Y, each such Y has a unique
proximity, and the restriction of that proximity to X, call it δY, gives a
compatible proximity on X (subspace proximities are defined in the obvious
way and have all the right properties; see 40E).

Conversely, given any compatible proximity δ on X, δ corresponds to a
unique totally bounded uniformity μδ on X and the uniform completion X of
(X, μδ) is a complete, totally bounded uniform space and thus a
compactification of X. Moreover, since (X, μδ) is a uniform subspace of 

e9780486131788_i2117.jpg with its unique uniformity, we must have δ
= e9780486131788_i2118.jpg .

 
 
41.2 Definition. The unique compactification βδX of X corresponding to the
proximity δ is called the Samuel compactification of X, relative to δ.



Thus the proximities on X (and hence, the totally bounded uniformities
on X) are in one–one correspondence with the compactifications of X.
Moreover, the method of construction substantiates our claim in 40.2(c) that
every proximity is an elementary proximity. We should state it more
accurately: every separated proximity is the restriction of an elementary
proximity on a compact Hausdorff space. With obvious modifications to the
discussion so far, “separated” and “Hausdorff” can be dropped from the last
sentence.

The remainder of this section is devoted to the question: when is βδX the
Stone–Čech compactification βX of X?

41.3 Definition. If δ1 and δ2 are proximities on the same set X, we say δ1 is
finer than δ2 (or, δ2 is coarser than δ1) iff A δ1 B implies A δ2 B. Hence, in
finer proximities, it is harder for sets to be close together.

In the language of proximity nhoods, ⊂⊂1 is finer than ⊂⊂2 iff A ⊂⊂2
B implies A ⊂⊂1 B.

41.4 Theorem. Every family {δλ | λ ∈ ∧} of proximities on X
has a sup e9780486131788_i2119.jpg and an inf δ.

Proof. Let ⊂⊂λ denote the p-nhood operation corresponding to the
proximity δλ. To define the inf of the proximities δλ, let

a) A ⊂⊂’ B iff A ⊂⊂λ B for each λ ∈ Λ.

b) A ⊂⊂ B iff there is a set Cs ⊂ X for each binary rational s in [0, 1]
such that C0 = A, C1 = B and s < t implies Cs ⊂⊂’ Ct.

We leave the verification that ⊂⊂ is a p-nhood relation to Exercise 41A,
and proceed to show it gives the finest proximity coarser than all δλ.

First, if A ⊂⊂ B, then A ⊂⊂’ B and hence A ⊂⊂ λ B for all λ, so ⊂⊂ is
coarser than all δλ. Second, if ⊂⊂* is coarser than all ⊂⊂λ, then given that
A ⊂⊂* B, we can find C1/2 such that



A ⊂⊂* C1/2 ⊂⊂* B

and then C1/4 and C3/4 such that

A ⊂⊂* C1/4 ⊂⊂* C1/2 ⊂⊂* C3/4 ⊂⊂ B.

By continuing in this way, we obtain for each binary rational a set Cs such
that s < t implies Cs ⊂⊂* Ct, which implies Cs ⊂⊂’ Ct, where C0 = A and
C1 = B. It follows that A ⊂⊂ B. Thus ⊂⊂ is the inf of the ⊂⊂λ as claimed.

To obtain sups, we can take the inf of all proximities finer than the given
family. (There is one such finer proximity: the discrete proximity.) An
explicit construction goes as follows. Define :

a) A ⊂⊂" B iff A ⊂⊂λ B for some λ ∈ ∧

b) A e9780486131788_i2120.jpg B iff there are sets A1, . . . , Am and
B1, . . . , Bn such that A = e9780486131788_i2121.jpg and Ai ⊂⊂" Bj
for all i and j.

Again, the verification that e9780486131788_i2122.jpg is a p-nhood
relation on X is left to Exercise 41A. We will show it is the sup of the
proximities δλ.

Certainly it is finer than each δλ, since if A ⊂⊂λ B for any λ, then A ⊂⊂“
B and hence A e9780486131788_i2123.jpg B. If ⊂⊂* represents any
proximity finer than every δλ, and if A e9780486131788_i2124.jpg B,
then A = e9780486131788_i2125.jpg and B = 

e9780486131788_i2126.jpg , where Ai ⊂⊂” Bj for each i and j; that is, 
e9780486131788_i2127.jpg for some λij ∈ ∧. Then Ai ⊂⊂* Bj for

each i and j, so Ai ⊂⊂* e9780486131788_i2128.jpg , for each i, and
hence e9780486131788_i2129.jpg ⊂⊂* 



e9780486131788_i2130.jpg ; that is, A ⊂⊂* B. Thus 
e9780486131788_i2131.jpg represents the coarsest proximity finer

than each δλ. ■

41.5 Theorem. If {δλ | λ ∈ ∧} is a family of proximities on X,
all inducing the same topology τ on X, then δ = sup δλ also
induces τ.

Proof. U is a e9780486131788_i2132.jpg -nhood of x iff x 
e9780486131788_i2133.jpg U iff U = U1 ∩ ··· ∩ Un, where x 
e9780486131788_i2134.jpg for some λj ∈ ∧ iff U = U1 ∩ ··· ∩ Un, where

each Uj is a τ-nhood of x, iff U is a τ-nhood of x. ■

 
 
41.6 Definition. Given a completely regular (i.e., proximizable) topological
space X, the finest proximity on X which is compatible with the topology on
X is called the fine proximity on X. Its existence is guaranteed by Theorem
41.5.

41.7 Theorem. If δ1 and δ2 are compatible proximities on a
Tychonoff space X, then δ1 is finer than δ2 iff there is a
continuous f: e9780486131788_i2135.jpg such that f | X is the
identity (i.e., iff e9780486131788_i2136.jpg is larger than 

e9780486131788_i2137.jpg in the partial order on the set of
compactifications of X).

Proof. Since δ1 is finer than δ2, the identity i: (X, δ1) → (X, δ2) is a p-map.
Thus i: e9780486131788_i2138.jpg is uniformly continuous (see 40.11)
and thus extends to the uniform completions e9780486131788_i2139.jpg
and e9780486131788_i2140.jpg , giving the required map f. ■

41.8 Corollary. If δ is the fine proximity on a Tychonoff space X, then



βδX = βX.

Problems

41A. Supremum and infimum of proximities
The relations ⊂⊂ and e9780486131788_i2141.jpg defined in 41.4 are p-
nhood relations.

41B. Freudenthal compactification
Proximities provide us with a useful way of generating compactifications of
a Tychonoff space X, since each proximity δ on X corresponds to a unique
compactification βδX of X.

Define A e9780486131788_i2142.jpg B for nonempty subsets A and
B of X iff for some compact set K in X, X–K = G ∪ H where G and H are
disjoint open sets in X with Ā ⊂ G, e9780486131788_i2143.jpg ⊂H.
(Thus A e9780486131788_i2144.jpg B iff Ā and 

e9780486131788_i2145.jpg are separated in X by some compact set.)

1. δ is a proximity on X.

2. If X is rim-compact, δ is compatible with the topology on X. (A space
is rim-compact iff each of its points has a base of nhoods with compact
frontiers.)

3. Each point in βδX has a nhood base consisting of sets whose frontiers
lie in X.

The compactification βδX of a rim-compact Tychonoff space thus
obtained is called the Freudenthal compactification of X. From 3, it has the
property that BδX — X is zero dimensional.

41 C. Quotient proximities
If (X, δ) is a proximity space, Y is a set and f is a map of X onto Y, we can,
with some difficulty, provide a quotient proximity structure on Y; i.e., give a
proximity structure on Y which is the finest making f a p-map.



We begin by defining δ1 on Y by C δ1 D iff f–1(C) δ f–1(D); equivalently,
we could define ⊂⊂1 by C ⊂⊂1 D iff f–1(C) ⊂⊂1 f–1(D). Unfortunately,
⊂⊂1 fails to satisfy Axiom (P-4)’ for p-nhoods (see 1 below). Using the
idea of Theorem 41.4, we now force (P-4)’ by defining ⊂⊂2 by C ⊂⊂2 D
iff for each binary rational s in [0, 1] there is some Cs ⊂ Y such that C0 = C,
C1 = D and s < t implies Cs ⊂⊂1 Ct. As we will see, ⊂⊂2 its the right
candidate for a quotient structure on Y.

 
 

1. ⊂⊂1 does not satisfy Axiom (P-4)’ for p-nhoods.

2. ⊂⊂2 is a p-nhood relation; i.e., ⊂⊂2 satisfies Axioms (P-1)’ through
(P-4)’.

3. ⊂⊂2 makes f a p-map and is the finest proximity on Y which does so.
Thus, the proximity which ⊂⊂2 represents is referred to as the quotient
proximity on Y induced by f.

4. The proximity induced by a quotient uniformity (37E) is the quotient
proximity. (This is difficult.)

5. The topology induced by a quotient proximity need not be the quotient
topology. [See 37E.2 and part 4 above.]

6. If f—1[f(H)] = H for each open set H in X, then the quotient proximity
is given by ⊂⊂1 and it does induce the quotient topology.

41D. The separation identification
There is an analog for proximity spaces to the T0-identification for
topological spaces. Given a nonseparated proximity space (X,δ ), define x ∼
y iff x δ y.

1. x ∼ y iff e9780486131788_i2146.jpg . Thus ∼ is an equivalence
relation.

2. Let Y be the set of equivalence classes in X under the equivalence
relation ∼, with the quotient proximity induced by the projection map of X



onto Y, which takes each x ∈ X to its equivalence class [x]. Then Y is a
separated proximity space, whose topology is the quotient topology given
by f.

3. Topologically, Y is the T0-identification of X.

41E. Coarsest uniformities and proximities
The following are equivalent, for a Tychonoff space X:

a. X has a coarsest compatible uniformity,
b. X has a coarsest compatible proximity,
c. X is locally compact.

[See 40.11, 41.7.]

41F. Unique uniformity and proximity
The following are equivalent, for a Tychonoff space X :

a. X has a unique compatible uniformity,
b. X has a unique compatible proximity,
c. |βX–X| ≤ 1.



Chapter 10

Function Spaces

42 Pointwise convergence; uniform convergence
Our overall aim in this chapter is the study of the compactness and
completeness properties of subcollections ℱ of the set Yx of all maps from a
space X to a space Y. To do this, a usable topology, or uniformity, must be
introduced on ℱ (presumably related to the structures on X and Y), and
when this has been done, ℱ is a function space.

We have one topology for Yx and its subcollections already at hand: the
product topology.

 
 
42.1 Definition. We say a subcollection ℱ ⊂ Yx has the topology of
pointwise convergence (or, the pointwise topology) iff it is provided with
the subspace topology induced by the Tychonoff product topology on Yx.

This topology on ℱ is determined solely by the topology on Y. The
structure on X plays no part. Note also that projection from ℱ ⊂ Yx takes
the form of evaluation at a point. That is, for each x ∈ X, the projection
map πx: ℱ → Y is defined by πx(f) = f(x). The next theorem provides the
reason for the name “topology of pointwise convergence” when the product
topology is used in this context.

42.2 Theorem. If ℱ has the pointwise topology, (fλ) converges to
f in ℱ iff (fλ(x)) converges to f(x) for each x ∈ X.



Proof. (fλ) converges to f in ℱ iff (πx(fλ)) converges to πx(f), for each x ∈ X ;
i.e., iff fλ(x) converges to f(x), for each x. ■

We have already made a thorough investigation of the properties of
product spaces. In particular, anyone who knows Tychonoff’s theorem can
prove the following theorem with no trouble.

42.3 Theorem. Let Y be Hausdorff. A function space ℱ ⊂ YX,
with the pointwise topology, is compact iff

a. ℱ is pointwise closed in Yx (i.e., ℱ is closed in the
pointwise topology on Yx),

b. for each x ∈ X, πx(ℱ) = {f(x) | f ∈ ℱ} has compact closure
in Yx.

As we have said, one of our goals in this chapter is the discovery of
conditions on ℱ, with various topologies, which will force compactness.
The Tychonoff topology on a product space, it will be recalled, was
introduced primarily for its ability to carry things like compactness from Y
up to YX. It is not undue pessimism, then, to predict that no interesting
topology on function spaces ℱ can be found for which the compactness
criteria are any simpler than they are above. In fact, if we deal with
Hausdorff spaces Y and agree that a topology τ is “interesting” iff it is no
smaller than the topology of pointwise convergence, then more is true: ℱ
with such a topology will be compact iff its topology reduces to the
pointwise topology. For if τp denotes the pointwise topology on ℱ and τ the
larger compact topology, then (ℱ, τp) is Hausdorff (since Y is), and the
identity i : (ℱ, τ) → (ℱ, τp) is continuous and therefore a homeomorphism!

Hence, for all topologies on YX larger than τp (and a good argument is
made by Example 42.4 below for restricting ourselves to these), finding
conditions on ℱ which will force compactness must reduce to writing down



the conditions of 42.3 plus additional conditions to make convergence in the
new topology reduce to pointwise convergence.

 
 
42.4 Example. The pointwise topology on YX is quite small. Let X = Y = R,
and for each finite subset F ⊂ R, let χF, be the characteristic function of F :
χF(ϰ) = 1 if x ∈ F, 0 otherwise. The sets F are directed by inclusion, and
the resulting net (χF) converges to the function h which is identically 1 on R
although, in a natural sense, no individual term of (χF) seems very close to
h. What is needed, of course, is more “small” open sets containing h.

Suppose now that Y is equipped with a diagonal uniformity D. Then a
product uniformity is induced on YX, and our name for it should be no
surprise.

 
 
42.5 Definition. If Y is a uniform space, the product uniformity Dp in YX is
called the uniformity of pointwise convergence (or, the pointwise
uniformity).

The topology associated with the pointwise uniformity on YX is, of
course, the pointwise topology. Another reason for calling this the
uniformity of pointwise convergence is given by the next theorem.

42.6 Theorem. (ƒλ) is a Cauchy net in YX with the pointwise
uniformity iƒƒ (ƒλ(ϰ)) is Cauchy in Y for each ϰ ∈ X.

Proof. If (ƒλ) is Cauchy, then in particular ( , ) is eventually in each

member of Dp of the form , where D ∈ D, and hence ( (ϰ), (ϰ))
is eventually in D, so (ƒλ(ϰ)) is Cauchy. (See 37.4 for the definition of Px.)



Conversely, if ( (x), (x)) is eventually in each D ∈ D, for each x ∈ X,
then ( , ) is eventually in  ∩ . . . ∩  for any D1, . . . , Dn
∈ D and x1, . . . , xn ∈ X, so that (ƒλ) is Cauchy. ■

Completeness in the pointwise uniformity on a function space must be
dealt with somewhat differently from compactness in the pointwise
topology. The main difference between the following theorem and the
corresponding theorem on compactness is the fact that the conditions listed
are sufficient, but not necessary. The obstacle to proving necessity is the
lack of a theorem saying that uniformly continuous images of complete
spaces are complete. As stated, the theorem offers no difficulty in proof.

42.7 Theorem. A function space ℱ ⊂ YX with the pointwise
uniformity is complete if

a. ℱ is pointwise closed in YX,
b. the closure of πx(ℱ) is complete in Y, for each x ∈ X.

The reader should already know that the pointwise limit of continuous
functions (on the real line, say) need not be continuous, so that C(X, Y) is
not always complete in the uniformity of pointwise convergence.

 
 

The uniformity of pointwise convergence and its topology occupy one
end of the spectrum of structures used to make function spaces out of
collections of functions. At the other end sit the uniformity of uniform
convergence and its topology. To introduce these, we note that the sets of
the form

EF,D = {(ƒ g) | (ƒ(x), g(x)) ∈ D for each x ∈ F},



for D ∈ D(Y) and F a finite subset of X, form a base for the uniformity of
pointwise convergence. Larger uniformities will be generated if we use
larger sets than the finite sets in this definition (the next section provides an
example of this, where the finite sets are replaced by the compact sets), and
the largest uniformity of all is obtained by replacing the finite sets by X
itself.

42.8 Definition. If Y has a uniformity D, the family of sets of the form

ED = {(ƒ, g) | (ƒ(x), g(x)) ∈ D for each x ∈ X },

for D ∈ D, form a base for a uniformity Du on YX called the uniformity of
uniform convergence. Its topology, τu, is the topology of uniform
convergence. If (ƒλ) converges to ƒ in this topology, we say (ƒλ) converges
uniformly to ƒ. Cauchy nets (ƒλ) in the uniformity of uniform convergence
are called uniformly Cauchy.

The next theorem provides a relationship between pointwise convergence
and uniform convergence which should not be too surprising.

42.9 Theorem. A net (ƒλ) converges uniformly to ƒ iƒƒ (ƒλ) is
uniformly Cauchy and converges pointwise to ƒ.

Proof. Necessity is clear. Conversely, suppose (ƒλ) is uniformly Cauchy and
pointwise convergent to ƒ. For any D ∈ D we will show (ƒλ) is eventually
in ED[ƒ] = {g | (ƒ(x), g(x)) ∈ D, for each x ∈ X }. Pick symmetric closed T

∈ D so that T ⊂ D. Now for some λ0, if λ1, λ2 ≥ λ0, then ( , ) ∈ ET,
since (ƒλ) is uniformly Cauchy.

But then, for each  for all λ1, λ2 ≥ λ0. Since (x)

converges to ƒ (x) and T is closed, we must have ƒ(x) ∈ T[ (x)] for all λ1



≥ λ0 and x ∈ X. It follows that ( , ƒ) ∈ ET ⊂ ED for all λ1 ≥ λ0. Thus (ƒλ)
converges uniformly to ƒ. ■

Completeness in the uniformity of uniform convergence is particularly
easy to describe. Part b) of the theorem below generalizes a fact the reader
should certainly be aware of: if a sequence of continuous real-valued
functions of a real variable converges uniformly to ƒ, then ƒ is continuous.

42.10 Theorem. If (Y, D) is complete, then so are
a. (Yx, Du)
b. (C(X, Y), Du)

Proof. a) Suppose (ƒλ) is uniformly Cauchy. Then (ƒλ(x)) is Cauchy in Y for
each x ∈ X and thus converges to a limit f(x). By 42.9, the function ƒ thus
defined is the uniform limit of (ƒλ). Thus YX is uniformly complete.

b) It suffices to show C(X, Y) uniformly closed in YX. Suppose ƒ is not
continuous, say at x. Then for some D ∈ D, ƒ–1(D[ƒ(x)]) contains no nhood
of x. If T is symmetric from D and such that T ∘ T ⊂ D, then for each g ∈
ET[ƒ], a routine computation will show g–1(T[ƒ(x)]) is contained in ƒ–

1(D[ƒ(x)]) and thus contains no nhood of x. Thus ET[ƒ] is a nhood of ƒ
consisting of functions discontinuous at x. It follows that C(X, Y) is
uniformly closed and thus complete. ■

Conditions for compactness in the topology of uniform convergence are
rare. In fact, we will limit ourselves in this direction to the comment that the
compact-open topology reduces to the topology of uniform convergence
when X is compact, so that Ascoli’s theorem (next section) applies to the
topology of uniform convergence in this case (see also 43E).

For noncompact X, the topology of uniform convergence is simply too
large to force compactness with a reasonable set of conditions. Put another
way, the topology of uniform convergence will reduce to the pointwise
topology for only a very limited number of subspaces of YX.

Problems



42A. The function space I1.
1. Which of the following subspaces of I1 is compact in the pointwise

topology?
a. {ƒ ∈ I1 | ƒ(0) = 0}
b. {ƒ ∈ I1 | ƒ is continuous and ƒ(0) = 0}
c. {ƒ ∈ I1 | ƒ is differentiable and |ƒ’(x)| ≤ 1 for all x ∈ I}.

2. Exhibit a countable dense subset of I1 in the pointwise topology.
3. Is I1 separable in the topology of uniform convergence? 42B.

Completeness in function spaces

1. Let Y = R–{0}. Which of the following subspaces of YR is complete in
the pointwise uniformity?

a. YR

b. {ƒ ∈ YR | ƒ is continuous}
c. {ƒ ∈ YR | |ƒ| ≥ 1}.

2. Same question for the uniformity of uniform convergence.

 
 
42C. Metrizability in function spaces

Let Y be metrizable, its topology generated by a metric ρ.

1. The uniformity of uniform convergence on the space C(X, Y) of all
continuous functions in Yx is metrizable by the metric d(f, g) = supx∈X
ρ(ƒ(x), g(x)).

2. When is the pointwise uniformity on C(X, Y) metrizable? (See also
43G.)

 
 
42D. Separability of C*(X)

For compact X, C*(X) is separable iff X is metrizable.

 
 



42E. Compact and finite-dimensional mappings

Let X be a metric space, E a Banach space. A mapping f : X → E is said to
be compact iff  is compact, finite-dimensional iff it is compact and
ƒ(X) is contained in a subspace of E of finite dimension.

 
 

1. If ƒn : X → E is compact for n = 1, 2, . . . and the ƒn converge
uniformly to ƒ, then ƒ is compact. [It is enough to show ƒ(X) is totally
bounded.]

2. A mapping ƒ : X → E is compact iff it can be uniformly approximated
by finite-dimensional mappings. [For necessity, use the fact that  is
totally bounded.]

43 The compact-open topology and uniform
convergence on compacta
It is convenient to begin our discussion of the compact–open topology by
returning again to the pointwise topology. The sets (a, U) = {ƒ ∈ ℱ | ƒ(a)
∈ U}, for a ∈ X and U open in Y, form a subbase for the latter topology on
a function space ℱ. A case can be made, then, for calling the pointwise
topology on ℱ the point-open topology. We can, at the same time, involve
the topology of X in our function space and decrease the size of the basic
open sets (thus increasing the size of the topology) by replacing the points
in the point-open topology by the compact subsets of X. The resulting
topology lies somewhere between the pointwise topology and the topology
of uniform convergence.

43.1 Definition. The compact-open topology (k-topology) on ℱ ⊂ Yx is the
topology having for a subbase the sets

(K, U) = {ƒ ∈ ℱ | ƒ(K) ⊂ U},

for K compact in X, U open in Y. We denote this topology by τC.



A convenient counterexample to a great many theorems is easily
obtained.

43.2 Example. If X is discrete, the compact-open topology on Yx is the
pointwise topology. Thus, nothing can be carried from Y to (Yx, τc), in full
generality, unless it can be carried to product spaces.

The following lemma, an example supporting the general rule of thumb
that compact sets behaving like points, can be proved with no difficulty (or,
see Exercise 17B).

43.3 Lemma. In a regular space, if F is compact, U open and F
⊂ U, then for some open set V, F ⊂ V and  ⊂ U.

We denote the set of continuous functions from X to Y by C(X, Y). Most
useful examples of function spaces are spaces of continuous functions, so
part b) of the next theorem is not too disappointing.

43.4 Theorem. a) If Y is T0, T1 or T2, so is (Yx, τc).

b) If Y is regular, so is (C(X, Y), τc).

Proof. We leave to the reader the proof of part a) as well as the implied
assertion in b) that (Yx, τc) need not be regular for regular Y (43B).

To prove b), let K be compact in X, U open in Y, and ƒ a continuous
function in (K, U). Then ƒ(K) is a compact subset of U in Y, and by the
lemma above, an open set V exists with ƒ(K) ⊂ V, ⊂ U. Then ƒ ∈ (K, V)
and (K, ) ⊂ (K, U). Now we assert ( ) ⊂ (K, ). If g ∉ (K, ), then
for some point a in K, g(a) ∈ Y–  so g ∈ (a, Y– ). But then (A, Y–  ) is a
nhood of g not meeting (K, V) and thus g ∉  Therefore, (K, V) ⊂ (K, 

 ).

Now suppose ƒ ∈  (K¡, Ui), where each Ki is compact in X, each Ui
is open in Y. For I = 1, . . . , n find, as above, open Vi ⊂ Y such that ƒ ∈ (Ki,



Vi) and  ⊂ (Ki, Ui). Then ƒ ∈  (Ki, Vi) and  ⊂ 

 (Ki, Vi).

Thus, C(X, Y) is regular in the compact-open topology. ■

 
 

As with the pointwise topology, if Y has a uniform structure, we have a
uniform structure on Yx which is associated with the compact-open
topology. The association is not complete, however. The uniform topology
matches the compact-open topology only for spaces of continuous
functions.

 
 
43.5 Definition. Suppose Y has a uniformity D. The uniformity of uniform
convergence on compacta, or the uniformity of compact convergence, Dk,
has for a subbase the sets

EK,D = {(ƒ, g) | ƒ(x), g(x)) ∈ D, for each x ∈ K}

where K is a compact subset of X and D ∈ D. The topology τk thus induced
on Yx is the topology of compact convergence.

The topology and uniformity of uniform convergence on compacta derive
their names from the following theorem, whose proof is obvious from the
definitions involved.

43.6 Theorem. a) (ƒλ) converges to ƒ in the topology of uniform
convergence on compacta iƒƒ for each compact subset K of X,
ƒλ | K converges to ƒ | K in the topology of uniform convergence
on K.



b) (ƒλ) is Cauchy in the uniformity of uniform convergence on
compacta iƒƒ for each compact subset K of X, (ƒλ | K) is Cauchy
in the uniformity of uniform convergence on K.

The promised relationship between the compact-open topology and the
topology of uniform convergence on compacta is given by the next
theorem.

43.7 Theorem. For spaces of continuous functions the topology
of compact convergence is the compact-open topology.

Proof. Let (K, U) be a subbasic open set in the compact-open topology, g a
continuous function in (K, U). Then g(K) is compact and g(K) ⊂ U. Find E
∈D(Y) such that E[g(K)] = U {E[x] | x ∈ g(K)} ⊂ U. (This is done as
follows. For each x ∈ g(K), find Dx ∈ D(Y) such that Dx[x] ⊂ U, let Ex ๐

Ex ⊂ Dx and, by compactness, say . Set 

 and check the required property for E.) Now let

D = {(ƒ, h) | (ƒ(x), h(x)) ∈ E, for each x ∈ K}.

Then D ∈ Dk, and if h ∈ D[g], then (g(x), h(x)) ∈ E, so that h(x) ∈
E[g(x)], for each x ∈ K, and hence h(x) ∈ E[g(K)] c U, for each x ∈ K,
from which it follows that h ∈ (K, U). Thus g ∈ D[g] ⊂ (K, U). Thus, each
subbasic set (K, U), and hence each open set in the compact-open topology,
is open in the topology of compact convergence.

Conversely, let EK,D be a subbasic set in Dk. The sets EK,D[ƒ], for ƒ
continuous on X, form a subbase for the topology of compact convergence,
and it thus suffices to show they are open in the compact-open topology.
Pick T closed and symmetric so that T ∘ T ∘ T ⊂ D. By compactness, ƒ(K)



⊂ T[ƒ(x1)] ∪ . . . ∪ T[f(xn)] for some x1, . . . , xn. Set Ki = K ∩ ƒ-1(E[ƒ(x¡)]),
Ti = Int (T ๐ T)[ƒ(x¡)].

Then ƒ(Ki) ⊂ Ti for each i, since ƒ(Ki) ⊂ T’[ƒ(xi)] ⊂ Int (T ∘ T)[ƒ(x¡)] =
Ti, so ƒ ∈ (Ki, Ti) for each i. Suppose g ∈ (Ki, Ti) for each i. Then g(K¡) ⊂
Ti for i = 1, . . . , n, and if x ∈ K, then for some i, x ∈ Ki, so ƒ(x) ∈ T[ƒ(xi)]
while ƒ(x) ∈ Ti c (T ๐ T)[ƒ(xi)]. Hence (ƒ(x), ƒ(xi)) ∈ T and (g(x), ƒ(xi)) ∈
T ๐ T, so that (ƒ(x), g(x)) ∈ T ๐ T ๐ T ⊂ D. Thus (ƒ(x), g(x)) ∈ D, for each

x ∈ K, which establishes that g ∈EK,D[ƒ]. Thus ƒ ∈  (Ki, Ti) ⊂
Ek,D[ƒ], so the latter set is open in the compact-open topology. ■

We now introduce the concept which plays a central role in the
discussion of both completeness and compactness relative to the uniformity
of uniform convergence on compacta and its topology.

 
 
43.8 Definition. A topological space X is a k-space (or a compactly
generated space) iff the following condition holds:

a) A c X is open iff A ∩ K is open in K for each compact set K in
X.

Note that one implication in a) is trivial and never needs proving. Also, it
is clear that “open” could have been replaced by “closed” in a) without
harm. The k-spaces form a wide class of spaces, including all metric spaces,
according to the next theorem, an extension of which is given in 43H.

 
 

43.9 Theorem. a) Every locally compact space is a k-space,

b) Every first-countable space is a k-space.

Proof. a) Suppose X is locally compact and A n K is open in K for each
compact K ⊂ X. Let a ∈ A and let V be an open nhood of a with compact



closure. But then A ∩  its open in , and hence A ∩ V = (A ∩ ) n V is
open in V and thus in X. Then a has a nhood contained in A, so A is open in
X.

b) Suppose X is first countable, and B ∩ K is closed in K for each
compact K ⊂ X. If b ∈ , then a sequence (bn) in B converges to b. But
(bn) ∪ {b} is a compact subset of x, so B ∩ [(bn) ∪ {b}] is closed and hence
b ∈ B. Thus B is closed. ■

The k-spaces are important to our discussion of convergence of
continuous functions on compacta because, in these spaces, the continuous
functions are precisely those which behave well on compact subsets. The
proof of the following lemma, which says this more precisely, is an easy
exercise in applying the definition of a k-space. See Exercise 43D.

43.10 Lemma. If X is a k-space, f: X → Y is continuous iff f | K is
continuous for each compact K ⊂ X.

Using this result and 43.6, which describes convergence on compacta as
being precisely uniform convergence on each compact subset, the following
theorem is easy.

43.11 Theorem. If X is a k-space and (Y,  ) is complete, then
C(X, Y) is complete in the uniformity of uniform convergence on
compacta.

Proof. If (fλ) is Cauchy in the uniformity of uniform convergence on
compacta, then by 43.6 (fλ | K) is uniformly Cauchy on K for each compact
K ⊂ X. Since C(K, Y) is complete in the uniformity of uniform
convergence, a continuous uniform limit fK : K → Y exists for each K. It is

easily seen that if K1 ⊂ K2, then , and from this it follows that
the function f : X → Y defined by f(x) = fK(x), for x ∈ K, is well defined. It



is continuous by 43.10 above, and since (fλ) converges uniformly to f on
each compact K c X, (fλ) converges to f in the topology of uniform
convergence on compacta, by 43.6. ■

One more definition is needed before we are ready to characterize the
compact function spaces in the compact-open topology.

 
 
43.12 Definition. Let X be a topological space, Y a uniform space. A family
ℱ of continuous functions from X to Y is equicontinuous at x ∈ X iff for
each D ∈ (Y), there is a nhood U of x such that f(U) c D[f(x)], for each f
∈ ℱ. We say ℱ is equicontinuous provided it is equicontinuous at each
point of X.

43.13 Lemma. If ℱ is an equicontinuous family of functions, so
is the pointwise closure  of ℱ.

Proof. Let f ∈ , say (fλ) is a net in ℱ converging pointwise to f. Now if D
is any closed element of (Y) and U is an open set containing x ∈ X such
that g(U) ⊂ D[g(x)] for each g ∈ ℱ, then in particular (fλ(x), fλ(y)) ∈ D for
each λ and each y ∈ U. Since D is closed, it follows that (f(x), f(y)) ∈ D, for
each y ∈ U. Hence f(U) ⊂ D[f(x)].

Thus  is equicontinuous. ■

 
 

As we noted early in Section 42, the key to making a function space
compact must be listing of enough conditions on the space to ensure that the
topology involved reduces to the pointwise topology. The significance of
equicontinuity is made clear, then, by the next theorem.



43.14 Theorem. On an equicontinuous family ℱ, the compact-
open topology reduces to the pointwise topology.

Proof. It is enough to show that if fλ → f pointwise in ℱ, then fλ → f in the
compact–open topology.

It is sufficient to consider a subbasic element (K, U) of the compact-open
topology which contains f. For each x in K, fλ(x) → f(x), so eventually, say
for λ ≥ λx, fλ(x) is in U. But f(K) c U and f(K) is compact, so for some D ∈ 

(Y), D[f(K)] ⊂ U. By equicontinuity, each x ∈ K has a nhood Uλ such that
fλ(Ux) ⊂ D[fλ(x)] for all λ, and thus, for λ ≥ λx, fλ(Ux) ⊂ D[f(K)] ⊂ U. But
the cover of K by the sets Ux has a finite subcover, say by . Pick
λ0 ≥  . Then for any x ∈ U,  for some i and hence for λ ≥ λ0,

fλ ∈ fλ ( ) ⊂ D[f(K)] ⊂ U.

It follows that fλ ∈ (K, U) for all λ ≥ λ0.

Then fλ → f in the compact-open topology. ■

The last result makes the proof of Ascoli’s theorem, on compactness of
function spaces in the compact-open topology, almost trivial. The form of
Ascoli’s theorem given here is quite general; we will develop in Exercise
43E a more special form of essentially the same theorem.

In order to prove necessity of the conditions we impose, we must drop
equicontinuity of ℱ for the weaker condition that ℱ be equicontinuous on
each compact subset (more precisely, that for each compact subset K, the
family of restrictions of members of ℱ to K be equicontinuous).



43.15 Theorem (Ascoli). Let X be a Hausdorff, or regular, k-
space, Y a Hausdorff uniform space, and ℱ a family of
continuous functions from X to Y. Then ℱ is compact in the
compact-open topology iff

a. ℱ is pointwise closed,
b. for each x ∈ X, πx(ℱ) has compact closure,
c. ℱ is equicontinuous on each compact subset of X.

Proof. If ℱ is compact in the compact–open topology, then ℱ is compact in
the pointwise topology, so necessity of the first two conditions follows from
42.3. Let K be any compact subset of X, ℱK the family of restrictions to K
of members of ℱ. It is an easy exercise to show that ℱK is compact in the
compact-open topology on C(K, Y) (which reduces to the topology of
uniform convergence since K is compact). We will prove this implies
equicontinuity of ℱK.

Pick x ∈ K and E ∈ . (Y). Let D be a symmetric element of (Y) such
that D ￮ D ⊂ E. Since X is Hausdorff or regular and K is compact, K is
regular. Thus a nhood Uf of x exists for which f(Ūf) ⊂ D[f(x)]. But (Ūf,
D[f(x)]) is then a nhood of f in the compact-open topology, and the resulting

cover of ℱK has a finite subcover, say by ( , D[f1(x)]), . . . , ( ,
D[fn(x)]). Let

.

Now for f ∈ ℱ, f ∈ ( , D[fi(x)]) for some i and hence f(U) ⊂ f( ) ⊂
D[fi(x)], and it follows easily that f(U) ⊂ (D ￮ D)[f(x)] ⊂ E[f(x)], so that ℱK
is equicontinuous at x.



To prove sufficiency, it is enough to show that condition c) forces the
compact-open topology to reduce to the pointwise topology. But by 43.14,
c) does force the compact-open topology on ℱK, to reduce to the pointwise
topology, for each compact K ⊂ X. Now let (K, U) be any subbasic set in
the compact–open topology on X. From the remarks above, (K, U) | ℱK = {f
| K | f ∈ (K, U)} is pointwise open in ℱK. But the map f → f | K is clearly
pointwise continuous (pointwise convergence is preserved under
restriction), and the inverse under this map of the set (K, U) | ℱK is the set
(K, U). Thus (K, U) is pointwise open. ■

Problems

43A. Sequence spaces and Ascoli’s theorem
1. The sequence space m (see 2H) is just C*(N) with the uniform metric.

It is not compact. [Use Ascoli’s theorem.]

2. The sequence space c (see 2H) is just C*(J) where J is the subspace
{0} ∪ {1/n I n ∈ N} of R. It is not compact.

3. Is c0 (see 2H) compact?

43B. Separation axioms
1. Show that if Y is To, T1 or T2 then YX has the same property in the

compact-open topology.

2. Give an example of a regular space Y such that YX with the compact-
open topology is not regular.

3. If Y is completely regular, so is C(X, Y) with the compact-open
topology [see 43.7].

43C. Convergence in the uniformity of uniform
convergence on compacta
Prove (a) and (b) of Theorem 43.6.



43D. Continuity on compacta
If X is a k-space, then f: X → Y is continuous iff f | K is continuous for each
compact K ⊂ X.

43E. Arzela’s theorem
1. A subfamily of C[a, b] is compact in the compact–open topology iff it

is uniformly bounded and equicontinuous.

2. Let f(s, t, u) be a continuous real-valued function defined for 0 ≤ s ≤ 1,
0 ≤ t ≤ 1, –1 ≤ u ≤ 1. For each s ∈ [0, 1] and x ∈ C[0, 1] with ∥x∥ ≤ 1,
define

Then the mapping F(x) = fx takes C[0, 1] into C[0, 1]. Use Arzela’s theorem
to show F, called the Urysohn integral operator, is a compact mapping
(42E).

43F. Joint continuity

A topology for a function space ℱ ⊂ YX is jointly continuous (admissible)
iff the map P: ℱ × X → Y defined by P(f, x) = f(x) is continuous.

1. If τ is a jointly continuous topology for ℱ and τ ⊂ τ‘, then τ’ is jointly
continuous. The discrete topology on ℱ is jointly continuous (and hence is
the largest jointly continuous topology for τ).

2. Every jointly continuous topology on τ contains the compact-open
topology. (So the compact-open topology is the smallest jointly continuous
topology for ℱ whenever it is jointly continuous.)

3. Suppose ℱ ⊂ C(X, Y). If X is a Hausdorff k-space, then the compact-
open topology on ℱ is jointly continuous. [Show that P: ℱ × X → Y is
continuous iff P | (ℱ x K) is continuous for each compact K c X.]



43G. Metrizability of C(X)
Let C(X), the collection of continuous, real-valued functions on a Tychonoff
space X, have the compact-open topology.

 
 

1. If X is hemicompact (171), then C(X) is metrizable. [If K1, K2, . . . is
the sequence of compact subsets of X required for hemicompactness, define
ρ on C(X) by

where ρn(f, g) = min (1/2n,  |f(x)–g(x)|). Show that ρ generates the
compact-open topology on C(X)].

2. If C(X) is first countable, then X is hemicompact. [Let f be the function
which is identically 0 on X. Show that if (K1, W1), (K2, W2), . . . is a
countable nhood base at f in C(X), then K1, K2, . . . is a sequence of compact
sets of the kind needed to show emicompactness.]

3. C(X) is metrizable iff X is hemicompact.

43H. k-spaces
1. A subspace of a k-space need not be a k-space.

2. The product of uncountably many copies of R is not a k-space. [Let T
be the subset of the product consisting of all points x such that for some
integer n ≥ 0, xα = n for all but at most n coordinates and xα = 0 otherwise.
Then T n K is compact for each compact subset K of the product, but T is
not closed.]

3. A Hausdorff space X is a k-space iff it is a quotient of some locally
compact space. [If X is a k-space, let T be the disjoint union of the compact
subspaces of X and find a quotient map of T onto X.]



43I. The Exponential Law
All function spaces have the compact-open topology here. Let X be a
locally compact, Hausdorff space, T a Hausdorff space. Then C(X x T, T) is
homeomorphic to C(T, C(X, Y)). [If f ∈ C(X x T, Y), define ft ∈ C(X, Y) by
ft(x) = f(x, t). Then the map ϕf(t) = ft belongs to C(T, C(X, Y)). The
correspondence Φ(f) = ϕf is the desired homeomorphism.]

43J. Homotopy and function spaces
Let C(X, Y) have the compact-open topology.

 
 

1. Let X be a k-space. The path components in C(X, Y) are precisely the
homotopy equivalence classes.

2. Recall that Ω(Y, y0) is the subset of C(I, Y) consisting of all loops
based at y0. Then the path components in Ω(Y, y0) are precisely the
equivalence classes in Ω(Y, y0) under the loop homotopy relation (i.e., the
relation of homotopy relative to {0, 1}).

3. Recall that Ωn(Y, y0) is the subset of C(In, Y) consisting of all n-
dimensional hyperloops based at y0 (33D). Then the path components in
Ωn(Y, y0) are precisely the equivalence classes in Ω(Y, y0) under the relation
of homotopy relative to ∂In.

43K. The higher homotopy groups
All function spaces are to be given the compact-open topology. If Y is a
topological space and y0 ∈ Y, let en denote the constant loop in Ωn(Y, y0);
that is, en(x) = y0 for each x ∈ In. (Ωn is defined in 33D.)

1. Ωn(Y, y0) is homeomorphic to Ω(Ωn-1(Y, y0), en–1). [Use the
exponential law (43I) to conclude C(In, Y) is homeomorphic to C(I, C(In–1,



Y)); use the resulting homeomorphism to construct a homeomorphism from
Ωn(Y, y0) to Ω(Ωn–1(Y, y0), en–1).]

2. Πn(Y, y0) is isomorphic to Π1(Ωn–1(Y, y0), en–1).

Now every loop space is an H-space and the fundamental group of any
H-space is Abelian. Thus, by part 2, Πn(Y, y0) is Abelian for n > 1. (For the
definition of an H-space and an investigation of its properties, see the book
Topology, by Dugundji.)

44 The Stone–Weierstrass theorem
The few elementary ideas from algebra which are necessary to read this
section will not be developed here. Consult any book on algebra.

44.1 Definition. C(X) will denote the algebra of real-valued continuous
functions on the topological space X, with the subalgebra of bounded
functions in C(X) being denoted C*(X).

Our interest does not lie in developing the algebraic properties of C*(X)
and their relationship to the topological properties of X, although a good
deal of work is currently being done in this direction. An excellent account
of results of this nature can be found in the book of Gillman and Jerison.

Our look at C*(X) will be confined to some elementary topological and
lattice-theoretic results, with the limited aim of developing the Stone-
Weierstrass theorem (44.5). The topology we will work with on C*(X) is
that induced by the metric

This is called the uniform metric, for the good reason that it induces on C*
(X) the topology of uniform convergence (so if X is compact, C*(X) = C(X)
is complete in this metric, by 42.10). As is our established custom, we avoid
constant reference to the fact that the background structure on C*(X) is the
uniform metric by using phrases like “uniformly dense” to mean “dense in
the uniform metric” and so on.



The classical Weierstrass theorem deals with the uniform approximation
by polynomials of continuous functions on a closed interval. We will be
deriving it as a special case of the more general Stone-Weierstrass theorem,
but to prove the latter, we need a very weak form of the former.

 
 

44.2 Lemma. For each ∊ > 0, there is a polynomial P∊(x) such that

| |x|–P∊(x)| < ∊

for each x in [–1, 1].

Proof. From the theory of functions of a real variable (see, for example,
Apostol, pp. 420 and 427), there is a binomial series  anyn which
converges uniformly to (1–y)1/2 for y in [0, 1]. Letting y = 1–x2 for x in [–1,
1], we obtain as an immediate corollary that  an(1–x2)n converges
uniformly to |x| in [–1, 1]. Since each partial sum of this series is a
polynomial, the lemma follows. ■

We need this lemma only to establish the following fact, which is critical
to the proof of the general approximation theorem (44.5).

44.3 Lemma. Any uniformly closed subalgebra  of C*(X) is a
lattice. That is, if f and g belong to , so do the functions min(f,
g) and max(f, g) [defined pointwise].

Proof. Since it is easily verified that

min (f, g) = ,  
max (f, g) = ,



it evidently suffices to show that, whenever f ∈ , |f| ∈ . Suppose first
that |f| ≤ 1 on X. Then, by 44.2, a polynomial P∊ exists for each ∊ > 0 such
that, on X,

|P∊(f)–|f|| < ∊,

and thus |f| is uniformly approximated by the functions P∊(f), all of which
belong to . Thus, in this case, |f| ∊ . Now even if we do not have |f| ≤
1 on X, we have |f| ≤ A for some positive number A. Then applying the
previous procedure, we find |f/A| ∈ , and hence |f| ∈ . ■

 
 
44.4 Definition. If  is any subcollection from C*(X), the subalgebra 

 generated by  is the smallest subalgebra of C*(X) containing .
It always exists, since the intersection of the subalgebras containing  is a
subalgebra. Also the uniform closure  of  is a subalgebra (the
verification is routine), called the uniformly closed subalgebra generated by

.

The Stone-Weierstrass theorem provides a set of conditions on  under
which the uniformly closed subalgebra generated by D is all of C*(X).
Recall that a collection of functions separates points iff whenever x ≠ y in X,
for some one of the functions f, f(x) ≠ f(y).

44.5 Theorem. (Stone-Weierstrass). Let X be a compact,
Hausdorff space. If  is a collection of functions in C*(X) which
separates points in X and contains the function identically 1, the
uniformly closed subalgebra generated by  is all of C*(X).

Proof. The proof bears some resemblance to our proof of Tietze’s theorem
earlier. We will show every function f ∊ C*(X) can be uniformly



approximated by functions from . For this purpose, no true loss of
generality results in assuming infx∈X f(x) < supx∈X f(x) (otherwise f is
constant and, since  contains 1, ƒ ∈  ), and then we can assume,
without loss of generality, that infx∈X ƒ(x) =–1, supx∈X ƒ(x) = 1. Thus ƒ : X
→ [–1, 1].

Let A1 = {x ∈ X | ƒ(x) ≤–  }, B1 = {x ∈ X | ƒ(x) ≥  }. For each a ∈ A1
and b ∈ B1 a function hab exists with hab(a) ≠ hab(b). Define gab on X by

Then gab(a) =– , gab(b) =  , and gab ∈ . Fix a ∈ A1. For each y ∈ B1,

gay(y) =  , and so gay(z) ≥  for z in some nhood Uy of y. A finite number

of these nhoods, say  , . . . ,  , cover B1, and a function ga can now be
defined at each x ∈ X by

.

Note that ga(a) =–  and ga ≥  on B1, and ga ∈ ℬ( ) by 44.3. By
repeating the procedure just used, evidently we can find a function g ∈ ℬ(

) such that g ≤–  on A1 and g ≥  on B1. It follows that |g(x)–ga(x)| ≤ 
for x ∈ A1 ∪ B1, and if we define

h(x) = min {g(x),  }  
h1(x) = max {h0(x),– }.



The h ∈ ℬ( ) and |h1(x)| ≤  on X–(A1 ∪ B1), while also |ƒ(x)| ≤  on X–
(A1 ∪ B1). This, together with the fact that h1(x) = g(x) on A1 ∪ B1, yields

the relation ||ƒ–h1|| ≤  .

Reapplying the process to the function ƒ–h1 and the interval [  ], we
can find a function h2 ∈ ℬ( ) such that ||ƒ–h1–h2|| ≤ ; in general,
functions h1, . . . , hn ∈ ℬ( ) exist with ||ƒ–(h1 + . . . + hn)|| ≤  , from
which it follows that ƒ ∈ ℬ( ). ▅

We can now obtain the classical Weierstrass theorem as an easy corollary
to the above result.

44.6 Theorem. (Weierstrass). Every real-valued continuous
function ƒ on [a, b] can be approximated uniformly by
polynomials.

Proof. The statement is that C*[a, b] is uniform closure of the algebra  of
all polynomials on [a, b]. But  is the algebra generated by the set 
consisting of the functions x (the identity) and 1 (the function identically
one), and  satisfies the conditions of the Stone–Weierstrass theorem, so
the uniform closure of is indeed all of C*[a, b]. ▅

By elevating the collection  in 44.5 to a subalgebra, we obtain the
following pleasing statement of the Stone-Weierstrass theorem
(generalizations of which are considered in Exercises 44A, B, C and D).

44.7 Theorem. Let X be a compact Hausdorff space. A
subalgebra  of C(X) is all of C(X) iff

a.  is closed (in the uniform topology),
b.  contains the constant functions,
c.  separates points in X.



Problems

44A. Stone–Weierstrass theorems for noncompact X: I
Let X be an arbitrary Tychonoff space. A subset  of C(X) is said to
separate zero sets in X iff whenever Z1 and Z2 are disjoint zero sets in X,
there is some ƒ ∈ such that

 .

1. A subalgebra  of C*(X) is all of C*(X) iff
a. is closed (in the uniform topology),
b. contains the constant functions,
c. separates zero sets in X. [Consider βX.]

2. The condition (c) in 1 cannot be weakened to the requirement that 
separate points in X. [Consider the subalgebra of C*(N) consisting of all
functions ƒ such that limn→∞ ƒ(n) exists.]

The next two problems provide theorems of the Stone-Weierstrass type
for the algebra C(X) if X is not compact.

44B. Stone–Weierstrass theorems for noncompact X:  II
If X is an arbitrary Tychonoff space, the following development leads to a
Stone–Weierstrass theorem for C(X) with the compact-open topology.

1. If  is a subalgebra of C(X) closed in the compact-open topology and
ƒ ∈  , then |ƒ| ∈ . [If(K, U) is a compact–open nhood of |ƒ|, the
methods of 44.3 can be used to produce a polynomial function Pu(ƒ) of ƒ
which lies in (K, U).]

2. A subalgebra of C(X) closed in the compact-open topology is a
sublattice.



3. A subalgebra  of C(X) is all of C(X) iff
a. is closed in the compact-open topology,
b.  contains the constant functions,
c.  separates points.

Note that if X is compact, the result in part 3 reduces to Theorem 44.7.

44C. Stone–Weierstrass theorems for noncompact X:
III
From one point of view, the compact-open topology on C(X) is
unsatisfactory; unless X is compact, it cannot be easily derived from the
algebraic structure on C(X) and thus cannot be used in any attempt to
represent certain algebras as algebras of continuous functions.

To remedy this, we will consider the uniform topology on C(X). Recall
that a base of nhoods at ƒ ∈ C(X) in this topology is obtained by
considering the sets

U(ƒ, ∈) = {g ∈ C(X) | |ƒ(x)–g(x)| < ∈ for all x ∈ X} for ∈ > 0.

We require some terminology. A subalgebra  of C(X) is said to be
inverse closed iff whenever ƒ ∈  and Z(ƒ) = ø, then 1/ƒ ∈ . A star
subalgebra of C(X) is any subalgebra  which

a. is closed in the uniform topology,
b. contains the constant functions,
c. is inverse closed.

(Note the lack so far of separation properties.) Part 1 below justifies the
introduction of star algebras.

1. If X is not pseudocompact, there are proper subalgebras of C(X) which
are uniformly closed, contain the constants and separate points.

2. A rational function is an element of C(R) of the form P/Q, where P
and Q are polynomials and Z(Q) = ø. ℛ will denote the algebra of bounded



rational functions on R. If ƒ ∈ C(R) and limx→∞ f(x) = limx→-∞ ƒ(x) is
finite, then ƒ is in the uniform closure of ℛ. [Apply the Stone-Weierstrass
theorem to the circle.]

3. If  is a star subalgebra of C(X) and ƒ ∈ , then |ƒ| ∈  . [It is
enough to show 1/(1 + |ƒ|) ∈ . But 1/(1 + |ƒ|)= g ๐ ƒ where g(t) = 1/(1 +
|t|). Apply part 2.]

4. If  is a star subalgebra of C(X) and ƒ ∈ , g ∈ C*(R), then g ๐ ƒ ∈ 
. [It is enough to show g ๐ ƒ/(1 + ƒ2) ∈ . But g ๐ ƒ(1 + ƒ2) = h ๐ ƒ,

where h(t) = g(t)/(1 + t2). Apply part 2.]

5. A star subalgebra  of C(X) is all of C(X) iff  ⊃ C*(X).

6. A star subalgebra  of C(X) is all of C(X) iff  separates zero sets of
X. [Use 44A.1 to show  ∩ C*(X) = C*(X) and apply 5.]

7. A star subalgebra of C(X) which separates points from closed sets need
not be all of C(X). [Find such a subalgebra on the disjoint union of two
copies of the space Ω0 of all countable ordinals.]

The next problem gives conditions under which a star subalgebra which
separates points and closed sets must be all of C(X).

44D. Stone–Weierstrass theorems for noncompact X:
IV
Again, we consider the uniform topology on C(X).

A subspace S of X is said to be Z-embedded in X iff whenever Z is a zero
set in S, there is a zero set Z0 in X such that Z0 ∩ S = Z.

Let  be a star subalgebra (44C) of C(X) which separates points from
closed sets and let * denote the set of bounded functions in  . Define an
equivalence relation in βX by p ∼ q iff ƒβ(p) = ƒβ(q) for each ƒ ∈ *
(where ƒβ: βX → R is the Stone extension of ƒ: X → R). Let T be the
quotient of βX thus obtained,  : βX → T the identification map. For each ƒ
∈ *, define  : T → R by ([p]) = ƒβ(p), and let .



1. T is a compactification of X (i.e., for p ∈ X, [p] = {p}) and  | X is a
homeomorphism.

2. Ã = C(T). [By the Stone–Weierstrass theorem, it is enough to show A
separates points in T.]

3. A Lindelöf subspace S of Y is Z-embedded in Y. [Let ƒ ∈ C(S). For p
∈ S–Z(ƒ), choose ƒp ∈ C(Y) so that 0 ≤ ƒp ≤ 1, ƒp(p) = 1 and ƒp[Z(ƒ)] = 0.
Let Vp = {x ∈ S | ƒp(x) >  }. Then {Vp I p ∈ S–Z(ƒ)} is an open cover of
the Lindelöf space S–Z(ƒ), so a countable subcover {  } exists. Let 

 ). Then Z(g) n S = Z(ƒ).]

4. Let X be Lindelöf. If  is a star subalgebra of C(X) which separates
points and closed sets, then  = C(X). [Use 2 and 3 to show * separates
zero sets in X.]

5. Suppose |βX–X| ≤ 1. If  is a star subalgebra of C(X) which separates
points and closed sets, then  = C(X).

44E. Applications of the Weierstrass theorem

1. If ƒ: I → R is continuous and xnƒ(x)dx = 0 for each n = 0, 1, 2, . . .
then ƒ(x) = 0 on I. [You have finished if you show  ƒ2(x) dx = 0.]

2. Show directly that C(I) is separable (by exhibiting a countable dense
set rather than by appealing to 42D).

3. Show that the functions of the form ƒ(x) =  are dense in C(I).

4. Show that the functions of the form  (ak cos kx + bk sin kx) are
dense in C([0, 2π]).



Historical Notes

Section 1
The basis for our intuitive set theory is the Zermelo–Fraenkel set theory
developed by Zermelo (Untersuchungen über die Grundlagen der
Mengenlehre I) and strengthened by Fraenkel (Zu den Grundlagen der
Cantor–Zermeloschen Mengenlehre). Their work rests on the researches of
Cantor in the 1870’s which first put mathematics firmly on a set-theoretic
base. Zermelo’s work, in particular, was a direct response to the Russell
paradox. For an historical account of the Zermelo–Fraenkel and other
axiom schemes for set theory, see Suppes (Axiomatic Set Theory). A list of
other standard references on set theory would include Fraenkel (Abstract
Set Theory), Hausdorff (Set Theory), Halmos (Naïve Set Theory) and
Sierpinski (Cardinal and Ordinal Numbers). Our (postulational) approach
to the ordinals in 1.19 follows that of Kelley (General Topology, p. 29).

Gödel (The Consistency of the Axiom of Choice and of the Generalized
Continuum Hypothesis with the Axioms of Set Theory) proved in 1940 that
addition of either the axiom of choice or the continuum hypothesis to
existing set theoretic axioms would not produce a contradiction. Cohen
(Independence of the Axiom of Choice; The Independence of the Continuum
Hypothesis I, II) completed the proof of independence for each by showing
neither could be deduced from the existing axioms (by showing the
negation of each could consistently be added to the Zermelo–Fraenkel
axiom scheme). See P. J. Cohen (Set Theory and the Continuum
Hypothesis) for a discussion of these results and his intuition about the
continuum hypothesis. Another expository reference is Cohen
(Independence Results in Set Theory).

For additional material on lattice theory, see Birkhoff (Lattice Theory).

Section 2



The study of metric spaces was initiated by Frechet in his doctoral thesis
(Sur Quelques Points du Calcul Fonctionnel) and vigorously pursued by a
host of Polish mathematicians in the 1920’s. A general survey of the results
obtained is contained in Sierpinski (General Topology) or Kuratowski
(Topology). For placement of Frechet’s work in the development of
topology, see the notes to Section 3. For other comments on metric spaces,
see the notes to Sections 22, 23 and 24.

The theory of metric spaces (and their topologies) is treated in Copson
(Metric Spaces).

Section 3
Topology owes its beginnings to a line of development which began with
the first attempt to classify spaces by Riemann (Über die Hypothesen
welche der Geometrie Grunde liegen), continued through the already
mentioned work of Frechet on metric spaces in 1906, the work of Riesz
(Stetigkeit und Abstrakte Mengenlehre) in 1909 which used a primitive
version of the notion of condensation point to describe abstract spaces, the
work of Weyl (Die Idee der Riemannschen Fläche) in 1913 who proposed
studying abstract spaces in terms of neighborhood systems, and culminated
in 1914 with the epic paper of Hausdorff (Grundzüge der Mengenlehre )
who found the right axiom system for Weyl’s neighborhoods, made them a
suitable abstraction and thus founded modern topology. An excellent
detailed account of the forces prevalent in mathematics in the 1800’s which
gave rise to set theory and point set topology can be found in Manheim
(The Genesis of Point Set Topology). See also the notes to Section 42.

Weyl’s paper mentioned above occupies a place in the development of
the structure theory for Riemann surfaces. For modern accounts, see
Springer (Introduction to Riemann Surfaces) or Ahlfors and Sario (Riemann
Surfaces).

Hausdorff’s axiom scheme included the T2 separation axiom, which we
treat in Section 13. The axiom scheme given here is due essentially to
Alexandroff (Zur Begründung der n-dimensionalen mengentheoretischen
Topologie). See also Alexandroff and Hopf (Topologie I). The closure
operation was axiomatized by Kuratowski (Sur l’Opération Ā de l’Analysis



Situs). The frontier operator also characterizes the topology. See
Albuquerque (La Notion de “Frontière” en Topologie).

Properties of the simple extension (3A.5) of a topology are treated in
Levine (Simple Extensions of Topologies) and Borges (On Extensions of
Topologies). Exercise 3C is taken from Kelley (General Topology, p. 57).
The lattice of topologies (3G) was first systematically studied by Birkhoff
(On the Combination of Topologies). For recent developments, see Steiner
(The Lattice of Topologies; Structure and Complementation) and van Rooij
(The Lattice of Topologies is Complemented). The theory of Borel sets (31)
and their derivatives, the analytic sets, is developed extensively in
Sierpinski (General Topology) and Kuratowski (Topology) for separable
metric spaces. The extension to general metric spaces is begun in
Montgomery (Non-separable Metric Spaces) and continued in Stone (Non-
separable Borel Sets). For descriptions of the theory in general topological
spaces, see Frolik (On the Descriptive Theory of Sets; Baire Sets Which are
Borelean Subspaces). Their name derives from their consideration in Borel
(Leçons sur la Théorie des Fonctions).

Section 4
The original description of a topological space by Hausdorff (Grundzüge
der Mengenlehre) was in terms of nhoods (paralleling our 4.2).

The Sorgenfrey line (4A) was first introduced by Sorgenfrey (On the
Topological Product of Paracompact Spaces). The Moore plane (4B) is a
classical example (see, for example, Alexandroff and Hopf (Topologie I, p.
31) sometimes called the Nemitskii plane. Exercise 4G is taken from
Alexandroff and Hopf (Topologie I).

Section 5
The concept of a subbase for a topology appears in Bourbaki (General
Topology, part 1) which is translated from Topologie Générale, Chapters I
and II, Actualités Sci. Ind. 858 (1940).

The scattered line (5C) is used in the form given by Michael (The
Product of a Normal Space and a Metric Space need not be Normal). The
process may be applied to “scatter” any subset of any topological space.



Section 6
Ordered spaces (6D) were first studied systematically in Eilenberg (Ordered
Topological Spaces), along lines of the questions posed in Birkhoff (Lattice
Theory). Nachbin (Sur les Espaces Topologiques Ordonnés; Topology and
Order) has studied ordered spaces and recent startling developments are
contained in Solovay and Tennenbaum (Iterated Cohen Extensions and
Souslin’s Problem).

Subsets of ordered spaces which are ordered (6D.4) have been
characterized by M. E. Rudin (Interval Topology in Subsets of Totally
Orderable Spaces). See also Lynn (Linearly Orderable Spaces).

Section 7
Many of the ideas in this section existed long before the study of topology
and topological spaces became an independent discipline.

The question treated in 7B was considered by Kuratowski (On a
Topological Problem Connected with the Cantor–Bernstein Theorem). The
theory of retracts and their use in algebraic topology is covered in Spanier
(Algebraic Topology). The material of 7L can be found in any real analysis
book, for example, Royden (Real Analysis). The standard reference on C(X)
and C*(X) is Gillman and Jerison (Rings of Continuous Functions); the
germinal reference is Hewitt (Rings of Real-valued Continuous Functions
I). The group of homeomorphisms (7N) is considered in a fundamental
paper by Whittaker (On Isomorphic Groups and Homeomorphic Spaces).

Section 8
The Tychonoff topology was introduced by Tychonoff (Über die
Topologische Erweiterung von Räumen). The box topology was considered
by Tietze (Über Analysis Situs) and has been studied recently by Knight
(Box Topologies). An equivalent definition of the product topology is given
by Efremovic (Invariant Definition of Topological Product).

Weak topologies are covered in Bourbaki (General Topology, part 1)
under the name initial topologies.



Theorems 8.12 and 8.16 are folk theorems of long standing used
consistently in Stone–Weierstrass- and Tychonoff-type theorems (see
Sections 17 and 44).

It is not universally true that projection maps fail to be closed (8A). See,
for example, Noble (Products with closed projections). The relationship
between weak topologies and the lattice of topologies (81) is discussed in
Levine (Families of topologies on a fixed set).

Fox (On a problem of S. Ulam concerning Cartesian products) provided
an example of nonhomeomorphic spaces X and Y whose squares are
homeomorphic (8J.2).

Section 9
The quotient topology was first studied by Moore (Concerning Upper semi-
continuous Collections of Continua) and Alexandroff (Über stetige
Abkildung kompakter Räume). The first cohesive study of open maps is
found in Aronszajn (Über ein Urbildproblem). A later reference is
Whyburn (Open and Closed Mappings).

Products of quotient maps have been studied recently by Michael (Bi-
quotient Maps and Cartesian Products of Quotient Maps). Strong
topologies (9H) are covered in Bourbaki (General Topology, part 1) under
the name final topologies. Covering projections (9K) are covered more fully
in Spanier (Algebraic Topology).

Section 10
The problem of characterizing topological spaces which can be described
by sequential convergence is considered in Ponomarev (Axioms of
Countability and Continuous Mappings), Arhangel’skii (Some Types of
Factor Mappings and the Relations between Classes of Topological
Spaces), and Franklin (Spaces in which Sequences Suffice; Spaces in which
Sequences Suffice II). See also Dudley (On Sequential Convergence).

Convergence in the product topology (10.6) is considered in Tychonoff
(Über einen Funktionenräum) and in Sections 42-44.

Section 11



E. H. Moore (Definition of Limit in General Integral Analysis) and later
Moore and Smith (A General Theory of Limits) developed the general
theory of convergence motivated by the considerations in 11.4(c). It was
applied to topology by Birkhoff (Moore-Smith convergence in General
Topology) and further developed by Tukey (Convergence and Uniformity in
Topology). Subnets were introduced by Moore (General Analysis I, Part II)
and developed by Kelley (Convergence in Topology) who there coined the
word “net.”

Section 12
The definitions of filter and ultrafilter given here are those of Bourbaki
(General Topology, part I) and are due to Cartan (Théorie des Filtres;
Filtres et Ultrafiltres). The idea can be found in much earlier work, e.g.,
Caratheodory (Über die Begrenzung einfach zusammenhangender Gebiete).
The relationship between net and filter convergence (12.15-12.17) is
developed in Bartle (Nets and Filters in Topology). All the fundamentals of
general topology are developed using filter convergence in Kowalsky
(Topological Spaces).

In the study of rings of functions z-filters and z-ultrafilters (12E) are
important. Characterizations of many topological properties in terms of z-
filter convergence can be found in Gillman and Jerison (Rings of
Continuous Functions). In particular, they can be used to characterize
compactness (17D) and to construct the Stone-Čech compactification of a
Tychonoff space (19J). Closed filters will be used later in problems on the
Wallman compactification (19K). Open filters can be used to characterize
H-closed spaces (17K) and to construct H-closures (19N).

Section 13
The T2-axiom is included in the original list of axioms for a topology given
by Hausdorff (Grundzüge der Mengenlehre). The T0-axiom is usually
credited to Kolmogoroff and the T1-axiom to Frechet or Riesz (and spaces
satisfying these axioms are sometimes called Kolmogoroff spaces, Frechet
spaces or Riesz spaces, accordingly). Tietze was the first to use the term
“separation axiom” (Trennungs-axiom), in 1923. The T0-identification



(13.2c) is due to M. H. Stone (Application of Boolean Algebras to
Topology).

The Zariski topology (13D) crops up in algebraic geometry. See, for
example, Hirzebruch (Topological Methods in Algebraic Geometry).

I know of no necessary and sufficient condition for the intersection of
two Hausdorff topologies to be Hausdorff (13F).

Topological groups (13G) were introduced by Schreier (Abstrakte kontin-
werliche Gruppen) and are studied intensively in Hewitt and Ross (Abstract
Harmonic Analysis I).

Exercise 13H improves 13.9(b) and is due to Shimrat (Decomposition
Spaces and Separation Properties).

Section 14
Regular spaces were first introduced by Vietoris (Stetige Mengen).
Completely regular spaces were considered by Urysohn (Über die
Machtigkeit der zusammenhängenden Mengen) in 1925. Their importance
was established with the proof of 14.13 by Tychonoff (Über die
topologische Erweiterung von Raumen) in 1929. The name “Tychonoff
space” was suggested by Tukey (Convergence and Uniformity in Topology,
p. 84). Necessary and sufficient conditions for a quotient of a completely
regular space to be completely regular are developed in Himmelberg
(Quotients of completely regular spaces).

Properties of the double (14B) of a topological space are investigated in
Engelking (On the Double Circumference of Alexandroff). Semiregular
spaces are considered in M. H. Stone (Applications of the Theory of
Boolean rings to General Topology) and Hewitt (A Problem in Set-theoretic
Topology). Urysohn (Über die Mächtigkeit der Zusammenhdngenden
Mengen) introduced the separation axiom presented in 14F. Functionally
Hausdorff spaces (14G) are sometimes called Stone spaces for reasons that
can be ferreted out in Section 44.

Section 15
The T4-axiom was introduced by Tietze (Beiträge zur allgemeinen
Topologie I) in 1923. Lemma 15.2 is attributed to F. B. Jones in Dugundji



(Topology). Urysohn’s Lemma (15.6) was proved in Urysohn (Über die
Machtigkeit der zusammenhangenden Mengen). The Tietze extension
theorem (15.8) can be found in Tietze (Über Funktionen, die auf einer
abgeschlossenen Menge stetig sind). The theorem has been extended in
several ways. See, for example, Dugundji (An Extension of Tietze’s
Theorem), Hanner (Retraction and Extension of Mappings of Metric and
Non-metric Spaces), or Dowker (On a Theorem of Hanner). Theorem 15.10
appears in Lefschetz (Algebraic Topology).

Complete normality (15B) was added to the list of separation axioms in
1923 by Tietze (Beiträge zur allgemeinen Topologie I). Perfect normality
was introduced by Alexandroff and Urysohn (On Compact Topological
Spaces). Urysohn (Über die Mkchtigkeit der zusammenhangenden Mengen)
proved every perfectly normal space is completely normal (15B, C). The
study of retracts, absolute retracts and ANR’s (15D) began with Borsuk
(Sur les Retracts). See also Borsuk (Theory of Retracts) and Hu (Homotopy
Theory). The Urysohn extension theorem (15E) is a variant of Urysohn’s
lemma (see reference above). Extremally disconnected spaces (15G) were
first investigated in Hewitt (A Problem in Set-theoretic Topology). The
Hahn-Banach theorem (15H) forms a part of any course in real analysis.
See, for example, Royden (Real Analysis).

Section 16
Second-countable spaces were once (and occasionally still are) called
perfectly separable. The axioms of first and second countability were
defined by Hausdorff (Grundzüge der Mengenlehre). Separability was
introduced by Frechet (Sur Quelque Points du Calcul Fonctionnel) in 1906.
The Lindelöf property was proved for Euclidean spaces as early as 1903 by
Lindelöf (Sur Quelques Points de la Théorie des Ensembles); the formal
study of Lindelöf spaces was begun in 1921 by Kuratowski and Sierpinski
(La Théorème de Borel—Lebesgue dans la Théorie des Ensembles
Abstraits). Lindelöf spaces are called finally compact by authors in the
Soviet Union. See, for example, Alexandroff (Some Results in the Theory of
Topological Spaces).

Tychonoff (Über einen Metrisationsatz von P. Urysohn) proved
sufficiency in the countable case in 16.4(c) in 1926. The result for c factors
is due to Pondiczerny (Power Problems in Abstract Spaces), Hewitt (A



Remark on Density Characters) and Marczewski (Séparabilité et
Multiplication Cartesienne des Espaces Topologiques). For a recent general
result, see Väisälä (The Separability of Cartesian Products). Ross and Stone
(Products of Separable Spaces) have written a short expository paper on
separability in product spaces.

The countable chain condition (16C) plays an implicit role in the
statement of a problem raised by Souslin (Problème 3) which is discussed at
greater length in the notes on Section 21.

A variant of 16D.6 is stated by Mrowka (Functionals on Uniformly
Closed Rings of Continuous Functions). A characterization of Lindelöf
spaces in terms of z-filters (see 16D.4 and 16D.5) can be found in Gillman
and Jerison (Rings of Continuous Functions, 8.2).

The exact relationship between hereditarily Lindelöf spaces (16E) and
hereditarily separable spaces (those whose every subspace is separable) is
unknown. According to Solovay and Tennenbaum (Iterated Cohen
Extensions and Souslin’s Problem) one can consistently assume the
existence of a Souslin space (21n) and such a space is necessarily
hereditarily Lindelöf but not separable.

Mapping theorems for first countable spaces are considered in
Ponomarev (Axioms of Countability and Continuous Maps), Arhangel’skii
(Some Types of Factor Mappings and the Relations between Classes of
Topological Spaces) and Stone (Metrizability of Decomposition Spaces).
See also Arhangel’skii (Mappings and Spaces).

Section 17
Frechet (Sur Quelques Points du Calcul Fonctionnel) was the first to use
the term “compact”. He applied it to metric spaces in which every sequence
of points contains a convergent subsequence or, equivalently, in which
every infinite set has a limit point. Applied to general topological spaces
today, these define the sequentially compact spaces (17G) and the countably
compact spaces (17F), respectively. Hausdorff (Grundzüge der
Mengenlehre) first noticed that the present-day definition, in terms of the
Heine–Borel condition, is equivalent in metric spaces to the definitions
given above. It was left to Alexandroff and Urysohn (Zur theorie der
topologischen Räume) to apply this definition to general topological spaces;



they called such spaces bicompact. Bicompactness won out over countable
and sequential compactness when Tychonoff (Über die topologische
Erweiterung von Räumen; Über einen Funktionenraum) proved it was
preserved in the passage to products (17.8). This result fails for sequential
compactness (see 17G.6) and for countable compactness (an example is
given in Novak (On the Cartesian Product of Two Compact Spaces)). See
also Mrowka (Compactness and Product Spaces) and his references for
more on products of countably compact spaces.

That compactness could be described using the finite intersection
property (17.4) was first noted by Riesz (Stetigkeitsbegriff und abstrakte
Mengenlehre).

The Cantor set, (17.9c), was described by Cantor (Über unendliche,
lineare Punktmannigfaltigkeiten, (e), p. 590).

Maximal compact spaces (17C) were studied by Balachadran (Minimal–
Bicompact Space) and Ramanathan (Minimal–Bicompact Spaces).

The compactness of lattice-complete ordered spaces (17E) was proved by
Frink (Topology in Lattices). Part (c) of 17E has been known since 1910;
see Haar and König (Über einfach geordnete Mengen). Compactness in
ordered spaces is studied in a recent monograph by Maurice (Compact
Ordered Spaces).

17G.5 is strengthened to say that the product of ≤ℵ1 sequentially compact
spaces is sequentially compact, in Scarborough and Stone (Products of
Nearly Compact Spaces). See also Kenderov (A Certain Problem of A.
Stone).

A thorough exposition of realcompact spaces (17H) can be found in
Gillman and Jerison (Rings of Continuous Functions). They were
introduced by Hewitt (Rings of Real-valued Continuous Functions, I) as an
aid in studying the properties of the ring C(X). Recent references on
realcompact spaces, including their mapping properties, are Wenjen
(Realcompact Spaces), Isiwata (Mappings and Spaces), Kenderov (On Q-
spaces) and Engelking (Remarks on Realcompact Spaces). Pseudocompact
spaces (17J) were defined and studied by Hewitt in the paper mentioned
above. Again, the book of Gillman and Jerison is a good general reference.



A product theorem for pseudocompact spaces has been proved by
Glicksberg (Stone–Čech compactifications of products).

H-closed spaces (17K, L) were first introduced by Alexandroff and
Urysohn (Mémoire sur les Espaces Topologiques Compacts), and later
studied by Chevalley and Frink (Bicompactness of Cartesian Products), M.
H. Stone (Application of the Theory of Boolean Rings to General
Topology), Katetov (Über H-abgeschlossen und Bikompakt Räume),
Obreanu (On a Problem of Alexandroff and Urysohn), Scarborough and
Stone (Products of Nearly Compact Spaces) and Liu (Absolutely Closed
Spaces). The product theorem was proved by Chevalley and Frink.

Minimal Hausdorff spaces (17M) were first considered by Urysohn
(Über die Machtigkeit der Zusammenhangenden Mëngen), later by Berri
(Minimal Topological Spaces; Categories of Certain Minimal Topological
Spaces), Banaschewski (Über Hausdorffsch-minimale Erweiterung von
Räumen), Ikenaga (Product of Minimal Topological Spaces), Kawashima
(On the Topological Product of Minimal Hausdorff Spaces) and
Scarborough and Stone (Products of Nearly Compact Spaces). The product
theorem mentioned in 17M is due independently to Ikenaga, Kawashima
and Scarborough and Stone; the embedding theorem is Banaschewski’s.

Various compactness properties are considered in a monograph by Van
der Slot (Some Properties Related to Compactness).

Kelley (The Tychonoff Product Theorem Implies the Axiom of Choice)
contributed 170.2. Product theorems without the axiom of choice are
discussed in Comfort (A Theorem of the Stone–Čech Type, and a Theorem
of Tychonoff Type, without the Axiom of Choice; and their Realcompact
Analogues).

The results in 17Q on projective compact spaces are due to Gleason
(Projective Topological Spaces).

The result in 17R can be strengthened. Reichbach (The Power of
Topological Types of some Classes of 0-dimensional Spaces) proves that
there are c nonhomeomorphic compact subsets of R. The exercise is taken
from Isbell (Uniform Spaces).

For a discussion of applications of compactness in analysis, see Hewitt
(The Role of Compactness in Analysis).



Section 18
Tietze (Beiträge zur allgemeinen Topologie I) and Alexandroff (Über die
Metrisation der im Kleinen kompakten topologische Räume) defined local
compactness independently. The concept is indispensable now in the theory
of integration and the study of topological groups. See, for example, Hewitt
and Ross (Abstract Harmonic Analysis, I).

The treatment of manifolds in this book is far from rich. A serious study
of manifolds should include a reading of Bishop and Crittenden (Geometry
of Manifolds), Wilder (Topology of Manifolds), Fort (Topology of 3-
manifolds) and M. Curtis’ rumored book on manifolds, when it appears.
There are several books available on differentiable manifolds (18.3c),
among them Auslander and McKenzie (Introduction to Differentiable
Manifolds), Milnor (Topology from the Differentiable Viewpoint), Poenaru
(On the Geometry of Differentiable Manifolds) and Hu (Differentiable
Manifolds).

Brouwer’s theorem on in variance of domain (mentioned in 18B) can be
found in Spanier (Algebraic Topology).

The example in 18G is due to Hewitt (On two Problems of Urysohn); in
the same paper, he modified this example to produce a regular, T1-space on
which every continuous real-valued function is constant.

Section 19
Caratheodory (Über die Begrenzung einfach zusammenhangender Gebiete)
first formally considered the problem of extending a space in 1913. Work
on compactification began with Tietze (Beitrage zur allgemeinen Topologie,
II), Alexandroff (Über die Metrisation der im Kleinen kompakten
topologischen Räume) and Alexandroff and Urysohn (Zur theorie der
topologischen Räume), who introduced the one-point compactification. It
continued with Tychonoff (Über die topologische Erweiterung von
Räumen), who proved that every Tychonoff space can be embedded in a
compact Hausdorff space. Čech (On Bicompact Spaces) and M. H. Stone
(Applications of the Theory of Boolean Rings to General Topology) gave
their names to the compactification constructed by Tychonoff by proving its
maximality in the sense of 19.5, 19.10 and 19.12. Construction of βX–X



relies on a form of the axiom of choice and any knowledge of its structure,
or of the structure of βX–X, seems to involve the continuum hypothesis.
See, for example, Gillman (The Space βN and the Continuum Hypothesis).

Compactification of ordered spaces (19D) has been studied recently by
Kaufman (Ordered Sets and Compact Spaces).

The result mentioned at the end of 19I on the Stone–Čech
compactification of products is due to Glicksberg (Stone–Čech
Compactifications of Products).

The filter description of βX and compactifications in general can be
traced from M. H. Stone (Applications of the Theory of Boolean Rings to
General Topology), through Wallman (Lattices and Topological Spaces)
and Alexandroff (Bikompakte Erweiterungen topologische Räume). A
current account can be found in Gillman and Jerison (Rings of Continuous
Functions).

The Wallman compactification (19K) was constructed in the above
named paper by Wallman. Frink (Compactifications and Semi-normal
Spaces) introduced Wallman bases (calling them normal bases) and raised
the question (19L) of whether every compactification of a normal space X is
obtainable from some Wallman base for X. Answers are known in certain
special cases: βX is so obtainable (19K), the closed interval I is so
obtainable from the open unit interval, and the property of being so
obtainable is finitely productive according to Hager (Some Remarks on the
Tensor Product of Function Rings), so that, for example, the closed unit
disk is so obtainable from the open unit disk. Other work on Wallman
compactifications has been done by Fan and Gottesman (On
Compactifications of Freudenthal and Wallman), Banaschewski (On
Wallman’s Method of Compactification; Normal Systems of Sets), Njastad
(On Wallman-type Compactifications), Steiner and Steiner (Precompact
Uniformities and Wallman Compactifications; Wallman and Z-
compactifications), Brooks (On Wallman Compactifications ), E. F. Steiner
(Wallman Spaces and Compactifications) and Alo and Shapiro (A Note on
Compactifications and Semi-normal spaces).

The results in 19M are in the paper of Frink mentioned above.



The concept of H-closure appears as early as 1924, in Tietze (Beiträge
zur allgemeinen Topologie, II) and 1929, in Alexandroff and Urysohn
(Mémoire sur les Espaces Topologiques Compacts). H-closures were
explicitly constructed by Katetov (Über H-abgeschlossen und bikompakt
Räume) and Obreanu (On a problem of Alexandroff and Urysohn).

The Hewitt realcompactification (190) was introduced by Hewitt (Rings
of Real-valued Continuous Functions I). It is sometimes called the Nachbin
completion. There are open questions concerning realcompactifications of
product spaces; see Comfort (On the Hewitt Realcompactification of a
Product Space).

Section 20
Paracompactness was defined in 1944 by Dieudonné (Une Generalisation
des Espaces Compacts) and elevated to its present high stature by A. H.
Stone (Paracompactness and Product Spaces), who proved that every
metric space is paracompact, and Bing, Nagata and Smirnov, who used
Stone’s result to obtain a general metrization theorem (see notes, Section
23). Sorgenfrey (On the Topological Product of Paracompact Spaces)
showed in 1947 that products of paracompact spaces need not be
paracompact. In a series of three papers, Michael (A Note on Paracompact
Spaces; Another Note on Paracompact Spaces; Yet Another Note on
Paracompact Spaces) intensively investigated the structure of paracompact
spaces. Theorem 20.7 and most of Theorem 20.12, in particular, can be
found in the first of these. Cedar (Some Generalizations of Metric Spaces)
used some of the properties considered by Michael to define and study
classes of spaces intermediate between the paracompact and the metrizable
spaces.

For additional comments, see notes, Section 21.

The notions of barycentric and star refinement (20B) have been around
since Tukey (Convergence and Uniformity in Topology). The results in 20C
are due to Michael (A Note on Paracompact Spaces). Metacompactness
(20D) is defined and studied in Arens and Dugundji (Remark on the
Concept of Compactness). The example in 20F was provided by Michael
(The Product of a Normal Space and a Metric Space need not be Normal).



The example in 20H was produced by M. E. Rudin (A Separable Normal,
Non-paracompact Space).

Section 21
The example (20F) cited early in this section is produced in Michael (The
Product of a Normal Space and a Metric Space need not be Normal). The
normal spaces whose product with every metric space is normal have been
characterized by Morita (On the Product of a Normal Space with a Metric
Space; Products of Normal Spaces with Metric Spaces; Products of Normal
Spaces with Metric Spaces II). See also Ishii (On Closed Mappings and M-
spaces I, II).

Theorem 21.1 is proved in Tamano (On Paracompactness); he relies on
earlier work of Corson (The Determination of Paracompactness by
Uniformities). The conjecture of Kelley’s mentioned after 21.1 can be found
on p. 208 of his book (General Topology). The counterexample was
provided by Corson (Normality in Subsets of Product Spaces), who also
(The Determination of Paracompactness by Uniformities) provided the first
correct result.

Several theorems relating properties of X to properties of X x βX have
been proved by Tamano (On Compactifications). A general survey of
theorems on normality and paracompactness of products X x Y can be found
in Tamano (Normality and Product Spaces).

The results 21.3, 21.4 and 21B are all due to Dowker (On Countably
Paracompact Spaces). The result connecting Dowker’s conjecture and the
Souslin hypothesis can be found in M. E. Rudin (Countable
Paracompactness and Souslin’s Problem). Souslin’s hypothesis resulted
from a long standing problem posed by Souslin (Problème 3). A discussion
of the Souslin hypothesis and its independence of the usual axioms of set
theory can be found in Solovay and Tennenbaum (Iterated Cohen
Extensions and Souslin’s Problem). See also Jech (Non-provability of
Souslin’s Hypothesis) and Tennenbaum (Souslin’s Problem). It should be
repeated that although Dowker’s conjecture cannot be proved within the
existing set theory through the choice axiom it is still possible that a
counterexample can be constructed with these axioms. According to Morita
and Tamano, such a counterexample would result if there were a



paracompact space X and a normal space Y whose product X x Y was
normal but not paracompact; see Tamano (Normality and Product Spaces).

For recent results on independence of certain topological questions, see
Solovay (A Model of Set Theory in which Every Set of Reals is Lebesgue
Measurable; Real-valued Measurable Cardinals).

Exercise 21C is due to A. H. Stone (Paracompactness and Product
Spaces). Other work on normality in infinite products has been done by
Corson (Normality in Subsets of Product Spaces; Examples Relating to
Normality in Topological Spaces).

Section 22
The result in 22.4 attributed to R. D. Anderson can be found in Anderson
(Hilbert Space is Homeomorphic to the Countable Infinite Product of
Lines). The facts cited about quotients and continuous images of metrizable
spaces are discussed in the notes on Section 23.

The result in 22B can be found in Hocking and Young (Topology). Linear
topological spaces (22C) are coherently studied in Hu (Introduction to
General Topology), Wilansky (Functional Analysis) and extensively in
Kelley, Namioka et al. (Linear Topological Spaces). The result in 22D.4 is
due to Dugundji (An Extension of Tientze’s Theorem). The extension
theorem (part 4) given in 22E is due originally to Hausdorff (Erweiterung
einer stetigen Abbildung) in 1938. See also Kuratowski (Remarques sur les
Transformations Continues des Espaces Métriques). The proof given here,
based on Dugundji’s result (22D.4), is due to Arens (Extension of Functions
on Fully Normal Spaces) in 1952. Metric extensions have been considered
elsewhere by Hausdorff (Erweiterung einer Homöomorphie) in 1930, by
Bing (Extending a Metric) in 1947, who rediscovered Hausdorff’s result
22E.4, and by Lavrentieff (see notes, Section 24). Shapiro (Extensions of
Pseudometrics) has done recent work on extending pseudometrics. See also
his references and Willard (Absolute Borel Sets in their Stone–Čech
Compactifications) and Gantner (Extensions of Uniformly Continuous
Pseudometrics).

The result given in 22F can be found in Levine (A Characterization of
Compact Metric Spaces).



Section 23
Urysohn’s metrization theorem (23.1) was proved in 1925 by Urysohn (Zum
Metrisation problem). Theorem 23.4 is essentially the uniform metrization
theorem; see the notes to Section 38. The nhood metrization theorem (23.5)
is a slight alteration of a result found in Nagata (A Contribution to the
Theory of Metrization). A recent interesting metrization theorem for
compact spaces has been provided by Mardešić (Images of Ordered
Compacta are Locally Peripherally Metric). For some other metrization
theorems, see Alexandroff (Some Results in the Theory of Topological
Spaces, Obtained within the Last Twenty-five Years; On Some Basic
Directions in General Topology).

A Moore space (23.6) is usually defined in the literature to be a space
satisfying the first three parts of axiom 1 in Moore (Foundations of Point
Set Theory). Our definition is equivalent and often used. An excellent
account of how the normal Moore space conjecture arises can be found in
an article by Jones (Remarks on the Normal Moore Space Metrization
Problem). It presently occupies the time of a great many good
mathematicians; see, for example, Bing (A Translation of the Normal
Moore Space Conjecture). It is a classical result of Jones that, with the
continuum hypothesis (actually, with  <  ) every separable normal
Moore space is metrizable. It is a recent result of Heath (Screenability,
Pointwise Paracompactness, and Metrization of Moore Spaces) and Silver
(unpublished as yet) that it is consistent with the axioms of set theory
through the axiom of choice (but not, of course, the continuum hypothesis)
to assume the existence of a nonmetrizable separable normal Moore space.

The metrization theorem given in 23.7 is due to Alexandroff and Urysohn
(Une Condition Nécessaire et Suffisante pour qu’une Classe (ℒ) Soit une
Classe (  )).

The general metrization theorem (23.9) was proved independently by
Nagata (On a Necessary and Sufficient Condition of Metrizability), Smirnov
(A Necessary and Sufficient Condition for Metrizability of a Topological
Space) and, in somewhat different form, Bing (Metrization of Topological
Spaces).



The theorem on metrizability of the one-point compactification of a
locally compact space (23C) was essentially proved in Alexandroff and
Urysohn (Mémoire sur les Espaces Topologiques Compacts). Metrizability
of βX (23D) is discussed in Gillman and Jerison (Rings of Continuous
Functions).

The result 23G.3 is due independently to Nagata (On a Necessary and
Sufficient Condition of Metrizability) and Smirnov (On Metrization of
Topological Spaces). The result 23G.4 was first mentioned in Alexandroff,
and Urysohn (Mémoire sur les Espaces Topologiques Compacts). It can be
strengthened. An example of Bing (Metrization of Topological Spaces,
Example 3) shows that a nonmetrizable space can be the union of two open
metrizable subsets. Necessary and sufficient conditions for a finite union of
open metrizable spaces to be metrizable are given by A. H. Stone
(Metrizability of Unions of Spaces). See also Corson and Michael
(Metrizability of Certain Countable Unions). The addition theorem (23G.5)
was actually proved in the following form: if X is compact and the union of
countably many compact metrizable subsets, then X is metrizable. See
Smirnov (The Metrizability of Bicompacta Decomposable into the Sum of
Sets with a Countable Base). A general discussion of this and other addition
theorems can be found in Arhangel’skii (Mappings and Spaces).

The metrization theorem in 23J is due to Mrs. A. H. Frink (Distance
Functions and the Metrization Problem).

The result 23K.3 is due to A. H. Stone (Metrizability of Decomposition
Spaces) and Morita and Hanai (Closed Mappings and Metric Spaces). The
results are based on earlier work of Vainstein (On Closed Mappings of
Metric Spaces). For open maps, or general quotient maps, the situation is
not so nice. See the references above. A general review of what is known
about quotients of metric spaces, including a great deal of Russian work not
cited here, can be found in Arhangel’skii (Mappings and Spaces). The result
in 23L can be found in Willard (Metric Spaces all of whose Decompositions
are Metric).

For a result related to the metrization problem, see Sion and Zelmer (On
Quasi-metrizability).

Section 24



Complete metric spaces were introduced along with the definition of metric
spaces by Frechet (Sur Quelques Points du Calcul Fonctionnel). Separable
completely metrizable spaces are called Polish spaces in Bourbaki (General
Topology, Part 2). The proof that every metric space has a completion
(24.4) is based on the familiar method of defining the irrational numbers by
means of Cauchy sequences and is due to Hausdorff (Grundzüge der
Mengenlehre). Theorem 24.9 was proved by Lavrentieff (Contribution à la
Théorie des Ensembles Homéomorphes). Without much difficulty it can be
proved equivalent to a metric extension theorem (24M) complementing
Hausdorff’s theorem (22E.4).

The first part of 24.12 is due to Alexandroff (Sur les Ensembles de la
Première Classe et les Espaces Abstraits). For the second part, see
Mazurkiewicz (Über Borelsche Mengen), Sierpinski (Sur l’Invariance
Topologique des Ensembles Gδ; sur les Ensembles Complêts d’un Espace
(D)) and Lavrentieff (Contribution à la Théorie des Ensembles
Homéomorphes). Parts (d) and (e) in Theorem 24.13 are the work of Čech
(On Bicompact Spaces).

The fixed-point theorem given in 24.16 is due to Banach (Sur les
Opérations dans les Ensembles Abstraits et leurs Applications aux
Équations Intégrales); see also Banach (Théorie des Opérations Linéaires).
Other important fixed-point theorems include the Schauder theorem: every
continuous map of a closed convex subset A of a Banach space onto a
compact subset of A has a fixed point [see Schauder (Der Fixpunktsatz in
Funktionalräumen) and Tychonoff (Ein Fixpunktsatz)] and the Brouwer
theorem, about which more in Section 34. For a general discussion of fixed-
point theorems, see Bing (The Elusive Fixed-point Property), Cronin (Fixed
Points and Topological Degree in Nonlinear Analysis), or Van der Walt
(Fixed and Almost Fixed Points). See also McKnight (Brown’s Method of
Extending Fixed Point Theorems) and Ward (A Theorem of Fixed-point
Type for Non-compact Locally Connected Spaces). The Brouwer, Schauder
and Tychonoff fixed-point theorems can be see in action in Hartman
(Ordinary Differential Equations).

Totally bounded metric spaces (24B) were introduced by Hausdorff
(Grundzüge der Mengenlehre, p. 108). The equivalent condition (b) for
completeness in 24C is due to Cantor and appears in its present form in
Hausdorff (Grundzüge der Mengenlehre).



For some authors, topologically complete means completely metrizable.
It seems better to allow the former term to apply to arbitrary Tychonoff
spaces, reserving the latter for metrizable spaces.

Banach spaces are treated in most modern books on real analysis; see, for
example, Royden (Real Analysis, p. 181). An important extension of the
notion of a Banach space, the notion of a Banach algebra, is obtained by
adding further algebraic structure. Banach algebras are studied in Loomis
(An Introduction to Abstract Harmonic Analysis) and are the primary
objects of study in Naimark (Normed Rings).

Problem 24K is proved in Sierpinski (General Topology, p. 143) using
continued fractions.

Picard’s theorem (24L) can be found in Hartman (Ordinary Differential
Equations) or in any book on differential equations. It was proved by Picard
(Mémoire sur la Théorie des Équations aux Derivées Partielles et la
Méthode des Approximations Successives) and Lindelöf (Sur l‘Application
des Méthodes des Approximations Successives à l’Étude des Intégrals
Réelles des Équations Différentielles Ordinaires).

Section 25
First and second category spaces were defined by Baire (Sur les Fonctions
des Variables Réelles) and Theorem 25.4(b) was proved in the same paper.
Part (a) of 25.4 is due essentially to Moore (An Extension of the Theorem
that no Countable Point Set is Perfect). The result 25.5 was proved by
Banach (Über die Baire’sche Kategorie gewisses Funktionenmengen).

The open mapping theorem, the uniform boundedness principle and the
closed graph theorem (25D) can be found in any book of functional
analysis. See, for example, Wilansky (Functional Analysis). Hilbert spaces
(25E) are discussed in most books on real analysis, for example, Heider and
Simpson (Theoretical Analysis), Hewitt and Stromberg (Real and Abstract
Analysis) or Rudin (Real and Complex Analysis). For a more extensive
treatment, see Halmos (A Hilbert Space Problem Book).

Section 26
The modern notion of connectedness was proposed by Jordan (Cours
d’Analyse) in 1893 and Schoenfliesz (Beiträge zur Theorie des



Punktmengen), and put on firm footing by Riesz (Die Gensis des
Raumbegriffs) with the use of subspace topologies. Before Jordan, Cantor
(Über unendliche, lineare Punktmannigfaltigkeiten e), p. 576) used the
following notion of connectedness: a set (subspace of Euclidean space) is
connected iff for any two points a and b of the set and any ε > 0, a finite set
of points a = x0, x1, . . . , xn = b can be found such that d(xi, xi+1) < ∈ for i =
0, . . . , n - 1. Such a finite sequence is called an ∈-net and sets with
arbitrarily fine ∈-nets between any pair of points are now called well-
chained. Hausdorff (Grundzüge der Mengenlehre) gave the first systematic
account of the properties of connected sets. The notion of arcwise
connectedness (Section 27) was around long before Cantor’s introduction of
connectedness. The separation characterization of connectedness (26.5) is
due to Mazurkiewicz (Sur un Ensemble Gδ Punctiforme, qui n’est pas
Homéomorphe avec aucun Ensemble Linéaire). Components (26.11) were
introduced by Hausdorff (Grundzüge der Mengenlehre). Theorem 26.15
says essentially that every connected set is connected in the ∈-net sense of
Cantor (as above).

Quasicomponents (26B) were introduced in 1914 by Hausdorff
(Grundzüge der Mengenlehre). The countable connected Hausdorff space in
26C was produced by Bing (A Countable Connected Hausdorff Space).

Section 27
Arcwise connectedness is much older than connectedness, having been used
explicitly as early as the 1880’s by Weierstrass. Locally connected spaces
were introduced by Hahn (Über die allgemeinste ebene Punktmenge, die
stetiges Bild einer Strecke ist) in 1914 and developed by Tietze (Über
stetige Kurven, Jordansche Kurvenbögen und geschlossene Jordansche
Kurven), Kuratowski (Une définition topologique de la ligne de Jordan)
and Hahn (Über die Komponenten offenen Mengen) around 1920. Theorem
27.9 can be found in the latter paper. Moore (Concerning Connectedness im
kleinen and a Related Property) studied connectedness im kleinen in 1922.
See also Knaster and Kuratowski (A Connected and Connected im kleinen
Point Set which Contains no Perfect Set) and Whyburn (On the Structure of
Connected and Connected im kleinen Point Sets).



Property S was introduced in 1920 by Sierpinski (Sur une Condition pour
qu’un Continu Soit une Courbe Jordanienne). Spaces with property S are
investigated in Whyburn (Analytic Topology) and the references cited there.

For more material on local connectedness and related properties, see
Whyburn’s book (just mentioned) and Hocking and Young (Topology).

Section 28
Although the word was in use earlier (e.g., “the number continuum.”
Bolzano), the general notion of continua as connected sets with certain
properties was introduced by Cantor (Über unendliche, lineare
Punktmannigfaltigkeiten), where he regarded them as subsets of Euclidean
spaces which are both closed and connected (in his ∈-net sense, see the
notes on Section 26). The definition was modified to use the modern
concept of connectedness by Jordan (Cours d’Analyse) in 1893.
Compactness seems not to have become an accepted part of the definition
until the 1930’s although many of the results in earlier papers (e.g.,
Janiszewski’s, see below) are proved for “bounded plane continua.”

Continua irreducible between two points were considered first by Zoretti
(La Notion de Ligne) in 1909 and developed extensively by Janiszewski
(Sur les Continus Irréductibles entre Deux Points) in his 1911 thesis. The
latter gave a proof of Theorem 28.4 based on the reduction theorem of
Brouwer (Over de Structur der perfecte Punktnerzamelingen), a statement
of which can be found in Kelley (General Topology). More early references
are given by Sierpinski (Théorie des Continus Irreductibles entre Deux
Points, I).

Cut points became an important part of investigations into the properties
of continua in the 1920’s. See, for example, Moore (Concerning the Cut
Points of Continuous Curves and of other Closed and connected Sets) and
Whyburn (Concerning the Cut Points of Continua). The separation order
(although not the order topology) on E(a, b) seems to be first mentioned in
the latter paper. Theorems 28.13 and 28.14 on the characterization of the
unit interval and the unit circle were essentially proved in 1920 by Moore
(Concerning Simple Continuous Curves). A more exhaustive study of cut
points and continua can be found in Whyburn (Analytic Topology).
Recently, a bibliography on analytic topology which includes several



references to results on cut points and continua has been compiled by
McAllister (Cyclic Elements in Topology, a History).

Indecomposable continua (28A) were studied in the 1920’s by
Mazurkiewicz (Un Théorème sur les Continus Indécomposables),
Janiszewski and Kuratowski (Sur les Continus Indécomposables) and
Knaster (Un Continu dont tout Sous-continu est Indécomposable). The
notion can be found also in Brouwer (Zur Analysis situs). A problem posed
by Knaster and Kuratowski (Problème 2) in 1920 was not solved until 1948
by Bing (A Homogeneous Indecomposable Plane Continuum) although a
continuum constructed in 1922 by Knaster himself (Un Continu dont tout
Sous-continu est Indécomposable) was discovered in 1951 to be a
counterexample. See also Bing and Jones (Another Homogeneous Plane
Continuum) and Hocking and Young (Topology).

The result in 28E.2 is due to Sierpinski (Un Théorème sur les Ensembles
Fermés).

Before leaving continua, we should mention one famous unsolved
problem. The plane-continuum problem asks whether every continuum K in
the plane which has connected complement has the fixed-point property
(that every continuous f : K → K has a fixed point). Borsuk (Sur un Continu
Acyclique qui se laisse Transformer Topologiquement et lui même sans
Points Invariants) produced a chain of three-cells (homeomorphs of I x I x
I) whose intersection fails to have the fixed-point property. Finding a
counterexample for the plane-continuum problem is equivalent to finding
an example similar to Borsuk’s using two-cells in the plane. A recent
reference on the problem is Bell (On Fixed-point Properties of Plane
Continua).

Section 29
Totally disconnected spaces were considered as early as 1921 by Knaster
and Kuratowski (Sur les Ensembles Connexes), in a paper in which example
29.2 appears (on p. 241), and by Sierpinski (Sur les Ensembles Connexes et
Non Connexes), where they are called “dispersed.”

The 0-dimensional spaces occupy an important place in modern
dimension theory. The inductive definition of the dimension ind X of X goes
as follows: ind ø =–1 and ind X ≤ n iff each point of x has a base of nhoods



U with ind [Fr (U)] ≤ n– 1. This definition provides a satisfying theory for
separable metric spaces, as detailed in the classic book of Hurewicz and
Wallman (Dimension Theory), but has serious drawbacks in more general
settings. In the general case, use of one of the following dimension
functions seems more appropriate: (1) Ind ø =–1 and Ind X ≤ n iff given
disjoint closed sets A and B of X, there is an open set U with A ⊂ U, U ∩ B
= ø and Ind [Fr (U)] ≤ n– 1, or (2) dim X ≤ n iff any finite open cover of X
has a refinement by an open cover of order ≤ n + 1, where the order of a
cover is the largest number of sets from the cover having some point in
common. The three dimension functions are called the weak inductive
dimension (ind X), the strong inductive dimension (Ind X) and the
(Lebesque) covering dimension (dim X). All three are equal for separable
metric spaces. Katetov (On the Dimension of Non-separable Spaces) and
Morita (Normal Families and Dimension Theory for Metric Spaces)
extended dimension theory to general metric spaces and showed Ind X =
dim X for such spaces. Roy (Failure of Equivalence of Dimension Concepts
for Metric Spaces) gave an example of a metric space X for which ind X ≠
dim X. A comprehensive account of the status of dimension theory up to
1965 can be found in Nagata (Modern Dimension Theory).

Inverse limits (29.9 and 29C) were introduced in topology by
Alexandroff (Untersuchungen über Gestalt und Lage abgeschlossenes
Mengen). They are useful in the theory of compact topological groups. See,
for example, Weil (L’intégration dans les Groupes Topologiques et ses
Applications) or Pontrjagin (Topological Groups). In all these sources and
other references from earlier periods, they are called projective limits (of
inverse systems). That Theorem 29.13(b) fails to hold for noncompact
spaces was demonstrated by Henkin (A Problem on Inverse Mapping
Systems).

The results in 29E can be found developed in Hewitt and Ross (Abstract
Harmonic Analysis I).

Section 30
Perfect sets were introduced by Cantor (Über unendliche, lineare
Punktmannigfaltigkeiten (f)). The theorem characterizing the Cantor set
(30.4) is proved in Hausdorff (Grundzüge der Mengenlehre); see also
Hausdorff (Set Theory). The theorem that every compact metric space is a



continuous image of C (30.7) is due to Alexandroff and Urysohn (Mémoire
sur les Espaces Topologiques Compacts).

A recent reference on the Cantor set is Nunnally (There is no Universal-
projecting Homeomorphism of the Cantor Set).

A detailed study of scattered sets (30E) can be found in Semadeni (Sur
les Ensembles Clairsemés).

Section 31
Peano spaces are so called because Peano (Sur une Courbe qui remplit toute
une Plane) in 1890 shattered many ideas about dimension and continuity
prevalent at the time by producing a “space-filling curve,” that is, a
continuous map f carrying I onto I x I. Twenty-five years later Hahn
(Mengentheoretische Characterisierung der stetigen Kurven) and
Mazurkiewicz (Sur les Lignes de Jordan) characterized the continuous
images of I by proving Theorem 31.5. There is considerable present-day
interest in finding a Hahn–Mazarkiewicz theorem for nonmetric spaces. For
progress up until 1966, see Mardešić (On the Hahn-Mazurkiewicz Problem
in Non-metric Spaces).

A different approach to the proof of the Hahn–Mazurkiewicz theorem is
found in Hall and Spencer (Elementary Topology).

Excellent accounts of the development of the notion of continuous curve
can be found in the book by Hurewicz and Wallman (Dimension Theory)
and the article by Whyburn (What is a Curve?).

Sections 32, 33
The fundamental group was introduced by Poincaré (Analysis Situs;
Cinquième Complément a l’Analysis Situs) around 1900. Hurewicz
(Beiträge zur Topologie der Deformation I–IV) studied the fundamental
group and introduced the higher homotopy group in a series of four papers
in the 1930’s. For more extensive accounts of homotopy theory than we are
able to give, see Hilton (An Introduction to Homotopy Theory), Hu
(Homotopy Theory), Massey (Algebraic Topology: An Introduction) or
Spanier (Algebraic Topology). For applications of homotopy theory to other
branches of topology, see Steenrod (The Topology of Fibre Bundles),



Hurewicz and Wallman (Dimension Theory) or Buseman (The Geometry of
Geodesics).

Section 34
That Π1(S1) is infinite cyclic has been known since the fundamental group
was introduced (see notes, Section 32). The Brouwer fixed-point theorem
was first proved in 1910 by Brouwer (Beweis des Jordanschen
Kurvensatzes). The proof given here is based on the no-retraction theorem
(34.5) due to Borsuk (Sur les Retracts). Brouwer’s theorem can be proved
without the use of algebraic methods. See, for example, Whyburn (Analytic
Topology).

Section 35
Uniform continuity was first defined for real-valued functions defined on
Euclidean spaces by Heine (Über trigonometrische Reihen). Uniform
convergence had been defined earlier by Weierstrass (in unpublished
lectures); see the notes to Section 42. Uniform continuity was defined for
metric spaces by Frechet (Sur Quelques Points du Calcul Fonctionnel) and
Hausdorff (Grundzüge der Mengenlehre) and the fact that continuous
functions on compact spaces are uniformly continuous was implicit in the
work of many who shared in the early development of topology in the
1920’s. It was not until 1937 that Weil (Sur les Espaces a Structure
Uniforme et sur la Topologie Générale) introduced the general notion of a
uniform space. The approach via surroundings (as well as another approach,
see the notes to Section 38) was used by Weil and developed by Bourbaki
(General Topology, Part 1). Another approach, distinct from Weil’s and
Bourbaki’s and much more convenient from a topological point of view,
was developed by Tukey (Convergence and Uniformity in Topology) and is
presented in the next section.

A comprehensive overview of the theory of uniform spaces, including
bibliographical notes (in the preface and at the end of each chapter), can be
found in Isbell (Uniform Spaces).

Section 36



Uniform covers were used as the basis for defining uniform structures by
Tukey (Convergence and Uniformity in Topology). His approach is the
“best” in the eyes of many, in a sense made precise by the following quote
taken from the preface of Isbell’s book on uniform spaces: “. . . in this book,
each system is used where it is most convenient, with the result that Tukey’s
system of uniform coverings is used nine-tenths of the time.”

According to 36.16, every open cover of a paracompact space is a
uniform cover (in the fine uniformity). This does not characterize
paracompact spaces; the spaces it does characterize are described by Cohen
(Sur un Problème de M. Dieudonné) and studied by Mansfield (Some
Generalizations of Full Normality). See also Corson (The Determination of
Paracompactness by Uniformities) and the notes to Section 39.

Section 37
All the results in this section are variants of basic results contained in any of
the three standard monographs on uniform spaces by Weil (Sur les Espaces
à Structure Uniforme et la Topologie Générale), Tukey (Convergence and
Uniformity in Topology) and Bourbaki (General Topology, part 1).

Uniform quotients (37E) are discussed at greater length in Isbell
(Uniform Spaces), together with their generalization, the strong uniformities
(dual to the weak uniformities discussed in the text). Inverse limits of
uniform spaces (37F) are discussed in Bourbaki (General Topology, part 1).

Section 38
The uniform metrization theorem (38.4) was stated in 1923, not in the
language of uniform spaces, by Alexandroff and Urysohn (Une Condition
Nécessaire et Suffisante pour qu’une Classe (ℒ) soit une Classe ( ). Its
statement and proof were simplified by Chittenden (On the Metrization
Problem and Related Problems in the Theory of Abstract Sets) and A. H.
Frink (Distance Functions and the Metrization Problem); Weil, in his 1937
monograph, gives the theorem in the language of uniform spaces. The
approach via uniform covers is, of course, due to Tukey.

The uniformization theorem (38.2) is due to Weil.



Gage structures (38A) were introduced in Weil’s original approach to
uniform spaces.

The argument used to prove that every locally compact group is normal
(38B.2) can be modified to show paracompactness without trouble, using
Michael’s theorem (20.7).

The results given in 38C are the cornerstone results on metrization of
topological groups. 38C.1 is due to Kakutani (Über die Metrisation der
topologischen Gruppen) and Birkhoff (A Note on Topological Groups).
Many other results and examples can be found in Hewitt and Ross (Abstract
Harmonic Analysis I). One fascinating result, due to Hulanicki (On Locally
Compact Topological Groups of Power of Continuum) and Jones (On the
First Countability Axiom for Locally Compact Hausdorff Spaces), is as
follows: a locally compact topological group containing an open set with ℵ1
elements is metrizable.

Section 39
Complete uniform spaces were defined by both Weil and Tukey in their
germinal monographs.

Uniform spaces can be completed in a manner analagous to the process
used to construct metric completions in Section 24 by turning to Cauchy
filters; see Bourbaki (General Topology, Part 1) and Exercise 39F. Our
approach is that of Kelley (General Topology) and Isbell (Uniform Spaces).

Kelley (General Topology) raised the question of whether a space X
which is completely uniformized (39B) by the family of all open covers (or
the family of all nhoods of the diagonal, if you wish) is necessarily
paracompact. Corson (Normality of Subsets in Product Spaces) provided a
counterexample and, by adding another condition (The Determination of
Paracompactness by Uniformities) achieved a characterization of
paracompactness. See also the notes to Section 36. Later Tamano showed
Corson’s extra condition was by itself necessary and sufficient for
paracompactness. See Section 21 and the notes.

The example alluded to in the first part of 39C, of a uniformly open,
uniformly continuous map of a complete space onto a noncomplete space,
can be found in Köthe (Die Quotientenräume eines linearen vollkommenen



Räumes, p. 33). The proof of the result in the second part is difficult with
the information available; it is developed in Kelley (General Topology).

For further discussion of the hyperspace (39D) of a uniform space, see
Isbell (Uniform Spaces). The filter approach to completeness and
completion (39F) is employed in Bourbaki (General Topology, Part 1).

One of the deepest theorems available to date in uniform spaces would
appear in this section if there were space to develop it. It is due to Shirota
(A Class of Topological Spaces) and says: a Tychonoff space in which every
closed discrete subspace has nonmeasurable cardinal is completely
uniformizable iff it is realcompact (17H). So far, the theorem can be used
without the cardinality restriction, since every cardinal number known to
man is nonmeasurable. For a discussion of measurable cardinals and
realcompactness and a development of Shirota’s theorem, see Gillman and
Jerison (Rings of Continuous Functions).

Section 40
Although it had been suggested as early as 1908 by Riesz (Stetigkeitsbegriff
und abstrakte Mengenlehre), and the idea was revived in 1941 by Wallace
(Separation Spaces), the theory of proximity had its real beginning with
Efremovic (The Geometry of Proximity I) in 1952, and was developed
thereafter by several authors (largely in the Soviet Union), notably Smirnov
(On Proximity Spaces; On Proximity Spaces in the Sense of V. A.
Efremovic; On Completeness of Proximity Spaces I, II; On the Dimension of
Proximity Spaces). Expository accounts appear in books by Thron
(Topological Structures) and Csaszar (Fondements de la Topologie
Générale); the latter book is concerned with providing a common axiomatic
scheme for topology, uniformity and proximity structures.

Our account of proximity structure here has been heavily influenced by a
reading of notes compiled by A. H. Stone for lectures given at the
University of Rochester in 1967.

For comments on the relationship between proximity structures and
totally bounded uniform structures, see the notes to Section 41.

The reference in the last paragraph of 40F is to Dowker (Mappings of
Proximity Spaces). For results of metrization of proximity spaces, see
Leader (Metrization of Proximity Spaces).



Section 41
The equivalence of proximity structures on X, totally bounded uniform
structures on X and compactifications of X was developed by Smirnov (On
Proximity Spaces in the Sense of V. A. Efremovic; On Proximity Spaces). A
recent account of the direct relationship between totally bounded
uniformities and proximities is found in Gál (Proximity Relations and
Precompact Structures). See also Alfsen and Fenstad (On the Equivalence
between Proximity Structures and Totally Bounded Uniform Structures).
The direct relationship between proximity structures and compactifications
(without the intermediate use of uniform structures) is developed in Leader
(On Clusters in Proximity Spaces; On Completion of Proximity Spaces by
Local Clusters).

Other recent references include Alfsen and Njastad (Proximity and
Generalized Uniformity) and Smirnov (Proximity and Construction of
Compactifications with Given Properties).

The Freudenthal compactification (40B) is treated in Isbell (Uniform
Spaces).

Spaces with a unique uniformity (41F) were studied by Doss (On
Uniform Spaces with a Unique Structure).

Section 42
The study of pointwise convergence of (sequences of) functions is as old as
the calculus. The study of uniform convergence began hard on the heels of
the formalization of the notion of limit by Cauchy (Cours d’Analyse de
l’École Royale Polytechnique) in 1821. It was motivated by an example of
Abel (Untersuchen über die Reihe 1 + [m/1]x + [m(m–1)/2]x2 + [m(m–1)
(m–2)/(2 ⋅ 3)]x3 +

. . . u.s.w.) showing that pointwise convergence of continuous functions
to a function f was not enough to ensure continuity of f, as Cauchy had
assumed in 1821. Seidel (Über eine Eigenschaft der Reihen welche
Discontinunliche Functionen Darstellen), in an 1848 paper, first showed
(without naming it) that uniform convergence was what had been lacking.
In the last half of the 19th century, in the hands of Heine, Weierstrass,



Riemann and others, uniform convergence came into its own in applications
to integration theory and Fourier series.

The study of sets, or spaces, of functions began with the work of Ascoli
(Le Curve Limite di una Varieta Data di Curve), Arzela (Funzioni di Linee)
and Hadamard (Sur Certaines Applications Possibles de la Théorie des
Ensembles). These papers mark the beginning, not only of function space
theory, but of general topology itself, for it was the questions which they
raised that men like Frechet, Riesz, Weyl and finally Hausdorff (see notes,
Section 3) were trying to answer.

Coherent attempts to study topologies on spaces of functions in their own
right began in 1935 with Tychonoff (Über einen Funktionenraum), who
pointed out that his product topology (see notes, Section 8) on YX is just the
topology of pointwise convergence. The term function space is used much
earlier in connection with questions of a topological nature about sets of
functions; see, for example, Birkhoff and Kellog (Invariant Points in
Function Spaces), but I can find no earlier work which explicitly refers to a
function space as a set of functions with a given topology. The uniformities
of pointwise and uniform convergence were first explicitly defined by
Tukey (Convergence and Uniformity in Topology).

The result of 42D is due essentially to M. and S. Krein (On an Inner
Characteristic of the Set of All Continuous Functions Defined on a
Bicompact Hausdorff Space).

Section 43
The compact-open topology was first systematically defined and studied by
Fox (On Topologies for Function Spaces) and Arens (A Topology for Spaces
of Transformation s). Most of the basic results in this section, including the
description of the compact-open topology as the topology of compact
convergence, can be found in these papers.

Ascoli’s theorem (43.15) is a generalization of Arzela’s theorem (43E):
the latter was proved by Ascoli (Le Curve Limite di una Varieta Data di
Curve) in 1883 and Arzela (Sull’ Integrabilita delle Equazioni Differenziali
Ordinarie) in 1895. Custom recognizes the priority of Ascoli by assigning
his name to the general version of the theorem. The form of Ascoli’s
theorem we give here is due to Gale (Compact Sets of Functions and



Function Rings); he improved an earlier general version of Ascoli’s
theorem given by Myers (Equicontinuous Sets of Mappings), which
involves spaces of functions from a locally compact or first-countable space
X to a metric space Y.

Joint continuity (43F) is studied in the papers of Fox and Arens cited
above; Arens’ paper also contains the theorem (43G.3) on metrizability of
C(X). Other results relating on properties of C(X) with the compact-open
topology to properties of X can be found in Nachbin (Topological Vector
Spaces of Continuous Functions), Shirota (On Locally Convex Vector
Spaces of Continuous Functions), and Warner (The Topology of Compact
Convergence on Continuous Function Spaces).

Spaces with compactly generated topologies (43.8, 43H) were considered
in 1939 by Whitehead (Simplicial Spaces, Nuclei and m-groups). They were
used in the study of function spaces by Gale in the paper cited above, where
the name k-space first appears (he attributes it without reference to
Hurewicz). Results on products of k-spaces (43H.2) can be found in
Dowker (Topology of Metric Complexes ) where two k-spaces are produced
whose product is not a k-space, Cohen (Spaces with Weak Topology) where
it is shown that a product of a locally compact Hausdorff space and a k-
space is a k-space, and Michael (A Note on the Product of k-spaces) where
it is shown that Cohen’s result is the best possible. The result 43H.3 is due
to Cohen (Spaces with Weak Topology).

Other references on k-spaces and function spaces include Mrowka (On
Function Spaces), Brown (Function Spaces and Product Topologies),
Weston (A Generalization of Ascoli’s Theorem), Bagley and Yang (On k-
spaces and Function Spaces), Poppe (Stetige Konvergenz und der Satz von
Ascoli und Arzela) who gives a survey of known Ascoli-type theorems, and
Noble (k-Spaces) who surveys and extends many of the results on k-spaces
known up until 1967.

The exponential law (431) and its application to the higher homotopy
groups of Hurewicz was developed by Jackson (Spaces of Mappings on
Topological Products with Applications to Homotopy Theory).

Section 44



Theorem 44.6 was proved in 1885 by Weierstrass (Über die analytische
Darstellbarkeit sogenannter willkürlicher Functionen reeller Argumente).
For comments on his method of proof, see Hewitt and Ross (Abstract
Harmonic Analysis I, p. 281). Another popular method of proof relies on
Fejer’s theorem on summation of Fourier series; see Sz.-Nagy (Introduction
to Real Functions and Orthogonal Expansions, p. 430), or Apostol
(Mathematical Analysis, p. 481). Yet another popular proof uses an
interpolation formula due to Bernstein (Demonstration du Théorème de
Weierstrass Fondée sur le Calcul des Probabilités), and can be found in
McShane and Botts (Real Analysis). For other proofs, see Fejer (Über
Weierstrassche Approximation, besonders durch Hermitesche
Interpolation), Royden (Real Analysis, p. 313) and De Branges (The Stone–
Weierstrass Theorem).

The Stone–Weierstrass theorem (44.5, 44.7) was first proved by M. H.
Stone (Applications of the Theory of Boolean Rings to General Topology).
See also Stone (The Generalized Weierstrass Approximation Theorem).

The approximation theorem in 44A was published by Hewitt (Certain
Generalizations of the Weierstrass Approximation Theorem). The
approximation theorem 44C.6 is due to Mrowka (Some Approximation
Theorems for Rings of Unbounded Functions). M. Jerison has been credited
with 44D.3 by Henriksen and Johnson (in the paper cited below). The result
in 44D.4 was proved by Mrowka in the paper above, after Isbell (Algebras
of Uniformly Functions) had proved it for X locally compact and σ-
compact. It is interesting to note that Hager and Johnson (A Note on Certain
Subalgebras of C(X)) have shown that parts 4 and 5 of 44D cover the
ground completely. That is, if C(X) is the only star subalgebra of C(X)
which separates points and closed sets, then either X is Lindelöf or |βX–X| ≤
1.

Stone–Weierstrass methods were introduced as a means of characterizing
certain algebras as algebras of continuous functions by Anderson and Blair
(Characterizations of the Algebra of all Real-valued Continuous Functions
on a Completely Regular Space; Characterizations of Certain Lattices of
Functions). Later work has been done by Henriksen and Johnson (On the
Structure of a Class of Archimedean Lattice-ordered Algebras), Anderson
(Approximation in Systems of Real-valued Continuous Functions) and
Jensen (A note on Complete Separation in the Stone Topology). For a



somewhat different point of view on function algebras (including the
complex-valued case) see Browder (Introduction to Function Algebras) or
the survey article by Royden (Function algebras).

44E.1 is stolen from Rudin (Principles of Mathematical Analysis).
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cut points of
cuttings of
examples of
examples of dis-
groups as
intersections of
limit of
υs. locally connected
nhood base consisting of
non-cut point of
ordered space as
υs. pathwise connected
product of



R as
simple chain in
as subspace
union of
use of

continuous functions

algebras of
approximated by polynomials
are bounded
characteristic functions as
υs. closed map
composition of
are constant
dense subset determines
extension of
filter convergence and
homotopy of
υs. homotopy homomorphism
iff.8
infimum of several
on metric space
net convergence and
on normed linear space
υs. open map
piecewise definition of
into product space
υs. proximity map
on quotient space
range of
restriction of
separate closed sets
separate points

separate points from closed sets

sequential convergence and
supremum of several

on topological space
υs. uniformly continuous
 
 
into weak topology

continuous map

of inverse limit sequence
of topological pair
of topological space
see also continuous function

continuum



characterizations
closed sets in
component of
composant of
of convergence
cutting of
examples of
I as
indecomposable
intersection of
irreducible
υs. locally connected
S1 as
subcontinua of

continuum hypothesis In

υs. Dowker’s conjecture
υs. sequential compactness
υs. Souslin’s hypothesis

contractible space

examples
iff
is pathwise connected

contractive map
convergence

characterizes topology
of filters
of nets
of sequences
to unique limit
of subnet
of subsequence
see also filter convergence, net convergence, sequential convergence

convex set
countable ordinal
countable set
countable chain condition

υs. caliber
in products
υs. separable

countable dense sybsystem
countable intersection property
countably compact spaces

C(X) and C*(X) for
cluster points in
υs. compact
continuous images of



examples of
υs. first countable
iff
and Lindelöf
and metacompact
metric spaces as
υs. normal
product of
are pseudocompact
υs. sequentially compact
sequences converge in
subspaces of

countably paracompact space
covers

intersection of
traces of
see also open cover, locally finite cover, refinement, star-refinement, etc.

covering
covering projection
covering space
covering uniformities

base for
υs. diagonal uniformity
examples of
fine uniformity as
gage of
metrizable
on product
separating
subbase for
on subspace
topology generated by
see also diagonal uniformity, uniform space, uniformities

cube

sequential compactness in
subspaces of

cut point
cutting

D (disk) has fixed-point property
D(f)
δ-isomorphism
δ-map
δ-nhoods
decomposable continuum
decomposition

finite



upper semicontinuous
decomposition map

as closed map
as quotient map

decomposition space

υs. identification space
υs. quotient space
see also quotient space

Dedekind complete (ordered space)
deformable
deformation

υs. deformation retract
deformation retract

homotopy type of
iff
υs. retract
υs. weak deformation retract

deformation retraction

υs. retraction
υs. weak retraction
see also deformation retract

degree of f
De Morgan’s laws
dense set

in compact space
continuous function determined on
υs. closed discrete set
is countable
in H-closed space
is Lindelöf
in normal space
in paracompact space
in product space
in realcompact space

denumerable set
denumerable at infinity
derived set
derived sequence
developable space
development
diagonal (in X x X)
diagonal uniformities

bases for
Cauchy nets in



υs. covering uniformities
examples of
fine uniformities as
υs. gage structures
metrizable
on product
separating
subbase for
on subspace
see also covering uniformities, uniformities

diameter of a set
differentiable manifold
dim X
dimension of Banach space
dimension theory
direct topology
directed set
direction (order)
disconnected

see also connected spaces
discrete collection or cover
discrete metric
discrete proximity
discrete topological spaces

continuous functions on
product of
as subspace
υs. totally disconnected
uniformities for

discrete uniformity
disjoint union metrizability of
disk

see also D
distance between sets
distance function
distributive lattice
distributive law for sets
domain of a function
double of a space
Dowker’s conjecture
Dowker space
dual space
duality theorem (Pontrjagin)

E

see also Sorgenfrey line
E(a, b)



element of a set
elementary proximity
embedding

evaluation as
empty set
ε-disk

as open set
equicontinuous family
equipotent sets
equivalence class
equivalence relation

components given by
homotopy as
in proximity space
in pseudometric space
quasicomponents given by
for T0-space

equivalent compactification
equivalent metric
equivalent norms on Banach space
equivalent uniform structures
evaluation map

as embedding
eventually
exponential law
extension of continuous functions

to βX
on closed set
to Gδ-set
in metric spaces
on Ω0
in normed linear space
on retracts
to Wallman compactification

extension of homeomorphisms
extension of metrics
extension of uniformly continuous functions
extremally disconnected space

Fσ-set

f#
factor space
family
filter



base for
Cauchy
closed
cluster point of
convergence of
with countable intersection property
υs. finite intersection property
image of
lattice of
maximal
υs. net
open
prime
of zero sets
see also closed filters, open filters, z-filters, ultrafilters

filter convergence

continuity described by
υs. net convergence
in product
topology described by
to unique limit

fine proximity

gives compactification
fine space
fine uniformity

C(X) does not generate
completeness of

finer filter
finer proximity
finer topology

see also stronger topology
finite character
finite decomposition
finite-dimensional map
finite intersection property
first category
first countable space

and countably compact
υs. every point a Gδ
is k-space
υs. semimetrizable
and separable
sequential convergence in
and sequentially compact

fixed filter
fixed points



for continua
for contractive map
for f : D → D,
for f : I → I,
retracts and

Frechet filter
Frechet space

see also Rℵ0
free filter
free union

see also disjoint union
Freudenthal compactification
frequently
Frink’s metrization theorem
frontier

empty
nhoods describe
of open set
in product
in R2
in subspace
topology described by

function

characteristic
continuous
inverse of
one-one
onto
semicontinuous
uniformly continuous
see also continuous function, mapping

function space

examples
functionally Hausdorff space
fundamental group

of S1

Gδ-closed set
Gδ-set

in βX
closed set as
in compact space
in complete space



extending function to
extending homeomorphism to
extending metric to
point as

gage structure
Γ

see also Moore plane
general metrization theorem
generalized Hilbert space
group

fundamental
of homeomorphisms
homotopy
topological

H (real Hilbert space)

complete
υs. Hilbert cube
as lP-space
not locally compact
metrics for

υs. Rℵ0
separable

Hτ (generalized Hilbert space)
H-closed spaces

dense subset of
υs. minimal Hausdorff
and semiregular

H-closure
Hahn-Banach theorem
Hahn-Mazurkiewicz theorem
Hausdorff criterion
Hausdorff metric

completeness of
υs. hyperspace
uniformity generated by

Hausdorff spaces

closed continuous images of
closed subsets of
compact subsets of
continuous images as
 
 
convergence in



examples of
examples of non-
as maximal compact
open continuous images of
product of
quotients of
υs. semiregular
υs. separated proximity
υs. separated uniformity
subspaces of
υs. Urysohn spaces

Hausdorff topologies

intersection of
hedgehog metric
hemicompact spaces
hereditarily Lindelöf space
Hewitt realcompactification
higher homotopy groups
Hilbert cube
Hilbert space (abstract)
Hilbert space (generalized)
Hilbert space (real)

see also H
homeomorphisms

as closed maps
on compact space
extension of
on extremally disconnected space
group of
one-one continuous functions as
as open maps
order isomorphisms as
piecewise definition of
υs. p-isomorphism
of product
of subsets of R
υs. uniform isomorphisms

homogeneous space, Cantor set as
homotopic maps

composition of
all maps are iff

homotopically equivalent spaces

arcwise connected spaces as
deformation retracts as
fundamental groups of
higher homotopy groups of



iff
subspace as

homotopically equivalent topological pairs
homotopy

as equivalence relation
examples.2
of loops
of pair-maps
in products
in subspaces

homotopy class

as path component in C(X, Y)
homotopy equivalence
homotopy extension property
homotopy group

fundamental
higher
see also fundamental group, higher homotopy groups

homotopy inverse
hyperloop
hyperspace

completeness of

I (closed unit interval)

not βX
compact
connected
continuous image of
as continuum
as factor in normal product
not homeomorphic to S1
product of
usual metric on

identification space

examples
as metric space
as separated proximity space
as T0-space

identity map

homotopy of
inclusion map
Ind X,
ind X,
indecomposable continuum



induction

transfinite
inner product space
interior

υs. closure
examples
υs. frontier
nhoods describe
in product
in subspace
topology given by

intersection

of covers
as inverse limit
of Hausdorff topologies
of topologies
of uniformities

invariance of domain
inverse-closed subalgebra of C(X)
inverse limit sequence

of uniform spaces
inverse limit space
inverse limit spectra
image (of function)
irreducible continuum
irreducible subcover
isolated point
isometric spaces
isometry

examples of
jointly continuous
 
 
K (Knaster-Kuratowski space)
k-space

continuous function on
first countable space is
υs. locally compact
subspace of

k-topology

see also compact-open topology
Klein bottle
Kuratowski closure operation



L (looped line)
lP-space
ΛX (cone over X)

extension of function to
largest element
lattice

of filters
of topologies
of uniformities

lattice complete
Lavrentieff’s theorem
Lebesgue covering lemma
Lebesgue number
left homotopy inverse
left uniformity
lexicographic order
limit of sequence of sets
limit ordinal
Lindelöf spaces

accumulation points in
βX for
C(X) for
υs. compact
continuous images of
and countably compact
as dense subspaces
embedding of
embedding in
examples of
examples of non-
hereditarily
iff
υs. metrizable
υs. normal
open covers in
υs. paracompact
product of
σ-compact spaces are
υs. second-countable
υs. separable
Stone-Weierstrass type theorem for
subspaces of
is z-embedded

linear functional
linear operators

space of



linear topological space
linearly ordered set
local homeomorphism
locally compact spaces

υs. Baire property
closed images of
υs. compact
in compact spaces
compactifications of
continuous images of
as dense subsets
examples of
examples of non-
groups as
and Hausdorff
iff
υs. k-spaces
open images of
product of
proximities on
quotients of
υs. rim-compact
is second category
subspaces of
is Tychonoff
uniformities on

locally connected spaces

and compact
υs. connected
υs. connected im kleinen
continuous image of
continua as
examples of
examples of non-
and metrizable
product of
υs. property S
quotients of
υs. uniformly locally connected

locally convex
locally finite collection or cover

of closed sets
and closure
extends into βX
of metrizable sets
of open sets
υs. point finite
as refinement



locally finite partition of unity
locally metrizable space
locally pathwise connected spaces
locally peripherally compact space

see rim-compact space
loop based at x0
loop homotopic
looped line (L)
lower semicontinuous function

m (sequence space)
M (Moebius strip)
manifold
mapping

compact
finite-dimensional
of inverse limit sequence
of pointed spaces
of topological pairs
see also function, continuous function

maximal compact space
maximal element
maximal filter
meets
metacompact space
metrics

bounded
collection of
complete
discrete
equivalent
extension of
examples of
Hausdorff
υs. norms
on subspace
topologies generated by
usual
uniformities generated by
see also metric space, metrizable space

metric identification
metric space

closed set in
closure in
completion of
υs. metrizable space
open set in



as topological space
in Tychonoff space
as uniform space
see also metrics, metrizable space

metric-absolute retract
metrizable proximity space
metrizable topological space

base for
βX as
C(X) as
closed image of
compact
is completely normal
is completely uniformizable
and connected
continuous image of
countably compact
development in
examples of
examples of non-
υs. first-countable
function space as
group as
in Hilbert cube
iff
Lindelöf
and locally connected
manifold as
υs. metric space
nhoods in
one-point compactification as
υs. paracompact
is perfectly normal
product of
quotient of
second-countable
separable
subspace of
is T4
is Tychonoff
see also metric, metric space

metrizable uniform space

examples of
examples of non-
hyperspace as
υs. metrizable topology
product of
subspace of



metrization theorem

Alexandroff-Urysohn
Frink’s
general
nhood
piecewise
uniform
Urysohn

middle-third set

see also Cantor set
minimal element
minimal Hausdorff space
Moebius strip

see also M
Moore plane (Γ)

properties of
subspaces of

Moore space
mutually separated sets

N (positive integers)

character group of
as directed set
υs. P
product of
as well-ordered set

n-manifold
natural map

see also decomposition map
neighborhood

see also nhood
Nemitskii plane

see also Moore plane
net

based on filter
Cauchy
cluster point of
convergence of
filter given by
subnet of
universal
see also net convergence

net convergence



closure described by
continuity described by
examples
υs. filter convergence
in function spaces
in product space
topology described by
in uniform space
to unique limit

nhoods

base for
closed sets described by
closure described by
and comparison of topologies
examples
frontier described by
interior described by
in metric space
open sets described by
properties of
in proximity space
in subspace
topology described by
in uniform space
see also nhood base

nhood base

υs. base for topology
of closed sets
of compact sets
of connected sets
countable
examples
in metrizable space
of pathwise connected sets
in subspace
in uniform space
of zero sets

nhood finite collection or cover

see also locally finite
nhood metrization theorem
nhood system

is filter
see also nhood, nhood base

no-retraction theorem
non-cut point
 
 



nonlimit ordinal
norm

equivalent
normal cover
normal family of covers
normal sequence of covers
normal space

absolute retract for
υs. compact
continuous image of
and countably compact
υs. countably paracompact
dense set in
examples of
examples of non-
iff
Lindelöf space is
and Moore space
open cover of
υs. paracompact
product of
and pseudocompact
υs. regular
retract in
υs. separable
subspace of

normally open cover
normed linear space

as Banach space
dual space of
extension of functions in
linear operator on
as linear topological space

nowhere dense set.
null-homotopic map

ω0 (first infinite ordinal)
ω1 (first uncountable ordinal).
Ω (ordinal space)

as βΩ0
compact
not connected
convergence in

Ω0 (ordinal space)

βX for



not compact
not connected
countably compact
normal
not paracompact
not separable
sequentially compact

one — one function

on compact space
one-point compactification

examples
metrizability of

onto function

on compact space
open cover

has barycentric refinement
has countable subcover
has finite connected refinement
has finite dense subsystem
has finite subcover
has irreducible subcover
has locally finite refinement
has point finite refinement
is shrinkable
has simple chain
has σ-locally finite refinement
has star-refinement

open filter
open map
open mapping theorem
open sets

base for
as closed sets
frontier of
intersection of
in metric space
nhoods describe
in product
in quotient
in R
regular
saturated
in subspace

open ultrafilter
order isomorphism
order relation



generates topology
ordered n-tuple
ordered pair
ordered space

compact
compactification of
connected
continuum as
countable
countable chain condition in
Dedekind complete
examples
homeomorphism of
isomorphism of
lattice complete
Q as
separable
subspace of
as T4-space

ordinal
orthogonal
orthonormal system
oscillation of function

P (irrationals)

as Baire space
completely metrizable
not locally compact
υs. N
υs. normal product
υs. paracompact product
as product space
totally disconnected
usual metric on
zero-dimensional

p-cover
-filter

p-isomorphism
p-map
p-nhoods
p-refinement
paracompact space

βX for
closed image of
υs. compact
is completely uniformizable
continuous image of
dense Lindelöf subspace of



examples of
examples of non-
fine uniformity on
iff
υs. Lindelöf
υs. metrizable
υs. normal
open cover of
open image of
partition of unity on
product of
υs. separable
subspaces of

partition
partition of unity
path
path components
pathwise connected space

iff arcwise connected
υs. connected
continuous image of
examples of
examples of non-
fundamental group of
iff
υs. locally pathwise connected
nhoods as
products of
as subset
subspace of

Peano space
perfect mapping
perfect set
perfectly normal space

is countably paracompact
υs. metrizable
product of

Π1 (X)
Π1(X) see also fundamental group
Picard’s theorem
plane continuum problem
point
point-finite collection or cover
pointed space
pointwise convergence

see also pointwise topology, pointwise uniformity
pointwise topology



see also product space
pointwise uniformity
polynomials, dense in C[a, b]
Pontrjagin duality theorem
power set
precompact

see also totally bounded
predecessor
prime filter
product proximity space
product of sets
product of topological groups
product of topological spaces

υs. axiom of choice
closure in
cluster points in
continuous function to
disjoint union as
filter convergence in
frontier in
as function space
homeomorphism on
interior in

net convergence in
nhoods in
υs. product proximity
υs. product uniformity
properties of
υs. quotient space
R is not
sequential convergence in
υs. weak topology
product of uniform spaces

υs. product proximity
projection maps determine product topology
projective space
proper partition
property S
proximity isomorphism
proximity map
proximity nhoods
proximity relations

coarser
coarsest
υs. compactifications
discrete
elementary



examples
family of
fine
finer
inf of
metrizable
p-nhoods determine
on product
on quotient
on subspace
sup of
topology induced by
υs. totally bounded uniformity
trivial
uniformizable
unique

proximizable topological space
pseudocompact space
pseudometric

is metric when topology is T0
see also metric, metric space

pseudometrizable proximity space
pseudometrizable topological space

see also metrizable space
pseudonormed linear space see also normed linear space

Q (rationals)

not completely metrizable
components of
not locally compact
as ordered space
totally disconnected
usual metric on
zero-dimensional

quasicomponent
quotient group
quotient map
quotient proximity
quotient topology

closed map and
continuous functions on
as decomposition topology
examples of
as identification topology
open map and
υs. product spaces
υs. quotient uniformity



on subspace
quotient uniformity

R (real line)

as absolute retract
cardinality of
character group of
not compact
compact subsets of
compactification of
connected
embedding in
locally compact
as metric space
open sets in
as ordered space
product of
not product space
υs. Rn
subsets of
topologies for
usual metric on
usual topology on
usual uniformity on
see also Rn

(Frechet space)
Rn (Euclidean n-space)

as absolute retract
as Banach space
compact subsets of
connected
connected set in
convex set in
equivalent norms on
homotopic maps on
locally compact
as metric space
as normed linear space
is pathwise connected
υs. R
as topological space
usual metric on
usual topology on

R2,

connected set in
continuous functions and



as metric space
see also Rn

radial plane

properties of
subspaces of

radially open set
range (of function)
rational function
realcompact spaces
realcompactification
refinement
refines
reflexive relation
regular space

closed image of
υs. compact
compact subsets of
υs. completely regular
examples of
examples of non-
υs. Lindelöf
υs. normal
υs. paracompact
υs. semiregular
subset of
υs. Urysohn space

regularly closed sets

in H-closed space
regularly open sets

as base
in linear topological space

relation
relative homotopy
relative proximity
relative topology

υs. metric on subspace
υs. relative proximity
υs. relative uniformity
see also subspace

relative uniformity

υs. relative proximity
υs. relative topology

relatively discrete space
residually
retract



υs. deformation retract
and extension of functions
and fixed-point property
fundamental group of
and homotopy extension property
product of
υs. weak retract
see also retraction

retraction

and deformation
υs. deformation retraction
induces homotopy epimorphism
υs. weak retraction
see also retract

Riemann metric
right homotopy inverse
right uniformity
rim-compact space
ring of functions, see C(X)*(X)
Russell’s paradox

S (scattered line)
S1 (unit circle)

as compactification of R
as continuum
fundamental group of
υs. I,
as identification space
product of
not retract of disk
υs. Sn

Samuel compactification
saturated open set
scattered line
scattered set
second category space

υs. completely metrizable
iff
υs. locally compact
υs. σ-compact
subspace of

second-countable space

cardinality of topology
continuous image of
examples of
examples of non-



υs. first countable
is hereditarily Lindelöf
υs. Lindelöf
υs. metrizable
product of
quotient of
υs. separable
subspace of

semicontinuous function

see also upper-semicontinuous, lower-semicontinuous
semimetric
seminormal space
semiregular space

and H-closed
linear topological space as
υs. minimal Hausdorff
υs. Urysohn space

separable space

Banach space as
C(X) for
caliber of
cardinality of
continuous image of
υs. countable chain condition
discrete subset of
examples of
examples of non-
and first countable
iff
υs. Lindelöf
υs. metrizable
υs. normal
υs. paracompact
product of
and regular
υs. second countable
subspace of

separated proximity space
separated uniform space

υs. Hausdorff topology
υs. separated proximity space

separates (for cut points)
separates closed sets
separates points
separates points from closed sets
separates zero-sets
separation axioms



see also T0, T1, T2, T3, T4, regular completely regular, Tychonoff, normal, semiregular,
Urysohn space, completely Hausdorff, compact sets behave like points

separation identification (on proximity space)
separation order
sequence

has Cauchy subsequence
has cluster points
converges iff constant
convergence of
has convergent subsequence
spaces of
subnet not subsequence

sequential convergence

continuity and
describes topology
examples of
fails to describe topology
implies constant sequence
in metric space

sequentially compact spaces
set
shrinkable cover
Sierpinski space
σ-compact spaces
σ-locally finite collection or cover
simple chain

of connected sets
simple extension of a topology
slotted plane

properties of
subspaces of

smallest element
Sorgenfrey line (E)

properties of
Souslin hypothesis
space
star
star-refinement
star subalgebra (of C(X))
Stone — Čech compactification

cardinality of
characterization of
closures in
of complete metrizable space
continuous function on



of discrete space
examples of
extension in
extremally disconnected
as factor space
filters describe
Gδ in
of Lindelöf space
not metrizable
of normal space
of paracompact space
of product
vs. realcompactification
vs. Samuel compactification
subsets of
as Wallman compactification

Stone-Weierstrass theorem

for noncompact X,
use of

strong topology
stronger topology

in terms of nhoods
subbase for covering uniformity

for weak uniformity
subbase for diagonal uniformity
subbase for topology

compactness in terms of
examples
for product topology
for weak topology

subcover
subnet

cluster point of
convergence of
of sequence

subordinated partition of unity
subset
subspace

continuous function on
examples
of metrizable space
of ordered space
of product
υs. quotient
of uniform space



υs. weak topology
see also relative topology, relative uniformity

successor
sup metric

see also uniform metric
surroundings
suspension
symmetric relation
symmetric sets

T (Tychonoff plank)
T*
T0-identification

υs. separation identification
T0-space
T1-space

evaluation map on
υs. maximal compact

T2-space

see also Hausdorff space
T3-space

closed image of
examples of
examples of non-
υs. normal
open image of
product of
quotient of
subspace of
not Tychonoff
υs. Urysohn space
see also regular space

T4-space

absolute retracts in
ANR’s in
closed image of
continuous function on
examples of
examples of non-
iff
metrizable space as
open image of
ordered space as



υs. perfectly normal
product of
quotient of
retracts in
subspace of.
υs. Tychonoff space
see also normal space

taxi-cab metric
Tietze’s extension theorem

in normed linear space
topological group

character group of
connectivity properties
υs. linear topological space
metrization of
separation axioms for
uniformities on

topological pair
topological space

cone over
continuous function on
double of
homeomorphism of
product of
quotient of
subspace of
suspension of
see also topology

topologically complete space
topologist’s sine curve

see also V
topology

base for.1
closed sets describe.
closure describes.
examples of.

filter convergence describes.
frontier describes, ln
on function space,
interior describes.
intersection of
on metric space.
net convergence describes.
nhoods describe.
order generates



on product.
on proximity space.
on pseudometric space.
on quotient.
relative.
sequential convergence and.
subbase for.
on subspace.
on uniform space.
union of
usual (on R”).
see also topological space

topology of compact convergence.

see also compact-open topology
topology of pointwise convergence.

see also pointwise topology
topology of uniform convergence
torus
totally bounded metric space
totally bounded uniform space,

as dense subset,
product of
υs. proximity

totally disconnected spaces

compact,
continuous image of
υs. discrete space
examples of
group as
as inverse limit space
metrizable
perfect
product of
subspace of
υs. zero-dimensional

totally ordered set, see linearly ordered set
trace of a cover
transitive relation
translation between nets and filters
triangle inequality
trivial proximity
trivial pseudometric
trivial topology
trivial uniformity
Tukey’s lemma
Tychonoff plank
Tychonoff space



cardinality of
closed image of
embedded in compact space
 
 
examples of
examples of non-
group is
υs. Hausdorff
linear topological space is
metrizable space is
product of
quotient υs. 14.11
subspace of
υs. T3-space
υs. T4-space
see also completely regular

Tychonoff theorem

and axiom of choice
Tychonoff topology

see also product of topological spaces

ultrafilter

must converge
ultranet

υs. filter
must converge

uniform boundedness principle
uniform convergence,

topology of
uniformity of
see also topology of uniform convergence, uniformity of uniform convergence

uniform covers

approximation by metrics
by closures
open covers are base
uniformity described by
see also covering uniformity

uniform equivalence

see also uniform isomorphism
uniform isomorphism

υs. homeomorphism
υs. p-isomorphism



uniform metric

see also sup metric
uniform quotient
uniform space

completion of
embedded in pseudometric product
see also uniformities

uniform subspace see also relative uniformity
uniform topology
uniformities

bases for
Cauchy net in
C(X) generates
coarsest
complete
covering
diagonal
discrete
examples of.
fine
on function spaces
gage structures give
on group
intersection of
lattice of
metrizable
on product
proximities induced by
pseudometrizable
on quotient
relative
separating
subbases for
on subspace
topologies induced by
totally bounded
trivial
union of
unique
weak
see also covering uniformity, diagonal uniformity

uniformity of compact convergence
uniformity of pointwise convergence

see also pointwise uniformity
uniformity of uniform convergence
uniformity of uniform convergence on compacta



see also uniformity of compact convergence
uniformizable space

υs. proximizable
uniformly Cauchy net
uniformly continuous function

υs. continuous
piecewise definition of
υs. proximity map
on totally bounded space

uniformly continuous linear operator
uniformly locally arcwise connected space
uniformly locally connected space
uniformly open map
union
unique proximity
unique uniformity
universal net

see also ultranet
upper semicontinuous decomposition
upper semicontinuous function
υX
Urysohn function
Urysohn space
Urysohn’s extension theorem
Urysohn’s lemma
Urysohn’s metrization theorem
usual metric (on Rn)
usual topology (on Rn)
usual uniformity (on R)

V (topologist’s sine curve)

W (long line)
Wallman base
Wallman compactification
Wallman space
weak deformation retract
weak retract
weak retraction
weak topology

C*(X) gives
and lattice of topologies
υs. product topology
on subspace

weak uniformity
weaker topology



on compact space
on H-closed space
nhood description

Weierstrass theorem
well-ordered set

subset of R as

z-embedded
z-filter
z-ultrafilter
Zariski topology
Zermelo’s theorem
zero-dimensional space

examples υs. totally disconnected
zero set

υs. βX
in compact space
as Wallman base

Zorn’s lemma



1  The example referred to by Kelley in a footnote does not work.
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