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PREFACE
 

This book is a systematic exposition of the part of general topology
which has proven useful in several branches of mathematics. It is especially
intended as background for modern analysis, and I have, with difficulty,
been prevented by my friends from labeling it: What Every Young Analyst
Should Know.

The book, which is based on various lectures given at the University of
Chicago in 1946–47, the University of California in 1948–49, and at Tulane
University in 1950–51, is intended to be both a reference and a text. These
objectives are somewhat inconsistent. In particular, as a reference work it
offers a reasonably complete coverage of the area, and this has resulted in a
more extended treatment than would normally be given in a course. There
are many details which are arranged primarily for reference work; for
example, I have taken some pains to include all of the most commonly used
terminology, and these terms are listed in the index. On the other hand,
because it is a text the exposition in the earlier chapters proceeds at a rather
pedestrian pace. For the same reason there is a preliminary chapter, not a
part of the systematic exposition, which covers those topics requisite to the
main body of work that I have found to be new to many students. The more
serious results of this chapter are theorems on set theory, of which a
systematic exposition is given in the appendix. This appendix is entirely
independent of the remainder of the book, but with this exception each part
of the book presupposes all earlier developments.

There are a few novelties in the presentation. Occasionally the title of a
section is preceded by an asterisk; this indicates that the section constitutes
a digression. Other topics, many of equal or greater interest, have been
treated in the problems. These problems are supposed to be an integral part
of the discussion. A few of them are exercises which are intended simply to



aid in understanding the concepts employed. Others are counter examples,
marking out the boundaries of possible theorems. Some are small theories
which are of interest in themselves, and still others are introductions to
applications of general topology in various fields. These last always include
references so that the interested reader (that elusive creature) may continue
his reading. The bibliography includes most of the recent contributions
which are pertinent, a few outstanding earlier contributions, and a few
“cross-field” references.

I employ two special conventions. In some cases where mathematical
content requires “if and only if” and euphony demands something less I use
Halmos’ “iff.” The end of each proof is signalized by . This notation is
also due to Halmos.

J. L. K.
Berkeley, California
February 1, 1955
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Chapter 0
 

PRELIMINARIES
 

The only prerequisites for understanding this book are a knowledge of a
few of the properties of the real numbers and a reasonable endowment of
that invaluable quality, mathematical maturity. All of the definitions and
basic theorems which are assumed later are collected in this first chapter.
The treatment is reasonably self-contained, but, especially in the discussion
of the number system, a good many details are omitted. The most profound
results of the chapter are theorems of set theory, of which a systematic
treatment is given in the appendix. Because the chapter is intended
primarily for reference it is suggested that the reader review the first two
sections and then turn to chapter one, using the remainder of the chapter if
need arises. Many of the definitions are repeated when they first occur in
the course of the work.

SETS

We shall be concerned with sets and with members of sets. “Set,”
“class,” “family,” “collection,” and “aggregate” are synonymous,* and the
symbol ε denotes membership. Thus x ε A if and only if x is a member (an
element, a point) of A. Two sets are identical iff they have the same
members, and equality is always used to mean identity. Consequently, A = B
if and only if, for each x, x ε A when and only when x ε B.

Sets will be formed by means of braces, so that {x: … (proposition
about x) …} is the set of all points x such that the proposition about x is
correct. Schematically, y ε {x: … (proposition about x) …} if and only if
the corresponding proposition about y is correct. For example, if A is a set,
then y ε {x: x ε A} iff y ε A. Because sets having the same members are



identical, A = {x: x ε A}, a pleasant if not astonishing fact. It is to be
understood that in this scheme for constructing sets “x” is a dummy
variable, in the sense that we may replace it by any other variable that does
not occur in the proposition. Thus {x: x ε A} = {y: y ε A}, but {x: x ε A} ≠
{A: A ε A}.

There is a very useful rule about the construction of sets in this fashion.
If sets are constructed from two different propositions by the use of the
convention above, and if the two propositions are logically equivalent, then
the constructed sets are identical. The rule may be justified by showing that
the constructed sets have the same members. For example, if A and B are
sets, then {x: x ε A or x ε B} = {x: x ε B or x ε A}, because y belongs to the
first iff ε A or y ε B, and this is the case iff y ε B or y ε A, which is correct iff
y is a member of the second set. All of the theorems of the next section are
proved in precisely this way.

SUBSETS AND COMPLEMENTS; UNION AND INTERSECTION

If A and B are sets (or families, or collections), then A is a subset
(subfamily, subcollection) of B if and only if each member of A is a member
of B. In this case we also say that A is contained in B and that B contains A,
and we write the following: A ⊂ B and B ⊃ A. Thus A ⊂ B iff for each x it
is true that x ε B whenever x ε A. The set A is a proper subset of B (A is
properly contained in B and B properly contains A) iff A ⊂ B and A ≠ B. If
A is a subset of B and B is a subset of C, then clearly A is a subset of C. If A
⊂ B and B ⊂ A, then A = B, for in this case each member of A is a member
of B and conversely.

The union (sum, logical sum, join) of the sets A and B, written A ∪ B, is
the set of all points which belong either to A or to B; that is, A ∪ B = {x: x ε
A or x ε B}. It is understood that “or” is used here (and always) in the non-
exclusive sense, and that points which belong to both A and B also belong
to A ∪ B. The intersection (product, meet) of sets A and B, written A ∩ B, is
the set of all points which belong to both A and B; that is, A ∩ B = {x: x ε A
and x ε B}. The void set (empty set) is denoted 0 and is defined to be {x: x ≠
x}. (Any proposition which is always false could be used here instead of x ≠
x.) The void set is a subset of every set A because each member of 0 (there
are none) belongs to A. The inclusions, 0 ⊂ A ∩ B ⊂ A ⊂ A ∪ B, are valid
for every pair of sets A and B. Two sets A and B are disjoint, or non-



intersecting, iff A ∩ B = 0; that is, no member of A is also a member of B.
The sets A and B intersect iff there is a point which belongs to both, so that
A ∩ B ≠ 0. If  is a family of sets (the members of  are sets), then  is a
disjoint family iff no two members of  intersect.

The absolute complement of a set A, written ~A, is . The relative
complement of A with respect to a set X is X ∩ ~A, or simply X ~ A. This
set is also called the difference of X and A. For each set A it is true that ~~A
= A; the corresponding statement for relative complements is slightly more
complicated and is given as part of 0.2.

One must distinguish very carefully between “member” and “subset.”
The set whose only member is x is called singleton x and is denoted {x}.
Observe that {0} is not void, since 0 ε {0}, and hence 0 ≠ {0}. In general, x
ε A if and only if {x} ⊂ A.

The two following theorems, of which we prove only a part, state some
of the most commonly used relationships between the various definitions
given above. These are basic facts and will frequently be used without
explicit reference.

1 THEOREM Let A and B be subsets of a set X. Then A ⊂ B if and only if any
one of the following conditions holds:

2 THEOREM Let A, B, C, and X be sets. Then:

(a) X ~ (X ~ A) = A ∩ X.
(b) (Commutative laws) A ∪ B = B ∪ A and A ∩ B = B ∩ A.
(c) (Associative laws) A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A

∩ B) ∩ C.
(d) (Distributive laws) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩

C) = (A ∪ B) ∩ (A ∪ C).
(e) (De Morgan formulae) X ~ (A ∪ B) = (X ~ A) ∩ (X ~ B) and X ~ (A

∩ B) = (X ~ A) ∪ (X ~ B).



PROOF Proof of (a) : A point x is a member of X ~ (X ~ A) iff x ε X and 
. Since  iff  or x ε A, it follows that x ε X ~ (X ~ A) iff

x ε X and either  or x ε A. The first of these alternatives is impossible,
so that x ε X ~ (X ~ A) iff x ε X and x ε A; that is, iff x ε X ∩ A. Hence X ~ (X
~ A) = A ∩ X. Proof of first part of (d): A point x is a member of A ∩ (B ∪
C) iff x ε A and either x ε B or x ε C. This is the case iff either x belongs to
both A and B or x belongs to both A and C. Hence x ε A ∩ (B ∪ C) iff x ε (A
∩ B) ∪ (A ∩ C), and equality is proved. 

If A1, A2, …, An are sets, then A1 ∪ A2 ∪ … ∪ An is the union of the sets
and A1 ∩ A2 ∩ … ∩ An is their intersection. It does not matter how the
terms are grouped in computing the union or intersection because of the
associative laws. We shall also have to consider the union of the members
of non-finite families of sets and it is extremely convenient to have a
notation for this union. Consider the following situation: for each member a
of a set A, which we call an index set, we suppose that a set Xa is given.
Then the union of all the Xa, denoted ∪ {Xa: a ε A}, is defined to be the set
of all points x such that x ε Xa for some a in A. In a similar way the
intersection of all Xa for a in A, denoted ∩ {Xa: a ε A}, is defined to be {x: x
ε Xa for each a in A}. A very important special case arises when the index
set is itself a family  of sets and XA is the set A for each A in . Then the
foregoing definitions become:  = {x: x ε A for some A in } and 

 = {x: x ε A for each A in }.
There are many theorems of an algebraic character on the union and

intersection of the members of families of sets, but we shall need only the
following, the proof of which is omitted.

3 THEOREM Let A be an index set, and for each a in A let Xa be a subset of a
fixed set Y. Then:

(a) If B is a subset of A, then  and 
.

(b) (De Morgan formulae)   and 
.

The De Morgan formulae are usually stated in the abbreviated form: the
complement of the union is the intersection of the complements, and the



complement of an intersection is the union of the complements.
It should be emphasized that a reasonable facility with this sort of set

theoretic computation is essential. The appendix contains a long list of
theorems which are recommended as exercises for the beginning student.
(See the section on elementary algebra of classes.)

4 Notes In most of the early work on set theory the union of two sets A and
B was denoted by A + B and the intersection by AB, in analogy with the
usual operations on the real numbers. Some of the same algebraic laws do
hold; however, there is compelling reason for not following this usage.
Frequently set theoretic calculations are made in a group, a field, or a linear
space. If A and B are subsets of an (additively written) group, then {c: c = a
+ b for some a in A and some b in B} is a natural candidate for the label “A
+ B,” and it is natural to denote {x: –x ε A} by –A. Since the sets just
described are used systematically in calculations where union, intersection,
and complement also appear, the choice of notation made here seems the
most reasonable.

The notation used here for construction of sets is the one most widely
used today, but  for “the set of all x such that” is also used. The critical
feature of a notation of this sort is the following: one must be sure just
which is the dummy variable. An example will clarify this contention. The
set of all squares of positive numbers might be denoted quite naturally by
{x2: x > 0}, and, proceeding, {x2 + a2: x < 1 + 2a} also has a natural
meaning. Unfortunately, the latter has three possible natural meanings,
namely: {z: for some x and some a, z = x2 + a2 and x < 1 + 2a}, {z: for some
x, z = x2 + a2 and x < 1 + 2a}, and {z: for some a, z = x2 + a2 and x < 1 +
2a}. These sets are quite different, for the first depends on neither x nor a,
the second is dependent on a, and the third depends on x. In slightly more
technical terms one says that “x” and “a” are both dummies in the first, “x”
is a dummy in the second, and “a” in the third. To avoid ambiguity, in each
use of the brace notation the first space after the brace and preceding the
colon is always occupied by the dummy variable.

Finally, it is interesting to consider one other notational feature. In
reading such expressions as “A ∩ (B ∪ C)” the parentheses are essential.
However, this could have been avoided by a slightly different choice of
notation. If we had used “∪AB” instead of “A ∪ B” and similarly for
intersection, then all parentheses could be omitted. (This general method of



avoiding parentheses is well known in mathematical logic.) In the modified
notation the first distributive law and the associative law for unions would
then be stated: ∩A ∪ BC = ∪ ∩AB ∩ AC and ∪ A ∪ BC = ∪ ∪ ABC. The
shorthand notation also reads well; for example, ∪ AB is the union of A and
B.

RELATIONS

The notion of set has been taken as basic in this treatment, and we are
therefore faced with the task of defining other necessary concepts in terms
of sets. In particular, the notions of ordering and function must be defined.
It turns out that these may be treated as relations, and that relations can be
defined rather naturally as sets having a certain special structure. This
section is therefore devoted to a brief statement of the definitions and
elementary theorems of the algebra of relations.

Suppose that we are given a relation (in the intuitive sense) between
certain pairs of objects. The basic idea is that the relation may be
represented as the set of all pairs of mutually related objects. For example,
the set of all pairs consisting of a number and its cube might be called the
cubing relation. Of course, in order to use this method of realization it is
necessary that we have available the notion of ordered pair. This notion can
be defined in terms of sets.* The basic facts which we need here are: each
ordered pair has a first coordinate and a second coordinate, and two ordered
pairs are equal (identical) if and only if they have the same first coordinate
and the same second coordinate. The ordered pair with first coordinate x
and second coordinate y is denoted (x,y). Thus (x,y) = (u,v) if and only if x =
u and y = v.

It is convenient to extend the device for the formation of sets so that
{(x,y) : …} is the set of all pairs (x,y) such that This convention is not
strictly necessary, for the same set is obtained by the specification: {z: for
some x and some y, z = (x,y) and …}.

A relation is a set of ordered pairs; that is, a relation is a set, each
member of which is an ordered pair. If R is a relation we write xRy and (x,y)
ε R interchangeably, and we say that x is R-related to y if and only if xRy.
The domain of a relation R is the set of all first coordinates of members of
R, and its range is the set of all second coordinates. Formally, domain R =
{x: for some y, (x,y) ε R} and range R = {y: for some x, (x,y) ε R}. One of
the simplest relations is the set of all pairs (x,y) such that x is a member of



some fixed set A and y is a member of some fixed set B. This relation is the
cartesian product of A and B and is denoted by A × B. Thus A × B = {(x,y): x
ε A and y ε B}. If B is non-void the domain of A × B is A. It is evident that
every relation is a subset of the cartesian product of its domain and range.

The inverse of a relation R, denoted by R–1, is obtained by reversing
each of the pairs belonging to R. Thus R–1 = {(x,y) : (y, x) ε R} and xRy if
and only if yR–1x. For example, (A × B)–1 = B × A for all sets A and B. The
domain of the inverse of a relation R is always the range of R, and the range
of R–1 is the domain of R. If R and S are relations their composition, R ∘ S
(sometimes written RS), is defined to be the set of all pairs (x, z) such that
for some y it is true that (x,y) ε S and (y, z) ε R. Composition is generally not
commutative. For example, if R = {(1,2)} and S = {(0,1)}, then R ∘ S =
{(0,2)} and S ∘ R is void. The identity relation on a set X (the identity on X),
denoted Δ or Δ(X), is the set of all pairs of the form (x,x) for x in X. The
name is derived from the fact that Δ ∘ R = R ∘ Δ = R whenever R is a
relation whose range and domain are subsets of X. The identity relation is
also called the diagonal, a name suggestive of its geometric position in X ×
X.

If R is a relation and A is a set, then R[A], the set of all R-relatives of
points of A, is defined to be {y: xRy for some x in A}. If A is the domain of
R, then R[A] is the range of R, and for arbitrary A the set R[A] is contained
in the range of R. If R and S are relations and R ⊂ S, then clearly R[A] ⊂
S[A] for every A.

There is an extensive calculus of relations, of which the following
theorem is a fragment.

5 THEOREM Let R, S, and T be relations and let A and B be sets. Then:

(a)  (R–1)–1 = R and (R ∘ S)–1 = S–1 ∘ R–1.
(b) R ∘ (S ∘ T) = (R ∘ S) ∘ T and (R ∘ S)[A] = R[S[A]].
(c) R[A ∪ B] = R[A] ∪ R[B] and R[A ∩ B] ⊂ R[A] ∩ R[B].

More generally, if there is given a set Xa for each member a of a non-
void index set A then:



(d)  R[∪{Xa: a ε A}] = ∪{R[Xa]: a ε A} and R[∩ {Xa: a ε A}]
⊂∩{R[Xa]:a ε A}.

PROOF As an example we prove the equality: (R ∘ S)–1 = S–1 ∘ R–1. A pair (z,
x) is a member of (R ∘ S)–1 iff (x,z) ε R ∘ S, and this is the case iff for some y
it is true that (x,y) ε S and (y,z) ε R. Consequently (z,x) ε (R ∘ S)–1 iff (z,y) ε
R–1 and (y,z) ε S–1 for some y, This is precisely the condition that (z, x)
belong to S–1 ∘ R–1. 

There are several special sorts of relations which occur so frequently in
mathematics that they have acquired names. Aside from orderings and
functions, which will be considered in detail in the following sections, the
types listed below are probably the most useful. Throughout the following it
will be convenient to suppose that R is a relation and that X is the set of all
points which belong to either the domain or the range of R; that is, X =
(domain R) ∪ (range R). The relation R is reflexive if and only if each point
of X is R-related to itself. This is entirely equivalent to requiring that the
identity Δ (or Δ(X)) be a subset of R. The relation R is symmetric, provided
that xRy whenever yRx. Algebraically, this requirement may be phrased: R =
R–1. At the other extreme, the relation R is anti-symmetric iff it is never the
case that both xRy and yRx. In other words, R is anti-symmetric iff R ∩ R–1

is void. The relation R is transitive iff whenever xRy and yRz then xRz. In
terms of the composition of relations, the relation R is transitive if and only
if R ∘ R ⊂ R. It follows that, if R is transitive, then R–1 ∘ R–1 = (R ∘ R)–1 ⊂
R–1, and hence the inverse of a transitive relation is transitive. If R is both
transitive and reflexive, then R ∘ R ⊃ R ∘ Δ and hence R ∘ R = R; in the
usual terminology, such a relation is idempotent under composition.

An equivalence relation is a reflexive, symmetric, and transitive
relation. Equivalence relations have a very simple structure, which we now
proceed to describe. Suppose that R is an equivalence relation and that X is
the domain of R. A subset A of X is an equivalence class (an R-equivalence
class) if and only if there is a member x of A such that A is identical with
the set of all y such that xRy. In other words, A is an equivalence class iff
there is x in A such that A = R[{x}]. The fundamental result on equivalence
relations states that the family  of all equivalence classes is disjoint, and
that a point x is R-related to a point y if and only if both x and y belong to
the same equivalence class. The set of all pairs (x,y) with x and y in a class



A is simply A × A, which leads to the following concise formulation of the
theorem.

6 THEOREM A relation R is an equivalence relation if and only if there is a
disjoint family  such that R = ∪ {A × A: A ε }.

PROOF If R is an equivalence relation, then R is transitive: if yRx and zRy,
then zRx. In other words, if xRy, then R[{y}] ⊂ R[{x}]. But R is symmetric
(xRy whenever yRx), from which it follows that, if xRy, then R[{x}] =
R[{y}]. If z belongs to both R[{x}] and R[{y}], then R[{x}] = R[{z}] =
R[{y}], and consequently two equivalence classes either coincide or are
disjoint. If y and z belong to the equivalence class R[{x}], then, since R[{y}]
= R[{x}], it follows that yRz or, in other words, R[{x}] × R[{x}] ⊂ R. Hence
the union of A × A for all equivalence classes A is a subset of R, and since R
is reflexive, if xRy, then (x,y) ε R[{x}] × R[{x}]. Hence R = ∪{A × A: A ε 
}. The straightforward proof of the converse is omitted. 

We are frequently interested in the behavior of a relation for points
belonging to a subset of its domain, and frequently the relation possesses
properties for these points which it fails to have for all points. Given a set X
and a relation R one may construct a new relation R ∩ (X × X) whose
domain is a subset of X. For convenience we will say that a relation R has a
property on X, or that R restricted to X has the property iff R ∩ (X × X) has
the property. For example, R is transitive on X iff R ∩ (X × X) is a transitive
relation. This amounts to asserting that the defining property holds for
points of X; in this case, whenever X, y, and z are points of X such that xRy
and y Rz, then xRz.

FUNCTIONS

The notion of function must now be defined in terms of the concepts
already introduced. This offers no difficulty if we consider the following
facts. Whatever a function is, its graph has an obvious definition as a set of
ordered pairs. Moreover, there is no information about the function which
cannot be derived from its graph. In brief, there is no reason why we should
attempt to distinguish between a function and its graph.

A function is a relation such that no two distinct members have the
same first coordinate. Thus f is a function iff the members of f are ordered
pairs, and whenever (x,y) and (x,z) are members of f, then y = z. We do not



distinguish between a function and its graph. The terms correspondence,
transformation, map, operator, and function are synonymous. If f is a
function and x is a point of its domain (the set of all first coordinates of
members of f), then f(x), or fx is the second coordinate of the unique
member of f whose first coordinate is x. The point f(x) is the value of f at x,
or the image of x under f, and we say that f assigns the value f(x) to x, or
carries x into f (x). A function f is on X iff X is its domain and it is onto Y iff
Y is its range (the set of second coordinates of members of f, sometimes
called the set of values). If the range of f is a subset of Y, then f is to Y, or
into Y. In general a function is many to one, in the sense that there are many
pairs with the same second coordinate or, equivalently, many points at
which the function has the same value. A function f is one to one iff distinct
points have distinct images; that is, if the inverse relation, f–1, is also a
function.

A function is a set, and consequently two functions, f and g, are
identical iff they have the same members. It is clear that this is the case iff
the domain of f is identical with the domain of g and f(x) = g(x) for each x in
this domain. Consequently, we may define a function by specifying its
domain and the value of the function at each member of the domain. If f is a
function on X to Y and A is a subset of X, then f ∩ (A × Y) is also a function.
It is called the restriction of f to A, denoted f|A, its domain is A, and (f|A)(x)
= f(x) for x in A. A function g is the restriction of f to some subset iff the
domain of g is a subset of the domain of f, and g(x) = f(x) for x in the
domain of g; that is, iff g ⊂ f. The function f is called an extension of g iff g
⊂ f. Thus f is an extension of g iff g is the restriction of f to some subset of
the domain of f.

If A is a set and f is a function, then, following the definition given for
arbitrary relations, f[A] = {y: for some x in A, (x,y) ε f}; equivalently, f[A] is
{y: for some x in A, y = f(x)}. The set f[A] is called the image of A under f. If
A and B are sets, then, by theorem 0.5, f[A ∪ B] = f[A] ∪ f[B] and f[A ∩ B]
⊂ f[A] ∩ f[B], and similar formulae hold for arbitrary unions and
intersections. It is not true in general that f[A ∩ B] = f[A] ∩ f[B], for disjoint
sets may have intersecting images. If f is a function, then the set f–1[A] is
called the inverse (inverse image, counter image) of A under f. The inverse
satisfies the following algebraic rules.

7 THEOREM If f is a function and A and B are sets then



(a) f–1[A ~ B] = f–1[A] ~ f–1[B],
(b) f–1[A ∪ B] = f–1[A] ∪ f–1[B], and
(c) f–1[A ∩ B] = f–1[A] ∩ f–1[B].

More generally, if there is given a set Xc for each member c of a non-
void index set C then

(d) f–1[∪ {Xc: c ε C}] = ∪ {f–1[Xc]: c ε C}, and
(e) f–1[∩ {Xc: c ε C}] = ∩ {f–1[Xc]: c ε C}.

PROOF Only part (e) will be proved. A point x is a member of f–1[∩{Xc: c ε
C}] if and only if f(x) belongs to this intersection, which is the case iff f(x) ε
Xc for each c in C. But the latter condition is equivalent to x ε f–1[Xc] for
each c in C; that is, x ε ∩{f–1[Xc]: c ε C). 

The foregoing theorem is often summarized as: the inverse of a function
preserves relative complements, unions, and intersections. It should be
noted that the validity of these formulae does not depend upon the sets A
and B being subsets of the range of the function. Of course, f–1[A] is
identical with the inverse image of the intersection of A with the range of f.
However, it is convenient not to restrict the notation here (and the
corresponding notation for images under f) to subsets of the range
(respectively, the domain).

The composition of two functions is again a function by a
straightforward argument. If f is a function, then f–1 ∘ f is an equivalence
relation, for (x,y) ε f–1 ∘ f if and only if f(x) = f(y). The composition f ∘ f–1 is
a function; it is the identity on the range of f.

8 Notes There are other notations for the value of a function f at a point x.
Besides f(x) and fx, all of the following are in use: (f,x), (x,f), fx, xf, and ·fx.
The first two of these are extremely convenient in dealing with certain
dualities, where one is considering a family F of functions, each on a fixed
domain X, and it is desirable to treat F and X in a symmetric fashion. The
notations “fx” and “xf” are obvious abbreviations of the notation we have
adopted; whether the “f” is written to the left or to the right of “x” is clearly
a matter of taste. These two share a disadvantage which is possessed by the



“f(x)” notation. In certain rather complicated situations the notation is
ambiguous, unless parentheses are interlarded liberally. The last notation
(used by A. P. Morse) is free from this difficulty. It is unambiguous and
does not require parentheses. (See the comments on union and intersection
in 0.4.)

There is a need for a bound variable notation for a function. For
example, the function whose domain is the set of all real numbers and
which has the value x2 at the point x should have a briefer description. A
possible way out of this particular situation is to agree that x is the identity
function on the set of real numbers, in which case x2 might reasonably be
the squaring function. The classical device is to use x2 both for the function
and for its value at the number x. A less confusing approach is to designate
the squaring function by x → x2. This sort of notation is suggestive and is
now coming into common use. It is not universal and, for example, the
statement (x → x2)(t) = t2 would require explanation. Finally it should be
remarked that, although the arrow notation will undoubtedly be adopted as
standard, the λ-convention of A. Church has technical advantages. (The
square function might be written as λx: x2.) No parentheses are necessary to
prevent ambiguity.

ORDERINGS

An ordering (partial ordering, quasi-ordering) is a transitive relation. A
relation < orders (partially orders) a set X iff it is transitive on X. If < is an
ordering and x < y, then it is customary to say that x precedes y or x is less
than y (relative to the order <) and that y follows x and y is greater than x. If
A is contained in a set X which is ordered by <, then an element x of X is an
upper bound of A iff for each y in A either y < x or y = x. Similarly an
element x is a lower bound of A if x is less than or equal to each member of
A. Of course, a set may have many different upper bounds. An element x is
a least upper bound or supremum of A if and only if it is an upper bound
and is less than or equal to every other upper bound. (In other words, a
supremum is an upper bound which is a lower bound for the set of all upper
bounds.) In the same way, a greatest lower bound or infimum is an element
which is a lower bound and is greater than or equal to every other lower
bound. A set X is order-complete (relative to the ordering <) if and only if
each non-void subset of X which has an upper bound has a supremum. It is



a little surprising that this condition on upper bounds is entirely equivalent
to the corresponding statement for lower bounds. That is:

9 THEOREM A set X is order-complete relative to an ordering if and only if
each non-void subset which has a lower bound has an infimum.

PROOF Suppose that X is order-complete and that A is a non-void subset
which has a lower bound. Let B be the set of all lower bounds for A. Then B
is non-void and surely every member of the non-void set A is an upper
bound for B. Hence B has a least upper bound, say, b. Then b is less than or
equal to each upper bound of B, and in particular b is less than or equal to
each member of A, and hence b is a lower bound of A. On the other hand, b
is itself an upper bound of B; that is, b is greater than or equal to each lower
bound of A. Hence b is a greatest lower bound of A. The converse
proposition may be proved by the same sort of argument, or, directly, one
may apply the result just proved to the relation inverse to <. 

It should be remarked that the definition of ordering is not very
restrictive. For example, X × X is an ordering of X, but a rather uninteresting
one. Relative to this ordering each member of X is an upper bound, and in
fact a supremum, of every subset. The more interesting orderings satisfy the
further condition: if x is less than or equal to y and y is also less than or
equal to x, then y = x. In this case there is at most one supremum for a set,
and at most one infimum.

A linear ordering (total, complete, or simple ordering) is an ordering
such that:

(a) If x < y and y < x, then x = y, and
(b) x < y or y < x whenever x and y are distinct members of the union of

the domain and the range of <.

It should be noticed that a linear ordering is not necessarily reflexive.
However, agreeing that x  y iff x < y or x = y, the relation  is always a
reflexive linear ordering if < is a linear ordering. Following the usual
convention, a relation is said to linearly order a set X iff the relation
restricted to X is a linear ordering. A set with a relation which linearly
orders it is called a chain. Clearly suprema and infima are unique in chains.
The remaining theorems in this section will concern chains, although it will
be evident that many of the considerations apply to less restricted orderings.



A function f on a set X to a set Y is order preserving (monotone, isotone)
relative to an order < for X and an order < for Y iff f(u) < f(v) or f(u) = f(v)
whenever u and v are points of X such that u  v. If the ordering < of Y is
simply Y × Y or if the ordering < of X is the void relation, then f is
necessarily order preserving. Consequently one cannot expect that the
inverse of a one-to-one order preserving function will always be order
preserving. However, if X and Y are chains and f is one to one and isotone,
then necessarily f–1 is isotone, for if f(u) < f(v) and f(u) ≠ f(v), then it is
impossible that v < u because of the order-preserving property.

Order-complete chains have a very special property. Suppose that X and
Y are chains, that X0 is a subset of X, and that f is an order-preserving
function on X0 to Y. The problem is: Does there exist an isotone extension
of f whose domain is X? Unless some restriction is made on f the answer is
“no,” for, if X is the set of all positive real numbers, X0 is the subset
consisting of all numbers which are less than one, Y = X0 and f is the
identity map, then it is easy to see that there is no isotone extension.
(Assuming an extension f–, what is f–(1)?) But this example also indicates
the nature of the difficulty, for X0 is a subset of X which has an upper bound
and f[X0] has no upper bound. If an isotone extension f– exists, then the
image under f– of an upper bound for a set A is surely an upper bound for
f[A]. A similar statement holds for lower bounds, and it follows that, if a
subset A of X0 is order-bounded in X (that is, it has both an upper and lower
bound in X), then the image f[A] is order-bounded in Y. The following
theorem asserts that this condition is also sufficient for the existence of an
isotone extension.

10 THEOREM Let f be an isotone function on a subset X0 of a chain X to an
order-complete chain Y. Then f has an isotone extension whose domain is X
if and only if f carries order-bounded sets into order-bounded sets. (More
precisely stated, the condition is that, if A is a subset of X0 which is order-
bounded in X, then f[A] is order-bounded in Y.)

PROOF It has already been observed that the condition is necessary for the
existence of an isotone extension, and it remains to prove the sufficiency.
We must construct an isotone extension of a given function f. First we note



that if A is a subset of X0 which has a lower bound in X, then f[A] has a
lower bound, for, choosing a point x in A, the set {y : y ε A and y  x} is
order-bounded, hence its image under f is order-bounded, and a lower
bound for this image is also a lower bound for f[A]. A similar statement
applies to upper bounds. For each x in X let Lx be the set of all members of
X0 which are less than or equal to x; that is, Lx = {y: y  x and y ε X0}. If Lx
is void, then x is a lower bound for X0, hence f[X0] has an infimum v, and
we define f–1(x) to be v. If Lx is not void, then, since x is an upper bound for
Lx, the set f[Lx] has an upper bound and hence a supremum, and we define
f–1(x) = sup f[Lx]. The straightforward proof that f–1 is an isotone extension
of f is omitted. 

In certain cases the isotone extension of a function is unique. One such
case will occur in treating the decimal expansion of a real number. Without
attempting to get the best result of the sort, we give a simple sufficient
condition for uniqueness which will apply.

11 THEOREM Let f and g be isotone functions on a chain X to a chain Y, let
X0 be a subset of X on which f and g agree, and let Y0 be f[X0], A sufficient
condition that f = g is that Y0 intersect every set of the form {y: u < y < v, u
≠ y and y ≠ v}, where u and v are members of Y such that u < v.

PROOF If f ≠ g, then f(x) ≠ g(x) for some x in X, and we may suppose that f(x)
< g(x). Each point of X0 which is less than or equal to x maps under f into a
point less than or equal to f(x), because f is isotone, and each point which is
greater than or equal to x maps under g into a point greater than or equal to
g(x), because g is isotone. It follows that no point of X0 maps into the set {y:
f(x) < y < g(x), f(x) ≠ y and ≠ g(x)}, and the theorem is proved. 

12 Notes There is a natural way to embed a chain in an order-complete
chain which is an abstraction of Dedekind’s construction of the real
numbers from the set of rational numbers. The process can also be applied
to less restricted orderings, as shown by H. M. MacNeille (see Birkhoff [1;
58]). The pattern is very suggestive of the compactification procedure for
topological spaces (chapter 5).

ALGEBRAIC CONCEPTS



In this section a few definitions from elementary algebra are given. For
the most part these notions are used in the problems. The terminology is
standard, and it seems worth while to summarize the few notions which are
required.

A group is a pair, (G, ·) such that G is a non-void set and ·, called the
group operation, is a function on G × G to G such that: (a) the operation is
associative, that is, x · (y · z) = (x · y) · z for all elements x, y and z of G; (b)
there is a neutral element, or identity, e, such that e · x = x · e = x for each x
in G; and (c) for each x in G there is an inverse element x–1 such that x · x–1

= x–1 · x = e. If the group operation is denoted +, then the element inverse to
x is usually written –x. Following the usual custom, the value of the
function · at (x,y) is written x · y instead of the usual functional notation
·(x,y), and if no confusion seems likely, the symbol · may be omitted
entirely and the group operation indicated by juxtaposition. We shall
sometimes say (imprecisely) that G is a group. If A and B are subsets of G,
then A·B, or simply AB, is the set of all elements of the form x·y for some x
in A and some y in B. The set {x} ·A is also denoted by X·A or simply xA,
and similarly for operation on the right. The group is abelian, or
commutative, iff x·y = y·x for all members x and y of G. A group H is a
subgroup of G iff H ⊂ G and the group operation of H is that of G,
restricted to H × H. A subgroup H is normal (distinguished, invariant) iff x
·H = H·x for each x in G. If H is a subgroup of G a left coset of H is a
subset which is of the form x·H for some x in G. The family of all left
cosets is denoted by G/H. If H is normal and A and B belong to G/H, then A
· B is also a member, and, with this definition of group operation, G/H is a
group, called the quotient or factor group. A function f on a group G to a
group H is a homomorphism, or representation, iff f(x · y) = f(x)·f(y) for all
members x and y of G. The kernel of f is the set f–1[e]; it is always an
invariant subgroup. If H is an invariant subgroup of G, then the function
whose value at x is x · H is a homomorphism, usually called the projection,
or quotient map, of G onto G/H.

A ring is a triple (R,+, ·) such that (R,+) is an abelian group and · is a
function on R × R to R such that: the operation is associative, and the
distributive laws u · (x + y) = u·x + u·y and (u + v)·X = u · x + v·x hold for
all members x, y, u, and v of R. A subring is a subset which, under the ring
operations restricted, is a ring, and a ring homomorphism or representation
is a function f on a ring to another ring such that f(x + y) = f(x) + f(y) and f(x



· y) = f(x) · f(y) for all members x and y of the domain. An additive
subgroup I of a ring R is a left ideal iff xI ⊂ I for each x in R, and is a two-
sided ideal iff xI ⊂ I and Ix ⊂ I for each x in R. If I is a two-sided ideal, R/I
is, with the proper addition and multiplication, a ring, and the projection of
R onto R/I is a ring homomorphism. A field is a ring (F,+, ·) such that F has
at least two members, and (F ~ {0},·), where 0 is the element neutral with
respect to +, is a commutative group. The operation + is the addition
operation, · is the multiplication, and the element neutral with respect to
multiplication is the unit, 1. It is customary, when no confusion results, to
replace · by juxtaposition, and, ignoring the operations, to say that “F is a
field.” A linear space, or vector space, over a field F (the scalar field of the
space) is a quadruple (X, ⊕, ·,F), such that (X, ⊕) is an abelian group and ·
is a function on F × X to X such that for all members x and y of X, and all
members a and b of F, a·(b·x) = (a·b)·x, (a + b)·x = a·x ⊕ b·x, a·(x ⊕ y) =
a·x ⊕ a·y, and 1 ·x = x. A real linear space is a linear space over the field of
real numbers. The notion of linear space can also be formulated in a slightly
different fashion. The family of all homomorphisms of an abelian group
into itself becomes, with addition defined pointwise and with composition
of functions as multiplication, a ring, called the endomorphism ring of the
group. A linear space over a field F is a quadruple (X,⊕,·,F) such that (X,
⊕) is an abelian group and ⊕ is a ring homomorphism of F into the
endomorphism ring of (X, ⊕) which carries the unit, 1, into the identity
homomorphism.

A linear space (Y, ⊕,⊙ ,F) is a subspace of a linear space (X,+,·,F) iff Y
⊂ X and the operations + and · agree with ⊕ and ⊙ where the latter are
defined. The family X/Y of cosets of X modulo a subspace Y may be made
into a linear space if addition and scalar multiplication are defined in the
obvious way. The projection f of X onto X/Y then has the property that f(a·x
+ b·y) = a·f(x) + b·f(y) for all members a and b of Fand all x and y in X.
Such a function is called a linear function. If f is a linear function the set f–
1[0] is called the null space of f; the null space of a linear function is a linear
subspace of the domain (provided the operations of addition and scalar
multiplication are properly defined).

Suppose f is a linear function on X to Y and g is a linear map of X onto Z
such that the null space of f contains the null space of g. Then there is a
unique linear function h on Z to Y such that f = h ∘ g (explicitly, h(z) is the



unique member of f ∘ g–1[z]). (The function h is said to be induced by f and
g.) A particular consequence of this fact is that each linear function may be
written as a projection into a quotient space followed by a one-to-one linear
function.

THE REAL NUMBERS

This section is devoted to the proof of a few of the most important
results concerning the real numbers.

An ordered field is a field F and a subset P, called the set of positive
elements, such that

(a) if x and y are members of P, then x + y and xy are also members; and
(b) if x is a member of F, then precisely one of the following statements

is true: x ε P, – x ε P, or x = 0.

One easily verifies that < is a linear ordering of F, where, by definition, x <
y iff y – x ε P. The usual simple propositions about adding and multiplying
inequalities hold. The members x of F such that – x ε P are negative.

It will be assumed that the real numbers are an ordered field which is
order-complete) in the sense that every non-void subset which has an upper
bound has a least upper bound, or supremum. By 0.9 this last requirement is
entirely equivalent to the statement that each non-void subset which has a
lower bound has a greatest lower bound, or infimum.

We first prove a few propositions about integers. An inductive set is a
set A of real numbers such that 0 ε A, and whenever x ε A, then x + 1 ε A. A
real number x is a non-negative integer iff x belongs to every inductive set.
In other words, the set ω of non-negative integers is defined to be the
intersection of the members of the family of all inductive sets. Each
member of ω is actually non-negative because the set of all non-negative
numbers is inductive. It is evident that ω is itself an inductive set and is a
subset of every other inductive set. It follows that (principle of
mathematical induction) each inductive subset of ω is identical with ω. A
proof which relies on this principle is a proof by induction. We prove the
following little theorem as an example: if p and q are non-negative integers
and p < q, then q – p ε ω. First observe that the set consisting of 0 and all
numbers of the form p + 1 with p in ω is inductive, and hence each non-
zero member of ω is of the form p + 1. Next, let A be the set of all non-



negative integers p such that q – p ε ω) for each larger member q of ω.
Surely 0 ε A, and let us suppose that p is a member of A and that q is an
arbitrary member of ω which is larger than p + 1. Then p < q – 1 and
therefore q – 1 – p ε ω, because p ε A and q – 1 ε ω. Consequently p + 1 ε
A, hence A is an inductive set, and therefore A = ω. It is equally simple to
show that the sum of two members of ω is a member of ω, and it follows
that the set {x: x ε ω or – x ε ω} is a group. It is the group of integers.

There is another form of the principle of mathematical induction which
is frequently convenient, namely: each non-void subset A of ω has a
smallest member. To prove this proposition consider the set B of all
members of ω which are lower bounds for A; that is, B = {p: p ε ω and p 
q for all q in A}. The set B is not inductive, for, if q ε A, then . Since
0 ε B it follows that there is a member p of B such that . If p ε A,
then clearly p is the smallest member of A; otherwise there is a member q of
A such that p < q < p + 1. But then q – p is a non-zero member of ω and
hence q – p – 1 is a negative member of ω, which is impossible.

It is possible to define a function by induction in the following sense.
For each non-negative integer p let ωp = {q: q ε ω and q  p}. Suppose that
we seek a function on ω, that the functional value a at 0 is given, and for
each function g on a set ωp there is given F(g), the value of the desired
function at p + 1. Thus the value desired at p + 1 may depend on all of the
values for smaller integers. In these circumstances it is true that there is a
unique function f on ω such that f(0) = a and f(p + 1) = F(f | ωp) for each p
in ω. (The function f | ωp is the function f restricted to the set ωp.) This
proposition is frequently considered to be obvious, but the proof is not
entirely trivial.

13 THEOREM Suppose a is given and F(g) is given whenever g is a function
whose domain is of the form ωp for some p in ω. Then there is a unique
function f such that f(0) = a and f(p + 1) = F(f | ωp) for each p in ω.

PROOF Let  be the family of all functions g such that the domain of g is a
set ωp for some p in ω, g(0) = a, and for each member q of ω such that q 
p – 1, g(q + 1) = F(g | ωq). (Intuitively, the members of  are initial
segments of the desired function.) The family  has the very important
property: if g and h are members of , then either g ⊂ h or h ⊂ g. To prove



this it is necessary to show that g(q) = h(q) for each q belonging to the
domain of both. Suppose this is false, and let q be the smallest integer such
that g(q) ≠ h(q). Then q ≠ 0, because g(0) = h(0) = a, and hence g(q) = F(g |
ωq–1) which, since g and h agree for values smaller than q, is F(h | ωq–1) =
h(q), and this is a contradiction. Now let . Then the members
of f are surely ordered pairs, and if (x,y) ε g ε  and (x, z) ε h ε , then (x,y)
and (x, z) both belong to g or both to h, and hence y = z. Consequently f is a
function, and it must be shown that it is the required function. First, because
{(0,a)} ε , f(0) = a. Next, if q + 1 belongs to the domain of f, then for some
g in , q + 1 is a member of the domain of g, and hence f(q + 1) = g(q + 1) =
F(g | ωq) = F(f | ωq). Finally, to show that the domain of f is ω, suppose that
q is the first member of ω which is not in the domain of f. Then q – 1 is the
last member of the domain of f, and f ∪ {(q, F(f))} is a member of . Hence
q belongs to the domain of f, which is a contradiction. 

The foregoing theorem can be used systematically in showing the
elementary properties of the real numbers. For example, if b is a positive
number and p an integer, bp is defined as follows. In the foregoing theorem,
let a = 1 and for each function g with domain ωp let F(g) = bg(p). Then f(0)
= 1 and f(p + 1) = bf(p) for each p in ω, if f is the function whose existence
is guaranteed by the theorem. Letting bp = f(p), it follows that b0 = 1, and
bp+1 = bbp, from which one can show by induction that bp+q = bpbq for all
members p and q of ω. If b–p is defined to be 1/bp for each non-negative
integer p, then the usual elementary proof shows that bp+q = bpbq for all
integers p and q.

So far in this discussion of the real numbers we have not used the fact
that the field of real numbers is order-complete. We now prove a simple, but
noteworthy, consequence of order completeness. First, the set ω of non-
negative integers does not have an upper bound, for, if x were a least upper
bound of ω, then x – 1 would not be an upper bound, and hence x – 1 < p
for some p in ω. But then x < p + 1 and this contradicts the fact that x was
supposed to be an upper bound. Consequently, if x is a positive real number
and y is a real number, then px > y for some positive integer p because there
is a member p of ω which is larger than y/x. An ordered field for which this
proposition is true is said to have an Archimedean order.

We will need the fact that each non-negative real number has a b-adic
expansion, where b is an arbitrary integer greater than one. Roughly



speaking, we want to write a number x as the sum of multiples of powers of
b, the multiples (digits) being non-negative integers less than b. Of course,
the b-adic expansion of a number may fail to be unique—in the decimal
expansion, .9999… (all nines) and 1.000… (all zeros) are to be expansions
of the same real number. The expansion itself is a function which assigns to
each integer an integer between 0 and b – 1, such that (since we want only a
finite number of non-zero integers before the decimal point) there is a first
non-zero digit. Formally, a is a b-adic expansion iff a is a function on the
integers to ωb–1 ( = {q: q ε ω and q  b – 1}), such that there is a smallest
integer p for which ap (= a(p)) is not zero. A b-adic expansion a is rational
iff there is a last non-zero digit (that is, for some integer p, aq = 0 whenever
q > p). For each rational b-adic expansion a there is a simple way of
assigning a corresponding real number r(a). Except for a finite number of
integers p the number apb–p is zero, and the sum of apb–p for p in this finite
set is the real number r(a). We write r(a) = ∑{apb–p: p an integer}. A real
number which is of this form is a b-adic rational. These numbers are
precisely those of the form, qb–p, for integers p and q. Let E be the set of all
b-adic expansions. Then E is linearly ordered by dictionary order; in detail,
a b-adic expansion a precedes a b-adic expansion c in dictionary order
(lexicographic order) iff for the smallest integer p such that ap ≠ cp it is true
that ap < cp. It is very easy to see that, like a dictionary, E is actually
linearly ordered by <. The correspondence r is order preserving, and this is
the key to the following proposition.

14 THEOREM Let E be the set of b-adic expansions, let R be the set of
rational expansions, and for a in R let r(a) = ∑{apb–p: p an integer}. Then
there is a unique isotone extension  of r whose domain is E, and  maps E ~
R onto the positive real numbers in a one-to-one fashion.

PROOF According to theorem 0.10 there will be an isotone extension  of r
iff r carries each subset of R which is order-bounded in E into an order-
bounded subset of the real numbers. But for each a in E there is evidently b
in R such that b > a, and it follows that, if a subset A of R has a for an upper
bound, then r(b) is an upper bound for f[A|. A similar argument applies to
lower bounds, and we conclude that r carries order-bounded sets into order-



bounded sets and consequently has an isotone extension  whose domain is
E.

To show the extension is unique it is sufficient, by 0.11, to prove that,
for non-negative real numbers x and y, if x < y, then there is a in R such that
x < r(a) < y. Because bp > p for each non-negative integer p (a fact which is
easily proved by induction), and because the set of non-negative integers is
not bounded, there is an integer p such that bp > 1/(y – x). Then b–p < (y –
x). There is an integer q such that qb–p  y because the ordering is
Archimedean, and since there is a smallest such integer q, it may be
supposed that (q – 1)b–p < y. It follows that (q – 1)b–p > x because b–p is less
than (y – x) and this proves that there is a b-adic rational, (q – 1)b–p, which
is the image of a member of R and lies between x and y. Consequently the
correspondence  is unique.

Next, we show that the correspondence  is one to one on E ~ R. It is
straightforward to see that  is one to one on R, and this fact is assumed in
the following. Suppose that a ε E, c ε E ~ R, and a < c. Then for the first
value of p such that ap and cp are different, ap < cp. The expansion d, such
that for q < p, dq = aq, for q > p, dq = 0, and dp = ap + 1, is a member of R
which is greater than a, and since c does not have a last non-zero digit, a <
d < c. Repeating, there is a member e of R such that a < d < e < c. Then,
since on R the function  is one to one, , and  is
therefore one to one on E ~ R.

Finally, it must be shown that the image of E ~ R under  is the set of all
positive numbers. First notice that for every pair of members c and d of R
for which c < d there is a in E ~ R such that c < a < d, and consequently for
positive real numbers x and y with x < y there is a in E ~ R such that 

. If now x is a positive real number which is not the image of a member
of E ~ R, let F = {a: a ε E ~ R and . If the set F has a supremum c
then,  no point of E ~ R maps into the interval , and if ,
then (  is order preserving) no point of E ~ R maps into the interval .
In either event a contradiction results, and the theorem will follow if it is
shown that each non-empty subset of E ~ R which has an upper bound has a
supremum : that is, E ~ R is order-complete. Suppose then that F is a non-
void subset of E ~ R which has an upper bound. Then there is a smallest
integer p such that ap ≠ 0 for some a in F. Define cq to be zero for q < p, let
Fp be the set of all members a of F with non-zero p-th digit ap, and let cp =



max {ap: a ε Fp}. Continue inductively, letting Fp+1 be the set of all
members a of Fp such that aq = cq for q = p, and let cp+1 = max {ap+1: a ε
Fp+1}. No one of the sets Fp can be void and without difficulty one sees that
the expansion c obtained by this construction is an upper bound of F, and in
fact a supremum, and that c ε E ~ R. 

The foregoing theorem will be used for b equal to two, three, and ten.
The b-adic expansions are then called dyadic, triadic, and decimal,
respectively.

COUNTABLE SETS

A set is finite iff it can be put into one-to-one correspondence with a set
of the form {p: p ε ω and p < q), for some q in ω. A set A is countably
infinite iff it can be put into one-to-one correspondence with the set ω of
non-negative integers; that is, iff A is the range of some one-to-one function
on ω. A set is countable iff it is either finite or countably infinite.

15 THEOREM A subset of a countable set is countable.

PROOF Suppose A is countable, f is one to one on ω with range A, and that B
⊂ A. Then f, restricted to f–1[B], is a one-to-one function on a subset of ω
with range B, and if it can be shown that f–1[B] is countable, then a one-to-
one function onto B can be constructed by composition. The proof therefore
reduces to showing that an arbitrary subset C of ω is countable. Let g(0) be
the first member of C, and proceeding inductively, for p in ω, let g(p) be the
first member of C different from g(0), g(1), …, g(p – 1). If this choice is
impossible for some p then g is a function on {q: q ε ω and q < p} with
range C, and C is finite. Otherwise (using 0.13 on the construction of
functions by induction) there is a function g on ω such that, for each p in ω,
g(p) is the first member of C different from g(0), g(1), …, g(p – 1). Clearly
g is one to one. It is easily verified by induction that g(p)  p for all p, and
hence it follows from the choice of g(p + 1) that each member p of C is one
of the numbers g(q) for q  p. Therefore the range of g is C. 

16 THEOREM If the domain of a function is countable, then the range is also
countable.



PROOF It is sufficient to show that, if A is a subset of ω and f is a function on
A onto B, then B is countable. Let C be the set of all members x of A such
that, if y ε A and y < x, then f(x) ≠ f(y); that is, C consists of the smallest
member of each of the sets f–1[y] for y in B. Then f | C maps C onto B in a
one-to-one fashion, and since C is countable by 0.15, so is B. 

17 THEOREM If  is a countable family of countable sets, then  is
countable.

PROOF Because  is countable there is a function F whose domain is a subset
of ω and whose range is . Since F(p) is countable for each p in ω, it is
possible to find a function Gp on a subset of {p} × ω whose range is F(p).
Consequently there is a function (the union of the functions Gp) on a subset
of ω × ω whose range is , and the problem reduces to showing
that ω × ω is countable. The key to this proof is the observation that, if we
think of ω × ω as lying in the upper right-hand part of the plane, the
diagonals which cross from upper left to lower right contain only a finite
number of members of ω × ω. Explicitly, for n in ω, let Bn = {(p, q): (p, q) ε
ω × ω and p + q = n}. Then Bn contains precisely n + 1 points, and the
union ∪{Bn: n ε ω} is ω × ω. A function on ω with range ω × ω may be
constructed by choosing first the members of B0, next those of B1, and so
on. The explicit definition of such a function is left to the reader. 

The characteristic function of a subset A of a set X is the function f such
that f(x) = 0 for x in X ~ A and f(x) = 1 for x in A. A function f on a set X
which assumes no value other than zero and one is called a characteristic
function; it is clearly the characteristic function of f–1[1]. The function
which is zero everywhere is the characteristic function of the void set, and
the function which is identically one on X is the characteristic function of X.
Two sets have the same characteristic functions iff they are identical, and
hence there is a one-to-one correspondence between the family of all
characteristic functions on a set X and the family of all subsets of X.

If ω is the set of non-negative integers, the family of all characteristic
functions on ω may be put into one-to-one correspondence with the set F of
all dyadic expansions a such that ap = 0 for p < 0. The family of all finite
subsets of ω corresponds in a one-to-one way to the subfamily G of F



consisting of rational dyadic expansions. We now use the classical Cantor
process to prove that F is uncountable.

18 THEOREM The family of all finite subsets of a countably infinite set is
countable, but the family of all subsets is not.

PROOF In view of the remarks preceding the statement of the theorem it is
sufficient to show that the set F of all dyadic expansions a with ap = 0 for p
negative is uncountable, and that the subset G of F consisting of rational
expansions is countable. Suppose that f is a one-to-one function on ω with
range F. Let a be the member of F such that ap = 1 – f(p)p for each non-
negative integer p. That is, the p-th digit of a is one minus the p-th digit of
f(p). Then a ε F and clearly, for each p in ω, a ≠ f(p) because a and f(p)
differ in the p-th digit. It follows that a does not belong to the range of f,
and this is a contradiction. Hence F is uncountable.

It remains to be proved that G is countable. For p in ω let Gp = {a: a ε G
and aq = 0 for q > p}. Then G0 contains just two elements, and since there
are precisely twice as many members in Gp+1 as in Gp, it follows that Gp is
always finite. Hence G = ∪{GP: p ε ω} is countable. 

The natural correspondence between F and a subset of the real numbers
is, according to 0.14, one to one on F ~ G. Since G is countable, F ~ G must
be uncountable. Hence

19 COROLLARY The set of all real numbers is uncountable.

CARDINAL NUMBERS

Many of the theorems on countability are special cases of more general
theorems on cardinal numbers. The set ω of non-negative integers played a
special role in the above and, in a more general way, this role may be
occupied by sets (of which ω is one) called cardinal numbers. Let us agree
that two sets, A and B, are equipollent iff there is a one-to-one function on A
with range B. It turns out that for every set A there is a unique cardinal
number C such that A and C are equipollent. If C and D are distinct cardinal
numbers, then C and D are not equipollent but one of the cardinal numbers,
say C, and a proper subset of the other are equipollent. In this case C is said
to be the smaller cardinal number and we write C < D. With this definition



of order the family of all cardinal numbers is linearly ordered, and even
more, every non-void subfamily has a least member. (These facts are
proved in the appendix.)

Accepting the facts in the previous paragraph for the moment it follows
that, if A and B are sets, then there is a one-to-one function on A to a subset
of B, or the reverse, because there are cardinal numbers C and D such that A
and C, and B and D, respectively, are equipollent. Suppose now that there is
a one-to-one function on A to a subset of B and also a one-to-one function
on B to a subset of A. Then C and a subset of D are equipollent, and D and a
subset of C are equipollent, from which it follows, since the ordering of the
cardinal numbers is linear, that C = D. Hence A and B are equipollent. This
is the classical Schroeder-Bernstein theorem. We give a direct proof of this
theorem which is independent of the general theory of cardinal numbers
because the proof gives non-trivial additional information.

20 THEOREM If there is a one-to-one function on a set A to a sub-set of a set
B and there is also a one-to-one function on B to a subset of A, then A and
B are equipollent.

PROOF Suppose that f is a one-to-one map of A into B and g is one to one on
B to A. It may be supposed that A and B are disjoint. The proof of the
theorem is accomplished by decomposing A and B into classes which are
most easily described in terms of parthenogenesis. A point x (of either A or
B) is an ancestor of a point y iff y can be obtained from x by successive
application of f and g (or g and f). Now decompose A into three sets: let AE
consist of all points of A which have an even number of ancestors, let A0
consist of points which have an odd number of ancestors, and let A1 consist
of points with infinitely many ancestors. Decompose B similarly and
observe: f maps AE onto Bo and AI onto BI, and g–1 maps Ao onto BE. Hence
the function which agrees with f on AE ε ∪ AI and agrees with g–1 on Ao is a
one-to-one map of A onto B. 

21 Notes The foregoing proof does not use the axiom of choice, which is
interesting but not very important. It is important to notice that the function
desired was constructed from the two given functions by a countable
process. Explicitly, if f is a one-to-one function on A to B and g is one to



one on B to A, if Eo = A ~ g[B], En+1 = g ∘ f[En] for each n, and if E =  {En:
n ε ω}, then the function h which is equal to f on E and equal to g–1 on A ~
E is a one-to-one map of A onto B. (More precisely, h = (f | E) ∪ (g–1 | A ~
E).) The importance of this result lies in the fact that, if f and g have certain
pleasant properties (such as being Borel functions), then h retains these
properties.

The intuitively elegant form of the proof of theorem 0.20 is due to G.
Birkhoff and S. MacLane.

ORDINAL NUMBERS

Except for examples, the ordinal numbers will not be needed in the
course of this work. However, several of the most interesting counter
examples are based on extremely elementary properties of the ordinals and
it seems proper to state here the few facts which are necessary for these.
(The ordinal numbers are constructed and these and other properties proved
in the appendix.)

22 SUMMARY There is an uncountable set Ω′, which is linearly ordered by a
relation < in such a way that:

(a) Every non-void subset of Ω′ has a smallest element.
(b) There is a greatest element Ω of Ω′.
(c) If x ε Ω′ and x ≠ Ω, then the set of all members of Ω′ which precede x

is countable.

The set Ω′ is the set of all ordinals which are less than or equal to Ω, the
first uncountable ordinal. A linearly ordered set such that every non-void
subset has a least element is well ordered, In particular, each non-void
subset of a well-ordered set has an infimum. Since every subset of Ω′ has an
upper bound, namely, Ω, it follows by 0.9 that every non-void subset of Ω′
has a supremum. One of the curious facts about Ω′· is the following.

23 THEOREM If A is a countable subset of Ω′ and , then the supremum of
A is less than Ω.

PROOF Assume that A is a countable subset of Ω′ and that . For each
member a of A the set {x: x  a} is countable and hence the union of all



such sets is countable. This union is {x: x  a for some a in A} and the
supremum b of the union is therefore an upper bound for A. The point b has
only a countable number of predecessors relative to the ordering, and hence
b ≠ Ω. It follows that the supremum of A is less than Ω. 

One member of Ω′ deserves special notice. The first member of Ω′
which does not have a finite number of predecessors is the first non-finite
ordinal and is denoted ω. The symbol ω has already been used to denote the
set of non-negative integers. In the construction of the ordinal numbers it
turns out that the first non-finite ordinal is, in fact, the set ω of non-negative
integers!

CARTESIAN PRODUCTS

If A and B are sets the cartesian product A × B has been defined as the
set of all ordered pairs (x,y) such that x ε A and y ε B. It is useful to extend
the definition of cartesian product to families of sets, just as the notion of
union and intersection was extended to arbitrary families of sets. Suppose
that for each member a of an index set A there is given a set Xa. The
Cartesian product of the sets Xa, written {Xa: a ε A}, is defined to be the
set of all functions x on A such that x{a) ε Xa for each a in A. It is
customary to use subscript notation rather than the usual functional
notation, so that {Xa: a ε A} = {x: x is a function on A and xa ε Xa for a in
A). The definition is initially a little surprising but it is actually a precise
statement of the intuitive concept: a point x of the product consists of a
point (namely, xa) selected from each of the sets Xa. The set Xa is the a-th
coordinate set, and the point xa is the a-th coordinate of the point x of the
product. The function Pa which carries each point x of the product onto its
a-th coordinate xa is the projection into the a-th coordinate set. That is,
Pa(x) = xa. The map Pa is also called the evaluation at a.

There is an important special case of a cartesian product. Suppose that
the coordinate set Xa is a fixed set Y for each a in the index set A. Then the
cartesian product {Xa: a ε A} = {Y: a ε A} = {x: x is a function on A to
Y}. Thus {Y: a ε A} is precisely the set of all functions on A to Y,
sometimes written YA. A familiar instance is real Euclidean n-space. This is



the set of all real-valued functions on a set consisting of the integers 0, 1,
…, n – 1, and the i-th coordinate of a member x is xi.

There is another interesting special case. Suppose the index set is itself a
family  of sets, and that for each A in  the A-th coordinate set is A. In this
case the cartesian product {A: A ε } is the family of all functions x on 
such that xA ε A for each A in . These functions, members of the cartesian
product, are sometimes called choice functions for , since intuitively the
function x “chooses” a member xA from each set A. If the empty set is a
member of , then there is clearly no choice function for ; that is, the
cartesian product is void. If the members of  are not empty it is still not
entirely obvious that the cartesian product is non-void, and, in fact, the
question of the existence of a choice function for such a family turns out to
be quite delicate. The next section is devoted to several propositions, each
equivalent to a positive answer to the question. We shall assume as an
axiom the most convenient one of these propositions. (A different choice is
made in the appendix; together with the next section, this shows the
equivalence of the various statements.) With unusual self-restraint we
refrain from discussing the philosophical implications.

HAUSDORFF MAXIMAL PRINCIPLE

If  is a family of sets (or a collection of families of sets) a member A is
the largest member of  if it contains every other member; that is, if A is
larger than every other member of . Similarly, A is the smallest member of
the family iff A is contained in each member. It is frequently of importance
to know that a family has a largest member or a smallest member. Clearly
the largest and smallest members are unique when they exist. However,
even in cases where the family  has no largest member, there may be a
member such that no other member properly contains A, although there are
members which neither contain nor are contained in A. Such a member is
called a maximal member of the family. Formally, A is a maximal member
of  iff no member of  properly contains A. Similarly A is a minimal
member of  iff no member of  is properly contained in A. It is very easy to
make examples of families which have no maximal member, or families in
which each member is both maximal and minimal (for example a disjoint
family). In general, some special hypothesis must be added to ensure the
existence of maximal members.



A family  of sets is a nest (sometimes called a tower or a chain) iff,
whenever A and B are members of the family, then either A ⊂ B or B ⊂ A.
This is precisely the same thing as saying that the family  is linearly
ordered by inclusion, or, in our terminology, that  with the inclusion
relation is a chain. If  and  is a nest, then  is a nest in . We know
that a family of sets may fail to have a maximal element. Let us consider
the collection of all nests in a fixed family  and ask if among these there is
a maximal nest. That is, for each family , is there a nest  in  which is
properly contained in no nest in ? We assume the following statement as
an axiom.

24 HAUSDORFF MAXIMAL PRINCIPLE If  is a family of sets and  is a nest in ,
then there is a maximal nest  in  which contains .

The next theorem lists a number of important consequences of the
Hausdorff maximal principle. Before stating the results we review some of
the terminology which is commonly used in this connection. A family  of
sets is of finite character iff each finite subset of a member of  is a member
of , and each set A, every finite subset of which belongs to , itself belongs
to . If < is an ordering of a set A, then a subset B which is linearly ordered
by < is called a chain in A. A maximal element of the ordered set A is an
element x such that x follows each comparable element of A; that is, if y ε A,
then either y precedes x or x does not precede y. A relation < is a well
ordering of a set A iff < is a linear ordering of A such that each non-void
subset has a first member (a member which is less than or equal to every
other member). If there exists a well ordering of A, then we say that A can
be well ordered.

25 THEOREM

(a) MAXIMAL PRINCIPLE There is a maximal member of a family  of sets,
provided that for each nest in  there is a member of  which contains
every member of the nest,

(b) MINIMAL PRINCIPLE There is a minimal member of a family , provided
that for each nest in  there is a member of  which is contained in
every member of the nest.

(c) TUKEY LEMMA There is a maximal member of each non-void family of
finite character.



(d) KURATOWSKI LEMMA Each chain in a (partially) ordered set is contained
in a maximal chain.

(e) ZORN LEMMA If each chain in a partially ordered set has an upper
bound, then there is a maximal element of the set.

(f) AXIOM OF CHOICE If Xa is a non-void set for each member a of an index
set A, then there is a function c on A such that c(a) ε Xa for each a in A.

(g) ZERMELO POSTULATE If  is a disjoint family of non-void sets y then there
is a set C such that A ∩ C consists of a single point for every A in .

(h) WELL-ORDERING PRINCIPLE Each set can be well ordered.

PROOF We sketch the proof of each of these propositions, leaving a good
many of the details to the reader.

Proof of (a) : Choose a maximal nest  in  and let A be a member of 
containing . Then A is a maximal member of , for if A is
properly contained in a member B of , then  ∪ {B} is a nest in  which
properly contains , which is a contradiction.

Proof of (b) : A proof very much like the one above is clearly possible.
However, one may use (a) instead, by letting X = , letting  be the
family of complements relative to X of members of , observing that
because of the De Morgan formulae  satisfies the hypothesis of (a), hence
has a maximal member M, and that X ~ M is surely a minimal member of .

Proof of (c): The proof is based on the maximal principle (a). Let  be a
family which is of finite character, let  be a nest in , and let 

. Each finite subset F of A is necessarily a subset of some
member of , for we may choose a finite subfamily of the nest  whose
union contains F, and this finite subfamily has a largest member which then
contains F. Consequently A ε . Then  satisfies the hypothesis of (a) and
therefore has a maximal member.

Proof of (d) : Suppose B is a chain in the partially ordered set A. Let 
be the family of all chains in A which contain B. If  is a nest in , then it
can be directly verified that  is again a member, so that  satisfies
the hypothesis of (a) and consequently has a maximal member.

Proof of (e) : Choose an upper bound for a maximal chain.
Proof of (f): Recall that a function is a set of ordered pairs such that no

two members have the same first coordinate. Let  be the family of all
functions f such that the domain of f is a subset of A and f(a) ε Xa for each a
in the domain of f. (The members of  are “fragments” of the function we



seek.) The following argument shows that  is a family of finite character. If
f is a member of , then every subset of f, and in particular every finite
subset, is also a member of . On the other hand, if f is a set, each finite
subset of which belongs to , then the members of f are ordered pairs, no
two different pairs have the same first coordinate, and consequently f is a
function. Moreover, if a is a member of the domain of f, then {(a, f(a))} ε 
and hence f(a) ε Xa, and it follows that . Because  is a family of finite
character there is a maximal member c of , and it is only necessary to show
that the domain of c is A. If a is a member of A which is not a member of
the domain of c, then, since Xa is non-void, there is a member y of Xa and c
∪ {(a,y)} is itself a function and is a member of , which contradicts the
fact that c is maximal.

Proof of (g): Apply the axiom of choice to the index set  with XA = A
for each A in .

Proof of (h) : Suppose that X is the (non-void) set which is to be well
ordered. Let  be the family of all non-void subsets of X, and let c be a
choice function for ; that is, c is a function on  such that c(A) ε A for each
A in . The idea of the proof is to construct an ordering  such that for each
“initial segment” A the first point which follows A in the ordering is c(X ~
A). Explicitly, define a set A to be a segment relative to an order < iff each
point which precedes a member of A is itself a member of A. In particular
the void set is a segment. Let  be the class of all reflexive linear orderings 

 which satisfy the conditions: the domain D of  is a subset of X and for
each segment A other than D the first point of D ~ A is c(X ~ A). It is almost
evident that each member of  is a well ordering, for if B is a non-void
subset of the domain of a member  and A = {y: y  x and y ≠ x for each x
in B}, then c(X ~ A) is the first member of B. Suppose that  and ≤ are
members of , that D is the domain of , and that E is the domain of ≤. Let
A be the set of all points x such that the sets {y : y  x} and {y : y ≤ x) are
identical and such that on these sets the two orderings agree. Then A is a
segment relative to both  and ≤. If A is not identical with either D or E,
then c(X ~ A) is the first point of each of these sets which does not belong to
A; but then c{X ~ A) ε A in view of the definition of A. It follows that A = D
or A = E. Thus any two members of  are related as follows: the domain of
one member is a segment relative to the other, and the two orderings agree
on this segment. Using this fact it is not hard to see that the union < of the
members of  is itself a member of ; it is the largest member of . If F is



the domain of <, then F = X, for otherwise the point c(X ~ F) may be
adjoined at the end of the ordering (more precisely, < ∪ (F × {c(X) ~ F)} is
a member of ε which properly contains <). The theorem follows. 

26 Notes Each of the propositions listed above is actually equivalent to the
Hausdorff maximal principle, and any one of these might reasonably be
assumed as an axiom. In the appendix the maximal principle is derived
from the axiom of choice.

The derivation of the well ordering principle from the choice axiom
which is given above is essentially that of Zermelo [1]. A proof which uses
0.25(e) is also quite feasible. It may be noted that the union of a nest of well
orderings is generally not a well ordering, so that a direct application of the
maximal principle to the family of well orderings is impossible.

It should be remarked that the labelling of the various propositions in
0.25 is somewhat arbitrary. The Hausdorff maximal principle was used
independently by C. Kuratowski, R. L. Moore, and M. Zorn in forms
approximating those above.

Finally it may be noted that, although the formulation of Tukey’s lemma
which is given is more or less standard, it does not imply (directly) the most
commonly cited applications (for example, each group contains a maximal
abelian subgroup). There is a more general form which states (very
roughly): if a family  of sets is defined by a (possibly infinite) number of
conditions such that each condition involves only finitely many points, then
 has a maximal member.

* This statement is not strictly accurate. There are technical reasons, expounded in the appendix,
for distinguishing between two different sorts of aggregates. The term “set” will be reserved for
classes which are themselves members of classes. This distinction is of no great importance here;
with a single non-trivial exception, each class which occurs in the discussion (prior to the appendix)
is also a set.

* An honest treatment of the problem is given in the appendix, where N. Wiener’s definition of
ordered pair is used. The ingenious notion of representing relations in this fashion is due to C. S.
Peirce. A very readable account of the elementary relation algebra will be found in A. Tarski [1].



Chapter 1
 

TOPOLOGICAL SPACES
 

TOPOLOGIES AND NEIGHBORHOODS

A topology is a family  of sets which satisfies the two conditions: the
intersection of any two members of  is a member of , and the union of the
members of each subfamily of  is a member of . The set  is
necessarily a member of  because  is a subfamily of itself, and every
member of  is a subset of X. The set X is called the space of the topology 
and  is a topology for X. The pair  is a topological space. When no
confusion seems possible we may forget to mention the topology and write
“X is a topological space.” We shall be explicit in cases where precision is
necessary (for example if we are considering two different topologies for
the same set X).

The members of the topology  are called open relative to , or -open,
or if only one topology is under consideration, simply open sets. The space
X of the topology is always open, and the void set is always open because it
is the union of the members of the void family. These may be the only open
sets, for the family whose only members are X and the void set is a
topology for X. This is not a very interesting topology, but it occurs
frequently enough to deserve a name; it is called the indiscrete (or trivial)
topology for X, and  is then an indiscrete topological space. At the other
extreme is the family of all subsets of X, which is the discrete topology for
X (then  is a discrete topological space). If  is the discrete topology,
then every subset of the space is open.

The discrete and the indiscrete topology for a set X are respectively the
largest and the smallest topology for X. That is, every topology for X is
contained in the discrete topology and contains the indiscrete topology. If 



and  are topologies for X, then, following the convention for arbitrary
families of sets,  is smaller than  and  is larger than  iff . In other
words,  is smaller than  iff each -open set is -open. In this case it is also
said that  is coarser than  and  is finer than . (Unfortunately, this
situation is described in the literature by both of the statements:  is stronger
than  and  is weaker than .) If  and  are arbitrary topologies for X it
may happen that  is neither larger nor smaller than ; in this case,
following the usage for partial orderings, it is said that  and  are not
comparable.

The set of real numbers, with an appropriate topology, is a very
interesting topological space. This is scarcely surprising since the notion of
a topological space is an abstraction of some interesting properties of the
real numbers. The usual topology for the real numbers is the family of all
those sets which contain an open interval about each of their points. That is,
a subset A of the set of real numbers is open iff for each member x of A
there are numbers a and b such that a < x < b and the open interval {y: a < y
< b} is a subset of A. Of course, we must verify that this family of sets is
indeed a topology, but this offers no difficulty. It is worth noticing that,
conveniently, an open interval is an open set.

A set U in a topological space  is a neighborhood ( -neighborhood)
of a point x iff U contains an open set to which x belongs. A neighborhood
of a point need not be an open set, but every open set is a neighborhood of
each of its points. Each neighborhood of a point contains an open
neighborhood of the point. If  is the indiscrete topology the only
neighborhood of a point x is the space X itself. If  is the discrete topology,
then every set to which a point belongs is a neighborhood of it. If X is the
set of real numbers and  is the usual topology, then a neighborhood of a
point is a set containing an open interval to which the point belongs.

1 THEOREM A set is open if and only if it contains a neighborhood of each of
its points.

PROOF The union U of all open subsets of a set A is surely an open subset of
A. If A contains a neighborhood of each of its points, then each member x of
A belongs to some open subset of A and hence x ε U. In this case A = U and
therefore A is open. On the other hand, if A is open it contains a
neighborhood (namely, A) of each of its points. 



The foregoing theorem evidently implies that a set is open iff it is a
neighborhood of each of its points.

The neighborhood system of a point is the family of all neighborhoods
of the point.

2 THEOREM If  is the neighborhood system of a point, then finite
intersections of members of  belong to , and each set which contains a
member of  belongs to .

PROOF If U and V are neighborhoods of a point x, there are open
neighborhoods U0 and V0 contained in U and V respectively. Then U ∩ V
contains the open neighborhood U0 ∩ V0 and is hence a neighborhood of x.
Thus the intersection of two (and hence of any finite number of) members
of  is a member. If a set U contains a neighborhood of a point x it contains
an open neighborhood of x and is consequently itself a neighborhood. 

3 Notes Fréchet [1] first considered abstract spaces. The concept of a
topological space developed during the following years, accompanied by a
good deal of experimentation with definitions and fundamental processes.
Much of the development of the theory may be found in Hausdorff’s classic
work [1] and, a little later, in the early volumes of Fundamenta
Mathematicae There are actually two fundamental concepts which have
grown out of these researches: that of a topological space and that of a
uniform space (chapter 7). The latter notion, which has been formalized
relatively recently (A. Weil [1]), owes much to the study of topological
groups.

Standard references on general topology include:

Alexandroff and Hopf [1] (the first two chapters), Bourbaki [1],
Fréchet [2], Kuratowski [1], Lefschetz [1] (the first chapter), R. L.
Moore [1], Newman [1], Sierpinski [1], Tukey [1], Vaidyanathaswamy
[1], and G. T. Whyburn [1].

CLOSED SETS

A subset A of a topological space  is closed iff its relative
complement X ~ A is open. The complement of the complement of the set A
is again A, and hence a set is open iff its complement is closed. If  is the



indiscrete topology the complement of X and the complement of the void
set are the only closed sets; that is, only the void set and X are closed. It is
always true that the space and the void set are closed as well as open, and it
may happen, as we have just seen, that these are the only closed sets. If  is
the discrete topology, then every subset is closed and open. If X is the set of
real numbers and  the usual topology, then the situation is quite different. A
closed interval (that is, a set of the form {x: a  x  b}) is fortunately
closed. An open interval is not closed and a half-open interval (that is, a set
of the form {x: a < x  b) or {x: a  x < b) where a < b) is neither open nor
closed. Indeed—(problem 1.J)—the only sets which are both open and
closed are the space and the void set.

According to the De Morgan formulae, 0.3, the union (intersection) of
the complements of the members of a family of sets is the complement of
the intersection (respectively union). Consequently, the union of a finite
number of closed sets is necessarily closed and the intersection of the
members of an arbitrary family of closed sets is closed. These properties
characterize the family of closed sets, as the following theorem indicates.
The simple proof is omitted.

4 THEOREM Let  be a family of sets such that the union of a finite subfamily
is a member, the intersection of an arbitrary non-void subfamily is a
member, and  is a member. Then  is precisely the family of
closed sets in X relative to the topology consisting of all complements of
members of .

ACCUMULATION POINTS

The topology of a topological space can be described in terms of
neighborhoods of points and consequently it must be possible to formulate a
description of closed sets in terms of neighborhoods. This formulation leads
to a new classification of points in the following way. A set A is closed iff X
~ A is open, and hence iff each point of X ~ A has a neighborhood which is
contained in X ~ A, or equivalently, is disjoint from A. Consequently, A is
closed iff for each x, if every neighborhood of x intersects A, then x ε A.
This suggests the following definition.

A point x is an accumulation point (sometimes called cluster point or
limit point) of a subset A of a topological space  iff every neighborhood
of x contains points of A other than x. Then it is true that each neighborhood



of a point x intersects A if and only if x is either a point of A or an
accumulation point of A. The following theorem is then clear.

5 THEOREM A subset of a topological space is closed if and only if it
contains the set of its accumulation points.

If x is an accumulation point of A it is sometimes said, in a pleasantly
suggestive phrase, that there are points of A arbitrarily near x. If we pursue
this imagery it appears that an indiscrete topological space is really quite
crowded, for each point x is an accumulation point of every set other than
the void set and the set {x}. On the other hand, in a discrete topological
space, no point is an accumulation point of a set. If X is the set of real
numbers with the usual topology a variety of situations can arise. If A is the
open interval (0,1), then every point of the closed interval [0,1] is an
accumulation point of A. If A is the set of all non-negative rationals with
squares less than 2, then the closed interval [0,√2] is the set of accumulation
points. If A is the set of all reciprocals of integers, then 0 is the only
accumulation point of A, and the set of integers has no accumulation points.

6 THEOREM The union of a set and the set of its accumulation points is
closed.

PROOF If x is neither a point nor accumulation point of A, then there is an
open neighborhood U of x which does not intersect A. Since U is a
neighborhood of each of its points, no one of these is an accumulation point
of A. Hence the union of the set A and the set of its accumulation points is
the complement of an open set. 

The set of all accumulation points of a set A is sometimes called the
derived set of A.

CLOSURE

The closure ( -closure) of a subset A of a topological space  is the
intersection of the members of the family of all closed sets containing A.
The closure of A is denoted by A–, or by Ā. The set A– is always closed
because it is the intersection of closed sets, and evidently A– is contained in
each closed set which contains A. Consequently A– is the smallest closed set



containing A and it follows that A is closed if and only if A = A–. The next
theorem describes the closure of a set in terms of its accumulation points.

7 THEOREM The closure of any set is the union of the set and the set of its
accumulation points.

PROOF Every accumulation point of a set A is an accumulation point of each
set containing A, and is therefore a member of each closed set containing A.
Hence A– contains A and all accumulation points of A. On the other hand,
according to the preceding theorem, the set consisting of A and its
accumulation points is closed and it therefore contains A–. 

The function which assigns to each subset A of a topological space the
value A– might be called the closure function, or closure operator, relative
to the topology. This operator determines the topology completely, for a set
A is closed iff A = A–. In other words, the closed sets are simply the sets
which are fixed under the closure operator. It is instructive to enquire:
Under what circumstances is an operator which is defined for all subsets of
a fixed set X the closure operator relative to some topology for X? It turns
out that four very simple properties serve to describe closure. First, because
the void set is closed, the closure of the void set is void; and, second, each
set is contained in its closure. Next, because the closure of each set is
closed, the closure of the closure of a set is identical with the closure of the
set (in the usual algebraic terminology, the closure operator is idempotent).
Finally, the closure of the union of two sets is the union of the closures, for
(A ∪ B)– is always a closed set containing A and B, and therefore contains
A– and B– and hence A– ∪ B–; on the other hand, A– ∪ B– is a closed set
containing A ∪ B and hence also (A ∪ B)–.

A closure operator on X is an operator which assigns to each subset A of
X a subset Ac of X such that the following four statements, the Kuratowski
closure axioms, are true.

(a) If 0 is the void set, 0c = 0.
(b) For each A, A ⊂ Ac.
(c) For each A, Acc = Ac.
(d) For each A and B, (A ∪ B)c = Ac ∪ Bc.



The following theorem of Kuratowski shows that these four statements are
actually characteristic of closure. The topology defined below is the
topology associated with a closure operator.

8 THEOREM Let c be a closure operator on X, let  be the family of all
subsets A of X for which Ac = A, and let  be the family of complements of
members of . Then  is a topology for X, and Ac is the -closure of A for
each subset A of X.

PROOF Axiom (a) shows that the void set belongs to , and (d) shows that
the union of two members of  is a member of . Consequently the union of
any finite subfamily (void or not) of  is a member of . Because of (b), X ⊂
Xc, so that X = Xc, and the union of the members of  is then X. In view of
theorem 1.4, it will follow that  is a topology for X if it is shown that the
intersection of the members of any non-void subfamily of  is a member of 
. To this end, first observe that, if B ⊂ A, then Bc ⊂ Ac, because Ac = [(A ~

B) ∪ B]c = (A ~ B)c ∪ Bc. Now suppose that  is a non-void subfamily of 
and that . The set B is contained in each member of , and
therefore . Since B ⊂ Bc it follows that
B = Bc and . This shows that  is a topology, and it remains to show that
Ac is A–,the -closure of A. By definition, A– is the intersection of all the -
closed sets, that is, the members of , which contain A. By axiom (c), ,
and hence A– ⊂ Ac; since  and A– ⊃ A it follows that A– ⊃ Ac and
hence A~ = Ac. 

INTERIOR AND BOUNDARY

There is another operator defined on the family of all subsets of a
topological space, which is very intimately related to the closure operator. A
point x of a subset A of a topological space is an interior point of A iff A is a
neighborhood of x, and the set of all interior points of A is the interior of A,
denoted A0. (In the usual terminology, the relation “is an interior point of” is
the inverse of the relation “is a neighborhood of.”) It is convenient to
exhibit the connection between this notion and the earlier concepts before
considering examples.



9 THEOREM Let A be a subset of a topological space X. Then the interior A0

of A is open and is the largest open subset of A, A set A is open if and only if
A = A0. The set of all points of A which are not points of accumulation of X
~ A is precisely A0. The closure of X ~ A is X ~ A0.

PROOF If a point x belongs to the interior of a set A, then x is a member of
some open subset U of A. Every member of U is also a member of A0, and
consequently A0 contains a neighborhood of each of its points and is
therefore open. If V is an open subset of A and y ε V, then A is a
neighborhood of y and so y ε A0. Hence A0 contains each open subset of A
and it is therefore the largest open subset of A. If A is open, then A is surely
identical with the largest open subset of A ; hence A is open iff A = A0. If x
is a point of A which is not an accumulation point of X ~ A, then there is a
neighborhood U of x which does not intersect X ~ A and is therefore a
subset of A. Then A is a neighborhood of x and x ε A0. On the other hand, A0

is a neighborhood of each of its points and A0 does not intersect X ~ A, so
that no point of A0 is an accumulation point of X ~ A. Finally, since A0

consists of the points of A which are not accumulation points of X ~ A, the
complement, X ~ A0, is precisely the set of all points which are either points
of X ~ A or accumulation points of X ~ A; that is, the complement is the
closure (X ~ A)–. 

The last statement of the foregoing theorem deserves a little further
consideration. For convenience, let us denote the relative complement X ~ A
by A′. Then A″, the complement of the complement of A, is again A (we
sometimes say ′ is an operator of period two). The preceding result can then
be stated as A0′ = A′–, and, it follows, taking complements, that A0 = A′–′.
Thus the interior of A is the complement of the closure of the complement
of A. If A is replaced by its complement it follows that A– = A′0′, so that the
closure of a set is the complement of the interior of the complement.*

If X is an indiscrete space the interior of every set except X itself is void.
If X is a discrete space, then each set is open and closed and consequently
identical with its interior and with its closure. If X is the set of real numbers
with the usual topology, then the interior of the set of all integers is void;
the interior of a closed interval is the open interval with the same endpoints.
The interior of the set of rational numbers is void, and the closure of the



interior of this set is consequently void. The closure of the set of rational
numbers is the set X of all numbers, and the interior of this set is X again.
Thus the interior of the closure of a set may be quite different from the
closure of the interior; that is, the interior operator and the closure operator
do not generally commute.

There is one other operator which occurs frequently enough to justify its
definition. The boundary of a subset A of a topological space X is the set of
all points x which are interior to neither A nor X ~ A. Equivalently, x is a
point of the boundary iff each neighborhood of x intersects both A and X ~
A. It is clear that the boundary of A is identical with the boundary of X ~ A.
If X is indiscrete and A is neither X nor void, then the boundary of A is X,
while if X is discrete the boundary of every subset is void. The boundary of
an interval of real numbers, in the usual topology for the reals, is the set
whose only members are the endpoints of the interval, regardless of
whether the interval is open, closed, or half-open. The boundary of the set
of rationals, or the set of irrationals, is the set of all real numbers.

It is not difficult to discover the relations between boundary, closure,
and interior. The following theorem, whose proof we omit, summarizes the
facts.

10 THEOREM Let A be a subset of a topological space X and let b(A) be the
boundary of A. Then b(A) = A– ∩ (X ~ A)~ = A– ~A0, X ~ b(A) = A0 ∪ (X ~
A)0, A– = A ∪ b(A) and A0 = A ~b(A).

A set is closed if and only if it contains its boundary and is open if and
only if it is disjoint from its boundary.

BASES AND SUBBASES

In defining the usual topology for the set of real numbers we began with
the family  of open intervals, and from this family constructed the
topology . The same method is useful in other situations and we now
examine the construction in detail. A family  of sets is a base for a
topology  iff  is a subfamily of  and for each point x of the space, and
each neighborhood U of X, there is a member V of  such that x ε V ⊂ U.
Thus the family of open intervals is a base for the usual topology of the real
numbers, in view of the definition of the usual topology and the fact that
open intervals are open relative to this topology.



There is a simple characterization of bases which is frequently used as a
definition: A subfamily  of a topology  is a base for  iff each member of 
is the union of members of . To prove this fact, suppose that  is a base for
the topology  and that U ε . Let V be the union of all members of  which
are subsets of U and suppose that x ε U. Then there is W in  such that x ε W
⊂ U, and consequently x ε V. Hence U ⊂ V and since V is surely a subset of
U, V = U. To show the converse, suppose  and each member of  is the
union of members of . If U ε , then U is the union of the members of a
subfamily of , and for each x in U there is V in  such that x ε V ⊂ U.
Consequently  is a base for .

Although this is a very convenient method for the construction of
topologies, a little caution is necessary because not every family of sets is
the base for a topology. For example, let X consist of the integers 0, 1, and
2, let A consist of 0 and 1, and let B consist of 1 and 2. If  is the family
whose members are X, A, B and the void set, then  cannot be the base for a
topology because: by direct computation, the union of members of  is
always a member, so that if  were the base of a topology that topology
would have to be  itself, but  is not a topology because . The
reason for this situation is made clear by the following theorem.

11 THEOREM A family  of sets is a base for some topology for the set 
 if and only if for every two members U and V of  and each

point x in U ∩ V there is W in  such that x z W and W ⊂ U ∩ V.

PROOF If  is a base for some topology, U and V are members of  and x ε U
∩ V then, since U ∩ V is open, there is a member of  to which x belongs
and which is a subset of U ∩ V. To show the converse, let  be a family
with the specified property and let  be the family of all unions of members
of . A union of members of  is itself a union of members of  and is
therefore a member of , and it is only necessary to show that the
intersection of two members U and V of  is a member of . If x ε U ∩ V,
then we may choose U′ and V′ in  such that x ε U′ ⊂ U and x ε V′ ⊂ V, and
then a member W of  such that x ε U′ ⊂ U and ∩ ∪′ ∩ V′ ⊂ U ∩ V.
Consequently U ∩ V is the union of members of , and  is a topology. 

We have just seen that an arbitrary family  of sets may fail to be the
base for any topology. With admirable persistence we vary the question and
enquire whether there is a unique topology which is, in some sense,



generated by . Such a topology should be a topology for the set X which is
the union of the members of , and each member of  should be open
relative to the topology; that is,  should be a subfamily of the topology.
This raises the question: Is there a smallest topology for X which contains 
? The following simple result will enable us to exhibit this smallest
topology,

12 THEOREM If  is any non-void family of sets the family of all finite
intersections of members of S is the base for a topology for the set 

.

PROOF If  is a family of sets let  be the family of finite intersections of
members of . Then the intersection of two members of  is again a member
of  and, applying the preceding theorem,  is the base for a topology. 

A family  of sets is a subbase for a topology  iff the family of finite
intersections of members of  is a base for  (equivalently, iff each member
of  is the union of finite intersections of members of ). In view of the
preceding theorem every non-empty family  is the subbase for some
topology, and this topology is, of course, uniquely determined by . It is the
smallest topology containing  (that is, it is a topology containing  and is a
subfamily of every topology containing ).

There will generally be many different bases and subbases for a
topology and the most appropriate choice may depend on the problem under
consideration. One rather natural subbase for the usual topology for the real
numbers is the family of half-infinite open intervals; that is, the family of
sets of the form {x: x > a} or {x: x < a}. Each open interval is the
intersection of two such sets, and this family is consequently a subbase. The
family of all sets of the same form with a rational is a less obvious and
more interesting subbase. (See problem 1.J.)

A space whose topology has a countable base has many pleasant
properties. Such spaces are said to satisfy the second axiom of countability.
(The terms separable and perfectly separable are also used in this
connection, but we shall use neither.)

13 THEOREM If A is an uncountable subset of a space whose topology has a
countable base, then some point of A is an accumulation point of A.



PROOF Suppose that no point of A is an accumulation point and that  is a
countable base. For each x in A there is an open set containing no point of A
other than x, and since  is a base we may choose Bx in  such that Bx ∩ A =
{x}. There is then a one-to-one correspondence between the points of A and
the members of a subfamily of , and A is therefore countable. 

A sharper form of this theorem is stated in problem 1.H.
A set A is dense in a topological space X iff the closure of A is X. A

topological space X is separable iff there is a countable subset which is
dense in X. A separable space may fail to satisfy the second axiom of
countability. For example, let X be an uncountable set with the topology
consisting of the void set and the complements of finite sets. Then every
non-finite set is dense because it intersects every non-void open set. On the
other hand, suppose that there is a countable base  and let x be a fixed
point of X. The intersection of the family of all open sets to which x belongs
must be {x}, because the complement of every other point is open. It
follows that the intersection of those members of the base  to which x
belongs is {x}. But the complement of this countable intersection is the
union of a countable number of finite sets, hence countable, and this is a
contradiction. (Less trivial examples occur later.) There is no difficulty in
showing that a space with a countable base is separable.

14 THEOREM A space whose topology has a countable base is separable.

PROOF Choose a point out of each member of the base, thus obtaining a
countable set A. The complement of the closure of A is an open set which,
being disjoint from A, contains no non-void member of the base and is
hence void. 

A family  is a cover of a set B iff B is a subset of the union ;
that is, iff each member of B belongs to some member of . The family is an
open cover of B iff each member of  is an open set. A subcover of  is a
subfamily which is also a cover.

15 THEOREM (LINDELÖF) There is a countable subcover of each open cover
of a subset of a space whose topology has a countable base.

PROOF Suppose A is a set,  is an open cover of A, and  is a countable base
for the topology. Because each member of  is the union of members of 



there is a subfamily  of  which also covers A, such that each member of 
is a subset of some member of . For each member of  we may select a
containing member of  and so obtain a countable subfamily  of . Then 
is also a cover of A because  covers A. Hence  has a countable subcover. 

A topological space is a Lindelöf space iff each open cover of the space
has a countable subcover.

Since the second axiom of countability has been mentioned, it seems
only proper that the first be stated. This axiom concerns a localized form of
the notion of a base. A base for the neighborhood system of a point x, or a
local base at x, is a family of neighborhoods of x such that every
neighborhood of x contains a member of the family. For example, the
family of open neighborhoods of a point is always a base for the
neighborhood system. A topological space satisfies the first axiom of
countability if the neighborhood system of every point has a countable base.
It is clear that each topological space which satisfies the second axiom of
countability also satisfies the first; on the other hand, any uncountable
discrete topological space satisfies the first axiom (there is a base for the
neighborhood system of each point x which consists of the single
neighborhood {x}) but not the second (the cover whose members are {x}
for all x in X has no countable subcover). The second axiom of countability
is therefore definitely more restrictive than the first.

It is worth noticing that, if U1, U2, …, Un, … is a countable local base at
x, then a new local base V1, V2, …, Vn, … can be found such that Vn ⊃ Vn+1
for each n. The construction is simple: let Vn = ∩ {Uk: k  n}.

A subbase for the neighborhood system of a point x, or a local subbase
at x, is a family of sets such that the family of all finite intersections of
members is a local base. If U1, U2, …, Un, … is a countable local subbase,
then V1, V2, …, Vn, …, where Vn = ∩ {Uk: k  n} is a countable local base.
Hence the existence of a countable local subbase at each point implies the
first axiom of countability.

RELATIVIZATION; SEPARATION

If  is a topological space and Y is a subset of X we may construct a
topology  for Y which is called the relative topology, or the relativization
of  to Y. The relative topology  is defined to be the family of all
intersections of members of  with Y; that is, U belongs to the relative



topology  iff U = V ∩ Y for some -open set V. It is not difficult to see that 
 is actually a topology. Each member U of the relative topology  is said

to be open in Y, and its relative complement Y ~ U is closed in Y. The -
closure of a subset of Y is its closure in Y. Each subset Y of X is both open
and closed in itself, although Y may be neither open nor closed in X. The
topological space  is called a subspace of the space . More
formally, an arbitrary topological space  is a sub-space of another space

 iff Y ⊂ X and  is the relativization of .
It is worth noticing that, if  is a subspace of  and  is a

subspace of , then  is a subspace of . This transitivity relation
will often be used without explicit mention.

Suppose that  is a subspace of  and that A is a subset of Y. Then
A may be either -closed or -closed, a point y may be either a  or a -
accumulation point of A, and A has both a  and a -closure. The relations
between these various notions are important.

16 THEOREM Let  be a topological space, let  be a sub-space, and
let A be a subset of Y. Then:

(a) The set A is -closed if and only if it is the intersection of Y and a -
closed set.

(b) A point y of Y is a -accumulation point of A if and only if it is a -
accumulation point.

(c) The -closure of A is the intersection of Y and the -closure of A.

PROOF The set A is closed in Y iff its relative complement Y ~ A is of the
form V ∩ Y for some -open set V, but this is true iff A = (X ~ V) ∩ Y for
some V in . This proves (a), and (b) follows directly from the definition of
the relative topology and the definition of accumulation point. The -
closure of A is the union of A and the set of its -accumulation points, and
hence by (b) it is the intersection of Y and the -closure of A. 

If  is a subspace of  and Y is open in X, then each set open in Y
is also open in X because it is the intersection of an open set and Y. A
similar statement, with “closed” replacing “open” everywhere, is also true.
However, knowing that a set is open or closed in a subspace generally tells
very little about the situation of the set in X. If X is the union of two sets Y
and Z and if A is a subset of X such that A ∩ Y is open in Y and A ∩ Z is



open in Z, then one might hope that A is open in X. But this is not always
true, for if Y is an arbitrary subset of X and Z = X ~ Y, then Y ∩ Y and Y ∩ Z
are open in Y and Z respectively. There is one important case, in which this
result does hold. Two subsets A and B are separated in a topological space X
iff A– ∩ B and A ∩ B– are both void. This definition of separation involves
the closure operation in X. However, the apparent dependence on the space
X is illusory, for A and B are separated in X if and only if neither A nor B
contains a point or an accumulation point of the other. This condition may
be restated in terms of the relative topology for A ∪ B, in view of part (b) of
the foregoing theorem, as: both A and B are closed in A ∪ B (or
equivalently A (or B) is both open and closed in A ∪ B) and A and B are
disjoint. As an example, notice that the open intervals (0,1) and (1,2) are
separated subsets of the real numbers with the usual topology and that there
is a point, 1, belonging to the closure of both. However, (0,1) is not
separated from the closed interval [1,2] because 1, which is a member of
[1,2], is an accumulation point of (0,1).

Three theorems on separation will be needed in the sequel.

17 THEOREM If Y and Z are subsets of a topological space X and both Y and
Z are closed or both are open, then Y ~ Z is separated from Z ~Y.

PROOF Suppose that Y and Z are closed subsets of X. Then Y and Z are
closed in Y ∪ Z and therefore Y ~ Z = ((Y ∪ Z) ~ Z) and Z ~ Y are open in Y
∪ Z. It follows that both Y ~ Z and Z ~Y are open in (Y ~ Z) ∪ (Z ~ Y), and
since they are complements relative to this set both are closed in (Y ~ Z) ∪
(Z ~Y). Consequently Y ~ Z and Z ~Y are separated. A dual argument
applies to the case where both Y and Z are open in X. 

18 THEOREM Let X be a topological space which is the union of subsets Y
and Z such that Y ~ Z and Z ~Y are separated. Then the closure of a subset
A of X is the union of the closure in Y of A ∩ Y and the closure in Z of A ∩
Z.

PROOF The closure of a union of two sets is the union of the closures and
hence A– = (A ∩ Y)– ∪ (A ∩ Z ~ Y)–. Consequently A– ∩ Y = [(A ∩ Y)– ∩ Y]
∪ [A ∩ Z ~ Y)– ∩ Y]. The set (Z ~ Y)– is disjoint from Y ~ Z, hence (Z ~ Y)–

⊂ Z, and it follows that (A ∩ Z ~ Y)– is a subset of (A ∩ Z)– ∩ Z. Similarly



A– ∩ Z is the union of {A ∩ Z)– ∩ Z and a subset of (A ∩ Y)– ∩ Y.
Consequently A– = (A– ∩ Y) ∪ (A– ∩ Z) = [(A ∩ Y)– ∩ Y] ∪ [(A ∩ Z)– ∩ Z],
and the theorem is proved. 

19 COROLLARY Let X be a topological space which is the union of subsets Y
and Z such that Y ~ Z and Z ~Y are separated. Then a subset A of X is
closed (open) if A ∩ Y is closed (open) in Y and A ∩ Z is closed (open) in Z.

PROOF If A ∩ Y and A ∩ Z are closed in Y and Z respectively, then, by the
preceding theorem, A is necessarily identical with its closure and is
therefore closed. If A ∩ Y and A ∩ Z are open in Y and Z respectively, then
Y ∩ X ~ A and Z ∩ X ~ A are closed in Y and in Z and hence X ~ A is closed
and A is open. 

CONNECTED SETS

A topological space  is connected iff X is not the union of two non-
void separated subsets. A subset Y of X is connected iff the topological
space Y with the relative topology is connected. Equivalently, Y is
connected iff Y is not the union of two non-void separated subsets. Another
equivalence follows from the discussion of separation: A set Y is connected
iff the only subsets of Y which are both open and closed in Y are Y and the
void set. From this form it follows at once that any indiscrete space is
connected. A discrete space containing more than one point is not
connected. The real numbers, with the usual topology, are connected
(problem 1.J), but the rationals, with the usual topology of the reals
relativized, are not connected. (For any irrational a the sets {x: x < a} and
{x: x > a} are separated.)

20 THEOREM The closure of a connected set is connected.

PROOF Suppose that Y is a connected subset of a topological space and that
Y– = A ∪ B, where A and B are both open and closed in Y–. Then each of A
∩ Y and B ∩ Y is open and closed in Y, and since Y is connected, one of
these two sets must be void. Suppose that B ∩ Y is void. Then Y is a subset
of A and consequently Y– is a subset of A because A is closed in Y–. Hence B
is void, and it follows that Y– is connected. 



There is another version of this theorem which is apparently stronger,
which states that, if Y is a connected subset of X and if Z is a set such that Y
⊂ Z ⊂ Y–, then Z is connected. However, the stronger form is an immediate
consequence of applying the foregoing theorem to Z with the relative
topology.

21 THEOREM Let  be a family of connected subsets of a topological space.
If no two members of  are separated, then  is connected.

PROOF Let C be the union of the members of  and suppose that D is both
open and closed in C. Then for each member A of , A ∩ D is open and
closed in A, and since A is connected either A ⊂ D or A ⊂ C ~ D. Now if A
and B are members of  it is impossible that A ⊂ D and B ⊂ C ~ D, for in
this case A and B, being respectively subsets of the separated sets D and C ~
D, would be separated. Consequently either every member of a is a subset
of C ~ D and D is void, or every member of a is a subset of D and C ~ D is
void. 

A component of a topological space is a maximal connected subset; that
is, a connected subset which is properly contained in no other connected
subset. A component of a subset A is a component of A with the relative
topology; that is, a maximal connected subset of A. If a space is connected,
then it is its only component. If a space is discrete, then each component
consists of a single point. Of course, there are many spaces which are not
discrete which have components consisting of a single point—for example,
the space of rational numbers, with the (relativized) usual topology.

22 THEOREM Each connected subset of a topological space is contained in a
component, and each component is closed. If A and B are distinct
components of a space, then A and B are separated.

PROOF Let A be a non-void connected subset of a topological space and let C
be the union of all connected sets containing A. In view of the preceding
theorem, C is surely connected, and if D is a connected set and contains C,
then, since D ⊂ C, it follows that C = D. Hence C is a component. (If A is
void, and the space is not, a set consisting of a single point is contained in a
component, and hence so is A.) Each component C is connected and hence,
by 1.20, the closure C– is connected. Therefore C is identical with C– and C



is closed. If A and B are distinct components and are not separated, then
their union is connected, by 1.21, which is a contradiction. 

It is well to end our remarks on components with a word of caution. If
two points, x and y, belong to the same component of a topological space,
then they always lie in the same half of a separation of the space. That is, if
the space is the union of separated sets A and B, then both x and y belong to
A or both x and y belong to B. The converse of this proposition is false. It
may happen that two points always lie in the same half of a separation but
nevertheless lie in different components. (See problem 1.P.)

PROBLEMS

A LARGEST AND SMALLEST TOPOLOGIES
(a) The intersection of any collection of topologies for X is a topology for X.
(b) The union of two topologies for X may not be a topology for X (unless X consists of at most

two points).
(c) For any collection of topologies for X there is a unique largest topology which is smaller than

each member of the collection, and a unique smallest topology which is larger than each member of
the collection.

B TOPOLOGIES FROM NEIGHBORHOOD SYSTEMS
(a) Let  be a topological space and for each x in X let  be the family of all neighborhoods

of x. Then:

(i) If , then x ε U.
(ii) If U and V are members of , then .

(iii) If  and U ⊂ F, then .
(iv) If , then there is a member V of  such that V ⊂ U and  for each y in V (that

is, V is a neighborhood of each of its points).

(b) If  is a function which assigns to each x in X a non-void family  satisfying (i), (ii), and
(iii), then the family  of all sets U, such that  whenever x ε U, is a topology for X If (iv) is also
satisfied, then  is precisely the neighborhood system of x relative to the topology .

Note Various methods of describing a topological space have been investigated intensively.
Kuratowski’s three closure axioms may be replaced by a single condition, as shown by Monteiro [1]
and by Iseki [1]. It is also possible to use the notion of separation as a primitive (Wallace [1], Krishna
Murti [1] and Szymanski [1]); the notion of derived set may also be used as primitive (for
information and references see Monteiro [2] and Ribeiro [3]). The relation between various
operations has been studied by Stopher [1],

C TOPOLOGIES FROM INTERIOR OPERATORS

If i is an operator which carries subsets of X into subsets of X, and  is the family of all subsets
such that Ai = A, under what conditions will  be a topology for X and i the interior operator relative
to this topology?



D ACCUMULATION POINTS IN T1-SPACES
A topological space is a T1-space iff each set which consists of a single point is closed. (We

sometimes say, inaccurately, that “points are closed.”)
(a) For any set X there is a unique smallest topology  such that  is a T1-space.
(b) If X is infinite and  is the smallest topology such that  is a T1-space, then  is

connected.
(c) If  is a T1-space, then the set of accumulation points of each subset is closed. A sharper

result (C. T. Yang): A necessary and sufficient condition that the set of accumulation points of each
subset be closed is that the set of accumulation points of {x} be closed for each x in X.

Note There is a sequence of successively stronger requirements which may be put upon the
topology of a space. A topological space is a T0-space iff for each pair x and y of distinct points,
there is a neighborhood of one point to which the other does not belong. In slightly different
terminology, the space is a T0-space iff for distinct points x and y either  or . We will
define T2 and T3-spaces later. The terminology is due to Alexandroff and Hopf [1].

E KURATOWSKI CLOSURE AND COMPLEMENT PROBLEM
If A is a subset of a topological space, then at most 14 sets can be constructed from A by

complementation and closure. There is a subset of the real numbers (with the usual topology) from
which 14 different sets can be so constructed. (First notice that if A is the closure of an open set, then
A is the closure of the interior of A; that is, for such sets A = A′–′– where′ denotes complementation.)

F EXERCISE ON SPACES WITH A COUNTABLE BASE
If the topology of a space has a countable base, then each base contains a countable subfamily

which is also a base.

G EXERCISE ON DENSE SETS

If A is dense in a topological space and U is open, then U ⊂ {A ∩ U)–.

H ACCUMULATION POINTS
Let X be a space, each subspace of which is Lindelöf, let A be an uncountable subset, and let B be

the subset consisting of all points x of A such that each neighborhood of x contains uncountably many
points of A. Then A ~ B is countable, and consequently each neighborhood of a point of B contains
uncountably many points of B.

Note The accumulation points of a set A may be classified according to the least cardinal number
of the intersection of A and a neighborhood of the point. If there is also a cardinal number restriction
on a base for the topology then several inequalities result. Theorems 1.13, 1.14, and 1.15 all have
generalizations applying to spaces with a base of a given cardinal.

I THE ORDER TOPOLOGY
Let X be a set, linearly ordered by a relation < which is anti-symmetric (it is false that x < x). The

order topology (the < order topology) has a subbase consisting of all sets of the form: {x: x < a} or
{x: a < x} for some a in X.

(a) The order topology for X is the smallest topology in which order is continuous, in the
following sense: if a and b are members of X and a < b, then there are neighborhoods U of a and V of
b such that, whenever x ε U and y ε V, then x < y.

(b) Let Y be a subset of a set X which is linearly ordered by <. Then Y is linearly ordered by <, but
the < order topology for Y may not be the relativized < order topology for X.



(c) If X, with the order topology, is connected, then X is order-complete (that is, each non-void set
with an upper bound has a supremum).

(d) If there are points a and b in X such that a < b and there is no point c such that a < c < b, then
X is not connected. Such an ordering is said to have a gap. Show that X is connected relative to the
order topology iff X is order-complete and there are no gaps.

J PROPERTIES OF THE REAL NUMBERS
Let R be the set of real numbers with the usual topology.
(a) An additive subgroup of the reals which contains more than one member is either dense in R

or has a smallest positive element. In particular, the set of rational numbers is dense in R.
(b) The usual topology for the reals is identical with the order topology. The usual topology has a

countable base.
(c) A closed subgroup of R is either countable or identical with R. A connected subgroup is either

{0} or R and an open subgroup is necessarily identical with R.
(d) (A. P. Morse) A proper interval is a half-open, open, or closed interval which contains more

than one point. If  is an arbitrary family of proper intervals, then there is a countable subfamily  of
 such that . (Observe that a disjoint family of proper intervals is

countable, and show that all but a countable number of points of  are interior points of
members of .)

(e) The family  of all proper intervals is a subbase for the discrete topology  for R. The space 
 is not a Lindelöf space, although every cover by members of  has a countable subcover.

(Contrast with the Alexander theorem 5.6.)
Note Further properties of the real numbers are stated in the next problem.

K HALF-OPEN INTERVAL SPACE
Let X be the set of real numbers and let  be the topology for X which has for a base the family 

of all half-open intervals [a, b) = {x: a  x < b] where a and b are real numbers. A -accumulation
point of a set is called an accumulation point from the right, and accumulation points from the left are
similarly defined.

(a) Members of the base  are both open and closed. The space  is not connected.
(b) The space  is separable but  has no countable base. (For every x in X each base must

contain a set whose infimum is x.)
(c) Each subspace of  is a Lindelöf space. (See 1. J(d).)
(d) If A is a set of real numbers then the set of all points of A which are not accumulation points

from the right is countable. More generally, the set of points of A which are not accumulation points
from both the right and the left is countable. (See 1.H.)

(e) Every subspace of  is separable.

L HALF-OPEN RECTANGLE SPACE
Let Y be X × X, where X is the space of the preceding problem, and let  be the topology which

has as a base the family of all A × B, where A and B are members of the topology  of the preceding
example.

(a) The space  is separable.
(b) The space  contains a subspace which is not separable. (For example, {(x,y) : x + y =

1}.)
(c) The space  is not a Lindelöf space. (If each open cover of Y has a countable subcover,

then every closed subspace has the same property. Consider {(x,y) : x + y = 1}.)
Note The spaces described in 1.K and 1.L are among the stock counter-examples of general

topology. We enumerate other pathological features in 4.I. P. R. Halmos first observed that the



product (in a sense to be made specific in chapter 3) of Lindelöf spaces may fail to be a Lindelöf
space.

M EXAMPLE (THE ORDINALS) ON 1ST AND 2ND COUNTABILITY
Let Ω′ be the set of all ordinals less than or equal to the first uncountable ordinal Ω, let X be Ω′ ~

{Ω}, and let ω be the set of all non-negative integers, each with the order topology.
(a) ω is discrete and satisfies the 2nd axiom of countability.
(b) X satisfies the first but not the second axiom of countability.
(c) Ω′ satisfies neither axiom of countability; if U is a separable sub-space of Ω′, then U is itself

countable.

N COUNTABLE CHAIN CONDITION
A topological space satisfies the countable chain condition iff each disjoint family of open sets is

countable. A separable space satisfies the countable chain condition, but not conversely. (Consider an
uncountable set with the topology consisting of the void set and the complements of countable sets.)
There are more complicated examples (see the Helly space of 5.M) which satisfy the first
countability axiom and are separable, but fail to satisfy the second axiom of countability.

O THE EUCLIDEAN PLANE
The Euclidean plane is the set of all pairs of real numbers and the usual topology for the plane

has a base which consists of all cartesian products A × B where A and B are open intervals with
rational end-points. This base is countable and the plane is consequently separable.

(a) The usual topology of the plane has a base which consists of all open discs, {{x, y): (x – a)2 +
(y –b)2 < r2}, where a, b, and r are rational numbers.

(b) Let X be the set of all points in the plane with at least one irrational coordinate, and let X have
the relative topology. Then X is connected.

P EXAMPLE ON COMPONENTS
Let X be the following subset of the Euclidean plane, with the usual topology relativized. For

each positive integer n let An = [1/n] × [0,1], where [0,1] is the closed interval, and let X be the union
of the sets An, with (0,0) and (0,1) adjoined. Then {(0,0)} and {(0,1)} are components of X, but each
open and closed subset of X contains neither or both of the points.

Q THEOREM ON SEPARATED SETS
If X is a connected topological space, Y is a connected subset and X ~Y = A ∪ B, where A and B

are separated, then A ∪ Y is connected.

R FINITE CHAIN THEOREM FOR CONNECTED SETS
Let  be a family of connected subsets of a topological space satisfying the condition: if A and B

belong to , then there is a finite sequence A0, A1, … An, of members of  such that A0 = A, An = B,
and, for each i, the sets Ai and Ai+1 are not separated. Then  is connected. From this fact
deduce 1.21.

S LOCALLY CONNECTED SPACES
A topological space is locally connected iff for each point x and each neighborhood U of x the

component of U to which x belongs is a neighborhood of x.
(a) Each component of an open subset of a locally connected space is open.
(b) A topological space is locally connected iff the family of open connected subsets is a base for

the topology.



(c) If points x and y of a locally connected space X belong to different components, then there are
separated subsets A and B of X such that x ε A, y ε B, and X = A ∪ B.

Note For many other properties of locally connected spaces and for generalizations, see G. T.
Whyburn [1] and R. L. Wilder [1].

T THE BROUWER REDUCTION THEOREM
The usual statement of the theorem is as follows. Let X be a topological space satisfying the

second axiom of countability. A property P of subsets of X is called inductive iff whenever each
member of a countable nest of closed sets has P, then the intersection has P. A set A is irreducible
with respect to P iff no proper closed subset of A has P. Then: If a closed subset A of X possesses an
inductive property P, there is an irreducible closed subset of A which possesses P.

The theorem can be stated more formally in terms of a family of sets (the family of all sets
possessing P).

(a) State and prove the theorem in this form. Assume that the topological space is such that every
subspace is a Lindelöf space.

(b) If  is an arbitrary topological space can any result of this general sort be affirmed? (See
0.25.)

* An amusing and instructive problem suggests itself. From a given subset A of a topological
space, how many different sets can be constructed by successive applications, in any order, of
closure, complementation and interior? From the remarks in the above paragraph and the fact that
A–– = A–, this reduces to: how many distinct sets may be formed from a single set A, by alternate
applications of complementation and the closure operator? The surprising answer is given in problem
1.E.



Chapter 2
 

MOORE-SMITH CONVERGENCE
 

INTRODUCTION

This chapter is devoted to the study of Moore-Smith convergence. It
will turn out that the topology of a space can be described completely in
terms of convergence, and the major part of the chapter is devoted to this
description. We shall also characterize those notions of convergence which
can be described as convergence relative to some topology. This project is
similar in purpose to the theory of Kuratowski closure operators; it yields a
useful and intuitively natural way of specifying certain topologies.
However, the importance of convergence theory extends beyond this
particular application, for the fundamental constructions of analysis are
limit processes. We are interested in developing a theory which will apply
to convergence of sequences, of double sequences, to summation of
sequences, to differentiation and integration. The theory which we develop
here is by no means the only possible theory, but it is unquestionably the
most natural.

Sequential convergence furnishes the pattern on which the theory is
developed, and we therefore list a few definitions and theorems on
sequences to indicate this pattern. These will be particular cases of the
theorems proved later.

A sequence is a function on the set ω of non-negative integers. A
sequence of real numbers is a sequence whose range is a subset of the set of
real numbers. The value of a sequence S at n is denoted, interchangeably, by
Sn or S(n). A sequence S is in a set A iff Sn ε A for each non-negative integer
n, and S is eventually in A iff there is an integer m such that Sn ε A
whenever n  m. A sequence of real numbers converges to a number s



relative to the usual topology iff it is eventually in each neighborhood of s.
Using these definitions it turns out that, if A is a set of real numbers, then a
point s belongs to the closure of A iff there is a sequence in A which
converges to s, and s is an accumulation point of A iff there is a sequence in
A ~ {s} which converges to s.

We shall want to construct subsequences of a sequence. A sequence S
may converge to no point and yet, by a proper construction, a sequence may
be obtained from it which converges. We wish to select an integer Ni, for
each i in ω, such that SNi

 converges. Restated, we want to find a sequence N
of integers so that the composition S ∘ N(i) = SNi

 = S(N(i)) converges. If no
other requirement is made this is easy enough; if Ni = 0 for each i, then S ∘
N converges to S0 since S ∘ N(i) = S0 for each i. Of course, an additional
condition must be imposed so that the behavior of a subsequence is related
to the behavior of the sequence for large integers. The usual condition is
that N be strictly monotonically increasing; that is, if i > j, then Ni > Nj. This
condition is unnecessarily stringent, and we impose instead the requirement
that, as i becomes large, Ni also becomes large. Formally, then, T is a
subsequence of a sequence S iff there is a sequence N of non-negative
integers such that T = S ∘ N (equivalently, Ti = SNi

. for each i) and for each
integer m there is an integer n such that Ni  m whenever i  n.

The set of points to which the subsequences of a given sequence
converge satisfy a condition obtained by weakening the requirement of
convergence. A sequence S is frequently in a set A iff for each non-negative
integer m there is an integer n such that n  m and Sn ε A. This is precisely
the same thing as saying that S is not eventually in the complement of A;
intuitively, a sequence is frequently in A if it keeps returning to A. A point s
is a cluster point of a sequence S iff S is frequently in each neighborhood of
s. Then, if a sequence of real numbers is eventually in a set so is every
subsequence, and consequently if a sequence converges to a point so does
every subsequence. Each cluster point of a sequence is a limit point of a
subsequence, and conversely.

The definitions and statements above are phrased so as to be applicable
to any topological space, but unfortunately the theorems, in this generality,
are false. (See the problems at the end of this chapter.) This unhappy
situation is remedied by noticing that very few of the properties of the



integers are used in proving theorems on sequences of real numbers. It is
almost evident (although we have not given the proofs) that we need only
certain properties of the ordering. Strictly speaking, convergence of
sequences involves not only the function S on the non-negative integers co,
but also the ordering, , of ω. For convenience, in the work on
convergence, we modify slightly the definition of sequence and agree that a
sequence is an ordered pair (S, ) where S is a function on the integers, and
we discuss convergence of the pair (S, ). (It will turn out that convergence
of the pair (S, ) is also meaningful, but quite different.) Mention of the
order will be omitted if no confusion is likely, and convergence of a
sequence S will always mean convergence of the pair (S, ).

It is also convenient to have a bound variable (dummy variable)
notation for sequences, and accordingly, if S is a function on the non-
negative integers ω, {Sn, n ε ω,  } is defined to be the pair (S, ). If A is a
subset of ω, then convergence of {Sn, n ε A, } will also be meaningful and
will be related to the convergence of (S, ).

After this lengthy introduction the notion of convergence is almost self-
evident, lacking a single fact. Which properties of the order  are used?
These properties are listed below, and by using them the usual arguments of
sequential convergence, with small modifications, are valid.

1 Notes E. H. Moore’s study of unordered summability of sequences [1] led
to the theory of convergence (Moore and Smith [1]). The generalization of
the notion of subsequence which we will use is also due to Moore [2].
Garrett Birkhoff [3] applied Moore-Smith convergence to general topology;
the form in which we give the theory is approximately that of J. W. Tukey
[1]. See McShane [1] for an extremely readable expository account.

The problems at the end of the chapter contain a brief discussion of
another theory of convergence and appropriate references.

DIRECTED SETS AND NETS

A binary relation  directs a set D if D is non-void and

(a) if m, n and p are members of D such that m  n and n  p, then m 
p;

(b) if m ε D, then m  m; and



(c) if m and n are members of D, then there is p in D such that p  m and
p  n.

We say that m follows n in the order  and that n precedes m iff m  n.
In the usual language of relations (see chapter 0) the condition (a) states that

 is transitive on D, or partially orders D, and (b) states that  is reflexive
on D. The condition (c) is special in character.

There are several natural examples of sets directed by relations. The real
numbers as well as the set ω of non-negative integers are directed by .
Observe that 0 is a member of ω which follows every other member in the
order . It is also noteworthy that the family of all neighborhoods of a point
in a topological space is directed by ⊂ (the intersection of two
neighborhoods is a neighborhood which follows both in the ordering ⊂.
The family of all finite subsets of a set is, on the other hand, directed by ⊃.
Any set is directed by agreeing that x  y for all members x and y, so that
each element follows both itself and every other element.

A directed set is a pair (D, ) such that  directs D. (This is sometimes
called a directed system.) A net is a pair (S, ) such that S is a function and 

 directs the domain of S. (A net is sometimes called a directed set.) If S is
a function whose domain contains D and D is directed by , then {Sn, n ε
D, } is the net (S|D, ) where S|D is S restricted to D. A net {Sn, n ε D, }
is in a set A iff Sn ε A for all n; it is eventually in A iff there is an element m
of D such that, if n ε D and n  m, then Sn ε A. The net is frequently in A iff
for each m in D there is n in D such that n  m and Sn ε A. If [Sn, n ε D, }
is frequently in A, then the set E of all members n of D such that Sn ε A has
the property: for each m ε D there is p ε E such that p  m. Such subsets of
D are called cofinal. Each cofinal subset E of D is also directed by 
because for elements m and n of E there is p in D such that p  m and p 
n, and there is then an element q of E which follows p. We have the
following obvious equivalence: a net {Sn, n ε D, } is frequently in a set A
iff a cofinal subset of D maps into the set A, and this is the case iff the net is
not eventually in the complement of A.

A net (S, ) in a topological space  converges to s relative to  iff it
is eventually in each -neighborhood of s. The notion of convergence
depends on the function S, the topology , and the ordering . However, in
cases where no confusion is likely to result we may omit all mention of  or



of  or of both and simply say “the net S (or the net {Sn, n ε D}) converges
to s.” If X is a discrete space (every subset is open), then a net S converges
to a point s iff S is eventually in {s}: that is, from some point on S is
constantly equal to s. On the other hand, if X is indiscrete (the only open
sets are X and the void set), then every net in X converges to every point of
X. Consequently a net may converge to several different points.

It is easy to describe the accumulation points of a set, the closure of a
set, and in fact the topology of a space in terms of convergence. The
arguments are slight variants of those usually given for sequences of real
numbers.

2 THEOREM Let X be a topological space. Then:

(a) A point s is an accumulation point of a subset A of X if and only if
there is a net in A ~ {s} which converges to s.

(b) A point s belongs to the closure of a subset A of X if and only if there
is a net in A converging to s.

(c) A subset A of X is closed if and only if no net in A converges to a
point of X ~ A.

PROOF If s is an accumulation point of A, then for each neighborhood U of s
there is a point SU of A which belongs to U ~ {s}. The family  of all
neighborhoods of s is directed by ⊂, and if U and V are neighborhoods of s
such that V ⊂ U, then SV ε V ⊂ U. The net , therefore converges
to s. On the other hand, if a net in A ~ {s} converges to s, then this net has
values in every neighborhood of s and A ~ {s} surely intersects each
neighborhood of s. This establishes the statement (a). To prove (b), recall
that the closure of a set A consists of A together with all the accumulation
points of A. For each accumulation point s of A there is, by the preceding, a
net in A converging to s; for each point s of A any net whose value at every
element of its domain is s converges to s. Therefore each point of the
closure of A has a net in A converging to it. Conversely, if there is a net in A
converging to s, then every neighborhood of s intersects A and s belongs to
the closure of A. Proposition (c) is now obvious. 

We have noticed that, in general, a net in a topological space may
converge to several different points. There are spaces in which convergence
is unique in the sense that, if a net S converges to a point s and also to a



point t, then s = t. A topological space is a Hausdorff space (T2-space, or
separated space) iff whenever x and y are distinct points of the space there
exists disjoint neighborhoods of x and y.

3 THEOREM A topological space is a Hausdorff space if and only if each net
in the space converges to at most one point.

PROOF If X is a Hausdorff space and s and t are distinct points of X, then
there are disjoint neighborhoods U and V of s and t respectively. Since a net
cannot be eventually in each of two disjoint sets it is clear that no net in X
converges to both s and t. To establish the converse assume that X is not a
Hausdorff space and that s and t are distinct points such that every
neighborhood of s intersects every neighborhood of t. Let  be the family
of neighborhoods of s and  the family of neighborhoods of t; then both 
and  are directed by ⊂. We order the cartesian product  by agreeing
that (T, U)  {V,W) iff T ⊂ V and U ⊂ W. Clearly the cartesian product is
directed by . For each (T,U) in  the intersection T ∩ U is non-void,
and hence we may select a point S(T,U) from T ∩ U. If {V,W)  (T,U), then
S(V,W) ε V ∩ W ⊂ T ∩ U and consequently the net {S(T,U), (T,U) ε ,
} converges to both s and t. 

If  is a Hausdorff space and a net {Sn, n ε D, ) in X converges to s
we write -lim {Sn, n ε D, } = s. When no confusion seems possible this
will be abbreviated: lim {Sn: n ε D} = s or . The use of “limit”
should be restricted to nets in a Hausdorff space so that the usual rule
concerning substitution of equals for equals may remain valid. If lim {Sn: n
ε D} = s and lim {Sn: n ε D} = t, then s = t, since we always use equality in
the sense of identity. As a matter of fact we shall occasionally use the
notation  to mean S converges to s in cases where the space is not
Hausdorff.

The device used in the preceding proof is often useful. If (D, ) and
(E,>) are directed sets, then the cartesian product D × E is directed by ,
where (d, e) (f,g) iff d  f and e > g. The directed set (D × E, ) is the
product directed set. We also want to define the product of a family of
directed sets. Suppose for each a in a set A we are given a directed set
(Da,>a). The cartesian product  is the set of all functions d on A



such that da (= d(a)) is a member of Da for each a in A. The product
directed set is  where, if d and e are members of the product
d  e iff da > aea for each a in A. The product order is . Of course, it must
be verified that the product directed set is, in fact, directed. If d and e are
members of the cartesian product , then for each a there is a
member fa of Da which follows both da and ea in the order >a, and
consequently the function f whose value at a is fa follows both d and e in
the order . An important special case of the product directed set is that in
which all coordinate sets Da are identical and all relations >a are identical.
In this case  is simply the set DA of all functions on A to D, which
is directed by the convention that d follows e iff d(a) follows e(a) for each
member a of A. This is, for example, precisely the usual ordering of the set
of all real valued functions on the set of real numbers.

The next result on limits is related to the closure axiom: A–– = A–. It is
important because it replaces an iterated limit by a single limit. The
situation is as follows: Consider the class of all functions S such that S(m, n)
is defined whenever m belongs to a directed set D and n belongs to a
directed set Em. We want to find a net R with values in this domain such
that S ∘ R converges to  whenever S is a function to a topological
space and this iterated limit exists. It is interesting to notice that the solution
of this problem requires Moore-Smith convergence, for, considering double
sequences, no sequence whose range is a subset of ω × ω can have this
property. The construction which yields a solution to the problem is a
variant of the diagonal process. Let F be the product directed set 

 and for each point (m,f) of F let R(m,f) = (m,f(m)). Then R is the
required net.

4 THEOREM ON ITERATED LIMITS Let D be a directed set, let Em be a directed
set for each m in D, let F be the product , and for (m,f) in F
let R(m,f) = (m,f(m)). If S(m,n) is a member of a topological space for each
m in D and each n in Em, then S ∘ R converges to  whenever this
iterated limit exists.

PROOF Suppose  and that U is an open neighborhood * of s. We
must find a member (m,f) of F such that, if (p,g)  (m,f), then S ∘ R(p,g) ε



U. Choose m in D so that  for each p following m and then, for
each such p, choose a member f(p) of Ep such that S(p, n) ε U for all n
following f(p) in Ep. If p is a member of D which does not follow m let f(p)
be an arbitrary member of Ep. If (p,g)  (m,f), then p  m, hence 

, and (since g(p)  f(p)) S ∘ R (p,g) = S(p,g(p)) ε U. 

SUBNETS AND CLUSTER POINTS

Following the pattern discussed in the introduction to the chapter we
now define the generalization of subsequence and prove the hoped-for
theorems.

A net {Tm, m ε E} is a subnet of a net {Sn, n ε D} iff there is a function
N on E with values in D such that

(a) T = S ∘ N, or equivalently, Ti = SNi
 for each i in E; and

(b) for each m in D there is n in E with the property that, if p  n, then
Np  m.

Since there seems to be no possibility of confusion we omit specific
mention of the orderings involved. The second condition states, intuitively,
“as p becomes large so does Np.” From this condition it is immediately clear
that, if S is eventually in a set A, then the subnet S ∘ N of S is also eventually
in A. This is a very important fact and the definition of subnet is designed to
obtain precisely this result. Notice that each cofinal subset E of D is
directed by the same ordering, and that {Sn, n ε E} is a subnet of S. (Let N
be the identity function on E, and the second condition of the definition
becomes the requirement that E be cofinal.) This is a standard way of
constructing subnets, and it is unfortunate that this simple variety of subnet
is not adequate for all purposes. (2.E.)

There is a special sort of subnet which is adequate for almost all
purposes. Suppose N is a function on the directed set E to the directed set D
such that N is isotone (Ni  Nj if i  j) and the range of N is cofinal in D.
Then clearly S ∘ N is a subnet of S for each net S. The subnet constructed in
the proof of the following lemma is of this sort (as remarked by K. T.
Smith).



5 LEMMA Let S be a net and  a family of sets such that S is frequently in
each member of , and such that the intersection of two members of 
contains a member of . Then there is a subnet of S which is eventually in
each member of .

PROOF The intersection of any two members of  contains a member of 
and therefore  is directed by ⊂. Let {Sn, n ε D} be a net which is
frequently in each member of  and let E be the set of all pairs (m,A) such
that m ε D, A ε , and Sm ε A. Then E is directed by the product ordering for
D × , for if (m,A) and (n,B) are members of E there is C in  such that C ⊂
A ∩ B and p in D such that p follows both m and n and Sp ε C; then (p, C) ε
E and (p,C) follows both (m,A) and (n,B). For (m,A) in E let N(m,A) = m.
Then N is clearly isotone, and the range of N is cofinal in D ({Sn, n ε D} is
frequently in each member of ). Consequently S ∘ N is a subnet of S.
Finally, if A is a member of , if m is an arbitrary member of D such that Sm
ε A, and if (n,B) is a member of E which follows (m,A), then S ∘ N(n,B) = Sn
ε B ⊂ A; it follows that S ∘ N is eventually in A. 

We now apply this lemma to convergence in a topological space. A
point s of the space is a cluster point of a net S iff S is frequently in every
neighborhood of s. A net may have one, many, or no cluster points. For
example, if ω is the set of non-negative integers, then {n, n ε ω} is a net
which has no cluster point relative to the usual topology for the real
numbers. The other sort of extreme occurs if S is a sequence whose range is
the set of all rational numbers (such a sequence exists because the set of
rationals is countable). It is easy to see that this sequence is frequently in
each open interval, and consequently every real number is a cluster point. If
a net converges to a point, then this point is surely a cluster point, but it is
possible that a net may have a single cluster point and fail to converge to
this point. For example, consider the sequence –1, 1, –1, 2, –1, 3, –1 …,
constructed by alternating –1 and the sequence of positive integers. Then –1
is the unique cluster point of the sequence, but the sequence fails to
converge to –1.

6 THEOREM A point s in a topological space is a cluster point of a net S if
and only if some subnet of S converges to s.



PROOF Let s be a cluster point of S and let  be the family of all
neighborhoods of s. Then the intersection of two members of  is again a
member of  and S is frequently in each member of . Consequently the
preceding lemma applies and there is a subnet of S which is eventually in
each member of , that is, converges to s. If s is not a cluster point of S,
then there is a neighborhood U of s such that S is not frequently in U, and
therefore S is eventually in the complement of U. Then each subnet of S is
eventually in the complement of U and hence cannot converge to s. 

The following is a characterization of cluster points in terms of closure.

7 THEOREM Let {Sn, n ε D} be a net in a topological space and for each n in
D let An be the set of all points Sm for m > n. Then s is a cluster point of [Sn,
n ε D} if and only if s belongs to the closure of An for each n in D.

PROOF If s is a cluster point of {Sn, n ε D}, then for each n, An intersects
each neighborhood of s because {Sn, n ε D} is frequently in each
neighborhood. Therefore s is in the closure of each An. If s is not a cluster
point of {Sn, n ε D] there is a neighborhood U of s such that {Sn, n ε D} is
not frequently in U. Hence for some n in D, if m  n, then , so that U
and An are disjoint. Consequently s is not in the closure of An. 

SEQUENCES AND SUBSEQUENCES

It is of some interest to know when a topology can be described in terms
of sequences alone, not only because it is a convenience to have a fixed
domain for all nets, but also because there are properties of sequences
which fail to generalize. The most important class of topological spaces for
which sequential convergence is adequate are those satisfying the first
countability axiom: the neighborhood system of each point has a countable
base. That is, for each point x of the space X there is a countable family of
neighborhoods of x such that every neighborhood of x contains some
member of the family. In this case we may replace “net” by “sequence” in
almost all of the preceding theorems.

It should be noticed that a sequence may have subnets which are not
subsequences.



8 THEOREM Let X be a topological space satisfying the first axiom of
countability. Then:

(a) A point s is an accumulation point of a set A if and only if there is a
sequence in A ~ {s} which converges to s.

(b) A set A is open if and only if each sequence which converges to a
point of A is eventually in A.

(c) If s is a cluster point of a sequence S there is a subsequence of S
converging to s.

PROOF Suppose that s is an accumulation point of a subset A of X, and that
U0, U1, … Un … is a sequence which is a base for the neighborhood system
of s. Let Vn = ∩{Ui: i = 0, 1, …, n}. Then the sequence V0, V1, …, Vn … is
also a base for the neighborhood system of s and, moreover, Vn+1 ⊂ Vn for
each n. For each n select a point Sn from Vn ∩ (A ~ {s}), thus obtaining a
sequence {Sn, n ε ω} which evidently converges to s. This establishes half
of (a), and the converse is obvious. If A is a subset of X which is not open,
then there is a sequence in X ~ A which converges to a point of A. Such a
sequence surely fails to be eventually in A, and part (b) of the theorem
follows. Finally, suppose that s is a cluster point of a sequence S and that
V0, V1 … is a sequence which is a base for the neighborhood system of s
such that Vn+1 ⊂ Vn for each n. For every non-negative integer i, choose Ni
such that Ni  i and SNi

 belongs to Vi. Then surely [SNi
, i ε ω} is a

subsequence of S which converges to s. 

*CONVERGENCE CLASSES

It is sometimes convenient to define a topology by specifying what nets
converge to which points. For example, if  is a family of functions each on
a fixed set X to a topological space Y it is natural to specify that a net {fn, n
ε D} converges to a function g iff {fn(x), n ε D} converges to g(x) for each x
in X. (This sort of convergence is discussed in some detail in chapter 3.)
Having made such a specification the question naturally arises: Is there a
topology for  such that this convergence is convergence relative to the
topology? An affirmative answer would enable us to use the machinery
developed for topological spaces to investigate the structure of .



The problem may be formally phrased as follows. If  is a class
consisting of pairs (S,s), where S is a net in X and s a point, when is there a
topology  for X such that (S,s) ε  iff S converges to s relative to the
topology ? From the preceding discussion of convergence we know several
properties which  must possess if such a topology exists. We shall say that 
 is a convergence class for X iff it satisfies the conditions listed below.*

For convenience, we say that S converges ( ) to s or that lim Sn ≡ s ( ) iff
(S, s) ε .

(a) If S is a net such that Sn = s for each n, then S converges ( ) to s.
(b) If S converges ( ) to s, then so does each subnet of S.
(c) If S does not converge ( ) to s, then there is a subnet of S, no subnet

of which converges ( ) to s.
(d) (Theorem 2.4 on iterated limits) Let D be a directed set, let Em be a

directed set for each m in D, let F be the product 
and for (m, f) in F let R(m,f) = (m,f(m)). If , then S
∘ R converges ( ) to s.

It has previously been shown that convergence in a topological space
satisfies (a), (b), and (d). Statement (c) is easily established, in this case, by
the argument: If a net {Sn, n ε D} fails to converge to a point s, then it is
frequently in the complement of a neighborhood of s, and hence for a
cofinal subset E of D, {Sn, n ε E} is in the complement. But clearly {Sn, n ε
E} is a subnet, no subnet of which converges to s.

We now show that every convergence class is actually derived from a
topology.

9 THEOREM Let  be a convergence class for a set X, and for each subset A
of X let Ac be the set of all points s such that, for some net S in A, S
convergences ( ) to s. Then c is a closure operator, and (S, s) ε  if and only
if S converges to s relative to the topology associated with c.

PROOF It is first shown that c is a closure operator. (See 1.8.) Since a net is a
function on a directed set, and the set is non-void by definition, (0)c is void.
In view of condition (a) on constant nets, for each member s of a set A there
is a net S which converges ( ) to s, and hence A ⊂ Ac. If s ε Ac, then



because of the definition of the operator c s ε (A ∪ B)c and consequently Ac

⊂ (A ∪ B)c for each set B. Therefore Ac ∪ Bc ⊂ (A ∪ B)c. To show the
opposite inclusion suppose that {Sn, n ε D} is a net in A ∪ B, and suppose
that {Sn, n ε D} converges ( ) to s. If DA = {n: n ε D and Sn ε A}, and DB =
{n: n ε D and Sn ε B}, then DA ∪ DB = D. Hence either DA or DB is cofinal
in D, and consequently either {Sn, n ε DA} or {Sn, n ε DB} is a subnet of
{Sn, n ε D) which also converges ( ) to s by virtue of condition (b). Hence s
ε Ac ∪ Bc and we have shown that Ac ∪ Bc = (A ∪ B)c. It must now be
shown that Acc = Ac, and condition (d) is precisely what is needed. If {Tm, m
ε D} is a net in Ac which converges ( ) to t, then for each m in D there are a
directed set Em and a net {S(m,n), n ε Em} which converge ( ) to Tm.
Condition (d) then exhibits a net which converges ( ) to t and consequently
t ε Ac. Hence Acc = Ac.

The more delicate part of the proof, that of showing that convergence (
) is identical with convergence relative to the topology  associated with the
operator c, remains. First, suppose {Sn, n ε D} converges ( ) to s and S does
not converge to s relative to . Then there is an open neighborhood U of s
such that {Sn, n ε D} is not eventually in U. Hence there is a cofinal subset
E of D such that Sn ε X ~ U for n in E. Since {Sn, n ε E} is a subnet of {Sn, n
ε D} this subnet in X ~ U converges ( ) to s by condition (b). Hence X ~ U
≠ {X ~ U)c, and U is not open relative to , which is a contradiction.

Finally, suppose that a net P converges to a point r relative to the
topology  and fails to converge ( ). Then by (c) there is a subnet {Tm, m ε
D}, no subnet of which converges ( ) to r, and a contradiction results if we
construct such a subnet. For each m in D let Bm = {n: n ε D} such that n 
m} and let Am be the set of all Tn for n in Bm. Because {Tm, m ε D}
converges relative to  to r, r must lie in the closure of each Am.
Consequently, for each m in D there are a directed set Em and a net {U(m,n),
n ε Em} in Am, such that the composition {T ∘ U(m,n), n ε Em} converges ( )
to r. Condition (d) on convergence classes now applies. If R(m,f) = (m,f(m))
for each (m,f) in , then T ∘ U ∘ R converges ( ) to r.
Moreover, if p  w, then U ∘ R (p,f) = U(p,f(p)) ε Bm; that is, U ∘ R(p,f)  m.
It follows that T ∘ U ∘ R is a subnet of T, and the theorem follows. 



The preceding theorem sets up a one-to-one correspondence between
the topologies for a set X and the convergence classes on it. This
correspondence is order inverting in the following sense. If  and  are
convergence classes and  and  are the associated topologies, then 
if and only if . (This fact is immediately evident from the definition of
convergence.) We also notice that the intersection  is a convergence
class in view of the four characteristic properties of such classes. It is easy
to see that the topology associated with  is the smallest topology
which is larger than each of  and , and dually, the convergence class of 

 is the smallest convergence class which is larger than each of  and 
.

PROBLEMS

A EXERCISE ON SEQUENCES
Let X be a countable set with a topology consisting of the void set together with all sets whose

complements are finite. What sequences converge to what points ?

B EXAMPLE: SEQUENCES ARE INADEQUATE
Let Ω′ be the set of ordinal numbers which are less than or equal to the first uncountable ordinal

Ω, and let the topology be the order topology. Then Ω is an accumulation point of Ω′ ~ {Ω}, but no
sequence in Ω′ ~ {Ω} converges to Ω.

C EXERCISE ON HAUSDORFF SPACES: DOOR SPACES
A topological space is a door space iff every subset is either open or closed. A Hausdorff door

space has at most one accumulation point, and if x is a point which is not an accumulation point, then
{x} is open. (If U is an arbitrary neighborhood of an accumulation point y, then U ~ {y} is open.)

D EXERCISE ON SUBSEQUENCES
Let N be a sequence of non-negative integers such that no integer occurs more than a finite

number of times; that is, for each m, the set {i: Ni = m} is finite. Then if {Sn, n ε ω} is any sequence,
{SNi

, ε ω} is a subsequence. If {Sn, n ε ω} is a sequence in a topological space, and N is an arbitrary
sequence of non-negative integers, then {SNi

, i ε ω} is either a subsequence of {Sn, n ε ω} or else has

a cluster point.

E EXAMPLE: COFINAL SUBSETS ARE INADEQUATE
Let X be the set of all pairs of non-negative integers with the topology described as follows: For

each point (m,n) other than (0,0) the set {(m,n)} is open. A set U is a neighborhood of (0,0) iff for all
except a finite number of integers m the set  is finite. (Visualizing X in the Euclidean
plane, a neighborhood of (0,0) contains all but a finite number of the members of all but a finite
number of columns.)

(a) The space X is a Hausdorff space.
(b) Each point of X is the intersection of a countable family of closed neighborhoods.
(c) The space is a Lindelöf space; that is, each open cover has a countable subcover.



(d) No sequence in X ~ {(0,0)} converges to (0,0). (If a sequence S in X ~ {(0,0)} converges to
(0,0), then it is eventually in the complement of each column, and the sequence has only a finite
number of values in each column.)

(e) There is a sequence S in X~ {(0,0)} with (0,0) as a cluster point, and S restricted to any cofinal
subset of the integers fails to converge.

Note This example is due to Arens [1].

F MONOTONE NETS
Let X be an order-complete chain; that is, X is linearly ordered by a relation >, such that each

non-void subset of X which has an upper bound has a supremum. Let X have the order topology (1.I).
A net (S,>) in X is monotone increasing (decreasing) iff whenever m > n, then Sm  Sn(Sn  Sm).

(a) Each monotone increasing net in X whose range is bounded (there is x in X such that x  Sn
for all n) converges to the supremum of its range.

(b) If X is the set of all real numbers with the usual order or if X is the set of all ordinal numbers
less than the first uncountable ordinal, then each monotone increasing (decreasing) net whose range
has an upper (lower) bound converges to the supremum (infimum) of its range.

G INTEGRATION THEORY, JUNIOR GRADE
Let f be a real-valued function whose domain includes a set A, let  be the family of all finite

subsets of A, and for each F in  let SF = ∑{f(a): a ε F}. Then  is directed by ⊃ and {SF, F ε ,⊃}
is a net. If this net converges f is summable over A and the number to which the net converges is the
unordered sum of f over A, denoted ∑{f(a): a ε A) or simply ∑Af.

(a) If f is non-negative (non-positive), then f is summable iff there is an upper bound (lower
bound) for the sums over finite subsets of A. (Use the preceding problem on monotone nets.)

(b) Let A+ = {a: f(a)  0} and A– = {a: f(a) < 0}. Then f is summable over A iff it is summable
over both A+ and A_. If f is summable over A, then ∑Af = ∑A+f + ∑A–f.

(c) A function f is summable over A iff |f| is summable over A, where |f|(a) = |f(a)|.
(d) If f is summable on a set A, then f is zero outside some countable subset of A. (If f is different

from zero at every point of some uncountable subset, then, for some positive integer n, {a: f(a) 
1/n} is uncountable.)

(e) If f and g are summable over A and r and s are real numbers, then rf + sg is summable over A
and ∑A(rf + sg) = r ∑Af + s ∑Ag.

(f) If f is summable over A, and B and C are disjoint subsets of A, then f is summable over each of
B and C and ∑B∪Cf = ∑Bf + ∑Cf.

(g) If x is a sequence of real numbers, then the ordered sum (“sum of the series”) is the limit of
the sequence Sn where Sn = ∑{xi: i 

= 0, 1, …, n}. In other words, the ordered sum is the limit {SF, F
ε }, where  is the family of all sets which are of the form {m : m  n} for some n. This is a subnet
of the net defining the unordered sum. The sequence x is absolutely summable iff the sequence | x |,
where | x | |n = | xn |, has an ordered sum. The unordered sum of x over the integers exists iff the
sequence is absolutely summable, and in this case, the unordered and ordered sums are equal.

(h) (Fubinito) Let f be a real-valued function on a cartesian product A × B. Then:

(i) If f is summable over A × B, then ∑A×Bf = ∑{∑{f(a,b): b ε B}: a ε A}. (The latter is one of
the two iterated sums.)

(ii) If, for each member a of A, f(a,b) is either non-negative for all b or non-positive for all b,
if F(a) = ∑{f(a,b): b ε B}, and if F is summable over A, then f is summable over A × B.



(iii) In general, both iterated sums may exist and f may fail to be summable. In fact, if both A
and B are countably infinite and F and G are arbitrary real functions on A and on B
respectively, then there is f on A × B such that ∑{f(a,b): a ε A} = G(b) and ∑{f(a,b): b ε
B) = F(a) for all b in B and all a in A.

Notes The results stated in this problem are those which are needed to develop measure theory
using unordered summation instead of absolutely convergent series. All the results except (d), (g) and
(h,ii) can be established in a much more general situation; in chapter 7 the problem will be
reexamined using the notion of completeness. The order-theoretic treatment above gives some insight
into more complicated examples of integration.

Historically, unordered summation was the forerunner of Moore-Smith convergence. (Moore [1].)

H INTEGRATION THEORY, UTILITY GRADE
Let f be a bounded real-valued function on the closed interval of real numbers [a,b], A

subdivision S of [a,b] is a finite family of closed intervals, covering [a,b], such that any two intervals
have at most one point in common. The length of an interval I is denoted | I |, and for a subdivision S
the mesh, || S ||, is the maximum of | I | for I in S. We direct the family of subdivisions in two different
ways:

(i) S  S′ iff S is a refinement of S′, in the sense that each member of S is a subset of a
member of S′; and

(ii) S  S′ iff || S ||  || S′||.

Let Mf(I) be the supremum of f on I, and let mf(I) be the infimum. The upper and lower Darboux
sums corresponding to the subdivision S are defined to be Df(S) = ∑{| I |Mf(I): I ε S} and df = ∑{| I
|mf(I): I ε S} respectively. The Riemann sums are more complicated. A choice function for a
subdivision S is a function c on S such that c(I) ε I for each I in S. The set of all pairs (S,c), such that
S is a subdivision and c is a choice function for S, is ordered in two ways: (S,c) > (S′, c′) iff S  S′
and (S,c) > > (S′,c′) iff S  S′. For a pair (S,c) the Riemann sum is Rf(S,c) = ∑{| I |f(c(I)): I ε S}.

The basic computation is made in terms of the ordering by refinement.
(a) The nets (Df, ) and (df, ) are monotonically decreasing and increasing respectively, and

hence converge.
(b) df(S) : Rf(S,c)  Df(S) for all subdivisions S and all choice functions c.
(c) For each positive number e there is a > -cofinal subset of the set of pairs (S,c) such that

Rf(S,c) + e  Df(S). (There is also a dual proposition.)
(d) The net (Rf, >) converges iff lim (Df, ) = lim (df, ). If (Rf,>) converges, then lim (Rf,>) =

lim (Df, ) = lim (df, ).
(e) The net (Rf, >) is a subnet of (Rf, > >).
(f) The net (Rf, > >) converges iff lim (Df, ) = lim (df, ). If (Rf, > >) converges lim (Rf, >

>) = lim (Rf, >).
Notes The Riemann integral of f is usually defined to be the limit of (Rf, > >). The advantage of

considering refinement as well as mesh is, here, essentially a matter of technique. If instead of
considering finite subdivisions and length of intervals we consider countable subdivisions and let | I |
be the Lebesgue measure of I, the net (Rf, >) converges to the usual Lebesgue integral of f, while (Rf,
> >) may not. Further, a definition of the refinement type may be used to integrate certain functions



whose values lie in a vector space. (See Hille [1], chapter 3.) An integral of the Darboux type
requires that the range of the function to be integrated be partially ordered. The Daniell integral and
various generalizations (Bourbaki [2], McShane [2] and [3], and M. H. Stone [1]) are essentially of
this sort. There is another standard way of introducing an integral, via a completion process with
respect to a metric, which has many advantages (Halmos [1]).

I MAXIMAL IDEALS IN LATTICES
A lattice is a non-void set X with a reflexive partial ordering  such that for every pair x and y of

members of X there is a (unique) smallest element x ∨ y which is greater than each of x and y and a
(unique) largest element x ∧ y which is smaller than each. The elements x ∨ y and x ∧ y are
respectively the join and the meet of x and y. The lattice is distributive iff x ∧ (y ∨ z) = (x ∧ y) ∨ (x
∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, and z in X. A subset A of X is an ideal (a dual
ideal) iff whenever y  x and y ε A, then x ε A, and if y and z belong to A so does y ∨ z (respectively,
whenever x  y and y ε A, then x ε A, and if y ε A and z ε A, then y ∧ z ε A).

Let A and B be disjoint subsets of a distributive lattice X such that A is an ideal and B is a dual
ideal. Then there are disjoint sets A′ and B′ such that A′ is an ideal containing A, B′ is a dual ideal
containing B, and A′ ∪ B′ = X.

The proof of this proposition is broken down into a sequence of lemmas.
(a) The family of all ideals which contain A and are disjoint from B contains a maximal member

A′. (See 0.25.) Similarly there is a dual ideal B′ which contains B, is disjoint from A′, and is maximal
with respect to these properties.

(b) The smallest ideal which contains A′ and a member c of X is {x :x  c or x  c ∨ y for some
y in A′}. Since A′ is maximal, if c does not belong to either A′ or B, then c ∨ x ε B for some x in A′. (If
z  x ε B, then z ε B.)

(c) If c belongs to neither A′ nor B′, then there is x in A′ and y in B′ such that c ∨ x ε B′ and c ∧ y
ε A′. Then (c ∨ x) ∧ y = (c ∧ y) ∨ (x ∧ y) belongs to both A′ and B′.

Notes This theorem is due to M. H. Stone [2]; it is the best form of one of the basic facts about
ordered sets. It is used in the next two problems and it is the fact underlying the most important
results on compactness (chapter 5). An application of some form of the maximal principle seems to
be essential to its proof. It has been stated in the literature that this theorem (or, more precisely, a
corollary to the theorem which occurs in problem 2. K) implies the axiom of choice, but I do not
know whether this is the case. Finally, the definition of distributivity which is given above is unduly
restrictive. Either of the two equalities implies the other (Birkhoff [1]).

J UNIVERSAL NETS
A net in a set X is said to be universal iff for each subset A of X the net is eventually in A or

eventually in X ~ A.
(a) If a universal net is frequently in a set it is eventually in the set. Hence a universal net in a

topological space converges to each of its cluster points.
(b) If a net is universal, then each subnet is also universal. If S is a universal net in X and f is a

function on X to Y, then f ∘ S is a universal net in Y.
(c) Lemma If S is a net in X, then there is a family  of subsets of X such that: S is frequently in

each member of , the intersection of two members of  belongs to , and for each subset A of X
either A or X ~ A belongs to . (Either show that there is a family  maximal with respect to the first
two listed properties and demonstrate that it possesses the third, or apply 2.I, letting  be the family
of all sets A such that S is eventually in X ~ A,  the family of all B such that S is eventually in B, and
let the ordering be ⊂.)

(d) There is a universal subnet of each net in X. (Use the preceding result and 2.5.)



K BOOLEAN RINGS: THERE ARE ENOUGH HOMOMORPHISMS
A Boolean ring is a ring (R,+,·) such that r·r = r and r + r = 0 for each r in R. The field of

integers modulo 2 is denoted I2.
(a) A Boolean ring is commutative. (Observe that (r + s)·(r + s) = r + s.)
(b) If (R,+,·) is a Boolean ring, then multiplication of members of R by members of I2 can be

defined so that R is an algebra over I2.
(c) The symmetric difference AΔB of two sets A and B is defined to be (A ∪ B) ~ (A ∩ B). If  is

the family of all subsets of a set X, then ( ,Δ,∩) is a Boolean ring with unit.
(d) Let X be a set and let I2

X be the family of all functions on X to I2. Define addition and
multiplication of functions pointwise (that is, (f + g)(x) = f(x) + g(x) and (f·x)(x) = f(x) ·g(x)). Then
(I2

X,+,·) is a Boolean ring with unit and is isomorphic to ( ,Δ,∩) where  is the family of all subsets
of X.

(e) The natural ordering of a Boolean ring is defined by agreeing that r  s iff r·s = s. The
relation  partially orders R in such a way that the least element which follows both r and s is r ∨ s
= r + s + r · s and the greatest element which precedes both r and s is r ∧ s = r · s. Each of ∨ and ∧
are associative operations and the following distributive laws hold: r ∧ (s ∨ t) = (r ∧ s) ∨ (r ∧ t) and
r ∨ (s ∧ t) = (r ∨ s) ∧ (r ∨ t).

(f) Recall that S is an ideal in a Boolean ring (R,+,·) iff S is an additive subgroup and r·s ε S
whenever r ε R and s ε S; the ideal S is maximal iff R ≠ S and no ideal other than R properly contains
S. There is a one-to-one correspondence between maximal ideals in R and homomorphisms into I2
which are not identically zero. (The kernel of such a homomorphism is a maximal ideal.)

(g) A necessary and sufficient condition that S be an ideal in a Boolean ring is that r ∨ s ε S
whenever r and s are members of S and t ε S whenever t precedes a member of S in the natural order
(that is, t  some member of S). A subset T of R is called a dual ideal iff r ∧ s ε T whenever r and s
are members of T and t ε T whenever t follows a member of T. If r ε R, then {s: r  s} is an ideal and
{s: s  r} is a dual ideal. If S is an ideal, T is a disjoint dual ideal, and S ∪ T = R, then the function
which is zero on S and one on T is a homomorphism of R into I2. (In a Boolean ring of sets an ideal
is frequently called an ∩ -ideal and a dual ideal a ∪ -ideal.)

(h) Theorem If S is an ideal in a Boolean ring and T is a dual ideal which is disjoint from S, then
there is a homomorphism of the ring into I2 which is zero on S and one on T. In particular, if r is a
non-zero member of the ring there is a homomorphism h of the ring such that h(r) = 1. (In other
words, there are enough homomorphisms to distinguish members of the ring. A proof of this theorem
may be based on 2.1.)

(i) If X is a topological space and  is the family of all subsets of X which are both open and
closed, then ( ,Δ,∩) is a Boolean algebra.

(j) Not all Boolean algebras are isomorphic to an algebra of all subsets of a set. (Show by
example that there are countable Boolean algebras.)

Note This investigation is completed in 5.S.

L FILTERS
A theory of convergence has been built on the concept of filter. A filter  in a set X is a family of

non-void subsets of X such that

(i) the intersection of two members of  always belongs to ; and
(ii) if  and A ⊂ B ⊂ X, then .



In the terminology of the previous problem a filter is a proper dual ideal in the Boolean ring of all
subsets of X. A filter  converges to a point x in a topological space X iff each neighborhood of x is a
member of  (that is, the neighborhood system of x is a subfamily of ).

(a) A subset U is open iff U belongs to every filter which converges to a point of U.
(b) A point x is an accumulation point of a set A iff A ~ {x} belongs to some filter which

converges to x.
(c) Let ϕx be the collection of all filters which converge to a point x. Then  is the

neighborhood system of x.
(d) If  is a filter converging to x and  is a filter which contains , then  converges to x.
(e) A filter in X is an ultrafilter iff it is properly contained in no filter in X. If  is an ultrafilter in

X and the union of two sets is a member of , then one of the two sets belongs to . In particular, if A
is a subset of X then either A or X ~ A belongs to . (Problem 2.I again.)

(f) One might suspect that filters and nets lead to essentially equivalent theories. Grounds for this
suspicion may be found in the following facts:

(i) If {xn, n ε D} is a net in X, then the family  of all sets A such that {xn, n ε D} is
eventually in A is a filter in X.

(ii) Let  be a filter in X and let D be the set of all pairs (x, F) such that x ε F and .
Direct D by agreeing that (y,G)  (x,F) iff G ⊂ F, and let f(x,F) = x. Then  is precisely
the family of all sets A such that the net {f(x,F), (x,F) ε D} is eventually in A.

Notes The definition of filter is due to H. Cartan; his treatment of convergence is given in full in
Bourbaki [1]. Proposition (c) is a remark of W. H. Gottschalk; (0 is part of the folklore of the subject.

* The existence of an open neighborhood of s is essential to the proof. The iterated limit theorem,
the fact that the family of open neighborhoods of a point is a local base, and the closure axiom “A––

= A–” are intimately related. Convergence has been studied in spaces with a structure less restrictive
than a topology. See Ribeiro [1].

* The first three of these, with “net” replaced by “sequence,” are Kuratowski’s modification of
the Fréchet axioms for limit space. See Kuratowski [1].



Chapter 3
 

PRODUCT AND QUOTIENT SPACES
 

It is the purpose of this chapter to investigate two methods of
constructing new topological spaces from old. One of these involves
assigning a standard sort of topology to the cartesian product of spaces, thus
building a new space from those originally given. For example, the
Euclidean plane is the product space of the real numbers (with the usual
topology) with itself, and Euclidean n-space is the product of the real
numbers n times. In chapter 4 arbitrary cartesian products of the real
numbers will serve as standard spaces with which one may compare other
topological spaces.

The second method of constructing a new space from a given one
depends on dividing the given space X into equivalence classes, each of
which is a point of the newly constructed space. Roughly speaking, we
“identify” the points of certain subsets of X, so obtaining a new set of
points, which is then assigned the “quotient” topology. For example, the
equivalence classes of real numbers modulo the integers are assigned a
topology so that the resulting space is a “copy” of the unit circle in the
plane.

Both of these methods of constructing spaces are motivated by making
certain functions continuous. We therefore begin by defining continuity and
proving a few simple propositions about it.

CONTINUOUS FUNCTIONS

For convenience we review some of the terminology and a few
elementary propositions about functions (chapter 0). The words “function,”
“map,” “mapping,” “correspondence,” “operator,” and “transformation” are



synonymous. A function f is said to be on X iff its domain is X. It is to Y, or
into Y, iff its range is a subset of Y and it is onto Y if its range is Y. The
value of f at a point x is f(x) and f(x) is also called the image under f of x. If
B is a subset of Y, then the inverse under f of B, f–1[B], is {x: f(x) ε B}. The
inverse under f of the intersection (union) of the members of a family of
subsets of Y is the intersection (union) of the inverses of the members; that
is, if Zc is a subset of Y for each member cofa set C, then 

 and similarly for unions. If y ε Y, then f–
1[{y}], the inverse of the set whose only member is y, is abbreviated f–1[y].
The image f [A] of a subset A of X is the set of all points y such that y = f(x)
for some x in A. The image of the union of a family of subsets of X is the
union of the images, but, in general, the image of the intersection is not the
intersection of the images. A function f is one to one iff no two distinct
points have the same image, and in this case f–1 is the function inverse to f.
(Notice that the notation is arranged so that, roughly speaking, square
brackets occur in the designations of subsets of the range and domain of a
function, and parentheses in the designation of members. For example, if f
is one to one onto Y and y ε Y, then f–1(y) is the unique point x of X such that
f(x) = y, and f–1[y] = {x}.)

A map f of a topological space  into a topological space  is
continuous iff the inverse of each open set is open. More precisely, f is
continuous with respect to  and , or  continuous, iff f–1[U] ε  for each
U in . The concept depends on the topology of both the range and the
domain space, but we follow the usual practice of suppressing all mention
of the topologies when confusion is unlikely. There are one or two
propositions about continuity which are quite important, although almost
self-evident. First, if f is a continuous function on X to Y and g is a
continuous function on Y to Z, then the composition g ∘ f is a continuous
function on X to Z, for (g ∘ f)–1[V] = f–1[g–1[V]] for each subset V of Z, and
using first the continuity of g, then that of f, it follows that if V is open so is
(g ∘ f)–1[V]. If f is a continuous function on X to Y, and A is a subset of X,
then the restriction of f to A, f|A, is also continuous with respect to the
relative topology for A, for if U is open in Y, then (f|A)–1[U] = A ∩ f–1[U]
which is open in A. A function f such that f|A is continuous is continuous on
A. It may happen that f is continuous on A but fails to be continuous on X.



The following is a list of conditions, each equivalent to continuity; it is
useful because it is frequently necessary to prove functions continuous.

1 THEOREM If X and Y are topological space and f is a function on X to Y,
then the following statements are equivalent.

(a) The function f is continuous.
(b) The inverse of each closed set is closed.
(c) The inverse of each member of a subbase for the topology for Y is

open.
(d) For each x in X the inverse of every neighborhood of f(x) is a

neighborhood of x.
(e) For each x in X and each neighborhood U of f(x) there is a

neighborhood V of x such that f[V] ⊂ U.
(f) For each net S {or {Sn, n ε D}) in X which converges to a point s, the

composition f ∘ S ({f(Sn), n ε D}) converges to f(s).
(g) For each subset A of X the image of the closure is a subset of the

closure of the image; that is, f[A–] ⊂ f[A]–.
(h) For each subset B of Y, f–1[B]– ⊂ f–1[B–].

PROOF (a) ↔ (b) : This is a simple consequence of the fact that the inverse
of a function preserves relative complements; that is, f–1[y ~ B] = X ~ f–1[B]
for every subset B of Y.

(a) ↔ (c): If f is continuous then the inverse of a member of a subbase is
open because each subbase member is open. Conversely, since each open
set V in Y is the union of finite intersections of subbase members, f–1[V] is
the union of finite intersections of the inverses of subbase members; if these
are open, then the inverse of each open set is open.

(a) → (d) : If f is continuous, x ε X, and V is a neighborhood of f(x), then
V contains an open neighborhood W of f(x) and f–1[W] is an open
neighborhood of x which is a subset of f–1[V]; consequently f–1[V] is a
neighborhood of x.

(d) → (e): Assuming (d), if U is a neighborhood of f(x), then f–1[U] is a
neighborhood of x such that f[f–1[U] ⊂ U.

(e) → (f): Assuming (e), let S be a net in X which converges to a point s.
Then if U is a neighborhood of f(s) there is a neighborhood V of s such that



f [V] ⊂ U, and since S is eventually in V, f ∘ S is eventually in U.
(f) → (g): Assuming (f), let A be a subset of X and s a point of the

closure A. Then there is a net S in A which converges to s, and f ∘ S
converges to f(s), which is therefore a member of f[A]–. Hence f[A–] ⊂
f[A]–.

(g) → (h): Assuming (g), if A = f–1[B] then f[A–] ⊂ f[A]– ⊂ B– and
hence A– ⊂ f–1[B–]. That is, f–1[B]– ⊂ f–1[B–].

(h) → (b): Assuming (h), if B is a closed subset of Y, then f–1[B]– ⊂ f–
1[B–] = f–1[B] and f–1[B] is therefore closed. 

There is also a localized form of continuity which is useful.* A function
f on a topological space X to a topological space Y is continuous at a point x
iff the inverse under f of each neighborhood of f(x) is a neighborhood of x.
It is easy to give characterizations of the form of 3.1(e) and 3.1(f) for
continuity at a point. Evidently f is continuous iff it is continuous at each
point of its domain.

A homeomorphism, or topological transformation, is a continuous one-
to-one map of a topological space X onto a topological space Y such that f–1

is also continuous. If there exists a homeomorphism of one space onto
another, the two spaces are said to be homeomorphic and each is a
homeomorph of the other. The identity map of a topological space onto
itself is always a homeomorphism, and the inverse of a homeomorphism is
again a homeomorphism. It is also evident that the composition of two
homeomorphisms is a homeomorphism. Consequently the collection of
topological spaces can be divided into equivalence classes such that each
topological space is homeomorphic to every member of its equivalence
class and to these spaces only. Two topological spaces are topologically
equivalent iff they are homeomorphic.

Two discrete spaces, X and Y, are homeomorphic iff there is a one-to-
one function on X onto Y, that is, iff X and Y have the same cardinal
number. This is true because every function on a discrete space is
continuous, regardless of the topology of the range space. It is also true that
two indiscrete spaces (the only open sets are the space and the void set) are
homeomorphic iff there is a one-to-one map of one onto the other, because
each function into an indiscrete space is continuous regardless of the
topology of the domain space. In general, it may be quite difficult to
discover whether two topological spaces are homeomorphic. The set of all



real numbers, with the usual topology, is homeomorphic to the open interval
(0,1), with the relative topology, for the function whose value at a member x
of (0,1) is (2x – 1)/x(x – 1) is easily proved to be a homeomorphism.
However, the interval (0,1) is not homeomorphic to (0,1) ∪ (1,2), for if f
were a homeomorphism (or, in fact, just a continuous function) on (0,1)
with range (0,1) ∪ (1,2), then f–1[(0,1)] would be a proper open and closed
subset of (0,1), and (0,1) is connected. This little demonstration was
achieved by noticing that one of the spaces is connected, the other is not,
and the homeomorph of a connected space is again connected. A property
which when possessed by a topological space is also possessed by each
homeomorph is a topological invariant. The proof that two spaces are not
homeomorphic usually depends on exhibiting a topological invariant which
is possessed by one but not by the other. A property which is defined in
terms of the members of the space and the topology turns out,
automatically, to be a topological invariant. Besides connectedness, the
property of having a countable base for the topology, having a countable
base for the neighborhood system of each point, being a T1 space or being a
Hausdorff space, are all topological invariants. Formally, topology is the
study of topological invariants.*

PRODUCT SPACES

There is a standard way of topologizing the cartesian product of a
collection of topological spaces. The construction is extremely important
and consequently we examine minutely the properties of the topology
introduced. Let X and Y be topological spaces and let  be the family of all
cartesian products U × V where U is an open subset of X and V is an open
subset of Y. The intersection of two members of  is a member of ,
because (U × V) ∩ (R × S) = (U ∩ R) × (V ∩ S), and consequently  is the
base for a topology for X × Y by theorem 1.11. This topology is called the
product topology for X × Y. A subset W of X × Y is open relative to the
product topology if and only if for each member (x,y) of W there are open
neighborhoods U of x and V of y such that U × V ⊂ W. The spaces X and Y
are coordinate spaces, and the functions P0 and P1 which carry a point (x,y)
of X × Y into x and into y respectively are the projections into the coordinate
spaces. These projections are continuous functions, for if U is open in X,
P0

–1[U] is U × Y, which is open. Continuity of the projections actually



serves to characterize the product topology in the following sense. Suppose 
 is a topology for X × Y such that each of the projections is continuous.

Then if U is open in X and V is open in Y the set U × V is open relative to ,
for U × V = P0

–1[U] ∪ P1
–1[V] and this set is open relative to  because the

projections are continuous. Consequently  is larger than the product
topology and the product topology is therefore the smallest topology for
which the projections into coordinate spaces are continuous.

There is no difficulty in extending this definition of product topology to
cartesian product of any finite number of coordinate spaces. If each of X0,
X1, … Xn–1 is a topological space, then a base for the product topology for
X0 × X1 × ··· × Xn–1 is the family of all products U0 × U1 × ··· Un–1 where
each Ui is open in Xi. In particular, if each Xi is the set of real numbers with
the usual topology, then the product space is Euclidean n-space En. The
members of En are real-valued functions on the set 0, 1, … n – 1, the value
of the function x at the integer i being xi (= x(i)).

The product topology for the cartesian product of an arbitrary family of
topological spaces will now be defined. Suppose we are given a set Xa for
each member a of an index set A. The cartesian product  is
defined to be the set of all functions x on A such that xa ε Xa for each a in A.
The set Xa is the a-th coordinate set and the projection Pa of the product
into the a-th coordinate set is defined by Pa(x) = xa. Suppose that a topology

 is given for each coordinate set. The construction * of the product
topology is motivated by the requirement that each projection Pa is to be
continuous. In order to attain continuity of the projections it is necessary
and sufficient that each set of the form Pa

–1[U] be open, where U is an open
subset of Xa. The family of all sets of this form is a subbase for a topology;
it is clearly the smallest topology such that projections are continuous. The
product topology is this topology. The members of the defining subbase are
of the form {x: xa ε U] where U is open in Xa; they are, intuitively, cylinders
over open sets in the coordinate spaces. It is sometimes said that elements
of the subbase consist of sets obtained by “restricting the a-th coordinate to
lie in an open subset of the a-th coordinate space.” A base for the product
topology is the family of all finite intersections of subbase elements. A
member U of this base is of the form  a ε F} = {x: xa ε Ua for



each a in F} where F is a finite subset of A and Ua is open in Xa for each a
in F. It is to be emphasized that these are finite intersections. It is not true
that  is always open relative to the product topology if Ua is
open in Xa for each a. The product space is the cartesian product with the
product topology.

The projections of a product space into the coordinate spaces have
another very useful property. A function f on a topological space X to
another space Y is open (interior) iff the image of each open set is open; that
is, if U is open in X, then f[U] is open in Y.

2 THEOREM The projection of a product space into each of its coordinate
spaces is open.

PROOF Let Pc be the projection of  into Xc. In order to show that
Pc is open it is sufficient to show that the image of a neighborhood of a
point x in the product is a neighborhood of Pc(x), and it may be assumed
that the neighborhood in the product space is a member of the defining base
for the product topology. Suppose that x ε V = {y: ya ε Ua for a in F}, where
F is a finite subset of A and Ua is open in Xa for each a in F. We construct a
copy of Xc which contains the point x. For z ε Xc let f(z)c = z, and for a ≠ c
let f(z)a = xa. Then Pc ∘ f(z) = z. If , then clearly f[Xc] ⊂ V and Pc[V] =
Xc which is open. If c ε F, then f(z) ε V iff z ε Uc and Pc[V] = Uc. The
theorem follows. (As a matter of fact, the function f defined in this proof is
a homeomorphism, a fact that is occasionally useful.) 

It might be conjectured that the projection of a closed set in a product
space is closed. This, however, is easily seen to be false, for in the
Euclidean plane the set {(x,y) : xy = 1} has a non-closed projection on each
coordinate space.

There is an extremely useful characterization of continuity of a function
whose range is a subset of a product space.

3 THEOREM A function f on a topological space to a product  is
continuous if and only if the composition Pa ∘ f is continuous for each
projection Pa.



PROOF If f is continuous, then Pa ∘ f is always continuous because Pa is
continuous. If Pa ∘ f is continuous for each a, then for each open subset U of
Xa the set (Pa ∘ f)–1[U] = f–1[Pa

–1[U]] is open. It follows that the inverse
under f of each member of the defining subbase for the product topology is
open, and hence (3.1c) f is continuous. 

Convergence in a product space can be described very simply in terms
of the projections.

4 THEOREM A net S in a product space converges to a point s if and only if
its projection in each coordinate space converges to the projection of s.

PROOF Since the projection into each coordinate space is continuous, if {Sn,
n ε D} is a net in the cartesian product  which converges to a
point s, then the net {Pa(Sn), n ε D} surely converges to Pa(s). To show the
converse, let {Sn, n ε D) be a net such that {Pa(Sn), n ε D] converges to sa
for each a in A. Then for each open neighborhood Ua of sa, {Pa(Sn), n ε D}
is eventually in Ua, consequently {Sn, n ε D} is eventually in Pa

–1[Ua], and
hence {Sn, n ε D} must eventually be in each finite intersection of sets of
the form Pa

–1[Ua]. Since the family of such finite intersections is a base for
the neighborhood system of s in the product topology, {Sn, n ε D}
converges to s. 

Convergence in the product topology is called coordinatewise
convergence, or pointwise convergence. The latter term is used most
frequently in the case in which all coordinate spaces are identical. In this
important special case the cartesian product  is simply the set of
all functions on A to X, usually denoted XA. A net {Fn, n ε D} in XA

converges to f in the topology of pointwise convergence iff the net {Fn(a), n
ε D} converges to f(a) for each a in A. This fact makes the terminology,
“pointwise convergence,” seem reasonable. The product topology is also
called the simple topology in this case.

It is natural to ask whether the product of topological spaces inherits
properties which are possessed by the coordinate spaces. For example, we
might ask, in case each coordinate space is a Hausdorff space or satisfies
the first or second axiom of countability, whether the product space also has
these properties. The following theorems answer these questions.



5 THEOREM The product of Hausdorff spaces is a Hausdorff space.

PROOF If x and y are distinct members of the product  , then xa ≠
ya for some a in A. If each coordinate space is Hausdorff, then there are
disjoint open neighborhoods U and V of xa and ya respectively and Pa

–1[U]
and Pa

–1[V] are disjoint neighborhoods of x and y in the product. 
Recall that an indiscrete topological space is one in which the only open

sets are the void set and the space.

6 THEOREM Let Xa be a topological space satisfying the first axiom of
countability for each member a of an index set A. Then the product 

 satisfies the first axiom of countability if and only if all but a
countable number of the spaces Xa are indiscrete.

PROOF Suppose that B is a countable subset of A, that Xa is indiscrete for a
in A ~ B, and that x is a point in the product space. For each a in A choose a
countable base  for the neighborhood system of xa in Xa. Then  if
a is in A ~ B. Consider the family of all finite intersections of sets of the
form Pa

–1 [U] for a in A and U in . This is a countable family because 
 if a ε A ~ B. But the family of these finite intersections

is a base for the neighborhood system of x and consequently the product
space satisfies the first axiom of countability.

To prove the converse suppose that B is an uncountable subset of A such
that for each a in B there is a neighborhood of xa in Xa which is a proper
subset of Xa, and suppose that there is a countable base  for the
neighborhood system of x. Each member U of  contains a member of the
defining base for the product topology, and consequently, except for a finite
number of members a of A, Pa[U] = Xa. Since B is uncountable, there is a
member a of B such that Pa[U] = Xa for every U in . But there is an open
neighborhood V of xa which is a proper subset of Xa, and clearly no member
of  is a subset of Pa

–1[V] since each member of  projects onto Xa. This is
a contradiction. 

It is also true that the coordinate spaces inherit certain properties of a
product space. If a product space is Hausdorff, so is each coordinate space,



and if the product space has a countable local base at each point, then so
does each coordinate space. These propositions are easy to establish, and
the proofs are omitted.

7 Notes Tychonoff defined the product topology and proved the most
important properties in two classic papers (Tychonoff [1] and [2]). His
results are now among the standard tools of general topology. (See also
chapter 5.) Prior to Tychonoff’s work a great deal of investigation had been
done on the convergence of sequences of functions relative to the topology
of pointwise convergence. Many difficulties occur in this work because the
topology cannot be completely described by sequential convergence, at
least in the most interesting cases. (See problem 3.W.)

QUOTIENT SPACES

We begin by reviewing briefly the considerations which led to the
definition of the product topology. If f is a function on a set X with values in
a topological space Y, then it is always possible to assign a topology to X
such that f is a continuous function. One obvious and uninteresting topology
which has this property is the discrete topology; a more interesting topology
is the family  of all sets of the form f–1[U] for U open in Y. This family is
evidently a topology because the inverse of a function preserves unions.
Each topology, relative to which f is continuous, contains  and
consequently  is the smallest topology for which f is continuous. If we are
given a family of functions, a function fa for each member a of an index set
A, then the topology, a subbase for which is the family of all sets of the
form fa–1[U] for a in A and U open in the range of fa, has precisely the same
properties. This is the method by which the product topology was defined.

It is the purpose of this section to investigate the reciprocal situation. If f
is a function on a topological space X with range Y, how may Y be
topologized so that f is continuous? If a subset U of Y is open in a topology
relative to which f is continuous, then f–1[U] is open in X. On the other
hand, the family  of all subsets U such that f–1[U] is open in X is a
topology for Y because the inverse of an intersection (or union) of members
of the family is the intersection (union) of the inverses. The topology  is
therefore the largest topology for Y such that the function f is continuous; it
is called the quotient topology for Y (the quotient topology relative to f and



the topology of X). A subset B of Y is closed relative to the quotient
topology iff f–1[Y ~ B] = X ~ f–1[B] is open in X. Hence B is closed iff f–1[B]
is closed.

Without some severe limitation on f very little can be said about the
quotient topology. Consequently we consider only functions belonging to
one of two dual categories. Recall that f, a function on a topological space
with values in another space, is open iff the image of each open set is open.
A function f is said to be closed iff the image of each closed set is closed. It
has already been observed that projection of the Euclidean plane onto its
first coordinate space is an open map which is not closed, and subspaces of
the plane give examples of maps which are closed but not open, and maps
which are neither open nor closed. The subspace X = {(x,y): x = 0 or y = 0},
consisting of the two axes, is mapped onto the reals by the projection P(x,y)
= x. The image of a small neighborhood of (0,1) is mapped into the single
point 0. Consequently P is not an open map on X, but it is easy to verify that
it is closed. If (0,0) is removed, leaving X ~ {(0,0)}, then P on this subspace
is neither open nor closed (the image of the closed set {(x,y): y = 0 and x ≠
0} is not closed).

It is apparent from the definition that the notion of an open or a closed
map depends on the topology of the range space. However, if a map f is
continuous and either open or closed, then the topology of the range is
entirely determined by the map f and the topology of the domain.

8 THEOREM If f is a continuous map of the topological space  onto the
space  such that f is either open or closed, then  is the quotient
topology.

PROOF If f is an open map and U is a subset of Y such that f–1[U] is open,
then U = f[f–1[U]] is open relative to . Consequently, if f is open, each set
open relative to the quotient topology is open relative to , and the quotient
topology is smaller than . If f is continuous as well as open, then since the
quotient topology is the largest for which f is continuous,  is the quotient
topology. To prove the theorem for a closed function f it is only necessary to
replace “open” by “closed” in each of the preceding statements. 

If f is a function on a topological space to a product space, then f is
continuous iff the composition of f with each projection is continuous.
There is an analogue of this proposition for quotient spaces.



9 THEOREM Let f be a continuous map of a space X onto a space Y and let Y
have the quotient topology. Then a function g on Y to a topological space Z
is continuous if and only if the composition g ∘ f is continuous.

PROOF If U is open in Z and g ∘ f is continuous, then (g ∘ f)–1[U] = f–1[g–1

[U]], which is open in X, and g–1[U] is therefore open in Y by the definition
of the quotient topology. The converse is clear. 

It is almost evident that the quotient topology and the properties of open
or closed maps have little to do with the range space. In fact, if f is a
continuous map of a topological space X onto a space Y with the quotient
topology, then a topological copy of Y may be reconstructed from X, its
topology, and the family of all sets of the form f–1[y] for y in Y. The
construction goes as follows. Let  be the family of all subsets of X of the
form f–1[y] for y in Y, and let P be the function on X to  whose value at x is
f–1[f(x)]. For each member y of Y let g(y) = f–1[y], so that g is a one-to-one
map of Y onto . Then g ∘ f = P, and f = g–1 ∘ P. If  is assigned the quotient
topology (relative to P) the preceding theorem 3.9 shows the continuity of g
(since g ∘ f = P) and the continuity of g–1 (since g–1 ∘ P = f). Consequently g
is a homeomorphism.

The preceding remarks show that the range space is essentially
extraneous to the discussion, and the remaining theorems of the section will
be formulated so as to display this fact. As a preliminary we consider
briefly the families of subsets of a fixed set X. A decomposition (partition)
of X is a disjoint family  of subsets of X whose union is X. The projection
(quotient map) of X onto the decomposition  is the function P whose value
at x is the unique member of  to which x belongs. There is an equivalent
way of describing a decomposition. Given , define a relation R on X by
agreeing that a point x is R related to a pointy iff x and y belong to the same
member of the decomposition. Formally, the relation R of the
decomposition  is the subset of X × X consisting of all pairs (x,y) such that
x and y belong to the same member of , or, briefly,  . If
P is the projection of X onto , then R = {(x,y): P(x) = P(y)}. The relation R
is an equivalence relation: that is, it is reflexive, symmetric, and transitive
(see chapter 0). Reciprocally, each equivalence relation on X defines a
family of subsets (the equivalence classes) which is a decomposition of X.
If R is an equivalence relation on X, then X/R is defined to be the family of



equivalence classes. If A is a subset of X, then R[A] is the set of all points
which are R relatives of points of A; that is, R[A] = {y: (x,y) ε R for some x
in A}. Equivalently,  and D ∩ A is non-void}. If x is a
point of X, then we abbreviate R[{x}] as R[x]. The set R[x] is the
equivalence class to which x belongs, and if P is the projection of X onto
the decomposition, then P(x) = R[x].

We assume for the rest of the section that X is a fixed topological space,
R is an equivalence relation on X, and that P is the projection of X onto the
family X/R of equivalence classes. The quotient space is the family X/R
with the quotient topology (relative to P). If , then 

 and hence  is open (closed) relative to the quotient
topology iff  is open (respectively closed) in X.

10 THEOREM Let P be the projection of the topological space X onto the
quotient space X/R. Then the following statements are equivalent.

(a) P is an open mapping.
(b) If A is an open subset of X, then R[A] is open.
(c) If A is a closed subset of X, then the union of all members of X/R

which are subsets of A is closed.

If “open” and “closed” are interchanged in (a), (b), and (c) the
resulting statements are equivalent.

PROOF It is first shown that (a) is equivalent to (b). For each subset A of X,
the set R[A] = P–1[P[A]]. If P is open and A is open, then, since P is
continuous, P–1[P[A]] is open. If P–1[P[A]] is open for each open set A,
then, since by the definition of the quotient topology P[A] is open, P is an
open mapping. To prove (b) equivalent to (c) notice that the union of all
members of X/R which are subsets of A is X ~ R[X ~ A], and this set is
closed for each closed A iff R[X ~ A] is open whenever X ~ A is open. A
proof of the dual proposition is obtained by interchanging “open” and
“closed” throughout. 

If X is a Hausdorff space or satisfies one of the axioms of countability it
is natural to ask whether the quotient space X/R necessarily inherits these
properties. Without some drastic restriction the answer is “no.” For
example, if X is the set of real numbers with the usual topology and R is the



set of pairs (x,y) such that x – y is rational, then the quotient space X/R is
indiscrete, and the projection P of X onto X/R is open. Consequently an
open map may carry a Hausdorff space into a non-Hausdorff space. An
example of a closed map which carries a Hausdorff space onto a non-
Hausdorff space or carries a space satisfying the first axiom of countability
onto a space which fails to satisfy the axiom, is slightly more complex but
not difficult. (3.R, 4.G.) There is an additional hypothesis which is
sometimes useful. It is sometimes assumed that R, which is a set of ordered
pairs, is closed in the product space X × X. This condition may be restated:
if x and y are members of X which are not R related, then there is a
neighborhood W of (x,y) in the product space X × X which is disjoint from
R. Such a neighborhood W contains a neighborhood of the form U × V,
where U and V are neighborhoods of x and y respectively, and U × V is
disjoint from R iff there is no point of U which is R related to a point of V.
That is, R is closed in X × X iff, whenever x and y are points of X which are
not R related, then there are neighborhoods U and V of x and y respectively
such that no point of U is R related to a point of V. Equivalently, no member
of X/R intersects both U and V.

11 THEOREM If the quotient space X/R is Hausdorff, then R is closed in the
product space X × X.

If the projection P of a space X onto the quotient space X/R is open, and
R is closed in X × X, then X/R is a Hausdorff space.

PROOF If X/R is a Hausdorff space and , then P(x) ≠ P(y) and there
are disjoint open neighborhoods U of P(x) and V of P(y). The sets P–1[U]
and P–1[V] are open, and since their images under P are disjoint, no point of
P–1[U] is R related to a point of P–1[V]. Therefore P–1[U] × P–1[V] is a
neighborhood of (x,y) which is disjoint from R, and R is closed. The first
statement of the theorem is proved. Suppose now that P is open, R is closed
in X × X, and P(x) and P(y) are distinct members of X/R. Then x is not R
related to y and, since R is closed, there are open neighborhoods U and V of
x and y respectively such that no point of U is R related to a point of V.
Hence the images of U and V are disjoint, and since P is open they are open
neighborhoods of P(x) and P(y) respectively. 

Closed maps have been studied rather extensively under a different
name. A decomposition  of a topological space X is upper semi-continuous



iff for each D in  and each open set U containing D there is an open set V
such that D ⊂ V ⊂ U and V is the union of members of . (See problem 3.F
for the origin of the term “upper semi-continuous.”)

12 THEOREM A decomposition  of a topological space X is upper semi-
continuous if and only if the projection P of X onto  is closed.

PROOF According to theorem 3.10, P is a closed map iff for each open
subset U of X it is true that the union V of all members of  which are
subsets of U is an open set. If P is closed,  and D ⊂ U, then V is the
required open set and hence  is upper semi-continuous. To prove the
converse suppose that  is upper semi-continuous and that U is an open
subset of X. Let V be the union of all members of  which are subsets of U.
If x ε V, then x ε D ⊂ U for some D in . Hence by upper semi-continuity
there is an open set W, the union of members of , such that D ⊂ W ⊂ U.
Then W is a subset of V and consequently V is a neighborhood of x. The set
V is open because it is a neighborhood of each of its points, and it follows
from 3.10 that P is a closed map. 

If A and B are disjoint closed subsets of X one may define the
decomposition  of X whose members are A, B, and all sets {x} for x in X ~
(A ∪ B). The quotient space of this decomposition is sometimes called “the
space obtained by identifying all points of A and identifying all points of
B.” It is very easy to verify that  is upper semi-continuous, and if X is
Hausdorff the relation  is closed in X × X One might
suppose that with this simple construction the quotient space might inherit
pleasant properties of the space X. Unfortunately, even in this case X may
be Hausdorff or satisfy the first or second countability axiom and the
corresponding proposition for the quotient space be false.

13 Note The notion of upper semi-continuous collection was introduced by
R. L. Moore in the late twenties; open mappings were first studied
intensively by Aronszajn a little later (Aronszajn [2]). Many of the results
of the preceding section will be found in Whyburn [2].

PROBLEMS

A CONNECTED SPACES
The image under a continuous map of a connected space is connected.



B THEOREM ON CONTINUITY
Let A and B be subsets of a topological space X such that X = A ∪ B, and A ~ B and B ~ A are

separated. If f is a function on X which is continuous on A and continuous on B, then f is continuous
on X. (See 1.19.)

C EXERCISE ON CONTINUOUS FUNCTIONS
If f and g are continuous functions on a topological space X with values in a Hausdorff space Y,

then the set of all points x in X such that f(x) = g(x) is closed. Consequently, if f and g agree on a
dense subset of X (f(x) = g(x) for x belonging to a dense subset of X), then f = g.

D CONTINUITY AT A POINT; CONTINUOUS EXTENSION
Let f be defined on a subset X0 of a topological space X with values in a Hausdorff space Y; then f

is continuous at x iff x belongs to the closure of X0 and for some member y of the range the inverse
of each neighborhood of y is the intersection of X0 and a neighborhood of x.

(a) A function f is continuous at x iff  and whenever S and T are nets in X0 converging to x
then f ∘ S and f ∘ T converge to the same point of Y.

(b) Let C be the set of points at which f is continuous and let f′ be the function on C whose value
at a point x is the member y of the range space which is given by the definition of continuity at a
point (more precisely, the graph of f′ is the intersection of C × Y with the closure of the graph of f).
The function f′ has the property: If U is open in X, then f′[U] ⊂ f[U]–. The function f′ is continuous,
provided Y has the property: The family of closed neighborhoods of each point of Y is a base for the
neighborhood system of the point. (Such topological spaces are called regular. The requirement that
Y be regular is essential here, as shown by Bourbaki and Dieudonné [1].)

E EXERCISE ON REAL-VALUED CONTINUOUS FUNCTIONS
Let f and g be real-valued functions on a topological space, let f and g be continuous with respect

to the usual topology for the real numbers, and let a be a fixed real number.
(a) The function af, whose value at x is af(x), is continuous. (Show that the function which carries

the real number r into ar is continuous, and use the fact that the composition of continuous functions
is continuous.)

(b) The function |f|, whose value at x is |f(x) |, is continuous.
(c) If F(x) = (f(x), g(x)), then F is continuous relative to the usual topology for the Euclidean

plane. (Verify that F followed by projection into a coordinate space is continuous.)
(d) The functions f + g, f – g, and f · g are continuous, and if g is never zero, then f/g is

continuous. (First show that +, –, and · are continuous functions on the Euclidean plane to the space
of real numbers. (See also 3.S.))

(e) The functions max [f,g] = [(f + g) +|f – g|]/2 and min [f,g] = [(f + g) – |f – g |]/2 are continuous.

F UPPER SEMI-CONTINUOUS FUNCTIONS
A real-valued function f on a topological space X is upper semi-continuous iff the set {x: f(x) 

a) is closed for each real number a. The upper topology  for the set R of real numbers consists of
the void set, R, and all sets of the form {t: t < a} for a in R. If {Sn, n ε D} is a net of real numbers,
then lim sup {Sn: n ε D} is defined to be lim {sup {Sm: m ε D and m  n}: n ε D} where this limit is
taken relative to the usual topology for the real numbers.

(a) A net {Sn, n ε D} of real numbers converges to s relative to  iff lim sup {Sn: n ε D}  s.
(b) If f is a real-valued function on X, then f is upper semi-continuous iff f is continuous relative

to the upper topology , and this is the case iff lim sup {f(xn): n ε D}  f(x) whenever {xn, n ε D} is



a net in X converging to a point x.
(c) If f and g are upper semi-continuous and t is a non-negative real number, then f + g and tf are

upper semi-continuous.
(d) If F is a family of upper semi-continuous functions such that i(x) = inf {f(x): f ε F} exists for

each x in X, then i is upper semi-continuous. (Observe that .)
(e) If f is a bounded real-valued function on X, then there is a smallest upper semi-continuous

function f– such that f–  f. If  is the family of neighborhoods of a point x and Sv = sup {f(y): y ε
V}, then .

(f) A real-valued function g is called lower semi-continuous iff –g is upper semi-continuous. If f
is a bounded real-valued function, let f– = –(–f)– and let the oscillation of f, Qf, be defined by Qf(x) =

f–(x) –f–(x) for x in X. Then Qf is upper semi-continuous, and f is continuous iff Qf(x) = 0 for all x in
X.

(g) Let f be a non-negative real valued function on X, let R have the usual topology, and let G =
{(x,t): 0  t  f(x)} have the relativized product topology of X × R. Let  be the decomposition of G
into “vertical slices”; that is, sets of the form ({x} × R) ∩ G. If the decomposition  is upper semi-
continuous, then f is upper semi-continuous. (The converse is also true but the simplest proof requires
theorem 5.12.)

G EXERCISE ON TOPOLOGICAL EQUIVALENCE
(a) Any two open intervals of real numbers, with the relativized usual topology for the reals, are

homeomorphic.
(b) Any two closed intervals are homeomorphic, and any two half-open intervals are

homeomorphic.
(c) No open interval is homeomorphic to a closed or half-open interval, and no closed interval is

homeomorphic to a half-open interval.
(d) The subspace {(x,y) : x2 + y2 = 1} of the Euclidean plane is not homeomorphic to a subspace

of the space of real numbers.
(Certain of the foregoing spaces have one or more points x such that the complement of {x} is

connected.)

H HOMEOMORPHISMS AND ONE-TO-ONE CONTINUOUS MAPS
Given two topological spaces X and Y, a one-to-one continuous map of Y onto X and a one-to-one

continuous map of X onto Y: then X and Y are not necessarily homeomorphic. (Let the space X
consist of a countable number of disjoint half-open intervals and a countable number of isolated
points (points x such that {x} is open). Let Y consist of a countable number of open intervals and a
countable number of isolated points. Observe that a countable number of half-open intervals can be
mapped in a one-to-one continuous way onto an open interval. I believe this example is due to R. H.
Fox.)

I CONTINUITY IN EACH OF TWO VARIABLES
Let X and Y be topological spaces, X × Y the product space, and let f be a function on X × Y to

another topological space. Then f(x,y) is continuous in x iff for each y the function f( ,y) whose value
at x is f(x,y), is continuous. Similarly, f(x,y) is continuous in y iff for each x ε X, the function f(x, )
such that f(x, )(y) = f(x,y), is continuous. If f is continuous on the product space, then f(x,y) is
continuous in x and in y, but the converse is false. (The classical example is the real-valued function f
on the Euclidean plane such that f(x,y) = xy/(x2 + y2) and f(0,0) = 0.)

J EXERCISE ON EUCLIDEAN n-SPACE



A subset A of Euclidean n-space En is convex iff for every pair x and y of points of A and every
real number t, such that 0  t  1, the point tx + (1 – t)y is a member of A. (We define (tx + (1 – t)y)i
= txi + (1 – t)yi.) Then any two non-void open convex subsets of En are homeomorphic. What of
closed convex subsets ?

K EXERCISE ON CLOSURE, INTERIOR AND BOUNDARY IN PRODUCTS

Let X and Y be topological spaces and let X × Y be the product space. For each set C let Cb be the
boundary of C. Then, if A and B are subsets of X and Y respectively,

(a) (A × B)– = A– × B–

(b) (A × B)0 = A0 × B0, and
(c) (A × B)b = (A × B)– ~ (A × B)0 = ((Ab ∪ A0) × (Bb ∪ B0)) ~ (A0 × B0) = (Ab × Bb) ∪ (Ab ×

B0) ∪ (A0 × Bb) = (Ab × B–) ∪ (A– X Bb).

L EXERCISE ON PRODUCT SPACES
Suppose that, for each member a of an index set A, Xa is a topological space. Let B and C be

disjoint subsets of A such that A = B ∪ C. Then the product space  is
homeomorphic to the product space . For each fixed topological space X the product
XA is homeomorphic to XB × XC and (XB)C is homeomorphic to XB×C, all spaces being given the
product topology.

M PRODUCT OF SPACES WITH COUNTABLE BASES
The product topology has a countable base iff the topology of each coordinate space has a

countable base and all but a countable number of the coordinate spaces are indiscrete.

N EXAMPLE ON PRODUCTS AND SEPARABILITY

Let Q be the closed unit interval and let X be the product space QQ. Let A be the subset of X
consisting of characteristic functions of points; more precisely, x ε A iff for some q in Q, x(q) = 1 and
x is zero on Q ~ {q}.

(a) The space X is separable. (The set of all x in X with finite range (sometimes called step
functions) are dense in X. There is also a countable subset of this set which is dense in X.)

(b) The set A, with the relative topology, is discrete and not separable.
(c) There is a single accumulation point x of A in X, and if U is a neighborhood of x, then A ~ U is

finite.

O PRODUCT OF CONNECTED SPACES
The product of an arbitrary family of connected topological spaces is connected. (Fix a point x in

the product, and let A be the set of all points y such that there is a connected subset to which both x
and y belong. Show that A is dense.)

P EXERCISE ON T1-SPACES
The product of T1-spaces is a T1-space. If  is a decomposition of a topological space, then the

quotient space is T1 iff the members of  are closed.

Q EXERCISE ON QUOTIENT SPACES
The projection of a topological space X into the quotient space X/R is a closed map iff, for each

subset A of X, R[A]– ⊂ R[A–]. The projection is open iff R[A0] ⊂ R[A]0 for each subset A. (– and 0



are the closure and interior respectively.)

R EXAMPLE ON QUOTIENT SPACES AND DIAGONAL SEQUENCES
Let X be the Euclidean plane with the usual topology, let A be the set of all points (x,y) with y = 0,

and let the decomposition  consist of A and all sets {(x,y)} with . Then , with the quotient
topology, has the following properties.

(a) The projection of X onto the quotient space is closed.
(b) There is a countable number of neighborhoods of A whose intersection is {A}.
(c) For each non-negative integer m the sequence {(m,1/(n + 1)), n ε ω] converges, in the quotient

space, to A. If {Nn, n ε ω] is a subsequence of the sequence of non-negative integers, then the
sequence {(n,1/(Nn+ 1)), n ε ω} does not converge to A. (The latter might be called a diagonal of the
original family of sequences.)

(d) The quotient space does not satisfy the first axiom of countability.
Note This example is due to R. S. Novosad.

S TOPOLOGICAL GROUPS
A triple  is a topological group iff (G,·) is a group,  is a topological space, and the

function whose value at a member (x,y) of G×G is x·y–1 is continuous relative to the product
topology for G × G. When confusion is unlikely all mention of the group operation · and the
topology  is suppressed, and we say “G is a topological group.” If X and Y are subsets of G, then X ·
Y is the set of all points z of G such that z = x·y for some x in X and some y in Y. If x is a point of G
we abbreviate {x}·Y and Y· {x} to x·Y and Y·x respectively, and Y–1 is defined to be {x: x–1 ε Y).

(a) If X, Y, and Z are subsets of G, then (X·Y)·Z = X·(Y·Z) and (X·Y)–1 = Y–1·X–1.
(b) Let (G,·) be a group and  a topology for G. Then  is a topological group iff for each x

and y in G and each neighborhood W of x·y–1 there are neighborhoods U of x and V of y such that U·
V–1 ⊂ W. Equivalently,  is a topological group iff i and m are continuous, where i(x) = x–1 and
m(x,y) = x·y.

(c) If G is a topological group, then i, where i(x) = x–1, is a homeomorphism of G onto G. For
each a in G both La and Ra (called the left and right translations by a) are homeomorphisms, where
La(x) = a·x and Ra(x) = x·a.

It is very important to notice that the topology of a topological group is determined by the
neighborhood system of a member of the group. This fact (precisely stated below) permits the
“localization” of many notions.

(d) If G is a topological group and  is the neighborhood system of the identity, then a subset A
of G is open iff  for each x in A or equivalently if  for each x in A. The closure of
the subset A is . (Notice that x ε U·A iff (U–1·x) ∩ A is not void.)

(e) The family  of neighborhoods of the identity e of a topological group has the properties:

(i) if U and V belong to , then ;
(ii) if  and U ⊂ V, then ;

(iii) if , then for some , V·V–1 ⊂ U; and
(iv) for each U in  and each x in G, .

On the other hand, given a group G and a non-void family  of non-void subsets satisfying these
four propositions there is a unique topology  for G such that  is a topological group and  is



the neighborhood system of the identity element.
(f) Every group, with the discrete topology or with the indiscrete topology, is a topological group

If G is the set of real numbers, then (G,+, ), where  is the usual topology, is a topological group and
(G ~ {0},·, ) is also a topological group. If G is the set of all integers, p is a prime and  is the
family of all subsets U of G such that for some positive integer k every integral multiple of pk
belongs to U, then  is the neighborhood system of 0 relative to a topology  such that (G,+, ) is a
topological group.

(g) A topological group is a Hausdorff space whenever it is T0-space. (That is, if x and y are
distinct elements there is either a neighborhood of x to which y does not belong or the reverse.
Observe that if , then , and if V–1· V ⊂ U, then V·x ∩ V·y is void.)

(h) If U is open and X is an arbitrary subset of a topological group, then U·X and X·U are open.
However, both X and Y may be closed subsets and X·Y may fail to be closed. (Consider the Euclidean
plane with the usual addition with X = Y = {(x,y):y = 1/x2}.)

(i) A cartesian product  of groups is a group under the operation: (x·y)a = xa·ya for
each a in A. The product, with the product topology, is a topological group and the projection into
each coordinate space is a continuous open homomorphism.*

Note Bourbaki [1], Pontrjagin [1], and Weil [2] are standard references on topological groups; see
also Chevalley [1].

T SUBGROUPS OF A TOPOLOGICAL GROUP
(a) A subgroup of a topological group is, with the relative topology, a topological group.
(b) The closure of a subgroup is a subgroup and the closure of an invariant subgroup is invariant

(invariant = normal = distinguished).
(c) Every subgroup with non-void interior is open and closed. A subgroup H is either closed or

H– ~ H is dense in H–.
(d) The smallest subgroup which contains a fixed open subset of a topological group is both open

and closed.
(e) The component of the identity in a topological group is an invariant subgroup.
(f) A discrete (with the relative topology) normal subgroup of a connected topological group is a

subset of the center. (For a fixed member h of the subgroup H consider the map of G into H which
carries x into x–1·h·x.)

U FACTOR GROUPS AND HOMOMORPHISMS
Let G be a topological group, H a subgroup, G/H the family of left cosets (sets of the form x·H

for some x in G). Then G/H with the quotient topology is a homogeneous space. If H is an invariant
subgroup, then G/H is a group, called the factor group or quotient group.

(a) The projection of a topological group G onto the homogeneous quotient space G/H is open
and continuous. (Show that the union of all left cosets which intersect an open set U is U·H and
apply 3.10.)

(b) If H is an invariant subgroup, then G/H, with the quotient topology, is a topological group and
the projection is a continuous, open homomorphism.

(c) The map of the homogeneous space which carries an element A into a·A, where a is a fixed
member of G, is a homeomorphism.

(d) If f is a homomorphism of a topological group G into another group H, then f is continuous iff
the inverse of a neighborhood of the identity element of H is a neighborhood of the identity of G.

(e) If f is a continuous homomorphism of the topological group G into a topological group J, then
the map of G onto f[G], where f[G] has the quotient topology, is a continuous open homomorphism,



and the identity map of f[G], with the quotient topology, into J is continuous. Hence each continuous
homomorphism may be “factored” into a continuous open homomorphism followed by a continuous
one-to-one homomorphism. If f is a continuous open homomorphism of G onto f, then J is
topologically isomorphic to G/K where K is the kernel of f.

(f) If J ⊂ H ⊂ G and J and H are invariant subgroups of G, then H/J is a subgroup of G/J, the
quotient topology for H/J is the relative quotient topology for G/J, and the map of G/J into G/H
which carries A into A·H is continuous and open, and hence (G/J)/(H/J) is topologically isomorphic
to G/H.

V BOX SPACES
A base for the box topology for the cartesian product  is the family of all sets 

 where Ua is open in Xa for each a in A. Hence the cartesian product of open sets is
open relative to the box topology.

(a) Projection into each coordinate space is, relative to the box topology, continuous and open.
(b) Let Y be the cartesian product of the real numbers an infinite number of times; that is, Y = RA,

where R is the set of real numbers and A is an infinite set. With the box topology Y does not satisfy
the first countability axiom, and the component of Y to which a point y belongs is the set of all points
x such that {a: xa ≠ ya} is finite. (Let x and y be points of Y whose coordinates differ for an infinite
set a0, a1 ···, ap ··· of members of A. Let Z be the set of all z in Y such that for some k, p| z(ap) –
x(ap) |/| x(ap) – y(ap) | < k for all p. Then Z is open and closed, x ε Z and .)

(c) Prove the results of (b) for the product of an infinite number of connected, Hausdorff
topological groups, each of which contains at least two points. Show first that the product of
topological groups is, with the box topology, a topological group.

W FUNCTIONALS ON REAL LINEAR SPACES
Let (X,+,·) be a real linear space. A real-valued linear function on X is called a linear functional.

The set Z of all linear functionals on X is, with the natural definition of addition and scalar
multiplication, a real linear space. It is clear that Z is a subset of the product ,
where R is the set of real numbers. The relativized product topology for Z is called the weak* or w*-
topology (the simple topology). (The space Z is a subgroup of RX, which is a topological group
according to 3.S(i); however, the following results do not require the propositions on topological
groups.)

The following propositions characterize w*-dense subspaces of Z and w*-continuous linear
functionals.

(a) If f, g1, …, gn are members of Z and f(x) = 0 whenever gi(x) = 0 for each i, then there are real

numbers a1, …, an such that f = ∑{aigi: i = 1, …, n}. (Consider the map G of X into En defined by
(G(x))i = gi(x). Show that there is an induced map F (see chapter 0) such that f = F ∘ G.)

(b) Density lemma Let Y be a linear subspace of Z such that for each non-zero member x of X
there is g in Y such that g(x) ≠ 0. Then Y is w*-dense in Z. (To show that f ε Y– it is necessary to
prove that for each finite subset x1, …, xn of X there is a member of Y which approximates f at each
of x1, …, xn. Show there is g in Y such that g(xi) = f(xi) for each i, i = 1, …, n.)

(c) Evaluation theorem A linear functional F on Z is w*-continuous iff it is an evaluation; that is,
iff for some x in X it is true that F(g) = g(x) for all g in Z. (If F is w*-continuous, then for some x1,
…, xn in X and some positive real numbers r1, …, rn it is true that | F(g) | < 1 whenever | g(xi) | < ri
for each i. Show that, if g(xi) = 0 for each i, then F(g) = 0.)



Notes The concept of the product topology grew out of the study of sequential convergence
relative to the w*-topology. The latter has been studied extensively (see, for example, Banach [1]).
There were several awkward situations which arose in this study, which have been somewhat
clarified by further topological developments. One might define the sequential closure of a set to be
the union of the set and all limit points of sequences in the set, and agree that a set is sequentially
closed iff it is identical with its sequential closure. Then it is not hard to see that a set may be
sequentially closed relative to the w*-topology but may fail to be w*-closed. This is not a serious
criticism if sequential convergence is the object under study. However, the really damaging fact is
that the sequential closure of a set may fail to be sequentially closed; that is, sequential closure is not
a Kuratowski closure operator. Because of this the machinery of general topology does not apply to
the sequential closure operator, and ad hoc arguments are necessary for each conclusion. See Banach
[1; 208 ff] for further discussion and examples.

X REAL LINEAR TOPOLOGICAL SPACES
A real linear topological space (r.l.t.s) is a quadruple (X,+,·, ) such that (X, +, ·) is a real linear

space, (X,+, ) is a topological group, and the scalar multiplication, ·, is a continuous function on X ×
(real numbers) to X. Recall that a subset K of a real linear space is convex iff, whenever 0  t  1
and x and y are members of K, then t·x + (1 – t)·y ε K.

(a) The function which, for a fixed real number a, a ≠ 0, carries each member x of a real linear
topological space into a·x is a homeomorphism.

(b) The cartesian product of real linear topological spaces is, with addition and scalar
multiplication defined coordinate-wise, and with the product topology, a r.l.t.s.

(c) If Y is a linear subspace of the r.l.t.s. X, then Y, with the relative topology, is a r.l.t.s., and X/Y,
with the quotient topology, is a r.l.t.s.

(d) Let K be a convex subset of a r.l.t.s. X and f a linear functional on X. Then f is continuous on
K iff, for each real number t, the set f–1[t] ∩ K is closed in K. (If {xn, n ε D} is a net in K, converging
to a member x of K such that {f(xn), n ε D} fails to converge to f(x), choose for n in a cofinal subset
of D a point yn on the segment from xn to x such that f(yn) is a constant different from f(x).)

(e) If f is a real-valued linear function (that is, a linear functional) on a r.l.t.s. X, then f is
continuous iff {x: f(x) = 0} is closed.

Notes The concept of a linear topological space is relatively recent (Kolmogoroff [1] and v.
Neumann [1]); it is a notion which grew out of the study of the weak and weak* topologies for a
Banach space and its adjoint. Much of the elementary theory of linear topological spaces is a direct
application of the theory of topological groups; the results which distinguish the theory from that of
topological groups all depend on convexity arguments. (This is a perfectly normal state of affairs; the
chief use of the scalar multiplication, which is the only distinguishing feature, is in convexity
arguments.) The few results on r.l.t. spaces which occur in the problems of this book do not constitute
an adequate introduction to the theory because we do not list the propositions on convexity which are
essential to a serious study. The following are suggested as reading references: Bourbaki [3], Nachbin
[1], and Nakano [1]. The first of these contains a study of linear topological spaces over a
topologized (not necessarily commutative) field.

* If f is defined on a subset A of a topological space, then continuity at points of the closure A–
may also be defined (see 3.D); several useful propositions result.

* A topologist is a man who doesn’t know the difference between a doughnut and a coffee cup.
* This description of the product topology is due to N. Bourbaki.
* Some authors use the term “representation” to mean continuous homomorphism, and the term

“homomorphism” to mean a continuous homomorphism which is an open map onto its range.



Chapter 4
 

EMBEDDING AND METRIZATION
 

The development of general topology has followed an evolutionary
pattern which occurs frequently in mathematics. One begins by observing
similarities and recurring arguments in several situations which
superficially seem to bear little resemblance to each other. We then attempt
to isolate the concepts and methods which are common to the various
examples, and if the analysis has been sufficiently penetrating we may find
a theory containing many or all of our examples, which in itself seems
worthy of study. It is in precisely this way, after much experimentation, that
the notion of a topological space was developed. It is a natural product of a
continuing consolidation, abstraction, and extension process. Each such
abstraction, if it is to contain the examples from which it was derived in
more than a formal way, must be tested to find whether we have really
found the central ideas involved. This testing is usually done by comparing
the abstractly constructed object with the objects from which it derived. In
this case we want to find whether a topological space, at least under some
reasonable restrictions, must necessarily be one of the particular concrete
spaces from which the notion is derived. The “standard” examples with
which we compare spaces are cartesian products of unit intervals and metric
spaces. In this chapter the elementary properties of metric and pseudo-
metric spaces are developed, and necessary and sufficient conditions are
given under which a space is a copy of a metric space or of a subspace of
the cartesian product of intervals.

A word of caution: the notion of a topological space by no means
includes all of the properties which metric spaces possess. In chapter 6 a



different and more penetrating abstraction of the concept of a metric space
is made.

EXISTENCE OF CONTINUOUS FUNCTIONS

In this section we prove four lemmas, all part of a program to construct
real-valued continuous functions on topological spaces. For the moment we
are concerned with a rather special sort of topological space. A space is
normal * iff for each disjoint pair of closed sets, A and B, there are disjoint
open sets U and V such that A ⊂ U and B ⊂ V. A T4-space is a normal
space which is T1 ({x} is closed for each x). If it is agreed that a set U is a
neighborhood of a set A iff A is a subset of the interior U0 of U, then the
definition of normality can be stated: a space is normal iff disjoint closed
sets have disjoint neighborhoods. There is another restatement of the
condition which is also suggestive. A family of neighborhoods of a set is a
base for the neighborhood system of the set iff every neighborhood of the
set contains a member of the family. If W is a neighborhood of a closed
subset A of a normal space X, then there are disjoint open sets U and V such
that A ⊂ U and X ~ W0 ⊂ V, and hence the arbitrary neighborhood W of A
contains the closed neighborhood U–. Consequently the family of closed
neighborhoods of a closed set A is a base for the neighborhood system of A
if the space is normal. The converse is also true, for if A and B are disjoint
closed sets and W is a closed neighborhood of A which is contained in X ~
B, then W0 and X ~ W are disjoint open neighborhoods of A and B
respectively.

Every discrete space and every indiscrete space is normal and
consequently a normal space need not be Hausdorff and may fail to satisfy
the first or second axiom of countability. However, a T4-space (T1 and
normal) is surely a Hausdorff space. A closed subset of a normal space is,
with the relative topology, normal. However, subspaces, products, and
quotient spaces of normal spaces may not be normal. (See 4.E, 4.F.)

There is a condition which for T1-spaces is intermediate to Hausdorff
and normal, and under certain circumstances implies normality. A
topological space is regular iff for each point x and each neighborhood U of
x there is a closed neighborhood V of x such that V ⊂ U; that is, the family
of closed neighborhoods of each point is a base for the neighborhood



system of the point. An equivalent statement: for each point x and each
closed set A, if , then there are disjoint open sets U and V such that x ε
U and A ⊂ V regular space which is also T1 is called a T3-space. Recall that
a Lindelöf space is a topological space such that each open cover has a
countable subcover.

1 LEMMA (TYCHONOFF) Each regular Lindelöf space is normal.

PROOF Suppose A and B are closed disjoint subsets of X. Because X is
regular, for each point of A there is a neighborhood whose closure fails to
intersect B and consequently the family at of all open sets whose closures
do not intersect B is a cover of A. Similarly, the family  of all open sets
whose closures do not intersect A is a cover of B, and 
is a cover of X. There is then a sequence {Un, n ε ω} of members of 
which covers A, and a sequence {Vn, n ε ω} of members of  which covers
B. Let  and let  since Un′ ∩
Vm is void for m  n, it follows that Un′ ∩ Vm′ is void for m  n. Applying
the same argument with the roles of U and V interchanged, Un′ ∩ Vm′ is
void for all m and n and consequently  is disjoint from 

. Finally, Vp
– ∩ A and Up

– ∩ B are void for all p and hence the
open disjoint sets  and  contain A and B respectively. 

In particular, a regular topological space satisfying the second axiom of
countability is always normal.

We now begin the construction of continuous real-valued functions. If A
and B are disjoint closed sets, we want to construct a continuous real-valued
function which is zero on A and one on B, with all values in the closed
interval [0,1]. Instead of constructing the function f directly we construct
sets which correspond (approximately) to sets of the form {x: f(x) < t}. The
two following lemmas show the relation between a family of subsets and a
real-valued function.

2 LEMMA Suppose that for each member t of a dense subset D of the positive
reals Ft is a subset of a set X such that

(a) if t < s, then Ft ⊂ Fs; and
(b) .



For x in X let f(x) = inf {t: x ε Ft}. Then : t ε D and t < s}
and : t ε D and t > s} for each real number s.

PROOF The calculation is direct. The set {x: f(x) < s} = {x: inf {t: x ε Ft} <
s}, and since the infimum is less than s iff some member of {t: x ε Ft} is
less than s, the set {x: f(x) < s} is the set of all x such that for some t, t < s
and x ε Ft; that is,  and t < s}. This establishes the first equality. To
prove the second notice that inf {t: x ε Ft}  s if for each u greater than s
there is t < u such that x ε Ft. Conversely, if for each t in D such that t > s it
is true that x ε Ft, then inf {t: x ε Ft}  s because D is dense in the set of
positive numbers. Consequently the set of all x such that f(x) = inf {t: x ε
Ft}  s is {x: if t ε D and t > s, then x ε Ft} = ∩{Ft: t ε D and t > s}. 

3 LEMMA Suppose that for each member t of a dense subset D of the positive
reals Ft is an open subset of a topological space X such that

(a) if t < s, then the closure of Ft is a subset of Fs; and
(b) .

Then the function f such that f(x) = inf {t: x ε Ft} is continuous.

PROOF According to 3.1 a function is continuous if the inverse of each
member of some subbase for the topology of the range space is open, and
the family of all sets of the form {t: t < s] or {t: t > s}, for real numbers s, is
a subbase for the usual topology for the set of real numbers. Consequently,
to show f continuous it is sufficient to show that {x: f(x) < s} is open and {x:
f(x)  s}

is closed for each real s. In view of the previous lemma the first of
these, {x: f(x) < s}, is the union of open sets Ft and is therefore open. With
reference again to the previous lemma, : t ε D and t > s},
and the proof will be complete if we show this set is identical with 

. Since Ft ⊂ Ft
– for each t, surely ∩{Ft: t ε D and t > s}

⊂ ∩ {Ft
–: t ε D and t > s}. On the other hand, for each t in D with t > s

there is r in D such that s < r < t, and hence such that Fr
– ⊂ Ft. The reverse

inclusion follows. 



The principal result of the section is now easily proved.

4 LEMMA (URYSOHN) If A and B are disjoint closed subsets of a normal
space X, then there is a continuous function f on X to the interval [0,1] such
that f is zero on A and one on B.

PROOF Let D be the set of positive dyadic rational numbers (that is, the set
of all numbers of the form p2–q, where p and q are positive integers). For t
in D and t > 1 let F(t) = X, let F(1) = X ~ B and let F(0) be an open set
containing A such that F(0)– is disjoint from B. For t in D and 0 < t < 1
write t in the form t = (2m + 1)2–n and choose, inductively on n, F(t) to be
an open set containing F(2m2–n) – and such that F(t) – ⊂ F((2m + 2)2–n).
This choice is possible because X is normal. Let f(x) = inf {t: x ε F(t)}. The
previous lemma shows that f is continuous. The function f is zero on A
because A ⊂ F(t) for each t in D, and f is one on B because F(t) ⊂ X ~ B for
t  1 and F(t) = X for t > 1. 

EMBEDDING IN CUBES

The cartesian product of closed unit intervals, with the product
topology, is called a cube. A cube is then the set QA of all functions on a set
A to the closed unit interval Q, with the topology of pointwise, or
coordinate-wise, convergence. The cube is used as a standard sort of space,
and we want to describe those topological spaces which are homeomorphic
to subspaces of cubes. The device used to accomplish this description is
simple but noteworthy; it will be used again in other connections.

Suppose that F is a family of functions such that each member f of F is
on a topological space X to a space Yf (the range may be different for
different members of the family). There is then a natural mapping of X into
the product  which is defined by mapping a point x of X into the
member of the product whose f-th coordinate is f(x). Formally, the
evaluation map e is defined by: e(x)f =f(x). It turns out that e is continuous if
the members of F are continuous and e is a homeomorphism if, in addition,
F contains “enough functions.” A family F of functions on X distinguishes
points iff for each pair of distinct points x and y there is f in F such that f(x)
≠ f(y). The family distinguishes points and closed sets iff for each closed



subset A of X and each member x of X ~ A there is f in F such that f(x) does
not belong to the closure of f [A].

5 EMBEDDING LEMMA Let F be a family of continuous functions, each
member f being on a topological space X to a topological space Yf. Then:

(a) The evaluation map e is a continuous function on X to the product
space .

(b) The function e is an open map of X onto e[X] if F distinguishes
points and closed sets.

(c) The function e is one to one if and only if F distinguishes points.

PROOF The map e followed by projection Pf into the f-th coordinate space is
continuous because Pf ∘ e(x) =f(x). Consequently, by theorem 3.3, e is
continuous. To prove statement (b) it is sufficient to show that the image
under e of an open neighborhood U of a point x contains the intersection of
e[X] and a neighborhood of e(x) in the product. Choose a member f of F
such that f(x) does not belong to the closure of f[X ~ U]. The set of all y in
the product such that  is open, and evidently its intersection
with e[X] is a subset of e[U]. Hence e is an open map of X onto e[X].
Statement (c) is clear. 

The preceding lemma reduces the problem of embedding a space
topologically in a cube to the problem of finding a “rich” set of continuous
real-valued functions on the space. There are topological spaces on which
each continuous real-valued function is constant. For example, any
indiscrete space has this property. There are less trivial examples; there are
regular Hausdorff spaces on which every real continuous function is
constant.* A topological space X is called completely regular iff for each
member x of X and each neighborhood U of x there is a continuous function
f on X to the closed unit interval such that f(x) = 0 and f is identically one on
X ~ U. It is clear that the family of all continuous functions on a completely
regular space to the unit interval [0,1] distinguishes points and closed sets,
in the sense of the preceding lemma. (The converse statement is also true,
but will not be needed here.) If a completely regular space is T1 ({x} is
closed for each x), then the family of continuous functions on the space to
[0,1] also distinguishes points. A completely regular T1-space is called a
Tychonoff space. If X is a Tychonoff space and F is the family of all



continuous functions on X to [0,1], then the embedding lemma 4.5 shows
that the evaluation map of X into the cube QF is a homeomorphism. Thus
each Tychonoff space is homeomorphic to a subspace of a cube. This fact is
actually characteristic of Tychonoff spaces, as will presently be
demonstrated.

Each normal T1-space is a Tychonoff space in view of Urysohn’s lemma
4.4. Each completely regular space is regular, for if U is a neighborhood of
x and f is a continuous function which is zero at x and one on X ~ U, then V
= {y: f(y) < ½} is an open set whose closure is contained in {y: f(y)  ½},
which is a subset of U. For T1-spaces there is a hierarchy of so-called
separation axioms: Hausdorff, regular, completely regular, and normal.
Except for normality, these properties are hereditary, in the sense that each
subspace of a space X enjoys the property if X does. The product of spaces
of each of these types is again of the same type, excepting, again, normality.
The proofs of these facts are left as problems (4.H) except for the following,
which is needed now.

6 THEOREM The product of Tychonoff spaces is a Tychonoff space.

PROOF For convenience, let us agree that a continuous function f on a
topological space X to the closed unit interval is for a pair (X,U) iff x is a
point, U is a neighborhood of x, f(x) = 0, and f is identically one on X ~ U. If
f1, …, fn are functions for (x,U1), …, (x,Un), where n is a positive integer,
and if g(x) = sup {fi(x) : i = 1, …,n}, then g is a function for 

. Consequently the space is completely regular if for each x and
each neighborhood U of x belonging to some sub-base for the topology
there is a function for (x,U). If X is the product  of Tychonoff
spaces and x ε X let Ua be a neighborhood of xa in Xa. If f is a function for
(xa, Ua), then f ∘ Pa, where Pa is the projection into the a-th coordinate
space, is a function for (x,Pa

–1[Ua]). The family of sets of the form Pa
–1[Ua]

is a subbase for the product topology and hence the product space is
completely regular. Since the product of T1-spaces is a T1-space the theorem
follows. 

7 EMBEDDING THEOREM In order that a topological space be a Tychonoff
space it is necessary and sufficient that it be homeomorphic to a subspace



of a cube.

PROOF The closed unit interval is a Tychonoff space, and hence a cube,
being a product of unit intervals, is a Tychonoff space by 4.6. Each
subspace of a cube is therefore a Tychonoff space. It has already been
observed that if X is a Tychonoff space and F the set of all continuous
functions on X to the closed unit interval Q, then (by the embedding lemma
4.5) the evaluation map is a homeomorphism of X into the cube QF. 

METRIC AND PSEUDO-METRIC SPACES

There are many topological spaces in which the topology is derived
from a notion of distance. A metric for a set X is a function d on the
cartesian product X × X to the non-negative reals such that for all points x,
y, and z of X,

(a) d(x,v) = d(y,x),
(b) (triangle inequality) d(x,y) + d(y,z)  d(x,z),
(c) d(x,y) = 0 if x = y, and
(d) if d(x,y) = 0, then x = y.

The last of these conditions is inessential for many purposes. A function d
which satisfies only (a) and (b) and (c) is called a pseudo-metric
(sometimes an écart, although “écart” is also used in a slightly different
sense). All of the definitions of this section will be made for pseudo-
metrics, it being understood that the same definitions are to hold with
“pseudo-metric” replaced by “metric.”

A pseudo-metric space is a pair (X,d) such that d is a pseudo-metric for
X. For members x and y of X the number d(x,y) is the distance (if confusion
seems possible the d-distance) from x to y. If r is a positive number the set
{y: d(x,y) < r) is the open sphere of d-radius r about x, or briefly the open r-
sphere about x, and {y: d{x,y)  r) is the closed r-sphere about x. The
intersection of two open spheres may not be a sphere. However, if d(x,y) < r
and d(x,z) < s, then each point w such that d(w,x) < min [r – d(x,y), s –
d(x,z)] is a member of both the open r-sphere about y and the open s-sphere
about z because of the triangle inequality. Consequently the intersection of
two open spheres contains an open sphere about each of its points, and
hence the family of all open spheres is the base for a topology for X (see



1.11). This topology is the pseudo-metric topology for X. Observe that each
closed sphere is closed relative to the pseudo-metric topology.

Let X be a set and define d(x,y) to be zero if x = y and one otherwise.
Then d is a metric for X and the open 1-sphere about each point x is {x};
hence {x} is open relative to the metric topology and the space is discrete.
The closed 1-sphere about each point is X and it follows that the closure of
an open r-sphere may be different from the closed r-sphere. If d is defined
to be zero for all pairs (x,y) in X × X, then d is not a metric, but is a pseudo-
metric. Then the open r-sphere about each point is the entire space, and the
pseudo-metric topology for X is the indiscrete topology. If X is the set of all
real numbers and d(x,y) = |x – y | then d is a metric for X; it is called the
usual metric for the real numbers. The usual metric topology is fortunately
the usual topology for the reals.

The distance from a point x to a non-void subset A of a pseudo-metric
space is defined to be D(A,x) = inf {d(x,y):y ε A).

8 THEOREM If A is a fixed subset of a pseudo-metric space, then the distance
from a point x to A is a continuous function of x relative to the pseudo-
metric topology.

PROOF Since d(x,z)  d(x,v) + d(y,z) it follows, taking lower bounds for z in
A, that D(A,x)  d(x,y) + D(A,y). The same inequality holds with x and y
interchanged and hence | D(A,x) – D(A,y) |  d(x,y). Consequently, if y is in
the open r-sphere about x, then | D(A,x) – D(A,y) | < r and continuity
follows. 

9 THEOREM The closure of a set A in a pseudo-metric space is the set of all
points which are zero distance from A.

PROOF Since D(A,x) is continuous in x the set {x: D(A,x) = 0} is closed and
contains A and hence contains the closure A– of A. If , then there is a
neighborhood of y, which may be taken to be an open r-sphere, which does
not intersect A. Consequently D(A,y)  r and hence {x: D(A,x) = 0} ⊂ A–.
Therefore A– = {x: D(A,x) =0}. 

10 THEOREM Each pseudo-metric space is normal.



PROOF Let A and B be disjoint closed subsets of a pseudo-metric space X,
and let D(A,x) and D(B,x) be the distance from x to A and B respectively.
Let U = {x: D(A,x) – D(B,x) < 0} and let V = {x: D(A,x) – D(B,x) > 0}. The
function D(A,x) – D(B,x) is continuous in x and therefore U and V are open.
Clearly U is disjoint from V, and using 4.9 it follows that A ⊂ U and B ⊂ V.

11 THEOREM Every pseudo-metric space satisfies the first axiom of
countability. The second is satisfied if and only if the space is separable.

PROOF A set is open relative to the pseudo-metric topology iff it contains an
open sphere about each of its points. Therefore the family of open spheres
about a point x is a base for the neighborhood system of x. Since each open
sphere about x contains a sphere with rational radius there is a countable
base for the neighborhood system and the space satisfies the first axiom of
countability. Each space which satisfies the second axiom of countability is
separable, so it remains to prove that a separable pseudo-metric space has a
countable base for its topology. Let Y be a countable dense subset and let 
be the family of all open spheres with rational radii about members of Y.
Surely  is countable. If U is a neighborhood of a point x there is, for some
positive r, an open r-sphere about x which is contained in U. Let s be a
positive rational number less than r, let y be a point of Y such that d(x,y) <
s/3, and let V be the open 2s/3 sphere about y. Then x ε V ⊂ U and hence 
is a base for the topology. 

12 THEOREM A net {Sn, n ε D} in a pseudo-metric space (X,d) converges to
a point s if and only if {d(Sn,s), n ε D} converges to zero.

PROOF A net {Sn, n ε D] converges to s iff the net is eventually in each open
r-sphere about s, but this is true iff {d(Sn, s), n ε D] is eventually in each
open r-sphere about 0 in the space of real numbers with the usual metric. 

The diameter of a subset A of a pseudo-metric space (X,d) is sup
{d(x,y): x ε A and y ε A}. If this supremum does not exist the diameter is
said to be infinite. It is interesting to notice that the property of having a
finite diameter is not a topological invariant.



13 THEOREM Let (X, d) be a pseudo-metric space, and let e(x,y) = min
[1,d(x,y)]. Then (X,e) is a pseudo-metric space whose topology is identical
with that of (X,d).

Consequently each pseudo-metric space is homeomorphic to a pseudo-
metric space of diameter at most one.

PROOF To prove that e is a pseudo-metric it is sufficient to show that if a, b,
and c are non-negative numbers such that a + b  c, then min [1,a] + min
[1,b]  min [1,c], for the latter inequality becomes the triangle inequality
for ε if we set a = d(x,y), b = d(y,z) and c = d(x,z). If either min [1,a] or min
[1,b] is one the inequality is surely correct since min [1,c]  1. If neither of
these is one the inequality a + b  c  min [1,c] completes the proof.
Consequently e is a pseudo-metric for X, The family of all open r-spheres,
for r less than one, is a base for the pseudo-metric topology. Since this
family is the same whether d or e is used as pseudo-metric, the two pseudo-
metric topologies are identical. Clearly the e-diameter of X is at most one. 

The product of uncountably many topological spaces does not generally
satisfy the first axiom of countability (see 3.6) and consequently one cannot
expect to find a pseudo-metric for the product of arbitrarily many pseudo-
metric spaces such that the pseudo-metric topology is the product topology.
For countable products the situation is pleasant. Because of the previous
theorem we restrict our attention to spaces of diameter at most one.

14 THEOREM Let {(Xn,dn), n ε ω} be a sequence of pseudo-metric spaces,
each of diameter at most one, and define d by: d(x,y) = ∑{2–ndn(xn,yn): n ε
ω}. Then d is a pseudo-metric for the cartesian product, and the pseudo-
metric topology is the product topology.

PROOF The simple proof that d is a pseudo-metric is omitted. (Problem 2.G
on summability contains the necessary machinery.) To show the two
topologies identical, first observe that, if V is a 2–p-sphere about a point x of
the product and U = {y: dn(xn,yn) < 2–p–n–2 for n  p + 2}, then U ⊂ V, for
if y ε U, then d(x,y) < ∑{2–p–n–2: n = 0, …,p + 2] + ∑{2–n: n = p + 3, … } <
2–p–1 + 2–p–1 = 2–p. But U is a neighborhood of x in the product topology
and it follows that each set which is open relative to the pseudo-metric
topology is open relative to the product topology. To show the converse



consider a member U of the defining subbase of the product topology. Then
U is of the form {x: xn ε W} where W is open in Xn. For x in U there is an
open r-sphere about xn which is a subset of W, and since d(x,y)  2–

ndn(xn,yn) the open r2–n-sphere about x is a subset of U. Therefore each
member of the defining subbase, and consequently each member of the
product topology, is open relative to the pseudo-metric topology. 

If (X,d) and (Y,e) are pseudo-metric spaces and f is a map of X onto Y,
then f is an isometry (a d-e isometry) iff d(x,y) = e(f(x),f(y)) for all points x
and y of X. Every isometry is a continuous open map (relative to the two
pseudo-metric topologies) because the image of each open r-sphere about x
is an open r-sphere about f(x). The composition of two isometrics is again
an isometry and if an isometry is one to one the inverse is also an isometry.
On a metric space an isometry is necessarily one to one and an isometry of
a metric space onto a metric space is a homeomorphism. The collection of
all metric spaces is divided into equivalence classes of mutually isometric
spaces. Each property which, when possessed by a metric space, is also
possessed by each isometric metric space, is a metric invariant. A metric
invariant is not necessarily a topological invariant (for example, consider
the property of being of infinite diameter).

Each pseudo-metric space differs but little, in one sense, from a metric
space. In making this statement precise it is convenient to agree that the
distance between two subsets, A and B, of a pseudo-metric space is D(A,B)
= dist (A,B) = inf {d(x,y): x ε A and y ε B}. It is generally not true that D is a
pseudo-metric, for the space X is zero distance from every non-void subset
and the triangle inequality fails. However, D is actually a metric for the
members of the decomposition which we want to consider. For a pseudo-
metric space (X,d) let  be the family of all sets of the form {x}–. Because
of 4.9, {x}– is precisely the set of all points y such that d(x,y) = 0, and the
decomposition  is the quotient X/R where R is the relation {(x,y): d{x,y) =
0}.

15 THEOREM Let (X, d) be a pseudo-metric space, let  be the family of all
sets {x}– for x in X, and for members A and B of  let D(A,B) = dist (A,B).
Then ( ,D) is a metric space whose topology is the quotient topology for ,
and the projection of X onto  is an isometry.



PROOF A point u is a member of {x}– iff d(u,x) = 0, and this is true iff x ε
{u}–. If u ε {x}– and v ε {y}–, then d(u,v)  d(u, x) + d(x,y) + d{y, v) = d{x,
y). Consequently, since in this case it is also true that x ε {u}– and y ε {v}–,
d(u,v) = d(x,y). It follows that for members A and B of , D(A,B) is identical
with d(x,y) for every x in A and every y in B. Therefore ( ,D) is a metric
space and the projection of X onto  is an isometry. If U is an open set in X
and x ε U, then, for some r > 0, U contains an open r-sphere about x, and
hence contains {x}–. The projection of X onto  is therefore an open map
relative to the quotient topology for , by 3.10. The projection is also open
relative to the metric topology derived from D and hence, by 3.8, these two
topologies are identical. 

METRIZATION

Given a topological space (X, ), it is natural to ask whether there is a
metric for X such that  is the metric topology. Such a metric metrizes the
topological space and the space is said to be metrizable. Similarly, a
topological space is pseudo-metrizableiff there is a pseudo-metric such that
the topology is the pseudo-metric topology. A pseudo-metric is a metric if
and only if the topology is T1 (that is, iff {x} is closed for each point x) and
it follows that a space is metrizable if and only if it is T1 and pseudo-
metrizable. The theorems of this section are stated for metrizable spaces;
the corresponding theorems for pseudo-metrizable spaces will be self-
evident.

The two principal theorems of the section give necessary and sufficient
conditions that a topological space be, respectively, metrizable and
separable, and metrizable. The first of these is the classical metrization
theorem of Urysohn; all of the pieces of its proof are already available and
it is simply a matter of fitting the facts together. The second theorem has
been proved only recently (its history is given in the notes at the end of the
section). It turns out that a mild variant of Urysohn’s procedure proves the
sufficiency of the conditions imposed, but the necessity requires a new sort
of construction. A further study of the concepts introduced here is made in
the last section of chapter 5. Finally, the entire problem of metrization is
approached from a different point of view in chapter 7; however, the results
obtained there do not include the theorems of this section.



The pattern for a proof of metrizability is very simple. According to
4.14 the product of countably many pseudo-metric spaces is pseudo-
metrizable. According to the embedding lemma 4.5, if F is a family of
continuous functions on a T1-space X, where a member f of F maps X into a
space Yf, then the evaluation map of X into  is a homeomorphism
whenever F distinguishes points and closed sets (that is, if A is a closed
subset of X and A; is a member of X ~ A, then  for some member f
of F). The problem of metrizing a T1-space X then reduces to that of finding
a countable family of continuous functions, each on X to some pseudo-
metrizable space, such that F distinguishes points and closed sets. (A
pseudo-metrizable T1-space is necessarily metrizable.)

For convenience, let Qω denote the product of the closed unit interval
with itself countably many times; that is Qω is the set of all functions on the
non-negative integers to the closed unit interval Q, with the product
topology.

16 METRIZATION THEOREM (URYSOHN) A regular T1-space whose topology
has a countable base is homeomorphic to a subspace of the cube Qω and is
hence metrizable.

PROOF In view of the remarks preceding the theorem it is sufficient to show
that there is a countable family of continuous functions on X to Q which
distinguishes points and closed sets. Let  be a countable base for the
topology of X and let  be the set of all pairs (U,V) such that U and V belong
to  and U– ⊂ V. Surely  is countable. For each pair (U,V) in  choose a
continuous function f on X to Q such that f is zero on U and one on X ~ V
(such a function exists because of the Tychonoff lemma 4.1 and the
Urysohn lemma 4.4) and let F be the family of functions so obtained. Then
F is countable and it remains to be proved that F distinguishes points and
closed sets. If B is closed and x ε X ~ B choose a member V of  such that x
ε V ⊂ X ~ B and choose U in  such that x ε U– ~ ⊂ V. Then (U,V) ε , and
if f is the corresponding member of F, then . 

It is easy to describe the class of topological spaces to which the
foregoing metrization theorem applies.

17 THEOREM If X is a T1-space, then the following are equivalent:



(a) X is regular and there is a countable base for its topology.
(b) X is homeomorphic to a subspace of the cube Qω.
(c) X is metrizable and separable.

PROOF The previous theorem shows that (a) → (b). The cube Qω is
metrizable, by 4.14, and satisfies the second axiom of countability (3.M).
Hence each subspace is metrizable and satisfies the second axiom of
countability and is therefore separable. Hence (b) → (c). (Caution: it is not
true that a subspace of a separable space is necessarily separable.) Finally
(c) → (a), for if X is metrizable and separable, then it is surely regular and
by 4.11 it satisfies the second axiom of countability. 

The metrization theorem for spaces which are not necessarily separable
depends heavily on the ideas which we have already exploited. A brief
discussion of methodology will indicate where the procedure used so far
can be improved. The construction of a metric for X is accomplished by
finding a family of mappings of X into pseudo-metrizable spaces. But
observe: so far the only space which has been used as the range space is the
unit interval Q. Stated in slightly different form, if f is a function on X to Q,
then one may construct a pseudo-metric for X by letting d(x,y) = | f(x) – f(y)
|. The Urysohn metrization is accomplished by using a countable number of
pseudo-metrics of this sort, and the problem is to generalize this
construction. If F is a family of functions on X to Q, then a possible
candidate for a pseudo-metric is the sum : ∑ {| f(x) – f(y) | : f ε F}. This sum
must be continuous in x and y in order that the identity map of X into the
pseudo-metric space (X,d) be continuous, and a condition much weaker
than finiteness of the family F will ensure continuity. It is sufficient, to
obtain continuity, that for each point x of X there be a neighborhood U of x
such that all but a finite number of the members of F vanish on U; in other
words, a sort of local finiteness suffices. This notion of local finiteness is
the key to the problem.

A family  of subsets of a topological space is locally finite iff each
point of the space has a neighborhood which intersects only finitely many
members of . It follows immediately from the definition that a point is an
accumulation point of the union  iff it is an accumulation point of
some member of , and hence the closure of the union is the union of the
closures; that is, . It is also evident that the
family of all closures of members of  is locally finite. A family  is



discrete if each point of the space has a neighborhood which intersects at
most one member of . A discrete family is locally finite, and if  is
discrete, then the family of closures of members of  is also discrete.
Finally, a family  is σ-locally finite (σ-discrete) if and only if it is the union
of a countable number of locally finite (respectively, discrete) subfamilies.

The following metrization theorem can now be stated. Its proof is
contained in the sequence of lemmas which follows the statement.

18 METRIZATION THEOREM The following three conditions on a topological
space are equivalent.

(a) The space is metrizable.
(b) The space is T1 and regular, and the topology has a σ-locally finite

base.
(c) The space is T1 and regular, and the topology has a σ-discrete base.

It is clear that condition (c) implies (b) and it will be proved that (b)
implies (a), and finally that (a) implies (c). The first step in the proof is a
variant of Tychonoff’s lemma, 4.1.

19 LEMMA A regular space whose topology has a σ-locally finite base is
normal.

PROOF If A and B are disjoint closed subsets of the space X, then there are
open covers  and  of A and B respectively such that the closure of each
member of  is disjoint from B, the closure of each member of  is disjoint
from A, and both  and  are subfamilies of a σ-locally finite base . It
follows that  and  where  and  are locally
finite families. Let  and let . Then 

, and hence Un
– is disjoint from B and similarly Vn

– is
disjoint from A. This is precisely the situation which occurs in the proof of
4.1, and as there, the proof is completed by letting 

. The union of the sets Un′ and the union of the sets
Vn′ are the required disjoint neighborhoods of A and B respectively. 

The following lemma now completes the proof that the conditions listed
in 4.18 are sufficient for metrizability.



20 LEMMA A regular T1-space whose topology has a σ-locally finite base is
metrizable.

PROOF It will be shown that there is a countable family D of pseudo-metrics
on the space X such that each member of D is continuous on X × X and such
that for each closed subset A of X and each point x of X ~ A there is a
member d of D such that the d-distance from x to A is positive. This will
prove metrizability, for the map of X into each of the pseudo-metric spaces
(X,d) will then be continuous, and 4.5 and 4.14 will apply just as for the
Urysohn theorem. The problem is then to construct the family D. Let  be a
σ-locally finite base for the topology of X, and suppose that 
where each  is locally finite. For every ordered pair of integers m and n
and for each member U of , let U′ be the union of all members of 
whose closures are contained in U. Because  is locally finite the closure
of U′ is a subset of U, and there is a continuous function fU on X to the unit
interval which is one on U′ and zero on X ~ U by 4.19 and 4.4. Let d{x,y) =
∑{|fU (x) – fU(y) |: . The continuity of d on X × X is a straightforward
consequence of the local finiteness of . Finally, let D be the family of
pseudo-metrics so obtained; since one pseudo-metric was constructed for
each ordered pair of integers, D is countable. If A is a closed subset of X
and x ε X ~ A, then for some m and some U in  it is true that x ε U ⊂ X ~
A, and for some n and some V in  it is true that x ε V and V– ⊂ U. For the
pseudo-metric d constructed for this pair it is clear that the d-distance from
x to A is at least one. 

The most interesting part of the proof of the metrization theorem
remains. It must be proved that each metric space has a σ-discrete base. A
stronger result than this is true and, since the more potent theorem will be
needed later, we introduce a new concept. A cover  of a set X is a
refinement of a cover  iff each member of  is a subset of a member of .
For example, in a metric space, the family of all open spheres of radius one
half is a refinement of the family of all open spheres of radius one. The
following theorem states that any open cover of a pseudo-metric space has
an open refinement which is σ-discrete. This will imply that each pseudo-
metric topology has a σ-discrete base, for one may select a σ-discrete
refinement  of the cover consisting of all open spheres of radius 1/n, and
the union of the families  is then a σ-discrete base. This fact completes the
proof of the metrization theorem 4.18.



21 THEOREM Each open cover of a pseudo-metrizable space has an open σ-
discrete refinement.

PROOF Let  be an open cover of the pseudo-metric space (X,d). The first
step in the proof is the decomposition of each member U of  into
“concentric disks.” For each positive integer n and each member U of  let
Un be the set of all members x of U such that dist [x,X ~ U]  2–n. Because
of the triangle inequality it is clear that dist [Un,X ~ Un+1]  2–n – 2–n–1 = 2–

n–1. Choose a relation < which well orders the family  (see 0.25h) and for
each positive integer n and each member U of  let 
and V < U}. For each U and V in  and each positive integer n it is true that
Un* ⊂ X ~ Vn+1, or Vn* ⊂ X ~ Un+1, depending on whether U follows or
precedes V in the ordering. In either case dist [Un*,Vn*]  2–n–1. It follows
that if Un

~ is defined to be the set of all points x such that the distance from
x to Un* is less than 2–n–3, then dist [Un

~,Vn
~]  2–n–2 and hence for each

fixed n the family of all sets of the form Un
~ is discrete. Let  be the family

of Un
~ for all n and all U in . Then  is an open cover of X, for if U is the

first member of  to which x belongs, then surely x ε Un
~ for some n.

Evidently Un
~ ⊂ U, and consequently  is a σ-discrete open refinement of 

. 

22 Notes There are really two metrization problems. The topological
problem has just been treated and the problem of uniform metrization will
be considered in chapter 7 (statement and history are given there).
Curiously enough a satisfactory solution of the latter was found much
earlier than a solution of the former. Urysohn’s theorem, although treating
only a special case, was certainly the most satisfactory theorem of the
topological sort until very recently. The key to the present reasonably
satisfactory situation was furnished by two papers. Dieudonné [1] initiated a
study of spaces with the property that each open cover has an open locally
finite refinement (paracompact spaces; see chapter 5). A. H. Stone [1]
showed that each metrizable space is paracompact (a special case of this
theorem was earlier demonstrated by C. H. Dowker [1]). The σ-locally
finite characterization was then discovered independently, by Nagata [1]



and by Smirnov [1]. The σ-discrete characterization is due to Bing [1]. The
proof of necessity (4.21) of the metrizability conditions is actually an initial
fragment of Stone’s proof of paracompactness.

Smirnov [2] has also showed that paracompactness together with local
metrizability implies metrizability.

Finally a brief statement of the role of pseudo-metrizable spaces might
be made. Most of the spaces which occur naturally in analysis are pseudo-
metric rather than metric, and even in the metrization problem a
construction via pseudo-metrics was convenient. Of course, one may
always replace a pseudo-metric space by a related metric space (theorem
4.15), but the process of taking quotient spaces becomes a bit tedious and
for most purposes the requirement d(x,y) = 0 iff x = y is completely
irrelevant. One is tempted to work exclusively with pseudo-metrics, but this
has disadvantages, for example, when one seeks to construct a topological
map. A possible way out is to redefine “topological map” to mean a relation
which induces a one-to-one intersection and union-preserving map on the
topologies.

PROBLEMS

A REGULAR SPACES

(a) Let X be a regular space and let  be the family of all subsets of the form {x}– for x in X.
Then  is a decomposition of X, the projection of X onto the quotient space  is both open and
closed, and the quotient space is regular Hausdorff. (If A is a subset of X which is either open or
closed, then {x}– ⊂ A whenever x ε A.)

(b) The product of regular spaces is again regular.

B CONTINUITY OF FUNCTIONS ON A METRIC SPACE
A function f on a pseudo-metric space (X,d) to a pseudo-metric space (Y,e) is continuous iff for

each x in X and each  > 0 there is δ > 0 such that e(f(x), f(y)) <  if d(x,y) < δ.

C PROBLEM ON METRICS
Let f be a continuous real-valued function defined on the set of all non-negative real numbers,

such that f(x) = 0 iff x = 0, f is non-decreasing, and f(x+y)  f(x) + f(y) for all non-negative numbers x
and y. (A function satisfying this last condition is called subadditive.) If (X,d) is a metric space and
e(x,y) = f(d(x,y)), then (X,e) is a metric space, and the metric topology of the space (X,e) is identical
with that of (X,d). (A particular case of this result which occurs frequently in the literature: f(x) = x/(1
+ x).)

D HAUSDORFF METRIC FOR SUBSETS
Let (X,d) be a metric space of finite diameter, and let  be the family of all closed subsets. For r >

0 and A in  let Vr(A) = {x: dist (x,A) < r}, and define, for members A and B of , d′(A,B) = inf {r: A



⊂ Vr(B) and B ⊂ Vr(A)}. d′ is the Hausdorff metric; it is not the same as the distance between sets
used in the text.

(a) ( , d′) is a metric space, and the map which carries x in X into {x} in  is an isometry of X
onto a subspace of .

(b) The topology of the Hausdorff metric for  is not determined by the metric topology for X.
For example, let X be the set of all positive real numbers, let d(x,y) = | x/(1 + x) –y/(1 +y)|, and let
e(x,y) = min [1,| x – y |]. Then the metric topologies of (X,d) and (X,e) are identical, but those of ( ,
d′) and ( ,e′) are different. (In ( , d′) the set of all positive integers is an accumulation point of the
family of all its finite subsets.)

Note For information and references on this topic see Michael [2].

E EXAMPLE (THE ORDINALS) ON THE PRODUCT OF NORMAL SPACES
The product of normal spaces is not generally normal.* Let Ω0 be the set of all ordinal numbers

less than the first uncountable ordinal Ω and let Ω′ be Ω0 ∪ {Ω} each with the order topology.
(a) Interlacing lemma Let {xn, n ε ω} and {yn, n ε ω} be two sequences in Ω0 such that xn  yn

 xn+1 for each n. Then both sequences converge, and to the same point of Ω0.
(b) If A and B are closed disjoint subsets of Ω0, then Ω, is not an accumulation point of both A

and B.
(c) Both Ω0 and Ω′ are normal. (If A and B are closed disjoint subsets and the first point of A ∪ B

belongs to A, find a finite sequence a0, b0, a1, … an (or bn) such that ai ε A, bi ε B, no point of A is
between ai and bi, and no point of B is between bi and ai+1, for each i. The intervals (ai,bi] are both
open and closed.)

(d) If f is a function on Ω0 to Ω0 such that f(x)  x for each x, then for some x in Ω0 the point
(x,x) is an accumulation point of the graph of f. (Define a sequence, inductively, such that xn+1 =
f(xn), observe that xn  f(xn)  xn+1, and use the interlacing lemma.)

(e) The product Ω0 × Ω′ is not normal. (Let A be the set of all points (x,x), and let B = Ω0 × {Ω}.
If U is a neighborhood of A let f(x) be the smallest ordinal larger than x such that . Then
(d) applies.)

F EXAMPLE (THE TYCH0N0FF PLANK) ON SUBSPACES OF NORMAL SPACES
A subspace of a normal space may fail to be normal. Let Ω′ be the set of ordinal numbers not

greater than the first uncountable ordinal Ω, and let ω′ be the set of ordinals not greater than the first
infinite ordinal, ω, each with the order topology. The product Ω′ × ω′ is called the Tychonoff plank. It
is not difficult to prove directly that the plank is normal; however, this fact is an immediate
consequence of a theorem of the next chapter. Let X be (Ω′ × ω′) ~ {(Ω,ω)}, so that X is the plank
with a corner point removed. Let A be the set of all points of X with first coordinate Ω and let B be
the set of all points with second coordinate ω. Then there are no disjoint neighborhoods of A and B.
(If U is a neighborhood of A, then for x in ω let f(x) be the first ordinal such that if y > f(x), then (y,x)
ε U. The supremum of the values of f is less than Ω.)

G EXAMPLE: PRODUCTS OF QUOTIENTS AND NON-REGULAR HAUSDORFF SPACES
Let X be a regular Hausdorff space which is not normal, and let A and B be disjoint closed sets

such that each neighborhood of A intersects each neighborhood of B. Let Δ be the set of all (x,x) for x
in X (Δ is the identity relation on X).

(a) Let R = Δ ∪ (A × A). Then R is closed in X × X and the quotient space X/R is a Hausdorff
space which is not regular. (The members of the quotient space are A, and {x} for x in X ~ A.)



(b) Let S = Δ ∪ (A × A) ∪ (B × B). Then S is closed in X × X, but X/S is not a Hausdorff space.
(The members of X/S are A, B, and {x} for each x in X ~ {A ∪ B).)

(c) There is a natural map of X × X onto (X/S) × (X/S) which carries (x,y) into (S[x],S[y]). It is
natural to ask whether this map is open, provided X/S is given the quotient topology and (X/S) × (X/S)
and X × X are given the product topologies. (This is equivalent to asking whether the product of
quotients is topologically equivalent to the quotient of the product.) If S is the relation defined in (b),
then the map is not open. (Consider the neighborhood X × X ~ (A × A ∪ B × B ∪ Δ) of A × B.)

H HEREDITARY, PRODUCTIVE, AND DIVISIBLE PROPERTIES
A property P of a space is hereditary iff each subspace of a space with P also has P; it is

productive iff the product of spaces enjoying P has P; and it is divisible iff the quotient space of each
space with P has P. Consider the properties: T1, H = Hausdorff, R = regular, CR = completely
regular, T = Tychonoff, N = normal, C = connected, S = separable, CI = first axiom of countability,
CII = second countability axiom, M = metrizable, and L = Lindelöf. The following table is filled out
+ or –, depending on whether the property at the head of the column is or is not of the sort listed on
the left. Show by example (most of the necessary examples have already been mentioned in the
problems) or proof that the listing is correct.

Quite different results are obtained if one varies the problem by considering only closed subspaces,
or only open maps.

I HALF-OPEN INTERVAL SPACE
Let X be the set of all real numbers with the half-open interval topology (a base is the family of

all half-open intervals [a,b); see 1.K and 1.L). Then:
(a) X is regular.
(b) X is normal. (Recall that every open cover of X has a countable subcover.)
(c) The product space X × X is not normal. (Let Y = {(x,y) : x + y = 1}, let A be the set of all

members of Y with first coordinate irrational, and let B = Y ~ A. Assume that U and V are disjoint
neighborhoods of A and B, and for x in A let f(x) = sup {e: [x,e) × [1 – x,e) ⊂ U}. Then f is a function
on the set of all irrational numbers and f is never zero. The contradiction depends on the fact that for
some positive integer n there is a rational number which is an accumulation point of {x: f(x)  1/n}.
This fact is an immediate consequence of the theorem that the space of real numbers (with the usual
topology) is of the second category (see chapter 7), but a direct proof seems awkward.)

Note This example is due to Sorgenfrey [1].

J THE SET OF ZEROS OF A REAL CONTINUOUS FUNCTION
A subset of a topological space is called a Gδ iff it is the intersection of the members of a

countable family of open sets.
(a) If f is a continuous real valued function on X, then f–1[0] is a Gδ. (The set {0} is a Gδ in the

space of all real numbers.)
(b) If A is a closed Gδ in a normal topological space X, then there exists a continuous real-valued

function f such that A = f–1[0].



K PERFECTLY NORMAL SPACES
A topological space is called perfectly normal iff it is normal and each closed subset is a Gδ.
(a) Each pseudo-metrizable space is perfectly normal.
(b) The product of an uncountable number of unit intervals is not perfectly normal. (A Gδ in such

a space cannot consist of a single point.)

L CHARACTERIZATION OF COMPLETELY REGULAR SPACES
A topological space is completely regular iff it is homeomorphic to a subspace of a product of

pseudo-metric spaces.

M UPPER SEMI-CONTINUOUS DECOMPOSITION OF A NORMAL SPACE
The image of a normal topological space under a closed continuous map is a normal space.

* This nomenclature is an excellent example of the time-honored custom of referring to a
problem we cannot handle as abnormal, irregular, improper, degenerate, inadmissible, and otherwise
undesirable. A brief discussion of the abnormalities of the class of normal spaces occurs in the
problems at the end of the chapter.

* See Hewitt [1] and Novak [1], For other facts on separation axioms see van Est and Freudenthal
[1].

* It is possible to do part of this problem a little more efficiently using methods from the
following chapter. However, the facts given here will be useful later. I believe the example is due to
J. Dieudonné and A. P. Morse, independently.



Chapter 5
 

COMPACT SPACES
 

The notion of a compact topological space is (like every concept studied
in this book) an abstraction of certain important properties of the set of real
numbers. The classic theorem of Heine-Borel-Lebesgue asserts that every
open cover of a closed and bounded subset of the space of real numbers has
a finite subcover. This theorem has extraordinarily profound consequences,
and, like most good theorems, its conclusion has become a definition. A
topological space is compact (bicompact) if and only if each open cover has
a finite subcover.* A subset A of a topological space is compact iff it is,
with the relative topology, compact; equivalently A is compact iff every
cover of A by sets which are open in X has a finite subcover.

EQUIVALENCES

This section is devoted to characterizations of compactness in terms of
closed sets, convergence, bases, and subbases.

A family  of sets has the finite intersection property iff the intersection
of the members of each finite subfamily of  is non-void. The De Morgan
formulae (0.2) on complements furnish the connection between this notion
and the concept of compactness.

1 THEOREM A topological space is compact if and only if each family of
closed sets which has the finite intersection property has a non-void
intersection.

PROOF If  is a family of subsets of a topological space X, then, according to
the De Morgan formulae,   and hence  is a



cover of X iff the intersection of the complements of the members of  is
void. The space X is compact iff each family of open sets, such that no
finite subfamily covers X, fails to be a cover, and this is true iff each family
of closed sets which possesses the finite intersection property has a non-
void intersection. 

2 THEOREM A topological space X is compact if and only if each net in X
has a cluster point.

Consequently , X is compact if and only if each net in X has a subnet
which converges to some point of X.

PROOF Let {Sn, n ε D} be a net in the compact topological space X and for
each n in D let An be the set of all points Sm for m  n. Then the family of
all sets An has the finite intersection property because D is directed by ,
and consequently the family of all closures An

– also has the finite
intersection property. Since X is compact there is a point s which belongs to
each An

–, and according to theorem 2.7 such a point s is a cluster point of
the net {Sn, n ε D}. To prove the converse proposition let X be a topological
space in which every net has a cluster point and let  be a family of closed
subsets of X such that  has the finite intersection property. Define  to be
the family of all finite intersections of members of ; then  has the finite
intersection property and since  it is sufficient to show  non-
void. The intersection of two members of  is a member of  and therefore 
 is directed by ⊂. If we choose a member SB from each B in , then 

 is a net in X and consequently has a cluster point s. If B and C are
members of  such that C ⊂ B, then Sc ε C ⊂ B; therefore the net 
is eventually in the closed set B and hence the cluster point s belongs to B.
Therefore s belongs to each member of  and the intersection of the
members of  is non-void. Finally, the second statement of the theorem
follows from the fact (2.6) that a point is a cluster point of a net iff some
subnet converges to it. 

Under certain circumstances compactness can be characterized in terms
of the existence of accumulation points of subsets. The following sequence
of lemmas and the subsequent theorem indicate the situation. The problems
at the end of the chapter show that the limitations imposed are necessary. It
is convenient to use a variant of the notion of accumulation point in stating



the results. A point x is an ω-accumulation point of a set A iff each
neighborhood of x contains infinitely many points of A. Each ω-
accumulation point of a set is also an accumulation point, and if the space is
T1 the converse holds.

3 LEMMA Every sequence in a topological space has a cluster point if and
only if every infinite set has an ω-accumulation point.

PROOF Suppose that every sequence has a cluster point and that A is an
infinite subset. Then there is a sequence of distinct points (a one-to-one
sequence) in A, and each cluster point of such a sequence is clearly an ω-
accumulation point of A. Conversely, if every infinite subset of a
topological space has an accumulation point and {Sn, n ε ω} is a sequence
in the space, then one of two situations must occur. Either the range of the
sequence is infinite, in which case each ω-accumulation point of this
infinite set is a cluster point of the sequence, or else the range of the
sequence is finite. In the latter case, for some point x of the space, Sn = x for
infinitely many non-negative integers n, and x is a cluster point of the
sequence. 

4 LEMMA If X is a Lindelöf space and every sequence in X has a cluster
point, then X is compact.

PROOF It must be shown that each open cover of X has a finite subcover.
Because of the hypothesis it may be assumed that the open cover consists of
sets A0, A1, …, An …, for n in ω. Proceeding inductively, let B0 = A0 and for
each p in ω let Bp be the first of the sequence of A’s which is not covered by
B0 ∪ B1 ∪ … ∪ Bp–1. If this choice is impossible at any stage, then the sets
already selected are the required finite subcover. Otherwise it is possible to
select a point bp in Bp for each p in ω such that  for i < p. Let x be a
cluster point of this sequence. Then x ε Bp for some p, and since x is a
cluster point, bq ε Bp for some q > p. But this is a contradiction. 

The following theorem summarizes information on sequences and
subsequences, accumulation points and compactness.



5 THEOREM If X is a topological space, then the conditions below are
related as follows. For all spaces (a) is equivalent to (b) and (d) implies (a).
If X satisfies the first axiom of countability, then (a), (b), and (c) are
equivalent. If X satisfies the second axiom of countability, then all four
conditions are equivalent. If X is pseudo-metric, then each of the four
conditions implies that X satisfies the second countability axiom and all
four are equivalent.

(a) Every infinite subset of X has an ω-accumulation point.
(b) Every sequence in X has a cluster point.
(c) For each sequence in X there is a subsequence converging to a point

of X.
(d) The space X is compact.

PROOF Lemma 5.3 states that (a) is equivalent to (b) and since a sequence is
a net, 5.2 shows that (d) always implies (b). If X satisfies the first axiom of
countability then (b) and (c) are equivalent by 2.8. If X satisfies the second
axiom of countability, then every open cover has a countable subcover,
lemma 5.4 applies, and hence all four statements are equivalent. If X is
pseudo-metric, then X satisfies the first axiom of countability, the first three
conditions are equivalent, each is implied by compactness, and the theorem
will be proved if it is shown that a pseudo-metric space such that each
infinite subset has an accumulation point is separable and hence satisfies the
second axiom of countability. Suppose that X is such a pseudo-metric space.
For r positive consider the family of all sets A such that the distance
between any two distinct points of A is at least r. It is easily seen that this
family has a maximal member Ar by 0.25. The set Ar must be finite, for the
r/2 sphere about each point of X contains at most one member of Ar and
therefore Ar has no accumulation point. Moreover, the r-sphere about each
point x of X must intersect Ar because Ar is maximal and otherwise x could
be adjoined to Ar. Finally the union A of sets Ar, for r the reciprocal of a
positive integer, is surely countable and A is clearly dense in X. 

If  is a base for the topology of a compact space X and  is a cover of X
by members of , then there is a finite subcover of . Conversely, suppose
that  is a base for the topology and that every cover by members of  has a
finite subcover. If  is an arbitrary open cover of X define  to be the family



of all members of  which are subsets of some member of . Because  is a
base, the family  is a cover of X, and consequently there is a finite
subcover  of . For each member of  we may select a member of  which
contains it, and the result is a finite subcover of . This shows that, if “a
base for a topology is compact,” then the space is compact. This is a useful
but not a very profound result. The corresponding theorem on sub-bases is
both profound and useful.

6 THEOREM (ALEXANDER) If  is a subbase for the topology of a space X
such that every cover of X by members of  has a finite subcover, then X is
compact.

PROOF For brevity let us agree that a family of subsets of X is inadequate iff
it fails to cover X, and is finitely inadequate iff no finite subfamily covers X.
Then the definition of compactness of X can be stated: each finitely
inadequate family of open sets is inadequate. Observe that the class of
finitely inadequate families of open sets is of finite character and therefore
each finitely inadequate family is contained in a maximal family by Tukey’s
lemma 0.25(c). Such a maximal finitely inadequate family  has a special
property which is established as follows.* If  and C is open, then by
maximality there is a finite subfamily A1, … Am of  such that C ∪ A1 ∪ …
Am = X. Hence no open set containing C belongs to . If D is another open
set and , then there is B1, …, Bn in  such that D ∪ B1 ∪…∪ Bn = X and
(C ∩ D) ∪ A1 ∪ … ∪ Am ∪ B1 ∪ … ∪ Bn = X by a simple set theoretic
calculation. It follows that . Consequently, if no member of a finite
family of open sets belongs to , then no open set containing the
intersection belongs to ; restated, if a member of  contains a finite
intersection C1 ∩ C2 … ∩ Cp of open sets, then some Ci ε .

The proof of the theorem is now straightforward. Suppose that  is a
subbase such that each open cover by subbase elements has a finite
subcover (that is, each finitely inadequate subfamily is inadequate) and
suppose that  is a finitely inadequate family of open subsets of . Then
there is a maximal family  of this sort containing  and it is sufficient to
show that  is inadequate. The family  of all members of  which
belong to  is finitely inadequate and hence  does not cover X.
Consequently the theorem will be proved if it is shown that each point in 



 belongs to . Because  is a sub-base each point x
of a member A of  belongs to some finite intersection of members of 
which is contained in A. The paragraph above shows that some one of this
finite family belongs to , hence , and the
theorem is proved. 

COMPACTNESS AND SEPARATION PROPERTIES

In this section the consequences of compactness in conjunction with the
so-called separation axioms will be examined. In each case the theorem
proved is the assumed separation axiom (Hausdorff, regular, completely
regular) with the word “point” replaced by “compact set.” A simple but
important corollary on continuous mappings of compact spaces into
Hausdorff spaces is derived, and finally we prove a separation theorem of
A. D. Wallace which includes most of the earlier theorems.

It is always true that a closed subset A of a compact space X is compact,
for each net in A has a subnet which converges to a point which belongs to
A because A is closed. (A proof based directly on the definition of
compactness is almost as simple.) The converse theorem is false, for if A is
a proper non-void subset of an indiscrete space X (only X and the void set
are open), then A is surely compact but not closed. This cannot happen if X
is a Hausdorff space.

7 THEOREM If A is a compact subset of a Hausdorff space X and x is a point
of X ~ A, then there are disjoint neighborhoods of x and of A.

Consequently each compact subset of a Hausdorff space is closed.

PROOF Since X is Hausdorff there is a neighborhood U of each point y of A
such that x does not belong to the closure U–. Because A is compact there is
a finite family U0, U1, …, Un of open sets covering A such that  for i
= 0, 1, …, n. If , then A ⊂ V and x t V–.
Consequently X ~ V– and V are disjoint neighborhoods of x and A. 

8 THEOREM Let f be a continuous function carrying the compact topological
space X onto the topological space Y. Then Y is compact, and if Y is
Hausdorff and f is one to one then f is a homeomorphism.



PROOF If  is an open cover of Y, then the family of all sets of the form f–
1[A], for A in , is an open cover of X which has a finite subcover. The
family of images of members of the sub-cover is a finite subfamily of 
which covers Y and consequently Y is compact. Suppose that Y is Hausdorff
and f is one to one. If A is a closed subset of X, then A is compact and hence
its image f[A] is compact and therefore closed. Then (f–1)–1[A] is closed for
each closed set A and f–1 is continuous. 

9 THEOREM If A and B are disjoint compact subsets of a Hausdorff space X,
then there are disjoint neighborhoods of A and B.

Consequently each compact Hausdorff space is normal.

PROOF For each x in A there is by 5.7 a neighborhood of x and a
neighborhood of B which are disjoint. Consequently there is a
neighborhood U of x whose closure is disjoint from B, and since A is
compact there is a finite family U0, U1, …, Un such that Ui

– is disjoint from
B for i = 0, 1, …, n and  i = 0, 1, …, n). Then V is a
neighborhood of A and X ~ V– is a neighborhood of B which is disjoint from
V. 

10 THEOREM If X is a regular topological space, A a compact subset, and U
a neighborhood of A, then there is a closed neighborhood V of A such that V
⊂ U.

Consequently each compact regular space is normal.

PROOF Because X is regular, for each x in A there is an open neighborhood
W of x such that W– ⊂ U, and by compactness there is a finite open cover
W0, W1, …, Wn of A such that Wi

– ⊂ U for each i. Then 
 is the required neighborhood of A. 

11 THEOREM If X is a completely regular space, A is a compact subset and
U is a neighborhood of A, then there is a continuous function f on X to the
closed interval [0,1] such that f is one on A and zero on X ~ U.

PROOF For each x in A there is a continuous function g which is one at x and
zero on X ~ U. The set {y : g(y) > ½} is open in X and hence if h is defined



by h(y) = min [2g(y),1], then h is continuous, has values in [0,1], is zero on
X ~ U, and is one on a neighborhood of x. Because A is compact there is a
finite family h0, h1, … hn of continuous functions on X to [0,1] such that A
⊂ ∪ {hi

–1[1]: i = 0, 1, …,n} and each hi is zero on X ~ U. The function f
whose value at x is max {hi(x): i = 0, 1, …, n) is the required function. 

Each of the last two theorems has a formulation which is superficially
different; the statement “A is compact and U a neighborhood of A” can be
replaced by “if A is compact and B is a disjoint closed set,” and the
conclusion changed in the obvious way.

Most of the results of this section are easy consequences of the
following theorem.

12 THEOREM (WALLACE) If X and Y are topological spaces, A and B are
compact subsets of X and Y respectively, and W is a neighborhood of A × B
in the product space X × Y, then there are neighborhoods U of A and V of B
such that U × V ⊂ W.

PROOF For each member (x,y) of A × B there are open neighborhoods R of x
and S of y such that R × S ⊂ W. Since B is compact, for a fixed x in A there
are neighborhoods Ri of x and corresponding open sets Si, for i = 0, 1, … n,
such that . If , then P is
a neighborhood of x and Q is a neighborhood of B such that P × Q ⊂ W.
Since A is compact there are open sets Pi in X and Qi in Y, for i = 0, 1, … m,
such that each Qi is a neighborhood of B, Pi × Qi ⊂ W, and  {Pi: i = 0,
1, … m} = U. Then U and  {Qi: i = 0, 1, …, m} are neighborhoods of
A and B respectively, U × V is a subset of W, and the theorem follows. 

PRODUCTS OF COMPACT SPACES

The classical theorem of Tychonoff on the product of compact spaces is
unquestionably the most useful theorem on compactness. It is probably the
most important single theorem of general topology. This section is devoted
to the Tychonoff theorem and a few of its consequences.

13 THEOREM (TYCHONOFF) The cartesian product of a collection of compact
topological spaces is compact relative to the product topology.



PROOF Let  where each Xa is a compact topological space
and Q has the product topology. Let  be the subbase for the product
topology consisting of all sets of the form Pa

–1[U] where Pa is the
projection into the a-th coordinate space and U is open in Xa. In view of
theorem 5.6 the space Q will be compact if each subfamily  of , such that
no finite subfamily of  covers Q, fails to cover Q. For each index a let 
be the family of all open sets U in Xa such that Pa

–1[U] ε . Then no finite
subfamily of  covers Xa and hence by compactness there is a point xa such
that xa ε Xa ~ U for each U in . The point x whose a-th coordinate is xa
then belongs to no member of  and consequently  is not a cover. 

We give an alternate proof of Tychonoff’s theorem which does not
depend on the Alexander theorem 5.6.

ALTERNATE PROOF (BOURBAKI) It will be proved that if  is a family of
subsets of the product and  has the finite intersection property, then 

 is not void. The class of all families which possess the finite
intersection property is of finite character and consequently we may assume
that  is maximal with respect to this property by Tukey’s lemma 0.25(c).
Because  is maximal each set which contains a member of  belongs to 
and the intersection of two members of  belongs to . Moreover, if C
intersects each member of , then C ε  by maximality.* Finally, the family
of projections of members of  into a coordinate space Xa has the finite
intersection property and it is therefore possible to choose a point xa in 

. The point x whose a-th coordinate is xa then has the
property: each neighborhood U of xa intersects Pa[B] for every B in , or
equivalen tly Pa

–1[U] ε , for each neighborhood U of xa in Xa. Therefore
finite intersections of sets of this form belong to . Then each neighborhood
of x which belongs to the defining base for the product topology belongs to 
 and hence intersects each member of . Therefore x belongs to B– for each

B in , and the theorem is proved. 
Several important applications of Tychonoff’s theorem occur in the

chapter on function spaces; for the moment we consider a very simple
consequence. A subset of a pseudo-metric space is bounded iff it is of finite
diameter. Thus a subset of the space of real numbers is bounded iff it has



both an upper and lower bound. The following is the classical theorem of
Heine-Borel-Lebesgue.

14 THEOREM A subset of Euclidean n-space is compact if and only if it is
closed and bounded.

PROOF Let A be a compact subset of En. Then A is closed because En is a
Hausdorff space. Because of compactness A can be covered by a finite
family of open spheres of radius one, and because each of these is bounded
A is bounded. To prove the converse suppose that A is a closed and bounded
subset of En. Let Bi be the image of A under the projection into the i-th
coordinate space, and notice that each Bi is bounded because the projection
decreases distances. Then , and this set is a
subset of a product of closed bounded intervals of real numbers. Since A is
a closed subset of the product, and the product of compact spaces is
compact, the proof reduces to showing that a closed interval [a,b] is
compact relative to the usual topology. Let  be an open cover of [a,b] and
let c be the supremum of all members x of [a, b] such that some finite
subfamily of  covers [a,x]. (The set is not void because a is a member.)
Choose U in  such that c ε U, and choose a member d of the open interval
(a,c) such that [d,c] ⊂ U. There is a finite subfamily of  which covers
[a,d], and this family with U adjoined covers [a,c]. Unless c = b the same
finite subfamily covers an interval to the right of c, which contradicts the
choice of c. The theorem follows. 

The closed unit interval is compact and consequently each cube (the
product of closed unit intervals) is compact. The following characterization
of Tychonoff spaces (completely regular T1-spaces) is then almost self-
evident.

15 THEOREM A topological space is a Tychonoff space if and only if it is
homeomorphic to a subspace of a compact Hausdorff space.

PROOF By 4.6, each Tychonoff space is homeomorphic to a subset of a cube,
which is a compact Hausdorff space. Conversely, each compact Hausdorff
space is normal and consequently (Urysohn’s lemma 4.4) is a Tychonoff
space, and each subspace is therefore a Tychonoff space. 



The product of more than a finite number of non-compact spaces fails to
be compact in a rather spectacular way. A set in a topological space is
nowhere-dense in the space iff its closure has a void interior.

16 THEOREM If an infinite number of the coordinate spaces are non-
compact, then each compact subset of the product is nowhere dense.

PROOF Suppose that  has a compact subset B with an interior
point x. Then B contains a neighborhood U of x which is a member of the
defining base and is therefore of the form , where F is a
finite subset of A and Va is open in Xa. If b is a member of A ~ F, then Pb[B]
= Xb and Xb is therefore compact because it is the continuous image of a
compact space. Hence all but a finite number of the coordinate spaces are
compact. 

LOCALLY COMPACT SPACES

A topological space is locally compact iff each point has at least one
compact neighborhood. A compact space is automatically locally compact,
every discrete space is locally compact, and each closed subspace of a
locally compact space is itself locally compact (the intersection of a closed
set and a compact set is a closed subset of the latter, and hence compact).
Many of the pleasant properties of compact spaces are shared by locally
compact spaces. The following proposition is a convenient tool for the
study of such spaces.

17 THEOREM If X is a locally compact topological space which is either
Hausdorff or regular, then the family of closed compact neighborhoods of
each point is a base for its neighborhood system.

PROOF Let x be a point of X, C a compact neighborhood of x, and U an
arbitrary neighborhood of x. If X is regular, then there is a closed
neighborhood V of x which is a subset of the intersection of U and the
interior of C, and evidently V is closed and compact. If X is Hausdorff and
W is the interior of U ∩ C, then, since W– is a compact Hausdorff space, W
contains a closed compact set V which is a neighborhood of x in W– by 5.9;
but V is also a neighborhood of x in W (that is, with respect to the
relativized topology for W) and is therefore a neighborhood of x in X. 



In particular it follows that every locally compact Hausdorff space is
regular; actually a stronger statement is true.

18 THEOREM If U is a neighborhood of a closed compact subset A of a
regular locally compact topological space X, then there is a closed compact
neighborhood V of A such that A ⊂ V ⊂ U.

Moreover y there is a continuous function f on X to the closed unit
interval such that f is zero on A and one on X ~ V.

PROOF For each point x of A there is a neighborhood W which is a closed
compact subset of U. Since A is compact it may be covered by a finite
family of such neighborhoods and their union is a closed compact
neighborhood V of A. Then V with the relative topology is a regular
compact space which is therefore normal (5.10). Hence there is a
continuous function g on V to the closed unit interval such that g is zero on
A and one on V ~ V0 (V0 is the interior of V). Let f equal g on V and one on
X ~ V. Then f is continuous because V0 and X ~ V are separated and f is
continuous on V and X ~ V0. (Problem 3.B.) 

It follows that each locally compact, regular, topological space is
completely regular and each locally compact Hausdorff space is a
Tychonoff space.

It is not true that the continuous image of a locally compact space is
locally compact, for every discrete space is locally compact and each
topological space is the continuous one-to-one image of a discrete space
(using the same set, the discrete topology, and the identity function). If a
function is both open and continuous, then the image of a compact
neighborhood of a point is a compact neighborhood of the image point, and
consequently the image of a locally compact space is locally compact. This
simple fact and an earlier result give a precise description of those product
spaces which are locally compact.

19 THEOREM If a product is locally compact, then each coordinate space is
locally compact and all except a finite number of coordinate spaces are
compact.

PROOF If a product is locally compact, then each coordinate space is locally
compact because projection into a coordinate space is open. If infinitely



many coordinate spaces are non-compact, then each compact subset of the
product is nowhere dense, according to 5.16, and no point has a compact
neighborhood. 

QUOTIENT SPACES

In this section the investigation of quotient spaces which was begun in
chapter 3 is continued. We are interested in the consequences of
compactness and the single theorem of the section summarizes some of the
pleasant properties which result from the additional assumption. It has
already been observed that the continuous image of a compact space is
compact, but without additional hypotheses the image space may still be
quite unattractive. For example, if X is the closed unit interval with the
usual topology and  is the decomposition consisting of all subsets of the
form {x: x – a is rational}, then the quotient space is compact and the
projection onto the quotient space is open, but the quotient topology is
indiscrete (only the space and the void set open). It turns out that, if the
members of  are compact and the decomposition is upper semi-continuous,
then the quotient space inherits many of the properties of X.

20 THEOREM Let X be a topological space, let  be an upper semi-
continuous decomposition of X whose members are compact, and let  have
the quotient topology. Then  is, respectively, Hausdorff, regular, locally
compact, or satisfies the second axiom of countability, provided X has the
corresponding property.

PROOF For convenience let us agree that a subset of X is admissible iff it is
the union of members of . In view of the definition of upper semi-
continuity each neighborhood in X of a member A of  contains an
admissible neighborhood, and hence the image under projection of a
neighborhood of A in X is a neighborhood of A in . Moreover, projection
carries closed sets into closed sets (3.12). Suppose that X is a Hausdorff
space and that A and B are distinct members of . Then by 5.9 there are
disjoint neighborhoods (in X) of A and B, these contain disjoint admissible
neighborhoods, and the projections of the latter are the required disjoint
neighborhoods of A and B in . If X is regular, A ε , and  is a
neighborhood of A in , then the union U of the members of  is a
neighborhood of A in X. In view of 5.10 there is a closed neighborhood of A



contained in U, and the image under projection of this neighborhood is the
required neighborhood of A in . If X is locally compact, then evidently
there is a compact neighborhood of each member of , and the image under
projection is a compact neighborhood in .

Finally, suppose there is a countable base  for the topology of X. The
family  of unions of finite subfamilies of  is countable. For each member
U of  let U′ be the union of all members of  which are subsets of U, and
let  be the family of all sets U′ for U in . Then the images of the members
of  are open and it will be shown that the collection of images is a base for
the quotient topology. This will follow if for each A in  and each
neighborhood V of A there is U in  such that A ⊂ U ⊂ V. But A may be
covered by a finite number of the members of  such that the union W of
these members, which is a member of , is contained in V. If U = W′ then U
ε  and A ⊂ U ⊂ V, and the theorem follows. 

There is an interesting corollary to this theorem. If X is separable metric
and the members of an upper semi-continuous decomposition are compact,
then the quotient space is Hausdorff, normal, and satisfies the second axiom
of countability, and is consequently metrizable.

COMPACTIFICATION

In studying a non-compact topological space X it is often convenient to
construct a space which contains X as a subspace and is itself compact. For
example, it is frequently useful to adjoin two points, +∞ and – ∞, to the
space of real numbers. The resulting space is sometimes called the extended
real numbers; it is linearly ordered by agreeing that +∞ is the largest
member and – ∞ is the smallest. With this ordering (an extension of the
usual ordering) it turns out that every non-void subset of the extended real
numbers has both an infimum and a supremum and the space is compact
relative to its order topology (5.C). The extended reals are a
compactification of the space of real numbers, in a sense which will
presently be made precise. Of course, this device is primarily a
convenience. It does not add to our knowledge of the real numbers.
However, it does permit the use of the standard compactness arguments and
it simplifies many proofs materially.

The simplest sort of compactification of a topological space is made by
adjoining a single point. This procedure is familiar in analysis, for in
function theory the complex sphere is constructed by adjoining a single



point, ∞, to the Euclidean plane and specifying that the neighborhoods of ∞
are the complements of bounded subsets of the plane. This construction can
be duplicated for an arbitrary topological space; the clue to the topology to
be introduced in the enlarged space is the fact that the complement of an
open neighborhood of ∞ in the complex sphere is compact. The one point
compactification * of a topological space X is the set X* = X ∪ {∞} with the
topology whose members are the open subsets of X and all subsets U of X*
such that X* ~ U is a closed compact subset of X. Of course, it must be
verified that this specification gives a topology for X*. This verification is
made in the proof of the following proposition.

21 THEOREM (ALEXANDROFF) The one point compactification X* of a
topological space X is compact and X is a subspace. The space X* is
Hausdorff if and only if X is locally compact and Hausdorff.

PROOF A set U is open in X* iff (a) U ∩ X is open in X and (b) whenever ∞ ε
U, then X ~ U is compact. Consequently finite intersections and arbitrary
unions of sets open in X* intersect X in open sets. If ∞ is a member of the
intersection of two open subsets of X*, then the complement of the
intersection is the union of two closed compact subsets of X and is therefore
closed and compact. If ∞ belongs to the union of the members of a family
of open subsets of X*, then ∞ belongs to some member U of the family, and
the complement of the union is a closed subset of the compact set X ~ U and
is therefore closed and compact. Consequently X* is a topological space
and X is a subspace. If  is an open cover of X*, then ∞ is a member of
some U in  and X ~ U is compact, and hence there is a finite subcover of 
. Therefore X* is compact. If X* is a Hausdorff space, then its open
subspace X is a locally compact Hausdorff space. Finally it must be shown
that X* is a Hausdorff space if X is a locally compact Hausdorff space. It is
only necessary to show that, if x ε X, then there are disjoint neighborhoods
of x and ∞. But since X is locally compact and Hausdorff there is a closed
compact neighborhood U of x in X and X* ~ U is the required neighborhood
of ∞. 

If X is a compact topological space, then ∞ is an isolated point of the
one point compactification (that is, {∞} is both open and closed).
Conversely, if ∞ is an isolated point of X*, then X is closed in X* and is
therefore compact.



The one point compactification is of a very special sort, and we wish to
consider other methods of embedding a topological space in a compact
space. It is convenient to allow a topological embedding rather than insist
that the original be actually a sub-space of the constructed compact space.
With this in mind, a compactification of a topological space X is defined to
be a pair (f,Y), where Y is a compact topological space and f is a
homeomorphism of X onto a dense subspace of Y. (To be consistent, the one
point compactification of X should be the pair (i,X*), where i is the identity
function.) A compactification (f,Y) is called Hausdorff iff Y is a Hausdorff
space. A relation is defined on the collection of all compactifications of a
space X by agreeing that (f,Y)  (g,Z) iff there is a continuous map h of Y
onto Z such that h ∘ f = g. Equivalently (f,Y)  (g,Z) iff the function g ∘ f–1

on f[X] to Z has a continuous extension h which carries Y onto Z. If the
function h can be taken to be a homeomorphism, then (f,Y) and (g,Z) are
said to be topologically equivalent. In this case both of the relations (f,Y) 
(g,Z) and (g,Z)  (f,Y) hold, for h–1 is a continuous map of Z onto Y such
that f = h–1 ∘ g.

22 THEOREM The collection of all compactifications of a topological space
is partially ordered by . If (f,Y) and (g,Z) are Hausdorff compactifications
of a space and (f,Y)  (g,Z)  (f,Y), then (f,Y) and (g, Z) are topologically
equivalent.

PROOF If (f,Y)  (g,Z)  (h,U), where these are compactifications of a space
X, then there are continuous functions j on Y to Z and k on Z to U such that
g = j ∘ f and h = k ∘ g and hence h = k ∘ j ∘ f and (f,Y)  (h,U). Consequently 

 partially orders the collection of all compactifications of X. If (f,Y) and
(g,Z) are Hausdorff compactifications each of which follows the other
relative to the ordering , then both f ∘ g–1 and g ∘ f–1 have continuous
extensions j and k to all of Z and Y respectively. Since k ∘ j is the identity
map on the dense subset g[X] of Z and Z is Hausdorff, k ∘ j is the identity
map of Z onto itself and similarly j ∘ k is the identity map of Y onto Y.
Consequently (f,Y) and (g,Z) are topologically equivalent. 

The smallest compactification of a compact Hausdorff space X is X
itself (more precisely (i,X) where i is the identity map on X). One would
expect that the one point compactification of a non-compact space would be
the smallest relative to the ordering . If we restrict our attention to



Hausdorff compactifications this is actually the case (a corollary to 5.G),
although it is easy to see that there is generally no compactification which is
smaller than every other. On the other hand, if X is a space which has a
Hausdorff compactification (by 5.15 such a space is a Tychonoff space),
then there is a largest compactification which we now construct.

For each topological space X let F(X) be the family of all continuous
functions on X to the closed unit interval Q. The cube QF(X) (the product of
the unit interval Q taken F(X) times) is compact by the Tychonoff theorem.
The evaluation map e carries a member x of X into the member e(x) of QF(X)

whose f-th coordinate is f(x) for each f in F(X). Evaluation is a continuous
map of X into the cube QF(X) and if X is a Tychonoff space, then e is a
homeomorphism of X onto a subspace of QF(X). (The embedding lemma 4.5
states these facts explicitly.) The Stone-Čech compactification is the pair (e,
β(X)) where β(X) is the closure of e[X] in the cube QF(X) We take time out
for a lemma before showing the crucial property of this compactification.

23 LEMMA If f is a function on a set A to a set B and f* is the map of QB into
QA defined by f*(y) = y ∘ f for all y in QB, then f* is continuous.

PROOF A map into a product space is continuous iff the map followed by
each projection is continuous (3.3). If a is a member of A, then Pa ∘ f*(f) =
Pa(y ∘ f) = y(f(a)): But y(f(a)) is simply the projection of y into the f(a)
coordinate space of QB and this is a continuous map. 

The construction outlined in this lemma is worthy of notice, for it is
used systematically in dealing with function spaces. Observe that the
function f* induced by f goes in the direction opposite to that of f, in the
sense that f carries A into B while f* carries QB into QA.

With the aid of this lemma the principal theorem on the Stone-Čech
compactification becomes a routine though mildly intricate calculation.

24 THEOREM (STONE-ČECH) If X is a Tychonqff space and f is a continuous
function on X to a compact Hausdorff space Y, then there is a continuous
extension of f which carries the compactification β(X) into Y. (More
precisely, if (e,β(X)) is the Stone-Čech compactification , then f ∘ e–1 can be
extended to a continuous function on β(X) to Y.)



PROOF Given f define f* on F(Y) to F(X) by letting f*(a) = a ∘ f for each a in
F(Y). Continuing, define f** on QF(X) to QF(Y) by letting f**(q) = q ∘ f* for
each q in QF(X) Let e be the evaluation map of X into QF(X) and let g be the
evaluation map of Y into QF(X). The following diagram shows the situation.

The map e is a homeomorphism, and the map g is a homeomorphism of Y
onto β(Y) because Y is compact Hausdorff. The map f** is continuous by
lemma 5.23 and, if it is shown that f** ∘ e = g ∘ f, then it will follow that g–1

∘ f** is the required continuous extension of f ∘ e–1. If x is a member of X
and h a member of F(Y), then (f** ∘ e)(x)(h) = (e(x) ∘ f*)(h) = e(x)(h ∘ f) = h
∘ f(x) = g(f(x))(h) = (g ∘ f)(x)(h) because of the definitions of f**,f*, e, and g
respectively. The theorem follows. 

The extension property of the foregoing theorem shows that the Stone-
Čech compactification (e,β(X)) follows every other Hausdorff
compactification in the ordering  and is therefore the largest such
compactification. If (f,Y) has this extension property, then (f,Y)  (e,β(X))
and consequently is topologically equivalent to (e,β(X)) by 5.22. Hence the
compactification (e,β(X)) is characterized (to a topological equivalence) by
the extension property of theorem 5.24.

25 Note The results above (M. H. Stone [6] and Čech, [1]) furnish a
maximal compactification. Many other smaller compactifications have been
constructed for various purposes. There is a very large literature on the
subject and it is only possible to cite a few sample contributions. For a
recent contribution to one of the oldest compactification theories
(Carathéodory’s prime end theory) see Ursell and Young [1]. Freudenthal
[1] examines a compactification which is maximal in a class much more
restricted than that majorized by β(X). A general discussion of
compactification is given by Myškis ([1], [2], and [3]). He distinguishes
between “external” descriptions of a compactification (such as that of β(X),
and the almost periodic compactification of a group as sketched in 7.T) and
“internar” descriptions (for example the Alexandroff one point



compactification and the Wallman (5.R)). The relation between internal and
external description of a compactification is frequently the key to the
usefulness of the notion. Certain parts of the internal structure of β(X) have
been discussed (see Nagata [2], Smirnov [3], and Wallace [2]). The
compactification β(X) is also related to the notion of absolute closure; see,
for example, M. H. Stone [6], A. D. Alexandroff [1], Katĕtov [1], and
Ramanathan [1].

LEBESGUE’S COVERING LEMMA

There is an extremely useful lemma of Lebesgue which states that, if 
is an open cover of a closed interval of real numbers, then there is a positive
number r such that, if | x – y | < r, then both x and y belong to some member
of the cover. In a certain sense each open cover covers the points of the
interval “uniformly.” In this section we prove this lemma and a topological
variant which will apply to arbitrary compact spaces. The latter result may
be considered to be an introduction to the ideas of the next section on
paracompactness.

26 THEOREM If  is an open cover of a compact subset A of a pseudo-metric
space (X,d), then there is a positive number r such that the open r-sphere
about each point of A is contained in some member of .

PROOF Let U1, …, Un be a finite subcover of the open cover  of A, let fi(x)
= dist [x,X ~ Ui], and let f(x) = max [fi(x) : i = 1, …, n]. Then each fi is
continuous and consequently f is continuous. Each point of A belongs to
some Ui and hence f(x)  fi(x) > 0 for each x in A. The set f[A] is a compact
subset of the positive real numbers and consequently there is a positive real
number r such that f(x) > r for all x in A. Hence for each x in A there is i
such that fi(x) > r and it follows that the open r-sphere about x is contained
in Ui. 

There is a useful corollary of the foregoing theorem. If A is a compact
subset of a pseudo-metric space and U is a neighborhood of A, then there is
a positive number r such that U contains the open r-sphere about every
point of A; that is, the distance from A to X ~ U is positive.

Theorem 5.26 may be rephrased in a suggestive way. If V is the set of
all pairs of points of X such that d(x,y) < r, then V[x] = {y: (x,y) ε V} is



simply the open r-sphere about x. The set V is an open subset of X × X and
contains the diagonal Δ (the set of all pairs (x,x) for x in X). The foregoing
theorem then implies the following topological result: If  is an open cover
of a compact pseudo-metric space, then there is a neighborhood V of the
diagonal in X × X such that for each point x the set V[x] is contained in
some member of . This variant of the Lebesgue lemma turns out to be
correct for arbitrary compact regular spaces.

A cover  of a topological space is called an even cover iff there is a
neighborhood V of the diagonal in X × X such that for each x the set V[x] is
contained in some member of . In other words, the family of all sets of the
form V[x] refines . Recall that a cover  is a refinement of  iff each
member of  is a subset of some member of  and that a family  of sets is
locally finite iff there is a neighborhood of each point of the space which
intersects only finitely many members of . A family of sets is closed iff
each member is closed.

27 THEOREM If an open cover of a space has a closed locally finite
refinement then it is an even cover.

Consequently each open cover of a compact regular space is even.

PROOF Let  be an open cover of a topological space X and let  be a closed
locally finite refinement. For each A in  choose a member UA of  such
that A ⊂ UA, and let VA = (UA × UA) ∪ {(X ~ A) × {X ~ A)). Evidently VA is
an open neighborhood of the diagonal in X × X, and, if x ε A, then VA[x] =
UA. Letting , it follows that for each point x the set V[x] ⊂
VA[x] = UA and consequently the family of sets of the form V[x] is a
refinement of . It remains to be proved that V is a neighborhood of the
diagonal. For each point (x,x) of the diagonal choose a neighborhood W of x
such that W intersects only finitely many members of . If W ∩ A is void,
then W ⊂ X ~ A and W × W ⊂ VA. It follows that V contains the intersection
of W × W with a finite number of the sets VA and is therefore a
neighborhood of (x,x).

Finally, if X is compact and regular, then each open cover  has a closed
finite refinement (cover X by open subsets whose closures refine ) and
hence each open cover is even. 



* PARACOMPACTNESS

A topological space is paracompact iff it is regular * and each open
cover has an open locally finite refinement. The purpose of this section is to
prove the equivalence of paracompactness and a number of other
conditions. The methods used are closely related to those of chapter 6.

Recall that a family  of subsets of a topological space is discrete iff
there is a neighborhood of each point of the space which intersects at most
one member of the family. The family et is σ-discrete (σ-locally finite) iff it
is the union of countably many discrete (respectively locally finite)
subfamilies. The principal theorem of the section can now be stated; its
proof is given in the sequence of lemmas which follows the statement.

28 THEOREM If X is a regular topological space, then the following
statements are equivalent.

(a) The space X is paracompact.
(b) Each open cover of X has a locally finite refinement.
(c) Each open cover of X has a closed locally finite refinement.
(d) Each open cover of X is even.
(e) Each open cover of X has an open σ-discrete refinement.
(f) Each open cover of X has an open σ-locally finite refinement.
The pattern of proof is (a) → (b) → (c) → (d) → (e) → (f) → (b) → (a).

The first of these implications is clear, and the following lemma
demonstrates the second.

29 LEMMA If X is regular and each open cover has a locally finite
refinement, then each open cover has a closed locally finite refinement.

PROOF If  is an open cover of X, then there is an open cover  such that the
family of closures of members of  refines , because X is regular. (For
each x, if x ε U there is an open neighborhood V of x such that V– ⊂ U.) Let 
 be a locally finite refinement of . Then the family  of all closures of

members of  is locally finite, and each member of  is a subset of V– for
some V in . Hence  is the required closed locally finite refinement of . 

For any topological space an open cover which has a closed locally
finite refinement is even, according to 5.27. Hence statement (c) of the
theorem implies (d). Before proving the next implication we prove two



lemmas which are of some interest in themselves. For convenience we
review some of the facts which will be needed (see the section on relations
in chapter 0). If U is a subset of X × X and x ε X, then U[x] is the set of all
points y such that (x,y) ε U. If A is a subset of X, then U[A] = {y: (x,y) ε U
for some x in A}; clearly U[A] is the union of the sets U[x] for x in A. The
set {(x,y) : (y,x) ε U} is denoted by U–1, and U is called symmetric if U =
U–1. The set U ∩ U–1 is always symmetric. If U and V are subsets of X × X,
then U ∘ V is the set of all pairs (x,z) such that for some y in X it is true that
(x,y) ε V and (y,z) ε U. In other words (x,z) ε U ∘ V iff (x,z) ε V–1[y] × U[y]
for some y, and consequently U ∘ V is the union of the sets V–1[y] × U[y] for
y in X. In particular if V is symmetric, then .
Finally, for each subset A of X it is true that (U ∘ F)[A] = U[V[A]].

30 LEMMA Let X be a topological space such that each open cover is even.
If U is a neighborhood of the diagonal in X × X then there is a symmetric
neighborhood V of the diagonal such that V ∘ V ⊂ U.

PROOF For each point x of X there is a neighborhood W(x) such that W(x) ×
W(x) ⊂ U, because U is a neighborhood of the diagonal. The family  of all
sets of the form W(x) is an open cover of X and there is therefore a
neighborhood R of the diagonal such that the family of all sets R[x] refines 

, and hence R[x] × R[x] ⊂ U for each x. Finally, let V = R ∩ R–1. Then V is
a symmetric neighborhood of the diagonal and V[x] × V[x] ⊂ U for all x.
Since V ∘ V is the union of the sets V[x] × V[x] it follows that V ∘ V ⊂ U. 

The preceding lemma has the following intuitive content. Let us say two
points x and y are at most U-distance apart if (x,y) ε U. Then there is V such
that, if x and y, and y and z, are at most V-distance apart, then x and z are at
most U-distance apart.

The following lemma shows that paracompact spaces satisfy a very
strong normality condition.

31 LEMMA Let X be a topological space such that each open cover is even
and let  be a locally finite (or a discrete) family of subsets of X. Then there
is a neighborhood V of the diagonal in X × X such that the family of all sets
V[A] for A in  is locally finite (respectively discrete).



PROOF If  is a locally finite family of subsets there is an open cover  of X
such that each member of  intersects only finitely many of the members of
the family . Let U be a neighborhood of the diagonal such that the sets
U[x] refine . By the preceding lemma there is a neighborhood V of the
diagonal such that V ∘ V ⊂ U, and it may be supposed that V = V–1. If V ∘
V[x] ∩ A is void, then V[x] must be disjoint from V[A] because: if y ε V[x] ∩
V[A), then (y,x) ε V–1 = V, (z,y) ε V for some z in A, and hence (z,x) ε V ∘ V.
Then z ε V ∘ V[x] and this is a contradiction. Consequently if V[x] intersects
V[A], then V ∘ V[x] intersects A, and it follows that the family of all sets
V[A] for A in  is locally finite. If “finitely many” is replaced by “at most
one,” then a proof of the corresponding proposition for discrete families is
obtained. 

If V is an open subset of X × X, then V[x] is open for every point x of X,
because V[x] is the inverse image of V under the continuous map which
carries each point y of X into (x,y). If A is a subset of X, then V[A] is open
because it is the union of the sets V[x] for x in A. Consequently the
preceding lemma permits us to enlarge each member of a locally finite or
discrete family to an open set and still preserve the character of the family.
In particular, if each open cover  of a regular space has a locally finite
refinement , then the lemma applies (we have shown that (b) → (c) → (d)
in 5.28) and there is an open neighborhood V of the diagonal such that the
family of all sets V[A] for A in  is locally finite. The latter family may fail
to be a refinement of , but this is easily remedied by choosing UA in 
such that A ⊂ UA and then letting WA = UA ∩ V[A]. The family which is
constructed in this fashion is clearly an open locally finite refinement of 
and it follows that the space is paracompact; that is, (b) → (a) in 5.28.

There is an obvious corollary to 5.31. A family consisting of two closed
disjoint subsets is evidently discrete and hence:

32 COROLLARY A paracompact space is normal.

The proof of 5.28 will be complete if we establish two facts: If X is
regular and each open cover is even, then each open cover has an open σ-
discrete refinement, and if each open cover of X has an open σ-locally finite
refinement, then each open cover has a locally finite refinement. (Evidently
(e) → (f) in 5.28.)



33 LEMMA If X is a space such that each open cover is even, then every
open cover of X has an open σ-discrete refinement.

PROOF The proof, like that of 4.21, is an application of A. H. Stone’s trick.
(This lemma can be deduced from 4.21 and the results of chapter 6.)
Because of lemma 5.31 it is sufficient to find a σ-discrete refinement of an
open cover , since such a σ-discrete refinement can then be “expanded” to
an open σ-discrete refinement. Let V be an open neighborhood of the
diagonal such that the family of all sets V[x] for x in X refines . Let V0 = V
and select, inductively, Vn to be an open symmetric neighborhood of the
diagonal such that Vn ∘ Vn ⊂ Vn–1 for each positive integer n. Let U1 = V1
and, inductively, let Un+1 = Vn+1 ∘ Un. It is easy to see that Un ⊂ V0 for each
n, and it follows that for each n the family of all Un[x] for x in X refines .
Choose a relation < which well-orders X (see 0.25) and for each n and each
x let . For each fixed n the family  of all
sets Un*(x) is discrete, as may be demonstrated as follows. Clearly Un*(x) is
disjoint from Vn+1[Un*(y)] if x ≠ y because of the construction. If for some z
in X the neighborhood Vn+1[z] intersects Un*(y), then z ε Vn+1[Un*(y)] and
Vn+1[Un*(y)] is a neighborhood of z which intersects no set Un*(x) for x ≠ y.
It follows that the family  is discrete and it remains to be proved that each
point of X belongs to some member of some . For x in X choose y to be
the first point of X such that x belongs to Un[y] for some n. Then surely x ε
Un*(y) for some n. 

34 LEMMA If each open cover of a space has an open σ-locally finite
refinement, then each open cover has a locally finite refinement.

PROOF Let  be an open cover and let  be an open σ-locally finite
refinement. Suppose that  where each  is an open locally
finite family. For each n and each member V of  let 
for some k < n), and let  be the family of all sets of the form V*. Then  is
a cover of X and a refinement of . Finally, for x in X let n be the first
integer such that x belongs to some member V of . Then V is a
neighborhood of x which is disjoint from every member of  save those



which were constructed from the families  for k  n. It follows that  is
locally finite. 

Theorem 4.21 states that each open cover of a pseudo-metrizable space
has an open σ-discrete refinement. This fact and theorem 5.28 of this
section then give the corollary:

35 COROLLARY Each pseudo-metrizable space is paracompact.

In conclusion it should be remarked that subspaces, quotients, and
products of paracompact spaces are usually not paracompact. Moreover, a
space may be locally metrizable, locally compact, Hausdorff, normal, and
satisfy the first axiom of countability and still fail to be paracompact. The
requisite examples are given in the problems at the end of this chapter.

36 Notes There is another characterization of paracompactness which might
be added to the list given in 5.28. A regular space is paracompact iff it is
fully normal (see problem 5. ). This characterization is due to A. H. Stone
[1]. The equivalences (b), (c), (e), and (f) of theorem 5.28 are due to E.
Michael [1]. As far as I know, equivalence (d) was first noticed by J. S.
Griffin and myself.

The σ-discrete characterization of paracompactness might well be taken
as a definition of countable dimension (see Hurewicz and Wallman [1; 32]
and Eilenberg [1]). There is an Fσ-theorem (Michael loc. cit.) which is also
suggestive of dimension theory.

PROBLEMS

A EXERCISE ON REAL FUNCTIONS ON A COMPACT SPACE
(a) If A is a non-void compact subset of the space of real numbers, then both the supremum and

the infimum of A belong to A.
(b) Each continuous real valued function f on a compact space X assumes a maximum and a

minimum value. That is, there are points x and y of the space such that f(x) and f(y) are respectively
the supremum and infimum of f on X.

(c) Let f be a continuous real valued function f on a compact space X. If f is always positive, then
f is bounded away from zero, in the sense that there is e > 0 such that f(x) > e for x in X.

B COMPACT SUBSETS
(a) The intersection of two compact subsets of a topological space may fail to be compact. The

intersection of the members of an arbitrary family of closed and compact subsets is closed and
compact. (Clearly two compact subsets with non-compact intersection must be subsets of a space
which is not Hausdorff. Let X be the product of the space of real numbers and an indiscrete space
which has two members.)



(b) The closure of a compact subset of a topological space may fail to be compact. However, the
closure of a compact subset of a regular space is compact.

(c) If A and B are disjoint closed subsets of a pseudo-metric space and A is compact, then there is
a member x of A such that dist (A,B) = dist (x,B) > 0. (The function dist (x,B) is continuous in x and is
positive for x in A.)

(d) If A and B are disjoint closed and compact subsets of a pseudo-metric space, then there are
members x of A and y of B such that d(x,y) = dist (A,B).

C COMPACTNESS RELATIVE TO THE ORDER TOPOLOGY
Let X be a set which is linearly ordered by a relation < and let X have the order topology (see 1.I).

Then every closed, order-bounded subset of X is compact iff X is order-complete relative to <. (The
family of all subsets of X of the form {x: a < x} or {x: x < a} is a sub-base for the order topology for
X and Alexander’s subbase theorem 5.6 applies. A proof which is independent of 5.6 can be made via
the argument which was used in 5.14.)

D ISOMETRIES OF COMPACT METRIC SPACES
Let X and Y be metric spaces, let X be compact, let f be an isometry of X onto a subspace of Y,

and let g be an isometry of Y onto a sub-space of X. Then f maps X onto Y. (If h is an isometry of X
onto a proper subset of itself and x ε X ~ h[X] let a = dist (x,h[X]). Define a sequence inductively by
letting x0 = x and xn+1 = h(xn) and prove that, if m ≠ n, then d(xm,xn)  a.)

E COUNTABLV COMPACT AND SEQUENTIALLY COMPACT SPACES
A topological space is countably compact iff every countable open cover has a finite subcover. A

space is sequentially compact iff every sequence has a convergent subsequence.
(a) A space is countably compact iff each sequence has a cluster point.
(b) A T1-space is countably compact iff every infinite set has an accumulation point. (See 5.3.)
(c) A T1-space is countably compact iff every infinite open cover has a proper subcover. (If A is

an infinite set with no accumulation point, then each subset of A is closed. One may construct an
open cover  by choosing an open neighborhood of each point of A which contains no other point of
A and then adjoining, if necessary, X ~ A. Then  has no proper subcover. On the other hand, if  is
an open cover with no proper subcover then each member V of  contains a point belonging to no
other member of .)

(d) A space satisfying the first countability axiom is countably compact iff it is sequentially
compact (5.5).

(e) With the order topology, the set Ω0 of all ordinal numbers less than the first uncountable
ordinal Ω is locally compact, Hausdorff, satisfies the first axiom of countability, and is sequentially
compact, but is not compact.

Note Proposition (c) is due to Arens and Dugundji [1].

F COMPACTNESS; THE INTERSECTION OF COMPACT CONNECTED SETS
(a) Let  be a family of closed compact sets such that  is a subset of an open set U.

Then there is a finite subfamily  of  such that fi .
(b) If  is a family of compact subsets of a Hausdorff space X such that finite intersections of

members of  are connected, then  is connected.

G PROBLEM ON LOCAL COMPACTNESS
If X is a Hausdorff space and Y is a dense locally compact subspace, then Y is open.

H NEST CHARACTERIZATION OF COMPACTNESS



A topological space X is compact iff each nest of closed non-void sets has a non-void
intersection. (Recall that a nest is a family of sets which is linearly ordered by inclusion. If each nest
of closed non-void sets has a non-void intersection and  is a family of closed sets with the finite
intersection property, let  be a maximal family of closed sets which contains  and has the finite
intersection property, and let  be a maximal nest in . Examination of the properties of  and of 
leads to a proof. An entirely different proof can be based on well ordering, using part of the
procedure outlined in the next problem.)

I COMPLETE ACCUMULATION POINTS
A point x is a complete accumulation point of a subset A of a topological space iff for each

neighborhood U of x the sets A and A ∩ U have the same cardinal number. A topological space is
compact iff each infinite subset has a complete accumulation point. (If X is not compact choose an
open cover  with no finite subcover such that the cardinal number c of  is as small as possible. Let
C be a well-ordered set of cardinal c such that the set of predecessors of each member has a cardinal
less than . (It is shown in the appendix that c is such a set.) Let f be a one-to-one map of C onto .
Then for each member b of C the union  does not cover X and, in fact, the
complement of this union must have cardinal number at least as great as c It is therefore possible to
choose xb from the complement such that xa ≠ xb for a < b. Consider the set of all xb.)

J EXAMPLE: UNIT SQUARE WITH DICTIONARY ORDER
Let X be the cartesian product of the closed unit interval Q with itself ordered by dictionary

(lexicographic) order. (That is, (a,b) < (c,d) iff a < c or a = c and b < d.) With the order topology X is
compact, connected, and Hausdorff. It satisfies the first countability axiom but is not separable and is
hence not metrizable.

K EXAMPLE (THE ORDINALS) ON NORMALITY AND PRODUCTS
The product of a locally compact, normal Hausdorff space and a compact Hausdorff space may

fail to be normal. (The difficult part has already been established in 4.E and it is only necessary to
show that Ω′ and Ω0 are compact and locally compact Hausdorff respectively. Ω′ is the space of
ordinals less than or equal to Ω and Ω0 is the set of ordinals less than Ω, each with the order
topology.)

L THE TRANSFINITE LINE
Let A be a well-ordered set, let the half-open interval [0,1) have the usual order, let A × [0,1) have

the dictionary (lexicographic) order, and let A × [0,1) have the order topology. Discuss the properties
of this space.

M EXAMPLE: THE HELLY SPACE
The Helly space is the family H of all non-decreasing functions on the closed unit interval Q with

values in Q. It is a subset of the product space QQ, and its topology is the relative product topology.
The space H has the following properties:

(a) H is compact Hausdorff. (It is a closed subspace of QQ.)
(b) H satisfies the first axiom of countability and is hence sequentially compact. (The set of

points of discontinuity of each member of H is countable. This fact, and the fact that Q is separable,
must be used in constructing a countable base for the neighborhood system of a point h of H.)

(c) H is separable. (A countable dense set can be constructed using the rationals.)
(d) H is not metric. (For t in Q let ft(x) be 0 for x < t, 1 for x > t, and let ft(t) = ½. The family A of

all functions of the form ft is uncountable and no member of A is an accumulation point of A. But



each subspace of a compact metric space is separable.)

N EXAMPLES ON CLOSED MAPS AND LOCAL COMPACTNESS
(a) Let X be the space of real numbers with the usual topology, let I be the set of integers, and let 

 be the decomposition whose members are I and all sets {x} for x in X ~ I. Then the projection of X
onto the quotient space is closed and continuous, but the quotient space is not locally compact nor
does it satisfy the first axiom of countability.

(b) Let Ω0 be the set of all ordinal numbers less than Ω, with the order topology, let A be a closed
uncountable set whose complement is also uncountable, and let  be the decomposition whose
members are A and all sets {x} for x in Ω0 ~ A. Then the projection of Ω0 onto the quotient space is
continuous and closed and the quotient space is compact, but it fails to satisfy the first axiom of
countability. (Use the interlacing lemma 4.E.)

O CANTOR SPACES
The Cantor discontinuum (middle third set) is the set of all members of the closed unit interval

which have a triadic expansion in which the digit one does not occur. (It will be convenient
throughout this problem to use only irrational triadic expansions, that is, expansions which are not
identically zero from some point on. Each real number has a unique irrational expansion, as noted in
0.14.) The discontinuum is called the middle third set because: The (open) middle third of the
interval [0,1] is precisely the set of numbers whose triadic expansions have ones in the first place
after the “decimal” point. The middle third of each of the remaining intervals consists of points
whose expansions have ones in the second but not the first place. Continuing, it is clear that the
discontinuum can be obtained by successive deletion of middle thirds.

A product space 2A (that is, all functions on a set A to the discrete space whose only members are
0 and 1, with the product topology) is called a Cantor space.

(a) The Cantor discontinuum is homeomorphic to 2ω. For x in 2ω let f(x) be the member of [0,1]
whose triadic expansion has the digit 2x(p) in the p-th place.)

(b) Each point of the discontinuum is an accumulation point and the complement of the
discontinuum is an open dense subset of the real numbers.

(c) If A is a closed non-void subset of 2ω, then there is a continuous function r on 2ω to A such
that r(x) = x for x in A. (It is a little easier to see the proof if one looks at the Cantor discontinuum,
which is the homeomorphic image of 2ω.)

(d) Each compact Hausdorff space is the continuous image of a closed subset of some Cantor
space. (Let F be the family of all functions f on 2 such that f(0) and f(1) are closed subsets of the
compact Hausdorff space X and f(0) ∪ f(1) = X. If x is a member of 2F and f ε F, then f(xf) is a closed
subset of X. The intersection  is void or consists of a single point, and in the latter

case this point is defined to be ϕ(x). One can prove that the domain of ϕ is a closed subset of 2F; if U
is a subset of X, then ϕ–1[U] = {x: x is a member of domain ϕ and .)

(e) Each compact metric space X is the continuous image of 2ω. (Instead of the family F of the
previous proof one may construct a smaller family which will play the same role. If U0, …, Un, … is

a base for the topology of X let fn(0) = Un
– and fn(1) = X~ Un.)

(f) Each Cantor space 2A satisfies the countable chain condition; that is, each disjoint family of
open sets is countable. (If  is a disjoint family of open subsets of 2A, then one may suppose that the
members of  belong to the defining base for the product topology; each member is, in a natural
sense, the intersection of a finite number of half-spaces. For some integer n there is then an infinite



(in fact, uncountable) disjoint family, each member of which is the intersection of precisely n half-
spaces. A simple argument on disjointness completes the proof.

There is a shorter, more sophisticated proof. A Cantor space with coordinatewise addition,
modulo 2, is a compact topological group and hence there is a Haar measure (see Halmos [1; 254]).
Since this measure is finite and is positive for open sets the countable chain condition is clear.)

(g) Not every compact Hausdorff space is the continuous image of the Cantor set. (The one point
compactification of an uncountable discrete space does not satisfy the countable chain condition.)

Notes Proposition (b) is due to Cantor, (e) to P. Alexandroff and Urysohn, and (f) and (g) to J. W.
Tukey. Proposition (g) is also a corollary of some results of Szpilrajn [1].

P CHARACTERIZATION OF THE STONE-ČECH COMPACTIFICATION
Let (f,Y) be a Hausdorff compactification of the topological space X such that for each bounded

continuous real-valued function g on X the function g ∘ f–1 has a continuous extension. Then (f,Y) is
topologically equivalent to the Stone-Čech compactification (e,β(X)). (Consider the definition of
β(X).)

Q EXAMPLE (THE ORDINALS) ON COMPACTIFICATION
Let Ω′ be the set of all ordinal numbers less than or equal to Ω, and let Ω0 = Ω′ ~ { Ω }. Assign

each the order topology. Then the Stone-Čech compactification β(Ω0) is homeomorphic to Ω′. (This
will follow from the preceding problem if it is shown that every bounded real-valued continuous
function f on Ω0 is eventually constant,* in the sense that for some x in Ω0, if y > x, then f (y) = f(x).
If f is a bounded continuous real-valued function and r and s are real numbers such that r > s, then the
interlacing lemma 4.E shows that one of the sets {x: f(x)  r) and {x: f(x)  s} is countable. Using
this fact it is not hard to see that f is eventually constant. The hypothesis that f be bounded is actually
not essential.)

Note This result is due to Tong [1].

R THE WALLMAN COMPACTIFICATION
Let X be a T1-space, let  be the family of all closed subsets of X, and let w(X) be the collection

of all subfamilies  of  which possess the finite intersection property and are maximal in  relative
to this property.

(a) If  then the intersection of two members of  is a member of ; dually, if A and B are
members of , then A ∪ B is a member of . (See 2.I.)

(b) For each point x of X let ϕ(x) = {A: A ε  and x ε A}. Then ϕ is a one-to-one map of X into
w(X).

(c) For each open subset U of X let  and A ⊂ U for some A in }. Then 
. If U and V are open subsets of X, then (U ∩ V)* = U*∩V* and (U ∪

V)* = U* ∪ V*.
(d) Let w(X) have the topology with a base the family of all sets of the form U* for U open in X.

Then w(X) is compact, the map ϕ is continuous, and ϕ(X) is dense in w(X). (Show compactness via
the finite intersection property argument for complements of members of the base.)

(e) If X is normal, then w(X) is Hausdorff.
(f) If f is a bounded continuous real-valued function on X, then f ∘ ϕ–1 may be extended

continuously to all of w(X). (If a continuous extension is impossible, then by a little argument it can
be shown that there are closed disjoint subsets R and S of the reals such that f–1[R] and f–1[S] are
disjoint but the closures of the images under ϕ of these sets intersect. But if A and B are closed
disjoint subsets of X, then  and  are disjoint and closed in w(X).)



(g) If w(X) is Hausdorff, then the Wallman compactification is topologically equivalent to the
Stone-Čech compactification. (See 5.P.)

Notes The principal virtue of the Wallman compactification (Wallman [1]) lies in the fact that the
correspondence carrying U into U* preserves finite intersections and unions. Moreover, the topology
for X is carried onto a base for the topology for w(X) by the correspondence, and from this fact it
follows that the dimension of X (in the covering sense) and the dimension of w(X) are identical, and
X and w(X) have isomorphic Čech homology groups. See Samuel [1] for a related construction.

S BOOLEAN RINGS: STONE REPRESENTATION THEOREM
Let (R,+,·) be a Boolean ring (see 2.K), let S′ be the set of all ring homomorphisms of R into I2 (=

the integers mod 2), and let S = S′ ~ {0}, where 0 is the homomorphism which is identically zero.
Then S′ is a subset of the product I2

R. The Stone space of the ring R is S with the relative product
topology (I2 is assigned the discrete topology).

A Boolean space is a Hausdorff space such that the family of all sets which are both compact and
open is a base for the topology. A Boolean space is automatically locally compact. The characteristic
ring of a Boolean space is the ring of all continuous functions f into I2 such that f–1 [1] is compact
(that is, all functions to I2 which vanish outside a compact set; sometimes called functions with a
compact support).

(a) The Stone space of a Boolean ring R is a Boolean space and is compact whenever R has a
unit. (In this case S = {h: h ε S′ and h(1) = 1}.)

(b) Stone-Weierstrass mod 2 Let  be the characteristic ring of a Boolean space X and let  be a
subring of  which has the two point property (that is, for distinct points x and y of X and for a and b
in I2 there is g in  such that g(x) = a and g(y) = b). Then .

(If X is compact, then  has the two point property whenever  and  distinguishes points, in
the sense that for distinct points x and y of X there is g in  such that g(x) ≠ g(y). A routine but
instructive compactness argument serves to establish (b). One might begin by showing that for a
compact subset Y of X and a point x of X ~ Y there is g in  such that g(x) =0 and g on Y is one.)

(c) Representation theorem Each Boolean ring is isomorphic (under the evaluation map) to the
characteristic ring of its Stone space. (For r in R the evaluation at r, e(r), is the function on S whose
value at a member s of S is s(r). This theorem depends on the existence of enough homomorphisms
2.K and the foregoing proposition (b).)

(d) If X is a Boolean space,  its characteristic ring, and  a maximal proper ideal in , then  =
{f: f(x) = 0} for some x in X. (Show first that unless there is a point at which all members of  vanish,
then .)

(e) Dual representation theorem If X is a Boolean space, then X is homeomorphic (under the
evaluation map) to the Stone space of its characteristic ring. (A maximal ideal is the set of zeros of a
unique homomorphism into I2 and every such set of zeros is a maximal ideal. The preceding
proposition (d) shows essentially that the evaluation map carries X onto the Stone space.)

Notes The results above are due to M. H. Stone [3].
There is an interesting variation of the process of representing a Boolean space. If X is a Boolean

space let  be the ring of all continuous functions on X to I2. (The requirement that f–1[1] be compact
is omitted.) The evaluation map of X into the Stone space S of  turns out to be a homeomorphism
again, but S is compact and it is, in fact, homeomorphic to the Stone-Čech compactification β(X). We
omit the proof of this fact as well as the characterizations of ideals and subrings of a Boolean ring in
terms of the Stone space.

Finally, this problem is so arranged that the pattern can be transferred to the algebra of all
continuous real-valued functions f on a locally compact Hausdorff space X such that, for e > 0, {x:



|f(x)|  e} is compact. The most difficult step in reproducing the pattern is the Stone-Weierstrass
theorem, 7.R, of which (b) above is a miniature. It also turns out that, if X is a Tychonoff space, then
the space of all real homomorphisms of the algebra of bounded continuous functions on X is
homeomorphic to β(X), very much like the situation sketched in the previous paragraph.

T COMPACT CONNECTED SPACES (THE CHAIN ARGUMENT)
Let (X,d) be a compact pseudo-metric space. For each positive number e, define an e-chain from

a point x of X to a point y to be a finite sequence of points, the first of which is x, the last y, such that
the distance between successive points is less than e. For each subset A of X, Ce(A) is defined to be
the set of all points which can be joined to points of A by an e-chain and C(A) is defined to be 

. An equivalent definition: Let V0(A) = A, V1(A) = {x: dist (x,A) < e) and inductively
Vn+1(A) = V1(Vn(A)). Set .

(a) For each e > 0 and each set A the set Ce(A) is open and closed.
(b) If A is a connected subset of X, then C(A) is connected. Hence C({x}) is the component Cx of

X about x for each point x. (If C(A) is the union of disjoint closed sets B and D let f = [dist (B,D)]/3
and show by 5.G that Ce(A) ⊂ {x: dist (x,B ∪ D) < f) for some positive e.)

(c) If A is a subset of X, then . (If , then  for some positive
e.)

(d) The decomposition of X into components is upper semi-continuous.
(e) If X is connected and U is an open neighborhood of a point x, then the closure of some

component of U intersects X ~ U. (If not, there is a compact neighborhood V of the closure of the
component which is contained in U. The component about x of V is contained in the interior V0 of V
and using (c) one can show that there are open and closed subsets of V containing V ~ V0 and x
respectively.)

(f) No closed connected subset of X which contains more than one point is the union of a
countable disjoint family of closed subsets. (Proposition (e) plays a critical role in this proof. If the
set  is closed and connected and the sets An are closed and disjoint it is possible to find a
closed connected set which is disjoint from A1 and intersects more than one of the sets An.)

(g) Let X be the subset {(x,y): x2y2 = 1} of the Euclidean plane with the usual metric. Then X is
locally compact and any two points can be joined by an e-chain for each e > 0, but X is not
connected.

Notes The results of this problem generalize very naturally to compact Hausdorff (or compact
regular) spaces. The even covering theorem 5.27 gives the necessary mechanism.

Lest proposition (e) make one over-optimistic on the properties of connected sets, the classic
example of Knaster and Kuratowski [1] should be mentioned. There is a connected subspace X of the
Euclidean plane and a point x of X such that X ~ {x} contains no connected set.

U FULLY NORMAL SPACES
If  is a family of subsets of a set X and x is a point of X, then the star at x of  is the union of

the members of  to which x belongs. A cover  is a star-refinement of  iff the family of stars of 
at points of X is a refinement of . A topological space is fully normal iff each open cover has an
open star-refinement. Then: A regular topological space is fully normal iff it is paracompact. (If X is
paracompact the even covering property together with 5.30 yields an easy proof of full normality. On
the other hand, if X is fully normal,  is an open cover and  is an open star-refinement of , then 

 is a neighborhood of the diagonal.)
Note The definition of full normality is due to J. W. Tukey [1], who proved many useful

properties. The equivalence with paracompactness was proved by A. H. Stone [1].



V POINT FINITE COVERS AND METACOMPACT SPACES
A family of subsets of X is point finite iff no point of X belongs to more than a finite number of

members of the family. A topological space is metacompact iff each open cover has a point finite
refinement.

(a) Let  be a point finite open cover of a normal space X. Then it is possible to select an open
set G(U) for each U in  in such a way that G(U)– ⊂ U and the family of all sets G(U) is a cover of
X. (Choose a maximal member of the class of all functions F satisfying the conditions: the domain of
F is a subfamily of  F(U) is an open set whose closure is contained in U for each U in the domain
of F and : U ε domain F} . Point finiteness of 

 implies the existence of a maximal F.)
(b) A point finite cover of a set has a minimal subcover (that is, a subcover no proper subfamily

of which is a cover).
(c) A metacompact T1-space is countably compact (see 5.E) iff it is compact.
Note Propositions (b) and (c) are taken directly from Arens and Dugundji [1].

W PARTITION OF UNITY
A partition of unity on a topological space X is a family F of continuous functions on X to the set

of non-negative real numbers such that  for each x in X, and all but a finite number
of members of F vanish on some neighborhood of each point of X. A partition F of unity is
subordinate to a cover  of X iff each member of F vanishes outside some member of . Then: For
each locally finite open cover  of a normal space there is a partition of unity which is subordinate to

. A slightly stronger result may be proved: If  is a locally finite open cover of a normal space,
then it is possible to select a non-negative continuous function fU for each U in  such that fU is 0
outside U and is everywhere less than or equal to one, and  for all x. (See
5.V(a) above.)

Note As far as I know, this result (approximately) is due independently to Hurewicz, Bochner,
and Dieudonné.

X THE BETWEEN THEOREM FOR SEMI-CONTINUOUS FUNCTIONS
Let g and h be, respectively, lower and upper semi-continuous real-valued functions on a

paracompact space X, and suppose that h(x) < g(x) for all x in X. Then there is a continuous real-
valued function p on X such that h(x) < p(x) < g(x) for each x. (Let  be the family of all open
subsets U of X such that the supremum of h on U is less than the infimum of g on U, and let F be a
partition of unity which is subordinate to . For each f in F choose kf such that, if f(x) ≠ 0, then h(x)
< kf < g(x), and let . The value of p at a point x is then an average of
numbers, all of which lie between h(x) and g(x).)

Notes The result above can be improved by first finding a countable refinement for the family .
The proposition then holds for countably paracompact spaces (that is, spaces such that each
countable open cover has a locally finite refinement). The converse of the sharpened form of the
theorem is true. Dowker [2] has proved the equivalence of: (1) X is countably paracompact and
normal, (2) the product of X and the closed unit interval is normal, and (3) the proposition above.
Dowker also shows that a perfectly normal space (normal and each closed subset is a Gδ) is
countably paracompact. It is not known whether a normal Hausdorff space must be countably
paracompact.

Y PARACOMPACT SPACES
(a) Each regular Lindelöf space is paracompact.
(b) A topological space is defined to be σ-compact iff it is the union of a countable family of

compact subsets. Each σ-compact space is a Lindelöf space.



(c) If a regular space is the union of the members of an open discrete family of Lindelöf
subspaces, then it is paracompact. Consequently each locally compact group is paracompact.
(Consider the family of cosets modulo the smallest subgroup containing a fixed compact
neighborhood of the identity.)

(d) The half-open interval space of problems 1.K and 4.1 is regular and Lindelöf and hence
paracompact. The cartesian product of this space with itself is not normal and is therefore not
paracompact.

(e) With the order topology the set of all ordinals which are less than the first uncountable ordinal
is not paracompact. (Consider the cover consisting of all sets of the form {x: x < a}. The supremum
of each member of an arbitrary refinement of this cover is less than Ω.)

Notes Proposition (a) above is due to Morita [1]. For further information on paracompactness (an
Fσ-theorem, products, etc.) see Michael [1]. Bing [1] has studied a normality condition which is
intermediate to normality and paracompactness. In this connection it might be emphasized that
lemma 5.31 states a noteworthy normality property of paracompact spaces.

* The term “compact” has also been used to denote “sequentially compact” and “countably
compact” (in the terminology of the problems at the end of this chapter). N. Bourbaki and his
colleagues reserve the term “compact” for compact Hausdorff spaces.

* Problem 2.1 is precisely the result needed here.
* We are evidently reproving part of proposition 2.1.
* This definition is actually incomplete until ∞ is defined. Any element which is not a member of

X, for example X, will do.
* The usual definition of paracompact specifies “Hausdorff” instead of “regular.” It is not hard to

show that a Hausdorff space is regular if each open cover has an open locally finite refinement.
* This curious property of Ω0 has been used by E. Hewitt [1] in constructing a regular Hausdorff

space X such that every continuous real-valued function on X is constant.



Chapter 6
 

UNIFORM SPACES
 

There are several properties of metric spaces which are not topological
but are closely connected with topological properties. We give examples of
the sort of connections contemplated, postponing the definitions and proofs.
The property of being a Cauchy sequence is not a topological invariant, for
the map f such that f(x) = 1/x is a homeomorphism of the space of positive
real numbers onto itself which carries the Cauchy sequence {1/(n + 1): n ε
ω} into the non-Cauchy sequence {n + 1, n ε ω}. However, it is possible to
derive topological results from statements about Cauchy sequences; for
example, a subset A of the space of all real numbers is closed if and only if
each Cauchy sequence in A converges to some point of A. The reverse sort
of implication may also occur; thus, each continuous function on a compact
metric space is uniformly continuous. In this case we deduce from a
topological premise (that the space is compact) a non-topological
conclusion (that a function is uniformly continuous). This chapter is
devoted to a study of quasi-topological results of this sort.

The mathematical construct employed in studying uniformity properties
is called a uniform space. A brief discussion will indicate how this notion,
which is due to A. Weil [1], applies.

A sequence {xn, n ε ω} in a pseudo-metric space (X,d) is called a
Cauchy sequence iff d(xm,xn) converges to zero as m and n become large.
This notion is not meaningful in an arbitrary topological space; in order to
define a Cauchy sequence it is necessary to know, in some sense, for what
pairs the distance d(x,y) is small. This statement may be made precise in the
following way. If Vd,r = {(x,y): d{x,y) < r}, then {xn, n ε ω} is a Cauchy
sequence iff for each positive r it is true that (xm,xn) is a member of Vd,r for



m and n large. The notion of uniform continuity can also be formulated in
terms of the family of all sets of the form Vd,r. This suggests consideration
of a set X and a special family of subsets of X × X.

If X is a topological group, then a sequence {xn, n ε ω] may be called a
Cauchy sequence iff xmxn

−1 is near the identity ε of the group when m and n
are large. Again, the information needed to make this definition is
information about pairs of points. We need to know which pairs of points
(x,y) are such that xy−1 is near the identity e. For each neighborhood U of e
let VU = {(x,y): xy−1 ε U}. Then clearly the family of all sets of the form VU
determines which sequences are Cauchy.

A uniform space is defined to be a set X together with a family of
subsets of X × X which satisfies certain natural conditions. This follows the
pattern suggested by both of the preceding examples. However, it should be
emphasized that this is by no means the only framework in which
uniformity can be studied. It is possible to study a set X together with a
distinguished family of pseudo-metrics for X, or to distinguish a collection
of covers of X which are to be uniform covers (roughly in the sense of the
Lebesgue covering lemma 5.26). One may also consider “metrics” with
values in a structure less restricted than that of the real numbers. All of
these notions are essentially equivalent, as indicated in the problems at the
end of the chapter.

Finally, it must be said that there are uniformity properties of metric
spaces which apparently do not generalize to less restricted situations. The
last section is devoted to a study of some of these.

UNIFORMITIES AND THE UNIFORM TOPOLOGY

We will be concerned with subsets of a cartesian product X × X of a set
with itself. These subsets are relations in the sense of chapter 0, and for
convenience we review some of the earlier definitions and results about
them. A relation is a set of ordered pairs, and if U is a relation the inverse
relation U−1 is the set of all pairs (x,y) such that (y,x) ε U. The operation of
taking inverses is involutory in the sense that (U−1)−1 is always U. If U =
U−1, then U is called symmetric. If U and V are relations, then the
composition U ∘ V is the set of all pairs (x,z) such that for some y it is true
that (x,y) ε V and (y,z) ε U. Composition is associative, that is, U ∘ {V ∘ W)



= {U ∘ V) ∘ W, and it is always true that (U ∘ V)−1 = V−1 ∘ U−1. The set of all
pairs (x,x) for x in X is called the identity relation, or the diagonal, and is
denoted by Δ(X) or simply Δ. For each subset A of X the set U[A] is defined
to be {y: {x,y) ε U for some x in A}, and if x is a point of X, then U[x] is
U[{x}]. For each U and V and each A it is true that {U ∘ V)[A| = U[V[A]}.
Finally a simple lemma will be needed.

1 LEMMA If V is symmetric, then : (x,y) ε U.

PROOF By definition V ∘ U ∘ V is the set of all pairs (u,v) such that (u,x) ε V,
(x,y) ε U and (y,v) ε U for some x and some y. Since V is symmetric this is
the set of all (u,y) such that u ε V[x] and v ε V[y] for some (x,y) in U. But u ε
V[x] and v ε V[y] iff (u,v) ε V[x] × V[y], and hence V ∘ U ∘ V = {(u,v): (u,v) ε
V[x] × V[y] for some . 

A uniformity for a set X is a non-void family  of subsets of X × X such
that

(a) each member of  contains the diagonal Δ;
(b) if , then ;
(c) if , then V ∘ V ⊂ U for some f in ;
(d) if U and V are members of , then ; and
(e) if  and U ⊂ V ⊂ X × X, then .

The pair  is a uniform space.
The metric antecedents of the conditions above are not hard to discern.

The first is derived from the condition that d(x,x) = 0 and the second derives
from the symmetry condition d(x,y) = d(y,x). The third is a vestigal form of
the triangle inequality—it says roughly that for r-spheres there are (r/2)-
spheres. The fourth and fifth resemble axioms for the neighborhood system
of a point and they will be used to derive the corresponding properties for a
neighborhood system relative to a topology which will presently be defined.

There may be many different uniformities for a set X. The largest of
these is the family of all those subsets of X × X which contain Δ and the
smallest is the family whose only member is X × X. If X is the set of real
numbers the usual uniformity for X is the family  of all subsets U of X × X
such that {(x,y): |x − y| < r} ⊂ U for some positive number r. Each member
of  is a neighborhood of the diagonal Δ (the line with equation y = x), but



it is to be emphasized that not every neighborhood of the diagonal is a
member of . For example, the set {(x,y): | x − y | < 1/(1 + | y |)} is a
neighborhood of Δ but not a member of .

It is not generally true that the union or the intersection of two
uniformities for X is a uniformity. However, the union of a collection of
uniformities generates a uniformity in a rather natural sense. A subfamily 
of a uniformity  is a base for  iff each member of  contains a member of
. If  is a base for , then  determines  entirely, for a subset U of X × X

belongs to  iff U contains a member of . A subfamily  is a subbase for 
iff the family of finite intersections of members of  is a base for . These
definitions are entirely analogous to the definitions of base and subbase for
a topology.

2 THEOREM A non-void family  of subsets of X × X is a base for some
uniformity for X if and only if

(a) each member of  contains the diagonal Δ;
(b) if , then U−1 contains a member of ;
(c) if , then V ∘ V ⊂ U for some V in ; and
(d) the intersection of two members of  contains a member.

The straightforward proof of this proposition is omitted.
The property of being a subbase for some uniformity is less easy to

characterize. However, the following simple result is adequate for our
needs.

3 THEOREM A family  of subsets of X × X is a subbase for some uniformity
for X if

(a) each member of  contains the diagonal Δ,
(b) for each U in  the set U−1 contains a member of , and
(c) for each U in  there is V in  such that V ∘ V ⊂ U.

In particular, the union of any collection of uniformities for X is the
subbase for a uniformity for X.

PROOF It must be shown that the family  of finite intersections of members
of  satisfies the conditions of 6.2. This follows easily from the observation:



If U1, … Un and V1, …, Vn are subsets of X × X, if 
and  , then V ⊂ U−1 (or V ∘ V ⊂ U) whenever Vi ⊂
Ui

−1 (respectively, Vi ∘ Vi ⊂ Ui) for each i. 
If  is a uniform space the topology  of the uniformity , or the

uniform topology, is the family of all subsets T of X such that for each x in
T there is U in  such that U[x] ⊂ T. (This is precisely the generalization of
the metric topology, which is the family of all sets which contain a sphere
about each point.) It must be verified that  is indeed a topology, but this
offers no difficulty: In view of the definition, the union of members of  is
surely a member of . If T and S are members of  and x ε T ∩ S, then there
are U and V in  such that U[x] ⊂ T and V[x] ⊂ S, and hence (U ∩ V)[x] ⊂
T ∩ S; consequently  and  is a topology.

The relation between a uniformity and the uniform topology will now
be examined.

4 THEOREM The interior of a subset A of X relative to the uniform topology
is the set of all points x such that U[x] ⊂ A for some U in .

PROOF It must be shown that the set B = {x: U[x] ⊂ A for some U in } is
open relative to the uniform topology, for B surely contains every open
subset of A and, if B is open, then it must necessarily be the interior of A. If
x ε B, then there is a member U of  such that U[x] ⊂ A and there is V in 
such that V ∘ V ⊂ U. If y ε V[x], then V[y] ⊂ V ∘ V[x] ⊂ U[x] ⊂ A, and
hence y ε B. Hence V[x] ⊂ B and B is open. 

It follows immediately that U[x] is a neighborhood of x for each U in
the uniformity , and consequently the family of all sets U[x] for U in  is a
base for the neighborhood system of x (the family is actually identical with
the neighborhood system but this is of no great importance). The following
proposition is then clear.

5 THEOREM If  is a base (or subbase) for the uniformity , then for each x
the family of sets U[x] for U in  is a base (subbase respectively) for the
neighborhood system of x.

The uniform topology for X may be used to construct a product
topology for X × X. As might be expected, members of the uniformity have
a special structure relative to this topology.



6 THEOREM If U is a member of the uniformity , then the interior of U is
also a member; consequently the family of all open symmetric members of 

 is a base for .

PROOF The interior of a subset M of X × X is the set of all (x,y) such that, for
some U and some V in , U[x] × V|y| ⊂ M. Since  the interior of M
is {(x,y): V[x) × V[y] ⊂ M for some V in }. If  there is a symmetric
member V of  such that V ∘ V ∘ V ⊂ U and, according to lemma 6.1, 

 . Hence every point of V is an interior point
of U and, since the interior of U contains V, it is a member of . 

In view of the foregoing theorem every member of a uniformity is a
neighborhood of the diagonal. It is to be emphasized that the converse of
this proposition is false. There may be many very different uniformities for
X, all having the same topology and hence the same family of
neighborhoods of the diagonal.

7 THEOREM The closure, relative to the uniform topology, of a subset A of X
is . The closure of a subset M of X × X is .

PROOF A point x belongs to the closure of a subset A of X iff U[x] intersects
A for each U in . But U[x] intersects A iff x ε U−1[A], and since each
member of  contains a symmetric member, x ε A− iff x ε U[A] for each U
in . The first statement is then proved. Similarly, if U is a symmetric
member of , then U[x] × U[y] intersects a subset M of X × X iff (x,y) ε
U[u] × U[v] for some (u,v) in M, that is, iff  .
Since by lemma 6.1 this last set is U ∘ M ∘ U it follows that (x,y) ε M− iff 

. 

8 THEOREM The family of closed symmetric members of a uniformity  is a
base for .

PROOF If  and V is a member of  such that V ∘ V ∘ V ⊂ U, then V ∘ V ∘
V contains the closure of V in view of the preceding theorem; hence U
contains a closed member W of  and W ∩ W−1 is a closed symmetric
member. 

It will be shown presently that a uniform space (more precisely a space
with a uniform topology) is always completely regular. At the moment it is



easy to see that such a space is regular, for each neighborhood of a point x
contains a neighborhood V[x] such that V is a closed member of , and V[x]
is consequently closed. Therefore a space with a uniform topology is a
Hausdorff space iff each set consisting of a single point is closed. Since the
closure of the set {x} is , the space is Hausdorff iff 
is the diagonal Δ. In this case  is said to be Hausdorff or separated.

UNIFORM CONTINUITY; PRODUCT UNIFORMITIES

If f is a function on a uniform space  with values in a uniform space
, then f is uniformly continuous relative to  and  iff for each V in 

the set {(x,y): (f(x), f(y)) ε V} is a member of . This condition may be
rephrased in several ways. For each function f on X to Y let f2 be the
induced function on X × X to Y × Y which is defined by f2(x,y) = (f(x), f(y)).
Then f is uniformly continuous iff for each V in  there is U in  such that
f2[U] ⊂ V. We also have: if  is a subbase for , then f is uniformly
continuous iff  for each V in , because f2−1 preserves unions and
intersections. If Y is the set of real numbers and V is the usual uniformity,
then it follows that f is uniformly continuous iff for each positive number r
there is U in  such that | f(x) − f(y) | < r whenever (x,y) ε U. If X is also the
space of real numbers with the usual uniformity, then f is uniformly
continuous iff for each positive number r there is a positive number s such
that | f(x) − f(y) | < r whenever |x − y | < s.

It is evident that, if f is on X to Y and g is a function on Y, then (g ∘ f)2 =
g2 ∘ f2, and from this it follows that the composition of two uniformly
continuous functions is again uniformly continuous. If f is one-to-one map
of X onto Y and both f and f−1 are uniformly continuous, then f is a uniform
isomorphism, and the spaces X and Y (more precisely  and ) are
said to be uniformly equivalent. The composition of two uniform
isomorphisms, the inverse of a uniform isomorphism, and the identity map
of a space onto itself are all uniform isomorphisms, and consequently the
collection of all uniform spaces is divided into equivalence classes,
consisting of uniformly equivalent spaces. A property which when
possessed by one uniform space is also possessed by every uniformly
isomorphic space is a uniform invariant. With a few exceptions the
properties studied in this chapter are uniform invariants.



As might be expected, uniform continuity implies continuity relative to
the uniform topology.

9 THEOREM Each uniformly continuous function is continuous relative to the
uniform topology, and hence each uniform isomorphism is a
homeomorphism.

PROOF Let f be a uniformly continuous function on  to  and let U be
a neighborhood of f(x). Then there is V in  such that V[f(x)] ⊂ U, and
f−1[V[f(x)]] = {y: f(y) ε V[f(x)]} = {y: (f(x), f(y)) ε V) = f2−1[V][x], and this is
a neighborhood of x. Hence f−1[U] is a neighborhood of x and continuity is
proved. 

If f is a function on a set X to a uniform space , then it is not
generally true that the family of all sets f2−1[V] for V in  is a uniformity for
X. The difficulty is that there may be a subset of X × X which contains some
set f2−1[V], but is not the inverse of any subset of Y × Y. However, this
difficulty is not profound; the family of all f2−1[V] is the base for a
uniformity  for X, as we now verify. It is clear that f2−1 preserves
inclusions, intersections, and inverses (that is, f2−1 [V−1] = [f2−1[V]]−1), and
consequently it is only necessary to show that for each member U of  there
is V in  such that f2−1[V] ∘ f2−1[V] ⊂ f2−1[U]. But if V ∘ V ⊂ U and (x,y)
and (y,z) belong to f2−1[V], then both (f(x), f(y)) and (f(y), f(z)) belong to V,
and hence (f(x), f(z)) ε F ∘ V. It follows that the family of inverses of
members of  is indeed a base for a uniformity  for X. It is clear that f is
uniformly continuous relative to  and , and in fact  is smaller than every
other uniformity for which f is uniformly continuous.

If  is a uniform space and Y is a subset of X, then in view of the
preceding discussion there is a smallest uniformity  such that the identity
map of Y into X is uniformly continuous. It is clear that the members of 
are simply the intersections of the members of  with Y × Y (sometimes
called the trace of  on Y × Y). The uniformity  is called the relativization
of  to Y, or the relative uniformity for Y, and  is called a uniform
subspace of the space . We omit the simple verification of the fact that
the topology of the relative uniformity  is the relativized topology of .



We have seen that there is always a unique smallest uniformity which
makes a map of a set X into a uniform space uniformly continuous. This
proposition may be extended to a family F of functions such that each
member f of F maps X into a uniform space . The family of all sets of
the form f2−1[U] = {(x,y): (f(x), f (y) ε U}, for f in F and U in , is a subbase
for a uniformity  for X, and  is the smallest uniformity such that each
map f is uniformly continuous. (Theorem 6.3 shows that the family of sets
of the form f2−1[U] is a subbase for a uniformity, and evidently  makes
each f uniformly continuous and is smaller than every other uniformity with
this property.) It is in precisely this way that the product uniformity is
defined. If  is a uniform space for each member a of an index set A,
then the product uniformity for  is the smallest uniformity such
that projection into each coordinate space is uniformly continuous. The
family of all sets of the form {(x,y): (xa,ya) ε U}, for a in A and U in , is a
subbase for the product uniformity. If x is a member of the product, then a
subbase for the neighborhood system of x (relative to the uniform topology)
may be constructed from the subbase for the product uniformity. Hence the
family of all sets of the form {y: (xa,ya) ε U} is a sub-base for the
neighborhood system of x. It follows that a base for the neighborhood
system of x relative to the topology of the product uniformity is the family
of finite intersections of sets of the form {y: ya ε U[xa]} for a in A and U in 

. But the same family is also a base for the neighborhood system of x
relative to the product topology, and consequently the product topology is
the topology of the product uniformity. This statement is the first half of the
following theorem.

10 THEOREM The topology of the product uniformity is the product topology.
A function f on a uniform space to a product of uniform spaces is

uniformly continuous if and only if the composition of f with each projection
into a coordinate space is uniformly continuous.

PROOF If f is uniformly continuous with values in the product 
then each projection Pa is uniformly continuous and the composition Pa ∘ f
is uniformly continuous. If Pa ∘ f is uniformly continuous for each a in A
and U is a member of the uniformity of Xa, then {(u,v): (Pa ∘ f(u), Pa ∘ f(v))
ε U} is a member of the uniformity  of the domain of f. But this set can be



written in the form f2−1[{(x,y): (xa,ya) ε U}]. Hence the inverse under f2 of
each member of a subbase for the product uniformity belongs to  and f is
therefore uniformly continuous. 

The next proposition begins the development of the relation between
uniformities and pseudo-metrics for X.

11 THEOREM Let  be a uniform space and let d be a pseudo-metric for
X. Then d is uniformly continuous on X × X relative to the product
uniformity if and only if the set {(x,y): d(x,y) < r} is a member of  for each
positive number r.

PROOF Let Vd,r = {{x,y): d(x,y) < r). It must be shown that  for each
positive r iff d is uniformly continuous with respect to the product
uniformity for X × X. If U is a member of , then the sets {((x,y), (u,v)):
(x,u) ε U} and {((x,y), (u,v)): (y,u) ε U) belong to the product uniformity,
and it is easy to see that the family of all sets of the form {((x,y), (u,v)):
(x,u) ε U and (y,v) ε U} is a base for the product uniformity. Hence if d is
uniformly continuous, then for each positive r there is U in  such that, if
(x,u) and (y,v) belong to U, then | d(x,y) − d(u,v) | < r. In particular, letting
(u,v) = (y,y), it follows that, if (x,y) ε U, then d(x,y) < r. Then U ⊂ Vd,r and
consequently . To prove the converse observe that, if both (x,u) and
(y,v) belong to Vd,r, then | d(x,y) − d(u,v) | < 2r because d(x,y)  d(x,u) +
d(u,v) + d(y,v) and d(u,v)  d(x,u) + d(x,y) + d(y,v). It follows that, if 
for each positive r, then d is uniformly continuous. 

METRIZATION

The purpose of this section is to compare uniform spaces and pseudo-
metrizable spaces. The comparison is an example of the standard procedure
for testing the effectiveness of a generalization. The generalization is
compared with the mathematical object which it purports to generalize in
order to discover the extent to which the basic concepts have been isolated.
In this case (as in many other instances) the comparison yields a
representation of the generalized object in terms of its progenitor. A
uniformity will be assigned to each family of pseudo-metrics for a set X,
and the principal result of the section states that every uniformity is derived
in this fashion from the family of its uniformly continuous pseudo-metrics.



It will also be shown that a uniformity can be derived from a single pseudo-
metric if and only if the uniformity has a countable base.

Each pseudo-metric d for a set X generates a uniformity in the following
way. For each positive number r let Vd,r = {(x,y): d(x,y) < r). Clearly (Vd,r)−1

= Vd,r, Vd,r ∩ Vd,s = Vd,t where t = min [r,s], and Vd,r ∘ Vd,r ⊂ Vd,2r. It
follows that the family of all sets of the form Vd,r is a base for a uniformity
for X. This uniformity is called the pseudo-metric uniformity, or the
uniformity generated by d. A uniform space  is said to be pseudo-
metrizable (or metrizable) if and only if there is a pseudo-metric (metric,
respectively) d such that  is the uniformity generated by d. The uniformity
generated by a pseudo-metric d can be described in another way. According
to 6.11 a pseudo-metric d is uniformly continuous relative to a uniformity 
(more precisely, relative to the product uniformity constructed from ) if
and only if  for each positive r. The uniformity  derived from d can
then be characterized as the smallest uniformity which makes d uniformly
continuous on X × X. It should be noticed that the pseudo-metric topology is
identical with the uniform topology of , because Vd,r[x] is the open r-
sphere about x and the family of sets of this form is a base for the
neighborhood system of x relative to both topologies.

The crucial step in the metrization theorem for uniform spaces is
provided by the following lemma.

12 METRIZATION LEMMA Let {Un, n ε w} be a sequence of subsets of X × X
such that U0 = X × X, each Un contains the diagonal, and Un+1 ∘ Un+1 ∘
Un+1 ⊂ Un for each n. Then there is a non-negative real-valued junction d
on X × X such that

(a) d{x,y) + d(y,z)  d(x,z) for all x, y, and z; and
(b) Un ⊂ {(x,y): d{x,y) < 2−n} ⊂ Un−1 for each positive integer n.

If each Un is symmetric, then there is a pseudo-metric d satisfying
condition (b).

PROOF Define a real-valued function f on X × X by letting f(x,y) = 2−n iff
(x,y) ε Un−1 ~ Un and f(x,y) = 0 iff (x,y) belongs to each Un. The desired



function d is constructed from its “first approximation” f by a chaining
argument. For each x and each y in X let d(x,y) be the infimum of ∑
{f(xi,xi+1): i = 0, …, n} over all finite sequences x0, x1, …, xn+1 such that x =
x0 and y = xn+1. It is evident that d satisfies the triangle inequality and since
d(x,y)  f(x,y) it follows that Un ⊂ {(x,y): d(x,y) < 2−n}. If each Un is
symmetric, then f(x,y) = f(y,x) for each pair (x,y) and consequently d is a
pseudo-metric in this case. The proof is completed by showing that
f(x0,xn+1)  2∑{f(xi,xi+1): i = 0, …, n}, from which it will follow that, if
d(x,y) < 2−n, then f(x,y) < 2−n+1, hence (x,y) ε Un−1, and {(x,y): d{x,y) < 2−n)
⊂ Un−1. The proof is by induction on n, and the inequality is clearly valid
for n = 0. For convenience, call the number ∑{f(xi,xi+1): i = r, …, s} the
length of the chain from r to s + 1, and let a be the length of the chain from
0 to n + 1. Let k be the largest integer such that the chain from 0 to k is of
length at most a/2, and notice that the chain from k + 1 to n + 1 has length
at most a/2. By the induction hypothesis, each of (x0,xk) and f(xk+1,xn+1) is
at most 2(a/2) = a, and surely f(xk,Xk+1) is at most a. If m is the smallest
integer such that 2−m  a, then (x0,xn+1), (xk,xk+1) and (xk+1,xn+1) all belong
to Um and therefore (x0,xn+1) ε Um−1 Hence f(x0,xn+1)  2−m+1  2a and the
lemma is proved. 

If a uniformity  for X has a countable base V0, V1, …, Vn …, then it is
possible to construct by induction a family U0, U1, …, Un … such that each
Un is symmetric, Un ∘ Un ∘ Un ⊂ Un−1 and Un ⊂ Vn for each positive
integer n. The family of sets Un is then a base for , and upon applying the
metrization lemma it follows that the uniform space  is pseudo-
metrizable. Hence:

13 METRIZATION THEOREM A uniform space is pseudo-metrizable if and only
if its uniformity has a countable base.

This theorem clearly implies that a uniform space is metrizable iff it is
Hausdorff and its uniformity has a countable base.



14 Notes To the best of my knowledge this theorem first appears in
Alexandroff and Urysohn [2]. These authors were seeking a solution to the
topological metrization problem (see 4.18), and the result they state is
(approximately) : a topological Hausdorff space  is metrizable iff there
is a uniformity with a countable base such that  is the uniform topology.
This is a rather unsatisfactory solution to the topological metrization
problem but (with a slightly strengthened conclusion) is precisely the
metrization theorem for uniform spaces. Chittenden [1] first proved a
“uniform” form of 6.13 and his proof was later drastically simplified by A.
H. Frink [1] and by Aronszajn [1]. The preceding proof is Bourbaki’s
arrangement of Frink’s. The first appearance of 6.13 in the form just given
occurs in André Weil’s classic monograph [1] in which he introduces the
notion of uniform space. 

A uniformity for a set X may be derived from a family P of pseudo-
metrics in the following fashion. Letting Vp,r = {(x,y): p(x,y) < r}, the
family of all sets of the form Vp,r for p in P and r positive is the subbase for
a uniformity  for X. This uniformity  is defined to be the uniformity
generated by P. The uniformity may be described in several instructive
ways. According to 6.11 a pseudo-metric p is uniformly continuous on X ×
X relative to the product uniformity derived from  iff  for each
positive r. Consequently the uniformity generated by P is the smallest
uniformity which makes each member p of P uniformly continuous on X ×
X. Another description: For a fixed member p of P the family of all sets Vp,r
for r positive is a base for the uniformity of the pseudo-metric space (X,p).
If  is a uniformity for X, then the identity map of  into (X,p) is
uniformly continuous iff  for each positive r. It follows that the
uniformity  is the smallest such that for each p in P the identity map of X
into (X,p) is uniformly continuous. This fact yields yet another description.
Let Z be the product  (that is, the product of X with itself as many
times as there are members of P) and let f be the map of X into Z defined by
f(x)p = x for each x in X and each p in P. Let the p-th coordinate space of
this product be assigned the uniformity of the pseudo-metric p, and let Z
have the product uniformity. The projection of Z into the p-th coordinate
space is the identity map of X onto the pseudo-metric space (X,p), and it
therefore follows from 6.10 that the uniformity generated by P is the
smallest having the property that the map of X into Z is uniformly



continuous. But f is one to one and is consequently a uniform isomorphism
of X onto a subspace of the product of pseudo-metric spaces.

It is clearly of some importance to know which uniformities are
generated by families of pseudo-metrics—this might be called the
generalized metrization problem for uniform spaces. The solution to the
problem is a direct application of the preceding results. Let  be a
uniform space and let P be the family of all pseudo-metrics for X which are
uniformly continuous on X × X. The uniformity generated by P is smaller
than  in view of 6.11. But the metrization lemma 6.12 shows that for each
member U of  there is a member p of P such that {(x,y): p(x,y) < ¼) is
contained in U, and hence ai is smaller than the uniformity generated by P.
Thus:

15 THEOREM Each uniformity for X is generated by the family of all pseudo-
metrics which are uniformly continuous on X × X.

There is an interesting corollary to the foregoing theorem. It has already
been observed that, if a uniformity  for X is generated by a family P of
pseudo-metrics, then the space is uniformly isomorphic to a subspace of a
product of pseudo-metric spaces, and it is possible to sharpen this result if 

 is Hausdorff. The uniformity  is the smallest which makes the
identity map of X into the pseudo-metric space (X,p) uniformly continuous
for each p in P. The space (X,p) is isometric under a map hp to a metric
space (Xp,p*), by theorem 4.15, and it follows that  is the smallest
uniformity making each of the maps hp uniformly continuous. If a map h of
X into  is defined by letting h(x)p = hp(x), then by 6.10 the
uniformity  is the smallest such that h is uniformly continuous. If  is
Hausdorff, then h must be one to one, and in this case h is a uniform
isomorphism. The preceding theorem then implies the following result
(Weil [1]).

16 THEOREM Each uniform space is uniformly isomorphic to a subspace of
the product of pseudo-metric spaces and each uniform Hausdorff space is
uniformly isomorphic to a subspace of the product of metric spaces.

The preceding theorem yields a characterization of those topologies
which can be the uniform topology for some uniformity, for a topological



space is completely regular if and only if it is homeomorphic to a subspace
of a product of pseudo-metrizable spaces (4.L).

17 COROLLARY A topology  for a set X is the uniform topology for some
uniformity for X if and only if the topological space  is completely
regular.

The remainder of this section is devoted to a clarification of the
relationship between uniformities and pseudo-metrics. A family P of
pseudo-metrics for a set X is said to be a gage iff there is a uniformity  for
X such that P is the family of all pseudo-metrics which are uniformly
continuous on X × X relative to the product uniformity derived from . The
family P is called the gage of the uniformity  and  is the uniformity of P
(  is generated by P according to 6.15). Every family of pseudo-metrics
generates a uniformity; it will also be said to generate the gage of this
uniformity. A direct description of the gage generated by a family P of
pseudo-metrics is possible. The family of all sets of the form Vp,r for p in P
and r positive is a subbase for the uniformity of the gage, and hence a
pseudo-metric q is uniformly continuous on the product iff for each positive
number s the set Vq,s contains some finite intersection of sets Vp,r for p in P.
This remark establishes the following proposition.

18 THEOREM Let P be a family of pseudo-metrics for a set X and let Q be the
gage generated by P. Then a pseudo-metric q belongs to Q if and only if for
each positive number s there is a positive number r and a finite subfamily p1
…, pn of P such that , 

Each concept which is based on the notion of a uniformity can be
described in terms of a gage because each uniformity is completely
determined by its gage. The following theorem is a dictionary of such
descriptions. Recall that p-dist (x,A) = inf{p(x,y):y ε A} is the p-distance
from a point x to a set A.

19 THEOREM Let  be a uniform space and let P be the gage of . Then:

(a) The family of all sets Vp,r for p in P and r positive is a base for the
uniformity .



(b) The closure relative to the uniform topology of a subset A of X is the
set of all x such that p-dist (x,A) = 0 for each p in P.

(c) The interior of a set A is the set of all points such that for some p in
P and some positive number r the sphere Vp,r[x] ⊂ A.

(d) Suppose P′ is a subfamily of P which generates P. A net {Sn, n ε D}
in X converges to a point s if and only if {p(Sn, s), n ε D} converges
to zero for each p in P′,

(e) A junction f on X to a uniform space  is uniformly continuous if
and only if for each member q of the gage Q of  it is true that q ∘ f2
ε P. (Recall f2(x,y) = (f(x),f(y)).)

Equivalently, f is uniformly continuous if and only if for each q in
Q and each positive number s there is p in P and r positive such that,
if p(x,y) < r, then q(f(x),f(y)) < s.

(f) If  is a uniform space for each member a of an index set A and
Pa is the gage of  then the gage of the product uniformity for 

 is generated by all pseudo-metrics of the form q(x,y) =
pa(xa,ya) for a in A and pa in Pa.

The proof is omitted. It is a straightforward application of earlier results.

COMPLETENESS

This section is devoted to a number of elementary theorems based on
the concept of a Cauchy net. A uniform space will be called complete iff
each Cauchy net in the space converges to some point. The two most useful
results of the section state that the product of complete spaces is complete,
and that a uniformly continuous function f to a complete Hausdorff space
has a uniformly continuous extension whose domain is the closure of the
domain of f.

It will be supposed throughout that X is a set,  is a uniformity for X,
and P is the gage of  (that is, P is the family of all pseudo-metrics for X
which are uniformly continuous on X × X). The definitions will be given in
terms of both  and P, and the proofs use the formulation which is most
convenient for the problem under consideration. The set {(x,y): p(x,y) < r}
will be denoted by Vp,r.



A net {Sn, n ε D} in the uniform space  is a Cauchy net iff for each
member U of  there is N in D such that (Sm,Sn) ε U whenever both m and n
follow N in the ordering of D. This definition may be rephrased in terms of
a net in X × X. In this form it is stated: the net {Sn, n ε D} is a Cauchy net iff
the net {(Sm,Sn), (m,n) ε D × D} is eventually in each member of . (It is
understood that D × D is given the product ordering.) The family of all sets
of the form Vp,r for p in the gage P and r positive is a base for the
uniformity , and it follows that {Sn, n ε D) is a Cauchy net iff {(Sm,Sn),
{m,n) ε D × D} is eventually in each set of the form Vp,r. In other words,
{Sn, n ε D} is a Cauchy net if and only if {p(Sm,Sn), (m,n) ε D × D}
converges to zero for each pseudo-metric p belonging to the gage P.

There is a simple lemma about Cauchy nets which is used often enough
to deserve a formal statement.

20 LEMMA A net {Sn, n ε D} in a uniform space  is a Cauchy net if and
only if either of the following statements is true.

(a) The net {(Sm,Sn), (m,n) ε D × D) is eventually in each member of
some subbase for the uniformity .

(b) The net {p(Sm,Sn), (m,n) ε D × D} converges to zero for each p in
some family of pseudo-metrics which generates the gage P.

PROOF If a family Q of pseudo-metrics generates P, then the family of all
Vp,r for p in Q and r positive is a subbase for the uniformity, so that the
proof of (b) reduces to that of (a). To prove (a) notice that, if a net (for
example {(Sm,Sn), (m,n) ε D × D}) is eventually in each of a finite number
of sets, it is then eventually in their intersection. 

The following proposition relates Cauchy nets to convergence relative
to the uniform topology.

21 THEOREM Each net which converges to a point relative to the uniform
topology is a Cauchy net. A Cauchy net converges to each of its cluster
points.



PROOF If {Sn, n ε D} converges to a point s, then {d{Sn,s), n ε D} converges
to zero for each member d of the gage P. Since d(Sm,Sn)  d(Sm,s) + d(Sn,s),
it follows that {d(Sm,Sn), (m,n) ε D × D} converges to zero and the net is
therefore a Cauchy net. Suppose that {Sn, n ε D} is a Cauchy net and s is a
cluster point. Then for d in P and r positive there is m in D such that, if m 
N and n  N, then d(Sm,Sn) < r/2. Since s is a cluster point, there is p in D
such that d(Sp,s)  r/2 and p  N. Then d(Sn,s)  d(Sn,Sp) + d(Sp,s) < r if n 

 N, and it follows that the net converges to s. 

A uniform space is complete iff every Cauchy net in the space
converges to a point of the space. Evidently each closed sub-space of a
complete space  is complete. If  is Haus-dorff and  is a
complete subspace, then Y is closed in X, for a net in Y which converges to a
point x of X is necessarily a Cauchy net, and x is the unique limit point. This
obvious result is one of the most useful facts about completeness.

22 THEOREM A closed subspace of a complete space is complete, and a
complete subspace of a Hausdorff uniform space is closed.

Before proceeding it may be worth while to mention several examples
of complete spaces. If the uniformity  is the largest possible uniformity for
X (that is, consists of all subsets of X × X which contain the diagonal), then 

 is complete. The smallest uniformity for X also yields a complete
space. If a uniform space  is compact relative to the uniform topology,
then it is complete, for every net has a cluster point and consequently by
theorem 6.21 each Cauchy net converges to some point. The space of real
numbers is complete relative to the usual uniformity. This may be seen by
verifying that each Cauchy net is eventually in some bounded subset A of
the space of real numbers and is therefore eventually in the compact set A−.

There is a characterization of completeness which is suggestive of
compactness. Recall that a family of sets has the finite intersection property
iff no finite intersection of members of the family is void, and a topological
space is compact iff the intersection of the members of each family of
closed sets with the finite intersection property is non-void. To describe
completeness another qualification is put on the family. A family  of
subsets of a uniform space  contains small sets iff for each U in  there
is a member A of  such that A is a subset of U[x] for some point x. Another



formulation is: for each U in  there is A in  such that A × A ⊂ U. In terms
of the gage P of the uniform space, a family  contains small sets iff for
each positive r and each d in P there is A in  such that the d-diameter of A
is less than r. We omit the proof that these three statements are equivalent.

23 THEOREM * A uniform space is complete if and only if each family of
closed sets which has the finite intersection property and contains small
sets has a non-void intersection.

PROOF Let  be a complete uniform space and  a family of closed sets
which has the finite intersection property and contains small sets. If  is the
family of all finite intersections of members of , then  is directed by ⊂,
and for each F in  we may choose a point xF in F. The net  is a
Cauchy net because, if A and B follow a member F of  in the ordering ⊂
(that is, A ⊂ F and B ⊂ F), then xA and xB belong to F, and  contains small
sets. Consequently,  converges to a point and since the net is
eventually in each member of  the point must belong to every member of .
Hence the intersection  is non-void. To prove the converse let
{xn, n ε D} be a Cauchy net, and for each n in D let An be the set of all
points xm for m  n. Then the family  of all sets of the form An has the
finite intersection property, and since the net is Cauchy the family a
contains small sets. There is hence a point y which belongs to the
intersections of the closures,   , and, according to 2.7, the point
y is a cluster point of the net {xn, n ε D}. Since {xn, n ε D} is a Cauchy net
it converges to y. 

One might suspect that a uniform space satisfying the first axiom of
countability would be complete if every Cauchy sequence in the space
converged to a point of the space. Unfortunately this suspicion is
unfounded, but the following feeble result is correct.

24 THEOREM A pseudo-metrizable uniform space is complete if and only if
every Cauchy sequence in the space converges to a point.

PROOF If a uniform space is complete, then each Cauchy net in X, and in
particular each Cauchy sequence in X, converges to a point. On the other
hand, suppose that (X,d) is a pseudo-metric space such that every Cauchy
sequence converges to a point, and that  is a family of closed subsets of X



which has the finite intersection property and contains small sets. For each
non-negative integer n select a member An of  which is of diameter less
than 2−n and select a point xn belonging to An. If m and n are large, then
d(xm,xn) is small because xm and xn belong to Am and An respectively, these
two sets intersect, and each has small diameter. Hence {xn, n ε ω} is a
Cauchy sequence and therefore converges to a point y of X. If B is an
arbitrary member of a, then dist (xn,B) < 2−n because B intersects An, and it
follows that y belongs to the closure of B. Since  is a family of closed sets
y belongs to every member of . 

The usual method of proving completeness consists in showing the
space in question is uniformly isomorphic to a closed sub-space of a
product of complete spaces and then appealing to the following theorem.
The proof of this theorem requires the fact that the image of a Cauchy net
under a uniformly continuous map is a Cauchy net—a fact which is evident
from the definition.

25 THEOREM The product of uniform spaces is complete if and only if each
coordinate space is complete.

A net in the product is a Cauchy net if and only if its projection into
each coordinate space is a Cauchy net.

PROOF Suppose that  is a complete uniform space for each member a
of an index set A. For each a the projection of a Cauchy net into Ya is a
Cauchy net and hence converges to a point, say, ya. Then the net in the
product converges to the point y with a-th coordinate ya and consequently
the product is complete. The simple proof of the converse is omitted.

If {xn, n ε D} is a net in the product which projects into a Cauchy net in
each coordinate space, then for each member U of  the net {(xm,xn), (m,n)
ε (D × D)} is eventually in the inverse under projection of U. That is,
{(xm,xn), (m,n) ε (D × D)} is eventually in {(x,z): (xa,za) ε U}. Since the
family of sets of this form is a subbase for the product uniformity it follows
(6.20) that {xn, n ε D} is a Cauchy net. 

A function f is uniformly continuous on a subset A of a uniform space 
 iff its restriction to A, f | A, is uniformly continuous with respect to the

relativized uniformity. If the range space is complete and Hausdorff* and f



is uniformly continuous on its domain A, then there is a unique uniformly
continuous extension whose domain is the closure of A.

26 THEOREM Let f be a function whose domain is a subset A of a uniform
space  and whose values lie in a complete Hausdorff uniform space 

. If f is uniformly continuous on A, then there is a unique uniformly
continuous extension f− of f whose domain is the closure of A.

PROOF The function f is a subset of X × Y (we do not distinguish between a
function and its graph) and the desired extension is the closure f− of f in X ×
Y. (A pair (x,y) belongs to f− iff there is a net in A converging to x such that
the image net converges to y.) The domain of f− is evidently the closure of
A. We will show that, if W is a member of , then there is U in ∘a such that,
if (x,y) and (u,v) are members of f− and x ε U[u], then y ε W[v]. Since Y is
Hausdorff this will show that f− is a function and that f− is uniformly
continuous. Choose a member V of  which is closed and symmetric and
such that V ∘ V ⊂ W and choose a member U of  which is open and
symmetric and such that f[U[x]] ⊂ V[f(x)} for each x in A; suppose (x,y) and
(u,v) belong to f− and x ε U[u]. Then the intersection of U[x] and U[u] is
open and there is consequently z in A such that both x and u belong to U[z].
Both y and v belong to the closure of f[U[z]], by the definition of f−, and
hence both y and v belong to V[f(z)]. Hence (y,v) ε V ∘ V ⊂ W and y ε W[v]. 

COMPLETION

It is the purpose of this section to show that each uniform space is
uniformly isomorphic to a dense subspace of a complete uniform space. It is
therefore possible to adjoin “ideal elements” to a uniform space in such a
way as to obtain a complete uniform space. The procedure is suggestive of
the compactification process of chapter 5, but there is one significant
difference: the completion of a uniform space is (essentially) unique.

For a metric space X it is possible to find a complete metric space X*
such that X is isometric to a dense subspace of X* (not just uniformly
isomorphic). We base the general construction of a completion on this
preliminary result.



27 THEOREM Each metric (or pseudo-metric) space can be mapped by a
one-to-one isometry onto a dense subset of a complete metric (respectively
pseudo-metric) space.

PROOF It is only necessary to prove the theorem for a pseudo-metric space
(X,d), since the corresponding result for metric spaces then follows from
4.15. Let X* be the class of all Cauchy sequences in X, and for members S
and T of X* let d*(S,T) be the limit of d(Sm,Tm) as m becomes large
(formally, the limit of {d(Sm,Tm), m ε ω}). It is easy to verify that d* is a
pseudo-metric for X*. Let F be the map which carries each point x of X into
the sequence which is constantly equal to x; that is, F(x)n = x for all n.
Evidently F is a one-to-one isometry and it remains to prove that F[X] is
dense in X* and X* is complete. The first of these statements is almost self-
evident; if S ε X* and n is large, then F(Sn) is near S. To show X* complete,
first observe that it is sufficient to show that each Cauchy sequence in F[X]
converges to a point of X* because F[X] is dense in X*. Finally, each
Cauchy sequence in F[X] is of the form F ∘ S = {F(Sn), n ε ω}, where S is a
Cauchy sequence in X, and F ∘ S converges in X* to the member S of X*. 

Each uniform space is uniformly isomorphic to a subspace of a product
of pseudo-metric spaces, and each Hausdorff uniform space is uniformly
isomorphic to a product of metric spaces, by 6.16. The preceding theorem
implies that a metric or pseudo-metric space is uniformly isomorphic to a
subspace of a complete space of the same sort. It follows without difficulty
that:

28 THEOREM Each uniform space is uniformly isomorphic to a dense
subspace of a complete uniform space. Each Hausdorff uniform space is
uniformly isomorphic to a dense subspace of a complete Hausdorff uniform
space.

A completion of a uniform space  is a pair,  where 
is a complete uniform space and f is a uniform isomorphism of X into a
dense subspace of X*. The completion is Hausdorff iff  is a Hausdorff
uniform space. The foregoing theorem can then be stated: Each (Hausdorff)
uniform space has a (Hausdorff) completion.

There is a uniqueness property for Hausdorff completions. If f and g are
uniform isomorphisms of X onto dense subspaces of complete Hausdorff



uniform spaces X* and X**, then both g ∘ f−1 and f ∘ g−1 have uniformly
continuous extensions to all of X* and X** respectively, by 6.26. It follows
that the extension of g ∘ f−1 is a uniform isomorphism of X* onto X**.
Stated roughly: the Hausdorff completion of a Hausdorff uniform space is
unique to a uniform isomorphism.

COMPACT SPACES

Each completely regular topology  for a set X is the uniform topology
for some uniformity , but the uniformity is usually not unique. If  is
compact and regular, then it turns out that there is precisely one uniformity
whose topology is . In this case the topology determines the uniformity,
topological invariants are uniform invariants, and the theory takes a
particularly simple form. This section is devoted to a proof of the
uniqueness theorem just quoted and to two other propositions. As before,
we use either the uniformity of a space or the corresponding gage of
uniformly continuous pseudo-metrics as convenience dictates.

29 THEOREM If  is a compact uniform space, then every neighborhood
of the diagonal Δ in X × X is a member of  and every pseudo-metric which
is continuous on X × X is a member of the gage of .

PROOF Let  be the family of closed members of  and let V be an arbitrary
open neighborhood of Δ. If , then, since  is a base for , y
belongs to every neighborhood of x and hence (x,y) belongs to every
neighborhood of Δ. It follows that  is a subset of V. Since each
member U of  is compact and V is open the intersection of some finite
subfamily of  is also a subset of V and hence .

If a pseudo-metric d for X is continuous on X × X, then for each positive
r the set {(x,y): d(x,y) < r) is a neighborhood of the diagonal. Hence d is
uniformly continuous and therefore belongs to the gage of . 

Each compact regular topological space is completely regular and its
topology is therefore the uniform topology for some uniformity. This
uniformity has just been identified.

30 COROLLARY If  is a compact regular topological space, then the
family of all neighborhoods of the diagonal Δ is a uniformity for X and  is
the uniform topology.



There is another corollary.

31 THEOREM Each continuous function on a compact uniform space to a
uniform space is uniformly continuous.

PROOF If f is a continuous function on X to Y, then f2, where f2(x,y) =
(f(x),f(x)), is a continuous function on X × X to Y × Y. Consequently if d
belongs to the gage of Y the composition d ∘ f2 is continuous on X × X. It
follows from theorem 6.29 that d ∘ f2 belongs to the gage of X, and hence
the function f is uniformly continuous. 

Each compact uniform space  can be written as the union of a finite
number of small sets, in the sense that for each pseudo-metric d belonging
to the gage of  and each positive r there is a finite cover of X by sets of d-
diameter less than r. This is a direct consequence of compactness, since X
can be covered by a finite number of r/3 spheres about points and each of
these is of diameter less than r. A uniform space  is totally bounded
(or precompact) iff X is the union of a finite number of sets of d-diameter
less than r for each pseudo-metric d of the gage of  and each positive r. In
terms of  this can be stated: for each U in  the set X is the union of a
finite number of sets B such that B × B ⊂ U, or, equivalently, for each U in 

 there is a finite subset F of X such that U[F] = X. A subset Y of a uniform
space is called totally bounded iff Y, with the relativized uniformity, is
totally bounded.

There is a simple but very useful relation between compactness and
total boundedness.

32 THEOREM A uniform space  is totally bounded if and only if each net
in X has a Cauchy subnet.

Consequently a uniform space is compact if and only if it is totally
bounded and complete.

PROOF Suppose S is a net in a totally bounded uniform space . The
existence of a Cauchy subnet is an obvious consequence of problem 2.J, but
we sketch the proof without using the earlier result. Let  be the family of
all subsets A of X such that S is frequently in A. Then  and by the
maximal principle 0.25 there is a maximal subfamily  of  which contains
{X} and has the finite intersection property. Because of maximality it is true



that, if a finite union B1 ∪ … ∪ Bn of members of  belongs to , then 
for some i (see 2.I for details). Since X is totally bounded it may be covered
by a finite number of small sets, and it follows that  contains small sets.
Finally, it follows from 2.5 that there is a subnet of S which is eventually in
each member of , and evidently this subnet is Cauchy.

If  is not totally bounded, then for some U in  and for every finite
subset F of X it is true that U[F] ≠ X. It follows that one may find by
induction a sequence {xn, n ε ω} such that  if p < n. Clearly the
sequence {xn, n ε ω} has no Cauchy subnet.

Finally, if  is complete and totally bounded, then each net has a
subnet which converges to a point of X and hence the space is compact. It
has already been observed that a compact space is complete. 

There is one other very useful lemma concerning compact spaces. The
proposition is an extension of the Lebesgue covering lemma 5.26. A cover
of a subset A of a uniform space  is a uniform cover iff there is a
member U of at such that the set U[x] is a subset of some member of the
cover for every x in A (that is, the family of U[x] for x in A refines the
cover). In terms of the gage of the uniformity , a cover of A is uniform iff
there is a member d of the gage and a positive number r such that the open
sphere of d-radius r about each point of A is contained in some member of
the cover.

33 THEOREM Each open cover of a compact subset of a uniform space is a
uniform cover.

In particular, each neighborhood of a compact subset A contains a
neighborhood of the form U[A] where U is a member of the uniformity.

PROOF Let  be an open cover of the compact subset A of the uniform space 
. Then for each x in A there is U in  such that U[x] is a subset of some

member of , and hence there is V in  such that V ∘ V[x] is a subset of
some member of . Choose a finite number of members x1, …, xn of A and
V1, …, Vn of  such that the sets Vi[xi] cover A and for each i it is true that
Vi ∘ Vi[xi] is a subset of some member of . Finally, let  

. Then for each point y of A for some i the point y belongs
to Vi[xi] and hence W[y] ⊂ W ∘ Vi[xi] ⊂ Vi ∘ Vi [xi]. Consequently W[y] is a
subset of some member of et. 



FOR METRIC SPACES ONLY

This section is devoted to two propositions concerning complete metric
spaces. The results are among the most useful consequences of
completeness, and it is unfortunate that no generalization to complete
uniform spaces seems possible. The first proposition is the classic theorem
of Baire on category; this theorem and one or two related results occupy
most of the section. The last theorem of the section states that the image
under a continuous uniformly open map of a complete metric space is again
complete, provided the range space is Hausdorff. The proof relies on a
lemma which we state in considerably more general form than is necessary
for this proposition. The lemma (essentially a formalization of an argument
of Banach) also yields directly the closed graph and open mapping
theorems of normed linear space theory. (See problem 6.R.)

34 THEOREM (BAIRE) Let X be either a complete pseudo-metric space or a
locally compact regular space. Then the intersection of a countable family
of open dense subsets of X is itself dense in X.

PROOF We prove the theorem for locally compact regular spaces, adding in
parentheses the modifications necessary to establish it for a complete
pseudo-metric space. Suppose that {Gn, n ε ω] is a sequence of dense open
subsets of X and that U is an arbitrary open non-void subset of X. It must be
shown that   is non-void. To this end choose inductively an
open set V0 such that V0

− is a compact subset of U ∩ G0 (such that V0
− is a

subset of U ∩ G0 and has diameter less than one), and then for each positive
integer n choose Vn such that Vn

− is a subset of Vn−x ∩ Gn (and the diameter
of Vn is less than 1/n). This choice is possible because Gn is dense and open.
The family of all sets Vn

− for non-negative integers n has the finite
intersection property, consists of closed sets and V0

− is compact (the family
contains small sets). Hence  is non-void, and since Vn+1

− ⊂ U ∩
Gn it follows that  is non-void. 

It should be remarked that the Baire theorem is a hybrid in that a
topological conclusion (the intersection of a countable number of dense
open sets is dense) is deduced from a non-topological premise (that the
space is complete pseudo-metric). There is a purely topological statement



which is equivalent. If  is a topological space such that for some
pseudo-metric d for X the space (X,d) is complete and  is the pseudo-metric
topology, then the same conclusion holds. (Topological spaces for which
there exists such a complete metric have been characterized in a different
way, as noted in 6.K.)

A terminology has been devised which is very convenient in discussing
questions related to the Baire theorem. A subset A of a topological space is
nowhere dense in X iff the interior of the closure of A is void; otherwise
stated, A is nowhere dense in X iff the open set X ~ A− is dense in X. It is
evident that the finite union of nowhere dense sets is nowhere dense. A
subset A of X is meager in X or of the first category in X iff A is the union of
a countable family of nowhere dense sets. The Baire theorem can then be
stated: the complement of a meager subset of a complete metric space is
dense. (The complement of a meager set is sometimes called co-meager or
residual in X.)

A set A is non-meager or of the second category in X iff it is not meager
in X. The following result is a sort of a localization theorem. From the fact
that a set A is non-meager we deduce the existence of points x such that A
intersects each neighborhood of x in a non-meager set. It is sometimes said
that A is of the second category at such points.

35 THEOREM Let A be a subset of a topological space X and let M(A) be the
union of all open sets V such that V ∩ A is meager in X. Then A ∩ M(A)− is
meager in X.

PROOF Let  be a disjoint family of open sets which is maximal with respect
to the property: if , then U ∩ A is meager. Such a family  exists
because of the maximal principle 0.25. Let . The proof
reduces to showing that W ∩ A is meager, for if this is known then A ∩ W−

is meager because W− ~ W is nowhere dense, and from the maximality of 
it follows that W− contains every open set V such that V ∩ A is meager. To
show that W ∩ A is meager, for each U in  write U ∩ A in the form 

 where Un is nowhere dense. Then, because the family  is
disjoint, the set   is nowhere dense for each non-negative integer
n. Hence W ∩ A is meager. 

An important consequence of the preceding theorem is that if a subset A
of a topological space is non-meager then there is a non-void open set V



such that the intersection of A with every neighborhood of each point of V−

is non-meager.
The concluding theorem of this chapter shows that completeness is

preserved by certain mappings. A map of a uniform space  into a
uniform space  is uniformly open iff for each U in  there is V in  such
that f [U[x]] ⊃ V[f(x)] for each x in X. It is not true that uniformly open
maps preserve completeness for arbitrary uniform spaces; Köthe [1] has
given an example of a complete linear topological space and a closed sub-
space such that the quotient space is not complete. The theorem, like the
Baire theorem, is peculiar to pseudo-metric spaces.

The proof of the theorem which is given here depends on a lemma
which has other profound consequences (see 6.R.). The lemma concerns a
relation R between points of a pseudo-metric space (X,d) and a uniform
space ; that is, R is a subset of X × Y. Let Ur = {(x,y): d(x,y) < r}, so
that Ur[x] is simply the r-sphere about x.

36 LEMMA Let R be a closed subset of the product of a complete pseudo-
metric space (X,d) with the uniform space  and suppose that for each
positive r there is V in  such that R[Ur[x]]− contains V[y] for each (x,y) in
R. Then for each r and each positive e it is true that R[Ur+e[x]] ⊃ R[Ur[x]]−

⊃ V[y].

PROOF The critical fact needed for the proof is: if A is a subset of X and v ε
R[A]−, then there is a set B of arbitrarily small diameter such that v ε R[B]−

and A ∩ B is not void. This is true because: if r is arbitrary, if V is a
symmetric member of  such that R[Ur[x]]− ⊃ V[y] for each member (x,y)
of R, if v′ is a point of R[A] such that v′ ε V[v], and if u is a point of A such
that (u,v′) ε R, then v ε V[v′] ⊂ R[Ur[u]]−, and the diameter of Ur[u] is at
most 2r.

The lemma is now established as follows. Suppose that v ε R[Ur[x]]−. It
will be shown that v ε R[Ur+e[x]], which will complete the proof. Let A0 =
Ur[x], and select inductively, for each positive integer n, a subset An of X
such that v ε R[An]−, An ∩ An−1 is not void, and the diameter of An is less
than e2−n. Since X is complete there is evidently a point u such that each



neighborhood W of u contains some An (hence v ε R[W]−). Clearly d(x,u) <
r + e. For each neighborhood W of u and each neighborhood Z of v it is true
that R[W] intersects Z, and hence there is (u′,v′) in R with u′ in W and v′ in
Z; that is, R ∩ (W × Z) is non-void. Since R is closed (u,v) ε R and the proof
is complete. 

Suppose now that f is uniformly open and continuous, that X is complete
and pseudo-metrizable, that Y is Hausdorff, and that Y* is a Hausdorff
completion of Y. Then (the graph of) f is a subset of X × Y* which is closed
because f is continuous, and satisfies the condition of the preceding lemma
because the map of X into Y is uniformly open. Then the lemma implies that
f is a uniformly open map of X into Y*. Finally, since f[X] contains V[f[X]]
for some V in , it must be true that f[X] is closed (and open) in Y*; hence
f[X] is complete.

37 COROLLARY Let f be a continuous uniformly open map of a complete
pseudo-metrizable space into a Hausdorff uniform space. Then the range of
the map f is complete.

PROBLEMS

A EXERCISE ON CLOSED RELATIONS
Let X and Y be topological spaces and let R be a closed subset of X × Y. If A is a compact subset

of X, then R[A] is a closed subset of Y. (If , then A × {y} is contained in the open set (X × Y)
~ R, and theorem 5.12 may be applied.)

B EXERCISE ON THE PRODUCT OF TWO UNIFORM SPACES
Let  and  be uniform spaces and for each U in  and each V in  let W(U,V) = {((x,y),

(u,v)): (x,u) ε U and (y,u) ε V}.
(a) The family of sets of the form W(U,V) is a base for the product uniformity for X × Y.
(b) If R is a subset of X × Y, then  .
(c) The closure of a subset R of X × Y is  and }.

C A DISCRETE NON-METRIZABLE UNIFORM SPACE
It should be observed that a uniform space  may fail to be metrizable even though the

topology of  is metrizable. Let Ω0 be the set of all ordinals which are less than the first uncountable
ordinal Ω, and for each member a of Ω0 let Ua = {(x,y): x = y or x  a and y  a}. Then the family

of all sets of the form Ua is a base for a uniformity  for Ω0 (observe that Ua = Ua ∘ Ua = Ua−1).
The topology of this uniformity is the discrete topology and hence metrizable, but the uniform space

 is not metrizable.

D EXERCISE: UNIFORM SPACES WITH A NESTED BASE



Let  be a Hausdorff uniform space and suppose that a base  for  is linearly ordered by
inclusion. Then either  is metrizable or the intersection of every countable family of open
subsets of X is open.

E EXAMPLE: A VERY INCOMPLETE SPACE (THE ORDINALS)
Let Ω0 be the set of all ordinals less than the first uncountable ordinal Ω, and let  be the order

topology for Ω0. Then there is a unique uniformity for Ω0 whose topology is  and Ω0 is not
complete relative to this uniformity. (Using the methods of problem 4.E show that, if U is an open
subset of Ω0 × Ω0 which contains the diagonal, then for some x it is true that (y,z) ε U whenever y >
x and z > x. Then show that a uniformity whose topology is  must be identical with the relativized
uniformity of the compact space Ω′ = {x: x  Ω}.)

Note This property of Ω0 was observed by Dieudonné [5]. Doss [1] has characterized topological
spaces which, like Ω0, have a unique uniformity.

F THE SUBBASE THEOREM FOR TOTAL BOUNDEDNESS
The uniform space analogue of Alexander’s theorem 5.6 on compact subbases is: Let  be a

uniform space such that for each member U of some subbase for  there is a finite cover A1, … , An
of X such that Ai × Ai ⊂ U for each i. Then the space  is totally bounded.

Consequently the product of uniform spaces is totally bounded if and only if each coordinate
space is totally bounded.

The Tychonoff product theorem 5.13 for completely regular spaces may be derived from the
preceding proposition and 6.32.

G SOME EXTREMAL UNIFORMITIES
(a) If  is a Tychonoff space, then the uniformity of the Stone-Cech compactification of X,

relativized to X, is the smallest uniformity such that each bounded real-valued continuous function is
uniformly continuous.

(b) If  is a completely regular space, then there is a largest uniformity  for X whose
topology is . This uniformity may be described alternately as the smallest which makes uniformly
continuous each continuous map into a metric space, or each continuous map into a uniform space.
Explicitly, V is a member of  iff V is a neighborhood of the diagonal in X × X and there is a
sequence {Vn, n ε ω} of symmetric neighborhoods of the diagonal such that V0 ⊂ V and Vn+1 ∘
Fn+1 ⊂ Vn for each n in ω.

Note These two constructions are examples of a method which has been used before. If F is an
arbitrary family of functions on X, each member f mapping X into a uniform space Yf, then there is a
smallest uniformity which makes each f uniformly continuous (or equivalently, makes the natural
map into  niformly continuous).

For further information on some extremal uniformities see Shirota [1].

H UNIFORM NEIGHBORHOOD SYSTEMS
A uniform neighborhood system for a set X is a correspondence V and an ordering  such that

the following conditions are satisfied:

(i) Va(x) is a subset of X to which x belongs, for each member a of an index set A and each point x
of X;

(ii) the relation  directs the index set A;
(iii)



if a  b, then Va(x) ⊂ Vb(x) for all x;

(iv) for each member a of A there is b in A such that y ε Va(x) whenever x ε Vb(y); and

(v) for each member a of A there is b in A such that z ε Va(x) whenever y ε Vb(x) and z ε Vb(y).

(a) If (V, ) is a uniform neighborhood system for X, then the family of all sets of the form {(x,y):
y ε Va(x)}, for a an arbitrary member of A is the base of a uniformity  for X. This uniformity is
called the uniformity of the system. This uniformity has the property that: for each a in A, for some U
in  U[x] ⊂ Va(x) for all x, and for each U in  for some a in A, Va(x) ⊂ U[x] for all x.

(b) Let  be a uniformity for X, and let VU(x) = U[x] for each member U of  and each member
x of X. Then  is directed by ⊂ and (V, ⊂) is a uniform neighborhood system for X whose
uniformity is .

(c) Let P be the gage of a uniformity  for X, let A be the cartesian product of P and the set of
positive real numbers, and direct A by agreeing that (p,r)  (q,s) iff r  s and p(x,y)  q(x,y) for all
x and y in X. If Vp,r(x) = {y: p(x,y) < r}, then (V, ) is a uniform neighborhood system for X whose
uniformity is .

Note It is evident from the foregoing that “indexed” neighborhoods may be used to discuss
uniformity and that the theory so obtained is identical with that of uniform spaces. These facts are
due to Weil [1].

I ÉCARTS AND METRICS
An écart for a set X is a non-negative real-valued function e on X × X such that

(i) e(x,y) = 0 iff x = y and
(ii) for each positive number s there is a positive number r such that e(x,z) < s whenever e(x,y) and

e(y,z) are both less than r.

If e is an écart for X then there is a non-negative function p on X × X such that

(i) p(x,y) = 0 iff x = y;
(ii) p(x,y) + p(y,z)  p(x,z) for all x, y, and z in X; and

(iii) for each positive s there is a positive number r such that p(x,y) < s whenever e(x,y) < r and,
similarly, e(x,y) < s whenever p(x,y) < r.

If e(x,y) = e(y,x) for all x and y then p may be taken to be a metric.
Note. This is essentially Chittenden’s metrization theorem (see 6.14). The “metrization” of a

topological space by a function d satisfying all of the requirements for a metric except “d(x,y) =
d(y,x)” has been investigated by Ribeiro [2] and by Balanzat [1].

The term “écart” has been used by some authors to mean a distance function taking values in a
structure less restricted than that of the real numbers (for example, a partially ordered set). For
treatments of uniformity based on ideas of this sort see Appert [1], Colmez [1], Cohen and Goffman
[1], Gomes [1], Kalisch [1], and Lasalle [1].

J UNIFORM COVERING SYSTEMS
Let Φ be a collection of covers of a set X such that:

(i) if  and  are members of Φ, then there is a member of Φ which is a refinement of both  and 



;
(ii) if , then there is a member of Φ which is a star refinement of ; and

(iii) if  is a cover of X and some refinement of  belongs to Φ, then  belongs to Φ.

Let  be the uniformity for X such that the family of all sets of the form  for  in Φ
is a base for . Then Φ is precisely the family of all covers of X which are uniform relative to .

Note Description of a uniformity by means of covers has been used very effectively by J. W.
Tukey [1]; a very early use of this general sort was made by Alexandroff and Urysohn [2].

K TOPOLOGICALLY COMPLETE SPACES: METRIZABLE SPACES
A topological space  is called metrically topologically complete iff there is a metric d for X

such that (X,d) is complete and  is the metric topology. A topological space  is an absolute Gδ
iff it is metrizable and is a Gδ (a countable intersection of open sets) in every metric space in which it
is topologically embedded. Then: A topological space is metrically topologically complete if and
only if it is an absolute Gδ. The proof depends on a sequence of lemmas.

(a) Let (X,d) be a complete metric space, let U be an open subset of X, for x in U let f(x) = 1/dist
(x,X ~ U), and let d*(x,y) = d(x,y) + |f(x) − f(y)|. Then d* is a metric, U is a complete relative to d*,
and the d and d* topologies for U are identical.

(b) A Gδ in a complete metric space is homeomorphic to a complete metric space. (If 
 consider the map of U into the product of the complete metric spaces (Un,dn*),

where dn* is constructed from d and Un as in (a).)
(c) If there is a homeomorphism of a dense subset Y of a Hausdorff space X onto a complete

metric space Z, then Y is a Gδ in X. (For each integer n let Un be the set of all points x of X such that
the image of some neighborhood of x is of diameter less than 1/n. Then the homeomorphism f can be
extended continuously to a continuous map f− of  into Z and f−1 ∘ f− must be the
identity.)

Note These are classical results; (b) is due to Alexandroff [1] and to Hausdorff [2] and (c) is due
to Sierpinski [2].

L TOPOLOGICALLY COMPLETE SPACES: UNIFORMIZABLE SPACES
A topological space  is said to be topologically complete iff there is a uniformity  for X

such that  is complete and 3 is the uniform topology.
(a) If  and  are uniformities for X such that , if  is complete, and if the topology of

 is identical with that of , then  is complete. Hence a completely regular space is
topologically complete iff it is complete relative to the largest uniformity whose topology is .

(b) Let  be a complete uniform space, let F be an Fσ (a countable union of closed sets) and
let x ε X ~ F. Then there is a continuous real-valued function on X which is positive on F and 0 at x.
Consequently there is an open set V and a uniformity  for V such that V contains  is
complete, and the topology of  is identical with the relativized topology of . (Recall the device
used in 6.K(a).)

(c) If is a complete uniform space and Y is a subset of X which is the intersection of the
members of a family of Fσ’s, then Y, with the relativized uniform topology, is topologically
complete. (See 6.K.)

(d) Each paracompact space X is topologically complete. (Consider the uniformity consisting of
all neighborhoods of the diagonal. A Cauchy net which converges to no point of X must, for each
point x, be eventually in the complement of some neighborhood of x, and the application of the even
covering property of paracompact spaces leads to a contradiction.)



Note The problem of topological completeness has been studied by Dieudonné [6]; in particular
he has shown that each metrizable space is topologically complete (this is a consequence of either (c)
or (d) above). Shirota [2] has proved several interesting and profound theorems on topological
completeness, in a direction connected with work of Hewitt [2]. See also Umegaki[l].

I conjecture that a completely regular space X is paracompact iff

(i) the family of all neighborhoods of the diagonal is a uniformity, and
(ii) X is topologically complete.

Neither (i) or (ii) is in itself sufficient to imply paracompactness. A non-paracompact space satisfying
(i) is exhibited in 6.E. The condition (i) implies normality (if A and B are disjoint closed sets choose a
symmetric U such that U ∘ U ⊂ (X ~ A) × (X ~ A) ∪ (X ~ B) × (X ~ B) and consider U[A| and U[B]; a
stronger normality condition may be obtained by a similar argument, as shown by H. J. Cohen [1]).
However, the product of uncountably many copies of the space of real numbers is complete and not
normal (A. H. Stone [1]).

The Fσ condition encountered in (c) above is suggestive of the work of Smirnov [3] on normality.

M THE DISCRETE SUBSPACE ARGUMENT; COUNTABLE COMPACTNESS
(a) If a subset A of a uniform space  is not totally bounded, then there is a member U of 

and an infinite subset B of A such that U[x] is disjoint from U[y] for every pair of distinct points of B;
equivalently, there is a pseudo-metric d in the gage of  such that d(x,y)  1 for distinct points x and
y of B. (A set such as B might be called uniformly discrete.)

(b) A subset A of a topological space  is called relatively count-ably compact iff each
sequence in A has a cluster point in X. Each relatively countably compact subset of a completely
regular space  is totally bounded relative to the largest uniformity whose topology is . If 
is topologically complete a subset is relatively count-ably compact iff its closure is compact, and a
closed subset is compact iff it is countably compact.

N INVARIANT METRICS
A pseudo-metric p for a set X is said to be invariant under the members of a family F of one-to-

one maps of X onto itself, or simply F-invariant, iff p(x, y) = p(f(x),f(y)) for all x and y in X and all f
in F.

A member U of a uniformity  for X is called F-invariant, provided (x,y) ε U iff (f(x),f(y) ε U for
all f in F. Then: The family of F-invariant pseudo-metrics which are uniformly continuous on X × X
generates the uniformity  if and only if the family of F-invariant members of  is a base. (See
6.12.)

Note This is a straightforward generalization of the metrization theorem for topological groups
which is stated in the next problem.

O TOPOLOGICAL GROUPS: UNIFORMITIES AND METRIZATION
Let  be a topological group, and for each neighborhood U of the identity let UL = {(x,y):

x−1y ε U) and let UR = {(x,y): xy−1 ε U}. Consider the following uniformities for G: the left
uniformity  having as a base the family of all sets UL with U a neighborhood of the identity, the
right uniformity  with all UR as a base band the two-sided uniformity  having  as a subbase.

(a) The topology  is the topology of each of , , and .
(b) The uniformity  (respectively ) is generated by the family of all left-invariant (right-

invariant) pseudo-metrics which are continuous on G × G. (See 6.N.)



(c) Let I be the family of all neighborhoods of the identity e which are invariant under inner
automorphisms. Then I is a base for the neighborhood system of e iff the family of all pseudo-metrics
which are both left and right invariant and are continuous on G × G generates a uniformity whose
topology is . (If U is an invariant neighborhood of e, then UL = UR, and this set is invariant under

both left and right translation. If p is left and right invariant, then p(e,y) = p(x−1ex,x−1yx).)
(d) Let G be the set of all real-valued functions of the form g(x) = ax + b where a ≠ 0. Then G is a

group under composition and may be topologized by agreeing that g is near the identity iff a is near 1
and | b | is near zero. For this group  and there is no two-sided invariant metric. (The fact that 

 follows directly from inspection of the defining bases. To see that no invariant metric exists
show that, for each g, if a ≠ 1, then there is f in G such that the constant coefficient of f−1 ∘ g ∘ f is
arbitrarily large.)

Note The existence of left-, right- or two-sided invariant metrics for G follows from the foregoing
under the additional hypothesis that there is a countable base for the neighborhood system of e. The
existence of left-invariant metrics is due to Birkhoff [2] and to Kakutani [1]. The two-sided invariant
theorem is due to Klee [1].

It should be remarked that the requirement that a topological group be metrizable with a two-
sided invariant metric is very stringent. In particular, a locally compact group of this sort has a Haar
measure which is invariant under both right and left translation.

P ALMOST OPEN SUBSETS OF A TOPOLOGICAL GROUP
A subset A of a topological space X is almost open in X, or satisfies the condition of Baire, iff

there is a meager set B such that the symmetric difference (A~B) ∪ (B ~ A) is open.
(a) A subset A is almost open in X iff there are meager sets B and C such that (A ~ B) ∪ C is open.

Countable unions and complements of almost open sets are almost open. Every Borel set is almost
open. (The family of Borel sets is the smallest family  such that  contains all open sets, and
countable unions and complements of members of  belong to .)

(b) Banach-Kuratowski-Pettis Theorem If A contains a non-meager almost open subset of a
topological group X, then AA−1 is a neighborhood of the identity element. (If A is non-meager so is
X, and because X is a topological group each non-void open subset is also non-meager. For each
almost open subset B of X let B* be the union of all open sets U such that U ∩ (X ~ B) is meager.
Then (xB)* = xB* and (B ∩ C)* = B* ∩ C* if C is also almost open. Hence xA* ∩ A* = (xA ∩ A)*
and if xA* ∩ A* is non-void, then xA ∩ A is non-void. Then A*(A*)−1 = {x: xA* ∩ A* is non-void}
⊂ {x: xA ∩ A is non-void} = AA−1.)

(c) An almost open subgroup of a non-meager topological group X is either meager in X or open
and closed in X.

(d) The requirement “almost open” cannot be omitted from theorem (c). There is a subgroup Y of
the group X of real numbers such that the quotient X/Y is countably infinite, and since for each
member Z of X/Y there is a homeomorphism of X onto itself carrying Y onto Z it follows that Y is not
meager in X. (Let B be a Hamel base for X relative to the rational numbers, let C be a countably
infinite subset of B, and let Y be the set of all finite linear rational combinations of members of B~C.)

Note For history and references on theorem (b) see Pettis [1]. The construction in (d) is not
peculiar to the real numbers; a related phenomenon occurs in the much more general situation. The
basic idea is due to Hausdorff; the sharpest known results in this direction are found in Pettis [2],
where history and further references are also given.

Q COMPLETION OF TOPOLOGICAL GROUPS
Let  be a topological group, let  be its left uniformity,  its right uniformity, and  its

two-sided uniformity (  is the smallest uniformity which is larger than each of  and ). It has been



noted that  is the topology of each of , , and .
(a)  is complete iff  is complete. A net is Cauchy relative to  iff it is Cauchy relative

to each of £ and (R. If  is complete so is . The uniform space  is complete, provided 
 is complete, and the group has the property: if {xn, n ε D] is a Cauchy net relative to , then

{(xn)−1, n ε D} is also a Cauchy net relative to . (Equivalently,  and  have the same Cauchy
nets.) Left translation by a fixed member of the group is -uniformly continuous, right translation is 

-uniformly continuous, and inversion (x into x−1) is -uniformly continuous. Multiplication ((x,y)
into xy) is usually not uniformly continuous.

(b) Theorem Let  be a Hausdorff topological group, let  be a Hausdorff completion of
the uniform space , and let  be the topology . Then the group operation · can be extended in a
unique way such that  becomes a topological group and  becomes its two-sided uniformity.

(c) The preceding theorem yields a topological group completion relative to the right uniformity,
provided  and  have the same Cauchy nets. But in view of (a) this condition is necessary for the
existence of “right completion.” The condition is not always satisfied. For example, let G be the
group of all homeomorphisms of the closed unit interval [0,1] onto itself with composition for group
operation and with the topology of the (right invariant) metric: d(f,g) = sup {| f(x) − g(x) |: x ε [0,1]}.
There is a sequence {fn, n ε ω} in G which converges uniformly to a function which is not one to

one, and the sequence {(fn)−1, n ε ω} is therefore not Cauchy relative to the left uniformity. The
group G is already complete relative to the two-sided uniformity 11, for 11 is the uniformity of the
metric: d(x,y) + d(x−1,y−1).

(d) Theorem Let  be a metrizable topological group, let d be a right invariant metric
metrizing G, and let d*(x,y) = d(x,y) + d(x−1,y−1). Then the two-sided uniformity  is the uniformity
of the metric d*. The uniform space  is complete iff G is complete relative to some metric
whose topology is . (Equivalently, iff G is a Gδ in each metrizable space in which it is topologically
embedded.) If  and  have the same Cauchy sequences and G is complete relative to some metric
whose topology is , then G is complete relative to every right invariant metric whose topology is .
(See 6.K and 6.P.)

Note There are two important special cases in which “right-handed completion” may be
accomplished. If there is a totally bounded neighborhood of the identity of the group, or if inversion
(the map carrying x into x−1) is uniformly continuous on some neighborhood of the identity, then
each right Cauchy net is also a left Cauchy net and the two-sided completion yields also a right
completion. These results may be proved directly without great difficulty; they are given in Bourbaki
[1] and Weil [2]. The example of (c) is due to Dieudonné 3], and the result (d) is due to Klee [1].

The result of part (d)—the deduction of completeness from metric topological completeness—
cannot be extended to non-metrizable groups. (See 7.M.)

R CONTINUITY AND OPENNESS OF HOMOMORPHISMS: THE CLOSED GRAPH
THEOREM
Throughout this problem G and H will be Hausdorff topological groups, ai will be the family of

all neighborhoods of the identity in G, and  will be the corresponding family in H.
(a) Closed graph theorem Let G be a topological group, let H be a metrizable topological group

which is complete relative to its right uniformity, and let f be a homomorphism of G into H such that

(i) the graph of f is a closed subset of G × H, and
(ii) the closure of f−1[V] belongs to  whenever .



Then f is continuous.
Dually, a homomorphism g of H into G is open if

(i)* the graph of g is a closed subset of H × G, and
(ii)* the closure of g[V] belongs to  whenever .

(The proof is made by applying lemma 6.36 to the relations f−1 and g respectively. Use a right
invariant metric for H. H is complete relative to each right invariant metric which metrizes H.)

(b) If in the preceding theorem it is assumed that H is a Lindelof space (each open cover has a
countable subcover) and G is non-meager, then condition (ii) is automatically satisfied; if further
g[H] = G, then (ii)* is also automatically satisfied. If G and H are linear topological space, f and g are
linear functions, g[H] = G, and G is non-meager, then (ii) and (ii)* are automatically satisfied. (If 

, then f[G]− ⊂ V f[G], and if H is Lindelof, then f[G] is covered by a countable number of
translates of V by members of f[G]. The closures of inverses under f of these translates are mutually
homeomorphic and must have non-void interiors if G is not meager. Hence f−1[V]− contains an open
set and {f−1[V−1V])− ⊃ (f−1[V−1]f−1[V])− ⊃ f−1[V−1]−f−1[V]− = (f−1[V]−)−1(f−1[V]−). It
follows that f−[V]− ε  for each V in  and a similar argument applies to g. In the linear topological
space case it is possible to use scalar multiples instead of translates of members of .)

(c) If H is a locally compact topological group, then the closed graph theorem is valid; that is, (i)
and (ii) of (a) imply continuity, and dually. (This is a simpler result than that above. It depends on the
lemma 6.A.)

Note The closed graph theorem for complete normed linear spaces is due to Banach [1;41]. Every
known form of the theorem requires drastic countability or compactness assumptions on H. A
counter example to a number of attractive conjectures may be constructed as follows. Let G be an
arbitrary infinite dimensional complete normed linear space, and let H be G with the topology such
that a base for the neighborhoods of 0 is the family of all convex sets which contain a line segment in
every direction. The identity map g of H onto G is continuous and satisfies (i)* and (ii)* above (see
6.Ua). The space H has many pleasant properties: for example, it is complete, and the uniform
boundedness theorem (6.Ub) holds for it. Nevertheless g is evidently not open.

S SUMMABILITY
Let f be a function whose domain includes a set A and whose values line in a complete abelian

Hausdorff topological group G. Let  be the family of finite subsets of A, and for F in  let SF be the
sum of f (a) for a in F. The family  is directed by ⊃, and  is a net in G. If this net
converges to a member s of G, then f is said to be summable over A, s is defined to be the sum of f
over A, and we write s = ∑ {f (a): a ε A] = ∑A f.

(a) Cauchy criterion for summability The function f is summable over A iff for each
neighborhood U of 0 in G there is a finite subset B of A such that for every finite subset C of A ~ B it
is true that ∑C f ε U. Hence a function summable over A is summable over each subset of A.

(b) If f and g are summable over A, then f + g (where (f + g)(x) = f(x) + g(x)) is summable over A
and ∑A(f + g) = ∑A f + ∑Ag.

(c) If f is defined and summable over A and  is a disjoint family of subsets of A which cover A,
then ∑A f = ∑{∑ {f(b): b ε B): B ε }. However, from the existence of the iterated sum it is not
possible to deduce summability over A. (See 2.G for a special case in which the existence of the
iterated sum implies summability over A.)

T UNIFORMLY LOCALLY COMPACT SPACES



A uniform space  is uniformly locally compact iff there is a member U of  such that U[x]
is compact for each x in X. In particular, each locally compact topological group is uniformly locally
compact relative to its left and its right uniformity.

(a) Let  be a uniform space, let U be a member of , let U0 = U and Un = Un−1 for each
positive integer n. Then for each subset A of X the set  is both open and closed.

(b) If U is a closed neighborhood of the diagonal in X × X, A is a compact subset of X, and U ∘
U[x] is compact for each x in A, then U[A] is compact. (U[A] is closed by 6.A.)

(c) A connected uniformly locally compact space  is σ-compact (that is, X is the union of a
countable family of compact subsets).

(d) Each uniformly locally compact space is the union of a disjoint open family of σ-compact
subspaces. Hence each such space is para-compact.

(e) Let  be a topological space. Then there is a uniformity  whose topology is  such that 
 is uniformly locally compact iff  is locally compact and paracompact. (See 5.28.)

Note Part (a) is essentially the chain argument of 5.T. It may be noted that the propositions on
components and connected sets of 5.T cannot be extended to uniformly locally compact spaces.

U THE UNIFORM BOUNDEDNESS THEOREM
(a) Let X be a real linear topological space which is not meager in itself and let K be a closed

convex subset of X such that K = −K and K contains a line segment in each direction (that is, for each
x in X there is a positive real number t such that sx ε K if 0  s  t). Then K is a neighborhood of 0.
(Show that K is not meager in X. Then by 6.P, K − K is a neighborhood of 0 and convexity implies
that 2K is a neighborhood of 0.)

(b) Theorem Let F be a family of continuous linear functions on a non-meager linear topological
space X to a normed linear space Y and suppose that sup {|| f(x) ||: f ε F} is finite for each point x of X.
Then for some neighborhood U of 0 in X it is true that sup {|| f(x) ||: x ε U and f ε F} is finite. (Use the
foregoing proposition to show that, if S is the unit sphere about 0 in Y, then  is a
neighborhood of 0 in X.)

Note Part (b) is the classic Banach-Steinhaus theorem. (Banach [1;80].) The formulation is
clearly capable of some generalization; the basic idea of such generalization is that of proposition (a).
In the terminology of the next chapter the conclusion of (b) can be stated: F is equicontinuous at 0.

V BOOLEAN σ-RINGS
A Boolean ring (B,+,·) is a σ-ring iff each countable subset has a least upper bound relative to the

natural ordering of B (see 2.K). Natural examples of Boolean σ-rings are:

(i) The ring  where  is the family of all Lebesgue measurable subsets of [0,1], or the ring
 modulo the family of  of all sets of measure zero is a σ-ring. (Here Δ is symmetric

difference. The family  is actually a σ-ideal, in the obvious sense.)
(ii) The ring , where  is the family of all Borel subsets of [0,1] and  is the subfamily

consisting of meager Borel sets.

It is the purpose of this problem to exhibit a representation theorem of the type (ii) for an
arbitrary Boolean σ-ring. Throughout  will be the family of all compact open subsets of a locally
compact Boolean space X. There is no loss in generality in restricting attention to rings of the type 

. (See the Stone representation theorem, 5.S.)
(a) If  is a Boolean σ-ring, then the closure of the union of a countable subfamily of  is a

member of  (that is, the closure of the union of a countable family of compact open subsets of X is
compact and open).



(b) Let  be the smallest family of subsets of X such that  and countable unions and
symmetric differences of members of  belong to . Let  be the family of all meager subsets of X.
Then for each member A of  there is a unique member B of  such that . (See 6.P(a).)

(c) Theorem The σ-ring , is (additively) the direct sum of  and the e-ideal . Hence  is
isomorphic to the Boolean σ-ring  modulo the σ-ideal .

Note The results of this problem are due to Loomis [1]. A space which has the property that the
closure of an open set is open (such as the Stone space of a Boolean σ-ring which satisfies a
countable chain condition) is sometimes called extremally disconnected. The space of real-valued
bounded Borel functions on a compact space of this sort decomposes, in a way analogous to
proposition (c), into continuous functions and functions vanishing outside a meager set. For this and
other results see M. H. Stone [4] and also Dixmier [1].

* A filter is a Cauchy filter if it contains small sets. Then the theorem can be stated: a space is
complete iff each Cauchy filter converges to some point.

* This requirement is not necessary for the existence of an extension, but is necessary for the
uniqueness.



Chapter 7
 

FUNCTION SPACES
 

This chapter is devoted to function spaces. That is, the elements of the
spaces are functions on a fixed set X to a fixed topo-logical or uniform
space Y. Almost all of the development concerns spaces of functions which
are continuous relative to a topology for X. Briefly, the purpose of the study
is to define topologies and uniformities for sets of continuous functions, and
to prove compactness, completeness, and continuity properties for the
resulting spaces.

Most of the results of the chapter have their origins in the early theory
of real variables. However, the theorems on joint continuity and the
compact open topology are relatively recent; they are due primarily to Fox
[1]. Further information on function spaces may be found in Arens [2],
Bourbaki [1], Myers [2], and Tukey [1].

POINTWISE CONVERGENCE

One topology for a function space has already been investigated rather
extensively. If F is a family of functions, each on a set X to a topological
space Y, then F is contained in the product . The topology 
of pointwise convergence (coordinatewise convergence, simple
convergence) or simply the pointwise topology for F is the relativized
product topology. A net {fn, n ε D} converges to g iff {fn(x), n ε D}
converges to g(x) for each x in X (see 3.4). A subbase for  is the family of
all subsets of the form {f: f(x) ε U}, where x is a point of X and U is open in
Y. For each point x of X there is a function ex on F, which is called the
evaluation at x (or the projection into the x-th coordinate space) which is
defined by ex(f) − f(x) for all f in F. Evaluation at x is continuous and open



relative to  (theorem 3.2), and  is the smallest topology for F such that
each evaluation is continuous. A function j-on a topological space to F is
continuous relative to  iff ex ∘ g is continuous for each point x of X
(theorem 3.3). It is clear that the pointwise topology depends only on the
family of functions and the topology of Y. A topology for X, if such is
given, does not enter into the definitions or the theorems. If Y is Hausdorff
or regular, then the space F inherits the same property (3.5 and 4.A), but in
general Y may be locally compact or satisfy the first or second axiom of
countability and F may fail to have these properties (3.6 and 5.19).

A characterization of those function spaces which are compact relative
to the topology is an immediate consequence of the Tychonoff theorem,
5.13, on the product of compact spaces. Before stating the result let us
agree, for convenience, that a family F of functions on a set X to a
topological space Y is pointwise closed iff F is a closed subset of the
product space YX. If A is a subset of X, then F[A] is defined to be the set of
all points f(x) for x in A and f in F If x ε X, then F[{x}] is abbreviated to
F[x]. If ex is the evaluation at x, then clearly ex[F] = F[x].

1 THEOREM In order that a family F of functions on a set X to a topological
space Y he compact relative to the topology of pointwise convergence it is
sufficient that

(a) F be pointwise closed in YX, and
(b) for each point x of X the set F[x] has a compact closure.

If Y is a Hausdorff space the conditions (a) and (b) are also necessary.

PROOF The family F is not only a subfamily of YX but is also contained in 
. If condition (b) is satisfied, then this product is a compact

subset of YX by the Tychonoff product theorem, and if F is pointwise
closed, then F is compact. The sufficiency of (a) and (b) is then proved. If y
is a Hausdorff space and F is compact relative to the pointwise topology,
then F is closed by 5.7. The set F[x] is compact and closed because the
evaluation at each point x is a continuous map of F into the Hausdorff space
Y. 

The preceding theorem is more important than casual consideration of
the topology of pointwise convergence might indicate. The pointwise



topology is in many ways unnatural. For example, let Zbea set and for each
finite subset A of X let CA be the characteristic function of A (that is, CA(x)
= 1 if x ε A and CA(x) = 0 if ). The family  of all finite subsets of X is
directed by ⊃, and consequently  is a net of functions on X to the
closed unit interval. This net converges to the function e which is
identically one, because  for each point x, and if A ⊃ {x}, then CA(x) =
1. Now a topology such that the characteristic function of a finite set is
“near” the unit function is obviously unsuitable for many purposes. The
more interesting topologies are those for which convergence is more
restricted, that is, the larger topologies. But observe: if  is compact and 
is larger than the topology  of pointwise convergence, then the identity
map i of  onto  is continuous, and if  is a Hausdorff space, then i
must be a homeomorphism. Consequently if  is compact,  is
Hausdorff, and  is larger than the pointwise topology, then  is identical
with the topology of pointwise convergence. This simple remark indicates
the standard method of proving a function space F compact relative to a
topology . One first shows that F is compact relative to the topology of
pointwise convergence and then proves that -convergence of a net in F
implies -convergence. If y is Hausdorff there can be no loss in restricting
attention to these two propositions, for if either fails F is not compact
relative to .

It is sometimes convenient to consider pointwise convergence for points
in a subset of the domain space. Suppose F is a family of functions, each on
a set X to a topological space Y, and suppose that A is a subset of X. There is
a natural map R of F into the product space YA, obtained by mapping each
member f of F into its restriction to A: that is, R(f) = f | A for each f in F.
The smallest topology  for F such that R is continuous evidently consists
of the inverses under R of the open subsets YA. This topology is that of
pointwise convergence on A. A subbase for  is the family of sets of the
form {f: f(x) ε U) for x in A and U open in Y, and a net {fn, n ε D} in F
converges to g relative to  iff {fn(x),n ε D} converges to g(x) for each x in
A. The map R will be one to one iff, whenever f and g are distinct members
of F, then for some point x of A it is true that f(x) ≠ g(x). A subset A of X for
which this is the case is said to distinguish members of the family F.



2 THEOREM Let F be a family of functions, each on a set X to a Hausdorff
space Y, and let A be a subset of X. The family F with the topology  of
pointwise convergence on A is a Hausdorff space if and only if A
distinguishes members of F. If F is compact relative to the topology of
pointwise convergence on X and if A dis-tinguishes members of F, then 
and  are identical.

PROOF The product space YA is a Hausdorff space and, in view of the
definition of , F with this topology will be Hausdorff iff the restriction
map R is one to one. This is the case iff A distinguishes members of F. The
identity map i of  onto  is always continuous since . If  is
compact and  is Hausdorff, then i is a homeomorphism and  . 

If the range space is a uniform space, then the topology of pointwise
convergence is the topology of a uniformity.

If F is a family of functions on a set X to a uniform space , then F is
a subset of the product  and the relativized product uniformity is
called the uniformity of point-wise convergence (or of simple convergence).
This is sometimes abbreviated as the  uniformity. Its properties have
already been studied (for example, 6.25).

If A is a subset of X, then the uniformity of pointwise convergence on A,
or simply the  uniformity, is defined to be the smallest uniformity which
makes the restriction map R of F into the family of all functions on A to Y
uniformly continuous. The following simple facts about this uniformity are
listed without proof.

3 THEOREM Let F be a family of functions on a set X to a uniform space 
 and let A be a subset of X. Then the uniformity of pointwise

convergence on A has the properties:

(a) The family of all sets of the form {(f,g): (f(x),g(x)) ε V} for V in  and
x in A is a subbase for the  uniformity.

(b) The topology of the  uniformity is the topology of point-wise
convergence on A.

(c) A net {fn, n ε D} is a Cauchy net if and only if {fn(x), n ε D} is a
Cauchy net for each x in A.

(d) If  is complete and R[F] is closed in YA relative to pointwise
convergence on A, then F is complete relative to the  uniformity.



COMPACT OPEN TOPOLOGY AND JOINT CONTINUITY

Given a topology for a family F of functions on a topological space X to
a topological space Y one might reasonably ask whether f(x) is continuous
simultaneously in f and in x. Stated somewhat more formally, the question
is: for which topologies for F is the map F × X which carries (f,x) onto f(x)
continuous, if F × X is given the product topology? This section is devoted
to a brief examination of this question. It turns out that there is a particular
function space topology which is related to this problem, and we begin by
defining this topology and establishing some elementary properties. The
section is devoted entirely to topological questions; connections with a
uniformity for function spaces will be established later. Throughout the
section F will be a family of functions, each on a topological space X to a
topological space Y.

For convenience, for each subset K of X and each subset U of Y, define
W(K,U) to be the set of all members of F which carry K into U; that is,
W(K,U) = {f: f[K] ⊂ U}. The family of all sets of the form W(K,U), for K a
compact subset of X and U open in Y, is a subbase for the compact open
topology for F. The family of finite intersections of sets of the form
W{K,U) is then a base for the compact open topology; each member of this
base is the form ,where each Ki is a compact
subset of X and each Ui is an open subset of Y. The fact that each set
consisting of a single point is compact makes comparison with the
pointwise topology simple.

4 THEOREM The compact open topology  contains the topology  of
pointwise convergence. The space  is a Hausdorff space if the range
space Y is Hausdorff, and is regular if Y is regular and the members of F
are continuous.
PROOF For each x in X and each open subset U of Y the set W({x}, U) = {f:
f(x) ε U} belongs to  because {x} is compact. Hence , for the family
of all sets of this form is a subbase for the pointwise topology . If y is a
Hausdorff space, then  is also a Hausdorff space, by 3.5, and if U and V
are disjoint -neighborhoods of members of F they are also -
neighborhoods. Therefore  is Hausdorff.

Finally, assume that Y is regular; it must be shown that each
neighborhood of each member f of F contains a closed neighborhood. It is



sufficient to prove that each neighborhood of f which belongs to a subbase
for  contains a closed neighborhood, for each neighborhood of f contains a
finite intersection of neighborhoods belonging to the subbase. Suppose that
f ε W(K,U) where K is compact and U is an open subset of Y. Then f[K] is
compact, and since Y is regular there is by 5.10 a closed neighborhood V of
f[K] such that V ⊂ U. Surely f ε W(K,V) ⊂ W(K,U) and evidently W(K,V) is
a neighborhood of f. It remains to show that W(K,V) is closed. But W(K,V)
is the intersection of the sets W({x},V) for x in K, and each of the sets
W({x},V) is -closed and hence -closed. 

There is no hope of showing that, if Y is normal or satisfies the first or
second axiom of countability, then  has these properties, for if X is
discrete the only compact sets are finite and hence  is identical with the
topology of pointwise convergence. The product of normal spaces or spaces
satisfying one of the countability axioms may fail to have the corresponding
property and hence F with the topology  also may fail to have the property.

Let P be the map of F × X into Y which carries (f,x) into f(x). Each
topology for F gives rise to a product topology for F × X, and one may ask
whether P is continuous relative to this product topology. A topology for F
is said to be jointly continuous iff the map P of F × X into Y is continuous.
It is very easy to see that the topology of pointwise convergence is usually
not jointly continuous. The discrete topology is jointly continuous, for if U
is an open subset of Y, then  ,
which is the union of open sets (assuming that F is a family of continuous
functions). If a topology for F is jointly continuous, then each larger
topology is also jointly continuous. Consequently the natural problem is to
find the smallest jointly continuous topology, if such exists. It turns out that
there is generally no such smallest topology; however, a slight relaxation of
the conditions for joint continuity yields a precise description of the
compact open topology. A topology for a family F of functions is jointly
continuous on a set A iff the map P is continuous on F × A, where P(f,x) =
f(x). (Caution: This does not mean that P is continuous at the points of F ×
A; the condition is that the restriction P | (F × A) be continuous.) A
topology for F is jointly continuous on compacta iff it is jointly continuous
on each compact subset of the domain space. Each member f of such a
family is necessarily continuous on each compact set K (that is, f | K is
continuous).



5 THEOREM Each topology which is jointly continuous on compacta is
larger than the compact open topology . If X is regular or Hausdorff and
each member of F is continuous on every compact subset of Xy then  is
jointly continuous on compacta,

PROOF Suppose a topology  for F is jointly continuous on compacta, U is an
open subset of Y, K is a compact subset of X, and P is the map such that
P(f,x = f(x). It must be shown that W(K,U) is -open, where W(K,U) = {f:
f[K] ⊂ U). The set V = (F × K) ∩ P−1[U] is open in F × K because  is
jointly continuous on compacta. If f ε W(K,U), then {f} × K ⊂ V, and since
{f} × K is compact there is a -neighborhood N of f such that N × K ⊂
p−1[U] by theorem 5.12. In other words, each member of the -
neighborhood N of f is a member of the compact open neighborhood
W(K,U). It follows that W(K,U) is -open and the first statement of the
theorem is proved. To prove the second assertion, suppose K is a compact
subset of X, x ε K, U is open in Y, and (f,x) ε P−1[U]. Then, since f is
continuous on K, there is a compact set M which is a neighborhood of x in
K such that f [M] ⊂ U (recall that X is either Hausdorff or regular). Then
W(M,U) × M is a neighborhood of (f,x) in F × K and is contained in P−1[U].
Joint continuity on K follows. 

It may be noticed that, if X is locally compact, then a topology is jointly
continuous on compacta iff it is jointly continuous. Hence, if X is a locally
compact regular space, then the compact open topology for a family of
continuous functions is the smallest jointly continuous topology.

If a topology  for a family F is jointly continuous on compacta, then 
, where ε is the compact open topology and  is the pointwise. If 

 is compact and the range space is Hausdorff, then  is Hausdorff and
consequently . This fact shows the necessity of one of the
conditions given for -compactness in the next theorem. The result is given
in a rather curious form in order to be directly applicable to the later
problem.

6 THEOREM Let X be a topological space which is either regular or
Hausdorffy let Y be a Hausdorff space, let C be the family of all unctions on
X to Y which are continuous on each compact subset of X, and let  and  be
respectively the compact open and the point-wise topologies. Then a
subfamily F of C is -compact if and only if



(a) F is -closed in C,
(b) F[x] has a compact closure for each member x of X, and
(c) the topology  for the -closure of F in YX is jointly continuous on

compacta.

PROOF Suppose F is -compact. The space  is Hausdorff because Y is
Hausdorff and hence F is -closed in C. Evaluation at a point x is -
continuous, hence -continuous, and the image F[x] of F is therefore
compact. The topologies  and  for F coincide because F is -compact and 
-Hausdorff, hence F is -closed in YX, and by 7.5 the topology  (and

hence ) for F is jointly continuous on compacta. This completes the proof
that conditions (a), (b), and (c) are necessary.

Assuming conditions (a), (b), and (c), let F− be the -closure of F in YX.
Condition (b) states that F[x]− is compact for each x, and since F− is a
closed subset of the -compact set   it follows that F− is -
compact. By (c) the topology  for F− is jointly continuous on compacta.
Consequently each member of F− is continuous on each compactum and F−

⊂ C. Theorem 5.5 implies that the topology  for F− is larger than , and
hence these two topologies for F− coincide. By (a) the family F is -closed
in C and is hence  (and ) closed in the subset F− of C; in fact, F− = F, and
F is -compact. 

7 Notes The family C of all functions which are continuous on every
compact subset coincides with the family of all continuous functions if the
space is either locally compact or satisfies the first axiom of countability
(see theorem 7.13 and the discussion preceding it). It is usually the family
of all continuous functions which is of interest; however, the mathematical
structure (and not my whim) is responsible for the appearance of the class
C. The class also shows up a little later in a discussion of completeness.

The relation between the compact open topology and joint continuity
was first studied by Fox [1], who showed that the compact open topology
for a family of continuous functions is smaller than each jointly continuous
topology and is itself jointly continuous if the domain space is locally
compact. For proof of the fact that there is generally no smallest jointly
continuous topology see Arens [2].



UNIFORM CONVERGENCE

This section is devoted to the study of a uniformity for a family F of
functions on a set X to a uniform space . The uniformity is independent
of any topology which may be assigned to the set X, but one of the principal
results is that the family of functions continuous relative to a topology for X
is closed in the space of all functions on X to Y. That is, the uniform limit of
continuous functions is continuous.

The uniformity of uniform convergence is the largest which will be
considered and the uniformity of pointwise convergence is the smallest.
Both of these may be considered as special instances of uniform
convergence on the members of a family a of sets. This concept is
investigated briefly; a uniformity is constructed for each family  of subsets
of X, and the elementary properties are derived.

Let F be a family of functions on a set X to a uniform space . For
each member V of  let W(V) be the set * of all pairs (f,g) such that
(f(x),g(x)) ε V for each x in X. Then W(V)[f] is the set of all g such that g(x)
ε V[f(x)] for every x in X. It is easy to see that W(V−1) = (W(V))−1, W(U ∩ V)
= W(U) ∩ W(V), and W(U ∘ V) ⊃ W(U) ∘ W(V) for all members U and V of 
. Consequently the family of all sets W(V) for V in  is a base for a

uniformity  for F by theorem 6.2. The family  is the uniformity of
uniform convergence, or simply the u.c. uniformity. The topology of  is
the topology of uniform convergence, or the u.c. topology.

It is clear that  is larger than the uniformity of pointwise convergence,
for if y is an arbitrary member of X and , then {(f,g): (f(x),g(x)) ε V for
all x in X} ⊂ {(f,g): (f(y),g(y)) ε V}, and hence each member of the defining
base for  is a subset of a member of the defining subbase for the pointwise
uniformity. It follows that the u.c. topology is larger than the pointwise. It is
also easy to see directly that uniform convergence implies pointwise
convergence, for a net {fn, n ε D} in F converges to g relative to the u.c.
topology iff the net is eventually in W(V)[g] for each V in , and this is true
iff there is some m in D such that, when n  m, then fn(x) ε V[g(x)] for all x
in X. The following theorem lists other elementary properties of the
uniformity .

8 THEOREM Let F be the family of all functions on a set X to a uniform space
 and let  be the uniformity of uniform convergence. Then:



(a) The uniformity  is generated by the family of all pseudo-metrics of
the form d*(f, g) = sup {d(f(x), g(x)): x ε X}, where d is a bounded
member of the gage of .

(b) A net {fn, n ε D} in F converges uniformly to g if and only if it is a
Cauchy net relative to  and {fn(x), n ε D} converges to g(x) for each
x in X.

(c) If  is complete so is the uniform space .

PROOF To prove part (a) observe that the family of all sets of the form {(y,z):
d(y,z)  r}, for r positive and for d a bounded member of the gage of , is a
base for . This is true because for each pseudo-metric e the pseudo-metric
d = min [1, e] is bounded and has the same uniformity. But {(f,g): d*(f,g) 
r) = {(f,g): d(f(x),g(x))  r for each x in X} = W({(y,z): d(y, z)  r}), where
W is the correspondence used above in defining the u.c. uniformity. It
follows that d* belongs to the gage of  and that pseudo-metrics of this
form generate the gage.

One half of the proposition (b) is obvious, and it is only necessary to
show that, if a Cauchy net {fn, n ε D} converges point-wise to g, then it
converges uniformly to g. Let V be an arbitrary closed symmetric member
of , and choose m in D such that, if n  m and p  m, then fp(x) ε V[fn(x)]
for each x in X. Such a choice is possible because the net is assumed to be
Cauchy relative to . Since V[fn(x)] is closed and fp(x) converges to g(x) it
follows that g(x) ε V[fn(x)} and hence fn(x) ε V[g(x)] for each n  m and
every x in X, and (b) is established. Proposition (c) is an immediate
consequence of (b) and of the fact that the product of complete spaces is
complete. 

The following theorem states the principal properties of  for a family
of continuous functions.

9 THEOREM Let F be the family of all continuous functions on a topological
space X to a uniform space , and let  be the uniformity of uniform
convergence. Then:

(a) The family F is closed in the space of all functions on X to Y, and
consequently  is complete if  is complete.

(b) The topology of uniform convergence is jointly continuous.



PROOF Proposition (a) is proved by showing that the set of non-continuous
functions is an open subset of the space G of all functions on X to Y. If f is
not continuous at a point x of X there is a member V of  such that
f−1[V[f(x)]] is not a neighborhood of x. Choose a symmetric member W of 
such that W ∘ W ∘ W ⊂ V. It will be proved that if g is a function such that
(g(y),f(y)) ε W for each y, then g−1[W[g(x)]] is not a neighborhood of x and
hence g is not continuous. It will follow that G ~ F is open relative to the
topology of uniform convergence. If (g(y),f(y)) ε W for each y, then g ⊂ W ∘
f and g−1 ⊂ f−1 ∘ W−1 = f−1 ∘ W and hence g−1 ∘ W ∘ f ⊂ f−1 ∘ W ∘ W ∘ W ∘ f
⊂ f−1 ∘ V ∘ f. Therefore g−1[W[g(x)]] is a subset of f−1 [V[f(x)]] and is not a
neighborhood of x.

The proof of (b) remains. To show continuity of the map of F × X into Y
at a point (f,x) it is only necessary to verify that for V in , if y ε f−1[V[f(x)}}
and g(z) ε V[f(z)] for all z, then g(y) ε V(f(y)] ⊂ V ∘ V [f(x)]. 

A number of useful uniformities are constructed by considering uniform
convergence on each of a family  of subsets of the domain space.
Explicitly, if F is a family of functions on a set X to a uniform space 
and  is a family of subsets of X, then the uniformity of uniform
convergence on members of , abbreviated , has for a subbase the
family of all sets of the form {(f,g): (f(x),g(x)) ε V for all x in A}, for V in 
and A in . This uniformity may be described in another way. For each A in 
 let RA be the map which carries f into the restriction of f to A; that is, RA(f)

= f|A. Then RA carries F into a family of functions on A to Y, this family
may be assigned the uniformity of uniform convergence, and the uniformity

 may be described as the smallest which makes each RA uniformly
continuous.

The preceding propositions on uniform convergence imply
corresponding results about the  uniformity. The simple proofs are
omitted.

10 THEOREM Let X be a topological space, let  be a uniform space, let 
be a family of subsets of X which covers X, let G be the family of all
functions on X to Y, and let F be the family of all functions which are
continuous on each member of . Then:



(a) The uniformity  of uniform convergence on members of , is
larger than the uniformity of pointwise convergence and smaller than
that of uniform convergence on X.

(b) A net {fn, n ε D} converges to g relative to the topology of  if and
only if it is a Cauchy net {relative to  and converges to g
pointwise,

(c) If  is complete, then G is complete relative to .
(d) The family F is closed in G relative to the topology of , and

hence if  is complete so is .
(e) The topology of  for F is jointly continuous on each member of .

It should be emphasized that the family of continuous functions may fail
to be complete relative to . If a is the family of all sets {x} for x in X,
then  is simply the uniformity of pointwise convergence, and the family
of continuous functions is generally not complete relative to this uniformity.
If  is such that continuity on each member of  implies continuity on X,
then proposition (d) above shows  completeness of the family of
continuous functions on X to a complete space. In particular, this is the case
if there is a neighborhood of each point of X which belongs to .

UNIFORM CONVERGENCE ON COMPACTA

In this section two distinct lines of investigation will be combined.
Suppose that F is a family of continuous functions on a topological space X
to a uniform space . The uniformity of uniform convergence on
compacta is the uniformity , where 6 is the family of all compact
subsets of X. The topology of  is sometimes called the topology of
compact convergence. It will be proved that this topology is identical with
the compact open topology which is constructed from the topology of X and
the topology of the uniformity . Thus the uniformity  depends on the
uniformity  for Y, but the topology of  depends only on the topology of
. The uniformity  is particularly useful in case the space X has a “rich”

supply of compact sets, and the section concludes with a brief examination
of spaces satisfying a “richness” condition.

11 THEOREM Let F be a family of continuous functions on a topological
space X to a uniform space . Then the topology of uniform convergence
on compacta is the compact open topology.



PROOF Let K be a compact subset of X, U an open subset of Y, let f ε F, and
suppose that f[K] ⊂ U. Then f[K] is compact and by 6.33 there is V in 
such that V[f[K]} ⊂ U. It is then clear that, if g is a function such that g(x) ε
V[f(x)] for each x in K, then g[K] ⊂ U also. Consequently each set of the
form [f: f[K] ⊂ U) is open relative to the topology of , and the compact
open topology is therefore smaller than that of .

To prove the converse it must be shown that for each compact subset K
of X, each V in , and each continuous f there are compact subsets K1 … Kn
of X and open subsets U1, … Un of Y such that f[Ki] ⊂ Ui, and if g[Ki] ⊂ Ui
for each i then g(x) ε V[f(x)] for each x in K. Choose a closed symmetric
member W of  such that W ∘ W ∘ W ⊂ V, choose x1, … xn in K such that
the sets W[f(xi)] cover f[K], let Ki = K ∩ ∩ f−1[W[f(xi)]], and let Ui be the
interior of W ∘ W[f(xi)}. If g[Ki] ⊂ Ui for each i, then : for each x in K there
is i such that x ε Ki, hence g(x) ε W ∘ W[f(xi)], and since f(x) ε W[f(xi)] it
follows that (g(x), f(x)) ε W ∘ W ∘ W ⊂ V. 

If the uniform space  is complete and  is a family of subsets of the
topological space X then the family of all functions on X to Y which are
continuous on each member of  is  incomplete, according to 7.10. In
order that the family of all continuous functions be complete it is then
sufficient that  satisfy the condition: a function is continuous whenever it
is continuous on each member of . If f is a function on X to Y and B is a
subset of Y, then this condition would be implied by: if A ∩ f−1[B] is closed
for each member A of , then f−1[B] is closed. In particular, the space of all
continuous functions on X to Y is complete relative to uniform convergence
on compacta if X satisfies the condition: if a subset A of X intersects each
closed compact set in a closed set, then A is closed. Such a topological
space is called a k-space. It is clear that the family  of closed compact sets
determines the topology of a k-space entirely, for A is closed iff  for
each C in . By complementation it follows that a subset U of a k-space is
open iff U ∩ C is open in C for each closed compact set C.

The following is evident in view of the definition of k-space and the
remarks preceding.

12 THEOREM The family of all continuous functions on a k-space to a
complete uniform space is complete relative to uniform convergence on



compacta.
The two most important examples of k-spaces are given in the

following.

13 THEOREM If X is a Hausdorff space which is either locally compact or
satisfies the first axiom of countability, then X is a k-space.

PROOF In each case the proof proceeds by assuming that B is a non-closed
subset of X and showing that for some closed compact set C the intersection
B ∩ C is not closed. Suppose x is an accumulation point of B which does
not belong to B. If X is locally compact there is a compact neighborhood U
of x and the intersection B ∩ U is not closed because x is an accumulation
point but not a member. If X satisfies the first axiom of countability, then
there is a sequence {yn, n ε w} in B ~ {x} which converges to x, and the set
which is the union of {x} and the set of all points yn is clearly compact, but
its intersection with B is not closed. 

COMPACTNESS AND EQUICONTINUITY

This is the first of two sections devoted to the problem of finding
conditions for compactness of a family of functions relative to the compact
open topology. The conclusion desired is topological, and the sharpest
results are obtained from purely topological premises. However, the
arguments are simpler for uniformities and the discussion of this section
concerns maps into a uniform space. The last section of the chapter treats
the purely topological problem.

Let F be a family of maps of a topological space X into a uniform space 
. The family F is equicontinuous at a point x if and only if for each

member V of  there is a neighborhood U of x such that f [U] ⊂ V[f(x)] for
every member f of F. Equivalently, F is equicontinuous at x iff 

 is a neighborhood of x for each V in . Roughly
speaking, F is equicontinuous at x iff there is a neighborhood of x whose
image under every member of F is small.

14 THEOREM If F is equicontinuous at x, then the closure of F relative to the
topology  of pointwise convergence is also equicontinuous at x.



PROOF If V is a closed member of the uniformity of Y, then the class of all
functions f which satisfy the condition f [U] ⊂ V[f(x)] is evidently closed
relative to the topology  of pointwise convergence because it is identical
with  . It follows that the pointwise closure of F is
equicontinuous. 

A family F of functions is equicontinuous iff it is equicontinuous at
every point. In view of the preceding theorem the closure of an
equicontinuous family relative to the topology of pointwise convergence is
also equicontinuous; in particular the members of the closure are
continuous functions. The topology of pointwise convergence has other
noteworthy properties for equicontinuous families.

15 THEOREM If F is an equicontinuous family, then the topology of pointwise
convergence is jointly continuous and hence coincides with the topology of
uniform convergence on compacta.

PROOF To prove that the map of F × X into Y is continuous at (f,x) let V be a
member of the uniformity of Y and let U be a neighborhood of x such that
g[U] ⊂ V[g(x)] for all g in F. If g is a member of the -neighborhood {h:
h(x) ε V[f(x)]} of f and y ε U, then g(y) ε V[g(x)] and g(x) ε V[f(x)].
Consequently g(y) ε V ∘ V[f(x)], and joint continuity follows. Each jointly
continuous topology is larger than the compact open by 7.5, and the
compact open topology coincides with that of uniform convergence on
compacta by 7.11. 

The preceding theorem implies that an equicontinuous family of
functions is compact relative to the topology of uniform convergence on
compacta if it is compact relative to the pointwise topology , and the
Tychonoff product theorem gives sufficient conditions for -compactness.
In this way equicontinuity together with certain other conditions implies
compactness of a family of functions. An implication in the reverse
direction, from compactness to equicontinuity, is shown in the following
theorem.

16 THEOREM If a family F of functions on a topological space X to a
uniform space  is compact relative to a jointly continuous topology,
then F is equicontinuous.



PROOF Suppose that x is a fixed point of X and V is a symmetric member of 
. The theorem will follow if it is shown that there is a neighborhood U of x

such that g[U] ⊂ V ∘ V[g(x)] for each g in F. Because the topology for F is
jointly continuous there is for each member f of F a neighborhood G of f
and a neighborhood W of x such that G × W maps into V[f(x)]. If g ε G and
w ε W, then g(x) and g(w) both belong to V[f(x)] and hence g(w) ε V ∘
V[g(x)]. That is, g[W] ⊂ V ∘ V[g(x)] for each g in G. Because F is compact
there is a finite family G1, …, Gn covering F and corresponding
neighborhoods W1, …, Wn of x such that g[Wi] ⊂ V ∘ V[g(x)] for each g in
Gi. If we let U be the intersection of the neighborhoods Wi of x, it is clear
that g[U] ⊂ V ∘ V[g(x)] for every g in F. 

The Ascoli theorem for locally compact spaces is an immediate
consequence of the preceding results. It is obtained from 7.6 by replacing
the condition “the pointwise topology  for the -closure of F is jointly
continuous on compacta” by “the family F is equicontinuous.” The latter
condition implies the former (7.14 and 7.15) and compactness implies
equicontinuity by 7.16. (A proof which does not depend on 7.6 is also
simple to construct.)

17 ASCOLI THEOREM Let C be the family of all continuous functions on a
regular locally compact topological space to a Hausdorff uniform space,
and let C have the topology of uniform convergence on compacta. Then a
subfamily F of C is compact if and only if

(a) F is closed in C,
(b) F[x] has a compact closure for each member x of X, and
(c) the family F is equicontinuous.

A form of the Ascoli theorem is true for families of functions on a k-
space (a space such that a set is closed whenever its intersection with every
closed compact set is closed). A variant of the notion of equicontinuity is
required. A family F of functions is equicontinuous on a set A iff the family
of all restrictions of members of F to A is an equicontinuous family. A
family which is equicontinuous at every point of A is equicontinuous on A,
but the converse proposition is false. However, a family which is
equicontinuous on A is equicontinuous at each point of the interior of A.



The proof of the following theorem is omitted. It is a straightforward
application of 7.6, the results of this section and the fact that a function on a
k-space is continuous if it is continuous on each compact set.*

18 ASCOLI THEOREM Let C be the family of all continuous functions on a k-
space X which is either Hausdorff or regular to a Hausdorff uniform space
Y, and let C have the topology of uniform convergence on compacta. Then a
subfamily F of C is compact if and only if

(a) F is closed in C,
(b) the closure of F[x] is compact for each x in X, and
(c) F is equicontinuous on every compact subset of X.

* EVEN CONTINUITY

This section is devoted to the proof of an Ascoli theorem for topological
spaces. The pattern of attack is much the same as the foregoing except that
a topological concept replaces the (uniform) concept of equicontinuity. The
connections between the two concepts are discussed briefly at the end of the
section.

Let F be a family of functions, each on a topological space X to a
topological space Y. The concept of even continuity can be described
intuitively by the statement: for each x in X, y in Y, and f in F, if f(x) is near
y, then f maps points near x into points near y. Explicitly, the family F is
evenly continuous iff for each x in X, each y in Y, and each neighborhood U
of y there is a neighborhood V of x and a neighborhood W of y such that f
[V] ⊂ U whenever f(x) ε W. The close connection between this definition
and joint continuity may be emphasized by the restatement: F is evenly
continuous iff for each x in X and y in Y and for each neighborhood U of y
there are neighborhoods V of x and W of y such that {f: f ε F and f(x) ε W} ×
V is carried into U by the natural map. The crucial property of evenly
continuous families is easily demonstrated.

19 THEOREM Let F be an evenly continuous family of functions on a
topological space X to a regular space Y and let  be the topology of
pointwise convergence. Then the -closure F− of F is evenly continuous and
 is jointly continuous on F−.



PROOF The latter statement of the theorem is evident from the second
formulation of the definition of even continuity, since {f: f ε F and f(x) ε W}
is -open whenever W is open in Y. To show that the -closure of F is
evenly continuous suppose x ε X, y ε Y and U is a neighborhood of y.
Because Y is regular it may be supposed that U is closed. Let V be a
neighborhood of x and W an open neighborhood of y such that, if f ε F and
f(x) ε W, then f[V] ⊂ U, and suppose that {gn, n ε D} is a net in F which
converges pointwise to g and g(x) ε W. Then {gn(x), n ε D} is eventually in
W; hence for each z in V it is true that {gn(z), n ε D} is eventually in U and
therefore g(z) ε U. This shows that g[V] ⊂ U. 

Sufficient conditions for compactness of an evenly continuous family of
functions are more or less self-evident in view of the preceding result and
7.6. The following proposition shows the necessity of the conditions given
in the Ascoli theorem.

20 THEOREM If a family F of continuous functions on a topological space X
to a regular Hausdorff space Y is compact relative to a jointly continuous
topology, then F is evenly continuous.

PROOF The identity map of the compact space F into F with the topology of
pointwise convergence is continuous, and since the latter topology is
Hausdorff, the two topologies coincide. The pointwise topology for F is
therefore jointly continuous. Suppose that x ε X, y ε Y, and U is an open
neighborhood of y. Let W be a closed neighborhood of y such that W ⊂ U,
and observe that the set K of all members f of F such that f(x) ε W is
pointwise closed and hence compact. If P is the function such that P(f,x) =
f(x), then the compact set K × {x} is contained in P−1[U], and since P is
continuous there is a neighborhood V of x such that K × V ⊂ P−1[U] by
5.12. That is, v ε V and f(x) ε W, then f(v) ε U. 

21 ASCOLI THEOREM Let C be the family of all continuous functions on a
regular locally compact space X to a regular Hausdorff space Y, and let C
have the compact open topology. Then a subset F of C is compact if and
only if

(a) F is closed in C,
(b) the closure of F[x] is compact for each x in X, and



(c) F is evenly continuous.

PROOF If F is compact relative to the compact open topology conditions (a),
(b), and (c) follow from 7.6 and 7.20. If F satisfies (a), (b), and (c), then the
pointwise closure of Fis an evenly continuous family on which the
pointwise topology is jointly continuous, by 7.19. Compactness follows
from 7.6. 

The foregoing theorem can be extended to k-spaces in the same fashion
that 7.17 was extended. A family F of functions is evenly continuous on a
set A iff the family of all restrictions of members of F to A is evenly
continuous. With this definition the Ascoli theorem (21) can be proved for
k-spaces X if condition (c) is replaced by “F is evenly continuous on each
compact subset of X.” The straightforward proof of this fact is omitted.

The section is concluded with two propositions which clarify the
relation between even continuity and equicontinuity.

22 THEOREM An equicontinuous family of functions on a topological space
to a uniform space is evenly continuous.

PROOF Suppose that F is an equicontinuous family of functions on X to Y,
that x ε X and y ε Y, and that U is a neighborhood of y. Then one may
assume that U is the sphere of d-radius r about y, where d is a pseudo-
metric belonging to the gage of Y and r > 0. Since F is equicontinuous at x
there is a neighborhood V of x such that, if z ε V, then d(f(x),(z)) < r/2 for all
f in F. Consequently, if z ε V and f(x) belongs to the sphere of d-radius r/2
about y, then f(z) ε U. 

In a certain sense equicontinuity is the result of “uniformizing” even
continuity with respect to the range space, and, as might be expected,
equicontinuity may be deduced from even continuity in the presence of a
suitable compactness condition.

23 THEOREM * If F is an evenly continuous family of functions on a
topological space X to a uniform space Y, and x is a point of X such that
F[x] has a compact closure, then F is equicontinuous at x.

PROOF Suppose d is a member of the gage of Y and r > 0. For each y in F[x]−

there are neighborhoods W of y and V of x such that, if f(x) ε W, then f[V] is



contained in the sphere of d-radius r/2 about y. Because F[x]− is compact,
there is a finite number of neighborhoods Wi of points yi of F[x]− and
corresponding neighborhoods Vi of x, for i = 1, …, n, such that the family of
all Wi covers F[x]−, and such that, if f(x) ε Wi, then f[Vi] is a subset of the
sphere of d-radius r/2 about yi, Consequently, if 
and f ε F, then f(x) belongs to Wi for some i, and since f [T] is a subset of
some sphere of d-radius r/2, d(f(x),f(y)) < r for each y in T. Hence F is
equicontinuous. 

Notes The results of this section are due to A. P. Morse and myself.
Another form of the Ascoli theorem for topological spaces has been
obtained by Gale [1].

PROBLEMS

A EXERCISE ON THE TOPOLOGY OF POINTWISE CONVERGENCE
The set of all continuous real-valued functions on a Tychonoff space X is dense, relative to the

topology of pointwise convergence, in the set of all real-valued functions on X.

B EXERCISE ON CONVERGENCE OF FUNCTIONS
Let f be a continuous real-valued function on the closed unit interval [0,1] such that f(0) = f(1) = 0

and f is not identically zero. Let gn(x) = f(xn) for each non-negative integer n. Then {gn, n ε ω}
converges pointwise (but not uniformly) to the function h which is identically zero. The union of {h}
and the set of all gn is compact relative to the pointwise topology but is not compact relative to the
topology of uniform convergence.

C POINTWISE CONVERGENCE ON A DENSE SUBSET
Let F be an equicontinuous family of functions on a topological space X to a uniform space and

let A be a dense subset of X. Then the uniformity of pointwise convergence on X is identical with the
uniformity of pointwise convergence on A.

D THE DIAGONAL PROCESS AND SEQUENTIAL COMPACTNESS
Prior to the proof of the Tychonoff product theorem the diagonal process, as outlined below, was

the standard method of proving compactness of a family of functions. Recall that a topological space
is called sequentially compact if each sequence in the space has a subsequence which converges to a
point of the space.

(a) The product of a countable number of sequentially compact topological spaces is sequentially
compact. (Suppose {Ym, m ε ω} is a sequence of sequentially compact spaces and {fn, n ε ω} is a
sequence in the product . Choose an infinite subset A0 of ω such that {fn(0), n ε A0}
converges to a point of Y0, and continue inductively, choosing an infinite subset Ak+1 of Ak such that
[fn(k + 1), n ε Ak+1) converges to a point of Yk+1. If Nk is the k-th member of Ak, then {fn, k ε ω} is
the required subsequence.)



(b) Let Y be a sequentially compact uniform space, let X be a separable topological space, and let
F be an equicontinuous family of functions on X to Y which is closed in YX relative to the topology
of point-wise convergence. Then F is sequentially compact relative to the pointwise topology (or the
compact open topology). (Use 7.C and observe that each Cauchy sequence in Y has a limit point.)

Note Some very beautiful results on countable compactness of function spaces have been
obtained recently by Grothendieck [1]. His results apply directly to some interesting linear
topological space problems.

E DINI’S THEOREM
If a monotonically increasing net {fn, n ε D} of continuous real-valued functions on a topological

space X converges pointwise to a continuous function f, then the net converges to f uniformly on
compacta. (This is a straightforward compactness argument. If C is a compact subset of X let An =
{(x,y): x ε C and fn(x)  y  f(x)} and observe that the intersection of the sets An for n in D is
simply the graph of f | C.)

F CONTINUITY OF AN INDUCED MAP
Let X and Y be sets, let  and  be families of subsets of X and of Y respectively, let F be the

family of all functions on X to a uniform space , and let G be the family of all functions on Y to 
. If T is a map of X into Y the induced map T* of G into F is defined by T*(g) = g ∘ T for g in G.

If for each member A of  the set T[A] is contained in some member of , then T* is uniformly
continuous relative to the uniformities  for F and  for G (uniform convergence on
members of  and of  respectively). In particular T* is always uniformly continuous relative to the
uniformity of uniform convergence and is continuous relative to that of pointwise convergence if 
covers y. If X and Y are topological spaces and T is continuous, then T* is uniformly continuous
relative to uniform convergence on compacta.

Note The continuity of certain other naturally induced maps has been studied by Arens and
Dugundji [2].

G UNIFORM EQUICONTINUITY
A family F of functions on a uniform space  to a uniform space  is uniformly

equicontinuous iff for each member V of  there is U in  such that (f(x),f(y) ε V whenever f ε F and
(x,y) ε U.

(a) A family F is uniformly equicontinuous iff it is uniformly jointly continuous, in the sense that
the natural map of F × X into Y is uniformly continuous when the uniformity of F is that of uniform
convergence and F × X has the product uniformity.

(b) The pointwise closure of a uniformly equicontinuous family is uniformly equicontinuous.
(c) If X is compact and F is equicontinuous, then F is uniformly equicontinuous.
Note The proofs of the foregoing propositions require no new methods. A more detailed

treatment of the subject is given in Arens [2] and in Bourbaki [1].

H EXERCISE ON THE UNIFORMITY 
Let X be a set, let  be a cover of X which is directed by ⊃ (that is, for A and B in  there is C in 

 such that C ⊃ A ∪ B), let  be a uniform space, and let F be the family of functions on X to Y
with the uniformity  of uniform convergence on members of . Finally, suppose that S is a net
in F and that for each member A of  there is given a subnet {S ∘ TA(m), m ε EA} of S which
converges to a member s of F uniformly on A. Give an explicit formula for a subnet of S which
converges to s relative to the topology of .

I CONTINUITY OF EVALUATION



If F is a family of functions on a set X to a set Y, then X is mapped by evaluation into a family G
of functions on F to Y; explicitly, the evaluation E(x) at a point x of X is defined by E(x)(f) = f(x) for
all f in F. Let  and  be uniform spaces and let G have the uniformity of uniform
convergence on members of a family  of subsets of F. Then the evaluation map E of X into G is
continuous if each member of  is equicontinuous, and evaluation is uniformly continuous if each
member of  is uniformly equicontinuous.

J SUBSPACES, PRODUCTS, AND QUOTIENTS OF k-SPACES
(a) There are Tychonoff spaces which are not k-spaces, and since every Tychonoff space can be

embedded in a compact Hausdorff space it follows that not every subspace of a k-space is a k-space.
(See the example 2.E.)

(b) The product of uncountably many copies of the real line is not a k-space. (Let A be the subset
of the product consisting of all members x such that for some non-negative integer n each coordinate
of x is equal to n except for a set of at most n indices, and on this set x is zero. Then A is not closed,
but A ∩ C is compact for each compact set C.)

(c) Let Zbea k-space, let R be an equivalence relation on X, and let X/R have the quotient
topology. If X/R is a Hausdorff space, then it is a k-space.

K THE k-EXTENSION OF A TOPOLOGY
Let  be a Hausdorff space. The k-extension of  is defined to be the family  of all subsets

U of X such that U ∩ C is open in C for every compact set C (equivalently, A is -closed iff A ∩ C is
-compact for every -compact set C).

(a) If C is a -compact subset of X, then the relativization of  to C is identical with that of .
Consequently a set is -compact iff it is -compact.

(b) The space  is a k-space.
(c) A function on X is -continuous iff it is -continuous on every compact subset of X.
(d) The topology  is the largest topology which agrees with  on compact sets (in the sense that

the relativization to a compact set is identical with the relativization of ).

L CHARACTERIZATION OF EVEN CONTINUITY
A family F of functions on a topological space X to a topological space Y is evenly continuous if

and only if for each net {(fn,xn), n ε D} in F × X such that {xn, n ε D} converges to x and {fn(x), n ε
D} converges to y it is true that {fn(xn), n ε D} converges to y.

M CONTINUOUS CONVERGENCE
Let F be a family of continuous functions, each on a space X to a space Y. A net {fn, n ε D}

converges continuously to a member f of F iff it is true that {fn(xn), n ε D} converges to f(x)
whenever {xn, n ε D} is a net in X converging to a point x.

(a) A topology  for F is jointly continuous iff a net in F converges continuously to a member f
whenever it -converges to f.

(b) If a sequence in F converges to f relative to the compact open topology, then it converges to f
continuously.

(c) Suppose that X satisfies the first axiom of countability and that F, with the compact open
topology , also satisfies this axiom. Then 6 is jointly continuous and a sequence in F -converges to
a member f iff it converges continuously to f.

N THE ADJOINT OF A NORMED LINEAR SPACE
Let X be a real normed linear space and let X*, its adjoint, be the space of all continuous real-

valued linear functions on X. The norm topology for X* is defined by: ||f|| = sup {| f(x) |: || x ||  1}.



The topology of pointwise convergence for X* is called the w*-topology. A subset F of X* is called
w*-bounded iff for each member x of X the set of all f(x) with f in F is bounded.

(a) The space X* is not complete relative to the w*-topology unless every linear function on X is
continuous. (See 3.W. Assume that there are enough continuous linear functionals on X to distinguish
points—this fact is a consequence of the Hahn-Banach theorem, Banach [1;27].)

(b) Theorem (Alaoglu) The unit sphere in X* is compact relative to the w*-topology. Hence each
norm bounded w*-closed subset of X* is the; w*-compact. (The unit sphere is a closed subset of the
product .)

(c) The space X* with the w*-topology is paracompact and hence topologically complete. (See
5.Y and 6.L.)

(d) If a subset F of X* is equicontinuous, then its w*-closure is equicontinuous. If Fis
equicontinuous, then the w*-closure of F is w*-compact. If the w*-closure of F is w*-compact, then
F is w*-bounded. (Observe that F is equicontinuous iff it is norm bounded.)

(e) If X is non-meager, and in particular if X is complete, then each w*-bounded subset F of X* is
equicontinuous. (Apply 6.U(b), or apply 6.U(a) to the set {x: | f(x) |  1 for each f in F}.)

(f) The hypothesis “X is non-meager” cannot be omitted from (e). (Consider the space X of all
real sequences which are zero save on a finite set, with the norm || x || = ∑{| xn |: n ε ω}. If fn (x) =
nxn, then the sequence {fn, n ε w} converges to zero relative to the w*- topology.)

Note The principal results of this problem are more or less classical and certain of them may
clearly be extended to less restricted situations. However, the equivalences resulting from (d) and (e)
do not hold for an arbitrary complete linear topological space. In connection with (f) it is interesting
to note that a w*-compact convex subset of the adjoint of a normed linear space X is always
equicontinuous; the proof of this fact is not entirely trivial.

O TIETZE EXTENSION THEOREM *
(a) Let X be a normal topological space, let A be a closed subset, and let f be a continuous

function on A to the closed interval [−1,1]. Then f has a continuous extension g which carries X into
[−1,1]. (Let C = {x: f(x)  -⅓) and let D = {x: f(x)  H}. By Urysohn’s lemma there is f1 on X to
[−⅓,⅓] such that f1 is −⅓ on C and ⅓ on D. Evidently | f(x) − f1(x) |  ⅔ for all x in A. The same
sort of argument may be applied to the function f − f1.)

Note Dugundji [1], Dowker [3], and Hanner [1] have proved interesting extensions of Tietze’s
theorem.

P DENSITY LEMMA FOR LINEAR SUBSPACES OF C(X)
Let X be a topological space, let C(X) be the space of all bounded continuous real-valued

functions on X, and let C(X) have the topology of uniform convergence (equivalently, norm C(X) by
||f|| = sup {|f(x) |: x ε X}). A subset L of C(X) is said to have the two-set property iff for closed disjoint
subsets A and B of X and for each closed interval [a,b] there is a member f of L such that f maps X
into [a,b], f is a on A, and f is b on B. Each linear subspace of C(X) which has the two-set property is
dense in C(X). (If g is an arbitrary member of C(X) and dist (g,L) > 0 choose h in L such that dist
(g,L) is approximately || g − h ||. If k = g − h, then dist (k,L) = dist (g,L) which is approximately || k ||.
Show that there is a member f of L such that || k − f ||  2|| k ||/3.)

Q THE SQUARE ROOT LEMMA FOR BANACH ALGEBRAS *
A real (or complex) Banach algebra is an algebra A over the real (complex) numbers together

with a norm such that A is a complete normed linear space and multiplication satisfies the condition:
|| xy ||  || x || || y ||. (In terms of the usual operator norm the algebra A can be described as a Banach
space with an associative multiplication such that multiplication on the left by a fixed element x is a



linear operator of norm at most || x ||.) Throughout the following, A is a fixed (real or complex)
Banach algebra.

A function f on D to a normed linear space is absolutely summable iff ∑{||f(n)||: n ε D} exists.
(a) Each function in A which is absolutely summable is summable. If
{xn, n ε ω} and {ym, m ε ω] are absolutely summable, then
{xnym, (m,n) ε ω × ω} is absolutely summable, and
∑ {xn: n ε ω} ∑{ym: m ε ω} = ∑{xnym: (m,n) ε ω × ω}.

(The usefulness of this result lies in the fact that the last sum may be computed by grouping the
summands in a more or less arbitrary fashion. See 6.S.)

(b) Let an be the n-th. binomial coefficient in the expansion of (1 − t)½ about t = 0. Then a0 = 1,
an is negative for n positive, ∑{an: n ε ω( = 0, and ∑{anap−n: n ε ω and n  p} is 1, −1 and 0 for p
= 0, p = 1, and p > 1, respectively. (Alternatively, one may define the coefficients ön recursively so
that the last stated relation is satisfied. After verifying that an < 0 for n positive observe that the

partial sums ∑{antn: n < p) are monotonically decreasing in n and bounded below by (1 − t)½ for 0 
 t < 1—hence also for t = 1.)

(c) If the algebra has a unit u and if || x − u ||  1, then there is an element y in the algebra such
that x = y2. Explicitly, y may be taken to be ∑{an(u − x)n: n ε ω}, where an is defined as in (b).

(Here it is assumed that x0 = u. The element y may also be written in the form: y = ∑ {an(u − x)n −
u]: n  1|. In this form it is clear that y is the limit of polynomials in x and that these polynomials
may be taken to be without constant coefficients.)

Note It is evident that a great deal more information can be obtained by means of the methods
sketched above (for example, if || x || < 1, then ∑ {xn: n ε ω} is the multiplicative inverse of u − x).
For a systematic treatment of Banach algebras see Loomis [2] and Hille [1].

R THE STONE-WEIERSTRASS THEOREM
(a) Let X be a compact topological space, let C(X) be the algebra of all continuous real-valued

functions on X, and let C(X) have the norm: || f || = sup {|f(x) |: x ε X}. Then a subalgebra R of C(X) is
dense in C(X) if it has the two-point property: for distinct points x and y of X and for each pair a and
b of real numbers there is f in R such that f(x) = a and f(y) = b.

In particular R is dense if the constant functions belong to R and R distinguishes points (in the
sense that, if x ≠ y, then f (x) ≠ f (y) for some f in R).

The proof is accomplished by a sequence of lemmas.
(i) If f ε R, then | f | belongs to the closure R− of R, where | f |(x) = | f(x) |. (Take the square root of

f2 using 7.P.)
(ii) If f and g belong to a subalgebra, then max [f,g] and min [f,g] belong to its closure. (Here max

[f,g](x) = max [f(x),g(x)]. Observe that max [a,b] = [(a + b) + |a − b |]/2 and min [a,b] = [(a +
b) − |a − b |]/2.)

(iii) If the subalgebra R has the two-point property, f ε C(X), x ε X, and e > 0, then there is g in R−

such that g(x) = f(x) and g(y) < f(y) + e for all y in X. (Using compactness of X, take the
minimum of a suitably chosen finite family of functions.)

The theorem now follows from (iii) by taking the maximum of a properly chosen finite family of
functions.



(b) If X is a topological space and the family C(X) of all continuous real-valued functions on X is
given the topology of uniform convergence on compacta, then each subalgebra of C(X) which has the
two-point property is dense in C(X).

Note This is unquestionably the most useful known result on C(X). The corresponding theorem
for complex-valued functions is false (consider, for example, the functions which are continuous on
the unit disk in the plane and are analytic in its interior). See M. H. Stone [5] for a more detailed
discussion.

S STRUCTURE OF C(X)
Throughout this problem X, Y, and Z will be compact Hausdorff spaces and C(X), C(Y), and C(Z)

will be the algebras of all continuous real-valued functions on X, Y, and Z, respectively. A real
homomorphism of an elgebra is a homomorphism into the real numbers.

(a) For each continuous function F on X to Y let F* be the induced map of C(Y) into C(X) defined
by F*(h) = h ∘ F for all h in C(Y). Then

(i) F* is a homomorphism of C(Y) into C(X);
(ii) F maps X onto Y iff F* is an isomorphism of C(Y) onto a sub-algebra of C(X) which contains

the unit;
(iii) F is one to one iff F* maps C(Y) onto C(X);
(iv) if G is a continuous map of Y into Z, then (G ∘ F)* = F* ∘ G*; and
(v) if F is a topological map of X onto Y, then (F−1)* = (F*)−1.

(b) The topology of C(X) is entirely determined by the algebraic operations. In detail: f  g iff f −
g is the square of an element of C(X), and || f || = inf {k: −ku  f  ku} where u is the function which
is identically one. If  is a real homomorphism of C(X), then | (f) |  || f || and, unless  is
identically zero, (u) = 1.

(c) Let S be the set of all real homomorphisms  of C(X) such that (u) = 1, let S have the
topology of pointwise convergence, and let E be the evaluation map of X into S (that is, E(x)(f) =
f(*)). Then E is a topological map of X onto S. (Show that S is compact, use the Stone-Weierstrass
theorem to show that the evaluation map D of C(X) into C(S) is an isomorphism of C(X) onto C(S),
verify that E* = D−1, and use (a).)

(d) The space X is metrizable if and only if C(X) is separable. (This result is not needed for the
rest of the problem; it is given simply as an exercise in the use of (c).)

(e) If H is a homomorphism of C(Y) into C(X) which carries the unit of C(Y) into the unit of C(X),
then there is a unique continuous map F of X into Y such that H = F*. (The homomorphism H
induces a map of the real homomorphisms on C(X) into real homomorphisms on C(Y).)

(f) Let R be a closed subalgebra of C(X) such that u ε R, let F be the map of X into 
 which is defined by F(x)f = f(x), and let Y be the range of F. Then R is the range of

the induced isomorphism F* of C(Y) into C(X).
(g) Let I be a closed ideal in C(X) and let Z = {x: f(x) = 0 for all f in I}. Then I is the set of all

members of C(X) which vanish identically on Z. (If Z is empty, then there is a member I which
vanishes at no point and therefore has an inverse. Consider the subalgebra C + I, where C is the set of
constant functions. Because Z is non-void the set C + I is closed, and (0 may be applied.)

Notes Quite a bit is known about the structure of C(X). Further information and references are
given in a review of the subject by S. B. Myers [1]. See also Hewitt [2].

The line of attack outlined in the preceding problem is not the only one possible—the
fundamental facts (the Stone-Weierstrass theorem, the Tychonoff product theorem, and the Tietze
theorem) may be used in various ways to yield the desired results. However, the pattern used above



is, in part, an example of a general method. To each member of a certain collection of objects (in this
case compact Hausdorff spaces X) there is associated another object (in this case the Banach algebras
C(X)). Moreover, to each of a specified class of maps of the original objects (continuous maps in the
case at hand) there is assigned an induced map satisfying certain conditions (for example (iv) and (v)
of (a)). In this case the induced maps “go in the direction opposite” that of the inducing maps—such
a correspondence is called contra-variant. The assignment of the Stone-Čech compactification of a
Tychonoff space, together with the obvious induced maps, furnishes an example where the induced
map is in the same direction as the original—a covariant correspondence.

This general method of investigation has been used most successfully by Eilenberg and Steenrod
in their axiomatic treatment of homology theory [1]. The method itself was first studied by Eilenberg
and Mac-Lane. The study of objects and maps might be called the galactic theory, continuing the
analogy whereby the study of a topological space is called global.

T COMPACTIFICATION OF GROUPS; ALMOST PERIODIC FUNCTIONS
It is natural to attempt to map a topological group into a dense subgroup of a compact topological

group in somewhat the same way that a Tychonoff space is embedded in its Stone-Čech
compactification. A topological embedding is usually impossible—a complete group is closed in
each Hausdorff group in which it is topologically and isomor-phically embedded. However, a number
of interesting results can be obtained; the propositions that follow are intended to be an introduction
to these. The development is motivated by the observation: If  is a continuous homomorphism of a
topological group G into a compact group H and if g is a continuous real-valued function on H, then
g ∘  has the property that the set of all left translates is totally bounded (relative to the uniformity of
uniform convergence).

Throughout it is assumed that G is a fixed topological group. For each bounded real-valued
function f on the group G and each x in G the left translate of f by x, Lx(f), is defined by: Lx(f)(y) =

f(x−1y). The space of bounded real functions is metrized by d(f,g) = sup {| f(x) − g(x) |: x ε X} and the
left orbit Xf of a function f is defined to be the closure, relative to the metric topology, of the set of all
left translates of f. A function f is called left almost periodic iff Xf is compact.

Let A be the set of all continuous left almost periodic functions on G. Then for each x in G the
left translation Lx maps A into A. Topologize the space of all maps of A into A by pointwise
convergence, and let α[G] be the closure relative to this topology of the set of left translations.

(a) Lemma Let (X,d) be a compact metric space and let K be the group (under composition) of all
isometries of K into itself. Then the topology (for K) of uniform convergence on X is the topology of
the metric: d*(R,S) = sup {d(R(x),S(x)): x ε X} and this is identical with the topology of pointwise
convergence on X. The group K with this topology is a compact topological group.

(b) α[G] is compact. (Observe that .)
(c) Each member of α[G] is an isometry which carries each left orbit Xf onto itself. The natural

map of α[G] into the product space , where Kf is the group of isometries of Xf, is a
topological isomorphism. Hence α[G] is a topological group.

(d) If A is given the topology of pointwise convergence on G and α[G] (a subset of AA) has the
resulting product topology, then the two topologies for α[G] coincide. Hence Rn → R in α[G] iff
Rn(f)(x) → R(f) (x) for all f in A and all x in G.

(e) The map L of G into α[G] which carries a member x of G into Lx is a continuous
homomorphism. The smallest topology for G which makes L continuous is identical with the smallest
topology which makes each member f of A continuous. (α[G] may also be described as the
completion, relative to the smallest uniformity which makes each f in A uniformly continuous, of G



modulo the subgroup of members of G which are not distinguished from the identity by members of
A.)

(f) If g is a continuous real function on α[G], then g ∘ L ε A. If f ε A and g is the function on α[G]
defined by g(R) = R−1 (f) (e), then f = g ∘ L and g is continuous. The family of continuous real
functions on α[G] is isometric (and isomorphic) to A.

(g) If  is a continuous homomorphism of G into a compact topological group H, then there is a
continuous homomorphism θ of α[G] into H such that  = θ ∘ L. (More generally, for H arbitrary 
induces a natural homomorphism θ of α[G] into α[H] such that θ ∘ L = L ∘ . See the definition of
α.)

There are several obvious corollaries to the preceding development; for example, a function is
left periodic iff it is right periodic, and the class A is a Banach algebra which is isomorphic to the
algebra of all continuous functions on the compact group α[G].

(h) The term “almost periodic” is derived from an alternate description of the class A. A member
x of G is called a left e-period of a real function f iff |f(x−1y) − f(y) | < e for all y in G. Let Ae be the
set of all left e-periods of a continuous function f. Then the following are equivalent:

(i) There is a homomorphism  of G into a compact group H and a continuous real-valued
function h on H such that g = h ∘ .

(ii) The set of left translates of f is totally bounded relative to the uniformity of uniform
convergence.

(iii) For each positive number e there is a finite subset B of G such that G = BAe.

(The connection between (ii) and (iii) is clarified by observing that | Lx(f)(z) − Ly(f)(z) | < e for all

z iff y−1x is a left e-period.)
Notes The results above are due primarily to Weil [2]. The equivalence of parts (ii) and (iii) of (h)

is a classical theorem of Bochner. Loomis [2] investigates almost periodic functions by showing first
that the set of all left almost periodic functions on a group satisfies the conditions which characterize
a Banach algebra of functions, and then defining α[G] to be the set of real homomorphisms of this
Banach algebra.

Proposition (a) suggests the general problem of topologizing a homeo-morphism group in such a
fashion as to obtain a topological group. For results in this direction and for references see Arens [3]
and Dieudonné [4].

* The set W(V) may be described very simply in terms of the usual notation for relations: W{V) =
{(f,g): g ∘ f−1 ⊂ V}. This statement is clear since g ∘ f−1 is precisely the set of all pairs (f(x),g(x))
with x in X. It is also clear that W(V) = ((f,g): g ⊂ V ∘ f} and W(V)[f] = {g: g ⊂ V ∘ f] = {g: g(x) ε
V[f(x)] for each x in X}.

* It is evident that the condition “X is a k-space” may be omitted from the hypothesis of the
theorem if the family C of continuous functions is replaced by the family of all functions which are
continuous on each compact set. However, the same result may be obtained by applying the given
theorem to X with the topology  such that a set A is -closed iff A ∩ B is closed for every closed
compact set B.

* This theorem is false if the condition “F[x] has a compact closure” is replaced by “F[x] is
totally bounded”.

* This theorem occurs here because the proof requires the fact that the uniform limit of
continuous functions is continuous. In all honesty I should admit that there are three problems in



earlier chapters where the same fact is used.
* This proposition is given here essentially as a preliminary to the Stone-Weierstrass theorem.

However, the lemma is of some importance in a more general situation and is consequently stated for
an arbitrary Banach algebra.



Appendix
 

ELEMENTARY SET THEORY
 

This appendix is devoted to elementary set theory. The ordinal and
cardinal numbers are constructed and the most commonly used theorems
are proved. The non-negative integers are defined and Peano’s postulates
are proved as theorems.

A working knowledge of elementary logic is assumed, but acquaintance
with formal logic is not essential. However, an understanding of the nature
of a mathematical system (in the technical sense) helps to clarify and
motivate some of the discussion. Tarski’s excellent exposition [1] describes
such systems very lucidly and is particularly recommended for general
background.

This presentation of set theory is arranged so that it may be translated
without difficulty into a completely formal language.* In order to facilitate
either formal or informal treatment the introductory material is split into
two sections, the second of which is essentially a precise restatement of part
of the first. It may be omitted without loss of continuity.

The system of axioms adopted is a variant of systems of Skolem and of
A. P. Morse and owes much to the Hilbert-Bernaysvon Neumann system as
formulated by Gödel. The formulation used here is designed to give quickly
and naturally a foundation for mathematics which is free from the more
obvious paradoxes. For this reason a finite axiom system is abandoned and
the development is based on eight axioms and one axiom scheme * (that is,
all statements of a certain prescribed form are accepted as axioms).

It has been convenient to state as theorems many propositions which are
essentially preliminary to the desired results. This clutters up the list of
theorems, but it permits omission of many proofs and abbreviation of



others. Most of the devices used are more or less evident from the
statements of the definitions and theorems.

THE CLASSIFICATION AXIOM SCHEME

Equality is always used in the sense of logical identity; ‘1 + 1 = 2’ is to
mean that ‘1 + 1’ and ‘2’ are names of the same object. Besides the usual
axioms for equality an unrestricted substitution rule is assumed: in
particular the result of changing a theorem by replacing an object by its
equal is again a theorem.

There are two primitive (undefined) constants besides ‘ = ’ and the other
logical constants. The first of those is ‘ε,’ which is read ‘is a member of’ or
‘belongs to.’ The second constant is denoted, rather strangely, ‘{.. : …}’
and is read ‘the class of all .. such that ….’ It is the classifier. A remark on
the use of the term ‘class’ may clarify matters. The term does not appear in
any axiom, definition, or theorem, but the primary interpretation † of these
statements is as assertions about classes (aggregates, collections).
Consequently the term ‘class’ is used in the discussion to suggest this
interpretation.

Lower case Latin letters are (logical) variables. The difference between
a constant and variable lies entirely in the substitution rules. For example,
the result of replacing a variable in a theorem by another variable which
does not occur in the theorem is again a theorem, but there is no such
substitution rule for constants.

I Axiom of extent * For each x and each y it is true that x = y if and only if
for each z, z ε x when and only when z ε y.

Thus two classes are identical iff every member of each is a member of
the other. We shall frequently omit ‘for each x’ or ‘for each y in the
statement of a theorem or definition. If a variable, for example ‘x,’ occurs
and is not preceded by ‘for each x’ or ‘for some x’ it is understood that ‘for
each x’ is to be prefixed to the theorem or definition in question.

The first definition assigns a special name to those classes which are
themselves members of classes. The reason for this dichotomy among
classes is discussed a little later.

1 DEFINITION x is a set iff for some y, x ε y.



The next task is to describe the use of the classifier. The first blank in
the classifier constant is to be occupied by a variable and the second by a
formula, for example {x: x ε y}. We accept as an axiom the statement: u ε
{x: x ε y} iff u is a set and u ε y. More generally, each statement of the
following form is supposed to be an axiom: u ε {x: … x …} iff u is a set
and … u Here ‘ … x … ’ is supposed to be a formula and ‘ … u … ’ is
supposed to be the formula which is obtained from it by replacing every
occurrence of ‘x’ by ‘u.’ Thus u ε {x: x ε y and z ε x} iff u is a set and u ε y
and z ε u.

This axiom scheme is precisely the usual intuitive construction of
classes except for the requirement ‘u is a set.’ This requirement is very
evidently unnatural and is intuitively quite undesirable. However, without it
a contradiction may be constructed simply on the basis of the axiom of
extent. (See theorem 39 and the discussion preceding it.) This complication,
which necessitates a good bit of technical work on the existence of sets, is
simply the price paid to avoid obvious inconsistencies. Less obvious
inconsistencies may very possibly remain.

THE CLASSIFICATION AXIOM SCHEME (Continued)

A precise statement of the classification axiom scheme requires a
description of formulae. It is agreed that: *

(a) The result of replacing ‘α’ and ‘β’ by variables is, for each of the
following, a formula.

(b) The result of replacing ‘α’ and ‘β’ by variables and ‘A’ and ‘B’ by
formulae is, for each of the following, a formula

Formulae are constructed recursively, beginning with the primitive
formulae of (a) and proceeding via the constructions permitted by



(b).

II Classification axiom-scheme An axiom results if in the following ‘α’
and ‘β’ are replaced by variables, ‘A’ by a formula  and ‘B’ by the
formula obtained from  by replacing each occurrence of the variable which
replaced a by the variable which replaced β:

For each β, β ε {α: A} if and only if β is a set and B.

ELEMENTARY ALGEBRA OF CLASSES

The axioms already stated permit the deduction of a number of
theorems directly from logical results. The deduction is straightforward and
only an occasional proof is given.

2 DEFINITION x ∪ y = {z: z ε x or z ε y}.

3 DEFINITION x ∩ y = {z: z ε x and z ε y}.
The class x ∪ y is the union of x and y, and x ∩ y is the intersection of x

and y.

4 THEOREM z ε x ∪ y if and only if z ε x or z ε y, and z ε x ∩ y if and only if z
ε x and z ε y.

PROOF From the classification axiom z ε x ∪ y iff z ε x or z ε y and z is a set.
But in view of the definition 1 of set, z ε x or z ε y and z is a set iff z ε x or z
ε y. A similar argument proves the corresponding result for intersection. 

5 THEOREM x ∪ x = x and x ∩ x = x.

6 THEOREM x ∪ y = y ∪ x and x ∩ y = y ∩ x.

7 THEOREM * (x ∪ y) ∪ z = x ∪ (y ∪ z) and (x ∩ y) ∩ z = x ∩ (y ∩ z).

These theorems state that union and intersection are, in the usual sense,
commutative and associative operations. The distributive laws follow.

8 THEOREM x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) and x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪
z).



9 DEFINITION  if and only if it is false that x ε y.

10 DEFINITION .

The class ~x is the complement of x.

11 THEOREM ~(~x) = x.

12 THEOREM (DE MORGAN) ~(x ∪ y) = (~x) ∩ (~y) and ~(x ∩ y) = (~x) ∪
(~y).

PROOF Only the first of the two statements will be proved. For each z, z ε ~(x
∪ y) iff z is a set and it is false that z ε x ∪ y, because of the classification
axiom and the definition 10 of complement. Using theorem 4, z ε x ∪ y iff z
ε x or z ε y. Consequently, z ε ~(x ∪ y) iff z is a set and  and ; that is,
iff z ε ~x and z ε ~y. Using 4 again, z ε ~{x ∪ y) iff z ε (~x) ∩ (~y). Hence ~
(x ∪ y) = (~x) ∩ (~y) because of the axiom of extent. 

13 DEFINITION x ~ y = x ∩ (~y).

The class x ~ y is the difference of x and y, or the complement of y
relative to x.

14 THEOREM x ∩ (y ~ z) = (x ∩ y) ~ z.

The proposition ‘x ∪ (y ~ z) = (x ∪ y) ~ z’ is unlikely, although at this
stage it is impossible to exhibit a counter example. To be a little more
precise, the negation of the proposition cannot be proved on the basis of the
axioms so far assumed; it is possible to make a model for this initial part of
the system such that  for each x and each y (there are no sets). The
negation of the proposition can be proved on the basis of axioms which will
presently be assumed.

15 DEFINITION 0 = {x: x ≠ x}.

The class 0 is the void class, or zero.

16 THEOREM .



17 THEOREM 0 ∪ x = x and 0 ∩ x = 0.

18 DEFINITION .

The class  is the universe.

19 THEOREM  if and only if x is a set.

20 THEOREM  and .

21 THEOREM  and .

22 DEFINITION * : for each y, if y ε x, then }.

23 DEFINITION : for some y, z ε y and y ε x}.

The class  is the intersection of the members of x. Note that the
members of  are members of members of x and may or may not belong to
x. The class  is the union of the members of x. Observe that a set z
belongs to  (or to ) iff z belongs to every (respectively, to some)
member of x.

24 THEOREM  and .

PROOF  iff z is a set and z belongs to each member of 0. Since (theorem
16) there is no member of 0,  iff z is a set, and by 19 and the axiom of
extent . The second assertion is also easy to prove. 

25 DEFINITION x ⊂ y iff for each z, if z ε x, then z ε y.

A class x is a subclass of y, or is contained in y, or y contains x iff x ⊂
y. It is absolutely essential that ‘⊂’ not be confused with ‘ε.’ For example, 0
⊂ 0 but it is false that 0 ε 0.

26 THEOREM 0 ⊂ x and .

27 THEOREM x = y iff x ⊂ y and y ⊂ x.

28 THEOREM If x ⊂ y and y ⊂ z, then x ⊂ z



29 THEOREM x ⊂ y iff x ∪ y = y.

30 THEOREM x ⊂ y iff x ∩ y = x.

31 THEOREM If x ⊂ y, then  and .

32 THEOREM If x ε y, then  and .

The preceding definitions and theorems are used very frequently—often
without explicit reference.

EXISTENCE OF SETS

This section is concerned with the existence of sets and with the initial
steps in the construction of functions and other relations from the primitives
of set theory.

III Axiom of subsets If x is a set there is a set y such that for each z, if z ⊂
x, then z ε y.

33 THEOREM If x is a set and z ⊂ x, then z is a set.

PROOF According to the axiom of subsets, if x is a set there is y such that, if
z ⊂ x, then z ε y, and hence by the definition 1, z is a set. (Observe that this
proof does not use the full strength of the axiom of subsets since the
argument does not require that y be a set.) 

34 THEOREM  and .

PROOF If  then x is a set and since 0 ⊂ x it follows from 33 that 0 is a
set. Then  and each member of  belongs to 0. It follows that  has
no members. Clearly (that is, theorem 26) . If  then x is a set and
by the axiom of subsets there is a set y such that, if z ⊂ x, then z ε y. In
particular x ε y, and since  it follows that . Consequently 
and equality follows. 

35 THEOREM If x ≠ 0, then  is a set.



PROOF If x ≠ 0, then for some y, y ε x. But y is a set and since  by 32 it
follows from 33 that  is a set. 

36 DEFINITION 2x = {y: y ⊂ x}.

37 THEOREM .

PROOF Every member of  is a set and consequently belongs to . Each
member of  is a set and is contained in  (theorem 26) and hence belongs
to . 

38 THEOREM If x is a set, then 2x is a set, and for each y, y ⊂ x iff y ε 2x.

It is interesting to notice that the existence of sets is not provable on the
basis of the axioms so far enunciated, but it is possible to prove that there is
a class which is not a set. Letting R be , by the classifier axiom R ε R
iff  and R is a set. It follows that R is not a set. Observe that, if the
classifier axiom did not contain the “is a set” qualification, then an outright
contradiction, R ε R iff , would result. This is the Russell paradox. A
consequence of this argument is that  is not a set, because  and 33
applies. (The regularity axiom will imply that ; this axiom also yields
a different proof that  is not a set.)

39 THEOREM  is not a set.

40 DEFINITION {x} = {z: if , then z = x}.

Singleton x is {x}.
This definition is an example of a technical device which is very

convenient. If x is a set, then {x} is a class whose only member is x.
However, if x is not a set, then  (these statements are theorems 41 and
43). Actually, the primary interest is in the case where x is a set, and for this
case the same result is given by the more natural definition {z: z = x}.
However, it simplifies statements of results greatly if computations are
arranged so that  is the result of applying the computation outside its
pertinent domain.

41 THEOREM If x is a set, then, for each y, y ε {x} iff y = x.



42 THEOREM If x is a set, then {x} is a set.

PROOF If x is a set {x} ⊂ 2x and 2x is a set. 

43 THEOREM  if and only if x is not a set.

PROOF If x is a set, then {x} is a set and consequently is not equal to . If x
is not a set, then  and  by the definition. 

44 THEOREM If x is a set, then  and ; if x is not a set, then 
 and .

PROOF Use 34 and 41. 

IV Axiom of union If x is a set and y is a set so is x ∪ y.

45 DEFINITION {xy} = {x} ∪ {y}.

The class {xy} is an unordered pair.

46 THEOREM If x is a set and y is a set, then {xy} is a set and z ε {xy} iff z =
x or z = y;  if and only if x is not a set or y is not a set.

47 THEOREM If x and y are sets, then  and ; if
either x or y is not a set, then  and .

ORDERED PAIRS: RELATIONS

This section is devoted to the properties of ordered pairs and relations.
The crucial property for ordered pairs is theorem 55: if x and y are sets, then
(x,y) = (u,v) iff x = u and y = v.

48 DEFINITION (x,y) = {{x} {xy}}.

The class (x,y) is an ordered pair.

49 THEOREM (x,y) is a set if and only if x is a set and y is a set; if (x,y) is not
a set, then .



50 THEOREM If x and y are sets, then   
 and

.

If either x or y is not a set, then , ,
and .

51 DEFINITION 1st coord .

52 DEFINITION 2nd coord .

These definitions will be used, with one exception, only in the case
where z is an ordered pair. The first coordinate of z is 1st coord z and the
second coordinate of z is 2nd coord z.

53 THEOREM 2nd coord .

54 THEOREM If x and y are sets 1st coord (x,y) = x and 2nd coord (x,y) = y. If
either of x and y is not a set, then 1st coord  and 2nd coord .

PROOF If x and y are sets, then the equality for 1st coord is immediate from
50 and 51. The equality for 2nd coord reduces to showing that y = (x ∩ y) ∪
((x ∪ y) ~ x), by 50 and 52. It is straightforward to see that (x ∪ y) ~ x = y ~
x and by the distributive law (y ∩ x) ∪ (y ∩ ~x) is . If
either x or y is not a set, then, using 50 it is easy to compute 1st coord (x,y)
and 2nd coord (x,y). 

55 THEOREM If x and y are sets and (x,y) = (u,v), then x = u and y = v.

56 DEFINITION r is a relation if and only if for each member z of r there is x
and y such that z = (x,y).

A relation is a class whose members are ordered pairs.

57 DEFINITION r ∘ s = {u: for some x, some y and some z, u = (x,z), (x,y) ε s
and (y,z) ε r}.



The class r ∘ s is the composition of r and s.
To avoid excessive notation we agree that {(x,z): …} is to be identical

with {u: for some x, some z, u = (x,z) and …}. Thus r ∘ s = {(x,z): for some
y, (x,y) ε s and (y, z) ε r}.

58 THEOREM (r ∘ s) ∘ t = r ∘ (s ∘ t).

59 THEOREM r ∘ (s ∪ t) = (r ∘ s) ∪ (r ∘ t) and r ∘ (s ∩ t) ⊂ (r ∘ s) ∩ (r ∘ t).

60 DEFINITION r−1 = {(x,y): (y,x) ε r}.

If r is a relation r−1 is the relation inverse to r.

61 THEOREM (r−1)−1 = r.

62 THEOREM (r ∘ s)−1 = s−1 ∘ r−1.

FUNCTIONS

Intuitively, a function is to be identical with the class of ordered pairs
which is its graph. All functions are single-valued, and consequently two
distinct ordered pairs belonging to a function must have different first
coordinates.

63 DEFINITION f is a function if and only if f is a relation and for each x,
each y, each z, if (x,y) ε f and (x,z) ε f, then y = z.

64 THEOREM Iff is a function and g is a function so is f ∘ g.

65 DEFINITION domain f = {x: for some y, (x,y) ε f}.

66 DEFINITION range f = {y: for some x, (x,y) ε f}.

67 THEOREM domain  and range .

PROOF If , then (x,0) and (0, x) belong to  and hence x belongs to
domain  and range . 

68 DEFINITION .



Hence z ε f(x) if z belongs to the second coordinate of each member of f
whose first coordinate is x.

The class f(x) is the value of f at x or the image of x under f. It is to be
noticed that if x is a subset of domain f, then f(x) is not {y: for some z, z ε x
and y = f(z)}.

69 THEOREM If  domain f, then ; if x ε domain f, them .

PROOF If  domain f, then {y: (x,y) ε f} = 0, and  (theorem 24). If x ε
domain f, then {y: (x,y) ε f} ≠ 0 and (theorem 35) f(x) is a set. 

The foregoing theorem does not require that f be a function.

70 THEOREM If f is a function, then f = {(x,y): y = f(x)}.

71 THEOREM * If f and g are functions, then f = g if and only if f(x) = g(x) for
each x.

The two following axioms † further delineate the class of all sets.

V Axiom of substitution If f is a function and domain f is a set, then range
f is a set.

VI Axiom of amalgamation If x is a set so is .

72 DEFINITION : {u ε x and v ε y}.

The class  is the cartesian product of x and y.

73 THEOREM If u and y are sets so is .

PROOF Clearly one can construct a function (namely, {(w,z): w ε y and z =
(u,w)}) whose domain is y and whose range is . Then apply the axiom
of substitution. 

74 THEOREM If x and y are sets so is .

PROOF Let f be the function such that domain f = x and f(x) = {u} × y for u in
x. (There is a unique function of this sort; namely, f = {{u,z): u ε x and z =
{u} ×y}.) Because of the axiom of substitution, range f is a set. By a direct



computation range f = {z: for some u, u ε x and z = {u} × y}. Consequently 
 range f, which by the axiom of amalgamation is a set, is x × y. 

75 THEOREM If f is a function and domain f is a set, then f is a set.

PROOF For f ⊂ (domain f) × (range f). 

76 DEFINITION yx = {f: f is a function, domain f = x and range f ⊂ y}.

77 THEOREM If x and y are sets so is yx.

PROOF If f ε yx, then f ⊂ x × y, which is a set, and hence f ε 2x×y (theorem 38)
and 2x×y is a set. Since yx ⊂ 2x×y it follows from the axiom of subsets that yx

is a set. 
For convenience, three more definitions are made.

78 DEFINITION f is on x if and only if f is a function and x = domain f.

79 DEFINITION f is to y if and only if f is a function and range f ⊂ y.

80 DEFINITION f is onto y if and only if f is a function and range f = y.

WELL ORDERING

Many of the results of this section are not needed in the development of
the integers, ordinals, and cardinals which follows. They are included here
because they are interesting in themselves and because the methods are
simplified forms of the constructions used later.

Since the basic constructive results have now been proved we are able
to assume a somewhat less pedestrian pace.

81 DEFINITION x r y if and only if (x,y) ε r.

If x r y, then x is r-related to y or x r-precedes y.

82 DEFINITION r connects x if and only if when u and v belong to x either u r
v or v r u or v = u.



83 DEFINITION r is transitive in x if and only if, when u, v, and w are
members of x and u r v and u r w, then u r w.

If r is transitive in x, then r orders x. The terminology ‘u r-precedes v’ is
especially suggestive if u and v belong to x and r orders x.

84 DEFINITION r is asymmetric in x if and only if, when u and v are members
of x and u r v, then it is not true that v r u.

Restated, if u ε x and v ε x and u r-precedes v, then v does not r-precede
u.

85 DEFINITION x ≠ y if and only if it is false that x = y.

86 DEFINITION z is an r-first member of x if and only if z ε x and if y ε x, then
it is false that y r z.

87 DEFINITION r well-orders x if and only if r connects x and if y ⊂ x and y ≠
0, then there is an r-first member of y.

88 THEOREM If r well-orders x, then r is transitive in x and r is asymmetric
in x.

PROOF If u ε x, v ε x, u r v, and v r u, then {uv} ⊂ x and consequently there
is an r-first member z of {uv}. Either z = u or z = v, and hence it is either
false that v r u or that u r v. This contradiction shows that r is asymmetric in
x. If r fails to be transitive in x, then for some members u, v, and w of x it is
true that u r v, v r w, and w r u, since r connects x. But then {u} ∪ {v} ∪
{w} fails to have an r-first member. 

89 DEFINITION y is an r-section of x if and only if y ⊂ x, r well-orders x, and
for each u and v such that u ε x, v ε y, and u r v it is true that u ε y.

That is, a subset y of x is an r-section of x iff r well-orders x and no
member of x ~y r-precedes a member of y.

90 THEOREM If n ≠ 0 and each member of n is an r-section of x, then  and
 are r-sections of x.



91 THEOREM If y is an r-section of x and y ≠ x, then y = {u: u ε x and u r v}
for some v in x.

PROOF If y is an r-section of x and y ≠ x, then there is an r-first member v of
x ~ y. If u ε x and u r v, then, since v is the r-first member of x ~ y, 
and hence u ε y. Therefore {u: u ε x and u r v) ⊂ y. On the other hand, if u ε
y, then since  and y is an r-section, it is false that v r u and hence it is
true that u r v. The required equality follows. 

92 THEOREM If x and y are r-sections of z, then x ⊂ y or y ⊂ x.

93 DEFINITION * f is r-s order preserving if and only if f is a function, r well-
orders domain f, s well-orders range f, and f(u) s f(v) whenever u and v are
members of domain f such that u r v.

94 THEOREM If x is an r-section of y and f is an r-r order-preserving
function on x to y y then for each u in x it is false that f (u) r u.

PROOF It must be shown that {u: u ε x and f(u) r u} is void. If not there is an
r-first member v of this class. Then f(v) r v, and if u r v, then u r f(u) or u =
f(u). Since f(v) r v, then f(v) r f(f(v)) or f(v) = f(f(v)), but since f is r-r order
preserving f(f(v)) r f(v) and this is a contradiction. 

Thus an r-r order-preserving function on an r-section cannot map a
member of its domain into an r-predecessor.

A proof such as that of theorem 94 which depends on considering the r-
first element for which the theorem fails is a proof by induction.

95 DEFINITION f is a 1-1 function if and only if both f and f−1 are functions.

This is the equivalent to the statement that f is a function and if x and y
are distinct members of domain f, then f(x) ≠ f(y).

96 THEOREM If f is r-s order preserving, then f is a 1-1 function and f−1 is s-r
order preserving.

PROOF If f(u) = f(v), then it is impossible that u r v or v r u, for in this case
f(u) s f(v) or f(v) s f(u). Hence u = v and f is 1-1. If f(u) s f(v), then u ≠ u, and



if u r v, then f(v) s f(u), which is a contradiction. Therefore f−1 is s-r order
preserving. 

97 THEOREM If f and g are r-s order preserving, domain f and domain g are
r-sections of x and range f and range g are s-sections of y, then f ⊂ g or g ⊂
f.

PROOF By theorem 92 either domain f ⊂ domain g or domain g ⊂ domain f,
and the theorem will follow if it is proved that f(u) = s(u) for all u belonging
to the domain of both f and g. If the class {z: z ε (domain f) ∩ (domain g)
and g(z) ≠ f(z)} is not empty there is an r-first member u. Then f(u) ≠ g(u)
and it may be supposed that f(u) s g(u). Since range g is an s-section, g(v) =
f(u) for some v in x and v r u because g−1 is order preserving. But u is the r-
first point at which the functions differ, and therefore f(v) = g(v) = f(u)
which is a contradiction. 

98 DEFINITION f is r-s order preserving in x and y if and only if r well-orders
x, s well-orders y, f is r-s order preserving, domain f is an r-section of x, and
range f is an s-section of y.

According to theorem 97, if f and g are both r-s order preserving in x
and y, then f ⊂ g or g ⊂ f.

99 THEOREM If r well-orders x and s well-orders y, then there is a function f
which is r-s order preserving in x and y such that either domain f = x or
range f = y.

PROOF Let f = {(u,v): u ε x, and for some function g which is r-s order
preserving in x and y, u ε domain g and (u,v) ε g}. Because of the preceding
theorem, f is a function, and it is easy to see that its domain is an r-section
of x and its range is an s-section of y. Hence f is r-s order preserving in x
and y and it remains to show that either domain f = x or range f = y. If not,
there is an r-first member u of x ~ (domain f) and an s-first member v of y ~
(range f), and the function f ∪ {(u,v)} is easily seen to be r-s order
preserving in x and y. Then (u,v) ε f by definition of f and hence u ε domain
f. This is a contradiction. 



In one case it is possible to state which of the alternatives in the
conclusion of the preceding theorem occurs, for if x is a set and y is not,
then it is impossible that range f = y because of the axiom of substitution.

100 THEOREM If r well-orders x, s well-orders y, x is a set, and y is not a set,
then there is a unique r-s order-preserving function in x and y whose
domain is x.

ORDINALS

In this section the ordinal numbers are defined and the fundamental
properties established. Another axiom is assumed before beginning the
discussion of ordinals.

It is a priori possible that there are classes x and y such that x is the only
member of y and y is the only member of x. More generally, it is possible
that there is a class z whose members exist by taking in each other’s
laundry, in the sense that every member of z consists of members of z. The
following axiom explicitly denies this possibility by requiring that each
non-void class z have at least one member whose elements do not belong to
z.

VII Axiom of regularity If x ≠ 0 there is a member y of x such that x ∩ y =
0.

101 THEOREM .

PROOF If x ε x, then x is a non-void set and is the only member of {x}. By
the axiom of regularity there is y in {x} such that y ∩ {x} = 0, and
necessarily y = x. But then y ε y ∩ {x}, which is a contradiction. 

102 THEOREM It is false that x ε y and y ε x.

PROOF If x ε y and y ε x, then both x and y are sets and are the only members
of {z: z = x or z = y). Applying the axiom of regularity to the latter class
leads to a contradiction, just as in the proof of the preceding theorem. 

Of course, this theorem may be generalized to more than two sets. The
axiom of regularity actually implies another strong result, intuitively stated



as follows: it is impossible that there be a sequence such that xn+1 ε xn for
each n. A precise statement of the result must be deferred.

103 DEFINITION E = {(x,y): x ε y}.

The class E is the ε-relation. Notice that if x ε y and y is not a set, then 
, by theorem 49, and .

104 THEOREM E is not a set.

PROOF If , then  and (E, {E}) ε E. Recall that (x,y) = {{x} {xy}}
and, if (x,y) is a set, z ε (x,y) iff z = {x} or z = {xy}. Consequently E ε {E} ε
{{E} {E{E}}} ε E. But if a ε b ε c ε a, then, upon application of the axiom
of regularity to {x: x = a or x = b or x = c}, a contradiction results. 

An informal discussion of the structure of the first few ordinals may be
conceptually enlightening.* The first ordinal will be 0, the next 1 = 0 ∪
{0}, the next 2 = 1 ∪ {1}, and the next 3 = 2 ∪ {2}. Observe 0 is the only
member of 1, that 0 and 1 are the only members of 2, and 0, 1, and 2 are the
only members of 3. Each ordinal preceding 3 is not only a member but also
a subset of 3. Ordinals are defined so that this very special sort of structure
results.

105 DEFINITION † x is full iff each member of x is a subset of x.

In other words, x is full iff each member of a member of x is a member
of x.

The following definition is due to R. M. Robinson.

106 DEFINITION x is an ordinal if and only if E connects x and x is full.

That is, given two members of x, one is a member of the other, and each
member of a member of x belongs to x.

107 THEOREM If x is an ordinal E well-orders x.

PROOF If u and v are members of x and u E v, then (theorem 102) it is false
that v E u and hence E is asymmetric in x. If y is a non-void subset of x,



then by the axiom of regularity there is u in y such that u ∩ y = 0. Then no
member of y belongs to u and u is the E-first member of y. 

108 THEOREM If x is an ordinal, y ⊂ x, y ≠ x, and y is full, then y ε x.

PROOF If u E v and v E y, then u E y because y is full. Hence y is an E-
section of x. Consequently there is a member v of x such that y = {u: u ε x
and u E v} by theorem 91. Since every member of v is a member of x, y =
{u: u ε v} and y = v. 

109 THEOREM If x is an ordinal and y is an ordinal, then x ⊂ y or y ⊂ x.

PROOF The class x ∩ y is full and by the preceding theorem either x ∩ y = x
or x ∩ y ε x. In the first case x ⊂ y. If x ∩ y ε x, then  since in this
case x ∩ y ε x ∩ y. Since   the preceding theorem implies that x ∩ y =
y and therefore y ⊂ x. 

110 THEOREM If x is an ordinal and y is an ordinal, then x ε y or y ε x or x =
y.

111 THEOREM If x is an ordinal and y ε x, then y is an ordinal.

PROOF It is clear that E connects y because x is full and E connects x. The
relation E is transitive on y because E well-orders x and y ⊂ x.
Consequently if u E v and v E y, then u E y and hence y is full. 

112 DEFINITION R = {x: x is an ordinal}.

113 THEOREM * R is an ordinal and R is not a set.

PROOF The last two theorems show that E connects R and that R is full;
hence R is an ordinal. If R were a set, then R ε R and this is impossible. 

In view of theorem 110, R is the only ordinal which is not a set.

114 THEOREM Each E-section of R is an ordinal.

PROOF If an E-section x of R is not equal to R, then by 91 there is a member
v of R such that x = {u: u ε R and u ε v}. Since each member of v is an



ordinal, x = {u: u ε v} = v. 

115 DEFINITION x is an ordinal number if and only if x ε R.

116 DEFINITION x < y if and only if x ε y.

117 DEFINITION x  y if and only if x ε y or x = y.

118 THEOREM If x and y are ordinals, then x  y if and only if x ⊂ y.

119 THEOREM If x is an ordinal, then x = {y: y ε R and y < x}.

120 THEOREM If x ⊂ R, then  is an ordinal.

PROOF That E connects  follows from theorems 110 and 111, and that 
is full follows from the fact that members of x are full. 

It is not hard to see that if x is a subset of R, then the ordinal  is the
first ordinal which is greater than or equal to each member of x, and that 
is a set iff x is a set. These results will not be needed, however.

121 THEOREM If x ⊂ R and x ≠ 0, then .

Indeed, in this case  is the E-first member of x.

122 DEFINITION x + 1 = x ∪ {x}.

123 THEOREM If x ε R, then x + 1 is the E-first member of {y: y ε R and x <
y}.

PROOF It is easy to verify that E connects x + 1 and that x + 1 is full and is
hence an ordinal. If there is u such that x < u and u < x + 1, then since x is a
set and u ε x ∪ {x} either u ε x and x ε u or u = x and x ε u. Both of these
conclusions are impossible (theorems 101 and 102) and the desired
conclusion is established. 

124 THEOREM If x ε R, then .

125 DEFINITION .



This definition will be used only in case f is a relation. In this case f | x
is a relation and is called the restriction of f to x.

126 THEOREM If f is a function, f | x is a function whose domain is x ∩
(domain f) and (f | x)(y) = f(y) for each y in domain f|x.

The final theorem on ordinals asserts that (intuitively) it is possible to
define a function on an ordinal so that its value at any member of its domain
is given by applying a predetermined rule to the earlier values of the
function. A little more precisely, given g it is possible to find a unique
function f on an ordinal such that f(x) = g(f | x) for each ordinal number x.
The value f(x) is then completely determined by g and the values of f at
ordinal numbers preceding x. Application of this theorem is defining a
function by transfinite induction. The proof is similar to that of theorem 99
and the same sort of preliminary lemma is needed.

127 THEOREM Let f be a function such that domain f is an ordinal and f(u) =
g(f | u) for u in domain f. If h is also a function such that domain h is an
ordinal and h(u) = g(h | u) for u in domain h, then h ⊂ f or f ⊂ h.

PROOF Since both domain f and domain h are ordinals it may be assumed
that domain f ⊂ domain h (either this or the reverse inclusion follows from
109) and it remains to be proved that f(u) = h(u) for u in domain f .
Assuming the contrary, let u be the E-first member of domain f such that
f(u) ≠ h(u). Then f(v) = h(v) for each ordinal v preceding u and hence f| u =
h | u. Then f(u) = g(f | u) = h(u) and this is a contradiction. 

128 THEOREM For each g there is a unique function f such that domain f is
an ordinal and f(x) = g(f | x) for each ordinal number x.

PROOF Let f = {(u,v) : u ε R and there is a function h such that domain h is
an ordinal, h(z) = g(h | z) for z in domain h and (u,v) ε h}. From the
preceding theorem it follows that f is a function, and it is evident that the
domain of f is an E-section of R and is hence an ordinal. Moreover, if h is a
function on an ordinal such that h(z) = g(h|z) for z in domain h, then h ⊂ f,
and if z ε domain h, then f(z) = g(f|z).

Finally, suppose x ε R ~ (domain f). Then  by theorem 69 and
since domain f is a set f is a set (theorem 75). If , then the



equality f(x) = g(f | x) follows. Otherwise g(f) is a set (theorem 69 again). In
this case if y is the E-first member of R ~ (domain f) and h = f ∪ {(y,g(f))},
then the domain of h is an ordinal and h(z) = g(h | z) for z in domain h.
Hence h ⊂ f and y ε domain f which is a contradiction. Consequently,

 and the theorem is proved. 
The mechanics of this theorem deserves a little comment. If domain f is

not R, then  and  for each ordinal number x such that domain
f  x. If , then f = 0.

INTEGERS *

In this section the integers are defined and Peano’s postulates are
derived as theorems. The real numbers may be constructed from the
integers (see Landau [1]) by use of these postulates and the two facts: the
class of integers is a set (theorem 138), and it is possible to define a
function on the integers by induction (theorem 0.13; this fact may also be
derived as a corollary to 128). Another axiom is needed.

VIII Axiom of infinity For some y, y is a set, 0 ε y and x ∪ {x} ε y
whenever x ε y.

In particular 0 is a set because 0 is contained in a set.

129 DEFINITION x is an integer if and only if x is an ordinal and E−1 well-
orders x.

130 DEFINITION x is an E-last member of y if and only if x is an E–1-first
member of y.

131 DEFINITION ω = {x: x is an integer}.

132 THEOREM A member of an integer is an integer.

PROOF A member of an integer x is an ordinal and is a subset of x and x is
well-ordered by E−1. 

133 THEOREM If y ε R and x is an E-last member of y, then y = x + 1.



PROOF By theorem 123, x + 1 is the E-first member of {z: z ε R and x < z}.
Then x + 1  y because y ε R and x < y. Since x is the E-last member of y
and x < x + 1, it is false that x + 1 < y. 

134 THEOREM If x ε ω, then x + 1 ε ω.

135 THEOREM 0 ε ω and if x ε ω, then 0 ≠ x + 1.

That is, 0 is the successor of no integer.

136 THEOREM If x and y are members of ω and x + 1 = y + 1, then x = y.

PROOF By theorem 124, if x ε R, then . 
The following theorem is the principle of mathematical induction.

137 THEOREM If x ⊂ ω, 0 ε x and u + 1 ε x whenever u ε x, then x = ω.

PROOF If x ≠ ω let y be the E-first member of ω ~ x, and notice that y ≠ 0.
Since y ⊂ y + 1 and y + 1 is an integer there is an E-last member u of y, and
clearly u ε x. Then y = u + 1 by theorem 133 and hence y ε x. This is a
contradiction. 

Theorems 134, 135, 136, and 137 are Peano’s axioms for integers. The
next theorem implies that ω is a set.

138 THEOREM ω ε R.

PROOF By the axiom of infinity there is a set y such that 0 ε y and, if x ε y,
then x + 1 ε y. By mathematical induction (that is, the previous theorem) ω
∩ y = ω, and hence ω is a set because ω ⊂ y. Since ω consists of ordinal
numbers, E connects ω and ω is full because each member of an integer is
an integer. 

THE CHOICE AXIOM

We now state the last axiom and derive two powerful consequences.

139 DEFINITION c is a choice function if and only if c is a function and c(x) ε
x for each member x of domain c.



Intuitively, a choice function is a simultaneous selection of a member
from each set belonging to domain c.

The following is a strong form of Zermelo’s postulate or the axiom of
choice.

IX Axiom of choice There is a choice function c whose domain is .

The function c selects a member from every non-void set.

140 THEOREM If x is a set there is a 1-1 function whose range is x and
whose domain is an ordinal number.

PROOF The plan of proof is to construct, by transfinite induction, a function
satisfying the requirements of the theorem. Let g be the function such that
g(h) = c(x ~ range h) for each set h, where c is a choice function satisfying
the axiom of choice. Applying theorem 128 there is a function f such that
domain f is an ordinal and f(u) = g(f | u) for each ordinal number u. Then
f(u) = c(x ~ range (f | u)), and if u ε domain f, then f(u) ε x ~ range (f | u).
Now f is 1-1, for f(v) = f(u) and u < v, then f(v) ε range (f | v), which
contradicts the fact that f(v) ε x ~ range (f | v). Since f is 1-1 it is impossible
that domain f = R, for in this case f–1 is a function whose domain is a
subclass of x and is hence a set, then range f–1 is a set because of the axiom
of substitution and R is not a set. Consequently domain f ε R. Because
domain f  domain f,  and therefore . Since
the domain of c is , x ~ range f =0. It follows immediately
that f is a function satisfying the requirements of the theorem. 

141 DEFINITION n is a nest if and only if, whenever x and y are members of
n, then x ⊂ y or y ⊂ x.

The next result is a lemma which is needed for the proof of theorem
143.

142 THEOREM If n is a nest and each member of n is a nest, then  is a
nest.

PROOF If x ε m, m ε n, y ε p, and p ε n, then either m ⊂ p or p ⊂ m because n
is a nest. Suppose m ⊂ p. Then x ε p and y ε p and since p is a nest, x ⊂ y or



y ⊂ x. 
The following theorem is the Hausdorff maximal principle. It asserts the

existence of a maximal nest in any set. The proof is closely related to that of
140.

143 THEOREM If x is a set there is a nest n such that n ⊂ x and if m is a nest,
m ⊂ x, and n ⊂ m, then m = n.

PROOF The proof is by transfinite induction; intuitively we select a nest and
then a larger nest, and “keep going,” knowing that, because R is not a set,
the set of all nests which are contained in x will be exhausted before the
class R of ordinals. For each h let g(h) = c({m: m is a nest, m ⊂ x and for p
in range h, p ⊂ m and p ≠ m}), where c is a choice function satisfying the
axiom of choice. (Intuitively select g(h) to be a nest in x containing properly
each previously selected nest.) By theorem 128 there is a function f such
that domain f is an ordinal and f(u) = g(f | u) for each ordinal number u.
From the definition of g it follows that, if u ε domain f, then f(u) ⊂ x and
f(u) is a nest, and if u and v are members of domain f and u < v, then f(u) ⊂
f(v) and f(u) ≠ f(v). Consequently f is 1-1, f−1 is a function and, since x is a
set, domain f ε R. Since , ; consequently there is no
nest m which is contained in x and properly contains each member of range
f. Finally,  is a nest which contains every member of range f, and
consequently there is no nest m which is contained in x and properly
contains . 

CARDINAL NUMBERS

In this section cardinal numbers are defined and the most commonly
used properties are proved. The proofs lean heavily on the earlier results.

144 DEFINITION x ≈ y if and only if there is a 1-1 function f with domain f = x
and range f = y.

If x ≈ y, then x is equivalent to y, or x and y are equipollent.

145 THEOREM x ≈ x.

146 THEOREM If x ≈ y, then y ≈ x.



147 THEOREM If x ≈ y and y ≈ z, then x ≈ z.

148 DEFINITION x is a cardinal number if and only if x is an ordinal number
and, if y ε R and y < x, then it is false that x ≈ y.

That is, a cardinal number is an ordinal number which is not equivalent
to any smaller ordinal.

149 DEFINITION C = {x: x is a cardinal number}.

150 THEOREM E well-orders C.

151 DEFINITION P = {(x, y): x ≈ y and y ε C},

The class P consists of all pairs (x,y) such that x is a set and y is a
cardinal number equivalent to x. For each set x the cardinal number P(x) is
the power of x or the cardinal of x.

The basic facts needed for the following sequence of results have
already been demonstrated.

152 THEOREM P is a function, domain  and range P = C.

PROOF Theorem 140 is the essential step. 

153 THEOREM If x is a set, then P(x) ≈ x.

154 THEOREM If x and y are sets, then x ≈ y if and only if P(x) = P(y).

155 THEOREM P(P(x)) = P(x).

PROOF If x is not a set, then  by theorem 69 and . 

156 THEOREM x ε C if and only if x is a set and P(x) = x.

157 THEOREM If y ε R and x ⊂ y, then P(x)  y.

PROOF By theorem 99 there is a 1-1 function f which is E-E order preserving
in x and R, such that domain f = x or range f = R. Since x is a set and R is



not, domain f = x. By theorem 94, f(u)  u for u in x and consequently x is
equivalent to an ordinal less than or equal to y. 

158 THEOREM If y is a set and x ⊂ y, then P(x)  P(y).

The following is the Schroeder-Bernstein theorem. It can be proved
directly without the axiom of choice (theorem 0.20).

159 THEOREM If x and y are sets, u ⊂ x, v ⊂ y, x ≈ v, and y ≈ u, then x ≈ y.

PROOF Using 158, P(x) = P(v)  P(y) = P(u)  P(x). 

160 THEOREM If f is a function and f is a set, then P(range f)  P (domain f).

PROOF If f is on x onto y and c is a choice function satisfying the choice
axiom there is a function g such that domain g = y and g(v) = c({u: v =
f(u)}) for v in y. Consequently y is equivalent to a subset of x. 

The following classic theorem is due to Cantor.

161 THEOREM If x is a set, then P(x) < P(2x).

PROOF The function, whose domain is x and whose value at a member u of x
is {u}, is 1-1 and hence x is equivalent to a subset of 2x and P(x)  P(2x). If
P(x) = P(2x) there is a 1-1 function f whose domain is x and range is 2x.
Then there is a member u of x such that f(u) = {v: v ε x and }. But then
u ε f(u) iff , which is a contradiction. 

The foregoing is structurally similar to that of the Russell paradox.

162 THEOREM C is not a set.

PROOF If C is a set, then  is a set, P(2∪C) ε C and hence .
Therefore  which is a contradiction. 

After some preliminaries we divide the cardinals into two classes, the
finite cardinals and the infinite cardinals, and prove a few special properties
for each class.

163 THEOREM If x ε ω, y ε ω and x + 1 ≈ y + 1, then x ≈ y.



PROOF If f is a 1-1 function on x + 1 onto y + 1 there is a 1-1 function g on x
+ 1 onto y + 1 such that g(x) = y; for example, let g be (f ~ {(x, f(x))} ∪ {(f–
1(y), y)}) ∪ {(f 1(y), f(x))} ∪ {(x,y)}. Then g | x is a 1-1 function on x onto y.

164 THEOREM ω ⊂ C.

PROOF The proof is by induction. Apply the preceding theorem to the first
integer which is equivalent to a smaller integer to obtain a contradiction,
thus proving that each integer is a cardinal number. 

165 THEOREM w ε C.

PROOF If ω ≈ x and x ε ω, then x ⊂ x + 1 ⊂ ω, and hence P(x + 1) = P(x).
This contradicts the preceding theorem, which states that each integer is a
cardinal number. 

166 DEFINITION x is finite if and only if P(x) ε ω.

167 THEOREM x is finite if and only if there is r such that r well-orders x and
r–1 well-orders x.

PROOF If P(x) ε ω, then E and E−1 well-order P(x), and since x ≈ P(x) there
is no difficulty finding r such that both r and r–1 well-order x. Conversely, if
r and r–1 well-order x, then by 99 there is a 1-1 function f which is r-E order
preserving in x and R such that either domain f = x or range f = R. If ω ⊂
range f, then r–1 does not well-order x because ω has no E last element.
Consequently range f ε ω, domain f = x, and the theorem follows. 

Each of the following sequence of theorems on finite sets can be proved
by induction on the power of a set or by constructing a well ordering and
applying 167. Examples of both sorts of proof will be given.

168 THEOREM If x and y are finite so is x ∪ y.

PROOF If both r and r–1 well-order x and both s and s–1 well-order y, then,
using r for points of x, s for points of y ~ x, and letting each member of y ~



x follow every point of x, one can construct an ordering of the required type
for x ∪ y. 

169 THEOREM If x is finite and each member of x is finite, then  is finite.

PROOF One may proceed by induction on P(x). Explicitly, consider the set s
of all integers u such that, if P(x) = u and each member of x is finite, then 

 is finite. Clearly 0 belongs to the set s. If u ε s, P(x) = u + 1, and each
member of x is finite, then one may split x into two subsets, one of which
has power u and one of which is a singleton. The induction hypothesis and
the preceding theorem then show that  is finite. Hence s = ω. 

170 THEOREM If x and y are finite so is x × y.

PROOF The class x × y is the union of the members of a finite class, the
members being of the form {v} × y for v in x. 

171 THEOREM If x is finite so is 2x.

PROOF If y is an integer, then the subsets of y + 1 can be divided into two
classes: those which are subsets of y, and those which are the union of a
subset of y and {y}. This gives the necessary basis for an inductive proof of
the theorem. 

172 THEOREM If x is finite, y ⊂ x and P(y) = P(x), then x = y.

PROOF It is sufficient to consider the case where x is an integer. Suppose y ⊂
x, y ≠ x, P(y) = x, and x ε ω. Then x ≠ 0 and hence x = u + 1 for some
integer u. Because y ≠ x there is a subset of u which is equivalent to y and
hence P(y)  u. But P(y) = x = u + 1, and this contradicts the fact that each
integer is a cardinal number. 

The property of theorem 172, that a finite set is equivalent to no proper
subset, actually characterizes finite sets.

173 THEOREM If x is a set and x is not finite, then there is a subset y of x
such that y ≠ x and x ≈ y.



PROOF Since x is a set and is not finite, ω ⊂ P(x). There is a function f on
P(x) such that f(u) = u + 1 for u in ω, and for f(u) = u for u in P(x) ~ ω. The
function f is 1-1 and range f = P(x) ~ {0}. Since P(x) ≈ x the theorem
follows. 

174 THEOREM If x ε R ~ ω, then P(x + 1) = P(x).

PROOF Clearly P(x)  P(x + 1). Since x is not finite there is a subset u of x
such that u ≠ x and u ≈ x. Consequently there is a 1-1 function f on x + 1
such that f(y) ε u for y in x and f(x) ε x ~ u. Hence P(x + 1)  P(x). 

The principal remaining theorem depends on an order which will be
assigned to the cartesian product R × R. An intuitive description of this
order may be instructive. It is to be a well ordering, and on ω × ω it is to
have the property that the class of all predecessors of a member (x,y) of ω ×
ω is finite (a generalization of this fact is the key to the usefulness of the
order). Picture ω × ω as a subset of the Euclidean plane and divide ω × ω
into classes, putting in the same class pairs (x,y) and (u,v) such that the
maximum of x and y is identical with the maximum of u and υ. Each class
then consists of two sides of a square, and the ordering is arranged so that
points on smaller squares precede points on large squares. For points on the
sides of the same square the ordering proceeds along the upper edge and to
the right, up to but not including the corner point, and then along the right-
hand edge upward, ending with the corner point.

If x and y are ordinals, the larger of them is x ∪ y. This motivates the
following definition.

175 DEFINITION max [x,y] = x ∪ y.

176 DEFINITION  = {z: for some (u,v) in R × R and some (x,y) in R × R, z =
((u,v), (x,y)), and max [u,v] < max [x,y], or max [u,v] = max [x,y] and u < x,
or max [u,v] = max [x,y] and u = x and υ < y}.

177 THEOREM  well-orders R × R.

The proof is a straightforward but tedious application of the definition
and the fact that < well-orders R.

178 THEOREM If (u,v)  (x,y), then (u,v) ε (max [x,y] + 1) × (max [x,y] + 1).



PROOF Surely max [u,v]  max [x,y], and hence max [u, v] ⊂ max [x,y].
Since the ordinals u and v are subsets of max [x,y] they are members of max
[x,y] + 1. 

179 THEOREM If x ε C ~ ω, then P (x × x) = x.

PROOF We proceed by induction, supposing x to be the first member of C ~
ω for which the theorem fails. There is by 99 a function f which is -E
order preserving in x × x and R, such that either domain f = x × x or range f
= R. Since x × x is a set and R is not, domain f = x × x. We show that, if (u,v)
ε x × x, then f((u,v)) < x, and the theorem follows. By the preceding theorem
the class of all predecessors of (u,v) is a subset of (max [u,v] + 1 × (max
[u,v] +1]. If x = ω, then both u and v are finite because max [u,v] < x; by
170, (max [u,v] + 1 × (max [u,v] +1] is finite, hence f((u,v)) has only a finite
number of predecessors and f((u,v)) < x. If x ≠ ω, and max [u,v] is not finite,
then by 174, P(max [u,v] + 1) = P(max [u,v]) < x and hence P(f((u,v))) < x
and f((u,v)) < x. 

180 THEOREM If x and y are members of C, one of which fails to belong to
ω, then P(x × y) = max [P(x),P(y)].

The members of C ~ ω are called infinite, or transfinite, cardinal
numbers.

There are many important and useful theorems on cardinal numbers
which have not been given in the preceding list; see, for example, Fraenkel
[1] for further information and references. This discussion will be
concluded with a brief statement on one of the classic unsolved problems of
set theory.

181 THEOREM There is a unique <-< order-preserving function with domain
R and range C ~ ω.

PROOF There is, by 99, a unique <-< order-preserving function f in R and C
~ ω such that either domain f = R or range f = C ~ ω. Since every E-section
of R and of C ~ ω is a set and neither R nor C ~ ω is a set, it is impossible
that domain f ≠ R or range f ≠ C ~ ω. 

The unique <-< order-preserving function whose existence is
guaranteed by the previous theorem is usually denoted by . Thus  (or 



) is ω. The next cardinal  is also denoted by Ω; it is the first uncountable
ordinal. Since  it follows that . The equality of these
two cardinals is an extremely attractive conjecture. It is called the
hypothesis of the continuum. The generalized hypothesis of the continuum is
the statement: if x is an ordinal number, then . Neither
hypothesis has been proved or disproved. However, Gödel [1] has proved
the beautiful metamathematical theorem: If, on the basis of the hypothesis
of the continuum, a contradiction is constructed, then a contradiction may
be found without assuming the hypothesis of the continuum. The same
situation prevails with respect to the generalized hypothesis of the
continuum and the axiom of choice.

* That is, it is possible to write the theorems in terms of logical constants, logical variables, and
the constants of the system, and the proofs may be derived from the axioms by means of rules of
inference. Of course, a foundation in formal logic is necessary for this sort of development. I have
used (essentially) Quine’s meta-axioms for logic [11 in making this kind of presentation for a course.

* Actually, an axiom scheme for definition is also assumed without explicit statement. That is,
statements of a certain form, which in particular involve one new constant and are either an
equivalence or an identity, are accepted as definitions and are treated in precisely the same fashion as
theorems. The axiom scheme of definition is in the fortunate position of being justifiable in the sense
that, if the definitions conform with the prescribed rules, then no new contradictions and no real
enrichment of the theory results. These results are due to S. Lésniewski.

† Presumably other interpretations are also possible.
* One is tempted to make this the definition of equality, thus dispensing with one axiom and with

all logical presuppositions about equality. This is perfectly feasible. However, there would be no
unlimited substitution rule for equality and one would have to assume as an axiom. If x ε z and y = x,
then y ε z

* This circuitous sort of language is unfortunately necessary. Using the convention o quotation
marks for names, for example ‘Boston’ is the name of Boston, if  is a formula and  is a formula,
then  is not a formula. For example, if  is ‘x = y’ and  is ‘y = z’, then ‘ ‘x = y’ → ‘y = z’ ’ is
not a formula. Formulae (for example ‘x = y’) contain no quotation marks. Instead of  we want
to discuss the result of replacing ‘α’ by  and ‘β’ by  in ‘α → β.’ This sort of circumlocution can be
avoided by using Quine’s corner convention

* There would be no necessity for parentheses if the constant ‘∪’ occurred first in the definition;
that is, ‘∪ xy’ instead of ‘x ∪ y.’ In this case the first part of the theorem would read: ∪ ∪xyz = ∪ x
∪yz.

* A bound variable notation for the intersection of the members of a family is not needed in this
appendix, and consequently a notation is adopted which is simpler than that used in the rest of the
book.

* This theorem would not be true if f(x) had been defined to be the union of the second
coordinates of the members of f with first coordinate x. For then, if  and  domain f, then f(y)
=0, and, if g =f ∪ (y,0) }, then g(x) = f(x) for each x and f is not equal to g.

† These two axioms may be replaced by the single axiom: if f is a function and domain f is a set,
then  range f is a set. (In the bound variable notation used earlier in the book this can be stated very
naturally: if d is a set and x(a) is a set for each a in d, then  is a set.) To obtain V and VI
from the above one may proceed roughly as follows: For V, given f make a new function whose



members are of the form (x, {f(x)}). For VI, given x consider the function whose members are of the
form (u,v) with u in x.

* In this appendix there is no need to consider order-preserving functions (as in chapter 0) whose
domain and range are not well-ordered. For the sake of simplicity the earlier terminology is modified.

* The discussion is not precisely accurate, in that it has not been proved that 0 is a set; in fact,
with the axioms at our disposal this is not provable. The existence of sets (and hence the fact that 0 is
a set) results from the axiom of infinity, which is stated at the beginning of the next section.

† The term ‘complete’ is usually used instead of ‘full,’ but ‘complete’ has been used earlier in a
different sense.

* This theorem is essentially the statement of the Burali-Forti paradox—historically the first of
the paradoxes of intuitive set theory.

* Non-negative integers.
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Absolute Gδ, 207
accumulation point, 41

from the right, 59
ω ..., 137

adjoint of a normed linear space, 241
Alexander subbase theorem, 139
almost periodic function, 247
amalgamation axiom, 261
anti-symmetric relation, 9
Ascoli theorems, 233, 236
asymmetric relation, 263

Baire, category theorem, 200
condition of … (= almost open), 210

Banach algebra, 243
base, for the neighborhood system of a point, 50

for the neighborhood system of a set, 112
for a topology, 46
for a uniformity, 177

bicompact (= compact), 135
Boolean, ring, 81, 168

σ-ring, 215
boundary of a set, 45
bounded set, 144
Brouwer reduction theorem, 61

Cantor discontinuum (= middle third set), 165
cardinal numbers, 27, 274 ff
cartesian product, of two sets, 7, 261

of a family of sets, 30
category, 201

(first category = meager)
(second category = non-meager)

Cauchy, filter, 193
net, 190

chain, 15, 32
characteristic function, 26
choice, axiom, 33, 273

function, 31



class, 1, 251
classification axiom scheme, 253
classifier, 251
closed, family, 155

graph theorem, 213
interval, 40
map, 94
set, 40
sphere, 119

closure, and complement problem, 57
axioms, 43
of a set, 42
operator, 43

cluster point, of a net, 71
of a set, 41

coarser (= smaller) topology, 38
cofinal, 66, 77
compact, 135

countably, 162
locally, 146
sequentially, 162, 238
… open topology, 221

compactification, 149 ff
one-point, 150
Stone-Čech, 152
Wallman, 167
… of groups, 247

complement, 3, 254
complete, accumulation point, 163

(= full) class, 267
uniform space, 192
topologically …, 207, 208

completely regular, 117
completion, 196

of topological groups, 211
component, 54
composition of relations, 7, 260
connected, 53

locally, 61
connects, 263
contains, 2, 256
continuous, at a point, 87, 100

convergence, 241
evenly, 235, 241
evenly on a set, 237
function, 85
in one of two variables, 103
jointly, 223

continuum hypothesis, 280
contravari ant correspondence, 246



convex, 103
coordinate set, 31
convergence, classes, 73

continuous, 241
Moore-Smith, 62 ff
pointwise( = coordinate wise = simple), 92
sequential, 62

correspondence (= function), 10
countability, first axiom, 50

second axiom, 48
countable, 25

chain condition, 60
countably compact, 162
counter-image (= inverse image), 11
covariant correspondence, 246
cover, 49

even, 155
open, 49
point finite, 171
uniform, 199

cube, 114

decimal expansion, 25
decomposition, 96

upper semi-continuous, 98
DeMorgan formulae, 3, 254
dense, 49

nowhere, 145
denumerable (= countably infinite), 25
derived set, 42
diagonal, 7

process, 238
diameter, 121
dictionary (= lexicographic) order, 23
difference of sets, 3, 255
Dini’s theorem, 239
directed set, 65
directs, 65
discrete, topological space, 37

family, 127
σ-discrete family, 127

disjoint, 3
distance, 119

between sets, 123
Hausdorff, 131

distinguishes, functions, 220
points, 116
points and closed sets, 116

divisible properties, 133
domain, 7, 260



door space, 76
dyadic, expansion, 25

rational, 23

écart, 119, 206
embedding, in cubes, 114 ff

theorems, 118, 188
equicontinuous, 232

on a set, 234
uniformly, 239

equipollent, 28
equivalence, class, 9

relation, 9
Euclidean, plane, 60

n-space, 31, 89
evaluation, 31, 116, 218

continuity of …, 240
even, continuity, 235, 241

continuity on a set, 237
cover, 155

eventually, 65
extension, of a function, 11

Tietze theorem, 242
extent axiom, 252
extrem ally disconnected, 216

field, 18
ordered, 19

filter, 83
finer (= larger) topology, 38
finite, 277

character, 32
intersection property, 135

frequently, 65
full, 267
function, 10, 260

gage of a uniformity, 189
group, 17

abelian (= commutative), 17
normal (= distinguished = invariant), 18
quotient (= factor), 18
topological, 105 ff, 210

half-open, interval, 40
interval space, 59, 133
rectangle space, 59, 133

Hausdorff, maximal principle, 31, 274
metric, 131
topological space, 67
uniform space, 180



hereditary properties, 133
homeomorphism, 87
homogeneous space, 107
homomorphism, 18, 107
hypothesis of the continuum, 280

ideal, 18
dual, 80
lattice, 80

identity relation, 7
image, 11, 261
indiscrete (= trivial) topological space, 37
induced function, 19, 239
induction, definition by, 21

mathematical, 20, 272
proof by, 20, 264
transfinite, 270

inductive, property (= satisfying premise of 0.25 a), 33
set of integers, 20

infimum, 13
infinite cardinals, 280
infinity axiom, 271
integers, 20, 271
integration, 77 ff
interior, of a set, 44

map, 90
intersection, 3, 254
inverse, of a relation, 7

image, 11
irreducible property, 61
isolated point x (= {x} is open), 102
isometry, 122

of compact metric space, 162
isotone function, 15
iterated, limit, 69

sum, 77

join, of sets ( = union), 3
of members of a lattice, 80

joint continuity, 221

k-extension of a topology, 241
k-space, 230, 240
Kuratowski, closure axioms, 43

closure and complement problem, 57
lemma, 33

largest, 31
lattice, 80
lexicographic (= dictionary) order, 23
limit, iterated, 69



of a net, 68
point of a set, 41

Lindelöf, theorem, 49
space, 50, 59

linear, function, 18
order (= simple order), 14
space, 18, 241
topological space, 109

locally, compact, 146
connected, 61
finite, 126

lower bound, 13

map (= function), 10
maximal, member of a family, 32

principle, 33, 274
meager (= first category), 201
meet, of sets, 3

of members of a lattice, 80
metacompact, 171
metric, 118

invariant, 123
topology, 119
uniformity, 184
Hausdorff …, 131
invariant …, 209, 210

metrization, of topological spaces, 124 ff
of uniform spaces, 184 ff

minimal member of a family, 32
principle, 33

monotone function, 15
Moore-Smith convergence, 62 ff

neighborhood, 38
system of a point, 39
system of a set, 112
topologies from … systems, 56

nest, 32
net, 65

universal, 81
normal, topological space, 112

perfectly, 134
fully, 170

nowhere dense, 145
normed linear space, 241
null space of a linear function, 19
numbers, cardinal, 27, 274

ordinal, 29, 266
real, 19

one-to-one function, 11



open, interval, 38
map, 90
set, 37
sphere, 119
almost …, 210

operator (= function), 10
order, Archimedean, 22

bounded, 15
complete, 14
dictionary (= lexicographic), 23
linear (= simple = total), 14
preserving, 15, 264
product, 68
topology, 57, 162

ordered pair, 259
ordering, partial, 13

quasi (= partial), 13
well, 29, 262

ordinal numbers, 29, 266

paracompact, 156, 172
partition, of a set, 96

of unity, 171
perfectly normal, 134
point finite cover, 171
pointwise convergence, 92

on a set, 220
on a dense set, 238
uniformity of …, 220

power of a set, 275
precompact (= totally bounded), 198
product, cartesian, 7, 30

directed set, 68
logical, 3
of compact spaces, 143
of connected spaces, 104
of pseudo-metric spaces, 122
of spaces with countable bases, 103
order, 68
topology, 90
uniformity, 182

productive properties, 133
projection, onto a coordinate set, 31

onto a quotient space, 96
pseudo-metric, 119

topology, 119
uniformity, 184

pseudo-metrizable, topological space, 124
uniform space, 184

quotient, group, 18



map, 96
topology, 94
space, 97, 147

range, 7, 260
real numbers, 19

topological properties, 58, 59
refinement, 128
regular topological space, 113
regularity axiom, 266
reflexive relation, 9
related (R-related), 7, 263
relation, 6, 259
relative, topology, 51

uniformity, 182
relativization, 50
residual (= co-meager), 201
restriction of a relation, 10, 11
ring, 18

Boolean, 81, 168, 215

scalar field, 18
Schroeder-Bernstein theorem, 28, 276
section, 263
semi-metric (= pseudo-metric), 119
separable, 48, 49

perfectly, 48
separated, sets, 52

topological space (= Hausdorff), 67
uniform space ( = Hausdorff), 180

separation properties, with compactness, 140 ff
sequence, 62, 72
sequentially compact, 162, 238
set, 1, 252

theory, 250 ff
simple topology (= topology of point-wise convergence), 90, 92, 217
singleton, 3, 258
small sets, 192
smallest member of a family, 32
space, completely regular, 117

Hausdorff, 67
Lindelöf, 50
linear, 18
k-space, 230
linear topological, 109
metric, 119
normal, 112
regular, 113
T0-space, 56
T1-space, 56



T2-space (= Hausdorff), 67
T3-space (= regular + T1), 113
T4-space (= normal + T1), 112
topological, 37
Tychonoff (= completely regular + T1), 117
uniform, 176

Stone-Weierstrass theorem, 244
stronger topology, 38
subadditive function, 131
subbase, for a topology, 48

for a uniformity, 177
for the neighborhood system of a point, 50
local, 50

subclass, 256
subcover, 49
subsequence, 63
subset, 2

proper, 2
axiom, 256

subnet, 70
subspace, 51
substitution axiom, 261
sum, logical, 3
summability, 78, 214
supremum, 13
symmetric relation, 9
σ-compact, 172
σ-discrete, 127
σ-locally finite, 127
σ-ring, 215

T−-space : see space
Tietze extension theorem, 242
topological groups, 105

closed graph theorem, 213
completion, 211
uniformities and metrization, 210

topological, invariant, 88
map, 87
space (see also space), 37

topologically equivalent, 87
topology, 37

coarser (= smaller), 38
discrete, 37
indiscrete (= trivial), 37
finer (= larger), 38
from interior operators, 56
from neighborhood systems, 56
metric or pseudo-metric, 119



of compact convergence (=* uniform convergence on compacta), 229
order, 57
pointwise (= product), 90
quotient, 94
relative, 50
stronger, 38
uniform, 178
u.c. = of uniform convergence, 226
usual, for the real numbers, 37

w* (= weak*), 108, 241
weaker, 38

totally bounded, 198
tower (= nest), 32
transitive relation, 9
transfinite induction, 270
transformation (= function), 10
triadic expansion, 25
triangle inequality, 119
trivial (= indiscrete) topology, 37
two point property, 244
two set property, 243
Tukey’s lemma, 33
Tychonoff, plank, 132

product theorem, 143
space, 117

ultrafilter, 83
uniform, boundedness, 215

continuity, 180
continuity on a set, 194
convergence, 226
convergence on compacta, 229
cover, 199
covering system, 207
equicontinuity, 229
equivalence, 181
invariant, 181
isomorphism, 181
neighborhood system, 205
space, 174 ff
topology, 178

uniformity, generated by pseudo-metrics, 184, 187
of pointwise convergence, 220
of uniform convergence, 226
product, 182
relative, 182
u.c. (= of uniform convergence), 226
usual, for real numbers, 177

 (= of uniform convergence on members of ), 228



uniformly, locally compact, 214
open map, 202

union, 3, 254
axiom of …, 258

universal net, 81
universe, 255
unordered pair, 258
upper bound, 13
upper semi-continuous, decomposition, 99

function, 101
Urysohn lemma, 115

metrization theorem, 125
usual, metric for real numbers, 119

topology for real numbers, 37
uniformity for real numbers, 177

value of a function, 261
vector (= linear) space, 18
void, 255

w* (= weak*) topology, 108
well ordering, 29, 262 ff

principle, 32

Zermelo postulate, 33
zero, 255
Zorn’s lemma, 33
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