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Preface
This book is designed primarily to serve as a basis for a course in

topology in which the students prove all or most of the theorems. As such,
it can also serve as the basis for a lecture course in which the instructor
presents most of the results himself. Probably the best way to use it is for a
course conducted somewhere between these two extremes.

It is not just an outline. There is much discussion, as in a regular
textbook, and a good deal of this discussion is about how to prove the
theorems and why they are important. In addition, some of the harder
theorems and examples are given rather complete outlines. For example, I
do not think that it is reasonable to expect an undergraduate student to come
up with a proof of Urysohn's lemma or the Tychonoff product theorem, nor
do I expect that he would discover a (Hausdoff) completely regular space
that is not normal—and justify it—without some help. I have found when
teaching topology that a very effective method of getting students to
understand difficult proofs (and, incidentally, to see that not every proof can
be dashed off in a few lines once the method is discovered) is to give them
the proof outright from a standard text, and to have them present it
completely and in detail in class. The outlines given here are an attempt to
improve upon this method.

It is my hope that when this book is used as a basis for a course in which
the students present most of the proofs, it will alleviate some of the
problems that beginning students have with this way of teaching. For one
thing, reading can be assigned and discussed. The student is used to having
something to read, and suddenly having nothing at all can be quite a blow.
Besides, it is unrealistic to force him to work in a vacuum. Professional
mathematicians don't; neither should the student. The problem up to now
has been that anything that the student might read at the beginning level
contained too much—any supplementary text turned out to be an answer
book. This book solves that problem.

Probably the biggest complaint about teaching from an outline concerns
content: it is said that the better students learn something about how to do



mathematics, but they do not learn much topology, and the average student
learns just about nothing. I do not agree with this complaint—not if the
course is handled properly—and this book is an attempt to give the
beginning student (who, after all, has not had much experience in doing
mathematics on his own), something to hang onto until he develops some
confidence. Additionally, by relating new concepts to old ones and by
spiraling back to topics already covered, this book should help everyone
come out of the course with a pretty good foundation in topology, as well as
with some experience in doing mathematics.

The question of exactly what a good foundation in topology is seems to
be an open one. It is my impression that many students come out of their
first course in topology totally missing the point, probably because most
books try to be totally rigorous at all times, and will not allow any hand-
waving, even at the beginning, thus rendering themselves pretty trivial and
pretty static. Topology is anything but static, and most students have some
idea of “rubber sheet geometry,” but they usually do not see any in most
first-year courses. Part of Chapter 3 is an attempt to get the student to think
topologically in terms of pictures, as most mathematicians do when they do
topology. Students should have a lot of fun with it, and hopefully, they will
become excited and curious enough to want to see more. In order to be able
to present this “advanced” material so early in the course, we are sometimes
forced to resort to descriptions instead of definitions, and some exercises
begin with “convince yourself” instead of “prove.” The difference is clearly
pointed out, and the student is never asked to prove anything until a proof is
possible. (There is a recent calculus book which asks the reader to “prove”
that a certain function is continuous, without ever giving a definition of
continuity.) Every theorem in this book is indeed a theorem which can be
proved.

About content. Most of the material is standard point-set topology
(except, of course, for the last chapter) which, as Kelley says, is “what
every young analyst should know.” Continuity is emphasized throughout.
The space of countable ordinals is an important example in many cases, an
example which is realistic and not “made up” just to illustrate a particular
point. However, not everyone will agree that undergraduate students can
understand this space at least as well as they understand the space of real
numbers, and those who do not can eliminate any discussion of ordinal
numbers and still use this book. Examples other than ordinal spaces are



presented when it seems feasible, and it is always clearly stated when a
particular section, theorem, or example requires using the space of
countable ordinals. (Larger ordinals are not used at all.) Similarly, any
discussion of product spaces with infinitely many factors can be omitted
(with the resulting loss of content, of course); as with ordinals, places where
infinite products are used or needed are clearly pointed out. The student is
constantly asked to establish examples of spaces that have the various
properties discussed, as well as examples of spaces that do not have the
property. Before doing so, he is always asked to “state precisely what it
means” when a space does not have the property under discussion, or when
the particular property at hand does not hold. This serves two purposes:
first, he knows precisely what to look for in a counterexample, and, second,
he learns to work with mathematical phraseology and to appreciate the
precision of a mathematical statement.

There is enough material here for a full year course. However, by
picking topics, one can construct a one-semester course as well. With the
thought of eliminating certain sections in mind, no topic is introduced
solely in the exercises if it is to be used later. Rather, if a topic is needed
that was previously discussed in an exercise, it is defined again, the relevant
properties are pointed out again, and a reference to its initial discussion is
given so that the student can see how it arises naturally.

A student who has had, or is taking, a course in advanced calculus and
who is willing to work should be able to handle the material presented here,
except for the last chapter, where a knowledge of elementary group theory
is required. It has been my experience that most students who take a course
like this one become very interested and are willing to work very hard
indeed. As a result, they learn a great deal about mathematics, and quite a
bit of basic topology as well.



Introduction
Topology is sometimes called “rubber sheet geometry” because two

objects are said to be topologically the same if one can be stretched, shrunk,
bent, or twisted to make it look like the other (without overlapping itself or
ending up being ripped apart). For example, a triangle, a square, and a circle
are all topologically the same:

And all three figures are topologically the same as a closed squiggle:

But none of these four figures is the same as a figure 8 or a straight line
segment. (Why not?)

Probably the most famous example in armchair topology is that a
doughnut and a coffee cup are topologically indistinguishable:



(The doughnut is solid; the indentation that we made in Step 2 is not cut out
but instead is “punched” into it as if it were made of clay. The original hole
in the doughnut becomes the hole in the handle of the cup.)

Of course there is a lot more to topology than just turning lead into gold.
It is a fascinating and exciting subject and a very powerful one: some
relatively difficult theorems from calculus, for example, fall out as simple
corollaries of relatively simple topological theorems (the “intermediate
value theorem,” for example, and the fact that a continuous function defined
on a closed interval attains both its maximum and its minimum). But it is
more than a tool to prove theorems that we already know; topology is one
of the most interesting and important fields of modern mathematics.

This book is a brief introduction to topology. Also, it is probably unlike
any mathematics book that you have used before because it expects you to
do mathematics instead of just reading it. Very few theorems are proved in
the book (although hints are given in many cases); you are supposed to
supply the proofs, even though they are usually not asked for.

Creating proofs and doing mathematics in general can be exciting and it
can be fun, but it can also be frustrating. This book attempts to maximize
your enjoyment of mathematics and to develop your skill in doing it, but it
also necessarily maximizes the frustration involved in learning the subject.
Learning is not easy. It has been said that there is nothing more frustrating
than having a blank piece of paper in front of you and being expected to fill
it with mathematics. You will find that this is true. But it is also true that
there are very few things as satisfying as seeing the paper fill up with a
good idea that is your own. As you work through this book, you will
undoubtedly experience both feelings. If, at the end, the satisfaction
outweighs the frustration, then the book will have done its job.

A word about content is in order. The treatment of sets, functions, and
transfinite numbers in Chapters 1 and 2 is similar to that given to the real
line in most first-year calculus books. It is designed to give you a working



knowledge of the concepts involved; it is not a complete development of
these concepts. If you get interested and find that you want to pursue any of
these subjects more deeply, the book Introduction to the Foundations of
Mathematics by Raymond L. Wilder ([18] in the bibliography) is an
excellent reference. However, you should not look in any other books for
supplementary material about any topic presented here until you have
completely covered what we do with it. Looking up the proofs is not the
way to get the most benefit out of a book like this one.



Proofs in Mathematics
A NOTE TO THE READER

Despite what many students in first-year calculus think, there is nothing
mysterious about the proof of a mathematical theorem. The proof simply
shows how the conclusion of the theorem follows logically from the
hypothesis. It convinces anyone who reads and understands it that the
theorem is true.

There is a big difference, though, between reading a proof and writing
one; it is almost as big a difference at times as there is between hearing a
symphony and being Beethoven. (Not always and not often, but
sometimes.) Since the heart of this course is proving theorems, we discuss
proofs a little before we start.

First of all, a proof should be written in good, clear language, using
complete sentences. It is not good style to write a proof in two columns, one
for statements and one for reasons. Of course a reason should be given for
anything that is not obvious, but it should be integrated into the proof with
words like “since” and “because,” and not be set off to the side somewhere.
Also, you should not have to apologize for anything that you say: if you
have to say “but what I really mean is” then you should say what you mean
in the first place. A proof should be able to stand alone, and should not need
its author around to explain it.

Of course, even the most elegant style of writing will not save a proof if
the reasoning is wrong, and you never want to make a statement in a proof
that you are not sure of. It is not a proof until you are sure that it is a proof.
Above all, you should never try to pull the wool over anyone’s eyes.

As a simple (probably deceptively simple) example, suppose that we
want to prove the following theorem.

Theorem. If all men are mortal and Socrates is a man, then Socrates is
mortal.

A good proof should look something like: Since Socrates is a man and
all men are mortal, it follows that Socrates is mortal.



You may protest that it does not say anything (and indeed it does not say
much because the example is so simple), and you may be tempted to pad it
a little: Since Socrates is a man and all men are mortal, it follows that
Socrates is mortal because if he were not then he would not be a man. It
isn't wrong, but the padding is obvious and should probably be avoided.
One kind of padding that should absolutely be avoided is anything like:
Since Socrates is a man and all men are mortal and a pound of lead weighs
the same as a pound of feathers, it follows that Socrates is mortal. You
should never include irrelevant statements in a proof even if they are true.
(It is not always so blantantly obvious, and you may find yourself doing it if
you are not careful.)

Proving a theorem sometimes involves a good deal of creativity and
clever thinking; it always involves a complete understanding of what the
theorem says and of what you have to work with. Once it is proved, a
theorem is another tool that may help in proving a later one, so you should
learn and understand each one, even if you are not the first one in the class
to prove it.

Topology is a very visual subject and you will find that ideas of how to
start a proof will often occur to you if you draw a picture of the situation at
hand. It is true that a picture is not a proof, but a well drawn picture is often
an indispensable aid to proving theorems in topology; you should draw a lot
of them as you work through this book.

Many of the theorems that you are asked to prove are “if and only if”
theorems. An if and only if statement is really two statements in one, the
“if” part and the “only if” part. For example, consider the statement 2x = 4
if and only if x = 2. The two statements in this single if and only if
statement are the if part: if x = 2, then 2x = 4, and the only if part: if 2x = 4,
then x = 2. It is not really very important to know which is which; however,
hints are often given in the text for one part or the other, and it is easier to
use the hint if you know to which part it applies. To decide which is which,
eliminate the words “only if” to get the if part, and eliminate the word “if”
to get the only if part. Thus, in “2x = 4 if and only if x = 2,” the if part is “2x
= 4 if x = 2” which, in better order, is “if x = 2, then 2x = 4.” The only if
part is “2x = 4 only if x = 2.” Changing “only if” to “implies,” this is “2x =
4 implies x = 2,” which is the same as “if 2x = 4, then x = 2.”

Another expression is sometimes used for if and only if. We can say “2x
= 4 if and only if x = 2” by saying “a necessary and sufficient condition that



2x = 4 is that x = 2.” The necessity is the only if part, and the sufficiency is
the if part.

Some people abbreviate “if and only if” by “iff” or by “⇔.”
One final word about the hints. There is almost always more than one

way to prove a theorem, and you may come up with a different proof than
the hint suggests. By all means, do so! The hints are meant to help you get
started if you need some help, and are definitely not meant to limit your
imagination. Besides, your proof might even be better than the one
suggested.
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chapter one 
Sets and Functions

You have certainly had much experience by now with both of the
concepts in the title of this chapter. But it is a fact that a thorough
familiarity with sets and functions is essential to any understanding of
modern mathematics, so the material in this chapter is of basic importance
to all of your future work. You should read it carefully, do all of the
exercises, and prove all of the theorems.

1. SETS

You may recall that, in Euclidean geometry, the words “point” and
“line” are not defined. Instead, it is assumed that everyone has a good idea
of what points and lines are, and we let it go at that. This failure to define
terms is not because of laziness or sloppiness, though; the fact is that in any
system of human thought we have to start somewhere, so there must always
be some primitive notions that cannot be defined because we have nothing
to define them in terms of.

In this course, the most basic notions that we will use are those of set,
element of a set, and what it means for a given element to belong to a given
set: we will not define any of these ideas. But of course it is all clear: a set
is a collection of objects, an element of the set is one of these objects, and it
is always clear when a given object is an element of a given set. For
example, the set of all people who are now citizens of the United States is
the collection of all those people, and only those people, who are now
citizens of the United States. The set is the collection of all U. S. citizens,
an element of the set is a U. S. citizen, and one can always determine
whether a given object belongs to the set: the given object must be a person
and that person must be a U. S. citizen.

Two sets are the same if and only if they have exactly the same
elements. Formally,



1.1. Definition. Let A and B be sets. Then
1) A is a subset of B, written A ⊂ B, if every element of A is also an

element of B.
2) A and B are equal, written A = B, if both A ⊂ B and B ⊂ A.

Notice that A ⊂ B does not imply that A and B cannot be equal. If A ⊂ B
and A is not equal to B (in which case we call A a proper subset of B), we
sometimes write A  B, for emphasis.

A word about definitions is in order. A definition in mathematics is
always an “if and only if” statement. Thus, looking at Definition 1.1, for
example, if we know that both A ⊂ B and B ⊂ A, we can immediately
deduce that A = B; conversely, if we know that A = B, we also know that
both A ⊂ B and B ⊂ A. The most important thing to us about a definition is
that it is to be used. For example, to prove that two sets are equal, all we
have to do is show that the definition is satisfied (i.e., that each is a subset
of the other). But—and this is where trouble often occurs—satisfying the
definition is not only all we have to do; it is what we must do at this stage in
the development of the subject. Later on we will have theorems that we can
use as well as definitions, but for now there is no magic way to avoid the
definition, and no reason to want to.

For the moment, then, to show that two sets A and B are equal, the only
thing that will work is to take an arbitrary element from the set A and show
that the properties of A and B imply that this element also belongs to B; this
shows that A ⊂ B. Then reverse the process: to get B ⊂ A, take an element
from B and show that it also belongs to A. The two containments (A ⊂ B
and B ⊂ A) then allow you to conclude that A = B, by invoking the
definition of equality for sets.

1.2. Exercise.
State precisely what it means when two sets A and B are not equal.

2. NOTATION

When an element a belongs to the set A, we write a ∈ A, and when a
does not belong to A, we write a ∉ A. If P(x) denotes a property that the
object x may or may not have, then we use



  

to denote the set of all objects x with the property P(x). Sometimes this is
modified to

  

which means the set of all elements in the set S which have property P(x),
where S is some given set. Thus, for example, the set V = {a, e, i, o, u}
consisting of the letters in the English alphabet that are always vowels
could be written as

  

where A denotes the English alphabet.
An important subtlety that needs to be emphasized again is that {x ∈ S:

P(x)} always means the set of all elements of S with the property P(x).
We will use the ordinary symbols for open and closed intervals on the

real line (the symbol R is reserved to represent the real line, the set of real
numbers). Thus the open interval on the line whose end points are the real
numbers a and b is

  

and is the set of all real numbers greater than a and less than b. The closed
interval with end points a and b is

  

and there are two kinds of half-open intervals:

  

We also have unbounded intervals, called rays:



  

Similarly, we define (– ∞, b) and (– ∞, b) (note that with this notation, R =
(– ∞, ∞)).

Some familiar and important sets of numbers are used so often that we
reserve special symbols for them. These are:

  

In addition, the empty set will be denoted by the symbol  (this symbol
is not the Greek letter ϕ; rather, it is a zero with a slash). The empty set has
an important property that no other set has: it is a subset of every set.
Proving this is tricky. Try it by contradiction unless you are familiar with
formal logic and the fact that P ⇒ Q is a true statement whenever P is false.
No matter how you try to prove it, you are going to have to use Definition
1.1.

2.1. Theorem. For any set A,  ⊂ A.

Finally, the set of all subsets of a set X is called the power set of X, and
is denoted by (X). The power set is an important example of something
that may be unfamiliar: a set whose elements are also sets. Such sets are of
fundamental importance in topology and we will deal with them often. As a
simple example, let X = {1,2}. Then

  

Note that  is in (X) as it should be according to Theorem 2.1. Also, the
usual notation applies even though the elements of (X) are sets, and we
write {1} ∈ ({ 1, 2}), for example.



2.2. Exercises.
1) What is ({ 1,2, 3})?
2) How many elements do you think that ({1, 2, 3, 4}) has? ({ 1,2,

… , n}), where n is a positive integer? Why is (X) called the
power set of X?

3) Are the following statements true or false:
a) x ∈ X if and only if {x} ∈ (X).
b) {x} ∈ (X) if and only if {x} ⊂ X.
c) {x} ⊂ (X) if and only if x ⊂ X.

3. OPERATIONS ON SETS

You are probably familiar with the idea of a collection of objects
“indexed” by the positive integers, like {A1 A2, A3, …}. Similarly, we can
use other sets as indexing sets. Thus if Λ is a set, then {Aλ : λ ∈ Λ} is a
collection of objects (the Aλ’s) indexed by the indexing set Λ, which means
that there is one element in the collection corresponding to each element of
Λ. (With this notation, we could write {A1 A2, A3, …} as {An:n ∈ Z+}.) For
example, the set

  

could be written in indexed form as

  

and the set of odd positive integers between 5 and 19 could be written in
indexed form as

  

Sometimes the only way that a set can be written symbolically (as opposed
to describing it in words) is in indexed form. For example consider the set
of all open intervals on the line of the form (– r, r) where r is a rational
number. It would be impossible to list all of these intervals and equally
impossible to list a few to establish a pattern like we did with {½, ¼, ⅛,
…}. But indexing works perfectly: we can write this set as



  

Note that in this example, the objects in the indexed collection are sets
themselves, and we could write

  

as

  

It is often the case that the indexed objects in a collection are sets, and this
is why we refer to the “collection” of Aλ’s instead of the “set” of Aλ’s. A
“set of sets” sounds strange, but it is often the case that the elements of a set
are also sets (remember (X)?). We will try to refer to a set whose elements
are sets as a “collection” or “family” of sets, rather than a set of sets in the
hope of minimizing the confusion as much as possible.

3.1. Exercises.
Determine what the following sets are:

1) {n ∈ Z+:m  n for all m ∈ Z+ with 1 < m < n} (The symbol m | n

means m divides n (evenly), and m  n means m does not divide n

(evenly). Thus 3 | 6 but 3  7.)
2) {Aλ : λ ∈ Λ}, where each Aλ = {λ}.
3) {2r : r ∈ R}
4) {xA : A ∈ (X)}, where xA = A.

You have probably seen the union and intersection of a pair of sets
before: if A and B are sets, then the union of A and B, written A ∪ B, is the
set

  

and the intersection of A and B is the set

  



Thus the union of A and B is the set of all elements that belong to at least
one of A or B, and the intersection of A and B is the set of all elements that
belong to each of A and B. We can generalize these ideas as follows:

3.2. Definition. Let  = {Aλ : ∈ Λ} be a collection of sets indexed by
the indexing set Λ.

1) the union of the collection , denoted  or ∪{Aλ : ∈ Λ} or 

 is defined to be

  

2) The intersection of the collection , denoted  or ∩{Aλ : ∈ Λ}
or  is defined to be

  

This definition really is a generalization of the one given for a pair of sets
because the two definitions are exactly the same whenever the collection of
sets in Definition 3.2 is a collection of two sets:

3.3. Exercise.
Show that Definition 3.2 reduces to the one given for A ∪ B and A ∩

B in case  is a collection with exactly two elements. Does ∪{A, B]
make sense? [Hint: Put A = A1 B = A2. What is Λ?]

Note that, in Definition 3.2,  is defined to be the set of all points that
belong to at least one element of , and we could write

  

or

  



To keep it straight, remember that x ∈  if there is at least one member
of  that x belongs to (there may be more than one member of  that x
belongs to when x ∈ , but the important thing is that there is at least
one), and x ∈  if x belongs to every member of .

Note also that no matter how many sets are in the collection , the
elements of both  and  are the same kind of elements that are in the
sets that belong to . For example, if  = {A, B} where A = {a, e, 2} and B
= {a, 1, 2, 3}, then  = {a, e, 1, 2, 3} and  = {a, 2}.

3.4. Exercises.
1) Let  = {[– n, n] : n ∈ Z+}. What are  and ?
2) Let  = {(– 1/n, 1/n) : n ∈ Z+}. What are  and ?
3) Let  = {[– 1 + l/n, 1 – 1/n] : n ∈ Z+}. What are  and ?
4) Let  = {(a, b) : a, b ∈ Q, a < b}. What are  and ?
5) Let  = {[r, ∞) : r ∈ R}. What are  and ?
6) Let  be a collection of subsets of a set X.

a) State precisely what it means when a point x ∈ X does not
belong to .

b) State precisely what it means when a point x ∈ X does not
belong to .

The proof of the following theorem is a very straightforward application
of the definitions, and the theorem is important.

3.5. Theorem. Let  = {Aλ : λ ∈ Λ). If λ ∈ Λ, then

  

3.6. Corollary. For any two sets A and B,

  

Besides union and intersection, another important operation on sets is
that of taking complements. Specifically,

3.7. Definition. Let A and B be sets. Then the complement of A relative
to B, written B – A, is defined by



  

In case we have a universal set X (the set of all elements under
consideration), the complement of A relative to X is called simply the
complement of A.

The following exercises are easy (if you remember the discussion of the
importance of definitions!). But the results in these exercises are of basic
importance.

3.8. Exercises.
1) If A ⊂ X, then X – (X – A) = A.
2) If A, B ⊂ X, then A ⊂ B if and only if X – A ⊃ X – B.
3) If A, B ⊂ X, then A = B if and only if X – A = X – B.
4) For A, B ⊂ X, A – B = A ∩ (X – B).

Also useful are the De Morgan Laws* which can be stated roughly as:
The complement of a union is the intersection of the complements, and the
complement of an intersection is the union of the complements. Precisely,

3.9. Theorem. Let  be a collection of subsets of a set X. Then:
1) X –  = ∩{X – A : A ∈ }
2) X –  = ∪{X – A : A ∈ }.

[Hint for proof : Prove (1) by showing directly from the definition that
the two sets are equal; then use (1) with a clever choice for the “ ” in (1) to
prove (2).]

3.10. Exercises.
1) For any two sets A and B,

a) A ∩ B = A if and only if A ⊂ B.
b) A ∪ B = A if and only if B ⊂ A.
c) A ∩ B = A and A ∪ B = A if and only if A = B.

2) If A ⊂ B, C ⊂ D are sets, then
a) A ∩ C ⊂ B ∩ D.
b) A ∪ C ⊂ B ∪ D.

3) The distributive properties: Let  be a collection of subsets of a set
X, B ⊂ X. Then
a) B ∩ ( ) = ∪{B ∩ A : A ∈ }.



b) B ∪ ( ) = ∩{B ∪ A : A ∈ }.
4) Let  be a non-empty collection of sets. Then

a) B ∪ ( ) = ∪{B ∪ A : A ∈ }.
b) B ∩ ( ) = ∩{B ∩ A : A ∈ }

5) Show that the hypothesis that  be non-empty is needed in Problem
4 but not in Problem 3 above.

6) Give examples of :
a) An infinite collection of open intervals that all have a point in

common whose intersection is not an open interval.
b) An infinite collection of closed intervals that all have a point in

common whose union is not a closed interval.

So far, the operations that we have defined on sets (union, intersection,
and complementation) have produced new sets that have the same kind of
elements as the sets that we started with. Specifically, we have seen that A
and B are both subsets of A ∪ B, A ∩ B is a subset of both A and B, and A –
B is a subset of A. Now we want to investigate an important way of
combining two sets that produces a new set which does not have the same
kind of elements as those we start with.

3.11. Definition. Let A and B be sets. The Cartesian product* of A and
B, written A ∉ B (read “A cross B”), is defined to be the set

  

and is the set of ordered pairs with first coordinate an element of A and
second coordinate an element of B.

Two such ordered pairs are equal if and only if they are equal
coordinatewise. In other words, (a, b) = (c, d) if and only if a = c and b = d.

For example, if A = {0, 1} and B = {1, 2, 3}, then

  

Note that the order in the ordered pairs makes a difference and, for
example, (1, 0) ∉ A ∉ B with A and B as defined above. Note also that A ∉



B does not have the same kind of elements as A or B. In particular, there is
no containment relationship between A or B and A ∉ B as there is with
union, intersection and complementation.

3.12. Exercises.
1) Let A = {2, 4, 6}, B = {1, 3}. What is A × B? What is B × A? Does

A × B = B × A?
2) Let A = Z+ (the set of positive integers), and let B = 2Z+ (the set of

even positive integers). What is A × B? What is B × A? Are they
equal?

3) When does A × B = C × D? State a theorem and prove it. (Since A ×
B and C × D are sets, this will be a theorem about equality of two
sets, so Definition 1.1 will have to be used in the proof, in addition
to the definition of Cartesian product.)

4) When does A × B = B × A? State a theorem and prove it. [Hint: See
Problem 3 above.]

An important example of the Cartesian product of two sets is the
familiar Euclidean plane. You should be absolutely sure that you understand
that the plane is just R × R, where R is the set of real numbers.

We can illustrate the Cartesian product of subsets of R on the plane:

  



It is often useful when dealing with Cartesian products to pretend that
the two sets A and B lie on the line (even if they do not), and then visualize
A × B in the plane. Use this technique (if you need it) in the following
exercises, which relate Cartesian product to union, intersection and
complementation.

3.13. Exercises.
Decide which of the following statements are true and which are

false. Prove those that are true, correct those that are false and prove
the corrected version. Let A, B, C, D ⊂ X, where X is some set.
1) (A × B) ∪ (C × D) = (A ∪ C) × (B ∪ D)
2) (A ∪ B) ∉ (C ∪ D) = (A × C) ∪ (B × D)
3) (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D)



4) (A ∩ B) × (C ∩ D) = (A × C) ∩ (B × D)
5) (A × B) – (C × D) = (A – C) × (B – D)
6) (A – B) × (C – D) = (A × C) – (B × D).

4. FUNCTIONS

The idea of a function is probably the single most important one in all of
mathematics. Fortunately, it is a simple idea: a function from a set X to a set
Y is a rule that associates one and only one element of Y with each element
of X; it is an unambiguous way to go from X to Y. Formally,

4.1. Definition. Let X and Y be sets. A function f from X to Y is a subset
of X × Y such that whenever (x, y1) and (x, y2) both belong to the subset f,
then y1 = y2.

This definition may be confusing at first, but a little thought will
convince you that it simply makes the intuitive idea of a function
mathematically precise: a function f from X to Y associates y ∈ Y with x ∈
X if and only if (x, y) ∈ f; and, each x ∈ X can have only one y associated
with it: if y1 and y2 are both paired with x by f, then y1 = y2. Note, however,
that we do not prohibit x1 and x2 from both being paired with the same y,
even if x1 ≠ x2.

4.2. Exercises.
1) Which of the following are functions from X to Y, where X = {0,

1,2}, Y = {a, b, c, d}?
a) f = {(0, a), (0, b), (0, c)}
b) f = {(0, a), (1, a), (2, c)}
c) f = {(0, a), (1,2)}

2) Write the function f from X to Y as a subset of X × Y, when f is
defined by the following picture.



  

3) Let f be a rule that associates elements of Y with each element of X.
State precisely what it means when f is not a function from X to Y.

When f is a function from X to Y we write f : X → Y, or, sometimes, X 
 Y. If y ∈ Y is the element associated with x ∈ X by f (i.e., if (x, y) ∈

f), we write y = f(x), read “y = f of x.” The set X is called the domain of f,
and we say that f is defined on X, or f is a function on X. The set {f(x) : x
∈ X} ⊂ Y is called the range of f. A function whose range is a subset of R
is called a real-valued function, and if the domain and range are both
subsets of R, the function is often called a real-valued function of a real
variable.

We can often write functions using formulas. For example, if f : R → R
is the function that sends each real number in its domain to the square of
that real number in its range, we can write “ f : R → R by f(x) = x2.”

If A ⊂ X, then the image of A under f written f(A) and read “f of A,” is
the subset of Y defined by

  



which is the same as

  

Thus the range of f is the image of its domain. Also, for B ⊂ Y, the
preimage or inverse image of B, written f–1(B) and read “ f inverse of B,”
is the subset of X defined by

  

You should convince yourself that f–1(B) is defined for all B ⊂ Y and
that f–1 is a function from (Y) to (X). Sometimes we can use f–1 to
induce a function from Y to X, and for that, we need the following
definition.

4.3. Definition. Let f : X → Y.
1) f is 1-1 (or injective) if whenever f(x1) = f(x2) then x1 = x2.
2) f is onto (or surjective) if f(X) = Y, i.e., if for all y ∈ Y there is an x
∈ X such that f(x) = y.

3) f is bijective if it is both injective and surjective.

4.4. Exercises.
1) State precisely what it means when a function f : X → Y is not 1-1.
2) State precisely what it means when a function f : X → Y is not onto.
3) Let f : R → R be defined by f(x) = x2. Graph the function f in the

plane and show its domain and range. Compute f–1({0}) and f–
1({4}). Is f 1-1?

4) Let f : R+ → R by f(x) = x2. (R+ is the set of positive real numbers.)
Graph f in the plane and show its domain and range. Compute f–
1({0}), f–1({4}) and f–1({r}) when r > 0. What is f–1({r}) when r ≤
0? Is f 1-1?

5) Conjecture a theorem that says whether or not a function f from X to
Y is 1-1 in terms of the number of points in f–1({y}) for each y ∈ Y.
Prove your theorem.

6) Compute f–1([1, 2]) for the function f defined in exercise (3) above.
Draw it on your graph.



Compute f–1([1, 2]) for the function f defined in Problem 4 above.
Draw it on your graph.

When f : X → Y is both 1-1 and onto, then for each y ∈ Y, f–1({y}) = {x}
if and only if f(x) = y. The convention in this case is to drop the braces and
write

  

Thus when f : X → Y is bijective, we can think of f–1 as the function from Y
to X that “undoes what f does,” in the sense that f–1(y) = x if and only if f(x)
= y. The function f–1 : Y → X defined in this way is called the inverse of the
function f.

Notice that we are using the symbol f–1 in two different ways. When f is
any function from X to Y and B is any subset of Y, then our original
definition of f–1 says that

  

and in this case, f–1 is a function from (Y) to (X), and not a function
from Y to X. But in the particular case that f : X → Y is 1-1 and onto, we can
think of f–1 as the function from Y to X defined by f–1(y) = x if and only if
f(x) = y, and we call this function f–1 the inverse of the function f. To further
complicate things, we often call f–1 the inverse of f even when f is not 1-1
and onto, but when we do this, we have to keep in mind that f–1 may not be
a function from Y to X.

The following theorem tells how functions and their inverses behave
with respect to unions and intersections.

4.5. Theorem. Let f : X → Y, let  be a collection of subsets of X and let
 be a collection of subsets of Y. Then

1) f( ) = ∪{f(A) : A ∈ }
2) f( ) ⊂ ∩{f(A) : A ∈ }
3) f–1( ) = ∪{f–1(B) : B ∈ }
4) f–1( ) = ∩{f–1(B) : B ∈ }



There is one more definition that we will need later.

4.6. Definition. Let f : X → Y and g : X → Y. Then f = g if and only if
f(x) = g(x) for every x ∈ X.

Thus two functions with the same domain and range are the same if and
only if they do exactly the same thing to every point of the domain.

4.7. Exercises.
1) Let f : X → Y, A ⊂ X and B ⊂ Y. Then

a) A ⊂ f–1(f(A))
b) f (f–1(B)) = B ∩ f(X)
c) Give an example to show that the containment in (a) above can

be proper. (A subset S of a set X is a proper subset if S ⊂ X but S
≠ X.)

d) Give a condition on f that will make A = f–1(f(A)) for every A ⊂
X, and prove that your condition is right.

e) Give a condition on f that will make both A = f–1{f(A)) for every
A ⊂ X and f(f–1(B)) = B for every B ⊂ Y, and prove that your
condition is right.

2) Is the following statement correct? If x ∈ X and f : X → Y then x =
f–1(f(x)).

3) Give an example to show that the containment in Theorem 4.5 (2)
can be proper. (A  consisting of only two sets will do, and it might
be helpful to look at the real line.)

5. COMPOSITION OF FUNCTIONS

Consider the following situation:

  



Here f is a function from X to Y and g is a function from Y to Z. The
question is: can we use f and g in some way to get a function from X to Z?
Obviously the answer is yes because we can go from X to Z in “steps”: first
we can go from X to Y by using f and then we can transfer to g and go on to
Z by using the function g. The resulting function that takes X into Z is
called the composition of f and g and is denoted by gof. Formally,

5.1. Definition. Let f : X → Y, g : Y → Z. Then the composition of g and
f is the function gof : X → Z defined by

  

5.2. Exercises.
1) Let f : R → R and g : R → R be defined by f(x) = x2, g(x) = x3.

What is fog? What is gof?
2) Let f : R → R and g : R → R be defined by f(x) = 2x + 1, g(x) = x2.

What is fog? What is gof?
3) Let f : R → R and g : R → R be defined by f(x) = x + 1, g(x) = x –

1. What is fog? What is gof?

A useful way of looking at composition of functions is by using
diagrams. Suppose that f : X → Y and g : Y → Z. A diagram of this situation
might look like:

  

It is clear from the diagram that we can go from X to Z by going through Y,
and that the resulting function is the function f followed by the function g,
or simply the function gof. Putting this on the diagram we get

  



The completed diagram is said to be commutative because no matter how
you go from X to Z, the result is the same: for each point x ∈ X,

  

Commutative diagrams can be generalized to more than three spaces, and
they play an important role in mathematics. For example, consider the
diagram

  

The obvious way to complete this diagram so that the resulting completed
diagram is commutative is

  

where F = hogof.
Suppose, though, that we are told that the diagram

  

is commutative. We can immediately conclude that gof = FoG.
We can use commutative diagrams to visualize an important function.

5.3. Definition. Let X be a set. The function idX : X → X defined by
idX(x) = x is called the identity function on X.



Consider the following diagram.

  

This diagram is commutative if and only if idX°f = f°idX, a fact which you
can readily verify. In fact, it is trivial to show that both idX°f = f and f°idX =
f, so that the following extended diagram is also commutative:

  

Thus idX°f = f°idX = f and the function idX : X → X plays the same role
relative to composition of functions from X to X as 0 does relative to
addition of real numbers and as 1 does relative to multiplication of (non-
zero) real numbers: they are the identity elements of their respective
operations.

5.4. Exercises.
1) If f : X → X is 1-1 and onto (so f–1 can be thought of as a function

from X to X) then fof–1 = f–1°f = idX. Thus f–1 really is the inverse of
f relative to composition of functions because the composition of f
with f–1 in either order gives the identity function. This is exactly
the same idea as n(l/n) = (1/n)n = 1 or n + (– n) = – n + n = 0 for
positive integers n.

2) Let f : X → Y and g : Y → Z. Prove that if f and g are both 1-1, then
gof is 1-1. Is the converse true?

3)Let f : X → Y and g : Y → Z. Prove that if f and g are both onto then
gof is onto. Is the converse true?

* After Augustus De Morgan (1806-1871).
* After the French mathematician and philosopher Rene Descartes (1596–1650), who invented
analytic geometry. In analytic geometry one uses coordinate systems to describe geometric figures



algebraically, and the usual coordinate system in the plane is the Cartesian product of two real lines
(the “x” and “y” axes), as we will see.



chapter two 
Infinite Sets and Transfinite
Numbers

The concept of infinity is a fascinating and improtant one. In this
chapter, we will investigate sets and the transfinite numbers which are used
with them.

1. BASIC IDEAS

1.1. Definitions.
a) A 1-1 correspondence between two sets is a bijective (1-1 and

onto) function between them.
b) Two sets have the same cardinality if there is a 1-1 correspondence

between them.

According to this definition, the two sets {a, e, i, o, u} and {0, 1, 2, 3, 4}
have the same cardinality: an example of a bijective function between them
that proves it might be one that sends a to 0, e to 1, i to 2, o to 3, and u to 4.
Clearly, “same cardinality” has something to do with “same number of
elements,” and it will not hurt at all if you think of it in this was (in fact, it
will probably help keep things clear, but keep in mind that “same
cardinality as” has a precise definition when you need it in a proof).

It is when we deal with infinite sets that the idea of two sets having the
same cardinality becomes really fascinating, because with infinite sets we
can have things like a proper subset of a set that has same number of
elements as the set itself (try this with finite sets—it won’t happen). It
always happens with infinite sets, and we could follow Dedekind* and
define what it means for a set to be infinite by saying that a set is infinite if
and only if it has a proper subset with the same cardinality as itself. We
choose to be a little less startling though, and give a definition that



determines whether a set is infinite or not by comparing it with a kind of
“base” set, the set of positive integers.

1.2. Definition. A set S is finite if it is empty or if there is a positive
integer N such that S can be put into a 1-1 correspondence with the set {1,2,
… ,N} ; S is infinite if it is not finite.

Clearly, our definition says that the set of positive integers itself is
infinite. It is also infinite in the Dedekind sense. To show it, we have to
show that it has a proper subset with the same cardinality as itself. The even
positive integers (denoted 2Z+) will work : define f: Z+→ 2Z+ by f(n) = 2n,
and show that f is a 1-1 correspondence between the two sets.

The fact that there are exactly as many even positive integers as there are
all positive integers is probably surprising. Intuition might say that since
there are the same number of even positive integers as there are odd
positive integers, then when the evens and odds are combined to form the
set of all positive integers, there should be twice as many positive integers
as even positive integers. This intuition would be wrong, as we have just
seen, so you can see that intuition will have to be used with care when
dealing with infinite sets.

We have defined what it means for two sets to have the same cardinality,
but we have not said what the cardinality of a set is. In the case of finite
sets, the cardinality of a set is nothing but the number of elements in the set;
more precisely, the cardinality of S is n if and only if S can be put into a 1-1
correspondence with the set {1, 2, 3,…, n}. This idea could easily be
extended to infinite sets if we had some infinite numbers to match our sets
up with; they exist and we will see them later, but we do not have them
now. For the moment, we will assume that “the number of elements in a
set” is a phrase that always makes sense (it does) and to make the
discussion easier, we will call the number of elements in a set S the
cardinality of S and denote it by the symbol | S |.

Thus we have | A | = | B | if and only if there is a 1-1 correspondence
between A and B. We say that a set S is countable if it is finite or if | S | =
|Z+ |. Sometimes, for emphasis, if a set is countable and infinite, we will say
that it is countably infinite.

1.3. Exercises.
1) Show that the set of odd positive integers is countably infinite.



2) Show that the set Z = {…, –3, –2, –1,0, 1, 2, 3, …} of all integers is
countably infinite.

3) Show that for any positive integer n, the number of subsets of an n
element set is 2n. [Hint: Use induction.]

The symbol used for the cardinality of a countably infinite set is 0
(aleph sub zero—aleph is the first letter of the Hebrew alphabet). The
symbol 0 denotes a number, just like 3 or 8; it is our first example of a
number giving the size of an infinite set, and it is a transfinite cardinal
number. (In general, a number (finite or infinite) is a cardinal number if it
gives the size (the number of elements) of a set.) Writing 0 = | Z+ | is the
same idea as writing 3 = | {0, 1, 2} |.

We have so far that

  

and yet

  

which, when you think about it, is quite a departure from the case of finite
sets. Here are three sets, each properly contained in the next, and yet all
three of them have exactly the same number of elements—they are all
countably infinite. There are even “larger” sets than Z which are also
countably infinite (larger in the sense of containment, of course—not larger
in the sense of having a greater number of elements). Before we can deal
with them, though, we need the following definition.

1.4. Definition. For two sets A and B,| A | ≤ | B | if there is a 1-1 function
from A into B, and | A | < | B | if there is a 1-1 function from A into B but
there is not a 1-1 function from A onto B.

The use of the symbol “≤” in this definition is very suggestive, and it
probably seems obvious that if | A | ≤ | B | and | B | ≤ | A | then | A | = | B |.
This is true, but it is surprisingly difficult to prove. It is called the Schröder-
Bernstein theorem,* and you can find a proof of it in Wilder [18]. We will
accept it and use it without proving it, and for later reference, we state it
formally as a theorem. (Don’t try to prove it.)



1.5. Theorem (Schröder-Bernstein). For two sets A and B, | A | = | B | if
and only if both | A | ≤ | B | and | B | ≤ | A |. In other words, | A | = | B | if and
only if there exists a 1-1 function from A into B and there also exists a 1-1
function from B into A.

As an immediate corollary of the Schröder-Bernstein theorem we have
the following “squeeze” theorem, which is often very useful. (You should
prove this corollary.)

1.6. Corollary. If A ⊂ B ⊂ C are sets and | A | = | C | then | A | = | B | = |
C |.

Use the squeeze theorem and the given outline to prove the following
theorem (which we will then use to prove that the set of rational numbers is
countable).

1.7. Theorem. The union of a countable collection of countable sets is
countable, i.e., if = {Aλ : λ ∈ ∧} with each | Aλ | ≤ 0 and | ∧ | ≤ 0,
then | ∪  | ≤ 0.

Outline of Proof: Build a checkerboard with countably infinitely many
squares in two directions. Then count the squares in a clever way, thus
inducing a 1-1 correspondence between the positive integers and the
squares. Now put your sets on the board (one set to a row) and with the aid
of the squeeze theorem (Corollary 1.6), conclude that the union of your sets
is countable. (The way that the squeeze theorem is to be used here is a little
subtle. Counting the squares in the checkerboard shows that the number of
squares is countable. There are then two problems that can occur: when you
put your sets on the board as directed, you may not use up all of the squares
—some of your sets might be finite; secondly, some of your sets may have
elements in common which would be counted separately when you put the
sets on the board, but would only be counted once in the union of your sets.
Even so, the number of elements in the union of your sets is no larger than
the number of squares (Why?), so if any one of your sets is infinite or if Λ
is infinite (or both), the squeeze theorem may have to be used (Why?). (Can
a countable union of countable sets ever be finite?).)

Since the set of rational numbers can be written as the union of a
countable collection of countable sets, the following corollary is immediate



from Theorem 1.7. To prove it, you should show how the rationals can be
written as the countable union of countable sets.

1.8. Corollary. The set Q of rational numbers is countable.

The set of rationals should seem gigantic relative to the set of positive
integers, because all fractions (with numerator and denominator both
integers) are rational numbers, but only those fractions which are positive
and have denominator 1 (in lowest terms) are positive integers. Yet we have
shown that the number of rational numbers is the same as the number of
positive integers! This is a very striking example of a set (Q) with a proper
subset (Z+) with the same cardinality as itself. The set of integers is in a
sense “twice as big” as the set of positive integers; the set of rational
numbers is "infinitely as big", but all three of them have the same
cardinality.

There is another set which looks even more gigantic than the set of
rational numbers, but we will show that it too is countable. This is the set of
algebraic numbers.

1.9. Definition. A (real) number is algebraic if it is a root of a
polynomial with integer coefficients.

For example, the numbers 2, 2/3 and  are algebraic because they are
roots of the polynomial equations x – 2 = 0, 3x – 2 = 0 and x2 – 2 = 0,
respectively.

Clearly every rational number is algebraic (prove it), and there are “lots”
of algebraic numbers that are not rational (What are some?). But the set of
algebraic numbers is countable. To prove it, use Theorem 1.7 to observe
that for each positive integer n, the set of polynomials of degree n with
integer coefficients is countable. (The degree of a polynomial is the highest
power of the unknown that appears with a non-zero coefficient.) Then use
Theorem 1.7 again to show that the set of all polynomials with integer
coefficients is also countable. Finally, observe that the number of roots of a
given polynomial is finite (and therefore countable), and use Theorem 1.7
once again to get the result.

1.10. Theorem. The set of algebraic numbers is countable.



Before jumping to any false conclusions about the countability of all sets
of real numbers, let us prove the following theorem (which says that,
compared to the infinite set Z+, R is super infinite). It also shows that there
are different degrees of infinity—two infinite sets need not be the same size
— one can be larger than the other, even though both are infinite.

1.11. Theorem. The set R is not countable.
Outline of Proof : Suppose that R is countable. Then there is a 1-1

correspondence f between Z+ and R, say f(1) = r1 = N1.d11d12d13…, f(2) =
N2.d21d22d23…, where we have written the real numbers r1, r2, etc. as
decimals. Now show that the function f cannot be onto (as it is assumed to
be) by constructing a real number that is different from every f(n). Do this
by making the new number differ from each f(n) in the n-th decimal place.

A real number that is not algebraic is called transcendental. The
following corollary is immediate from Theorems 1.11 and 1.7.

1.12. Corollary. The set of transcendental numbers is not countable.

This corollary deserves some comment because the only two
transcendental numbers that most people ever see (if they see any at all) are
π, the ratio of the circumference of a circle to its diameter, and e, the base
for natural logarithms. (We should also remark that it is very hard to prove
that π and e are transcendental.) The corollary says, though, that there are
fantastically many different transcendental numbers—in fact, there are as
many transcendental numbers as there are all real numbers combined.
(Note that the corollary is an example of an existence statement: it says that
lots of transcendental numbers exist, but it does not say what they are.)

The symbol used for the cardinality of the set of real numbers is c. Since
the function f(n) = n sends Z+ 1-1 into R and the proof of Theorem 1.11
shows that there cannot be a 1-1 function from Z+ onto R, we have | Z+ | < |
R |. This result is important and we state it as a theorem.

1.13. Theorem. 0 < c.

Recall that the number of subsets of an n element set is 2n. We copy this
and define the symbol 2 0 to be the number of subsets of the positive



integers. In other words, we define the symbol 2 0 by 2 0 = | ( (Z+) |.
The following theorem relates the two numbers c and 2 0, and its proof

is probably the most difficult that we have encountered so far. The basic
idea of the proof is to show that c = 2 0 (i.e., that the number of real
numbers is the same as the number of subsets of the positive integers) by
making a decimal out of each subset of Z+. It is easier if you first observe
that | R | = | [0, 1) | = | (0, 1) ∪ {0} |, which can be done geometrically by
projecting on the following picture:

  

where we have bent the interval (0, 1) into a semicircle, and placed it
tangent to R with ½ on (0, 1) touching 0 on R. Then show that | [0, 1) | = | (

(Z+) | by making decimals out of subsets of Z+, and subsets of Z+ out of
decimals. With some care and ingenuity, this will give you 1-1 functions
from Z+ into R and from R into Z+, and you can then use the Schröder-
Bernstein theorem.

1.14. Theorem, c = 2 0.

Since o < c = 2 o, a natural question presents itself: are there any
numbers between 0 and 2 ? In terms of sets, this question becomes: are
there any infinite subsets of the real line which are not countable, but which
have cardinality less than that of the line itself? No one has ever exhibited
such a set, and the assumption that there are none is known as the
continuum hypothesis. Another way of stating the continuum hypothesis
is: there are no numbers between 0 and 2 o.*

1.15. Exercise.



As we saw above, the set of all subsets of Z+ is uncountable. However,
the set of finite subsets of Z+ is countable. To show it, for each finite subset
S = {n1, n2,…, nk} of Z+ with n1 < n2 < … < nk, associate the integer
2n13n25n3 … , where pk is the K-th prime.

2. CARDINAL NUMBERS LARGER THAN c.

Recall that c = | ( (Z+) | and that we proved that c = 2 0, where = 
o
 =

| Z+ |. In other words, we have proved that | ( (Z+) | > | Z+ |. We can
generalize this in the following theorem and show that for any set X, | 
(X) | > | X |. In particular, then, when X = (Z+), this gives | ( (Z+)) | > 

(Z+) |, and when X = ( (Z+)), | ( ( (Z+))) | > | ( (Z+)) |, etc. In
this way, we obtain larger and larger cardinal numbers (so c is not so super
infinite after all!). Letting 2| X | = | (X) |, we have

  

The outline given for the proof of the theorem that | X | < | (X) | is taken
from a proof of Cantor* as it appears in Kelley ([9], p. 276).

2.1. Theorem. For any set X, | X | < | (X)|.
Outline of Proof : Clearly |X| ≤ | (X) | (Why?). To show that | X | < | 

(X) |, suppose that they are equal. Then there is a function f that takes X l-l
onto (X). Show that the set { x ∈ X : x ∉ f(x)\} is in (X) but is not in
the image of X under f thus contradicting the fact that f is onto.

Recall that the continuum hypothesis says that there are no numbers
between 0 and 2 0. The generalized continuum hypothesis (GCH)
extends this to larger cardinal numbers by saying that if m is any transfinite
cardinal number, then there are no numbers between m and 2m (where, as
above, 2m = | (X)| when | X = m.) Thus the GCH says that there are no
numbers between c and 2c, none between 2c and 22c

 etc.†

3. ORDINAL NUMBERS



Up to this point we have been concerned only with the size of sets and
have not cared at all what the sets really look like. For example, we have
shown that the set of positive integers and the set of positive rational
numbers are both the same size—they are both countably infinite. But these
two sets actually look very different: the integers are nicely spaced along
the line (there is always a distance of at least one unit between any pair of
integers), while we can always find rational numbers as close together as
we want.

In this section we will be concerned with what sets look like as well as
how big they are. To do this completely rigorously would delay our getting
into topology much too long, so we choose to describe the situation
intuitively in order to get a working knowledge of the ideas involved.*

To begin with, consider the positive integer 5. We usually think of 5 as a
cardinal number and use it to describe the size of certain sets—the number
of sides of a pentagon, for example, or the number of fingers on one hand.
But, if we wanted to, we could think of the integer 5 as a set (of all things) ;
indeed, if we assume that the integer 0 has been defined in terms of sets (we
might think of 0 as being the empty set ), then we could put

  

and, finally,

  

Thus 5 can be thought of as the set of non-negative integers that precede it
(where we insist on order: 0< 1< 2< 3< 4). Clearly, the integer 6 could now
be written as

  

It is important to notice that when we go from 5 = {0, 1, 2, 3, 4} to 6 = {0,
1, 2, 3, 4, 5}, we adjoin only one new element to the set 5 to get the set 6,
namely, the number 5; we do not adjoin five new elements to the set 5 to get
the set 6. (It is true that we adjoin a set consisting of five elements to the set
5 to get the set 6, but this is only one set. This is consistent with adding one
unit to the integer 5 to get the integer 6; we adjoin one element to the set 5



to get the set 6.) Notice also that the number of elements in the set 5 = {0, 1,
2, 3, 4} is right: it is true (as it ought to be) that | 5 | = 5.

When we think of 5 as the ordered set of non-negative integers that
precede it (i.e., as 5 = {0, 1, 2, 3, 4}), we are thinking of 5 as an ordinal
number; when we think of it as the number of elements in a set without
regard to what the set is or how it looks (except for its size), we are thinking
of 5 as a cardinal number. The two ideas are related of course: | 5 | = 5.

Obviously there is nothing special about the integer 5 and our idea of
regarding 5 as a set can easily be generalized. Indeed if n is any positive
integer, we can think of n as an ordinal number and write

  

where n – 1 = {0, 1, 2, 3, …, n – 2}, n – 2 = {0, 1, 2, 3, …,n – 3}, and so
on, and 0 = . (If this doesn't remind you of mathematical induction, it
ought to.) We can also think of the positive integer n as a cardinal number,
and we have | n | = n.

Non-negative integers are finite ordinal numbers. Before we can discuss
ordinals any further—in particular, before we can examine the fascinating
idea of infinite ordinal numbers—there is one more thing that needs to be
mentioned. We have been sticking pretty close to familiar notation and will
get in trouble if we don't generalize a little. For example, we have said that
we can think of the ordinal number 5 as the ordered set of non-negative
integers that precede it, and have written

  

But we did not define the ordinal number 5 to be this set; indeed, we did not
define it at all, and will not, because a rigorous definition turns out to be too
complicated for our purposes. The problem is that {– 3, –2, –1, 0, 1} and
{¼, ⅓, ½, 0, 3} are both the ordinal number 5 when they are given their
usual ordering, and you can think of many more such examples. An ordinal
number depends only on order and size; what the elements are in the set
which is the ordinal number is totally irrelevant. Thus if a, b, c, d, e are any
objects (not necessarily numbers) which are ordered by a < b < c < d < e,
then the set {a, b, c,d, e} is the ordinal number 5, but the sets {b, a, c, d, e}
and {e, d, c, b, a} for example, are not.



Thus we could say that {0, 1, 2, 3, 4} is a convenient representative of
the collection of sets that are the ordinal number 5, and any set which can
be put into a 1-1 correspondence with {0, 1, 2, 3, 4} such that order is
preserved by the correspondence is also the ordinal number 5. Certainly this
idea can be generalized to any finite ordinal number n, and writing

  

is convenient, but we have to remember that any set that can be put in a 1-1
correspondence with {0, 1, 2, 3,…, n – 1} such that order is preserved by
the correspondence is also the ordinal number n. We will call n = {0, 1, 2, 3,
…, n — 1} the canonical form of the ordinal number n.

Writing ordinal numbers in canonical form makes very clear the order
relation between non-negative integers. For example, everyone knows that
4 < 5, but not everyone can give a good reason why. We can now say that 4
< 5 because, in canonical form, 4 = {0, 1, 2, 3} is a proper subset of 5 = {0,
1, 2, 3, 4}. In general, for non-negative integers (finite ordinal numbers) n
and m, n < m if and only if n ∈ m when both are written in canonical form.
It should also be clear that two non-negative integers m and n are equal as
finite ordinal numbers if and only if they are equal as finite cardinal
numbers. In other words,

  

if and only if n = m. This may seem too obvious to mention, but just wait!
Consider now the infinite ordered set

  

consisting of all non-negative integers. If there were a largest positive
integer N, then this set would represent an ordinal number which we might
denote by N + 1 (Why?). There is no largest integer N, though (Why not?),
but the set Z+ ∪ {0} looks like it ought to represent an ordinal number
anyway— after all, it consists of integers ordered in the right way: 0 < 1 < 2
< …. We can look at the problem from the other direction. We cannot hope
to have a largest integer N, but it might be possible to have a smallest
ordinal number that is not an integer. Indeed it is possible, and one way to



think of this smallest non-integer ordinal number is as the set {0, 1, 2, 3, …
} of all non-negative integers ordered in the usual way. This makes sense:
the set contains every non-negative integer so can be thought of as being
larger than every such integer, and it contains nothing but non-negative
integers, so it is certainly the most economical (the smallest) set that
contains them all. When we think of it as an ordinal number we call this set
ω (small Greek omega; sometimes ω0 is used instead).

The ordinal number ω is then the smallest infinite (transfinite) ordinal
number. It is the smallest ordinal number which is larger than every finite
ordinal number (recall that a finite ordinal number is just a non-negative
integer), and, in canonical form,

  

Thus the smallest infinite ordinal number is (in canonical form) just the set
of all finite ordinal numbers, ordered in the usual way.

Thus we have ordinal numbers

  

where each is larger than any one that comes before it (because each is
equal, in canonical form, to the set of all of those that come before it).

As with the finite ordinal numbers, thinking of ω in canonical form (i.e.,
as being equal to the set of all ordinal numbers that precede it) is
convenient, but we have to be aware that any set which can be put into a 1-1
correspondence with {0, 1, 2, 3, …}, such that order is preserved by the
correspondence, is also the ordinal number ω.

3.1. Exercises.
Which of the following sets is the ordinal number ω when given its

usual ordering? If any of these sets is not ω, why isn't it?
1) The set of positive integers that are prime: {2, 3, 5, 7, 11, …}.
2) The set of positive even integers: {2, 4, 6, 8,…}.
3) The set of negative integers { – 1, –2, –3, …}.
4) The set {2n : n ∈ Z+}.
5) The set {0, 2, 3, 4, 5,…}.
6) The set {1 /n :n ∈ Z+}.



Calling {0, 1, 2, 3, …, n,…: n ∈ Z+} with its usual order the canonical
form of the ordinal number ω enables us to say that an ordinal number n is
less than ω if n  ω when both are represented in canonical form. Thus any
finite ordinal number (non-negative integer) is less than ω.

Sometimes when we really want to emphasize that we are thinking of ω
as being equal to the set of all finite ordinals, i.e., as ω = {0, 1, 2, 3,…}, we
write [0, ω) instead of just ω. This notation means just what it says: [0, ω) is
the interval of all ordinal numbers that are greater than or equal to 0 and
less than ω—it is the set of all finite ordinal numbers with their usual
ordering.

The cardinal number associated with the ordinal number ω is then just
the cardinality of the set [0, ω), so the proof of the following theorem is
easy.

3.2. Theorem. | ω | = 0.

The following exercises should now be easy, but understanding them is
crucial.

3.3. Exercises.
1) There is no ordinal number immediately before ω, i.e., there is no

ordinal number which when increased by 1 gives ω. In other words,
ω – 1 does not exist.

2) Why can't ω – 1 be thought of as the set {0, 2, 3, 4, …} ?

Recall that for finite ordinal numbers (non-negative integers) n and m,
we have n < m as ordinal numbers if and only if n < m as cardinal numbers
(where n < m as ordinal numbers means that n  m when they are in
canonical form). We can extend this to ω because it is true that if n is an
ordinal number, then n < ω as ordinal numbers if and only if n < 0 as
cardinal numbers. (This is just a fancy way of saying that an ordinal number
is less than ω if and only if it is a finite ordinal number.) This might lead us
to conjecture that given any two ordinal numbers a and b, then a < b as
ordinal numbers if and only if a < b as cardinal numbers. Such a conjecture
would be false! For example, consider the set

  



which consists of all finite ordinal numbers together with one new element,
namely the number ω (remember how we went from 5 to 6; it is the same
idea here. We are adjoining only one new element to the set [0, ω).) This set
certainly looks like the canonical form of an ordinal number and it is
certainly larger than ω because it contains ω = [0, ω) as a proper subset. But
its cardinality is 0 (why?). We denote this new set by the symbol ω + 1,
i.e.,

  

Then we have ω < ω + 1 but | ω | = | ω + 1 |, so we have an example of two
different ordinal numbers whose corresponding cardinal numbers are the
same—quite a departure from the case of finite ordinal numbers.

As a matter of fact, there are infinitely many ordinal numbers not equal
to ω which have the same cardinality as ω. For example, we could write

  

and so on, and it should not be too hard to imagine

  

which looks (set-wise) like two copies of [0, ω), one right after the other.
Clearly ω + ω is “twice as big” as ω when we think of them as ordinal
numbers, but its cardinality is still countable (Why?). And the process goes
on: to ω + ω + 1, to ω + ω + ω, to ω + ω+ ω + 1 —forever!

But—think back to when we first saw the number ω. We imagined that
we had written down all of the finite ordinal numbers and then took ω to be
the set consisting of all of these finite ordinal numbers. As such, ω was
necessarily an infinite ordinal number—countably infinite of course: it was
the first ordinal number that was not finite. We make the same kind of leap
in cardinality here. Imagine that we have written down all of the ordinal
numbers that are either finite or have cardinality 0, i.e., all of the
countable ordinal numbers (remember that countable means either finite or



countably infinite). The next ordinal number in line, then, would necessarily
have to be an uncountable set (Why?). The smallest uncountable ordinal
number (which, in canonical form, is the ordered set consisting of all the
countable ordinal numbers) is usually denoted by the symbol Ω (sometimes
it is called ω1). The cardinality of this first uncountable ordinal is of course
not 0 (if it were, Ω would be countable); instead, it should be clear that |
Ω | > 0.

The symbol used for the cardinality of Ω is 1, so 1 is then an infinite
cardinal number which is greater than 0. Again we see that not all infinite
sets are the same size.

  

The set A of all finite ordinal numbers has cardinality 0 and represents the
number ω. The set B of all countable ordinal numbers has cardinality 1
and represents the number Ω. In other words, there are 0 finite ordinal
numbers and 1 countable ordinal numbers. Also, since ω = [0, ω)  [0,
Ω) = Ω, it follows that ω < Ω; but unlike the other ordinal numbers that we
have seen which are greater than ω, Ω is uncountable, and 0 < 1(| ω | < |
Ω | ).

It is also important to note that the set C of countably infinite ordinal
numbers has cardinality 1 so there are 1 ordinal numbers whose
cardinality is 0.

4. ORDINAL NUMBERS GREATER THAN Ω

We have seen that there are 1 ordinal numbers whose cardinality is 
0, namely the numbers

  



We can generalize this to obtain larger and larger ordinal numbers of larger
and larger cardinality.

4.1. Definition.
a) An initial ordinal is the smallest ordinal number with its

cardinality.
b) A limit ordinal is an ordinal number with no immediate

predecessor.

Thus ω is the initial ordinal of cardinality 0, Ω is the initial ordinal of
cardinality 1, and both are also limit ordinals. In fact, any initial ordinal is
necessarily a limit ordinal (Why?), but there exist limit ordinals which are
not initial ordinals (What are some?)

Summarizing the construction so far, we have the finite ordinal numbers
0, 1, 2, 3, … , n, … where 0 =  and n = {0, 1, 2, 3, …, n — 1} in canonical
form. There are 0 such finite ordinal numbers. The smallest ordinal
number that is not finite is denoted by ω (or ω0) and is, in canonical form,

  

It is the initial ordinal number of cardinality 0. The countably infinite
ordinal numbers (i.e., those whose cardinality is 0) are then

  

and there are 1 such countable ordinal numbers. The smallest ordinal
number whose cardinality is not countable is denoted by Ω (or ω1) and, in
canonical form, is equal to the set of all finite and countably infinite ordinal
numbers ordered in the usual way. The ordinal number ω1 is the initial
ordinal of cardinality 1.

To generalize, the ordinal numbers with cardinality 1 are

  



The smallest ordinal number whose cardinality is greater than 1 is
denoted by ω2 (you can see the reason now for the alternate notation ω0 for
ω and ω1 for Ω), and the cardinality of ω2 is denoted by 2. Then there are 

2 ordinal numbers whose cardinality is 1 and ω2 is the initial ordinal
number with cardinality 2. Then there are 3 ordinal numbers with
cardinality 2 and the initial ordinal of cardinality 3 is denoted ω3.
Clearly this process can be continued, to 4 and ω4, to ω0 and ωω0, to 
ω1 and ωω1, forever.

Thus we get an infinite collection of infinite initial ordinals

  

and the corresponding infinite collection of their cardinal numbers (called
alephs)

  

It is easier to keep things straight if you observe that the subscript on the
omegas and the alephs is the type of ordered set formed by the (transfinite)
initial ordinals that precede the omega or aleph in question. For example, ω
= ω0 has no infinite initial ordinals before it, Ω = ω1 has one (namely ω0),
ω2 has 2, and so on.

Before concentrating more on the set of countable ordinals (which will
be an important example in our study of topology), there is a question that
should be asked. Recall that c, the cardinality of the real line, is
uncountable. The question is: is c one of the alephs (i.e., is c the cardinality
of some initial ordinal), and if so, which one is it? It can be proved that the
answer to the first part is yes—it turns out that every infinite number is one
of the alephs*; the second part is more subtle. Is c = 1? It should be clear
that given that c is an aleph, then c = 1 if and only if the continuum
hypothesis holds.

5. THE COUNTABLE ORDINALS



Given any finite set S consisting of non-negative integers, you can show
that there exists a non-negative integer N such that N ≥ s for every element s
∈ S. This can be stated in a somewhat fancier way by saying that every
finite subset of [0, ω) is bounded above, and generalizes to the following
important theorem.

5.1. Theorem. Any countable subset of [0, Ω) is bounded above, i.e., if
S ⊂ [0, Ω) with | S | < 0, then there exists a number a in [0, Ω) such that a
≥ s for every s ∈ S.
Hint for Proof: Suppose that S = { x1, x2, x3, . . .} is a countable subset of
[0, Ω) which is not bounded above. Show (using Theorem 1.7) that this
forces | [0, Ω) | = 0, a contradiction.

6. WELL-ORDERING AND THE PRINCIPLE OF
TRANSFINITE INDUCTION

A very important fundamental property of ordinal numbers is that any
collection of ordinal numbers is well-ordered, which means that any
collection of ordinal numbers contains a smallest element. We cannot prove
this because we do not have a definition of an ordinal number, but we will
have need for it later, so we state it here as a fact for future reference. (You
can see a rigorous justification in Wilder [18].)

6.1. Fact. Any set of ordinal numbers is well-ordered. In other words,
any collection of ordinal numbers contains a smallest element.

6.2. Exercises.
1) Show that R is not well-ordered by exhibiting a subset of R which

does not contain a smallest element.
2) Show that the set of positive real numbers is not well-ordered by

exhibiting a collection of positive real numbers which does not
contain a smallest element.

Mathematical induction is a procedure for proving results about the non-
negative integers, and is based on the following fact. (A proof is not asked
for.)



6.3. The Principle of Mathematical Induction. Let N be a non-
negative integer and let P(N) be a statement about N. Then

1) If P(0) is true, and
2) If n ∈ Z+ and if the fact that P{k) is true for all k < n implies that

P(n) is also true,
then P(n) is true for all non-negative integers n.

6.4. Exercise.
Prove that for any non-negative integer n,

  

The non-negative integers form a well-ordered set (indeed, the set of
non-negative integers is the ordinal number ω = [0, ω)), and the principle of
mathematical induction is in fact equivalent to the fact that the nonnegative
integers are well-ordered, as you can show in the following theorem.

6.5. Theorem. The fact that the set of non-negative integers is well-
ordered implies that the principle of mathematical induction holds for the
set of non-negative integers. Conversely, the fact that the principle of
mathematical induction holds for the non-negative integers implies that the
set of non-negative integers is well-ordered.

In view of Theorem 6.5, it should not be surprising that a form of
induction holds for any well-ordered set. In particular, if α is an ordinal
number, then [0, α) is well-ordered. Use this fact to prove the following.

6.6. Theorem. (The principle of transfinite induction,) Let α be an
ordinal number, and let P(x) be a statement about ordinal numbers less than
α. Then

1) If P(0) is true, and
2) If β < α and P(γ) true for all γ < β implies that p(β) is true,

then P(x) is true for all ordinal numbers x < α.
* Richard Dedekind (1831-1916), one of the pioneers in the mathematical theory of the infinite.
* After Ernst Schroder (1841-1902) and Felix Bernstein (1878-1956) who proved it independently.
* For a good discussion of the continuum hypothesis, see Wilder [18]. We should remark that the
continuum hypothesis cannot be proved or disproved using the usual axioms of set theory, and that
assuming its negation is just as valid mathematically as assuming the continuum hypothesis itself.
We will have no need for the continuum hypothesis in this course



* Georg Cantor (1845-1918) was the founder of the mathematical theory of infinite sets and
transfinite numbers. He is responsible for almost all of the material that we have covered (and will
cover) on infinite sets.
† Like the continuum hypothesis, the generalized continuum hypothesis cannot be proved or
disproved using the ordinary axioms of set theory, and neither can its negation.
* A rigorous (and very interesting) treatment can be found in Wilder's book [18].
* You can find a proof and some good discussion in Sierpinski [13].



chapter three 
Some Familiar Topological Spaces
and Basic Topological Concepts

A topology on a set is a collection of subsets of that set which satisfies
certain properties (which we will give later). The sets that belong to the
topology are called open sets, and their complements are closed sets. When
we have a topology  defined on a set X the pair (X, ) is called a
topological space. In this chapter we will look at some very familiar sets
which happen to be topological spaces, and some familiar ideas which are
topological in nature. You may be surprised at how much topology you
already know.

A word about content and rigor is in order before we start. All of the
theorems and some of the exercises in this chapter require a completely
rigorous, formal proof. Some of the exercises, though, involve material
which is usually considered too “advanced” for the background that we
have now, and indeed we do not have the necessary background to approach
this material from a completely rigorous point of view. But these “advanced
topics” are fascinating and well worth seeing now, if only to get an idea of
things to come. As a result of the desire to discuss this material before we
are totally ready for it, some of the exercises in this chapter begin with
“convince yourself” rather than “prove.” Although there can be no doubt
about whether a proof is a proof or not, there may well be some subjectivity
as to whether you have in fact convinced yourself of something. What we
really mean by “convince yourself” is to be sure that you understand what is
going on, and that you can explain it, at least intuitively, to someone with
roughly the same background that you have. Usually a carefully drawn
picture and a well thought out explanation of it is enough to “convince
yourself.”



1. THE TOPOLOGY ON THE REAL LINE

To define a topology on the real line we need to decide what subsets of
the line will be open sets. Certainly it is reasonable to want ordinary open
intervals to be open sets, and so they should belong to the topology
(remember that a topology is a collection of sets). When you think about it
though, the “open-ness” of an open interval does not really have anything to
do with its being an interval that is all in one piece; rather, an open interval
is open because there is no point in it where it suddenly “ends.” For any
point in the open interval, all of the points both a little above and a little
below the point we are looking at also belong to the open interval. An open
interval sort of “fades out” at its end points, and this is the property that
makes it open. (Compare this with closed intervals.) This property of open
intervals fading out at their end points can be stated precisely by saying that
for every point x in an open interval I , there is a positive number r such that
the particular open interval (x — r, x + r) ⊂ I. We will use this property to
define open subsets of the line in general.

1.1. Definition. A subset A ⊂ R is open if for every point x ∈ A, there
is a positive number r such that (x — r, x + r) ⊂ I.

Thus a subset A of R is open if and only if for each point x ∈ A, there is
a number r > 0 such that A contains all points of R whose distance from x is
less than r. This makes precise the idea of an open set containing all points
both a little bit above and a little bit below any point in it—a little bit above
or a little bit below means less than r above or below.

1.2. Exercises.
1) Let A = (0, 1) ∪ (1, 3). For the given x ∈ A, give a value of r > 0

such that (x — r, x + r) ⊂ A.
a) x = ¾.
b) x = 2.
c) x = .

2) Prove that A = (0, 1) ∪ (1, 3) is an open subset of R.
3) Prove that an ordinary open interval is an open subset of R but that

an open set need not be an open interval.
4) State precisely what it means when a subset A of R is not open.
5) Prove that the following subsets of R are not open.



a) The set of rational numbers.
b) A set consisting of a single point.
c) An interval of the form [a, b), where a < b.
d) The set A = {x ∈ R:x ≠ l/n, for n ∈ Z+}.

The key idea involved in the discussion of open subsets of R is that of
distance. As you know from calculus, the distance between two points x1
and x2 in R is given by | x1 — x2 |, so an interval (x — r, x + r) can be
written as

  

We call this set an r-ball centered at the point x (for reasons that will be
clear later), and denote it by the symbol Sr(x). Thus, an r-ball around a
point x ∈ R is the set of points of R whose distance from x is less than r :

  

The definition of an open subset of R could then be rewritten using this new
terminology as

A subset A ⊂ R is open if for any point x ∈ A, there exists a positive
number r such that Sr(x) ⊂ A.

The following theorem is important because it gives the conditions that
we will use to define topological spaces in general.

1.3. Theorem.
a) The union of any collection of open subsets of the real line is also

an open subset of the line.
b) The intersection of any finite collection of open subsets of the real

line is also an open subset of the line.
c) Both the empty set and R itself are open subsets of the real line.

1.4. Exercise.
Give an example of an infinite collection of open subsets of the real

line whose intersection is not open, thus showing that the finiteness
condition in Theorem 1.3(b) is necessary.



1.5. Definition. A subset F of R is closed if its complement (R — F) is
open.

It is immediate from this definition that R and  are both closed. But
they are both open, too, as we saw in Theorem 1.3. Thus a set can be both
open and closed. Also, a set may be neither open nor closed (give an
example). Thus the fact that a set is not open does not necessarily mean
that it is closed and the fact that a set is not closed does noi necessarily
mean that it is open.

Since closed sets are the “opposites” of open sets, they satisfy a theorem
which is just the opposite of Theorem 1.3 for open sets. Use the De Morgan
laws and Theorem 1.3 to prove it.

1.6. Theorem.
a) The intersection of any collection of closed sets is closed.
b) The union of any finite collection of closed sets is closed.
c)  and R itself are both closed.

1.7 Exercises.
1) State precisely what it means when a subset of R is not closed. (Do

this in terms of points; saying that a set is not closed if its
complement is not open is true, but is not what we want here.)

2) Which of the following subsets of R are closed? Which are open?
a) The set Z of integers.
b) The set of rational numbers.
c) A set consisting of a single point.
d) An interval of, the form [a, b), where a < b.
e) The set A = {x ∈ R:x ≠ 1 /n for n ∈ Z+}.
f) The set A = {x ∈ R:x ≠ l/n for n ∈ Z+ and x ≠ 0}.

3) Prove that an ordinary closed interval is a closed subset of R, but a
closed set need not be a closed interval.

4) Give an example of an infinite collection of closed subsets of R
whose union is not closed, thus showing that the finiteness
condition in Theorem 1.6(b) is necessary.

2. THE EUCLIDEAN PLANE E2 AS A TOPOLOGICAL
SPACE



We defined what it means for a subset of R to be open by saying that it
must contain an r-ball around each of its points (where r usually depends on
the particular point that we are looking at). This same idea of what “open”
means should make sense whenever the notion of what an r-ball is makes
sense. It should be clear that in the definition of r-ball, the important thing
is being able to measure the distance between any two points, and what
kind of points they are makes no différence at all as long as we can measure
the distance between them.

Surprisingly, it is not always possible to measure distance in a
meaningful way, as we will see later. It is possible when we are working
with the real line, as we have seen: if x, y ∈ R, then the distance between x
and y is given by | x – y |. Letting d(x, y) denote the distance between the
points x and y, we have then for x, y ∈ R that

  

Then we say that a subset A of R is open if for each point x ∈ A, there is a
positive number r such that the r-ball around x

  

is totally contained in A.
It is also possible to measure distance in a meaningful way between

points in the Euclidean plane. You may recall the “distance formula” from
elementary calculus: for two points (x1, x2) and (y1 y2) in the plane, the
distance between (x1, x2) and (y1 y2) is given by

  

Using this distance formula, we can talk about r-balls around points in
the plane: in the plane, an r-ball is still the set of all points whose distance
from a fixed point is less than r, only now it looks like a disk (without its
edge) instead of like an open interval. Then we can say that a subset A of
the plane is open if for each point (x1, x2) ∈ A, there is an r > 0 such that
the r-ball Sr(x1, x2), consisting of all points in the plane whose distance
from (x1, x2) is less than r, is totally contained in A.



Thus in both the line and the plane, a set is open if it contains an r-ball
around each of its points. Each of these two spaces—the line and the plane
—is a special case of something called a metric space9 and the two distance
formulas

  

where x = (x1, x2) and y = (y1, y2) in the plane,

are special cases of what is called a metric. A metric on a set is a function
that assigns a non-negative real number to each pair of elements in the set,
and this number is called the distance between the pair of elements. A
function that measures the distance between points—a metric—must satisfy
certain properties which, when you think about it, a measure of distance
should satisfy. (It is usually the case in mathematics that things are as they
ought to be; a lot of confusion can be alleviated if instead of memorizing
abstract definitions, you try to understand why the definition ought to be
what it is.) The properties that a measure of distance should satisfy are:

1) The distance between any two points is never negative.
2) The distance between distinct points is positive, and the distance

from a point to itself is 0.
3) The distance between two points does not depend on the direction

in which we measure it; i.e., the distance from P1 to P2 is the same
as the distance from P2 to P1.

4) The distance from one point to another when measured directly is
never more than the distance between these points measured by
going through some particular third point. ("The shortest distance
between two points is a straight line"; “the hypotenuse in a right
triangle is shorter than the sum of the lengths of the other two
sides.") This property, called the triangle inequality, is satisfied by
distance functions even in non-Euclidean geometries—except that
the meaning of “straight line” may have to be changed.

The following definition makes all of this precise. When you read it
don't confuse the pair (x, y) of points of X with the single point (x, y) in the
plane. In this definition, d(x, y) means the distance between the two points x



and y of X (as it did before), and what x and y themselves look like depends
on the particular set X that they come from. For example, if X is the plane,
then d(x, y) means d((x1 x2), (y1, y2)), where x = (x1, x2) and y = (y1, y2).

2.1. Definition. Let X be a set. A function

  

is a metric on X if it satisfies the following:
1) d(x, y) ≥ 0 for all x, y ∈ X.
2) d(x, y) = 0 if and only if x = y.
3) d(x, y) = d(y, x) for all x, y ∈ X.
4) d(x, y) ≥ d(x, z) + d(y, z) for all x, y, Z ∈ X. (This property of d is

called the triangle inequality.)
When d is a metric on a set X, then an r-ball centered at x ∈ X is the set

  

and is the set of all points of X whose distance from x is less than r, where r
is a positive real number.

Continuing to follow the example of the line and the plane, we define
the metric topology on X induced by a metric d as follows.

2.2. Definition. Let d be a metric on the set X. A subset A of X is open in
the metric topology on X induced by d if, for every point x ∈ A, there is
an r > 0 such that the r-ball centered at x, Sr(x), is contained in A. The set X
together with the topology induced by a metric d on X is called a metric
space, and is usually written as (X, d).

Thus a subset of a metric space is open in the metric topology if and
only if it contains an r-ball around each of its points.

2.3. Exercises.
1) Show that the absolute value formula, d(x, y) = | x — y |, is indeed a

metric on the real line. Describe the 1-ball centered at 0 in the
topology induced by this metric.

2) Show that the distance formula



  

where x = (x1, x2), y = (y1, y2), is a metric on the Euclidean plane.
Describe the 1-ball centered at (0, 0) in the topology induced by this
metric.

3) Define the obvious metric for Euclidean 3-space, E3 = R×R×R =
{(x, y, z) : x, y, z ∈ R}. Describe the 1-ball centered at the point (0,
0, 0) in the topology induced by this metric. (In this topology, an r
ball really is a ball—hence the name “r-ball.”)

4) Show that for any metric space (X, d),
a) The union of any collection of open sets is open.
b) The intersection of any finite collection of open sets is open.
c) The empty set and X itself are open.

5) A set can have more than one metric defined on it, and different
metrics may give rise to different topologies.
a) Let X = R and define a metric on X by d(x, y) = 1 if x ≠ y, d(x, y)

= 0 if x = y. Prove that d is a metric on X. What is S1/2(0) in this
metric? Is (X, d) the same space as R with its usual metric
topology? In other words, does this metric give rise to the same
topology on R as the usual metric does?

b) Let X be the Euclidean plane and define a metric on X by d((x1,
x2), (y1, y2)) = | x1 - y1 | + | x2 - y2 |. Prove that d is a metric on the
plane, and describe the r-balls in this metric. Does this metric
give rise to the same topology as the usual metric on the plane?

Since a set can have more than one metric defined on it and since
different metrics may give rise to different topologies, we will refer to the
absolute value metric on R and the distance formula metric on the plane as
the usual metrics for these sets.

3. SOME FAMILIAR SUBSETS OF R AS TOPOLOGICAL
SPACES

Any subset of R can be made into a metric space by using the usual
metric on R. Thus, if S ⊂ R, the distance between points x and y in S is just
d(x, y) = | x – y |. Using this metric, S can be made into a metric space.



3.1. Definition. Let S ⊂ R. A subset A of S is open in the metric
topology on S induced by the absolute value metric d if for any point x
∈ A, there exists an r > 0 such that Sr(x) ∩ S ⊂ A.

Note that we do not require that the entire r-ball Sr(x) be contained in A
in order that A be open in (S, d). Rather, only the points of Sr( x) that are
also points of S need belong to A. For example, if S = Q, the set of rational
numbers, then the interval consisting of only rational numbers which are
greater than 1 and less than 2 is open in the metric space (Q, d), even
though it is not open in R. Thus a set may be open in a subset of R with the
metric topology while it is not open in R itself, so intuition about what
“open” means may have to be used with care.

As a second example, when S = [1, 2] ⊂ R is given the metric topology
induced by the absolute value metric, sets of the form [1, b) and (a, 2] are
open in the resulting metric space, even though they may not be open in R.
Again, it is important to realize that only the points of S matter when we are
talking about open subsets of S.

Finally, let S = Z, the set of integers. In the metric space that results
when Z is given the topology induced by the absolute value metric, every
point is an open set, as you are asked to show in the exercises below. The
resulting space is an example of what is called a discrete space.

3.2. Definition. A topological space in which every set consisting of a
single point is open is called a discrete space.

3.3. Exercises.
1) Let (Q, d) be the space of rational numbers with the metric

topology induced by the absolute value metric d.
a) Show that the set {y ∈ Q:1 < y < 2} is open in (Q, d).
b) Show that the set [{√2, √3] ∩ Q is open in (Q, d).

2) Let S = [1, 2] be given the topology induced by the absolute value
metric. Show that [1, ½), (½,2] and [1, 2] are all open in (S, d).

3) Let (Z, d) be the space of integers with the metric topology induced
by the absolute value metric. Show that every subset of Z is open in
(Z, d). In particular, any set consisting of a single point is open in
(Z, d).



4) Let (X, d) be a discrete space. Show that every subset of X is open
in (.X, d).

4. THE ORDER TOPOLOGY

We defined the topology on the real line by using its metric, d(x, y) = | x
– y |, and saying that a subset A of R is open if for each point x ∈ A, there is
an r > 0 such that the interval (x — r, x + r) ⊂ A. Another way to look at
this topology is to avoid the metric entirely and use arbitary open intervals
instead, which the following theorem justifies.

4.1. Theorem. A subset A of R is open in the metric topology induced
by the absolute value metric if and only if for each point x ∈ A, there exist
real numbers a and b with a < x < b, such that x ∈ (a, b) ⊂ A.

The topology that we get on R by using the definition of open set given
in Theorem 4.1 is called the order topology on R. The theorem shows that
the order topology on R and the metric topology on R induced by the
absolute value metric are the same: a set is open in one if and only if it is
open in the other. The advantage of looking at the topology on R in this
new way is that the metric on R need not be mentioned at all; the really
important thing from this new point of view is that open intervals exist,
because “open set” is defined in terms of open intervals. It should make
sense that whenever open intervals make sense in a set, then we can define
a topology on that set as we just did for R, in terms of these open intervals
(whether the set has a metric defined on it or not). To find out when open
intervals make enough sense to be useful, we have the following definition.

4.2. Definition. Let X be a set. The relation ≤ is a total order relation on
X if it satisfies the following:

1) For any x ∈ X, x ≤ x (<is reflexive).
2) If for x, y ∈ X, both x ≤ y and y ≤ x, then x = y ( ≤ is anti-sym

metricr).
3) If for x, y, z ∈ X, both x ≤ y and y ≤ z, then x ≤ z (<is transitive).
4) If x, y ∈ X, then either

a) x ≤ y and x ≠ y (written x ≤ y),
or
b) x = y,



or
c) y ≤ x and x ≠ y (written y < x or x > y).

4.3. Exercise.
Convince yourself that the real line is a totally ordered set. Give an

example of a set with an order relation that satisfies (1), (2), and (3) of
Definition 4.2, but does not satisfy (4). Such an ordered set is called
partially ordered since not every pair of elements can be compared. [Hint:
Consider (X) with “≤” thought of as “subset of"].

The order topology on a totally ordered set is defined as follows.

4.4. Definition. Let (X, ≤).be a totally ordered set (i.e., ≤ is a total order
relation on the set X). Then U ⊂ X is open in the order topology on (X, ≤)
if and only if for each point x ∈ U, one of the following holds:

1) x is the first point of X and there exists a point b ∈ X such that the
interval [x,b) = {p ∈ X:x ≤ p ≤ b} is contained in U, or

2) x is the last point of X and there exists a point a ∈ X such that the
interval (a, x] = {p ∈ X:a < p ≤ x} is contained in U, or

3) x is neither the first nor the last point of X and there exist points a
and b in Xsuch that x ∈ (a, b) = {p ∈ X:a < p < b}, and (a, b) ⊂ U.

Thus a set U is open in the order topology on a totally ordered set X if
and only if each point of U is contained in an open interval which in turn is
totally contained in U (with appropriate modifications in case U contains
the first or last point of X, if there is one).

The rest of this section requires a knowledge of ordinal numbers.

By Theorem 4.1, the topology that we defined on R is the order
topology on R. Another important totally ordered set is [0, Ω), the set of
countable ordinals, and when we give this set the order topology as defined
above, we get an important topological space: the space of countable
ordinals.

Even though R and Ω ( = [0, Ω)) have both been given the order
topology, they are very different looking topological spaces, as the
following exercises illustrate.

4.5. Exercises.
1) Every open subset of R has cardinality c.



2) For any positive integer n, there are open subsets of [0, Ω) with
cardinality n. In particular, there are points x: in [0, Ω) such that the
singleton set {x} is an open set. But [0, Ω) is not discrete—not
every singleton set is open.

3) There are open subsets of [0, Ω) of cardinality 0 and there are
open subsets of [0, Ω) of cardinality 1.

Thus there are finite, countably infinite, and uncountably infinite subsets
of the ordered space [0, Ω) which are open, while every open subset of the
ordered space R is uncountably infinite. Besides these differences, another
important difference between the two ordered topological spaces R and [0,
Ω) involves their respective “infinities” (∞ and Ω). If we imagine for the
moment that ∞ ∈ R as its largest point, and if we look at [0, Ω] as [0, Ω)
with the point Ω included, we can consider (order topology) open sets
containing ∞ in R ∪ {∞}, and containing Ω in [0, Ω]. The difference is that
there is a countable collection of open sets of R ∪ {∞} whose intersection
is the point ∞ (try the collection  = {(n, ∞]:n ∈ Z+}; show that each
member of  is open in the order topology on R ∪{∞} (even though they
might not look like it) and show that ∩  = {∞}. This is just another way of
saying that limn→∞ n = ∞.) On the other hand, no countable collection  of
open subsets of [0, Ω] can have fie = {Ω} (Why not?), so for any set {an:n
∈ Z+} of countable ordinal numbers, limn→∞ an < Ω. This may not seem
like much, but it is really a very important difference between the two
spaces. (While we are on the subject, you should show that Ω is the only
point of [0, Ω] with this property—for every other point x of [0, Ω] there is
a countable collection  of open sets with ∩  = {x}.)

Another important set which is totally ordered and can therefore be
given the order topology is the set of finite ordinal numbers, Z+ ∪ {0} = 
= [0, ). The resulting topological space is the same as that obtained when
Z+ ∪ {0} is given the metric topology induced by the absolute value metric
(Problem 1 in the exercises below). Thus , when given the order topology,
is the discrete space of finite ordinal' numbers. (Recall that neither R nor [0,
Ω) is discrete; recall also that [0, Ω) is “more discrete” than R is—some of
its points are open.)

4.6. Exercises.



1) Show that  = [0, ) with the order topology is a discrete space, so
is the same as Z+ ∪ {0} when given the metric topology induced by
the absolute value metric on R.

2) The definition of the order topology is given in terms of open
intervals. Let (.X, ≤) be a totally ordered set and give it the order
topology. Show that a subset of X is open in the order topology if
and only if it is a union of open intervals. Because of this, we say
that the collection of open intervals is a basis for the order topology
on a totally ordered set.

5. SEQUENCES IN METRIC SPACES

The idea of convergence of a sequence is one of the most important ones
in analysis and topology. Unfortunately, it is a rather subtle idea which
some students find hard to understand at first. With a little study and
patience you can master it, and once you do, it will be one of the simplest
and most important tools at your disposal.

5.1. Definition. A sequence in a set X is a function that can be written as
a function from the positive integers into X.

Instead of using the ordinary function notation S(n) for the value of the
sequence (function) S at the integer n, we usually pick some appropriate
letter, say x, and denote the value of the sequence at n by xn. (Of course
other letters can be, and often are, used.) Actually, we usually don't think of
a sequence as a function at all; rather, we regard a sequence in X as a
countable set of points of X which are indexed and given an ordering by the
positive integers. The ordering is simply that if n > m, then xn is further out
in the sequence than xm, regardless of how the points xn and xm are related
to each other in X. For example, consider the sequence in R defined by S(n)
= xn = l/n, for n = 1, 2, 3, . Written out, this sequence looks like

  

Notice that even though ¼ < ½,¼ is further out in the sequence than ½,
because 4 > 2.



As another example, consider the sequence defined by xn = 1 if n is even
and xn = – 1 if n is odd (where n ∈ Z+). This sequence simply alternates
between – 1 and 1 and looks like

  

In this sequence, for example, x20 = x10 as points in R, but x20 is still further
out in the sequence than x10.

We will usually denote a sequence of points x1 x2, x3, … in X by {xn-n
∈ Z+} or, sometimes, For convenience, as (xn). It is important to be aware
of the fact that this notation means more than just a set of points; it denotes
these points with the ordering that they get from the positive integers. For
example, the sequence {xn:n ∈ Z+} defined by xn = 0 for all n ∈ Z+ is not
just the set consisting of the single element 0; {0} might be called the point-
set determined by the sequence but it is not the sequence. Rather, the
sequence consists of countably many 0's, all different in the sense that each
corresponds to a different positive integer. (This distinction between the
sequence and the point-set determined by the sequence is the same as
considering a function as being different from the graph of the function; it is
very important to make the distinction with sequences, as we will see.)

The idea of convergence is based on the ordering of a sequence induced
by the positive integers. Intuitively, we say that a sequence {xn:n ∈ Z+}
converges to a point x if the terms of the sequence eventually get close to x
and stay close as n gets larger and larger. We make this precise as follows.

5.2. Definition. Let {xn:n ∈ Z+} be a sequence of points of a metric
space (X, d), and let x ∈ X. Then {xn:n ∈ Z+} converges to x (written xn →
x or limnn → ∞ xn = x) if for any positive real number r (no matter how
small) there exists a positive integer N such that xn ∈ Sr(x) for all n ≥ N.

The condition “there exists an integer N such that xn ∈ Sr(x) for all n ≥
N” is used a lot, arid for convenience, we will say that when a sequence
satisfies this property, then it is ultimately in Sr(x).

Thus we can restate the definition of convergence as follows:



A sequence {xn:n ∈ Z+} ⊂ (X, d) converges to the point x ∈ X (written
xn → x or limn→∞ xn = x) if for any real number r (no matter how small) Xn
is ultimately in Sr(x).

Thus the idea that a sequence in a metric space converges to a point if it
gets close to the point and stays close, as n gets larger and larger, is very
clear: in order to converge to a point, a sequence must eventually get within
a distance less than r of the point and stay at least that close to the point as n
gets larger and larger, no matter how small the distance r is.

5.3. Exercises.
1) State precisely what it means when a sequence in (.X, d) does not

converge to the point x ∈ X.
2) Let {xn:n ∈ Z+} be the sequence in R defined by xn = 1/n. Does this

sequence converge? To what? Prove it.
3) Let {xn:n ∈ Z+} be the sequence in R defined by xn = (– l)n(l/n).

Does this sequence converge? To what? Prove it.
4) Let {xn:n ∈ Z+} be the sequence in R defined by xn = (–1)n. Does

this sequence converge? To what? Prove it.
The following theorem gives an important topological property of metric

spaces.

5.4. Theorem. A sequence in a metric space can converge to at most one
point.

[Hint for proof: Think about the real line.]

The property that a sequence in a space can converge to at most one
point is sometimes called uniqueness of convergence. Surprisingly, not
every space satisfies this property, and we will see some examples in the
next chapter. We should also point out that, even in a metric space, a
sequence need not converge at all (give an example). Theorem 5.4 says that
if a sequence in a metric space converges, then it converges to exactly one
point; it does not say that every sequence in a metric space must converge.

Recall that a subset of a topological space is closed if and only if its
complement is open, i.e., if and only if its complement belongs to the
topology. The following theorem relates sequences to the idea of a set being
closed in a metric space.



5.5. Theorem. A subset S of a metric space X is closed if and only if
whenever a sequence of points of S converges to a point x ∈ X, then x ∈ S.
[Hint for proof: Think about the real line. A closed set need not be a closed
interval, even in R!]

We might say that if there is a sequence inside a set S that converges to a
point x, then x is close to S (how else could the sequence get close to x?)
Thus in a metric space (and, in particular, in the real line) Theorem 5.5 says
that a set is closed if and only if it contains all points of the space that are
close to it.

5.6. Exercises.
1) Use Theorem 5.5 to decide if the following subsets of the real line

are closed (in the metric topology induced by the absolute value
metric).
a) [0, 1]
b) [1, ∞)
c) {x ∈ R:x = l/n for n ∈ Z+}
d) {x ∈ R:x = 1/n for n ∈ Z+, or x = 0}
e) {x ∈ R:x = l/√n for n ∈ Z+}

2) Is (R — Q) ∩ ∈ R:x = 1/ √n for n ∈ Z+} a closed subset of the
irrationals with the metric topology induced by the absolute value
metric?

3) Let {pn = (xn, yn):n ∈ Z+} be a sequence in E2, the Euclidean plane.
Prove that pn→ p = (x, y) if and only if both xn → x and yn → y.
(Thus a sequence in the plane converges if and only if it converges
“coordinate-wise.")

4) Prove that every real number can be written as the limit of a
convergent sequence of rational numbers, i.e., if r ∈ R, exhibit a
sequence {xn:n ∈ Z+} ⊂ Q such that xn → r.

5) A real number r is called the least upper bound or supremum of a
set S ⊂ R if
a) r > s for all s ∈ S, and
b) If t ∈ R is a real number such that / > s for all s ∈ S, then / > r.

The least upper bound of a set S is denoted by supS. Prove that if



S ⊂ R and supS exists, then there exists a sequence of points of S
that converges to supS.

6) Prove that if S ∈ R and supS exists, then if S is closed, supS f S. Is
the converse true?

We have said that a sequence in (X, d) converges to a point x if it is
ultimately in Sr(x) for any r > 0 (no matter how small r is). In other words,
a sequence converges to x if it gets close to x and stays close as n gets larger
and larger. Sometimes it happens that a sequence gets close to a point every
once in a while but doesn't stay close—it hops around anywhere, but every
now and then it comes back near the given point. This kind of behavior is
also important.

5.7. Definition. Let {xn:n ∈ Z+} be a sequence in (X, d). A point x ∈ X
is an accumulation point of the sequence if given any positive real number
r (no matter how small) and given any integer N (no matter how large), then
there exists a positive integer n > N such that xn ∈ Sr(x).

Thus x is an accumulation point of a sequence {xn:n ∈ Z+} in (X, d) if
for any r > 0 (no matter how small), there exist arbitrarily large integers n
such that xn ∈ Sr(x). Instead of the phrase “given any integer N (no matter
how large) there exists an n ≥ N such that xn ∈ Sr(x)" we say for
convenience that “xn is frequently in Sr(x)" Thus the definition of
accumulation point could be written as:

A point x ∈ X is an accumulation point of a sequence {xn:n ∈ Z+} ⊂
(.X, d) if given r > 0 (no matter how small), xn is frequently in Sr(x).

5.8. Exercises.
1) If a sequence converges to a point x, then x is an accumulation point

of the sequence. (So “ultimately” implies “frequently.")
2) If x is an accumulation point of a sequence, the sequence need not

converge to x. (So “frequently” does not imply “ultimately.")
3) A subset F of a metric space X is closed if and only if whenever x
∈ X is an accumulation point of a sequence of points of F, then x ∈
S. [Hint: See Theorem 5.5.]



4) State precisely what it means when the point x ∈ X is not an
accumulation point of the sequence {xn:n ∈ Z+} ⊂ X.

6. CONTINUITY

Like convergence, continuity of functions is subtle but extremely
important. In fact, continuity is probably the single most important concept
in all mathematics. Recall that a function is a way to get from one set to
another, or, speaking topologically, a function is a way to transform one
topological space into another. When the function is continuous, most of the
important properties that the domain space has (like being all in one piece,
for example) are preserved under the transformation, so that the image
space also has these properties. This preservation of important properties is
of the utmost importance in topology, as we will see very often as we go on.

You probably remember from calculus that “a function (from D ⊂ R to
R) is continuous if you can draw its graph without lifting your pencil from
the paper; the graph of a continuous function has no holes or breaks in it.”
This is easy to understand but it is hardly very precise (and is not even true
in all cases as we will see). It is true if the domain of the function is an
interval, and in most calculus courses, it is made precise by an "∈→δ"
definition, as follows.

6.1. Definition. Let D ⊂ R and let f:D→ R. Then f is continuous at a
point x0 ∈ D if for any positive real number ∈ there exists a positive real
number ∈ such that |f(x) — f(x0) | < ∈ whenever x ∈ D and | x — x0| < δ.
The function f is then said to be continuous (on D) if it is continuous at
every point of D.

This definition is very subtle, as most first-year calculus students know.
It makes the statement mentioned above about the graph of the function
mathematically rigorous. A better way to think of it though is in terms of
“closeness:” the definition says that a continuous function preserves
closeness, in the sense that points that are close to x0 in the domain of a
continuous function are sent to points that are close to f(x0) in the range.
The idea of closeness is made precise by asking and answering a question,
namely: how close to x0 is close enough for points x to be so that their



images f(x) are within a prescribed distance (within ∈) of f(x0)? The fact
that the question can be answered (i.e., that a ∈ can be shown to exist), no
matter how small the prescribed distance ∈ is, means that the function is
continuous at the point x0—it preserves closeness.

For example, consider the function from R to R given by

  

Its graph looks like

  

This function is clearly not continuous at x = 2 (it is continuous everywhere
else). Saying that it is not continuous at x = 2 says that there are points that
are close to x = 2 that are not sent to points that are close to f(2) = 1. More
precisely, it must be possible to give an ∈ > 0 for which there is no
corresponding δ—for some ∈ > 0 it must be true that no matter how small
an open interval we pick around x = 2, there will be some points in this
interval whose images are more than ∈ away from y = 1 (with y- distances
measured on the y-axis). Finish up the details by doing Problem 2 in
Exercises 6.2 below.

The function defined above is not continuous at x = 2 because it fails to
preserve “closeness” at x — 2. To pursue the “closeness” idea a little
further, consider the function defined by



  

This function is continuous on its domain (0 is not in the domain!) Its graph
looks like

  

Since it is continuous, this function must preserve closeness. But “close” is
a relative term. For example, if x = 1/10, then g(x) = 10; the points in the
interval  are pretty close to x =  but g spreads these points
over the interval (9, 11) on the y-axis, and there are points in (9, 11) almost
a whole unit away from g(1/10) = 10. As another example, the points x =
0.004 and x = 0.005 might be said to be very close together (the distance
between them is only 0.001 unit); but g(0.004) = 250 and g(0.005) = 200, so
the images under g of these two nearly indistinguishable points are 50 units
apart! And things can look even worse than this: the points x = 10-6 and x =
10-7 are so close together that you would need a pretty powerful microscope
to tell them apart. But their images under this continuous function are
9,000,000 units apart!

But this function g is continuous. Prove it by doing Problem 3 of
Exercises 6.2, and think about it enough to convince yourself that g does
preserve closeness: for a given y0 = g(x0), it is true that g(x) will be as close



as you want to g(x0) provided that x is close enough to x0. But for this
function, close enough to x0 can mean very, very close.

6.2. Exercises.
1) State precisely what it means when a function f is not continuous at

a point x0 in its domain.
2) Prove that the function defined by

  

is not continuous at x = 2, but is continuous everywhere else.
3) Prove that the function g defined by g(x) = 1/x for x ∈ R and x > 0

is continuous on its domain.

We want to get away from this elementary calculus point of view and
look at continuity in more generality. For convenience, we repeat Definition
6.1 here.

A function f:D ⊂ R → R is continuous at x0 ∈ D if for any positive
real number ∈ there exists a positive real number δ such that | f(x) — f(x0) |
< ∈ whenever | x — x0 | < δ. The function is continuous (on D) if it is
continuous at every point of D.

This definition talks about closeness in terms of the metric on the real
line (recall that the distance between two real numbers x and y is given by
the metric d, where d(x, y) = | x — y | ). A generalization to arbitrary metric
spaces should be obvious. (Recall the definition of a metric space given in
section 4; if d is a metric on X, then the distance between two points x1 and
X2 of X is given by d(x1 x2).)

6.3. Definition. Let (X, d1) and (Y, d2) be metric spaces, and let f: D ⊂ X
→ Y. Then f is continuous at x0 ∈ D if for any positive real number ∈
there exists a positive real number δ such that d2(f(x),f(x0)) < ∈ whenever
d1(x, x0) < δ. The function f is continuous (on D) if it is continuous at every
point of D.



Notice that this definition is the same as Definition 6.1 when (X, d1) and
( Y, d2) are both the real line with its usual metric topology, so it does
generalize Definition 6.1. (We say that a statement A generalizes a
statement B if they say the same thing when they both apply, but A applies
to more situations than B does.) Notice also that in Definition 6.3, the
distance between x and x0 in X is measured using the metric d1 whereas the
distance between f(x) and f(x0) in Y is measured using the metric d2.

Recall that if r is a positive real number, then an r-ball about a point p0
in a metric space is the set of all points in the space whose distance from p0
is less than r. Definition 6.3 can then be restated as:

Let (X, d1) and (Y, d2) be two metric spaces and let f:D ⊂ X → Y. Then f
is continuous at x0 ∈ D if given any positive real number ∈ there exists a
positive real number δ such that f(x) ∈ S∈(f(x0)) whenever x ∈ Sδ(x0), so
that f(Sδ(x0)) ⊂ S∈f(x0)). The function f is then said to be continuous (on
D) if it is continuous at each point of D.

This definition says precisely what continuity is for a function between
two metric spaces. But we want to keep the intuitive idea in mind: a
function f is continuous if it preserves closeness—it doesn’t tear the domain
apart by sending two points that are close together to points that are far
apart (all of these terms being relative of course).

The closeness idea might remind you of sequences (look at Theorem 5.5
again). In fact, in metric spaces, continuity can be characterized in terms of
sequences as the following theorem shows. This theorem is very important.

6.4. Theorem. Let (X, d1) and (Y, d2) be metric spaces and let f:D ⊂ X
→ Y. Then f is continuous at a point x0 ∈ D if and only if whenever {xn:n
∈ Z+} is a sequence in D that converges to x0, then the sequence {f(Xn):n
∈ Z+} converges to f(x0) in Y.

[Hint for proof: Think! Read the definitions of convergence and
continuity very carefully.]

Thus a function from one metric space to another is continuous if and
only if it preserves convergent sequences.



6.5. Exercises.
1) Let S be a sequence in R, and let Z+ have the discrete topology that

it gets by saying that every point in Z+ is open. Prove that S is
continuous.

2) Let p be a point, and let Y = {p}. Make Y into a topological space by
declaring that the sets  and Y = {p} are open (don’t try to prove
that Y is a topological space—we don’t have the necessary
definition yet; we will prove that it is a topological space in the next
chapter). Let f:R → Y be defined by f(x) = p for all x ∈ R. Prove
that f is continuous. This is a special case of a theorem that says that
any constant function is continuous.

3) Let f : R → R be defined by

  

Prove that f is not continuous on R. Is f continuous at any point of
R?

4) Let f:R+ → R be defined by

  

Is f continuous? Is f continuous at any point of R+?

7. HOMEOMORPHISM

We have said that continuity is important in topology because certain
properties that a topological space might have are preserved when that
space is transformed into another by a continuous function. For example, a
circle can be transformed into a square (as in the Introduction) in a
continuous way, and everyone will agree that these two topological spaces
look very much alike. As another example, we will show later that it is
impossible to have a continuous function which sends an interval onto two
disjoint intervals: any function that transforms a single interval into two
disjoint intervals would have to rip its domain interval apart, and ripping is



not a continuous operation (unless the “rip” is “repaired” before the
transformation is completed. For example, there is a continuous function
from the knot (A) below onto the circle (B), even though the knot must be
torn, untwisted, and then repaired to transform it onto the circle. The
important thing for such a function to be continuous is that the cut made in
the knot is repaired before the function is finished).

  

Unfortunately, though, continuity of a function is not enough to insure
that all important properties of the domain space are preserved when it is
transformed onto its range. Look at Problem 2 in Exercises 6.5. It shows
that a function that transforms the whole real line into a single point is
continuous. (Of course it is. You can just squeeze the line together to a
point, and you don’t have to rip it apart to do this.) But it is obvious that the
line and a single point are very different looking spaces. The problem is that
even though we can transform the line continuously into a point, we cannot
undo this transformation and have a function from the point back onto the
line (Why not?). In the case of a circle and a square, the continuous changes
that are made to go from one space to the other can be reversed, and the
range space can be continuously transformed back to what it came from.
(The same is true with changing the doughnut into the coffee cup— the
transformation can be reversed.)



A continuous function, then, preserves some properties that a space has,
but it does not necessarily preserve them all. In order that all important
properties of two spaces be the same, a function between them needs to be
more than just continuous. Consider the following definition.

7.1. Definition. Let X and Y be topological spaces. A function f:X → Y
is called a homeomorphism or a topological transformation if it is 1-1,
continuous, and f–1:f(X) → X is also continuous.

When f:X → Y is a homeomorphism, X and its image, f(X) are said to be
homeomorphic, and we write X ≅ f(X). In case f is also onto Y (so that f(X)
= Y), then X ≅ Y.

We have said that the important properties that a topological space has
are shared by any other topological space that is homeomorphic to it. We
call such properties topological. Formally,

7.2. Definition. A property P of a topological space X is a topological
property if whenever Y is a topological space such that Y ≅ X, then Y also
has property P.

There are many topological properties, as we will see. For subsets of the
real line, two of them are the property of being all in one piece (being
connected), and the property of being closed and bounded (being compact).
* We will investigate connectedness and compactness in some detail and in
more generality in later chapters. (We should mention that these two
properties are topological whether the real line is involved or not, but their
descriptions may have to be changed from those given above when we are
dealing with spaces other than R.) Some properties that are not topological
include size (the length of an interval, for example: we can stretch or shrink
an interval without changing it topologically, as long as we don’t shrink it
too much), “degree of curveness” (a circle, an ellipse, a square, and a
triangle, for example, are all the same topologically), and order (the discrete
space Z+ is homeomorphic to the discrete space of negative integers, even
though their orderings are exactly opposite).

We establish a few examples a little more precisely in the following
exercises.

7.3. Exercises.



1) Consider a closed interval [a, b] in the real line with a and b both
finite, and a < b. Make this interval into a topological space by
giving it the metric topology induced by the absolute value metric
d(x, y) = | x – y |, as in section 3. (Recall that intervals of the form
[a, x) and (y, b], where x and y are between a and b, are open in this
space.)

Prove that [0, 1] ≅ [2, 4]. This shows that length is not a
topological property—it is not necessarily preserved by a
homeomorphism. [Hint: Put [0, 1] on the x-axis and [2, 4] on the y-
axis in the plane; think about a linear function.]

2) Consider the open unit interval (0, 1) as a topological space by
giving it the metric topology induced by the absolute value metric
d(x, y) = | x – y | as in section 3. Prove that (0, 1) ≅ R. This shows
again that length is not a topological property—it is not necessarily
preserved by a homeomorphism. In fact, we have here an interval of
finite length homeomorphic to one whose length is infinite! [Hint:
An appropriate modification of the function f(x) = tan x or
something whose graph looks like the graph of the tangent function
might be a good thing to look at.]

3) We can think of a circle or a square as the closed unit interval with
its end points identified into a single point. The topology on the
circle (or the square) is just what you would expect: a subset of the
circle (or the square) is open if and only if it contains an open
interval around each of its points (except that intervals are curved
on the circle and may be bent around the corners on the square).

Prove that the unit circle centered at the origin is homeomorphic
to a square with unit perimeter centered at the origin. [Hint: Think
of the origin as a light bulb: project from the origin.] Can you
generalize this to arbitrary circles and squares in the plane? How
about a triangle?

4) It was stated in the introduction that a circle is not topologically the
same as a straight line segment. The reason for this is not because
the circle is curved and the line is not ("curveness” is not
topological). Rather, it is because of the points of the line that are
not end points.
a) Let [a, b] be a closed interval on the real line with a and b both

finite and a < b (so [a, b] is a line segment). Convince yourself



that the property of not being an end point is a topological
property; in other words, if h:[a, b] → Y is a homeomorphism,
then for x ≠ a and x ≠ b, h(x) cannot be an “end point” of Y, in
the sense that if h(x) is removed from Y, then the resulting space
(Y — {h(x)} ) consists of at least two pieces. The technical name
for “non-end point” is cut point, because the removal of a cut
point from a space cuts it into at least two pieces. Hence, in
homeomorphic spaces, cut points must correspond to cut points.

b) Convince yourself that a line segment and a circle are not
homeomorphic. [Hint: What happens when you remove a point
from a circle? How many cut points does a circle have?]

5) We said in the discussion of Cartesian product (section 3 of Chapter
1) that X is not a subset of X × Y. However, X is a “topological
subset” of X × Y in the sense that X is homeomorphic to a subset of
X × Y. Illustrate this in the case of R × R by convincing yourself
that R is homeomorphic to the x-axis ( = R × {0} ) when the x-axis
is given a topology as follows: a subset U of the x-axis is open if
and only if for each point (x, 0) ∈ U, there is an r > 0 such that Sr(x,
0) ∩ (x-axis) is contained in U. Is R homeomorphic to any other
subset of R × R when that subset is topologized analogously?

Deciding whether or not two topological spaces are homeomorphic is
very important in topology because it is often the case that we know some
important properties that one space has while we know very little about the
other. If it turns out that the differences between the two are merely
superficial—if the two are in fact homeomorphic—then the important
things that we know about the first space, we also know about the second.
For example, some people get very nervous about infinity ( ∞ ) ; since the
real line is homeomorphic to the open unit interval, these people can avoid
∞ altogether when they think about the line topologically. Of course there
are many more important examples, as we will see as we go along. One
such example that we can consider now concerns the following subsets of
the plane, each of which is given a topology as follows: if X denotes the
subset in question, then a subset U of X is open if for any point x ∈ U, there
is an r > 0 such that Sr(x) ∩ U ⊂ U. Actually, to visualize a
homeomorphism between the two spaces, you need not be concerned too
much with the topology that they have. Of course, if you were asked to



prove that they are homeomorphic, then the topologies would be of the
utmost importance. The two subsets look like:

  

Space (A) is nothing but the graph of the function y = sin (1/x) together with
its “limit line,” the line from – 1 to 1 on the y-axis. Since it is mostly
nothing but the graph of a continuous function, we should know a lot about
space (A). But what is space (B)? It spirals around a line and might look
pretty strange, but it turns out that spaces (A) and (B) are in fact
homeomorphic. Try to visualize how you could transform one into the
other. (You might have to lift one of them out of the plane during the
transformation.)

A homeomorphism is a continuous function between two topological
spaces X and Y with some special properties. Another important kind of
continuous function is a function from a topological space to a subset of
that space, which leaves the subset alone. It is defined for R as follows.

7.4. Definition. Let A ⊂ R and let both A and R have the metric
topology induced by the usual absolute value metric. Then A is a retract of
R if there is a continuous function r:R → A such that r(a) = a for all a ∈ A.
The function r is called a retraction of R onto A.

7.5. Exercises.
1) Show that for any point p ∈ R, {p} is a retract of R.



2) Show that (0, 1) is a retract of R.
3) Show that A ⊂ R is a retract of R if and only if the identity function

idA:A → A, defined by idA(a) = a for a ∈ A, can be extended over R
in the following sense. A function f:A → A can be extended over R
if there is a continuous function F:R → R such that F(a) = f(a) for
all a ∈ A.

4) Do you think that {0, 1} is a retract of R? Why or why not?

8. TOPOLOGICAL MANIFOLDS

When people used to think that the world was flat, they had good reason
because locally the world is flat (except for hills and valleys of course—
essentially flat anyway). By locally flat we mean that at any given point, it
is possible to have a region around that point which is topologically the
same as some region in the plane, and on the surface of the earth, this is
indeed possible. The surface of the earth is a topological 2 manifold: every
point on it has an open set around it which is homeomorphic to an open set
in E2, Euclidean 2-space—the plane. (The mistake of those who thought the
earth was flat of course was in assuming that the fact that the earth is locally
like the plane meant that it was the plane.)

  



The shaded open sets, Ni containing the point p on the sphere (5) and N2
containing the point q in the plane (P) are homeomorphic, because if you

“flatten out” N1 you get N2. This is true for every point on the sphere, so it
looks locally exactly like the plane—it is a topological 2-manifold.

Clearly, then, a topological 2-manifold is a space that is essentially 2-
dimensional. But according to our description so far, the disk {(x, y):x2 + y2

≤ 1} would not be a topological 2-manifold even though it is not only
essentially 2-dimensional but in fact is 2-dimensional. The reason why this
disk fails our criterion to be a topological 2-manifold is because of the
points on its edge—its boundary points. Convince yourself that none of
these boundary points is contained in an open subset of the disk which is
homeomorphic to an open subset in the plane, because a boundary point is
always on the “edge” of any subset of the disk that contains it. Recall,
though, that when we considered a closed interval [a, b] ⊂ R as a
topological space by using the absolute value metric, we showed that sets of
the form [a, x) and (y, b] are open subsets of the interval, even though they
are not open subsets of the line. The same thing happens with the disk. The
disk is a metric space with topology induced by the usual distance formula
in the plane, and using this metric, if (x, y) is a boundary point of the disk
(i.e., if x2 + y2 = 1), then any set of the form Sr(x) ∩ D (where D is the disk)
is open in the disk. But a set of this form is not homeomorphic to any open
subset of the plane. It is, however, homeomorphic to an open subset of the
upper half plane, {(x, y):x, y ∈ R and x ≥ 0}, when this set is given the
topology induced by the usual distance formula in the plane.



  

(D) is the disk {(x, y):x2 + y2 ≤ 1} and (P) is the plane. The interior point p2
of (D) is contained in the open set N2 in (D) which is homeomorphic to the
open set N2 in (P). The boundary point P1 in (D) is contained in the open
set N1 of (D) which is homeomorphic to the open set N1' in the upper half

plane {(x, y) :x, y ∈ R and x ≥ 0}.

Thus we should modify our description of a topological 2-manifold so
that spaces which are essentially 2-dimensional will be topological 2-
manifolds even if they have boundary points. The key to this modification
is in the discussion given above. Since every boundary point of the disk is
contained in an open subset of the disk which is homeomorphic to an open
subset in the upper half plane, as in the picture, we say that a space X is a
topological 2-manifold if every point of X is contained in an open set which
is homeomorphic to an open subset of the plane, or to an open subset of the
upper half plane.

Analogous to topological 2-manifolds are topological 1-manifolds. As
might be expected, a topological 1-manifold is a space that is essentially 1-
dimensional: any point in a topological 1-manifold is contained in an open
set that is homeomorphic to an open subset of R1 ( = R) or to an open



subset of [0, ∞ ). (In the latter case, if the point is not contained in an open
set homeomorphic to an open subset of R, then it is called a boundary
point; otherwise, it is an interior point.) Thus a line segment [a, b], for
example, is a topological 1-manifold with boundary, while a circle is a
topological 1- manifold without boundary.

Before we can discuss manifolds of dimension > 2, we need higher
dimensional Euclidean spaces.

8.1 Definition. Let n be a positive integer. Euclidean n-space, En, is the
set

  

with the metric topology induced by the metric*

  

where x = (x1 x2, … xn) and y = (y1 y2, … , yn).

(Note that Rn is the set of n-tuples of real numbers, and En is the metric
space obtained from the set Rn by giving it the topology induced by the
generalized distance formula, although we deviate from this convention in
the case of dimension 1, and usually just use R to denote the space E1.)
Thus E1 = R is the line, E2 is the plane and E3 is ordinary 3-dimensional
space, as we have already seen. For n > 3, En is defined in Definition 8.1,
but what it looks like can only be imagined.

8.2. Definition.
a) A topological n-manifold M without boundary is basically† a

space in which every point is contained in an open set that is
homeomorphic to an open subset of En.

b) A topological n-manifold M with boundary is basically a space in
which every point satisfies (a), but there exist points of M that do
not satisfy (a), and each of these points (called boundary points) is



contained in an open set homeomorphic to an open subset of {(x1,
x2, ... , xn):xi ∈ R and x1 ≥ 0}.

8.3. Exercises.
1) Determine all topologically different connected 1-manifolds that

you can (connected means all in one piece). Try to determine any
essential differences between them.

2) Is a space that looks like a Y a topological 1-manifold? Why or why
not?

3) Give as many different examples of connected topological 2-
manifolds as you can and indicate why you think they are different.

4) Find out what a Mobius strip and a Klein bottle are. Do you want to
add anything to your answers to Problems 1 or 3 above?

* Actually, connectedness and compactness are both preserved by continuous functions. In other
words, if f: X → Y is continuous and onto, then if X is connected, so is Y, and if X is compact, Y is
also compact. However, it is possible for f:X → Y to be continuous and onto and for Y to be
connected (compact) while X is not connected (compact). If we want both X and Y to be connected
(compact), then there must be a homeomorphism between X and Y—continuity alone is not enough.
* Proving the triangle inequality for this metric is quite messy. Accept the fact that it is a metric for
now. We will prove it later.
† We have to say “basically” here because a manifold must have some properties that we have not
discussed. All of the spaces that you will think of as manifolds will have these properties, so it is
really no problem for now.



chapter four 
Topological Spaces and Basic
Topological Concepts in General

In this chapter we will define topological spaces in general and will look
at some topological spaces and some topological ideas which are probably
not as familiar as those that we have seen up to now. To help keep things
straight, you should keep the familiar spaces (especially the real line) in
mind when you study the definitions and prove the theorems, and you
should draw pictures of the situation at hand. But remember that a picture is
not a proof.

1. DEFINITION OF A TOPOLOGICAL SPACE

In Theorem 1.3 of Chapter 3 we proved that both R and θ are open in R,
that the union of any collection of open subsets of R is open, and that the
intersection of any finite collection of open subsets of R is open. Since a
similar theorem is satisfied by many other familiar spaces, as we saw in the
exercises, we abstract these properties and make the following definition.

1.1 Definition. Let X be a set. A topology on X is a collection of subsets
 of X that satisfies the following three conditions:

1) θ and X belong to .
2) If  then .
3) If B is finite and  then .

The pair (X, ) is called a topological space, and the subsets of X that
belong to  are called open sets in (X, ), or, sometimes, if it doesn't lead to
confusion, just open subsets of X, or even just open sets.

Definition 1.1 can be stated in words as:



In a topological space,
1) The empty set and the whole space are open sets,
2) The union of any collection of open sets is an open set, and
3) The intersection of any finite collection of open sets is an open set.

When we are dealing with a topological space, the particular topology
that the space has is often not important, and results that we obtain in this
case are valid for any topological space. In such a situation, we will often
omit the , and simply say that X is a topological space. When the
particular topology on X does matter, we will specify it by saying that our
space is (X, ). (Of course, other letters can be used, both for the set X and
the topology З that X has.)

As you might expect,

1.2. Definition. Let X be a topological space. A subset F ⊂ X is closed
in X if its complement (X – F) is open in X.

If the topology on X is , then we could say that F ⊂ X is closed in X if
and only if X – F ∈ . This is the same as saying that X – F is open in X.

2. EXAMPLES

We have seen many examples of topological spaces. Keep them in mind
while we look at some that are a little more abstract.

2.1. The Indiscrete Topology. This is the simplest topology that it is
possible to assign to a set because the only open sets are the whole space
itself and the empty set. Formally, for any set X, the indiscrete topology on
X is

  

Even if X is the real line, we can give it the indiscrete topology instead
of the usual one that we defined in Chapter 3. Thus a set can have more
than one topology assigned to it. When R has the indiscrete topology,
nothing is open except R and θ—in particular, ordinary open intervals are
not open in R when it has the indiscrete topology.



2.2. The Discrete Topology. The smallest (in the sense of having the
fewest number of open sets) topology that we can give to a set is the
indiscrete topology. In the discrete topology, every subset of X is open, as
we saw in Chapter 3, so the discrete topology is the largest topology that we
can give to a set. Formally, if X is any set, the discrete topology on X is
defined by

  

When we give the discrete topology to R, we get a topological space that is
different from both   and , where  is the usual topology
induced by the absolute value metric as defined in Chapter 3. In particular,
ordinary closed intervals are open in .

2.3. Topologies on a 2 Point Set. Let X = {0, 1}, a set consisting of two
points. There are three distinct topologies that can be assigned to X, two of
which we have already discussed.

a) The indiscrete topology on {0, 1} is

  

b) The discrete topology on {0, 1} is

  

c) A topology between the indiscrete and the discrete topologies that
can be assigned to {0, 1} is

  

The resulting topological space ({0, 1}, δ) is known as Sierpinski space.*

2.4. The Finite-Complement Topology. If X is a set, we can assign a
topology to X by declaring that a subset U of X is open if and only if its
complement (relative to X) is finite, or if U itself is empty. The topology
that we get is called the flnite-complement topology (sometimes called the
cofinite topology) and is the collection



  

When the finite-complement topology is assigned to the real line, the
resulting topological space is different from all of the previous spaces that
we have built on the real line. Thus a set can have many different topologies
defined on it.

2.5. The Sorgenfrey Line. †  This is yet another topology that can be
assigned to the real line. It is defined by saying that a subset U of the real
line is open in the Sorgenfrey topology on the line if and only if for any
point x ∈ U, there exist real numbers a and b such that x ∈ [a, b) ⊂ U.
(Note that the empty set is open vacuously in the Sorgenfrey topology: since
there are no points in the empty set, the defining condition is automatically
satisfied for the empty set.) The Sorgenfrey topology is different from all of
the other topologies that we have defined on the real line; in particular,
“half-open” intervals of the form [a, b) are open in this topology!

2.6. Exercises.
1) Let X be a set. Verify that the indiscrete topology, the discrete

topology and the finite-complement topology are in fact topologies
onl

2) a) Verify that Sierpinski space is a topological space.
b) We said that there are only three different topologies that can be

assigned to the 2 point set {0, 1}. Is the collection of sets {θ, {1},
{0, 1} ) one of these three topologies on {0, 1}?

c) What is {0, 1} with the finite-complement topology?
3) List all topologies that can be assigned to a 3 point set.
4) Verify that the Sorgenfrey topology defined on the real line is in

fact a topology. Is the interval (0, 1) open in this topology? How
about (0, 1]? Is [0, 1] closed?

5) Consider the topological spaces , ,   and R
with the finite-complement topology (where  denotes the usual
topology on R as in Chapter 3).
a) If p ∈ R, is {p} open in any of these spaces? Which ones?
b) If p ∈ R, is {p} closed in any of these spaces? Which ones?
c) In which of these spaces is (a, b) open? [a, b)? (a, b]? [a, b]?



d) Is the set {x ∈ R:x ≠ I/n} open in any of these spaces? Is it
closed in any of them?

e) Is the set {x ∈ R:x ≠ I/n and x ≠ 0} open in any of these spaces?
Is it closed in any of them?

6) Consider the spaces of Problem 5 above again, together with the
three spaces that can be defined on {0, 1}.
a) In which of these spaces is the following statement true: If x and

y are two distinct points in the space then either there exists an
open set U such that x ∈ U and y ∉ U, or there exists an open
set V such that y ∈ V and X ∉ V. (A space for which this
statement holds is called a T0-space.)

b) In which of these spaces is the following statement true: If x and
y are two distinct points in the space, then there exists an open
set U such that x ∈ U and y ∉ U, and there exists an open set V
such that y ∈ V and x ∉ V. (A space for which this statement
holds is called a T1-space.)

c) In which of these spaces is the following statement true: If x and
y are two distinct points in the space, then there exist open sets U
and V such that X ∈ U, y ∈ V and U ∩ V = 0. (A space for which
this statement holds is called a T2-space or a Haus- dorff
space.*)

7) The three conditions defined in Problem 6 above are called
separation axioms because they tell how points can be separated
from one another in various topological spaces. Show that every T2-
space is a T1-space, and that every T1-space is a T0-space, and give
an example of a T0-space that is not a T1-space, and an example of a
T1-space that is not a T2-space. We say, then, that "T2 is stronger
than T1 and T1 is stronger than T0." In a T2-space, any two points
can be separated by disjoint open sets, in a T1-space, any two points
can be separated by open sets, but the separating open sets may
overlap, and in a T0-space, given any two points, at least one of
them can be separated from the other by an open set. It turns out
that topological spaces are not of much practical use unless they are
at least T2, and, in this book, all of the spaces that we will
concentrate on will be T2-spaces.



8) A topological space X is said to be metrizable if a metric can be
defined on X so that a set is open in the metric topology induced by
this metric if and only if it is open in the topology that is already on
the space.
a) Let X be a set with more than one point. Prove that  is not

metrizable. Thus the indiscrete topology on a set with more than
one point is an example of a topological space that is not a metric
space.

b) Let X be a set. Define a function from X × X = {(x, y):x, y ∈ X}
to R by

  

Prove that d is a metric on X. What is the metric topology induced by d?

3. CONTINUITY

For convenience, we repeat the definition of continuity previously given
for metric spaces (Definition 6.3 in Chapter 3), as it was finally phrased.

3.1. Definition. Let (X, d1) and (Y, d2) be two metric spaces and let f:D
⊂ X —> Y. Then f is continuous at x0 ∈ D if given any positive real
number ∈ there exists a positive real number δ such that f(x) ∈ Sδ(f(x0))
whenever x ∈ Sδ(x0). In other words, f is continuous at x0 ∈ D if given ∈ >
0 there exists δ > 0 such that f(Sδ(x0)) ⊂ Sδ(f(x0)). The function f is then said
to be continuous (on D) if it is continuous at each point of D.

As we noted in the discussion in Chapter 3, this definition makes precise
the intuitive idea of a function being continuous if it preserves "closeness":
when f:X → Y is continuous, points close to x0 in X are sent by f to points
that are close to f(x0) in Y (how close being relative of course).

It might seem that metric spaces are necessary in any discussion of
continuity because we need a metric (a distance function) to measure the
distance between points to see how close together they are. But it turns out
that it is not the metrics themselves that are important to continuity; rather,



the important things are the topologies induced by these metrics, and the
fact that these topologies come from metrics is really of no consequence
once we have them. In fact, we can discuss continuity of a function between
two metric spaces without mentioning the metrics at all, as the following
theorem shows. (We assume for now that the domain of f is all of X (rather
than a subset D ⊂ X) in order to avoid irrelevant complications.)

3.2. Theorem. Let (X, d1) and ( Y, d2) be metric spaces and let f:X→ Y.
Then f is continuous at x0 ∈ X if and only if whenever V is an open subset
of Y with f(x0) ∈ F, then there exists an open subset U of X such that x0∈ U
andf(U) ⊂ V.

[Hint for proof : Remember that a set is open in a metric space if and
only if it contains an open r-ball around each of its points.]

Theorem 3.2 suggests the following important generalization of the idea
of continuity to arbitrary topological spaces.

3.3. Definition. Let X and Y be topological spaces and let f: X→Y. Then
f is continuous at x0 ∈ X if whenever V is an open subset of Y with f(x0) ∈
V then there exists an open subset U of X with x0 ∈ U and f(U) ⊂ V. The
function f is then said to be continuous (on X) if it is continuous at every
point of X.

Theorem 3.2 shows that this new definition is indeed a generalization of
the ∈-δ definition, because when the two spaces involved are metric spaces,
the new definition is equivalent to the ∈-δ definition. (Recall that a
statement A is a generalization of a statement B if the two statements say
the same thing whenever statement B makes sense, but A applies to more
cases than B does. In our situation here, the statements of Definition 3.3 and
Theorem 3.2 are the same if X and Y are metric spaces, and Theorem 3.2 is
the same as the ∈-δ definition of continuity.)

Unfortunately, even though Definition 3.3 avoids all mention of ∈ and δ,
even if X and Y are metric spaces, it still retains most of the subtlety of ∈-δ.
It turns out that there is yet another way to define continuity which is
equivalent to Definition 3.3 but is much easier to remember and often easier
to use.



3.4. Theorem. Let X and Y be topological spaces and let f: X —> Y.
Then f is continuous on X if and only if whenever V is an open subset of Y,
then f –1(V) is open in X.

[Hint for proof : For the "if" part, let x0 be any point of X and let V be
any open subset in Y containing f(x0) ; use what is given to find a U to
satisfy Definition 3.3. For the "only if" part, let V be open in Y and let x0 be
an arbitrary point in f –1(V); use what is given to find an open subset U of X
that contains x0 and is contained in f –1(V) and then deduce that f –1(V) is
open.]

Thus a function is continuous if and only if its inverse preserves open
sets. Note that this new definition says nothing about continuity at a
particular point, but goes directly to a "global" definition of continuity on
the whole domain, unlike our previous definitions. Before now we always
characterized continuity first at a point, and then said that a function is
continuous on its whole domain if it is continuous at every point in the
domain. Theorem 3.4 shows that the two approaches to global continuity
are the same. However, if you are interested in continuity at a particular
point, you will have to use one of our previous definitions; the particular
problem at hand usually suggests which definition to use if you are
interested in continuity on the whole domain.

3.5. Exercises.
1) Consider , , ,  and , the real line with

the indiscrete topology, the discrete topology, the usual metric
topology, the Sorgenfrey topology and the finite-complement
topology, respectively. Let f:R → R be the identity function defined
by f(r) = r for all real numbers r. Determine all possible choices for 

1 and 2 from  so that f: (R, 1) → (R, 2) is
continuous. (Use whichever definition of continuity that you think
is most convenient as you test each possibility; one may be easier
than another for some cases but not for others.)

2) Let X be a set and let  be any topology on X. There is a topology '
that can be assigned to X so that the identity function from (X, ') to
(X, ) is always continuous no matter what  is. What is it? [Hint:
Look back at the examples at the beginning of this chapter.]



3) Let X be any set and let  be any topology on X. There is a topology
' that can be given to X so that the identity function from (X, ) to

(X, ') is always continuous no matter what  is. What is it? [Hint:
Look back at the examples at the beginning of this chapter.]

4) Since a function is continuous if and only if its inverse preserves
open sets, you might suspect that there is some relation between
continuity and a function itself preserving open sets. Such a
suspicion would be wrong, though, because there is no relation
whatsoever.

A function that preserves open sets is called an open function. More
precisely, a function f:X→Y is an open function if whenever U is open in X,
then f(U) is open in Y.

a) Give an example of a continuous function that is not open. [Hint:
See Problem 2 above.]

b) Give an example of an open function that is not continuous.
[Hint: See Problem 3 above.]

4. NEIGHBORHOODS

Most of our work so far in this chapter has been to generalize the
behavior of open sets in some familiar topological spaces. It will turn out
that such generalizations will have far-reaching consequences, and will
enable us to discover many important and useful results, both about familiar
spaces and about non-familiar spaces that occur often in practice. First,
though, we want to "generalize the generalization,,, and obtain a convenient
alternative to the term "open set."

Recall that a sequence in R converges to a point if it gets close to the
point and stays close as n goes to infinity, and we have made the idea of
"close" precise in terms of r-balls: a sequence {xn:n ∈ Z+} ⊂ R converges
to x ∈ R if for every positive number R (no matter how small), xn is
ultimately in Sr(X). We might say that ?: is a "neighbor" of the sequence,
then, because x lives close to the sequence, and instead of talking in terms
of r-balls, we might change the terminology to suggest this "neighborliness"
and call an r-ball an r-neighborhood. Usually, we drop the R and say
something like this: a sequence {xn'n ∈ Z+} ⊂ R converges to x if xn is



ultimately in every neighborhood of x (where a neighborhood of x is simply
any set that x belongs to (open or not) that contains an r-ball centered at x
for some r > 0).

Since open sets generalize r-balls, we can generalize this new idea of
neighborhood as follows.

4.1. Definition. Let X be a topological space and let x ∈ X. A set N ⊂ X
is a neighborhood of x if there is an open set U ⊂ X such that x ∈ U ⊂ N.

Thus N is a neighborhood of a point x if N contains an open set that
contains x. Note that N itself need not be open ! Also, if N is a
neighborhood of x, then (obviously) x ∈ N. (It may be obvious, but it is
very important to be aware of the fact that a point is an element of any
neighborhood of it.)

4.2. Exercises.
1) Consider the spaces , , ,  and . (  is

the usual topology on R and  is the finite complement topology on
R.) In which of these spaces is:
a) (0, 2) a neighborhood of 1 ?
b) [0, 2] a neighborhood of 1 ?
c) [0, 2] a neighborhood of 0?
d) {0} a neighborhood of 0?

2) In the plane with its usual topology, is the unit square,

  

a neighborhood of any point in it? Which points?

As the exercises show (and as we have already said) a neighborhood of a
point need not be an open set. But if a set U is open and if x ∈ U then U is a
neighborhood of x. In fact, we can say more.

4.3. Theorem. Let X be a topological space. Then U ⊂ X is open if and
only if U is a neighborhood of each point x ∈ U.

Thus a set is open if and only if it is a neighborhood of each of its points.
But we emphasize again that a neighborhood need not be open.



We can extend our definition of sequences to arbitrary topological
spaces and define convergence in terms of neighborhoods. (This is a direct
generalization of what we did with metric spaces.)

4.4. Definition. Let {xn:n ∈ Z+} be a sequence of points of a
topological space X. Then this sequence converges to x ∈ X, written xn → x
or limn-∞ xn = x, if xn is ultimately in every neighborhood of x.

Using the general definition of convergence of sequences, we can now
get two long promised examples, namely, a space in which a sequence can
converge to more than one point, and a non-trivial non-metric space.

4.5. Exercises.
1) Let X be the real line with the indiscrete topology and consider the

sequence {1 /n:n ∈ Z+}. Prove that if r is any point of X, then this
sequence converges to r.

Thus in this space, this sequence converges not only to more than
one point but to every point in the space—at the same time! But the
indiscrete topology on the line is a pretty trivial space because the
whole line and the empty set are the only open sets, so there are only
two sets in the topology. In the next exercise we get the same result
for a non-trivial space.

2) Let X = R with the finite-complement topology. Prove that {1 /n:n
∈ Z+} converges to every point in the space.

Since, in a metric space, if a sequence converges, then it
converges to only one point (Theorem 5.4 in Chapter 3), we can
now say that the real line with the finite complement topology is not
a metric space.

3) Recall that a topological space X is a Hausdorff space if distinct
points of X are contained in disjoint open sets (Problem 6 in
Exercises 2.6).

a) Prove that a space is a Hausdorff space if and only if distinct
points are contained in disjoint neighborhoods.

b) Prove that every metric space is a Hausdorff space.
c) The converse to (b) is false, as we will see in Problem 4

below. First, though, let us observe that the example of a non-metric
space that we have from Problem 2 above is also not a Hausdorff



space. Prove that in a Hausdorff space, if a sequence converges, then
it converges to exactly one point. Deduce that the real line with the
finite complement topology is not a Hausdorff space (see Problem 2
above).

4) (This exercise requires a knowledge of ordinal numbers.) From
Problems 2 and 3 above, we have an example of a non-Hausdorff
space which is not a metric space, which should not be too
surprising because we showed (Problem 3(b) above) that a space
must be a Hausdorff space in order to be a metric space. In this
problem, we will get an example of a non-metric space which is a
Hausdorff space. Thus even though every metric space is a
Hausdorff space, there exist Hausdorff spaces which are not metric.

Consider X = [0, Ω] with the order topology as defined in
Section 4 of Chapter 3. We proved (Theorem 5.5 of Chapter 3) that
in a metric space, a set S is closed if and only if whenever a
sequence of points of S converges to a point x in the space, then x ∈
S.
a) Prove, using the definition of closed set, that S = [0, Ω) is not a

closed subset of X = [0, Ω] with the order topology.
b) Prove that if a sequence of points of S = [0, Ω) converges to a

point x ∈ [0, Ω], then x ∈ S.
c) Deduce that X = [0, Ω] with the order topology is not a metric

space, but
d) Prove that X = [0, Ω] with the order topology is a Hausdorff

space. 
    Obviously the point Ω ∈ [0, Ω] is what seems to stop this
space from being a metric space. But even if we leave Ω out and
consider only [0, Ω) with the order topology, this space is still
not a metric space. However, the proof of this fact is beyond the
scope of this book.

We can restate the definition of continuity at a point (Definition 3.3) in
terms of neighborhoods, as the following theorem shows.

4.6. Theorem. Let X and Y be topological spaces and let f: X → Y. Then
the function f is continuous at a point x0 ∈ X if and only if for every



neighborhood N2 of f(x0) in Y, there is a neighborhood N1 of x0 in X such
that f(N1) ⊂ N2.

Finally, we can reformulate the description of a topological n-manifold
in terms of neighborhoods by saying that each point in a topological n-
mani- fold has a neighborhood which is homeomorphic to a neighborhood
in En or to a neighborhood in {(xi, x2, . . ., xn) :xi ∈. R and x1 > 0}.

5. CLOSED SETS AND CLOSURE

For convenience, we repeat the definition of closed set here.

5.1. Definition. A subset F of a topological space X is closed if its
complement (X — F) is open in X.

Thus a set is closed if and only if its complement is open. You should
expect the following theorem.

5.2. Theorem. Let X be a topological space. Then
1) X and ø are closed.
2) The intersection of an arbitrary collection of closed sets is closed.
3) The union of a finite collection of closed sets is closed.

Closed sets are just as important in topology as open sets are. Indeed we
could have defined a topology on a set by specifying the collection of
closed sets (subject to the properties in Theorem 5.2), and then we could
have defined a set to be open if its complement is closed—just the opposite
of the approach that we took. The important thing is that it would not have
made any difference.

5.3. Exercises.
1) Consider again the spaces , , , , and ,

the real line with the indiscrete topology, the discrete topology, the
usual metric topology, the Sorgenfrey topology, and the finite -
complement topology, respectively. In which of these spaces is:
a) [0, 1] closed?
b) (0, 1) closed?
c) [0, 1) closed?



d) (0, 1] closed?
e) {0} closed?

2) Recall that a space is a T1-space if for every pair of distinct points x
and y in the space, there is an open set U such that x ∈ V and y ∉
U, and there is an open set V such that y ∈ V and x ∉ V. (See
Problem 6 in Exercises 2.6.)
a) Restate the definition of a T1-space in terms of neighborhoods.
b) Prove that a space is a T1-space if and only if for each point p in

the space, the singleton set {p} is a closed set.

Recall the very handy definition of continuity that we got in Section 3
(Theorem 3.4), namely, that a function between two topological spaces is
continuous if and only if its inverse preserves open sets. There is a similar
definition in terms of closed sets, as is stated in the following theorem.

5.4. Theorem. Let X and Y be topological spaces and let f: X → Y. Then
f is continuous (on X) if whenever F is a closed set in Y, then f–l(F) is closed
in X.

Thus a function is continuous if and only if its inverse preserves closed
sets, and a function is continuous if and only if its inverse preserves open
sets. Both of these statements rank among the most important ones in point
set topology. Sometimes one of them is easier to use than the other, and you
should remember them both.

5.5. Exercises.

As with continuity and open sets, you might suspect that since a function is
continuous if and only if its inverse preserves closed sets, then there should
be some relation between continuity and the function itself preserving
closed sets. (See Problem 4 in Exercises 3.5.) As with open sets, such a
suspicion would be false because there is no relation whatsoever.

A function f: X → Y is a closed function if whenever F is closed in X then
f(F) is closed in Y.

1) Give an example of a closed function that is not continuous. [Hint:
Consider R with the usual topology and with the discrete topology.]



2) Give an example of a continuous function that is not closed. [Hint:
Consider R with the usual topology and with the indiscrete
topology.]

For any subset A of a topological space X (whether A is open or closed
or neither or both), the smallest closed set that contains A is called the
closure of A and is defined as follows:

5.6. Definition. Let X be a topological space and let A ⊂ X. Then the
closure of A (relative to the topology on X) is denoted by Ā and is defined
as follows:

  

Thus the closure of a set A in X is the intersection of the collection of all
closed sets in X that contain A. The first thing that we should do with the
idea of closure is to justify the name and to show that the description of it as
the smallest closed set that contains A is right.

5.7. Theorem. Let X be a topological space and let A ⊂ X. Then
1) Ā is a closed set.
2) A ⊂ Ā.
3) Ā is the smallest closed set that contains A, in the sense that if S is

closed and S ⊃ A, then S ⊃ Ā also.

The definition of closure is sometimes difficult to use, and it is often
easier to use the following theorem.

5.8. Theorem. Let X be a topological space and let A ⊂ X. Then if x ∈
X, x ∈ Ā if and only if N ∩ A ≠  for al neighborhoods N of x.

Thus a point x belongs to Ā if and only if every neighborhood of x meets
A.

5.9. Exercises.
1) In the spaces on the real line obtained by giving it the indiscrete

topology, the discrete topology, the usual metric topology, the
Sorgenfrey topology, and the finite-complement topology, what is Ā
if A is



a) (0, 1).
b) [0, 1].
c) [0, 1).
d) (0, 1].
e) {O}.
f) Q, the set of rational numbers.
g) {1 /n:n ∈ Z+}.
h) .

2) Instead of giving you a specific problem, this exercise asks you to
formulate the problem (or problems) and then to solve them. (This
is more like it is in real life.) Answer the following questions as
completely as you can.
a) How does closure behave with respect to unions?
b) How does closure behave with respect to intersections?
c) How does closure behave with respect to complementation?
d) How does closure behave with respect to Cartesian products?
e) How do functions affect closure?

One reason why the idea of closure is important is that it gives us yet
another way to look at continuity, and the more we know about continuity,
the better.

5.10. Theorem. Let X and Y be topological spaces and let f: X → Y.
Then

1) f is continuous if and only if whenever A ⊂ X, then .
2) f is continuous if and only if whenever B ⊂ Y, then 

.

5.11. Exercises.
1) Show that, for a subset A of a topological space, A = Ā if and only if

A is closed.
2) We have shown that when A is a subspace of a topological space X,

then a point x ∈ X is in A if and only if every neighborhood of x
meets A. When every neighborhood of x meets A in at least one
point other than x itself, then x is certainly in Ā, but this property is
more than is needed for x to be in A. 
    We say that x ∈ X is a cluster point of A ⊂ X if every



neighborhood of x meets A in at least one point other than x itself.
The set of all cluster points of A is called the derived set of A and is
denoted by A'. Thus for x ∈ X, x ∈ A' if and only if for every
neighborhood N of x, N ∩ A – {x} ≠ .
a) Let R have its usual topology, a, b ∈ R with a < b. What is (a,

b)'? [a, b)'? [a, b]'? {a}'?
b) Show that if X is any topological space, then Ā = A ∪ A'. Is A' =

Ā - A?
c) Let X = {a, b, c, d} with the topology  = { , X, {a}, {a, b}, {c,

d} {a, c, d}}. What are {p}' and  when p = a,b,c, or d?

What is {a,d}'?  What is {b,d}'? 
3) Analogous to the closure of a set A being the smallest closed set

that contains A, we have the following. The largest open set that is
contained in a subset A of a topological space X is called the interior
of A, is denoted by A°, and is defined by

A° = ∪{U ⊂ X:U is open and U ⊂ A}.
a) Show that A° is open.
b) Show that A° is the largest open set contained in A by showing

that A° ⊂ A and if U ⊂ X is open and U ⊂ A, then U ⊂ A°.
c) Show that A = A° if and only if A is open.

6. BASIS FOR A TOPOLOGY

As we observed during our discussion of the usual metric topology on
the real line, an open set need not be an open interval. (For example, the
union of two non-empty disjoint open intervals is not an open interval, but
it is an open set.) However, arbitrary open sets were defined in terms of r-
balls, and, in the real line, an r-ball is an open interval, so a set is open in R
with the usual topology if and only if it contains an open interval around
each of its points. Thus open intervals generate the topology on the real
line, in the sense that an arbitrary open set is the union of open intervals, as
we prove in the following theorem. (This theorem was discussed in the
section on the order topology; prove it again even if you proved it there.)

6.1. Theorem. A subset of the real line with the usual topology is open
if and only if it is the union of a collection of open intervals.



A similar theorem is satisfied by any metric space, and the proof is
almost identical to the proof of Theorem 6.1.

6.2. Theorem. A subset of a metric space (X, d) is open if and only if it
is the union of a collection of r-balls.

Thus arbitrary open sets in a metric space can be obtained by taking
unions of r-balls. Because of this, we say that the collection of all r-balls in
a metric space is a basis for the metric topology. In general,

6.3. Definition. Let (X, ) be a topological space. A collection  of
subsets of X is a basis for the topology  if

1) Every member of  is open in (X, ) (i.e.,  ⊂ ) and
2) Each open subset of (X, ) (i.e., each member of ) is the union of a

collection of sets in .

The members of  are called basic open sets in (X, ).

6.4. Exercises.
1) Give a basis for R when it has the

a) usual metric topology.
b) the indiscrete topology.
c) the discrete topology.
d) the Sorgenfrey topology.
e) the finite-complement topology.

2) a) What is a basis for the order topology on Z+? On R?
b) (This exercise requires a knowledge of ordinal numbers.) What is

a basis for the order topology on [0, Ω)?
c) Answer all three questions in (a) and (b) by giving a basis for the

order topology on an arbitrary totally ordered set X.
3) An r-ball in the plane is an open disk (a disk without its edge).

According to Theorem 6.2 and the definition of a basis for a
topology, the collection of all of these open disks is a basis for the
usual metric topology on the plane. But a given topology can have
more than one basis, as you may have observed in doing Problem 1
above.
a) Show that the collection of open squares (squares of arbitrary

size without their edges) is a basis for the usual metric topology



on the plane.
b) Can you think of any other bases for the usual metric topology

on the plane?

As we saw in Exercises 6.4, a given topology can have more than one
basis. In a metric space, there is one particular basis for the metric topology
which is especially important.

6.5. Theorem. Let (X, d) be a metric space. Then the collection 
 is a basis for the metric topology

on (X, d).

Thus the collection of 1/n-balls centered at each point in the space is a
basis for the metric topology on (X, d).

6.6. Definition. Let (X, ) be a topological space, and let x ∈ X. A
collection of sets x is a local basis at x if

1) each member of x is open(i.e., x ⊂ ), and
2) For any open set U containing x, there exists a B ∈ x such that x
∈ B ⊂ U.

Obviously, for a given point x in a metric space (X, d), the collection of
l/n-balls centered at x is a local basis at x. Furthermore, this local basis is a
countable collection of sets, and this is why this particular local basis is so
important. Recall that we proved (Theorem 5.5 in Chapter 3) that in a
metric space, a set F is closed if and only if whenever a sequence of points
of F converges to a point x in the space, then x ∈ F. The proof of the “only
if” part of this theorem involves constructing a sequence of points of F that
converges to x, and this construction rests on the fact that any open set
containing x contains a l/n-ball centered at x, for some n ∈ Z+. The fact that
the collection of 1/n-balls centered at x is a local basis at x is precisely what
enables us to obtain such a 1 /n-ball contained in any given open set, and
allows us to prove the theorem.

A similar theorem holds whenever a space has a countable local basis at
each point.

6.7. Definition. A topological space X is called 1st countable or is said
to satisfy the first axiom of countability if there is a countable local basis



at each point of the space.

6.8. Theorem. Let X be a 1st countable topological space. Then a subset
F ⊂ X is closed if and only if whenever {xn:n ∈ Z+} is a sequence of points
of F that converges to x ∈ X, then x ∈ F.

Because of this theorem, we say that the closed sets in a 1st countable
space (and, in particular, in a metric space) can be completely characterized
using sequences. In other words, to decide if a set is closed in a 1st
countable space, we need only consider (countable) sequences of points.

6.9. Exercises.
1) Give an example of a topological space which is not 1st countable.

[Hint: Consider the order topology on an appropriate set, or
consider the finite-complement topology on an uncountable set.]

2) Let (X, ) be a topological space and let x be a local basis at x ∈
X. Can ∩ x = {x}? Must ∩ x = {x}?

3) a) Let (X, ) be a topological space and, for each point x ∈ X, let 
x be a local basis at x. Show that  = ∪{ x:x ∈ X} is a basis for
the topology on X.
b) Let (X, ) be a topological space and let  be a basis for .

Show that for each point x ∈ X, the collection

  

    is a local basis at x.

Using the idea of a basis for a topology can simplify checking continuity
of a function. For example, we know that a function between two
topological spaces is continuous if and only if its inverse preserves open
sets. Thus, to check continuity of a given function according to this
definition, we would have to show that for any open set whatsoever in the
range of the function, the inverse of that set is open in the domain. Working
with arbitrary open sets, though, can be cumbersome and even difficult and
confusing in some cases. Using the idea of a basis for a topology, we can
eliminate the need to deal with arbitrary open sets in the range, as the
following theorem shows.



6.10. Theorem. Let (X, 1) and (Y, 2) be topological spaces, let  be a
basis for the topology 2 on Y, and let f:X→Y. Then f is continuous on X if
and only if for any B ∈ , f -l(B) is open in (X, 1).

Thus a function is continuous if and only if the inverse of a basic open
set is open. This result says, for example, that to check continuity of a
function whose range is R (with the usual topology), we need only check
that the inverse of an open interval is an open set. Notice that we do not say
that the inverse of an open interval is an open interval, nor can we say in
general that the inverse of a basic open set is a basic open set, as the
following exercises show.

6.11. Exercises.
Let R+ ∪ {0} be the set of non-negative real numbers and give it the

usual metric topology induced by the absolute value metric.
1) Describe a basis for this topology.
2) Give an example of a continuous function f:R → R+ ∪ {0} (where

R has the usual metric topology) such that there is a basic open set
in R+ ∪ {0} whose inverse is not a basic open set in R.

The convenience of using basic open sets rather than arbitrary open sets
can be combined with the convenience of using neighborhoods. Recall that
a neighborhood of a point is simply a set that contains an open set that
contains the point, but that a neighborhood itself need not be open. We can
modify this definition of neighborhood slightly.

6.12. Theorem. A subset N of a topological space X with basis  is a
neighborhood of a point x ∈ X if and only if there is a basic open set B ∈ 

 such that x ∈ B ⊂ N.

Besides being easier to use in many cases, the idea of a neighborhood of
a point being a set that contains a basic open set that contains the point is
what most people mean when they talk about neighborhoods. Sometimes a
basic open set is called a basic open neighborhood, and we will often use
this terminology. But remember that in general, a neighborhood need not be
open. (It complicates things needlessly to require that neighborhoods be



open because it is usually not important whether a neighborhood is open or
not.)

6.13. Definition. Let X be a topological space, let x ∈ X and let x be a
local basis at x. A local neighborhood basis at x is a collection  of
subsets of X, each of which contains x, such that for every N ∈ , there is a
B ∈ x such that x ∈ B ⊂ N.

6.14. Exercises.
Show that the collections of sets {[a, b]:a < 0 < b}, {[a, b):a < 0

< b], {(a, b]:a < 0 < b], and {(a, b):a < 0 < b} are all local
neighborhood bases at 0 in the usual topology on the real line.
Which of these collections is a local basis at 0 in the usual topology
on R?

7. TOPOLOGY GENERATED BY A BASIS

When we defined the usual metric topology on the real line, we said that
a set is open if and only if it contains an r-ball around each of its points, and
then we proved that a set is open in this space if and only if it is the union of
a collection of r-balls (actually a collection of open intervals in the case of
the real line). Because of this last result, we say that the usual metric
topology on the real line is the topology generated by the collection of all r-
balls, in the following sense.

7.1. Definition. Let  be a collection of subsets of a set X, and let * be
the collection of all sets which are unions of members of , together with
the empty set. If * is a topology on X (i.e., if * satisfies (1), (2), and (3)
of Definition 1.1), then * is called the topology generated by , and  is
a basis for the topology *.

Thus the usual metric topology on the real line is * when  is the
collection of all open intervals.

Definition 7.1 raises two important questions. First, what conditions on 
 do we need to guarantee that * is a topology on X? Second, suppose

that we already have a topology on X (as we do on the real line, for
example), and that  is such that * is also a topology on X. How can we



be sure that * is the same as the topology that we already have? The
following exercises show that both of these questions need to be asked.

7.2. Exercises.
1) Let  be the collection of all closed intervals on the real line. Show

that *, the collection of all possible unions of elements of ,
together with the empty set, is not a topology on R.

2) Let R have the usual topology and consider the collection  of
subsets of R defined by

  

(so  is the collection of all singleton subsets of R).
a) Show that * is a topology on the set R, but
b) Show that * is not the usual topology on R.

To tell when * is a topology on X we have the following theorem.

7.3. Theorem. Let X be a set and let  be a collection of subsets of X.
Let * be the collection of all possible unions of members of , together
with the empty set. Then * is a topology on X if and only if

1) ∪  = X, and
2) For B1 and B2 in  and any point x ∈ B1 ∩ B2 there exists a set B3
∈  such that x ∈ B3 ⊂ B1 ∩ B2.

When  satisfies (1) and (2), we will say that it is a basis for a
topology on X.

The first condition in Theorem 7.3 merely ensures that X itself is open in
the topology *. That the empty set and arbitrary unions of members of *
belong to * is automatic from the way * is defined. The only thing left
for * to be a topology is that finite intersections of members of * belong
to *, and this is taken care of by (2). Notice that in (2) we do not require
that B1 ∩ B2 itself belong to , but only that it contain a member of 
containing any given point of B1 ∩ B2. The set B1 ∩ B2 does, however,
belong to * when  satisfies (2).



Thus a collection of subsets of a set X is a basis for a topology on X if it
satisfies certain properties (namely, (1) and (2) of Theorem 7.3). Note the
distinction here relative to our previous discussion of basis. Here we have a
collection of sets, and we use this collection to generate a topology, without
knowing anything about the topology before we start. Once we get the
topology, then the collection of sets that we started with is a basis for it in
our previous sense.

To know if * is the same as some preassigned topology, we have the
following.

7.4. Theorem. Let (X, ) be a topological space, let  be a basis for a
topology on X, and let * denote the topology for which  is a basis (i.e., 

 generates *). Then * =  if and only if
1) For every set B ∈  and every point x ∈ B, there is a U ∈  such

that x ∈ U ⊂ B, and
2) For every set U ∈  and every point x ∈ U, there is a B ∈  such

that x ∈ B ⊂ U.

7.5. Exercises.
Are the following statements true or false?
1) A topology on a set can have more than one basis.
2) A basis for a topology on a set can generate more than one

topology.

Recall that a basic open set is often called a basic open neighborhood.
The following theorem is actually just a restatement of previous discussion,
but it gives the terminology that we will use in practice when dealing with
generating a topology from a basis. You should be absolutely sure that you
understand what it says and how to use it.

7.6. Theorem. Let  be a basis for the topology  on a set X (i.e., 
generates  so  = *). A subset U ⊂ X is open in  = * if and only if for
any x ∈ U there exists a basic open neighborhood N ∈  of x such that x
∈ N ⊂ U.

Thus a subset U of X is open in the topology generated by a basis  if
and only if U contains a basic open neighborhood (i.e., a member of ) of
each of its points.



7.7. Exercises.
1) We have already verified most of the facts in this exercise, but

metric spaces are so important that we collect them here for review
and future reference.

Let d be a metric on a set X (so d:X × X → R is a non-negative function
which is anti-symmetric, transitive, and satisfies the triangle inequality.
(See Definition 2.1 in Chapter 3 if you don’t remember what these words
mean.)) Then

a) the collection of all r-balls,

  

is a basis for a topology on X, the metric topology induced by d.
b) For a given x ∈ X, the collection of all r-balls centered at x,

  

is a local basis at x in the metric topology induced by d.
c) The collection [S1/n(x):n ∈ Z+} is a local basis at x in the metric

topology induced by d.
2) Let X = [-1, 1] and let

  

Then  is a basis for a topology on [–1, 1] which is different from any that
we have considered previously. In this topology, the singleton set {0} is an
open set, but no other singleton set is open.

3) Let ([0, 1]) denote the collection of all functions from [0, 1] into R
such that  |f(x | dx exists.
a) We can make this collection of functions into a topological space

in which the points of the space are functions by specifying a
basis for the topology. For f ∈  ([0, 1]), let

  



where

  

Let  = ∪f∈ ([0,1]) f. Show that  is a basis for a topology on 
([0, 1]).

b) Show that the “distance function” implicitly defined in (a),
namely

  

is not a metric on ([0, 1]). [Hint: If f(x) = 1 for 0 < x ≤ 1 and
f(0) = 2, does |f(x) | dx exist?]

4) Let ([0, 1]) denote the collection of all continuous real-valued
functions defined on [0, 1]. Define a “distance function” on ([0,

1]) by

  

Is this distance function a metric? Describe the topology generated
by this distance function as in (3) above.

5) Even if a distance function is not a metric, it may be close enough
to being a metric so that r-balls make sense. What do r-balls look
like using the distanc function of exercises (3) and (4)?

6) Let ([0, 1]) denote the collection of all continuous real-valued
functions defined on [0, 1].
a) For each f ∈ ([0, 1]), let

  

where



  

(where  | f(x) – g(x) | means the maximum value that |fx –

g(x) | attains as x ranges over all possible values in [0, 1]; we have
not proved it yet but this maximum value always exists.)

Let  = ∪f∈ e([0,1]) f. Show that  is a basis for a topology on
([0, 1]).

b) The distance function defined on ([0, 1]) by

  

is actually a metric on ([0, 1]). What do r-balls look like in this
metric?

8. SUB-BASIS FOR A TOPOLOGY

One reason why bases are important is that they allow us to reduce the
number of open sets that we need to deal with in many cases (in discussing
continuity, for example). It turns out that we can reduce the number of open
sets even further.

8.1. Definition. Let (X, ) be a topological space. A collection  of
subsets of X is a sub-basis for  if the collection of all finite intersections of
members of  is a basis for .

The members of  are called sub-basic open sets.
Thus a sub-basis is a collection of sets that generates a basis by taking

finite intersections, and the basis then generates the topology by taking
arbitrary unions. For example, the collection  = {(– ∞, b), (a, ∞): a, b ∈
R} is not a basis for the usual topology on R (it fails (2) of Theorem 7.3).
But this collection of subsets of R is a sub-basis for the usual topology on R
because the collection of all finite intersections of members of S contains
the collection  = {(a, b):a, b ∈ R} which, as we know, is a basis for the
usual topology on R.

Unlike the situation with bases, any collection of subsets of a set X is a
sub-basis for a topology on X (although not, of course, necessarily a



subbasis for some particular topology that we might already have on X).
The proof of this fact should be easy if you understand the definitions of
both a sub-basis and a basis.

8.2. Theorem. Let  be any collection of subsets of a set X. Then is a
sub-basis for a topology on X.

The relation between sub-bases and continuity is a good one.

8.3. Theorem. Let (X, 1) and ( Y, 2) be topological spaces and let  be
a sub-basis for 2. Then a function f:X → Y is continuous on X if and only if
f–1(S) is open in (X, 1) for all S ∈ .

Thus to check continuity, we need only check that the inverse of a sub-
basic open set is open, which often greatly simplifies the work. Notice that
we do not say that f–1 is a sub-basic open set or even a basic open set; all we
can say is that it is an open set.

Perhaps the most important use of sub-bases occurs when we discuss
Cartesian products. Recall that the Euclidean plane is the set R × R, and
that it is a metric space with the metric topology induced by the distance
formula

  

Thus the topology on the plane is generated by the collection of all open
disks (without their edges), because an r-ball in the distance formula metric
is such a disk, and the collection of all r-balls is a basis for the metric
topology. But as we have seen several times, a topology can have more than
one basis, and the collection of all rectangles in the plane (without their
edges) is also a basis for the metric topology on the plane. (This is similar
to Problem 3 of Exercises 6.4; show it now even if you did the exercise.) A
rectangle in the plane, though, is the intersection of two “strips,” as the
following picture illustrates.



  

The following theorem should now be easy to prove.

8.4. Theorem. The collection of subsets of the plane

  

of all “strips” in the plane is a sub-basis for the usual topology on the plane.

The sub-basis of strips in the plane is of great importance in topology
because it enables us to generalize the topology on the plane (which is the
Cartesian product R × R) to other Cartesian products. The terminology is
easier if we use the projection functions, which are defined as follows.

8.5. Definition. Let X and Y be topological spaces. Then there are two
projection functions defined on X × Y. These are π1 X × Y → X and π2: X ×
Y → Y, defined by π1(x, y) = x and π2(x, y) = y.

The following picture illustrates this definition.



  

Note that A ≠ π1(A) × π2(A). Indeed, π1(A) × π2(A) is necessarily a
rectangle in the “plane” X × Y, whereas A can be a subset of any shape at
all.

8.6. Exercises.
1) A subset A of R × R is bounded if there exists an integer n such that

A ⊂ Sn((0, 0)). Show that for any bounded subset A of R × R, π1(A)
× π2(A) is a rectangle, no matter what the shape of A is.

2) For a, b ∈ R, show that π1
–1((a, b)) = (a, b) × R, and π2

–1((a, b)) =
R × (a, b).

It is true that even though the projection functions π1 and π2 do not
preserve the shape of a set in any way, even on R × R, nor do their inverses,
their inverses can be used to describe a sub-basis for the topology on R ×
R. The proof of the following theorem should now be easy, and the theorem
itself will be of great importance to us in our discussion of product spaces
in general in the next chapter.

8.7. Theorem. The collection of subsets of the plane



  

is a sub-basis for the usual topology on the plane.

Also, even though they do not preserve shape, the projection functions
are continuous. Any discussion of continuity of a function between two
spaces requires a topology on each of the spaces, and we have not defined a
topology on X × Y in general. However, we do have a topology on R × R,
and we can prove continuity of the projection functions in this case.

8.8. Theorem. The projection functions π1 and π2 from R × R into R are
continuous when R × R and R have their usual topologies.

Continuous functions are often called maps or mappings, and the
projection functions are then called projection maps or projection
mappings. We will use this terminology, and justify it in the next chapter
by proving that projection functions in general are continuous.

9. SUBSPACES

We have already had occasion to make certain subsets of topological
spaces into topological spaces themselves. For example, we said that a
closed interval [a, b] ⊂ (with a < b) can be given the topology generated by
the usual absolute value metric, and a circle (which is a subset of the plane)
can be given a topology by using a basis of “curved open intervals.,, It is
natural to ask if there is any relation between the topologies that we get on
these subsets and the usual topologies that we already have on the line and
the plane. If there is such a relationship, it is not the very simple one that a
set is open in a subset of a space if and only if it is open in the space itself,
because, for example, [0, 1/2) is open in the topology that we gave to [0, 1]
while it is not open in R with the usual topology. Similarly, no “curved
interval” on the circle is open in the plane.

But there is a relation and it is very simple one, if not quite as simple as
we might hope. Consider the following picture.



  

The interval [0, 1/2) is open in [0, 1] but not in R; however [0,1/2) =(–
1/2,1/2) ∩ [0, 1] and (–1/2,1/2) is open in R. Similarly, the “curved
interval” A on the circle ⊂ is open in the circle but not in the plane; but A =
Sr((x,y)) ∩ C, and Sr((x,y)) is open in the plane.

Thus it should seem reasonable to say that a set is open in a subset of a
space if it is the intersection of the subset with a set which is open in the
space itself. We make this precise as follows.

9.1. Definition. Let X be a topological space and let A ⊂ X. The relative
topology on A (inherited from the topology on X) is defined by : U ⊂ A is
open in the relative topology on A if and only if there exists an open subset
V of X such that U = V ∩ A.

It should not be too hard to convince yourself that the topologies
described above on a closed interval and a circle are indeed the relative
topologies inherited from the line and the plane, respectively. The following
theorem might make it easier.



9.2. Theorem. Let (X, ) be a topological space and let A ⊂ X. Then if 
 is a basis for  (on X), the collection

  

is a basis for the relative topology on A.B}
[Hint for proof : Show that a subset of A is open in the relative topology

on A if and only if it is open in the topology generated by (SU. Recall that a
set is open in the topology generated by a basis if and only if it contains a
basic open neighborhood of each of its points.]

When A ⊂ X has the relative topology (inherited from the topology on
X), we will usually refer to A as a subspace of X, rather than as a subset of
X.

9.3. Exercises.

1) Show that R with its usual topology is a subspace of E2, the Euclidean
plane with its usual topology. [Hint: Identify R with the x-axis in the plane
and see Theorem 9.2.]

2) Describe the topology that Z+ gets as a subspace of R.

3) (This exercise requires a knowledge of ordinal numbers.) Describe the
topology that Z+ gets as a subspace of the space of countable ordinals, [0,
Ω). Thus, combining this result with Problem 2 above, we see that a set can
be topologically the same even when it is viewed as a subspace of two very
different topological spaces.

4) Show that Z+ and the set {1 /n:n ∈ Z+} are topologically the same (i.e.,
are homeomorphic) when both are viewed as subspaces of R with its usual
topology. In particular, {l/n:n ∈ Z+} is a discrete space, even though there
are points in this set that are as close together as we want. Is (l/n:n ∈ Z+) ∪
{0} a discrete subspace of R?

5) If S is a sub-basis for a topology  on A" and A ⊂ X, is {S n A : S ∈ S} a
sub-basis for the relative topology on A?



Closed sets behave very nicely with respect to the relative topology.
Specifically,

9.4. Theorem. Let X be a topological space and let A c X have the
relative topology inherited from the topology on X. A subset F ⊂ A is
closed in the relative topology on A if and only if there exists a closed
subset ⊂ of X such that F = C ∩ A.

Thus a subset A ⊂ X is open in the relative topology on A if and only if
it is the intersection of A with an open subset of X, and a subset A ⊂ X is
closed in the relative topology on A if and only if it is the intersection of A
with a closed subset of X.

The closure of a set in the relative topology is also very well behaved.
For S ⊂ X, we have denoted the closure of S by , and we showed that a
point x ∈ X is an element of S if and only if every neighborhood of x meets
S (Theorem 5.8). If A ⊂ X has the relative topology and S ⊂ A, then there
are two possible meanings for : it could mean the closure of S with respect
to A, and it could mean the closure of S with respect to X. The two need not
be the same! (See Exercise 9.6.) Let us continue to denote the closure of S
⊂ with respect to X by , but the closure of S ⊂ A ⊂ X with respect to A,
when A has the relative topology inherited from X, will be denoted by SA.
Then

9.5. Theorem. Let X be a topological space and let A ax have the
relative topology inherited from the topology on X. With the above
notation, if S ⊂ A, then A =  ∩ A.

Thus the closure of S ⊂ A with respect to the relative topology on A
inherited from X is simply the interesection of A with the closure of S in X

9.6. Exercise.

Give an example to show that when A is a subspace of a topological space X
and S ⊂ A, then Aneed not be the same as . [Hint: For a point to be in the
closure of a set with respect to a topological space, the point must
necessarily be an element of the space.]



As we have observed, an open subset of A need not be open in X when A
⊂ X has the relative topology inherited from X. Similarly, a closed subset of
A need not be closed in X. However, A itself may be open or closed in X,
and this makes a difference, as the following theorem shows.

9.7. Theorem. Let X be a topological space and let A ⊂ X have the
relative topology inherited from the topology on X. Then

1) If A is an open subset of X, then U ⊂ A is open in A if and only if it is
open in X.

2) If A is a closed subset of X, then F ⊂ A is closed in A if and only if it is
closed in X.

When f:X → Y is continuous and A ⊂ X is a subspace of X, then we can
talk about the continuity of the function f restricted to the subspace A.

9.8. Definition. Let X and Y be sets and let f: X → Y. If A ⊂ X, then the
restriction of f to A, denoted f | Af is the function from A to Y defined by (f |
A)(x) = f(x) for x ∈ A.

Thus (f | A)(x) is the same as f(x) when x ∈ A, and (f | A){x) is simply not
defined when x J A.) be a topological space and let A c X. Then if  is a
basis for  (on X), the collection

9.9. Theorem. Let X and Y be topological spaces, and let A ⊂ X have the
relative topology inherited from X (i.e., A is a subspace of X). If f : X→ Y is
a continuous function, then f | A: A → Y is also continuous.

Recall that if f: X → Y and g:Y → Z then the composition of f and g is
the function gof : X → Z defined by gof(x) = g(f(x)).

9.10. Theorem. Let X, Y, and Z be topological spaces and let f : X → Y,
g: Y → Z. If f and g are both continuous, then gof:X → Z is also continuous.

[Hint for proof: Since g:Y → Z is continuous, then g |f(X):f(X) → Z is
also continuous by Theorem 9.9. The “inverse of open sets is open”
definition of continuity is probably the easiest one to use here.]

9.11. Exercise.



Give an example to show that the converse of Theorem 9.10 is false.
[Hint: See Problems 2 and 3 in Exercises 3.5.]

10. CONTINUITY AGAIN

We have seen several equivalent definitions of continuity in this Chapter.
For later reference, we collect them here.

10.1. Theorem. Let X and 7 be topological spaces and let f:X → 7. Then
the following statements are equivalent.

1) The function f is continuous on X.
2) For each point x ∈ X and each neighborhood U of f(x), there exists

a neighborhood V of x such that f(U) ⊂ V.
3) For each open subset U of Y, f-1(U) is open in X.
4) For each closed subset F of Y,f-1{F) is closed in X.
5) For any subset A of X, f(Ā) ⊂ .

6) For any subset B of Y, .
* After Waclaw Sierpinski (1882-1969), one of the many brilliant twentieth Century Polish
mathematicians.
† After Robert Sorgenfrey (1915- ).
* After Felix Hausdorff (1868-1942), one of the founders of the study of topology as such.



chapter five 
Product Spaces

Product spaces are of great importance in analysis and topology. In thia
chapter we will define Cartesian products in general (generalizing the
definition given X × Y), and will define the product topology on these
Cartesian products as generalization of the topology on the Euclidean plane.
We will then examine some of the properties of the resultant product
spaces.

To avoid needless complications, we will assume throughout this
Chapter that all sets mentioned (including all topological spaces) are non-
empty.

1. THE PRODUCT OF TWO SPACES

For convenience, we repeat some of our previous definitions here.
1.1. definition. Let X1 X2 be sets. The Cartesian product of X1 and X2,

denoted X1 × X2 (read “X1 cross X2”), is defined by

X1 × X2 = {(x1, x2): x1 ∈ X1 and x2 ∈ X2}.*

Thus X1 × X2 is the set of ordered pairs with first coordiante an element
of X1 and second coordinate an element of X2. the sets X1 and X2 are called
the factors of the product X1 × X2. Two ordered pairs are equal if and only
if they are equal coordinatewise. In words, (x1, x2) = (y1, y2) if and only if x1
= x2 and y1 = y2.

The projection functions π1: X1 × X2 → X1 and π2: X1 × X2 → X2 are
defined by π1 (x1, x2) = x2) = x1 and π2 (x1, x2) = x2.

When X1 and X2 are topological spaces, we can define a topology on X1
× X2 by using the projection functions, as we did on R × R in Section 8 of



Chapter 4. Specifically,

1.2. Definition. Let (X1, 2) and (X2, 2) be topological spaces. The
product topology on X1 × X2 is the topology on X1 × X2 generated by the
sub-basis

  

The set X1 × X2 with the product topology is the product space X1 × X2.

As we mentioned before (Section 3 of Chapter 1), it is often very useful
to think of X1 × X2 as a plane (even though it usually is not), and to draw
pictures with X1 thought of as the x-axis and X2 the y-axis in this plane. Of
course such pictures will not prove anything, but they may help you to see
what is going on.



  

1.3. Exercises.
1) Prove that for U1 ⊂ X1, π1

–1 (U1) = U1 × X2, and for U2 ⊂ X2, π1
–

1(U2) = X1 × U2.
2) Show that for U1 ⊂ X1 and U2 ⊂ X2, π1

–1 (U1) ∩ π2
–1 = U1 × U2.

Since π1
–1(U1) = U1 × X2 and π2

–1(U2) = X1 × U2, the product topology
on X1 × X2 is the topology generated by the sub-basis consisting of all
“strips” in the “plane” X1 × X2 over open subsets of X1 and X2. (See figure



on page 90.) In general, U × X2 is called a strip over U, and X1 × V is a
strip over V).

Actually, we need not use all of the open sets in X1 and X2 to generate
the product topology on X1 × X2.

1.4. Theorem. Let  and  be bases for topologies on X1 and X2,
respectively. Then

  

is a sub-basis for the product topology on X1 × X2.

Thus the collection of all strips over basis elements is a sub-basis for the
product topology. It is often necessary to have a basis for the product
topology (instead of a sub-basis), and we can easily get two such bases.

1.5. Theorem. Let (X1 1) and (X2, 2) be topological spaces. Then
1) (U1 × U2: U1 ∈ 1 and U2 ∈ 2} is a basis for the product topology

on X1 × X2.
2) If (  and  are bases for 1 and 2 respectively, then {B1 ×

B2:BX ∈  and B2 ∈ B2)} is a basis for the product topology on
X1 × X2.

[Hint for proof: See Problem 2 in Exercises 1.3.]

Thus the collection of products of open sets is a basis for the product
topology, as is the collection of products of basic open sets. It follows
immediately, then, that the product of open sets is open in the product of
two spaces. But it must be emphasized that an open set in the product of
two spaces need not be the product of two open sets Rather, a set is open in
the product topology if it is the union of sets which are the product of open
sets, and such a union need not itself be the product of open sets.

A similar statement holds for closed sets in the product topology.

1.6. Theorem. Let X1 and X2 be topological spaces and let X1 × X2 have
the product topology. Then



1) If F1 is closed in X1 and F2 is closed in X2, then F1 × F2 is closed in
X1 × X2.

2) A closed subset of X1 × X2 need not be the product of closed sets.

The operation of forming the closure of a set behaves very well with
respect to product spaces. Specifically,

1.7. Theorem. Let X1 and X2 be topological spaces and let X1 × X2 have
the product topology. For A1 ⊂ X1 and A2 ⊂ X2 (with A1 and A2 both
nonempty), 

Thus “the product of the closures is the closure of the product.” In
general, however, if A ⊂ X1 × X2 Ā need not be the product of the closures
of two sets.

If A1 ⊂ X1 and A2 ⊂ X2 then A1 × A2 ⊂ X1 × X2. When X1 and X2 are
topological spaces, then A1 and A2 are also topological spaces with the
relative topology inherited from X1 and X2. Then A1 × A2 can be given the
product topology obtained by using the topologies on A1 and A2. But A1 ×
A2 can also be given a topology by considering it as a subspace of the
product space X1 × X2. These two different approaches to giving A1 × A2 a
topology are actually the same, as the following theorem shows.

1.8. Theorem. Let X1 and X2 be topological spaces and let A1 ⊂ X1, A2
⊂ X2. The set A1 × A2 can be given a topology in two ways:

Method 1) Regard A1 and A2 as subspaces of X1 and X2, respectively, and
give A1 × A2 the product topology obtained from the topologies on A1 and
A2.

Method 2) Give A1 × A2 the relative topology inherited from the
topology on X1 × X2.

Methods 1 and 2 yield the same topology on A1 × A2.

Thus “the product of subspaces is a subspace of the product.” This result
is very useful because it is often the case that one method of looking at the
topology on A1 × A2 is easier than the other.



Of course not every subspace of X1 × X2 is of the form A1 × A2 for some
A1 ⊂ X1 and some A2 ⊂ X2. In the general case that a subset S of X1 × X2 is
not of the form A1 × A2 then the only method that can be used to make S
into a subspace of X1 × X2 is Method 2, giving it the relative topology
inherited from the product topology on X1 × X2.

Recall that the projection functions on R × R are continuous (Theorem
8.8 in Chapter 4). Now that we have a topology on the product of any two
topological spaces, we can prove continuity of the projection functions in
general.

1.9. Theorem. Let X1 and X2 be topological spaces and let Xx × X2 have
the product topology. Then the projection functions π1:X1 × X2 → X1 and
π2:X1 × X2 → X2, defined by π1(xl, X2) = x1 and π2(x1, x2) = x2, are
continuous.

Because they are continuous, we will usually call the projection
functions projection maps. We can use these projection maps to discuss
continuity of functions whose range is a subspace of a product space. Recall
that the composition of continuous functions is continuous (Theorem 9.10
in Chapter 4), but that the converse of this statement is false in general.
There is one important case, however, when the converse is true.
Specifically,

1.10 Theorem. Let X1 X2, and Y be topological spaces and let f:Y → X ×
X2 where X1 × X2 has the product topology. Then f is continuous if and only
if π1∘f and π2∘f are continuous, where π1 and π1 are the projection maps on
X1 × X2.

Thus a function into a product space is continuous if and only if its
composition with both of the projection functions is continuous.

Note that when f:Y → X1 × X2 then π1∘f:Y → X1 and π1∘f:Y → X2. Thus
when we have a function into the product X1 × X2, we can use the projection
functions to get functions into each of X1 and X2. The opposite situation
(when a function is defined coordinate wise), is also of interest.



1.11. Theorem. Let X1 X2, and Y be topological spaces, and let f1:Y →
X1,f2:Y → X2. Define f:Y → X1 × X2 by f(x) = (f1(x), f2(x)). Then f is
continuous if and only if both f1 and f2 are continuous. The function f is
often denoted by f1 × f2.

As we observed in our previous discussion of Cartesian products in
Chapter 1, X1 and X2 are not subsets of X1 × X2. However, they are
topological subsets, in the sense that each is topologically identical to a
subspace of X1 × X2. Recall that two topological spaces are topologically
identical if there is a homeomorphism between them, and that a
homeomorphism between two spaces is a 1-1, onto, continuous function
whose inverse is also continuous.

1.12. Theorem. Let X1 and X2 be topological spaces and let X1 × X2
have the product topology. Then X1 and X2 are each homeomorphic to a
subspace of X1 × X2.

[Hint for proof: Recall our blanket assumption that X1 and X2 are not
empty (indeed, the theorem is false if exactly one of them is empty, a fact
that you should verify). Let X2 ∈ X2 and consider X1 × {x2} with the
relative topology inherited from X1 × X2, a space which looks very much
like X1. Similarly for X2.]

The spaces X1 × {x2 and {x1} × X2 used in the proof of Theorem 1.12 are
called slices in X1 × X2, parallel to X1 and X2, respectively.

1.13. Exercises.
1) If X1 and X2 are discrete spaces, then X1 × X2 is also discrete.
2) Recall that a function between two topological spaces is open (an

open function) if the image of every open set is open, and a function
between two topological spaces is closed (a closed function) if the
image of every closed set is closed. 
Prove that the projection maps are open but not closed.

3) Recall that the interior of a subset A of a topological space X is
defined by



  

Prove that A° × B° = (A × B)°.
4) Recall that the derived set of a subset A of a topological space X is

the set A′ of all points x ∈ X such that every neighborhood of x
meets A in a point other than x itself.

   Is A′ × B′ = (A × B)′
5) Let d be a metric on a set X, so that d is a function from X × X into

R. Show that when X has the metric topology induced by d and
when X × X has the product topology, then d:X × X → R is
continuous, when R has its usual topology.

6) Show that each factor in X × Y is a retract of X × Y.

2. FINITE PRODUCTS

Everything that we did for the product of two topological spaces carries
over to the product of any finite number of spaces (but not to the product of
infinitely many spaces, as we will see in the next section). The key to
extending the proof from two spaces to any finite number is usually
mathematical induction.

2.1. Definition. Let n be a positive integer greater than 1 and let X1 X2,
…, Xn be sets. The Cartesian product of these n sets is

  

*.

Thus the Cartesian product of n sets is simply the set of n-tuples with
first coordinate from X1 second coordinate from X2, and so on. The sets X1,

X2, ..., Xn are called the factors in the product . Two n-tuples

are equal if and only if they are equal coordinatewise.



2.2. Definition. Let n > 1 and let X1, X2, ..., Xn be sets. There are n
projection functions defined on  by

  

The topology on , is just what we would expect.

2.3. Definition. Let n > 1 and let (X1 1), (X2, 2), ..., (Xn, n) be
topological spaces. The product topology on  is the topology
generated by the sub-basis

  

As in the case of the product of two spaces, we need not use all of the
open sets in the factors to describe a sub-basis for the product topology.

2.4. Theorem. Let n > 1 and let 1, 2, ..., n be bases for the
topologies on Xh X2, …, Xn. Then

  

is a sub-basis for the product topology on 

2.5. Exercises.
1) Prove that if Ui ⊂ Xi for 1 ≤ i ≤ n, then πi

-1(Ui)= X1 ×X2 × … × Xi-1
× Ui × Xi+1 × … × Xn.

2) Show that if Ui ⊂ Xi for 1 ≤ i ≤ n, then  = U1 × U2×

… × Un=

The set of “open rectangles” is a basis for the topology on the product of
two spaces; the set of “open boxes" is a basis for the topology on the
product of finitely many spaces in general, as follows.

2.6. Theorem. Let n > 1 and let (X1, 1), (X2, 2), …, (Xn n) be
topological spaces. Then



1)  is a basis for the product topology on 
.

2) If  is a basis for i 1 ≤ i ≤ n, then  is a basis
for the product topology on .

2.7. Theorem. Let Xi, X2, . ?., Xn be topological spaces and let 
 have the product topology. Then

1) The product of open sets is open.
2) An open set in the product need not be the product of open sets.
3) The product of closed sets is closed.
4) A closed set in the product need not be the product of closed sets.
5) If Ai ⊂ Xi, 1 ≤ i ≤ n then =  i.e., the

“product of the closures is the closure of the product.”

2.8. Theorem. Let Xh X2, … Xn be topological spaces and let Ai ⊂ Xi, 1
≤ i ≤ n. Then the topology on  as a subspace of the product space 

 is the same as the topology on  when it is viewed as the
product of the subspaces Ai with the product topology.

Of course not every subspace of the product space  is of the
form  for some Ai ⊂ Xi, and in general the topology on a subspace
of  can only be obtained by using the relative topology inherited
from . But it is important to know that whenever a subspace of a
product space is the product of subspaces, then the topology on the product
is the product of the subspace topologies.

2.9. Theorem. Let n > 1. The projection functions on a product space
with n factors are continuous.

As mentioned before, continuous functions are often called maps, and
we will usually refer to the projection functions as projection maps.

2.10. Theorem. Let n > 1 and let X1 X2, …, Xn be topological spaces.
Let Y be a topological space and let F: Y → . Then F is



continuous if and only if for each i, 1 ≤ i ≤ n,  is continuous.

Thus a function into a product space is continuous if and only if its
composition with each of the projection functions is continuous.

2.11. Theorem. Let n > 1 and let X1 X2 …, Xn be topological spaces. Let
Y be a topological space and for each i 1 ≤ i ≤ n, let f.:Y -→ Xi. Then the
function F:y →  defined by f(x) = (f(x1), f(x2), …, f(xn)) is
continuous if and only if each fi is continuous. The function F is often
denoted by .

As with the product of two sets, none of the factors is a subset of the
product in any finite product. But each factor is homeomorphic to a
subspace of the product space.

2.12. Theorem. Let n > 1 and let Xh X2y .. ., Xn be topological spaces.
Then each X1 is homeomorphic to a subspace of the product space 

.

2.13. Exercises.

In these exercises, X1 X2, …, Xn are topological spaces and 
has the product topology. See Exercises 1.13 for definitions that are not
familiar.

1) If each Xi is a discrete space, then  is also discrete.
2) Is the converse to Problem 1 true?
3) Prove that the projection functions are open but not closed.
4) Denote the interior of a set Ai ⊂ Xi by A1°. Then  = 

.
5) Denote the derived set of Ai ⊂ Xi by  . Is  = 

.

6) Let S1 denote the unit circle as a subspace of the Euclidean plane
with its usual topology, and let T denote the (hollow) torus as a
subspace of Euclidean 3-space with the product topology that it gets
by virtue of being R × R × R (where each copy of R has its usual



topology). (The torus is the surface of a doughnut, or an inner tube.)
Let S1 × S1 have the product topology, and show that S1 × S1 and T
are homeomorphic.

7) Show that each factor is a retract of .

3. INFINITE PRODUCTS

Before defining the product of infinitely many factors, let us review the
case of just two factors. We said that

  

In other words, X1 × X2 is the set of all ordered pairs with first
coordinate from X1 and second coordinate from X2. Another way to look at
such an ordered pair is as a function (of all things). Indeed, (xl, x2) can be
thought of as the function from {1, 2} to X1 ∪ X2 that sends 1 to X1 and 2 to
x2. In symbols, (x1. x2) :{l, 2} → X1 ∪ X2 by (x1 x2) (1) = X1 and (x1 x2) =
x2. Thus we could have defined X1 × X2 as follows:

  

the set of all functions x: {1, 2} —> X1 ∪ X2 such that x(l) ∈ X1 and x(2) ∈
X2. If we call {1, 2} the index set for X1 × X2 we can say that X1 × X2 is the
set of all functions x from the index set to the union of the factors such that
x(i) ∈ Xi for each i in the index set. This is the approach that we will use to
define Cartesian products in general.

3.1. Definition. Let ∧ be any non-empty set such that for each λ ∈ ∧
there is a non-empty set Xλ. (In other words  is a collection of
non-empty sets indexed by the set A.) The Cartesian product of 

 is defined to be

  



the set of all functions x from the index set A to the union of the factors 
, such that for each  .∗*

The value x(λ) of the function (point in the product) x is usually denoted
by xλ and is called the λ-th coordinate of the point x. The point x is usually
written x = (xλ) or sometimes . When Λ is countably infinite,
we will often write  and will write 

 as (x1, x2, …).
Fortunately, it is not always necessary to think of a point in the product

as a function. Rather, in most cases, we can think of the product space
(rather imprecisely) as the set of all “∧-tuples,” 
the set of all points whose λ-th coordinate is an element of Xλ.

The projection functions on a general Cartesian product are defined as
follows.

3.2. Definition. Let  be a non-empty collection of non-
empty sets. For each λ0∈ ∧ there is a projection function 

 defined by

  

Thus the λ0-th projection function sends the product onto its λ0-th factor.
We define a topology on the general Cartesian product by copying what

we did in the finite case.

3.3.Definition. Let  be a non-empty collection of
nonempty topological spaces. The product topology on  is the
topology generated by the sub-basis

  

Thus, as with finite products, the topology on the general Cartesian
product is generated by the sub-basis of all “strips” over open sets in each
factor. Of course we need not use all open sets to describe a sub-basis for
the product topology, as the following theorem shows.



3.4. Theorem. Let  be a non-empty collection of
nonempty topological spaces. If  is a basis for  for each λ ∈ ∧, then the
collection

  

Unlike the case of finite products, the product of non-trivial open sets in
an infinite product is not open! To prove it, remember that a set is open if
and only if each point in it is contained in a sub-basic open set which is
totally contained in the set. Read the definition of sub-basis very carefully.

3.5. Theorem. Let  be a non-empty collection of non-
empty topological spaces. If | A | > Ho and if, for each λ ∈ ∧ Uλ is open in
Xλ, then  is open in the product topology on  if and only if
Uλ = Xλ for all but finitely many λ ∈ ∧.

3.6. Corollary. Let  be a non-empty collection of non-
empty topological spaces. If | A | > and, for each × A, U\ is open in X\ with 

 then  is not open in the
product space .

When an open set Uλ is such that  is
called a non-trivial open set. Thus the collection of products of open sets is
not a basis for the product topology on the product of infinitely many
factors (as it is on the product of finitely many factors) because, in the case
of infinitely many factors, the product of non-trivial open sets is not even
open. This raises a legitimate question: why define the product topology in
such a way that the product of open sets is not open? It could be defined so
that the product of open sets is open, but it is not. Why not?

One reason is that we want to copy the sub-basis of open “strips” that we
used in the case of finitely many factors, and in the resulting topology on
infinitely many factors, the product of non-trivial open sets is simply not
open—an unfortunate consequence. Why not then copy instead the idea that
the collection of all products of open sets is a basis for the product topology
(as it is in the case of finitely many factors), because then the product of
open sets would be open automatically (any basic open set is certainly an
open set). The topology on a product obtained by using a basis of products



of open sets has been studied (it is called the “box topology” or the “box
product") but it is not the same as the product topology on a product with
infinitely many factors.

A good reason for defining the product topology as we did has to do
with the amount of “control” over things that it is reasonable to demand.
For example, consider the sequence \l/n:n Z+} cz R. This sequence
converges to 0 because given any neighborhood of 0, no matter how small,
the sequence is ultimately in the neighborhood. Thus determining whether a
sequence converges or not involves a degree of control over the sequence in
the sense that we check to see if it gets close and stays close to a particular
point (0 in the case of {1 /n:n Z+J). Another way to state the definition of
convergence is to say that a sequence converges to a point if it is ultimately
in the interesection of any finite collection of neighborhoods of that point;
but if we try to control it too much by saying that it must ultimately be in
the intersection of all neighborhoods of the point, then we will destroy the
intuitive idea of convergence entirely. Indeed, the intersection of all
neighborhoods of 0 in R is the singleton set {0}, and {\/n:n Z+} is not only
not ultimately in this intersection, it is never in this intersection. Thus trying
to control things too much can destroy the way they ought to be.

This example can be applied to product spaces as follows.

3.7 Exercise.
Let {Xn:n ∈Z+} be a countable collection with each Xn=R with the

usual topology. Consider the sequence {(1/n,1/n,...):n∈ Z+} ⊂ .
Certainly this sequence should converge to the point (0, 0, . )∈ .
But if we try to “over-control” the product space by requiring that the
product of open sets be open, it will not. For each n ∈ Z+, put Un = (–1
/n,1/n).

1) Show that each Un is open in R, but the sequence {(1 /n, l/n, . . .):n
Z+} is never in , so if this set is open in the product,
{(1/n,l/n,...) Z+} will not converge to (0, 0, . . .), which is not
reasonable.

2) Show that {(l/n, l/n, . . .):n∈ Z+} does converge to (0, 0, . . .) when 
 has the product topology.



Thus the definition of the product topology seem s to be more
reasonable than the box topology, even though the product of infinitely
many non-trivial open sets is not open in the product topology.

Since the product of open sets in general is not open, the collection of all
products of open sets is not a basis for the topology on the product of
infinitely many factors, as it is on the product of finitely many factors.
Theorem 3.9 below gives a basis for the topology on an infinite product.
First, though, we need a simple lemma.

3.8. Lemma. Let {Xλ:λ ∧} be a non-empty collection of non-empty sets
with | ∧ | ≥ 0. Then for λ1,λ2, . . .,λn ∈ ∧ Z+, if Uλi ⊂ Xi

  

3.9. Theorem. Let {Xλ:λ∈ ∧} be a non-empty collection of non-empty
topological spaces, with | ∧ | ≥ 0.

1) If for each λ ∈ Uλ is open in Xλ, then the collection

  

is a basis for the product topology on 

2) If for each λ ∈,Bλ is a basis for the topology on Xλ then if Xλ∈

Bλfor each λ ∈ ∧, the collection

  

is a basis for the product topology on 



Thus the collection of products of non-empty open sets, only finitely
many of which are non-trivial, is a basis for the product topology on the
product of infinitely many factors. It is often useful to write such a basis
element as .

The fact that the product of non-empty open sets is open if and only if
only finitely many of them are non-trivial is often expressed by saying that
an open set in a product space restricts only finitely many coordinates. In
terms of projection functions, this becomes

3.10. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-
empty topological spaces, and let  have the product topology. If U
is any open subset of  then πλ(U)= Xλ for all but finitely many λ ∈
∧.

Closed sets behave “better” than open sets in the product topology:

3.11. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-
empty topological spaces, and for each λ ∈ ∧ let Fλ be a closed subset of
Xλ Then  is closed in  with the Product topology.

Of course not every closed subset of a product is a product of closed
sets, but it is still important to know that the product of closed sets is a
closed set. Similarly, “the product of the closures is the closure of the
product.” More precisely,

3.12. Theorem. Let  be a non-empty collection
of nonempty topological spaces, and for each λ ∈ ∧, let Aλ ⊂ Xλ Then 

=

As we saw with finite products, if a subspace of a product is the product
of subspaces, then it can be given a topology in two ways, and the two
topologies are identical. The same thing happens with infinite products.

3.13. Theorem. Let {Xλ:λ ∧} be a non-empty collection of non-empty
topological spaces. For each ? A, let ?? be a subspace of ??. Then the



product topology on  is the same as the relative topology on 
 inherited from the product topology on 

Thus, as with finite products, “the product of subspaces is a subspace of
the product.” Of course not every subspace of a product space is the product
of subspaces, and in general, a subspace can only be given the relative
topology in one way.

The projection functions on an infinite product are continuous, and we
can use them as before to discuss the continuity of a function whose range
is a subspace of a product space.

3.14. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-
empty topological spaces. For each λ0 ∈ ∧, the projection function πλ0:

→ Xλ0 defined by πλ0(Xλ)=xλ0,is condinuous.

3.15. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-
empty topological spaces, and let Y be a topological space. Let F : Y → 

 where  has the product topology. Then F is
continuous if and only if for each λ ∈ ∧, πλ°F is continuous.

3.16.Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-empty
topological spaces, let  have Product topology, and let Y be a
topological space. For each λ ∈ ∧, let fλ:Y →Xλ. Then the function F: Y → 

 defined by f(x) = (fλ(x))λ ∈ ∧ is continuous if and only if each fλ
is continuous. The function F is often denoted by .

As with finite products, none of the factors of an infinite product is a
subset of the product. But each factor is homeomorphic to a subspace of the
product space, as the following theorem shows.

3.17. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-
empty topological spaces. For each λ ∈ ∧, Xλ is homeomorphic to a
subspace of

3.18. Exercises.



In these exercises, {Xλ:λ ∈ ∧} is a non-empty collection of nonempty
topological spaces, and  has product topology. See

Exercises 1.13 for definitions of terms that are not familiar.
1) If I ∧ I ≥ 0  is never a discrete space no matter what

the Xλ's are.
2) The projection maps on  are open but not closed.
3) Is the product of the interiors equal to the interior of the product?
4) If Aλ ⊂ Xλ for each λ ∈ ∧, is 
5) Show that each factor is a retract of 

* Note that according to this definiton, X1 × X2 = θ if at least one of X1 and X2 is empty. But we
have made the blanket assumption in this chapter that all sets are non-empty, so we need not worry
about X1 × X2 being the empty set.

* As with the product of two spaces, the assumption that each Xi 0 implies that by the sub-basis
* Unlike the case of finitely many factors, the fact that the product of infinitely many factors is non-
empty when each of the factors is non-empty is not a trivial matter in general. In the general case of
uncountably many factors, it is a consequence of the axiom of choice which says that given any non-
empty collection of non-empty sets, there exists a set consisting of exactly one element from each set
in the collection. The axiom of choice is not as “obviously true” as the other axioms of set theory
(such as “the intersection of two sets is a set") which we have used without comment. But if we are
going to deal with infinite sets in general (which are not so obvious themselves), we are going to
need something like the axiom of choice. There is a very interesting discussion of the axiom of
choice and some equivalences of it in Wilder [18]. (As a matter of fact, that the general Cartesian
product of non-empty sets is non-empty is not just a consequence of the axiom of choice but is
equivalent to it.)
On the other hand, the fact that the product is empty whenever at least one of the factors is empty is

obvious and does not require the axiom of choice.



chapter six 
Connectivity

Connectivity is an important concept in analysis and topology.
Intuitively, a set is connected if it is all in one piece, and you have already
encountered the concept of connectivity in the intermediate value theorem
in calculus. This theorem says essentially that if f:I → R is continuou(where
I is an interval), and if c is any number between any two points f(a) and f(b)
in therange of f, then there is a point x between a and b in the domain such
that f(x) = c. In other words, when the domain of a continuous function is all
in one piece, then the range is also all in one piece: the continuous image of
a connected set is connected.

In this chapter we will investigate connectivity in general and will show,
among other things,that a theorem like the intermediate value theorem is
true in general: the continuous image of a connected set is always
connected.

1. DEFINITION OF CONNECTIVITY AND SOME USEFUL
CONSEQUENCES

We have said that the intuitive idea of connectivity is that a subset of a
topological space is connected if it is all in one piece. However, our
intuition is based on years of working with the real line with its usual
topology, and intuition can be misleading in a more general setting. For
example, the set (0, 1) ∪ (1, 2) is not all in one piece and is not a connected
subset of R with its usual topology. But inthe real line with the indiscrete
topology, the set (0, 1) ∪ (1, 2) is connected. On the other hand, (0, 1) is
connected in R with the usual topology but is not connected in R with the
discrete topology.(Of course we cannot prove any of these statements until
we get a definition of connectivity.)



Basically, a set is connected if it cannot be split into more than one piece
by disjoint open sets. This is a negative idea: we say what it means for a set
to be connected by specifying what cannot happen. Our formal definition is
also given negatively. Furthermore, we will be interested in the connectivity
of subsets of topological spaces as well as in connectivity of the entire
space. It turns out, though, that the definition of connectivity is more
obviously what it should be if we give it for the entire space rather than for
a subset of a space; connectivity of a subset is then determined by viewing
the subset as a topological space itself with the relative topology.

1.1. Definition.
1) A topological space X is connected if it cannot be written as the

union of two non-empty disjoint open sets.
2) A subset A of a topological space X is connected if it is connected

as a topological space when given the relative topology inherited
from the topology on X.

This definition says exactly what connectivity ought to be. A space
would have to be in at least two pieces in order to be equal to the union of
two non-empty disjoint open sets, because each of the open sets would have
to contain part of the set. Key words in the definition are non-empty and
disjoint; if either of them is omitted, the definition would no longer say
what we would want connectivity to mean.

To prove that a space is connected according to the definition involves
showing that it cannot be written as the union of two non-empty disjoint
open sets. The only way to do this is to assume that it can be so written and
then show that this assumption leads to a contradiction. On the other hand,
to prove that a space is not connected, all you need to do is to exhibit two
non-empty disjoint open sets whose union is the space in question.

To prove some of our previous statements,

1.2. Exercises.
1) Every subset (including the space itself) of an indiscrete space is

connected.
2) A subset of a discrete space is connected if and only if it is a

singleton set. In particular, a discrete space with more than one
point is not connected.



3) The set (0, 1) ∪ (1, 2) is not a connected subset of R with its usual
topology.

4) The empty set is a connected subset of every topological space.

We also claimed earlier that the interval (0, 1) is a connected subset of R
with its usual topology. The proof of this is more difficult than the other
statements and we postpone it until we have more information about
connectivity than just the definition.

As with continuity, there are several equivalent formulations of the
definition of connectivity. These are useful to have because one way of
looking at connectivity is often easier to use than another. A word about
proving that a series of statements is an equivalent series of statements is in
order. In general, two statements are equivalent if they say exactly the same
thing. More precisely, two statements are equivalent if each implies the
other. Thus to prove that two statements are equivalent, assume that one of
them holds and use it to deduce the other; then reverse the process. To
prove that more than two statements are equivalent, we could look at them
pairwise and prove that each pair is equivalent, but this is usually more
work than is necessary. For example, suppose that we have three statements
A, B, and C that we want to prove equivalent. We could show that A and B
are equivalent and that B and C are equivalent. Then we could deduce
easily that since A implies B and B implies C (because A is now equivalent
to B and B equivalent to C), then A implies C; similarly, we get C implies A.
The two implications between A and C then allow us to say that A and C are
equivalent. This process involves four real proofs (A implies B, B implies A,
B implies C, C implies B), which is less than the six proofs that would be
required to show that all possible pairs of A, B, and C are equivalent. But
we can usually reduce the work even more by setting up a chain of
implications: A implies B, B implies C, C implies A. This involves only
three proofs and establishes the equivalence of the three statements A, B,
and C because it shows that each implies the other. One more thing: the
order in which the statements are given is not necessarily the easiest order
in which to prove any implications between them. The best idea is to find
the easy proofs first (if there are any), prove them, and then fit the others in
with as little extra work as possible. Sometimes two simple proofs are
easier than one hard one, especially if you don’t see how to do the hard one
right away, so some of the statements may fit into the chain as “branches”



attached to only one link. For example, to prove five statements A, B, C, D,
E equivalent, we might end up with something like

  

(⇒ means implies: ⇔ means is equivalent to. Note that “A ⇔ B” is the
same as “A if and only if B”)

There are many other possibilities of course. The only thing that matters
is to end up with each statement implying the other.

Finally, we should note that to prove that two statements A and B are
equivalent, we do not care in the least whether or not they are true
statements. To prove equivalence, assume A holds (whether it does or not is
really irrelevant), and then deduce that B follows from A. Then assume B
and deduce A.

1.3. Theorem. Let X be a topological space. The following statements
are equivalent.

1) X cannot be written as the union of two non-empty disjoint open
sets (i.e., X is connected according to our definition).

2) X cannot be written as the union of two non-empty disjoint closed
sets.

3) X does not contain a non-empty proper subset which is both open
and closed in X.

4) X cannot be written as H ∪ K where both H and K are non-empty,
and both  ∩ K =  and H ∩  = .

Since most of our discussion of connectivity will concern subsets of a
space rather than the whole space, a formulation of the definition of
connectivity of a subset directly (rather than saying that a subset is
connected if it is connected as a subspace) will be useful. We give such a
definition in the following theorem. Its proof is a direct application of the
definitons of connectivity of a topological space and of the relative
topology.



1.4. Theorem. Let X be a topological space. A non-empty subset A of X
is connected if and only if there do not exist open subsets U and V of X such
that 

Notice that in Theorem 1.4 we do not require that U and V be disjoint,
but only that they not overlap in A. What happens to them outside of A has
no bearing on whether or not A is connected.

Theorem 1.4 gives us one way to show that a subset A of a topological
space is connected: assume that A is contained in U ∪ V, where U and V are
open subsets of the space, and then show that either A ∩ U =  or A ∩ V = 

. As with connectivity of a space itself, there are several equivalent ways
to determine connectivity of a subset of a space. Those corresponding to the
statements in Theorem 1.3 are given below.

1.5. Theorem. Let X be a topological space and let A be a non-empty
subset of X. The following statements are equivalent.

1) A is connected, i.e., if A ⊂ U ∪ V where U and V are non-empty
disjoint open subsets of X, then either A ∩ U =  or A ∩ V = . .

2) If A ⊂ F1 ∩ F2 where F1 and F2 are non-empty disjoint closed
subsets of X, then either A ∩ F1 =  or A ∩ F2 = .

3) If Y is a non-empty proper subset of X which is both open and
closed in X, then Y ∩ A = , or Y = A.

4) A cannot be written as H ∪ K, where H ∩ A ≠ , K ∩ A ≠ , and 
∩ K = H ∩ = .

To prove that a subset of R with its usual topology is connected if and
only if it is an interval, we need some information about the real line which
may already be familiar.

1.6. Definitions.
1) A subset A of R is bounded above if there exists a positive integer

n such that A ⊂ (– ∞, n]; A is bounded below if there exists a
positive integer n such that A ⊂ [– n, ∞). A subset A of R is
bounded if it is both bounded above and bounded below.

2) Let A be a non-empty subset of R which is bounded above. The
least upper bound of A is the number r ∈ R such that r ≥ a for all
a ∈ A, and if t ∈ R is such that t ≥ a for all a ∈ A, then t ≥ r. The



least upper bound of A is denoted by supA, and is called the
supremum of A.

3) Let A be a non-empty subset of R which is bounded below. The
greatest lower bound of A is the number r ∈ R such that r ≤ a for
all a ∈ A and if t ∈ R is such that t ≤ a for all a ∈ A, then t ≤ r. The
greatest lower bound of A is called the infimum of A and is denoted
by infA.

Thus a subset A of R is bounded above if it does not “run off to + ∞,” is
bounded below if it does not “run off to − ∞,” and is bounded if it does not
“run off to infinity in either direction.” It is a fundamental property of R
that if A is a non-empty subset of R, then sup A exists if and only if A is
bounded above, and infAexists if and only if A is bounded below. (This
property is called the completeness property of R. We will return to it
later.) When they exist, subA is the smallest real number which is greater
than or equal to every element of A, and infA is the largest real number
which is less than or equal to every element of A.

1.7. Exercise
1) What are supA and inf A when A is

a) (0, 1).
b) (0, 1).
c) (0, 1].
d) [0, 1].
e) 
f) {1/n:n ∈ Z+}.

2) (Problems 2 and 3 require a knowledge of ordinal numbers. In
particular, See sections 5 and 6 of Chapter 2.)

We can talk about least upper bounds and greatest lower bounds in
some sets other than R. For example, sup A and inf A can be defined
in the obvious way (if they exist) when A ⊂ [0, Ω). Do they always
exist? How about if A is countable?

3) What are supA and inf A if A C [0, Ω) is
a) [0, ω)).
b) {2n:n ∈ Z+}.
c) {2n:n ∈ Z+}. The least upper bound of this set might be called

2ω; is 



The following theorem relates least upper bounds and greatest lower
bounds to the usual topology on R.

1.8. Theorem. Let R have the usual topology and let A be a non-empty
subset of R.

1) If A is bounded above (i.e., if supA exists), then supA ∈ Ā.
2) If A is bounded below (i.e., if infA exists), then infA ∈ Ā.

1.9. Corollary. Let R have the usual topology and let F be a non-empty
closed subset of R. Then

1) If F is bounded above (i.e., if supF exists), then supF ∈ F.
2) If F is bounded below (i.e., if infF exists), then infF ∈ F.

1.10. Exercises.

In these exercises, R has the usual topology.
1) Is the following statement true or false: If F ⊂ R, F ≠ , and F is

bounded, then F is closed if and only if both supF ∈ F and infF ∈
F.

2) We have not defined sup  or inf . Extend the definition of least
upper bound and greatest lower bound of a set to apply to the empty
set. [Hint: Neither sup  nor inf  can be a real number.]

3) Give an example to show that each of the following statements is
false.
a) If F ⊂ R, F ≠  and F is closed, then supF ∈F.
b) If F ⊂ R, F≠  and F is closed, then infF ∈ F.

Problem 3 above is important. Before we can talk about the least upper
bound or greatest lower bound of a subset of R, we must be sure that they
exist, and this means that we must be sure that the subset is properly
bounded (bounded above for the sup, bounded below for the inf). You can
run into trouble rapidly if you are not careful about this, and it is very little
trouble to make sure that the set in question is bounded.

We can finally prove that a subset of R (with the usual topology) is
connected if and only if it is an interval. Remember that I ⊂ R is an interval
if and only if for any two points a, b ∈ I, all points between a and b also
belong to I. (Thus, in particular, the empty set is an interval.)



1.11 Theorem. A subset of R (with the usual topology) is connected if
and only if it is an interval.

[Hint for proof: For the “only if” part, see the remark above about
intervals. For the “if” part, suppose that I ⊂ R is an interval that is not
connected. Then I can be written as the union of two disjoint, non-empty,
closed sets. If these two closed sets are intervals, the rest of the proof is
easy. However, they need not be intervals: If they are not, then they
“interlock”. Consider the sup of a piece of one of them and the inf of the
piece of the other above it. Use Corollary 1.9.]

In particular, Theorem 1.11 shows that R itself is connected when it has
its usual topology, because R = (– ∞ , ∞ ), so is an interval.

1.12. Corollary. The only subsets of R with its usual topology that are
both open and closed are the empty set and R itself.

2. PRESERVATION OF CONNECTIVITY BY CERTAIN
OPERATIONS AND FUNCTIONS

It is easy to see that the union of two disjoint connected sets need not be
connected. But if they overlap, then the union is connected. Before we can
prove it, we need a simple modification of Theorem 1.4.

2.1. Lemma. If A is a non-empty connected subset of a topological
space X and A ⊂ U ∪ V where U and V are disjoint open subsets of X, then
either A ⊂ U or A ⊂ V.

2.2. Theorem. Let A and B be connected subsets of a topological space
X. I f A ∩ B ≠  then A ∪ B is connected.

Theorem 2.2 can be extended to arbitrary unions as follows.

2.3. Theorem. Let {Aλ:λ ∈ ∧} be a collection of connected subsets of a
topological space X. If  then  is connected.

2.4. Exercises.
1) The intersection of two connected sets need not be connected. 

[Hint: Look in the plane.]
2) If A and B are both connected, A – B need not be connected.



If a set is connected then it is all in one piece. It should seem reasonable
that if we adjoin all points that are close to a connected set to the set, then
the resulting set is still connected. In other words, the closure of a
connected set should be connected. In fact, we can prove the following.

2.5. Theorem. Let X be a topological space. If A, B ⊂ X such that A ⊂ B
⊂ Ā, then if A is connected, B is also connected.

[Hint for proof : Suppose that B is not connected. Use Lemma 2.1 and
the definition of closure.]

2.6. Corollary. The closure of a connected set is connected.

As mentioned earlier, connectivity is preserved by continuous functions.

2.7. Theorem. Let X and Y be topological spaces and let f:X → Y be
continuous. If X is connected, then f(X) is also connected.

Theorem 2.7 is one of the most important results that we have obtained
so far, for several reasons. One is that it will enable us to derive other
important facts, such as the fact that the product of (non-empty) topological
spaces is connected if and only if each factor is connected. Another is that it
will give us a formulation of the definition of connectivity in terms of
continuity, something that will often be useful. Yet another reason has to do
with homeomorphism. Since a homeomorphism is first of all a continuous
function, then when two spaces are homeomorphic, the homeomorphism
between them is a continuous function (which is also 1-1, onto, and has a
continuous inverse). In particular, though, it is continuous: so, according to
Theorem 2.7, a connected space cannot be homeomorphic to a space that is
not connected. Thus a connected space and a non-connected space are never
topologically the same. We should note that if f:X → Y is continuous and
onto, then if X is connected, Y is also connected, even if f is not a
homeomorphism. However, it is possible for f:X → Y to be continuous and
onto with Y connected and X not connected. If we want to guarantee that
when f is a function from X onto Y, then X and Y are both connected or both
not connected, then F must be a homeomorphism from X onto Y.

We should also note that Theorem 2.7 shows that a disconnected space
cannot be a retract of a connected space. Thus, for example, {0, 1} is not a
retract of R, or of [0, 1].



For the characterization of connectivity in terms of continuity, recall that
a discrete space with more than one point is not connected (Problem 2 of
Exercises 1.2). Then

2.8. Theorem. A topological space X is connected if and only if there
does not exist a continuous function from X onto {0, 1} with the discrete
topology.

To prove that a product of non-empty spaces is connected if and only if
each of the factors is connected, we have to draw several facts together.
Recall that the projection functions are continuous and that the continuous
image of a connected space is connected. Recall also that each factor is
homeomorphic to a subset of the product and that the union of connected
spaces which all have a point in common is connected. Putting these facts
together in the right way will enable you to prove the following theorem.
(Drawing a picture might help, too.)

2.9. Theorem. Let X and Y be non-empty topological spaces and let X ×
Y have the product topology. Then X × Y is connected if and only if both X
and Y are connected.

By Theorem 2.9, the Euclidean plane with its usual topology is
connected because R = (– ∞ , ∞ ) is connected (Theorem 1.11), and when
the plane is viewed as R × R, the product topology on the plane is the same
as the usual topology on the plane. This is an example of how it is often
easier to do something in general than it is to do it directly for a specific
case. When you think about it, proving directly (without using product
spaces) that the plane with its usual topology is connected might be
complicated. (Proving directly that R is connected was not easy; the plane
could be even worse.) But the general fact that the product of two
connected spaces is also connected is not very hard to prove, and the special
case that the plane is connected follows immediately (once we know that R
is connected.) As a corollary to the fact that the plane is connected, we have
the following.

2.10. Theorem. The only subsets of the Euclidean plane (with its usual
topology) that are both open and closed are the empty set and the plane
itself.



By using mathematical induction and Theorem 2.9, you can show that
the product of any finite number of non-empty connected spaces is
connected if and only if each factor is connected.

2.11. Theorem. Let n ∈ Z+ and let{ Xi:1 ≤ i ≤ n) be a finite collection of
non-empty topological spaces. Let  have the product topology.
Then  is connected if and only if each Xi is connected, 1 ≤ i ≤ n.

The rest of this section (except for Theorem 2.18) requires a knowledge
of infinite products.

To prove that an arbitrary product of non-empty topological spaces is
connected if and only if each factor is connected is more difficult than the
finite case, at least in one direction. As is often the case with an “if and only
if” theorem (which of course always requires two proofs, one for the “if”
part and one for the “only if” part), one proof is easy and one is quite
difficult. The easy one here is the “only if” part, which we prove now.

2.12. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-empty
topological spaces and let  have the product topology. If 
is connected, then each Xλ is also connected.

For the “if” part, we need a new concept. Recall that in R with its usual
topology, the closure of the set of rational numbers is R itself. In other
words, every real number is close to a rational number. We generalize this
as follows.

2.13. Definition. Let X be a topological space. A subset A of X is dense
in X if Ā = X.

The following characterization of a dense subset of a topological space
follows directly from the definition of a dense subset and the definition of
closure.

2.14. Theorem. Let X be a topological space. A subset A of X is dense in
X if and only if every non-empty open subset of X meets A (i.e., for every
non-empty open subset U of X, U n A ≠ ). In product spaces,



2.15. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-
empty topological spaces, let  have the product topology and let x
be any point of . Then the set of all points of  that differ
from x in only finitely many coordinates is dense in .

[Hint for proof : Any open set contains a basic open set, so if every basic
open set meets a given set, so does every open set. Use Theorem 2.14.]

If we can show that the set of all points that differ from a fixed x ∈ 
 in only finitely many coordinates is a connected set, then since

this set is dense in  it will follow from Corollary 2.6 that 
 is connected. To do this, we need the following generalization of

Theorem 1.12 in Chapter 5.

2.16. Lemma. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-empty
topological spaces, let x ∈ and let n be a positive integer. For λ1,
λ2, . . . , λn put

  

Then  with the product topology is homeomorphic to 
with the product topology.

Now we can prove that a product of non-empty connected spaces is
connected.

2.17. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-
empty topological spaces. If each xλ is connected, then  the
product topology is also connected.

Outline of Proof : Let x ∈  and for n ∈ Z+, choose λ1, λ2, . . . ,
λn ∈ ∧. Define {Aλ ∈ ∧} as in Lemma 2.16 and deduce that S(x:λ1, λ2, . . .
, λn ) =  is connected. Show that the union of all possible sets



S(x:λ1, λ2, . . . , λn) with x fixed and λ1, λ2, . . . , λn ranging over all finite
subsets of ∧ is connected and is dense in  Conclude that 

 is connected.

Combining Theorems 2.12 and 2.17, we have the fact that the product of
non-empty topological spaces is connected if and only if each factor is
connected.

As another application of Theorem 2.7, we can prove the intermediate
value theorem.

2.18. Theorem. Let R have its usual topology, let I ⊂ R be an interval
and let f:I → R be a continuous function. For any two numbers a and b in I
and any number c between f(a) and f(b) in the range of f there is a number x
∈ I such that f(x) = c.

3. COMPONENTS AND LOCAL CONNECTIVITY

As we have seen, (0, 1) ∪ (1, 2) is not a connected subset of R with its
usual topology. However, both (0, 1) and (1,2) are connected, and,
furthermore, for each point in (0,1), (0,1) is the largest connected subset of
(0,1) ∪ (1,2) containing the point. Similarly, (1, 2) is the largest connected
subset of (0, 1) u (1, 2) containing each of its points. In general,

3.1. Definition. Let x be a topological space and let x ∈ X. The largest
connected subset of X containing x is called the component of X that
contains x, and is denoted by Cx.

Thus for x ∈ X, Cx is a connected subset of X containing x such that if C
is a connected subset of X which also contains x, then C ⊂ Cx. When
dealing with components it is often easier to use the following theorem
instead of the definition.

3.2. Theorem. Let X be a topological space and let x ∈ X. Then

  

Thus the component of X containing a given point is the union of all
connected subsets of X that contain the point.



When Y ⊂ X is a subspace of X, the component of Y containing a given
point y ∈ Y is the largest connected subset of Y containing y and is the
union of all connected subsets of Y that contain y.

3.3 Exercises.
1) Let X be a discrete space, x ∈ X. What is Cx? Is it closed? Is it

open?
2) Let X be a discrete space, Y ⊂ X and y ∈ Y. What is the component

of y in Y? Is it closed in Y? Is it open in Y? Is it closed in X? Is it
open in X?

3) Let x ∈ Q where Q is the set of rational numbers with the relative
topology inherited from the usual topology on R. What is Cxi Is it
closed? Is it open? Is Q a discrete space?

4) Let x ∈ X where X is a connected topological space. What is Cx? If
y ∈ X, y ≠ x, what is Cy?

5) Let R have its usual topology, and let A be a subspace of R
containing 0 (i.e., A has the relative topology inherited from the
usual topology on R and 0 ∈ A). What is the component of A
containing
a) R.
b) Z.
c) Q.
d) {1/n:n ∈ Z+} ∪ {0}.
e) R - {1/n:n ∈ Z+).

6) Let E2 be the plane with its usual topology and let A be a subspace
of E2 containing (0, 0). What is the component of A containing (0,0)
if ? is
a) E2.
b) R.
c) {(x,y):x,y ∈ Q}.
d) E2 - {(x, y):x, y ∈ Q, x ≠ 0, y ≠ 0}.

As Problem 4 above shows, a connected topological space contains only
one component, namely itself. A space whose components are all singletons
is called totally disconnected. Thus a space is totally disconnected if and
only if C = {x} for all x ∈ X. Problem 1 above shows that every discrete



space is totally disconnected, but, as Problem 3 shows, not every totally
disconnected space is discrete.

Using components allows us to tell how disconnected a space is by
breaking it up into connected pieces—its components. The components of a
space partition the space in the following sense.

3.4. Definition. Let X be a set. A collection of non-empty subsets {Aλ ∈
∧} partitions Xif

1) Uλ∈∧ = X, and
2) Aλ ∩ Aμ =  whenever λ, μ ∈ ∧with λ ≠ μ.

We call the collection {Aλ:λ ∈ ∧) a partition of the set X.

3.5 Theorem. The collection of components of a topological space is a
partition of the space.

Thus the components of a topological space decompose the space into
pairwise disjoint connected subsets. It is easy to see from the definition of a
component and Corollary 2.6 that each component of a space is closed. For
later reference, we state this simple fact as a theorem.

3.6. Theorem. Each component of a topological space X is a closed set.

At first thought, it might seem that the components of a topological
space should be open sets as well. Indeed, if a space has only finitely many
components, then each of them is open (Why?), in addition to being closed.
However, if a space has infinitely many components, then they need not be
open (see Problem 3 in Exercises 3.3).

The components of a topological space decompose it into pairwise
disjoint, closed, connected subsets, and tell us how disconnected it is. Since
connectivity is preserved by a homeomorphism, it should not be too
surprising that the "amount of disconnectivity,, is also preserved by a
homeomorphism. In other words, two homeomorphic spaces are either both
connected or are disconnected to the same extent. The following theorem
shows that a homeomorphism between two spaces must “match up” the
components of the two spaces.

3.7. Theorem. Let X and Y be topological spaces and let h:X → Y be a
homeomorphism of X onto Y (i.e., X and Y are homeomorphic). Then for



each x∈ X, h(Cx) = Ch(x) and for each y∈Y, h-1(Cy) = Ch-1(y).

Thus a homeomorphism between two spaces X and Y induces a 1-1
correspondence between the components of X and the components of Y, and
in fact, corresponding components under this 1-1 correspondence are
homeomorphic. Hence, as mentioned earlier, homeomorphic topological
spaces are either both connected or have exactly the same “amount of
disconnectivity.” It is easy to see, though, that having the same “amount of
disconnectivity” is not enough to guarantee that two topological spaces are
the same (Exercise 3.8 (1) below). What may be surprising is that we can
have a 1-1 correspondence between the components of two spaces (so that
they have the same "amount of disconnectivity") and we can even have
corresponding components homeomorphic, while the spaces themselves are
not homeomorphic (Exercise 3.8 (2) below).

3.8. Exercises.
1) The same “amount of disconnectivity.” does not guarantee

homeomorphism: let X = (0, 1) ∪ (1, 2) with the relative topology
inherited from the usual topology on R and let Y = {a, b} with the
discrete topology. Show that there is a 1-1 correspondence between
the components of X and the components of 7, but X and Y are not
homeomorphic.

2) A 1-1 correspondence between components (same “amount of
disconnectivity.”) with corresponding components homeomorphic
does not guarantee homeomorphic spaces: Recall the 1-1
correspondence between the positive integers and the positive
rational numbers (see Theorem 1.7 in Chapter 2). Give both sets the
relative topology inherited from the usual topology on R, and show
that there is a 1-1 correspondence between the components of these
two spaces, with corresponding components homeomorphic, but the
two spaces are not homeomorphic.

3) (This example is due to C. Kuratowski, and is taken from Dugundji
([4], p. 112, Ex. 6).) Let X and Y be subspaces of R (with its usual
topology) defined by



  

a) Show that X and Y are not homeomorphic. [Hint: Components
must be homeomorphic if the spaces are.]

b) Show that f:X → Y defined by

  

     is continuous, 1-1, and onto,
c) Show that g: Y → X defined by

  

     is continuous, 1-1, and onto.

Recall the Schröder-Bernstein theorem (Theorem 1.5 in Chapter 2). This
example shows that a similar theorem fails for homeomorphism: if there is
a continuous 1-1 onto function from AT to Y and there is also a continuous
1-1 onto function from Y to X, there need not be a homeomorphism between
X and Y.

We have seen that the components of a topological space are closed sets
but are not necessarily open. When certain of them are open, we can derive
some important consequences.

3.9. Definition. A topological space X is locally connected if the
components of each open subset of X are open.

This definition is not very descriptive of the “local-ness” of local
connectivity. The following theorem makes it more apparent.

3.10. Theorem. A topological space X is locally connected if and only if
for each point x∈ X, every open neighborhood of x contains a connected



open neighborhood of x.
[Hint for proof : Recall that a set is open if and only if for each point in

it, it contains an open set that contains the point.]

According to Theorem 3.10, a space is locally connected if and only if it
has a local basis consisting of connected open sets at each of its points.

To get an idea of what to look for when considering local connectivity
(or the lack of it), consider the following subspace of the plane, the
“broom.”

  

The broom space is a subspace of the plane consisting of a sequence of
lines of length 1 emanating from the origin with slopes together with [0, 1]
on the x-axis.

We claim that the broom space is not locally connected. To convince
yourself of this, take any point (x, 0) in (0, 1], and observe that a basic open
neighborhood of it will have to look like



  

so is a set consisting of disconnected line segments, and cannot contain a
conne cted neighborhood of the point.

It may be surprising, but there is absolutely no relation between
connectivity and local connectivity, as we show in the following exercises.

3.11. Exercises.
1) Does the broom space above fail to be locally connected at every

one of its points?
2) Is the broom space above connected?
3) Consider the closed “topologist's sine curve"

  



    consisting of the graph of y = sin(l/x), 0 < x ≤ 1 (called the
topologist's sine curve) together with its “limit line,” the segment
from – 1 to 1 on the x-axis. The topology is the relative topology
inherited from the plane.
a) Show that this space is not locally connected.
b) Show that this space is connected. [Hint: See Theorem 2.7 and

Corollary 2.6.]
4) Give an example of a locally connected space which is not

connected. [Hint: This is easy.]
5) Show that a discrete space is always locally connected. Is a discrete

space ever connected?
6) Show that an indiscrete space is always locally connected. Is an

indiscrete space ever connected?
7) According to the definition, the components of each open subset of

a locally connected space are open. Show that the components of a
non-open subset of a locally connected space need not be open.
[Hint: Look in R.]

Unlike connectivity, local connectivity is not necessarily preserved by
continuous functions, as you can show in the following exercise.

3.12 Exercise.
Let X = Z+ and Y = {l/n:n Z+} ∪ {0}, both with the relative
topology inherited from the usual topology on R. Define f:X → Y
by f(l) = 0 and f(n) = l/(n — 1) for n > 1. Show that F is continuous,
that X is locally connected and Y is not. Thus the continuous image
of a locally connected space need not be locally connected.

Even though local connectivity is not necessarily preserved by
continuous functions, it is preserved by a homeomorphism: local
connectivity is a topological property.

3.13. Theorem. If two topological spaces are homeomorphic, then one
of them is locally connected if and only if the other one is also locally
connected.

Local connectivity is also preserved by finite products. In the case of
two factors,



3.14. Theorem. Let X and Y be two non-empty topological spaces and
let X × Y have the product topology. Then X × Y is locally connected if and
only if both X and Y are locally connected.

[Hint for proof : Remember that the product of two open sets is open,
the product of two connected sets is connected, and the projection maps are
open maps.]

By induction, we can extend the result of Theorem 3.14 to the product of
any finite number of spaces.

3.15. Theorem. Let n > 1 and let {Xu Xi, . . . , Xn} be a finite collection
of non-empty topological spaces. Let  have the product topology.
Then  locally connected if and only if each Xi is locally connected.

The rest of this section requires a knowledge of infinite products.

The key to the proof that the product of finitely many locally connected
spaces is locally connected is the fact that in the product of finitely many
spaces, the product of open sets is open. In the case of infinitely many
factors, the product of open sets need not be open, so the method of proof
used in the finite case will fail in the infinite case. As a matter of fact, the
result is not even true in the case of infinitely many factors: the arbitrary
product of locally connected spaces need not be locally connected, as the
following exercise shows.

3.16. Exercises.
Let X = {0, 1} with the discrete topology and let Y  Xi, where

each Xi = X. Let Y have the product topology.
1) Show that X is locally connected (so each factor of Y is locally

connected), but
2) Show that Y is not locally connected. [Hint: Y is not discrete (Why

not?), so some points of Y are not open sets. (In fact, none of the
points of Y are open (Why not?).) Show that Y is totally
disconnected, i.e., that the components of Y are singleton sets.
Conclude that Y is not locally connected.]

The problem with the space Y in Exercises 3.16 is that too many of its
factors are not connected, and since an open set in a product can restrict



only finitely many coordinates, Y does not contain any connected open sets.
To get the product of locally connected spaces locally connected, Y shows
us that we are going to have to put more restrictions on most of the factors,
as in the following theorem.*

3.17. Theorem. Let {Xλ:λ ∈ ∧} be a non-empty collection of non-
empty topological spaces and let  have the product topology.
Then  is locally connected if and only if each Xλ is locally
connected and all but finitely many of the Xλ are also connected.

4. OTHER KINDS OF CONNECTIVITY

We have said that a subset of a topological space is connected if it is all
in one piece, and have made this idea precise by saying that such a subset is
connected if it is not contained in the union of two disjoint open sets, each
of which meets the subset in question. There is another way to make precise
the idea of a set's being all in one piece, a way that may seem at first to be
more intuitively “right” (but which, incidentally, is not equivalent to
connectivity as we have defined it). We might say that a set is all in one
piece if any two points in the set can be joined together by an unbroken (but
probably very crooked) “line.” To make this more precise, we need to know
in general what such a “line” is.

Throughout this section, let I denote the unit interval [0, 1 ] with its
usual topology, the relative topology inherited from the usual topology on
R.

4.1. Definition. A path in a topological space AT is a continuous
function p:I → X. The initial point of the path p is the point p(0), and the
terminal point is p(1); we say that the path p:I → X runs from p(0) to p(l).

For A ⊂ X, a path in A is a continuous function p:I → A where A has the
relative topology inherited from the topology on X.

The image of a path p in X is the subset {p(t):t ∈I} of X, and is called a
curve in X

Thus a path in a subspace A of a space X is a continuous function from I
into A. It is important to remember that the path is the function itself, rather
than the image of I under this function. The reason for this distinction is that



we want to be able to talk about the direction of a path and say that it goes
from one point to another, and we want to be able to do this uniquely and
unambiguously. Thus, for example, the path in the plane going from (1, 1)
to (2, 2) given by p(t) = (t + 1, t + 1) for t ∈ I is not the same as the path in
the plane going from (2, 2) to (1, 1) given by q(t) = (2 – t, 2 – t) for t ∈ I,
even though they both represent the same curve in the plane. (You should
draw a picture of this curve in the plane and make sure that you see that
both paths give rise to the same curve.) In fact, we might call the path q the
inverse of the path p, since going from (1, 1) to (2, 2) by p and then going
back by q gets us right back where we started from, along the same route in
both directions. In general,

4.2. Definition. The inverse of a path p;I→ X is the path p-1(t)=I: → X
defined by p (1 — t) for t ∈ I.'(Note that this is different from our previous
use of the symbol p-1.)

Thus a path p:I → X and its inverse p-1:I → X give the same image of I
in X, but the initial point of p-1 is the terminal point of p, and the terminal
point of p-1 is the initial point of p.

For two points x and y in a subset A of a space X, we say that x and y can
be joined by a path in A if there exists a path (continuous function) p:I→ A
such thatp(0) = x andp( 1) = y (where A has the relative topology inherited
from the topology on X).

We can now state precisely the idea of a kind of connectivity (which is
not equivalent to connectivity as we know it) involving joining points
together by unbroken “lines."

4.3. Definition. A subset A of a topological space X is path connected if
any two points in A can be joined by a path in A. In particular, a space X is
path connected if any two points of X can be joined by a path in X.*

Note the requirement that a subspace A of a topological space X is path
connected if any two points of A can be joined by a path in A. For example,
the subspace (0, 1) ∪ (1, 2) of R is not path connected: the points ½ and 
for example, cannot be joined by a path in (0, 1) ∪ (1, 2). However, these
two points can be joined by a path in R, but (0, 1) ∪ (1, 2) is still not path
connected.



4.4. Exercises.
1) A subset of a discrete space is path connected if and only if it is a

singleton set. In particular, a discrete space with more than one
point is not path connected.

2) Every subset of an indiscrete space is path connected. In particular,
every indiscrete space is path connected.

3) A subset of R with its usual topology is path connected if and only
if it is an interval.

As the above exercises show, path connectivity is the same as
connectivity in discrete spaces, indiscrete spaces, and in R with its usual
topology. However, path connectivity is, in general, a stronger property of a
space than connectivity. In other words, every path connected space is
connected, but there exist connected spaces which are not path connected,
as we will show after we get a useful lemma.

4.5. Lemma. A subset A of a topological space X is path connected if
and only if given any point x0 ∈ A, any other point of A can be joined to x0
by a path in A.

[Hint for proof: First of all, be sure that you see how this lemma differs
from the definition of path connectivity.

The “only if” part is trivial. For the “if” part, let x and y be any two
points of A. By hypothesis, each can be joined to x0 by a path in A, say p
joins x to xo and q joins x0 to y. Going by p from x to x0 and then by q from
x0 to y would get you from x to y, but in the process you would have to use
the points of I twice. This can be remedied by shrinking the domains of p
and q and defining P:I → A as follows:

  

Show that P is a path in A from x to y and conclude that A is path
connected.]

The trick of shrinking the domains of paths and then combining them to
get a new path (as in the proof of Lemma 4.5) is a handy one to be aware



of. In fact, we often think of t as time, and say that two paths such that the
terminal point of one is the initial point of the other can be combined to
form a third path by traversing each of the two original paths in half of the
normal time. We will use this idea again later.

Now we can prove that every path connected space is also connected.

4.6 Theorem. If a topological space X is path connected, then it is
connected.

[Hint for proof: Choose x0 ∈ X. Use Lemma 4.5 and Theorem 2.3.]

An immediate (and very important) consequence of Theorem 4.6 is that
if a space is not connected, then it is also not path connected. However, a
space can be connected even though it is not path connected. In other
words, the converse to Theorem 4.6 is false, as you can show in the
following exercise.

4.7. Exercise.
Recall the closed topologist's sine curve, consisting of the graph of

y = sin (l/x), 0 > x ≤ 1, together with its “limit line,” the line from
– 1 to 1 on the y-axis. The topology is the relative topology
inherited from the usual topology on the plane. We will call this
space S. (We saw this space before in Exercise 3.11 (3).)

1) Prove again that S is connected.
2) Prove that S is not path connected. [Hint: If S is path connected,

then any two points of S can be joined by a path. In particular, if S
is path connected, there is a path p joining the point (1/π, 0) to the
point (0, 0).

Use the fact that π1°p is continuous to show that π2°p is not continuous,
which is impossible if p is continuous. (To do this, exploit the fact that the
sin(1/x) part of S is connected (Why is it?) and attains the values 1 and –1
infinitely often in any neighborhood of 0.]

The example in Exercise 4.7 shows one instance of why we want
connectivity to be as we defined it, rather than taking “connected” to mean
“path connected.” If connected is to mean “all in one piece” (and, after all,
even “path connected” is an attempt to make the idea of “all in one piece”
precise), then the closed topologist's sine curve certainly ought to be



connected, because there is no way to make it into two really separate
pieces without destroying it topologically. But it is not path connected, so if
by “connected” we mean “path connected,” the closed topologist's sine
curve would not be connected.

Using composition of functions (and, in particular, the fact that the
composition of continuous functions is continuous), we can prove that, like
connectivity, path connectivity is preserved by continuous functions.

4.8. Theorem. Let X and Y be topological spaces and let f.X → Y be
continuous. Then if X is path connected, f(X) is also path connected.

In particular, Theorem 4.8 shows that when X and Y are homeomorphic,
then X is path connected if and only if Y is path connected.

Combining Theorem 4.8 with Exercise 4.7 and some other relevant
facts, you can show the following important difference between
connectivity and path connectivity.

4.9. Exercise.

Give an example of a path connected space whose closure is not path
connected.

Analogous to the components of a space, we have the following.

4.10. Definition. Let X be a topological space and let x ∈ X. The path
component of X containing x is the set of all points of X that can be joined
to x by a path in X.

The path component of A ⊂ X containing x ∈ x is the set of all points of
A that can be joined to x by a path in A.

Use the method of proof in Lemma 4.5 to prove the following
“maximally” property of path components.

4.11. Theorem. Let X be a topological space, x ∈ X, and let Pz denote
the path component of X that contains x. If y is any point of Pz and z ∈ X
can be joined to y by a path in X, then z ∈ Px.

As with components,



4.12. Theorem. Let X be a topological space.
1) For x ∈ X, the path component of X containing x is the largest path

connected subset of X that contains x (largest in the sense of
containment).

2) The path components of a space partition it into disjoint non-empty
path connected subsets.

4.13. Exercises.
1) What are the path components of the closed topologist's sine curve

of Exercise 4.7? What are the components of this space? Are the
path components open? Are they closed?

2) What are the path components of a discrete space? What are the
components of a discrete space? Are the path components open?
Are they closed?

3) What are the path components of a connected subset of R with its
usual topology?

4) Show that a space is path connected if and only if it has exactly one
path component, namely itself. Can a subspace of a path connected
space have more than one path component? In other words, is a
subspace of a path connected space necessarily path connected?

5) Is the broom space of Exercises 3.11 path connected? How about
the broom space with the point (0,0) deleted? What are its
components? What are its path components? Are they open? Are
they closed?

As Exercise 4.13 (1) above shows, unlike the components of a space, the
path components of a space need not be closed, and, like the components of
a space, the path components of a space need not be open.

We know that when the components of certain subspaces of a space are
open (namely the components of each of its open sets), then the space is
locally connected, so a connected space is also locally connected if the
components of each of its open sets is open. It turns out that a similar
condition on the path components of a connected space will ensure that it is
also path connected. Specifically,

4.14. Theorem. A connected space is path connected if and only if all of
its path components are open.



[Hint for proof : First of all, note that the condition is only that the path
components of the space itself be open, and not that the path components of
every open set (which includes the space itself) be open, so it is similar to
but not quite the same kind of condition that guarantees that a connected set
is also locally connected. (And of course the condition here is on the path
components rather than the components.)

For the proof, the “only if” part is trivial. For the “if” part, note that if
each path component is open then each path component is also closed.]

The fact that the conditions that a connected space must satisfy in order
to be locally connected are somewhat similar to those that guarantee that a
connected space is path connected does not mean that there is any relation
between local connectivity and path connectivity, as you can show in the
following exercises. (Actually, we have already seen examples of what is
required in these exercises.)

4.15. Exercises.
1) Give an example of a path connected (and therefore connected)

space which is not locally connected.
2) Give an example of a locally connected space which is not path

connected.
3) Can there be a connected, locally connected space which is not path

connected?

We have observed that a subspace of R (with its usual topology) is
connected if and only if it is an interval, and a subspace of R (with its usual
topology) is path connected if and only if it is an interval. Thus connectivity
and path connectivity are equivalent in R with its usual topology. In the
plane with its usual topology, however, we have seen that connectivity and
path connectivity are not equivalent. It turns out, though, that an open
subset of the plane is connected if and only if it is path connected, a fact
that we can establish once we show that the plane has a path connected
basis of open sets.

4.16 Theorem. Let X and Y be non-empty topological spaces and let X ×
Y have the product topology. Then X × Y is path connected if and only if
both X and Y are path connected.



[Hint for proof : For (x1, y1) and (x2, y2) ∈ X × Y, show that there is a
path from (x1, y1) to (x2, y2 “parallel to Y.” and there is a path from (x2,y1) to
(x2, y2) “parallel to Y” Combine these two paths (as in Lemma 4.5) to get a
path from (x1, y1) to (x2, y2). The converse is trivial.]

Combining Theorem 4.16 with Theorem 4.14, you can show the
following.

4.17. Theorem. An open subset of the plane is connected if and only if it
is path connected.

4.18. Exercise.
(This exercise requires a knowledge of infinite products.) We have seen

that the arbitrary product of connected spaces is connected, but the arbitrary
product of locally connected spaces need not be locally connected. Is the
arbitrary product of path connected spaces necessarily path connected?

Both connectivity and path connectivity are ways to determine whether
or not a space is all in one piece, and path connectivity is a stronger idea
than connectivity in the sense that every path connected space is connected
but not every connected space is path connected.

If we know that a space is path connected, then there is no question as to
its being all in one piece. But there is another question which is related in
some way to its connectivity, namely the question of how many “holes” it
has in it. For example, consider the subspaces (A) and (B) of the plane that
look like



  

Both (A) and (B) are path connected, but (B) has a hole in it, and it turns
out that (A) and (B) are not topologically the same—they are not
homeomorphic. The problem is to be able to recognize the hole in space (B)
in some precise way so that we can investigate the consequences of having
a hole in a path connected space, and, in particular, see why a path
connected space with a hole in it must be topologically different from a path
connected space without any holes.

One way to approach this problem is to look at the complements of these
two subspaces of the plane. Indeed, E2 – (A) is connected and E2 – (B) is
not connected (E2 – (B) is in two pieces: the piece inside the hole and the
piece outside the rectangular edge of (B)), so these two complements are
topologically different.

As we will see, saying that a space has no holes if its complement is
connected is a good idea, but it is not quite good enough. Before examining
this further, let us look briefly at another way to decide if a path connected
space has any holes, a way that has a great deal of intuitive appeal and that
has been the subject of much work in a branch of topology called algebraic
topology. This is to approach the problem in terms of closed paths (called
loops: a loop is a path whose initial point and terminal point are the same).
For example, for any point x0 ∈ (A), any loop starting and ending at x0 can
be shrunk down to the point x0 without tearing the loop and without leaving
the space (A), as follows (we show several possible stages in the shrinking
of the loop to the point) :



  

But in space (B), a loop starting and ending at a point y0 ∈ B can be
shrunk down to the point y0 without tearing the loop and without leaving
the space (B) if and only if the loop does not enclose the hole in (B):

  



Thus a path connected subspace of the plane with no holes should be
one in which given any point in the space, any loop starting and ending at
that point can be shrunk to the point without tearing the loop and without
leaving the space.

We will explore this fascinating idea of shrinking loops further in the
chapter on homotopy. For now let us restrict ourselves to the plane with its
usual topology and investigate holes in a path connected subspace of the
plane from the point of view of the complement of the space. Path
connected subspaces of the plane without any holes are important in
complex analysis, where the idea is usually restricted to open subsets of the
plane. We will observe that restriction here. An open path connected subset
of the plane is called a region in the plane. (Note that, according to
Theorem 4.17, a region in the plane can be described as an open connected
subset of the plane.)

As mentioned earlier, saying that a region in the plane has no holes if its
complement is connected is not good enough. For example, the region in
the plane consisting of the part of the plane outside of a circle has a
connected complement, but also has a hole in it (the inside of the circle is a
hole in the space). Noting that this space is unbounded and that the
“complement is connected” idea of a space without holes seems to work for
bounded spaces, we might be tempted to have two definitions of a space
without holes, one for bounded subsets of the plane and one for unbounded
subsets. However, there is an easier and much more elegant way to deal
with this problem.

We can regard the plane as the space formed by removing a single point
from a (hollow) sphere and then flattening out the sphere minus this point
(you do this every time you look at a (flat) map of the (round) world).
Starting with the plane, we can add in a point (called the point at infinity)
to the plane to retrieve the sphere, and all we have to know in order to do
this is where to put this point. Since a point in a topological space is located
relative to the other points in the space by its neighborhood basis, all we
have to do to position the point at infinity is to specify what neighborhoods
of it look alike, and we can do this by copying the way things look on the
sphere. When a point is removed from the sphere and the resulting
“punctured sphere” is flattened out into the plane, the complement of a basic
open neighborhood of the missing point becomes a closed and bounded
subset of the plane. Thus,



4.19. Definition. The extended plane, E2*, is the space E2 ∪ {p} where
p ∈ E2, with topology defined as follows: neighborhoods of points in E2 are
the same as in the usual topology on E2, and U ⊂ E2* is an open
neighborhood of p if and only if E2* – U is closed and bounded in E2.

Now we can define precisely what it means for a region in the plane to
have no holes.

4.20 Definition. A region in the plane is simply connected if its
complement with respect to the extended plane is connected.

As mentioned earlier, simple connectivity is important in complex
analysis, and Definition 4.20 is the way that it is usually defined there.

4.21. Exercises.

Which of the following subsets of the plane is simply connected?
1) The plane itself.
2) A singleton subset of the plane.
3) The “punctured plane,” the plane minus one point.
4) The unit square minus two points.
5) The region outside the unit square.

* Strictly speaking, the additional restriction is not necessary for the “only if” part of the theorem, but
stating this part as a theorem by itself without additional restriction would be talking about nothing
when a is infinite, because there is no locally connected product with infinitely many non-connected
factors.
* Some authors use the term “arc-wise connected” to mean what we mean by “path connected,”
while others reserve “arc-wise connected” for a situation when all paths are actually arcs: an arc is a
homeomorphism defined on [0, 1], while a path need only be a continuous function on [0, 1].



chapter seven 
Compactness

Like connectivity, compactness is one of the most important concepts in
topology and analysis. One reason for its importance is that a continuous
function whose domain is a compact set behaves very well. Indeed, you
have already encountered compactness in calculus in the theorem that says
that a continuous real-valued function on a closed and bounded interval
attains both its maximum and minimum values; since all of the theory of the
Riemann integral rests on this theorem, it is one of the most important
theorems underlying the calculus. It relates to compactness because a closed
and bounded interval is an example of a compact subset of R.

In this chapter, we will investigate compactness in general. At first you
may find the study of compactness more difficult than connectivity, but
after you get used to the somewhat strange definition, you should find it a
fascinating subject.

1. THE DEFINITION OF COMPACTNESS

The concept of the connectivity of a set arose from an attempt to make
precise the idea of a set's being all in one piece, and the resulting definition
of connectivity is such that sets that are intuitively all in one piece (such as
intervals on the line, for example) turn out to be connected according to the
definition. The word “compact” is probably not quite as intuitive as the
word “connected.” (What else could connected mean but “all in one piece”
?) The word “compact” ought to mean something like “not too big and not
too spread out,” and, in topological language, should also mean not
homeomorphic to a set that is “too big and too spread out.” In the real line
with its usual topology, let us agree that a set consisting of a single point
should be compact (it is certainly “not too big”), and a closed and bounded
interval should also be compact (being bounded, such an interval is “not too
spread out”). But an open interval, even if it is bounded, should not be



compact because such an interval is homeomorphic to R itself, which is as
big and spread out as it is possible to be in R.

We want a definition of compactness, then, such that points and closed
and bounded intervals will be compact subsets of R with its usual topology,
while open intervals will not be compact. To get such a definition, let us
investigate some of the properties of the closed unit interval [0, 1], a set that
we certainly want to be compact.

The closed unit interval is a closed and bounded subset of R with its
usual topology, which, in addition, satisfies the following.

1.1. Theorem. Let  be a collection of open subsets of R such that [0,
1] ⊂ ∪ . Then there are finitely many sets in , U1 U2, . . . , Un, such
that [0, 1] ⊂ .

[Hint for proof : Consider the set

{x ∈ [0, 1]: [0, x] can collection of open be covered by finitely many of
the sets in }.

Show that the supremum (least upper bound) of this set exists and is equal
to 1.]

Depending on the source that you are reading, Theorem 1.1 is either
called the Heine-Borel theorem* or is a corollary to a more general theorem
which is called the Heine-Borel theorem. We will call Theorem 1.1 the
Heine- Borel theorem and will prove the more general theorem later.

The Heine-Borel theorem says, then, that whenever [0, 1] is contained in
the union of a collection of sets, then if this collection is infinite, almost all
of the sets in the collection are not needed, because [0 1], is already
completely contained in the union of only finitely many of the sets in the
collection.

For a subset S of a topological space, whenever a collection of open sets 
 of the space is such that S ⊂ ∪ , we call  an open cover of S, and

any subcollection of  whose union also contains S is called an open
subcover of S contained in . Thus the Heine-Borel theorem can be stated
in words as follows:

Any open cover of [0, 1] contains a finite subcover.



Note that given an open cover of [0, 1], the finite subcover guaranteed
by the Heine-Borel theorem consists of sets that belong to the original open
cover; the subcover is a subcollection of the cover, and its members are
themselves members of the cover, rather than only subsets of members of
the cover.

To reiterate, according to the Heine-Borel theorem, whenever [0, 1] is
contained in the union of a collection of open sets, then actually only
finitely many of these open sets are necessary to completely contain [0, 1]
in their union. A theorem like the Heine-Borel theorem is false for the open
unit interval, as you can show in Exercise 1.2 (1) below.

1.2. Exercises.
1) Give an example of an open cover of (0, 1) which does not contain

a finite subcover. In other words, give an example of an infinite
collection  of open sets such that (0, 1) ⊂ ∪  and if  ′ is any
finite subcollection of , (0,1) ⊄ U ′.

2) Give an example of a finite subcover of [0, 1] from the open cover
{[0,1 / (n + 1)), (1/(n + 1), 1 ], ((n - l)/2(n + 1), (n + 3)/2(n + 1))}.

The closed unit interval is a closed and bounded subset of the real line
and is such that every open cover of it contains a finite subcover of it. Since
“bounded” is a term that is not always meaningful in a general topological
space ("bounded" requires some kind of order on the space or some kind of
distance function), we will base our definition of compactness in general on
the open cover property of the closed unit interval, as stated in the Heine-
Borel theorem.

1.3. Definition. A subset A of a topological space X is compact if every
open cover of A contains a finite subcover.

Thus A ⊂ X is compact if whenever  is a collection of open subsets of
X such that A ⊂ ∪ , then there is a finite subcollection ′ of Ol such that
A is also contained in ∪ ′. In particular, a topological space itself is
compact if every open cover of it contains a finite subcover.

1.4. Exercises.
1) State precisely what it means when a subset of a topological space

is not compact.



2) What subsets of an indiscrete space are compact? In particular, is an
indiscrete space itself ever compact?

3) What subsets of a discrete space are compact? In particular, is a
discrete space itself ever compact?

4) What subsets of R with the finite complement topology are
compact? In particular, is the space itself compact?

5) Is {l/n:n ∈ Z+} a compact subset of R with its usual topology?
How about {l/n:n ∈ Z+} ∪ {0}?

6) Give an example of a closed subset of R with its usual topology
(besides R itself) that is not compact.

7) Show that the open unit disk is not a compact subset of the plane
with its usual topology. (The open unit disk is the region inside the
unit circle centered at the origin but not containing any points of the
circle.)

8) (This exercise requires a knowledge of ordinal numbers.) Prove that
the space of countable ordinals, [0, Ω), is not compact, but [0, Ω] is
compact. [Hint: To show that [0, Ω) is not compact is easy; to show
that [0, Ω] is compact, use transfinite induction (Section 6 of
Chapter 2).]

The following theorem is an easy consequence of the definition of
compactness (if you remember that whenever A is a closed subset of a
topological space X, then X — A is open).

1.5. Theorem. A closed subset of a compact space is compact.

1.6. Exercise.
Show that a compact subset of a topological space need not be closed,

even if the space itself is compact.

There is an important equivalent formulation of the definition of
compactness in terms of closed sets and intersections rather than open sets
and unions, which is an immediate consequence of the De Morgan laws and
the definition of compactness.

1.7. Theorem. A topological space X is compact if and only if whenever
 is a collection of closed subsets of X such that the intersection of any

finite subcollection of  is not empty, then 



A collection of sets (like  in Theorem 1.7) such that the intersection of
any finite subcollection of the collection is not empty is said to have the
finite intersection property (FIP). Thus Theorem 1.7 says that a
topological space is compact if and only if every collection of closed sets
with FIP has a non-empty intersection. A theorem like 1.7 can be given for
a subset of a topological space by using the relative topology, as follows.

1.8. Theorem. A subset A of a topological space X is compact if and
only if whenever  is a collection of closed subsets of A (when A has the
relative topology inherited from the topology on X) such that the
intersection of any finite subcollection of  is not empty, then ∩ ≠  .

1.9. Exercises.
1) Which of the following collections of subsets of R has FIP?

a) {[–n, n]:n ∈ Z+}.
b) {(–1/n, 1/n):n ∈+}.
c) {[n, ∞):n ∈ Z+}.
d) {(n, ∞):n ∈ Z+}.

2) a) Prove, using the definition of compactness, that R with its usual
topology is not compact,
b) Prove, using Theorem 1.7, that R with its usual topology is not

compact.
3) Prove that the Euclidean plane with its usual topology is not

compact.
4) State precisely what it means when a set is not compact in terms of

the finite intersection property.
5) The fact that the sets in Theorems 1.7 and 1.8 must be closed sets is

essential. For example, we know that [0, 1] is compact. Give an
example of a collection of subsets of [0, 1] with FIP such that the
intersection of this collection is empty.

6) Prove that the set [0, 1] ∩ Q is not a compact subset of the space of
rational numbers with the relative topology inherited from the usual
topology on R.

Exercise 1.9 (6) above shows that compactness is a more “absolute”
concept than closed is. The interval [0, 1] ∩ Q is the intersection of the
closed and bounded (and therefore compact) subset [0, 1] of R with Q, and



as the intersection of Q with a closed subset of R, is closed in Q with the
relative topology inherited from the usual topology on R. But even though
[0, 1] ∩ Q is the intersection of Q with the compact subset [0, 1] of R, [0,
1] ∩ Q is not a compact subset of Q. Thus “compact” does not behave as
well with respect to the relative topology as “closed” does.

The reason for the “misbehavior” of compactness with respect to the
relative topology is that a subset of a subspace of a space is closed if and
only if it contains all of the points of the subspace that are close to it (the
missing irrational numbers do not stop [0, 1] ∩ Q from being closed in Q,
for example). On the other hand, a subset of a subspace of a space is
compact if and only if it contains all points that are close to it even if these
points are not in the space itself, let alone in the subspace. This is why a
compact subset of R with its usual topology must be bounded: an
unbounded subset of R is “close” to ∞ or – ∞ (or both), so cannot be
compact because, as a subset of R, it cannot contain either of these points
since they do not belong to R. An unbounded subset of R can be closed,
however (indeed, R itself is closed in R), because closed is a relative term:
to be closed in R, a set need only contain all points of R that are close to it.
The points ∞ and – ∞, not being members of R, do not even enter into a
discussion of whether or not a subset of R is closed, while, as mentioned
above, they do enter into such a discussion concerning whether or not an
unbounded subset of R is compact.

The discussion above makes it clear that to do much with compactness,
we are going to have to have a precise definition of the idea of a point being
close to a set. The idea of closure does this, but it is convenient to have the
following definition as well. (This definition was given in Exercises 5.11 of
Chapter 4; review it here if you did these exercises.)

1.10. Definition. Let X be a topological space and let A ⊂ X. A point p
∈ X is a cluster point of A if every neighborhood of p meets A in at least
one point other than p. The set of all cluster points of A is called the
derived set of A and is denoted by A'.

Thus p ∈ A′ if and only if given any neighborhood N of p,

  

1.11. Exercises.



1) Let X be a topological space, A ⊂ X.
a) Show that Ā = A ∪ A′.
b) Is A necessarily equal to Ā – A′?

2) Let X = {a, b, c, d} with the topology

  

   What are {p}′ and { } when p = a, b, c, or d? What is {a, d)′? 
? What is {b, d}′? ?

3) Let X be a topological space, A ⊂ X. State precisely what it means
when p ∈ X is not a cluster point of A.

2. PRESERVATION OF COMPACTNESS BY CERTAIN
OPERATIONS AND FUNCTIONS AND SOME
CONSEQUENCES

To give us more examples to work with, we first establish the fact that
the continuous image of a compact space is also compact.

2.1. Theorem. Let X and Y be topological spaces and let f:X →> Y be
continuous. Then if X is compact, f(X) is also compact.

As a special case of Theorem 2.1, we have the fact that homeomorphic
spaces are either both compact or both not compact, so a compact space
cannot be homeomorphic to a space which is not compact. Also, a
noncompact space cannot be a retract of a compact space. Thus, for
example, (0, 1) is not a retract of [0, 1].

For a positive example of the importance of Theorem 2.1, we can prove
the generalized form of the Heine-Borel theorem mentioned earlier. First,
though, we observe that since any two closed and bounded intervals with
more than one point are homeomorphic and since the closed unit interval is
compact, we can prove the following.

2.2. Theorem. For a, b ∈ R with a < b, the interval [a, b] is compact.

It is important to be aware of the fact that when R has its usual topology,
even though all intervals of the form [a, 6] for a < b, a, b ∈ R, are compact,
there are compact subsets of R that are not intervals. Indeed, the



generalized Heine-Borel theorem below (Theorem 2.3) completely
characterizes compactness for subsets of the real line with its usual
topology by saying that such a subset is compact if and only if it is closed
and bounded, and certainly not every closed and bounded subset of R is a
closed interval.

2.3 Theorem. A subset of the real line with its usual topology is
compact if and only if it is closed and bounded.

[Hint for proof: For the “if” part, use Theorems 2.2 and 1.5 and recall
the formal definition of a bounded subset of R:A ⊂ R is bounded if there
exists a positive integer N such that A⊂ [–N, N]. For the “only if” part,
observe that if a subset A of R is not closed, then there exists a point in Ā –
A; use this point to violate the conclusion of Theorem 1.7. On the other
hand, if A ⊂ R is not bounded, then either A ∩ [n, ∞ ) ≠  for all n ∈ Z+ or
A ∩ [– ∞, –n] ≠  for all n ∈ Z+. In either case, Theorem 1.7 will show that
A is not compact.]

There are two important corollaries to the generalized Heine-Borel
theorem (Theorem 2.3). The first is the theorem mentioned in the
introduction to this chapter, and the second is known as the nested set
property, or, in a special case, the nested interval property.

2.4. Corollary. Letf:C ⊂ R →> R be continuous, where C is a compact
subset of R and R has its usual topology. Then there exist numbers xM and
xmin C such that f(xM) = max {f(x):x ∈ C} and f(xm) = min {f(x):x ∈ C}.

Thus a continuous real-valued function on a compact set in R attains
both its maximum and minimum values. Notice how easily this follows
from our previous work; you might recall how difficult it is to prove
without general topological concepts. (The same might be said for the
intermediate value theorem in Chapter 6.)

2.5. Corollary. (The nested set property.) If S1 ⊃ S2 ⊃ S3 ⊃ . . . are non-
empty closed and bounded subsets of R and R has its usual topology, then 

A sequence of sets S1, S2, S3, . . . where each is contained in the
preceding one is said to be nested. Thus a nested .sequence of closed and



bounded subsets of R has a non-empty intersection when R has its usual
topology. In particular, if the nested sequence consists of closed and
bounded intervals, we have the following.

2.6. Corollary. (The nested interval property.) If I1⊃ I2⊃ I3⊃ . . . are
non-empty closed and bounded intervals in R and R has its usual topology,
then 

We investigate the preservation of compactness by certain set operations
in the following exercises, in addition to observing that the hypotheses in
some of the theorems in this section are necessary. We also look at some
consequences of these theorems.

2.7. Exercises.
1) Must the union of compact subsets of a topological space be

compact? State and prove a theorem concerning compactness and
unions.

2) Surprisingly, the intersection of compact subsets of a space need not
be compact. For example, consider the space X which is the set [0,
1] with topology defined as follows: the only neighborhood of 0
and 1 is X itself, and for x ∈ X with x ≠ 0, x ≠ 1, {x} is open.
a) Prove that the space described above is a topological space.
b) Give an example of two compact subsets of X whose intersection

is not compact.
c) Give an example of a compact subset of X that is not closed.

3) It is the fact that the space in Problem 2 above contains compact
subsets that are not closed that makes it such that the intersection of
compact subsets need not be compact. Prove that if all compact
subsets of a topological space are closed, then the intersection of
compact subsets must be compact.

4) Must the complement of a compact subset of a topological space be
compact? How about if the space itself is compact?

5) Show using the definition of compactness that any singleton subset
of any topological space is compact. In particular, for p ∈ R, {p} is
a compact subset of R with its usual topology. (This is also an
immediate result of Theorem 2.3.)

6) Show using the definition of compactness that any finite subset of
any topological space is compact. (For a finite subset of the real line



with its usual topology, this is also an immediate result of theorem
2.3. For finite subsets of general topological spaces, it also follows
from Problem 5 and your theorem in Problem 1.)

7) We know that (0, 1) ≅ R, both with their usual topologies. Prove
that [0,1]  R when both have their usual topologies.

8) Prove that if the product of non-empty spaces is compact, then each
of the factors must also be compact. (The converse is also true, but
is much more difficult to show. We postpone it until we have more
information to work with.)

9) By Corollary 2.4, a continuous function on a compact subset of R
attains both its maximum and minimum values. In other words, if
f:C⊂ R → R where C is compact and R has its usual topology, then
there are numbers xM and xm in C such that

  

and

  

a) Give an example of a bounded continuous real-valued function
on (0, 1) which does not attain either its maximum or its
minimum. (A function f: (0, 1) → R is bounded if f(0, 1) is a
bounded subset of R.)

b) Give an example of a real-valued function on [0, 1] that does not
attain its maximum or minimum. Can this function be
continuous?

10) By the nested set property, a nested sequence of closed and
bounded subsets of R has a non-empty intersection. Give an
example of a sequence of subsets of R whose intersection is empty.
Can your sets be closed? Can they be bounded?

3. SOME EQUIVALENCES OF COMPACTNESS IN R

Throughout this section, let R have its usual topology and let all subsets
of R have the relative topology inherited from the usual topology on R.



To summarize what we have so far, a subset of a topological space is
compact if every open cover of it has a finite subcover, and in R,
compactness of a set is equivalent to its being closed and bounded. There
are several other ways to characterize compactness for subsets of R, which
we examine now.

Recall the definition of cluster point given in Section 1. The following
theorem, know as the Bolzano-Weierstrass theorem,* is a classical theorem
of analysis.

3.1. Theorem. A subset A of R is compact if and only if every infinite
subset of A has a cluster point in A.

[Hint for proof : Use the “closed and bounded” definition of
compactness. For the “if” part, suppose that A is not compact, so that it is
not closed or not bounded. In either case, you can construct an infinite
subset of A with no cluster point in A. For the “only if” part, let S ∩ A be
infinite, where A is compact, so is contained in an interval of the form [–n,
n] for some n ∈ Z+. Cut this interval in half and observe that the part of S
in one half or the other (or both) must be infinite. Choose a half in which S
is infinite and cut it in half. Continue this process and use the nested
interval property to find a cluster point of S.]

It is important to notice that the infinite set in the Bolzano-Weierstrass
theorem need only be countably infinite, as you can show in Exercise 3.2
(1) below.

3.2. Exercises.
1) Show that a subset A of R is compact if and only if every countably

infinite subset of A has a cluster point in A. [Hint: Read the
definition of cluster point very carefully. Is a cluster point of a
countably infinite subset of a set also a cluster point of the set
itself? Of course you can use the Bolzano-Weierstrass theorem if
you need it.]

2) State precisely what it means when a subset A of R is not compact,
according to the Bolzano-Weierstrass theorem.

3) Give an example of an infinite subset of R with no cluster point in
Rj thus showing that R is not compact by the Bolzano-Weierstrass
theorem.



4) Give an example of an infinite subset of (0, 1) with no cluster point
in (0, 1), thus showing that (0, 1) is not compact by the Bolzano-
Weierstrass theorem.

5) Prove using the Bolzano-Weierstrass theorem that [0, 1] ∩ Q is not
a compact subset of Q. Is [0, 1] ∩ Q closed in Q?

6) The Bolzano-Weierstrass theorem says that a subset A of R is
compact if and only if every infinite subset of A has a cluster point
in A. The “in A” is important. Show that a subset A of R is bounded
if and only if every infinite subset of A has a cluster point in Ā ⊂ R.

Thus when A is compact, it is closed as well as bounded, so the cluster point
guaranteed by the fact that A is bounded must be in A because A is closed.
On the other hand, if every infinite subset of A has a cluster point in A, then
A must be bounded simply because such cluster points exist in R, and must
be closed because they are all in A ; in other words, A is compact.

Another way to look at compactness in R, which is very much like the
Bolzano-Weierstrass theorem, involves using sequences. Recall (Theorem
5.5 in Chapter 3) that a subset A of R is closed if and only if whenever a
sequence contained in A converges to a point x ∈ R, then x ∈ A. Notice
that this requires that the sequence in question already converges to a point,
and says nothing about the behavior of sequences that do not converge.
Even compactness cannot force a non-convergent sequence to converge, but
it does require that every sequence in a compact subset of R, whether it
converges or not, contain a sequence that does converge. To discuss this
further, we need to make precise the idea of a sequence contained in a
sequence. Basically this means just what it says, but some care must be
taken so that a subsequence of a sequence has the desired properties.

3.3 Definition. Let {xn:n ∈ Z+} be a sequence. A sequence [xnk:k ∈
Z+} is a subsequence of {xn:n ∈ Z+} if

1) nk+i > nk for each k ∈ Z+.
2) for each k ∈ Z+, there exists an n ∈ Z+ such that nk = n (so Xnk =

xn).
3) nk ≥ k for each & k ∈ Z+.
4) for each n ∈ Z+, there exists a k ∈ Z+ such that nk ≥n.



Thus a sequence {ym:m ∈ Z+} is a subsequence of {xn:i ∈ Z+} if the
terms of {ym:m ∈ Z+} appear frequently in {xn:n ∈ Z+}, in order. This
requires more than just that the point-set determined by a subsequence be a
subset of the point set determined by the sequence. A subsequence of a
sequence is really a subset as a sequence, so the ordering of the terms
induced by the positive integers must be taken into account. A subsequence
of a sequence is a subset, but must be a subset infinitely often as n goes to
oo, and, furthermore, cannot double back on itself. Some examples will
help to make this clear.

3.4. Exercises.
1) Which of the following sequences is a subsequence of the sequence

{1, 2, 3, . . .} = [xn:n ∈ Z+} where xn = n. Which are merely
subsets of the point-set determined by this sequence?
a) {1, 4, 9, . . .} = {ym:m ∈ Z+} where ym = m2

b) {1, 2, 1, 2, . . .} = {ym:m ∈ Z+} where

  

c) {2, 3, 5, 7, 11, 13, . . .} = {ym:rn ∈ Z+} where ym is the m-th
prime.

d) {1, 2, 1, 4, 5, 6, 7, 8, 1, 10, . . .} = {ym:m ∈ Z+} where

  

2) a) Given an example of a convergent subsequence of a non-
convergent sequence in R.
b) Can a convergent sequence in R have a non-convergent

subsequence?
c) Can a convergent sequence in R have a subsequences that

convergent to different points?
d) Can a convergent sequance in R have a subsequence that

converges to a different point that the sequence does?



3) Recall that a sequence in X is a function from Z+ into X. We can
also define a subsequence as a function. To do it, we need a
definition: if A,B ⊂ R, a function f:A → B is monotone increasing if
whenever a1 < a2 in A, then f(a1) < f(a2) in B.

Show that T:Z+ → X is a subsequence of S: Z+ → X if and only if
there exists a monotone increasing function F:Z+ → Z+ such that T
= S° F. [Hint: For k ∈ Z+, write F(k) = nk.]

Before getting a characterization of compactness for subsets of R in
terms of sequences and subsequences, we establish the following useful
lemma which gives a way to get convergent subsequences out of certain
sequences. Recall that a point is an accumulation point of a sequence if the
sequence is frequently in every neighborhood of the point, and a sequence
converges to a point if the sequence is ultimately in every neighborhood of
the point.

3.5. Lemma. A point x0 in R with its usual topology is an accumulation
point of a sequence of points {xn:n ∈ Z+} ⊂ R if and only if there is a
subsequence of {Xn:n ∈ Z+} that converges to x0.

Some confusion may be caused by the similarities and differences
between a cluster point of a set of points and an accumulation point of a
sequence of points. The following exercises may help to clarify things.

3.6. Exercises.
1) Give an example to show that an accumulation point of a sequence

{xn:n ∈ Z+} in R need not be a cluster point of the set of points
{xn:n ∈ Z+} ⊂ R. [Hint: There are infinitely many n ∈ Z+ but
there may be only finitely many distinct points xn.]

2) Show that if {xn-n ∈ Z+} is a sequence in R with all xn distinct,
then an accumulation point of the sequence {xn-n ∈ Z+} is a cluster
point of the set of points {xn:n ∈ Z+} ⊂ R,

3) Show that a cluster point of the set of points {xn:n Z+} ⊂ R is an
accumulation point of the sequence {xn:n ∈ Z+} of points of R.



[Hint: That a cluster point of {xn:n ∈ Z+} exists implies that
infinitely many of the points are different.]

4) Are the following statements true or false:
a) A cluster point of the set of points {xn:n ∈ Z+} ⊂ R is an

accumulation point of the sequence {xn:n ∈ Z+} in R if and only
if there are infinitely many distinct points xn.

b) An accumulation point of the sequence {xn: n ∈ Z+} in R is a
cluster point of the set of points {xn:n ∈ Z+} ⊂ R if and only if
there are infinitely many distinct points xn.

We can now get a characterization of compactness in R in terms of
sequences and subsequences.

3.7 Theorem. A subset A of R is compact if and only if every sequence
in A has a convergent subsequence that converges to a point of A.

[Hint for proof: Use the Bolzano-Weierstrass theorem.]

3.8. Exercises.
1) State precisely what it means according to Theorem 3.7 when a

subset of R is not compact.
2) Give an example of a sequence in R with no convergent

subsequence, thus showing that R is not compact according to
Theorem 3.7.

3) Give an example of a sequence in (0, 1) with no convergent
subsequence, thus showing that .(0, 1) is not compact according to
Theorem 3.7.

4) Theorem 3.7 says that a subset A of R is compact if and only if
every sequence in A has a convergent subsequence that converges
to a point in A. The “in A"”is important.

Show that a subset A of R is bounded if and only if every sequence in
A has a convergent subsequence that converges to a point in R.

Thus, when A is compact, it is closed as well as bounded, so every
sequence in A has a convergent subsequence because A is bounded, and,
since A is closed, this subsequence must converge to a point in A. On the
other hand, if every sequence in A has a convergent subsequence that



converges to a point in A then A is bounded simply because such
subsequences exist, and is closed because they must converge to points in
A; in other words, A is compact.

We can get another characterization of compactness for a subset A of R
in terms of the continuous real-valued functions defined on A. First, we
repeat the following definition.

3.9. Definition. Let X be a set. A function f:X→ R is said to be bounded
if f(X) is a bounded subset of R, i.e., if there exists a positive integer N such
that f(x) ⊂ [–N, N].

Notice that in the definition of a bounded function, nothing is said in any
way about f(X) being closed, so a bounded real-valued function must have a
bounded image in R, but not necessarily a compact image. But the
continuous image of a compact set is compact, so, in particular, a
continuous real-valued function on a compact subset of R is bounded (i.e.,
is a bounded function). We will use this property to get another
characterization of compactness for subsets of R. To do it, we first establish
some more machinery to work with.

Recall that if we have a continuous function defined on a topological
space X with range in a topological space Y, then the restriction of f to A, f |
A: A → Y, is also continuous when A has the relative topology inherited
from the topology on X, where (f | A)(a) = f(a) for all a ∈ A. It is often (but
not always!) possible to turn this situation around and to extend a
continuous function from A ⊂ X into Y to a continuous function from all of
X into Y, such that the new function gives the same values as the old one to
points in A. The question of when such continuous extensions exist is a very
important problem in topology. To see that it is a problem, consider
Exercise 3.10 (1) below.

3.10. Exercises.
1) Consider the continuous function f:(0, 1] → R defined by f(x) = sin

(1/x). Show that it is impossible to extend this function to a
continuous function from [0, 1] into R. In other words, show that
there does not exist a continuous function F: [0, 1] → R such that f |
(0, 1] = f (i-e., such that F(x) = sin (1/x) for 0 < x ≤1).



2) Let A be a retract of a topological space X. Show that f:A→Y is
continuous, where Y is a topological space, then there is a
continuous extension of f to all of X. (In other words, there is a
continuous function F:X → Y such that F | A = f.)

3) Is the converse to Problem 2 true?

Later on we will consider the problem of extending functions in some
generality, but for now let us establish the following (very) special case.
Recall the definition of a monotone increasing function. Since a sequence is
a function (whose domain is the set of positive integers), this definition
applies to sequences as well, and we can say that a sequence is monotone ,
increasing if xn < xn+1 for all n ∈ Z+, and is monotone decreasing if xn >
xn+1 for all n. Note that {xn:n ∈ Z+} is a discrete subspace of R, in either
case.

3.11. Lemma. Let {xn:n ∈ Z+} be a sequence in A ⊂ R which is
monotone increasing or monotone decreasing, and let f:{xn:n ∈ Z+} → R
by f(xn) = n for each n. Then f is continuous on {xn:n ∈ Z+}, and if this set
is a closed subset of A, F can be extended to a continuous function F:A →
R. [Hint for proof: Suppose for the moment that {xn:n ∈ Z+} is monotone
increasing. The intervals (xn, xn+1) and (n, n + 1) are very much alike. Try
patching together some restrictions of homeomorphisms to get an extension
of f. What are you going to do with the part of A below x1, {x ∈ A:x < x1}?]

When {xn:n ∈ Z+) ⊂ A ⊂ R is monotone increasing and, in addition,
converges to a point x0 ∈ R, we write xn↑x0 the symbol xn↓x0 is defined
analogously.

3.12 Lemma. If x0 is a cluster point of A ⊂ R, then there exists a se-
uence {xn:n ∈ Z+} ⊂A such that either xn↑x0 or xn↓x0.

Putting Lemmas 3.11 and 3.12 together with the Bolzano-Weierstrass
leorem, you can prove the following characterization of compactness of
jbsets of R.



3.13. Theorem. A subset A of R is compact if and only if every real-
alued continuous function defined on A is bounded.

3.14. Exercises.
1) Give an exafnple of a non-constant bounded function on (0, 1).
2) Give an exaniple of a non constant bounded function on R.
3) Is every continuous real-valued function on [0, 1] n Q bounded?
4) State precisely what it means when A ⊂ R is not compact according

to Theorem 3.13.
5) The distance between two subsets A and B of a metric space (X, d)

is defined to be inf {d(a, b):a ∈ A,b ∈ B}.
a) Prove that if A and B are compact subsets of R with its usual

metric, then if A and B are disjoint, d(A, B) > 0.
b) Give an example of two disjoint closed subsets of R with its

usual metric such that the distance between these two sets is 0.
[Hint: By (a), the sets cannot both be compact. Can one of them
be compact?]

7) The fact that the sequence in Lemma 3.11 must be a closed subset
of A is essential. For example, let A = [—1,0] and define

  

Show that f cannot be extended to a continuous function defined on all
of A.

8) The function in Problem 7 that cannot be extended from

  

is not bounded. Can you give an example of such a function that is
bounded?

VARIATIONS OF COMPACTNESS

We collect the results that we have so far in the following theorem.

4.1. Theorem. For A ⊂ R with its usual topology, the following are
equivalent:

1) A is compact; i.e., every open cover of A has a finite subcover.



2) A is closed and bounded.
3) Every infinite subset of A has a cluster point in A.
4) Every sequence in A has a convergent subsequence (that converges

to a point in A).
5) Every real-valued continuous function on A is bounded.

In a general topological space, none of these concepts is equivalent to
any other. In this section, we will see examples of this, and will also see that
the definition of compactness (namely that every open cover has a finite
subcover) is a good one, because, even in a general topological space, when
a set is compact, it also satisfies (3) and (5) of Theorem 4.1, and in metric
spaces, a compact set satisfies all five statements in the theorem.

Conditions (3), (4), and (5) in Theorem 4.1 are given names as follows.

4.2. Definition. Let X be a topological space and let A be a subspace of
X (i.e., A has the relative topology inherited from the topology on X).

1) A is countably compact if every infinite subset of A has a cluster
point in A.

2) A is sequentially compact if every sequence in A has a convergent
subsequence (that converges to a point in A).

3) A is pseudocompact if every real-valued continuous function
defined on A is bounded.

As with the Bolzano-Weierstrass theorem in R, the following simple
lemma often makes countable compactness easier to work with, and also
justifies the name (although we will see a better justification of the name
later).

4.3. Lemma. A subspace A of a topological space X is countably
compact if and only if every countably infinite subset of A has a cluster
point in A.

4.4. Theorem. Let X be a topological space and let A be a compact
subset of X. Then A is also both countably compact and pseudocompact.
[Hint for proof : To show that A is pseudocompact is easy with what we
know now; to show that A is countably compact, show that if A contains an
infinite set with no cluster point then there is an open cover of A with no



finite subcover. To construct such an open cover, recall what it means for a
point not to be a cluster point of a set.]

Theorem 4.4 cannot be strengthened. In other words, there are countably
compact sets which are not compact, and there are pseudocompact sets
which are not compact. Also, there are pseudocompact sets which are not
countably compact, but every countably compact set must also be
pseudocompact. You can show all of this in the following exercises.

4.5 Exercises.
1) A countably compact space need not be compact.

a) (Using ordinal numbers.) The space of countable ordinal
numbers [0, Ω) is countably compact but not compact. [Hint:
See Section 5 in Chapter 2.]

b) (Not using ordinal numbers.) Let X =  with
topology  generated by the basis {(n, n + l):n ∈ Z+}. Prove that
(X,  ) is a countablycompact space that is not compact.[Hint:
This topology is nothing like the usualtopology on X as a
subspace of R.]

2) Every countably compact space is also pseudocompact. [Hint: See
the proof of Theorem 3.13.]

3) (This exercise requires a knowledge of ordinal numbers.) From
Problems 1 and 2, it is immediate that the space of countable
ordinals is pseudocompact. In fact, it isactually more than just
pseudocompact because a continuous real-valued function on [0, Ω)
is ultimately constant, so is more than just bounded. (A function ƒ
on [0, Ω)is ultimately constant if there is an ordinal number a .∈ [0,
Ω] such that f(x)= f(y) for all x, y ∈ (a, Ω).) Showing that every
continuous real-valued function on [0, Ω) is ultimately constant is
not easy.Use the following outline, whichis adapted from Chapter 5
of Gillman and Jerison [6].
a) If A and B are closed subsets of [0, Ω), then at least oneof A or B

is bounded (i.e., there is an ordinal number a < Ω such that A ⊂
[0, a] or B ⊂ [0, a],

b) Show that for each ordinal number a ∈ [0, Ω), [a, Ω) is
countably compact.



c) Show that the continuous image of a countably compact space is
countably compact.

d) Let ƒ: [0, Ω) → R be continuous and show that for each ordinal
number a ∈ [0, Ω), f(a, Ω) is a compact subset of R (see
Theorem 4.1). Deduce that ∩{ƒ(a, Ω):a ∈ [0, Ω)} ⊂ R is not
empty, and choose a real number r in this intersection. Show that
for each n ∈ Z+, the set {x ∈ [0, Ω):ƒ(x) ≥ 1/n = Sn is closed in
[0,Ω) and is disjoint from  which is also closed in [0,
Ω). Using (a) and the properties of r, showthat Sn is bounded and
let fln ∈ [0, Ω) be such that Sn ∈ [0, an). Use Section 5 of
Chapter 2 to get an ordinal number a ∈ [0, Ω) such that an ≤ a
for all n ∈ Z+, and show that f(x) = r for all x ∈ (a, Ω).
Conclude that ƒ is ultimately constant, so every real-valued
continuous function on [0, Ω) is ultimately constant. In
particular, [0, Ω) is pseudocompact.

4) A pseudocompact space need not be countably compact. Let X = R
with the countable complement topology defined by U ⊂ X is open
if and only if U =  or X – U is countable. To see that X is not
countably compact is easy. To show that it is pseudocompact, show
that every real.valued continuous function defined on X is constant,
and therefore is bounded.

To summarize what we have so far (using “=>" to denote “implies"):

  

and none of the implications is reversible in general (although in R with its
usual topology, all three concepts are the same.)

Before putting the other two compactness ideas (closed and bounded,
and sequentially compact) on the diagram, we establish the fact that both
countable compactness and pseudocompactness are preserved by
continuous functions.

4.6. Theorem. Let X and Y be topological spaces and let ƒ: X → Y be
continuous. Then if X is countably compact, f(X) is also countably compact,
and if X is pseudocompact, f(X) is also pseudocompact.



4.7. Exercises.
1) In a metric space, a compact set must be closed and bounded. (In a

general metric space (X, d), a set A is bounded if there is a real
number r such that d(x, y) < r for all x, y ∈ A. For a non-empty
bounded set A in (X, d), the real number sup{d(x, y):x, y ∈ A } is
called the diameter of A, and is denoted by δ(A).) [Hint for proof:
Show that a countably compact subset of a metric space must be
closed and bounded.]

2) In a metric space, a closed and bounded set need not be compact.

Thus, according to the exercises above, a compact subset of a metric
space must be closed and bounded, but a closed and bounded subset of a
metric space need not be compact. In R with its usual topology, however, a
set is compact if and only if it is closed and bounded, as we have seen.

That [0, 1] n Q, for example, which is a closed and bounded subset ofQ
with its usual topology, is not compact is because of its many missing
points (namely, the irrational numbers between 0 and 1). Intuition about
compactness and missing points has to be used very carefully, though, as
the following very important example shows.

4.8. Exercise. (The Cantor set*.)

The Cantor set C is defined to be the subset of [0, 1] obtained by
"deleting middle thirds," as follows: from [0, 1], remove all points in (⅓,
⅔), all points in  and in  , all points in  ,

 , etc. The first few
stages in this deletion process are illustrated below.

  



The ternary decimal expansion of a real number is a decimal
representation of the number in base 3. (Our usual decimal representation of
a number is in base 10.) Any real number r between 0 and 1 has a ternary
decimal expansion of the form r = 0.d1d2d3 . . , where each di is either 0, 1,
or 2, and we can write this expansion as

  

(Thinking of ordinary base 10 decimals should help to clarify this idea.)
From the summation expression of the ternary decimal expansion of a

number between 0 and 1, it should be clear that a number r = 0.d1d2d3 . . .
having di = 1 is in [⅓,⅔], a number having d1 ≠ 1 and d2 = 1 is in either 

 or  , etc. Noting that ⅓, for example, can be written in a
ternary expansion as either 0.1000 . . . or as 0. 0222 . . . (just like 0.1000 . . .
= 0.0999 . . in base 10 decimals), it should not be too hard to convince
yourself that the Cantor set consists precisely of those points that can be
written in a ternary decimal expansion as 0.d1d2d3 . . . with no di = 1.

1) Prove the following, where R has its usual topology.
a) The Cantor set is totally disconnected (i.e., its components are

singleton sets).
b) The Cantor set is a closed subset of R. [Hint: The intersection of

closed sets is closed.]
c) The Cantor set is a bounded subset of R.
d) The Cantor set is a compact subset of R.
Thus [0, 1] ∩ Q is a totally disconnected bounded subset of R

which is not compact, while the Cantor set is a totally
disconnected bounded subset of R which is compact, so having
infinitely many holes arbitrarily close together does not
necessarily mean that a space is not compact.

2) (This exercise requires a knowledge of infinite products.) Prove that
the Cantor set C is homeomorphic to the product space P = 

 where each Xi= {0, 2} with the discrete topology. [Hint:
A point in the product is an ordered tuple (d1,d2,d3, . . . ) where each
di = 0 or 2, and a point in the Cantor set has the form 0.d1d2d3 . . .
where each di = 0 or 2; a 1-1 function ƒ from C onto P should be



clear. To show that this function is continuous in both directions (as
it must be to be a homeomorphism), observe that C, being a
subspace of R, is a metric space so has a neighborhood basis
consisting of r-balls. For any r > 0 (no matter how small), since 

 where di = 0 or 2, converges (indeed, this sum is a
point in the Cantor set), then there is a positive integer N such that 

 < r. Use a straightforward continuity argument.]
a) Prove that the Cantor set is not a discrete subspace of R. [Hint:

Any space homeomorphic to a discrete space must also be
discrete.]

b) Prove that the product space  where each X, = {0, 2}
with the discrete topology, is compact.

c) Prove that  where each Xi = {0, 2} with the discrete
topology, is not compactwhen it is given the box topology in
which the product of open sets is open.

Exercises 4.8 (2) (b) and (c) are a good argument for defining the
product topology as we did. With the product topology, the product of
compact spaces is compact (Exercise 4.8 (2) (b) is an example of this; we
will prove it in general later). But with the box topology, the product of
compact spaces need not be compact, as Exercise 4.8 (2) (c) shows.

To return to our study of variations of compactness, we have so far that

  

and none of these implications is reversible in general (although all of these
concepts are equivalent in R with its usual topology).

To put sequential compactness on the diagram, prove the following
simple theorem.

4.9. Theorem. Every sequentially compact space is countably compact.

The surprising thing about sequential compactness is that a compact
space need not be sequentially compact, unlike the other variations of



compactness that we have seen. Also, a sequentially compact space need
not be compact, so there is absolutely no relation between compactness and
sequential compactness in general.

4.10. Exercise.
(This exercise requires a knowledge of ordinal numbers.) Show that

the space of countable ordinals is sequentially compact but not
compact.

We will have to postpone showing that a compact space need not be
sequentially compact until we know that the product of compact spaces is
compact. We can show now that a theorem like Lemma 3.5, which says that
a point in R is an accumulation point of a sequence of points of R if and
only if there is a subsequence of the sequence that converges to the point, is
false in general.

4.11. Exercise.*
Let X be the set of points in the plane with positive integer

coordinates and define a topology on X as follows: each point in X
except (0, 0) is open, and open neighborhoods of (0, 0) are such that
an open set U containing (0, 0) contains all but finitely many points
of X on each of all but finitely many of the “lines"{n) X Z+ ⊂ X. In
symbols, U ∈ X containing (0, 0) is open if and only if for all but at
most finitely many m ∈ Z+, the set {n ∈ Z+:(m,n) ∈ U} is finite.
Let [xn : n ∈ Z+} be the sequence in X obtained by ‘counting the
squares’ as we did in Theorem 1.7 in Chapter 2. Thus [xn : n ∈ Z+}
isthe sequence {(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2,
,3), (3, 2), (4,1),...}.

1) Prove that (0, 0) is an accumulation point of {xn:n ∈ Z+}, but
2) Prove that no subsequence of {xn:n ∈ Z+} can converge to (0, 0).

Thus even if this space were compact (which it is not), it could not
be sequentially compact. When you think about it, the fact that a
sequence can accumulate at a point while having no subsequence
that converges to the point is very strange behavior indeed.

Although compactness and sequential compactness are not related in
general, these two concepts are actually equivalent in a very important class



of spaces, namely, metric spaces. Since we know that every compact space
is countably compact, showing that compactness implies sequential
compactness in metric spaces is easy because it is not hard to show that
countable compactness implies sequential compactness in metric spaces.
The key to the proof isthe fact that every metric space (X, d) is 1st
countable: for x ∈ X, the collection {SVn(x):n ∈ Z+} is a countable local
basis at x.

4.12 Theorem. A compact subset of a metric space is also sequentially
compact.

To reverse the implication and show that sequential compactness implies
compactness in metric spaces, we first introduce a new concept. Recall that
the diameter of a non-empty subset A of a metric space (X, d) is defined to
be

  

(which is a real number if A is bounded, and is + oo if A is not bounded).

4.13. Definition. Let  be an open cover of a
metric space (X, d). A real number r > 0 is called a Lebesgue number * for

 if whenever A ⊂ X with δ(A) < r, then there is a Uλ ∈ 
 such that A ⊂ U λ.

Not every open cover of every metric space has a Lebesgue number, as
you can show in the following exercise.

4.14. Exercise.
Let (X, d) be (0, 1) with the usual metric and let  be

the open cover of X defined by

  

Show that there is no Lebesgue number for this open cover.



When (X, d) is a compact metric space, the behavior shown in Exercise
4.14 cannot happen, as you can show in the following theorem.

4.15. Theorem. Every open cover of a compact metric space has a
Lebesgue number.

Outline of Proof : Let  =  be an open cover of X.
Show that for each x ∈ X, there is a positive real number r(x) such that Sr(x)
(x) is contained in some Uλ and that  is an open
cover of X, so has a finite subcover  . Let r = inf 
and show (using the triangle inequality for d) that r is a Lebesgue number
for  .

It is also true that every open cover of a sequentially compact metric
space has a Lebesgue number, and this is the property that we will use to
show that sequential compactness implies compactness in metric spaces.
This method is adapted from Simmons [14].

4.16. Theorem. Every open cover of a sequentially compact metric
space has a Lebesgue number.

Outline of Proof : Let  be an open cover of the sequentially
compact metric space (X,d) and let  be the collection of all subsets of X
that are not contained in any member of  . Let 

. If s> 0 or s “= oo,” the rest of the proof is easy
(why?). Since s cannot be negative (why not?), the only other possibility is
s = 0, a case that wecan show is impossible. Indeed, if s = 0, then for each ?
Z+, there is an Sn ∈  with  Construct a sequence 

 by choosing xn ∈ Sn, and finish the proof by using
the sequential compactness of X to get a member of  which is in fact
contained in some member of  ,thus contradicting the definition
of .

There is one more result that we will need to show that a sequentially
compact metric space is compact. First, we need a definition.

4.17. Definition. A metric space (X, d) is totally bounded if given any r
> 0, there is a finite set {x1, x2, . . . xn(r)} ⊂ X such that for x ∈ X there is an



i, 1 ≤ i ≤ n(r), such that d(x, xi) < r.
A subset S of a metric space (X, d) is totally boiinded if the metric space

(S, d) is totally bounded.

Thus a metric space is totally bounded if none of its points is too far
away from a finite set that is spread throughout the space. Of course the
number of elements in this finite set depends on how far away “too far
away” is. This is why we use n(r) instead of just n in the definition of
totally bounded: the number of points necessary so that every point in the
space will be no more than r away from at least one of these points depends
on r.

4.18. Exercised.
1) Every totally bounded subset of a metric space is bounded.
2) Total boundedness is equivalent to boundedness in R and in,E2,

both withtheir usual topologies. [Hint: Show that a subset of R or
E2 is totally bounded if and only if its closure is totally bounded,
and use what you know about compactness in these spaces.]

3) Let X = R with the discrete metric: d(x, y) = 1 if x ≠ y, and d(x, x) =
0. Show that (X, d) is a bounded metric space which is not totally
bounded.Thus, total boundedness is a stronger property than
boundedness is.

To show that a sequentially compact metric space is compact, we need
the following theorem. To prove it, show that if it is not true, then the space
contains a sequence with no convergent subsequence. Do this by
constructing such a sequence.

4.19. Theorem. Every sequentially compact metric space is totally
bounded.

Finally, we can show that a sequentially compact metric space is
compact. A good idea while proving it is to go through the proof using a
Lebesgue number for an arbitrary open cover, and then once you see how
the proof goes, go back and revise the measures of distance used (such as
the Lebesgue number) to make things come out right in the end. You have
probably used this technique before in  - δ proofs.



4.20. Theorem. A sequentially compact metric space is compact.

Combining Theorems 4.20 and 4.12, we have the following.

4.21. Theorem. A subset of a metric space is compact if and only if it is
sequentially compact.

4.22. Exercises.
Recall that a topological space is 1st countable if there is a countable

local basis at each point in the space, and that every metric space is
1st countable.

1) Show that in a 1st countable space, compactness implies sequential
compactness.

2) (This exercise requires a knowledge of ordinal numbers.) It is
interesting to know that even though having a countable local basis
at each point allows the construction of sequences that converge to
the point, 1st countability alone is not enough to guarantee that
sequential compactness implies compactness. Show that the space
of countable ordinals, [0, Ω), is a 1st countable sequentially
compact space which is not compact.

Our compactness chart now looks like:

In a general topological space,

  

In metric spaces,

  



It is true that in metric spaces, both countable compactness and
pseudocompactness imply compactness (so that in metric spaces, as in R,
the four concepts: compact, countably compact, pseudocompact and
sequentially compact, are equivalent). However, we choose to postpone the
proofs of these two facts until we have more information to work with.

Another variation of compactness which is somewhat different in nature
than those that we have seen up to now is the following.

4.23 Definition. A topological space is locally compact if each point in
the space has a compact neighborhood.

Because of our convention that a neighborhood of a point need not be an
open set, our definition of local compactness is different from that seen in
some other books. That ours is equivalent to theirs is the substance of the
following theorem.

4.24. Theorem. A topological space is locally compact if and only if
every point of the space is contained in an open set whose closure (relative
to the whole space) is compact.

Recall that a connected space need not be locally connected. This kind
of behavior does not happen with compactness and local compactness, as
you can show in the following theorem.

4.25. Theorem. A compact space must also be locally compact.

4.26. Exercise.
Give an example of a locally compact space which is not compact.

Local compactness is an important concept in analysis where one does
much work with the real line and the Euclidean plane, both with their usual
topologies. Neither of these spaces is compact, as we have seen, but both
are locally compact: you can show that R is locally compact quite easily
with the information that we have now, but showing that the plane is locally
compact is more difficult. We can show it by showing that each point in the
plane is contained in a countably compact set, and then show that in the
plane, countable compactness and compactness are equivalent (as they are
in R).



4.27. Theorem. Every point in the Euclidean plane with its usual
topology is contained in a neighborhood which is countably compact.

[Hint for proof : Show that the closed set in the plane bounded by the
unit square,

  

is countably compact by using an argument similar to the one given for the
Bolzano-Weierstrass theorem.]

4.28. Theorem. In the Euclidean plane with its usual topology, a set is
compact if and only if it is countably compact.

[Hint for proof: For the “if” part, use the fact that the collection {S1/n(x,
y) : x, y Q} is a basis for the usual topology on E2 to show that any open
cover of a subset of the plane contains a countable subcover. Then use the
fact that countable compactness of a subset of the plane implies that every
countable open cover has a finite subcover (a fact that you should prove) to
reduce this countable subcover to a finite subcover.]

Combining Theorems 4.27 and 4.28, we have the following.

4.29. Theorem. The Euclidean plane with its usual topology is locally
compact.

Some of the ideas in the proof above that compactness and countable
compactness are equivalent in the plane with its usual topology deserve
some comment. First of all, we showed that a countable open cover of a
countably compact subset of the plane has a finite subcover. While this is
not true in a general topological space, it is true in a large class of spaces
called T1-spaces, and, incidentally, it certainly justifies the name
“countably compact.” (T1-spaces were discussed briefly in Exercises 2.6 of
Chapter 4. We will discuss them further in the next chapter.)

4.30. Exercise.

Let X = Z+ with topology generated by the basis

  



Show that this space is countably compact according to our definition,
but that it has a countable open cover with no finite subcover. (If
you did the exercises about JVspaces, show that this space is not
T1.)

Also, in the proof of Theorem 4.28, we showed that an arbitrary open
cover of a subset of the plane can be reduced to a countable subcover.
Spaces in which such a reduction of an arbitrary open cover to a countable
subcover can be made are important ones.

4.31. Definition. A topological space is called a Lindelöf space* if
every open cover of the space has a countable subcover.

4.32. Exercise.
Show that every compact space is Lindelöf, but there are Lindelöf

spaces which are not compact. [Hint: Recall what we did above
with the plane. Is R with its usual topology a Lindelöf space?]

Closely related to Lindelöf spaces are spaces which satisfy the
following.

4.33. Definition. A topological space is said to be 2nd countable (or is
said to satisfy the second axiom of countability) if the topology on the
space can be generated by a countable basis.

4.34. Exercises.
1) Every 2nd countable space is 1st countable, but there are 1st

countable spaces that are not 2nd countable.
2) (Lindelöf’s theorem.) Every 2nd countable space is a Lindelof

space. [Hint: If  is an open cover of a 2nd countable
space X and {Vn:n ∈ Z+} is a countable basis for the topology onX,
then each Uλ is a union of Vn’s.Consider the collection of sets
obtained by choosing one Uλ for each Vn in the set {Vn: there is a 

 with } such that ]
3) The real line and the Euclidean plane, both with their usual

topologies, are 2nd countable spaces, and therefore are Lindelöf
spaces.



Closely related to 2nd countability is a property called separability,
which is defined below. Recall that a subset A of a topological space X is
dense in X if Ā = X.

4.35. Definition. A topological space is said to be separable if it has a
countable dense subset (i.e., a space X is separable if X contains a countable
subset A such that Ā = X).

4.36. Exercises.
1) The real line and the Euclidean plane, both with their usual

topologies, are separable.
2) Every 2nd countable space is separable.
3) The converse to Problem 2 above is false: show that the Sorgenfrey

line is separable but not 2nd countable.
4) Let X = R with the finite complement topology. Show that X is

separable and Lindelof, but is not 2nd countable. [Hint: A 2nd
countable space must be 1st countable; a compact space must be
Lindelöf.]

5) Let X = R with topology defined by: U ⊂ X is open if and only if 
 or 0 ∈ U. Show that X is separable but not Lindelöf.

6) A subspace of a separable space need not be separable. Consider the
product of two Sorgenfrey lines, and the subspace which is the
diagonal y = – x.

7) A closed subspace of a Lindelöf space is Lindelof, but the product
of Lindelof spaces need not be Lindelof. [Hint: See Problem 6.]

8) A separable, 1st countable space is 2nd countable.

We now have the following:

  

and have seen that none of these implications is reversible.

5. UNIFORM CONTINUITY



We know that a function F from a metric space (.X, d1) to a metric space
(Y, d2) is continuous if for each point x0 ∈ X, given  > 0 there is a δ > 0
such that for x ∈ X, if 0 < d1(x, x0) < δ ∈ then d2(f(x),f(x0)) <  . We will
say that a number ∈ such that 0 > d1(x, x0) < δ implies that d2(f(x),f(x0)) < 
works for ∈ and x0. Thus F: (X, d1) → (Y, d2) is continuous if for x0 ∈ X
and  > 0, there is a δ > 0 that works for  and x0.

A little thought about the definition of continuity given above will
convince you that the number δ seems to depend on two things. It is usually
the case that the smaller you make  (don't forget that you control  ) the
smaller the corresponding δ has to be. And it can also happen that if you
pick a different point x1 ≠ x0 in X, then a δ that works for a given  and x0
may not be small enough to work for the same  and x1. Consider the
following example.

5.1. Exercise.
1) Let f(x) = l/xfor x ∈ R+ = {r ∈ R:r > 0}.

a) Show that δ = 1/3works for x0 = 1 and  = 1/2
b) Show that δ = 1/3does not work for x0 = 1 and  = 1/10.
c) Show that δ = 1/3does not work for x0 = 1/10 and  = 1/2.

2) Let f(x) = 1/x for x ∈ R+. Show that given  > 0, it is impossible to
find a single number δ > 0 that works for all x0 ∈ R+. (Draw a
graph of f and look at some x0’s on the graph to get an idea of what
to do here.)

Thus, in general, the number δ can depend on both  > and x0. When you
think about it, we want δ to depend on  . Indeed, the whole idea of
continuity at a point x0 is that f(x) can be made close to f(x0) simply by
making x close to x0. How close we want f(x) to be to f(x0) (within  )
determines how close x must be to x0 (within δ). Thus δshould depend on e.
But there is really no reason why we would want δ to depend on the
particular point x0 that we are looking at. Sometimes it does, and there is
nothing that we can do about it, as Exercise 5.1 (2) above shows. But
sometimes it does not.



5.2. Definition. A function f from a metric space (X, d1) to a metric
space ( Y, d2) is uniformly continuous on X if given e > 0 there is  > 0
such that for x1, x2 ∈ X, if 0 < d1(x1 x2) < δ, then d2(f(x1),f(x2)) <  .

Thus a function between two metric spaces is uniformly continuous if
given  > 0 there is a δ > 0 such that any two points in X within δ of each
other are sent by f to points within  of each other.

We might say (rather imprecisely) that a real-valued function of a real
variable does not “tear its domain,” and is uniformly continuous if its graph
does not “change slope too much too fast.” These imprecise ideas have to
be used with care, as we will see. First, though, use the idea of a Lebesgue
number to prove the following.

5.3. Theorem. Let f:(X, d1) → (Y, d2) be continuous. If X is compact,
then f is uniformly continuous.

5.4. Exercises.
1) Show that f:[0, 1] → R given by f(x) =  is uniformly

continuous. What is the slope of the graph of f at x = 0? What about
a uniformly continuous function not “changing slope too much or
too fast”?

2) Can a function from one metric space to another be uniformly
continuous if its domain is not compact?

*After Eduard Heine (1821-1881) and Felix Edouard Emile Borel (1871-1956).
* After Bernhard Bolzano (1781-1848) and Karl Theodor Wilhelm Weierstrass (1815-1897).
* After Georg Cantor (1845-1918), who did much work on set theory and developed the theory of
infinite sets.
* This example is due to R. Arens and ?. K. Fort, Jr.
* After Henri Lebesgue (1875-1941) who did much work in analysis.
* After ernst Leonard Lindelof (1870-1946).



chapter eight 
Separation Axioms

Recall that in a general topological space, compact sets need not be
closed. In fact, in some spaces, a set consisting of a single point need not be
closed, and such singleton sets, which are in a sense the most compact sets
of all, certainly ought to be closed from an intuitive point of view, since
they do not have an “inside”. In general, however, they are not. It turns out,
though, that in the topological spaces which are of interest in applications of
topology, singleton sets and in fact all compact sets are closed.

In this chapter we investigate a hierarchy of properties, called
separation axioms most of which, when imposed on a space, will insure
that compact sets are closed. For completeness, as well as historical
reasons, we first look briefly at some classes of weak spaces, spaces in
which compact sets need not be closed.

1. WEAK SPACES

We considered the following two classes of topological spaces in
Exercises 2.6 of Chapter 4.

1.1. Definition.
1) A topological space X is a T0-space if given x, y ∈ X with x ≠ y,

either there is an open set U such that x ∈ U and y ∉ U, or there is
an open set V such that y ∈ V and x ∉ V.

2) A topological space X is a T1space if given x, y ∈ X, there is an
open set U such that x ∈ U and y ∉ U, and there is an open set V
such that y ∈ V and x ∉ V.

Thus a topological space is a T0-space (or, just T0) if given any two
points in the space, there is a neighborhood of at least one of them that does
not contain the other, and a topological space is a T1-space (or, just T1) if



given any two points in the space, there are neighborhoods of each of them
that do not contain the other.

We say that a T0-space is weaker than a T1-space or that a T1-space is
stronger than a T0-space because every T1-space is also T0 but there are T0-
spaces that are not T1. You can justify this in the following exercises.

1.2. Exercises.
1) Give an example of a space that is not a T0-space. (Thus there are

spaces that are weaker than T0.)
2) Give an example of a space that is T0 but not T1.
3) Show that every T1-space is also T0.
4) Show that every metric space is T1 (and therefore is T0). In

particular, R with its usual topology is T1.
5) State precisely what it means when a space is not a T1-space.

T1-spaces have some important properties that weaker spaces do not
share. Prove the following theorem.

1.3. Theorem.
1) A topological space is a T1-space if and only if for each point x in

the space, {x} is a closed set.
2) In a T1-space, a point p is a cluster point of a set A if and only if

every neighborhood of p contains infinitely many points of A.

Thus, according to the exercises above, a space is a T1-space if and only
if its points are closed sets, and in a T1-space, a set really has to “cluster” at
a cluster point because every neighborhood of a cluster point of a set must
contain infinitely many points of the set.

There is an interesting equivalence of the definition of countable
compactness that is valid in T1-spaces, a property that makes it very clear
why the name “countably” compact is used, and also makes it very obvious
that in T1-spaces, compactness implies countable compactness.

1.4. Theorem. A subset A of a T1-space is countably compact if and
only if every countable open cover of A has a finite subcover.



That being a T1-space is not enough to make a space behave as well as
we would like can be seen in the following exercises.

1.5. Exercises.
1) A compact subset of a T1-space need not be closed.
2) In a T1-space, a sequence can converge to more than one point.
3) In Theorem 1.4, is the condition that the space be T1 needed in both

directions?

2. HAUSDORFF SPACES*

The first two problems in Exercises 1.5 show that being a T1-space is not
enough to ensure that compact sets are closed or that a convergent sequence
must converge to exactly one point. To get these important and useful
properties, we must put additional restrictions on a space.

2.1. Definition. A topological space X is a Hausdorff space (also called
a T2-space) if given x, y ∈ X with x ≠ y, there are open sets U and V in X
such that x ∈ U, y ∈ V and U ∩ V = .

Thus a space is a Hausdorff space if and only if distinct points are
contained in disjoint neighborhoods.

2.2. Exercises.
1) Show that every Hausdorff space is a T1-space.
2) Give an example of a T1-space which is not a Hausdorff space.
3) Show that every metric space is Hausdorff. In particular, then, R

with its usual topology is a Hausdorff space.
4) State precisely what it means when a topological space is not a

Hausdorff space.

Thus the Hausdorff property is stronger than the T1-property; stated
another way, the T1-property is weaker than the Hausdorff property.

Since every Hausdorff space is also T1, Hausdorff spaces enjoy all of the
properties of T1-spaces. In particular,

2.3. Theorem. In a Hausdorff space,



1) Each singleton set is closed.
2) A point p is a cluster point of a set A if and only if every

neighborhood of p contains infinitely many points of A.
3) A subset A is countably compact if and only if every countable open

cover of A has a finite subcover.

Thus in Hausdorff spaces, as in T1-spaces, points are closed, a set really
has to cluster at a cluster point, and countable compactness lives up to its
name. But Hausdorff spaces have some nice properties that T1-spaces need
not have. Specifically,

2.4. Theorem.
1) A compact set in a Hausdorff space is closed.
2) In a Hausdorff space, a sequence can converge to at most one point.

Thus, in a Hausdorff space, not only are singleton sets (which are always
compact) necessarily closed, but any compact set must be closed. It is
interesting to observe that the Hausdorff property on a space makes
compact sets behave like singleton sets in the following way.

2.5. Theorem. If A and B are disjoint compact subsets of a Hausdorff
space X, then there are disjoint open sets U and V in X such that A ⊂ U and
B ⊂ V.

Part 2 of Theorem 2.4 says that convergence of sequences is unique in
Hausdorff spaces. It is interesting to know that uniqueness of convergence
does not characterize the Hausdorff property of a space; in other words,
there are non-Hausdorff spaces in which a sequence can converge to at most
one point, as you can show in the following exercise.

2.6. Exercise.
Let X = R with the countable complement topology defined as

follows: U ⊂ R is open if and only if U =  or X — U is countable.
Show that this space is not Hausdorff but that if a sequence in this
space converges, then it converges to exactly one point.

Another important property that Hausdorff spaces have is the following.



2.7. Theorem. Let X and Y be topological spaces and let f:X → Y be a
continuous 1-1 function of X into Y. If X is compact and Y is Hausdorff,
then f is a homeomorphism of X into Y. In particular, if f is also onto Y, then
when X is compact and Y is Hausdorff, X and Y are homeomorphic.

It is important to see that Theorem 2.7 really does say something, and
that the conditions on the spaces X and Y are necessary. You can do so in the
following exercises.

2.8. Exercises.
1) Give an example of a compact space X and a space Y such that there

is a continuous, 1-1 and onto function from X to Y, and yet X and Y
are not homeomorphic. [Hint: A useful trick in such problems is to
let X and Y be the same point-set with different topologies, and then
to use the identity function.]

2) Give an example of a space X and a Hausdorff space Y such that
there is a continuous, 1-1 and onto function from X to Y, and yet X
and Y are not homeomorphic. [Hint: See Problem 1 above.]

The following properties should also be observed.

2.9. Exercises.
1) The product of Hausdorff spaces is a Hausdorff space.
2) Any subspace of a Hausdorff space is also a Hausdorff space.
3) The continuous image of a Hausdorff space need not be a Hausdorff

space.
4) Any space homeomorphic to a Hausdorff space is also a Hausdorff

space.

The Hausdorff property can be characterized using product spaces as
follows.

2.10. Theorem. A topoligical space X is Hausdorff if and only if the
diagonal {(x, x):x ∈ X} is closed in the product space X × X.

This idea can also be applied to continuous functions.

2.11. Theorem. Let X and Y be topological spaces and let f:X → Y be
continuous. Then the set {(x1, x2):f(x1) = f(x2)} is closed in X × Y if Y is a



Hausdorff space.
[Hint for proof: Consider the function f×f:X × X → Y → Y.]

Retracts of Hausdorff spaces behave very well, as you can show in the
following theorem.

2.12. Theorem. A retract of a Hausdorff space is closed.

2.13. Exercise.
Give an example to show that the Hausdorff property is necessary in

Theorem 2.12.

3. REGULAR AND COMPLETELY REGULAR SPACES

In a Hausdorff space, distinct points are contained in disjoint open sets,
so we say that distinct points can be separated (by disjoint open sets). A
natural extension of this is to see what happens when a point can be
separated from any closed set that does not contain it, rather than just from
another point. You might notice that the idea of separating points from
closed sets is not an extension of separating points from points unless the
points of a space happen to be closed sets themselves. To avoid what is
really an unnecessary complication, we will assume from now on that all
spaces discussed are at least T1-spaces (so that points are closed). In fact,
we will assume more:

Unless specifically mentioned to the contrary, all topological spaces
discussed in the remainder of this book will be Hausdorff spaces.

This assumption is really not unrealistic because, as mentioned earlier,
all of the important topological spaces are indeed Hausdorff spaces.

With the assumption that all spaces are Hausdorff, we can generalize the
Hausdorff property as follows.

3.1. Definition. A topological space X is regular* if whenever F is a
closed subset of X and x ∈ X — F, then there are open sets U and V in X
such that x ∈ U, F ⊂ V and U ∩ V = .

Thus a space is regular if disjoint points and closed sets can be separated
by disjoint open sets.



3.2. Exercises.
1) State precisely what it means when a topological space is not

regular.
2) Because of our assumption that all spaces are Hausdorff, every

regular space is also a Hausdorff space. But the regularity property
is stronger than the Hausdorff property. To see an example of a
Hausdorff space that is not regular, let X be the closed upper half
plane, X = {(x, y) : x, y ∈ R and y ≥ 0}, and let X have the topology
generated by the following basis: for (x, y) ∈ X with y = 0 (i.e., (x,
y) is on the x-axis), basic open neighborhoods have the form

  

and for (x, y) ∈ X with y > 0 (i.e., (x, y) is in the upper half plane but not on
the x-axis), basic open neighborhoods of (x, y) have the form Sr(x, y) where
0 < r < y. The following picture should make this basis clear.



  

a) Prove that the basis described above is in fact a basis for a
topology on X.

b) Prove that the space described above is a Hausdorff space.
c) What is the relative topology on the x-axis inherited from the

topology on X?
d) Prove that the space described above is not regular.

3) Show that every metric space is regular. In particular, then, R with
its usual topology is regular. [Be careful! A closed set need not be
bounded and need not be connected, so, in particular, a closed
subset of R with its usual topology need not be a closed interval.
Show that if F is a closed subset of a metric space (X, d) and x ∈ X
– F, then there is an r-ball centered at x whose closure is disjoint
from F.

4) Any subspace of a regular space is regular.



5) The product of regular spaces is a regular space.

An important equivalence of regularity is the following. (We used a
special case of this to show that a metric space is regular in Problem 2
above.)

3.3. Theorem. A (Hausdorff) space X is regular if and only if whenever
F is closed in X and x ∈ X — F, then there is an open set U in X such that x
∈ U and U ∩ F = .

Thus a space is regular if and only if given a point and a closed set not
containing the point, there is a neighborhood of the point whose closure
does not meet the closed set.

We have seen that a Hausdorff space need not be regular. However, we
can draw on some of what we have discussed previously and show that if a
Hausdorff space is locally compact, then it is also regular. To do this, we
first introduce a new idea, which is a generalization of adding the “point at
infinity” to a plane to get a sphere.

3.4. Definition. Let X be a (Hausdorff) space which is not compact, and
let p be an object that is not a member of X. The Alexandroff* one-point
compactification of X will be denoted here by X, and is defined to be X ∪
{p}, with topology defined by

1) neighborhoods of points of X are the same as in the topology on X,
and

2) U ⊂  is a basic open neighborhood of p if and only if p ∈ U and 
 — U is a compact subset of X.

3.5. Theorem. The one-point compactification of a Hausdorff space X is
a compact space which contains X as a dense subspace.

We have said that all of our spaces will be Hausdorff spaces, so we had
better be careful when building new spaces (like the one-point
compactification) to make sure that these new spaces are Hausdorff. As a
matter of fact, without an additional restriction on the space that we start
with, it turns out that the one-point compactification of a Hausdorff space
need not be Hausdorff! But this restriction is very natural, though, because
it also turns out that if X is Hausdorff, then X must automatically satisfy this



additional restriction. The restriction is simply that X, in addition to being
Hausdorff, must also be locally compact.

3.6. Theorem. The one-point compactification of a Hausdorff space X is
a Hausdorff space if and only if X is locally compact.

Using the one-point compactification and Theorem 2.5, you can show
the following.

3.7. Theorem. A locally compact Hausdorff space is regular.

In Hausdorff spaces we can separate distinct points by disjoint open sets,
and in regular spaces, we can separate a point from a closed set that does
not contain the point by disjoint open sets. The next logical step in this
hierarchy of stronger conditions on a (Hausdorff) space would be to impose
the condition on a space that disjoint closed sets can be separated by
disjoint open sets. Before discussing such a condition, we digress for a
moment and look at spaces in which a point that does not belong to a closed
set can be separated from the closed set in a special way. Let I denote the
closed unit interval [0, 1] with its usual topology.

3.8. Definition. A (Hausdorff) space X is completely regular* if
whenever F is a closed subset of X and x ∈ X — F, then there is a
continuous function f:X → I such that f(x) = 0 and f(F) = 1.

We say that a closed subset F of a topological space X and a point x ∈ X
— F can be separated by a continuous function if there is a continuous
function f:X → I such that f(x) = 0 and f(F) = 1. Thus a space is completely
regular if and only if disjoint points and closed sets can be separated by
continuous functions.

The following theorem should be easy. If it is not, go back and read
Theorem 2.8 in Chapter 6 again.

3.9. Theorem. Every completely regular space is regular.

Completely regular spaces are important because when a non-trivial
Hausdorff space is completely regular, we can be sure that there are non-
constant real-valued continuous functions defined on it (Why can we?).
Surprisingly, there are regular spaces such that every real-valued continuous



function defined on the space is constant. (One such space is a variation of a
space called the Tychonojf corkscrew, and is due to E. Hewitt. This space is
quite complicated and requires an understanding of ordinal numbers to
construct. You can find a good description of it in Steen and Seebach [17].)

Of course not every regular but not completely regular space has the
property that every real-valued continuous function defined on it is
constant, as we will see. The difference between regularity and complete
regularity is that in a regular space, some disjoint points and closed sets
may be separated by continuous functions and all disjoint points and closed
sets can be separated by disjoint open sets, while in a completely regular
space, all disjoint points and closed sets can be separated by continuous
functions (and therefore, all disjoint points and closed sets can be separated
by disjoint open sets). Separation by continuous functions is a stronger
property than separation by disjoint open sets.

3.10. Exercises.
1) The real line with its usual topology is completely regular. [Hint: To

prove this, you must construct a continuous function from R into I
which separates an arbitrary (but fixed) closed subset of R from an
arbitrary (but fixed) point of R not in the closed set. It might be
easier to draw a picture of R with the closed set and the point on the
picture, draw a graph of the function that you want, and then define
the function by looking at its graph.]

2) Any discrete space is completely regular.
3) A subspace of a completely regular space is completely regular.
4) Show that a topological space X is completely regular if and only if

whenever F is a closed subset of X and x ∈ X — F, then there is a
continuous function f:X → I such that f(x) = 1 and f(F) = 0. More
generally, show that X is completely regular if and only if there is a
continuous function f:X → [a, b], where a, b ∈ R with a < b and [a,
b] has its usual topology, such that f(x) = a and f(F) = b.

5) State precisely what it means when a topological space is not
completely regular.

6) The continuous image of a completely regular space need not be
completely regular.

7) The homeomorphic image of a completely regular space is
completely regular.



The rest of this section requires a knowledge of infinite products.

Completely regular spaces satisfy an interesting and important property:
as we will show, every completely regular space is a topological subset of a
product space whose factors are copies of the unit interval I = [0, 1] with its
usual topology; furthermore, the “number” of factors in this product space
is the same as the “number” of continuous functions from the space into I.
In other words, every completely regular space is homeomorphic to a subset
of a product of unit intervals. Before proving this, we establish some facts
about product spaces indexed by functions.

Let  denote a set of continuous functions from a space X into I. For
each f ∈ , let If = I and let  have the product topology. We
define a function from X into P as follows: define 

. This deserves some comment. We
want φ to be a function from X to the product space P, so the value of φ at a
point x ∈ X is a point in this product. Now points in a product consist of
coordinates, one from each factor, so we can completely determine the point
φ(x) if we say what its coordinates are. In our situation, the factors of P are
copies of I, and there is one such factor for each f ∈ . Hence we only need
to specify the “f-th coordinate” of φ(x) for an arbitrary f ∈  in order to
completely determine φ(x). The obvious way to do this is to let the “f-th
coordinate” of φ(x) be the point f(x) in If = I. Then φ1(x) is the point (f(x))f∈

 in the product space P.

3.11. Exercises.
Let P and φ be defined as above.

1) For f ∈ , let  be the projection function from P into
If. What is πf(x) for x ∈ X?

2) For f ∈ , what is  Is it continuous? Is φ continuous?

We are interested in having the function φ:X → P be a homeomorphism
of X into P, which means that we want φ to be continuous and 1-1, and we
also want φ–1: φ(X) → X to be continuous. We have seen (Problem 2 above)
that X is continuous when  is a collection of continuous functions of X into
I. To see that the other conditions are not automatically satisfied, consider
the following (rather trivial) example.



3.12. Exercises.
Let X = R with the indiscrete topology and let  = C(X, I), the set of

all continuous functions from X into I. For each f ∈ , let If = I and
define  as above.
1) Describe the set . In other words, what does a continuous function

from X into I look like?
2) Define φ:X → P as above. What is φ(X)? Is φ 1-1?

The problem with the example above is that there are not enough
continuous functions from X into I. When there are enough continuous
functions from X into I, the function φ behaves much better. You might
expect that complete regularity will enter into this discussion, because
complete regularity of a space X is defined in terms of continuous functions
from X into I, and a completely regular space has “lots” of continuous
functions defined on it with range in I(enough to separate all disjoint points
and closed sets). As we will see, complete regularity of X makes φ behave
very well indeed.

We say that a collection of functions  from X into I separates points if
for x, y ∈ X with x ≡ y, there is a function f ∈  such that f(x) ≡ f(y).
Similarly, we say that a collection of functions  from X to I separates
points and closed sets if whenever F is a closed subset of X and x ∈ X —
F, then there is a function f ∈  such that f(x) ∉ .

3.13. Theorem. Let  be a collection of continuous functions from a
space X into I. For each f ∈ , let If = I, and let  with the
product topology. Define  Then φ is
continuous, and if  separates points, φ is 1-1. If, in addition,  separates
points and closed sets,  is continuous.

[Hint for proof : Show that to prove that φ–1 is continuous, it is sufficient
to show that φ itself is an open map, i.e., that φ(U) is open whenever U is
open.]

We can now prove the property of completely regular spaces mentioned
earlier.

3.14. Theorem. Every completely regular space X is homeomorphic to a
subspace of a product of unit intervals.



[Hint for proof : Consider C(X, I), the collection of all continuous
functions from X into I.]

To show that the product of completely regular spaces is completely
regular, we first establish the fact that a space is completely regular if and
only if a point can be separated from the complement of a sub basic open
neighborhood of the point by a continuous function.

3.15. Theorem. Let  be a sub-basis for the topology on a (Hausdorff)
space X Then X is completely regular if and only if whenever x ∈ X and S
∈  with x ∈ S, then there is a continuous function f:X → I such that f(x) =
0 and f(X – S) = 1.

3.16. Theorem. The product of completely regular spaces is completely
regular.

4. NORMAL SPACES

In a Hausdorff space, distinct points can be separated by disjoint open
sets; in a regular space, disjoint points and closed sets can be separated by
disioint open sets; In a completely regular space, disjoint points and closed
sets can be separated by continuous functions (and therefore can be
separated by disjoint open sets). We have seen that complete regularity
implies regularity, and regularity implies Hausdorif (this last implication
because of our assumption that all spaces are Hausdorff).

There are two ways to strengthen the separation properties required of a
space at this point: we could generalize regularity and ask that two disjoint
closed subsets of a space be separated by disjoint open sets, or we could
generalize complete regularity and ask that two disjoint closed subsets of a
space be separated by continuous functions (where F1 and F2 are separated
by f:X → I if f(F1) = 0 and f(F2) = 1). That these two approaches to
strengthening the separation properties of a space are in fact the same is the
subject of a famous and difficult theorem due to P. Urysohn. This theorem
says that in a Hausdorff space, two disjoint closed sets can be separated by
disjoint open sets if and only if they can be separated by a continuous
function. Spaces with these properties are called normal spaces.* As we
will see (and as Kelley [9] observes), normal spaces are distinctly not
“normal” in their behavior: for example, subspaces of normal spaces need



not be normal and products of normal spaces need not be normal. Before
we can show any of this, we need a definition.

4.1. Definition. A (Hausdorff) topological space X is normal if
whenever F1 and F2 are disjoint closed subsets of X, then there are disjoint
open subsets U1 and U2 of X such that F1 ⊂ U1 and F2 ⊂ U2.

Thus a space is normal if disjoint closed sets can be separated by disjoint
open sets. Note that if the disjoint closed sets are compact, then a Hausdorff
space has this property. Thus normality can be thought of as a
generalization of the Hausdorff property. In fact, if a Hausdorff space is
compact, then it is automatically normal. This generalizes the fact that a
locally compact Hausdorff space is regular.

4.2. Theorem. A compact Hausdorff space is normal.

4.3. Exercises.
1) Every normal space is regular.
2) A discrete space is normal.
3) State precisely what it means when a topological space is not

normal.
4) The continuous image of a normal space need not be normal.
5) The homeomorphic image of a normal space is normal.
6) Every metric space is normal.

Urysohn's theorem says that our definition of normality is equivalent to
the fact that disjoint closed sets can be separated by continuous functions.
To prove that our definition implies separation by continuous functions
involves constructing a continuous function from a topological space into I
which separates two given closed subsets of the space; as is usually the case
with such constructive proofs, this is quite difficult. The proof of the
equivalence in the other direction, however, is quite easy, and you can do it
now. See the proof of Theorem 3.9.

4.4. Theorem. If for every pair of disjoint closed subsets F1 and F2 of a
topological space X there is a continuous function f:X → I such that f(F1) =
0 and f(F2) = 1, then X is normal.



For the converse of Theorem 4.4, we need to construct a continuous
function from X to I which separates two given disjoint closed subsets of X,
when we know that any two disjoint closed subsets of X can be separated by
disjoint open sets. Before doing this, we establish the following result.

4.5. Theorem. A topological space X is normal if and only if whenever
F is closed in X and U is open in X with F ⊂ U, then there is an open set V
in X such that F ⊂ V ⊂ V ⊂ U.

We can now prove that normality implies that disjoint closed sets can be
separated by continuous functions. This result is known as Urysohn's
lemma.

4.6. Theorem. Let X be a normal topological space, and let F1 and F2 be
disjoint closed subsets of X. Then there is a continuous function f:X → I
such that f(F) = 0 and f(F2) = 1.

Outline of proof : Show that there is a collection of open sets {Ur:r =
m/2n, n ∈ Z+, m = 1, 2, …, 2n – 1} such that for r1 < r2, F1 ⊂ Ur1

 ⊂ 
 Define f:X → I by f(x) = 0 if x ∈ Ur for

all r, and  if there is an r such that x ∉ Ur.
Show that f(F1) = 0, f(F2) = 1, and  for all x ∈ X. The only
thing left is to show that f is continuous. To do this, use the sub-basis  =
{[0, a1), (b, 1]: 0 ≤a, b ≤ 1} for the topology on I, and show that f–1(S) is
open in X for each S ∈ .

As an immediate result of Urysohn's lemma, we have the following.

4.7. Corollary. Every normal space is completely regular.

It is true that not every completely regular space is normal (so that
normality is stronger than complete regularity). However, we will have to
wait to see an example of a non-normal completely regular space until we
have more information to work with.

Combining Urysohn's lemma with Theorem 4.4, we have the following
characterization of normality.



4.8 Theorem. A topological space X is normal if and only if whenever
F1 and F2 are disjoint closed subsets of X, then there is a continuous
function f:X → I such that f(F1) = a1 and f(F2) = 1.

It is important to note the difference between normality and regularity.
In a regular space, a point and a closed set that does not contain the point
can be separated by disjoint open sets, but they may not be able to be
separated by a continuous function; spaces in which disjoint points and
closed sets can be separated by continuous functions (completely regular
spaces) are more than just regular. In a normal space however, the two
separation methods—separation of disjoint closed sets by disjoint open sets,
and separation of disjoint closed sets by continuous functions—are
equivalent.

The following corollary to Urysohn's theorem (Theorem 4.8) is often
useful.

4.9. Theorem. A topological space is normal if and only if whenever F1
and F2 are disjoint closed subsets of X and a, b ∈ R with a < b, then there
is a continuous function f:X → [a, b] (where [a, b] has its usual topology),
such that f(F1) = a and f(F2) = b.

Our next result concerning normal spaces is due to H. Tietze, and says
that a space is normal if and only if a bounded continuous real-valued
function on a closed subset of the space can be extended to a continuous
function on the whole space.* We discussed extensions of functions briefly
(and in a rather specialized setting) when we proved that
pseudocompactness is equivalent to compactness in R. Recall that if X and
Y are topological spaces and if A ⊂ X, then a continuous function f:A → Y
can be extended over X if there is a continuous function F:X → Y such that
F| A = f The function F is a continuous extension of f.

As with Urysohn's theorem, half of Tietze's theorem is not difficult, and
we can prove it now.

4.10. Theorem. Let X be a (Hausdorff) topological space such that
whenever C is a closed subset of X and f: C → f is continuous, there is a
continuous extension of f to X. Then X is normal.



[Hint for proof : Let A and B be closed disjoint subsets of X and put C =
A ∪ B. Extend an appropriate f: C → R to see that X is normal.]

For the other half of Tietze's theorem, we must construct a contir uous
extension of a continuous function on a closed subset of a normal space.
Before doing this, we first establish a result about continuous functions,
which is a generalization of the Weierstrass M-test from analysis.

4.11. Theorem. Let {fn:n ∈ Z+} be a sequence of continuous functions
from a topological space X into R, and let {Mn:n ∈ Z+} be a sequence of
real numbers such that  exists. If for each 

 for all x ∈ X, then the function 
 is a continuous function from X into R.

We can now prove the other half of Tietze's theorem. This result is
known as the Tietze extension theorem.

4.12. Theorem. Let X be a normal topological space and let C be a
closed subset of X. Then a continuous function f: C→ [– 1, 1] (with its usual
topology) can be extended to a continuous function F:X → [– 1, 1].

Outline of Proof : Define sequences of functions fn : n ∈ Z+} and {gn: n
∈ Z+} as follows: put f1 = f. Let and B1=

. Show that A1 and B1 are disjoint closed subsets of
X, and show that there is a continuous function  such
that . Define f2 = f1 – g1 and show
that |f2(x)|  for all x ∈ X. Now put 
and . Get  such that 

 and . Put 
 and show that  for

all x ∈ X. Continue by induction to get  with 
 for all x1 ∈ X, and  with 

 such that 
. Put  and



show that F1 is a continuous extension of f to all of X, and the range of F is
contained in [–1,1].

Now that we have the Tietze extension theorem, the following useful
generalization of it is not hard to prove. We combine the Tietze extension
theorem with a modification of Theorem 4.10 to get the following
characterization of normality.

4.13. Theorem. Let X be a topological space and let C be a closed subset
of X. Let a, b ∈ R with a < b, and let [a, b] have its usual topology. Then
every continuous function f:C → [a, b] can be extended to a continuous
function F:X → [a, b] if and only if X is normal.

Furthermore, if f is any continuous function from C into R, bounded or
not, then there is a continuous extension F of f to all of X.

Using the Tietze extension theorem and the fact that a metric space is
normal, we can prove that pseudocompactness is equivalent to countable
compactness in metric spaces. Since we already know that countable
compactness always implies pseudocompactness (in any topological space
— not just in metric spaces), we only need to show that pseudocompactness
implies compactness in metric spaces. The proof is analogous to the proof
that we gave for Theorem 3.13 in Chapter 7.

4.14 Theorem. A pseudocompact metric space is countably compact.

As we mentioned earlier, despite its nice properties, normality is
distinctly not “normal” in much of its behavior. For example, as we will
see, a subspace of a normal space need not be normal, and the product of
normal spaces need not be normal. We will have to postpone an example of
a normal space with a non-normal subspace until later, but we can see an
example of a non-normal product with normal factors now. To do it without
using ordinal numbers, we first need a result of F. B. Jones, which is given
here as it appears in Dugundji [4].

4.15. Lemma. Let X be a topological space with a dense subset D and a
closed discrete subspace S. If , then X is not normal.

Outline of Proof : Show that if X is normal, then for a subset A of S,
there are disjoint open sets UA and, VA in X such that A ⊂ UA and S – A ⊂



VA. Similarly, for B ⊂ S, there are disjoint open sets UB and VB in X with B
⊂ UB and S — B ⊂ VB. Show that if A ≠ B, then D ∩ UA ≠ D ∩ UB.
Finally, show that this forces the function  defined by 

 to be 1-1, and show that this is impossible.

4.16. Exercise.
The product of normal spaces need not be normal.

1) (Not using ordinal numbers.) Let X = R with the Sorgenfrey
topology.
a) X is normal. [Hint: Let A and B be disjoint closed subsets of X.

For each a ∈ A, let ba = inf {b ∈ B:b > a}. Show that A ⊂
Ua∈A[a, ba). Similarly, define ab and show that 

.
b) X × X (with the product topology) is not normal. [Hint: Conside

the subspace {(x, y):y = –x and x is irrational}.)]
2) (Using ordinal numbers.) Both [0, Ω) and [0, Ω] (with their usual

order topologies) are normal. [Hint: See the hint to Problem 1 (a)
above.]

[0, Ω] × [0, Ω) (with the product topology) is not normal. [Hint:
Consider the diagonal {(x, y):x = y) and the “edge” {Ω} × [0, Ω).
(We will show later that [0, Ω] × [0, Ω] is normal, so here we have
an example of a normal space with a non-normal subspace.)]

While we are on the subject of normality and product spaces, we remark
that it was unknown for some time whether or not there exists a normal
space whose product with the unit interval is not normal. This question,
known as the binormality problem, was recently settled by Mary Ellen
Rudin, who exhibited a (very complicated) normal space whose product
with the unit interval is not normal [12].

As mentioned earlier, it is not true that every subspace of a normal space
is normal, but it is true that a closed subspace of a normal space is normal.

4.17 Theorem. Let X be a normal space and let F be closed in X. Then
when F is given the relative topology inherited from the topology on X, F is
normal.



It is also true that while an arbitrary subset of a normal space need not
be normal, it is completely regular.

4.18. Theorem. Let X be a normal space and let S ∈ X. Then when S is
given the relative topology inherited from the topology on X, S is
completely regular.

Using Theorem 4.17 and the one-point compactification (Definition
3.4), we can show that not only is a locally compact Hausdorff space
regular (Theorem 3.7), but in fact, it is completely regular.

4.19. Theorem. A locally compact Hausdorff space is completely
regular.

Thus combining some ideas from our study of compactness with some
ideas from our study of separation axioms, we have two important results: a
locally compact Hausdorff space is completely regular (and therefore is
regular), and a compact Hausdorff space is normal.

* After Felix Hausdorff (1868–1942), one of the founders of the study of topology as such.
* In some books, a regular space is not assumed to be Hausdorff or even T1, so you should be careful
when reading other sources. The symbol T3 is often used in connection with regular spaces.

* After P. S. Alexandroff (1896– ).
* See the note on regular spaces. Completely regular spaces are sometimes called T31/2-spaces, and
are also called Tychonoff spaces (after A. N. Tychonoff).
* See the notes on regular and completely regular spaces. The symbol T4 is also used in connection
with normality.
* The requirement that the function must be bounded can be deleted in Tietze's theorem. See
Theorem 4.13.



chapter nine 
Complete Spaces

We have seen that a subset of R with its usual topology is compact if and
only if it is closed and bounded, but that in a general metric space, a closed
and bounded set need not be compact. (For example, [0, 1] ∩ Q is a closed
and bounded subset of Q with its usual metric, but is not compact.) In this
chapter, we will investigate the property that makes a closed and bounded
subset of R compact, and will get another equivalence of compactness in
metric spaces.

1. DEFINITION OF COMPLETENESS AND SOME
CONSEQUENCES

It should be clear that if a sequence in a metric space converges, then its
terms get arbitrarily close together as n → ∞. However, even if the terms of
a sequence in a metric space get arbitrarily close together, the sequence may
not converge. Sequences in which the terms get close together are called
Cauchy sequences.* More precisely,

1.1. Definition. A sequence {xn:n ∈ Z+} in a metric space (X, d) is
called a Cauchy sequence if given ∊ > 0, there is an N ∈ Z+ such that if n,
m > N, then d(xn, xm) < ∊

The following theorem is an easy consequence of the triangle inequality.

1.2. Theorem. If a sequence in a metric space converges, then it is a
Cauchy sequence.

As mentioned above, the converse to Theorem 1.2 is false, as you can
show in Problem 1 of the exercises below.

1.3 Exercises.



1) Give an example of a sequence in a metric space which is a Cauchy
sequence, but which does not converge.

2) Give an example of a sequence in a metric space which is not a
Cauchy sequence. Can your example be a convergent sequence?

3) Give an example of two metric spaces X and Y which are
homeomorphic and a sequence which is a Cauchy sequence in X but
whose image under the homeomorphism is not a Cauchy sequence
in Y. Can the sequence converge in either space?

As Problem 3 above shows, the property of being a Cauchy sequence is
not a topological property—it is not necessarily preserved by a
homeomorphism.

The part of a sequence consisting of all terms of the sequence after some
particular term is often called a "tail" of the sequence. For a sequence {xn:n
∈ Z+}, let T(xn) = {xi:i ∈ Z+and i ≥ n}

1.4. Theorem. Let {xn:n 6 Z+} be a Cauchy sequence in a metric space
(X, d). Then given ∊ > 0, there is an " ∈ Z+ such that δ(T(xn)) < ∊ (where
δ(T(xn)) is the diameter of the set T(xn):

  

As we have seen, a Cauchy sequence in a metric space need not
converge. When all Cauchy sequences in a metric space do converge, the
space is said to be complete.

1.5. Definition. A metric space is complete if every Cauchy sequence in
the space converges (to a point of the space).

1.6. Exercise.
State precisely what it means when a metric space is not complete,

and give an example of a non-complete metric space.

It is a fundamental fact of analysis that both the real line and the plane
are complete spaces when given their usual metrics. (Indeed, the existence
of least upper bounds and greatest lower bound in R is a consequence of the
completeness of R, as we will show.) To prove that R and E2 are complete,



we prove a more general theorem which says that any locally compact
metric space is complete. First we need a preliminary result.

1.7. Lemma. Let (X, d) be a metric space. If x0 ∈ X is an accumulation
point of a Cauchy sequence in X, then the sequence converges to x0.

1.8. Exercise.
Give an example to show that the word “Cauchy” cannot be omitted

in Lemma 1.7. In other words, give an example of a sequence in a
metric space which has an accumulation point but which does not
converge to this accumulation point. Must a subsequence of the
sequence converge to the accumulation point?

To prove that a locally compact metric space is complete, recall that
every infinite subset of a compact metric space has an accumulation point.

1.9. Theorem. A locally compact metric space is complete.

1.10. Corollary. The real line and the Euclidean plane are complete
metric spaces when given their usual metrics.

Since Cauchy sequences are not necessarily preserved by a
homeomorphism, it should not be too surprising that completeness, unlike
the other properties that we have discussed, is not a topological property.

1.11. Exercises.
1) Give an example of two homeomorphic spaces, one of which is

complete, while the other is not.
2) Prove that if A is a non-empty subset of R which is bounded above,

then supyi exists. (A is bounded above if there is an n ∈ Z+ such
that A ⊂ [-∞, n].)

3) Prove that if A is a non-empty subset of R which is bounded below,
then infA exists. (A is bounded below if there is an n ∈ Z+ such that
A ⊂ [-n, ∞].)

4) We have said that completeness is not a topological property, and in
Problem 1 above, you gave an example of two homeomorphic
spaces, one of which is complete and one of which is not.



Actually, completeness is not a property of the topology on a
space at all. Instead, it is a property of the metric. Recall that the
topology generated by a metric d on a set X is the topology
generated by the basis {Sr(x) : x ∈ X}, where Sr(x) = {y ∈ X: d(x, y)
< r}.

Define a metric d' on R as follows:

  

a) Show that d' is a metric on R. (This is messy, as is (b) below.)
b) Show that the topology generated by d' is the same as the usual

topology generated by the usual absolute value metric d on R.
c) Show that (R, d') is not complete. [Hint: Consider Z+ as a

sequence in (R, d').]
Thus (R, d) and (R, d') have the same topology, but (R, d) is

complete, whereas (R, d') is not. Completeness is a property of the
metric on a space rather than the topology.

2. COMPLETENESS AND COMPACTNESS

We repeat the definition of total boundedness here, modified to apply
directly to a subset of a metric space.

2.1. Definition. A subset S of a metric space (X, d) is totally bounded if
given r > 0 there is a finite set {x1, x2, . . ., xn(r)} ∈ S such that for any x ∈
S there is an i, 1 ≤ i ≤ n(r), such that d(x, x1) < r.

Recall (Exercises 4.18 of Chapter 7) that every totally bounded subset of
a metric space is bounded, but there are metric spaces in which a bounded
set need not be totally bounded. Recall also that the number of elements
necessary in the finite set {x1, x2, . . ., xn(r)} depends on r.

Our goal in this section is to characterize compactness in metric spaces
by proving that a subset of a metric space is compact if and only if it is
complete and totally bounded. Part of the work has already been done. We
know that compactness is equivalent to sequential compactness in metric
spaces, and that a sequentially compact subset of a metric space is totally



bounded. Thus, a compact subset of a metric space is totally bounded. If we
can show that compactness implies completeness in metric spaces, half of
our theorem will be proved. It is actually quite easy to show that a
sequentially compact subset of a metric space is complete, and you can then
use the equivalence of compactness and sequential compactness in metric
spaces to get the result.

2.2. Theorem. A sequentially compact subset of a metric space is
complete.

2.3. Corollary. A compact subset of a metric space is complete.

Thus, half of our characterization of compactness in metric spaces is
proved, and we have the following.

2.4. Theorem. A compact subset of a metric space is complete and
totally bounded.

To reverse this and show that a complete and totally bounded subset of a
metric space is compact, the following modification of the definition of
total boundedness will be useful.

2.5. Theorem. Let (X, d) be a totally bounded metric space. For any r >
0, there is a finite collection of r balls {Sr(xi) : 1 ≤ i ≤ n(r)} such that 

To prove that a complete and totally bounded subset of a metric space is
compact, we will show that such a subset is sequentially compact. The
method suggested is adapted from that found in Simmons [14]. The
notation used is meant to keep things clear. Don't let it confuse you. The
ideas used are familiar.

2.6. Theorem. Let A be a complete and totally bounded subset of a
metric space (X, d). Then A is sequentially compact.

Outline of Proof: Let S1 = {x1
1, x2

1, x3
1, . . . } be a sequence of points of

A. Show that there is an ?? ? A and a subsequence S2 = {{x1
1, x2

1, x3
1, . . . }

of S1 such that S2 ∈ S½(x1). Now show that S2 has a subsequence S3 = {x1
1,

x2
1, x3

1, . . . } such that there is a point  S3 ∈ S⅓(x2).



Continue this and show that the sequence {x1
1, x2

1, x3
1, . . . } obtained by

taking the “diagonal” element from each Sn, is a subsequence of S1 which is
a Cauchy sequence.

2.7. Corollary. A complete and totally bounded subset of a metric space
is compact.

Combining this corollary with Theorem 2.4, we have the following
characterization of compactness in metric spaces.

2.8. Theorem. A subset of a metric space is compact if and only if it is
totally bounded.

We can use this characterization of compactness in metric spaces to
show that countable compactness is equivalent to compactness in metric
spaces. Since we already know that compact always implies countably
compact (in any topological space—not just in metric spaces), we need only
show that countably compact implies compact in metric spaces.

2.9. Theorem. A countably compact subset of a metric space is
complete and totally bounded.

2.10. Corollary. A countably compact subset of a metric space is
compact.

If a metric space itself is complete, we have the following results.

2.11. Theorem. Let (X, d) be a complete metric space. Then S ∈ X is
complete (i.e., (S, d) is a complete metric space) if and only if S is a closed
subset of X.

2.12. Theorem. A closed subset of a complete metric space is compact
if and only if it is totally bounded.

3. THE BAIRE CATEGORY THEOREM AND SOME
APPLICATIONS

Recall that a decreasing sequence F1 ⊃ F2 ⊃ F3 ⊃ . . . of closed subsets
of a compact space has a non-empty intersection. When the compact space



in question is a metric space, this property is really a consequence of the
completeness of the space, as you can show in the following theorem,
which is due to G. Cantor.

3.1. Theorem. Let Fi F1 ⊃ F2 ⊃ F3 ⊃ . . . be a decreasing sequence of
closed subsets of a complete metric space. Then .
Furthermore, if δ(Fn) → 0 as n → ∞ (i.e., if limn→∞ δ(Fn) = 0), then 
Fn consists of exactly one point.

Our next theorem is rather technical in nature, but it has an important
and very useful corollary.

3.2. Theorem. Let {Un:n ∈ Z+} be a countable collection of open
subsets of a complete metric space (X, d) such that for each n,  = X (i.e.,
each Un is dense in X). Then  Un ≠ 0.

[Hint for proof: Construct a Cauchy sequence by induction (and with
some care) that converges to a point which, by the way that your sequence
is constructed, must be in every Un.]

Using Theorem 3.2 and the De Morgan laws, you can prove a corollary
to Theorem 3.2 which is known as the Baire category theorem.* To state
in it the standard way, we need several definitions.

3.3.Definition. A subset A of a topological space X (not necessarily a
metric space) is said to be nowhere dense if Ā contains no non-empty open
sets.

The following simple result often makes the concept of a nowhere dense
set easier to use.

3.4. Theorem. A subset A of a topological space X is nowhere dense if
and only if X — Ā is dense in X (i.e., A ⊂ X is nowhere dense if and only if 

 = X).

3.5. Definition. A topological space is said to be of the first category if
it is the union of a countable number of nowhere dense subsets. A space
that is not of the first category is said to be of the second category.



At first thought, these category concepts may seem somewhat artificial.
(Admittedly, they are not very descriptive.) Once we prove the Baire
category theorem, we will have many examples of spaces of the second
category. Before doing this, we should see that not all spaces are of the
second category by seeing an example of a space that is of the first
category. To think of one, observe that a set consisting of a single point is
certainly nowhere dense in R with its usual topology.

3.6. Exercise.
Give an example of a metric space which is of the first category. If your

space is discrete, give one that is not. If your space is not discrete, give one
that is.

3.7. Theorem. (The Baire category theorem.) A complete metric space
is of the second category.

We can use the Baire category theorem to get an alternate proof of the
fact that the product of two Sorgenfrey lines is not a normal space.

3.8. Exercise.
1) Let X = R with the Sorgenfrey topology and let X × X have the

product topology. Show that X × X is not normal by showing that
the disjoint closed subsets {(x, –x): x is rational} and {(x, –x): x is
irrational} cannot be separated by disjoint open sets. Do this by
using the fact that the line {(x, x): x ∈ R} is of the second category.

2) As another rather interesting example of a completely regular space
which is not normal, we have the following. This example is due to
V. Niemytzki.

Let X be the closed upper half plane {(x, y) : x, y ∈ R and y > 0}
with topology defined as follows: neighborhoods of points of X
above the x-axis have the form Sr(x, y) where 0 < r < y, and
neighborhoods of a point (x, 0) on the x-axis are open disks which
are tangent to the x-axis at (x, 0), together with the point (x, 0). The
following picture should make this clear. We use X+ to denote the
part of X above the x-axis, {(x, y) : x, y ∈ R and y > 0}.



  

a) Show that X is completely regular by letting F be closed in X and
x0 ∈ X — F. Consider two cases: (1) If x0 ∈ X+, use the fact that
E2 is completely regular when given its usual topology to get a
continuous (relative to the topology on X!) function from X into I
that separates x0 and F. (2) If x0 is on the x-axis, then there is a
disk D which is tangent to the x-axis at (x0, 0) and does not meet
F. Define a continuous function from X into I which separates x0
and F. Looking carefully at a picture may help.



b) Show that X is not normal by using a category argument similar
to the one in Problem 1 above on an appropriate discrete
subspace of X.

c) Does the argument of F. B. Jones (Lemma 4.15 in Chapter 8)
apply to show that X is not normal?

4. THE SPACE C*(X)

Let R have its usual topology and let C*(X) be the set of all bounded
real-valued continuous functions defined on a metric space X. Define a
metric d on C*(X) by d(f g) = supx∊X | f(x) — g(x) |. (This space, with X =
[0, 1] was considered in Exercises 7.7 of Chapter 4.)

4.1.Exercise.
Show that d(f g) = supx∊X | f(x) — g(x) | is a metric on C*(X). What

do r-balls look like in this metric?

It is a fundamental fact of analysis that the space C*(X) defined above is
a complete metric space, although this fact is not always stated in this
terminology. To show that C*(X) is complete, we have to show that every
Cauchy sequence of bounded continuous real-valued functions defined on X
converges to a bounded continuous real-valued function defined on X.
Before doing this, we examine exactly what convergence is in C*(X).

There are two ways that a sequence of real-valued functions defined on a
space can converge: one is called point-wise convergence, and the other is
called uniform convergence. (Compare this with ordinary continuity and
uniform continuity.) These are defined as follows.

4.2. Definitions. Let {fn:n ∈ Z+} be a sequence of real-valued functions
on a topological space X.

1) The sequence {fn:n ∈ Z+} converges point-wise to the function f
(written fn → f, or limn→∞ fn = f) if given ∈ > 0 and x0 ∈ X, there is
an N ∈ Z+such that | fn(x0) — f(x0) | < ∊ for all n ≥ N. The function
f is called the point-wise limit of the fn's.

2) The sequence {fn:n ∈ Z+} converges uniformly to the function f
(written  or fn  f) if given ∈ > 0 there is an N ∈ Z+ such



that | fn(x) — f(x) | < ∊ for all n ≥ N and for all x ∈ X. The function
f is called the uniform limit of the fn’s.

The difference between the two methods of convergence, which is
similar to the difference between the two forms of continuity, is that in
uniform convergence, the rate of convergence is independent of any
particular point in the space, while with point-wise convergence, we may
have to know which particular point x0 ∈ X we are looking at before being
able to say how large N must be. In uniform convergence, N depends only
on e, while in point-wise convergence, N may depend on both e and x0.
Some examples will make this distinction clear, and we can also see why
the distinction is so important.

4.3.Exercises.
1) Let {fn:n ∈ Z+} be a sequence of real-valued functions defined on a

topological space X. Show that if  then fn → f.
2) State precisely what it means when a sequence of real-valued

functions does not converge uniformly to a function f.
3) The converse to Problem 1 above is false. We consider two exam-

pies.
a) Let {fn:n ∈ Z+} be the sequence of functions from [0, 1] into R

defined by fn{x) = xn for each n ∈ Z+. Determine a function f: [0,
1] → R such that fn → f. Is f continuous? Does fn  f?

b) Let {fn:n ∈ Z+} be the sequence of functions from [0, 1] into R
defined by

  

Graph several of the fn’s and determine if there is a function f: [0, 1]
→ R such that fn → f Is f continuous? Does fn  f?

A very important difference between point-wise and uniform
convergence is that a sequence of continuous functions can converge point-



wise to a non-continuous limit (Exercise 4.3 (3)(a) above), but if the
convergence is uniform, then the limit function is also continuous, as you
can show in the following theorem. This is really just an application of the
triangle inequality and the definition of uniform convergence.

4.4. Theorem. Let {fn:n ∈ Z+} be a sequence of continuous real-valued
functions on a topological space X and let f be a continuous real-valued
function on X such that fn  f. Then f is continuous.

In the space C*(X) with the metic d defined by d(f g) = supx∈X | f(x) —
g(x) I, it is not hard to show that convergence of a sequence of functions is
in fact uniform convergence.

4.5. Theorem. Let {fn:n ∈ Z+} be a sequence of functions in (C*(X), d).
Show that fn converges to f relative to d (i.e., that given ∊ > 0, there is an N
∈ Z+such that d(fn,f ) < ∊ for all n ≥ N) if and only if fn  f

Using this result together with the fact that R is complete, we can prove
that C*(X) is a complete metric space. First we need a result about
sequences in r.

4.6. Lemma. Let {rn:n ∈ Z+} be a sequence in R such that rn → r.
Suppose that there is a number p ∈ R, a number B > 0 and an N ∈ Z+such
that | rn — p | ≤ B for all n ≥ N. Then | r — p | ≤ B also.

In other words, if | rn — p | ≤ B for all large n and if limn→∞ rn = r, then |
r — p | ≤ B also.

The way that this lemma is used in the following theorem is rather
subtle. It should be clear where you need it in the proof; then a little thought
will tell you how to use it.

4.7. Theorem. The space C*(X) with metric d* defined by d*(f g) =
supx∈X | f(x) — g(x) | is a complete metric space.

4.8.Exercise.



(This exercise requires a knowledge of infinite products (in order to know
that a point in a product space is a function).)

You might get the impression that since the point-wise limit of a sequence
of continuous functions need not be continuous, point-wise convergence is
not of much use or interest, and is best avoided. This is not the case at all,
because, for example, convergence of a sequence of points in a product
space is exactly the same as point-wise convergence of functions.

Let X and Y be topological spaces. For each x ∈ X, let Yx = Y and let P =
∏x∈XYx have the product topology. Then, by definition the set P is the set of
all functions (not necessarily continuous) from X into Y. (The set of all
continuous functions from X into Y is a subspace of P, and is usually
denoted by Yx.)

Let {pn:n   Z+} be a sequence of points of P. Then each pn is a function
from X to Y. For p ∈ P, show that pn → p (relative to the product topology
on P) if and only if each pn → p (point-wise). In other words, show that pn
→ p in the product topology if and only if for each x ∈ X, pn(x) → p(x) in
Y.

5. THE COMPLETION OF A METRIC SPACE

As we have seen, not every metric space is complete. We will show in
this section that given a non-complete metric space, we can construct a
complete metric space that contains it (topologically) as a dense subspace.
In other words, if X is a non-complete metric space, we can construct a
complete metric space X such that there is a homeomorphism h:X →  and
such that  = . Furthermore, we can do this in such a way that the
distance between points in X is the same as the distance between
corresponding points in h(X).

A distance preserving homeomorphism is called an isometry, and two
spaces with an isometry between them are said to be isometric. (Recall that
not every homeomorphism is an isometry: for example, (0, 1) ≅ R.)

Thus, given a non-complete metric space X, we must construct a
complete metric space  and an isometryh:X →  such that  = X.



(The space X so constructed is then called the completion of X.) The way
that this is done is basically just to "fill in the holes" in X. For example, Q is
not a complete metric space, but Q is dense in R (i.e., Ǭ = R), and R is
complete. The identity map of Q into R, given by h(x) = x for x ∈ Q, is an
isometry, and it is true that  = R. In general, of course, things are not
so easy, and this example is perhaps even deceptive. The construction that
we will give would not produce R itself as the completion of Q. But it
would produce a complete metric space which looks exactly like R
topologically. In fact, the only difference between R and the completion
that we will construct is in the way that the points of the space are named,
and we know that such a difference is merely superficial.

Incidentally, we have said the completion of X as opposed to a
completion of X, which implies that there is only one completion for a
given noncomplete metric space. We will show that this is true in the
following sense: if A" is a non-complete metric space and if X1 and X2 are
complete metric spaces such that there are isometries (distance preserving
homeomorphisms) h1: X → X1 and h2:X → X2 such that both  = X1
and  = X2 then we will show that X1 and X2 are isometric. And even
more: we will show that there is an isometry h between X1 and X2 such that
h(h1(x)) = h2(x) for all x ∈ X. (Such an isometry is said to leave the points
of X fixed.)

The construction presented here of the completion of a non-complete
metric space is based on the fact that even if X is not complete, C*(X) is
complete (Theorem 4.7), and is adapted from that found in Simmons [14].
To define a homeomorphism of X into C*(X), we first make some
observations. In the rest of this section, let X be a non-complete metric
space with metric d, and let d* be the metric on C*(X) defined by d*(f, g) =
supx∈X | f(x) - g(x) |.

We proved in Exercises 1.13 of Chapter 5 that d is a continuous function
from X × X into R. Prove it again here.

5.1. Theorem. The metric d:X × X → R is a continuous function.

Use a straightforward argument involving the triangle inequality to
prove the following.



5.2. Theorem. Let x0 ∈ X. For each x ∈ X, the function fx defined by
fx(y) = d(x, y) — d(x0, y) is in C*(X).

5.3. Theorem. Let x0 ∈ X. For x ∈ X define fx as above. Define φ:X —"
C*(X) by φ(x) = fx. Then φ is an isometry of X into C*(X).

When there is an isometry of a metric space X into another metric space
Y, we say that X is imbedded in Y, or that there is an imbedding of X into
Y. Thus we have an imbedding of X into C*(X).

5.4. Theorem. If X is a non-complete metric space, then there is a
complete metric space X and an isometry h:X →  such that  = .

[Hint for proof: A closed subspace of a complete metric space is
complete.]

To show uniqueness of the completion of X, prove the following.

5.5. Theorem. Let Y and Z be complete metric spaces such that X is
isometric to a dense subspace of both Y and Z. Then there is an isometry of
Y into Z that leaves the points of X fixed (in the sense defined above). [Hint
for proof: define the isometry of Y into Z by first defining it to be the
“identity” on X“⊂”Y onto X“⊂”Z. Then extend it to the rest of Y by
considering Cauchy sequences in X. (We use quotes because the
containments are not literally containments, but are topological
containments.)

5.6. Exercise.
The construction of X given above depends on the particular point x0 ∈

X that we choose to begin with. Obviously the construction could be done
again using some other point of X, and a different completion of X would
result. Show that any two such completions of X are isometric, so that the
particular choice of x0 is immaterial.

Thus, if we have a metric space which is not complete, we know that it
can be imbedded in a complete metric space in which it is dense.
Furthermore, we know that this can be done so that the space that we started
with looks exactly like its image in its completion (except, of course, for the



names of the points). As a result, we can regard any metric space as a dense
subspace of a complete metric space.

There is another way to construct the completion of a non-complete
metric space. This method is perhaps more straightforward than imbedding
X in C*(X) because it is closer to the "fill in the holes" approach that gives
R for the completion of Q. However, it is more difficult. The basic idea is
to adjoin one new point to the space for each Cauchy sequence that does not
converge, so that the sequence converges to the new point. An immediate
problem with this is that it is possible that two different Cauchy sequences
want to converge to the same point, and in such a case, we should add only
one new point to the space. This problem is solved and the construction of
the completion of a non-complete metric space is outlined in the following
exercise. Recall the alternate notation 〈xn〉 for a sequence {xn:n ∈ Z+}.

5.7. Exercise.
Let (X, d) be a metric space.
1) If 〈xn〉 and 〈yn〉 are Cauchy sequences in X, we will say that
〈xn〈 and 〈yn〈 are equivalent, and write xn ∼ yn, if limn→∞

d(xn, yn) = 0. Let [〈xn〉] denote the class of all Cauchy sequences
in X which are equivalent to 〈xn〉.
a) Prove that the collection of all equivalence classes [〈xn〉] of

Cauchy sequences in X partitions the collection of all Cauchy
sequences in X in the sense of Definition 3.4 in Chapter 6.

b) Prove that if 〈xn〉 is a Cauchy sequence in X such that xn → x,
then 〈yn〉 ∈ [〈xn〉] if and only if yn → x also.

2) Let X* = {[ 〈xn〉]. (xn) is a Cauchy sequence in X}. Make X* into
a metric space as follows. For 〈xn 〉 and 〈yn 〉 ∈ X*, put

  

Show that d* is a metric on X*. (First of all, you will have to show that d*
is a function from X* × X* into R (i.e., that d* is well-defined). To do this,
you must show that the definition of d* is independent of the particular
representative of each equivalence class that you choose. In other words,



show that if  and , then 

3) Show that (X*, d*) is complete. (To do this, you are going to have
to show that every Cauchy sequence in X* converges. But the
points of X* are equivalence classes of Cauchy sequences, so you
will be working with Cauchy sequences of equivalence classes of
Cauchy sequences.)

4) For each x ∈ X, put p(x) = [(xn〉] if and only if xn →
a) Show that φ is a function from X into X*.
b) Show that φ is distance preserving, i.e., that

  

c) Show that ? is a homeomorphism of X into X*.
d) Conclude that φ is an isometry of X into X* and show that  =

X*. Thus X* is a complete metric space that contains X (actually,
X* contains an isometric copy of X) as a dense subspace.

e) Prove that X* is unique up to isometry by showing that if Y and Z
are complete metric spaces which both contains X as a dense
subspace, then there is an isometry of Y into Z that leaves the
points of (the copies of) X fixed. See Theorem 5.5.

6. COMPACTNESS IN METRIC SPACES

We collect some of the results that we have proved in the following
theorem.

6.1. Theorem. Let (X, d) be a metric space and let A be a subset of X.
The following statements are equivalent.

1) A is compact.
2) A is countably compact.
3) A is sequentially compact.
4) A is pseudocompact.
5) A is complete and totally bounded.

Thus, in any metric space, as in R, all five compactness ideas that we
have discussed are equivalent.



* After Augustin Louis Cauchy (1789-1857) whose work was of great importance in putting analysis
on a rigorous foundation.
* After René Louis Baire (1874-1933)



chapter ten 
Compactness Again

We now have several equivalences of compactness for metric spaces and
have seen that compact spaces have some nice properties. For example, a
continuous real-valued function on a compact set attains both its maximum
and its minimum, and a compact Hausdorff space is normal (so that a
realvalued continuous function on a closed subset of a compact Hausdorff
space can be extended to the whole space). In this chapter, we will see some
more properties of compact spaces, and will get a characterization of
compactness for general spaces which will enable us to prove the very
important theorem that the product of compact spaces is compact. We will
also investigate a fascinating and important way of “compactifying” an
arbitrary completely regular space in a nice way: we will see how to build a
compact space that contains a given completely regular space in such a way
that a continuous function from the completely regular space into any
compact space can be extended to the compact space that we construct.

1. NETS AND FILTERS

We know that sequences are not adequate when discussing compactness
in general, in the sense that a compact space need not be sequentially
compact, and a sequentially compact space need not be compact. It is
simply not true that every sequence in a compact space must have a
convergent subsequence. This is really not the fault of compactness,
however; as we know, a sequence with infinitely many distinct terms
defines an infinite point-set, and in a compact space, this point-set must
have a cluster point. It seems reasonable that some part of the sequence
must converge in some sense to such a cluster point, and indeed it does.
However, it may not be a subsequence of the sequence which converges to
the cluster point. (See Exercise 4.11 in Chapter 7.) The idea of “something



converging in some way” when that “something” is not a sequence will be
clearer after we say exactly what it is.

Recall the definition of a totally ordered set (definition 4.2 in Chapter 3)
. We modify it somewhat to get the following. (In this definition, for “x <
y” read “x precedes y” or “y follows.”)

1.1. Definition. A set D is a directed set if there is an order relation 
defined on D which satisfies the following.

1) For x ∈ D, x  x (< is reflexive).
2) For x, y, z ∈ D, if x  y and y  z, then x  z (  is transitive).
3) For x, y ∈ D, there is a z ∈ D such that both x  z and y  z.

We say that D is directed by , or sometimes, simply that D is directed.
Instead of x  y, we sometimes write y ∈ x.

Thus in a directed set D, given any two elements in D, there is a third
element in D which follows both of them. Note that this does not say that it
is always possible to compare the two given elements in any way to each
other. In other words, it may happen that given two elements in a directed
set D, neither of them precedes or follows the other; however, there must be
a third element that follows them both.

1.2. Exercises.
Which of the following sets is directed by the indicated relation?

1) R with ≤.
2) R with <.
3)  (X) for X ≠ Ø with “ ” defined to be “is a subset of.”
4) {(m, n):m, n ∈ Z+} with  defined by (m1, n1)  (m2, n2) if and only

if both m1 ≤ m2 and n1 ≤ n2.
5) Z+ with ≤.

A sequence in a set X is a function from Z+ into X. As you saw in
Exercise 1.2 (5) above, Z+ is directed by ≤, so a directed set is a
generalization of how Z+ behaves under ≤ We will use this fact to
generalize sequences.

1.3. Definition.A net in a set X is a function from a directed set D into
X.



As with sequences, it is important to be aware of the fact that a net is a
function, but it is often clearer to write a net in set notation. Thus if  is a
directed set and  is a net, we will often write  to
denote this net, but we must keep in mind that the net is more than just a set
of points.

1.4. Exercise.

Let  be a net. Show that  induces a direction on 
and that  itself can be viewed as a directed set.

Thus if  represents a net in X, then, as with sequences,
given xα and xβ in this net, there is an xr a in the net such that xr is further
out in the net than either of xα or xβ

As with sequences, nets can converge and they can have accumulation
points.

1.5. Definitions. Let  be a net in a topological
space X, where  is directed by .

1)  converges to x0 in X if given any neighborhood U of x0,there is
an α0 є  such that for all α ∈  with α > α0, xα ∈ U.

2) A point x0 є X is an accumulation point of  if given any
neighborhood U of x0 and any α0 ∈ , there is an α ∈  with α >
α0 such that xα ∈ U.

It should be clear that these two definitions are direct generalizations of
the same concepts for sequences. We can even generalize the words
“ultimately” and “frequently” to apply to nets.

1.6. Definitions. Let  be a net in a set X, where 
is directed by  Let s ⊂ X.

1)  is ultimately in S if there is an α0 ∈  such that for all α ∈ α0,
xα ∈ S

2)  is frequently in S if for all α0 ∈  there is an α ∈  with α ∈
α0 and xα ∈ S.



Thus we can say that a net in a topological space converges to a point if
it is ultimately in every neighborhood of the point, and a point is an
accumulation point of a net if the net is frequently in every neighborhood of
the point. As with sequences, ultimately implies frequently, but not
conversely. In other words, if a net converges to a point, then that point is
an accumulation point of the net, but a net can have an accumulation point
and still not converge.

Actually, the idea of a net is really not a new one, because you have used
it before. Indeed, sequences are not even adequate in beginning calculus,
where the only space dealt with is the real line. Recall that the definite

integral f(x) dx is defined to be a “limit of Riemann sums” in the

following sense.

1.7. Exercise.

Let a, b ∈ R with a < b. A partition of [a, b] is a finite set {x0 = a < x1 < x2
< . . . < xn = b} of points of [a, b]. The norm of a partition is the length of
the largest subinterval [xi, xi+1] where xi, xi+1 are successive points in the
partition. Let f: [a, b] → R. A Riemannsum for f has the form

  

where P = {x0, X1, ... xn} is a partition of [a, b], xi
* ∈ [xi, xi+1] and ∆xi =

xi+1 – xi

Then f(x) dx is defined to be the limiting value of all Riemann sums for f

taken over all partitions of [a, b], as the norm of the partitions goes to 0, if
this limiting value exists.

This definition is not very precise, because the way that the “limiting value”
is to be determined is not specified (and cannot be in terms of convergent
sequences alone).



Formulate a precise definiton f(x)dx in terms of nets.

We showed (Theorem 2.4 and Exercise 2.6 in Chapter 8) that
convergence of sequences is unique in a Hausdorff space, but the fact that
convergence of sequences is unique does not necessarily imply that a space
is Hausdorff. Using nets, we can avoid this deficiency of sequences and can
characterize the Hausdorff property in terms of uniqueness of convergence,
as follows.

1.8. Theorem. A topological space X is a Hausdorff space if and only if
a net in X can converge to at most one point.

Note that Theorem 1.8 does not say that a space is Hausdorff if and only
if every net in the space converges. In fact, it says nothing at all about nets
that are not convergent. It does say that a space is Hausdorff if and only if
every net that already converges must converge to exactly one point.

The key to using nets is the following theorem, which is a generalization
of the way that we can construct a sequence converging to a given point in a
1st countable space (and, in particular, in a metric space).

1.9. Theorem.Let  = {Uλ:λ ∈ Λ) be a local neighborhood basis at a
point x in a topological space X. Then  is directed by the relation ⊃ and
there is a net in X that converges to x.

Using Theorem 1.9, we can characterize closure in topological spaces in
terms of nets. This generalizes a similar result using sequences in 1st
countable spaces.

1.10. Theorem.Let A be a subset of a topological space X. Then a point
x ∈ X is in Ᾱ if and only if there is a net contained in A that converges to x.

In a metric space, a function is continuous if and only if it preserves
convergent sequences. This generalizes to the following.

1.11 Theorem. Let X and Y be topological spaces and let f:X → Y. Then
f is continuous if and only if whenever {xα:α є } is a net in X that
converges to x ∈ X, then {f(xα):α ∈ } converges to f(x) in Y.



Thus a function is continuous if and only if it preserves convergence, but
this convergence needs to be more general than just convergent sequences.

We can characterize compactness in terms of nets as follows.

1.12. Theorem.A subset A of a topological space X is compact if and
only if every net contained in A has a cluster point (which is a point of A).

There are two more words that are often used in connection with nets.

1.13. Definition. Let D be directed by 
1) A subset T of D is a terminal subset of D (or is terminal in D) if

there is an αT є D such that T = {α є D:α ∈ αT}
2) A subset C of D is a cofinal subset of D (or is cofinal in D or is

cofinal with D) if for every α0 ∈ D, C ∩ {α ∈ D:α ∈ α0 ≠ .

Thus T is terminal in D if T ultimately equals D, and C is cofinal in D if
C meets D frequently.

1.14. Theorem.Let  be a net in a space X. Then if x
є X,

1) xa → x if and only if given any neighborhood U of x, the set  n U
is terminal in .

2) x is an accumulation point of  if given any neighborhood U of x, 
 n U is cofinal in .

We can use the idea of terminal subsets of a net to obtain another
concept of convergence in topological spaces which is really only a
variation of the idea of a net. We do this because we want to prove that the
product of compact spaces is compact, and it is much easier to do this using
this alternate idea of convergence. The following theorem is the key to the
definition.

1.15. Theorem.Let  be a net in a topological space
X and let  = {Tα:α ∈ } be the collection of all terminal subsets of .
Then  converges to a point x ∈ X if and only if given any neighborhood
U of x, there is an α є  such that Tα ⊂ U.

We generalize the collection of terminal subsets of a net as follows.



1.16. Definition.A non-empty collection  of non-empty subsets of a set
X is called a filter on X if

1) Given F1 and F2 ∈ , there is an F3 є  such that F3 ⊂ F1 n F2,
and

2) If F ∈  and S is any subset of X such that F ⊂ S, then S є  also.

1.17. Theorem.Let  be a filter on X. If F1, F2 ∈  then F1 n F2 ∈ .

When A ⊂ B, B is called a superset of A Using this idea, we can say that
a filter  on X is a non-empty collection of non-empty sets that contains all
intersections of pairs of elements in  and also contains all supersets of
members of .

1.18. Exercises.
1) Prove that if  is a filter on X and F1, F2 ∈  then F1 ∩ F2 ≠  .
2) If  is a filter on X and F ∈  then Ḟ ∈ .
3) Prove that if  is a filter on X, then X ∈ .
4) Let X be a topological space and let  be the collection of all

neighborhoods of a particular point x ∈ X. Is  a filter on X?
5) Is the collection {[n, ∞):n ∈ Z+} a filter on R? Is

  

a filter on R?
6) It  is a filter on X and F1 F2, F3 ∈ , is F1 n F2 n F3 ∈  Can you

generalize this?
7) A filter  on a space X is said to be fixed if ∩(Ḟ:F ∈ } ≠ .

Otherwise,  is said to, be free.
a) Give an example of a free filter on R.
b) Give an example of a fixed filter on R.
c) Show that if a topological space X is compact, then every filter

on X is fixed. [See Problem 6 above.]
d) Is the coverse to (c) above true?

8) Do the terminal sets of a net satisfy the superset property of filters?
Is it necessarily true that if Tα and Tβ are terminal sets of a net, then
Tα ∩ Tβ is also a terminal set of the net?



9) A collection (  of subsets of a set X is called a filterbase on X if (1)
  ( , and (2) if B1 B2 є ( , then there is a B3 є (  such that B3 ⊂

B1 n B2. A filter is then generated by a filterbase by taking the filter
to be all members of the filterbase together with all supersets of
members of the filterbase. All of the work that we will do with
filters could just as well be done with filterbases, with very little
modification, and the choice of filters over filterbases is not really a
very important one.
a) Show that the collection of all terminal sets of a net in X is a

filterbase on X.
b) If (  is a filterbase on X and B є ( , must Ḃ є ?

Like nets, filters can be used to describe convergence in topological
spaces, as follows. (We did this in a special case in Theorem 1.15.)

1.19. Definition.Let  be a filter on a topological space X, and let x є X.
1)  converges to x (written  → x or lim  = x) if given any

neighborhood U of x, there is an F є  such that F ⊂ U.
2)  accumulates at x if given any neighborhood U of x, F n ≠ , for

all F є .

1.20. Exercises.
1) Show that if a filter  on a space X converges to x є X, then 

accumulates at x.
2) Give an example of a filter that accumulates at x є X but does not

converge to x.

1.21. Definition.The adherance of a filter  on a space X is defined to
be

  

1.22. Theorem.Let  be a filter on a space X. Then  accumulates at x є
X if and only if x є ad .

Thus a filter  on X accumulates at a point x є X if and only if x belongs
to the closure of every member of .



We have said that the idea of a filter on X is really only a variation of the
idea of a net in X. You can justify this in the following exercises.

1.23. Exercises.
1) Let  be a filter on X. Show that  is a directed set and use  to

define a net  in X such that if x є X, converges to x if and only if 
 converges to x.

2) Let  be a net in X. Use  to define a filter  on X such that if x є
X, then  converges to x if and only if  converges to x. [Hint: See
Theorem 1.15.]

The following theorem gives the properties that we have proved for nets
in terms of filters. For part of it, we need the following.

1.24. Lemma.Let  be a filter on X and let f : → Y. Then the collection
of sets f( ) = {f(F):F є } is a filter on f{X) (but may not be a filter on y

1.25. Theorem. Let X and Y be topological spaces, A ⊂ X.
1) x is a Hausdorff space if and only if every filter on X can coverge to

at most one point.
2) A point x є X is in Ᾱ if and only if there is a filter on X that

converges to X.
3) A function f:X → y is continuous if and only if whenever  is a

filter on X, that converges to x є X, then f( ) converges to f(x) є Y.
4) The set A is compact if and only if for every filter  on A, there is a

point x є A such that  accumulates at x. (In other words, A is
compact if and only if for every filter  on A, (ad ) n A ≠ .)

As a variation of Theorem 1.25 (3) above, we have the following very
nice characterization of continuity in terms of filters.

1.26. Theorem.Let X and Y be topological spaces. A function f:X → Y
is continuous if and only if for every point x є X, f(  (x)) converges to f(x),
where (x) is the filter on X consisting of all neighborhoods of x. (The
reason for using (x) rather than (x) will be clear later.)

2. ULTRAFILTERS



A collection of sets with a certain property is said to be maximal with
respect to the property if it is not a proper subset of a (larger) collection of
sets with the same property. For example, the collection {S1/n(x) :n є Z+} of
open neighborhoods of a point x in the metric space R is not a maximal
collection of open neighborhoods of x, because not every open
neighborhood of x has this form. On the other hand, this collection is
maximal with respect to the property of being a collection of open balls of
radius 1/n that contain x.

The collection of 1/n-balls of x discussed above is not a filter (Why
not?), and at first thought, it might seem that every filter is maximal,
because of the superset property. This is false, as you can show in Problem
1 of the exercises below.

2.1. Exercises.
1) Let  be the collection of all subsets of R that contain [0, 1]. Show

that  is a filter which is not maximal. (In other words, after
showing that  is a filter, exhibit another filter that contains  as a
proper subset.)

2) Let X be a topological space, x є X, and let (x) be the collection of
all subsets F of X that contain x. Show that (x) is a maximal filter
on X.

A maximal filter is called an ultrafilter. Ultrafilters have some very nice
properties.

2.2. Theorem.
1) If  is an ultrafilter on a space X and A ⊂ X is such that A n U ≠ 

for all U є , then A є .
2) If  is an ultrafilter on X, then for any A ⊂ X either A є  or X - A

є .
3) For any point x in a topological space X, is the collection of all

neighborhoods of x an ultrafilter on X?

The following property of ultrafilters will be of great importance.

2.3. Theorem.Let X be a topological space and let 01 be an ultrafilter on
X. Then  accumulates at a point x є X if and only if  converges to x.



Thus ultrafilters behave in the same way as increasing (or decreasing)
sequences in R, in the sense that if they accumulate at a point, then they
must converge to that point.

Combining Theorem 2.3 with (4) of Theorem 1.25, we might claim that
we have proved the following.

2.4. Theorem.A topological space is compact if and only if every
ultrafilter on X converges.

The theorem is true, but our “proof” would be wrong. The problem
comes in the “if part,” and is the following. Suppose that we know that
every ultrafilter on X converges, and we want to know that X is compact. By
Theorem 2.3 we know that since every ultrafilter on X converges, then
every ultrafilter on X has an accumulation point. Then, when we try to use
Theorem 1.25(4), we find that we need to know that every filter (and not
just every ultrafilter) on X has an accumulation point. This is more than we
know.

Probably this faulty reasoning would have been obvious the minute that
you tried to use it, and you would not have claimed to have proved
Theorem 2.4 in this way in the first place. We mention it because the
solution to the problem of finding a correct proof of Theorem 2.4 is very
subtle and very deep. In fact, it cannot be done without appealing to a result
which is equivalent to the axiom of choice. Rather than become involved in
a long digression, we will merely state both the axiom of choice (which we
have already used to conclude that the arbitrary product of non-empty sets
is non-empty), and the equivalence of it which is most useful for our
purposes here. You can find more equivalences of the axiom of choice, as
well as the proofs that the various statements are equivalent, in [4] or [9].*

2.5. The Axiom of Choice. Let {Xλ:λ є Λ} be a non-empty collection of
non-empty pairwise disjoint sets (i.e., Xλ n Xµ = 0 for all λ, µ є Λ with λ ≠
µ). Then there is a function c:Λ → Uλ∈Λ Xλ such that c(λ) є Xλ for each λ є
Λ

The function c guaranteed by the axiom of choice is often called a
choice function for {Xλ:λ є Λ} : Stated in other words, the axiom of choice
says that given any non-empty collection of non-empty sets, then there



exists a set consisting of exactly one element from each set in the
collection.

To state the equivalence of the axiom of choice that we will use in
proving Theorem 2.4, we need some terminology. We have already defined
a partially ordered set, but, for convenience, we repeat the definition here.
The relation < is a partial order on a set X if (1) x  x for all є X (so that 
is reflexive), (2) if for x, yєX, both x  y and y  x, then x = y (so that  is
anti-symmetric), and (3) if for x, y, z єX, x  y and y  z, then x  z (so that 
is transitive). When  is a partial order on X, (X, ) is called a partially
ordered set. (Thus, for example, if S is any non-empty set,  (S) is
partially ordered by ⊃ and by ⊂.) A chain in a partially ordered set (X, )
is a subset C of X such that for x, y є C, either x  y or y  x. (Thus a chain
in a partially ordered set (X,  ) is a totally ordered subset of X.) An upper
bound for a chain є in a partially ordered set (X, ) is an element x0 є X such
that c  x0 for all c є C. Finally, an element m є X is maximal if there is no
xєX with m  x.

We can now state the following, which is equivalent to the axiom of
choice. See, for example, [4] or [9] for a proof.

2.6. Zorn's Lemma.* If every chain in a partially ordered set has an
upper bound, then there is a maximal element in the set.

We can use Zorn's lemma to get a result which will enable us to prove
Theorem 2.4.

2.7. Theorem.Every filter on a set X is contained in an ultrafilter.
Outline of Proof: Let  be a filter on X and let  be the collection of all

filters that contain . Then  is non-empty because  є . Let 
 be a chain in  (so the elements  are filters on

X that contain .) Show that  for some λ є Λ} is a filter
on X which is an upper bound for . Finish the proof by applying Zorn's
lemma to .

Using Theorem 2.7 you can now prove Theorem 2.4 which we restate
here.

2.8. Theorem.A topological space X is compact if and only if every
ultrafilter on X converges.



As is often the case with the development of the theory in a text book,
we have developed so much powerful machinery that the theorem that we
were working toward now falls out as a rather easy corollary. When you
prove it, think of all that has been done to get us to this point—filters,
ultrafilters, Zorn's lemma, the theory of product spaces and compact spaces.

2.9. Theorem.The product of compact spaces is a compact space.

Theorem 2.9 is called the Tychonoff product theorem, after A.
Tychonoff, who, incidentally, did not prove it in such generality, but
certainly paved the way for such a general statement. It is one of the most
important theorems in mathematics.

We can use the Tychonoff theorem to establish some examples that we
have deferred until now.

2.10. Exercises.
1) (This exercise requires a knowledge of infinite products.) A

compact space need not be sequentially compact. Let I denote the
unit interval. For each i є I, let Xi = I (with its usual topology), and
let  have the product topology.
a) P is compact, but
b) P is not sequentially compact. To show it, we will exhibit a

sequence in P with no convergent subsequence. To do this,
observe that every real number r between 0 and 1 has a (unique)
binary decimal expansion r = 0.d1d2d3 . . . with each di = 0 or 1.
Furthermore, every binary decimal 0.d1d2d3 . . . with each di = 0
or 1 represents a (unique) real number between 0 and 1. (The
representation is unique if we identify things like 0.0111 and
0.1000 . . . Compare this with the ternary expansion that we used
in the discussion of the Cantor set.)

A point in P can be specified by giving its coordinates. (Actually, x ∈ P is a
function from I to I, and we write x(t) = xt for t ヵ I.) Let {xn:n ∈ Z+} be
the sequence in P such that the t-th coordinate of a term xn in the sequence
is given by xt

n = n-th coordinate in the binary expansion of t. Suppose that
{xnk:k є Z+} is a subsequence of {xn:n ∈ Z+} that converges to x ∈ P. Then



Xk
k → xt for each t ∈ I. Consider t ∈ I with binary expansion given by

0.d1d2d3 . . . where

  

2) (This exercise requires a knowledge of ordinal numbers.) A
subspace of a normal space need not be normal. The space [0, Ω] X
[0, Ω] is normal (see Problem 8 in Exercises 1.4 of Chapter 7), but
[0, Ω] X [0, Ω) is not normal (see Problem 2 in Exercises 4.15 of
Chapter 8).

3) (This exercise requires a knowledge of infinite products.) That the
product of compact spaces is compact is a good reason for defining
the product topology as we did. Show that the product of infinitely
many copies of the unit interval with its usual topology is not
compact when this product is given the box topology in which the
product of open sets is open.

4) Any Euclidean space En = {(x1 x2, . . . , xn)'xi ∈ R} (with the
product topology where each factor has the usual topology on R) is
locally compact.

3. THE STONE-CECH COMPACTIFICATION

In this section we will investigate a way to compactify a (completely
regular) topological space so that a continuous function from the space to a
compact (Hausdorff) space can be extended to the compactification. We
first review our earlier discussion of compactification, and of the
construction of the one-point compactification of a (locally compact)
Hausdorff space.

3.1. Definition.Let X be a tolopogical space. A compactification of X is
a compact space X* such that there is a homeomorphism h:X → X* with 

Thus a compactification of a topological space is a compact space that
contains X (topologically) as a dense subspace.



3.2. Theorem.Let X be a locally compact Hausdorff space. Define X* to
be X u {p}, where p is any object which is not an element of X, and
topologize X* as follows: for x є X, neighborhoods of x in X* are the same
as in X, and U ⊂ X* is a neighborhood of p if and only if p є U and X* — U
is a compact subset of X. Then the space X* is a compact Hausdorff space,
and there is a homeomorphism h:X → X* such that . The
space X* is called the one-point compactification of X.

That the one-point compactification is not totally satisfactory as far as
continuous functions are concerned can be seen in the following exercise.

3.3. Exercise.
Let (0, 1] have its usual topology. Show that the one-point

compactification of (0, 1] is [0, 1] (up to homeomorphism, of course). Let f:
(0, 1] → I be defined by f(x) = sin(l /x). Show that f is bounded and
continuous, but that it is impossible to extend f over [0,1].

Thus it may not be possible to extend all continuous functions from a space
into a compact space to its one-point compactification. We will build a
compactification of a (completely regular) space where such an extension is
always possible. Actually, most of the work has already been done. Recall
(Theorem 3.14 in Chapter 8) that any completely regular space can be
imbedded in a product of unit intervals. We review the procedure in the
following theorem.

3.4. Theorem.Let X be a completely regular space and let C*(X) be the
collection of all bounded real-valued continuous functions on X. For each f
є C*(X), put If = I, the unit interval with its usual topology, and let 

 have the product topology. Define 
. Then (φ is a homeomorphism of X

into P.
Put  Then β X is a compact space which contains X

(topologically) as a dense subspace.

3.5. Definition.The space β X defined in Theorem 3.4 is called the
Stone- Cech* compactification of X.



As with previous imbeddings, we will regard X as actually being a
subset of β X, rather than as just a topological subset. The following
theorem is the fundamental characterization of β X.

3.6. Theorem.Let X be a completely regular space, let Y be any compact
(Hausdorff) space, and let F: X → Y be continuous. Then there is a
continuous function Fβ: βX → Y such that Fβ | X = F

Conversely, if X is contained (topologically or literally) as a dense
subspace of a compact space T such that every continuous function from X
into a compact (Hausdorff) space Y can be extended to T, then T ≅ βX by a
homeomorphism that leaves the points of (the copies of) X fixed.

Outline of Proof : (The first half of the theorem is known as Stone's
theorem; the outline given here is adapted from the proof of Stone's
theorem found in Kelley [9].) We have F:X → Y. Define F*(g) = goF for g
є C*(Y). Show that goF is a function from X to I so that F* is a function
from C*(Y) to C*(X). Define F** by F**(f) = f>F* for each f є βX. Show
that F** is a continuous function from βX to βY, and show that 

 is a continuous extension of F to βX, where φx and φy are the
imbeddings of X into βX and Y into βY, respectively. The following diagram
illustrates the situation.

  

For the converse, consider the following diagram.



  

The function hβ is the continuous extension to βX of h which is
guaranteed by the first part of the theorem. The function  is the
continuous extension to T of φx guaranteed by the hypothesis. Show that 

, and  and use these facts to show that both

hβ and  are homeomorphisms onto.

When we are working with a completely regular space X, the
characterization of βX given in Theorem 3.6 is very convenient if we have a
space that we know to be βX, because then we know that every continuous
function from X into a compact space Y can be extended to βX. However, if
we have a completely regular space X and we want to determine whether or
not some compact space actually is βX, then Theorem 3.6 asks us to do a
great deal, because we must show that any continuous function on X to any
compact (Hausdorff) space can be extended to our compact space, before
we can conclude that our compact space is βX. (Of course, if our compact
space is not βX, then all we have to show to prove it is to exhibit a compact
space Y and a continuous f:X →> Y such that f cannot be extended to our
compact space.) It is when our compact space is βX and we want to prove it
that Theorem 3.6 can use some improvement. It would be very helpful if we
could reduce the number of compact spaces Y that we need to worry about
in such a situation. The following theorem shows that we can reduce the
number of y's considerably.

3.7. Theorem.Let X be a completely regular space that is a dense
subspace (topologically or literally) of a compact space T. Let I be the unit
interval with its usual topology and suppose that every continuous function



from X into I can be extended to T. Then T ≅ βX by a homeomorphism that
leaves the points of X fixed.

[Hint for proof: Remember how βX is defined. A diagram may help.]

Thus if X is (topologically) a dense subset of a compact space T and if
every bounded real-valued continuous function on X can be extended to T,
then T = βX (up to homeomorphism).

3.8. Exercises.

(Problems 1 and 2 require a knowledge of ordinal numbers.)

1) Show that β[0, Ω) = [0, Ω]. (See Problem 8 in Exercises 1.4 of
Chapter 7.) Thus the one-point compactification can be the same as
the Stone-Čech compactification, but as Exercise 3.3 shows, it need
not be. Another example is the following.

2) Show that β[0,ω) ≠ [0, ω]. In fact, show that .
3) (This is the same as Problem 2 above except that it does not use

ordinal numbers.) Let Z+U {∞} be the one-point compactification
of Z+. (Think of "∞" as being limn → ∞ n, although it can actually be
anything that is not a positive integer. The topology of the one-
point compactification puts ∞ at the "end" of the positive integers.)
Show that the function f:Z+ → R defined by f(n) = 0 if n is odd, and
f(n) = 1 if n is even, is continuous and bounded but cannot be
extended to ∞. Thus βZ+ ≠ Z+ U {∞}; in other words, the one-point
compactification and the Stone-Čech compactification of the
positive integers are not the same. Since there is a bounded real-
valued continuous function on Z+ that cannot be extended to ∞, it
follows that ∞ (∈ βZ+ (Where, of course, the position of the point
∞ is determined by the topology on the one- point compactification
of Z+.)

       The problem with ∞ is that it wants to be the limit of every
increasing infinite sequence in Z+ when a neighborhood of ∞ is a
set whose complement is compact, as it is in the one-point
compactification of Z+. Certainly, every increasing infinite
sequence in Z+ must have a limit in βZ+ (Why?), but it turns out



that they cannot all have the same limit. In other words, for
example, limn → ∞ 2n = p2 exists in βZ+, but it can be shown that p1
≠ p2. It can also be shown (for example, see [4], p. 244) that in
order to be able to extend all bounded real-valued continuous
functions to a compactification of Z+, the compactification must
contain 2° points (where c = 2n

0 is the cardinality of R). Thus 

4) Let R have its usual topology. Show that βR is not the same as its
one-point compactification. What does the one-point
compactification of R look like?

5) Let X be completely regular. Show that X is connected if and only if
βX is connected.

There is another way to construct the Stone-Čech compactification of a
given completely regular space which is different from the approach that we
took. It builds βX by giving a limit to each ultrafilter on X that does not
converge. Chapter 6 of [6] is an excellent account of this approach to βX,
and it also gives some interesting properties of the Stone-Čech
compactification of several familiar spaces.

* There is a good discussion of these equivalences in [18].
* After Max August Zorn (1906-).
* After M.H. Stone and e. Cech. who developed it independently.



chapter eleven 
Selected Topics in Point- Set
Topology

There are many interesting topological ideas, and we cannot possibly
cover all—or even most—of them in a book like this one. In this chapter,
we look at a few that we have not considered up to now. Some are
extensions of our previous work (like the further discussion of metric
spaces, for example), and some involve totally new concepts.

1. MORE ON METRIC SPACES

We have seen that a bounded metric space need not be totally bounded.
As a matter of fact, we can show that any metric space (X, d) can be given a
metric d which generates the same topology as d, but is such that (X, d') is a
bounded metric space, whether (X, d) is or not. Two metrics that generate
the same topology on a set are said to be equivalent metrics. Thus, given a
metric space (X, d), we will produce a metric d' which is equivalent to d and
which is bounded. Furthermore, we can make d' as bounded as we like. The
key to the definition of d' is that small r-balls in a metric space are enough
to generate the metric topology.

1.1. Theorem. Let (X, d) be a metric space. For any positive real number
B, there is a metric d' for X which is equivalent to d and is such that d'(x, y)
≤ B for all x, y ∈ X.

[Hint for proof: For x, y ∈ X, consider min {d(x, y), 5}.]

1.2. Corollary. Given any metric space (X, d), and any positive real
number B, there is a metric d! for X which is equivalent to d and is such that
δ(X) ≤ B (with the diameter measured using d').



The rest of this section requires a knowledge of infinite products.
Using Theorem 1.1, we can put a metric on the product of countably

many metric spaces which generates the product topology. Thus, the
countable product of metric spaces is a metric space.

1.3. Theorem. Let {(Xn, dn):n ∈ Z+} be a countable collection of metric
spaces. For each n ∈ Z+, let dn' be a metric for Xn which is equivalent to dn

and is such that dn'(xn, yn) ≤ 1 /n2 for all xn, yn ∈ Xn Define d on 
by d((x1 x2, . . .), (y1 y2, . . .) =  dn'(xn, yn). Then d is a metric on 

 and d generates the product topology.

1.4. Exercises.
1) The requirement in Theorem 1.3 that d(xn, yn) ≤ 1/n2 for each n is

used only to ensure that  dn(xn, yn) exists. There is another
way to approach this problem. Let {(Xn, dn):n ∈ Z+} be a
countable collection of metric spaces. For each n ∈ Z+, let dn

r be a
metric for Xn such that dn' is equivalent to dni and such that dn'(xni
yn) ≤ 1 for all xn, yn ∈ Xn. Define d' by d'((xh x2, . . .), CVi, y^ * . .))
= 2n dn(xn, yn)/2n- Show that d' is a metric on  which is
equivalent to d (so df also generates the product topology).

2) For each n ∈ Z+, let Xn = /, the closed unit interval with its usual
topology. Define  Then I∞ is a compact metric
space.

      The space I∞ (sometimes denoted by I∞ is called the Hilbert
cube,* and can also be described as follows. Let X be the set of all
sequences {xn:n ∈ Z+) in I such that 0 ≤ xn ≤ 1 /n for each n. Define
a metric on X by generalizing the distance formula in the plane: for
x = {xn: ∈ Z+} and y = {yn:n ∈ Z+}, put

  

    That d is a metric on X is easy, except for showing that the triangle
inequality holds. We can do this as follows.



      We want to show that for sequences x, y, z ∈ X

  

    If we put di = Xi — yi and e, = z,. — yit we then have to show that

  

    This will be easier to deal with if we use the idea of the norm of a
sequence in X and write, for x ∈ 

. Thus we have to show that
|| a + b || ≤ || a || + || b ||. We proceed in two steps.
a) (Cauchy's inequality.) For a, b e

  

        To prove this, observe that ||x|| = 0 if an donly if each x=0 ()in
which case we say x=0. Trrat the case a=0 or b=0 as a special case.
If neither a nor b is0, show that for each i,

  

       [Hint: For any real numbers r and s, (r — s)2 > 0, so y/rs ≤ Y(r +
s). Add to get Cauchy's inequality.]
b) Show that for each N G Z+

  

    Show that (X, d) = /°°.
3) We can generalize the Hilbert cube to get a complete metric space

(.H, d) (called Hilbert space*) in which the closed unit balls, Si(x) =
\y ∈ H:d(x, j;) ≤ 1}, are not compact. (This should be rather



surprising. In R and E2, the closed unit balls are certainly compact;
in Q they are not, but then Q is not complete.)

    Let H be the set of all sequences {xn:n ∈ Z+} ∈ R such that 
 converges (so H consists of all “square summable

sequences”). Define a metric d on H by d((xi, jc2, * * . ), 0>i, J2, * *
* )) =
a) Show that (H, d) is a complete metric space. (See Problem 2

above. If {xm:m G Z+} is a Cauchy sequence in H, then for each
n, {xn

m:w G Z+} is a Cauchy sequence in R (Why?).)
b) Let 5i(x) = {j ∈ H:d(x, j) ≤ 1}. Show that *Si(x) is not

sequentially compact (and therefore, is not compact, since (H, rf)
is a metric space). Do this by considering a sequence in Si(x)
whose n-th term is a sequence whose "-th term is on the
boundary of Si(x), while all of its other terms coincide with x in
the center.

c) Prove that (H, d) = R00 (where R00 is the product of countably
many copies of R, with the product topology. R00 is a metric
space by Theorem 1.3 or Problem 1 in Exercises 1.4).

4) The product of uncountably many non-trivial metric spaces is not a
metric space. [Hint: A metric space must be 1st countable.]

2. METRIZABILITY

As we have seen, not every topological space is a metric space. A
topological space is said to be metrizable if a metric can be defined on it
which generates the topology that is already on the space. Thus, a metric
space is certainly metrizable. Not every space is. Much work has been done
and several important theorems concerning metrizability have been
established. We will look at only one of these, a classic result due to P.
Urysohn. First, do the following exercises.

2.1. Exercises.
1) Let X be any topological space. Show that it is always possible to

define a metric on X, but this metric may not generate the topology
that X already has.



2) Show that every metric space is Hausdorff. Give an example of a
topological space that is not metrizable.

3) (This exercise requires a knowledge of ordinal numbers.)
a) Show that every metric space is 1st countable. Show that [0, Ω]

with its usual topology is not metrizable.
b) The space [0, Ω) is 1st countable, and yet it too is not metrizable.

However, the proof of this fact is beyond the scope of this book.

The following theorem is known as Urysohn's metrization theorem.
To prove it, show that the conditions in the hypothesis allow you to imbed
the space in f°. See Section 1 of this chapter, and Section 3 of Chapter 8.

2.2. Theorem. A regular 2nd countable (Hausdorff) topological space is
metrizable.

That the condition in Urysohn's metrization theorem that the space be
2nd countable is not necessary will be obvious if you exhibit a metric space
which is not 2nd countable.

2.3. Exercise.
Give an example of a metric space which is not 2nd countable.

3. QUOTIENT SPACES

In this section, we will look briefly at a way to put a topology on a set Y
when we have a space X and a function f from X onto Y. The topology that
we choose, called the quotient topology (also called the identification
topology) can then be used to identify certain points in a space to get a new
space. For example, if we identify the points 0 and 1 in [0, 1], the resulting
space is then a circle in the plane.

3.1. Exercise.

Let X and Y be topological spaces. Show that the product topology on X × X
is the smallest topology that makes the projection functions continuous. In
other words, if  is the product topology on X × Y and if 3′ is a topology on
the set X × Y such that both πi:X × Y → X and π2:X × are continuous relative
to ′ then  ⊂ ′.



The product topology is the smallest topology on X × Y that makes the
projections continuous. Suppose that X is a topological space, 7 is a set and
f is a function from X onto Y. We want to give Y a topology so that f is
continuous. If we copy the product topology and consider the smallest
topology on Y such that f is continuous, we get a very uninteresting space.

3.2. Exercise.

Show that if X is a topological space and f is a function from X onto 7, then
the smallest topology on Y that makes f continuous is the indiscrete
topology.

Thus the smallest topology that we can give to Y so that f is continuous
is trivial, and does not depend on X or f. However, the largest such topology
may be of more interest, because in general it will depend both on the
topology on X and the function f.

3.3 Exercise.

Let AT be a topological space, let Y be a set and let f be a function from X
onto Y. Show that the discrete topology on Y is the largest topology that can
be given to 7, but that f need not be continuous when Y has the discrete
topology.

To get the largest topology on Y that makes a function f from X onto Y
continuous, we simply force f to be continuous, as follows.

3.4. Definition. Let X be a topological space, let 7 be a set and let f be a
function from X onto 7. The quotient topology (or the identification
topology) on 7 determined by f and X is the largest topology on 7 that
makes f continuous, and consists precisely of those sets U C 7 such that is
open in X.

3.5. Exercise.

Show that if AT is a topological space, 7 is a set and f is a function from X
onto 7, then the quotient topology on 7 determined by f and X actually is a
topology on 7.



If 7 already has a topology and f is a continuous function from X onto 7,
it is actually rather unusual for the topology on 7 to be the quotient
topology.

3.6. Exercise.

Give an example of topological spaces X and 7 and a continuous function f
from X onto Y such that the topology on Y is not the quotient topology
determined by f and X.

An important special case when the topology on Y is the quotient
topology determined by f and X is when f is either an open or closed
function. We repeat the definitions of open and closed functions here. See
Exercises 3.5 and 5.5 in Chapter 4.

3.7. Definition. Let X and Y be topological spaces and let f:X —> Y be a
(not necessarily continuous) function of X into Y. Then

1) f is open (an open function, or, if f is continuous, an open map) if
f( U) is open in Y whenever U is open in X.

2) f is closed (a closed function, or, if f is continuous, a closed map)
if f(F) is closed in Y whenever F is closed in X.

3.8. Theorem. Let X and Y be topological spaces and let f be a
continuous function from X onto Y. If f is either open or closed, then the
topology on Y is the quotient topology determined by f and X.

3.9. Exercises.
1) Let X and Y be topological spaces and let X X Y have the product

topology. What is the quotient topology on X determined by X × Y
and ρ1?

2) Theorem 3.8 says that if a continuous function from a space X onto
a space Y is an open function or a closed function, then Y has the
quotient topology determined by f and X. We should note that the
converse to this theorem is false. Let I = [0, 1] have its usual
topology and define f: I —> {0, 1} by

  



Show that the quotient topology on {0, 1} determined by f and I is the
Sierpinski topology (Example 2.3 in Chapter 4). Show that when
{0, 1} has the Sierpinski topology (i.e., the quotient topology
determined by f and f), the function f is not open.

3) Let X be a topological space and let A Clbea retract of A. Let r:X —
> A be a retraction of X onto A. Then A has the quotient topology
determined by r and X.

We can use the quotient topology to get new spaces from old ones. The
procedure is to define a set Y to be some modification of a space X, define a
function from X onto Y, and give Y the quotient topology determined by this
function and X. Since the function is then continuous (because Y has the
quotient topology) we may have some information about Y immediately.
For example, if X is compact or connected, so is Y. Before we can do this,
we need to establish a method of modifying a space X by identifying some
of its points.

3.10. Definition. Let E be a relation on a set X. If x, y ∈ X are related by
E, we write xEy. (For example, if E is ≤ on Z+, we would write xEy to mean
x ≤ y.) The relation E on X is an equivalence relation on X if it satisfies the
following.

1) For all x ∈ X, xEx (E is reflexive).
2) For all x, y ∈ X, if xEy then y Ex (E is symmetric).
3) For all x, y, z ∈ X, if xEy and yEz, then xEz (E is transitive).

3.11. Exercises.
        Which of the following relations is an equivalence relation on the

    indicated set?
1) = on R.
2) < on R.
3) ≤ on R.
4) ~ on R defined by x ~ y if and only if x — y ∈ Q.
5) = on topological spaces.

Recall (Definition 3.4 in Chapter 6) that a collection of subsets
partitions a set X if the union of the collection is all of X and the members
of the collection are pairwise disjoint.



3.12. Theorem. An equivalence relation E on a set X partitions X into
pairwise disjoint subsets called equivalence classes (under E), which are
defined as follows. The equivalence class (under E) containing x ∈ X is [x]
= {y ∈ X:xEy}.

Conversely, given a collection of subsets of a set X that partitions X into
pairwise disjoint subsets, we can define an equivalence relation on Xy which
we denote by by x ~ y if and only if x and y belong to the same subset of the
partition.

We can use the idea of an equivalence relation to identify certain points
in a topological space (in other words, to make certain points equivalent—
the same). For example, define ~ on [0, 1 ] by 0 ~ 1 and x ~ x for all x ∈ [0,
1 ]. By identifying the points 0 and 1 (by making them equivalent), we
"paste" the interval together at its end points and obtain a circle.

To relate this to quotient spaces, let X be a topological space and let ~ be
an equivalence relation on X. Let [x] denote the equivalence class of ? ∈ X
under [x] = {y G X:x ~ y}. Let X/~ denote the set of all distinct equivalence
classes under ~ and define a function p from X onto X/~ by p(x) = [x]. (The
function p is called the projection of X onto the quotient X/~.) Finally, let
X/~ have the quotient topology determined by p and X. The resulting
topological space is called the quotient space of X by ~. To summarize this
for later reference,

3.13. Definition. Let X be a topological space, ~ an equivalence relation
on X and let p be the projection of X onto X/~ = {[x] : x ∈ X}, defined by
p(x) = [x]. The set X/~ with the quotient topology determined by p and X is
called the quotient space of X by ~

3.14. Exercises.
1) Show that a circle can be viewed as a quotient space of a closed

interval as follows.
a) Define ~ on [0, 1] by 0 ~ 1 and x ~ x for x ∈ [0, 1]. Show that
[0,l]/~ is a circle.
b) Let C = {(x, y) ∈ E2: x2 + y2 = 1} be the unit circle in the plane
and let I be the closed unit interval. Let both ∈ and I have their
usual topologies. Define f : I → C by f(t) = (cos t, sin t). Show that
C has the quotient topology determined by f and I.



2) Let R have its usual topology and define ~ on R by x ~ y if and only
if x – y ∈ Z. What is R/~

3) Let R have its usual topology and define ~ on R by x ~ y if and only
if x – y ∈ Q. What is R/~?

4) Let R have its usual topology and define ~ on R by x ~ y if and only
if x = y. What is R/~?

As Exercise 3.14 (3) above shows, a quotient space obtained from a
Hausdorff space need not be Hausdorff. Since we want all of our spaces to
be Hausdorff, this presents us with a problem. We can remedy it as follows.
Recall (Section 2 of Chapter 8) that a space X is Hausdorff if and only if the
diagonal {(x, x) x ∈ X} is closed in X × X, and that if f : X → Y is
continuous and Y is Hausdorff, then the set {(x1 x2) : f(x1) = f(x2)} is closed
in X×X.

3.15. Theorem. Let X be a (Hausdorff) topological space and let f be an
open, continuous function from X onto Y. Then Y is a Hausdorff space if
and only if the set { (x1, x2) : f(x1) = f(x2)} is closed in X×X.

3.16. Exercises.
We can represent several important topological 2-manifolds as quotient

spaces of a rectangle as follows. Let S be the rectangle in the plane given by
S = { (x, y) ∈ E2:0 ≤ x ≤ 2π, 0 ≤ y ≤ 1}.
1) The cylinder.

a) If we define ~ on S by (x, 0) ~ (x, 1) for all x ∈ [0, 2π] and (x, y) ~
(x, y) for all points in 5, show that S/~ is a cylinder in E2. This can
be visualized as follows.

  



The arrows indicate that we are identifying the two horizontal
edges with each other in the same direction

b) Define f: S → E3 by f(x, y) = (cos x, sin x, y). Show that f(S) is a
cylinder when given the quotient topology determined by f and S.

2) The torus. Define ~ on S by identifying both pairs of opposite edges of S
in the same direction, as in the following picture.

  

What is S/~? Show that it is homeomorphic to S1× S1, where S1 is a
circle in the plane with its usual topology.

3) The Möbius strip. Define ~ on S by identifying one pair of opposite
edges in the opposite direction, as follows.

  

The space S/~ is called a Möbius strip* What does it look like?
Recall that the boundary of a topological 2-manifold is the set of its
points that do not have a neighborhood homeomorphic to a
neighborhood in E2, but do have a neighborhood homeomorphic to
a neighborhood of a point on the x-axis in the closed upper half
plane. What does the boundary of a Möbius strip look like?

4) The Klein bottle. Define ~ on S by identifying one pair of opposite
edges in the same direction and the other in the opposite direction,
as follows.



  

The space S/~ is called a Klein bottle. * What does it look like?
Demonstrate that a Klein bottle can be obtained by “pasting” two
Mobius strips together along their boundaries.

5) The projective plane. Define ~ on S by identifying each pair of
opposite edges of S in opposite directions, as follows.

  

    The space S/~ is called the projective plane.
a) Show that the projective plane is homeomorphic to the quotient

space of a (hollow) sphere (denoted S2) in E3 obtained by
identifying diametrically opposite points, as follows.



  

    [Hint: Blow S up into a hemisphere.]
b) Show that the projective plane is homeomorphic to the space P2

of all lines L in E3 through the origin, with topology generated by
the basis consisting of elements of the form Br(L) ⊂ P2 such that
Br(L) ∩ S2 ⊂ Sr(x, y, z) ∩ S2 where S2 is the unit sphere
{(x,y,z)∈ E2 : x2+y2+z2=1 } in E3, and (x,y,z) is on L and on s2.

  



* After David Hilbert (1862-1943).
* A space that satisfies certain properties is a Hilbert space. This is a special case called simply
Hilbert space.
* After August ferdinand Möbius (1790-1868).
* After Felix Klein (1849-1925).



chapter twelve 
Homotopy and the Fundamental
Group

In this chapter, we investigate very briefly, and, at times, intuitively, a
way of classifying topological spaces into classes so that all of the spaces in
a given class share some important properties. We already have such a
classification theorem if we group homeomorphic spaces into the same
class. The classification system that westudy here is more general.

The material in this chapter comprises a small part of what is called
algebraic topology. As the name implies, algebraic topology uses algebraic
techniques to discuss topological ideas. We will not go very deeply into the
subject, and you will only need to know some basic group theory to work
through the material presented here.

Basically, what we will do is to discuss a way of associating a group
(called the fundamental group or the first homotopy group) with a
topological space in such a way that the group can tell us something about
the space. Let I be the unit interval [0, 1] with its usual topology.

1. HOMOTOPY

Consider the following picture.



  

In the picture, X is a topological space, x0, x1 ∈ X, and f and g are
continuous functions from I into X, with f(0) = g(0) = x0 and f(1) = g(1) =
x1. It should be clear that we can deform the graph of f without tearing it or
breaking it so that it can be made to coincide exactly with the graph of g.
Furthermore, we can do this in such a way that the end points (x0 and x1)
remain fixed throughout the deformation. Such a change of f into g takes
time, and this is the key to making the idea precise. Think of time as
running from 0 to 1. We can perform the deformation of f into g in this unit
of time by having/at time 0, continuously changing f as time goes from 0 to
1, and finally having g at time 1. This is illustrated below.



  

Performing this deformation of f into g suggests the following definition.
Recall that a continuous function from I into a topological space X is called
a path in X with initial point f(0) and terminal point f(l). Notice that the
definition below involves the functions f and g themselves, and not their
graphs: we define a deformation of one function into another, rather than of
the graph of one function into the graph of another. (But, of course, when
one function is deformed into another, so is its graph.) This fits with the
idea of a path, because a path is a function, and not its graph. (This is so
that the idea of the direction of a path makes sense: we want to be able to
say that a path goes from its initial point to its terminal point.)

1.1. Definition. Let X be a topological space and let f and g be paths in X
with common initial points and common terminal points (i.e.,f(0) = g(0) and
f(l) = g(l)). We say that f and g are path homotopic, and write f  g, if
there is a continuous function H:I x I → X (called a path homotopy
between f and g) such that H(s, 0) = f(s) for all s ∈ I, H(s, 1) = g(s) for all s
∈ I, H(0, t) = x0 for all t ∈ I, and H(1,t) = x1 for all t ∈ I. This definition is
illustrated below.

Notice in the illustration that for "time" t0, 0 < t0 < 1 (on the vertical
copy of I), H(s, t0) is a path in X from x0 to x1 which is "between" f and g.



  

We can generalize the idea of path homotopy to continuous functions
into a topological space that are not necessarily paths (or to paths that do
not necessarily have common end points). The idea is the same : we deform
one function into another in a unit of time, but we drop the requirements
that the domain is I and that the end points remain fixed throughout the
deformation.

1.2. Definition. Let X and Y be topological spaces and let f and g be
continuous functions from X into Y. We say that f and g are homotopic, and
write f  g, if there is a continuous function H:X x I —> Y (called a
homotopy between f and g) such that H(x, 0) = f(x) for all x ∈ X and H(x,
1) = g(x) for all x ∈ X.

Even though X ≠ I necessarily in the definition of a homotopy, we still
think of X × I as a square and illustrate the definition of homotopy as we did
with path homotopy:



  

Such a picture is often helpful in deciding how to define a particular
homotopy.

1.3. Exercise.
A constant path in a topological space Y is a constant function

from I into Y. In other words, f : I→ Y is a constant path if there is a
y0 ∈ Y such that f(s) = y0 for all s ∈ I.

Let Y be a topological space. Prove that every path in Y is
homotopic to a constant path. (This does not say that every path in Y
is path homotopic to a constant path; indeed, such a statement is
almost never true. When is it true?) To show that every path is
homotopic to a constant path, observe that since the end points of a
path need not remain fixed under a homotopy (as they must under a
path homotopy), then if f is a path in Y with f(0) = y0 and f(l) = y1,
we can merely push y1 along the graph of f until it coincides with y0.
This involves shrinking the graph of f down to a point. To get a
homotopy to do this, we appeal to a picture for an idea.



  

We want the bottom of the rectangle I X I to be f, and the top to be the
constant path c: f —> Y given by c(s) = y0 for all s ∈ I. And we want the
change from f to c to be continuous as we go up the square (i.e., as time
goes from 0 to 1). To define a homotopy between f and c, draw the line t = s
on the square (the 5-axis is the horizontal axis, and the t-axis (the time axis)
is the vertical axis). Below this line, we want H to be f, and above the line,
we want H to be c. It should be clear that less and less of each of the
horizontal I 's in the square is f as we go up (i.e., as t goes from 0 to 1). The
effect is to shrink the graph of f to a point.

Define H by

  

Show that H(s, 0) = f(s), H(s, 1) = y0 and that on the line t — s where the
"change" occurs, H is well defined (i.e., if s = t, f(s — t) = y0).

The only problem is whether or not H is continuous. We can prove a
general result to establish this.



1.4. Lemma. Let A and B be subsets of a topological space X such that X
= A ∪ B, let Y be a topological space and let f : A → Y, g:B → Y be
continuous functions such that f(x) = g(x) for all x ∈ A ∩ B. Define F : A ∪
Y by

  

If A and B are either both open or both closed in X, then F is a continuous
function from X = A ∪ B into Y.

1.5. Exercise.
Finish showing that every path in a topological space is homotopic

to a constant path.

Recall that an equivalence relation on a set is a relation between the
elements of the set that is reflexive, symmetric and transitive, and that an
equivalence relation on a set partitions the set into pairwise disjoint subsets
called equivalence classes. Let Yx denote the set of all continuous functions
of a topological space X into a topological space Y.

1.6. Theorem. Homotopy is an equivalence relation on Yx.
[Hint for proof: Reflexivity is easy. For symmetry, if f  g, turn the

homotopy around to get g  f (see Section 4 in Chapter 6 and draw a
picture). For transitivity, if f  g and g  A, perform each homotopy in half
the time to get f  h (see Lemma 4.5 in Chapter 6, draw a picture and use
Lemma 1.4).]

We can partition the collection of topological spaces into pairwise
disjoint classes, where each class consists of all of those spaces that have
the same homotopy type, as defined below.

1.7. Definition. Let X and Y be topological spaces. Then X and Y are
said to be of the same homotopy type or to have the same homotopy
type if there are continuous functions f:X → Y and g: Y → X such that gof 

 idx and fog = id Y.



Before proving that having the same homotopy type is an equivalence
relation on the collection of topological spaces (so that it partitions them
into pairwise disjoint equivalence classes), consider the following exercises.

1.8. Exercises.
1) Homeomorphic spaces are of the same homotopy type. [Hint: " = "

implies " ".]
2) There exist topological spaces which have the same homotopy type

but which are not homeomorphic. To show it, let (x0, y0) ∈ E2, and
let E2 have its usual topology. Show that the spaces {(x0, y0)} and
E2 have the same homotopy type, but are not homeomorphic. [Hint:
Show that the identity function on E2 is homotopic to the constant
function that takes E2 to (x0, y0). To do this, consider a line in the
plane joining an arbitrary point (x, y) to (x0, y0).]

We will have to wait until later to see an example of two spaces
that do not have the same homotopy type.

That the relation of having the same homotopy type is an equivalence
relation on the collection of all topological spaces is easy except for the
transitivity. We can establish transitivity as follows. If X and Y have the
same homotopy type, then there are continuous functions f1X → Y and g1: Y
→ X such that gof1  idx and fog1  idY. Similarly, if Y and Z have the same
homotopy type, then there are continuous functions f2:Y → Z and g2:Z → Y
such that g2° f2  idY and f ° g2  idz. We want (g1°g2)°(f2°f1)  idx and (f2
° f1)°(g1 ° g2)  idz, in order to see that X and Z have the same homotopy
type. It would be nice if we could do the following.

  

The problem comes in the middle. Is it true that when g2 ° f2  idY then g1°
(g2°f2)°f1 g1° idY°f1? The answer is yes, as the following theorem shows.

1.9. Theorem. If F1 and F2 are functions from X into Y with F 1  F2
and G1 and G2 are functions from Y into Z with G1  G2 then G1°F1 G2 °



F2. [Hint for proof : Show that G1 ° F1  G1 ° F2 and then that G1 ° F2 
G2 ° F2.]

1.10. Theorem. Same homotopy type is an equivalence relation on the
collection of topological spaces.

We saw in Exercise 1.8 (2) that the identity function on E2 is homotopic
to a constant function from E2 into E2. Spaces with this property are
important because, as far as homotopy is concerned, they are the same as a
single point space.

1.11. Definition. A topological space in which the identity function is
homotopic to a constant function is said to be a contractible space.

1.12. Theorem. A topological space is contractible if and only if it has
the same homotopy type as a single point space.

Because of Theorem 1.12, we say that a contractible space is
homotopically trivial.

1.13. Exercises.
1) The real line and the Euclidean plane, both with their usual

topologies, are contractible.
2) The closed unit interval in R and the closed unit disk in E2, both

with their usual topologies, are contractible.
3) The open unit interval in R and the open unit disk in E2, both with

their usual topologies, are contractible. [Hint: See Exercise 1.8 (1).]

2. THE FUNDAMENTAL GROUP

For completeness, we recall the definition of a group here.

2.1. Definition. A group G is a set together with an operation (which we
denote here by *) satisfying the following.

1) For all g1 g2 ∈ G, g1* g2 ∈ G (* is closed).
2) For all g1 g2, g3 ∈ G, g1*(g2*g3) = (g1*g2)*g3 (* is associative).
3) There is an element e ∈ G such that for all g ∈ G, g*e = e*g = g (G

contains an identity element for *).



4) If g ∈ G, there is an element g-1 ∈ G such that = g-1*g = e (each
element in G has an inverse in G relative to *).

2.2. Exercises.
Which of the following sets and operations is a group?

1) Z+ with +.
2) Z with +.
3) R with +.
4) R with multiplication.

Recall that a loop in a topological space is a path in the space whose
initial point and terminal point are the same. If the initial point and terminal
point of a loop in the topological space X are both the point x0 ∈ X, we will
say that the loop is based at x0.

For a loop in a topological space X based at x0, let |f| = {g:g is a loop in
X based at x0 and g  f}. The set [f] is called the path homotopy
equivalence class of f.

2.3. Theorem. The collection {[f]:f is a loop based at x0 G X) consists of
pairwise disjoint sets.

We will make the collection of all path homotopy equivalence classes of
loops based at x0 ∈ X into a group. To do this, we need to define an
operation on these classes.

Define "multiplication" of these classes by [f][g] = [fg], where [fg] is
defined by

  

Note that fg is the product of paths, and is not composition of functions.

2.4. Exercises.
1) Show that if f and g are loops based at x0 ∈ X, then fg is also a loop

based at x0.



2) Show that multiplication of path homotopy equivalence classes of
loops is well defined, i.e., iff f′, g, g′ are loops in X based at x0 with
f  f>′ and g  g′, then fg  f′g′. Thus it does not matter which
particular loop we use to represent an equivalence class.

For a loop f in X based at x0, define f-l by f-l(t) = f(1 — t) for t ∈ I.
Define ex0 by ex0(t) = x0 for all t ∈ I.

2.5. Exercises.
1) (f][f-1] = [f-1](f] = [ee0], To show that [f][f=-1] = [ex0],for example,

we have to show that ff-1  ex0. Consider the following picture.

  

We want H:I × I → X such that



  

To define H, consider the following picture, in which we indicate where
the portion of the edge of the square is to go under H by writing it by that
portion.

  

On triangles (I) and (II), we want H to be ex0. Consider triangle (III). We
have t/2 ≤ s 1/2 and 0 ≤ t ≤ 1. Now t/2 ≤ s ≤ 1/2; implies that t ≤ 2s ≤ 1, so 0



≤ 2s — t ≤ 1 — t, or 0 ≤ (2s — t/(1 — t) ≤ 1. Now [0, 1] is the domain of f
and it is not hard to show that if we define H on the left half of I X I by

  

then H is continuous and the part of the square where H is f shrinks to a
point as t goes (up) from 0 to 1.

For the right half of the square, we illustrate a different method of
finding H. Let (x, 0) be a point on the s-axis in triangle (IV). Draw the line
from (x, 0) to (1/2, 1) (this line is shown dotted in the picture). We can write
a parametric equation for this line as follows. A point (s, t) in triangle (IV)
is on this line if and only if there is an a, 0 ≤ a ≤ 1, such that (s, t) = a(x, 0)
+ (1 — a)(1/2). Then s = ax + 1/2(l — a) and t = 1 — a. Solving for x gives

  

Put

  

    Show that ff-1  ex.
        Show that [f][f-1] = [f-1][f]=[ex0.

2) For any loop f in X based at x0, [f][exo] = [ex0][f] = [f]. [Hint:
Consider the following picture for half of this problem.]



  

3) For loops/f ,g, h in X based at x0, show that ([f][g]) ([h]) = [f]([g]
[h]), i. e., that the multiplication that we have defined is associative.
[Hint: Consider



  

2.6. Theorem. The set of path homotopy equivalence classes of loops
based at x0 ∈ X is a group under multiplication defined by [f][g] = [fg]. This
group is denoted by π1(X, x0) and is called the fundamental group (first
homotopy group, Poincaré group*) of X at x0.

2.7. Exercise.
What is the fundamental group of a space consisting of a single

point?

Instead of the“fundamental group of X at x0,” it would be nice to have
the“fundamental group of X.” In other words, we would like to have the
fundamental group depend only on the space, and not on the particular point
of the space that we base our loops at. There is an important class of spaces
in which it turns out that the base point does not matter as far as the
structure of the fundamental group is concerned. Recall that a space X is
path connected if there is a path in X connecting any two given points of X.
Recall also that if (G, *) and (H, **) are groups, then a function φ:G → H is



an isomorphism of G into H if φ is 1-1 and for all g1g2 ∈ G, φ(g1*g2) =
φ(g1)**φ(g2.). If, in addition, the isomorphism φ is onto, then we say that G
and H are isomorphic.

2.8. Exercise.
 If φ: G → H is an isomorphism of the group G into the group H, then
1) if e is the identity in G,φ(e is the identity in H, and
2) for all g ∈ G, = (φ(g))-1.

An isomorphism between two groups, then, is an operation preserving
function, and isomorphic groups are algebraically the same, just as
homeomorphic topological spaces are topologically the same. An
isomorphism preserves the algebraic structure; a homeomorphism preserves
the topological structure.

2.9. Theorem. Let X be a path connected space. For any two points x0,
x1 ∈ X the groups π1(X,x0) and π1(X, x1) are isomorphic.

[Hint for proof: Consider the following picture. Let p be a path from x0
to x1. Define

  



and show that φ is an isomorphism onto.]

  

Note that the isomorphism between π1(X, x0) and π1(X, x1) defined in the
proof of Theorem 2.9 depends on the particular path that we choose to link
x0 and x1 (actually, it only depends on the path homotopy class of this path).
Nevertheless, when X is a path connected space, Theorem 2.9 shows that
the fundamental group of X at x0 does not depend on the particular point x0
that we choose, so it makes sense to talk simply about the fundamental
group of a path connected space. That this is not true in general is the
subject of the following exercise.

2.10. Exercise.
Assume that π (S1, x0) is not a trivial group, where S1 is a circle in

the plane and x0 ∈ S1 (we will discuss this in the next section). Show
that π1(X, p0) is not the same as π(X, x0), where X = S1 ∪ {p0} is the
space below.

  



If X and Y are topological spaces and f:X → Y is continuous, it is natural
to ask if there is any relation between the groups π1(X, x0) and π1(Y, f(x0)).
The following theorem answers this question. Recall that if (G, *) and (H,
**) are groups, then a function h:G → H is a homomorphism if for all g1 g2
∈ G, h(g1*g2) = h(g1)**h(g2). (So an isomorphism is a 1-1
homomorphism).

2.11. Exercise.
Like an isomorphism, a homomorphism h:G → H sends the identity

to the identity, and h(g=-l) = (h(g))=-l for all g ∈ G.

2.12. Theorem. Let X and Y be topological spaces and let f: X → Y be a
continuous function. Then the function f

*
 : π1(X, x0) → π1(Y,f(x0)) defined

by

  

is a homomorphism, called the homomorphism induced by f
Furthermore, if f is a homeomorphism of X onto Y, then f

*
 is an

isomorphism of π1(X,x0) onto π1(Y, f(x0)).

Thus in the particular case of path connected spaces, we can say that
homeomorphic spaces have isomorphic fundamental groups. (The path
connectivity is necessary only to be able to omit specifying the base point.)

The converse to this statement is false, as you can show in the following
exercise.

2.13. Exercise.
The fundamental group of the Euclidean plane with its usual

topology is trivial; in other words, it contains only one element.

The process of forming the homomorphism induced by a continuous
function also satisfies the following properties.

2.14. Theorem. Let X, Y, and Z be topological spaces and let f: X → Y,
g: Y → Z be continuous functions. Then



1) (gof)*= g
*
°f

*

2) (idx)
*
 is the identity homomorphism of π1(X, x0) into itself.

We can use the homomorphism of fundamental groups induced by a
continuous function to obtain the following result relating homotopy type to
the fundamental group. We will use this result later to get an example of
two spaces which are not of the same homotopy type.

2.15. Theorem. Let X and Y be path connected topological spaces which
are of the same homotopy type. Then the fundamental groups of X and Y are
isomorphic.

3. AN INTUITIVE LOOK AT THE FUNDAMENTAL GROUP
OF SOME FAMILIAR SPACES

Computing the fundamental group of a space can be very difficult
indeed. In this section, we will look intuitively at the fundamental groups of
certain spaces. We do not claim to prove anything here. Instead, like parts
of Chapter 3, the material is so interesting that even though some of it is
beyond our reach rigorously, we choose to discuss it intuitively and to say
"convince yourself" rather than "prove."

3.1. The Circle, S1.
Let S1 be a circle in the plane. Choose a point x0 ∈ S1. We

investigate π1 (S1, x0).
a) Does it matter what particular point x0 we choose? In other words,

is π1(S1, x0) the same as π1(S1, X1) for any two points x0 and x\ in
S1?

A loop in S1 will be assumed to be based at x0.
b) Convince yourself that any loop which does not go all the way

around the circle is homotopic to the constant loop at x0 that does
not go anywhere. Thus [exo] consists of all loops that do not go all
the way around the circle.

c) At first thought, it might seem that there is only one non-trivial
loop, namely one that starts at x0, goes around the circle, and stops



when it gets back to x0. Is such a loop that goes clockwise the same
as one that goes counterclockwise? Is a clockwise loop related to a
counterclockwise loop?

How about a loop that goes around twice? Three times? Once around
clockwise and four times around counterclockwise?

Can a loop follow a route like the following?

  

If so, what is this loop?
d) An infinite cyclic group on one generator g is, using multiplicative

notation,

  

and, using additive notation, is

  

The set of integers under addition is an infinite cyclic group. What is
its generator?
e) What is π1 (S1, x0)?
f) Give an example of two spaces that do not have the same homotopy

type.

3.2. The Torus.
Let T be the torus



  

a) Choose x0 ∈ T. Does the choice of x0 matter as far as the
fundamental group is concerned?

b) Consider two non-trivial loops in T based at x0 : let f go around the
hole in the middle and let g go around the cylindrical part. Is f  g?

c) How many generators does π1(T, x0) have? What is π1(T, x0)?
d) Convince yourself that the torus is not homeomorphic to a circle.

3.3. Other Examples.
1) What is π(X, x0) if X is

a)

  

b)

  

c) S2, a hollow sphere.



d) S2 — {p}, wherep is any point on S2. (S2 — {p} is called a
punctured 2-sphere.)

2) Does the fundamental group always "recognize" the number of
holes in a space?

3) What is the fundamental group of a simply connected region in the
plane?

4. APPLICATIONS

4.1. The Brouwer Fixed Point Theorem. A point x ∈ X is a fixed point
of a function f: X → X if f(x) = x. A fixed point of a function is not moved
by the function; it remains fixed. Obviously, every constant function of a
space into itself has a fixed point, and, just as obviously, not every function
of a space into itself has a fixed point. It is an important, interesting, and
often difficult problem to decide whether or not a given function of a given
space into itself has a fixed point.

In this section, we will prove that every continuous function of the
closed unit interval into itself and that every continuous function of the
closed unit disk into itself has a fixed point. Both of these results are special
cases of a famous theorem of L. E. J. Brouwer which says that if Bn is the
closed unit ball in Euclidean "-space (i.e., Bn is the set of all points in En

whose distance from the origin is no more than 1) then every continuous
function of Bn into Bn has a fixed point.

In the case n = 1, we can illustrate the theorem with a picture. It should
be clear that if f: I → I is continuous and f(0) ≠ 0 and f(l) ≠ 1, then the graph
of f will have to cross the line y = x. On this line,f(x) = x.



  

What happens if f(0) = 0 or f(1) = 1?
Of course this picture is not a proof. To prove the theorem in the case n

= 1, observe that the subspace {0, 1} is not a retract of I (i.e., there is no
continuous function of I onto {0, 1} which is the identity on {0, 1}). We
will show that if there is a continuous function from I into itself with no
fixed point, then {0, 1} is a retract of I, which is not true. From this
contradiction, we will conclude that every continuous function of I into
itself has a fixed point.

4.2. Theorem. Every continuous function of I into I has a fixed point.
[Hint for proof: Follow the procedure discussed above. Suppose that f : I→I
is continuous with no fixed point. For x ∈ I, define r:I → {0, 1} by r(x) = 0
if f(x) > x and r(x) = 1 if f(x) < x. Using the fact that f is continuous, show
that r is a retract of I onto {0, 1}.

4.3. Exercises
1) How does the proof suggested for Theorem 4.2 break down if it is

not assumed that f has no fixed point?
2) Give an example of a function from I into I with no fixed point.



3) Give an example of a continuous function from (0, 1) into itself that
has no fixed point.

To prove the fixed point theorem for n = 2, we will use the same
procedure, and show that if D = {(x, y) ∈ E2 : x2 + y2 ≤ 1} and f : D →D
has no fixed point, then there is a retract of D onto S1, the unit circle.
However, in this case it is not so immediately obvious that such a retract
cannot exist (unlike {0, 1}, S1 is connected). To prove that S1 is not a retract
of D, we can use homotopy theory.*

4.4. Exercise.
Show that if f : D → D is continuous and has no fixed point, then

there is a retract of D onto S1. [Hint: Draw a picture and look at what
we did for I.]

4.5. Theorem. S1 is not a retract of D.
[Hint: Consider the fundamental groups of S1 and D.]

4.6. Theorem. Every continuous function of D into D has a fixed point.

4.7. Exercises.
1) Give an example of a continuous function from

  

to itself with no fixed point.
2) If you stir water in a glass from below the surface, is it possible for

every point on the surface to be in motion at the same time?

4.8. Euclidean spaces. "Obviously," the Euclidean plane is not
homeomorphic to Euclidean 3-space. Proving this without the aid of
homotopy theory, however, could be very hard indeed. Using homotopy
theory makes it easy.

Convince yourself that E2 and E3 are not homeomorphic by showing that
if they were, then E2 – {(0, 0)} and E3 – {(0, 0, 0)} would also be
homeomorphic. Use homotopy theory to convince yourself that this last
homeomorphism is impossible.

Is it obvious that R and E2 are not homeomorphic?



* After Jule Henri Poincaré (1854 – 1912)
*In the "proof" of this result, assume that we know what the fundamental group of a circle is. We can
prove it modulo this fact.
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