


A first course in algebraic topology





CZES KOSNIOWSKI

A FIRST COURSE IN

algebraic topology

Czes Kosniowski is Lecturer in Mathematics
The Umversify of Newcastle upon Tyne

4

4

CAMBRIDGE UNIVERSITY PRESS
CAMBRIDGE

LONDON NEW YORK NEW ROCHELLE
MELBOURNE SYDNEY



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CR2 1RP
32 East 57th Street, New York, NY 10022, USA
296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1980

First published 1980

Printed and bound in Great Britain by
Morrison & Gibb Ltd., London and Edinburgh

British Library Cataloguing in Publication Data

Kosniowski, Czes
A first course in algebraic topology.
1. Algebraic topology
I. Title
514'.2 QA612 79-41682

ISBN 0 521 23195 7 hard covers
ISBN 0 521 29864 4 paperback



CONTENTS

Preface vU

0 Sets and groups 1

I Background: metric spaces 6

2 Topological spaces 11

3 Continuous functions 16

4 Induced topology 20
5 Quotient topology (and groups acting on spaces) 27
6 Product spaces 39
7 Compact spaces 44
8 Hausdorff spaces 50
9 Connected spaces 58

10 The pancake problems 63
11 Manifolds and surfaces 68
12 Paths and path connected spaces 92

l2A The Jordan curve theorem 100
13 Homotopy of continuous mappings 110
14 'Multiplication' of paths 118
15 The fundamental group 124

16 The fundamental group of a circle 135
17 Covering spaces 143
18 The fundamental group of a covering space 151

19 The fundamental group of an orbit space 154
20 The Borsuk-Ulam and ham-sandwich theorems 157
21 More on covering spaces: lifting theorems 162
22 More on covering spaces: existence theorems 170
23 The Seifert-Van Kampen theorem: I Generators 176
24 The Seifert—Van Kampen theorem: 11 Relations 187
25 The Seifert—Van Kampen theorem: Ill Calculations 194
26 The fundamental group of a surface 202
27 Knots: I Background and torus knots 209
28 Knots: II Tame knots 221

28A Table of knots 234



vi

Contents

29 Singular homology: an introduction 239
30 Suggestions for further reading 260

Index 263



PREFACE

This book provides a variety of self-contained introductory courses on alge-
braic topology for the average student. It has been written with a geometric
flavour and is profusely illustrated (after all, topology is a branch of geo-
metry). Abstraction has been avoided as far as possible and in general a
pedestrian approach has been taken in introducing new concepts. The pre-
requisites have been kept to a minimum and no knowledge of point set or
general topology is assumed, making it especially suitable for a first course in
topology with the main emphasis on algebraic topology. Using this book, a
lecturer will have much freedom in designing an undergraduate or low level
postgraduate course.

Throughout the book there are numerous exercises of varying degree to
aid and tax the reader. It is, of course, advisable to do as many of these
exercises as possible. However, it is not necessary to do any of them, because
rarely at any stage is it assumed that the reader has solved the exercises; if a
solution to an exercise is needed in the text then it is usually given.

The contents of this book contain topics from topology and algebraic
topology selected for their 'teachability'; these are possibly the more elegant
parts of the subject. Ample suggestions for further reading are given in the
last chapter.

Roughly one-quarter of the book is on general topology and three-
quarters on algebraic topology. The general topology part of the book is not
presented with its usual pathologies. Sufficient material is covered to enable
the reader to quickly get to the 'interesting' part of topology. In the alge-
braic topology part, the main emphasis is on the fundamental group of a
space. Students tend to grasp the concept of the fundamental group readily
and it provides a good introduction to what algebraic topology is about. The
theory of covering spaces and the Seifert-Van Kampen theorem are covered
in detail and both are used to calculate fundamental groups. Other topics
include manifolds and surfaces, the Jordan curve theorem (as an appendix to

vii



Preface

Chapter 12), the theory of knots and an introductory chapter on singular
homology.

As this book is about topology, and not the history of topology, names
and dates have not always been included.

This book should not necessarily be read in a linear fashion. The following
chart shows the approximate interdependence of the various chapters. For
example, to understand Chapter 18 completely you ought to have read
Chapters 0-9, 12-16 and 17 beforehand.

10

/1 /29 /
12A 16 20/

17

Czes Kosniowski
Newcastle-upon-Tyne
September 1979



0

Sets and groups

In this chapter we give some of the basic definitions and results of set theory
and group theory that are used in the book. It is best to refer back to this
chapter when the need arises.

For sets X, Y we use the notation Y X to mean that Y is a subset of
X and Y C X to mean that Y is a subset of X and Y * X. If Y c X then we
denote by X-Y the set of the elements of X which do not belong to Y. The
empty set is denoted by 0.

The cartesian or direct product of two sets X and Y is the set of ordered
pairs of the form (x, y) where x E X and y E Y, i.e.

XXY {(x,y);xEX,yEY}
The cartesian product of a finite collection { 1=1, 2, ..., n } of sets can
be defined analogously:

X Y between two sets is a correspondence that
associates with each element x of X a unique element f(x) of Y. The identity
function on a set X is the function 1: X -÷ X such that 1(x) = x for all
xEX. The image of the function f: X-*Yis defined by

Im(f) = f(X) = { y E Y; y=f(x) for some x E X }.

Note that if W, W' are two subsets of X then

f(W LJW')= f(W) U f(W'),
f(W)nf(W').

More generally, if we have a collection of subsets of X, say { j E S }

where S is some indexing set, then

= U
jEJ jEJ

c ñ
jEJ jEJ
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We often abbreviate f: X -+ Y simply by f if no confusion can arise. A func-
tion f: X -+ Y defines a function from X to f(X) which is also denoted by f.
If A is a subset of X then f restricted to A is denoted by f IA; it is the func-
lion fIA: A Y defined by (fIA)(a) = f(a) for a E A.

If Z is a subset of Y and f: X -÷ Y is a function then the inverse image of Z
under f is

f'(Z)= {xEX;f(x)EZ}.
Note that

(U = U
jEl jEJ
(fl Z3) = fl
jEJ

=

for a collection { Z3 j E J } of subsets of Y.
A function f: X -+ Y is one-to-one or infective if whenever x1, x2 E X

with x1 * x2 then f(x1) * f(x2). A function f: X -, Y is onto or surf ective if
f(X) = Y. A function f: X Y that is both injective and surjective is said to
be bi/ective. In this case there is an inverse function Y X defined by

If f: X Y and g: Y -+ Z are functions then the co?nposlte function gf:
X -+Z is defined by

gf(x) = g(f(x)), x E X.

1ff: X -+ Y is a bijective function then ff': Y -+ Y and X -+ X are the
identity functions. Conversely if gf: X X and fg: Y Y are the identity
functions then f and g are bijective functions, each being the inverse of the
other. The condition that gf: X -* X is the identity function implies that f is
injective and g is surjective.

A relation on a set X is a subset of X X X. We usually write x y if
(x,y) E -. A relation on X is an equivalence relation if it satisfies the
following three conditions.

(i) The reflexive condition: x x for all xE X.
(ii) The symmetric condition: If x y then y x.
(iii) The transitive condition: If x y and y z then x z.

The equivalence class of x is the set

[xJ = { yEX;x.-y}
If is an equivalence relation on X then each element of X belongs to pre-
cisely one equivalence class.
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A binary operation on a set X is a function f: X X X X. We abbreviate
f(x,y) to xy (multiplicative notation) or occasionally x + y (additive notation).

A group is a set G together with a binary operation satisfying three
conditions:

(I) There exists an element I E G, the identity element of G, such that
gi = lg=gforallgEG.

(2) For each g E G there is an element E G, the inverse of g, such
thatgg' =g'g 1.

(3) For all g1 ,g3 E G associativity holds, i.e.

(glg2)g3 = g1(g2g3).

In the additive group notation the identity element is denoted by 0 and
the inverse of g by -g. A group whose only element is the identity is the
trivfalgroup {l} or {0}

A subset H of a group is a subgroup of G if H is a group under the
binary operation of G. If H is a subgroup of G and g E G then the left coset
of H by g is the subset

gH= {gh;hEH}.
Right cosets are defined analogously. Two left cosets gil, g'H of a subgroup
H are either disjoint or identical.

The direct product G X H of groups G and H is the set G X H with binary
operation defIned by (g,h) (g',h') = (gg',hh'). In the additive case we refer to
the direct sum and denote it by G H.

A homomorphism f: G -+ H from a group G to a group H is a function
such that

f(gg') = f(g) f(g')

for all g,g' E G. If the homomorphism f: G H is bijective then we say that
G and H are isomorphic groups, that f is an Isomorphism and we write G � H
or f: G H. The kernel of a homomorphism f: G H is the set

kerf= {
where 'H is the identity of H. The kernel of an isomorphism consists of only
the identity element of G.

A subgroup K of a group G is normal if E K for all gE G, kEK.
The kernel of a homomorphism f: G H is a normal subgroup of G. A homo.

morphism f: G H is injective if and only if ker f = { I }
If K is a normal subgroup of G then the left coset gK equals the right coset

Kg and the set G/K of all left cosets of K is a group under the operation

(gK) (g'K) (gg')K.
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We call C/K the quotient group of C by K.
The first isomorphlsm theorem states that if f: C -÷ H is a surjective homo

morphism from a group G to a group H with kernel K then H is isomorphic to
the quotient group G/K.

If g E G then the subgroup generated by g is the subset of G consisting of
all integral powers of g

(g> = -fl____
where gfl gg". � 0 and gfl <0. In the case of
additive notation we have

(g) = {ng;nEZ} -n
where ng = g+g+...+g if n 0 and ng = -g+(-g)+...+(-g) if n �O. If C = 'g)
for some g then we say that G is a cyclic group with generator g. In general a
set of generators for a group G is a subset S of G such that each element of C
is a product of powers of elements taken from S. If S is finite then we say
that C is finitely generated.

A group G is said to be abelian or commutative if gg' = g'g for all g,g' E C.
For example, the set of integers Z is an abellan group (additive notation);
moreover it is a cyclic group generated by +1 or - I.

A free abelian group of rank n is a group isomorphic to Z s Z . ... e Z
(n copies).

The decomposition theorem for finitely generated abelian groups states:
If C is a finitely generated abelian group then G is isomorphic to

Hoi...Hm
where H0 is a free abelian group and the i=l,2,...,m, are cyclic groups of
prime power order. The rank of H0 and the orders of the cyclic subgroups
H1, H2 ,...,Hm are uniquely determined.

A commutator in a group G is an element of the form ghg -i h'. The
commutator subgroup of C is the subset of G consisting of all finite products
of commutators of C (it is a subgroup). The commutator subgroup K is a
normal subgroup of G and it is in fact the smallest subgroup of C for which
C/K is abelian.

We use R ,C2,N,Q to denote the set of real numbers, complex num-
bers, integers, natural numbers (or positive integers) and rational numbers
respectively. We often refer to R as the real line and to C as the complex
plane. The set is the cartesian product of n copies of R . We use the
following notation for certain subsets of R (called intervals):
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(a,b) = {xE
= (XE R;a<x�b},

[a,b) = ( xE R;a�x<b}
(a,b] = {xER;a<x<b}.

The meaning of the subsets (-°°,b), (-oo, b], [a,00) and (a,°°) should be
apparent. Observe that (_oo,oo) = R.

Note that (a,b) could refer to a pair of elements, say in R2 for example,
as well as an interval in R. What is meant in a particular instance should be
clear .from the context.



I

Background: metric spaces

In topology we study sets with some 'structure' associated with them which
enable us to make sense of the question Is f: X Y continuous or not?,
where f: X Y is a function between two such sets. In this chapter we shall
find out what this 'structure' is by looking at euclidean and metric spaces.

Recall that for a function f: R -* R we say that f is continuous at x if for
all > 0 there exists > 0 such that If(y) f(x)I <e, whenever ly - xl

The function is then said to be continuous if it is continuous at all
points x E R. We can extend this definition of continuity to functions f:
R" simply by replacing the modulus sign by the euclidean distance.
More generally, if we have sets with 'distance functions' then we can define
continuity using these distance functions. A 'distance function' - properly
called a metric - has to satisfy some (obvious) conditions and these lead to a
definition.

1.1 Definition
Let A be a set. A function d: A X A R satisfying
(i) d(a,b) = 0 if and only if a = b,

(ii) d(a,b) + d(a,c) � d(b,c) for all a,b,c E A
is called a metric for A. A set A with a particular metric on it is called a metric
space and is denoted by (A,d) or simply M.

The second property is known as the triangle inequality.

1.2 Exercise
Show that if d is a metric for A then d(a,b) � 0 and d(a,b) = d(b,a)

for all a,b E A.

If we take A = R and d(x,y) = Ix - yl then it is not difficult to see that d
is a metric. More generally take A = R and define d by
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d(x,y)
= (

(xj_Y1)2) ½ = lix-yll

where x =(x1,x2 andy Again. it is not hard to show
that d is a metric for R ". This metric is called the euclidean or usual metric.

Two other examples of metrics on A = are given by

d(x,y) = E d(x,y) = max
i=1 1<i<n

We leave it as an exercise for the reader to check that these do in fact define
a metric.

Finally, if A is any set then we can define a metric on it by the rules
d(x,y) = 0 if x = y and d(x,y) = I if x * y. The resulting metric is called the
discrete metric on A.

1.3 Exercises
(a) Show that each of the following is a metric for R n

,1
Oifxy,

d(x,y)
= (

½ = Ux-yll; d(x,y) =
lifx*y;

n
d(x,y) = 1x1-y11 ; d(x,y) max

1<i<n
(b) Show that d(x,y) = (x - y)2 does not define a metric on R.
(c) Show that d(x,y) = nun 1x1 - y11 does not define a metric on

1<i'(n

(d) Let d be a metric and let r be a positive real number. Show that d1
defined by d1(x,y) = rd(x,y) is also a metric.

(e) Let d be a metric. Show that d' defined by

d'(xy) = d(x,y)
1 +d(x,y)

is also a metric.

(f) In K 2 define d(x,y) = smallest integer greater or equal to usual
distance between x and y. Is d a metric for R2?

Continuity between metric spaces, as we have indicated, is now easy to
define.
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1.4 Definition
Let (A,dA), (B,dB) be metric spaces. A function f: A B is said to

be continuous at x E A if and only if for all >0 there exists >0 such
that d0(f(x),f(y)) < whenever dA(x,y) The function is said to be
continuous if it is continuous at all points x E A.

1.5 Exercises
(a) Let A be a metric space with metric d. Let y E A. Show that the

function f: A R defined by f(x) = d(x,y) is continuous where R
has the usual metric.

(b) Let M be the metric space (K ,d) where d is the usual euclidean
metric. Let M0 be the metric space (R,d0) where d0 is the discrete
metric, i.e.

0 if x = y,
do(x,y)

I ifx*y.
Show that all functions f: M0 - M are continuous. Show that there
does not exist any injective continuous function from M to M0.

It is often true that by changing the metric on A or B we do not change
the set of continuous functions from A to B. For examples see the following
exercises.

1.6 Exercises
(a) Let A,B be metric spaces with metrics d and dB respectively. Let dT

be the metric on A as given in Exercise I .3(d)(i.e. dr(X,y) = rd(x,y)).
Let f be a function from A to B. Prove that f is continuous with
respect to the metric d on A if and only if it is continuous with
respect to the metric dr Ofl A.

(b) As (a) but replace dr by the metric d' of Exercise 1.3(e).

So distance is not the important criterion for whether or not a function is
continuous. It turns out that the concept of an open set' is what matters.

1.7 Definition
A subset U of a metric space (A,d) is said to be open if for all x E U

there exists an > 0 such that if y E A and d(y,x) then y E U.
In other words U is open if for all x E U there exists an > 0 such that

çu.
An example of an open set in R is (0,1) = { xE R ; 0 < x < 1 } . In R2
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the following are open sets:

{ (x,y) R2 x2 + y2 <1 } , { (x,y) R2; x2 + y2> I }
((x,y)ER2;0<x<1,0<y< 1)

1.8 Exercises
(a) Show that (x) is always an open set for all x and all e> 0.
(b) Which of the following subsets of R2 (with the usual topology) are

open?

{ (x,y); x2 + y2 < 1 } U { (1,0) } , { (x,y); x2 + y2 < 1 }
{ (x,y); lxi < 1 } , { (x,y); x + y <0 }
{(x,y);x+y�0}, {(x,y);x+y0}.

(c) Show that if .F is the family of open sets arising from a metric
space then
(i) The empty set Q and the whole set belong to 5,
(ii) The intersection of two members of 5 belongs to F,
(ui) The union of any number of members of F belongs to F.

(d) Give an example of an infinite collection of open sets of R (with
the usual metric) whose intersection is not open.

Using the concept of an open set we have the following crucial result.

1.9 Theorem
A function f: M1 -+ M2 between two metric spaces is continuous if

and only if for all open sets U in M2 the set f'(U) is open in M2.

This result says that f is continuous if and only if inverse images of open
sets are open. It does not say that images of open sets are open.

Proof Let d1 and d2 denote the metrics on M1 and M2 respectively. Suppose
that I is continuous and suppose that U is an open subset of M2. Let x E
f_I (U) so that f(x) E U. Now, there exists 0 such that (f(x)) c U
since U is open. The continuity off assures that there is a > 0 such that

d1(x,y) d2(f(x), f(y)) <e,

or in other words f(B&(x)) c Bf (f(x)) c U which means that (x) c
f_I (U). Since this is so for all x E (U) it follows that f' (U) is an open
subset of M1.

Conversely let x M1 ; then for all e >0 the set (f(x)) is an open subset
of M2 so that f'(B€(f(x))) is an open subset of M1. But this means that
since x there is some 6 > 0 with B6(x) C i.e.
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ç In other words there is a ô > 0 such that d2 (f(x),f(y))
<e whenever d1 (x,y) <, i.e. f is continuous

This theorem tells us, in particular, that if two metrics on a set give rise to
the same family of open sets then any function which is continuous using
one metric will automatically be continuous using the other. Thus Exercises
1.6 can be rephrased as 'show that the metrics d, dr and d' give rise to the
same family of open sets'.

1.10 Exercise

Which of the metrics d(x,y) = d(x,y) = max on

gives rise to the same family of open sets as that arising from the usual metric
on

From the above we see that in order to study continuity between metric
spaces it is the family of open sets in each metric space that is important, and
not the metric itself. This leads to the following idea: Given a set X choose a
family .F of subsets of X and call these the 'open sets' of X. This gives us an
object (X,f)consisting of a set X together with a family .Fof subsets of X.
Continuity between two such objects (X5), could then be defined by
saying that f: X Y is continuous if (U) E.F whenever U Naturally
if we allowed arbitrary families then we would not get any interesting mathe.
matics. We therefore insist that the family of 'open sets' obeys some simple
rules: rules that the family .F of open sets arising from a metric space obey
(Exercise 1 .8(c)). These are

(i) (for convenience) the empty set Q and the whole set belong
(ii) the intersection of two members of belongs to .F,
(iii) the union of any number of members of.F belongs to F.

The 'structure' associated with a set X. referred to at the beginning of this
chapter, is simply a family .F of subsets of X satisfying the above three pro.
perties. This is the starting point of topology.
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Topological spaces

A topological space is just a set together with certain subsets (which will be
called open sets) satisfying three properties.

2.1 Definition
Let X be a set and let be a collection of subsets of X satisfying
(i) OE'PJ,XE'PI,
(ii) the intersection of two members of 'W is in CW,
(ui) the union of any number of members of is in '?I.

Such a collection of subsets of X is called a topology for X. The set X
together with is called a topological space and is denoted by (X,W) which
is often abbreviated to I or just X. The members U E 'W are called the open
sets of T. Elements of X are called points of 1.

Note that condition (u) implies that the intersection of a finite number of
members of 'W is in 41. denotes the set of all subsets of X then a
topology for X is just a choice of 41 cb°(X) which satisfies the conditions
(i), (ii) and (iii) above. Different choices give different topologies for X.

It is important to have many examples of topological spaces. As a first
example we immediately have from the last chapter that any metric space
gives rise to a topological space. The resulting space is said to have the metric
topology or the usual topology. The converse is not true - that is, there are
topological spaces which do not arise from any metric space - see Exercise
2.2(c). Topological spaces that arise from metric space are said to be metriz-
able. Note that two metric spaces may give rise to the same topological
space.

By considering the extremes of the possible families of subsets of a set X
satisfying the conditions for a topological space we get our next two examples.
The first is where 41 = { Ø,X } ; this obviously gives a topology for any set
X, called the concrete or indiscrete topology for X. The other extreme Is to
let 41 be the set 6F'(X) of all subsets of X; this clearly gives a topology for X,
called the discrete topology on X.
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2.2 Exercises
(a) Show that if X has the discrete topology then it is metrizable. (Hint:

Consider the discrete metric.)
(b) Let X be a topological space that is metrizable. Prove that for

every pair a,b of distinct points of X there are open Sets Ua and Ub
containing a and b respectively, such that Ua Ub =

(c) Use (b) above to show that if X has at least two points and has the
concrete topology then it is not metrizable.

An interesting example of a topology for a set X is that known as the
finite complement topology. Here is 0,X and those subsets of X whose
complements are finite. Of course if X itself is finite then this is just the
discrete topology for X. If X is infinite we need to check that the family 'W
satisfies the three conditions for a topology. The first is trivially true. For
the second suppose that U1 ,U2 E 'W so that X-U1 and X-U2 are finite. Thus
(X-U1) Li (X-U2) is also finite, but this is equal to X-(U1 U2) and so
U1 ri U2 E For the third condition we just use the fact that X-(U =

jEJ

If X consists of two points { a,b } then there are four different topolo.
gies that we could put on X, namely:

= { Ø,X} = tO, { a} ,x} = {Ø, (b} ,X}
,{b},X}.

We know that and are topologies and leave the checking that
and are topologies for the reader. Note that and are not
metrizable.

Other examples of topological spaces are given in the exercises that follow.

2.3 Exercises
In each case (a), (b), (c) below show that is a topology for X.

(a) X = R, W= { 0) U { R } U { (-Qe,x); xE R }

(b) X N = the positive integers the natural numbers, = { 0)
U {N} U { n,n+1,n+2,...)

(c) X = R, U E '?d' if and only if U is a subset of R and for each sE U
there isat>ssuch that [s,t)CU,where [s,t) { xER;s<x<t}

(d) Determine the number of distinct topologies on a set with three
elements.

(e) Show that neither of the following families of subsets of R are
topologies.
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{Ø} U {R} U { (-oe,xJ;xER}
U {R) U {(a,b);a,bER,a<b}

For any subset Y of a topological space X we could look at the largest
open set contained in Y; this is denoted by Y and is calledthe interior of Y.
In other words

jEJ

where { JEJ } is the family of all open sets contained in Y. Obviously
x E Y if and only if there is an open set U Y such that x E U.

For example let I" be the following subset of R

In = { 1,1= l,2,...,n}

If R" has the usual topology (i.e. the metric topology with the usual'
metric d(x,y) (E (x1_y1)2)½) then the interior of III is

To see this let x E and let e = mm { l-xj,xi;i l,2,...,n } . An open ball
(i.e. { y E d(y,x) < e } ) of radius about xis contained in

and so I" is open. On the other hand if, for some i, x1 = 1 or 0 then any ball
B1(x) of radius r about x contains points not in V' no matter how small r is.
Hence such points are not in the interior of Ii'.

Complements of open sets have a special name.

2.4 DefinitIon
A subset C of a topological space X is said to be closed if and only

if X- Cis open.

The next result follows easily from set theoretic results on the comple-
ments of intersections and the complements of unions.

2.5 Theorem
(i) X are closed,
(ii) the union of any pair of closed sets is closed,
(iii) the intersection of any number of closed sets is closed.

The concept of a closed set could be used to define topological spaces.

2.6 Exercises

(a) Let X be a set and let be a family of subsets of X satisfying
(i)O,XEr,
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(ii) the union of any pair of elements of belongs to
(iii) the intersection of any number of elements of r belongs to 1'.

= {X-V;VEr} isatopologyforX.
(b) Prove that in a discrete topological space each subset is simultane-

ously open and closed.
(c) Show that if a topological space has only a finite number of points

each of which is closed then it has the discrete topology.
(d) Show that in the topological space (R,W), where is as defined in

Exercise 2.3(c), each of the sets [s,t) is both an open and a closed
subset.

For any subset Y of a topological space X we could consider the smallest
closed set containing Y; this is denoted by Y and is called the closure of Y.
In other words

Y= fl F3

jEJ

where { jEJ I is the family of all closed sets containing Y. The points
that are in Y but not Y are often called the limit points of Y. The next
result gives an alternative description of Y.

2.7 Lemma

x E Y if and only if for every open set U containing x, U ñ Y * 0.

Proof Let x E V and suppose that there exists an open set U containingx
with U Y =0. Thus X-U is closed and Y ç X-U so Y C X-U. But x E Y
and x E U is then a contradiction.

Conversely suppose that x Y so that x E X-Y. But X-Y is open and
(X- Y) Y = 0 so that (X- Y) Y = 0 is a contradiction.

If we consider R with its usual topology then the closure of the sets (a,b),
[a,b),(a,bJ and [a,b] is [a,bJ.

2.8 ExeTcises

(a) Let X be R with its usual topology. Find the closure of each of the
following subsets of X:

A = { 1,2,3,... 1 , B { x; x is rational I , C = { x; x is irrational }

(b) Let X be R with the topology of Exercise 2.3(c). Find the closure
of each of the following subsets of X:

(a,b), la,b), (a,bJ La,b].

Further properties of the closure of a set are given as exercises.
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2.9 Exercises

Prove each of the following statements.
(a) If Y is a subset of a topological space X with Y ç F ç. X and F

closed then Y ç F. —

(b) Y is closed if and only if Y = Y.
(c) YY.
(d)
(e) X-Y=(X-Y).
(1) ?=YuaYwhereay=Vn(x-Y)(ayiscalledtheboundaryofy).
(g) YisclosedifandonlylfaYçY.
(h) av = 0 if and only if Y is both open and closed.
(i)a({xeR;a<x<b})=a({xER;a<x<b})=fa,b}.
(j) Prove that Y is the closure of some open set if and only if Y is the

closure of its interior.

A concept that will be useful later on is that of a 'neighbourhood' of a

2.10 DefinitIon
Let X be a topological space. A subset N c X with x E N is called a

neighbourhood of x if there is an open set U with x E U ç N.

In particular an open set itself is a neighbourhood of each of its points.
More generally a set A with A 0 is a neighbourhood of each of the points
in the interior of A. Some simple properties of neighbourhoods are given In
the next exercise. (It is possible to use the results in the next exercise to
define topologies.)

2.11 Exercise
Let X be a topological space. Prove each of the following statements.
(I) For each point x E X there is at least one neighbourhood of x.
(ii) If N is a neighbourhood of x and N ç M then M is also a

neighbourhood of x.
(iii) If M and N are neighbourhoods of x then so is N fl M.
(iv) For each x E X and each neighbourhood N of x there exists a

neighbourhood U of x such that U ç N and U is a neighbour.
hood of each of its points.
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Continuous functions

3.1 Definition
A function f: X Y between two topological spaces is said to be

continuous if for every open set U of Y the inverse image (U) is open in X.

The most trivial examples of continuous functions are the identity func-
tion lx: X -÷ X and the constant function X Y which sends every point of
X to some fixed point of Y.

If we take a space X with the discrete topology then any function f:
X -+ Y from X to any topological space Y is continuous. This is clear since
the inverse image of any subset of Y is open in X. On the other hand if we
take Y with the concrete topology then any function f: X Y from any
topological space X to Y is also continuous; this is easy to see. In fact there
is a converse to these two examples given in the next set of exercises.

The next example is of a non-continuous function. Let X = (R ,'è') where
= { 0 } U { R } U { (- eo,x); x E R } and let f: X -÷ X be given by

f(x) = x2. The function f is not continuous because f1 ((- oo,y2)) = (- y,y)
which does not belong to Exactly which functions from X to X are con-
tinuous is left in the form of an exercise (Exercise 3.2(d)).

3.2 Exercises
(a) Let X be an arbitrary set and let ,W' be topologies on X. Prove

that the identity mapping -, is continuous if and only

(b) X is a topological space with the property that, for every topological
space Y, every function f: X Y is continuous. Prove that X has
the discrete topology. (Hint: Let Y be the space X but with the
discrete topology.)

(c) Y is a topological space with the property that, for every topologi-
cal space X, every function f: X Y is continuous. Prove that Y has
the concrete topology. (Hint: Let X be the space Y but with the
concrete topology.)
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(d) Let X be the real numbers with the topology {Ø} U {R) U
{ (- °°,x); x R } . Prove that a function f: X X is continuous if
and only if it is non-decreasing (i.e. if x> x' then f(x) � f(x')) and
continuous on the right in the classical sense (i.e. for all x E X and
all e > 0 there exists 6 > 0 such that if x x' <x + 6 then
If(x)- f(x')I<e).

There is a characterization of continuous maps in terms of closed sets.

3.3 Theorem
The function f: X Y between topological spaces X,Y is continuous

if and only if (C) is closed for all closed subsets C of Y.

Proof Suppose that f Is continuous. If C is closed then Y-C is open which
means that f'(Y-C) is open. But = X - f1(C) and hence f1(C)
is closed. Conversely suppose that U is open in Y so that Y-U is closed and
hence f'(Y-U) = X -f'(U) is closed, which means that f'(U) is open
and f is continuous.

A function that sends open sets to open sets Is said to be open. Open
mappings are not necessarily continuous. As an example let Y consist of two
points { a,b } with the discrete topology and let X be the real numbers with
the usual topology. The function f: X -+ Y given by

aifx�0,
f(x) =

b if x<O,
is an open mapping but is not continuous because f_I ( { a } ) is not open in
X. Any mapping from a topological space to a discrete topological space is
necessarily open.

We say that a map f: X -÷ Y is closed if the image under f of any closed set
is closed. Closed mappings are not necessarily continuous; in fact the example
of the open non-continuous function given earlier is also closed. In general a
continuous function may be (I) neither open nor closed, (ii) open but not
closed, (iii) closed but not open or (iv) both open and closed. As examples
we have the following (i) X is a set A with the discrete topology, Y is the set
A with the concrete topology and f is the identity function. For (Ii) consider
X = (a,b I with the discrete topology and Y = { a,b } with the topology

{ 0, { a }, { a,b} I ; then the constant function to a E Y is open and
continuous but not closed. For (iii) take X = { a,b } with the discrete
topology and Y = R with the usual topology; then the function f: X Y



18 A first course in algebraic topology

given by f(a) = 0. f(b) = 1, is continuous and closed but not open. Finally
for (iv) we can take X = Y to be any topological space and f to be the
identity. Of course if we put some further restrictions on f then all four
cases may not arise.

3.4 Exercise
Let f be a continuous function f: X -÷ Y between the topological

spaces X and Y. If f is (a) injective (b) suijective (c) bijective, which of the
four cases (i) f is neither open nor closed, (ii) f is open but not closed, (iii) f
is closed but not open and (iv) f is both open and closed can actually arise?

The next result tells us that the composite of two continuous functions is
continuous. It is remarkably easy to prove.

3.5 Theorem
Let X,Y and Z be topological spaces. 1ff: X -+ Y and g: Y Z are

continuous functions then the composite h = gf: X Z IM also continuous.

Proof If U is open in Z then g1(U) is open in Y and so f'(g1(1J)) Is open
in X. But (go_I (U) = (g (U)).

The next definition tells us when two topological spaces are considered
equivalent; we use the word homeomorphism.

3.6 Definition
Let X and Y be topological spaces. We say that X and Y are homeo-

rnorphic if there exist inverse continuous functions f: X Y, g: Y X (i.e.

fg = lx and f,garecontinuous).Wewrite fandg
are homeomorphisms between X and Y.

An equivalent definition would be to require a function f: X -+ Y which is
(i) bijective, (ii) continuous and (iii) its inverse f1 is also continuous. Thus
a homeomorphism between X and Y is a bijection between the points and
the open sets ofX andY.

Some examples of homeomorphisms can be readily obtained from Chap-
ter 1. For example if X is the topological space arising from a metric space
M with metric d, and if Y is that arising from the metric space M with
metric d' given by d'(x,y) = d(x,y)/(l + d(x,y)), then X and Y are homeo-
morphic. Another example is to let X be K" with the usual metric topology
and to let Y be R" with the metric topology obtained from the metric
d(x,y) = max Again X and Y are homeomorphic. On the other hand
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if X = with the usual topology and V = R1' with the discrete topology
then X and Y are not homeomorphic.

3.7 Exercises
(a) Give an example of spaces X,Y and a continuous bijection f: X V

such that is not continuous.
(b) Let X and Y be topological spaces. Prove that X and Y are homeo-

morphic if and only If there exists a function f: X Y such that
(i) f is bijective and (ii) a subset U of X is open if and only if f(U) is
open.

(c) Metrics d1 and d2 on a set Y are such that, for some positive m and
M,

md1(y,y') < da(y,y') < Md1(y,y')

for all y,y' E Y. Show that the two topological spaces arising from
these metrics are homeomorphic. (Hint: Consider the identity map.
pingonY.)

(d) Let X be a topological space and let G(X) denote the set of homeo-
morphisms f: X X. Prove that G(X) is a group. For x E X, let

G(X); f(x) = x } . Prove that is a subgroup of
G(X).

Homeomorphism is an equivalence relation, and topology is the study of
the equivalence classes. The next three chapters describe ways of producing
new topological spaces from old ones.
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Induced topology

Let S be a subset of the topological space X. We can give S a topology from
that of X.

4.1 DefinitIon
The topology on S induced by the topology of X is the family of

sets of the form U (i S where U is an open set in X.

In other words if 'W is the family of open sets in X then
U E 'it } is the family of open sets in S. To prove that 'its gives a topology
for S we have to check the three conditions for a topology. Since 0 = 0 fl S

and S = X fl S we immediately have the first condition. For the second let
S and S be two elements of then since (U2fl S)Ci S) =

(U1ri U2) ri S it belongs to Finally, if { S;jE.J } is an arbitrary set
of elements taken from then U (U fl S is in 'its.

jEJ jEJ

The induced topology is sometimes referred to as the relative topology. If
the subset S of X has the induced topology then we say that S if a subs pa ce
of X.

For example, if we take the subset [a,b] of R (with the usual topology)
and give it the induced topology then the sets

[a,c), a<c<b,
(d,bJ, a<d<b,
(d,c), a<d<c<b

are open subsets of (a,b]. Note that U open in [a,b] does not imply that U
is open in R.

As another example we can give the unit circle S' in R2, the topology
induced by the usual topology on R2. The open sets of S' are then unions
of 'open arcs' (i.e. arcs. with endpoints excluded). More generally we give the
standard n-sphere where
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n+ 1

1=1

the topology induced by the usual topology on
R we may consider the subset S given by 0. If we give S the

induced topology (using the usual topology on R then S is homeomor-
phic to R". The proof is left as an exercise; alternatively see Chapter 6.

It is interesting to look at subspaces of R and try to find which are
homeomorphic to each other. For example the intervals [a,bj and [c,d] in
R C R3 are homeomorphic. A homeomorphism f is given by

f(x) = c + (d— c)(x- a)/(b— a).

It is not difficult to construct an inverse f' and show that f and f1 are con-
tinuous (see also Exercise 4.5(g)). Intuitively we just stretch or shrink the
intervals into each other.

Figure 4.1

For another example look at a circle and a square (by a square we mean
the 'edge' of a square region); see Figure 4.1. The map that sends the intervals
in S' from Xj to onto the intervals in the square from y1 to defines
a homeomorphism from the circle to the square. If { (x,y); x2 + y2 = I } is

the circle and { (x,y); x = ±1, — 1 < y < I or - I < x < 1, y = ±1 } is the
square then explicit homeomorphisms are given by

circle square square circle
(x,y) (x/m,y/m) (x,y) (x/r,y/r)

where m = max (lxi, lyl) and r = 'J(x2 + y2). Intuitively we just twist or bend
the circle to form a square. In general if we have two subspaces of R3 (or
R2) then intuitively they are homeomorphic if we can twist, bend and
stretch or shrink one into the other without joining points together and
without making any cuts. So, for example, a doughnut (the type with a hole
in it) is homeomorphic to a teacup (with a handle); see Figure 4.2.

Another example of homeomorphic spaces is given in Figure 4.3(a) and
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(d), with intermediate homeomorphic spaces illustrated in Figure 4.3(b) and

If h: X Y is a homeomorphisin then for every point x E X the spaces
X - { x } and Y - { h(x) } are homeomorphic. This sometimes gives us a
way of thowing that certain spaces are not homeomorphic. For example, at

Figure 4.2

Figure 4.3

(C) (d)

411

(a) (b)
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least intuitively at this stage, the subspaces [0,1] and (0,1) of R are not
homeomorphic because if we remove the point 0 from [0,11 then we get
(0,1] which (intuitively) is in one piece, whereas if we remove any point
from (0,1) then we get (intuitively) two pieces; more precisely it is the dis-
joint union of two non-empty open subsets. Now (intuitively) one piece
cannot be homeomorphic to two pieces (this would involve cutting, which is
not continuous) and so [0,1] cannot be homeomorphic to (0,1). (The notion
of 'one piece' and 'two pieces' will be made rigorous in Chapter 9.) The
above idea can be extended to removing two or more points. The reader can
explQre these ideas a bit more by doing the exercise that follow.

4.2 Intuitive exercise on homeomorphisms
Sort the subspaces of R3 (and R2) in Figure 4.4 into sets of homeo-

morphic ones.

Figure 4.4

ABCDEFGHUKLMNOFORS
TUVWXYZ 1234567890

E VooO p®
m

If we look at a circle and a knotted circle in R3 (see Figure 4.5) then we
could easily construct a homeomorphism between the circle and the knotted

y, Yl

Figure 4.5
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circle. The idea is to divide each into, say nine parts, and map the interval in
the circle from Xj to onto the interval in the knotted circle from y1 to

If a knotted circle is made out of thin string then, as the reader can
easily discover, it is not possible to make a circle from the knotted circle by
twisting and bending without cutting or glueing. However, if we make a
temporary cut in the knotted circle, unknot it and glue it back we can get a
circle. This suggests that we modify our intuitive notion of homeomorphisms
between subspaces of R3 by allowing temporary cuts. The idea is that we
can make a temporary cut, carry out some homeomorphisms (by twisting,
bending etc.) and then glue back the cut we made; the initial and fInal spaces
are then homeomorphic. This idea can be made rigorous by using the notion
of quotient spaces as in Chapter 5; see in particular Theorem 5.5.

4.3 Exercise
Show that the two subspaces of R3 shown in Figure 4.6 are homeo-

morphic. The first subspace is obtained by sewing together three twisted
strips of paper to two circular discs of paper. The second is obtained by
sewing together two long strips of paper. (Hint: Cut the first at two places,
namely at two of the twisted strips, then unfold and finally glue back.)

Figure 4.6

We have already mentioned that if S is a subspace of X then open sets of
S are not necessarily open in X. If, however, S is open in X then open subsets
of S are open in X.

4.4 Lemma
(I) If S is open in X then the open sets of S in the induced topology
are open in X.
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(ii) If S is closed in X then the closed sets of S in the induced topo-
logy are closed in X.

P-roof Since the proofs of (i) and (ii) are more or less identical we shall only
give the proof of(i). Suppose S is open in X and let U be an open subset of S.
By definition U = V fl S where V is an open subset of X. But since S is open
in X we also have that U = V fl S is open in X.

4.5 Exercises
(a) Show that if Y is a subspace of X, and Z is a subspace of Y, then Z

is a subspace of X.

(b) Prove that a subspace of a metrizable space is metrizable.

(c) Suppose that S is a subspace of X. Show that the inclusion map
S X is continuous. Furthermore, show that S has the weakest
topology (i.e. the least number of open sets) such that the inclusion
S -+ X is continuous.

(d) X is a topological space, S is a subset and i: S X denotes the
inclusion map. The set S is given a topology such that for every
space Y and map f: Y S

f: Y S is continuous if: Y -÷ X is continuous.

Prove that the topology on S is the topology induced by the topo-
logy on X.

(e) Let Y be a subspace of X and let A be a subset of Y. Denote by
Clx(A) the closure of A in X and by the closure of A in Y.
Prove that Clx(A). Show that in general Cly(A)*Clx(A).

(1) Show that the subset (a,b) of R with the induced topology is
homeomorphic to K. (Hint: Use functions like x -÷ tan + d))

for suitable c and d.)

(g) Let X,Y be topological spaces and let S be a subspace of X. Prove
that if f: X V is a continuous map then so is fiS: S f(S).

(Ii) Show that the subspaces (1,00), (0,1) of K with the usual topology
are homeomorphic. (Hint: x 1 /x.)

(i) Prove that — { (0,0,...,0,I) } is homeomorphic to with the
usual topology. (Hint: Define p: - { (0,0,...,0,l) } -+ K by

\( xi x2
I ,

by

= l+flx112
1).)
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(j) Let - {O} and have the subspace topology of
with the usual topology. Prove that f: R n+1 - (0 } -÷ Sn defined
by f(x) = x/flxU is a continuous function.
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Quotient topology (and groups acting on spaces)

In the last chapter we essentially considered a set S, a topological space X
and an injective mapping from S to X. This gave us a topology on S: the
induced topology. In this chapter we shall consider a topological space X, a
set Y and a sul)ective mapping from X to Y. This will give us a topology on
Y: the so-called 'quotient' topology.

5.1 Definition
Suppose that f: X -÷ Y is a surjective mapping from a topological

space X onto a set Y. The quotient topology on Y with respect to f is the
family

{U;f'(U)isopeninX}.

It is easy to check that satisfies the conditions for a topology: obvi-
ously 0 E and Y and the other conditions follow easily from the
facts that f'(U1ñ U2) f1(U1) (" and U

JEJ jEJ

Note that after we give Y the quotient topology then the function f: X -4 Y
is continuous.

Amce example is to take theset { { x,-x} ofcertain
unordered pairs of points in There is an obvious suijective mapping
ir: Sn -+ RP'1 given by x -* { x,-x} . The set with the quotient topo-
logy with respect to the mapping ir is called the real pro/ecrive n-space.

As a second example first consider the space

C { (x,y,z)ER3;x2 +y2 l,IzI< l}
with the induced topology. (C is a cylinder.) Let M be the set of unordered
pairs of points in C of the form { p,-p } , i.e.

M= {{p,-p);pEC}.
Since we have a natural surjective map from C to M we can give M the
quotient topology; the result is called a Mobius strip or band (sometimes
Mobius is spelt Moebius).
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Consider the function f: M R3 given by

{ p,- p } -+ ((x2 - y2) (2+xz), 2xy(2+xz),yz)

where p = (x,y,z) E C ç R3. It is not difficult to check that f is injective. The
image f(M) of M under f is pictured in Figure 5.1. In fact M is homeomor-
phic to f(M) c with the induced topology: that f is continuous follows
from the fact that F: R3 - defined by

F(x,y,z) = ((x2-y2)(2 + xz), 2xy(2 + xz),yz)

is continuous and from the universal mapping property of quotients (Theorem
5.2 below). The fact that f_I is continuous is left for the reader to prove; in
fact it follows quite easily from results to be proved in Chapter 8.

We now state and prove the universal mapping property of quotients.

5.2 Theorem
Let f: X Y be a mapping and suppose that Y has the quotient

topology with respect to X. Then a mapping g: Y Z from Yto a topological
space Z is continuous if and only if gf is continuous.

Proof The function f: X Y is continuous and so if g is continuous then so
is the composite gf. Conversely suppose that gf is continuous. If V is open in
Z then (gf)'(V) is open in X or in other words is open in X.
By definition of the quotient topology on Y it follows that g ' (V) is open
in Y and so g is continuous.

5.3 Exercises
(a) Suppose that Y is given the quotient topology with respect to the

mapping f: X -+ Y. Prove that Y has the strongest topology such that
f is continuous.

(b) Suppose that Y has the quotient topology with respect to the map-
ping f: X -+ Y. Show that a subset A of Y is closed if and only if
f'(A) is closed in X.

Figure 5.1
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(c) Let f: R S' (S' R2) be defined by

f(t) = (cos(2irt), sm(2irt)) E R2.

Prove that the quotient topology on S' determined by f is the
same as the topology 'fr induced from R2 (i.e. show that (S' ,

,'W)).
(d) Let X,Y,Z be topological spaces and let f: X Y, g: Y -+ Z be sur-

jections. Prove that if the topologies of Y and Z are the quotient
topologies determined by f and g respectively then the topology of
Z is the quotient topology determined by gf: X Z.

(e) Prove that RP' and S1 are homeomorphic.
(f) Show that the function f: RP2 R4 given by

{x,—x} -+(x12—x22,x1x2,x1x3,x2x3)

is continuous and injective.
(g) Let X be a topological space and let f: X -+ Y be a suijective map.

Let denote the quotient topology on Y. Suppose that 'W is a
topology on Y so that f: X Y Is continuous with respect to this
topology. Prove that if f is a closed or an open mapping then

(Y, 'Wf). Furthermore, give examples to show
that 1ff is neither open nor closed then (Y,'W) (Y,

(h) Suppose that f: X -+ Y is a surjective map from a topological space
X to a set Y. Let Y have the quotient topology determined by f and
let A be a subspace of X. Let denote the topology on B = f(A)
c Y induced by Y and let denote the quotient topology deter-
mined by the map f IA: A B. Show that 'W1 c Give an
example to show that in general * (Hint: Consider f: R
S' given by f(t) = exp(2irit).) Also, show that if either A is a closed
subset of X and f is a closed map or A is an open subset of X and f is
an open map then 'W1 = 'W2.

Surjective mappings are obtained If we consider the equivalence classes of
some equivalence relation. Thus, if X is a topological space and — is an equiva.
lence relation on X then we let X/- denote the set of equivalence classes and
define f: X -÷ by f(x) = [x] the equivalence class containing x. X/
with the quotient topology is often said to be obtained from X by topological
Identification. For example If — Is the equivalence relation on S" given by
x y if and only If x = ±y then Sn,—. is of course RI". Similarly the same
relation on the cylinder C gives C/— which is the Möbius strip.

If we take the unit square X = { (x,y); 0 � x, y � 1 } in R2 with the
induced topology and define an equivalence relation on X by
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(x,y) (x',y') (x,y) = (x',y') or { x,x') = C 0,1 } and y = y'

then with the quotient topology is in fact homeomorphic to the cylinder.
A tedious proof could be given now but it will follow much more readily in
Chapter 8; intuitively it is clear. We picture X with its equivalence relation as

in Figure 5.2(a), the arrows indicating which (and in which way) points are
to be identified.

Figure 5.2

We could construct a Möbius strip by a similar process; the relevant pic-
ture is given in Figure 5.2(b) and the relation on the square X is

{x,x'} 1O,l} andy= l-y'.
Two other examples obtained from topological identifications of a unit

square are given in Figure 5.3.

Figure 5.3

The non-trivial relations on X given in Figure 5.3(a) are

(0,y) (I ,y), (x,0) (x,l),

while the non-trivial relations on X given in Figure 5.3(b) are

(O,y)"-(l, y), (x,0)'-(l-x,l).
It will be apparent later on (but the reader may like to prove this now) that
the torus (the space of Figure 5.3(a)) is homeomorphic to the subspace of

R3 given by

+y2)-2)2 +z2 = 1)

(a) Cylinder. (b) MObius strip.

(a) Torus. (b) Klein bottle.



Quotient topology (and groups acting on spaces) 31

A homeomorphism is given by

(x,y) ((2+cos (2irx)) cos (2iry), (2+cos (2nx)) sin (2iry), sin (2irx))

This leads to the traditional picture of a torus as the surface of a doughnut
(the type with a 'hole' in it). See figure 5.4.

Intuitively, if we start with some flexible material in the shape of Figure
5.3(a) and make the appropriate identifications then we are led to this pic-
ture again. See Figure 5.5.

The similar process for a Klein bottle is difficult because we need to per-
form the identification in R4. The first identification (Figure 5.6(b)) is easy.
For the second (Figure 5.6(c)) we need four dimensions. Pictorially we
represent this as in Figure 5.6(d). The circle of intersection that appears is

Figure 5.4

(b) (c)

Figure 5.5

(a)

(d) (e)
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not really present, it appears because we live in a three-dimensional world.
By slicing Figure 5.6(d) with a plane we see (see Figure 5 .7(a),(b)) that

a Klein bottle is really just two Môbius strips joined along their common
boundary. We can also visualize this as in Figure 5.7(c),(d).

For further intuitive notions recall that the real projective plane RP2 is
defined as S2 /- where

x —. x' x = ±x'.

In this case the northern hemisphere is identified with the southern hemi-
sphere and so we may restrict our attention to the northern hemisphere
which is homeomorphic to the disc D2 = { (x,y) E R 2; x2 + y2 <1 } via

(x,y,z)-+(x,y)
for (x, y, z)E S2 with z 0. Thus we may rewrite RP2 as D2/- where

orx,x'ES1 cD2 andx-x'.
Pictorially this gives Figure 5.8(b), or equivalently Figure 5.8(c). Of course
we have not presented a rigorous proof.

If we remove a small region (homeomorphic to f2) in R P2 then we are
left with a Mobius strip; see Figure 5.9. Thus the real projective plane can be
thought of as a Möbius strip sewn onto a disc.

Figure 5.9

0
(a)

0
(b)
0

(C) (d)

0

(a) (b)

Figure 5.10
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The sphere may be represented as a quotient space as indicated in Figure
or (b). Intuitively we imagine the spaces as purses with a zip. After

zipping up we get a sphere.
In the above examples we have argued intuitively. Rigorous proofs could

be given but these are best left until we have a bit more theory. After reading
Chapter 8 the reader should return to this chapter and give details of proofs
concerning the intuitive results just mentioned.

A lower-dimensional analogue of the disc and sphere example is the inter-
val and circle: if we identify the ends of a unit interval we get a circle; intui-
tively this is clear. The reader should try to write down a proper proof.

5.4 Exercises
(a) Show that if I [0,1] R and is the equivalence relation x x'

if and only if { x,x' } = { 0,1 } or x = x' then 1/— is homeomor-
phic to S'.

(b) The Mobius strip has some interesting properties compared with the
cylinder. Make a model of a cylinder and a Mobius strip by using
strips of paper, say 40 cm by 4 cm. Draw a pencil line midway
between the edges of the cylinder and of the MObius strip. Now cut
along the pencil lines. What is the result in each case? What if we cut
along a line one-third of the distance between the edges?

The next result gives sufficient conditions to ensure that quotients of
homeomorphic spaces are homeomorphic.

5.5 Theorem
Let f: X —* Y be a function between the topological spaces X and Y.

Suppose that X and Y have equivalence relations and respectively
such that x if and only if f(x) f(x'). If f is a homeomorphism then

and are homeomorphic.

Proof Define a function F: -+ by F [x] = [f(x)], where the
square brackets denote equivalence classes. F is well defined since if [xJ =
[x') then x 'Xx, thus f(x) yf(x') and [f(x)J = [f(x')]. We shall prove
that F is a homeomorphism. To show that F is injective assume that F [xJ =
F [x'J so that [f(x)] = [f(x')J, i.e. f(x) f(x'). But then x x'and
[xJ = [x']. Surjectivity of F is easy to show. To prove that F is continuous we
consider the natural projections lrX: X X/-x and Y which
are continuous. Clearly Firx = lTy f and since f is continuous we deduce that

is continuous and hence F is continuous by the universal mapping pro-
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perty of quotients. The fact that is continuous follows in a similar way
because F' lry iixf'

As an example consider R with the equivalence relation
x x' if and only if there is an integer n such that x' = Also consider
R with the equivalence relation x x' if and only if there is an integer n
such that x' = n + x. The function f: R + -* R given by f(x) = log3(x) is a

homeomorphism and x ' x' f(x) f(x'), hence the spaces R + /'- and

R /- are homeomorphic; in fact both are homeomorphic to the circle.
Theorem 5.5 explains the intuitive idea of a 'homeomorphism' as presen-

ted in Chapter 4: We start with a space W. By cutting it we get X and a rela-
tion which tells us how to reglue X in order to get W. Now perform a
homeomorphism f on X to give Y with an equivalence relation Natur-
ally, we want that

x x' • f(x) y f(x').

Regluing Y according to gives us Z = By Theorem 5.5 the space
Z is homeomorphic to the space X.

A concept that we shall find useful later on is that of a group G 'acting'
on a set X. The notion is fruitful and leads to examples of spaces with the
quotient topology.

5.6 Definition
Let X be a set and let G be a group. We say that G acts on X and

that X is a G-set if there is a function from G X X to X, denoted by (g,x)
gx, such that

(i) = x for all xE X, where 1 is the identity element of C,
(ii) = for all xE X and g,h E G.

As an example let G be the group of homeomorphisms of a topological
space X (see Exercise 3.7(d)) and define gx = g(x) for gEG. This defines an
action of C on X since clearly I x = 1(x) = x and g.(h.x) = gh(x) =

g(h(x)) = (gh)(x) = (gh)x. Another example is to take G = 12 = { ± 1 } the

group of order 2 and X = S". An action of 12 on is given by ±1x =

as is easily verified. If we take G = Z the integers and X = R then an action
of I on R is given by irx = n + x where n E Z, x E R. This example can be
generalized to an action of Z X Z on R2 by (m,n)(x,y) (m + x, n + y). In
both cases we leave it for the reader to verify that we do indeed get an action
as defined in 5.6. Our last example for the present is an action of 1 on the
infinite strip

{(x,y)E R2;-½�y�½}
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which is given by

m(x,y) = (m + x, (_l)my).

Our definition of a G-action is strictly speaking that of a left G-action.
There is also the notion of a right G-action where now we have a function
X X G -÷ X, denoted by (x,g) -+ xg such that x1 x and = x(gh).
By a G-action we shall always mean a left G-action.

5.7 Exercises
(a) Suppose that X is a right G-set. For x E X and g E G define

gx = x(g'1)
Show that this defines a (left) action of G on X. Why does the
definition gx = xg fail?

(b) Let H be a subgroup of a group G. For hE H, g E G define hg to be
hg. Show that this defines an action of H on G.

(c) Let G be a group and let,Y(G) denote the set of subsets of G. Show
that

{ ghhEU} ,gEG,UE5°(G)
defines an action of G on5'°(G).

(d) Let G act on X and define the stabilizer of x E X to be the set

{gEG;gx=x}.
Prove that is a subgroup of G.

(e) Let G act on X and define the orbit of x E X to be the subset

1 gx;gEG }
of X. Prove that two orbits Gx, are either disjoint or equal.
Deduce that a Gset X decomposes into a union of disjoint subsets.

An important consequence of the definition of a G-set X is that in fact G
acts on X via bijections.

5.8 Theorem
Let X be a G the function Og: X -+ X defined by

x -+ is bijective.

Proof From the definition of a Gset we see that 0g0h = 0gh and =
thUS = = 0g'0g and so 0g is bijective.

If G acts on X then we can define an equivalence relation on X by

x y there exists g G such that = y,
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or in other words x y if and only if y E Gx; see Exercise 5.7 (e). Now
denote the set of equivalence classes by X/G; this is called the quotient set
of X by G. There is an obvious surjective mapping X -* X/G. If X is a topo-
logical space upon which G acts then we can give X/G the quotient topology.
We call X/G with the quotient topology the quotient space of X by G.

For example if Z 2 acts on Sn by ±1x = ix then is just
R by nx = n + x then R/Z is just S'.

5.9 Exercises
(a) Let Xbe the infinite strip {(x,y)E R2;-½<y<Vz} in R2 with

Z acting on it by = (m + x, (- l)mx). Show that the quo-
tient space XIZ is homeomorphic to the Móbius strip.

(b) Let X and Y be G-sets. We say that the function f: X Y is G-
equivariant if f(gx) = gf(x) for all x E X and all g E G. Prove that
if X and Y are topological spaces and f is a G-equivariant homeomor-
phism (i.e. both G-equivariant and a homeomorphism) then X/G
and Y/G are homeomorphic.

(c) Construct examples to show that if X and Y are topological spaces
with G acting on them such that X/G Y/G then X and Y are not
necessarily homeomorphic.

(d) Let X be a G.set. For each x E X the stabilizer acts on G and so
the quotient G/GX is defined. Show that GIGX is just the set of
left cosets of in G. Show that there is a G-equivariant bijection
between Cx the orbit of x and G/GX.

In the examples that we gave of groups acting on topological spaces the
group in question acted continuously; we have a special name for such a
space.

5.10 Definition
Suppose that X is a topological space and G is a group then we say

that X is a G-space if G acts on X and if the function 0g given by x -+

g E G.

5.11 Exercise
Suppose that x is a G-space. Prove that the function 0g given by

x -, is a homeomorphism from X to itself for all g E G. Deduce that there
is a homomorphism from G to the group of homeomorphisms of X.

Because of the above exercise we sometimes say that if X is a G-space then
G is a group of homeomorphlsms of X. Using this we prove the next result.
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5.12 Theorem
Suppose that X is a G-space. Then the canonical projection ir:

X X/G is an open mapping.

Proof Let Ube an open set in X then consider ir'(ir(U)).
' (ir(U)) = { x X; ir(x) E ir(U) }

= {
= C xEX;x=gyforsomeyEU,somegeG}

{ xEX;xEgUforsomegEG}
= U gU

gEG

The action of each g in G is a homeomorphism, so if U is open then so is
iT (ir(U)) and hence ir(U) is open in XIG.

In the next exercises the first is an extension of the universal mapping
property of quotients. The second extends Theorem 5.12 in a special case.

5.13 Exercises
(a) Let X be a G-space and let ii: X X/G be the canonical projection.

Suppose that g is a function from X/G to a topological space Z.
Prove that g is an open mapping if and only if gir is an open mapping.

(b) Let X be a G-space with G fInite. Prove that the natural projection
ir: X X/G is a closed mapping.

(c) Suppose X is a G-space and H is a normal subgroup of G. Show that
X/H is a (G/H)-space and that

(X/H)/(G/H) X/G.
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Product spaces

Our final general method of constructing new topological spaces from old
ones is through the direct product. Recall that the direct product X X Y of
two sets X,Y is the set of ordered pairs (x,y) with x E X and y E Y. If X and
Y are topological spaces we can use the topologies on X and Y to give one on
X X Y. A first guess might be that the open sets of X X Y should be products
of open sets in X and in Y; this however is not quite sufficient (think! -
which condition for a topology fails?).

6.1 Definition
Let X and Y be topological spaces. The (topological) product X X Y

is the set X X Y with topology consisting of the family of sets that
are unions of products of open sets of X,Y.

A typical element of is of the form U X where J is some
jEJ

indexing set and for each jEJ, and are open subsets of X and Y respec-
tively. That is a topology is not hard to check: 0 = 0 X 0 and XX Y =
X X Y so that the first condition is satisfied. If W,W' E then W = U

U X and with UJ, U'k
kE K

open in X and VJ, open in Y. Since

U

(j,k)EJXK

we see that condition (ii) for a topology is satisfied. The third condition is
trivially true.

The notion of the topological product of X and Y can be extended to the
topological product of a finite number of topological spaces in an obvious
way.



40 A lint course in algebraic topilogj'

6.2 Exercises
(a) Show that if X1 andY1 thenX1 X X Y2.

(b) Let X,Y be metri.zable spaces and suppose that they arise from
metrics dx,dy respectively. Show that d defined by

d((x1,y1),(x2,y2))max
is a metric on X X Y which produces the product space topology on
X X Y. Deduce that the product topology on R X fl, Rm

with usual topology). is the same as the usual topology on
RnxRm.

(c) The graph ofafuncuonf: X-+YisthesetofpointsinXX Yofthe
form (x,f(x)) for x E X. Show that if f is a continuous function
between topological spaces then the graph of f is homeomorphic to
x.

(d) Prove that R2- { 0 } is homeomorphic to R X S' . (Flint: Consider

R2-{O} asC-(0}.)
There is another characterization of the topology on X X Y.

6.3 Theorem
Let X X Y be the product of two topological spaces. A set W ç

X X Y is open if and only if for all w W there exist sets such that
is open in X, is open in Y, X C W and w X

Proof Suppose W is open, then W = U X where J is some indexing set
j€J

and are open in X,Y respectively. So, if w W then w U, X V, for
some iEJ. Conversely the set U X is open in X X Y and clearly is

wEW

equal to W.

There are obvious projection maps lrx: X X Y -# X and lry: X X Y Y

given by (x,y) x and (x,y) y. These are called the product projections.
Since -l (t.J) = U X Y and (V) = X X V it is clear that both 1TX and lTy

are continuous maps.

6.4 Theorem
For all y E Y the subspace X X { y } ç X X Y is homeomorphic

to X.

Proof Consider the map f: X X ( y } -+ X given by (x,y) x. This is
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clearly bijective. We may write f as the composite of the inclusion X X y }
X X Y and the projection X X Y X, both of which are continuous.

Thus f is continuous. Next, suppose that W is an open subset of X X y I
so that W = (U X n X X { y } where are open in X,Y respec-

J

tively. W may be rewritten as U X { y } where J' { j E J; y E }

JEJ'

thus f(W) = U which is open in X. This proves that f is also open and
JEJ'

hence is a homeomorphism.

If' f: A -÷ X and g: A Y are mappings between topological spaces then
we can define a mapping h: A -+ X X Y by h(a) = (f(a),g(a)). It is clear that h
is the unique mapping such that lrxh = f and iryh = g. The relationship
between the continuity of h and f,g is called the universal mapping property
of products.

6.5 Theorem
Let A,X and Y be topological spaces. Then for any pair of mappings

f: A -. X, g: A -÷ Y the mapping h: A X X Y defined by h(a) = (f(a),g(a))
is continuous if and only if f and g are continuous.

Proof If h is continuous then so is irxh = f and 7y Ii = g. Conversely suppose
that I and g are continuous. Let U,V be open subsets of X,Y respectively.
Then XV) = { a;f(a)E U,g(a) E V } = g'(V), but since

and are both open so is X V). Now consider an open
set W in X X Y. If x E W then x E U X V c W where U,V are open in X,Y.
Thus h' (x) E f' (U) fl (V) c h (W) and so h' (W) is open.

6.6 Exercises
(a) Show that the product topology on X X Y is the weakest topology

such that 1TX and iry are continuous.
(b) Let X be a G-space and let Y be an H.space. Prove that the space

(X X Y)/(G X H) is homeomorphic to (X/G) X (Y/H).
(c) For (n,m) E Z X Z and (x,y) E K2 define

(n,m)-(x,y) = (n+x,m+y)

Show that this makes R2 into a (Z X Z )-space. Prove that R2/
(ZX Z)ishomeomorphictoS1 X 51•

(d) Prove that the torus (see Figures 5.3(a) and 5.4) is homeomorphic
to S1 X 5'.
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(e) For n Z, z E C - { 0 } define nz by

n-z = 2hz.

Show that this makes C - { 0 1 into a 1 -space. Prove that (C
- { 0 1)! Z is homeomorphic to S' X S'. (Hint: Use Exercises
6.2(d), 6.6(b) and the fact that I = 1 X { 1 1

(f) As in (e) above but define nz by

nz =

What is(C — { 01 )/Z?
(g) Prove that - { 0 } and S"' X R are homeomorphic spaces.

(Hint: Consider the function f: X R R "-
'C O} given by

f(x,t) = 2tx.)

(h) Prove that the subset 5p,q ç defined by

where p + q � n, is homeomorphic to X (Hint: Con-

sider the function f: SP' X R nq 5p,q given by

(i) Let G be the group of homeomorphisms 'C i I I where T:
- { 0 1 R - 'C 0 ) is given by Tx = 2x. Show that (K"

- 'C 0 1 )IG is homeomorphic to S"' X S'.
(j) Prove that the following two subsets of K" with the usual topology

are homeomorphic.

D"= 'C xER";lIxII<l}
(Hint: First show that I" ([- 1, 1] )" = X, then define p: X D"
and

max 'CIxiI,1x21,...,IxnI}
lixil

,X2

ij'(x1 ,x2
= lixU

(x1
max 'C ,

= 0.
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Intuitively: Shrink down each line segment from 0 to ax linearly to
have length 1. See Figure 6.1.)

Figure 6.1

(k) Prove that (Hint: Tn =

(1) Find a non-empty space X such that X X X X. (Hint: Try a non--
finite set with the discrete topology. Having done that try also to
find an example of such a space without the discrete topology.)
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Compact

In this and the next two chapters we shall look at properties of spaces that
are preserved under homeomorphisms. One important consequence of this is
that if one space has the property in question and another does not, then
the two spaces cannot be homeomorphic. The first property is compactness.
This concept is essentially based on the fact that if { j E J } is a collec-

tion of open subsets of the unit interval [0,11 c R (with the induced topo-
logy) such that U = [0,1] then there is a finite subcollection of these open

JEJ

sets whose union still gives [0,1]; see Theorem 7.7.

7.1 Definition
A cover of a subset S of a set X is a collection of subsets {

j E J) of X such that S c U If in addition the indexing set J is finite
jEJ

then EJ } is said to be a finite cover.

For example the collection El/n, 1-1/n); n N } is a cover of the
subset (0,1) of R . Of course if S = X then f j E J } is a cover of
XifX U then { isa

jEJ

cover of R.

7.2 Definition
Suppose that j E J } and ( k E K } are covers of the

subset S of X. If for all j E J there is a k E K such that = Vk then we say
}isasubcoverofthecover {Vk;kEK}.

For example { r ER ), where Vr (r,r+3) c R, is a cover of R
and { { Vr;rE R }.

7.3 Defmition
Suppose that X is a topological space and S is a subset. We say that
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the cover { E J} is an open open
subset of X.

7.4 Definition
A subset S of a topological space X is said to be compact if every

open cover of S has a fInite subcover.

In particular the topological space X is compact if every open cover of X
has a finite subcover. The space R with its usual topology is not a compact
space because { (n,n + 2); n E Z } is an open cover of R with no finite sub-
cover. A space X with the discrete topology is compact if and only if it is
finite. This is because each point of X is open and so if X is infinite then the
open cover consisting of the set of single points has no finite subcover. On
the other hand if X is finite then there are only a finite number of open
subsets. We shall shortly show that the unit interval [0,11 is a compact sub-
set of R.

7.5 Exercises
(a) Suppose that X has the finite complement topology. Show that X

is compact. Show that each subset of X is compact.
(b) Prove that a topological space is compact if and only if whenever

{ j E 3 } is a collection of closed sets with fl = 0 then there
JEJ

is a finite subcollection Ck; k E K } such that Cl Ck = 0.
kE K

(c) Let .F be the topology on R defined by: UE and only if for
each s E U there is a t > s such that [s,t) c U. Prove that the subset
[0,1]

of a topological space may be given the induced topology and
so we have two concepts of compactness for 5: as a subset of X and as a
space in its own right. The two concepts coincide.

7.6 Theorem
A subset S of X is compact if and only if it is compact as a space

given the induced topology.

Proof This is clear since the open subsets of S with the induced topology are
of the form U Cl S where U is an open subset of X. The reader should write
down the details carefully.
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Thus we could have defined S to be compact if it is a compact space in
the induced topology.

The next result yields an important example of a compact space.

7.7 Theorem
The unit interval [0,1] c R is compact.

Proof Let { U3; j E J } be an open cover of [0,1] and suppose that there is
no finite subcover. This means that at least one of the intervals [0,½1 or
[½,l J cannot be covered by a finite subcollection of { j .1 } . Denote
by [a,b] one of those intervals, that is [a,bJ cannot be covered by a finite
subcollection of ( j I }. Again at least one of the intervals [a1,
½(a1 + b1)] or [½(a1 + b1),b1J cannot be covered by a finite subcollection
of { j J } ; denote one such by [a2 ,b2J. Continuing in this manner we
get a sequence of intervals [a1,b1J. [a2,b2],..., such that no
finite subcollection of f j E I } covers any of the intervals. Furthermore

- = 2-n and < for all n. This last condition
implies that am for every pair of integers m and n so that is an upper
bound for the set { a1,a2,...} . Let a be the least upper bound of the set

a1,a2,...} . Since a for each n, a is a lower bound of { b1,b2,...}
Let b be the greatest lower bound of the set { b1 ,b2 ,... } - By definition we

- wehaveb- a<
for each n and so a = b.

Since f j E I } covers (0,11 and a b E [0,11 we have a E U3 for

some j El. Since is open there is an open interval (a-e,a+e) c for

some e > 0. Choose a positive integer N so that 2 and hence bN - aN

(c. However a E [aN,bN] and a - aN <e, b - bN <2N <e so that
IaN,bNl c (a - e, a + e) c U, which is a contradiction to IaN,bN] not being
covered by a finite subcollection of ( U3;j €3 }

The above argument could be extended to show that the unit n-cube
In = I x I x ...x I C R is a compact space where I =[0,1] C R . We shall

however give another proof later on.

7.8 Theorem

Let f: X -' Y be a continuous map. If S c X is a compact subspace,
then f(S) is compact.

Proof Suppose that { €3 } is an open cover of f(S); then { f'(U3);
j E J } is an open cover of S. Since S is compact there is a finite subcover
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{ k E K }, K finite. But f(f1(Uk))CUk and so { Uk;kEK } is

a cover of f(S) which is a finite subcover of j E J }

7.9 Corollary
(a) Each interval [a,b] C R is compact.
(b) Suppose that X and Y are homeomorphic topological spaces; then

X is compact if and only if Y is compact.
(c) If X is compact and Y has the quotient topology induced by a map

f: X Y then Y is compact.
(d) S' is compact.

The proof is obvious. Note that (b) tells us that a non-compact space can-
not be homeomorphic to a compact space.

Not every subset of a compact space is compact; for example (0,1) is a
subset of the compact space 10,11 which is not compact. This is easily seen
by using the covering { (1/n, 1 - 1/n); n C N } . However a closed subset of
a compact space is compact.

7.10 Theorem
A closed subset of a compact space is compact.

Let Ei } be an open
isanopensubsetofX.SinceU U

JEJ

f X - S I is an open cover of X and as X is compact it has a finite sub-
cover. This finite subcovering of X is of the form { k C K I or

{ U K K is

finite subcover of { U3;j E J } which covers S.

We have investigated compactness under the induced topology and the
quotient topology. We now look at the product topology.

7.11 Theorem
Let X and Y be topological spaces. Then X and Y are compact if

and only if X X Y is compact.

Proof Suppose that X and Y are compact. Let { W3;j Ci I be an open cover
of X X Y. By definition each is of the form U (U3 k X VJk) where Uj,k is

kEK

open in Xand Vj,k is open in Y. Thus { X VJ,k;J Ci, kEK} is an
open cover of X X Y. For each x C X the subspace { x } X Y is compact (it
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is homeomorphic to Y) and since { X VJ,k; j E J, k K } also covers

{ x } X Y there is a finite subcover

U1(x)X V1(x);i l,2,...,n(x) }

covering { x } X Y. Let U'(x) be defined by

nkx)
U'(x) = fl U1(x)

i=1

The collection { U'(x); x E X } is an open cover of X and therefore has a
finite subcover { U'(x1); i = 1,2,...,m } . Clearly

{ U'(xj) X Vk.(xi); i = l,2,...,m, k1 = 1,2,...,n(xj) }

is a finite open cover of X X Y. For each I and there is some j E J and
k E K such that

X Vk.(xj) ç Ui,k X Vj,k c

It follows that there is a finite subcover of E J ) which covers X X Y.
Conversely if X X Y is compact then X and Y are compact because lrX

and iTy are continuous.

More generally, of course, if X1 are compact topological spaces
then the product X1 X X2 X ... X is also compact. In particular the unit
n-cube is compact. A subset S of is said to be bounded if there is a
real number K>0 such that for each point x = E S,1x11 <K
for i = l,2...,n. In other words S lies inside the n-cube of width 2K. Since
this is homeomorphic to the unit n-cube we deduce:

7.12 Theorem
(Heine—Borel) A closed and bounded subset of is compact.

The converse to Theorem 7.12 is also true; see Exercise 8.14(n). From
previous results we may now deduce that each of the following spaces is com-
pact:

(closed bounded subset of

R (surjective image of Si');
the Möbius strip (closed bounded subset of R3).

7.13 Exercises
(a) Which of the following spaces are compact?

= { x E < 1 }, f x lixil < 1 }

f (s,t)E R2;O�s< 1,O<t<4 1'
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{ (s,t,u) E R3 ; s2 + t2 � 1 } fl {. (s,t,u) E R3; + u2 < 1 }

(b) Prove that a compact subset of R" is bounded.
(c) Prove that the graph of the function f: I -÷ R is compact if and

only if f is continuous. Give an example of a discontinuous function
g: I -# R with a graph which is closed but not compact.

(d) Let X,Y be topological spaces. Let be the set of continuous
functions from X to Y. If A c X and B c Y then write F(A,B)for
the subset of F(X,Y) which maps A into B:

F(A,B) 1 }.
Let b" be the following

9' { F(A,B); A is a compact subset of X and B is an open set of Yl.

Define by

= { U C .F(X,Y); if f E U then there are elements F1,F2,...,
ñF2

Prove that 'W is a topology for .F(X,Y). (It is called the compact-
open topology.)

(e) Let X be a compact metrizable topological space. Suppose that Y is
a metric space with metric d, define d

*
on F(X,Y) by

d (f,g) = sup d(f(x),g(x)).
XE X

Show that d
*

is a metric for F(X,Y) and that the resulting topology
on F(X,Y) is the compact..open topology.

(I) A space X is said to be locally compact if for all x E X every neigh-

bourhood of x contains a compact neighbourhood of x. Show that if
X is locally compact then the evaluation map e: F(X,Y) X X Y
given by e(f,x) = f(x) is continuous.

(g) Let X be a compact topological space arising from some metric
space with metric d. Prove that if { j E J } is an open cover of
X then there exists a real number & > 0 (called the Lebesgue num-
ber of { j E J }) such that any subset of X of diameter less
than & is contained in one of the sets EJ.

(h) Let X be a topological space and define X°° to be X U { } where
°° is an element not contained in X. If 'W is the topology for X then
define to be together with all sets of the form V U f 00 }

where V C X and X-V is both compact and closed in X. Prove that
is a topology for X°°. Prove also that X is a subspace of X°° and

X°° is compact. (X°° is called the one-point compactification of X.)
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Hausdorff spaces

The starting point of this chapter is Exercise 2.2(b) where you were asked to
prove that if a topological space X is metrizable then for every pair x,y of
distinct points of X there are open sets and containing x and y respec-
tively such that = 0. The proof is straightforward: since x * y,
d(x,y) = 2e for some e where d is some metric on X realizing the topology
on X. The sets = { z E X; d(x,z) <e } and satisfy the required
conditions.

8.1 DefinitIon
A space X is Hausdorff if for every pair of distinct points x,y there

are open sets containing x,y respectively such that = 0.

Thus all metrizable spaces are Hausdorff, in particular with the usual
topology and any space with the discrete topology is Hausdorff. A space
with the concrete topology is not Hausdorff if it has at least two points.

8.2 ExercIses

(a) Let X be a space with the finite complement topology. Prove that X
is Hausdorff if and only if X is finite.

(b) Let F be the topology on R defined by U Fif and only if for
each s U there is a t > s such that [s,t) c U. Prove that (R,J) is
Hausdorff.

(c) Suppose that X and Y are homeomorphic topological spaces. Prove
that X is Hausdorff if and only if Y is Hausdorff.

The Hausdorff condition is an example of a separation condition. We shall
define some of the other separation conditions, but apart from the next few
pages we shall only pursue the Hausdorff condition in detail.

8.3 Definition
Let k be one of the integers 0,1,2,3 or 4. A space X is said to be a
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Tk-space if it satisfies condition Tk given below:

T0: For every pair of distinct points
there is an open set containing one
of them but not the other.

T1: For every pair x,y of distinct points
there are two open sets, one con-
taining x but not y, and the other
containing y but not x.

T2: For every pair x,y of distinct points
there are two disjoint open sets, one
containing x and the other contain-

X

ingy.

13: X satisfies and for every closed
subset F and every point x not in
F there are two disjoint open sets,
one containing F and the other
containing x.

T4: Xsatisflesl1 and forevery pair
F1 ,F2 of disjoint closed subsets
there are two disjoint open sets,
one containing F1 and the other
containing F2.

A T2-space is a Hausdorff space. A T3-space is sometimes called a regular
space.

It is clear that 12 The reason why condition was included
in conditions 13 and 14 will be revealed in the next result (Theorem 8.5)
from which it will follow that 14

8.4 Exercises

(a) Suppose that X and Y are homeomorphic spaces. Prove that X is a
Tk-space if and only if Y is a Tk-space (k = 0,1,2,3,4).

(b) Construct topological spaces X0,X1 ,X2 and X3 with the property
that Xk 15 a Tk-space but Xk is not a for j > k.

(c) Prove that a compact Hausdorff space is a T4-space. (Hint: Look at

0
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the proof of Theorem 8.7 and in desperation look at the proof of
Theorem 8.11.)

8.5 Theorem
A space Xis T1 if and only if each point of X is closed.

Proof Suppose X is a T1 -space. Let x E X and y E X - { x } . Then there is
an open set containing y but not x. Therefore

U U=X-{x}
yEX — { x }

which shows that X - { x } is a union of open sets and hence is open. Thus

{ x} is closed.
Conversely if x } and { y } are closed then X - { x } and X - { y }

are open sets, one containing x but not y and the other containing y but not
x; i.e. Xis a Ti-space.

As a corollary we get the following result.

8.6 Corollary
In a Hausdorff space each point is a closed subset.

In fact something much more general holds.

8.7 Theorem
A compact subset A of a Hausdorff space X is closed.

Proof We may suppose that A * and A * X since otherwise it is already
closed and there is nothing to prove. Choose a point x E X - A. For each
a E A there is a pair of disjoint open sets Ua, Va with x in Ua and a in Va. The

set { Va; a E A } covers A and since A is compact there is a finite subcover,

{ Va(1),Va(2),...,Va(n) }

which covers A. The set U = Ua(1) ñ Ua(2) ('L.fl Ua(n) is an open set con-
taining x which is disjoint from each of the Va(j) and hence U c X - A. Thus
each point x E X - A has an open set containing it which is contained in
X- A,whichmeansthatX- AisopenandAisclosed.

Theorem 8.7 leads to an important result.

8.8 Theorem
Suppose that f: X -+ Y is a continuous map from a compact space X
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to a Hausdorff space Y. Then f is a homeomorphism if and only 1ff is
bijective.

Proof Obviously 1ff is a homeomorphism then f is bijective. It is the con-
verse which is more interesting. Suppose therefore that f is bijective, whence

exists. Now is continuous if and only = f(V) is closed
whenever V is closed in X. If V is closed In X then V is compact by 7.10,
whence f(V) is compact by 7.8 and so f(V) is closed by 8.7 which proves
that f_I is continuous.

We need both the Hausdorff and compactness conditions In the above
result. For example If X Is the real numbers with the discrete topology
(hence not compact) and Y is R with the usual topology (hence Hausdorff)
then the identity map X Y is continuous and bijective but not a homeo-
morphism. Also, if X = { x,y } with the discrete topology (hence compact)
and Y = x,y } with the topology { Ø,Y, { x } } (hence not Hausdorff)
then the identity map is continuous and bijective but not a homeomorphism.

Using the above theorem, many of the homeomorphisms in Chapter 5 can
now be easily seen. For example the image f(X) of a compact space X In a
Hausdorff space under a continuous injective map is homeomorphic to X.

We now go on to investigate how the Hausdorff property carries over to
subspaces, topological products and quotient spaces.

89 Theorem
A subspace S of a Hausdorff space X is Hausdorff.

Proof Let x,y be a pair of distinct points in S. Then there are a pair of dis-

and fl S) and fl S) while y is in
fl 5). Hence S is Hausdorff.

In particular every subset of R" with the usual topology is Hausdorff.

8.10 Theorem
Let X and Y be topological spaces. Then X and Y are Hausdorff if

and only If X X Y is Hausdorif.

Proof Suppose that X and Y are Hausdorff and let w1 = (xj,y1) and w2

(x2 be two distinct points of X X Y. If x1 * x2 then we can find two
open disjoint sets U1 ,U2 with x1 U1, x2 E U2. The sets U1 X Y and
U2 X Y are disjoint open sets in X X Y with w1 E U1 X Y and w2 E U2 X Y.
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If x1 = x2 then Yi * Y2 and a similar argument shows that there are disjoint
opensetsXX V1 andXXV2inXX Ywithw1EXX Vtandw2EXXV2.

Conversely, if X X Y is Hausdorff then so are the subspaces X X f y },
{x} XYandhencesoareXandY.

Thus spaces like S' X S' X ... X S' are Hausdorff.
Although subspaces of Hausdorff spaces are Hausdorff and products of

Iiausdorff spaces are Hausdorff it is not true in general that a quotient space
of a Hausdorff space is Hausdorff. As an example let X be a Hausdorff space
with a subset A of X which is not closed, (e.g. X = R, A (O,l)). Let Y be

where is the equivalence relation on X given by x x' if and only if
x = x' or { x,x'} c A (intuitively Y is X with A shrunk to a point; in
general we denote Y = X/'— by X/A). If we give Y the quotient topology
with g: X Y being the natural projection then the inverse image of the
point J E Y where E A is A which is not closed in X. Therefore the
point [xo] is not closed in Y and Y is not Hausdorff.

To ensure that a quotient space Y of a Hausdorff space X is Hausdorff we
need to impose further restrictions on X. As an example we give the following
result.

8.11 Theorem
Let Y be the quotient space of the topological space X determined

by the surjective mapping f: X Y. If X is compact Hausdorff and f is closed
then Y is (compact) Hausdorff.

Proof Points of Y are images of points in X which are closed in X, thus the
points of Y are closed. Let Yi and Y2 be a pair of distinct points in Y. The
sets (yj) and are disjoint closed subsets of X. For each point
xE f'(y1) and each point a E there are a pair of disjoint open sets

and with xE Ux,a and a E Vx,a. Since is closed It Is also
compact and so there is a finite subcover of { Vx,a; a E (Y2) } which
covers f'(y3), say { Vx,a; a E A ) where A is a finite subset of In

particular there are disjoint open sets and with xE U, and f1 (y2) ç
in fact

U
aEA aEA

Now f x E f'(y1) } is an open cover of f1(y1) which is compact,
hence there is a finite subcover { x E B } where B is a finite subset of

Thus the sets
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U= U V= C)

xEB x€B

are disjoint open sets with
f is closed, by assumption, f(X - U) and f(X - V) are closed subsets

of Y so that W1 = Y - f(X - U) and W3 = Y - f(X - V) are open subsets of
Y with Yi E W1 and Y2 E W2. Finally, we just need to check that W1 C) W2

0. Suppose therefore that y E W1 W2, then y f(X - U) and y
f(X - V). Therefore (X - U) = 0 and C) (X - V) = 0 from
which it follows that U ('IV =0 and henceW1 flW2

As a corollary we get the following result.

8.12 Corollary
If X is a compact Hausdorff G-space with G fInite then X/G is a

compact Hausdorff space.

Proof 1.et C be a closed subset of X. Then

iT U gC
gEG

where ir: X -+ X/G is the natural projection. Since the action of g E G on X
is a homeomorphism gC is closed for all g G. Thus ii is closed and

hence ii'(C) is closed which shows that ir is a closed mapping.

So, for example, R pa is a compact Hausdorff space.
For another corollary to Theorem 8.11 consider a space X with a subset

A c X. Recall that X/A denotes Xh where is the equivalence relation on
X given by

x x' if and only if x = x' or x,x' E A

8.13 Corollary
If X is a compact Hausdorff space and A is a closed subset of X then

X/A is a compact Hausdorff space.

Proof Let C be a closed subset of X and let p: X X/A denote the natural
map. IfC C) A = 0 then p(C)Cisclosed. lfCC)A*Øthenp(C)=p(C-A)
Up(C ('I A) which Is closed because (p(C-A)Up(COA))(C-A)UA =
C U A. Thus pis a closed map.

Other restrictions on a Hausdorff space ensuring that a quotient is also
Hausdorff appear In the next set of exercises, where a converse to Theorem
8.11 is also given.
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8.14 Exercises
(a) Let f: X -, Y be a continuous surjective map of a compact space X

onto a Hausdorff space Y. Prove that a subset U of Y is open if and
only if is open in X. (Hint: Prove that a subset C of Y is
closed if and only if (C) is closed in X.) Deduce that Y has the
quotient topology determined by f.

(b) Prove that the space Y is Hausdorif if and only if the diagonal D =
{ Y;y1= y2 } in YX Y is a closed subset of YX Y.

(c) Let f: X Y be a continuous map. Prove that if Y is Hausdorif then
the set { (x1,x2) E X X X; f(x1) = f(x2) } is a closed subset of
XXX.

(d) Let f: X -+ Y be a map which is continuous, open and onto. Prove
that Y is a Hausdorff space if and only if the set 4 (x1,x2) E
X X X; f(x1) = f(x2) } is a closed subset of XX X.

(e) Let X be a compact Hausdorff space and let Y be a quotient space
determined by a map f: X Y. Prove that Y is Hausdorff if and only
if f is a closed map. Furthermore, prove that Y is Hausdorff if and
only if the set { (x1 ,x2) E X X X; f(x1) = f(x2) } is a closed sub-
setofXX X.

(I) Let be the equivalence relation on S1 X I given by (x,t) (y,s) if
and only if xt = ys (here we think of S' c C and 1= [0,1] c R).
Prove that (S' X is homeomorphic to the unit disc D2 =

x E R2; lIxil � 1 } = { xE C; lxi < 1 } with the induced topo-
logy.

(g) Let be the equivalence relation on the unit square region X =

{ (x,y) E R 2.0< x,y <1 } givenby(x,y)-(x',y')ifandonlyif
(x,y) = (x',y') or { x,x' } = f 1,0 } andy = l-y' or { y,y'} =

( 1,0 } and x = 1-x'. See Figure 8.1. Prove that the identification
space is homeomorphic to R P3.

Figure 8.1

(h) Let be the subset of c given by
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Prove that the function f: R 1 R" given by

induces a homeomorphism from to the closed n- disc D1',

(i) Define--on R by

x y if and only if x- y is rational.

Show that is an equivalence relation and that R with the
quotient topology is not Hausdorff.

(j) Let X be a compact Hausdorff space and let U be an open subset of
X not equal to X itself. Prove that

X/(X-U).

(Hint: Consider h: U°° X/(X-U) given by h(u) = p(u) for u E U
and h(°°) p(X-U) where p: X X/(X-U) is the natural projec-
tion.) Deduce that if x E X (and X is a compact Hausdorff space)
then

(k) Prove that

Sn In/ale.

(Hint: Sn- { (O,O,...,O,l) )
(1) (Generalization of 8.11) Let Y be the quotient space of X deter-

mined by the suijective mapping f: X -+ Y. Suppose that X is a
Hausdorff space, f is a closed mapping and f_I (y) is compact for all
y E Y. Prove that Y is a Hausdorff space.

(m) Suppose that X is a compact I-lausdorff space and that A is a closed
subspace of X. Suppose furthermore that A is a G-space with G
finite. Define a relation on X by saying that x x' if and only if
eitherx x orbothx,x EAandxgx forsomegEG.Prove
that is an equivalence relation on X and prove that the space
X/— is Hausdorff.

(n) Prove that

A subset of is compact if and only if it is closed and bounded.

(Hint: Use Theorem 7.12, Exercise 7.13(b) and Theorem 8.7.)
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Connected spaces

Intuitively a space X is connected if it is in 'one piece'; but how should a
'piece' be interpreted topologically? It is reasonable to require that open or
closed subsets of a 'piece' are open or closed respectively in the whole space
X. Thus by Lemma 4.4 we should expect that a 'piece' is an open and closed
subset of X. This leads us to the following definition.

9.1 Definition
A topological space X is connected if the only subsets of X which

are both open and closed are 0 and X. A subset of X is connected if it is
connected as a space with the induced topology.

An equivalent definition is that X is connected if it is not the union of two
disjoint non-empty open subsets of X. That this is so forms the next result.

9.2 Theorem
A space X is connected if and only if X is not the union of two

disjoint non-empty open subsets of X.

Proof Let X be connected and suppose X = X1 U X2 where X1 and X2 are
disjoint open subsets of X. Then X - X1 = X2 and so X1 is both open and
closed which means that X1 = or X and X2 = X or 0 respectively. In either
case X is not the union of two disjoint non-empty open subsets of X.

Conversely, suppose that X is not the union of two disjoint non-empty
open subsets of X and let U C X. If U is both open and closed then X - U is

both open and closed. But since X is then the disjoint union of the open sets
U and X - U one of these must be empty, i.e. U = 0 or U = X.

As an example, the subset S° = { ± 1) of R is not connected because
{ + 1 } is both an open and a closed subset of S°; or equivalently because
S° is the disjoint union of the open subsets + 1) and { - 1 } of S°. An
example of a connected subset of R is [a,b], but this is a theorem. Before



Connected spaces

proving this let us have some more examples. The examples show that we
have to be careful with our intuition.

Let X be the real numbers with the topology { 0 } U { R } U

x R } ; then any subset of X is connected. To prove this let S
be any subset of X. Suppose that F is a non-empty subset of S which is both
open and closed in S. Thus we may write F as U ñ S = C n S where U is open
in X and C is closed in X, i.e. U = (-a°,b) for some b and C = [a,°°) for some
a. Since F = U ñ S = C S it follows that if x E S then x <b and x � a (if
there is an x � b then C ii S * U S; similarly if there is an x <a then
Ufl S * C fl S). Thus S c [a,b) and F = S which means that S is connected.

Now let X be the real numbers with the topology F defined by: S E F
if and only if for each s E S there is a t> s such that (s,t) c S. In this case
the only non-empty connected subsets of X are single points. To prove this
suppose that T is a non-empty connected subset of X and let x be a point in
1. The subset [x,x + e) of X is both an open and closed set (Exercise 2.6(d))
for all e >0. Thus [x,x +e)flT isan open and closed subset ofT. Since T is
connected and [x,x-e) fl I * it follows that (x,x + e) I = T for all

0. But this is possible only if I = { x }. Clearly single points are con-
nected and so the only non-empty connected subsets of X are single points.

We come now to the proof that the subset [a,b] of R (with the usual
topology) is connected.

9.3 Theorem
The interval [a,b) c R is connected.

Proof Suppose that [a,bl is the disjoint union of two open sets U, V of [a,b].
Also, suppose that a U. Note that U and V are also closed in [a,b] and
hence, since [a,b] is closed in R, they are also closed in R. Let h be the
least upper bound of the set

{ u E U; u <v for all v V }

(this set is non-empty smce a belongs to it). Because U is closed, h E U.
Now (h-e,h+e) ñ V * 0 for all e> 0 (otherwise h would not be an upper
bound)andsoby Lemma2.7,hEV. V

gives a contradiction, proving that [a,b) is connected.

9.4 Theorem
The Image of a connected space under a continuous mapping is con-

nected.

Proof Suppose that X is connected and f: X Y is a continuous surjective
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map. If U is open and closed in Y then f_I (U) is open and closed in X which
means that (U) = 0 or X and U = or Y. Thus Y is connected.

9.5 Corollary
If X and Y are homeomorphic topological spaces then X is con-

nected if and only if Y is connected.

From Theorem 9.4 we deduce that the circle S' is connected since there
is a continuous surjective map f: [0,11 S' given by f(t) = (cos(2irt), sin
(2irt))ES' c R2.

To prove that intervals in R of the form [a,b), (a,b] and (a,b) are con-
nected we make use of the next result.

9.6 Theorem
Suppose that { j E J } is a collection of connected subsets of a

space X. If fl *0 then Y = U is connected.
jEi JEJ

Proof Suppose that U is a non-empty open and closed subset of Y. Then
U fl Y1 * 0 for some I E J and U fl Y1 is both open and closed in Y1. But Y1
is connected so U ñ = Y1 and hence Y1 c U. The set Y1 intersects every
other j E J and so U also intersects every j E J. By repeating the argu-
ment we deduce that C U for allj E J and hence U = Y.

That the subsets [a,b), (a,bl and (a,b) of R are connected follows from
Theorem 9.3, Corollary 9.5 and the fact that

[a,b) = U [a,b - (b—a)/2"]
n>1

etc. Similarly it follows that R itself and intervals of the form [a,oo),
(—oo,b] , (—°°,b), (a,°°) are connected.

The final result that we shall prove concerns products of connected spaces.

9.7 Theorem
Let X and Y be topological spaces. Then X and Y are connected if

and only if X X Y is connected.

Proof Suppose that X and Y are connected. Since X X X { y) and
Y for all xEX, yEYweseethatXX {y} and { x} XY

are connected. Now (X X { y 3) fl ((x 3 X Y) = { (x,y) 3 * 0 and so

(XX { y 3) U ({ x} X Y) is connected by Theorem 9.6. We may write
XX Y as
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XXY U((XX {y})U({x) XY))
xEX

for some fixed y E Y. Since (1 ((X X f y } ) U ( { x } X Y)) * 0 we deduce
XE X

that X X Y is connected.
Conversely, suppose that X X Y is connected. That X and Y are connected

follows from Theorem 9.4 and the fact that irk: X X Y -+ X and
X X Y Y are continuous surjective maps.

From the above results we see that is connected. In the exercises we
shall see that is connected for n> 1 and also that is connected.

9.8 Exercises
(a) Prove that the set of rational numbers Q c R is not a connected

set. What are the connected subsets of Q?
(b) Prove that a subset of R is connected if and only if it is an interval

or a single point. (A subset of R is called an interval if A contains
at least two distinct points, and if a,b E A with a < b and a < x < b
then x A.)

(c) Let X be a set with at least two elements. Prove
(i) If X is given the discrete topology then the only connected sub-
sets of X are single point subsets.
(ii) If X is given the concrete topology then every subset of X is
connected.

(d) Which of the following subsets of R2 are connected?

x; lixil < 1) , { x; lxii> I } , { x; lixil * 1 }

Which of the following subsets of R3 are connected?

{ x;x12 +x22 — x32 = 1} , {x;x12 +x22 +x32 =—l}
{x;xj*I}

(e) Prove that a topological space X is connected if and only if each
continuous mapping of X into a discrete space (with at least two
points) is a constant mapping. -

(f) A is a connected subspace of X and A c V c A. Prove that V is
connected.

(g) Suppose that Y0 and { j G I ) are connected subsets of a space
X. Prove that if Yo fl * 0 for all j E J then V = Yo U (U

jEJ
is connected.

(h) Prove that R n+I- 0 } is connected if n 1. Deduce that and
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R are connected for n � 1. (Hint: Consider f: { 0 }

Sn given by f(x) = x/IIxII.)
(i) Let A and B be subsets of R2 defined by

A = {(x,y); x = 0,-i <y<l ),
B= {(x,y);0<x<1,ycos(ir/x)}.
Prove that X = A U B is connected. (Hint: Prove that A and B are
connected. Then consider X U U V where U,V are open and closed
in X. Finally assume that some point of A is in U.)

(j) Let A and B be subsets of R2 defined by

A { 1,y0 },
B= {(x,y);0<x<1,yx/nwherenEN}.
Prove that X A U B is connected.

(k) First steps in algebraic topology. Let X be a topological space and
define H(X) to be the set of continuous maps from X to 12 (the
topological space consisting of two points { 0,1 } with the discrete
topology). 1ff, g E H(X) then define f + g by

(f+g)(x) f(x) +g(x)mod2(xEX).
Prove that f + g is continuous and H(X) is an abelian group with
respect to this operation. Prove that X is connected if and only if
H(X) is isomorphic to the cyclic group of order 2. Construct
examples of topological spaces Xk with H(Xk) isomorphic to
(Z2)".
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The pancake problems

In this chapter we give some light hearted applications of the results of
previous chapters by looking at the so-called 'pancake problems'. Roughly
stated the first problem is: Suppose you have two pancakes (of any shape)
on a plate, show that it is possible to cut both exactly in half with just one
stroke of a knife. The second problem is to show that you can divide one
pancake into four equal parts with two perpendicular cuts of a knife. The
proofs are based on a form of the intermediate value theorem.

10.1 Lemma
1ff: I -+ R is a continuous function such that the product f(0)

f(l) is finite and non-positive then there exists a point t E I such that f(t) = 0.

Proof Suppose that f(t) * 0 for all t E I; in particular f(0) f(l) <0. Define
a function g: I f ±1 } = S° by g(t) = f(t)/(lf(t)I). This is clearly con-
tinuous and surjective (because f(0) f(l) <0). But I is connected while S°
is not. This contradicts the fact that the image of a connected space is
connected.

As a corollary we get the following fixed point theorem.

10.2 Corollary
Suppose that f: I I is a continuous function; then there exists

some point t E I such that f(t) = t.

Proof If 1(0) = 0 or f(l) = I we are finished. Suppose therefore that f(0) >0
and 1(1) < I and consider the function g(t) = 1(t) - t. This is continuous and
satisfies g(0) g(l) < 0. Thus by Lemma 10.1 we have g(t) = 0 for some

E 1 and hence f(t) = t for some t E I.

10.3 Corollary
Every continuous mapping of a circle to the real numbers sends at
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least one pair of diametrically opposite points to the same point.

Proof Suppose that f(t) * f(-t) for all t E S'; then let h: S' R be the
function h(t) = f(t) — f(—t). Also, let e: I S1 be given by e(t) = exp(lrit).
Clearly he is continuous. Now

he(0)h(1)f(l)— f(—1)
he(1) = h(- 1) = f(— 1) f(1) = —he(0).

So by Lemma 10.1 there is a point t E I such that he(t) = 0 and hence an
x E S' such that h(x) =0 i.e. f(x) = f(- x).

There is a physical interpretation of Corollary 10.3.

10.4 Corollary
At a given moment of time and a given great circle on the earth

there is a pair of antipodal points with the same temperature.

Antipodal points are just diametrically opposite points. This result does
generalize; see Chapter 20.

We come now to a precise statement of the first pancake problem.

10.5 Theorem
Let A and B be bounded subsets of the eudidean plane. Then there

is a line in the plane which divides each region exactly in half by area.

Note that the two regions may overlap, i.e. the pancakes may overlap.
Furthermore the regions need not be connected, i.e. the pancakes may be
broken into several pieces.

Proof Let S be a circle with centre (0,0) E R2 which contains both A and B
(this is possible since A and B are bounded). By changing scales we may
assume that S has diameter 1 unit. For each x E S consider the diameter

Figure 10.1
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of S passing through x and let be the line perpendicular to passing
through the point on at a distance t from x (tEl); see Figure 10.1.

Let g1(t) denote the area of that part of A which lies on the side of
nearest to x. Let g2(t) denote the area of the other part. (Note g1(0) =
g2(1) = 0.) It is clear that g1 and are continuous functions from I to R.
Define f: I R by

f(t) g2(t) — g1(t).

It is continuous and satisfies f(0) = —f(1), i.e. f(0) f(l)<0. By Lemma 10.1
we know that there is some point t E I such that f(t) =0. This point may not
be Because g2 and - g1 are monotone decreasing functions (this is
obvious) so is f = g2-g1. Thus f(t) = 0 on either a closed interval [a,bI or at
some unique point c. In the former case let hA(x) = (a+b) while in the
latter case hA(x) = c. In other words a line perpendicular to passing

through the point distance hA(x) from x on bisects the area of A. Note
that

hA(-x) = l-hA(x).
Also note that hA: S' -' I is a continuous function (the usual trick: move x
slightly and see what happens to hA(x)).

In an identical fashion we defuse a function hB: S1 -+ I by using B instead
of A. Now define h: S1

h(x) = hA(x) -hB(x)
which is continuous because hA and hB are. Now, we have h(x) = -h(-x) for
all x E S'. But also by Corollary 10.3 there is some point y E S' such that
h(y) h(-y). Thus h(y) = 0, = hB(y) and the line perpendicular to
passing through the point on at a distance hA(y) from y bisects the area
of A and the area of B.

The above theorem generalizes to higher dimensions, i.e. n bounded
regions in R fl; for n = 3 see Chapter 20.

The second pancake problem is now stated precisely.

10.6 Theorem
If A is a bounded region in the plane then there exists a pair of

perpendicular lines which divide A into four parts each of the same area.

Proof As in the proof of Theorem 10.5 we enclose A within a circle S centre
(0,0) E R2 and diameter 1 unit. For each x ES let be the line perpendi-
cular to which meets at a distance hA(x) from x (in particular
bisects the area of A). Let y be the point on S at an angle from x
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measured counterclockwise (i.e. y = ix = I)). Now let be the line
perpendicular to which meets at a distance hA(y) from y (again
bisects the area of A). Finally denote the four parts of A, working counter-
clockwise, by A1(x), A2(x), A3(x), A4(x); see Figure 10.2. Note that if we
denote area by g1(x) then

gj(x) + g2(x) = g3(x) +

g4(x) + gj(x) = g2(x) + g3(x),

which gives g1(x) = g3(x) and g2(x)=g4(x). Of course, each of g1,g2,g3 and
is a continuous function from S' to R. Let f be the continuous function

given by

f(x) g1(x) -g2(x) = g3(x) -g4(x)

Notice that

f(ix) = g1(ix) —g2(ix)

= g2(x)-g3(x)
= g2(x)—g1(x)
= -f(x).

Now apply Lemma 10.1 to the function I R, where sje: I - S' is

given by exp(irit/2), to obtain the required result.

Figure 10.2

A1(x)

.A4(x)

The solution to the pancake problems is an existence theorem; it asserts
that a cut of the required kind exists but it does not tell us where to make
the cut. In general the precise position of the cut may be difficult to find;
we give, by way of an exercise, one example where it is easy to find.

10.7 Exercises
(a) Suppose that there are two pancakes on a plate. If one of them has

the shape of a regular 2n-gon and the other the shape of a regular

A3



Pancake problems 67

2m-gon where would you make a cut with one stroke of a knife in
order to divide both exactly in half?

(b) (An alternative proof of Theorem 10.5.) Using the notation of 10.5
first show that for x E S' there is a line perpendicular to
which divides A in half. This line divides B into two parts; let
k1(x), k2(x) be the areas of those parts of B that are respectively
closest to, farthest from x. Let k(x) = k1(x) - k2(x). Show that k:
S' -+ R is continuous and deduce Theorem 10.5.
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Manifolds and surfaces

In this chapter we look at a special class of topological spaces: ones that
locally look just like euclidean spaces.

11.1 Definition
Let n be a non-negative integer. An n-dimensional manifold is a

Hausdorff space in which each point has an open neighbourhood homeomor-
to the open n-dimensional disc = { x E Oxti < 1 } - Note that

R so that we could equally require that each point has a neighbour-
hood homeomorphic to R For brevity we talk about an n-manifold.

Since R° is just a single point it follows that any space X with the dis-
crete topology is a 0-manifold. (A space with the discrete topology is
Hausdorff and for x E X we can choose { x } as the open set containing x
which is homeomorphic to R°.) Apart from the 0-manifolds perhaps the
simplest example of an n-manifold is or itself. Also, any open subset
of is an n-manifold: if U is an open subset of and u EU then there
exists an e >0 such that u E B6(u) C U C and of course

The circle S' is a 1-manifold. To see this let S' C C be given by

{ exp(2irit) ;tEI } -

Ifxexp(2iriO)ES' then

xES'- { —x } S' - ( exp(2iri(O- ½)))
{exp(2irit);O-½<t<8+½}

½,O+½)

so that each point has a neighbourhood homeomorphic to &. Clearly S1 is
Hausdorff and so S' is a 1-manifold. More generally S" is an n-manifold. To
see this we introduce the idea of stereographic projection which is in fact a
homeomorphism from - (0,0,...,0,I) } to Ri'. We define it as follows:
for x E Sn — { (0,0,...,0,I) ). draw a straight line from (0,0,...,0,l) to
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xm extended to meet

R The point of intersection defines uniquely See Figure
11.1.

Figure 11.1
(0,0,1)

It is not difficult, intuitively at least, to see that is continuous and
bijective. Also = can be easily defmed and seen to be continuous. A
precise formula for is not difficult to obtain: just write down the equation
for a straight line in passing through (0,0,...,0,1) and x, then find the
point in this line for which = 0. The reader will quickly find that

xl x2 x.,
)1_xn+1 1-xn+l I-xn+l

An inverse -{(0,0,...,O,1)} is given by

l+Hx02
— I).

We leave it for the reader to check that and i/i are continuous and that
1, 1.

It follows that any point x E 5" - { (0,0,...,0,l) } has a neighbourhood,
namely S" - { (0,0 0,1) } itself, which is homeomorphic to D". Finally,

the point (0,0,...,0,l) has the neighbourhood - { (0,0,...,0,- 1) } which
is homeomorphic to R" via the map ip', where

xl x2 x
x )( ,

... " )1+ 1+ 1+I

It follows that is indeed an n-manifold.
Another way to see that S" is an n-manifold is to first look at the point

(0,0,...,0,l) E and the neighbourhood U of(0,0 0,1) given by

U=

This neighbourhood U is homeomorphic to D'1 by orthogonal projection, in
other words by the map U c given by -4
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In general. take to be

which is clearly an open neighbourhood of x Orthogonal projection
onto the n-plane in R passing through 0 and orthogonal to the line
though 0 and x produces a homeomorphism between and IY' and shows

that is an n-manifold.
The fact that an n-manifold, by definition, is Hausdorif is important.

One might ask: If X is a space in which each point has a neighbourhood
horneomorphic to R then is X Hausdorff? The answer is no, as a simple
example will show. Let X be the set

X

with the topology 1 where U E f if U = U = X or U is an arbitrary
union of sets of the form

(OJ) -1<a<2,
-l<a<O,-l<$<2.

Note that X does not have the subspace topology induced by R because sets
of the form ($,2J are not open in X. Intuitively the correct picture of X is

given in Figure 11.2 (a) or (b). This is because { 2 } is arbitrarily close to

f 0 } (i.e. any open set containing { 2 } contains (o,0) for some a). Clearly
X is not Hausdorif because any open neighbourhood of f 2 } intersects
every open neighbourhood of (0 } - On the other hand every point in X has
a neighbourhood homeomorphic to R l• If x E X and x *2 then this is clear.
If x = 2 then

is a neighbourhood of { 2 } which is homeomorphic to D' by the map f:
N-*(-I,l)=D' where

2y if-½<y<O,
f(y) =

4-2y if3/2<y<2.
The reader should check that I is continuous and bijective with an inverse
g: (-Ll)- N given by

Figure 1L2

KQ
(a) (b)
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¼x if-l<x<O,

2-½x ifO�x<l.
Thus the Hausdorff condition in Definition 11.1 is not at all superfluous.

It rules out spaces as illustrated in Figure 11.2, spaces that do not intuitively
feel locally like eucidean spaces. Perhaps another reason for including the
Hausdorff condition is that we tend to think of n-manifolds as subspaces of
some eudidean space RN, N large (which locally are like R"). In this case
the l-Iausdorff condition is inherited from the surrounding space R In

fact there is a theorem which states that if M is a nice n-manifold (for
example compact) then M is home omorphic to a subspace of some euclidean
space RN. See Exercises 11.2(f) and (g) for the case of a compact manifold.

For further examples of manifolds note that if M is an rn-manifold and
N is an n-manifold then the product M X N is an (m + n)-manifold because

x fn x and products of Hausdorff
spaces are Hausdorff. Thus S' X 5' is a 2-manifold and more generally
Sl X S' X ... X S' is an n-manifold.

n
The space is an n-manifold. To see this consider the map p: Sn

R sending x to the pair { x,- x } E R Let be an open
neighbourhood of x E Sn that is homeomorphic to D" and has diameter less
than In that case is an open neighbourhood of { x,- x } R
homeomorphic to D". This is because p is a continuous open mapping
(Theorem 5.12) and if U is a small enough region in S" then p1 U : U p(U)
is bijective. More generally let X be a G-space where G is a finite group. We
say that G acts freely on X if x x all g G, g 1. If G
acts freely on X then if X is a compact n-manifold so is X/G; conversely if
X/G is an n.manifold then so is X. We leave details for the reader.

For another example consider the identification space M depicted in
Figure 11.3, which consists of an octagonal region X with its edges identified

as illustrated. Let p: X -' M denote the natural projection map.

Figure 11.3
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If x E M is such that p1(x) isin the nteror of X then clearly x has a
neighbourhood homeomorphic to D2; in fact p(X) is such a neighbourhood.
If x E M is such that p (x) belongs to an edge of X but not a vertex of X
then again it is not difficult to see that x has a neighbourhood homeomorphic
toD2;see Figure 11.4.

Figure 11.4

Finally if p1 (x) is a vertex of X then a neighbourhood of x which is
homeomorphic to D2 is depicted in Figure 11.5 consists of points
in X of distance less than e from p for some suitable 0).

Intuitively it is not difficult to see that M is Hausdorff and the reader
should have no difficulty seeing this. For the algebraic minded we give the
following proof. Let A denote the 'edges' of X. Write A as U A1 U Y where

i=1

the Aj are the (closed) edges of X, and Y denotes the eight vertices of X. Let
C be a closed subset of X, then

p'p(C) p1p((C - A)U(C IJ (C nA1))

(C- p'p(CñA1)

=(C-

Figure 11.5
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where Y = Y if C fl Y is non-empty and e V =0 if C ('I V is empty. The set
B1 is a subspace of A homeomorphic to C A1. In fact, if the edge A1 is
identified with the edge in M then B1 is the subspace of Aj homeomorphic
to C A1 for which p(B1) = p(C A1). (Note that p(C C" A1) Ci = B1

Li (e V Ci Ai).) Thus we see that

p'p(C)=CUeYU B1

See Figure 11.6.

Figure 11.6

The subspaces B1, i = 1, 2, ..., 8, are closed subsets of X because B1 is
homeomorphic to C Ci A1 which is a closed set, and so B1 is a closed subset
of (some j) and hence a closed subset of X. It follows that p'1 p(C) is a
closed set and hence so is p(C) by the definition of a quotient topology. We
deduce that p: X M is a closed mapping. Since x is obviously a compact
Hausdorff space it follows by Theorem 8.11 that M is also a compact Haus-
dorif space and so M is indeed a 2-manifold.

We can actually perform the identifications of Figure 11.3 within our
three-dimensional world. This is depicted in Figure 11.7. The end result is
called a double torus.

Another way of realizing the 2-manifold M of Figure 11.3 is to first
remove an open disc neighbourhood of a point as indicated in Figure 11.8(a).
Now identify the two edges denoted by a1 to give (c). Consider the shaded
region V in (d). This is homeomorphic to the subspace of R2 illustrated in
(e). The function f,

(x(a+2y(b- a))/b,y) ifO<x�bandy<O,

f(x,y)= ((x_ b)(i
-

a- 2y(b- a))+a+2y(b_

ifb<x<l andy<O,(xa/b,y) . — — —
if � 0
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(where 0 <a < b <1) is a homeomorphism between the spaces illustrated in
Figure 11.8(e) and (f). Notice that f Is the identity on the three edges of
these regions not containing the bump. Thus we get a homeomorphism from
Y to Y which is the identity on the three edges of Y not containing a2. Using
this homeomorphism on Y and the identity on the non-shaded part of (d) we
get a homeomorphism between (d) and (g). Thus (c) and (h) are homeomor-
phic spaces. In a similar way (h) and (k) are homeomorphic, using the shaded
regions of (1) and (j) to define a homeomorphism. Making the identification
on a2 gives (1). In a similar way we obtain (m) which is homeomorphic to the
original (a).

Figure 11.7

a1

(e)

a,Oi

a3 (b)
(a)

(c)

(d)
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To continue we go over to Figure 11.9 and after some simple stretching
homeomorphisms we arrive at Figure 11.9(c). Finally, replacing the disc
neighbourhood that we removed gives us the double torus in Figure 11.9(d).

It turns out that all compact 2-manifolds can be obtained as the identifi-
cation space of some polygonal region; we shall return to this later on in this
chapter.

Figure 11.9

(a) (b)

(c)

11.2 Exercises
(a) Show that an open subset of an n-manifold is also an n-manifold.
(b) Let = / where is the equivalence relation

c ('n+l given by

x—y*xexp(2irit)yforsometEl.
Prove that C is a 2n -manifold. (Note that identifies circles in

to a single point; e.g. ( (exp(2 nit), O,O,...,O); t E I ) repre-

sents a point in C P".)
3fl+I(c) Let p be a positive integer and let = S I - where is the

equivalence relation on ç C n+1 given by

x y x = exp(2irin/p)y, n = O,1,...,p— 1.

(d)
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Prove that L.a, is a (2n +1)-manifold. = S2n41 I Z where
acts freely on in an obvious way.)

(d) Let X be a G-space where G is a finite group that acts freely on X.
Prove that if X is a compact n-manifold then so is X/G. Prove also
that if X/G is a manifold then so is X.

(e) Prove that if M is an n-manifold then each point of M has a neigh-
bourhood homeomorphic to the closed n-disc

(f) Suppose that M is a compact n-manifold. Prove that M is homeo-
morphic to a subspace of some euclidean space R (Hint: Since
M is compact there is a finite cover { Di,D2,...,Dm } of M and
homeomorphisms hj: D1 -+ D". Use Exercises 8.14(j) and (k) to get
homeomorphisms M/(M—D1) (D1)°° S". Since M is
compact and Hausdorff and M-D1 is closed the projection p1:
M -÷ M/(M-D1) is continuous so that we get continuous maps

f: M by f(x) = (fj(x), f2(x),
Finally c (R n)m = R nm.)

(g) Let M be an n-manifold and let D be a subspace of M which is
homeomorphic to Since - { (0,O,..,0,l) } we

have a homeomorphism

g:D-+S"— { (0,0,...,0,l)}.
Define f: M -÷ by

g(x) ifxED,
f(x) =

(0,0,...,0,1) ifxEM-D.
Prove that f is continuous. Use this result to reprove the result in (f).

Our prime interest is in compact connected manifolds. All compact con-
nected 0-manifolds are homeomorphic to each other. The circle S' is a
compact connected 1-manifold. In fact, up to homeomorphism, S' is the
only compact connected 1-manifold. The proof of this is not very difficult
and we shall give an outline of it. The first step (perhaps the hardest, but
intuitively plausible) is to use compactness to show that if M is a compact
connected 1-manifold then M can be subdivided in a 'nice' way into a finite
number of regions each homeomorphic to the unit interval I. If we call
homeomorphic images of I arcs and the image of (0,1 } the vertices of the
arcs then by 'nice' we mean that no arc intersects itself, and whenever two
arcs intersect then they do so at one or two vertices. (The idea is to (i) cover
M by neighbourhoods of points homeomorphic to D' I, (ii) choose finitely
many of these by compactness, (in) choose smaller neighbourhoods homeo-
morphic to I which still cover M, and finally, (iv) use the definition of a
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1-manifold to show that M has a nice' subdivision.) Clearly in such a nice
subdivision of M into arcs and vertices each vertex is a vertex of exactly two
distinct arcs and each arc has two distinct vertices. (If a vertex is the vertex of
one or of more than two arcs then that vertex does not have a neighbourhood
homeomorphic to D'.) Suppose that M has more than two arcs. Let A1 , A2

be a pair of arcs in M that meet at a vertex a.

A1

a

A2

Let h1: A1 -+ 1, A2 -+ I be homeomorphisms defining A1 and A2 as arcs.
We may suppose that h1(a) = I and h2(a) = 0; otherwise compose h1 and/or
h2 with the homeomorphism f: I I given by f(t) = 1-t. Define g: A1 Li A2

½ h1(x)
g(x) =

if x E A1,

½+½h2(x) ifxEA2
This is well defined and easily seen to be bijective. To see that g is continuous
note first that A1 and A2 are closed subsets of A1 Li A2 and of M. Let C be a
closed subset of I, then

g'(C) ½] (DC) 1] C)

which is clearly closed in A1 U A2, and so g is indeed continuous. That g is a

Figure 11.10

S1#S2 (c)
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homeomorphism follows easily. We can therefore replace arcs A1 ,A2 by one
arc A. We now have a subdivision of M with one fewer arc and one fewer
vertex. Continuing in this way we end up with a subdivision of M consisting
of two arcs and hence with two vertices. Thus M is homeomorphic to two
copies of I with the ends glued together pairwise. The result is that M is
homeomorphic to the circle S'.

Compact connected 2-manifolds are called surfaces. Examples of surfaces
are the sphere S2, the torus T S' X SI, the real projective plane R P2 and
the double torus described earlier on in this chapter. The first three examples
are basic in the sense that any surface can be obtained from these three
surfaces by a process called 'connected sum'. Let S1 and S2 be two disjoint
surfaces, their connected sum S1 # S2 is formed by removing small open
discs from each surface and glueing along the boundaries of the resulting
holes. See Figure 11.10.

For a more rigorous definition first choose D1 c S1 and D2 ç S2 so that
D1 and D3 are homeomorphic to D2. That such regions exist is easy to see:
Let x be some point of a surface, then x has a neighbourhood N and a
homeomorphism h: N D2. The subspace c N, where D2½ c
D2 is a closed disc of radius ½, is homeomorphic to D2 by the homeomor-
phism

y -*2h(y).
Returning to the definition of S1 0 S2 let D1 c S1 and D2 c be sub.
spaces homeomorphic to 1)2 and let h1: D1 -+ D2, h2: D2 -÷ D2 be homeo-
morphisms. Define 0 S2 by

(S1 - f)1) Li (S2 - 1)2)

where is an equivalence relation which is non-trivial only on U

a(S2-132) = aD1 U a D2; there it is given by x — h1(x) for x E It is

possible to show that the definition of connected sum is independent of the
various choices of discs D1, D2 and homeomorphisms h1, h2. It is not diffi-
cult to see that S1 4 S2 is a surface: the only neighbourhoods of points that
we need to look at are those in or Details are left for the reader.

The double torus is the connected sum of two tori; see Figure 11.10. The
Klein bottle is the connected sum of two projective planes. This can be seen
quite easily from Chapter 5 but a geometric proof is illustrated in Figure
11.11. We start with two projective planes as in Figure 11.11(a); then we
remove two open discs as indicated in (b). The result is homeomorphic to the
space in (c). Glueing together (i.e. taking connected sum) gives (d). Finally
we make a cut as in (e) to give us the identification space (J); rearranging
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Figure 11.11

O(a)O

/1/
(g)

gives (s), identifying gives (h) and a simple homeomorphism gives (1) which
is a Klein bottle.

The fact that all surfaces can be obtained from the sphere S2. the torus
T = S' X S1 and the real projective plane R P2 via connected sums gives the
so.called classification theorem of surfaces.

11.3 Theorem
Let S be a surface. S is homeomorphic to precisely one of the

following surfaces:

(c) (d) (e)

(i-I

(h) (I)
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S2

52 RP2 R P2 R p2

n

(m�O),

(n�1).

The proof breaks down into two parts. The first part is to show that any
surface is homeomorphic to at least one of the surfaces listed in Theorem
11.3. We shall not give full details of this part, but merely a brief outline
later on in this chapter. The second part of the proof is to show that no two
of the surfaces listed in the theorem are homeomorphic; this we do rigor-
ously in Chapter 26.

Taking the connected sum with a torus is often referred to as sewing on a
handle (where a handle is just a torus with an open disc removed); the reason
should be obvious. (See Figure 11.12(e), (f) for an example.) Sometimes we
talk about sewing on a cylinder: to do this remove two open discs In the
surface and sew on the cylinder as indicated in Figure 11.12(a); it is impor-
tant to do this sewing on correctly. Sewing on a cylinder incorrectly (i.e.
reversing the arrow on one of the boundary circles) is equivalent to taking
the connected sum with a Klein bottle K.

(d) (e) (J) Sewing on a handle.

(a) Sewing on a cylinder. (b) (c)
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Taking the connected sum with the real projective plane is often referred
to as sewing on a Mobius strip (see Figure 11.13). This is simply because a
projective plane with an open disc removed is just a Mobius strip (see
Chapter 5).

Figure 11.13. Sewing on a Mobius strip.

The surfaces obtained after taking a connected sum with R P2 are special
in they are (commonly called) one-sided. This is because they contain a
Môbius strip which as we saw in Chapter 5 has some strange properties. We
say that a surface is orientable if it does not contain a Mobius strip within it.
On the other hand we say that a surface is non-orientable if it does contain a
Mobius strip within it.

Thus the Klein bottle and the real projective plane are both non-orientable
surfaces while the sphere, torus and double torus are orientable surfaces.
The surface

S2#T#T#...#T (m�O),

which we abbreviate to S2 # ml, is said to be the standard orientable surface
of genus m. The surface

S2#RP2#RP2#...#RP2 (n�l),
n

which we abbreviate to S2 # n R P2, is said to be the standard non-orientable
surface of genus n.

A natural question to ask is: What surface do we get if we take connected
sums of tori and projective planes? In other words, to which standard sur-
face is

homeomorphic?, where m, n 1. Such a surface is clearly non-orientable and
so, if we assume Theorem 11.3 then mT n R P2 is homeomorphic to k R P2
for some k. We shall determine the value of k in the case m = n = 1 and leave

the general case as an (easy) exercise.
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11.4 Lemma
T# RP2 RP2 RP2 RP2.

froofDenote T# RP2 by S1 and RP2 # # RP2 byS2.Weshallfirst
represent S1 and S2 as identification spaces. S1 is the quotient space of a
hexagonal region X; see Figure 11.14.

Note that all vertices of X are identified to one point in S1 and there is a
neighbourhood D1 of this point in S1 which is homeomorphic to D2; see
Figure 11.14(e). Removing this neighbourhood (Figure 11.15(a)) and mak-
ing the identifications gives the space of Figure 11.15(c) which after a
homeomorphism gives Figure 11.15(d). We shall describe a sequence of

Figure 11.14

(a)

(c) (d)
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Figure 11.15

(d)

9 Q

C

(a)

(e)
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homeomorphisms that transform 11.15(d) to 11.15(o). To get from (d) to
(g) consider the shaded region indicated in (e) and (j). By using the ideas
described earlier in connection with Figure 11.8 it is not difficult to describe
a homeomorphism between (d) and (g). That (g) and (h) are homeomor-
phic is easy to see. To show that (h) and (k) are homeomorphic we use the
shaded regions of (i) and (j). Similarly to see that (k) and (n) are homeomor-
phic we use the shaded regions of (1) and cm). Finally it is easy to see that
(n) and (o) are homeomorphic. Thus - D1 is homeomorphic to the space
illustrated in Figure 11.15(o).

On the other hand S2 has the identification space representation given in
Figure 11.16(c). Removing the neighbourhood D2 (indicated in (d)) which is
homeomorphic to an open disc and making the necessary identifications gives
us the space of Figure 1l.16(i). It is immediate that there is a homeomor-
phism

h: S1 - D1 - D2.

Furthermore it is clear that h induces a homeomorphism

a(S1 - a(S2 - 132).

This homeomorphism on the boundaries can be extended to a homeomor-
phism between D1 and D2: If h: a(D1)-+ a(D2) is the homeomorphism and
h1: D1 D2, h2: D2 D2 then write x E D2 in polar coordinates as

Figure 11.17

(b)
(a)

(e)
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x = (r,t) where 0 r < I and t E a(D2) = S'. Define H: D1 -+ D2 by H(y) =
where h1(y) = (r,t) E D2. It is clear that H18D1 h and

that H is a homeomorphism. Thus

S1 =(S1 - - —S2

which completes the proof of Lemma 11.4.

There is another way of visualizing the homeomorphism between S1 and
We start by representing the connected sum T R P2 as a handle (a torus

with a hole in it) together with a Möbius strip that has to be glued to it. This
is illustrated in Figure 11.17(a) and It is clearly homeomorphic to the space
in Figure 11.17(b). By performing the homeomorphism illustrated in (c) -

(f) we arrive at Figure 11.17(g).
Consider a Klein bottle with a disc removed, Figure 11.18 shows what

this space looks like.
It follows easily now that S1 � K # R P2 where K denotes the Klein

bottle. But K R P2 # R P2 so that S1 S2 as was to be shown.

Figure 11.18

(e) (f) (g)

(a) (b) (C) (d)
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11.5 Exercises
(a) Suppose S1 ,S3 and S3 are surfaces. Show that

S1 iS1,
(S1 #S2)#S3 i(S2 iS3),
S2 #S1

Does the set of homeomorphism classes of surfaces form a group
using connected sum as a law of composition? Why not?

(b) Let M1 ,M2 be disjoint, connected n-manifolds. Let D1 and D2 be
subsets of M1 ,M2 respectively homeomorphic to D" via h1 ,h2 say.
Define the connected sum M1 # M3 of M1 and M2 to be the quo-
tient space

(M1 - 1!1)U(M2 - 1)2)

where identifies x a (M1 - D1) with h1(x). Prove that
M, # M2 is an n-manifold.

(c) Let S nT # mRP2 with m, n 1. TowhichstandardsurfaceisS
homeomorphic?

(d) Let S be a surface. Prove that S is homeomorphic to precisely one of
the following surfaces:

S2#nT, RP2inT, K#nT
where K is the Klein bottle and n � 0.

(e) Suppose that the surface S is a G-space where G = Z 2n+1 , a cyclic

group of odd order. Prove that S/G is a surface. Notice that it is not
assumed that G acts freely on S.

We now give an outline of the first step in a proof of the classification
theorem of surfaces. A subspace of a space is called a simple closed curve
if it is homeomorphic to the circle 5'. If C is a simple closed curve in a stir-
face S then we say that C separates S if S - C is not connected i.e. cutting
along C disconnects S(see Figure 11.19).

Figure 11.19

C3 does not
Separate I

C, separates S2
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Let S be a surface which contains a simple closed curve C that does not
separate S. It is possible to prove that a neighbourhood of C is either (I) a
cylinder or (ii) a Möblus strip (Figure 11.20). Intuitively this should be clear.

Figure 11.20

Now remove (the interior of) this cylinder or Möbius strip. In the fIrst
case sew on two discs to the two holes created, in the second case sew on one
disc to the hole created. We thus get a surface M1. Clearly M is just M1 with a
cylinder sewn on (correctly or incorrectly) or else with a Möbius strip sewn
on. In other words

M=M1 #T,MM1 #KorM=M1 4 RP2.

We now look at M1 and find a simple closed curve in M1 that does not
separate M1 (if one exists) and continue In the manner just described to
obtainM2 withM1 M2 4T,M1 =M24KorM1 RP2.Continulng
in this manner we obtain after i steps M1 with

M=M1#i114i2K4i3 RP2
where i1 + i2 + = i. It turns out that after a finite number of steps (say
k � 0) this process stops, i.e. every simple closed curve in Mk separates Mk.
Finally we use a theorem which says that if Mk is a surface in which every
simple closed curve in Mk separates Mk then Mk is homeomorphic to the
sphere S2.

Modulo the unproved assertions we see that M is homeomorphic to S2 4
QTimKin RP2 for some Q,m,n>0(Q+m+n=k). Byaneasyapplica.
tionofLemmall.4weseethatS2 #QT4mK4n RP2 ishomeomorphicto

S24QT ifm+n0
S2#(2Q+2m+n) RP2 ifm+n>0.

To complete the proof of the classification theorem we need to show that
no two of the surfaces listed In Theorem 11.3 are homeomorphic; this we do
in Chapter 26.

11.6 ExercIses

(a) Show that a torus I has two distinct (but not disjoint) simple closed
curves C1 ,C2 such that I - (C1 U C2) is connected.
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(b) Show that a torus T does not have three distinct simple closed
curves C1 ,C3 such that I — (C1 Li C2 Li C3) is connected.

(c) Generalize (a) and (b) to other surfaces.

We end this chapter with a result that we have already mentioned earlier
on: that a surface may be described as a quotient space of some polygonal
region in R2.

11.7 Theorem
If M is an orientable surface of genus m> I then M is the quotient

space of a 4m-sided polygonal region with identifications as indicated in
Figure 11.21(a).

If M is a non-orientable surface of genus n � 1 then M is the quotient
space of a 2n-sided polygonal region with identifications as indicated in
Figure 11.21(b).

Figure 11.21

a2
a3

a1

a1

S.
5%

(b)

To prove this result we just need to show that mT and nRP2 take the
form indicated. We merely illustrate the cases m <2, n <3. 1 I takes the
form as indicated in Figure 11.22. It should be clear how to proceed and
obtain the result for the orientable case. For the non-orientable case we have
Figure 11.23 for RP2 # RP2 and Figure 11.24 for RP2 # RP2 # RP2.
Again how to proceed should be clear.

Figure 11.22
a1

a1
a2

b2

(a)

//
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Figure 11.23

Figure 11.24

©
11.8 Exercises

(a) An n-manifold-with-boundary M is a Hausdorff space in which each
point has an open neighbourhood homeomorphic to either R or
the upper half-space of i.e. { R"; �O } .The
set of points in M which have neighbourhoods homeomorphic to
the upper half-space but which have no neighbourhoods homeomor-

phic to is called the boundary of M. Prove that the boundary of
an n-manifold-with-boundary is an n-i manifold.

(b) A surface-with-boundary is a compact connected 2-manifold-with-
boundary. Prove that the boundary of a surface-with-boundary is a
disjoint union of a finite number of circles. Deduce that by glueing
on a finite number of discs we may obtain from each surface-with-
boundary a surface.

(c) A surface-with-boundary is said to be orientable if and only if it
does not contain a Möbius strip. Prove that a surface-with-boundary
is orientable if and only if the associated surface ((b) above) is
orlentable.

a3
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Paths and path connected spaces

In Chapter 9 we studied connectedness; in this chapter we study a somewhat
similar and yet different concept of connectedness: path-connectedness.
Before defining this we look at 'paths'. A continuous mapping f: [0,11 X is
called a path in X. The point f(0) is called the initial point and f(l) is called
the final or terminal point. We say that f joins f(O) and f(1), and that f is a
path from f(0) to f(l). (Some books use the term arc instead of path.)

Note that it is the mapping f that is the path and not the Image f([0,l))
which is called a curve in X.

We usually think oft E [0,1] as time so that f(t) is our position at time t.
The simplest example of a path is the constant path [0,1] -+ X,

defined by = x for all t E 10,1], where x is some point of X. In this
path we spend all our time at the same point x E X.

There are two simple, but important, ways of obtaining new paths from
old. These are given in the next lemma. The first associates to a path f a path
f which essentially goes backwards along f. The second joins up two paths f,
g (if possible) to give another path f* g.

12.1 Lemma - - -
(a) If f is a path in X and f is defined by f(t) = f(l—t) then f is also a

path in X.
(b) 1ff and g are two paths in X for which the final point of f coincides

with the initial point of g then the function fsg: [0,1] -÷ X defmed
by

f(2t) if0<t<½,
(fui.g)(t) =

g(2t—l)

is a path in X.

Proof Part (a) is obvious while part (b) follows from the next result, the so-
called glueing lemma.
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12.2 Lemma

Let W, X be topological spaces and suppose that W = A U B with
A,B both closed subsets of W. 1ff: A X and g: B -+ X are continuous func-
tions such that f(w) = g(w) for all wE A fl B then h: W -÷ X defined by

f(w) ifwEA,
h(w)=

g(w) ifwEB

is a continuous function.

Proof Note that h is well defined. Suppose that C is a closed subset of X, then

=

= (h1(C)flA)U(h1(C)flB)
=

f in in A

in is closed in W. Hence h'(C) is closed in W and h is
continuous.

12.3 Definition
A space X is said to be path connected if given any two points

x0,x1 in X there is a path in X from x0 to x1.

Note that by Lemma 12.1 it is sufficient to fix x0 X and then require
that for all x E X there is a path in X from x0 to x. (Some books use the
term arcwise connected instead of path connected.)

For example R" with the usual topology is path connected. The reason
is that given any pair of points a, b E R the mapping f: [0,1] R defined
by f(t) = tb + (1-t)a is a path from a to b. More generally any convex
subset of R"is path connected. A subset E of R'1 is convex if whenever a,
bEEthentheset {tb+(1-t)a;0<t�1} iscontainedinE,i.e.Eiscon-
vex if the straight-line segment joining any pair of points in E is in E itself.
See Figure 12.1 for an example of a convex and of a non-convex subset of
R2.

Figure 12.1

A convex subset. A non-convex subset.
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In particular any interval In R'is path connected.
The next few results 12.4 - 12.7 are analogous to the results 9.4 - 9.7.

12.4 Theorem
The image of a path connected space under a continuous mapping is

path connected.

Proof Suppose that X is path connected and g: X Y is a continuous surjec.
tive map. If a,b are two points of Y then there are two points a',b' in X with
g(a') = a and g(b') = b. Since X is path connected there is a path f from a'
to b'. But then gf is a path from a to b which shows that Y is path connected.

12.5 Corollary
If X and Y are homeomorphic topological spaces then X is path

connected if and only if Y is path connected.

From the theorem we deduce that 51 is path connected. Using this we
could then show that R nfl - { 0 } and for n> I are path connec-
ted (for - {O} because any pair of points mR nfl - {0 } lie on
some circle not passing through { 0 }, for and R P" because they are
continuous images of R 1 - { o I ).

12.6 Theorem
Suppose that { j E J } is a collection of path connected subsets

of a space X. If fl * then Y = U is path connected.
jEJ jEJ

Proof Suppose that a, 15 E Y, then a E and bE YQ for some k. £ E J. Let c
be any point of fl Since '4 is path connected and a, c there is a

jEJ

path f from a to c. Similarly there is a path g from c to b. There is a path h
from a to b given by h = f.g, i.e.

f(2t) if0<t<½,
h(t)=

g(2t-1) if½<t<1.
The above result provides an alternative way of showing that R + —

(01 (and hence and R for n I is path connected.

12.7 Theorem
Let X and Y be topological spaces. Then X and Y are path
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ted if and only if X X Y is path connected.

The proof, which is identical to the proof of Theorem 9.7 (but with the
word path connected replacing the word connected), is left for the reader.

The above results should not mislead the reader into thinking that there
is no difference between connectedness and path connectedness. The next
result shows this.

12.8 Theorem
Every path connected space is connected. Not every connected

space is path connected.

Proof Suppose that X is a path connected space. We shall prove that X is
connected. To this end let X = U Li V with U,V open and non-empty. Since
X is path connected and U,V are non-empty there is a path f: [0,1] -÷ X
with f(0) E U and f( 1) E V. SInce [0,1] Is connected so is f( [0,1]) and so
U r' f( [0,1]), V fl f( [0,11) cannot be disjoint. Thus neither can U and V be
disjoint and so X is connected.

To show that not all connected spaces are path conmected we shall give an
example known as the flea and comb (see Figure 12.2). Consider the subset
X c C where X = A LI B with

A {i) (theflea),
B[0,1JU {(1/n)+yi;nEN,0<y<1} (thecomb).

We claim that X is connected but not path connected. To prove that X Is
connected first observe that B is path connected (use Theorem 12.6 on B0 =

Figure 12.2. The flea and comb.
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nEN
so B is connected. Suppose that U is an open and closed subset of X. We may
suppose that A c U (otherwise the complement of U is an open and closed
subset of X that contains A). Since U is open and i E U there is an e> 0
such that

(x;Ii-xI<e} n xcu.
There is some integer n such that (1/n) + i EU; in particular U B # But
B is connected and U fl B is a non-empty open and closed subset of B; thus
U ñ BB, i.e. ButXAUBandACU;thusU=XandsoXjs
connected. (Essentially we have proved that B ç x c so that X being
connected follows from Exercise 9.8(1).)

To prove that X is not path connected we shall show that the only path
in X that begins at i E X is the constant path. Let f be the path in X that
begins at i E X. Since i is closed in X, f_I (i) is closed in [0,11, furthermore

(i) * 0 since 0 E (i). Let U be the open subset of X given by

}.
If to E f_I (i) then since f is continuous there is an 0 such that f(t) E U
whenever t—t0 I <e. We claim that f((t0 e, t0 + e) [0,1]) = i. To see this
suppose that It1 - tol <€ and f(t1) E B. Since U ñ B is a union of disjoint
intervals, the interval containing f(t1) is both open and closed in U (open
because U Is open, and closed because the interval is of the form { (1/n) +

yi;0 �y � l} ('I Ufor some nEN).Butthiscontradictsthefactthat
f((t0 if, to + e) ñ [0,1]) is connected. Hence

(to e,t0 [0,1] Cf'(i).
We have just shown that if to E (I) then

(to - e,t0 [0,1]

which means that is open. Since (i) is also closed and [0,11 is con-
nected it follows that f1(i) = [0,1], in other words f([0,1]) = i. There is
therefore no path between i E X and any point B c X; thus X is not path
connected as was claimed.

There are many other (similar) examples of connected but not path con-
nected spaces; see the exercises below.

The last result that we prove in this chapter concerns open connected
subsets of R

12.9 Theorem
Any non-empty open connected subset E of R" is path connected.
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Proof Let p E E and let F be the subset of E that consists of those points in
E that can be joined to p by a path in E. We claim that E is open. To prove
this let q E F c E. Since E is open there is an open n-disc D c E with centre

qED {x;IIq-xlf<e}cE
for some e > 0. The open n-disc D is path connected (it is homeomorphic to
R hence any point of D can be joined to q by a path in D. Hence any
point of D can be joined topby a path inEand soqED c F. Thus F is open.

We also claim that F is closed. To see this consider G = E - F; thus G
consists of those points in E that cannot be joined to p by a path in E. By
an argument similar to the one above we can show that G is open and hence
F is closed. The subset F is non-empty, open and closed; since E is connected
F = E and so E is path connected.

12.10 Exercises
(a) Prove that any space with the concrete topology is path connected.
(b) Which of the following subsets of C are path connected?

{ {z;IzI�1} , {z;z2isreal}
(c) Prove the result in Lemma 12.2 but with the assumption that A and

B are both open subsets of W.
(d) Let X = AU B be the subspace ofR 2 where

A= {(x,y);x=0,-1<y<1},
B=

Show that X Is connected but not path connected.
(e) LetX=AUBbethesubspaceofR2 where

A {(x,y);x0,-1�y<1}
B {(x,y);0<x<1,y=sin(1/x)}
Show that X is connected but not path connected.

(f) Consider the following subsets of R2
A {(x,y);0<x<1,yx/nfornEN}
B= {(x,y);½<x<1,y0}
Prove that A U B Is connected but not path connected.

(g) Suppose that A is a path connected subset of a space X and that
{ Aj; j E 3 } Is a collection of path connected subsets of X each of
which intersects A. Prove that A U { U is path connected.

jEJ
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(h) Let = Li STI where

Using Exercise 8.14(h) prove that S" is path connected for n >0.
(i) Let be the relation on the points of a space X defined by saying

that x y if and only if there is a path in X joining x and y. Prove
that is an equivalence relation. Prove also that X is path connected
if and only if the quotient space X/-- is path connected.

(j) An open neighbourhood of a point x E X is an open set U such that
x E U. A space X is said to be locally path connected if for all xE X
every open neighbourhood of x contains a path connected open
neighbourhood of x. Prove that if X is locally path connected and
U c X is open In X then U is locally path connected. Prove that
R is locally path connected (and hence every open subset of R
is locally path connected). Prove that if X is locally path connected
and connected 'then X is path connected (this therefore reproves
Theorem 12.9).

(k) Let p, q E X. The subsets A1,A3,'..., Ak ofXare said to form a
simple chain joining p and q if p E A1, q E Ak, ñ = 0 when-

Prove that if X is connected and if { ; j E 3 } is an open cover of
X then any pair of points in X can be joined by a simple chain con-
sisting of members of { j E J } . (Hint: For p E X consider the
set of points in X which can be joined to p by some simple chain
consisting of members of { E 3

Use (k) above to give yet another proof of Theorem 12.9.
Prove that a connected n.manifold is path connected.
Prove that an n-manifold is locally path connected.
Prove that the space Y c R2 given by Y = A LI B Li C where

A { (x,y);x2 +y2 = 1,y�O).
B= {(x,y);-l <x�O,y=OJ.

Figure 12.3

A3

(I)
(m)
(n)
(0)
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C {(x,y);0<x<1,y'/isin(ir/x)}.
is path connected but not locally path connected.

(p) Let Z = Y U D E R2 where Y is as above in (o) and D is the circle

{ (x-l)2 + y2 = I }. Prove that Z is path connected but not locally
path connected.

We end this chapter with a strange path. This is a path f: I -+ 12 which is
surjective. Such examples are referred to as 'space filling curves'. They were
first invented by G. Peano in about 1890. The path f is defined as the limit
of paths I The first three are illustrated in Figure 12.4. The reader
should have no trouble in visualizing the n-th step. After n steps every point
of the square j2 lies within a distance of (Yz)" of a point in In the
limit we get a continuous surjective map f: 1 12. Note that at any finite
stage the continuous map I -+ j2 fails to be injective only at { 0 } and

{ I } in I. In fact I and are homeomorphic. This is certainly not true
in the limit.

Figure 12.4

f1(I) f2(I) f3 (I)

£ —



1 2A Appendix. The Jordan curve theorem

12A.1 Definition
A simple closed curve C is a homeomorphic image of the circle. A

component is a maximal connected subspace.

One of the two following statements is true and one is false.

(A) Let C be a simple closed curve in the eucidean plane. Then R2-C
is disconnected and consists of two components with C as their common
boundary. Exactly one of these components is bounded.

(B) Let D be a subset of the eucidean plane. If D is the boundary of each
component of its complement R2-D and if R2-D has a bounded compo-
nent then D is a simple closed curve.

We now construct an example to show that not both of the above
statements are true. The example is known as the Lakes of Wada. It was first
described by K. Yoneyama in 1917. Consider a region in the form of a
double annulus; see Figure 1 2A. I. We imagine this to be an island, surrounded
by sea water, and having two lakes. For convenience the water in the two
lakes consists of different colours. By constructing canals from the sea and
the lakes into the island we shall define three connected open sets. At time
t0 we construct a canal from the sea bringing sea water to within a dis-
tance of 1 unit of every point of land. At time t=½ we dig a canal from lake
1 bringing water from that lake to within a distance of every point of land.
At time we dig a canal from lake 2 to bring water from that lake to
within a distance of every point of land. The process continues where we
build canals at time 1- bringing the appropriate water to within a dis-
tance of every point of land. The canals of course must have no inter-
sections. The two lakes with their canal systems and the sea with its canal
form three open sets, each connected, with the remaining 'dry land' D as
common boundary.

Now if (B) is true then the region D in the 1.akes of Wada is a simple
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closed curve, and hence (A) is false. On the other hand if (A) is true then
(B) must be false. This proves our first assertion that at most one of the
statements (A), (B) is true.

In fact (A) is true while (B) is false. The result (A) is called the Jordan
curve theorem. It is named after C. Jordan, who pointed out in the early
1 890s that although (A) may seem intuitively obvious a rigorous proof is
required. Such a proof was given in the early 1900s by 0. Veblen. The proof
that we give here is based upon a recently discovered 'elementary' proof by
Helge Tverberg to whom we are indebted.

For simplicity we shall call a simple closed curve in the plane a Jordan
curve. Thus a Jordan curve C is a subspace of R2 homeomorphic to S1 =
{ z E C; Izi = 1 } . We shall say that a Jordan curve C is given by f: S' -*
R 2 if C = f(S'); of course f is not unique. A Jordan curve is a Jordan poly-
gon if it consists of a finite number of straight-line segments.

We always think of the circle S1 as a subset of the complex plane and It

Figure 12A.1. The Lakes of Wada.
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is convenient to think of R 2
as the complex plane. Thus the distance

between two points x,y of R 2 or of S' will be denoted by Ix-yl. If A and B
are two disjoint compact subsets then we define d(A,B) by

d(A,B)=inf (ia- bi ;aEA,bEB }.
In particular if A consists of a single point, say { x } , we have

d(x,B)=inf { ix- bi ;bEB}.
Our first result is to show that the Jordan curve theorem holds for a

Jordan polygon.

12A.2 Theorem
The Jordan curve theorem holds for a Jordan polygon, i.e. if C is a

Jordan polygon then R 2-C consists of two components with C as the
common boundary and exactly one of these components is bounded.

Proof First we shall show that if C is a Jordan polygon then R 2-C has at
least two components. Let p E R2-C and consider any straight line r

beginning at p; call such a line a ray at p. Let P(r,p) denote the number of
times that r intersects C with the convention that if r passes through a vertex

Figure 12A.2

r1

///
,
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V or intersects a whole-line segment L of C then we count such an intersec-
tion as two if both adjacent edges to V or L are on the same side of V or L
respectively; otherwise we count it as one. For example in Figure 12A.2 we
have P(rj,p) = 1, P(r2,p) = 1, P(r3,p) = 1, = 5, P(r5,p) = 3 and

P(r6,p) = 3.

As the ray r at p rotates, the value of P(r,p) in general changes, but
whether it is even or odd does not. We therefore define p to be an even or odd
point according to whether P(r,p) is even or odd respectively for any ray r
at p. We also refer to the parity of p being even or odd.

Thus It - C is divided into even and odd points, Xe and X0 respectively.
Clearly K 2-C = Xe U X0 and Xe fl X0 = 0. We shall show that both Xe and
X0 are open subsets of R2-C. Let p E R2-C and suppose that d(p,C)e.
This means that C R2-C. The parity of all points in the same
as the parity of p; for x E consider the ray at p passing through x. Thus
Xe and X0 are open so that R2 - C is disconnected and consists of at least
two components.

Both Xe and X0 are path connected. To see this choose any straight-line
segment in C and let a,b be two points in R2-C, close to C but on opposite
sides of this line segment so that a E Xe and b E X0. Now, if p is any point
in R 2-C then there is clearly a path in R2-C that goes from p to a point
close to C. By continuing this path, remaining in R 2-C and close to C, we
eventually reach a or b. This shows that Xe and X0 are path connected and
hence connected, which completes the proof of the theorem.

To continue we shall need the concept of continuity' and the
fact that if f: S' R 2 is a continuous map then f is uniformly continuous.

12A.3 Definition
Let M1 ,M2 be metric spaces with metrics d1 ,d2 respectively. A map

f: M1 -+ M2 is uniformly continuous if given 0 there exists 6 > 0 such
that d2(f(x), f(y)) <€ for all x,y in M1 satisfying d1(x,y) <6.

Note that this is stronger than ordinary continuity.

12A.4 Theorem
Let M1 ,M2 be metric spaces with metrics d1 ,d2 respectively. 1ff:

M1 -, M2 is a continuous map and if M1 is compact then f is uniformly
continuous.

Proof Let €> 0. ForallxEM1 thereexists6(x)>OsuchthatifyEMi and
d1(x,y) <26(X) then d2(f(x), f(y)) <½ e. The set
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{ ;xEM1}
is an open cover of M1. Since M1 is compact there is a finite subcover:

{B 6(x j) (x1), B 6(x2) (x2), ..., B 6(x ) (xe) }

Let 6 = mm { 6(x1), } . If x,y EM1 and d1(x,y) <6 then
x E B&(,Q (Xj) for some 1(1 <i < n) and so

d2(f(x), f(x1)) < 34 e

since 6 �6(x1). Also

+d1(x,x1)<5 +6(xj)<26(xj)
so that

d2(f(y), f(x1)) <34 e.

Thus

d2(f(x), f(y)) � d2(f(x), + d2(f(x1), f(y)) <e

which proves the result.

12A.5 Corollary
If f: S1 R 2 is a continuous map then f is uniformly continuous.

The proof is obvious.

12A.6 Corollary
Let M1 ,M2 be metric spaces with metrics d1 ,d2 respectively. If f:

M1 -+ M2 is a continuous map with M1 compact and with f: M1 f(M1) a

homeomorphism then, given 0, there exists & > 0 such that d1(x,y) <e
whenever d2(f(x), f(y)) <6.

Proof f(M1) M1 is a continuous map between metric spaces with
f(M1) compact.

12A.7 Theorem
Let C be a Jordan curve given by f: S1 R2. For every e >0 there

exists a Jordan polygon C' given by f': S1 R2 such that If(x) — f'(x)I <E
for all xE S'

Proof Since f is uniformly continuous on S' there exists >0 such that

Ix-yI<e1 f(y)I<½e.
Since 1: S' -, C is a homeomorphism we have by Corollary 12A.6 that there
exists €2 >0 such that
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If(x) - f(y)I <€2 Ix—yl <mm (e1

(The reason for the v'3 is that if A is a subset of S' of diameter less than
then A is contained in a smallest closed arc.)

Let & = min(½ e, €2). Cover C by square regions that do not
overlap (except at the edges), with each square being of diameter 8. Because

� €2 we know that is contained in a smallest closed arc A1 * S'.
Now f(A1) to form a Jordan curve C1; in other words define

R2by

if e(t)
f1(e(t)) I t—a

(1— —i f(e(a))+— f(e(b)) ife(t)EA1
\ b—aj b-a

where A1 = { e(t); a <t <b } and e(t) = exp(2irit), then let C1 = f1(S')
which is clearly a Jordan curve. Note that f(A1) is not necessarily contained

in S1. Note also that f1'(S1) c f'(S,) for i2,3,...,n.
Next straighten f1(A2) where A2 is the smallest arc containing f1'(S2).

This gives us a Jordan curve C2 given by f2: S1 -+ R2 (iff(1(S2)Øthen
put f2 = f1 and C2 = C1). Note again that for i3,4,...,n.
Continuing in this way we obtain a Jordan polygon given by S'
R 2 We shall check that is c-close to C.

Suppose x E S' and * f(x). Then = * for some

j � 1 where f0 = f. By construction x belongs to an arc with end points
y,z say. Also, by construction, f(y) and f(z). We have

If(x) - = — f(y) + - f3(x)I

< If(x) - f(y)I + -
< If(x)- f(y)I+&� If(x)- f(y)I+½e.

Since — f(y)I <8 < we deduce that Iz-yI < But Ix-yl <
Iz-yI, so that Ix-yl and hence If(x) - f(y)I <½ €. Thus

If(x)-

12A.8 Theorem

Let C be a Jordan polygon given by f: S' R2. Then the bounded
component of R 2-c contains an open disc whose boundary circle meets C
at two points f(a), f(b) with la—bi �v'3.

Proof Let D be an open disc such that D c R2-C and such that there
exists two points f(a), f(b) E with la-bi maximal. Such a disc exists.
Suppose that la-bi <%J3. Then a and b must be the end points of an arc A of
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length greater than 4ir/3. The boundary circle of D cannot meet f(A) —
{ f(a), f(b) } because max la-cl, lb-cl } > la—bI for all cE A - { a,b }.

Let f(v1), be the vertices of C in f(A) as seen when going
from f(a) to f(b). Four possibilities could arise: (i) v1 * a, * b, (ii) v1 * a,

= b, (iii) v1 = a, * b and (iv) v1 = a, b. In the first case the circle
is tangent to the line segments f(a) f(vi) and f(b) There is a disc

D' c R close to D such that the circle a D' touches C at points close to
f(a) and f(b), say at f(a') and f(b'), which lie in the line segments f(a) f(v1)
and f(b) respectively; see Figure 12A.3(a). As Ia -b I > la-bI we get a
contradiction. In case (ii) the circle is tangent to f(a) f(v1) and there is a
disc D' c R 2-C such that touches C close to f(a) in f(a) f(vj) and
passes through f(b) see Figure 12A.3(b). This leads to a contradic-
tion. Case (iii) is similar to (ii). For case (iv) consider the region R bounded
by f(A) and the radii of D to f(a) and f(b). For each x E R there is a unique
circle that has centre x and passes through f(a) and f(b). Letting x move
continuously from the centre of D we get, for some x, circles that bound
discs with c R2-C. Eventually, for some particular x, the circle S,,
either meets f(A) at some point other than f(a) and f(b), or becomes tangent
to one of the two segments f(a) f(v2), f(b) The first case has already
been shown to be impossible while the second gives a contradiction by the
method of case (ii) above. All these contradictions leave only one possibility,
namely that la—bl

We now prove part of the Jordan curve theorem.

1(a)

Figure 12A.3

(b)

f(v1)

f(a)
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12A.9 Theorem
If C is a Jordan curve then R 2-C has at least two components.

Proof There is clearly an unbounded component. We shall show that there is
also a bounded component. Let C1 ,C2 ,... be a sequence of Jordan polygons
converging to C, (as determined in Theorem 12A.7 with being €j,€2,...
where the converge to 0). Let C,C1 ,C2 ,... be given by f,f1 ,f2 ,... respec-

tively, so that converges to f as n goes to infinity. For each there is a
circle Sn containing points and with � by Theorem

Let the centre of be There is a circle S0 that surrounds all the
Jordan curves and C, hence S0 surrounds all the Thus the sequence
z1,z2,... is a bounded sequence in R3 and hence has a convergent subse-
quence. We may therefore assume that the sequence
z n to infinity.

For large n the points z and lie in the same component of R 2-Ce. We
see this as follows: There exists 6 > 0 such that if Ix-yl � J3 then If(x) -
f(y)I > 6. Thus - � 6 for all n � 1 and hence -
> Va 8 for n � N, where N is sufficiently large so that <Vi 6. This means
that the diameter of for n N, is greater than Vi & and so
'/4 6. But for large enough n we have <V4 6, so that z and must lie in
the same component of namely the bounded component of R
since by definition in lies in the bounded component of R We shall
show that z cannot lie in the unbounded component of R2 - C.

Suppose that z lies in the unbounded component of R 2-C. There is
therefore a continuous path g in R 3-C from z to some point outside Co
(by Theorem 12.9, an open connected subset of R 2 is path connected). Let
d(g(I),C) = 8. For large n we have — f(x)t <½ 8 and hence
> ½ 6, which means that for large n the point z is in the unbounded com-
ponent of But this contradicts what was shown previously, namely
that z lies in the bounded component of R 2-Ce. We conclude therefore that
z does not lie in the unbounded component of R2 - C and so R 2-C has also
a bounded component.

To prove the second part of the Jordan curve theorem we need a defini-
tion and a lemma.

12A.1O Definition
A chord I' of a Jordan curve C is a straight-line segment that inter-

sects C only at its end points. Thus, apart from the end points of F, F lies
in R2-C.
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Note that if C is a Jordan polygon and 1' is a chord of C then F c X U C
where X is one of the components of C, and furthermore X- F consists
of two components.

12A.11 Lemma
Let C be a Jordan polygon and let a,b be two points in the same

component X of R 2-C such that d({a,b} ,C)>6,some 6>0. Suppose
that whenever F is a chord of C in X U C of length less than 26 then both a
and b are in the same component of X-F. In such a situation there is a path
gin X such that d(g(I),C) � 6.

Proof The idea is to place an open disc of radius 6 at centre a and then to pull
it towards b keeping it within X. The only way that we might be prevented
from pulling the disc (of diameter 26) is if there is a chord of length less than
26 in X U C. The assumptions on the chords ensure that this cannot happen.

12A.12 Theorem
Let C be a Jordan curve; then R 2-C has at most two components.

Proof Suppose that R 2-C has three or more components and let p,q,r be
points from three distinct components. Let d( p,q,r} ,C) = e and let
C1 ,C2 ,... be a sequence of Jordan polygons converging to C. Suppose that
C,C1,C2,... are given by f,f1,f2,... respectively. For n large <½ e
and so d({ p,q,r } ½ e. Using Theorem 12A.2 we see that, for each n
sufficiently large, two of the three points p,q,r are in the same component

of By passing to a subsequence, if necessary, we may assume
that p and q are in for all n.

Suppose that there is a 6 with 0 <5 <e and infInitely many n such that
the points p and q are connected by a path in with � 6.
For large n we have < ½ 8 and so > ½ 6 for n large,
which shows that p and q are in the same component of R 2-C. This contra-
diction means that no such 6 exists. By using Lemma 12A.1 I we deduce that
for infinitely many n there exists a chord of length with the properties
that p and q are in different components of and tends to 0 as n
tends to infinity. Let these infinitely many n be denoted in increasing order
by n(l),n(2),... Also, let the end points of be (aj), (b1). Since

6n(i) -+0 as i -* we have

(a1) — (ti) 0 as i -.

and hence
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f(a1) - f(b1) 0 as i -÷

which implies that

a1-

Since p and q are in different components of - then for
infinitely many values of i one of the points, say p, belongs to the component
of — bounded by and (A1), where A1 is the smallest of
the arcs on S' with end points a1,b1. Since a1 - b1 0 as i -*00 it follows that
the diameter of this component just defined is smaller than e, for i suffi-
ciently large. In particular Ip - f(a1)I <e, which is a contradiction, proving
the theorem.

The Jordan curve theorem follows from Theorems 12A.9 to 12A.12.

12A.13 Exercises
(a) Prove that if A is the image in R 2 of an injective continuous map f:

I -+ R2 then R 2-A is connected.
(b) LetCbeaJordancurvegivenbyf: S'

6 min j If(x)- f(y)I;x,yES' with
Prove that the bounded component of R 2-C contains an open disc
of diameter 6.

(c) It is possible to fit an uncountable number of simple closed curves
disjointly in R 2; for example { Cr; r E R } where Cr = { (x,y)
E R 2; x2 + y2 = r J. A figure eight curve is a space homeomor-
phic to

f(x,y)E R2;(x±l)2 +y2 =1).
Prove that if E J is a disjoint collection of figure eight
curves in R 2 then J is countable.
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Homotopy of continuous mappings

In this chapter we introduce equivalence relations on continuous mappings
between topological spaces. This will be of fundamental importance in sub-
sequent chapters, particularly when applied to paths.

Roughly speaking two continuous maps f0, f1: X Y are said to be
homotopic if there is an intermediate family of continuous maps f1: X -+V.
for 0 <t < 1 which vary continuously with respect to t. See Figure 13.1(a).
Figure 13.1(b) depicts two maps that are not homotopic; here X S' and
V is an annulus in R

Figure 13.1. (a) Homotopic maps. (b) Non-homotopic maps.

Q
(b)

(a)
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More precisely we have

13.1 Definition
Two continuous maps f0, f1: X Y are said to be homotopic if

there is a continuous map F: X X I -+ Y such that F(x,O) = fo(x) and
F(x,1) fj(x).

For an example see Figure 13.2.

Figure 13.2

The map F is called a homotopy between f0 and f1. We write f0 f1 or
F: f0 f1. For each t E [0,1], we denote F(x,t) by whence
X Y is a continuous map.

Observe that 1ff: I -÷ Y is a path then f is homotopic to the constant
path by the homotopy F: I X I Y where F(x,t) = f((l-t)x). To

avoid such situations (that is, if we want to) we use a more general concept of
homotopy - that of homotopy relative to a subset A. Here we require that
the homotopy does not move any point of A.

13.2 Definition
Suppose that A is a subset of X and that f0, f1 are two continuous

maps from X to Y. We say that fo and f1 are homoropic relative to A if there
is a homotopy F: X X I —' Y between f0 and f1 such that F(a,t) does not
depend on t for a E A; in other words F(a,t) = fo(a) for all a E A and all t E 1.

Note then that fo(a) = f1(a) for all a E A. The homotopy F is then called a
homotopy relative to A and we write f0 f1 (rel A) or f0 ret A

For example see Figure 13.3 where X = I and A = { 0 } E X.

As another example consider Figure 13.4 where X = I, A = { 0,1 } and

Y is an annulus in R The maps f0, f1 are not homotopic relative to A
although they are homotopic.
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Figure 13.3

xx'

Figure 13.4

Of course, if A = 0 then 'homotopy relative to A' becomes just 'homo-
topy'. The next result is that homotopy relative to A is an equivalence rela-
tion.

13.3 Lemma
The relation rd A on the set of continuous maps from X to Y is

an equivalence relation.

Proof The relation is reflexive because F(x,t) = f(x) is a homotopy relative
to A between f and f itself. It is symmetric because if F: f ret A g then G:
g ret A where G is given by G(x,t) = F(x, 1—t). Finally the relation is
transitive because if F: f ret A g and G: g rd A h then H: f ret A h

where H is given by

F(x,2t)
H(x,t) =

O<t<½,

G(x,2t-1) ½<t<1.
The glueing lemma shows that H is continuous.
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13.4 Exercises
(a) Let X be a space, f: S' -+ X a continuous map. Show that f is null

homotopic (i.e. homotopic to a constant map) if and only if there
is a continuous map g: D2 X with gIS1 = f. (Hint: If c Is a con-
stant map and F: c f then define g(rx) = F(x,r) for xE S', r E I
and use Exercise 8.14(f).)

(b) Let x, y E X. Denote by P(x,y) the set of equivalence classes of
paths in X from x to y under the equivalence relation 'homotopic
relative to { 0,1 }'. (In other words two paths I -+ X from x to
y are equivalent in P(x,y) if and only { 0,11 ).)Show
that there is a one-to-one correspondence between P(x,y) and
P(x,x) if and only ifP(x,y)*Ø.

(c) Let 0 <s< I.Givenpathspandqwithp(l)q(0),definehbythe
formula

p(t/s) 0<t<s,
h(t)=

q((t—s)/(1—s))

Prove that h and p * q are homotopic relative to { 0,1 }.
(d) For a path f let f be the path given by f(t) = f(1—t). Prove that

{ 0,1) { 0,1 }).
(e) Show that if f0 f1: X-Yandg: Y-+Zisacontlnuousmap

then gf0 telA
(f) Suppose that f0 X-+Yandg0 Y-'Z.Provethatg0f0

g1f1: X -' Z. (Hint: First use (e) to show that gof0 g0f1 and

then show that g0f1 gi f1.)

(g) Let X, Y be topological spaces and let F(X,Y) be the set of con-

tinuous functions from X to Y with the compact-open topology,
(see Exercise 7.13(d)). Prove that If f g: X Y then there is a

path from f to g in the space F (X,Y). Suppose that X is compact

and Hausdorff; prove that there is a path from f to g in F (X,Y) if
and only if f g: X Y. (For this last result it is sufficient that X

is locally compact and Hausdorff.)

We can use the concept of homotopic maps to give us an equivalence
relation on topological spaces.

13.5 Definition
Two spaces X and Y are of the same homotopy type if there exist

continuous maps f: X Y, g: Y X such that
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gf 1: X X,

f and g are then called homotopy equivalences. We also say that X
and Y are homotopy equivalent.

Obviously, homeomorphic spaces are of the same homotopy type, but the
converse is not true. For example, if n > 0 then the n-disc c R is not
homeomorphic to a single point, say { y } c but it is of the same
homotopy type as a single point. To see that they are homotopy equivalent
consider the inclusion map f: { y } D" (given by f(y) = y) and the con-
stant map g: D" { y } . Clearly gf = 1, whereas F: X I defined
by F(x,t) = tx + (1-t)y is a homotopy between fg and 1: D1' Spaces
that are homotopy equivalent to a point are given a special name.

13.6 Definition
A space X is said to be contractible if it is homotopy equivalent to

a point.

Thus is contractible. More generally any convex subset of R is con-
tractible. Intuitively a space is contractible if it can be deformed within itself
to a point (a circle cannot be deformed within itself to a point).

Another example of a pair of homotopy equivalent spaces is provided by
the cylinder C and the circle S' . To see this write C and S' as

C= { (x,y,z)ER3;x2 +y2 1,-I <z<l },
S1 (x,y,z)ER3;x2 +y2 l,z0}.

Define i: S' C as the inclusion and r: C -÷ S' by r(x,y,z) = (x,y,0).
Obviously ri = 1: S' -* S' whereas F: C X I C defined by F((x,y,z), t) =
(x,y,tz) is a homotopy between ir and 1: C -+ C.

The above example leads to some definitions.

13.7 Definition
A subset A of a topological space X is called a retract of X if there

is a continuous map r: X -+ A such that ri = 1: A -÷ A (or equivalently if
nA = 1), where i: A Xis the inclusion map. The map r is called aretraction.

13.8 DefInition
A subset A of X is called a deformation retract of X if there is a

retraction r: X A such that in 1: X X where i: A Xis the inclusion.

In other words A is a deformation retract of X if there is a homotopy F:
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XX I-+ X such that F(x,O) =x for all xEX and F(x, l)EA for alixE X.
Thus the circle is a deformation retract of the cylinder. Note that if A is

a deformation retract of X then A and X are homotopy equivalent. In the
example of the circle and the cylinder the map ir is in fact homotopic to the
identity relative to the circle. This leads to one more definition.

13.9 Definition
A subset A of X is a strong deformation retract if there is a retrac-

tion r: X - A such that it rei A I: X X.

In other words A is a strong deformation retract of X if there is a homo-
topy F: XX l-+XsuchthatF(x,O)xforallxEX,F(a,t)=aforallaEA,
tEland F(x,l)EAforallxEX.

A strong deformation retract is, obviously, also a deformation retract.
The notion of strong deformation retracts will be useful later on. Warning:
some books may call a strong deformation retract simply a deformation
retract; we refrain from doing this. Intuitively A is a strong deformation

retract of X if X can be deformed, within itself, to A keeping A fixed.
We give one further example involving the notion of strong deformation

retract. Consider the subset Y = C1 U C2 of R 2 where

C1 { x(x1,x2);(x1—l)2 = 1 }

C2 = { x(x1,x2);(x1+1)2 = 1 }

Thus Y is a 'figure 8', i.e. a pair of circles joined at one point. Let X = Y —

{ (2,0), (—2,0) } ;then the point x0 = (0,0) is a strong deformation retract of
X.Toseethisleti:

{
x0 } X—' { xo} denote the obviousmaps.

Clearly ri = 1; to see that ir 1 (rel { x0 } ) we use the following homotopy

F: XX

F(x,s) = (l—s)x/Il((1—s)xi + (— 1)', (l—s)y2)II for x E i = 1,2.

Note that ((1-s)x1 + (- i)i, (i-s)y2) * (0,0) for x E X. It is easy to check
that F is continuous. Since F(x0,s) = x0, F(x,0) = x and F(x, I) = x0 it

follows that ir 1 (rel { xo } ) and so { x0 } is a strong deformation
retract of X.

13.10 Exercises
(a) Show that there is a circle in the Mobius strip which is a strong

deformation retract of the Môbius strip. Deduce that the Môbius
strip and the cylinder are homotopy equivalent.

(b) Prove that a space X is contractible if and only if the identity map
1: X -+ X is homotopic to a constant map.
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(c) Prove that there is a retraction r: -÷ Sn—i if and only if is

contractible. (Hint: Let F: S"1 X I Sn-i be a homotopy between
a constant map and the identity map, then use the natural map
Sn-i X I -÷ given by (x,t) -+ tx and the fact that X

{ 0 is a single point.)
(d) Prove that if X is connected and has the same homotopy type as Y

then Y is also connected.
(e) A subset A C X is said to be a weak retract of X if there exists a

continuous map r: X A such that 1: where i:
A retract is obviously also a weak retract. Give

an example of a subset which is a weak retract but is not a retract.
(I) Give an example of a subset that is a deformation retract but is not

a strong deformation retract.
(g) A subset A C X is said to be a weak deformation retract of X if the

inclusion map i: A X is a homotopy equivalence. Thus a deforma-
tion retract is also a weak deformation retract. Give an example of a
subset that is a weak deformation retract but is not a deformation
retract.

(Ii) Let A be a subspace of X and let Y be a non-empty topological
space. Prove that A X Y is a retract of X X Y if and only if A is a
retract of X.

(i) Prove that the relation 'is a retract of' is transitive (i.e. if A is a
retract of B and B is a retract of C, then A is a retract of C).

(,j) Prove that the subset S' X { x0 } is a retract of S1 X S', but that
it is not a strong deformation retract of S1 X S' for any point
x0 E S1. Is it a deformation retract? Is it a weak deformation
retract?

(k) Let x0 E R2. Find a circle In R 2 which is a strong deformation
retractofR2

— { x0 }.
(1) Let T be a torus, and let X be the complement of a point in 1.

Find a subset of X which is homeomorphic to a 'figure 8' curve and
which is a strong deformation retract of X.

(m) Prove that is a strong deformation retract of R — { 0 }.
(n) Show that a retract of a Hausdorff space must be a closed subset.
(o) Let Y be a subspace of R" and let f,g: X -+ Y be two continuous

maps. Prove that if for each x E X, f(x) and g(x) can be joined by a
straight-line segment in Y then f g. Deduce that any two maps f,g:
X R must be homotopic.

(p) Let X be any space and let f,g: X be two continuous maps
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such that f(x) * -g(x) for all x E X. Prove that f g. (Hint: Con-
sider the map - { 0 } given by and use(o)
above.) Deduce that 1ff: X Sn is a continuous map that is not
surjective then f is homotopic to a constant map.
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'Multiplication' of paths

If f and g are two paths in X with f(1) = g(0) then by the product off and g
we mean the path f * g, which is defined as in Chapter 12 by

f(2t) 0<t<½,
(f*g)(t)

g(2t—1)

We shall investigate this 'multiplication' of paths further in this chapter.
More precisely we shall look at the multiplication of paths up to homotopy
relative to { 0,1 } and see to what extent this multiplication satisfies the
axioms for a group.

14.1 Definition
Two paths f, g in X are said to be equivalent if f and g are homo-

topic relative to { 0,1 } . We write f g.

Note that the paths f0, f1 in X are equivalent if there is a continuous map
F:IX I—*Xsuch that

F(t,O)f0(t) and F(t,l)f1(t) fortEl,
F(O,s)f0(0) and F(1,s)f0(1) forsEl.

See Figure 14.1. In this case we shall write F: f0 —'

Figure 14.1

lxi
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Lemma 13.3 shows that is an equivalence relation on the set of paths in
X. We denote the equivalence class of a path f by [fJ . The first result shows
that the product of equivalence classes of paths is well defined by

[f) [g] = [fsgJ.

14.2 Lemma
Suppose that f0, f1, g0, g1 are paths in X with f0(1) = go(0) and

fi(T)g1(0). 1ff0 -f1 andg0 thenf0 * go '-f1 .g1.

Proof Let F: f0 f1 and G: g0 —' g1 be the homotopies relative to { 0,1 }

realizing the equivalences. Define H: I X I X by

F(2t,s)
H(t,s)=

G(2t-l,s) ½<t<1,
which is continuous by the glueing lemma since F(1 ,s) = f0(1) = go(O) =

G(0,s). It is easy to see that H is a homotopy relative to 0,1 } between

f0 * g0 and f1 * g1. See Figure 14.2.

The next result is that multiplication of equivalence classes of paths is
associative; in other words

([f] [g]) [h] = [f]([g] [h]).

whenever this product makes sense (i.e. if f(1) = g(O) and g(1) = h(0)). Note
that in general (f • g) * h f* (g * h); see Exercise 14.6(a).

14.3 Lemma

Suppose that f, g, h are three paths in X with f(1) = g(0) and g(1) =
h(0).Then(f* g) s h-f*(g.h).

Figure 14.2



(f*g)sh f*(g.h)

The diagrams can be used to obtain the algebraic descriptions of the paths
in question quite easily. For example consider (f * g) a h; when V4 � t <½
we use g and compose it with a linear function that changes the interval
['4, ½] to [0,1J, namely t -+ 4t- 1. In fact any continuous function from
[V4, ½] to [0,11 which sends V4 to 0 and ½ to 1 will do (see Exercise 14.6(c))
but it is usually easiest to choose a linear function.

To construct a homotopy between (f a g) a h and f a (g a h) consider
Figure 14.3. For a given value of s we use f in the interval [0, (s+1)/4) ,gin
the interval [(s+l)/4, (s+2)/4) and h in the interval [(s+2)/4, I]. Using the
method described above we are led to defining F: I X I —' X by

Ig h

I g h
— U S

o s+1 s+2 I

4 4
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Proof Note first that

((f a g) a h)(t) =

(f a (g a h))(t) =

f(4t)
g(4t—l)

h(2t-l) ½<t�1;

f(2t)
g(4t-2)
h(4t-3)

We picture these paths by the diagrams

I g h - - I gh
0 .1 I

4 r 0 I .!
2 4

f((4t)/(1 +s))
F(t,s) g(4t—s—1)

h((4t— s— 2)/(2— a))

The function F is continuous and

F(t,0) = ((f a g) a h)(t)
F(0,s) = f(0) = ((f * g) a

so that F provides the required homotopy.

Figure 14.3

0<t<(s+l)/4,
(s+l)/4 < t <(s+2)/4,
(s+2)/4<t< 1.

F(t,1) (f a (g a h))(t)
F(1,s)h(1)((fag)ah)(l)
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If x E X then we have defined ex: I X as the constant path, i.e. = x.

The equivalence path of the constant path behaves as a (left or right) identity,
i.e.

[fJ = ['1 = [f] (es,)

if f is a path that begins at x and ends at y. This is proved in the next result.

14.4 Lemma
1ff is a path in X that begins at x and ends at y then f

f * f.

Proof We shall only prove that * f f. The proof that f * —. f is quite
similar. Consider Figure 14.4. Define F: I X I -+ X by

x 0�t<(l-s)/2,
F(t,s)

f((2t—l+s)/(l+s)) (l—s)/2 <t< 1.
Then F(t,0) = * f, F(t, 1) = f(t) and F is a homotopy relative to { 0,1 ).

Figure 14.4

I

Eli I
• SO!!

2

Finally we would like inverses to paths (up to equivalence of paths). To
this end recall that if f is a path then f is the path defined by f(t) = f(1-t).
Note that f —' g if and only 1ff (this is easy to prove). The next result will
show that the equivalence class of f acts as an inverse for the equivalence
class off, i.e.

[f] = [ej [fJ [f] =
for a path f beginning at x and ending at y.

14.5 Lemma -
- Let f be a path in X that begins at x and ends at y. Then f * f

and f * f - es,.
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shall only prove that f * f a f is given by

- f(2t)
(f* f)(t)=

f(2-2t)

It represents a path in which we travel along f for the first half of our time
interval and then in the opposite direction along f for the second half. To
make sure that we get from x to y and back to x we travel at speed 2 (i.e.
twice 'normal' speed). If we now vary the speed proportionally to (l-s) for
s E I then for each s we get a path that starts at x, goes to f(2(l—s)) and then
returns to x. For s = 0 we get f * f and for s = 1 we get Define therefore
F: IX J-*Xby

f(2t(1—s))

F(t,s)=
f((2—2t)(l—s)) 54<t� I.

F is obviously continuous and

F(t,0) = (f * f)(t), F(t, 1) = f(0) =

F(0,s)f(0)(fa f)(0), F(l,s)f(O)(f*f)(1)
so that ft

f a f and is given by G: I X I X
where

f(2t) O<t�(1—s)/2,
G(t,s) f(l—s) (l—s)/2 <t <(1 +s)/2,

f(2-2t) (1+s)/2<t� 1.
The idea here is that the time that we spend travelling along f is proportional
to (l-s). Thus we go along f for the first (l-s)12 part of our time interval,
then wait at the point f(l-s) and then finally return along f for the last
(1-s)/2 portion of our time. Thus when s = 0 this is f * f but when s = 1 we

spend all our time waiting at x, i.e.
We shall return to equivalence classes of paths and their products in the

next chapter.

14.6 Exercises

(a) Give examples of paths f, g, h in some space X with f(l)
g(l) = h(0) and (i) with (f * g) a h * f * (g a h), (ii) with (f * g) a h
= f * (g * h).

(b) Give a direct proof of the result * f- ft



Multiplication 'of paths 123

(c) Let f be a path in X and let h: I I be a continuous mapping with
h(0)0,h(1)= 1. Prove

(d) Use (c) above to give a direct proof that f * f where f is a path
that begins at x.

(e) Let f, g: I X be two paths in X from x to y. Prove that f g if
and only if f

(f) Suppose that h: I -. I is a continuous function such that h(0) = 1

and h(1) = 0. Prove that if f is a path then fh.
Suppose that 0 t0 <t1 <t2 =1 andthatf: I-+Xisapath. Define
paths f1, 12 by

f1(t) = f((1—t)t0 + tt1),
f2(t)=f((1—t)t1 +tt2).

Prove that f1 * f2 f. (Hint: Use (c) above.)
(h) Suppose that 0 = to � t1 � t2 <...� tq = 1 and that 1: I -* X is a

path. Define paths fi, f2, ..., by

f1(t) = f((1—t)t1_1 + tt1).

Prove that [f] = [ft] [f2) ... [f 1.
(i) Suppose that X is a space and X = U U V with U, V open sub-

sets. Show that if I is a path in X then [1) can be expressed as

U'] U'iI It'2) ... U'q]

with each fj being either a path in U or a path in V. (Hint: Consider
the open cover { f'(U), F1(V) } of I, rewrite and f_'(V)
as disjoint unions of open intervals and use the compactness of I;
alternatively use Exercise 7.13(g). Finally use result (h) above.)

(j) (i) Prove that if h: (0, 1) (0, 1) is a homeomorphism then there
exists a homeomorphism f: [0,1) such that fI (0,1) = h. Moreover,

prove that f is the unique such homeomorphism. (Hint: Look at the
closed interval (0,a] (closed in I) and show that h((0,a]) is of the
form (0,bJ or [c,l)forsomeborc.)

(ii) Prove that if h: I I is a homeomorphism then h I) = a i.

(Hint: Use connectedness.)
(iii) Suppose f, g: I X are paths in X so that 1: 1 1(1) and g:

I g(l) are homeomorphisms. Prove that if f(I) g(l) then either
I - g or f (Hint: Use (ii) above.)

(iv) Suppose f, g: I -+ X are closed paths in X so that f: I f(l)
and g: I g(l) are homeomorphisms. Prove that if f(I) = g(I) and

f I —.
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The fundamental group

From the last chapter we see that the set of equivalence classes of paths
(paths are equivalent if they are homotopic relative to { 0,1 } ) in a space X
appear to satisfy the axioms of a group. The problem is that multiplication
is not always defined and the identity 'floats'. The way to get around these
problems is to use the concept of a closed path.

15.1 Definition
A path is said to be closed if f(0) = f(1). If f(0) = f(1) x then we

say that f is based at x.

Some books use the word 'loop' for a closed path.
Observe that the product f a g is defined for any pair of closed paths

based at some point x X. We denote the set of equivalence classes of closed
paths based at x X by ir(X,x). This set has a product defined by [f] [gJ =
[fagi for [fI, [g] Eir(X,x)which is well defined by Lemma 14.2. Thenext
result states that r(X, x) is a group; we call it the fundamental group of X
with base point x.

15.2 Theorem
ir(X,x) is a group.

The proof follows from Chapter 14. The product has already been defined.
The identity element is (see Lemma 14.4), inverses are given by Efi ' =

[f] (see Lemma 14.5), while associativity follows from Lemma 14.3.
In view of associativity of the equivalence classes of paths we shall often

abbreviate [(f * g) * hi to [f a g * h] . Note however that we cannot abbre-
viate(fa g)* h to f's ga h.

Before going any further the reader may like to look at the following
exercises.
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15.3 Exercises

(a) Why is it not possible to describe ir(X,x) without reference to the
base point?

(b) Show that ir(X,x) = 0 if X is a finite topological space with the
discrete topology.

(c) Calculate ir(Q ,0) where Q denotes the set of rationals with the
topology induced from the usual topology of R.

(d) Let X be a space for which ir(X,x) = 0. Show that if f, g are two
paths in X with f(0) = g(O) = x and f(1) = g(l) then f g. (Hint:
Use Exercise 14.6(e).)

1f we choose two different base points x, y G X then there is no reason, a
priori, why ir(X, x) and ir(X,y) should be related. However, if there is a path
from x to y then there is a relation.

15.4 Theorem
Let x, y E X. If there is a path in X from x to y then the groups

ir(X, x), ir(X,y) are isomorphic.

Proof Let f be a path from x to y. If g is a closed path based at x then
(f * g) • f is a closed path based at y. We therefore define

U1: ir(X,x)-+ir(X,y)

by

uf[g] = [Tag*f].
This is a homomorphism of groups because

u1([g][h]) = uf[g*hi
= [r.g*h.f]
= (f*g.f.f.h.fJ
= [?.g.f] [?*h*f]

= uf[gJ uf[h]

Using the path f from y to x we can define

uj: ir(X,y)-+n(X,x)

by

[fah*fl.
A simple check now shows that = [gJ and UIU? [hJ = [h] so that
Uf is bijective and hence is an isomorphism.

15.5 Corollary
If X is a path connected space then ir(X,x) and ir(X,y) are isomor•
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phic groups, for any pair of points x, y E X.

The above result is not true if we drop the condition that X is path con-
nected; even if X is connected the result does not hold in general. Once we
have done a few calculations of fundamental groups (in subsequent chapters)
the reader should be able to construct examples of spaces in which ir(X,x)
and ir(X, y) are not isomorphic for every pair of points x, y E X.

In view of Corollary 15.5 it is tempting to drop the x from ir(X,x) when
X is path connected. This is dangerous as there is no canonical isomorphism
from ir(X,x) to ir(X,y) since different paths from x to y may give different
isomorphisms.

15.6 Exercises
(a) Prove that two paths f, g from x to y give rise to the same isomor-

phism from ,r(X,x) to ir(X,y) (i.e. Uf = u5) if and only if [g * f]
belongs to the centre of ir(X,x). The centre Z(G) of a group G is
defined by

Z(G)= { aEG;ab=baforallbEG }.
(b) Let uf: ,r(X,x) v(X,y) be the isomorphism determined by a path

f from x to y. Prove that is independent of f if and only if
ir(X,x) is abelian.

For the rest of this chapter we shall be concerned with the effect that a
continuous map between topological spaces has upon fundamental groups.
Let X -+ Y be a continuous map; the following three facts are obvious.

(i) 1ff, g are paths in X then are paths in Y.
(ii)
(iii) 1ff is a closed path in X based at x E X then is a closed path
in Y based at p(x).

Thus if [fJ E ir(X,x) then is a well-defined element of ir(Y,p(x)). We
therefore define

ir(X,x)

by

=

15.7 Lemma

is a homomorphism of groups.

The proof is easy: p, ([f] Igi) = [f * g] = * g)] • =

[11 [gi.
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15.8 Definition
The homomorphism ir(X,x) defined by [f] =

[0], where X -+ Y is a continuous map, is called the induced homomor-
phism.

The next two results are easy to prove and are left for the reader.

15.9 Theorem
(i) Suppose X -÷ Y and Y Z are continuous maps, then

=

(ii)lf I: X -+ X is the identity map then is the identity homo-
morphism on ir(X,x).

15.10 Corollary
If X -÷ Y is a homeomorphism then ir(X,x) -+ is an

isomorphism.

Thus the fundamental group provides a means of going from topology to
algebra. This process has the following features.

(i) For each topological space (with some base point) we get a
group (the fundamental group).
(ii) For each continuous map between topological spaces we get a
homomorphism (the induced homomorphism) between groups.
(iii) The composite of continuous maps induces the composite of
the induced homomorphisms.
(iv) The identity map induces the identity homomorphism.
(v) A homeomorphism induces an isomorphism.

This provides a good example of what algebraic topology is about. We
replace topology by algebra and then use our knowledge of algebra to learn
something about topology. Of course if the fundamental groups of two
spaces are isomorphic it does not mean that the spaces are homeomorphic.
However, if the fundamental groups are not isomorphic then the spaces
cannot be homeomorphic.

Remark: The features (i) - (v) mentioned above are an example ofafunctor.
Thus the fundamental group is a functor from topology (especially the
collection of topological spaces with base points and base point preserving
continuous maps) to algebra (especially the collection of groups and group
homomorphisms).
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Exercises
Give an example of an injective continuous map X Y for which

is not injective. (Assume that ir(S' ,x) Z , ir(D2 ,x) = 0.)
(b) Give an example of a surjective continuous map X -+ Y for which

is not surjective.
(c) Prove that X-sYiscontinuousandfisapathfromxtoythen

Uf = ir(X,x) where Uf and are the
isomorphisms of fundamental groups determined by f and p(f).

(d) Prove that two continuous mappings 4': X Y, with =
4'(x0) for some point x0 E X, induce the same homomorphism from
ir(X,xo) to ir(Y,ip(xo)) if and 4' are homotopic relative to x0.

(e) Suppose that A is a retract of X with retraction r: X A. Prove that

i5: ir(A,a) -+ ir(X,a)

is a monomorphism (where i: A X denotes inclusion) and that

r5:

is an epimorphism for any point a E A.
(f) With the notation of (e) above, suppose that ii-(A,a) is a normal

subgroup of ir(X,a). Prove that ir(X,a) is the direct product of the
subgroups image (i11) and kernel (r5).

(g) Prove that if A is a strong deformation retract of X then the inclu-
sion map i: A -+ X induces an isomorphism

i5: ir(A,a)-+ir(X,a)

for any point aE A.
(h) Show that if X x is a continuous map with 1 then

p5:

is an isomorphism for each point x0 E X. (In desperation look at the
proof of Theorem 15.12.)

The next result generalizes Exercise 15.11(d).

15.12 Theorem
Let p, 4': X Y be continuous mappings between topological

spaces and let F: 4' be a homotopy. 1ff: I Y is the path from to
çti(xo) given by f(t) = F(x0,t) then the homomorphisms

ir(X,xo)-'lr(Y,p(x0))

4's:
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are related by il'1 Uf where Uf is the isomorphism from ii(Y,p(xo)) to
determined by the path f.

Proof We have to show that if [g] E ir(X,x0) then = [f a * f].
In other words we have to show that the paths (f a pg) * f and g are

equivalent. Observe that

f(l-4t) O<t<Y4,
((fapg)af)(t)= pg(4t-1) Y4<t<½,

f(2t—1) ½�t<l,
which we may rewrite as

F(xo,l-4t) O<t<¼,
((f * a fl(t) = l),O) <t < ½,

F(x0,2t-l) ½<t<I.
Meanwhile

= F(g(t), 1)

The way to see a homotopy between (f * * f and gig is to note that the
path gig is equivalent to a gig) a where x = The path * gig)
a has the form

F(x011)
F(g(4t1),1)
F(xo,l) ½<t�l.

Define therefore a map H: I X I Y by

F(x0, 1-4t(l--s)) O<t<¼,
H(t,s) F(g(4t-1),s)

F(xo, 1 +2(t—1)(l—s)) ½<t< 1.

The map H is clearly continuous with

H(t,O) =

H(t,l) ((e' * gig) a

H(O,s) =

H(l,s) =

Hence (1 a ipg) * a gig) gig which proves that UfP* =

Another way of stating the above result is that there is a commutative
diagram
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n(X,x0) ir(Y,p(x0))

ir(Y,

The next two results concern homotopy equivalent spaces.

15.13 Theorem
If X -* Y is a homotopy equivalence then ir(X,x) -+ ir(Y,p(x))

is an isomorphism for any x X.

Proof Since is a homotopy equivalence there is a continuous map
Y -+ X such that 1: Y -+ Y and 1: X -÷ X. By Theorem 15.12 we
have Uf = and since Uf and are isomorphisms so is =

This means that is an epimorphism and is a monomorphism.
Similarly p * is an isomorphism, which means that p * is an epimorphism
and is a monomorphism. This proves the result.

15.14 Corollary
A contractible space has trivial fundamental group.

We have a special name for path connected spaces with trivial fundamental
group.

15.15 Definition
A topological space X is simply connected if it is path connected

and ir(X,x) = { I } for some (and hence any) x E X.

Thus contractible spaces are simply connected. The converse is not true
as the reader will discover later on.

Exercises
Suppose that A is a weak retract of X (see Exercise 13.10(e)). What
can you say about the following homomorphisms

ir(A,a) -+ir(X,a),
ir(X,a) -+

for a E A?
(b) A space X is said to have property C if for every closed path f:

I X there is a homotopy F: I X I -÷ X such that
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F(t,0) = f(t) , F(t, 1) is constant,
F(0,s) F(1,s)forallsEl.
Note that F is not necessarily a homotopy relative to { 0,1 } . Prove

that if X has property C then X is simply connected.
(c) Suppose that X = U U V with U,V open and simply connected and

U Ci V path connected. Prove that X is simply connected. Hence
prove that if n � 2 then Sn is simply connected. (Hint: Use
Exercises 14.6(i) and (e).)

The last result that we prove in this chapter concerns the fundamental
grçup of the topological product of two spaces. It could have been included
much earlier in the chapter.

15.17 Theorem
Let X, Y be two path connected topological spaces. The fundamen-

tal group of the product X X Y is isomorphic to the product of the funda-
mental groups of X and Y.

Proof Let p: XX Y X, q: XX Y Y denote the projection maps. Define

ir(XX Y,(x0,y0))-÷ir(X,x0)X ir(Y,yo)

by

'plf] [qf]).
First we check that is well defined. 1ff g then there is a continuous

map F: I X I XX Y such that F(t,O) = f(t), F(t,l) = g(t) and F(O,s) =
F(1,s) = (xo,yo). The continuous maps pF: I X I -+ X and qF: I X I -÷ Y
provide the equivalences pf pg and qf qg so that = and is

well defined.
To see that is suijective suppose that ([f1], [f2J) belongs to ir(X,xo) X

ir(Y,yo). Consider f: I —' X X Y given by f(t) = (f1(t), f2(t)). Clearly ip[f] =
([f1], [f2J).

To show that is injective suppose that [fJ = [g I. This means that
pf pg and qf qg. If F1: I X I -+ X and F2: I X I Y give these equiva-
lences then F: I X I X X Y, given by F(t,s) = (F1(t,s), F2(t,s)) provides
the equivalence f g.

Finally, that is a homomorphism follows readily from the obvious fact
that if f, g: I X X Y are paths with f(l) g(0) then p(f s g) = pf * pg and
q(f*g)qfs qg.

Alternative ways of proving Theorem 15.17 appear in the exercises.
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15.18 Exercises
(a) Prove that the product of two simply connected spaces is simply

connected.
(b) Let f: I X, g: I Y be closed paths based at xo E X and Yo E Y

respectively. Let I: X X X Y and j: Y X X Y be inclusions
defined by 1(x) (x,y0) andj(y) = (xo,y). Show that the two paths
(If) * (jg) and (jg) * (if) in X X Y are equivalent.

(c) In the notation of (b) above show that the mapping of ir(X,xo) X
ir(Y,yo) to ir(X X Y, (x0,y0)) given by ([f], [g])-+ [(if)s(jg)I is
an isomorphism of groups.

(d) A topological group G is a group that is also a topological space in
which the maps

v:G-+G

defined by = g1 and v(g) = g1 are continuous. Let f,h be
closed paths in G based at the Identity element e of G. Define f h by

h)(t) = p(f(t),h(t)) t E I.

Prove that

f.h—fh—h.f
and deduce that the fundamental group ir(G,e) is abelian. Show,
furthermore, that the homomorphism

v*:

Efi = [f]
(e) For S' c C' define ,.i: S' X 51 S' by p(z1,zz) = z1z2, and p:

S' -* S' by v(z) = z1. Prove that S' is a topological group. Deduce
that ir(S' , 1) is an abelian group.

(f) This question Is a generalization of (d) above. Let x0 be a point of
the space X. Suppose that there is a continuous map X X X X
such that

= = x

for all x E X. Prove that If f,g: I X are closed paths based at
x0 E X and l,j: X -÷ X X X denote the inclusions i(x) = (x,xo),
j(x)(xo,x)then
p((if)is(jg))f*g.
Deduce, from (b) above, that ir(X,xo) is an abeian group.

(g) This question is a generalization of (f) above. A space X is called an
H-space (after Heinz Hop!) if there is a continuous map X X X

X and a point x0 E X such that pi 1 (rd x0) and 1 (rel x0)
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where i and j are the inclusion maps as in (0. Note that p(x0,x0) =

x0. Prove that the fundamental group ir(X,xo) of an H-space is
abelian. (Hint: Show that s (jg)) f g.)

The fundamental group ir(X,x0) is often denoted by ir1(X,xo), the '1'
coming from the fact that we used paths (maps from I C R ') to define the
fundamental group. More generally we can define ir0(X,x0) by using maps
from C to X. This is called the n-th homotopy group of X at x0. We
can now briefly indicate the appropriate definitions; the uninterested reader
can go straight to the next chapter.

Let denote, as usual, the boundary of i.e.

ai"= ( I forsomei }.
The set consists of homotopy classes relative to a of a continu-
ous map f: I" X with = xo. A product Is defined by

[f] (gJ = [f*g]
where

O�t1
(f*g)(t)=

g(2t1 � 1.

It can be easily verified that the product is well defined and that it gives

the structure of a group. Of course if n = 1 then we get the funda-

mental group. The fundamental group is not necessarily an abelian group as
we shall see later; however, is always an abeian group if n � 2.

15.19 Exercises
(a) Prove that is a group.
(b) Prove that if there is a path in X from x0 to x1 then and

are isomorphic.

Figure 15.1
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(c) For a continuous map X Y define
and prove that p,,, is a homomorphism. Prove also Theorem 15.9 for
the n-th homotopy groups. Deduce that homeomorphic spaces have
isomorphic homotopy groups.

(d) Prove that homotopy equivalent spaces have isomorphic homotopy
groups.

(e) Prove that if n � 2 then is an abelian group. (Hint: A
homotopy between f * g and g * f is suggested in Figure 15.1.)

Remark: There is a sort of converse to (d) above. This is a theorem (due to
.LH.C. Whitehead) which states that if X and Y are a certain type of topologi.
cal space (the so-called path connected CW complexes) and if X Y is a
continuous map that induces isomorphisms sos:

1 then So is a homotopy equivalence.
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The fundamental group of a circle

Except for some trivial cases we have not, so far, calculated the fundamental
group of a space. In this chapter we shall calculate the fundamental group of
the circle S', the answer being I the integers. Intuitively we see this result
as follows. A closed path f in S1 based at 1 E S1 winds a certain number of
times around the circle; this number is called the winding number or degree
of f. (Start with f(0) = 1 and consider f(t) as t increases; every time we go
once around the circle in an anticlockwise direction record a score of + 1,
every time we go once around in a clockwise direction score -1. The total
score is the winding number or degree of f.) Thus to each closed path f based
at I we get an integer. It turns out that two closed paths are equivalent (i.e.
homotopic rel { 0,1 } ) if and only if their degrees agree. Finally, for each
integer n there is a closed path of degree n.

To get a more precise definition of the degree of a closed path we con-
sider the real numbers mapping onto S' as follows.

e:

t

Figure 16.1



136 A first course in algebraic topology

Geometrically we think of the reals as a spiral with e being the projection
mapping (see Figure 16.1). Note that e1(1) = Z R . The idea now is that
if we are given f: I S' with f(O) = f(1) = 1 then we show that there is a
unique mapT R 0 ande?'=f(themapfiscalledalfftoff)
Since f(I) = 1 we must have E e' (1) = I ; this integer is defined to be
the degree of f. We then go on to show that if f0 and f1 are equivalent paths
in S' then ?(l) = 1(l). This leads to a function ir(S' ,l) Z which we
finally show is an isomorphism of groups.

The 'method of calculation' of ir(S' ,1) that we shall be presenting
generalizes to some other spaces; see the subsequent three chapters. In fact
the next lemma is the starting point for a crucial definition in Chapter 17.

16.1 Lemma
Let Ube any open subset ofS'- { I }

R. Then (U) is the disjoint union of the open sets V + n = { v+n;
v E V } ,n E I, each of which is mapped homeomorphically onto U by e.

Proof We assume that U is an open interval, i.e.

U {exp(2irit);0<a<t<b<l}
for some a,b. Then V = (a,b) and V + n = (a+n,b+n). It is clear that e -'(U)
is the disjoint union of the open sets V + n (n E I). Let denote the
restriction of e to (a+n,b+n). Clearly is continuous and bijective. To
check that is continuous we consider (a+n, b+n) and let W c (a+n,
b+n) be a closed (and hence compact) subset. Since W is compact and S' is
Hausdorff, induces a homeomorphism W by Theorem 8.8. In
particular is compact and hence closed. This shows that if W is a
closed subset then is also closed; thus is continuous and hence

is a homeomorphism.

16.2 Exercise
Show that the above holds for S1 - { x}, where x is any point of S'.

16.3 Corollary
If f: X S' is not surjective then f is null homotopic.

Proof If x image (0 then S' - { x } is homeomorphic to (0,1) which is
contractible. (x exp(27ris) for some sand S' = ( exp(2irit); s < t < 1 +s }.)

We come now to the first major result of this chapter: the so.called path
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lifting theorem (for e: R S').

16.4 Theorem
Any continuous map f: I S' has a lift?; I -÷ R . Furthermore given

E R with e(xo) = f(O) there is a unique lift f with = xo.

Proof For each x E S' let be an open neighbourhood of x such that
(Us) is the disjoint union of open subsets of R each of which are mapped

homeomorphically onto by e. The set x E S' } may be
exi5ressed in the form { Ci I; j E J } which is an open cover of I. Since
I is compact there is a finite subcover of the form

+e1),(t2 e2,t2 —

with t1 + ç> - for i = 1,2,...,n - 1. Now choose a1 E
t1+€1)fori=I,2,...,n— isothat

O=a0<a1 <a2
Obviously f([aj,aj+1]) CS1, but more so f([a1,a1+1]) is contained in an open
subset of S' such that (S1) is the disjoint union of open subsets of R
each of which are mapped home omorphically onto S1 by e.

We shall define liftings ? inductively over [O,ak] for k O,l,...,n such
that = x0. For k = 0 this is trivial: ?(O) = x0; we have no choice.

Figure 16.2

I — I
0 I

F

I
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Suppose that ?: [O,ak] R is defined and is unique. Recall that
f( , ak +1]) c and that e' (Sk) is the disjoint union of j E J } with

Wi -+ being a homeomorphism for each j E J. Now fk(ak) E W for
some unique member W of { j J }; see Figure 16.2. Any extension

must map [ak,ak+1] into W since Eak,ak+1I is path connected. Since
the restriction eIW: W -÷ Sk is a homeomorphism there is a unique map p:

-÷ W such that ep = fi [ak,ak+1J (in fact p = fl. Now
define by

?(s) O<s<ak,
=

p(s) ak<s�ak÷1,
which is continuous by the glueing lemma since ?(ak) = p(ak) and is unique
by construction. By induction we obtain?:

Using this theorem we can define the degree of a closed path in S1. Let f
be a closed path in S' based at 1 and let ? I -÷ R be the unique lift with
f(O) = 0. Since e1(f(1)) = e'(l) = Z we see is an integer which is
defined to be the degree of f. To show that equivalent paths have the same
degree we shall first show that equivalent paths have equivalent lifts. To do
this we replace I by 12 in the previous theorem to obtain.

16.5 Lemma
Any continuous map F: 12 has a lift 12 R. Furthermore

given x0 E R with e(xo) = F(0,O) there is a unique lift xo.

Proof The proof is quite similar to that of Theorem 16.4. Since 12 is compact
we find

0= a0 <aa < ... < 1,

O = bo <b1< ... <bye = I,

such that C S' , where is the rectangle

= { }

The lifting defined inductively over the rectangles

R0,0, R.0,1 ,...,R.o,m, R1 ,o , R1

by a process similar to that in Theorem 16.4. We leave the details for the
reader.

As a corollary we have the so-called monodromy theorem for e: R -+ St,
which tells us that equivalent paths have the same degree.
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16.6 Corollary
Suppose that f0 and f1 are equivalent paths in S' based at 1. If?

and f1 are lifts with f0(0) = f1(0)

the homotopy rd { 0,1 } between f0 and f1. It lifts
uniquely to P': 12 -÷ R with = f1(O). Since F(t,0) = f0(t) and
F(t,l) = f1(t), we have = ?,(t) and = ?(t). Also, is a
path from ?,(1) to ? (1) since F(I ,t) = fo(l) = But ,t) E
(f0(1)) Z, which means that F(l,t) is constant and hence?,(1) ?j(1)
thus completing the proof. Note that in fact provides a homotopy rel
{0,1}betweenfo and?;.

We are now in a position to calculate the fundamental group of the circle.

16.7 Theorem

ir(S' .1) Z by p( [f]) = deg(f), the degree of f. Recall that
deg(f) = f(l) where f is the unique lift of f with f(O) = 0. The function p is
well defined by Corollary 16.6. We shall show that is an isomorphism of
groups.

First we show that p is a homomorphism. Let denote the lift of f
beginning at a E e' (f(O)). Thus Q0(f) = Tand Qa(f)(t) = + a for a path
in S' beginning at 1. It is clear that

* g) = *

where b = it!) + a. Thus if [fi, E ir(S' , I) then

[g]) = p([fsg)
= £o(f*g)(l)
= where

=

=

=

=

which shows that is a homomorphism.
To show that is suijective is rather easy: given n E Z let g: I R be

given by g(t) = nt; then eg: I -+ S1 is a closed path based at 1. Since gis the
lift of eg with g(O) = Owe have = deg(eg) = g(1) = n which shows
that is surjective.

To show that is injective we suppose that = 0, I.e. deg(f) = 0.
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This means that the lift Tof f satisfies = =0. Since P. is contractible
we have e0 (rel f 0,1 }); in other words there is a map F: j2 R with
F(0,t) = F(1,t) = 0 and F(t,O) = F(t,1) 0. Indeed F(s,t) (l—s)T(t).

But eF: 12 S' with eF(0,t) f(t), eF(1,t) 1, eF(t,0) = eF(t, 1) = 1 and
so f e1 (rel { 0,1 }), i.e. [fJ 1 E ,r(S' ,l), which proves that is injec-
five and hence is an isomorphism.

This completes the proof of the main result of this chapter. As a corollary
we immediately obtain:

16.8 Corollary
The fundamental group of the torus is Z X Z.

We close the chapter by giving two applications. The first is well known
and is the fundamental theorem of algebra.

16.9 Corollary
Every non-constant complex polynomial has a root.

Proof We may assume without loss of generality that our polynomial has the
form

p(z)a0+alz+...+ak_Jzk_l +zk
with k � 1. Assume that p has no zero (i.e. no root). Define a function G:
IX C Cby

G(t,r)
p(rexp(2irit)) Ip(r)I

exp(2irit))I p(r)

for 0 � t � 1 and r � 0. Clearly G is continuous. Define F: 12 -+ S' by

G(t,s/(1-s)) 0<t<I,0�s<1,
F(t,s) =

exp(2irikt) 0�t<1,sl.
By observing that

urn F(t,s) lim G(t,s/(I—s)) = Urn G(t,r) = (exp(2irit))k

we see that F is continuous. Also, we see that F is a homotopy rel { 0.1 }
between f0(t) = F(t,0) and f3(t) F(t,1). But f0(t) = 1 and f1(t) = exp
(2 irikt), so that deg(fo) = 0 while deg(f1) = k, which is a contradiction
(unless k = 0).

The second application comes under the title of Brouwer's fixed point
theorem In the plane. Recall that in Chapter 10 we proved a fixed point
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theorem for I; the next result is the analogous theorem for D2 . The result is
also true in higher dimensions but the proof requires tools other than the
fundamental group.

16.10 Corollary
Any continuous map f: D2 -÷ D2 has a fixed point, i.e. a point x

such that f(x) = x.

Figure 16.3

Proof Suppose to the contrary that x f(x) for all x E D2. Then we may
defIne a function D2 -÷ S1 by setting p(x) to be the point on S1 obtained
from the intersection of the line segment from f(x) to x extended to meet
S'; see Figure 16.3. That is continuous is obvious. Let i: S' D2 denote

the inclusion, then = 1 and we have a commutative diagram

SI
I

l'his leads to another commutative diagram

ir(S1,1)
1

ir(S',l)

ir(D2,1)

But ir(D2,I) = 0, since D2 is contractible, and so we get a commutative
diagram

which is impossible. This contradiction proves the result.
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16.11 Exercises
(a) Given E ir(S1,l), let be the contour { f(t); tEl ) C C and

define

11 dzw(f)=—i —
21riJ7 z

Prove that (i) w(f) is an integer,
(ii) w(f) is independent of the choice of f E [f
(iii) w(f) = deg(f).

(b) Let f: S1 -+ S' be the mapping defined by f(z) = for some integer
k. Describe f,,: ir(S1 .1) -+ ir(S' , 1) in terms of the isomorphism

(c) Let be the following closed paths in S' X S1.

a(t) = (exp(2irit), 1), (1, exp(2irit).)

Show, by means of diagrams, that a * * a.
(d) Calculate ir(S1XS1 X ... X Si, (1,1,..., 1)).

n

(e) Using Exercise 15.16(c) deduce that the torus is not homeomorphic
to the sphere S2.

(0 Prove that the set of points z E D2 for which D2 - { z } is simply
connected is precisely S2. Hence prove that if f: D2 D2 is a
homeomorphism then I(S1) = S'.

(g) Find the fundamental groups of the following spaces.
(i) C C-{O};
(ii) C */G, where G is the group of homeomorphisms { n E
Z } with cp(z) = 2z.

(iii) C *IH where H = { n E Z } with =

(iv) C */ { e, a }, where e is the identity homeomorphism and
az = —i
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Covering spaces

In this and the next few chapters we explore generalizations of the results
and concepts of Chapter 16.

Lef p: X be a continuous map. We say that the open subset U c Xis
evenly covered by p if (U) is the disjoint union of open subsets of X
each of which is mapped homeomorphically onto U by p. The continuous
map p: X -. X is said to be a covering map if each point x E X has an open
neighbourhood evenly covered by p. Then we say that p: -+ X is a covering,
X is the covering space of X and X is the base space of the covering map p:
x-+x.

In other words p: X X is a covering if
(i) p is onto, and
(ii) for all x E X there is an open neighbourhood U of x such that

p'(U) Li

jeJ

for some collection { j E J } of subsets of X satisfying U1 Uk = 0
j *kand with ahomeomorphism for eachjEi.

From Chapter 16 we see that e: R S' is a covering. Obviously any
homeomorphism h: X X is a covering map. Another trivial example of a
covering p: X X is to let X be X X Y where Y is a discrete space and p is the
canonical projection. An interesting example is S' -+ S' where =

(n * 0, think of S' C C). To see that this is indeed a covering map just
note that S' - { x } is evenly covered by for all x E S'.

Certain G-spaces lead to covering spaces. Suppose that X is a G-space. We
say that the action of G on X is properly discontinuous if for each x E X
there is an open neighbourhood V of x such that fl g'V = Q for all g,g'
E G with g * g'. Notice that if the action is properly discontinuous then

g all E x E E
Before giving examples we shall prove a theorem which explains the reason
for introducing properly discontinuous actions.
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17.1 Theorem
Let X be a G-space. If the action of G on X is properly discon-

tinuous then p: X X/G is a covering.

Proof First note that p: X X/G is a continuous surjective map. Also, by
Theorem 5.12, p is an open mapping. Let U be an open neighbourhood of
x E X satisfying the condition of proper discontinuity. Since p is an open
map, p(U) is an open neighbourhood of = p(x) and (p(U)) = U

gEG

(see the proof of Theorem 5.12) with { g E G } being disjoint open
subsets of X. Furthermore plgU: gU p(U) is a continuous open bijective
mapping and hence a homeomorphism.

The action of Z on R given by x x + n is properly discontinuous
since if x R and e < ½ then (x-e,x+e) is an open neighbourhood of x
satisfying the required condition. Since this action of Z on R makes R
into a Z -space we see that p: R R I Z is a covering map. (The reader
should check that this example is identical to e: R S1.)

The next example shows that the natural map R is a covering
map. Consider the Z2-space S" where 12 acts as = ±x. For x E Si',
the set

xII<½}
is an open neighbourhood of x which satisfies the condition for proper
discontinuity. Alternatively, since x # -x and is Hausdorif, there exist
disjoint open neighbourhoods V,W of x and -x respectively. The neighbour.
hood V (-W) of x satisfies the condition of proper discontinuity. This
example generalizes: Recall that a group C acts freely on X (or is a free
action) if gx *x for alixEX and gE C, g* I.

17.2 Theorem
If G is a finite group acting freely on a Hausdorff space X then the

action of G on x is properly discontinuous.

Proof Let G = (1 = . Since X is Hausdorif there are open
neighbourhoods of respectively with Uo

U be the intersection fl gf1 which is clearly
j= 0

an open neighbourhood of x.
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Now gçU = -' cu1 and

flU)
=gç(gk.UflU) (forsomek)
=0

since c Uk and U C U0. Hence the action of G on X is properly
discontinuous.

A nice example of a free action is given by the cyclic group Z and the
3.sphere S3 C C2,

S3 = { +1z112 1 }

Let q be prime to p and define Ii: S3 S3 by

h(zo,z1) = (exp(2iri/p)zo, exp(2iriq/p)z1).

Then h is a homeomorphism of S3 with hP = I. We let Z act on S3 by

{O,l,...,p—1}

The action is free, S3 is Hausdorff and so 53 S3 f is a covering map.
The quotient S3 I Z is called a lens space and is denoted by L(p,q). Note
that L(2, 1) is R P3. There is an obvious generalization of the above example
to an action of 7L on C C n+1

; we leave the details for the reader.
It is time we had some general results about covering maps. Notice that

in the examples arising from group actions the covering map is open and the
base space has the quotient topology with respect to the covering map.
This is in fact true for all coverings.

17.3 Theorem
Let p: X X be a covering map. Then
(i) p is an open map.
(ii) X has the quotient topology with respect to p.

Proof Let U be an open subset of X and let x E p(U). Since p is a covering
map there Is an evenly covered open neighbourhood V of x. Let E (x)

fl U
Vi there is some open set in

jEJ

Since fl U is open in and p1 V
is of V being open in X means that

fl U) is open In X. Since x E fl U) c p(U) it follows that p(U) is
open and hence p is an open map.
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The second part of the theorem follows from the fact that p is a continu-
ous open mapping and hence a subset V of X is open if and only if (V)
is open.

Many of the results that we proved in the last chapter for the covering e:
R S' generalize to other coverings. If p: X Xis a covering and f: Y -' X
is a continuous map then a lift of f: Y -÷ X is a continuous map f: Y X
such that pf = f. The next result shows that if a lift exists then it is essentially
unique.

17.4 Lemma

Let p: X be a covering and letl
Y Y is connected and f(yo) 1(yo) for some yo E Y then f

hioof Define Y'to be

}

which is non-empty since Yo E Y' by assumption. We shall show that Y' is
both open and closed. Let y E Y; then there is an open neighbourhood V of
f(y) which is evenly covered by p, i.e. (V) is the disjoint union of
{ J }and -'Vis ahomeomorphism for eachjEJ. IfyEY'
then f(y) = T(y) Vk for some k E .1 and r1 (Vk) (Vk) is an open
neighbourhood of y contained in Y'. To see this let x r' (Vk) '' (Vk);
then f(x) E Vk and ?(x) E but also pf(x) = pT(x). Since p I Vk is a
homeomorphism It follows that f(x) = ?(x). Thus each point of Y' has an
open neighbourhood contained in Y' and so Y' is open. On the other hand
if y Y' then f(y) E and I(y) E for some k, Q with k * 2. Hence

(Vi) ri (V2) is an open neighbourhood of y contained in the com-
plement of Y' (argue as Thus Y' is closed. Since Y is connected it
follows that Y = Y' and so f =1.

A curious corollary is:

17.5 Corollary
Suppose X is path connected andy,: X X is a continuous map

with pipp. Ifp(x1)=x1 for some x1
is the identity mapping).

Proof Let x be any point of X and let a: I -+ X be a path from x1 to x.
Since p(x1) = Xi the paths a and pa both begin at x1. Furthermore pa =
p4pa so that a and pa are lifts of the path pa: I X. By the above lemma
a = pa and in particular the end points of a and pa coincide, i.e. p(x) = x.
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The next result, known as the homoropy path lifting theorem, is proved
in the same way as Theorem 16.4 and Lemma 16.5.

17.6 Theorem
Letp:X-+Xbeacovering.
(i) Given a 'ath f: I -+ X anda E X with p(a) = f(O) there is a
unique path f: I -+ X such that pf = f and f(O) = a.

(ii) Given a continuous map F: I X I X and a E X with p(a) =
F(O,O), there is a unique continuous map ?r: I X I -. such that

As a corollary we have the monodromy theorem, the proof of which is
identical to Corollary 16.6.

17.7 Corollary
that f0 and f1 are equivalent paths in X. If f0(O) = f1(O)

then f0(1) = f1(1).

Continuing with generalizations of results in Chapter 16, we have the
following result.

17.8 Theorem

Let p: X X be a covering with X being simply connected. Then
there is a one-to-one correspondence between the sets ir(X,p(a)) and

(p(a)) where a E

Proof The proof is essentially contained in the proof of Theorem 16.7. We
shall give the salient points. First define

ir(X,p(a))

by

'pUfI) =T(l)
where I is a lift off withf(O) = a. This is well defined by Corollary 17.7.

Next, we shall define

gi:

To do this let x (p(a)) and choose a path f from a to x. Since X is
simply connected, any two such paths are equivalent, so that [pf I is a well.

defined element of ir(X,p(a)). Define i(i(x) = [pfj. It is easy to check that
= 1 and l,so that are bijections.
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The moral of the above result is that in order to calculate ir(X,xo) we
should find a covering p: X X so that the covering space X is simply con-
nected. Then find a group structure on (x0) so that the bijection
ir(X,xo) -+ (xo) is an isomorphism of groups. This is essentially what we
did in Chapter 16. In general it is not easy to do; some special cases will
appear in the subsequent chapters (see also Chapter 21).

17.9 Exercise5

(a) Let p: X X be a covering map, let X0 be a subset of X and let
= Prove that p0: X0 given by po(x) = p(x), is a

covering map.
(b)LetX={(x,y)ER2;xoryisaninteger},LetX={(z1,z2)E

S1 X S';z1 = 1 orz2 l} andletp:
X X is a covering map.

(c) Which of the following are covering mappings?
(i) p: C * -' given by p(z) = z" where n is a fixed integer;
(ii) sin:C
(iii)p: U -+ C * given by p(z) = (l_z)mzn where m,n are fixed
integers andU C*_ (1).

(d) Let p: X -÷ X and q: Ybe covering maps.
(i) Prove thatpX q: XX Y-'XX Yisacoveringmap.
(ii) ProvethatifXYand

then f: W -+ X, defined by = p(i), is a covering map.
(iii) Identify W and f when both p: X X and q: Y Y are e:
R S' ,where e(t) = exp(2irit).

(e) Let a: C -+ C and b: C C be the homeomorphisms of the com-
plex plane C defined by

az = z + i,
+½+i.

Show that ba = b and deduce that

G= {amb2nb€: mE Z,nE Z,e=Oorl}
is a group of homeomorphisms of C. Furthermore, prove that the
action of G is properly discontinuous and that the orbit space
C I G is Hausdorff.

(1) (Continuation of (e).) Find a 'half-open rectangle' containing
exactly one point from each orbit of G and hence show that C / G
is a Klein bottle.
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(g) (Continuation of (f).) An embedding of the Klein bottle in R
Let C -+ R5 be defined by

p(x+iy) = (c cos(2iix),
sln(2irx) sin(2iry)).

Show that Identifies to a point each of the orbits of the group G
and deduce that C fG is homeomorphic to the image of

R5

= ((p+2)q, (p+2)r,s,t),

to the image of Is a homeomorphism.
(h) Suppose p: X -+ X is a covering map with X path connected. Prove

that the cardinal number of p "(x) is independent of x E X. If this
number is n then we say that p: X Xis an n-fold covering.

(I) Find a two-fold covering p: S1 X S' K where K is the Klein bottle.
(j) A subset of a space is a simple closed curve if it is homeomorphic

to S1. Let p: S2 R P2 be the canonical projection of the sphere
onto the projective plane. Prove that if Z is a simple closed curve
in R p2 then p is either a simple closed curve in S2 or is a
union of two disjoint simple closed curves. (Hint: Consider as the
image ofa closed path in RP2.)

(k) Calculate ir(S1 X S', (1,1)) dIrectly from results in this chapter.
(Hint: Using Exercises (d) and (i) above we have a covering map
R )( -+5' X S'; then use Theorem 17.8.)

(1) Assuming that S" Is simply connected for n � 2 (Exercise 15.16(c)),
show that the fundamental group of R I"' (n � 2) Is cyclic of order
2. Furthermore show that If p Is a prime number then the funda•
mental group of the lens space L(p,q) is cyclic of order p.

(m) Does there exist a topological space Y such that 5' X Y is homeo-
morphic to R P2 or to S2?

(n) Supposethatp: X-'YisacoveringmapandthatX,Yareboth
Hausdorff spaces. Prove that X is an n-manifold if and only If Y is
an n-manifold.

(o) Let p: X-'XbeacoveringandletYbeaspace.Supposethatf:
Y X has a lift f: Y X. Prove that any homotopy F: Y X I -+ X
with = y E Y, can be lifted to a homotopy F: Y X I
X with F(y,O) = f(y), yE Y.

(p) Letp:
maps with pf pg. Prove that the set of points in Y for which f and
g agree isan open and closed subset of Y.

(q) Let p: X X be a covering with X locally path connected (see



150 A first course in algebraic topology

Exercise 12.10(j)). Prove that X is also locally path connected.
(r) A covering transformation h of the covering p: X X is a homeo-

morphism h: X -+ X for which ph = h. Prove that the set of cover-
ing transformations forms a group.

(s) Let p: X -+ X be a covering in which X is connected and locally
path connected. Prove that the action of the group of covering
transformations of p: X on is properly discontinuous.
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The fundamental group of a covering space

This chapter is concerned with and its relation with ir(X,xo), where
p: X -+ X is a covering and = x0. Most of the results are in the
exercises.

The first result we give follows immediately from Theorem 17.6.

18.1 Theorem
lIp:

then the induced homomorphism

is a monomorphism.

A natural question to ask Is what happens if we change the base points.
This is answered next.

18.2 Theorem
Let p: X -÷ X be a covering with X path connected. If Z E X

then there is a path f in X from to such that

=

Proof Let g be a path in X from to Z. The path g determines an Isomor-
phism ug from to so that Ug Apply-

ing the homomorphism gives

Ug ir(XZ) =

But U5 = Upg (easy: see Exercise 15.11(c)), so that the path f pg

satisfies the required conditions.

If, in the above theorem, = = x0 then the path f determines
an element Lf] of ,i(X,x0) and so
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In other words the subgroups ir(X,%) and are conjugate
subgroups of ir(X,xo). In fact we can say more:

18.3 Theorem
Let p: X X be a covering with X path connected. For x0 E X the

collection

Ep'(xo)}
is a conjugacy class in ir(X,xo).

Proof We have already shown that any two subgroups in the collection are
conjugate. Suppose therefore that His a subgroup of ir(X,, x0) which is con-
jugate to one of the subgroups ir(X,4). Thus

H = &' (p,

for some a E ir(X,xo). Let a = [fi and let f be a lift of f that begins
We then have

P* ir(J(l)) = Ufps = H

so that H belongs to the collection.

Other relations between and ir(X,xo) will be given as exercises.

18.4 Exercises
Throughout these exercises let p: X X be a covering with X path

connected and xo E X.
(a) [f) (f] by

where i is the unique lift of f that begins at Prove that this defines
a right action of the group ir(X,x0) on the set p (x0). (Hint: Look
at the proof of Theorem 16.7 and use the notation for the lift
of f that begins at a.)

(b) We say that a group G acts transitively on a set S if for all a,b E S
there is an element g E G such that ga = in other words S = GSa,

the orbit of a, for a E S. Prove that ir(X,x,0) acts transitively on
p1(xo).

(c) Prove that there is a ir(X,x0)equivariant bijection between p'(x0)
and the set of right cosets of p, ir(X,%) in ir(X,xo). (Hint: Use
Exercise 5.9(d) with the word 'right' substituted for 'left' and show
that the stabilizer of the action of ir(X,xo) on p'(x0) is
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(d) Deduce from (c) above that if X is simply connected then there is a
ir(X,xo) equivariant bijection between p'(x0) and ir(X,xo).

(e) Show that if p: X -* X is an n-fold covering (i.e. (x0) consists of
n points) then

ir(X,xo)

is the inclusion of a subgroup of index n.
(f) Suppose that the fundamental group of X is Z and p'(x0) is

finite. Find the fundamental group of X.
(g) Prove that if Xis simply connected then p is a homeomorphism.
(h) Suppose that X = X. Prove that p is a homeomorphism if the funda-

mental group of X is finite. Is p necessarily a homeomorphism if
the fundamental group of X is not finite?

(I) A covering is said to be regular if for some E X the group
is a normal subgroup of IT(X, x0). Prove that if f is a closed

path in X then either every lifting of f is closed or none is closed.
(j) Suppose that p: X X is a covering obtained from a properly dis-

continuous action of G on X (i.e. X = XIG). Prove that p: X X
is regular.

(k) Prove that p is a homeomorphism if and only if

p5 = ir(X,xo).
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The fundamental group of an orbit space

Throughout this chapter we shall assume that X is a path connected space
with a properly discontinuous action of G on It. Thus p: X X/G is a

covering. The object of this chapter is to find the relation between G and
the fundamental group of the orbit space X/G.

Let x0 E X and Yo = p(x0) E X/G. Notice that

{gxo;gEG}.
If [f] E ir (X/ G, Yo) then there is a unique lift T of f that begins at x0 E X.
The element 1(1) E p1(Yo) and so there is a unique element g1 E G such
thatT(l) = gf therefore defines a function

ir(X/G,y0)-+G.

19.1 Theorem
The function .p: ,r(X/G, Yo) -+ G Is a homomorphism of groups.

Proof Consider two closed paths f, f' In X/G based at Yo• If f*f' is the
unique lift of f * f' that begins at x0 E X then

where us the unique lift of f that begins at x0, and is the unique lift
of f' that begins at a 1(l). This is becausel. a lift off *
that begins at x0 E X. Let? be the unique lift off' that begins at xo. Since
gf •? is a lift of f' that begins at xo and a T(l) = gf x0 it follows that

11"(l)gf?'(l)
gf(gf' x0)

It follows that p([f) [f'])(ip[fj)(p[f'])and so a homomorphism.

The kernel of the homomorphism is given next.
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19.2 Lemma
The kernel ir(X/G, Yo) G is the subgroup ir(X,x0).

Proof The kernel of is the set of elements [f] E ir(X/G, Yo) such that
= 1. This is precisely those elements [f I E ir(X/G, Yo) for which

f(l) = x0, i.e. for which us a closed path in X based at x0 E X. Thus it is
the set of elements [fJ E ir(X/G, Yo) of the form for L7] E ir(X,xo),
i.e. pbir(X,xo).

In particular, ir(X,x,o) is a normal subgroup of ir(X/G, Yo) and so the
quotient group

ir(X/G, ir(X,xo)

is defined.

19.3 Theorem
The groups ir(X/G, ,i(X,xo) and G are isomorphic.

Proof We just need to show that the homomorphism

Ip:

is surjective. If g G let f5 be a path in X from x0 to g x0. This determines
an element [pf5] E ir(X/G, yo). By definition x0 = pf5(l) where

is the unique lift of Pfg that begins at x0. But fg is such a lift and fg(l) =
x0; thus J = g, showing that tp is surjective.

19.4 Corollary
If X is simply connected then ir(X/G, yo) G.

From this corollary we can recapture the result of Chapter 16, namely
that the fundamental group of the circle is Z. This follows because S' is
homeomorphic to R /7. In the same way we can deduce that the funda-
mental group of (S1 is isomorphic to 7 Other examples,
often based on previous exercises, are given in the next set of exercises.

19.5 Exercises
(a) Show that the fundamental group of the lens space L(p,q) is iso-

morphic to Z (Assume by Exercise 15.16(c) that S3 is simply
connected.)

(b) Show that for any finitely generated abelian group G there exists a
space XG whose fundamental group is G. (Assume the fact that G
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is a product of a number of copies of the integers 1 and a number
of cyclic groups.)

(c) Let Y = C *1K where C * = C - { 0 } and K is the group of
homeomorphisms { up"; n E Z } with lp(z) = 4z. Prove, using
Corollary 19.4, that the fundamental group of Y is Z X Z . (Hint:
Find a space X, a group G and a normal subgroup H so that X is a
G-space with X simply connected, X/H C" and G/H = K. Then
use Exercise 5.13(c).)

(d) Prove that Tz = + I + i defines a homeomorphism T: X -* X
where X = R X [0,1] C C. Show that if G is the group of
morphisms generated by T then X/G is the Möbius strip. Deduce
that the fundamental group of the Möbius strip is Z.

(e) Prove that the fundamental group of a Klein bottle is

G {

i.e. G is the group on two generators a, b with one relation ba = a1 b.

(f) Suppose that X has a properly discontinuous G-action. Recall from
Exercise 18.4(a) that ir(X/G, yo) acts on p1(yo) (on the right).
Prove that

[f] g(x [f])
forgEG,xEp'(yo) and [f] Eir(X/G,yo).

(g) Suppose that G, H are groups acting on a set S with G acting on the
left and H acting on the right. Suppose also that

(g x) h = g- (x . h)

for all g E G, x E S, h E H. Prove that if G acts freely and transi-
tively on S then there is a homomorphism

p: I-l-"G.

Furthermore show that the kernel of is the stabilizer under H of
the point x0 ES where S = ( g xo;gEG} .(Hint: Definep(h),
hEH, tobe the unique element ofg such that g xo = x0 h.)

(h) Use (f) and (g) above to reprove Theorem 19.1 and Lemma 19.2.
(i) Use (h) above and Exercise 18.4(c) to reprove Theorem 19.3.
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The Borsuk-Ulam and ham-sandwich theorems

We shall give a few applications of the results from the preceding chapters.
They are generalizations of the results in Chapter 10 and are all based upon
the Borsuk- Ulam theorem (proved by K. Borsuk in the early 1930s after a
conjecture by S. Ulam).

20.1 Theorem
There does not exist any continuous map S2 -+ S' such that

= -p(x).

This generalizes the result that there does not exist any continuous map
p: S1 -* S° such that p(- x) = -ip(x) (such a map would be surjective, but 5'
is connected and 50 is not). In fact there is a more general result: there does
not exist any continuous map p: Sn -÷ Sn-I, for n 1, such that =

For n > 2 the proof is beyond the scope of this book; it relies for
example on the higher homotopy groups.

To prove Theorem 20.1 we suppose that there does exist a continuous
map S2 S' such that p(-x) = -tp(x). The group Z 2 = ( ± 1) acts

antipodally on 52 and on S' (i.e. ±1 x ±x); in each case the action is
properly discontinuous. If p2: S2 -+ S2/ Z2 and p,: S' S' / Z 2 denote
the canonical projections then p induces a continuous map ,ti: S2/Z 2

S'/Z2 such that PiP= the proof of
Theorem 5.5. Let a =(1,0,0)ES2,where as usual

S2 = { (x,y,z)E R3;x2 +y2 +z2 I }

Also, let b = p2(a) ES2 /Z2. If fis the path in S2 from a to —a given by

f(t) = (cos(irt), sin(irt),0) 0 <t < 1,
then p2f is a closed path in S2 IZ 2 based at b. We claim that the element
[p2fJ E ir (S2 /Z 2' b) satisfies

[p2f12 =
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p2(cos(2irt), sin (2 irt), 0) 0 < t <4,

(p2f * p20(t) =
p2(cos(ir(2t— 1)),sin(ir(2t— 1)),0) 1,

= p2(cos(2irt),sin(2irt),O) 0<t�l.
Then define F: I X 1 -+ S2 by

F(t,s) = (s + (1 — s)cos(2irt), (1 — s)sin(2irt), '/(2s(1—s)
(1—cos(2irt))).

We see that p2F: I X I S2 /Z 2 is a continuous map satisfying

p2F(t,0) =(p2f*
F(t, 1) = P2(l,O,0) Eb(t),

p2F(0,s) = p2F(1,s),

which shows that

[p2f]2 = lebi Eir(S21Z2,b).

The map S2 /Z2 -+ S' /1:2 induces a homomorphism

so that

=

E ir (S' a = [p1g] where g: I -+ S' is given

by g(t) = exp(lrit) E S' C C .) The fact that = means
therefore that = =cr1' =a°
implies that = a°).

Remark: Exercise 15.16(c) tells us that S2 is simply connected (see also
Corollary 23.9), so that from the previous chapter we see that the fundamental
group of S2/Z2 is 1:2. Thus is a homomorphism from Z2 to Z, but
all such homomorphisms are trivial so that = ir(S'/Z2

The previous argument was given to avoid using results from exercises
or results to be proved later on.

To continue with the proof of Theorem 20.1, consider the results of
Chapter 17 and look at the unique lifts of and to S' beginning
at These are and respectively (remember = pip). But
pf(l) = while = v,(a) which contradicts the fact that
hPp2fJ = and hence shows that 'p does not exist. (Note also that

1P211 *[€b] Eir(S21Z2,b).)
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20.2 Corollary
Let f: S2 R2 be a continuous map such that f(- x) = - f(x) for all

x E S2. Then there exists a point x E S2 such that f(x) = 0.

Proof Suppose f(x) * 0 for all x E S2 and define g: S2 S' by g(x) = f(x)/
Ilf(x)II. The map g is continuous and g(-x) = -g(x) which contradicts
Theorem 20.1.

20.3 Corollary
Let f: S2 -÷ R2 be a continuous map. Then there is a point xE S2

such that f(x) = f(- x).

Proof If f(x) * f(- x) for all x E S" then we may define g: S2 R 2 by g(x)
= f(x) - f(- x), which is continuous and satisfIes g(- x) = - g(x) and g(x) * 0
for all x E This contradicts Corollary 20.2.

Corollary 20.3 generalizes Corollary 10.3. Both of the above results do in
fact also hold if S2, R2 are replaced by Si',

Corollary 20.3 tells us in particular that there is no continuous injective
map from S2 to R2. This immediately gives the next result.

20.4 Corollary
No subset of R2 is homeomorphic to S2.

As in Chapter 10, we have a physical interpretation.

20.5 Corollary
At any given moment of time there exists a pair of antipodal points

on the surface of the earth which simultaneously have the same temperature
and pressure.

The analogue of the first pancake problem is the ham-sandwich theorem
which states that it is possible to cut a three layer sandwich consisting of
bread, butter and ham (the ingredients are not really relevant) exactly in
half with one stroke of a knife. More precisely:

20.6 Theorem
Let A, B, and C be bounded subsets of R3. Then there is a plane in

R3 which divides each region exactly in half by volume.

Proof The proof is quite similar to the proof of Theorem 10.5. We may
suppose that A, B, C lie within S, the sphere in R of diameter I and centre
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0. For x E S let denote the diameter line of S through x. For t E I let
denote the plane that is perpendicular to and passes through the point
on at a distance t from x. Now Pt divides A into two parts A1 and A2
with A1 closer to x than A2. Define functions f1, f2 by

f1(t) = volume (A1), f2(t) = volume (A2).

Obviously f1 and f2 are continuous functions from I to R with f1 monotone
increasing and f2 monotone decreasing. Therefore the function f: I -, R
defined by f(t) f1 (t) - f2 (t) is continuous and monotone increasing.
Furthermore f(0) = —f(I) so that by the intermediate value theorem there is
some t E I such that f(t) = 0. As f is monotone increasing it either vanishes
at a single point a or on a closed interval [a,b). In the former case we denote
the single point a by a(x) while in the latter case we denote (a + b)/2 by
a(x). Thus divides A into two equal parts. Note that a: S R is a
continuous map that satisfies a(x) = 1 - a(- x).

In a similar fashion we can define continuous functions 13, S -, R with
13(x) = I - 13(-x), = I - and with the property that p7(x)
divide B, C respectively exactly in half. Using the functions a, 13, we now
definep: S-+ R2 by

p(x) = (a(x) - 13(x), a(x) - 7(x))

Since a, (3 and y are continuous so is p. Furthermore = -p(x) so that
by Corollary 20.2 there exists some point y E S such that = 0. But this
means that a(y) = (3(y) = 7(y), so that the plane divides each of A, B
and C exactly in half by volume.

20.7 Exercises
(a) Prove that if n � 2 then there does not exist any continuous map

Sfl S' such that ip(-x) =
(b) Let the group act on S3 C C and S' C C as follows:

k (z1, z2) = (exp(2irik/p)z1, exp(2irikq/p)z2),
k z = exp(2nikfp)z,

where k E Z = { 0, 1 p- I } and q is an integer prime to p.
Prove that there does not exist any Z equivariant continuous map
from S3 to 51

(c) Is there an analogue in R of the second pancake problem?
(d) Suppose that X and Y are G-spaces for which the action of G is

properly discontinuous. Suppose also that X Y is a C equt.
variant continuous map. Let X/G Y/G denote the map
induced by Prove that the homomorphism ir(XfG, p(x0))
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ir(Y/G, induces a homomorphism

ir(X/G, ,r(X, x0) -* ir(Y/G, ir(Y,

which is an isomorphism, where p: X -* X/G and q: Y Y/G are
the canonical projections.

(e) Use (d) above to reprove the Borsuk-Ulam theorem and to reprove
the result in (b) above (a one line proof for each).
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More on covering spaces: lifting theorems

Let p: X -. X be a covering and let f: Y X be a continuous map with Y
connected. Recall that in Chapter 17 we showed that if a lift lof f: Y X
exists then it is unique (essentially). Now, if the lift I exists then we have a
commutative diagram

p*

The homomorphism is a monomorphism (Theorem 18.1) and =
so that

= 1T(Y,yo) c

Thus a necessary algebraic condition for the lift Ito exist is that

c It turns out that this is also a sufficient condition so long as
we put an extra condition on Y. Thus a purely topological question is equi-
valent to a purely algebraic question. The condition we need on Y is that it
is connected and locally path connected. A space Y is said to be iocally path
connected if for all y E Y every open neighbourhood of y contains a path
connected open neighbourhood of y; see Exercise 12.10(j). A space that is
connected and locally path connected is also path connected; we prove this
now.

21.1 Lemma
If Y is connected and locally path connected then Y is path conS

nected.

Proof Let y be some point of Y and let U be the set of points in Y which
can be joined to y by a path in Y. If u E U then u has a path connected open
neighbourhood V (because Y is an open neighbourhood of u and Y is locally
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path connected). If v E V then there is a path in V from u to v and a path
in Y from y to u, so that there is a path from y to v in Y. Hence V c U. This
shows that U is open. In a similar way we can show that Y - U is open so that
U is open and closed. Since y E U, the subset is non-empty. But Y is con-
nected and so U must be Y, which proves that Y is path connected.

21.2 Theorem
Let p: X X be a covering, letY be a connected and locally path

connected space and let Yo E Y, E X, = x0. Given a continuous
map f: Y -+ X with f(yo) = x0, there exists Y-+Xwith
and only if

ir(Y,yo) c

Proof We have already seen that the condition is necessary, thus it remains
to show that it is sufficient. Suppose therefore that c
we shall show that a lift I exists. The definition of f is as follows. Let y E Y
and let I Y be a path in Y from Yo toy. Thus fpis a path in X from x0
to f(y). By the homotopy path lifting theorem (Theorem 17.6(a)) there is a
unique path I -÷ X such that = x0 and p = We define f(y) to
be see Figure 21.1.

Surprising though it may be, under this definition, us well defined and it
is continuous. First we show that I is well defmed. The only choice we made
was the path p from y0 to y, so let be another path in Y from Yo to y. The
product path * is a closed path in Y based at Yo. We have

=

Figure 21.1

0 I
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But ir(Y,yo) c p,, and so there is a dosed path a tn X based at
that

Using the results of Chapter 14 we have

— (fp*fi//).fi/i

The path a is closed, thus

and by the monodromy theorem (Theorem 17.7)

= pa * ffr(l) = (a • f//)(1) = fi/i(1)

which proves that ?(y) is well defined. Notice that to define Twe only need
that Y is path connected.

To prove that I is continuous we need the extra assumption that Y is
locally path connected. Suppose that U is an open subset of X. Let y E
?'(U), thus U is an open neighbourhood of ?(y). Let U' be an evenly
covered neighbourhood of pf(y) = f(y) such that U' c p(U). By defInition

= U with each being homeomorphic to U';alsoI(y)EVk for
jEJ

some k. Since Vk and U are open neighbourhoods of?(y) so is W = Vk U.

Note that p(W) is evenly covered since U' is and p(W) c U'. The map f is
continuous and so (p(W)) is an open subset of Y which is an open
neighbourhood of y. Because Y is locally path connected there is a path
connected open neighbourhood V of y with V c (p(W)). We claim that
1(V) c U. Certainly I(y) U. If y' is another point of V then there is a path
p in V from y to y' and by the definition of f we see that I(y') is

f p is the unique lift of that (If i//is a path from Yo
to y then i/' * is a path from Yo toy' and f(i// * = fp(1) by the homo-
topy path lifting theorem.) The path fp has its image in f(V) c p(W) and so
the path has its image in p (p(W)). But (p(W)) = U with the

jEJ

being pairwise disjoint, each being homeomorphic to p(W) and with
one of the say Wk, being W. Since fp(O) = l(y) E W it follows that
fp(1) = W also. This proves that 1(V) c W c U and hence V c

(U). Thus every point of ?' (U) has an open neighbourhood in r' (U).
so (U) is open and hence us continuous.

We remark again that for I to be defined we just require that Y is path
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connected. For the continuity of It we need that Y is locally path connected.
We give an example now to show that If Y is path connected but not locally
path connected then I is not continuous. Let Y be the following subset of
R2:

Y=AUBUC
where

A={(x,y);x2+y2=1,y�0),
B{(x,y);-l<x<0,y0},
C = { (x,y); 0< x <1, y = Vi sin(ir/x)}.

See Figure 21.2; this space is called the Polish circle.

f:jure 21.2

It is clear that Y is path connected. Furthermore since B U C is not path
connected it follows that Y is simply connected and that Y is not locally path
connected. Consider the covering e: R -÷ S' and let f: Y -+ S1 be the map
defined by

(x,y) if(x,y)EA c Y,
f(x,y) =

(x,- if(x,y)EBUCCY.
Clearly f is continuous. Letting Yo = (1,0), = 0 we know that the

condition

ir(Y,yo) c

is satisfied (where p=e, R). We can define las in the proof of Theorem
21.2 to obtain

(arc cos(x))/2ir if(x,y) E AU B,
f(x,y) =

(arccos(x))/2ir —l if(x,y)EC.

Clearly pIf,I(l,0) = 0 but lis not continuous at (0,0)E Y.
There are several corollaries to Theorem 21 .2. The first requires no proof.
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21.3 Corollary
If Y is simply connected and locally path connected then any

continuous map f: Y X lifts tol: Y -+ X.

21.4 Corollary
Let pi: X1 X, X2 X be two coverings with X1,X2 both

connected and locally path connected. Let x1 ,x2 ,x0 be base points of
X1 ,X2 ,X respectively with p1(x1) = p2(x2) = x0. If

ir(X2,x2)

then there is a base point preserving homeomorphism h: X1 -* X2 such that
p2h=p1.

Proof Both p' and P2 lift to maps and such that P2PI = p1 and PIP2
=p2. Let X1

pj.

Furthermore p(x1) x1 and so by Corollary 17.5 the map is the identity
map, i.e. = I. By reversing the roles of X1 and X2 we see that = 1.

Thus and are homeomorphisms and the theorem follows by taking h =

A special case of Corollary 21.4 is when X3 and X2 are simply connected.

21.5 Corollary
Let p1: X1 X, P2: X2 -* X be two coverings with and X2 both

simply connected and locally path connected, then there is a homeomor-
phism h: X1 X2 such that p2h = Pi.

There is a converse to Corollary 21.4 which follows easily from Theorem

21.6 Corollary
Let p1: X1 X, p2: X2 X be coverings with X1,X2 connected

and locally path connected. Let x1,x2,x0 be base points with p1(x1) =
p2(x2) = x0. If there is a homeomorphism h: X1 X2 with p2h = Pi and
h(x1)=x2 then

ir(X1,x1)

We say that two coverings P1: X1 -' X. P2: X2 X are equivalent if
there is a homeomorphism h: X1 X2 such that p2h = Note that the
base points of X1 and X2 are not necessarily preserved by the
phism h. Corollaries 21.4 and 21.6 generalize to give:



More on covering spaces: lifting theorems 167

21.7 Theorem
Let P1: X1 X, P2: X2 X be coverings with X1 ,X2 both con-

nected and locally path connected. Let x1 ,x2,x0 be base points with p1(x1) =
p2(x2) = x0. The two coverings are equivalent if and only if the subgroups
P1* ir(X1,x1) and (X2,x2)of ir(X,xo) are conjugate.

Proof This follows directly from Corollaries 21.4, 21.6 and Theorem 18.3.

group of covering transformations of a covering p: X X is the group
of all homeomorphisms h: X X such that ph = p(see Exercise 17.9(r)).
This group is denoted by G(X,p,X). Clearly X is a G(X,p,X)-space.

21.8 Theorem
If Xis connected and locally path connected then the action of

G(X,p,X) on Xis properly discontinuous.

Proof Let x be any point of X and let U be an evenly covered neighbourhood
of p(x). Thus p '(U is the disjoint union of { j E J } with x E Vk for
some k. Let h E G(X,p,X). If h(x) = x then by Corollary 17.5 the map his
the identity. In other words if h * 1 then h(x) * x. Since ph(x) = p(x) it
follows that h(x) E V2 for some 2; furthermore if V2 = Vk then h(x) = x.

We therefore conclude that if h * 1 then x E Vk and h(x) E V2 with Vk
V2=O.

We may insist that U is path connected since X (and hence X clearly) is
locally path connected. Thus each of the sets j E J, are path connected.
Now ph(Vk) = U, so that h(Vk) C U But the j E J, are path con-

jEJ
nected and h(x) V2 for some x E Vk which means that h(Vk) c V2 and
hence Vk h(Vk) = 0. This proves that the action of G(X,p,X) is properly
discontinuous.

Using this result and some previous results leads to the following interes-
ting results.

21.9 Theorem
Let X be connected and locally path connected. If is a

normal subgroup of ir(X,xo) then X is homeomorphic to X/G(X,p,X).

Proof Since lr(X,Z)) is a normal subgroup we see from Theorem 18.3
that

=
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for any E Hence by Corollary 21.4 there is an element of
G(X,p,X) such that = Thus if = then there is an

element h E G(X,p,X) such that = Conversely, it is clear that if
h E G(X,p,X) then = Thus the group

G(X,p,X) identifies points in X in the same way as p does. This shows that
X and X/G(X,p,X) coincide setwise. They are homeomorphic because each
has the natural topology determined by the projections p: X X
and it:

X be connected and locally path connected. If is a

normal subgroup of ir(X,x0) then

G(X,p,X).

Proof This follows immediately from Theorem 21.9 and Theorem 19.3.

21.11 Corollary
If X is simply connected and locally path connected then

ir(X,xo) G(X,p,X).

21.12 Exercises
(a) Show that the subspace P of K defined by

P = { 0, 1/n; n is a positive integer }

is not locally path connected.
(b) Let p1: X1 SI, p2: X2 S' be n-fold coverings (na finite posi-

tive integer). Show that they are equivalent.

(c) Determine all covering spaces of (i) S1, (ii) the torus S' X S' and
(lli) a space X which is simply connected and locally path connected.

(d) Let pi: X1 -' X, P2: X2 X be covering maps with X connected
and locally path connected. (i) Prove that if there is a continuous
surjection f: X1 X2 then f: X1 X2 is a covering map. (ii) Prove

that if X2 is path connected and if there is a continuous map f:
X1 X2 then f: X1 -+ X3 is a covering map.

(e) Suppose that p1: X1 X and p2: X2 X are coverings in which
X1 is simply connected and locally path connected while X2 is
connected and locally path connected. Prove that there is a con-

tinuous map p: X1 X2 which is a covering map.

(I) Suppose that X is a connected G-space for which the action of G
on X is properly discontinuous. Prove that the group of covering
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transformations of p: X -÷ X/G is G.
(g) Let p: X X be a covering with X connected and locally path

connected. Prove that G(X,p,X) acts on Furthermore
prove that G(X.p,X) acts transitively on if and only if

is a normal subgroup of ir(X,xo). (See Exercise 18.4(h) for
the definition of a transitive action.)
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More on covering spaces: existence theorems

In the last chapter we showed that a covering p: X -÷ X is determined, up to
equivalence, by the conjugacy class of the subgroup ir(X,%) of ir(X,xo).
It is reasonable to ask whether for a given conjugacy class of subgroups of
ir(X,xo) there exists a covering p: X X which belongs to the given con-
jugacy class. The answer, as we shall show later on, is yes, provided that we
put some extra conditions on X (in addition to X being connected and
locally path connected). There is always a covering corresponding to the
conjugacy class of the entire fundamental group of X, namely 1: X X.
This, however, is of little interest. At the other extreme, the covering that
corresponds to the conjugacy class of the trivial subgroup is very interesting.
This covering, if it exists for a given X, is called the universal covering of X.
Thus the universal covering of X is a covering p: X X for which X is simply
connected. Shortly we shall give a necessary and sufficient condition on X to
ensure that a universal covering for X exists.

Suppose that p: X X is a universal covering of X. If x is any point of X
and p ' (x) then there is an evenly covered neighbourhood U of x with

being the disjoint union of { j J } and Vk for some k.
Denote Vk by V. The diagram

pIV

I

leads to a commutative diagram of fundamental groups

I

* 1$ +

ir(U,x) ).n(X,x)

The map pJV: V U is a homeomorphism and so is an isomor-.
phism. Since p: X -+ X is a universal covering, the group is trivial and
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so the map must be the trivial homomorphism, i.e. = for all
a E ir(U,x). This shows that if p: X -* X is a universal covering of X then
every point x E X has a neighbourhood U such that the homomorphism
ir(U,x) ir(X,x) is trivial. A space X with this property is said to be
'semilocally simply connected'. Thus a space is semilocally simply connected
if and only if for every x in X there is a neighbourhood U of x such that any
closed path in U, based at x, is equivalent in X to the constant path Note
that in the process of making a closed path in U equivalent to we may go
outside U. Note also that if U is a neighbourhood of x such that every closed
path in U, based at x, is equivalent in X to the constant path then every
neighbourhood U' of x such that U' C U also has the property that every
closed path in U', based at x, is equivalent in X to the constant path. The
most interesting spaces are semiocally simply connected (see the exercises)
and we have to think quite hard to obtain an example of a space that is
connected and locally path connected but not semiocally simply connected.
Such an example is the subspace X of R2 given by

x = U
n>O

where is the circle with centre (1/n, 0) E R2 and radius I/n. The point
(0,0) E X fails to satisfy the condition required for X to be semilocally
simply connected. Thus this space fails to have a universal covering.

The above necessary condition on X for the existence of a universal
covering is in fact also sufficient.

22.1 Theorem
L.et X be a connected and locally path connected space. Then X has

a universal covering p: X-*X if and only if X is semilocally simply connected.

Proof We first construct a space X and a map p: X -+ X, then we show that
these have the required properties. Let x0 E X be a base point and let X be
the set of equivalence classes of paths that begin at x0 (see Definition 14.1).
Thus

Now define p: X Xby p([a]) a(l).
We have to put a topology on X. Let U be an open set in X and let a:

I X be a path that begins at x0 and ends at some point, say x1, in U.
Define [U,aI by

[U,aJ{ La*p1;a:I-÷X,a(0)a(l),a(I)cU}.
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In other words [U,a] consists of the equivalence classes of paths a * (3for
which (3 begins at a(l) and Plies entirely within U. We use these sets to
define a topology for X as follows: consists of X and arbitrary
unions of subsets of X of the form [U,a] . To check that 'P1 is a topology for
X we need only check that the intersection of two members of 'P1 is still a
member of 'P1 (the other conditions for a topology are trivially satisfied).
First we show that if [yl E (U,aI then [U,y] [U,a]. We see this as
follows. Since E (U,a] there is some path (3 lying in U such that [y] =
[a * (3]. If& is any path in U beginning at (3(1) then

['y*&J = =

which shows that [U,yl c [U,a]. The same argument shows that [U,al ç
[U,)'] and so [U,7] = [U,a]. Now consider [U,a] ñ [U',a'], where
[U,a] and [U',a'] belong to 'Pt. 11(3 E [U,a] fl [U',a'] then [U,431 =
LU,a] and [U',L31 = [U',a']. Immediately we have

[UnU',j3] c [U,aJ 0 [U',a']
and hence [U,a] 0 [U',a'] is the union of

{[UOU',f3];(3E [U,a] 0 [U',aJ }
which shows that [U,aJ 0 [U',a'] E We leave it for the reader to check
that the intersection of any two elements of 'P1 belongs to 'P1 (it is easy).
Thus 'P1 is a topology for X.

We now check that the map p: X X is Continuous. Let U be an open
subset of X. If (U) is empty then we are finished. Suppose [a] E (U);
then by definition [U,a] is an open set of X and

p([U,a]) { (a*j3)(l); [a*jlJ E [U,a] }
= { $3(l);[a*(3]E[U,a]}
c U,

since by definition of [U,a] the paths (3 lie in U. We therefore have

U [U,a]
kI

which is an open set in X, and so p is continuous.
Next we check that p: X X is surjective. This is easy because if x E X

then there is a path in X beginning at x0 and ending at x (the space X is path
connected). Clearly La] EX and p([cr]) x.

To show that p: X -* X is a covering it remains for us to show that each
point of X has a neighbourhood which is evenly covered. Let x E X and let
V be an open neighbourhood of x which is path connected and for which
every closed path based at x is equivalent in X to the constant path We

have
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U [V,a].
(a] p1(V)

If (V,aJ [V,$3] * 0 then there is an element [yJ (V,a] ri [Vj3] and
hence [V,7J = [V,aJ and [V,7J [V,$3J so that [V,a] = [V,$3].This
shows that p1(V) is a disjoint union of open sets. We must show that p

maps each set homeomorphically onto V. The map

: [V,aJ

is obviously continuous since Pa1(V) [V,a]. If x E V. let $3 be a path in
V from cr(l) to x, then [a * $3] [V,aI and p([a * $3]) = x. This shows that

issurective.

To prove that is injective suppose that pa([a * $3]) * yJ) for
some two elements [a * $3], [a * y] [V,a). Then $3 and y have the same
end points. The path $3 * is a closed path in V and so, by our choice of V, is
equivalent in X to the constant path In particular $3 and so [a * =

[a * proving that Pa is injective.
To complete the proof that Pa is a homeomorphism we need to check

that Pa' is continuous, or equivalently that Pa is an open map. Let [Wj3]
be an open subset of [V,a]. Then N = p([W,(3]) is the set of points in W
which can be joined by a path in W to t3(l). For each yEN there is an open
path connected subset W,, of W containing y. Since y E N and WY is path
connected it follows that W,, c N and so N = U WY. Thus p([W,$3]) N is

yEN

open and SO Pa is a homeomorphism, which completes the proof of the
statement that p: X -, X is a covering.

To complete the proof of Theorem 22.1 we need to show that Xis simply
connected. First we show that X is path connected. Let [e] be the

class of the constant path e at x0 and let [a] be any element of X. Define

sEl
where c(t) = a(st), t I. Then is a path In X from to [a]. This proves
that X is path connected. (Note that is a lift of a.)

Let $3 be a closed path in X based at By uniqueness of liftings (3 =
and so

[p$3] = = = [€].
Thus $3 = is equivalent to the constant path in X and so X is simply con-
nected and the proof of Theorem 22.1 is complete.
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22.2 Corollary
Suppose that X is a connected, locally path connected and semi-

locally simply connected space. If H is a subgroup of ir(X,x0) then there
exists a covering PH: XH X, unique up to equivalence, such that H = PH.
1T(XH,XH). Thus, in particular, for any conjugacy class of subgroups of
ir(X,xo) there is a covering space p': X' -, X such that ir(X',x') belongs
to that conjugacy class.

Proof Let p: X X be the universal covering space of X and let G(X,p,X) be
the group of covering transformations. Since G(X.p,X) ir(X,xo)we let H'
be the subgroup corresponding to H under this isomorphisni. We then take
XH = X/H' and let PH be the map induced by p. The details are left for the
reader.

The conditions on X in Corollary 22.2, ensuring the existence of XH,
be weakened; see Exercise 22.3(e).

22.3 Exercises
(a) Prove that a simply connected space is semilocally simply connected.
(b) Prove that a connected n-manifold is semilocally simply connected.

Prove that a connected n-manifold M has a universal covering p:
M -+ M in which M is also an n-manifold.

(c) Prove that is trivial for n> I in the following way. Let p:
S" be the universal covering. Define f: S" to send

to x0. Show that I lifts tof': and prove that this yields a
continuous map f": -÷ such that pf" 1. Finally apply the
fundamental group to the sequence Sn Sn to deduce that

f p

ir(S",x0) is trivial.
(d) Let X be a connected, locally path connected and semiocally

simply connected space. Let H be a subgroup of ir(X,x0). Let be

the set of paths in X that begin at x0. Define a relation on

saying that

[a*131 EH.

Prove that is an equivalence relation on Denote the equiva-
lence class of a by [a] H- Define XH to be and let PH:
XH -÷ X be defined by PH([alH) = a(l). Let U be an open set in
X and let a: I X be a path in X beginning at x0 and ending in U.
Define [U,aJ H to be

[U,aJH { [a*p]H;fi:l-+X,13(O)a(l),p(I)CU}
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Show that the collection H consisting of XH and arbitrary
unions of sets of the form [U,aJ H forms a topology for XH. Prove

that PH: XH -÷ x is a covering and that

H c ir(X,xo).

(e) Let X be a connected and locally path connected space. Let H be a
subgroup of ir(X,xo). Prove that there exists a covering PH: XH X
such that PH. 1r(XH,xH) = H if and only if for every point x of X
there is a neighbourhood U of x such that any closed path in U
based at x is equivalent in X to some element of H c ir(X,xo).
(Hint: Modify the proof of (d) above.)
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The Seifert-Van Kampen theorem: I Generators

The theorem that we are about to discuss gives a quite general method for
calculating fundamental groups. It was first proved in the early 1930s inde-
pendently by H. Seifert and E. Van Kampen. The theorem is frequently
called the Van Kampen theorem and sometimes the theorem of Seifert
(usually depending upon whether you are English speaking or German
speaking).

Suppose that we are given a space X which is the union of two subspaces
U1, U2 which are both open and path connected. Suppose furthermore that
U1 Ii U2 is non-empty and path connected. The Seifert-Van Kampen
theorem gives a way of calculating the fundamental group of X provided that
we know the fundamental groups of U1, U2 and U1 Ci U2. (A special case of
this theorem appears in Exercise 15.16(c).)

Let x0 E U1 ñ U2 and let X for j = 1,2 denote the inclusion
maps. Then roughly speaking the Seifert—Van Kampen theorem tells us

(i) (The 'generators' of ir(X,xo).) If a E ir(X,xo) then

a
k=1

whereakElr(UX(k),xo),X(k)= 1 or2.
(ii) (The 'relators' or 'relations' of Let

a
=

ak

be an element of ir(X,xo). Then a = 1 if and only if a can be
reduced to 1 by a fInite sequence of operations each of which
inserts or deletes an expression from a certain list. This list depends
on ir(U1 ri U2 ,x0), ir(U1 ,x0) and ir(U2 ,x0).

The information in (i) and (ii) is called a presentation of the group
ir(X,xo). Thus in order to State the Seifert-Van Kampen theorem precisely
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we need to specify in detail what a presentation of a group is. It is in fact an
elegant way of expressing the group in terms of generators and relators (or
relations). Before we say more about this, however, we must introduce some
notation.

Consider a set S and think of the elements of S as being non-commutative
symbols. Using these symbols we form words; these are just expressions of
the form

W = xke(k)

where x1 E S, repetitions being allowed, and e(i) = ± 1. (In other words from
the set S { yj; j E J } we get an 'alphabet' { j E J } which is
used to form 'words'.) It is convenient to have the empty word in which no
symbols appear. A word is said to be reduced if it does not contain x1
followed by or vice versa x1 followed by x1 for some x E S. Thus
x11x11x1' is a reduced word but is not. Every word can be
reduced to a reduced word simply by deleting pairs like x' x or x1x1
(where x E S) whenever they appear in a word. For example x1 x2' x2

x11x3' reduces to x1 1x11x3' which reduces to x31.
Using juxtaposition of reduced words as a law of composition and reducing

the resulting word, if necessary, it turns out that the set G of reduced words
in the symbols of S forms a group. The empty word acts as the identity, and
the inverse of the word W = x16(l)x2E(2)... xkeOc) is given by

= ...x2—e(2)

We leave it for the reader to verify the group axioms. This group is called the
free group generated by S. Of course the actual symbols in S themselves do
not matter, so that if S' is another set bijective to S then the resulting groups
generated by S and S' are isomorphic. When S is finite with n elements we
call the free group generated by S the free group on n generators.

Note that the free group on 1 generator { x } consists of the following
elements

and it is not difficult to see that it is isomorphic to the group of integers 1.
We often abbreviate x1 by x,x1x1 by by etc. Note also that
the free group on n generators for n> 1 is a non-abelian infinite group.

It is convenient to view free groups in a slightly different way by consider-
ing equivalence classes of words under a suitable equivalence relation. Con-
sider the following operations on words:

(I) insert xxt or x x

in a word, where
xx1 in a word W we mean write W as W1W2 and then insert



178 A first course In algebraic topology

xx' thus: W1 W2 may be empty). We say
that two words W,W' are equivalent if and only if W' can be obtained from
W by a finite number of operations of type (i) and (ii), This is clearly an
equivalence relation; furthermore it is obvious that any word is equivalent
to its reduced form. The set of equivalence classes of words in S, with juxta.
position as a law of composition, forms the free group generated by S. For
brevity we usually denote the equivalence class containing the word W by W
itself; this should not lead to any confusion.

Suppose now that R is a set of words in S. We can consider the following
additional operations on words in S:

(iii) insert r or r1 in a word, where r ER,
(iv) delete r or r1 in a word, where r E R.

We now say that two words W,W' are equivalent if and only if W' can be
obtained from W by a finite number of operations of types (i), (ii), (iii) and
(iv). The reader can readily verify that this Is an equivalence relation and that
the set of equivalence classes forms a group, with juxtaposition as a law of
composition. This group is said to be the group with presentation (S;R) and
is denoted by (S; R). As above we denote the equivalence class containing
the word W by W itself, again this should not cause any confusion. The set S
is called the generators and the set R is called the set of relators. We shall
give three (simple) examples. First, the group with presentation (S;Ø) is just
the free group generated by S. The second example is ({x ); { }), where
n is some fixed positive integer. This group consists of the words

and is easily seen to be isomorphic to the cyclic group For the third
example consider (f x,y}; { xyx' }). We see that xy = yx, (xy =

(xyx -' y xy yxy x xy = yxy y = yx by operations (iii) and (ii)).
It is then not difficult to see that xayb = ybxa for all integers a,b and so any
word g = xa(flyt)(1)xa(2) ...xa0o)yb(k) can be rewritten as g = xayb where
a = a(i) and b = b(i). Thus the group (C x,y }; { xyx1 }):
is isomorphic to Z X Z.

If a is a word in S and a = 1 in then a itself does not necessarily
belong to R, of course. However, a can be reduced to the empty word by a
finite sequence of operations of type (i), (ii), (iii) and (iv). In such a case we
say that a is a consequence of the relators R. For example xa x y is a

consequence of the relator y1.
Different presentations may give rise to isomorphic groups; for example,

the group ({x,y }; { y is isomorphic to the group ({x} ,O). Similarly
the group ({a,b }; { babC' }) is isomorphic to the group ({ a,c
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{ a2c2 }). To see this define

f: ({a,b} ; { } )—'({a,c}; (a2c2 })

on the generators by f(a) = a, f(b) ca and in general by

Since

f(baba')=caacaa' =ca2c=c(a2c2)c' 1,

we get a well-defined function which is easily seen to be a homomorphism.
If we define

g: ({a,c};
on the generators by g(a) = a, g(c) = ba it is easy to check that g is well
defined, is a homomorphism and fg 1, gf = 1 so that f and g are group
isomorphisms.

The problem of determining whether or not two presentations determine
isomorphic groups is in general extremely difficult. Even if we are told that
two groups are isomorphic it may be difficult to see why. For example the
group ({ x, y }; { xy2 yx2 x3 }) is in fact isomorphic to the
trivial group 1, but this is extremely hard to prove. (The reader should never-
theless try proving that the group is indeed trivial.) Despite this pessimistic
tone there are various tricks which will enable us to tell if two groups are
different. These tricks will be produced when needed.

Given any group G then we say that G has a presentation (S;R) if G is
isomorphic to (S;R). Every group has a presentation (SG;RG) where

here (xy)' means the symbol representating xy E G. Showing that G is
isomorphic to (SG;RG> is left as an exercise for the reader.

It is more convenient, sometimes, to write the relators R of the group
(S;R) as a set of relation.c. By this we mean that the set {r; r ER) is
rewritten as { r = 1; r E R } . Furthermore, if r is the product of two words
uv then we may replace r = I by u = v'. Thus, for example, we may write
({A,B}; { ABK'B'}) as ({A,B}; { ABA1B' = 1)) or as
{ AB = BA)>. As another example, the relators RG above may be written
as 4 (xy)' = x' y'; x, y E G }. This informality of notation should not lead
to any confusion.

23.1 Exercises
(a) Show that if G is a group then C is isomorphic to (SG;RG> where

SG= {gEG ), {(xy)'y1x';xyEG}.
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(b) What is the order of the gzoup({ A,B};R) where

R= { }?
(c) Show that the group ({ A,B}; { A4 ,B2 ,ABA' B' )> is isomorphic

to Z4 X Z2.
(d) Suppose that G is a group with presentation (S;R). Let AG be the

group with presentation (S;AR) where

ARRU { xyxiy1;x.yES}.
Show that AG is an abelian group and that there is an epimorphism
G AG. What is the kernel of this epimorphism?

(e) Using Exercise 19.5(e) show that the fundamental group of the
Klein bottle has presentation ( { a,b } ; { abab ' } ).

(f) Let G = (S;R). Let (i = 1,2,3,4) be the following transforma-
tions on the pair (S;R), the socalled Tietze transformations.

T1: If r is a word in S and r = 1 is a relation which holds in G then

let S'=S,R'=RLJ {r}.
T2: If r E R is such, that the relation r = 1 holds in the group
(S;R- {r}>thenletS S,R =R— { r}.
13: If w is a word in S and x is a symbol not inS, letS' = S U

( x},R'RU
14: IfxE Sand suchthat
wx E R then substitute w for x in every element of R - { wx }

togetR'andletS'=S- {x}
Prove that if (S";R") results from (S;R) by a finite sequence of
Tietze transformations then (S";R") is isomorphic to <S;R).

(The transformations and 12 correspond to adding and
removing a superfluous relation respectively while 13 and T4
correspond to adding and removing a superfluous generator respec-
tively.)

Let us now return to our topological space X which is the union of two
open path connected subsets U1 and U2 with U1 1' non-empty and path
connected. Let denote the various inclusion maps as indicated
below

U1 n U2



The Seiferr- Van Kernpen theorem: I Generators

Choose, as a base point, a point x0 E U1 ñ U2. We then have the following
commutative diagram of homomorphisms:

ir(U1 ,x0)

ir(U1 flU2,x0)

ir(U2 ,x0)

Suppose that the fundamental groups of U1 (' U2, U1 and U2 are known
and that the presentations of these groups are as given:

ir(U1 U2,xo) (S;R>,
,r(U1,x,o)
ir(U2,xo) (S2;R2).

Ifs E S then sE ir(U1,xo) and sE ir(U2,xo), so that we can
express these elements as words in S1 ,S2 respectively. Let '1p2 be
representations of • s, as words in the generators S1 , S2 respectively.

23.2 Definition
Let Rs denote the following set of words in S1 U S2:

("Pi es') a ES.

We shall think of Rs as a set of relators. As a set of relations Rs is

= s ES }.
We can now state the theorem of H. Seifert and E. Van Kampen.

23.3 The Seifert-Van Kampen theorem

ir(X,xo) is isomorphic to the group defined by the generators S1 LI
S2 and the relations R1 U R2 U Rs.

Note that the relations R of ir(Uj ri U2 ,x0) are not required.
Loosely speaking ir(X,xo) is the smallest group generated by ir(U1 ,xo) and

The proof of the theorem will be divided into essentially two parts. The
first part will be concerned with generators and will be proved in this chap-
ter. The second part will be concerned with relations and will be proved in
the next chapter. We now prove a result that will be useful (in fact it is just
Exercise 7.13(g)); we could, as in Chapter 16, avoid using this result.

23.4 Theorem
Let X be a compact topological space arising from some metric
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space with metric d. Given an open cover 4 U3; j E J } then there exists
a real number 6 > 0 (caLled the Lebesgue number of { U3; j E J }) such
that any subset of diameter less than 6 is contained in one of the sets U3,
j E

Proof Since X is compact we may assume that J is finite. For x E X and
j E J let f3(x) be given by

inf d(x,y).
y E

Clearly is continuous, as is the function f defined by

f(x)= max fi(x).
iEj

Since X - is closed it follows that ç(x) = 0 if and only if xE X - U3. Thus
f(x) = 0 if and only if x E X - for allj E J. But ( U3;j E J } is a cover of
X and so f(x) >0 for all x E X. That X is compact and f is continuous means
that f(X) is a compact subset of R, in fact of(0,o°) C R. Therefore there is
aS >0 such that f(x)>S forallxEX.WeclaimthatanysetSofdiameter
less than S must belong to some Uk, k E J. To see this, simply take x E S;
then f(x) > S which means that fk(x)> 6 for some k which in turn means
that x E Uk. But the diameter of S is less than S and d(x,X - Uk) > 6 for
some x E S so that S itself is in Uk, which proves our assertion.

The first step in the proof of the Seifert-Van Kampen theorem is con-
cerned with generators. Essentially we solve Exercises 14.6(g), (h) and (i).

23.5 Lemma
The group ir(X,xo) is generated by

Li

In other words if a E ir(X,xo) then a = fl where ak E
and X(k)= 1 or2.

Proof Let f be a closed path based at x0 E X. Let S be the Lebesgue number
of the open cover { f'(U1),f'(U2) ) of 1. This means that if to,ti,t2,...,

is a sequence of real numbers with

and t1 — <6 then is contained in U1 or U2 fori = l,2,...,n.
We may assume that f(t1)E U1 flU2 then [t1_1,ç] and
1t1,t1+1 I are either both in U1 or both in U2 so that we can combine these
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two intervals into [tj1 I with f([ in U1 or U2. Now relabel
and continue this process; see Figure 23.1.)

Let paths I X, for i 1,2,...1n be defined by

f1(t) = f((1 — +

Notice that f1 is a path that is either in U1 or in U2, beginning at f(t1_1) and
ending at We claim that

[f] = Ef11 [f2J ...

This was in fact Exercise 14.6(i), but we give a proof for completeness.

Figure 23.1

UI

f(t0)=x0=f(t4,

23.6 Lemma

Let f: I -* X be a path and let

If I-+ X, forj = l,2,...,n is defmed by

ç(t) = f((1 — +

then

ff] = [f1] Ef21 •.. [fe].

Proof The proof is by induction on n. Suppose first that n = 2, then 0 =
t0 <t1 �t2 = land

f1(2t)
(f1 * f2)(t)

=
f2(2t—1) ½ � t < 1

— f f(2tt1) O<t<Vz,

—

f((1—(2t—I))t1 +2t— 1) ½<t<l.
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We can see that f1 * f2 —. f simply by using the homotopy F: I X I X

given by

f((l—s)2tt1 + st) 0< t < ½,
F(t,s)=

L
f((I—s)(t1 +(2t—1)(1—t1))+st)

Suppose now that n> 2 and that the result holds for smaller integers.
We have

0 = t0 � tn_I = 1 we can apply the above result to get

f g *

where g(t) = Now

o = � ... = 1,
tn_i tn_I tn_i tn_i

so that by the inductive hypothesis

[gJ = [g1] [g2] ... [g11_1]

where

g1(t) =

= f((1—t)t1_1 + tt1)

= f1(t).

Thus [f J = [f1 (f2 I ... J, which completes the proof.

An alternative proof would be a direct one as follows.

0<t<(½)n_I,
1)

((...((f1 • f2) * f3) ...) *
= fk(!_k41 t 1) (½)u1k41 <t

1) ½�t<l

f(2n-Itt1) 0<t<(½y1-l,
f(t1 t— I)t2 t1))

<t <(½)fl_k,

+(2t— 1)(1

=flh(t))



The Seifert- Van Kampen theorem: I Generators 185

where h: I -÷ I is the continuous function given by

h't'—'' l)(tk — �t
Define F:IX I-+Xby

F(t,s) = f(sh(t) + (1 — s)t).

Clearly F is continuous and so

f—' (...((fi * f2) s f3) *...) * which proves the required result.

Returning to the proof of Lemma 23.5, choose, for I l,2,...,n-l paths
q1: I -+ Xso that qj(O)xo, q1(1) f(t1)andsothatq1(t)EU3 for all

t E I. Also, let qo and be given by qo(t) = = x0. See Figure 23.2.

Since [1 1 = [f1J [f2] ... [fe] we have

[fI [qol [fr] [qi] [f2] •.. [4n]
= [qo f1 [q1. f2s ?l:21 ... q11]

and each of * (f1.,.1 * are closed paths based at x0 which lie entirely
in U1 or U2. Hence Eq1 * * is an element of either ir(U1,xo)

or ir(U2,xo). Thus each element of ir(X,xo) may be written as the pro-
duct of images of elements from ir(U1 ,x0) and ir(U2 ,x0) which proves
Lemma 23.5.

237 Corollary
The group ir(X,xo) is generated by the set * S1 U S2 where

S1 ,S2 are the generators of it (U1 ,xo), ir(U2 ,x0) respectively.

It is cumbersome to keep writing the ia1, and iJi2 so we adopt the
convention that we write s in place of for sE = 1,2. In other words
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f
I then we denote the composite I -÷ X also by f. In this sense

ir(X,xo) is generated by S1 Li S2 where S1,S2 generate ir(U1,xo), ir(U2,x0)
respectively.

The next corollary follows immediately from Corollary 23.7.

23.8 Corollary
If S1 = S2 = 0 then ir(X,xo) is trivial.

A special case of this is:

23.9 Corollary
If n � 2 then S" is simply connected.

This follows from Corollary 23.8 because S" may be expressed as U1 U
U2 whereU1 { (l,O,O,O,...,O)},U2 Se'- { (-l,O,O,...,O)}.Both
U1 and U2 are simply connected since they are homeomorphic to with
homeomorphisms given by

=

=

Using results from Chapter 19 we can now properly deduce:

23.10 Corollary

The fundamental group of is Z2 and of L(p,q) is Z1,.

23.11 Exercise
Suppose that X = with each U1, i = 1,2,...,n, being open

and path connected. Also suppose that U is non-empty and path con-
nected. Let x0 E Prove that ir(X,xo) is generated by tJ,11,

where X denotes the inclusion map.
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The Seifert-Van Kampen theorem: 11 Relations

In this chapter we shall complete the proof of the Seifert- Van Kampen
theorem (Theorem 23.3). Recall that we are assuming X U1 U U2 with
U1, U2 and U1 U2 being non-empty open path connected subsets of X.
Our base point x0 is in U1 fl U2 c X and ir(U1 fl U2, x0) is generated by S
while ir(U1, x0) has the presentation (Si; for j = 1, 2. Finally Rs is the
set of relations = for s E S. In the previous chapter we showed
that ir(X,xo) is generated by S1 U 52.

24.1 Lemma
The generators S1 U S2 of 7T(X,xo) satisfy the relations R1, R2 and

Proof Since

ir(X,xo)

is a homomorphism for j = 1, 2 any relation satisfied by the elements of
in is also satisfied by the elements c ir(X,x0). Thus, if we
use our convention of suppressing the elements S1 U S2 in ir(X,xo)
satisfy the relations R1 and R2.

IfsESCir(U1 flU2,xo) then

since = \L'2'P2. If a word in represents then the same word in
represents in ir(X,x0) so that

sES,
and so the proof of Lemma 24.1 is finished.

The proof of the Seifert-Van Kampen theorem will be completed when
we have shown that the relations mentioned in Lemma 24.1 are the only
relations.
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24.2 Theorem
If the elements of U S2 in ir(X,x0) satisfy a relation then it Is a

consequence of the relations R1, R2 and Rs.

Proof The proof of this theorem is not difficult but it is quite long and
requires a good deal of notation.

Suppose that ... = I is a relation between the elements
ofS1 US2 c ir(X,x0). Here e(i)=±landajESX(j)fori=1,2,...,kwhere
X(i) = 1 or 2. For each i, i = 1,2, ..., k, choose a closed path f1 in UX(j) based
at x0 such that (f1] = ar1). In other words a1 = [f11 if e(i) 1 and a1 =
[f1J if e(i) = - 1. Define a path f: I X by

Notice that

= f((l — t)(j — 1)/k + ti/k)

and since

we can use Lemma 23.6 to deduce that

[fJ = [f1J [f2]

Since ... = lit follows that [f] = 1, i.e. Let F:
I X I -+ X be a homotopy between f and i.e.

F(t,O)=f(t),
F(t, 1) = F(O, s) = F(l, s) = x0.

Now let & be the Lebesgue number of the open cover {
F' (U2) ) of I X I and choose numbers

Ot0<tj<t2<...<tm=l,
0s0<s1 <s2

such that

(i) { 1/k,2/k,...,(k—l)/k } c { ti,t2,..., tm_I),
and

(ii)(t1 t1_1)2 +(Sj— sj_1)2 <52 for all i,j.

Clearly such a choice is possible. If denotes the rectangular region
t11 X Sj] in IX I then is contained in either U1 or U2

for all i,j.
For each i,j let a path from x.0 to F(t1, sj) which lies in U1

(or U2 or U1 U2) if F(t1, s) lies in U1 (or U2 or U1 Ci U2 respectively).
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Such a choice is possible since each of U1, U2 and U1 r' U2 are path con-
nected. If F(t1, s3) = xo then we insist that = (See Figure 24.1.)

Also, define paths as follows

= F((1—t)tj_1 + tt1, sj),

= +

so that is a path from F(t1_1, to sj) while cjj isa path from
to F(t1, si); see Figure 24.1. Notice that

(f] = [b2,0J ... Ebmi],
= ... [bm,nI

The paths * and a are equivalent as paths: intuitively

just move the paths within the region An equivalence of paths is

given explicitly by the homotopy H: I X I -+ X where

F((1—s)((l—2t)tj_1 + 2tt1) +

(1-s)sj1
H(t,s)

F((1—s); + s((2— + (2t— 1) tj)),

I.

Notice that H(I X I) c U1, U3 or U1 ñ U2 according as c U1,

U2 or fl U3 respectively.

xo

FIgure 24.1
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Now define closed paths f1, and gjj based at x0 by

= • *
* *

Because * * it follows that the paths • and

gj—1 * are equivalent paths. Furthermore the equivalence is within U1,

U2 or U1 fl U2 according to whether F(R13) c U1, U2 or U1 U2 respec-

tively. We therefore have

* *

i.e.

=

Now express each of these elements as words in either S1 or S2, so that we
get a relation

' = ' ' '

within either ir(Uj, xo) or ,r(U2, x0) respectively. This relation must be a
consequence therefore of the relations R1 or R2.

Suppose now that 1/k = tj(1), then

[f1] = [f1,01 [f2,0J ...

and since f1 is a closed path in UX(l) based at x0 we can use the relations

RX(l) toexpress [f2,o],...,[f1(1),o]
relation

e(i) — Ft i — 'is .rc i' 'it i'a1 — — L'l,Oi L'2,OJ ... L'i(i),OJ

which is a consequence of the relations RX(l). We can obtain similar rela-
tions for ..., mus

is a relation that is a consequence of R1 and R2. We rewrite this as

('Egm_i,i]' 1')

giving a relation which is a consequence of R1 and R2. Rearranging brackets

gives

'[g2,11')

Now = gmi = so that 'Ego,i]' = 1 and = I are trivial
relations. The relation

'=1
is also trivial if both ' and '[ga)' are expressed as words in either
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Sj or However if is a path in U1 flU2 then it is possible that one of
', '[gd] is expressed as a word in S1 and the other as a word in S2.

In this case the relation ' lisa consequence of the relations
Rs. Thus we obtain the relation

a='[fl,1J'[f2,1]'...'[fmjJ'
as a consequence of the relations R1, R2 and Rs.

By repetition of this process we arrive at the relation

cr='[fl,flI''[f2,nl'...'[fmflj'

as a consequence of the specified relations. Thus the original relation is a

consequence of the specified relations. Thus Theorem 24.2, and hence also
the Seifert-Van Kampen theorem, is proved.

Except for an example based upon the corollary that follows we shall
leave calculations involving the Seifert-Van Kampen theorem until the next
chapter.

24.3 Corollary
If U1 fi U2 is simply connected then ir(X,xo) is the group with

generators S1 U S2 and relations R1 U R2.

The proof is obvious.
For an example using this corollary we shall look at a figure 8: thus X is

the subspace of R2 consisting of C1 U C2 where

C1 = { (x,y)ER2;(x-1)2 +y2 = 1 } and

C2 = { (x,y) E R2 ; (x+1)2 + y2 = 1 };
see Figure 24.2.

To apply the corollary we need to show that X is the union of open path
connected subsets U1, U2 with U1 fl U2 simply connected. Let, therefore,
U1 =X- andU2 X- wherex1 (-2,O),x2(2,O).
Obviously U1 and U2 are both open and path connected; also U1 fl U2 =

Figure 24.2
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X - { x1, x2 } is path connected. Furthermore U1 fl U2 is simply connec-
ted because it is homotopy equivalent to { x0 } ; in fact { xo} is a strong
deformation retract of X (see end of Chapter 13). Corollary 24.3 therefore
applies. Now U1 and are homotopy equivalent relative to x0, for j = 1, 2

(in fact, again, is a strong deformation retract of U1). Thus xo) is a
free group on one generator and so by Corollary 24.3 the fundamental
group of a figure 8 is a free group on two generators.

It is not difficult to generalize this result to a collection of n circles
joined at a single point, the result being that the fundamental group is a free
group on n generators. We leave this as an (easy) exercise.

24.4 Exercises
(a) Let be the union of n circles that intersect (pairwise and other-

wise) at only one point x0. Prove that x0) is the free group
on n generators. (Induction?)

(b) Let X be the following subset of R2:

X { (x,y)E R2;-1 <x,y<l andxoryE Z }.
Determine the fundamental group of X.

(c) Let Y be the complement of the following subset of R2:

{(x,O)€ 1 }.
Prove that ir(Y, (1,1)) is a free group on a countable set of genera-
tors.

(d) Let X be a Hausdorff space such that X = A LI B, where A and B are
each homeomorphic to a torus and A fl B = { xo }. Calculate
ir(X,xo). (Hint: For xo E A find a contractible neighbourhood CA
of x0 in A then let U1 = B Li CA. Similarly let U2 = A UCB where

is a contractible neighbourhood of xo in B.)
(e) Let X be the space obtained from S"' X R by removing k disjoint

subsets each homeomorphic to the open n-disc What is the
fundamental group of X?

(I) Let X = { (x,y) E X x0 or y x0 } where x0 is
some fixed point of R (X is two copies of R with one point
x0 in common.) Calculate ir(X,xo). Is this group finite?

(g) Suppose that X = U1 LI U2 witb U1, U2 both open and path con-
nected, and with U1 fl U2 nOn-empty and path connected. Let
U1 ñ U2 -+ U1 and U1 -+ X denote the inclusion maps. Prove
that if U2 is simply connected then ir(U1,xo) -÷ ir(X,xo) is

an epimorphism.
Furthermore prove that the kernel of is the smallest normal
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subgroup of ir(U1 ,xo) containing the image of ir(U1 Ci U2, x0).
(Ii) Suppose that X = Uj U U2 with U1, U2 and U1 ñ U2 open non-

empty path connected subspaces. Prove that if U2 and U1 fl U2 are
simply connected then the fundamental groups of U1 and X are
isomorphic.

(I) Let K be a compact subset of R" with R path connected.
Let h: R" -÷ - f (l,O,0,...,0) } be the homeomorphism given

h(x1,x2, - 1,2x1,2x2,
(i +11x112)

Prove that if x0 E Rn-K then ,r(R"-K, x0) is isomorphic to
- h(K), h(xo)). (Hint: K c Bk(O) for some k. Consider U1 =

U2 = U ((1,0, ... 0) } and then use (h)
above.)

(j) Let X be a torus with one point removed. Show that the fundamen-
tal group of X is a free group on generators.

(k) Show that the fundamental group of R P2 - { y }, where y E
RP2, is isomorphic to Z.

(1) Let be the following subspace of C:

{zEC;Lz—j+½1¼,j 1,2,...,n}
where n is some positive integer. Calculate 0).
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In this chapter we use the Seifert-Van Kampen theorem to calculate the
fundamental groups of several spaces. For the first three examples the answer
has been calculated before (as an exercise or corollary) using different
methods.

We start by showing that the fundamental group of the torus T is isomor-
phic to IL X Z. Represent T as a square region with edges identified as in
Figure 25.1(b). We denote the edges that are identified by a1 and a2.

Let y be some point in the interior of the square region as indicated in
Figure 25.1(c). Let U1 T - { y } and let U2 =T-(a1 U a2), i.e. U2 is the
interior of the square region. Obviously U1 and U2 are both open and path
connected as is U1 U2. Thus we can apply the Seifert-Van Kampen
theorem. Let x0 ,x1 be the points indicated in Figure 25.1(c). (Note that x1
appears four times in the diagram since these four points are Identified tb
one point in T.) Finally let c be a circle, centre y, passing through x0, and let
d be the straight-line segment from x0 to x1 as indicated in Figure 25.1(c).

The 'edge' of the square region (Figure 25.2(a)) after identification gives
a figure 8 in I (Figure 25.2(b); see also (a)). It is clearly a strong deformation
retract of U1.

If and a2 denote closed paths in U1, based at x1, that go once along
a1 and a2 respectively in the directions indicated then r(iJ1 ,x1) is the free

Figure 25.1

(a) (b) (c)



The Seifert- Van Kampen theorem: 11! Calculations 195

Figure 25.2

(b)

group on the generators [a1], [a2]. Note that [a1] and (a2] are uniquely
defined. Let 6 denote a path in U1 from x0 to x1 that corresponds to d,
(i.e. 6: I d is a homeomorphism) then ir(U1,xo) is a free group on the
generators [6 * a1 * J, [6 * a2 * which we abbreviate to A1 ,A2
respectively.

The single point space { xo } is a strong deformation retract of U2 and
so 7r(U2 ,xo) = 1. For the space U1 U2 we see that the circle c is a strong
deformation retract of U1 fl U2. Thus if 'y denotes a closed path in U1 fl U2,
based at x0, which goes once around c in the direction indicated in Figure
25.1(b) then ir(Uj fl U2 ,x0) is a free group generated by

[y].

The Seifert-Van Kampen theorem tells us that ir(T,xo) is generated by
{ A1 ,A2 } and is subject to the following relation

['v]' = [iF'.
Now in U1 we have

= [6 * a1 * a2 * a1 * a2 *

= [6 *a1 [6 sa2 [6 (6 *a2 *61

so that 'tpi*[7]' = A1A2A('A2'. On the other hand = 1 so that
ir(T,xo) is the group with presentation ({ A1,A2 ); A1A2A1'A2' })
and hence ir(T,x0) is isomorphic to Z X 1.

For the next example consider the Klein bottle K. In many ways the cal-
culation of the fundamental group of the Klein bottle is similar to that of the
torus. Represent the Klein bottle K as in Figure 25.3(a) and use the notation
of Figure 25.3(b).

Figure 25.3
a2 a2

a4 fat

(a) (b)

a2

(a)
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Let U1 = K - {y} and U2 = K -(a1 U a2); then U1,U2, Ui (3 U2

satisfy the conditions required in the Seifert-Van Kanipen theorem. The
'edge' of the square region, after identification, is a figure 8 (see Figure
25.4) and this figure 8 is a strong deformation retract of U1.

Figure 25.4
a2

It follows that ir(U1,xo) is a free group generated by { [aiL[a21 }
where ,a2 denote paths that correspond to a3 ,a2 respectively. IfS denotes
the path corresponding to d then ir(U1 ,xo) is the free group generated by
[6 * a1 * 6] and [6 • a2 * 6] which we abbreviate to A1 and A2 respec-
tively.

The space U2 is contractible and so ,x0) = 1. Finally the circle c is a
strong deformation retract of U1 fl U2 so that ,r(U1 U2 ,xo) is a free
group generated by [7] where is a path in U1 U2 that corresponds to c,
i.e. goes once around c in the direction indicated.

In U1 we have

EPi7] = [6 *a1 •a2 *a1 *a2
= [6 *a1 [6 *a2 [6 [6 *a2 *6]

so that 'Pi * [y]' = A1 A2A13 A2. On the other hand * [ay]' = 1. Thus
from the Seifert-Van Kampen theorem we immediately have that
is isomorphic to the group

( { A1A2A'A2 }>.

(See also Exercise 19.5(e).)

a

(a)

(a) (b)

Figure 25.5

a

(b)
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As a third example we show (again) that the fundamental group of the
real projective plane R P2 is isomorphic to Z 2• Represent R P2 as the
identification space in Figure 25.5(a). Let x0,x3 ,y,c and d denote the points,
circle and line as indicated in Figure 2 5.5(b).

Let U1 = R P2 - { y ]- and U2 = R P2 - a; then U1, U3, U1 fl U2 satisfy
the conditions necessary in the Seifert-Van Kampen theorem. The curve a
represents a circle in RP2 and it is a strong deformation retract of U1. Thus
ir(U1 is a free group generated by [a] where a is a path in U1 corre-
sponding to a. If 6 denotes the path from x0 to x1 corresponding to d then
ir(Ui ,x0) is the free group generated by [6 * a * = A say.

The subspace U2 is contractible to the point x0 and so ir(U2,xo) = 1. The

circle c is a strong deformation retract of U1 U2 so that ir(U1 ñ U2 ,x0) is
the free group with generator [7] where denotes a path in U1 flU2, based
at x0, that corresponds to c, i.e. goes once around c in the direction indicated.
From the Seifert-Van Kampen theorem we deduce that ir( RP2 ,x0) is the
group with generator A and relation

"Pie [7]' = [7]'.
In U1 we have

= [6 = [6 [6

so that "Pi*[7]' = A2. Meanwhile = 1 so that ir(RP2,xo) is iso-
morphic to the group({A };{ A2 }), i.e. to 1

For our next example let X be the space that consists of an n-sided poly-
gonal region with all of its edges identified to one edge as indicated in Figure
25.6(a). Note that if n = 2 then Xis RP2.

Using the notation in Figure 25.6(b) let U1 = X- { y } and U2 = X-a.
The spaces U1 ,U2, Uj fi U2 are non-empty and path connected. The edges
of the polygonal region form a circle a in X. It is a strong deformation retract
of U1 and so ir(U1 ,xj) is a free group generated by [a], where a is a closed

Figure 25.6

a

(a) (b)

a
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path, based at x1, that corresponds to a. ff6 is the path from x0 to x1 corre-
sponding to d then ir(U1 ,x0) is a free group generated by [6 . a I = A.

The subspace U2 is contractible so that ,r(U2 ,x0) = 1. Finally the circle c is
a strong deformation retract of U1 fl U2 so that ir(Uj U2 ,x0) is a free
group generated by [7] where y is a closed path in U1 U2, based at x0,
that corresponds to c.

Applying the Seifert-Van Kampen theorem we see that 7r(X,xo) has one
generator A and one relation

[71' = [y]'.
The following is easy to see

=

n

=

so that = Meanwhile = 1, so that ir(X,xo) has presen-

tation ( { A } ; { } ), i.e. ir(X,xo) is isomorphic to the cyclic group
In all the preceding examples in this chapter the subspace U2 is contrac-

tible. The next examples do not have this property. We shall look at three
spaces at the same time. Let X1 ,X2 ,X3 be the identification spaces illus-
trated in Figure 25.7. Notice that in X3 the edge a3 is not identified to any
other edge. The notation that we shall use is illustrated in Figure 25.8.

Figure 25.7

Figure 25.8

a2

(a)X1 (b)X2 (c)X3
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Let U1,1 = — b for i 1,2,3. Let U a2) for i 1,2 and
let U3,2 = X3— (a1 U a2 U a3). Then U1,2, U1,1 U1,2 are all open and
path connected subsets of X1, i = 1,2,3. Figure 25.9 denotes the 'outer edges'
of X1 after identification.

Figure 25.9

a2

In each case they are strong deformation retracts of U1,1. It is therefore
not difficult to see that ir(U1,1 ,x0) is a free group with generators:

if i= I,
} — ifi2,

{A1 = [6 *a1 = [6 *a2 *61,A3 = [6 *a3

where in each case we use the obvious notation regarding cr1 ,a2 ,a3 and 6.
The space contains a circle b which is a strong deformation retract of

U1,2, 1 1,2,3. Thus n(U12,x0) is a free group with one generator B
Ee * * where and e are paths that correspond to b and e respectively.

The circle c in U1,1 Uj,2 is a strong deformation retract of U1,1 ñ U1,2
so that ir(U1,1 U1,2) is a free group with one generator

In U1,1 we have the following:

For i 1,

=

= A2A12A2'.
For i 2,

= [S *a2 *a1 *a2
= 1.

For i 3,

= ES *a3
— A A 2A IA 1A 1
— "3 "1

Within we have

[1p2y] =

=
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Using the Seifert-Van Kampen theorem we have the following results for
the fundamental groups of X1.

ir(X1,xo)({A1,A2,B}; B3}),

ir(Xz,xo)({A2,B};{B3 1}),

ir(X3,xo) ({A1,A2,B};Ø).

The last result follows because A2 A12 A21 = B3 if and only if A3
A1'B3A2A12A2', so that the group (fA1,A2,A3,B }; {

= B3 })is isomorphic to the group (1 A1 ,A2 ,B J; 0>.

Further calculations involving the Seifert-Van Kampen theorem will be
given in subsequent chapters.

25.1 Exercises
(a) Suppose that G is a finite abelian group. Show that there Is a space

XG whose fundamental group is isomorphic to G. (See also Exercise
19.5(b).)

(b) A space X is obtained from a pentagonal region by identifying its
edges as indicated in Figure 25.10. Calculate the fundamental group
of X.

Figure 25.10

(c) Prove that if a subset W of R3 is homeomorphic to the open disc
D2 then W is not an open neighbourhood in R3 of any of its points.
(Hint: If W is an open neighbourhood in R3 of w E W then there is
a subset U1 c W with w E U1 and U1 by definition.)

(d) Let X be the double torus, i.e. the subspace of depicted in
Figure 11.7(e). Calculate the fundamental group of X.

(e) D1 ,D2 are two 2-discs with boundary circles S1 ,S2 respectively.
The space X is the union of D1 and 1.)2 with points In S1 identified
to points in S2 by the rule

a1
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exp(2irit) ES1 is identified with exp(2irint) in S2

where n is some fixed positive integer. Prove that X is simply con-
nected.

(f) Calculate the fundamental group of each of the identification spaces
illustrated in Figure 25.11.

Figure 25.11

a2

a2 a2

(b) (c)

a2

(I)(e)

a4

(g) (h) (1)
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The fundamental group of a surface

It is quite straight forward to calculate the fundamental group of a sur-
face. Recall from Chapter 11 that any surface may be obtained from the
sphere, torus and projective plane by taking connected sums. Recall also
that the fundamental group of a torus is the group with two generators, say
c1,d1, and one relation = 1, whereas the fundamental group
of the projective plane is the group with one generator f1 and one relation

2 = The general result we shall prove is:

26.1 Theorem
The fundamental group of the surface S,

SS2
is the group with generators

cI,dj,c2,d2,...,cm,dm,fj,f2,...,ffl
and one relation

c1 d1 cj1 dj1 c2 d2 c' .. . cm fi ... = 1.

froofWe may rewrite S as

S= XUH1UH2 U ... UHm UM1 UM2 U... UMn

where X is the sphere with in + n = q disjoint open discs removed, H1
Hm are handles (i.e. a torus with an open disc removed) and the M1 ,M2,...,

are MObius strips (i.e. real projective planes with an open disc removed).
Ifb1 .b2 bq denote the q boundary circles in X then we also have

X is homeomorphic to the disc D2 with q - 1 open discs

removed. Let x0 be the point in the interior of X as indicated in Figure 26.1.
Also, let be points in as indicated. Finally, let
a1 , a2,..., aq be the curves between x0 and Xq respectively as indica-
ted in Figure 26.1.
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Figure 26.1

The subspace of X consisting of a

is then not difficult to see that the funda-
mental group is a free group on q - 1 generators. (In fact by shrinking a1 ,a2,

down to the point x0 we see that X is homotopy equivalent, relative
to ( x0 } , to a union of q - 1 circles with exactly one point in common.)
If we let a1 be paths in X from x0 to Xj corresponding to a1 ,a2

and if we let be closed paths, based at corre-
sponding to b1 ,b2 then ir(X,xo) is the free group generated by

B1 = [cxi = [a2 •t32 .a2],...,
8q—1 = Eaq_i *Pq_i *CXq_i].

If Bq denotes [aq * * J then

i.e. BIB2...Bq_lBq = 1.

Thus, equally, ir(X,xo) is the group with generators and one
relation B1 B2 ... Bq = 1. This formulation will be useful.

If we want a different base point, say x1 (i = 1,2,...,q), then w(X,x1) is the
group with generators ),h1(B2 ),.. ., and one relation B2 ... Bq)

= 1 where h1: ir(X,xo) ir(X,x1) is the isomorphism given by h1([OJ) =
* 0 * aj]. Note that h1(B1) =

Figure 26.2
(I)
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Now look at a handle From previous calculations we know that the
fundamental group of H1 is a free group on two generators. With the notation
of Figure 26.2, ir(Hj,xj) is the free group generated by C1 = * ë11

and D1 = * * ë1] where is the path corresponding to the curve e1 in
H1 and are closed paths in Hi as indicated.

Note that the closed path corresponding to b1 can be expressed in
terms of C1 and D1 as

Consider the Mobius strip The fundamental group is a free
group on one generator

Fj = Lej+m * lpj )

where is the path corresponding to ej+m in Figure 26.3 while is the
closed path indicated there. Note also that =

We shall combine the above results inductively in order to calculate the
fundamental group of S. Define subspaces X0,X1 of S as follows:

xo = x,

Xm+jXm+j_1
We shall show that the fundamental groups of these spaces are as
follows:

i = O,l,...,m, is the group with generators

and one relation

c1 d1 cj1 dj' ...Bq = 1.

= O,l,...,n, is the group with generators

Figure 26.3



The fundamental group of a surface 205

and one relation

c1 d1 C11 d11 c2d2c21 d' fi fi...qBm+j+iBm+j+i...Bq =1.

To prove the result we use the Seifert-Van Kampen theorem and this
requires that we express Xk as a union of two open subsets. Although Xk =
Xk_l where '4 H1 or for some i or j, unfortunately neither of
these subspaces are open. However, recall from Chapter 11 that (because we
have taken connected sums) there is an open neighbourhood Nk of bk in S
which is homeomorphic to S1 X (— 1,1), such that if Nk S1 X (- 1,1) is

the homeomorphism then (bk) = S1 X { 0) and

We therefore define

Uk = Xk1 U Nk C Xkl u '4 = Xk,
and

Vk=NkUYkCXk..l UYkCXk.
Now Uk and Vk are open path connected subsets of Xk. Furthermore Uk
Vk = Nk is path connected. We may now apply the Seifert-Van Kampen
theorem to Xk = Uk U Vk, and Xk E bk as base point. Of course, Xk_l,
Yk,bk are strong deformation retracts of Uk,Vk,Uk Cl Vk respectively so that

1r(Uk,xk) = lr(Xk_l,xk),
lr(Vk,xk) = lr(Yk,xk),
lr(Uk Cl Vk,xk) = 1r(bk,xk) = ({ L1¼1 } ; OX

It is quite easy to calculate the fundamental groups ir(Xk,xo) by induction;
this is illustrated by calculating ir(X1 ,xo). We have the following:

1h1(B1B2...Bq)= I }),

;O),

ir(U1 flV1,x1)zir(b1,x1)<{ [13iJ };O).

By the Seifert-Van Kampen theorem ir(X1 ,x1) ir(U1 U V1 ,x1) is the

group with generators

and relations

hi(B1B2...Bq)1,

h1(B1)= C1D1C11 Dj',

since h1 (B1) = [(3k] in X and = C1 D1 Cj' DI' in H1. Eliminating the

generator h1(B1) shows that n(X, ,x1) is the group with generators
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and one relation

C1D1CI'D11h1(B2B3...Bq)1.

It follows immediately that ir(X1 ,x0) is the group with generators

Cidi cI' di' B2B3...Bq = 1

where c, = hj1(C1) = . e1 * * and d1 = h11(D1) =

[a1

How to proceed is obvious and left for the reader.

It is not immediately obvious as to how distinct the groups listed in
Theorem 26.1 are. We therefore abelianize them, where if G = (S1 ;R> then
G abelianized is

AG(S, ;RL){ ES,)),
i.e. we add the extra relations xy = yx for all x,y E G.

Suppose that n = 0, i.e. S = S2 # mT; then Air(S,x0) is the group with
generators

Sm {Cl,dl,C2,d2,...,Cm,dm}

and relations { =1 } Li ( xyyx;x,yESm} where

rm = C1 d1 C'i' C2 d2 d' ... Cmdm

In particular we have the relation c,d1 = d1c1 ,so that the relation = lisa
consequence of the relations { xy = yx; x,y E Sm } . Thus Air(S,xo) is the
group

and it Is not difficult to see that Air(S,x0)
Ifn � 1,so that S #nRP2, then Air(S,xo)isthegroupwith

generators

Sm+n {cl,dl,cz,d2,...,cm,dm,fl,f2,...,fnj

and relations { = 1) U { xy = yx; x,y E Sm+n } where

rm+n =

The relation rm+n = 1 is a consequence of the relations f xy = yx; x,y E
Sm+n } and = 1). Furthermore the relation 4 =

1 } is a consequence of the relations rm+n 1 } U ( xy = yx; x,y E

Sm+n }.Thus
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Air(S,xo) =(Sm+n;{ xy = yx; x,y E Sm+n } U

= 1)).

Now any element of Air(S,xo) may be written as
a(1)Ab(1) a(2L.ib(2) a(m)db(m)f.e(l)fe(2) fe(n)

C1 i C2 2 m 1 2

where a(i),b(i),e(i) E 1 . This may be rewritten as

1e(n—

and then we can see that An(S,x0) x 12.

26.2 Corollary
The abelianized fundamental group
(1) of an orientable surface of genus m (m � 0) is 12 m.

(ii) of a non-orientable surface of genus n (n � 1) is 1 X Z

This corollary proves that no two of the surfaces listed in Theorem 11.3
are homeomorphic.

The next result may be viewed as the basic result relating surfaces and
fundamental groups.

26.3 Corollary
Two surfaces are homeomorphic if and only if their (abelianized)

fundamental groups are isomorphic.

This follows from the classification theorem of surfaces (Chapter 11) and
Corollary 26.2.

As another corollary we have

26.4 Corollary
A surface is simply connected if and only if it is homeomorphic to

the sphere S2.

Corollary 26.2 could be used as a way of deciding whether or not a space
is a surface:

26.5 Corollary
Let X be a space with x0 E X. If Air(X.xo) is not of the form

or 1fl—1 X Z 2 then Xis not a surface.

In Chapter 11 we gave an alternative description of surfaces in terms of
quotient spaces of polygonal regions. We leave it as an exercise for the reader
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to recalculate the fundamental group of a surface using this alternative
description.

26.6 Exercises
(a) Let M be the quotient space of a 4m-slded polygonal region (m � 1)

with identifications as indicated in Figure 26.4(a), i.e. M is an
orientable surface of genus m. Prove directly (using the Seifert-Van
Kampen theorem) that the fundamental group of M is the group
with generators

Ai,Bi,A2,B2,...,Am,Bm

and one relation

= 1.

(b) Let M be the quotient space of a 2n-sided polygonal region (n> 1)
with identifications as indicated in Figure 26.4(b), i.e. M is a non-
orientable surface of genus n. Prove (using the Seifert-Van Kampen
theorem) that the fundamental group of M is the group with
generators

and one relation

(c) Prove that if M1 and M2 are connected n-manifolds with n> 2
then the fundamental group of M1 i M2 is isomorphic to the group
(S1 U S2;R1 U R2> where the fundamental group of M1 is

fori= 1,2.
(d) Prove that if is a free group on n generators then there is a

4-manifold with fundamental group (Hint: Find M1.)

Figure 26.4

(a)

a2
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Knots: I Background and torus knots

A knot is a subspace of R3 that is homeomorphic to the circle St. Some
examples are given in Figure 27.1. Although all the spaces In Figure 27.1 are
homeomorphic to each other (since each is homeomorphic to a circle by
definition), our intuition tells us that within R3 they are not the same.
Thus, if we make models of knots using string, then within our three-
dimensional world we could not, for example, create knot (c) from knot (a)
in Figure 27.1, unless we cut the string at some stage. This is because knot
(c) is 'knotted' while knot (a) is 'unknotted'. It is reasonable to say that a
knot is unknotted if we can move It continuously within 3-space to the knot
(a) of Figure 27.1. This suggests that, in addition to the knot being moved
continuously, the surrounding 3-space Is also moved continuously. We are
thus led to the following definition. A knot K is unknotted if there Is a
homeomorphism h: R3 R3 such that h(K) is the standard circle
f (x,y,0) E R3; x2 + y2 = 1 } in R2 C R3. Thus knots (a) and (b) of
Figure 27.1 are unknotted while the others are not; at least practical
experience or intuition tells us so. Later on in this chapter we shall prove that
the knots (c), (d) and (g) of Figure 27.1 are not unknotted. In the next
chapter we shall be in a position to prove that all the remaining knots of
Figure 27.1 are not unknotted.

Before continuing, the reader may have wondered why we have defined
a knot to be a subspace of R3. (Is It only because we appear to live in a
three-dimensional world?) Why not define a knot K to be a subspace of
such that K is homeomorphic to S1 . Obviously n has to be at least 2 (why? -
Corollary 10.3!). However, if n 3 then there is a homeomorphism h:

R" such that h(K) is the standard circle in R We shall not prove
this result. For ii = 2 this is the famous Schönflies theorem. For n 4 the
result tells us that If we lived in a four (or more)-dimensional world then we
could unknot all knots. Intuitively this should be clear; the extra dimension
gives us room to push one piece of the string 'through' another. This explains
why we defined knots as homeomorphic images of S' in K We could also
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Figure 27.1. Some knots.

c:)
(a)

(d) Left hand
trefoil knot.

(/) True lovers knot.

(1) False lovers knot.

(e) Right hand figure
8 knot.

(h) Chinese button
knot.

(Ic) Granny knot.

(b) (c) Right hand
trefoil knot.

(I)

(f) Left hand figure
8 knot.

(I) Bowline knot.

(m) Square knot.
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consider subspaces of R which are homeomorphic to The question
makes sense and leads to some interesting mathematics, but this is beyond
the scope of this book.

Going back to knots (in R3) we have defined what it means for a knot
to be unknotted. More generally we say that two knots K1 ,K2 are similar
if there is a homeomorphism h: R -÷ R such that h(K1) = K2. For
example in Figure 27.1, knots (a) and (b) are similar, knots (c), (d) and (g)
are similar, knots (e) and (f) are similar, etc. That (a) and (b) are similar
is obvious, also, that (g) and (c) are similar is easy to see. To see that (c) and
(d) are similar, place one directly above the other. A mirror in between the
two provides the required homeomorphism of R3. A similar homeomor-
phism works for the pair (e), (f). There is another way to see that knots (e)
and (f) are similar. This is depicted by the sequences of diagrams in Figure
27.2. The reader is advised to make knot (e) of Figure 27.1 out of some
string and produce the sequence of knots depicted jn Figure 27.2.

Figure 27.2

(a) (b) (C)

Note however that physical experimentation (try it) tells us that the left
handed and right handed trefoil knots (Figure 27.1 (c), (d)) are not the
same in the sense that we cannot move the left handed trefoil knot within
3-space to create the right handed trefoil knot. In fact we need a mirror to
get from one to the other. A mirror takes a 'right hand frame' in R3 into a
'left hand frame' (Figure 27.3) and there is no way, within R3, of moving a
right hand frame into a left hand frame.
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Figure 27.3

V
Right hand frame Left hand frame

We say that a homeomorphism h: R3 -÷ R3 is orientation preserving if
h sends a right hand frame to a right hand frame. Two knots K1 and K2 are

equivalent if there is an orientation preserving homeomorphism h: R3
such that h(K1) K2. Thus (intuitively at least) the left hand and right hand
trefoil knots are not equivalent. On the other hand the left hand and right
hand figure 8 knots are equivalent, as Figure 27.2 shows. The notion of knots
being equivalent agrees well with the physical notion of knots being the
same. In fact one could prove that two knots K1, K2 are equivalent if and
only if there is a homeomorphism h: R -÷ R3 and a real nwnber k > 0
such that h(K1) = K3 and h(x) = x whenever lixil > k. This result has strong
physical connotations which we shall leave for the reader to work out. We
shall neither prove nor use the result just mentioned (it Is not trivial).

27.1 Exercises
(a) Show that the relations 'similar' and 'equivalent' between knots are

equivalence relations.
(b) Let h: R -÷ R3 be a linear mapping (i.e. h(Xa + Mb) +

ph(b) for X,M E R, a, b E R3). Prove that h is orientation pie-
serving if and only if det h = + 1.

(c) Prove that a knot K is equivalent to the standard circle in R3 if and
only if K is similar to the standard circle in (Hint: The standard
circle is 'symmetric'.)

(d) Find examples (if possible) of knots K such that

(i) KCS2CR3.
(ii) KC torus C R3,
(iii) K C double torus C R3.

(e) Let K be a knot in R3 that consists of a finite number, say k, of
straight-line segments. For what values of k (1 <k � 10) can you
find a knot K which is not unknotted?

(1) Let p: R3 R 2 denote the natural projection of R onto R2
(i.e. p(x11x2,x3)=(x1,x2)E R2 C R3). Acmssing point ofa
knot K is a point x E R2 such that fl K consists of two or
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more points. It is a double point if p' (x) fl K consists of two
points. In this case we say that it is not a proper double point if by
moving the knot slightly the double point disappears; see Figure
27.4.

Consider knots such that all crossing points are proper double
crossing points. Find all such knots with one, two, three, four, five
or six crossing points.

If and K2 are similar knots then there is a homeomorphism between
R3-K1 and R3-K2. Hence the fundamental groups of the complements of
two similar knots are isomorphic. Choose any point x0 E R3 - K; we call
ir(R3-K,xo) the group of the knot K. Knots that are similar but which are
not equivalent still have isomorphic groups. This explains why we look at
similar knots and not equivalent knots.

27.2 Theorem
The group of an unknotted knot is isomorphic to Z.

Proof Let K = ( (x,y,z) E R 3; x2 + = 1, z = 0 } be the standard circle
in R Let e > 0 be an arbitrary small real number and define subspaces
X,YofR3-Kby

X [ (x,y,z)E R3;x<e } fl R3 - K,
Y ( (x,y,z)E R3;x>-e} fl R3 - K.

It is easy to see that the subspace

{(0,l,0)}
is a strong deformation retract of X and of Y. Thus if 0 is the origin of R3
then the fundamental groups ir(X,0), ir(Y,0) are both isomorphic to Z with
generators [axh [ay], where ax: I X and ay: I -+ Y are paths each
defined by

t -+ (0, l—cos(2irt), sin(2irt)).

/
Proper double crossing point Improper double crossing point

Figure 27.4
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The subspace

- {(O,l,0),(0,-l,0)}
is a strong deformation retract of X Ci Y so that ir(X fl Y,O) is the free group
on two generators [13k J and I defined by

aIO) = (0,i-cos(2irt), sin(2irt)),
(3_1(t) = (0,—i +cos(2irt), sin(2irt)).

If X Y -+ X, X fl Y-+Y denote the natural inclusions then it is
clear that

All conditions on X. Y, X fl Y that are necessary for the application of the
Seifert-Van Kampen theorem are satisfied and so by using this theorem we
deduce that the fundamental group ir( R3-K,O) is a free group on one
generator [a], where a: I R3 - K is given by

a(t) = (0,1 — cos(2irt), sin(2irt)).

Our next goal is to show that not all knots are unknotted. We do this by
calculating the group of the trefoil knots and related knots. The trefoil knots
belong to a group of the so-called torus knots. This is a large class of knots
which occur as simple closed curves on a torus in R3 - We think of the torus
as S' X S' with a point in S' X SL given by a pair (exp(hp), exp(iO)) where
0 < p, 0 <2ii. It is convenient to think of R3 as C X R and to use polar
coordinates (r,0) in C - Thus a point in R3 is represented by a triple
(r,0,z). In these terms we have a continuous map f: S1 X S' R3 given by

exp(iO)) = (1 + ½ cos 0, ½ sin p),

and S' X 5' is homeomorphic to the image of f(S' X S'). See Figure 27.5
and Figure 5.4.

Figure 21.5
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Figure 27.6

(a) Type (1,1)

(b) Type (2,3)

215

(c)Type(3,2)

(d) Type (5,2)

(e) Type (4,3)
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Let m,n be a pair of coprime positive integers. Define Kmn to be the
following subset of the torus in R3

Km,n = f(exp(2irimt), exp(2?rint)); t E I }.

It is not difficult to check that the map g: S' Kmn defined by

g(exp(2 iT it)) = f(exp (2 irimt), exp(2 iT int))

is a homeomorphism, so that Kmn is a knot. We call Kmn the torus knot
of type (m,n). See Figure 27.6 for some examples. There are two standard
circles in the torus; these are given by f(exp(2irit), I) and f(l,exp(27rit)). A
torus knot of type (m,n) goes n times around the torus in the direction of
the circle f(exp(2irit), 1) and m times around the torus in the direction of
the other standard circle. If we think of a torus I as the quotient space
R 21Z2 then Km,n is the image in I of the straight line in R2 that goes
through the origin at a slope n/rn to the horizontal axis.

in order to calculate the group of a torus knot K = Kmn it will be con-
vement to thicken K slightly. Let a be a small positive real number which is
smaller than sin(ir/n)I; for 0 � b <a define Kb to be the following subset
of R3(= CX R):

{ (x+l +Yz cos(2irmt), 2irnt, sin(2irmt));
0<t�l,x2 +y2 <b2}.

It is clear that K0 =K. In general if Db = { �b2 } then

there is a homeomorphism

h:S' XDb-+Kb
given by

h(exp(27rit), (x,y)) = (x+l cos(2irmt), 2irnt, sin(2irmt)).

(The map h is clearly continuous and surjective. It is not difficult to check
that h is injective, the condition b <a < sin(ir/n)I being necessary. That
h is a homeomorphism then follows from Theorem 8.8.)

It turns out that R 3-K and R 3-Kb are homeomorphic for each b such
that O<b<a.

27.3 Theorem
Suppose that a is a positive real number and that for 0 <b < a there

is a homeomorphism h: X Db -4Kb C R3. If 0 <b <a then R3-Kb is
homeomorphic to R3 - K0.

FroofDefine ip: R3-Kb-+ R3-K.0 in the followingway: then
let = x, while if x E then we can write x = h(z,rexp(iO)) with
b < r < a; we define in this case to be h(z,(r-b)(a/(a-b))exp(iO)).



Knots: I Background and torus knots 217

Similarly, define R 3-K0 -÷ R3-Kb in the following way: If x - K0

then = x, while if xE then x = h(z,rexp(iO)) with 0 < r < a, and
we define Ji(x) to be h(z,(r(a—b)/a + b)exp(i9)). We leave it for the reader
to check that 1, = 1 and that are continuous.

27.4 Theorem
The group of a torus knot K of type (m,n) is the group on two

generators a,b and one relation a1' =

froofDefine f: CX S' R3 (,C X R)by
(r exp(iO)) (1 +½r cos 0, ½r sin p)

Qearly f is continuous. Also f(S' X S') gives us the torus in R3 that we
described earlier on. Choose e > 0 so that 2€ < a where a, as before, is
smaller than 1½ sin(irfn)I. Define subspaces X and Y by

X = { f(r exp(ip), exp(iO)); 0 � p,0 <2ir, 0 � r < 1+e } — K26,

Y= R3 - { 1-
K26

ThusXUY= R3-K.Letx0EXflY.
It is easy to see that Z = { f(0,exp(iO)); 0 <0 <2ir } is a strong defor-

mation retract of X and that R 3—Z is a strong deformation retract of Y.
See Figure 27.7 which shows the various regions involved (for n = 3) inter-
sected with the half-plane H of R3 given by points (r,0,z) with 0 fixed
(say 9 = 0). Of course Z is the standard circle in R and so ir(X,xo) and
ir(Y,xo) are free groups on one generator [a], [13] respectively. Here a
represents a closed path in X that goes from x0 to the circle Z along an arc
ax say, once around Z and then back along the arc ax to x0. The generator

Figure 27.7
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[13] is represented by a closed path 13 in Y that goes from x0 along an arc ay
to the circle

f (1 cos(2irt), sin(2irt)); tel },
once around this circle and then back along the arc ay to x0.

The space X Y is precisely

{ f(r exp(iO)); 0 � ,o,O � 2ir, 1—c < r < 1 +

and contains the subspace

W = { f(exp (2iri(mt + 6)), exp(2irint)); 0< t � 1 }

for a suitable 6 (say 6 = ½ n) which is a strong deformation retract of X fl Y.
(Try drawing some examples.) This subspace W is a circle and so we deduce
that ir(X fl Y,xo) is a free group on one generator [7], where is a closed
path in X Y that goes once around W (if we choose x0 C W).

Let X fl Y -+ X, X fl Y Y denote the natural inclusions; then
it is not difficult to see that

= [a]"or
= or [131-rn

so that replacing a and/or 13 by a and/or $3 respectively we have

= = [j3]m

See Figure 27.8 which illustrates the case m = 3, n = 2.

The spaces X, Y, X Y satisfy the necessary conditions for the application
of the Seifert—Van Kanipen theorem from which the result follows immedi-
ately. Note that the Seifert-Van Kampen theorem could not have been
applied if in the above we had actually had 0.

Having calculated the group of a torus knot it is not clear as to whether
the group is trivial or not. For surfaces we had a similar problem which we
solved by abelianizing the group. However, it turns out that the abeianized
group of a knot group is always isomorphic to Z (see Exercise 27.7(d) for

Figure 27.8
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hints on how to prove this for torus knots; in general see Corollary 28.4). We
must therefore look for some other way of deciding whether torus knots are
knotted or not.

27.5 Lemma
The torus knot of type (3,2) is not unknotted.

Proof The group of this knot is G = ({ a,b }; [ a2 = b3 }). Define G' by
adding a few relations to G

G' <{a,b}; { a2 = b3, a2 = 1, ab b'a}).
There is an obvious epimorphism G -÷ G' which on the generators sends a to
a and b to b.

It is easy to see that G' is isomorphic to the symmetric group on three
letters, i.e.

G' {1,a,b,ab,b2,ab2;ab=b'a }.

This group is non-abelian which means that G itself is non-abelian since the
image under a homomorphism of an abelian group is abelian. Thus G is not
isomorphic to Z, which proves that the torus knot of type (3,2) is not
unknotted.

We could produce similar arguments for the other torus knots, but this
would only show that they are not unknotted. We would like to know if any
of them are similar to each other. We need another trick to show that they
are different.

27.6 Theorem
If two torus knots of type (m,n), (m',n') with m,n,m',n'> 1 are

similar then {m,n) {m',n'},i.e.m=m'andnn'ormn'and
n = m'. In particular if m,n> 1 then no torus knot of type (m,n) can be
unknotted. Also, there are infinitely many different knots.

Proof The group theoretical argument that we give was first given by
0. Schreier in 1923. Consider the element = in G where

G({a,b}, {a" =bm}).
This element commutes with a and b,

a = = aba, = = = =

and so commutes with every element of G. The subgroup N generated by
a normal subgroup of G, and so the quotient group G/N is

defined. If g E G then we may write g as
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for some a(1), 13(k). Then gN GIN may be written as

= (aNP(') (bN)P(1) ... (bN)13(k),

which shows that GIN is generated by aN and bN. If gN = N then g E N,
and so g = (an)Q = for some Q. Thus the relations in GIN are given by

= N and = N, so that

GIN = ((aN,bN};((aN)"= l,(bN)m = i})

Notice that G/N has a trivial centre because if x belongs to the centre of G/N
then cx xc and dx = xd. The first condition implies that x = for some
and the secon4 implies that x = dP for some j3; thus x = I. This means that the
centre Z(G) of G is N (if p: G G/N denotes the natural projection then it
is easy to see that p(Z(G)) c Z(GfN)). In other words we have

= ip.
Abelianizing this group gives

({c,d};{ c" = Zn X Zm.
Now if the torus knots of type (m,n) and (m',n') are similar then their

groups G, G' are isomorphic. But then the groups GfZ(G) and G'/Z(G') are
isomorphic.. Abelianizing means that the groups Z

and this is possible only if { m,n } = { m',n' } since the
pairs m,n and m',n' are coprime.

27.7 Exercises
(a) Show that torus knots of type (m, 1) or (1,n) can be unknotted.
(b) Show that a torus knot of type (m,n) is similar to one of type

(n,m). Are they equivalent?
(c) Torus knots were defined for positive pairs of coprime integers

(m,n), but it makes sense to define, torus knots for any pair of
coprime (non.zero) integers. Show that if we change the sign of
m and/or of n then the resulting torus knot is similar to the original
one. Is it equivalent to the original one?

(d) Prove that if we abelianize the group of a torus knot then we get
Z . (Hint: If G = (fa,b};{ = bm}> then define p: AG-* Z
by = mk + nQ.)

(e) Prove that the group ({ a, b }; { a3 = }) is isomorphic to the
group ({ x,y}; { xyx = yxy }). (Use the Tietze transformations,
Exercise 23.1(0.)
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Knots: II Tame knots

Let K.be a knot in R3. Let p denote the projection of R3 onto the plane
R2 = {(x1,x2,O) ER3) given by say that

x E p(K) is a crossing point if (x) fl K consists of more than one point.

It is a double crossing point if p (x) ñ K consists of two points; see Figure

28.1. A double crossing point is improper if by moving the knot slightly the

double crossing point disappears (in the illustration of an unproper double
crossing point in Figure 28.1 moving the 'top bit' to the left causes the
double crossing point to disappear).

28.1 Definition
A knot K is tame if it is similar to a knot which has only finitely

many crossing points each of which is a proper double crossing point.

Figure 28.1 ///1
Proper double Triple crossing point Improper double
crossing point crossing point

Figure 28.2. A wild knot.
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All the examples of knots given in the last chapter are tame knots. An
example of a knot which is not tame is given in Figure 28.2. Knots which are
not tame are called wild. This chapter is concerned with tame knots.

28.2 Exercises
(a) Prove that a torus knot of type (m,n) is tame.
(b) Prove that a knot that has a finite number of crossing points is tame.
(c) Prove that a knot is tame if and only if it is similar to a knot that

consists of a finite number of straight-line segments.
(d) Prove that a knot K is tame if and only if there exists a subspace

C R3 with K C such that is homeomorphic to S' X D2
with K corresponding to S1 X ( 0 } under this homeomorphism.

Throughout this chapter let K be a tame knot. Our object will be to
calculate the group of K. We may assume that K lies in the lower half-space
of R3,i.e.

KC i: (x1,x2,x3);x3 �0
and furthermore that K lies in the plane { (x1,x2,x3); x3 = 0 } except

where it dips down by a distance, say e, at each (proper double) crossing
point. See Figure 28.3.

Let P denote the set of points in K of the form (xi ,x2,-e) for which
p(x1 ,x2 ,- e) is a crossing point. We can assume that P * 0 since otherwise
the knot K Is unknotted. Let Pi be one of the points in P. Putting an arrow
(direction) on K determines where n is the number of crossing
points. The set P divides K into a finite number of arcs a1,a2 The
arrow on K gives one on each of a1 ,a2 and we may insist that the end
point of aj is p1, I = i,2,...,n. See Figure 28.4.

Our next object is to describe closed paths in R 3-K. For i = 1,2,...,n let

c1 denote a small circle in R3 — K that goes around the arc a1 as indicated in

Figure 28.3
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Figure 28.4

xo

Figure 28.5. We give an arrow so that together with the arrow on a1 we get
a clockwise screw. Naturally we must choose the c1 ,c2 to be disjoint.

let x0 be our base point in R3-K, which is somewhere high above K.
For i = l,2,...,n let be a straight line in R 3—K from x0 to the circle c1; the
b1 should be chosen disjoint and each b1 should be in the upper half.space
{ (x1,x2,x3); x3 0). See Figure 28.5. Define to be the closed path,
based at x0, that begins at x0, goes along b1, once along c• in the direction
indicated by the arrow on c1 and then back along b1 to x0.

We shall show that ir(R 3-K, xo) is generated by the elements [7i],
tin]. For the relations see Figure 28.6, which shows that if the

crossing is as illustrated in Figure 28.6(a) then we have the relation

Ei1] = 1.

The other possibility is that the arrow on aj is opposite to that shown in
Figure 28.6(a), namely as in Figure 28.6(c). In this case we have the relation

= 1.

It turns out that these are the only relations, as we shall show. In the above
and throughout we let = a1 and 7fl+1 = etc.

a2

p2

Figure 28.5

Cl
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Figuxe 28.6

xo

(a)

(C) 17*1 ('?i+ il FijI.

28.3 Theorem
The group of the tame knot K is generated by

and has relations

[71] r1, [72] =r2,...,
Each relation = is of the form

[ill = b's] [71+1] [71—'

or

[ii] = Lij÷i]

for some j. Moreover any one of the relations [7k] = rk may be omitted and
the result remains true.

The j that appears in the relation is determined by the arc aj that crosses
over the point p1. Which of the two relations holds depends on the arrows
on aj and In particular if the arrows determine locally a clockwise screw
then the first relation holds, otherwise the second holds. See Figure 28.6(a)
and (c) respectively.

By looking at the form of the relations given in Theorem 28.3 we imzne-
diately have:

(b) Fe)
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28.4 Corollary
Abelianizing a knot group gives 1.

To prove Theorem 28.3 we let C and A be subspaces of R3 defined by

C { (x1,x2,x3);x3 >-2e/3 },
A= { (x1,x2,x3);x3 <—€13 }.

The set C C) K (and A C) K) consists of n disjoint arcs with no crossing points.
It is therefore clear that there is a homeomorphism h: C —' C such that
h(C C) K) is the union

(S1flC)
1=1

where S1. i J,2,...,n, is the circle {(xi,x2,x3); x1 = i, x22 + x32 = 1 }.
See Figure 28.7.

Figure 28.7

Thus C-K is homotopy equivalent to a disc with n points removed, from
which it follows that ir(C—K, xo) is a free group on n generators I.
L721

In a similar way we see that the fundamental group of A-K is a free
group on n generators. However, A-K does not contain x0, so let b be a
straight line from x0 to A, disjoint from K and all other curves chosen. Let

Figure 28.8

at,

)'I, I
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B be A together with all points of distance less than, say, 6 from b. The
space B—K is open and path connected and it is clear that ir(B—K, xo) is a free
group on n generators Et3i] , s..., [t3nI• The closed path runs from x0
along b to A, then to a point close to along a circle in B-K with centre p1
and then back again to x0. See Figure 28.8.

Next we look at the space (B- K) (C- K). This clearly has the homotopy
type of a disc with 2n points removed and so ir((B-K) fl (C—K), x0) is a free
groupon2ngenerators [all, [at],
these generators note that B C splits K into 2n arcs which we may denote
by and where a,at are those parts ofaj,aj÷1 respec-
tively in A ñ B that are nearest the point The path goes around
whereas at goes around aj and at (for convenience). See Figure 28.8.

Nowlet K-+C-Kdenote
the natural The following equivalences are easy to see:

while

PC 7j) * *

or

depending on the relation of the arrow on with the arrows on aj and
(For Figure 28.8 the relation is the first one given above.)

We may apply the Seifert-Van Kampen theorem since the spaces B-K,
C-K, (B-K) (i (C-K) are all open and path connected. The result concerning
the generators and relations of ir( R3-K, xo) follows immediately.

To show that any one of the relations is redundant we simply alter A to
A', where A' is A together with all points of distance greater than some
large number, say N, from the origin of K3. This then gives us B' B U A'.
The fundamental group of B'-K is the same as B-K; however, the funda-
mental group of (B' C) - K has one fewer generator than that of(B fl C)
-K. This is because (B' C)-K now has the homotopy type of a sphere S2
with 2n points removed. So by removing the generator from ir((B' C)

—K, x0) we see that the relation [YkJ = rk no longer is necessary in ir(R3—K,
xo). We leave details for the reader.

We illustrate the above theorem by three examples. For brevity we shalt
denote [7k) simply by 7k' First we recalculate the group of a trefoil knot.
Using the notation in Figure 28.9 and previous notation we see that the
group of a trefoil knot has three generators 71 ,72 ,73 with relations

17273, 7217371 Y37i 17172, any one of which is redundant.



That for example, is redundant can be seen simply by putting the first
relation partly into the second to obtain the third, viz.

72 =7i 17371

7i 72. Thus the group of a trefoil knot is

((71,72,73); (7i
= 73_i 7273,72 =71_i 7371 P

=({72,73};(72 =73_172_1737373_17273))

({73,73 =737273))

which can be seen (quite easily) to be isomorphic to the group

(fa,b};{a3 =b2}).
For the next example consider the granny knot of Figure 28.10(a). We

see that the group of this knot has generators 7i ,72 and relations

any one of which is redundant. All relations may be rewritten in terms of
and and it is not difficult to show that the above group is isomor•

phic to one on three generators and two relations 717371 = 737113
and 7s7i7s = 7i7s7i. Thus the group of the granny knot is the group on
three generators x,y,z and two relations xyx = yxy and xzx = zxz.

For our last example consider the square knot of Figure The

group of this knot has six generators 7i ,72 ...,76 and relations
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Figure 28.9

a3

1173

7i =73_17273,

73

72 7117371,

76 7517175,

7i 731

73=72_I 7472,

is =717671_I,

7271_I 7371,

74767S761,
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Figure 28.10

a6 2

(b) Square knot.

any one of which is redundant. As in the granny knot it is easy to eliminate
three of the generators to obtain the group with three generators ,73 .75
and two relations 717371 = and = Thus the group
of a square knot is the group on three generators x,y,z, and two relations
xyx = yxy and xzx = zxz. In particular we see that the groups of a granny
knot and a square knot are isomorphic. It is however a fact that these two
knots are not similar, although we shall not prove this.

28.5 Exercise
Using Theorem 28.3, calculate the groups of the knots in Figure

27.1. For the knot in Figure 27.1(b) show that the answer is Z as it should
be.

We end our chapters on knots by briefly describing two constructions
associated with knots. Most of the details and interesting properties of these
constructions are left for the reader in the form of exercises.

Given two knots K1 ,K2 place an arrow on each and define their connected
sum K1 # K2 to be the knot obtained by removing an interval from each knot
and glueing the result together so that the arrows go in the same direction;
see Figure 28.11. A prime knot is one which cannot be expressed as K1K2

where and K2 are both not unknotted. Most tables of knots (see the
appendix to Chapter 28) are of prime knots.

a4

as

a6 (a) Granny knot.

as
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Figure 28.11

28.6 Exercises
(a) Show that 4' (K2 4' K3) is equivalent to (K1 4' K2) 4' K3.
(b) Show that K1 4 K2 is equivalent to K2 4 K1. (Hint: See Figure

28.12.)
(c) Show that if K1 is equivalent to K and K2 is equivalent to

then K1 4' K3 is equivalent to K 4 Does the result still hold
if the word equivalent is replaced by similar?

The next construction associates to each (tame) knot a surface-with-
boundary (see Exercise 11.8(b)). In order to do this, first place an arrow on
the knot. The region near each crossing point (Figure 28.13(a)) is replaced
by the arrangement shown in Figure 28.13(b).

What remains is a number of disjoint circles. We may fill each circle with
a disc in such a way that all the resulting discs are disjoint. To do this we
may have to push the discs slightly off the plane in case the circles are nested;
start with an innermost one and work outwards. Finally place a half-twisted
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Figure 28.12

(C).

strip at the old crossing point (Figure 28.13(d)). The result is an orientable
surface-with-boundary. Its boundary is of course the knot K. We say that the
surface-with-boundary spans the knot. Some examples are given in Figures
28.14 and 28.15.

In Figure 28.15 a pair of nested circles arise. We have filled in the inner-
most one by a disc in the plane. The outermost circle has been filled in with
a disc that goes below the plane. Thus Figure 28.15(b) should be thought of
as a sphere with a 'hole' in it and within this 'hole' there is a disc. For Figure
28.15(c) these two regions have been bridged by five half-twisted strips.

By the genus of a surface-with-boundary we mean the genus of the asso-
ciated surface (in the sense of Exercise 11.8(b)). The genus of the surface-
with.boundary that we have constructed is ½(c—d+1) where c is the number

Figure 28.13

(a) (b)
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of crossing points and d is the number of disjoint circles that appeared in
our construction.

It is possible that there may be many different surfaces-with-boundary
spanning the knot. The genus of a knot K is defined to be the least integer
g(K) such that K is spanned by an orientable surface-with-boundary of genus
g(K).

Figure 28.14

(a)

Figure 28.15

(0)

(c)

(b) (c)

(b)
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28.7 Exercises
(a) Show that g(K L) = g(K)+g(L). (This is not trivial.)
(b) Deduce from (a) that every knot can be written as a finite connected

sum of prime knots.
(c) Prove that the genus of an unknotted knot is 0.
(d) Prove that if K is not unknotted then neither is K # L for any knot

L.

(e) Prove that the genus of a torus knot of type (m,n) is less than or
equal to ½(m- l)(n- 1).

(1) Given a knot K 'drawn' in the plane, perform the following opera-
tions. First of all shade the largest area that surrounds the knot:
see Figure 28.16. Next shade some of the regions in such a way that
neighbouring regions are neither both white nor both shaded. Then
label all the shaded regions except the largest one around the knot
by At each crossing point put either +1, -1, or 0
according to whether the crossing is as in Figure 28.16(b), (c) or
(d) respectively; the 0 occurs when the two shaded regions near the
crossing point belong to the same region.

Form a symmetric n X n matrix A(K) = in the following way:

= sum of crossing point numbers at region R1;
- = - aj1 = sum of crossing point numbers common to regions

Figure 28.16

(d)
(a)
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For example, the knot of Figure 28.16(a) determines the matrix

(-2 1

1 -2

d(K) = det A(K), so that d(K) does not depend upon the labels
on the shaded regions. If n = 0 define d(K) = 1.

(i) Find two equivalent knots K,L such that d(K) * d(L). Is
=

(ii) If K and L are similar knots is Id(K)I = Id(L)I?
(iii) Find non-equivalent knots K,L such that Id(K)I =
(iv) Show that d(K L) = d(K)d(L).
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The following diagrams show all prime knots, up to similarity, that
have at most nine double crossing points.

ce7(p

(I:Yc
CQ)
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(J)

\3'S
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Singular homology: an introduction

Homology theory is without doubt very important in topology. This chapter
cannot give the theory full justice. We shall merely illustrate the basic ideas
involved and in a special case relate it to the fundamental gToup.

29.1 DefInition
The standard n-simplex is defIned to be the following subspace

1=0

The points v0 = (l,O,...,O), v1 = (O,l,O,...,O),..., = (O,O,...,O,l) are called
the vertices of

Figure 29.1

V2

VI
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Thus is a single point, is a line interval, is a triangular region
and is a solid tetrahedron; see Figure 29.1.

29.2 Definition
Let X be a topological space. A singular n-simplex in X is a con-

tinuous map -+ X.

Thus a singular 0-simplex is simply a point in X while a singular 1-simplex
is essentially a path in X. Indeed if p is a singular 1-simplex then defining
f(t) gives a path f: I X from p(v0) to p(v1). Conversely, given
a path f: we obtain a singular 1-simplex X by = f(x1).

29.3 Definition
A singular n-chain in X is an expression of the form

jEJ

where { j E J } is the collection of all singular n-simple xes in X (with J
some indexing set) and n3 E Z with only a finite number of { i J }
being non-zero.

The set of singular n-chains in X forms an abelian group with
addition defined by

E(nj

The zero element is 0 and the inverse of nj is Associa-

tivity is clear as is the fact that the resulting group is abelian.

Figure 29.2

V0 Vi

V2

V0 Vt
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The group has some nice properties but unfortunately it is in
general extremely large. We make it more tractable by placing an equivalence
relation on it (In a similar way that we used an equivalence relation to define
the fundamental group). First we shall define the notion of a boundary
operator.

Given a singular n-simplex define a singular (n- 1)-simplex by

for I = O,1,...,n. See Figure 29.2. Clearly this leads to a homomorphism of
groups

ô1:

29.4 DefinitIon
The boundary operator a: (X) is defined by

a=a0- a1 +a2-

Using the boundary operator we can define two important subgroups of

29.5 Definition
(a) A singular n-chain c E is an n-cycle if ac = 0. The set of

n-cycles In X Is denoted by
(b) A singular n-chain d is an n-boundary if d = ae for some

e E The set of n-boundaries In Xis denoted by

In other words

= kernel 8:

image 8:

and so clearly both Zn(X) and are subgroups of
Notice that all singular 0-chains are 0-cycles, i.e. Z0(X) = S0(X).
It turns out that all n-boundaries are n-cycles. This follows immediately

from the next result.

29.6 Theorem
88=0.

froof We check 88 on a singular n-simplex
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n . n—i n
E

i=0 j=0 1=0

Now if i �j then we claim that = ;we see this as follows.

=

=

=

=

=

Thus
n—i j n—I n

= (- a1 + z (- a1
j=0 i=0 j=O

n-I j n—i n
= Z

J=0 1=0 j=0 i=j+1

n—i n—i n1 n
= E e a1 + E e a1

1=0 j=i j=0 i=j+1

n—i n—i . n—i n
= (- a1

j=0 i=j j=0 i=j+1

n—i n n—i n
= z (- a1 + E (-

j=O i=j+1 j=0 i=j+i

=0.

Thus is a subgroup of Since both groups are abelian,
is a normal subgroup of and hence the quotient group is

defined.

29.7 Definition
The n-th homology group of X is defined as it Is

denoted by

In other words, elements of are equivalence classes of cycles under
the equivalence relation

for c,c' E (— is easily seen to be an equivalence relation.) In this case
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we say that c and c' are homologous cycles.
Our next two results will determine the homology groups of a point and

the zero homology group of a path connected space.

29.8 Lemma
If X is a single point space then 110(X) Z and = 0 for

n>0.

For all n 0 there is a unique singular n.simplex -. X and so

1 Z }.
NOW a1 =P(11...1) forn>0 and

i=O

0 ifnisodd,

if n is even and n> 0.

Forn0wehave

From the above we see

noddorn0,
=

o nevenandn>0,

n odd,

o neven,

and hence

1 n0,

0 n>0.

29.9 Lemma
If X is a non.empty path connected space then H0(X) Z.

Proof A typical 0-cycle ( a singular 0-chain) is of the form

z
XE X
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where E I and only finitely many of xE X } are nonzero. Define
4,: H0(X)-+ Zby

First we check that this is well defined. Suppose that mx x is another
0-cycle which is homologous to I x, i.e.

x = I mx X + aC

where c isa singular 1-chain. A singular I-chain is of the form

jEJ

where E Z and is a singular 1-simplex. Now

ac
=

a = I (Vi) -

so that

x) x + ac)

= x + - Ekj

=

=

=

which shows that 4' is well defined.

Clearly 4' is a homomorphism. It is surjective because 4,(nx) = n, where x

is any point of X. Finally we show that 4, is Injective. Let x be a
0-cycle; then

n, x = xo + I x - x0)
xEX

xEX

where P, is a path ( a singular 1-simplex) from x to x0. Thus I x and

(I x0 are homologous. So if x) = 0 then 0, and so iS

homologous toO, which proves that 4, is injective.
This last step Is the crux of the matter because it shows that any 0-cycle

c x is homologous to the 0-cycle x0 which is completely
determined by the integer En,.

Given a continuous map f: X Y then we may defIne

fE:

by

f,(Z I
jEJ



Singular homology: an introduction 245

(Perhaps we should denote -* by
but this is unnecessarily complicated.) It is clear that f, is a homomorphism
of groups. In fact f,, sends cycles to cycles and boundaries to boundaries.
This follows from the next result.

29.10 Lemma
a f, = a

Proof Consider a singular (n- 1)-simplex p. Then

=

=

=

=

= ((f,
which proves the result.

29.11 Corollary
1, c f, c

Proof If c Is a cycle in X then 8 f,(c) = 8(c) = 0, which shows that fg(c) IS
a cycle in Y. If d is a boundary in X then d = 8(e) and f,(d) = f, 8(e) =
ôf,(e) isa boundary in Y.

The above corollary shows that there is a homomorphism of groups

f

flj is an n-cycle in X. We call the induced

homomorphism.
The next two results are easy to prove and left for the reader. Compare

Theorem 15.9 and Corollary 15.10.

29.12 Theorem
(1) Suppose f: X -, Y and g: Y Z are continuous maps; then
(gf), for all n �0.
(U) if 1: X X Is the Identity map then I Is the identity homo-
morphism on for all n � 0.
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29.13 CorolLary

If f: X -÷ Y is a homeomorphism then -÷ is an
isomorphism for all n 0.

Remark: Homology is a functor from topology to algebra (especially abelian
groups). (See Remark preceding Exercises 15.11.)

In fact if two spaces are homotopy equivalent then their homology groups
are isomorphic. This follows from the next result, the homotopy invariance
theorem.

29.14 Theorem
Let f,g: X -÷ Y be two continuous maps. If f and g are homotopic

then f,1 = all n�0.

Proof For t I let X -÷ XX I be given by (x,t). Let F: XX I V
be a homotopy from f to g, i.e.

F(x,0) = f(x), F(x, 1) = g(x),

or in terms of we have

FX0=f, FX1=g.
Suppose that then

Thus we need only show that X I). What we shall

show is that for the homomorphisms

A01,?31: I)

there exists a homomorphism (called the prism operator)

P: (XXI)
such that

a situation the homomorphisms Ao and A1, are said to be chain
homo topic.

If A0 and A1, are chain homotopic and if c is an n-cycle in X then

(A1, - Ao,)(c) = + Pa)(c) = a(Pc)

which shows that A1,c and Ao,c are homologous and hence =

Therefore in order to prove the theorem we have to show that A1 and A01
are chain homotopic. To do this we need to define P.

Let X be a singular n-simplex in X, i.e. an element of Let
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for i = 0,1 ,...,n, be the element of (X X I) defined by

x1_1,x1+x1+1,x1+2

X(l- Xk),
k=O

and let P(p) E Sfl.,L (X X 1) be given by

It is not difficult to see that P: -+ (X X I) is a homomorphism.
Now a may be rewritten as

n+1 n+I n
= (— l)J P(p) = E (-

j=O j=O i=O

We shall rewrite the P1 in another form.
Ifi<j- I then

=

X(l- Xk)
k=O

= p(xo

X(l-

=

=

If i>j then
=

= p(x0 ,....Xj_ ,0,...,x1_2 ,Xj_ + Xj,Xj.f1

i—i

X(1- Xk)k0
=

I—I

X(1- Xk)
k=O
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= P1_1

= (p)

Finally if i = j then

a3 P3 = P3 (ip)

i—I
=

k=Ok

= P3_1

=

In summary we have

a3 if i>j
a3 = p1 a3_, if i <j—I.

By using these relations and by writing as

n+1 n
= E

j=0 1=0

=a0P0+ -

i=j=1 l=J—l=O

+
a3

it is not difficult to see that

ap=a0p0- pa.

But we have

a0p0 = P0 (p)(O,x0

= 1

— X1

= X1,

and

=

=

=

=

Thus

ap+pa=x1,- x0,,
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which shows that A1, and are chain homotopic. This completes the
proof of the theorem.

29.15 Exercises
(a) Prove that if f: X Y is a homotopy equivalence then

is an isomorphism for each n 0.
(b) Prove that if i: A -÷ X is the inclusion of a retract A of X then i*:

is a monomorphism. Prove that if g: X A is the
retraction then

= image (is) kernel (g,).

Prove furthermore that if A is a deformation retract of X then is

an isomorphism.
(c) Let X be a path connected space and let x0 E X be some point of

X. Let p: X [ x0 ) denote the obvious map and define to
be the kernel of —, { x0 }). Prove that

• {

X Y be a base point preserving continuous map. Show that
there is an induced homomorphism

Suppose furthermore that g: X -+ Y is another base point preserving
map with f and g homotopic relative to the base point of X. Prove
that

=

The next result in our brief study of homology is a description of the
relationship between the fundamental group and the first homology group
of a space.

29.16 Theorem
There is a homomorphism

ir(Y,yo) -+ H1(Y).

If Y is path connected then 'j' is surjective and the kernel of is the com-
mutator subgroup of ,r(Y,yo): in other words H1 (Y) is ir(Y,yo) abelianized.

Proof Suppose that f: I Y is a path in Y that begins at Yo. Define (fl:

= f(x1) =
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is a singular 1-simplex. If f is a closed path then a(1Ji(f)) = YoYo = 0,

and so is a 1-cycle in Y.
We now check that if f and f' are equivalent closed paths then iji(f) and

ip(f') are homologous cycles. Suppose that f f' and F: I X I Y is the
homotopy relative to { 0, 1 } realizing the equivalence f — f'. We use F to
define a singular 2-simplex p: -+ Y in the following way. The coordinates
of a point Q in A2 may be expressed as (1—s,s(l—t),st) for some s,t with
o � s, t < I (see Figure 29.3). We define p(Q) to be F(s,t). In terms of the
coordinates (x0,x1,x2) ofQE we have

if x0 = I.

Notice that x2/(l-xo)= x2/(x1+x2) and of course x0,x1,x2 �0 so that

O<x2/(l-xo)� I.

Since F(0,t) = F(0,O) for all t E I it follows that is continuous. The boun-
dary of ip is easily calculated:

where e: I Yis the constant path e(t) = Yo;

F(l—xo, x1/(l-xo)) if x0 * I,
a1 =

F(0,0) if =

F(1—x0, I) if x0 * 1,

F(0,O) ifx0 =
=

=

Figure 29.3

= (0,0,1)

(0.I—t.t)

0

V*(I,O.O) /
( —s, s (I —I). sti

V2

V0

Vt
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In other words

ap=
However, if we defme c2: Y by c2 (xo,x1 ,x2) = Yo then we see that

a0c2 =81C2 =a2c2 c1

where c1: Y is given by c1(x0,x1) = Yo• Thus = 8c2 and hence
the cycles and are homologous. This proves that we have a well.
defined function ,,b from ir(Y,y0) to H1(Y).

To check that ji is a homomorphism let f,f' be two closed paths in Y,
based at Yo. We need to show that * f') is homologous to i/i(f) +
i.e. that + — • f') is a boundary, say 8p for some singular
2.simplex Y. The definition of is suggested by Figure 29.4 and
is given explicitly by

f(l+x2-xo) ifx0�x2,
p(xo,x1 ,x2) =

f'(x2 — x0) ifx0 <x2.
Notice that is continuous by the glueing lemma. The boundary of can

be easily calculated:

I f(l +x1 — x0) ifx0�x1,
a1

f (x1 - x.0) ifx0 �xi

—
f f(2x1) ifx1 <½,

—
f'(2x1 - 1) ifxj �½

(x1 + x0 1)

= * f') (xo,x1),

a2 = p(xo,x1 ,O) = f(l-xo) =

Thus

= - i.p(f • f') +

Figure 29.4

V2
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which shows that * f') is homologous to j'(f) + and hence that ',i'
is a homomorphism.

Suppose now that Y is path connected. We shall show that is surjective.

Let c = E be a 1-cycle in Y; thus ac = 0, i.e.

pj(Vi))=O.

Rewriting ac as y, we must have my = 0 for all y E Y. For each
yE Y

j E J choose a path gj0 from Yo to pj(vo) = a0 and a path from

Yo to = pj(l). These paths must only depend upon the end point,
thus = 4pk(vo) then aj0 = gk0• Clearly we must have

(Let gy be a path fromy0 toy;then E 4'(gj0)) may be rewritten
as my

Letting be the singular 1-chain defined by

then we have

If I Y denotes the path given by = then (gj0 * 9 * is

a closed path in Y, based at Yo. and

which shows that is surjective.
We prove that the kernel of is the commutator subgroup. Suppose that

is homologous to 0, thus

iji(f) = ô
=

- +

where (j E J) is a singular 2-simplex and = (1 = 0,1,2). Since 4(f) is
a singular 1-simplex we must have 4(f) = for some k,Q and after collec-
ting terms on the right hand side of the expression above 4(f) = appears
with coefficient 1 and all other terms have coefficient zero.

Let (j E J, i = 0,1,2) denote a path in Y from Yo to As in the

past gjj is to depend only on the end point and not the particular
indexing. = Yo then choose the constant path. See Figure 29.5.

Let ç1(JEJ,i=0,1,2)bepathsinYdefinedby
= =
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Figure 29.5

anddefine

paths (j E .J) by

It is not difficult to see that is equivalent to

(gj1

which is clearly equivalent to the constant path e. Thus

?
[hjj"i=l.

Let Air(Y,yo) denote the quotient of n(Y,yo) by the commutator sub-
group (i.e. Air(Y,y0) is ir(Y,y0) abelianized). If [a] is an element of
ir(Y,y0) we denote by the corresponding element in An(Y,yo).
Since fl = 1 we have

H

We know that = for some k,Q. It follows that f = and (by our
choice of also that f = hkQ. Since Air(Y,yo) is abelian we may collect
the terms in the expression II [(hjl I and deduce that

H =

Thus 1, i.e. [fJ belongs to the commutator subgroup. We see there-
fore that the kernel of is contained in the commutator subgroup. On the
other hand the fact that H1(Y) is abelian means that the kernel of con-
tains the commutator subgroup. This completes the proof of the theorem.

29.17 Exercises
(a) Showthat Z and that
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(b) Give an example to show that if Y is not connected then Air(Y,yo)
is not isomorphic to H1(Y).

(c) Calculate the first homology group of (i) an orientable surface of
genus g, (ii) a non-orientable surface of genus g. Deduce that two
surfaces S1,S2 are homeomorphic if and only if H1(S2).

(d) Suppose that Y is path connected. Prove that ir(Y, Yo) and U 1(Y)
are isomorphic if and only if ir(Y,yo) is abelian.

(e) Show that the first homology group of a figure 8 is isomorphic to
zxz.

(f) Let S be a surface and let S' be S with an open disc neighbourhood
removed. Prove that H1(S)

When calculating fundamental groups we found the Seifert-Van Kampen
theorem very profitable. For homology theory we have an analogous theorem
which we shall describe.

Let X = U1 U U2 where U1 and U2 are open subsets of X, and let
U1 U2 -÷ U1, U1 X denote the inclusion maps for i 1,2. Define
homomorphisms

j: Hk(Ul
j :

by

i(c) =
j(c1,c2)

29.18 Theorem
Let X = U1 U U2 where U1 and U2 are open subsets of X. There are

homomorphisms

C'iU2)

such that in the following sequence of groups and homomorphisms,

the kernel of each homomorphism is equal to the image of the preceding one.
Furthermore if Y is another space with Y = V1 U V2 (V1 ,V2 open in Y)

and if f: X -÷ Y is a continuous map with f(U1) C V1 then

(flU1

i.e. the homomorphisms commute with induced homomorphisms.

The homomorphisms are called connecting homomorphisms and the
sequence in Theorem 29.18 is called the Mayer— Vietons sequence. In general
a sequence of groups and homomorphisms in which the kernel of each
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homomorphism is equal to the image of the preceding one is called an
exact sequence. Thus the Mayer-Vietoris sequence is an exact sequence.

We shall not prove Theorem 29.18 although we will indicate its usefulness
(and hence the usefulness of homology theory) by proving a result and then
deducing several important corollaries.

29.19 Theorem
Let n be a positive integer; then

[1 ifk0,n,

= 0 otherwise.

Moreover, if Sn Sn is the reflection map given by
then

1'ns: -+

is multiplication by -I.

Proof We prove the result inductively using the Mayer-Vietoris sequence.
Let U1 = {x E xn >-½ }and U2 = {x E <½}. Note that U1
and U2 are contractible and that U1 (i U2 is homotopy equivalent to Sn-'
so that

17; ifk=0,
Hk(UI) =

L 0 otherwise;

Hk(UI U2) =

Note that if we think of as =0
Let n= 1 then for k 1 the Mayer- Vietoris sequence becomes

A

which becomes

A
Z 1 -'1

with i(x,y) = (x+y,x+y). Now A is injective since ker(A) = im(j) 0:
furthermore im(A) ker(i) = (x.-x) E 7; e Z } which is isomorphic to 7;

so that H,(S') = Z. . It is clear that = (y,x) and since = AT, *

we see that T1 * is multiplication by - I. For k> I the sequence is

A
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and it is easily seen that is an isomorphism (it is injective because ker(A) =
im(i) and surjective because im(A) = ker(j)). The theorem is therefore proved
for n1.

Suppose that m > 1 and that the result in question is true for nm-l;
then we shall show that it is also true for n=m.

If k1 then we have

1.
which becomes

i

with i(a) = (a,a) so that ker(i) = 0 and hence = 0 and = 0.
Ifk> I then we have

from which we deduce that Hk(Sm) Hk_l(Sm_l). Furthermore if km
then using the fact that Tm1 * = Tm is multiplica-
tion by -1. The result follows by induction.

29.20 Corollary
(a) If then and sm do not have the same homotopy type.
(b) Any continuous map f: has a fixed point.
(c) The reflection map Sn is not homotopic to the identity

map.

(d) The antipodal map A: S2 -* S2 given by A(x) = —x is not homo.
topic to the identity map.

(e) 1ff: S2 -÷ S2 n is homotopic to the identity then f has a fixed
point.

(1) There is no continuous map f: S2 -÷ S2 such that the vectors
x and f(x) are orthogonal in R 2 n+I for all x.

Part (a) follows from the homotopy invariance theorem (Theorem 29.
see Exercise 29.15(a). Part (b) is Brouwer's fixed point theorem and is
proved in the same way as Corollary 16.10. Part (c) follows from the homo-
topy invariance theorem. Part (d) follows from the fact that A = R0R1 ... R2n
where R1 is reflection in the i-th coordinate so that H2 fl) H2 n(S2 fl)

is multiplication by —1. For part (e) assume that f has no fixed
point so that (l-t) f(x) - tx * 0 for all x and so we may define a homotopy
F: S2n X 1-÷ between fand A by

F(x,t) ((1—t) f(x)— f(x)— txlI.
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Finally part (1) follows from (e) because if x and f(x) are orthogonal then
f(x)*x.

Parts (e) and (I) have a physical interpretation for n 1 which is commonly
called the hairy-ball theorem. This states that if you have a hairy-ball (i.e.
D3 with a hair growing out from each point of the surface S2) then you
cannot comb it smoothly; indeed, .any such attempt produces bald spots or
partings in the hair. For the proof just observe that if you had a smoothly
combed hairy-ball then the direction vector f(x) of the hair at x is orthogonal
to the vector x. Note however that it is possible to comb a hairy-torus
smoothly; this has important implications in nuclear fusion power stations.

29.21 Exercises
(a) Use the Mayer-Vietoris sequence to calculate the homology of R P2.
(b) Use the Mayer-Vietoris sequence to calculate the homology groups

of the complement of a knot. Deduce Corollary 28.4.
(c) Prove that there is no retraction of D" on S"1.
(d) Let M be an rn-manifold and N an n-manifold. Prove that if m*n

then M and N are not homeomorphic. This is called the topological
invariance of dimension. (Hint: Use the homeomorphism M /(M-D)

described in Exercise 11.12(0.)

There are many other different ways of defining homology groups. For a
very large class of spaces (the CW complexes for example) all these theories
coincide. This leads to an axiomatic approach to homology theory which
was originated by S. Eilenberg and N. Steenrod in the early 1950s. We shall
describe a set of axioms for so-called 'reduced homology theories'. These
are theories defined on topological spaces with a base point (as is the funda-
mental group). The 'reduced singular homology groups' of a space X with
base point x0 E X are defined by

xo }))

where p: X (xo } is the obvious map (see Exercise 29.15(c)). Given a
base point preserving map f: X Y there is an induced homomorphism

-+ defined in the obvious way.
Before giving the axioms of a reduced homology theory we briefly

introduce some notation.

29.22 Definition
Let X be a topological space with base point x0. Define EX to be

the quotient space

(X x I)/(X x a I U { } X I)

with the obvious base point. We call E X the (reduced) suspension of X.
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Notice that if f: X —' Y is a base point preserving continuous map then it
induces a base point preserving continuous map Ef: EX EY defined in
the obvious way.

29.23 Definitions

The reduced cone CX of X is defined to be the quotient space

(XXI)/(XX XI).

1ff: X Y is a base point preserving continuous map then the mapping
cone Cf off is the quotient space

where is the equivalence relation given by

(x,O)—f(x)

for (x,O) E CX and f(x) E Y. The base point of C1 is the point in Cf corre-
sponding to the base point Yo of Y.

Note that there is a natural inclusion

i: Y-'C1.

29.24 Exercises
(a) Prove that if p: X f x0 } is the constant map then is just

E X.

(b) Prove that if X is Hausdorff then so is E X.
(c) Prove that ES' S2.

We now give the Eilenberg-Steenrod axioms for a reduced homology
theory. From now on all spaces have a base point and all maps between such
spaces are continuous base point preserving maps.

A reduced homology theory defined on a collection of (possibly all)
topological spaces with a base point consists of the following.
(A) A family 4 n E Z } such that assigns to each space X under
consideration an abelian group This group is called the n-rh reduced
homology group of X.
(B) For every base point preserving continuous map f: X Y there is an
induced homomorphism for all n.
(C) For each space X and each integer n there is a homomorphism

(E X). The homomorphism is called the suspension
homomorphism.

The above are subject to the following seven axioms.
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(1)(The identity axiom) If!: X -* Xis the identity map then the induced
homomorphism

is an isomorphism for each integer n.
(2) (The composition axiom) 1ff: X -+ Y and g: Y Z are (base point pre-
serving continuous) maps then =

(3) (The naturality of suspension axiom) 1ff: X Y is a continuous map
then the following diagram is commutative.

)

I
,

(4) (The homotopy axiom) If the maps f,g: X -, Y are homotopic relative
to the base point of X then the induced homomorphisms and are equal.
(5) (The suspension axiom) The suspension homomorphism

is an isomorphism for all X and all n.
(6) (The exactness axiom) For every map f: X Y the sequence

rs

has the property that image (fe) = kernel (is) for all n, where i: Y Cf is the
natural inclusion.
(7) (The dimension axiom)

I Z ifnO,
=

L 0. otherwise.

29.25 Exercise
Show that reduced singular homology theory is a reduced homology

theory in the above sense. (Hint: For (5) and (6) use the Mayer-Vietoris
sequence.)

If instead of the dimension axiom above we have

for some collection of abelian groups n E Z then we have what is called
a generalized reduced homology theory with coeffIcients { n I ).
Such theories have earned a prominent position in modern algebraic topology.
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Suggestions for further reading

This chapter contains a selection of books suitable for further reading. Books
that assume far more knowledge of topology than is contained in this book
have not been included. The choice of books given is based upon the author's
(biased) preferences. The book [Spanier] is mentioned on a number of
occasions; it is an excellent all-round book on algebraic topology, although
some find it hard to read.
Manifolds For some general theory about manifolds see [Dold]. For 2-
manifolds and 3-manifolds see [Moise]. An important class of manifolds is
the so-called 'differentiable manifolds'; for a book about these see [Hirsch].
Homotopy theory Three recommended books are [Gray I, [Spanier] and
[Whitehead].
Covering spaces Covering spaces lead to 'fibre bundles' and good books for
this are [Husemolierj and [Spanier].
Group actions On topological spaces see [Bredon]. On manifolds see [Conner
& Floyd) and (Conner).
Knot theory [Rolfsen].
Homology theory For further singular homology theory see [Dold],
[Greenberg], [Spanier) and [Vick]. Two other types of homology theory
are simplicial homology and Cech homology. [Spanier] deals with both.
[Maunder) is good for simplicial homology while [fold) and [Massey] can
be recommended for Cech homology theory. For generalized homology
theories see [Gray I and [Switzcrj. The book [Gray I deals with generalized
homology theory from a purely homotopy theoretic point of view. Finally,
the original book on axiomatic homology theory is [Eilenberg & Steenrod].

The books suggested

Bredon, G.E. Introduction to compact transformation groups. Academic
Press, New York - London, 1972.

Conner, P.E. Differentiable periodic maps (second edition). Springer, Berlin -
Heidelberg — New York, 1979.

Conner, P.E. & Floyd, E.E. Differentiable periodic maps. Springer, Berlin -
Heidelberg — New York, 1964.
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Dold, A. Lectures on algebraic topology. Springer, Berlin - Heidelberg - New

York, 1972.
Eilenberg, S. & Steenrod, N. Foundations of algebraic topology. Princeton

University Press, Princeton, N.J., 1952.
Gray, B. Homotopy theory. Academic Press, New York - San Francisco -

London, 1975.
Greenberg, M.J. Lectures on algebraic topology. Benjamin, New York, 1967.
Hirsch, M.W. Differential topology. Springer, New York - Heidelberg -

Berlin, 1976.
Husemofler, D. Fibre bundles (second edition). Springer, New York -

Heidelberg — Berlin, 1975.
Massey, W.S. Homology and cohomology theory. Marcel Dekker, New York

- Basel, 1978.
Maunder, C.R.F. Introduction to algebraic topology. Cambridge University

Press, 1980.
Moise, E.E. Geometric topology in dimensions 2 and 3. Springer, New York

— Heidelberg — Berlin, 1977.
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Spanier, E.H. Algebraic topology. McGraw Hill, New York, 1966.
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abeian group, 4
abelianization of a group, 206
abelianized knot group, 225
action of a group, 35

free action, 71
action of the fundamental group, 152
antipodal map, 256
antipodal points, 64
arc, 77, 92

open, 20
arcwise connected space, 93
associativity. 3
axioms of homology theory, 258

baIl, 13
base point, 124
base space of a covering, 143
bijective function, 2
binary operation, 3
Borsuk—Ulain theorem, 157
boundary

of a chain, 241
of a manifold-with-boundary, 91
of a space, 15

boundary operator, 241
bounded subset of 48
bowline knot, 210
Brouwer's fixed point theorem, 140, 256

cartesian product, 1
centre of a group, 126
chain, 240
chain homotopic maps, 246
Chinese button knot, 210
chord of a Jordan curve, 107
circle, 21

Polish, 165
class, 2
classification theorem of surfaces, 80, 90
closed map, 17
closed path, 124
closed set, 13

closure, 14
comb (flea and comb), 95
commutative group, 4
commutator subgroup, 4
compactification, 49
compact-open topology, 49
compact space, 45

locally compact, 49
one-point compactification, 49

component, 100
composite function, 2
composition axiom, 259
concrete topology, 11
cone

reduced, 258
mapping, 258

connected space, 58
locally path connected, 98, 162
path connected, 93
semilocally simply connected, 171
simply connected, 130

connected sum
of knots, 228
of n-manifolds, 88
of surfaces, 79

connecting homomorphism, 254
consequence (of relation), 178
constant map, 16
constant path, 92
continuous function

between euclidean spaces, 6
between metric spaces, 8
between topological spaces, 16
uniformly continuous, 103

continuous on the right, 17
contractible space, 114
convex subset of IR", 93
coset, 3
cover, 44

finite, 44
open, 45
subcover, 44
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covering
definition, 143
equivalence, 166
existence theorems, 171, 174
map, 143
n-fold, 149
regular, 153
space, 143
universal, 170

covering transformation, 150
group, 167

crossing point, 212, 221
cube, 48
curve

simple closed, 88, 100, 149
space filling, 99

cycle, 241
group of n-cycles, 241

cyclic group, 4
cylinder, 27, 30

deformation retract, 114
strong, 115
weak, 116

degree of map, 138
diagonal, 56
dimension axiom, 259
dimension, topological invariance of, 257
direct product, 1, 3
direct sum, 3
disc

n-disc Di', 42
open n-disc, 68
two-disc, 33

discontinuous action (properly), 143
discrete metric, 7
discrete topology, 11
distance function (or metric), 7
double point, 213, 221
double torus, 73

fundamental group, 202
doughnut, 21

EilenberrSteenrod axioms, 258
embedding of Klein bottle in 1R4, 149
empty word, 177
epimorphism (or surjective

homomorphism), 128
equivalence

homotopy, 114
class, 2
of covering spaces, 166
of 212
of paths, 118
relation, 2
topological, 19

equivalent knots, 212
equivalent paths, 118
equivarient map, 37
euclidean metric, 7
evaluation map, 49
evenly covered open subset, 143
exactness axiom, 259
exact sequence, 255

false lovers knot, 210
figure 8, 109, 115
figure 8 knot, 210
final point, 92
finite complement topology, 12
finite cover, 44
first homology group, relationship with

fundamental group, 249
first isomorphism theorem, 4
fixed point theorem

for 1, 63
for D2, 141
for 256
for S2 , 256

flea and comb, 95
free abelian group, 4
free action of a group, 71, 144
free group, 177
function, see map
functor

defmition, 127
fundamental group, 127
homology, 246

fundamental group
action of, 152
as a functor, 127
change of base point, 125
definition, 124
of circle, 139
of complement of a tame knot, 224
of complement of a torus knot, 217
of contractible space, 130
of covering space, 151
of figure 8, 191
of homeomorphic spaces, 127
of homotopy equivalent spaces, 130
of H-space, 132
of Klein bottle, 156, 196
of lens space, 149, 155, 186
of orbit space, 155
of pro4uct space, 131
of RP', 149, 186, 197
of 149, 186
of 131, 174, 186
of surface, 202
of topological group, 132
of torus, 140, 149, 195
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of union of circles, 192
relationship to first homology group,

249
Seifert-Van K.ampen theorem, 181

fundamental theorem of algebra, 140

C-action, left, right, 36
G-equivarlant map, 37
generators, 4, 178
generalized reduced homology theory, 259
Genus

of knot, 231
of surface, 82
of surface-with-boundary, 230

glueing lemma, 92
granny knot, 210

group, 227
graph, 40
group

abelian, 4
abeianized, 206
action of, 35
centre of, 126
commutative, 4
cyclic, 4
definition, 3
finitely generated, 4
free, 171
free abelian, 4
fundamental, 124
generators, 178
homology, 242
homomorphism, 3
homotopy, 133
of a granny knot, 227
of a knot, 213
of a square knot, 227
of a tame knot, 224
of a torus knot, 211
of a trefoil knot, 217, 226
of an unknotted knot, 213
of covering transformations, 167
presentation, 178
quotient, 4
topological, 132
trivial, 3

group action
defInition, 35
free, 71, 144
properly discontinuous, 143
transitive, 152

C-set, 35
C-space, 37

hairy-ball theorem, 257
ham-sandwich theorem, 159

handle, 81
Hausdorff space, 50
Heine—Borel theorem, 48, 57
homeomorphic spaces, 18
homeomorphism, 18

orientation preserving, 212
homologous cycles, 243
homology group

definition, 242
homotopy invariance, 246

of
of ST1, 255
reduced, 249, 258
relationship with fundamental group,

249
homomorphism, 3

connecting, 254
induced, 127, 245

homotopic maps, 111
homotopy

axiom, 259
equivalence, 114
equivalent spaces, 114
group, 133
invariance theorem, 246
of continuous maps, 111
path lifting theorem, 147
relative to a subset, 111
type, 113

H-space, 132

identification space, 29
identity axiom, 259
identity element, 3
identity function, 1
image, 1

inverse image, 2
improper double crossing point, 221
indexing set, I
indiscrete topology, 11
induced homomorphism

in fundamental group, 127
in homology group, 245

induced topology, 20
infinite strip, 35
initial point, 92
injective function, 2
interior, 13
intermediate value theorem, 63
interval, 4, 61
intuitive notions, 21—4
inverse element, 3
inverse function, 2
Inverse image, 2
isomorphlsm, 3

first isomorphism theorem, 4
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Jordan curve manifold, 68
chord of, 107 connected sum of manifolds, 88
definition, 101 with boundary, 91
theorem, 101 map (or function)

Jordan polygon, 101 antipodal, 256
juxtaposition, 177 bijectlve, 2

closed, 17
kernel, 3 composite, 2
Klein bottle, 30, 32, 148 constant, 16

embedding of, 149 continuous, 6, 8, 16
fundamental group of, 156, 196 covering, 143

Knot(s) definition of, 1
bowline, 210 degree of, 138
Chinese button, 210 equivariant, 37
connected sum of, 228 evaluation, 49
definition, 209 G-equivarlant, 37
equivalence, 212 graph of, 40
false lovers, 210 homotopic, 111
figure 8, 210 identity, 1
genus of, 231 injective, 2
granny, 210 inverse, 2
group, 213 lift of, 136, 146
prime, 228 one-to-one, 2
similarity, 211 onto, 2
square, 210 open, 17
tame, 221 reflection, 255
torus, 216 restricted, 2
trefoil, 210 surjective, 2
true lovers, 210 mapping, see map
unknotted, 209 mapping cone, 258
wild, 222 Mayer Vietoris sequence, 254

knot group metric
abelianlzed, 225 definition, 6
definition, 213 discrete, 1
granny knot, 227 eucidean, 7
square knot, 227 space, 6
tame knot, 224 topology, 11
torus knot, 217 usual, 7
trefoil knot, 217, 226 metrizable, 11
unknotted knot, 213 mirror homeomorphism, 211

Möbius strip, 27, 30
LalcesofWada, 100 monodromy theorem, 138, 147
Lehesgue number, 49, 182 monomorphism (or injective
left coset, 3 homomorphism), 128
left G-action, 36 monotone decreasing (or non-
left hand frame, 211 increasIng), 65
lens space, 76, 145 monotone increasing (or non-
lift of a map, 136, 146 decreasing), 17
lifting theorem, 163 multiplication of paths, 118

path lifting, 137
homotopy path lifting, 147 n-boundary, 241

limit points, 14 n-cube, 48
locally compact space, 49 n-cycle, 241
locally euclidean, 68 n-disc, 42, 68
locally path connected space, 98, 162 n-fold covering, 149
loop, 124 n-manifold, 68
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n-manifold-with-boundary, 91 direct, 1, 3
n-simplex metric, 40

standard, 239 of paths, 118
singular, 240 of topological spaces, 39

n-sphere, 20 projections, 40
n-th homology group, 242 space, 39
n-th homotopy group, 133 projection map, 40
neighbourhood, 15 projective plane, 33
non-orientable surface, 82 fundamental group, 149, 186, 197
normal subgroup, 3 homology group, 257

projective space, 27
one-point compactification, 49 fundamental group, 149, 186
one-to-one function, 2 proper double point, 213, 221
onto function, 2 properly discontinuous group action, 143
open arcs, 20 property C, 130
open ball, 13
open cover, 45 quotient
open map, 17 group, 4
open subset set, 37

metric space, 8 space, 37
topological space, 11 topology, 27

operation, bInary, 3
operator rank of a free abelian group, 4

boundary, 241 ray, 102
prism, 246 real projective plane, 33

orbit, 36 fundamental group, 149, 186, 197
orbit space, X/G, 37, 154 homology group, 257
orientable surface, 82 real projective space, 27
orientable surface-with-boundary, 91 fundamental group, 149, 186
orientation preserving homeomorphism, reduced cone, 258

212 reduced homology theory, 258
reduced suspension, 257

parity, 103 reduced word, 177
path(s) reflection map, 256

closed, 124 regular covering, 153
constant, 92 regular space, 51
definition, 92 relation(s), 2, 179
degree of, 138 equivalence relation, 2
equivalence, 118 relative topology, 20
product of, 118 relators, 178

path connected. 93 restriction of a map, 2
locally path connected, 98, 162 retract, 114

path lifting theorem, 137 deformation, 114
homotopy path lifting theorem, 147 strong deformation, 115

point, 11 weak, 116
even, 103 weak deformation, 116
final, 92 retraction, 114
initial, 92 right coset, 3
odd, 103 right 0-action, 36

Polish circle, 165 right hand frame, 211
polygon, Jordan, 101
presentation of a group, 178 Schoenflies theorem, 209
prime knot, 228 Seifert—Van Kampen theorem, 181
prism operator, 246 semilocally simply connected, 171
product separates, 88

cartesian, 1 separation conditions, 50
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sewing on a cylinder, 81 surface
sewing on a handle, 81 classification theorem, 80
sewing on a Möbius strip, 82 connected sum, 79
similar knots, 211 definition, 79
simple chaIn, 98 fundamental group, 202
simple closed curve, 88, 100, 149 genus of, 82
simplex non-orlentable, 82

singular, 240 orlentable, 82
standard, 239 standard, 82

simply connected, 130 with boundary, 91
semilocally simply connected, 171 suijective function, 2

singular homology group, 242 SUspenSiOn
singular n-chain, 240 axiom, 259
singular n-simplex, 240 homomorphism, 258
space reduced, 257

arcwise connected, 93
base, 143 tame knot, 221
compact, 45 group, 224
connected, 58 teacup, 21
contractible, 114 terminal point, 92
covering, 143 Tietze transformation, 180
filling curve, 99 Tk-space, 51
C-, 37 topological identification, 29
H-, 132 topological invariance of dimension, 257
Rausdorff, 50 topological group, 132
identification, 29 topological product, 39
locally compact, 49 topological space, 11
metric. 6 topology
path connected, 93 compact-open, 49
projective, 27 concrete, 11
quotient, 37 definition, 11
regular, SI discrete, 11
topological, 11 finite complement, 12
Tk-, 51 indiscrete, 11

sphere, 20 induced, 20
fundamental group, 131, 174, 186 metric, 11
homology group, 255 product, 39

square knot, 210 quotient, 27
group, 227 relative, 20

stabilizer, 36 strongest, 28
standard n-simplex, 239 subspace, 20
standard n-sphere, 20 usual, 11
standard surface, 82 weakest, 25
stereographic projection, 68 torus, 30, 31
strongest topology, 28 double torus, 73
strong defomration retract, 115 fundamental group, 140, 149, 195
subcover, 44 torus knot, 216
subgroup, 3 transformation

commutator, 4 covering, 150
normal, 3 Tietze, 180

subspace, 20 transitive group action, 152
subspace topology, 20 trefoil knot, 210
sum group, 217, 226

direct, 3 triangle inequality, 6
connected, 79, 88, 228 trivial group, 3
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true lovers knot, 210 usual metric, 7
usual topology, 11

uniformly continuous, 103
unique lifting property, 146 vertices of an arc, 77
unit circle, 20 vertices of a simplex, 239
unit interval, 44
unit n-cube, 48 Wada, Lakes of, 100
unit n-disc, 68 weak deformation retract, 116
unit n-sphere, 20 weak retract, 116
unit square, 21 weakest topology, 25
universal covering, 170 Wild knot, 222
universal mapping property word, 177

of products, 41 empty, 177
of quotients, 28 reduced, 177

unknotted knot, 209
group, 213 zeroth homology group, 243
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