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PREFACE TO THE REVISED EDITION 

Since the first edition went out of print, there have been many requests that 
this book be reissued. The immediate impetus for this revised edition was 
the interest expressed at The Open University. 

This book, with minimal formal prerequisites, has been used in many 
ways. In addition to being a text for a course in the regular mathematics 
curriculum, it has been the basis of independent study by beginning 
students eager to supplement the mathematics in the prescribed courses 
and has been the text in extension courses for older students. For the 
student continuing to advanced mathematics, the book has been an 
appetizer for algebraic topology; for others, a dessert which complements 
prior study of geometry. 

PREFACE 

This book has been written as a text for a one-semester course in topology 
for sophomores, juniors, and seniors who have completed a year of calculus. 
For the prospective graduate student, the course is to stimulate interest in 
topology ; for the prospective secondary school teacher, it is to broaden his 
mathematical perspective. 

For all its importance in the mathematical world, topology has been 
slighted in the undergraduate curriculum. Many colleges and universities do 
not offer a topology course designed primarily for undergraduates. Those 
that do usually treat topology as a tool for analysis. While point-set 
methods are essential for modern analysis, a course limited to point-set 
topology may refine a student's analytic technique but kill his interest in 
topology as an independent discipline. To emphasize topological concepts 
and theorems which will be meaningful to the student, this book treats 
selected topics from one, two, and three dimensions by primarily combina-
torial and algebraic methods. It is hoped that these topics will be exciting 
to both student and teacher. 

Chapter 1 introduces the student to the sphere, the torus, the cylinder, 
the Möbius band, and the projective plane. In Chapter 2 combinatorial 
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vi PREFACE 

techniques are used to classify surfaces. Starting from the student's know-
ledge of conic sections in plane analytic geometry, Chapter 3 uses the 
methods of the preceding chapter to describe topologically the loci of 
quadratic equations in two complex variables. These special two-sheeted 
coverings of the Riemann sphere lead to a discussion of covering surfaces. 
The concept of winding number is employed in Chapter 4 to study mappings 
into the sphere. The results include the two-dimensional cases of the 
Brouwer fixed point theorem and the Borsuk-Ulam theorem. A further 
application is a proof of the fundamental theorem of algebra coupled with 
a method for isolating roots of complex polynomial equations. Chapter 5 
studies vector fields on the plane and sphere. The discussion includes 
applications to cartography, hydrodynamics, and differential equations. In 
Chapter 6 the homology of networks is developed and applied to the 
Kirchhoff-Maxwell laws and to a transportation problem. The final 
chapter is a brief introduction to three-dimensional manifolds. 

The exercises at the end of the chapters include drill problems, illustra-
tions of the text, and extensions of the text. The text has many worked 
examples. In some sections the concepts are developed primarily through 
examples. 

A teacher may elect to emphasize certain chapters and omit others. 
Chapters 3, 4, and 7 depend only on Chapters 1 and 2; Chapter 5 depends 
on Chapter 4; and Chapter 6 is independent. 

A semester course based on this book might be preceded or followed by 
a semester course in point-set topology, projective geometry, or differential 
geometry to give a full year of geometry. The text might be used for a por-
tion of an integrated year course in modern geometry. It might also be 
used in a summer institute for secondary school teachers. 

Several years ago I started teaching a one-semester course patterned 
after the undergraduate topology course developed by Professor Albert 
W. Tucker at Princeton University. Professor Tucker generously allowed 
me to start from his lecture materials and exercises in writing this textbook 
to fit the course. The lecture notes, recorded by Mr. R. C. James when 
Professor Tucker presented his course as Phillips lecturer at Haverford 
College, have been especially helpful. Mr. James rewrote and published a 
portion of these notes as " Combinatorial Topology of Surfaces," Mathe-
matics Magazine, Vol. 29 (1955) 1-39. A list of exercises compiled by Pro-
fessor E. F. Whittlesey from Professor Tucker's course records has been a 
source of many exercises. I am grateful to Professor Herman R. Gluck 
for his many suggestions for improving the manuscript. 

Boston, Massachusetts D. W. B. 



1 SOME EXAMPLES OF SURFACES 

1.1 Coordinates on a Sphere and Torus 
Two of the simplest examples of surfaces in three-dimensional space are 

the sphere, which is the surface of a solid ball, and the torus, which is the 
surface of a doughnut. If x, y, z are rectangular coordinates in three-
dimensional Euclidean space, the loci of the equations 

x2+y2 + z2 = l and z2 = (3 -Jx2 + y2)(\/x2 + y2 - 1) 

are examples of a sphere and torus, respectively.! 
To see that the second locus is a torus, consider the locus as the union 

of the graphs of the two functions of x and y defined by the equations 

z = V(3 - jx2+y2){jx2+y2 - 1), 

z = - V(3 - Vx^+T'XVx'+J'2 - 1). 

f In both verbal and graphic descriptions of geometric figures in space we adopt the 
following conventions : the positive direction of the x-axis is back to front, the positive 
direction of the j>-axis is left to right, and the positive direction of the z-axis is down to 
up or, equivalently, south to north. 

1 



2 SOME EXAMPLES OF SURFACES 

Fig. 1.1 
{Left) Sphere 

If the point (JC, y) is inside the circle x2 + y2 = 1, v* 2 + y2 — 1 is negative 
but 3 — V*2 + J2 is positive. Hence neither formula gives a real number 
z, for no real number z could have a negative square. Similarly, if (x, y) is 
outside the circle x2 + y2 = 9, no values of z are defined, for 3 — \lx2 + j 2 

is negative, whereas \Jx2 + j>2 — 1 is positive. When (x, j>) is between the 
circles so that 1 < x2 + y2 < 9, the two formulas define two distinct 
values of z, one positive and one negative. If (JC, y) is on the circle x2 + 
j>2 = 1 or the circle x2 4- y2 = 9, both formulas give the value z = 0. 
Thus the two functions defining z in terms of x and y have as domain the 
annulus determined by the inequalities 

1 < x2 + y2 < 9, 

Fig. 1.2 
(Right) Torus 
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y 

A 

■ > - x 

x2 + y 2 = 9 

Fig. 1.3 

and the two functions agree only on the two circles that bound this 
annulus. 

The graph of the first function is the part of the locus of 

z2 = (3- ylx*+y2)(ylx2+y2 - 1) 

for which z > 0. The graph of the second function is the part of the locus 
for which z < 0. Thus the locus consists of two sheets, one above and one 
below the annulus 1 < x2 + y2 < 9 in the plane z = 0. These sheets meet 
along the circles x2 + y2 = 1 and x2 + y2 = 9 in the plane z = 0 to form 
a ring-shaped surface. We shall see shortly that a vertical plane passing 
through the origin intersects this surface in a pair of circles. "Torus" is 
the mathematical name for a ring-shaped surface. 

A coordinate system assigns names to points. To understand and solve 
different problems it is convenient to define various types of coordinate. 
Whenever two or more coordinate systems are used, we should know how 
to translate from one coordinate language to another. For example the 
polar coordinates (r, Θ) in a plane with rectangular coordinates (x, y) are 
related to the rectangular coordinates by the equations 

x = r cos θ, y = r sin Θ. 

If r and Θ replace x and y in the coordinate system (x, y, z), the result is 
the cylindrical coordinate system (r, 0, z) for three-dimensional Euclidean 
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space. The name is appropriate because the surface r = c for c, a constant, 
is the infinite cylinder of points at a distance c from the z-axis. 

Returning to our examples of a sphere and a torus, we find that their 
equations in cylindrical coordinates are 

r2 + z2 = 1 and z2 = (r - 1)(3 - r). 

Because these equations impose no condition on 0, 0 can assume any 
value. The angular coordinate 0 of a point on the sphere or torus is the 
longitude of the point. Because a change in the angular cylindrical co-
ordinate by an integral multiple of In radians gives a new set of coordinates 
for the same point, the longitude of a point has many values. We remove 
the ambiguity by requiring that — π < 0 < π. 

When 0 is the angular polar coordinate in the plane, the equation 0 = c, 
in which c is a constant, determines a halfline or ray emanating from the 
origin. If 0 is the angular cylindrical coordinate, 0 = c is the equation 
of a vertical halfplane which starts at the z-axis and extends in one di-
rection. In this halfplane r and z are rectangular coordinates. By rewriting 
the equation of the torus as 

(r - 2)2 + z2 = 1 

we see that the intersection of the torus with the halfplane 0 = c is a circle 
of radius 1 and with center two units away from the origin in a horizontal 
direction. Thus the particular torus we have been discussing is the torus 
of revolution generated by revolving the circle 

(JC - 2)2 + z2 = 1 

in the xz-plane about the z-axis. 
For points on the sphere r2 + z2 = 1, we define 

φ = arc tanl-l. 

(By arc tan t is meant the angle between — π/2 and π/2 radians whose 
tangent is t.) If r = 0, φ is π/2 when z = 1 and — π/2 when z = — 1. The 
angle φ, called the latitude, is the angle of elevation of the point on the 
sphere viewed by an observer stationed at the center of the sphere. The 
geographical distinction between north latitude and south latitude is pre-
served if we interpret positive latitude as north latitude and negative 
latitude as south latitude. Because a point on the sphere is uniquely deter-
mined by its latitude and longitude, latitude and longitude form a co-
ordinate system on the sphere. The two anomalies of the coordinate system 
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are that latitude π/2, with any longitude, always names the north pole and 
that latitude — π/2, with any longitude, always specifies the south pole. 

We shall now define latitude on our example of a torus. In the plane 
z = 0 the circle r = 2, which we call the axial circle, is the path of the center 
of the circle revolving about the z-axis to generate the torus. We define 
the latitude of a point on the torus as the angle of elevation φ of the point 
viewed by an observer facing away from the origin and stationed at the 
point on the axial circle with the same longitude as the given point on the 
torus (Figure 1.4). Algebraically, 

circle 

> - Y 

π <φ<3π 

τ τ 

Fig. 1.4 

φ = arc tanl - ι if r > 2, 

φ = - if r = 2 and z = 1, 
2 

φ = π + arc tanl - I if r < 2, 

3π 
φ = — if r = 2 and z = — 1. 

2 
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These formulas give φ as an angle in the first or second quadrant for all 
points on the "northern hemitorus" and as an angle in the third quad-
rant between π and 3π/2 or in the fourth quadrant between 0 and —π/2 
for all points on the " southern hemitorus." The latitude is greater than 
π/2 if the observer on the axial circle facing away from the origin must 
bend his head back an angle greater than π/2 to see a point behind him. 
As on the sphere, latitude and longitude form a coordinate system on the 
torus. The anomalies of the latitude-longitude system that occur at the 
north and south poles of the sphere do not appear on the torus. 

Let us make a map of the torus by plotting latitude and longitude as 
rectangular coordinates in a plane (Figure 1.5). Because 

n Λ π . 2>π 
-π<θ<π and <φ< — , 

2 2 

the map is a rectangular area"\ which includes the top and right edges but 
not the bottom or left edges. A heavy line in Figure 1.5 denotes an edge 
included in the map, whereas a light line indicates an edge not included. 
The solid dot represents a vertex included; a small circle stands for one 
not included. On this map each point corresponds to a unique point on 
the torus and each point on the torus has a unique image on the map. 

If a point on the map approaches the missing left edge of the rectangle, 
the corresponding point on the torus approaches the meridian (curve of 
constant longitude) represented by the right edge of the map. Similarly, 
approaching the bottom edge of the map corresponds on the torus to 
approaching the parallel of latitude (curve of constant latitude) represented 
by the top edge of the map. These facts can be indicated on our map by 
adding the missing edges of the rectangle and explaining in the legend of 
the map that the — π- and π-meridians on the map represent the single 
π-meridian on the torus and that the — π/2 and 3π/2 parallels on the map 
correspond to the single 3π/2 parallel on the torus. 

If we do not distinguish between the torus and the map of the torus, we 
can think of the torus as a rectangle with the opposite edges identified. 

t In common English usage the words rectangle, triangle, and polygon can mean 
either an area or the curve that is the perimeter of the area. Because our primary con-
cern is two-dimensional topology, we use these words to signify areas and use rectangular 
curve, triangular curve, and polygonal curve when the perimeter is meant. Our two-
dimensional interest also dictates that tetrahedron, cube, and polyhedron mean surfaces, 
whereas tetrahedral solid, cubical solid, and polyhedral solid describe solids. The word 
circle means a curve bounding an area called a disk; the word sphere denotes the surface 
of a solid called a ball. 
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o 
2 

Ö- ■o 

Fig. 1.5 

Let a be the right edge directed upward and b the top edge directed from 
right to left. Figure 1.6 depicts a torus. The torus can be specified by the 
following listing of the edges in counterclockwise sequence around the 
perimeter of the rectangle (starting at the lower right corner): 

aba~ib-i = 1. 
The exponent - 1 indicates that the direction of the edge is opposite to the 
direction of the sequence. The sequence is set equal to 1 as a notational 
device to show that the complete perimeter of the polygon has been given. 

b 

Fig. 1.6 
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If there were a geography on the torus, we could represent it oil a rect-
angular map just as the geography of the (almost) spherical surface of the 
earth is depicted on rectangular maps. Figure 1.7 shows the geography of 

Fig. 1.7 Rectangular map of the earth's sphere 

the earth on a map with latitude and longitude as rectangular coordinates. 
The — π- and π-meridians on the map correspond to a single meridian. 
The entire top edge of the map corresponds to the single point (the north 
pole) with latitude π/2. Similarly, the bottom edge represents the south 
pole. 

To avoid having a whole line segment correspond to a single point, we 
make a new map of the sphere, using a pseudolongitude in place of the 
longitude. We define pseudolongitude φ by 

Η'-τ)·· 
At latitude φ ((the pseudolongitude is restricted to the interval 

- (π-2 |φ | )<ιΑ<π-2 |4 

Thus the length of the interval of pseudolongitude shrinks to zero as |φ| 
approaches π/2. In particular, the pseudolongitude of the north and south 
poles is zero. If pseudolongitude and latitude are plotted as rectangular 
coordinates, the resulting map of the sphere is a rhombus with vertical 
and horizontal diagonals (Figure 1.8). On this map the north and south 
poles are represented by unique points. Thus a sphere may be represented 
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Fig. 1.8 Map of the earth as a rhombus 

Fig. 1.9 

as a quadrilateral with two pairs of adjacent edges identified (Figure 1.9). 
An edge sequence equation for the sphere is abb~xa~l = 1. 

Stereographic projection of the sphere defines another planar map of the 
sphere. Through a point P on the sphere r2 + z2 = 1 draw the line deter-
mined by P and the north pole N. The point P' at which this line intersects 
the equatorial plane (z = 0) is the stereographic image of P. The north 
pole is the only point on the sphere with no image in the plane. Let φ and 
Θ be the latitude and longitude of P. The angular polar coordinate of P' 
in the equatorial plane is also Θ. We now calculate the polar coordinate r 
of P' in terms of the latitude of P (Figure 1.10). 

The circle in Figure 1.10 is the cross section of the sphere in the plane 
determined by P, N, and the origin O. This plane is the set of points for 
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Fig. 1.10 

which the angular cylindrical coordinate either equals the longitude of P 
or differs by π from this longitude. Because the line through P and N is in 
this plane, P' is also in the plane. The points P and P' are both below N, 
hence are both on the same side of N. Because they are on the same side 
of the z-axis, we have confirmed the earlier statement that P and P' have 
the same angular cylindrical coordinate. The point Q is the foot of the 
perpendicular from P to OP'. Because the radius of the sphere is 1, the 
length of OQ is cos φ and of PQ, sin φ. Now the triangles NOP' and PQP' 
are similar. Hence 

sin φ r — cos φ 

or 

The figure and proof are appropriate for P in the northern hemisphere. 
If P is in the southern hemisphere, the result is the same and the proof 
similar. (See Exercise 1.7.) The rectangular coordinates of P' are 

cos φ cos Θ cos φ sin Θ 
x = , v = . 

1 - sin φ 1 - sin φ 

For the points in a plane the rectangular coordinate pair (x, y) of real 
numbers may be replaced by the single complex number w = x + iy. 
(The letter z is more commonly used to denote x + iy, but we are currently 
using z as the third rectangular coordinate in space.) If x and y are 

(1) 
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expressed in terms of polar coordinates, we have the polar form of the 
complex number 

w = r(cos Θ + / sin 0). 

The number r is the absolute value |w|, and Θ is the argument of w, written 
arg w. If the equatorial plane is considered as the plane of complex num-
bers, stereographic projection maps the point P on the sphere with latitude 
φ and longitude Θ onto the complex number 

cos ώ 
- r—r (cos Θ + i sin Θ). 
1 — sin φ 

In an alternative interpretation this complex number is the complex 
coordinate of the point P on the sphere. Every point except N has a com-
plex coordinate. As P approaches N, the latitude approaches π/2. Now 

cos φ cos φ (1 + sin φ) 1 + sin φ 

1 — sin φ 1 — sin2 φ cos φ 

As φ approaches π/2, r becomes arbitrarily large and P' moves arbitrarily 
far away from the origin. The missing point N' corresponding to N is 
supplied by adding to the plane of complex numbers a single point at 
infinity, written oo. This new complex number is the complex coordinate 
of the north pole N. The complex plane with oo adjoined is the extended 
complex plane. When complex coordinates are used on the sphere, it is 
called the Riemann sphere in honor of G. F. Bernhard Riemann (1826-
1866), who presented a geometric development of the theory of functions 
whose domain and range are sets of complex numbers. 

Figure 1.11 is a stereographic map of the portion of the earth south of 
latitude π/4. It resembles the view of the southern hemisphere " seen " by 
an observer looking through the earth from the north pole. Stereographic 
projection has the useful property that two curves on the sphere inter-
secting at P with angle β are mapped into two curves in the plane inter-
secting at P' with angle β. A map that preserved angles is called conformai. 
As a consequence of conformality, the shape of a small area on a stereo-
graphic map is an approximation of the shape of the corresponding area 
on the sphere. The distorted shape of Africa in Figure 1.11 shows graphi-
cally that the local accuracy of a stereographic map does not imply global 
accuracy. Because of its precision throughout the south polar region, the 
stereographic projection we have described is frequently used to make 
maps of Antarctica. 
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2 

Fig. 1.11 Stereographic map 

1.2 The Topological Sphere and Torus 
In Section 1.1 we discussed a particular sphere and a particular torus in 

three-dimensional Euclidean space. Now we define the topological sphere 
and topological torus. 

In order to do so we need the notion of homeomorphism. Suppose that 
A and B are two point sets in Euclidean spacesf and that a function 

f'-A^B 

t By a Euclidean space (finite-dimensional) we mean a set of points, P, Q ..., with a 
distance function d(P, Q) such that for some positive integer n the points may be 
uniquely represented by the w-tuples (*!,..., xn) of real numbers and the distance 
between P = (xu · ·., *») and Q = (yu ..., yn) is 
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with domain A and range B is 
(a) one-to-one, that is, if a and a' are points of A such that f(a) =f(a'), 

then a = a'; 
(b) onto, that is, for each point b in B there is some am A such that 

f(a) = b. 

Thus the inverse function 
f-'-.B^A 

is also well-defined. Suppose, furthermore, that b o t h / a n d / " 1 are con-
tinuous. We then say that the function/(and, equally wel l , / - *) is a homeo-
morphism and that the point sets A and 5 are homeomorphic or /0/70-
logically equivalent. The adjective "topological" is used to describe 
properties which, if possessed by a given point set, must also be possessed 
by all point sets homeomorphic to the given one; for example, the intuitive 
notion of "connectedness" can be given a precise definition, and when 
this is done, connectedness turns out to be a topological property. On the 
other hand, the metric notion of "size" or "diameter" of a point set is 
not a topological property. To illustrate, let Cx denote a circle of radius 1 
and center at the origin in the plane; that is, Cx is the locus of all points 
(x, y) in the plane which satisfy the equation 

J C 2 + / = 1. 

Let C2 be the circle of radius 2 and center at the origin—that is, the locus 
of the equation 

x2 + y2 = 4. 
The function / : Cx -► C2 defined by the equation 

f(x,y) = (2x,2y) 

satisfies all the properties of a homeomorphism (the reader should check 
this statement carefully). Thus Cl and C2 are homeomorphic, even though 
they have different diameters. With a little care the reader can show that 
any two circles are homeomorphic and also that any circle is homeo-
morphic to any square. On the other hand, a circle and a figure eight are 
not homeomorphic. It is a little harder to show that two point sets are not 
homeomorphic because it is, of course, not sufficient to show that a par-
ticular map between them is not a homeomorphism—in effect we must 
show that every possible map between them is not a homeomorphism. 

The real numbers xlt ..., xn are called rectangular or Cartesian coordinates of P. Since 
Euclidean spaces are adequate to illustrate the concepts and theorems of this book, the 
temptation to consider more general types of space has been resisted. 
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Intuitively, the circle is not homeomorphic to the figure eight because the 
figure eight can be disconnected by the removal of one point (the crossing 
point), but the circle cannot be disconnected by the removal of any single 
point (two points would have to be removed from a circle to disconnect it). 
A precise argument can be built up around this intuitive one, once the 
notion of connectedness has been defined. Similarly, a circle and a line 
segment are not homeomorphic. 

If we examine the definition of homeomorphism carefully, it can be 
seen that a half-open line segment (a segment with one end point and 
missing the other) comes very close to being homeomorphic to a circle. 
Consider the line segment [0, 1) consisting of all numbers / such that 
0 < / < 1. Consider the map 

/ : [ 0 , 1 ) - Q , 
given by the formula 

f(t) = (cos 2nt, sin 2nt). 

Now/ is one-to-one, onto, and continuous, but the map 

/ - ' I C ^ P U ) 

fails to be continuous at the point (1,0). This shows how important it is in 
the definition of homeomorphism to require that both / a n d / - 1 be con-
tinuous, for it is clear to the eye that a circle and a line segment are grossly 
different. 

Most of the sets we shall study are closed and bounded. It is a simple 
theorem of point set topology that if/is a one-to-one continuous mapping 
of a closed bounded set A onto a set B, then B is closed and bounded and 
/ " * is continuous. Thus in this special case the continuity of/"* need not 
be explicitly verified. 

Now we are ready to define the topological torus. 

Definition. A point set T in some Euclidean space is called a topological 
torus if T is homeomorphic to the particular torus of Section 1.1. 

The adjective "topological" is dropped when the meaning is clear from 
context. 

Consider again the particular torus of Section 1.1. The correspondence 
between points (0, φ) in the 00-plane and points on this torus defines a 
continuous function on a quadrilateral in this plane with values on the 
torus. Every point on the torus appears once and only once as the image 
of a point in the quadrilateral, except that the π-meridian and the —π-
meridian on the quadrilateral map into a single meridian on the torus and 
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the 3π/2 and - π/2 parallels on the quadrilateral have a single parallel on 
the torus as their image. 

Similarly, if a point set T in a Euclidean space is a topological torus, it 
is the image of a plane quadrilateral Σ under a continuous function/with 
the following properties : 

1. If P is not on the perimeter of Σ, then/XP) + / ( ß ) for any Q ή=Ρ 
in Σ. 

2. If P is on the perimeter of Σ but is not a vertex, there is exactly one 
point P' different from P such that/(P) =f(P'). P and P' are on opposite 
edges of Σ. As P moves along an edge in the counterclockwise direction 
around Σ, P' moves in a clockwise direction. 

3. If Pl, P2, P3, P4. are the four vertices of Σ, 

/(Λ) =f(Pi) =/(Λ) =f(P*). 
The quadrilateral with opposite edges identified as indicated by the 

equation aba~1b~1 = 1 is considered a generic torus. The function / 
specifies a particular way of embedding the generic torus in a Euclidean 
space to define a particular torus. 

We shall now give an example of a torus in a four-dimensional Euclidean 
space with rectangular coordinates xi, x2, * 3 , x 4 . The torus is the locus 
of the parametric equations 

xl = cos w, x2 = cos v, x3 = sin w, x4 = sin v, 

with 0 < u < In and 0 < v < In. The restrictions on the parameters u and 
v determine a square in the wu-plane. The embedding function / i s defined by 

/ (« , v) = (cos w, cos v, sin u, sin v). 

Now / (0 , v) = / (2π, v) and/(w, 0) =/(w, In). Because there are no other 
circumstances under which f(ul,vi)=f(u2,v2), unless u^ — u2 and 
vt = v2, this locus in four-dimensional Euclidean space is a topological 
torus. Naturally it is difficult to visualize this particular torus. 

Now that we have a topological definition of the torus we shall consider 
the sphere. 

Definition. A point set S in some Euclidean space is called a topological 
sphere if it is homeomorphic to the particular sphere of Section 1.1. 

Equivalently, a topological sphere is a point set on which latitude and 
longitude, latitude and pseudolongitude, or a complex coordinate can be 
defined to satisfy the same identification properties these coordinates 
satisfy on the particular sphere x2 + y2 + z2 = 1. As an example, we show 
that a cube is a topological sphere. First inscribe the cube in a Euclidean 
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sphere. Through any point P on the cube draw a radius of the sphere. 
This radius intersects the sphere in a point P' (Figure 1.12). The map from 
the cube to the sphere which sends P onto P' is a homeomorphism. Thus 
the cube is homeomorphic to some Euclidean (round) sphere. As in the 
case of the circles, all spheres are homeomorphic to one another; therefore 
the cube is indeed a topological sphere. Alternately, if the latitude and 
longitude of P are defined to be the latitude and longitude of P\ the 
latitude and longitude system on the cube has the same identification 
properties as that on the sphere, and again the cube is seen to be a topo-
logical sphere. 

Fig. 1.12 

The cube is an example of an extensive class of surfaces that are topo-
logically spheres. Stretch, bend, compress, but do not tear a Euclidean 
sphere. If the latitude and longitude on the deformed surface are defined 
as the latitude and longitude before the deformation, the continuity of the 
permitted operations ensures that this definition of coordinates on the 
deformed surfaces establishes that the deformed surface is topologically a 
sphere. The cube may be formed by compressing the circumscribing 
Euclidean sphere. 
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As a different type of example of a sphere, consider the locus in four-
dimensional Euclidean space defined by the parametric equations 

xx = u(\ — |w|)(l — \v\) \ 
x2 = Î;(1 - |w[)(l - | φ I - 1 < u < 1 
*3 = (1 - M)0 - \v\) - 1 < ^ < Γ 
x4 = u + v ) 

The function 
f(u, v) = (i/(l - |W|)(1 - \v\l v(l - \u\)(\ - H), (1 - |i/|)(l - \v\), u + v) 

defined over the square max(|w|, |i?|) < 1 has each point on the locus as 
the image of a point in the square. Now, the third coordinate x3 of /(w, v) 
is not zero unless (w, v) is on the perimeter of the square. Because 

u = — and v = — when x3 Φ 0, 
^ 3 ^ 3 

f(uu v{) ^¥f{u2, v2) unless ut = u2 and vl = v2 if (ul, v{) is not on the 
perimeter of the square. For points on the perimeter the identities 

/ ( U ) = / ( U ) / ( - 1 , 0 = / ( ' , - ! ) 
exhibit the only pairs of points on the perimeter with identical images on 
the locus. This is because the line u + v = x4 (considering x4 as a constant) 
intersects the perimeter of the square either in points of the form (1 ,0 
and (t, 1) or in points of the form (—1,0, (A — 1)· Thus the four-dimen-
sional locus is a realization of the surface formed from a quadrilateral by 
the identification of adjacent edges as specified by the edge equation 
abb'1 a'1 = 1. This is the identification pattern of the latitude-pseudo-
longitude coordinate system on the sphere. We now recognize the four-
dimensional locus as a topological sphere. 

We have discussed the sphere rather intuitively. The sphere could have 
been defined in terms of properties of an embedding function. 

Another example of a sphere is the locus of the equation w2 = z in the 
two-dimensional complex space of pairs (z, vv). The coordinates z = x + iy 
and vv = u + iv range over the extended complex number system so that the 
point (oo, oo) may be included in the locus. The function that assigns to 
each complex number vv (including oo) the point (vv2, vv) on the locus is a 
homeomorphism. Equivalently vv may be used as a single complex co-
ordinate for the point (vv2, vv). Thus the locus is topologically a sphere. 
In contrast we shall discover in Chapter 3 that the locus of 

vv2 = z(z + l)(z - 1) 
is a torus. Because the complex pair (z, vv) is equivalent to the real quad-
ruple (x, y, w, v), four-dimensional perception is necessary to see these loci 
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in their natural habitat. The algebraic methods of Chapter 3 will enable 
us to classify such loci topologically without the eyestrain of four-dimen-
sional vision. 

1.3 Properties of the Sphere and Torus 
Now that we have given topological definitions of the sphere and torus, 

we wish to study the properties common to all particular spheres or tori 
that satisfy the topological definitions. Among these topological properties 
are many that distinguish between the sphere and the torus. 

In considering convex polyhedra t Leonhard Euler (1707-1783) dis-
covered a remarkable fact. If the number Nx of edges of the polyhedron is 
subtracted from the sum of the number N0 of vertices and the number 
N2 of faces, the answer is always two. This is proved in Chapter 2. 
Examples of convex polyhedra are the five regular polyhedra : the tetra-
hedron, the cube, the octahedron, the dodecahedron, and the icosahedron 
(Figure 1.13). 

Tetrahedron 
Cube 
Octahedron 
Dodecahedron 
Icosahedron 

M, 

4 
8 
6 

20 
12 

Ni 

6 
12 
12 
30 
30 

N2 

4 
6 
8 

12 
20 

A polyhedron is convex under the following conditions: 

1. It divides space into two nonempty parts, an unbounded one called 
the outside and a bounded one called the inside. 

2. Any line L passing through the inside cuts the polyhedron at exactly 
two points Px and P2 so that all points on L between Px and P2 are inside, 
whereas all other points on L except Px and P2 are outside. 

Let O be a particular point inside a convex polyhedron. Any line 
through O intersects the polyhedron in two points Pl and P2 separated 
by O. Leaving O fixed, shrink or stretch the line segments ΟΡγ and OP2 

until PYP2 is a line segment of length 2 with O as midpoint. This defines a 
continuous mapping of the polyhedron onto a sphere. By assigning to each 
point on the polyhedron the latitude and longitude of its image on the 
sphere we establish that the convex polyhedron is topologically a sphere. 
A topological statement of Euler's discovery is that if a sphere is divided 

t A precise definition of "polyhedron" is given in Chapter 2. 



Dodecahedron Icosahedron 

Fig. 1.13 
Convex polyhedra 

by curves into a finite number of faces (each bounded by a single curve), 
the number Nx of edges (the arcs between intersection points of the curves) 
subtracted from the sum of the number N0 of vertices (the intersection 
points of the curves) and the number of N2 of faces is always two. 

The surface of a picture frame (Figure 1.15) is a nonconvex polyhedron 
which is topologically a torus. This polyhedron has 16 vertices, 32 edges, 
and 16 faces. For this or any other subdivision of a torus into a finite 
number of faces 

N0-Nl+N2 = 0. 
More generally, for any subdivision of a surface into N0 vertices, N1 edges, 
and N2 faces, the number N0 — N{ + N2 depends only on the surface and 
not on the subdivision. This number is the Euler characteristic of the sur-
face. Because the Euler characteristic of the sphere is two and that of the 
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Tetrahedron Cube Octahedron 
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torus is zero, the Euler characteristic provides a topological distinction 
between the sphere and torus. 

The Euler characteristic can be used to derive other properties of a 
sphere or torus. Let a sphere or torus be divided by curves into a finite 
number of faces which we call countries. An edge common to two countries 
is a frontier between them. The subdivision of the sphere or torus is a map. 
A coloring of the map assigns a color to each country so that two countries 
sharing a common frontier are assigned different colors. Note that two 
countries that meet only at a vertex, as do the states of Colorado and 
Arizona, may be assigned the same color. We now use the Euler charac-
teristic to show that every map on the sphere can be colored with six or 
fewer colors but that some maps on the torus require seven colors. 

Suppose there are maps on a surface that require seven or more colors. 
Among all such maps select one with the smallest number of countries. 
We now establish that every country on this minimal map must have at 
least six frontiers. If there is a country with fewer than six frontiers, annex 
it to one of its neighbors. Because the resulting map has one less country, 
the minimal map after annexation can be colored with six colors. Select 

Fig. 1.14 
(Left) A nonconvex polyhedron 

Fig. 1.15 
(Right) A picture 

frame (a nonconvex 
polyhedron) 
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Fig. 1.16 
A map on a sphere with N0 = 11, Ni = 17, N2 = 8 

such a coloring and let the annexed country regain its independence. Since 
the liberated country has common frontiers with no more than five other 
countries, its color as a captive can be replaced by one of the six permissible 
colors which has not been assigned to any of the neighboring countries. 
This contradiction of the assumption that the minimal map cannot be 
colored with six colors was established by finding a country with fewer 
than six frontiers. Hence every country on the minimal map has six or 
more frontiers. If each country assigns one guard to each of its frontiers, 
the number of guards is at least 6N2 · Because every frontier is common to 
exactly two countries, the number of guards is 2 ^ . Hence 

INγ > 6N2 . 
Each frontier has one vertex at each end and each vertex is at the end of 
three or more frontiers. If, at every vertex, there is a signpost pointing 
along each frontier, the number of signposts equals 2Ni and is greater 
than or equal to 3N0. Hence 

2tfx > 3N0. 
Therefore 

7V0 - Nt + N2 < - N1 - N, + 1 Nt = 0. 
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This shows that no map requires more than six colors on a surface, such 
as a sphere, with positive Euler characteristic. 

Figure 1.17 depicts a map on a torus that requires seven colors. The 
map has seven hexagonal countries, each pair of which shares a common 
frontier. Similar reasoning establishes that every map on the torus can be 
colored with seven or fewer colors. A refinement of the proof shows that 
every map on the sphere can be colored with five or fewer colors. (See 
pp. 246-248, What is Mathematics, Courant and Robbins, Oxford Uni-
versity press, 1941.) In 1976 Appel and Haken announced a computer-
assisted proof that every map can be colored with four colors. (See K. Appel 
and W. Haken, "Every Planar Map is Four Colourable", Bull. A. M.S. 82 
(1976) pp. 711-712.) 

Another application of the Euler characteristic relates to the problems 
of finding regular subdivisions. A subdivision of a surface into a polyhedron 
is regular if each face has the same number of edges and each vertex has 

Fig. 1.17 Seven-color map on a torus 
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the same order. The order of a vertex is the number of times the vertex 
appears as the end of an edge. If the faces of a regular subdivision have 
k edges and the vertices are each of order/, 

2N1=kN2 and 2Nl=jN0. 

These equations are derived by counting the face-edge and vertex-edge 
combinations represented by guards and signposts in the map-coloring 
problem. We find 

If the surface is a sphere, 

If the surface is a torus, 
6-4)—-

2 2 
- - 1 + - = 0. 

To look for regular subdivisions of the sphere we rewrite the equation as 

1 1 1 _ 1 

Once y, k, and Nt are found, N0 and N2 are also determined. Because the 
sum of the two positive terms on the left must be greater than \, at least 
one of the terms 1/y and \/k must exceed \. Hence either y or k is less than 4. 
If y = 3 and k > 6 or y > 6 and k = 3, 

/ l 1 1 \ / l 1 1 \ 1 

t t. 
Case 1. j = 1. From l/N - \\k = 1/2 we find 

Nx = l, k = 2, N2 = l N0 = 2. 

This solution is realized if an arc is drawn on 
the sphere. The two ends of the arc are vertices 
of order 1 and the single edge appears twice as 
an edge of the rest of the sphere considered as 
a two-sided polygon. The sphere may be rep-
resented as a two-sided polygon with the edge 

Fig. 1.18 identification equation aa'1 = 1 (Figure 1.18). 
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Case 2. j = 2. From 1/& - l/iV^ = 0 it follows that k = Nl9 N2 = 2, 
N0 = Nv To see that this solution actually occurs, draw the equator on a 
Euclidean sphere and divide the equator into Nt arcs. The northern and 
southern hemispheres are two faces, with Nl edges and Nl vertices, each 
of which has order 2 (Figure 1.19). 

Fig. 1.19 

Case 3. k = 1. By interchanging j and k in Case 1 we derive Νγ = 1, 
j = 2, N2 = 2, and N0 = I. This solution is included in Case 2. 

Case 4. A: = 2. By symmetry with Case 2, j = Nu N2 = Nl9 and iV0 = 2. 
This solution is illustrated by drawing Nt meridians on a Euclidean sphere. 
The north and south poles are two vertices of order Nt and the spherical 
sectors between the meridians are Nt two-sided polygons. Case 1 is in-
cluded in Case 4 (Figure 1.20). 

Case 5.j=3,k = 3. From 1/3 + 1/3 - Ι/Λ^ = 1/2 we find that Nt = 6, 
N2 = 4, and N0 = 4. The tetrahedron is a regular polyhedron with six 
edges, four triangles, and four vertices, each of order 3. 

Case 6. j = 3, k = 4. From 1/3 + 1/4 - Ι/Λ^ = 1/2 it follows that Nt = 12, 
N2 = 6, and Â 0 = 8. The cube meets this prescription. 

Case 7. j = 4, k = 3. By symmetry with Case 6, Nt = 12, N2 = 8, and 
7V0 = 6. The regular octahedron satisfies these specifications. 

Case 8. j =3,k = 5. From 1/3 4- 1/5 - Ι/Λ^ = 1/2 we derive Nx = 30, 
N2= 12, and N0 = 20. These values fit the regular dodecahedron. 
Case 9. j = 5, k = 3. The regular icosahedron with N0 = 12, Nt = 30, 
and N2 = 20 is a realization of this case. 

Fig. 1.20 
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We have now considered all types of regular subdivision of the sphere. 
For a regular subdivision of the torus the positive integers y and k satisfy 

the equation 
1 1 _ 1 
l + k~2' 

Either j or k must be less than or equal to 4 and both are greater than 2. 
One solution is j = 3, k = 6. For this solution N0 = 2N2 and Λ^ = 3N2. 
For every positive integer N2 there is a subdivision of the torus into N2 

hexagons with 3N2 edges and 2N2 vertices, each of order 3. The map on 
the torus with seven hexagonal countries, shown in Figure 1.17, is an 
example of N2 = 7. To give an example in which N2 = 1, consider a single 
hexagon with opposite edges identified as in Figure 1.21 and in the equation 

Fig. 1.21 

abca~1b~1c~1 = 1. Cut this hexagon along the dotted lines e a n d / a n d 
reassemble the pieces to perform the actual identification of the two 
occurrences of a, the two occurrences of b, and the two occurrences of c. 
Because the surface is a quadrilateral (Figure 1.22) with the edge equation 
efe~lf~l = 1, we find that the original hexagon with opposite edges 
identified is a torus. The subdivision has one hexagon, three distinct edges, 
and two distinct vertices P and Q, each of order 3. 

Figure 1.23 shows that the edges of seven hexagons in a row can be 
identified so that the surface formed is a torus. The fact that each pair of 
hexagons in Figure 1.17 shares a common edge but does not in Figure 1.23 
demonstrates that a torus has essentially different regular hexagonal sub-
divisions with the same number of hexagons. 
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Fig. 1.22 (Left) 

Fig. 1.23 (Below) 
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» 1 P 3 

p Fig. 1.24(c) 
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A second solution for y and k is y = 6, k = 3. For this solution Nt = 3N0 
and N2 = 2A^0. For every positive integer 7V0 there is a subdivision of the 
torus into 2N0 triangles, 3N0 edges and N0 vertices, each of order 6. 
Figure 1.24 illustrates subdivisions with N0 = 1, 3, 4. 

The third and last solution for j and k is j = 4, k = 4. For this solution 
N0 = N2, Nx = 2iV2. For every positive integer # 2 there is a regular sub-
division of the torus into quadrilaterals. Figures 1.25, 1.26, and 1.27 
show subdivisions with N2 = 1, 3, 4. 

Using the Euler characteristic, we have found certain topological dif-
ferences between the sphere and the torus. Every map on the sphere can be 
colored with five or fewer colors, whereas some maps on the torus require 
seven colors. A sphere can be regularly subdivided into pentagons; a torus 
cannot. A torus can be regularly subdivided into an arbitrarily large 
number of triangles, quadrilaterals, or hexagons, whereas a sphere has no 
such subdivisions with more than twenty faces. 

We conclude this section with an example that illustrates the topological 
properties of the sphere and torus to be studied in Chapter 5. On the torus 
the meridians or the parallels form a family of closed curves such that each 
point of the torus is on one and only one curve of the family. In Chapter 5 
we shall find that no such family of curves can be drawn on a sphere. In 
particular, the parallels on a sphere are not a suitable family because the 
north and south poles are on no parallel. The meridians are unsatisfactory 
because all meridians, hence more than one, pass through the north and 
south poles. 
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Fig. 1.25 
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N2 = 4 

1.4 The Cylinder and Möbius Band 
An example of the cylinder is the set of points in three-dimensional 

Euclidean space whose cylindrical coordinates satisfy the conditions r = 2 
and \z\ < 1. The angular coordinate Θ and the altitude z form a longitude 
and altitude system for the cylinder. If these coordinates are plotted as 
rectangular coordinates in a plane, the cylinder will have a rectangular 
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map with — π < Θ < π and - 1 < z < 1, with each pair of points (z, π) 
and (z, — π) considered as a single point. Thus the cylinder is represented 
as a quadrilateral with the edge equation aba~xc = 1. Any point set in a 
Euclidean space with such a representation is topologically a cylinder. In a 
plane the annulus defined by the polar inequalities 1 < r < 2 is topologic-

(b) (c) 

Fig. 1.28 
(a) Cylinder, (b) aba~xc= 1, (c) Annulus 

ally a cylinder. If we use the polar coordinates (r, Θ) with — π < θ < π for 
points in the annulus, (r, π) and (r, — π) will represent the same points. 
This identification agrees with the equation aba~xc — 1. When the cylinder 
is attached to another surface! along the edge c, the cylinder is called a cuff. 

The edges b and c corresponding to the extreme values of the altitude 
can be approached on the surface from only one side. In contrast, the edge 
a appearing twice on the map and twice in the edge equation can be 
approached from both sides. The unmatched edges b and c are called 
boundary edges, whereas the matched edge a is an interior edge. The 
boundary edges are grouped together into simple closed curves^ called 
boundary curves. Since b and c are both closed curves, each is a boundary 
curve. 

Our particular cylinder r = 2, |z| < 1 is inscribed in the torus (r — 2)2 + 
z2 = 1 so that the boundary curves of the cylinder are on the torus. The 
toroidal solid defined by (r — 2)2 + z2 < 1 is divided into two parts by the 
cylinder (Figure 1.29). One part consists of points with r < 2 and the other 
of points with r > 2. If the two parts are interpreted as thick coats of 
paint, one red and one blue, the cylinder has been painted so that two 
distinguishable sides are different colors. 

t The first section of Chapter 2 is a detailed explanation and definition of "surface." 
Î The points of a curve are the values of a continuous function/defined on the interval 

0 < t ^ 1. The initial and terminal vertices of the curve are the points /(0) and /( l) , 
respectively. If/(0) and/(l) coincide, the curve is closed. lf/(?) # / (Ä) , unless t = s or 
\t — s\ = 1, the curve does not intersect itself and is said to be simple. 
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Fig. 1.29 Cylinder inscribed in a torus 

We now describe another surface inscribed in the same torus. This 
surface is the locus specified by 

(r - 2)2 + z2 < 1 and z s i n i - j = ( r - 2 ) c o s i - l · 

The cross section of this surface at longitude Θ is a diameter of the circle 
which is the cross section of the torus. This diameter rises in the direction 
away from the origin with slope cot (0/2). When 0 = 0, the diameter is 
vertical. As 0 increases from 0 to π, the diameter rises less and less steeply 
until the diameter is in the horizontal plane z = 0 when 0 = π. If — π < 0 
< 0, cot 0/2 is negative, and the diameter falls in the direction away from 
the origin. As 0 increases from — π to 0, the diameter at first is horizontal 
and then falls more and more steeply until the diameter is vertical when 
0 = 0. This surface is an example of a Möbius band. A. F. Möbius (1790-
1868), a German mathematician, was a pioneer topologist. 

If P is a point on this Möbius band, let t be a number whose absolute 
value is the distance of P from the axial circle of the torus. Let / be positive 
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Fig. 1.30 Möbius band inscribed in a torus 

when P is above the plane z = 0 and negative when P is below this plane. 
This definition is ambiguous at longitude π, for there the cross section is in 
the plane z = 0. The only other points on the surface in the plane z = 0 are 
those of the axial circle, where t = 0. If the point P on the Möbius band is 
represented by the point with rectangular coordinates (0, t), the Möbius band, 
except for the line segment with longitude π(οΓ — π), has a rectangle defined 
by — π < 0 < π, — 1 < t < 1 as its map. As P moves across longitude π, 
\t\ varies continuously with P, but the positive and negative values of / 
are reversed. The rectangular map of the Möbius band will be complete 
if we add the left and right edges with the understanding that (π, t) and 
( —π, — t) represent the same point on the band. An edge equation for the 
Möbius band is abac'1 = 1. Any point set in a Euclidean space that can 
be represented by a quadrilateral with this edge equation is topologically 
a Möbius band. 

The identification of edges in the map of the Möbius band determines 
two distinct vertices, P and Q. Because the terminal vertex Q of b is the 
initial vertex of c and the terminal vertex P of c is the initial vertex of b, the 
edges b and c together form the single boundary curve of the Möbius band. 
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Fig. 1.32 

This, boundary curve may be represented as a single edge if we cut the 
quadrilateral into two triangles and then reassemble the triangles in a 
different way. We cut the quadrilateral along the diagonal d and paste the 
triangles together so that the two occurrences of a coincide. Because b and c 
are not matched with other edges, the pattern of edge and vertex identi-
fication would be unchanged if b and c were merged into a single edge e, 
with P no longer a vertex. Thus the Möbius band has the alternate form 
of a triangle with the edge equation dde = 1. In this equation the unmatched 
edge e, which starts and finishes at Q, is the only boundary curve. 

Although the cylinder and Möbius band are both represented as quad-
rilaterals with one pair of opposite edges identified, we have found a 
topological difference between them: the cylinder has two boundary 
curves, whereas the Möbius band has only one. Because the equations of 
the sphere and torus had no unmatched edges, neither the sphere nor the 
torus has any boundary curves. Thus the number of boundary curves is a 
topological criterion that distinguishes the cylinder and Möbius band 
from the sphere and torus. Surfaces such as a sphere and a torus with no 
boundary curves are called closed surfaces. 

Visual comparison of paper models of a cylinder and a Möbius band is 
instructive. A cylinder may be made by bending a strip of paper around 
and pasting the ends together. A Möbius band may be made the same way 
except that a twist by π radians should be made in the strip before its ends 
are joined. 

We return now to the Möbius band inscribed in a torus. If the points of 
this Möbius band are removed from the toroidal solid, the remaining 
points form a single solid. In Figure 1.30 the Möbius band divides the 
front portion of the solid into two parts, one nearer the origin than the 
other. As these parts are extended around to longitude π and beyond, the 
descriptions "nearer t o " and "farther from" the origin are reversed and 
the two parts are fitted together as a single solid. Although we can paint 
two sides of a patch of the Möbius band two different colors, this painting 
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pattern cannot be continued all the way around because the two colors, 
like the two parts of the toroidal solid, will merge together. The impossi-
bility of painting the Möbius band inscribed in a torus with two colors 
that do not meet may be checked empirically with the help of crayons and 
a paper model of the band. "A. Botts and the Moebius Strip," by W. H. 
Upson, an anecdote based on this coloring property, was published in the 
Saturday Evening Post in 1945 and has been reprinted in Fantasia Mathe-
matical edited by Clifton Fadiman, Simon and Schuster, New York, 1958. 
The Möbius band inscribed in a Euclidean torus is an example of a 
onesided surface. 

Although the properties of one-sidedness and two-sidedness distinguish 
the Möbius band in a Euclidean torus from the cylinder in a Euclidean 
torus, we shall find that one-sidedness and two-sidedness are not topo-
logical properties of surfaces. In Chapter 7 we discuss a three-dimensional 
space that contains both one- and two-sided cylinders and one- and two-
sided Möbius bands. Although this space, considered as a whole, is 
radically different from Euclidean three-space, each local portion resembles 
a portion of three-dimensional Euclidean space. One-sidedness and two-
sidedness are embedding properties that depend not only on the surface 
but also on the space in which the surface is located and the way in which 
the surface is embedded in this space. 

Although examples of one-sided and two-sided embeddings of a surface 
are not given until Chapter 7, we can illustrate the principle by examples 
of one-sided and two-sided curves on a surface. On the cylinder inscribed 
in the torus the axial circle of the torus divides the cylinder into two sur-
faces, one consisting of points with z > 0 and the other of points with 
z < 0. In contrast, the axial circle of the torus does not divide the in-
scribed Möbius band into two surfaces. The most convincing demon-
stration is given by cutting down the middle of a paper model of a Möbius 
band—the band will not fall apart. One-sidedness or two-sidedness is not 
a topological property of the simple closed curve, for we have found that 
the axial circle of the torus is two-sided as a curve on the inscribed cylinder 
and is one-sided as a curve on the inscribed Möbius band. 

A simple closed curve on a surface is one-sided if a narrow strip on the 
surface with the curve down the middle is a Möbius band. If such a strip 
is a cylinder, the curve is two-sided. The role the narrow strip plays in the 
definition is shown by the case of a meridian on a torus. If the meridian 
is removed from the torus, only a single surface remains; hence the meri-
dian appears to be one-sided. If attention is limited to the strip between 
two nearby meridians, with the given meridian in the middle of the strip, 
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the strip is a cylinder divided by the given meridian into two cylinders, 
one on each side of the meridian. Hence by our definition, a meridian on 
a torus is a two-sided curve. 

On the Möbius band inscribed in the torus consider the curve C, which 
is the intersection of this Möbius band and the sphere, (x — 2)2 + y1 + 
z2 = 2T- The strip of points on the Möbius band with a distance no 
greater than TV from this curve is approximately a plane annulus. Hence 
the strip is topologically a cylinder and the curve is two-sided (Figure 1.33). 

Fig. 1.33 

On the other hand the axial circle of the torus is one-sided as a curve on 
the Möbius band. Thus the Möbius band has both one-sided and two-
sided curves. It can be shown,! however, that all simple closed curves on 
the cylinder, sphere, or torus are two-sided. 

Because a closed curve down the middle of a Möbius band does not 
divide the Möbius band into two surfaces, an observer traveling along 

t With difficulty. See the sections on the Jordan curve theorem and the Schoenflies 
theorem in G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 
New Jersey, 1958. 
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such a curve cannot consistently separate the Möbius band into points 
to his left and points to his right as he travels the curve. If he tried, he 
would find after one trip around that he would be reversing his previous 
definition of left and right. The Möbius band is the simplest example of a 
nonorientable surface. More generally, a surface is nonorientable if it con-
tains a strip that is topologically a Möbius band. Another statement of 
this definition is that a surface is nonorientable if it contains a one-sided 
simple closed curve. Orientable surfaces are surfaces that are not non-
orientable. Since a strip of points near a simple closed curve on an orient-
able surface is topologically a cylinder, the curve divides the strip into two 
surfaces, one of which may be defined as being to the left of the curve and 
the other to the right. 

When the definition of nonorientability is extended in Chapter 7 to 
apply to three-dimensional spaces, we shall find that a necessary and 
sufficient condition for a three-dimensional space to be nonorientable is 
that it contains one-sided cylinders and two-sided Möbius bands. 

1.5 Additional Representations of the Möbius Band 
The cylinder and Möbius band, like the sphere and torus, can be divided 

into polygons. For example, Figures 1.34 and 1.35 show rectangular maps 
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Fig. 1.34 Rectangular map of a cylinder 

of a cylinder and Möbius band divided into quadrilaterals and triangles, 
respectively. The cylinder and Möbius band have Euler characteristics 
that equal N0 — N1 -{■ N2 for every subdivision of the surface into poly-
gons. These special subdivisions have N0 = 8, Nl — 12, N2 = 4 for the 
cylinder and N0 = 7, Nt = 17, N2 = 10 for the Möbius band. Both 
the cylinder and the Möbius band therefore have Euler characteristic 
zero. 
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Fig. 1.35 Rectangular map of a Möbius band 

If the rectangles of Figure 1.34 are squares of side one, the rectangular 
map can be bent along the edges dl,d2, and d3 so that the adjacent squares 
will be perpendicular and the two edges labeled a will coincide. The result 
is a topological cylinder consisting of the four vertical faces of a cube 
(Figure 1.36). 

Four isosceles right triangles, I, II, III, and IV (with hypotenuse of length 
one unit), can be fitted together with six equilateral triangles, V, VI, VII, 
VIII, IX, X (with side of length one), according to the pattern in Figure 
1.35, to form the three-dimensional model of the Möbius band shown in 
Figure 1.37.t 

To visualize this representation of the Möbius band we should not rely 
on the illustration but should construct a model of cardboard or better 
still of a rigid, transparent plastic. Note that the boundary curve is the 
perimeter of the Euclidean triangle with vertices Q, RlT and R2. Because 
we shall want to attach a Möbius band to other surfaces along its boundary 
curve, this band with its boundary curve flattened out into a plane is 
apparently ideal for drawing figures. Inspection of a cardboard model 
reveals a major difficulty. Whenever we try to paste the boundary curve 
of the Möbius band onto a boundary curve of another surface, such as a 
disk, the rest of the band gets in the way. The reason is that the boundary 
curve and the remainder of the Möbius band are linked. Instead of 

t For a further explanation of this model of a Möbius band made of plane triangles 
see B. Tuckerman, The American Mathematical Monthly, 55 (1948), 309-311. 
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formally defining the term "linked," we shall describe an experiment that 
will demonstrate the meaning. Draw lines on a long rectangular strip of 
paper to divide it into three parallel strips, each one third as wide as the 
original strip. The outer pair of strips represents the edges of the middle 
strip. After pasting the ends of the original strip together to form a Möbius 
band, carefully cut the band along the lines you have drawn. Even after 
the edge and the rest of the Möbius band have been cut apart they cannot 
be separated because they are linked. 

To find a model of the Möbius band suitable for connection with other 
surfaces, we have two alternatives. Either we construct an accurate model 
in four-dimensional Euclidean space or a slightly fudged model in three-
dimensional space. Electing the second option, we start by dividing the 
rectangular map of the Möbius band into four quadrilaterals, as in Figure 
1.38. Next we reassemble the four quadrilaterals as in Figure 1.39 so that 
the two occurrences of a2 coincide. We bend this rectangle around as the 
north temperate zone of a sphere until the two edges (Figure 1.40) labeled 
at coincide. Next, the points labeled S are moved up meridians of the 

Fig. 1.37 
(Right) Three-dimensional 

Möbius band 

Fig. 1.36 
(Above) Topological cylinder 
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Fig. 1.40 

sphere toward the north pole (Figure 1.41). Either the pair of edges 
labeled dx or the pair labeled d2 could be brought together, but if one pair 
is pasted together the matching of the other pair is blocked. We fudge the 
model by allowing all four of these edges to coincide along the upper 
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Fig. 1.42 Fig. 1.43 

quarter of the polar axis, as in Figure 1.42. On this model we must under-
stand that the vertical edge actually represents two edges on the Möbius 
band and that a point crossing the edge from the front of the surface on 
the left or right passes to the back on the opposite side. This representation 
of the Möbius band is an improper surface which crosses itself. Because 
the surface intersects itself and resembles a bishop's hat, it was named a 
crosscap. We use Möbius band and crosscap as synonyms. The boundary 

Fig. 1.41 
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curve is a Euclidean circle with the rest of the crosscap above this circle. 
Hence this crosscap can easily be attached to another surface along a 
boundary curve. 

One simple example of a closed nonorientable surface may be obtained 
by fitting two crosscaps together along their boundary curves. This surface 
is named the Klein bottle (Figure 1.43) after its inventer, the German 
mathematician Felix Klein (1849-1925). Using the edge equations 
didiel = 1 and d1d1e1 — 1 for two crosscaps, we can signify that they are 
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•A. 

B2 P 

/ Ut 
-4-

Fig. 1.44 Fig. 1.45 

fitted together by replacing el and e2 with a single symbol e. Figure 1.44 
is a rectangular representation of the Klein bottle with equation dxdxdïldïl 

= 1. Delete the diagonal e, cut the rectangle along the diagonal/, and fit 
the triangles together so that the edges labeled dx coincide (Figure 1.45). 
We find that the Klein bottle may be represented as a quadrilateral with 
the edge equation fdjfd^1 = 1. The same vertex must be the initial vertex 
of both edges labeled/. Hence the top right and lower left vertices are both 
P. Because the initial vertices of the two edges labeled d2 are the same, the 
lower right vertex must be the same as the upper right vertex P. Similarly, 
the upper left vertex is also P. Because there is one vertex, a pair of edges 
( /and c/2), and one quadrilateral, the Klein bottle has Euler characteristic 
0. The torus and Klein bottle may be formed by identifying opposite 
edges of a quadrilateral and both have the same Euler characteristic. 

1.6 The Projective Plane 
The edge equations aba~lb~x = 1 and abab~x = 1 specify the torus and 

Klein bottle as quadrilaterals with opposite edges identified. There remains 
a third way of matching the pairs of opposite edges. The surface with the 
equation abab = 1 is called the projective plane (Figure 1.46). In this form 
the projective plane has two vertices, two edges, and one quadrilateral. Be-
cause its Euler characteristic is 1, the projective plane differs topologically 
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Fig. 1.46 Fig. 1.47 

from the sphere, torus, cylinder, Möbius band, and Klein bottle. Draw 
the line segment c to join a pair of points, one on the left edge and 
one on the right, which represents the same point of the projective plane. 
Because c corresponds to a one-sided closed curve on the projective plane, 
the projective plane is nonorientable. The absence of unmatched letters in 
the edge equation shows that the projective plane is a closed surface. 

Let the vertex R, where c meets a, divide a into the two edges αγ and a2. 
Cut the rectangle along the edge c and paste the pieces together so that the 
identification of edge a2 is realized (Figure 1.47). Stretch this polygon 
around the south temperate zone of a Euclidean sphere so that the two 
edges labeled c form the equator, the two edges labeled b form the Tropic 
of Capricorn, the edge a2 is an arc of the O-meridian, and the two edges 
labeled al coincide as an arc of the π-meridian (Figure 1.48). The two 
edges labeled b may be brought together as if they were the edges of two 
pages of a book with binding along the chord PQ of the sphere (Figure 
1.49). We now erase the edges al,a2,bl, and the vertices P and Q from the 
subdivision of the projective plane (Figure 1.50). The model we have found 
for the projective plane is a southern hemisphere, with antipodal points 
on the equator identified. (A pair of diametrically opposite points on a 
Euclidean circle or sphere is called a pair of antipodal points). Hence a 
two-sided polygon with edge equation cc = 1 is a projective plane (Figure 
1.51). 

As the Euclidean hemisphere used in representing the projective plane, 
select the southern hemisphere of x2 + y2 -f z2 = 1. Consider the plane 
z = — 1 tangent to this hemisphere at the south pole. A nonhorizontal line 
through the center O of the hemisphere intersects the hemisphere at a 
point P and the plane at a point P'. The point P' is the gnomonic image of P 
and the correspondence of P to P' is the gnomonic projection of the hemi-
sphere onto the plane. Because a nonhorizontal plane of lines through O 
intersects the hemisphere in half a great circle and the plane in a line, the 
gnomonic images of the great circles on the hemisphere are the straight 
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Fig. 1.48 
(Above) 

Fig. 1.49 
(Right) 
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Fig. 1.52 

lines in the plane (Figure 1.52). Now the shortest curve, or geodesic, on a 
sphere joining two points is an arc of a great circle, whereas in the plane 
the geodesic between two points is the straight-line segment joining them. 
A gnomonic map of a hemisphere of the earth has the useful property of 
representing geodesies on the earth by straight lines on the map. Figure 
1.53 is a gnomonic map of the portion of the earth south of latitude — π/8. 
A gnomonic map is not conformai, and shapes on the earth are distorted. 

Because the hemisphere with antipodal points on the equator identified 
is a projective plane, gnomonic projection maps all points of the projective 
plane except the equatorial points into the Euclidean plane z = — 1. To 
make the representation of the projective plane complete we must add to 
the Euclidean plane new points that will be gnomonic images of the equa-
torial points. We now wish to find the properties of these new points. 

A horizontal diameter D of the hemisphere meets the equator in two 
antipodal points Px and P2 that represent a single projective point P. The 
great circles through Pi and P2 are the intersections of the hemisphere 
with planes through line D. This family of planes has the horizontal 
diameter D in common and intersects the horizontal plane z = — 1 in the 
family of lines of z = —1, which are parallel to D (Figure 1.54). Thus 
point P determines a family of parallel lines in the Euclidean plane. 
Because the equatorial points representing P are common to the family of 
great circles corresponding to the family of parallel lines, the gnomonic 
image of P should be a point common to the family of parallel lines. The 
points added to the Euclidean plane, one for each family of parallel lines, 
are called points at infinity. This set of points is the image of the equator, 
and points at infinity are said to form the line at infinity. The geometry of 
the Euclidean plane with the line at infinity adjoined has the property that 
two distinct lines always determine a unique point and two distinct points 
always determine a unique line. In this geometry, called projective plane 
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geometry, many theorems of Euclidean plane geometry are simplified, for 
there is no need to consider separately cases in which lines of the theorem 
are intersecting or parallel. 

We have arrived at the projective plane as a Euclidean plane with a line 
at infinity adjoined from the wrong historical direction. Projective geo-
metry was developed by Desargues (1593-1662), Pascal (1623-1662), and 
Poncelet (1788-1867). In 1822 Poncelet introduced the projective plane as 
the extension of the Euclidean plane appropriate for the study of pro-
jective geometry.! The first study of topology as an organized discipline 
was made by Poincaré in the 1890's. 

Starting from the Euclidean plane, we created topologically different 
surfaces by adding points at infinity in different ways. When a single point 
at infinity was added, the result was a sphere. If there is a line at infinity 
with one point at infinity on each family of parallel lines of the Euclidean 
plane, the surface is a projective plane. 

We now return to Figure 1.47, erase the edge a2, and draw the hori-
zontal edge d to join the tops of the two edges labeled al. By the procedure 
used before the bottom polygon with equation da\lbb~lai = 1 can be 

*£ * l 

Fig. 1.55 

changed into a southern hemisphere with ί/as the equator. The top polygon 
with equation ccd = 1 is a crosscap. Thus a projective plane is formed if 
the boundary curve of a crosscap is fitted onto the equator of a hemisphere. 

In Section 1.3 we showed that six colors are sufficient to color the 
countries of any map on a sphere. Because the only property of the sphere 
used in the proof was the positivity of the Euler characteristic, the proof is 
equally valid for the projective plane. Figure 1.56 shows a map on the 

t For a brief account of Poncelet's life and his contribution to projective geometry 
see Chapter 13 of Men of Mathematics, E. T. Bell, Simon and Schuster, 1937. 
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Fig. 1.56 
Map on projective plane 

projective plane which cannot be colored with fewer than six colors. The 
map has six pentagonal countries, each pair of which shares a common 
frontier. 

This map is also an example of a regular subdivision of the projective 
plane into 6 pentagons, 15 edges, and 10 vertices, each of order 3. For a 
regular subdivision of the projective plane into polygons with k edges and 
vertices of order y the integers N0, Nl9 N2 must satisfy the equations 

2NX = kN2, 2Nl =jN0, N0 - Nx + N2= 1. 

Because the corresponding equations for the sphere were identical, except 
that N0 — Nl + N2 = 2, a solution 7V0, 7Vl9 N2 related to the sphere may 
be obtained by doubling a solution for the projective plane. A solution for 
the sphere with iY0, Nl, N2 even integers may be converted into a solution 
for the projective plane by dividing these even integers by two. A check 
would show that a regular subdivision of the projective plane corresponds 
to each arithmetic solution for 7V0, Nl9 N2. Figures 1.57, 1.58, and 1.59 
show three such subdivisions. 
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Y 
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Fig. 1.57 
{Above, left) N0=\,Nl = N2, j=2Nl9 k = 2 

Fig. 1.58 
{Left) N0 = Nl9N2 = \,j=2,k = 2N2 

Fig. 1.59 
{Above, right) N0 = 3, Nx = 6, N2 = 4 

EXERCISES 

Section 1.1 
1. Describe the locus of the equation 

z2 = [(X - 2)2 + / - l][(jc + 2)2 + / - 1](16 - x2 - y2). 

2. A great circle on a Euclidean sphere is the intersection of the sphere 
with a plane through the origin. Show that the angle at which the great 
circle crosses the equator equals the maximum of the latitude of points 
on the great circle. 

3. On the map of a sphere x2 + y2 + z2 = 1, with latitude and longitude 
as rectangular coordinates, draw the image of a great circle on which 
z = x. 

4. Draw the same great circle on the map with latitude and pseudolongi-
tude as rectangular coordinates. 
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5. Consider the cross sections of the torus 

z2 = (jx2+y2 - 1)(3 - y/x2+y2) 

in the planes ax + bz = 0. If \a\b\ < tan(7r/6) = l/>/3, the cross section 
is a pair of closed curves with one inside the other. If \b/a\ < x / /3, the 
cross section is a pair of closed curves, neither of which is inside the 
other. Sketch the cross section in the intermediate case in which 
b = x /3e. 

6. A rhumb line on a Euclidean sphere is a curve that crosses each meridian 
at the same angle. A navigator follows a rhumb line by always traveling 
in a fixed compass direction. 
a. On a stereographic map of the southern hemisphere draw a rhumb 

line which starts from the equator in a southwesterly direction. 
b. Show that this rhumb line from the equator to the south pole has 

length (71/2)^/2/?, where R is the radius of the sphere. 
c. Which rhumb lines on a sphere are circles? 

7. Derive Formula 1 when P is a point in the southern hemisphere. 

Section 1.2 
1. A surface S is formed from the four triangles 123, 234, 341, 412. (123 

denotes the triangle with vertices labeled 1,2,3. Two triangles with a 
pair of vertices in common intersect in the edge joining these vertices.) 
What is the topological nature of SI 

2. Consider two Euclidean loci, one defined by the parametric equations 

x = sin «, y = (sin v)(2 + cos u), z = (cos v)(2 + cos u) 

where 
— π < u < π and —π<ν<π, 

and the second by 

x = sin w, y = sin i\ z = u2 + v2 

where 

— π < u < π and —π<ν<π. 

One of these loci is topologically a torus and one is not. Which one is 
the torus? Explain why the other is not a torus. 

file:///a/b/
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3. What is the topological nature of the Euclidean locus with the para-
metric equations 

x = u2 + r2, 

where u2 + v2 < 1 ? 

y = (u2 + v2 
DM, v, 

Section 1.3 
1. Give an example of a map on the sphere that cannot be colored with 

less than four colors. 

2. Let n great circles be drawn on a Euclidean sphere so that no three are 
concurrent. Into how many polygons do these circles divide the sphere? 
HINT: Every pair of great circles intersects in a pair of points. Also, the 
Euler characteristic of the sphere is 2. 

3. Fit 32 cardboard squares together in the pattern of Figure 1.60 to make 
a model of the torus. Do these squares form a regular subdivision of 
the torus? 
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Fig. 1.60 

4. Show that the order of the vertices must be at least 6 in a regular 
triangular sub-division of a surface with negative Euler characteristic. 

5. A triangulation of a surface S is a subdivision of S into triangles so 
that each edge has two distinct vertices, no two distinct edges have the 
same pair of vertices, and no two distinct triangles have the same triple 
of vertices. 



50 SOME EXAMPLES OF SURFACES 

(a) In Figure 1.61 a torus represented as a hexagon with edge equation 
abca~1b~1c~1 = 1 has been triangulated into 14 triangles. Show 
that this is a minimal triangulation in the sense that the torus has no 
triangulation with fewer than 14 triangles. 

HINT: For any triangulation of the torus 

N0-Nl +N2 = 0, 2N1=3N2, Νχ<. No(No - 1) 

(b) Find a minimal triangulation of the sphere. 
(c) A triangulation Δ of a surface S consists of the triangles 123, 234, 
345, 451, 512, 136, 246, 356, 416, and 526. (123 denotes a triangle with 
vertices labeled 1, 2, 3.) Show that S is neither a sphere nor a torus. 
Prove that Δ is a minimal triangulation of S. 
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Section 1.4 
1. Draw a map with five countries on a Möbius band such that the map 

cannot be colored with fewer than five colors. 

2. Two Euclidean loci are defined by the following parametric equations: 

(a) x = cos w, y = uv, z = (u2 — π2)(ν + 2), 

where 

— n<u<n and — 1 < v < 1. 

(b) x = sin w, y = \u(v + 3)| z = i\ 

where 

— n<u<n and — 1 < ι < 1. 

Which locus is a cylinder and which is a Möbius band? 

3. (a) Why is the Euclidean locus described by the following parametric 
equations not a Möbius band? 

x = sin w, y = m\ z = |w|, 

where 
— n < u < π and - 1 < r < 1. 

(b) With the help of a stapler, convert a paper Möbius band into a 
topological model of this locus. What topological effect has this 
change on the boundary curve of the Möbius band? 

Section 1.5 
1. On a long strip of paper draw two parallel lines to divide the strip into 

three strips, each one third as wide as the original. After making one 
full twist (by In radians) in the strip, paste the two ends together. Cut 
the model along the lines on the paper. How many pieces result? How 
are they linked together ? How many boundary curves did the surface 
have before they were cut off? What was the topological nature of the 
surface that was cut? Is the linking of a surface with its boundary curves 
a topological property of the surface? 

2. In the text an experiment was described to show that the Möbius band 
inscribed in a torus is linked with its boundary curve. What is the 
topological nature of the surface that represented the boundary curve 
in this experiment? 
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3. Ai : 123, 234, 345, 451,512, 
Δ2:123,234, 345,456, 561, 612. 

(a) Which of Ar and Δ2 triangulates the cylinder and which triangulates 
the Möbius band? 

(b) In each triangulation list in sequence the edges of each boundary 
curve of the surface. 

(c) Prove that At and Δ2 are minimal triangulations. 

HINT: Let N[ be the number of interior edges and N'{ the number of 
boundary edges of any triangulation. Note that N0 - Nt + N2 = 0, 
3N2 = 2N[ + Nl Nx < \N0{N0- 1), 7V0 > N'i and N'( ̂  3 on the 
Möbius band, N'{ > 6 on the cylinder. 

Section 1.6 
1. Show that the following parametric equations describe a locus that is a 

projective plane in four-dimensional Euclidean space: 

χγ = w2, x2 = uv, x3 = v2 + u(u2 + v2 — 1), x4 = v(u2 + v2 — 1). 

where u2 + v2 < 1. 

2. Why does no parallel of latitude, except the equator, have a line as 
gnomonic image ? 

3. Represent the projective plane as the southern hemisphere of a Euclid-
ean sphere, with antipodal points on the equator identified. Cut this 
model along a great circle from the equator to the south pole and back 
to the equator. How many pieces are there after the cutting is finished? 

4. In projective geometry every pair of lines intersects in one and only 
one point. Let n lines be drawn in the projective plane so that no three 
are concurrent. Into how many polygons do these lines divide the 
projective plane ? 

5. Δ: 123, 234, 345, 451, 512, 136, 246, 356, 416, 526. 

(a) Show that Δ is a triangulation of the projective plane. 
(b) Show that Δ is a minimal triangulation. 



2 THE CLASSIFICATION OF SURFACES 

2.1 Surfaces and Their Equations 
In Chapter 1 we studied many examples of surfaces but never really 

said exactly what a surface is. Because we define a surface as a set of points 
that can be "suitably" divided into polygons, we start by discussing 
polygons. 

As a prototype of polygons with n sides, we adopt the disk D in the 
.xy-plane defined by x2 + y2 g 1, together with n evenly spaced vertices 
Ργ = (1, 0), P2, P3, . . . , Pn which divide the circumference of D into edges 
ai,a2, . . . , an. These polygons (Figure 2.1) with curved edges are selected 
as standard polygons in preference to those with straight edges because 
the polygons with curved edges include some with only one or two edges. 

Definition. A homeomorphism/of the disk D onto a set π in a Euclidean 
space defines an «-sided topological polygon (π , / ) . The points Qx =/( />

i) , 
i = 1, 2, .. . , n, are the vertices of (π , / ) . The arcs bt =f(ai), which are the 
images of the edges ai of Z>, are the edges of (n,f). The orientation of b{ is 

53 
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Fig. 2.1 

the orientation induced by that on ax. The equation bx b2 

edge equation for (π, / ) . 
bn = 1 is an 

Surfaces are formed by fitting polygons together along common edges. 
The way the polygons meet may be specified by listing the equations of the 
polygons, taking care to use the same letter to denote two occurrences of 
an arc as an edge of two different polygons. An exponent - 1 is used to 
distinguish the opposite orientations of an edge. Although an edge may 
appear more than once in the equations of our surfaces, our definition 
of topological polygons does not permit an edge to occur more than once 
in the equation of a single polygon. Furthermore, no point may appear 
more than once as a vertex of a single polygon. With these restrictions, the 
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torus could not be divided into fewer than four polygons. Figure 2.2 shows 
how a torus can be decomposed into four quadrilaterals. If polygons are 
generalized to allow the same edge to appear more than once on a polygon, 
we shall find that every surface may be represented as a single polygon. 
In the first chapter the idea of polygon with identified edges was exploited 
to represent the sphere, torus, cylinder, Möbius band, Klein bottle, and 

Sphere 
abb-1a-i = l 

Möbius Band 
abac'1 = 1 

Table 2.1 

Torus 
aba~lb-l = \ 

Klein Bottle 
abab~l = \ 

Cylinder 
aba~lc= 1 

Projective Plane 
abab = 1 

projective plane as quadrilaterals with the edge equations (Table 2.1). An 
additional surface, the disk, may be represented as a quadrilateral with 
the edge equation abed = 1. 

To modify the definition of a topological polygon (π , / ) to permit edge 
identifications we must relax the condition tha t /be a homeomorphism to 
allow the one-oneness off to be violated on the edges and vertices of D. 

Definition. A continuous mapping/of the disk D onto a set π defines a 
singular topological polygon (π , / ) if/satisfies the following conditions: 

1. Every point in π is f(P) for some point P in D. 
2. If P is an interior point of D and Q is any other point in D, then 

f(Q)+f(P). 
3. If aj is an edge of D, there are two possibilities: 
(a) For every point P of a} that is not a vertex, there is no point β ( φ Ρ ) 

in D such that f{Q)=f{P). 
(b) For every point P of ctj other than Pj or Pj + l there is a unique point 

P'( =t= P) in D such that/(P ') =f(P). Furthermore, as P moves from 
Pj to Pj + l,P' moves along an edge ak (k Φ/) either from Pk to Pk+l 

or from Pk + l to Pk. (Pn + l is interpreted as P^. 

The generalization to singular polygons will not lead to new surfaces, 
for every singular polygon can be divided into polygons without identified 
edges. To verify this let Mj be the midpoint of the arc as and draw in D the 
radii c} terminating at P} and d} terminating at A/,·, j = 1,2, ..., n. The arcs 
f(ck) and f(dk) k = 1, 2, ..., n, divide (π , / ) into polygons without identi-
fied edges. From now on polygon will mean singular topological polygon. 
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Before defining a surface as a point set that can be suitably divided into 
polygons, we preview the meaning of " suitably " by examples of unsuitable 
subdivisions. Figure 2.3 shows one triangle piercing the interior of another ; 
Figure 2.4 has two triangles intersecting in a segment that is part of an 

Fig. 2.3 Fig. 2.4 

edge of each triangle. For a proper subdivision the intersection of any pair 
of polygons consists of a set (perhaps empty) of curves that are entire 
edges of both polygons and a set (perhaps empty) of additional points that 
are vertices of both polygons. This condition excludes the pairs of triangles 
in Figures 2.3 and 2.4 because the intersection of triangles I and II in 
Figure 2.3 contains interior points of the triangles and the intersection in 
Figure 2.4 is the segment PQ which is not a complete edge of either triangle. 
If the two triangles of Figure 2.4 are converted into quadrilaterals by 
adding P as a vertex of I and Q as a vertex of II, the pair of quadrilaterals 
is suitable. In Figure 2.5 a disk has been divided into one pentagon (I), one 
quadrilateral (II), and two triangles (III and IV). The pentagon and the 
quadrilateral intersect in the edge a (including its vertices) and the addi-
tional vertex P. 

Figure 2.6 shows a sphere divided by the equator and four meridians 
into an octahedron with eight triangular faces. If the north and south poles 
are pushed together, the result is a pinched sphere divided into eight tri-
angles (Figure 2.7). This subdivision is improper because one pair of 
vertices coincides, even though this coincidence is not required by the 
matching of edges of the various polygons. Another way of bringing the 
north and south poles together is to stretch the sphere parallel to the polar 
axis and then bend the sausage-shaped surface until the ends coincide 
(Figure 2.8). The result is a strangled torus formed by shrinking a meridian 
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Fig. 2.5 

Fig. 2.6 
{Left) Sphere divided by four 

meridians and the equator 

Fig. 2.7 
{Below, left) Pinched sphere 

Fig. 2.8 
{Below, right) Strangled torus 
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of the torus to a point. Figure 2.7 may be interpreted as a torus strangled 
by shrinking the π-parallel of latitude to a point. Topologically, there is no 
distinction between a pinched sphere and a strangled torus. 

A third type of unsuitable subdivision is illustrated by a set of three or 
more rectangles bound together like the pages of a book (Figure 2.9). The 

Fig. 2.9 Pages of a book 

impropriety here is that a single curve is used more than twice as a poly-
gonal edge. 

Another exclusion is sets of polygons that form not one but two or more 
surfaces. Thus, if a tetrahedron and a cube do not intersect, the combined 
set of 10 polygons determines two surfaces. The separation into two parts 
may be verified formally by dividing the set of 10 polygons into a subset 
of six and a subset of four so that no polygon in the first subset shares an 
edge with a polygon in the second subset. 

With this preview, we are now ready for the formal definition of a 
surface. 

Definition. A set of points in a Euclidean space is a surface if the set can 
be subdivided into a finite number of polygons such that 

1. Polygons intersect only in edges and vertices. 
2. Polygons have common vertices only to the extent required by the 

common edges. 
3. No curve is used more than twice as a polygonal edge. 
4. The polygons cannot be divided into two sets of polygons with no 

edge in common. 
Because Condition 2 prevents any subdivision of the pinched sphere 

from being suitable, the pinched sphere is not a surface. The pages (at least 
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three) of a book are not a surface because Condition 3 cannot be satisfied. 
The same condition excludes the improper three-dimensional model of a 
crosscap shown in Figure 1.42. Although the two triangles of Figure 2.3 
do not satisfy Condition 1, they can be subdivided into smaller polygons 
that do. Because Conditions 1 and 3 cannot be satisfied simultaneously, 
Figure 2.3 does not represent a surface. 

The representation of polygons by edge equations leads to the represen-
tation of surfaces by systems of edge equations, one equation for each 
polygon in a subdivision of the surface. In the equations for a surface 
distinct edges must be represented by distinct letters and identified edges, 
by the same letter, except perhaps for an exponent — 1, which indicates the 
direction of the edge on the perimeter of the polygon. Conditions 1 and 2 
for the subdivision guarantee that the matching of edges determines com-
pletely how the polygons fit together. Condition 3 says that no letter occurs 
more than twice as an edge symbol. The letters appearing twice label 
interior edges, whereas those appearing only once stand for boundary 
edges. If there are no boundary edges, the surface is closed. Condition 4 
means that no matter how the system of equations for a surface is divided 
into two sets, there is always at least one letter that appears in both sets 
of equations. 

In writing an edge equation for a planar polygon, we must first select a 
starting point and then decide whether to travel clockwise or counter-
clockwise around the polygon. Because each selection of starting point 
and direction of travel determines an equation, many equations, in general, 
represent the same polygon. For example, the cylinder in Figures 2.10 and 
2.11 has the equations 

aba~1c~1 = 1, ba~1c~1a = 1, a~1c~1ab = 1, c~1aba~1 = 1, 

cab-'a'1 = 1, a-'cab'1 = 1, b~1a-1ca= 1, ab-1a~1c= 1. 

Each equation in the second line has the same starting point as the equation 
above it but lists the edges in the opposite direction. Algebraically, an 
equation in the second line is obtained by reversing the order of the letters 
in the equation above it and adding the exponent — 1 if it does not appear 
and deleting it if it does. We refer to this algebraic process as inversion of 
the equation. 

On a planar picture of a polygon we can travel from one vertex to 
another by two different paths along the perimeter, one clockwise and the 
other counterclockwise around the polygon. Additional equations for the 
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Fig. 2.10 
(Above) 

Fig. 2.11 
(Right) 

polygon are defined by equating each pair of edge sequences. The new 
equations for the cylinder of Figure 2.11 include 

ab = ca, b — a~lca, ba~l = a~xc. 

In the first equation the two edge sequences start at the lower right corner 
and end at the upper left. If the starting point is moved along the edge a 
to the upper right corner, the second equation is formed. The algebraic 
effect of the shift of starting point is to transpose the first letter a on the 
left side of the first equation to be the first letter a"1 of the right side of the 
second equation. If the finish of the two sequences is moved from the upper 
left along the edge a~l to the lower left corner, the last letter a en the right 
side of the second equation is transposed to be the last letter a"1 on the 
left side of the third equation. 

The original edge equations, in which a complete sequence is equated 
to 1, may be included among the new equations if we consider the com-
plete sequence, which returns to its starting point, to be mated with the 
empty sequence (denoted by 1), which never leaves the starting point. 
In this broader context, a pair of transpositions changes the equation 
aba~lc~1 = 1 first into ba~1c~1 = a~l and then into ba~1c~1a = 1. Also 
four transpositions transform aba~lc~l = 1 first to ba~lc~l = a - 1 , next 
to a~lc~1 = b~la~x, then to c~l = ab~lcTx, and finally to 1 = cab~la~x 

or cab~la~x = 1. More generally any equation for a polygon can be con-
verted by a sequence of transpositions into any other equation for the same 
polygon, provided only that the same letters denote the same edges in the 
two equations. 
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In a system of edge equations for a surface the particular letters selected 
to represent the edges have no significance. Any desired change of letters 
may be made by changing one letter at a time. When replacing one letter 
by another (perhaps with exponent —1), we must be sure that the new 
letter is not currently in use and that the old letter is replaced wherever it 
occurs. There is nothing to prevent a letter that has been replaced in one 
change from being reintroduced in a later change with a new geometric 
significance; for example, the c in the equation aba~1c~1 = 1 for a cylinder 
is replaced by x~l, to give aba~lx = 1; then x is replaced by c, to give 
aba~1c= 1. The c in the first equation and the c in the third equation 
stand for the same edge but with opposite directions. In the first change 
of letters ( x - 1 ) - 1 was written as x. This was proper, for two successive 
reversals of direction nullify each other. 

The equations for a surface are more formally presented in the following 
definition : 

Definition. A combinatorial representation of a surface is a system of edge 
equations such that (a) no letter appears more than twice; (b) if the system 
is divided into two sets of equations, there is at least one letter that appears 
in an equation of each set. 

Two combinatorial representations are trivially equivalent if the first 
system of equations can be transformed into the second by a sequence of 
operations of the following types : 

1. An initial (or terminal) letter on one side of an equation is transposed 
to appear in the opposite sense as the initial (or terminal) letter on the 
other side. 

2. A new letter, not appearing in the equations, is substituted for an 
old letter wherever the old letter appears. 

2.2 Combinatorial Equivalence 
The equations of a surface may be transformed not only by changing 

the equations of a given polygonal subdivision but also by changing the 
subdivision itself. Examples of such changes were discussed in Chapter 1. 
We shall make these " cut-and-paste " operations more precise by defining 
combinatorial equivalence in terms of three pairs of inverse operations 
(see Figures 2.12-2.14). 

The operation " cut a polygon in two " (Figure 2.12) changes the polygon 
and equation on the left into a pair of polygons and pair of equations on 
the right. The inverse operation, "paste two polygons together along a 
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H. κ\: 
* ' \ \ \ 

(a) (b) 

Fig. 2.12 (a) abcd= 1, (b) axd= 1, x = 6c 

common edge," replaces the polygons and equations on the right by the 
polygon and equation on the left. Algebraically, the cutting operation re-
places the combination be in the equation abed = 1 by a single letter x and 
adds the new equation x =be to give the "value" of the new letter. The 
pasting operation eliminates one letter and one equation by substituting 
the " value " of x from the equation x =bc into the equation axd = 1. 

The operation "cut into a polygon" (Figure 2.13) transforms the poly-

/ \ b I \ / \ * 

M (b) 
Fig. 2.13 (a) abc=\, (b) axx~xbc= 1 

gon and equation on the left into the polygon and equation on the right. 
The inverse operation, " mend a cut," changes the polygon and equation 
on the right into the polygon and equation on the left. The cutting opera-
tion inserts the combination xx~l into the equation abc = 1, whereas the 
x and x~l adjacent to each other cancel each other in the pasting operation. 

The operation "divide an edge" (Figure 2.14) replaces all occurrences 
(either one or two) of an edge b with a combination xy of new letters. 
Implicit in this change is the introduction of a new vertex as the terminal 
vertex of x and the initial vertex of y. Thus the triangles abc — 1 and 
dbe = 1 become the quadrilaterals axyc = 1 and dxye = 1. Because the 
second triangle and the second quadrilateral could have been represented 
by the equations e~lb~ld~l = 1 and e~1y~1x~1d~1 = 1, we see that sub-
stitution ofy~1x~1 for b'1 is equivalent to substitution of xy for b. In the 
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(a) (b) 

Fig. 2.14 (a) axyc = 1, dxye = 1, (b) abc = 1, dbe = 1 

inverse operation, " suppress a vertex of order two," a pair of edges x and 
j>, which always appear together either in the combination xy or the com-
bination y~1x~i, is replaced by a single edge b, with b substituted for xy 
and b~l substituted for y~1x~1. The vertex P between x and y is elimi-
nated when the edges are united. The condition that x and y always appear 
as xy or y~1x~1 ensures that P has order 2; that is, P is on no edge other 
than x and y. In Figure 2.15 the vertex Q of order 3 could not be sup-

Fig. 2.15 
axyc = 1 

ί/ΛΓ/= 1 

f-lye=\ 

pressed. The inapplicability of the suppression operation is shown al-
gebraically by the separate appearances of x and y in the equations: 
axyc = 1, dxf— 1, and f~1ye = 1. 

Definition. Two combinatorial representations of surfaces are combina-
torially equivalent if the equations of one representation can be transformed 
into the equations of the other by a sequence of trivial operations and 
combinatorial operations of the following six types (the algebraic versions 
of the cut-and-paste operations) : 

1. A new letter x is selected and an equation of the form ABC = 1 is 
replaced by two equations AxC = 1 and x = B. (Capital letters represent 
blocks of edge symbols.) 
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Γ. A pair of equations AxC = 1 and x = B is replaced by the equation 
ABC= 1. 

2. A new letter x is selected and the combination xx~l is inserted in an 
equation in any position. 

2'. A combination xx~l (or x~lx) is deleted from an equation. The 
combination xx~l standing alone on one side of an equation would be 
replaced by 1. 

3. After two distinct new letters u and v are selected a letter x is re-
placed wherever it occurs by the combination uv. If x~l occurs, it is re-
placed by v~lu~1. 

3'. A selection is made of letters u and v which occur only in the com-
binations uv or v~lu~l. The combination uv is replaced by Λ: whereas 
v~xu~l is replaced by x~l. 

Definition. Two surfaces are combinatorially equivalent if they have com-
binatorial representations that are combinatorially equivalent. 

A word of caution about our equations is necessary. The relation desig-
nated by the equal sign does not satisfy all the usual axioms of an equiva-
lence relation. Although the symmetric law is satisfied, the reflexive law is 
generally false, and the transitive law cannot be applied to say that two 
expressions equal to 1 are equal to each other. Despite these drawbacks, 
the symbolic equations share enough of the usual properties of equations 
to make them convenient ; for example, we may use transpositions to solve 
an equation for one of its letters x. By applying Operation Γ we may 
substitute this value of x in another equation, thereby eliminating one 
letter and one equation. 

In Section 2.3 we show how the equations of a combinatorial represen-
tation may be reduced to a single canonical equation. Two surfaces will 
be combinatorially equivalent if and only if their canonical equations are 
trivially equivalent. Thus the canonical equations classify all surfaces.! 

As a prelude to deriving the canonical equation of a surface, we look for 
features that might distinguish different surfaces. First, an equation such 
as AaBaC = 1, with a letter appearing twice in the same sense, shows that 
a Möbius band (or crosscap) can be cut from the surface. In Figure 2.16 
the strip between the dotted lines is a Möbius band. If the equation could 

t Our procedure for classifying surfaces is a simplification by A. W. Tucker of a 
method of Brahana (Annals of Mathematics, 23 (1921), pp. 144-168). E. F. Whittlesey 
has used an extension of the technique to classify two-dimensional complexes (Math-
ematics Magazine, 34 (1960), pp. 11-22,67-80; Proceedings of the American Mathematical 
Society, vol. 9 (1958), pp. 841-845. 
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be rewritten in the form A'aaB' = 1, the crosscap (or Möbius band) 
aad = 1 (Figure 2.17) could be severed from the rest of the polygon with 
one cut rather than two. Lemma 1 in Section 2.3 establishes combinatorial 
equivalences that permit us to bring together the occurrences of a letter 
appearing twice in the same sense on the perimeter of a polygon. 

When two occurrences of a letter a, once in each sense, can be brought 
together in an equation, the combination aa~x can be deleted. Although a 
pair a and a'1 cannot always be brought together, Lemma 2 permits us 
to transform the equation so that no more than one letter is between a and 
a - 1 . There are two types of combination in which inverse pairs are sepa-
rated by one letter. Either two letters a and b, each occurring twice, appear 

^-rr~*~*; 

Λ \ ) 

Fig. 2.16 Fig. 2.17 

in an alternating combination aba~lb~l or there is a boundary edge b 
between a and a'1 in a combination aba'1. 

Cutting a polygon with equation Aaba~1b~xB = 1 along the edge x in 
Figure 2.18 separates a polygon with equation x = aba~lb~l or 
aba~1b~1x~1 = 1. In Figure 2.19(a) or 2.19(b) we recognize this as the 
equation of a torus with a disk bounded by x removed. A torus with a 
disk removed is called a handle when attached to another surface along 
the boundary curve x. When a combination aba~1b~l can be assembled 
in an equation of a surface, the surface has a handle. 

If a polygon of a surface with equation Aaba~xB= 1, where b is a 
boundary edge, is cut in two as AxB = 1 and x = aba~\ the cylinder 
x — aba'1 is a cuff on the surface. 

Geometrically interpreted, the reduction of the equations of a combina-
torial representation of a surface to a single canonical equation is a sys-
tematic procedure for determining the number of crosscaps, handles, and 
cuffs on a surface. 
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Fig. 2.18 
{Left) 

*\f. 

(a) 
Fig. 2.19 

(b) 

2.3 The Canonical Equation 

We start by proving two lemmas which state rules for moving blocks of 
letters adjacent to one occurrence of a letter x to a position adjacent to the 
other occurrence of x(as either xorjc"1) . 

Lemma 1. If a polygon of a surface has an equation of the form 

AxBCxD= 1, 
where A, B, C, and D are blocks (possibly empty) of edge symbols, the 
given surface is combinatorially equivalent to a surface with the same 
equations except that this special equation has been replaced by 

AxCxB~1D = 1, 
where B'1 is the block of the inverses of the symbols in B written in the 
reverse order. Similarly, combinatorial equivalence allows an equation of 
the form 

ABxCxD = 1, 
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to be replaced by 

AxCB~1xD= 1. 

The first step is to use Operation 1 to replace the equation AxBCxD = 1 
with the equations 

AyCxD = 1 

y = xB. 

By transposing the symbols in B, one by one, we may rewrite the second 
equation as x = yB~x. Operation Γ replaces the two equations with 

AyCyB~1D= 1. 

Because a single letter can occur at most twice in the equations for a sur-
face, and we have replaced two occurrences of x, the letter x is no longer 
used. Therefore we can now replace y with x and rewrite the equation in 
the desired form: 

AxCxB~1D= 1. 

Figure 2.20 is proof that ABxCxD = 1 can be replaced by 

AxCB'1xD= 1. 
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In the final step of the proof the notation is changed by replacing y 
with x. 

Lemma 2. Combinatorial equivalence permits an equation of the form 
AxBCx~1D = 1 

to be replaced with the equation 
AxCBx~1D = 1. 

Similarly, ABxCx~1D = 1 may be replaced by AxCx~1BD = 1. 
By operation 1, AxBCx~1D = 1 can be replaced by AyCx~1D = 1 and 

y = xB. After the second equation is rewritten as x~x = By'1, Operation Γ 
replaces the two equations with the equation AyCBy~1D = 1. Replacement 
of y with x gives the desired equation. A similar proof may be given for the 
second part of the lemma. 

The two lemmas may be paraphrased as follows : 
If a letter x occurs twice in the same sense on the boundary of a 

polygon, a block beside one occurrence of x may be moved to the same 
side of the other occurrence, provided the direction of the block is 
reversed. 

If a letter x occurs once in each direction on the boundary of a poly-
gon, a block may be moved from one side of the occurrence of x to the 
other side of the occurrence of x'1. The direction of the block is not 
changed. 

Lemma 3. Using combinatorial equivalence, we may represent any surface 
by a single equation or a single polygon with identified edges. 

Consider any equation representing a polygon of a surface. The fourth 
condition in the definition of a surface ensures that some letter x in this 
equation will also appear in another equation. Eliminate the letter x be-
tween these two equations and reduce the number of equations by one. 
This can be repeated until only one equation remains. 

We now show how Lemmas 1 and 2 may be used to reduce a single 
equation for a surface to a canonical form. 
Step 1. Assemble the Crosscaps. 

Suppose an equation for a surface has the form ABsCsD = 1. By Lemma 
1 the block B may be moved from in front of the first s to give 

AsCB~1sD= 1. 
Another application of Lemma 1 allows the block CB'1 to be transferred 
from behind the first s to give 

AssBC~1D= 1. 
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If A = clci ·" ckck9 this combinatorial equivalence allows us to append to 
A a new pair of repeated letters ck + lck + l. We can continue to enlarge the 
block A of pairs until the remainder of the equation contains no letter that 
is repeated twice in the same sense. An equation of the form 

q q c 2 c 2 ··· cqcqH= 1 

may be replaced by the equations 

y\ = CiCi, y2 = c2c2, ~>,yq = cqcq, yYy2 ·■· yqH= 1. 

The equations yt = cf-, represent crosscaps that are attached to the rest 
of the surface along the edges yv. 
Step 2. Assemble the handles. 

Suppose an equation for a surface has the form 

ABsCtDs~lEt-lF = 1. 

In this equation the letters s and / appear in both senses and the occurrences 
of s are separated by those of t. By Lemma 2 the block B may be moved 
from in front of s to behind s'1 to give 

AsCtDs~1BEr1F= 1. 

This becomes 
AsCtBEDs~1r1F= 1 

if Lemma 2 is used to move BE ïvom in front of t'1 to behind /. Similarly, 
the block BED may follow s instead of preceding s~\ thus giving 

AsBEDCts~1r1F= 1. 

After a final move of the block BE DC the equation becomes 

Asts-1r1BEDCF= 1. 

We incorporate the block sts~1t~1 into A and repeat the procedure with 
a new pair of letters. If we start with the block c^c^c^ ' " cqcq a s ^> 
Step 2 leads to the equation 

CiClc2c1'" cqcqa1bla;lb;la2b2a2lb2-
i ·· · a pb pa~lb~l H = 1, 

where there is no pair of letters s and tin H in which occurrences of s and 
s'1 are separated by occurrences of t and t~l. At the end of Step 1 no 
letters after cq appeared twice in the same sense. Because Step 2 inverts no 
letters and does not change the initial block clc1 ··· cqcq, no letter in H 
appears twice in the same sense. 
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■-v. 

The preceding equation may be replaced by 

c^Ci... cqcqXiX2 ... XpH = 1, 

*i = « ι * ι « Γ l b ï \ χ2 = Û2*2«2 ^2 \ · · · ,xP = ûpipii;*&; 

The/? equations xf = α^,α/"1^"1 represent handles attached to the surface 
along the edges xt. 
Ste/7 3. Using a crosscap as a catalyst, turn handles into crosscaps. 

Suppose that an equation for a surface has been reduced by using 
Steps 1 and 2. If there is at least one crosscap and at least one handle, 
this equation has the form 

Accaba~1b-1G= 1. 

By moving ab which is behind the second c to a position behind the 
first c, we derive 

Acb-1a~1ca-1b-1G= 1. 

The equation Acac~1ab~1b~1G = 1 follows if a~1ca~1 before the last b'1 

is placed in front of the first b~l. When we shift c~l before the second a 
to a place before the first a, the equation becomes 

Accaab~1b-1G= 1. 

We have changed the handle into two crosscaps 
by using the crosscap already present. By com-
bining Steps 1, 2, and 3 we find that any surface 
equation can be written in one of two forms : 

cxCi...cqcqH = 1, 

αφ^ϊ^ϊ1 ...apbpa~lb~p
l H= 1, 

Fig. 2.21 where neither crosscaps nor handles can be sep-
arated from H. 

The convertibility of a handle, in the presence of a crosscap as a catalyst, 
into a pair of crosscaps may seem surprising. We digress to discuss an 
example geometrically. The hexagon in Figure 2.21 with equation aabbcc = 1 
is a surface with three crosscaps. In Figure 2.22 a strip that crosses the 
edges a, b, and c has been shaded on the surface. The edges a, b, and c of 
Figure 2.21 have each been divided into three edges in Figure 2.22. The 
three parts of the strip have been assembled in Figure 2.23 to show that 
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Fig. 2.22 

the strip is a Möbius band. In Figure 2.24 the remaining four parts of the 
surface have been assembled as a single polygon with equation 

a3c3
1e3dlb3a3

leld2c3b3
1e2d3 = 1. 

In Step 2 we found that an equation 

ABsCtDs~1Et~1F= 1 

is combinatorial^ equivalent to the equation 

Asts~1t~1BEDCF = 1. 

We apply this rule to the present equation with a3 and b3 as s and /, with 
empty blocks as A, B, and D, and with the blocks c3

1e3dl, evd2c3, and 
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Jf £22S 

Fig. 2.23 

Fig. 2.24 

e2d3 as C, E, and F, respectively. The result is the equation 

a3b3a3
1b3

1e1d2c3c3
1e3d1e2d3 = 1. 

Deletion of c^1 gives 

dzb3a3
lb3~

1eld2e3dle2d3 = 1. 

Repeated use of Operation 3' justifies substitution of a single letter/for 
the block eid2e3die2d3. The final equation 

a2>b3a3~
lb3

1f= 1 
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represents a handle. We have found that the surface with three crosscaps 
is also a crosscap fitted to a handle. 
Step 4. Assemble the cuffs. 

After Steps 1, 2, and 3 have been performed, the remaining block H may 
still have letters that occur twice, once in each sense. Let d be a letter 
appearing twice with the fewest letters between of and d~l. A letter / could 
not occur twice between d and </_1, for there would be fewer letters 
between t and t'1 than between d and d~l. A letter / between d and d~x 

cannot appear outside the block from d to d~x, for an outside occurrence 
of t~x would give an additional handle. Because each of the letters between 
ί/and d~x appears only once, the block between d and d~x can be replaced 
by a single new letter e. The equation of the surface is now 

ABded~xC = 1, 

where A is the block of crosscaps or handles. By Lemma 2 an equivalent 
equation is 

Aded~xBC = 1. 

Because no letters are inverted in this equivalence, no additional crosscaps 
are created, and because the letters in the block BC are in the same order 
as before there are no additional handles. Repetition of this procedure 
yields an equation of the form 

Ad^dï1 ...dre/l;lH = 1, 
where no letter appears twice in H. If H is not an empty block, it may be 
replaced by a single new letter e. In this case let us append the block d~xd 
after e to obtain the equation 

Adxexd\x ...drerd~xed~xd = 1. 

By two transpositions the letter d may be moved from the last to the first 
position so that the equations start with one of the blocks 

dcxcy or dalblaïibïl. 

In the first case Lemma 1 allows d in front of the first cl to be replaced 
by d~x in front of the second cl. A second application of this lemma justi-
fies the substitution of Rafter the second cl for d~x after the first cl. In the 
second case Lemma 2 allows d to move first from in front of ax to between 
aï1 and &J"1, second, from in front of b^1 to between b^ and aj"1, and 
third, from in front of bx to behind b\x. In the two cases we see that the 
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letter d may be moved past a crosscap or a handle. Moving d past all the 
crosscaps or handles leads to the equation 

Addvexd\ld2e2d2
 1 --drerd~xed~x = 1. 

Repeated use of Lemma 2 allows d to be moved past the blocks άγβχά\γ, 
d2e2d2

l, ..., drerd~x to give the equation 

AdleldXld2e2d2l ··· drerd~xded~l = 1. 

When the blocks d^fiix are assembled, the remaining block can be empty 
or can contain a single letter. The second case need not be considered, for 
it can be converted to the first case by assembling one additional block 
ded'K 

We have now shown that every surface may be represented by a canonical 
equation in one of two forms : 

Wi-- c^d^dî1 - drerd;1 = i 
or 

αφ^ϊ1^1 — apbpu^b^die^î1 — drerd~l = 1. 
These equations could be replaced by the following systems of equations : 

y1 = clci9...,yq = cqcq, ζγ = άγβ^χ,... ,zr = drerd~\ 

yi'~yqzi~-Zr = i 

or 

X! = alblaïlbï\...,xp = apbpa~lb~\ 

Zj = dlexd\x,...,zr = drerd~\ xt --xpzl --·ζΓ = 1. 

The equations yt = cf^x^ = a^,^-1^"1, andz,· = ά·χβ&χ represent cross-
caps, handles, and cuffs attached to a sphere from which patches have 
been cut along the edges yi9 x,·, and zt·. The equation yl ··· yqzx ··· zr = 1 
o r i j · · · χρζγ · · · zr = 1 represents the sphere from which the patches have 
been removed. We show this by combining the equation yY · · · yqz^ · · · zr = 1 
with the equations yx = 1, ..., yq = 1, zt = 1, ..., zr = 1 for patches. By 
combinatorial equivalence these equations can be reduced to the pair 
yx = 1 and yl = 1. These two identical equations represent two polygonal 
regions with a common boundary. If we think of the regions as northern 
and southern hemispheres both bounded by a common equator, we see 
that the surface is combinatorially equivalent to a sphere. Carrying the 
reduction process one step further, we have the equation 1 = 1. We can 
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think of it as an equation for the sphere. It arises as a canonical equation 
when q = p = r = 0. We have now proved Theorem 1. 

Theorem 1. Every surface is combinatorially equivalent to a sphere with 
a finite number of patches replaced by crosscaps, handles, and cuffs. If the 
number of crosscaps is greater than zero, the handles can be replaced by 
pairs of crosscaps. 

If there is at least one crosscap or Möbius band in the canonical equa-
tion, the surface contains a nonorientable piece, hence is nonorientable. 
Orientability is defined more formally in Section 2.4. If there are no cuffs 
on a surface, every edge occurs twice and the surface is closed. 

2.4 Combinatorial Invariants of a Surface 
In Section 2.3 we described a method of reducing the equations of a 

surface to a single canonical equation. To justify calling this equation 
"canonical" we must show that two different sequences of combinatorial 
equivalences cannot reduce the equations of a surface to different canonical 
equations. We prove it by showing that orientability, the number p or q 
called the genus, and r, the number of cuffs, are intrinsic properties of the 
surface which are invariant under combinatorial equivalence. 

Definition. A surface is orientable if its equations can be changed by trivial 
equivalence so that each equation has 1 as its right-hand member and any 
letter x that appears twice occurs once as x and once as x~l. 

Under Operation 1 an equation ABC = 1 is replaced by the pair of 
equations AxC = 1 and x = B. We may rewrite this second equation as 
Bx~x = 1. If, in the original equations for the surface, each letter appearing 
twice occurs once in each sense, the same property holds for the new set 
of equations, for the old letters appear in the same sense as before and the 
new letter occurs once as x and once as x~l. On the other hand, suppose 
that AxC = 1 and Dx~lE = 1 are two of the equations for a surface. By 
trivial equivalence the second equation may be changed to EDx'1 = 1 or 
x = ED. By Operation Γ the pair of equations is replaced by AEDC = 1. 
Because the sense of no letter has been reversed, a system of equations 
written in a form to show the orientability of the surface still demonstrates 
orientability after we use Operation Γ to eliminate one variable. Opera-
tions 2 and 2' cannot affect orientability for they simply introduce or 
eliminate a combination xx~l. Because Operation 3 replaces each occur-
rence of a letter x with the combination uv taken in the same sense, orienta-
bility is invariant under Operation 3. Similarly, Operation 3' cannot change 
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an orientable to a nonorientable surface. We can now conclude that an 
orientable surface stays orientable under combinatorial equivalence. If a 
nonorientable surface could become orientable by combinatorial equiva-
lence, the reverse equivalence would make an orientable surface non-
orientable. We now see that the orientability or nonorientability of a sur-
face is combinatorially invariant. A surface is nonorientable only if it can 
be reduced to a canonical form with q > 0; that is, the surface contains a 
crosscap (or a Möbius band). 

Before we can show that the number of cuffs and the number of handles 
or crosscaps are invariant under combinatorial equivalence, we must study 
the vertices of a surface. The definition of surface includes the condi-
tion that polygons have common vertices only to the extent required 
by the common edges. We must now study the implications of this 
condition. 

Each edge on the boundary of a polygon has an initial and a terminal 
vertex. If an edge a appears in the opposite sense as a - 1 , the initial and 
terminal vertices are reversed. In an equation for a polygon consecutive 
letters represent consecutive boundary edges that meet in a common vertex, 
namely, the terminal vertex of the first edge and the initial vertex of the 
second. This may be symbolized by inserting vertex symbols between 
adjacent edges in our equations. In an equation^ = 1 the last and first edges 
are consecutive; therefore the same vertex symbol should be placed after the 
last letter and before the first. If the combinations ab and ac both appear 
in the equations for a surface, a vertex symbol P placed between a and b 
must also be inserted between a and c, for a has the same terminal point 
wherever it occurs. If the combination dc also appears, the vertex symbol 
P must be used again, for c has a unique initial vertex. If d appears a 
second time, this sequence of occurrences of P can be continued. Because 
only a finite number of positions for vertex symbols exists, the sequence 
must stop or start to repeat. The sequence can stop only by reaching a 
letter that occurs only once. The sequence repeats by reaching the original 
combination aPb. If d had been an edge appearing only once, we could 
have started with the combination dPc, extended the sequence of occur-
rences of P back through the combination aPb, and continued until we 
were again stopped by some singly appearing edge/which had P as initial 
or terminal vertex. The sequence must end and not repeat, for there are 
no other occurrences of d from which to return to the combination dPc. 
The procedure we have just described enables us to decide exactly which 
of the vertices of the polygons must coincide as a consequence of the edge 
identifications. 
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Example. Let a surface be represented by the equations 

abcde = 1, ac~xe~x = 1. 

If P is the vertex between a and b, P is also between a and c"1 and 
c and d. Because b and d appear only once, we have found all occurrences 
of P. If Q is the vertex terminating e and starting a in the first equation, 
Q also starts a and ends e'1 in the second equation. Hence Q starts e and 
finishes d in the first equation. The edge of appears only once, thus stopping 
our sequence in one direction. Because Q ends e in the first equation, we 
find that Q also belongs between c~l and e'1 in the second. This implies 
that Q is between b and c in the first equation. Because b appears only 
once, we have now found the second end of the sequence of occurrences of 
Q. Using both edge and vertex symbols, we rewrite the equations in expanded 
form: 

QaPbQcPdQeQ = 1, QaPc~1 Qe~1Q=\. 

From these equations we see that the surface has two polygons (one for 
each equation), five edges (a, b, c, d, e), and two vertices (P and Q). 
Figure 2.25 shows how the polygons fit together at Q. 

From the procedure for identifying vertices we see that a vertex is an 
endpoint of two or more singly appearing edges, either twice or not at all. 
It is possible, of course, that the vertex appears twice as an endpoint of 
the same edge—once as initial point and once as terminal point. We call 
the edges that occur only once boundary edges. Because the boundary 
edges are always in pairs at each vertex, they may be arranged into cyclic 
sets to form boundary curves. We shall show that the number of boundary 
curves is invariant under combinatorial equivalence and that this number 
equals the number of cuffs in the canonical equation for the surface. 

In Operation 1 an equation of the form ABC = 1 is replaced by a pair 
of equations AxC = 1 and x = B. Because the new edge x appears twice, 
it is not a boundary edge. The second equation shows that the edge x and 
the block B have the same initial and terminal vertices. By applying this 
fact in the first equation we see that the terminal vertex of block A is the 
initial vertex of block B and the terminal vertex of B is the initial vertex 
of C. Thus adding the nonboundary edge x creates no vertices and does 
not change the vertex identification of the original system that contained 
the equation ABC = 1. This means that Operation 1 cannot change the 
number of boundary curves. 

Operation 2 replaces an equation AB = 1 by Axx~xB= 1. The new 
edge x is not a boundary edge. Because the vertex that starts x finishes x~ *, 
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Fig. 2.25 

I I From polygon 
abcde= 1 

From polygon 
ac~xe~l = 1 

the terminal vertex of A is the initial vertex of B. The vertex that finishes 
x and starts x 1 can occur only between xanax'1. This new vertex, which 
meets no boundary edges, cannot affect the number of boundary curves. 
Because the identifications among the old vertices have not changed, we 
conclude that the number of boundary curves is invariant under Opera-
tion 2. Under Operation 3 a single edge x is replaced by a pair of consecu-
tive edges uv. If x is not a boundary edge, replacement will not change the 
boundary edges and their vertices, If x is a boundary edge, the pair of 
boundary edges u and v will replace x in one of the boundary curves. 
Again, the number of boundary curves is invariant. Because Operations 
Γ, 2', and 3' are inverse to Operations 1, 2, and 3, the number of boundary 
curves is invariant under the three remaining types of combinatorial 
equivalence. 
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Let us now write our two types of canonical form by using both edge 
and vertex symbols. 

Pc^Pc.P··· P^PcJPd^e^dî1P··· PdrQrerQrd;lP = 1, 
Pa^b^a^Pb^P-PapPbpPa^Pb^Pd&^&td^P 

•PdrQrerQrd;1P=l. 
In both equations each of the boundary edges el9 ..., er is a boundary 
curve. Thus, the number of cuffs equals the number of boundary curves. 

We shall show the combinatorial invariance of the genus p or q by first 
showing the invariance of the Euler characteristic. The Euler characteristic 
χ of a surface is defined by χ = n0 — ηγ + n2, where n0 is the number of 
vertices, ni9 the number of edges, and n2, the number of polygons. Opera-
tion 1 adds one equation and one edge but no vertices. Thus nl and n2 

are both increased by one, but χ is unchanged. Operations 2 and 3 both 
increase n0 and ηγ by one but do not change n2. Again χ is unchanged. 
This shows that the Euler characteristic is a combinatorial invariant. The 
expanded forms of the canonical equations show that 

z = ( l + r ) - f o + 2 r ) + l = 2 - g - r 

for a nonorientable surface and 

χ = (1 + r) - (2/7 + 2r) + 1 = 2 - 2p - r 

for an orientable surface. Because χ, r, and orientability are all combina-
torial invariants, the genus is also a combinatorial invariant. 

We have accomplished our goal of proving the combinatorial invariance 
of our canonical equation. We now know that no one surface can be re-
duced by two different sequences of combinatorial equivalences to give 
canonical equations with different values of/?, q, and r. As a by-product 
we have discovered simple procedures to determine orientability, genus, 
and number of cuffs. From the invariants we can write down the canonical 
equation of a surface without the tedious procedure used to derive the 
canonical equation. The original derivation was necessary to prove the 
existence of a canonical equation, but the present methods are more 
efficient for finding the equation. 

2.5 Topological Surfaces 
We have just seen that a surface is completely classified under the rela-

tion of combinatorial equivalence by its orientability or nonorientability, 
genus, and number of cuffs. There is, therefore, a wide variety of possible 
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surfaces, which is all the more remarkable when we consider that from 
a "local" or "myopic" point of view all surfaces are more or less the 
same. 

Let us make this last statement precise. A neighborhood of a point x 
on a surface S is any set of points of S that contains, for some number 
(possibly very small) δ > 0, all points of S whose distance from x is < <5. 
Then, no matter what the surface S and the point x in S, there is some 
neighborhood of x in S that is homeomorphic to a disk (why?). If x is an 
interior point of S, there will be a homeomorphism of an appropriate 
neighborhood of x in S with a disk that takes x onto the center of the disk. 
If x is a boundary point of S, there will be a homeomorphism of some 
neighborhood of x in S with a disk that takes x onto a boundary point of 
the disk. In this sense there are only two species of points on S—interior 
points and boundary points. It is visually obvious, though somewhat sticky 
to prove, that interior points and boundary points are distinct from one 
another. We take this for granted but shall not give the proof. 

A topological surface 5 is a point set in some Euclidean space with the 
property that each point x of S has some neighborhood that is homeo-
morphic to a disk. As above, we may distinguish between the interior and 
boundary pointé of 5. Every surface, in the original sense of Section 2.1, 
is also a topological surface. It is natural to ask, "Is every topological 
surface also a surface in our original sense? " That is, can every topological 
surface be subdivided into a finite number of polygons with the usual 
intersection requirements of Section 2.1? A little thought convinces us 
that the answer is an immediate NO unless we restrict the question somewhat ; 
for example, the ordinary plane (two-dimensional Euclidean space) satis-
fies the definition of a topological surface but cannot be subdivided into 
a finite number of polygons. It can be subdivided into an infinite number 
of polygons, but this is not permitted by our original definition. 

A good way to restrict the question is to require that the topological 
surface S be closed and bounded in whatever Euclidean space it lies. The 
problem of deciding whether S is a surface in our original sense is known 
as the triangulation problem for surfaces. The word " triangulation " is 
used because any surface that can be subdivided into polygons can also 
be further subdivided into triangles. The triangulation problem for sur-
faces was solved in the affirmative by T. Rado in 1925. The triangulation 
problem for three-dimensional manifolds (the three-dimensional analogue 
of a surface) was solved by E. E. Moise in 1952 and by R. H. Bing (in a 
more general sense) in 1954. In dimensions higher than three the triangula-
tion problem is still an outstanding unsolved problem of topology. 
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Closely related to the triangulation problem is another problem best 
known by its German name: the Hauptvermutung (principal conjecture). 
Stated for surfaces, it is the following. Suppose we have two closed and 
bounded surfaces, S and S\ in Euclidean spaces. Then we know from the 
solution to the triangulation problem that each can be subdivided into 
polygons in an admissible way. Suppose that S and S' are homeomorphic 
as point sets. Does it follow that the subdivisions of S and S' are combi-
natorially equivalent in the sense of this chapter? The answer is YES. The 
actual argument is not hard to give on the basis of the material we have 
already developed, but it does need a little background in point set 
topology. The idea of the argument is simply to prove that no two surfaces 
with different canonical equations could be homeomorphic. The reader 
who knows a little point set topology may like to attempt the proof. 

Like the triangulation problem, the Hauptvermutung is also solved 
affirmatively in dimension three but is unsolved beyond that. A very 
general version of the Hauptvermutung for complexes was shown to be 
false by John Milnor in 1961. 

EXERCISES 

Section 2.1 
1. Which of the following systems of equations represent a surface? If the 

equations do not represent a surface, what condition is violated? 
If the equations do represent a surface, is the surface closed? 

(a) abcd= 1, (b) abed = 1, 
bd = ef, bd = ac, 

a~lc = eb. efgh = 1, 
(c) abed = 1, eg = fh. 

bd=ef, (d) abed= 1, 
ac =fe. b = ac. 

2. For each of the following sets of conditions consider the corresponding 
locus in three-dimensional Euclidean space. In each case explain why 
the locus is not a surface. 

(a) xyz = 0, x2 + y2 + z2 < 1. 
(b) x2 + y2 = z2, x2 + y2 + z2 < 1. 
(c) [{x-2)2+y2 + z2-\][{x + 2)2+y2 + z2- 1] = 0. 
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3. By trivial equivalences transform the system of equations on the left 
into the system of equations on the right. 

(a) ab~1cd-i = \, c = ba~1d, 
a~1ecb = 1. e = ab~1c~1. 

(b) aba~1cd-lebcf= 1, c'xdce'xaTlf'xde'lb = 1. 
(c) abed = 1, xy = zw, 

aed~1c = 1. zw'1 = tx~l. 

4. List all equations into which abb = 1 can be transformed by a sequence 
of transpositions. 

5. A function / (x , y) with points in three-dimensional Euclidean space as 
values is defined over the disk x2 + y2 < 1 by the formula 

f{x,y) = {\xly,{x2+y2-\)x). 
Give an edge equation for the quadrilateral determined by this function. 
What surface is formed by the points of the quadrilateral ? 

6. A function f(x9 y) with points in five-dimensional Euclidean space as 
values is defined over the disk x2 + y2 < 1 by the formula 

fix, y) = [\χ\, \yU (xy - \xy\)y> (χ2 +y2- ΐ)χ, (χ2 + / - m 
Give an edge equation for the quadrilateral determined by this function. 
What surface is formed by the points of the quadrilateral ? 

Section 2.2 
In Chapter 1 " cut-and-paste " operations were used informally. In the 

exercises that follow justify these informal operations by showing alge-
braically that the system of equations on the left is combinatorially equiva-
lent to that on the right. The references are to figures in Chapter 1. 

1. abb-la~Y = l(Figure 1.9), aa~l = l(Figure 1.18). 

2. abca'lb'lc~l = l(Figure 1.21), efe'1/-1 = l(Figure 1.22). 

3. albXla2lb\ = 1, 
a2b2iaî1b2 = 1 (Figure 1.26), aba~lb~l = 1. 
a3bïlaïlb3 = 1, 

4. α351αΓ163-1 = 1, 
aib2ai\b

LU = ['(Figure 1.27) aba'1^1 = 1. 
a^bza2

 lbl = 1, 
a2bAal1b2~

l = 1, 
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5. abac~l = l(Figure 1.31), 

6. I a1dleïlb2 = 1, 

ddb-ic-i = l(Figure (1.32). 

bxb1axdxd1a1 = 1, 
II ^ f l a f c i - J> ( F i g u r e 1>39 o r u s ) clc2a2idld2ai-

i = 1 
III Û2 dxe2c2- 1, (Figure 1.40). 
IV e2 «2fli c i — 1» 

7. afcflb = 1 (Figure 1.46), ce = l(Figure 1.51 or 1.50). 

Section 2.3 
1. Reduce each system of equations to a single canonical equation. 

(a) abcdef= 1, a~1cegbd= 1. 
(b) abcd= 1, eafc = 1, gfhe = 1, hdgb=\. 
(c) acba-'db-1 = 1, m>/= 1. 

2. Show that every surface can be triangulated. 
CAUTION. The subdivisions of a torus into triangles shown in Figures 
2.26 and 2.27 are not triangulations. Why? 

Fig. 2.26 Fig. 2.27 

HINT. Figure 2.27 is obtained from Figure 2.26 by drawing the medians 
of all the triangles of Figure 2.26. If the same process is applied to 
Figure 2.27 instead of 2.26, the resulting subdivision is a triangulation. 

Section 2.4 
1. Without deriving the canonical equations, classify the surfaces repre-

sented as follows : 
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(a) abcde=l9 ad lbe lc = \. 
Q6)abcde=l, bdfh = l, aef-l = l. 
(c) α1α2·-αηα;1α2ί···α;ί = 1. 

(distinguish between n even and n odd) 

2. Ai : 124, 235, 346, 457, 561, 672, 713 
134, 245, 356, 467, 571, 612, 723 

Δ2:123, 156, 167, 172, 256, 268, 275, 283 
341, 357, 374, 385, 451, 468, 476, 485 

What surfaces do Al and A2 triangulate? 

3. List all surfaces with non-negative Euler characteristics. 

4. Let x, y9 z be Cartesian coordinates in three-dimensional Euclidean 
space and let S be the locus of the equation 

z2 = [(x - 2)2 + y2 - \][(x + 2)2 + y2 - 1](16 - x2 - y2). 

What is the Euler characteristic of 5? Is S orientable? Describe S. 
Write a canonical edge-equation for S. 

5. A surface S is cut along k nonintersecting simple closed curves Q , 
C2, ..., Ck to form n surfaces Sl9 S2, ..., Sn. 

(a) Can n > k + 1 ? Can n < k+ 1 ? Why? 
(b) Can any or all of S^, ..., Sn be nonorientable if S is orientable? 
Can any or all of ̂ , ..., Sn be orientable if S is nonorientable ? If either 
answer is yes, give an example. 
(c) Show that the Euler characteristic of S is the sum of the Euler 
characteristics of Sl5 ..., Sn. 
HINT: If a simple closed curve is divided by vertices into edges, the 
number of vertices equals the number of edges. Compare the polygons, 
vertices, and edges of St, ..., Sn as separate surfaces with the polygons, 
vertices, and edges of 5 l 5 ..., Sn as parts of S. 



3 COMPLEX CONICS AND COVERING 

SURFACES 

3.1 Complex Conies 
In a beginning study of analytical geometry loci of equations of the 

form 

Q(x,y) = o, 

where 

Q(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F, 

are classified as hyperbolas, parabolas, ellipses (including circles as special 
cases), and degenerate loci. These curves were named conic sections or 
simply conies because ellipses, parabolas, hyperbolas, and most of the 
degenerate loci may be obtained as the intersection of a cone and a plane. 
A hyperbola with two unbounded branches, an ellipse with a single 
bounded branch, a parabola with a single unbounded branch, and the 

85 
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empty locus seem quite unrelated. We find a partial explanation of these 
differences when we attempt to solve the equation 

Cy2 + (Bx + E)y + (Ax2 + Dx + F) = 0 

for y in terms of x. For a given value of x there are points (x, y) on the 
locus only if this quadratic equation for y has real roots. If the locus is an 
ellipse, there is a finite interval of values of x for which there are real 
roots ; if the locus is empty, there are no such values of x. For a hyperbola 
the set of values of x with points (x, y) on the conic is either the whole 
x-axis or the x-axis with a finite interval deleted (Figures 3.1 and 3.2). 

% 

Fig. 3.1 Fig. 3.2 
X2-y2=\ -X2+y*=\ 

The allowable values of x for a parabola are either the whole x-axis or 
half the x-axis; that is, a segment bounded in one direction and unbounded 
in the other (Figures 3.3 and 3.4). To eliminate some of the distinctions 
between the various conies we extend our perspective by replacing the 
real variables x and y with variables z and w which range over the extended 
complex number system, that is, over the Riemann sphere on which the 
special complex number oo is the north pole. The locus of the equation 
Q(z, w) = 0 is degenerate if the following conditions hold: 

1. Q(z, w) is not quadratic; that is, A = B = C = 0. 
2. Q(z, w) does not depend on both variables, that is A = B = D = 0 

or B = C = E = 0. 
3. Q(z, w) factors into two linear polynomials. 

We shall limit our study to nondegenerate complex conies. As a pre-
liminary we review some properties of complex numbers. If z = x + iy9 
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y 

► * 

Fig. 3.3 
(y-2)2 = x-\ 

Fig. 3.4 
y = x2 

the real numbers x and y are the real and imaginary parts of z and the x-
and >>-axes are the real and imaginary axes of the complex plane. If 
zt = xx + IJ;1 and z2 = x2 + (y2 » the sum and product of z t and z2 are 
Zl + z2 = (xx + x2) + i(yt 4- j>2), 

*1*2 = (*1 + *>l)(*2 + Wl) = *1*2 + «1^2 + ΟΊ*2 + ^^1^2 

= (*i*2 - ^1^2) + feh + ^1^2)· 

By rewriting zx and z2 in polar form, we find 
z i z2 = ^i(cos θί 4-1 sin ÖJr^cos 02 + i sin 02) 

= >V2((cos θχ cos 02
 — sin #i sin 02) + *(cos #i sin 02 + sin 0X cos 02)) 

= r1r2(cos(ö1 + θ2) 4- ι sin (0! 4- 02)). 

Thus we can multiply complex numbers written in polar form by multiplying 
absolute values and adding arguments. In particular, if 

z = r(cos 0 4- /sin0), 

z2 = r2(cos 20 + i sin 20), zn = rM(cos ηθ + ΐ sin n0), 

- = - (cos ( - 0 ) 4- i sin ( -0) ) = - (cos 0 - i sin 0). 
z r r 

To define y/z we examine the equation 

When 
w2 = z, where w = ^(cos 0 4- / sin φ). 

s2(cos 2φ 4-1 sin 20) = r(cos 0 4- / sin 0), 
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r = s2. Because the argument of a complex number is determined only 
up to addition of an integral multiple of 2π, we can conclude that 

2φ = Θ 4- k2n9 for some integer k, 

or 

x θ ι 
Φ = 2 + kn. 

Because values of φ which differ by multiples of 2π correspond to the same 
complex number u>, φ = 0/2 and φ = 0/2 4- n determine the only distinct 
solutions of the equation w2 = z. By restricting φ to the interval — π/2 < 
φ < 3π/2 we have one solution w with — π/2 < φ < n/2 and the second 
with π/2 < φ < 3π/2. We use x / z to denote the first value of w. Because 
cos (</> + π) = —cos φ and sin (φ + π) = — sin φ, the second value of w 
is — y/z. These symbols are unambiguous unless φ = —n/2, n/2, or 3π/2. 
These values of φ correspond to the complex numbers z with 0 = π, which 
are the negative real numbers. Except for the negative half of the real 
axis, yjz is a continuous function of z throughout the complex plane. 
Although different definitions of y/z and —y/z would shift the location 
of the ambiguity, the ambiguity cannot be avoided. As z moves from the 
second quadrant to the third quadrant across the negative real axis, y/z 
must be replaced by — y/z if the solution of w2 = z is to be a continuous 
function of z. For z = 0, y/z = — y/z = 0. Also, for z = oo, y/z = —yfz 
= oo. The interpretation of ^oo will be clear when we have learned how 
to test whether a point (z, oo) with z finite, a point (oo, w) with w finite, or 
the point (oo, oo) satisfies a quadratic equation Q(z, w) = 0. 

We illustrate the procedure with the polynomials 

Öt(z, w) = w2 - z, ρ2(ζ, w) = wz + z - w, 

g3(z, H>) = w2 + wz - z, ρ4(ζ, w) = z2 + w2 + z. 

The first step to test (oo, w) is to replace z by 1/z'. The equations Qj(z, w) 
= 0 become 

z z z 

w2 + - - - = 0, — + w2 + - = 0. 
z z z z z 
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Any solution (z' w) determines a point (z, w) = (Ι/ζ', νν) on the original 
locus. For any finite nonzero value of z, hence for any nonzero finite value 
of z', the solutions for w do not change if the equation is multiplied by a 
power of z'. By multiplying by the lowest power of z' that will clear the 
denominators we derive the new equations 

z'w2 — 1 = 0 , w + 1 — wz' = 0, 

z'w2 + w - 1 = 0, 1 + w2z'2 + z' = 0. 

The point (z, w) = (oo, w) is defined to be on the original locus if (ζ', w) = 
(0, w) satisfies the derived equation. Substitution of z' = 0 into these 
equations yields 

- 1 = 0 , w + 1 = 0, w - 1 = 0, 1 = 0 . 

We have found that there are no points (oo, w) with w finite on the loci 
g t(z, w) = 0 or β4(ζ, w) = 0 but have shown that (oo, — 1) is on the locus 
of wz + z — w = 0 and (oo, 1) is on the locus of w2 + wz — z = 0. 

To find the points (z, oo) with z finite on the loci we replace w with 1/w', 
and multiply the equations by the power of w' that will just eliminate the 
denominators. The equations Qj(z, w) = 0 become 

1 _ w'2z = 0, z + w'z - 1 = 0, 

1 + w'z - w'2z = 0, w'2z2 + 1 + w'2z = 0. 

The solutions (z, w') = (z, 0) determine the points (z, oo) on the loci of 
Qj(z, w) = 0. Substitution of w' = 0 in the four equations yields 

1 = 0, z - l = 0, 1 = 0 , 1 = 0 , 

so that the loci β / ζ , w) = 0 for ; Φ 2 have no points (z, oo) with z finite. 
The conic wz + z — w = 0 contains the point (1, oo). To test whether 
(oo, oo) is on the four loci, replace z by 1/z' and w by 1/vv' and then clear 
fractions. The resulting equations are 

z' - w'2 = 0, 1 + w' - z' = 0, 

z' + w' - w'2 = 0, w'2 4- z'2 + w 'V = 0. 

The point (oo, oo) is on the original locus if and only if z' = w' = 0 is a 
solution of the new equation. Thus (oo, oo) is on the loci Qj(z, w) = 0 for 
j Φ 2 but is not on the locus Q2(z, w) = 0. Because (oo, oo) is the only 
point (oo, w) that satisfies w2 — z = 0, oo is the only square root of oo. 

Now that we have defined yfz throughout the extended complex plane 
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we can use the traditional formula to express in terms of z the solutions w 
of the quadratic equation 

Cw2 + (Bz + E)w + (Az2 + Dz + F) = 0. 
The two values of the second coordinate of points (z, w) of the conic 
Q(z, w) = 0 are 

-(Bz + E) ± J(Bz + E)2 - 4C(Az2 + Dz + F) 
w = — , 

2C 

provided that C * 0. 
As a preliminary to the general case, we consider the special situation in 

which C = 0. Under this assumption the conic consists of all points (z, w) 
with 

Az2 + Dz + F 
W = - Bz + E ■ 

Because the conic is nondegenerate, B and E cannot both be zero. A 
unique value of w is determined for every value of z except possibly 
z= —E/B (if Βή=0) and z = oo. When 5 Φ 0 , the linear polynomial 
Bz + E cannot be a factor of Az2 + Dz + F, for Q(z, w) has no linear 
factors. A check shows that ( — E/B, oo) is on the locus when 5 Φ 0 . 
Additional calculation verifies the following: 

1. (oo, oo) is the only point (oo, w) on the locus if A φ 0 or A = B = 0. 
2. (oo, - D/B) is the only point (oo, w) if A = 0 but B Φ 0. 
Because there is a unique point (z, w) on the locus for each value of z, z 

can be used as a single coordinate on the conic and the conic is topologically 
a sphere. 

Returning to the general case, we rewrite the expression under the 
radical sign as 

d(z) = (B2 - 4AC)z2 + ( 2 5 E - ACD)z + (E2 - 4CF). 

If B2 — 4AC = 0, this polynomial is linear instead of quadratic. In real 
analytical geometry we know that B2 — 4AC = 0 means that the conic is 
a parabola. We postpone consideration of the complex parabola. If d(z) 
were a perfect square (Kz + / / ) 2 , the two values of w would be 

-(Bz + E)±(Kz + H) 
w = ΤΓ^ · 

2C 
This would imply that 

/ Bz + E Kz + H\i Bz + E Kz + H\ 
Q(Z^) = C(W + — _ ) ( w + _ _ + _ _ ) f 
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thus contradicting the nondegeneracy of the conic. Because d{z) is not a 
perfect square, the equation d(z) = 0 has two distinct roots 

h = ri + isi a n d h = r2 + isi 

and 

d(z) = (B2-4AC)(z-tl)(z-t2). 

The identity 

{JB2 - 4ACjz - tJ7^72)
2 = (B2 - 4AC)(z - tx)(z - t2) 

implies that y/d{z) is either 

JB2 - 4ACjz - tly/z - t2 or - JB2 - 4ACjz - tx Jz- t2 . 

If we set G =Jß2 - 4AC, t h e t w o solutions for w are 

-(Bz + E) + GJZ - txJz - t2 
1 2C 

- ( ß z + E) - GJz - txJz - t2 
w = ^_ ^ m 

2 2C 

Because z — tx is a negative real number only on the halfline defined by 
y = Si and x < rl and z — t2 is a negative real number only on the halfline 
defined by y = s2 and Λ: < r2, the product ^/z — tlyJz — t2 is unambig-
uously defined throughout the complex plane except on these halflines.f 
Hence wx and w2 are continuous functions of z whose domain (Figure 3.5) 
is the complex plane with two halflines deleted. Figure 3.6 shows the half-
lines as an edge a from oo to ^ and an edge b from oo to t2 on the Riemann 
sphere. With these edges the sphere is a quadrilateral with edge equation 
aa~1bb~1 = 1. For all points except on a or b, z can be used as a single 
coordinate for the point (z, v^) on the conic. The set of these points lies 
on one sheet of the conic. Similarly the points (z, w2) lie on a second sheet. 
Considering the points (z, wx) and (z, w2) as the graph of wx and w2 as 
functions of z, we say that the points (z, H^) and (z, w2) cover the point z. 
The graph is a two-sheeted covering of the Riemann sphere with the edges 
a and b deleted. Now wx = w2 only at tu t2, and oo, the vertices of the 
excluded edges. Hence the sheets do not intersect. 

t If Sx = s2, one halfline would be part of the other. The discussion of this special case 
differs from that of the general case but the principles and the results are the same. 
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y 

A 

->- x 

Fig. 3.5 Fig. 3.6 

We bring the edges a and b back into the problem. As z crosses the edge 
a, the solutions \νγ and w2 should be interchanged if they are to be con-
tinuous functions of z. In Figure 3.5, as z approaches a point on a from 
above, the point (z, wx) approaches a different point on the conic from 
that reached when z approaches the edge a from below. When the first 
sheet is extended to cover a, two different symbols ax and a2 should be 
used to represent the two different edges of the sheet that cover a. Similarly, 
two edges bl and b2 cover b. An edge equation 

ala2
1 blb2

l = l 

for the first sheet may be derived from the equation 

aa-'bb-1 = 1 

of the sphere by replacing a and b by the edges covering them. Because the 
point (z, wx) changes to (z, w2) as z crosses a or b, the corresponding 
equation for the second sheet is 

a2aîlb2b~[l = 1. 
The surface defined by the equations 

a^^bib^1 = 1 and a2a\xb2b\l = 1 

is calledahe Riemann surface of Q(z, w) = 0, where the equation is con-
sidered as an implicit definition of w as a double-valued function of z. 

If vertex symbols are inserted, the equations of the Riemann sphere and 
Riemann surface become 

PaRa-lPbSb-lP= 1 
and 

PlaiRla2
1P2biSlb2

1Pl = 1, P2a2Rla'[1Plb2Sib^lP2 = 1. 



COMPLEX CONICS 93 

The points P, R, and S(oo, tl9 and t2 on the Riemann sphere) are covered 
by two, one, and one points, respectively on the Riemann surface. Because 
wx = w2 when z = tx or z = t2, each of the points tx and t2 is covered by 
exactly one point on the conic. Thus the conic and the Riemann surface 
both have a single point covering ίγ and a single point covering t2. At Rl 

and St the two sheets of the Riemann surface come together so that R 
and S each have only one instead of two covering points. The points Rx 

and Sl are called branch points of the Riemann surface. 
Because there are two polygons, four edges (al, a2, bl, b2) and four 

vertices (Pu P2, Rt, £\), the Riemann surface has Euler characteristic 2. 
This shows that the Riemann surface of g(z, w ) = 0 is a sphere. 

To find the points on the conic covering z = oo we return to the equation 

Cw2 + (Bz + E)w + (Az2 + Dz + F) = 0. 

Assume ^ φ θ . Replacing z by 1/z', and multiplying by z'2, we derive 

Cw2z'2 + (Bz' + Ez'2)w + (A+ Dz' + Fz'2) = 0. 

Setting z' = 0, we have A = 0. Hence there is no point (oo, w) with finite 
w on the conic. The two substitutions z = 1/z' and w = \jw' lead to 

Cz'2 + (Βζ' + Ez'2)w' + (Aw'2 + Dz'w'2 + Fz'2w'2) = 0. 

Because z' = w' = 0 is a solution, (oo, oo) is on the conic. 
If A = 0, the substitution z = 1/z' leads to 

CwV + (5 + £z')w + (D + Fz') = 0. 
When z' = 0, this equation is Bw + D = 0. Because Λ = 0 and £ 2 - A AC 
=j= 0, 5 Φ 0 . Therefore (oo, — D/B) is on the conic. Replacing w by 1/vv', 
we derive 

Cz' + (£ + £z')w' + (Z)w'2 + Fz'w'2) = 0. 
Again (oo, oo) is on the conic. 

If A Φ 0, P on the Riemann sphere is covered by the single point (oo, oo) 
on the conic. If A = 0, the two distinct points (oo, —D/B) and (oo, oo) 
cover P. When P is covered by two points on the conic, the conic and 
Riemann surface are topologically equivalent. When the conic has only 
one point covering P, the conic is equivalent to the Riemann surface, with 
the pair of points Px and P2 identified. 

We have almost completed the proof of the following theorem : 

Theorem. A nondegenerate complex conic defined by a quadratic equation 

Az2 + Bzw + Cw2 + Dz + Ew + F = 0 
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is topologically (a) a sphere if A = 0, if C = 0, or if B2 - 4AC = 0, 
(b) a pinched sphere in all other cases. 

In the case that remains to be studied B2 - 4AC = 0. The polynomial 
d(z) is 

d{z) = (2BE - 4CD)z + (E2 - 4CF). 

Because the conic is nondegenerate, IB — 4CZ)4= 0 and 

d(z) = (2BE-4CD)(z-ti), 
where 

E2 - 4CF 
*1 = 

Hence 
2BE - 4CD 

-(Bz +E) + LJz - t{ 
Wl = Yc ' 

-(Bz + E)-LJz-ti 

w2 = , 
2 2C 

where L = ^JlBE — 4CD. Because yjz — tx is uniquely defined, except on 
the halfline determined by y = sï and x < r1? \\\ and \v2 are continuous 
functions of z over the Riemann sphere with an edge a from tx to oo 
deleted. The edge equation aa~l = 1 for the Riemann sphere leads to the 
equation αγαϊχ = 1 for the sheet of the conic with points (z, wx) and to 
a2a\x = 1 for the sheet with points (z, vv2). From these equations we find 
that the Riemann surface is a sphere in which oo and tx are covered by a 
branch point instead of two distinct points. A check shows that z = oo is 
covered by the single point (oo, oo) on the conic. When B2 — 4AC = 0, the 
conic and the Riemann surface are topologically equivalent. 

3.2 Covering Surfaces 
In Section 3.1 we studied two-sheeted Riemann surfaces of complex 

quadratic equations. We now wish to extend our investigation to «-sheeted 
Riemann surfaces which are specified without reference to a polynomial 
equation. More generally, we wish to define the concept of an n-sheeted 
covering surface of any given surface. The covering surface is a Riemann 
surface if the covered surface is a sphere. 

Starting with any set of equations representing a surface S, let us make 
n copies of the surface. We give equations for these copies by writing down 
the original set n times and adding a subscript to each edge symbol to 
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denote the copy to which the edge belongs. If a letter occurs twice in the 
original set of equations, permute the subscripts on the second occurrences 
of the letter in the n copies. These permutations have the effect of inter-
weaving the n copies to make an «-sheeted covering of the original surface. 
The only restriction on the permutations used is that the combined set of 
equations from all copies must be a combinatorial representation of some 
surface S. Since the first condition for a combinatorial representation is 
automatically satisfied, only the second need be checked. The surface S 
is an «-sheeted covering surface of S. 

To illustrate the interweaving process for forming covering surfaces we 
start with the equations 

aab = 1, bcc = 1, 

for a Klein bottle. We make three copies 

axaxbY = 1, b^c^c^ = 1, 

a2a2b2 = 1, b2c2c2 = 1, 

a3a3b3 = 1, b3c3c3 = 1. 

We interweave these copies by permuting the subscripts on the second 
occurrences of one or more of the letters a, b, and c in the three copies, 

ala2bl = 1, b2clcl = 1, 

a2a3b2 = 1, blc2c2 = 1, 

α3α^3 = 1, b3c3c3 = I-

In Chapter 2 we determined the vertex identification by finding all 
edges terminating in the same vertex. Our procedure actually gave the 
order in which the edges would be crossed on a path around the vertex. 
If the vertex is on a boundary curve, the sequence of edges starts and stops 
with a boundary edge. Otherwise, the sequence will repeat. As we follow 
the same procedure to determine the vertices of a covering surface, the 
sequence of edge symbols is the same except that subscripts are added to 
the edge symbols of the covered surface. Let P be a vertex of S and let Px 

be a vertex covering P. If P is on a boundary curve of S, the sequence of 
edges terminating at Px must have the same length because the edges of S 
covering boundary edges of S are boundary edges of 5. On the other hand, 
when P is not a boundary vertex, the sequence of edges about Ργ need 
not repeat so soon as the sequence about P because the sequence of edge 
symbols about P may be repeated many times before a combination of 
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an edge symbol and a subscript repeats. The number of edges terminating 
at Px is k times the number of edges at P for some integer k. At Pu k sheets 
of the covering surface are fitted together so that instead of one point 
over P in each of k sheets there is only the point Px. When k>\,Pl\s 
called a branch point of S as a covering of S and the deficiency k - 1 in 
the number of covering points is called the order of the branch point Pv 

Certain properties follow immediately from the definition of a covering 
surface. If the surface covered is orientable, its equation can be written 
so that no edge symbol will occur twice in the same sense. When n copies 
of these equations are interwoven to give an «-sheeted covering surface, 
each of the new edge symbols appears once in the expanded system of 
equations for each occurrence of the covered edge in the original equations. 
Furthermore, the covering edge appears in the same sense as the covered 
edge. This means that a covering surface of an orientable surface has a 
system of equations in which no edge symbol occurs twice in the same 
sense. Hence every covering surface of an orientable surface is orientable. 
Because every covering edge appears the same number of times as the 
covered edge, a covering surface of a closed surface is closed. 

We now relate the Euler characteristics of a covering surface and the 
covered surface. Let S be an w-sheeted covering of a surface S formed from 
N2 polygons, Nt edges, and JV0 vertices. In S there are nN2 polygons and 
nNx edges covering the polygons and edges of S but there are nN0 — δ 
vertices; δ is the sum of the orders of the branch points on S as a covering 
of S. The Euler characteristic of S and S satisfy the relation χ$ = ηχ5 — δ. 

To complete the classification of S we must count the boundary curves 
of S if 5 is not closed and determine whether S is orientable. The question 
of orientability is already answered if 5 is orientable. Because the boundary 
curves of S cover those of S, there are at least as many boundary curves 
on S as on S and there are no more than n times as many boundary curves 
on S as on 5. A single boundary curve of S may cover a boundary curve 
of S more than once, for it may bound more than one sheet. 

Example 1 . On the Riemann sphere let a be the real axis from 1 to 0, 
let b be the negative real axis from 0 to oo, and let P, Q, and R be the points 
1, 0, and oo, respectively. Consider the Riemann surface of the equation 

w4 + (2 - 4z)vv2 + 1 = 0 . 
The four solutions of this equation for w in terms of z are 

H>! = >Jz + y/z - 1, W3 = - yjz + yjz - 1, 

W2 = yJZ - y/z - 1, W4= - y/z - yjz - 1. 
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If w is to vary continuously with z, \v\ must be interchanged with vv4 and 
w2 with H'3 as z crosses ό. On the other hand, wx must be interchanged 
with w2 and vv3 with vv4 as z crosses a. If the yth sheet of the Riemann 
surfaces corresponds to the points (z, wj), the four-sheeted Riemann sur-
face has the following equations : 

alblb^la2
 l = 1, 

a2b2b3
xax

x = 1, 

a3b3b2
la^1 = 1, 

ö4646i~1a3~1 = 1. 

Rewritten with vertex symbols, the equations become 

PaQbRb-lQa-'P= 1 

for the sphere and 

PxaxQxbxRxblxQ2a-2
xPx = U 

Pla2Q2b2R2b3
lQla[lPl = \i 

PiCi,Q,b,R2b2
xQ2alxP2=\, 

P2a4Q2b^Rlb;iQia^P2 = \, 

for the Riemann surface. Each of the vertices Λ Q, and R is covered by a 
pair of branch points of order 1. For the Riemann surface χ = 4(2) - 6 = 2. 
This shows that the covering surface as well as the covered surface is a 
sphere. 

Example 2. In Example 1 cut out a patch around the vertex P and con-
sider the corresponding covering surface. The sphere with a patch removed 
has an equation dbb~ld~le = 1, illustrated in Figures 3.7 and 3.8. The 
covering surface has the equations 

SldlQiblRlb;iQ2d2~
lS2elSl = 1, 

S2d2Q2b2R2b3
lQld;1Sie2S2 = 1, 

S3d3Qlb3R2b2
iQ2d^lS4e3S3 = 1, 

The edge pairs exe2 and e3eA are the two boundary curves of the four-
sheeted covering of the sphere with the one boundary curve e. If we let 
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Fig. 3.7 Fig. 3.8 

the curve e shrink to a point, we see that the branch points Px and P2 in 
Example 2 are the limits of the curves exe2 and e3e4, which doubly cover 
the curve e. 

Of special interest are covering surfaces without branch points. If n > 1, 
there can be no unbranched w-sheeted coverings of the sphere, for the 
Euler characteristic of such a covering surface would have to be In. The 
sum of the orders of the branch points of an w-sheeted covering of a sphere 
must be at least In — 2. 

We now show that every closed nonorientable surface has an unbranched 
two-sheeted covering which is orientable. In Chapter 2 we learned that 
every closed nonorientable surface may be represented by an equation 

C\C±C2C2 '" CqCq = 1· 

By reversing Step 4 in the reduction to canonical form we may replace 
pairs of crosscaps with handles to transform this equation to one of two 
forms : 

^ ι β ι Μ Γ 1 ^ " 1 '"apbpaplbpl = l 

or 
c1c1c2c2aibla;1bî1 -· apbpa-lb~l = 1. 

In these forms we allow the case p = 0 in which there are no handles. The 
following pairs of equations give two-sheeted unbranched coverings in the 
two cases : 

c11c12ailb11a;ilb;li ··· apXbpla~^b~^ = 1, 

cl2clxax2bl2a\2xb\2x ··· ap2bp2ap2bp2 = 1, 
and 

c1iCi2c21c22a11b11a;l1b;li ··· aplbpla~^bp^ = 1, 

CiiCiiC^c^a^b^a^b^1 ··· ap2bp2ap2xbp2x = 1. 
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If the second equation in each of these pairs is inverted, the new pairs of 
equations will have every symbol appearing once in each sense. This shows 
that these covering surfaces are orientable. Because the covering is un-
branched, the Euler characteristic of the orientable double covering is 
twice as large as that of the nonorientable surface. The projective plane, 
which has the equation cc = 1 and Euler characteristic 1, has the sphere as 
its orientable double covering. 

In Chapter 1 we used a southern hemisphere with antipodal points on 
the equator identified as a model for the projective plane. If we complete 
the sphere with the understanding that each point in the northern hemi-
sphere is identified with its antipodal point in the southern hemisphere, no 
new points but only new representations of old points have been added. 
This geometric model of the projective plane as a Euclidean sphere with 
antipodal points identified exhibits the sphere as a double covering of the 
projective plane. Lines through the center of the sphere intersect the sphere 
in pairs of antipodal points. If these lines rather than the pairs of antipodal 
points are thought of as " points " of a space, we find that the space of 
lines through a point in three-dimensional Euclidean space is topologically 
a projective plane. In Chapter 7 we shall study other spaces, called con-
figurât* on spaces, in which lines, circles, or other geometric figures play 
the role of "points." 

Example 3. On a torus 5, represented as a rectangle in the xy-plane with 
opposite edges identified, draw a regular subdivision into n hexagons so 
that each hexagon has two vertical edges, two edges with positive slope, 
and two edges with negative slope. Form a second torus S from a single 
hexagon by identifying opposite edges in the pattern abca~1b~1c~1 = 1. 
If each hexagon of S is considered as covering S with the vertical edges 
covering a, the edges of negative slope covering Z>, and the edges of positive 
slope covering c, S is an n-sheeted covering of S. Figures 3.9 and 3.10 
illustrate this covering when n = 4. Because 

0 = Xs = "Xs - δ = 0 - (5, 

S is an unbranched «-sheeted covering of the torus. 

Example 4. Let x, y, z be Cartesian coordinates in a three-dimensional 
Euclidean space. Let surface S (Figure 3.11) be the locus of the equation 

z2 = (x2 + y2- \)[(x - 3)2 + y2 - \][(x + 3)2 + y2 - 1](25 - x2 - y2). 

Because z is real, the equation cannot be solved for z in terms of the point 
(*, y) of the *y-plane if x2 + y2 < 1, if (x - 3)2 + y2 < 1, if (x 4- 3)2 + 
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r 
C < 

Fig. 3.9 

y 

Fig. 3.10 

I alb1c1a2~
1b4F-lc3-

i = l 
II a2b2C2ai-

ib3~
icA~1 = 1 

HI e a ^ C a f l « - 1 * ! - 1 ^ - 1 ^ 
IV aAbAc4a3-

ib2-
1ci-

1 = \ 

Fig. 3.11 
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y1 < 1, or if x2 + y2 > 25. When (x,y) is outside the circles x 2 + y 2 = l , 
(x - 3)2 + y2 = 1, and (A* + 3)2 + >>2 = 1, but inside the circle x2 + ,v2 = 
25; there are two values of z, one positive and one negative, corresponding 
to (Λ\ y). If (x, y) is on one of the four circles, z = 0. Thus S is a pretzel 
with three holes and is a closed orientable surface of genus 3. This des-
cription could be verified algebraically by dividing 5 into four polygons 
by drawing the curves in which 5 intersects the planes y = 0 and z = 0 and 
then studying the edge equations of these four polygons. 

Let Sx, Sy, Sz, S0 be the closed surfaces obtained from S by identifying 
points by symmetry in the x-axis [that is, the identification 

(x,>>, z)*->(x, - j \ - z ) ] , 
in the j-axis, in the z-axis, and in the origin [that is, 

(x,>>, z)<->(-x, -}\ - z ) ] , 

respectively; S is a two-sheeted covering of each of the surfaces Sx, Sy, Sz, S0. 
When S is considered as a covering of Sx, each of the eight points 

(5,0,0>, ( -5 ,0 ,0 ) , (4,0,0), ( -4 ,0 ,0 ) , (2,0,0), ( -2 ,0 ,0 ) , (1,0,0), 
(— 1, 0, 0) on the x-axis is the only point on S covering the corresponding 
point on Sx. Therefore 5, as a two-sheeted covering of Sx, has eight 
branch points of order 1. Because χ8 = — 4 and χ5 = 2ySx — 8, ySx = 2 and 
Sx is a sphere. 

When S is considered as a covering of Sy, the branch points are (0, 5, 0), 
(0, - 5 , 0), (0, 1, 0), ( 0 , - 1 , 0). Hence 2/s>, - 4 = - 4 and *Sy = 0. This 
means that Sy is either a torus or a Klein bottle. To determine whether Sy 

is orientable, we first subdivide S into four polygons by drawing the curves 
in which the planes y = 0 and z = 0 intersect S. Figure 3.12 shows the 
top two polygons as seen from above. All of the edges except el, e2,e3, and 
e4 are in the plane z =0, hence are on both the upper and lower halves of S. 
Let/u/2 , / 3 , and/4 be the edges on the lower half directly below e,, e2, £3, 
and e4. If III is under I and IV is under II, the following are edge equations 
for the four polygons : 

I dAdlei1cleïlbllb11eï1axeïl = \, 

III d^dj^cj^bixbxif^aj^ = \^ 

IV d3d2fla2f2b21b22f3c2f4r = 1. 

Because (x, y, z)<->( — x,y, —z) identifies a point on the top of S with a 
point on the bottom, every point in S is represented by a single point on 
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:. \ d 3 

Fig. 3.12 

the top of S except for double representation by points on the edges, 
where the top joins the bottom. These double representations may be 
eliminated by identifying a2 with c2\ b2l with b22\ cl with aï1, and d2 

with dïl. Also d4 with έ/f1 and bl2 with éf/. By making these sub-
stitutions in equations I and II we derive the following pair of equations 
for Sy: 

dï1d2elcïle2b^b22e3c2e4 = 1 

Because every symbol occurs once in each sense, Sy is orientable. Hence 
Sy is a torus. 

When S is considered as a covering for S2, there are no branch points, 
for the z-axis does not intersect 5. Hence xSz = - 2 and Sz is either a 
sphere with two handles or a sphere with four crosscaps. The identification 
(x, y, Z)<->(-JC, -y, z) matches each point on the back half of S with a 
point on the front half and identifies e4 with ex~\ez with e2\fA wi th/71 , 
and / 3 with f2\ Using these edge identities, we derive the following 
equations of Sz from I and III: 

d4dlelc1e2bnbl2e2~
laleïl = 1 

d^xhcj2bxxbx2f2'aj^ = \ 
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If the second equation is inverted, we see that Sz is orientable, hence a 
sphere with two handles. 

Considering S as a covering for S0, we again find no branch points, so 
that 5 0 is either a sphere with two handles or a sphere with four crosscaps. 
The identification (x, y, z)<-+( — x, —>>, —z) pairs a point on the top of S 
with one on the bottom and matches ax with c2, bx with b2, cx with a2, 
d3 with d4, and dx with d2. Starting from I and II, we find that 5 0 has the 
edge equations 

d^diellclellbllbl2e2
lale^1 = 1 

d^dlelc1e2bllbl2e3ale4 = 1 

Because ax and ex have the opposite sense in one equation and the same 
sense in the other, either at or ex will occur twice in the same sense no 
matter which equations are inverted. Thus S0 is nonorientable and a sphere 
with four crosscaps. 

3.3 Some Additional Examples of Riemann Surfaces 
Example 5. Consider the Riemann surface of the equation 

Μ·2 = ( Ζ - Γ Ι ) ( Ζ - Γ 2 ) . . . ( Ζ - Γ Ι Ι ) , (A) 

where rx > r2 > ··· > rn are n distinct real numbers. The two solutions of 
this equation are 

H'I =Jz-rxJz-r2---Jz-rn, 

\v2 = -Jz - rxsJz - r2 • • V z ~ r n · 

These definitions are unambiguous if z is not on the real axis to the left 
of rx. If cij is the segment of the real axis from r, to rj+, and an is the seg-
ment of the real axis to the left of rn, the equation 

<*ia2--ana;1 --a^a;1 = 1 

is an equation for the Riemann sphere. If z crosses the real axis at a point 
r, all factors N/z — r, with r} > r change sign, whereas all other factors are 
unchanged. When z crosses α,, wx and \v2 are interchanged if j is odd and 
not interchanged if j is even. Therefore the Riemann surface has the 
equations 

«11«21«31«4ΐ···«411ΰί21«2"ΐ1«1~21 = 1, 

^12022^32042 '" al2aZla22a\\ = 1· 
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When j is odd, ajl and aj2
l are in the first equation, whereas aj2 and àj1 

are in the second. When j is even, an and a]1 are in the first, whereas aj2 

and aj2
l are in the second. 

When n is even, the middle pair of symbols is anla~^ in the first equation 
and an2a~2 in the second. By combinatorial equivalence we can delete these 
pairs of symbols, thereby eliminating two edges and two vertices. The sur-
face has two points, both covering oo, but the locus had only one point 
covering oo. This is another example in which the Riemann surface of an 
equation is topologically different from the locus of the equation. The locus 
is obtained from the Riemann surface by identifying the two points on the 
surface covering oo. After the middle pairs have been deleted the equations 
for the Riemann surface are those that correspond to equation (A) when 
n is replaced by n — 1. Thus we have found that when the number of 
factors z — rt is even the Riemann surface is topologically unchanged if 
the last factor is omitted. We may therefore assume that n is odd and that 
the middle pair of symbols is ania~2 in the first equation and an2a~± in the 
second. 

Since a Riemann surface is closed and orientable, the surface can be 
classified as soon as the genus or the Euler characteristic is calculated. We 
shall now find the branch points. Let P be the vertex between α η and a2l 

in the first equation. It must be between a2^ and a[2 in the first equation 
and between a12 and a22 and a22 and aï* in the second. The single point 
P is the only point on the Riemann surface covering the point r2, which 
is between at and a2 and between a2

l and aï1. A similar calculation will 
show that each of the points r x, r2, ..., rn, r„ +1 = oo (n odd) is covered by 
a single point on the Riemann surface. Thus there are n + 1 branch points 
and the Euler characteristic is χ = 2(2) — (n + 1). Since χ = 2 — 2/7, the 
genus of the Riemann surface is (n — l)/2 when n is odd. When n is even, 
the genus is [(n — 1) — l]/2 = njl— 1. We have shown that the Riemann 
surface associated with the equation 

w2 =(z - r^z - r 2 ) · · · (z-rn) 

is a sphere with p handles where p = n/2 — 1 if n is even and/7 = (n — l)/2 
if n is odd. Because n can be any positive integer, p can be any non-
negative integer. This means that every closed orientable surface is the 
Riemann surface of some double-valued function w defined by equation 
(A) for some value of n. This Riemann surface has branch points of order 
1 covering rl9 ..., rn (n even) or rl5 ..., r„, rn+i = oo (n odd). 

Example 6. For the examples up to this point we have used y/z but 
not higher roots. The equation wn = z has n roots which differ in their 



For w to be a continuous function of z when z crosses the negative real 
axis, the subscript of Wj should be increased by one as z moves from the 
second to the third quadrant and decreased by one for motion in the reverse 
direction. If y = n — 1, an increase by one should be interpreted as a return 
to zero. If a is the negative real axis from 0 to oo, the Riemann sphere has 
equation aa'1 = 1 and the w-sheeted Riemann surface S of wn = z has the 
edge equations 

a0a~ll = 1, a^ö1 = 1, a2aï1 = 1,... 9an^xa~}2 = 1· 

A check of the vertices on S shows that 0 and oo are each covered by a 
single vertex that is a branch point of order n — 1. Hence 

Xs = /i(2) - 2(* - 1) = 2, 

so that S is a sphere. In this example the locus of the equation is topo-
logically equivalent to the Riemann surface. 

Example 7, On the Riemann sphere let a be the real axis from 1 to 0 and 
let b be the negative real axis from 0 to oo. The Riemann surface associated 
with the equation 

w3 = z(z - 1) 
has the equations 

a2b2bï1aï1 = 1, 

To derive these equations define w for points on the first sheet by 

wi = IJ'zlJz- 1, 

where the arguments of these cube roots lie between ±π/3. 
For the second and third sheets define 

w2 = (cos π/3 + i sin π/3)νν1? w3 = (cos 2π/3 + i sin 27^3)^. 

arguments by integral multiples oïlnjn. These angles arise from division by 
n of values for arg z which differ by multiples of In. Among the nth roots 
of z, one denoted by Zjz can be selected with — n/n < arg^/z < n/n. The 
nth roots of w then have the form 
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With these définitions the equations above follow immediately. Let P, g , 
and R denote the points 1, 0, and oo on the sphere. We find that the vertex 
Pi9 which is the initial point of al9 is also the initial point of a2 and a3. 
Thus P t is a branch point of order 2 over the point P. The vertex P, which 
ends b, is covered by a branch point Rl9 which ends bi9 b29 b3. Similarly, 
vertex Q between terminating a and starting b is covered by a single point 
Rt which terminates ai9 a2, a3 and starts bi9 b2, b3. Because δ = 6, the 
Euler characteristic of the Riemann surface is χ = 3(2) — 3(2) = 0. Because 
a covering of a sphere must be closed and orientable, we conclude that the 
Riemann surface is a torus. In this example the Riemann surface and the 
locus are topologically equivalent. 

EXERCISES 

Section 3.1 
1. Let x and y be Cartesian coordinates in the Euclidean plane. Classify 

each of the conies described by the following equations as an ellipse 
or circle, a hyperbola or pair of intersecting lines, a parabola, a point, 
or the empty locus : 
(a) x2 + xy + y2 + 5 = 0. 
(b) x2 + xy + y2 - 5 = 0. 
(c) x2 + xy + y2 = 0. 
(d) x2 + 2xy + y2 + x = 0. 
(e) x2 + 3xy + y2 = 0. 

2. Let / (z , w) = Λζ2 + Bzw + Cw2 + Z>z + Ew + F. If C + 0, show that 
/ (z , w) factors into two linear factors if and only if 

CD2 + B2F + AE2 - BDE -4ACF= 0. 

3. Find the points of the form (oo, w) on the complex conic defined by 
w2 — wz + z + 1 = 0. For which values of z is there only one point 
on the conic of the form (z, w) ? 

4. Find the points of the form (oo, w) or (z, oo) on the loci of these equa-
tions. 

(a) (z2 + 2z + 5)w2 + (z + 2)w + 4z2 + 3 = 0. 
(b) (z2 + 3)w2 + (z3 + 2z)w + 2z3 + z2 + 3 = 0. 

5. What points z are covered by fewer than two points on the locus of 
(z2 + \)w2 + z2w + \z2 — \ = 0? For what values of z is the point 
(z, oo) on the locus? What points cover z = oo ? 
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Section 3.2 
1. What is the topological nature of the three-sheeted covering of a Klein 

bottle given in the text? 

2. The surface S described by the equations 

alb1c1dld2Xcïlbïla2l = 1, 
a2b2C2d2d^lc^lb2lci\l = 1, 
a3bzczd3d^xC2 lbl1a^1 = 1 

is a three-sheeted covering of the sphere S represented by 

abcdd~1c-'lb-1a-i = l. 

Which vertices of S are covered by fewer than three vertices of S ? What 
is the topological nature of S? 

3. The equations of a sphere S and a covering surface S are 

S-.aa-ibb^cc-idd-t = 1 Sa>al\^%C>Ci\d/}_\ = J· 
a2ai b2bl c2cl d2d1 = 1. 

How many branch points has S as a covering of 5? What is the topo-
logical nature of S? 

4. aibic1bï1d1e1f1e'[1 = 1, 
S'.abcb~ldefe~l = l T\a1b2C1b^d2e1f1ël'i = 1> 

What is the topological nature of SI Has T any branch points as a 
three-sheeted covering of 5? How many boundary curves (or cuffs) 
has ΤΊ What is the topological nature of ΤΊ 

5. a1a2blb3c1cl = 1, 
o . I_I 1 r T . .^2 ö [ 3 ' ? 2^4 C 2 C 3 = 1 > 

S\aabbcc = \ T. 2 3 , , 
^ 3 ^ 4 ^ 3 ^ 1 C 3 ^ 4 = 1» 

aAalbAb2
cAci = 1· 

Find the branch points and their orders for Tas a four-sheeted covering 
of S. What is the topological nature of ΤΊ 

6. What surfaces have closed orientable surfaces of genus 3 (spheres with 
three handles) as an unbranched covering? 

7. Prove that a covering surface of a nonorientable surface is itself non-
orientable if the number of sheets is odd. 
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8. For any positive integer n show that a Möbius band has an unbranched 
«-sheeted covering surface. When is this covering surface a Möbius 
band and when is it a cylinder? 

9. Let x, y, z be Cartesian coordinates in Euclidean three-space. The sur-
face S is the locus of the equation 

z2 = [(x - 2)2 + y2 - l][(x + 2)2 + y2 - 1](16 - x2 - y2). 

Let Sx and S0 denote the closed surfaces obtained from S by identi-
fication of points by symmetry in the x-axis [that is, 

(x,y,z)+->(x, -y, -z)] 
and in the origin [that is, 

(x,y,z)<-*(-x, -y, -z)], 

respectively. S is a two-sheeted covering of each of the surfaces Sx and 
S0. Find the branch points of each covering. Determine the topological 
nature of each of the surfaces S, Sx, and S0. 

10. iS:a1fc1c1bJ"1a2è2
c2^lfl3^3c3^i1 = 1> 

a l l ^ l l C 1 1 ^ 1 2 a 2 1 ^ 2 1 C 2 1 ^ 2 i i a 3 1 ^ 3 1 C 3 1 ^ 3 7 i = U 

j , . ^ 1 2 ^ 1 2 C 1 2 ^ 1 3 a 2 2 ^ 2 2 C 2 2 ^ 2 i 2
a 3 2 ^ 3 2 C 3 2 ^ 3 j 2

 = »̂ 
a 1 3 ^ 1 3 C 1 3 ^ 1 4 a 2 3 ^ 2 3 C 2 3 ^ 2 i 3

a 3 3 ^ 3 3 C 3 3 ^ 3 i 3
 = 1> 

a 1 4 0 1 4 C 1 4 b ^ a 2 4 ^ 2 4 C 2 4 ^ 2 i 4 l ö [ 3 4 & 3 4 C 3 4 * 3 " / 4 = *· 

Figure 3.13 represents S as a quadruply connected plane region. Show 
that Tis an unbranched covering of S. Let the sphere S' and the surface 
T be the closed surfaces obtained from S and Tby "shrinking" each 
boundary curve of S or T to a point. Write equations for S' and T. 
Let r be the number of boundary curves of T and let δ be the sum of the 
orders of the branch points of T as a covering of S'. Show that r + δ = 
(4)(4). (One factor 4 is the number of sheets of the covering and the 
other is the number of boundary curves on S.) 

Section 3.3 
1. Dissect the locus of zw2 — z + 1 = 0 into two sheets, each covering the 

Riemann sphere of points z. How many points on the locus cover 0, 
1, oo ? How many points on the Riemann surface cover 0, 1, oo ? Give 
topological descriptions of the locus and the Riemann surface. 

2. The roots of the equation w4 - 4w2 + 4z2 = 0 are w = ± λ / ζ + 1 + 
yj\ — z (four combinations of signs). For what values of z are there 
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Fig. 3.13 

more covering points on the Riemann surface than on the locus of the 
equation ? Give a topological description of the Riemann surface. 

3. The cubic equation w3 4- axw + a0 = 0 has a multiple root if and only 
if 4a\ + 27#ο = 0. What points z are covered by fewer than three points 
on the locus of zw3 — 3zw + 2z + 1 = 0 ? For what values of z is the 
point (z, oo) on the locus? What points cover z = oo? What is the 
topological nature of the Riemann surface of this equation ? 

4. For each non-zero value of z the four roots of the equation w4z2 — 
Aw2 + 4 = 0 may be expressed by the formula 

± -v/l + z ± J\ - z 
w = — (four combinations of signs). 

z 

Find the branch points on the Riemann surface of this equation. 
Describe the Riemann surface topologically. 



4 MAPPINGS INTO THE SPHERE 

4.1 Winding Number of a Plane Curve 
In this chapter we shall study mappings from a surface into the sphere. 

The concept of winding numbers is used to derive properties of these 
mappings. For concreteness we represent the sphere as the complex plane 
with a point at infinity adjoined. The finite points are specified either by 
complex numbers z = x + iy or by the corresponding coordinate pairs 
(x, y), where x and y are Cartesian coordinates in a Euclidean plane. 

In analytic geometry we use a pair of parametric equations 

* = / ( 0 , y = g(t)9 

to express the rectangular coordinates of the points of the curve as con-
tinuous functions of a parameter t which ranges over a real interval [a, b] 
on which a < t < b. Using complex numbers to represent points, we can 
replace the two equations by a single equation 

z = h(t) 

110 
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where h(t) =f(t) + ig(t). A third description of the curve is given by a 
pair of functions r(t) and 0(0 which express polar coordinates of points 
on the curve in terms of /. 

Polar coordinates present two problems : the angular coordinate is not 
defined at the origin, and elsewhere the angular coordinate has many 
values which differ by integral multiples of 2π. This means that a particular 
function 9(t) which represents the angular coordinate of points on a curve 
is undefined when r(t) = 0 and may be discontinuous elsewhere. For 
example, 0(0 could have an arbitrary number of jump discontinuities at 
which the height of the jump is an integral multiple of In. We show that 
every curve C not passing through the origin can be represented by func-
tions r(t) and 0(0 for which 0(0 as well as r(t) is continuous. From this 
function 0(0 the variation V(C) of the polar angle is defined as 

V(C) = d(b) - θ(α). 

In the language of complex analysis V(C) is called the variation of the 
argument of z over the curve C. If 0*(O were another such continuous 
function, 0(0 — 0*(O would be a continuous function whose only values 
could be integral multiples of In. Hence 0(0 — 0*(O is a constant function 
and 0*(f) = 0(0 + kin for some fixed integer k. Because 

0*(6) - 0*(fl) = 0(6) - 0(a), 

we see that V(C) does not depend on the selection of 0(0- A curve is 
closed if h{a) = h(b). In terms of polar coordinates this means that 

r(b) = r(a) and 0(b) = θ(α) + nln 

for some integer n. This integer n = (l/27r)K(C) is called the winding number 
of the curve C about the origin. 

We shall now prove that the angular coordinate can be defined as a 
continuous function of the parameter. Let z = h(t), a < t <b define a 
curve in the complex plane not passing through the origin. The function 
r(t) = \h(t)\ = y/f(t)2 + g(t)2 is continuous on the closed interval [a, b] and 
assumes only positive real values. A theorem of calculus states that such 
a function must always have a minimum value m which is positive. By 
another theorem the continuous functions fit) and git), defined on the 
closed interval [a, b], must be uniformly continuous. As a consequence, 
the interval [a, b] may be subdivided by a finite number of points 

a = t0 < ti < ··· < tj < tJ+l < ··· <tH = b, 
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so that if t is in the subinterval [tj, tj+1] 

l / ( 0 - / ( o ) l < " 7 = a n d \9{t)-9itj)\<^r. 

This implies that 

|Λ(0 - Ktj)\ = V ( / ( i ) - / ( O ) ) 2 + (3(O-0( '>)F < m. 

Let Zj be the point h{tj) and C,· be the portion of the curve corresponding 
to the subinterval [tj9 tj+i]. The last inequality says that Ci is inside the 
circle Kj with radius m and center Zj (Figure 4.1). Because m is the shortest 

Fig. 4.1 

distance from 0 to the curve, the line Li through O perpendicular to Zj 
considered as a vector is either tangent to or outside of the circle Kj. The 
angle from z} to h(t) considered as a vector can be taken as ij/jit), where 
ΙΆ/01 < π/2. This inequality can be satisfied because Cj is inside Kj and 
the interior of Kj is entirely on one side of Lj. The law of cosines from 
trigonometry tells us that 

(\zj\2 + |h(Q|2 - \zj - h(t)\2\ 
IW>l = «cco.( 2î ii*(Öi )· 
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The continuity of the arc cosine function implies the continuity of |^j(/)| 
over the interval [tj9 tj+i]. The angle ψβ) is positive if h{t) is on one side 
of the line through 0 and z7· and is negative on the other side. The angle 
\l/j(t) can change from positive to negative only if h(t) crosses the line and 
il/j(t) becomes 0. Therefore the continuity of ψβ) now follows from the 
continuity of h(t) and of | ^ /0 I · Let <t>j = uj(tj+i) and let 0O be any 
angular coordinate of z0. If t is in the interval [tk ,tk+i], define 

j = o 

The function θ(ί) defined in this way for the entire interval [a, b] gives an 
angular coordinate for h(t) which varies continuously with t (Figure 4.2). 

Fig. 4.2 

This shows that the variation V(C) is defined for every curve C. The value 
of V{C) may be calculated from the formula 

7 = 1 

In our discussion a curve has been specified in terms of a particular 
parameter. We now consider when two representations describe the same 
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curve but with different parameters. If an equation z = h{t) with a < t <b 
describes a curve C, the order or real numbers in the interval [a, b] induces 
an order of occurrences of points on the curve. Note that the occurrences 
of points and not the points themselves are ordered. This distinction is 
necessary because a curve may pass through the same point many times. 
If we think of a curve as an ordered set of occurrences of points, there are 
many possible parameters to describe the curve. If the same curve is 
specified by the equation z = h\s), where c < s < d, let s = d(t) be the 
value of s such that t and d(t) correspond to the same point occurrence 
on C. The mapping / -» d(t) is a one-to-one correspondence of the interval 
[a, b] onto the interval [c, d]. The mapping preserves order; that is t < t' 
implies d(t) < d(t'). Because V(C) =Σ"=ι φ], where φ] depends only on 
the points Zj and not on the antecedent parameter values tj, the variation 
V(C) depends only on the curve and not on the selection of parameter. 

If a curve C is defined by z = h{t) for a < t < b, the restriction of h(t) to 
two subintervals [a, /0] and [/0, b] subdivides C into two curves Cx and C2 . 
Now 

V(C) = B(b) - Θ(α) = 0(6) - θ(/0) + θ(ί0) - θ(α) = V(Ct) + K(C2). 
Thus the angular variation over any curve may be computed by subdividing 
the curve and adding the variations over the segments. If the order of 
point occurrences on a curve C is reversed, the inverse curve C~l is defined. 
Clearly K(C _ 1 )= - V(C). 

The winding number œ(C, c) of a closed curve C defined by z = h(t) about 
a point c = a + bi is defined to be the winding number about the origin 
of the curve defined by z* = h(t) — c. 

Example 1 . We shall calculate the winding number about the point (1, 0) 
of the curve C defined in the Euclidean plane by the parametric equations 

x = cos t + cos It, Λ ^ , ^ . . _ 0 < t < In. 
y = sin t + sin 2i, 

By definition the winding number of C about (1,0) is the same as the 
winding number about the origin of the curve C defined by 

X = COS / + COS It — 1, r\ ^ . ^^ 
. ^ 0 < t < In. 

y = sin t + sin 2t, 
We start by drawing a rough sketch (Figure 4.3) of the graphs of x and y 
(on C ) as functions of /. We divide the /-axis into subintervals such that 
the curve stays within one quadrant when / stays in a subinterval. The 
values of / for which x = 0 or y = 0 specify endpoints of the subintervals. 
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Fig. 4.3 (a) x = cos / -f cos It - 1, (b) y = sin t + sin It 

For C" the endpoints are / = 0, 2π/3, π, 4π/3, 2π (where y = 0), and 
f-\+Jn\ / - i + y i 7 \ / - i + y n \ 

ί = arccosl —^— I, 2π - arc cosl —-— I, 

where x = 0. From the quadrant labels above the subintervals in Figure 
4.3 we see that C" goes around the origin once. Hence the winding number 
of C about (1,0) is 1. 

Example 2. Let the continuous function z(t), defined for 0 < t < 1 with 
z(0) = z(l), determine in the complex plane a closed curve C that does not 
pass through the origin. We shall prove that if the directions from 0 to 
z(t) and from 0 to z(t + ^) are (a) always the same, then co(C, 0) is even; 
(b) never the same, then a>(C, 0) is odd. 

Let Ci and C2 be the arcs of C for which t is restricted to the intervals 
11:0 < t < \ and I2 : \ < t < 1, respectively. The curve C2 may be defined 
by the function z(t + £), with 7t as domain. Let 6(t) be a continuous 
definition of arg z{t) for / i n / ^ If the direction from 0 to z(t + i ) is 
always the same as that from 0 to z(t), 6(t) is also a continuous branch of 
arg z(t + ^). Hence 

V(C) = V{CX) + V(C2) = [fl(i) - 0(0)] + [0Q) - 0(0)]. 

Because z(0) and z(i) have the same ray from the origin, 

fl(i) - 0(0) = 2£π 

for some integer k. Thus 

2π 2π 

If the direction from 0 to z(t + ±) is never the same as the direction from 
0 to z(/), [z(t + i)]/z(/) is never a positive real number, and we may define 
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a continuous branch φ(ί) of arg[z(/ + i)/z(/)] with 0 < φ(ί) < In. The 
equation 

Z(r + J) = z(0!ii±i) 
z(t) 

shows that 
«KO = ö(0 + φ(ή 

is a continuous definition of arg z(t + i ) for Mn Iv Now 

v(c2) = <Ki) - *(0) = 0(i) - ö(0) + <κ±) - ΦΦ) 

= n c i ) + 0(i> - ^(O). 
Hence 

K(C) = V(CX) + K(C2) = 2 Κ ( ^ ) + φ{\) - φ(0). 

Because V{CX) = 0(±) - 0(0) is a value of 

z(i) 
arg z(i) - arg z(0) = arg — , 

z(0) 

it follows that 

V(CX) = φ(0) + 2kn 

for some integer k. Thus 

7(C) = 4kn + φ(±) + 0(0). 

Now V(C) is an integral multiple of 2π and 0 < φ{\) + φ(0) < 4π. Hence 
<Ki) + Φ(0) = 2π and 

œ(C,0) = -!-F(C) = 2 k + l . 
2π 

4.2 Mappings into the Plane 
We consider first a continuous mapping/ of an orientable surface S into 

the complex plane such that no point is mapped into the origin. If C is a 
curve on S, the ordering of occurrences of points P on C determines an 
ordered set of occurrences of points f{P). This ordered set describes a 
curve denoted by/(C). The variation V(f(C)) of this plane curve is called 
the variation Vc(f(P)) of the argument of the function/over the curve C. 
Let /and g be two complex valued functions, and let arg/(P) and arg g(P) 
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be continuous branches of the argument off(P) and g{P) along a curve C. 
The equation 

arg(/(P) g(P)) = arg/(P) + arg g(P) 

defines a continuous branch of the argument off(P) g(P). Hence 

Vc(f(P) g(P)) = Vc(f(P)) + KC(^(F)). 
Theorem. If S is an orientable surface, represented by the equation 
a^b^a\xb\l ··· α^ρα~ν^ρ

χάΛβχά\χ --drerd~{ = l, and / is a nonvanish-
ing, continuous, complex-valued function defined on S, then 

Σ K(/(e; )) = 0. 
i = 1 

Represent 5 as a polygon in the plane with identified edges such that 
this equation describes the boundary in a counterclockwise direction. With 
this model for 5, fis a continuous function defined on the polygon subject 
to the condition tha t /has the same values at identified points. The con-
tinuity off on a closed bounded set implies tha t / i s uniformly continuous 
and that 1/(^)1 has a minimum m on S. Uniform continuity ensures that 
we can subdivide S into a finite number of polygons π7 which are small 
enough so that \f(P) —f(P')\ < m for any two points in the same polygon. 
If Tj is the boundary of a polygon of the subdivision, the closed curve 
f(Vj) is within a circle of radius m with its center at any point of the curve 
(Figure 4.4). Therefore Κ(/(Γ7)) = 0. Suppose that each curve Γ7· is 
oriented counterclockwise. Now 

Σ vWFj)) = o. 

Fig. 4.4 
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The sum £ y V(f(Vj)) can be rewritten as the sum of the variations of the 
edges which make up the curves Tj. Each edge x that is not a segment of 
an edge of S is on the boundary of two of the π,-. In one of these boundary 
curves the edge is oriented clockwise and in the other, counterclockwise. 
This means that V{f(x)) appears once positively and once negatively. The 
sum Y^j Κ(/(Γ7·)) reduces to the sum of the variations over the edges of S. 
Because each edge at, £,·, or dt occurs once in each orientation, we can 
conclude that 

£κ(/(θ) = ο. 
i= l 

Brouwer Fixed-Point Theorem (two-dimensional case). Any continuous 
mapping of a disk into itself has at least one fixed point. 

Represent the disk by the locus in the complex plane of the inequality 
\z\ < l. The mapping becomes a continuous complex function / defined 
on the disk with the property that \f(z)\ < 1 for all z. On the circle C, 
defined by \z\ = 1, |/(z)/z| < 1. Now 

m Re J' + jlm 
z r- z 

Therefore on C 

Γ/(ζ) = Re /(z) 
- 1 < Re m 1 < 0 . 

If Re[/(z)/z - 1]= 0, Re[/(z)/z]= 1 and 

1 + Im m 
< 1. 

Hence 

Im(Z^=0, ψ=1, and /(z) = z. 

If this happens, z is a fixed point and the theorem is proved. If/(z) =t= z for 
any point on C, Re[/(z)/z - 1] < 0 for all points on C. Therefore 

m - 1 = 0. 

Now 
Vcim - z] = Vc(z) + Kc[/(z)/z - 1] = Kc(z). 
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If the counterclockwise orientation is assigned to C, Vc{z) = 2π; but the 
disk is an orientable surface with the single boundary curve C, and so the 
previous theorem requires that 

V,U{z) - z] = 0, 

unless f(z) — z = 0 for some point z in the disk. Hence there must be at 
least one fixed point z at which 

/(z) = z. 
Borsuk-Ulam Theorem (two-dimensional case). A continuous mapping of 
a Euclidean sphere into the plane must map some pair of antipodal points 
onto a single point. 

Let P and P* be antipodal points on the sphere S. Iff is the mapping, 
consider the new function g{P) =f{P) —f(P*). Let C be a great circle on 
the sphere and let H be one of the hemispheres bounded by C. If there is 
no point P on S such that/(P) = /(/>*), g defines a mapping of H into the 
complex plane such that g(P) is never 0. Since H has the single boundary 
curve C, œ(g(C),0) = (\/2n)V(g(Q) = 0. On the other hand, we shall 
show that the relation g(P) = -g(P*) implies that œ(g(C), 0) is odd. This 
will prove that there is at least one point P such that /"(P) =f(P*). 

Divide C into two semicircles Cx and C2 with endpoints Ργ and P*. 
Since <7(Λ)= -g(P*)> 

V(g(Cx)) = π + η2π 

for some integer n. The formula 
a r g ( 0 ( P * ) ) ^ + arg(0(P)) 

defines a continuous branch of the argument of g(P*) for P* on C2 from 
a given continuous branch of the argument of g(P) on Cl. Hence 

V(g(C2)) = VigiCJ) and œ(g{C\ 0) = (\/2n)V(g(Q) = 1 + 2 « . 
The ham sandwich theorem is a corollary of the Borsuk-Ulam theorem. 

A ham sandwich consists of three ingredients: the ham, the butter, and 
the bread, filling three volumes in Euclidean three-space. The sandwich 
will be divided fairly between two people if each person receives half of 
each constituent. The problem is to bisect all three ingredients with a 
single slice of a knife. 

Ham Sandwich Theorem. For any three solids 51? 5 2 , S3 (with finite 
volumes) in Euclidean three-space there is a plane that simultaneously 
bisects all three solids. 
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Among the planes perpendicular to a given unit vector there are three 
πί9 π2, and π 3 , which bisect Si9 S2 , and S3 , respectively. Let x be the 
directed distance from nx to π2 and y from πί to π 3 . These distances will 
be positive if measured in the direction of the unit vector and negative if 
measured in the opposite direction. If we identify the unit vector with the 
corresponding point of the unit sphere, the mapping P -► (x, y) is a con-
tinuous transformation of the sphere into the plane. If P* is the antipode 
of P, the planes πχ, π2, π3 are the same for P* and P but the direction for 
measuring positive distance is reversed. Hence f(P) = —f(P*); but by the 
Borsuk-Ulam Theorem there is a point P0 such that / (P0) =f(Pt). For 
this point f(P0) = -f(P0), hence f(P0) = (0, 0). The three planes cor-
responding to P0 coincide; that is, there is a single plane bisecting all three 
solids. 

4.3 The Brouwer Degree 
We have considered mappings into the plane such that 0 is not an image. 

We now discuss mappings for which a finite number of points are mapped 
onto 0. First we must learn to count these roots, or zeros, with appropriate 
multiplicities. 

Consider a continuous mapping / f rom an orientable surface S into the 
plane. Assume that f(P) = 0 only at a finite set of points: Px, ..., Pk, none 
of which is on a boundary curve of S. In S select nonintersecting disks 
Ai9...,Ak which contain Pl9 ...,Pk, respectively as interior points. A 
canonical equation for the surface has the form 

albiaïibïi ··· apbpa~xb~xdxexd\x ··· drerd~x = 1. 

We may select the edges in this equation so that none intersects the disks. 
We define an orientation on S by agreeing that the closed curve in the 

canonical equation is positively oriented. Let c be the boundary curve of 
a disk Δ in S. Assume that Δ intersects no edge of S. If c starts and finishes 
at the point P, let y be a simple curve starting at the single vertex of the 
canonical equation and finishing at P. Assume that no intermediate point 
on y is on any edge of S or in Δ. We say that c is positively oriented if the 
equation 

αφ^ϊ^;1 ··· apbpa~xb~xdxexd^x ··· drerd~lyc~ly~l = 1 

describes the surface derived from S by deleting the interior of Δ. Interpret 
the canonical equation as a counterclockwise description of the boundary 
of a planar polygon from which S is obtained by edge identifications. 
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Our definition says that the counterclockwise direction is the positive 
orientation of the boundary of a disk Δ inside the polygon (Figure 4.5). 
Notice that the curve in the canonical equation is also a disk boundary if 
the edge identifications are ignored. Although we shall not need to know 
the positive orientation on the boundary curves of disks crossing the edges 
of the polygon, the orientability of S would permit the definition of positive 
orientation to be extended to all disk boundaries in S. No satisfactory 
extension could be made if S were nonorientable. 

Fig. 4.5 

We now apply our orientation to the boundary curves of the disks 
At, ..., Ak. Let Qx, ..., Qk be points on the boundary curves of the disks 
Au ..., Ak, respectively, and let cx, ..., ck be the positively oriented boun-
dary curves of the disks starting and finishing at Qx, ..., Qk. Let Vi, ..., yk 

be edges from the vertex of S to Qlf ..., Qk, respectively. Assume that 
no yj intersects any other labeled edge or curve except at the endpoints 
of>;. The surface S' derived from S by deleting the interior of each disk 
has the canonical equation 
alb1al

 1bi
 l ' <*pbpap

 lbp
 1dleldi

 1 ··· drerd'r y\C\ y\ ykck yk 
ly;l = \. 
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Because/(P) is never zero for P in S\ 

inm) + iv(f(cji) = o. 
i=l j=\ 

Equivalently, 

Σ n/fe» = Σ v(f(cj)). 
Because the et and c} are closed curves, this equation may be replaced 
by the following equation in integers: 

(1) £œ(f(ei\0)=io>(f(cj),0). 
i=l 7 = 1 

The winding number œ(f(Cj), 0) is called the multiplicity or order μ(Ρ], 0) 
of Pj as a zero off. 

We now show that μ(Ρ], 0) does not depend on the selection of Δ ; . If 
D is a second disk which determines μ(Ρ], 0), let D' be a disk with Pj in 
its interior such that D' a Δ, n D. By showing that Δ, and D' determine 
the same value of μ(Ρ], 0) and that D and D' also specify equal values of 
μ(Ρ], 0) we will have shown that μ(Ρ], 0) does not depend on Δ7. Let c} be 
the positively oriented boundary curve of D'. The function/defined on Δ; 
has a zero only at Pj which is inside D'. Because the disk Δ7 is an orientable 
surface with a single boundary curve c,·, application of (1) to Δ,· gives 

ω(/(^·),0) = ω(/(^),0). 

Thus Aj and D' determine the same value of/i(y°;, 0). The same reasoning 
applies to D and D'. 

We have found that the multiplicity or order of a zero is uniquely deter-
mined as soon as a positive orientation is specified. All multiplicities would 
by multiplied by — 1 if the orientation were reversed. Because a reversal 
would also change the orientation of the boundary curves e{ in the canonical 
equation, the formula 

(la) Σ «</(«<). °) = Σ rtfy 0) 
i = 1 7 = 1 

would still be valid. 
Consider mappings of an orientable surface S into the sphere or extended 

complex plane. A continuous mapping/is now allowed to have/((?) = oo 
at a finite set of points, Ql9 . . . , Qn. If we think of 0 and oo as the north 
and south poles of a Euclidean sphere, a parallel of latitude would go 
around each pole once, but the orientation, which is clockwise, to an 
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observer at one pole is counterclockwise to an observer at the other. This 
suggests the definition 

co(C, o o ) = -co(C, 0) 

for the winding number co(C, oo) of a curve C about oo. If the mapping 
/ h a s / ( ß ) = oo, we say /has a pole at Q and the multiplicity or order of 
the pole is 

μ(β, oo) = ω(/(χ), oo) = - ω ( / ( χ ) , 0), 

where x is the positively oriented boundary of a sufficiently small disk 
about Q. We can now derive the equation 

(2) £ ©(/(*,), 0) = £ μ(Ρ„ 0) - £ μ(ρ„ οο), 
; = ι 7=1 y = i 

where Pj are the zeros and Qj the poles of/. This formula says that for a 
function with only a finite number of zeros and poles the number of zeros 
minus the number of poles counted with their multiplicities depends only 
on the behavior of/ on the boundary curves of S. 

We define μ(Ρ, 0) = 0 if/(P) * 0 and μ(Ρ, oo) = 0 if/(P) Φ oo.Formula 
(2) may be rewritten as 

f «(/(««). 0) = Σ KP, 0) - Σ KP, oo). 
i = l PeS PeS 

These infinite sums exist because there is only a finite number of nonzero 
terms. This formula has special significance when S is a closed surface. 
When there are no curves e{, 

ΣΜΛ0)=ΣΜΛοο). 
PeS PeS 

If f(P) = z0 , the multiplicity μ(Ρ, z0) with which / takes the value z0 at P 
is the order of the zero at P of the function h defined by h(P) =f(P) — z0. 
Now h has the same poles a s / Ifa point is near enough to a pole, \f(P)\ may 
be assumed to be larger than any fixed real constant and, in particular, much 
larger than \z0\. This means that the additive constant z0 cannot change 
the winding number off(P) as P traverses a small curve around a pole off. 
Hence / and h have the same poles with the same multiplicities. Thus 

Σ Pf(P, z0) = Σ VH(P, 0) = Σ VH(P, oo) = Σ Μ/Λ oo). 
PeS PeS PeS PeS 

We have now proved the following theorem. 
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Theorem. If/ is a continuous mapping of a closed orientable surface into 
a sphere such that no value is taken an infinite number of times, every 
point on the sphere appears as an image the same number of times, pro-
vided that these appearances are counted with their multiplicities. 

The number of times each value is assumed is called the Brouwer degree 
of the mapping. If the positive orientation of S is reversed, the Brouwer 
degree is multiplied by — 1. 

The projection of a Riemann surface S' onto the sphere »Sis the mapping 
that projects every point on the covering surface onto the point covered. 
A small disk Δ on S is. covered by a set of disks in S'. The positive orienta-
tion of the boundary of a covering disk Δ' is defined as the orientation 
induced by the positive direction on the boundary of Δ. Let P be a point 
of Δ and P', the point of Δ' covering P. The point P' will be unique if Δ is 
sufficiently small. When Δ is this small, no point of Δ' except possibly P' 
can be a branch point of P. The number of times the projection of the 
boundary of Δ' covers the boundary of Δ is the multiplicity with which 
P' covers P. This multiplicity is one unless P' is a branch point. The order 
of a branch point is one less than its multiplicity. The Brouwer degree of 
the projection of a Riemann surface onto the sphere is the number of 
sheets in the covering. 

4.4 Applications of the Winding Number in 
Complex Analysis 

On the sphere represented as the extended complex plane we define the 
positive orientation of the boundary of a disk as counterclockwise if the 
disk is bounded and clockwise if it has oo as an interior point. 

We shall study the mappings of a sphere S into itself defined by rational 
functions of the form f(z) = p(z)/q(z), where p(z) = a0 + ·■· + akz

k and 
q(z) = b0 + · · · + bnz

n with αΑφΟ and bn φ 0. We assume that the poly-
nomials p(z) and q{z) have no common factors other than constants. This 
means that the fraction p(z)/q(z) has been reduced to its lowest form. The 
function/(z) may be rewritten in the form 

Κζ) = {ζ.2χΤΕψ 

where (z - zx) is not a factor of p^z) or qt(z). If ex is a positive integer, 
p(z) = (z - ζχΥ

χ p^z) and q(z) = qx{z). Thus zx is a zero of p(z) and /(z). 
If ex is a negative integer, q(z) = (z - zx)~

ex qx{z) and p(z) = pt(z) so that 
zx is a zero of q(z) and a pole of/(z). When e{ = 0, p(z) = Pi(z) and 
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q(z) = qx(z). In this case zx is neithera zero nor a pole of/(z). The behavior 
of/(z) when z = oo may be studied by expressing/(z) in the form 

/(z) = lzj TMFy 
where 

/ 1 \ a0 ak-i 

ΜΪ)-7 + - + — + ak 

and 

The function/(z) has a zero or pole at oo when n > k or n < k, respectively. 
If n = k,f(oo) = ak/bn and/(z) has neither a zero nor a pole at oo. 

By elementary algebra we know that p(z) and q{z) have at most as many 
zeros as their degree. Therefore the number of zeros and poles of f(z) is 
finite. The multiplicity of a zero zx of f(z) is 

M*i,0) = ^ K c ( / ( z ) ) , 

where C is the positively oriented boundary of a small disk with z1 in its 
interior. Now 

Vdf(z)) = Vcl(z - ζ,Τ Ρ~ψ] = ex Vc(z - 2 l ) 4- vJ^Y 
\ qi(z)/ \qi(z)J 

Let 
r = k i ( z i ) | 

Ul(^ l ) | 
The disk bounded by C can be selected so small that Pi(z)/qi(z) for all z 
on C stays inside a circle of radius r and center Piiz^/q^z^. For such a 
disk Vc(pi(z)lqi(z)) = 0. Because Vc(z - zx) = 2π, we conclude that 
μ(ζ1? 0) = ex. If zx had been a pole of/(z) instead of a zero, the formula 
vc(f(z)) = 2π^ would still be valid. In this case/^z,, oo) = -et > 0. We 
have found that our topological definition of the multiplicity of a zero or 
pole agrees with the familiar algebraic definition of the order of a zero or 
pole of a rational function. 

We shall now study zeros or poles at zx = oo. Let C be a circle large 
enough so that all the finite complex numbers that are zeros or poles of 
f(z) are inside C. The region outside C, together with C, forms a disk 
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containing oo and no other zero or pole of /(z). The positive orientation 
of C as the boundary of the disk is clockwise. Now 

If C is large enough pJ.Xjz^qJ^jz) stays close to ak/bn so that 

Because Kc(l/z) = - Vc(z) = - ( - 2 π ) = 2π, we find that μ(οο,0) = η - k 
if n > k or μ(οο, oo) = k — « if « < k. 

We now consider the special rational functions for which q(z) is the 
constant polynomial with value 1. Then f(z) is a polynomial of degree k 
with μ(οο, oo) = k. Because 

Σ l*(z> °) = Σ Mz> °°) = Moo, oo) = /c, 
zeS zeS 

the polynomial of degree k has fc zeros when the zeros are counted with 
their multiplicities. A consequence is the following theorem proved by 
Gauss : 

Fundamental Theorem of Algebra. If f(z) is a nonconstant polynomial with 
complex coefficients, there is at least one complex number z0 such that 
/(*o) - 0. 

The system of complex numbers is an example of afield. One branch of 
algebra is concerned with fields and the roots of polynomial equations 
with coefficients in a field. A field F is algebraically closed if for every 
nonconstant polynomial /?(*), with coefficients in F, the equation p(x) = 0 
has a root in F. The theorem states that the field of complex numbers, a 
field of special interest in analysis, is one of the many algebraically closed 
fields. Furthermore, the usual proofs are topological or analytic. Thus the 
fundamental theorem of algebra is most properly classified as a theorem 
of analysis. 

Returning to the rational function f(z) = p(z)/q(z), we now know that 
the number of zeros or poles in the finite complex plane equals the degree 
p(z) or q(z), respectively. When oo is also considered, the number of zeros 
and the number of poles both equal the maximum of the degree of the 
numerator and the degree of the denominator. This maximum is called 
the degree of the rational function. We have now proved the following 
theorem. 
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Theorem. The Brouwer degree of the mapping of the Riemann sphere 
into itself defined by a rational function equals the degree of the rational 
function. 

We have used the winding number to prove that a polynomial equation 
has complex roots. We shall now see that the winding number can help 
to isolate these roots. Let / be a function mapping a surface S into the 
extended complex plane. When the winding number of / around the 
boundary of a disk D in S is not zero, there is at least one zero or pole in 
D. If we subdivide D into two disks, Dx and D2, so that there is no zero 
or pole on any boundary curve, the winding number of/over the boundary 
of D is the sum of the winding numbers of/ over the boundaries of D1 

and D2. Hence the winding number of / i s nonzero over the boundary of 
at least one of the disks Dx and D2 . By repeated subdivision of D, we can 
locate a zero or pole of / in smaller and smaller regions. If S is embedded 
in Euclidean three-space, the zero or pole may be located inside a sphere 
of radius ε for any prescribed positive ε. We shall illustrate this procedure 
by isolating the roots of a fourth-degree polynomial. 

First we shall prove Rouche's theorem because it is useful for calculating 
winding numbers. 

Rouche's Theorem. If f(P) and g(P) are two complex valued functions 
defined over a closed curve C and \f(P)\ < | g{P)\ < oo for all P on C, then 

Vc(f(P) + g(P))=Vc(g(P)). 

Because \f(P)\ < \g(P)\, g(P) Φ 0 for any P on C. Now 

vc(f(P) + g(P)) = vc(g(P)) + vc{\ +f^j. 

Because \f(P)/g(P)\ < 1, 1 +f(P)/g(P) stays inside the circle \z - 11 = 1. 
Because 1 +f(P)/g(P) is never in the second or third quadrant, 

KC(1+/(P)/*(P)) = 0 

and Rouche's theorem follows. 
If the hypothesis that C is closed is dropped, this reasoning shows that 

\Vc{f{P) + g(P))-Vc(g(P))\<n. 

Example 3. Isolate the roots of the polynomial equation 

/ (z) = z4 + 3z2 - 6z + 10 = 0. 
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Consider the circular disk D defined by \z\ < 3. On the circle C boun-
ding D 

|3z2 - 6z + 10| < |3z2| + |6z| + 10 = 27 + 18 + 10 = 55 < 81 = |z4|. 

By Rouche's theorem 

Vc{zA + 3z2 - 6z + 10) = Kc(z4) = 4Vc(z) = 8π. 

Hence/(z) has all four of its zeros inside C. Let Du Z>2, D3, DA be the 
portions of D and cu c2, c3, c4 the arcs of C in the first, second, third, 
and fourth quadrants, respectively. (Figure 4.6). Let xu yl9 x2, y2 be the 

Fig. 4.6 

radii of D along the positive x-axis, the positive >>-axis, the negative x-axis, 
and the negative >>-axis, respectively. The polygons Di9 D2, D3, D4 are 
described by the edge equations 

XlCiyï1 = U 3^2*2 1 = 1> ^2^33;21 = 15 J V ^ l " 1 ^ · 

Let BUB2,B3, B4 be the boundary curves of D^, D2, D3, Z)4, respectively. 
Now 

VBl(f(z)) = VCi(f(z)) + VXl(f(z)) - Vyi(f(z)). 
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Similar equations hold for the variation over B2, B 3, and B4. By the 
extension of Rouche's theorem 

Vej(f(z)) = Fc,(z4) + sj = 2π + ε,-, 7 = l, 2, 3, 4, 

where |ey| < π. If z is a real number x, 

f(z) = x4 + 3x2 - 6x + 10 = A4 + 3(x - l)2 + 7 > 0. 

Hence VXl (/(z)) = VX2 (/(z)) = 0. If z is an imaginary number iy, 

f(z) = y4-3y2 + \0-6iy. 

Because 

Re/(z) > 0 on yx and y2. Hence Kyi(/(z)) = ^ and Vyi{f(z)) = η2 where 
IrçJ < π and \η2\ < π. Therefore 

έ( β ,- , ι ) · 

Because the winding numbers are integers and |ε /̂27τ| < £ and |^·/2π| < i 
for eachy, ^! = ^t = —ε2 and ε3 = η2 = —ε4. Thus each winding number 
is 1, and there is one root of/(z) = 0 inside each quadrant of the disk 
|z[ < 3. We have now isolated the four roots in separate regions. 

EXERCISES 

Section 4.1 

1. The equation 

z(i) = 2 cos / + 2/ sin ί + 1, 0 < t < 2π, 

ωΒι(/(ζ),0) 

ωθ2(/(ζ),0) 

ωΒ,(/(ζ), 0) 

ωβ4(/(ζ),0) 

^- VBl(f(z)) = 
2π 

1 fe + ŷi) 
+ 2π ' 

1 (fi3 - *h) 
+ 2π ' 

j fo + fo) 
2π 
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defines a circle with center at z = 1. What is the minimum value m of 
\z(t)\ ? Find a set of numbers 

t0 = 0 < tx < t2 < ··· < tj < ··· < tk_l < tk = In 

such that \z(t) - z(tj)\ < m if tj <t< tj+l. 

2. Calculate the winding number about the points ( —i, 0) and ( — 2,0) 
of the curve defined by the parametric equations 

x = cos t + cos It, . ~ 0 < ί < 2π. 
y = sin ί + sin 2f, 

WARNING. DO not try to deduce the answers from Figure 4.3. The 
graphs of the figure are not sufficiently accurate. 

3. Find the winding number about the origin of the curves defined by 
the following: 

(a) z(t) = cos nt + / sin ni, 0 <t < 2π, 
(b) z(t) = cos nt — i sin nt, 0 < t < In. 

4. Let the continuous function z{t) defined for 0 < t < 1 with z(0) = z(l) 
determine a closed curve C not passing through 0. 

(a) Show that the winding number of C about 0 is even if the direction 
from 0 to-z(/) is never opposite to the direction from 0 to z(t + %) for 
0 < / < i. 

(b) Show that the winding number of C about 0 is odd if the direction 
from 0 to z(t) is always opposite to the direction from 0 to z(t + £) 
for 0 < / < \. 

5. Let the continuous functions zx{t) and z2(t) defined for 0 < / < 1 with 
2j(0) = Zj(l) and z2(0) = z2(l) determine two closed curves that do 
not pass through 0. Show that the winding number about 0 is the same 
for both curves if the line segment from zx{t) to z2(t) does not contain 0 
for any value of /. 

Section 4.2 
1. Consider the complex function 

/(z) = z2 + ( |z | - l )z , 

defined in the annulus 1 < |z| < 2. Determine Vc(f(z)), where C is the 
circle \z\ = 2 with the counterclockwise orientation. 
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2. Let/(z) be a continuous complex function defined on the disk \z\ < 1 
with the property that | / (z) | = 1 for all z. Show that/(z) = z for some 
value of z and f(z) = — z for some other value of z. 

3. Prove the pancake theorem. Two pancakes on a griddle (two regions 
in a plane) may be simultaneously bisected by a single stroke of a knife 
(by a line). 

4. Prove the Brouwer fixed-point theorem (one-dimensional case). Any 
continuous mapping of a line segment into itself has a fixed point. 

5. Prove the Borsuk-Ulam theorem (one-dimensional case). Any con-
tinuous mapping of a circle into a line maps some pair of antipodal 
points onto a single point. 

6. Let / be a continuous mapping of the sphere S into itself. Prove that 
if there is a point Q in S such that / (P) does not equal Q for any P in 
S the mapping/ has a fixed point. 
HINT. Apply the Brouwer fixed-point theorem to S with a small neigh-
borhood of Q deleted. 

Section 4.3 
1. What are the zeros and poles of the function 

/(z) = z + i , 
z 

defined in the disk \z\ < 2? If C is the circle \z\ = 2 with counterclock-
wise orientation, calculate the winding number ω€(/(ζ),0). 

2. If z = r(cos 0 + i sin 0), let f(z) = r(cos 30 + / sin 30). Also define 
/ ( oo) = oo. For the mapping/ of the Riemann sphere into itself find 
μ(0, 0), μ(/, —/), and μ(οο, oo). What is the Brouwer degree o f / ? 

3. In a Euclidean three-space with rectangular coordinates x, y, z, let S 
be the torus defined by the equation 

z2 = (25 - x2 - y2)(x2 + y2- 1). 

Let S0 be the sphere x2 + y2 4- z2 = 1, ρ , the point (1, 0, 0), and R, 
the point (0, 0, 1). 

(a) If P is a point (x, y, z) on S, define/(P) to be the point (x/r, y/r, z/r), 

where r = Jx2 + y2 + z2. What points P have/(P) = g ? For each 
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of these points determine μ(Ρ, Q). What points P have f(P) = Rl 
What is the Brouwer degree of the mapping/of S into S0? 

(b) If P is a point (x, y, z) on S, define g(P) to be the point [(x 4- 3)//, 
y\U z/t], where f = J(x 4- 3)2 4- >>2 4- z2. What points P satisfy 
^(P) = R7 What is the Brouwer degree of the mapping g of S into 
So? 

Section 4.4 

1. Isolate the roots of the polynomial equation 

z 4 - 2 z 3 - z 2 4 - 2 z + 10 = 0. 

NOTE. 

x4 - 2x3 - x2 + 2x + 10 = i(jc - 2)2x2 + i(x2 - 4)2 + (* + l)2 + 1. 

2. Show that the polynomial equation 

z3 + z2 + z4-4 = 0 

has one root in the first quadrant, one in the fourth quadrant, and one 
on the negative real axis. 

3. Express in terms of a0, ax, and a2 a real number R such that all roots 
of the equation 

z3 + a2z
2 4- axz 4- a0 = 0 

satisfy the inequality \z\ < R. 

4. Show that the roots of the equation 

z6 + 2z3 + 3z2 + 5 z + 15 = 0 

all lie in the annulus 1 < |z| < 2. 



5 VECTOR FIELDS 

5.1 Vector Fields on the Plane 
In Chapter 4 we studied mappings into the plane defined by complex 

valued functions. The complex number z = x + iy or the coordinate pair 
(x, y), appearing as a value of a function, may be considered as a vector 
instead of a point. When f(P) represents a point, the winding number 
coc(f(P), 0) counts the number of times the image of a curve C winds about 
the origin. When f(P) is interpreted as a vector, the winding number is 
the number of revolutions of the direction of f(P) as P travels along C. 
If the function / is defined over a region R of the complex plane, we say 
that the vectors/(z) form a vector field on R. We represent the vector/(z) 
by the oriented line segment from the point z to the point z +/ (z) . 

The vector interpretation clarifies the role of the function h(z) =f(z) — z 
in the proof of the Brouwer fixed-point theorem. This function assigns to 
each point z the vector from z to its image/(z). The condition that /maps 
the disk into itself requires that each vector on the circumference of the 
disk be directed into the disk. The Brouwer fixed-point theorem is equiva-
lent to the following theorem. 

133 
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Theorem. If a continuous vector field defined over a circular disk has all 
vectors on the circumference directed into the disk, the zero vector is 
assigned to some point of the disk. 

A point is a singularity of a continuous vector field on the plane if the 
vector at that point is the zero vector. A singularity is isolated if it has a 
neighborhood that contains no other singularity. We define the index I(z0) 
of an isolated singularity z0 of a vector field defined by f(z) as the multi-
plicity of z0 as a zero of f(z). 

As an application of the theorem consider the hair on a person's head. 
The scalp plays the part of a disk and the hair the role of the vector field. 
If the hair, untrained by brush or comb, is allowed to lie naturally, the 
hair at the edge of the scalp will point away from the top of the head. As 
predicted by the theorem, we find a singularity, the cowlick or hair swirl 
at the back of the head (Figure 5.1). 

Fig. 5.1 Boy with a cowlick 

A corollary of formula (la) in Section 3, Chapter 4, is the following 
(Figure 5.2). 

Theorem. Suppose / defines a continuous vector field over the multiply 
connected plane region consisting of points inside a counterclockwise 
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Fig. 5.2 

oriented curve e0 and outside the clockwise oriented curves el9 ..., er. If 
the vector field has singularities only at the interior points zl9... ,zk, then 

iœ(f(ei),0)=^I(zj). 
i = 0 j - \ 

If x and y are rectangular coordinates in a region R, let w(x, >>) and 
v(x, y) be the x- and ^-coordinates of the vectors of a continuous vector 
field over R. Curves in the .xy-plane which satisfy the differential equations 

— = u(x,y) and — = v(x, y) 

are tangent everywhere to the vector field. The tangent vectors point in the 
direction of increasing values of the parameter t. A sketch of these solution 
curves is a graphic representation of the vector field. At a singularity of the 
vector field u(x, y) = 0 and v(x, y) = 0. This means that the direction of 
the solution curve is undefined. 

Sources and sinks are two types of singularities. At a source all curves 
are directed away from the singularity, whereas at a sink the curves lead 
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(a) (b) (c) (d) 
Fig. 5.3 

Singularities of Index 1. (a) Source, (b) sink, (c) vortex, (d) focus 

to the singularity (Figure 5.3). Because the tangent vectors to the curves 
complete one revolution in the positive direction as a point moves counter-
clockwise around a source or sink, the index is 1. Vortices and other foci 
are also singularities of index 1. A dipole results if a source and sink are 
brought together (Figure 5.4). Moving two vortices together can also create 
a dipole. The index of a dipole is 2. Sources and sinks can be combined to 
construct singularities with an arbitrary positive integer as index. A simple 
crosspoint or colis a singularity of index — 1 (Figure 5.5). At a simple cross-
point two curves meet. A crosspoint of index — m is formed if m + 1 curves 
meet. 

Example 1 . In Euclidean plane geometry consider a continuous field of 
nonzero vectors defined over a circular disk. We shall prove that there is 
at least one point on the boundary of the disk at which the vector points 
directly away from the center of the disk. 

Let the center of the disk be the origin of coordinates and let Θ(Ρ) with 
0 < θ < In be the angular polar coordinate of a point P on the boundary 
of the disk. Let φ(θ) be a continuous function of Θ whose value is the angle 
from the direction of the positive x-axis to the direction of the vector at P. 
Define φ(β) = φ(θ) — Θ. As Θ increases from 0 to 2π, φ(θ) must change by 
an integral multiple of In. If the vector at P is never directed away from 
the center of the disk, φ(θ) could never equal a multiple of In. In this case 
the change of φ(θ) over the boundary of the disk must be 0. Because 
φ(β) = θ + φ(θ), the change of φ(β) must be In as Θ increases from 0 to In. 
This means that the winding number of the vector field about the boundary 
of the disk equals 1. Because the winding number also equals the sum of 
the indices of the singularities, there must be at least one singularity of the 
vector field. This contradiction of the assumption that all vectors are non-
zero proves that there must be a point P on the boundary of the disk at 
which the vector points away from the center. 
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(c) 

Fig. 5.4 
(Above and left) 

(a) Source and sink, (b) dipole of 
Index 2, (c) two vortices 

Fig. 5.5 
(Below) (a) Simple crosspoint of 

Index — 1, (b) Crosspoint of 
Index - 2 

*r 

(a) 
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5.2 A Geographical Application 
Consider the plane region of points inside the counterclockwise curve e0 

and outside the clockwise curves ei9 . . . , er as a map of the geography of 
an island with r lakes. Let e(x, y) be the elevation of the terrain at the 
point (x, y). We assume that e(x,y) and its first partial derivatives 
are continuous. The vector /(z) , with ôe/ôx and dejdy as its x- and y-
coordinates, is called the gradient of e and points in the direction of 
steepest ascent from the point represented by z = x + iy or (x, y). The 
gradient is a continuous vector field over the map of the island. The 
isolated singularities are of three types : sources at which e(x, y) has a 
relative minimum, sinks at which e(x, y) has a relative maximum, and 
crosspoints at which e(x, y) has a saddlepoint. There can be curves of 
singularities such as the level rim of a crater. Geographical names for the 
singularities or critical points of the terrain are peaks for the maxima, pits 
for the minima, and passes or cols for the saddlepoints. The multiplicity 
of a pass is the absolute value of the index of the pass as a singularity of 
the gradient vector field. The second theorem in Section 5.1 has the 
following corollary. 

Theorem. If the only critical points on the terrain of an island with r lakes 
are a finite number of peaks, pits, and passes in the interior of the island, 
the sum of the number of peaks and the number of pits diminished by 
the number of passes (counted with their multiplicities) equals 1 — r. 

Because the gradient at the shore of an ocean or lake must point inland, 
the winding number of the gradient is 1 around the counterclockwise 
curve e0 and —1 around each of the clockwise curves eu . . . , e r . This 
shows that 

Σ ^ , · ) , 0 ) = 1 - Γ . 
i = 0 

The solution curves of the equations 

dx de dy de 

dt dx9 dt dy 

are the curves of steepest ascent of the topography. The curve defined by 
e{x, y) = c for a constant c is an equialtitude contour line. On this curve 

de de dy Λ dy de/dx 

dx dy dx dx oejoy 
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A shore line is a particular equialtitude curve. Because the slope of the 
curve of steepest ascent at a nonsingular point (x, y) is the negative re-
ciprocal of the slope of the equialtitude curve at (x, y), the family of curves 
of steepest ascent is orthogonal to the family of equialtitude curves at all 
nonsingular points. The family of equialtitude curves is everywhere tangent 
to the vector field which assigns the vector with x- and ̂ -coordinates de/dy, 
— de/dx to the point (JC, y). Although this vector field has the same singu-
larities as the gradient field, the pits and peaks are now vortices 
rather than sources and sinks. The passes are crosspoints for both vector 
fields. 

Fig. 5.6 
An island on a planar map. Peaks at (4,0), (0,8), (-4,0); Passes (of Index 1) at (0,4/3) and 

(0,4) 
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A relation between the number of pits, peaks, and passes was derived 
by Reech in a paper published in 1858. Cayley also showed the dependence 
of these numbers in 1859.f 

Example 2. Consider an island that appears on a planar map as the set 
of points (x, y) such that 

e(x, y) = 18,000 - [(x - 4)2 + y2] [x2 + (y - 8)2] [(x + 4)2 + y2] > 0. 
Let e(x, y) be the elevation of the terrain at (x, y). Figure 5.6 is a map of 

Fig. 5.7 
Hypothetical island. Peaks at (1, 0), (0, 2), ( - 1 , 0); Passes (of Index 1) at (0, 0), ( i 1), 

( - i l ) ; Pi tat(0, i) 

t Cayley's paper, with one by Maxwell, is summarized in Mathematical Essays and 
Exercises by Ball and Coxeter (New York: Macmillan, 1939) under the title Physical 
Configuration of a Country. 
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the island which shows equialtitude curves with interval 2250. Because 
there are three peaks and two passes of index l, the formula of the theorem 
is satisfied. 

Example 3. Consider an island that appears on a planar map as the set 
of points (x, y) at distance less than or equal to 2 from one or more of the 
points (1,0), (0, 2), and (—1,0). Let the elevation of the terrain at (x, y) be 

e(x, y) = max(2 - J(x - l)2 + y2, 

2 - 7x^+77- 2)2, 2 - 7(χΤ1?Τ7). 
Figure 5.7 is a map of the island which shows equialtitude curves (solid) 
and curves of steepest descent (dotted). There are peaks at (1, 0), (0, 2), 
and (— 1, 0), passes (of index 1) at (^, 1), ( - ^ , 1), and (0, 0), and a 
pit at (0, | ) . The equialtitude curves and the curves of steepest descent 

165 » 

Fig. 5.8 
Portion of the United States Geological Survey map of Bar 

Harbor, Maine 
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intersect at right angles except at the peaks and on the three line segments 
from the pit to the shore via the passes. These line segments are curves of 
steepest descent but not of steepest ascent. (Why?) Because the first 
partial derivatives of e(x, y) do not exist along the three line segments, the 
gradient is undefined and the points of these segments are singularities 
of the gradient vector field. Although the lines of singularities exclude 
this island from the scope of the theorem, the equation relating the 
peaks, passes, and pits is still satisfied. 

Example 4. Figure 5.8 shows a contour map of Ironbound Island, Maine. 
We leave to the reader the verification of the equation of the theorem. 

5.3 Vector Fields and Hydrodynamics 
If water flows over a plane region, the velocity vectors of the flow form a 

continuous vector field. The curves tangent to the vector field are the stream-
lines of the flow. If u(x, y) and v(x, y) are the coordinates of the velocity, 
a potential function P(x, y) is a solution to the differential equations 

dP ( ^ dP < Λ 

— = - u(x, y\ — = - v(x, y). 
ox dy 

Because the gradient of P(x, y) is the negative of the velocity, the stream-
lines are the curves of steepest descent for the potential function. The 
family of curves orthogonal to the streamlines is the family of equipotential 
lines of the flow. 

From the physical assumption of the incompressibility of water, we 
could derive the requirement that P(x, y) must be a harmonic function. 
A function is harmonic if it satisfies Laplace's differential equation 

d2P d2P 

Every harmonic function P(x, y) has a conjugate harmonic function Q(x, y) 
determined by the equations 

ÔQ dP dQ _ dP 

dx dy ' dy dx 

When P is a potential function of a flow, P is constant along equipotential 
lines, whereas Q is constant along streamlines. The conjugate flow is defined 
by using g as a potential function and the negative of the gradient of Q as 
the velocity. At singularities of a flow the functions P and Q need not be 
defined. 
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The complex function 

f(z) = f(x + iy) = P(x, y) + iß(x, y)9 

which combines a pair of conjugate harmonic functions, is called an 
analytic function. Analytic functions are complex functions, differentiable 
in the sense that 

/ ( z + A z ) - / ( z ) 
/ ' (z) = hm Δ ζ - 0 Δ ζ 

exists. Comparison of the limits when Δζ = Ax and Δζ = / Ay shows that 
(1) must hold whenP(x, y) and g(x, j>) are the real and imaginary parts of a 
differentiable complex function. These are the Cauchy-Riemann equations 
for analytic functions. 

Helmholtz discovered in 1858 that the potential function of a flow over 
a multiply connected region might be multiple-valued, even though there 
were no singularities in the flow. An example is the potential function of 
water flowing with velocity [-y/(x2 + y2), x/(x2 + y2)] around a circular 
annulus centered at the origin. The streamlines of this flow are concentric 
circles, whereas the equipotential lines are segments of rays from the 
origin (Figure 5.9). Because the potential function decreases as a point 

(a) (b) 
Fig. 5.9 (a) Stream lines (b) equipotential lines 

moves counterclockwise along a streamline, a lower value of potential is 
reached each time the point returns to its initial position. For this flow 

P(x, y) = arg (x + iy), Q(x, y) = - l og (x2 + y2), 

f(z) = arg (x + iy) - i log (x2 + y2) = i log z. 

In the conjugate flow the velocity of the water is directed toward the origin. 
If the inner radius of the annulus is allowed to shrink until the annulus 
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becomes a disk, the origin is a vortex of the streamlines of the original flow 
and a sink of the conjugate flow. In both cases the origin is a singularity 
in an extended sense, for the lengths of the velocity vectors tend to infinity 
rather than zero as a point approaches the origin. Because the index of a 
singularity depends on the direction but not the length of vectors at nearby 
points, the definition of index can be immediately extended to the new type 
of singularity. 

We have seen examples of a vortex and a sink. Other possible singulari-
ties of hydrodynamic flows are sources and crosspoints. In hydrodynamics 
the crosspoints are called stagnation points. We can restate the theorem of 
Section 5.2. 

Theorem. If water flows in a lake in which there are r islands and only a 
finite number of singularities, with none at the shore (in particular, no 
streams feeding or emptying the lake), the number of sources (springs), 
sinks, and vortices (eddies) diminished by the number of stagnation points 
(counted with their multiplicities) equals l — r. 

5.4 Vector Fields and Differential Equations 
In studying differential equations and double integrals of functions of 

two complex variables, Poincaré was led to topological problems. In 1895 
he published "Analysis Situs," a topological paper which does not mention 
the motivating problems from analysis. This paper, more than a hundred 
pages long, together with its supplements established topology, then called 
analysis situs, as an independent branch of mathematics. 

Poincaré considered the simultaneous differential equations 

dx , dy 

where P and Q are polynomials in x and y. Associate with the point (x, y) 
the vector with coordinates P(x, y) and Q(x, y). In the x^-plane the solution 
curves, called orbits, are everywhere tangent to the vector field. Poincaré 
studied the pattern of the orbits, especially the closed orbits and the 
singularities. 

Poincaré described three types of singularity : nodes, cols, and foci. The 
nodes, which are sources or sinks of the vector field, and the foci have 
index 1, whereas the cols or crosspoints have a negative index. Because 
the winding number of the vector field over a positively oriented closed 
orbit is 1, the second theorem of Section 5.1 requires that the sum of the 
indices of the singularities inside the orbit equals 1, provided that the 
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number of singularities is finite. A consequence is the following result of 
Poincaré. 
Theorem. There is at least one singularity inside a closed orbit of the 
differential equations 

dx , ay 
- = P(x,y), ^ « « * . , ) , 

where P(x, y) and Q(x, y), are polynomials. 

We have discussed vector fields in the plane and have illustrated their 
applications. If a surface is embedded in space so that it has a continuously 
turning tangent plane, study of continuous fields of tangent vectors on the 
surface would lead to generalizations of the properties of vector fields on 
the plane; for example, Poincaré proved that the sum of the indices of a 
continuous tangent vector field (with a finite number of singularities) de-
fined over a closed orientable surface equals the Euler characteristic of 
the surface. This implies that the torus is the only closed orientable surface 
that could have a continuous tangent vector field without singularities. 
Figure 5.10 shows that such a nonsingular vector field does exist. In his 

Fig. 5.10 A torus 

book On Riemanns Theory of Algebraic Functions, Felix Klein studied 
hydrodynamics on a closed surface, and Marston Morse has extended 
Reech's results not only to surfaces but also to manifolds in n dimen-
sions. His general theory of critical points is important in the calculus of 
variations. 
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Example 5. Let the motion of particles in the plane be determined by the 
differential equations 

dx dy_ 

dt 
= -Ax. 

Differentiation of the first equation gives 

—2 = 9 — = - 3 6 x . 
dt2 dt 

The general solution of this equation is 

x = c sin 6/ + d cos 6f, 

where c and d are arbitrary constants. Differentiation shows that 

Hence 

Now 

dx 
—- = 6c cos 6r — 6d sin 6t = 9y. 
dt 

y = 5c cos 6/ — ft/ sin 6r. 

(2x)2 + (3y)2 = (2c sin 6t + 2d cos 6i)2 + (2c cos 6i - Id sin 6i)2 

= 4c2(sin2 6r + cos2 6i) + 4</2(cos2 6t + sin2 6/) 

= 4(c2 + d2). 
Equivalently, 

+ 
9y2 

c2 + d2 4(c2 + d2) 
= 1. 

Thus the orbits of the system of differential equations is the family of 
ellipses with center at (0, 0), with horizontal major axis, and with the 
lengths of the major and minor axes in the ratio of 3 to 2 (Figure 5.11). 

Fig. 5.11 
Ellipses 



VECTOR FIELDS ON A SPHERE 147 

The only singularity of the family of orbits is a vortex at the origin. (A 
vortex is a special type of focus.) Since dyjdt < 0, when x is positive, and 
dyjdt > 0, when x is negative, the particles travel clockwise around the 
origin. 

5.5 Vector Fields on a Sphere 
A continuous tangent vector field on a Euclidean sphere! is a continuous 

function which assigns to each point of the sphere a vector in the plane 
tangent to the sphere at that point. When the vector is zero, the point is 
a singularity. To define the index of a singularity we map the tangent 
vector field on the sphere onto a vector field over a plane. 

If P is an isolated singularity, map the sphere by stereographic projec-
tion from a point N not equal to P onto the plane Δ tangent to Σ at N*9 

the antipode of N. Introduce rectangular coordinates in Δ with N* as the 
origin. Interpreting Δ as the finite part of the extended complex plane, we 
orient disk boundaries on Σ so that stereographic projection has Brouwer 
degree 4-1. Because an oriented line through a point Q(=¥N) on the sphere 
is projected from N into an oriented line in Δ through the image of Q, 
stereographic projection almost defines a mapping of the tangent vector 
field into a planar vector field. The difficulty is that if the line segment 
representing the vector at Q crosses the plane Δ*, which is tangent to Σ 
at TV, the image of the line segment is a pair of unbounded line segments 
that should be connected by a projective point at oo. These unbounded 
segments cannot be interpreted as a vector in Δ. The problem is solved if 
we use stereographic projection to determine the direction of the image 
of the vector at Q but let the length of the two vectors be the same. Except 
at iV, we have defined a continuous mapping of the sphere and its tangent 
vector field onto the plane and a vector field on the plane. The index I(P) 
of the singularity on the sphere is defined as the index of the image of P as 
a singularity of the vector field over the plane. 

We wish to show that the index of P does not depend on the selection 
of N. Let f(Q) denote the complex coordinate of the vector in Δ, which 
corresponds to Q. The index of P equals the winding number œ(f(C), 0), 
where C is the positively oriented boundary of a small disk in Σ containing 
P and not N or any singularity other than P. Because f(Q) is a continuous 
function of both Q and N, co(/(C), 0) is a continuous function of N. Now 
a continuous function whose values are integers must be a constant. This 
shows that I(P) does not depend on N. 

If C is the positively oriented boundary of a disk which contains only 
a finite number of singularities, with none on C, the winding number 
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œ(f(C), 0) equals the sum of the indices of the singularities in the disk. 
We use this statement to prove the following: 

Theorem. If a continuous tangent vector field on a Euclidean sphere has 
only a finite number of singularities, the sum of the indices of the singu-
larities is 2. 

Let TV be a point that is not a singularity. Introduce coordinates of lati-
tude and longitude so that N is the north pole and the tangent vector at N 
lies over the 0-meridian. Let D be a small circular disk with N as center 
and C as the positively oriented circumference (Figure 5.12). Figure 5.13 
shows the stereographic map of D from N*9 whereas Figure 5.14 is the 
stereographic map from N of the portion of the sphere from C southward. 
On both maps the plane vectors drawn correspond to the tangent vectors 

πΐ-π) 

Fig. 5.12 Fig. 5.13 

Fig. 5.14 
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at points of C From the continuity of the tangent vector field we know 
that all the vectors in Figure 5.13 are approximately parallel if D is small 
enough. Now a vector that does not change direction as the image of C 
is traversed in Figure 5.13 corresponds to a vector that makes two revo-
lutions as a point moves around the image of C in Figure 5.14. Thus the 
sum of the indices of the singularities outside D is 2. Because there are 
no singularities in D, the sum of the indices of the singularities on the 
whole sphere is 2. 

Corollary. Any continuous tangent vector field on a Euclidean sphere 
must have a singularity. 

If the members of a family of simple closed curves on a Euclidean sphere 
are always tangent to the vectors of a continuous tangent vector field, the 
corollary shows that the family cannot cover the sphere without singu-
larities. Singularities of the family are points that are on no curve or points 
that are on more than one curve. This suggests the following: 

Theorem. There is no family of simple closed curves on a sphere such that 
every point on the sphere is on one and only one curve. 

A simple closed curve on a sphere could have corners or rapid oscilla-
tions that would keep the curve from having a well-defined direction. The 
curve defined in the plane by 

y = x sin - , if x Φ 0, 
x 

y = 0, if x = 0, 

is an example of a curve that oscillates too rapidly to have a direction at 
the origin (Figure 5.15). Because the directions of curves are not always 
defined, tangent vector fields are not weapons of sufficient power to attack 
this theorem. 

To show the tools needed we shall outline the steps of a proof. Suppose 
a family of simple closed curves is on a Euclidean sphere such that each 
point of the sphere is on exactly one curve. By stereographic projection 
from the north pole onto a plane every curve of the family except the curve 
through the north pole is mapped onto a simple closed curve of the plane. 
The Jordan curve theorem states that every simple closed curve in the 
plane divides the plane into two regions, a bounded one inside the curve 
and an unbounded one outside the curve, so that no curve can join points 
inside to points outside without crossing the original curve. The union of 
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y 

->-x 

Fig. 5.15 
y = Jt sin l/x if x 4=0, 
y = Q if* = 0 

the simple closed curve C and the points inside C is a closed bounded set 
D, which is topologically a disk with boundary curve C. 

Although the Jordan curve theorem is obvious for curves like the circle 
or the perimeter of a regular polygon, the proof is difficult for general 
curves. Figure 5.16 shows a simple closed curve for which the distinction 
between outside and inside is less obvious than in the circle. When we 
consider two nonintersecting simple closed curves C\ and C2 in the plane, 
either one is entirely inside the other or each is entirely outside the other. 
Stated in terms of the corresponding disks, Dx c D 2 , D1ZD D2, or the 
intersection Dx n D2 is empty. Let F be the family of simple closed curves 

Fig. 5.16 
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in the plane corresponding to the curves on the sphere and let G be the 
corresponding family of disks. The proof of the theorem is in two parts. 

Case 1. There is a disk D in G such that if Dl and D2 are distinct disks 
from G which are contained in D either Dx a D2 or Dl => D2. 

In this case the intersection Dl n D2 n ··· n Dn equals Dj for some y 
if Dl9 D2 , . . . , / )„ are members of G which are contained in D. This means 
that the family of disks from G which are contained in D has the finite 
intersection property; namely, any intersection of a finite number of the 
disks is nonempty. A theorem from point set topology states that if a 
family of closed subsets in a bounded region of the plane has the finite 
intersection property the intersection of all the sets is nonempty. Let P 
be a point in all of the disks contained in D. If Cp is the curve 
from F which passes through P, select a point Q inside CP. The curve CQ 

through Q determines a disk DQ a D with P not in DQ. This contradiction 
shows that Case 1 is impossible. 

Case 2. Every disk D from G contains disks D' and D* from G such that 
D' n D* is empty. 

The definition of area given in analysis assigns a positive area to each 
of the disks from G. If D' and D* are nonintersecting disks in Z>, at least 
one of them must have an area less than or equal to half the area of D. 
Starting with a fixed disk D from G, we can find a sequence 

D ID D1 =) D2 =5 ··· => Dn=) ··· 

of disks from G such that each disk has an area less than or equal to half 
the area of the preceding disk. Because the sequence of disks has the finite 
intersection property, the Heine-Borel theorem guarantees a point P com-
mon to all disks Dn. Hence DP a Dn for every n. This is impossible, for 
area of Dn tends to zero but the area of DP is positive. 

Since neither Case 1 nor Case 2 is possible, there can be no family of 
simple closed curves on the sphere such that each point is on one and only 
one curve. 

5.6 Mappings of a Sphere into Itself 
The Brouwer fixed-point theorem states that every continuous mapping 

of a disk into itself has a fixed point. This does not generalize to mappings 
of a sphere into itself. An example of a continuous mapping without fixed 
points is the antipodal mapping of a Euclidean sphere which moves every 
point onto its antipode. We are able to prove that the square of any 
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continuous mapping of the sphere into itself must have a fixed point. 
This and other theorems follow from a lemma. 

Lemma. Iff and g are continuous mappings of a sphere into itself and the 
product mapping gf is defined by gf(P) = g(f{P)), at least one of the 
mappings/, g, and gf has a fixed point. 

Represent the sphere as a Euclidean sphere. Consider the points P, 
f{P\ and g(f(P)). If P and/CP) coincide, P is a fixed point of/; if/(P) = 
g(f(P%f(P) is a fixed point of g; if P = g(f(P)), Pisa fixed point of gf 
If none of the mappings has a fixed point, the three distinct points P , / (P) , 
g(f(P)) determine a unique circle on the sphere (Figure 5.17). Let j(P) be 

Fig. 5.17 A Euclidean sphere 

the unit vector tangent to the sphere and the circular arc from P to / (P) to 
g(f(P)). This defines a singularity-free, continuous, tangent vector field on 
the sphere. Because no such vector field can exist, there must be at least 
one point P for which P, / (P) , and g(f(P)) are not all distinct. At least one 
of the mappings/, g, and gf has a fixed point. 

Theorem. If/ is a continuous mapping of a sphere into itself, the mapping 
f2 defined by/2(P) =f(f(P)) has a fixed point. 

If g = / i n the lemma, e i t h e r / o r / 2 has a fixed point. Because a fixed 
point o f / i s a fixed point of / 2 , / 2 always has a fixed point. 

Theorem. I f / i s a continuous mapping of a Euclidean sphere into itself, 
either/has a fixed point or / m a p s some point onto its antipode. 
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If g is the antipodal mapping, g has no fixed points, so that e i ther /or 
gf has a fixed point. If gf has a fixed point P, then g{f(P)) =f(P)* = P 
and/>*=/(/>). 

This theorem shows that a continuous mapping of a Euclidean sphere 
into itself must have a fixed point or move some point a distance equal to the 
diameter. If S is any topological sphere embedded in a Euclidean space, let 
A be a one-to-one continuous transformation of 5 onto a Euclidean sphere S. 
Iff is a continuous mapping of S into itself, hfh " 1 is a continuous mapping 
of S into itself. I f / has no fixed point, neither has hfh'1. By the last 
theorem (hfh~l)(P) = P* for some points in S. Hence/(A_ \P)) = h~\P*) 
for some point h~1(P) in S. Let d{P) be the distance between h~1(P) and 
h~l(P*). Because d(P) is a continuous positive function defined on S, there 
is a positive number m such that d(P) > m for all P, which proves the 
following : 

Theorem. Let S be a sphere embedded in Euclidean space. There is a 
positive constant m such that every continuous mapping of S into itself 
either has a fixed point or moves some point a distance greater than or 
equal to m. 

This theorem shows a contrast between mappings of a circle into itself 
and mappings of a sphere into itself. For a circle the rotation by an angle 
Θ with 0 < Θ < In about the center has no fixed points. Furthermore, for 
any ε > 0 there is an angle Θ such that the points are all moved a positive 
distance less than ε by the corresponding rotation. 

Example 5. Consider the ellipsoid defined in three-dimensional Euclidean 
space by the equation 

x2 y2 z2 

The three axes of symmetry of this ellipsoid have lengths 2, 4, and 6. The 
function 

where d = ^J x2 + y2 + z2, defines a one-to-one continuous mapping of 
the ellipsoid onto the sphere x2 + y2 + z2 = 1. A pair of points (x, y, z) 
and ( — x, —y, — z) on the ellipsoid corresponds to a pair of antipodal 
points on the sphere. The shortest distance between pairs of points (x, y9 z) 
and ( — x, —y, — z) on the ellipsoid is the distance 2 between (0, 0, 1) and 
(0, 0, — 1). Hence any continuous mapping of the ellipsoid into itself either 
has a fixed point or moves some point a distance at least 2. 
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Map the ellipsoid onto itself by symmetry in the xy-plane so that the 
image of a point (x, y, z) is (x, y, —z). Each point is moved a distance no 
greater than 2 and the points on the equator of the ellipsoid are left fixed. 
Follow this by a mapping that rotates the equator and nearby points 
slightly about the z-axis and leaves the rest of the ellipsoid fixed. The 
product of these mappings has no fixed point and moves no point a dis-
tance greater than 2. Therefore 2 is the largest number m such that every 
continuous mapping of the ellipsoid into itself either has a fixed point or 
moves some point a distance greater than or equal to m. 

EXERCISES 
Section 5.1 
1. Let a continuous vector field be defined over a circle. Show that on the 

circle there is at least one pair of antipodal points for which the cor-
responding vectors have the same or opposite directions. 

2. Sketch a continuous vector field over a circular disk such that the 
vectors on the boundary are directed away from the center and there 
are four singularities. Describe the singularities of your vector field. 

Section 5.2 
1. A survey is made of a certain island on which there are three hills 

and one lake (Figure 5.18). The elevations at the survey points are 

Fig. 5.18 Map of a hypothetical island 
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recorded on the map. Draw equialtitude contour lines at 25-foot 
intervals which are consistent with the given elevations. Draw on your 
map a path from the ocean to the top of the highest hill, to the top of 
the lowest hill, and back to the ocean so that the path always follows 
curves of steepest ascent or descent. CAUTION. Make sure that the water 
does not run out of the lake. 

2. Sketch in the disk x2 + y2 < 25 equialtitude contour lines of the 
elevation function 

e(x9 y) = (25 - x2 - y2)((x + l)2 + (y + l)2)((x - l)2 + (y - l)2). 

Describe the critical points of the terrain. 

Section 5.3 
1. The incomplete weather map in Figure 5.19 shows two areas of low 

Fig. 5.19 

barometric pressure and one area of high pressure. In addition, the 
wind is from the west at all points at the edge of the map. Complete 
the map by showing streamlines of the wind flow which are consistent 
with the given data. Label the points at which there is no wind. Sketch 
a second map to show the isobars (equipressure lines) that correspond 
to your streamlines. 

2. Sketch the streamlines and equipotential lines of the flow with potential 
function 

P(x, y) = log z - 1 
z + 1 

1 ,_/(* - I)2 + Λ 

Describe the singularities at z = 1 and z = — 1. HINT. An equipotential 
curve is the locus of points (x, y) such that the ratio of the distance 
of (x,y) from (1,0) to the distance of (x, y) from (—1,0) is a 
constant. 
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Section 5.4 
1. If the motion of particles in the plane is determined by the differential 

equations 
dx dy 

show that the curve defined by the parametric equations 

x = c1e~t cos t + c2e~t sin t, 

y = i ( c i — ci)et c o s t + Kci + ci)e% Sln t 

is an orbit in which particles can travel. If a particle starts at (1,0) 
when / = 0 graph the orbit of the particle. Are there any closed orbits ? 
Describe the singularity of the family of orbits at the origin. 

2. If the motion of particles in the plane is determined by the differential 
equations 

dx dy 

Tt = 9y> Tt=4x> 

find the orbits in which particles can travel. Describe the singularity 
of the family of orbits at the origin. 

Section 5.5 
1. Sketch a continuous tangent vector field on a Euclidean sphere which 

has three singularities. 

2. Prove that there is no continuous mapping of a Euclidean sphere with 
center O onto itself such that each point P is mapped onto a point on 
the great circle whose plane is perpendicular to the radius OP. HINT. Use 
the image of P to define a unit vector tangent to the sphere at P. 

Section 5.6 
1. Prove: at least as many continuous mappings of a sphere onto itself 

have fixed points as have not. HINT. Use mappings with fixed points to 
"count" the mappings without fixed points by defining a one-to-one 
correspondence from the set of mappings without fixed points into the 
set of mappings with fixed points. 

2. Prove : a continuous mapping of a Euclidean sphere into itself which 
maps each pair of antipodal points into a pair of distinct points maps 
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the sphere onto itself. HINT. If the mapping is not onto the sphere, 
interpret it as from a sphere to a plane. Next apply the Borsuk-Ulam 
theorem. 

3. The image (yu y2, y2) of a point (xl, x2, *3) under a linear transforma-
tion T of three-dimensional Euclidean space is determined by a set of 
equations : 

yl = α η Χ χ + 012*2 + «13*3 > 

y2 = α2ίχί + a22x2 + a23x3, 

y3 = a3lXt + α 3 2 Χ 2 + 033*3 · 

Show that some point (jq, JC2» ^3) with x\ + x\+ x\= \ is mapped 
on the point (cxl, cx2 9 cx3 ) for some real number c. (The number c is 
called a characteristic root of the linear transformation.) HINT. Con-
sider the auxiliary mapping of the sphere into sphere defined by 

4. For the rectangular parallelepiped S with edges of length 1, 2, and 3 find 
the largest number m such that every continuous mapping of the 
surface of S into itself either has a fixed point or moves some point 
a distance at least as great as m. 

where d = 



6 NETWORK TOPOLOGY 

6.1 Introduction 
A relationship between persons or things may be represented by a diagram 

of points (vertices) and lines (edges). For example, a subway system may 
be sketched by representing stations by vertices and connecting successive 
stations on each route with an edge. The vertices of a "family tree" 
represent people and the edges are drawn from parents to their children. 
In a " game tree " each possible situation or " state " is pictured as a vertex 
and the edges go from one state to all other states that may be reached 
from it by a single move of the game. In the subway diagram no direction 
need be assigned to the lines, for subway trains travel in both directions. 
Mathematically stated the relation between successive stations is sym-
metric. In contrast, the edges in a family or game tree are oriented with a 
positive direction because the relation of parent to child is not symmetric 
and the play of a game is not reversible. In these examples the validity 
and usefulness of the diagrammatic representation of the relation does not 
depend on the positions of the vertices, whether the edges are straight 
or curved, but only on which edges meet at which vertices and what 

158 
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orientations are assigned to the edges. These intersections and orientations 
give a topological description of the network of edges and vertices. 

Not all networks of edges and vertices are based on relations, for a 
network may have many edges connecting the same pair of vertices. A 
particular example of such a network was used by Euler in the Königsberg 
bridge problem. In Euler's time there were seven bridges at Königsberg 
situated as in Figure 6.1. The question was asked whether a person could 

Fig. 6.1 
(Above) Map of Königsberg^ bridges in the 1700's 

Fig. 6.2 
(Left) Euler's representation of the bridge 

connections 

walk across all seven bridges without crossing any bridge twice. Euler 
represented the bridge connections with a network in which the four ver-
tices are the four land areas and the edges are the seven bridges. 

The question then became whether the edges of the network could be 
arranged into a path that used no edge more than once. Such a path is 
said to be unicursal. We call the degree of a vertex the number of edges 
with the vertex as endpoint. Euler showed that the edges of a connected 
network may be arranged in a unicursal path if and only if the number of 
vertices with odd degree is either zero or two. If there are two vertices with 
odd degree, the unicursal path must start at one of them and finish at the 
other. If there are no vertices with odd degree, the unicursal path may 
start at any vertex but must finish at the same vertex. If the bridges at 
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Königsberg had been restricted to one way traffic, or more generally if the 
edges of a connected network are oriented, the question may be asked 
whether there is a unicursal path that uses the edges only in prescribed 
orientation. If the unicursal path is to finish at its starting point the number 
of edges oriented toward a vertex must equal the number oriented away 
from it. There will be exceptions to this equality at the initial and terminal 
points of the unicursal path if these points are distinct. 

A question which was unresolved for many years is whether every map in 
a plane can be colored with four colors in such a way that two countries 
(connected polygonal plane regions) will have a different color if they have a 
common boundary edge. In each country select an interior point (capital). 
If two countries share an edge, connect their capitals by a road (edge) 
crossing a frontier only at a single point on the common edge. If the 
countries share two boundary edges, there will be two distinct roads joining 
the capitals. The map-coloring problem becomes one of coloring the 
capitals (vertices) of the road network so that no two capitals at the 
opposite ends of a road (edge) have the same color. 

We have formulated the four-color problem in terms of planar networks. 
Although every network can be represented in three-space so that the 
curve segments representing the edges intersect only in the prescribed 
vertices, there are networks that cannot be so represented in the plane. 
This fact is the basis for the following popular problem : 

Three factories are each to be connected to three utilities. No 
main is to pass over any other. Is it possible to satisfy these 
requirements ? 

Figure 6.3 shows how all the connections (solid lines) except the con-
nection (dotted line) from factory A to utility III may be made. If the mains 
could be laid, they would divide the plane (or sphere) into polygonal faces. 
The number of edges would be nine, the number of vertices, six, and the 
Euler characteristic, 2. The number of faces would be 2 + 9 - 6 = 5. 
Because the boundary of a face must cross from the factories to the utilities 
the same number of times as from the utilities to the factories, each of the 
five polygons must have an even number of edges. Because none can have 
only two, each must have at least four boundary edges. The number of 
edges is therefore at least twice the number of faces, that is, at least 10, 
because each edge is on the boundary of exactly two faces and at least 
four edges bound each face. Because there were only nine edges, we have 
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Fig. 6.3 

derived a contradiction to the assumption that there is a network of mains 
satisfying the requirements. 

Another nonplanar network is shown in Figure 6.4. Kuratowski proved 
that any nonplanar network contains a subnetwork identical to a sub-
division of one of these two. 

In this section we have sketched a few topological network problems. 
The following sections describe in more detail the boundary and cobound-
ary operators in network topology and their application to two problems, 
one electrical, the other economic. 

Fig. 6.4 
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6.2 Boundary and Coboundary 
The topology of networks revolves around two operators, the boundary 

and the coboundary. The boundary d transforms numerical functions of 
edges into numerical functions of vertices. The coboundary δ changes 
functions of vertices into functions of edges. When the boundary is used, 
the functions of edges or vertices are called 1-chains or 0-chains, and we 
represent them by column vectors. The coordinates of these column vectors 
are the functional values at the various edges or vertices. In the coboundary 
context the functions are 1-cochains and 0-cochains, represented by row 
vectors. If we think of each coordinate of a 1-chain as a rate of flow or 
current of electricity, the boundary of the 1-chain is the 0-chain whose 
coordinate at each vertex is the rate of accumulation or depletion of charge. 
When we consider a 0-cochain as a potential function, a coordinate of 
the 1-cochain, which is the coboundary of the 0-cochain, is the difference 
of potential along the corresponding edge. 

When a 1-chain represents a current, a positive coordinate indicates 
that the direction of flow agrees with the orientation of the edge. The co-
ordinate is negative when the flow opposes the orientation. The rate of 
accumulation of charge at a vertex is the algebraic sum of the currents in 
edges directed toward the vertex diminished by the sum of the currents 
in edges directed away from the vertex. For a 0-cochain representing a 
potential, the difference of potential over an edge is defined as the po-
tential at the terminal point of the edge minus the potential at the initial 
point. 

For the network in Figure 6.5 the following equations give the values 
of the boundary and coboundary of the 1-chain z and the 0-cochain p. 

Fig. 6.5 
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dz(A)=-z(a) -z(c) 
dz(B) = z(a) - z(b) 
dz(C) = z(b) - z(e) 
dz{D) = z(c) - z(d) 
dz(E) = z(d) 

+ z(/) 

dz(F) = z(e) - z(f) 

+ z(9) 
+ ζ(Λ) 
-z(h) 

- z(g) + z{i) 
- z(» 

δρ(α)=-ρ(Α)+ρ(Β) 
ôp(b) = -p(B)+p(C) 
ôp(c)=-p(A) +p(D) 
ôp(d)= -p(D)+p(E) 
àp{e)= -p(C) +p(F) 
ôp{f)= p{A) -P(F) 
dp{g)= p(B) +p(E) 
èp(h) = p{C) - p(D) 
M 0 = p(E)-p(F) 

In the vectorial form the equations are 

dz = Mz and δρ = pM, 

where M is the matrix 

l 0 - l 0 0 1 0 0 

0 0 0 0 0 0 

0 0 - 1 0 0 

0 0 

0 0 

1 - 1 

0 0 0 0 

0 0 0 - 1 0 

0 0 - 1 0 1 

1 - 1 0 0 - 1 

Each row of M is the vector of coefficients from the boundary equation 
at one vertex. Each column is the coefficient vector of the coboundary 
equation at one edge. The matrix entry at the intersection of a row and a 
column is 1, — 1, or 0, according to whether the vertex corresponding to 
the row is the terminal point, the initial point, or not an endpoint of the 
edge corresponding to the column. The matrix entry corresponding to the 
vertex S and edge / is called the incidence number a(5, t) of the vertex and 
edge. The matrix M is the incidence matrix of the network. The individual 
boundary and coboundary equations have the form 

dz(S)=£a(S, i )z(0 and δρ(ί) = ^>(S) a(S, t). 
t s 
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The special 1-chains z for which dz = Mz = 0 are called l-cycles. The 
\-coboundaries are defined as the 1-cochains w for w = bp = pM for some 
0-chains p. 

The boundary and coboundary may be used to state Maxwell's form of 
the Kirchhoff-Maxwell laws for a (direct current) electrical network. 

I. The current 1-chain is a 1-cycle. 
II. The 1-cochain whose coordinate at an edge is the impressed electro-

motive force in the edge diminished by the product of the current 
and resistance is the coboundary of the potential 0-cochain. 

We refer to I as the node law and to II as the loop law. If z is the cur-
rent 1-chain, w, the 1-cochain of impressed electromotive forces, R, the 
diagonal matrix with resistances as diagonal entries, and /?, the potential 
0-cochain, these laws become 

I d z = 0 , 

II ôp = w-zTR. 

(A vector or matrix symbol with exponent T denotes the transpose of the 
vector or matrix.) 

To give an additional geometric interpretation of the boundary and co-
boundary, we identify each edge (or vertex) with the l(0)-chain and 
l(0)-cochain which has coordinate 1 corresponding to the particular edge 
(vertex) and has all other coordinates 0. For the network of Figure 6.5 
the following are examples of equations that use this identification : 

da = -A + B, δΑ= -a - c + / . 

The boundary equation shows that B is the terminal and A, the initial 
point of edge a. From the second equation it follows that a and c are the 
edges starting at A, whereas / i s the edge finishing at A. In general, the 
boundary of an edge is its terminal point minus its initial point and the 
coboundary of a vertex is the sum of the edges terminating at the vertex 
diminished by the sum of the edges starting from the vertex. 

Any 1-chain p with coordinates p(t) may be written as the linear com-
bination 

P = Σ KO'· 
t 

Similarly, every 0-chain is a linear combination of vertices. The cochains 
may also be written as linear combinations. 

file:///-coboundaries
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6.3 Paths, Circuits, and Trees 
We describe a path in a network by a finite sequence of edges (or inverse 

edges) such that the terminal point of each edge (or inverse edge) is the 
initial point of the next. A path is simple if it never passes through a vertex 
more than once. At most two edges in a simple path can have any particular 
vertex as endpoint and no two edges can be equal or inverse to each other. 
The initial and terminal points of a path are the initial point of the first 
edge and the terminal point of the last. The path is closed if its initial and 
terminal points coincide. We associate with every simple path the 1-chain 
which is the sum of the edges in the path, where an edge appearing in-
versely in the path occurs negatively in the sum. This 1-chain is called a 
simple \-chain. When the simple path is not closed, the initial and terminal 
points of the path are initial and terminal points of the 1-chain and the 
boundary of the simple 1-chain is the terminal point minus the initial point. 
We call the simple 1-chain derived from a closed path a circuit. Since the 
boundary of a circuit vanishes, every circuit is a 1-cycle. It will be seen 
later that every 1-cycle is a linear combination of circuits. 

A network without circuits is a tree. Figure 6.6 is a copy of Figure 6.5, 

8 

Fig. 6.6 

except that some edges are dotted lines. The subnetwork of solid edges is 
a tree. This tree is maximal in the network, for none of the dotted edges 
can be added to the tree without introducing a circuit. For example, if the 
edge h is added, the enlarged subnetwork has the circuit a + h — b — a. 
The tree may be built up by starting with a vertex, say A, as base and some 

file:///-chain


166 NETWORK TOPOLOGY 

edge, say a, with A as an endpoint. The edges are added one by one, so 
that when an edge is added it shares exactly one endpoint with the rest of 
the tree. The addition of an edge cannot make a circuit, for one end of the 
new edge is not attached to the rest of the tree. Each time an edge is added 
to the tree a vertex is also added. Because the tree grew from a single edge 
with two endpoints, any tree will have one more vertex than it has edges. 
In Figure 6.6 there is a simple in-tree path (or 1-chain) from A to every 
other vertex. If a vertex S is left out of a tree, the tree may be enlarged by 
adding the first out-of-tree edge on the path from A to S. This shows that 
a maximal tree in Figure 6.6 must reach all six vertices. The number of 
edges in the maximal tree is 6 — 1 = 5 and the number of out-of-tree edges 
is 9 - (6 - 1) = 4. 

The formula extended to a general network expresses the number of 
edges left out of a maximal tree as 

μ — n — m + 1, 

where n is the total number of edges and m is the number of vertices. 
By general network we mean a collection of edges and their endpoints such 
that each edge has two distinct endpoints and any two endpoints (or 
vertices) may be joined by a simple 1-chain. This last condition requires 
that a network be connected. Note that because a tree is a subnetwork 
it is also connected. The restriction that the endpoints of an edge be 
distinct is to avoid special discussion of loop edges. A loop edge can always 
be eliminated by subdividing the loop into two edges. The number μ is 
the Betti number of the network. In Section 6.4 we shall see that all 1-cycles 
can be expressed in terms of μ circuits. 

6.4 Basic Circuits 
In the maximal tree of Figure 6.6 we select the vertex A as its base and 

say that the tree is now rooted. For every vertex S there is a simple, in-tree, 
1-chain a(S) starting at A and ending at S. For example σ(Ε) = c + d. 
(For S = A, a(S) degenerates into the zero vector.) Notice that the unique 
simple 1-chain from E to C is 

-σ(Ε) + cr(C) = -c - d + a + b. 

We associate with any edge / the simple 1-chain x(t) in the maximal tree 
which starts at the initial point of t and ends at the terminal point of t 
If t is not in the tree, œ(t) = t - τ ( / ) is a circuit. For edges in the tree 
/ =τ (0 so that œ(t) = 0. Consider the matrices 
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A 
0 

0 

0 

0 

0 

0 

0 

0 

0 

B 
1 

0 

0 

0 

0 

0 

0 

0 

0 

c 
1 

1 

0 

0 

0 

0 

0 

0 

0 

D 
0 

0 

1 

0 

0 

0 

0 

0 

0 

E 
0 

0 

1 

1 

0 

0 

0 

0 

0 

F 
Γ 

1 

0 

0 

1 

0 

0 

0 

0 

a 

b 

c 

d 

e, 

f 
9 

h 

i 

a 
[1 

0 

0 

0 

0 

0 

0 

0 

o 

b 
0 

1 

0 

0 

0 

0 

0 

0 

0 

c 
0 

0 

1 

0 

0 

0 

0 

0 

0 

d 
0 

0 

0 

1 

0 

0 

0 

0 

0 

e 
0 

0 

0 

0 

1 

0 

0 

0 

0 

/ 
- 1 

- 1 

0 

0 

- 1 

0 

0 

0 

0 

g 
1 

0 

- 1 

- 1 

0 

0 

0 

0 

0 

h 
1 

1 

- 1 

0 

0 

0 

0 

0 

0 

i 

- 1 

1 

1 

- 1 

0 

0 

0 

0 

a 

b 

c 

d 

e. 

f 
g 

h 

i 

The columns of L and LM are the simple 1-chains a(S) and x{t). The last 
rows of L and LM are zero vectors because these simple 1-chains are in 
the tree. The top left corner of LM is an identity matrix, for τ(ί) = t for in-
tree edges. The reason that the columns of LM are the vectors τ(ί) is that 

s 
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If N is the matrix with columns ω(ί), 

a 

0 

0 

p 
P 
P 
P 
P 
[o 

b 
0 

0 

0 

0 

0 

0 

0 

0 

0 

c 
0 

0 

0 

0 

0 

0 

0 

0 

0 

d 
0 

0 

0 

0 

0 

0 

0 

0 

0 

e 
0 

0 

0 

0 

0 

0 

0 

0 

0 

/ 
1 

1 

0 

0 

1 

1 

0 

0 

0 

9 
- 1 

0 

1 

1 

0 

0 

1 

0 

0 

h 
- 1 

- 1 

1 

0 

0 

0 

0 

1 

0 

i 
1" 

1 

- 1 

- 1 

1 

0 

0 

0 

1 

a 

b 

c 

d 

e. 

f 
9 

h 

i 

The matrix may be obtained by subtracting LM from the 9 x 9 identity 
matrix. The first five columns of N are zero vectors because ω{ΐ) — 0 for 
in-tree edges. The last four columns are the circuits co(t) for the four out-
of-tree edges. The identity matrix in the lower right corner of N reflects 
the fact that each out-of-tree edge / is in only its own circuit co(t). 

If z is a 1-cycle, that is if Mz = 0, 

Nz = z- (LM)z = z. 

The equation 

z = Nz (1) 

expresses the 1-cycle as a linear combination of the μ circuits ω(ί) cor-
responding to out-of-tree edges. Because the left-hand side of equation (1) 
depends only on the out-of-tree coordinates of z, equation (1) gives the 
solution for all coordinates of z in terms of μ out-of-tree coordinates. 
Another form of equation (1) is 

2 = Σ zt ω(0> 
t 

which shows that any 1-cycle is a linear combination of the μ nonzero 
circuits co(t) corresponding to the out-of-tree edges. 

The matrix relations just developed may be used to derive a new des-
cription for the 1-coboundaries of a network. If w is a 1-coboundary, 

w = dp = pM 
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for some 0-cochain p. Therefore wz = (δρ)ζ — (pM)z = p(Mz) = p{dz). 
For ail 1-cycles z, wz = 0. Because the columns of N are 1-cycles, 

wN = 0. (2) 

If, on the other hand, w is a 1-cochain such that wN = 0, 

w = w(LM) = (wL)M = <5(wL). 

This shows that a 1-cochain w is a 1-coboundary if and only if wN = 0. 
We shall partition the 1-chain z and the 1-cochain w into the forms 

z = and w = [w, i?], 

where x and u are the subvectors with coordinates for each in-tree edge, 
whereas y and v have coordinates for the out-of-tree edges. The matrix 
LM is also written in partitioned form as 

LM 
I K 

0 0 

where 1 is a 5 x 5 identity matrix, K is a 5 x 4 matrix, and the zeros 
represent zero matrices with the appropriate dimensions to fill out LM, 
The analogous form for N is 

N = 
Γ0 - X ] 
L° Ji 

where J is a 4 x 4 identity matrix. Equation 1 may be rewritten as 

Γχ" 

[y. 

x] 

.yj 

Γ0 

l_o 
"Ί J 

"-κ/| 
. y \ 

or 

This is equivalent to 

x + Ky = 0 

Equation 2 may be replaced by 
Γ0 -K 

(3) 

[«,*] 

or 
0 J 

-uK + v = 0. 

] . . 
(4) 
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The solutions of the dual equations (3) and (4) are the 1-cycles and 1-
coboundaries, respectively. 

Although we have discussed a specific network, the reasoning used 
applies to general networks. 

6.5 The Kirch hoff-Maxwell Laws 
The Kirchhoff form of the loop law states that the sum over any circuit 

(loop) of the impressed electromotive forces equals the corresponding sum 
of the products of current times resistance. The sum of a 1-cochain, which 
is a row vector, over a circuit, which is a column vector, may be computed 
by multiplying the row vector times the column vector. Since all circuits 
can be expressed in terms of the basic circuits which are columns of N, 
the Kirchhof! form of the law is equivalent to the equation 

II* wN = zTRN 

where w is the 1-cochain of impressed electromotive forces, R is the resis-
tance matrix, and z is the current 1-cycle. 

No potential 0-chain p appears explicitly in the Kirchhoff form of the 
loop law. Any 0-cochain p such that 

δρ = w - zTR 

is a suitable potential 0-chain. When II* is satisfied, there is always such 
a p, for 

(w - zTR)N = 0 

means that w — zTR is a 1-coboundary. A particular potential 0-cochain is 

p = (w - zTR)L. 

Other potential 0-cochains are obtained by adding a constant to all entries 
of /?. We see that there are no other potential 0-cochains because all the 
potential differences are specified by the loop law. 

An important electrical problem is the determination of the current 
1-chain z and a potential 0-cochain p when the 1-cochain w of impressed 
electromotive forces and the resistance matrix R are given. The Kirchhoff-
Maxwell laws supply the equations 

z = Nz and zTRN = wN. 

In terms of x, y, u, and v these equations become 

x + Ky = 0, 

-xTRlK + yTR2 = -uK + v, 
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where Rx and R2 are the diagonal resistance matrices for the in-tree and 
out-of-tree edges. These two equations give n = μ + (n — μ) linear equa-
tions for the n unknown coordinates of x and y. To solve these equations 
we first take the transpose of the second matrix equation 

-KTRlX + R2y = (-uK + v)T. 

Substitution of the value of x from the first equation gives 

(KTR,K + R2)y = (-uK + v)T. 

The square μ χμ matrix P =KTRiK + R2 can be shown to have an 
inverse when the resistances are all positive.! The solution for y is 

y = p-\-uK + v)T. 

Of course, this solution may be derived in numerical cases by use of 
solution methods that do not require the explicit calculation of an inverse 
matrix. 

We may now derive a formula for z in terms of w by using the equations 

z = 
Γχ' 

[y. 

[", 
L 

Γ-Κ>-

L y . 
-K' 

j m 

• w 

Γ-Χ] 

L J \ 
~~K] 

. J J 

y, 

This formula is 

z = 
-K 

J 
ρ-'Ι-κ7,^7 

or 
KP~lKT 

-P~lKT 

-KP~V 

Substitution in the equation 

p = (w-zTR)L 

t Since the quadratic form xTRlx is positive definite, 

(KyVR^Ky) = y^R^y > 0 
for all y. Therefore 

yT(KTRlK + R2)y = yT(KTRlK)y + yTR2y > 0 for all y φ 0. 

Because KTRXK + R2 is positive definite, it is nonsingular and has an inverse. 
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produces the following formula for a potential 0-cochain 

p = w 
I-KP~1KTR1 KP~XR2 

P~1KTRi J-P-'R, 
L. 

Because the out-of-tree rows of L are zero-vectors, the right-hand blocks 
of the partitioned matrix are multiplied by a zero matrix in L. Therefore 
the formula p can be simplified to 

p = w 
I-KP~1KTR1 

P~1KTR1 

L. 

To give an illustrative numerical example, using the network of Figure 
6.6, we assign resistance 1 to edges a, c, e, g, i and resistance 2 to edges 
b, d,f,h. Then 

P = 

6 

- 1 

- 3 

-1 - 3 

5 2 

2 6 

4' 

- 4 

- 4 

ρ-χ= — 
328 

4 - 4 - 4 

9 6 - 3 2 24 -52" 

- 3 2 120 - 8 72 

24 - 8 88 28 

- 5 2 72 28 117 

z = 328 

[ 117 

45 

-65 

-37 

17 

52 

-72 

-28 

L—35 

45 

93 

-25 

11 

57 

20 

48 

-36 

37 

-65 

-25 

109 

57 

27 

44 

40 

52 

-17 

-37 

11 

57 

93 

-25 

20 

48 

-36 

-45 

17 

57 

27 

-25 

109 

44 

40 

52 

65 

52 

20 

44 

20 

44 

96 

-32 

24 

-52 

-72 

48 

40 

48 

40 

-32 

120 

-8 

72 

-28 

-36 

52 

-36 

52 

24 

-8 

88 

28 

-35] 

37 

-17 

-45 

65 

-52 

70 

28 

117J 

T 
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p = w 
F 328 

"0 

0 

0 

0 

0 

0 

0 

0 

0 

211 

-45 

65 

37 

-17 

-52 

72 

28 

35 

121 

97 

115 

15 

-131 

-92 

-24 

100 

-39 

65 

25 

219 

-57 

-27 

-44 

-40 

-52 

-17 

139 

3 

105 

85 

23 

-84 

-136 

20 

107 

104' 

40 

88 

40 

88 

-136 

-64 

48 

-104 

The first column of the 9 x 9 matrix is a zero vector because p is the 
particular potential 0-chain with zero potential at the vertex A, which is 
the base of the tree. 

6.6 A Transportation Problem 
In the network in Figure 6.7 the vertices A and B represent warehouses 

from which a commodity is to be shipped to the markets represented by 
the vertices C, D, and E. Each edge is a shipping route from a warehouse 
to a market. The positive direction of the edge is from the warehouse to 
the market. The 0-chain 

<1 = 

-55' 

-45 

50 

35 

15 

A 

B 

C 

D 

E 
B 

Fig. 6.7 

gives shipping requirements. The positive coordinate at a market is the 
number of units needed at that market, whereas the negative coordinate 
for a warehouse shows the number of units to be shipped from that ware-
house. Because the sum of the coordinates of q is zero, the supplies at the 
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warehouses equal the demands at the markets. The costs per unit shipped 
along the various routes are the coordinates of the 1-cochain 

a b c d e f 
w0 = [4 8 5 3 6 2]. 

We shall solve the problem of determining how the commodity should be 
shipped from the warehouses to the markets if the total shipping cost is 
to be minimized. In studying this problem we shall discover a dual problem 
that can be solved simultaneously. 

We define a distribution vector for the transportation problem as a 
1-chain such that the requirements at the vertices are satisfied when the 
number of units shipped along an edge is the corresponding chain co-
ordinate. We say a distribution vector is feasible if none of its coordinates 
is negative. An optimal distribution vector is a feasible distribution vector 
that minimizes the total shipping cost. Our problem is to find an optimal 
distribution vector. 

The incidence matrix of the network of Figure 6.7 is 

a 
- 1 

0 

1 

0 

0 

b 
- 1 

0 

0 

1 

0 

c 
- 1 

0 

0 

0 

1 

d 
0 

- 1 

1 

0 

0 

e 
0 

- 1 

0 

1 

0 

/ 
0" 

- 1 

0 

0 

1 

A 

B 

C. 

D 

E 

We select the rooted maximal tree with base A and edges a, b, c, d. The 
matrix L, whose columns are the simple in-tree chains from A to the 
various vertices, is 

A 
"0 

0 

0 

0 

0 

0 

B 
1 

0 

0 

- 1 

0 

0 

c 
1 

0 

0 

0 

0 

0 

D 
0 

1 

0 

0 

0 

0 

E 
0" 

0 

1 

0 

0 

0 

a 

b 

c. 

'd 

e 

i 
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The product of M times a column of L is the boundary of the simple chain 
from A to a particular vertex. This explains the special form of 

Γ0 

0 

0 

0 

L° 

- 1 

1 

0 

0 

0 

- 1 

0 

1 

0 

0 

- 1 

0 

0 

1 

0 

-Γ 
0 

0 

0 

1 

A distribution vector of the transportation problem is a 1-chain z that 
satisfies the equation 

Mz = q. 

Because the first coordinate of q is the negative of the sum of the other 
coordinates, 

MLq = q. 

This shows that 

r 5i 

35 

15 
z0 = Lq = 

45 
0 

L °J 
is a particular distribution vector. This distribution is derived when ship-
ments are restricted to the maximal tree. If z is any distribution vector 
and z* = z — z0, 

Mz* = Mz- Mz0 = 0. 

On the other hand, z = z* + z0 is a distribution vector whenever z* is a 
1-cycle. 

A "dua l " pricing problem intimately related to the transportation 
problem is to find among the 1-cochains that satisfy the conditions 
w = w* + w0 for some 1-coboundary w* and w has non-negative co-
ordinates the particular 1-cochain that minimizes wz0. If p is a 0-cochain 
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with δρ = — vv*, we think of a coordinate of p as a "shadow price" or 
"locational value" at a vertex for a unit of the commodity being trans-
ported. After the commodity has been shipped from a warehouse to a 
market, the price or value increases by an amount that reflects the shipping 
costs. The increase along an edge is less than or equal to the shipping cost 
along that edge. The 1-cochain, vv = vv* + vv0, gives the shipping cost per 
unit for each edge which is not balanced by an increase in the shadow 
price. The problem of minimizing wz0 is simply that of assigning locational 
values, hence of determining vv* and vv, so that the total of unbalanced 
shipping costs for the particular distribution vector z0 is a minimum. We 
define a loss vector as a vector vv of the form vv = vv* + vv0, where vv* is a 
1-coboundary. If all coordinates of vv are non-negative, the loss vector will 
be feasible. We call a feasible loss vector that gives the minimum value of 
wz0 an optimal loss vector. Although the physical problem requires z0 to 
be feasible, we now find that mathematically the pricing problem has the 
same optimal loss vectors, no matter what distribution, feasible or not, 
is used for z0. 

For any distribution vector z = z* -{- z0, 

wz = w(z* + z0) = (vv* + w0)z* + wz0 = w0z* + wz0, 

because the product w*z* of a 1-cycle and 1-coboundary is zero. This 
formula shows that when z is fixed wz and wz0 as functions over the feasible 
loss vectors attain their minima at the same values of vv; hence the optimal 
loss vectors do not depend on the selection of z0. The cost vector w0 is the 
feasible loss vector obtained by making all shadow prices equal. For any 
loss vector vv = vv* + w0, 

wz = (vv* + w0)z = w*(z* + z0) + w0z = w*z0 + w0z. 

This shows that wz and w0z, as functions over the feasible distribution 
vectors, attain their minima for the same value of z. Thus the optimal 
distribution vectors do not depend on which loss vector is the cost vector. 
If we interpret a negative coordinate as a subsidy for using a particular 
shipping route, we may even think of a nonfeasible loss vector as the cost 
vector for a transportation problem with the same optimal distribution 
vectors. 

When w and z are feasible loss and distribution vectors, 
wz > 0. 

If wx and zt are feasible loss and distribution vectors such that 

H^Zj = 0 , 
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w\ is an optimal loss vector and zY is an optimal distribution vector. These 
vectors are optimal because w1 gives the minimum of wzl and zx the 
minimum of wxz. For each maximal tree there is a distribution vector z 
and a loss vector w with the out-of-tree coordinates zero in z and the in-tree 
coordinates zero in w. For these vectors wz = 0. If we find a maximal tree 
such that the corresponding vectors w and z are both feasible, these vectors 
are optimal. We limit our discussion of the existence of such feasible 
vectors to an illustrative example. 

Consider transportation problems in which goods are to be distributed 
from γγΐγ warehouses to m2 markets via n = mxm2 routes, one directed from 
each warehouse to each market. These problems have optimal distribution 
vectors which have zero coordinates for the edges left out of some maximal 
tree. If z t is an optimal distribution vector with out-of-tree coordinates 
zero, let w1 be the loss vector with zero coordinates for the edges of the 
same tree. The vector wl is feasible, hence optimal. The pricing problems 
over the same type of network always have an optimal loss vector with zero 
coordinates for the edges of a maximal tree. If w{ is such an optimal loss 
vector, the corresponding distribution vector ζγ with out-of-tree coordi-
nates zero is both feasible and optimal. Discussion of our specific trans-
portation problem and its dual pricing problem illustrates the principle 
but not the details of the general proof of these facts. 

For the problem on the network of Figure 6.7 we found the distribution 
vector 

with coordinates zero for the edges e and / , which are left out of the 
maximal tree with edges a, b, c, and d. We write the general distribution 
vector as 

z = 
x 

[y\ 
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where x and y are the in-tree and out-of-tree parts. Because z - z0 is a 
cycle, 

M M f"1 _1 

\xb\ 35 1 0 
- + 

\xc\ 15 0 1 

U J L45J L 1 1. 
This matrix equation represents the four equations 

Xb=-ye + 35> 

xc= -yf +15, 

xd= - )>*- )> /+ 45. 

Because a distribution vector is completely determined by the values of 
ye and yf, we represent the distribution vectors by the points in a plane 
with Cartesian coordinates (ye, yf). The feasible distribution vectors cor-
respond to the points in the plane that satisfy the inequalities 

ye + yf + 5 > 0 , 
-ye + 3 5 > 0 , ye>09 

-yf + 15>09 yf>0, 

- J > e - > 7 + 4 5 > 0 . 
Figure 6.8 shows the feasible region of points that satisfies these inequalities. 

The function to be minimized over the feasibility region is 
w0z = 4xa + 8xb + 5xc + 3xd + 6ye + 2yf = -ye - 2yf + 510. 

The graph of this function in three dimensions is the portion of a plane 
over the feasible region. The function must attain its minimum at one of 
the vertices of the feasible region. If the plane of the graph were parallel 
to one of the boundary lines of the feasible region, the function w0z might 
assume its minimum on an entire boundary edge. The vertices of the 
feasible region are the intersections of two lines, on each of which one 
coordinate of z is zero. The points on one of these lines represent the dis-
tribution vectors, with none of the commodity sent along a particular edge. 
There are 15 pairs of lines. The three nonintersecting pairs correspond to 
pairs of edges which are not the out-of-tree edges for any maximal tree. 
Each of the 12 intersecting pairs of lines corresponds to a pair of edges 

ye 

L>7. 
= 0. 
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Fig. 6.8 

which are the out-of-tree edges of a maximal tree. The point of intersec-
tion represents the distribution vector, with zero coordinates for these out-
of-tree edges. The five points of intersection which represent feasible distri-
bution vectors are the vertices of the feasible region. The minimum cost 
is attained for one of the five feasible distribution vectors. 

For each maximal tree there is a 1-coboundary u>* which has the same 
in-tree coordinates as — w0. The loss vector w = w* + w0 has zero in-tree 
coordinates. For each maximal tree Table 6.1 lists the distribution vector 
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In-tree 
Edges 

Table 6.1 

WQZ WZQ 

a 
b 
c 
d 

Γ 51 
35 
15 
45 
0 

L ° 

Γ 0] 
0 
0 
0 

- 1 
- 2 

Γ°1 
1 
4 
8 

L5j 

510 

Γ 501 
35 

- 3 0 
0 
0 

L 45 

Γ°1 
0 
0 
2 
1 

.0 

roi 
1 
4 
8 

L5j 

90 

e 
f 

[50] 
5 
0 
0 

30 

b$ 

Γ°1 
0 
1 
1 
0 
0 

Γ°1 
2 
4 
8 

IAI 

450 60 

a 

c 

e 
f 

Γ50Ί 
0 
5 
0 

35 

L10 

Γ 01 
- 1 

0 
2 
0 
0 

Γ°1 
3 
4 
9 

L5j 

455 

b 
c 
d 
e 

Γ °1 
40 
15 
50 

- 5 

L 0 

f-1] 
0 
0 
0 
0 

_ - l 

Γ°1 
2 
5 
8 

I.5J 

d 
e 
f 

Γ °1 
55 
0 

50 
- 2 0 

L 15 

Γ-1Ί 
0 
1 
0 
0 

L 0 

Γ°1 
2 
5 
8 

L4j 

a 
b 
c 

f 

a 
b 

z wT pT 
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Table 6.1 

In-tree 
Edges W0Z WZQ 

a 
b 

d 

f 

c 
d 
e 

d 
e 
f 

b 
c 
d 

c 
d 
e 
f 

Γ 5 0 1 
- 1 0 

15 
0 

45 

L ° 

Γ 01 
0 
0 
1 
0 

- 1 

Γ°1 
2 
4 
8 

I_5J 

[20] 
35 
0 

30 
0 

15 

Γ 0] 
0 
2 
0 

- 1 
0 

r°i 1 
4 
8 
3 

[40] 
0 

15 
10 
35 

L ° 

Γ 0] 
1 
0 
0 
0 

- 2 

Γ°1 
1 
4 
7 

L5J 

[ 55] 
0 
0 

- 5 
35 

L 15 

[0] 
1 
2 
0 
0 
0 

Γ°1 
1 
4 
7 

L3j 

[ 0] 
35 
20 
50 
0 

I - 5 

[ -2 ] 
0 
0 
0 
1 
0 

Γ°1 
3 
6 
8 

L5J 

[ 0] 
0 

55 
50 
35 

L—40 

Γ-2] 
- 1 

0 
0 
0 
0 

Γ°1 
3 
6 
9 

L5J 

480 

475 

65 

z wT pT 

a 
b 
c 

e 

a 

a 
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z with zero out-of-tree coordinates, the loss vector w = w* + w0 with zero 
in-tree coordinates, and a vector p of shadow prices or locational values 
such that δρ = — w*. 

The columns of values of w0z and wz0 are filled only when z or w is 
feasible. We notice that the tree with edges a, b, c, f is the only tree for 
which both z and w are feasible. The values zx and wt of z and vv corres-
ponding to this tree give the minima of w0z and wz0. The vector [0 2 4 
8 4] is a vector of shadow prices such that the price increase along each 
edge equals the shipping cost, except on the out-of-tree edges, c and d, 
along which none of the commodity is shipped under the optimal distri-
bution vector. These shadow prices would enforce the optimal distribution 
vector by penalizing the shipper for using route c or d. 

To explore the relation between the dual problems, we shall forget that 
we know wl explicitly and prove that wx is feasible and optimal because 
zx is optimal. Now wx has the form [0 0 w^c) w^d) 0 0]. Because 
zl is optimal, the value wxzx = 0 is the minimum of vt̂ z as a function over 
the feasible region. We derive a new distribution vector z2 from zt by 
changing the coordinate of c from 0 to 1 and making compensating changes 
in the positive coordinates of zv The change from zl to z2 may be achieved 
by adding to zt the circuit 

to get z2 = 

Now z2 is feasible and z2w1 = wx{c). Therefore wx(c) > 0. 

If the circuit 

- 1 ' 
1 
0 
1 

- 1 
0 

is added to Zj to give z3 = , z3 is feasible 

and wtz3 = w^d) ^ 0. This shows that wi is feasible. We proved earlier 
that if distribution vectors and loss vectors zu wx were both feasible and 
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\νγζγ = 0, both vectors are optimal. Dual reasoning shows that the opti-
mality of wl implies the feasibility and optimality of zv 

In conclusion, we shall relate the dual transportation and pricing prob-
lems to a pair of dual linear programming problems. We have seen that 
the optimum vectors do not change if we alter z0 by a 1-cycle or w0 by a 
1-coboundary. Therefore we may assume that z0 has zero out-of-tree co-
ordinates and w0 has zero in-tree coordinates with respect to a particular 
maximal tree. We partition the distribution vectors z and z0, the loss 
vectors w and w0, and the 1-cycles and 1-coboundaries z* and w* into 
in-tree and out-of-tree parts. 

z = 
X 

[y. 
> zo = 

XQ 

. 0 . 
, z* = 

x*\ 
[w ύ], w0 = [0 ι;0], w* = [ i i V ] . 

Formulated in terms of the 1-cycles z* and the 1-coboundaries w*, the 
dual problems are combined into the following: 

subject to the con-

Γ * * ' 

b*\ 
> -

~*ol 

L o J 

ϊ"ι~ 

lan_ 
> ~bA 

M 

Transportation Problem. Minimize [0 v0] 

ditions 

and x* + Ky* = 0. 

We use the vector inequality 

as an abbreviated form of the system of simultaneous inequalities 

αγ > b^ ...,an > bn. 

Pricing Problem. Minimize [u* v*] ^° subject to the conditions 

[u* v*] > - [0 v0] and -u*K + v* = 0. 
We restate these problems after eliminating the dependent vectors x* and 

v* and setting v0= —v0. 

Transportation Problem. Maximize ϋ0γ* subject to the conditions 
y* > 0 and Ky* < x0. 

Pricing Problem. Minimize u*x0 subject to the conditions u* > 0 
and u*K > ϋ0. 
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This is a standard form for presenting a pair of dual linear programming 
problems. Linear programming problems may be solved by a very efficient 
computational algorithm (devised in 1947 by G. B. Dantzig), called the 
"simplex method." The algorithm is related to the above tree-analysis of 
the transportation problem and its dual. 

EXERCISES 
Section 6.1 
1. A police captain ordered a policeman to patrol the 20 miles of streets 

drawn on the map in Figure 6.9. The captain observed the mileage 
indicator of the police car both before the policeman left and after he 
returned. When the captain saw that the police car had traveled exactly 
20 miles, he suspended the policeman. Justify the suspension. 

Fig. 6.9 
Street diagram 

2. Solve the same problem for the one-way streets on the map in Figure 
6.10. 

3. A chessboard has 64 squares arranged into eight rows and eight 
columns. A knight may move from the square in the ith row and the 
yth column to the square in the kth row and mth column if and only if 

0 < | i - f c | < | i - f c | + | j - m | = 3. 
Consider the 64 squares as the vertices of a network in which pairs of 
vertices are connected by an edge if and only if a knight may move 
from one square of the pair to the other. Can a knight make a unicursal 
trip over this network? 
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4 

Fig. 6.10 
Diagram of one-way streets 

One or more airplanes are to be chartered to deliver 24 cargoes between 
four cities, A, B9 C, and D. The origins and destinations of the cargoes 
are given in tabular form. One flight may be made per plane per day. 

From 

A 
B 
A 
C 

To 

B 
A 
C 
A 

Number of 
Cargoes 

3 
2 
2 
4 

From 

A 
D 
B 
C 

To 

D 
A 
C 
B 

Number of 
Cargoes 

2 
1 
2 
1 

From 

B 
D 
C 
D 

To 

D 
B 
D 
C 

Number of 
Cargoes 

2 
2 
1 
2 

Planes may be chartered in any city but each must be returned to the 
city in which it originated. In each of the following cases prepare a 
schedule of flights that minimizes the cost. 

a. Planes rent at $25,000 per month with an additional charge of $2000 
per flight. 

b. Planes rent at $10,000 per flight. A penalty of $500 per cargo must 
be paid each day for all undelivered cargoes. 

Section 6.2 
1. Show that the sum of the values of a 0-chain at the various vertices 

equals zero if the 0-chain is the boundary of a 1-chain. 

2. Show that the rank of the incidence matrix of a network is less than 
the number of vertices. 

4. 
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Section 6.3 
1. Show that the coboundary of a 0-cochain on a connected network is 

the 1-cochain with value zero at each edge if and only if the 0-chain 
has the same value at every vertex. 

2. Find the Betti number of the network of edges and vertices of a regular 
icosahedron. 

Section 6.4 
1. Give a set of four linear equations which are satisfied by the coordinates 

of the 1-chain (xa, xb, xc, xd, xe, xs, xg, xh)
T if and only if the 1-chain 

is a 1-cycle of the network. Give a set of four linear equations satisfied 
by coordinates of the 1-cochain (ya9 yb, yc9 yd, ye, yf, yg, yh) if and 
only if 1-cochain is a 1-coboundary. 

2. 

1 

0 

0 

0 

1 

0 

0 

0 

0 

- 1 

0 

0 

0 

1 

0 

0 

0 

0 

- 1 

0 

0 

0 

1 

0 

0 

0 

0 

- 1 

0 

0 

0 

1 

, < 

- 1 

1 

0 

0 

0 

0 

0 

0 

_̂ ^̂  

Fig. 

0 

- 1 

1 

0 

0 

0 

0 

0 

d 

6.11 

0 

0 

- 1 

1 

0 

0 

0 

0 

h ^ 

1 

0 

0 

- 1 

0 

0 

0 

0 

^ 

0 0 

0 0 

0 0 

0 0 

- 1 0 

1 - 1 

0 1 

0 0 

0 

0 

0 

0 

0 

0 

- 1 

1 

0' 

0 

0 

0 

1 

0 

0 

- 1 
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Represent the network with this incidence matrix by a diagram. 
Select a maximal tree and use the different symbols in your diagram for 
the in-tree and out-of-tree edges. Write down the circuit ω(ί) for each 
out-of-tree edge t. Give the dual sets of linear equations whose solutions 
are the 1-cycles and 1-coboundaries. 

Section 6.5 
1. Draw a diagram of the network with incidence matrix 

1 - 1 - 1 - l j 

- 1 1 1 1_ 

If [wa, 0, 0, 0] is the 1-cochain of impressed electromotive forces and 

k 0 0 01 

10 rb 0 0 

10 0 rc 0 

[θ 0 0 rd\ 

is the resistance matrix, find the current 1-cycle and a potential 0-cochain. 

2. (Figure 6.12.) The following table gives the resistance and impressed 
electromotive force in each edge of the network. 

Fig. 6.12 

ohms 
volts 

10 
20 

15 
- 1 0 

5 
0 

20 
-35 

10 
45 

10 
- 1 0 
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Find the current in each edge. If the potential at A is 0, find the potential 
at B, C, and D. 

Section 6.6 
1. Three warehouses, A, B, and C, contain 17, 15, and 11 units, respec-

tively, of a commodity. Three markets, Z), E, and F require 9, 12, and 
22 units, respectively. The following table gives the shipping costs per 
unit. 

Cost Cost β Cost 
From To per Unit From To per Unit From To per Unit 

(dollars) (dollars) (dollars) 

A D \ B D 4 C D 5 
A E 4 B E 3 C E 6 
A F 2 B F 2 C F 1 

Show that the total shipping cost is minimized if no units are shipped 
from A to £", from B to D, from C to A or from C to F. What is the 
optimal shipping pattern? 

2. If the shipping cost from A to D in Exercise 1 is increased by a tariff of 
$2 per unit, what is the new optimal shipping pattern? 



7 SOME THREE-DIMENSIONAL TOPOLOGY 

7.1 Three-Dimensional Manifolds 
In Chapters 1 and 2 we studied the two-dimensional topology of surfaces 

formed by fitting polygons together. We shall now fit polyhedral solidsf 
together and explore three-dimensional topology. By analogy to the two-
dimensional case we require the following: 

1. The polyhedral solids intersect only in faces, edges, and vertices. 
2. The edges and vertices of the polyhedral solids are identified only to 

the extent required by the face identifications. 
3. At most two polyhedral solids share any particular face. 
4. For any partition of the set of polyhedral solids into two subsets 

there is always one polygon that is a face of a solid from each subset. 
A space formed in this way from a finite number of polyhedral solids 

is called a three-dimensional pseudomanifold, whereas a surface is called 

t A polyhedral solid is a closed and bounded convex body in three-space whose 
boundary consists of a finite number of polygonal faces which meet each other along 
edges and vertices. It is the three-dimensional analogue of a polygon. 

189 
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a two-dimensional manifold. A manifold is distinguished from a pseudo-
manifold by the requirement that all points (except boundary points) have 
a neighborhood topologically equivalent to a spherical solid (a ball) in a 
Euclidean space of the same dimension as the manifold. (Although the 
concept of pseudomanifold is more general, we shall consider only those 
formed from polyhedral solids in accordance with rules 1 to 4.) A surface 
satisfies the homogeneity requirement of a manifold because each point 
not on a boundary curve has a neighborhood that is topologically equiva-
lent to a disk in the Euclidean plane. We shall now identify the opposite 
faces of a cube to give a pseudomanifold containing two exceptional points 
with neighborhoods that are solids bounded by projective planes rather 
than spheres. 

In a three-dimensional Euclidean space with Cartesian coordinates 
x, y, and z consider the cubical solid defined by the condition max (|x|, 
\y\, \z\) < 1 (Figure 7.1). Match the face on which x = 1 to that on which 

+- y 

-*-*-—--I 

Fig. 7.1 

T e 
Fig. 7.2 

x = -1 by the correspondence (1, y, z)<->(- 1, -y, z). Similarly, identify 
(x, l ,z) with (x, - 1 , - z ) , and (x, y, 1) with ( - * , y9 - 1 ) . These face 
identifications impose the edge and vertex identifications indicated by the 
labels used in Figure 7.1. This cubical solid with identified faces is a closed 
pseudomanifold because the six faces are identified in pairs. Because the 
original solid was in Euclidean space, every point inside the cube has 
neighborhoods that are balls. 

An interior point of a face, say the top, has spherical neighborhoods 
made from a hemiball from the top of the solid and a hemiball from the 
bottom of the solid. This is illustrated in Figure 7.2. If the bottom hemiball 
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is reflected in a vertical plane through R and S (as they appear on the 
bottom face), the curves / and e are interchanged and the lower hemiball 
can be placed on top of the upper hemiball. Consider an interior point of 
an edge; for example, the point T with coordinates (1, 1, z0) on the vertical 
edge a (Figure 7.3). The intersection of the ball, 

( χ - 1 ) 2 + 0 > - 1 ) 2 + ( ζ - ζ 0 ) 2 < ε , 

Fig. 7.3 

with the cubical solid gives a spherical wedge in a neighborhood of Γ. An 
entire neighborhood of T is formed by fitting together four spherical 
wedges centered about the four occurrences of Γ. When the wedges have 
been fitted together, each will have one unmatched, two-sided polygonal 
face. The eight edges of these polygons are identified in pairs and each edge 
will have as endpoints the two points on a at distance ε from T. Because 
the Euler characteristic of the surface bounding the neighborhood of T is 
χ = 4 — 4 + 2 = 2, the neighborhood is a solid bounded by a sphere. By 
letting ε -► 0 we see that the solid is a union of concentric spheres and is 
topologically a ball in Euclidean three-space. We have now found that 
the homogeneity condition of a manifold is satisfied at all points of the 
pseudomanifold, except possibly the vertices P and Q. We now show that 
the condition fails at these points. By symmetry it is sufficient to consider 
the point P. 
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Consider a neighborhood of P formed from four solids which are the 
intersections of the cubical solid and the balls of radius ε centered at the 
four vertices P. From Figure 7.4 we see that this neighborhood of P has a 
boundary surface represented by the equations 

ghi = 1, gjk = 1, imj = 1, hkm = 1. 

By reducing the equations to a canonical equation we find that the neigh-
borhood of P is a solid bounded by a projective plane. 

The reasoning used in this example also proves that all points, except 
possibly the vertices, have neighborhoods that are balls when polyhedral 
solids are fitted together to form a closed pseudomanifold. We shall now 
derive a necessary and sufficient condition for all of the vertices to have 
neighborhoods that are balls. 

If we consider a polyhedral solid with planar faces in Euclidean three-
space, we can form a neighborhood of a vertex by intersecting the solid 
with a ball centered at the vertex. By selecting balls that are small enough 
we can find a set of disjoint neighborhoods, one for each vertex. Further-
more, the neighborhood of a vertex may be assumed to be small enough 
to intersect only the edges and faces containing the given vertex. We call 
these neighborhoods corners of the polyhedral solid, A corner at a vertex 

Fig. 7.4 
(Above) 

Fig. 7.5 
(Right) 
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P is itself a polyhedral solid with one curved face. If a face of the original 
solid has P as a vertex, the face will contribute a circular sector as a face 
of the corner. The circular arcs of these sectors are the edges of a spherical 
polygon which is the curved face or base of the corner. There is a vertex 
of this base on every edge of the polyhedral solid with P as a vertex. 

When polyhedral solids are fitted together to form a closed pseudo-
manifold, each vertex has among its neighborhoods some that are a union 
of topological equivalents of polyhedral corners and are bounded by a 
closed surface formed from the bases of these corners. Although these 
statements are intuitively reasonable, an exact proof would depend on a 
careful definition and study of neighborhoods. Assuming that neighbor-
hoods of this special type have been selected for each vertex, we shall show 
that a necessary and sufficient condition that all of these neighborhoods 
be bounded by spheres is that the sum of the number of polyhedral solids 
and the number of edges equal the sum of the number of faces and the 
number of vertices. 

Let «0, nu n2, n3 be the numbers of vertices, edges, faces, and poly-
hedral solids and ri0, n\, ri2 are the numbers of vertices, edges, and faces 
if the identifications are ignored. Let m0, mu m2 be the numbers of vertices, 
edges, and polygons in the set of surfaces bounding the neighborhoods. 
Because each edge of the closed pseudomanifold meets the neighborhood 
surfaces at one point near each end of the edge, m0 = 2ni. The equation 
n'2 = 2n2 follows because the faces of the polyhedral solids are identified 
in pairs. If identifications are ignored, the number of vertices of a poly-
hedral solid equals the number of corners. Hence n'0 = m2. When the 
identifications are ignored, the base of each corner is a polygon with the 
same number of edges as vertices. Because edges of the polygons are 
identified in pairs and the edges of the polyhedral solids contain two 
vertices of the neighborhood surfaces, 2ml = 2n\. The inequality 

m0 — mx + m2 < 2n0 

follows because each of the n0 neighborhood surfaces has Euler charac-
teristic less than or equal to 2. Because the surface of each polyhedral 
solid is topologically a sphere, 

riQ - n\ + n2 = 2n3. 

Substitution for m0, mu m2, and n2 gives 

2nx — n\ + n'0 <2n0, 

n'0 — n\ + 2n2 = 2n3. 
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By subtracting the equation from the inequality we derive the inequality 

2nx — 2n2 < 2n0 — 2n3, 

which is equivalent to 

«3 + nx < n0 + n2. 

The equality will hold if and only if 

m0 — ml+m2 = 2n0. 

Because this equation holds if and only if the Euler characteristic of each 
neighborhood surface equals 2, we have proved the desired result. 

In two-dimensional topology the Euler characteristic is useful in the 
classification of closed surfaces. The three-dimensional Euler charac-
teristic defined by 

χ = n0 - nl + n2 - n3 

does not help to classify closed three-manifolds. 

Theorem. A closed pseudomanifold formed from polyhedral solids in 
accordance with rules 1 to 4 is a manifold if and only if the Euler charac-
teristic is zero. 

7.2 Orientability 
Before defining orientability of three-dimensional manifolds we shall 

give an example of a nonorientable manifold and show that some of 
its properties contradict our space intuition based on Euclidean solid 
geometry. 

Fig. 7.6 
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As in an earlier example, we start with the cubical solid defined by the 
condition max (|x|, \y\, \z\) < 1. We identify the opposite faces by the 
following correspondences: (l,y,z) <->(— 1, — y, z), (x, l,z)<-+(x, —1, — z), 
(x, y, 1) <-+ (x, j>, — 1). These face identifications induce the edge and vertex 
identifications shown in Figure 7.6. Because the Euler characteristic is 
χ = 1 — 3 + 3— 1 = 0 , this cube with identified faces is a manifold. 

Consider the midsection of this manifold on which z = 0. As the identi-
fications in Figure 7.7 show, this midsection is a Klein bottle represented 
by the equation dede'1 = 1. In Figure 7.8 we show the Klein bottle with a 

Fig. 7.7 Fig. 7.8 

neighborhood, which consists of the bottle and two thin blankets, one 
above and one below it. In the matching of the left and right faces, the 
right-edge upper-blanket side is matched to the left edge of the lower 
blanket. Because the Klein bottle does not separate the two blankets, it is 
a one-sided surface. In contrast, let us investigate the Klein bottle which is 
the midsection on which x = 0 (Figure 7.9). Because the face identifications 
match the front half of the left face to the front half of the right face and 
the front half of the top face to the front half of the bottom face, the front 
blanket in a neighborhood of the Klein bottle in Figure 7.9 is not connected 
to the rear blanket. This shows that this Klein bottle is a two-sided surface. 
Figure 7.10 shows that the midsection in which y = 0 is a one-sided torus, 
for the left half of the front face is identified with the right half of the rear 
face. A torus inside the cube is two-sided. We have now seen that the one-
sidedness or two-sidedness of a surface is not its intrinsic property but 
depends on the type of three-dimensional manifold in which it is embedded 
and its position in this manifold. The very definition of a nonorientable 
three-dimensional manifold depends on two-sided Klein bottles. 
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Fig. 7.9 Fig. 7.10 
fgfg-l = i jkj-lk-l = \ 

Consider a neighborhood of a simple closed curve in a three-dimensional 
manifold. We can think of this neighborhood intuitively as a solid tube 
encasing the curve.t If we cut across this tube, the neighborhood becomes 
a cylindrical solid. Thus the original tube is a cylindrical solid with the 
circular disk at one end identified with the circular disk at the other. The 
boundary of the tube is a cylinder with the circle at one end identified with 
the circle at the other. This boundary surface is a torus or a Klein bottle, 
depending on how the orientations of the two circles are matched. The 
manifold is defined as nonorientable if it contains a closed curve with a 
neighborhood bounded by a Klein bottle. Note that this definition re-
quires the existence of at least one simple closed curve with at least one 
neighborhood bounded by a Klein bottle. This Klein bottle is, of course, 
two-sided, for it separates the neighborhood from the rest of the manifold. 

Because a manifold may be shown to be nonorientable by exhibiting a 
single two-sided Klein bottle, our definition is satisfactory for proving 
nonorientability. The definition in this form is poorly suited to proving 
orientability, for it requires showing that no tubular neighborhood, no 
matter how wild the curve, can be bounded by a two-sided Klein bottle. 
There are other equivalent definitions that are more useful. The present one 
was selected because it is intuitive and could be stated without additional 
terminology and concepts. 

In the manifold of the example the intersection of the x-axis and the 
cubical solid is a closed curve which has a neighborhood bounded by a 
Klein bottle. Consider a particular tubular neighborhood of this curve. 

t Wild curves may not have any tubular neighborhoods. 
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At the origin select three vectors in the tube directed positively along the 
coordinate axes. Slide these vectors along the x-axis so that the vectors 
continue to be parallel to the three axes. As the vectors disappear through 
the front face and reappear through the back face, two of the vectors stay 
parallel to the positive direction of the x- and z-axes but the third changes 
from the positive ^-direction to the negative ^-direction. With this change 
a triple of vectors with a right-hand orientation become a triple with a 
left-hand orientation. Thus it is not possible to distinguish right-hand or 
left-hand orientations in this nonorientable manifold. 

We now describe two orientable three-dimensional manifolds. The first 
is the hypersphere (or three-sphere) defined in a four-dimensional Eucli-
dean space with Cartesian coordinates x, y, z, t by the equation x2 + y2 + 
z2 + t2 = 1. In Chapter 1 we used stereographic projection to represent a 
plane completed by a point at infinity as a two-dimensional sphere. We 
reverse the procedure to represent the hypersphere as a Euclidean three-
space completed by a single point at infinity. We project the point (x, y, 
z, t) on the hypersphere from the north pole (0, 0, 0, 1) onto a point in the 
hyperplane (or three-space) defined by t — 0. To find the image of (x, y, 
z,t) we must find the intersection of the hyperplane t = 0 and the line 
through the points (x, y, z, t) and (0, 0, 0, 1). All points on this line have 
the form 

(0,0,0, l) + k(x,y,z,t- 1). 

Because the desired point of intersection has k = 1/(1 — /), the image of 
(x, y9 z, t) is [x/(l — t), y/(l — /)> */0 — 0> 0]· Computation shows that the 
point (x, y, z, 0) in the hyperplane is the image of the point 

/ 2x 2y 2z 
\x2 + y2 + z2 + 1 ' x2 + y2 + z2 + 1 ' x2 + y2 + z 2 + l ' 

x2 + y2 4- z2 - 1\ 

x2 + y2 + z2 + 1/ 

on the hypersphere. This shows that stereographic projection from the 
north pole gives a one-to-one correspondence between the points of the 
hypersphere with the north pole deleted and the hyperplane / = 0. The 
formulas show that the correspondence is continuous in both directions. 
To extend the mapping to the entire hypersphere we add a point at infinity 
to the hyperplane as an image of the point (0, 0, 0, 1). A hypersphere 
embedded in four-dimensional Euclidean space is topologically equivalent 
to Euclidean three-space completed with a single point at infinity. 
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Consider in the hypersphere a simple closed curve encased in a tubular 
neighborhood bounded by a torus or Klein bottle. By "rotating" the 
hypersphere we can ensure that the north pole is not in the closed tubular 
neighborhood. Under stereographic projection the torus or Klein bottle 
corresponds to a torus or Klein bottle, respectively, in Euclidean three-
space. The surface must be a torus rather than a Klein bottle, for a Klein 
bottle cannot be embedded in Euclidean three-space. This shows that the 
hypersphere is orientable. 

To prove that the hypersphere is a manifold we wish to divide it into 
polyhedral solids. Under stereographic projection the (southern) half of 
the hypersphere defined by / < 0 corresponds to the ball defined by 
/ = 0, x2 + v2 + z2 < l. Each point on the equatorial sphere defined by 
/ = 0 and x2 + y2 + z2 = l corresponds to itself. Stereographic projection 
from the south pole is defined by the transformation (x, >>, z, /) <-» (x/( l + /), 
y/(\ + 0, z/(\ + /), 0). Under this projection the half of the hypersphere 
with / > 0 is mapped into the same solid sphere and the points on the 
equatorial sphere are left fixed. The hypersphere may be considered as a 
two-branched covering of the ball with the branches coinciding on its 
spherical boundary. If the bounding sphere is divided into polygons, edges, 
and vertices, the hypersphere is the union of two polyhedral solids. To 
examine the identification of the faces of these polyhedral solids we trans-
form their representative solid spheres so that the images of the balls no 
longer coincide. In discussing the balls in the hyperplane / = 0, the co-
ordinate / is omitted. Use the transformation 

(x, y9 z) - ±(x, y, z) + ±(JC, y ^ \ - x 2 - y2) 

on the ball considered as a representation of the northern half of the 
hypersphere. The ball is compressed into the hemiball defined by z > 0, 
x2 + y2 + z2 < 1. The (upper) hemisphere z = V1 — x2 — y2 is left fixed, 
whereas the (lower) hemisphere z = — v 1 — x2 — y2 is projected parallel 
to the z-axis onto the circular disk z = 0, x2 + y2 < 1. On the ball, as a 
representation of the southern half of the hypersphere, perform the same 
transformation but follow it by the reflection (JC, y, z) -► (x, y,—z) in the 
xy-plane. Under the composite transformation the ball is mapped onto 
the hemiball z < 0, x2 + y2 + z2 < 1. The lower hemisphere is projected 
as before onto the equatorial disk and the upper hemisphere is transformed 
into the lower hemisphere by reflection in the xy-plane. We now have a 
representation of the northern and southern halves of the hypersphere as 
the upper and lower halves of the ball x2 + y2 + z2 < 1. Although a point 
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of the disk z = 0, x2 + y2 < 1 is in both hemiballs, it represents a single 
point in the equatorial sphere of the hypersphere. Thus the hemiballs fit 
together in the same way as the halves of the hypersphere. In addition, 
the upper and lower hemispheres must be identified by the correspondence 

(x,y, Vl -x2 -y2)++(x,y, - Vl - x2 -y2). We have found that a 
hypersphere may be represented by the polyhedral solid x2 + y2 + z2 < 1 
with two hemispherical faces: z = Vl — x2 — y2 and z = - V l — x2 — y2, 
one edge: z = 0, x2 + y2 = 1, and one vertex: the point (1,0,0). The 
faces are matched by identifying each point with its image under reflection 
in the xj>-plane. The Euler characteristic of this polyhedral solid with 
identified faces is χ = 1 — 1 + 1 — 1 = 0 . We now know that the hyper-
sphere is a three-dimensional, closed, orientable manifold. 

The face identification that makes a solid sphere into a hypersphere is a 
three-dimensional analogue of an edge identification which transforms a 
circular disk into a sphere. Consider the circular disk x2 + y2 < 1 and 
identify the point (x, Vl — x2) on the upper semicircle with the point 
(x, — Vl — x2) on the lower semicircle of the boundary of the disk. This 
identification is indicated in Figure 7.11. The correspondence (x, Vl — x2) 
<->( — x, — \l\ — x2), which matches antipodal points on the circumference 
of the disk, changes the disk into the projective plane (Figure 7.12). In 

σ σ 

O O 
σ σ 

Fig. 7.11 Fig. 7.12 
three dimensions the identification of antipodal points on the sphere 
x2 + y2 + z2 = ! transforms the ball x2 + y2 + z2 < 1 into a three-
dimensional closed manifold topologically equivalent to projective three-
space. 

The projective plane is formed from the Euclidean plane by adding a 
point at infinity on each family of parallel lines. The point at infinity on a 
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line is reached by traveling along the line in either direction. This means a 
projective line is topologically equivalent to a circle. The points at infinity 
form the line at infinity. Three-dimensional projective space is constructed 
from Euclidean three-space by adding a plane at infinity that contains one 
point at infinity for each family of parallel lines in the Euclidean space. 
The transformation 

{x, y, z) -► ( — — , — — , — — ) , 
\l + r 1 + r 1 + rj 

where r = ^/x2 + y2 + z2, maps the Euclidean space with Cartesian co-
ordinates x, y9 z in a one-to-one fashion onto the open ball defined by 
x2 + y2 4- z2 < 1. The radii of this ball are the images of the lines 
through the origin. The points on the sphere x2 + y2 + z2 = 1 at the ends 
of the radii are a concrete representation of the points at infinity on the 
lines through the origin in the projective extension of the Euclidean 
space. These are all the points at infinity, for every family of parallel 
lines contains one line through the origin. Because the same point at 
infinity is reached by traveling in either direction on a line, the antipodal 
points of the sphere x2 + y2 + z2 = 1 must be identified. Thus projective 
three-space is topologically equivalent to a ball with pairs of antipodal 
boundary points identified. 

We now ask whether projective three-space is orientable or nonorientable. 

Fig. 7.13 
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If a closed tubular neighborhood of a simple closed curve stays entirely 
inside the ball, the neighborhood is bounded by a torus. Of more interest 
is a tubular neighborhood, which reaches the surface of the ball and then 
reappears at the opposite side of the surface. The example sketched in 
Figure 7.13 should convince us intuitively that project!ve three-space is 
orientable.t The surface bounding the tubular neighborhood of the curve c 
may be represented by the equations bda~le= 1 and ae~1b~1d~1 = 1. 
Because these equations show that the surface is orientable, the neighbor-
hood is bounded by a torus rather than a Klein bottle. 

Our examples have all been closed pseudomanifolds or manifolds. We 
could remove portions from a closed manifold to create boundary sur-
faces as we removed circular patches to give boundary curves on a surface. 
We might then try to generalize the classification of surfaces. No one has 
yet succeeded in classifying three-manifolds. 

7.3 Manifolds of Configurations 
The definition of manifolds makes them locally Euclidean in that each 

point has neighborhoods that are topologically equivalent to a Euclidean 
ball (disk in two dimensions). We now consider geometric realizations of 
a manifold such that the " points " of the manifold are lines, circles, tri-
angles, or other configurations in Euclidean space. To fit configurations 
together to form a manifold we shall define the distance between con-
figurations in each example. This permits us to discuss convergence for 
sequences of configurations. We shall represent a manifold of configura-
tions as a manifold of ordinary points by giving a mapping of the set of 
configurations onto a set of points so that a sequence of configurations 
will converge if and only if the corresponding sequence of representing 
points converges. 

As our first example, consider the diameters of a sphere. Define the 
distance between two diameters as the angle between them. The mapping 
which transforms each diameter into its pair of endpoints represents the 
manifold of diameters as the sphere with pairs of antipodal points identi-
fied. As an alternative we could map the diameter into its endpoint in the 
northern hemisphere. This would show the manifold to be topologically 
equivalent to a hemisphere with the antipodal points on its equator 
identified. With this identification the hemisphere could be represented by 

t A rigorous proof based on our definition would be very complicated. One difficulty 
is that a tubular neighborhood could jump from the front to the back of the ball an 
infinite number of times. 
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the equation aa = 1. The manifold of diameters of a sphere is a projective 
plane. 

As a second example, consider the tangents and secants of the circle 
with equation x2 + y2 = 1. Represent these secants and tangents by the 
chords and degenerate point chords in which these lines intersect the 
circular disk x2 + y2 < 1. Define the distance between two chords as the 
sum of the distance between their midpoints and the angle between the 
corresponding secants or tangents. This distance between midpoints taken 
by itself is not a satisfactory distance between chords because any two 
diameters have the same midpoint. 

The midpoint P of a chord is on a radius OA perpendicular to the chord 
(Figure 7.14). If we tried to represent the chord by P, we would find that 

Fig. 7.14 

all diameters were represented by O. To avoid this difficulty, we associate 
with the chord the point P* such that A is the midpoint of P and P*. For 
a degenerate chord the points P, A, and P* all coincide. If the chord is a 
diameter, either half of the perpendicular diameter can serve as OA. Thus 
a pair of antipodal points on the circle x2 4- y2 = 4 corresponds to a single 
diameter. The association of chords and points represents the manifold of 
chords as an annulus with pairs of antipodal points on the outer boundary 
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identified. This is a projective plane with a disk removed. Thus the manifold 
of chords of a circle is a Möbius band. 

In the example just studied the chords were unoriented, and the angles 
between them were between 0 and π/2. The oriented chords of a circle 
form a different manifold. To each proper chord there correspond two 
oriented chords, but to each degenerate chord there corresponds only one 
oriented chord, for a point does not have two distinguishable orientations. 
The angle between two proper oriented chords may be restricted to the 
interval from 0 to π. Suppose P1 and P2 are the midpoints of two oriented 
chords. Let rx and r2 be the distances of Px and P2 from the center of the 
circle. If d is the distance between Px and P2 and Θ is the angle between 
the oriented chords, define the distance between the oriented chords as 
d + (1 - rx)(l - r2)9. Because (1 - r^O - r2) = 0 if either chord is 
degenerate, there is no need to define the angle between oriented chords 
when one is degenerate. 

We now describe a mapping of the oriented chords onto the annulus 
defined by i < x2 + y2 < 4. Let OA be the radius perpendicular to the 
chord at a point P. If the oriented chord crosses OA from right to left as 
viewed from O along OA, let the image of the oriented chord be the point 
P* such that A is the midpoint of P and P*. If the oriented chord crosses 
from left to right, let P* be the midpoint of P and A. Either half of the 
diameter perpendicular to an oriented diameter can serve as OA. Because 
the oriented diameter crosses one of these radii from right to left and the 
other from left to right, an oriented diameter corresponds to two antipodal 
points, one on the outer boundary and one on the inner boundary of the 
annulus \ < x2 + y2 < 4. This mapping represents the oriented chords as 
an annulus with identified pairs of antipodal points, one from each 
boundary. Figure 7.15 shows that this annulus may be represented by the 
equation abaT^b'^ = 1. We have found that the manifold of oriented 
chords of a circle is a torus. 

The three-dimensional analogue of a chord of a circle is a circular disk 
inscribed in a sphere. A disk inscribed in the sphere x2 + y2 + z2 = 1 is 
the intersection of a plane and the ball x2 + y2 + z2 < 1, whereas a chord of 
the circle x2 + y2 = 1 is the intersection of a line and the disk x2 + y2 < 1. 
The inscribed disk is represented by its circular boundary. The circles on 
a sphere should form the three-dimensional analogue of the manifold of 
chords of a circle. A point on the sphere is a degenerate circle obtained by 
intersecting a sphere and a tangent plane. Define the distance between two 
circles on a sphere as the sum of the distance between their centers and the 
angle between their planes. 
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Fig. 7.15 

Let P bethe center of a circle on a sphere, and let OA be the radius of the 
sphere perpendicular to the plane of the circle. Associate with the circle 
the point P* such that A is the midpoint of P and P*. If the circle is de-
generate, P, A9 and P* coincide. Because either half of the diameter per-
pendicular to the plane of a great circle can serve as OA, each great circle 
corresponds to a pair of antipodal points of the sphere x2 + y2 + z2 = 4. 
This correspondence represents the manifold of circles on a sphere as the 
spherical shell 1 < x2 + y2 + z2 < 4 with identified pairs of antipodal 
points on the outer boundary sphere. This is topologically equivalent to a 
projective three-space with a solid sphere removed. Intuition suggests this 
result, for the manifold of chords of a circle is a projective plane with a 
disk removed. Intuition is not so helpful in identifying the manifold of 
oriented circles on a sphere. 

There are two oriented circles for each nondegenerate circle on a sphere. 
We shall orient the plane of an oriented circle by defining a positive direc-
tion for the normals to the plane. A direction of a normal is positive if an 
observer looking in that direction reports that the circle has clockwise 
orientation. The angle between two oriented planes is the angle between 
the positive directions of their normals. Suppose that the centers P1 and P2 
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of two oriented circles on the sphere x2 + y2 + z2 = 1 are at distances rx 

and r2 from the center of the sphere. If d is the distance between Pl and P2 

and Θ is the angle between the oriented planes of the oriented circles, define 
the distance between the oriented circles as d + (1 — r^)(\ — r2)0. Only one 
oriented circle corresponds to a degenerate point circle, and this point 
circle cannot be used to define a positive direction normal to the corre-
sponding tangent plane of the sphere. Therefore Θ has two possible values 
if one of the oriented circles is degenerate. This causes no problem, how-
ever, for (1 — rjXl — r2) = 0 if either circle is degenerate. 

We now map the oriented circles on the sphere onto the spherical shell 
defined by i < x2 + y2 + z2 < 4. Let OA be the radius of the sphere per-
pendicular to the oriented plane of an oriented circle with center P. If the 
direction from O to A is positive with respect to the oriented plane, map 
the oriented circle onto the point P* such that A is the midpoint of P and 
P*. If the direction from A to O is positive, the image of the oriented circle 
is the midpoint P* of P and A. Two possible radii OA correspond to an 
oriented great circle. Because the two radii are oppositely directed, the 
two image points of an oriented great circle are antipodal points, one on 
the outer boundary and one on the inner boundary of the spherical shell 
i < x2 + y2 + z2 < 4. The manifold of oriented circles on a sphere is 
topologically equivalent to a spherical shell with identified pairs of anti-
podal points, one from each boundary sphere. 

Because the torus of oriented chords is analogous to the manifold of 
oriented circles on a sphere, we might be tempted to call our new manifold 
a three-dimensional torus. In Section 7.4 we describe an orientable mani-
fold that is more deserving of this name. We shall now see that the manifold 
of oriented circles on a sphere is nonorientable. 

Figure 7.16 shows a simple curve joining (0, 0, 2) and (0, 0, — i ) in the 
spherical shell ^ < x2 + y2 + z2 < 4. This curve may be considered as a 
simple closed curve in the manifold of oriented circles on a sphere if we 
identify points by the correspondence 

(x,y, ̂ Ζ^ΓΖΓ?}„(Ζ1,Ζ1,=± JÄ^x^?). 

A tubular neighborhood of this curve is sketched in Figure 7.17. Because 
the boundary of this tubular neighborhood is a Klein bottle with the 
equation abab~x = 1, the manifold of oriented circles on a sphere is 
nonorientable. 

Another representation of this manifold is a hyperquadric in four-
dimensional projective geometry. Suppose xi9 x2, x 3 , x4 are Cartesian 
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Fig. 7.16 

Fig. 7.17 

206 
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coordinates in a four-dimensional Euclidean space. Replace these co-
ordinates by the homogeneous coordinates ti9 t2, t39 t49 t59 where xi = 
tjts, x2 = t2/t5, x3 = t3/t5, and x4 = tjts. These coordinates are said to 
be homogeneous because the coordinate quintuple (ctl9 ct2, ct3, c/4, ct5)9 

where c φ 0 represents the same point as (tl9tl9 t3, / 4 , /5). The quintuples 
with t5 = 0 do not represent points in the Euclidean four-space. A line L 
through the point (al9 al9a39 a4) with direction vector (bl9b2,b39 bA) has 
the parametric equation 

(xl9 x 2 , x 3 , x4) = (ql9 a2,a3, α4) + n(bl9 b2,b3, b4). 

In terms of the homogeneous coordinates, this equation becomes 

(tu t2, t39 tt) = t5(au a2,a3, a4) + s(bi9 b2,b39 b±) 

and is satisfied by the quintuples of homogeneous coordinates of points 
on L. In addition, the equation is satisfied by the quintuples 

(tu t2, t3,t4, t5) = s(bub2,b39bAr9 0), 

which are defined as coordinate quintuples for a point at infinity on L. 
Notice that this point at infinity depends only on the direction of L. Hence 
all lines parallel to L pass through the same point at infinity. After the 
introduction of these points at infinity, every quintuple of numbers except 
(0, 0, 0, 0, 0) is a set of homogeneous coordinates for some point. The 
Euclidean four-space with one point at infinity added for each family of 
parallel lines is four-dimensional projective space. 

We shall now show that the manifold of oriented circles on a sphere is 
topologically equivalent to the locus of the equation 

t\ + tl + tl = tl + t2
5 

in projective four-space. Divide the locus into four parts Sl9 S29 S39 S49 

sothat | /4 | < \t5\ and t4t5> 0 o n 5 l 5 |f4|> |f5| and t4t5> 0 ο η £ 2 , \t4\ < \t5\ 
and t4t5 < 0 on S3, and |f4| > \t5\ and ί4ί5 < 0 in 5 4 . Because the solution 
h = h = h = U = '5 = 0 does not correspond to a point, we may assume 
that tt Φ 0 for some /. From the equation we see that either /4 Φ 0 or 
/ 5 Φ0 . Because |/4| < |/5| on St and 5 3 , / 5 Φ 0 throughout St and S3. 
Similarly, /4 φ 0 throughout S2 and S4. 

The mapping 

Oi ,t29t39t49 t5) -> (x, y9 z) = - (tx, t2, i3) 
h 
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carries St into Euclidean three-space. Because 
2 

+ 1 
5/ 

and tjt5 ranges from 0 to 1, Si is mapped onto the spherical shell 
1 < x2 + y2 + z2 < 2. A point in Sx is determined by the four ratios 
hlh > hlh > hlh » W's > a nd the equation determines the fourth ratio in 
terms of the other three. Thus a point in the spherical shell corresponds to 
a unique point in Si9 which shows that the mapping is one-to-one. Con-
tinuity of the mapping and its inverse can be proved from the equations 
relating x,y,z and the tt. We have found a representation of Sl as a 
spherical shell. 

Similarly the transformation 

(ii ,t2,h,U915)-► (xx , yx, zO = - (tx, i2, ^) 

maps S3 onto the same spherical shell. We follow this by the inversion in 
the sphere x2 + y2 + z2 = 1 defined by 

(*i > )Ί » z i ) "> (*> >>> z ) = "2 ( χ ι > yi > z i ) 

where r2 = x2 + y2 + z2. The composite mapping 

(*i ,t29t3,t4i t5)-* (x, j , z) = -5-^-5 ( 7 , 7 , 7 ) 
U "Γ *5 \ r 5 '5 l5/ 

represents S3 as the spherical shell \ < x2 + y2 + z2 < \\ Sx and £3 have 
a common boundary on which t4 = 0. On this boundary the transforma-
tions of 5Ί and S3 agree. The mapping 

(*i » 2̂ >h >U > is) -» (*i> J>i > * i ) = 7 ( i i » r 2 , h)> 
*4 

followed by the inversion 
2 

O l > yl , * l ) -> (*, >% *) = 2 ^ 2 , 2 (λ'ΐ > >Ί > Z l ) 
*1 "+" / l "r Z l 

in the sphere x2 + y2 + z2 = 2, gives the mapping 

λ 2ίΐ /ίι t2 t3\ 
( i i ,Î2>h>U> is) -> ( 

of S2 onto the spherical shell 2 < x2 + >>2 + z2 < 4. 5Ί and S2 have a 
boundary on which U = t5. On this boundary the mappings of St and S2 
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agree. Transform £4 onto the spherical shell \ < x2 + y2 + z2 < 1 by the 
mapping 

Oi ,t2,t3iU, t5)-+ (xx, yx, zx) = -ΓΓΑ ( r » 7» r ) · 
'4 + *5 \*4 '4 '4/ 

By inverting in the sphere x2 + y2 + z2 = \ transform this shell into the 
shell \<x2 + y2 + z2 <\. Finally, reflect in the origin by transforming 
(x, y, z) into ( —x, —y, — z). The product of these mappings is defined by 

On the common boundary of S3 and S4, where t4 = —15, the mappings 
of S3 and S4 agree. 

The four regions Sl9 S2, S3 , S4 are mapped onto four concentric 
spherical shells. The regions S2 and 5 4 , which correspond to the outer and 
inner shells, have a common boundary, where /5 = 0. This boundary is 
transformed onto the sphere x2 + y2 + z2 + 4 by the mapping of S2 and 
onto the sphere x2 + y2 + z2 = ^ by the mapping of 5 4 . Because the 
image of (tl9 t2,t39tA9 0) as a point of S2 is a negative multiple of the 
image of the same point as it appears in £ 4 , the two images are antipodal 
points, one on each of the boundary surfaces of the shell £ < x2 + y2 + 
z2 < 4. We conclude that the projective locus of the equation 

t2i + t2
2 + t2

3 = t2 + t2 

is topologically equivalent to the manifold of oriented circles on a sphere. 
As another example, consider the rotations of a sphere. A rotation of a 

sphere is uniquely determined by the axis of the rotation and the angle of 
rotation about that axis. The axis cuts the sphere in a pair of antipodal 
points called the poles of the rotation. The angle of rotation will have two 
values corresponding to the two orientations of the axis. Define the angle 
of rotation to be between — π and π, with the positive angles corresponding 
to rotations that are counterclockwise, viewed along the positive direction 
of the axis. This angle will be replaced by its negative if the orientation 
of the axis is reversed. Consider two rotations. The axes of these rotations 
may be oriented so that the angle between the oriented axes is between 0 
and π/2. Let Θγ and θ2 be the angles of rotation induced by these orienta-
tions. The difference of the angles of rotation is the minimum of |0Χ — θ2\ 
and 2π — \et — θ2\. We define the distance between rotations as the sum 
of the angles between their axes and the difference between their angles 
of rotation. 
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We now associate a point P with each rotation. If the axis of a rotation 
with poles A and A' is oriented from A' to A, define P as the point on the 
line A'A such that the directed distance from the center of the sphere to P 
is the tangent of one half the angle of rotation. If the opposite orientation 
is assigned to the axis, the angle of rotation and the directed distance are 
multiplied by — 1 but the point P does not move. The association is a 
one-to-one correspondence of the rotations with angle less than π with the 
points of Euclidean three-space. The center of the sphere, which is on all 
possible axes of rotation, corresponds to the identity rotation. As the angle 
of rotation about a fixed axis approaches π, point P moves away from the 
origin. A point at infinity should be added on the axis to correspond to 
rotation with angle π. Because the same rotation is the limit as the angle 
approaches — π, the same point at infinity is reached by traveling in either 
direction along the axis. We have found that the manifold of rotations of a 
sphere is topologically equivalent to three-dimensional projective space. 

Another representation of the manifold of rotations is by oriented 
tangent lines to the sphere. Consider the sphere x2 + y2 + z2 = 1 and an 
oriented line L tangent to the sphere at the south pole (0, 0 , -1) and 
parallel to the positive direction of the jc-axis. A rotation will carry the 
point of tangency into any point A. A second rotation with A as a pole will 
turn the tangent line in any desired direction in the plane tangent to the 
sphere at A. .Because the rotation is uniquely determined by the image of 
L, there is a one-to-one correspondence between the rotations of the sphere 

> y 

Fig. 7.18 
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and the oriented tangent lines to the sphere. An oriented tangent line can 
be described by three angles: the colatitude 0 (latitude + π/2) and longi-
tude φ of the point of tangency and direction angle φ of the oriented 
tangent measured counterclockwise from south to the direction of the 
tangent. Euler used the angles 0, φ, and φ as coordinates for the rotations 
of the sphere. His method of defining the angles is different. 

We conclude this section with a brief description of the space of closed 
satellite orbits in a plane. Newton considered the motion of bodies in a 
central force field with the magnitude of the force inversely proportional 
to the square of the distance from the center. He showed that a body would 
travel in an elliptical orbit with the center of the force field at one focus. 
The point of the orbit nearest to the center (perigee) and the point farthest 
from the center (apogee) are the vertices of the ellipse. If the two foci 
coincide, the ellipse is a circle and any point on the orbit can serve as 
perigee or apogee. The family of orbits also includes certain degenerate 
ellipses. These orbits are straight-line segments, with the center as perigee 
and apogee at the other endpoint. Of course, an earth satellite could 
complete only the portion of the orbit that consists of a trip directly away 
from the earth and a fall straight back to what would have been its starting 
point except for the rotation of the earth. 

We let the origin be the center of the force field in a plane with polar 
coordinates (r, 0). We represent an orbit by a point with cylindrical co-
ordinates (r, 0, z) in three-space, in which (r, 0) is apogee and z = vr is the 
product of the speed at apogee v and the distance r between apogee and the 
center. This speed will be positive if the body is traveling counterclockwise 
about the origin and negative if the body is traveling clockwise. If the speed 
is zero the body is on the degenerate orbit of straight line travel between the 
origin and apogee. As the speed v increases but r remains constant, the 
coordinate z attains a maximum value z(r) corresponding to the counter-
clockwise circular orbit. The z coordinate is — z(r) for the clockwise 
circular orbit. If we were to increase z beyond z(r), we would find that (r, 0) 
had become perigee instead of apogee. Because any point on a circular 
orbit can serve as apogee, all points of the circle C(r) with r constant and 
z = z(r) must be identified. Similarly, for the circle C\r) with r constant 
and z = —z(r). The orbits correspond to points (r,6,z) with —z(r) < 
z<,z(r) (Figure 7.19). The function z(r) is an unbounded monotone 
increasing function of r with z(0) = 0. 

If the set of points is deformed so that the circles C(r) and C(r) shrink 
(to the points (0, 0, z(r)) and (0, 0, —z(r)) on the z-axis, the space of orbits 
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Fig. 7.19 

may be represented as Euclidean three-space. By shrinking the Euclidean 
three-space we represent the orbits by points of the open ball r2 + z2 < 1. 

Consider the points of the ball that correspond to orbits with a fixed 
perigee. As the speed at perigee increases, apogee moves farther away from 
the origin. When a certain critical speed is reached, the orbit becomes 
parabolic and the apogee moves to infinity. On the ball representing orbits 
the image of the parabolic orbit should be a point on the sphere r2 + z2 = 1. 
Points on the equator of this sphere correspond to the straight lines which 
are the degenerate parabolic orbits generated when a body moves away 
from the origin with " escape " velocity. Because the circular orbits have no 
limiting parabolic orbit, the north and south poles do not represent orbits. 

We have found that the satellite orbits with the parabolic orbits in-
cluded may be represented topologically by the ball r2 + z2 < 1, with the 
north and south poles deleted. 
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7.4 Topological Products and Fiber Bundles 
With any two sets S and T, the Cartesian product S x T is the set of all 

ordered pairs (x, y), with x e S and ye T. The plane of analytic geometry 
is the product of two lines; the x-axis and the j-axis. If ds and dT are 
distance functions for S and T, the distance between two pairs (xi,yi) 
and (x2, y2) is defined as s/ds(xi, x2)

2 + dT(yl9 y2)
2· With this definition 

of distance, the Cartesian product S x T is called the topological product 
of S and Γ. The topological product provides simple means of combining 
topological manifolds to form a higher dimensional manifold. 

In a Euclidean three-space with Cartesian coordinates x, y, and z let 
Ix, Iy, and /z be the intervals of the x-, y-, and z-axes defined by |JC| < 1, 
\y\ < 1, and \z\ < 1, respectively. The topological product Ix x Iy is the 
rectangle in the xy-plane defined by max(|;c|, \y\) < 1. The cubical solid 
maxflxl, |j>|, \z\) < 1 is the topological product (Ix x Iy) x Iz. Because the 
topological product is associative, the parenthesis can be omitted in triple 
products. Let Cx, Cy, and Cz be the circles obtained by identifying the 
endpoints of Ix, Iy, and Iz, respectively. The product Cx x Iy is the 
cylinder constructed from the rectangle Ix x Iy by using the correspon-
dence (1,7, ())<-►(— l,j>, 0) to identify one pair of opposite edges. The 
product Cx x Iy x Iz is the cubical solid Ixx Iyx Iz with the faces where 
x = 1 or x = — 1 identified by the correspondence (1, y, z)<-+(— 1, y, z). 
Figure 7.20 shows how the cubical solid may be deformed to achieve this 
identification in Euclidean space. This product is topologically equivalent 
to a toroidal solid. The product Cx x Cy is the torus represented by the 
rectangle Ix x Iy with the opposite edges identified. The product Cxx Cyx 
Iz is the cubical solid Ixx Iyx Iz with two pairs of identified opposite 
faces. Figure 7.21 shows how this identification can be realized in a 
toroidal shell. 

The product Cxx Cyx Cz is a cubical solid with the identifications 
(l,j>, z)«->(-l,j>, z), (x, l,z)<-»(*, - l , z ) , and (x,y, \)<r+(x,y, - 1 ) . 
Another representation is a toroidal shell on which the pairs of points at 
the corresponding positions on the inner and outer boundaries are identi-
fied. Because the cubical solid with identified faces has one vertex, three 
edges, three faces, and one polyhedral solid, the Euler characteristic is zero. 
This shows that the topological product of three circles is a three-
dimensional manifold. This manifold is called a three-dimensional torus by 
analogy with the usual torus, which is the product of two circles. Consider 
a curve in Ixx Iyx Iz joining corresponding points on a pair of opposite 
faces. When the opposite faces are identified to construct Cx x Cy x C2, 
the curve becomes a closed curve with a tubular neighborhood bounded 
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Fig. 7.20 

by a torus. Intuition correctly suggests that the three-dimensional torus 
is orientable. 

Let Kyz be the Klein bottle formed from Iy x Iz by the identifications 
(0, 1, z) <-*((), — 1, — z) and (0, y, l)<->(0, y, — 1). The nonorientable three-
manifold discussed in Section 7.1 is the topological product Ix x Kyz. 

Although the three-dimensional sphere and projective three-space are 
not topological products of lower dimensional manifolds, they can be 
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Fig. 7.21 

studied by using one and two-dimensional topology. In Section 7.3 we 
represented projective three-space as the manifold of oriented lines tangent 
to the sphere x2 + y2 + z2 = 1. The set of oriented tangents with a given 
point of tangency is topologically a circle. Because a circle is associated 
with each point of the sphere, we can describe projective three-space as 
the union of a sphere of circles. Consider a neighborhood N of a point P 
on the sphere x2 + y2 + z2 = 1. If JV is not the entire sphere, consider some 
point S not in Ar as the south pole. Every tangent to the sphere at a point in 
N is determined by the point of tangency, and its direction angle 
measured from the south. The direction angles can be considered as points 
on the circle formed from the real interval from — π to π by identifying — π 
and π. Thus the set of oriental lines tangent to the sphere at some point in 
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N is the Cartesian product of N and a circle. Our definition of the distance 
between rotations makes the Cartesian product equivalent to the topo-
logical product. The manifold of unit vectors tangent to the sphere is 
locally a topological product in the sense that the union of circles of 
oriented tangent lines corresponding to points in a neighborhood N of P 
is a topological product of N and a circle. The sphere is called the base 
space, the circle, the fiber, and the manifold, the fiber bundle. The fiber 
bundle is a union of disjoint fibers, each topologically equivalent to the 
fiber, with one fiber corresponding to each point of the base space. We have 
found that projective three-space is a fiber bundle with a sphere as base 
space and circles as fibers. It can be shown that the three-dimensional 
sphere is also a fiber bundle with a sphere as base space and a circle as 
fiber. An additional fiber bundle with the same base space and fiber would 
be the topological product of a sphere and a circle. Our intuitive example 
of a fiber bundle evaded the difficulties of giving a rigorous definition of 
a fiber bundle. 

EXERCISES 

Section 7.1 
Four pseudomanifolds are formed from the cube max(|x|, \y\, \z\) < 1 by 

using the following correspondences to identify opposite faces: 

1. (\,y, ζ)<->(-1,y, z), (x, \,z)<->(x, -\,z), (x,y, \)<-+(x,y, - 1 ) . 
2. ( 1 , J \ Z ) < - > ( - 1 , -y, -z), (x, l,z)<->(-x, - 1 , -z), (x,y, l)<-> 

( - * , -y, - 1 ) . 
3. (\,y,z)+->(-\,z,y),(x, 1, z)<-+(z, - 1 , x), (x,y, l)<->0>, x, - 1 ) . 
4. (\,y,z)<-+(-\,z,y),(x, \,z)*->(x, - 1 , - z ) , (x, y, 1)<->(χ, -y, - 1 ) . 

Which of these pseudomanifolds are manifolds ? 

Section 7.2 
1. Three manifolds are formed from the cube max(|jc|, \y\, \z\) < 1 by 

using the following correspondences to identify opposite faces : 
(a) (1,>>, ζ)<->(-1, -y, z), (x, l,z)<->(x, - l , z ) , (x,y, \)<-+(x,y, -1). 
(b) (l,j>, z)<-»(-l, -y, z), (x, l,z)<->(-x, -\,z),{x,y,\)^{x,y, - 1). 
(c) (\,y, z)<-*(-l, -y, -z),(x, l,z)*->(x, - l , z ) , (x,y, \)++ 

(*,>%-1). 

Which of these manifolds are orientable ? 
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2. The Euclidean solid S is the locus of the inequality 

z2<(x2+y2- \)(25 - x2 - y2). 

A closed three-manifold M is formed from S by identifying a point 
(x, y, z) on the boundary of S with the point ( - x , -y, z), which is also 
on the boundary of 5. Determine the topological nature of the closed 
surfaces which are the cross sections x = 0 and z = 0 of M. Are these 
surfaces one-sided or two-sided in M ? Is M orientable? 

Section 7.3 

1. The manifold of lines tangent to a sphere may be constructed from the 
manifold of oriented lines tangent to the sphere by identifying pairs of 
oriented lines. Show that the manifold of tangents to a sphere is topo-
logically equivalent to the manifold of oriented tangents to the sphere. 
HINT. Represent a tangent by angles Θ, </>, φ9 where 0 < φ < π. Map 
this tangent onto the oriented tangent with Euler angles 0, φ, 2φ. 

2. A torus is formed by revolving the circle 

(JC - 2)2 + y2 = 1 

about the >>-axis. What is the topological nature of the manifold of 
points representing lines tangent to the torus and perpendicular to the 
x-axis? 

3. Describe the one-dimensional pseudomanifold (network) whose points 
are lines (unoriented) that intersect the boundary but not the interior of 
a Euclidean plane triangle with three acute angles. What is the Betti 
number of the network? How does the Betti number change if one 
of the angles becomes obtuse? 

Section 7.4 
1. Show that the manifolds of Exercises la and lb of Section 7.2 are 

products. 

2. Let / be a line segment and C a circle. 

(a) Let St be a sphere with one handle and one boundary curve and 
let S2 be a sphere with three boundary curves. Show that St x / is 
topologically equivalent to S2 x /. 



218 SOME T H R E E - D I M E N S I O N A L TOPOLOGY 

(b) Let 5Ί and S2 be orientable surfaces with the same Euler charac-
teristic and at least one boundary curve on each. Show that Sl x Ï 
is topologically equivalent to S2 x /. Show by example that St x C 
need not be topologically equivalent to S2 x C. 

3. Let M be a Möbius band, K, a Klein bottle, C, a circle, and /, a line 
segment. Prove that M x C is not topologically equivalent to K x I. 
HINT. Consider the boundary surfaces of these products. 
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Pricing problem, 175, 183 
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Projective plane, 40 
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regular subdivision of, 46 

Projective three-space, 200 
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Rouche's theorem, 127 

Sheets of covering surface, 95 
Simple chain, 165 
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covering, 94 
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Terminal point, 165 
Three-dimensional torus, 213 
Three-sphere, 197 
Topological polygon, 53 

singular, 55 
Topological product, 213 
Topological sphere, 15 
Topological surface, 80 
Topological torus, 14 
Topologically equivalent, 13 
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Torus, 1 
axial circle of, 5 
latitude on, 5 
strangled, 56 
three-dimensional, 213 
topological, 14 

Transportation problem, 173, 183 
Tree, 165 
Triangulation, 49 

minimal, 50 
problem, 80 

Trivial equivalence, 61 
Tubular neighborhood, 196 

Unicursal, 159 

Variation of the argument, 111 
Vector field, 133 
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Winding number, 111, 114 


